

--.------- ----
:i:~:S'i:

Contains Restricted Materials of IBM
Licensed Materials-Property of IBM

MVS/Extended Architecture
SAM Logic

Data Facility Product 5665-XA2
Version 2 Release 1.0

LY26-3967-0

© CopyrighllBM Corp. 1977. 1985

First Edition (April 1985)

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

This edition applies to Version 2 Release 1.0 of MVS/Extended
Architecture Data Facility Product, Program Product 5665-XA2,
and to any subsequent releases until otherwise indicated in new
editions or technical newsletters.

The changes for Version 2 support are summarized under "Summary
of Amendments" following the preface. Specific changes are
indicated by a vertical bar to the lef.t of the change. These
bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance
are not noted.

Changes are made periodically to this pUblication; before using
this publication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibliography, GC20-0001, for the editions that are applicable
and current.

References in this publication to IBM products, programs, or
services do not imply that IBM intends to make these available
in all countries in which IBM operates. Any reference to an IBM
program product in this publication is not intended to state or
imply that only IBM's program product may be used. Any
functionally equivalent program may be used instead.

Publications are not stocked at the address given below;
requests for IBM publications should be made to your IBM
representative or to the IBM branch office serving your
locali ty.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, U.S.A. 95150. IBM may use or
distribute whatever information you supply in any way it
believes appropriate without incurring any obligation to you.

This is a licensed document that contains restricted materials
of International Business Machines Corporation. ~ Copyright
International Business Machines Corporation 1977, 1982, 1984,
1985. All rights reserved.

J

contains Restricted Materials of IBM
Licensed Materials -- property of IBH

PPEFACE

ORGANIZATION

This manual is intended for programming-support customer
engineers and programmers who require specific information about
queued sequential access method (QSAM), basic sequential access
method (BSAM), and basic partitioned access method (BPAM)
routines.

This manual has the following parts:

wIntroductionW describes the sequential access method (SAM)
routines and includes a reference to Diagram A, WSequential
Access Method--Overview. w This diagram lists the macro
statements used with SAM programming techniques and directs the
reader to appropriate diagrams and figures in other parts of the
manual.

In WMethod of Operation,w SAM routines are described in the
following categoriesl

• Queued sequential access method (QSAM) routines that cause
storage and retrieval of data records arranged in sequential
order.

• Basic sequential access method (BSAM) routines that cause
storage and retrieval of data blocks arranged in sequential
order.

• Basic partitioned access method (BPAM) routines that cause
storage and retrieval of data blocks in a member of a
partitioned data set. They can also construct entries and
search for entries in the directory of a partitioned data
set.

• Executors that operate with input/output support routines.

• Buffer-pool management routines that furnish buffer space in
virtual storage.

• Problem determination that helps the user determine the
causes of abends by providing more information on the reason
for the termination.

• SVC routines that provide supervisor state operation for
functions that cannot be done in the problem state or in the
user's key.

• Task recovery routines that provide explicit validity
checking for SVC routines that experience program checks or
other abend conditions.

WProgram Organization and Flow of Control" contains diagrams
that describe the organization and flow of control of the SAM
routines.

WDirectoryw lists the names of the sequential access method
modules in alphabetic order. Each entry contains the module
name, type, CSECT name, SVC entry (if any), and references to
figures and appendixes in other parts of the manual that have
information about the module.

wData AreasW shows how various control blocks are used in QSAM
and BSAM. This section also describes the access method save
area for user totaling and the job entry subsystem (JES)
compatibility interface control block. WData Areasw does not
describe in detail all fields of the system control blocks
referred to in this manual. For more detailed information about

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Preface iii

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

system control blocks, see MVS/Extended Architecture Data
Areas-JES2, LYB8-1191, and MVS/Extended Architecture Data
Areas-JES3. LYB8-1195.

"Diagnostic Aids" contains diagrams of control blocks and an
abend codes cross-reference table.

"Appendixes" describe channel programs for direct-access
storage, and BDAM create channel programs.

PREREQUISITE KNOWLEDGE

PREREQUISITE READING

RELATED PUBLICATIONS

To use this book efficiently, you should be familiar with the
following topics:

• Basic concepts of data management

• Processing sequential and partitioned data sets

The above topics are discussed in MVS/Extended Architecture Data
Administration Guide, GC26-4140.

Within the text, references are made to the publications listed
in the table below:

Short Title Publication Title Order Number

ACF/TCAM Advanced Communications SC30-3137
Diagnosis Guide Function for TCAM z Version 2

Diagnosis Guide

ACF/TCAM Advanced Communications LY30-3052
Diagnosis Function for TCAM z Version 2
Reference Diagnosis Reference

Data MVS/Extended Architecture GC26-4141
Administration: Data Administration: Macro
Macro Instruction Reference
Instruction
Reference

Data Areas MVS/Extended Architecture LYB8-1191
Data Areas (MVS/JESZ)

Data Areas MVS/Extended Architecture LYB8-1195
Data Areas (MVS/JES3)

Debugging MVS/Extended Architecture LC28-1164 1

Handbook Debugging Handbook, Volumes LC28-1165
I through 5 LC28-1166

LC28-1167
LC28-1168

IBM 3800 IBM 3800 Printing Subs~stem SH35-0061
Printing Models 3 and 8 Programmer's
Subsystem Guide
Programmer's
Guide

Note:

1 All five volumes may be ordered under one order number,
LBOF-IOI5.

iv MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Short Title

Ini tialization
and Tuning
Guide

JES2 logic

Open/Close/EOV
logic

OS/VS logic for
IBM 3890
Document
Processor

Service Aids

SYSl.lOGREC
Error Recording

System Codes

System-Data
Administration

System Logic
Library

System Messages

VIO Logic

Publication Title

MVS/Extended Architecture
S~stem Programming Librar~1
Initialization and Tuning

MVS/Extended Architecture
JES2 logic

MVS/Extended Architecture
O~en/Close/EOV logic

OS/VS Logic for IBM 3890
Document Processor

MVS/Extended Architecture
S~stem Programming librar~:
Service Aids

MVS/Extended Architecture
S~stem Programming Librar~:
SYSl.LOGREC Error Recording

MVS/Extended Architecture
Message librar~: System
Codes

~VS/Extended Architecture
S~stem Data Administration

MVS/Extended Architecture
S~stem Logic Library,
Volumes 1 through 16

MVS/Extended Architecture
Message Librar~: S~stem
Messages, Volumes 1 and 2

MVS/Extended Architecture
VIO Logic

lY26-3967-0 © Copyright IBM Corp. 1977,1985

Order Number

GC28-1149

lY24-6008

lY26-3966

SY24-5163

GC28-1159

GC28-1162

GC28-1157

GC26-4149

SY28-1208
through
LY28-1266

GC28-1376
and
GC28-1377

LY26-3900

Preface v

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SUMMARY OF AMENDMENTS

RELEASE 1.0. APRIL 1985

NEW DEVICE SUPPORT

NEW PROGRAM SUPPORT

• Module descriptions for IGX00030, IGX00031, and IGX00032
have been added.

• Updates to support the IBM 4248 and 3263 Model 5 Printers
have been made to the Printer Device Characteristics Table
(IGGPDC) and the SETPRT Parameter List (lHASPP) under nData
Areas" on page 210, and the SETPRT Executor Return/Reason
Codes and Messages Table under nDiagnostic Aidsn on
page 242.

A description of the subsystem ClCB has been added to nData
Areas" on page 210.

VERSION 2 PUBLICATIONS

The Preface includes new order numbers for Version 2.

vi MVS/XA SAM Logic LY26-3961-0 @ Copyright IBM Corp. 1911,1985

J

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

CONTENTS

Introduction

Method of Operation ••••••••••
Queued Sequential Access Method Routines

GET Routines
Simple-Buffering GET Routines
Parallel Input Processing Routine
Update Mode GET Routine

PUT Routines
Simple-Buffering PUT Routines
Update Mode PUTX Routines

End-of-Block Routines ...•
Ordinary End-of-Block Routines
Chained Channel-Program Scheduling End-of-Block

Routines (Non-DASD Only)
End-of-Block Routines for Direct-Access Storage

Synchronizing-and-Error-Processing Routines
Appendages

How to Read Compendiums •
Start I/O (SIO) Appendages
EXCPVR Processing Appendages
Appendage IGGOI9BX/IGGOI9BY (SIO/Pagefix)
Channel-End Appendages
Program Controlled Interruption (PCI) Appendage

(Execution of Channel Programs Scheduled by Chaining)
Abnormal-End Appendages

QSAM Control Routines
Basic Sequential Access Method Routines

READ and WRITE Routines
CHECK Routines
BSAM Control Routines

Basic Partitioned Access Method (BPAM) Routines
Dummy Data Set
Sequential Access Method Executors

DCB Relocation to Protected Work Area
OPEN Executors

Stage 1 OPEN Executors
Stage 2 OPEN Executors
Stage 3 OPEN Executors

CLOSE Executors
Force CLOSE Executors

Buffer-Pool Management
Problem Determination
SVC Routines

DEVTYPE Routine
IMGLIB Routine
Track Balance, Track Overflow Erase, DEB/SAMB Update
Routines

BSP Routine
STOW Routines • .
BLDL or FIND Routines
SYNADAF and SYNADRLS Routines .
SETPRT, SETDEV and IMGLIB Routines

Task Recovery Routines

Program
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram
Diagram

Organization and Flow o~ Control ••
AI Sequential Access Methods--Overview
BI QSAM GET and PUT Routines
CI BSAM/BPAM READ/WRITE and CHECK Routines
DI Sequential Access Method OPEN Executors ...
EI Stage I--SAM Flow of Control for OPEN Executors
E: Stage 2--SAM Flow of Control for OPEN Executors
E: Stage 3--SAM Flow of Control for OPEN Executors
F: QSAM Flow of Control
G: BSAM/BPAM Flow of Control
H: QSAM Flow of Control with EOV Routines
II BSAM Flow of Control with EOV Routines

1

3
3
3
4

19
20
25
26
38
38
39

47
54
59
68
69
70
73
77
82

94
94
95
97
98

106
110
116
117
117
118
118
119
128
135
141
146
148
153
154
154
155

155
157
158
161
163
168
180

187
187
188
189
190
191
192
193
194
196
198
199

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Contents vii

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Diagram J: QSAM Operation with FEOV Routine•
Diagram K: OPEN Processing for SAM Subsystem Interface

Executors•.........•
Diagram L: CLOSE Processing for SAM Subsystem Interface

Executors
Diagram M: SAM Subsystem Interface Flow of Control for

SYSIN/SYSOUT Data Sets
Diagram N: Force CLOSE Processing
Diagram 0: SYNADAF Flow of Processing

Directory

Data Areas • • • • • • • • • • • • • • • • • •
lOB Extension (Used With SAM EXCPVR)--IGGIOBEX
Sequential Access Method Block--IGGSAMB
Interrupt Control Queue Element--IGGICQE
Message CSECT--IGGMSG
SETPRT Work Area (SPW)--IGGSPW

WTOR Prefix, Message Section, and Reply Area--in User
Key•

lOB for EXCP Users and OPEN--in User Key
Channel Program Area--in User Key
l-Iork Area for Unpacking Line Numbers--in User Key
General Work Area--in User Key
BLDL Work Area--SPW5
Message Area for the SETPRT Work Area--Key 5 .
3800 Printing Subsystem Area for the SETPRT Work
Area-Key 5

Error Message Communication Area-User-Provided Area
SVRB Extended Save Area--Key 0
3800 Printing Subsystem Translate Table Entry-Key 5
One Entry of an FCB Image for a 3800 Printing

Subsystem •.........
Buffer Pool Control Block-IGGBCB
Subsystem CICB--IGGCICB
Parameter List--IGGPARML
Printer Device Characteristics Table--IGGPDC
SAM OPEN/CLOSE Work Area--IGGSCW
SA~1/PAM/DAM GTRACE Buffer--IGGSPD
STOW Work Area--IGGSTW
SYNADAF General Registers Save Area and Message Buffer

Area-IGGSYN
SETPRT Parameter List--IHASPP
Access Method Save Area for User Totaling

Diagnostic Aids ••••••••••••••••••
OPEN and CLOSE Executor Problem Determination
QSAM Control Blocks
BSAM Control Blocks
JES Compatibility Interface Control Block (CICB)
Abend Codes and Cross-Reference Table ...•
SETPRT Executor Return/Reason Codes and Messages
Debugging EXCPVR Channel Programs

Appendix A. BSAM/QSAM Channel Programs
Channel Program Prolog Segment
Update-WRITE Channel Program S~gment
Update-WRITE Followed by Refill-READ Channel Program

Segment
Output Channel Program Segment (To Write Output Records
That Are Not Track Overflow Records)

Output Channel Program Segment (To Write Track Overflow
Records)

Input Channel Program Segment

Appendix B. BSAM (BDAM Create) Channnel Programs •
Channel Program for Erase CCWs for BSAM Load Mode,

Track Overflow (IGG019lM)
Channel Program for BSAM Load Mode, Track Overflow

CIGGO 191M)
Channel Program for Create BDAM (IGG0199L)
Channel Program for Create BDAM (IGG0199L)
Channel Program for BSAM Load Mode, Track Overflow

(lGG0199M)

200

201

202

203
204
205

206

210
210
211
214
214
215

216
216
217
217
217
217
218

218
220
220
221

221
221
222
224
225
226
227
227

235
237
241

242
242
242
242
245
246
251
260

261
261
262

264

268

272
275

280

280

281
282
283

284

viii MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977.1985

J

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Index

LY26-3967-0 © Copyright IBM Corp. 1977,1985

285

Contents ix

FIGURES

x MVS/XA SAM Logic

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

1. Module Selection--Simple-Buffering GET Modules 6
2. Order of Records Using GET Routines for Data Sets

Opened for RDBACK (IGG019AM, IGG019AN) 13
3. Module Selector--Update-Mode GET Modules 21
4. Module Selector--Simple-Buffering Put Modules 26
5. Module Selecto~Ordinary End-of-Block Modules

(non-DASD) 41
6. lOB SAM Prefixes for Normal and for Chained Scheduling 47
7. Module Selecto~Chained Channel-Program Scheduling,

End-of-Block Modules--Non-DASD. 48
8. Comparison of lOB SAM Prefixes for Normal and for

Chained Scheduling . .. 49
9. Module Selector--DASD End-of-Block Routines 55

10. Track-Overflow Records . 57
11. Module Selector--QSAM

Synchronizing-and-Error-Processing Modules 61
12. Module Selector--Error-Processing Modules 67
13. Module Selecto~Appendages 71
14. Module Selector--Control Modules . 95
15. Control Routines That Are Expansions of Macro

Instructions .. 95
16. Module Selector--READ and I~RITE Modules 98
17. Modules Selector--CHECK Modules 106
18. Module Selector--Control Modules Selected and Loaded

by the Open Executor III
19. Control Routines that Are Expansions of Macro

Instructions III
20. BPAM Routines Residence. 117
21. Sequential Access Method Executors--Control Sequence 117
22. OPEN Executor Selector--Stage 1 120
23. OPEN Executor Selector--Stage 2 129
24. OPEN Executor Selector--Stage 3 136
25. CLOSE Executor Selector 141
26. Buffer-Pool Management Routines 148
27. Buffer-Pool Control Block 149
28. GETPOOL Buffer-Pool Structures 149
29. Build Buffer-Structuring Table 150
30. Build Buffer Pool Structure 150
31. Buffer-Pool Control Block ... 151
32. Record Area Used to Assemble and Segment a Spanned

Record. ... 152
33. SETPRT Executor Selector . 170
34. Access Method Save Area for User Totaling 241
35. QSAM Control Blocks .. 243
36. BSAM Control Blocks . 244
37. Control Block Structure for SYSIN/SYSOUT Data Sets 245
38. Control Blocks Used with EXCPVR Processing 260

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985

Contain~ Restricted Materials of IBM
Licensed Materials -- property of IBM

INTRODUCTION

Sequential access methods (SAM) are programming techniques for
transferring data arranged in sequential order between virtual
storage and an input/output device. This manual describes five
groups of sequential access method routines. They are:

• Queued sequential access method (QSAM) routines

• Basic sequential access method (BSAM) routines

• Basic partitioned access method (BPAM) routines

• Sequential access method executors

• Buffer-pool management routines

A processing program using QSAM routines works with records.
For input, QSAM routines turn the blocks of data of the channel
programs into a stream of input records for the processing
program; for output, QSAM routines collect the successive output
records of the processing program into blocks of data to be
written by channel programs. See Diagram F for information
about the flow of control for QSAM routines.

A processing program using BSAM routines works with blocks of
data. For input, BSAM routines cause a channel program to read
a block of data for the processing program; for output, BSAM
routines cause a channel program to write a block of data for
the processing program. BSAM routines are also used to read and
write blocks of data for members of a partitioned data set. See
Diagram G for flow of control information about BSAM routines.

A processing program that uses BSAM or QSAM to access SYSIN or
SYSOUT data sets invokes a special subset of SAM routines called
SAM-SI (SAM Subsystem Interface). These routines operate as a
compatibility interface to job entry subsystems, such as JES2,
that control these data sets. See Diagram M in "Program
Organization and Flow of Control" for information about the flow
of control in SAM-SI routines for BSAM and QSAM.

A processing program using BPAM routines also works with blocks
of data. For output, BPAM routines construct and cause writing
of entries in the directory; for input, BPAM routines search for
and read entries from the directory. To read and write the
blocks of the members, a processing program uses the BSAM
routines. Flow of control for the BPAM routines is shown in
Diagram G.

Sequential access method executors are modules that operate with
the OPEN and CLOSE routines. When a data control block is
opened, an executor constructs control blocks and loads the
access method routines. The access method routines reside in
the link pack area.

When the end of a data set or volume is reached, an EOV SVC is
issued to process the pending input/output blocks. The
executors described area

• OPEN executors

• CLOSE executors

Buffer-pool management routines form buffers in virtual storage
and return virtual storage space (for buffers no longer needed)
to available status. A buffer-pool management routine is
entered when a GETPOOL, BUILD, GETBUF, FREEBUF, or FREEPOOL
macro instruction is encountered in a program.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Introduction 1

2 MVS/XA SAM Logic

contains Restrict·ed Materials of IBM
Licensed Materials -- Property of IBM

The GETPOOL and BUILD routines together form a pool of buffers J
in virtual storage. However, the GETPOOL routine also obtains
the virtual storage space for the buffer pool. Virtual storage
space must be provided by the processing program when the BUILD
routine is us~d.

The GETBUF and FREEBUF routines handle individual buffers.
GETBUF obtains a buffer from a buffer pool and FREEBUF returns a
buffer to a buffer pool.

The FREEPOOL routine returns the virtual-storage space used for
a buffer pool.

Diagram A in "Program Organization and Flow of Control" lists
the macro statements that are used with sequential access method
programming techniques. The diagram also refers to figures in
other portions of the manual that describe the SAM routines,
appendages, and executors associated with each macro statement.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

METHOD OF OPERATION

QUEUED SEQUENTIAL ACCESS METHOD ROUTINES

~ GET ROUTINES

Queued sequential access method (QSAM) routines cause storage
and retrieval of records and furnish buffering and blocking
facilities. There are seven types of QSAM routines:

• GET routines

• PUT routines

• End-of-block routines

• Synchronizing and error-processing routines (including the
IBM 3211 and 3203 printer retry
asynchronous-error-processing routines)

• Appendage routines

• Control routines

• SVC Routines

Diagram F, nQSAM Flow of Control,n shows the relationship of
QSAM routines to other portions of the operating system and to
the processing program.

GET routines determine the address of the next input record by
referring to the DCB. In update mode, the next output record is
the last input record.

If the American National Standard Code for Information
Interchange (ASCII) is used, the GET routine (if it is specified
in the DCB) will accept a record with a block prefix. The GET
routines do not present the block prefix to the processing
program; the block prefix is specified by the BUFOFF option in
the DCB. For more information on block prefix and record
formats for ASCII, see Data Administration Guide.

Be:ause there is an unused byte at the beginning of each segment
descriptor word (SDW), the GET routines that process records in
the ISO/ANSI/FIPS spanned record format must make record address
adjustments. The unused byte results from the conversion of the
5-byte ISO/ANSI/FIPS segment control word (SCW) to the 4-byte
IBM SDW.

The GET routine descriptions that follow are accordingly grouped
as:

• Simple-buffering GET routines

• Update-mode GET routine

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 3

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Simple-Buffering GET Routines

4 MVS/XA SAM Logic

Simple-buffering GET routines use buffers whose beginning and
ending addresses are in the data control block (DCB). The
beginning address is in the DCBRECAD field (address of the next
record); the ending address is in the DCBEOBAD field (address of
the end of the buffer). In each pass through a routine. it
determines:

• The address of the next record

• Whether an input buffer is empty and ready to be scheduled
for refilling

• Whether a new full input buffer is needed

If the records are unblocked. the address of the next record is
always that of the next buffer.

If the records are blocked. a GET routine determines the address
of the next record by adding the length of the last record to
the address of the last record. The address of the last record
is in the DCBRECAD field of the data control block (DCB). If
the records are fixed-length blocked records. the length of each
record is in the DCBLRECL field. If the records are
variable-length blocked records. the length of each record is in
the length field of the record itself.

A GET routine determines whether a buffer is empty and ready for
refilling and whether a new full buffer is needed by testing for
an end-of-block (EOB) condition.

When a buffer is empty. a GET routine passes control to an
end-of-block routine to refill the buffer. The buffers are
filled for the first time by OPEN executor IGG0191l for tape and J
unit record devices. and by IGG0193B for direct-access storage .
devices. Thus. the buffers are primed for the first entry into
a GET routine.

When a new full buffer is needed. a GET routine obtains it by
passing control to the input-synchronizing and error-processing
routine. module IGG019AQ. The synchronizing routine updates the
DCBIOBA field. thus pointing to the new buffer. and returns
control to the GET routine. A GET routine updates the DCBRECAD
field by inserting in it the starting address of the buffer from
the channel program associated with the new lOB. To update the
DCBEOBAD field. a GET routine adds the actual length of the
block read to the buffer starting address. These two fields.
DCBRECAD and DCBEOBAD. define the available buffer.

For unblocked records. an EOB condition exists after every entry
into the GET routine. For blocked records. an EOB condition
exists when the values in the DCBRECAD and DCBEOBAD fields are
equal. For ISO/ANSI/FIPS fixed block format. an EOB condition
exists when the next logical record of a block consists of all
X'SF's. In the move operating mode. the buffer can be scheduled
for refilling as soon as the last record is moved out; thus. an
EOB test is made after moving each record. so that the buffer
can be scheduled for refilling as soon as possible. Another EOB
test is made on the next entry to the routine to determine
whether a new full buffer is needed. In the locate mode. the
empty buffer is scheduled when the routine is entered. if the
last record was presented in the preceding entry; thus. an EOB
test is made on entry into the routine to determine whether a
buffer is empty and ready for refilling and also whether a new
full buffer is needed.

When the processing program determines that the balance of the
present buffer is to be ignored and the first record of the next
buffer' is wanted. the processing program issues a RELSE macro
instruction. Control passes to a RELSE routine that sets an EOB
condition. When records are spanned. one or more blocks can be
skipped to find the first record in a new block.

LY26-3967-0 © Copyright IBM Corp. 1977.1985

Contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

If QSAM is used with a DCB opened for input, update, or
readback, the OPEN executor primes (that is, schedules for
filling) the buffers. For the locate mode, all buffers except
one are primed; for the move mode, all buffers are primed. The
OPEN executor also sets an end-of-block condition; the first
time that a GET routine gains control, it processes this
condition in the usual way.

Upon return from the synchronizing and error-processing routine,
the GET routines, which may be loaded for tape data sets, test
to determine if the buffer contains a DOS checkpoint record. If
a DOS checkpoint record is indicated, ECB posted X'50', the GET
routine branches to the end-of-block routine to reschedule the
buffer for refilling and then branches back to the synchronizing
routine to test the next buffer.

Figure 1 on page 6 lists the simple-buffering GET routines and
the conditions that cause a particular routine to be used. The
OPEN executor selects one of the routines, loads it, and puts
its address into the DCBGET field. Figure 1 shows, for example,
that when the OPEN parameter list specifies input and the DCB
specifies the GET macro instruction, simple buffering, the
locate mode, and the fixed-length record format, routine
IGG019AA is selected and loaded.

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 5

Access Method Selec- Selec-
options tions tions

INPUT, GET X X X X X X

RDBACK, GET

Locate mode X X X

Move mode X X X

Data mode

Fixed-length X X
record format

Undefined- X X
length record
format

Variable-length X X
or record
format-D

Spanned records

* or DATA on DD
statement

Card reader,
only a single.
buffer CNTRL

Logical record
interface

GET Modules

IGGOl9AA AA AA

IGGOl9AB AB

IGGOl9AC AC AC

IGGOl9AD AD

IGGOl9AG

IGGOl9AM

IGGOl9AN

IGGOl9BO

IGGOl9DJ

IGGOl9FB

IGGOl9FD

IGG019FF

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Selec- Selec- Selec- Selec-
tions tions tions tions

X X X X X X X

X X X X

X X X X

X X X X X

X

X X X

X X X

X X X X

X X X X

X

X X

X

AG AG

AM AM

AN AN

BO

DJ

FB

FD

FF

Figure 1. Module Selection--Simple-Buffering GET Modules

6 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977.1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

GET Module IGG019AA: Module IGG019AA presents the processing
program with the address of the next fixed-length or
undefined-length record. The OPEN executor selects and loads
this module if the OPEN parameter list specifies:

Input

and the DCB specifies:

GET

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a GET routine and a RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro instruction is
encountered in a processing program.

• It tests for an EOB condition to determine whether a buffer
is empty and ready for refilling and if a new buffer is
needed. When the OPEN executor primes the buffers, it
schedules all buffers except one and sets an EOB condition.
For ISO/ANSI/FIPS, an EOB condition exists when the next
logical record in a block consists of all padding characters
(X'5F's). The first logical record in a block must not
consist of all padding characters.

• If no EOB condition exists, the GET routine determines the
address of the next record, and then presents the address to
the processing program and returns control to the processing
program.

• If an EOB condition exists, the GET routine issues a BALR
instruction to pass the present buffer to the end-of-block
routine to be scheduled for refilling. The GET routine
issues another BALR instruction to obtain a new full buffer
,hrough the input-synchronizing and error-processing
routine, module IGG019AQ. The GET routine then presents the
address of the first record of the new buffer to the
processing program and returns control to the processing
program.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.

GET Module IGG019AB: Module IGG019AB presents the processing
program with the address of the next variable-length or format-D
record. The OPEN executor selects and loads this module if the
OPEN parameter list specifies:

Input

and the DCB specifies:

GET

Simple buffering

Locate operating mode

Variable-length or record format-D (unblocked or blocked),
unspanned

The module consists of a GET routine and a RELSE routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 7

8 MVS/XA SAM Logic

contains Restricted Materials of IBH
Licensed Materials -- Property of IBH

The GET routine operates as foilowsl

• It receives control when a GET macro instruction is
encountered in a processing program.

• It determines the address of the next record and tests for
an EOB condition to determine whether a buffer is empty and
ready for refilling and if a new buffer is needed. When the
OPEN executor primes the buffers, it schedules all buffers
except one and sets an EOB condition. For ISO/ANSI/FIPS, an
EOB condition exists when the next logical record in a block
consists of all padding characters (X'SF's). The first
logical record in a block must not consist of padding
characters.

• If no EOB condition exists, it presents the address of the
next record to the processing program and returns control to
the processing program.

• If an EOB condition exists, it issues a BALR instruction to
pass the present buffer to the end-of-block routine to be
scheduled for refilling. The GET routine issues another
BALR instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ. The GET routine then presents the address of the
first record of the new buffer to the processing program and
returns control to the processing program.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.

GET Module IGG019AC: Module IGG019AC moves the next
fixed-length or undefined-length record to the work area. The
OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input

and the DCB specifies:

GET

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The DCB does not, however, specify the CNTRl macro instruction.

The module consists of a GET routine and a RELSE routine.

The GET routine operates as foilowsl

• It receives control when a GET macro instruction is
encountered in a processing program.

• It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, it sets this EOB condition for the first GET macro
instruction.

• If no EOB condition exists, the routine moves the next
record to the work area.

• If an EOB condition exists, the routine issues a BAlR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ, and moves the first record of the new buffer to
the work area.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

• It tests for a new EOB condition to determine whether a
buffer is empty and ready for refilling. For unblocked
records, this condition exists at every entry into the
routine.

• If no new EOB condition exists, the routine returns control
to the processing program.

• If a new EOB condition exists, the routine issues a BAlR
instruction to pass the present buffer to the end-of-block
routine to be scheduled for refilling and returns control to
the processing program.

The RELSE routine sets a bit in the DCB so that the GET routine
passes the buffer for refilling and obtains a new full buffer
the next time the routine is entered.

GET Module IGG019AD: Module IGG019AD moves the next
variable-length or format-D record to the work area. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Input

and the DCB specifies:

GET

Simple buffering

Move operating mode

Variable-length or record format-D (unblocked or blocked),
unspanned

The DCB does not, however, specify the CNTRl macro instruction.

The module consists of a GET and a RELSE routine.

The GET routine operates as followsl

• It receives control when a GET macroinstruction is
encountered in a processing program.

• It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, it also sets an end-of-block condition for the
first GET macro instruction.

• If an EOB condition exists, the routine issues a BAlR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ, and moves the first record to the work area.

• If no EOB condition exists, the routine moves the next
record to the work area.

• It tests for a new EOB condition to determine whether a
buffer is empty and ready for refilling. For unblocked
records, the condition exists after every entry to this
routine.

• If no new EOB condition exists, the routine returns control
to the processing program.

• If a new EOB condition exists, the routine issues a BALR
instruction to pass the present buffer to the end-of-block
routine to be scheduled for refilling and returns control to
the processing program.

The RElSE routine sets a bit in the DCB so that the GET routine
passes the buffer for refilling and obtains a new full buffer
the next time the routine is entered.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 9

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

GET Module IGG019AG (CNTRL--Card Reader): Module IGG019AG moves
the next fixed-length or undefined-length record to the work ~
area without scheduling the buffer for refilling. To refill the ~
buffer, the processing program issues a CNTRL macro instruction.
The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input

and the DCB specifies:

GET

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

CNTRL (card reader)

The module consists of a GET routine and a RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro instruction is
encountered in a processing program.

• If an EOB condition exists, it resets the DCBRECAD and
DCBEOBAD fields for the new buffer, issues a BALR to the
input-synchronizing and error-processing routine, module
IGG019AQ, and then tests for blocked records.

•

•

If no EOB condition exists, it tests immediately for blocked
records.

For blocked records, it updates the DCBRECAD field, moves
the present record to the work area, and returns control to
the processing program.

• For unblocked records, it sets the DCBRECAD and DCBEOBAD
fields so that they are equal, moves the present record to
the work area, and returns control to the processing
program.

The RELSE routine sets the value of the DCBEOBAD field equal to
that of the DCBRECAD field to establish an EOB condition.
Control then returns to the processing program.

GET Module IGG019AM (RDBACK): Module IGG019AM presents the
processing program with the address of the next record when the
data set is opened for backward reading. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies'

RDBACK

and the DCB specifiesl

10 MVS/XA SAM Logic

GET

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a GET routine and a RELSE routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The GET routine operates as follows:

• It receives control when a GET macro instruction is
encountered in a processing program.

• It tests for an EOB condition.

• If no EOB condition exists, it determines the address of the
next record by subtracting the DCBLRECL value from the
DCBRECAD value. The routine presents the result to the
processing program, and returns control to the processing
program.

• If an EOB condition exists, it issues a BALR instruction to
pass the present buffer to the end-of-block routine. The
GET routine issues another BALR instruction to obtain a new
buffer through the input-synchronizing and error-processing
routine, module IGG019AQ. The GET routine then presents the
address of the last record of the new buffer to the
processing program, and returns control to the processing
program. For ISO/ANSI/FIPS, logical records consisting of
all padding characters (X'5F's) are skipped. That is, when
these records are encountered in a block, they are treated
as padding and processing begins with the next logical
record in backward sequence.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.

Figure 2 on page 13 illustrates the ordering of records using
this module. When reading backward under QSAM, each block is
read from the tape from the end of the block to the beginning,
each buffer is filled from the end of the buffer to the
beginning, and the records are presented to the processing
program in order of the record in the last segment of the buffer
first, and the record in the first one last. In this manner of
reading, buffering, and presenting, each record follows in
backward sequence, from the record presented last out of one
buffer to the record presented first out of the next buffer.

GET Module IGG019AN (RDBACK): Module IGG019AN moves the next
record to the work area when the data set is opened for backward
reading. The OPEN executor selects and loads this module if the
OPEN parameter list specifies:

RDBACK

and the DCB specifies:

GET

Simple buffering

Move operating mode

Fixed-length (unblocked, blocked, or blocked standard) or
undefined-length record format

The module consists of a GET routine and a RELSE routine.

The GET routine operates as follows:

• It receives control when a GET macro instruction is
encountered in a processing program.

• It tests for an EOB condition.

• If no EOB condition exists, it moves the next record to the
work area, and updates the DCBRECAD field by reducing it by
the value of the DCBLRECL field.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 11

•

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If an EOB condition exists. it issues a BALR instruction to
obtain a new buffer through the input-synchronizing and
error-processing routine. module IGGOI9AQ. The GET routine
then moves the last record of the new buffer to the work
area.

• It tests for a new EOB condition.

• If no new EOB condition exists. it returns control to the
processing program.

• If a new EOB condition exists. it issues a BALR instruction
to pass the present buffer to the end-of-block routine and
then returns control to the processing program.

• For ISO/ANSI/FIPS. logical records consisting of all padding
characters (X'5F's) are skipped. That is. when these
records are encountered in a block they are treated as
padding. and processing begins with the next logical record
in backward sequence.

The RELSE routine issues a BALR instruction to pass the present
buffer to the end-of-block routine and then returns control to
the processing program.

12 MVS/XA SAM Logic

Figure 2 illustrates the ordering of records using modules
IGG019AM and IGG019AN.

LY26-3967-0 © Copyright IBM Corp. 1977.1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

~ Direction of Tape
When Reading Backward

Last GET for this block t addresses this segment

First GET for this block
addresses this segment

Last GET for this block t addresses this segment

2

First GET for this block
addresses this segment

Last GET for this block t addresses this segment

3

First GET for this block
addresses this segment

Direction of Tape~
When Writing

First channel program
fills this buffer

~ beginning here

Next channel program
fj lis this buffer

~ beginning here

Next channel program
fills this buffer

----- beginning here

Figure 2. Order of Records Using GET Routines for Data Sets
Opened for RDBACK (IGGOI9AM, IGGOI9AN)

GET Module IGG019BO: Module IGG01980 presents the processing
program with the address of the next variable-length record.
The OPEN executor selects and loads this module if the OPEN
parameter list specifies.

Input

and the DCB specifies:

GET

Simple buffering

locate operating mode

Variable-length spanned (unblocked or blocked) record format

logical record interface

The module consists of a GET routine and a RElSE routine.

lY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 13

14 MVS/XA SAM logic

contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

The GET routine operates as follows:

• It receives control when a GET macro instruction is
encountered in the processing program.

• It determines the address of the next record and tests for
an EOB condition to determine whether a buffer is empty and
ready for refilling and if new buffer is needed. When the
OPEN executor primes the buffers, it schedules all buffers
except one and sets an EOB condition. If ISO/ANSI/FIPS
spanned records are being processed, the record address is
adjusted in order to ignore the unused byte that results
from the conversion of the 5-byte ISO/ANSI/FIPS segment
control word (SCW) to the 4-byte IBM segment descriptor word
(SDW).

• If no EOB condition exists, it tests whether the next record
segment contains a complete record.

• If it is a complete record, the routine presents the address
of the next record to the processing program and returns
control to the processing program. If the extended version
of logical record interface (XlRI) is being used, the three
low-order bytes of the first four bytes of a logical record
are used to indicate the length of the record including the
first four bytes.

• If it is the first segment of a spanned record, the routine
moves the segment to the record area with the proper
alignment, sets the EOB condition, and determines the
address of the next record and whether a buffer is ready for
refilling.

• If it is a segment that follows another segment of a spanned
record, the routine moves the segment (without the segment
descriptor word) next to the previous segment in the record
area, and updates the count in the record area. This step
continues until the entire logical record has been assembled
in the record area. If an EOB condition occurs during this
process, the routine determines the address of the next
record and whether a buffer is ready for refilling. When
the entire logical record is assembled, the routine sets the
spanned record flag in the lOB, presents the address of the
assembled record, and returns control to the processing
program.

• If an EOB condition exists, it issues a BAlR instruction to
pass the present buffer to the EOB routine to be scheduled
for refilling. The GET routine issues another BAlR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine (module
IGG019AO). The routine then obtains and interrogates the
first record segment of the new buffer. If it is a complete
record, the routine presents the address of the next record
to the processing program and returns control to the
processing program.

The RElSE routine operates as follows:

• It receives control when a RElSE macro instruction is
encountered in the processing program.

• It sets an EOB condition.

• It sets a release bit in the DCBRECAD of the DCB.

• It returns control to the processing program.

The RElSE routine sets a release bit in the DCB so that the GET
routine passes the buffer for refilling and obtains a new full
buffer the next time the routine is entered. After obtaining
the new buffer as a result of RElSE, the GET routine
interrogates the SDW of the first segment to determine if it is
the first segment of a record (bit 6 in third byte of SDW must

lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

be 0); if not, the routine skips to the next SDW and checks it.
This continues until an acceptable segment is found. The
routine then processes the GET request in the usual way. The
procedure may result in one or more additional blocks being
passed.

GET Module IGG019DJ lSYSIN/SYSOUT): Module IGGOl9DJ interfaces
with a job entry subsystem to provide the next record from the
system input stream to the processing program.

The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input (* or DATA specified on the DD statement)

and the DCB specifies:

GET

Simple buffering

Locate or move operating mode

Fixed, undefined, or variable-length record format

The module consists of a GET routine and a RELSE routine. See
Diagram M for an overview of the SAM-SI processing for QSAM.

This module also contains a PUT routine as described in "Simple
Buffering PUT Routines" (see Figure 4 on page 26). The GET
routine operates as follows:

• It receives control when a GET macro instruction is
encountered in the processing program.

• It determines the type of get request and initializes the
input area address in the request parameter list (RPL). For
move mode, RPLAREA contains the address of the processing
program work area (the contents of register 0 on entry); for
locate mode, RPLAREA contains the address of a buffer from
the DCB buffer pool.

• If the GET request is for variable-length records, RPLAREA
is adjusted to allow space for a record descriptor word
(ROW) in the first four bytes of the work area.

• It passes control to the job entry subsystem (JES) for data
transfer by issuing a GET macro instruction against the RPL.
The return code in register 15 is tested upon return from
the JES.

• For an exceptional condition, RPLRTNCD and RPLERRCD are
examined to determine the type of failure.

• If end-of-data is detected, the appropriate registers are
loaded and saved, then an unconditional branch is taken to
the synchronizing module, IGG019AQ (see Figure lIon
page 60), for EODAD and concatenation processing.

• If an error condition is detected, control is passed to the
error-processing module, IGG019AH (see Figure 12 on
page 67). If control is returned to this routine and DCB
EROPT is SKIP, the GET request is reissued. Otherwise,
control is returned to the processing program.

• For normal completion, it places the record address from the
RPLAREA field into register 1. If the SAM request was for a
variable-length record, the record descriptor word field is
created, by using the value returned in the RPLRLEN field.
Registers are restored and control is returned to the
processing program.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 15

16 MVS/XA SAM Logic

Contains Restricted Materials of IBH
Licensed Haterials -- Property of IBH

The RELSE routine receives control when a RELSE macro
instruction is issued. Module IGG019DJ does no processing for
this macro instruction. Control is returned to the processing
program by IGG019DJ.

GET Module IGG019FB: Module IGG019FB presents the processing
program with the address of the next variable-length record.
The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input

and the DCB specifies:

GET

Simple buffering

Locate operating mode

Variable-length format (unblocked or blocked) record,
spanned

The module consists of a GET routine and a RELSE routine.

The GET routine operates as follows:

• It receives control when the processing program issues a GET
macro instruction.

• It determines the address of the next record segment and
tests for an EOB condition to determine whether a buffer is
ready for refilling and also whether a new buffer is needed.
When the OPEN executor primes the buffers, the executor
schedules all buffers except one and sets an EOB condition.

• If no EOB condition exists, the routine presents the address
of the next record segment to the processing program.

• If an EOB condition exists or if a DOS-type null segment
(where the high-order bit of the record descriptor word is
on) is encountered, the routine issues a BALR instruction to
pass the current buffer to the EOB routine. The EOB routine
schedules the buffer for refilling. The GET routine issues
another BALR instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGGOI9AQ. The GET routine then determines if the EOB
routine was entered because of a RELSE macro instruction.
If so, the GET routine checks the first record segment to
determine if it is a member of a previous logical record.
If it is, the GET routine continues to look for a record
segment that is not a member of a previous record. Such a
segment is considered the first record of the new buffer.
(Note, however, that this could cause reentry into the EOB
routine and result in one or more entire blocks being
skipped.) The GET routine then presents the address of the
first record segment of the new buffer to the processing
program and returns control to the processing program.

The RELSE routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal. It then
sets the high-order 4 bits of DCBRECAD to l's and returns
control to the processing program.

LY26-3967-0 © Copyright IBM Corp, 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

GET Module IGG019FD: Module IGG019FD moves the next
variable-length record to the work area. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies:

Input

and the DCB specifies:

GET

Simple buffering

Move operating mode

Variable-length (unblocked or blocked) record format,
spanned

The DCB does not, however, specify the CNTRL macro instruction.

The module consists of a GET and a RELSE routine.

The GET routine operates as follows:

• It receives control when the processing program issues a GET
macro instruction.

• It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, the executor also sets an EOB condition for the
first GET macro instruction.

• If an EOB condition exists, the routine issues a BALR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ, and moves the first record segment to the user's
work area.

• If no EOB condition exists, the routine moves the first
record segment to the user's work area.

• If a DOS-type null segment (where the high-order bit of the
record descriptor word is on) is encountered, that buffer is
rescheduled by passing control to the EOB routine.
Processing continues as if an EOB condition exists as
described above.

• If more record segments are required, the routine moves
them, without the segment descriptor words, to the part of
the user's work area that is contiguous with the previous
record segment. The routine also updates the DCBLRECl field
and the logical-record-length field in the record descriptor
word (RDW) in the user's work area. These fields then
reflect the total logical-record length after additional
record segments have been moved. This procedure continues
until the routine has moved the entire logical record. An
EOB condition can occur during this procedure.

• When ISO/ANSI/FIPS spanned records are being processed, the
address of the starting byte must be adjusted in order to
ignore the unused byte resulting from the conversion of the
5-byte ISO/ANSI/FIPS segment control word (SCW) to the
4-byte IBM segment descriptor word (SDW).

• The routine tests for a new EOB condition to determine
whether a buffer is empty and ready for refilling. For
unblocked records, the EOB condition exists after every
entry to the GET routine.

• If no new EOB condition exists, the routine returns control
to the processing program.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 17

18 MVS/XA SAM logic

•

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If a new EOB condition exists, the routine issues a BAlR
instruction to pass the present buffer to the EOB routine.
The EOB routine then schedules the buffer for refilling and
returns control to the processing program.

The RElSE routine sets the high-order 4 bits in the DCBRECAD
field to l's so that the GET routine passes the buffer for
refilling and so that the next time the GET routine is entered,
it obtains a new full buffer. After obtaining the new buffer,
the GET routine interrogates the segment descriptor word (SDW)
of the first record segment. The routine thus determines if the
segment is the first segment of a record. If it is, bit 6 of
the third byte of the SDW will be O. If not, the GET routine
skips to the next SDW and checks it. This procedure continues
until an acceptable segment is found. Then the GET routine
processes the GET macro instruction in the usual way. The
procedure can result in one or more additional blocks being
passed.

GET Module IGG019FF: Module IGGOl9FF moves the data portion of
the next variable-length record to the work area. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Input

and the DCB specifies:

GET

Simple buffering

Data operating mode

Variable-length (unblocked or blocked) record format,
spanned

The DCB does not, however, specify the CNTRl macro instruction.

The module consists of GET and RElSE routines.

The GET routine operates as follows:

• It receives control when the processing program issues a GET
macro instruction.

• It tests for an EOB condition to determine whether a new
full buffer is needed. When the OPEN executor primes the
buffers, the executor also sets an EOB condition for the
first GET macro instruction.

• If an EOB condition exists, the routine issues a BAlR
instruction to obtain a new buffer through the
input-synchronizing and error-processing routine, module
IGG019AQ, and moves the data portion of the first record
segment to the work area.

• If no EOB condition exists, the routine moves the data
portion of the first record segment to the user's work area.

• If more segments are required, the routine moves them,
without the segment descriptor word, to the part of the
user's work area that is contiguous with the previous record
segment. The routine also updates the DCBlRECL field to
reflect the current total logical record length. This
procedure continues until the routine has moved the entire
logical record. An EOB condition can occur during this
procedure.

• When ISO/ANSI/FIPS spanned records are being processed, the
address of the starting byte must be adjusted one position
in order to ignore the unused byte resulting from the
conversion of the 5-byte ISO/ANSI/FIPS segment control word
(SCW) to the 4-byte IBM segment descriptor word (SDW).

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• The routine tests for a new EOB condition to determine
whether a buffer is ready for refilling. For unblocked
records, the condition exists after every entry to this
routine.

• If no new EOB condition exists, the routine returns control
to the processing program.

• If a new EOB condition exists, the routine issues a BAlR
instruction to pass the present buffer to the EOB routine.
The EOB routine then schedules the buffer for refilling and
returns control to the processing program.

The RElSE routine sets the high-order 4 bits in the DCBRECAD
field to Is so that the GET routine passes the buffer for
refilling and so that the next time the GET routine is entered,
it obtains a new full buffer. After obtaining the new buffer,
the GET routine interrogates the segment descriptor word (SDW)
of the first record segment. The routine thus determines if the
segment is the first segment of a record. If it is, bit 6 of
the third byte of the SDW will be o. If not, the GET routine
skips to the next SDW and checks it. This procedure continues
until an acceptable segment is found. Then the GET routine
processes the GET macro instruction in the usual manner. The
procedure can result in one or more additional blocks being
passed.

Parallel Input processing Routine

The QSAM parallel input processing routine provides to the user
an input record from a queue of equal priority, sequential data
sets. The routine supports input processing; simple buffering;
locate or move mode; and fixed-length, variable-length, or
undefined-length records. Track overflow and spanned records
are not supported.

Parallel Input Processing Module IGG019JD: Module IGG019JD uses
the parallel data address block (PDAB) to maintain a list of
data control blocks, addresses, and a corresponding wait
parameter list of ECB addresses. DCB addresses are added to the
PDAB by the OPEN routines and are removed by the CLOSE routines.
A count of the maximum number of DCB entries allowable is
assembled in the PDAB.

The address of the DCB entry from which the previous record was
provided is obtained from the PDAB, and each succeeding DCB
entry is processed until an available logical record is found,
or until each data set is found to have reached an EOB
condition, and the next block of data is not available.

An EOB condition is detected when DCBEOBAD is greater than or
equal to DCBREGAD for the move mode, when DCBEOBAD is greater
than or equal to DCBECAD plus DCBlRECl for the locate mode, or
when the first 4 bits of the DCBIOBA are set to ones for the
RElSE function.

The next block is not available when the ECB for the next lOB is
not posted as complete. The location of the next lOB is
obtained from the current lOB - 8, and the location of its
corresponding ECB is obtained from lOB + 4.

When the ECB is not posted as complete, its address is stored in
the wait parameter list in the PDAB. When no record is
available from the queue of data sets, a WAIT is issued for the
list of ECB addresses in the PDAB. When control is returned,
the completed event is located from the list of ECB addresses.

When a record is available, the DCB address and the user's data
area address are passed to the DCB get routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 19

Update Mode GET Routine

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The update mode GET routine differs from other GET routines in
that it shares its buffers, as well as the DCB and the lOBs,
with the update mode PUT routine. The QSAM update mode of
access uses simple buffering in which the buffer is defined by
the start and end addresses of the buffer.

If a PUTX macro instruction addresses a record in a block, the
update mode GET routine determines, when the end of the block is
reached, that that buffer is to be emptied (that is, that the
block is to be updated) before being filled with a new block of
data. If no PUTX macro instruction addresses a record in a
block, the update mode GET routine determines, when the end of
the block is reached, that the buffer is to be refilled only;
that is, that the last block need not be updated and the buffer
can be filled with a new block of data. These characteristics
of the buffer--simple buffering, sharing the buffer with the PUT
routine, and emptying the buffer before refilling--influence the
manner in which the update mode GET routine determines:

• The address of the next record

• Whether the buffer can be scheduled

• Whether a new buffer is needed

• Whether to schedule the buffer for empty-and-refill or for
refill-only

The first three of these determinations are made at every pass
through the routine. The last determination is made after the
routine establishes that the buffer can be scheduled.

If the records are unblocked, the address of the next record is
the address of the next buffer.

If the records are blocked, the address of the next record is J.
found by adding the record length, found in the DCBLRECL field, .
to the value in the DCBRECAD field.

Whether the buffer can be scheduled and whether a new buffer is
needed are determined by whether an end-of-block condition
exists. In the update mode, one determination that an
end-of-block condition exists causes both the last buffer to be
scheduled and a new buffer to be sought. An end-of-block
condition exists for unblocked records at every pass through the
routine; for blocked records it exists if the values in the
DCBRECAD (the address of the current record) and the DCBEOBAD
(the address of the end of the block) fields are equal. To
cause scheduling of the buffer, the GET routine passes control
to the end-of-block routine. To obtain a new buffer, the GET
routine passes control to the update-synchronizing and
error-processing routine, module IGG019AF.

To cause scheduling of the buffer for either empty-and-refill or
refill-only, the update mode Get routine sets the IOBNFLGI flag
to indicate whether an update (that is, write and refill) or a
read (that is, a refill) is to take place. The nempty and
refill" operation writes out of the buffer and reads into that
same buffer. When the end-of-block routine schedules the lOB
for the buffer to be processed by the SIO/pagefix appendage,
that appendage inspects the lOB flags. The SIO/pagefix
appendage builds an appropriate channel program, based on the
lOB flags: an update write of the buffer followed by a read into
the same buffer, or a read into the buffer.

20 MVS/XA SAM Logic

Whether to schedule the buffer for empty-and-refill or for
refill-only depends on whether the block is to be updated. If
the block is to be updated, the PUTX routine will have set the
update flag on in the lOB; otherwise, the flag is off. To
schedule the buffer for empty-and-refill, the GET routine leaves
the update flag on. To schedule the buffer for refill only, the
GET routine sets the read flag on. The end-of-bl09k condition

LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

that triggers this processing also causes control to pass to the
end-of-block routine, module IGG019TV, for issuing the EXCPVR
macro instruction and to the update-synchronizing
and-error-processing routine, module IGG019AF, for obtaining the
next buffer.

The PUTX routine sets the update flag in the lOB and returns
control to the processing program. The RELSE routine sets an
end-of-block condition and returns control to the processing
program.

The OPEN executor primes (that is, schedules for filling) all
the buffers except one if QSAM is used with a DCB opened for
update. The OPEN executor also sets an end-of-block condition;
the first time the update mode GET routine gains control, it
processes this condition in its normal manner.

Figure 3 on page 21 shows the update mode GET routines and the
access conditions that must be specified in the DCB to select a
particular routine. The OPEN executor loads the selected
routine and places its address into the DCBGET field of the DCB.

Access Method Options Selections

Update, GET X X X X X X X

Fixed-length record format X X

Variable-length record format X X X X

Undefined-length record format X

Blocked record format X X X

Unblocked record format X X X X

locate operating mode X X

Logical record interface X X

GET Modules

IGG019AEl AE AE AE AE AE

IGG019BN BN BN

Figure 3. Module Selector--Update-Mode GET Modules

Note to Figure 3:

This module also carries the Update-Mode PUTX routine

GET Update Module IGG019AE: Module IGG019AE presents the
processing program with the next input record and flags the lOB
if the block is to be updated. The OPEN executor selects and
loads this module if the OPEN parameter list specifies:

UPDATE

and the DCB specifies:

GET

The module consists of a GET routine, a RElSE routine, and a
PUTX routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 21

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The GET routine operates as follows:

• It receives control when a GET macro instruction is
encountered in a processing program.

• It tests for an end-of-block condition to determine whether
the buffer can be scheduled and if a new buffer is needed.
When the OPEN executor primes the buffers, it schedules all
buffers except one and sets an end-of-block condition.

• If no end-of-block condition exists, it presents the address
of the next record, and returns control to the processing
program. For variable-length, format-D, and
undefined-length records, it also determines the length of
the record and places it in the DCBLRECL field in the DCB.

• If an end-of-block condition exists and if the buffer is to
be emptied and refilled, and:

If entry is not from CLOSE or FEOV, the GET routine
passes control to the end-of-block routine to cause
scheduling of the buffer.

If entry is from CLOSE or FEOV, the GET routine sets the
lOB to indicate "write-only." The GET routine then
passes control to the end-of-block routine to cause
scheduling of the buffer.

• On return of control from the end-of-block routine, the GET
routine passes control to the update-synchronizing and
error-processing routine, module IGGOl9AF, to obtain a new
full buffer.

• On return of control from the synchronizing routine, the GET
routine updates the DCBLRECL field, presents the address of
the next record, and returns control to the processing
program.

The RELSE routine operates as follows:

a It receives control when a RELSE macro instruction is
encountered in the processing program.

• It sets an end-of-block condition.

• It returns control to the processing program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is
encountered in the processing program.

• It sets the update flag in the lOB to show that the buffer
is to be emptied before being refilled.

• It returns control to the processing program.

GET Update Module IGG019BN: Module IGGOl9BN presents the
processing program with the next input record, flags the lOB if
the block or a spanned record is to be updated (that is, emptied
and refilled), and sets the lOB to address a QSAM update channel
program for either empty-and-refill or refill-only. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Update

and the DCB specifies:

GET

Locate operating mode

Variable-length spanned (blocked or unblocked) record format

22 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

~

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Logical record interface

The module consists of a GET routine, a RELSE routine, and a PUT
routine.

The GET routine operates as follows:

• It receives control when a GET macro instruction is
encountered in a processing program.

• It tests whether EOV has occurred while processing a spanned
record.

• If EOV has occurred and the record is not to be updated, it
sets a bit in the DCBIOBAD field of the DCB to indicate that
the old DEB, whose address was saved by the EOV routine, can
be freed. It then issues an FEOV macro instruction to free
the virtual storage assigned to this DEB.

• If EOV has occurred and the record is to be updated, it
restores the address to read back the block that contains
the beginning segment of the record. The current lOB is
modified to function as if only one lOB exists. It then
issues an FEOV macro instruction to cause the previous
volume to be mounted and the data management count to be
reset.

•

•
•
•

•

On return of control from the FEOV routines, it operates as
if no EOV has occurred.

If EOV has not occurred, it continues on to the next step.

It tests whether a spanned record is to be updated.

If it is not to be updated, it obtains the length of the
previous record segment from the DCBLRECL field in the DCB,
or the SDW if it was a spanned record.

It determines the address of the next record segment and
tests for an EOB condition to determine whether the buffer
can be scheduled and if a new buffer is needed. (When the
OPEN executor primes the buffers, it schedules all buffers
except one and sets an EOB condition.)

• If no EOB condition exists, it tests the next record segment
for a complete record.

• If it is a complete record, the routine presents the address
of the next record, determines the length of the record,
places it in the DCBLRECL field, and returns control to the
processing program.

• If it is the first segment of a spanned record, the routine
saves the track address of the block that contains this
segment, the position of the segment in the block, and the
alignment of the segment in the record area. The routine
obtains the track address of the block by copying the
10BSEEK associated with the next lOB, the position of the
segment by subtracting the buffer address from the current
record address, and the alignment of the segment by using
the low-order byte of the current record address. The
routine then moves the first segment to the record area and
sets the EOB condition. It determines the address of the
next record, whether a new buffer can be scheduled, and if a
new buffer is needed.

• If it is a segment that follows another segment of a spanned
record, the routine combines the segment (without the SDW)
contiguous with the previous segment in the record area.
The count in the record descriptor word (RDW) in the record
area is updated to include the total count. This process
continues until the entire logical record has been
assembled. An EOB condition may occur during this process,
in which case the routine determines the address of the next

LY26-3967-Q © Copyright IBM Corp. 1977,1985 Method of Operation 23

24 MVS/XA SAM Logic

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

record, whether a new buffer can be scheduled, and if a new
buffer is needed. When the entire logical record has been
assembled, the routine sets the spanned-record flag in the
lOB, presents the address of the assembled record in the
record area, places the length of the record (which is
obtained from the RDW in the record area) in the DCBLRECL
field, and returns control to the processing program.

• If an EOB condition exists, control is passed to the
end-of-block routine to schedule a buffer.

• On return of control from the EOB routine, the routine
passes control to the update-synchronizing and
error-processing routine, module IGGOI9BQ, to obtain a new
full buffer.

• On return of control from the synchronizing routine, the
routine interrogates the next record segment and saves the
track address of the block that contains the record, the
position of the segment in the block, and the alignment of
the segment in the record area. The routine then moves the
first segment to the record area and sets the EOB condition.

• If a spanned record is to be updated, the routine restores
the track address to read back the block that contains the
beginning segment of the record. The current lOB is
modified to function as if only one lOB exists.

The routine next tests to determine if any previous I/O
operation has completed. If no previous I/O operation has
completed, the routine issues WAIT against the ECB in the ICQE.

The routine next tests to determine if the "EXCPVR needed" flag
is on and, if not, sets the "end of file" and "EXCPVR needed"
flags on. The routine turns off the "spanned record" flag in
the lOB, sets the lOB to READ-ONLY and SEGMENT, and passes
control to the end-of-block routine.

• On return of control from the EOB routine, the routine
passes control to the update-synchronizing and
error-processing routine, module IGGOI9BQ, to obtain a new
full buffer.

• On return of control from the synchronizing routine, the
routine repositions the pointers to the beginning segment of
the record and moves that portion of the record from the
record area to the segment in the buffer. (A count is kept
of the number of bytes of data moved.)

• If more segments are to be updated, the routine moves that
portion of the record from the record area to the succeeding
segments in the buffer. (The total count of the data moved
is updated with each move.) This process continues until
the entire logical record has been segmented. If an EOB
condition occurs during this process, the routine tests
whether a spanned record is to be updated. When the entire
logical record has been segmented, the routine turns off the
segment flag in the lOB, restores the link field in the lOB,
obtains the address of the next record segment, and
determines whether a new buffer can be scheduled and is
needed.

When the entire logical record has been segmented (except for
the last segment in the current buffer, which has not been
updated), the routine turns off the "segment" flag in the lOB,
restores the link field in the lOB, and tests the "end of data"
flag to determine whether the "EXCPVR needed" flag !>/as off when
I/O was quiesced. If the "end of data" flag is on, the routine
sets the lOB's "write flag" and passes control to the
end-of-block routine to cause an update write without a refill
read for the buffer containing the last segment. When the
end-of-block routine returns, the GET routine sets the lOB flags
to indicate "updating not required." The ICQE's "EXCPVR needed"

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

PUT ROUTINES

flag is also zeroed. If the "end of data" flag is off, the
"EXCPVR needed" flag is set on.

The RElSE routine operates as follows:

• It receives control when a RElSE macro instruction.is
encountered in the processing program.

• It sets an EOB condition.

• It sets a release bit in the DCBRECAD field of the DCB.

• It returns control to the processing program.

The RElSE routine sets a release bit in the DCB so that the GET
routine passes the buffer for refilling and obtains a new full
buffer the next time the routine is entered. After obtaining
the new buffer as a result of RELSE, the GET routine
interrogates the SDW of the first segment to determine if it is
the first segment of a record (bit 6 in the third byte of the
SDW must be 0); if not, the routine skips to the next SDW and
checks it. This continues until an acceptable segment is found.
The routine then processes the GET in the usual way. This
procedure may result in one or more additional blocks being
passed.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is
encountered in the processing program.

• It sets the update flag in the lOB to show that the buffer
is to be emptied before being refilled.

• It returns control to the processing program.

Note: When a RElSE macro instruction is issued after a spanned
record is written with a PUTX macro instruction, this routine
branches to the GET routine to write the last record (the
spanned record) and then releases the block that contains the
last segment of that spanned record.

Some of the general characteristics of the PUT routines are
described in Diagram B, "QSAM GET and PUT Routines." A specific
PUT routine is selected for each data set on the basis of access
method options specified by the processing program. The options
examined are in the OPEN statement parameter list and the data
set attributes described in the DCB.

The OPEN executors (see Diagram D, "SAM OPEN Executors") select
and load the modules that are required for a particular data
set.

The access method options that determine which PUT modules are
selected when Simple buffering is used are described in Figure 4
on page 26. For update mode, the PUTX routine resides in the
GET module for update mode. See Figure 3 on page 21 (under
"Update Mode GET Routine") for information about the update mode
PUTX routine.

For information about the flow of control through the QSAM
routines, see Diagram F, "QSAM Flow of Control."

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 25

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Access Method Options Selections

output, PUT/PUT X X X X X X X X X X X

Locate operating mode X X X X X

Move operating mode X X X

Data operating mode X X

Fixed-length record format X X

Undefined-length record format X X

Variable-length or record format-D X X X X X X

Spanned records X X X X

Logical record interface X

SYSOUT specified on DD statement X

PUT Modules

IGGOl9AI AI AI

IGGOl9AJ AJ

IGGOl9AK AK AK

IGGOl9AL AL

IGGOl9BP BP

IGGOl9DJ DJ

IGGOl9FG FG

IGGOl9FJ FJ

IGGOl9FL FL

Figure 4. Module Selector--Simple-Buffering Put Modules

Simple-Buffering PUT Routines

26 MVS/XA SAM Logic

Simple-buffering PUT routines use buffers whose ending address
and the address of the next or current record are pointed to by
the DCB. The address of the next record is in the DCBRECAD
field (address of the next record); the ending address is in the
DCBEOBAD field (address of the end of the buffer). In each pass
through a routine, it determines:

• The address of the next buffer segment

• Whether an output buffer is to be scheduled for emptying

• Whether a new empty buffer is needed

These three determinations are made at every pass through a PUT
routine.

If the records are unblocked, the address of the next available
buffer segment is always that of the next buffer.

If the records are blocked, a PUT routine determines the address
of the next available buffer segment by adding the length of the
last record to the address of the last buffer segment. The

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

address of the last buffer segment is in the DCBRECAD field of
the data control block (DCB). If the records are fixed-length
blocked records. the length of each record is in the DCBLRECL
field. If the records are variable-length blocked records. the
length of each record is in the length field of the record
itself.

A PUT routine determines that a buffer is ready for emptying and
a new empty buffer is needed by establishing that an
end-of-block (EOB) condition exists.

If an output buffer is to be scheduled for emptying, a PUT
routine passes control to an end-of-block routine. to cause the
present buffer to be scheduled for output.

If a new empty buffer is needed, a PUT routine obtains a new
buffer by passing control to the
output-synchronizing-and-error-processing routine. module
IGGOI9AR. For a buffer that was emptied without error. the
synchronizing routine updates the DCBIOBA field (thus pointing
to the new buffer) and returns control to the PUT routine. The
PUT routine updates the DCBRECAD field by inserting the starting
address of the buffer from the channel program associated with
the new lOB. To update the DCBEOBAD field, the routine adds the
length of the block stated in the DCBBLKSI field to the buffer
starting address. These two fields. DCBRECAD and DCBEOBAD.
define the available buffer.

An EOB condition is established by different criteria for
different record formats and operating modes.

For unblocked records. an EOB condition exists after each record
is placed in the buffer. If the move operating mode is used. a
PUT routine establishes that an EOB condition exists for the
present buffer after the routine has moved the record into the
buffer. If the locate operating mode is used. a PUT routine
establishes that an EOB condition exists for the present buffer
on the next entry to the routine. after the processing program
has moved the record into the buffer.

For blocked records. the time that an EOB condition occurs
depends on the record format.

For fixed-length blocked records. an EOB condition occurs when
the DCBRECAD field equals the DCBEOBAD field. The DCBRECAD
field shows the address of the segment for the next record. The
DCBEOBAD field shows a value equal to one more than the address
of the end of the buffer. If the move operating mode is used.
the PUT routine moves the last fixed-length record into the
buffer. updates the DCBRECAD field. and establishes that an EOB
condition exists for the present buffer. If the locate
operating mode is used. the processing program moves the last
fixed-length record into the buffer. On the next entry to the
PUT routine. the routine updates the DCBRECAD field and
establishes that an EOB condition exists for the present buffer.

For variable-length blocked records. unspanned. an EOB condition
occurs when the length of the next record exceeds the buffer
balance; that is, when the record length exceeds the space
remaining in the buffer. If the user has specified move mode
for unspanned records, the PUT routine establishes that an EOB
condition exists when the record length stated in the first word
of the record exceeds the buffer balance. If the user has
specified locate mode for unspanned records. the PUT routine
establishes that an EOB condition exists when the value stated
in the DCBLRECL field exceeds the buffer balance.

For variable-length blocked records, spanned. the next record is
segmented. The first record segment is used to fill the buffer
when 5 or more bytes remain in the buffer. When fewer than 5
bytes remain in the buffer. an EOB condition occurs.

For ISO/ANSI/FIPS variable-length spanned records. five bytes
are used for the segment control word (SCW). An extra byte is

LY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 27

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

saved at the beginning of each segment. The succeeding four
bytes are processed in the normal manner, but the end-of-block
routine uses the extra byte when it converts the IBM 4-byte
segment descriptor word (SDW) to the 5-byte ISO/ANSI/FIPS
segment control word (SCW).

For variable-length spanned records using extended logical
record interface (XLRI), the 3-byte length field is used to
specifiy the exact length in bytes instead of the normal 2-byte
length field. The DCB LRECL specifies the maximum logical
record length in multiples of 1024.

A TRUNC routine sets an end-of-block condition to empty the
buffer. This end-of-block condition is processed so that the
next entry to the PUT routine permits it to operate as usual.
Successive entries to a TRUNC routine without intervening
entries to a PUT routine cause the TRUNC routine to return
control without performing any processing.

To permit a PUT routine to operate normally when it is entered
for the first time, the OPEN executor initializes the DCB fields
DCBRECAD and DCBEOBAD. For an output data set using QSAM and
simple buffering, the values entered in these fields depend on
the operating mode. For locate mode routines, it sets them to
show the beginning and end of the first buffer; for move mode
routines, it sets an end-of-block condition.

Figure 4 on page 26 lists the PUT routines and the conditions
that cause a particular routine to be read. The OPEN executor
selects one of the routines, loads it, and places its address
into the DCBPUT fields.

28 MVS/XA SAM Logic

PUT Module IGG019AI: Module IGG019AI presents the processing
program with the address of the next available buffer segment
for a fixed-length or an undefined-length record. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Output

and the DCB specifies:

PUT

Simple buffering

Locate operating mode

Fixed-length (unblocked, blocked or blocked standard) or
undefined-length record format

The module consists of a PUT routine and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when a PUT macro instruction is
encountered in a processing program.

• It determines the address of the next buffer segment using
the value in the DCBLRECL field.

• It tests for an EOB condition to determine whether a buffer
is full and ready for emptying and if a new empty buffer is
needed.

• If no EOB condition exists, it presents the address of the
next buffer segment to the processing program and returns
control to the processing program.

• If an EOB condition exists, it issues a BALR instruction to
pass the present buffer to the end-of-block routine. The
Put routine issues another BALR instruction to obtain a new
buffer through the output-synchronizing-and-error-processing
routine, module IGG019AR, and determines the address of the

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

first segment of the new buffer. The PUT routine then
presents this address and returns control to the processing
program.

The TRUNC routine causes an EOB condition by setting the
DCBRECAD and DCBEODAD fields so that they are equal; it then
returns control to the processing program.

PUT Module IGG019AJ: Module IGGOl9AJ presents the processing
program with the address of the next available buffer segment
for a variable-length or format-D record. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies:

Output

and the DCB specifies:

PUT

Simple buffering

Locate operating mode

Variable-length or record format D (unblocked or blocked),
unspanned

The module consists of a PUT routine and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when a PUT macro instruction is
encountered in a processing program.

• It determines the address of the next buffer segment using
the length field of the record moved by the processing
program into the buffer segment located last.

• It tests for an EOB condition to determine whether a buffer
is ready for emptying and if a new empty buffer is needed,
by using the value placed into the DCBLRECL field by the
processing program.

• If no EOB condition exists, it tests for blocked records.

• If blocked records are specified, it presents the address of
the next buffer segment to the processing program and
returns control to the processing program.

• If an EOB condition exists or if unblocked records are
specified, it issues a BALR instruction to pass the present
buffer to the end-of-block routine. The PUT routine issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGGOI9AR, and determines the address of the first segment of
the new buffer. The PUT routine then presents this address
to the processing program and returns control to the
processing program.

The TRUNC routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal; it then
returns control to the processing program.

PUT Module IGG019AK: Module IGG019AK moves the present
fixed-length or undefined-length record into the next available
buffer segment. The OPEN executor selects and loads this module
if the OPEN parameter list specifies:

Output

and the DCB specifies:

PUT

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 29

30 MVS/XA SAM logic

Simple buffering

Move operating mode

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

Fixed-length (unblocked, blocked, blocked standard) or
undefined-length record format

The module consists of a PUT routine, a PUTX routine, and a
TRUNC routine.

The PUT routine operates as follows:

• It receives control when a PUT macro instruction is
encountered in a processing program.

• If an EOB condition exists, it issues a BAlR instruction to
obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR, and then moves the record from the work area into
the first buffer segment.

• If no EOB condition exists, it moves the record from the
work area into the next buffer segment.

• It tests for blocked records.

• If blocked records are specified, it determines the address
of the next segment and tests for a new EOB condition.

• If unblocked records are specified or if a new EOB condition
exists, it issues a BAlR instruction to pass the present
buffer to the end-of-block routine and then returns control
to the processing program.

• If no new EOB condition exists, it returns control to the
processing program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is
encountered in a processing program.

• It obtains the DCBRECAD value of the input DCB, which points
to the present record in the input buffer.

• It moves the DCB's lRECl field from the input DCB to the
output DCB.

• It enters the PUT routine at the start. The PUT routine
then uses the input DCBRECAD value in place of the work area
address.

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro instruction is
encountered in a processing program.

• It simulates an EOB condition.

• It issues a BAlR instruction to pass the present buffer to
the end-of-block routine.

• On return of control from the end-of-block routine, it
returns control to the processing program.

PUT Module IGG019AL: Module IGG019Al moves the present
variable-length or format-D record into the next available
buffer segment. The OPEN executor selects and loads this module
if the OPEN parameter list specifies:

Output

and the DCB specifies:

lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

PUT

Simple buffering

Move operating mode

Variable-length or record format-D (unblocked or blocked),
unspanned

The module consists of a PUT routine, a PUTX routine, and a
TRUNC routine.

The PUT routine operates as follows:

• It receives control when a PUT macro instruction is
encountered in a processing program.

• It determines the address of the next buffer segment and
compares the length of the next record with the remaining
buffer capacity.

• If the record fits into the buffer, it moves the record,
updates the length field of the block, and tests for blocked
records.

• If blocked records are specified, it returns control to the
processing program.

• If the record does not fit into the buffer or if unblocked
records are specified, it issues a BALR instruction to pass
the present buffer to the end-of-block routine. It issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR. The PUT routine then moves the record from the
work area to the buffer, updates the block-length field, and
returns control to the processing program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is
encountered in a processing program.

• It obtains the DCBRECAD value of the input DCB, which points
to the present record in the input buffer.

• It enters the PUT routine at the start. The PUT routine
then uses the input DCBRECAD value instead of the work area
address.

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro instruction is
encountered in a processing program.

• It issues a BALR instruction to pass control of the present
buffer to the end-of-block routine.

• It issues another BALR instruction to obtain a new buffer
through the output-synchronzing-and-error-processing
routine, module IGG019AR.

• It determines the address of the first segment of the new
buffer and then returns control to the processing program.

PUT Module IGG019BP: Module IGG019BP presents the processing
program with the address of the next available buffer segment
for a variable-length record. The OPEN executor selects and
loads this module if the OPEN parameter list specifies:

Output

and the DCB specifies:

PUT

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 31

32 MVS/XA SAM Logic

Simple buffering

Locate operating mode

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Variable-length spanned (unblocked or blocked) record format

Logical record interface

The module consists of a PUT routine and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when a PUT macro instruction is
encountered in a processing program.

• If extended logical record interface (XLRI) is used, the
logical record length field is three bytes long for logical
records that must be spanned. The DCB LRECL value specifies
the maximum logical record length in multiples of 1024.

• It tests whether a spanned record was to have been written.

• If the last record written was not a spanned record, it
determines the address of the next buffer segment using the
length field of the last record segment moved by the
processing program.

• It checks the value placed into the DCBLRECL field to
determine if a buffer is ready for emptying and if a new
empty buffer is needed. If control is returned from the
user and the prior record does not require segmentation (a
buffer location is used instead of a record area), the SDW
must be changed from the three low-order byte format to the
two high-order byte format (OLLL to LLOO) when extended
logical record interface (XLRI) is used.

• If no EOB condition exists, it tests for blocked records.

• If blocked records are specified, it presents the address of
the next buffer segment to the processing program and
returns control to the processing program.

• If unblocked records are specified, it issues a BALR
instruction to pass the present buffer to the EOB routine.
The PUT routine issues another BALR instruction to obtain a
new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR, and determines the address of the first segment of
the new buffer. The PUT routine tests whether the present
record to be written can fit entirely in the new buffer.

• If the record fits, the PUT routine then presents this
address to the processing program and returns control to the
processing program.

• If the record does not fit, the routine saves the record
address in the record area, obtains the address within the
record area with the proper alignment, sets the
spanned-record flag in the lOB, presents the address in the
record area to the processing program, and returns control
to the processing program.

• If an EOB condition exists, it tests whether a minimum
record segment (at least 5 bytes) can fit in the present
buffer.

•

•

If it fits, the routine saves the record address, obtains
the address within the record area, sets the spanned-record
flag in the lOB, presents the address to the processing
program, and returns control to the processing program.

If it does not fit, the routine issues a BALR instruction to
pass the present buffer to the EOB routine. The routine
then issues another BALR instruction to obtain a new buffer

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

through the output-synchronizing-and-error-processing
routine, IGG019AR, and determines the address of the first
segment of the new buffer. The routine tests whether the
present record can fit entirely in the new buffer.

• If a spanned record was to be written out, it restores the
record address, determines the length of the segment that
can fit in this buffer, moves the segment from the record
area to the buffer, and sets the proper flags for the
segment.

• If more segments are required, the routine issues a BALR
instruction to pass the present buffer to the EOB routine.
The PUT routine issues another BALR instruction to obtain a
new buffer through the
output-synchronizing-and-error-processing routine, module
IGGOI9AR, and determines the address of the first segment of
the new buffer. It moves the remaining bytes of data from
the record area to the buffer and sets the proper flags for
the segment. This step continues until the entire spanned
record has been segmented. The routine then turns off the
spanned-record flag and determines the address of the next
buffer segment.

The TRUNC routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal. It then
returns control to the processing program.

When a TRUNC macro instruction is issued after a spanned record
was written, this routine branches to the PUT routine to write
out the last record (the spanned record) and then truncates the
block that contains the last segment of that spanned record.

If a spanned record is being truncated in extended logical
record interface (XLRI) mode, the truncate return is set up as
if a buffer location, instead of the record area, is being
returned to the user.

PUT Module IGG019DJ (SYSIN/SYSOUT): Module IGGOl9DJ interfaces
with a JES to pass the present record into the system output
stream. For locate mode, it presents the processing program
with the address of the next available buffer segment.

The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Output (SYSOUT specified on the DD statement)

and the DCB specifies:

PUT, PUTX

Simple buffering

Locate, move, or data operating mode

Fixed, undefined, or variable-length record format

Spanned records

Logical record interface

The module consists of PUT, PUTX, and TRUNC macro instructions.
(See Diagram M for an overview of the SAM-SI processing for
QSAM.) The GET routine is also in this module. It is described
in the section on simple-buffering GET routines (see Figure 1 on
page 6).

The PUT routine operates as follows:

• It receives control when a PUT macro instruction is
encountered in the processing program.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 33

34 MVS/XA SAM Logic

•

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

It determines the type of PUT request and performs the RPL
initialization necessary to make the translation to a JES
PUT request.

• The record address is placed in RPLAREA and the length of
the record is placed in RPLRLEN.

For move mode the record address is obtained from register 0
on entry to the PUT routine. For locate mode, RPLAREA was
set up on the previous invocation of the PUT routine.

For all record formats other than variable-type, record
length is determined by OCBLRECL. For variable format, the
current ROW specifies the record size, unless data mode for
variable-length spanned records is requested, in which case
OCBPRECL contains the record length. Also for variable
format, the RDW is excluded from the output record by
adjusting RPLAREA past the ROWand decreasing the record
length by 4.

Record Format

Variable-length record format
(move or locate mode)

Variable-length record format
(spanned records, locate mode)

Variable-length spanned record
format (move mode)

Variable-length spanned record
format (data mode)

Fixed and undefined-length
record format (move or locate
mode)

Value of RPLRLEN

ROW Length - 4

value equals total length
of all segments in a
logical record

ROW length - 4

DCBPRECL

DBLRECL

• If processing is in locate mode with variable-length spanned
record format, the present segment is moved to the record
area. If the SDW indicates the logical record is not
complete, the address for the next segment is loaded into
register 1 and control is returned to the processing
program.

• If the DCB record format indicates ASA or machine control
characters, then the control character is checked to
determine if it is a Composed Page Data Stream control byte.
In this case, the ACB data stream indicator is set
(ACBCCDSI) before passing control to the job entry subsystem
(JES).

• It passes control to the job entry subsystem (JES) for data
transfer by issuing a PUT macro instruction against the RPL.
The return code in register 15 is tested upon return from
the JES.

• If a control character is indicated in the DCBRECFM field of
the DCB, the RPLAREA pointer to the record will be adjusted
to point past the control character and the RPLRLEN will be
reduced by 1. The address of the control character is placed
in the RPLCCHAR field.

•

•

Upon return, register 15 and the RPLRTNCD and RPLCNDCD
fields are tested.

If an error condition is detected, control is passed to the
error-processing routine, IGG019AH. (See Figure 12 on
page 67.)

For normal completion, the address in the RPLAREA field is
placed in register I for locate mode. The RPLAREA field
contains the address of the next available buffer.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Registers are restored and control is returned to the
processing program.

The PUTX routine operates as follows:

• It receives control when a PUTX macro instruction is
encountered in the processing program. This routine
processes only the output mode of the PUTX macro
instruction.

• The address of the input buffer to be written is located
through the DCBRECAD field of the input DCB.

• After having located the output record. the request is then
processed by the PUT routine as a PUT. move mode request.

The TRUNC routine receives control when a CNTRl or TRUNC macro
instruction is issued. Module IGG019DJ does no processing for
these macro instructions. Control is returned to the processing
program by IGG019DJ.

PUT Module IGG019FG: Module IGGOl9FG moves the data portion of
the variable-length record into the next available buffer
segment. The OPEN executor selects and loads this module if the
OPEN parameter list specifies:

Output

and the DCB specifies:

PUT

Simple buffering

Data operating mode

Variable-length (unblocked or blocked) record format,
spanned

The module consists of a PUT routine and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when the processing program issues a PUT
macro instruction.

• It determines the possible location of the next buffer
segment by adding the length of the previous record or
record segment to the previous buffer segment address. This
address is in the DCBRECAD field.

• It then compares the length of the next record with the
remaining buffer capacity.

• If ISO/ANSI/FIPS spanned records are being processed. the
buffer position pointer is updated to allow room for the
5-byte ISO/ANSI/FIPS segment control word (SCW).

• If the record will fit. the routine moves the record,
updates the length field of the block descriptor word (BDW),
and checks for blocked records.

• If blocked records are specified, the routine returns
control to the processing program. If unblocked records are
specified. the routine issues a BAlR instruction to pass the
current buffer to the EOn routine. The PUT routine issues
another BAlR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGG019AR. The PUT routine then builds a new block
descriptor word (BDW) and returns control to the processing
program.

• If the record will not fit, the routine determines whether
there are 5 or more unused bytes remaining in the buffer.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 35

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If there are, the PUT routine breaks the current record so
that the first segment fills the buffer. The remaining
segment will be placed in subsequent buffers. The length
field in the segment descriptor word (SDW) of the first
segment is updated to reflect the length of the segment.
The third byte of this SDW is set to X'Ol' to indicate that
this segment is the first of a multisegment record. After
writing the buffer, the PUT routine does not return control
to the processing program until the entire record has been
processed. The routine forms the remainder of the current
record into a new segment. The new segment is constructed
in a new buffer; the third byte of the SDW of the newly
created segment is set to X'02' if this segment is the last
of a multisegment record. If there are other segments, the
third byte is set to X'03' to indicate that this segment is
neither the first nor the last of a multisegment record.
Newly created segments are processed as any other record.

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro instruction is
encountered in a processing program.

• It issues a BALR instruction to pass control of the present
buffer to the end-of-block routine.

• It issues another BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing
routine, module IGG019AR.

• It determines the address of the first segment of the new
buffer and then returns control to the processing program.

PUT Module IGG019FJ: Module IGG019FJ presents the processing
program with the address of the next available buffer segment
for a variable-length record. The OPEN executor selects and
loads this module if the OPEN parameter list specifies:

Output

and the DCB specifies:

PUT

Simple buffering

Locate operating mode

Variable-length (unblocked or blocked) record format,
spanned

The module consists of a PUT routine and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when the processing program issues a PUT
macro instruction.

• It determines the address of the next buffer segment by
adding the address of the last record or record segment
moved to the buffer and the length of that record or record
segment. The length of the record segment is in the SDW.

36 MVS/XA SAM logic

• It checks the buffer to see if there are 5 or more unused
bytes.

• If there are 5 or more unused bytes remaining in the buffer,
the PUT routine places their address into register 1 for the
processing program. The PUT routine places the exact number
of bytes left in the buffer into register 0 for the
processing program. The PUT routine then returns control to
the processing program.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If the buffer contains fewer than 5 unused bytes, the
routine issues a BALR to the EOB routine. The PUT routine
issues another BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing
routine, module IGGOl9AR, and determines the address of the
first segment of the new buffer. The PUT routine then
builds a new block descriptor word (BDW) and returns control
to the processing program.

The TRUNC routine causes an EOB condition by setting the
DCBRECAD and DCBEOBAD fields so that they are equal. It then
returns control to the processing program.

PUT Module IGG019FL: Module IGGOl9FL moves the current
variable-length record into the next available buffer segment.
The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Output

and the DCB specifies:

PUT

Simple buffering

Move operating mode

Variable-length (unblocked or blocked) record format,
spanned

The module consists of a PUT routine and a TRUNC routine.

The PUT routine operates as follows:

• It receives control when the processing program issues a PUT
macro instruction.

• It determines the possible location of the next buffer
segment by adding the length of the previous record or
record segment to the previous buffer segment address. This
address is in the DCBRECAD field.

• It then compares the length of the next record with the
remaining buffer capacity.

• If the record will fit, the routine moves the record,
updates the length field of the block descriptor word (BDW),
and checks for blocked records.

• If ISO/ANSI/FIPS spanned records are being processed, the
buffer position pointer is updated to allow room for the
5-byte ISO/ANSI/FIPS segment control word (SCW).

• If blocked records are specified, the routine returns
control to the processing program. If unblocked records are
specified, the routine issues a BAlR instruction to pass the
current buffer to the EOB routine. The PUT routine issues
another BALR instruction to obtain a new buffer through the
output-synchronizing-and-error-processing routine, module
IGGOI9AR. The PUT routine then builds a new block
descriptor word (BDW) and returns control to the processing
program.

• If the record will not fit, the routine determines whether
there are 5 or more unused bytes remaining in the buffer.
If there are, the PUT routine breaks the current record so
that the first segment fills the buffer. The remaining
segment is placed in subsequent buffers. The length field
in the segment descriptor word (SDW) of the first segment is
updated to reflect the length of the segment. The third
byte of this SDI~ is set to X'OI' to indicate that this
segment is the first of a multisegment record. After
writing the buffer, the PUT routine does not return control

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 37

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

to the processing program until the entire record has been
processed. The routine forms the remainder of the current
record into a new segment, which is constructed in a new
buffer. The third byte of the SDW of the newly created
segment is set to X'02' if this segment is the last of a
multisegment record. If there are other segments, the third
byte is set to X'03' to indicate that this segment is
neither the first nor the last of a multisegment record.
Newly created segments are processed as any other record.

The TRUNC routine operates as follows:

• It receives control when a TRUNC macro instruction is
encountered in a processing program.

• It issues a BALR instruction to pass control of the present
buffer to the end-of-block routine.

• It issues another BALR instruction to obtain a new buffer
through the output-synchronizing-and-error-processing
routine, module IGG019AR.

• It determines the address of the first segment of the new
buffer and then returns control to the processing program.

Update Mode PUTX Routines

The update mode PUTX routines differ from other PUT routines in
that PUTX routines share buffers (as well as the DCB and the
lOBs) with the update mode GET routines. It is the update mode
GET routines that determine the address of the segment, when the
end of the buffer is reached and a new buffer is needed. Thus,
all that remains for the PUTX routines is to flag the block for
output.

There are two update-mode PUT routines. They are part of
modules IGG019AE and IGG019BU, which are described under
"Update-Mode GET Modules" (see Figure 3 on page 21).

END-OF-BLOCK ROUTINES

38 MVS/XA SAM Logic

The end-of-block routines are selected for use with a particular
data set on the basis of the access conditions specified by the
processing program for that data set.

Unless INOUT or OUTIN is specified in the OPEN parameter list,
one end-of-block routine is selected. If INOUT or DUTIN is
specified, two end-of-block routines may be required. When
user-totaling is specified, a special user-totaling routine is
executed in conjunction with one of the end-of-block routines.

An end-of-block routine receives control from a GET or a PUT
routine (when using QSAM), or from a READ or WRITE routine (when
using BSAM).

End-of-block routines are shared by BSAM and QSAM. QSAM flow of
control is shown in Diagram F; BSAM flow is shown in Diagram G.
Register usage at entry to and exit from end-of-block routines
is as follows:

Registers Entry Value Exit Value

0-1 N/A Not restored
2 DCB address Unchanged or

restored
3 lOB - 8 (or ICB) Unchanged or

restored

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Registers

4-6
7

8

9-10
11-12

13

14

15

Note:

Entry Value

N/A
READ or WRITE CCW offset

Caller's base address

User's registers
User's registers

Save area

Caller's return address

Entry point address

Exit Value

Not restored
Unchanged or
restored
Unchanged or
restored
Restored l

Unchanged or
restored
Unchanged or
restored
Unchanged or
restored
Not restored

lhese registers are saved by end-of-block in the last two
words of the save area, and are restored before returning to
caller.

Control passes from an end-of-block routine, through the EXCP or
EXCPVR interface, to the I/O supervisor, except when one channel
program or lOB is chained to another. End-of-block routines
provide device-oriented entries for the channel program, such as
control characters and auxiliary storage addresses.

If the American National Standard Code for Information
Interchange (ASCII) is used, routines IGG019CC and IGG019CW
issue an XLATE macro instruction which translates the entire
buffer from EBCDIC to ASCII before writing the buffer. If
format-D records are specified, the record descriptor words are
converted from binary form to decimal form prior to translation.

End-of-block routine descriptions are grouped as follows:

• Ordinary end-of-block routines. These routines perform
device-oriented processing when normal channel-program
scheduling is used for tape and unit record devices. The
user-totaling routine is described in this section. It
moves the contents of the user's totaling area to the
user-totaling save area pointed to by the DEB.

• Chained channel-program scheduling end-of-block routines.
These routines perform device-oriented processing and
attempt to chain channel programs when chained
channel-program scheduling is used for tape and unit record
devices.

• DASD end-of-block routines. These routines perform
direct-access device processing for output data sets. The
routines attempt to chain lOBs to a queue for which a
real-address channel program will be dynamically built by
the DASD SIO/pagefix appendage.

Ordinary End-of-Block Routines

Ordinary end-of-block routines process channel programs for tape
and unit record devices. This processing is independent of the
progress of a previous channel program and causes access to
proceed one channel program at a time. For unit-record devices,
these routines process control characters and PRTOV macro
instructions.

Figure 5 on page 41 lists the routines available and the
conditions that cause a particular routine to be used. For
QSAM, the OPEN executor selects one of the routines, loads it
and places its address into the DCBEOB field. For BSAM, the
OPEN executor selects one of the routines, loads it, and places
its address into both the DCBEOBR and DCBEOBW fields. If INOUT
or aUlIN is specified, a second end-of-block routine may be

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 39

40 MVS/XA SAM Logic

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

selected and loaded. Its address replaces one of the duplicate
addresses in the DCB.

End-of-Black Module IGG019CC: Module IGG019CC causes a channel
program to be scheduled.

If ASCII coding is used, the entire output buffer is translated
from EBCDIC to ASCII. If the ISO/ANSI/FIPS spanned record
format (DS/DBS) is used, the 4-byte IBM segment descriptor word
(SOW) is converted to the 5-byte ISO/ANSI/FIPS segment control
word (SCW) before translation.

The OPEN executor selects and loads this module if the following
condition exists:

The DCB specifies normal channel-program scheduling and
magnetic tape, card reader, or paper tape as the device
type.

The module operates as follows:

• It receives control when a GET or PUT routine finds that a
buffer is ready to be scheduled, or at the conclusion of the
processing performed by a READ or WRITE routine.

• If the device type is magnetic tape, record format is
variable, control is received from a PUT or WRITE routine,
and a check is made to see if at least 18 bytes are to be
written. If not, the record is padded with binary zeros up
to 18 bytes or block size, whichever is lessi however, with
the ASCII feature, format-D records are padded with the
ASCII padding character, X'5F', instead of with zeros. An
EXCP macro instruction is issued, and control is returned to
the PUT or WRITE routine.

• If the device type is magnetic tape and either the record
format is not variable or control is not gained from a PUT
or WRITE routine, an EXCP macro instruction is issued and
control is returned to the GET, PUT, READ, or WRITE routine.

• If an IBM 3525 Card Punch associated data set is being used,
a test is made to determine the status of the read-sequence
flag.

If the read-sequence flag (DCBQSWS field) is on and the
associated data set is not READ and print, a WTP
message, which indicates that either the GET or READ
sequence is invalid, is issued. An abend (003) is
issued with a return code of 01. If the read-sequence
flag is off, the macro sequence is assumed to be valid
and the READ-sequence flag is turned on.

Tests are made to determine if the associated data set
is either read, punch, and print, or read and punch.

If either read, punch, and print, or read and punch is
specified in the FUNC parameter, a test is made to
determine the status of the punch-sequence flag. If the
punch-sequence flag (DCBQSWS field) is on, it is turned
off. (This indicates to modules IGG019CE and IGG019CF
that their calling routine is in the proper sequence.)

If the associated data set is not read, punch, and
print, or read and punch, it is assumed that read and
print is being used.

A test is made to determine the status of the
print-sequence flag (DCBQSWS).

If the print-sequence flag is on, it is assumed that the J~ .. '
print command has been issued. It is turned off so that
proper sequencing may continue. If the print-sequence
flag is off, it is assumed that the print command has
not been issued.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Access Method
options

Normal channel program
scheduling

Output, or INOUT OUTIN

Card reader

Printer or card punch

Printer (3535)

Interpreter/Punch (3525)

Data Processing Image
(3525)

Magnetic Tape

No control character

Machine control character

ANS control character

PRTOV--No user exit

Label=(",IN) or
Label=(",OUT) on DD
statement l

User totaling facility

Associated data set

End of Block Modules

IGGOl9AX

IGGOl9CC

IGGOl9CE

IGGOl9CF

IGGOl9CTl

IGGOl9FK

IGGOl9FQ

Selections

x x x

x x

x

X

CC CC CC

x

x

X

AX

x

x

X

x

x

x
X

x

CE CE

x

x

X

x

x

x
X

x

CE CE

x

x

x
X

x

x

X

X

CF CF

x x x x x

x

x
x x

x
x

x

X x

CT

FK

FQ FQ

IGGOl9FU FU

IGGOl9TC TC

Figure 5. Module Selector--Ordinary End-of-Block Modules (non-DASD)

Note to Figure 5:
1 When either of these LABEL parameters is specified and the

data set is opened for INOUT or OUTIN, the OPEN executor
loads module IGGOl9CT in addition to one of the other
end-of-block routines.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 41

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

End-of-Block Module IGG019CEI Module IGG019CE. if necessary.
modifies channel programs for unit record output devices when
American National Standard Institute (ANSI) control characters
are not used. The module then causes scheduling of the channel
program. whether it was modified or not. The OPEN executor
selects and loads this module if the DCB specifies:

Normal channel-program scheduling

Punch. or printer

Machine control character. or no control character

The module operates as follows:

42 MVS/XA SAM Logic

• It receives control when a PUT routine finds that a buffer
is ready to be scheduled. or at the conclusion of the
processing performed by a WRITE routine.

• It adjusts. in the channel program. the length and starting
address either for the length field of variable-length
records or for a control character. If there are
variable-length records and a control character. the module
adjusts for both.

• If a control character is present. it inserts it as the
command byte of the WRITE channel command word (CCW).

• If the device is an IBM 3800 Printing Subsystem and OPTCD=J
is specified. the module determines if the table reference
character in the current record refers to the translate
table presently active in the device. If so, the select
translate table CCW. which precedes the WRITE CCW. is
altered to a NOP. Otherwise. the select CCW is modified to
select the appropriate translate table. (If OPTCD=J is not
specified. the common printer channel program is used.)

• It tests the DCB field at location DCBDEVT + I for a PRTOV
mask. If a PRTOV mask is present. the module temporarily
inserts it into the length field of the NOP CCW and sets the
first bit in the lOB. The PRTOV appendage IGG019CL tests
for the presence of the lOB bit and the CCW mask.

• If an associated data set is being used. a test is made to
determine the status of the punch-sequence flag.

If the punch-sequence flag (DCBQSWS) is on and the
associated data set is not punch and print. a WTP
message is issued which indicates that either the PUT or
WRITE sequence is invalid. An abend (003) is issued
with a return code of 02. If the punch-sequence flag is
off. the macro sequence is assumed to be valid and the
punch-sequence flag is turned on.

A test is made to determine if the associated data set
is read. punch. and print. If read. punch. and print is
specified in the FUNC parameter. a test is made to
determine the status of the read-sequence flag.

If the read-sequence flag is on. it is turned off. This
allows proper sequencing to continue. If the
read-sequence flag is off. an ABEND is issued.

A test is made to determine the status of the
print-sequence flag.

If the print-sequence flag is on. proper sequencing
continues. If it is off. modules IGG019CE and IGG019CF
continue with their normal functions.

If the associated data set is punch and print. the
status of the print-sequence flag is determined as
previously explained for module IGG019CC.

LY26-3967-0 © Copyright IBM Corp. 1977.1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

• It issues an EXCP macro instruction and returns control to
the PUT or WRITE routine.

End-of-Block Module IGG019CF: Module IGGOl9CF modifies channel
programs for unit record output devices when an American
National Standard Institute (ANSI) control character is present.
The module then causes scheduling of the channel program.
whether it was modified or not. The OPEN executor selects and
loads this module if the DCB specifies:

Normal channel-program scheduling

Punch or printer

ANS control character

The module operates as follows:

• It receives control when a PUT routine finds that a buffer
is ready to be scheduled. or at the conclusion of the
processing performed by a WRITE routine.

• It adjusts. in the channel program. the length and starting
address for the control character. and for the length field
of variable-length records.

• It translates the control character and inserts it as the
command byte of the control channel command word () which
precedes the WRITE CCW (or the select CCW. if the device is
a 3800 Printing Subsystem with OPTCD=J specified.)

• If the device is a 3800 Printing Subsystem and OPTCD=J is
specified. the module determines if the table reference
character in the current record refers to the translate
table presently active in the device. If so. the select
translate table CCW. which precedes the WRITE CCW. is
altered to a NOP. Otherwise. the select CCW is modified to
select the appropriate translate table. (If OPTCD=J is not
specified. the common printer channel program is used.)

• It tests the DCB field at location DCBDEVT+I for a PRTOV
mask. If a PRTOV mask is present. the module inserts it
into the length field of the control CCW and sets the first
bit in the lOB. The PRTOV appendage IGG019Cl tests for the
presence of the lOB bit and the CCW mask.

• If an associated data set is being used. a test is made to
determine the status of the punch-sequence flag.

If the punch-sequence flag (DCBQSWS) is on and the
associated data set is not punch and print. a WTP
message is issued to indicate that either the PUT or the
WRITE sequence is invalid. An abend (003) is issued
with a return code of 02. If the punch-sequence flag is
off. the macro sequence is assumed to be valid and the
punch-sequence flag is turned on.

A test is made to determine if the associated data set
is read. punch. and print. If read. punch. and print is
specified in the FUMC parameter. a test is made to
determine the status of the read-sequence flag.

If the read-sequence flag (DCBQSWS) is on. it is turned
off. This allows proper sequencing to continue. If the
read-sequence flag is off. an ABEND is issued.

A test is made to determine the status of the
print-sequence flag (DCBQSWS).

If the print-sequence flag is on. proper sequencing
continues. If it is off. modules IGGOl9CE and IGGOl9CF
continue with their normal functions.

lY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 43

•

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If the associated data set is punch and print, the
status of the print-sequence flag is determined, as
previously explained for module IGG019CC.

It issues an EXCP macro instruction and returns control to
the PUT or WRITE routine.

End-of-Block Module IGG019CT: Module IGG019CT sets error
indicators in the user's DCB and lOB. The OPEN executor selects
and loads this module if the following conditions exist:

or

The data set is opened for INOUT and the DD statement
specifies LABEL=(",IN)

The data set is opened for OUTIN and the DD statement
specified LABEL=(",OUT)

The module operates as follows:

44 MVS/XA SAM logic

• It receives control and sets error indicators in the user's
DCB and lOB when either of the following conditions exists:

The DD statement specifies LABEL=(",IN), the data set
is opened for INOUT, and a WRITE macro instruction is
issued,

The DD statement specifies LABEL=(",QUT), the data set
is opened for DUTIN, and a READ macro instruction is
issued.

End-of-Block Module IGG019FK:
program to be scheduled. The
this module, if the following
DCB:

Module IGG019FK causes a channel
OPEN executor selects and loads
conditions are described in the

Data protection image (DPI) is specified for the 3525 with a
read and punch, or read, punch, and print file with normal
channel-program scheduling.

The module operates as follows:

• It receives control when a PUT routine finds that a buffer
is ready to be scheduled, or at the conclusion of the
processing performed by a WRITE routine.

• If the READ associated data set has been opened, a test is
made to determine the status of the read-sequence flag.

• If the READ associated data set has not been opened, or if
the READ-sequence flag is off, a WTP message is issued which
indicates that the sequence is invalid. An a·bend (003) is
then issued with a return code of 02. If the read-sequence
flag is on (indicating proper sequencing), it is turned off.

• A test is then made to determine the status of the
punch-sequence flag (DCBQSWS field). If the punch-sequence
flag is on, a WTP message is issued, followed by an ABEND
(003). If the punch-sequence flag is off, it is turned on
so that proper sequencing may continue.

• It then establishes the buffer area (for the punch
operation) according to the format of the data protection
image. If a byte in the DPI is blank (X'40'), the module
blanks out the corresponding byte in the output punch
buffer. If the byte is not blank, the output buffer is not
altered. Both areas are 80 bytes in length.

• It returns control to either the PUT or WRITE routine that
called it.

lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

End-of-Block Module IGG019FQ: Module IGG019FQ causes a channel
program to be scheduled to the 3525 Card Punch. The OPEN
executor selects and loads this module, if the following
conditions exist:

A print; read, punch, and print; read and print; or punch
and print file is specified for the 3525 with either a
machine control character, an ANSI control character, or no
control character at all with normal channel-program
scheduling.

The module operates as follows:

• It receives control when a PUT routine finds that a buffer
is ready to be scheduled, or at the conclusion of the
processing performed by a HRITE routine.

• If either a read, punch, and print or punch and print
associated data set has been specified, a test is made to
determine the status of the print sequence flag. If the
print-sequence flag is on, the CCH pointer is modified to
point to the print CCH.

• If both the print- and punch-sequence flags are off, a HTP
message is issued to indicate that the sequence is invalid.
An abend (003) is then issued with a return code of 03.

• If the print-sequence flag is off, but the punch-sequence
flag is on, the module locates the punch DCB and turns off
the punch-sequence flag. The CCH pointer is then modified
to point to the print CCH and the print-sequence flag is
turned on.

• If a read and print associated data set is specified and the
print-sequence flag is on, the CCH pointer is modified to
point to the print CCH.

• If the print-sequence flag is off, but the read-sequence
flag is on, the READ DCB is located and the read-sequence
flag is turned off. The CCH pointer is then modified to
point to the print CCH and the print-sequence flag is turned
on.

• After sequence checking is completed, the module tests for
ANSI and machine control characters. If ANSI is specified,
the control character is analyzed to determine which line
the data is to be printed on. An OR operation is then
performed on that line number and the print CCW.

• If ANSI control characters are not specified, the module
tests for record format and machine control characters. If
machine control characters are specified, they are inserted
into the CCH and the buffer address is increased by one.

• If no control character is specified, and two-line printing
is specified in the FUNC parameter, the module tests to
determine line positioning on the card. This is reflected
in the operation code of the print CCH.

• If no control
is specified,
positioning.
lines.)

character is specified, and multiline printing
tests are again made to determine line
(Output lines are printed on successive

• If no control characters are specified, or if they are
specified and have been processed, or if either two-line or
multiline positioning is complete, the module establishes
the WRITE CCW and stores the start address of the CCW for
the input/output supervisor (IDS).

• If the PRTOV macro instruction is specified, a check is made
for either channel 9 or 12 (depending on which channel is
specified in the PRTOV macro instruction).

LY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 45

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• The channel program is then executed and a HAlT command is
issued. It returns control (via register 14) to either the
PUT or ~IRITE routine that called it.

End-of-Block Module IGG019FU: Module IGG019FU causes a channel
program to be scheduled. The OPEN executor selects and loads
this module if one of the following conditions exists:

INTERPRET PUNCH is specified for the 3525 with normal
channel-program scheduling.

INTERPRET PUNCH is specified for the 3525 with first control
character for stacker selection or with no control character
at all.

The module operates as follows:

• It retrieves the data address from the WRITE CCH.

• It tests for record format to determine if machine control
characters or ANS control characters are being used.

• If either machine or ANS control characters are being used,
the data address is increased by one and the control
character is inserted into the command byte of the WRITE
CCH.

• If machine control characters are not specified, the data
address remains unchanged.

• The module blanks out a print buffer. (The print buffer is
a 64-byte area located 64 bytes past the beginning of the
lOB.) It then moves the final 16 characters of the output
punch buffer into the last 16 bytes of the print buffer.

• The channel program start address is stored in the lOB.

• The channel program is then scheduled for execution.

• It returns control (via register 14) to either the PUT or
WRITE routine that called it.

End-of-Block Module IGG019TC: The OPEN executor selects and
loads this module if the user specified the user-totaling
facility (that is, if bit 6 is 1 in DCBOPTCD) for the data set
and if the following condition exists:

. The DCB specifies normal channel-program scheduling and
magnetic tape as the device type.

The module operates as follows:

• It receives control when a PUT routine finds that a buffer
is ready to be scheduled, or at the conclusion of the
processing performed by a WRITE routine.

46 MVS/XA SAM Logic

• The module issues an EXCP macro instruction and returns
control to the PUT or WRITE routine.

• It issues a BALR instruction to the user-totaling save
routine, IGG019AX, to place the user's total in the
user-totaling save area, which is pointed to by the DEB.

User-Totaling Save Module IGG019AX: Module IGG019AX saves an
image of the user's totaling area in the sequential access
method totaling save area. This save area is described in
Figure 36 on page 244.

The OPEN executor selects and loads this module if the
user-totaling option is specified in the DCB (that is, if bit 6
is 1 in the DCBOPTCD field).

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

The module operates as follows:

• It receives control from one of the end-of-block
routines--IGG019TC, IGG019TV, IGG019TW, or IGG019T2.

• It retrieves the address of the sequential access method
totaling save area from the access method portion of the
DEB.

• The sequential access method totaling save area contains a
pointer to the user's totaling area. An image of the user's
total is saved in the next available segment of the
sequential access method totaling save area. Then the save
area control block is updated so that the pointer identifies
the current entry.

• It returns control to the end-of-block routine that called
it.

Chained Channel-Program Scheduling End-of-Block Routines (Non-DASD Only)

Chained channel-program scheduling consists of joining the
channel programs before execution and disconnecting and posting
the channel programs after execution. Joining is performed by
the end-of-block routines; disconnecting and posting is
performed by appendages. (For a description of the
disconnecting process, refer to the program controlled
interruption (PCI) and channel-end appendages.) The lOB
constructed by the OPEN executor when chained channel-program
scheduling is used differs from the lOB used in normal
channel-program scheduling. These differences are illustrated
in Figure 6 and tabulated in Figure 8 on page 49.

(al
SAM Prefix to lOB when
normal channel-program
scheduling is used

Next lOB Event Control Block

ECB Address·

Standard lOB

.. 2Wo rds II

·When QSAM is used. the address is that of
the ECB in the SAM prefix; when BSAM is
used the address is that of the ECB in the
data event control block (DECBI.

(bl
SAM Prefix to lOB when
chained channel-program
scheduling is used

Flags I Offsets Event Control Block

First ICB Last NOP C.cw

ECB Address··

Standard lOB

.. 2W rd o s

•• Always shows the address of the ECB in
the SAM prefix. irrespective of whether
QSAM or BSAM is used.

~

Figure 6. lOB SAM Prefixes for Normal and for Chained
Scheduling

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 47

48 MVS/XA SAM Logic

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

These routines join channel programs so that the channel
executes successive channel programs without interruption as if
they were one continuous channel program. To join the present
channel program to one already scheduled, the end-of-block
routine finds the last CCW of the preceding channel program by
referring to the lOB and changes that CCW from a NOP command to
a TIC command. If this joining is performed before the channel
attempts to execute (more precisely, before it fetches) that
CCW, the joining process is successful. If the execution of the
preceding channel program is completed while the routine is
operating, the joining is unsuccessful.

The routine tests the main lOB's IOBCNOPA field to determine
whether to join the channel programs or to issue an EXCP. The
routine tries to add to the chain by using CS to test whether
the high-order bit of IOBCNOPA is on. If the bit is on, the
chain is no longer running. If it is off, the CS instruction
changes the last NOP pointer to join the new channel program.
CS is used to prevent MP systems from starting two chains at
once.

The chained scheduling end-of-block routines, like the ordinary
end-of-block routines, provide device-oriented entries for
channel programs. For unit-record devices they process control
characters. (No processing is performed for the PRTOV macro
instruction because it and chained scheduling are mutually
exclusive.) There are four chained scheduling end-of-block
routines, each of which performs joining and channel program
entry processing for a different set of access condition
options. Figure 7 lists the available routines and the
conditions that cause a particular routine to be used.

For QSAM, the OPEN executor selects one of the routines, loads
it, and places its address into the DCBEOB field. For BSAM and
BPAM, the OPEN executor selects one of the routines, loads it,
and places its address into both the DCBEOBR and DCBEOBW fields. J
If INOUT or OUTIN is specified, a second end-of-block routine
may be selected and loaded. Its address replaces one of the
duplicate addresses in the DCB.

Figure 7 shows that, when chained scheduling is used, the OPEN
mode is input, the device type is magnetic tape, and routine
IGG019CW is selected and loaded for use as the end-of-block
routine for the DCB.

Access Method Options

Chained channel program
scheduling

Input, or

Output

Card reader

Printer or card punch

Magnetic tape

No control character

Machine control character

ANS control character

Selections

x X X X X X

X X

X X X X

X

X X

X X X

X

X

Figure 7 (Part 1 of 2). Module Selector--Chained
Channel-Program Scheduling,
End-of-Block Modules--Non-DASD

X

X

X

X

LY26-3967-0 © Copyright IBM Corp. 1977,1985

~

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Access Method Options Selections

User-totaling facility X

End-of-Block Modules

IGG019AXI AX

IGG019CH CH CH CH

IGG019CX CX CX

IGG019CY CY

IGG019TH TW

Figure 7 (Part 2 of 2). Module Selector--Chained
Channel-Program Scheduling,
End-of-Block Modules--Non-DASD

Note to Figure 7:

1 This module is described earlier in this section under
nOrdinary End-of-Block Processing. n

Prefix Parameter

Number of lOBs

Size of SAM prefix

Contents of Ii nk
address field

Use of ECB field

Contents of 10BCICBA
field

Contents of 10BCNOPA
field

Normal Scheduling

As many as there are
buffers or channel
programs

2 words

Address of the next
lOB

Used in QSAM to post
channel program
execution (in BSAM,
the ECB in the DECB
is used)

Field does not exist

Field does not exist

Chained Scheduling

Only 1 (there are as
many lCBs as there
are buffers or
channel programs)

4 words

Flags
Offsets

Used in QSAM and
BSAM to post a
channel program
execution that is
terminated by
channel-end
interruption (that
is, channel program
chaining has been
broken)

Address of the first
lCB

Address of NOP CCH
of last scheduled
channel program. The
high-order bit is on
when the chain is
running.

Figure 8. Comparison of lOB SAM Prefixes for Normal and for
Chained Scheduling

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 49

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

End-of-Block Module IGG019CW: Module IGG019CW attempts to join
the present channel program to the last one in the chain of
scheduled channel programs. If ASCII is used, the entire output
buffer is translated from EBCDIC to ASCII. If the ISO/ANSI/FIPS
spanned record format CDS/DBS) is being processed, the 4-byte
IBM segment descriptor word (SDW) is converted to the 5-byte
ISO/ANSI/FIPS segment control word (SCW) before translation.
The OPEN executor selects and loads this module if one of the
following conditions exists:

• The OPEN parameter list specifies input and the DCB
specifies chained channel-program scheduling and any device
except DASD.

• The OPEN parameter list specifies output and the DCB
specifies chained channel program scheduling and magnetic
tape.

The module operates as follows:

50 MVS/XA SAM Logic

• It receives control from a GET or PUT routine when the
routine finds that a buffer is ready to be scheduled, or
from a READ or WRITE routine at the conclusion of its
processing.

• If the device type is magnetic tape, the routine determines
the increment value and stores it in the ICB.

• If the device is magnetic tape, the record format is
variable, and control is received from a PUT or WRITE
routine, a check is made to see if at least 18 bytes are to
be written. If not, the record is padded with binary zeros
up to 18 bytes or block size, whichever is less; however,
with the ASCII feature, format-D records are padded with the
ASCII padding character, X' 5F', instead of zeros.

• The module attempts to join the channel program for the
current buffer to the preceding channel program Cthat is,
chain schedule) by:

Setting the ICB to not-complete

Inserting the address of the current channel program
into the NOP CCW of the preceding channel program

Changing the NOP CCW in the preceding channel program to
a TIC CCW

Updating the SAM lOB prefix block to point to the end of
the current channel program by doing a CS on IOBCNOPA

• If the joining (the CS) was successful, the routine returns
control to the calling routine.

• If the present channel program was not joined to the
preceding one, the routine prepares to cause restart of the
channel by copying the channel program start address from
the current ICB into the lOB, and uses the EXCP macro
instruction to cause scheduling of the channel program. It
then returns control to the calling routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

End-of-Block Module IGG019CX: Module IGGOl9CX. if necessary.
modifies channel programs for unit-record output devices when
ANS control characters are not used. The module then attempts
to join the current channel program to the preceding one. The
OPEN executor selects and loads this module if the DCB
specifies:

• Chained channel-program scheduling

• Printer or card punch

• No control character or machine control character

The module operates as follows:

• It receives control from a PUT routine when the routine
finds that a buffer is ready for scheduling. or from a WRITE
routine at the conclusion of its processing.

• It adjusts the length entry and the start address entry in
the channel program for either a control character or a
variable-length block length field or for both. if both are
present.

• It inserts the control character. if present. as the command
byte of the WRITE channel command word (CCH).

• If the device is a 3800 Printing Subsystem and OPTCD=J is
specified. the module determines if the table reference
character in the current record refers to the translate
table presently active in the device. If so. the select
translate table CCW. which precedes the HRITE CCW. is
altered to a NOP. Otherwise. the select CCW is modified to
select the appropriate translate table. (If OPTCD=J is not
specified. the common printer channel program is used.)

• It attempts to join the channel program for the current
buffer to the preceding channel program (that is. chain
schedule) by:

Setting the ICB to not-complete

Inserting the address of the current channel program
into the NOP CCW of the preceding channel program

Changing the NOP CCW in the preceding channel program to
a TIC CCW

Updating the SAM lOB prefix block to point to the end of
the current channel program by a CS instruction on
IOBCNOPA

• If the joining (the CS instruction) was successful. the
routine returns control to the calling routine.

• If the present channel program was not joined to the
preceding one. the routine prepares to cause restart of the
channel by copying the channel program start address from
the current ICB into the lOB. and uses the EXCP macro
instruction to cause scheduling of the channel program. It
then returns control to the calling routine.

LY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 51

contains Restricted Materials of IBH
Licensed Materials -- Property of IBH

End-of-Block Module IGG019CV: Module IGGOl9CY modifies channel

characters are used. The module then attempts to join the
programs for unit record output devices when ANS control J
current channel program to the preceding one. The OPEN executor ..
selects and loads this module if the DCB specifiesl

• Chained channel-program scheduling

• Printer or card punch

• ANS control character

The module operates as follows:

52 MVS/XA SAM Logic

• It receives control from a PUT routine that finds a buffer
is to be scheduled. or from a WRITE routine at the
conclusion of its processing.

• It adjusts the length entry and the start-address entry in
the channel program for either the control character or a
variable-length block length field or for both. if both are
present.

• It translates the control character and inserts it as the
command byte of the control CCW which precedes the WRITE
CCW).

• It translates the control character and inserts it as the
command byte of the control CCW which precedes the WRITE CCW
(or the select CCW. if the device is a 3800 Printing
Subsystem with OPTCD=J specified.)

• If the device is a 3800 Printing Subsystem and OPTCD=J is
specified. the module determines if the table reference
character in the current record refers to the translate
table presently active in the device. If so. the select
translate table CCW. which precedes the WRITE CCW. is
altered to a NOP. Otherwise. the select CCW is modified to
select the appropriate translate table. (If OPTCD=J is not
specified. the common printer channel program is used.)

• It attempts to join the current channel program to the
preceding one (that is. chain schedule) by:

Setting the ICB to not-complete

Inserting the address of the current channel program
into the NOP CCW of the preceding channel program

Changing the NOP CCW in the preceding channel program to
a TIC CCW

Updating the SAM lOB prefix block to point to the end of
the current channel program. using the CS instruction on
IOBCNOPA

• If the joining (the CS instruction> was successful. the
routine returns control to the calling routine.

• The routine tests the ICB for the present channel program to
find whether the joining was successful or not.

• If the present channel program was not joined to the
preceding one. the routine prepares to cause restart of the
channel by copying the channel program start address from
the current ICB into the lOB, and uses the EXCP macro
instruction to cause scheduling of the channel program. It
then returns control to the calling routine.

LY26-3967-0 © Copyright IBM Corp. 1977.1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

End-of-Block Module IGG019TWI Module IGG019TW attempts to join
the present channel program to the last one in the chain of
scheduled channel programs. The OPEN executor selects and loads
this module if the user specifies the user-totaling option (that
is, if bit 6 is I in DCBOPTCD) for the data set and if the
following condition exists:

The OPEN parameter list specifies Output and the DCB
specifies chained channel program scheduling and magnetic
tape.

The module operates as follows:

• It receives control from a PUT routine when the routine
finds that a buffer is ready to be scheduled, or from a
WRITE routine at the conclusion of its processing.

• It issues a BALR instruction to the user-totaling save
routine, IGG019AX, to place the user's total in the
user-totaling save area, which is pointed to by the DEB.

• The routine determines the increment value and stores it in
the ICB.

• The module attempts to join the channel program for the
current buffer to the preceding channel program (that is,
chain schedule) by:

Setting the ICB to not-complete.

Inserting the address of the current channel program
into the NOP CCW of the preceding channel program.

Changing the NOP CCW in the preceding channel program to
a TIC CCW.

Updating the SAM lOB prefix block to point to the end of
the current channel program.

It determines whether the joining was successful by
using a CS instruction on IOBCNOPA.

If the joining (the CS instruction) was successful, the
routine returns control to the calling routine.

If the present channel program was not joined to the
preceding one, the routine prepares to cause restart of
the channel by copying the channel program start address
from the current ICB into the lOB and uses the EXCP
macro instruction to cause scheduling of the channel
program. It then returns control to the calling
routine.

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 53

End-of-Block Routines for Direct-Access storage

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

For an output request, the end-of-block modules maintain the
track balance and calculate the address of the record to be
written (that is, the CCHHR address on the direct-access storage
device).

The DASD end-of-block modules (see Figure 9 on page 55) process
the lOB passed to them by the caller. lOBs built by the DASD
OPEN executor contain an lOB extension (IOBEX) with one or two
CCWs and other data. The lOB is processed by first chaining it
to a queue of active lOBs, then by constructing a real-address
channel program that serves the lOB's request, and, finally, by
disconnecting and posting the lOB. The DASD end-of-block
modules chain the lOB to the active queue. (See nStart I/O
(SIO) Appendages" for a description of the channel-program
building process; see "Channel End Appendages and Abnormal End
Appendages" for a description of the disconnecting and posting
process.)

A queue of lOBs is made active by storing the address of the
queue's first and last lOBs in the interrupt control queue
element (ICQE), in fields ICQFIRST and ICQENDA, and issuing an
EXCPVR SVC. The DCB contains the ICQE's address (at DCBICQE or
DCBIOBADl). The ICQE is built by the DASD OPEN executor.

The lOB in the sequential access method block (SAMB) is passed
to EXCPVR. (Note: The lOB in the SAMB is not part of the active
lOB queue.) The lOB in the SAMB is pointed to by the ICQE
(ICQIOBA). The SAMB is built by the DASD OPEN executor.

The DASD end-of-block modules either chain the lOB passed to
them to an active lOB queue, or issue an EXCPVR SVC. The
compare-and-swap (CS) instruction is used to attempt to update
ICQENDA with the address of the lOB. The CS instruction tests
the high-order bit of ICQENDA (ICQEXND).

If ICQEXND is zero, the swap is successful: The active queue of
lOBs is updated to include another lOB. The end-of-block module
then returns to the caller.

If ICQEXND is one, no active lOB queue exists and the swap
fails. The lOB's address is put into ICQFIRST and ICQENDA, and
an EXCPVR SVC is issued. The end-of-block module then returns
to the caller.

DASD end-of-block modules are loaded for all BSAM, BPAM, and
QSAM direct-access processing, except for BFTEK=R processing
(see "READ Module IGGOI9BU") and for WRITE-load processing (that
is, BDAM create processing). IGGOl9TV is the end-of-block
module for all processing except track overflow output.
IGGOl9T2 is loaded for track overflow output.

1 DCBICQE and DCBIOBAD are labels for the same DCB field.

54 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials o~ IBM
Licensed Materials -- Property o~.IBM

Access Method Options Selections

Input or update X

INOUT or OUTIN X X X X

Output X X X

Track overflow X X

LABEL=(",IN) or X
LABEL=(",OUT) on a
DD statement l

User totaling X X

Direct-access X X X X X X X X

DASD End-o~-Block Routines

IGG019AXz AX AX

IGG019CTl,2 CT

IGG019TV TV TV TV TV

IGG019T2 T2 T2

Figure 9. Module Selector--DASD End-of-Block Routines

Notes to Figure 9:

1 When either LABEL=(",IN) and OPEN for INOUT or
LABEL=(",OUT) and OPEN for OUTIN is specified, 100019CT is
loaded in addition to one of the other end-of-block
routines.

z This module is described in nOrdinary End-of-Block
Routines. n

END-OF-BLOCK MODULE IGG019TV: For an output request, module
IGG019TV computes a valid storage address (CCHHR) for the data
record (using the track balance value and, if necessary, further
allocated extents on the volume), and then attempts to chain an
lOB to an active lOB queue. For an input request, module
IGG019TV attempts to chain an lOB to an active lOB queue. The
OPEN executor selects and loads IGG019TV when the DCB specifiesl

Direct-access storage

Not track overflow output

The module operates as follows:

• It receives control from a GET or PUT routine that finds a
buffer is ready to be scheduled, or from a READ or WRITE
routine at the conclusion of its processing.

• If the user specified the user-totaling option (that is, if
bit 6 in DCBOPTCD is 1) for the data set, I00019TV issues a
BALR instruction to the user-totaling save routine,
IGG019AX, to place the user's total in the user-totaling
save area, which is pointed to by the DEB.

For an output request:

• It calculates the block length, using the overhead value for
a last block on a track. (This value is found in the
resident I/O device table. The address of the table is in

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 55

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

the DCBCVTBL field.) It compares the calculated block
length with the value in the DCBTRBAl field of the DCB.

• If the block length is equal to or less than the DCBTRBAl
field value, the module determines that the block fits on
the track.

• If the block length exceeds the DCBTRBAL field value, the
module calculates the next sequential track address and
compares it with the end address of the current extent shown
in the data extent block (DEB).

• If no end-of-extent condition exists, it determines that the
block fits on the track.

• If an end-of-extent condition exists, it seeks a new extent
in the DEB.

• If a new extent exists, it updates the DCBFDAD and the
DCBTRBAL fields and determines that the block fits on the
track.

• If there is no further extent, an EOV condition exists. The
module sets the DCBCINDl field in the DCB and the CSW field
in the lOB to show end-of-volume, and returns control to the
PUT or WRITE routine without issuing an EXCP macro
instruction. The EOV condition is eventuallY recognized and
processed--in QSAM by the synchronizing routine and in BSAM
by the CHECK routine.

• If the module determines that the block fits on the track,
the module calculates the actual block length using the
overhead value for a block that is not the last on a track.
(This value is found in the resident I/O device table.) It
adjusts the value in the DCBTRBAL field by this amount and
updates the DCBFDAD field and the lOB extension field
(IOBCNT).

For an input request:

56 MVS/XA SAM logic

• If more than one lOB is associated with the DCB, the module
(a) checks for a cylinder change in the IOBSEEK field in the
next lOB by comparing it with the cylinder value in the
DCBFDAD field in the DCB, and (b) copies the IOBSEEK field
in the next lOB into the DCBFDAD field in the DCB.

• If only one lOB is associated with the DCB, the module (a)
checks for a' cylinder change by comparing the cylinder value
in the IOBSEEK field in the lOB with the cylinder value in
the DCBFDAD field in the DCB, and (b) copies the CCHHR
portion of the DCBFDAD field in the DCB into the CCHHR
portion of the IOBSEEK field in the lOB.

For an input request, and for an output request:

• If a change in cylinder value was found for an input
request, or if the updated DCBFDAD value indicates record 1
on track 0 for an output request, and in either case the
cylinder value is on a page boundary (evenly divisible by
8), the DEBXFLGI field in the DEB extension is checked for
an MSS window processing request. If such processing is
indicated, the ICBCHKAR macro is issued to invoke SVC 126,
which will relinquish the processed window and acquire the
next one. A GETMAIN for a l2-byte SVC 126 parameter list is
issued before ICBCHKAR is issued. A related FREEMAIN is
issued upon return from SVC 126.

•

•

If the number of requests (ICQNOQ) equals the maximum number
of requests (ICQMAXQ), it does the following; otherwise, it
increases ICQNOQ by 1 and returns to the caller.

It uses the compare and swap (CS) instruction to attempt to
chain the lOB to the active lOB queue as the last lOB
(ICQENDA). If the swap is not successful, the lOB address

lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

•

is placed in the ICQE (ICQFIRST and ICQENDA), and an EXCPVR
SVC is issued.

After issuing the EXCPVR SVC (or if the swap is successful),
the module returns to the caller.

End-of-Block Module IGG019T2: The track-overflow, end-of-block
routine processes channel programs for output data sets whose
blocks may overflow from one track onto another (see Figure 10).
Such a block is written by a channel program consisting of a
channel program segment for each track to be occupied by a
segment of the block. The track-overflow, end-of-block routine
computes the address of each track written on; to progress from
track to track (to continue writing successive segments of one
block), the channel program built by the SIO/pagefix appendage,
IGG019BX, uses the search command with the multiple-track (M/T)
mode.

a - Black Length il Less Than Track Balance
(No Overflowing Segment)

Data

b - Block Length is Greater Thon Track Balance
(First Segment Overflows Track)

Data (Cont inued)

c - Block Length is Greater Than Track Capacity
(Several Overflowing Segments)

Data (Continued)

Data (Continued)

Data (Cont i nued)

pata (Cont inued) I

Figure 10. Track-Overflow Records

Data

Module IGG019T2 performs device-oriented processing when track
overflow is permitted with an output data set. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Output, INOUT, or OUTIN

and the DCB specifies:

Track overflow

The module operates as follows:

• It receives control from a PUT routine when the routine
finds that a buffer is to be scheduled, or from a WRITE
routine at the conclusion of its processing.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 57

58 MVS/XA SAM Logic

•

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

If the user specifies the user-totaling option for the data
set, IGG019T2 issues a BALR instruction to the user-totaling
save routine, IGG019AX, to place the user's total in the
user-totaling save area, which is pointed to by the DEB.

• It compares the block length with the space remaining on the
track last written on.

• It initializes to zero the track overflow data field of the
lOB extension, IOBTRKOV. The address of the data block and
the length of the entire block have been placed in IOBCCWl
by the WRITE or PUT routine.

• If the entire block fits on this track, the module sets
IOBLFST (that is, the length of the first or only overflow
segment) to the length of the data block. The module next
updates the track balance, and then attempts to add the lOB
to the active lOB queue.

If the updated MBBCCHHR (saved in the ICQE) indicates record
1 on track 0 of a cylinder on a page boundary (evenly
divisible by 8), a test is made for MSS window processing.
If such processing is indicated in the DEBXFLGI field of the
DEB extension, the ICBCHKAR macro is issued to invoke SVC
126, which will relinquish the processed window and acquire
the next one. A GETMAIN for a 12-byte SVC 126 parameter
list is issued before ICBCHKAR is issued. A related
FREEMAIN is issued upon return from SVC 126.

• If at least one data byte (including the key, if any) fits
on this track, the module sets IOBLFST to the key length
plus the data length of the segment of the block which fits
on the track and tests for another track in the same extent.

• If the next track is in this extent, the module compares the
remaining block length with the track capacity.

• Tests are made to determine if MSS window processing is
needed. If the updated MBBCCHHR (saved in the ICQE)
indicates record 1 on track 0 of a cylinder on a page
boundary (evenly divisible by 8), a test is made for MSS
window processing. If such processing is indicated in the
DEBXFLGI field of the DEB extension, the ICBCHKAR macro is
issued to invoke SVC 126, which will relinquish the
processed window and acquire the next one. A GETMAIN for a
12-byte SVC 126 parameter list is issued upon return from
SVC 126. The module then proceeds as it does when at least
one byte fits on the track.

• If the remainder of the block exceeds the track capacity,
the module sets IOBLMID (that is, the length of the middle
segment) to the track capacity. The module next increases
IOBNMID (that is, the number of middle segments) by 1 and
increases IOBNINCL (that is, number of segments written on
the cylinder that contains the first segment) by 1 if this
segment is to be written on the same cylinder as the first
segment. Next, the module determines whether the next track
is in this extent.

• If the remainder of the block is less than the track
capacity, the module sets IOBLLST (that is, the length of
the last overflow segment) to the data length of the last
segment. The module next increases IOBNINCL if the last
segment is to be written on the cylinder that contains the
first segment. Finally, the module updates track balance
and attempts to add the lOB to the active lOB queue.

• If the next track is not in this extent, the module sets the
CCW command code in IOBCCWl to "erase" (X'Ol') and attempts
to chain the lOB to the active lOB queue. After either
successfully chaining the lOB or issuing an EXCPVR SVC, the
module waits for the requests's completion (and for the
completion of all previous lOBs on the active lOB queue).
Completion is posted in the SAMB lOB's ECB, which is located

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

at ICQECB. This process erases all unused data tracks at
the end of the extent: The track overflow record is too
long and cannot fit in the current extent, but must be
written in the next extent. After the ICQECB is posted
(that is, the queue of lOBs is empty), the module tests for
another extent.

• If there is another allocated extent on this volume, the
module reconstructs the IOBTRKOV field in the lOB extension
by proceeding as it does when at least one byte fits on a
track.

• If there is no other allocated extent on this volume, an
end-of-volume condition exists. The module sets the
DCBCINDI field in the DCB and the CSW field in the lOB to
show end-of-volume, and returns control to the PUT or the
WRITE routine without attempting to add to the active lOB
queue. The EOV condition is eventually recognized and
processed--in QSAM by the synchronizing routine, and in BSAM
by the CHECK routine.

SYNCHRONIZING-AND-ERROR-PROCESSING ROUTINES

A synchronizing-and-error-processing routine (1) synchronizes
execution of the processing program with execution of the
channel programs and (2) performs error processing to permit
continued access to the data set after an error is encountered
during the execution of a channel program. An error-processing
routine performs only the latter function.

There are five synchronizing-and-error-processing routines.
(See Figure lIon page 60.) These routines:

• Are unique to QSAM

• Both synchronize and process errors

• Receive control from a GET or a PUT routine

• Are pointed to by an address in the DCB

There are three error-processing routines. (See Figure 12 on
page 67.) These routines:

• Are shared by QSAM and BSAM

• Only process errors

• May be either synchronous or asynchronous

The track-overflow, 3203 and 3211 Printer retry error-processing
routines are asynchronous. They receive control by being
scheduled by an abnormal-end appendage. The SYSIN/SYSOUT
error-processing routine is synchronous and receives control
directly from a GET or PUT routine (QSAM) or from a CHECK
routine BSAM).

In some cases the QSAM synchronizing routines issue an SVC 55
(EOV) to distinguish between permanent error and end-of-volume
conditions. For a permanent error, the EOV routine returns
control to the synchronizing routine, which in turn passes
control to the user's SYNAD routine. If the SYNAD routine
returns, the synchronizing routine again invokes EOV to
implement error options. For accept and skip, control returns
once more to the synchronizing routine. It now operates as when
it is first entered.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation S9

60 MVS/XA SAM Logic

contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

For an end-of-volume condition (unit exception), EOV takes one
of the following actions:

1. It may return to the synchronizing routine with a new DEB,
after restarting channel programs. The synchronizing
routine then operates as when it is first entered. A new
volume is being processed, possibly because of a data set
concatenation with like or unlike attributes.

2. It may exit to the user's EODAD routine if the condition
should be treated as end-of-file.

3. It will ABEND if unable to take the appropriate action
above.

QSAM synchronizing routines have a standardized register usage
allowing them to be used interchangeably by GET/PUT routines.
This register usage is shown below:

Registers

0-1

2

3

4

5

6

7

8

9-12

13

14

15

Notes:

Entry Value

DCB pointer

Previous IOB-8 (or
ICB)

N/A

N/A

N/A

READ or WRITE CCW
Offset

N/A

User's registers

Save area 3

Caller's return
address

Entry point address

1 This value also stored in DCBIOBA.

2 Obtained from save area.

Exit Value

Not restored

Unchanged or restored

New IOB-8 (or ICB)l

Unchanged or restored

New buffer address

Unchanged or restored

Unchanged or restored

Caller's base address 2

Unchanged or restored

Unchanged or restored

Unchanged or restored

Not restored

3 Registers 15-8 must be stored beginning at offset 24
(decimal). This offset is not the standard one used by the
system.

The routines described in Figure 11 are unique to QSAM. One of
these routines gains control when a GET or a PUT routine finds
that it needs a new buffer. Figure 11 lists the routines
available and the conditions that cause a particular routine to
be used. The OPEN executor selects one of the routines, loads
it, and puts its address into the DCBGERR/PERR field.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Access Method options Selections

GET

PUT

x X X X

Input, Readback

Output

Update

Variable-length record format

Spanned records

locate operating mode

* or DATA specified on DD
statement l

Modules

IGG019AF

IGG019AQ

X

X

X

X

AF

AQ

IGG019AR AR

X

X

X

X

X

IGG019BQ BQ

Figure 11. Module Selector--QSAM
Synchronizing-and-Error-Processing Modules

Note to Figure 11:

AQ

1 If SYSOUT is specified on the DD statement, none of the
synchronizing and error-processing modules are required.
The necessary routines are contained within the
compatibility interface processing module, IGG019DJ (see
Figure 1 on page 6).

synchronizing Module IGG019AF (Update): Module IGG019AF finds
the next buffer and ensures that it has been refilled. If a
unit status prevented refilling the buffer, the module processes
the pending channel programs according to whether they are
empty-and-refill or refill-only channel programs. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Update

and the DCB specifies:

GET

The module operates as follows if no error occurred:

• It receives co~trol when the update GET routine finds that a
new buffer is needed. It also receives control after the
force-end-of-volume (FEOV) macro instruction is encountered
in a processing program, once from the update GET routine
(when the FEOV routine schedules the last buffer) and once
directly from the FEOV routine (when it awaits execution of
the scheduled buffers.)

• If the next buffer has been refilled, the module returns
control to the update GET routine.

lY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 61

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If the channel program for the next buffer has not yet
completed processing, the module issues a WAIT macro
instruction.

The module operates as follows if an end-of-volume condition is
encountered:

62 MVS/XA SAM Logic

• It receives control when the update GET routine finds that a
new buffer is needed or when the FEOV routine awaits
execution of the scheduled buffers.

• If the channel program for the next buffer encountered an
end-of-volume condition, or if this module has control
because of an FEOV macro instruction, the module finds the
lOBs flagged for output. It then turns on the write-only
flag and schedules the lOB for processing by means of an
EXCPVR macro instruction.

• When all lOBs have been processed, or if none are pending,
the module passes control to the EOV routine by way of an
SVC 55 instruction. If this module has control because of
an FEOV macro instruction, control returns to the routine
that passed control.

• If a permanent error is encountered for a write-only lOB
scheduled for an end-of-volume condition or for an FEOV
macro instruction, control passes to the SYNAD routine, if
one is present. The SYNAD routine returns control to this
module.

• The module then processes the error option as follows:

Accept or Skip option: The pending lOBs flagged for
output are rescheduled for execution using an EXCPVR
macro instructions.

Terminate option: Control passes to the EOV routine to
request an ABEND macro instruction.

The module operates as follows if a permanent error was
encountered:

• It receives control when the update GET routine finds a new
buffer is needed.

• If the channel program for the next buffer encountered a
permanent error and a SYNAD routine is present, the module
passes control to the SYNAD routine.

• If control returns from the SYNAD routine, or if there is no
SYNAD routine, the module processes the error option in the
following manner:

Accept Option: If the error occurred in the empty
portion of a channel program, the module resets the lOB
to indicate read-only and issues an EXCPVR macro
instruction for it and all following lOBs.

If the error occurred in the refill portion of a channel
program, the module posts the current lOB as complete
without error and issues an EXCPVR macro instruction for
all the lOBs except the present one.

The module ensures refilling of the buffer associated
with the first lOB and then returns control to the
update GET routine.

Skip Option: If the error occurred in the empty portion
of a channel program, the module operates as it does for
the accept option.

If the error occurred in the refill portion of a channel
program, the module issues an EXCPVR macro instruction
for all lOBs.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials oT IBM
Licensed Materials -- Property oT IBM

The module ensures refilling of the buffer associated
with the first lOB and then returns control to the
update GET routine.

Terminate Option: If the error occurred in the empty
portion of a channel program, the module passes control
to the ABEND routine.

If the error occurred in the refill portion of a channel
program, the module finds the end of the empty portion
of any pending empty-and-refill channel programs, and
issues an EXCPVR macro instruction for these empty
channel programs. On execution of all the channel
programs, the module passes control to the EOV routine
to request an ABEND.

Synchronizing Module IGG019AQ (Input): Module IGG019AQ finds
the next input buffer, determines its status, and passes a full
buffer to the GET routine. If ASCII is used, the entire input
buffer is translated from ASCII to EBCDIC. If ISO/ANSI/FIPS
spanned record format (DS/DBS) is used, the 5-byte ISO/ANSI/FIPS
segment control word (SCW) is converted to the IBM 4-byte
segment descriptor word (SDW), which leaves an unused byte at
the beginning of each segment.

The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

INPUT or RDBACK

or,

INPUT for SYSIN (* or DATA specified on the DD statement)

and the DCB specifies:

GET

The module operates as follows for SYSIN data sets:

• It receives control when the SAM subsystem interface
(SAM-SI), QSAM processing module IGG019DJ, detects an
end-of-data condition.

• It loads the DCB address into register 1 and issues an EOV
SVC 55 instruction. Control is returned to this module only
if the SYSIN data set is concatenated to another input data
set.

• If control is returned to this module, the EOV close bit is
set in the DCBOFLGS field. A test is made to determine if
the unlike attribute bit (DCBOFLGS) is set. If it is,
control is returned to the processing program. If not, a
branch is taken to the GET routine to reschedule the last
GET request before returning to the processing program.

If a SYSIN data set was not specified, the module operates as
follows:

• It receives control when a GET routine determines that a new
buffer is needed.

• It finds the next lOB and tests the status of the channel
program associated with that lOB.

• If the channel program has not yet completed processing, the
module issues a WAIT macro instruction.

• If the channel program has been executed normally, the
module uses XLATE if necessary to convert ASCII records to
EBCDIC, then updates the DCBIOBA field to point to this lOB,
and returns control to the GET routine. If format-D records
are being read, the record descriptor words are first
converted from decimal to binary code.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 63

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If the channel program has been completed normally, and if
the buffer contains a DOS checkpoint record, tape files
only, the module returns control to the GET routine.

• If an error occurred during the execution of the channel
program, the module issues an SVC 55 instruction to pass
control to the EOV routine. EOV returns with a new DEB only
if another volume is allocated to the data set or if another
input data set is concatenated with it. In that case, EOV
has rescheduled the purged channel programs. If EOV returns
with a nonzero value in register 15, the DEB has not been
changed and the SYNAD routine is to be entered.

Synchronizing Module IGG019AR (Output): Module IGG019AR finds
the next output buffer, determines its status, and passes an
empty buffer to the PUT routine. The OPEN executor selects and
loads this module if the OPEN parameter list specifies:

Output

and the DCB specifies:

PUT

The module operates as follows:

• It receives control when a PUT routine determines that a new
buffer is needed.

• It finds the next rOB and tests the status of the channel
program associated with that lOB.

• If the channel program is not yet executed, the module
issues a HAlT macro instruction.

• If the channel program has been executed normally, the
module updates the DCBIOBA field to point to this lOB and
returns control to the PUT routine.

• If the output device is a 3203 or 3211 Printer and three or
more buffers are being used, the synchronizing module waits
for two channel programs to be completed before updating the
DCBIOBA field.

• If an error occurred during the execution of the channel
program, the module issues an SVC 55 instruction to pass
control to the EOV routine. EOV returns with a new DEB only
if it is able to allocate another extent or volume to the
data set. In that case, EOV has rescheduled the purged
channel programs. If EOV returns with a nonzero value in
register 15, the DEB has not been changed and the SYNAD
routine is to be entered.

Synchronizing Module Module IGG019BQ (Update): Module IGG019BQ
finds the next buffer and ensures that it has been refilled. If
a unit status prevented refilling of the buffer, the module
processes the pending channel programs according to whether they
are empty-and-refill or refill-only requests. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies:

64 MVS/XA SAM Logic

Update

Locate operating mode

and the DCB specifies:

GET

Variable-length spanned (blocked or unblocked) record format

The module operates as follows if no error occurred:

LY26-3967-Q © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

• It receives control when the update GET routine finds that a
new buffer is needed. It also receives control after an
FEOV macro instruction is encountered in a processing
program, once from the update GET routine (when the FEOV
routine schedules the last buffer) and once directly from
the FEOV routine (when it awaits execution of the scheduled
buffers).

• If the next buffer has been refilled, the module returns
control to the update GET routine.

• If the channel program for the next buffer has not yet
executed, the module awaits its execution.

The module operates as follows if an EOV condition is
encountered:

• It receives control when the update GET routine finds that a
new buffer is needed or when the FEOV routine awaits
execution of the scheduled buffers.

• If the next lOB encountered an EOV condition, the module
tests whether assembling or updating of a spanned record is
in process.

• If updating is in process, the module delays the normal EOV
processing by turning off the error flags in the DCB and
then returns control to the update GET routine.

• If assembling is in process, the module sets the spanned
record flag in the lOB and continues to the next step.

• If assembling is in process or if this module has control
because of an FEOV macro instruction, the module finds the
lOBs flagged for output. It then sets the write-only flag
in the lOB and schedules the empty channel programs for
execution by means of an EXCPVR macro instruction.

• If all empty channel programs have been executed, or if none
are pending, the module issues an SVC 55 instruction. If
this module has control because of an FEOV macro
instruction, control returns to the routine that passed
control.

• If a permanent error is encountered during execution of
empty channel programs for an EOV condition or for an FEOV
macro instruction, control passes to a SYNAD routine if one
is present. The SYNAD routine returns control to this
module.

• The module then processes the error option as follows:

Accept or Skip: The pending empty channel programs a~e
rescheduled for execution using EXCPVR macro
instructions.

Terminate: Control passes to the abend routine.

• On return of control from the EOV routine the module tests
whether assembling of a spanned record is in process. If it
is being processed, the module turns off the spanned-record
flag in the lOB and returns control to the update GET
routine.

The module operates as follows if a permanent err,or is
encountered:

• It receives control when the update GET routine finds that a
new buffer is needed.

• If the channel program for the next buffer encountered a
permanent error and a SYNAD routine is present, the module
passes control to the SYNAD routine.

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 65

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If control returns from the SYNAD routine, or if there is no
SYNAD routine, the module processes the error option in the
following manner:

Accept: If the error occurred in the empty portion of a
channel program, the module sets the lOB's read-only
flag and issues an EXCPVR macro instruction for it and
all following lOBs.

If the error occurred in the refill portion of a channel
program, the module posts the current lOB as complete
without error and issues an EXCPVR macro instruction,
which reestablishes all the lOBs on an active queue
except the present one.

The module ensures refilling of the buffer associated
with the first lOB and then returns control to the
update GET routine.

Skip: If the error occurred in the empty portion of a
channel program, the module operates as it does for the
accept option.

If the error occurred in the refill portion of a channel
program, the module treats this as a RELSE condition and
issues an EXCPVR macro instruction, which restarts all
lOBs on an active queue.

The module ensures refilling of the buffer associated
with the first lOB and then returns control to the
update GET routine.

Terminate: If the error option occurred in the empty
portion of a channel program, the module passes control
to the ABEND routine.

If the error occurred in the refill portion of a channel
program, the module sets the lOB's write-only flag and
issues an EXCPVR macro instruction for these empty
channel programs. On the execution of all the channel
programs, the module passes control to the ABEND
routine.

SYSIN/SYSOUT Synchronous-Error-Processing Module IGG019AH:
Module IGGOl9AH is used in both BSAM and QSAM. It processes
permanent error conditions detected during the processing of
requests for a SYSIN/SYSOUT data set. This routine is loaded by
the SAM-SI GET or PUT routine or by a CHECK module when the
error is detected, and is entered with a BALR instruction. When
IGGOl9AH returns control to the calling program, the module is
deleted.

The module contains an exit routine that is entered
SYNADAF. This routine formats the SYNADAF message.
is entered by SYNCH and its address is found in the
list. It returns control to SYNADAF.

from
The routine

SVC exit

The module also contains a SYNAD control routine. Upon entry,
it first checks to see if the user has provided the address of a
SYNAD routine in the DCB. If no routine is specified, control
is returned to the calling routine (QSAM EROPT=ACC or SKP) or
issues an ABEND (BSAM or QSAM EROPT=ABE).

66 MVS/XA SAM Logic

If a SYNAD routine is specified, IGGOl9AH operates as follows:

• The entry point to the SYNADAF exit is stored in the SVC
exit list.

• A dummy lOB is formatted. Parameter registers 0 and 1 are
loaded with the lOB address (QSAM) or the DECB address
(BSAM), the DCB address, and error flags.

• The user's registers are saved in a new save area which is
obtained with a GETMAIN macro instruction.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

• The current registers are saved in the user's save area and
the user's registers are loaded and the SYNAD routine is
entered with a BAlR instruction.

If DCB EROPT is ACC or SKP, the user SYNAD routine returns
control to IGG019AH, the register save sequence is reversed, the
new save area is freed, and control is returned to the calling
routine. If EROPT is ABE, problem determination message IEC020
is issued followed by a 001 ABEND.

See Figure 12 for error-processing module selection.

Access Method Options

3203-4 or 3211 Printer

~, DATA, or SYSOUT specified on DD
statement

Modules

IGG019FS

IGG019AH

Figure 12. Module Selector--Error-Processing Modules

IBM 3211 Printer Asynchronous-Error-Processing Module IGG019FS
(Print Line Buffer Error--Retry): Module IGG019FS is
device-dependent and is scheduled asynchronously by the 3211
abnormal-end appendage (IGG019FR, IGG019CU, or IGG019V6). The
module retries operations that result in print line buffer
parity errors or UCS buffer parity errors, whenever possible.
When an operation cannot be retried, the printer is reset and
control is returned to the calling program.

The module operates as follows:

• It initializes registers to point to the DCB, ECB, and lOB.
It then examines sense bytes in the lOB to determine if one
of the error conditions for which a retry is possible
occurred.

• If a UCS buffer parity error is indicated (ECB posted in
error with an X'4l' or X'44' and the command retry bit is on
in sense byte I), the UCS image ID is obtained from the UCB
located in SYS1.IMAGElIB and loaded into storage. (Failure
to locate the UCS image in the SYSl.IMAGElIB causes a skip
to channel 0 command to be issued. This resets the printer
and the module returns control to the calling program.) An
lOB and channel program to load the UCS image into the UCS
buffer on the 3211 are constructed and executed. If a
permanent I/O error occurs during an attempt to load the UCS
buffer, a skip to channel 0 command is issued to reset the
printer. The UCS field in the UCB is also set to 0 and
control is returned to the calling program. If the UCS
buffer is loaded successfully, a check is made to determine
the access method (BSAM or QSAM) being used.

• ~Jhen QSAM is being used, a check is made to determine if
three or more buffers were specified in the BUFNO field of
the DCB macro instruction. (This is a condition necessary
to retry a print line.) After either UCS buffer parity
errors or print line buffer parity errors, the type of
scheduling is determined. For normal scheduling, the lOB
associated with the failing print line is located and the
channel program for that lOB is reissued once. If the
channel program is not successful, the next lOB is
rescheduled if necessary and control is returned to the
problem program, as though no error occurred. If the
channel program is not successful, a skip to channel 0
command is issued to reset the control unit and the module
returns control to the calling program. For chained channel
scheduling, the portion of the channel program associated
with the failing print line is reissued. If it is
successful, a check is made to determine if another chain

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 67

APPENDAGES

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

needs to be started before the return to the problem
program. If the retry is unsuccessful, a skip to channel 0
command is issued and the module returns control to the
calling program.

• For BSAM, or for QSAM with fewer than three buffers
specified, a skip to channel 0 command is issued and the
module returns control to the calling program.

See Figure 12 on page 67 for error-processing module selection.

Appendages are access method routines that receive control from
and return control to the I/O supervisor. They operate in the
supervisor state. The same appendages are used in QSAM as in
BSAM.

An appendage receives control from the I/O supervisor and tests
and may alter the channel status word (IOBCSW). The I/O
supervisor uses the IOBCSW to post the event control block
(ECB). If the SIO appendage receives control from the I/O
supervisor before the latter starts execution of the channel
program, it may alter channel commands just before channel
program execution. The relationship of the I/O supervisor and
the appendages is shown in Diagram F.

The I/O supervisor permits an appendage to gain control at
certain exit points. At that time, the I/O supervisor refers to
the entry associated with that exit in the appendage vector
table, whose address is in the data extent block (DEB). If an
entry contains the address of an appendage, control passes to
it; otherwise, control remains with the I/O supervisor.

The I/O supervisor exits where appendages receive control are:

• End-of-extent

• SIO

• Pagefix (offset 4 into the SIO appendage if the DEB
indicates a pagefix appendage exists)

• Channel end

• PCI

• Abnormal end

The I/O supervisor unconditionally schedules the routine at the
address associated with the exit in the appendage vector table.
If no appendage is present, the entry points to an instruction
that causes immediate return to the I/O supervisor.

When a VIO data set is processed, the I/O supervisor passes
control to the VIO interface routine (IDDWIAPP). The appendages
then receive control from the VIa routine with the same
interfaces as with the I/O supervisor. When some VIa data sets
are processed (that is, BSAM or QSAM, READ or WRITE, not track
overflow, not update, and not BSAM create-BDAM data sets), the
appendages may be loaded but never get control. A special VIO
routine (IDDWISVR) simulates the I/O functions and all the
required actions of the appendages. For more details about VIO
processing and modules, see VIO Logic.

Appendages differ from other sequential access method routines
that are loaded by the OPEN executor into processing program
virtual storage. They differ because they operate asychronously
with the processing program. The events that cause appendages
to gain control depend on the progress of the channel program,
not on the progress of the processing program. Other appendages
operate by running enabled under an SRB.

68 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The OPEN executor selects and loads all the appendages to be
used with a DCB. No appendage, one appendage, or several
appendages may be used with one DCB. The OPEN executor places
the addresses of the required appendages into the various fields
of the appendage vector table. Figure 13 on page 71 lists the
appendages and the conditions that cause the different
appendages to be used. The appendages are grouped according to
the condition detected by the I/O supervisor before control is
passed to the appendage. Note that some appendages have entry
points for more than one of the conditions checked by the I/O
supervisor.

How to Read Compendiums

The compendiums (or hierarchic tables> used to illustrate the
following appendages do not usually show all the exits and
entrances to a given module. A compendium depicts the flow of
control, among subroutines, that relates to a particular
function.

Each block in a compendium is associated with a subroutine name.
The blocks are nested (indented) to show the sequence of calls.
For example, in the following diagram, subroutine nAn at some
point in its processing calls subroutine nB,n and subroutine nBn
at some point in its processing calls subroutine nC.n Unless
otherwise indicated by an exit indicator, the called subroutines
always return control to the calling subroutines in the sequence
in which they are called.

•• Subroutine A

2. Subroutine B

3. Subroutine C

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 69

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

In many instances, a call to a subroutine is conditional. In
these cases, the condition that must be met is shown in the
block that represents the calling subroutine. Dotted lines
delineate the calls affected by a given condition. This is
illustrated in the following example:

I. Subroutine X

~-----
Invalid Address

I 2. Subroutine Y I
~--- ---

I 1. Subroutine Z I

In this example, subroutine nyn is called when an invalid
address is detected, and subroutine liZ" is always called. In
ei ther case, subroutine llyn and "Z'~ always return control to
subroutine "X."

Each subroutine is numbered to key it to the extended
description on the page that faces the diagram. The extended
description provides details about the conditions that exist
when a call is made and about the general processing that is
performed by the subroutines.

start I/O (SIO) Appendages

Start I/O (SIO) appendages, if present, gain processor control
when the start I/O subroutine of the EXCP supervisor reaches the
start I/O appendage exit. The following appendages set channel
program entries:

70 MVS/XA SAM Logic

• IGGOI9CL. This appendage causes the next line to print at
the top of a new page if a printer overflow condition was
encountered in the execution of the last channel program.

• IGGOI9BX. This is the SIO/pagefix appendage.
validity of I/O requests, and, during pagefix
passes control to IGGOI9BY. It is loaded for
direct-access processing except BDAM create.

It checks the
processing, it
all

• IGGOI9BY. This module processes pagefix requests passed to
it by IGGOI9BX. It builds real-address programs and
maintains pagefix lists. It is loaded for all direct-access
processing except BDAM create.

All control blocks and data areas used by the I/O
interruption supervisor and appendage modules must be mapped
into real storage. If they are not and the I/O interruption
supervisor encounters a page exception, the task that
requested the I/O is abnormally terminated. The EXCP
portion of the I/O supervisor determines that certain
control blocks and data areas will be referred to during
later processing.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Access Method Options Selections

Input, INOUT, OUTIN X X X X

READBACK X

Create BDAM X

RECFM=FB X

RECFM=V X X

RECFM=VS X

DASD X X

Printer X

Chained scheduling X X

3211 X

Magnetic tape (OPTCD=H) X X

V=R X

Appendages entered from Pagefix Exit:

IGGOl9BXl BX

IGG019Byl BY

Appendages entered from SIO Exit:

~
IGG019BXl BX

IGGOl9Byl BY

IGGOl9Cl Cl

Appendages
Exit:

entered from Channel End

IGG019BT BT

TGG0198Z.3 BZ

IGGOl9CI CI

IGGOl9CJ CJ

IGG019CU CU

IGG019EI EI

IGG019EJ EJ

IGG019V6 2 V6

Appendages entered from PCI Exit:

IGG019V6 V6

Appendages
Exit:

entered from Abnormal End

IGG019BZ.3 BZ

Figure 13 (Part 1 of 2). Module Selector--Appendages

LY26-3967-0 © Copyright IBM Corp. 1977,1~85 Method of Operation 71

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Access Method options

IGG019CU3

Selections

CU

IGG019EI3

IGG019EJ3 EJ

IGG019FR FR

IGG019V6 1 V6

Figure 13 (Part 2 of 2). Module Selector--Appendages

Notes to Figure 13:
1

2

The module has multiple entry points. The module is
described in nStart I/O (SIO) Appendages. n

The module has multiple entry points. The module is
described in "Program Controlled Interruption Appendages. n

The module has multiple entry points. The module is
described in "Channel-End Appendages."

Appendage IGG019CL (SIO--PRTOV): Appendage IGG019CL causes a
skip to the top of a new page with the first channel program
following a printer overflow condition. The OPEN executor
selects and loads this appendage for use as the SIO appendage if
the DCB specifies:

Printer

The appendage operates as follows:

72 MVS/XA SAM Logic

• It tests to see if the EXCP was issued from an SVC routine.
If so, it effects a normal return to EXCP.

• The appendage tests the lOB to determine whether a PRTOV
macro instruction was issued with this PUT or WRITE macro
instruction.

• If a PRTOV macro instruction was not issued, the appendage
returns control to the EXCP supervisor immediately.

• If the PRTOV macro instruction was issued, the appendage
resets the PRTOV bit in the lOB and tests the DCBIFLGS field
to determine whether a printer-overflow condition has
occurred.

• If printer-overflow has not occurred, the appendage returns
control to the EXCP supervisor.

• If printer-overflow has occurred, the appendage resets the
DCBIFLGS field, inserts the "skip-to-l n command byte into
the channel program, updates the lOB channel program
start-address field and returns control to the EXCP
supervisor.

LY26-3967-0 © Copyright IBM Corp. 1977.1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

EXCPVR processing Appendages

Modules IGG019BX and IGG019BY are the DASD SIO/pagefix
appendage. They operate in conjunction with the DASD
channel-end/abnormal-end appendage (IGGOI9BZ) and the DASD
end-of-block modules (IGGOI9TV and IGGOI9T2) to process lOBs on
an active lOB queue. The active lOB queue is addressed by the
ICQE.

An end-of-block module forms the active lOB queue. addressed by
the ICQE. and issues an EXCPVR SVC. For QSAM. ICQMAXQ is set to
BUFNO minus 1 with a limit of 29. The end-of-block module
passes a group of requests to EXCPVR by queuing the requests
until it gets the number of requests equal to ICQMAXQ plus 1.
This ensures that the requests are always passed in groups. The
EXCPVR processor passes control to the pagefix appendage entry
of IGGOI9BX.

Module IGG019BX passes control to module IGG019BY which
constructs a channel program in the SAMB. The channel program
serves the requests that are represented by as many lOBs on the
active lOB queue as possible. Module IGG019BY also builds a
pagefix list in the SAMB for the user buffers referred to by the
channel program.

The address of the pagefix list is returned to the EXCPVR
processor. which fixes the pages in the list (that is. makes the
pages in virtual storage temporarily not movable). The EXCPVR
processor then passes control to the SIO appendage entry of
IGGOI9BX. The SIO appendage completes construction of the
channel program by replacing the virtual addresses of buffers in
the CCWs indirect address word (IDAW) lists built in the SAMB.
When the SIO appendage returns to the EXCPVR processor. the
real-address channel program is executed. The EXCPVR processor
returns to the caller. an end-of-block module.

While the channel program is running. more lOBs might be added
to the end of the active lOB queue (addressed by the ICQE) as a
result of additional READ. WRITE. GET. and PUT requests against
the DCB.

When channel end occurs for the channel program. the EXCPVR
processor passes control to the channel-end appendage entry of
IGGOI9BZ. The channel-end appendage posts the ECBs for those
lOBs on the active lOB queue whose requests were satisfied by
the channel program. and then removes those lOBs from the active
lOB queue.

If no errors were encountered and there are no more lOBs on the
active lOB queue. the channel-end appendage sets the
EXCPVR-required flag (ICQEXND. the high-order bit of ICQENDA in
the ICQE) and returns normally to the EXCPVR processor. The
EXCPVR processor terminates processing for the EXCPVR SVC. and
then returns to the caller.

If there are more lOBs on the active lOB queue. the channel end
appendage takes the "re-EXCPVR" return to the EXCPVR processor.
The EXCPVR processor passes control to the SIO appendage
(IGGOI9BX). which processes the lOBs that remain on the active
lOB queue. (The pagefix appendage is not entered for
"re-EXCPVR" processing.)

For a "re-EXCPVR" entry. the SIO appendage builds a new channel
program to serve as many of the lOBs on the active lOB queue as
possible. and builds a pagefix list for the user buffers
referred to by the channel program. The pagefix list is
compared to the previous list. and the system pagefix and
pagefree routine is called as needed: If the two pagefix lists
contain only one entry and the entries are identical. no action
is taken; otherwise. the old pagefix list is pagefreed. and the
new pagefix list is pagefixed. IDAW lists are built for the new
channel program. When the SIO appendage returns to the EXCPVR
processor. the channel program is executed.

LY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 73

74 MVS/XA SAM Logic

contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

The process of building a channel program to serve some (or all)
of the lOBs, executing the channel program, posting and freeing
the lOBs served, and building a new channel program to serve
additional lOBs might continue indefinitely. The process
continues for as long as the user's program schedules lOBs (that
is, adds lOBs) to the end of the active lOB queue (addressed by
the lCQE).

If the active lOB queue empties, an EXCPVR SVC starts the
process again when the user's program makes a new request (that
is, issues a READ, WRITE, GET, or PUT macro).

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

This page intentionally left blank.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 75

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Pagefix Appendage (PGFXAPP): This compendium illustrates the pagefix appendage.

I PGFXAPP

Rerum if EXCP

Invalid EXCPVR

2 CALLRTM ABEND 400

3 CIIKI'URG~

Invlliid EXCPVR

('Al.I.R'I'M AliENI) 172

4 IKNIT

5 CKVIORPS

6 SEGTEST

7 CPBLD

See SIOAPP

8 Determine
Palefix List

9 Return
Palefix List

76 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Appendage IGG019BX/IGG019BY
(SIO/Pagefix)

The OPEN executor selects and loads this
appendage for use as the SID appendage
if the DOB specifies direct-access
processing.

Module IGG019BX processes SID requests.
If the pagefix entry is used by the
calling program, module IGG019BX passes
control to module IGG019BY, which
completes the pagefix processing.
Module IGG019BX processes the SID
requests. Note that these modules share
several common subroutines during SID
and pagefix request processing.

The pagefix appendage (PGFXAPP) operates
as follows:

1. If flag RQEl14 is on, EXCPVR SVC was
issued. If flag RQEl14 is off, an
EXCP SVC was issued and is ignored
by this appendage. Registers 10 and
11 are set to zero to indicate, on
return to EXCP, that no pagefix list
needs to be established.

2. If the DEBXSAMB field value is equal
to the SAMBREG value, the EXCPVR
request is against the SAMB lOB. If
the SAMB lOB is not referred to by
the EXCPVR request, the CAllRTM
macro is issued (with abend code
400).

3. The CHKPURGE routine is called.

a. The caller's protect key is
saved, if necessary, in the
SAMB, and is valid until the
next EXCPVR SVC is issued.

b. If this is an invalid EXCPVR
SVC, and it was issued before a
previous one completed, the
CAllRTM macro is issued (with
abend code 172).

c. The flag, SAMPSTNX, is set off
if a POINT or WRITE was issued.

d. The flag, SAMSMF, is set on if
the SMF EXCP count is to be
updated.

e. If a purged re-EXCPVR request
must be re-created, CHKPURGE
determines what, if any,
modifications to the SAMB and
the first lOB in the active lOB
queue are required.

4. The IKNIT routine is called and
initializes SAMB fields and flags,
and builds a new channel program.

a. For buffer DASD, builds prefix
for buffered DASD.

b. For nonbuffered DASD, builds
standard prefix.

5. The CKVIORPS routine is called to
point the lOB to the correct CCW for
RPS and non-RPS DASD.

6. The SEGTEST routine is called to
test if a segment process is
beginning or ending. If so, SAMB
fields are adjusted for this and
control is returned to the pagefix
appendage (PGFXAPP).

7. If an end-of-data condition has not
been detected (flag SAMPSTNX is
zero) or if the data set is open for
update processing, the CPBlD routine
is called to satisfy I/O requests on
the ICQE.

8. The address of the pagefix list and
its size are determined and placed
in registers 10 and 11.

a. If the CPBlD routine was called,
and the device is not aVID
device and the program is not
running in a V=R region, the
pagefix list address and length
are obtained from the SAMB.

b. Otherwise, there is no pagefix
list, and registers 10 and 11
are zeroed.

9. EXCPVR returns control with the
pagefix list address and length in
registers 10 and 11.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 77

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SIO Appendage (SIOAPP): This compendium illustrates the SID appendage.

I SIOAPP Return
if EXCP or if
PGFXAPP issued
CALLRTM j..,.--------

2 No channel
program to be
built

~---------
Re-EXCPVR entry
] New channel

program to be
built

4 IKNIT I
I

S SETIIRR I
I

6 CPBLD(seeCPBLD) I
If not VIO or V=R I 7 RESETPFX

8 CALLRTM

Page fix/free error

I

~--------
EXCPVR entry
9 New channel

program built by
the Pagefix
Appendage

10 SETFRR I
~--------
II Channel

program built

12 BLDIDAL I
13 VALCKBUF

I
14 CNSTIDAL

IS Process all I CCWs

I
16 DLTFRR I

~--------
17 No channel

program built

18 POSTUIOB I
I

19 POSTSIOB I
~---------
20 Return to caller

78 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

The SIO appendage (SIOAPP) operates as
follows:

1. If flag RQEl14 is on, an EXCPVR SVC
was issued. If flag RQEl14 is off,
an EXCP SVC was issued and is
ignored by this appendage.

If flag SAMCLRTM is on, the pagefix
appendage issued the CALLRTM macro,
and control is returned to EXCPVR
using the return offset established
by the CALLRTM routine. Otherwise,
the return offset is set to zero,
which is the normal return to
EXCPVR. The pagefix list used for
the previously executed channel
program is saved. Otherwise,
processing continues with Step 2 or
Step 8.

2. If flag SAMSIO is on, a re-EXCPVR
exit was taken from the channel
end/abnormal end appendage, and the
channel program in the SAMB is to be
executed without modification by the
SIO appendage. The process that
rebuilds the channel program is
skipped, and SIO appendage
processing resumes with Step 20.

If flag SAMPSTNX is on (an
end-of-data condition was previously
reached) and if the data set is not
open for update processing, no
channel program is built, and
processing resumes with Step 17.

3. If flag SAMACT is on, this is a
re-EXCPVR and a new channel program
must be built.

4. The IKNIT routine is called. It
initializes SAMB flags and fields
for building a new channel program.

5. The SETFRR routine is called. An
FRR routine is established prior to
building a new pagefix list in
CPBLD.

6. The SIO appendage calls the CPBLD
routine (described below) to build a
channel program and pagefix list.

7. If a VIO device is being accessed or
if the buffers are in a V=R region,
no pages are fixed and the pagefix
processing is skipped; otherwise,
the RESETPFX routine is called. The
entries in the new and old pagefix
list are compared. If each list has
one entry and the entries are
identical, processing continues.
Otherwise, the saved pagefix list is
pagefreed and the new pagefix list
is pagefixed.

8. CALLRTM is called if any error is
encountered page freeing of page
fixing (ABEND 800). Control
continues with Step 11.

9. If the SAMACT flag is not on, this
is an EXCPVR entry and a new channel
program has been built by the
pagefix appendage. SAMACT is set
on.

10. The SETFRR routine is called prior
to building IDA words and validity
checking buffers.

11. If no channel program was built
(SAMSEGCT = 0), no IDA words are
built; otherwise, BLDIDAL routine is
called.

12. Each CCW with an IDA flag set to 1
is processed by BLDIDAL. If the
caller's protect key is zero and if
the caller's region is V=R, buffer
validation is not performed.

13. Otherwise, the VALCKBUF routine is
called and the SIO appendage checks
the validity of the CCW's buffer
address.

14. If a VIO device is being accessed or
if the buffers are in a V=R region,
IDA words are not built for the CCW
and the CCW's IDA flag is set to
zero. Otherwise, a list of IDA
words is built in the next free slot
in SAMIDAW. The address of the
newly built IDA words is placed in
the CCW by the CNSTIDAL routine.

15. If more CCWs in the channel program
have the IDA flag on, each CCW with
the IDA flag on is processed by
BLDIDAL as described in Steps 12
through 15.

16. The FRR routine is deleted.

17. If no channel program was built
(SAMSEGCT zero) or if an end-of-data
condition has been encountered and
the SAMB does not contain an
update-only channel program,
POSTUIOB is called.

18. POSTUIOB posts the first lOB on the
active lOB queue (pointed to by the
ICQE). The first lOB's ECB is
posted with X'4l'. If there is an
end-of-data condition, the CSW
indicates a nunit exception"
condition; otherwise, the CSW
indicates a nchannel program checkn
condition. The return offset is set
to the nignoren return.

19. If the nignoren return is to be
taken (SAMRTNOF set to the ignore
return offset), the POSTSIOB routine
is called and the SAMB lOB is posted
with X'4l'.

20. The return offset (established in
SAMRTNOF) is added to the return
address. SIOAPP returns to EXCPVR.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 79

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

The Channel Program Build Routine (CPBLD): This compendium illustrates the Channel
Program Build routine.

8

CPBLD

2 CKRUIOB

CALLRTM

4 CALCROOM

CALCIDAL

5 VIOVEQR

6 BLDPFX

7 BUlLDCCW

CHKEXT

loop through all
lOBs on ICQE

80 MVS/XA SAM Logic

400ABEND

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The channel program build (CPBLD)
routine operates as follows:

1. The CPBLD routine obtains the first
lOB on the queue (pointed to by the
ICQE> .

2. The CKRUIOB routine is called. It
checks the validity of the lOB. The
lOB is checked to see that it is
within the storage area obtained for
the ICQE and lOBs during OPEN
processing. If the lOB is not
within the expected storage area, an
ABEND with code 400 is scheduled by
calling the CALLRTM routine.

3. CKRUIOB moves the lOB's data to the
SAMB lOB; flag byte IOBNFLGI and
data in the IOBEX are moved from the
user lOB to the SAMB lOB area.

4. The CALCROOM routine is called to
see if a channel program for this
lOB will be built. It inspects the
type of request and the current
status of the SAMB, and determines
whether there is enough room to
build IDA words for the buffer (in
routine CALCIDAL). CALCROOM also
checks to see if there is enough
room for the CCWs needed. If the
channel program for the request
cannot be built, control is returned
to the caller of CPBLD.

5. CALCROOM tests to see if a VIO
device is being accessed or if the
buffers are in a V=R region. If
either condition is so, VIOVEOR is
called to validity check buffers.

a. It tests to see if the caller
key is zero. If so, no
restriction is placed on the
buffer location.

b. If a VIO device is being
accessed, the buffer address may
be anywhere except in the CSA.
If the buffer address (in
IOBCCW1) overlaps the CSA, the

LY26-3967-0 © Copyright IBM Corp. 1977,1985

local lock does not ensure that
pages remain fixed; the lOB's
channel program is not built,
and control is returned to the
caller of CPBLD.

c. If executing in a V=R region,
and the device being accessed is
not a VIO device, the buffer
address must be within the V=R
region boundary. If the buffer
extends beyond the end of the
V=R region, the lOB's channel
program is not built, and
control is returned to the
caller of CPBLD.

6. If neither a VIO device nor a V=R
region, BLDPFX is called. The
pages, which include the buffer, are
added to the pagefix list. If there
isn't enough room in the pagefix
list to add the buffer's pages, the
lOB's channel program is not built,
and control is returned to the
caller of CPBLD.

7. The BUILDCCW routine is called.

a. It builds the CCWs which satisfy
the lOB's request, and adds the
CCWs to the channel program.

b. In the CHKEXT routine, if an
invalid IOBSEEK address is in
the user lOB, the CCWs won't be
built and control is returned to
the caller of CPBLD. An invalid
IOBSEEK address can occur only
for the first lOB on an active
lOB queue.

8. If the lOB just processed is not the
last lOB on the active lOB queue
(pointed to by the ICQE), the next
lOB on the queue is obtained. The
CPBLD routine continues processing
each lOB on the active lOB queue
(commencing with 2 above) until no
more lOBs remain to be processed.
Control is then returned to the
caller of CPBLD.

Method of Operation 81

Channel-End Appendages

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Channel-end appendages, if present, gain processor control when
the I/O interruption supervisor reaches the channel-end
appendage exit. For data sets, appendages distinguish between
valid and invalid block lengths by computation.

The channel-end appendages are:

IGG019BT This appendage schedules the writing of successive
blocks when a record has to be segmented.

IGG019CI This appendage distinguishes between wrong-length and
truncated blocks when fixed-length blocked records are
being read using normal channel program scheduling.

IGG019CJ This appendage distinguishes between wrong-length and
variable-length blocks when variable-length records
are being read using normal channel program
scheduling.

IGG019CU This appendage disconnects chained channel programs
that have executed, posts their completion, and
performs normal channel-end and abnormal-end appendage
processing.

IGG019EI This appendage distinguishes between fixed,
fixed-blocked, and undefined user blocks and embedded
DOS checkpoint records. In the case of fixed-length
blocked records, it also distinguishes between
wrong-length and truncated blocks.

IGG019EJ This appendage distinguishes between wrong-length and
variable-length blocks and embedded DOS checkpoint
records.

IGG019BZ This appendage handles channel-end processing and
abnormal-end processing for EXCPVR requests.

Appendage IGG019BT (Channel End--Create BDAM): Module IGG019BT
schedules the writing of successive blocks when a record has to
be segmented. The OPEN executor selects and loads this module
if the DCB specifies:

Write (Load)

Variable-length spanned record

The module operates as follows for a channel-end condition:

• It receives control when the I/O supervisor arrives at the
channel-end exit.

• It determines whether the WRITE was WRITE-SZ. If it was
WRITE-SZ, the routine returns control to the I/O supervisor.

82 MVS/XA SAM Logic

• When the WRITE-SF is issued, it determines whether the block
was spanned record. If not, the routine returns control to
the I/O supervisor.

• When a spanned record is being processed, the routine
determines whether the entire record has been written. If
the record has been written, the routine returns control to
the I/O supervisor. When the entire record has not been
written, the routine schedules the a$ynchronous exit
routine. The asynchronous exit routine will schedule an
EXCP to write a middle segment or the last segment of the
record.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Appendage IGG019CI (Channel End--Fixed-Length Blocked Record
Format): Appendage IGG019CI distinguishes between valid
wrong-length blocks and truncated blocks. The OPEN executor
selects and loads this appendage if the OPEN parameter list
specifies:

Input, readback, INOUT, or OUTIN

and the DCB specifies:

Fixed-length blocked records

The channel-end appendage operates as follows:

• It tests to see if the EXCP was issued from an SVC routine.
If so, it effects a normal return to EXCP.

• It performs length checking for fixed-length records. The
SLI bit in the read-data CCW is left off. If a wrong length
record is read, the command chaining bit is turned off and
the CSW reflects channel end and wrong length indication.
The channel-end appendage determines whether the record is a
valid short block. For standard format-F records with a
valid short block, the module turns on the EOV bit in the
DCB and ECB.

• For nonstandard format-F records with the track-overflow
feature, a short block is treated as a valid record.

Appendage IGG019CJ (Channel End--Variable-Length Record
Format): Appendage IGG019CJ distinguishes between valid
wrong-length blocks and variable-length blocks. The OPEN
executor selects and loads this appendage if the OPEN parameter
list specifies:

Input, INOUT, or OUTIN

and the DCB specifies:

Variable-length records

(Under these conditions, the SLI flag is off in the read CCW.)

The module performs a length check for variable-length records.

The channel-end appendage operates as follows:

• It receives control when the I/O interruption supervisor
arrives at the channel-end exit.

• It tests to see if the EXCP was issued from an SVC routine.
If so, it effects a normal return to EXCP.

• If the appendage finds a unit-exception bit on in the
channel status word, it returns control to the I/O
interruption supervisor immediately.

• The appendage calculates the length of the block and
compares it to that in the block length field.

• If the lengths are equal, the appendage turns off error
indications in the ECB and DCB and returns control to I/O
interruption supervisor.

• If the lengths are not equal and the device is magnetic
tape, a check is made to see if the block has been padded up
to 18 bytes or block size, whichever is less. If so, the
appendage turns off the error indicators in the ECB and DCB
and returns control to the I/O supervisor. If the device is
not magnetic tape or the block is not padded, control is
returned to the I/O interruption supervisor immediately.
The I/O interruption supervisor then sets the ECB to show
that the channel program executed with an error condition.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 83

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Appendage IGG019CU (Channel End, Abnormal End--Chained
Channel-Program Scheduling): Appendage IGGOl9CU disconnects
(parts) chained channel programs that have executed and posts . .~
their completion; in addition, it performs normal channel-end ~
and abnormal-end appendage processing. (For a description of
the joining process of chained channel-program scheduling, refer
to the chained channel-program scheduling end-of-block
routines.) The OPEN executor selects and loads this appendage
for use as the channel-end and abnormal-end appendage if the DCB
specifies:

Chained channel-program scheduling

The appendage operates as follows:

84 MVS/XA SAM Logic

• It receives control from the I/O interruption supervisor
when the latter arrives at the channel-end and abnormal-end
appendage exits.

• It tests to see if the EXCP was issued from an SVC routine.
If so, it effects a normal return to EXCP.

• It tests to determine if the CSW and the "First ICB" field
in the lOB, point to the same channel program.

• If they do, the appendage continues as it would for a
channel-end condition.

• If they do not, the appendage disconnects (parts) the
channel program (pointed to by the ICB) from the next
channel program in the chain as follows:

For input, the appendage tests the lOB for an
end-of-volume condition. If it exists, the appendage
continues as it would for a channel-end interruption
with a permanent buffer.

For output, or for input without an associated
end-of-volume condition, the appendage res~ ~s the
command in the last CCW from TIC to Nap an~ the address
to the beginning of the next channel program.

If the device is magnetic tape, it updates the DCBBLKCT
field in the DCB.

If a WAIT macro instruction was addressed to this
channel program, the appendage causes the POST routine
to perform its processing and to return control to the
appendage.

It posts the ICB with the completion code and with
channel end and updates the lOB SAM prefix to point to
the next ICB.

It repeats this disconnecting process until the lOB and the
CSW point to the same channel program.

The appendage continues as follows if channel-end processing
occurred without an error:

• It sets the lOB and the ICB to show that the channel program
completed without an error, and resets the lOB to point to
the next channel program and ICB.

• If there are more channel programs to be executed, the
appendage resets the lOB to not-complete and passes control
to the EXCP supervisor to schedule these channel programs.

• If there are no more channel programs to be executed, the
appendage returns control to the I/O supervisor.

The appendage continues as follows if the channel-end
interruption occurred with a wrong-length indication:

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• It determines whether a truncated block has been read.

• If a truncated block has been read in a data set with
fixed-length blocked standard record format, it sets:

The DCB to show an end-of-volume condition

The current ICB to complete-without-error

The next ICB to complete-with-error

The CSW in the next ICB to show channel end and unit
exception

It returns control to the I/O interruption supervisor.

• If a truncated block has been read in a data set with
fixed-length blocked record format, the appendage sets the
ICB to complete-without-error and resets the lOB to point to
the next ICB and its channel program. The appendage causes
control to pass to the EXCP supervisor to restart the
channel.

• If a block with wrong-length data has been read, the
appendage continues as it would for permanent errors.

The appendage continues as follows if channel-end processing
occurred with an error:

• It isolates the channel program in error by disconnecting it
from the next one.

• It sets the lOB to point to the channel program in error.

• It sets the DCB to show that the channel program is being
retried.

• It takes a re-EXCP exit, which causes the error segment to
be retranslated and retried.

The appendage continues as follows if channel-end processing
occurred with a permanent error:

• It receives control after the I/O supervisor error-retry
procedure is found unsuccessful in correcting the error.

• For a 3211 Printer, it tests to see whether further retry is
necessary. If the ECB is posted in error with an X'41' or
X'44' and the command-retry bit in sense byte 1 is on, then
it schedules the asynchronous-error-processing module,
IGG019FS, and exits.

• It posts the ICB to show that the channel program was
completed in error.

• It disconnects the channel program in error from the
following one.

• It resets the lOB to point to the channel program after the
one in error.

• It returns control to the I/O interruption supervisor.

Appendage IGG019EI (Channel End, Abnormal End--Fixed-Length Dr
Undefined-Length Record Format): Appendage IGG019EI
distinguishes between fixed, fixed-blocked, and undefined user
blocks and embedded DOS checkpoint records. In the case of
fixed-length blocked records, it also distinguishes between
wrong-length and truncated blocks. The OPEN executor selects
and loads this appendage if the OPEN parameter list specifies'

Input, readback

and the DCB specifies:

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 85

Contains Restricted Materials of IBM
Licensed ~aterials -- Property of IBM

OPTCD=H (specified in JCL)

Magnetic tape

Fixed, fixed-blocked, or undefined-length blocks

The appendage operates as follows:

• It receives control from the I/O interruption supervisor
when the I/O interruption supervisor arrives at the
channel-end and abnormal-end appendage exits.

• It tests to see if the EXCP was issued from an SVC routine.
If so, it effects a normal return to EXCP.

• Upon encountering a checkpoint header record, bit 0 in the
DEBTFLGS field of the DEB is turned on. It is turned off
when the checkpoint trailer record is encountered. This
provides the means to differentiate between the user's data
records and the embedded checkpoint records.

• In the channel-end entry into this appendage, the number of
bytes read is tested. If 20 bytes were not read and the
bypass-flag bit in the DEBTFLGS field is off, the appendage
takes the normal exit to the I/O interruption supervisor for
fixed-length and undefined-length formats and performs the
necessary record length check for fixed-block records. If
20 bytes were read, the record is tested to determine if it
is a checkpoint header record. If it is not a checkpoint
header record, the normal exit to the I/O interruption
supervisor is taken for fixed-length and undefined-length
formats, and record length checking for fixed-block formats
is performed.

• When a checkpoint header record is encountered, the
bypass-flag bit in the DEBTFLGS field is turned on, the
DCBBLKCT field is decremented by the value in the IOBINCAM
field, the "Flags 1-3" fields of the lOB are reinitialized,
and the IOBERRCT field is set to zero. For QSAM, the lOB
completion code is set to X'50' and the normal exit is taken
to the I/O interruption supervisor. The bypassing of the
checkpoint records is performed in the QSAM routines. For
BSAM, the re-EXCP exit is taken to the I/O interruption
supervisor.

86 MVS/XA SAM Logic

• The appendage is reentered when the reexecuted channel
program ends for BSAM or when the rescheduled channel
program ends for QSAM and, finding the bypass flag on, tests
for the checkpoint trailer record. If the record read is
not the trailer record, the DCBBLKCT field is decreased, the
lOB-flag fields reinitialized, and the IOBERRCT field is set
to zero. For BSAM, the re-EXCP exit is taken to the I/O
interruption supervisor. For QSAM, the lOB completion code
is set to X'50', and the normal exit is taken to the I/O
interruption supervisor. This process continues until the
trailer record is read. When the trailer record is read,
the bypass flag is turned off, and the above procedure is
followed. The next entry to this channel-end appendage
follows the reading of the record immediately following the
embedded checkpoint records.

• The appendage is entered in the event of an abnormal
condition arising. If this entry is the result of any
condition other than a data error, control is returned to
the I/O interruption supervisor by way of the normal exit.

• If it is a data error, a test is then performed to determine
if a checkpoint header/trailer record was read. This test
comprises an initial 12-byte comparison of the record's
first 12 bytes with the checkpoint identifier

/// CHKPT //

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Should this comparison fail, a byte-by-byte comparison is
performed. If 10 or more bytes compare successfully, it is
then assumed that a header or trailer record has been
encountered and the appendage returns control to the I/O
interruption supervisor.

Appendage IGG019EJ (Channel End. Abnormal End--Variable-Length
Record Format): Appendage IGG019EJ distinguishes between
variable-length and wrong-length blocks and embedded DOS
checkpoint records. The OPEN executor selects and loads this
appendage if the OPEN parameter list specifies:

Input

and the DCB specifies:

OPTCD=H (via JCL)

Magnetic tape

Variable-length blocks

The appendage operates as follows:

• It tests to determine if the EXCP was issued from an SVC
routine. If so, it effects a normal return to EXCP.

• It receives control from the I/O interruption supervisor
when the I/O interruption supervisor arrives at the
channel-end and abnormal-end appendage exits.

• Upon encountering a checkpoint header record, bit 0 in the
DEBTFLGS field of the DEB is turned on. It is turned off
when the checkpoint trailer record is encountered. This
provides the means to differentiate between the user's data
records and the embedded checkpoint records.

• In the channel-end entry into this appendage the first two
bytes of the record are tested to determine if it is a valid
block. (The first 2 bytes of a variable-length physical
record specify the block length and are used in performing
length-checking.) The first 12 bytes of a checkpoint header
or trailer record (which are identical and 20 bytes in
length) identify it as a header/trailer record. These 12
bytes are: .

•

/// CHKPT //

The first 2 bytes of the checkpoint header record do not
satisfy the length check as a variable-length record. If
the first 2 bytes do satisfy the length check, the appendage
takes the normal exit to the I/O interruption supervisor for
variable-length records. If the first 2 bytes do not
satisfy the length check for a variable-length record, the
number of bytes read is computed. If 20 bytes were not read
and the bypass-flag bit in the DEBTFLGS field is off, the
appendage returns to the I/O interruption supervisor. If 20
bytes are read, the record is tested to determine if it is a
checkpoint header record. If it is not a checkpoint header
record, the normal exit to the I/O interruption supervisor
is taken for variable-length formats.

When a checkpoint header record is encountered, the
bypass-flag bit in the DEBTFLGS field is turned on, the
DCBBLKCT field is decreased by the value in. the IOBINCAM
field of the lOB, the "Flags 1-3" fields of the lOB
reinitialized, and the IOBERRCT field set to zero. For
QSAM, the lOB completion code is set to X'50' and the normal
exit is taken to the I/O interruption supervisor. The
bypassing of the checkpoint records is performed in the QSAM
routines. For BSAM, the re-EXCP exit is taken to the I/O
interruption supervisor.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 87

•

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

The appendage is reentered when the reexecuted channel
program ends for BSAM or when the rescheduled channel
program ends for QSAM and, finding the bypass flag on, tests
for the checkpoint trailer record. If the record read is
not the trailer record, the DCBBLKCT field is decreased, the
lOB flag fields reinitialized, and the 10BERRCT field is set
to zero. For BSAM, the re-EXCP exit is taken to the I/O
interruption supervisor. For QSAM, the lOB completion code
is set to X'50', and the normal exit is taken to the I/O
interruption supervisor. This process continues until the
trailer record is read. When the trailer record is read,
the bypass-flag is turned off and the above procedure
followed. The next entry to this channel-end appendage
follows the reading of the record immediately following the
embedded checkpoint records.

• The appendage is also entered in the event an abnormal
condition arises. If this entry is the result of any
condition other than a data error, control is returned to
the I/O interruption supervisor by way of the normal exit.

• If it is a data error, a test is then performed to determine
if a checkpoint header/trailer record was read. This test
comprises an initial 12-byte comparison of the record's
first 12 bytes with the checkpoint identifier

/// CHKPT //

Should this comparison fail, a byte-by-byte comparison is
performed. If 10 or more bytes compare successfully, it is
then assumed that a header or trailer record has been
encountered, and the appendage returns control to the I/O
interruption supervisor.

Appendage IGG019BZ (DASD EXCPVR Channel End and Abnormal End):
Appendage IGG019Bl does all channel-end and abnormal-end
appendage processing for EXCPVR requests, for all record
formats. The module includes two entry points: one for
channel-end processing, and one for abnormal-end processing.
Separate functions are performed at each entry point, and a
common routine, CPEND, is called to process the channel program.

88 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Channel-End Appendage (CHEND):
This compendium illustrates the channel-end appendage.

CHEND

SAMRST on

12 RESTART J
1---------

SAMRST off

13 CPEND 1

4 EXIT

The channel-end appendage (CHEND) for
EXCPVR requests operates as follows:

1. It is entered when a channel program
completes. A test is made to see if
the channel program resulted from an
EXCPVR request. If not, the request
is ignored and control is returned.

2. If a previously broken channel
program is to be restarted (the
SAMRST flag is on), it prepares the
second half of the channel program
(in the SAMB) for execution. The
only channel program that can be
broken is a PUTX request (update

LY26-3967-0 © Copyright IBM Corp. 1977,1985

WRITE with refill READ). When the
channel program is ready for
execution, the return offset is set
to 8 to re-EXCPVR.

3. For normal channel-end processing
(SAMRST off), CHEND calls the CPEND
routine to process the completed
channel program segmentCs) in the
SAMB.

4. If the return offset is zero, the
"active" flag (SAMACT in the SAMB)
is set to zero. This allows an
EXCPVR SVC entry to the pagefix
appendage.

Method of Operation 89

Abnormal-End Appendage lABNOREND):

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

This compendium illustrates the abnormal-end appendage (ABNOREND) for
EXCPVR requests.

ABNOREND

2 NRF

3 First entry

4 BREAKCP

Second entry

5 CPEND

6 EXIT

The abnormal-end appendage (ABNOREND)
operates as follows:

1. ABNOREND verifies that the condition
resulted from an EXCPVR request,
and, if not, it ignores the request
and returns control.

2. NRF is called. If the error is a
"no-record-found" condition, and if
it is expected (update or track
overflow output), the seek address
(in the SAMB) is updated and the TIC
command (in the prolog CCW area) is
reset to point to the failing
channel program segment. The SAMSIO
flag is set on to indicate that the
channel program need not be rebuilt
by the SID appendage (SIOAPP).

3. If the error is not an expected
no-record-found condition, and if
the abnormal-end appendage is being
entered for the first time, the
BREAKCP routine is called.

90 MVS/XA SAM logic

4. If the request was QSAM PUTX (update
WRITE with refill READ) and the
error was in the update WRITE part
of the channel program, the chained
program is broken or separated so
that only the update WRITE portion
is subsequently executed by the
ERPs. The SAMRST flag (in SAMB) is
set on. If the error occurred in
the refill READ portion of the
channel program, only the READ
portion is reexecuted by the ERPs.
The return offset is left zero to
allow ERP processing to occur.

5. If the appendage is being entered
for the second time, the
abnormal-end appendage calls the
CPEND routine to process the channel
program segments.

6. If the return offset is zero and
this is the second entry. the
"active" flag (SAMACT in the SAMB)
is set to zero to allow an EXCPVR
entry to the pagefix appendage.

lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

This page intentionally left blank.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 91

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Channel Program Error (CPEND): This Compendium illustrates the CPEND routine of
IGG019BZ appendage (EXCPVR requests).

1 CPliND r---+
~------------

2 CHKIOB Unrecoverable
error

error ICE
/16 POST / I RTMCALL 400 ABEND

/ 1--------------
For each 4uccessful
channel program
segment

3 UPDCURR

4 POST

5 Update SMF count

1-------------
For Ihe error channel
program segmenl

6 UPDCURR

7 Update SMF counl

~-----------1
8 SMFCALL

All channel program
segmen Is successful

9 CEDE

~-----------
Error segment

10 ERROR

III INCLTH /

III RDCTERR /

r13 RDDERR /

1------------
Recoverable
error

/14 POST /

1 15 C .. :Dli I
I

92 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

The channel program end (CPEND) routine
for EXCPVR requests operates as follows:

1. It is called from the channel-end
appendage and the abnormal-end
appendage to process completed
channel program segments. The CPEND
routine first processes all
successfully completed channel
program segments in the SAMB. then
processes any segment that may have
ended in error.

2. CHKIOB is called to validity check
each lOB. If invalid. the RTMCALL
routine issues a 400 ABEND.

3. UPDCURR is called. and the user lOB
is updated to reflect the status of
its related request.

4. POST is called. and the user lOB
related to the completed channel
program segment is posted as
successful (X'7F'). The lOB is
posted by the system post routine.
IEAOPTBI. The address of the posted
lOB is saved (in SAMIOBP. in the
SAMB). and the address of the
current lOB and the ICQE's pointer
to the first lOB on the queue
(ICQFIRST) is updated so that it
points to the next lOB.

5. After the successfully completed
user lOB is posted. the SMF count
(in SAMSMFCT. in the SAMB) is
incremented.

6. For abnormally completed channel
program segments. UPDCURR is called
and it is determined which CCWs were
executed.

7. The SMF count is updated if the
error occurred after a read data
CCW.

8. When the lOBs of all successful
channel program segments in the SAMB
have been posted. the CPEND routine
calls SMFCALL. if necessary. and
IEASMFEX is called. passing the EXCP
count (in SAMSMFCT. in the SAMB) to
the SMF routine.

9. If all channel program segments
completed successfully. the CEDE

routine is called to determine if
the last posted lOB is the last lOB
on the active queue. If so. the
return offset is set to cause a
normal exit (return offset=O) to
EXCPVR. If there is another lOB on
the queue. the return offset is set
to cause a re-EXCPVR exit (return
offset=8).

10. The ERROR routine is called to check
if the error is recoverable.

11. The INCLTH routine checks for
incorrect-length. Incorrect-length
indications on variable-length and
undefined-length records formats are
accepted. because the CCWs that are
built do not have the SLI flag set
on. An incorrect-length indication
on a fixed-length standard record
format is recognized as a software
end-of-file indication. The "post
next" flag (SAMPSTNX) is set on to
indicate end of data on the next
request.

12. The RDCTERR routine checks for a
multitrack READ count error. When
the lOB's EOB condition code is
C'42'. end of extent has occurred.
End-of-extent processing was
formerly handled by an end-of-extent
appendage. If another extent is in
the DEB. the seek address (IOBSEEK)
is updated.

The RDDERR routine checks for errors
on READ DATA or READ KEY AND DATA
commands. When the command is part
of a "search previous" operation.
the seek address is updated to skip
the record in error and a re-EXCPVR
return is indicated.

13. If the error is recoverable. POST is
called (see Step 4).

14. For recoverable errors. CEDE is
called (see Step 9).

15. When the error is not recoverable.
POST is called and the request's lOB
is posted with the unsuccessful
completion code. X'41'. SAMRTNOF is
set to cause a normal return to
EXCPVR.

LY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 93

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Program Controlled Interruption (PCI) Appendage (Execution of Channel Programs
Scheduled by Chaining)

If chained channel-program scheduling is used in V=R, its
address is placed into the appendage vector table for all three
I/O interruption supervisor exits: PCI, channel-end, and
abnormal end. In V=V, only the channel-end and abnormal-end
entries are made.

A program controlled interruption (PCI), in the sequential
access methods, signals the normal execution of a channel
program that was scheduled by chaining. The interruption occurs
when control of the channel has passed to the next channel
program. If the only channel status is PCI, the I/O supervisor
performs no processing; if other channel conditions are also
present, the I/O supervisor processes these in the usual way
after it regains processor control from the PCI appendage.

This appendage performs the following three functions:

• It performs the channel status analysis usually done by the
I/O interruption supervisor. The interruption is caused by
a condition in the logic of the channel program rather than
a condition in the channel or the device. The condition is
meaningful only to the processing program (in this case, the
access method routines, or, more specifically, the
appendage) and has no meaning to the I/O supervisor.

• It repeats this process for preceding channel programs whose
PCIs were lost. PCIs are not stacked. If a channel remains
masked from the time of one PCI until after another PCI,
only one PCI occurs.

• It performs processing normally necessary for other
interruptions (for example, channel end). Interruptions
other than PCIs may terminate execution of chained channel
programs.

Accordingly, a PCI appendage not only does the processing
implicit for the logical condition that the interruption signals
(namely, that the preceding channel program executed normally),
but also extends this processing back to any preceding channel
programs whose PCI may have been masked and, finally, takes
processor control at other I/O interruption supervisor appendage
exits if chained channel-program scheduling is used.

Appendage IGG019V6 (PCI, Channel End, Abnormal End--Chained
Channel-Program Scheduling): This appendage is the same as
IGGOI9CU, described above, except that it is loaded into the V=R
region instead of lPA and uses the PCIPOST macro to post ICBs
because it does not hold the local lock. When it receives
control for a PCI interrupt, it processes the ICBs that precede
the one with the interrupt (as described above in IGGOI9CU).
When the ICB that had the interrupt is found, the appendage
returns to the I/O supervisor.

Abnormal-End Appendages

94 MVS/XA SAM Logic

The abnormal-end appendage receives control from the I/O
interruption supervisor when the latter finds a unit check
condition in the channel status word (CSW). The appendage for
this exit is a 3211 error appendage.

Appendage IGG019FR (Abnormal End--3211 Printer): Appendage
IGGOl9FR schedules the asynchronous error-processing routine
IGGOl9FS when a print line buffer (PlB) parity error or a UCS
buffer parity error occurs.

lY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

QSAM CONTROL ROUTINES

These control routines, shared by QSAM and BSAM, consist of both
modules loaded by the OPEN executor and macro expansions. The
selection and loading of one of the modules are performed by the
OPEN executor and depend on the access conditions; the presence
of macro expansions depends solely on the use of the
corresponding macro instruction in the processing program and is
independent of the presence or absence of modules.

If a CNTRL macro instruction is encountered in a processing
program using QSAM or BSAM, control passes to a control routine.
The PRTOV macro expansions place the code to be executed inline
in the processing program. CNTRL routines pass control to the
I/O supervisor; the macro expansions return control to the
processing program. The CNTRL routine for the card reader
causes execution of a channel program that stacks the card just
read into the selected stacker. The CNTRL routine for the
printer causes execution of a channel program with a command to
space or to skip. The printer overflow macro expansions cause
testing for the printer-overflow condition.

There are three CNTRL routines in QSAM; they are load modules.
Figure 14 lists the routines available and the conditions that
cause a particular routine to be used. The OPEN executor
selects one of the modules, loads it, and puts its address into
the DCBCNTRL field.

Access Method options

CNTRL

Printer

Card reader, single
buffer

3525 (printing)

Modules

Selections

x

X

X

X

IGG019CA CA

IGG019CB CB

X

X

IGG019FA FA

Figure 14. Module Selector--Control Modules

There are two PRTOV routines, which are macro expansions.
Whenever the assembler encounters either of the two macro
instructions shown in Figure 15, it substitutes the
corresponding macro expansion in the processing program object
module.

Macro Instruction

PRTOV--User exit

PRTOV--No user exit

Number of
Macro Expansions

1

1

Figure 15. Control Routines That Are Expansions of Macro
Instructions

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 95

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Control Module IGG019CA (CNTRL--Select Stacker--Card Reader):
Module IGG019CA permits stacker selection on the card reader.
The OPEN executor selects and loads this module if the DCB
specifies:

CNTRL

Card reader

One buffer

The module operates as follows:

• It receives control when the CNTRL macro instruction is
encountered in a processing program.

• For QSAM, the module schedules a channel program that stacks
the card just read, reads the next card into the buffer,
forces an EOB condition to be recognized by the GET routine,
and returns control to the processing program. (Card reader
GET module IGGOl9AG depends on the use of this routine to
refill empty buffers.)

• For BSAM, the module schedules a channel program that stacks
the card just read and then returns control to the
processing program. The READ/WRITE module, IGGOI9BA, causes
a channel program to be scheduled that reads the next card
into the buffer.

• If the 3505 or 3525 is specified, processing continues for
stacker I or 2 (whichever is specified in the CNTRL macro
instruction of the user's program).

• A test is made to determine if either OMR or RCE is being
used.

If either OMR or RCE is specified, the OMR/RCE bit is turned ~
on in the operation codes of the CCWs. ~

Control Module IGG019CB (CNTRL--Space. Skip--Printer): Module
IGG019CB causes printer spacing and skipping by use of macro
instructions; the spacing or skipping to be performed are
specified as operands of the macro instruction. The OPEN
executor selects and loads this module if the DCB specifies:

CNTRL

Printer

The module constructs a channel program to control the device,
issues an EXCP macro instruction, and then returns control to
the processing program.

Control Module IGG019FAI This module performs line control
functions if:

96 MVS/XA SAM Logic

• The 3525 is specified

• A print file is specified

• CNTRL is specified

The module operates as follows:

• The line counter total (DCBLNP) in the DCB is increased
according to the specifications in the CNTRL instruction.

•

•

I/O macro sequencing is performed when using this module and
a 3525 associated data set. If an error is detected, an
abend (003) is issued with a return code of 03.

If a skip to a channel on the next card is issued by the
user, this module issues an EXCP to feed the next card,

LY26-3967-0 @ Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

issues a WAIT, and returns control to the user's program by
way of register 14.

Printer-Overflow Macro Expansions: The PRTOV macro expansions
permit processing program response to printer-overflow
conditions.

The following macro expansions are created as inline c,oding
during the expansion of the macro instruction.

PRTOV--User Exit: The coding operates as follows:

• A WAIT macro instruction is issued for the lOB pointed to by
the DCBIOBA field.

• The DCBIFLGS field of the DCB is tested for an overflow
condition.

• If an overflow condition exists, a BAlR instruction is
issued to pass control to the user's routine.

• If no overflow condition exists, control passes to the next
instruction.

PRTOV--No User Exit: The coding creates a test mask in the DCB
field located at DCBDEVT + 1 and returns control to the
processing program.

Note: The printer end-of-block routine temporarily stores the
mask in the Nap channel command word (CCW) preceding the Write
CCW, turns on a bit in the first byte of the lOB and resets the
mask. The PRTOV appendage tests the lOB bit to determine
whether to respond to or ignore an overflow condition and resets
the bit.

BASIC SEQUENTIAL ACCESS METHOD ROUTINES

Basic sequential access method (BSAM) routines cause storage and
retrieval of blocks of data. BSAM routines furnish device
control, but do not provide blocking. There are seven types of
BSAM routines:

• READ routines

• WRITE routines

• End-of-block routines

• CHECK routines

• Appendage routines

• Control routines

• SVC Routines

Diagram G, BSAM/BPAM Flow of Control, shows the relationship of
the BSAM routines to other portions of the operating system and
to the processing program.

Control routines (not shown in Diagram G) permit the processing
program to control the positioning of auxiliary storage devices.
They receive control when the CNTRl (printer, tape, card
reader), PRTOV, NOTE, POINT, or BSP macro instruction is
encountered in a processing program. The track balance routine
receives control from a WRITE routine or the track-overflow,
end-of-block routine.

The BSAM control modules and routines are described later in
this manual.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 97

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

READ AND WRITE ROUTINES

A READ or WRITE routine receives control when the processing
program issues a READ or a WRITE macro instruction. The READ
and WRITE routines used with data sets organized for the
sequential or partitioned access methods pass control to the
end-of-block routines, which in turn pass control to the I/O
supervisor. The WRITE routines, used to create data sets
organized for later access by basic direct access method (BDAM)
routines, include the end-of-block function within themselves,
and so pass control to the I/O supervisor directly. A READ or
WRITE routine processes parameters set by the processing program
in the DECB to permit scheduling of the next channel program.

Figure 16 on page 98 lists the modules available and the
conditions that cause a particular module to be used. The OPEN
executor selects one of these routines, loads it, and puts its
address into the DCBREAD/WRITE field. The figure shows, for
example, that module IGG019BH is selected and loaded if update
and the READ macro instruction are specified.

Access Method Options Selections

Input X X X

Output X X X X X X

INOUT, OUTIN X X X

Update X

READ X X X

Offset READ X

WRITE X X

WRITE (load mode) (Create-BDAM) X X X X

Fixed-length record format X X X

Undefined-length record format X X

Variable-length record format X X X X

Spanned records X X

Track overflow X

~, DATA, or SYSOUT speci fi ed on DD X
statement

READ/WRITE Modules

Figure 16 (Part 1 of 2). Module Selector--READ and WRITE Modules

98 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Access Method Options Selections

IGG019BA BA BA

IGG019BH BH

IGG019BR BR

IGG019BU BU

IGG019DA DA

IGG019DB DB

IGG019DD DD

IGG019DK DK

Figure 16 (Part 2 of 2). Module Selector--READ and WRITE Modules

READ/WRITE Module IGG019BA: Module IGG019BA completes the
channel program to be scheduled next, and relates control blocks
used by the I/O supervisor to the channel program. The OPEN
executor selects and loads this module if the OPEN parameter
list specifies:

Input, output, INOUT, or OUTIN

and the DCB specifies:

READ or WRITE

The module operates as foilowsl

• It receives control when a READ or WRITE macro instruction
is encountered in a processing program.

• It enters the address of the lOB into the DECB to permit the
CHECK routine to later test execution of the channel
program.

• It fills in a CCW by inserting the buffer address from the
DECB, and the length from either the DECB (for
undefined-length records), the DCB (for fixed-length
records, and for input of variable-length records), or the
record itself (for output of variable-length records).

• If a block is to be written on a direct-access storage
device, the module tests the DCBOFlGS field in the DCB to
establish the validity of the value in the DCBTRBAl field.

• If the DCBTRBAl value is valid, or if a block is to be
written on a device other than direct-access storage, or if
a block is to be read from any device, the module passes
control to an end-of-block routine. ~

• If the DCBTRBAl value is not valid (that is, the preceding
operation was a READ, POINT, or OPEN for MOD), the module
issues an SVC 25 instruction to pass control to BSAM control
module IGC0002E to obtain a valid track balance. When
control returns to this module, it passes control to an
end-of-block routine.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 99

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

READ/WRITE Module IGG019BH (Update): Module IGG019BH ascertains
whether a buffer supplied by the processing program is to be J
written from or read into, and causes a corresponding BSAM
update channel program to be executed. The OPEN executor
selects and loads this module if the OPEN parameter list
specifies:

Update

and the DCB specifies:

READ

The module operates as follows:

• It gains control when the processing program uses a READ or
WRITE macro instruction.

• If data is to be read into a buffer, the module flags the
lOB for a READ operation, and copies the length and buffer
address from the DECB or the DCB into the READ CCW.

• If data is to be written from a buffer. the module flags the
lOB for a WRITE operation and completes the length and
buffer address entries in the WRITE CCW.

• The module passes control to end-of-block module IGG019TV.
On return of control from that module, it returns control to
the processing program.

WRITE Module IGG019ER (Create BDAM/VRE): Module IGG019BR writes
variable-length spanned blocks and record-zero blocks for a data
set that will later be processed by DDAM. The OPEN executor
selects and loads this module if the DCD specifies:

WRITE (Load mode)

Variable-length spanned record

BFTEK=R

The module consists of three routines: one to write data
blocks, one to write record-zero blocks, and an asynchronous
exit routine.

To write a data block for BDAM, the routine operates as follows:

• It receives control from the processing program when it
encounters a WRITE-SF macro instruction and from the EOV
routine (to write the block not written into the previous
volume) after the EOV routine of I/O Support has obtained
another extent.

• It determines whether this block fits on the current track.
If it does, the routine determines whether the new track
balance is greater than 8 bytes. If the new track balance
is equal to or less than 8 bytes, the routine adds
write-capacity-record CCWs to the write-count-key-and-data
CCWs. It then issues an EXCP.

• If the block does not fit on the current track, the routine
determines whether the block fits on the current volume. If
it does, this module constructs a channel program to write
the first segment from a segment area associated with this
108 and to write the capacity record of this track. It then
issues an EXCP. The asynchronous exit routine writes the
successive segments. The DCBFDAD field has the address of
the highest track on which the last segment of this record
is written.

• If the block does not fit on the track or within the current
volume, this routine constructs a channel program to write
the capacity record of the track. It then issues an EXCP.

100 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977.1985

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The asynchronous exit routine writes the capacity records of
all the tracks on this volume. The EOV routine reschedules
the WRITE request on the same volume spanning the extents,
if the secondary allocation is on the same volume. When the
secondary allocation is on a different volume, the WRITE
request is written on the new volume.

To write a record-zero block for BDAM, the routine operates as
follows:

• It receives control when a WRITE-SZ macro instruction is
encountered in the processing program or after the EOV
routine has obtained another extent.

• It updates the record-zero area and the channel program to
write the record-zero block and issues an EXCP macro
instruction. The routine returns control to the processing
program or to the EOV routine.

• If there are no data blocks on the track, the module
modifies the channel program to clear the track after
writing the record-zero block.

The asynchronous exit routine operates as follows:

• It receives control from the channel-end appendage through
the exit effector when a spanned record is to be processed.

• If the record is a spanned record, it constructs a segment
from the remaining part of the record and issues an EXCP
macro instruction to write the segment.

• If the record is a spanned volume record, it issues an EXCP
macro instruction to write capacity records up to the end of
the extent.

READ Module IGG019BU: This module completes the channel program
to read a direct data set, and relates the control blocks used
by the I/O Supervisor to the channel program. The OPEN executor
selects and loads this module along with an associated
channel-end appendage (IGG019BV) if the OPEN parameter list
specifies:

Input

and the DCB specifies:

BFTEK=R

Variable-length spanned record format for a BDAM data set
with keys

The module operates as follows:

• It receives control when a READ macro instruction is
encountered in the processing program.

• It enters the address of the lOB into the DECB to permit the
CHECK routine to later test execution of the channel
program.

• It waits for the SAMB lOB ECB (in the ICQE) to complete,
then tests it to determine if the count field of the record
to be read is available.

• If the count field of the record to be read is not available
(as indicated by the SAMSCHPR flag in the SAMB), an EXCPVR
macro instruction is issued. If the SAMSCHPR flag is set
and BFTEK=R processing has been requested, only the count
field of the next record will be read.

• When the count field of the record to be read is available,
the buffer address and record length are placed in the CCW.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 101

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• The module then issues an EXCPVR macro instruction.

WRITE Module IGG019DA (Create-BDAM): Module IGG019DA writes
fixed-length data blocks, fixed-length dummy blocks, and
record-zero blocks for a data set to be processed later by BDAM.
The OPEN executor selects and loads this module if the DCB
specifies:

WRITE (Load mode)

Fixed-length record format

With the rotational position sensing (RPS) feature, this module
tests the first CCW of a channel program created by IGG0199L.
It tests for a set-sector command to determine whether it should
take any RPS CCWs into account when making modifications to the
channel program.

The module operates as follows:

• It receives control from the processing program when it
encounters a WRITE macro instruction and also from the EOV
routine after the end-of-volume routine of O/C/EOV has
obtained another extent.

• It connects the next available lOB to the DCB and the DECB.

• It determines, in the same manner as end-of-block routine
IGG019CD, whether this block fits on the current track and
updates the DCBTRBAL field.

•

•

If this is neither the first nor the last block of a track,
the module updates the full device address (FDAD) in the DCB
and the lOB and issues an EXCP macro instruction. It then
returns control to the processing program or the EOV routine
from which it received control.

If this is the last block of a track (that is, no other
block fits on the track except the present block), the
module updates the full device address (FDAD) in the DCB and
the lOB, expands the channel program to write the
record-zero block for that track as well as the last data
block, and issues an EXCP macro instruction. The module
then returns control to the routine from which it received
control.

• If this is the first block of a new track and there is
another track in the allocated extent, the module finds the
next track in the allocated extent. updates the full device
address (FDAD) in the DCB and the lOB, and issues an EXCP
macro instruction. It then returns control to the routine
from which it received control.

• If this is the first block of a new track and there is no
other track in the allocated extent, the module sets an EOV
condition indication and returns control to the processing
program.

WRITE Module IGG019DB (Create-BDAM): Module IGGOl9DB writes
variable-length and undefined-length blocks and record-zero
blocks for a data set to be processed later by BDAM. The OPEN
executor select and loads this module if the DCB specifies:

WRITE (Load mode)

Variable-length or undefined-length record format

The module consists of two routines: one to write data blocks
and one to write record-zero blocks.

With the rotational position sensing (RPS) feature, the module
tests for a set-sector command in the first CCW of a channel
program created by IGGOI99l. If it is an RPS channel program,

102 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

Contains Restricted tlaterials of IBM
Licensed Materials -- Property of IBM

the module makes the necessary modifications to the channel
program.

To write a data block for BDAM, the routine operates as follows:

• It receives control from the processing program when it
encounters a WRITE-SF macro instruction and from the EOV
routine (to write the block not written into the previous
volume) after the end-of-volume routine of O/C/EOV has
obtained another extent.

• It determines whether this block fits on the current track
in the same manner as end-of-block routine IGGOl9CD and
updates the DCBTRBAL field.

• If one of the following conditions exists, it returns
control without any further processing to the processing
program or to the EOV routine from which it received
control:

A block other than the first block on a track is to be
written, but it does not fit on the balance of the
track.

The first block is to be written
allocated extents are exhausted.
the module sets an EOV condition
returns control.

on a track, but the
For this condition,

indication before it

• If either of the following conditions exists, the module
updates the full device address (FDAD) in the DCB, the lOB,
and the channel program, issues an EXCP macro instruction
and then returns control to the routine from which control
was received:

A block other than the first block on the track is to be
written and it fits on the balance of the track.

The first block is to be written on a track and there is
another track in the allocated extents.

• It returns control to the processing program or the
end-of-volume routine.

To write a record-zero block for BDAM, the routine operates as
follows:

• It receives control when a WRITE-SZ macro instruction is
encountered in the processing program, or after the
end-of-volume routine has obtained another extent.

• It updates the record-zero area and the channel program to
write the record-zero block and issues an EXCP macro
instruction. The routine returns control to the processing
program or to the end-of-volume routine.

• If there are no data blocks on the track, the module
modifies the channel program to clear the track after
writing the record-zero block.

WRITE Module IGG019DD (Create-BDAM-Tracle Overflow): Module
IGGOl9DD creates data sets (with track overflow) of fixed-length
data and fixed-length dummy blocks that are subsequently to be
processed by BDAM. The module segments the block, enters the
segment lengths and buffer segment addresses in the channel
program, updates storage addresses for the channel program, and
updates count fields for the block to be written and for
records-zero of the tracks. The OPEN executor selects and loads
this module if the OPEN parameter list specifies:

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 103

Output

contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

and the DCB specifies:

WRITE (Load mode)

Fixed-length record format

Track overflow

With the rotational position sensing CRPS) feature, the first
CCW of a channel program created by IGG0191M is tested by this
module for a set-sector command code. If the code is present,
alterations to the channel program are made accordingly.

The module operates as follows:

• It receives control from the processing program when the
program issues a WRITE macro instruction, or from the
end-of-volume routine of I/O support after that routine has
obtained a new volume to write out any pending channel
programs. (The end-of-volume routine receives control from
the CHECK routine when that routine finds that a channel
program did not execute because of an end-of-volume
condition.)

• If no lOB is available, it returns control to the processing
program.

• If an lOB is available, it stores its address in the DCB and
the DECB.

• If the block last written was the last one for this extent,
the module erases the balance of the extent.

•

•

If the block last written filled the last track used, the
module obtains the address of the next track.

It sets the lOB and its channel program to write the block
onto the next available track.

• If the block does not fill the track, the module completes
the count field for this record and issues an EXCP macro
instruction.

• If the block fills the track, the module sets the track-full
indicator, completes record zero for this track, links the
channel program that writes record zero to the channel
program that writes the data record, and issues an EXCP
macro instruction.

• If the block overflows the track, the module completes
record zero for this track and completes a channel program
to write record zero, completes the count field and channel
program for the segment that fits on the track, and
constructs the identification for record one of the next
track.

• It repeats the preceding until a segment is left that does
not overflow a track. For the final segment, the module
operates as it would for a block that fits on the track.

• On return of control from the I/O supervisor, the module
returns control to the routine from which it was received.

READ/WRITE Module IGG019DK: (SYSIN/SYSOUT): Module IGG019DK
interfaces with a job entry subsystem to obtain records from the
system input stream or to pass records to the system output
stream for a BSAM processing program. The OPEN executor selects
and loads this module if the open parameter list specifies:

104 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Input, output, INOUT, OUTIN (*, DATA, or SYSOUT coded in the
DD statement)

and the DCB specifies:

READ, WRITE

Fixed, undefined, or variable-length records

The module consists of READ and WRITE routines and a CHECK
routine (SYSOUT only). The SAM module, IGGOl7BB, processes the
CHECK macro instruction for SYSIN (see Figure 17 on page 106).
(See Diagram M for an overview of SAM-SI processing for BSAM.)

The READ routine operates as follows:

• It receives control after a READ macro instruction is issued
in the processing program.

• The RPL is initialized and the DCB is examined to determine
if blocked records are specified. If they are, the number
of I/O operations specified in the I/O counter field
(CIIOCNT) is determined by the DCB block size and record
length. If the records are not blocked, the I/O counter
field is set to 1. The format of the CICB is shown in JES3
Data Areas microfiche.

• A JES GET request is issued. The request is issued as many
times as is necessary to satisfy the count in the I/O
counter field. The return code passed by the job entry
subsystem in register 15 is checked by the READ routine.

• If an end-of-data condition is detected, the DECSDECB is
posted with X'42' and control is returned to the processing
program. The DECSDECB is posted with X'41' for a permanent
error.

• If the return code indicates a successful completion,
control is returned to the processing program with the
DECSDECB posted with X'7F'.

The WRITE routine operates as follows:

• It receives control after a WRITE macro instruction is
issued in the processing program.

• The RPL is initialized and the number of I/O operations
required to process the WRITE macro instruction is
determined. The number is placed in the I/O counter field
(CIIOCNT) of the CICB.

• If the DCB record format indicates ASA or machine control
characters, then the control character is checked to
determine if it is a Composed Page Data Stream control byte.
In this case, the ACB data stream indicator is set
(ACBCCDSI) before passing control to the job entry subsystem
(JES).

• A JES PUT request is issued. The request is issued as many
times as necessary to satisfy the count in the I/O counter
field.

• When processing is completed, control is returned to the
processing program. The ECB is set to X'7F' for a normal
completion and a X'41' for an error.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 105

CHECK ROUTINES

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

A CHECK routine synchronizes the execution of channel programs
with that of the processing program. When the processing
program issues a READ or WRITE macro instruction, control
returns to the processing program from the READ or WRITE
routine. This occurs when the channel program has been
scheduled for execution or, if reading paper tape, when the
buffer has been filled and the data converted. To determine the
state of execution of the channel program, the processing
program issues a CHECK macro instruction; control returns to the
processing program from the CHECK routine if the channel program
was executed successfully, or if it was executed successfully
after the CHECK routine caused volume-switching. For permanent
errors, control passes to the processing program's SYNAD
routine. Reading or writing under BSAM, the SYNAD routine may
continue processing the data set by returning control to the
CHECK routine; writing in the create-BDAM mode, processing
cannot be resumed.

If the American National Standard Code for Information
Interchange (ASCII) is used and input is specified, the check
module issues an XlATE macro instruction which translates the
entire input buffer from ASCII form to EBCDIC form. If format-D
records are specified, the record descriptor words are first
converted from decimal to binary. For format-D records when
BUFOFF ~ l, the length of the record read is calculated and
placed in the DCB lRECl field.

Figure 17 on page 106 lists the available CHECK routines and the
conditions that cause a particular module to be used. The OPEN
executor selects one of the six routines, loads it, and places
its address into the DCBCHECK field. For example, Figure 17
shows that module IGG019DC is selected and loaded if a WRITE for
a BDAM create is specified.

Access Method Options

Input

* or DATA specified on DD
statement

Output

SYSOUT specified on DD
statement

INOUT, aUTIN

Update

WRITE

WRITE (load) (Create-BDAM)

Variable-length spanned record
format

CHECK Modules

IGG019BB

Selections

X

X

X

X

BB

IGG019BI BI

X

x
X

IGG019BS BS

X

Figure 17 (Part 1 of 2). Modules Selector--CHECK Modules

x
X

BB

X

X

106 MVS/XA SAM logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Access Method Options Selections

IGG019DC DC

IGG019DKI DK

Figure 17 (Part 2 of 2). Modules Selector--CHECK Modules

Note to Figure 17:

1 The CHECK routine described in this section is part of the
BSAM processing module IGG019DK listed in Figure 16 on
page 98.

CHECK Module IGG019BB: Module IGG019BB synchronizes the
execution of the channel program to that of the processing
program, and responds to any exceptional condition remaining
after the I/O supervisor has posted execution of the channel
program in the lOB. If ASCII coding is used, the entire input
buffer is translated from ASCII to EBCDIC. If ISO/ANSI/FIPS
spanned record format (DS/DBS) is used, the 5-byte ISO/ANSI/FIPS
segment control word (SCW) is converted to the IBM 4-byte
segment descriptor word (SDW), which leaves an unused byte at
the beginning of each segment. If a SYSIN data set is being
processed and an error condition is detected, control is passed
to the SAM-SI SYNAD routine, IGGOI9AH.

The OPEN executor selects and loads this module if the OPEN
parameter list specifies:

Input, output, INOUT, or OUTIN

and the DCB specifies:

READ or WRITE

The module operates as follows:

• It receives control when a CHECK macro instruction is
encountered in a processing program.

• A test is made to determine if a SYSIN data set is being
processed.

• If SYSIN was not specified, processing continues in the
normal manner.

• If SYSIN was specified, the completion code in the ECB is
tested.

If a completion code of X'7F' was returned, control is
returned to the processing program.

If a completion code of X'42' was returned, indicating
an end-of-data condition, the EOV SVC (55) is issued.
For concatenated data sets, control is returned to this
routine. If DCBOFLGS specifies "unlike" attributes,
control is returned to the calling program immediately.
Otherwise, the read routine indicated in DCBREAD is
entered to reschedule the request. Control is returned
to the user upon completion of CHECK processing for this
request.

If any other completion code was returned, module
IGG019AH is loaded and entered with a BAlR instruction.
This is the error-processing module for SYSIN/SYSOUT.
(See Figure 12 on page 67). The error-processing module
is deleted if control is returned to the CHECK module.
(User SYNAD routine may not return control.>

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 107

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• It tests the DECB for successful execution of the channel
program.

• If the channel program was executed normally. the module
returns control to the processing program.

• If the channel program is not yet executed. the module
issues a WAIT macro instruction.

• If the channel program encountered an error condition in its
execution. the module issues an SVC 55 instruction. Two
types of returns from the EOV routine are possible:

If the EOV routine determines the error condition to be
an EOV condition. the routine passes control to the
end-of-volume routine of O/C/EOV for volume switching.
That routine passes control to the EOV/new volume
routine. which reschedules the purged channel programs;
this routine then returns control to the CHECK module.

If the EOV routine determines the error condition to be
a permanent error. the routine returns control to the
CHECK module immediately. Control is then passed to the
processing program's SYNAD routine. If the SYNAD
routine returns control to the CHECK routine. the
routine issues a second SVC 55 instruction. The routine
treats this as an ACCEPT error option. implements it.
and returns control to the routine, which then returns
control to the processing program.

CHECK Module IGG019BI (Update): Module IGG019BI synchronizes
the execution of a BSAM update channel program to the progress
of the processing program. A BSAM update channel program either
writes data from a buffer or reads data into a buffer.

The module also processes permanent errors and end-of-volume
conditions. The OPEN executor selects and loads this module if
the OPEN parameter list specifies:

Update

and the DCB specifies:

READ

The module operates as follows:

• It receives control when the processing program uses the
CHECK macro instruction.

• It tests the ECB in the DECB for successful execution of the
channel program associated with that DECB.

• If the channel program has not yet completed processing. the
module issues a WAIT macro instruction.

• If the channel program has been executed normally. the
module returns control to the processing program.

• If the channel program encountered an error condition in its
execution. the module tests to determine if the error is an
EOV condition.

• If the error is an EOV condition, the module sets an
indicator to show that this entry is from the CHECK module
and passes control to the processing program's EODAD
routine.

•

•

108 MVS/XA SAM logic

If the error is not an EOV condition the module issues an
SVC 55 instruction.

On return of control from the EOV routine. the CHECK module
passes control to the processing program's SYNAD routine.
If the SYNAD routine returns control to the CHECK routine.

LY26-3967-0 © Copyright IBM Corp. 1977.1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

the routine issues a second SVC 55 instruction. The routine
treats this as an accept-error option, implements it, and
returns control to this routine, which then returns control
to the processing program.

CHECK Module IGG019BS (Create BDAM): Module IGG019BS
synchronizes the execution of the channel program (to write a
block for a BDAM data set) to the progress of the processing
program, and responds to exceptional conditions encountered in
the execution of the channel program. The OPEN executor selects
and loads this module if the DCB specifies:

WRITE (Load mode)

Variable-length spanned record

BFTEK=R

The module operates as follows:

• It receives control when the processing program uses the
CHECK macro ins~ruction.

• If the channel program is not yet executed, the module
issues a WAIT macro instruction.

• If a user specifies WRITE-SFR, the next record address (TTR)
is supplied in the next address field of the DECB.

• If the execution of the channel program encounters a
permanent error condition, the module passes control to the
processing program's SYNAD routine. If control is returned
from the SYNAD routine, or if there is no SYNAD routine, the
module issues a DMABCOND macro instruction to ABEND.

• If the WRITE routine encounters an EOV condition and
therefore does not request scheduling of the channel program
for execution, this module issues an SVC 55 instruction. On
return of control, this module tests for completion of the
channel program.

CHECK Module IGG019DC (Create--BDAM): Module IGG019DC
synchronizes the execution of the channel program to write a
block for a BDAM data set to the progress of the processing
program, and responds to exceptional conditions encountered in
the execution of the channel program. The OPEN executor selects
and loads this module if the DCB specifies:

WRITE (Load mode)

The module operates as follows:

• It receives control when the processing program uses the
CHECK macro instruction.

• If the channel program is not yet executed, the module
issues a WAIT macro instruction.

• If the channel program executed without error, the module
returns control to the processing program.

• If the execution of the channel program encountered a
permanent error condition, the module passes control to the
processing program's SYNAD routine. If control is returned
from the SYNAD routine, or if there is no SYNAD routine, the
module issues a DMABCOND macro instruction to ABEND.

• If the WRITE routine encountered an EOV condition and
therefore did not request scheduling of the channel program
for execution, this module issues an SVC 55 instruction. On
return of control, this module tests for completion of the
channel program.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 109

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

CHECK Module IGG019DK (SVSOUT): The CHECK routine in this
module receives control after a CHECK macro instruction is
issued in the processing program for a SYSOUT data set. (See
Diagram M for an overview of JES compatibility interface
processing for BSAM.)

The CHECK routine operates as follows:

• The return code in the DECSDECB is tested.

If a completion code of X'7F' is found, control is
passed back to the processing program.

If a completion code of X'41' is found, indicating an
I/O error, module IGG019AH (error-processing module for
SYSIN/SYSOUTi see Figure 12 on page 67) is loaded and
entered with a BAlR instruction. The error-processing
module is deleted if control is returned to the CHECK
routine.

• Control is returned to the processing program.

BSAM CONTROL ROUTINES

A control routine receives control when a control macro
instruction (for example, CNTRl, NOTE, POINT, BSP) is used in a
processing program or in another control routine. BSAM control
routines (which include those available in QSAM) pass control to
the I/O supervisor, another control routine, or return control
to the processing program directly. BSAM control routines cause
the physical or logical positioning of I/O devices.

There are three types of BSAM control routines:

•

•

Routines that are loaded into processing program virtual
storage by the OPEN executor (CNTRl, NOTE/POINT).

Routines that are loaded into supervisory transient area by
an SVC instruction in a processing program macro expansion
or in another control routine, such as BSP or track balance.
See "SVC Routines" on page 154.

• Routines that are inline macro expansions in the processing
program (PRTOV).

Routines that are loaded by the OPEN executor are mutuallY
exclusive; that is, only one of them can be used with one DCB.
The PRTOV macro expansions result in instructions that set or
test bits that cause branching in either the processing program
or in an appendage.

Figure 18 on page III and Figure 19 on page III list the various
kinds of control routines and the conditions that cause them to
gain control. Figure 18 shows the access condition options that
cause the OPEN executor to load a control routine for use with a
DCB.

Figure 19 lists the different macro expansions constructed by
the assembler.

110 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

~

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Access Method Options Selections

Note/Point X X X

Chained scheduling X

CNTRL X X X X

Direct-access storage X

Magnetic tape X X X

Card reader X

Printer X

3525 (pri nti ng) X

Control Modules

IGGOl9BD BD

IGG019BE BE

IGG019BK BK

IGG019BL BL

IGG019CAI CA

IGG019CBl CB

IGG019FAI FA

Figure 18. Module Se1ector--Contro1 Modules Selected and Loaded
by the Open Executor

Note to Figure 18:

1 These routines are also used in QSAM; see Figure 14 on
page 95 for a description of these routines.

Macro Instructions

Number of
Macro
Expansions

PRTOV--User exit 1

PRTOV--No user exit 1

Figure 19. Control Routines that Are Expansions of Macro
Instructions

Notes to Figure 19:

These routines are also used in QSAM; see the QSAM section
for a description of the routines.

This figure duplicates Figure 15 on page 95; it is repeated
here to identify all control routines available in BSAM.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 111

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

Control Module IGG019BD (NOTE/POINT--Magnetic TapeJ: OPEN
executor selects and loads this module if the DCB specifies:

POINT

Magnetic tape

This module consists of two routines: NOTE and POINT.

NOTE ROUTINE: The NOTE routine in module IGGOl9BD presents the
contents of the DCBBLKCT field of the DCB to the processing
program and returns control to the processing program.

POINT ROUTINE: The POINT routine in module IGGOl9BD positions
the tape at the block for which the NOTE macro instruction was
issued.

The POINT routine operates as follows:

• It receives control when a POINT macro instruction is
encountered in a processing program.

• It constructs a channel program to read forward or backward
one block.

• It tests for the bypassing embedded DOS checkpoint records
option by testing bit 3 of the DCBOPTCD field. If the
option is found to have been specified, the routine issues a
GETMAIN to obtain 20 bytes and modifies the CCW to read the
first 20 bytes of each block into the obtained virtual
storage while performing recording positioning. The
suppress-incorrect-Iength-indication bit is set in the CCW.
The actual bypassing of any embedded DOS checkpoint records
is performed by either channel-end appendage IGGOl9EI or
IGGOI9EJ. Module IGGOl9BD uses the FREEMAIN macro
instruction to obtain virtual storage prior to returning to
the user.

• It passes the channel program for execution the number of
times required to position the tape at the desired block.

• It follows the last read channel program by a NOP channel
program to obtain device end information for the last
spacing operation.

• It returns control to the processing program, unless a
tapemark, load point, or permanent error is encountered in
one of the executions of the read channel program. In that
case, the routine sets the DCBIFlGS field to indicate a
permanent error, before returning control to the processing
program. (Subsequent processing by the READ or WRITE
routine to cause scheduling of channel programs for
execution results in their not being scheduled. On the next
entry into the CHECK routine, it detects and processes the
error condition.)

Control Module IGG019BE (CNTRL: Space to Tapemark, Space Tape
Records): Module IGG019BE positions magnetic tape at a point
within the data set specified by the CNTRL macro instruction.
The OPEN executor selects and loads this module if the DCB
specifies:

CNTRl

Magnetic tape

The module consists essentially of two routines: one for
spacing forward or backward to the tapemark (the FSM/BSM
routine), and one for spacing forward or backward a number of
tape records (the FSR/BSR routine).

112 MVS/XA SAM Logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The FSM/BSM routine operates as follows:

• It receives control when a CNTRl macro instruction is
encountered in a processing program.

• It constructs a channel program to space to the tapemark in
the desired direction.

• It issues an EXCP macro instruction for the FSM or BSM
channel program. Control returns to the routine at channel
end for the FSM/BSM channel program.

• It issues an EXCP macro instruction for a NOP channel
program to obtain device-end information from the FSM/BSM
channel program.

• It issues an EXCP macro instruction for a BSR or FSR channel
program to position the tape within the data set after the
FSM/BSM channel program encounters a tapemark.

• It issues an EXCP macro instruction for a NOP channel
program again to obtain device-end information from the
BSR/FSR channel program. The routine then returns control
to the processing program.

The FSR/BSR routine operates as follows:

• It receives control when a CNTRl macro instruction is
encountered in a processing program.

• It constructs a channel program to space one record in the
desired direction.

• It tests bit 3 of the DCBOPTCD field for the bypassing
embedded DOS checkpoint records option. If the option is
found to have been specified. the routine issues a GETMAIN
to obtain 20 bytes and modifies the CCW to read the first 20
bytes of each block into the obtained virtual storage while
performing record positioning. The suppress-incorrect
length indication bit is set in the CCW. The actual
bypassing of any embedded DOS checkpoint records is
performed by either channel-end appendage IGG019EI or
IGG019EJ. Module IGG019BD uses the FREEMAIN macro
instruction to obtain virtual storage prior to returning to
the user.

• It reduces the count passed by the control macro instruction
and issues an EXCP macro instruction for the FSR or BSR
channel program.

• When the count is zero, it issues an EXCP macro instruction
for a NOP channel program to obtain the device-end
information from the last FSR/BSR channel program. The
routine then returns control to the processing program.

• If a load point is encountered during spacing, the routine
returns control to the processing program.

• If a tapemark is encountered during spacing, the routine
repositions the tape to a point within the data set by
reverse spacing one block and returns control to the
processing program.

• If a permanent error is encountered during spacing, the
routine issues a BAlR instruction to pass control to the
SYNAD routine. if one is present; if not, it issues an ABEND
macro instruction.

lY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 113

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Control Module IGG019BK (Note/Point--Direct Access--Special):
This module contains the NOTE and POINT routines for
direct-access processing. The OPEN executor selects and loads
this module if the DCB specifies:

POINT

Direct-access storage

NOTE ROUTINE: The NOTE routine in module IGG019BK finds the
full direct-access device address (FDAD) for the last block read
or written, converts it to a relative address of the form TTR,
and presents that value to the processing program.

The NOTE routine operates as follows:

• It receives control when a NOTE macro instruction is
encountered in a processing program.

• It obtains the FDAD value used by the channel program last
executed. The location of this address depends on which
macro instruction the last channel program implemented.

• If the macro instruction is READ and more than one buffer is
used, the channel program last executed places the FDAD
value into the IOBSEEK field in the lOB.

• If the macro instruction is READ and only a single buffer is
used, the channel program last executed places the FDAD
value into the DCBFDAD field of the DCB.

• If the macro instruction is HRITE, the end-of-block routine
places the FDAD value into the DCBFDAD field.

• It issues a BALR instruction to pass control to the IECPRLTV
routine, which converts full addresses into relative
addresses.

• It returns the address and control to the processing
program.

POINT ROUTINE: The POINT routine in module IGG019BK establishes
the full direct-access device address (FDAD) used by the channel
program to read or write the block noted.

If the records are fixed-length standard format, the record
number is passed to the resident sector routine to compute the
sector value. If the record format is not fixed-length standard
format, the value 0 is placed in the byte used by the set-sector
CCH.

The POINT routine operates as follows:

• It receives control when a POINT macro instruction is
encountered in a processing program.

• It issues a BALR instruction to pass control to the IECPCNVT
routine which converts the relative address to the full
address and returns control to the POINT routine. If the
processing program passed an invalid relative address, the
executor sets the DCBIFLGS and the IOBECBCC fields to show
that an addressing error occurred, before returning control.
The CHECK routine finds the error and processes accordingly.

• It establishes the actual value to be used by the next
channel progr.am by testing the fourth byte of the relative
address TTRZ. If the value of Z is zero, the full address
is decreased by 1; if Z is 1, the address calculated by the
convert routine is left unchanged. For an explanation of
how the value of Z is set, see the description of the POINT
macro instruction in Data Administration: Macro Instruction
Reference.

114 MVS/XA SAM logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

•

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• It inserts the value into the DCBFDAD and IOBSEEK fields if
track overflow or update is being used. It sets the
DCBOFLGS field to show that the contents of the DCBTRBAL
field are no longer valid.

• It determines if the new full disk address references a new
device address (that is, a new UCB). If a new device is
addressed, SVC 25 is issued to update the IOBSEEK field in
the SAMB's lOB. Control then returns to the processing
program.

Control Module IGG019BL (NOTE/POINT--rlagnetic Tape-Chained
Scheduling): Module IGGOl9BL is selected and loaded by the Open
executor if the DCB specifies:

POINT

Magnetic tape

Chained scheduling

The module consists of two routines: NOTE and POINT.

NOTE ROUTINE: The NOTE routine in module IGG019BL presents the
contents of the DCBBLKCT field of the DCB to the processing
program and returns control to the processing program. and
returns control to the processing program.

POINT ROUTINE: The POINT routine in module IGG019BL positions
the tape at the block for which NOTE was issued. It operates as
follows:

• It receives control when a POINT macro instruction is
encountered in a processing program.

•

•

A channel program is constructed to read forward or backward
one block.

The channel program is passed for execution the number of
times required to position the tape at the desired block.

• The last spacing channel program is followed by a NOP
channel program to obtain device-end information for the
last spacing operation.

• Control is returned to the processing program. If a
tapemark, load point, or permanent error is encountered in
the execution of one of the channel programs, the routine
sets the DCBOFLGS field to indicate a permanent error.
(Subsequent attempts by the READ or WRITE routine to cause
scheduling of channel programs for execution results in
their not being scheduled. On the next entry into the CHECK
routine, the condition is detected and handled.)

Control Module IGX00030 (MSGDISP-Magnetic Tape-Display message
to tape drive): This module receives control through an SVC 109
when the MSGDISP macro is issued.

This module builds an eight character message partially supplied
by the caller and displays it on the screen for the tape drive,
either through its own lOS driver (when the caller wants to wait
for I/O completion) or through the MISCELLANEOUS IDS driver
(when the caller does not want to wait for I/O completion). It
provides several ways of displaying different types of messages
corresponding to the type of request made by the caller through
the MSGDISP macro as follows.

READY: It displays a 6 character message supplied by the
caller.

VERIFY: It displays a 6 character volume serial number and one
character label type to signify that the volume is accepted.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 115

~---- -----------

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

MOUNT: It displays the character "M" together with the volume
serial and label type to request that the operator mount the
volume.

DEMOUNT: It displays a disposition character "K", "R", or "D"
for keep, retain, and demount respectively, to inform the
operator of the disposition of the currently mounted volume.

RESET: It clears all messages in the display area and displays
the internal state of the hardware.

GEN: It displays one or two eight character message(s),
depending on whether one or two message(s) are supplied by the
caller.

Control Module IGX00031 (SYNCDEV--Magnetic Tape--Synchronization
of Buffered write Datal: This module gets control through an
SVC 109 when the SYNCDEV macro is issued.

This module uses the NOTE ABS service to determine the buffering
depth of the device. It then does the following, depending on
the type of service requested:

INQUIRY ROUTINE: It returns the buffering depth to the caller.

SYNCHRONIZATION ROUTINE: If the buffering depth exceeds the
limit specified by the caller, it builds and executes a channel
program to force synchronization on the device. Otherwise, it
returns the buffering depth.

Control Module IGX00032 (NOTE/POINT--Magnetic Tape--Physical
Block IDl: This module gets control when a NOTE or POINT macro
is issued with the ABS parameter specified.

This module provides two functions:

NOTE ROUTINE It builds and executes a channel program to record
the physical block IDs of the record that is about to enter or
leave the buffer.

POINT ROUTINE: It builds and executes a channel program to
position the tape to the record whose physical block ID is
supplied by the caller. (This physical block ID may be obtained
from a previous NOTE.)

BASIC PARTITIONED ACCESS METHOD (BPAM) ROUTINES

A partitioned data set has a directory and members. The
directory is read and written using BPAM routines, whereas the
members are read and written using BSAM routines. (See the BSAM
portion of this publication.) A processing program using BPAM
routines for input from the directory is presented with the
address of a member in a channel program or in a table; for a
processing program using BPAM for output to a directory, the
routines determine the address of the member and record that
address in the directory.

BPAM routines store and retrieve entries in the directory and
convert direct-access addresses from relative to absolute.
Directory entries are entered and found by constructing channel
programs that search the directory for appropriate entry blocks
and by locating an equal, or higher, entry within the block.
Address conversion routines refer to the data extent block (DEB)
to determine the address value complementary to the given value.

BPAM routines (see Figure 20 on page 117) differ from BSAM and
QSAM routines in that BPAM routines are not loaded at OPEN time;
the STOW routine is loaded at execution time, all the coding for

option)/BlDl routine and the converting routines are in virtual . .
FIND (C option) is a macro expansion, and the FIND CD J
storage. Figure 20 on page 117 shows how these routines gain
control.

116 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

See nsvc Routinesn for descriptions of BPAM routines.

Module Instruction
BPAM Routines Number Residence Passing Control

STOW IGCOO02A link pack SVC 21
area

STm~ IGG0210A link pack XCTl from
area IGCOO02A

STOW IGG02lAB link pack XCTl from
area IGG02l0A

FIND (C option) (Macro User FIND (C option)
Expansion) program

FIND (D option) IGC018 Nucleus SVC 18

BlDl IGC018 Nucleus SVC 18

Convert TTR IGC018 Nucleus BAL IECPCNVT

Convert MBBCCHRR IGC018 Nucleus BAL IECPRLTV

Convert sector IGC018 Nucleus BAl IECOSCRI

Figure 20. BPAM Routines Residence

DUMMY DATA SET

Dummy Data Set Module IGG019AV: Dummy data set module IGG019AV
operates as follows:

It receives control when a sequential access method macro
instruction refers to a dummy data set. For a dummy input data
set. the module passes control to the user's EODAD routine; for
a dummy output data set. the module returns control to the
processing program immediately without scheduling any I/O
operation.

SEQUENTIAL ACCESS METHOD EXECUTORS

Executor

OPEN

Number

Sequential access method executors are routines that receive
control from. pass control to. or return control to I/O support
routines. For a description of I/O support routines. see
Open/Close/EOV LOQic. Figure 21 on page 117 indicates the other
figures that describe the OPEN and CLOSE executors. Executors
perform processing unique to an access method when a data
control block is being opened or closed.

OPEN executors

CLOSE executors

Receives Control From Via Passes Control To

See Figures 22. 23,
and 24

See Diagram E XCTL (WTG
Table)

Se~ Diagram E

Figure 21 (Part 1 of 2). Sequential Access Method Executors--Control Sequence

LY26-3967-D © Copyright IBM Corp. 1977,1985 Method of Operation 117

Executor Number

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Receives Control From Via Passes Control To

CLOSE See Figure 25 Close routine XCTL (WTG
Table)

Close routine
See Figure 25

Figure 21 (Part 2 of 2). Sequential Access Method Executors--Control Sequence

The executors reside in the link pack area. It is the OPEN
executors that load the access method routines into the
processing program area for later use during processing program
execution.

The OPEN executor is entered from the OPEN routine of I/O
support, and returns control to that routine. It constructs the
data extent block (DEB), the buffer pool if requested,
input/output blocks (lOB), the channel programs, and, if chained
channel-program scheduling is used, interruption control blo~ks
(ICB). It selects and loads the access method routines to be
used with the data control block (DCB) being opened.

The CLOSE executor is entered from the CLOSE routine of I/O
support, and returns control to it. The executor handles any
pending channel programs and releases the virtual storage used
by the lOBs, ICBs, and channel programs.

DCB RELOCATION TO PROTECTED WORK AREA

OPEN EXECUTORS

Before control is passed to SAM OPEN executors, the DCB is
copied to the OPEN/CLOSE/EOV work area to ensure the integrity
of DCB vectors that could be changed by the user during system
open time or system close time. The DCB copy is updated by SAM J.
executors during open processing and is used to refresh the ..
user's DCB prior to the initiation of any I/O operation. (The
user's DCB is used for all I/O initiated during open, except in
the validation modules, which use the DCB copy.) All I/O is
completed and the SAM work area, lOBs, and the DEB are updated
to reflect the location of the user's DCB within the user's
address space before control is returned to common open. SAM
executors refresh the user's DCB from the work area copy.

The OPEN executors are grouped into three stages. Those in the
first stage receive control from the OPEN routine of I/O
support. These executors pass control to one of the stage 2
executors, or the last load of the OPEN executors. The stage 2
executors in turn, pass control to the stage 3 executors. Stage
3 executors return control to the OPEN routine. Before
relinquishing control, each executor specifies the next executor
to be called for the data set being opened, and also examines
the where-to-go (WTG) table to determine whether other data sets
being opened at the same time need its services. To pass
control to the next executor that is to process the data set,
each executor issues an IECRES macro with the XCTL and
BRANCH=DIRECT parameters. This macro generates a branch to the
OPEN/CLOSE/EOV service routine, IFGOI9RA, which branches to the
next executor. For a description of the WTG table, see
Open/Close/EOV Logic.

When an ABEND is to be issued by an OPEN or CLOSE executor, it
issues a DMABCOND macro to prepare to pass control to IGG0196M
or IGG0206M. (These two problem determination modules are
described in Open/C10se/EOV Logic.) A DMABCOND macro is issued
instead of an ABEND macro because the problem determination J
routines write a message to the user, issue the GTRACE macro to
trace pertinent control blocks, and call the optional DCB ABEND
exit routine before possibly issuing an ABEND macro.

118 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

System modules that build, delete, or modify data extent blocks
(DEBs), use DEB validity checking, a separate routine that
protects the user's data from unauthorized access. The modules
must maintain a table of DEB pointers in protected storage by
use of the DEBCHK macro instruction, described in Data
Administration. The logic of the DEBCHK routine is in
Open/Close/EOV logic.

The OPEN executors maintain an audit trail in the OPEN work area
to indicate which resources have been acquired. This audit
trail is interrogated by the force CLOSE executor when a force
close situation arises.

The message text for all messages issued by the OPEN executors
are contained in the message CSECT. Before issuing a message,
the executor must extract the message text from the message
CSECT.

Diagram E shows the flow of control among the three stages of
OPEN executors.

stage 1 OPEN Executors

Stage 1 OPEN executors construct data extent blocks (DEBs),
build buffer pools, and issue DEBCHK (TYPE=ADD) macros. If a
printer with the universal character set (UCS) feature and/or a
forms control buffer (FCB) is specified, the executors call
SETPRT to perform printer setup.

If UCS/FCB images are not specified in the user's JCl, the
executors must ensure that the current images, as specified by
the UCB UCS extension, are default images. If none are loaded
or the loaded images are not default images, the operator must
specify which images are to be used.

The OPEN routines determine which executor is required to begin
processing of each DCB specified in the OPEN parameter list.
For SAM processing, the entry placed in the WTG table is
IGGOl9lA for an actual data set, IGGOl9lC for a dummy data set,
and IGGOl99F for a SYSIN or SYSOUT data set.

The executor for the first entry in the WTG table gets control
from the common OPEN routines.

As each stage 1 executor completes its processing, the name of
the next executor (for the DCB being processed) is placed in the
WTG table. Then a check is made to determine, for each entry in
the OPEN parameter list, if another DCB requires the use of the
executor now in control. If so, the executor is reentered as
many times as necessary to process all of the entries in the WTG
table requiring this executor. If no other DCBs require this
executor, control is passed to the next executor that is
specified in the WTG table (starting from the top of the list)
for a DCB that has not completed its processing. For a
particular DCB, all of the stage 1 executors are executed before
control is passed to a stage 2 executor.

Figure 22 on page 119 lists the access method conditions that
cause different stage 1 executors to be selected, loaded, and to
receive control after loading. The executors are described in
the text that follows. The order of presentation is the same as
that shown in Figure 22 under Executors.

In Figure 22, an X in a column represents a condition that must
be satisfied for the executor marked in that column. A blank in
the upper portion of the table indicates that either the
condition is not required for selection or not examined at this
time. The table should be used in conjunction with the flow of
control information in Diagram E, SAM Flow of Control for OPEN
executors.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 119

Access Method options Selections

Actual data set X X X

Dummy data set

*, DATA, or SYSOUT in DD
statement

3505 (OMR/RCE) or 3525

Direct-access device X

Printer with UCS Feature
0403, 3203, 3211, 3262
Model 5, 3800, 4245, 4248)

Printer with forms control
buffer (3203, 3211, 3262
Model 5, 3800 4245, 4248)

Buffer pool required X

User totaling specified

Executors

IGG0191A 1A 1A 1A

IGG0191B 1B 1B 1B

IGG0191C

IGG01911 11

IGG0191N IN

IGG0191Y

IGG01931 31 31 31

IGG0196A 6A 6A 6A

IGG0196B 68 6B 6B

IGG01961 61 61 61

IGG0196Q

IGGOI97L

IGG0197M

IGG0197U

IGG0199F

IGG0199G

IGG0199W

Figure 22. OPEN Executor Se1ecto~Stage 1

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Selec- Selec- Selec- Selec-
tions tions tions tions

X X X X X X X X X X

X

X

X

X X X

X

X

X X X

X X X X

1A 1A 1A 1A 1A 1A 1A 1A 1A

1B 1B 1B 1B 1B 1B 1B 1B 1B

1C

11 1111 11

IN IN IN

lY 1Y 1Y lY

31 31 31 31 31 31 31 31 31

6A 6A 6A 6A 6A 6A 6A 6A 6A

6B 6B 6B 6B 68 6B 6B 6B 6B

61 61 61 61 61 61 61 61 61

6Q 6Q

7L

7M

7U

9F

9G

9W

120 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

stage 1 OPEN Executor IGG0191A: Executor IGGOl9lA receives
control from the OPEN routine unless the DD statement is DUMMY.
(If the DD statement is DUMMY, executor IGGOl9lC receives
control from the OPEN routine.)

The executor operates as follows:

• It tests the OPEN macro option against the DCBMACRF field.
It issues an 013 ABEND via a DMABCOND macro if any of the
conditions listed are found. The conditions are:

For QSAM:

that buffer length is not smaller than block size if
the buffer length is specified

that the block size is not at least 4 bytes larger
than logical-record length for variable-length
records

that logical-record length (if specified) is not
equal to block size for fixed-length unblocked data
sets

For BSAM and QSAM:

that block size is not an even multiple of logical
record length for fixed-length blocked data sets

• It performs a test to determine if the block size is an
integral multiple of the logical record length (LRECL) for
QSAM with fixed blocked records or BSAM data sets. If the
block size is not an integral multiple of LRECL, QSAM data
sets are abnormally terminated with an abend (013).

• If search-direct has been requested (OPTCD=Z in the DCB and
a direct-access device is being used), the executor
determines if search-direct can be supported (that is, not
VS, UT, FBS, etc.) and sets the bit in JFCBMASK+6 to X'OS'
if the request can be honored. For a 3890 MICR device, it
will issue a DMABCOND macro instruction if RECFM, BLKSI,
LRECL, or BUFl are specified incorrectly.

• The executor specifies in the WTG table that module IGG0196I
is the next module required for this DCB.

• It searches the WTG table to pass control to another
executor.

stage 1 OPEN Executor IGG0191B: Executor IGG0191B is loaded
after executor IGGOI96A, IGG0191N or IGGOl91Y has completed
processing all entries in the WTG table.

The executor operates as follows:

• It stores DCBLRECL in the DEB.

• It sets DCBCNTRL to O.

.• If the device type is direct-access storage, the address of
the device table is stored in the DCB. From the device
table, the key overhead (or 0 if there are no keys) and
track balance are stored in the DCB.

• If the JFCB indicates a partitioned data set, the DSCB and
the DSORG field of the DCB are checked to be sure they
specify partitioned organization. If not, a DMABCOND macro
instruction is issued.

• If partitioned organization is specified:

For direct-access OUTPUT or OUTIN, the track balance of
the last write, from the DSCB, is stored in the
DCBTRBAL.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 121

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

For direct-access input, the member name from the JFCB
is stored in the DEB. The routine then issues a BlDl
macro instruction to find the extent. If BlDl returns a
nonzero return code, a DMABCOND macro instruction is
issued.

The executor issues a BAlR to the convert routine at CVTPCNVT to
convert the TTR to MBBCCHHR and stores it in DCBFDAD.

• If the data set is not partitioned, DCBFDAD is set to
DEBBINUM. If a dummy extent is indicated, the DCBFDAD + 3
is set to X'FF' to indicate an illegal FDAD.

• If unit record equipment is specified, for input only and
NOTE/POINT is requested, DCBCNTRl + 1 is set with ID of the
dummy routine.

• If lRECl is not specified, DCBlRECl is initialized for QSAM.

• The executor specifies in the WTG table that module IGG0196B
is the next module required for this DCB.

• It then searches the WTG table to pass control to another
executor.

stage 1 OPEN Executor IGG0191C: Executor IGG0191C operates as
follows:

• It receives control from the OPEN routine if the DD
statement is DUMMY.

• It issues a GETMAIN macro instruction for a DEB.

• It does a DEBCHK, ADD, to put the DEB in the DEB table.

• It issues a lOAD macro instruction for IGG019AV and stores
the characters 'AV' in the subroutine ID section of the DEB.

• It issues a GETMAIN macro instruction for buffer space and
constructs the buffers.

• It sets various audit trail bits.

• It issues a DMABCOND macro instruction if BUFlEN and BlKSIZE
are not specified for QSAM.

• The executor specifies in the WTG table that IGG019ll is the
next executor for this DCB.

stage 1 OPEN Executor IGG0191I: Executor IGG019l1 is loaded
after IGG0196B, unless the OPEN executors must load UCSB or FCB
images. In this case, it is loaded after IGG0197M.

The executor operates as follows:

• If a buffer pool has already been built, the executor gets
virtual storage for a record area for QSAM logical record
interface.

• If the values in both the DCBBUFl and DCBBlKSI fields are
zero, the executor issues a DMABCOND macro instruction.

• If time sharing (TS) is specified with BSAM and DCBBUFl and
DCBBlKSI fields are zero, it sets the length of the buffer
to terminal line length. When QSAM is specified and DCBBUFl
and DCBBlKSI fields are zero, it sets the length of the
buffer to logic record length. If DCBlRECl field is also
zero, it sets the length of the buffer to terminal line
length.

•

122 MVS/XA SAM logic

If the value in either the DCBBUFl or DCBBlKSI field is not
zero, the executor uses that value to establish the size of
the buffer. The value in the DCBBUFNO field determines the
number of buffers constructed.

lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If the DCB specifies blocked records, a unit record device,
output, and not undefined RECFM, it turns off the
blocked-records bit in DCBRECFM. For fixed-length records,
it sets DCBBLKSI equal to DCBLRECL.

• If logical record interface is required for variable-length
spanned records processed in locate mode, the executor adds
a length of 32 bytes plus the maximum logical-record length,
which is specified in the DCBLRECL field for a record area,
to the size of virtual storage required. If extended
logical record interface (XLRI) is specified, the DCB LRECL
value is a multiple of 1024, which is used to calculate the
size of the record area, and the 32-byte control field is
added. Eight more bytes (including 4 bytes of padding) are
added to the buffer control block to store the address of
the record area. Flags are set (X'CO') to indicate an
extended buffer control block and the presence of the record
area.

• It issues a DMABCOND macro instruction if BUTEK=A 1S
specified and teh processing mode is not locate.

• It stores the length of the entire record area in the first
word of the record area.

• It specifies that executor IGG0193I is required for this DCB
in the WTG table. It then searches the WTG table to pass
control to another executor.

stage 1 OPEN Executor IGG0191N: Executor IGG019lN receives
control after executor IGG0196A. It supplements executor
IGG0196A by building the device-dependent portion of the DEB for
direct-access devices.

For partitioned data sets, it sets the authorized library table
bit in the DEB if the data set is in the authorized library
table.

If the data set resides on an MSS virtual volume, an ICBACREl
macro is issued to allocate space on and/or stage data to a
direct-access device. If MSS window processing has been
requested by the user, a flag is set on in the DEBXFLGI field in
the DEB extension, providing the MSS data set is (1) physical
sequential in organization, (2) allocated in cylinders, and (3)
being processed by QSAM or BSAM for INPUT or OUTPUT only (not
INOUT, OUTIN, nor UPDAT). Any errors result in abnormal
termination (see abend code 413, return code 2C, in the
"Diagnostic Aids" section of this manual). If a partitioned
data set resides on an MSS virtual volume and will be opened for
INPUT processing, the following options exist at the time the
data set is opened:

• To stage the entire data set to end-of-file, specify OPTCD=H
as a DCB subparameter on the associated DD statement.

• To stage only the directory of the data set, do not specify
OPTCD on the associated DD statement.

Note: The OPTCD option may only be specified on the DD
statement; it cannot be specified with the DCB macro.

The user label extent is not inserted into the DEB. This
executor specifies either IGG019lB or IGG019lY as the next entry
in the WTG table for processing the DCB, unless the DCB
specifies EXCP, in which case IGG019ll is the next executor for
this DCB.

It then searches the WTG table to pass control to another
executor.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 123

contains Restricted Materials of IBH
Licensed Materials -- Property of IBH

stage 1 OPEN Executor IGG0191Y: Executor IGG0191Y receives
control after executor IGG0196A or executor IGG0191N when the
user-totaling option has been specified in the DCB, that is,
when bit 6 of DCBOPTCD is 1.

This executor operates as follows:

• It sets bit 7 of DCBOFLGS to 0 to prevent a successful open
and issues a DMABCOND macro to write a message to the
programmer for any of the following reasons:

No DCB exit list.

No totaling entry in DCB exit list.

Image area address is zero.

• It calculates the size of the area required to save the
user's totaling areas and issues a GETMAIN to obtain the
space.

• It constructs control blocks for the work area and places
the address of the save area in the access method portion of
the DEB. (Figure 34 on page 241 describes the access method
save area.) .

• It loads the resident save routine IGG019AX and places the
ID of the save routine in the DEB and the address in the
user-totaling save area.

• It specifies in the WTG table that executor IGG0191B is the
next executor required. It then searches the WTG table to
determine the next executor to receive control.

stage 1 OPEN Executor IGG0193I: This executor receives control
from IGG0191I.

The executor specifies which stage 2 executor is specified in
the WTG table. The module selector table for stage 2 executors,
Figure 25 on page 141, should be used to determine which stage 2
executor is required for this DCB.

For direct-access processing, if write load (that is, BDAM
create processing) is not specified, IGG0193I passes control to
IGG0193B. If write load is specified, IGG0193I passes control
to IGGOI91L.

For other than direct-access processing, if chained scheduling
can be supported and has been requested (with OPTCD=C), an
appropriate chained scheduling executor is specified in the WTG
table.

If chained scheduling can be supported but has not been
requested, tests are made to see if it can be given anyway
without interfering with a dependence that the issuer of OPEN
may have on normal scheduling. There are two cases in which
OPEN cannot supply chained scheduling unless requested by the
keyword OPTCD=C.

1. Printer--The PRTOV macro may be used and it does not operate
properly with chained scheduling.

2. Reading format-U records---With chained scheduling, the
actual length of the record is not available.

It then searches the WTG table to determine which executor
receives control. The IECRES macro instruction is used to pass
control to the next executor.

124 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

stage 1 OPEN Executor IGG0196A: Executor IGG0196A receives
control from and supplements IGG01961.

• The executor issues a DEBCHK (TYPE=ADD) macro to add the
newly created DEB address to a protected area table of DEB
addresses.

• It completes the DEB construction initiated in OPEN executor
IGG01961.

• If the device type is a printer with a printer device
characteristics table (PDCT), the DCBDEVT field contents are
obtained from the PDCT.

If the device type is not a printer with a printer device
characteristics table (PDCT), the executor fills in the
DCBDEVT field with the device type and number from the UCB.
If unit record equipment is indicated, the UR bit in the
DCBDEVT field is set.

• The executor specifies in the WTG table which module is the
next one required for this DCB, as follows:

•

For direct-access--executor IGG0191N.

If the device type is a printer with UCS feature or is a
3800 Printing Subsystem and EXCP is specified--executor
IGG0196Q.

If the device type is other than a printer and EXCP is
specified--executor IGG0191l, the final module of the
OPEN executors.

If the device type is tape, not input, not EXCP, and the
user-totaling facility is specified--executor IGG0191Y.

If the device type is other than a printer with the UCS
feature or direct access, BSAM or QSAM is specified, and
the user-totaling facility is not specified--executor
IGG019lB.

It then searches the WTG table to pass control to another
executor.

stage 1 OPEN Executor IGG0196B: Executor IGG0196B receives
control from and supplements IGG0191B.

The executor operates as follows:

• For QSAM, DCBBUFNO is set to 5 (3 for 2540) if not
previously specified.

• Executor issues DMABCOND macro instruction (calls problem
determination module) if the buffer length is less than
block size or if data set is for a printer and something
other than output (only) is specified.

• Determines the next executor to receive control.

For a time sharing (TS) task, control is transferred to
IGG0196S unless buffers are wanted. If buffers are
needed, the OPEN routine transfers control to IGG01911.

A test is made to determine if either the 3505 (without
OMR or RCE) or 3525 is being used, just prior to the
XCTL subroutine. If either device is being used,
control is passed to module IGG0197L; otherwise, normal
processing continues.

If the device type is a printer with the UCS feature,
IGG0196Q receives control.

If a buffer pool is required, IGG019l1 receives control.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 125

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Otherwise, IGGOl931 receives control to select the stage
2 executor.

stage 1 OPEN Executor IGG0196I: Executor IGG0196I receives
control from and supplements IGGOI9IA.

The executor operates as follows:

• It computes the virtual-storage requirement for the DEB and
obtains the space. The space does not include the user
label extent, because it is reflected in the first extent
field of a format-l DSCB for a physical sequential or direct
data set. If no primary extent has been requested for an
output data set, as shown by the contents of the DSINOEPV
field of the DSCB, the executor sets the DCBCINDI field to
show a volume-full condition.

• It specifies in the WTG table that executor IGGOl96A is the
next executor required for this DCB.

• It then searches the WTG table to pass control to another
executor.

Stage 1 OPEN Executor IGG0196Q: This executor initializes a
printer with the UCS feature or a 3800 Printing Subsystem Models
1 and 3. It receives control from IGGOl96A (EXCP) and IGGOl96B
(BSAM/QSAM).

The executor operates as follows:

• For printers other than the 1403, it obtains storage for the
ERP work area if one does not exist. A use count is kept of
the work area. Each time the module requests storage for
the work area, the count is incremented by 1. Each time the
work area is released, the use count is decremented by 1.
When the use count is zero, the work area is freed by
IGG0202J.

• It obtains storage for a SETPRT parameter list. If the JFCB
indicates that a JFCBE (JFCB extension for the 3800 Printing
Subsystem) exists, the SETPRT parameter list is then
completed using the information in the JFCBE and the JFCB.
If the JFCBE does not exist, the SETPRT list contains zeros
in the device-dependent fields. If the device is a 3800
Printing Subsystem, the module turns on the SETPRT
initialization bit, which allows the SETPRT executors to
restore the 3800 Printing Subsystem to its hardware defaults
before the device was set up with data set dependent
requirements.

• If the device is a 3800 Printing Subsystem and SETPRT is not
successful, message IECl62I with SETPRT return codes is
issued, followed by an abend (IEC1411 013-CC).

If the device is not a 3800 Printing Subsystem and SETPRT
fails, the SETPRT return code is converted to the
appropriate internal abend code for an IECl52I BI3-CC abend.

• This executor then indicates in the WTG table the stage 2
executor to receive control for processing the DCB. The
module selector table for stage 2 executors, Figure 25 on
page 141, should be used.

stage 1 OPEN Executor IGG0197L: Executor IGGOl97l receives
control from IGGOl96B whenever the 3505 or 3525 is specified.

The executor operates as follows:

• It initiates registers with the addresses of the DCB, UCB,
ECB, and CVT.

• A test is made to determine if either OMR or RCE is being
used.

126 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If OMR is specified, a test is made to determine if the
device is a 3525. If the device is a 3525, control is
transferred to IGGOI97M.

• If either OMR or RCE is specified, the format descriptor
record is loaded and decoded.

• After the read-only has been executed and the format card
has been translated, an OMR or RCE CCW is constructed and
executed (writes the format of the device).

• It specifies in the WTG table that IGGOl97M is the next
executor required for this DCB. It then searches the WTG
table to pass control to another executor.

stage 1 OPEN Executor IGG0197M: IGGOl97M receives control from
IGGOl97L.

The executor operates as follows:

• If an OMR or RCE format card is invalid, or if an invalid
device is specified for OMR, this module issues a WTP
message and an abend (004) with a return code of 05.

• If no invalid condition exists, the executor specifies in
the WTG table the next module required for this DCB, as
follows:

•

IGGOl9l1 if QSAM is specified and no buffer pool control
block exists.

IGGOl97N if either BSAM or QSAM is specified and the
user has specified a buffer-pool control block.

IGG01911 if BSAM is specified and the user has specified
a buffer number but not a buffer buffer-pool control
block.

It then searches the WTG table to pass control to another
executor.

stage 1 OPEN Executor IGG0199F [SYSIN/SYSOUT): Executor
IGG0199F receives control when the OPEN routines (see Diagram K)
determine that the SAM-SI executors are required to process a
DCB for a SYSIN or SYSOUT data set (*, DATA, or SYSOUT coded in
the DD statement).

Note: If a device is directly allocated to the task and the
OPEN verification subsystem interface (SSI) determines that the
data set is to be handled by a subsystem, data management uses
the SAM-SI executors and the S51 interfaces to access the
device. The interface to the device subsystem is the same as
the JES interfaces for a SYSIN/SYSOUT data set.

The executor operates as follows:

• It issues a GETMAIN macro instruction to obtain virtual
storage for a JES compatibility interface control block
(CICB). The format of the CICB is described in JES3 Data
Areas microfiche.

• It constructs an ACB and an RPL in the CICB, for
communicating with the JES, and initializes an SVC exit list
with entries for BSP and SYNADAF SVCs.

• It supplies defaults to appropriate DCB fields in the open
copy of the DCB.

• It specifies in the WTG table that executor IGG0199G is the
next executor required for this DCB.

• It then searches the WTG table to pass control to another
executor.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 127

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

stage 1 OPEN Executor IGG0199G (SYSIN/SYSOUT): Executor
IGG0199G receives control from the SAM-SI OPEN executor
IGGOI99F.

The executor operates as follows:

• The WTG table is scanned and an open list is constructed to
open an ACB for each SYSIN/SYSOUT entry in the WTG table.

• It issues an OPEN (type J) macro instruction for the ACBs
just constructed.

• It chains the DEB, created by OPEN for the ACB, to the DCB.
The address of the DCB is placed in DEBECBAD, leaving
DEBDCBAD pointing to the ACB (see Figure 36 on page 244).

• It checks the DCB for invalid combinations of access method
options. An abend (013) is requested (using problem
determination routines) if any invalid combinations are
found.

• It specifies in the WTG table that IGG0199W is the next
executor required for this DCB.

• It then searches the WTG table to pass control to another
executor.

stage 1 OPEN Executor IGG0199W (SVSIN/SVSOUT): Executor
IGGOl99W receives control from the SAM-SI OPEN executor
IGGOI99G.

The executor operates as follows:

• It determines the buffer requirements, then obtains and
chains buffer (if necessary).

• The RPL, contained in the CICB, is initialized according to
the record format specified in the DCB.

• It issues a GETMAIN macro instruction to obtain a work area
for collecting segments, if necessary.

• It specifies in the WTG table that IGGOl98L is the next
executor required for this DCB.

• It then searches the WTG table to pass control to another
executor.

stage 2 OPEN Executors

A stage 2 OPEN executor establishes device-oriented information
for the processing described by a DCB, and completes
device-oriented control blocks or fields. One of the stage 2
executors receives control for each DCB being opened; the WTG
table identifies the executor required for each DCB. On
conclusion of an executor1s processing it enters in the WTG
table the identification of the stage 3 executor required.
Figure 23 on page 129 lists the access conditions that cause the
different stage 2 executors to be loaded and to receive control.

For direct-access operations other than write load, IGGOl93B
serves as a stage 2 and 3 OPEN executor. IGGOl93B returns
control directly to IGGOI90S, the I/O services common routine.
IGG0193B builds all control blocks and loads all routines
needed.

The device-oriented processing performed by a stage 2 executor
primarily consists of the construction of input/output blocks
(lOB), their associated channel programs, and the identification
of the end-of-block routine required for the processing
described by the DCB. For chained channel-program scheduling,
executors also construct interruption control blocks (ICB).

128 MVS/XA SAM Logic LY26-3967-0 @ Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Figure 23 lists the access conditions that cause the different
stage 2 executors to be loaded and to receive control. The
executors are described in the text that follows and are in the
same sequence as the list in the figure.

Selec- Selec- Selec- Selec- Selec-
Access Method Options tions tions tions tions tions

Track overflow X

Direct-access storage X X X

INDUT, DUlIN X

Unit record or magnetic X X X X X X X X
tape or paper tape

Write-Load (Create-BDAM) X X

Chained scheduling X X

3505 X X

3525 X X

3890 X

OMR or X

RCE or X X

Print only and associated X
files

TS terminal X

Open Executorsl

IGG0191G IG IG IG

IGG019lL lL lL

IGG0191M 1M

IGG0191Q lQ

IGG0191R lR

IGG0193B 3B

IGG0196K 6K

IGG0196S 2 6S

IGG0197N 7N 7N 7N 7N

IGG0197P 7P 7P

IGG0197Q 7Q 7Q

IGG0197V 7V

IGG0199L 9L

Figure 23. OPEN Executor Selector--Stage 2

Notes to Figure 23:
1 If ~, DATA, or SYSOUT is specified on the DD statement, no

stage 2 executors are loaded.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 129

2

contains Restricted Materials of IBH
Licensed Materials -- Property of IBH

See ACF/TCAM Diaqnosis Guide and ACF/TCAM Diaqnosis
Reference.

In this figure, an X in a column represents a condition that
must be met for the executor to be selected. A blank in the
upper portion of the table indicates that either the condition
is not required for selection or is not examined at this time.
The table should be used in conjunction with the flow of control
information in Diagram E, SAM Flow of Control for OPEN
Executors.

stage 2 OPEN Executor IGG0191G: Executor IGG019lG normally
receives control from executors IGG01931, IGG0196Q (for 3800
Printing Subsystem only), IGG0197F, IGG0197U, or IGG0197N.
Under abnormal conditions, it receives control from executors
IGGOI9IR, IGGOl9lQ (chained scheduling not supported) if:

• The DCB specifies BSAM or QSAM and either unit record or
magnetic tape.

• The OPEN macro parameter is INOUT or OUTIN and the DCB
specifies magnetic tape.

The executor operates as follows:

• It computes the amount of virtual storage required for the
lOBs, issues a GETMAIN macro instruction from subpool 0, in
the user's key, and then sets the virtual storage for the
lOBs to zeros. It stores the number of bytes gotten for the
lOBs in the second word of the audit trail for force close.

• When control is returned from GETMAIN, it sets an audit
trail bit to indicate to the force CLOSE executor that
storage should be freed.

• It then tests to see if the device type for this data set is
unit record. If so, IGGOl96K is specified in the WTG table
for this DCB and the check for other DCBs that need this
executor is made.

• If the device is not unit record, processing continues in
this module. It constructs the channel programs in the lOBs
and fills in the other fields of the lOBs. It stores the
address of the first lOB in the DCB and sets the first lOB
bit in the first lOB. If there is only one lOB for this
data set, it sets the lOB unrelated flag.

The executor specifies in the WTG table the next executor
required for this DCB. If the DCB specifies variable-length
record format, the next executor is IGG019l5. For the remaining
access conditions that cause this executor to be used, the next
executor is IGG019l0. The executor then searches the WTG table
to pass control to another executor.

stage 2 OPEN Executor IGG0191L: Executor IGGOl9ll receives
control after executor IGG01931 if the DCB specifies:

Create-BDAM (Write-load)

The executor constructs lOBs and enters the address of the first
lOB into the DCB. Then it loads the create-BDAM WRITE, CHECK,
and channel end appendages and inserts their addresses into the
DCB.

It loads the create-BDAM channel end appendage and places its
address in the DEB appendage vector table CAVT).

With the rotational position sensing CRPS) feature, more virtual
storage is needed for the channel programs. This executor

J

J

computes the extra bytes needed for the RPS channel programs and J
issues a GETMAIN. The sector bytes are placed at the end of all
the lOBs and channel programs. The last doubleword of the
GETMAIN area is used for sector manipulation. The first byte is
used by set-sector and by read sector. The second byte is used

130 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

as a byte of zero on which to issue a set-sector command in
order to position at the beginning of the track.

If track overflow is specified, the routine specifies that
executor IGG0191M is the next executor required for this DCB.
Otherwise, the routine specifies IGG0199l as the next executor
required. It then searches the WTG table to pass control to
another executor.

stage 2 OPEN Executor IGG0191M: Stage 2 OPEN executor IGG0191M
constructs channel programs to write track-overflow blocks using
BSAM for a data set to be later processed by BDAM. Executor
IGG0191l identifies it in the WTG table as its successor
executor if the DCB specifies:

Create-BDAM (Write-load)

Track overflow

With the rotational position sensing (RPS) feature, more virtual
storage is needed for the channel programs. This executor
computes the extra bytes needed for the RPS channel programs and
issues a GETMAIN. The sector bytes are placed at the end of all
the lOBs and channel programs. The last doubleword of the
GETMAIN area is used for sector manipulation. The first byte is
used by set-sector and by read sector. The second byte is used
as a byte of zero on which to issue a set-sector command in
order to position at the beginning of the track.

The executor operates as follows:

• If the extents are smaller than the blocks, it issues a
DMABCOND macro instruction to abend.

• It constructs channel programs to write the number of
segments required by the size of the block.

• It specifies in the WTG table that OPEN executor processing
is completed for this DCB. It then searches the WTG table
to pass control to another executor. If the WTG table has
no other entries, the executor returns control to the Open
routine.

stage 2 OPEN Executor IGG0191Q: Executor IGG0191Q gains control
after executor IGG0196Q (for 3800 Printing Subsystem only),
IGG0197U, IGG0197F, or IGGOl931 if the DCB specifies:

Chained channel-program scheduling

Unit record and magnetic tape

The executor operates as follows:

• If the DCB specifies the CNTRl macro instruction, this
executor identifies executor IGG0191G in the WTG table as
the next executor to receive control for this DCB. It then
searches the WTG table to pass control to another executor.

• If the NOTE/POINT macro instruction is specified and the
device is magnetic tape, it identifies module IGG019Bl to be
loaded for use with the DCB.

• If the NOTE/POINT macro instruction is specified, and the
device is unit record, it identifies dummy data set module
IGG019AV to be loaded and used in place of NOTE/POINT.

• It identifies the end-of-block routine to be loaded and used
for the processing described by this DCB.

• From subpool 0 in the user's key, it obtains space for and
constructs one lOB, the required number of ICBs (one per
buffer or channel program) and channel programs appropriate
to the device, and links them. It stores the number of

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 131

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

bytes gotten for the lOBs in the second word of the audit
trail for force close.

• When control is returned from GETMAIN, it sets an audit
trail bit to indicate to the force CLOSE executor that
storage should be freed.

• It sets the PCI flag in the READ Count CCW, only if in a
real address environment.

• For QSAM data sets with fixed-blocked record format on a
unit record device, and the buffer pool was not gotten by
OPEN, it sets DCBBLKSI equal to DCBLRECL and turns off the
blocked records bit in DCBRECFM.

• If chained scheduling cannot be supported because of
conflicting specifications, bit 5 of DCBCIND2 is set to 0 to
indicate that chained scheduling is not being supported. The
executor specifies IGG019lG as the next executor to receive
control; otherwise, unless variable spanned record format is
specified, bit 5 of DCBCIND2 is set to 1 to indicate support
of chained scheduling and IGG019l3 is specified as the next
executor to receive control. When variable spanned or
ISO/ANSI/FIPS variable spanned record format is specified,
IGG019l6 is the next executor for this DCB.

• It then searches the WTG table to pass control to another
executor.

stage 2 OPEN Executor IGG0191R: OPEN executor IGG019lR receives
control after executor IGG0193I if the OPEN parameter list
specifies:

INOUT, or OUTIN

and the DCB specifies:

Chained channel-program scheduling

Magnetic tape

The executor operates as follows:

• If the device is magnetic tape, it identifies NOTE/POINT
module IGGOl9BL to be loaded for use with the DCB.

• It identifies the end-of-block routine to be loaded for use
with the DCB.

• From subpool 0 in the user's key, it obtains space for and
constructs one lOB, the required number of ICBs (one per
buffer or channel program) and channel programs for
direct-access storage or magnetic tape, and links them. It
stores the number of bytes gotten for the lOBs in the second
word of the audit trail for force close.

• When control is returned from GETMAIN, it sets an audit
trail bit to indicate to the force CLOSE executor that
storage should be freed.

• It sets the PCI flag in the read count CCW, only if in a
real address environment.

•

•

132 MVS/XA SAM Logic

;

If chained scheduling cannot be supported because of
conflicting specifications, bit 5 of DCBCIND2 is set to 0 to
indicate that chained scheduling is not being supported, the
executor specifies IGG0191G as the next executor to receive
control; otherwise, bit 5 of DCBCIND2 is set to 1 to
indicate support of chained scheduling and IGG01913 is
specified as the next executor to receive control.

It then searches the WTG table to pass control to another
executor.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

stage 2 OPEN Executor IGG0196K: Executor IGG0196K receives
control if executor IGG019lG determines that the device type is
unit record.

• This executor builds channel programs, using the storage
gotten in IGG019lG.

• For QSAM fixed blocked record format, it sets DCBBlKSI equal
to DCBlRECl and turns off the blocked records bit in
DCBRECFM.

The executor specifies in the WTG table the next executor
required for this DCB. If the DCB specifies variable-length
record format, the next executor is IGG019l5. For the remaining
access conditions that cause this executor to be used, the next
executor is IGG019l0.

The executor then searches the WTG table to pass control to
another executor.

stage 2 OPEN Executor IGG0197NI Executor IGG0197N receives
control from IGG01931 whenever the 3505 or 3525 is specified, or
from IGG0197M whenever the same devices are specified and a
buffer pool is not needed.

The executor operates as follows:

• It makes a test to determine if the FUNC parameter is being
used.

• If the FUNC parameter is not being used, and if the file is
for read-only (without OMR or RCE) or punch-only, IGGOl91G
is specified in the WTG table as the next executor required
for this DCB.

• If the FUNC parameter specifies print only or associated
files, IGG0197P is specified in the WTG table as the next
executor required for this DCB.

• If a specified parameter combination is found to be invalid,
a message to the programmer (WTP) is issued along with a
subsequent abend (004).

• If the FUNC parameter is not being used, but the file is a
read-only with OMR or RCE, IGG0197P is specified in the WTG
table as the next executor required for this DCB.

• After the validity of the FUNC parameter is established, the
DCBMACRF field is tested to determine if the CNTRl is valid
for an input data set. If it is not valid, a WTP message
and an ABEND macro (004) with a return code of 02 are
issued.

• If the CNTRl specification is valid. a test is made to
determine if the associated DCBs specify the same access
methods.

• If the access methods are not the same. a message is written
to the programmer along with a subsequent ABEND (004).

• It specifies in the NTG table that IGG0197P or IGG019lG is
the next executor required for this DCB. It then searches
the WTG table t.o pass control to another executor.

Stage 2 OPEN Executor IGG0197PI IGG0197P receives control from
IGGOl97N if neither read-only (without OMR or RCE) nor
punch-only is specified for the 3505 or 3525.

The executor operates as follows:

• It builds the lOB and CCWs and appends a work area to the
lOB. according to the type of data set that is specified.

lY26-3967-0 © Copyright IBM Corp. 1977.1985 Method of Operation 133

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• It specifies in the WTG table that IGGOl97Q is the next
executor required for this DCB. It then searches the WTG
table to pass control to another executor.

stage 2 OPEN Executor IGG0197Q: IGG0197Q receives control from
IGGOI97P.

The executor operates as follows:

• A test is made to determine if data protection image (DPI)
is specified in the FUNC parameter.

• If DPI is specified, SVC 105 is issued. This builds a DCB
for SYSI.IMAGELIB and returns its address in register one.

• Both a BLDL and a LOAD macro are issued so that the DPI
image can be built and the image address can be loaded in
register zero.

• The address is saved for the image deletion (after the image
has been copied into lOB + 64) by the DELETE macro.

• If DPI is not specified, tests are made to determine which
EOB and/or control module ID is to be entered in the DCB.
(The same tests are made if DPI is specified.)

• It specifies in the WTG table that IGG019l0 is the next
executor required for this DCB. It then searches the WTG
table to pass control to another executor.

stage 2 OPEN Executor IGG0197V: IBM 3890 Document Processor
executor, IGGOI97V, receives control after either executor
IGGOl96B or IGGOI93I. For information about the executor, see
OS/VS Logic for IBM 3890 Document Processor.

stage 2 OPEN Executor IGG0199L: Executor IGG0199L receives
control after executor IGGOl9lL if the DCB specifies:

Create-BDAM (Write-Load)

The executor constructs channel programs. When the DCB
specifies RECFM=VS and BFTEK=R, the routine constructs a segment
work area for spanned record processing and creates an IRB for
the asynchronous exit routine, which executes writing of the
successive segments. It then searches the WTG table to pass
control to another executor. If the WTG table has no other
entries, the executor returns control to the OPEN routine.

With the rotational position sensing (RPS) feature. more virtual
storage is needed for the record-ready channel programs. This
executor computes the extra bytes needed for the record-ready
channel programs and issues a GETMAIN. The sector bytes are
placed at the end of all the lOBs and channel programs. The
last doubleword of the GETMAIN area is used for sector
manipulation. The first byte is used by set-sector and by
read-sector. The second byte is used as a byte of zero on which
to issue a set-sector command in order to position at the
beginning of the track.

Note: A user may provj~e a segment work area by setting a bit
in the DCBMACRF field and placing the address of that area in
the DCBEOB field. In this case. this routine will not construct
the segment work area.

134 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

stage 3 OPEN Executors

stage 3 executors load the modules needed to perform the
processing described by the DCB. If QSAM is used, and an input
data set is to be processed, a second stage 3 executor also
primes the buffers.

Some of the modules to be loaded are identified by stage 2
executors having set codes in DCBCNTRL for unit record and tape
data sets. The 4 bytes of DCBCNTRL identify these types of
modules:

Byte

+0

+1

+2

+3

Module Type

EOB (QSAM) or EOB for read (BSAM)

EOB for write (BSAM)

NOTE/POINT or CNTRL

NOTE/POINT or CNTRL

Note that the first byte is DCBEROPT and is saved at DXCCW6
during stage 1 and restored by IGG019ll. The codes that can be
in the 4 bytes and the modules they can identify, depending on
which stage 3 executor does the loading, are:

00 No module to load

01 Reserved

02 IGG019CC, IGG019CW End-of-block

03 IGG019CE, IGG019CX End-of-block

04 IGG019CF, IGG019CY End-of-block

05 Reserved

06 IGG019BD, IGGOl9BL NOTE/POINT, tape

07 IGG019CA CNTRL, card reader

08 IGG019CB, IGG019CC CNTRL, printer or End-of-block

09 IGG019BE CNTRL, tape

OA IGG019AV DUMMY or no-op for various
functions

OB IGG019CT End-of-block, error

OC IGG019TC End-of-block, user-totaling

OD IGG019TC End-of-block, user-totaling

OE IGG019TW End-of-block, user-totaling

OF IGG019TW End-of-block, user-totaling

10 IGG019CT End-of-block, error

In many of the above pairs, the first one is for normal
scheduling and the second one is for chained scheduling.

The stage 3 OPEN executors load in the fixed standard end of
extent modules and the format-U channel end module when the
rotational position sensing (RPS) feature is used.

Figure 24 on page 136 lists the access conditions that cause the
different stage 3 executors to be loaded and to gain control.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 135

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The executors are described in the text that follows in a
sequence identical to the list under ftExecutors ft in Figure 24.

In this figure, an X in a column represents a condition that
must be satisfied before the executor is selected. A blank in
the upper portion of the table indicates that either the
condition is not required for selection or not examined at this
time. The table should be used in conjunction with the flow of
control information in Diagram E, SAM Flow of Control for OPEN
Executors.

stage 3 OPEN Executor IGGOI910: 16601910 receives control after
executor I660197Q. It also receives control after executor
16601916.

This executor operates as follows:

• For QSAM it identifies, loads, and puts the address into the
DCB of:

A 6ET or PUT routine

A synchronizing routine

• It loads appendages and puts their addresses in the DEBAVT.

• It puts end-of-block routine addresses in the DCB.

• If BSAM is specified, it identifies, loads, and places the
addresses in the DCB of the READ/WRITE routine and the CHECK
routine.

• For 3211 printers, it issues a CIRB macro instruction to
create an IRB for an error retry module; it loads an
abnormal end appendage and an error retry module.

• For user-totaling, it loads the EOB routine and places its
address in the DCB.

• It enters into the DEBSUBID field of the DEB the
identification of each routine loaded.

• It specifies executor 16601911 in the WTG table as the next
executor to receive control for this DCB.

Access Method Operations

Chained scheduling X X

None of the above X X

*, DATA, or SYSOUT specified on the X
DD statement

Variable-length records X X

Dummy da ta set X

OPEN Executors:

16601910 10

16601911 11 11 11 1111

16601913 13

Figure 24 (Part 1 of 2). OPEN Executor Selector-Stage 3

136 MVS/XA SAM Logic LY26-3967-0 @ Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Access Method Operations

IGG01915 15

IGG01916 16

IGG0198l 8l

Figure 24 (Part 2 of 2). OPEN Executor Selector--Stage 3

stage 3 OPEN Executor IGG01911: Executor IGG01911 is entered
from executors IGG0191C, for dummy data sets; IGG0191N,
IGG0196A, for EXCP data sets; and IGG01910, IGG01912, IGG01923,
IGG01915, and IGG01916 for all SAM unit record and tape data
sets.

This executor operates as follows:

• It issues the IECRES macro instruction to cause the user's
copy of the DCB to be updated to reflect the changes and
additions made by the OPEN executors to the protected copy
of the DCB.

• It issues a DELETE macro instruction for the message CSECT
if it was loaded by stage 1 OPEN executors.

• It sets an audit trail bit for the SAM/PAM/DAM force CLOSE
executor to indicate the data set can be closed by the
normal close executor string during force close processing.

• It puts the buffer address into the CCW and, if ANSI with
BUFFOF=l is not specified, zeros the first four bytes
(buffer chain pointer) of each buffer.

It sets the type of related request (RR) for normal scheduling
data sets with more than 1 lOB. The type of RR setting defines
the time in the processing of the current request that IDS can
start the next RR. This is controlled by the processing REQD to
prepare the next RR for I/O initiation. (IE, if chan end
appendage updates the next lOB after completion of the current
lOB, I/O cannot be started for the next request until lOS has
received control back from the chan end appendage.) The
following matrix shows the types of related requests.

processing
Required Type I Type II Type III

DRP processing X

CE appendage X

CE interrupt X

SID appendage X

EOE appendage X

Note: The only exception to the above matrix is for mag
tape. Unit exception is presented from trying to write
over the reflective marker on reading a tape mark. To
keep IDS from starting the next RR it is necessary for the
ERP to mark this in permanent error. Since ERP processing
is after CE processing (and SAM output data sets, SAM tape
input data sets do not have ce appendages,) the type must
be II.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 137

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• For data sets other than QSAM, it returns to common
open.

• It completes any remaining DCB fields.

• It completes the lOBs.

• It puts the buffer address in the READ or WRITE CCWs
for unit record and magnetic tape data sets. If an
invalid buffer address is found, it issues a DMABCOND
macro instruction.

• For QSAM input:

Chained Scheduling: It chains all channel programs
for move, data, and substitute modes. For locate
mode, it chains together all but one. It then issues
an EXCP macro instruction against the main lOB to
prime the buffers.

Normal Scheduling: It issues a GETMAIN macro
instruction from subpool 230 in the user's key for a
register save area for the access method routines. It
saves the address returned from GETMAIN in the second
word of the audit trail for force close. It then
passes control to the EOB routine (BALR if the key is
less than 8, SYNCH if the key is greater than 7) to
prime the user's buffers (for all but one lOB if
locate mode; all buffers for other processing modes).
Before exiting, it frees the register save area.

• For output, it sets a flag, which is used to identify
the first entry, into the PUT routine.

• It searches the WTG table to pass control to another
executor. If the WTG table has no other entries, the
executor returns control to the OPEN routine.

Stage 3 OPEN Executor IGG01913: Executor IGG01913 receives
control after executors IGG0191Q and IGG0191R if the DCB
specifies:

Chained channel-program scheduling

The executor operates as follows:

• For 3211 printers, it issues a CIRB macro instruction to
create an IRB for an error retry module; it loads an
abnormal-end appendage and an error retry module.

• If QSAM is specified, it identifies, loads, and places the
address into the DCB of:

A GET or a PUT routine

A synchronizing routine

• If BSAM is specified, it identifies, loads, and places the
address into the DCB of:

A READ or WRITE routine

A CHECK routine

• It loads appendages and puts their addresses in the DEBAVT.

• It loads the end-of-block routines specified by the stage 2
executors.

•

138 MVS/XA SAM Logic

It specifies in the WTG table that OPEN executor IGG01911 is
to receive control next for this DCB.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

stage 3 OPEN Executor IGG01915: Executor IGG01915 receives
control after executors IGGOI91G, IGGOI96K, and IGGOI97Q, if the
DCB specifies:

Variable-length record format

The executor operates as follows:

• If QSAM is specified, the executor identifies and loads a
GET or PUT routine and a synchronizing routine.

• If BSAM is specified, the executor identifies and loads a
READ or WRITE routine, a CHECK routine. and a routine to
service the NOTE/POINT macro instruction if it is specified.

• It loads appendages and puts their addresses in the DEBAVT.

• It loads the end-of-block routines specified by the stage 2
executors.

• It issues a DMABCOND macro instr~ction if lRECl=X is
specified and the processing mode is not locate.

• It issues a DMABCOND (abend code 013-4) macro to cause an
abend if ISO/ANSI/FIPS records are to be processed and there
is no record area present.

• It places the identifiers (IDs) of the routine loaded into
the DEB subroutine ID field and the addresses of the
routines into the DCB.

• For a 3211 printer:

An abnormal-end appendage is loaded and its address is
placed in the appendage vector table.

An asynchronous error routine is loaded. The IRB used
for scheduling this routine is built and the IRB address
placed in the DEB.

• It specifies in the WTG table that executor IGG01911 is the
next executor required for this DCB.

• It searches the WTG table to determine to which executor it
should pass control.

stage 3 OPEN Executor IGG01916: Executor IGGOl916 receives
control after executors IGGOl91Q and IGG0191R if the DCB
specifies:

Variable-length record format

The executor operates as follows:

If QSAM is specified, the executor identifies and loads a
GET or PUT routine and a synchronizing routine.

If BSAM is specified, the executor identifies and loads a
READ or WRITE routine, a CHECK routine, and a routine to
service the NOTE/POINT macro instruction if it is specified.

• It loads appendages and puts their addresses in the DEBAVT.

• It loads the end-of-block routines specified by the stage 2
executors.

• It issues a DMABCOND macro instruction if lRECl=X is
spec~fied and the processing mode is not locate.

• It issues a DMABCOND (abend code 013-4) macro to cause an
abend if ISO/ANSI/FIPS records are to be processed and there
is no record area present.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 139

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• It places the IDs of the routine, loaded into the DEB
subroutine 10 field, and the addresses of the routines into
the DCB.

• It specifies in the WT6 table that executor 16601911 is the
next executor required for this DCB.

• It searches the WT6 table to determine to which executor it
should pass control.

stage 2 and 3 OPEN Executor IGG0193B: Executor 1660l93B is
entered after executor 16601931 if the DCB specifies:

Direct access

This executor operates as follows:

• This is the stage 2 and 3 open executor for non-WRITE load
direct-access processing. Each DCB that has 1660l93B in its
where-to-go (WT6) table entry is processed by the module's
base routine, OPENEXEC.

• It gets a storage area for, and initializes, the SAMB
control block (SAMBBLD). The amount of space of CCNs, count
fields, and IDAWs (indirect address words) is calculated
from DCBBLKSI (if not zero), and DCBBUFNO for SQAM or DCBNCP
for BSAM.

• It initializes the key zero lOB in the SAMB (IOBBLD).

• It gets a storage area for, and initializes, the ICQE and
caller key lOBs. It initializes the caller key lOBs by
copying the key zero lOB into them CICQIOBLD).

• It initializes the DEBAVT (AVTBLD).

• It initializes the fields in the DCB. It calls subroutines
to load the front end routines and places their addresses in
the DCB CDCBBLD).

• It primes the buffers for QSAM input and update (BFRPRIME).

stage 3 OPEN Executor IGG0198L (SYSIN/SYSOUT): 1660l98L
receives control after the SAM-SI OPEN executor 16G0199W.

The executor operates as follows:

• It determines which processing modules are required to
process the SYSIN or SYSOUT data set.

• If BSAM is specified in the DCBMACRF field of the DCB, the
BSAM processing module, IG60l9DK, is loaded into virtual
storage. If input is also specified, module 1660l9BB is
also loaded to process the CHECK macro instruction.
Otherwise, IG60l9DK also handles the CHECK macro
instruction.

• If QSAM is specified, the QSAM CI processing module 1660l9DJ
is loaded into virtual storage.

• If input is specified, module I660l9AQ is also loaded to
process an end-of-data condition.

• It sets the CI bit in the DCBCINDI field to indicate that
this DCB is processed by the SAM-SI routines.

• It marks the current entry in the WT6 table to indicate that
no further executor processing is required for this DCB.

•

•

140 MVS/XA SAM Logic

It refreshes the processing program's DCB from the copy
maintained by the open routines.

It then searches the WT6 table to determine whether to give
control to another executor, or branch back to itself. If

LY26-3967-0 @ Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

CLOSE EXECUTORS

there are no other entries in the WTG table, the executor
returns control to the open routines.

Figure 25 on page 141 shows the conditions that cause the CLOSE
executors to gain control. IGG020lA or IGG020lZ receives
control if one of the sequential access methods is used.
Control goes to IGG020lA if the device type is tape or unit
record. Executor IGG020lX is an extension of IGG020lA. If the
device type is direct-access storage, control is passed to
IGG020lZ. Executor IGG020lB receives control after executors
IGG020lA or IGG020lZ if QSAM was used with an output data set
and a channel program encountered an error condition while one
of the other CLOSE executors had processor control. Executor
IGG020lP receives control from IGG020lA whenever the 3525 or the
3505 with OMR or RCE is specified. Executor IGG020lR is an
extension of IGG020lP. Executor IGG020lW receives control
whenever a SYSIN or SYSOUT data set is being processed .

•
Control returns to the CLOSE routine of I/O support when CLOSE
executor processing is completed.

Access Method options

Tape or unit record

Direct-access storage

Permanent error or
end-of-volume condition when
using QSAM for output (tape,
DA only)

*, DATA, or SYSOUT specified
on DD statement

3505 (OMR/RCE) or 3525

Executors

IGG020lA

IGG020lB

IGG020lP

IGG020lR

IGG020lW

IGG020lX

IGG020lY

IGG020lZ

Selections

x X

X

lA lA

lB

IX IX

lY

lZ

x
X

Figure 25. CLOSE Executor Selector

X

X

lB

lY

lZ

X

X

X

lA

lP

lR

lW

CLOSE Executor IGG0201A: IGG020lA receives control from the
CLOSE routine of I/O support if the DCBDSORG field specifies a
value of PS and if the device type is tape or unit record.

The executor operates as follows:

• It turns on the CLOSE-in-process bit in the DCB.

• If the 3525 or the 3505 with either OMR or RCE is specified,

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 141

•

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

the executor specifies in the WTG table that executor
IGG0201P is required for this DCB.

For QSAM output on 2540 devices, it issues EXCP macro
instructions to punch two blank cards to allow the ERPs to
gain control when an error occurred on either of the two
last cards punched.

• For QSAM input or BSAM data sets, a PURGE macro instruction
is issued.

• If the OPEN parameter is output and the DCB specifies QSAM,
the executor issues a TRUNC and, if the processing mode is
Locate, a PUT macro instruction to cause scheduling of the
last buffer. On return of control, the executor awaits
execution of the last channel program. The TRUNC and PUT
routines are entered via the SYNCH SVC if the user's key is
greater than 7.

• If all channel programs were executed without encountering
either an end-of-volume condition or a permanent error, the
executor continues processing.

• For magnetic tape devices, if any of the preceding channel
programs encountered an end-of-volume condition, the
executor specifies in the WTG table that executor IGG0201B
is required for this DCB. Depending on the remaining
entries in the WTG table, it then either processes another
DCB, or passes control to executor IGG0201B.

• For printers, if the clear printer is a valid command, clear
printer/nop commands are issued to ensure all data has been
printed. For other printers, issue a WRITE NOSPACE command
to clear the printer print line buffer.

• It sets an audit trail bit to indicate that a PURGE has been
done. These bits have meaning only during force close
processing. The audit trail is passed to a user's STAE
routine.

• It sets up the WTG table to pass control to IGG0201X.

• It then searches the WTG table to process another DCB or
pass control to another executor.

CLOSE Executor IGG0201B (Error Processing): IGG0201B receives
control after either executor IGG0201A or IGG020lZ if one of the
latter finds that a channel program for an output data set using
QSAM encountered a permanent error or an end-of-volume
condition.

The executor operates as foilowsl

• It determines whether a channel program encountered a
permanent error or an end-of-volume condition.

• If a permanent error occurs for a direct-access device, it
enters the track balance routine to get the bad record
erased.

• If a channel program encountered an end-of-volume condition,
the executor finds the lOB associated with that channel
program and issues an EOV. When control returns, the
executor performs its remaining processing, unless one of
the channel programs encountered a permanent error or
another end-of-volume condition. In either of those cases,
it resumes processing as it did when it first received
control.

• If the DCB specifies either a DCBDSORG field value of PO or
POU with a DD statement of the form DSNAME (MEMBERNAME) the
executor 1ssues a STOW macro instruction. On completion of
the STOW routine, the executor tests for errors, such as

142 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

insufficient space in the directory. For any type of error,
the executor issues an DMABCOND macro instruction.

• The executor specifies in the WTG table that the next
executor needed for this DCB is either IGG0201Y for
direct-access devices or IGG0201X for all other devices.

• It then searches the WTG table to either process another DCB
or to pass control to the next module.

CLOSE Executor IGG0201P: This module receives control from
IGG0201A whenever:

The 3525 is specified or the 3505 is specified with either
OMR OR RCE.

The module operates as follows:

• It turns on the CLOSE-in-process bit in the DCB.

• Tests are made to determine if either OMR or RCE is being
used with the 3505.

• If either is being used, the module issues a feed and
stacker-select command (with the OMR/RCE flag bit off) to
return the device to normal punched mode.

• If either an associated data set or PRINT is being used with
the 3525, the following apply:

File Type Feed Caused by Close of

Print Print File

Read/print Read File l

Read/punch/print Read Filez

Read/punch Read Filez

Punch/print Punch File

Punch/interpret Punch File

Read Read File

Punch Punch File

Notes:

1 A feed is executed if an end-of-file is caused by the
hardware; a feed is not executed if it is caused by a
data delimiter card.

z Punching or printing delimiter cards is not allowed for
these file types, because the CLOSE routine always
issues a feed command.

• If a channel program for an output (QSAM) data set
encountered a permanent error, IGG0201B is specified in the
WYG table as the next executor required for this DCB.
Otherwise, executor IGG0201R is specified in the WTG table.

It then searches the WYG table to pass control to another
executor.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 143

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

CLOSE Executor IGG0201R: This module receives control from
IGG0201P.

The module operates as follows:

• It frees buffer space from the buffer pool.

• It also frees lOB and ICB space.

• It clears BSAM and QSAM vectors in the DCB.

• It specifies in the WTG table that executor IGG0201B is the
next executor required for this DCB. It then searches the
WTG table to pass control to another executor.

CLOSE Executor IGG0201W (SYSIN/SYSOUT): Executor IGG0201W
receives control if the CLOSE routineCsee Diagram L) determines
that the SAM-SI CLOSE executor is required to process a DCB for
a SYSIN or SYSOUT data set.

The executor operates as follows:

• It constructs a CLOSE parameter list for the ACB built by
the SAM-SI OPEN executor for this DCB.

• If QSAM PUT locate mode is specified, a final PUT macro
instruction is issued to clear the I/O area.

• It deletes the BSAM (IGGOI9DK and IGGOI9BB) or QSAM
(IGGOI9DJ and IGGOI9AQ) processing modules loaded by the
OPEN executor, IGG0198L. The processing modules that handle
CI and SAM requests (IGG019BB and IGG019AQ) are not deleted
if concatenation is in process.

• It issues a CLOSE macro instruction for the ACB.

• It issues a FREEMAIN macro instruction for the area occupied
by the JES compatibility interface control block (CICB) and
the record area obtained for collecting BSAM variable
spanned segments.

• It searches the WTG table to pass control to another
executor.

CLOSE Executor IGG0201X: Executor IGG0201X is a continuation of
executor IGG0201A and receives control from that executor or
from IGG0201B if an EOV condition arose during processing in
IGG0201A.

The executor operates as follows:

• For QSAM:

It frees the record area if it was gotten by the OPEN
executors.

It frees the buffers gotten by the OPEN executors if
concatenation of unlike attributes was specified.

It returns the buffer to the buffer pool for all other
conditions.

• The executor computes the amount of space occupied by the
channel programs, lOBs (and ICBs, if chained scheduling is
used), and returns that space to the supervisor by using a
FREEMAIN macro instruction.

• It sets audit trail bits to indicate what processing was
done. These bits have meaning only during force close. The
audit trail is passed to a user's STAE routine.

• The executor specifies in the WTG table that CLOSE executor
processing is completed for this DCB. Depending on the
remaining entries in the WTG table, it then processes

144 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

another DCB, returns control to the CLOSE routines, or, if
force CLOSE is in control, returns to the SAM force CLOSE
executor, IGG020Tl, with a return code of 0 in register 15.

CLOSE Executor IGG0201V: IGG020lY receives control from
executor IGG020lZ or from IGG020lB if an EOV or permanent error
was detected by IGG020lZ.

The executor operates as follows:

• When record-ready channel programs are constructed, a
GETMAIN macro instruction is issued for more bytes during
open lOB construction. In the CLOSE routine, when the lOB
and channel program areas are freed, the number of
additional bytes is computed and added to the byte count
before issuing the FREEMAIN macro instruction.

• It frees the segment work area for a DCB that specifies
BFTEK=R, RECFM=VS, and MACRF=WL.

• It returns buffers to the buffer pool if they were gotten by
open executors.

• It frees the SAMB, ICQE, and lOBs if they were gotten by the
OPEN executor. It also zeros the addresses of these control
blocks in the DCB.

• It frees the buffers if concatenation of unlike attributes
was specified.

• It frees the record area obtained by an OPEN operation when
a DCB specifies BFTEK=A, spanned record, and QSAM locate
mode.

• The executor specifies in the WTG table that processing for
this DCB is completed. Depending on the remaining entries
in the WTG table, it then processes another DCB, returns
control to the common close routines or, if force CLOSE is
in control, returns to the SAM force CLOSE executor,
IGG020Tl, with a return code of 0 in register 15.

CLOSE Executor IGG0201Z: Executor IGG020lZ receives control
from the close routine of O/C/EOV if the DCBDSORG field
specifies a value of PS or PO and if device type is
direct-access storage.

The executor operates as follows:

• If the task is abnormally terminating, the following
processing takes place.

No executor processing is performed if the data set is
open for input or update, or the last operation was not
a write, or the DEB extension indicates an
OPEN/ClOSE/EOV ABEND occurred.

For partitioned data sets, DCBFDAD is set from DCBRELAD.
SVC 25 is issued and no further executor processing is
performed.

For sequential data sets processed by BSAM, DCBFDAD is
set from the 10BSEEK field in the SAMBIOB. SVC 25 is
issued and no further executor processing takes place.

For sequential data sets processed by QSAM, normal
executor processing listed below is performed. Purged
I/O is restarted.

• If the OPEN parameter is OUTPUT and the DCB specifies QSAM,
the executor issues a TRUNC and, if in locate processing
mode, a PUT macro instruction to cause scheduling of the
last buffer. On return of control, the executor awaits
execution of the last channel program.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 145

•

•

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

For QSAM input or BSAM data sets, a PURGE macro instruction
is issued.

If all channel programs were executed without encountering
either an end-of-volume condition or a permanent error, the
executor continues processing.

• If any of the preceding channel programs encountered either
a permanent error or an end-of-volume condition, the
executor specifies in the WTG table that executor IGG020lB
is required for this DCB. Depending on the remaining
entries in the WTG table, it then either processes another
DCB, or passes control to executor IGG020IB.

• If OUTPUT and either a DCBDSORG field value of PO, or WRITE
or PUT with a DD statement of the form DSNAME (MEMBERNAME)
is specified, the executor issues a STOW macro instruction.
On completion of the STOW routine, the executor tests for
I/O errors and for logical errors, such as insufficient
space in the directory. For either type of error, the
executor issues a DMABCOND macro instruction.

• The executor specifies in the WTG table that module IGG0201Y
is the next executor for this DCB. Depending on the
remaining entries in the WTG table, it then either processes
another DCB or transfers control to the next module.

FORCE CLOSE EXECUTORS

SAM-51 Force CLOSE Executor IGG020FC: Executor IGG020FC
receives control from the O/C/EOV force CLOSE executor module,
IFGORROB, when it determines that DCBs under JES control must be
closed. The executor frees resources acquired for opened or
partially opened SYSIN and SYSOUT DCBs that are being forced to
a closed status. It provides as much of the normal close
functions as possible in restoring the DCB to its preopen
condition.

The executor locates the CICB and performs the following
operations:

• Issues a CLOSE macro instruction for the ACB contained in
the CICB.

• Frees the record area for variable-length spanned records.

• Deletes any processing modules loaded for this DCB.

• Frees the storage obtained for the CICB.

• Returns control to the calling routine.

If the failure occurs during open processing and the CICB was
not created, no further processing is required and control is
returned to the calling routine, with a return code of O.

If the CICB cannot be located because the error occurred during
other than open processing, control is returned to the calling
routine, with a return code of 4.

Force CLOSE Executor IGG020Tl: Executor IGG020Tl receives
control from IFGORROB during force close processing for SAM,
PAM, or DAM data sets. The primary function of the force CLOSE
executor is to free resources associated with the DCB.

The executor operates as follows:

• If the error occurred during close for QSAM or BSAM output
DCBs, DCBFDAD is set from the IOBSEEK field in the SAMB lOB
for sequential data sets, and from DCBRELAD for partitioned
data sets. SVC 25 is issued using the SAMB JOB.

146 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If the error occurs during open processing and the user's
copy of the DCB has not been updated by the OPEN executors,
the following actions-ire taken:

For SAM or PAM:

• It frees a logical record area if obtained by OPEN
executors.

• It frees the buffer pool if the user's buffers were gotten
by the OPEN executors and concatenation of unlike attributes
was specified; otherwise, it returns the buffers to the
buffer pool.

• It frees the lOBs and ICBs and their channel programs if
they were gotten by the OPEN executors.

• It frees the segment work area if it was gotten by OPEN
executors.

• It frees the SAMB if it was obtained by the OPEN executor.

• It deletes the message CSECT if it was loaded by the OPEN
executors.

• It deletes any UCS and FCB images loaded.

• It issues a CLOSE IMGLIB SVC for SYSl.IMAGELIB.

For BDAM:

• It frees the buffers.

• It frees the unscheduled list if it exists.

• It frees the segment work area if it was gotten by the OPEN
executors.

• It frees the READX list if it was gotten by the OPEN
executors.

The force CLOSE executor then returns to common CLOSE with a
return code of zero in register 15.

If the error occurs during open processing and the user's DCB
was refreshed from the protected DCB, the force CLOSE Executor
sets up a retry address at RRXRETRY and attempts to execute the
normal CLOSE executor string. It also issues a FREEMAIN macro
instruction for the register save area gotten by IGG019ll when
priming QSAM input buffers.

• If normal CLOSE processing is successful, the CLOSE
executor, upon detecting a force CLOSE entry, returns to
this force CLOSE executor with a return code of zero in
register 15.

• If normal CLOSE processing is not successful, the second
level recovery routine of O/C/EOV gives control to the
address specified in RRXRETRY. The force CLOSE executor
then moves the audit trails to the component recovery status
a ea (CRSA) with a return code of 8 in register 15.

If the error occurs during other than open processing, the force
CLOSE executor returns to the common close recovery routine with
a return code of 8 in register 15.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 147

BUFFER-POOL MANAGEMENT

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Buffer-pool management routines form virtual storage space into
buffers, and return buffers that are no longer needed.
Figure 26 lists the buffer-pool management routines.

Type Module Name

GETPOOL IECQBFGl

BUILD IECBBFBI

GETBUF (Macro Expansion)

FREEBUF (Macro Expansion)

FREEPOOL (Macro Expansion)

BUILDRCD IGG019BO

Function

This routine obtains virtual
storage and forms a buffer
pool.

This routine forms a buffer
pool in virtual storage
supplied by the processing
program.

This routine provides buffers
from the buffer chain.

This routine returns buffers
to the buffer pool.

This routine returns virtual
storage previously used for a
buffer pool.

This routine allows a pointer
to a record area to be
incorporated in a buffer pool
in virtual storage supplied by
the processing program.

Figure 26. Buffer-Pool Management Routines

GETPOOL Module IECQBFG1: Module IECQBFGl obtains
virtual-storage space and forms it into buffers. It is loaded at
execution time by a LINK macro instruction.

The module operates as follows:

• It rounds the buffer length to the next higher doubleword
multiple if the specified length is not such a multiple.

• It determines buffer alignment from the DCBBFALN field value
in the DCB.

• It computes the number of bytes required and issues a
GETMAIN macro instruction.

• It constructs a buffer-pool control block in the first 8
bytes of storage obtained.

• If doubleword (not fullword) alignment is specified in the
DCBBFALN field in the DCB, the module starts the first
buffer at the byte immediately following the BUFCB.

• If fullword (not doubleword) alignment is specified in the
DCBBFALN field, the module skips one word after the
buffer-pool control block before starting the first buffer.

• It chains the first buffer to the buffer-pool control block
and determines the start of the next buffer by adding the
rounded buffer length value to the address of the first
buffer. The module chains the next buffer to the preceding
buffer and continues until all the buffers have been
chained.

• It returns control to the processing program. Figure 27 on
page 149 illustrates the buffer-pool control block (BUFCB)

148 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials o~ IBM
Licensed Materials -- property o~ IBM

that describes the buffer pool. Figure 28 on page 149
illustrates the buffer-pool structures formed by the GETPOOL
module.

BUFAD BUFNO BUFL

BUFCB
Address of

First Available Buffer
Length of

Each Buffer

Byte o 4 6

Figure 27. Buffer-Pool Control Block

Doubleword
Buffer Alignment Specified

BUFCB
_____ .J

_____ .J

-0-_____ .J

.-2 Words ..

Fullword (Not Doublewordl
Buffer Alignment Specified

BUFCB

Figure 28. GETPOOL Buffer-Pool Structures

BUILD Module IECBBFB1: Module IECBBFBI forms virtual storage
space supplied by the processing program into buffers. It is
loaded at execution time by a LINK macro instruction.

The module operates as follows:

• It rounds the buffer length to the next higher fullword
multiple if the specified length is not such a multiple.

• It constructs a buffer-pool control block in the first 8
bytes of the virtual-storage space provided by the
processing program.

• It starts the first buffer at the byte immediately following
the buffer-pool control block.

• It chains the first buffer to the buffer pool control block
and determines the start of the next buffer by adding the
rounded buffer-length value to the address of the first
buffer. The module chains the next buffer to the preceding
buffer, and continues until all the buffers are chained.

• It returns control to the processing program.

Figure 29 on page 150 lists, for each possible combination
of space alignment and buffer length parity, the
illustration that shows the structure of the resulting
buffer chain or pool. Figure 27 illustrates the buffer pool
control block (BUFCB), Figure 30 on page 150 illustrates the
various buffer alignments that the Build module forms.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 149

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

GETBUF Macro Expansion: The purpose of this coding is to
provide the next buffer from the buffer pool. The macro
expansion produces inline code that presents the address of the
next buffer to the processing program and updates the
buffer-pool control block to point at the following buffer.

FREEBUF Macro Expansion: The purpose of this coding is to
return a buffer to the buffer chain. The macro expansion
produces inline code that stores the address presently in the
buffer-pool control block in the first word of the buffer being
returned, and then stores the address of that buffer in the
buffer-pool control block.

Alignment of first byte
of space passed in
BUILD macro instruction

Doubleword

Fullword

(Not doubleword)

Parity of number of words
in buffer length after
rounding up length
parameter macro of BUILD Buffer pool
macro instruction structure

Even A

Odd

Even

Odd

B

C

D

Figure 29. Build Buffer-Structuring Table

FREEPOOL Macro Expansion: The purpose of this coding is to
return the. space previously allotted to the buffer chain to
available virtual storage. The macro expansion produces inline
code that computes the total number of bytes to be returned, . .~
issues a FREEMAIN macro instruction, and sets the DCBBUFCB field ~
in the DCB to show that no buffer pool is associated with that
DCB.

c o

-0- I _____ .J

~2words -

Figure 30. Build Buffer Pool Structure

150 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

BUILDRCD Routine IGG019BO: This routine forms virtual-storage
space supplied by the processing program into buffers and links
the buffer pool to a record area also supplied by the processing
program. It is loaded at execution time by a LINK macro
instruction.

The module operates as follows:

• It rounds the buffer length to the next higher fullword
multiple if the specified length is not such a multiple.

• It constructs a buffer-pool control block (see Figure 33 on
page 170) in the first 12 bytes of the virtual-storage space
provided by the processing program.

• It turns on the high-order bit of the BUFLG byte of the
buffer-pool control block to indicate that a record area
address is present.

• It clears the control field (32 bytes) of the record area.

• It stores the record area length in the record area (see
Figure 34 on page 241) provided by the processing program.

• It chains the first buffer to the buffer-pool control block
and determines the start of the next buffer by adding the
rounded buffer length value to the address of the first
buffer. The next buffer is chained to the preceding buffer
until all buffers are built.

• It returns control to the processing program.

Figure 31 on page 151 illustrates the buffer-pool control block
(BUFCB) that describes the buffer pool when logical record
interface is required for variable-length spanned records
processed in the locate mode.

Figure 32 illustrates the record area used to assemble and
segment a spanned record. This record area is either acquired
dynamically by data management at OPEN time, when the DCB
specifies RECFM-VS/VBS, MACRF=GL/PL, and BFTEK=A, or provided by
the problem program by means of a BUILDRCD macro instruction.

BUFAD BUFLG BUFNO BUFLTH BUFRECAD

Address of Number of Length Address of
First Available Flags Buffers of Each Record
Buffer Requested Buffer Area

Byte 0 4 5 6 8 12

Figure 31. Buffer-Pool Control Block

BUFAD 4 bytes; contains the address of the first available
buffer in the pool.

EUFLG 1 byte; set to X'CO' when a record area address is
present in the buffer control block.

Bit Meaning
0-1 Record area present
1-1 Buffer control block extended
2-7 Reserved

BUFNO 1 byte; contains the number of buffers requested.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 151

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

BUFLTH 2 bytes; contains the length, rounded to the nearest
fullword of each buffer requested.

BUFRECAD 4 bytes; contains the starting address of the record
area.

Length Index Position Track

~h\ of to of Address to Next
Count Record Flags Beginning Record Beginning lOB Reserved
Field Area of Data in Block Segment of Address

Record

Byte 4 5 6 8 16 20 22 24 32+
LRECL o

Figure 32. Record Area Used to Assemble and Segment a Spanned
Record

A description of the fields contained in the record area
foilowsl

• Length of Record Area. This 4-byte field contains the
length of the entire record area (data field + 24 bytes).
The length may be determined by the lRECl of the DCB macro
at OPEN time plus 8 bytes for alignment or it may be
specified in the length of the record area parameter of the
BUIlDRCD macro instruction, in which case the BUIlDRCD
routine places the length of the record area in this field.
If extended logical record interface (XlRI) is used, the DCB
lRECl value is a multiple of 1024, which is used to
calculate the requested record area size. The second bit of
the first byte of this field is set on by the COBOL
processor to indicate special processing of variable-length
spanned records. If this bit is set, all records (spanned
or nonspanned) are presented to the processing program in
the record area.

• Flags. This I-byte field is used for internal data
management control flags.

• Index to Beginning of Data. This I-byte field contains the
index value to the beginning of the data (record descriptor
word) in the data field.

• Position of Record in Block. This 2-byte field contains the
relative position of the beginning segment of a record
within the block.

• Track Address to Beginning segment of Record. This 8-byte
field is used to save the track address of that block that
has a beginning segment of a record that is being processed.
The low-order 3 bytes of this field are used to save the
record address of the block that will have the beginning
segment of a record if a spanned record is to be written.

• Next lOB Address. This 4-byte field is used to save the
next lOB address if a spanned record is to be written.

• Count Field. This 2-byte field is used to accumulate the
number of bytes of data moved while segmenting. For
extended logical record interface (XLRI), the count field is
four bytes long and includes the two bytes of the following
field.

• Reserved. Not used. If extended logical record interface
(XlRI) is used, this field is used as part of the count
field.

152 MVS/XA SAM logic LY26-3967-0 @ Copyright IBM Corp. 1977,1985

J

J

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• Data. The assembled logical record is located in this
field. The maximum length of this field is either
determined by the LRECL field of the DCB macro at OPEN time
plus 8 bytes for alignment or equal to 24 bytes less than
the length of the record area parameter of the BUILDRCD
macro instruction.

PROBLEM DETERMINATION

Problem determination assists the user in determining the causes
of abends by providing more information as to the cause of the
abnormal termination. The recording and making available of
significant information about the problem may eliminate the need
for a storage image dump. Better abend interpretation will be
possible with the following problem determination operationsl

• Write-to-programmer giving the abend code, a return code
that further describes the abend condition, and job
environment information.

• Recording of all control blocks relevant to the abend
condition on a GTF data set, which will be dumped
automatically by ABDUMP, or at the user's initiation by
AMDPRDMP.

• A user abend exit is provided to allow the evaluation of the
condition before the abend is taken.

• An abend that provides a dump of relevant control blocks.

Problem determination is of particular benefit in the OPEN
executors because having an alternative to an immediate abend
results in greater latitude in the control of the termination of
a task. The error can be evaluated and the need for that data
set at the time the error occurred can be determined, with the
option to continue processing without it.

Problem Determination Module IFG0559C: Module IFG0559C traces
the data associated with a particular abend.

The module operates as follows:

• It receives control through an XCTl macro instruction from
the O/C/EOV problem determination module, IFG0559B, when it
senses a SAM problem determination flag.

• It issues a MODESET macro instruction to change to the key
of the caller.

• It issues a GETMAIN macro instruction for work area storage.

• If the GETMAIN macro instruction is successful, it issues a
GTRACE macro instruction to record, in the GTF data set, the
data associated with the abend designated by the abend and
condition codes. In addition to the TIOT DDNAME and the
abend condition code, which are always present, one or more
of the following data areas is traced:

DCB for BSAM or QSAM

DECB for BSAM only

Track capacity - maximum block size

Current DEB extent entry

All DEB extent entries

lOB or ICB seek field

First 88 bytes of the BDW and the block currently being
processed

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 153

SVC ROUTINES

DEVTVPE ROUTINE

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

First 88 bytes of the RDW and the record currently bring
processed

The following is a list of abends, their associated condition
codes, and the data traced for each.

ABEND Condition
Code

002

002

002

002

002

002

002

002

002

008

•

Code Areas Traced

04 DCB, lOB or ICB seek field, record

08 DCB, DECB, block

OC DCB, DECB, maximum block size, block

10 DCB, DECB, block

14 DCB, DECB, block

18 DCB and record

IC DCB, DEeB, maximum block size, block

20 DCB, DECD, current DED extent, maximum
block size, block

24 DCD, DECD, current DED extent, maximum
block size, block

04 All DEB extents, block

If the GTRACE macro instruction is successful, a LOAD macro
instruction is issued to load the message CSECT, IGGMSGOl.
A WTO macro instruction is issued to inform the programmer
that the GTF data set contains records associated with this
abend. Upon return, a DELETE macro instruction is issued to
delete the message CSECT.

• It issues a FREEMAIN macro instruction to release the work
area storage.

• It transfers control to module IFG0559E upon successful
completion or if an error occurred in the GETMAIN or GTRACE
macro instruction.

SVC routines are used when the process requires operation in the
supervisor state. The functions provided are ones that cannot
be done in the problem state or in the user's key.

DEVTVPE SVC Routine IGC0002D: This routine locates and passes
to the requestor the characteristics of the device specified in
the DD statement. The module operates as follows:

• It issues an ESTAE macro instruction to establish a task
recovery routine, IGCT002D, to intercept abnormal
terminations.

• It searches the UCB, its DASD class extension table, and the
device characteristics table for the required information.

• For the 3340 and the 3380 (all models), it determines the
number of cylinders on the pack.

154 MVS/XA SAM Logic LY26-3967-0 @ Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

IMGLIB ROUTINE

• It places the data in the output area and returns to the
calling program.

IMGLIB SVC Routine IGCOOIOE: The IMGLIB SVC routine, IGCOOIOE,
builds a skeleton DCB and DEB for the SYSI.IMAGELIB data set or
deletes the DCB and DEB for the SYSI.IMAGELIB data set,
depending on the parameter passed to it in register 1. The
routine is entered from the SVC 105 instruction.

The IMGLIB macro is issued by OPEN executors and by SETPRT
routines and can be issued by users.

The routine operates as follows:

• It issues an ESTAE macro instruction to establish a TRR,
IGCTOIOE, to intercept abnormal terminations.

• It makes a test to determine whether the control blocks for
IMAGELIB need to be built or deleted. If register 1
contains O's, a DCB and DEB are built.

• It uses a GETMAIN macro instruction to obtain a work area
and then uses a LOCATE macro instruction to determine where
the IMAGELIB volume is residing.

• It takes the address of the UCB table from the CVT and
searches for the corresponding UCB.

• It uses the OBTAIN macro instruction to read in the format-l
DSCB and uses the information read and the UCB address to
construct a skeleton DCB and DEB for the SYSl.IMAGELIB
volume. The format-l DSCB describes up to three extents.
The SYSl.IMAGELIB data set can reside on up to 16 extents on
a permanently resident volume.

• If there are more than three extents on SYSl.IMAGELIB, the
format-3 DSCB seek address is obtained from the format-l
DSCB. It uses the OBTAIN macro to read in the format-3 DSCB
and uses the information read and the UCB address to
construct additional DEB extent descriptions.

• If register 1 contains an address when the routine tests to
determine whether the control blocks for the IMAGELIB volume
need to be built or deleted, the DCB and DEB for IMAGELIB
are to be deleted.

• It uses the FREEMAIN macro instruction to delete the control
blocks. If the DEB is not on the DEB chain or it does not
point back to the DCB, a 169 abend is issued.

• It returns control to the calling routine through a BR 14
instruction.

TRACK BALANCE, TRACK OVERFLOW ERASE, DEB/SAMB UPDATE ROUTINES

Control Module IGC0002E (SVC 25--Track Balance, Track Overflow
Erase, DEB/SAMB Update): Module IGC0002E consists of a track
balance routine, a track overflow erase routine, and an update
routine. The track balance routine calculates the available
space at the end of a track and erases the end of the track.
The track overflow erase routine erases the end of a track and
perhaps several full tracks. The update routine either updates
the SAMB's IOBSEEK field or initializes the DEB's DEBBLKSI
field. The track balance routine determines the available space
by reading the count fields of the records on the track and
erasing the remainder of the track; the track-overflow erase
routine erases tracks at the end of each extent on which there
are no data fields for blocks of the data set to which the
extent belongs. The routine is used when a block in a data set
with track-overflow record format would span extents.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 155

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

This module is entered when SVC 25 is executed by the following
modules:

READ/WRITE module IGGOl9BA (track balance)

End of Block module IGGOl9TV (update DEBBLKSI)

NOTE/POINT module IGGOl9BK (update SAMB)

CLOSE executor IGG0201B (track balance)

• It issues an ESTAE macro instruction to establish a TRR,
IGCT002E, to intercept abnormal terminations.

Track Balance Routine: This routine is given control when
register 1 on input is not negative and the track-overflow flag
DCBCNTOV in DCBCINDI is zero. The track balance routine
establishes a valid value for the DCBTRBAL field of a DCB opened
for output to a direct-access device, when the field value has
been invalidated by a preceding READ, POINT, or OPEN macro
instruction.

The routine operates as follows:

• DCBFDAD is established as the record preceding the next
record to be written.

• If the record number in DCBFDAD is zero, the whole track is
available. DCBTRKBAL is set equal to the track capacity of
the device (from the device characteristics table) and
control is returned to the caller.

• A work area is obtained, a channel program is built, and an
EXCP is issued to read the count fields (CCHHRKDD) of each
record on the track, up to the number indicated by DCBFDAD.
The channel program ends with an erase CCW, which erases all
records following the last record (as indicated by DCBFDAD).

• It determines the exact track balance by subtracting the sum
of all key-lengths and data lengths in all the count fields
and the not-last record overheads from the track capacity
and inserts the difference in the DCBTRBAL field of the DCB.

Track-Overflow Erase Routine I This routine is given control if
register 1 on input is not negative and the track overflow flag
(DCBCNTOV in DCBCINDl) is one. The track-overflow erase routine
erases the space on a direct-access storage device that lies
between the last block to be written into the current extent and
the end of that extent.

The routine operates as foilowsl

• It receives control when it is loaded.

• It substitutes ERASE commands for the WRITE commands in the
channel program associated with the present lOB.

• It issues an EXCP macro instruction to cause execution of
the channel program and a WAIT macro instruction for its
completion.

• It returns control to the track-overflow write routine,
irrespective of any errors in the execution of the channel
program.

DEB/SAMB Update Routine: This routine is given control if
register I is negative. The DEB is validated by branching to
the DEBCHK routine. If register 0 is zero when SVC 25 is
entered:

• The DEBBLKSI field is initialized as the sum of key length
and block size in the DCB.

156 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

BSP ROUTINE

If register 0 is four when SVC 25 is entered:

• The IOBSEEK field of the lOB in the SAMB is set equal to
DCBFDAD.

Control Module IGC0006I (SVC 69--BSP): Module IGC00061
backspaces the data set one block whether the data set is on a
magnetic-tape or direct access device.

The expansion of the macro instruction BSP includes an SVC 69
instruction, which causes the module to be loaded and entered.

The module verifies that the passed DCB describes a magnetic
tape or direct-access device data set, and that the data set is
being processed by BSAM. To accomplish this, the module
operates as follows:

• It receives control after it is loaded.

• It issues an ESTAE macro instruction to establish a TRR,
IGCT0069, to intercept abnormal terminations.

• It issues a MODESET macro instruction to change to the key
of the caller.

• If the DCB is being processed by the CI and if a CI
backspace routine entry point is provided, it gives control
to the CI routine. When the CI routine relinquishes
control, or if no CI routine is provided, it returns control
to the processing program.

• If the device is a terminal, it returns control to the
processing program.

• If a dummy data set is being processed, it returns control
to the processing program.

• If the device type is not magnetic tape or direct access,
reason and return codes are put in registers 0 and 15 and
control is returned to the caller.

• If either a tape mark or a direct-access EOF was read,
reason and return codes are put in registers 0 and 15 and
control is returned to the caller.

• It issues a GETMAIN macro instruction to obtain storage in
which to build an lOB, an ECB, and a channel program.

• It builds and initializes an lOB and an ECB.

From this point on, the control path depends upon the type of
I/O device.

For magnetic tape, the module operates as follows:

• It constructs and issues an EXCP macro instruction for a
channel program to backspace one block, followed by a Nap to
obtain device-end information from the backspace channel
program.

• If the backspace channel program executed normally, the
module sets register 15 to zero and returns control to the
processing program.

• If the channel program executed with an error other than
unit exception, the module sets the DCBIFLGS field to
indicate a permanent error. The CHECK macro instruction,
following the next READ or WRITE macro instruction, causes
the CHECK routine to pass control to the processing
program's SYNAD routine.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 157

STOW ROUTINES

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If the backspace channel program executed with a unit
exception, the module constructs and issues an EXCP macro
instruction for a channel program to forward space the tape
one block, followed by a NOP to obtain device-end
information from the forward space channel program. When
channel end for the NOP occurs, the module returns control
to the processing program with register 15 set to an error
code.

• It issues a FREEMAIN macro instruction to free the work
area.

• It issues a MODESET macro instruction to return to KEY 0 and
returns control to the caller.

For direct-access devices, the module operates as follows:

• It decreases the DCBFDAD field in the DCB to the preceding
block address across tracks, cylinders, or extents.

• It sets the DCBOFlGS field to show that the DCBTRBAl field
value is invalid.

• If a valid DCBFDAD value has been established, the module
updates the DCBFDAD value. It also updates the IOBSEEK
field in the SAMB's lOB and sets the SAMSCHPR flag in the
SAMB. Next, the module updates the IOBSEEK field in the
next user lOB to be scheduled, or in all user lOBs if an
extent boundary was crossed.

•

•

If a track (or cylinder or extent) boundary is backspaced
over, all records' counts on the track backspaced to are
read. The last record's count field is used to identify the
last record on the track.

If there is no valid preceding DCBFDAD value because the J ..
processing program has attempted to backspace beyond the
first block, the module returns control to the processing
program, with register 15 set to an error code.

• If a permanent error is encountered when reading the count
fields (to establish the preceding DCBFDAD field value), the
DCBIFlGS field value is set to indicate a permanent error.
The CHECK routine, following the next READ or WRITE macro
instruction, causes control to pass to the processing
program's SYNAD routine.

• It issues a FREEMAIN macro instruction to free the work
area.

• It issues a MODESET macro instruction to return to KEY 0 and
returns control to the caller. .

STOW Module IGC0002A (SVC 21): Module IGC0002A builds the
control blocks, buffers, and channel program required to perform
the requested function and to do the diagnostics to verify the
validity of the caller's request.

The expansion of the STOW macro instruction includes an SVC 21
instruction that causes this module to be loaded and to gain
control. The STOW macro instruction is issued in one of two
ways:

• Explicitly by a processing program using BPAM for output.

• Implicitly by a processing program using BSAM, QSAM, or BPAM
for output, when issuing a CLOSE macro instruction to a DCB
opened for a member of a partitioned data set.

158 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The module operates as follows:

• It receives control when it is loaded.

• It issues an ESTAE macro instruction to establish a TRR,
IGCT0021, to intercept abnormal terminations.

• It issues a MODESET macro instruction to change to the key
of the caller.

• If the DCB is neither OPEN nor OPEN for input, a MODESET
macro instruction is issued to return to key 0, reason and
return codes are put into registers 0 and 15, and control is
returned to the caller.

• It issues a GETMAIN macro instruction to obtain storage for
a work area in which to save information about the function
being performed; save the parameters supplied by the caller;
and build an lOB, ECB, channel program, and three buffers
used in reading and writing directory blocks.

• If the GETMAIN macro instruction is not successful, a
MODESET macro instruction is issued to return to key 0,
reason and return codes are put into registers 0 and 15, and
control is returned to the caller.

• It initializes the channel program and issues an EXCP macro
instruction to search the directory for an entry block with
a key equal to or higher than the member name. It reads
that and the next entry block into the input buffers. For
the change option (C), the search is on the member name that
is the lowest in alphameric sequence.

• It checks the validity of the option requested, as follows:

Add. Verifies that the member name does not already
exist.

Replace. Verifies that the member name exists and, if
not, sets the return code and changes the option to Add.

Change. Verifies that the member name to be changed
exists and that the new member name does not duplicate
an existing name.

Delete. Verifies that the member name exists.

• If an I/O error occurs while directory entry blocks are
being read or if the option requested is invalid, a FREEMAIN
macro instruction is issued to free the work area, a MODESET
macro instruction is issued to return to key 0, reason and
return codes are put into registers 0 and 15, and control is
returned to the caller.

• If the option requested is valid, the module transfers
control to module IGG02l0A through an XCTl macro
instruction.

STOW Module IGG0210A: Module IGG02l0A builds the channel
program used by module IGG02lAB and, if required, writes an EOD
marker following the last member written.

The module is loaded and receives control through an XCTl macro
instruction issued by module IGC0002A.

The module operates as follows:

• It writes an EOD marker following the last member written if
the following conditions are met:

The Add or Replace option was specified.

The entry being added or replaced is not an alias.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 159

contains Restricted Materials of ISM
Licensed Materials -- Property of IBM

The DCB was not opened for RDBACK or UPDATE.

The last I/O operation was write.

• If the data set must be extended to write the EOD marker,
the module issues a MODESET macro instruction to change to
key 0, a SETlOCK macro instruction to obtain the local lock,
and branches to DEBCHK to check the validity of the caller's
DEB. If the DEB is valid, the DEBVOlSQ is changed for EXCP,
a SETlOCK macro instruction is issued to free the local
lock, and a MODESET macro instruction is issued to return to
the caller's key.

It then changes the MACRF operand in the user's DCB to EXCP
and issues an EOV that points to that DCB.

Upon return, it restores the MACRF operand and validates and
restores the DEBVOlSQ field.

If the DEB is not valid, it issues an ABEND macro
instruction to terminate processing.

• If an EOD marker is written after the last member, the FDAD,
RElAD, and TRBAl fields in the caller's DCB are updated.

• If an I/O error occurs while the EOD marker is being
written, the module frees the work area, returns to key 0,
sets the reason and return codes in registers 0 and 15, and
returns control to the caller.

• It returns the TTR of the last member written if the
following conditions are met:

The add or replace option was specified.

The entry being added or replaced is not an alias.

• It builds the channel program used by module IGG02lAB to
read and write directory blocks.

• If no errors are detected, it transfers control to module
IGG021AB through a XCTl macro instruction.

STOW Module IGG021AB: Module IGG02lAB maintains partitioned
data set directories in ascending order of the binary values of
the names of the members.

Module IGG021AB is loaded and receives control through an XCTl
macro instruction issued by module IGG0210A.

The module operates as follows:

• If the option requested is add, replace, or change and if
there are no unused directory blocks, a dry run on the
directory is made to determine if sufficient space is
available in which to perform the requested function.

• It adds, replaces, changes the name of, and deletes
directory entries, per the requested options, by issuing an
EXCP macro instruction to write and read directory blocks.

• It expands or compresses the directory as necessary to
accomplish the requested function.

• If an I/O error occurs while wri~1ng or reading directory
blocks, or, if there is not sufficient space remaining in
the directory, processing in this module is terminated.

• It issues a FREEMAIN macro instruction to free the work
area.

• It issues a MODESET macro instruction to return to key O.

• It returns control to the calling program.

160 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

BLDL OR FIND ROUTINES

FIND (C Option) Macro Expansion: The macro expansion moves the
relative address (TTRK) from the passed input parameter list to
the DCBRElAD field in the requester's DCB. The FIND macro
instruction then does a branch-and-link to the POINT routine.

FIND (D option) Macro Expansion: The macro expansion loads the
DCB address into register 1 and complements it to notify BlDl
this is a FIND request. The address of the BlDl parameter list
(that is, the list of member names) is loaded into register o.
SVC 18 (BlDl) is then issued.

BLDL Macro Expansion: This is the same as for the FIND (D
option) described above, except that the DCB address is not
complemented.

Resident Module IGC018 (BLDL): The module gains control through
an SVC 18 instruction in a processing program. A FIND CD
option) or BlDl macro instruction expansion generates an SVC 18
instruction, which causes control to pass to CSECT IGCOI8. BlDl
is link-edited into the nucleus as an RSECT (read only). It
executes in 31-bit addressing mode, RMODE ANY, and supports
31-bit input parameter lists.

A second csect in module IGCOI8, named IECOSCRl, contains the
system convert routines and is link-edited into the nucleus as
RMODE 24, AMODE ANY. This means it resides below the
16-megabyte virtual storage line and executes in the addressing
mode (24 or 31 bit) of the caller.

Programs may use a BAlR instruction and the address found in the
communication vector table (CVT) for entry points
IECPCNVT(CVTPCNVT), IECPRlTV(CVTPRlTV), and IECOSCRl(CVTOSCRl),
to pass control to the respective convert routines.

The BlDl routine operates as follows:

• It issues an FESTAE macro instruction to establish the
recovery routine.

• Based on the key in the DEB (pointed to by the passed or
defaulted DCB) a GETMAIN is issued for a work area in
subpool 253 for a key 0 data set or subpool 230 for a
nonzero key data set. Among the contents of the work area
are the parameter list used if the lNKlST lookaside table is
available, and the lOB, channel program, and buffers if I/O
is required. The work area must be in the same key as the
DCB and DEB.

• If the lNKlST lookaside table is available, it is searched
by BlDl for any of the following conditions:

The passed DCB is the llNKlIB DCB (same address as in
CVTlINK).

The DCB address is zeros and there is no steplib,
tasklib, or joblib specified.

The specified member(s) are not found in the specified
data sets.

Note: The lNKlST lookaside (llA) directory replaces the
resident BlDL, table which is initialized during NIP. The
lNKlST lookaside directory is a resident directory of
entries built during IPl by starting the llA procedure. It
contains the directory entries for all members in
SYSl.LINKLIB and for all data sets concatenated to it in the
lNKlST. (See Initialization and Tuning for more information
on the LNKlST member in SYSI. PARMlIB.)

BLDl searches the lNKlST lookaside directory by passing a
parameter list to the subroutine CSVllSCH. CSVllSCH calls
the lNKLST lookaside cross-memory search routine (CSVVlSOl),

lY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 161

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

which searches the LNKLST lookaside directory for the member
name and copies its directory entry into the passed area
(the user's input parameter list or the BLDL work area, if a
FIND request). Control is then returned to BLDL.

If the LNKLST lookaside directory is not available, the
LNKLST PDS directories are searched.

• If SYSl.LINKLIB is not the referenced library, or if the
LNKLST lookaside directory is not available, BLDL issues an
EXCP to search the directory for a directory block with a
key equal to or higher than the given member name. That
directory block is read into virtual storage and searched
for the matching member name.

• If the name is in the LNKLST lookaside directory, or the
matching entry was found in a directory block, the directory
entry is copied into the user's parameter list.

• If this is a FIND request, the relative address is copied
into the DCBRELAD field in the DCB and control is passed to
the POINT routine by issuing a BASSM instruction for
supervisor key callers or a SYNCH macro instruction for user
key callers. In either case, control is passed to a
bootstrap routine in IGCOl8 (part of csect IECOSCRl) to
allow a branch to the POINT routine in 24-bit addressing
mode.

• If this is not a FIND request, BLDL obtains the next name in
the parameter list to be matched, and continues the search.

• When the input parameter list has been completed, the
routine returns control to the caller passing a return code
in register 15.

convert Relative-to-Full Address Routine--Entry Paint:
IECPCNVTI Conversion routine IECPCNVT accepts, in register 0,
relative addresses of the form TTRN for direct-access devices
and presents the corresponding full device addresses of the form
MBBCCHHR at the location shown by register 2. This routine's
external interface is documented in System-Data Administration.

The routine operates as follows:

• For each extent, the routine reduces the amount, TT, by the
number of tracks in the extent. When the balance is
negative, the proper extent has been reached.

• It determines the full device address for the specified
relative value.

convert Full-to-Relative Address Rautine--Entry Point:
IECPRLTV: Conversion routine IECPRLTV accepts, from the
location shown by register 2, a full device address of the form
MBBCCHHR for direct-access devices and presents the
corresponding relative address of the form TTRO in register O.

The routine totals the number of tracks per extent for the (M-l)
extents. For extent M, it adds the number of tracks entered
into the extent. This routine's external interface is
documented in SYstem-Data Administration.

Convert Record Number to Ssctor Value Routine--Entry Paint:
IECOSCR1: Conversion routine IECOSCRI converts the record
number for a fixed- or variable-length record data set to a
sector value for use on an RPS device.

Note: For callers of this routine in 51-bit addressing mode,
the +0 and +8 offsets into this routine have been changed to +16
and +20 respectively.

For fixed-length records, register 0 contains a data length in
the two high-order bytes and a key length in the third byte.

162 MVS/XA SAM Logic LY26-5967-0 @ Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

The fourth byte contains the record number for which the sector
value is desired.

For variable-length records, register 0 contains the number of
key and data bytes already written in the two high-order bytes.
The third byte contains a 1 (for keyed records) or a 0 (for
nonkeyed records). The fourth byte contains the record number
for which the sector value is desired.

For both types of records, registers 2, 14, and 15 contain the
following:

Register 2 The high-order byte contains the UCB+19. The other
3 bytes contain the address at which the sector
value is stored.

Register 14 The return address.

Register IS The entry point address of this routine.

Upon completion, the sector value is stored at the designated
address and registers 0, 9, 10, and 11 are modified.

Calculate Track Balance or Records per Track Routine--Entry
Point IECOSCR1+12: Within module IGC018, the conversion routine
IECOSCRI calculates the new track balance or the number of
records that can fit on a DASD track.

The routine input consists of:

• Device table address

• Record number

• Key length

• Data Length

• Track balance (optional)

Register 2 contains the address of this 12-byte parameter list.

The routine returns:

• In register 0, one of the following values:

The number of records that will fit on a track

The new track balance

The largest record that will fit on a track

• In register 14, the return address

• In register IS, the address of IECOSCRI

Registers 9, 10, and 11 are work registers used by the routine.

The conversion routine is invoked via the TRKCALC macro. For
information about the TRKCALC macro, see System-Data
Administration.

SVNADAF AND SVNADRLS ROUTINES

See Diagram 0 for an illustration of the flow of processing
through SYNADAF routines.

The SYNADAF routines pass control between modules by use of
V-type address constants so as to maximize the chances of the
next module being on the same page.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 163

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SYNAD Analysis and Format Routine IGC0006H: This routine is the
SYNADAF SVC initial load module and the only load module for the
SYNADRLS SVC. It gets storage for the register save area and
the message buffer area and transfers control to the secondary
load for error analysis. For SYNADRLS. it restores the save
area pointers and frees gotten storage.

The routine operates as follows:

• It issues an ESTAE macro instruction to establish a task
recovery routine (TRR) to intercept abnormal terminations
while SYNADAF processing is in effect.

• It tests to determine whether it was entered for SYNADAF or
SYNADRLS.

• If entered for SYNADAF:

It issues a GETMAIN macro instruction for a general
register save area and a message buffer area from
subpool O. in the user's key.

It initializes the message buffer area.

It tests for a valid access method. If not valid. it
issues an abend.

It loads the message CSECT.

It sets up the parameter list for transfer of control to
secondary load routines for further analysis.

For BISAM or QISAM. it tests to determine if the DEB
compatibility interface (CI) bit is set. If so. and the
CI SYNADAF routine is provided. it transfers control to J
the SYNADAF routine via a SYNCH macro instruction. It
returns to the caller when it again receives control.

If no CI SYNADAF routine is provided the routine returns
to the caller.

If the DEB CI bit is not on. it branches to IGC0206H for
BISAM and to IGC0306H for QISAM.

It branches to IGC0406H for BTAM. QTAM. or GAM.

It branches to IGC0506H for EXCP.

It branches to IGC0906H for BPAM or BDAM.

For BSAM or QSAM. it tests to determine if the DCB CI
bit is on. If so. and the CI SYNADAF routine is
provided. it branches to the SYNADAF routine via a SYNCH
macro instruction. It returns to the caller when it
again receives control.

If the SYNADAF routine is not provided. the routine
returns to the caller.

If the DCB CI bit is not on. it branches to IGC0906H for
BSAM or QSAM.

• If entered for SYNADRLS:

164 MVS/XA SAM Logic

It restores the caller's save area pointer.

It releases the storage gotten for the register save
area and the message buffer area.

It returns to the caller.

LY26-3967-0 © Copyright IBM Corp. 1977.1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SYNADAF for BSAM, QSAM, BDAM, EXCP, and BPAM IGCOI06H: This
routine continues the error analysis for EXCP, BDAM, BPAM, BSAM,
and QSAM and formats the message buffer. It receives control
from IGC0506H for EXCP and from IGC0906H for the access methods.

The routine operates as follows:

• It tests to determine if the data set was opened.

• If the data set was opened I

It converts the DCB block count for tape and the lOB
last seek address for disk storage into printable form.

It checks the ECB post codes.

If there is a permanent I/O error, it finds the 10BCSH
for a unit check condition.

If there is a unit check, it transfers control to
IGC0806H for the 3203 or 3211 Printers and 3800 Printing
Subsystem and to IGC0706H for all other devices.

If there is no unit check, it deletes the message CSECT
and returns to the caller.

• If the data set was not opened or if there was no permanent
I/O errorl

It examines the post code and formats the message
accordingly.

It deletes the message CSECT and returns to the caller.

SYNADAF Routine for BDAM and BISAM IGC0206H: This routine
completes the formatting of the message buffer for BDAM and
BISAM.

It operates as follows:

• For BDAM:

It formats the DDNAME.

It searches the completion codes of the DECB and stores
the related message.

If there is an lOB, it translates the Seek address into
printable format. Else, it sets the Seek address field
of the message buffer to zeros.

• For BISAMI

It searches the completion codes of the DECB and stores
the related message.

It formats the device type and DDNAME and stores them in
the message buffer.

• It deletes the message CSECT when formatting for BDAM or
BISAM is complete.

• It returns to the caller.

SYNADAF for QISAM IGC0306HI This routine analyzes status and
sense bytes and formats the condition portion of the message
buffer, for QISAM.

The routine operates as follows:

• It formats the operation type.

• It tests the ECB post code.

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Method of Operation 165

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If the I/O event is not completed normally, it tests for an
extent violation or a permanent I/O error and stores the
corresponding error message.

• It analyzes the exceptional condition code and stores the
error message.

• It formats the device type, unit ID, Seek address, and
DDNAME.

• If there is no pointer to the DCB, it deletes the message
CSECT and returns to the caller with a return code of 8 in
register 15.

• Otherwise, it branches to IGC0406H for completion of the
formatting.

SVNADAF ROUTINE FOR TCAM/QISAM IGC0406H: This routine continues
the error analysis for GAM, BTAM, QTAM, QISAM, and TCAM.

It operates as follows:

• It receives control from IGC0006H for GAM, BTAM, or QTAM.

• It formats the access method type and stores nSYNAD ROUTINE
NOT YET SUPPORTED" in the message buffer and returns to the
user.

• It receives control from IGC0306H for QISAM.

• If the error is not a permanent I/O error, it searches the
CSW status bytes and the lOB sense bytes and formats the
related message text.

• It receives control from IGC0906H for TCAM.

• It stores the access method type in the message buffer.

• It checks to determine if the error is a work area overflow
or an invalid destination. If neither is the cause of the
error, the routine assumes a sequence error and stores the
appropriate message text.

• It formats the operation type.

• It deletes the message CSECT and returns to the caller.

SVNADAF SVC IGCOS06H: This routine formats the message buffer
for EXCP.

The routine operates as follows:

• It stores the access method type in the message buffer.

• It obtains the operation code from the CCW and translates it
into printable form.

• It validity-checks the UCB.

• If the UCB is not valid, it deletes the message CSECT and
returns to the caller with a return code of 8 in register o.

• It stores the unit ID in the message buffer.

• It branches to IGCOl06H for further analysis.

166 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SYNADAF SVC for OCR Load IGC0606H: This routine completes the
formatting of the message buffer for OCR devices. IGC0606H
receives control from IGC0906H.

It operates as follows:

• It translates the CCW operation code into printable form and
stores it in the message buffer.

• It formats the DDNAME and stores it in the message buffer.

• It checks for the ECB completion code and stores it in the
message buffer.

• It searches the IOBCSW status bytes and the lOB sense bytes
and formats the appropriate text.

• The sense byte settings for the OCR are device-dependent so
the routine increases the pointer to the appropriate message
text and then stores the pointer in the message buffer.

• It deletes the message CSECT and returns to the caller.

SYNADAF Unit Check Analysis IGC0706H: This routine analyzes the
ION sense bytes on a unit check condition for direct access,
magnetic tape, and unit record devices, exce~t for the 3203 or
3211 printers and 3800 Printing Subsystem. It receives control
from IGC0106H and formats the message buffer and sets blanks in
the work area.

It operates as follows:

• It scans the lOB sense bytes for error indications.

• It analyzes lOB sense bytes 0 and 1 and stores the
corresponding error message in the message buffer.

• If there is a write-inhibit condition for a 3330 device, it
stores the write-inhibit message text.

• If the unit record device type is a TCR (tape cartridge
reader), the routine reanalyzes the sense bytes and stores
the appropriate message text.

• It deletes the message CSECT and returns to the caller.

SYNADAF Unit Check Analysis IGCOa06H: This routine analyzes the
lOB sense bytes on unit check conditions for 3203, 3211, 3262
model 5, 4245, 4248 printers and 3800 Printing Subsystem.

IGC0806H receives control through a branch from IGCOI06H on a
unit check condition.

It operates as follows:

• It scans the lOB sense bytes for error indications.

• If the lOB sense bytes do not have the status indicator, it
sets the message text to "unknown condition."

• It stores the appropriate message for the lOB sense bytes.

• It deletes the message CSECT and returns control to the
caller.

SYNADAF Error Analysis IGC0906H: This module continues the
generalized analysis of errors for BDAM, QSAM, BPAM, BSAM, and
TCAM dummy data sets.

IGC0906t' receives contro~ through a branch from IGC0006H.

It operates as foilowsl

• For BDAM:

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 167

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If the DECB does not contain an lOB address. the routine
transfers control to IGC0206H for completion of the
message buffer formatting.

If the DECB contains an lOB address, the routine formats
the unit ID. device type. and operation type and
branches to IGCOl06H for further analysis.

• For BSAM, QSAM, and BPAM

It checks to determine if the device is an OCR. If so.
it branches to IGC0606H.

It formats the operation type. unit ID. and device type.

It branches to IGCOl06H for further analysis.

• For TCAM dummy data sets. it branches to IGC0406H.

I SETPRT, SETDEV AND IMGLIB ROUTINES

When an SVC 81 (SETPRT or SETDEV) or SVC 105 (IMGLIB)
instruction is issued. the executors associated with SETPRT.
SETDEV. and IMGLIB receive control. Figure 33 on page 170 shows
the flow of control among these executors.

When an SVC 81 instruction is issued for an IBM 3800 Printing
Subsystem. IGC0008A is the initial executor to receive control.
Executors IGG08ll0. IGG08lll. IGG08ll2. IGG08ll3. IGG08ll4. and
IGG08ll5 are then given control. depending on the contents of
the SETPRT parameter list.

When an SVC 81 instruction is issued for a printer that is not
an IBM 3800 Printing SUbsystem. IGC0008A is the initial executor

J

to receive control. Then. either executor IGG08l05 for image J.
tabbl~ Ptr~cessfing pr~nterst' 0brl IGG08l01. and I,?GOt 8102 in. . ..
com 1na 10n or non1mage a e process1ng pr1n ers. may rece1ve
control from IGC0008A. The executors process the UCS request
and perform image verification if required. Control may then be
passed from IGC0008A. IGG08l0l. IGG08l02. or IGG08l05 to
IGG08l03 and IGG08l04. Executors IGG08l03 and IGG08l04.
respectively. locate the FCB image and load it into the
printer's forms control buffer. Executor IGG08l04 performs
image verification or allows form alignment.

When a SETPRT is issued for a SYSOUT data set. executor IGC0008A
gives control to executor IGG08ll7.

SETPRT is also issued during OPEN processing. When SETPRT is
called by OPEN and the device is a printer other than a 3800
Printing Subsystem. SETPRT ensures that a UCS image and. for
devices that have it. an FCB is or has been specified.

All messages issued by the SETPRT executors are in a message
CSECT. The SETPRT executors must extract the text from the
CSECT before issuing the message. If the user's key is greater
than or equals 8. the SYNCH macro instruction is used for all
WTO/WTORs for integrity reasons. because the message text is
moved to the user's work area.

Two executors are associated with the SETDEV macro instruction.
The SETPRT executor. IGC0008A. receives control when the SVC 81
instruction is issued. Executor IGG08108 receives control from
executor IGC0008A to initialize the IBM 3890 Document Processor
Control Unit.

Executor IGCOOlOE receives control when SVC 105 is issued to
build or delete the DCB and DEB for a SYSl.IMAGELIB data set.

168 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977.1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SETPRT Routine IGC0008A: The macro instruction SETPRT
(set-printer) expands into an SVC 81 instruction that causes
this routine to be loaded and to gain control. IGC0008A
determines if the IBM 3890 Document Processor control unit is to
be loaded and. if so. gives control to routine IGG08108. If the
IBM 3800 Printing Subsystem is to be set uP. control is given to
IG608110. If a SYSOUT data set is requested. control is given
to routine 16G08117.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 169

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

SETPRT/SETDEV IMGLlB
SVC 81 SVC 105

Entry Entry

+ • IGCOO08A IGC0010E

Initialization Skeleton DCB and

and Validation DEB needed for
SYS1.IMAGELIB

t
Return

3890 1403,3211 Printers ~~45, 4248, and 3262 3800 Printer ~~800 , odel 5 Pri nter SYSOUT

IGG08108 IGG08101 IGG08105 IGG08110 IGG08117

SETDEV
Retrieve UCS

Process Imaga
Initialize Printer ~

Image from Locate Translate SYSOUT
Processing SYS1.IMAGELIB Table Printer Tables Processing

t t + •
Return

IGG080102

C
t

Return :
Load UCS Image IGG08113 :

Locate and
~.:

I Load FCB
Image in Printer : :

+ : :
+ IGG08103 :

:
IGG08111 : :

Locate FCB
Format Translate : Image
Tables and Load ~.:

+ WCGM

IGG08104 ! : :

t : :
Load F CB I mage :

IGG08112 : :

I Load Translate : :
Tables, Graphic f-oc.:
Char. Mods and :

C
Copy Mods :

Return I :

t , • IGG08114
WTOR and Display IGG08116
Status Codes for ~

Process Error Paper Threading
Messages and Forms Overlay , ~

IGG08115 :
COpy Count,
Flash Count and ~ :
Starting Copy No. ,
(Return

Figure 33. SETPRT Executor Selector

170 MVS/XA SAM Logic LYZ6-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

The SETPRT routine operates as follows:

• It issues an ESTAE macro instruction to establish a TRR,
IGCT1081, to intercept abnormal terminations.

• It saves information in the SVRB extended save area for
IGCT1081, in case the SETPRT ESTAE gets control.

• It contains a bootstrap routine that gets control fro~ RTM;
issues a LOAD macro instruction, followed by a DELETE macro
instruction, for IGCTI081 (to get the entry point address Qf
IGCTI081 in LPA); and branches to that module.

• It issues a LOAD macro instruction for message CSECT
(IGGMSG01).

• It tests the DCB for a SYSOUT data set open for output and
bypasses unit record processing.

• If the 3890 Document Processor control unit is to be loaded,
it passes control to routine IGG08108.

• It uses the GETMAIN macro instruction to obtain two work
areas.

1. Key 5, subpool 230, for BLDL parameter list, a general
work area.

2. User key, subpool 230, another general work area. (See
"SETPRT Work Area" in the "Data Areas" section.)

• It sets up various fields in the work areas for subsequent
loads of SETPRT.

• ~Ihen EXCP is specified in the DCB, or if OPEN is the caller
of SETPRT, it builds an lOB in the user key work area.

• When QSAM is specified for the DCB, the routine causes all
outstanding output requests to quiesce.

• If it is for a SYSOUT data set, control passes to routine
IGG081l7.

• It uses the EXCP macro instruction to execute block data
check or reset block data check according to the
specification in the SETPRT parameter list if any. If
neither is specified, block data check is executed.

• If OPTCD=FOLD or UNFOLD is specified, an EXCP is issued to
set the mode.

• It issues SVC 105 to open SYS1.IMAGELIB.

• If the device is a 3800 Printing Subsystem, control is given
to executor IGG08110.

• When UCS image processing is required, it passes control to
either executor IGG08101 for non-image table processing
printers, or IGG08105 for image table processing printers.

• If FCB processing is required but UCS processing is not,
routine IGG08103 is called.

• If no UCS or FCB processing is required, it frees the work
area and returns to the caller with a return code in
register 15. For a description of the return codes, see
Data Administration: Macro Instruction Reference.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 171

contains Restricted Materials of IBH
Licensed Materials -- Property of IBH

SETPRT Routine IGG08101: Routine IGG08l0l is entered from
routine IGC0008A when the specified UCS image is to be loaded
from the SYSl.IMAGELIB.

The routine operates as foilowsl

• If OPEN is processing, the operator is requested to specify
a UCS image name if none is specified and the currently
loaded UCS image (if any) is not a default image.

• If OPEN is processing, no UCS image is specified, and the
currently loaded UCS image, if any, is a default image, then
the currently loaded image is made the requested UCS image
in order to force reload of the UCS image and thereby ensure
its integrity.

• It uses the BLDL macro instruction to locate the UCS image
in the SYSl.IMAGELIB.

• If the UCS image is not in the library, the routine requests
the operator to specify an alternate UCS image to be loaded.

1. If the operator cancels the job step, it returns to the
caller with a nonzero return code in register IS
(non-FCB printers). For FCB printers, it transfers
control to IGG08103.

2. If the operator replies "U", the currently loaded image
is used.

• If an error occurs during BLDL processing, it returns
control to the caller with a nonzero return code in register
15 (non-FCB printers). For FCB printers, it transfers
control to IGG08103.

• When the UCS image is in the library, the routine uses the
LOAD macro instruction to retrieve the UCS image from the .~
library. ~

• Before returning to the caller, it issues a DELETE macro
instructions for the message CSECT and for the UCS image, if
it was loaded. It also frees the work areas and issues a
CLOSE macro instruction for SYSl.IMAGELIB.

• The routine passes control to routine IGG08l02 to load the
retrieved UCS image into the UCS buffer.

SETPRT Routine IGG08102: Routine IGG08l02 is entered from
routine IGG08l0l to load the UCS image into the UCS buffer and
to print verification lines if required.

The routine operates as follows:

• It uses the EXCP macro instruction to load the UCS image
into the UCS buffer.

• If an error occurs during UCS load, it returns control to
the caller, with a nonzero return code for non-FCB printers.
For FCB printers, it transfers control to IGG08l03.

• Before returning to the caller when an error condition
exists, it issues DELETE macro instructions for the message
CSECT and for the UCS image, if it was loaded. It also
frees the work areas and issues a CLOSE macro instruction
for SYSl.IMAGELIB.

• When verification of the image is required, the routine uses
the EXCP macro instruction to print the UCS image for
verification.

•

172 MVS/XA SAM Logic

If an error persists
to the caller with a
(non-FCB printers).
to IGG08103.

during verification, it returns control
nonzero return code in register 15
For FCB printers, it transfers control

LY26-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

•

•

It gets the local lock and updates the UCB to reflect the
new image. It then releases the local lock.

It uses the DELETE macro instruction to release the UCS
image. If no FCB processing is required, FREEMAIN macro
instructions release the work areas, a DELETE macro
instruction releases the message CSECT, and control is
returned to the caller. IGC0008A, IGG08l01, IGG08102, or
IGG08l05.

The routine operates as follows:

If the UCS return code indicates a possible lost data
condition or, if OPEN is processing and an error
occurred during UCS processing, no FCB processing is
performed.

It checks the DCB exit list to see whether the specified
FCB image is defined in the problem program.

It uses the BLDL macro instruction to locate the FCB
image in SYSl.IMAGELIB if the image is not specified in
an exit list.

For the IBM 4248 Printer, the executor attempts to
locate the FCB using the prefix FCB4 (a 4248 format
FCB). If that FCB cannot be located, an attempt is made
to locate the FCB using the prefix FCB2 (a 3211 format
FCB).

If an error occurs during BLDL processing, it is
remembered and control is given to IGG08104 with an
indicator set that no FCB is to be loaded.

If the image is not found in the library, the routine
requests the operator to specify an alternate FCB image.

If the operator cancels the job step, it is
remembered and control is given to IGG08104 with an
indicator set that no FCB is to be loaded.

If the operator replies nun, the currently loaded
image is used.

IGG08104 is called to load the image into the forms
control buffer and print a verification, if requested.

SETPRT Routine IGG08104: Routine IGG08104 loads the FCB image
into the forms control buffer and verifies the load and/or
allows forms alignment. It is entered from IGG08l03.

The routine operates as foilowsl

• If the FCB is found in an exit list or if OPEN is
processing, a temporary copy of the requested FCB is
created.

• If COPYP and/or PSPEED is specified in the SETPRT parameter
list, if the FCB is found in an exit list, or if OPEN is
processing, a temporary copy of the requested FCB is
created. Any COPYP and PSPEED specifications are then
copied into the temporary FCB.

• The FCB is loaded into the device.

• If an error occurs loading the FCB, a message to the
operator is issued and a return code and a reason code are
set.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 173

•

•

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

If VERIFY is specified, the image is printed for visual
verification.

If an I/O error occurs during verification (other than a
possible lost data condition), control is returned to the
caller. If a possible lost data condition is detected, the
verification display is restarted up to 5 times before the
condition is considered permanent. Control is returned to
the caller with a nonzero return code in register 15.

• If ALIGN is specified, the operator is instructed to align
the forms.

• It issues a DELETE macro instruction for the message CSECT
and for the FCB image, if it was loaded from SYSl.IMAGELIB.
It also issues a CLOSE macro instruction for SYSl.IMAGELIB
and frees the work area gotten by IGC0008A.

• The routine always exits to the caller.

SETPRT Executor IGGOBI05: Executor IGG08l05 receives control
from IGC0008A and performs processing for image table printers.

The executor operat~s as follows:

• Processing continues if one of the following conditions is
met:

1. OPEN is processing and either a nondefault or no UCS
image-id has been previously specified. In this case,
the operator is requested to specify an image-id. The
operator can reply with the id of an image to be used,
and, optionally, fold and/or verify. The operator can
also cancel the UCS request, or may reply "U" to
indicate the c~rrently mounted band is to be used.

2. A UCS image is ~equested and:

It is not satisfied by the currently mounted band.

UCS verification is requested.

The fold/unfold mOde differs from that previously
set.

• The appropriate image table is located in SYSl.IMAGELIB and
loaded into storage. The image table provides:

The correspondence between the UCS image-id (alias) and
the printer band-id.

An indication as to whether the image is a default
image.

A band description to be displayed as part of the
verification display.

Optionally, the number and length of verification lines
in the verification display.

• Whether initially requested, or specified by the operator,
the name of the image to be used (alias) is searched for in
the image table. If it is not found, the operator is asked
to specify an alternate image-id. The operator can reply
with the id of an image to be used, and, optionally, fold
and/or verify. The operator can also cancel the UCS request
or may reply "U" to indicate the currently mounted band is
to be used.

• When the name of the image to be used is found in the image
table, the operator is instructed to mount the appropriate
band if it is not already mounted. If the printer is an IBM
4245, the image of the band to be mounted is also contained
in the operator display.

174 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

After mounting the appropriate band, the operator indicates
it is mounted by replying to the mount message with the same
image-id the operator was instructed to mount.
Alternatively, the operator can reply with the id of an
image to be used, and, optionally, fold and/or verify. The
operator can also cancel the UCS request or may reply nun to
indicate that the currently mounted band is to be used.

• When the operator indicates the correct band is mounted, the
appropriate mode is set (fold or unfold).

• If the UCS image is to be verified, the following is
performed:

•
•

If the printer is a 4248, the horizontal copy feature is
deactivated.

The UCS verification display is produced. This display
consists of a header line followed, optionally, by lines
displaying the currently loaded image.

If the printer is a 4248, the horizontal copy feature is
reactivated.

The operator is asked to verify the image by replying
either:

VERIFY (the image is correct).

CANCEL (the image is not correct).

RETRY (the UCS verification display is given again).

If UCS processing is successful, the UCB UCS extension
is updated to reflect the current image-id and mode.

The image table is deleted.

A freemain is issued for the work area.

• Executor IGG08103 is called.

SETDEV Routine IGG08108: IBM 3890 Document Processor routine.
IGG08108 receives control from routine IGC0008A.

The routine operates as follows:

• It verifies the SETDEV parameter list.

• It loads the appropriate control unit.

• It exits to the problem program.

SETPRT Executor IGG08110 (For the 3800 Printing subsystem
only): Executor IGG08ll0 is entered from executor IGC0008A when
the UCB device type indicates that SETPRT processing is being
done for a 3800 Printing Subsystem.

The executor operates as follows:

• It builds a SETPRT path table according to the format and
content of the SETPRT parameter list. The path table is
used to control the sequence of execution for subsequent
3800 Printing Subsystem SETPRT executors.

• When printer initialization is requested, IGG08110 uses the
EXCP macro to issue the channel command sequence that resets
the controls for the 3800 Printing Subsystem.

• It issues the LOAD macro to load the requested character
arrangement tables residing in SYSl.IMAGELIB (or at
addresses provided by the caller).

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 175

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• If an error is detected, it builds a message parameter list
and calls executor 16608116, then branches to executor
IGG08ll5. Otherwise, it calls the next 3800 Printing
Subsystem SETPRT executor specified in the SETPRT path
table.

SETPRT Executor IGG08111 (For the 3800 Printing Subsystem
only): Executor 16608111 is entered when character arrangement
tables are successfully obtained by IG608ll0.

The executor operates as follows:

• It determines which character sets are needed for the
character arrangement tables specified in the SETPRT
parameter list.

• It reorders the character set positions to be loaded by
referencing the current IDs as shown in the UCB. This
minimizes the possibility of reloading previous character
sets into the 3800 Printing Subsystem.

• It formats the translate tables, using the character
arrangement tables.

• It uses the EXCP macro to load the 3800 Printing Subsystem's
writable character generation modules (WC6Ms) with the
even-numbered hardware character sets.

• It issues a BLDL and a LOAD macro to read the odd-numbered
library character sets into storage.

• It uses the EXCP macro to load the library character sets
into the 3800 Printing Subsystem's WC6M storage with a load
graphic character modification CCW.

•

•

It issues a DELETE macro to free the storage used for the
library character sets.

If an error is detected, it builds a message parameter list
and calls executor 16608116, then branches to executor
IGG08ll5. Otherwise, it calls the next 3800 Printing
Subsystem SETPRT executor specified in the SETPRT path
table.

SETPRT Executor IGG08112 (For the 3800 Printing Subsystem
only): Executor 16G08ll2 is entered after successful processing
by IGG08lll, or when the SETPRT parameter list requires copy
modification.

The executor operates as follows:

• It uses the EXCP macro to select the proper 3800 Printing
Subsystem's translate table position(s) and to load the
translate table(s) into the printer.

• When graphic modification modules are specified for the
character arrangement tables, IGG08ll2 issues the LOAD macro
to obtain the desired graphic modification modules from
SYSl.IMAGELIB.

• It issues EXCP to load the graphic modification records into
the 3800 Printing Subsystem.

• It issues a DELETE macro to free the storage used by the
loaded graphic character modification modules.

• If a copy modification module (residing in SYSl.IMAGELIB) is
requested, 16608112 issues LOAD to retrieve it.

• It uses EXCP to load the 3800 Printing Subsystem with the
copy modification record.

• It issues a DELETE macro to free the storage used by the
loaded graphic character modification modules.

176 MVS~XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

• If an error is detected, it builds a message parameter list
and calls executor IGG081l6, then branches to executor
IGG08ll5. Otherwise, it calls the next 3800 Printing
Subsystem SETPRT executor specified in the SETPRT path
table.

SETPRT Executor IGG08113 (For the 3800 Printing Subsystem
only): Executor IGG08113 is entered when forms control buffer
image processing is required.

The executor operates as follows:

• It checks for the specified FCB image identifier using FCB
entries in the DCB exit list.

• When the address of the FCB image is not passed to the
caller and the FCB image cannot be located by the DCB exit
list, the FCB image is obtained from the SYSI.IMAGELIB data
set using the LOAD macro.

• It loads the specified FCB image into the 3800 Printing
Subsystem.

• If FCB image verification is requested, IGG08113 formats and
prints on the 3800 Printing Subsystem a map of the specified
FCB image. A message, asking for visual verification, is
sent to the operator.

• If an error is detected, it builds a message parameter list
and calls executor IGG08l16, then branches to executor
IGG08ll5. Otherwise, it calls the next 3800 Printing
Subsystem SETPRT executor specified in the SETPRT path
table.

• If an error is detected, it calls executor IGG08ll5.
Otherwise, it calls the next 3800 Printing Subsystem
executor specified in the SETPRT path table.

SETPRT Executor IGG08114 (For the 3800 Printing Subsystem
only): Executor IGG08ll4 is entered when the UCB extension
indicates that the 3800 Printing Subsystem has the
burster-trimmer-stacker feature installed, or when forms overlay
processing is requested.

The executor operates as follows:

• It verifies that the paper is positioned properly, and
informs the operator if paper repositioning is required.

• When the FLASH parameter is used, it requests the operator
to install the requested forms overlay negative.

• It passes control to executor IGG08l15.

SETPRT Executor IGG0811S (For the 3800 Printing Subsystem
only): Executor IGG08115 is the last module executed for 3800
Printing SUbsystem SETPRT processing.

The executor operates as follows:

• If no errors were detected by previous 3800 Printing
Subsystem SETPRT executors, IGG08ll5 initializes the 3800
Printing Subsystem printer with: the starting copy number,
the total copies to be printed, and the copies to contain a
forms overlay image.

• It resets the translate table index in the 3800 Printing
Subsystem to the first translate table loaded.

• It restores the caller's control blocks as required, deletes
any loaded modules, and frees previously obtained virtual
storage loaded or acquired by or for SETPRT.

• It exits to the issuer of the SVC 81.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 177

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

SETPRT Executor IGG08116: Executor IGG08116 is the error
message processing routine and is called by the other 3800
Printing Subsystem SETPRT executors when an error is detected.

The executor operates as follows:

• It checks the return code and, if an I/O error is indicated,
it retrieves the opcode of the failing CCH and stores it
into byte 0 of the reason code.

• It uses the message parameter list passed by the caller in
the SETPRT work area, and formats the corresponding message
in a work area buffer.

• If the message suppression bit in the SETPRT parameter list
is off, it will do the following:

1. If a SYSOUT error or a previous I/O error is indicated,
a WTO to the programmer is issued.

2. For all other messages, except for a BURST request
error, an initialize printer CCW is issued to ensure a
standard setup, and the error message is created on the
3800 Printing Subsystem. For a BURST request error, the
setup is left unchanged, and the message is written with
the current setup for informational purposes.

3. If a paper jam or cancel key condition is detected, the
corresponding message is formatted in the work area
buffer, and the return and reason codes are updated.
Because the printer is in a not-ready state, no message
is written to the 3800 Printing Subsystem.

• If a message feedback area is provided by the user program,
the message text is copied from the work area buffer into
the user-specified area.

• It returns to the calling program through a BR 14
instruction.

SETPRT Executor IGG08117: Executor IGG08117 is entered when the
DCB indicates that SYSOUT processing is requested.

The executor operates as follows:

• It copies the user's SETPRT parameter list into the key 5
storage in the work area.

• It uses the GETMAIN macro instruction to obtain two key 5
work areas for SYSOUT processing.

A work area for subsystem interface control blocks, JFCB
and JFCBE control blocks, and for information saved to
communicate with the system work area (SWA) manager
routines.

A parameter list for spool file allocation routine.

• It calls the SWA manager to read a copy of the JFCB into the
work area.

• If a JFCBE exists, it calls the SWA manager to read a copy
of the JFCBE into the work area.

• It issues an ENQ macro (RET-HAVE) on the TIOT. This will
serialize SETPRT processing with any concurrent open, close,
allocation, or unallocation processing against the data set.

•

•

178 MVS/XA SAM Logic

It checks DSABOPCT in the DSAB to ensure that only one DCB
is open for the data set.

It calls the CLOSE subsystem interface to notify JES that a
data set segment is finished.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

• It updates local copies of the JFCB and JFCBE according to
information in the SETPRT parameter list.

• It builds the spool file allocation parameter list and calls
the scheduler spool file allocation routine (IEFAB4SF).
This will provide JES with new setup requirements, segment
the data set, and update the JFCB and JFCBE in the SWA.

• It calls the OPEN subsystem interface to notify JES that a
new data set segment is to be created.

• The executor frees up the SETPRT resources before returning
to caller as follows:

It issues a DEQ macro for the TIOT.

It deletes the message CSECT (IGGMSGOI).

It restores the lOB.

It saves return and reason codes in the SVRB.

It issues the FREEMAIN macro to:

Free the user key SETPRT work area

Free the spool file allocation parameter list area

Free the SYSOUT work area

Free the key 5 SETPRT work area

• It places the return and reason codes in registers 15 and 0,
and returns to the caller.

• If an error is detected, it builds a message parameter list
and calls executor IGG08116, then cleans up any existing
resources before returning to the caller.

IMGLIB SVC Routine IGCOOIOE: The IMGlIB routine IGCOOIOE builds
a skeleton DCB and DEB for the SYSI.IMAGElIB data set or deletes
the DCB and DEB for the SYSI.IMAGElIB data set, depending on the
parameter passed to it in register I. The routine is entered
from the SVC 105 instruction.

The IMGlIB macro is issued by OPEN executors and by SETPRT
routines and can be issued by users. The routine operates as
follows:

• It issues an ESTAE macro instruction to establish a TRR,
IGCTOIOE, to intercept abnormal terminations.

• It makes a test to determine whether the control blocks for
IMAGElIB need to be built or deleted. If register I
contains D's, a DCB and DEB are built.

• It uses a GETMAIN macro instruction to obtain a work area
and then uses a lOCATE macro instruction to determine where
the IMAGElIB volume is residing.

• It takes the address of the UCB table from the CVT and
searches for the corresponding UCB.

• It uses the OBTAIN macro instruction to read in the format-I
DSCB and uses the information read and the UCB address to
construct a skeleton DCB and DEB for the SYSI.IMAGElIB
volume. The format-I DSCB describes up to three extents.
The SYSI.IMAGElIB data set can reside on up to 16 extents on
a permanently resident volume.

• If there are more than three extents on SYSI.IMAGElIB, the
format-3 DSCB seek address is obtained from the format-I
DSCB. It uses the OBTAIN macro to read in the format-3 DSCB

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 179

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

and uses the information read and the UCB address to
construct additional DEB extent descriptions.

TASK RECOVERY ROUTINES

Task recovery routines are designed to m1n1m1ze overhead in the
execution of the following SVC routines.

SVC 18
SVC 21
SVC 24
SVC 25
SVC 68
SVC 69
SVC 81
SVC 105

BLDL or FIND
STOW
DEVTYPE
Track Balance, Track Overflow Erase
SYNADAF/SYNADRLS
BSP
SETPRT
IMGlIB

Explicit validity checking is not done in SVC routines.
Instead, the following precautions are taken to ensure system
integrity:

• Perform all read and write access to user-owned storage in
the key of the caller.

• Issue an EXCP macro instruction on caller-owned control
blocks in the key of the caller.

• Issue a SYNCH macro instruction to reach processing routines
whose addresses are obtained from the caller's DCB.

SVC routines do not use storage that can be altered by a problem
program for sensitive data that specifies the location of
protected control blocks or the location to which control will
be passed. Examples are register save areas and XCTL lists.

A program check occurs when a user error or a deliberate action
threatens to impair system integrity. To avoid the situation in
which the user would have to relate a program check in an
unfamiliar system routine with an error in a problem program,
each SVC routine has a task recovery routine on its RB level.
On entry, each SVC routine issues an ESTAE macro instruction to
establish the task recovery routine that will intercept abnormal
terminations.

When a program check occurs, the task recovery routine is given
control by RTM and performs explicit validity checking on the
input to the SVC routine to determine if a user input error
occurred. The task recovery routine can thus provide the caller
with an error description in terms of the caller's input to the
SVC routine.

Alternatively, the task recovery routine can determine that the
abend was not caused by a user error, but was the result of an
environmental situation or a system error. In the latter case,
the error descriptive information can be directed to system data
sets, rather than to the problem program use~.

Task Recovery Routine IGCT0018 (SVC 18, BLDL or FIND): Module
IGCTOOl8 handles abends arising from the issuance of an SVC 18.

It operates as follows:

• It analyzes the type of error and either passes it to the
abend routine unchanged or changes it to its own abend and
passes it on, or it uses a RETRY routine to change it into a
user error abend code.

• If a system error is detected, this routine writes a record
to SYSI.LOGREC and, if no lower level recovery routine has
done so, takes a dump to SYS1.DUMP.

• It cleans up any resources that BLDL acquired.

180 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Task Recovery Routine Module IGCT0021 (SVC 21, STOW) I Module
IGCT002l analyzes abnormal terminations that result from issuing
the STOW SVC.

The module operates as follows:

• It determines whether user input or system error caused the
termination.

• It routes information about the abend to the appropriate
place.

• For a user input error, it sends a dump of virtual storage
to the SYSABEND or the SYSUDUMP file.

• For a system error, it notifies the problem programmer via a
WTP message and a system completion code that an error
occurred that terminated the task.

• The corresponding diagnostic information is written to
SYS1.DUMP and SYSl.lOGREC.

• It performs any necessary cleanup.

• It records its actions when an error is detected and
analyzed on a lower level, or when a machine check occurred
and has been processed by the machine check handler.

Task Recovery Routine IGCT002D (SVC 24, DEVTYPE): Module
IGCT002D analyzes abnormal terminations that occur as a result
of issuing the DEVTYPE SVC.

The module operates as follows:

• It determines whether user input or system error caused the
termination.

• It routes information about the abend to the appropriate
place.

• For a user input error, it sends a dump of virtual storage
to the SYSABEND or the SYSUDUMP file.

• For a system error, it notifies the problem programmer via a
WTP message and a system completion code that an error
occurred that terminated the task.

• The corresponding diagnostic information is written to
SYSl.DUMP and SYSl.lOGREC.

• It performs any necessary cleanup.

• It records its actions when an error is detected and
analyzed on a lower level, or when a machine check occurred
and has been processed by the machine check handler.

Task Recovery Routine IGCT002E (SCV 2S, Track Balance, Track
Overflow Erase): Module IGCT002E analyzes abnormal terminations
that occur as a result of issuing SVC 25. The module operates as
followsl

• It determines whether user input or system error caused the
termination.

• It routes information about the abend to the appropriate
place.

• For a user input error, it sends a dump of virtual storage
to the SYSABEND or the SYSUDUMP file.

• For a system error, it notifies the problem programmer via a
WTP message and a system completion code that an error
occurred that terminated the task.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 181

contains Restricted Materials of IBH
Licensed Materials -- Property of IBH

• The corresponding diagnostic information is written to
SYSI.DUMP and SYSI.lOGREC.

• It performs any necessary cleanup.

• It records its actions when an error is detected and
analyzed on a lower level, or when a machine check occurred
and has been processed by the machine check handler.

Task Recovery Routine IGCT006H (SVC 68, SVNADAF/SVNADRLS):
Module IGCT006H determines the type of error that occurred
during a SYNADAF or SYNADRlS SVC processing.

The module operates as follows:

• It requests a retry if SYNADAF attempts to access a control
block at an invalid or a fetch-protected location.

• All other error conditions are percolated after the SYNADAF
save/message area is freed. If this routine detects a
system error, it issues an SDUMP before freeing the area.

• It consists of the following subroutines:

182 MVS/XA SAM logic

Environment Error

If entered from SYNADAF, it goes to the cleanup routine
for normal processing.

Otherwise, it tests for an error during FREEMAIN macro
instruction processing in SYNADRlS.

If not, the routine next tests for a user error.

If the error occurred during FREEMAIN processing, it
tests for an invalid FREEMAIN.

If so, a SETRP macro instruction is issued to effect a
retry.

The retry routine restores register 13 in the SVRB to
the address of the attempted FREEMAIN area and returns
to the user with return code 8 in register O.

User Error

Entered if (1) a program check occurred at the SYNADAF
level and no subordinate ESTAE macro instructions were
issued or (2) the environment error routine test
indicated no FREEMAIN error.

It tests for a protection exception, request for an
invalid page, or segment exception.

If so, it tests to determine if the retry address
indicates that the control block address supplied by the
user is invalid. If so, abend is invoked.

Otherwise, the recovery routine attempts to continue
SYNADAF processing. If the retry register is not set to
zeros, the retry is performed by zeroing the retry
register and issuing a SETRP macro instruction to retry
at the address previously in the retry register.

If any of the user routine tests fail, the error is
treated as a SYNADAF failure, it is assumed to be a
system error, and an SDUMP is invoked.

SDUMP

Functions performed are the same as for the user
routine, with the following exceptions:

lY26-3967-0 © Copyright IBM Corp. 1977,1985

J

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

1. The abend code for the SDUMP header is taken from
SDWACMPC.

2. The following additional information is logged:
n,CODE=XXX,RC=NN.n

3. The WTP message states, nlEC9061 POSSIBLE SYSTEM
ERROR DETECTED BY SYNADAF. SVC DUMP TRIED, RC=NN.n

4. The abend code is not modified.

Cleanup

Records the following information in the LOGREC variable
area: FLAG, RETRY, EP, USER15, USERO, and USER1.

SDWAURAL is inspected to avoid overlaying information
already in the variable area, and is updated.

It deletes the message CSECT, if loaded, and frees the
save/message area.

Before issuing the FREEMAIN macro instruction, it
restores user register 13 from the HSA word of the save
area being freed.

It then percolates the abend.

Task Recovery Routine IGCT0069 (SVC 69p BSP): Module IGCT0069
analyzes abnormal terminations that occur as a result of issuing
the BSP SVC.

The module operates as foll~ws:

• It determines whether user input or system error caused the
termination.

• It routes information about the abend to the appropriate
place.

• For a user input error it sends a dump of virtual storage to
the SYSABEND or the SYSUDUMP file.

• For a system error, it notifies the problem programmer via a
WTP message and a system completion code that an error
occurred that terminated the task.

• The corresponding diagnostic information is written to
SYSl.DUMP and SYSl.LOGREC.

• It performs any necessary cleanup.

• It records its actions when an error is detected and
analyzed on a lower level, or when a machine check occurred
and has been processed by the machine check handler.

Task Recovery Routine IGCT1081 (SVC 81p SETPRT): Module
IGCTl08l receives control when the RTM (recovery termination
manager) detects an abnormal termination during operation of SVC
81.

The module operates as follows:

• It issues an IGGSTART macro instruction to determine what
type of processing should be done and to give control for
error analysis to the appropriate routine.

• It contains the following routines:

Resource Cleanup Routine

Releases or restores resources acquired or altered by
the SETPRT routines.

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 183

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Establishes a second-level ESTAE in case a program check
occurs during cleanup.

Exit Routine

Determines the correct way to exit from this module.

1. Percolate: If entered for resources cleanup, to
take an SDUMP, or detection of a system error.

2. Retry to abend: If an invalid user control block
was found.

Uses the SETRP macro instruction to exit.

User Control Block Error Analysis Routine

Analyzes user control blocks, using the supervisor
validity check routine and the DEBCHK routine. Issues a
GETMAIN macro instruction for a GTF buffer for tracing
control blocks.

If an invalid control block is detected, gives control
to the GTF routine; otherwise, a system error is
assumed.

SDUf1P Routine

Issues an SDUMP SVC.

Builds a WTP (write-to-programmer) message if it
determines that a system error occurred.

GTRACE Routine

Moves selected user control blocks to the GTF buffer.

Issues a GTRACE macro instruction.

Frees the GTRACE buffer.

Write-to-Programmer Routine

Builds a WTP message, if requested.

Issues a WTP macro instruction.

Retry Routine

Issues an ESTAE 0 (to disestablish the first level
ESTAE), restores the user1s registers, and issues an
abend macro instruction.

Second-Level ESTAE Return Routine

Provides a return address for the second-level ESTAE.

Issues an ESTAE 0 to disestablish the ESTAE issued by
the cleanup routine and then returns to the cleanup
routine.

• This module also has a seoond-Ievel ESTAE, which is entered
if a program check occurs in the first-level ESTAE or if a
CAll RTM is issued.

184 MVS/XA SAM logic

For program checks, it issues a SETRP macro instruction to
retry back to the second-level ESTAE return routine in the
first level ESTAE. For a CALL RTM, it takes a system dump,
issues a WTP macro instruction, and percolates to the
next-level ESTAE.

LY26-3967-0 © Copyright IBM Corp. 1977,1985

J

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Task Recovery Routine IGCT010E (SVC 105. IMGLIB): Module
IGCTOlOE determines the type of error that occurred during, or
that is related to, the IMGLIB SVC.

The module operates as follows:

• It determines if the error type is environmental, user, or
system.

• It decides whether to return to the user, with a completion
code, or to continue the abend.

GTRACE Reco~d Fo~mat Module AMDUSRFE: Module AMDUSRFE formats
all BSAM, QSAM, BPAM, and BDAM trace records created by the
GTRACE macro instruction and causes them to be printed by the
EDIT function of the AMDPRDMP service aid. It receives control
from the EDIT function and can be used by both ABDUMP/SNAP and
EDIT to format the user trace records.

The module operates as follows:

• When the module receives control, register I contains the
address of a parameter list. It uses the parameter list to
find the record to be processed, determine how to process
it, and decide where to put the processed record.

• It saves the registers in the save area provided by EDIT.

• It moves the generalized block heading, "BSAM/QSAM/BPAM/BDAM
TRACE RECORD DDNAME XXXXXXXX ABEND CODE XXX RETURN CODE XX
TIME HH.MM.SS.HT" into the output buffer area provided by
EDIT.

• It returns to EDIT with a return code of 0, which requests
EDIT to print the output buffer area, clear the output
buffer area, and return to the format module.

• The block heading data is derived as follows:

DDNAME and RETURN CODE are taken from the data portion
of the input trace record. The RETURN CODE is converted
from binary code into printable form.

ABEND CODE is the translation of EID (EVENT ID) from a
2-byte code into a 3-byte completion code.

It checks the GTF option word (byte 4, bit 7) to
determine if the TIME field is present. If the bit is
off, the TIME field in the block heading is left blank.
TIME is the local time that the record was put into the
trace buffer. It is taken from the TIMESTAMP field and
is converted into printable form.

• It provides a record heading, followed by data lines, for
each type of logical record traced.

• It uses the ID of the traced record to determine what
logical record is in the input buffer and then moves in the
appropriate record heading. For example, if the ID
indicates a DCB record (ID=130), the record heading moved
into the output buffer is "DATA CONTROL BLOCK AT LOCATION
XXXXXXXX."

• It again passes control to EDIT with a return code of O.

• Upon return from EDIT, it sets up the data lines to be
printed. Each line is moved into a work area for unpacking
and translation into printable format.

• It moves the translated data into the output buffer in sets
of 8 bytes, followed by 2 blank bytes.

• It tests for an end of data condition as the buffer is being
filled.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Method of Operation 185

186 MVS/XA SAM logic

contains Restricted Materials of IBM
Licensed Materials -- property of IBM

When the end-of-data is reached, it restores the registers
and exits to EDIT with a return code of 4, which requests
EDIT to print the contents of the output buffer and obtain
the next input trace record.

If it is not an end of data, it passes control to EDIT with
a return code of 0 to cause the output buffer to be printed
and control returned to the formatting module. This
continues until all records in the input area are printed.

lYZ6-3967-0 © Copyright IBM Corp. 1977,1985

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

PROGRAM ORGANIZATION AND FLOW OF CONTROL

DIAGRAM A: SEQUENTIAL ACCESS METHODS--OVERVIEW

OSAM

GET
PUT
PUTX
RELSE
TRUNC

Get and Put Routines
See DlagramB

End-of-Block Routines
Figures 7, 9 a 12

Synchronizing-and-Error
Processing Routines
See Figures 13, 14

BSAM

READ
WRITE

CHECK

Read and Write Routines
See Diagram C and Figura lB

Check Routines
See Diagram C and Figura 19

BPAM

READ
WRITE

CHECK

FREEBUF

Buffer-Pool Management
Routines

Buffer-Pool Management
Routines GETBUF _--------__.

BUllDRCD

CNTRl
PRTOV

See Figura 2B

OSAM Control Routines
See Figures .16 and 1 7

CNTRl
PRTOV

See Figura 2B

BSAM Control Routine
See Figura 20 'NOTE

. POINT

SETPRT ~ SAM Routine SETPRT P SETPRT

I.. ----------..... COMMON ACCESS METHOD ROUTINES

Open and Close Executo" Buffer-Pool Management Routines Appendages

OPEN

CLOSE

SAM Open Executors
See Diagram 0 and Figures 24, 25
a26

BUilD
If OPEN macro instruction is issued FREEBUF
for a SYSI N or SYSOUT data set,
... Diagram K. FREEPOOl

.... -.....;.-------..... GETBUF

_---------..... GETPOOl
SAM Close Executors
See Figura 27

If C LOSE macro instruction is issued
for a SYSIN or SYSOUT data set,
... Diagram L.

,....-------....,1/0
Interruption

Buffer-Pool Management via
Routines Supervisor
See Figura 2B

BSAM Routines
See Figura 22

OSAM and BSAM
Appendages
See Figura 15

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Pgm. Organ. and Flow of Control 187

DIAGRAM B: GSAM GET AND PUT ROUTINES

GET
RELSE

PUT
PUTX
TRUNC

c:::::>

~

The GET routines prepare the next record for the
program from a block of data obtained from an
input channel program. The RE LSE routines cause
the present buffer to be scheduled for refilling
by setting an end·of-block condition.

List A can be used to select the appropriate module
selector table for the GET routines.

Flow of control information for aSAM routines
is shown in Diagram F.

If processing is for SYSI N or SYSOUT data sets,
SAM-SI routines are required. See Diagram M.

Control blocks used in aSAM are shown in
the "Diagnostic Aids" section of this manual. See
Figure 35, aSAM Control Blocks.

The PUT routines accept records from the program
and assemble them into a block of data for an out-
put channel program. A PUT X routine accepts
an output record from an Input data set.

The TRUNC routines cause the present buffer to
be scheduled for emptying.

List A can be used to select the appropriate
module selector table for the Put routines.

Flow of control information for aSAM routines
is shown in Diagram F.

If processing is for SYSIN or SYSOUT data sets,
SAM-SI routines are required. See Diagram M.

Control blocks used in aSAM are shown in the
"Diagnostic Aids" section of this manual. See
Figure 35, aSAM Control Blocks.

=:>

Contains Restricted Materials of IBM
Licensed Materials -- property of IBM

List A

Buffer Technique
GET/ Module Selector
PUT Information

Simple Buffering -
Buffers are per- GET Figure 1
manently associated PUT Figure 4
with one DCB

Update Mode -
Uses simple buf-
fering but shares
the buffer used by GET Figure 3
the update mode PUT Figure 5
GET/PUTX routine

~

188 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

DIAGRAM C: BSAM/BPAM READ/WRITE AND CHECK ROUTINES

READ/WRITE

CHECK .

A READ or WRITE routine completes some of the entries in the channel
program from parameters in the data event control block IDECBI.

The READ/WRITE modules are listed in Figure 16.

For flow of control information for BSAM/BPAM routines. see Figure 20 and
Diagram G.

If processing is for SYSIN or SYSOUT data sets. SAM·SI routines are
required. See Diagram M.

Control blocks used in BSAM are shown in the "Diagnostic Aids" section.
See Figure 36.BSAM Control Blocks.

The DECB is examined bV a CHECK routina to determine the status of
the channel program.

The CHECK modules are listed in Figure 17.

For flow of control information for BSAM/BPAM routines. see Figure 20and
Diagram G.

If processing is for SYSIN or SYSOUT data sets. SAM·SI routines are
required. See Diagram M.

Control blocks used in BSAM are shown in the "Diagnostic Aids" section.
See Figure 36. BSAM Control Blocks

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 pgm. Organ. and Flow of Control 189

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

DIAGRAM D: SEQUENTIAL ACCESS METHOD OPEN EXECUTORS

OPEN 1:' ===~>

,

STAGE 1

These executors validity check
user-specified parameters, construct
data extent blocks IDEBs) and
buffer pools and issue a DEBCHK
ITVPE=AOO) to maintain the
DEB table.

Stage 1 Executors are descnbed
under "Sequential Access
Method Executors." See Figure 22.

OPEN Routines 0
One of the functions performed by the OPEN
routines is the merging of control block information.

During the merge process, OPEN uses the DSORG
and MACRF fields to determine the type of DCB
being opened.

OPEN then places entries in the WTG table for those
access method executors which are required to
process the DCB.

If the OPEN macro instruction is issued for a
SVSIN or SVSOUT data set, job entry subsystem
IJES) compatibility interface executors are
required. See Diagram K.

® -

SAM Open Executors

STAGE 2

These executors construct
input/output blocks 1I0Bs)
and associated channel programs.

Stage 2 E xecu tors are described
under "Sequential Access Method
Executors." See Figure 23.

® ...

STAGE 3

These executors identify and
load the modules needed to
perform the processing
described by the DCB.

Stage 3 Executors are described
under "Sequential Access
Method Executors."
See Figure 24.

Open routines are described in OPfN/CLOSf/fOV Lo,le. For information on the WTG and XCTLtables. see the
··Access Method Determination·· section of the manual.

® Diagram E shows the flow of control among the three stages of OPEN Executors.

190 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977.1985

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

DIAGRAM E: STAGE I--SAM FLOW OF CONTROL FOR OPEN EXECUTORS

1 2 3 4 5

IGGOl96A IGG0191 B

A
Device

Construct Initialization
DEB Stage 2 Exec-

utor selection

t t
IGGOl961 IGG0191 Y IGGOl96B

~ User ~ Buffer Default
GETMAIN Totaling See Figure 26

B

t
lf5p.n Routin~

IGG0191A IGG0196Q

\rrile outpu'J -- 3800
Check Options

Printer LIbel Module
c

IGG0191N IGG0191T

f+ Construct DEB ~
Date Check ~
Execution De" ..

Direct Access mination of UCS r Image Load

o

I t
I IGG0191U

I UCS Image
I Retrieval

E

I ,
I
l. IGG0191V

F UCS Image
...

Load

fopen Routl~
IGG0191C IGG0197U IGG0197E

~ ~Merge DCB/~ ,... Dummv ~ Verification of FCB Image
~ Retrieval JFCB Module Data Set UCS Image

and Load

G ,
IGGOl99F IGG0197F

H L.+ SYSIN/SYS- .. Forms
OUT Construct Alignment
CICB FCB Image , Verification

IGGOl99G

J SYSIN/SYS-
OUT Open JES
Verification

i
IGGOl99W

SYSIN/SYS-
OUT Build

K

Buffer Pool

LEGEND:
-------- Normal program flow

- - - - - -- Alterna .. program flow

B

r-®
~

A

,A

~

C

0

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Pgm. Organ. and Flow of Control 191

contains Restricted Materials of IBM
Licensed Materials -- Property of IBH

DIAGRAM E: STAGE 2--SAM FLOW OF CONTROL FOR OPEN EXECUTORS

1 2 3 4 6

I IGG0191M

A I CreateBDAM ~

I
(write-Ioed)

®-
treck overflow

I
IGG0197L I IGG0191L IGG0199L

~
. ~ 3606/3626 I

Cr.e-BDAM Create-BDAM
(write·loed) (writ.loed)

~ I
IGG01911 IGG0197M IGG0197N IGG01970

B

Build buff., Read-only -.0 pools State 2 3505/3625 - 3506/3626 with OMR
C

ex_tor or RCE
.. iectlon I I • H

IGG01931 I IGG0191G IGG0191K Ex_tor I Un it record. 1 selection. _ .. megnetic tepe. I'-! Unit record
Figure 23 I peper tepe

I I
I

D

I IGG0191R I
I

Chained schad· r+-I uli",. magnetic i
E

I
tepe. INOUT. I
OUTIN I

I I
IGG01910 I

i Cheinad sched· I
A I ulln •• unit re· ~j

J

I cord mag. tape

F

I
I

G I
I

! IGG0193B

K
I Direct_ H

I
storage

J ~------------------~----------------~.~

K ~--------------------~------------------~.~

192 MVS/XA SAM Logic LY26-3967-0 @ Copyright IBM Corp. 1977,1985

Contains Restricted Materials o~ IBM
Licensed Materials -- Property o~ IBM

DIAGRAM E: STAGE 3--SAM FLOW OF CONTROL FOR OPEN EXECUTORS

1 3 4 6

A

B E

I
I

C F I
I
t
I IGG01910

G Fixed & ~ I Undefined-

I
Length Records

D

I IGG01915

I ~ Variable- H
I Length

Records

E

I
I IGG01913 IGG01911 /fipen Routin1\

J I I Chained Sched- End of String ~ Access Matha:J uling: Fixed & Final Intarface

I Undefined- Initialization
Length Records

F

I
I IGG01916

I L..,. Chained Schad- I-
uling: Variable-

I Length Racords
G

I

/(!
I

H

I

L !
I

J

I
I
I IGGOI98L

SYSIN/ SYS-M
I OUTLoed

Processors

K

LY26-3967-0 ~ Copyright IBM CGrp. 1977,1985 Pgm. Organ. and Flow of Control 193

DIAGRAM F: QSAM FLO'" OF CONTROL

GET
PUT
PUTX
RELSE
TRUNC

I/O
Interrup

. -

/'
tion

GET or PUT Routines

New Buffer Needed 0
Buffer Ready for
Scheduling ®

Control returned to
processing program

I/O Supervisor

PGFIX Exit

SIO Exit

PCI Exit

Channel End Exit

Abnormal End

194 MVS/XA SAM Logic

--

-

-

--

-

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

Synchronizing and Error
Processing Routines SVC55 - .

EOV Routine ®
The next lOB is examined
to determine status ® User's SYNAD Routine

of the channel program
lOB

L_~

End-of-Block Routines
@.Chained channel program 3211

Normal channel program ~ Asynchronous Error

DASD Channel Program E Processing Routine ®

EXCP

,
EXCPVR

Appendages

Control received
from and returned
to 1/0 Supervisor

- SIO/PAGEFIX

PCI

- Channel End

~ __ ..J

Abnormal End

LY26-3967-0 @ Copyright IBM Corp. 1977,1985

J

J

contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

QSAM FLO'" OF CONTROL

Notes for Diagram F

®

@

®

®

@

®

A synchronizing-and-error-processing routine receives control when another full input buffer is needed or if a new empty
output buffer is needed.

An end-of-block routine receives control when an input buffer is empty or an output buffer is full.

The end-of-block routine anempts to add the present channel program to the last one in the chain of scheduled channel
programs. If successful. control returns to the processing program. If unsuccessful. control is passed to the I/O
supervisor by an EX CP instruction.

For normal channel-program scheduling. the routine passes control to the I/O supervisor by an EXCP instruction to
cause scheduling of the buffer.

Direct-access processing end-of-block modules anempt to add another lOB to the lOB chain. If that is successful. control
returns to the processing program. If that is not successful. control is passed to the EXCP interface. then to the I/O
supervisor. by issuing an EX CPVR instruction.

Depending on the status of the execution. a synchronizing routine may retain controllusing the WAIT macro instruction).
return control to the GET or PUT routine. or pass control to the user's SYNAD routine or to the EOV routine.

Control is passed to the EOV Routine by using an SVC 55 instruction in the event that an end-of-volume or a permanent
error condition is detected. Refer to Figure 35. "aSAM Control Blocks." for a diagram of the relationship of the lOBs to
the other aSAM control blocks.

The flow of control is described in Diagram H.

This routine receives control by being scheduled for execution by abnormal-end appendage IGG019C3. IGG019CU.
IGG019FR or IGG019V6. Control is passed to the processing program through the supervisor.

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Pgm. Organ. and Flow of Control 195

Contains Restricted Materials of IBM
Licensed Materials -- Property of IBM

DIAGRAM G: BSAM/BPAM FLO\., OF CONTROL

READ
WRITE

CHECK

~~~ fA' READ orWRITE 
v:.I Routines 

® ..... _I---------~-

CHECK Routines _ .. 
CD OECB is examined to determine 

status of channel program ® ..... -I-________ ~ .. L-____________ ~~ -

I OECB 

L--a 
/" I/O Supervisor --

End·of·Block Routines 

@ Chllinud channol !)rogram 
r:!\ Normal channel !)royram @ 
~ OASO Channel Program 

® 
EOV Routines 

EXCP 
EXCPVR 

User's SYNAO Routine 

I/O Interruption 

CD 
3211 

Asvnchronous Error Processing Routine 

1 Appendages 
I 

Control received I from and returned 
to I/O Supervisor I PAGEFIX Exit I--

SIO Exit --'" SIO/PAGEFIX I 
PCI Exit .. I . PCI I 

I 
Channel End Exit .. Channel End 

__ .J 

Abnormal End Exit Abnormal End 

I -

196 MVS/XA SAM Logic LY26-3967-0 ~ Copyright IBM Corp. 1977.1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

BSAM/BPAM FLOW OF CONTROL 

Notes for Diagram G 

® 

@ 

® 

o 
@) 

® 

o 

A READ or a WRITE routine receives control after a READ or WRITE macro instruction is issued by a processing 
program. 

A READ or WRITE routine partially completes a channel program using parameters from the data event control block 
(DECB). and passes the DECB. together with the Input/Output block (lOB). to an end-of-block routine. 

The end-ol-block routine attempts to add the present channel program to the last one in the chain of scheduled channel 
programs. If successful. control returns to the processing program. If unsuccessful. control is passed to the I/O 
supervisor by an EXCP instruction. These routines are described in the OSAM portion of the manual. ~ Figure 7. 

For normal channel program scheduling. the routine passes control to the I/O supervisor by an EXCP instruction to 
cause scheduling of the buffer. The end-of-block routines are described in the OSAM portion of the manual. See Figure 
5. 

Direct-access processing end-of-block modules attempt to add another lOB to the lOB chain. If that is successful. control 
returns to the processing program. If that is not successful. control is passed to the EXCP interfac&. then to the I/O 
supervisor. by issuing an EXCPVR instruction. 

A CHECK routine receives control from the processing program via a CHECK macro instruction. 

A CHECK routine returns control to the processing program if the channel program executes normally (without «rars). 
See Figure 36 BSAM Control Blocks for a diagram 01 the relationship of the DECB to the other BSAM control blocks. 

The flow of control is described in Diagram I. 

This routine receives control by being scheduled for execution by abnormal-end appendage IGG019C3. IGGOl9CU. 
IGG019FR or IGG019V6. Control is passed to the processing program through the supervisor. 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Pgm. Organ. and Flow of Control 197 



contains Restricted Materials of IBH 
Licensed Materials -- Property of IBM 

DIAGRAM H: QSAM FLOl'I OF CONTROL ''lITH EOV ROUTINES 

51 N1 .. 
Synchronizing and Error 

56 
EOV Routine (SVC 55) ® 

Processing Routines .. 
0 

Control path (51 for permanent 52 57 
error condition with SYNAD 
routine present N2 

I , 
Control path (NI for permanent ~3 N3(EROPT = ACC. SKPI 

error condition with no SYNAD 
routine present 

SS(E ROPT = ACC. SKPI 
EOV Routine ® 

-
54 ~ N3 sa 

(EROPT = ABEl (E ROPT = ABE) 

55 
, 

ABEND Routine 

User's SYNAD Routine @ EOV Routine 

(See Open/Clo$l1/EOV Logic) 

~ EOV Routine (SVC 55) ® ~ EOV Routine of I/O Support 

Synchronizing and Error 
E3 

Processing Routines 0 
Control path (EI for -end-of-volume condition 

~ ~ EOV/New Volume Routine ® 
~ 

User's EOV Exit Routine 

Descriptive information on these routines is located in "Synchronizing and Error Processing Routines." See Figures 11 
and 12. 

See OPEN/CLOSE/EOV Lo,/c. ® 
@ The user's SYIliAD routine is described in Data AdministratiOrt Guide. 

198 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials Property of IBM 

DIAGRAM I: BSAM FLOW OF CONTROL WITH EOV ROUTINES 

CHECK Routine (3) 51 N1 -
52 

EOV Routine (SVC 55) ® Control path (5) for permanent -
error condition with 5YNAD 55 
routine present Alternate path for chained 

56 channel-program scheduling 

Control path IN) for permanent - and purged lOBS. 

error condition with no 5YNAD 56a 

routine present 

53 N2 

I 54 S7a I 

ABEND Routine 

User's SYNAD Routine @ SYNAD/Diagnostic Routine 
IFG0551D 

(See Open/ClostllEOV 
Logic) 

CHECK Routine 0 
~ ~ EOV Routine of 

Control path IE) for 
EOV Routine (SVC55) 

I/O Support 
end-of·volume condition 

-
I E3 

E6 ~ ® EOV /New Volume Routine 

~ 
User's EOV Exit Routine 

@ 

® 

Descriptive information on tbe Check routines is located in the "Method of Operation" section under "Basic Sequential 
Access Method Routines." See Figure 17. 

See OPfN/Cl.OSE./E.OV Lol/e. 

® The user's SVNAD routine is described in Data Administration Gui" 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Pgm. Organ. and Flow of Control 199 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DIAGRAM J: gSAM OPERATION WITH FEOV ROUTINE 

~ 

.....: End-of-Block Routine 

PUT Routines 4 

5 -
6 

1 r 
7 

.. 10 

FEOV Routine IGCOOO3A 
(SVC 31) 

~ ABEND Routine 

12 

Synchronizing and Error 

1 
Processing Routine 

EOV Routine of ..,!! ~ 
EOV Routine (SVC 55) 

I/O Support 
~ 

13 

15 

EOV INew Volume Routine 

~ Processing Program 

Condition Sequence of Control 

1 1,2,3,6,12,13,14 

2 1,2,3,6,7,8,9,10,16 

3 1,2,3,6,1,8,11,13,15,10,12,13,14 

4 1,2,3,4,5,6,12,13,14 

5 1,2,3,4,8,9,10,16 

6 1,2,3,4,5,6,1,8.9.10.16 

1 1.2.3.4.8.11.13,15.10.12,13,14 

8 1.2.3.4.5.6,1.8,11.13,15,10,12.13.14 

200 MVS/XA SAM Logic LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 

J 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DIAGRAM K: OPEN PROCESSING FOR SAM SUBSYSTEM INTERFACE EXECUTORS 

OPEN 
~ 

OPEN Routines 0 
A request for a SVSIN or SVSOUT data set (0, DATA, or 
SVSOUT specified on the DO statement I follows the 
spooled DCB sequence through the Open routines. 

When a spooled DCB is identified by the Open routines, 
the 10 of the first competibility interface Open executor 
is placed in the WTG teble. 

I 
Stage 1 Executors I Stage 3 Executors 
See Figure 22 

I 
See Figure 24 

IGG0199F IGG0199G IGG0199W I IGG0198L 

BuildsCICB Constructs an OPEN Determines buffer 

I 
Loads the required 

list for an ACB ® requirements SAM·SI BSAM/QSAM 
Initializes ACB fields r+ processing routines. 

~ Issues an OPEN ~ Initializes the request See Diagram M. 
Sets defaults in DCB (type JI for the ACB parameter list ® 

I Updates the DCB 
Verifies DCB fields 

I 
j I 

I 
OPEN Routines 0 
The OPEN routines begin processing this request. 
Follow the sequence through the OPEN routines 
as described for spooled ACB. 

o 
® 

OPEN routines are described in OPfN/CLOSf/fOV Logic. For information on the WTG and XCTl tables. see 
the "Access Method Determination" section of the manual. 

The access method control block (ACS) and the request parameter list (RPL) are described in Data Areas. 

LY26-3967-0 ~ Copyright IBM Corp. 1977.1985 Pgm. Organ. and Flow of Control 201 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DIAGRAM L: CLOSE PROCESSING FOR SAM SUBSYSTEM INTERFACE EXECUTORS 

CLOSE 

CLOSE Routines@ 

A request to close a SYSIN or SYSOUT data set follows the 
spooled DCB sequence through the Close routines. 

When a spooled DCB is identified by the CLOSE routines, the 
10 of the compatibility interface CLOSE executor is placed 
in the WTG table. 

• 

IGG0201W CI CLOSE Executor 
(see Figure 25) 

Constructs a CLOSE parameter list for the ACB 

Deletes the CI processing modules 

Restores DCB fields 

Issues a CLOSE macro instruction for the ACB 

Transfers control to next entry in the WTG table 

I 

CLOSE Routines@ 

The CLOSE routines procass the request. Follow the 
sequence through the CLOSE routines as described 
for spooled ACB. 

@ The CLOSE routines are descnbed In OPEN/CLOSE/EOV loIlc. 

202 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

DIAGRAM M: SAM SUBSYSTEM INTERFACE FLOW OF CONTROL FOR SYSIN/SYSOUT DATA SETS 

GET 
PUT Q 
PUTX IGG019DJ SAM·SI OSAM Processing 

RELSE Module 

TRUNC GET, PUT, PUT X routines (Figure 1, Figure 4/ 
CNTRL 

RElSE, TRUNC, CNTRl routines perform 
no operation 

@ 
I 

IGG019AO OSAM Synchronizing 
Module 

Issues EOV (SVC 551 at end of date 
(Figure 111 

READ 
WRITE c::> IGG019DK SAM·SI BSAM Processing 

Module 
CHECK 
(output) 
CNTRL 

CHECK 

READ/WRITE routines (Figure 161 

CHECK routine (for SYSOUTI (Figure 171 

CNTRl routine performs no operation 

(input) ~ IGG019BB BSAM CHECK Module 

Issues EOV (SVC 551 at end of data 
(Figure 171 

- .. - 0 

.. 
p 

--
® 

0 

... 

-
® 

- ® 

Job Entry Subsystem 
Data Management Routines 

(Described in JES2 Logic) 

IGG019AH SAM·SI Error Processing 
Module 

Issues 001 ABEND (SVC 131 if no SYNAD 
routine or if EROPT=ABE (Figure 121 

~----------~----------~ 

User's SYNAD Routine 

(Described in Data Administration Guide) 

(3) Processing program requests translation Into GET / PUT for the ACB/ RPL that gives control to the Job Entry Subsystem. 

® Permanent error condition returned by the JES. 

© End of data condition returned by the JES 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 pgm. Organ. and Flow of Control 203 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DIAGRAM N: FORCE CLOSE PROCESSING 

ABNORMAL 

CLOSE C. ===~> 
IFGORROB O/C/EOV Force Close 

Executor Interface 

Abnormal condition detected, DCBs must 
be closed. 

SYSIN/SYSOUT data set? 

YES NO ---::-________ ......, 
I 

IGG020FC 

Locates CICB 

, 

SAM-SI Force CLOSE 
Executor 

CICB not located -

Issues CLOSE for ACB in CICB 

Frees VS record area 

Deletes processing modules for DCB 

Frees CICB storage 

Returns contro~o calling routine ... 

204 MVS/XA SAM Logic 

IGG020n Force CLOSE Executor 

User's DCB copy not modified: 
SAM/PAM 

Frees logical record area 
Frees buffer pool 
Frees lOBs and ICBs and channel 

program space 
Frees segment work area 
Deletes messege CSECT 
Closes SYS1. IMAGELIB 
Deletes UCS/FCB images-

BDAM 
Frees buffers 
Frees unscheduled list 
Frees segment work area 
Frees READX list ---.... -t 

User's DCB copy modified: 
Attempts normal close 

Error not in OPEN processing: 
Returns to common close 04--'" 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



Contains Restricted Materials o~ IBM 
Licensed Materials -- property o~ IBM 

DIAGRAM 0: SYNADAF FLO\-' OF PROCESSING 

I GC0506H 

IGC0106H 

on Other 
Devices 

IGC0706H 

IGC0006H 

BDAM 

IGC0206H ......... -----
(No lOB) 

BSAM 
BPAM 

OSAM 

IGC0606H 

Access 
Method 

EXCP 
IGC0806H BPAM 

BSAM 
QSAM 
BDAM 
BISAM 
QISAM 
BTAM 
QTAM 
GAM 
TCAM 

I GC0406H 

SYNADAF Input Parameters 

Reg. Reg. 
Code* 

0 1 

00 lOB 
01 DCB 
02 DCB 
03 DCB 
04 DECB DCB 
05 DECB DCB 
06 DCB 
07 
08 
09 

DCB 

*High-order byte, Reg_ 15 
All routines can return to user. 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Pgm. Organ. and Flow of Control 205 



DIRECTORY 

Module 
Name Module Type 

AMDUSRFE GTRACE format appendage 
IECBBFBI Build module 
IECQBFGl GETPOOL module 
IFG0559C Problem determination module 
IGCTOO18 Task recovery routine module 
IGCT002D Task recovery routine module 
IGCT002E Task recovery routine module 
IGCT002l Task recovery routine module 
IGCT006H Task recovery routine module 
IGCT0069 Task recovery routine module 
IGCTOlOE Task recovery routine module 
IGCTl 081 Task recovery routine module 
IGCOO02A STOW module 
IGCOO02D DEVTYPE module 
IGCOO02E Control module 
IGCOO06H SYNADAF module 
IGCOO06I Control module 
IGCOO08A SETPRT routi ne 
IGCOOlOE IMGLIB routine 
IGCOOlOE IMGLIB executor 
IGCOl06H SYNADAF module 
IGC0206H SYNADAF module 
IGC0306H SYNADAF module 
IGC0406H SYNADAF module 
IGC0506H SYNADAF module 
IGC0606H SYNADAF module 
IGC0706H SYNADAF module 
IGC0806H SYNADAF module 
IGC0906H SYNADAF module 
IGC018 Resident module 

IGG019AA GET module 
IGG019AB GET module 
IGG019AC GET module 
IGG019AD GET module 
IGG019AE GET module 
IGG019AF Synchronizing module 
IGG019AG GET module 
IGG019AH Error-processing module 
IGG019AI PUT module 
IGG019AJ PUT module 
IGG019AK PUT module 
IGG019AL PUT module 
IGG019AM GET module 
IGG019AN GET module 
IGG019AQ Synchronizing module 
IGG019AR Synchronizing module 
IGG019AV DD Dummy 
IGG019AX Save module 
IGG019BA READ/WRITE module 
IGG019BB CHECK module 
IGG019BD Control module 
IGG019BE Control module 
IGG019BH READ/WRITE module 
IGG019BI CHECK module 
IGG019BK Control module 

206 MVS/XA SAM Logic 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Logic Module 
CSECT SVC Manual Desc. 
Name Entry Reference (Pagel 

AMDUSRFE 185 
IECBBFBI Figure 26 149 
IECQBFGl Figure 26 148 
IFG0559C 153 
IGCTOO18 180 
IGCT002D 181 
IGCT002E 181 
IGCT002l 180 
IGCT006H 182 
IGCT0069 183 
IGCTOlOE 184 
IGCTl08l 183 
IGCOO02A 21 Figure 20 158 
IGCOO02D 24 181 
IGCOO02E 25 181 
IGCOO06H 68 Diagram a 182 
IGCOO06I 69 157 
IGCOO08A 81 Figure 33 168 
IGCOOlOE 105 Figure 33 184 
ICGOOlOE 105 184 
IGCOl06H Diagram a 164 
IGC0206H Diagram 0 165 
IGC0306H Diagram 0 165 
IGC0406H Diagram a 166 
IGC0506H Diagram a 166 
IGC0606H Diagram a 166 
IGC0706H Diagram 0 167 
IGC0806H Diagram 0 167 
IGC0906H Diagram 0 167 
IGC018 18 Figure 20 161 
IECPCNVT 161 
IECPRLTV 161 
IECOSCRI 161 
IGG019AA Figure 1 7 
IGG019AB Figure 1 7 
IGG019AC Figure 1 8 
IGG019AD Figure 1 9 
IGG019AE Figure 3 21 
IGG019AF Figure 11 61 
IGG019AG Figure 1 10 
IGG019AH Figure 12, Diagram M 66 
IGG019AI Figure 4 28 
IGG019AJ Figure 4 29 
IGG019AK Figure 4 29 
IGG019AL Figure 4 30 
IGG019AM Figure 1,2 10 
IGG019AN Figure 1,2 11 
IGG019AQ Figure 11, Diagram M 63 
IGG019AR Figure 11 64 
IGG019AV 117 
IGG019AX Figure 5,7,9 46 
IGG019BA Figure 16 99 
IGG019BB Figure 17, Diagram M 107 
IGG019BD Figure 18 111 
IGG019BE Figure 18 112 
IGG019BH Figure 16 99 
IGG019BI Figure 17 108 
IGG019BK Figure 18 113 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 

J 



contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

Logic Module 
Module CSECT SVC Manual Desc. 
Name Module Type Name Entry Re~erence (Pagel 

IGG019BL Control module IGG019BL Figure 18 115 
IGG019BN GET Update module IGG019BN Figure 3 22 
IGG019BO GET module IGG019BO Figure 1 13 
IGG019BP PUT module IGG019BP Figure 6 31 
IGG019BQ Synchronizing module IGG019BQ Figure 11 64 
IGG019BR WRITE module IGG019BR Figure 16 100 
IGG019BS CHECK module IGG019BS Figure 17 109 
IGG019BT Channel end appendage IGG019BT Figure 13 82 
IGG019BU READ module IGG019BU Figure 16 101 
IGG019BX SIO/pagefix appendage IGG019BX Figure 13 76 
IGG019BY SIO/pagefix appendage IGG019BY Figure 13 76 
IGG019BZ Channel end and abend IGG019BZ Figure 13 88 

appendage 
IGG019BO BUILDRCD routine IGG019BO Figure 26 150 
IGG019CA Control module IGG019CA Figure 14,18 95 
IGG019CB Control module IGG019CB Figure 14,18 96 
IGG019CC EOB module IGG019CC Figure 5 40 
IGG019CE EOB module IGG019CE Figure 5 41 
IGG019CF EOB module IGG019CF Figure 5 43 
IGG019CI Ch-end and ab-end appendage IGG019Cl Figure 13 82 
IGG019CJ Ch-end and ab-end appendage IGG019CJ Figure 13 83 
IGG019CL SIO appendage IGG019CL Figure 13 72 
IGG019CT EOB module IGG019CT Figure 5,9 44 
IGG019CU Appendage IGG019CU Figure 13 83 
IGG019CW EOB module IGG019CI~ Figure 7 50 
IGG019CX EOB module IGG019CX Figure 7 51 
IGG019CY EOB module IGG019CY Figure 7 52 
IGG019DA WRITE module IGG019DA Figure 16 102 
IGG019DB WRITE module IGG019DB Figure 16 102 
IGG019DC CHECK module IGG019DC Figure 17 109 
IGG019DD WRITE module IGG019DD Figure 16 103 
IGG019DJ GET module IGG019DJ Figure 1, Diagram M 33 

PUT module Figure 4 33 
IGG019DK READ/WRITE module IGG019DK Figure 16, Diagram M 109 

CHECK module Figure 17 109 
IGG019EI Ch-end and ab-end appendage IGG019EI Figure 13 85 
IGG019EJ Ch-end and ab-end appendage IGG019ES Figure 13 87 
IGG019FA Control module IGG019FA Figure 14,18 96 
IGG019FB GET module IGG019FB Figure 1 16 
IGG019FD GET module IGG019FD Figure 1 17 
IGG019FF GET modUle IGG019FF Figure 1 18 
IGG019FG PUT module IGG019FG Figure 4 35 
IGG019FJ PUT module IGG019FJ Figure 4 36 
IGG019FK EOB module IGG019FK Figure 5 44 
IGG019FL PUT module IGG019FL Figure 4 37 
IGG019FQ EOB module IGG019FQ Figure 5 44 
IGG019FR Abnormal-end appendage IGG019FR Figure 13 94 
IGG019FS Async error module IGG019FS Figure 12 67 
IGG019FU EOB module IGG019FU Figure 5 46 
IGG019JD Parallel input module IGG019JD 19 
IGG019TC EOB module IGG019TC Figure 5 46 
IGG019TV EOB module IGG019TV Figure 9 55 
IGG019TW EOB module IGG019TW Figure 7 53 
IGGOl9T2 EOB module IGG019T2 Figure 9 57 
IGG019V6 Appendage IGG019V6 Figure 13 94 
IGGOl9lA Stage 1 OPEN executor IGGOl9IA Figure 22, Diagram E 120 
IGG019lB Stage 1 OPEN executor IGG0191B Figure 22, Diagram E 121 
IGG019IC Stage 1 OPEN executor IGG019lC Figure 22, Diagram E 122 
IGG019lG Stage 2 OPEN executor IGG019lG Figure 23, Diagram E 130 
IGG0191I Stage 1 OPEN executor IGG0191I Figure 22, Diagram E 122 
IGG0191L Stage 2 OPEN executor IGG0191L Figure 23, Diagram E 130 
IGG019lM Stage 2 OPEN executor IGG019IM Figure 23, Diagram E 131 
IGG019lN Stage 1 OPEN executor IGG019lN Figure 22, Diagram E 123 
IGG019lQ Stage 2 OPEN executor IGG019IQ Figure 23, Diagram E 131 
IGG0191R Stage 2 OPEN executor IGGOl91R Figure 23, Diagram E 132 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Directory 207 



Module 
Name 

IGG0191Y 
IGG01910 
IGG01911 
IGG01913 
IGG01915 
IGG01916 
IGG0193B 
IGG01931 
IGG0196A 
IGG0196B 
IGG01961 
IGG0196K 
IGG0196Q 
IGG0196S 
IGG01971 
IGG0197M 
IGG0197N 
IGG0197P 
IGG0197Q 
IGG0197V 
IGG0198L 
IGG0199F 
IGG0199G 
IGG0199L 
IGG0199W 
IGG020FC 
IGG020Tl 

IGG0201A 
IGG0201B 
IGG0201P 
IGG0201R 
IGG0201W 
IGG0201X 
IGG0201Y 
IGG0201Z 
IGG021AB 
IGG0210A 
IGG08101 
IGG08102 
IGG08103 
IGG08104 
IGG08105 
IGG08108 
IGG08110 
IGG08111 
IGG08112 
IGG08113 
IGG08114 
IGG08115 
IGG08116 
IGG08117 
IGXMSG01 
IGX00030 
IGX00031 
IGX00032 

Module Type 

stage 1 OPEN executor 
Stage 3 OPEN executor 
Stage 3 OPEN executor 
Stage 3 OPEN executor 
Stage 3 OPEN executor 
Stage 3 OPEN executor 
Stage 2 & 3 OPEN executor 
Stage 1 OPEN executor 
Stage 1 OPEN executor 
Stage 1 OPEN executor 
Stage 2 OPEN executor 
Stage 2 OPEN executor 
Stage 1 OPEN executor 
Stage 2 TS modu1e l 

Stage 1 OPEN executor 
Stage 2 OPEN executor 
Stage 2 OPEN executor 
Stage 2 OPEN executor 
Stage 2 OPEN executor 
Stage 2 OPEN executor 
Stage 3 OPEN executor 
Stage 3 OPEN executor 
Stage 3 OPEN executor 
Stage 2 OPEN executor 
Stage 1 OPEN executor 
SAM-SI Force Close executor 
SAM/PAM/DAM force CLOSE 
executor 
CLOSE executor 
CLOSE executor 
CLOSE executor 
CLOSE executor 
CLOSE executor 
CLOSE executor 
CLOSE executor 
CLOSE executor 
STOW module 
STOW module 
SETPRT routine 
SETPRT routine 
SETPRT routine 
SETPRT routine 
SETPRT routine 
SETDEV routine 
SETPRT executor 
SETPRT executor 
SETPRT executor 
SETPRT executor 
SETPRT executor 
SETPRT executor 
SETPRT executor 
SETPRT executor 
MSGDISP message text 
MSGDISP module 
SYNCDEV module 
NOTE/POINT module 

Contains Restricted Materials of IBH 
Licensed Materials Property of IBH 

CSECT 
Name 

IGG0191Y 
IGG01910 
IGG01911 
IGG01913 
IGGOl9l5 
IGG01916 

IGG01931 
IGG0196A 
IGG0196B 
IGG01961 
IGG0196K 
IGG0196Q 
IGG0196S 
IGG01971 
IGG0197M 
IGG0197N 
IGG0197P 
IGG0197Q 
IGG0197V 
IGG0198L 
IGG0199F 
IGG0199G 
IGG0199L 
IGG0199W 
IGG020FC 
IGG020Tl 

IGG0201A 
IGG0201B 
IGG0201P 
IGG0201R 
IGG02011-l 
IGG0201X 
IGG0201Y 
IGG0201Z 
IGG021AB 
IGG0210A 
IGG08101 
IGG08102 
IGG08103 
IGG08104 
IGG08105 
IGG08108 
IGG08110 
IGG08111 
IGG08112 
IGG08113 
IGG08114 
IGG08115 
IGG08116 
IGG08117 
IGXMSG01 
IGX00030 
IGX00031 
IGX00032 

Logic 
SVC Manual 
Entry Reference 

109 
109 
109 

Figure 22, Diagram E 
Figure 24, Diagram E 
Figure 24, Diagram E 
Figure 24, Diagram E 
Figure 24, Diagram E 
Figure 24, Diagram E 
Figure 23, Diagram E 
Figure 22, Diagram E 
Figure 22, Diagram E 
Figure 22, Diagram E 
Figure 22, Diagram E 
Figure 23 

Figure 22, Diagram E 
Figure 22, Diagram E 
Figure 23, Diagram E 
Figure 23, Diagram E 
Figure 23, Diagram E 
Figure 23 
Figure 24, Diagram K 
Figure 22, Diags E,K 
Figure 22, Diags E,K 
Figure 23, Diagram E 
Figure 22, Diags E,K 
Diagram N 
Diagram N 

Figure 25 
Figure 25 
Figure 25 
Figure 25 
Figure 25 
Figure 25 
Figure 25 
Figure 25 
Figure 20 
Figure 20 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 
Figure 33 

Module 
Desc. 
(Pagel 

123 
136 
137 
138 
138 
139 
140 
124 
124 
125 
126 
132 
126 

126 
127 
133 
133 
134 
134 
140 
127 
127 
134 
128 
146 
146 

141 
142 
143 
143 
144 
144 
145 
145 
160 
159 
171 
172 
&8103 
173 
174 
175 
175 
176 
176 
177 
177 
177 
177 
178 

115 
116 
116 

1 See ACF/TCAM Diagnosis Guide and ACF/TCAM Diagnosis 
Reference. 

The modules of OPEN, CLOSE, STOW and SYNADAF are link-edited 
into SYS1.LPALIB during system generation, by macro SCIEC4DI, 
according to the following list. Each CSECT is a separate 
module in the distribution library and in microfiche. For 
IGG0191A, IGG01911, and IGG0201Z, each CSECT name is also an 
alias for the load module. 

208 MVS/XA SAM Logic LY26-3967-0 @ Copyright IBM Corp. 1977,1985 

J 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Load module CSECTs 

IGG0191A IGGOI91A, IGGOI9lB, IGGOI91I, IGGOI91N, IGGOI91Y, 
IGGOI93I, IGGOI96A, IGGOI96B, IGGOI96I, 

IGG0201Z IGG0201A, IGG020lB, IGG0201X, IGG0201Y, IGG0201Z 

IGCOO02A IGCOO02A, IGG021AB, IGG0210A 

IGCOO06H IGCOO06H, IGCOI06H, IGC0206H, IGC0306H, IGC0406H, 
IGC0506H, IGC0606H, IGC0706H, IGC0806H, .IGC0906H 

IGGOI911 IGGOI91C, IGGOI91G, IGGOI91Q, IGGOI91R, IGGOI910, 
IGGOI911 , IGGOI913, IGGOI915, IGGOI916, IGG0196K 

IGG0193B IGGOI9BK, IGGOI9BX, IGGOI9BY, IGGOI9BZ, IGGOI9TV, 
IGGOI9T2, IGG0193B 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Directory 209 



DATA AREAS 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

lOB EXTENSION (USED WITH SAM EXCPVR1--IGGIOBEX 

Offset 

IOBSEEK+8 
40(X'28') 
40(X'28') 

40(X'28') 
4ICX'29') 
44(X'2C') 
45(X'2D') 
46(X'2E') 
48(X'30') 

48(X'30') 
49(X'31') 
52(X'34') 
53(X'35') 
54(X'36') 
48(X'30') 

48(X'30') 

48(X'30') 
50(X'32') 
52(X'34') 
53(X'35') 
53(X'35') 

54(X'36') 

56(X'38') 
56(X'38') 
56 (X '38') 
56 (X'38') 
57CX'39') 
58(X'3A') 

59(X'3B') 

60(X'3C' ) 

62(X'3E') 

210 MVS/XA SAM Logic 

Length 

24 
8 

I 
3 
I 
I 
2 
8 

I 
3 
I 
I 
2 
8 

5 

2 
2 
I 
3 
I 

2 

o 
8 
2 
I 
I 
I 

I 

2 

2 

Name 

IOBCCSV 
IOBCCWI 

IOBCCWIO 
IOBCCWIA 
IOBCCWIF 

IOBCCWlL 
IOBCCW2 

IOBCCW20 
IOBCCW2A 
IOBCCW2F 

IOBCCW2L 
IOBCNT 

IOBCNTCH 

IOBCNTCC 
IOBCNTHH 
IOBCNTR 
IOBCNTKD 
IOBCNTK 

IOBCNTDD 

IOBCCWND 
IOBTRKOV 
IOBLFST 
IOBSECTO 

IOBNINCL 

IOBNMID 

IOBLMID 

IOBLLST 

Description 

Channel-program area 
First channel command word 
(CCl-I): 
Command code 
Address 
Flags 
Unused 
Data length 
Second channel command word 
(CCW) : 
Command code 
Address 
Flags 
Unused 
Data length 
Count field, in the form 
CCHHRKDD 
CCHHR: a 5-byte argument used by 
SEARCH CCWs 
CC: cylinder value 
HH: track value 
R: record number 
KDD part of the count field 
K: length of the record's key 
area 
DD: length of the record's data 
area 
End of the CCW chain 
Track overflow area 
Length of the first segment 
Sector value 
Reserved 
Number of segments in the first 
segment's cylinder 
Number of track capacity middle 
segments 
Data length of track capacity 
middle segments 
Data length of the last 
segment--this is zero if there 
is only one segment. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

SEQUENTIAL ACCESS METHOD BLOCK--IGGSAMB 

The SAMB is used to control the accessing of data sets that 
reside on direct access storage devices. 

( l'''i'''~ J<TIVf' 

...:.,. f'a. (2 -,c ) 

Offset 

O(X'O') 

Length 

o 
... 1 111. 

.111 1.1. 

· .1. 

O(X'O') 8 
O(X'O') 1 
HX'l') 3 
4(X'4') 4 
8(X'8') 0 
8(X'8') 72 
8(X'8') 8 
8(X'8') 4 
l2(X'C') 4 
l6(X'10') 64 
80(X'50') 4 
84(X'54') 4 
88(X'58') 4 
92(X' 5C') 4 
96(X'60') 4 
100(X'64') 4 

104(X'68') 4 
108(X'6C') 4 
108(X'6C') 1 
109(X'6D') 3 
112(X'70') 1 
113(X'71') 1 
114(X'72') 0 
114(X'72') 61 
l75(X'AF') 1 

l76(X'BO') 1 
17HX'B1') 1 

1. .. 
. 1 .. 
· .1. 
· .. 1 

178(X'B2') 1 
1 ... 
· 1 .. 

· . 1 . 
· .. 1 

11.1 

· .. 1 
· . 1 . 
.. 11 
.1 .. 
.1.1 

1 ... 

· 1 .. 
· . 1 . 

· .. 1 

1 ... 

.1 .. 

Name 

SAMBXXX 
SAMAXBUF 

SAMAXIDA 

SAMINIDA 

SAMINBUF 

SAMPRFIX 
SAMPSUB 
SAMPLENG 

SAMB 
SAMIOB 

SAMICQL 
SAMRQEA 
SAMCNTA 
SAMCCliA 
SAMIDAWA 
SAMPGFXA 

SAMIOBP 
SAMPSTWD 
SAMPSTCD 

SAMSMFCT 
SAMSEGCT 
SAMCCWC 
SAMCCWCT 
SAMOPNID 
SAMOPNIN 
SAMOPNOT 
SAMOPfWP 
SAMOPNTO 
SAMOPNOI 
SAMKEY 
SAMFLAGI 
SAM FOUND 
SAMERROR 
SAMFIX 
SAMFREE 
SAMRST 

SAMPUTX 
SAf>1BSWR 

SAMERIGN 
SAr·1FLAG2 
SAr1ACT 
SAMSIO 

SAMVRDEV 
SAMSKSVD 

SAMEOE 

SAMSEGMT 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

Description 

SAMB prefix 
30 maximum number of buffers 
that can be scheduled per SIO 
122 maximum number of IDAWS in 
SAMB 
32 minimum number of IDAWS in 
SAMB 
13 minimum number of buffers 
that may determine SAMB size 
Prefix for SAMB 
Subpool of SAMB 
Length of the SAMB + SAMB prefix 
Unused 

lOB for use by EXCPVR 
lOB PREFIX 

EBCDIC 'SAMB' 
lOB 
Length 
PTR to 
PTR to 
PTR to 
PTR to 
PTR to 
entry 

and lOBS of ICQE 
RQE 
next 
next 
next 
next 

available count area 
available real CCW 
available IDAW 
available PGFIX 

Previously posted lOB 
Post code word 
Post code 
Remainder of post code word 
SMF count 
Segment count 
CCW count for each segment 
Same as SAMCCWC 
Open type indicator 
1 open for input 
2 open for output 
3 open for update 
4 open for TRK overflow output 
5 open for OUTIN or INOUT 
User key 
Flag byte one 
X'80' something found 
X'40' dynamic error bit 
X'20' a page fix is needed 
X'10' a page free is needed 
X'08' the CHAN PROG has been 
broken 
X'04' this is a PUTX request 
X'02' this is a BSAM update WRT 
REQ 
X'OI' ignore SAM ERROR 

X'80' a request is active 
X'40' SIO is to ignore this 
request 
X'20' virtual device 
X'10' IOBSEEK saved in SAMSKSAV 
for VBS LRI update 
X'08' EOE processing has 
occurred 
X'04' Segmenting of a VBS LRI 
record is occurring 

Data Areas 211 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset Length Name Description 

· . 1 . SAMRPS X'02' RPS device 
· .. 1 SAMClRTM X'Ol' PAGEFIX appendage issued 

CAllRTM-SIO take ignore exit 
179(X'B3' ) 1 SAMFlAG3 

1 ... SAMPSTNX X'SO' next lOB POST4l-UNIT 
exception 

· 1 .. SAMSCHPR X'40' search previous 
· .1. SAMRDSK X'20' read skip needed 
· .. 1 SAMSMF X'lO' call SMF for EXCP count 

1 ... SAMlRF X'OS' device supports ECKD 
lSO(X'B4') 1 SAMFlGSV Save area for SAMFlAG3 when 

SAMSEGMT is on 
lSICX'BS') 1 SAMOFlGS Flag byte two set by open 

1 ... SAf-1UPD X'SO' Update open 
· 1 .. SAMWCHK X'40' WRT validity check 
· . 1 . SAMTRKO X'20' track overflow 
· .. 1 SAMVEQR X'lO' V=R region 

1 ... SAMONE X' OS' only one buffer acquired 
· 1 .. SAMBFTKR X'04' BFTEK=R option requested 

lS2(X'B6') 1 SAMFRRFG SAM FRR flags 
1 ... SAMCV X'SO' SAMPGFXS is valid 
.1 .. SAMIP X'40' FRR must process PAGEFIX 

list 
· . 1 . SAMFFIP X'20' free/fix in process 
· .. 1 SAMFRIP X'lO' free in process 

1 ... SAMFIIP X' OS' fix in process 
· 1 .. SAMTOUCH X' 04 1 validity checking buffer 
· . 1 . SAMCPCK X'02' buffer address 

INVAlID-CH.PGM check will be 
mapped as channel protection 
check 

lS3(X'B7') 1 SAMSPECT Write special count 
lS4(X'BS') 1 SAMRTNOF Return offset from appendages J lSS(X'B9') 3 SAMRESVI Reserved 
lSS(X'BC') 4 SAMPFECB ECB for page fix request 
lSS(X'BC') 1 SAMPFECC ECB condition code 
lS9(X'BD') 3 SAMPECBB 
192(X'CO') 4 SAMODEBA Old DEB address for QSAM VBS lRI 

multivolume update 
196(X'C4 1) 4 SAMFRRPT Address of a 6-word parameter 

area returned from SETFRR 
200(X'CS') 4 SAMREAl Offset to get real address of 

SAMB 
204(X'CC') 11 SAMSEEKS Dual use seek area 
204(X'CC') S SAMSEEK SAMSEEK MBBCCHHR 
204(X'CC') 1 SAMSEEKM SAMSEEK M 
20S(X'CD') 2 SAMSEKBB SAMSEEK BB 
207CX'CF') S SAMCNT SAMCNT CCHHR 
207CX'CF') S SAMCCHHR CCHHR for both 
207CX'CF') 4 SAMCCHH CCHH for both 
211(X'D3 1) 1 SAMR R field for both 
2l2(X'D4 1) 3 SAMCTKDD SAMCNT KDD 
2l2(X'D4') 1 SAMCTKEY SAMCNT key 
2l3(XIDS') 2 SAMCTDD SAMCNT DD 
2lS( X' D7 I ) 1 SAMSECT Sector value for RPS 
216 (XI DS' ) S SAMSKSAV Saved IOBSEEK if SAMSKSVD=ON 
224(X'EOI) S 
224(XIEO') SO SAMPGFX Space for 10 PFGIX list entries 
304(X'130' )SO SAMPGFXS Space for 10 PGFIX list entries 
3S 4 ( X 118 0 I >120 SAMSAV Work area (compiler) 
S04(X ' lFS')4 SAMlRPTR Address of current locate work 

area 
S08(X'lFC' )4S SAMlRPRM Space for 3 locate record 

parameter lists 
SS6(X'22C' )4 SAMCCPTR Address of SAMCCW (follows and 

contiguous to SAMTIC2) 

J 
212 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset Length 

560eX'230')4 

564eX'234')4 

568eX'238')4 

572eX' Z3C')4 
576eX'240')8 
576eX'Z40')8 7..91) 
576eX'240' )1 
577CX'Z41')3 
580eX' 244')1 
58lCX'Z4S')l 
58ZeX'Z46')Z 
58ZeX'246' H 
S83eX'247'n 
584eX'248')8 ~bo 
S84eX' 248' n 
585eX' 249')3 
588eX'Z4C' n 
58geX'Z4D' )3 
592eX'Z50')8 ~~ 
59ZeX'Z50')8 
592eX'250'n 
593eX'25l')3 
596eX'Z54')4 
600eX'Z58')8 
600eX'Z58'n 
60lCX'ZS9' )3 
604eX'25C' )4 

Name 

SAMCTPTR 

SAMIDPTR 

SAMIEPTR 

SAMPROLG 
SAMSS 
SAMSSO 
SAMSSA 
SAMSSF 

SAMSSC 
SAMSECT2 

SAMSID 
SAMSIDO 
SAMSIDA 
SAMSIDF 

SAMLRCCW 
SAMTICl 
SAMTICIO 
SAMTIClA 

SAMTIC2 
SAMTICZO 
SAMTICZA 

Description 

Address of SAMCNTS (follows and 
contiguous to SAMCCW) 
Address of SAMIDAW (follows and 
contiguous to SAMCNTS) 
Address of SAMIDAND (follows and 
contiguous to SAMIDAW) 
Reserved 
CHAN PROG prolog 
Set sector CCW 
Command code 
ADDR 
Flags 

Count 
Special sector value 

Search ID CCW 
Command code 
IOBSEEK ADDR 
Flags 

Locate record CCW 
TIC CCW 
Command code 
TIC address 
Filler 
TIC CCW 
Command code 
TIC address 
Filler 

SAMCCW is pointed to by SAMCCPTR. 

SAMCCW follows and is contiguous to SAMTICZ. 

Offset Length 

608eX'260') LUE8 

Name 

SAMCCW 

Description 

Space for CCWS for up to 
SAMAXBUF buffers 

SAMCNTS is pointed to by SAMCTPTR. 

SAMCNTS follows and is contiguous to SAMCCW. 

Offset Length Name Description 

oex'o') MM*8 SAMCNTS Space for up to SAMAXBUF+I count 
fields 

O(X'O') 0 SAMCCWND End of SAMCCW 
O(X'O') 4 SAMRFlST Start of refill channel program 

for update 
4(X'4') 4 SAMRFlRD ADDR of read data or read CT, 

read data, or read data skip, 
read count, read data 

8eX'8') MM-I Space for up to SAMAXBUF count 
*8 fields 

SAMIDAW is pointed to by SAMIDPTR. 

SAMIDAH follows and is contiguous to SAMCNTS. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 213 



Offset 

O(X'O') 

O(X'O') 

Length 

o 
NN*4 

Name 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Description 

SAMIDAW Space for SAMINIDA to SAMAXIDA 
IDAHS 
IDMJS 

SAMIDAND is pointed to by SAMIEPTR. 

SAMIDAND follows and is contiguous to SAMIDAW. 

Offset 

O(X'O') 

Length 

o 

INTERRUPT CONTROL QUEUE ELEMENT--IGGICQE 

Offset Length 

O(X'O') 4 

4(X'4') 4 
8(X'8') 4 
12(X'C' ) 4 
12(X'C') 1 

1 ... 

Name Description 

SAMIDAND End of SAMIDAW 

Name 

ICQECB 

ICQIOBAD 
ICQFIRST 
ICQENDA 
ICQFLG 
ICQEXND 

Description 

The ECB pointed to by the lOB 
contained in the SAMB 
Address of the lOB in the SAMB 
Address of the first user lOB 
Address of the last user lOB 
Flag byte: 

J 

. xxx xxxx 
13(X'D') 3 ICQENDAD 

EXCPVR processing is needed 
Reserved 
Address of the last user lOB ~ 
Address of first queued lOB ~ 16(X'10') 4 

20(X'14') 1 
21(X'15') 1 
22(X'16') 1 
23(X'17') 1 
24(X'18') 8 

24(X'18') 1 
25(X'19') 2 
2HX 'lB') 2 
29(X'lD') 2 
31(X'lF') 1 
32(X'20') 72 

MESSAGE CSECT--IGGMSG 

ICQFSTQ 
ICQMAXQ 
ICQNOQ 
ICQSAVQ 

ICQSAVCT 

ICQSVCTM 
ICQSVCTB 
ICQSVCTC 
ICQSVCTH 
ICQSVCTR 
ICQSAV 

Maximum number of lOBs on queues 
Current number on queue 
Area for EOV to save ICQMAXQ 
Reserved 
Save area for the MBBCCHHR used 
in module IGG019T2. 
M value 
BB value 
CC value 
HH value 
R value 
Save area for end-of-block 
processing (EOB) 

The message CSECT contains messages for SAM, PAM, and DAM. It 
is divided into two parts. The first part is the index; the 
second part contains the message. 

Offset 
Index 

O(X'O') 
2(X'2') 

214 MVS/XA SAM Logic 

Length 

2 
2 

Name Description 

MSGINDLN Length of index 
MSGINDOF Offset to message entry for 

first message 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset 
Index 

4(X'4') 

n(n) 

Length 

2 

2 

Name 

MSGIND2 

MSGINDn 

Description 

Offset to message entry for 
second message 
Offset to message entry for nth 
message 

There are two forms of the message entry, with variables and 
no-va riabl e. 

Message Entry--Variable 

Offset 
Index Length Name Description 

O(X'O') 1 MSGOFF Offset to message from beginning 
of entry 

1(X'l') 1 MSGlNG length of message -1 (to allow 
use in execution of a move) 

2(X'2') 1 MSGOFFI Offset to first variable filled 
in by the routine that extracts 
the message and causes it to be 
printed 

3(X'3') 1 MSGOFF2 Offset to second variable 
n(n) 1 MSGOFFn Offset to nth variable 
n+1(n+1) 1 MSGTXT Message text 

No-variable messages such as those used in SYNADAF 

Offset 
Index 

O(X'O') 
1(X'l') 

SETPRT WORK AREA (SPW)--IGGSPW 

Length 

1 
1 

Name 

MSGlNGF 
MSGTXTF 

Description 

length of message text 
Message text 

The SETPRT work area is used by the SETPRT executors, and is 
located (when the SETPRT executors are in control) at the 
address contained in register 4 (which is in user-key virtual 
storage) . 

Offset Length Name Description 

O(X'O') 1 SPWOPTSA Save area for the opcode byte 
1(X'l') 1 SPWPARMI Saved reply flags 
2(X'2') 1 SPWFlGl Reply flags: 

1 ... SPWVRFCB Verify FCB 
xxxx xxxx Reserved 

... 1 SPWALIGN Align forms 
3(X'3') 1 SP~'FlAG2 Module entry indicator 
4(X'4') 1 SPWFlAG3 Flags: 

. 1 .. SPWlDREQ UCS/FCB load required 

... 1 SPW120RQ Message IEC120 is required 
x.x. xxxx Reserved 

5(X'5') 1 ... SPWFlG4 Flag byte: 
1 ... SPWFCBDE FCB image is loaded and must 

deleted 
be 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 215 



Offset Length 

.1 .. 

· .xx xxxx 
6(X'6') 1 

1 ... 
· 1 .. 
· .1. 
· .. 1 

xxxx 
7CX'7' ) 1 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Name Description 

SPWECPAM EXCP DCB with access method 
section is present 
Reserved 

SPWFlG8 Flag byte: 
SPWRETRY Retry in progress 
SPWVREND last verify line is printing 
SPWNOMOV Do not move requested message 
SPWFCBOP Fill FCBOP as well as FCBID into 

the UCB 
Reserved 

SPWRTRYC Retry counter 

WTOR Prefix, Message Section, and Reply Area--in User Key 

Offset Length 

8(X'8') 8 
8(X'8') 4 
8(X'8') 1 
9(X'9') 3 
12(X'C') 4 
16(X'10') 80 
16(X'10') 64 
80(X'50') 16 
80(X'50') 1 
8leX'51' ) 15 

96(X'60' ) 4 
100(X'64') 4 

104(X'68') 8 
104(X'68') 8 

4 
108(X'6C') 4 
108(X'6C') 4 

lOB for EXCP Users and OPEN--in User Key 

Offset Length 

ll2(X'70') 40 

Name 

SPWMSGHD 
SPWRPlYA 
SPWMSGlB 
SPWRPlYB 
SPWECBPA 
SPWMSGAR 
SPWMSGTX 
SPWREPLY 

SPWFCBOR 
SPWREPCl 
SPWRPECB 
SPWREPID 

SPWFCBIM 
SPWUCSIM 
SPWPREFX 
SPI~UCS2H 
SPWFCB2H 

Name 

SPWIOB 

Description 

Header section for message 
Data about the reply area 
length of the reply area 
Address of the reply area 
Address of the reply ECB 
SPW message area 
Message text 
Operator reply 
Reserved 
Start of operator reply 

Reply ECB for the WTOR 
UCS/FCB 10 supplied by the 
operator reply 
Name of the FCB image 
Name of the UCS image 
First half of name 
Last 4 bytes of UCS name 
Last 4 bytes of FCB name 

Description 

lOB area 

area 

Information saved from user's lOB 

Offset Length 

152(X'98') 4 
156 (X' 9C ') 4 
160(X'AO') 4 

216 MVS/XA SAM Logic 

Name 

SPWFLGSV 
SPWTRSV 
SPWECBSV 

Description 

lOB first word save area 
IOBSTART save area 

lOB ECB pointer save area 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Channel Program Area--in User Key 

Offset Length 

168(X'AO') 8 
176(X'A8') 8 
184(X'BO') 8 

Name 

SPWCCWI 
SPWCCW2 
SPWCCW3 

Description 

First CCW 
Second CCW 
Third CCW 

Work Area for Unpacking Line Numbers--in User Key 

Offset Length 

188(X'B8') 4 
190(X'BC') 2 
19Z(X'BE') 2 

Name Description 

SPWUNPKA Unpack area 
Unused bytes 

SPWLNENO Used by CONVERT instruction 

General Work Area--in User Key 

BLDL Work Area--SP\015 

Offset Length 

196(X'CO') 4 

200(X'C4') 4 
2 0 4 ( X ' C8 ') 6 4 

Z08(X'CC') 60 

Name Description 

SPWFFSB Sense bytes 0-3 from the 3800 
Printing Subsystem 

SPWMSGID Message ID for DOM 
SPWUBLDL BLDL parameter list for user 

image library 
SPWULOAD LOAD parameter list for user 

image library 

The BLDL work area is used by the SETPRT executors and is 
located (when the SETPRT executors are in control) at the 
address contained in register 8. The BLDL work area is in 
key 5. 

Offset Length Name Description 

O(X'O') 64 SPWBLDLA BLDL list area 
O(X'O') 4 SPloJBLDLC Count and length fields 
4(X'4') 8 SPWDDNAM DD name for SYSOUT request 

SPWBLNAM BLDL name field 
7CX'7' ) 1 SP~IFCBQ FCB name qualifier 

SPWUCSQ UCS image name qualifier 
8(X'8') 4 SPWBLFCB Load module ID for BLDL 
lZ(X'C') 52 Reserved 
64(X'40') 4 SPWloJKADR Address of the SETPRT work area 

Un user key) 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 217 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Message Area for the SETPRT Work Area--Key S 

Offset Length Name Description 

68(X'44') 8 SPWMSGHS Header section for message area: 
SPWMLIST Error message parameter list for 

IGG08116 
76(X'4C') 100 SPWMSGA SPW message area 

SPWMTXT Message buffer for IGG08116 
176(X'BO') 4 SPWMRECB Reply ECB for WTOR 
180(X'B4') 8 SPWIMAGE Name of the image requested 

3800 Printing Subsystem Area for the SETPRT Work Area--Key S 

Offset Length 

188(X'BC') 4 

192(X'CO') 4 

196(X'C4') 2 
198(X'C6') 2 
200(X'C8') 4 

204(X'CC') 4 
204(X'CC') 1 

205(X'CD') 3 
208(X'DO') 1 

1 ... 

.1 .. 
· . 1 . 
· .. 1 

209(X'D1') 1 
1 ... 

1 ... 
.1 .. 
· .1. 
· .. 1 

1 .. . ... 
· .1. 
· .. 1 

210(X'D2') 1 
1. .. 

· 1 .. 
· . 1 . 
· .. 1 

218 MVS/XA'SAM logic 

1 ... 
.1 .. 
· .1. 
· .. 1 

1 ... 
.1 .. 
· .1 . 

Name 

SPWSPRB 

SPWSOADD 

SPWBADDR 
SPWSOLEN 

SPWTWAD1 

SPl~UCSIT 
SPWADFCB 
SPWlPTR 
SPlHWLNl 

SPWHJLNI 
SPWFLAG1 
SWPT3800 

SPWFCBUA 
SPWENDXl 
SPI-JEXFLD 
SPWEXWPR 
SPWENDM 
SPI~EFCBP 
SPWM128l 
SP~IFLAG2 
SPWRVMSG 

SPl'IVMHD 
SPWVMCH 
SPWBLIOB 
SPWm63l 
SPloJM164L 
SPWNSTOR 
SPWNESOI 

SPWFlAG3 
SPWPlCPY 

SPWIMGlD 
SPI-JOPNPR 
SPWDElRQ 
SPWGRAFO 
SPWGRAFl 
SPWGRAF2 

Description 

Address of the SVRB extended 
save area 
Address of the SYSOUT work area 
for IGG08117 
Buffer pointer 
Length of the SYSOUT work area 
Reserved 
Address of the translate table 
work area 
UCS image table pointer 
FCB address 
FCB line pointer 
Translate table work area 
subpoo1 number 
Translate table work area length 
Flag byte 1: 
The SETPRT is for a 3800 
Printing Subsystem 
The FCB is in the user area 
End of DCB exit list 
EXCP for FCB load 
EXCP for writing FCB verify 
End of section in message area 
End of FCB verify printout 
Message IEC128D in message area 
Flag byte 2: 
Reissue verify message to 3800 
Printing Subsystem 
Header section in message area 
'Channel' is in message area 
Build a dummy lOB 
Message IEC163A is being issued 
Message IEC164A is being issued 
SPWN has been stored 
Not enough space is available to 
open SYS1.IMAGELIB 
Flag byte 3: 
The SETPRT parameter list has 
been copied from the user's area 
to the key 5 work area 
Image loaded into storage 
OPEN is processing 
Delete is required 
WCGM 0 has been GCM modified 
WCGM 1 has been GCM modified 
WCGM 2 has been GCM modified 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBH 

Offset Length 

... 1 
21HX'D3') 1 

1 ... 
· 1 .. 

· .1. 
... x xxxx 

212(X'D4') 4 
212(X'D4') 1 
213(X'D5') 1 
214(X'D6') 1 
215(X'D7') 1 
216(X'D8') 4 
216(X'D8') 1 
21HX'D9') 1 
218(X'DA') 1 
219(X'DB') 1 
220(X'DC') 4 

224(X'EO') 2 
226(X'E2') 2 
228(X'E4') 4 
232(X'E8') 2 
234(X'EA') 1 
235(X'EB') 1 
236(X'EC') 1 

23HX' ED') 1 
238(X'EE') 1 
239(X'EF') 1 
240(X'FO') 2 

2 
24,2(X'F2') 1 

243(X'F3') 1 
244(X'F4') 4 

248(X'F8') 4 
252(X'FC') 20 

272(X'llO' )1 
273(X'lll')l 
274 ( X ' 112' )1 

275 ( X ' 113 ' )1 
276 ( X ' 114 ' )1 

278 (X' 116 ' ) 2 
280(X'1l8' )4 
284(X' llC')4 
288(X'120')4 

292(X'124')4 
296(X'128')l 
29HX'129')1 
298(X'12A')1 

1 ... 
.1 .. 
· .xx xxx x 

299(X'12B')1 
300(X'12C')4 
304( X' 130' )12 
316(X'13C')60 
376(X'178')72 
448(X'ICO')8 

Name 

SPWGRAF3 
SPWFLAG4 
SPWRPERR 
SPWCHKLD 

Description 

WCGM 3 has been GCM modified 
Flag byte 4: 
Operator reply error 
EXCP routine to check for 
possible lost data 

SPWNLFCB No FCB load is required 

SPWRSNCD 
SPWRSNO 
SPWRSNI 
SPI-IRSN2 
SPI~RSN3 
SPWRETCD 
SPWRETO 
SP~IRETl 
SI~PRET2 
SPI~RET3 
SPWIOBST 

SPWLNCNT 
SPWFCBIL 
SPI~CAVTA 
SPWHKBTS 
SPWI 
SPWJ 
SPWK 

SPWL 
SPWM 
SPI-lN 
SPWP 
SPWLPISV 
SPWMAX 

Reserved 
Reason code 
Byte 0 of the 
Byte 1 of the 
Byte 2 of the 
Byte 3 of the 
Return code 

reason code 
reason code 
reason code 
reason code 

Byte 0 of the return code 
Byte 1 of the return code 
Byte 2 of the return code 
Byte 3 of the return code 
Address of the lOB standard 
section 
FCB image line counter 
Length of the FCB image 
Address of the caller's AVT 
Work bytes used to test flags 
Total number of translate tables 
Translate table index 
Index of the CGM in the 
translate tables 
Work index 
Index in the CGM record 
Index in the CGM record 
Translate table position index 
Saved previous lines Ipi 
Number of CGMs installed on the 
printer 

SP~HCBKY TCB key 
SPWWCGMS Load WCGM data 
SPWIOREC Execute control data 
SPWCGMID Character set IDs 
SPWMEXIT(nFive 4-byte areas that contain 

SP~IMEIND 
SPWERIND 
SP~IRXIND 

the SETPRT modules' exit list 
addresses 
Index for module exit list 
Error index for module exit list 
Retransmit index for module exit 
list 

SPWAPPOS Available print positions 
SPWPLENG Length of the SETPRT parameter 

SPWADDCB 
SPI~ADDEB 
SPWADIOB 

SPWADUCB 
SPI',CFHIT 
SPWCFB 
SPWFCBO 
SPWCPYPS 
SPWPSPDS 

list 
Reserved 
Address of 
Address of 
Address of 
section 

the caller's DCB 
the caller's DEB 
the lOB prefix 

Address of the UCB 
FCB half-inch counter 
FCB current index for verify 
FCB options 
COPYP specified 
PSPEED speci fied 
Reserved 
Reserved 

SPWTADDR Temporary FCB address 

SPWSAVE 
sp~mSAVE 
SWPFLINU 

Reserved 
SETPRT register save area 
Compiler register save area 
FCB image line number 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 219 



Offset Length 

4S6(X 'ICS' )S6 

SI2(X'200' )l 

SI3(X'201')3 
SI6(X'204')l 

SI7CX'20S' )3 
520(X'20S')20 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Name Description 

SPWSPP Copy of the user SETPRT 
parameter list 

SPWUKSN Subpool number of work area in 
user key 

SP"IUKl TH length of user key work area 
SPWKSSN Subpool number of work area in 

key S 
SPWKSlTH length of key 5 work area 
SPWMOm'IK Compiler work area for autodata 

Error Message Communication Area--User-Provided Area 

The error message feedback area is provided by the caller of 
SETPRT and is pointed to by the SETPRT parameter list field 
(SPPEMSGA) . 

Offset Length Name Description 

O(X'O') 2 SPWMClEN Total length of area 
2(X'2') 2 SPl~SV02 Reserved 
4(X'4') 2 SPWRSV04 Reserved 
6(X'6') 2 SPWTXTl length of text returned 
S(X'8') 2 SPWRSVOS Reserved 
IO(X'A') * SPWTXT Formatted text (variable length) 

SVRB Extended Save Area--Key 0 

The SVRB extended save area is used by the SETPRT ESTAE routine. 

Offset Length Name Description 

O(X'O') 4 SPRMSG Address of the message CSECT 
4(X'4') 4 SPRIDCBA Address of the image library 

data set's DCB 
SeX'S') 4 SPREXIT Exit prolog 

SPRREGl3 Save area for register 13 
12(X'C') 1 SPRKEY User key 
13(X'D') 1 SPRINDIC Flag byte: 

1 ... SPRCNTRl Control block routine entered 
.1 .. SPRTRCNS GETMAIN unsuccessful 
.. 1. SPRUSLIB User-specified image library 
... 1 SPRSYSOT SETPRT for SYSOUT data set 

xxxx Unused 
14(X'E') 1 SPRNIOBS Number of lOBs 
IS(X'F') 1 Unused 
16(X'IO') 4 SPRBlDlA Address of the BlDl list 
20(X'14') 4 SPRIOBSV Address of the lOB altered by 

IGCOOOSA 
24(X'18,) 4 SPRDCBBG Beginning address of the DCB 
2S(X'IC') 4 SPRGETMN Address of the GTRACE buffer 
32(X'20') 16 SPRElIST ESTAE list 
32(X'20') S SPRTRACE GTRACE list 

220 MVS/XA SAM logic LY26-3967-0 © Copyright IBM Corp. 1977,198S 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

3800 Printing Subsystem Translate Table Entry--Key 5 

Offset Length 

O(X'O') 288 

O(X'O') 8 
O(X'O') 4 
4(X'4') 2 
6(X'6') 2 

8(X'8') 280 
8(X'8') 256 
264(X'108')24 
264(X'108' )8 

272(X'1l0' >16 

Name 

SPWTT 

SPWTTHDR 
SPWTTID 

SPI~XLAT 
SPWTRANS 
SPWTRAIL 
SPWTRLI 

SPWGRAFCn) 

Description 

Translate table, pointed to by 
SPIHWADI (in the SETPRT Work 
Area) 
Translate table header 
Translate table ID 
Reserved 
Length of character arrangement 
table 
Translate table and trailer 
256 byte translate table 
Trailer 
Four 2-byte entries for 
character set identifier and 
loading order 
Four 4-byte entries for graphic 
character modification module 
names 

One Entry of an FCB Image for a 3800 Printing Subsystem 

Offset 

O(X'O') 

Length 

1 

00 .. 
· . nn 
· .00 
· .01 
· .10 
· .11 

nnnn 

BUFFER POOL CONTROL BLOCK--IGGBCB 

Offset Length 

O(X'O') 4 

O(X'O') 1 
HX'l') 3 
4(X'4') 1 

1 ... 
.1 .. 
· .xx xxxx 

5(X'5') 1 
6(X'6') 2 
8(X'8') 4 

8(X'8') 1 
9(X'9') 3 
l2(X'C') 4 

Name Description 

SPWFCBIE FCB byte for 3800 Printing 
Subsystem 
Reserved--set to zeros 

SPWFCBLP Lines-per-inch bits 
6 Ii nes per inch 

Name 

BCBBUFPT 

BCBBUFAD 
BCBFLGS 
BCBLRI 
BCBEXTND 

BCBBUFNO 
BCBBUFSZ 
BCBLRIAR 

BCBLRIAD 
BCBPAD 

8 lines per inch 
10 lines per inch (Model 3) 
12 lines per inch 
Channel number 1 to 12, in 
hexadecimal code 

Description 

Address of the first buffer 
(same as BCBBUFAD below) 
Filler 
Address of first buffer 
Flag byte 
Logical record interface present 
BUFCB extended area present 
Reserved 
Number of buffers 
Size of each buffer 
Address of logical record area 
(same as BCBLRIAD below) 
Filler 
Address of logical record area 
Padding for doubleword alignment 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 221 



Offset 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Length Name 

1 ... BCBNLN 
· . .. .1.. BCBEXLN 

Description 

Length of normal BCB 
Length of extension (add to 
BCBNLN to get total length if 
BCB is extended) 

Users Logical Record Interface Area for SAM Data Sets 

Offset 

O(X'O') 
O(X'O') 

O(X'O') 

lCX'I') 
4(X'4') 

5(X'5') 
6(X'6') 
S(X'S') 

S(X'S') 

13(X' D') 

16(X'IO') 

16(X'IO') 
17CX'1l') 
20(X'14') 

22(X'16') 
20(X'14') 

24(X'IS') 
24(X'IS') 

SUBSYSTEM CICB--IGGCICB 

Offset 

O(X'O') 

4(X'4') 

222 MVS/XA SAM Logic 

Length 

S 
4 

I 
1 ... 
.1 .. 
· .1. 
· .. x xxxx 
3 
1 
· I .. 
· .. I 

.1. . 

... I 
x.x. x.x. 
I 
2 
S 

5 

3 

4 

1 
3 
2 

2 
4 

S 
1 

Length 

4 

4 

Name 

LRILOC 
LRILGTH 

LRIFLGI 
LRIEOD 
LRICOB 
LRIEOB 

LRILNGTH 
LRIFLAG2 
LRIRELSE 
LRISEG 
LRINTSPN 
LRIASSEM 

LRIINDEX 
LRIPOS 
LRITRKAD 

LRIMBBCC 

LRIRECAD 

LRINIOB 

LRINXIOB 
LRICOUNT 

LRICOUNT 

LRIALIGN 
LRIDATA 

Name 

Description 

LRI location 
Length of LRI area--LRECL+32 
(same as LRILNGTH below) 
Flags 
End-of-data reached 
COBOL data set 
EOD after first end-of-block 
Reserved 
Length of LRI Area--LRECL+32 
Flags 
Release issued 
Segmenting is in process 
Nonspanned record 
Assembling is in process 
Reserved 
Index to beginning of data 
Position of record in block 
Track address of beginning 
record segment 
MBBCC of track address (not used 
if DCB is for output) 
Record address when record to be 
written requires segmentation 
Next lOB address (same as 
LRINXIOB below) 
Filler 
Next lOB address 
Count field of number of bytes 
moved 
Filler 
Count field, full word value, of 
the number of bytes moved when 
extended logical record 
interface (XLRI)is used 
Floating alignment area 
Data 

Description 

CINXTIOB Pointer to next lOBi 
initialized to point to itself 

CIECBCD Psuedo ECBi always marked 
posted 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset Length 

8(X'8') 

12(X'C') 

20(X'14') 

28(X'IC') 

32(X'20') 

88(X'58') 

108(X'6C' ) 

116(X'74') 

120eX'78') 

124(X'7C') 

128eX'80') 

188eX'BC') 

18geX'BD') 

190eX'BE') 

19HX'BF' ) 

192eX'CO') 

268(X'10C') 

284eX'UC') 

304eX'130') 

4 

4 

4 

4 

56 

20 

8 

4 

4 

4 

60 

1 

1 

1 ... 

.11. 

1 

1 ... 

.1 .. 

.. 1. 

... 1 

1 

76 

16 

20 

4 

1 ... 

.1 .. 

.. 1 . 

... 1 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

Name 

CIIOB 

CIECBPTR 

CIRESID 

CIDCBPTR 

CIACBD 

CIACBED 

CISYNNAM 

CIREGSAV 

CIREGBC 

CIREGFC 

CIREGS 

CIFLAGI 

CIFlAG2 

CIFMDSOR 

CIFMDEVT 

CIFlAG3 

CIFFSTP 

CIFCLOSE 

CIFRAGM 

CIFVSRI 

CIFVSEOB 

CIFERROR 

CIFPOINT 

CIFCKBB 

CIFlAG4 

CIRPL 

CIRPLEXT 

CIFDBK 

CIlWAREA 

Description 

Start of basic lOB section 

Address of pseudo ECB-in 
prefix 

Residual count (CSW); set 
prior to each SYNAD entry 

DCB address 

Data ACB 

ACB extension 

SYNAD executor name 

SAM-SI register save area (not 
used) : 

Backward chain pointer eHSA) 

Foward chain pointer eLSA) 

Registers 14 through 12 

SYNAD error index 

DCB default flags: 

DSORG defaulted in DCB 

DEVTYPE before OPEN 

Control flagsl 

PUT LOCATE first pass 
completed 

CLOSE is processing the DCB 

Record area obtained for BSAM 
VS 

VS record is incomplete 

VBS-format record end-of-block 

SYNAD is processing an error 

Invalid POINT request 

SYNAD entry from IGG019BB 

Reserved 

Request parameter list eRPL) 

RPL extension 

RPL feedback area 

Spanned-record work area 

BSAMI Size of record 
area obtained 
QSAM: RDW save 
location 

Data Areas 223 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset Length Name Description 

308(X'134') 4 CISEGlEN Spanned-record segment length 

312(X'138') 4 CIBlKPTR BSAM spanned-block current 
address 

316 (X' 13C' ) 4 CIRAREA Spanned record area address 

320(X'140') 4 CIRECPTR Spanned record pointer: 

BSAM: Current location 
in record area 
QSAMI Spanned segment 
address 

324(X'144') 4 CISAMWA SAM SI work area 

328 ( X ' 148 ' ) 4 CIWK1 SAM SI work area 

332(X'14C') 4 CIWK2 SAM SI work area 

336(X'150') 1 CISYNRC SYNDAF return code 

33HX'151' ) 3 CISYNADA SYNDAF subroutine address 

340(X'154') 1 CIBlDlRC BlDl return code 

34HX'155') 3 CIBlDl BlDl subroutine address 

344(X'1581) 1 CIBSPRC BSP return code 

345(X'159') 3 CIBSP BSP subroutine address 

348(X'15C' ) 1 CIFEOVRC FEOV return code 

349(X'15D' ) 3 CIFEOV FEOV subroutine address 

352(X'160') 1 CISTOWRC STOW return code 

353(X'161') 3 CISTOW STOW subroutine address 

PARAMETER LIST--IGGPARML 

This DSECT expands the parameter list passed to the open/close 
executors from common open/close. 

Offset Length Name Description 

O(X'O') 4 PARDCBAD Address of DCB being 
opened/closed (same as PARDCBAB 
below) 

O(X'O') 1 PAROPT OPEN/CLOSE options 
1 ... PARENlST End of list 

CLOSE Options 

Offset Length Name Description 

. 1 .. . ... PARREWND REWIND 

224 MVS/XA SAM logic lY26-3967-0 ~ Copyright IBM Corp. 1977,1985 

J 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset Length 

· .11 
· .1. 
· .. 1 

OPEN options 

Offset Length 

1111 
.111 
· 1 .. 
· .11 
· .. 1 

UX'l') 3 

Name 

PARlEAVE 
PARFREE 
PARRREAD 

Name 

PAROUTPT 
PAROUTIN 
PARUPDAT 
PARINOUT 
PARRDBCK 
PARINPUT 
PARDCBAB 

PRINTER DEVICE CHARACTERISTICS TABLE--IGGPDC 

Description 

lEAVE 
Una110cate during CLOSE 
REREAD 

Description 

Output 
Outin 
Update 
Inout 
Readback 
Input 
Address of DCB being open/closed 

A printer device characteristics table (PDCT) is generated 
during system generation for each 3203-4, 3203-5, 3211, 3262 
Model 5, 4245, and 4248 printer. The PDCT is appended to the 
unit record UCB UCS extension. 

Offset 

O(X'O') 
2(X'2') 
4(X'4') 
6(X'6') 
7(X'7' ) 
8(X'8') 
9(X'9') 

10(X'A') 
1UX'B') 
12(X'C') 

Length 

2 
2 
2 
1 
1 
1 
1 
1 ... 
.1 .. 
· . 1 . 

· .. 1 
1 ... 
.1 .. 
· .1 . 
· .. 1 

1 
1 
4 

Name 

PDCMPlEN 
PDCUCSl 
PDCERPWl 
PDCDCBC 
PDCFCBP 
PDCUCSP 
PDCFlAGl 
PDCUCSIT 
PDClDPOS 
PDCAUTOP 

PDCPTDEV 
PDCFCBOP 
PDCClRPT 
PDClRUCS 
PDCSIGAT 

PDCFlAG2 
PDCAFCBP 

Description 

Maximum print line length 
UCS length 
OBR/MDR work area length 
DCB device type code 
FCB prefix id 
UCS prefix id 
Flag byte 1 
Device uses UCS image table 
lost data condition possible 
Hardware positions paper when 
FCB loaded 
Page tracking device 
FCB may contain options 
Clear printer command supported 
limited function read UCSB 
Signal attention command 
supported 
Flag byte 2--Reserved 
Alternate FCB prefix id 
Reserved 

If UCBUCSE=YES is specified on the IGGPDC macro the following 
mapping is provided for the UCB UCS extension 

Offset 

O(X'O') 
16(X'10') 
18(X'12') 

Length 

16 
2 
2 

Name 

PDCUCS 
PDCSPGID 
PDCPDCTO 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 

Description 

UCB UCS extension 
Synchronization page id 
Offset to PDCT 

Data Areas 225 



SAM OPEN/CLOSE WORK AREA--IGGSCW 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBH 

This DSECT maps against the O/C/EOV work area fields DXCCHI 
through DXCCH12. The purpose of the DSECT is to give meaningful 
equates to these fields when used by the open and close 
executors. The comments for each label indicate whether the 
field is used by the OPEN executors (-0) or the CLOSE executors 
(-C) • 

Offset 

368(X'170' ) 
368(X'170') 
368(X'170') 

368 (X' 170' ) 
368 ( X ' 17 0 ' ) 

368(X' 170') 
369 (X' 171' ) 
369 ( X ' 171 ' ) 
372(X'174') 
372(X'174') 
374(X'176' ) 
376(X'178') 
376(X'178') 
376(X'178') 

408(X'198') 
408(X'198') 
4l6(X'lAO') 
4l6(X'IAO') 

424(X'lA8') 
424(X'lA8') 
432(X'IBO') 
432(X'IBO') 

432(X'IBO') 

432(X'IBO') 

433(X'IB9') 

433(X'IB9') 
434(X'IBA') 

437CX'IB5') 
438(X' lB6') 
442(X'IBA') 
442(X'lBA') 
442(X'iBA') 

442(X'IBA') 

443(X'IBB') 
444(X'lBC') 

445(X'IBD') 
446(X'IBE') 
450(X'IC2') 
450(X'IC2') 

226 MVS/XA SAM logic 

Length 

8 
4 
4 

1 
1 

1 
3 
3 
4 
2 
2 
8 
4 
4 

8 
8 
8 
4 

8 
8 
8 
16 

8 

I 

1 

1 
1 

1 
4 
8 
8 
1 

1 

1 
1 

1 
4 
8 
4 

Name 

DXCCWI 
DXBLDL 
SCWGETMA 

DXCCWOP 
SCWSAVCD 

DXUCSUCB 
DXCCWADR 
SCHGETMB 
DXBLDLIM 
DXCCHFlG 
DXCCHBYT 
DXCCW2 
DXIMGNAM 
SCWRAll 

DXCCW6 
DXSAVUCS 
DXCCl-18 
DXIMGDCB 

DXCCW9 
DXSAVFCB 
DXCCWI0 
DXFCBUCS 

DXFCBP 

DXFCBSWI 

DXABEND 

DXFlAGl 
DXSTAGE2 

DXFCBOPT 
DXFCBID 
DXCCWll 
DXUCSP 
DXUCSSWI 

DXABRETC 

DXEROPT 
DXNABEND 

DXUCSOPT 
DXUCSID 
DXCCWl2 
SCWXCTlP 

Description 

BLDL parameter list -0 
Register save area for QSAM 
routines -C 
CCI<I OP code -0 
Problem determination code 
-C 
UCB UCS options -0 
Buffer address -0 
(Same as SCWGETMA) -C 
Image name for BLDL -0 
CCW flags -0 
CCW byte count -0 

Image name -0 
Save area for all registers 
-C 

Area to save UCS name -0 

Address of SYS1.IMAGELIB 
DCB -0 

Area to save FCB name -0 

UCS and FCB parameter 
fields -0 
To clear FCB parameter 
field -0 
Switch for FCB parameters 
-0 
Indicates DMABCOND to be 
issued -0 
FCB flag byte -0 
Indicates next executor is 
stage 2 executor -0 
JFCB FCB options -0 
FCB image identification -0 

Parameter list for UCS -0 
Switch for UCS parameters 
-0 
Internal return code for 
problem determination -0 
To save DCBEROPT -0 
Indicate ABEND in control 
-0 
JFCB UCS options -0 
UCS image identification -0 

Supervisor parameter list 
for XCTl -o/c 

lY26-3967-0 ~ Copyright IBM Corp. 1977,1985 

J 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

SAM/PAM/DAM GTRACE BUFFER--IGGSPD 

Offset Length 

O(X'O') 1 

O(X'O') 9 
O(X'O') 8 
8(X'8') 1 
9(X'9') 1 

9(X'9') 1 

9(X'9') 2 
9(X'9') 1 

Name 

SPDBFR 
SPDHDR 
SPDDDNAM 
SPDABCCD 
SPDTRACE 

SPDTRRCD 
SPDRCDHD 
SPDRCDLN 

Description 

SPD buffer input record 
Buffer header 
DD name from TIOT 
ABEND condition code 
Trace record area (variable -
maximum length is 247 bytes) 
Trace record 
Trace record header 
Trace record length 

1 Depends on the length of the block to be traced (maximum 
block length is 245 bytes including the block address, if 
present). 

Offset Length Name Description 

IO(X'A') 1 SPDBLKID ID of trace record 
IUX'B') 1 SPDDATAI Block to be traced (no block 

addresspresent) 
lUX'B') 4 SPDBLKAD Address of block to be traced 

(not present for block with ID 
less than 127> 

15(X'F') 1 SPDDATA2 Block to be traced (block 
address present) 

1 Depends on the length of the block to be traced (maximum 
block length is 245 bytes including the block address, if 
present) . 

STOW WORK AREA--IGGSTW 

This DSECT maps the work area used by the STOW modules. 

Offset 

O(X'O') 

4(X'4') 

8(X'8') 
IO(X'A') 

12(X'C') 
20(X'14') 
28(X'IC' ) 
3UX'IF' ) 

32(X'20') 

Length 

4 

4 

2 
2 

8 
8 
3 
1 

1. .. 
62 

Name 

STWPARM 

STWHIGH 

STWOFFLW 

STWOLDNM 
SHINEWNM 
STWTTR 
STWCTTRN 

STWALIAS 
STWDATA 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

Description 

Address of user-supplied entry 
name (lower of two for change) 
Address of higher of two 
user-supplied names (change 
only) 
Reserved 
Offset to add, replace, or 
delete location in low block 
Name of entry being deleted 
Name of new entry 
Relativ~ address of member 
Alias bit, number of TTRNs, and 
length of user data 
This member name is qn alias 
User data for entry 

Data Areas 227 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Flag, Condition, and Switch Bytes 

Offset Length Name Description 

94(X'5E') 1 STWFLAGI Fi rst flag byte bit defini Hons 
1 ... STWCHNG Change function (used in 

combination with STWADD and 
STWDEL) 

.1 .. STWDEL Delete function 
· . 1 . STWREPL Replace function 
· .. 1 STWADD Add function 

1 ... STWDRYRN Dry run being made on directory 
· 1 .. STWFLOW Used to control program flow 
· . 1 . STWDCBWR Last DCB operation was a WRITE 
· .. 1 Reserved 

95(X'5F') 1 STWRTN Return code save area 

Control Blocks f~r STOW Channel Programs 

Offset Length Name Description 

96(X'601) 4 If already on a doubleword; go 
to the next fullword boundry 

Event Control Block 

Offset 

lOO(X'64') 

lOO(X'64') 

228 MVS/XA SAM Logic 

Length 

4 

1 
1 ... 
.1 .. 
.111 1111 

.1 .. · .. 1 

.1 .. · .1 . 

· 1 .. · .11 

· 1 .. · 1 .. 

Name 

ECBRB 

ECBCC 
ECBWAIT 
ECBPOST 
ECBNORM 

ECBPERR 

ECBDAEA 

ECBABEND 

ECBINCPT 

Description 

RB (request block) address while 
waiting for event 
Completion code byte 
Waiting for completion of event 
Event completed 
Channel program terminated 
without error 
Channel program terminated with 
permanent errors or for BTAM 
completed with an I/O error 
Channel program terminated 
because a direct access extent 
address was violated 
I/O abend condition occurred for 
error transient loading task 
Channel program intercepted 
because of permanent error 
associated with device end for 
previous request; the 
intercepted request can be 
reiniHated . 

. 1 .. 1 ... ECBREPRG Request element for channel 
program made available after it 
has been purged 

.1 .. 1 ... ECBHAlT Enable command halted 

.1 .• 1.11 ECBERPAB Abnormal completion of 
processing because of a critical 
error such as the presence of 
invalid control block fields 

.1 .. 1111 ·ECBERPER Error recovery routines entered 
because of direct access error 
are unable to read home address 
of record 0 

LY26-3967-Q © Copyright IBM Corp. 1977,1985 



Contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

O~~set Length 

IOHX'6S') 3 

IOHX'6S') 3 

Name Description 

ECBRBA Request block address (while 
awaiting completion of an event) 

ECBCCCNT Zeros or remainder of completion 
code (after completion of the 
event) 

Pre~ix Sections o~ the lOB 

Of~set 

88(X'S8') 
88(X'S8') 
88(X'S8') 
88(X'S8') 
88(X'S8') 

89(X'S9') 
90(X'SA') 

9HX'SB') 

92(X' SC') 
96(X'60') 
IOO(X'64') 

Length 

8 
8 
8 
8 
1 
1 .... 

.1 .. 

.. 1 . 

... 1 
1 ... 

· 1 .. 

· .1. 
· .. 1 

1 
1 

1 

4 
4 
4 

Name 

IOBPREFX 
IOBQSAr1C 
IOBBSAMC 
IOBBPAMC 
IOBCFLGI 
IOBRSVOI 

IOBRSV02 
IOBRSV03 
IOBRSV04 
IOBPTST 

IOBABAPP 

IOBRSTCH 
IOBPCI 
IOBRSVOS 
IOBCINOP 

IOBCONOP 

IOBCECB 
IOBCICB 
IOBCNOPA 

Description 

Prefix sections 
QSAM/BSAM/BPAM prefix 
Chained scheduling 
16 bytes 
Flag byte 
Reserved 

Reserved 
Reserved 
Reserved 
NOTE or POINT operation in 
process 
Error processed once by 
abnormal-end appendage 
Restart channel 
PCI interrupt has occurred 
Reserved 
Offset of last I/O command 
for input operation (NOP CCW) 
from the ICB origin 
Offset of last I/O command 
for output operation (NOP 
CCW) from the ICB origin 
Event control block 
Address of first ICB on queue 
Address of NOP command at end 
of queue 

~SAM BSAM BPAM Pre~ix 

O~~set Length Name Description 

96(X'60' ) 8 IOBQSAMN QSAM/BSAM/BPAM prefix 
96 (X'60') 8 IOBBSAMN Normal scheduling 
96(X'60') 8 IOBBPAMN 8 bytes 
96(X'60' ) 4 IOBNIOBA Address of next lOB on chain 
96(X'60') 1 IOBNFlGl Flag byte 

1 ... IOBPRTOV PRTOV occurred 
· 1 .. IOBWRITE WRITE operation in process 
· . 1 . IOBREAD READ operation in process 
· .. 1 IOBUPDAT Block is to be updated 

1 ... IOBBKSPC lOB is being used for BSP CTRl 
NOTE/POINT 

· 1 .. IOBSPAN Spanned record 
• . 1 . IOBUPERR Update channel program has been 

split 
· .. 1 IOBFIRST First lOB on chain 

97(X'6I') 3 IOBNIOBB Address of the next lOB on the 
chain 

IOO(X'64') 4 IOBNECB Event control block address 

lY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Data Areas 229 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

standard Section of the lOB 

Offset Length Name 

104(X'68')8 IOBSTDRD 

104(X'68')1 10BFLAGl 

1... IOBDATCH 

.1.. 10BCMDCH 

.. 1. 10BERRTN 

... 1 10BRPSTN 

1. . . 10BCYCCK 

1. . . IOBFCREX 

.1. . 10BIOERR 

.. 1. 10BUNREL 

... 1 10BSPSVC 

10S(X'69')1 IOBFLAG2 

1 ..• 10BHALT 

.1. . 10BSENSE 

.. 1. 10BPURGE 

... 1 10BRDHAO 

1 ... 10BALTTR 

. . .. .1.. 10BSKUPD 

.....• 1. 10BSTATO 

....... 1 10BPNCH 

106(X'6A')1 10BSENSO 

1... 10BSDBO 

.1.. 10BSOBI 

.. 1. IOBSOB2 

Description 

Flag byte 

Data chaining used in channel 
program 

Command chaining used in channel 
program 

Error routine is in control 

Device is to be repositioned 

Cyclic r 

FETCH command retry exit (direct 
access only) 

I/O error has occurred 

I/O request is unrelated 
(nonsequential) 

SAM/PAM flag set by SVC if I/O 
appendage should not process 
interrupt 

Flag byte 

HALT I/O issued by SVC PURGE 
routine 

Issue SENSE command after device 
end occurs 

lOB purged--allow I/O to quiesce 

Home address to be read--no seek 
needed 

No test for 
out-of-extent--alternate track 
in use 

Seek address is being 
updated--cylinder end or file 
mask violation has occurred 

Device end status OR-ed with 
channel end status--graphics 
device 

Turned on by QSAM when error 
recovery is to be provided for 
the 2540 Card Punch 

First sense byte 

Bit 0 (device dependent) 

Bit 1 (device dependent) 

Bit 2 (device dependent) 

230 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp, 1977#1985 

J 

J 



contains Restricted Materials of IBH 
Licensed Materials -- Property of IBM 

Offset Length Name Description 

... 1 IOBSOB3 Bit 3 (device dependent) 

1 ... IOBSOB4 Bit 4 (device dependent) 

.1 .. 10BSOBS Bit S (device dependent) 

.. 1. IOBSOB6 Bit 6 (device dependent) 

... 1 IOBSOB7 Bit 7 (device dependent) 

... 1 IOBSNSC9 Channel 9 sensed in carriage 
tape 

l07(X'6B')1 10BSENSl Second sense byte 

1... 10BSIBO Bit 0 (device dependent) 

.1.. 10BSIBI Bit 1 (device dependent) 

.. 1. IOBSIB2 Bit 2 (device dependent) 

... 1 IOBSIB3 Bit 3 (device dependent) 

1 ... IOBSIB4 Bit 4 (device dependent) 

.1 .. 10BSIBS Bit S (device dependent) 

.. 1. IOBSIB6 Bit 6 (device dependent) 

... 1 IOBSIB7 Bit 7 (device dependent) 

I08(X'6C')4 10BECBPT Address of ECB to be posted upon 
completion of I/O 

I08(X'6C')I 10BECBCC Completion code for current I/O 
request 

109(X'6D')3 10BECBPB Address of ECB to be posted upon 
completion of I/O 

112(X'70')1 IOBFlAG3 Error routine flag byte 

1... 10BCCC Channel control check error 
count 

.1.. 10BICC Interface control check error 
count 

.. 1. 10BCDC Channel data check error 

... 1 10BACU Attention/control unit error 

1 ... 10BCNC Chain check error 

.1 .. 10BMSG Message flag 

.. 1. 10BICl Incorrect length error 

... 1 10BlOG Log-out flag 

1I3(X'7I')7 10BCSW Seven low-order bytes of CSW at 
channel end 

1I3(X'7I')3 10BCMDA Command address (3890) 

I16(X'74')2 10BSTBYT Status bits 32-47 (3890) 

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 Data Areas 231 



Contains Restricted Materials of IBM 
Licensed Materials -- Property· of IBM 

Offset Length Name 

118(X'76' )2 

120(X'78')4 IOBSTART 

120(X'78')1 IOBSIOCC 

121(X'79')3 IOBSTRTB 

124(X'7C')4 IOBDCBPT 

124(X'7C')1 IOBFlAG4 

1... IOBGDPOl 

.1. . IOBRSV38 

.. 1. IOBRSV39 

... 1 IOBRSV40 

12S(X'7D')3 

128(X'80')4 

128(X'80')l 

l29(X'81')3 

132(X'84')2 

132(X'84' )1 

133(X'85' )1 

134(X'86')2 

1. . . IOBRSV4l 

.1. . IOBRSV42 

.. 1. IOBRSV43 

... 1 IOBRSV44 

IOBDCBPB 

IOBRESTR 

IOBREPOS 

IOBRSTRB 

IOBINCAM 

IOBCRDCC 

IOBCRIlC 

IOBERRCT 

Direct Access Extension Section 

Offset Length Name 

136(X'88') 1 IOBM 

137(X'89') 2 IOBBD 

137(X'89') 1 IOBBBI 

Description 

last two bytes of IOBCSW 

Address of channel program 

Bits 2 and 3 = condition code 
from SIO 

Address of channel program 

Address of data control block 
for this lOB 

Flag byte 

Reenter SIO appendage for OlTEP 
guaranteed device path 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Reserved 

Address of data control block 
for this lOB 

Restart address for error retry 

Code used to reposition device 

Restart address for error retry 

Value used to increase block 
count on tape 

Optical reader--data check error 
count 

Optical reader--Incorrect length 
error count 

Count of error retries 

of the lOB 

Description 

Relative extent number for 
this request (0-15) 

Bin number (data cell) 

232 MVS/XA SAM logic LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 

J 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset 

l38(X'8A') 

l39(X'8B') 

l39(X'8B') 

l40(X'8C' ) 

l41CX'8D' ) 

l41CX'8D' ) 

l42(X'8E') 

l43(X'8F' ) 

Length 

1 

2 

1 

1 

2 

1 

1 

1 

STOW Channel Programs 

Offset 

l44(X'90') 

l44(X'90') 

l52(X'98') 

l60(X'AO') 

l68(X' A8,) 

l69(X'A9') 

172(X'AC,) 

176(X'BO') 

l84(X'B8') 

192(X'CO') 

200(X'C8') 

200(X'C8') 

201CX'C9') 

204(X'CC') 

208(X'DO') 

2l6(X'D8') 

217(X'D9') 

220(X'DCI) 

Length 

8 

8 

8 

8 

1 

3 

4 

8 

8 

8 

8 

1 

3 

4 

8 

1 

3 

1 

.1 .. 

Name 

IOBBB2 

IOBCC 

IOBCCI 

IOBCC2 

IOBHH 

IOBHHI 

IOBHH2 

IOBR 

Name 

STWINCP 

STWSRCHI 

STWTICll 

STWRDCTl 

STWSRKYl 

STWKYADI 

STWTIC12 

STWRDATl 

STWRCKDl 

STWWRDCP 

STWSRCH2 

STWIDAD2 

Description 

Cylinder number 

Track number 

Record number 

Description 

Channel program to read the 
initial 4 two directory 
blocks 

Search ID equal 

Transfer control to search ID 

Read count 

Search on key equal or high 

Key address 

Flags and byte count 

Transfer control to read 
count 

READ data 

READ count key data 

Channel program to WRITE and 
READ directory blocks 

Search ID equal 

ID address 

Flags and byte count 

STWTIC2 Transfer control to search ID 

STWI"RKDl WRITE key and data 

STWWRAD2 WRITE address 

STWWFLG2 Flags 

SHICMDCH Command chain to next CCW 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Data Areas 233 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBH 

Offset Length Name Description 

22lCX'DD' ) 3 Byte count 

224(X'EO') 1 STWRCKD2 READ count key data 

22S(X'El') 3 STWRDAD2 READ Address 

228(X'E4') 4 Flags and byte count 

232(X'E8') 1 STWRCKD3 READ count key data 

233(X'E9') 3 STWRDAD3 READ address 

236(X'EC') 4 Flags and byte count 

STOW Input/Output Buffers 

(For details, see Buffer DSECT, below.) 

Offset Length Name Description 

240(X'FO') 276 SHIBUFl Initially contains the first 
of two directory blocks read 

S16(X'204') 276 STWBUF2 Initially contains the second 
of two directory blocks read 

792(X'318') 276 SHIBUF3 Initially used as the first 
output buffer 

lO72(X'430') 8 STWEND End of work area 

Map of STO\., Input/Output Buffers 

Offset Length Name Description 

O(X'O') S BUFCNT Count field containing 
absolute disk address 

O(X'O') 5 BUFCCHHR CCHHR field 

SeX'S') 3 BUFKDD Key and data length 

SeX'S') 8 BUFKEY Key field (highest member 
name) 

l6(X'lO') 2S6 BUFDATA Data Area 

l6(X'10') 2 BUFN Number of bytes used in this 
directory block 

18(X'12') 2S4 BUFENTRY Directory entries 

272 (X' 11 0' ) 4 BUFADDR Used to chain buffers 

234 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

SVRB Extended Save Area 

Offset 

O(X'O') 

4(X'4') 

8(X'8') 

Length 

4 

4 

16 

Name 

XSAREG4 

XSASTWWA 

XSAESTAE 

Description 

Save area for register 14 

Address of STOW work area 

list form of the ESTAE macro 
instruction. 

SYNADAF GENERAL REGISTERS SAVE AREA AND MESSAGE BUFFER AREA--IGGSYN 

Offset Length 

O(X'O') 72 

O(X'O') 4 

4(X'4') 4 

8(X'8') 4 

12(X'C') 60 

72(X'48') 8 

80(X'50') 1 

80(X'50') 6 

80(X'50') 4 

84(X'54') 2 

86(X'56') 35 

86(X'56') 1 

86(X'56') 1 

87CX'57') 1 

88(X'58') 8 

88(X'58') 4 

92(X' 5C') 4 

96(X'60') 4 

100(X'64') 20 

l20(X'78') 1 

l2l(X'79') 1 

l22(X'7A') 8 

130(X'82') 1 

Name Description 

SYNSAVE Save area 

SYNPl1 Used by Pl/I language program 

SYNPREV Address of previous save area 

SYNNEXT Address of next save area 

SYNGRS General register save area 

SYNVlFlD length field for variable-length 
records 

SYNMSG Data Area 

SYNREAD Data area for READ 

SYNRDERR Return information if read error 

SYNBYTRD Number of bytes read 

SYNWAREA Work area 

SYNPURG Error type indicator 

SYNACMTH Access method input code 

SYNWRKA 

SYNI~KAl 

SYNWKA2 

Unused 

Work Area 

Work area number 1 

Work area number 2 

Unused 

SYNWORK Work area 

SYNSTART Blank 

SYNCMMAl Comma 

SYNJOBNM Job name 

SYNC~1MA2 Comma 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 235 



Offset Length 

13HX'83') 8 

139(X'8B') 1 

140(X'8C') 3 

143(X'8F') 1 

144(X'90') 2 

146(X'92') 1 

147CX'93') 8 

lSS(X'9B') 1 

lS6(X'9C') 6 

162(X'A2') 1 

163(X'A3') IS 

178(X'B2') 1 

179(X'B3') 14 

179(X'B3') 7 

186(X'BA') 7 

186(X'BA') 6 

192(X'CO') 1 

193(X'C1') 1 

193(X'C1') S 

199(X'C7') 1 

200(X'C8') 4 

204(X'CC') 4 

208(X'DO') 4 

Name 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Description 

SYNSTPNM Step name 

SYNCMMA3 Comma 

SYNUNTID Unit address 

SYNCMMA4 Comma 

SYNDVTYP Device type 

SYNCMMAS Comma 

SYNDDNM DD name 

SYNCMMA6 Comma 

SYNOPRTN Operation attempted 

SYNCMMA7 Comma 

SYNERROR Error description 

SYNCMMA8 Comma 

SYNPOS Area to unpack ICB seek address 

SYNPOSM1 Unused--magnetic tape 

SYNPOSM2 Area to unpack block count for 
magnetic tape 

SYNPOSMV Unpack value 

SYNPOSMS Sign byte in unpack format 

SYNCMMA9 Comma 

SYNACCSS Access method type 

SYNBLNK2 Blank 

SYNPRMR1 Parameter register save area 

SYNPRMR2 Parameter register save area 

SYNEND End of IGGSYN 

SYNADAF and SYNADRLS SVRB Extended Save Area 

Offset Length 

160(XIAO') 4 

164(X'A4') 16 

164(X'A4') 4 

168(X'A8') 12 

168(X'A8') 4 

17 2 (X' AC ') 8 

236 MVS/XA SAM logic 

Name Description 

SYNRETA Return address 

SYNXCTPL XCTL parameter list 

SYNXCTEP Address of the entry point name 

SYNXCTLT List of parameters 

SYNXCTDB Address of the DCB 

SYNXCTNM Entry point name 

LY26-3967-0 @ Copyright IBM Corp. 1977,1985 

J 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset 

176(X'BO') 

180(X'B4') 

18HX'B5' ) 

184(X'B8') 

188(X'BC') 

19Z(X'CO') 

193(X'CI') 

196(X'C4') 

198(X'C6') 

199(X'C7') 

SETPRT PARAMETER LIST--IHASPP 

Offset 

O(X'O') 

HX'l') 

4(X'4') 

8(X'8') 

9CX'9') 

Length 

I 

I 

3 

4 

4 

I 

3 

4 

I ... 

.1 .. 

· . I . 

· .. 1 

I ... 

. xxx 

1 

9 

Length 

1 

3 

4 

1 

• 0 •• 

· I .. 

x.xx xxxx 

I 

Name 

SYNXCTID 

SYNESTPl 

SYNESFlG 

SYNGTM 

SYNCSA 

SYNMlC 

SYNRCS 

SYNESTAE 

SYNURKEY 

SYNUNPKA 

Name 

Description 

load module ID 

Flags for TCB PURGE and ASYNCH 

Exit address not specified 

Parameter list address not 
specified 

TCB not specified 

Flags 

Reserved 

ESTAE routine flag word 

Return from GETMAIN without 
error 

Save areas chained successfully 

Message CSECT loaded 

Caller's save area restored 
successfully 

ESTAE routine entered 

Reserved 

User key 

Work area for unpack 

Description 

Unused 

SPPDCBB DCB address 

SPPUCS UCS module ID (not used for 3800 
Printing Subsystem) 

SPPlDMOD Flag byte describing load mode 
(not used for 3800 Printing 
Subsystem) 

UCS= fold not specified 

UCS= fold 

Reserved 

SPPVERFY Flag byte describing UCS verify 
(not used for 3800 Printing 
Subsystem) 

lY26-3967-0 @ Copyright IBM Corp. 1977,1985 Data Areas 237 



Offset 

10(X'A') 

11CX'B') 

15(X'F') 

Length 

• •. 0 

· .. 1 

xxx. xxxx 

1 

Name 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Description 

No verification for UCS 

UCS verification requested 

Unused 

SPPFDUNF Flag byte: 

10.. SPPFBLK Block data checks 

01.. SPPFUBLK Unblock data checks 

· .10 SPPSCHED Schedule SYSOUT data set segment 
for printing now 

.. 01 SPPNOSCD Do not schedule SYSOUT segment 

4 

1 

0 ••• 

1 ... 

for immediate printing 

10 .. SPPUNFLD OPTCD= unfold option 

01 .. SPPFOLD OPTCD= fold option 

· . x. Unused 

· .. 1 SPPEXTl SETPRT parameter list is at 
least 48 bytes long 

SPP FCB FCB module ID or address of 
in-storage FCB module (see 
SPPFLAG2) 

SPPVERAL FCB flag by tel 

No FCB image verification 
requested 

Print FCB image for verification 

.xxx xxx. Unused 

· •• 0 

· . .. . .. 1 

No forms alignment requested 
(not used for 3800 Printing 
Subsystem) 

Issue WTOR for forms alignment 
(not used for 3800 Printing 
Subsystem) 

16(X'10') 1 SPPFLAG1 Flag byte number 11 

238 MVS/XA SAM Logic 

0... SPPBURST Thread continuous forms stack 

.1.. SPPBURST Thread burster-trimmer-stacker 

.1.. SPPREX Retransmission - only change 
COPIES. FLASH. and starting copy 
number 

· .1. SPPINIT Issue initialize printer CCW 

... 1 SPPNOMSG Suppress error messages on the 
printer 

1 ... SPPBFREQ Bypass forms overlay WTOR or 
bypass band mount message 

.1 .. SPPBTREQ Bypass threading change WTOR 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Offset Length Name Description 

.. 1. SPPBOMSG Bypass WCGM's exceeded error 
message 

17(X'1l') 1 

O ••• 

1 ... 

.0 .. 

· 1 .. 

• .0. 

· . 1 . 

• •. 0 

· .. 1 

18(X'12') 1 

19(X'13') 1 

20(X'14') 2 

22(X'16') 1 

23(X'17') 1 

24(X'18') 4 

28(X'lC') 4 

... 1 SPPFORC JES force load of the FCB 

O ••• 

1 ... 

• 0 .• 

. 1 .. 

. . xx 

SPPFlAG2 Flag byte number 2: 

COpy modification, if specified, 
is a module ID. 

Copy modification is specified 
as an address. 

Character arrangement table 0 if 
specified is a module ID. 

Character arrangement table 0 is 
specified as an address. 

Character arrangement table 1 if 
specified is a module ID. 

Character arrangement table 1 is 
specified as an address. 

Character arrangement table 2 if 
specified is a module ID. 

Character arrangement table 2 is 
specified as an address. 

Character arrangement table 3 if 
specified is a module ID. 

Character arrangement table 3 is 
specified as an address. 

FCB is specified as a module ID . 

FCB is specified as an address . 

Unused bits . 

SPPCPYNR The number of copies to be 
printed. 

SPPSTCNR The copy number of the first 
copy to be printed. 

SPPlEN length of the parameter list. 

SPPFRMNR The number of copies to be forms 
flashed, starting with the first 
printed copy. 

SPPTRC The character arrangement table 
to be selected when the 
specified copy modification 
record is loaded in the printer. 

SPPMODPT The module ID or in-storage 
address of the copy modification 
module. 

SPPIMAGE The identifier for the forms 
overlay frame. 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 239 



contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

O~~set Length Name Description ,J 
32(X'20') 4 SPPXlATl The module ID or in-storage 

address of character arrangement 
table module O. 

36(X'24') 4 SPPXlAT2 The module ID or in-storage 
address of character arrangement 
table module 1. 

40(X'28') 4 SPPXlAT3 The module ID or in-storage 
address of character arrangement 
table module 2. 

44(X'2C') 4 SPPXlAT4 The module ID or in-storage 
address of character arrangement 
table module 3. 

48(X'30') 4 SPPEMSGA Address of the message 
communication area for error 
information. 

52(X'34') 4 SPPLIDCB Address of the library DCB for 
3800 Printing Subsystem load 
modules. 

56(X'38') 1 SPPCOpyp COPYP specification 

57(X' 39') 1 SPPFlAG3 Flag byte number 31 

1 ... SPPCPYPS COPYP speci fi ed 

. 1 .. SPPPSPDS PSPEED specified 

.. 11 Reserved J 
11ll Caller's PSPEED specification as 

follows I 

00 .. Unchanged 

01. . low 

10 .• Medium 

11 .. High 

.• 00 Reserved; must be zero 

58(X'3A') 6 Reserved 

240 MVS/XA SAM logic lY26-3967-0 ~ Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBH 

ACCESS METHOD SAVE AREA FOR USER TOTALING 

The access method save area for user totaling is pointed to by 
the address in bytes 5 through 7 in the EXCP access method, 
BSAM, or QSAM-dependent section of the DEB. See Figure 34 on 
page 241. 

Disp. 

Dec. ~ 
0 0 

Access method save routine address 
4 4 

Current image area address 
8 8 

First image area address 
12 10 

Last image area address 
16 14 

Length of each image area 
20 18 

Address of user's totaling area 
24 1C 

Size of access method totaling save area' 
28 20 

Address of last image area for volume2 

32 24 
Register 

36 28 
save 

40 1C area 

44 30 

48 34 
First image area3 

Lo : 

J 
1 The size of this save area includes the space used by image areas. 

2This field is adjusted by the End·of·Volume routine so that it points to the 
image area containing the user's total for the last record written on the volume. 

~he image areas are all the same size, that is, the length of the user's totaling 
area rounded to the nearest half-word. 

Figure 34. Access Method Save Area for User Totaling 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Data Areas 241 



DIAGNOSTIC AIDS 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

J 

OPEN AND CLOSE EXECUTOR PROBLEM DETERMINATION 

QSAM CONTROL BLOCKS 

BSAM CONTROL BLOCKS 

For information on tracing module and data flow during execution 
of the OPEN and CLOSE executors that issue the IECRES macro, see 
"Problem' Determination" in Open/Close/EOV Logic. Note that the 
access method executors do not have transfer control tables as 
common OPEN and CLOSE modules do. 

Figure 35 on page 243 shows the control blocks used in QSAM. 
Through the data control block (DCB), the QSAM routines 
associate the data being processed with the processing program. 
Fields in the DCB point to the start of a buffer, the end of a 
buffer, and an input/output block (lOB). These fields are 
updated as successive channel programs are executed. Each lOB 
points at the next lOB and at a channel program (CP), and 
carries an event control block (ECB) that the I/O supervisor 
posts after the channel program has been executed. 

Figure 36 on page 244 shows the control blocks used in BSAM and 
their stages of completion. Stage 0 shows the state of the 
control blocks before any READ or WRITE macro instruction. 
Stage I shows the effect of the READ or NRITE macro instruction, '\ 
that is, the values supplied by the processing program in the ~ 
data event control block (DECB). Finally, stage 2 shows the 
effect of the READ or WRITE routine having tied together these 
control blocks. 

Before any READ or WRITE macro instruction, the data control 
block (DCB) points to the first input/output block (lOB). This 
lOB points back to the DCB, to the next lOB, and to the channel 
program (CP). The READ or WRITE macro instruction identifies 
the DCB and the buffer to be read into or written out. Finally, 
the READ or WRITE routine connects the DECB with the current 
lOB, inserts the address of the ECB (which is located in the 
DECB) into the lOB, and points the channel program to the 
buffer. Successive macro instructions cause updating of the lOB 
address in the DCB and insert address values in the next DECB, 
lOB, and channel program. 

242 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

~o lOB 

I NEXT lOB 

I ECB 

I .-- CPAD 
I 

r--

---
I 0 0 CP 0 
I 4i I 
I 

lOB 
0 

t-~ -----i NEXT lOB 
I ECB 
I CPAD .--
I 
I 

0 0 0 I CP 
~ I 41 

I 
I lOB 
I I '- _____ a. NEXT lOB 

ECB 
.-- CPAD 
0 

CP 0 
4t I--

Legend: 
Address Values: 
o Entered by the OPEN executor. 
1 Updated by the synchronizing routine. 
2 Updated by the GET or PUT routine. 
- - - Successive Address Values 

Figure 35. QSAM Control Blocks 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

I -
I 

21 
I 
9 

1 
2' 

I 
I 
y 

DCB 

10BA 

RECAD 

EOBAD f---

BUFFER POOL 

I 

~ 
I 
I 

2 I 

1+2-i 
I 
I 

3 I , 
f4-~ 

Diagnostic Aids 243 



o 

2 

2 

- .-

t- ,-

0 

2 
lOB 

~ 0 DC BAD 
ECBAD 

~ NEXT lOB 
CPAD 

0 0 
CP 2 

2 f4-------------
lOB 

-~ 
2 j-DC BAD 

0 
ECBAD 

_-I 

r-- NEXT lOB 
...-- CPAD 

0 0 2 
CP 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DECB 

10BAD 
DCBAD 

1 

ECB BUFFER 
BUFAD 

1 ) 

DECB 

10BAD 1 
DCBAD -------tII 
ECB BUFFER 1 
BUFAD -f-f { 

I 
I 
I 
I 

4f 
____________ ...J 

DECB 

2 f+-------------- 10BAD 1 lOB 
DC BAD r- --- -----_L--. 

2 ,- ECB BUFFER 
0 

DC BAD ~+-~ I 
ECBAD I-J BUFAD 

NEXT lOB I 
I .--- CPAD I 

0 I 
CP I 

4f 
2 ____________ ...1 

DCB 

l.------ 10BA 

Legend: 
Address Values 
o Entered by the OPEN Executor. 
1 Provided by the processing program. 
2 Completed by the READ or WRITE routine. 
--- Successive Address Values. 

Figure 36. BSAM Control Blocks 

244 MVS/XA SAM Logic LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 

J 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

JES COMPATIBILITY INTERFACE CONTROL BLOCK (CICB) 

Figure 37 shows the relationship of the SYSIN/SYSOUT data sets. 

Spool DCB 

DCBSVCXL 1 

(DCBIOBAD) 
DEB 

3 .. 
DCBDEBAD 

I 
CICB 

DCBCICB 1 2 
DEBDCBAD .. lOB 

(DCBIOBA) 

2 - 3 
ACB DEBECBAD 

Save Area 

SAM·SI Flags 

RPL 

Internal 
Pointers 
and 
Work Areas 

.. SVC Exit List 

NeteI: 
1. Set by DCB OPEN eucuton (SAM-5I). 
2. Set by ACB OPEN (JES2 and JEl3 opeD e:ucuton). 
3. Set by DCB OPEN e:ucuton after ACB opeD. 

Figure 37. Control Block Structure for SYSIN/SYSOUT Data Sets 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Diagnostic Aids 245 



ABEND CODES AND CROSS-REFERENCE TABLE 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

This table can be used to determine which module detected an 
abnormal termination condition. The system code and return code 
(register 15) are used to identify the message 10 and the module 
name and can be found in dumps and in the message text. For 
example, in the message 

IEC14ll, 013-BC, IGG0199G, JJOUFPN5"SYSIN 

013 is the system code and BC is the return code. Information 
in the table should be used in conjunction with System Messages 
and System Codes. 

Abend 
Code 

001 

002 

003 

246 MVS/XA SAM Logic 

Return 
Code 

04 

08 

OC 

10 

14 

18 

01 

02 

Module 

IGG019AH 

IGG019AN 

IGG019AB 

IGG019AO 

IGG019AE 

IGG019BN 

IGG019BO 

IGG019FB 

IGG019FO 

IGG019FF 

IGG019CC 

IGG019TV 

IGG019T2 

IGG019TV 

IGG019FG 

IGG019AL 

IGG0190K 

IGG019T2 

IGG019AJ 

IGG019BP 

IGG019DJ 

IGG019FJ 

IGG019CC 

IGG019CE 

IGG019CF 

IGG019FK 

Message 
Number 

IEC036I 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Abend Return Message 
Code Code Module Number 

03 IGG019FA 

IGG019FQ 

004 01 IGG0197N 

02 IGG0197N 

03 IGG0197N 

04 IGG0197N 

05 IGG0197M 

06 IGG0197Q 

008 IGG019BS 

IGG019DC 

013 10 IGG0191C IEC1411 

14 IGG0191B 

18 IGG01918 

lC IGG01918 

20 IGG0191A 

(. 24 IGG0191A 

IGG0199G 

28 IGG0191A 

IGG0199G 

30 IGG0191F 

34 IGG01911 

IGG0199G 

40 IGG01910 

48 IGGOI911 

4C IGG0191A 

IGG01968 

IGG0199G 

50 IGG01968 

54 IGG0196A 

5C IGG01915 

IGG01916 

IGG01911 

(. 60 IGG0191A 

LY26-3967-Q © Copyright IBM Corp. 1977,1985 Diagnostic Aids 247 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Abend Return Message J Code Code Module Number 

70 IGG0199G 

88 IGG0191B 

8C IGGOI911 

90 IGG0197V 

94 IGG0191A 

98 IGG0191A 

9C IGG0197V 

AO IGG0191A 

A4 IGG0199G 

A8 IGG0199G 

BO IGG0191A 

B4 IGG0191A 

B8 IGG0197V 

BC IGG0199G 

CO IGG0199G 

CC IGG0196Ql 

DO IGG0191A 

E4 IGG01961 

112 01 IGCTOO18 IEC9081 

02 IGCTOO18 

03 IGCTOO18 

04 IGCTOO18 

13 IGCTOO18 

14 IGCT00l8 

115 IGG0210A 

118 01 IGCT0028 lEC912I 

02 IGCT0028 

Note 
1 Applies only to 3800 Printing Subsystem 

248 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Abend Return Message 
Code Code Module Number 

119 01 IGCT002E IEC914I 

02 IGCT002E 

03 IGCT002E 

04 IGCT002E 

12 IGCT002E 

13 IGCT002E 

14 IGCT002E 

144 IGCOO06H 

145 01 IGCT0069 IEC9161 

02 IGCT0069 

03 IGCT0069 

04 IGCT0069 

OS IGCT0069 

06 IGCT0069 

07 IGCT0069 

08 IGCOO06I 

IGCT0069 

151 IGCTl081 IEC9181 

169 01 IGCTOIOE IEC9191 

02 IGCT010E 

03 IGCT010E 

IGC0010El 

172 IGG019BX 

212 01 IGCTOO18 IEC909I 

02 IGCTOO18 

03 IGCTOO18 

215 01 IGCT0021 IEC910I 

02 IGCT0021 

03 IGCT0021 

04 IGCT0021 

Note 
1 Applies only to 3800 Printing Subsystem 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Diagnostic Aids 249 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Abend Return Message 
Code Code Module Number 

218 01 IGCT002D IEC913I 

02 IGCT002D 

03 IGCT002D 

219 01 IGCT002E IEC915I 

02 IGCT002E 

03 IGCT002E 

04 IGCT002E 

244 IGCT006H 

245 IGCT0069 IEC917I 

251 01 IGCTl081 IEC918I 

02 IGCTl081 

269 IGCTOI0E IEC920I 

315 IGCT0021 IEC911I 

337 08 IGG019AV IEC024I 

344 IGCT006H 

351 IGCTl081 IEC918I J 400 IGG019BX 

IGG019BZ 

413 2C IGG0191N IEC145I 

444 IGCT006H 

01 IGCTl081 IEC918I 

02 IGCTl081 

03 IGCTl081 

04 IGCTl081 

544 IGCT006H 

644 IGCTOO6H 

744 IGCT006H IEC907I 

B13 04 IGG0196Q IEC152I 

IGG0196R 

08 IGG0196Q 

DC IGG0196Q 

IGG0196R 

10 IGG0196Q 

250 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 



l, 

contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

Abend Return Message 
Code Code Madule Number 

14 IGG0196Q 

18 IGG0196Q 

lC IGG0196Q 

20 IGG0196Q 

IGG0196R 

24 IGG0196Q 

IGG0196R 

28 IGG0196Q 

2C IGG0196Q 

30 IGG0196Q 

34 IGG0196Q 

B14 04 IGG0201B IEC217I 

IGG0201Z 

08 IGG0201B 

IGG0201Z 

OC IGG0201B 

IGG0201Z 

10 IGG0201B 

IGG0201Z 

14 IGG0201B 

IGG0201Z 

18 IGG0201B 

IGG0201Z 

C37 IGCT0055 IEC033I 

I SETPRT EXECUTOR RETURN/REASON CODES AND MESSAGES 

The return codes produced by the SETPRT executors are set when 
an error is detected by one of the executors. The SETPRT work 
area contains the return code (at SPWRETCD) and the reason code 
(at SPWRSNCD) (see "Data Areas" on page 210 for a description of 
the SETPRT work area). 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Diagnostic Aids 251 



contains Restricted Material. of IBM 
Licensed Materials -- Property of IBM 

Executor IGC0008A detects the following errorsl 

Return Reason 
Code Code Message No. Description 

00000018 Either. 

• DCB not open 

• DCB invalid for a 
sequential data set 

• SETPRT parameter list 
invalid 

• Output device not UCS or 
3800 printer 

OOOOOOlC 00000000 Permanent I/O error in a 
previously initiated output 
operation. 

OOOOOOlC 00000004 Possible lost data condition 
detected for a nonpage tracking 
printer. 

00000048 00000004 Possible lost data condition 
detected for a page tracking 
printer. 

Executor IGG08l0l detects the following errorsl 

Return 
Code 

00000004 

00000008 

Reason 
Code Message No. Description 

Operator canceled job 
step--chain, train, or band not 
available. 

Permanent I/O error during BLDL 
for UCS image. 

Executor IGG08l02 detects the following errors: 

Return 
Code 

OOOOOOOC 

00000010 

00000014 

Reason 
Code 

OOOOOOlC 00000004 

252 MVS/XA SAM Logic 

Message No. Description 

IEC126I Permanent I/O error during UCS 
load. 

Permanent I/O error during UCS 
verification display. 

Operator canceled SETPRT during 
UCS verification display. 

Possible lost data condition 
detected for a nonpage tracking 
printer. 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Executor IGG08103 detects the following errorsl 

Return Reason 
Code Code Message No. Description 

00000400 Operator canceled job step--FCB 
not available. 

00000800 Permanent I/O error during BLDL 
for FCB image. 

OOOOOOIC 00000004 Possible lost data condition 
detected for a nonpage tracking 
printer. 

00000048 00000004 Possible lost data condition 
detected for a page tracking 
printer. 

Executor IGG08104 detects the following errors: 

Return Reason 
Code Code Message No. Description 

OOOOOCOO 00000000 IEC1241 Permanent I/O error during FCB 
load. 

OOOOOCOO 00000004 IEC1241 Permanent I/O error during FCB 
load; LOAD check--probable FCB 
contents error. 

00001000 

00001400 

000000lC 00000004 

00000020 

00000048 00000004 

Permanent I/O error during FCB 
verification display. 

Operator canceled SETPRT during 
FCB verification display. 

Possible lost data condition 
detected for a nonpage tracking 
printer. 

No storage available for FCB 
copy/convert area. 

Possible lost data condition 
detected for a page tracking 
printer. 

Executor IGG08105 detects the following errorsl 

Return 
Code 

00000004 

00000008 

Reason 
Code Message No. Description 

Operator canceled SETPRT--band 
not available. 

Permanent I/O error during BLDL 
for UCS image table. 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Diagnostic Aids 253 



Return 
Code 

OOOOOOOC 

00000010 

00000014 

OOOOOOIC 

00000020 

00000048 

Reason 
Code 

00000004 

00000004 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Message No. Description 

Permanent I/O error during band 
id display. 

Permanent I/O error during UCSB 
read. 

Operator canceled SETPRT during 
UCS verification display. 

Possible lost data condition 
detected for a nonpage tracking 
printer. 

No storage available for read 
UCSB area. 

Possible lost data condition 
detected for a page tracking 
printer. 

Executor IGG08110 detects the following errors I 

Return 
Code 

Reason 
Code Message No. Description 

00040000 0000nn04 IECI681 

00080000 0000nn04 IECI691 

00000020 

00000024 

00000038 

IECl741 

IECl751 

IECl781 

Issued if any of the specified 
modules for character 
arrangement tables (where nn= 
01 to 04) could not be found on 
the Ii bra ry . 

An I/O error occurred while 
attempting to locate a 
character arrangement table 
(where nn= 01 to 04) in the 
library data set. 

SYSI.IMAGElIB was not opened 
because storage space was not 
available. 

SYSI.IMAGElIB cannot be opened. 

I/O error occurred while trying 
to initialize the 3800 Printing 
Subsystem. 

254 MVS/XA SAM logic LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Executor ICC08111 detects the following errors: 

Return Reason 
Code Code Message No. Description 

00040000 00000018 IEC1681 Issued if any of the specified 
modules for library character 
sets could not be found on the 
library. 

00080000 00000018 IEC1691 An I/O error occurred while 
attempting to locate a library 
character set in the library 
data set. 

OOOCOOOO xx000018 IEC1701 An I/O error occurred while 
loading a library character set 
(xx indicates the opcode of the 
CCW when the error occurred). 

OOOCOOOO xxOOOOlC IEC170I 

00000030 IEC176I 

00000044 IEC1821 

0000004C xx000018 IEC184I 

0000004C xxOOOOlC IEC184I 

An I/O error occurred while 
loading WCGMs (xx indicates the 
opcode of the CCW when the 
error occurred). 

There are more character set 
IDs requested in the character 
arrangement tables than the 
number of WCGMs installed on 
the printer. 

A position in the translate 
table refers to a WCGM for 
which no character set has been 
specified. 

A load check occurred while 
loading a library character set 
(xx indicates the opcode of the 
CCW when the error occurred). 

A load check occurred while 
loading WCGNs (xx indicates the 
opcode of the CCW when the 
error occurred). 

Executor IGG08ll2 detects the following errors: 

Return Reason 
Code Code Message No. Description 

00040000 00000008 IEC168I The requested copy modification 
module could not be found on 
the library. 

00040000 OOmmnnlO IEC168I Issued if any of the specified 
modules for graphic 
modification records could not 
be found on the library (nn is 
the index of the character 
arrangement table, and mm is 
the index of requested graphic 
character modification module 
within that table). 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Diagnostic Aids 255 



Return Reason 

Contains Restricted Materials of IBH 
Licensed Materials -- Property of IBH 

Code Code Message No. Description 

00080000 00000008 IEC1691 An I/O error occurred while 
attempting to locate a copy 
modification module in the 
library data set. 

00080000 OOmmnnlO IEC1691 An I/O error occurred while 
attempting to locate a graphic 
character module (nn is the 
index of the character 
arrangement table, and mm is 
the index of requested graphic 
character modification module 
within that table. 

OOOCOOOO xxOOnn04 IEC1701 

OOOCOOOO xx000008 IEC1701 

OOOCOOOO xxmmnnlO IEC1701 

00000020 

00000024 

00000034 

IEC1741 

IEC1751 

IEC1771 

0000004C xxOOnn04 IEC1841 

0000004C xx000008 IEC1841 

An I/O error occurred while 
loading a translate table 
(where nn=Ol to 04 and xx 
indicates the opcode of the CCW 
when the error occurred). 

An I/O error occurred while 
loading a copy modification 
module (where xx indicates the 
opcode of the CCW when the 
error occurred). 

An I/O error occurred while 
loading a graphic character 
modification module (nn is the 
index of the character 
arrangement table, mm is the 
index of requested graphic 
character modification module 
within that table, and xx 
indicates opcode of the CCW 
when the error occurred). 

SYS1.IMAGElIB was not opened 
because storage space was not 
available. 

SYS1.IMAGElIB cannot be opened. 

The requested copy modification 
module requires a translate 
table which was not loaded for 
this request. 

A load check occurred while 
loading a translate table 
(where nn=Ol to 04 and xx 
indicates the opcode of the CCW 
when the error occurred). 

A load check occurred while 
loading a copy modification 
module (where xx indicates the 
opcode of the CCW when the 
error occurred). 

256 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Return Reason 
Code Code Message No. Description 

0000004C xxmmnnlO IEC184I A load check occurred while 
loading a graphic character 
modification module (nn is the 
index of the character 
arrangement table, mm is the 
index of requested graphic 
character modification module 
within that table, and xx 
indicates the opcode of the CCH 
when the error occurred). 

Executor IGG08113 detects the following errorsl 

Return Reason 
Code Code Message No. Description 

00000400 00000020 IEC168I The requested FCB image could 
not be located via the DCB exit 
list and was not in the library 
data set. 

00000800 00000020 IEC1691 An I/O error occurred while 
attempting to locate the 
requested FCB image from the 
library data set. 

OOOOOCOO xx000020 IEC170I 

00001000 xx000020 IECl711 

00001400 00000020 IEC172I 

00000020 IEC174I 

00000024 IEC175I 

0000004C xx000020 IEC184I 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

An I/O error occurred while 
loading an FCB (where xx 
indicates the opcode of the CCH 
when the error occurred). 

An I/O error was encountered 
while printing a representative 
map of the requested FCB image. 

SETPRT processing was 
terminated because the operator 
canceled the job after 
inspecting the representative 
FCB image as it was displayed 
on the 3800 Printing Subsystem. 

SYSl.IMAGELIB was not opened 
because storage space was not 
available. 

SYSl.IMAGELIB cannot be opened. 

A load check occurred while 
loading a forms control buffer 
(xx indicates the ope ode of the 
CCW when the error occurred). 

Diagnostic Aids 257 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Executor IGG08114 detects the following errors: 

Return 
Code 

00000028 

0000002C 

0000003C 

Reason 
Code Message No. Description 

IEC1721 

IEC1721 

IEC1791 

The operator canceled SETPRT 
processing after receiving a 
request to load a forms overlay 
negative. 

The operator canceled SETPRT 
processing after receiving a 
request to rethread the 3800 
Printing Subsystem. 

A request for threading to the 
burster-trimmer-stacker was 
issued but the feature is not 
installed on the 3800 Printing 
Subsystem being used. 

00000040 xxOOOOOO IEC1801 An I/O error occurred while 
trying to display a status code 
on the 3800 Printing Subsystem 
for a rethread or forms overlay 
request (xx indicates the CCW 
when the error occurred). 

00000040 xxOOOOOO IEC1801 An I/O error occurred while 
issuing a 'SENSE I/O' CCW to 
sense the present paper thread 
path from the 3800 Printing 
Subsystem (xx indicates the CCW 
when the error occurred). 

Executor IGG08ll5 detects the following errors: 

Return Reason 
Code Code Message No. Description 

OOOCOOOO xxOOOOOC IEC1701 An I/O error was detected while 
loading the starting copy 
number in the 3800 Printing 
Subsystem. 

OOOCOOOO xx000014 IEC1701 An I/O error was detected while 
loading the total copy count 
and forms overlay image count 
into the 3800 Printing 
Subsystem. 

00000040 xxOOOOOO IEC1801 An I/O error occurred while 
resetting the 3800 Printing 
Subsystem to the first 
translate table. 

258 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Executor IGG08ll6 detects the following errorsl 

Return Reason 
Code Code Message No. Description 

00000048 xx000004 IEC1831 A system-restart-requested type 
of paper jam occurred on the 
3800 Printing Subsystem (xx 
indicates the opcode of the CCW 
when the error occurred). 

00000048 xx000008 IEC1831 Cancel key was pressed on the 
3800 Printing Subsystem (xx 
indicates the opcode of the CCW 
when the condition occurred). 

Executor IGG08ll7 detects the following errors: 

Return Reason 
Code Code Message No. Description 

00000050 00000004 IEC18l1 An invalid SETPRT request for a 
SYSOUT data segment was 
specified. A storage address 
was used for a copy 
modification module, character 
arrangement table, FCB, or user 
library DCB. Only 3800 
Printing Subsystem load module 
IDs in SYSl.IMAGELIB are 
allowed for SYSOUT setup. 

00000050 00000008 IECl851 During SETPRT processing for a 
SYSOUT data segment, an error 
was detected while attempting 
to read a JFCB or JFCBE control 
block from SWA. 

00000050 OOOOOOOC IEC1851 During SETPRT processing for a 
SYSOUT data segment, an error 
was detected while invoking the 
CLOSE Subsystem Interface for 
the previous data segment. 

00000050 00000010 IEC1851 During SETPRT processing for a 
SYSOUT data segment, an error 
was detected while invoking the 
OPEN Subsystem Interface for 
the new data segment being 
created. 

00000050 00000014 IEC1851 During SETPRT processing for a 
SYSOUT data segment, an error 
was detected while the 
scheduler spool file allocation 
routine was segmenting the data 
set. 

00000050 00000018 IECl851 An ENQ macro, issued by SETPRT 
processing, failed. 

00000050 OOOOOOlC IEC1851 More than one DCB was open for 
the SYSOUT data set. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Diagnostic Aids 259 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DEBUGGING EXCPVR CHANNEL PROGRAMS 

Thhe 108l s chained off the DC8108A pointer do not contain a~. 
c anne program; they contain one or two CCWs and status ~ 
information (in IOBNFlGl and 108EX). The CCWs and status 
information are used by the SIO/pagefix appendage to build a 
real-address channel program in the SAMB. The SAMB contains the 
channel program, the pagefix list, IDAW lists, the count field 
work area, and the status flags. Figure 38 shows the 
relationship between the DCB, the DEB, the ICQE, and the SAMB. 

------:1 
DEB SP230 I DCB IcaE 

I 
0 

Lf 
ICaECB 

-8 I 
~ DEBXTNP DCBICaE 4 

I 
ICalOBAD 

I 
2C 8 

I '--- DCBDEBAD ICaFIRST 

I C 
r-- ICaENDA 

DEBX I 44 

I DCBIOBA h 

1C 
DEBXSAMB ...... I -8 

I ,,- 10BNIOBA ... 
----- -~ -

- -;P253 I SAMB -8 

I '+ 10BNIOBA 

'SAMB'is I -~ 
SAMB 

in EBCDIC I 9 
lOB used by I 10BCSW 
EXCPVR . lOB 

10 I 
r- 10BSTART I 

I 10BEX 

I :: : 
I 
I -8 

'--- Channel 
Program I 10BNIOBA ~ 

I 
I 

Figure 38. Control Blocks Used with EXCPVR Processing 

260 MVS/XA SAM logic LY26-3967-0 @ Copyright IBM Corp, 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

APPENDIX A. BSAM/QSAM CHANNEL PROGRAMS 

One real-address channel program is built in the SAMB. The 
channel program consists of a prolog (at SAMPROLG) and one or 
more channel program segments (at SAMCCW, which can contain a 
channel program of up to 27 CCWs). The channel program is 
chained from the prolog with a TIC (transfer in channel) 
command, and serves one of the lOBs on the active lOB queue 
(pointed to by the ICQE). There are five types of channel 
program segments: 

Update-WRITE 

Update-WRITE followed by refill-READ 

Output (without the track overflow option) 

Output (with the track overflow option) 

Input 

CHANNEL PROGRAM PROLOG SEGMENT 

The prolog CCWs are partially built during OPEN processing. The 
10BSTART field (in the SAMB's lOB) points to the first prolog 
CCl~ to be processed (see Note 3, below) when the channel program 
is executed. 

For nonbuffered DASD devices, the following prefix is built. 
Note: The prolog channel program segment issues a search ID EQ 
CCW to locate either: 

• The desired record to be read or updated, or 

• The record that immediately precedes the desired record to 
be read or updated (search previous logic). 

CCW. COMMAND CODE ADDRESS FLAGS COUNT 

PCCWI! SET SECTOR SAMSECT CS I 
PCCW1+6 2 Sector2 

PCCl~21 SEARCH ID EQ IOBSEEK+3 C 5 
PCCW3 TIC PCCW2 
PCCW4 TIC SAMCCW3 

For buffered DASD devices, the following prefix is built I 

CCW. COMMAND CODE ADDRESS FLAGS COUNT 

PCCW1 Unused 
PCCW2 Unused 
PCCW3 LOCATE RECORD SAMLRPRM C 16 
PCCW4 TIC SAMCCW 

IOBSTART points to PCCW3. 

For buffered DASD, all occurrences of (set sector), search id 
EQ, TIC~-8 will be replaced by a located record. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix A 261 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

FLAGS 

C = Command chain 

S = SLI 

Notes: 
1 

z 

3 

IOBSTART points to PCCWI if the device includes the 
rotational position sensing feature. Otherwise, IOBSTART 
points to PCCW2. 

When the request is update-WRITE, the sector value is the 
first byte of PCCWl's count field. Otherwise, it is the 
SAMSECT field. 

PCCW4 might branch (with a TIC) to a CCW other than the 
first CCW in SAMCCW: 

-When a re-EXCPVR exit from the channel end/abnormal end 
appendage occurs, or 

-When a return from the first entry to the abnormal end 
appendage occurs. 

UPDATE-WRITE CHANNEL PROGRAM SEGMENT 

The update-WRITE channel program segment is built to serve an 
update-WRITE-only request (that is, SAMBSWR in SAMFLAGI is on). 
The channel program segment is built by the CCWBLDUP routine (in 
module IGG019BX). Only one BSAM update-WRITE channel program 
segment is built in SAMCCW at a time. 

If the write validity option is not specified, the update-WRITE 
channel program is: 

CCWI 

CCWI 
CCW2 

COMMAND CODE 

WRITE DATA 
NOP 

ADDRESS 

Buffer l 

FLAGS COUNT 

CII 
S 1 

FLAGS 

C = Chain command 

S = SLI 

I = Indirect addressing 

Note: 

If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

If the write validity check option is specified and the data set 
being accessed is not a track overflow data set, the 
update-WRITE channei program is: 

262 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

WITHOUT ROTATIONAL POSITION SENSING 

CC\'II COMMAND CODE 

CCNI WRITE DATA 
CCH2 SEARCH ID EQ 
CCW3 TIC 
CCW4 READ KEY DATA 
CCWS NOP 

WITH ROTATIONAL POSITION SENSING 

CC'''I 

CCWl 
CCW2 
CCl~3 
CCW4 
CCW5 
CCW6 
CCW7 

FlAGS 

C = Chain 

S = SLI 

K = Skip 

COMMAND CODE 

WRITE DATA 
READ SECTOR 
SET SECTOR.3 
SEARCH ID EQ.3 
TIC.3 
READ KEY DATA 
NOP 

command 

I = Indirect addressing 

Notes: 

ADDRESS FLAGS COUNT 

Buffer l CII 
IOBSEEK+3 C 5 
CCW2 
0 CSK X'7FFF' 

S 

ADDRESS FLAGS COUNT 

Buffer l CII 
PCCm+6 z CS I 
PCCWI+6 z CS I 
IOBSEEK+3 C 5 
CCW4 
0 CSK X'7FFF' 

S 

1 If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

z PCCWI is the prolog channel program segment's first CCW, a 
set-sector command. 

For buffered DASD, CCWs 3, 4, and 5 will be replaced by the 
following: 

I CCW3 I LOCATE RECORD I SAMLRPRM+16 I C I 16 I 

Some of the data records of a track overflow data set are 
written using write special CKD CCWs. Consequently, the 
direct-access device automatically switches to the next track 
and cylinder when the end of each track overflow record segment 
(except the last) is detected during a write data or read data 

. CCW. If the WRITE validity option is specified and a track 
overflow data set is being accessed, the update-WRITE channel 
program is: 

lY26-3967-0 @ Copyright IBM Corp. 1977,1985 Appendix A 263 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

WITHOUT ROTATIONAL POSITION SENSING 

ccwt COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE DATA Buffer l CII 
CCW2 SEEK HEAD2 IOBSEEK+1 C 6 

NOP2 CS 1 
CCW3 SEARCH ID EQ IOBSEEK+3 C 5 
CCW4 TIC CCW3 
CCW5 READ KEY DATA 0 CSK X'FFF' 
CCW6 NOP S 1 

WITH ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCW1 WRITE DATA Buffer l CII 
CCW2 SEEK HEAD2 IOBSEEK+1 C 6 

NOP2 CS 1 
CCW3 SET SECTOR3 PCCW1+6~ CS 1 
CCW4 SEARCH ID EQ3 IOBSEEK+3 C 5 
CCW5 TIC3 CCW4 
CCW6 READ KEY DATA 0 CSK X'7FFF' 
CCW7 NOP S 1 

FLAGS 

C = Chain command 

S = SLI 

K = Skip 

I = Indirect addressing 

Notes: 
1 

2 

If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

The seek head command is part of the channel program if the 
DEB extent file mask permits head seeks. Otherwise, the 
seek head command is replaced with a NOP command. 

For buffered DASD, CCWs 3, 4, and 5 will be replaced by the 
followingl 

I CCW3 I LOCATE RECORD I SAMLRPRM+16 I C I 16 I 

~ PCCW1 is the prolog channel program segment's first CCW, a 
set sector command. 

UPDATE-WRITE FOLLOWED BY REFILL-READ CHANNEL PROGRAM SEGMENT 

The update-WRITE followed by refill-READ channel program segment 
is built to serve a request that updates a record and then reads 
a subsequent record (not necessarily the next sequential record) 
into the buffer. This type of request is indicated with the 
SAMPUTX bit in SAMFLAG1 set on. The segment is built by the 
CCWBLDUP and CCWBLDIP routines (in module IGG019BX). 

Only one update-WRITE followed by a refill-READ channel program 
segment is built in SAMCCW at a time. 

264 MVS/XA SAM Logic LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 



Contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

If the write validity check option is not specified. the 
update-write followed by refill-read channel program segment is. 

WITHOUT ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE DATA Buffer l CII 
CCW2 SEEK HEADz SAMSEEK+l C 6 

NOp2 CS 1 
CCW3 SEARCH ID EQ SAMSEEK+3 C 5 
CCW4 TIC CCW3 
CCW5 READ KEY DATA3 0 CSK X'7FFF' 
CCW6 M/T READ COUNT4 SAMCNTS5 C 8 
CCW7 READ DATA Buffer l CIlS6 
CCW8 M/T READ COUNT SAMCNTS5 C 8 
CCW9 NOP S 1 

WITH ROTATIONAL POSITION SENSING 

CC,.,I COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE DATA Buffer l CII 
CCW2 SEEK HEADz SAMSEEK+l C 6 

NOpz CS I 
CCW3 SET SECTOR7 SAMSECT CS I 
CCW4 SEARCH ID EQ 7 SAMSEEK+3 C 5 
CCW5 TlC7 CCW4 
CCW6 READ KEY DATA3 0 CSK X'7FFF' 
CCW7 M/T READ COUNT4 SAMCNTS5 C 8 
CCW8 READ DATA Buffer l CIlS6 
CCW9 M/T READ COUNT SAMCNTS C 8 
CCWI0 READ SECTOR SAMSECT S I 

FlAGS 

C = Chain command 

S = SLI 

K = Skip 

I = Indirect addressing 

Notes: 
1 

2 

If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space. the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

The seek head command is part of the channel program if the 
DEB extent file mask permits head seeks. Otherwise. the 
seek head command is replaced with a NOP command. 

The read key data CCW is part of the channel program only 
when search previous logic is required for a track-overflow 
data set. Otherwise. the CCW is omitted. 

The M/T read count. CCW is part of the channel program only 
when search previous logic is required for the data set 
(either a track-overflow data set or not). Otherwise. the 
CCW is omitted. 

LY26-3967-0 © Copyright IBM Corp. 1977.1985 Appendix A 265 



266 

5 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

The count field used in this CCW is one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCWs 
in the channel program. 

6 The SLI flag is set to 1 if the record format is variable 
length (that is, RECFM=V). The SLI flag is also set to 1 
if: 

• The record format is not fixed-length records written as 
standard blocks (RECFM=FS or RECFM=FBS), and 

7 

• The data set is not a track-overflow data set (RECFM=T). 

For buffered DASD, CCWs 3, 4, and 5 will be replaced by the 
following: 

I CCW3 I LOCATE RECORD I SAMLRPRM+16 I C I 16 I 

If the WRITE validity check option is specified and the data set 
being accessed is not a track overflow data set, the 
update-WRITE channel program segment is: 

WITHOUT ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE DATA Buffer l CPo 
CCW2 SEARCH ID EQ IOBSEEK+3 C 5 
CCW3 TIC CCW4 
CCI~4 READ KEY DATA 0 CSK X'7FFF' 
CCW5 SEEK HEADz SAMSEEK+l C 6 

NOpz CS 1 
CCW6 SEARCH ID EQ SAMSEEK+3 C 5 
CCI~7 TIC CCW6 
CC~J8 WT READ COUNP SAMCNTS" C 8 
CCW9 READ DATA Buffer l CPS5 
CCWIO M/T READ COUNT SAMCNTS" C 8 
CC~nl NOP 1 

"'ITH ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE DATA Buffer l CP 
CCW2 READ SECTOR PCCW1+6 6 CS 1 
CCW3 SET SECTOR PCCW1+6 6 CS 1 
CC~J4 SEARCH ID EQ IOBSEEK+3 C 5 
CCW5 TIC CCW4 
CCW6 READ KEY DATA 0 CSK X'7FFF' 
CCW7 SEEK HEADz SAMSEEK+l C 6 

NOpz CS 1 
CCW8 SET SECTOR7 SAMSECT CS 1 
CCW9 SEARCH ID EQ 7 SAMSEEK+3 C 5 
CCIUO TIC7 CCW9 
CCWll M/T READ COUNT3 SAMCNTS" C 8 
CCW12 READ DATA Buffer l CIlS5 
CCW13 M/T READ COUNT SAMCNTS" C 8 
CCW14 READ SECTOR SAMSECT S 1 

FlAGS 

C = Chain command 

S = SLI 

MVS/XA SAM Logic LY26 ..... 3967-0 © Copyright IBM Corp. 1977,1985 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

K = Skip 

I = Indirect addressing 

Notes: 

1 

Z 

5 

Eo 

7 

If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

The seek head command is part of the channel program if the 
DEB extent file mask permits head seeks. Otherwise, the 
seek head command is replaced with a NOP command. 

The M/T read count. CCW is part of the channel program only 
when search previous logic is required. Otherwise, the CCW 
is omitted. 

The count field used in this CCW is one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCWs 
in the channel program. 

The SLI flag is set to 1 if the record format is 
variable-length (that is, RECFM=V). The Sll flag is also 
set to 1 if the record format is not fixed-length records 
written as standard blocks (RECFM=FS or RECFM=FBS). 

PCCWI is the prolog channel program segment's first CCW, a 
set-sector command. 

For buffered DASD, CCWs 8, 9, and 10 will be replaced by the 
following: 

I CCW3 I LOCATE RECORD I SAMLRPRM+16 I C I 16 I 

Some of the data records of a track-overflow data set are 
written using write special CKD CCWs. Consequently, the 
direct-access device automatically switches to the next track 
and cylinder when the end of each track-overflow record segment 
(except the last) is detected during a write data or read data 
CCW. If the WRITE validity check option is specified and a 
track-overflow data set is being accessed, the update-WRITE with 
refill READ channel program segment is as follows: 

WITHOUT ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCI~1 WRITE DATA Buffer 1 CII 
CCW2 SEEK HEADz IOBSEEK+l C 5 

NOpz CS 1 
CCW3 SEARCH ID EQ IOBSEEK+3 C 5 
CCW4 TIC CCW3 
CC~j5 READ KEY DATA 0 CSK X' 7 FFF' 
CCW6 SEEK HEADz SAMSEEK+l C 6 

NOpz CS 1 
CCW7 SEARCH ID EQ SAMSEEK+3 C 5 
CC~18 TIC CCW7 
CCW9 READ KEY DATAa 0 CSK X'7FFF' 
CCWIO M/T READ COUNT a SAMCNTS4 C 8 
CCWll READ DATA Buffer l CIIS' 
CCW12 WT READ COUNT SAMCNTS4 C 8 
CCW13 NOP 1 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix A 267 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

WITH ROTATIONAL POSITION SENSING 

CC"" COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE DATA Buffer l CII 
CCW2 SEEK HEADz. IOBSEEK+I C 6 

NOpz CS I 
CCW3 SET SECTOR PCCW+6 6 CS I 
CCW4 SEARCH ID EQ IOBSEEK+3 C 5 
CCW5 TIC CCW4 
CCW6 READ KEY DATA 0 CSK X'7FFF' 
CCW7 SEEK HEADz SAMSEEK+l C 6 

NOpz CS I 
CCW8 SET SECTOR SAMSECT CS I 
CCW9 SEARCH ID EQ SAMSEEK+3 C 5 
CCWIO TIC CCW9 
CCWIl READ KEY DATA3 0 CSK X'7FFF' 
CCWI2 M/T READ COUNP SAMCNTS" C 8 
CCWI3 READ DATA Buffer l CIIS' 
CCWI4 M/T READ COUNT SAMCNTS" C 8 
CCWI5 READ SECTOR SAMSECT S I 

FLAGS 

C = Chain command 

S = SLI 

K = Skip 

I = Indirect addressing 

Notes: 
1 

Z 

If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

The seek head command is part of the channel program if the 
DEB extent file mask permits head seeks. Otherwise, the 
seek head command is replaced with a NOP command. 

The read key data and M/T read count. CCWs are part of the 
channel program only when search previous logic is required. 
Otherwise, these two CCWs are omitted. 

" The count field used in"this CCW is one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCWs 
in the channel program. 

5 

6 

The SLI flag is set to I if the record format is 
variable-length (that is, RECFM=V). 

PCCWI is the prolog channel program segment's first CCH, a 
set sector command. 

OUTPUT CHANNEL PROGRAM SEGMENT (TO WRITE OUTPUT RECORDS THAT ARE NOT TRACK OVERFLOW 
RECORDS) 

The output channel program segment is built to serve a request 
that writes an output record to a data set that is not a 
track-overflow data set. Output channel program segments can be 
chained together to write successive records to the data ~~t. 
The output channel program segment is built by the CCWBLDOP 
routine (in module IGGOI9BX). 

268 MVS/XA SAM Logic LY26-3967-0 @ Copyright IBM Corp. 1977,1985 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

If the write validity check option is not specified, the output 
channel program segment is: 

WITHOUT ROTATIONAL POSITION SENSING 

CC,,,. 

CCWI 
CCW2 
CCW3 

COMMAND CODE 

WRITE CKD 
Bufferz 
NOP 

WITH ROTATIONAL POSITION SENSING 

CCW' COMMAND CODE 

ccm WRITE CKD 
CCW2 
CCW3 READ SECTOR 

FLAGS 

C = Chain command 

S = SLI 

D = Chain data 

I = Indirect addressing 

Note: 

ADDRESS 

SAMCNTSI 
Clz 

ADDRESS 

SAMCNTSI 
Bufferz 
SAMSECT 

FLAGS COUNT 

CD 8 

S 1 

FLAGS COUNT 

CD 8 
Clz 
S 1 

1 The count field used in this CCW is one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCHs 
in the channel program (unless otherwise noted). 

Z If the data set resides on a vIa device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

If the WRITE validity check option is specified, the output 
channel program segment iSI 

WITHOUT ROTATIONAL POSITION SENSING 

CC"" COMMAND CODE ADDRESS FLAGS COUNT 

CCWI HRITE CKD SAf>1CNTSl CD 8 
CCW2 Bufferz CIz 
CCH3 SEARCH ID EQ SAMCNTSa C 5 
CCH4 TIC CCH3 
CCW5 READ KEY DATA 0 CSK X'7FFF' 
CC'~6 Nap s 1 

lY26-3967-0 @ Copyright IBM Corp. 1977,1985 Appendix A 269 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

WITH ROTATIONAL POSITION SENSING 

CCW' COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE CKD SAMCNTSl CD 8 
CCW2 Bufferz CF 
CCW3 READ SECTOR SAMSECT CS 1 
CCW4 SET SECTOR SAMSECT CS 1 
CCW5 SEARCH ID EQ SAr1CNTS3 C 5 
CC~16 TIC CCW5 
CCW7 READ KEY DATA 0 CSK X'7FFF' 
CCW8 READ SECTOR SAMSECT S 1 

WITH BUFFERRED DASD 

CC,." COMMAND CODE ADDRESS FLAGS COUNT 

CCWl WRITE CKD SAMCNTSl CD 8 
• • • BUFFER CI 
• • • • • 
• • • • • 
CCWn [MTJ WRITE CKD SAMCtnS 1 CD 8 

BUFFER CI 
CCWn READ SECTOR SAMSECT S 1 
CCWn LOCATE RECORD SAMLRPRM+16 C 16 
CCWn [MT] READ KEY DATA 0 CSK X'7FFF' 
• • • • • 
• • • • • 
• • • • • 
CCI-ln [MTJ READ KEY DATA 0 SK X' 7 FFF' 

FLAGS 

C = Chain command 

S = SLI 

K = Skip 

D = Chain data 

I = Indirect addressing 

Notes: 

The count field used in this CCW is one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCWs 
in the channel program (unless otherwise noted). 

Z If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

3 The SAMCNTS field is the same one used by CCWl, the first 
CCW in the channel program segment. 

The preceding output channel program segments can be chained 
together to write successive records all on one track. The last 
CCW (that is, the NOP or read sector CCW) of each channel 
program segment except the last is omitted: 

270 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 

,.) 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

CCWI COMMAND CODE 

CCWl WRITE CKD 
CCW2 
CCW3 WRITE CKD 

CCW4 

CCW9 WRITE CKD 
CCW10 
CCWll NOpz 

READ SECTORz 

CCWI COMMAND CODE 

CCIH WRITE CKD 
CCW2 
CCW3"i M/T SRCH ID 

CCW4" TIC 
CCNS WRITE CKD 

CCW6 

CCWll WRITE CKD 
CCW12 
CCW13 NOp3 

READ SECTOR3 

ADDRESS 

SAMCNTS 
Buffer! 
SAMCNTS+8 

Buffer! 

SAMCNTS+32 
Buffer! 

SAMSECT 

FLAGS 

C = Chain command 

S = SLI 

D = Chain data 

I = Indirect addressing 

Notes: 

FLAGS 

CD 
CII 
CD 

CII 

CD 
CII 
S 
S 

COUNT 

8 

8 

8 

1 
1 

Write first record 

Write second 
record 

Write last record 

! If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

Z The read sector CCW is present if the device includes the 
rotational position sensing feature. Otherwise, the NOP CCW 
is present. 

If the second (or subsequent) record is to be written as record 
Rl on the next track, a multitrack search CCW orients the 
channel program: 

ADDRESS FLAGS COUNT 

SAMCNTS CD 8 Write first record 
Buffer! CII 

EQ SAMCNTS+8 z C 5 Locate record 0 of 
the next track 

CCW3 
SAMCNTS+l6 CD 8 Write second 

record 
Buffer l CII 

SAMCNTS+40 CD 8 Write last record 
Buffer! CII 

S 1 
SAMSECT S 1 

FLAGS 

C = Chain command 

S = SLI 

D = Chain data 

I = Indirect addressing 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix A 271 



Nates: 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

1 If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

Z The field in SAMCNTS contains the CCHHR of the record to be 
written (record RI) with R set to 0, causing a search for 
record zero on the next track. 

3 The read sector CCW is present if the device includes the 
rotational position sensing feature. Otherwise, the NOP CCW 
is present. 

4 CCW3 and CCW4 are present only when writing record RI on a 
track when the record is not the first record written in the 
channel program. 

OUTPUT CHANNEL PROGRAM SEGMENT (TO WRITE TRACK OVERFLOW RECORDS) 

The output channel program segment is built to serve a request 
that writes a record to a track-overflow data set. If the 
track-overflow record is segmented, output channel program 
segments are chained together to write all segments of the 
record. 

Module IGGOl9T2 determines whether enough room remains on the 
track to write the record. If not, IGGOl9T2 separates the 
track-overflow record into segments and determines the length of 
each segment. IGGOl9T2 also determines whether the 
track-overflow record can be written in the extent's remaining 
space. 

Only one output record is written at a time, even though many 
output channel program segments are chained together to write 
all track overflow segments of the record. The track-overflow 
record output channel program is built by the CCWBLDOT routine 
(in module IGGOI9BX). 

If the record does not overflow to another track (that is, it 
fits entirely on the remaining space on the track) and the WRITE 
validity check option is not specified, the output channel 
program segment that writes the record is the same as described 
previously for writing output records that are not 
track-overflow records. 

If the record does not overflow and the WRITE validity option is 
specified, the output channel program segment that writes the 
record is: 

WITHOUT ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCWI WRITE CKD SAMCNTS CD 8 
CCW2 Buffer l CII 
CCW3 SEEK HEADz SAMCNTS3 C 6 

NOpz C I 
CCW4 SEARCH ID EQ SAMCNTS3 C 5 
CCW5 TIC CCW4 
CCW6 READ KEY DATA 0 CSK X'7FFF' 
CCW7 NOP S I 

272 MVS/XA SAM Logic lY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 



contains Restricted Materials o~ IBM 
Licensed Materials -- Property o~ IBM 

WITH ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE 

CCWI WRITE CKD 
CCW2 
CCW3 SEEK HEAD2 

NOp2 
CCW4 SET SECTOR 
CCW5 SEARCH ID EQ 
CCW6 TIC 
CCW7 READ KEY DATA 
CCWS READ SECTOR 

ADDRESS 

SAMCNTS 
Buffer l 

SAMCNTSa 

CCW4+6 
SAMCNTSa 
CCWS 
o 
SAMSECT 

Notes and Flags explanation ~ollow: 

FLAGS 

C = Chain command 

S = SLI 

K = Skip 

D = Chain data 

I = Indirect addressing 

Notes: 

FLAGS COUNT 

CD 8 
CII 
C 6 
C I 
CS Sector4 11 
C 5 

CSK X'7FFF' 
S I 

I If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

2 The seek head command is part of the channel program if the 
DEB extent file mask permits head seeks (although it has no 
effect in this case), the record doesn't overflow to another 
track. Otherwise, the seek head command is replaced with a 
NOP command. 

The SAMCNTS field is the same one used by the first 
segment's Write CCW (CCWI). 

The sector value is placed in the first byte of the CCW's 
count field. The sector value is the SAMSECT value if the 
first overflow record is written by this channel program. 
Otherwise, the sector value is O. 

If the track-overflow record consists of more than one segment 
(that is, it overflows to another track), one or more write 
special CKD CCWs are used to write the record. When the end of 
a record written with a write special CKD CCW is read, the 
direct-access device automatically switches to the next track or 
cylinder so that the entire record is read with one READ CCW. 

The first write special CKD CCW writes the record's count field 
and data on the remainder of the track: the track contains the 
record's first overflow segment. An M/T (multitrack) search ID 
equal CCW orients the channel program to the start of the next 
track or cylinder (that is, immediately after the count field of 
record 0). Subsequent write special CKD CCWs write 
track-overflow record segments that occupy the entire track. 
The record's last segment is written with a write CKD CCW, and 
occupies the first part of the track. 

If the WRITE validity option has been specified, a seek head 
CCW, a set sector CCW, and a search ID equal CCW reposition the 
direct-access device to read the record's first overflow 
segment. Because the overflow segments are written using write 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix A 273 



CC'''' 

CCWI 

CCW2 
CCW3 

CCW4 
CCW5 

CCW6 

CCWl5 

CCWl6 
CCW17 

CCW18 
CCW19 2 

CCW20 2 
CCW21 2 
CCW222 
CCW23 2 

CCW24 

COMMAND CODE 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

special CKD CCWs, the WRITE validity's read key data CCW reads 
all segments of the record: The direct-access device 
automatically switches tracks and cylinders when the end of each 
overflow segment is read. Note that the record's last segment 
is not an overflow segment and does not cause track switching. 

Before this channel program is built and issued, IGGOl9T2 has 
determined that the entire record can fit in the space available 
(that is, it can fit in the extent). When the track-overflow 
record cannot fit in the extent, IGGOl9T2 directs the CCWBLDOT 
routine to build a channel program identical to the one shown 
below, except that all write special CKD and write CKD CCWs are 
replaced with erase CC'~s. IGGOl9T2 wai ts until the ERASE 
channel program completes, then locates the data set's next 
extent. It next recalculates the length of each track-overflow 
segment to be written and directs the CCWBLDOT routine to build 
a channel program that writes the complete record. 

ADDRESS FLAGS COUNT 

WRITE SPCL CKD SAMCNTS CD 8 Write record's first 
overflow segment. 

Buffer l CII 
M/T SRCH ID EQ SAMCNTS C 5 Switch to next 

track. 
TIC CC~13 
WRITE SPCL CKD SAMCNTS CD 8 Write record's 

second overflow 
segment. 

Buffer l CII 

M/T SRCH ID EQ SAMCNTS+32 C 5 Switch to next 
track. 

TIC CCW15 
WRITE CKD SAMCNTS+32 CD 8 Write record's last 

segment. 
Buffer l CII 

SEEK HEAD SAMCNTS3 C 6 Reposition to 
record's first 
segment. 

SET SECTOR4 CCW4+6 CS Sector'll 
SEARCH ID EQ SANCNTS3 C 5 
TIC CCW5 
READ KEY DATA 0 CSK X'7FFF' I~ri te validity 

READ SECTOR4 
NOp2 

check. 
SAMSECT S I 

S 1 

FLAGS 

C = Chain command 

S = SLI 

D = Chain data 

I = Indirect addressing 

Notes: 

1 If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

2 CCW19 through CCW23 are included in the channel program when 
the write validity check option is specified. Otherwise, 
CCWl9 through CCW23 are omitted. 

274 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 



contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

~ The SAMCNTS field is the same one used by the first write 
CCW (CCWl). 

4 The read sector CCW is present if the device includes the 
rotational position sensing feature. Otherwise,' CCW20 is 
omitted and is not replaced with a NOP CCW, and CCW24 is 
replaced with a NOP CCW. 

5 The sector value is placed in the first byte of the CCW's 
count field. The sector value is the SAMSECT value if the 
first overflow record is written by this channel program. 
Otherwise, the sector value is O. 

INPUT CHANNEL PROGRAM SEGMENT 

The input channel program segment is built to serve a request to 
read all segments of a record. The channel program segment 
reads records of data sets opened for UPDAT, INPUT, INOUT, and 
OUTIN processing. Input channel program segments can be chained 
together to read more than 1 record. The input channel program 
segment is built by the CCWBlDIP routine (in module IGG019BX). 
Note: The prolog channel program segment issues a search 10 EQ 
ccw to orient to either: 

• The record to be read, or 

• The record immediately preceding the record to be read 
(search previous logic). 

CCWI 

CCWI 
CCW2 
CCW3 

When the prolog's search CCW locates the record to be read, 
the input channel program segment iSI 

COMMAND CODE 

READ DATAl 
M/T READ COUNT4 
READ SECTOR6 
NOP6 

ADDRESS 

Bufferz 
SAMCNTS5 
SAr1SECT 

FLAGS COUNT 

CIZS~ 

C 8 
S 1 
S 1 

flAGS 

C = Chain command 

S = SLI 

I = Indirect addressing 

Notes: 

I 

Z 

If the record has a key area and the key is to be read (BSAM 
only), the read key data CCW is used instead of the read 
data CCH. 

If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

The SlI flag is set to I if the record format is 
variable-length (that is, RECFM=V). The SlI flag is also 
set to 1 if: 

• The record format is not fixed-length records written as 
standard blocks (RECFM=FS or RECFM=FBS), and 

• The data set is not a track-overflow data set (RECFM=T). 

lY26-3967-0 ~ Copyright IBM Corp. 1977,1985 Appendix A 275 



4 

5 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

CCW2 and CCW3 read the count field and the sector value of 
the next sequential record. (The next record might be on 
the same track, or it might be record 1 on the next track, 
next cylinder, or next extent.) When the user's program 
requests the next input record, the prolog's search CCN can 
locate it--minimizing the number of times search-previous 
logic is required. 

The count field used in this CCW is one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCNs 
in the channel program. 

(, The read sector CCN is present if the device includes the 
rotational position sensing feature. Otherwise, the NOP CCN 
is present. 

When the prolog's search CCN locates the record immediately 
preceding the record to be read and the data set being accessed 
is not a track-overflow data set, the input channel program 
segment is: 

CC\,11 

CCWI 
CCW2 
CCN3 
CCN4 

FLAGS 

COMMAND CODE 

M/T READ COUNT 
READ DATA2 
WT READ COUNT' 
READ SECTOR6 
NOP(' 

C = Chain command 

S = SLI 

I = Indirect addressing 

Notes: 

ADDRESS 

SAMCNTSI 
Buffer o3 

SAMCNTSI 
SAMSECT 

FLAGS COUNT 

C 8 
CPS4 
C 8 
S 1 
S I 

1 The count field used in this CCN if one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCNs 
in the channel program. 

2 If the record has a key area and the key is to be read (BSAM 
only), the read key data CCN is used instead of the read 
data CCN. 

3 If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

4 The SLI flag is set to 1 if the record format is 
variable-length (that is, RECFM=V). The SLI flag is also 
set to I if the record format is not fixed-length records 
written as standard blocks (RECFM=FS). 

5 CCW3 reads the count field of the next sequential record. 
(The next record might be on the same track, or it might be 
record one on the next track, next cylinder, or next 
extent.) Nhen the user's program requests the next input 
record, the prolog's search CCN can locate it--minimizing 
the number of times search-previous logic is required. 

(, 

276 MVS/XA SAM Logic 

The read sector CCN is present if the device includes the 
rotational position sensing feature. Otherwise, the NOP CCW 
is present. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 

J 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Some of the data records of a track-overflow data set are 
written using write special CKD CCHs. Consequently, the 
direct-access device automaticallY switches to the next track 
and cylinder when the end of each track-overflow record segment 
is read with a read data or read key data CCH. When the 
prolog's search CCW locates the record immediately preceding the 
required record (that is, search-previous logic is used) and a 
track-overflow data set is being read, the input channel program 
segment iSI 

CCWI 

CCWI 
CCW2 
CC~13 
CCW4 
CCWS 

COMMAND CODE 

READ KEY DATA 
M/T READ COUNT 
READ DATA2 
M/T READ COUNT' 
READ SECTORE> 
NOPE> 

ADDRESS 

0 
SAMCNTSI 
Buffer'! 
SAMCNTSI 
SAMSECT 

FLAGS COUNT 

CSK X'7FFF' 
C 8 
cxas 4 

C 8 
S 1 
S 1 

FLAGS 

C = Chain command 

S = SLI 

K = Skip 

I = Indirect addressing 

Notes: 

1 The count field used in this CCW is one of the 14 eight-byte 
fields in SAMCNTS (in the SAMB control block), and is 
different from other SAMCNTS count fields used by other CCWs 
in the channel program. 

2 

5 

E> 

If the record has a key area and the key is to be read (BSAM 
only), the read key data CC~I is used instead of the read 
data CCW. 

If the data set resides on a VIO device or if the user's 
buffer is in a V=R address space, the address field contains 
the virtual-storage buffer address and no IDA flag is set. 
Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

The SLI flag is set to 1 if the record format is variable 
length (that is, RECFM=V). 

CCW4 reads the count field of the next sequential record. 
(The next record might be on the same track, or it might be 
record one on the next track, next cylinder, or next 
extent.) When the user's program requests the next input 
record, the prolog's search CCW can locate it--minimizing 
the number of times search-previous logic is required. 

The read sector CCW is present if the device includes the 
rotational position sensing feature. Otherwise, the NOP CCW 
is present. 

An example of a channel program that reads five records when 
search-previous logic is required to locate the first record iSI 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix A 277 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

DATA SET INCLUDES THE TRACK-OVERFLOW OPTION 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCWI READ KEY DATA 0 CSK X'7FFF' Search previous 
track to locate 
first record. 

CCW2 M/T READ COUNT SAMCNTS C 8 
CCW3 READ DATAl Buffer2 CI2S3 Read first record. 
CCW4 WT READ COUNT SAMCNTS+8 C 8 
CCW5 READ DATAl Buffer2 CI zS3 Read second record. 
CCW6 M/T READ COUNT SAMCNTS+16 C )E 

CCWll READ DATAl Bufferz CIzS3 Read last record. 
CC'OU2 M/T READ COUNT SAMCNTS+40 C 8 
CCW13 READ SECTOR" SAMSECT S I 

NOP" S I 

DATA SET DOESN'T INCLUDE THE TRACK-OVERFLOW OPTION 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

CCWI M/T READ COUNT SAMCNTS C 8 Locate and read 
first record. 

CCW2 READ DATAl Bufferz CIzS3 
CCW3 M/T READ COUNT SAMCNTS+8 C 8 
CCW4 READ DATAl Buffer2 CIzS3 Read second record. 
CCW5 M/T READ COUNT SAMCNTS+16 C 8 

CCWIO READ DATAl Buffer2 CI2S3 Read last record. 
CCWII M/T READ COUNT5 SAMCNTS+40 C 8 
CCW13 READ SECTOR" SAMSECT S I 

NOP" S I 

FLAGS 

C = Chain command 

S = SLI 

K = Skip 

I = Indirect addressing 

Notes: 
I 

2 

If the record has a key area and the key is to be read (BSAM only), the read key 
data CCW is used instead of the read data CCW. 

If the data set resides on a VIO device or if the user's buffer is in a V=R 
address space, the address field contains the virtual-storage buffer address and 
no IDA flag is set. Otherwise, the address field contains the address of an IDA 
list and the IDA flag is set. 

The SLI flag is set to 1 if the record format is variable length (that is. 
RECFM=V). When the record format is not variable length. the SLI flag is also 
set to I if I 

• The record format is not fixed-length records written as standard blocks 
(RECFM=FS or RECFM=FBS). and 

• The data set is not a track-overflow data set (RECFM=T). 

The read sector CCW is present if the device includes the rotational position 
sensing feature. Otherwi~e. the NOP CCW is present. 

278 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 

J 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

S Each M/T read count CCW reads the count field of the next sequential record. 
(The next record might be on the same track, or it might be record one on the 
next track, next cylinder, or next extent.) When the user's program requests 
the next input record, the prolog's search CCW can locate it--minimizing the 
number of times search-previous logic is required. 

When the BFTEK=R option is specified to read a BDAM data set and search-previous 
logic is required, an input channel program segment is built to read only the 
record's count field (needed for offset READ processing). This channel program 
segment is not chained to another input channel program segment. 

CCWI 

CCWI 
CCW2 

FLAGS 

COMMAND CODE 

WT READ COUNT 
READ SECTORl 
NOPl 

C = Chain command 

S = SLI 

Note: 

ADDRESS 

SAMCNTS 
SAMSECT 

FLAGS COUNT 

C 8 
S 1 
S 1 

1 The read sector CCW is present if the device includes the 
rotational position sensing feature. Otherwise, the NOP CCW 
is present. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix A 279 



contains Restricted Materials of IBH 
Licensed Materials -- Property of IBM 

APPENDIX B. BSAM (BDAM CREATE) CHANNNEL pROGRAMS 

Channel Program for Erase CCws for BSAM Load Mode, Track Overflow (IGG0191M) 

WITHOUT ROTATIONAL POSITION SENSING 

CCWI 

CCWl! 
CCW2 
CCW3 
CCW4 
CCW5 
CCW6 
CCW7 
CCW8 
CCW9 
CCWIO 

COMMAND CODE 

SCH ID EQ 
TIC 
WRT DATA 
SCH ID EQ 
TIC 
RD DATA 
ERASE 
M/T RD HA 
TIC 
RO ADDR = CCHHOOOO 

WITH ROTATIONAL POSITION SENSING 

CCWI 

CCWll 
CCW2 
CCW3 
CCW4 
CCWS 
CCW6 
CCW7 
CCW8 
CCW9 
CCHlO 
CCWll 
CCW12 
CCIH3 

FlAGS 

COMMAND CODE 

SET SECTOR 
SRCH ID EQ 
TIC 
WRT DATA 
SET SECTOR 
SCH ID EQ 
TIC 
RD DATA 
ERASE 
SET SECTOR 
M/T RD HA 
TIC 
RO ADDR CCHHOOOO 

C = Command Chain 

S = SLI 

K = Skip 

Note: 

ADDRESS 

CCWIO 
:IE-8 
CCWIO 
CCWIO 
:IE-8 

CCW7 

CCWI 

ADDRESS 

SECTOR=O 
CCW13 
:IE-8 
CCW13 
SECTOR=O 
CCW13 
:IE-8 

CCW9 
SECTOR=O 

CCWI 

! Address of CCWI is stored in DCBEOBW. 

FLAGS COUNT 

C 

CS 
C 

CSK 
CS 
C 

5 

7 
5 

8 
8 
5 

FLAGS COUNT 

C 
C 

CS 
C 
C 

CSK 
CS 
C 
C 

1 
5 

7 
1 
5 

8 
8 
1 
5 

280 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977,1985 



Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Channel Program for BSAM Load Mode, Track Overflow (IGG0191Ml 

WITHOUT ROTATIONAL POSITION SENSING 

CCWI COMMAND CODE ADDRESS FLAGS COUNT 

ccm SCH ID EQ IOBSEEK.+3. C 5 
CCW2 TIC 3(-8 
CCW3 WRT CKD IOBDNRCF(1) D 8 
CCW4 
CC~151 TIC/NOpz CC~120 CS CCH20 
CCW6 SCH ID EQ IOBROCNHU C 5 
CC~17 TIC 3(-8 
CCW8 WRT DATA IOBRODAHU C 8 
CCW9 1 READ RO SK 16 
CCW10.! WT SCH ID EQ IOBROCNH2) C 5 
CCW11 TIC 3(-8 
CCW12 WRT CKD IOBDNRCF(2) D 8 
CCW13 
CCW14 1 TIC/NOpz CCW19 CS CCW19 
CCW15 SCH ID EQ IOBROCNH2) C 5 
CCW16 TIC 3(-8 
CClU7 WRT DATA IOBRODAH 2) C 8 
CCW18 1 READ RO (WRITE SK 16 

CHECK) 
CCW19 SEEK cn IOBSEEK.+l. C 6 
CCW20 SCH ID EQ IOBDNRCFU) C 5 
CCW21 TIC 3(-8 
CCW22 RD KD SK KL+DL 

FLAGS 

D = Data Chain 

C = Command Chain 

S = SLI 

K = Skip 

Notes: 
1 CCWs 5, 9, 14, and 18 are omitted if verify is not 

specified. 
z The TIC/NOP at CCW5 and CCW14 is set to NOP if Record 0 is 

to be written on this track. 

CCWs 10 through 18 are repeated as many times as are needed 
to write all segments. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix B 281 



Channel Program for Create BDAM (IGG0199Ll 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

WITHOUT ROTATIONAL POSITION SENSING 

CCI.,. COMMAND CODE ADDRESS FLAGS COUNT 

CCWI SCH ID EQ IOBSEEK+3 C 5 
CCW2 TIC *-8 
CCW3 WRT CKD IOBDNRCF D 8 
CCW4 WRT CKD (WRITE C K+BLKSIZE. 

CHECK)l 
CCW5 SCH ID EQ IOBDNRCF C 5 
CC~16 TIC *-8 
CCW7 RD KD CSK 256 
CCW8 SCH ID EQ IOBROCNT C 5 
CCW9 TIC *-8 
CCWID WRT DATA IOBRODAT C 8 
CCWll SCH ID EQ 2 IOBROCNT C 5 
CCWI2 TIC *-8 
CCW13 RD DATA CSK 1 
CCm4 ERASE,3 * S 8 

FLAGS 

D = Data Chain 

C = Command Chain 

S = SLI 

K = Skip 

Notes: 

1 CCWs 5 through 7 are omitted if write check is not 
specified. 

z CCWs 11 through 13 are always generated for format-U and 
format-V records. or if write check is specified. 

,3 CCWl4 is generated for format-U and format-V records only. 

282 MVS/XA SAM Logic LY26-3967-0 © Copyright IBM Corp. 1977.1985 

J 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Channel Program for Create BDAM (IGG0199Ll 

WITH ROTATIONAL POSITION SENSING 

CC~/I COMMAND CODE ADDRESS FLAGS COUNT 

CCW1 SET SECTOR SECTORI C 1 
CCI~2 SCH ID EQ IOBSEEK+3 C 5 
CCW3 TIC 3(-8 
CC~14 WRT CKD IOBDNRCF D 8 
CCW5 WRT CKD C KL+BLKSIZE 
CCW6 RD SECTOR (WRITE SECTOR2 C 1 

CHECK)l 
CCW7 SET SECTOR SECTOR2 C 1 
CCW8 SCH ID EQ IOBDNRCF C 5 
CCW9 TIC 3(-8 
CCWIO RD KD CSK 256 
CCWll SET SECTOR SECTOR=O C 1 
CCW12 SCH ID EQ IOBROCNT C 5 
CCW13 TIC 3(-'8 
CCW14 WRT DATA IOBRODAT C 8 
CCW15 SET SECTORz SECTOR2 C 1 
CCW16 SCH ID EQ IOBROCNT C 5 
CCW17 TIC 3(-8 
CCW18 RD DATA CSK 1 
CCW19 ERASE3 3( S 8 

flAGS 

D = Data Chain 

C = Command Chain 

S = SLI 

K = Skip 

Notes: 
1 CCWs 7 through 10 are omitted if write check is not 

specified. 
Z 

3 

CC~ls 15 through 18 are always generated for format-V and 
format-U records or if write check is specified. 

CCW19 is generated for format-U and format-V records only. 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Appendix B 283 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Channel Program for BSAM Load Mode, Track Overflow (IGG0199M) 

WITH ROTATIONAL POSITION SENSING 

CCWI 

CCH1 
CCW2 
CCW3 
CCW4 
CCW5 
CCW6 l 

CCH7 
CCW8 
CCW9 
CCW10 
CCH11 
CCW12 
ccm3 
CCH14 
CCW15 
cc~n6 
CCm7 l 

CCW18 
ccm9 
CCH20 
CCW21 
CCW22 
CCI-I23 
CCW24 
CCW25 
CCW26 
CCW27 
CCW28 
CCl~29 

FlAGS 

COMMAND CODE 

SET SECTOR 
SCH ID EQ 
TIC 
WRT CKD 
00 
TIC/NOP2 
SET SECTOR 
SCH ID EQ 
TIC 
WRT DATA 
SET SECTOR 
READ RO 
WT SCH ID EQ 
TIC 
WRT CKD 

TIC/NOP2 
SET SECTOR 
SCH ID EQ 
TIC 
WRT DATA 
SET SECTOR 
READ RO 
RD SECTOR 
SEEK CYl 
SET SECTOR 
SCH ID EQ 
TIC 
RD KD 

D = Data Chain 

C = Command Chain 

S = SLI 

K = Skip 

Notes: 

ADDRESS 

SECTOR1 
IOBSEEK+3 
3(-8 
IOBDNRCF(1) 

CCW24 
SECTOR=O 
IOBROCNH1) 
3(-8 
IOBRODAH 1) 
SECTOR=O 

IOBROCNH2) 
*-8 
IOBDNRCF(2) 

CCW24 
SECTOR=O 
IOBROCNH2) 
*-8 
IOBRODAH2) 
SECTOR=O 

SECTOR2 
IOBSEEK+l 
SECTOR1 
I OBDNRCFC 1) 
3(-8 

FLAGS COUNT 

C 
C 

D 

CS 
C 
C 

C 
C 
SK 
C 

D 

CS 
C 
C 

C 
C 
SK 
C 
C 
C 
C 

SK 

1 
5 

8 

CCW24 
1 
5 

8 
1 
16 
5 

8 

CCW24 
1 
5 

8 
1 
16 
1 
6 
1 
5 

Kl+Dl 

CCWs 11, 12, 22, 23, and 25 through 29 are omitted if verify 
is not specified. 

2 The TIC/NOP at CCW6 and CCW17 is set to NOP if Record 0 is 
to be written on this track. 

284 MVS/XA SAM logic lY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

INDEX 

ABEND codes cross-reference table 246 
abnormal-end appendages 94 
access conditions for selecting modules 

See module selector 
access method options 

See module selector 
access method save area for user 
totaling 241 

address conversion routines 
full-to-relative address 162 
relative-to-full address 162 

ANS control character 
See control character 

ANSI 
See also ISO/ANSI 
and BUFFOF=L not specified 137 

appendages 
introduction to 68 
module selector 72 
types 

abnormal-end 94 
channel-end 82-94 
EXCPVR Processing 73 
Pagefix 70 
PCI 94 
SIO 70 

appendixes 
See Contents 

ASCII block prefix 3 
associated data set processing 

See also 3505/3525 
EOB modules 49 

associated dataset processing, EOB 
modules 

See 3505/3525 
asynchronous-error-processing routines 

track overflow 67 
3211 Printer 67 

backspace 
BSP routine 157 

basic partitioned access method 
See BPAM 

basic sequential access method 
See BSAM 

BDAM-create (WRITE-load) 
CHECK routines 109 
stage 2 OPEN executors 128 
Write modules 97 

BDW (block descriptor word) 35-37 
BLDL or FIND routines 

general description 161 
in TRR 181 

block descriptor word (BDW) 35-37 
block prefix, ASCII 3 
blocked records 

GET routines 

simple-buffering 3 
update-mode (PUTX) 20 

PUT routines 
simple-buffering 27 
update-mode (PUTX) 38 

BPAM 
description of routines 116 
flow of control 196 
introduction to 1, 116 
relation to BSAM routines 1, 116 
relation to processing program 1, 

116 
residence of 117 
routines for 

convert MBBCCHRR 122, 162 
convert TTR 122, 162 
FIND 161 
STOW 158 

BSAM 
control blocks 242 
flow of control 196 
introduction to 1, 97 
module selector for 

appendages 68 
Check 106 
Control 108 
overview 187 
Read 98 
Write 98 

routines 
appendages 157 
Check 106 
Control 110 
end-of-block 38 
Read 97 
synchronizing-and-error 

processing 59 
Write 97 

BSAM/QSAM channel programs 
(Appendix B) 261 

BSP 
BSAM overview 187 
routine 157 

buffer alignment 148 
buffer empty (GET routines) 

simple-buffering 3 
update-mode 20 

buffer pool management 
FREEBUF (macro expansion) 150 
FREEPOOL (macro expansion) 150 
GETBUF (macro expansion) 150 
GETPOOL routine 148 
introduction 1, 148 

buffer ready for emptying (PUT routines) 
simple buffering 27 
update mode, PUTX 20, 38 

buffering techniques 
GET routines 3 
PUT routines 27 

BUILD 
buffer pool management routine 148 
common access method routine 187 

BUILDRCD 
buffer pool management routine 150 
QSAM overview 187 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Index 285 



card punch, 3525 
See 3505/3525 

card reader 8 
See also 3505/3525 
GET routines 10 

chained channel-program scheduling 
appendages 

PCI, channel end, abnormal 94 
end-of-block routines 135 
lOB prefix 49 
joining 

description of end-of-block 
routines 49 

introduction to 49 
Note/POINT rou·tines 114 
parting (disconnecting) 
stage 2 OPEN executors 
stage 3 OPEN executors 

94 
128 
135 

channel programs 
BSAM/QSAM (Appendix 
update (Appendix C) 

channel-end appendages 
character conversion 

B) 261 
280 
82 

See paper tape character conversion 
routines 

CHECK macro instruction 
BSAM/BPAM 189 
Check modules 107 

CHECK routines 
BSAM/BPAM 189 
descriptions 106 

CLOSE executors 141 
CLOSE macro instruction 

SAM overview 187 
CNTRL macro instruction 

BSAM control routines 110 
QSAM control routines 95 

common routines 
appendages 68 
buffer pool management 148 
executors 118 
SAM overview 187 

control blocks, relation of 
BSAM 242 
QSAM 242 

control character, end-of-block routines 
chained scheduling 47 
normal scheduling 40 

control modules 
selected and loaded by OPEN 

executor 109 
Control routines 

BSAM 110 
QSAM 95 

convert full-to-relative address 
routine 162 

convert record number to sector value 
routine 162 

convert relative-to-full address 
routine 162 

create-BDAM 
See BDAM-create 

cross-reference table, ABEND codes 246 
CSECT names (as listed in the 
directory) 206 

286 MVS/XA SAM Logic 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

data areas 
access method save area 

for user totaling 241 
BSAM control blocks 242 
QSAM control blocks 242 

data operating mode 
Get module 5, 18 
Put module 27, 35 

data protection image, DPI 48 
See also 3505/3525 
EOB modules 40 

DCB relocation to protected work 
area 118 

decision tables 
See module selector 

DEVTYPE SVC routine 
general description 150, 154 
in TRR 181 

diagrams 187-205 
directory module names 206-208 
DMABCOND macro 118 
DOS embedded checkpoint records 

See OS/DOS tape compatibility 
DPI, data protection image 48 

See also 3505/3525 
EOB modules 49 

dummy data set routine 117 

empty buffer 
GET routines 

simple-buffering 3-19 
update-mode 2() 

PUT routines 
simple-buffering 27 
update-mode, PUTX 21 

end-of-block condition 
See end-of-block routines 

end-of-block routines, QSAM/BSAM 
chained channel-program 
scheduling 47 

flow of control 194 
INOUT or OUTIN 38 
PUT routines 28 
track overflow 57 

EODAD routine 
dummy data set 117 

EOV (end-of-volume) routine 
BSAM Flow of Control 199 

erase routine, track overflow ISS 
error option implementation 

SYNAD routines 164 
synchronizing and error processing 

routines 59 
EXCP processing with the 3800 printing 
subsystem (for the 3800 only) 40 

EXCPVR processing 73 
execution of channel programs 

scheduled by chaining (PCI 
appendage) 94 

executors, SAM 
control sequence 

Close 141 
OPEN executor 117 

flow of control for Open 190 
introduction to 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

general description 117 
Open 119 

relation to Open/Close/EOV 
support 117 

executors, SETPRT 
return codes 251 

executors, SETPRT (for the 3800 Printing 
Subsystem only) 168 

selection of (for the 3800 Printing 
Subsystem only) 168 

work area (for the 3800 Printing 
Subsystem only) 218 

FIND macro instruction 
C option (macro expansion) 161 
D option routine 161 

flow of control, diagrams for 
BPAM routines 196 
BSAM routines 196 
EOV executors 

BSAM 199 
QSAM 198 

FEOV executor, QSAM 200 
JES Compatibility Interface routines 

general description 202 
QSAM routines 194 
SAM OPEN executors 191 

force close executors 146 
forward space 

control module 112 
FREEBUF macro instruction 

BSAM/BPAM 187 
macro expansion 150 

FREEPOOL macro instruction 
macro expansion 150 
SAM overview 187 

full buffer 
GET routines 

simple-buffering 3 
update-mode 20 

PUT routines 
See buffer ready for emptying 

GET macro instruction 
GET routines 3 
introduction to GET routines 3 

GET routines 
buffering techniques 4 
introduction to 4 
simple-buffering 4 
update mode 20 

GETBUF macro instruction 
BSAM/BPAM 187 
macro expansion 150 

GETPOOl 
buffer pool management routine 148 
common access method routine 187 

I/O interruption 
BPAM flow of control 196 
QSAM flow of control 194 
SAM overview 187 

IGGSPW--SETPRT work area (for the 3800 
Printing Subsystem only) 215 

IHASPP--SETPRT parameter list (for the 
3800 Printing Subsystem only) 237 

IMGLIB SVC routine 
general description 155 
in TRR 195-197 

INOUT mode 
end-of-block routines 38 
stage 2 OPEN executors 128 

input processing routine, QSAM 19 
lOB (input/output block) SAM prefixes 

comparison for normal end 
chained-scheduling 47 

description 47 
ISO/ANSI/FIPS 

abend 139 
EOB 7, 8 
fixed block format 4 
padding character 11, 12 
segment control word 3, 35, 37 

conversion 14, 17, 28, 50, 63, 
107 

spanned record format 3, 14, 17, 18, 
35, 37, 40, 50, 63, 107 

variable length spanned records 27 
variable spanned record format 132 

ISO/ANsa 
segment control word 

conversion 18, 40 

JES Compatibility Interface Control 
See also SAM-SI 
BSAM processing module (SYSOUT) 110 
Check module (SYSIN) 106 
Close processing 201 
Open processing 201 
Overview 202 
QSAM processing module 15 

JES Compatibility Interface Control (See 
also SAM-SI) 203 

logical record interface 
Get module 14 
Put module 32 

lY26-3967-0 © Copyright IBM Corp. 1977,1985 Index 287 



macro expansion 
FIND (C option) 161 
FREEPOOL 150 
GETBUF 150 
PRTOV 95 

MBBCCHRR, convert address routine 162 
message display module 
module name directory 206 
module selector 

appendages 72 
Check modules 106 
CLOSE executors 141 
Control routines 

BSAM III 
QSAM/BSAM 95 

end-of-block modules 
chained scheduling 49 
ordinary 40 
track overflow 57 

error processing modules 67 
Get modules 

update-mode 21 
OPEN executors 

stage 1 119 
stage 2 129 
stage 3 136 

Put modules 
simple-buffering 26 
update-mode, PUTX 21 

synchronizing and error processing 
modules 61 

Write-modules 98 
module selector table 
module type 

(as listed in the directory) 206 

name lmodule) directory 206 
"'taW blJffer 

See empty buffer PUT routines; full 
buffer GET routines 

new buffer segment (PUT routines) 
simple-buffering 27 
update-mode (PUTX) 20 

next record (GET routines) 
simple-buffering 4 
update-mode 20 

non-rotational position sensing 
indicator 

See rotational position sensing, OPEN 
executors 

NOTE macro instruction 
BSAM control routines liD 
BSAM/BPAM overview 187 

NOTE/POINT routines 
BSAM control routines 110 
chained scheduling 115 
track overflow 115 
update mode 115 

NOTE, tape, relative addressing 

288 MVS/XA SAM Logic 

contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

OPEN executors, SAM 
for the 3800 Printing Subsystem (for 
the 3800 only) 125 

introduction to 119 
stage 1 119-127 
stage 2 128 
stage 3 135 

OPEN macro instruction 
general flow 190 
SAM overview 187 

OPTCD=J and the 3800 printer (for the 
3800 only) 51 

OPTCD=J and the 3800 printing subsystem 
(for the 3800 only) 42, 43, 51 

OPTCD=Z 
See search direct 

optical mark read 
See 3505/3525 

optional, access method 
See module selector 

as/DOS tape compatibility 
appendages 85 
BSAM control routines 112 
GET routines 5 
synchronizing-and-error processing 

routines 61 
OUTIN mode 

end-of-block routines 38 
stage 2 OPEN executors 128 

overview, SAM 187 

Pagefix Appendage 70 
parallel data address block 19 
parallel input processing routine 19 
parting chained channel-programs, 
appendage 94 

PCI appendages 94 
POINT macro instruction 

BSAM control routines 110 
BSAM/BPAM overview 187 

POINT routines 
See Note/POINT routines 

POINT, tape, relative addressing 
priming input buffers 

introduction to 
$imple-buffering 5 
update-mode 20 

stage 3 OPEN executor 135 
printer 

See 3211 printer, 1403 printer, or 
3505/3525 

printer overflow macro expansion 
(PRTOV) 95 

problem determination 153 
processing program 

relation to SAM routines 187 
using BPAM routines 116 

program controlled interruption, 
appendages 94 

program organization, diagrams for 
BPAM routines 189 
BSAM routines 189 
OPEN executors 190 
QSAM routines 188 
SAM routines 187 

LY26-3967-0 ~ Copyright IBM Corp. 1977,1985 

J 



Contains Restricted Materials of IBM 
Licensed Materials -- property of IBM 

SAM-SI 203 
protected work area, DCB relocation 
to 118 

PRTOV macro instruction 
appendage 95 
BSAM 110 
end-of-block routines 42 
QSAM 95 

PUT macro instruction 
introduction to PUT routines 25 
PUT routines 25 

PUT routines 
simple-buffering 28 
update-mode (PUTX) 38 

PUT X macro instruction 
overview 187 
PUT routi nes 25 

PUT X routine 
simple-buffering 25 
update mode 

QSAM 

GET routine 21 
PUTX 38 

control blocks 242 
control routines 95 
flow of control 191, 194 
introduction to 1, 3 
module selector for 

simple-buffering, Get 7 
simple-buffering, Put 25 
update-mode, Get 22 
update-mode, PUTX 22 

overview 187 
routines 

appendages 68 
Control 95 
end-of-block 38 
Get 3 
Put 25 
synchronizing~and-error-processing 

routines 59 
queued sequential access method 

See QSAM 

RCE, read column eliminate 
See 3505/3525 

read column eliminate 
See 3505/3525 

READ macro instruction 
BSAM/BPAM 189 
Read routines 97 

Read routines 
BSAM/BPAM 189 
descriptions 97 

readback mode, GET routines 7, 10-13 
record descriptor word (RDW) 15, 18 
record number conversion to sector 
value 162 

RElSE macro instruction 
GET routines 4 
overview 187 

RElSE routines 
description (GET routines) 4 

simple-buffering 4 
update mode 21 

return codes from SETPRT executors 251 
rotational position sensing (RPS) 

appendages 

RPS 

channel-end 82, 83 
end-of-extent 72 
PCI 94 
SID 79 

channel programs (Appendixes 
B,C,) 261 

GET routines 
update mode 20 

OPEN executors 
introduction 118 
Read/WRITE routines 97 
stage 2 130 
stage 3 134 

See rotational position sensing 

SAM 
common routines 

appendages 68 
executors 117 

effect of BlDlTAB 1 
force close executor 146 
introduction to 1 
overview 187 

SAM-SI (SAM SUbsystem interface) 
QSAM 

force close executor 146 
GET routi ne 15 
introduction to 1 
PUT routine 33 
synchronizing-and-error-

processing routine 63, 66 
SAM 

CHECK routines 107-110 
Read, WRITE routines 107 

scheduling 
See chained channel-program 
scheduling; end-of-block routines 

search direct (OPTCD=Z) 
appendages 72 
channel programs (Appendix B) 261 
stage 1 OPEN executors 121 
stage 3 OPEN executors 140 

search-previous auxiliary storage 
addressing 20 

seek address in QSAM update mode 21 
segment descriptor word (SDW) 

GET routines 14-19, 25 
PUT routines 36 

sequential access method executors 
See executors, SAM 

sequential access methods 
See SAM 

SETDEV executor 168 
SETPRT 

executors 
return codes 251 

executors (for the 3800 Printing 
Subsystem only) 

general description 176 
selector (for the 3800 Printing 

Subsystem only) 168 
in TRR 180-185 

lY26-3967-0 @ Copyright IBM Corp. 1977,1985 Index 289 



parameter list (for the 3800 Printing 
Subsystem only) 237 

QSAM/BSAM overview 187 
routines 187-190 
work area, 3800 Printing Subsystem 
area in (for the 3800 Printing 
Subsystem only) 218 

simple buffering 
GET routines 4 
PUT routi nes 28 

SID appendages 70 
space magnetic tape 

BSP routine 157 
Control routine 112 

spanned records 
GET routines 14 
PUT routines 32 

stage 1 OPEN executors 
descriptions 118 
flow of control 191 
mo~~le selector 119 

stage 2 OPEN executors 
descriptions 128 
flow of control 192 
module selector 129 

stage 3 OPEN executors 
descriptions 135 
flow of control 193 
module selector 136 

start I/O (SIO) appendages 70 
STOW routines 158 

in TRR 181 
SVC routines 

descriptions 154 
directory entries 206 

SYNAD routine, FEOV executor 
QSAM operation for output data 
set 200 

SYNAD/EOV executor 
flow of control (overview) 

BSAM 197 
QSAM 198 

SYNADAF/SYNADRLS routines 
general description 163 
in TRR 149, 182 

synchronize tape buffered data 
synchronizing-and-error-processing 

routines 
asynchronous-error-processing 66 
introduction to 59 
QSAM 61 
track overflow 

general description 59 
3211 printer 
asynchronous-error-processing 67 

tape compatibility, OS/DOS 
appendages 85 
Control routines 112 
GET routi nes 5 
synchronizing-and-error-processing 

routines 64 
task recovery routines (TRR) 

SVC 105--IMGLIB 185 
SVC 18--BLDL or FIND 180 
SVC 21--STOW 181 
SVC 24--DEVTYPE 181 
SVC 25--track overflow erase 181 

290 MVS/XA SAM Logic 

Contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

SVC 68--SYNADAF/SYNADRLS 5 
SVC 69--BSP 183 
SVC 81--SETPRT 183 

track balance routine 
general description 155 
in TRR 181 

track erase routine 155 
track overflow 

abnormal end appendage 94 
create-BDAM write routine 103 
end-of-block routine 57 
Erase routine 156 
error processing routine 67 
in TRR 181 
introduction to 57 
stage 2 OPEN executors 129, 131 

TRUNC macro instruction 
overview 187 
PUT routi nes 28 

TRUNC routi nes 
description (PUT routines) 29 
simple-buffering 28 

TTR, convert address routine 162 

UCS feature, printer 
stage 1 OPEN executors 119 

unblocked records 
GET routines 

simple-buffering 4-5 
update mode 20 

PUT routines 
simple-buffering 27 

universal character set 
See UCS feature, printer 

update channel programs (Appendix 
C) 280 

update mode 
appendages 

end-of-extent 68 
SIO 78-79 

CHECK routine 108 
GET routines 20 
Note/POINT routine 115 
PUTX routine 38 
Read/WRITE routine 100 
schedule buffer (empty-and-refill or 
refill only) 20-22 

stage 2 OPEN executors 
stage 3 OPEN executors 
synchronizing routine 

130 
136 

61 
user totaling facility 

end-of-block modules 57 
stage 1 OPEN executors 119 

WRITE macro instruction 
BSAM/BPAM 189 
WRITE routines 97 

WRITE routines 
BSAM/BPAM 189 
descriptions 97 

WRITE-load 
See BDAM-create 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 



contains Restricted Materials of IBM 
Licensed Materials -- Property of IBM 

Numerics 

1403 Printer 
OPEN executor, stage 1 119 

2540 card read punch 
consideration of DCBBUFNO field 125 

3211 Printer 
asynchronous-error-processing 

module 67 
OPEN executor, stage 1 119 
OPEN executor, stage 3 138 
synchronizing module 64 

3505/3525 (card reader, card punch) 
CLOSE executors 143 
control routine 96 

EOB modules 40 
line control 96 
OPEN executor, stage 1 119 
OPEN executor, stage 2 129, 133 
print (EOB module) 44 

3525 card punch 
See 3505/3525 

3800 printing subsystem (for the 3800 
only) 

and EXCP (for the 3800 only) 42, 43 
and OPTCD=J (for the 3800 only) 42, 

43, 51, 52 
3800 Printing Subsystem (for the 3800 
Printing Subsystem 

area (for the 3800 Printing Subsystem 
only) 218 

LY26-3967-0 © Copyright IBM Corp. 1977,1985 Index 291 





Contains Restricted Materials of IBM 
licensed Materials-Property of IBM 
(Except for Customer·Originated Materials) 
© Copyright IBM Corp. 1977,1985 
LY26·3967·Q 

MVS/XA SAM Logic 

Reader's 
Comment 
Form 

This manual is part of a library that serves as a reference source for systems analysts, programnlers, and operators of 
IBM systems. You may use this form to communicate your comments about this publication, its organization, or 
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way 
it believes appropriate without incurring any obligation to you. 

Your comments will be sent to the author's department for whatever review and action, if any, are deemed 
appropriate. 
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please dir,ct any 
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to 
the IBM branch office serviRg your locality. 

Ust TN ... here: 

If you have applied any technical newsletterslTNLa) ~o this book, please list them here: 

Last TNL ________ . 

Previous TNL _______ . 

Previous TNL ______ , 

Pold on two lines, tape, and maiL No po.tap stamp necesar.y if mailed in the U.S.A. 
(Elsewhere, an IBM office or representative will be happy to forward your comments or you 
may mail directly to the addre •• in the Edition Notice on the back of the title page.) Thank 
you for your cooperation. 



LY26-3967-0 

Reader's Comment Form 

FOld and tape Please do not staple FOld and tape 

' ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • yo ••••••••••••••••••••••••••••••••••••••• 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

I BM Corporation 
P.O. Box 50020 
Programming Publishing 
San Jose, California 95150 

II II NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

.......................................... '~' ..................................................................................................... . 

Fold and tape Please do not steple Fo Id and tape 

-~------- - ------- -. ---- - - ------------_. -
II> 






