
--------- - ------- - ---- - - ----------_.-

Order Number L Y26-3901-1
File Number S370-31

MVS/Extended Architecture Licensed
loader logic Program

Restricted Materials of IBM Program Number 5665-284
Licensed Materials-Property of IBM Version 1, Release 1.2
:~., Copyright IBM Corp. 1972, 1987

--------- - ------- - ---- -- ----------_.-

Order Number L Y26-3901-1
File Number 5370-31

MVS/Extended Architecture
Loader Logic

Restricted Materials of IBM
Licensed Materials-Property of IBM
<: Copyright IBM Corp. 1972, 1987

Licensed
Program

Program Number 5665-284
Version 1, Release 1.2

Second Edition (January 1987)

Restricted Materials of IBM
Licensed Materials - Property of IBM

This edition replaces and makes obsolete the previous edition,
lY26-3901-0, and its technical newsletters, lN26-8114 and
lN26-8155.

This edition applies to Version 1 Release 1.2 of MVS/Extended
Architecture Data Facility Product, licensed Program 5665-284,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Changes" following the preface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent publication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are made periodically to this publication; before using
this pUblication in connection with the operation of IBM
systems, consult the latest IBM System/370. 30xx. and 4300
Processors Bibliography, GC20-900l, for the editions that are
applicable and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
licensed program in this pUblication is not intended to state or
imply that only IBM's program may be used. Any functionally
equivalent program may be used instead.

Requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locality. If you request publications from the address given
belo~l, your order will be delayed because publications are not
stocked there.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This is a licensed document that contains restricted materials
of International Business Machines Corporation. © Copyright
International Business Machines Corporation 1972, 1982, 1983,
1987. All rights reserved.

Restricted Materials of IBM
Licensed Materials - Property of IBM

PREFACE

ORGANIZATION

This publication applies to Version 1 and Version 2 of
MVS/Extended Architecture Data Facility Product CMVS/XA DFP).

This publication contains the followingl

• "Introduction" describes the loader as a whole, including
its relationship to the operating system. This section also
describes the major divisions of the program and how they
work together.

• "Method of Operation" provides an overview of, and an
introduction to, the logic of the loader. This section also
contains detailed descriptions of specific operations.

• "Organization of the loader" describes the organization of
the loader and the control flow within it.

• "Microfiche Directory" directs the reader to named areas of
code in the program listing, which is contained on
microfiche cards.

• "Data Areas" illustrates the layout of tables and control
blocks used by the loader. These layouts may not be
essential for an understanding of the program's logic, but
they are essential for analysis of storage dumps.

• "Diagnostic Aids" includes the general contents of the
register at entry points to program components, definitions
of the internal error codes, and a list of service aids
available with the loader.

• "Appendix. Error Messages, Etc." on page 102 contains a list
of error messages and the routines and CSECTs in which they
originate. This section also contains a list of loader
input conventions and restrictions, and detailed
descriptions of input record formats.

• "list of Terms and Abbreviations" lists the terms and
abbreviations used in this book, and what they mean.

An index is also included.

PREREQUISITE KNOWLEDGE

To use this book effectively, you should be familiar with the
following topicsl

• Assembler language functions and specifications under
Assembler H

• How to analyze a main storage dump from MVS/XA

• General concepts of the linkage editor and loader.

© Copyright IBM Corp. 1972, 1987 Preface iii

Restricted Materials of IBM
Licensed Materials - propertY,of IBM

REQUIRED PUBLICATIONS

RELATED PUBLICATIONS

VERSION 1

• Assembler H Version 2 Application Programmingl Langyage
Reference, GC26-4037, for a description of basic assembler
language functions.

• MVS/Extended Architectyre Debygging Handbook, LC28-1164
through LC28-1168, for details on how to analyze a main
storage dump.

• MVS/Extended Architectyre Linkage Editor and Loader User's
~ (GC26-40Il for Version 1; GC26-4143 for Version 2) for
a description of the linkage editor and loader.

References are made within the text to various related
publications. Separate tables of related publications for
Version 1 and Version 2 are provided below.

Order
Short Title Publication Title Number

Assembler H V2 ihi§~mbht H ~~t:i:i.OD 2 GC26-4037
Application Appl;ic,d;iPD etpgtilmmiOa l
Programming. LilOaYillafi 8~fiU:i=OCfl
Language
Reference

Debugging M~:V E~:bmded AtCb:i.i~CiYI:I LC28-1164 1
Handbook D~bygaiOa HiitDdbQols., Volumes LC28-1165

1 through 5 LC28-1166
LC28-1167
LC28-1168

JCL M~S/f~hDdlid At"b:i.il"iytfl GC28-1148
.J.kL.

Linkage Editor M~:VfdflDdld At"b:i.iBS.iYI:I GC26-4011
and Loader Liols.il91 Edi:!:ot ilod LOildllt
User's Guide

Supervisor M~S/E~:hDdfid AI:s.biiflS.iYtl GC28-1154
Services and S~§i~m etOatSlmmiog L;i, b l:ill:~ •
Macro SYPlltd:Ult SB[:lliCB§ ilod
Instructions Msu~tQ I05itYs.:tiQo§

Note:

1 All five volumes may be ordered under one order number,
LBOF-I015.

iv MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

VERSION 2

Order
Short Title publication Title Number

Assembler H V2 855~mbhl: ti ~~1:5igD 2 GC26-4037
Application 8~~lis;:a:ti.sm fI:Q9rS!mmiD9:
Programming: LaCgYiil9~ B~fel:ec£~
Language
Reference

Debugging f!1~S/E2S:j;~Dd~d 8I:cbi:hu;;j;YI:~ LC28-1164 1

Handbook DebY9giC9 tiaDdbsH:!Is., Volumes LC28-1165
1 through 5 LC28-1166

LC28-1167
LC28-1168

JCl f!1~S/E2S::t~Dd~d 81:s::bij;~s;;:tYI:~ GC28-1148
Kl

linkage Editor f!111S/E2S:!!ilDd~d 81:s::bibS::!Yl:e GC26-4l43
and Loader L;iDls.il9~ I.;dU!21: aDd LQsH~~1:
User's Guide

Supervisor f!111~V E2S::t!ilDd~d 81:s::b;Ue,,:tYI:~ GC28-1154
Services and S~Iii:!;!ilm fl:!29I:ilmmiDgLibl:gl:~1
Macro Sy~el::!d,5QI: Sel:~;i.~!illii aDd
Instructions f!lacl:Q ID5:tl:y~:!;;iQD5

Note:

1 All five volumes may be ordered under one order number,
lBOF-1015.

@ Copyright IBM Corp. 1972, 1987 Preface v

SUMMARY OF CHANGES

Restricted Materials of IBM
Licensed Materials - Property of IBM

I RELEASE 1.2 LIBRARY UpDATE. JANUARY 1987

SERVICE CHANGES

Information has been added, corrected, or deleted to reflect
technical service changes.

vi MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

CONTENTS

Introduction 1
Purpose 1
Functions 1
Virtual Storage Requirements 2
Environment 4
Physical Characteristics 4
Operational Considerations 4

Input Module Structure 5
External Symbol Dictionary (ESD) 7
Relocation Dictionary (RLD) 7

Interrelationship of Control Dictionaries 7
Loader Options 8

General Theory of Operation 9

Method of Operation 11
Steps of the loader Operation 11

Initialization 11
Input Control and Buffer Allocation 11
Primary Input Processing 12
External Symbol Dictionary Processing 12
Text Record Processing 12
Relocation Dictionary Processing 12
Address Constant Relocation Processing 12
Secondary Input Processing 13
Final Processing 13
Identifying Loaded Program 13
End of loading 13

Initialization (HEWlIOCA) 13
Analyzing Control Information 14
Initializing Virtual Storage 15
Readying Data Sets 15

Redrive 16
Input Control and Buffer Allocation 16

Buffer Management (HEWBUFFR) 17
Buffer Deallocation 17
Buffer Allocation 17

Reading Object Module Input from an External Device 18
Reading Internal Object Module Input 19
Reading load Module Input 20

Primary Input Processing 21
External Symbol Dictionary (ESD) Processing (HEWlESD) 22

Preliminary ESD Processing 24
CESD Searching 25
No-Match Processing 26
Match Processing 34

Text Record Processing 38
Processing Object Module Text CHEWLTXT) 38
Processing Preloaded Text (HEWlMOD) 39
Processing load Module Text (LMTXT) 39

Relocation Dictionary (RlD) Processing (HEWlRlD) 41
Relocating Address Constants (HEWlERTN) 43
End Processing 45

END Card Processing 45
End-of-Module Processing 46

Secondary Input Processing (HEWACAll) 46
Resolving ERs from the Link Pack Area 46
Resolving ERs from the SYSLIB Data Set 47

Final Processing for the loaded Program 48
Assigning Addresses for Common Areas (COMMON) 48
Assigning Addresses for External DSECT Displacements

(PSEUDOR) 49
Issuing Unresolved ER Messages 49
Checking the Loaded Program's Entry Point 49

Identifying the loaded Program 51
End of loading 51

loader Processing Termination 51
loader Control Termination 52

Operation Diagrams 53

© Copyright IBM Corp. 1972, 1987 Contents vii

Restricted Materials of IBM
Licensed Materials - Property of IBM

Diagram AO. Overall Loader Operation (Below-the-Line
Loading) 54

Diagram AI. Overall Loader Operation (Above-the-Line
Loading) 55

Diagram A2. Loader Invocation 57
Diagram Bl. Loader/Scheduler Interface and Initialization 58
Diagram Cl. Primary Input Control and Buffer Allocation 59
Diagram Dl. Object Module Processing 60
Diagram D2. Load Module Processing 61
Diagram D3. ESD Record Processing (Generalized) 62
Diagram D4. Example of Input ESD Processing of SD-Section
Definition (HEWLESD) 63

Diagram D5. Example of Input ESD of ER-External Reference
Processing (HEWLESD) 64

Diagram D6. Example of ESD ID Translation 65
Diagram D7. Object Module Text Processing 66
Diagram D8. Load Module Text Processing (Below-the-Line

Loading) 67
Diagram D9. Load Module Text Processing (Above-the Line
loading) 68

Diagram DlO. RLD Record Processing 69
Diagram El. Secondary Input Processing 70

Organization of the Loader 71
Routine Control-Level Tables 72

Microfiche Directory 80

Data Areas 83
HEWLDDEF 94

Diagnostic Aids 98
Error Code Definitions 100
Serviceability Aids 101

Appendix. Error Messages, Etc. 102
Input Conventions 103
Input Record Formats 104
Compiler/Loader Interface for Passed Data Sets 116
Identify Macro Instruction---Identifying Loaded Program 120

List of Terms and Abbreviations 122

Index 123

viii MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

FIGURES

1. loader Storage layout (Be1ow-the-line loading) 2
2. loader Storage layout (Above-the-line loading) 3
3. loader Control logic Flow 5
4. Object Module and load Module structure 6
5. Example of an Input Module 8
6. loader Options 9
7. load Module Storage Allocation for Buffer and DECBs 18
8. Freed Areas from Buffer-DECB Allocation 19
9. Storage Allocation of Buffers and DECDs for Object Module

Input 20
10. Object and load Module Processing Differences 21
11. ESD Entry Types and Functions 23
12. Tables Used in the CESD Search 26
13. No-Match Processing Required for Input Entry Types 26
14. Storage Allocation (Below-the-line-loading) 28
15. Storage Allocation (Above-the-line loading) 29
16. Translation Control Table and Translation Table 33
17. Overall Relationship of Tables 34
18. Symbol Resolution 35
19. loading the Text from a load Module Record 41
20. Relocation of Address Constants 44
21. BlDl list and Address list 48
22. loader Organization 71
23. HEWlOADR--level 1 72
24. HEWlOADR--level 2 72
25. HEWLOADR--Leve1 3 74
26. HEWLOADR--Level 4 77
27. Data Area Construction and Usage 83
28. Address list 84
29. BlDL List 84
30. CESD Control Table (CMTYPCHN) 85
31. CESD Entry 86
32. Condensed Symbol Table Entry 87
33. Data Event Control Block (DECB) 88
34. Extent Chain Entry 89
35. IDENTIFY Parameter List 90
36. HENLDCOM DSECT--Communication Area 91
37. HEWLDDEF CSECT 94
38. INITMAIN DSECT Definition 95
39. RLD Table Entry 96
40. Translation Control Table 96
41. Translation Table 97
42. Register Contents at Entry to Routines 98
43. Internal Error Code Definitions 100
44. Module Map Format Example 101
45. Error Message/Issuer Cross-Reference Table 102
46. SYM Input Record (Card Image)--Ignored by the loader 105
47. ESD Input Record (Card Image) 106
48. Text Input Record (Card Image) 107
49. RLD Input Record (Card Image) 108
50. END Input Record--Type 1 (Card Image) 109
51. END Input Record--Type 2 (Card Image) 109
52. SYM Record (Load Module)--Ignored by the Loader 110
53. CESD Record (Load Module) III
54. Scatter/Translation Record--Ignored by the loader 112
55. Control Record (Load Module) 113
56. Relocation Dictionary Record (Load Module) 114
57. Control and Relocation Dictionary Record (Load Module) 115
58. Record Format of IDRs (load Module)--Ignored by the

Loader 116
59. DCB list 117
60. Internal Data Area in Fixed-Length Record Format 118
61. Internal Data Area in Variable-length Record Format 119
62. MOD Record (Card Image) 119

© Copyright IBM Corp. 1972, 1987 Figures ix

Restricted Materials of IBM
Licensed Materials - Property of IBM

INTRODUCTION

PURPOSE

FUNCTIONS

This section provides a general description of the loader. It
includes the purpose and functions of the program, its physical
and environmental characteristics, and operational
considerations necessary for its use. The generalized theory of
loading is also discussed in this section.

The purpose of the loader is to combine input object and load
modules into an executable program in virtual storage. In this
regard, the loader performs the basic functions of the linkage
editor and program fetch to obtain high-performance loading.
(The loader can be used only when special linkage editor
processing [such as overlaying modules] is not required.)

Using the loader can provide advantages of increased system
throughput and conservation of auxiliary storage space. System
throughput can be increased through:

• Elimination of scheduler overhead, since loading and
execution occur in a single job step

• Elimination of linkage editor I/O for intermediate and final
output

• Elimination of certain linkage editor functions, such as
control statement processing and overlay structuring

• Reduction of time required for reading input, through
improved buffering techniques

• Reduction of time required for library search, through use
of link pack resident modules

• Elimination of time required to read input from an external
device, through use of an internal input data area prepared
by a compiler

Auxiliary storage space is conserved through:

• Deferring inclusion of processor library routines until load
time, thus reducing space required for the program. (This
applies to a production environment in which jobs are
selected from a job library.)

• Eliminating space formerly needed for the linkage editor
intermediate and output data sets.

The loader performs the basic logical functions of the linkage
editor and of the program fetch module. Like the linkage
editor, the loader combines and links the input modules. In
addition, the loader assigns actual machine addresses to the
resulting program and then passes control directly to the
program for execution. In this regard, the loader functions as
the program fetch module does.

As part of the link-loading procedure, the loader also
automatically deletes duplicate copies of a module, and can
include modules from a system library.

© Copyright IBM Corp. 1972, 1987 Introduction 1

Restricted Materials o~ IBM
Licensed Materials - Property a~ IBM

VIRTUAL STORAGE REQUIREMENTS

{ Loader Con
trol GETMAIN

Loader
Processor
GETMAIN

-<

r

'-

loader operation requires about 25K bytes of virtual storage. l
(This amount does not include the storage for the loaded program
and the condensed symbol table.) The storage for loader
operation includes that for loader code (about 16K bytes), for
the data management access methods (about 6K bytes), and for
loader buffers and tables (about 3K bytes). If the access
methods are resident, and if the loader code is resident in the
link pack area, part of the loader storage may be allocated from
system storage.

Figure 1 shows the loader virtual storage layout when loading
below the l6-megabyte virtual storage line. Figure 2 on page 3
shows the storage layout when loading abQve the l6-megabyte
virtual storage line.

Below-the-Line-Storage

Register sove area for LOAD of Loader (72 bytes)

LOADER (Processing)

~

High
Address

}
...,

Freed after pro
grom execution

Freed before pro
gram execution

T ABLES (Dynamic) --------------------------- i~

Low
Address

Loaded Program

t
Descriptive information about loaded program

LOADER (CONTROL)

OPERATING SYSTEM

CONTROL PROGRAM

~

-'

Freed alter pro
gram execution

Figure 1. loader Storage Layout (Below-the-Line Loading)

1 The actual amount required depends on the type of input
used. (For example, input produced by the PL/I compiler
requires a minimum of 10K bytes for loader tables.)

2 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Loader Con·
trol GETMAIN

Loader
Processor
GETMAIN

{

,.

oe

\.

Figure 2_

Low
Address

1---

Low
Address

-- --

Above-the-Line StoragE'

Loaded Program

t
Descriptive information about loaded program

Below-the-Line Storage

Register save area for LOAD of Loader (72 bytes)

LOADER (PrOCeSSing)

~
TABLES (Dynamic) -- -- -- -- ---- -- -- ----

Load Module Text Buffer

LOADER (ContrOl)

OPERATING SYSTEM

CONTROL PROGRAM

loader Storage layout (Above-the-line loading)

© Copyright IBM Corp_ 1972, 1987

High
Address

High
Address

Freed after
>- program

execution

) Freed after
program execution

>-

---I-

Freed before
program execution

Introduction 3

ENVIRONMENT

Restricted Materials of IBM
Licensed Materials - property of IBM

The loader can be used either in batch mode, or under the time
sharing option (TSO).

It can be used in one of three ways I

1. As a job step, when the loader is specified on an EXEC job
control statement in the input stream

2. As a subprogram,' via the execution of a lOAD macro
instruction, a lINK macro instruction, or an XCTl macro
instruction

3. As a subtask in multitasking systems, via execution of an
ATTACH macro instruction.

Loader operation
SYSLIB data s~.
tape, or a direct
of data sets from
in the form of an
compiler.

requires access to a primary input source, the
Input may be from a card reader, magnetic
access device. Input may be a concatenation
different types of devices. Input may also be
internal input data area prepared by a

An automatic search of a system library can occur to complete
the input. The automatic search requires use of the SYSlIB data
~. The SYSlIB data set is defined only as a partitioned data
set. SYSlIB may also be concatenated; however, SYSLIB input
consists of object modules only, or load modules only.

When the link pack area is available, the loader can include
resident modules listed in the contents directory entry queue in
the loaded program.

The loader uses the SYSlOUT data set for both diagnostic
messages and module maps, and uses the SYSTERM data set only for
diagnostic messages. These data sets may be used in conjunction
with each other or separately.

PHYSICAL CHARACTERISTICS

The loader consists of a control portion and a processing
portion. The control portion handles linkages to and from the
processing portion (which performs the actual program loading),
and to and from the loaded program for its execution. Figure 3
on page 5 illustrates the relationship between the portions of
the loader.

The loader consists of two loads, the first contains module
HEWlCTRl, the control portion. The other load contains control
sections HEWlDDEF, HEWlIOCA, HEWlRElO, HEWLIDEN, and HEWllIBR,
which together perform program loading. Because of the
interrelationships among module functions, the loader is not a
candidate for overlay structuring.

The control portion of the loader executes in 24-bit addressing
mode; the processing portion executes in 3l-bit addressing mode.
Both portions of the loader reside below the 16-megabyte virtual
storage line.

OPERATIONAL CONSIDERATIONS

loader operation depends on the types of input received and on
the types of user options specified.

Input to the loader may be in the form of load modules produced
by the linkage editor, and/or as object modules produced by the
following language processors: ALGOL, COBOL, FORTRAN, Pl/I, RPG,

4 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

HEWLDRGO (ALIAS LOADER)

Control Portion of Loader

LOAD EP = HEWLOAD

CALL HEWLOAD

DELETE EP c HEWLOAD

RH1 - program name

HEWLOADR

Processing Portion

of Loader

~
(Performs program loading)

~
RETURN

LOADED PROGRAM
AT~CH----------t-------------------------~~--~~~--------I

WAIT
DETACH

RETURN To Caller

RETURN

Figure 3. loader Control logic Flow

and Assembler. 2 Input may be from an external device, or it may
be as one or more internal object modules (that is, a data area
that resides in virtual storage and consists of contiguous
object module records). If inputting an internal data area, the
object module records containing the inztructions and data of
the program (text) can be omitted from the data area itself and
replaced by passing a pointer to the text. The loader then
performs its usual functions of relocation and linkage on the
text without having to read or move it.

If the loader is processing an internal data area, you cannot
concatenate input from an external device to it.

INPUT MODULE STRUCTURE

Object modules and load modules have basically the same logical
structure (see Figure 4 on page 6). Each consists of:

• Control dictionaries, containing the information necessary
to resolve symbolic cross-references between control
sections of different modules.

• Text, containing the instructions and data of the program.
If an internal object module is being processed, text
prepared by a compiler may be omitted and replaced by a
pointer to its location.

2 If the input consists only of load modules, the user must
specify the loaded program's entry point.

© Copyright IBM Corp. 1972, 1987 Introduction 5

Li nkage Ed i tar Inpu t

Object Module

ESD

TXT

RLD

END

•

Restricted Materials of IBM
Licensed Materials - Property of IBM

End-of-module indication (END statement in object modules;
EOM indicator in load modules).

Linkage Ed; tar Output

Load Module

CESD

Control

TXT

EOMIRLD

Figure 4. Object Module and Load Module Structure

The instructions and data of any module may contain symbolic
references to specific areas of code. The symbols may be
defined and referred to in the same module, or may be defined in
one module and referenced in another. Thus, symbolic references
are either internal or external with respect to the module in
which they occur. A symbol that refers to external code is
called an external reference (ER). External and internal
references are made through address constants.

The loader performs its function of changing all address
constants to actual machine addresses by manipulating the input
modules' control dictionaries.

Object modules usually contain two control dictionariesl an
external symbol dictionary (ESD) and a relocation dictionary
(RLD). If the module contains no relocatable address constants,
an RLD is not present.

Load modules are a composite of object modules, and, therefore,
contain a composite ESD (CESD). Load modules contain RLDs also,
unless there are no relocatable address constants. General
descriptions of the control dictionaries follow. For detailed
descriptions, see the Appendix.

6 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials o~ IBM
Licensed Materials - Property o~ IBM

External Symbol Dictionary (ESD)

The external symbol dictionary contains entries for all external
symbols defined or referenced within a module. Each entry
indicates the symbol and its type. and gives its position (if
any) within the module. For example, there is an ESD entry for
each control section. entry point. common area. and external
dummy section. (An external dummy section defines a
displacement within an area, obtained during execution of the
input program via a GETMAIN macro instruction. External DSECTs
are also referred to as pseudo registers.)

Relocation Dictionary (RLD)

The relocation dictionary (RLD) contains at least one entry for
every relocatable address constant (thus. one for every external
and internal reference) in a module. An RLD entry identifies an
address constant by indicating both its location within a
control section. and the external symbol (in the ESD) whose
value determines the value of the address constant.

INTERRELATIONSHIP OF CONTROL DICTIONARIES

The control dictionaries and associated text are related through
a system of numbers known as ESD identifiers (ESD IDs). An ESD
ID is assigned to each external symbol according to its
sequential appearance in an object module. The external symbol
dictionary entries (created by a compiler or an assembler) have
the same sequential order, so the ESD ID gives the dictionary
entry number of an external symbol. 3 (The linkage editor
renumbers the ESD IDs to maintain the ordered relationship when
combining modules into a load module.)

Although ESD IDs do not appear in ESD entries, they are used in
label definitions. text items. and RLD entries to refer to the
symbols in the ESD.

In RLD entries the ESD IDs are used to show two relationships
between the RLD and ESD entriesl

• The RLD relocation pointer (R pointer) gives the ESD ID for
the symbol to which the address constant refers.

• The RLO position pointer (P pointer) gives the ESD ID for
the CSECT in which the address constant occurs.

Figure S on page 8 illustrates the two cases of RLD pointers.
The text of CSECT A contains two address constants. X and Y. X
refers to a symbol within CSECT A. Therefore, both pointers of
X's associated RLD entry give the ESO 10 of CSECT A. The value
field of Y. however. refers to a symbol in a different control
section, CSECT C. Thus, the R pointer of the entry for Y gives
the ESO 10 for CSECT C, the external reference; the P pointer
gives the ESD ID for CSECT A.

In an object module, an ESD item with type=LD cannot have
associated text or dependent address constants (see nESD
Processing"), and so is excluded from the numbering system.

© Copyright IBM Corp. 1972, 1987 Introduction 7

LOADER OPTIONS

-+
{

I
I
I
I
I
I
I
I
I
I
I
\ -

ESO

Restricted Materials of IBM
Licensed Materials - property of IBM

Symbol Type Origin Length

CSECT A SO 000 500 ~

CSECT C ER 000 0

CSECT B SO 500 1000

l 000
I T I

\... xB
300 vB

TEXT ITEM OF CSECT A

400

I 500 \, 3 I
I

f------~

TEXT ITEM OF CSECT B

RLO

R p Flog Address

-
I I F 300

--- --
2 I F 400

T

Note: The module above includes an external symbol dictionary, text, and a relocation dictionary.
-- The entry in the ESO for CSECT C results from the reference to CSECT C in the text of CSECT A.

This reference is at location 400. (CSECT B has no relocatable address constants.!

Figure 5. Example of an Input Module

User options may be specified by parameters listed on the EXEC
job control statement 4 , or may be passed internally by a program
requesting the loader via LINK, LOAD, ATTACH, or XCTl macro
instruction. s If the options are not user specified, the
defaults provided by the loader are used.

If the options are passed internally, the user can also provide
alternatives for the standard ddnames and for the standard
SYSLIN and SYSLIB DCBs.

See ~ manual.

5 See Sypervisor Services and Macros.

8 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

Parameters

RES NORES

MAP NOMAP

CALL
NOCALL
NCAL

LET NOLET

SIZE=

EP=

PRINT
NOPRINT

TERM
NOTERM

NAME=

AMODE=

RMODE=

Figure 6 describes the loader options. Parameters are listed
with their associated options. Some options use different
parameters to specify either the choice or the refusal of the
option. For example, NOCALL signifies that the library call
option (CALL) is not to be used. (In this case, the third
possible parameter was retained for compatibility with the
linkage editor option NCAL.) Figure 6 also indicates defaults
for the options.

Options Defaults

The loader searches the link pack area queue for RES
resident modules after primary input completes,
but before the SYSLIB data set is opened.

The loader produces a list of external names and NOMAP
their actual storage addresses.

The loader performs an automatic search of the CALL
SYSLIB data set for unresolved external names.

The loader passes control to the loaded program NOLET
despite the occurrence of a severity 2 error
condition during loading.

Specifies the maximum amount of dynamic storage to SIZE=300K
be obtained for loader processing.

Specifies an external name to be used as the entry No
point of the loaded program. default l

The loader attempts to open the SYSLOUT data set PRINT
for diagnostic output.

Error messages are directed to the SYSTERM data NOTERM
set as well as to the SYSLOUT data set.

Specifies the name to use as the name of the GOI
loaded program.

Specifies the addressing mode to be in effect when 24
entering the module at its entry point.

Specifies the residence mode that applies to the 24
module.

Figure 6. Loader Options

Note to Figure 6:

The loader assigns an entry point to the loaded program if no
name was specified.

GENERAL THEORY OF OPERATION

In processing input modules, the loader assigns virtual-storage
addresses to the control sections to be included in the loaded
program. The loader also resolves external references in the
CSECTs.

Because the origin of each input module was assigned
independently by a language translator, the order of the
addresses in the input is unpredictable. (Two input modules,
for example, may have the same origin.) The loader assigns an
address to the first control section and then assigns storage
addresses, relative to this origin, to all other CSECTs.

© Copyright IBM Corp. 1972, 1987 Introduction 9

Restricted Materials of IBM
Licensed Materials - Property of IBM

Because cross-references between CSECTs in different modules are
symbolic, they are resolved <translated into machine addresses)
relative to the virtual-storage addresses assigned to the loaded
program.

10 MVS/XA loader logic © Copyright IBM Corp, 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

METHOD OF OPERATION

This section describes the logic of the loader. It contains an
introduction that emphasizes the flow of primary data and
control information through tables and buffers. This section
also contains detailed functional descriptions of the loader.

The logic introduction refers to the operation diagrams
associated with a particular function. The detailed functional
descriptions refer to the corresponding steps of a function
through lettered references. For example, CA) refers to the
portion of a diagram that shows the GETMAIN function in "Diagram
Bl. Loader/Scheduler Interface and Initialization" on page 58.
(The diagrams follow the text of this section.)

At the end of this section are illustrations of the internal
loader tables at strategic points in processing (Figure 14 on
page 28 and Figure 15 on page 29), These illustrations stress
the changes to data; the diagrams stress movement of data. Used
together, the two sets of figures offer quick recall.

STEPS OF THE LOADER OPERATION

Initialization

The loader control portion, which acts as an interface with the
supervisor, loads the processing portion of the loader and
passes to it the parameter list received. The system interface
is shown in "Diagram AI. Overall Loader Operation
(Above-the-Line Loading)" on page 55. See also "Diagram AO.
Overall Loader Operation (Below-the-Line Loading)" on page 54.

When the loader begins processing, it performs initialization to
prepare for all subsequent processing. The operations included
in initial processing arel

• Analyzing control information

• Initializing virtual storage

• Initializing DCBs

• Opening data sets.

"Diagram Bl. Loader/Scheduler Interface and Initialization" on
page 58 shows initialization processing.

Input Control and Buffer Allocation

The loader reads input and allocates buffers as required for the
current input module. Object modules from SYSLIN (primary input
data set) and from SYSLIB (secondary input data set) are read
into the object module buffers. (However, if input is an
internal data area, buffers are not allocated and the data area
itself is considered one buffer.) Control information from load
modules (including ESD and RLD records) is read into the RLD
buffer. in below-the-line loading, Text from load modules is
read directly into the loaded program's storage area. In
above-the-line loading, text from load modules is read into the
load module text buffer and then moved into the loaded program's
storage area. "Diagram Cl. Primary Input Control and Buffer
Allocation" on page 59 shows input control and buffer
allocation.

© Copyright IBM Corp. 1972, 1987 Method of Operation 11

P~ima~y Input P~ocessing

Rest~icted Mate~ials of IBM
Licensed Mate~ials - Property of IBM

The loader performs the processing for all SYSLIN modules. (All
overlay and scatter control statements from load modules and SYM
records are ignored.) "Diagram Dl. Object Module Processing" on
page 60, and "Diagram D2. Load Module Processing" on page 61,
both show the flow of primary input processing.

Exte~nal symbol Dictiona~y P~ocessing

The ESD records from object modules and CESD records from load
modules describe symbols that have been defined for external
use. The loader makes entries for the symbols in the CESD, and
also makes entries in the translation table that allow
translation of the input ESD IDs to CESD addresses. The loader
calculates storage addresses and stores them in the CESD
entries. See "Diagram D3. ESD Record Processing (Generalized)"
on page 62 through "Diagram D6. Example of ESD ID Translation"
on page 65, for depictions of external symbol dictionary
processing.

Text Reco~d P~ocessing

For an object module, the loader translates the ID of a text
record to the proper CESD entrY address. The CESD entry
contains the storage address assigned to the CSECT. When the
loader finds the address for the text, it moves the text from
the object modulers buffer to the loaded programrs storage. For
load modules, the loader translates the IDs of all CSECTs in a
text record and thus finds their assigned virtual-storage
addresses. In below-the-line loading, the loader reads the
record directly into the loaded programrs storage area. CSECTs
at the end of the record that are to be deleted are not read.
CSECTs within the record that are to be deleted are overlaid
when the CSECTs that are to be kept are compressed. In
above-the-line loading, the loader reads the record into the
load module text buffer, located in below-the-line storage. If
all CSECTs in the record are not to be kept, the entire record
is moved into the loaded programrs storage area, above the line.
If all CSECTs in the record are not to be kept, only the CSECTs
to be kept are moved into the loaded programrs storage area.
See "Diagram D7. Object Module Text Processing" on page 66,
through "Diagram D9. Load Module Text Processing (Above-the Line
Loading)" on page 68, for depictions of text record processing.

Relocation Dictiona~y P~ocessing

The loader builds its RLD table from information contained in
the RLD records. It processes the RLD records of object modules
from the object module buffer, and those of load modules from
the RLD buffer. The loader uses the relocation and position (R
and P) pointers to determine the addresses of the address
constants (adcons), and uses the flag field to determine the
method of address constant relocation required. "Diagram DID.
RLD Record Processing" on page 69 shows relocation dictionary
processing.

Address Constant Relocation Processing

When resolving external references in the CESD, the loader uses
the RLD table entries chained to the CESD entry to relocate the
related address constants in the loaded text.

12 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials o~ IBM
Licensed Materials - Property o~ IBM

Secondary Input Processing

Final Processing

If some unresolved external references remain after all SYSLIN
input has been processed, the loader tries to resolve them from
system library routines. If RES is specified, the loader first
tries to resolve the references from link pack area routines.
When this is possible, the loader uses the addresses of the
referenced routines in the link pack area to resolve the address
constants used to symbolically refer to them. Finally, the
loader opens the SYSLIB data set, if necessary. The loader then
loads any library modules that can be used to resolve ERs in the
loaded program. The modules are located via the BLDL and FIND
macro instructions. The loader processes the modules, depending
on whether they are object or load modules, in the same manner
as it processes primary input. "Diagram El. Secondary Input
Processing" on page 70 shows secondary input processing.

After processing all input for the loaded program, the loader:

• Assigns addresses for the common areas and for displacements
in the external dummy section

• Issues messages for unresolved ERs

• Determines the address of the loaded program's entry point.

Identi~ying Loaded program

End o~ Loading

If program loading is successful, the loader issues an IDENTIFY
macro instruction to pass the name of the program to be executed
to the control program.' At this time, a condensed symbol table
may also be constructed for use by test facilities available
under the Time Sharing Option while the program is executing.

Before ending loader processing, the loader:

• writes out the diagnostic message dictionary and any
remaining diagnostic messages

• closes data set DCBs

• sets up return information

• frees storage not required for the loaded program.

INITIALIZATION (HEWLIOCAJ

When the loader begins processing, it analyzes control
information, performs initialization of main storage and of data
sets, and allocates initial buffers for the data sets. See
"Diagram Bl. Loader/Scheduler Interface and Initialization" on
page 58.

6 This processing is performed only when the processing
portion of the loader is invoked, either directly or by the
control portion of the loader, by the name HEWLOAD.

© Copyright IBM Corp. 1972, 1987 Method of Operation 13

Restricted Materials of IBM
Licensed Materials - Property of IBM

ANALYZING CONTROL INFORMATION

loader operation depends on the control information. Control
information consists of the options, ddnames of the data sets,
and the data control block addresses to be included in loader
processing. The loader uses the information passed by the user
or the defaults. (The defaults are contained in the control
section HEWlDDEF.)

(A) To analyze the control information, the loader obtains a
temporary work area, INITMAIN. (See "Data Areas" on page 83 for
the contents of INITMAIN.) The loader saves the default ddnames
and option indicators in the temporary work area. An EXTRACT
macro instruction is then issued to determine whether the loader
is currently operating under Time Sharing Option, and an
indicator is set in INITMAIN. If the processing portion of the
loader was invoked through the entry point HEWlOAD, another
indicator is set to show that identification of the loaded
program is desired. The loader then scans the user's options
and resets the default indicators in INITMAIN, when necessary.

If the SIZE option is specified, the associated user's value
replaces the default value. However, if the option was
specified incorrectly, the default value is used.

Specifying the EP option saves the associated entry point name
in INITMAIN.

Specifying the NAME option saves the associated program name in
INITMAIN. Otherwise, the default name **GO is used.

If the user specified the AMODE option, the loader verifies that
the value is either 24, 31, or ANY. If so, the value is saved
in INITMAINi if not, the loader ignores the AMODE option.

If the user specified the RMODE option, the loader verifies that
the value is saved in INITMAINi if not, the loader ignores the
RMODE option.

After all the loader options have been processed, the loader
examines the AMODE and RMODE values. If only one was provided
in the options, the loader supplies the implied companion value.
If the user specified both values in the options, the loader
verifies that the combination is valid. If not, the loader
ignores both specified values.

The loader then checks for user-specified ddnames to be used in
specifying data sets. If present, these ddnames also replace
the default names.

Finally, the loader checks for the addresses of alternates for
the data control blocks. Both addresses, if specified, must be
24-bit-only addresses; otherwise, they are ignored. The loader
will accept a SYSlIN control block if it describes an internal
data area. It saves the address of the SYSlIN control block and
sets an indicator for an internal SYSlIN data area in INITMAIN.
(The SYSLIN control block, which is not a data control block, is
described in "Internal SYSlIN Control Block" under
"Compiler/Loader Interface for Passed Data Sets" in the
Appendix.)

The loader will accept an alternate SYSlIB DCB if the
SYSlIB DCB describes a data set that has been opened.
loader also saves the address of this DCB and sets an
for an open library data set in INITMAIN.

alternate
The

indicator

14 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

INITIALIZING VIRTUAL STORAGE

READYING DATA SETS

(B) Using the GETMAIN macro instruction, the loader obtains the
required below-the-line storage from the supervisor. The
request is conditional and variable. The maximum amount
requested is for that specified by the SIZE option; the minimum
is 2K bytes. If the supervisor does not return storage, the
loader then issues an unconditional GETMAIN request for the
minimum amount. If at least 2K bytes of storage is still
unavailable, an 804 or 80A system abend occurs.

If the supervisor returns virtual storage space, the loader
establishes its permanent communication area. (The
communication area is described in "Data Areas" on page 83.>
The loader then moves the information stored in INITMAIN to the
communication area.

If a user option specified an RMODE value of ANY, the loader
obtains the required above-the-line storage from the supervisor
using the GETMAIN macro instruction. The request is conditional
and variable. The minimum and maximum values are the same as
those used in obtaining below-the-line storage. If the
supervisor does not return storage, loading takes place in the
below-the-linestorage already obtained. If the supervisor
returns virtual storage space, the loader initializes values in
the communication area required for above-the-line loading.

Save areas for use during loading are allocated and chained
backward and forward. Finally, the INITMAIN area is returned to
the system via a FREEMAIN macro instruction. The area is then
available for data management functions required for loading.

(C) The loader performs 'initialization required for use of its
data sets. If the TERM option was specified, space is reserved
for a SYSTERM DCB, two DECBs, and two buffers. Unless an
internal SYSLIN data set was passed to the loader, a SYSlIN DCB
must be prepared and opened. Similarly, unless the NOPRINT
option was specified, a SYSLOUT DCB must be prepared and opened.

DCBs for the data sets are constructed using a model DCB
contained in the loader. The ddnames and basic attributes are
placed into the constructed DCBs before the data sets are
opened.

During opening, other data set attributes are checked. These
include record format, record and block sizes, and the number of
buffers to be allocated for the data set. If record and block
sizes are not defined, the loader uses the following defaults:

• For SYSLIN, both values are set to 80.

• For SYSlOUT, both values are normally set to 121. However,
if the loader is operating in time-sharing mode, the record
length of the SYSLOUT data set is set to 81 so output can be
easily directed to a terminal.

Because the loader allocates buffers for its data sets, it does
not require the buffer allocation supplied by the Open routine.
The loader indicates this by setting the DCBBUFNO field in the
DCB to zero. The value that was found in the DCBBUFNO field is
stored in DCBNCP.

The loader determines whether the data sets opened successfully.
If SYSlOUT is open, the loader allocates the number of buffers
and DECBs specified in the DCBNCP field in the DCB, and sets a
flag indicating that the SYSlOUT data set is usable. The
diagnostic output page heading is set up and printed. The
loader then constructs, in the SYSlOUT buffer, a list of the
options used, the amount of virtual storage received for loader
processing, and the entry point and program names, if specified.
After printing this list, the loader prints out any invalid

© Copyright IBM Corp. 1972, 1987 Method of Operation 15

Redrive

Restricted Materials of IBM
Licensed Materials - Property of IBM

options received and any errors encountered during the opening
procedure. Finally, if the MAP option was chosen, the MAP
heading is constructed and printed.

If the opening of SYSLOUT was not successful, the MAP option
indicator is set to OFF and storage allocated for the data set's
DCB is released.

Next, the loader determines whether the SYSLIN data set opened
successfully. If an error occurred during opening of SYSLIN,
loading terminates, If SYSLIN opened properly, the loader sets
the "unlike attributes" indicator in the DCB to signify that
SYSLIN may consist of a concatenation of data sets with unlike
record formats. The buffers for the first input module are then
allocated as described under "Buffer Allocation" on page 17.

If the loader encounters a control section having an RMODE of 24
while loading a program above the line (because the first
control section encounted had an RMODE of ANY), the loader will
abandon the above-the-line loading, The loader then releases
the above-the-line storage obtained, and closes and reopens the
SYSLIN data set. Finally, the loader reinitializes the
communication area for below-the-line loading and restarts the
loading process. An error message is issued indicating that
this second attempt at loading was made.

INPUT CONTROL AND BUFFER ALLOCATION

To read input, the loader determines whether the current input
consists of object or load modules, and whether it resides on an
external device or in virtual storage. This is indicated by
indicators (CMFLAG3) in the communication area as well as by the
record format of the DCB. (The format is undefined [Ul for load
modules, fixed [Fl for either object modules on an external
device or internal object modules, and variable [Vl for internal
object modules.) If the input data set resides on an external
device, buffers are allocated and primed.

If the input data set is an internal data area consisting of
internal object modules, no allocation or priming of buffers
occurs and the data area itself is considered one buffer.

In any case, the records are read and processed until the end of
the current data set is recognized, either through the
end-of-concatenation or end-of-file condition for a data set
residing on an external device, or through the end-of-buffer
condition for an internal data area. 7 (No check for the END
card or EOM indication is made during the reading procedure; the
end condition is only recognized when the record is processed.)
When it reaches the end of the current input, the loader checks
for additional SYSLIN input. s

Another data set in SYSLIN is indicated unless both the
end-of-file and end-of-concatenation switches are set to ON.
When the loader opens a new data set in SYSLIN input, the loader
determines the new attributes by using the same procedures as
those used during loader initialization for the first input data
set.

7 The end-of-buffer condition signifies both end-of-file and
end-of-concatenation conditions for an internal data area.

S The end-of-concatenation switch is set during the data set
opening if another data set is concatenated to the current
one. If there is no other SYSLIN input, the
end-of-concatenation and end-of-file switches are both set
to ON. They are tested at the end of each module.

16 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

BUFFER MANAGEMENT (HE\'IBUFFR)

Buffer Deallocation

Buffer Allocation

In general, the loader allocates storage individually for DECBs
and buffers. Thus, for a single data set. buffer allocation
actually consists of several separate allocations. These
allocations are made from contiguous storage whenever feasible.
All allocations are made from the highest available address in
loader processing storage. When no longer needed, allocated
space is made available for use by subsequent modules.

If both the current and previous inputs consist of load modules.
the loader uses the same buffer and DECBs. This is possible
because the buffer-DECB requirement for load modules is
constant. Figure 7 on page 18 illustrates the buffers and DECBs
required for reading load modules. If either the current or the
previous data set consists of object modules, the loader frees
(deal locates) the storage used for the previous buffer-DECB
allocation.

A pointer to the first freed area is maintained at CMFRECOR.
(See Figure 8 on page 19.) The first four (4) bytes of each
freed area are used to store a pointer to the next freed area in
the chain. The second four (4) bytes give the size of the
current area. (The size is always rounded to doubleword value.)
See Figure 8 for an illustration of freed area chaining,

Before chaining an area deallocated from a DECD or a buffer. the
loader checks the area's location against the pointers of the
other areas in the chain for contiguity. Contiguous freed areas
are combined under a single pointer. For example, in Figure 8,
Freed Area 1 could consist of areas from three separate
deal locations: One from each DECB and one for the buffer.

After freeing any previously used buffers, the loader allocates
DECDs and buffers for the current input module. For object
module input, a DECB is allocated and cleared, and the address
of the DCD is stored in it. Then. the related buffer is
allocated and its address stored in the DECB. (The size of the
buffer is obtained from DECBBLKSI and the number from DCBNCP,
where the value from DCBBUFNO was stored.) The allocation
procedure repeats until the specified number of buffers has been
allocated. However, after the first time, each DECB is chained
to the one before. The last DECD is chained to the first. (See
Figure 9 on page 20 for an illustration of an allocation for
object module input.) The loader also sets a pointer to the
DECB chain in the communication area at CMRDECPT, sets the I/O
flags to indicate object module input, and saves the buffer size
in the communication area for later deallocation,

For load module input, the loader allocates the required two
DECBs, clears them. chains them together. and stores the address
of the DCB in them. The required buffer, called the RLD buffer.
is then allocated and its address stored in the first DECB. The
loader stores a pointer to this buffer in the communication area
at CMGETREC, and a pointer to the first DECB in CMRDECPT. (No
buffer is allocated for load module text). In below-the-line
loading, the loader reads load module text directly into the
loaded program's storage area. In above-the-line loading, the
loader reads load module text into the load module text buffer
located in below-the-line storage, and moves the text into the
loaded program's storage area above the line. The RLD buffer
size is stored in the DECB, and finally the I/O flags are set to
indicate load module input.

In allocating buffers and DECDs for load or object module input,
the loader attempts to reuse any storage freed from previous
allocations. The loader examines each entry in the freed area

© Copyright IBM Corp. 1972, 1987 Method of Operation 17

CMRDECPT

Restricted Materials of IBM
Licensed Materials - Property of IBM

CMGETREC

------ -..... - --" -..-. , ,
Control and RLD record DECB

Input DCB

\. -....
\

\
\
\
\
\
\
\
\
\

\.
\. ,

..... _-

256

--- DECDCBAD
t---D-E-C-A-RE-A-.-.-.-1· •

DECDECPT

Text record OECB

--- DECDCBAO

DECDECPT

•
• o

Control and RLD
record buffer

r
256
bytes

1

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
pointers in the communications area (HEWLDCOM,.

Figure 7. load Module Storage Allocation for Buffer and DECBs

chain to determine whether the related storage is sufficient for
the current DECB Dr buffer.

If the area is too small, the next entry is tested. If the size
of an area equals the required size (rounded to doubleword
value), the loader unchains the area and constructs the buffer
or the DECB. If the size of the freed area is greater than that
of the required area, the chain pointer for that area is updated
to show the size and location of the remainder.

If no area in the chain is adequate for the current buffer Dr
DECB, the loader makes the allocation from its processing
storage not previously allocated (prime storage). If this
allocation requires an area so large that it would exhaust the
table and buffer area, the loading process terminates and sends
a printed message to indicate that available storage was
exceeded.

READING OBJECT MODULE INPUT FROM AN EXTERNAL DEVICE

Because of the fixed format of object module records, the loader
can initiate the reading of physical sequential blocks before
they are actually needed for processing. To accomplish this,
the loader primes the buffers after allocating them for object
modules. Priming consists of initiating READ macro instructions
for all buffers except one. When the loader requires the first
record for processing, a READ macro instruction is issued for
the unfilled buffer, and a CHECK macro instruction is issued for
the first primed buffer.

At the beginning of processing for a module, the DECB pointer
(CMRDECPT) specifies the DECB associated with the first primed
buffer (see Figure 9.) The pointer to the current logical
record also specifies the beginning of that buffer. As each
record is processed, the loader updates the logical record

18 MVS/XA loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Communications Area (HEWLDCOM)

Freed Area 1

Freed Area 2

High Address

Note:
304 is the size of
Area 1.
240 is the si ze of
Area 2.

Low Address T~ ________ -----.JT
Loader Processi ng Storage

Figure 8. Freed Areas from Duffer-DECD Allocation

pointer to the next record. When all records in the buffer have
been processed, the loader updates the DECD pointer to the one
for the next filled buffer, and issues a READ macro instruction
for the completed buffer. The procedure repeats until the end
of the module is recognized.

READING INTERNAL OBJECT MODULE INPUT

Record formats for internal object modules prepared by a
compiler may be of fixed or variable type. After initialization
of the data area containing the internal object module records,
the pointer to the current logical record points to the
beginning of the data area. As each new logical record is
requested, the loader updates the pointer to the next record in
the data area, using the DCDRECFM field in the SYSLIN control
block to determine whether fixed- or variable-length records are
being processed. The end of the module is recognized when the
length of the processed records equals the length specified in
the DCBBLKSI field. At this time, the end-of-file and
end-of-concatenation switches are set to ON.

© Copyright IDM Corp. 1972, 1987 Method of Operation 19

CMRDCBPT CMRDECPT

l 1

~
--?

\
\
\
\
\

'\
"-

Input DCB --

\
\

\ ,
"- -

~

Restricted Materials of IBM
Licensed Materials - Property of IBM

CMGETREC

OECB 1 Buffer 1

--- Record 1

I 320

- DECDCBAD

, ,
I

/ Record 2 , , ,
DECAREA-----

,

Record 3

--
DECDECPT \

Record 4

../ r DECB2 Buffer 2

I 320
.... Record 1 ,

",
f- -DECDCBAD

I etc. ,
I

DECAREA ----- , /

f-.
DECDECPT \

.(OECB 3 Buffer 3

I 320 .. , t ,-
I

--DECDCBAD I
I 320 ,

DECAREA---- -' bytes

I
I-OECDECPT t

Note: CMRDCBPT, CMRDECPT, and CMGETREC are
located in HEWLDCOM. CMRDECPT points to
the DECl\lbuffer being processed. CMGETREC
points to the logical record being processed.

~80bytes-+

Figure 9. Storage Allocation of Buffers and DECBs for Object Module Input

READING LOAD MODULE INPUT

For load modules, the record format type is undefined, but the
order in which record types may be processed is limited. For
example, control records are required before the related text
record can be read. All nontext records of load modules read
into the same buffer. This buffer, the RLD buffer, has the same
length as the maximum length of nontext records processed by the
loader (256 bytes).

In below-the-line loading the loader allocates a DECB for
reading load module text, but does not allocate a buffer because
the text is read directly into the loaded program's assigned
area. In above-the-line loading the loader allocates both a
DECB for reading load module text, and a load module text
buffer, into which all the text is read before being moved to
the loaded program's assigned area. The loader determines the
address that receives the text during module processing. At the
time a text record is read, the following record is also read
because it is always nontext.

20 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

PRIMARY INPUT PROCESSING

Type of
Processing

ESD

Text

RlD

Relocation

End

MOD
(internal
object
modules
only)

After determining the current record type, the loader performs
one of the following types of processing for the primarY input
(object and/or load modules from the SYSLIN data set):

• External symbol dictionary (ESD) processing

• Text record processing

• Relocation dictionary (RLD) processing

• Address constant relocation processing

• End processing (including end of module and END card)

• MOD record processing.

If an invalid record type is encountered, a diagnostic message
is issued. In addition, if an internal input data area is being
processed, the end-of-concatenation and end-of-file switches are
set to ON so that no further input will process.

Figure 10 shows processing differences for object and load
modules. Input module processing for object and load modules is
shown in "Diagram Dl. Object Module Processing" on page 60, and
in "Diagram D2. Load Module Processing" on page 61.

Object Module Load Module

l. Input is an ESD record. l. Input is a CESD record.

2. The loader performs preliminary 2. The loader performs
processing for NULL, PC, and LD preliminary processing for
entries. SD, LR, PC, and NULL

entries.

The loader processes text from the After processing the entire
object module buffer one ID at a ID/length list, the loader reads
time. load module text directly into

the loaded program1s storage
area. (below-the-line loading),
or into the load module text
buffer (above-the-line loading).

No difference. No difference.

No difference. No difference.

The loader processes the END state- The loader performs
ment for each CSECT, and performs end-of-modu1e processing.
end-of-module processing.

The loader determines the origin of Not processed.
the compiler-loaded text for the
module and equates this address
with what would normally be the
loader-assigned address.

Figure 10. Object and load Module Processing Differences

load module record types consist of composite ESD, control, RlD,
control/RlD, text. SYM. IDR and scatter/translation. When the
loader recognizes a SYM. IDR. or scatter/translation record, it
simply ignores that record and requests another control record.
Descriptions follow for those load module records that the
loader does process. (For detailed descriptions, see the record
formats in "Appendix. Error Messages. Etc." on page 102.)

© Copyright IBM Corp. 1972. 1987 Method of Operation 21

Restricted Materials of IBM
Licensed Materials - Property of IBM

• CESD: Each record contains no more than 15 ESD entries. 9

The first 8 bytes give the following control information for
the entries in that record I (1) the ESD ID of the first
entry, (2) the number of bytes occupied by the entries, and
(3) an indication of whether the CESD entries contain
overlay segment numbers, or AMODE and RMODE data.

• Control: These records give control information about the
module text on the following text record. They contain the
related ESD IDs and the lengths of each control section in
the following text record, and an indication of EOM, when
pertinent. Control records also contain a channel command
word (CCW), the linkage editor-assigned relative address,
and the total length of the text record. The loader uses
this information to read the text.

• Text: These records contain the control sections with the
module instructions and data. A text record can contain a
maximum of 60 control sections.

• RLD: These records contain the RLD entries used to relocate
address constants in the preceding text. When the text
contains a large number of relocatable symbols, the related
RLD entries may require several records.

• Control/RlD: These records combine a control and an RLD
record into one physical block. They contain RLD entries
related to a previous text record, and the control
information for the following text record.

The object module records ESD, RlD, TXT and END, contain
information similar to that described above. In addition, an
internal object module can contain the MOD record. This record
contains control information about the text of the module which
has already been loaded by a compiler or other text-generating
processor. The control information contains the virtual storage
address of the text, the address of the byte following the
estimated or actual end of the text, and optional extent
information. If a MOD record appears as the first record of an
internal object module, all following text records are ignored
until an END statement processes.

EXTERNAL SYMBOL DICTIONARY (ESDl PROCESSING (HEWLESD)

The loader processes records from the input record External
Symbol Dictionary (ESD) to resolve symbols used in internal and
external addressing. Resolution ensures that each named
location in the text for the loaded program has a unique
symbol. 10

To resolve symbols the loader builds a composite ESD (CESD) from
individual ESDs and CESDs in the input. The loader creates CESD
entries as required during processing of input entries. See
"Data Areas" on page 83 for detailed descriptions of CESD
entries.

Because of the outcome of ESD processing, the loader CESD
contains only one entry for each uniquelY named text location,
regardless of the number of input ESD entries containing the.
symbol for that location. 1I For a single module, the loader
records multiple ESD entries for a symbol in the translation

9 The loader can accept a maximum of 1024 ESD entries per
input module.

10 Names for areas of private
section displacements need
treated in a special way.
entries, respectively.

code or for external dummy
not be unique, because they are
These are defined by PC and PR

11 The only exception involves control sections with identical

22 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Type

SD (section
definition)

PC (private code)

PC (private code)
marked "delete"

lD Uabel
definition)

table. 12 Each entry in the translation table corresponds to one
input ESD entry for a symbol, and contains a pointer to the CESD
entry for the symbol.

A translation table entry occupies the same position in the
table as the identifying number (ESD ID) of the associated ESD
entry. For example, if an input ESD entry has an ESD ID of
three, its corresponding entry is the third one in the
translation table. Using this relationship, the loader converts
input ESD IDs via the translation table into the appropriate
CESD address.

The loader's ESD processing depends on the function of each
input entry. The function of an entry is identified by the type
indication in the entry. Figure 11 gives the function specified
by each type. The table also indicates whether a particular
type can occur in object and/or load module external symbol
dictionaries.

When the loader creates a CESD entry it chains it to others with
the same type indication. Then, in processing each new input
entry, the loader determines by searching the chains, whether a
CESD entry with the associated symbol already exists. (The
loader only searches for types related to the current input
entry's type.) In certain cases, special preliminary processing
is performed to delay or to bypass the CESD search.

CESD processing is shown in "Diagram D3. ESD Record Processing
(Generalized)" on page 62 through "Diagram D6. Example of ESD ID
Translation" on page 65.

Function Occurrence Comments

Defines the Object & load -
beginning of a named
CSECT.

Defines the Object & load -
beginning of an
unnamed CSECT.

Defines the load only The delete
beginning of an indication means
unnamed CSECT not to that the associated
be included in the text and RlDs are to
loaded program. For be deleted.
example, a SEGTAB
created by the
linkage editor.

Defines a label by Object only The defined label
giving its location cannot be referenced
relative to the directly because the
beginning of the lD entry has no ESD
CSECT containing the ID. The loader
label. changes the type to

lR in the CESD
entry.

Figure 11 (Part 1 of 2). ESD Entry Types and Functions

12

names. In this case, two entries, one of which is flagged
"delete," are kept in the CESD.

The loader clears the translation table after processing
each module.

© Copyright IBM Corp. 1972, 1987 Method of Operation 23

Type Function

LR (label Defines a label by
reference) giving its location

relative to the
beginning of the
CSECT containing the
label.

ER (external Refers to a symbol
reference) not defined in the

same module
containing the
reference.

CM (common) Defines a common
area whose virtual
storage address is
assigned during
loading.

PR (pseudo Defines a
register) displacement within

an external dummy
section.

NULL Indicates that the
entry is to be
ignored.

WX (weak external Defines an external
reference) reference that is

not to be resolved
by automatic library
call.

Restricted Materials of IBM
Licensed Materials - Property of IBM

Occurrence Comments

Load only An LR entry contains
an ESD ID and can,
therefore, be
referenced by an RLD
entry.

Object 8 load -

Object 8 load The area may be
named or unnamed. An
unnamed area is
called "blank
common."

Object 8 load The external DSECT
defines the area
obtained by the
loaded program via a
GETMAIN macro
instruction.

Object 8 load Only one entry for
NULL is made in the
loader's CESD.

Object 8 load The loader processes
a WX entry as an ER
entry with a "weak
call" flag.

Figure 11 (Part 2 of 2). ESD Entry Types and Functions

Preliminary ESD Processing

When the loader processes load modules it does not necessarily
receive CESD entries in the same order as the linkage editor
assigned the relative addresses. Therefore, it processes no
entries for symbols that define module text locations until all
entries for the module have been received.

The loader delays the processing by placing, on a temporary
chain, the CESD entries it constructs for the SD, LR, and PC
(not marked "delete") entries. Before chaining an entry the
loader places its ID and segment number in the CESD entry. The
entries are chained in the order of their linkage
editor-assigned addresses.

Besides performing preliminary processing for load module
location definitions, the loader also determines whether an
input entry type is NULL, PC, LD, LR, or WX. These entries (in
both object and load modules), are handled as follows:

NULL

24 MVS/XA Loader Logic

The loader does not perform a CESD search for NULL entries,
because these entries have no effect on ESD resolution.
When the first NULL entry for a module is recognized, a
CESD entry is created. This CESD entry is cleared and
marked "delete." (See the CESD entry description in "Data
Areas" on page 83.) The loader places a pointer to the
entry in the communication area (CMNULCHN) and makes a
translation table entry. (See "Making a Translation Table

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

CESD Searching

PC

Entry" on page 32.) For all following NULL entries,
processing consists only of making a translation table
entry that refers to the CESD entry pointed to by CMNULCHN.

The loader does not perform a CESD search for PC entries
because it treats them as unique. For each PC entry the
loader creates a CESD entry. Processing continues as
described under "No-Match Processing" for SD entries.

PC "delete"
The loader treats PC entries that are marked "delete" as
NULLs.

LD and LR

wx

LD and LR entries depend on their related section
definitions (SDs). Therefore, before performing the CESD
search, the loader inserts the CESD entry address for the
SD in the LD or LR entry. The address is obtained by
translating the SD ID contained in the LD or LR.

If the input contains an object module, it is possible
(through physical rearrangement of an object deck) to
receive an LD before the related SD. The SD's CESD entry
address cannot be placed in the LD until the SD's entry is
created. Whenever this occurs, the LD is placed on a
temporary LD chain. At the end of each input ESD record,
the temporary LD chain is processed to determine whether a
required SD was received. When the SD associated with an
LD has been received, its CESD entry address is placed into
the LD. The loader then searches the CESD for a matching
symbol.

The loader treats WX entries as ER entries that are marked
"weak call." The "weak-call" flag, like the "never-call"
flag, specifies those external references that are not to
be resolved by automatic library call. However, the
following difference arises in match processing; If a WX
entry matches an ER entry in the CESD, the "weak-call" flag
is set to OFF. If an ER entry with a "never-call" flag
matches an ER entry in the CESD, the flag is left set to
ON.

In general, an input ESD entry requires resolution processing.
The loader does this by searching the CESD for a matching
symbol. To direct the search, the loader uses two tables.
These are;

• HIERTBLE, which specifies which CESD chains to search for a
particular entry type, and the order in which the chains are
to be searched

• CMTYPCHN, which contains the address of the first entry in
each CESD chain

Figure 12 on page 26 shows the relationship between the two
tables.

The loader determines the type of an input ESD entry and begins
to search the first chain specified by HIERTBLE. (If the type
is LD, the loader performs the search as if it were an LR.) The
symbol from the input entry is compared to the symbol in each
chained entry. If no matching symbol is found and end of chain
is recognized, the next chain specified by HIERTBLE is
searched. 13 If no matching symbol is found in any of the
appropriate chains, a CESD entry for the symbol is created and
chained. A translation table entry is also made, if
appropriate. (See "No-Match Processing" on page 26.) If a

© Copyright IBM Corp. 1972, 1987 Method of Operation 2S

Restricted Materials of IBM
Licensed Materials - property of IBM

matching symbol is found, symbol resolution occurs. (See "Match
Processing" on page 34.)

HIERTBLE CMTYPCHN

SO 2 0 5 3

LO - - - -

ER 0 2 3 5

LR 2 3 0 5
Input ESO
Entry Type

PC - - - -

CM 5 2 0 3

PR 6 - - -

NULL - - - -

SO LD ER lR PC CM PR NULL
Chain Chain Chain Chain Chain Chain Chain Chain
Address Address Address Address Address Address Address Address

o 2 3 4 5 6 7

Notes;

rhe HIERTBLE entries Identliy by number the CMTYPCHN entries.
For example. zero (0) in ttle HIERTBLE refers 10 the SO chain address in CMTYPCHN.

When more than one type chain can be searched for a symbol.
the order IS specifIed by HIERTBLE. For example. if an input
ESO entry I:> an SO. the HIERTBLE enlry specifies Ihal the ER. SO. CM.
and LR chams are 10 be searched in thai order.

Order of Type Chain ..
Search

Figure 12. Tables Used in the CESD Search

No-Match Processing

When it receives a symbol for the first time, the loader
performs processing that depends on the type of the input entry
for the symbol. This always includes construction of the CESD
entry, which differs by entry type. No-match processing also
includes construction of a translation table entry. No-match
processing does not trigger construction of a translation table
entry for lD entries.

If the user specified the MAP
entry for each symbol (except
for an example of map output.
on the SYSlOUT data set.

option the loader formats a map
ERs). See Figure 48 on page 107
The loader prints the map entries

Figure 13 summarizes the processing performed for each input
entry type.

Translation
Input Entry CESD Table Map
Type Entry Entry Entry

SD X X X

Figure 13 (Part 1 of 2). No-Match Processing Required for Input
Entry Types

13 Whenever a new entry on a chain is examined, a pointer to
that entry is stored in the communication area (CMPREVPT).
Should the next entrY on the chain be a match, the pointer
at CMPREVPT is used to update the chain.

26 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Translation
Input Entry CESD Table Map
Type Entry Entry Entry

LD X X

LR X X X

ER X X

CM X X X

PR X X X

Figure 13 (Part 2 of 2). No-Match Processing Required for Input
Entry Types

Note: Because CM and PR entries are assigned addresses during
final processing, they are also mapped at that time.

MAKING A CESD ENTRY I For each input entry type, the loader
makes a CESD entry. A WX entry type is treated as an ER input
entry type with a "weak-call" flag. The loader first obtains
the storage required for the entry (22 bytes). Whenever
possible, the loader uses storage previously allocated for CESD
entries that were later freed. (A CESD entry can be freed as a
result of preliminary ESD processing or resolution processing.)
The loader chains freed entries together. A pointer to the
chain resides in the communication area at CMESDCHNi the pointer
is updated as the freed entries are used.

If there are no freed CESD entries, the loader allocates storage
for the entry from the highest available processing storage.
(See Figure 14 on page 28, and Figure 15 on page 29.) If the
space required for the entry exceeds available storage, the
loading process terminates with an error message. In
below-the-line loading, the loader determines this by comparing
the pointer for the beginning of the loader's tables (CMLOWTBL)
with the overflow pointer for the highest address used for the
loaded program's text (CMLSTTXT). In above-the-line loading,
the loader compares the pointer for the beginning of the
loader's tables with the end address of the load module's text
buffer (TXTBUFND).

© Copyright IBM Corp. 1972, 1987 Method of Operation 27

Restricted Materials of IBM
Licensed Materials - Property of IBM

Below-the-Li ne-Storage /CMHITBl

1--.,1 High Address

Communications orea
(HEWLDCOM)

......

CMlOWTBl ---..

CMNXTTXT ~

Sove areos
~-~--

Input DCB
._------

Output DCB

DECBs and buffers for output

-

Initial DECBs and buffers for input

Additional buffers and DECBs for input

~
Direction of table and buffer allocations

~

Direction of program growth

........ --

."-

~

~----~------~.-----------~~
t

CMMODLNG

_.1
Text already loaded for the current module
(no "no·length" CSECTs)

Text already in storage for the program being loaded

CMBEGADR~~---;

Return parameter list area Low Address L-__ ~

CMMAINPT/

Notes: CMBEGADR
CMHITBL
CMLOWTBL
CMLSTTXT
CMMODLNG
CMNXTTXT
CMMAINPT

Figure 14.

= Beginning address 01 loaded program
= End address of Loader processing storage below the line
= Lowest address allocated for buffers and tables
= Highest address already used for the loaded program's text
= Length of text already loaded for the current module. not including "no,length" CSECTs
= lowest address used for the current module
= Beginning address of loaded program space

Storage Allocation (Be1ow-the-Line-Loading)

CMlSTTXT

28 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

Above-the-Line Storage

Direction of program growth

~----~-------~------------~~
CMMJDLNG Texl olready loaded for Ihe current module

_ 1- _ ~o "no- len9~ CSECT~ ___ _
CMLSTTXT

CMNXTTXT_

Text already in storogo for the program being loaded

CMBEGADR--~~--~
Return parameter list area

CMMAINPT~'~--------------------------~------------------------------~
Low Address

Below-the-Lino Storage CMHITBL

High Addr ...
Communications area

(HEWLDCOM)

Save areos -1-----
InpulDCB

Output DCa

DECB. ond buffers for output

Initiol OECBs and buffers (or input

Additional buUers and DEC8s for inPJt

CMLOWTBL __

!
Direction of table and buffer allocations

~
"---

TXTBUFND--~~--~

Load module text buller

TXTBUFST_L---~

Notes: TXTBUFST = Beginning address of load module teltt buffer
TXTBUFND;;;;; End address of load module text buffer

Figure 15. storage Allocation (Above-the-line loading)

© Copyright IBM Corp. 1972, 1987 Method of Operation 29

Restricted Materials of IBM
Licensed Materials - Property of IBM

After obtaining storage for the CESD entry, the loader stores
descriptive information in the entry. The specific kind of
information stored depends on the input entry type. Handling of
the various entry types is described below:

SD

30 MVS/XA Loader Logic

The loader moves the symbol from the input entry to the
CESD entry.

The loader determines whether an ESD item from a load
module contains a segment number or AMODE/RMODE data.
Segment numbers are ignored; AMODE/RMODE data is verified
and copied to the CESD entry. The loader treats ESD items
from an object module as having AMODE/Rf·10DE data; that data
is verified and copied to the CESD entry.

The loader next determines whether the RMODE for the loaded
program was specified by a user option, or is to be taken
from the first CSECT loaded. If the RMODE was specified by
user option, then the obtaining of storage for the loaded
program (either above or below the line) and the
initialization of the communication area was already
appropriately done; allocation of following storage is
bypassed. However, if the RMODE is to be taken from the
first CSECT loaded, and if the current ESD item represents
the first CSECT loaded, and if the RMODE for that CSECT is
ANY, then the storage for the loaded program has not been
obtained and the communication area was not properly
initialized.

If the RMODE for the first CSECT loaded is 24, loading
occurs below the line in the storage already obtained and
according to the initialization of the communication area
already done; allocation of following storage is bypassed.

The loader obtains required above-the-line storage from the
supervisor module via the GETMAIN macro instruction. The
request is conditional and variable. The minimum and
maximum values are the same as those used in obtaining
below-the-line storage. If the supervisor module does not
return storage, loading occurs below the line in the
storage already obtained and according to the
initialization of the communication area already done. If
the supervisor module returns virtual storage space, the
loader initializes values in the communication area
required for above-the-line loading.

The loader then assigns an address to the defined CSECT by
adding the length of all previously defined CSECTs for this
module to the loader-assigned address of the first CSECT in
the module. (In the communication area, the length of all
previously defined CSECTs is found at location CMMODLNG.
If the CSECTS are passed through text records, the loader
assigned address of the first CSECT is found at CMNXTTXT.
If the CSECTS are pointed to by MOD records, the
loader-assigned address of the first CSECT is found at
location CMCOREl.) For CSECTs pointed to by MOD records,
the resulting address is stored in the CESD entry for the
SD, assigned by the loader as the address of the CSECT.
For CSECTs passed through text records, however, the
resulting address is compared to the overflow pointer--the
beginning address of the loader tables (CMLOWTBL) in
below-the-line loading, or the highest address of the
loaded program area (ATLHIADR) in above-the-line loading.
If there is no more unused storage, the loading process
terminates and sends an error message. Otherwise, the
resulting address is stored in the CESD entry for the SD as
the loader-assigned address of the CSECT.

Next, the loader clears the CESD flag field (except for the
entry's type indication), and computes the relocation
constant. The relocation constant is computed by
subtracting the input address (specified by the input SD

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

entry) from the loader-assigned address. The loader stores
the relocation constant in the CESD entry.

If loading is taking place above the line, the loader
verifies that each CSECT loaded (that is, added to the CESD
as a CSECT to be kept) has an RMODE of ANY. If a CSECT
having an RMODE of 24 is encountered, the loader indicates
that the redrive condition exists (see "Redrive" on
page 16).

If the option to specify the entry point name for the
loaded program was used, the loader determines whether the
SD with that name was already received. If not, the loader
compares the specified entry point name to the symbol for
the currently defined CSECT (the symbol in the CESD entry).
If the names are the same, the loader-assigned address is
stored as the entry point address in CMEPADDR.

For a specification of an SD entry, the loader determines
whether the CSECT length specified in the input entry
equals zero. If so, the loader sets the "no length"
indicators in the communication area and in the CESD entry
itself. If the length is positive, it is added to CMMODlNG
to calculate the next CSECT address. If the MAP indicator
is set to ON, the MAP entry is made for the SD.

Finally, the loader puts the CESD entry on the SD chain
pointed to in the CMTYPCHN table. Chaining consists of
storing the pointer to the last SD entry (found in
CMTYPCHN) in the current CESO entry's chain pointer. Then
the address of this entry becomes the current pointer in
CMTYPCHN. After chaining the entry, a translation table
entry is made.

LD or LR

eM

PR

The loader processes input lO entries in the same manner as
it processes input lR entries. The name from the input
entry is moved to the CESD entry. Then the loader-assigned
address for the defined label is determined by adding the
relocation constant (found in the CESO entry for the
related SO) to the input address of the lD or lR entry. If
the instructions and data for the module have been passed
through text records, and if the loader-assigned address
exceeds available storage, the loading process terminates
and sends an error message. Otherwise, the address is
stored in the CESO entry.

The loader sets the type indication in the CESO entry to
lR. Finally, the relocation constant is computed. This
value equals the loader-assigned address minus the input
relative address. The relocation constant is also stored
in the CESD. If the related SD entry was marked "delete,"
the loader makes an ER entry instead of an lR, and sets the
"delink" flag in the entry to signify that all address
constants referring to it should be adjusted.

To make a CM entry, the loader uses two separately obtained
22-byte areas. The first area obtained is used as an
extension to the CM entry. In this portion, the loader
stores the length and the address assigned to the common
area in the input. Then the loader obtains the second
22-byte area and stores in it the name for the common area
and the entry's type indication. (This area is the one
pointed to by the translation table and the CM chain.) The
loader clears 3 bytes in the entry to be used as a pointer
to related ERs, and sets a pointer to the extended portion
of the CM entry. Finally, a translation table entry is
made.

For a PR entry, the loader moves the information describing
the external OSECT from the input entry to the CESD entry.
The 3-byte field to be used as a pointer to the related

© Copyright IBM Corp. 1972, 1987 Method of Operation 31

ER

Restricted Materials of IBM
Licensed Materials - Property of IBM

RLDs is cleared, and the entry is chained to the other PR
entries. (PRs are chained in the order they were input.)
For a DSECT displacement definition, a translation table
entry is also required.

For an ER entry, the loader moves the name and type from
the input entry to the CESD entry. If the input ER entry
is marked "never call," the loader sets the "never-call"
indicator in the CESD entry. If the input ER entry is
marked "weak call," the loader similarly sets the
"weak-call" indication. The loader then chains the ER
entry to the other ERs and makes a translation table entry.

MAKING A TRANSLATION TABLE ENTRY: The loader uses the
translation control table to direct building of the translation
table. 14 The translation control table consists of 32 fullword
entries beginning at location CMTRCTRL in the communication
area. Each entry is a pointer to a possible 32-entry extent to
be allocated for the translation table. The loader allocates
the extents as required, depending on the number of incoming ESD
entries.

The entries of one extent correspond to consecutive ESD IDs in a
single module. For example, the entries of the first extent
correspond to ESD IDs from 1 to 31. Those of the second extent
correspond to lOs 32 to 63, and so forth. (Because the initial
4 bytes are used for indexing purposes, the first extent
contains only 31 translation table entries.) Thus. the position
designated for creation of a particular translation table entry
depends on the ESO 10 of the associated input entry.

Figure 16 shows an illustration of the translation control table
and the translation table.

To make a translation table entry, the loader first determines
whether the input 10 is valid. (See "Oiagram 06. Example of ESO
10 Translation" on page 65, reference (A).) If an 10 is not
valid. an error message is printed and loading continues with
the next input ESD entry. (An 10 is not valid if it is less
than one [1] or greater than 1023.)

If an ID is valid, the loader then determines. by examining the
translation control table. whether the extent for this ID has
been allocated. If not, the loader allocates an area for
thirty-two 4-byte entries, and stores the beginning address of
the area in the translation control table entry for this extent.
The area is allocated from the highest available storage in the
loader's table and buffer space. If not enough loader
processing storage remains to make the allocation, loading
terminates and sends an error message.

After the extent allocation completes, the loader clears the
extent. The loader then calculates the entry address in the
extent for this 10. The address of the CESD entry related to
the input entry ID is stored in the translation table entry.

If the CESD entry is an ER, the loader sets the high-order bit
of the first byte of the translation table entry to one (1).
(This setting indicates absolute relocation.>

Figure 17 on page 34 shows the overall relationship of tables
used in ESD processing.

14 For each input module, the loader reinitializes the
translation table.

32 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

CMTRCTRL

............

0
.-

0

0

0

...

1 0 J
TRAN SLATION CONTROL TABLE

Figure 16. Translation Control Table and Translation Table

© Copyright IBM Corp. 1972. 1987

0

1

2

3

...

,,1

32

33

34

35

~

Extent # 1

Extent # 2

TRANSLA liON
TABLE EXTENTS

~~

f

...

Method of Operation 33

Tron11clion Control Tobie
(CMTRCTRL)

o 0

31

Extent I

32

63

Extent 2

Three Extents of the
Translation Table

--

95~_~
E.lenl3

CESO Control Table
(CMTVPCHN)

Restricted Materials of IBM
Licensed Materials - property of IBM

Figure 17. Overall Relationship of Tables

Match Processing

If the loader finds a match for an input symbol during the CESD
search, it then performs symbol resolution. Through resolution,
the loader ensures that each named location within the text of
the loaded program has a unique symbol. IS Also, all references
to a named location are set to the correct loader-assigned
virtual storage address.

If two named locations have the same symbol, only one of them
can be retained for the loaded program. The loader determines
which to retain on the basis of ESD entry type. The general
rules used in symbol resolution follow.

If the entry already in the CESD has type I

SD, it is always retained.
LR, it is always retained.
CM, it is retained, except when the input type is SD.
ER, it is always changed to the input type.

15 This does not refer to PC AND PR names, which need not be
unique.

34 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

If two entries have both matching symbols and types that
indicate they should be retained, the loader retains the first
entry received.

Figure 18 gives a summary of symbol resolution.

Input Type CESD Type Result

SD ER SO
SO SD
CM SO
lR lR

CM CM CM
ER CM
SO SO
lR lRl

LD/lR ER lR
lR lR
SO SD2
CM CM2

ER SO SD
ER ER
lR lR
CM CM

Figure 18. Symbol Resolution

Notes to Figure 18:

1 Match results in an error.

2 Match results in an error if the SD for the lD/lR is not
marked "delete."

INPUT ENTRY TYPE IS SD:

CESD type is ER
The loader changes the ER entry in the CESD to an SD entry.
The entry is made as described under "No-Match Processing"
for an SD entry. This consists of:

• Chaining the entry to other SDs

• Updating the cumulative length of the loaded program

• Determining whether the ER entry is the loaded
program's entry point name

• Mapping the entry

• Making a translation table entry.

If RlDs were chained to the ER entry, they are relocated as
described under "Relocation Processing." Also, the loader
takes the SO entry off the ER chain, using the pointer to
the previous entry on the chain (CMPREVPT). If there are
no previous entries. the loader sets the ER entry in the
type chain table (CMTYPCHN) to O.

CESD type is SD
If the original SD is not flagged "delete," the loader
obtains space for another CESD entry and moves the name and
loader-assigned address of the original entry into the new
one. The relocation constant is then computed by
subtracting the input address from the loader-assigned
address. A "delete" indicator is set to show that text and
RlDs related to the current input SD should be deleted. If
the text for the CSECT was pointed to by a MOD record

© Copyright IBM Corp. 1972, 1987 Method of Operation 35

Restricted Materials of IBM
Licensed Materials - property of IBM

rather than passed through text records, the text cannot be
deleted and, thus, the cumulative module length (CMMODlNG)
is updated to include this CSECT. Finally, the entry is
chained to existing SD entries and a translation table
entry is made. If the original SD is flagged "delete," the
original entry is used.

CESD type is CM
The loader changes the existing CM entry to an SD entry.
Because the extended portion of the CM entry is no longer
needed, the loader chains it to the freed CESD entries
(pointed to by CMESDCHN). First, however, the loader
obtains the length of the common area from the extended
portion. For the SD entry, the loader retains the one with
the greater length between the first length and the length
specified in the input SD. To change the CM entry to an SD
entry, the loader performs the same processing described
above for the SD-ER match.

CESD type is LR
The loader sets the "delete" indicator in the CESD entry so
the text associated with the input SD will not be loaded.
The relocation constant is updated to reflect the
difference between the relative address in the input entry
and the loader-assigned address in the CESD entry. The
loader makes a translation table entry referring to the
existing lR entry in the CESD.

INPUT ENTRY TYPE IS CM:

CESD type is CM
The loader determines the greater length between the
extended portion of the CESD entry and the length specified
in the input CM. This greater length is retained in the
CESD entry. The loader stores the new input address in the
extended portion of the CM entry. A translation table
entry is also made.

CESD type is ER
To change an ER entry to a CM, the loader obtains a 22-byte
area for the extended portion and chains it to the existing
entry. The loader stores the type, address, and length
from the input entry in the extended portion of the CESD
entry. The CM type indicator is set, and the entry is
unchained from the ERs. The loader chains the entry to the
other CMs and makes a translation table entry.

CESD type is SD
The relocation factor in the CESD entry is updated to
reflect the CM relative address, and a translation table
entry is made.

CESD type is LR
The loader issues an error message for matching symbols
with conflicting types. Nevertheless, the relocation
constant is updated and a translation table entry is made
for both entries.

INPUT ENTRY TYPE IS LD OR LR: With one exception, lD and lR
entries are processed in the same way. The difference is that,
because an lD entry has no ESD ID, the loader does not make a
translation table entry for an lD.

CESD type is ER

36 MVS/XA loader logic

The loader changes the ER entry to an lR entry. The loader
assigns a virtual storage address for the symbol by adding
the relocation constant from the related SD entry to the
relative address in the input lR entry. Next, the loader
calculates the relocation constant by subtracting the input
address from the loader-assigned address. Both the
relocation constant and the loader-assigned address are
stored in the lR entry in the CESD. Any RlDs that were
chained to the ER entry are relocated. The loader checks
the lR name for the user-specified entry point and makes a

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

MAP entry, if mapping is required. Then, the loader takes
the CESD entry off the ER chain and chains it to the LR
chain. If the input entry was an LD entry, no translation
table entry is made. Otherwise, the loader makes a
translation table entry.

CESD type is LR
If the SD entry pointed to by the LR entry is not marked
"delete," the loader issues an error message for matching
symbols with conflicting types. In any case, the loader
updates the relocation constant in the existing CESD entry.
The loader makes a translation table entry referring to the
LR in the CESD if the input entry was an LR from a load
module. If not, a translation table entry is required.

CESD type is SD
Processing is the same as that described above for an
LD/LR-LR match.

CESD type is CM
The loader saves the input address in the extended portion
of the CM entry. The loader makes a translation table
entry only if the input entry was an LR from a load module.
If the SD pointed to by the LR entry is not marked
"delete," the loader issues an error message for matching
symbols with conflicting types.

INPUT ENTRY TYPE IS ERr Whenever the loader makes a translation
table entry for an input ER, it sets an indicator for later use.
(The indicator signifies during RlD processing that the
loader-assigned address is to be used for relocation of any RLDs
with this ID.>

CESD type is SD
The loader makes a translation table entry referring to the
SD entry.

CESD type is ER
If the input ER is marked "never call," the loader also
sets the "never-call" indicator in the CESD entry. If the
"delink" indicator is set to ON, the loader sets the
indicator set to OFF. In any case, a translation table
entry is made referring to the ER entry in the CESD. If
either ER is marked "weak call," the "weak-call" flag is
set to OFF. If both ERs are marked "weak call," the flag
remains set to ON.

CESD type is LR
The loader makes a translation table entry referring to the
LR entry.

CESD type is CM
The loader sets the input address in the extended portion
of the CM entry to zero, and makes a translation table
entry referring to the CM entry.

INPUT ENTRY TYPE IS PR: A PR entry can only be matched to
another PR entry. When two of these definitions of external
DSECT displacements have matching symbols, the loader sets the
existing CESD entry to specify the greater of the two given
displacement lengths. The loader also determines the most
restrictive boundary alignment specified in the two PR entries.
(For example, doubleword alignment is more restrictive than
fullword.> The PR entry in the CESD is changed, if necessary,
to specify this alignment.

© Copyright IBM Corp. 1972, 1987 Method of Operation 37

TEXT RECORD PROCESSING

Restricted Materials of IBM
Licensed Materials - Property of IBM

Text record processing consists of loading those CSECTs required
for the loaded program into their assigned locations. The
loader determines whether a CSECT is to be retained or deleted
by examining the CESD entry for that CSECT's ID. The
translation table is used to obtain the CESD entry.

The way the loader processes text records depends on whether the
current input is an object or a load module. If the input is an
object module, the loader reads all the records for the module,
including text, into virtual-storage buffer areas and then
processes each record in turn. For load modules, the loader
uses the information in the text control records to process the
text before reading it into its assigned storage (below-the-line
loading) or into the load module text buffer (above-the-line
loading) .

processing Object Module Text lHEWLTXT)

When a text record is recognized during processing of an object
module, the ID contained in the record is translated into a CESD
entry address. The loader translates the ID by first ensuring
that the ID is valid, and then using the translation control
table to obtain the corresponding translation table entry.

The translation procedure is the same as the one used prior to
allocating a translation table extent. (See "Making a
Translation Table Entry" on page 32.)

In processing text, the loader considers an ID invalid if no
translation table entry exists for it. Thus, an ID between the
allowable limits of one (1) and 1023 is invalid if it was not
received during ESD processing. For any invalid ID, the loader
issues an error message and then tries to process the next
record. (Object module text processing is shown in "Diagram D7.
Object Module Text Processing" on page 66.)

(A) If a translation table entry does exist for an ID, the
entry contains the address of the CESD entry for the related
text. The loader determines whether the CESD entry is marked
"delete." If it is, the loader skips the text record and tries
to process the next record.

(B) If the CESD entry is not marked "delete," the loader sets
an indicator to show that some text was received for this
module. If the "no length" indicator in the CESD entry was set
to ON, an indicator is set in the communication area to show
that text was received for a "no length" CSECT. The loader then
calculates the address for this text in the loaded program's
virtual-storage area. The address equals the displacement of
the text from the beginning of the input, added to the
relocation constant contained in the CESD entry.

(C) Next, the loader checks whether the text would exceed
available storage, by adding the length of the text to the
assigned virtual-storage address. The resulting end address for
the text is compared to the overflow pointer (the beginning
address of the loader tables [CMlOWTBl] in below-the-line
loading) or the highest address of the loaded program area
(ATlHIADR) in above-the-line loading. If the text would
overlap, loading terminates abnormally.

If there exists sufficient unused storage for the text, the
loader moves the text from the buffer area to the assigned
address in the loaded program's area. Finally, the loader
updates the pointer to the highest address used for the loaded
program's text (CMlSTTXT).

38 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property Of IBM

Processing Pre loaded Text (HEWLMOD)

If a SYSlIN data area consisting of internal object modules is
passed to the loader, one MOD record may be substituted for all
text records within a module. Upon encountering a MOD record,
the loader checks that an internal object module is being
processed, that no ESD records have been received for the
module, and that some control information is contained in the
MOD record. If any of these conditions is not met, the record
is ignored. Otherwise, indicators are set to show that a MOD
record and text have been received for the module. If the
origin of the first CSECT is specified, it is saved in the
communication area at location CMCOREI. Similarly, the address
of the byte following the estimated, or actual, end of the text
is saved at location CMCORE2.

Extent information used by the identification routine (HEWlIDEN)
is saved in chained entries pointed to by location CMXlCHN in
the communication area. These entries contain the address and
length of the extent, and a pointer to the next entry in the
chain. The number of extents is saved at location CMNUMXS in
the communication area. later, the identification routine uses
these entries to build a parameter list for the IDENTIFY macro
instruction.

If the entry point of the program has not previously been
defined, the address of the first extent is saved as the default
entry point of the program.

Processing Load Module Text (LMTXT)

The loader uses the text control (or control/RLD) record to
process load module text. The control record contains an
ID/length list with an entry for each CSECT in the following
text record. By processing the IDs consecutively, the loader
determines which CSECTs from the record are to be retained as
part of the loaded program.

load module text processing is shown in "Diagram D8. load Module
Text Processing (Below-the-line loading)" on page 67, and in
"Diagram D9. load Module Text Processing (Above-the line
loading)" on page 68.

PROCESSING THE ID/LENGTH LISTI The loader obtains each ID in
turn from the length list and attempts to translate each one
(via the translation control and translation tables) to a CESD
entry address. If the loader determines during translation that
an ID is invalid, the loader skips over the invalid record. If
there are more records in the module, the loader continues
processing the module.

If the translation of the ID is successful, the loader checks
for the "delete" flag in the CESD entry (obtained by the
translation process). If the entry is marked "delete," the
loader adds the length from the ID/length list entry to the sum
of the lengths of any immediately preceding CSECTs to be
deleted.

The accumulated sum is used to truncate the text record when
CSECTs at the end of the record are to be deleted. Therefore,
only the sum of those consecutive CSECTs which are to be deleted
at the end of the record, is used. To accomplish this the
loader reinitializes the sum of these lengths to zero whenever a
following CSECT is to be retained. (CSECTs to be deleted can be
scattered throughout a text record.)

If the CESD entry for a text ID is not marked "delete," the
loader determines whether the current CSECT is the first one to
be retained from the text record. If it is, the loader saves
the relative relocation constant from the related CESD entry.
(After completely processing the ID/length list, the loader uses
this relocation constant to calculate the proper main storage
address for reading the text record.) After saving the

© Copyright IBM Corp. 1972, 1987 Method of Operation 39

Restricted Materials of IBM
Licensed Materials - Property of IBM

relocation constant, the loader sets an indicator to show that
at least one CSECT from this record is to be retained, and that
its relocation constant was saved. (Only one relocation
constant per control record is used, because the text record is
read in as a whole.)

Each time the loader recognizes a CSECT to be retained, it
updates the pointer to the last address used for text (CMLSTTXT)
by adding the length of the CSECT to the previous value of
CMLSTTXT.

READING THE TEXTI After processing all IDs in the ID/lengt~
list, the loader prepares to read the text into storage, either
directly into the load program's storage area in below-the-line
loading, or into the load module text buffer in above-the-line
loading. The loader:

• Adds the relocation constant and beginning delete length to
the CCW address from the text control record to obtain the
loader-assigned address of the text. (See Figure 19 on
page 41.)

• Obtains the actual read count by subtracting the sum of the
lengths of consecutive, deleted CSECTs at the end of the
text record from the text length in the control record.

• Adds the read count to the loader-assigned address to
determine whether sufficient unused storage remains for the
text. If not, an error message is issued and loading
terminates.

• Determines by examining the control record's type whether
the text record is the last record in the module.

If the record is not the last one, the loader determines whether
any CSECTs from the record are to be deleted. If not, the text
record and the following control record are read. (The control
record is read into the RLD buffer.)

If the text record is the last one in the module, or if any
CSECTs from the record are to be deleted, the loader reads in
only the text record. If an end-of-file occurs, the loader
terminates module-text processing and issues an error message;
then the loader goes to end-of-module processing.

CHECKING CSECT STORAGE ADDRESSES I If CSECTs to be deleted were
scattered among the CSECTs to be retained, the loader deletes
these scattered CSECTs after the text has been read either into
the loaded program's storage area in below-the-line loading, or
into the load module text buffer in above-the-line loading.

The loader ensures that each CSECT is in the location determined
during ESD processing. To do this, the loader again translates
each ID in the ID/length list to obtain the related CESD entry.

If a CESD entry for an ID is marked "delete,n the loader
continues translating successive IDs until it finds one that is
not marked "delete." The loader determines whether the related
CSECT is in the correct place by comparing its current address
to the loader-assigned address found in the CESD entry. If the
text is correctly placed, the loader continues to translate IDs.

40 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

1

Loader- Assigned
Address of ~
CSECT C

Low Address

r

CSECT C

CSECT 8'

CSECT A'

CSECT 8

CSECT A

Loaded Progrom Text Storage

High Address

1 -

CSECT CSECT
A' 8'

CSECT
C

Input Text Record

(

CSECT A' and CSECT 8' are to be deleted.
The text read address is, therefore, the Loader-assigned address of CSECT C.
During latedext processing, the Looder moves CSECT C to its proper location
over CSECT A' and CSECT 8' •

Figure 19. Loading the Text from a Load Module Record

If a CSECT is in the wrong place, the CSECT is moved to the
loader-assigned address. Before checking the next 10 in the
IO/length list, the loader updates the address of the current
CSECT with the length of the current CSECT in order to get the
current address of the next CSECT. When all CSECTs are in the
correct location, the loader continues processing the module
with the next record.

In above-the-line loading, the loader determines whether any
CSECTs that were read into the load module text buffer are to be
deleted. If not, the entire text record is moved into the
loaded program's storage area above the line.

Next, the loader determines whether a control record was read at
the same time as was the text record. If so, the loader
continues processing the module with that control record.
Otherwise, the end of the module has been reached, and the
loader goes to end-of-module processing.

RELOCATION DICTIONARY (RLD) PROCESSING (HEWLRLD)

Processing of relocation dictionary records consists of building
the loader's RlO table from information in the input RLO
records. RlO record processing is the same for object and load
module input. (Relocation of address constants is performed as
the RLO is encountered, unless the referenced CSECT is not in
virtual storage.)

© Copyright IBM Corp. 1972, 1987 Method of Operation 41

Restricted Materials of IBM
Licensed Materials - Property of IBM

RLD record processing is shown in "Diagram D10. RLD Record
Processing" on page 69.

To build the RLD table, the loader tests the Rand P pointers of
the entries in an RLD record for validity.16 Thesepointers
consist of ESD IDs describing an address constant. The P
pointer gives the ESD ID of the control section containing the
address constant; the R pointer gives the ESD ID of the symbol
referred to by the address constant.

Because the pointers act as IDs, they are valid if translation
yields the address for the ID to a CESD entry. If an invalid ID
is received, the loader issues,an error message and continues
RlD record processing by going to the next entry having
different Rand P pointers.

The loader first translates the P pointer. If the CESD entry
for that ID is marked "delete," the loader skips all RLD entries
with the same Rand P pointers. If the CESD entry is not marked
"delete," the loader checks the validity of the R pointer,
unless the RLD entry is for a cumulative pseudo register (CXD
type).

CA) After ensuring that the RLD pointers are valid, the loader
makes an RLD table entry for the input entry. (The loader uses
the storage from a freed RLD entry, if possible. Otherwise,
storage for the entry is obtained from the highest available
storage.)

The loader stores, in the RLD table entry, the loader-assigned
address of the address constant. The address is obtained by
adding the relocation constant from the CESD entry identified by
the P pointer to the value found in the address field of the
input RLD entry. (If the RLD is for a cumulative external DSECT
displacement, it is chained from location CMCXDPT in the loader
communication area; the next RLD entry is then processed.) The
loader moves the flag field from the input entry to the RLD
table. If the translation table entry indicates that the R
pointer refers to an ER entry, the loader sets an indicator in
the RLD table for absolute relocation.

After completing the RLD table entry, the loader determines
whether relocation is possible by determining the type of the
CESD entry. Processing for the CESD entry types is as foliowsl

SD, PC, LR
The loader clears the chain field of the RLD table entry
and relocates the address constant. (See "Relocating
Address Constants.")

CM, ER created from LR
The loader delinks the RLD entry. That is, it subtracts
the input address of the CM or ER from the value in the
address constant. The RLD entry is then chained to the CM
or ER entry for later relocation after the loader-assigned
address is defined.

PR, ER
The RLD table entry is chained to the related CESD entry
when the address for the CESD symbol is assigned. (See
"Match Processing.")

CB) After processing an RLD entry, the loader continues
processing the entries in the RLD record until it reaches the
end of the record. If the Rand P pointers for the next entry
are the same as for the current entry, the loader does not
recheck them for validity. Instead, the RlD table entry is made

16 RLD entries for address constants referring to a cumulative
pseudo register are only tested for a valid P pointer,
because the R pointer is always zero (CXD-type RLD).

42 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

directly. If the pointers for the next entry are different from
the current entry, the loader performs the validity check.

RELOCATING ADDRESS CONSTANTS (HEWLERTN)

Address constant relocation is the replacement of an address
constant in the text of the loaded program with the actual
virtual-storage address. Whenever possible, the loader
relocates address constants as it encounters their RLD entries.

The loader processes three types of relocatable address
constants I

• A-type constants, used to reference a location in the
CSECT as the constant

• V-type constants, used to reference a location in a
different CSECT

• Q-type constants, used to reference a displacement in
external dummy section.

same

an

In general, the virtual storage address equivalent of an address
constant is calculated by combining either the relative or the
absolute relocation constant with the input value of the address
constant. 17 The relative relocation constant is the subtracted
value between the loader-assigned address and the input address
of the referenced location. The absolute relocation constant is
simply the loader-assigned virtual-storage address of the
referenced location. Figure 20 on page 44 relates the types of
relocation constants and address constants, to the types of
relocation.

17 The loader does not compute the absolute addresses for PRs
or CMs until all the text has been loaded.

~ Copyright IBM Corp. 1972, 1987 Method of Operation 43

Type of Relocation Constant
Relocation Usage

Absolute Absolute relocation
Relocation constant replaces

adcon value

Relative Relative relocation
Relocation constant is added

to or subtracted
from adcon value

Relative Absolute relocation
Relocation constant is added

to or subtracted
from adcon value

Pseudo Pseudo register
Register displacement
Relocation constant is moved

in

Delinking Input address of CM
or LR/LD CESD entry
is subtracted from
value

Restricted Materials of IBM
Licensed Materials - Property of IBM

Type of Address Comments
Constant

V(symbol) where Displacements are not valid
symbol is not a in V-type address constants.
PR in CESD

A(symbol) where Addition or subtraction is
symbol is not an specified by indicators in
ER or PR in CESD RLD flag field. Also see

comment below for Delinking.

ACsymbol) where Addition or subtraction is
symbol is ER in specified by indicators in
CESD RLD flag field.

QCsymbo1) where -
symbol is PR in
CESD

A(symbol) where The relocation of address
symbol is CM or constants pointing to CM
ER created from CESD entries is a
LR/LD combination of (1) delinking

and subsequent (2) relative
relocation with the absolute
relocation constant.

Figure 20. Relocation of Address Constants

Note to Figure 20:

Absolute relocation constant = loader-assigned address
Relative relocation constant = loader-assigned address minus the
input address

When the loader resolves a CESD entry (for example, a CESD ER
matched with an SD), it relocates all address constants
referring to the name. These are pointed to by RLD table
entries chained from the CESD entry. The loader processes each
RLD entry in the following way.

First, the loader ensures that the address constant is not an
invalid 2-byte address constant. (Two-byte address constants
can only be used to define external DSECT displacements.) If
the addres3 constant is invalid, the loader issues an error
message and continues loading the program. Otherwise, the
loader moves the address constant from the text to a work area,
where it determines the type of relocation required.

If the RLD entry indicates absolute relocation, the loader
places the absolute relocation constant at the text address.
The RLD entry is placed on the chain of freed RLD table entries
(CMRLDCHN), and the next entry on the chain is processed. When
the end of the RLD chain has been reached, the loader continues
its processing.

If the RLD entry indicates relative relocation, the loader also
determines the type of relocation constant required. If the
location referenced by the address constant is an external
reference, the loader uses the absolute relocation constant.
Otherwise, the loader uses the relative relocation constant.
The loader tests the RLD entry to determine whether the
relocation constant should be added to or subtracted from the
input value of the address constant. After calculating the
address constant value, the loader moves it back to the text.
Finally, the loader frees the RLD entry and continues
resolution.

44 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

END PROCESSING

END Card Processing

If the RlD entry indicates del inking for a CM entry or for an lR
entry converted to an ER, the loader subtracts the input address
of common or of the lR from the value of the address constant.
The result is a reference to a displacement in the common area
or input module. When these entries are resolved (that is, CM
address assigned or ER matched), absolute or relative relocation
occurs.

If the RlD entry indicates a PR reference, the loader performs
absolute relocation as described above.

The loader, during the relocation of an address constant, checks
for an attempt to provide a 31-bit address (that is, an address
in above-the-line storage) in a three-byte (24-bit) address
constant. If found, the address constant is not relocated, and
an error message is issued.

Also, during relocation of four-byte V-type address constants,
the loader preserves the high-order bit from the unresolved
address constant in the resolved address constant.

End processing includes END card processing for object module
CSECTs, and end-of-module processing for object and load
modules.

The loader processes object module END cards for the length of
the CSECT and for loaded program entry point definition. (Also,
when an END card is recognized, the loader issues messages for
any remaining lD entries for which no SD entry was received.)
In setting the length of the current CSECT, the loader
determines whether the CSECT is a "no-length" CSECT. If it is,
the loader uses the larger of the END card length and the length
specified by the CESD SD entry as the CSECT length. 18 If the
END card of a "no-length" CSECT does not specify a length, and
text was received for the CSECT, the loader issues an error mess
age. (In this case, the length of the text is used.)

The loader determines whether the loaded program's entry point
name or address was already received. If so, the loader does
not process the END card for entry point. If not, the loader
searches the END card for an ID to use for the entry point. If
an ID is present, the loader sets the entry point address to the
address specified by the END card, or to zero (0) if the END
card specifies no address. The loader translates the ID to a
CESD entry address and saves the CESD address in location
CMEPCESD. (If there is no CESD entry for the ID, an invalid-ID
message is issued.) The loader creates an RLD entry for the
entry point (at CMEPNAME). This entry is not treated as a
regular RLD.

If the END card does not specify an ID but does give a symbolic
name to be used as the entry point, the loader saves the name at
location CMEPNAME. If there is an SD or LR entry with that name
in the CESD, the loader uses the specified address as the
program entry point address.

18 A "no-length" CSECT's SD can be matched by a CM entry, which
defines an area larger than the CSECT.

© Copyright IBM Corp. 1972, 1987 Method of Operation 45

End-of-Module processing

Restricted Materials of IBH
Licensed Materials - Property of IBM

At the end of module point for a load or object module, the
loader initializes the next input module for processing. If
text was passed through text records, the loader updates the
text pointers CMLSTTXT and CMNXTTXT by the module length or, if
no length was given, to the address of the last text received
(rounded to doubleword value). Then, the loader determines
whether the available storage was exceeded. If so, an error
message is issued, and loading terminates. If not, the loader
clears the translation table and the module length counter
(CMMODLNG). All flags except the END and LIB flags are set to
OFF. The loader either begins processing another module from
SYSLIN or, if end of file on SYSLIN is recognized, processes any
secondary input.

SECONDARY INPUT PROCESSING (HEWACALL)

After the loader processes all primary input, it attempts to
resolve remaining ERs in the CESD, if CALL was specified. If
there are no remaining ERs, the loader performs final processing
for the loaded program. (See "Final Processing for the Loaded
Program. ")

The loader can resolve ERs from the link pack area and/or the
SYSLIB data set. If the link pack area is available for
resolution, and the RES option is specified, the loader searches
the contents directory entry queue for the ERs before attempting
to resolve them from SYSLIB.

Secondary input processing is shown in "Diagram El. Secondary
Input Processing" on page 70.

RESOLVING ERS FROM THE LINK PACK AREA

The loader obtains the address of the link pack area directory
search routine from the communication vector table (CVT). It
then searches the ER chain for an ER that is not marked "never
call" or "weak call." (A) When one is found, the name in the ER
is passed to the LPA directory search routine. If the directory
search routine does not find a match for the name, the loader
searches for the next ER that is not marked "never call" or
"weak call."

If the directory search routine finds a match for the name, the
loader puts the entry point in the CESD entry and changes the
entryrs type to SD. The loader then takes the entry off of the
ER chain, puts it on the SD chain, and makes a map entry for the
SD, if MAP is specified. Finally, the loader relocates all RLD
table entries that are chained to the CESD entry.

The loader then searches for the next ER that is not marked
"never call" or "weak call."

This search repeats until the entire ER chain has been
processed.

If there remain unresolved ERs after resolution of the link pack
area, the loader performs library call processing. Otherwise,
the loader performs final processing for the loaded program.
(See "Final Processing for the Loaded Program" on page 48.)

46 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

RESOLVING ERS FROM THE SVSLIB DATA SET

(A) Before resolving ERs from the SYSlIB data set. the loader
checks whether an open SYSlIB data set was passed. (The fourth
entry in the DCB list. which is passed to the loader as a
parameter. can point to an open SYSlIB DCB.) If an open SYSlIB
DCB was passed to the loader. the exit addresses in the passed
SYSlIB DCB are saved in the communication area and replaced by
the loader's own exit routine addresses. If a SYSlIB DCB was
not passed. a SYSlIB DCB is initialized and opened. 19

(B) If the loader determines that an open SYSlIB data set was
passed, it constructs two lists used for BlDl information in the
available storage. In below-the-line loading. the available
storage is defined by CMlOWTBl (the lowest address used by the
loader tables and buffers) and CMlSTTXT (the highest address
used by the loaded program's text). In above-the-line loading.
the available storage is defined by CMlOWTBl and TXTBUFND (the
highest address used by the load module text buffer). The two
lists are the BlDl list and an address list. The loader uses
the address list to store pointers to the ER entries in the CESD
for which it constructs BlDl entries. The entries in the two
lists have a one-to-one correspondence to the ER entries.
Figure 21 on page 48 shows this relationship.

Before constructing the lists, the loader determines the maximum
possible number of entries by dividing the amount of available
storage by the number of bytes required for an entry in the two
lists (BlDl list entry size=16, address list entry size=4).
Then, for each ER that is not marked "never call" or "weak
call," the loader makes an entry in the BlDl list. including the
name specified by the ER and the address of the ER.

After building the BlDl list. the loader constructs the address
list by moving the pointers to the ERs from the BlDl list. This
preserves the pointers, which are overlaid in the BlDL list
during BLDl operation.

Finally. the loader issues the BlDl macro instruction. If an
I/O error occurs during execution of the BLDl, the loader logs
the error and performs final processing for the loaded program.

(C) Otherwise. the loader moves the relative track addresses
(TTRs) returned in the BlDl list to the associated CESD entries.
Each CESD entry for which a TTR was returned is marked to
indicate that it contains an auxiliary storage address.

The loader issues a FIND macro instruction for each ER entry
marked "TTR received." The loader processes each module located
in the same way as it processes primary input modules.

Because SYSLIB contains only load or object modules. processing
for each located module is the same. If SYSlIB contains object
modules. the loader first primes the buffers and then performs
object module processing. If SYSLIB contains load modules. the
loader performs load module processing. See "Primary Input
Processing."

The loader resolves as many ERs from SYSlIB as possible. It
then performs final processing for the loaded program. (If
during processing of one of these modules a program size error
occurs, the loading procedure terminates and produces an error
message.)

19 If the loader has opened a SYSLIN data set, the loader
closes it before opening SYSlIB and reuses the DCB for
SYSlIB.

© Copyright IBM Corp. 1972. 1987 Method of Operation 47

Restricted Materials of IBM
Licensed Materials - Property of IBM

FINAL PROCESSING FOR THE LOADED pROGRAM

After all possible ERs have been resolved, the loader performs
the following for the loaded program:

• Assigns addresses for common areas

• Assigns addresses for displacement in the external DSECT
(pseudo registers)

• Issues messages for all unresolved ERs

• Finds the address of the program's entry point

• Builds a condensed symbol table, if the loader is operating
in time-sharing mode

• Identifies the loaded program to the system, unless the
processing portion of the loader was directly invoked by the
name HEWlOADR

• Writes out the diagnostic message dictionary.

ASSIGNING ADDRESSES FOR COMMON AREAS (COMMON)

ERNAME2

ERNAMEJ

The loader assigns addresses for the loaded program's common
areas by processing entries on the CESD CM chain.

For each CM entry, the loader assigns the next available storage
address above the text of the loaded program. (The highest text
address before the allocation of a common area is saved in the
communication area at CMTOPCOD. This allows the loader to
continue using work space that may be overlapped with common
areas in below-the-line loading.) The address contained in
CMNXTTXT rounded to doubleword value is the address used. The
loader ensures that there is enough available storage for the
common area, and then updates the pointer to available storage
by adding the length from the current common entry to the

ERNAMEI

ERNAMEI t CESD entry
for ERNAMEI

ERNAME2 t CESD entry
for ERNAME2

ERNAMEJ t CESD entry
for ERNAMEJ

BLDL List

• BLDL List and Address List before BLDL
macro instruction is issued •

• After execution of Ihe BLDL, the BLDL List
contains TTRs for library-resolved ERs.

+ CESD entry
for ERNAMEI

+ CESD entry
for ERNAME2

+ CESD entry
for ERNAMEJ

Add ress li s t

Figure 21. BlDL List and Address list

48 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials o~ IBM
Licensed Materials - property o~ IBM

CMNXTTXT value. (If there is not enough storage, an error
message is issued and loading terminates.) Next, if the MAP
option was chosen, the common area is mapped. Finally, the
loader relocates the address constants that refer to the current
"common" definition. (The address constants are relocated by
processing the RlDs chained from the current CESD CM entry.)

After processing all the CM entries in the CESD, the loader
assigns addresses to external DSECT displacements.

ASSIGNING ADDRESSES FOR EXTERNAL DSECT DISPLACEMENTS lPSEUDOR)

The loader assigns contiguous storage for displacements in the
loaded program's external DSECT by processing the CESD PR chain.
(The storage for all DSECTs is obtained via one GETMAIN macro
instruction. The individual DSECTs are displacements within the
area.)

For each entry on the chain, the loader subtracts the alignment
factor from hexadecimal "FFFF". The loader adds the difference
to the location counter for the PRs to obtain the assigned
address of the current external DSECT. (The location counter is
zero [0] at the beginning of PR processing.) After calculating
the current address, the loader updates the location counter by
adding the length of the displacement specified in the CESD PRo
Then the loader maps the DSECT displacement and relocates all
address constants referring to it. These address constants are
indicated by RlD table entries chained to the PR entry.

After processing all the PR entries, the loader stores the value
contained in the location counter (the cumulative length of all
DSECTs) in all locations in the loaded program requesting it.
These locations are chained from CMCXDPT in the communication
area. 20 (If NCAl was specified, there is no CXD chain pointer
in CMCXDPT.)

ISSUING UNRESOLVED ER MESSAGES

For all ERs remalnlng in the CESD that are not marked "weak
call," the loader issues either error or warning messages. If
NCAl is specified, or if an ER is marked "never call," the
loader issues a warning message. Otherwise, an error message is
issued. An error message is also issued if no text was loaded
for the program.

CHECKING THE LOADED PROGRAM'S ENTRY POINT

After processing the loaded program, the loader checks to
determine whether the entry point name and address were
received. This is determined by testing the program flag field
(CMPRMFlG). Processing for possible conditions is as foilowsl

• Entry point name and address both received. No further
entry point processing is required.

• Only entry point name received. If the entry point name was
specified by the EP= parameter but no address for the name
was received, the loader issues an error message. Then, if
text for the SYSlIN data set was pointed to by MOD records
instead of being passed through text records, the address of
the first byte of the first extent described on a MOD record
is assigned as the entry point. Otherwise, the loader
assigns the address of the first byte of loader-constructed
text (found in CMBEGADR) as the entry point.

20 See Assembler language for the use of external DSECTs and
the CXD statement.

© Copyright IBM Corp. 1972, 1987 Method of Operation 49

Restricted Materials of IBM
Licensed Materials - Property of IBM

• Only entry point address received. If the entry point
address was received (CMEPADDR), the loader determines
whether the referenced symbol is an ER. If so, the loader
assigns the first byte of text as the entry point.

• Neither entry point nor address received. The loader issues
an error message and uses the first byte of text as the
entry point.

After determining the entry point for the loaded program, the
loader calculates the program's total length. The length equals
the difference between the address of the next available storage
(CMNXTTXT) and the address of the first byte of text (CMBEGADR),
added to the lengths of any extents that may be passed through
MOD records. The loader then prints out the entry point address
and the total length of the loaded program.

50 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

IDENTIFYING THE LOADED pROGRAM

ENP OF LOADING

If program loading is successful, the loader prepares to
identify the program to the control system. 21 A parameter list
is constructed to pass the program name, addressing mode, entry
point address, and extent list information to the IDENTIFY macro
instruction. (The extent list defines the storage that the
loaded program occupies.) If storage is not available for this
parameter list, an error message is issued and loader processing
terminates.

The loader initializes the parameter list with the program name,
addressing mode, entry point address, and length and address of
the loader-constructed program (as the first extent). This
information is found in the communication area. If the loader
is operating in time-sharing mode, it attempts to build a
condensed symbol table for use during the program's execution.
An entry is made in the table for each control section and
common area in the program. This table becomes the second
extent of the program, and its address and length are placed in
the extent list. If there is not enough storage for the entire
table, it is not built, and the second extent of the program is
assigned a length of zero. The extent list is then completed
with the extent information that was passed on MOD records and
saved in the communication area.

Finally, the IDENTIFY macro instruction is issued. If
identification processing is not successful, an error message is
issued and loader processing terminates. Otherwise, a flag is
set in the communication area, indicating that the program was
identified.

After all processing for the loaded program completes, the
loader processing portion of the loaded program performs
termination processing and then passes control to the loader
control portion. The control portion then attempts to execute
the loaded program.

LOADER PROCESSING TERMINATION

If the SYSLOUT and/or SYSTERM data set was opened, the loader
prints a diagnostic dictionary describing errors encountered
during loading. (As errors occur, the loader sets a flag
indicating error types in the bit map field (CMBITMAP) in the
communication area.) The loader determines the highest
indicated error severity code and returns it to the caller at
program termination.

Next the loader ensures that all diagnostic data was written to
SYSLOUT, and then closes both the output and the current input
data sets. 22

The loader then sets up the return parameter list. If the
processing portion of the loader was invoked through the entry
point HEWLOAD, the name of the identified program is placed in
this parameter list. Otherwise, the list contains the virtual
storage address and size of the loaded program.

21

22

This processing is performed only when invoking the
processing portion (either directly or by the control
portion of the loader) by the name HEWLOAD.

The current input data set is SYSLIB unless no library
searching was done. The loader closes SYSLIN when it opens
SYSLIB. However, if a SYSLIB DCB marked open was passed to
the loader, SYSLIB is not closed.

© Copyright IBM Corp. 1972, 1987 Method of Operation 51

Restricted Materials of IBM
Licensed Materials - Property of IBM

If the loaded program is loaded below the line and if it is to
be executed, the loader calls the page services processor, via
the PGSER macro instruction, to reset the PGTBELOW flags in the
page table entries reflecting the loaded program storage. The
PGTBELOW flags were possibly set via the reading of load modul~
text directly into the loaded program's storage. Resetting the
flags allows the pages of the loaded program's storage to be
backed above the l6-megabyte real storage line on subsequent
page-ins.

Finally, the loader issues a FREEMAIN macro instruction for all
processing storage not assigned to either the loaded program or
to the condensed symbol table. (If the completion code for
loading is greater than four (4), the storage occupied by the
loaded program is also released, including preloaded text passed
through MOD records. If the loaded program was identified, the
storage it occupied is released through execution of the LOAD
and DELETE macro instructions.) The loader then returns control
to the control portion.

LOADER CONTROL TERMINATION

Before attempting to execute the loaded program, the loader
control portion issues a DELETE macro instruction for the
processing portion. Then, if the condition code for loading is
not greater than 4, the loader control portion, through the
execution of an ATTACH macro instruction, passes the user's
parameter list to the loaded program for its execution.

After the program's execution, the loader control portion issues
a DELETE macro instruction for the loaded program, frees its
processing storage, and returns to the scheduler.

52 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
licensed Materials Property of IBM

OPERATION DIAGRAMS

LEGEND FOR DIAGRAMS

The following diagrams show the flow of data through the loader.
Use them with the descriptions given previously in this section
to give an integrated picture of the loader logic. Each diagram
has an alphameric identification (for example, AI). Within each
diagram, specific points of reference have alphabetic labels.
When the description at the beginning of this section discusses
a function, it refers to the operation diagram as a whole, and
to the specific labeled references where appropriate. For
example, the description of initialization refers to Diagram Bl.
Within the discussion, reference (B) refers to point (B) in
Diagram Bl.

The symbols used in the diagrams are shown in the following
chart.

Main Processing;
Primary flaw

---------..," ... Subsidiary Pracessi"9;
Secondary Flaw

----------'~~ Data Movement - -- -- - - - - ~Data Reference

Created in This
Operation or Routine

© Copyright IBM Corp. 1972, 1987

Previously Existing or
Defined in Program

Method of Operation 53

3:
<
Vl
"
X
J>

r
o
III
c..
CD .,
r
o
\Q
o

@

(")
0
"0
'< .,
\Q
::r
rio

H
tI:I
3:

(")
0 .,
"0

....

..0

......
N

....

..0
00
......

1

T

"

~::

:'
'1

C:YCT
HE\NLCTj.~l

ATTACH

>,HE',':lO")' .--------'--------...,"-----»
HE','.'LDRGO ----------

HE'.','LOA)?, HE' LGAl)

(SECT HE\ ... ,rU~LC

(SEcr ~::.;..IJt·

C:ECT hF',', L.J[)fF

HEVILOCOM

Cornrnul1i cat io: I

Data (uniral Rbc- '.

i"';~;~1 Inpu' (luff"f$

___ l20C1LC .~~~

~JOTf i

-----t-->~-=-=-=-========'---__J->-------

N'-h"S

1 MOdul(: HE\"iLOADR IS dl?letecJ al!t'r lis eX8cution

a.nd neturc It)C loaded ~rogr':Hn 15 ql\l~n control

Load module text IS read ulrectly IIltt) ttH: loaded
;::.roorarn area

3, A llex '80' III the high>order byte of a fullword
slonllics that It IS the lasl field In the parameter list.

t:I
1-1
l>

" ;0
l>
3:

:::-
0

0
< m
;0
l>
r-
r-
r-
0
l>
t:I
m
;0

0
"0
111
;0
J>
-I
1-1
0
Z

1)::1
m
r-
0
::;:
I
-I
::::
111
I
r- r-
1-1
Z n
111 m

::J
r- UI
0 m
l> 0.
t:J
1-1 3:;0
Z Qlm

" r+UI
mr+

"
!Iln
.... r+
Ulm

0.

3:
"OQI
,r+
om
'0' m
,QI
r+
'<:.II

00
-+a-+a
1-1 1-4
I)::I~
:t:t

@

('")
0
"0
'< .,
.....
\C
::r
r+

H
C'
3:

('")
0 .,
"0

......
-.!)

-...,j

N

......
-.0
00
-...,j

~
2
:t
~
>

3:
III
r+

<5 ::r
0 <:
G- o

t;;
0 >-
-+0 ~

::0
0 X
"0 ~

III <: .,
OJ
r+
0
::l

111
111

r
~w
:;;t!>
~;!
$:E:
0",

1
1 ~

3
0
:::
0
<:

1

t'4RAMETER
LIST

NOTE 2

LOAelE!:

l::"'AD C/~LL

ATTACH

~WlOADf\

~----------~~~
HEWLDRGO

OPTIONS LIST

Notes:

It~ITMAIN

C'~~rrol hfor~-::t;y.

T'''; '::::Jr. Are:: ;.,r

I"i-i--:I ;;:::J';~f"

HE'IILOAD?, HE'''',LOAD

c SteT HE',",'U.'fLO

CSFcr HEWLLlBR

CSECT H[WLI OW

CSECT HEI'ILDDEF

1. Module HEWLOADR is deleted after its execution
and before the loaded program is given control.

2. A hex '80' in the high·order byte of a fullword
signifies that it Is tho las1 field in the parameter list.

Above·the·Line Loader Storage

Loaded
program

F3elow·thc·Line Loader StorilYC

HEWLDCOM
Comrnunicafior .\,._.(!

Data CO'1tr::l! Rlo6 ~

Load Module Text Buffer

~ r::a ·ro
1> nUl
C) ror+
::a :l..,
1> UI
::;: ron

o.r+
1> 11) :to. QJ

r+:t
0 roQJ
< ..,r+
ITI ... ·ro
::a QJ..,
l>
r UlQJ
r

lUI
r
0 ""DO
1> ..,
~ 0
ITI -a
::a 11)tJ::l

..,:t
0 r+
""D '<
rn
::a a
1>
-I M
0 tJ::l
Z :t

l>
tJ::l
0
<
ITI
I
-I
:I:
rn
I
r
z
rn
r-
0
l>
~
z
C)

@

()
o
iJ
'< ,
Ul
~
r+

H
t:xl
3

()
o ,
iJ

3
(l)
r+
~
o
a.
o
-t.

a
iJ
(l) ,
Ql
r+
o
:l

SYSIN DD

SYSLI B DD

SYSLOUT DD

SYSLIN DD

LDGO EXEC
PGIv\=LOADER
PARM= 'MAP,LET/X,Y'

or
through issuing a LOAD,
XCTL, LINK, or ATTACH
macro instruction referring
to HEWLDRGO (program
nome) or to LOADER (olios).
Parameters are passed via
I ist addressed by Reg # 1

NOTE 11

I NOTE 11

........ _---
HEWLDRGO ___ -----
HEWLOADR--- ---

SYS 1. LINKLIB

The user may invoke the Loader to load a pragram
but not poss control to it. In this case, the user
issues a LOAD and a CALL macro instruction
referring to HEWLOADR (for loading without
identification) or to HEWLOAD (for loading with
identifieat ion),

t:I .;:0 ·m
):> nUl
Cl mrt
;:0 :::J,
):> UI
~ mn

a.rt
):> m - N ~a.

Length of

+
Options

DDnames
options for
Loader and

III
rt3: • mill

0 ,rt
):> ... ·m
t:I Ill,
fT1

loaded program

+ DCBs

Parameter list

to ::a UlIIl
LOADER lUI
CONTROL Z

< 'lJO
0 ,
0 0
):> '0
-i mtl:!

CSECT HEWLCTRL ,3:
0 rt
Z '<:

0
Entry point HEWLDRGO

....
tI:!
:I:

VIRTUAL STORAGE

111
00

3
<
tJ)

"
X
1>

r
o
!lJ
0-
CD .,
r
o
I.CI
n

(")
o
'0
'< .,
.....
I.CI
:T ,....
......
txI
3

(")
o .,
'0

from ~ckcduler

;;;: - j

lOAOfP.

~Y~l .llll·, lit-

~~::,t':'''dH, "'l'ry pair 1-
••. LlCC.', al;a~-HE'.' .. 'LOAD

CSICT
~'f\'llDDEf

(IfeT
HfV,'UClC.\

C,fcr
H~·.'.'l~f:...C'

OICT
ti f '.· ... l LIB~'

CSECT
H~WllDff'..·

IJS[R DD~IAMES I
~ ___ r

USER DCB,

8uild~ INIJMAIN from

in.atlon onolyzcd

PmCl!1I1'ICf 'IGg~

Minimum storage
H'qvc~1 dlt--

1 . [~ruLIi ~hes

•II~ ••••• I HEWLOCOM 2. AllocClles ond
choin~ ~(IYC

'UI'n,>

J, h ... Jt,\ tl

n~ff MAir'l for
rh(' lNIT ·,AIN

Set, i iol!' '1

~t~a~l'

DeB .:ddreH._' ..

Storage

Maximum ~'ornql~
r('quc~t $i:('

__ Sa'JI~ ~'\r~
~a· .. e Area J

.... J

OPE N 10' OPENU ST

Sav(' /'fN:I 8

_~~f:: Area 9

SYSTERM DCB, DI CB,
end Buffels

Prirro'Y Input Pro::('s~in]

SYSUN DCB

SYSLOUT DCB

SYSlOUT Buffen

La Addfe~s T '----____ -.JT ?rirr.e StCf(~g{'

r
o
~
t::I
ITI
;0

"
(/)
n
::r:
ITI
t::I
C
r
ITI
;0

....
Z
-I
ITI
;0
"T1
~
o
ITI

~
Z
t::I

....
Z
-I
~ r
r-
.... n
N CD
~ ::J
-I UI
.... CD
o 0.
Z

3;0
III CD
r+UI
CDr+ -,-,
IIln
.... r+
Ulro
10.

3
"0 III
-,r+
oro
'0-' CD
-, !II
r+
'<UI
00
-fI-fI

(")
o
"0
'< .,
f-'.
IQ
~
r+

H
o:l
3:

(")
o .,
"0

3:
I'D
r+
~
o
a..
o
-n

a
"0
I'D .,
III
r+
f-'.
o
::J

zation or
primary input
processing

attributes in
input DCB

HEWBUFFR

,r-------------~/
Block size

Record format

t'~umber of buffers

DCB flags

/

/
/

I HEWLDCOM l
a Ilocate buffers r-------li
and DEC8s

allocation

/

/
/

/

DECB I

BUFFER

DECB 2

BUFFER 2

--
DECB N

/~~-----------------~

BUFFER N (not primed)

--
L

Loader Processing Storage

highest available

~- HEWLDCOM

allocate 2 DECBs and 1~r----------I
1 256-- byte bu Her t

~~----------~

R LD bu Her (256 bytes)

Loader Processi ng Storage

Obiect Module
Processi ng

Prime buffers

Input Data Set

Load Modu Ie
Processing

t::I
H
:to
G')
;0
:to
3:

0
...... ·
'tJ
;0
H
3:
:to
;0

-<
H
Z
'tJ
C
-f

0
0 z
-f
;0
0

•
:to
Z
t:I

tI:J
C
"T1
"T1
JTI
;0

:to
• • 0
(')

:to
-f
H
0
Z

.;0
~·m
nlll
mr+
::J-'
III~·
mn
o.r+

m
3:0.
III
r+3:
mill
-,r+
~·ro
Ill-'
I-' ~.
(J)!lJ

I-'
I(J)

'tJO
-'-h
0
1JH
rotI:J
-'3:
r+
'<
0
-h

H
tI:J
3:

0-
0

3:
<
tn
"-
X
l>

r-
0
[l)

c..
fD .,
r-
0
I.C
0

()
o
"0
'< .,
I.C
::J'
r+

H
tJ:j

3:

()
o .,
"0

EJ Input may
either be from
on externo I
dev ice

or Input Data Set

from on interno I SYS LI N

I data area whose control
block is passed to the

Loode, ;" 'he DCB r;, .. ~
I SYSLIN control block I

CMGETREC

HEWLREAD
reads inpu t

RECORD 1 L-_________ ~-- ---Ie-+----1

record

being
processed

\
\
\

RECORD 2
---I-+---....l

RECORD 3

RECORD 4

"'" Object module

\

"'" Buffers or Internal
"'- SYS LIN data area

" "'-
" "'"

HEWLE~'D ~ RETURi'1

RETURN

E SD processing;
HEWLESD

TXT processing;
HEWLTXT

R LD processing;

HE'NLRLD

FND processing;
HEWL"I'J ,

t:I
1-4
l>
c;')
::a
l>
:t

t:I
0
I"
c....
111
n
-f

:t
0
t:I
C
r
111

"tI
::a
0
n
111
CJj
CJj
1-4
Z
c;')

Ai
_J

r
n
III
:J
Ul
III
a.
:t::a
Will
rtUl
Illrt ..,..,
wn
I-'rt
Ullll
10.

3:
"tIW
..,rt
o III
'0.
III
..,W
rtl-'
'<Ul

00

@

n
0
"tJ
'< ,
IC
J
t+

1-1
t:l'
:J:
n
0 ,
"tJ

.....
\0
-...J
N
~

.....
\0
(»

-...J

3:
(I)
t+
J
o
0..

o
-to

o
"tJ
(I) ,
!II
t+
o
:J

~

Input Data Set

HEWLREAD
reads input

Input record
(not text)

l RLD Buffer

If first ---- ---- ----

Return

Finish
proces
sing
module
or return

~
I-t
l:>
(i)
:0
l:>
:J:
~
N .
r
0
l:>
~

:J:
0
~
c
r
111

"tJ
:0
0
0
111
en
(,'l
I-t
Z
(i)

r:o
... ·m
oen
mr+
::::I..,
en
mo
Q.r+

m
:J:Q.
III
r+:J:
mill ..,r+
... ·m
Ill..,
en III
len

"tJ0
..,-fa
0
"OI-t
mtl'
..,:J:
r+
'<
0
-It

I-t
tI'
:J:

DIAGRAM D3. ESD RECORD PROCESSING (GENERALIZED)

R"6

Object Module Buffer or RLO Buffer

ESO/(ESO data R"7

f-------r---,-- -------1 R " 8

NAME "DDR

Input

LENGTH

Information moved

depends on entry type

Restricted Materials of IBM
Licensed Materials - Property of IBM

--------------GDr----------------~

Do any preliminary
processing needed.
Search (E5D.

Nonresolutlon
(f Make CESD entry

HEWLESD Yes

IIIIIIIII~~(ESDENTRY:~IIIIII~ NEEDE D ~

from HEWLODE
or HEWLRELO No

I:] MC)vc input
information

No

Note: ESD processing .:liffers according to entry type
and whether resolution is possible. For detailed information,

HEWLERTi'
Process RLD
chain

Translation Table extent

refer to "External Symbol Dictionary Processing". The following
diagrams give S()me examples of processing for different c:mditiom.

62 MVS/XA Loader Logic

SYSLOUT data set

After processing all input
entries in data, return

© Copyright IBM Corp. 1972, 1987

@

n
o
"C
'< ,
IC
;r
t+

H
ttl
3:

n
o ,
"C

......
-.0
00
......

3:
11>
t+
::;
o
c..
o
-it

a
"C
11> ,
!II
t+
o
::l

Input ESD entry' ESD ID 3 ,

CSECTA SO
Input

Length I address

Uses entry's
type and name to
search type cho i ns

The input address is
used to calculate the
Loader-assigned address
and the relative relocation.

NOMATCH -
Makes a CESD entry,
chains it and mokes
CI translation iCliJle
entry for it.

MATCHED

CMTYPCHN

o

2

o

1----------1

:r

Loader- relative
relocaCSECT A a$signed
tion

address
constan t

CESO entry

o
11----------1

2
I-------~

3

Translation Table Extent

CSECTA

Loader- relative
re loca

assigned tion
address constant

Changes the existing
ER to SD. rechains
the entry. and makes
a translation table
entry for the input
entry referring to the
existing entry Existing CESD entry

I I h I ffi no match exists in the (ESO (non resolution processing)
T1is examp e sows processing for Cln input SO entry when 1 2 a ITlCltch exists (re;olution processing)

SD AMODE.
RMODE

SD AMODE
RMODE

t:I
t-I
»
Cl
:0 »
3:

t:I
J:'-

IT!
x »
3:
'0
r
IT!

0
"T1

t-I
Z
'0
c
-I

m
CJ)
t:I

'0
:0
0
0
m
CJ)
CJ)
t-I
Z
Cl

0
"T1

en
t:I
I

en
m
0
-I
t-I
0
Z

t:I
IT!
"T1
t-I
Z
t-I
-I
t-I
0
Z

:r:
m
:;;:
r
m
en
t:I

r:o
... ·10 nUl
10
::J..,
UI
mn
c.

m
3:0.
III
.....3:
mill
..,
... ·m
Ill..,
UlIlI

lUI

'00
..,-t.
0
"01-1
mOl
..,3:
'<
0
-t.

t-I
Ol
3:

3
< en
"
X
l>

r
o
III
~
61 ,
r
o
\Q
n

@

n
o

" '< ,
\Q
:T
....
till
3

n
o ,
"
..a
N ..
....
..a
00

Uses entry's
type and ""me CD

,;;CiEiSOiSIRiCIH.ltoili irchiiltypeiiilclhallnls~ ~~Niail.~ • MATCH EXIST!

entry

o o
1-----1

Note: The high bit 01
1-4----1 -- the first byte is

set on to show
CESO entry is
10rER

MATCHED - J-+
make translatian Go to process
toble entry to ""XI £SO enhy
existing CESD
entry

fCD no match In the CESD exists (non resolution processing)
This example shows processing for an input ER entry when @ a match exists (resolution processing)

t:f ...
):0
G)
:u
):0
3

t:f
In
•
11'1
><
):0
3:
'11
r-
11'1

Go to procen 0
next ESO .,.
entry ...

Z
'11
c:
-I

11'1 en
t:f

0 .,.
11'1
:u
I

11'1
><
-I
11'1
:u
Z
):0
r-
:u r-
11'1,. n
11'1 CD
:u ::::I
11'1 en
Z CD
() a.
11'1

3:U
'11 _CD
:u t+en
0 CDt+
() .,.,
11'1
en IIIn
en ... t+
H en CD
z .Do G)

3: '111»
:c .,t+
III OCD
::E 'U.,
r- CD ...
11'1 .,111
en t+ ...
t:f ..:en -- 00

-h ...
HH
3:3

@

(")
o
"'C
'< .,
.....
10
:r
t+

H
t:I;l
3:

(")
o .,
"'C

.....
-0,
N

.....
-0
00,

3:
(l)
t+
:r
o
Q.

o
-i>

o
"'C
(l) .,
Ql
t+
o
::J

I',~::~r: 1\~
I Note

Notes:

I
I
I
1

1 _____ _

1. Input LR entry contains
the ESO 10 for CSECT
containing NAME.

2. Only for object module
input, the input LD is
placed on temporary
chain.

TRANSID

v ia tables

CMTRCTRL

o
I

2

3
1--!...------'--------1

T T
Translation Table Extent

/
I

I
I
I

TillS example shows preliminary processing of an Input LR. Translation ensures
the Input 10 IS valid and nbtaills the CESO address of the related SO.

I
I
I
!

I

I
/
I

CMTYPCHN

CESO Entry for LR (temporary)

t:J
H

»
G)
;:a
»
3:

t:J
0-

!11
>< »
:t
"tI
r
!11

0
'TI

!11
(J)
t:J

H
t:J

-l
;:a
» z
(J)
r »
-l
H
0
Z

r::o
... ·rtl
nUl
rtlrt
:::I.,
Ul
ron
o.rt

rtl
3:0.
11.1
rt3:
rtll1.l
.,rt
... ·rtl
11.1.,
I-'
UlI1.l
IUl

"tIO
.,-+t
0
"CH
roto
.,:t
rt
'<
0
-+t
H
to
:t

3:
<
Vl
"
X
1>

,....
o
OJ
c...
III .,
,....
o
I.CI
o

n
o
"0
'< .,
.....
I.CI
:J"
r+

H
Ol
3:

()
o .,
"0

Object Module &lffer

·
•

Text Record

•

Input

HEWLTXT

','ALID ID

from HEWLRELO

I ESD ID of text

I Displacement
in input

I Length of
text record

I
I

HEWERROR

I R # 5

R # 6 f.---,
I R # 7 r---------~ Address J for text I ,..-..
I R # 8

/'
/

/'

I
I
I
I
I

Calculote noain
storoge odd ress

CESD
[NTf; Y

"DELEE'

No for text

Return to
read next
record

CMLOWTBL

TEXT
O'/ERLAP

TAbLE S

Text already loaded

, Loaded Program s Storage Area

Move text to ossigned
address; Update storage

1'10 pointer if needed

~m~:lIII •• II.~ ~eturr

HEWERROR
to end loodillSJ

o
to
c..
m
(")
-4

3:
o
tj

c
r
m
-4
m
X
-4

"0
::0
o
(")

m
(J')
(J')
H
Z
G'l

r ..,.
o
ro
:J
(JI

ro
0.

3:::0
ruro
r+(JI
ror+
"
run
I-'rt
(JIro

Co

3:
"0 OJ
,r+
oro
"0' ro
,OJ
r+1-'
'<(JI

00
-n-n

@

(")
o
"tJ
'< .,
.....
10
;y
,-to

.....
trI
:t
(")
o .,
"tJ

I--'
~
00
"-J

3:
ro
r+
:::;-
0
0-

0
-h

0
"tJ
ro .,
!lJ
r+
0
:l

(]'o.

-...J

I
...... RLD Buffer

7 l I
Lenr,th of
ID/ ength list I

CMGETREC ~

I D/length list Control record T ext record

Text control or control/RLD record L..
Input

Process entire
I Dilength

N'Jlcs

1. Read text r('coru, 'Jnlcs.5 the record is

2

to be slipped; reod the follo'o','ino control

record a150, unless the text record is til('
lost or CSECTs ore to be deleted.

Sec Figure 19.

"Jote 2

Input Data Set
CMLOWTBL

1 t~nd of loaded ,I program space

\
\

Co leulate
If required,
move CSECTs to

Note

HEWERROR
to end loading

c r::o
H ...·ro
l> OUI
G) rori'
::0 ::I,
l> (f)
:t roo

c.ri'
c ro

Reod Address 1

!;Xl :to. . Ol
r+:t

r roOl
0 ,ri'
l> t-I·ro
c OJ,
:t (f)OJ
0
c lUI
c
r "Co
ITI ,-+.

0
-i "OH
ITI rotJj Loaded Program's Storage Area
X ,:t
-i r+

'<
"C

Return ;J 0
0 -+.
n
rn H
(f) trl
(f) :t
H
Z
G)

HEWLEI"D trl
rn
r
0
:::::
I
-!
:r:
J'TI
I

r
H
Z
IT1

r
0
l>
c
H
Z
G)

3:
<
Ul

" X
1>

r
o
w
a.
CD ,
r
o
IQ
o

@

(")
o
'0
'< ,
.....
IQ
::r
t+

H
t:J:I
3:

(")
o ,
'0

RlD Bufl,·,

r /7 l ~t'hof J ID/(!~~sl_

CMGETR[C ._--- f'------/
ID '!('nuth li~t Control rCl:ord Text record

T l'xt control or eOI"rol 'P.lO record

Inp(Jt
CMlOWr~L

Input DUlo ~·t

1 +End of loaded ,I
I Drogrdm space

PrOCl'H .,,\tire

ID 1"I'gth
Ij~t to deh:-rrnir\e

whidr CS(CT~ or(: Calculate

iiiiiiiill{jfiO'IIii'o."id.",.1 iP.'O.9.,almt: Yes read oddrcs~
A At,y lEXT TO~ ••••• ~

r:[[p :..
from

HEWLODE

.... :£)
Note: Rt-"od fl'xl r(,cord, unless the record is

to be ~kipped; reod th(> following control

record nlso, unless the text rt·c:ord is the
Icst or (SECTs arc to be dele tcd.

\

\
~ If H_-quirt:d,

movf' CSfCT~ to

Read Add,es~
load Moejulp
Te)'1 Blll/eT

t='
H
l>
Cl
::tJ

f-- l>
3:

.. -
t='
-0 .
r-
0
l>

loaded Program's Storage Area
t='

3:
0
t='
C
r-
111

-f
111
X
-f

""0
::tJ
0
0
111
CJ)
CJ)
H
:z
Cl

l>
t7:I
0
<
111
I
-f
:::z: r-
111

0
r- ID
H ::J
:z Ul
111 ID

Q.
r-
0 3:::tJ
l> OJID
t=' r+Ul
H 1Dr+
:z .,.,
Cl

OJO
~r+
UlID

I
Q.

3:
""0 OJ
.,r+
OlD
-0.,
ID
.,OJ
r+~
'<:Ul

00
-+0-+0

HH
tIlt7:1
3:3:

@

("')
o

" '< ,
10
:r
t+

H
t:J:I
3:

("')
o ,
"

.....
'" 00
......

3:
11)
t+
:r
0
a...
0
-+0

0

" 11) ,
DI
t+
0
:J

a..

'"

Reg 7

Length of RLDs

TRANSID-

RLD data in input buFFer
Note 1

P-pointer
ESD ID

R-pointer
ESD ID

...-"'"

CESD entry 1

-

fNote 3

t CESD entry I
I NAME I t ~~~in I TYPE I

CESD entry 2

t C ESD entry 2
(For oddress constant)

Chain RLD

[~ ••••• ~ Return to
HEWLODE or
HEWLRELO

HEWLERTN-~
Relocates address B
constant

Notes:
1. The input buffer is the RLD buffer (load module) or an object module buffer.

The Loader calculates the adcon address using the P-pointer CESD entry's relocation constant and the t
Adcon and flags from the input RLD entry. The flags are inserted in the new RLD entry unless the input RLD
is for a CXD PR.

2.

3. II the type in the CESD entry for the address constant is PC. SD. or LR. relocation is performed. II the type is
CM. PR. or ER. the RLD entry is chaoned to the CESD entry.

t:I r-::ICI
M !D
l> oen
G') mr+
::ICI ::l..,
l> en ... ·
3: mo

Q,r+
t:I m 3:Q,
0 !lJ

r+3:
m!lJ

;:a ..,r+
r- ... ·m
t:I !lJ'"
;:a Ul!lJ
rn
(1 len
0
;:a 'tJO
t:I ..,-fI

0
'tJ 'tiM
::ICI mt!'
0 ..,3:
(1 r+
rn '< en
en 0
M -fI
Z
G') M

t!'
3:

r
o
III
Q.
CD ,
r
o
ta ...
(')

@

n
o
~ , ...
ta
';T ,...
1-1
till
3

n
o ,
'U

....
-0
N

....
-0
00

HlWACAU

f_HIWLlOCA

----,
I
I

Ubrary Data Se. -leJ"' ~ NAMEO

()g1Q 51'. DCa U",""

Ii .. 1 ~• -.

en
~
o z
'=' l>

~
H
Z

~
-t
'U

i8
n
~ en
H
Z
G)

Restricted Materials o~ IBM
Licensed Materials - Property of IBM

ORGANIZATION OF THE LOADER

Figure 22 shows the organization of the loader. The flow of
control through the first four levels of the processing portion
of the loader (module HEWLOADR) is listed in the control level
tables below.

Load Module
load Module HEWLDRGO IAlias LOADER)
HEWLOADR (Alias HEWLOADI

HEWLCTRl HEWLIOCA

1 HEWLIOCA

Initialization,

f Inpu t Control,
Allocation
Processing

Loaded
I Program
• HEWLLlBR

(Built by
HEWLOADRl HEWACALL

Secondary
Input and Final
Processing
~

HEWLLlBR

HEWLODE

load Module
Processing

HEWLIOCA

HEWLREAO

Input Readin9

~ HEWLLIBR HEWLRELO

LMTXT HEWLRLD

Load Module RlO Record
Text
Processing

Procej5ing

Note: The CSECT contoining 'he code of a function is noted outside
the functional block.

Figure 22. Loader Organization

© Copyright IBM Corp. 1972, 1987

HEWLIDEN

HEWLIDEN

Identification
of loaded
pro9ram

HEWLRELO

HEWLRELO

Object Module
Processing

HEWLRELO

HEWLESO

ESD Record
Processing

HEWLRELO HEWL RELO

HEWLTXT HEWLMOO

Object Module MOD Record
Text Processing Processing

Organization of the Loader 71

ROUTINE CONTROL-LEVEL TABLES

Restricted Materials of IBM
Licensed Materials - Property of IBM

The routine descriptions within a level are listed
alphabetically in Figure 23 through Figure 26.

Routine

HEWLIOCA

Purpose

Initialization, primary
input control, and
allocation processing

Figure 23. HEWLOADR--Level 1

Routine

HENACAll

HEWBTMAP

Purpose

Secondary input and
final processing

Processing of error-bit
map and printing of
diagnostic dictionary

Called
Routines

HEWlPRNT

HEWBUFFR

HEWPRIME

HEWLRElO

HEWlODE

HEWACAll

HEWLIDEN

HEWBTMAP

HEWERROR

Called
Routines

HEWOPNlB

COMMON

HEWLMAP

HEWlERTN

HEWERROR

HEWPRIME

HEWlRElO

HEWlODE

HEWlPRNT

Figure 24 (Part 1 of 2). HEWLOADR--level 2

72 MVS/XA loader logic

Calling Conditions

Called if SYSLOUT data set is
open

If more data exists on SYSLIN

If SYSlIN input is an object
module

If SYSlIN input is an object
module

If SYSLIN input is a load module

When all SYSlIN input is
processed, unless SYSlIN did not
open

If the loaded program is to be
identified to the control program

Input processing completed

If AMODE/RMODE parameter error
detected; if redrive required

Calling Conditions

If ERs cannot be resolved from
primary input or the lPA

Always

If an ER is resolved

If an ER is resolved

If an error occurs

If SYSLIB input is object modules

If SYSLIB input is object modules

If SYSLIB input is load modules

If SYSLOUT is open and messages
are required

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Routine

HEWBUFFR

HEWLIDEN

HEWLODE

HEWLPRNT

Purpose

Buffer Management

Identification of the
loaded program to the
control program

Process a load module

Print output to SYSLOUT
data set

Called
Routines

HEWTERM

FREECORE

GETCORE

IDENTER

IDMINI

HEW ERROR

HEWLREAD

HEWLEND

HEWLESD

HEWLRLD

LMTXT

RDCHECK

WTWRITE

WTCHECK

HEWLRELO Process an object module HEWLREAD

HEWPRIME Read records into all
but one buffer before
HEWLRELO receives
control

HEWLEND

HEl~LESD

HEWLRLD

HEWLTXT

HElRMOD

RDREAD

Figure 24 (Part 2 of 2). HEWLOADR--Level 2

© Copyright IBM Corp. 1972, 1987

Calling Conditions

If the TERM option is specified
and messages are required

If previous or current (not the
first) allocation is for object
module

If no previously allocated area
is large enough for current
request

Always, unless extents will
overlap loader work space

Always, unless extents will
overlap loader work space

If an error occurs

Always

If end-of-module is indicated

If CESD record is received

If RlD record is received

If TXT record is read in

If DECB was previously written

Always

Always

Always

If END card received

If ESD card received

If RLD card received

If TXT card received

If MOD card received

Always

Organization of the Loader 73

Routine

COMMON

FREECORE

GETCORE

IDENTER

IDMINI

HEWERROR

HEWlCNVT

HEWlEND

HEWlERTN

HEWlESD

HEWlMAP

Purpose

Assign addresses to
common areas

Chain deallocated area
to free list

Allocated storage for
allocation request

Create entry in extent
list

Create a condensed
symbol table

Handle error messages,
severity code 4 errors

Convert binary quantity
to hexadecimal

Process END card,
reinitialize for next
module

Relocate all address
constants indicated by
RLD chain
Create CESD from input
ESD/CESD

Create map entry for
referenced location in
loaded program

Called
Routines

PSEUDOR

HEWLMAP

HEWlERTN

none

HEWERROR

none

none

HEWLPRNT

HEWTERM

none

TRANSID

HEWERROR

HEWERROR

lOADPROC

CESDSRCH

TRANSlAT

CESDENT

ENTER

CKECKEP

MATERSD2

TRANSID

HEWlPRNT
IEWLCNVT

Figure 25 (Part 1 of 3). HEWlOADR--level 3

74 MVS/XA loader logic

Restricted Materials of IBM
Licensed Materials - property of IBM

Calling Conditions

Always

Always, unless no CM entries were
received

Always, unless no CM entries were
received

If table overflow occurs

If SYSlOUT data set is open

If the TERM option is specified

If END card specifies entry point
address

If error occurs in end card
processing

Invalid 2-byte address constant

If input is a load module

Input entry is not NUll or PC

If NULL entry is made

If PC or lR entry is required

If PC entry is required

If PC entry is required

If PC entry is required

If LD/lR is received

Always
Always

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Routine

HEI-RMOD

HEWLODE

HEWLPRNT

HEWLREAD

HEWLRELO

HEWLRLD

HEWLTXT

HEWOPNLD

HEWPRIME

HEWTERM

Purpose

Process MOD card, store
text origin, length, and
extent information

Process a load module

Print output to SYSLOUT
data set

Handle request for data

Process an object module

Relocate
address constants
indicated by RLD entries
received, or chain RLDs
off CESD entry for R
pointer

Move object module text
to correct space

Open SYSLIB; close
SYSLIN

Read records into all
but one buffer before
HEWLRELO receives
control

Print output to SYSTERM
data set

Called
Routines

ALLOCATE

HEWLREAD

HEWLEND

HEWLESD

HEWLRLD

LMTXT

RDCHECK

WTWRITE

WTCHECK

RDREAD

RDCHECK

HEWLREAD

HEWLEND

HEWLESD

HEWLRLD

HEWLTXT

TRANSID
ALLOCATE

HEWLERTN

TRANSID

RELOREAD

HEWERROR

HEWBUFFR

RDREAD

WTWRITE

WTCHECK

Figure 25 (Part 2 of 3). HEWLOADR--Level 3

© Copyright IBM Corp. 1972, 1987

Calling Conditions

If extent information is passed
on MOD card

Always

If end-of-module is indicated

If ESD record is read in

If RLD record is read in

If TXT record is read in

If DECB was previously written

Always

Always

Always

Always

Always

If END card is received

IF ESD card is received

If RLD card is received

If TXT card is received

Always
If no free RLD entry is available

If relocation is possible, or if
delinking required

Always

Always

If invalid ID received

Unless SYSLIB was not opened

Always

Always

Always

Organization of the Loader 75

Routine

lMTXT

RDCHECK

RDREAD

WTCHECK

W1WRITE

Purpose

Read load module text
into main storage

Check DECB

Read input using DECB
information

Check DECB

Write output using DECB
information

Called
Routines

TRANSID

HEWlREAD

HEWERROR

PROCEOM

none

none

none

none

Figure 2S (Part 3 of 3). HEWlOADR--level 3

76 MVS/XA loader logic

Restricted Materials of IBM
Licensed Materials - Property of IBM

calling Conditions

Always

Unless record is to be skipped

If text record not received

Always

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Routine

ALLOCATE

CESDENT

CESDSRCH

CHECKEP

ENTER

HEWBUFFR

HEW ERROR

HEWLCNVT

HEWLEND

HEWLERTN

HEWLESD

Called
Purpose Routines

Allocate table extent HEWERROR

Get CESD entry form free ALLOCATE
entry list or, call
ALLOCATE to obtain an
entry

Search CESD for input MATCHED
name

Check CESD entry for
specified entry point

Enter information in
CESD entry for PC or SD

Buffer management

Handles error messages,
severity code 4 errors

Convert binary quantity
to hexadecimal

Process END card,
reinitialize for next
module

Relocate all address
constants indicated by
RLD chain
Create CESD from input
ESD/CESD

NOMATCH

none

HEWERROR

FREECORE

GETCORE

HEWLPRNT

HEWTERM

none

TRANSID

HEWERROR

HEWERROR

LOADPROC

CESDSRCH

TRANSLAT

CESDENT

ENTER

CHECKEP

MATERSD2

TRANSID

Figure 26 (Part 1 of 3). HEWLOADR--Level 4

© Copyright IBM Corp. 1972, 1987

Calling Conditions

Table overflow

No free entries on list

If name is found

If name is not found

If program is too large; if
AMODE/RMODE data error detected

If previous or current (not the
first) allocation request is for
object module

If no previously allocated area
is large enough for current
request

If SYSLOUT data set is open

If the TERM option is specified

If END card specifies entry point
address

If error occurs in END card
processing

Invalid 2-byte address constant;
invalid 3-byte address constant

If input is a load module

Input entry is not NULL or PC

If NULL entry is made

If PC or LR entry is required

If PC entry is required

If PC entrY is required

If PC entry is required

If LD/LR is received

Organization of the Loader 77

Routine

HEWLMAP

HEWLPRNT

HEWLREAD

HEWLRLD

HEWLTXT

HEWTERM

LMTXT

LOADPROC

MATERSD2

PROCEOM

PSEUDOR

Purpose

Create map entry for
referenced location in
loaded program

Print output to SYSLOUT
data set

Handle request for data

Called
Routines

HEWLPRNT

HEWLCVNT

RDCHECK

WRWRITE

WTCHECK

RDREAD

RDCHECK

Relocate address TRANSID
constants indicated by
RLD entries received, or
chain RLDs off CESD
entry for R pointer

Move object module text
to correct spaces

Print output to SYSTERM
data set

Read load module text
into virtual

Preliminary processing
for load module CESD

Test length and request
map entry

Go to process
end-of-module

Assign displacements to
pseudo registers

ALLOCATE

HEI~LERTN

TRANSID

RELOREAD

HEWERROR

WHIRITE

WTCHECK

TRANSID

HEWLREAD

HEWERROR

PROCEOM

CESDENT

CHAINING

HEWLEND

HEWLPRNT

FINISHUP

HEWLMAP

HEI~U:RTN

Figure 26 (Part 2 of 3). HEWLOADR--Level 4

78 MVS/XA Loader Logic

Restricted Materials of IBM
Licensed Materials - Property of IBM

Calling Conditions

Always

Always

If DECB was previously written

Always

Always

Always

Always

Always

If no free RLD entry is available

If relocation is possible, or if
delinking is required

Always

Always

If invalid ID is received

Always

Always

Always

Unless record is to be skipped

If text record not received

Always

If entrY type is PC,SD,LR

Always

Always

If displacement is assigned

Always

If displacement is assigned

If displacement is assigned

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Called
Routine Purpose Routines

RDCHECK Check DECB none

RDREAD Read input using DECB none
information

RELOREAD Go to HEWLREAD for more HEWLREAD
input

TRANSID Translate input ESD ID ALLOCATE
to CESD address

HEWERROR

TRANSLAT Make a translation table TRANSID
entry

WTCHECK Check DECB none

WnlRITE Write output using DECB none
information

Figure 26 (Part 3 of 3). HEWLOADR--Level 4

© Copyright IBM Corp. 1972, 1987

Calling Conditions

Always

If new extent is required

If table overflow or invalid ID
occurs

Unless LD entry

Organization of the Loader 79

Restricted Materials of IBM
Licensed Materials - Property of IBM

MICROFICHE DIRECTORY

Name

ALLOCATE

CMTRCTRL

CMTYPCHN

COMMON

DECB

ERCODES

FINISHUP

HEWACALl

HEWBTMAP

HEWBUFFR

HEWERROR

HEWLCNVT

HEWlCTRL

HEWLDCOM

HEWLDDEF

HEWLEND

HEWLERTN

HEWLESD

The microfiche directory is designed to help you find named
areas of code in the program listing (which is contained on
microfiche cards at your installation.) Microfiche cards are
filed in alphameric order by object module name. If you wish to
locate a control section, entry point, table, or routine on
microfiche, find the name in the first column and note the
associated object module name. You can then find the item on
microfiche.

Description Object Module CSECT Synopsis

Allocation HEWLDREL HEWLRELO Allocates storage for
Routine table entries

Table HEWlDREl HEWLRELO Pointers to
translation table
extents

Table HEWLDREl HEWLRELO Pointers to CESD type
chains

Label HEWLDLIB HEWLLIBR Assigns addresses to
common

DSECT HEWLDIOC HEWLIOCA Model DECB

DSECT HEWlDIOC HEWLIOCA Error code definitions
HEWLDREL HnRRELO
HE1~lDLIB HEWLLlBR

Label HEWLDLIB HEWLLIBR Prints finishing
messages

Entry point HEWLDLIB HE~ILLIBR Automatic library call
processing

Entry point HEWLDLIB HEWLLIBR Diagnostic dictionary
processing

Buffer allocation HEWLDIOC HEWLIOCA Buffer and DECB
routine allocation routine

Entry Point HEWLDLlB HEWLLlBR Error log routine

Entry Point HEI~LDREL HEWlRElO Binary-Hex conversion
routine

Entry Point and HEWLDCTR HE1-lLCTRL Loader control module
CSECT

DSECT HEl>lLDIOC HEWLIOCA Communication area
HH1LDLlB HEWLLIBR
HnlLDREL HnlLRELO

CSECT HEWLDDEF HEWLDDEF SYSGEN option defaults

Entry Point HH1LDREl HE1'ILRELO End processing

Entry Point HE1-lLDREl HENLRELO RLD relocation routine

Entry Point HE~RDREL HEWLRELO ESD record processing

80 MVS/XA Loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Name Description Object Module CSECT Synopsis

HEWLIDEN Entry Point HEWlDIDY HEWLIDEN Builds extent list for
IDENTIFY and issues
IDENTIFY

HEWLIDEN Entry Point and HEWlDIDY HEWLIDEN Identification routine
CSECT

HEWLIOCA Entry Point and HEWlDIOC HEWLIOCA Initialization, I/O,
CSECT control, and

allocation processing

HEWlLIBR CSECT HEWlDLIB HEWlLIBR Automatic library call
and load module
processing

HEWlMAP Entry Point HEl~lDREL HEWlRElO Creates map printout

HEWlMOD Entry Point HEWlDREl HEWLRElO MOD record processing

HEWLOAD Entry Point HEWlDIOC HEWLIOCA Entry point for
loading with
identi fication

HEWLODE Entry Point HEWlDLIB HE~llLIBR load module processing

HEWLPRNT Entry Point HEWlDIOC HE~ILIOCA Print routine

HEWLREAD Entry Point HE~JlDIOC HEWLIOCA Read routine

HEWlRElO Entry Point HEWLDREL HEl'llRElO Object module
processor

HEWLRELO CSECT HEWlDREl HEWlRELO Object module, ESD,
RLD, and map
processing

HEWLRlD Entry Point HE~ILDREl HEWlRElO RLD record processing

HEl~l TXT Label HEl~lDREL HEWLRELO Object module text
processing

HEWOPNlB Entry Point HEWLDIOC HEWLIOCA Opens SYSlIB data set

HEWPRIME Entry Point HE~llDIOC HEWLIOCA Object module buffer
prime routine

HEWTERM Entry Point HEWlDIOC HEWLIOCA SYSTERM routine

IDMINI label HEWlDIDY HEWLIDEN Constructs MINI-CESD
for test package if
TSO is operating

INITMAIN DSECT HEWlDIOC HEWLIOCA Initial work area

LMTXT label HEWLDLIB HEWllIBR Load module text
processing

MODElDCB label HEWlDIOC HEWLIOCA Model DCB for SYSlIN,
SYSLIB

OPENEXIT Entry Point HEWlDIOC HEWLIOCA DCB exit routine

PSEUDOR label HEWLDLIB HEWlLIBR Processes pseudo
registers

SYNAD Entry Point HEWlDIOC HEWLIOCA SYNAD routine

@ Copyright IBM Corp. 1972, 1987 Microfiche Directory 81

Name Description Object Module

TRANSID Entry Point HEWLDREL

82 MVS/XA Loader Logic

Restricted Materials of IBM
Licensed Materials - Property of IBM

CSECT Synopsis

HEWLRELO Translates ESD ID to
CESD address

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

DATA AREAS

Data Area

Address list

BlDl list

This section provides a detailed description of internal data
areas used during loader processing. The data areas are
described in alphabetic order.

Also included in this section is a summary of data area usage
and construction (Figure 27).

Built By Used and/or Modified By

HEWACAll 1

HEl-lACAll 1

CESD control table HEWlESD HEWACAll, HEWlESD
(CMTYPCHN)

CESD table HEWlESD HEWACAll. HEWlERTN, HEWlESD,
HEWlRlD, HEWLTXT. lMTXT

Condensed symbol table HEWLIDEN TSO test facilities

Extent chain HEI-lLMOD HEI-lLIDEN

IDENTIFY parameter list HEWLIDEN IDENTIFY macro instruction

HE~'lDCOM HEWLIOCA 2

INITMAIN HEl-lLIOCA 1

RlD tablel HEWlRlD HEWACALl. HEWlERTN, HEWLRlD

Translation table HE~tlESD HEWACALl, HEWlESD, HEWlRlD,
HEWlTXT, lMTXT, TRANSID

Figure 27. Data Area Construction and Usage

Notes to Figure 27:

1 Built and processed entirely within one routine.

2 Major communication area throughout loader processing.

© Copyright IBM Corp. 1972. 1987 Data Areas 83

Address List

Restricted Materials of IBM
Licensed Materials - Property of IBM

Bui It by the Secondary Input Processor

A1 A2

'--

A3

CESD entry address (4 bytes each entry)

The entries in this list are in one-to-one
correspondence with the BLDL list entries.
The Loader stores the address from the BLDL
entry in the address list before issuing the
BLDL macro instruction

Figure 28. Address List

BLDL Li.t

Built by Secondary Input Processor

4-11

Name Ii e Id (8 byte.)

~eng..!!! (2 byte.)

LL - length of each entry in the BLDL
Ii.t (16 bytes in the Laader)

Number (2 bytes)

FF - total number of entries in the BLDL list

Figure 29. BLDL List

84 MVS/XA Loader Logic

(entry FF) ..
Nal used by the Laader

CESD addre.VTTR
Originally contains the CESD address
of an ER. (4 byte.) If the name was
found in the SYSLIB directory, BLDL
replaces the CESD address with HR.
(bytes 12-14)
H - relative track number
R - block number on the track

each entry
16 byte.

© Copyright IBM Corp. 1972, 1987

Restricted Materials o~ IBM
Licensed Materials - Property a~ IBM

CESO Control Table (CMTYPCHN)
Built by the ESO Processor

CESO type chain pointer (4 bytes each entry)
The pointers, PO-P7, are listed in the

following order by type: SO,
LO, ER, LR, PC, CM, PR,
NULL

Note: The CESO control table is defined in the communications
area (HEWLDCOM).

Figure 30. CESD Control Table (CMTYPCHN)

@ Copyright IBM Corp. 1972, 1987 Data Areas 85

Restricted Materials of IBM
Licensed Materials - property of IBM

CESO Table Entry

Built by the ESO processor

4-11 I 12-15 I 16-19 120-r 211

AMOOEIRMOOE flags
0-4 not used
5 RMOOE

0~24
I~ANY

6-7 AMOOE
OO~24
01 ~24
10~31
II:ANV

FlagS/lype field (I byle) F F F F F

Section definition (SO) - X 0 X 0 0
Label definition (LO) - 0 X 0 0 0
External reference (ERI - X X X X X

Label reference (LR)
Privale code (PC)
Common (CM)
Pseudo reglsler (PA)

'--- Use depends on entry type

-XOOOO
-00000
-000 0 0
-0 0 0 0 0

Type LO - ESO 10 10(SO; preliminary use only (bytes 18, 19)

Type PR - boundary alignment (byle 16) and length (bytes 17-19)
Alignments

7 - doubleword
3 - lullword
1 - halfword
0- byte

Types SO, PC, LR, CM - relative relocation constant

Type ER - 0; If ER was created Irom an LR - Input address

Type CM - address of exlended ponion 01 entry

'-- Address/displacement field (4 bytes)
Types SO, pc, LR, CM - Loader-assigned address
Types CM, PR, ER - address of RLO entry chain (0, il no RLOs)
Type PR - displacement within OSECT
Type LO - Inpul address (preliminary use only)

'---- Namefleld (8 byles)
-s:Ctiaracler symboliC name or blanks lor blank commOn

and private code (unused 10(exlended ponlon 01 CM entry)

'---- Chain address (4 byles)
Polnler 10 n8xl enlry on CESO Iype chain; If end of chain, 0
(unused for exlended portion of CM enlry)

Figure 31. CESD Entry

T T T;

000
00 1
01 0

o I 1
I 00
1 0 I
t 1 0

F t _ 5 are flags, T 1 _ 3 Indicate type

F 1 - "delele," F3 - "no length"
F2 - "LO processed"
Ft - "delete," F2 - "weak call," F3 - "BLOL tried,"
F 4 - "TTR lound," F5 - "never call"
Fl - "delele"

86 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Condensed Symbol Table Entry

Bui! t by the Identification Processor

0-7 8-11 12

.!le!. - (l byte)
Section definition (SO) xxxxx 000
Common (CM) xxxxx 101

Address - Assign ed address of this
symbol (4 bytes) •

mbol -~ T he 8- er e m charact xtemal na e (8 bytes).

Figure 32. Condensed Symbol Table Entry

© Copyright IBM Corp. 1972, 1987 Data Areas 87

Dola Evenl Conlrol Block
Bui II by I/o, Conlrol, and Allacati on Processor

Standard DECB

0-3 8-11 12-15

DECDCBAD (4 bytes)

Restricted Materials of IBM
Licensed Materials - Property of IBM

16-19

Added by the
loader

DECOECPT (4 bytes)
address of next DeCB (4 bytes)

DECIOBPT (4 bytes)
address of the V 0 block

DEC AREA (4 bytes)
address of the read/write
area for the data

address of the DCB for the read/write data set

DEClNGTH (2 bytes)
length of the data to read/write

DECTYPE (2 bytes)
type of the Vo macro instruction and options

DECSDECB (4 bytes)
event control block

Figure 33. Data Event Control Block (DECB)

88 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Extent Chain Entry

Built by the MOD Proc:es50r

I 0-3 I 4-7 1 8-11 I
I L----Length - Length of the extent (4 bytes).

L..-___ Address - Address of the extent derived from
~D record (4 bytes).

'----- Chain Address - Address of the next entry on the extent
c:hain; if end of c:haln, zero (4 bytes).

Figure 34. Extent Chain Entry

© Copyright IBM Corp. 1972, 1987 Data Areas 89

IDENTIFY Parameter Ust

Built by the Identification PIoce"",r

Address of entry point of program te be identified

Program name - the 8-character symbolic name

I
Addressing mode Not used

length, in bytes, of extent list

Number of extents described in this list

Length of extent 1 (Loader-constructed program)'

Length of extent 2 (Condensed symbol table), If any
.

Length of extent 3 (first block of preloaded text); If any
.

· : · ·
Length of extent n*

Address of extent I (Loader-constructed program)

Address of extent 2 (Condensed symbol table)

Address of extent 3 (first block of preloaded text), If any

·

1
· ·

Address of extent n

I

Restricted Materials of IBM
Licensed Materials - Property of IBM

h

.

if

1

~
Extent
List

""� .. -----------------4 bytes------------------I .. ~I

• A hexadecimal 'SO' In the hlgh-order byte Signifies the last length.

Figure 35. IDENTIFY Parameter list

90 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Offset
Decimal Hex

o 0
8 8

16 10
24 18
28 lC
32 20
36 24
40 28
44 2C
48 30
52 34
56 38
60 3C
64 40
68 44
72 48
76 4C

80 50
84 54
88 58
92 5C
96 60
100 64
104 68
108 6C
112 70
116 74

120 78
124 7C
128 80

132 84
136 88
140 8C
144 90
148 94
152 98
156 9C
166 A6
168 A8
170 AA
172 AC
174 AE
176 80

180 B4

184 B8
192 CO
200 C8
208 DO
216 D8
224 EO
232 E8
236 EC
240 FO

Length

8
8

8
4
4
4
4
4
4
4
4
4
4
4
4
4
4

4
4
4
4
4
4
4
4
4
4

4
4
4

4
4
4
4
4
4
10
2
2
2
2
2
4

4

8
8
8
8
8
8
4
4
1

Symbol

CMRDRSET
CMXDBlWD
(CMADCON)

CMFSTSAV
CMBEGADR
CMRDCBPT
CMWDCBPT
CMTDCBPT
CNRDECPT
Cr·1WDECPT
CMGETREC
C~1PUTREC
CMTRMREC
CMNXTTXT
CMlSTTXT
01l0WTBl
C~1HITBl
(BTlHIADR)
CMIOlSTl
CMIOlST2
CMIOlST3
C~1CORE1
CMCORE2
CMTOPCOD
CMLIBEOD
CrRIBSYN
CMLIBEXl
REDRLIST

ATlHIADR
TXTBUFND
ATlMADR
(ATllOADR)
ATlMlUG
TBllO
TXTHI
CMMAINPT
CMGETPRM

CMGETlST
Cf1BlKSIZ
CMMAXlNE
CMMAPLIN
Cf~WlRECl
CMMAXlST
BTlMADR
(BTllOADR)
CTXTBUFsn
BTlMlNG
(CMMAINSZ)
CMPRNTDD
CMLINDD
Cft1lIBDD
CMTERMDD
CMEPNAME
CMPGMNM
C~1LINDCB
CMLIBDCB
cr1PRf~FlG
CQRES
CQMAP

Description

Multipurpose doubleword
Temporary doubleword
Relocation alignment area
Multipurpose doubleword
Pointer to first save area
Default entry point to module
Input DCB pointer
Output DCB pointer
System DCB pointer
Input DECB pointer
Output DECB pointer
Input logical record pointer
Output logical record pointer
System buffer pointer
Next address to be assigned to a CSECT
Highest text address assigned to current CSECT
lowest address assigned for loader tables
Highest storage address available to loader

Highest address in below-the-line loading
Open list, DCB pointer #1
Open list, DCB pointer #2
Open list, DCB pointer #3
Corresponds to CMNXTTXT for pre-loaded text
Corresponds to CMLSTTXT for pre-loaded text
Highest text address before common allocated
EODAD error routine pointer for passed SYSlIB
SYNAD error routine pointer for passed SYSLIB
Exit list pointer for passed SYSLIB
CLOSE/OPEN list for SYSLIN (DCB pointer) used by
redrive
Highest address in above-the-line loading
Lowest table address in above-the-line loading
Lowest address of above-the-line GETMAIN

Lowest address in above-the-1ine loading
Length of above-the-line GETMAIN
Vector to table overflow address
Vector to text overflow address
Address of loaded program
Minimum for variable conditional GETMAIN
Maximum for variable conditional GETMAIN
Parameter list for variable conditional GETMAIN
Block size of current input object module
Maximum line count (SYSPRINT)
Length of map line
SYSPRINT record size
Maximum length of invalid options list
Variable conditional GETMAIN address

Lowest address of below-the-line GETMAIN
Text buffer address for above-the-line loading

Length of below-the-line GETMAIN
Variable conditional GETMAIN size
Print ddname
Primary input ddname
Library ddname
SYSTERM ddname
Entry point name
Program name
Passed SYSlIN control block pointer
Passed SYSlIB DCB pointer
Parameter flags:
X'Ol' RES/NORES
X' 02' MAP/NOMAP

Figure 36 (Part 1 of 3). HEWLDCOM DSECT--Communication Area

© Copyright IBM Corp. 1972, 1987 Data Areas 91

Offset
Decimal Hex Length Symbol

241

242

243

244

245
246
249
250
253
254
256
260
296
300
302
304
308
312
316
320
324
452
456
460
464
468
472
476
480

F1 1

F2 1

F3 1

F4 1

FS 1
F6 3
F9 1
FA 3
FD 1
FE 1
100 4
104 36
128 4
l2C 2
12E 2
130 4
134 4
138 4
13C 4
140 4
144 128
lC4 4
1C8 4
ICC 4
1DO 4
ID4 4
ID8 4
1DC 4
lEO 4

CQPRINT
CQLET
CQCALL
CQEPNAME
CQEPADDR
CQTERM
CMIOFLGS
CQEOCB
CQEOFB
CQEOFSB
CQRECFM
(CQUNDEF>
CQFIXED
CQIGNCR
CQIOERR
CMFLAG3
CQTS
CQPGMNM
CQPASLIN
CQPASLIB
CQINCORE
CQIDEN
CMFLAG4
CQESDS
CQMOD
CQNOEX
CQtlINI
COMVT
CQCO~lMON
CQTRMOPN
CQIDONE
CMFLAG5
Ct1AMDREQ
HDGLINE2
MODEDATA
MODERREQ
FIRSTESD
REDRIVE
MODEIMPL
ATLLOAD
CMCHRt10D

CMCHAMOD
CMCH
CMRMODE
CMAMODE
C~lSYSTYP
CMRSAVE
CMBITMAP
CMLNECNT
01~nBFCT
CMXLCHN
C~lERLIST
CMRLDCHN
01ESDCHN
CMEPADDR
C~1TRCTRL
CMBLDLPT
Ct·1CXDPT
Ct1FRECOR
Ct'lMODLNG
Ct10BJST
Cf.1TEHPCH
CMEPCESD
CMPREVPT

Description

Restricted Materials of IBM
Licensed Materials - Property of IBM

X'04' PRINT/NOPRINT
X'08' LET/NOLET
X'IO' CALL/NOCALL
X'20' Entry point name defined
X'40' Entry point address defined
X'80' TERM/NOTERM
I/O flags:
X'OI' End of concatenation
X'02' End of file
X'04' End of file significance
X'08' Input record format (0 is Fixed)

Separate name in allocation for undefined
X'lO' Fixed record format
X'20' Ignore control record on load module
X'40' An I/O error has occurred
Assorted flags:
X'02' Time-sharing environment
X'04' Program name passed
X'08' SYSLIN DCB passed
X'lO' SYSLIB DCB passed
X'20' Processing incore SYSLIN
X'40' Entered at IEWLOAD. Identification wanted
Assorted f1agsl
X'Ol' ESDs have been encountered
X'02' MOD card has been encountered
X'04' Execution not scheduled
X'08' Mini-CESD built
X'lO' MVS operating
X'20' Common received
X'40' SYSTERM open
X'80' Identification accomplished
Assorted flagsl
X'Ol' AMODE req'd from entry point definition
X'02' Print line 2 of heading
X'04' AMODE/RMODE data in ESD (not seg. no.)
X'08' Parm field mode specif error detected
X'IO' RMODE from first ESD processed
X'20' Restart of loading required
X'40' AMODE or RMODE parm implied
X'80' Loading above the line
RMODE value move length
RMODE value character string
AMODE value move length
AMODE value character string
RMODE from parm field
AMODE from parm field
System type saved by HEWLDLIB
Register save area used by HEWLDLIB
Error bit map
Current line count (SYSPRINT)
Horizontal byte count in print record
Pointer to chain of extents
Pointer to errors encountered during open
Free RLD entry chain (8 bytes/entry)
Free CESD entry chain (22 bytes/entry)
Entry point address to loaded program
Translate control table
BLDL pointer
Pointer to CXD addresses
Free storage chain
Length of module currently being processed
Starting point for object module
Pointer to load chain entry to be freed
CESD line address of the entry point name
Previous element in a chain for insert-delete

Figure 36 (Part 2 of 3). HEWLDCOM DSECT--Communication Area

92 MVS/XA Loader Logic © Copyright IBM Corp, 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Offset
Decimal Hex Length Symbol Description

484
488
492

496
500
504
508
512
516
520
524
526
528
530

531

532

533
534
535

1E4 4
1E8 4
1EC 4

1FO 4
1F4 4
1F8 4
1FC 4
200 4
204 4
20B 4
20C 2
20E 2
210 2
212 1

213 1

214 1

215 1
216 1
217 1

CMLOADCH
CMESDSAV
CMSDCHN
(CMTYPCHN)
CMLDCHN
CMERCHN
CMLRCHN
CMPCCHN
CMcr'1CHN
C~1PRCHN
CMtlULCHN
CMCURRID
CMBLDLNO
CMNUMXS
CMLIBFLG
CQKEEPS
CQDELETE
CQAUTOC
CQCESDR
CQNOTXT
CQLPASRH
CQFIRST
CMRELFLG
CQESD
CQNOLNG

CQDELINK
CQLIB
CQNOEND
CQINPUT
CQENTRY
CQNOLNTX
CMSTATUS
CQPRTOPN
CQLIBOPN
CQABORT
CQREJOPT
CQOPNERR
CQRETURN

CQMSGSAV
CQPRTDCB
CMPRTCTL
CMOPTECT
CMEpr~ODE

Temporary chain for ESDs in a load module
CESD register save area for HEWLDREL
Type 0 - Section definition - chain pointer

Index point for the vector table
Type 1 - Label definition - chain pointer
Type 2 - External reference - chain pointer
Type 3 - Label reference - chain pointer
Type 4 - Private code - chain pointer
Type 5 - Common - chain pointer
Type 6 - Pseudo register - chain pointer
Type 7 - Null entry - chain pointer
ESDID counter
Number of BLDL entries
Number of extents
Autocall and load module processor flags:
X'OI' Keep some text from this record
X'02' Delete some text from this record
X'04' Autocall is in process
X'08' CESD has been received for load module
X'IO' Text has been received
X'20' LPA resolution possible
X'40' First record from load module was CESD
Relocation and object module processor flags:
X'OI' ESD routine is caller to ID translate rtn
X'02' Length not yet received from current

X'04'
X'OB'
X'IO'
X'20'
X'40'
X'80'
Loader
X'OI'
X'02'
X'04'
X' 08'
X' 10'
X'20'

X'40'
X'80'
Index
Count
AMODE

CSECT
Delinking if required for common
Resolution from SYSLIB in process
End card has been received
Input has been recei¥ed
RLD is for entry point
Text received for no-length CSECT
status flag:
Print DCB allocated for
Library DCB open
Abort loading
Invalid options are to
Errors were encounter(
Caller to error routi
control
Request open exit to
Print DCB is open

be printed
during open
nust regain

e error messages

for printer carriage c~ erol
of invalid options to ~ printed
for entry point

Figure 36 (Part 3 of 3). HEWLDCOM DSECT--Communication Area

Notes to Figure 36:

1. Symbols in parentheses are equated tc preceding symbol.

2. Locations BTLMADR through CMAMODE are initialized from
locations INITMADR through PARMAMOD i, INITMAIN (Figure 38
on page 95) by HEWLDIOC.

3. Locations CMBITMAP through CMEPMODE are initialized to zero
by HEWLDIOC.

© Copyright IBM Corp. 1972. 19B7 Data Areas 93

HEWLDDEE

Restricted Materials of IBM
Licensed Materials - Property of IEM

HEWLDDEF is a static CSECT that defines default options and
ddnames to be used by the loader.

During loader execution, the default values are moved to dynamic
storage (INITMAIN), where they are modified by the parameter
list values passed internally. The HEWLDDEF CSECT is described
in Figure 37.

Dec Hex
o O~ __ -.

alternate DDNAME for
SYSLOUT

8 8~---i
alternate DDNAME for

SYSLIN
16 10~ __ -i

alternate DDNAME for
SYSLI B

24 18~ __ -i

default SIZE value

28 1 Cl---__________ _

* flags

32 20~ __________ _

'Correspond to CMPRMFLG flags. See Figure 36.

Figure 37. HEWLDDEF CSECT

94 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Offset
Decimal Hex

o 0
72 48
76 4C
80 50
88 58
96 60
104 68
112 70
120 78
128 80
132 84
136 88
138 8A
139 8B
140 8C
141 80
142 8E
145 91
146 92
149 95
150 96
152 98
156 9C
160 AO
164 A4
168 A8

172 AC

176 BO

188 BC
200 C8
208 DO
216 D8
472 108

Length

72
4
4
8
8
8
8
8
8
4
4
2
1
1
1
1
3
1
3
1
1
4
4
4
4
4

4

12

12
4
8
256
VL

Symbol

INITSAVE
INITMADR
INITMSIZ
INITPRNT
INITLIN
INITLI8
INITTERM
INITNAt1E
INITPGMN
INLINOCB
IULIBDCB
INITPARM
INFLAG3
INFlAG4
INFlAG5
CHARRMOD

CHARAMOD

PARMRMOD
PARMAMOD
INITSPIE
INITSCAN
INITDUM
INITREJL
INITRMIN

INITRMAX

INITGTML

INITEXTR
INITEXAD
INITDBLW
INITRTAB
INITREJP

Description

Initial save area
Variable conditional GETMAIN storage address
Variable conditional GETMAIN storage size
ddname for diagnostic message data set
ddname for primary input data set
ddname for autocall library data set
ddname for SYSTERM data set
Parameter list entry point name
Program name
Address of passed SYSLIN DCB
Address of passed SYSLI8 DCB
Parameter flags and error flags
Assorted flags
Assorted flags
Assorted flags
RHODE value move length
RMODE value character string
AMODE value move length
AMODE value character string
RMODE from parm field
AMODE from parm field
Pointer to previous SPIE for 'SIZE:' SCAN
Scan pointer save area for 'SIZE:' SPIE
Save word for register during size processing
End of rejected options list
Minimum size request for variable conditional
GETMAIN
Maximum size request for variable conditional
GEU1AIN
Parameter list area for variable conditional
GETMAIN
Parameter list area for Extract
Address of TCB TSO field from Extract
Doubleword for parm 'SIZE' conversion
Translate and test table for option scan
Rejected options buffer

Figure 38. INITMAIN DSECT Definition

Note to Figure 38:

Locations BTLMADR through CMAMODE in HEWLDCOM (the communication
area Figure 36 on page 91) are initialized from locations
INITMADR through PARMAMOD in INITMAIN.

© Copyright IBM Corp. 1972. 1987 Data Areas 95

RLD Tobie Entry

0-3 4-7

Restricted Materials of IBM
Licensed Materials - Property of IBM

Flagfield - FXXXLLST (I byte)

FXXX - type of adcon

xOOO - A-type ad can
xOOl - V-type adcan
0010 - displacement pseuda register
0011 - accumulative pseudo register

Note: F = 1 - use absolute relocatian constant for relocation

LL - length of ad can

OJ - two bytes
to - three bytes
11 - four bytes

5 - direction of relocation

o - add the relocation constant
1 - subtract the relocation constant

T - not used by the Loader; input value is retained

Loader - assigned address 01 address constant in text (4 byteS)

..... --Address of next entry on this RLD chain.
o if end of chain (4 bytes)

Figure 39. RLD Table Entry

Translation Control Table

~-'r-__ ~ ______ L-______ L-__ -JL/~I ______ ~ __ 12_3-_1_2_7~

Address of extent allocated for the translation
table. Each entry is initialized to zero (4 bytes)

Note: This table is defined in the communications area (HEWLDCOM)
at location CMTRCTRL.

Figure 40. Translation Control Table

96 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

T ranslati on Table Entry

Bui It by the ESD Processor

1- 31

Address of CESD entry (31 bits)

Flag (1 bit) for CESD entry for ER
-0-= normal (relative) relocation required

1 = special (absolute) relocation required

Note: A translation table extent contains
32 of these entries. The loader can allocate
a maximum of 32 extents. When allocated,
an extent is initialized to zero.

Figure 41. Translation Table

© Copyright IBM Corp. 1972, 1987 Data Areas 97

DIAGNOSTIC AIDS

Restricted Materials of IBM
Licensed Materials - Property of IBM

This section contains information that is useful in diagnosing
difficulties with the loader program. Included are: register
contents at entry to routines (Figure 42), error code
definitions (Figure 43 on page 100), an example of a module map
(Figure 44 on page 101), and a list of serviceability aids
available with the loader. To use this section, refer to
Figure 22 on page 71 through Figure 26 on page 77 which show the
logic flow, and Figure 27 on page 83 which shows data area
usage.

Note: At the entry point to each module, register 13 contains the save area address
and register 14 contains the return address.

Module

HEWlCTRl

HEWRElO

Entry Point

HEWLRElO

HEWlESD

HEWlTXT

HEWlMOD

HEWlRlD

HEWlEND

TRANSID

HEWlERTN

HEWlMAP

HEWlCNVT

Register Contents

1 - address of parameter list

11 - address of communication area

5 - ID of first ESD item other than lD
7 - length of ESD information
8 - address of ESD information
11 - address of communication area

5 - Text ID
6 - displacement address of text
7 - length of text
8 - address of text in object module buffer
11 - address of communication area

7 - length of MOD information
8 - address of MOD information
11 - address of communication area

7 - length of RlD information
8 - address of RlD information
11 - address of communication area

5 - ID of entry point (if present)
6 - address of entry point (if present)
8 - address of symbolic entry point name (if

present)
11 - address of communication area

5 - ESD ID to be translated
11 - address of communication area

1 - starting address of RlD chain
9 - CESD entry address to be used for relocation
11 - address of communication area

9 - address of CESD entry to be mapped
11 - address of communication area

1 - binary quantity to be converted
11 - address of communication area

Figure 42 (Part 1 of 2). Register Contents at Entry to Routines

98 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Module

HEWLLIBR

HEWLIOCA

HEWLIDEN

Entry Point

HEWLODE

HEWERROR

HEWACALL

HEWBTMAP

HEWLIOCA

HEWLOAD

OPENEXIT

HEWBUFFR

HEWLREAD

HEWOPNLB

HEWLPRNT

HEWTERM

HEWPRIME

HEWLIDEN

Register contents

11 - address of communication area
15 - entry point address

o - error message code
1 - pointer to qualifying information (if it

exists)
11 - address of communication area
15 - entry point address

11 - address of communication area
15 - entry point address

11 - address of communication area
15 - entry point address

1 - address of parameter list
15 - entry point address

1 - address of parameter list
15 - entry point address

1 - address of DCB
11 - address of communication area
12 - base address of HEWLIOCA

10 - address of DCB
11 - address of communication area
15 - entry point address

For Object and Load Modyles

11 - address of communication area
15 - entry point address

For Load Modyles

a. read control/RLD record
o - zero

b. read text records
o - length of text record
1 - address of text

c. read text and control/RLD
o - complement of length of text
1 - address of text

11 - address of communication area
15 - entry point address

11 - address of communication area
15 - entry point address

11 - address of communication area
15 - entry point address

11 - address of communication area
15 - entry point address

11 - address of communication area

IDMINI 5 - starting address for mini-CESD
10 - upper limit of storage available

Figure 42 (Part 2 of 2). Register Contents at Entry to Routines

© Copyright IBM Corp. 1972, 1987 Diagnostic Aids 99

Restricted Materials of IBM
Licensed Materials - Property of IBM

ERROR CODE DEFINITIONS

Error
Code

ERRElOI
ERENTRI
ERINPT8
ERI10DEI
ERr10DE2
ERMODE3
ERINPTlO
ERINPT2
ERREL02
ERINPT4
ERINPT5
ERINPT7
ERINPT9
ERINPTl
ERINPTll
ERINPTl2
ERINPT3
ERENTR2
ERIOUT4
ERINPT6
ERIOUT3
ERIOUTl
ERIOUT2
ERSIZE2
ERSIZE3
ERIDENI
ERIDEN2

Figure 43 contains the loader error codes listed in the order of
their bit positions in the error-bit map. (The codes are also
listed in DSECT ERCODES in CSECTs HEWLIOCA, HEWLRELO, HEWLLIBR,
and HEWLIDEN.)

Definition

Unresolved external reference (NOCALL specified)
No entry point received
Card received not an object record
Invalid AMODE/RMODE combination in PARM field
Invalid AMODE/RMODE combination in ESD data
Inconsistent RMODE data - RMODE=24 forced
No END card received
Invalid length specified
Unresolved external reference
Doubly defined ESD
Invalid 2-byte address constant
Invalid ID received
Invalid record from object module
Block size is invalid
Common exceeds size of CSECT with same name
Invalid 3-byte address constant
No text received
Entry point received but not matched
I/O error while searching library directory
Invalid record from load module
Unacceptable record format (variable on input)
ddname cannot be opened
ddname had synchronous error
Available storage exceeded
Too many external names in input module
Identification failed; duplicate program name
Identification failed

Sev Message

I IEWI001
I IEW1l61
1 I EW1l41
1 I E~H241
1 IEW1251
1 IEWI271
2 IEIH182
2 IE~H082
2 IEWI012
2 IEWll02
2 I Et-Ill 12
2 IEW1l32
2 IEW1l52
2 IHU072
2 IEW1232
2 IENl262
3 IEWI093
3 IEW1l73
3 IEWI053
3 IEW1l23
4 IEWI044
4 IEWI024
4 IENl034
4 IEJoU194
4 IEW1204
4 IEJoa214
4 IEW1224

Figure 43. Internal Error Code Definitions

100 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Modu Ie Mop Formot

Mop heading Name Type Add, Nome Type .Add, Name Type .Add, Name Type Add,

CSECTs, entry points Main SO 9000 ENTRY LR 9050 ENTRY2 LR 9100 SUBI' SO Aooo

SUB2' SO AlOO

Common entry $ 8LANKCOM CM MOO

Pseudo Register IHEOINV PR 00 IHEOERR PR 04 IHEOTIC PR 08 IHEQLWF PR OC IHEQLWO PR 10
information

IHEOSLA PR 14

Length of loaded TOTAL LENGTH 2000
program

Entry 01 looded
program

ENTRY ADDRESS 9050

Notes:
--. Nome· denotes a modul. included from the SYSLI8 doto set.

• Name·· denotes 0 module included from the link pock area.
• Nome *** denotes a module pointed to by Q MOO record.
• The map entrios are made as addresses ore assigned, so tho

mop ,.flects the orde, of ESD ent,ies in the CESD.

Figure 44. Module Map Format Example

SERVICEABILITY AIDS

The loader provides the following serviceability aids:

• The control section, HEWLDDEF, contains the default values
for loader options and is resident in load module HEWLOADR.

• A storage dump will typically produce information on the
nature of the error. Register 11 will contain a pointer to
HEWLDCOM, and register 12 will contain the base register
associated with the CSECT in control.

• All nine save areas are forward and backward chained.
Lower-level save areas will be printed. A hexadecimal "FF"
in word 4 of the save area indicates that the routine
represented by the save area has returned control.

• Inputloutput control information is contained in the loader
communication area. This information consists of the DECD
address, the buffer locations, the block size, the logical
record length, the blocking factor, the number of records
left in the buffer, the address of the current record, and
the associated switches. See Figure 38 on page 95 for the
layout of HEWLDCOM.

• Appropriate diagnostic messages are produced when an error
has been detected. The message has a specific number and,
where appropriate, lists the data in error. The message
number and text are listed by HEWLLIDR at the end of
loading. (Figure 49 on page 108 is a list of these
messages.)

• A module map (MAP) is provided to furnish information
concerning the structure and contents of the program.
Figure 48 on page 107 is an example of a map listing.

• The loader uses the SYNADAF to obtain information regarding
permanent 1/0 errors, and lists the information on the
SYSLOUT data set.

© Copyright IBM Corp. 1972, 1987 Diagnostic Aids 101

Restricted Materials of IBM
Licensed Materials - Property of IBM

AppENDIX. ERROR MESSAGES, ETC.

Message
Number

IEW100l

IEW1012

IEW1024

IEW1034

IEW1044

IEW1053

IEW1072

IElU082

IEW1093

IEWll02

IEWl1l2

IEW1l23

IEm132

Message
Text

Warning
(NOCAll

This appendix contains a list of error messages and the routines
and CSECTs in which they originate, a list of loader input
conventions and restrictions, and detailed descriptions of input
record formats. (The input record formats are the same as for
the linkage Editor Programs.) In addition, the compiler/loader
interface is described for the processing of the data sets
passed to the loader.

Figure 45 lists the loader diagnostic messages. Each message
contains a severity code in the final position of the message
number. These severity codes are defined as follows:

o Indicates a condition that will not cause an error during
execution of the loaded program.

I Indicates a condition that may cause an error during
execution of the loaded program.

2 Indicates an error that can make executing the loaded
program impossible.

3 Indicates an error that will make executing the loaded
program impossible.

4 Indicates an unrecoverable error. Such an error causes
termination of loading.

Issuer
Routine Issuer CSECT

- Unresolved external reference HEWACAll HEWlLIBR
specified)

Error - Unresolved external reference HEWACAll HEWlLIBR

Error - Ddname cannot be opened HEWlIOCA HEWlIOCA

Error - Ddname had synchronous error SYNAD HEWLIOCA

Error - Unacceptable record format OPEN EXIT HEWlIOCA
(variable on input)

Error - I/O error while searching HEWACAlL HEWlLIBR
library directory

Error - BlKSIZE is invalid OPENEXIT HEWlIOCA

Error - Invalid length specified HEWlEND HEWlRElO

Error - No text received HEWACAlL HElo.lLIBR

Error - Doubly defined ESD HE~RESD HEWlRElO

Error - Invalid 2-byte address constant HEWLRLD HEWLRELO

Error - Invalid record from load module HEWlODE HEWllIBR

Error - Invalid ID received HEWlRlD HEl~LRElO
HEWLTXT HEWLRELO
HEWLEND HEWLRELO
TRANSID HEWLRElO

Figure 45 (Part 1 of 2). Error Message/Issuer Cross-Reference Table

102 MVS/XA Loader Logic @ Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

Message Message Issuer
Number Text Routine Issuer CSECT

IEloll141 Warning - Card received not an object HEWlRElO HElollRElO
record

IEW1l52 Error - Invalid record from object HEWlRElO HEWlRElO
module

IEW1l61 Warning - No entry point received HEWACAll HEWlLIBR

IEW1l73 Error - Entry point received but not HEWACAll HEWllIBR
matched

IEW1l82 Error - No END card received HEWlRElO HEWlRELO

IEW1l94 Error - Available storage exceeded HEl'lBUFFR HEWLIOCA
HENlESD HEWLRELO
HEl'llEND HEmRELO
HEl~l TXT HEWlRELO
HEl~ACAll HE~lllIBR
HE~ILODE HHlllIBR
HEHLIDEN HEl'lLIDEN

IEW1204 Error - Too many external names in input TRANSID HEl~LRELO
module

IEW12l4 Error - Identification failed - HEWLIDEN HEWLIDEN
duplicate program name found

IEW1224 Error - Identification failed HEWLIDEN HE~ILIDEN

IEW1232 Error - Common exceeds size of CSECT MATCHCM HEWlRElO
with same name

IEW124l lolarning - Invalid AMODE/RMODE NOLINE2 HEWLIOCA
combination found in PARM field -
ignored

IEW1251 Warning - Invalid AMODE/RMODE ENTER HEWlRElO
combination in ESD data for the named
CSECT - ignored

IEW1262 Error - Invalid 3-byte address constant HEWLERTN HEWLRELO

IEW1271 Warning - Inconsistent RMODE data - MNREDRIV HE'~LIOCA
RMODE=24 forced

IEW199l Error - User program has abnormally HE"'lCTRl HEWlCTRl
terminated

Figure 45 (Part 2 of 2). Error Message/Issuer Cross-Reference Table

INPUT CONVENTIONS

Input modules (object or load) to be processed by the loader
must conform with a number of input conventions:

• All text records of a control section must follow the ESD
record containing the SD or PC entry that describes the
control section.

• The end of every input module must be marked by an end
indication (END record in an object module, EOM flag in a
load module.>

• Any RlD item must be read after the ESD items to which it
refers and after the TXT item in which it is positioned.

© Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. 103

Restricted Materials of IBM
Licensed Materials - Property of IBM

• (Applicable only to FORTRAN IV language processing.) Once a
BLOCK DATA subprogram has been received, any following named
common referencing it must not specify a longer length.

• Because each control section is assigned an address as it is
encountered in the input stream, any control section
appearing between the ESD for a 'no-length' CSECT and the
END card for that 'no-length' CSECT will have an erroneous
address assigned. (A 'no-length' CSECT is a control section
whose length is defined on the END card.)

INPUT RECORD FORMATS

• Each record of text and each LD or LR type ESD record must
refer to an SD or PC entry in the ESD.

• The position pointers of every RLD record must point to an
SD or PC entry in the ESD.

• No LD or LR may have the same name as an SD or CM.

• The loader accepts TXT records that are out of order within
a control section. TXT records are accepted even though
they may overwrite previous text in the same control
section. The loader does not eliminate any RLD records that
correspond to overwritten text.

• During a single execution of the loader, if two or more
control sections having the same name are read in, the first
control section is accepted. The subsequent control
sections are deleted.

• The loader interprets common (CM) ESD items (blank or with
the same name) as references to a single control section
whose length is the maximum length specified in the CM items
of that name (or blank length). No text may be contained in
a common control section.

• (Applicable only to Assembler language programming.) When
control sections that were or are part of a separately
assembled module are to be replaced, A-type address
constants that refer to a deleted symbol will be incorrectly
resolved unless the entry name is in the same position
relative to the origin of the replaced control section. If
all control sections of a separately assembled module are
replaced, no restrictions apply.

• The MOD record must physically precede all ESD records for
an internal object module and logically replace all text
records. If a MOD record appears as the first record of an
internal object module, all succeeding text records are
ignored until an END statement has been processed. A MOD
record is ignored if it appears outside an internal object
module, if it appears after other records have been
encountered for a module, or if its byte count is zero.

Figure 46 on page 105 through Figure 58 on page 116 show input
record formats.

104 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

13-72 73-80

Not used

TESTRAN doto

Number of bytes of TESTRAN doto

12-9-2 (0000 0010)

Figure 46. SYM Input Record (Card Image)--Ignored by the Loader

© Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. lOS

Restricted Materials of' IBM
Licensed Materials -Property of IBM'

ESO Input Record (Cord Image)

5-10

Blank

ESO

12-9-2 (0000 0010)

ESO Oato Item

1-8

17-72

~ -- see below

Blank if oil ESO items are LO

ESO IDENTIFIER of first ESO item (other than LO)

Blank

Number of bytes of ESO data

Zero - if length is on END card.

Length of control section (if type is: SO, PC, CM)

Identifier of SO entry for LO or LR

Blank if type is ER, WX, or 06 for 'never-call' from PL/I compiler

Length of pseudo-register {PRJ

Alignment Factor (PA) I 07 - doubleword alignment
03 - word alignment
01 - hallword alignment
00 - byte alignment

AMOOElAMOOElASECT data (SO. PC)

XXXX ..
A .

. A

...... A A

not used
ASECT inlormation (ignored)
AMOOEdata

0=24
1 =ANY

AMOOEdata

00.01 =24
10=31
11 = ANY

Blank (CO. EA. CM, NULL. WX)

24·bit a~~es~ (SO. PC. LO)

Type - He. (DO SO, 01 . LO, 02, ER, 04' PC, 05, CM, 06 PR, 07 ~ NULL, OA ~ WX)

Name-- when type is: SO, LO, LR, ER, CM, PR, WX

Blank -- when type is: PC or blonk CM.

Figure 47. ESD Input Record (Card Image)

73-80

Not used

106 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed M~terials - property of IBM

Text Input Record (Card Image)

17-72

Not used

Text data (machine.language codel

ESO Identifier of SO for control section of this text

Blank

~ of bytes of text dato

Blank

24·bit address of first byte of text data

12-9-2 (00000010)

Figure 48. Text Input Record (Card Image)

© Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. 107

Restricted Materials of IBM
Licensed Materials - Property of IBM

17-72 73-80

Not used

RLO dolo - see below

Number of bytes of RLO doto

RLD

12-9-2 (0000 0010)

Assigned address of oddress constant

~ field -- (TTTTLLSTn)
TTTT = type
0000 = non-branch
0001 = bronch
0010 = pseudo register displacement volue
0011 = pseudo regi,ter cumulative length

LL = length of address constont
01 = 2 bytes
10 = 3 bytes
11 = 4 bytes

S = Direction of relocation
o = positi ve (+)
I ~ negative (-)

Tn = type of next RLD item
o = next RLD item has a different R or P

pointer; they are present in the next item.
= next RLD item has the same Rand P pointers,

hence they are ami tied

Position pointer (P) - ESOIO of SO for control section thot contains the address constant

Relocation pointer (R) - ESDID of CESD entry for the symbal being referred to. Zero (00) if type = PR cumulative le"gth

Figure 49. RlD Input Record (Card Image)

108 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

END Input Record - Type 1 (Card Image)

9-14 17-28 33-80

IDA data, ignored by the Loader

Control section length for control section whose length
was not specified in SO ESO item, Byte 29 is binary
zero rather than a blank if length is present.

~ 01 ~ lor this control section that contains the entry point address specilied in byles 6 - B.

24-bit address of entry point (optional)

12-9-2 (0000 0010)

Figure 50. END Input Record--Type 1 (Card Image)

END Input Record - Type 2 (Card Image)

5-16 33-80

lOR data, ignored by the Loader

Control section lengl!! lor control section whose length
was not specified ,n SO ESO ilem. Byle 29 is binary
zero rather than a blank if length is present.

Symbolic entry point name (optionai;

12-9- 2 (0000 0010)

Figure 51. END Input Record--Type 2 (Card Image)

@ Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. 109

Restricted Materials of IBM
Licensed Materials -property of IBM

~-L~~-r __ ~~ __ 4-_2_4_3 __ ~~~ ______________________________ ~

SYM doto ond ESO doto (ESC type SO, CM ond PC item.) - (moximum of 240 byte.)

Count - in byte., of S YM ond ESO doto (2 byte.)

Subtype - specifies informotion for TESTRAN - (1 byte)
--- 10000000 - this SYM record contoin. ESC item. (SO, PC or CM) from

o load module thot woo not "under te.t". The te.t
option woo not 'pecified when it woo link edited.

00000000 - this SYM record i. not the obove type.

Identificotion - specifies this i. 0 SYM record -- 01 00 0000 (1 byte)

Figure 52. SYM Record (load Modu1e)--Ignored by the loader

110 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restr·icted Materials of IBM
Licensed Materials - Property of IBM

CESO Record - (load IvIodule)

up to 240 bytes of ESO dota 8-247 I
~~--~~~~--------------~-------------------~

~ - for detailed information see below.

Count - in bytes, of ESO doto (2 bytes)

~ of fint ESO item (2 bytes)

Spore - 2 bytes of binary zeros

Flag (1 byte)
OXXX XXXX - byle 12 01 CESD data Items contains

segmenl numbe,s
1 XXX XXXX - byte 12 of CESD data items contains

AMODEIRMODE data

Identification -- 00100000 -- (l byte)

CESO Data (Load IvIodule)

1-8

10/length - length (3 bytes), when type is: SO, PC, CM or PR
--- 10 (2 bytes), when type is LR

Lero (3 bytes), when type is ER, WX, 0, Null

Alignment factor (PA) I 07 - doubleword
03- fullword
01 - halfword
OO-byte

Zero (EA. WX. Null)
If flag byte (byte 1) indicates CESD data items contain

segment numbers - segment number (SO. PC. CM. LA)
If flag byte (byte I) indicates CESD data items contain AMODEIAMODE data-

X X X X . • not used
A . ASECT information (ignored)

. A .. AMODE data
0=24
I=ANY

. A A AMODE data
00.01 = 24

10=31
11=ANY

(SD,PC)

AddreS$ - linkageeditor-assigned address of this symbol. Lero when type is ER, WX, or Null (3 bytes).

Ty~ - (l byte) Section definition (SO) XXXXXOOO
XXXXXOll
XXXXX100

Lobel refe,ence (LR)
Privote code (PC)
Private code marked delete
(ENT AB and SEG TAB control sections)
Common (CM)
Null
External reference (ER)
Weak external reference i\'VXl
Pseudo '''9isler (PR)

XXX1Xl00
XXXXXIOI
XXXXXlll
XXXXX010
XXXXlOl0
XXXXXll0 X's may be I or 0

Symbol - The a·character external name - Zero when type is Null.
--- Blanks if blank common or PCs other than SEGTABs and ENTABs

Figure 53 . CESD Record (Load Module)

. © Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. III

Restricted Materials Qf IBM
Licensed Mater.ials - property of. IBM

4-1023)

~rT~~--------------~(~------------------~
Up to and including 1020 bytes

Dota - may contoin translation table, translation table ond scoller table, or scatter table only

Count - in bytes, of data field

Zero - one byte of binary zeros

Identification - identifies this as a scalier-translation record - bit configuration is: 0001 0000

T ranslation Table

Padding (2 bytes) - if necessary, to force fullword boundary alignment of scatter table.

Pointer (2 bytes) - to the scalier table entry that contains the address of the control section
contoining this CESO entry.
Number of translation table entries = number of CESO entries + I •
Pointer will be zero if its corresponding CESO entry is not SO, PC, CM, or LR.

Zero- 2 bytes of binary zeros

Scalier Table

Assigned address (3 bytes) - of a control section (SO. PC or eM)

Flags (1 byte)
X X X X X

R

. R

....... H

Zero - 4 bytes of bi nary zeros

Translation data

not used
RSECT information

o = not read·only
1 = read·only

RMOOEdata
0=24
1 =ANY

Hierarchy (OS/MVT)
0= processor storage
1 =2361 storage

} I

Podding (2 bytes) if necessary to align scatter table to a fullword boundary.

Figure 54. Scatter/Translation Record--Ignored by the Loader

S
n

112 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

Control Record - (Load Module)

Length of text record and/or length of control section - specifies the length of
the control section (in bytes) to which the text in the following
record belongs, or the number of bytes of a contra I section contained
in the following text record (2 bytes)

CESD entry number - specifies the composite external symbol dictionary entry that
contains the control section nome of the control section of which this text is a
part (2 bytes)

Channel Command Word (CCW) - that could be used to read the text record that fallows. The data address field
contains the linkage editor assigned address of the first byte of text in the text record that follows. The
count field contains the length of the succeeding text record.

~ - contains 2 bytes 01 binary zeros.

Count - in byres, of the contral information (CESD 10, length of control section) following the CCW field.

~ - (1 byte) of RLD and lor CTL/RLO records following next text record.

Spare - contains 2 bytes of binary zeros.

Identification - specifies that this is:

Figure 55.

• A contral record - 00000001

• The control record thot precedes the last text record of this overlay segment - 0000 0101 (EOS)

• The contra I record that precedes the last text record of the module - 0000 1101 (EOM)
(1 byte)

Control Record (load Module)

© Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. 113

Restricted Materials of IBM
Licensed Materials - Property of IBM

Relocation Dictionary Record - (Load Module!

8-15 16-255 Record length can be between 24 and 256

RLD data -- spe below

Spore - contains S bytes of binary zeros

Count - in bytes of the relocation dictionary information following the spore 8 byte field (2 bytesl

Count - contains two bytes of binary zeros

Spore - contains three bytes of binary zeros

Identification - specifies that this is: (l byte)
• A relocation dictionary record - 00000010
• The last record of this segment - 00000110
• The last record of the module - 0000 1110

Address - linkage editor
assigned address of
the oddr~s5 constant
(3 bytes)

Flag - (1 byte! When byte format is xxxxLLST,
specifies miscellaneous information as follows:
xxxx specifies the type of this RLD i~em (address conSlant:.
0000 -- non-branch type in assembler language, DC A (nome)
0001 -- branch type in assembler language, DC V (nol1'e)
0010 -- pseudo register displacement value
0011 -- pseudo register cumulative displacement value
1000 and 1001 -- this address constant is not to be relocated because it refers to on unresolved symbol.
LL specifies the length of the address constant.
01 -- two byte.
10 -- three bytes
II -- four bytes
S specifies the direction of relocation.
0-- positive
I -- negat ive
T specifi .. the type of the next following RLD item.
0-- the following RLD item hos a different relocotion and/ or posi tion pointer.
1 -- the following RLD item has th~ same relocation and position pointers as this and therefore contoins

only the flag and address fields.

Position pointer - contains the entry number of the CESD entry that indicates
which control ,ection hold, the oddr.ss constant (2 bytes).

Relocation pointer - contains the entry number of the CESD entry that indicates which symbol value
is to be used if' the computation of the address constant's value {2 bytes,I,
o if PR cumulative lenglh or jf ENTAB CSECT.

Figure 56. Relocation Dictionary Record (load Module)

114 MVS/XA loader logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

Control and Relocation Dictionary Record - (Load Module)

- Address (3 byte,)

- Flog (1 byte)

Position pointer (2 byte,)

- Relocation pointer (2 bytes)

'-- Channel Command Word (8 bytes)

~ Count, in bytes, of RLD information (2 byles)

'-- Count, in bytes, of control information following the last RLD address field •
• The control information contains the 10 and length of control ,eel ion, in the

following text record (2 bytes).

- ~ (1 byte) of RLD andlor CTLIRLD records following next text record.

'--- Spare (2 bytes)

'--IdentificatIon (1 byte) - 'pecifie, that thIs record IS.

o A control and RLD record - 00000011 - (it i, followed by a text record)
o A control and RLD record that is followed by the la,t text record of a ,egment - 00000111 (EOS)
• A control and RLD record that i, followed by the la,t text record of a module - 0000 1111 (EOM)

Note: For detailed descriptions of the data fields see Relocation Dictionary Record, and Control Record.

The record length varies from 20 to 256 bytes.

Figure 57. Control and Relocation Dictionary Record (Load Module)

'Length of
control
section or
text record
(2 byte,)

'CESD entry number
(2 byte,)

© Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. 115

CSECT Identification Record - (Load N'odule)

Restricted Materials of IBM
Licensed Materials - property of IBM

I 0 I I 2 I 3-255 ./) record length 7 to 256 bytes
'--r-'-T--'--r-....l...---~-----.J <---L _____ -----I

'---.... lOR data - (maximum of 253 bytes)

~ Sub-Type Indicator - (I byte) - specified type of
lOR data centained on this record (bits 1-3 reserved)

Data supplied by IMASPZAP
Linkage Edit,?r data
Translator-supplied data
User (System)-suppl ied data

(from IDENTIFY function)

XXXXOOOI
XXXXool0
XXXX0100

XXXXl000
Indicates the last lOR of this load module lXXXXXXX X's may be lor 0

Count, in byte., of lOR data in this record, including this field (value range 6to 255),

'-------I~ Identification - indicate. that this is a CSECT Identification record -- 1000 0000.

Figure 58. Record Format of IDRs (Load Module)--Ignored by the Loader

COMPILER/LOADER INTERFACE FOR PASSED DATA S~

If the loader is to process an internal SYSLIN data area (that
is. a data area residing in virtual storage and consisting of
contiguous object module records prepared by a compiler) and/or
an open SYSLIB data set. use the compiler/loader interface
described here. The description includes the format of the DCB
list. the control block or DCB parameters that must be specified
for the data area or data set. the format of an internal data
area consisting of either fixed- or variable-length records. and
the format of the MOD record.

116 MVS/XA Loader Logic © Copyright IBM Corp. 1972. 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

DCB List

Pointed to by the fourth entry in the parameter I ist passed to the Loader

0-1 2-3 4-7 8-11 12-15 16-19

L SYSlIB DCB - may
contain the address
of an open SYSlIB DeB
(4 bytes).

""- Zero - 4 bytes of binary zeros •

..... Zero - 4 bytes of binary zeros.

"- SYSlIN control block - may contain the address of a
SYSlIN control block which describes an internal
data area prepared by a compiler (4 bytes).

"- Zero - 2 bytes of binary zeros.

"- Number of entries following (2 bytes).

Figure 59. DCB List

Internal SVSLIN Control Block

The SYSLIN control block 23 used to describe an internal input
data area should have the following fields initialized:

DCBDEVT = 0, to describe an internal data area and to indicate
that an internal SYSLIN control block was passed.

DCBRELAD = starting address of the internal object module
records.

DCBBLKSI = length of the entire internal data area.

DCBRECFM = FB, if the internal object module records are in
fixed-length format.

VB, if the internal object module records are in
variable-length format.

DCBLRECL = length of a logical record if the data set records
are in fixed-length format.

23 The control block has the format and content of a SYSLIN
data control block, but is not to be considered a data
control block because there is no data management activity
in connection with this control block.

© Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. 117

Open SVSLIB DeB

Restricted Materials of IBM
Licensed Materials - Property of IBM

The open SYSLIB DCB passed to the loader should have the
following DCB fields initialized:

DCBDSORG = PO

DCBMACRF = R

DCBNCP = 2

DCBRECFM = U, if the SYSLIB data set contains load modules.

F or FB, if the SYSLIB data set contains object
modules. (In this case. values for the fields
DCBLRECL and DCBBLKSI should also be specified.)

DCBBUFNO = 0

Exit routine addresses may be specified. Before reading SYSLIB,
the loader overlays these addresses with the addresses of its
own routines. The loader also restores these addresses before
returning to the caller.

If an open SYSLIB DCB is passed to the loader, SYSLIB is not
closed by the loader.

(Logical record length = 72)

1-72

"'--- First record
of data area
(This record
should begin
on a fullword
boundary. Its address
should appear
in the passed
SYSLIN control block
field DCBRELAD.)

•

. . . · . · . _-----------w
73-144 n-n+71

· · · · · ... '---r---------..,.j • ~ Nth record

"'- Second record of data area

of data area

Figure 60. Internal Data Area in Fixed-Length Record Format

118 MVS/XA loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

No, of
bytes

Block
Descriptor
Word

Descriptor
Word

II

Descriptor
Word

L2

Descriptor
Word

Ln

~------~Jr--L-y-~-,~----------~~--L-r--L-,------------J ••••••• L-r-~-' __ ~-r __________ ~

Figure 61.

First record
of data area

Binary zeros

Length (Ll) of first
record of data area
plus descriptor
word (This field
must fallon a
fullword boundary.)

Second record
of data area

Binary zeros

Length (L2) of second
record of doto area
pi us descri ptor
word (This field
must fall on the
fullword boundary
following the end
of the previous
record.)

nth record
of data area

Binary zeros

Length (Ln) of nth record
of data oreo plus
descriptor word (This
field must fall on the
fullword boundary
following the end of
the previous record.)

Internal Data Area in Variable-Length Record Format

5-10 111-12\ 13-16 \ 17-20 1 21-24 1 25-28 \ 29-32 \ 33-80

LNot used.

L- *Number of bytes of text
(optional) (4 bytes) ,

L...*Address of text extent (optional)
(4 bytes),

L- Address of byte following the estimated
or actual end of text for the last
control section in the module (4 bytes),

Main storage address of the first byte of text
..... for the first control section in the module,

This address should be on a doubleword boundary,
(The Loader assumes that each succeeding control
section within the module begins on the next
available doubleword boundary.) (4 bytes)

~Blank (4 bytes) •

.... Number of bytes of data to be processed in columns 17-32
(number = 8 or 16) (2 bytes),

.... Blank (6 bytes),
'- MOD (3 bytes) ,

'-12-9-2 00000010 1 byte),

*Note: These two fields define storage that is to be identified as part of the loaded program, They
are optional, but must occur on at least one of the MOD records in the internal data area if the
Loader is invoked via the entry paints LOADER, HEWLDRGO, or HEWLOAD, Each occurrence of
these two fields defines a new extent of the program. The values must conform to the rules for
FREEMAIN parameters, that is, the address must begin on a doubleword boundary and the length
must be a multiple of 8,

Figure 62. MOD Record (Card Image)

j

© Copyright IBM Corp, 1972, 1987 Appendix. Error Messages, Etc. 119

Restricted Materials of IBM
Licensed Materials - property of IBM

IDENTIEY MACRO INSTRUCTION--IDENTIFYING LOADED pROGRAM

The IDENTIFY macro instruction, when invoked as described below,
permits the loader to describe a program constructed in subpool
zero (0) so that the program may later be invoked by a macro
instruction such as LINK, XCTL, or ATTACH. The IDENTIFY macro
instruction creates a contents directory entry (CDE) and an
extent list for the program constructed. These system control
blocks allow the supervisor to identify the program.

The addresses and lengths of the program's extents, the entry
point address, and the program name must be passed to the
IDENTIFY macro instruction. (The format of the parameter list
passed by the loader to the IDENTIFY macro instruction is shown
in Figure 35 on page 90.) The IDENTIFY macro instruction flags
the CDE that it creates to indicate that the program can be
invoked by other macro instructions as well as by the LOAD macro
instruction. Residence of the program in subpool zero (0) and
the absence of the program as a load module on an external
device are also indicated in the CDE. The IDENTIFY macro
instruction places the CDE on the user's job pack area control
queue. It also derives the extent list from the parameter list
passed to it, and stores the extent list within the system queue
area.

When the form of the IDENTIFY macro instruction described below
is specified, all other operands are ignored. The format is:

Name Operation operand

[symbol] IDENTIFY MF=(E,address of parameter list (1»

where:

ME=
indicates the execute form of the macro instruction using a
remote parameter list. (The format of the parameter list
passed by the loader is shown in Figure 35 on page 90.)
The address of the parameter list can be loaded into
register one (1), in which case MF=(E,CI» should be coded.
If the address is not loaded into register one (I), it can
be coded as an address that is valid in an RX-type
instruction, or as one of the registers two (2) through 12
that were previously loaded with the address. A register
can be designated symbolically or with an absolute
expression, and is always coded within parentheses.

Programming Notes: Failure to meet any of the following
requirements will cause an exit with a return code to indicate
the reason for unsuccessful completion. The requirements are:

1. The extent list size must be a positive multiple of eight
(8).

2. The addresses in the parameter list must be in subpool zero
CO)'

3. The program name should not duplicate a name already on
either the link pack area control queue, or the user's job
pack area control queue.

4. The entry point must lie within one of the extents.

5. The caller must be a nonsupervisory routine.

6. The extents must be found in the user's region in subpool
zero (0), and they must begin on doubleword boundaries.

120 MVS/XA Loader Logic © Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - property of IBM

When the IDENTIFY macro instruction returns control, register 15
contains one of the following hexadecimal codes:

Code

00

04

08

OC

14

18

1C

20

Meaning

Successful completion.

Program name and address already exist.

Program name duplicates the name of a load module
currently in virtual storage; CDE was not created.

Entry point address is not within an eligible program;
CDE was not created.

An IDENTIFY macro instruction was previously issued
using the same program name, but with a different
address; this request was ignored.

Parameter list address is not on a doubleword
boundary, or the program name specified is already on
the link pack area control queue or the user's job
pack area control queue; CDE was not created.

Extent list length is negative, not a multiple of
eight (8), or the extent addresses are not on
doubleword boundaries; CDE was not created.

Extents are not in subpool zero (0); CDE was not
created.

© Copyright IBM Corp. 1972, 1987 Appendix. Error Messages, Etc. 121

LIST OF TERMS AND ABBREVIATIONS

adcon

CESD

CSECT

DECB

DSECT

EOM

ESD ID

K

LD

LR

P pointer

PC

PR

R pointer

RLD

SD

TTR

WX

122 MVS/XA Loader Logic

Restricted Materials of IBM
Licensed Materials - Property of IBM

address constant

composite external symbol dictionary

control section

data event control block

dummy section

end of module

external symbol dictionary identification

1024

label definition

label reference

position pointer

private code

pseudo register

relocation pointer

relocation dictionary

section definition

relative track and record address on a
direct-access device

weak external reference

© Copyright IBM Corp. 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

.l.W!E.X

A-type address constant, purpose of 42
abbreviations and acronyms, dictionary

of 122
address assignment

for common areas 48
for external DSECTs 49
in nonresolution 27-32
in resolution 32-36

address constants, relocation of
description of 43
introduction to 6

address list for BlDl information
purpose of 47-48
routine that builds the lists 83

allocation
of buffers and DECBs 17-18
of save areas 15
of table entries 26-29

automatic
deletion (for CESD type SD) 35-36
library calls 46

BlDl list
format of 83
purpose of 47-48

BlDl macro instruction, issuance of 47
boundary alignment (for PR entries)

description of 49
introduction to 37

buffer, allocation of 17-18

CAll NOCAll NCAl option 9
CESD entry 26, 32

See also composite external symbol
dictionary entry

common (CM) area
address assignment of 48
definition of 24
processing a CM entry 31

common reference 23
communication area (HEWlDCOM)

format of 91
initialization of 15

composite external symbol dictionary
entry

definition of 22
internal format 87
making an entry 27
processing of 24-37
record format of III

concatenated data sets (on SYSlIN) 4,
16

condensed symbol table
creation of 51

© Copyright IBM Corp. 1972, 1987

format of 87
purpose of 13

control
and relocation dictionary record

format 115
dictionaries 6
information processing 14
record

description 22
format 113
processing 39

control level tables (routines) 72-76
CR

See common reference
CSECT Identification Record

record format 116
treatment of 23

data area layouts
address list for BlDl information 83
communication area (HEWlDCOM) 91
default and ddname CSECT

(HEWlDDEF) 94
INITMAIN work area 95

data control block (DCB) for SYSlIN.
SYSTERM, and SYSlOUT data sets,
construction of 15

data control block (DCB), alternate for
SYSLIB 14, 118

data event control block (DECB), format
of 88

DCB list, format of 117
default and ddname CSECT (HEWlDDEF) 94
deleting CSECTs

in ESD processing 36-39
in load module input 39, 40

delinking 44-45
diagnostic

aids 98
register contents at entry to
routines 98

dictionary print routine (HEWBTMAP)
messages 102-103

diagrams, operation 54-70
directory, microfiche 80-82
dummy DSECT, external

END

See external dummy section

processing 45-46
record formats 108

entry point determination
checking of 51
default for preloaded text 39
in ESD processing 30

EOM
See END

EP=(keyword) 9

Index 123

ER
See external reference

error

ESD

diagnostic dictionary processing
routine (HEWBTMAP)

messages 102-103
internal code definitions 100
message-issuer cross reference
table 102-103

See external symbol dictionary
ESD ID

definition of 7
in END processing
in ESD processing
in RLD processing
in text processing

extent

45
32
42-43

38-39

chain entry format 89
processing 39

external dummy section (pseudo register)
address assignment 49
definition of 7
entry processing

displacement and boundary
alignment 37

PR entry 32
symbol resolution in 37

function of 24
external reference (ER)

definition of 24
entry processing

match processing 35, 36
no-match processing 32

function of 24
unresolved ER messages 49
unresolved ER processing 46

external symbol dictionary (ESD)
definition of 7
entry types 24
identifier

See ESD ID
processing

description of 22-37
introduction to 12
operation diagrams for 62-64

record format 105
EXTRACT macro instruction, issuance
of 14

final processing
description of 48
overview 13

functions of the loader 1

general register contents 98-99

124 MVS/XA loader logic

Restricted Materials of IBM
Licensed Materials - Property of IBM

HEWlDCOM (communication area)
format of 91-94
initialization of 15

HEWLDDEF
data area layout 94
definition 4, 14

HEWL LIBR 4, 71
HEWLOAD, entry point for loading with
identification 51

I/O control-allocation, description
of 16

ID-length list 39
identification of loaded program

See also program name
processing 49
purpose of 13
saving extent information for 39

IDENTIFY macro instruction
issuance of 13, 51
parameter list

creation of 51
format of 90

record format 116
treatment of 39

initialization processing
description of 13-16
operation diagram of 58

INITMAIN work area, format of 9S
input

conventions 103
entry types 26

description of 22
introduction to 16

primary data set 4
record formats 104-116
secondary data set 4
secondary input processing

description of 47
internal input data area

See also passed data sets
concatenation restriction 5
defi ni ti on of 4
format

fixed-length records 118
variable-length records 119

processing 11, 14-16
reading of 19
SYSLIN control block for 14, 117

internal object module
See internal input data area

label
definition (LD) or reference (LR) 23
LD and LR processing

description of 31
introduction to 25
reference 23
when CESD type is CM 36-37
when CESD type is SD 35

© Copyright IBM Corp, 1972, 1987

Restricted Materials of IBM
Licensed Materials - Property of IBM

language translators 4
LD

See label definition
LET NOLET option 9
library calls 46, 48

See also automatic library call
processor and secondary input
processin

load module
processing

description of (see also reading
load module text) 22

operation diagram of 67
RLD buffer, use of 20

load module processing
description of 19

See also reading load module text
Loader

data sets 4
options 8
organization 71
structure 4

MAP option, processing of 26
MAP NOMAP option 9
map, module, format example of 101
match processing 34-37
microfiche directory 80-82
MOD record

contents of 22
input convention 104
processing 39
record format 119

NAME=(keyword)
See program name

no-match processing
description of 26-38
tabulation of 26

null type of ESD entry 24

object and load module processing,
differences 21

object module
allocation for 19
control dictionaries in 6

operation diagrams 54-70
options 8

© Copyright IBM Corp. 1972, 1987

passed data sets, compiler/loader
interface 116-119

PC
See private code

pointers, RLD (relocation dictionary
processing), use of 42-43

PR
See pseudo register

preloaded text
See MOD record

PRINT NOPRINT option 9
private code (PC) 23
processing control module

See initialization, I/O, control and
allocation processor

program name
passing to control program 14
specifying 9

pseudo register (PR)
address assignment 49
definition of 7
entry processing

djsplacement and boundary
alignment 37

symbol resolution in 37
function of 24

Q-type address constant
purpose of 43
use of in pseudo register
relocation 49

reading
load module text 40
module input 18-19

readying data sets 15-16
register contents at entry to
routines 98-99

aids
register contents at entry to
routines 99

relative relocation constant
definition of 43
use of 44

relocating address constants 44
relocation constant, computing 31
relocation dictionary (RLD)

entries, use of 22
introduction to 7
processing

details of 41-42
introduction to 12
operation diagram 69

processor (HEWLRLD)
for load module 114, lIS
input record 108

table entry format 96
RES NORES option 9
resolution, symbol 34-37
RLD

Index 125

See relocation dictionary
RLD pointers, meaning of 7

scatter/translation record, format
of 112

SD
See section definition

secondary input processing
description of 48

section definition (SD)
introduction to 23
processing an SD entry 30-31
symbol resolution for SD entry 35

serviceability aids 101
SIZE=(keyword) 9
storage allocation

for buffers and DECBs 17-18
for CESD entries 27
for save areas used during

loading 15
SYM record

format of input record 104
format of record in load module 110
treatment of 22

symbol resolution 34-37
SYSLIB data set

alternate DCB for 14, 118
characteristics of 4
opening 47
passing an open data set 14, 47
resolving ERs from 47

SYSLIN control block
See also passed data sets
format 117
processing 14
use in reading internal input 19

SYSLIN data set
See also internal input data area and

passed data sets
definition of 4
initialization and input control
of 14-16

126 MVS/XA Loader Logic

Restricted Materials of IBM
Licensed Materials - Property of IBM

SYSLOUT data set
initialization of 15
purpose of 4

SYSTERM data set
initialization of 15
purpose of 4

tables
construction and usage 83
used in the CESD search 26

TERM" NOTERM option 9
text

input record format 107
loading 39-40
processing 21
record processing 39-40

text processing (operation diagram)
translation

of IDs in ID/length list 39
translation control table, format of 96
translation table

format of 96
making an entry in 32
relation to translation control
table 32

v-type address constant, purpose of 43
virtual storage allocation 27-29

weak external reference (WX)
definition of 24
processing 27

© Copyright IBM Corp. 1972, 1987

ig
'" 0 Eo. .. 0; :E
cr'" "'-=al c ..
0;: 0
o '" .. 0.
:: CD
III'"
E"tI
alE
:qi
E= g;
::I~
III ...
~o
.t: L.

3: 0 .. ~ E .;:
",.-- '" .oc
0'"
0.",
'" ::I
::I ..

~ f
co.
III '" U ..
.. ::I

'" '" a.;
III '" ... -
(l)Q.

'" o z

Restricted Materials of IBM
Licensed Materials- ·Property of IBM
(Except for Customer-Originated Materials)
©Copyright IBM Corp. 1972, 1987
LY26-3901-1

MVS!XA Loader Logic

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for system analysts, programmers, and operators of IBM
systems. You may use this form to communicate your comments about this publication, its orgenization, or subject matter,
with the understanding that IBM may use or distribute whatever information you supply in any way it believes appropriate
without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action. if any, are deemed appropriate.

Note: Do not use this form to request IBM publications. If you do, your order will be delayed because publications are not
stocked at the address printed on the reverse side. Instead, you should direct any requests for copies of publications, or for
assistance In using your IBM system, to your IBM representative or to the IBM branch office serving your locality.

If you have applied any technical newsletters (TN LsI to this book, please list them here: ____________ _

Chapter/Section _______________________________________ _

Page No. ____________ _

Comments:

If you want a reply. please complete the following information.
Name ____________________________________ __

Phone No. (--1----------
Company __ _

Address

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office or repre·
sentative will be happy to forward your comments or you may mail directly to the address In the Edition Notice on the
back of the title page.)

LY26-3901-1

Reader's Comment Form

FOld and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK. N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

111111

Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

.,..,. ,. .. ,. ,. ,. ,. ,. ,.,. .. " ... ,. " .. ,.,. ... " "".,..,.,..

Fold and tape Please do not staple Fold and tape

-~------- -------- -. ---- - - -------------. -
~

--------- - ---- ---- - ---- - - ----------_.-
I<

MVS/Extended Architecture
Loader Logic

Restricted Materials of IBM
Licensed Materials-Property of IBM
(Copyright IBM Corp. 1972, 1987
File Number S370-31

LY26-3981-81

	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	replyA
	replyB
	xBack

