
Program Product 

"Restricted Materials of IBM" 
A" Rights Reserved 
Licensed Materials - Property of IBM 
OCopyright IBM Corp. 1987 
LY28-1735-0 
File No. S370-36 

M VS/Extended Architecture 
System Logic Library: 
Recovery Termination 
Management 

M V 51 System Product: 

J ES3 Version 2 
J ES3 Version 2 

--..-. ... --.-. .... - ---..--~-. .... - --.. ------- ---------_ .. ------ - .. -

5665-291 
5740-XC6 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This publication supports MVS/System Product 
Version 2 Release 2.0, and contains information 
that was formerly presented in 
MVS/Extended Architecture System logic library 
Volume 11, lY28-1246-2, which applies to 
MVS/System Product Version 2 Release 1.7. 
See the Summary of Amendments for more information. 

First Edition (June, 1987) 

This edition applies to Version 2 Release 2.0 of MVS/System 
Product 5665-291 or S740-XC6 and to all subsequent releases 
until otherwise indicated in new editions or technical 
newsletters. Changes are made periodically to the information 
herein; before using this publication in connection with the 
operation of IBM systems, consult the latest IBM System/370 
Bibliography, GC20-0001, for the editions that are applicable 
and current. 

References in this publication to IBM products, programs or 
services do not imply that IBM intends to make these available 
in all countries in which IBM operates. Any reference to an IBM 
program product in this publication is not intended to state or 
imply that only IBMls program product may be used. Any 
functionally equivalent program may be used instead. 

Publications are not stocked at the address given below. 
Requests for IBM publications should be made to your IBM 
representative or to the IBM branch office serving your 
locality. 

A form for readers l comments is provided at the back of this 
publication. If the form has been removed, comments may be 
addressed to IBM Corporation, Information nevelopment, 
Department D58, Building ~2l-2, PO Box 390, Poughkeepsie, N.Y. 
12602. IBM may use or distribute whatever information you 
supply in any way it believes appropriate without incurring any 
obligation to you. 

(c) Copyright International Business Machines Corporation 1987 



nRestricted Materials of IBM" 
Licensed Materials - Property of IBM 

PREFACE 

The MVS/Extended Architecture System Logic Library is intended 
for people who debug or modify the MVS control program. It 
describes the logic of most MVS control program functions that 
are performed after master scheduler initialization completes. 
For detailed information about the MVS control program prior to 
this point, refer to MVS/Extended Architecture System 
Initialization Logic. For general information about the MVS 
control program and the relationships among the components that 
make up the MVS control program, refer to the MVS/Extended 
Architecture Overview. To obtain the names of publications that 
describe some of the components not in the System Logic Library, 
refer to the section Corequisite Reading in the Master Preface 
in MVS/Extended Architecture System Logic Librarya Master Table 
of Contents and Index. 

HOW THE LIBRARY IS ORGANIZED 

SET OF BOOKS 

The System Logic Library consists of a set of books. Two of the 
books provide 1nformat10n that is relevant to the entire set of 
books a 

1. The MYS/Extended Architecture System Logic Librarya Master 
Table of Contents and Index contains the master preface, the 
master table of contents, and the master index for the other 
books in the set. 

2. The MVS/Extended Architecture System Logic Librarya Module 
Descriptions contains module descriptions for all of the 
modules in the components documented in the System Logic 
Library and an index. 

Each of the other books (referred to as component books) in the 
set contains its own table of contents and index, and describes 
the logic of one of the components in the MVS control program. 

ORGANIZATION OF THE COMPONENTS 

Most component books contain information about one component in 
the MVS control program. However, some component books (such as 
System logic libraryz Initiator/Terminator) contain more than 
one component if the components are closely related, frequently 
referenced at the same time, and not so large that they require 
a book of their own. 

A three or four character mnemonic is associated with each 
component book and is used in all diagram and page numbers in 
that book. For example, the mnemonic ASM is associated with the 
book MYS/Extended Architecture System logic librarya Autiliary 
Storage Management. All diagrams in this book are iden ified as 
Diagram ASM-n, and all pages as ASM-n, where n represents the 
specific diagram or page number. Whenever possible, the 
existing component acronym is ~sed as the mnemonic for the 
component book. The Table of Book Titles in the Master Preface 
in MVS/Extended Architecture System lo9ic librarya Master Table 
of Contents and Index lists the book t1tles, the components 
included in each book (if a book contains more than one 
component), the mnemonics for the books, and the order number 
for each book. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Preface iii 



HOW TO USE THE LIBRARY 

"Restricted Materials 0" IBM" 
Licensed Materials - PrDperty D" IBM 

To help you use this library efficiently, the following topics 
cover 

o How to find information using book titles and the master 
index 

• What types of information are provided for each component 
• How to obtain further information about other books in the 

System Logic library 

FINDING INFORMATION USING THE BOOK TITLES 

As you become familiar with the book titles, MVS component names 
and mnemonics, and the book contents, you will be able to use 
the System logic Library as you would an encyclopedia and go 
directly to the book that you need. We recommend that you group 
the books in alphabetical order for easy reference, or, if you 
are familiar with MVS, that you to group the books by related 
functions. 

The Table of Book Titles in the Master Preface in MVS/Extended 
Architecture System logic library: Master Table of Contents and 
~ contains a list of book titles and mnemonics. It provides 
a quick reference to all the books, and their corresponding 
components, in the System Logic library. 

FINDING INFORMATION USING THE MASTER INDEX 

If you are not sure which book contains the information you are 
looking for, you can locate the book and the page on which the 
information appears by using the master index in System losic 
library: Master Table of Contents and Index. For the component 
books, the page number in an index entry consists of the 
mnemonic for the component and the page number; for System logic 
Library: Module Descriptions, the page number consists of the 
mnemonic "MODn and the page number. 

For example: 

ASM-12 

MOD-245 

refers to MVS/Extended Architecture System logic 
library: Auxiliary storage Management, page ASM-12. 

refers to MVS/Extended Architecture System logiS 
library: Module Descriptions, page MOD-24S. 

INFORMATION PROVIDED FOR MOST COMPONENTS 

The following information is provided for most of the components 
described in the System logic library. 

1. An introduction that summarizes the component's function 

2. C"ntrol block over.,iew figures that show significant fields 
and the chaining structure of the compoflent's control blocks 

3. Process flow figures that show control flow between the 
component's object modules 

4. Module information that describes the functional 
organization of a program. This information can be in the 
form of: 

• Method-of-Operation diagrams and extended descriptions. 

• Automatically-generated prose. The automated module 
information is generated from the module prologue and 
the code itself. It consists of three parts: module 
description, module oparation summary, and diagnostic 
aids. 

iv MVS/XA SLLz Recov Term Mgmt LY28-1735-0 ec) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FURTHER INFORMATION 

S. Module descriptions that describe the operation of the 
modules (the module descriptions are contained in System 
Logic Librarys Module Descriptions) 

Some component books also include diagnostic techniques 
information following the Introduction. 

more information about the ~~~~~~~~~~~ .. 
order numbers of the books 
Master Preface ~~S~/~~t~e~~~~~~~ZL~~~~~~~ 

a C 

LY28-l73S-0 (c) Copyright IBM Corp. 1987 Preface v 



vi MVSlXA SLL. RecDv Term Mgmt 

"Restricted Materials of IBM" 
Licensed Materials - Propert¥ of IBM 

LY28-173S-0 ec) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property o~ IBM 

CONTENTS 

RTM -- Recovery Termination Management RTM-l 

Introduction RTM-3 
Addressing and Residency of RTM Modules RTM-3 
RTMI Functions RTM-3 

SLIH Mode Processing RTM-4 
Service Mode Processing RTM-4 
Hardware Error Mode RTM-5 

RTM2 Functions RTM-5 
Normal Termination RTM-6 
Abnormal Termination RTM-6 

Address Space Termination RTM-7 
RTM Support Functions RTM-8 

STAE Services RTM-8 
SETFRR RTM-8 
Initializing FRR Stacks RTM-8 
Recording Services RTM-9 
The SLIP Command RTM-9 

SPIE/ESPIE Processing RTM-IO 

RTM Diagnostic Techniques RTM-ll 
SLIP Processor Debugging Aids RTM-li 

SLIP Command Processor Recovery RTM-ll 
SLIP Processor Recovery RTM-li 
PER Activation/Deactivation Recovery RTM-12 

Control Block Overview RTM-17 

Process Flow RTM-21 

Method o~ operation RTM-53 
RTMI Overview RTM-57 
RTM2 Overview RTM-59 
IEAVESPI - SPIE/ESPIE Processing RTM-64 
IEAVSTAO - STAE/ESTAE Service Routine RTM-70 
IEAVTASI - Recover Task Processing RTM-76 
IEAVTESP - SPIE/ESPIE Processing RTM-80 
IEAVTFMT - RTM Control Block Formatter RTM-94 
IEAVTGLB - SLIP Global PER Activation/Deactivation 
Routine RTM-I06 

IEAVTJBN - SLIP PER Select Interface Routine RTM-114 
IEAVTLCL - SLIP Local PER Activation/Deactivation 
Routine RTM-1l6 

IEAVTMMT - Address Space Purge Processing RTM-126 
IEAVTMMT - Address Space Purge Resource Managers RTM-128 
IEAVTMTC - Address Space Termination Processing RTM-138 
IEAVTPER - PFLIH/SLIP and PFLIH/Space Switch Handler 
Interface RTM-142 

IEAVTPVT - SLIP PVTMOD Load/Delete 
IEAVTREF - LOGREC Recording Buffer 
IEAVTREM - Record Resource Manager 
IEAVTRER - Record Request Routine 
IEAVTRET - Recording Task RTM-193 

Exit Routine RTM-146 
Formatter RTM-166 

RTM-176 
RTM-181 

IEAVTRMC - CALLRTM TYPE=RMGRCML Processor RTM-204 
IEAVTRRR - RTMl FRR Routines RTM-206 
IEAVTRSO - RTMI Service Routines RTM-218 
IEAVTRTC - Synchronize Failing Tasks RTM-224 
IEAVTRTD - RTMI ASID Service Routine RTM-226 
IEAVTRTE - Recursion Processor 2 RTM-232 
IEAVTRTE - RTM2 Exit Processing RTM-234 
IEAVTRTF - RTMl Super FRR Retry Routine RTM-240 
IEAVTRTM - Processing SLIH Requests RTM-244 
IEAVTRTM - Reschedule RTMI RTM-248 
IEAVTRTM - System Directed Task Termination RTM-252 
IEAVTRTM - Reschedule Locally Locked Task or SRB RTM-254 
IEAVTRTM - RTMl Clean-up Processing RTM-256 
IEAVTRTR - RTMl Recursion Processing RTM-258 
IEAVTRTS - RTM FRR Processing Module RTM-262 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Contents vii 



"Restricted Materials 0" IBMI • 

Licensed Materials - Property 0" IBM 

IEAVTRTV - RTM PSACSTK Verfication Module RTM-268 
IEAVTRTI - RTMI Initialization RTM-274 
IEAVTRTI - Address Termination on a DAT Error RTM-280 
IEAVTRTI - RTMI Exit Processing RTM-284 
IEAVTRT2 - RTM2 Initialization RTM-286 
IEAVTRT2 - Recursion Processor 1 RTM-288 
IEAVTRlA - RTMl Failing Instruction Processor RTM-290 
IEAVTQlC - Service Module for IEAVTRTS RTM-30l 
IEAVTRlF - RTMl FRR Routing Pre-Processor ~TM-3l2 
IEAVTRIG - RTMl GTF Processing Module RTM-318 
IEAVTRlI - RTMl General SDWA Initialization Module RTM-322 
IEAVTRIN - FRR Stack Initialization RTM-332 
IEAVTRIR - RTMI RECORD Interface Module RTM-336 
IEAVTRlS - RTMl SDWA Allocation Module RTM-342 
IEAVTRlX - RTMI CMSET Interface Module RTM-349 
IEAVTRlO - RTM Mainline SLIH Mode Processing RTM-354 
IEAVTR2A - RTM2 Failing Instruction Processor RTM-370 
IEAVTSCB - SCD FREEMAIN Routine RTM-374 
IEAVTSFR - SETFRR RTM-378 
IEAVTSIG - SLIP PER RISGNL Routine RTM-380 
IEAVTSKT - Task Purge Processing RTM-382 
IEAVTSKT - Task Purge Resource Managers RTM-386 
IEAVTSLB - SLIP Action Processor - Part 2 RTM-394 
IEAVTSLB - SLIP Action Processor - Part 2 - Trap 
Checking RTM-396 

IEAVTSLC - SLIP/CMSET Intercept Interface Routine RTM-404 
IEAVTSLE - SLIP Action Processor - Part 3 RTM-406 
IEAVTSLP - SLIP Action Processor - Part 1 RTM-408 
IEAVTSLR - SLIP Processor Recovery Routine RTM-4l4 
IEAVTSLS - SLIP Processor Service Routine RTM-420 
IEAVTSLl - SLIP Trap Matching Routine Part 1 RTM-424 
IEAVTSL2 - SLIP Trap Matching Routine Part 2 RTM-434 
IEAVTSL2 - SLIP Trap Matching Routine - Action Keyword 
Processing RTM-440 

IEAVTSRI - ITERM Processor RTM-446 
IEAVTSSH - SLIP Space Switch Handler RTM-4S0 
IEAVTSSX - Space Switch Extension RTM-4S4 

Index I-I 

viii MVS/XA SLLI Recov Term Mgmt LY28-l73S-0 (c) Copyright IBM Corp, 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

FIGURES 

1. Recovery Termination Management Control Block 
Overview RTM-17 

2. SPIElESPIE Control Block Overview RTM-19 
3. STERM Error Processing RTM-23 
4. Hardware Error Processing RTM-2S 
s. The Process of Normal Task Termination RTM-27 
6. Abnormal End-of-Task RTM-29 
7. Retry RTM-3l 
8. Cancel RTM-33 
9. The Process of Terminating an Address Space RTM-34 

10. SRB to Task Percolation RTM-36 
11. Removal of a SPI RTM-38 
12. RTMI Module Flow and Basic Functions Performed RTM-39 
13. RTM2 Module Flow and Basic Functions Performed RTM-40 
14. Address Spa~e Termination Module Flow RTM-42 
IS. RTM Services Module Flow RTM-43 
16. SLIP Action Processing Module Flow RTM-46 
17. SPIE/ESPIE Module Flow RTM-47 
18. RTM Control Block Formatter RTM-49 
19. Key to Hipo Logic Diagrams RTM-S3 
20. Key to Logic Diagrams RTM-SS 
21. RTMI Overview RTM-S7 
22. RTM2 Overview RTM-S9 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Figures ix 



x MVS/XA SLLI Recov Term Mgmt 

"Restricted Materials o'fIBM" 
Licensed Materials - Praperty a'f IBM 

, ' 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of JBM" 
Licensed Materials - Property of IBM 

SUMMARY OF AMENDMENTS 

summary of Amendments 
for LV28-1735-0 
for MVS/System Product Version 2 Release 2.0 

This publication is new for MVS System Product Version 2 Release 
2.0. It contains information that was reorganized from the 
Recovery Tarmination Management (RTM) section in MVS/XA System 
Logic Library Volume 11 , lY28-l246-2, which applies to MVS/XA 
System Product Version 2 Release 1.7. 

This pUblication contains changes to support MVS/System Product 
Version 2 Release 2.0. The changes include. 

• Method of Operation diagrams for the following new modules. 

IEAVTREF 
IEAVTRRR 
IEAVTR1F 
IEAVTRIG 
IEAVTRlI 
IEAVTRIN 
IEAVTRIR 
IEAVTR1S 
IEAVTRIX 
IEAVTR10 

• The following changed modules. 

IEAVTREM 
IEAVTRER 
IEAVTRET 
IEAVTRTD 
IEAVTRTS 
IEAVTRTV 
IEAVTR1A 
IEAVTR2A 

• Module IEAVTSIN has been changed to module IEAVTRIN. 

• Minor technical and editorial changes throughout the 
publication. 

lY28-1735-0 (c) Copyright IBM Corp. 1987 Summary of Amendments xi 



xii MVS/XA SLLI Recov Term Mgmt 

"Restricted Materials 0" IBM" 
Licensed Materials - Property o'f IBM 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBMII 
Licensed Materials - Property of IBM 

RTM -- RECOVERY TERMINATION MANAGEMENT 

LY28-1735-0 (c) Copyright IBM Corp. 19RTM --- Recovery Termination Management RTM-l 



\ 

RTM-2 MVS/XA SLLz Recov Term Mgmt 

"Restricted·Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted HateJ'1.a's of IBM" 
Licensed Materials - Property o~ IBM 

INTRODUCTION 

Recovery termination management (RTM) cleans UP systems 
resources when a task or address space terminates. 
SpecificallYI RTM performs normal and abnormal task termination, 
performs normal and abnormal address space termination, causes 
dumps to be written, records errorsl and provides for recovery 
of supervisory routines by routing control to functional 
recovery routines. RTM provides these functions for both system 
and problem program routines. 

Logically, RTM consists of four interrelated groups of functions 
that perform RTM services: 

• RTMI. Attempts recovery after a request for an RTM service 
from supervisory routines. The CALLRTM macro instruction 
gives control to RTM1. RTMl resides in the extended 
nucleus. 

• RTM2: Performs normal and abnormal task termination for 
both system and problem program routines. The ABEND macro 
instruction (SVC 13) requests these RTM2 services. RTM2 
resides in the extended link pack area (ELPA). 

• Address space termination: Provides normal and abnormal 
address space termination for supervisory routines. The 
CALLRTM macro instruction is used to request this service. 
Address space termination resides in the extended nucleus 
and ELPA. 

• RTM support functions: Provides error recording SLIP 
(serviceability level indication processing), and SPIE/ESPIE 
(specify program interruption exit/extended specify program 
interruption exit) processing. 

ADDRESSING AND RESIDENCY OF RTM MODULES 

RTMI FUNCTIONS 

All RTM modules execute in 3l-bit addressing mode and reside 
above the 16mb line except: 

IEAVNPA6 
IEAVNPD6 
lEAVTES6 
IEAVTRGR 
IEAVTRGS 
IEAVTRGI 
IEAVTRG2 
IEAVTRML 
IEAVTSFR 
IEAVTSLC 

-- AMODE 24, RMODE 24 
-- AMODE 31, RMODE 24 
-- AMODE 24, RMODE 24 
-- AMODE ANY, RMODE 24 

AMODE ANY, RMODE 24 
-- AMODE ANY, RMODE 24 
-- AMODE 24, RMODE 24 
-- AMODE 24, RMODE 24 

AMODE ANY, RMODE 24 
-- AMODE ANY, RMODE 24 

RTMl, which is part of the nucleus, consists of the following 
modules: 

IEAVTRGl 
IEAVTRMC 
IEAVTRRR 
IEAVTRlF 
IEAVTRlG 
IEAVTRlI 
IEAVTRlN 
IEAVTRlR 
IEAVTRIS 
IEAVTR1X 
IEAVTRSO 
IEAVTRTD 

Addressing mode interface routine 
RMGRCML preprocessor 
RTMI FRR routines 
RTMl FRR routing pre-processor 
RTMl GTF processing module 
RTMI general SDWA initialization 
RTMl FRR stack initialization 
RTMI record interface module 
RTMl SDWA allocation module 
RTMl CMSET interface module 
RTMl mainline SLIH mode processing 
RTMl subroutines 

LY28-l735-0 (c) Copyright IBM Corp. 1987 Introduction RTM-3 



IEAVTRTF 
IEAVTRTM 
IEAVTRTR 
IEAVTRTS 
IEAVTRIC 
IEAVTRTV 
IEAVTRTl 
IEAVTRIA 
IEAVTSRI 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTMI super FRR retry routine 
RTMI mainline 
RTMI recovery routines 
FRR control router 
Routing to FRRs 
RTM PSACSTK verification module 
RTMI entry point and exit processor 
RTMI failing instruction processor 
ITERM processor 

RTM'. Attempts recovery from hardware and software errors for 
routines protected by FRRs (functional recovery routines) 
defined by the routine to terminate those tasks or address 
spaces, via SVC 13, that cannot recover). To achieve recovery, 
RTMI routes control to the FRRs when program checks, machine 
checks, STERM errors (paging I/O errors), invalid SVCs, or 
restarts occur. 

RTMI functions are divided into three logical categories I 

• Second level interruption handler (SLIH) mode. RTMI acts as 
second level interruption handler for the interrupt handlers 
when they detect errors. (See the section "Supervisor 
Controln for a description of the five interruption 
handlers). 

• Service mode. RTMI provides the interface for address space 
or task termination when entered in service mode. 

• Hardware error mode. RTMI functions as an extension of MCH 
(machine check handler) after a hardware-type error occurs. 

SLIH MODE PROCESSING 

RTMl, when in SLIH mode, schedules recovery for errors in 
system-mode functions, and initiates recovery for errors in 
task-mode processing. System mode recovery involves routing 
control to functional recovery routines (FRRs) and requesting 
error recording. 

To implement recovery for system-mode functions, RTMI routes 
control to the FRRs defined on FRR stacks for specific paths 
through the supervisor. (The M.O. diagram in "IEAVTRIC -
Service Module for IEAVTRTS" on page RTM-3Dl fully defines the 
FRR stacks and the paths through the supervisor that they 
protect.) The system-mode functions use the SETFRR macro 
instruction (a macro instruction that places the address of the 
FRR on the stack) to make the FRR known to the system at 
initialization time. When an error occurs, RTMI routes control 
to the FRRs, thus allowing a recovery path through system-mode 
functions. 

SERVICE MODE PROCESSING 

RTMl, when in service-mode processing, directs RTM's recovery 
and/or termination processing to a specific event, program, 
task, or address space other than the currently executing path. 
(Service requests often consist of scheduling entries into other 
services of RTM to complete the request.) Address space 
termination, requested via a CALLRTM TYPE=MEMTERM macro 
instruction, activates the resident address space termination 
controller and queues the ASCB of the address space to be 
terminated on a termination queue. 

For task termination, requested by a CALLRTM TYPE=ABTERM macro 
instruction, RTMI establishes an interface to RTM2. This 
interface differs for tasks in the current, or executing, 
address space, or for tasks in another address space. For 
ABTERM of a task in the current address space, RTMI sets the 
request block (RB) resume PSW to point to the address of an SVC 
13 instruction, which will be executed first when the task is 
redispatched. For ABTERM of a task in another address space, 

RTM-4 MVS/XA SLLI Recov Term Mgmt LY28-1735-D (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property o~ IBM 

HARDWARE ERROR MO~E 

RIM2 FUNCTIONS 

RTMI first reschedules itself as an SRB (service request block) 
in the address space executing the task to be terminated. Thus 
it appears that the CALLRTM TYPE=ABTERM request was issued by a 
task in the same address space. RTMI uses this interface to 
give control to RTM2 as an RB issuing an SVC 13 instruction. 
RTM2 performs the actual recovery termination processing. 

CALLRTM TYPE=ABTERM can also cause reentry into RTMI if an EUT 
FRR is on the stack. 

The STERM service (for page I/O errors) differs for unlocked 
tasks or for locked tasks and SRBs. For unlocked tasks, RTMI 
sets an RB to point to an SVC 13 instruction, thereby giving 
control to RTM2 to execute a task termination. For locked tasks 
or SRBS, RTMI establishes an interface to allow FRRS to gain 
control. RTMI does this by causing the task or SRB to 
invalidlY issue an SVC. This effects a re-entry into RTMI in 
SLIH model RTMI then routes control to FRRs defined for the 
path that failed. Figure 3 on page RTM-23 illustrates STERM 
processing, and refers to method of operation diagrams that 
describe the processing. . 

RTM1, when in hardware error mode, logically operates as a 
subroutine of the machine check handler (MCH). RTMI performs 
software repair, gathers data about the error, and records the 
error. When MCH cannot recover from the error, RTMI sets UP an 
MCH re-entry to attempt software repair. Figure 4 on 
page RTM-25 illustrates how RTMI handles a hardware error. 

RTM2, which resides in the extended link pack area (ELPA), is 
entered via SVC 13. Mainline processing for RTM2 comprises the 
following modules: 

IEAVTRTC 
IEAVTRTE 
IEAVTRT2 

-- controller 
-- exit handler 
-- initialization 

Other important RTM2 modules arel 

IEAVTASI 
IEAVTAS2 
IEAVTAS3 
IEAVTMMT 
IEAVTMRM 
IEAVTRML 
IEAVTR2A 
IEAVTSKT 

-- pre-exit processing 
-- post-exit processing 
-- control recovery 
-- address space purge 

RTM's address space termination resource manager 
installation resource manager list 

-- RTM2 failing instruction processor 
-- task termination purges 

RTM2 terminates tasks and controls the cleanup of their 
associated resources and control blocks. RTM2 handles normal 
task termination and termination of tasks that cannot complete 
their processing because of an error. Resource managers, 
routines called by RTM2, clean up the resources and control 
blocks associated with a task or address space to complete 
termination. The component owning the resource provides the 
resource manager. 

RTM2 performs abnormal termination, which can be requested 
directly or indirectly. The request is direct when a system or 
user program issues an ABEND macro instruction to terminate the 
current task. The request is indirect when scheduled by RTMI. 
The SVC 13 instruction, which is executed the next time the task 
to be terminated is dispatched, causes supervisor-assisted 
linkage to ABEND. 

LY28-1735-0 (c) COPYright IBM Corp. 1987 Introduction RTM-5 



NORMAL TERMINATION 

"Restricted Materials 0" IBM" 
Licensed Materials - property 0" IBM 

When the last program to be executed for a task ends, it 
control to the EXIT routine. EXIT gives control to RTM2 
perform normal end-of-task processing. Figure 5 on page 
shows the steps that occur for normal task termination. 
Task Management section describes EXIT and EXIT prolog 
processing in detail.) 

returns 
to 
RTM-27 
(The 

ABNORMAL TERMINATION 

Abnormal termination occurs because of an unrecoverable error, 
such as an I/O error or program check. It can also be initiated 
by a system or user program that detects an abnormal condition 
that could cause program damage or incorrect results. The task 
whose program or I/O operation has malfunctioned is abnormally 
terminated because continued execution would waste system 
resources. Abnormal termination frees the resources for use by 
other tasks. 

Abnormal termination allows two optionsl task and step 
termination. These are normally user options, specified by an 
operand of the ABEND macro instruction. 

For abnormal termination, RTM2 provides the following services, 

• Retry of a terminating task, if possible. 
• Allow tasks that cannot retry to process special exits. 
• Display a snapshot of storage. 
• Wait for subtask termination to complete. 
• Purge subtask resources. 
• Convert ABEND requests to the jobstep level. 

Figure 6 on page RTM-29 shows how RTM2 handles an abnormal 
termination. 

Retry Terminating Tasks 

Term Exits 

RTM2 permits tasks scheduled for termination to bypass 
termination and resume processing if they have created exits for 
this function. 

These exits receive control from RTM2 prior to termination 
completing. (This facility complements the FRR facility in 
RTMI.> The exits might attempt to recover the task being 
terminated; if successful, RTM2 does not terminate the task. If 
the exit does not recover the task, task termination continues. 
Figure 7 on page RTM-31 shows retry. 

Whereas RTM2 allows retry during most task terminations, certain 
conditions (for example, CANCEL requests, ancestor task 
abnormallY terminating, and timer expiration) cannot be retried. 
However, a special feature of ESTAE/ESTAI exits, called the TERM 
option, can be used to give control to an ESTAE or ESTAI exit 
during these situations. (The user indicates this by specifying 
TERM=YES when the ESTAE or ESTAI is issued.) During normal 
error recovery processing for a task, these exits function in 
exactly the same way as exits created without the TERM option. 
But for a situation that cannot be retried, these specially 
marked exits are given control so that a user can clean up 
resources, write records, print messages, or perform any other 
function before RTM2 completes the termination. Retry, even 
though requested, is not permitted by RTM2. Figure 8 on 
page RTM-33 shows how RTM2 processes a CANCEL request and routes 
control to term exits. 

It is now possible to issue the DETACH macro from within a term 
exit. 

RTM-6 MVS/XA SLLa Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

storage Dump 

When the DUMP option is specified on the ABEND, CALLRTM, or 
SETRP macro, RTM2 will create an ABEND dump, via SNAP, for all 
tasks in the failing task tree. 

Control Block Formatter 

IEAVTFMT formats the available RTM control blocks associated 
with the TCB. Print dump (PRDMP), interactive problem control 
system (IPCS), and SNAP call the RTM control block formatter as 
a TCB exit in the following mannerl 

• PRDMP specifies the SUMMARY control statement with the 
FORMAT parameter. 

• IPCS specifies the SUMMARY subcommand with the FORMAT 
keyword. 

• SNAP specifies the SUM or ERR option. 

Wait for Subtask Termination 

Purge Subtasks 

convert to step 

RTM2 waits for subtasks within RTM2 processing to campi eta 
before terminating all the other subtasks in the task tree. 
RTM2 can stack, or wait, for up to four subtasks to be processed 
at one time. (This does not apply to CANCEL requests.) 

To terminate the tasks in a failing task tree, RTM2 removes, via 
DETACH, each subtask. DETACH then abnormally terminates, via 
CALLRTM TYPE=ABTERM, any that has not yet completed processing. 

When a caller requests ABEND (SVC 13) with the STEP option, RTM2 
completely terminates the failing task and any of its subtasks. 
Then before giving control to EXIT prolog, RTM2 issues a CALLRTM 
TYPE=ABTERM request for the job step task. 

ADDRESS SPACE TERMINATION 

Address space termination can be requested by certain syStem 
functions. For ~xample, real storage management might decide to 
terminate an address space because of a swap-in failure for the 
LSQA. Normally, however, RTM2 requests address space 
termination after task termination of the region control task. 

Address space termination begins after RTMI invokes the address 
space termination controller by scheduling the address space 
termination SRB to post it. The address space termination 
controller determines the address space being terminated and 
dequeues the ASCB. The address space termination controller 
then attaches the address space termination task to complete the 
termination. The termination will be complete after all the 
resources associated with the address space have been purged by 
the address space termination controller and RTM2. Figure 9 on 
page RTM-34 shows the control flow of an address space 
termination. . 

LY28-l73S-0 ec) Copyright IBM Corp. 1987 Introduction RTM-7 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTM SUPPORT FUNCTIONS 

STAE SERVICES 

SETFRR 

RTM provides functions that allow users to establish their own 
recovery protection, and system functions that enhance system 
serviceability and reliability. RTM gives control to these 
services as part of its main processing, but none of these are 
integral to RTM. 

RTM support services consist of the followingl 

• STAE (specify task abnormal conditions) and ESTAE (extended 
STAE) services. STAE and ESTAE services create SCBs (STAE 
control blocks) to represent user-written abnormal condition 
exits. RTM will give control to these exits during 
termination processing. STAE services are not supported in 
31-bit mode. 

• SETFRR. This is a macro instruction that places an FRR 
(functional recovery routine) on the correct FRR stack. RTM 
routines route control to FRRs after an error occurs. 

• Initializing FRR stacks. This service creates FRR stacks 
during system initialization, and changes FRR stacks in 
response to CONFIG processor commands. 

• Recording. RTM uses recording to record errors and records 
created during recovery or termination processing. 

• SLIP command. To obtain diagnostic information, SLIP 
intercepts software errors prior to recovery routines 
receiving control. 

The STAE services create SCBs that represent caller-requested 
abnormal exits. STAE services, requested via an SVC 60 
instruction, create four types of SCBsl 

• ESTAE SCBs. 
• ESTAI SCBs. 
• STAE SCBs. 
• STAI SCBs. 

The SETFRR macro instruction places an FRR on the appropriate 
FRR stack. This is the mechanism used by routines requiring 
recovery protection. 

INITIALIZING FRR STACKS 

During initialization, this function initializes the FRR stacks 
used by the system, and places pointers to these stacks in the 
recovery stack vector table (RSVT) of the PSA. The RSVT does 
not have sufficient room for the RTM and ACR stacks. Therefore, 
the addresses of these stacks are placed in other PSA fields. 
The CONFIG processor command can use this function. The FRR 
stacks initialized by this function arel 

• SVC-I/O-dispatcher stack, used by supervisor control 
routines. 

• Machine check stack, used by the machine check handler after 
a machine check occurs. 

• Program check stack, used by the program check handler after 
a program check occurs. 

• The three external interrupt handler stacks, used by the 
external interrupt handler to process three levels of 
recursion. (See the section "Supervisor Control" for a 

RTM-8 MVS/XA SLL, Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

RECORDING SERVICES 

THE SLIP COMMAND 

• 

• 

• 

description of the external interrupt handler and its use of 
the FRR stacks.) 

Restart interrupt handler stack, used by the restart 
interrupt handler. 

RTM stack, used by the RTM function when it uses FRR 
recovery. 

ACR stack, used by the ACR function during CPU recovery 
processing. 

• Normal stack, used by supervisor control routines processing 
on behalf of problem programs that use supervisor services. 

The recording facility schedules asynchronous I/O either to 
SYS1.LOGREC or to the operator. The facility consists of two 
principal routines -- the nucleus-resident recording request 
routine (IEAVTRER) and the recording task (IEAVTRET) in the 
master scheduler address space. Requests for recording by 
disabled routines are accepted and buffered by the nucleus 
routine, which in turn posts the recording task via an SRB. The 
recording tasks write the queued records to SYSI.LOGREC by 
issuing SVC 76 or to the operator by issuing SVC 35. 

Serviceability level indication processing (SLIP) is a debugging 
facility used for obtaining diagnostic information. There are 
times when an SVC dump or ABEND dump does not give the user 
adequate information about an error. For example, the recovery 
process or independent system activity might alter the failing 
environment before the dump can be scheduled. To avoid this 
situation, SLIP can be used to selectively intercept software 
errors that are handled by RTM. However, many MVS/XA problems 
cannot be resolved using only data collected at the time of the 
error. Therefore, SLIP also provides program event recording 
(PER) support to allow the user to obtain diagnostic information 
only when a situation of interest occurs. Thus, a system 
operator or authorized TSO user can issue the SLIP command to 
establish one of two types of SLIP traps, non-PER and PERI 

• Non-PER traps specify error conditions which the action 
specified on the trap is to be taken. 

• By using the PER hardware, PER traps specify instruction 
fetch, storage alteration, or successful branch events that 
are to be monitored within a range of virtual addresses. 
When events of the selected type occur, system conditions 
specified on the trap are compared with current system 
conditions. If they match, the action specified on the trap 
is taken. 

Possible actions include scheduling an SVC dump, placing the 
system in a wait state, suppressing dumps, writing a GTF trace 
record, or opting to take no action (the IGNORE option). After 
taking the specified action, PER traps may also specify that 
recovery processing be forced in the interrupted program. The 
SLIP command allows the user to establish more than one SLIP 
trap, and to selectively enable and disable the traps. However, 
only one PER trap with an action other than IGNORE can be 
enabled at a time. Controls may be specified with the trap that 
automaticallY disable it when user-specified conditions exist. 

The SLIP command processor (IEECB905) sets, modifies, or deletes 
one or all of the SLIP control element (SCE) SLIP traps. It 
receives control via the ATTACH macro when IEEVWAIT processes 
the CSCB entry built by SVC 34 as a result of a SLIP command. 
(The section "Command Processing" contains more details on the 
SLIP command processor.) 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Introduction RTM-9 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

The user can display detailed information or summary information 
about all the SLIP traps by using the DISPLAY SLIP command. The 
DISPLAY SLIP command processor (IEECB907) receives control via 
the ATTACH macro when IEEVWAIT processes the CSCB entry built by 
the DISPLAY command as a result of a DISPLAY SLIP request. The 
DISPLAY SLIP command processor also receives control via BALR 
from the SLIP command processor (IEECB90S) to display the 
requested options and any defaults for an incomplete (that is, 
no END parameter) SLIP command. (The section "Command 
Processing" contains more details on the DISPLAY SLIP command.) 

SPIE/ESPIE PROCESSING 

Requestors can use the SPIE/ESPIE service to allow a task to 
regain control after certain program interruptions. The 
SPIE/ESPIE service routine receives control from the SVC FLIH 
after a SPIE or ESPIE request occurs. SPIE/ESPIE constructs an 
SCA (SPIE control area) that contains information that enables a 
task to regain control after a program interruption. (See the 
section "Supervisor Control" for a description of the 
interruption types.) SPIE/ESPIE constructs the SCA and sets 
indicators in the TCB of the requestor. 

RTM-10 MVS/XA SLLa Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of XBM" 
Licensed Materials - Property o~ IBM 

RIM DIAGNOSnC IECHfo.IIQUES 

RTM work areas can be valuable in identifying failing components 
when the system malfunctions. 

RTM work areas and suggestions for using them to diagnose 
failures appear in the Diagnostic Techniques pUblication under 
the topic "Use of Recovery Work Areas for Problem Analysis. n 

The following section contains diagnostic information for the 
SLIP portion of RTM. 

SLIP PROCESSOR DEBUGGING AIDS 

A considerable amount of recovery processing is built into the 
SLIP functionl some portion of that recovery is executed if an 
error occurs during SLIP processing. Consequently, when trying 
to debug the SLIP function, you should have an idea of what the 
recovery processing is attempting to do. This section discusses 
the recovery philosophy and provides details for the major SLIP 
functions. 

SLIP COMMAND PROCESSOR RECOVERY 

Module IEECB906 provides recovery processing for the SLIP 
command processor (primarily IEECB90S). Most errors encountered 
in the command processor affect only the command that is issued 
and not the rest of the system. However, if a PER trap is 
involved, an error in the command processor could potentially 
affect the system. 

If a PER trap is being disabled or deleted and an error is 
encountered, IEECB906 disables the non-IGNORE PER trap and 
schedules IEAVTGLB to deactivate PER. If a PER trap is being 
set or enabled and error occurs after SHDRPER has been updated 
but before IEAVTGLB has been scheduled, IEECB906 tries to 
schedule IEAVTGLB to activate PER. Additionally, whenever an 
error occurs, the command processor recovery routine checks to 
make sure the double-threaded SCE chain is properly chained. 
Forward and backward pointers found to be in error are repaired 
if possible. If an error occurs during recovery for the SLIP 
command processor, SLIP recovery does not return to mainline 
processing but requests percolation in the event of an error. 

Diagnostic information concerning errors that occur in the 
command processor is available in a software LOGREC record and a 
dump. The ESTAE parameter list (mapped by IEEZB906) is part of 
the LOGREC record. The ESTAE parameter list and the SHDR data 
area along with other information are available in a dump for 
the error. 

SLIP PROCESSOR RECOVERY 

Recovery for the SLIP processor is designed to handle both 
expected and unexpected errors. 

Errors which are considered "expected" arel 

• A page fault occurs while examining or retrieving the 
instruction that caused a PER interrupt. 

• A page fault occurs while retrieving user-defined data. 

• A page fault occurs while processing in IEAVTADR. 

When the above error conditions are recognized, the SLIP 
processor attempts to retry at an appropriate point. In 

LY28-173S-0 (c) Copyright IBM Corp. 1987 RTM Diagnostic Techniques RTM-ll 



"Restricted Materials of IBMII 
Licensed Materials - Property of IBM 

general, the retry allows normal trap processing to continue. 
You may eventuallY receive an indication that an error has 
occurred while examining a trap (for example, the data 
unavailable counter has been increased.) SYSl.LOGREC recording 
does not occur for these expected errors. 

When an unexpected error occurs, SLIP processor recovery gathers 
information concerning the error, cleans up any resources being 
used by the SLIP processor, and then retries at a point that 
will terminate processing for the event that caused the SLIP 
processor to receive control. Diagnostic information concerning 
the error can be found in the dump taken by the SLIP processor 
r.ecovery routine (IEAVTSLR). The summary dump usually contains. 

• The FRR parameter list (mapped by IHASLiP in module IEAVTSLP 
or IEAVTSLR). 

Note: The FRR parameter list is also recorded as part of 
the software LOGREC record for the error. Bits in the 
AUDITWRD portion of the FRR parameter list provide an 
indication of what portion of the SLIP processor encountered 
the error. 

• The SHDR data area. 

• The SCE/SCVA data areas being processed at the time of the 
error. 

• The SLIP parameter list (IHASLPL). 

• SLIP work areas. 

• The SLIP register save area. 

• The SCE/SCVA data areas representing the enabled non-IGNORE 
PER trap (if they exist). 

Further information concerning the error is included in the 
software LOGREC record for the error. 

PER ACTIVATION/DEACTIVATION RECOVERY 

IEAVTGLB Recovery 

The PER activation/deactivation function is performed primarily 
by SLIP modules IEAVTGLB, IEAVTSIG, IEAVTLCL, and IEAVTJBN. In 
general, if an error is encountered at any point in the PER 
activation/deactivation process, these modules try to deactivate 
PER completely. Recovery processing for these modules is 
described in the following topics. 

If an error is encountered by IEAVTGLB, the recovery for this 
module gathers information concerning the error, frees the 
resources held by the mainline code, disables the non-IGNORE PER 
trap, and then retries at a point in the module that attempts to 
completely deactivate PER. Diagnostic information concerning 
the error is recorded in a software LOGREC record and a dump. 
The information available in the summary dump includes some or 
all of the following (depending on when the error occurred). 

• The FRR parameter list (mapped by FRRWA in module IEAVTGLB). 

Note: The FRR parameter list is also recorded as part of 
the software LOGREC record for the error. 

• The CVT data area. 

• The SHDR data area. 

• The SCE/SCVA data areas for the non-IGNORE PER trap. 

• The model PSA data area. 

RTM-l2 MVS/XA SLL. Recov Term Mgmt LY28-l73S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTLCL Recovery 

IEAVTJBN Recovery 

• The PCCAVT data area. 

• The ASCB being processed by IEAVTGLB. 

• The name of the job running in the address space being 
processed by IEAVTGLB. 

• The PCCA data area. 

• The PER control registers (9, 10 and 11). 

If a recursive error is encountered by IEAVTGLB, message IEA4l41 
is sent to the operator and percolation is requested. 

If an error is encountered by IEAVTLCL, the recovery for this 
module sets tasks dispatchable in the address space, gathers 
information concerning the error, frees the resources held by 
the mainline code, and then percolates the error. Diagnostic 
information concerning the error is available in a software 
LOGREC record and a dump. The information in the summary dump 
includes some or all of the following (depending on when the 
error occurred). 

• The FRR parameter list (mapped by FRRPARMS in module 
IEAVTLCL> . 

• The CVT data area. 

• The SHDR data area. 

• The SCE/SCVA data areas for the non-IGNORE PER trap. 

• The ASCB for the address space in which IEAVTLCL was running 
when the error occurred. 

• The name of the job in the address space. 

If an error is encountered by IEAVTJBN, the recovery for this 
module gathers information concerning the error, notifies the 
SLIP user that the status of PER in the system is uncertain (via 
message IEA422I), and then returns to mainline processing where 
control is returned to the caller of IEAVTJBN. Diagnostic 
information concerning the error is available in a software 
LOGREC record and a dump. 

Control Blacks Used by SLIP 

The following control blocks contain key information that can be 
used to debug problems in SLIP routines. 

• System Control Blocks 

Address space control block (ASCB) 
Logical configuration communication area (LCCA) 
Prefixed save area (PSA) 
Request block (RB) 
Task control block (TCB) 

• SLIP-Control Blocks 

SLIP control element (SCE) 
SLIP control element variable area (SCVA) 
SLIP header (SHDR) 
SLIP TSO element (STE) 

LY28-173S-0 (e) Copyright IBM Corp. 1987 RTM Diagnostic Techniques RTM-13 



Cantral Black 

ASCB 

LCCA 

PSA 

RB 

TCB 

SCE 

SVCA 

SHDR 

"Restricted Materials af IBM" 
Licensed Materials - Praperty af IBM 

Infarmatian for Debugging SLIP 

ASCBPER bit: 
l--PER is active in the address space. 
O--PER is inactive. 

LCCAPPSW field: PSW 

LCCAPERC field: Interruption code 

LCCASLIP field: Pointer to SLIP storage area 

IEAVTPER splits this area into: 
a parameter list, 
work area, 
and register save area 

before calling SLIP. 

External, SVC, I/O new PSW'SI each has a bit that 
reflects PER status. 

PSASLIP bit: SLIP recursion control. 

RBOPSW field: PSW save area. PSW has a bit that 
reflects PER status. 

Non-dispatchability bit for SLIP: used when PER 
is being activated or deactivated. 

SCEDSABL bit: 
l--SLIP is disabled. 
O--SLIP trap is enabled. 

SCEMATCH bitl 
l--Trap method specified conditions at least 

once since it was enabled. 

SCVAMLNO field: If MATCHLIM was specified or 
riefaul ted, indica~es the number of times the 
trap matched specified conditions sinc~ it 
was enabled. 

SCVADAUN field: If data was specified, indicates 
the number of times data was unavailable for 
comparison for the trap. 

The SHDR provides the anchor for the chain of 
SCE/SCVA control blocks. It is pointed to by 
CVTRMS. The SHDRFWD field points to the first SCE 
on the chain and the SHDRBKWD field points to the 
last SCE. 

SHDRPFC field: 
O--No enabled SLIP traps. 
l--SLIP and associated routines are page 

fixed ; no processing is taking place on 
behalf of any trap. 

2 or more--SLIP or portions of IEVTGLB are 
running. 

RTM-14 MVS/XA SLL, Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials af IBM" 
Licensed Materials - Praperty a~ IBM 

Cantral Black 

SHDR 

STE 

Infarmatian far Debugging SLIP 

SHDRSRBR bit: 
I--IEVTGLB needs to be scheduled. This bit 

is usually turned on when IEAVGLB 
tries to get a resource (primarily 
SHDRSEQ) to perf rom some service but 
the resource is not available. When 
on. it indicates that IEABTGLB will be 
scheduled to perform the service 
later. The SLIP command processor 
(IEEBC90S) may also set this bit and 
examine this bit when the sequence 
word is released. 

SHDRPER field: Points to enabled non-IGNORE PER 
trap or is zero. 

SHDRSEQ word: Used as a lock to serialize access 
to the SCE chain fort 

• The SLIP command processor (IEECB90S). 
• PER activation/deactivation routine 

<IEAVTGLB) . 
o Local PER activation/deactivation (IEECB907). 

The contents of the word indicate the owner of the 
word as follows. 

• 'CMD'-- IEECB90S 
• 'DSP'-- IEECB907 
• 'GLB'-- IEAVTGLB 
• 'Lxx'-- IEAVTCLC (where xx indicates the ASID 

in which IEAVTLCL is running.) 

The STE is used to communicate between the SLIP 
command processor running in the master scheduler 
address space and a TSO user who issued the SLIP 
command. The STE is created when the TSO user 
issues the SLIP command and is deleted when SLIP 
command processing is completed. The STE chain is 
pointed to by the RTCTSTE field in the RTCT. 

lY28-173S-0 (c) Copyright IBM Corp. 1987 RTM Diagnostic Techniques RTM-15 



RTM-16 MVS/XA SLLz Recov Term Mgmt 

"Restricted Materials oi' IBM" 
Licensed Materials - Property oi' IBM 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



II Restricted Materials of IBMII 
Licensed Materials - Property o~ IBM 

CONTROL BLOCK OVERVIEW 

Loc 10(161 

Contains 
dump 
options 

RSVT { L __ ~_:_i~_~_eR_rS __ 1 
r- stacks 

Normal 
stack 

Note: Anyone of these 
FRR stacks can be 
the current stack. 

External 
3 

··SDWA 

·10 RTM1 
work 
areas 

Normal 
stack 
SDWA 

RTM 

*UGlobal 
ch~ckpoint 
SDWAs 

Contains 
recording 
information 

Dynamic 
storage 
area for 
RTM1 
modules 

• There is one RTM1 work 
area for each FRR stack. 
Each FRR stack points to 
its associated work area. 

•• There are 2 types of SDWAs; 

... 

1. Global 
2. GETMAIN 

The global SDWA for each FRR 
stack immediately follows the 
FRR stack, except for the normal 
stacks SDWA. 

The global check point SDWAs 
are used to support retry from 
nested FRRs. 

Figure I (Part I of 2). Recovery Termination Management Control Block Overview 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Control Block Overview RTM-17 



(Continued 
CVT from Part 1) 

EED (Note 1) 

Contains 
error in
formation, 
registers, 
control 
registers, or 
dumpop
tions 

Notes: 

(Pointed to by 
either RTM1WA 
or TCB; resides 
in quick cell pools) 

ASXB 

ESTAE 
SCB 

Contains 
'ESTAE exit 
routine 
control 
information 

1. The RTCT, EED, and ABDAREA contain information 
that is moved into the RTM2WA. Information in the 
RTM2WA is moved into the SDWA. 

IHSA 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTM2 SVRB 

Contains 
control 
Information 
for RTM2 

ESA 

ABDAREA 
(Note 1) 

LRB 

Error 
information 
for 
machine 
checks 

RB 

RTM2WA 
(Note 11 

Contains: 
• Control 

(Pointed to by a 
register; located 
in the PSAI 

XSB 

ESTAI/STAI 
information 

Contains • SNAP 
SCB dump parameters 

options • Error 
information 
from EED. 

• Resource 
management 
information 

RMPL{ 
t--------i 

• There are 3 types of SDWAs: 
1. Local 
2. Global 
3. GETMAIN 

SDWA-

Contains 
error 
information 

Each is in a different area. This illustrates a 
G ETMAIN SDWA. The FRR stacks contain the 
global SDWA, and the ASXB points to the local 
SDWA. 

Figure I (Part 2 of 2). Recovery Termination Management Control Block Overview 

RTM-18 MVS/XA Slls Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property o~ IBM 

PSA 

I CVTPTR 

/ 

CVT 

CVTASVT I 

ASVT 

Identifies the active address 
spaces in the system; contains 
pointers into the ASCB chain .. 

I ASCB chain 

~~~===~ 
Contains information 
related to a specific 
address space. 

ASCBASXB 

ASXB TCB queue 

~ I ~ cOntains information 

t::::.:A:S:X:B:F:T:C:B:::::~jJ rl ~_re_la_tad __ t_o_a_s_pa_c_if_ic_t_a_sk_.~ 

~T=C=B=R=B=P==========~~~~~~R=B=q~u=eu=e========~ 
TCBPIE "III 

~ SeA 

Contains SPIEl 
ESPIE information. 

Contains SPIE/ESPIE 

TCBPIE17 on if 
SPIE/ESPIE is to 
handle page faults. 

\ 

exit data. 

t==P=IE=PI=C=A========~~ ______ __ 

RPIEPICA PICA 

Identifies a request for 
code to be executed. 

RBXSB 

XSB 

Contains the cross 
memory status for the 
interrupted suspanded RB. 

Contains recovery and control information / Contains the program 
such as the user exit address and list of mask, SPIE exit address, 
proposed interrupts to be handled. and interruption mask. 

~------------------------~ 
t::R:PP:P:IC:A:::::::::::::::::::::j 

Figure 2. SPIElESPIE Control Block Overview 

LY28-l735-0 ec) Copyright IBM Corp. 1987 Control Block Overview RTM-19 



RTM-20 MVS/XA SLL: Reeov Term Mgmt 

"Restricted Materials 01' IBM" 
Licensed Materials - Property of IBM 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property a~ IBM 

PROCESS FLOW 

This section contains the following figures: 

Figure 3 an page RTM-23: STERM Error Processing 

This figure shows the scope of supervisor control, IDS, RSM and 
RTM involvement in processing an STERM error. The double error 
(SVCERR) caused by RTMl shows how an RTMl service request 
(STERM) establishes the proper RTMl re-entry interface so that 
recovery routines can be processed. 

The figure shows how an I/O error during a page-in request is 
processed by RTM. For this example an SRB routine has been 
used. However, similar action is given for locally locked tasks 
and normal tasks. 

Data flow is as follows. The operating environment of program A 
-- that is, the registers, control registers 3 and 4, PSW and 
recovery stack (step 1) is stored into an SSRB on page 
interrupts (step 2). When the error is detected by the paging 
supervisor (step 4) the SSRB is passed to RTM. RTM copies the 
registers, control registers 3 and 4, and the PSW from the SSRB 
into its own data area -- the EED (step 5) and alters the SSRB 
fields so that it will issue an ABEND when redispatched. The 
page reset routine puts the SSRB on the dispatching queue (step 
4). The dispatcher dequeues the SSRB (step 6), copies the stack 
contents (saved in step 1) into the normal stack 
(re-establishing program A's recovery) and loads the registers 
and PSW from the SSRB (modified by RTM in step 5 to cause an 
ABEND). As a result of the ABEND, RTM is re-entered (step 8) 
and passes the original register, control registers 3 and 4, and 
PSW from the EED into an SDWA (step 10) so that the FRR for 
program A is presented with the environmental information at the 
time it was first interrupted for a page fault. 

Figure 4 on page RTM-2S: Hardware Error Processing 

This figure depicts the processing for a hard type machine check 
in a global routine that has FRR recovery. It shows the 
interfaces and control flow between the machine check handler 
and RTMI for both hardware error processing and the resulting 
software recovery attempt by the FRR. It alludes to the fact 
that software recovery will continue in task mode, because in 
this example the FRR does not recover the error. 

The use of EEDs allows the LOGREC buffer to be available for 
further possible machine checks and is the mechanism of passing 
information to RTMI and RTM2. The information in the global 
SDWA used by RTMI recovery was obtained from the EEDs. RTM2 
will obtain an SDWA but will also use EEDs as its source of 
error data to be passed to the recovery routines. 

The RTM processor related work save area (WSACRTMK) is used by 
RTMI to alter the general purpose registers and the PSW that MCH 
will reload -- thereby determining whether MCH will resume the 
interrupted process (soft error), or re-enter RTMI for software 
recovery (hard error). 

Figure 5 on page RTM-27: The Process of Normal Task Termination 

EXIT and parts of RTM2 comprise this function. 
indicates how EXIT is entered and re-entered to 
termination. It also provides a perspective of 
related to normal termination of a task. 

Figure 6 on page RTM-29: Abnormal End-of-Task 

The figure 
complete task 
RTM2 functions 

This figure shows the logic flow during abnormal termination of 
a non-critical nature. If the error is not recoverable at a 

LY28-l73S-0 (c) Copyright IBM Corp. 1987 Process Flow RTM-21 



"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

particular task level, that task and its subtasks are removed. 
If the scope of the ABEND is step, then the entire job step is 
removed. Optionally, serviceability information (dumps and 
software error records) is supplied to the user. 

Figure 7 on page RTM-31: Retry 

This figure shows the flow through RTM2 when processing a 
potentiallY recoverable error. The recovery exit is supplied 
environmental data that describes the error (for example, the 
completion code, register contents, PSW, and system state at the 
time of the error), to aid in diagnosing the error. To effect 
retry, the resume PSW in each RB up to and including the retry 
RB is modified. The retry address supplied by the exit is 
placed in the resume PSW field of the retrying RB. All the RBs 
between the retry RB and the RTM2 RB have their resume PSW set 
to either EXIT prolog or SVC 3. To ensure running in the home 
address space, the RBOPSW S-bit is set to 0, and the primary and 
secondary address spaces in the XSB are set to the home address 
space. When RTM2 eventuallY returns to the system, supervisor 
assisted linkage will cause the retry address in the retry RB to 
be given control. 

Figure 8 on page RTM-33: Cancel 

This figure illustrates the flow of control through RTM when a 
job is cancelled. The CANCEL request is indicated by specific 
completion codes set in the TCB by RTMI (code=X'x22' where x is 
any value). The CANCEL process is distinctive in that it is 
considered a strictly unrecoverable situation. Normal 
termination procedures are abandoned in favor of creating an 
express path through termination. However, termination exits 
are given control. 

Figure 9 on page RTM-34: The Process of Terminating an Address 
Space 

The process of terminating an address space (memory) is one 
which cannot be isolated to one task, module or logical unit of 
code. This figure shows the control flow and data flow of this 
process. The multiple dispatches, tasks, and address spaces 
involved would otherwise be hidden elements. 

Figure 10 on page RTM-36: SRB to Task Perc~lation 

This figure shows the flow of control through RTM when 
rescheduling an SRB. Error information is saved in EEDs or SPIs 
before the SRB is rescheduled. An SVC 13 (ABEND) placed in the 
RBOPSW identifies this SRB as a re-entry function to RTMI. 

Figure 11 an page RTM-38: Removal of a SPI 

This figure shows the process of removing a SPI (serial 
percolation information) control block from the SPI queue. Each 
SPI queued from a TCB represents a percolation from an SRB's 
recovery. At the time of the percolation, the related task was 
in recovery and the last FRR to get control for the SRB 
requested serialization. (See Figure 10 on page RTM-36). 

Figures 12 and 13 show the flow and basic functions of RTMI and 
RTM2. 

Figures 14, 15, 16, and 17 show the module flow for address 
space termination, RTM service routines, SLIP action processing, 
and SPIE/ESPIE. 

Figure 18 shows the module flow for formatting RTM's control 
blocks. 

RTM-22 MVS/XA SLl: Recov Term Mgmt lY28-173S-0 (c) Copyright IBM Corp. 1987 



r
-< 
N 
00 
I .... .... 

(.01 
1.11 
I 

c 

,... 
n 
'oJ 

o 
Q 

~ , .... 
to 
:::r 
rt-

1-1 
tlIt 
:3: 

o 
Q , 
'U 

.... 
\0 
00 .... 

"'tI , 
Q 
n 

m 
." .... 
Q 
t: 

Any SAB routine 
(Program AI 

<D ESlablish II recovery 
viaSETFRA. 

SAB 
dispatcher 
IIEAVEDSOI 

reference an address 
that is not in real 
storage. 

Reset 

@ Detect an 110 error, 
issue CALLRTM 
TVPE=STERM. 
Put the SR B of 
program A back on 
the dispatching 
queue. 

Exit to the dispatcher 
IIEAVEDSOI 

Figure 3 (Part 1 of 2). 

FAR stack 

t r-nR for 
SRB 

Program 

Program interruption routines 

save the cu rrent status, 
and schedule 
paging I/O. 

interrupt code 17 Exit to the dispatcher 
(lEAVEDSOI 

RTMl 

J..---ItI@ IEAVTATl 

Set up a register 
interface for 

registers, 
registers 3 

EED 

Registers, 
control 
registers 3 
and 4, and 
the PSWat 

SSAB 

FRR 
stack 

ITo 
part 21 

andthepSW~~EIt=~::~~~~==~::::::~~ L-------,---~~f,rnmtheSSABln~~ 

EED. Set up an SRB 
issue an ABEND. 

STERM Error Processing 

FAA 
stack 

110 error occurs 

Dispatcher 

@ Schedule page 
reset process. 

Exit to the dispatcher 
IIEAVEDSOI 

'6' Dequeue the SRB 
\V for program A. 

Reinstate the FAR 
stack. 
Load the registers 
and the PSW. FAA 

..... ____________ .J stack 

ITo part 21 

.----''''--"""\ 

t FRA lor 
I'v--------t SRB 

SVC interruption 
(lEAVESVCI 

IH 

(1) Detect if the SVC 
was issued by an 
SAB routine. 
Issue CAllRTM 
TYPE~SVCERA. 

(To part 21 

o 

"'" H 
til' :z 



~ 
-t 
3: 
I 

N 
~ 

3: 
<: 
en 
"-
X 
l=-

en 
r-
r-

~ 
CD 
n 
0 
< 
-t 
CD ., 
a 
3: 
IQ a 
rfo 

r
-< 
N 
00 
1 .... ..... 
~ 
U1 
I 

o 

n 
o 
~ ., .... 
IQ 
:T 
rfo 

1-4 
t:I:I 
3: 

n 
o ., 
'C 

.... 
\0 
00 ..... 

(From 
part 11 

® 
IEAVTAT1 

Set up a register 
interface for the 
mainline. BALR 
to RTM. 

Take the exit to the 
dispatcher. 

Figure 3 (Part 2 of 2). 

ATMI 

® 
IEAVTA10 

.. Determine if the system 
.. 

.. mode is a non·TCB 'J 

mode. 
Call IEAVTRTS. 

L 

...... Aetry if requested 
by the FAA. 

IEAVTATM-I -Percolate if requested 
by the FAA. 

STERM Error Processing 

(From part 1I1Frdm part 11 

IEAVTRTS SDWA 

Registers, Route control to 
program A's FRR. control 

(Established in registers 

step 1). ~ 
3 and 4, 
and the 
PSW from 
EED 

,.. .... 
n 
~ 
UI 
CD 
a.: 

::Q 
3CD 
IUUI 
r+r+ 
CD., ., .... 
.... n 
1Ur+ 
... CD 
UlD. 

13 
IU 

'Vr+ 
.,CD 
0., " .... CDIU ., ... 
r+UI 
-<0 
0"",, 

""" H 
H~ 
~3: 
3: 



r-
oo( 
N 
00 
I .... .... 

(H 

'" I 
Q 

.... 
n ..., 
n 
o 
~ , 
"", 
cg. 
t+ 
.... 
= 3: 

n o , 
'tI 

.... 

.a 
00 .... 

." , 
o 
n 

I 
"TI .... 
o 
I.: 

;10 .... 
3: 
I 

N 

'" 

lOGREC buffer 

Mel-t Information .. aboul 

l-• Processing a storage hardware 
check in a· global routine r 

error 
that has established 
an FAA. 

• Invoke ATM1 for 

0IGFPMATH' 

EED 

software repair: :r General purpose EED CALLATM .. 
--" registers, con· 

TVPE~MACHCK • Preserve the hard· trol registers 3 Aepair ware data in Ihe and 4, and PSW status EEDs (ATM's Inter· at time of informa· nal control blocksl. MACHCK tion 

• Cull the appropriate L 
repair routine . 

• Aecord the hardwere WSACATMK 
error to LOGAEC. 

General pur-
• Eslabllsh the pose registers 

environment for and PSWfor 
re-entry to ATM In .J\ re-entry to 
WSACATMK. ATM1 

. 
A 

(To part 21 

Figure 4 (Part 1 of Z). Hardware Error Processing 



~ .... 
:a:: 
I 

N 
0\ 

:a:: 
< 
~ 
)( 
J:oo 

CI) 
r
r-

~ 
(I) 
n 
o 
< 
.... 
(I) ., 
SI 

:a:: 
!Q 
SI .... 

r
-< 
N 
00 
I ... 

..... 
"" UI 
I 

o 

.... 
n ..... 
n 
o 
~ ., .... 
!Q 
:r .... 
.... 
~ 
:a:: 
n o ., 
'0 

... 
\I) 
00 ..... 

(From 
part 11 

A WSACRTMK EEDs 
MCH 
registers 
and the 
PSW altered 
by RTM1 

I 

!® MCH 

r 

Load the registers and 
PSW from WSACRTMK 
to cause a re·entry to 
RTM1 (type MACHCK -
RE·ENTRY) for a 
software recovery. 

DISPATCHER 

When the task Is dis· 
patched, it executes the 
SVC 13, which causes 
RTM2 task recovery 
termination services to 
be Invoked. 

-

f J.. RTM1 

,.. 0"EAVTRT1 

r Set up the 
environment 'or 
MACHCK 
re·entrv . 

Exit to the 
dispatcher. 

TCB 

" 
f EEDs 

Figure 4 (Part 2 of 2). Hardware Error Processing 

SDWA 

~ 
MACHCK 
Information 

FRR II ® IEAVTR10 ® IEAVTRTS/IEAVTR1C .. ~ Route to the FRR Attempt a Iystem .. 
recovery since the to attempt recovery 
error (MACHCK) 

~ 
for the routine that Percolate occurred In a global suffered the 

routine. MACHCK error • 

IEAVTRTM. l~ Record the error. 

~ Set up the task for Return with a 
entry to RTM2 by continue·with· 
altering the ABOPSW. termination 

indicator. 

r-

SDWA A 

~ " Contlnue-with-
termination 

AB Indicator 

+ SVC 13 



r
oo( 
N 
00 
I ... ..... 

CIt 

'" I 
o 

..... 
n ..., 
n 
o 
~ ., .... 
U2 
J 
rio 

I-t 
tilt 
3: 

n 
o ., 
'U 

... 

.c 
00 ..... 

"U ., 
o 
n 

E 
." ... 
~ 

n:u 

TCB~OT-O 

\ 

Task issues SVC J 

~ispatcher (lEAVEDSO) 

IGCOO3 - EXIT 

1 Determine the task', aligi· 
bilitV for normal task 
termination . 
• EXIT was issued by the 

lasl RB on tha RB queua. 

Dispatcher (lEAVEDSO) 
• TCBEDT '" Zero. 

2 Issue SVC 13 IU pass 
amtrulto HTM2. \\ 

RTM2 

IEAVTAT2 

Gel and initialize the ATM2 
work 81ea (SP2551 

IEAVTRTE 

1 Pass contralto the task termination 
processor. 

2 If the ASXBTCBS indicates that one task 
is left in the address space, then address 
space termination Is required. Issue the 
CAllRTM TYPEaMEMTERM macro to 
schedule an SRB that will Initiate address 
space termination processing. 

3 Free the RTM2 work area. 

4 If this is only normal task termination, 
branch to EXIT prolog to get rid of the 
SVRB. 

BRANCH 

rfo parl 21 

BALR 

PRB SVRB 
TCB 

TCBEOT "0 ASXB 

~ASX.TC8S 

IEAVTSKT 

1 Frea tha resourcas via alink to RTM2 and 
the user defined resource managers, passing 
the resource managers parameter list (RMPl) 

2 Set the PRB resume PSW to point to an 
SVC 3 instruction. 

3 Set the end·ot·task Indicator for exit in 
the TCB (TCBEOT). 

~ Figure 5 (Part 1 of 2). The Process of Normal Task Termination 
3: 
I 

N ..... 

RTM2WA 

Communications area 
for processing within 
the RTM2 load 
module 

RMPl 

liNK 

• • 
To all resource managers 
defined in IEAVTRMl 

• BALR • 

TCB 

TCBEOT'"' 

To system resource 
managers 

Resume PSW 
4 SVC3 

SVC 13SVRB 



;;a .... 
3: 
I 

N 
01 

3: 
< en 

" ~ 
en 
r
r-

;;a 
CD 
n 
o 
< 
.... 
CD 
~ a 
3: 
fa 
9 ,... 

r
oo( 
N 
Ot 
I .... .... 

CIII 
\11 
I 

Q 

..... 
n ..... 
(') 
o 
~ 
~ .... 
fa 
:r ,... 
.... 
= 3: 
(') 
o 
~ 
'U . 
.... 
\0 
00 .... 

(From part 1) 

1 

BRANC~ 

"'I " 

IEAVEEXP - EXIT prolog 

EXIT prolog deletes the SVRB. ---------., 
If address space termination I 
is necessary. go to LI _____ _ 

'2g~ ~TM~ _ ....: __ J ~ 

TCB 
PAB 

r--------
I If task termination. TCBEOT"1 

SVC FLIH 

\ 
I redispatch of the task 

- - - - - - - - - - - - -, causes EX IT to receive 

+ Resume PSW 
I SVC3 

L ~t~l~g~. ____ 

IGCOO3 - EXIT 

1 Since the end-of·task endicator has 
been set (TCBEOTI BALR to the 
resource manager for cleanup of the CSVEXIT 
task. BALR Dequeue/free the SCBs owned bV the TRRM ... 

I EVOSPET in I GVSTSKT ... -,.. RB or the task. 
... BALR 

"' WPRM L BALR .. Free storage IEAVSY5R 
" , -r 

VSM Cleanup the RB entries for the task. 

BALR 
~ PGM BALR 

I GC062R1 IEAVEEDO ... CSVEXIT ... 
DET 

, .. 
• Free the RB storege. Free the programs. 

• Dequeue the TCB. 
EITHER 2 Exit to the dispatcher (lEAVEDSOI 

• Schedule the end-of·task exit 
routine for the task BR 14 

OR 

Post the mother task if • Jo' • 
attached with an ECB Normal task termination 
operand. is complete 

Figure 5 (Part 2 of 2). The Process of Normal Task Termination 



r
-< 
N 
00 
I .... 

-.oJ 
I.N 
111 
I 

o 

..... 
o ...... 
n 
o 
"0 
'< , 
..... 
IQ 
~ 
t+ 

." , 
o 
o 
ID 
III 
III 

'T1 ..... 
o 
:Ii: 

ABEND 'Entered by 
SVC 13 

Exit 
requested 

progress . 

Figure 6 (Part 1 of 2). Abnormal End-of-Task 

• Diagnose 
the error. 

options. 

r = .... :0 
nm 
men 
:Jrt 
III.., 
m .... 
a.n 

rt 
3:m 
lila. 
rt 
m3: 
..,Q.I 
...·rt 
IIlm ......, 
(I) .... 

III 
I .... 

en 
'U 
..,0 
O~ 
'0 mH 
..,~ 

rt3: 
'< = 



~ .... 
3: 
I 

"" CI 

3: 
< en , 
x 
:> 
en 
r-
r-

~ 
CD 
n 
0 
< 
.... 
II) , 
:i 

3: 
10 
:i ,.. 

r
-< 
N 
00 
I ..... ..., 
"" '" I 
CI 

,... 
n ...., 
n 
o 

~ , ... 
10 :r 
r+ 
.... 
1:11 
3: 

n 
a , 
'U . 
..... 
\0 
00 ..... 

Branch to 
dispatcher 

Control is 
returned from 
IEAVTAS1 

Abnormal 

{~~~~~ •• :. •• ~ • Free the copied trace table. 
• Free the RTM2 work areas. 
• Clear the TCD flags. 

Figure 6 (Part 2 of 2). Abnormal End-of-Task 

EXIT 
prolog 
(tEAVEEXP) 
normal exit 

all subtBsks 
beginning with the deepest 
subtask. 

• Purge the resources via the 
resource managers. 

• Update the RB queue for exit. 



r-
-< 
N 
00 
t ...... 

-..j 

VI 
I..n 
t 

o 

,.... 
o ...... 
("') 
o 

" '< ., .... 
Ul 
:::r 
r+ 

1-1 = ~ 

("') 
o ., 
" 

"0 ., 
o 
o 
m 
1/1 
1/1 

" ...... 
o 
!: 

Tca Entered via 
SVC 13 

TCB 

User exil 

r~~VT~~--lI--~L-----------------~ ................ ~ .0 
the 

Figure 7 (Part 1 of 2). 

Obtain and initialize the user's copy of the 
SDWA. 

• Perform the I/O requests and block 
abnormal exits if requested. 

._ SYN-=H~O EXIT._ -- -- - --1-
EAVTAS2 

• Track the SOWA. 
• Record. if requested. 
• Save the dump options. 

IEAVTAS3 

• Select the ret ry R B. 
• Modify the RB's for retry. 
• Free the user's copy of the SDWA. if 

requested. 
• Reset the SGB flag. 

Retry 

error 

• Select 
the 
options RB 

(Retry (RB) 

RBWCF~O 

RBOPSW~ 

home address 
space 
XSBPASID= 
home address 
space 

RB (RB to 
be purged I 

RBWGF=O 

RBOPSW= 
CVTEXIT 

space 
XSBPASID= 
home address 
space 

r- = .... ;:0 
om mm 
:lIT 
VI.., 
m ..... 
0.0 

IT 
~m 
1110. 
IT 
m~ 
.0) 
... ·IT 
111m ......, 
VI ..... 

0) 
I .... 

II) 
'0 
.0 
0 .... 
'tJ mH 
.~ 
r+~ 
'< : 
o .... 



;IU 
-t 
3: 
I 

c.o.I 
N 

3: 
< en 

'" X :r:-
en 
r
r-

;IU 
\1) 
n 
o 
< 
-t 
\1) ., 
3 

3: 
CO 
3 ,.. 

r
-< 
N 
00 
I .... ..... 

c.o.I 
Ul 
I 

o 

,.., 
n 
\,J 

o 
o 
'tJ 
I( ., .... 
CO 
J ,.. 
.... 
til:! 
3: 

o 
o ., 
'tJ . 
.... 
\0 
00 ..... 

Control Is returned 
from IEAVTAS1 

IEAVTRTC 

RTM2WA 

RTM2DREQ 

RTM2WA 

RTM2CLUP 

Figure 7 (Part 2 of 2). Retry 

• Free the RTM2 work area and 
RTM2's copy of the SDWA. 

• Clear the TCB flags. 

• Branch to EXIT prolog. 

Abnormal exit normal exit 

Branch to the 
dispatcher 

... .... 
n 
CD 
:::J 
C/I 
CD 
a.: 

;III 
3:m 

~~ 
CD., ., .... 
.... n 
mrt 
... CD 
C/)a. 

13: m 
"art 
.,CD 
0., 
'0'" CDIIJ ., ... 
rtC/) 
-<0 
O~ 
~ 

H 
H~ 
~3: 
3:: 



r-
oo( 
N 
00 
I .... ..... 

CIoI 
U'I 
I 

c 

(") 
o 
~ ., ... 
!Q 
J 
t+ 

1-1 
l:1l:I 
3: 
(") 
o ., 
1J 

.... 
-0 
00 ..... 

"'1J ., 
o 
n 

I 
." .... 
o 
!: 

1 
I. 

• Initialize term exit processing 
until all the term exits have 
been entered. 

• Initiate task termination until 
each subtask has gone through 
EXIT. 

• Free the RTM2 work area and 
RTM2's copy of the SDWA. 

• Clear the TCB flags. EXIT prolog (JEAVEEXP) 
normel exit 

[~~~~~} •••• ~ Abnormal exit 
branch to the dispatcher. 

Figure 8. Cancel 

• Determine the type of dump 
(SYSABEND, SYSUDUMP or 
SYSMDUMPI. ' 

• Process the dump data set for the 
current dump, and SNAP or 
SDUMP. 

• Find the attached tasks and 
SNAP if not a SYSMDUMP . 

• Reset the TCB flags in the 
current and the daughters. 

• Track the SDWA. 
• Record, if requested. 
• Save the dump options. 

• Find the last attached subtask. 
• Detach the subtask. 
• Purge the resources. 
• Update the RB queue for exit. 

SYSABEND or 
SYSUDUMP 

Resource managers 

• I nstallation resource 
managers 

• IBM resource 
managers 

o 
-h 

H 
l:I:I 
3: 



::a:: 
< 
C/) 

'x 
> 
C/) 
r
r-

:iIO 
CD 
n 
o 
< 
-t 
CD ., 
:I 

::a:: 
fa 
:I 
t+ 

r
oo( 
N 
00 
I 

I-' ..... 
(.01 
VI 
I 

c 

..... 
n ..... 
o 
o 

" '< ., 
"". 
fa 
:r 
t+ 
1-4 
till 
::a:: 
o 
o ., 
" . 

Since the MEMTERM process circumvents 
all TASK recovery and TASK resource 
manager processing, its use is restricted to 
a select group of routines which can 
determine that task recovery and 
resource manager cleanup is either not 
warranted or will not successfully operate 
in the address space being terminated. 
It therefore is restricted to the following 
users: 
11 Paging supervisor when it determines 

that it cannot swap in the LSQA for 
an address space, 

21 Address space create when it 
determines that an address space 
cannot be initialized, 

31 RTM or the supervisor control 
FRR when they determine that 
unoorrectable translation errors are 
occuring in the address space, 

41 RTM2 when it determines that 
task recovery ana termination cannot 
take place in the current address 
space; 

51 The RCT when it determines that the 
address space is permanently 
deadlocked, 

61 RTM2 when all tasks in the 
address space have terminated 
IIEAVTRTEI. This is the only 
requestor of normal address space 
termination ICOMPCOO=OI. 

71 Auxiliary storage management recovery 
routine, when it suffers an indeterminate 
error from which it cannot recover, 
while handling a swap-in or a swap·out 
request. 

SI Auxiliary storage management 
recovery routine, when it determines 
that uncorrectable translation errors 
are occurring while ASM is using the 
control register of another address 
space to update that address space's 
LSQA. 

91 SVC 34 in response to a FORCE 
command. 

101 VTIOC in response to FSTOP reply. 

O BALR 

• • r---------------~~ 
CALLRTM 

TYPE=MEMTERM 
ASIO= 
co MPCOO = 0 INormal! 

f. 0 IAbnormal! 

ASCS 
RTCT Queue 
~ ____ ~~L ~ 
RTCTFASB_t==)! ASIO I . 

J1 Pointer to the:SCB 
queue of address 
space lsi to be 
terminated. 

Note: Since callers 4, 6, and 6 above are 
task-related and running in the address 
space to be terminated, they will set 
themselves non-disp8tchable after 
issuance of CALLRTM . 

RTM1 

IEAVTRTt 
Via branch table go to 
TYPE processor. 
TYPE"'MEMTERM 

IEAVTRTM 
1 Put the ASCS of the address 

space to be terminated on the 
address space queue. 

2 Store the completion code in 
the ASeB with the matching 
ASIO lor currentl. 

3 Schedule the SRB to post the 
address space termination task 
in the master address space 
IUse of the SRB routine is 
serialized by compare and 
swap). 

I EAVTRT 1 

Return to the caller. 

Figure 9 (Part 1 of 2). The Process of Terminating an Address Space 

V\ 
Global SRB dispatcher 

(';"\ Address ~ 
~ space termination SRB 

Post RTCTMECB - This 
activates the address space 
termination task in the 

ASCB on queue master address space. 
ASCB 

ASIO 

Completion 
code 

SRBon 
dispatch 
queue 

Step 1 

Step 2 
Steps 3, 4 
Steps 6, 6, 7 

Dispatcher 
IIEAVEOSOI 

Identifies the 
requesters 
The request format 
Initiate the request 
Process the request 



..... 
n 
'<oJ 

o o 
~ , 
JoI. 
10 
J 
rl-

M 
l:1l:I 
3: 
o 
o , 
'a 

"'0 , 
o 
n 

m 
." ... 
o 
I: 

RTCT 

RTCTFASB 

ASCB queue =u 
pointer 

t:::::::::=:::: ASCD 

4 Next ASCB 

POST 

/ ;MEC. 
ASI D Resident address space termination t:::====::::::j controller task in master address space 

ASCB 

o 
v 

ASID 

I v 

I 
I 
I 
I 
I 

... ------.., I 
I Resident task attached I I 
IbY IEAVTMSI. 

(Master scheduler I I 
I initialization at IPLI. L .J 
l it remains inactive until 

posted for work. I L _____ ....... 

IEAVTMTC 

, Reset the address space termination ECB. 

2 Dequeue the ASCB representing the address 
space to be terminated. 

3 Stop all processing Inside the address space 
being terminated. 

• Break any active addressing binds. 
• If an excessive spin is detected Inform 

the operator . 

4 Release any cross memory locks (CML) or 
local locks. 

5 Purge any I/O operations. 

6 Free any real and auxiliary storage. 

~ 

.. 

.. 
, 

.. 
~ 

7 At tach a subtask to handle the remainder of the 
pUlges for the address space (pass ASCB in 
register 1.1 

8 II the Address spaCI! termination ASC8 queue 
pointer is not zer'l. then do processing steps. 

G) to ® for the ~ext ASCB. 

Otherwise. the task walts for work 
Iwail on RTCTMECB), 

w~ 

... 

.. 

... 

.. 

.. 

.. 

--.. 

Register 1 

. Register 0 

It To dequeued I 
ASCB 

Register 1 

1+ To the ~SCB being I 
dequeued I MEMTERM J 

options 

IEAVEBBR 

Bind break 
service routine 

IEEVEXSN 

Excessive spin 
notification 
routine 

IEAVLKRM 

Lock manager 
resource manager 

IGCOOO1F 

1/0 supervisor 

ILRTERMR 
Auxiliary 
storage 
management 

ATTACH 

Address spece 0 
.. terminator processor task 

...:; lEA VTMTR .. , Set register 0 to point to 
this terminating address 
space's ASCB. 

2 Indicate the MEMTERM 
options in register 1. 

3 Issue SVC 13 - to invoke 
the services of RTM2. 

SVC13 

0) 
RTM2 

Perform 
address 

.. space 
Return purges. 

1------------4 ..,to caller 
4 Exit to the dispatcher. 

'-------.----_--11' t 
BR 14 

IEAVTERM 

Real storage 
management 

Figure 9 (Part 2 of 2). The Process of Terminating an Address Space 

r-= ... :a nCD 
CDCIl 
:::Jr+ en., 
CD .... 
D.~ 
3: CD 
!!;.D. 
CD 3: 
":1m 
~.r+ 
I» CD .... ., 
III .... m 
I ... 

III 
." 
":10 
a-tl 
"0 
CDH 
.,~ 

",3: 
~ = 
o 
-tl 
H 
~ :s: 



SRB 
abends 

Figure 10 (Part 1 of 2), SRB to Task Percolation 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTS 

Aoute control to 
the FRRs (each 
FAR request per
colates the error!' 

RTM-36 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp, 1987 



"Restricted Materials of IBM" 
-Licensed Materials - Property of IBM 

5 If the related task is currently In recov
ery (TCBRCVRY Is set to show that 
RTM has been entered to process an 
error for this task) and the last FRR to 
receive control for the SRB requested 
that percolation be serialized 
(SERIAL"YES on the SETRP command), 
do the following: 
A. Obtain storage for a SPI (serial per

colation informatlonl control block 
(If unable to obtain storage, Increase 
the serial percolation count in the 
TCB). 

B. Copy the needed Information into 
the SPI. 

C. Queue the SPI off of the TCB. 

6 If the related task can sustain en abend, 
do the following: 
A. Copy the error information into the 

TCB and the highest RB (TCBRBPX). 
B. Store the address of an SVC 13 in the 

RBOPSW. 
C. If the task Is not a reentant task, 

accumulate information in the EEDs. 

7 Set the task dispatchable. 

8 Free all the locks. 

IEAVTRRSO 

IEAVTRS3 
entry point 

IEAVTRRSO 

IEAVTRS6 
entry point 

Figure 10 (Part 2 of 2). SRB to Task Percolation 

LY28-1735-0 (C) Copyright IBM Corp. 1987 Process Flow RTM-37 



EUT FRR 

IEAVTAT1 

IEAVTATS 

The task's 
EUT FAA 
requests a 
retry . 

1 If the retry is back to an ESTAE or 
mainline FRA 

2 If there are any SPls queued to the TCB, 
do the following: 

A. Dequeue the SPI. 
B. Copy the ·mode, completion code, 

and error type information from 
the SPI into the TCB. 

C. Set the EED pointer in the TCB to 
point to the EED information in 
the SPI. 

D. Modify the retry address in the 
SDWA to point to an SVC 13. 

3 If the serial percolation counter in the 
TCB is greater than zero, do the following: 

A. Decrease the cou nter. 
B. Indicate SA B percolation in the TCB 

(set TCBCMP=06A). 
C. Modify the retry address in the 

SDWA to point to an SVC 13. 

4 Aetry 

Figure 11. Removal of a SPI 

RTM-38 MVS/XA SLL: Recov Term Mgmt 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ESTAE 

IEAVTAT2 

The task's 
ESTAE 
requests 

1 If the retry is back to an ESTAE, 

2 If there are any SPls queued to the TCB, 
do the following: 

A. Dequeue the SPI. 
B. Copy some of the information from 

the SPI into the TCB. 
C. Set the EED pointer in the TCB to 

point to the EED information in the 
SPI. 

D. Store the address of an SVC 13 in the 
ABOPSW. 

3 If the serial percolation counter in the 
TCB is greater than zero, do the following: 

A. Decrease the counter. 
B. Indicate SAB percolation in the TCB 

(set TCBCMP=06A). 
C. Store the address of an SVC 13 in 

the RBOPSW. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of JBM" 
Licensed Materials - Property of IBM 

Entry 

From a 
CALLRTM 
macrO 

IEAVTRT1 IEAVTRTV 

• Verify the PSACSTK 

address in verlficetlon 

lhe module 

PSACSTK 
tabea 
valid Itack 

IEAVTR10 IEAVTRTS add .... 

• Create the .Process 
jc-'" 

Contra! the 
RTMIWA FRR retry FRA·recovery 
'or on Inter· f4- eProcess processing , ... FRR perc 

e Exillo the f- • Prom. 
dispatcher. FRRr •• IEAVTRTR 
eXit pro. lume 
logueor,he • Process 
call ... SRB-to- ... Proccmthe 

usk pere recursions 

1 
IEAVTRTM IEAVTRSO 

~ 
Schadule 

~r+ RTMI ...... eABTERM 
eMEMTERM subroutines 

IEAVEEXP IEAVTRTD 

-----. EXIT ~ RTMI 
prolog subroutines 

IEAVEDSO IEAVTSLP 

-----. ~ SUP action 
Dispatcher 

processor 

-( Enlry ) ( Entry 

From. Frome 
CALLRTM CALLRTM 
macro macro 

IEAVTSRI IEAVTRMC 

Set Upe" 
Pr'ocea SSRBto 
CALLRTM schedulethe 
TYPE- MODE-
ITERM LOCAL 

FRR •. 

~ 
( ExlllO ExittD 

'he caller the caller -

~ 

IEAVTRIC 

Prepare for 
~ r-routing to 

FRR, 

IEAVTSLP 

I- Slip action I-,.. 
processor 

IEAVTR1A IEAVTR1F 

Obtain the 
faUing in· ..... FRR routing ~ 
struction prooproceuor 

stream 

IEAVTRIX 

CMSET ..... interface 
module 

IEAVTSSX 

Adj"'t PER ..... stetu.for 
SLIP 

IEAVTRIG 

-. GTF inter-
~ 'eeo module 

IEAVTRID 

4- FRR POst 
procolling f*-~ module 

.... 

Figure 12. RTMI Module Flow and Basic Functions Performed 

LY28-1735-0 (c) Copyright IBM Corp. 1987 

IEAVTRIS 

Allocatel 
'reeSDWA 
module 

IEAVTRll IEAVTRIA 

Initialize ........ ObtBinthe 
SDWA 'ailing in-
modulo structlon 

stream 

IEAVTRIR 

Write the 
SDWAto 
SYS1. 
LOGREe 

IEAVTR1D 

FRRpoot 
",_Ing 
module 

IEAVTSSX 

Adjust PER 
statuI fOf 
SLIP 

IEAVTRIS 

Allo'"'t.1 
freeSDWA 
modula 

IEAVTRIR 

Write the 
SDWA,o 
SYS1. 
LDGREC 

Process Flow RTM-39 



C ENTRY ) 
Via SVC 13 

IEAVTRT2 IEAVTR2A 

r+- Obtain the failing 
instruction stream 

I IEAVTSLP 

I nitialize the ~ SLIP action 

RTM2WA proc:euin9 

IEAVTRTC 

Route control to 
Process an the STAE Dits. 
abnormal EOT 

Print the tYpe 1 
message table. 

" \ 
Displav storage. 

Route control to 
the user termination 
exits. 

Synchronize the 
failing tasks. 

To part 2 
Perform purges 

IEAVEDSO 

Exit Dispatcher 

IEAVEEXP 

1....+ 
EXIT prolog 

A 

f--. 

~. 

"Restricted Materials 0" IBM" 
Licensed Materials - Property 0" IBM 

IEAVTAS1 

Give control to the User STAE/ESTAE 

user ST AE routine. routine. 

.IEAVTAS2 

Perform the service 
requests. 

IEAVTAS3 

. Set UP for a retry or 
percolation. 

1 
IEAVTPMT 

Purge the tYpe 1 

IEAVTPMT mtIIIIIge table. 

Print the mesuge. 

IEAVTABD 

Display storage. 

0 

Figure 13 (Part 1 0" 2). RTM2 Module Flow and Basic Functions Performed 

RTM-40 MVS/XA SLLa Recov Term Mgmt LY28-173S-0 ec) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

From 
part 1 

IEAVTRTE 

Purge address 
space resources. 

Purge task 
resources. 

BALR 

BALR 

IEAVTMMT 

• Purge Installation 
resources 

• Purge system 
resources 

I EAVTSKT 

• Purge Installation 
resources 

• Purge system 
resources 

LINK 
Instellation resource 
manegers 

BALR 
--- System resou rce 

managers 

LINK 
Installation resource 
manegars 

BALR 
System resource 
managers 

Figure 13 (Part 2 of 2), RTM2 Module Flow and Basic Functions Performed 

LY28-173S-0 (c) Copyright IBM Corp, 1987 Process Flow RTM-41 



( ENTRY ) 

IEAVTMTC 

• On all processors .-
stop all tasks of the 
address space to be 
termlneted. 

SVC16 .. ~ 

- --

-

BALR 
-,. 

ATTACH 

Wait for work. 

IEAVEMSO 

Memory switch 

1/0 aUIE~CE 

IEAVTERM 

"Restricted Materials a'f IBM" 
Licensed Materials - praperty a'f IBM 

RSM resource manager 

ILRTERMR 

ASM resource 
manager 

IEAVTREM 

Record resource 
manager 

IEAVTMTR via I EAVTRT2 IEAVTMMT 
and IEAVTRTE 

Address space, -
termination 

Address space 

task 
termination purge 

• Issue a • Route control 
special SVC 13 to the address 

space resource 
termination IEAVEMDL 
managers 

f--+ 
Memory 
delete 

Figure 14. Address Space Termination Module Flow 

RTM-42 MVS/XA SLL. Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"RestriC'ted Materials 0" IBM" 
Licensed Materials - Property 0" IBM 

From IPL/NIP or 
vary processor 

{ ENTRY ) 

~ 

IEAVTSIN 

FRR stack 
initialization 

~ 

( Exit ) T o caller 

FRR steck initialization 

( ENTRY ) 
SVC IH, or 
tYpe 2, 3, or 4 

~ SVC routine 

IEAVSTAO IEAVTRT2 

• Invalid ESTA 
requests ABEND CALLER 

• Create (from 
branch entry) IEAVGMOO 

• Create (from SVC 
entry) 

• Overlay 

• Propagate r--

• Cancel IEAVGMOO 

• Cancel (from SVC, 
free sto rage) 

~ 

C Exit ) To caller 

ST AE routine, 

Figure 15 (Part 1 of 3). RTM Services Module Flow 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Process Flow RTM-43 



oRestricted Materials ~ IBMo - aper y a Licensed Materials Pr t f IBM 
IEAVTACR 

C ENTRY "" • Set the ACR in 1 
ViaCAllRTM progress, save the 

type~ACR 
PSA. 

• Resume work. 
r RETURN 1 --, 

• Interchange the PSA 
information. 

IEAVTRT1 FRRS 

( """\ ENTRY • Recover the work J Recover processor's 

Via CAllRTM, 
lost (for first timel. work. 

type=ACRlM 
=ACRDISP 

• Resolve the lock' 
conflicts. switch ~ Exit ) ( Exit ) 
the PSAs. To dispatcher To SETlOCJ< or 

dispatcher 

BAlR IEEVWJ<UP 

• Perform the VARY 
CPU requests. 

I ECVRSTI 
BAlR 

• Clean up the I/O. - -

• Switch the consoles. 

IRARMEVT 
SYSEVENT 

• Notify SRM. 
ALTCPREC 

IEAVTRER 
RECORD 

• Notify the operator. -
• Reset 'ACR in 

progress'. 

C Exit ) To dispatcher 

Figure IS (Part 2 of 3). RTM Services Module Flow 

RTM-44 MVS/XA SLL. Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

( ENTRY ) 
Via RECORD 
macro 

IEAVTRER 

• Move the record ( ENTRY ) 
into RECORD's 
buffer. 

• Schedule an 
SRB to post the Via POST IEAVTRET 
R ECOR D task. from SRB __ 

• Write the records 
to LOGREC. 

• Write the messages 

C EXIT ) to the operator. 

To the caller of • Go to MCH WTO 
the recording service routine for any 

MCH operator 
messages. 

• Wait for work. 

Via SVC76 

ViaSVC 36 

BALR 

Figure 15 (Part 3 of 3). RTM Services Module Flow 

LY28-1735-0 (c) Copyright IBM Corp. 1987 

SYS1.LOGREC 
recording 
service 

WTO 
message 
service 

IGFPWMSG 

MCH WTO routine 

Process Flow RTM-45 



From IEAVTRTM.IEAVTRTS.IEAVTRT2 or IEAVTPER 

( Entry ) 
via BALR 

IEAVTSLP 

SLIP action 
processor Part 1 

via branch 

IEAVTSLB 

SLIP action 
processor Part 2 

via branch 

IEAVTSLE 

SLIP action 
processor Part 3 

( Exit 

To the caller 
of IEAVTSLP 

) 

From I EAVTRTS 
(FRR router) 

( Entrv ) 

via LPSW 

IEAVTSLR 

SLIP modules' 
FRR routine 

C Exit ) 
To the caller 

IEAVTSL1 

SLIP traJ) 

via matching 
BALR routine • Part 1 

via BALR 

IEAVTSL2 

SLIP traJ) 

matching routine· 
Part 2 

via 
BALR - -

~ 

-

"Restricted Materials 0" IBM" 
Licensed Materials - Property 0" IBM 

via 

IEAVTSLS 
BA;:' 

IEAVTADR 

SLIP processor ~ Convert the 
service routines Indirect addresses 

Figure 16. SLIP Action Processing Module Flow 

RTM-46 MVS/XA SLLc Recoy Term Mgmt LY28-173S-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property Df IBM 

FromSVC 
Interruption 

From Contents 
Supervision 

From 
Checkpointl 
Restart 

From RTM or 
SVCexit 
processor 
IIEAVEDR) 

IGCOOO1 D/IGXOOO28 

Create SPIE/ESPIE environment. 

IEAVSPIP 

Determine the program mask to be used in the PSW 
of the synched to program. 

IEAVSPI 

Save or restore SPI E/ESPIE environments and detar
mine the number of subsystem checkpoint record 
(SSCR) blocks required for checkpoint. 

IEAVspiE 

Clean up SPIE/ESPIE environment at RS and task 
termination. 

Exit to celler 
vie EXIT prolog 

Exit to celler 

Exit to celler 

Exit to caller! 

Figure 17 (Part 1 of 2). SPIE/ESPIE Module Flow 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Process Flow RTM-47 



( 

From PC FLIH 
(JEAVEPC) 

ENTER 

IEAVSPI -. 
IEAVSSPF 

Schedule SPIE/ESPIE 
SRB when an inter-
ruption occurs for a 
program check. 

Sat up for and give 
control to a SPIEl 
ESPIE exitto handle an 
interruption for a page 
fault. 

t 
( EXIT ") 

To caller 

IEAVSPI 

IEAVSRB 

SCHEDULE _ 
SetupSPIE/ESPIE 
interface. 

It 

Dispatch 
SPIE/ESPIE exit - ~ 

~VC3 .. -

"Restricted Materials of !BMn 
Licensed Materials - property of !BM 

IEAVSPI 

IEAVSPEX 

Clean up for re-
turning SPIEl 
ESPIE exit 

Figure 17 (Part 2 of 2). SPIElESPIE Module Flow 

RTM-48 MVS/XA SLl, Recoy Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

( Entry ) From IEAVADIN 
or BLSQECT 

~ 

IEAVTFMT 

• Validity check the 
parameter list • 

• Format the control 
blocks that are valid 
for the TCB being 
processed. 

BALR (Note 1) BALR -RTM2WA SLSOROUT -
• Pass paremeters for 

requested services 

~ BLSOCFMT 

• Check the control 
block acronym 
table (CBATI. 

• load the requested 
control block for. 
matter module. 
which contains 
the control block 
model. 

BALR I EAFTESA (entry 
-If the SVRB is ~ point in IEAFTRT21 

available, format 
ESA bit flag the ESA bits. 
summary formattar 

-SDWA's 
BALR IEAFTSDW (entry 

ragisters. 
'7' point in I EAFTRT2) 

6TOP,rt' 

SDWA registers at 
time of error 
formatter 

Note: 

1. The BLS modules are documented in IPCS Logic and Diagnosis. 

IEAVTRF2 

• Pass the address of 
the RTM2WA for· 
matting model and 
the address of the 
dump data to for- , 
mat the RTM2WA 
using IEAVTRF2's 
formatting model 
CSECT 
(lEAVTRP21. 

•. Perform e bit 
analysis summary 
for the RTM2WA. 

Figure 18 (Part 1 of 4). RTM Control Block, Formatter 

LY28-1735-0 (c) Copyright IBM Corp. 1987 

BALR B ALR 
B LSOR OUT I-

• Pass perameters 
for requested 
services 

~ BLSOIFMT 

• Loed the control 
block data to be 
formatted. 

• Format the control 
block using the 
specified forman ing 
model. 

Process Flow RTM-49 



7 F",m"nl 

IEAVTFMT 

Continue formatting 
control blocks: 

-EED 

• Pall parameters for 
requested llll'llices 

r-r----_ 
~ BLSQCFMT 

• Check the control 
block acronym 
table (CBATI. 

• Load the req uested 
control block for· 
matter module. 
which contain. 
control block 
model. 

BALR 
-SCB 

I 

6 To P,n , 

Note: 

BLSOROIJT 

• Pu .. parameters for 
requested services 

- BLSOCFMT 

• Check the control 
block acronym 
table (CBATI. 

• Load the requested 
control block for· 
matter module. 
which contains 
control block 
model. 

BALR 

1. The BLS modules are documented in IPCS Logic and Diagnosis. 

"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

• Pass the address of 
the EED formatting 
model and the ad
dress of the dump 
data to format the 
EED using 
IEAVTRFS's for
matting model 
(CSECTI 
(lEAVTRP51 . 

• Peform a bit 
analysis summary 
for the EED. 

IEAVTRF4 

• Pass the address of 
the SeB formatting 
model and the ad-
dress of the dump 
date to format the 
SCB using 
IEAVTRF4's for-
matting model 
CSECT 
(lEAVTRP4). 

• Perform a bit 
analysis summary 
for the SCB. . 

JALR .,!AL R 
'BLSOROIJT 

• Pu .. parameters for 
requested services 

4 BLSQIFM't 

• Load the contlOl 
block data to be 
formatted. 

• Format the comrol 
block using the 
specified formallino 
model. 

Figure 18 (Part 2 of 4). RTM Control Block Formatter 

RTM-SO MVS/XA SLLc Recov Term Mgmt LY28-173S-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

(Note 11 9 From Part 2 

BALR _--,~..;;B.;;.Lsa;;.;;;;.R.;;.O.;;.UT~-rr-!~ 

IEAVTFMT 

elf called by 
BLSQECT, format 
any active FR R 
stacks. 

• Pass paramete .. for 
requested services 

L..~ ..... B~~~OC~FM __ T __ ~ 
• Check the control 

block acronym 
tBble (CBA TI . 

• Load the requested 
control block lor· 
malter module. 
which contains the 
control block 
mod.l. 

~~ __ I~E~A_V_TR_F_3 __ ~.~ ~ 
• Pass the address of ---.J .. 

the FRR formatting 
model and the ad· ~ 

BLSOROUT ~LR 

• Pass parameters lor 
requasted services 

dress of the dump 
data to format tha ' ,_ ..... ....".,.,.",...,,....._ 
FRR using a.. BLSQIFMT 

6 To""' 

Note: 

IEAVTRF3's for-
matting model 
CSECT 
(lEAVTRP31 

• Pass the address of 
the RT1W format
ting model and the 
address of the dump 
data to format the 
RT1W using 
IEAVTRF3's for
matting model 
CSECT 
(lEAVTRP11. 

.If RT1W is valid, 

-Perform a bit 
analysis summary 
for the Rn W. 

-If the EED 
printer doas not 
equal zero, format 
the EEDs. 

• Load the control 
block data to be 
lormatled. 

• Format the control 
block usillllthe 
_llied formatting 
model. 

• Pass parameters for 
requested services 

~I_-
~ BLSOCFMT 

• Check the control 
block acronym 
table (CBATI. 

• Load the requasted 
control block for· 
manor module. 
which contains the 
cOntrol block 
model. 

1. The BLS modules are documented in I.PCS Logic and Diagnosis. 

Figure 18 (Part 3 of 4). RTM Control Block Formatter 

LY28-1735-0 (C) Copyright IBM Corp, 1987 

• Pass the address of 
the EED formatting 
model and the ad
dress of the dump 
data to format the 
EED using 
IEAVTRF5's for
matting model 
CSECT. 

• Perform a bit 
analysis summary 
for the EED, . 

Process Flow RTM-51 



C(FromPort3 

IEAVTFMT 
BALR (Note .11 BALR 

BLSOROUT 
.If called by --

BLSQECT, format • Pass parameters for 
the interrupt requested services 

handler save area, 

~ BLSOCFMT 

• Check the control 
block acronym 
table (CBAT). 

• Load the requested 
control block for· 
matter module, 
which contain'the 
contro I block 
model. 

the XSB using ~he 
BALR 

~LR 
formatting model 

~ BLSOROUT 

CSECT • Pess parameters for 
(JEAXSBPI, and requested services. 

the STKE chain 
usi ng the for-
matting model 

~ CSECT BLSOIFMT 

(lEASTKEPI, 

• Loed the control 
block deta to be 
formatted. 

• Format the control 
· block using the 

specified formatting 
model. 

Notes: 

1. The BLS modules are documented in IPCS Logic and Diagnosis. 
2, IEAIHSAF is the supervisor module's formatter. 
3. SDUMP calls IEAIHSAF directly, 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

(Notes 2 and 31 
BALR 

IEAIHSAF 

S 
BLSOROUT ~L 

• Pass parameters for 
• Pass the address of requested services 

R 

the IHSA format-
ting model and the 
address of the 

~ dump data to for- BLSOIFMT 

mat the I HSA using 
IEAIHSAF's for- • Load the control 
matting model block data to be 

CSECT formattad. 

(lEAl HSAPI. • Format the control 
block using the 
specified formatting 
model. 

BALR 9 
.,!!'L • Format any active BLSOROUT 

R 

FRR stack. 
• Pall parameters for 

requested services 

~ BLSOCFMT 

• Check the control 
block acronym 
table (CBAT). 

• Load the requested 
control block lor· 
metier module, 
which contains the 
control block 
model. 

Figure 18 (Part 4 of 4). RTM Control Block Formatter 

RTM-S2 MVS/XA SLL. Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

METHOD OF OPERATION 

This section contains logic diagrams for the modules in this 
component. 

The first two diagrams are overviews of RTMl and RTM2 
processing. The remaining diagrams are in alphabetic order by 
module name, and the diagrams use either hipo format or prologue 
format. 

The following figure shows the symbols used in hipo format logic 
diagrams. The relative size and the order of fields in control 
block illustrations do not always represent the actual size and 
format of the control block. 

Keys to Symbols Used in the hipo format Method-of.Operation Diagrams 

.. Primary processing - indicates major functional flow. 

••••• Secondary processing - indicates functional now within 
a diagram. 

L-__ :> Data movement, modification, or use. 

- - ... Data reference - indicates the testing or reading of 
a data area to determine the course of subsequent 
processing. 

t 

Figure 19. 

Pointer - indicates that a data area contlUns the address 
of another data area. 

Indirect pointer - indicates intermediate pointers have 
been omitted. 

Connector - indicates that a diagram is continued on 
the next page. 

Key to Hipo Logic Diagrams 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-53 



"Restricted Materials o'f IBM" 
Licensed Materials - Property o'f IBM 

The prolog format diagrams contain detailed information that is 
broken down into four different headings. The four headings and 
the topics they document are: 

Module Description, which includes: 

• Descriptive name 
• Function (of the entire module) 
• Entry point names, which includes: 

Purpose (of the entry point) 
Linkage 
Callers 
Input 
Output 
Exit normal 
Exit error, if any 

• External references, which includes: 
Routines 
Data areas, if any 
Control blocks 

• Tables 
• Serialization 

Note: Brief RTM module descriptions are also included in 
MVS/Extended Architecture System Logic Library: Module 
Descriptions, which contains module descriptions for all the 
MVS/Extended Architecture components described in the System 
Logic Library. 

Module Operation, which includes: 

• Operation, which explains how the module performs its 
function. 

• Recovery operation, which explains how the module 
performs any recovery. 

Diagnostic aids, which provide information useful for 
debugging program problemsl this includes: 

• Entry point names 
• Messages 
• Abend codes 
• Wait state codes 
• Return codes for each entry point. Within each entry 

point, return codes might be further categorized by 
exit-normal and exit-error. 

• Entry register contents for each entry point 
• Exit register contents for each entry point 

Logic Diagram, which illustrates the processing of the 
module, the input it uses, the output it producs, and the 
flow of control. Some modules do not have a logic diagram 
because the processing is sufficiently explained in the 
module description, the module operation, and the diagnostic 
aids sections. Figure 20 on page RTM-55 illustrates the 
graphic symbols and format used in the logic diagrams. 

RTM-54 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBM" 
Licensad Materials - Proporty of IBM 

LOGICKEV - Key to the Logic Diagrams 

Callers 

~> 
LOGICKEV 

SPQA J----------> 
ISPQAADQE SPQAEDQEI ) 

SPQE 

SPQENEXT SPQESPQA 

TCB 

TCBPKF 

This paragraph describes what this module 
does. The same text appears under the 
FUNCTION heading on the Module Description 
page. 

~ Numbered ~teps describe the 
processing at a high level. 

A. Lettered steps describe the processing 
at a lower level. 

1021 Input and output 'fields. 

The control block acronym or data area name 
appears above the input and output boxes, 
and the field names appear within the 
boxes. A dotted arrow means the data is 
referenced, a solid arrow means the data is 
modified. 

External call graphic 
passing the parameter, TROB. 

/L...:.J, 
'r--l/ ITRFBR 

TROB 

1041 Internal call graphic (at 
the step indicated) passing 
two parameters. 

/L-.J, 
'.--./ SUBROUTN: 12 

EFMSG1, TFHAPHSG 

EAECB r----------> 1 OS I 
~IE_AE_~_~ ______ ~I-: ) 

Macro instruction graphic 
with these keywords, 
parameters, and options. 

ASCB 

CVT . 
Ir-___ ~I..J 

CVTBRET . 

TOB 

TOBAASCB 

POST 

(EAERI~, RCO) ASCB( TOBAASCB->ASCB) 
ERRETI CVTBRET ) 

Internal branch to the label 
and step indicated •. 

t:>BRLABEL: 08 

STEP 01 

~ 'SPQE , / 
SPQENEXT 
SPQESPQA 
SPQETCB 
SPGlEKEY 
SPQESHR 
SPQEOWN 

J ,SPQA 
/ 

SPGlAFADQ 
SPQALADQ 
SPQAFEDGI 
SPGlALEDQ 

Figure 21. Key to Logic Diagrams (Part 1 of 2) 

LY28-1735-0 (e) Copyright IBM Corp. 1987 Method of Operation RTM-SS 



"Restrioted Materials of IBM" 
Licensed Materials - Property of IBM 

LOGICKEY - Key to the Logic Diagrams 

[!!] SVC graphic. 
r-----------------~ 

<-----> I SVC TSOTEST I L-__________________ ~ 

E:> loal Step 06 branches here. A 
program call (PC) graphic 
shows an exit. BRLABEL 

Callers 

PARAMETERS ~:> ..--------..SE~EP 
TROB THISLlNE L-____ ...I '\ 

MAXLINES ETPBOPTS L-__ -.., / 

~), PC 

1091 Secondary entry point. 

This paragraph describes the function of 
this entry point. Four parameters (to the 
left) are passed an input. 

TTE DOlLABEL ~ This is the beginning o"f an 

L _____ -...I,------------> iterative DO group. 
TTEMBZl 

- A. Iterate graphic of the DO 
instruction to the specified step 
number. 

, 

l~ 

8. Leave graphic of the DO instruction --......, 
to the speaified step number. 

[!:!J External return graphic~ to 
. the calling routine. 

~/\> 1121 This is an internal t.:::.-, ~ subroutine. 
SUBROUTN 

This paragraph describes the function 
of this subroutina. 

1131 Internal return graphic~ to 
a step within this module. 

11 

'\ / 

'\/ 

STEP 07 

Figura 21. Key to Logic Diagrams (Part 2 of 2) 

RTM-S6 MVS/XA SLL: Recov Term Mgmt LV28-173S-0 (c) Copyright IBM Corp. 1987 



.... 
n 
"-J 

n o 
~ ., 
..... 
IQ 
J 
rio 

.... 
= 3: 

n 
o ., 
'U 

3: 
CD .... 
J 
o 
Q. 

o 
-fl 

o 
'U 
CD 

iiJ .... ... 
o 
:l 

RTM 1 Overview (Part 1 of 2) 

Input 

RTM1 

From a branch entry 
after a supervisor 
state routine issues a CALLRTM 
macro instruction 

work registers 

D~ 

1 Set up the common interface from 
the RTM1 entry points . 

Current 
FRR stack ~=:!:~) 2 Perform the second level 

D 
RTM1 
work registers 

interruption operation processing. 

r;:=:::!:~~ 3 Process any rescheduled RTM 
requests. 

4 Perform the dean-up processing. 

D =====::==-===::~> 5 Exit to the appropriate routine. 
• Retry routine. 
• Machine check handler. 
• Interrupted program. 
• Dispatcher. 
• SRB exit. 
• Exit prologue. 
• caller . 

RTM1 exit processing 
(lEAVTRTlI 

Figure 21 (Part 1 of 2). RTMI Overview 

Output 

RTM1 
work registers 

Note: When either MCH (machine check handler) or 
ACR (alternate CPU recovery) indicates a hardware 
error, CALLRTM goes directly to MCH or ACR. 



:0 
~ 
3: 
I 

\II 
00 

3: 
< 
(,I) 

">< 
:J> 

(,I) 
r
r-

:0 
CD 
n 
o 
< 
~ 
CD ., 
liI 

3: 
10 
liI 
rt-

r
oo( 
N 
00 
I .... .... 

CI'I 
\II 
I 

c 

,.. 
n ..... 
o 
o 
~ ., ... 
10 
::r 
rt-

.... 
til 
3: 

o 
o ., 
"U 

.... 
\0 
00 .... 

RTMI Overview (Part 2 of 2) 

Extended Description 

The RTM1 service of recovery termination management 
(RTM) provides a recovery interface with other supervisor 
routines. When a supervisor routine (principally the Inter
ruption handiers) detects an error situation, it passes con
trol to RTM1, via the CALLRTM macro, to initiate 
recovery from the error. RTM1 records the error (both 
hardware and software) on SYS1.LOGREC. 

RTM 1 does not perform the recovery function itself; it 
routes control to functional recovery routines (FRRs) 
established by locked, disabled SRB routines or enabled, 
unlocked task (EUT) routines. These FRRs are placed on a 
last-in-first-out FRR stack by a SETFRR mecro Issued 
by the routine requesting protection. The macro expansion 
places the FRRs on one of the following stacks, depending 
on its functional path through the supervisor. (The super 
FRR is placed on B8ch stack by NIP processing.) 

• ACR stack 
• RTM1 stack 
• SVC-I/O.<:fispatcher stack 
• Machine check stack 
• Program check stack 
• External interruption handler 1 stack 
• External interruption handler 2 stack 
• External Interruption handler 3 stack 
• Restart interruption handier stack 

Additionally, a normal FRR stack contains the recovery 
status for other paths through the system. 

RTM1 receives control for the following reasons: 

• Program checks 
• Restart operations 
• SVC errors 
• STE R M errors 
• Machine checks 
• OAT (dynamic address translation) errors 
• Abnormal termination (ABTERM) requests for a task 

with an ASIO (address space identifier) specified 
• Abnormal termination requests for a task In the current 

address space 
• Address space termination requests 
• Reentry for abnormai termination requests 
• Reentry for machine checks 
• Branch entries for abnormal termination requests 
• RMGRCML resource manager 

Module 

Figure 21 (Part 2 of 2). RTM1 Overview 

Label Extended Description 

1 RTM1 creates a common interface for its 
sub-functions using various entry point data and 

establishes recursion control for service routine requests. 

2 The program check I H (interruption handler!, SVC 
IH, restart IH, and machine check handler (MCH) 

all can request that RTM1 perform second levellnterrup
tion handler (SLIH mode) processing. When RTM1 
processes an SLIH mode entry. via a CALL RTM (that Is 
TYPE c PROGCK, SVCERR, RESTART. OATERR, or • 
MACHCK) it continues processing the Interruption only 
after IEAVTRTV verifies that the PSA pointer (PSACSTK) 
to the current FRR stack contains a valid FRR stack 
address. If there is a valid address, then RTM1, while In 
SL/H mode, determines the state of the system at the time 
of the interruption so that recovery from the Interruption 
can be attempted in either system mode or task mode. 

If PSACSTK is not the address of a valid FRR stack, 
I EAVTRTV Invokes IGFPTERM to put the system In a 
X'084' wait state and to issue message I EA797W, requiring 
the system to be re-Ipled. 

3 RTM1 performs reschedule processing for a service 
routine entry (that is, the CALLRTM request was for 

ABTERM, MEMTERM. or STERM). The reschedule 
function can also be performed as part of S LI H mode 
processing. This would occur if the action indicated by 
routine to FRRs required a reschedule service or if the 
processor had been in task mode (no FRRs established) 
when the error interruption occurred. 

4 The cleanup function frees any resources no longer 
necessary before determining the appropriate type of 

exit. 

5 RTM1 creates the final exit linkage based on an 
indicator established in I EAVTRTM except for 

FRR retry and resume processing. which are per
formed by IEAVTR10. 

Module 

IEAVTRT1 

IEAVTR10 

IEAVTRTM 

IEAVTRT1 or 
I EAVTR 10 

Label 



r
oo( 
N 
C» 
I .... 
'" ~ 
VI 
I 

o 

n 
o 
~ , .... 
lQ 
:7 
t+ 
1-1 
bf 
3: 

n 
o , 
'U . 

3: 
CD 
t+ 
;r 
o 
Q, 

o 
-II 

o 
" CD 

~ 
t+ .... 
o 
:::J 

RTM2 Overview Part 1 of 4) 

From 11m SVC IH (lEAVESVCI 
to perlorm SVC 13 
(ABENO) processing. 

rln~pu_t ________________________ ~~process 

Register 0 

..-
/' 

t ASeB or dump 
optIons " 

/ Dump 
~ oPtiuns 

I ASeB of address 
~ space being .... "'~. 

Register 1 

I Flags 

TCB 

1---_-11 ~ 
TCBRBP ~ 

TCBSTABB 

~ __ --II~ SCB 
TCBRTM12 

\ EEO 

SVRB 

SVC 13 

-(l- Failing I\.RB 

0-
) 

Figure 22 (Part 1 of 4). RTM2 Overview 

1 Initialize the RTM2WA 
according to the parameters 
raquested on the SVC 13 
Instruction. 

2 Process the recursions through. 
out the RTM2 operation. 

Input for 
steps 3·7 

.. 
,",",U,.,U" .. 

Processor 1 

Output 

RTM2WA 

.. 
.. 

K 

:l1li r-: 
~;lII nCD 
CDca 
:Jt+ en., 
CD .... 
a.n 

t+ 
3: CD 
~c. 
CD 3: .,CD 
.... tt-
11)(1 .... ., 
en .... 
I~ en 
" .,0 
oft-h 
CDM 
"3~ 
r+3: 
'< : 
a 
oft 
H 
til' 
:z 



.
-< 
N 
00 
I .... ..... 

CIt 
U'I 
I 

I:) 

.... 
n ..... 
o o 
~ ., ... 
~ 
t+ 

.... 

." 
3: 

o 
o ., 
"U . 
.... 
\D 
00 ..... 

RTM2 Overview (Part 2 of 4) 

Extended Description 

The RTM2 function responds to SVC 13 (ABEND) requests 
after receiving control from the SVC IH (interruption 
handler). Basically. RTM2: 

• Initializes a common work area called the RTM2WA. 
This work area contains the information needed by the 
various RTM2 routines to service the SVC 13 request; 
the work area serves as the input for the rest of RTM2 
processing. 

• Provides for error handling in RTM2 by tracking any 
possible recursions that occur. 'Unlike other supervisor 
routines. RTM2 does not relv on FAAs (functional 
recover V routines) to handle errors. Instead. ATM2 
uses recursion tracking to perform recovery bV tracking 
the various ATM2 routines as they execute. 

• Performs any of the basic RTM2 services: task recovery. 
storage displays. synchronizing failing tasks. purging task 
resources. and purging address space resources. 

• Exits to the correct RTM2 exit routine depending on 
the following conditions indicated in the ATM2WA: 
permanent or last task exit. retry. normal EDT (end· 
of·taskl abnormal termination of a task. address space 
termination. subtask waiting to terminate. convert·to· 
step request. or recursion exit condition. Control 
then goes to thedispetcher (lEAVEDSO) or EXIT 
prolog (lEAVEEXP). 

Module 

Figure 22 (Part 2 of 4). RTM2 Overview 

Label Extended Description 

1 RTM2 initializes an RTM2WA with tha information 
needed to perform the requested service. RTM2 

routines usa the information placed in the RTM2WA as 
input. The IEAVTRT2-RTM2 initialization M.D. 
diagram shows how RTM2 obtains and initializes the 
RTM2WA. 

2 Recursion processing occurs throughout RTM2 proc· 

Module 

IEAVTRT2 

essing. Basically. RTM2 indicates each logical section of 
code as it executes In the RTM2SCTC field of the RTM2WA. 
This field shows the sequential processing of segments, and 
marks how far RTM2 processed any request. The IEAVTRT2-
recursion processor 1 M.D. diagram shows this function. 
After a recursion occurs. RTM2 either ratries the segment if 
the segment can recover from the error, or skips the segment 
for any further processing requiring that segment. The M.D. 
diagram IEAVTATE - Recursion Processor 2 shows this 
function. 

Label 

RT21NWA 



r
-< 
N 
00 
I .... .... 

VI 
VI 
I 

o 

(") 
o 
~ , .... 
\0 
':T .... 
I-t 
tI:II 
3 

(") 
o , 
'U 

.... 
\Q 
00 .... 

3 
CD .... 
;r 
o 
D-

O 
-fI 

o 
'U 
CD 

Dl .... .... 
o 
::J 

RTM2 Overview (Part 3 of 4) 

Input 

SCB 
TCB 

Vl I I TCBSTABB 

TCU 

D 

Figure 22 (Part 3 of 4). 

Process 

>3 

0 : 
) 

> 4 
~ 

to. A ) 

" 
.. 
>5 

" 

.. 
v 6 

.. )7 
" 

8 

RTM2 Overview 

Y 
Process the ST AE/ESTAE exits to 

.... .. 
recover a task. '" 

Display the stora!]o for the " .. 
tasks requesting an ABEND .. 
dump. 

" .. 
Synchroniztl the fJiling tasks . ... 

.. .. 
Purue the re:i':'IIf(.,.~ for the 1;>",5. .. .. 

" Purge the resources for an address 
space. .... r 

.. .. 
Return I;Ol1tlOl to III!.: dispmdl(!1 
IIEAVEIlSOI <u 1:>:11 prololl 

.. 
(lEAVHXP). 

IEAVTASI 

Recovllr tilsk 
proce&sing 

IEAVTABD 

ABDUMP 
procossing 

'-
IEAV'I'RTC 

SYlldll onl.~ill9 
tailulU til,I .• 

IEAVISI, r 

TiJ~ .. i... Iflll!J'; 

pr(JL,;~~ill!t 

IEAVTM~.H 

Achh C:":i :'1~ . .I(;t} 

(lUlU'! t'ft .. c,::.:.ill!1 

lEi'.\: III II: 

Rl M2 "'<It 

r-= 
... ::a 
nCD 
CD en 
::J .... en., 
CD ... 
D.~ 
3: CD 
~o. 
CDZ 
.,1» ........ 
II) CD .... ., 
en ... 

I» 
I ... en 

'V 
..,0 
O-h 
'U 
CDH 
..,~ 

r+:z 
'< = 
o 
-h 



~ 
(I) 

" X 
:J:o 

(I) 
r
r-

::v 
CD 
n 
o 
< 
-t 
CD ., 
a 
3: 
co 
~ 

r
oo( 
N 
00 
I ... 

..... 
CIt 

'" I 
o 

..... 
n ..... 
n 
o 
~ ., ... 
co 
:r ,... 
.... 
tlI:II 
3: 

n o ., 
'0 . ... 
loCI 
00 ..... 

RTM2 Overview (part 4 of 4) 

Extended Description 

3 RTM2 will process the STAE/ESTAE exits. The 
M.O. diagram IEAVTAS1 - Recover Task Processing 

shows the STAE/ESTAE rec~very function, the M.O. dia
gram IEAVSTAO - STAE/ESTAE processing shows the 
creation of the ST AE/EST AE exit and the SCB 1ST AE 
control block). 

4 RTM2 displays storage when the caller specifies dump. 
The M.O. diagram IEAVTABD - ABDUMP Processing 

in the section "Dumping Services" shows the processing 
involved to dump selected areas of main storage. 

5 Failing tasks will complete their termination even if 
they are subtasks of a task that failS during their 

termination processing. RTM2 synchronizes failing tasks 
to independentlv terminate all the tasks in a TCB family 
that fail. The M.O. diagram IEAVTRTC - Synchronizing 
Failing Task shows this processing. 

Module 

IEAVTRTC 
IEAVTAS1 
IEAVTAS2 
IEAVTAS3 

IEAVTABD 

IEAVTRTC 
IEAVTRTE 

Figure 22 (Part 4 of 4). RTM2 Overview 

Label Extended Description 

6 RTM2 routes control to the resource manager 
routines to perform necessery clean up for task 

termination. The M.O'-diagram IEAVTSKT - Task PUrge 
Processing shows this processing. 

7 RTM2 purges address space resources for address space 
termination requests. The M.O.dlagram IEAVTMMT

Address Space Termination Processing shows this processing. 

8 Exit processing for RTM2 consists of returning can· 
trol to the dispatcher (lEAVEDSOI or EXIT prolog 

UEAVEEXPI. The settings in the RTM2FLX field of the 
RTM~A indicate the exit conditions that RTM2 processes. 
The M.O. diagram IEAVTRTE - RTM2 Exit Processing 
shows this processing. 

Module 

IEAVTRTE 
IEAVTSKT 

IEAVTRTE 
IEAVTMMT 

IEAVTRTE 
IEAVTRT2 

Label 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

This page left blank intentionally. 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-63 



r-
-< 
N 
00 
I .... 

..... 
"" \II 
I 

o 

.... 
n ..... 
n 
o 
~ , 
",. 

to 
-:r 
r+ 
1-1 
tII:II 
:a:: 
n o , 
'D 

.... 
\0 
00 ..... 

lEA VESPI - SPIE/ESPIE Processing (Part 1 of 6) 

From I EAVEOR 
ut np 

It TCB 

I TCBPIE J) " I 

( SCA 

"T SCAPIE 

~ 
( _ PIE/ESPIE 

PI EPSW 

PIEGR14 

PIEGR15 

PIEGRO 

PIEGR1 

PIEGR2 

EPIEGPR 

EPIEPSW 

Process 

IEAVSPEX: SPIEIESPIE Exit Processor 

1 Mark the SPIEfESPIE exit as 
inactive. 

2 Copy the appropriate registers 
from the PIEfESPIE to the TCB 
for retry. 

3 Copv the resume PSW address and 
set the program mask in the RB. 

.. 
-.- To 

IEAVEOR 

Output 

PIE 
" I PIENOPI .. 

TCB 
" I TCBGRS 

RB 
... I RBOPSW .... 

I 

I 
I 

(I) 
"D 
lot 
III 

"D 
::u o 
n 
III 
(I) 
(I) 



r
-< 
N 
00 
I .... ..... 

(/II 

'" I 
Q 

o 
o 
~ ., .... 
IQ 
:r 
0+-

.... 
all 
3: 

~ ., 
" . .... 
\D 
00 ..... 

f 
0+
:r 
o 
a. 
o 
~ 

o 

" CD 

ill 
0+.... 
o 
~ 

IEAVESPI - SPIE/ESPIE Processing (Part 2 of 6) 

Extended Doscription Module Label 

SVC exit proceSSing, IEAVEOR, calls I EAVSPEX, en entry IEAVESPI IEAVSPEX 
point in IEAVESPI, whenever a program issues the SPIEl 
ESPIE SVC 3 contained in IEAVTESG. IEAVSPEX deter-
mines if a SPIE or ESPIE exit issued the SVC 3. If a SPIE 
or ESPIE exit did not issue the SVC 3, IEAVSPEX sets a re-
turn code of O. Otherwise. I EAVSPEX sets the TCB registers 
for retry. sets the R B resume PSW address and mask. sets a 
return code of 4. and returns control to IEAVEOR. 

1 IEAVSPEX resets the program interrupt element flag 
bit (PIENOPII to indicate that neither a SPIE nor an 

ESPIE exit is currently in control and that it is valid to 
schedule the exit if an error occurs . 

2 If a SPIE exit issued theSPIE/ESPIESVC 3.IEAVSPEX 
copies registers 0-2 and 14-15 from the program inter

rupt element control block (PIE) to the TCB. If an ESPIE 
exit issued the SPIE/ESPIE SVC 3,IEAVSPEX copies all 
the registers from the extended program interrupt element 
control block (EPI E) to the TCB. 

3 IEAVSPEX then copies the address portion of the PIE 
or EPIE PSW to the RB old PSW. This becomes the re

try address. IEAVSPEX sets the program mask in the RB 
old PSW from the interrupts specified on the SPI E or ESPI E 
to complete processing of a SPI E or ESPI E issued from within 
the returning exit. 



~ lEA VESPI - SPffi/ESPffi Processing (Part 3 of 6) 
3: 
I From SRB 

: Dispatcher 
Input "Process IEAVPSRB: SPIE/ESPIE SRB Processing 

Register 0 SRBin 

;lID 
CD n 
o 
< 
-t 
CD ., 
ill 

3: 
!Q 
51 
rfo 

r
oo( 
N 
C» 
I .... .... 

(It 
VI 
I 

CI 

.... 
n ..... 
n 
o 
~ ., .... 
!Q 
J 
rfo 

.... 
trI 
3: 

n 
o ., 
" . 

( TCB 

TCBPKF 

TCBPIEND 

TCBGRS 

TCBPIE i-'" 

TCBRBP 

) 
'-RB 

" RBGRSAVE 

RBOPsliv 

RBXSB 

~CAPARMS 
RB address / 

I LC/PINT 

PSW 

SCASRB 
SRB I 

SRBPTCB 

4 Check to ensure the SPIE/ESPIE 
SCA y 

environment is valid. 
~ 

SCAPIE r 
~-0 SCAPARMS 5 Check if the program check was 

SCARPPTR 1\ 
selected for processing. 

\a... PIE 6 Initialize the PIE or tho EPIE fields. 

b PIEPICA 

r 
7 Initialize he RB and the XSB 

, PICA 
fields. 

PICA/TMK 
8 Set the TCB dispatchable. 

PICAEXIT 

PICAPRMK. 

C RPIEPICA 

RPPTYPE 

RPPEXITA 

RPPPARMA 

RPPITMK 

Output 

PIE EPIE 

" 
~ PIEPSW EP/EPARM 

PIENOPI EPIEGPR 

PIEGR14 EPIEPSW 

PIEGR15 EPIEINT 

PIEGRO 

PIEGR1 

P/EGR2 

RB 

" I' v RBGRSAVE 

RBOPSW XSB 

RBXSB ~ XSBKM 

~ 
TCB 

v TCBGRS 

TCBPIEND' 

TCBRBP '/ 

ToSRB 
p-

. Dispatcher 



r
oo( 
N co 
I .... 

..... 
"" UI 
I 

o 

n 
o 
~ ., .... 
ra 
~ ,... 
.... 
tI:I 
3: 

&> ., 
" . .... 
~ 
CO ..... 

lEA VESPI- SPIE/ESPIE Processing (Put 4 of 6) 

Extended Description Module Label 

The program check interruption handler UEAVSPPF) sched- IEAVESPI IEAVPSRB 
ules IEAVPSRB. an entry point in IEAVESPI. when a pro-
gram interruption occurs and a SPIE or ESPIE is eligible to 
receive control. IEAVPSRB is en SRB that Initializes the 
PIE or EPIE with the PSW and register contents at the time 
of the program check. IEAVPSRB then modifies the TCB 
and R B so thatthe SPI E or ESPI E exit receives control when 
the TCB is redispatched. 

4 IEAVPSRB checks to ensure that the environment is 
valid to schedule the SPIE or ESPIE exit. If the TCa 

is dispatchable,lEAVPSRB returns without causingtheSPIE 
or ESPIE exit to receive control. If there are no SPIE or 
ESPIE exits to process or if a SPIE or ESPI E exit is currently 
in control (a SPIE or ESPIE exit suffered the program in
terruption). IEAVPSRB terminates the task by using the 
CALLRTM interface; the SPIE or ESPIE exit does not re
ceive control • 

5 IEAVPSRa checks the PICA (for a SPIEl or the 
RPIEPICA (for an ESPIEI to determine if the program 

check wes one selected for processing by the issuer of SPIE 
or ESPIE. If the program check Interrupt is not to be pro
cessed by the SPIE or ESPIE, IEAVPSRB terminates the 
task by using the CALLRTM interface; the SPIE or ESPIE 
exit does not racaive control. 

6 IEAVPSRB initializes either the PIE or ESPIE with the 
PSW and the register contents at the time of error. 

7 IEAVPSRB initializes the RB resume PSW so that the 
3: exit receives the registers saved in the TCB or RB so 
~ that the exit receives control with the appropriate register 
i interface. IEAVPSRB uses the TCa key to set the PKM in 
a. the extended status block (XSBI. 

o 
-II 8 IEAVPSRB invokes the STATUS service (to merk the 
o TCB dlspatchablel. 

" CD 

OJ ,... .... 
o 
::J 



3: 
< 
VI 
"
X 
l> 

VI 
r
r-

;;0 
(\) 
n 
o 
< 
-t 
I\) , 
::I 

3: 
ID 
::I .... 

r
-< 
N 
00 
I ...... 

-...I 
(.04 

U1 
I 

c 

n 
o 
"tJ 
'< , .... 
ID 
;r 
r+ 

.... 
txI 
3: 

n 
o , 
"tJ 

lEA VESPI - SPIEJESPIE Processing (part 5 of 6) 

Input 

PSA ,.....,.". ASCB 

PSAAOLD V ASCBASID I 
PSATOLD ~ 

PSALCCAV TCB 

'SAST"E 1) TCBPlE 

C LCCA (SCA 

LCCAPPSW SCAPIE 1 
LCCAPX2P 

LCCAPX2S 

LCCAPGR2 

From PC FLiH 
(lEAVEPC) .. 

~ 

-v 

p rocess 

IEAVSPPF 

9 If the SPIE or ESPIE can not be 
processed, set a return code. 

10 Initial ize the TCB and the R B 
fields. 

11 Initialize the SPIE/ESPIE SRB. 

12 Initialize the SRB's parameter 
list. 

13 Mark the TCB non-dispatchable . 

14 Schedule the SRB to finish 
SPI E/ESPI E processing . 

Output 

Register 15 

" I return code I To 
-v PC FLiH TCB 

~ 

TCBGRS 

TCBRBP 

SCA 

" 

JJ SRBASCB 

SRBPTCB 

SRBCPAFF 

SRBEP 

SRBFRRA 

SRBPRIOR 

SRBPARM 

RB address 

ILC/PINT 

t'SW 

~ TCB 

TCBPNDSP 

TCBPIEND 

-.. To caller 

I 
.... RB 

,/'" -, RBOPSW 

J 

..... 

SCASRB 

}WARM 

ASCB 

I·ASCBTCBS. 

, 

I 

I""" .... 
n 
CD 
::J 
III 
CD 
a.: 

;:a 
3: CD 
IIIUl 
c+r+ 
CD'"J 
'"J .... 
... ·n 
1IIr+ 
.... CD 
ilia. 
13: 

III 
'Uc+ 
'"J11) 
O'"J 
'C .... 
11) AI 
'"J .... 
c+1II 
'< o 
0-1. 
-I. ... 
... Il!J 
Il!J3: 
3: : 



.
~ 
N 
00 
I .... ..., 

(.of 
UI 
I 

o 

,... 
n 
ow 

n o 
" '< ., .... 
!Q 
J 
Ii-

1-4 
bI 
3: 

o 
o ., 
" .... 
\0 
00 ..., 

3: 
ID 
Ii
J 
o 
0.. 

o 
-II 

c 

" ID 

OJ 
Ii-.... 
o 
:::J 

lEA VESPI - SPIE/ESPIE Processing (Part 6 of 6) 

Extended Description Module ubel 

The PC FLIH IIEAVEPC) calls entry point IEAVSPPF for IEAVESPI IEAVSPPF 
all program interruptions except PER, monitor event, special 
operation, and translation exception. If the system environ-
ment at the time of the interrupt does not preclude a SPIE 
or ESPIE from being given control, IEAVSPPF schedules an 
SRB to complete the processing necessary to give the exit 
control. When I EAVSPPF returns to the PC F LI H, register 
15 contains a code that indicates whether to continue SPIE 
or ESPIE processing or to abnormally terminate the task . 

9 IEAVSPPF tests the execution environment to deter-
mine if the SPIE or ESPIE SRB should be scheduled. 

If the SRB should not be scheduled, IEAVSPPF sets a re
turn codeof8 in register 15and returns control to PC FLiH 
to abnormally terminate the task. 

10 I EAVESPPF copies the registers at the time of the inter
rupt to the TCB and copies the PSW at the time of the 

interrupt to the RB . 

11 IEAVSPPF initializes the SPIE/ESPIE SRB contained 
in the SCA. The SPIE/ESPIE SRB processor routine 

contained in IEAVESPIIIEAVESRB) receives control when 
the SRB runs. 

12 IEAVSPPF initializes the SRB parameter list contained 
in the SCA. 

13 I EAVSPPF makes the TCB non-dispatchable by setting 
the TCBPIENDand TCBPNDSPbitson in the TCBand 

decreases the number of ready TCSs in the ASCB 
(ASCBTCBSI. 

14 I EAVSPPF schedules the SP I E/ESP I E SR B to complete 
processing for the exit. 



;IU .... 
3: 
I ..... 

«:) 

r
oo( 
N 
00 
I 
~ ..... 
c... 
VI 
I 

«:) 

..... 
n ..... 
n 
o 
~ , .... 
Ia 
::r ,.. 
.... 
tI:I 
3: 

n 
o , 
" . 

IEAVSTAO - STAE/ESTAE Service Routine (Part 1 of6) 

Branch entry from type 2, 3, 
or 4 SVCS, or from SVC I H 
and I EAVTRGS to process an 
E/STAE or an E/STAI request 

Input 

Branch entry only 

Register 13 

t Register save area 

Register 15 

Entry point address 

and SVC entries 
Register 1 

t Parameter list or the 
TOKEN for cancel 
with TOKEN specified 

Codes: 

Register 0 

I Code 

X'OO', '100' - Create SCB 
X'02', '102' - Propogate SCB 
X'04', 'S4', '94', 'A4', 'B4' - Cancel SCB 
X'OS', '10S' - Overlay SCB 

Register 14 

Return address 

Register 4 

I t TCB 

Register 5 

I t SVC 60 SVRB 

Register 6 

Entry point address 

Register 7 

t ASCB 

Process 

1 Validate the request. 

• If invalid, abend 

2 Perform the requested service. 

• Create the SCB. 

• Cancel the SCB. 

• Overlay the SCB. 

• Propagate the SCB • 

Output 

Completion code 

I X'13C' 

Register 15 

I Reason code 

Reason codes: 
X 'OS' - Invalid ESTAI request 
X'OC' - Invalid branch entry to SVC 60 

service routine 
X'10' - Unauthorized use of TOKEN 

for EST AE request 
X'14' - STAI/STAE in 31-bit mode 

Before propagation 

TCBA 

After propagation 
these control blocks 
are also present 



r
-< 
N 
00 
I .... 

..... 
(JII 
\II 
I 

Q 

(") 
o 
~ , .... 
IQ 
;r 
t+ 

t-4 
tI:II 
3: 
(") 
o , 
'U . 
.... 
ID 
00 ..... 

3: 
111 
t+ 
;r 
o 
a. 
o 
..." 

Q 
'U 
111 

iil 
t+ .... 
o 
~ 

;;Q 
-f 
3: 
I ..... .... 

IEAVST AO - ST AE/EST AE Service Routine (Part 2 of 6) 

Extended Description Module 

The STAE/ESTAE service routine creates and initializes 
an SCB ISTAE/ESTAE control block) to represent an 
abnormal interruption exit routine. The ST A E/EST A E 
service routine can create, cancel, overlay, or propagate 
an SCB, according to the action codes passed as input. 
An ESTAE SCB can have an unique identifier ITOKEN) 
associated with it. If an EST AE SCB is created with 
a TOKEN, then this TOKEN is used to locate the SCB 
to cancel or overlay it. The STAE/ESTAE service routine 
receives control from the SVC interrupt handler or from 
type 2, 3, or 4 SVCs by branch entering module I EAVTRGS, 
which preserves the addressing moda and return address of 
its caller and then branches to I EAVST AO in 31·bit mode. 
Control returns to the caller. 

1 The ST AE/ESTAE service routine validates both 
branch·entered and SVC issued requests. The 

STAE/ESTAE service routine abnormally terminates 
invalid callers, issuing a X'13C' abend. The value in 
register 15 indicates the reason for the termination . 

2 The ST AE/EST AE service routine performs the 
requested service, as indicated in register O. 

la) For create requests, the STAE/ESTAE service 
routine obtains storage for an IE) STAI or IE) STAE 
SCB from the SCB cellpool lif available) or by 
issuing a GETMAIN request. The STAE/ESTAE 
service routine chains each newly created SCB to 
the SCB queue, pointed to by the appropriate TCB. 
The STAE/ESTAE service routine indicates that 
the caller owns an SCB by setting an indicator in the 
RBSCB field of the caller's RB. When an SCB associ
ated with an ESTAE is created with TOKEN=token
address, after STAE/ESTAE processing completes, 
the user-supplied token-address field contains the token 
created for this request. When processing a STAI or 
ESTAI request, the STAE/ESTAE service routine auto
matically propagates the STAI or ESTAI SCBs from 
all former IE) STAI requests. Isee Idll 

IEAVSTAO 

Label Extended Description 

Ib) For cancel requests, the STAE/ESTAE service routine de
queues the lest SCB related to the caller's RB. For an 
ESTAE with TOKEN=token-address specified, the STAEf 
ESTAE service routine uses TOKEN to find and dequeue 
the SCB identified by TOKEN and all newer SCBs associ
ated with the celler's RB. If the caller does not own any 
more scas, the RBSCB indicator in the caller's RB is set 
to zero. 

Ic) For overlay requests, the STAE/ESTAE service routine 
initializes the existing SCB with the new values. If the 
original SCB was created with a TOKEN, then the STAEf 
ESTAE service routine uses TOKEN to find this specific 
SCB and replaces the old exit information with the new 
ESTAE exit routine information. In addition. if TOKEN 
was specified, the STAEfESTAE service routine deletes all 
newer SCBs associated with the caller's RB. 

Module 

Id) For IE) STAI propagation. the STAE/ESTAE service routine 
obtains storage for the other SCBls) from the SCB cell pool 
lif available) or by issuing a GETMAIN, copies the SCB 
information from the appropriate SCBls) laddressed by the 
TCB pointed to in register 4). and chains both the new and 
the propagated SCBls) to the newly attached TCB. 

Label 



~ IEAVSTAO - STAE/ESTAE Service Routine (Part 3 of 6) 
:z 
I .... 

N 

.... 
~ 
I ... .... 

CH 
\II 
I 

o 

..... 
() ..... 
n 
o 
~ ., .. , 
ID 
:::T 
t+ 
t-c 
till 
3: 

n o ., 
'U . ... 
\0 
00 .... 

Process 

3 Return control to the caller. 

To the caller 
(branch 
entry or 
EXIT 
prolog 
(t~4V~~V'DII 

Register 15 

I Return code 

,Return ESTAE/ESTAI codas: 

X'OO' - Successful ST A or EST A request. 

X'04' - ESTAE OV has been requested and the 
lest SCB is one of the following: 

• Non-exlstent, 
• Not-owned by the user's RB 
• Not an ESTAE exit 
In any of these instaneas an ESTAE 
create was performed. 

X'OS' - A previous create has been issued with the 
BRANCH"'YES option. The create has been 
performed and the previous SCB that' 
was created has been eliminated. 

X'OC' - Invalid cancal request. 

X'lO' - Unexpected error . 

X'14' - Insufficient storage. 

X'l&' - ESTAE OV hes been requested and either: 

• TOKEN was requested and the SCB 
is not owned by the current RB 

• TOKEN was not specified for an SCB 
created with TOKEN 

STAE ISTA I 
X'OO' - Successful STA or ESTA request. 

X'04' - Insufficient storage. 
X',OS' -STAE issued in aSTAE exit or 

- cancel or ovarlay request with no SCB 
on queue. 

X'OC' - STAI not issued by ATTACH or 
-STAI request with a missing TCB operand. 

X'lO' - Cancel or overlay and sea is not a STAE 
SCB or is not owned by the requestor's RB or 
unexpected error encountered while 
processing the request. 



r
-< 
N 
Of 
I 

""" ..... 
CIt 

'" I 
o 

o 
o 
~ , ... 
IQ ;:r 
t+ 

M 
~ 
3: 

n 
o , 
" . 

3: 
CD 
t+ 
;:r 
o 
G-

o 
-to. 
o 

" CD 

ill 
t+ ... 
o 
:3 

~ 
3: 
I ..... 

CIt 

lEA VSTAO - ST AE/EST AE Serv.ice Routine (Part 4 of 6) 

Extended DlIIICI'iption Module 

3 The ST AE/EST AE service routine returns control to 
the caller, with a return code in register 15 indicating 

the results of the request. 

Label 

a .. ... 
I 



:! 
en 

" )( 
:z:-
en 
r
r-

r
~ 
N 
00 
I .... ..... 
"" \II 
I 

o 

(') 
o 
~ ., ... 
'g. ,... 
.... 
~ 
3: 

(') 
o ., 
'V . 
.... 
\0 
00 ..... 

IEAVSTAO - STAEIEST AE Service Routine (Part 5 of 6) 

From EXIT, XCTL, 
or ATTACH to 

,..1 "...;...p_u_t ___________ ....... cleanup SCB qUeu8S .. ,.p_rO_C_8SS _____ ...z.. ________ _ 

o 
Oar. RB receiving 
control bva XCTL 

RB 

i TCa 

TCB 

SDWA 

D 

IEAVTSBP 

4 Remove the scas from the 
SCB queue for: 

• RBexit. 

• XCTL requests. 
Transfer the sca for an 
XCTL request. if eligible. 

• End-of-teak. 

• Failed ATTACH. 

6 Recoyer from an error. 

• Continue with termination. 

• Retrv. 

Tocalier 

Output 

To caller 

Reglater 16 

I Return code 

Return cOdes: 

X'OO' - Successful. 
X'04' - Error occurred. 

sca quaue modified. 
Output for step 2 shows 
SCBquaue. 

Regiater 16 

I Return code 

Return codes: 

X'OO' - Address space termi' 
nation or incompleta 
FRR parameter list. 

X'04' - Error occurred during 
processing . 

X'1 C' - Storage protection 
exception for the 
E/ST AE macro para· 
meter list. 



r
oo( 
N 
00 
I ... .... 

c,.! 
\II 
I 

o 

n 
o 
~ ., .... 
UI 
':T ,... 
M 
II:IS 
3: 

n o ., 
" . ... 
.0 
00 .... 

3: 
II ,... 
:r 
o 
Q. 

o 
-h 

Q 
"0 
II 

Dl ,... .... 
o 
:::J 

lEA VST AO - ST AE/EST AE Service Routine (Part 6 of 6) 

Extended Description Module 

EXIT, XCTLand ATTACH use the SCB task recovery 
resource manager (lEA VTSBPJ to transfer or dequeue SCBs. 
IEAVTSBP builds an FRR to recover from errors. Upon 
completion, control returns to the caller. 

4 I EAVTSBP either removes or transfers SCBs. If 
IEAVTSBP finds a 0 in register 4, it returns the 

caller a return code of 4 In register 15. I EAVTSBP sets 
the calling RB's SCB Indicator to show that no SCB is 
owned. In addition, depending on the caller, lEA VTSBP 
does one of the following: 

• For an RB Issuing EXIT, removes the SCBs from the 
SCB queue. 

• For an RB issuing XCTL, transfers all SCBs created 
with the XCTL"YES option and removes all SCBs if 
the XCTL"YES option was not specified. IEAVTSBP 
sets tha new RB's SCB indicator to show that at least 
one SCB is owned . 

• For an RB issuing end-of-tesk EXIT or if an ATTACH 
request failed, dequeues the SCBs from the SCB queue 
and sets the SCB address field in the TCB to 0 to indicate 
that no SCBs are on the active queue. 

IEAVTSBP 

Label 

5 If an error occurred in IEAVTSBP, its functional re
covery routine (FRRJ attempts to recover. 

IEAVTSBP TRRMFRR 

• If the error occurred under address space switch 
conditions or if the F RR parameter list was incomplete, 
no retry is permitted and the FRR finishes termination. 

• If the caller requested dequeueing of all SCBs associ
ated with this task, the FRR makes the SCB queue 
pointer in the TCB equal zero. 

• For RB EXIT and an XCTL request, the FRR first 
checks for storage key failures and storage data checks. 
If either is found, the FRR scans the SCB queue for an 
SCB within the address range of the storage error in
dicated in the SDWA. If the FRR finds an SCB within 
this range, the FRR makes the SCB queue pointer in 
the TCB equal zero. If the FRR finds no SCB within 
this address range or if there was no storage error, the 
FRR dequeues all the SCBs owned by this RB. 



~ lEA VT AS! - Recover Task Processing (Part 1 of 4) 
3 
~ From IEAVTRTC 
0\ 

3 
< 
U) , 
X 
:I> 

U) 
r
r-

r
oo( 
N 
00 
I ... ..... 

"" \II 
I 

Q 

n o 
~ , .... 
ID 
:r ,... 
.... 
til 
3 

n 
o , 
'tJ 

... 
\CI 
00 ..... 

Input 

RTM2WA 

1 Select an ESTAE exit rouline. 

If none available 
To RTM2 
overview 
IIEAVTRT21 

RTM2WA 

2 Prepare the data for the user's ====;=========~~~I-____ +J I----i 
ESTAE elClt. 

3 Give control to the user's 
ESTAE elClt. 

4 Perform the sorvices for the uSer's 
ESTAE elCit routine. 

• Track the SDWA. 

• Record the error. 

Register 1 

Record parameter list 

Register 13 

I .• Save area 

• Process the DUMP oPtlons,====~=========:=====~ 

en 
en 
H 
Z 
G) 



r
-< 
N 
00 
I 
~ ..... 
VI 
UI 
I 

Q 

,... 
n 
'oJ 

n 
o 
~ , .... 
!O 
':1' .... 
.... 
til' 
:3 

n 
o , 
'U 

:3 
CD .... 
':1' 
o 
Co 

o 
-II 

o 
'U 
CD 

iii .... .... 
o 
:::J 

;:lID ... 
:3 
I 

....... 

....... 

lEA VT AS 1 - Recover Task Processing (Part 2 of 4) 

Extended Description Module Label 

RTM2 routes control to user·written exit routines before it 
terminates a task. These exit routines _. either STAE (specify 
task abnormal exit) or ESTAE (extended STAEI - receive 
control to attempt to recover an abnormally terminated task. 
(See the M.O. diagram IEAVSTAO - STAE/ESTAE Service 
Routine for a description of how the user creates a STAE 
control block (SCa) I. See Supervisor Services and Macro 
Instructions for a description of how a user creates an ESTAE 
routine.l 

RTM2 selects an ESTAE/STAE routine from the sca queue, 
and branches to it. If the terminating task can recover after 
the EST AE/ST AE routine processes, RTM2 performs any 
processing necessary for a retry condition, and the task reo 
sumes processing. Otherwise, the task is terminated. 

RTM2 places diagnostic information in the SDWA during 
ESTAE/STAE processing. 

1 RTM2 searches the SCB queue to select the exit to be IEAVTAS1 FINDSCB 
given control. The searching sequence follows: 

• On initial entry, the most recently established exit will 
be selected. 

• During percolation, (a previously selected exit has not 
elected to retry) - the next exit on the queue is selected. 

• During percolation only one STAE (as opposed to 
ESTAEI is selected; all others are bypassed. 

• During TERM processing, only those exits with the 
TERM option (TERM=YES on the ESTAE macro 
instruction) are selected. 

• If the queue is exhausted with no exit requesting retry, 
control returns to RTM2 and the task is terminated. 

Note: If more than 32 consecutive exit routines fall (be· 
cause of a program check or issuance of the ABEND macrol 
the next exit in the chain will be skipped. IEAVTAS1 
changes the completion code to X'SOD' with a reason code 
of O. 

Extended Description 

2 RTM2 initializes some fields in the internal RTM2WA 
(RTM2 work areal to ensure the accuracy of the SDWA 

during percolation. 

RTM2 obtains and initializes an SDWA with information 
that will aid the user in diagnosing the error. 

RTM2 performs the user otpions indicated on the ESTAE 
macro instruction. Abnormal exit processing may be blocked 
and active I/O may be halted or quiesced. I/O options are 
performed only for the first exit selected; all subsequent 
exits receive an indication of 110 status. 

3 RTM21nitializes parameter registers forthe exit routine. 
Additionally, RTM2 sets the interface with the SYNCH 

macro (used to give control to the exitl. 

4 On return from the user exit routine, RTM2 uses the 
macro to trace either the SDWA (if one existsl or the 

return Information. RTM2 writes the SDWA on the 
SYS1.LOGREC data set if one of the following is true: 

• SLIP requested recording. 

• The user exit requested the SDWA be recorded, and it is 
available, 

• RTM2 Is processing a restart error that occurred while 
in the enabled, unlocked task mode. 

RTM2 initializes the RTM2 work area with user dump 
options if any exist. RTM2 combines any dump parameters 
with existing options; it adds storage ranges to the end of the 
existing storage range list, wrapping around to the top again 
if necessary. (A maximum of thirty storage ranges can be ac· 
cumulated.l If the user requested no dump, RTM2 sets the 
existing options to zero. 

Module Label 

WKUPDAT 

SDWAINIT 

USEROPTS 

EXITINTR 

IEAVTAS2 GTFHOOK 

RCRDSDWA 

DUMPORTS 



~ mA VT ASl - Recover Task Processing (Part 3 or 4) 
3 
.!. 
00 

,.. 
~ 
N 
00 
I .... 
" ~ 
UI 
I 
= 

n 
o 
~ , 
to· 
IQ 
:r ,... 
.... 
tIJ 
3 

n o , 
'U . 

nTM2WA 

seB 

Process 

5 Retry or continue with termination, 
accordIng to the requested actIon. 

A.Retry 

• locate the correct RB. 

• Modify \he RB queue. 

• Update theSDWA. ToRTM2 
overview 
IIEAVTRT2l 

SDWA 

D 
RTM2WA 

RTM2RETR 
'1' 

RTM2WA 

B. Continue with termination =:::!=======~:===~ 
• Permit a change of the 

completion code. 

• Free the SDWA. 

• Indlcete continuation with 
termination. 

• Return to step 1 to 
process tha remaining exits .•••• Step 1 



... 
-< 
N 
00 
I .... ..... 

CJOI 
\71 
I 

c::I 

n o 
~ , 
"', 
ID 
J 

" .... 
CII 
3: 
(") 
o , 
'U . 
.... 
..a 
00 ..... 

3: 
CD 

" J o 
a. 
o 
-tI 

o 
'U 
CD 

aJ 
" "', o 
;:, 

;iIIJ 
-t 
3: 
I ..... 

..a 

lEA VT ASl - Recover Task Processing (Part 4 of 4) 

Extended Description 

5A If a retry can be performed !this is not term exit 
processing), ATM2 selects a retry AB. For a 

STAE/ESTAE retry, the SCB contains the AB address. 
For an ESTAA retry, ATM2 uses the oldest AB. For a 
STAI/ESTAI, ATM2 performs the retry under the PAB 
for the last STAE/ESTAE or STAI/ESTAI exit routine 
if one exists. Otherwise, ATM2 purges the AB queue 
until only PABs remain and the STAI/ESTAI retry 
routine will run under the newest PAB left on the queue. 

ATM2 prepares the RB queue for a retry. RTM2 purges 
resources and closes open, embedded data sets. ATM2 sets 
the primary and secondary address spaces of ABs to be 
purged !those between the retry AB and the ABEND SVRBI 
to the home address space, turns off their PSW S·bits, points 
their resume PSW to EXIT, and sets their wait count to zero. 
If registers update was requested on the retry, RTM2 inserts 
the retry register values to ensure that the correct registers 
are passed to the retrying AB. If register update was not 
requested, RTM2 initializes the parameter registers to be passed 
to the retry RB. To ensure that the retry RB will run in 
"the home address space, RTM2 sets the primary and 
secondary address spaces to the home address space in the 
XSB, and turns off the RBOPSW S·bit. ATM2 places the 
keymask for a nitry in the retry RB's XSB. The registers 
and PSW at the entry to ABEND can still be found in the 
RTM2WA. This work area resides in the LSQA and the 
TCBRTWA field of the TCB points to it. 

According to the user's request, RTM2 either updates the 
SDWA to be passed to the retry routine, or frees it. Task 
recovery returns control to RTM for further preparation 
for retry. 

58 ATM2 saves the information to be passed to the 
next exit during percolation (a changed completion 

code or a serviceability indicatorl in the ATM2WA and 
frees the SDWA. In addition, RTM2 initializes percolation 
information in the RTM2WA. 

Module Label 

IEAVTAS3 FINDRB 

RBPRGE 

RTRYSDWA 

IEAVTAS3 SCBPEAC 



~ 
en , 
X 
> 
en 
r
r-

::0 
ID 
n 
o 
< 
-t 
ID ., 
:I 

3 
IQ 
:I ,... 

r
oo( 
N 
00 
I .... ..., 

"'" "" I 
(:) 

n 
o 
~ ., 
JoI' 
IQ 
::r ,... 
1-4 
~ 
3 

n o ., 
'U 

lEA VTESP - SPIEjESPIE Processing (Part 1 of 14) 

Input 

TCB 

TCBPIE 

TCBPMASK 

From SVC FLIH to 
process SPI E requests 

PICAITMK 

~RB 

0 
CB 

RBOPSWMK 

Output 

IGCO001D: SPIE CREATE Processing 

1 Check for invalid calis. 

2 Obtain storage for the SCA. 

3 Obtain storage for the PIE/EPIE. 

4 Obtain storage for the RPIEPICA. 

5 If an ESPIE exists, obtain a fake 
PICA . 

6 Return the address of the PICA or ::::;=====:~ 
the fake PICA. 

••• ~ caliervia 
Exit Prolog 

Register 1& 

I Completion code 

X'10E' Invalid PICA address 
X'20E' Invalid PIE address 
X'30E' Function requires 

authorized calier 

TCB 

TCBPMASK 

TCBPIE17 

TCBRBP 

TCBRTMCT 

RPPPICA 

RPPPRB 

RPPNPTR 

Register 1 

If PICA orO 

RB 



r
-< 
N 
CIt 
I .... 
~ 
CA 
\II 
I 

(:) 

.... 
(') ..... 
(") 
o 
~ ., .,. 
!Q ::r 
rio 

I-t 
till 
3 

(") 
o ., 
'tJ . 

3 
(D 
rio 
::r 
o 
Q. 

o 
-h 

o 
'tJ 
CD 
;jl 
rio .,. 
o 
::I 

;IV 
-f 
3 
I 

00 .... 

lEA VTESP - SPIE/ESPIE Processing (Part 2 of 14) 

Extended Description Module 

SPIE processing contains the following entry points: 

• IGCOOOl D - SPIE create processing 

• IGX00028 - ESPIE SET, RESET, and TEST processing 

• IEAVSPIE - SPIE/ESPIE termination resource manager 

• IEAVSPI- SPIE/ESPIE checkpoint!restart processing 

SPIE processing handles user requests for program inter
ruption exit routines. When the user codes a SPIE macro 
instruction, SPIE create processing initializes the fields of a 
PICA (program interruption control area) with a program 
mask, the address of a user's program interruption exit rou
tine, and an interruption mask. 

If a program check interruption occurs while a program is 
executing on behalf of the user's task, the user's program 
interruption exit routine must handle it using information 
from the PICA. Otherwise, the program whose error caused 
the program interruption is abnormally terminated. The 
user's exit routine also uses information from the PIE (pro· 
gram interruption element). 

SPIE processing places in the TCB of the macro·issuing pro· 
gram an "indirect pointer to the user's exit routine. If a pro· 
gram interruption occurs, the SPIE SRB processor (M.a. 
diagram IEAVESPI·SPIE/ESPIE SRB Processor) sets up the 
PI E, checks the TCB indirect pointer field, and passes control 
to the user's exit routine. 

SPIE must refer to the PIE and PICA inthe keyofthe caller, 
so that unauthorized references to the PIE or PICA will reo 
suit in a program check. The SPIE FRR (functional reo 
covery routine) converts the program check to either a X'10E' 
or X'20E' ABEND code. 

Label Extendad Description Module 

1 If the caller is in supervisor state, the caller's key is 
other than that indicated in the TCBPKF field, or the 

caller is executing in 31-bit addressing mode, he cannot use 
SPIE. If PICAEXT does not equal 0, SPIE processing sets 
the TCBPIE17 bit to 1, if the user is authorized, to indicate 
page fault processing is requested . 

2 If the TCBPI E field equals 0, this is the first time that 
the caller has issued a SPIE macro. SPIE create proces· 

sing obtains and initializes the SCAand chains it to the TCB. 

3 . If a PIE does not exist (SCAPIE field equels 0), SPIE 
create processing obtains storage for a PI E and in itia I izes 

it with a pointer to the user supplied PICA. SPIE create 
processing also obtains an extended program interruption 
element (EPIE) contiguous to the PIE so it will be available 
should the user specify an extended program interruption 
exit routine. 

4 SPIE create processing uses the RPIEPICA for recovery 
processing. The SPIE create service initializes the 

RPIEPICA with pointers to the PIE, PICA, and RB issuing 
the SPI E, chains any previously active RPIEPICAs to the 
new RPIEPICA, and generates a token, representing the 
SPIE environment, from the TCBRTMCT field to represent 
this RPIEPICA. 

5 If the previously active RPIEPICA represents an ESPIE 
exit, SPIE create processing obtains a fake PICA and 

initializes the fake PICA so that a SPIE restore request cor· 
rectly restores the ESPIE exit. 

6 On return to the issuer of the SPIE macro, register 1 
contains the address of the previously active SPIE's 

PICA, the previously active ESPIE's fake PICA, or 0 if 
neither a SPIE nor an ESPIE was active. 

Label 



'" -f 
3 
I 

00 
N 

3 c:: 
CJ) , 
X 
:I> 

CJ) 
r.... 

'" CD 
n 
o 
< 
-f 
CD ., 
;J 

3 
10 
!I 

"" 

.... 
-< 
N 
00 
I .... 

...... 

"" VI 
I 

Q 

..... 
n ...... 
n 
o 
~ ., .... 
10 
':T 

"" toot 
tIf 
3 

n 
o ., 
'U . 
..... 
..a 
00 
...... 

lEA VTESP - SPIE/ESPIE Processing (Part 3 of 14) 

Input 

Register 1 

It PICA 

TCB 

TCBPKF 

TCBPMASK 

PICA 

From SVC FLfH to 
process ESPIE requests 

PICAITMK 

RB 

IGCOOO1D: SPIE DELETE Processing 

7 Check for invalid calls. 

8 Reset the TCB and the R B fields. 

9 Free the storage obtained for all 
the RPIEPICAs . 

10 Free the storage obtained forthe 
SCA. 

11 Free the storage obtained for the 
PIE/ESPIE and return the address . 
of the PICA . 

.... ~ Caller via 
Exit Prolog 

Output 

Register 15 

I completion code 

X'10E' Invalid PICA address 
X'20E' Invalid PIE address 
X'30E' Function requires 

authorized caller 

TCB 

TCBPIE 

TCBPMASK 

TCBPIE17 

RBOPSWMK 

Register 1 

It PICA 

r... 
n m 
:I en m a.: 

::u 3m 
~~ 
m"J 
"J .... .. ·n 
Alrt ... m en a. 
13 

AI 
'Urt 
"Jm 
O"J 
'U ... 
IDAI 
"J'" rten 
~o 
O-ft 
-ft 

H 
H • .3 z: 



r
oo( 
N 
00 
I .... 

..... 
"" \It 
I 

o 

..... 
n 
w 

.... 

." 
3: 
(") 
o ., 
'a . 

3: 
CD 
f40 
~ 
o 
Q. 

o 
-II 

o 
'a 
CD 

D1 
f40 .... 
o 
:::J 

= 3: 
I 

00 

"" 

lEA VTESP - SPIE/ESPIE Processing (Part 4 of 14) 

Extended Description 

The SPIE Delete processor II GC0001 OJ receives control 
when a user issues a SPIE macro to delete a SPIE environ
ment. When a user issues a SPIE macro with no operands, a 
zero PICA address is placed in register 1 during the macro 
expansion. A SPIE macro with no operands is a request to 
cancel all SPIEs or ESPIEs for the task. 

SPIE processing always references the PIE and PICA in the 
key of the caller. An unauthorized reference to the PIE or 
PICA results in a program check. The SPIE functional re
covery routine (FAAJ converts the program check to either 
a X'1 OE' or X'20E' ABEND code . 

7 If the celler is in supervisor state, is in a key other than 
that indicated in the TCBPKF field, or is executing in 

31-bit addressing mode, the caller cannot use SPIE. SPIE 
processing issues an ABEND code. 

S IGCOO010 resets the TCB and AB fields. 

9 IGCOO01 0 frees the storage obtained for the APIEPICAs 
and any fake PICAs anchored off the RPIEPICAs. 

10 IGCOO01D frees the storage obtained for the SCA. 

11 IGCOO01D frees the storage obtained for the PIE and 
EP I E and places the PICA address previously contained 

in the PIE into register 1 to pass back to the caller. 

Module Label 

IEAVTESP IGCO001D 

o 

"" lot 

I 



:3: 
<: 
U) 

" X 
x:-
U) 
r
r-

;;tI 
(I) 
o 
o 
< 
~ 
(I) , 
3 

:3: 
10 
3 
.to 

r
-< 
N 
00 
I 
~ ...., 
V. 
111 
I 

c 

,..... 
o ..... 

H 
t:I:I 
:3: 

(") 
o , 
"'C 

lEA VTESP - SPIE/ESPIE Processing (Part 5 of 14) 

Input 
Register 0 

4 

Register 1 

TCB 

TCBPIE 

TCBPMASK 

From SVC F LI H to process 
ESPI E requests 

ESPI 
parameter list 

ESPI EX IT 

ESPIPARM 

ESPIITMK 

exit 
parms 

IGX00028: ESPIE SET Processing 

12 Check for invalid calls. 

13 Obtain storage for an SCA. 

14 Obtain stroage for a PIE/EPIE. 

15 Obtain stroage for the 
RPIEPICAs. 

16 Return the token representing 
the previous Sf'IE/ESPIE or, if 
there were no previous SPI Es or 
ESPI Es, a zero. 

Output 

•• l1li. Call via 
Exit Prolog 

X'46D' ABEND code 

Register 15 

reason code 

RPPPRB 

RPPEXITA 

RPPPARMA 

RPPITMK 

RPPTOKEN 

RPPMASK 

Register 1 

I token or zero 

Register 15 

I return code 

TCB 

TCBPIE 

TCBPMASK 

TCBPIE17 

TCBRBP 

TCBRTMCT 

RBOPSW r.... 
o 
m 
:J 
Ul 
m 
e. : 

;:Q 
:3:m 
IllUl 
rtrt m., ., .... 
... ·0 
Illrt 
~m 
Ule. 
1:3: 

III 
"Crt .,m 
0., 
"0 .... 
mill 
.,~ 

rtUl 
'< o 
O-fl 
-fI 

M 
Mt:r:I 
t:r:I3: 
3: : 



r
-< 
N 
Of 
I 
~ ..., 
CJ'I 
\II 
I 

Q 

(') 
o 
"0 
'< ., .... 
ra 
':r ,... 
.... 
." 
3: 
(') 
o ., 
"0 

:a:: 
1\1 ,... 
':r 
o 
D. 

o 
-t. 
Q 
"0 
1\1 

ill ,... ... 
o 
::J 

:=a 
-I 
3: 
I 

Of 
\II 

lEA VTESP - SPIE/ESPIE Processing (Part 6 of 14) 

Extended Description 

ESPIE SET processing provides most of the SPIE functions 
to programs executing in 31-bit addressing mode as well as 
to 24-bit mode users. As does the SPIE service. the ESPIE 
service ellows a program to establish an exit that is to receive 
control when a selected program interruption occurs. The 
ESPIE SET service records the program's selected program 
interruptions, exit address, and other control information in 
a control block (RPIEPICAI anchored off the TCB. If a 
program interruption occurs, the supervisor examines the re
corded information to determine if the user exit routine 
should receive control to process the program interrupt. 

12 The ESPI E S~T function checks the validity of the In· 
formation supplied in the ESPIE parameter list. The 

user's execution environment is also checked to ensure that 
the user is allowed to use the ESPIE servicas. If any errors 
are detected, ESPIE SET processing issues an X'46D' 
ABEND code and places a reason code into register 15 as 
follows: 

Hexadecimal 
code 

4 

8 

C 

18 

20 

Reason 

.An invalid function code was passed in 
register O. The code wes not that of 
SET, RESET, or TEST. 
An invalid parameter list wes passed. 
The area might not have been on a full· 
word boundary or might be in protected 
~torage. 

An invalid exit routine address might 
have been supplied or a field defined to 
be zero was found to be non·zero. 
The caller of ESPI E was either in super
visor state or the exacution key did not 
equal the TCB key. 
The caller requested a function that 
required authorization, but the caller 
was not authorized. 

13 If the TCBPI E field equals 0, this is the first time the 
caller has issued an ESPIE or SPIE macro. ESPIE SET 

processing obtains storage for an SCA and initializes the SCA. 

Module Label 

IEAVTESP IGXOO028 

CHECKENV 

SETPROC 

Extended Description Module 

14 ESPIE SET processing obtains contiguous storaga for 
the PIE and EPIE. 

15 The RPIEPICA contains recovery and control infor-
mation. ESPI E SET processing obtains storage for the 

RPIEPICA and initializes it with information from the ESPIE 
parameter list, such as the user exit address and list of pro
gram interruptions to be processed. ESPIE SET processing 
generates a token to be used as input to the ESPIE RESET 
function, if required, to represent this RPIEPICA . 

16 On return to the issuer of the ESP I E macro, register 1 
contains the token representing the previous SPIE or 

ESPIE orO if there are no previous SPIEs or ESPIEs. 

Label 

a 

"'" ;; 
z 



3 
< 
~ 
>< :z:-
en 
r
r-

'" CD 
n 
o 
< 
-4 
CD ., 
:J 

3 ro a .... 

r
oo( 
N 
00 
I .... .... 

"" '" I 
= 
.... 
n ..... 
n 
o 

~ ., .... 
ro 
;r .... 
.... 
til' 
3 

n 
o ., 
'U . 

lEA VTESP - SPIE/ESPIE Processing (Part 7 of 14) 

Input 

Register 0 

I 8 I 
Register 1 

I token I 
TCB 

TCBPKF 

TCBPMASK 

TCBRBP 

TCBPIE 

SCA 

SCARPPTR 

/ SCAPIE 

\. fl~RPIEPICAS 

RPPTOKEN tj::1 
RPIEPICA 
represented .... 
by token in 
register 1 

From SVC FLiH to 
process ESPIE requests .. 

" 

RPIEPICAs 

I 

RPPTOKEN I-

p rocess Ott u pU 

IGXOOO28: ESPIE RESET Processing 

" 17 Check for invalid calls. X'46D' ABEND code 

JJ Register 15 

I reason code I 18 An RPIEPICA represented by the 
token was not found. 

TCB SCA 

" ~ SCARPPTR b 19 If an RPIEPICA was found, free TCBPIE 
the RPIEPICAs . ]J TCBPMASK 

TCBPIE17 C", RPIEPICAs 

20 Determine if there are any SP I Esl ~ ,I rJ ESPIEs still active: 

~ RB 
• If none are active, free the 

SCA and the PIE/EPIE. RBOPSWMK 

• If any are active, set the 
TCBPIE17 and RBOPSWMK 
fields. 

Register 15 
~ I I 21 Set the ESPIE return code to O. return code .. 

Caller via 
--.. Exit Prolog 



,.... 
-< 
N 
C» 
I .... 

..... 
c.o. 
U'I 
I 

o 

,.., 
n ..... 
(") 
o 
'0 
'< ., 
",. 

fQ 
':3' .... 
.... 
til 
3: 
(") 
o ., 
'0 

3: 
41 .... 
':3' 
o 
a. 
o .... 
o 
'0 
41 

ill .... 
",. 

o 
:::J 

lEA VTESP -:- SPIE/ESPIE Processing (Part 8 of 14) 

Extended Description 

The ESPIE RESET function cancels all SPIE and ESPIE 
requests up to, but not including, the SPIE or ESPIE repre
sented by the specified token. If a 0 token is specified, 
ESPIE RESET processing cancels all SPIEs and ESPIEs for 
the task. 

17 ESPIE ~ESET processing checks the validity of the 
ESPIE input parameters and user's execution environ

ment. If any errors are detected, ESPIE RESET processing 
issues a X'4-SD' ABEND code and places a reason code into 
register 15 as follows: 

Hexadecimal 
code Reason 

4 An invalid function code was passed in 
register o. The code was not that of 
SET, RESET, or TEST . 

18 The caller of ESPIE was either in supar
visor state or the execution key did not 
equal the TCB key. 

18 ESPIE RESET processing scans the RPIEPICA chain to 
verify that the token specified represents a valid SPIE 

or ESPIE environment. If not, the ESPIE RESET function 
issues a X'4SD' ABEND code and places a reason code of 14 
into register 15. If any RPIEPICAson the chain prior to the 
specified RPIEPICA indicate an RB other than the RB of 
the issuing program, the request is invalid. The ESPI E RESET 
function issues a X'46D' ABEND code and places a reason 
code of 10 into register 15. 

Module Label 

IEAVTESP IGX00028 

CHECKENV 

Extended Description Module 

19 ESPIE RESET processing deletes all RPIEPICAs up to 
but not including the one rperesented by the specified 

token. Deleted RPIEPICAs are chained to the SCAFRPPQ as 
long as at least one ESPIE or SSPIE remains on the 
·SCARPPTR. If the input token is zero, the ESPIE RESET 
function deletes all SPIEs and ESPIEs. The ESPIE RESET 
function also frees the storage obtained for all fake PICAs 
anchored off the freed RPIEPICAs. 

20 If no SPIEs or ESPIEs exits, the ESPIE RESET 
function frees the storage obtained for the SCA and 

PI E/EPI E and resets the TCB and RB fields. If any SPI Es 
or ESPIEsarestili active, the SPIE RESET function sets the 
TCBPIE17and RB's program mask according to the in
formation saved in the RPIEPICA and PICA. 

Label 

RSETPROC 

a 
oft 
H 
~ 
Z 



;ItI 
~ 
3: 
I 

00 
00 

3: 
< 
(I) .... 
X 
:I> 

(I) 
r
r-

;ItI 
CD 
n 
o 
< 
~ 
CD ., .. 
3: 
IQ .. 
-+ 

r
-< 
N 
00 
I .... .... 

(It 
us 
I 

CI 

,... 
n ..... 
n 
o 
'U 
'< ., 
fool· 
IQ 
:r 
-+ 
.... 
till 
3: 

n 
o ., 
'U . 
.... 
\Q 
00 .... 

lEA VTESP - SPIE/ESPIE Processing (Part 9 of 14) 

"put 

Register 0 

I 12 I 
Register 1 ~I I 

TCB 

TCBPIE 

ESPI 

From SVC F LI H to 
process ESPIE requests .. 

" 
parameter list 

I 

" b RPIEPICA 
v , I R'PTY" 

RPPEXITA 
SCA 

RPPPARMA 
SCARPPTR 

1 RPPITMK 

RPPPICA 

p rocess o utput 

IGXOOO28: ESPIE TEST Processing 

X'46D' ABEND code 
" 22 Check for invalid calls. Register 15 .. 

I I reason code 

23 Determine if an exit is active and -" ESPI 
test for type of exit: 

.. . parameter list 

• An ESPIE is active. ESPIEXIT 

• A SPI E is active. ESPIPARM 

• Neither a SPIE nor an ESPIE ESPIITMK 
is active. 

0 

Register 15 .. I return code I -r Caller via 
Exit Prolog 



r-
-< 
N 
C» 
I ... 

..... 
CI\I 
U'I 
I 

o 

.... 
tI:I 
3 

n 
o ., 
" . 

3 
(I) 
t+ 
J o 
a. 
o 
-fI 

o 

" CD 

Gl 
t+ .... 
o 
~ 

lEA VTESP - SPIE/ESPIE Processing (Pa~ 10 of 14) 

Extended Description 

The ESPI E TEST function determines if an exit is active and 
the exit type. ESPIE TEST processing initializes the caller's 
parameter list with appropriate SPIE or ESPIE parameter 
information dependent on the current exit type and sets a 
return code that indicates whether a SP I E, ESP I E, or no exit 
is currently active. 

22 ESPI E TEST processing checks the val idity of the ESPI E 
input parameters and user's execution environment. If 

any errors are detected, the ESPIE TEST function issues a 
X'460' ABEND code and places a reason code in register 15 
as follows: 

Hexadecimal 
code 

4 

8 

18 

Reason 

An invalid function code was passed in 
register O. The code was not thet of 
SET, RESET, or TEST. 
An invalid parameter list was passed. 
The area might not have been on a full· 
word boundary or might be in protected 
storage. 
The caller of ESPIE was either in super· 
visor state or the execution key did not 
equal the TCB key. 

23 ESPIE TEST processing checks the RPPTYPE field to 
determine whether the active exit isa SPIE oran ESPIE 

exit. If an ESPIE exit is active, ESPIE TEST processing copies 
the ESPI E parameter list that defined the exit and sets a re
turn code of O. if a SPIE exit is active, ESPIE TEST proces· 
sing sets the ESPIPARM field of the ESPIE parameter list 
equal to the address of the current PICA and sets a return 
code of 4. If neither a SPIE or an ESPIE is active, ESPIE 
TEST processing sets a return code of 8. 

Module Label 

IEAVTESP IGX00028 

CHECKINV 

TESTPROC 

o 
oft 
H 
till 
3: 



3 or:: 
en , 
~ 
en 
r
r-

:IU 
CD 
n 
o 
< 
-t 
CD ., 
a 
3 
; ,... 

r-
oo( 
N 
00 
I .... .... 

CJII 
UI 
I 

c 

" n .... 
0 
0 

~ ., 
~, 

ID :r 
r+ 
.... 
til 
3 
n 
0 ., 
'V . 
.... 
\0 
00 .... 

lEA VTESP - SPffi/ESPIE Processing (Part 11 of 14) 

From IEAVEOR 

Input or RTM Process 
~---------------------, ~~~------------------, 

Register 1 

1 RMPl 

RB 

SCA 

resource manager 
parameter list 

RMPLTERM 

RMPLRBPP 

RMPLTCBA 

RMPLRBPA 

TCB 

TCBPIE' 

RPIEPICAs 

IEAVSPIE: SPIE/ESPIE Termination 
Resource Manager 

24 Raset the TCBPIE17 bit to pre
vent processing of page faults. 

25 Delete all required SPIEs and 
ESPIEs. 

26 Determine if there is any SPIE 
or ESPIE still active • 

• If an exit is active, make next 
SPIE or ESPIE active. 

• If an exit Is not active, delete 
all the RP I EP ICAs on the free 
queue and free the SCA and 
the PIE. 

27 If processing task termination, 
stop execution of all SPIE/ESPIE 
SRBs . 

•••• Tocaller 

Output 

TCB I TCBPIE17 

SCA 

I SCAFRPPQ t ·1 
SCA 

SCARPPTR 

SCAPIE 

TCB 

TCBPIE17 

free queue 

PIE/EPIE 

-, PIEPICA , -I 



r
-c 
N 
00 
I .... ..... 

(14 
\.II 
I 

C) 

..... 
n ...... 
(") 
o 
~ ., .... 
!g 
'3' 
t+ 

1-4 

= :3: 
(") 
o ., 
lJ 

:3: 
tD 
t+ 
'3' 
o 
a. 
o 
"iI 

Q 
lJ 
ID ., 
DI 
t+ .... 
o 
:::J 

lEA VTESP - SPIE/ESPIE Processing (Part 14 of 14) 

Extended Description 

Checkpoint/restart calls I EAVSPI to save or restore SPIE 
and ESPIE environments or to determine the number of 
subsystem checkpoint record (SSCR) blocks required for 
checkpoint. The SSCR contains flags indicating whether 
the environment should be saved, restored, or whether a count 
of SSCRs should be calculated . 

28 When performing checkpoint processing,lEAVSPI copies 
the information required to save the SPIE/ESPIE en· 

vironment in the SSCR. If the page fault processing bit in 
the TCB (TCBPIE17) is on, IEAVSPI indicates this in the 
SSCR. I EAVSPI copies the program mask from the TCB, the 
SPIE control area (SCAI. and all RPIEPICAs to the SSCR. 
IEAVSPI replaces the RB address in each copied RPIEPICA 
with a number that represents that RB's relative position 
from the TCB. That is, if the RPIEPICA points to the RB 
that is pointed to by the TCB, that RPIEPICA's RB address 
would be replaced with the value 1. Ifthere is no more room 
in the SSCR for the RPIEPICAs, IEAVSPI uses the SSCR 
chain field to obtain the address of the next SSCR to be 
used. 

29 When performing restart processing, IEAVSPI restores 
the SPIE/ESPIE environment according to information 

saved in the SSCR. IEAVSPI obtains storage for the SCA 
and initializes it from the SCA copy in the SSCR. IEAVSPI 
restores the TCBPI E17 bit and the program mask in the TCB. 
IEAVSPI obtains enough storage to contain all the 
RPIEPICAs, copies the RPIEPICAs from the SSCRs to this 
storage, and chains the RPIEPICA to the SCA. I EAVSPI reo 
places the relative RB number in each RPIEPICA with the 
actual RB address. 

Module Label 

IEAVTESP IEAVSPI 

VSPICHCP 

VSPIRSRT 

Extended Description 

30 IEAVSPI scans the active RPIEPICA chain anchored 
off theSCA to determine the number of SPIE and ESPIE 

environments that must be checkpointed. Using the number 
of SPIE and ESPI E environments, I EAVSPI calcu lates the 
number of required SSCR blocks needed. If no SPIE or 
ESPIE environments exist, I EAVSPI returns a zero count 
to checkpoint/restart and the checkpoint restart functions 
of IEAVSPI are not called. If at least one SPIE or ESPIE 
exists, IEAVSPI calculates the number of SSCRs . 

Module Label 

VSPINUMC 



3: 
c:: 
VI , 
X 
l> 

VI 
r
r-

;IC 
(l) 
(') 
o 
< 
-f 
(l) , 
3 

3: 
10 
3 .... 

r-
-< 
N 
00 
I .... 

-.../ 
VI 
VI 
I 

c 

..... 
(') 

n 
0 
'tl 
'< , .... 
10 
::r .... 
I-f 
t::r:I 
3: 

n 
0 , 
'tl 

.... 
\0 
00 
-.../ 

IEAVTFMT - RTM Control Block Formatter (Part 101' 12) 

In 

From IPCS. PRDMP. or SNAP/ABDUMP 
for formatting of RTM control blocks. 

ASCB 

ASCBASXB 

ASXBFTCB 

Register 1 

1+ BLSABDPL 

flegiSler 13 

I t Save area 

Hegisler 14 

It Return address 

RC[)ister 15 

It Entry point 

Process 

1 Set upan ESTAE to continue 
proce~slng when pos~ible. 

2 Follow the pointers to find 

the RTM2WAs associated 

with the TCB. Stack the 

last 35 and print them in 
historical order (oldest to 

be printed first). If there 

are 35 or more chained 

together. print a warnmg 

message: then call the 

RTM2WA formatter for 

the control blocks on 

the stack. 

Output 

Register 1 

,/Y' I t BLSABDPL d 

via 
BLSQROUT t---------1.-v Register 1 

I BLSABDPL Y 
block formatter 

1-. 

v 
Formatted 
RTM2WA 

...... 

0 

t RTM2WA 

• SVRB 

::a 
-t 
:z 
o 
o 
Z 
-t 
::a 
o 
r-
tI3 
r
o 
o 
~ 

"TI 
o 
::a 
:z 
l> 
-t 
-t 
/71 
::a 

r.... 
n 
m 
:J 
UI 
m 
a.: 

::a 
:zm 
IIlUl 
r+r+ m.., .., .... 
... ·n 
1Ilr+ 
.... m 
Ulo. 

l:z 
III 

'tIr+ ..,m 
0.., 
'tJ ..... 
mill .., .... 
r+UI 
'< o O-n 
-n 

1-1 
1-4t13 
tI3:3: 
3: : 



I"'" 
-< 
N 
Of 
I ... ..... 

CJ\I 

'" I 
o 

n 
o 
~ ., ... 
IQ 
':s' ,... 
1-1 
tIiII 
3 

n 
o ., 
"U . ... 
\CI 
Of ..... 

3 
IJ ,... 
':s' o 
a. 
o 
oil 

o 
"U 
IJ ., 
CD ,... ... 
o 
:::J 

lEA VTFMT - RTM Control Block Formatter (Part 2 of 12) 

• Extended Description 

j IEAVTFMT searches the control block chains to find the 
RTM information associated with the TCB passed in the 
parameter list. This information, if accessed through normal 
chein pointers and contained in the dump,ls the RTM2WA's, 
EEDs, and SCBs pointed to by the TCB. It is also RTM 1 
information such as the FRR stack, for a current task, the 
I HSA for any interrupted or suspended task, the XSB or 
the STKE. 

1 This ESTAE routine will simulate the PRDMP 
access service routine on errors caused by accessing 

dump data under SNAP. It will sat a return code of 4 and 
continue processing. If the error was not a result of acces· 
sing dump data, a messege will be printed with the abend 
code and control will return to the calling program. 

2 The TCB hes a pointer to the RTM2WA. Save the ad· 
dress of the 35 most recent RTM2WAs in a stack. If 

there are 35 or more in the chain, print out a message text 
warning of the possibility of a loop in the RTM2WA chain. 

Module Label 

IEAVTFMT 

IEAVTFMT ESTAERTN 

Extended Description 

ro format and print each RTM2WA in the stack,l EAVTFMT 
performs the following processing: 

1. IEAVTFMT calls BLSQROUT (Exit Services Router) to 
pass the requested service code lin this case the format 
service) and to pass the control block's acronym. 

2. BLSQROUT calls BSLQCFMT (Control Block Format· 
terl to check the passed control block acronym with the 
acronym entries in the control block acronym table 
(CBATI and to load the requested control block format· 
ter module (lEAVTRF21. 

3. BLSQCFMT calls IEAVTRF2 (RTM2WA Control Block 
Formatterl to pass to BLSQROUT the address of the 
RTM2WA formatting model, the address of the dump 
data to be formatted, and the requested service code. 

4. BLSQROUT then calls B LSQIFMT (Control Block 
Formatter Modell which loads the control block data 
to be formatted and formats the control block using 
RTM2WA's formatting model CSECT (lEAVTRP21. 

5. Finelly, IEAVTRF2 performs a bit analysis summary. 

Module Label 

IEAVTFMT RTM2RTN 

,..: 
hI 
CDeIt 
:::Ir+ 
In, 
CD ... 
a.~ 
3CD 

=-a. 
CDZ 
.,111 ...... 
III CD ... ., 
UI ... 

I~ 
en ,. 

.,0 
a~ 
'U 
CD'" .,. 
r+3 
~ = 



~ lEA VTFMT - RTM Control Block Formatter (Part 3 of 12) 
3 
I 

\0 
G\ 

3 
< 
~ 
~ 
en 
r
r-

,., 
CD 
C') 
o 
< 
-I 
CD 

51 
:3 
I,Q 
51 
rio 

r
-< 
N 
01) 

I ... 
..... 
c... 
UI 
I 

C) 

,... 
C') ..... 
(") 
o 
~ ., .... 
IQ 
:r 
rio 

1-1 

= :3 
(") 
o ., 
"D 

: Input 

Register 1 , 

I t 3) BLSABDPL , 
t SVRB 

Process 9 
3 If the RTM2WA formatter :) 

~ .. 
completed successfully. and 
if the SVRB Is valid. cell the 
ESA formatter 

, 

and then the SDWA formatter. 

~ 

Otherwise, continue 
processing at step 4. 

to. 

Output 

Register 1 .. 
+ > BLSABDPL -'" 

~ 
IEAFTESA 

Entry point in .. Formatted 
ESA bit IEAFTRT2 t summary SVRB -- --

Register 1 .. 
) t BLSABDPL --.. 

\. 
IEAFTSDW 

Formatted 0 
Entry point In .. 
IEAFTRT2 .. registers at t SDWA 

error from 
SDWA 

-------



,... 
n 
'W 

n 
o 
~ ., .... 
10 
J 
rio 

.... 
1:11 
3: 

n 
o ., 
'U 

3: 
CD 
rio 
J o 
A. 

o 
-h 

o 
'U 
CD 

al 
rio .... 
o 
~ 

IEAVTFMT - RTM Control Block Formatter (Part 4 or 12) 

Extended Description 

3 If the RTM2WA formatted without any problems 
(return code 01, I EAVTFMT will access the address 

of the related SVAB. The SVAB's extended save area 
contains information indicating reasons for entry to RTM1 
or ATM2. IEAFTESA (an entry point in IEAFTAT21, for
mats these bits. 

IEAVTFMTthen locates and passes theSDWA tothe SDWA 
formatter, IEAFTSDW (an entry point In IEAFTRT21, to 
print out the registers saved there at the time of the error . 

Module Label 

IEAVTFMT RTM2RTN 

IEAFTAT2 

IEAFTRT2 



~ lEA VTFMT - RTM Control Block Formatter (Part S of 12) 
3: 
I 

\0 
00 

3: 
< 
~ x 
~ 

(I) ,... ,... 

;IU 
CD 
n 
o 
< 
-f 
CD , 
a 
3: 
IQ a 
1+ 

.... 
-< 
N 
00 
I .... ..... 

"" '" I 
CI 

..... 
n 
~ 

n 
o 
'0 
'< , .... 
IQ 
:r 
1+ 

.... 
\:lI:I 
3: 

n o , 
'0 . 
.... 
\0 
00 ..... 

Process 9 
4 Follow the pointers to find 

the EEDs associated with 
the TCB. Stack the last 35 
and print them in historical 
order (oldest to be printed 
flrstl. If there are 35 or 
more chainad together, 
print a warning message, 
then call the EED for· 
matter for those control 
blocks on the stack. 

5 If the TCB has a nonzero 
completion code or has its 
abnormal termination In 
progress flag on, find the 
associated SCBs and stack 
the last 35 and print them 
in historical order. If 
there are 35 or more 
chained together, print a 
warning message, then 
call the SCB formatter 
for those control blocks 
on the stack. 

If the TeB is not 
terminating abnormally 
and has a zero completion 
code, continue processing 
at step 6. 

6 

... 

... 

Output 

.. 
> Register 1 

t BLSABDPL \ I 
~ 

via I EAVTRF5 
BLSOROUT .. 

EED control ~ Formattad r 
0 block formatter EED 

'-.....r- --- + EED 

) 

" Register 1 

t BLSABDPL I I 
\ 

via 
BLSOROUT IEAVTRF4 .. .. SCB control Formatted 0 

block formatter sca + SeB 

V- -



r
oo( 
N 
OCI 
I .... ..... 

UoI 
I.7J 
I 

g 

n 
o 
~ , 
~. 

10 
=r 
r+o 
1-4 

= 3 

n 
o , 
"0 

:3: 
CD 
r+o 
=r 
o 
Do 

o 
~ 

o 
"0 
CD , 
III 
r+o 
~. 

o 
::s 

lEA VTFMT - RTM Control Block Formatter (Part 6 of 12) 

Extended Description 

4 The TCB has a pointer to the EED. Save the address 
of the 35 oldest EEDs in a stack. If there are 35 or 

more in the chain, print out a message text warning of the 
possibility of a loop in the RTM2WA chain. 

To format and print each EED in the stack I EAVTFMT 
performs the following processing: 

1. IEAVTFMT calls BLSOROUT (Exit Services Routerl 
to pass the requested service code lin this case the for
mat service I and to pass the control block's acronym. 

2. B LSQROUT calls B LSOCFMT (Control Block Formatterl 
to check the passed control block acronym with the 
acronym entries in the control block acronym table 
(CBATI and to load the requested control block formatter 
module IIEAVTRF51. 

3. BLSQCFMT calls IEAVTRF5 (EED Control Block 
Formatterl to pass to BLSOROUT the address of the 
EED formatting model, the address of the dump data 
to be formatted, and the reQuested service code. 

4. BLSQROUT then calls BLSQIFMT (Control Block 
Formatter Modell which loads the control block data 
to be formatted and formats the control block using 
EED's formatting model CSECT IIEAVTRP51. 

5. Finally, IEAVTRF5 performs a bit analysis summary. 

Module Label 

IEAVTFMT EEDRTN 

IEAVTRF5 

Extended Description 

5 Check whether the TCB has a nonzero return code or 
the TCB has the abnormal termination in progress flag 

on. Only under these circumstances does I EAVTFMT for
mat the SCBs. The TCB has a pointer to the SCB. Save the 
address of the 35 most recent SCBs in a stack. If there are 
35 or more in the chain, print out a message text warning 
of the possibility of a loop in the SCB chain. 

To format and print each SCB in the stack IEAVTFMT 
performs the following processing: 

1. IEAVTFMT calls BLSOROUT (Exit Services Routerl 
to pass the requested service code Ii n th is case the format 
servicel and to pass the control block's acronym. 

2. BLSOROUT calls B LSOCFMT (Control Block Formatter) 
to check the passed control block acronym with the 
acronym entries In the control block acronym table 
(CBAT) end to load the requested control block for
matter module UEAVTFF41. 

3. B LSOCFMT calls I EAVTRF4 (SCB/SCBX Control 
Block Formatter) to pass to BLSOROUT the eddress of 
the SCB/SCBX formatting model, the address of the 
dump data to be formatted, and the requested service 
code. 

4. BLSORQUT then calls BLSQIFMT (Control Block 
Formatter Modell which loads the control block data 
to be formatted and formats the control block using 
SCB/SCBX's formatting model CSECT IIEAVTRP41. 

5. Finally, I EAVTRF4 performs a bit analysis summary. 

Module Label 

IEAVTFMT SCBRTN 

IEAVTRF4 



~ lEA VTFMT - RTM Control Block Formatter (Part 7 of 12) 

~ ... 
c 
c 

3: 
< 
(I) 

" x 
> 
(I) 
r
r-

;::0 
CD 
n 
o 
< 
-t 
CD , 
:I 

3: 
UJ 
:I 
t+ 

r
-< 
N 
00 
I ... .... 
"" VI 
I 

c 

..... 
n ...... 
(") 
o 
~ , .... 
IQ 
':1' 
t+ 

1-4 
tI:I 
3: 
(") 
o , 
'U 

Input 

ASCB 

ASCBLOCK=O 

ASCBLOCK=4X 

PSATOLD"ADPL TCB 

Process 9 
... 6 If the ASCB does not have 

its local lock held, there Is no :J 
related RTM1 information. 

• Return to 

Otherwise, continue 
processing at step 7. 

") 7 If the ASCB is current and .. the TCB passed is current, 
call the FRRs formatter to 
format the current FRR 
stack and the RT1W con· 

, 

trol block. 

Otherwise 

I 

6 

CALLER 

PRDMP,IPCS, .. or SNAP 

via 
BLSQROUT IEAVTRF3 

.. FRRs and RT1W 
control block 
formatter 

1I .. 
CALLER 

r 

PRDMP, IPCS, 
or SNAP 

Output 

Register 1 

.. ) 1+ BLSABDPL 
~ 

~ 

i 
Formatted 

.. FRRsand 

~W -

I 

0 

FRRS 
r... 
n 
CD 
~ 
CII 
CD a.: 

:III 
ZCD 
mCII 
r+rI
CD., ., ... 
t"~ 
... CD 
CIID. 

13 
0) 

"art 
.,CD 
0., " ... CD 0) ., .... 
r+CII 
'<0 
0 ... ... 

H ... "" ""3 Z : 



r
oO( 
N 
00 
I .... 
" CI'I 
\II 
I 

CI 

n 
a 
~ , .... 
IQ 
j' 
rio 

.... 
I:lI' 
3: 

n a , 
" . 

::a 
-t 
3: 
I .... 

CI .... 

IEAVTFMT - RTM Control Block Formatter (Part 8 or 12) 

Extended Description 

6 If the ASCB does not have its local lock held 
(ASCB LOCK=O), thera is no RTM 1 related information 

to be formatted. Return to the caller. 

7 If the TCB passed in the parameter list is the current 
task on any processor and it holds the local lock, find 

the correct PSA and place the FRR's pointer Into the paramo 
eter list. (To determine the correct PSA, the ASCBLOCK 
contains the logical processor address of the processor in 
which this task was running. The PSA also contains the 
logical procossor address for the processor with which it is 
associated. Thus it can be determined which PSA in an 
MP system contains the current RTMl information.l 

To format and print the current FRR stack IEAVTFMT 
performs the following processing: 

1. IEAVTFMT calls BLSQROUT (Exit Services Router! to 
pass the requested service code (in this case the format 
service) and to pass the control block's acronym. 

2. BLSQROUT calls BLSQCFMT (Control Block Formatter) 
to check the passed control block acronym with the 
acronym entries in the control block acronym table 
(CBA T) and to load the requested control block for· 
metter module IIEAVTRF31. 

ModUle Label 

IEAVTFMT RT1MAIN 

IEAVTRF3 

Extended Description Mduule 

3. BLSQCFMTcalis IEAVTRF3 (FRR Control Block 
Formatter) to pass to BLSQROUT the address of the 
FRR formatting model, the address of the dump data 
to be formatted, and the requested service code. 

4. BLSQROUT then calls BLSQIFMT (Control Block 
Formatter Modell which loads the control block data to 
be formatted and formats the control block using FRR's 
formatting model CSECT IIEAVTRP31. 

To format and print thl).RT1W in the FRR stack I EAVTRF3 
performs the following processing: 

1. IEAVTRF3 (FRR Control Block Formatter) provides 
the address of the RT1W formatting model, the address 
of the dump data to be formatted, and the requested 
service code to pass to B LSQRO UT . 

2. BLSQROUT then calls BLSQIFMT (Control Block 
Formatter Modell which loads the control block data 
to be formatted and formats the control block using 
RT1W's formatting model CSECT IIEAVTRP1). 

3. Finally, IEAVTRF3 performs a bit analysis summary. 

If RT1W is valid and if the pointer to the EED is nonzero, 
each EED in the stack is formatted. (See Step 4's extended 
description for an explanation of the EED processing.) 

Label 

a 
-fa 
H 
CJI' 
3: 



~ lEA VTFMT - RTM Control Block Formatter (part 9 of 12) 
3: 
I ... 

CI 
N 

::0 
(I) 
n 
o 
< 
-I 
(I) ., 
a 
3: 
III a 
t+ 

r
oo( 
N 
00 
I ... .... 

"'" UI 
I 

CI 

..... 
n ...., 
n 
o 
~ ., .... 
III 
':r 
t+ 

t-4 
til' 
3: 

n 
o ., 
" . ... 
\C 
00 .... 

Input 

ASCS 

I ASCBLOCK I "FFFFFFFF' 

IHSA TCS 

I I HSAOTCB t1 
Register 1 

t BlSASDPl ~ t TCB 
.... 

IHSA 

.trcB 
I HSAOTCB -~ 

ASCBlOCK"'7FFFFFFF' 

ASCB lOCK='7 FFFFF FF' 

IHSA 

I 
H~B 

CMSlOCK 
ASCS 

./ 

Process )) 
" 8 ) Call the I HSA formatter: 
r 

• If the ASCS is interrupted 
and the TCe pointer in tha 
related IHSA points to the 
TCe passed in the paramo 

I 
eter list, 

.. > • if the address space is sus· 
ponded and If the TCB 

D 
passed in the parameter 
list was suspended for a 
page fault while holding 
the local lock, or 

.. 
') • if the address space is 
" suspended and if the TCB 

passed in the parameter 

I 
list was suspended trying 
to obtain the CMS lock. 

If the IHSA is formatted, 
continue processing at step 9. 
Otherwise, return to the caller. 

6 

Output 

" Register 1 

I >Ii el~ASDPl 

.. .. IEAIHSAF \. 
I HSA control 
block formatter e 

.. ~ t IHSA 

Register 1 

If BlSABDPl I ~ ~ 

\. IEAVTRF3 

.. FRRs control - Formatted 
block formatter .. IHSA, FRRs, 0 

and RT1W 

~ 
t EED 



(') 
o 
~ ., .... 
Ia 
'j' 

" .... 
til' 
3: 
(') 
o ., 
" 

3: 
II) 

" :r o 
Q. 

o 
-+0 

o 

" CD 

GJ 

" .... 
o 
~ 

~ 
3: 
I .... 

o 
(.01 

lEA VTFMT - RTM Control Block Formatter (Part 10 of 12) 

Extended Description 

8 IEAVTFMT performs the following checks to deter-
mine whether the IHSA contains ATM1 information 

that is pertinent to the current TCB. If anyone of these 
checks is valid, the I HSA is formatted. Otherwise, the I HSA 
does not contain valid information and, therefore, control 
returns to the caller. 

IEAVTFMT's first check determines if the address space 
was Interrupted (ASCBLOCKcFFFFFFFF) while holding 
the local lock and if the interrupt handler save area (lHSA) 
points to the TCB passed in the parameter list. If so, the 
IHSA contains ATM1 Information pertinent to the TCB 
being formatted_ 

IEAVTFMT's second check determines if the address space 
Is suspended and if the TCB was in control. One way to 
determine this is to check the status oftheTCB. If the TCB 
was suspended for a page fault while holding the local lock, 
the I HSA contains RTM1 information pertinent to the TCB 
being formatted. 

I EAVTFMT's last check determines if the address space was 
suspended while trying to obtain the CMS lock. I EAVTFMT 
searches the CMS suspend queue for the ASCB address. If 
it is on the queue, the TCB was in control and the I HSA 
contains related ATM1 information. 

Once IEAVTFMT has determined that the IHSA has valid 
Information,lEAVTFMT formats and prints the IHSA 
through the following processing: 

Module Label 

IEAVTFMT INTERAUP 

IEAVTFMT SUSPEND 

IEAVTFMT CMSEAACH 

IEAIHSAF 

Extended Description Module 

1. IEAVTFMT calls BLSQAOUT (Exit Services Aouter) 
to pass the requested service code lin this case the for
mat service} and to pass the control block's acronym. 

2. BLSQAOUT calls BLSQCFMT (Control Block Formatter) 
to check the passed control block acronym with the 
acronym entries in the control block acronym table 
(CBAT) and to load the requested control block for
matter module (lEAIHSAFI. 

3. BLSQCFMTcalis IEAIHSAF I1HSA Control Block 
Formatter) to pass to BLSQAOUT the address of the 
I HSA formatting model, the address of the dump data 
to be formatted, and the requested service code. 

4. BLSQAOUT then calls BLSQIFMT (Control Block 
Formatter Modell which loads the control block data 
to be formatted and formats the control block using 
I HSA's formatting model CSECT IIEAIHSAPI. 

lEA IHSAF formats and prints any active FAAs in the stack 
and AT1 W control blocks through module I EA VTAF3. (See 
Step 7's extended description for an explanationofthe FAA 
and AT1W formatting process.! 

If AT1W is valid and If the pointer to the EED is nonzero, 
the EEDs are formatted. (See Step 4's extended 
description for an explenation of the EED processing.! 

Label 

o ... 
H 
W 
3: 



:III lEA VTFMT - RTM Control Block Formatter (part 11 or 12) -t 
3 
I ... 

Q 

oil> 
Input Process Output 

3: 
< en .... IHSA 
~ 
en 9 If a valid XSB pointer exists, 

Formatted 

r- eall the format model 
XSB 

r-
IHSAXSB 

processor. 

:III 
D 
n 
0 
< 
-t 

XSB D ., 
51 

3 10 If a valid STKE pointer exists, 
Formatted 

10 call the format model STKE chain 

51 ,.. XSBSEL processor. "'-

r-
oo( 
N 
00 
I ... ,. 

.... ... 
CIt 
\II 

n 
I 

CD 
Q Return to :I 

CI 
the Caller CD 

A::I ..... 
n 31 ..... =.::-
n 
0 

CD., 

~ 
., ... 
... n ., IIrt 

.... ...CD 
CIA 

10 
:r 13 
r+ III 

-art .... .,CD 
till a., 
3: 11 ... 

CD I» 
n 
0 ~Iii ., 
" 

~ . a a .. .. ... 
'" 

H 

00 
H. 
.3 .... 3::1 



r
oo( 
N 
CO 
I .... 

..... 
CJoI 
I.TI 
I 

o 

.... 
= :::I: 

n 
o , 
"0 . 

:=a 
-t 
:::I: 
I .... 

o 
I.TI 

Diagram RTM-7. IEAVTFMT - RTM Control Block Formatter (Part 12 of 12) 

Extended Description 

9 If the XSB pointer in the IHSA isnot zero, IEAVTFMT 
formats and prints the XSB in the following manner: 

a. IEAVTFMT calls BLSQROUT (Exit Services Routerl to 
pass the requested service code (in this case the format 
model service) and to pass the control block's acronym. 

b. BLSQROUT then calls BLSQIFMT (Control Block 
Formatter Modell which loads the control block data 
to be formatted. BLSQIFMT formats the control block 
using the specified formatting model, I EAXSBP. 

10 Ifthe STKE pointer inthe XSB is not zero, IEAVTFMT 
formats and prints the STKEs in the following manner: 

a. IEAVTFMT calls BLSQROUT (Exit Services Routerl to 
pass the requested service code lin this case the format 
model service) and to pass the control block's acronym. 

b. BLSQROUT then calls BLSQIFMT (Control Block 
Formatter Modell which loads the control block data to 
be formatted. BLSQIFMT formats the control block 
using the specified formatting model, IEASTKEP. 

Module Label Extended Description 

The following chart summarizes IEAVTFMT's formatting 
process of RTM's control blocks. 

Control Formatter Bit Analvsis 
Block Module Model Summary 

RTM2WA IEAVTRF2 IEAVTRP2 Yes 

EED IEAVTRF5 IEAVTRP5 Yes 

SCB IEAVTRF4 IEAVTRP4 Yes 

FRR I EAVTRF3 IEAVTRP3 No 

RTlW IEAVTRF3 IEAVTRP1 Yes 

IHSA IEAIHSAF IEAIHSAP No 

XSB N/A IEAXSBP No 

STKE N/A IEASTKEP No 

Extended Description 
Step Number 

2 

4 

5 

7 

7 

8 

9 

10 

o 
of! 

H 
~ 
:::I: 



;a 
CD 
(') 
o 
< 
..... 
CD , 
a 
3: 
!Q 
a 
r+ 

r
oo( 
N 
00 
I .... ..., 

(.H 
UI 
I 

o 

..... 
(') 
v 

n 
o 
~ , .... 
'go 
r+ 

.... 
= 3: 

n 
o , 
" 
.... 
\Q 
00 ..., 

lEA VTGLB - SLIP Global Ph~' Activation/Deactivation Routine (Part I of 8) 

Input 

CVT SHDA 
? 

CVTAMS SHDAPFC 

CVTVPSA SHDnSR8 

SAB 
Model PSA 

SABPARM 

Register 1 

SABPAAM value 
at entry 

SHDR 

I SHDRSEQ 
I 

F rom the dispatcher 
,I:AVEDSO) 

"process 

~1 

~.' 

') 2 .., 

) 3 

Perform initialization. 

Determine if PER 
monitoring is to be 
activated/deactivated in 
the svstem or adjusted 
In an address space(s). 

• If no function Is 
to be performed 

Obtain the SHDR 
sequence word. 

• If the sequence word is 
not obtained 

• If the requested 
function adjusts PER 
monitoring in an 
address space(s). 

6 

Output 

... FAA stack 

" GLPEAFRA 

... .. 
'" --,. IEAVPSI 

Page-fix or 
SHDA SAB 

free storage SHDAPFC III SABPARM I 
SHDRSRB 

Register 1 

SABPAAM 
value 
at entry 

.. Continue at .. step 7 

... SHDR 

... 
SHDRFLGS .. 

Continue at 
step 7 SHDASEQ 

.. Continue at 
step 6 



r
oo( 
N 
00 
I 

lEA VTGLB - SLIP Global PER Activation/Deactivation Routine 

.... ...., 
(.-. 
1.1'1 
I 

Q 

,... 
n .... 
n 
o 
~ ., 
~. 

\Q 
::r 
t+ 

.... 

." 
3: 

n 
o ., 
" .... 
\Q 
00 ...., 

;a 

Extended Description 

I EAVTG LB receives control from: 

• The dispatcher as the result of a global SRB being 
scheduled. 

• The SLIP command processor (I E ECB905) when a SLIP 
user issues a command to enable or disable a non
IGNORE PER trap, or when IEECB905 detects that the 
SHDRSRBR flag is set. indicating that IEAVTGLB is 
to be rescheduled 

• The SLIP action processor IIEAVTSLS) when a non
IGNORE PER trap is to be disabled 

• The SLIP PER select interface routine IIEAVTJBN) when 
it is unable to acquire an SRB to schedule the SLIP local 
PER activation/deactivation routine II EAVTLCL) 

• IEAVTLCL when it is unable to acquire the SHDR se· 
quence word 

• IEAVTLCL when PVTMOD PER processing is activated 
and the PER control registers need to be set. 

IEAVTGLB either activates or deactivates PER monitoring 
in the system, or, if PER monitoring is already activated and 
is to remain active, adjusts PER control in the address spaces 
requiring a change in PER status. 

1 IEAVTGLB performs the following initialization 
functions. 

• Issues a SETFRR macro to add GLPERFRR to the FRR 
stack. 

• If the SLIP use counter (SHDRPFCI has not already been 
updated for this entry. adds one to the counter. This 
prevents the IEAVTSLP load module. which contains this 
CSECT, from being page-freed. 

• Obtains the LOCAL lock. 

• Page-fixes the model PSA if the model PSA exists and 
has not been page-fixed. 

• Obtains the CMS, SALLOC, and dispatcher locks. 

• Makes the SRB available by setting to one the 
SHDRSRBA flag in the SHDRSRB pointer. 

-I • Saves the contents of the SRBPARM field in register 1 
~ and puts zeros in the SRBP~RM field . .... 
Q ...., 

Module 

IEAVTGLB 

IEAVPSI 

(Part 2 of 8) 

Label Extended D85cription Module Label 

2 If the SRBPARM input value is negative,lEAVTGLB 
activates or deactivates PER monitoring on all 

processors In the system. If the value is positive, IEAVTGLB 
adjusts PER monitoring in all addr85s spaces requiring a 
change in PER status. In either case, processing continues at 
the next step. If the value is zero, no function is performad, 
and proceSSing continues at step 7. 

3 IEAVTGLB uses a CS (compare and swap) Instruction IEAVTGLB 
to obtain the SHDR sequence word (SHDRSEOI, 

which serializes this routine with IEECB905 to prevent the 
SCE chain from being altered. Before attempting to obtain 
the sequence word. IEAVTGLB turns on the SHDRSRBR 
flag in the SHDRFLGS field. 

If the sequence word is not obtained, the SHDRSRBR 
flag is left at one, indiceting to the routine that owns the 
sequence word that it is to reschedule IEAVTGLB when It 
releases the sequence word. Processing continues at step 7, 
where IEAVTGLB cleans up and returns to the dispatcher. 

If the sequence word is obtained, IEAVTGLB sets the 
SHDRSRBR flag to zero. When the requested function is 
to activate/deactivate PER monitoring in the system, pro
cessing continues at the next step. When PER monitoring 
is to be adjusted in an address space(s), processing continues 
at step 5. 

... 
~ 
3: 



~ lEA VTGLB - SLIP Global PER Activation/Deactivation Routine (Part 3 of 8) 
3: 
I 

""" c 
00 

.a 
(D 
o 
o 
< 
-I 
(D ., 
:I 

3: 
Ul a 
rio 

n 
o 
~ ., 
"". U2 ::r .... 
M 
D' 
3: 
(") 
o ., 
'U . 

Inl)ut 

CVT 

CVTRTMS 

CVTPCCAT 

CVTVPSA 

PCCAVT 

~~ 

LCCA 

I LCCASlIP 

Process 9 
SHDR 

, SHDRPER- ") 4 If the non-IGNORE 
PER trap Is disabled or 

SHDRCMS1 non-existent deactivate 
PER monitoring In the 

SHDRCMR1 svstem. 

SHDRCMR2 

"--

l SCE 

SCEFLGS 

,~ 
PCC~ for Drocess~ ~ 

I ASCB 

6 ASCBPER f-
I-

ASCBSSSP 

ASCBPERS 

T 
I • 

Output 

.. CVT SHOR .. 
CVTRTMS SHORPER 

SHORPERR 
~ 

.... .. IEAVTSIG SHORPERA 

Activate or SHDRPERJ 
deactivate ASCB 

PER monitoring 
ASCBPER on a processor. I-
ASCBSSSP 

~ .. 
IEAVESSE ASCBPERS .... -p 

Sat or clear 
the space 
switch event 
mask for 
SLIP LCCA 

I LCCASlIP I 
SVT 

SVTCMST1 

SVTCMRT1 

SVTCMRT2 



..... 
n ..... 
(') 
o 

" '< ., .... 
ID 
'7 ,.. 
..... 
at 
3 

n 
o ., 
" . 

3 
CD ,.. 
'7 
o a. 
o 
-II 

o 

" CD 

D1 ,.. .... 
o ::s 

lEA VTGLB - SLIP Global PER Activation/Deactivation Routine 

Extended Description 

4 If there Is no non·IGNORE PER trap (SHDRPER=OI 
or the existing one is disabled hhe SCEDSABLa 1l, 

IEAVTGLB deactlv-.nes PER monitoring in the system. To 
do so, IEAVTGLB: 

a. Restores CMSET entry point addressas . 
b. Turns off PER monitoring in each active processor. 
c. Frees SLIP storaga. 
d. Sets model PSA PSW PER bits to zero. 
e .. Sets the PER trap pointers in the SHDR to zero • 
f. Turns off space switch and PER monitoring in all 

address spaces In which PER was activated. 

Each step is explained below In greater detail. 

a. Restore CMSET entry point addTflSses. lEA VTG LB 
restores the CMSET entry point addresses In the 
SVT that were saved in the SHDR when PER was 
activated. 

b. Turn off PER globelly. I EAVTG LB Initializes a 
parameter list and passes control to IEAVTSIG, which 
sets PER control registers 9·11 and the external, I/O, 
and SVC new PSW PER bits to zero. In a multiprocessing 
environment, IEAVTGLB does this for each active pro· 
cessor in the PCCAVT. For active processors other than 
the one on which this module is executing, IEAVTGLB 
uses a RISGNL macro to pass control to IEAVTSIG. To 
turn off PER monitoring In this module's processor, 
IEAVTGLB calls IEAVTSIG directly. 

Module 

IEAVTGLB 

IEAVTSIG 

c. Free SLIP storage. After a processor has been signalled IEAVTGLB 
and before locating the next processor in the PCCAVT, 
IEAVTGLB attempts to free allocated SLIP storage. If the 
SLIP work area pointer is valid and the work area is not in 
use by IEAVTPER or IEAVTSLP (LCCASLIP >01. 
I EAVTGLB frees the storage and sets the LCCASLIP 
value to zero. If the storage is being used (LCCASLIP<OI, 
IEAVTGLB Indicates that IEECB906 is to be posted to 
have this module rescheduled. 

d. Set the mode' PSA PSW PER bin to zero. If the model 
PSA exists (CVTVPSA101 and is page·fixed, IEAVTGLB 
sets the EXT. SVC, and 1/0 new model PSA PSW PER bits 
to zero. If the model PSA is not page· fixed and an enabled 
non·IGNORE PER trap exists, IEAVTGLB indicates that 

(Part 4 of 8) 

Label Extended Description 

IEECB906Is to be postad to issue message IEA4241. 
(When a processor Is varied online, the modal PSA Is copied 
into the new processor's PSA.1 

a. Set the PER trBp pointen to zero. I EAVTG LB sets to 
zaro the following PER trap pointers: the SHDRPERJ, 
SHDRPER. SHDRPERA. and SHDRPERR fields. 

f. Turn off 1f)8C9 switch and PER monitoring In address 
splJces. IEAVTGLB processes eech ASCB pointed to 
in the ASVT as follows. To Indicate that PER Is de· 
activated in tha address space, IEAVTGLB sets the PER 
bit (ASCBPER! to zero. If the ASCB's space switch 
event mask for SLIP 15 on (ASCBSSP=1), IEAVTGLB 
calls the space switch event mask manager (lEAVESSEI 
to clear the mask for SLIP. If the ASCB Indicates that 
PER was activated in the corresponding address space 
(ASCBPERS"U, IEAVTGLB sets the ASCBPERS 
bit to zero. It then Initializes and schedules a local 
SRB to entar IEAVTLCL. IEAVTLCL finds the 
ASCBPERS bit off and turns off PER monitoring. 

A subroutine of IEAVTGLB (SCHEDSRBI issues a 
GETCELL to obtain storage for the SRB. If the cell 
Is acquired, SCHEDSRB initializes an SRB parameter 
list and schedules IEAVTLCL to execute as a local 
SRB. (See tha diagram and extended description for 
IEAVTLCL.I 

If tha GETCELL falls. SCHEDSRB attempts to obtain 
a new extent, using a GETMAIN. If this falls and the 
PER trap is disabled, SCHEDSRB turns on the SHDRSRBR 
flag, Indicating that this module Is to be rescheduled. If 
the GETMAIN fails and tha trap II enabled, SCHEDSRB 
Indicates that IEECB9051s to be posted to Issue message 
IEA7421. Processing continues at step 6. 

If the GETMAIN for a new extent is successful, SCHEDSRB 
Issues a BLDCPOOL to build a cell pool. If this fails, 
IEAVTGLB abands with system code X'06E'. If the 
BLDCPOOL is successful, SCHEDSRB schedules 
IEAVTLCL. 

Module Label 

IEAVTGLB SCHEDSRB 



~ lEA VTGLB - SLIP Global PER Activation/Deactivation Routine (Part 5 of 8) 
3: 
I 

jo4 
jo4 

CI 

~ 
en 

" ~ 
en 
r
r-

r
~ 
N 
00 
I .... ..., 

CI'I 
U'I 
I 

CI 

..... 
n 
'"" 
n 
o 
~ ., .... 
IQ 
:r 
t+ 

M 

= 3: 

n 
o ., 
'0 . 

-

Input 

CVT 

CVTRTMS 

CVTVPSA 

Model PSA 

ASCB 

ASCBASID 

ASCBJBNI 

ASCBJBNS 

ASCBPER 

ASCBSSSP 

ASCBPERS 

I 

? From Process step 3 

SHDR 1 .. ... 
V 5 If the non-IGNORE PER 

SHDRPER 
.. trap Is enabled. and PER 

activation/deactivation is 

SHDRPERA I--'t requested. activate PER 

J 
monitoring in the system. 

SHDRPERJ 

SCE 

SCEFLGS 

SCVA 

SCVAJND ~ 
SCVAASD ~ 

6 

Output 

... LCCA 

1", LCCASLIP I 
I I 

ASCB .. .. 
IEAVTSIG 

'" .. ASCBPER 
Activate PER 
monitoring on ASCBSSSP 
a processor. 

... .. ASCBPERS IEAVESSE .. .. 
Set the space 
switch event 
mask for SLIP. 

SVT SHCR 

SVTCMST1 SHDRCMS1 

SVTCMRT1 SHDRCMR1 

SVTCMRT2 SHDRCMR2 



r
oo( 
N 
00 
I .... 

...... 
(JOI 
I.TI 
I 

o 

n 
o 

~ , .... 
\Q 
::T .... 
1-1 

= 3 

n 
o , 
'Q . 
.... 
\tI 
00 
...... 

3 
Q) .... 
::T 
o 
a. 
o 
-b 

o 
'Q 
Q) 

al .... .... 
o 
:::J 

lEA VTGLB - SLIP Global PER Activation/Deactivation Routine 

Extended Description 

5 ToactivatePERmonitoringinthesystem,IEAVTGLB: 

a. Replaces the CMSET entry point addresses in the SVT. 

b. Establishes PER monitoring in each active processor. 

c. Obtains SLIP storage for each active processor. 

d. Sets the model PSA PSW PER bits to one. 

e. Turns on space switch and PER monitoring in all of the 
required address spaces. 

Each step is explained below in greater detail. 

a. Replaces the CMSE Tentry point addresses. IEAVTGLB 
replaces the CMSET entry point addresses in the SVT 
with addresses of entry points into IEAVTSLC. The 
original CMSET entry addresses are saved in the SHDR . 
When PER monitoring is deactivated, I EAVTG LB restores 
the CMSET entry addresses. 

b. Establishes PER monitoring globally. lEA VTG LB 
initializes a parameter list with the PER mode values (SA 
or I F) found in the trap's SCEPF LG field, and the be
ginnning and ending addresses for PER monitoring 
(SCVAAOO). {Note: SB PER traps are always set up 
initially in I F mode.! The module passes control to 
IEAVTSIG, which copies the parameter values into con
trol registers 9-11, and sets the PER bit in the external, 
I/O, and SVC new PSWs to one. In a multiprocessing 
environment, I EAVTG LB does this for each active pro
cessor in the PCCAVT. For each active processor other 
than the one on which this module is executing, 
IEAVTGLB uses a RISGNL macro to pass control to 
I EAVTSIG. To activate PER monitoring in this module's 
processor,lEAVTGLB calls IEAVTSIG directly. 

c. Obtains SLIP storage. After a processor has been sig
nalled, and before locating the next processor in the 
PCCAVT,IEAVTGLB issues a GETMAIN toobtainstor
age in the SQA for the SLIP work area (except when 
SLIP storage already exists, LCCASLIP :;1::0). I EAVTGLB 
puts the address of the work area in the LCCASLIP field. 

d. TurnsonthemodeJPSAPSWPERbits. IfthemodelPSA 
exists and is page-fixed, I EAVTGLB sets the EXT, SVC, 
and I/O new model PSA PSW PER bits to one. If the 
model PSA is not page-fixed, IEAVTGLB indicates that 
IEECB905 is to be posted to issue message IEE4241. 

e. Turns on space switch and PER monitoring in all required 
address spacers). If the PER trap was defined with an 
ASIO list parameter (SHORPERA :;1::01 and without 
MOOE=HOME (SCEMHME=OI, IEAVTGLB calls 
I EAVESSE to set the space switch event mask 
(ASCBSSSP) bit in each ASCB associated with each ASIO 
in the list to one_ IEAVTGLB also sets the PER bit 

Module 

IEAVESSE 

(Part 6 of 8) 

Label Extended Description 

(ASCBPER) to one when these conditions exist unless the 
trap was also defined with a JOBNAME parameter 
(SHORPERJ :;1::01. If the trap was defined with a 
JOBNAME, IEAVTGLB only sets the PER bit 
(ASCBPERI to one when the jobname pointed to by 
either the ASCBJBNI or ASCBJBNS matches thejobname 
in the SCVA. 

To determine if PER monitoring is to be activated or de
activated in an address space, IEAVTG LB scans the ASVT, 
comparing the job name fields and ASI Os of each ASCB entry 
with those specified on the enabled non-IGNORE PER trap. 
An address space is selected for PER monitoring if: 

• The jobname pointed to by either the ASCBJBNI or 
ASCBJBNS field matches the jobname in the 
SCVAJNO field of the enabled non-IGNORE PER trap 
(or there is no SCVA jobname entry, SHOPERJ=O), 
and, 

• MOOE=HOME was specified on the trap and the 
ASCBASIO field matches an ASIO entry in the 
SCVAASO table of the enabled non-IGNORE PER 
trap (or there is no SCVA ASIO entry, SHORPERA=O), 
or, 

• MOOE=HOME was not specified on the trap. 
If these conditions are not met, PER monitoring is to be 
off. 
I EAVTGLB compares the PER activation indicator of the 
address space (ASCBPERS) with the desired status deter
mined above. If the two differ, IEAVTGLB adjusts the 
ASCBPERS flag to the desired status and schedules 
IEAVTLCL to execute asa local SRB. This processing is 
described in the previous step. (Recall that IEAVTLCL 
uses the ASCBPERS flag to determine whether to activate 
or deactivate PER monitoring). IEAVTLCL adjusts the old 
PSW PER bits in all RBs in the address space. 

If private module PER monitoring is enabled but not active, 
I EAVTG LB schedules I EAVTLCL to execute as a local SR B. 
I EAVTLCL searches the local job pack area queue to find 

·a matching private area module. 

Module Label 

IEAVTGLB 

IEAVTGLB SCHEOSRB 

H 
W :a: 



;Q .... 
3: 
I .... .... 

N 

3: 
< en 
"'
X 
:J:Io 

en 
r
r-

;Q 
CD 
n 
o 
< 
.... 
CD ., 
:I 

3: 
fQ 
:I 

" 

r
oo( 
N 
00 
I .... ..... 

(J'I 
VI 
I 

o 

n o 
~ ., .... 
fQ 
:r 
" 1-4 
I:lII 
3: 

n 
o ., 
'Q . 
.... 
\Q 
00 ..... 

lEA VTGLB - SLIP Global PER Activation/Deactivation Routine (Part 7 of 8) 

Process 

From ••• tI 
step 2 

6 Process the message 
requests. 

7 Clean up and return. 

To the dispatcher 
IIEAVEOSOI 

IEAOPT02 

Post 
IEECB905. 

Page·fix or 
free storage. 

Output 

SHORSEQ 

SHDRECB 

HDR 

SHORPFC 



r-
oo( 
N 
00 
I ... ..... 

CI'I 

'" I 
c 

..... 
n ..... 
n o 
~ , ... 
fa 
'3 ,.. 
.... .-
3: 

n 
o ., 
'0 . ... 
\0 
00 ...... 

3: .. ,... 
'3 o 
a. 
o .... 
o 

''0 .. ., 
III ,... ... 
o 
:::lI 

lEA VTGLB - SLIP Global PER Activation/Deactivation Routine 

Extended Description 

6 IEAVTGLB releases the SHDR sequence word so 
IEECB90S can obtain It to prOC8&S messages. If 

any messages have been requested in earlier procesSing, 
IEAVTGLB branch enters POST (lEAOPT021 to post 
IEECB90S's ECB (SHDRECBI. IEECB90S i&Sues the 
messages. (See tHe diagram and extended description of 
IEECB905.1 . 

7 IEAVTGLB releases the CMS, SALLOC, and 
dispatcher locks, if held. If the model PSA is page

fixed, IEAVTGLB frees it. I EAVTGLB then releeses the 
LOCAL lock, decreases the SLIP use counter (SHDRPFCI 
by one, and remoYeJ GLPERFRR from the FRR stack. 

Recovery processing: 

When a non-recursive error occurs while I EAVTGLB is 
executing, RTM gives GLPERFRR control, GLPERFRR: 

• Indicates that the SRB is available (if necessaryl. 
• Records the error in the SYS1.LOGR EC data set and 

saves a retry address in the SDWARTY A field. 
• ., the SHDR sequence word is held, disables the enabled 

non-IGNORE PER trap, indicates that the SLIP com
mand processor communications routine (I EECB9051 is 
to be posted to issue message IEE743, and releases the 
SHDR sequence word. If the sequence word is not 
held, GLPE.RFRR indicates that message IEE415 is to 
He issued. 

• Calls I EAOPT02 to post I EECB905's ECB. 
• Releases the locks obtained by this FRR . 
• Determines ifa retry isallowed. If not (SDWACLUP=lI, 

GLPERFRR requests percolation, page-frees the model 
PSA (if it was page·fixeen, and decreases the SLIP use 
counter by one IIf necessery!. 

• Sets the recursive arror indicator. 
• Returns to the dispatcher . 

Module 

(Part 8 of 8) 

Label Extendad Description 

If a recursive error occurs, GLPERFRR: 

• Issues message IEA4141, using a RECORD macro, to 
notify the system operator of the recursive error. 

• Sets the enabled non·IGNORE PER trap pointer 
(SHDRPER) to zero. 

• Issues a SETRP macro to request that RTM free any 
locks currently held by IEAVTGLB. 

• Page·frees the model PSA (if it was page·fixed). 
• Releases the SHDR sequence word lif held). 
• Decreeses the SLIP use countar bV one (If necessary) . 
• Percolates to RTM. 

Module Label 

r-= hI 
CD II 
::Itt 
II., 
CD .. 
A~ 
3m ::.a. 
CD3 .,. 
... tt Dm ... ., 
Ill .. 

I~ ,. 
.,0 
a ... 
'1J 
CD" 
~I 
'< = 
a .. 
H 

I 



,... 
-< 
N 
OJ 
I 
~ .... 
t.-. 
I.n 
I = 

..... 
n ..... 
n 
o 

~ , .... 
IQ 
:T ,... 
.... 
'" 3 

n 
o , 
" 

lEA VTJBN - SLIP PER Select Interface Routine (Part 1 of 2) 

Input 

CVT 

I : CVTRTMS 

SImA 

SHORCPID 

SHDR 

From IEESB605. 
IEFIB600.IEAVEMRQ 

I hl~RB 

~:'DRSRB::: ...... ____ oJ 

Process 

1 If no SHDR exists. return. 

2 Establish 8 recovery 
environment. 

3 If 8 valid cell pool 10 Is 
supplied. schedule IEAVTlCl 
to adjust PER monitoring in 
an address space. 

4 If no valid cell pool 10 Is 
supplied or storage Is not 
available for an SRB. schedule 
IEAVTGlB to actlvatel 
deactivate PER monitoring 
globally . 

5 Delete the recovery routine . 

••• Return to the 
caller 

Return to the caller 

Output 

SRBEP 

SRBRMTR 

SRBPARM 

SHoA 

H 
III 



r
oo( 
N 
00 
I .... ..... 

(,01 

UI 
I 

o 

(") 
o 
~ , .... 
ca 
:r 
rio 

.... 
= 3: 

n 
o , 
~ 

.... 
'" 00 ..... 

3: 
ID 
t+ 
:r 
o 
D-

O 
-t\ 

Q 
~ 
II> 

iiJ 
t+ .... 
o 
:I 

:;u 
-I 
3: 
I .... .... 

UI 

lEA VT JBN - SLIP PER Select Interface Routine (Part 2 of 2) 

Extended Description 

This modulI! provides an Interface belween; 

• Address space create flEAVEMROI and the SLIP 
local PER activation/deactivation rouline IIEAVTLCLI 
10 dl!lermine if a newly created address space is 10 

have PEn monitoring aclive. 

• Job scheduler roulines (lEESB605 and IEEIB6001 and 
PER routines to determine If LOGON, START, or JOB 
SELECT commands require a chanlle in the PER 
monitoring status of the address space. 

1 If an SHOR does nol exist ICVTRTMS~OI, 
IE AVT JBN returns to Ihe caller. 

2 IEAVT JBN obtains the LOCAL lock, then issues a 
SETFRR macro to establish entry point JBNFRR 

as its FRR. 

3 IEI\VT JBN oblains Ihe CMS lock. If the SLIP 
co",mand processor IIEECB9051 supplied a valid 

cRII poollD ISHDRCPIO/OI,IEAVTJBN issues a 
GETCELL 10 obtain slorane in Ihe SOA lor an SRB. 
The CMS lock is then released. If the GETCELL is 
successful, IEAVT JBN initializes an SRB parameter 
list wilh SABPARM-l, indicating that full 
aclfvalion/deactlvatlon of PER monitoring is requested, 
and with the SRBRMTR field pointing to an RMTR In 
IEAVTLCL. IEAVTJBN then schedules IEAVTLCL 
10 eKecule as an SAB with local priority. IEAVTLCL 
turns PER moniloring on or off in the address space 
In which it is executing. Processing continues at step 5. 
If thl! GETCELL fails, or the cell poollD Is Invalid, 
processing continues at the next step. 

Module 

IEAVTJBN 

label Extended Description 

4 IEAVTJBN uses a CS Icompare and swapl 
instruction to acquire an SRB Ipolnted to by 

SHDRSRBI, which the SLIP command processor 
Initialiled. If successful, IEAVT JBN schedules 
IEAVTGLB to execute as an SRB with global 
priority. If the CS Instruction falls,lEAVTGLB is 
already scheduled and will make any PER 
monitoring changes necessary. 

5 IEAVT JBN delates the FRR, releases the LOCAL 
lock, and returns to the caller. 

Recoverv processing: 

JBNFRR records the error In the SYS1.LOGREC 
data set. If the SHOR exists, JBNFRR sets the 
IEA4221 message flag and posts IEECB905 to Issue 
the message. JBNFRR then issues an SOUMi'. If 
IEAVT JBN obtained the CMS lock, JBNFRR 
requests that RTM free It. If retry is not allowed 
{SOWACLUP~11. JBNFRR requests that RTM also 
free the LOCAL lock. If retry is allowed, JBNFRR 
Indicates that RTM is to retry at RETRYAOR in 
IEAVT JBN, whare registers are restored and 
control Is raturned to the caller. JBNFRR returns 
control to RTM. 

Module Label 

IEAVTJBN 

JBNFRR 



3: 
<: 
II) , 
X 
l:-

(I) 
r
r-

;00 

" n 
o 
< 
-i 

" , :I 

3: 
!,Q 
:I 
t+ 

r-
~ 
N 
00 
I .... ..... 

tit 
VI 
I 

C) 

..... 
n ...... 
0 
0 

" '< , 
tJ· 
!,Q 
:r 
rio 

.... 
~ 
3: 

0 
0 , 
" . .... 
\0 
C» ..... 

lEA VTLCL - SLIP Local PER Activation/Deactivation Routine (Part 1 of 10) 

Input 

Register 0 

1+ SRB 

SRB 

SRBPARM 

From the dispatcher 
(lEAVEDSO) 

rl 1-------1 
L-____ ...J 

1 Perform initialization. 

IEAVPSI 

Page-fix 
or free 
storage. 

Output 

Register 10 

SRBPARM 
value at 
entry 

FRR stack 

IlPERFRR I 

0 
C ... 
H 
Z 

'" 

r-.... n 
CD 
:::I 
rn 
CD 
a.:z 

:a 
:ZCD 
~~ 
CD., ., .... 
.,·n 
IItrt 
... CD 
rna. 
l:z 

lit 
"art 
.,CD 
0., 
'0 .... 
CD lit ., ... 
rt(ll 

'<0 
O-h 
-h 

H 
H~ 
~3 :z :z 



r
oo( 
N 
00 
I .... ..... 

CIt 
I.n 
I 

c 

..... 
n 
'oJ 

n a 

~ ... 
IQ 
;r 
r+ 
1004 .. 
3: 

n 
a ., 
" . .... 
\D 
00 ..... 

3: 
CD 
r+ 
;r 
a 
a. 
a 
-t. 
Q 

" CD 

il 
r+ .. , 
a 
:I 

~ 
3: 
I .... .... 

..... 

lEA VTLCL -:- SLIP. Local PER Activation/Deactivation Routine (Part 2 of 10) 

Extended Description 

IEAVTLCL receives control as the result of an SRB routine 
scheduled with local priority by the SLIP global PER 
activation/deactivation routine (lEAVTGLB) or the SLIP 
PER select interface routine (lEAVTJBN). IEAVTLCL's 
function is to tum PER monitoring on or off In the address 
space In which It Is executing and to search the local.job 
pack area queue for a private area module that matches the 
currant anabled PER trap. 

1 I EAVTLCL performs the following initialization 
functions. 

• Saves the contents of the SRBPAAM field. 
• Provides recovery by adding LPEAFAA to the FAA 

steck. 
• Obtains the LOCA L lock to allow a brench entry to page

fix, page-free, and STATUS in later processing. 
• Obteins the CMS lock to serialize GETCELL/ 

FAEECELL • 
• Frees the SAB storege. To do so, IEAVTLCL obtains 

the SLIP cell pool ID from the SHDACPID field 
and issues a FAEECELL. IEAVTLCL releases the 
CMS lock. If the freed cell was the last of an extent 
in which no other cells are currently allocated 
IFREECELL's return code~20), IEAVTLCL to page
fixes this segment of the module, obtains the SALLOC 
lock, then issues a FAEEMAIN to free the extent. 
IEAVTLCL releases the SALLOC lock and page-frees 
its fixed Pages. If the FAEECELL fails and the cell be
longs to an eittent from the pool, IEAVTLCL issues an 
ABEND with code X'06E'. 

Module Label 

IEAVTLCL 

!t ... .. 
3: 



~ lEA VTLCL - SLIP Local PER Activation/Deactivation Routine (Part 3 of 10) 
3 
I .... .... 

01 

;;Q 
ID n 
o 
< 
-t 
CD 

~ 
3 
(Q 
a ,.. 

r
oo( 
N 
01 
I .... ..... 

UI 

'" I 
o 

n 
o 
~ ., ... 
(Q 
:r ,.. 
.... 
~ 
3 

n 
o ., 
'U . 
.... 
..0 
01 ..... 

Input 

CVT 

CVTRSCB 

CVTABEND 

CVTRTMS 

ASCB 

ASCBASXB 

XSBPASID 

Output 

If requested, adjust ~~=======:::~>f======~ PER monitoring in 
this eddress space. 

IEAVESSE 

Space 
switch 
event mask 
manager 

IEATRSCN 

Find next 

TCB 

ASCBASXB 

ASCBSRBM 

SHDR 

SHDRCTR 



r
oo( 
N 
00 
I 

"'"' .... 
"" UI 
I 

o 

..... 
n ...., 
(') 
o 

" '< ., ... 
!t:I 
J 
rio 

1-1 

'" 3 
(') 
o ., 
" . 
"'"' \0 
00 .... 

~ 
-f 
3 
I ... 

"'"' \0 

lEA VTLCL - SLIP Local PER Activation/Deactivation Routine 

Extended Description 

2 If the SRBPARM value at entry was zero, IEAVTGLB 
has already determined which address spaces should 

have PER monitoring active, and has adjusted the ASCBPERS 
bit accordingly. IEAVTLCL calls the internal subroutine 
TCBRBSCN to adjust PER monitoring in each request block 
in the address space •. 

TCBRBSCNfirst branch enters the STATUS routine 
OGC079021. STATUS sets all tasks in the address 
space non·dispatchable by turning on the SLIP secondary 
non·dispatchability flag in each TCB. (This prevents 
alteration of the TCB/RB chain while it is being scanned.) 
If the ASCBPERS bit indicates to turn PER off, 
TCBRBSCN locates the first TCB and, in each request 
block attached to it, sets the RBOPSW PER bit to zero. 
TCBRBSCN calls IEATRSCN to locate the next TCB 
on the TCB chain, and repeats the process until all 
TCBs have been located and the RBOPSW bits in their 
associated RBs have been adjusted. 

If the ASCBPERS bit indicates to turn PER on, 
TCBRBSCN calls the SCECTR routine to serialize the 
SCE chain up to the'enabled non·IGNORE PER trap. 
TCBRBSCN locates the first TCB and, for each 
request block attached to it, does the following: 

• If MOOE=HOME was requested on the enabled 
non·IGNORE PER trap, TCBRBSCN compares the 
primary address space (XSBPASIO) of that request 
block wi til the home (ASCBASIOI. If they match, 
TCBRBSCN sets the RBOPSW bit to one. 

• If MOOE=HOME was not requested on the enabled 
non·IGNORE PER trap and the ASIO parameter 
was specified, TCBRBSCN compares the primary 
address space (XSBPASIOI of that request block 
with each ASIO in the ASIO entry of the SCVA 
and if one matches, TCBRBSCN sets the RBOPSW 
PER bit to.one. 

• If MOOE=HOME was not requested and the ASIO 
parameter was not specified, TCBRBSCN sets the 
RBOPSW PER bit to one in every request block. 

Module 

IGC07902 

IEAVTLCL 

IEATRSCN 

(Part 4 of 10) 

Label 

TCBRBSCN 

Extended Description Module 

TCBRBSCN calls IEATRSCN to locate the next TCB IEATRSCN 
on the TCB chain, end repeats this process until all 
TCBs have been located and their associated RBs 
have been checked. 

If MODE=HOME was requested or the ASIO parameter IEAVTLCL 
was not specified on the enabled non·IGNORE PER 
trap, TCBRBSCN sets the ASCBPER bit in the 
ASCBSRBM field to one and calls IEAVESSE, the IEAVESSE 
space switch event mask manager, to set the space 
switch event mask on for SLIP. 

TCBRBSCN calls STATUS to reset all tasks in the 
address space dispatchable. 

Label 

o ... 
H 

'" Z 



~ lEA VTLCL - SLIP Local PER Activation/Deactivation Routine (Part 5 of 10) 
3: 
I .... 

N 
o 

3: 
< en , 
>< 
l:-

en ..... ..... 

'" II 
n 
o 
< 
-t 
II ., 
a 
3: 
UJ a 
0+ 

..... 
00( 
N 
00 
I .... ..... 
~ 
\II 
I 

o 

("') 
o 

" '< ., 
"', 
UJ 
:r 
0+ 

.... 
= 3: 
("') 
o ., 
" .... 
\0 
00 ..... 

Input 
CVT 

CVTRSCN 

CVTABEND 

CVTRTMS 

ASCB 

ASCBASXB 

ASCBASID 

ASCBJBNI 

ASCBJBNS 

ASCBPERS 

ASXBFTCB 

TCBRBP 

SCVT 

SCVAJND 

SCVAASD 

RB 

Process 

3 If SRBPARM+O, determine 
which address spaces are to 
have PER monitoring active, 
and adjust the PER controls 
accordinglv. 

4 Release the SHDR sequence 
word. 

Output 
SHDR 

CVT 

CVTRTMS 

r 

..' n 
CD 
:::J 
CI) 
CD 
£L: 

;iIII 
3CD 
AI(/) 
rtrt 
CD., ., ... 
... n 
wrt 
... CD 
CI)£L 

13 
I» 

-vrt 
.,CD 
0., 
"..CD It) ., ... 
rtCl) 
'<0 
O-ft .. 

H 
HOI 
~Z z: 



r-
-< 
N 
Ot 
I .... ..., 

CotI 
UI 
I 

C 

,.. 
n ..... 
n 
o 
~ , .... 
CD 
J 
t+ 
.... .. 
3: 

n 
o , 
" . 

3: 
II 
t+ 
J o 
Q. 

o 
~ 

Q 

" II 

iil 
t+ .... 
o 
~ 

~ 
3: 
I .... 

N .... 

lEA VTLCL - SLIP Local PER Actiavtion/Deactivation Routine (Part 6 of 10) 

Extended Description Module Label 

3 If SRBPARM#O at entry (the caller is IEAVTJBN), IEAVTLCL 
IEAVTLCL obtains the SHDR sequenca word 

(SHDRSEQ). If it is unavailable, IEAVTLCL continues 
processing at step 6, where IEAVTGLB Is scheduled. If 
the PER trap does not exist (SHDRPER=OI or it is disabled 
(SCEDSABL=1),IEAVTLCL continues processing at step 4 • 

If the PER trap Indicates MODE=HOME was not requestad 
(SCEMHME=O) and there is an ASID entrv in the SCVA 
(SHDRPERA'#OI which matches the ASID of this address 
space (ASCBASID).IEAVTLCL: 

• calls IEAVESSE to turn on the space switch event IEAVESSE 
mask for SLIP in this address space . 

• If the jobnama pointed to bV either ASCBJBNI or 
ASCBJBNS matches the job name in the SCVA of 
the PER trep (or there Is no jobname entry. 
SCHRPERJ"O), turns on the PER indicator (ASCBPERI. 

• Determinas whether PER monitoring should be active 
In this eddress space. This is done bV comparing the 
ASCB of this address space with the enabled non-IGNORE 
PER trap_ PER monitoring Is to be active in this address 
space if: 

The jobname pointed to bV either the ASCBJBNI or 
ASCBJBNS field matches the iobname in the trap 
(or there is nojobname in the trap,SHDRPERJ9». 
and 
Either MODE .. I:fOME was requested (SCEMHME=I) 
and the ASCBASID value matches one of the ASIDs 
listed in the trap (o'r there are no ASIDs listed in the 
trap, SHDRPERA"OI. or MODE=HOME was not 
requested (SCEMHME"'O) 

If PER monitoring is not alreadv active (ASCBPERS=O). 
IEAVTLCL sets the ASCBPERS bit to one and calls the 

• internal subroutine TCBRBSCN to adjust PER monitoring 
in each request block as described in step 2_ 

If anv of the above conditions are not met, PER monitoring 
is to be off. IEAVTLCL sets the PER indicator 
(ASCBPER) to zero_ If PER monitoring is active 
(ASCBPERSall. IEAVTLCL also sets the ASCBPERS bit 
to zero and calls the internal subroutine TCBRBSCN to 
adjust PER monitoring in each request block as described 
in step 2_ 

4 After adjusting PER monitoring,lEAVTLCLreleases 
the SHDR sequence word_ 



~ lEA VTLCL - SLIP Local PER Activation/Deactivation Routine (Part 7 of 10) 
3: 
I .... 

N 
N 

3: 
< 
Ci) 

" ~ 
Ci) 
r
r-

r
oo( 
N 
00 
I .... .... 

(.01 

1.11 
I 

CI 

..... 
n ..... 
(") 
o 
~ ., .... 
fQ 
J .... 
M 
till 
3: 
(") 
o ., 
1J . 
.... 
\D 
00 .... 

Input 

SHDA 

SHDAPEA 

SHDAPVTP 

SHDAPVTA 

SHDAPVLP 

SHDAPVTG 

SHDAPVTL 

PSA 

~ PSMOLD 

ASCB 

( ASeBASXB 

ASXB 

( ASXBLTeB 

TCB 

, TCBJPQB 

CDE 

CDCHAIN 

CDNAME 

CDENTPT 

CDXLMJP 

CDATTA 

Process )J 
">5 If a search of the job pack 

1'\ SCE 
area queue is requested, 
search for the matching 

SCEFLGCS private area module. 

SCEFWD 

SCEBKWD 
• If found, C seEsevA 

SCVA 

• Otherwise, 

6 
r--.:... XT LST 

XTLNAFAC 

XTLMSBLA 

Output 

" SHDA 

SHDAPVTA 

r 
SHDAPEA 

SDHAPCDE .. 
I EAVTGLB SHDAPVAS 

" .. 
Set the PEA SHDAPASC 
control 
registers SHDAPTCB 

SHDAPVTG 

SHDAPVTL .. Step 7 

SCE 

SCESCVA 

(SCVA 

SCVAMDA1 

SCVAMDA2 



r
oo( 
N 
00 
I ... ..... 

CI'I 
\11 
I 

o 

..... 
n ..... 
n 
o 
~ , .... 
lQ 
::T ,.. 
.... 
til:' 
3: 

n 
o , 
" . ... 
-0 
00 ..... 

3: 
CD ,.. 
::T 
o 
a. 
o .... 
o 
'U 
CD 

iii ,.. .... 
o 
::J 

lEA VTLCL - SLIP Local PER Activation/Deactivation Routine 

Extended Description 

5 IEAVTGLB indicates to IEAVTLCL (by passing a 1 in 
bit position 30 (x '00000002'1 In the SRBPARM wordl 

that a search of the job pack area queue (JPAQI must be per
formed. I EAVTLCL's search attempts to find a private area 
module that matches the module specified In the enabled 
non·ignore PER trap . 

To prevent IEECB905 from deleting any of the traps being 
examined, SEARCHJP processing serializes the SCEs by in
crementing the use counts in each SCE. SEARCHJP then 
examines each CDE in the JPAQ for each TCB in this address 
space. If the module name In the CDE matches that In the 
trap, SEARCHJP does further checking. SEARCHJP dis
tinguishes between modules loaded locally and modules 
loaded globally (Indicated by the CDGLOBAL bltl. 

Module 

(Part 8 oft 0) 

Label 

SEARCHJP 

Extended Description 

Having found a match, SEARCHJP obtains the dispatcher 
lock. SEARCHJP processing determines if the module start 
offset, which is specified in the trap,lies within the module 
found. If so, SEARCHJP uses this module's COE. Other
wise, SEARCHJP continues searching. For a matching 
module, SEARCHJP sets up the actual module addresses to 
be monitored (prior to this, only the module offsets were 
availablel and saves information needed for I EAVTPVT's 
processing. IEAVTLCL then indicates that I EAVTGLB 
must be rescheduled to set the PER control registers, having 
determined the PER range to be monitored. 

After releasing the dispatcher lock, SEARCHJP releases the 
serialization of the SCEs by decrementing their use counts. 

If the module name in any COE does not match that in the 
trap, continue processing at step 7. 

Module Label 

IEAVELK 

o .... ... 
~ :z 



3: 
< en , 
~ 
en 
r
r-

r: 
n a 
< 
-I 
ID ., 
a 
3: 

'8 ,... 

r-
oo( 
N 
01 
I ... ..... 

"'" III 
I 

c 

..... 
n 
~ 

n a 
~ ., ... 
(Q 
:r ,... 
.... 
DI 
3 
n a ., 
" . ... 
\0 
01 .... 

mAVTLCL - SLIP Local PER Actiwtion/Deactivation Routine 

Input Process 

SHDR 

SHDRFLGS 

(Part 9 of 10) 

6 If requested, schedule 
I EAVTG LB to execute 
as a globel SRB. 

7 Clean up. 

Return to the 
dispatcher 
IIEAVEDSO) 

r-... 
n 
II :r 
UI 
II 
a.= 
zir 
IICIJ 
r+r+ 
II~ 
~ ... 
=-~ ... 10 
Ula. 
13: 

,.=. 
~II a., 
" .... IIID 

.111 

" ... .... 
.3 
z= 



r
-< 
N 
00 
I .... ..... 

CI'I 
\Jl 
I 

C) 

1-4 
tI:II 
3: 

n 
o ., 
"CJ . 
.... 
loG 
00 ..... 

3: 
CD 
t+ 
:r 
o 
a. 
o 
~ 

o 
"CJ 
CD 

iil 
t+ .... 
o 
:::J 

:;Q .... 
3: 
I .... 

N 
\Jl 

lEA VTLCL - SLIP Local PER Activation/Deactivation Routine 

Extended Description 

6 If there is a request to have I EAVTGLB scheduled 
(the SHDASABA flag is setl,lEAVTLCL tries to ob

tain the global SRB usinga CS (compare and swap) instruc
tion and the SHDASAB field. If successful, IEAVTLCL 
schedules IEAVTGLB to run asa global SAB in the master 
address space. If the SRB is unavailable, processing con
tinues at the next step. 

7 IEAVTLCL releases the local lock, deletes LPEAFAR 
from the FAA stack, and returns to the dispatcher. 

Recovery Processing: 

If an error occurs while IEAVTLCLis executing, LPEAFRA 
receives control to: 

• Record the error in the SYS1.LOGAEC data set. 

• Set tasks in the address space dispatchable (if I EAVTLCL 
set them non-dispatchablel by obtaining the LOCAL lock, 
calling I EAVPSI to page fix this segment of the module, 
obtaining the SALLOe lock, and calling STATUS 
(iGC07902) to turn off the SLIP secondary nondispatch
ability flag in each TCB. 

• Issue an SDUMP. 

• Release the SALLOC lock (if obtained by the FRA). 
page free this segment of the module if it was fixed, and 
release the SHDA sequence word (if heidI. 

Module 

(Part 10 of 10) 

Label Extended Description Module 

LPERFRR 

• Decrease the use counts in the SCEs and the SHDR if 
they have not already been decreased by I EAVTLCL. 

• Post the SLIP command processor communications 
routine (lEECB90SI. IEECB90S issues message 
IEA41S1 to the SLIP trap user, indicating an ABEND 
occurred while a PER request was being processed. 

• Release the LOCAL lock if it was obtained by the FRR. 

• If the LOCAL, CMS, or SALLOC lock is held, request 
that RTM release it. 

• Return to ATM with a return code of :z:ero (request 
percolation) . 

If IEAVTLCL has been scheduled but not yet dispatched 
when Its address space terminates, it receives control at entry 
point LPEAAMTA as the result of a PURGEDQ function 
issued by ATM2. IEAVTLCL obtains the LOCAL and CMS 
locks, issues a F RE ECELL to free SRB storage, then releases 
the LOCAL and eMS locks. If tha freed cell is the last of 
an extent !the FREECELL return code=20), IEAVTLCL 
attempts to free the extent using a FREEMAIN macro. If 
an error occurred while FREECELL was executing (the re
turn code=FOor 20),and the cell belongsto an extent from 
the cell pool (return code =F8), IEAVTLCL issues an ABEND 
with system code X'OSE', and returns to RTM. Otherwise; 
IEAVTLCL returns to the PURGEDQ function. 

Label 

LPERRTMR o 
-fa 



;:0 
-I 
3: 
I .... 

N 
0-

3: 
<: 
CJ) 

" X 
l> 

CJ) 
r
r-

;:0 
!D 
o 
o 
< 
-I 
!D , 
:I 

3: 
IQ 
:I 
r+ 

r
-< 
N 
00 
I .... 

....... 
V4 
U'I 
I 

o 

..... 
o 
-...; 

n 
o 
"C 
'< , .... 
IQ 
::r 
r+ 

.... 
1.0 
00 
....... 

lEA VTMMT - Address Space Purge Processing (Part 1 of 2) 

Input 

RTM2WA 

( 

RTM2ASC 

ASC8 

I Module IEAVTRML I 

From IEAVTRTE 

"process 

-~ 

1 Prepare for a possible recursion by 
establishing an ESTAE exit. 

3 

4 

Clean up the installation-specified 
resources and address space-related 
IBM resources. 

Clean up the SR 8s related to the 
address space. 

Free the ASC8. 

5 Clear the ESTAE exit. 

.... 

.... . 

.. r-------. 

" 

.. 

" 

IEAVSTAO 

STAE/ESTAE 
processing 

Appropriate 

resource 
manager 

IEAVEPDO 

PURGEDQ 

IEAVEMDL 

Address space 
delete 

rv 

.. To RTM2 exit processing 
.~ I rr (lEAVTRTEI 

L-______________________________ ~ 

Output 

~egister 1 

~ t U'U' .~.~. i 

Register 13 

t Save area 

\ 
..... RTM2A 

~ RMPL 

Input to 
resource 
manager routines. 

J 

I 

r.... 
o 
ID 
:l 
III 
ID 
0. = ;:a 
3:ID 
111111 
t+t+ 
ID-' -, .... 
... ·0 
1IIt+ 
.... ID 
1110. 

13: 
111 

'Ot+ 
-,m 
0-' 
'0 .... 
IDIII -, .... 
t+1II 
'< o 
O-+a 
-+a .... 
....~ 
~3: 
3: = 



r
oo( 
N 
00 
I ... .... 
'" '" I 
o 

n o 
~ ., ... 
tD 
':r ,... 
.... 
tlII 
3: 

n 
o ., 
" . ... 
\0 
00 .... 

3: 
CD ,... 
':r 
o 
Q. 

o .... 
Q 

" CD 

ill ,... ... 
o 
::I 

~ 
3: 
I ... 

N .... 

lEA VTMMT - Address Space Purge Processing (Part 2 of 2) 

Extended Description Module Label 

The address space purge function cleans up the address 
space resources when It terminates. Control initially goes 
to the RTM1 mainline code (see the M.O. diagram lEA VTRT2 
RTM1 Overview) to service a CALLRTM"MEMTERM 
request. RTM1 then schedules the address space 
termination routines (see the M.O. diagram I EAVTMTC -
Address Space Termination Processing) to terminate the 
address space. The final process in address space termination 
occurs when RTM2 receives a request from the address 
space termination routines to purge the resources from 
the address.space. 

Address space purge processing uses the RTM2WA initialized 
by initialization processing (see the M.O. diagram 
IEAVTRT2 - RTM2 Initialization) for the basic input, along 
with the eddress of the ASCB being purged. 

The address space purge processing routine only honors 
requests from the master address space. Requesters from 
any other address space will be terminated . 

1 Address space purge processing establishes an ESTAE 
exit in case of failure. 

2 Address space purge processing cleans up address 
space resources by first giving control to installation· 

defined subsystem cleanup routines (defined in module 
IEAVTRML) to clean up any subsystem resources. These 
subsystem cleenup routines will receive control sequen· 
tially until they have all executed. Control nut passes to 
the IBM-defined resource managers, which clean up system 
control program routines. The resource managers raceive 

~ control in the addressing mode indicated in the address 
field. in the following order: 

Availabllltv manager 
SVCdump 
Timer 
MSSFCALL SVC 
System trace 
ENQ/DEQ 
Data management 
VTAM (virtual telecommunications access method) 
TCAM (telecommunications access method) 

IEAVTMMT 
IEAVSTAO 

IEFJRECM 

AVFMHTRM 
IEAVTSDR 
IEAVTRTI1 
IEAVMFRM 
IEAVETRM 

IEAVEN02 
IEG01COA 
ISTRAMA2 
IEDQOT01 

Extended Description 

TIOC (terminal Input/output coordinator) 
VTIOC (VTAM terminal input/output coordinator 
TSOIVTAM) 
WTOR (write·to·operator with reply) 
Subsystem interface 
Initiator 
Scheduler allocation 
Contents supervisor 
Virtual fetch 
Linklist lookeside 
PCAUTH 
POST 
Virtual storage management 
Lock management 
OL TEP (on·line test executive program) 
IDMS 
RTM1 
Type 1 message 
SMF" 
ASCB delete 

The diagrams for the SPI E and RCT reaource managers 
show the modules that perform the clean up, and the 
control blocks that are cleared. 

3 Controlg08S to the PURGEDQ routines (see the 
M.O. diagram IEAVEPDO - PURGEOQ Processing) 

to remove eny SRBs left in the eddreas space. No more 
SRBs will be queued since IEAVTMMTsets the ASCB 
acronym to zero before passing control to PURGEDQ. 

4 Address space purge processing gives control to eddress 
space-delete to free any non-permanent addreas spaces 

(ASID > 1 In the ASCB). Address space purge processing 
does not free the address space If: 

• ASID" O· system wait task 
• ASID" 1 • master scheduler 

Address space purge processing clean the ESTAE routine 
and gives control to the caller (module IEAVTRTE). 

.-:1 

.... :111 
nm 

Module Label ~:s. 
."., 

IEDAY8 
CD ... 
a.~ 
3CD 
liD. 
rt 

IEAVMED2 11::1: 
IEFJRECM 

'711 
.... t+ 

IEFIRECM 11m 
IEFAB4E5 t~ 
IEAVLK02 Ie 
CSVVFMEM 

til ,. 
CSVLLTRM '70 

0 ... 
IEAVXPAM 1J 
IEAVEPST CDM 

'7 all 
IEAVGFAS rt::l: 

'< = IEAVELRM a 
IFDOLTOA .. 
ICB2AIR ... 
IEAVTMRM '" IEAVTPMT 

::I: 

IEASMFSP 
IEAVEMDL 

IEAVEMDL 

IEAVTMMT 



~ 
I ... 

N 
00 

r
< 
N 
00 , ... ...., 
CioI 

'" I 
C 

n o 
~ ., 
~. 

ta 
';T 
t+ 

.... 
tIJ 
3: 

n 
o ., 
"CII . ... 
~ 
00 ...., 

. . 
lEA VTMMT - Address Space Purge Resource Managers (Part 1 of 10) 

Input 

RMPL 

D 

CVT 

I CVTMSFCB I 

i 

From address space purge processing 
(IEAVTMMT) to clean up address 
space-related resources when an 
address space terminates 

~Process 1 Clean up the address sp8ce-related 
... resources for IBM resources when 
) an address space termlnatas. • 

a. Clean up the availability 
manager resources. 

b. Clean up the SVC dump 
resources. 

• Set the SVC dump request 
fields in the RTCT to zero. 

c. Clean up the timer resources. 

• Free the TQEs and timer SRSs. 

> d. Clean up the MSSFCALL SVC 
resources. 

e. Clean up system trece resources. 

• Clear the TOB. 

f. Clean up the ENQ resources. 

• Free the QCBs and QE Ls. 

• Print the messages . 

()ut~ 

RTCT 
r-----1'- D r--v 

TQE TimerSRB 

I n I ... 
'" 

MSFCB MSFAB .. 

I n I 
... 

TOB TTCH 
" 

D D 
QCB QEL .. 

D D I' 

• 

Message 

~~ 
:"name, name FAILED IN 'STEP MUST 

COMPLETE'STATUS" 

"RESOURCE NAMED, name, neme 
MAY BE DAMAGED" 

"FAILED IN 'STEP MUST COMPLETE 
DUE TO abend code" 



r
oo( 
N 
Ot 
I .... ...., 

(.01 
UI 
I 

o 

,.., 
n 
'oJ 

n 
o 
~ ., ... 
IQ 
;r .... 
.... 
'" 3: 

n 
o ., 
" 

3: 
II) .... 
;r 
o 
a.. 
o 
-t\ 

o 

" II) 

iil .... ... 
o 
:::J 

~ 
3: 
I .... 

N 
\0 

lEA VTMMT - Address Space Purge Resource Managers (part 2 of 10) 

Extended Description 

The IBM·defined address space cleanup resource managers 
Iree any resources held bV an address space during proc· 
essing. The address space purge processing routine. module 
IEAVTMMT. routes control to these resource managers 
alter establishing an interlace. Control goes to each address 
space resource manager, in the appropriate addressing mode 
until all of them have performed their cleanup processing. 

1 The aetetress space purge routine routes control to 
each 01 the IBM·defined resource managers. Alter one 

resource manager completes ils processing. control relurns 
to the address space purge loutine. which routes control 
10 Ihe next resource manager. This continues unlil all the 
resource managers have performed clean up. 

a. The AVM resource manager does one of the following: 

• Starts takeover • 
• Cleans up availability manager data areas. 
• If no action necessary. does nothing. 

b. The SVC dump resource manager issues STATUS to 
set the system dispatchable if a dump was in progress 
in the failing address space. 

c. The timer resource maneger frees the TQEs (timer queue 
elements) and timer SRBs associated with the address 
space being terminated. (See the M.O. diagram 
I EAVRTll - Timer Supervision in the section "Timer" 
for a description of the timer purge routine.) 

d. The MSSFCALL SVC resource manager dequeues the 
MSSFCALL control blocks. 

e. If the terminating address space is not the trace address 
space, the system trace resource manager removes ell 
trace table copy haaders (TTCH) for the terminating ad
dress space from the TTCH queue end frees them. 

If the terminating address space is the trace address space, 
the system trace resource manager clears the trace option 
block (TOB) and notifies the operator that the trace ad
dress space has terminated. (see M.O. diagram 
IEAVETRM in the section "Trace" for a description of 
the system trace resource manager.l 

Module Label 

IEAVTMMT 

AVFMHTRM 

IEAVTSDR 

IEAVRTll 

IEAVMFRM 

IEAVETRM 

Extended Description Module Label 

,.t. The ENQ resource manager frees associated ENQ re- I EAVENQ2 
sources used by the terminating address space by freeing 
QCBs (queue control blocks) and QE Ls (queue elements). 
The ENQ resource manager also writes messages explain-
ing which address space failed while it controlled the re-
source. '(see the section "Global Resource Serialization" 
for a detailed description of ENQ processing.) 



~ IEAVTMMT - Address Space Purge Resource Managers (Part 3 of 10) 
3: 
I ... 

(If 
a 

~ 
en ... 
>< > 
en ,... ,... 

,... 
~ 
N 
01 
t ... ..... 

CJ'I 
VI 
I 

a 

..... 
n 
o,J 

n o 
~ , 
~. 

fQ 
:r ,.. 
.... 
till! 
3: 

n 
o , 
'U . 

Process 

o. 

11'. 

I. 

I. 

? 
Clean up the data management 
resources. 

• Clean up the DEB address 
In theTCB. 

Clean up the VTAM resource. 

• Free the VTAM control blocks. 

• Set the restart Indicator. 

Clean up the TCAM resources. 

• Free the PEBs, PEWAs, 
AIBs, and TCX. 

• Reset the UCB fields. 

• Terminate Bny processing 
programs. 

Clean up the TIOC resources. 

• Free the TSB. 

• Walt for the messages 10 

be Issued by TCAM. 
(POST is Issued by 
TCAM when messages 
are complete. 

6 

Output 

Tea 

--r D 
PEa PEWA 

D D " 
" 

AlB TCX 

D D 
UCB 

D 
TSB 

D 



r
oo( 
N 
00 
I .... .... 

c..t 
UI 
I 

CI 

n 
o 
~ , .... 
Ul 
':r ,... 
.... 
tI:I 
3: 

n o , 
'tI . 
.... 
'" 00 .... 

3: 
CD ,... 
':r 
o 
Co 

o 
~ 

Q 
"0 
CD 

QJ ,... .... 
o 
~ 

~ 
3: 
I .... 

c..t .... 

lEA VTMMT - Address Space Purge Resource Managers (Part 4 of 10) 

t:xtended Description 

g. The data management resource manager cleans up the 
TCBDEBAO field of the TCB. This field contains 
the DEB address from the DCB. ISee the publication 
OpenlCfoselEOV Logic for more detailed information 
about the data management resource manager.l 

h. The VT AM resource manager cleans up resources 
associated with the VTAM user address space. These 
resources include storage. VT AM locks, and control 
blocks associated with the VT AM devices and 
applications which were active for this address space. 
The user's address space control blocks consist of: 

o Active CRAs (component recovery areal 
• DEBs (data extent blockl 
o FMCBs (function management control block I 
• NCBs (node control block I 
o ICEs (inactive connection element) 
• ACEs (active connection elementl 
• OCEs (DEB chain element) 
• PST (process scheduling table I 
• Application ROTEs (resource definition tablel 
e Destination RDTEs 
It OVTs (destination vector tablel 
o EPTs lentry point table I 
o MPSTs lmemory process scheduling table I 

VT AM's address space control blocks consist of: 

o AVT IVTAM address vector table I 
o ATCVT (VTAM communications vector tablel 
• ISTCONFT (configuration tablel 
• CVT (communications vector tablel 

If the terminated address space is VT AM's. appropriate 
indicators in the CVT are reset to zero to allow VT AM 
to be restarted. (These indicators are the CVTATCVT. 
the CVTRMPTT, and the CVTRMPMT.I 

(See the publication VTAM Logic for a description of 
VT AM processing.) 

Module Label 

IEG01COA 

ISTRAMA2 

Extended Description Module Label 

I. The TCAM (telecommunications access methodl resource I EDQOT01 
manager frees the resources associated with the 
terminating address space by freeing the PEBs (process 
extension blocksl, PEWAs (process entry work areasl. 
AIBs (application interface blocks I, and TCX (TCAM 
CVT extension I, and it resets UCB (unit control block) 

fields. (See the publication TCAM Logic for a de-
cription of the TCAM resource manager.) 

j, The TIOC herminal input/output coordinatorl resource I EOA V8 
manager cleans up the TSB herminal status block} for the 
address space being terminated . 



~ 

< 
N 
00 
I .... ...., 

Cit 
UI 
I 

o 

..... 
n ..., 
n 
o 
~ ., ... 
r.a 
:r 
rI-

.... 
a. 
3: 

n o ., 
" . .... 
~ 
00 ...., 

IEAVTMMT - Address Space Purge Resource Managen (Part 5 of 10) 

Process 9 
k. Clean up the WTOR resources. 

• Free the WWBs. OREs. 
and WOEs. 

• Create the DOMCB. 

I. Clean up the 
subsystem interface Via 
resources. IEFSS.REO 

• Inform the active 
subsystems that a " 
task has terminated. 

m. Clean up the initiator resources. 

• Free the CSCBs. 

• Print the message. 

n. Clean up the scheduler 
allocation resources. 

• Free the UCBs. 

• Release the device groups. 

• Post the allocations 
waiting for devices. 

Q 

Output 

WWB ORE WOE 

0 00 h. 

.. 

DOMCB 

... D .. 

IEFJRASP 
Mester 
Subsystem. CSCB 
common 

D request 
router 

_h. 

I' 

[S:J 
.. UCB 

D .. 



r-
-< 
N 
00 
I .... .... 

c".e 
\II 
I 

0 

.... 
n ..... 
n 
0 

" '< ., .... 
fa 
~ ,... 
.... 
tid 
3: 

n 
0 ., 
" . ... 
\0 
00 .... 

3: 
CD ,... 
~ o 
Q, 

o ... 
o 

" CD 

ill ,... .... 
o 
:;, 

lEA VTMMT - Address Space Purge Resource Managers (Part 6 of 10) r= hI 
Extended Description Module Label ~=-CA., 
k. The communications task resource manager cleans up IEAVMED2 CD ... 

a.~ WTon Iwrite to operator wilh replv) resources al.o· 
cia led with the address .peen helng terminaled. by 3CD 

~a. freeing the WWBs (write wait blocks I, OREs (operator 
IDS 

reply elements), WOEs (write queue elements)' and .,SP 
DOMCs (delete operator message control blocks.) ...rt 

SPCD 
I. The subsystem Interface resource manager cleans up the IEFJRECM 

..., 
en ... 

resources associated with Ihe failing address space bv .:. 
nOlifying the active subsystems. via the IEfSSREO 1EFJRASP CI ,. 
macro. 01 the address space that lernlinatnd. .,D a .. 

m. The initiator resource manager cleans up the resources IEFIRECM 11 
CDM 

associated with the address space being terminated by .,~ 

freeing the CSCBs (command scheduling control blocks). 
,...3 
'< = 

The resource manager also prints a message to the a 
operator indicating which tasks in the address space ... 
are being terminet!,d. H 

IDII 
n. The allocation resource manager cleans up the resources IEFAB4E5 3 

associated with the address space being terminated by 
unallocating tha UCBs (unit control blocks). Addition-
ally, the resource manager releases the device groups 
for the allocation, and then posts allocations waiting 
for those devices. (See the section" Allocatlonl 
Unallocatlon" for a description of allocation and un-
allocation processing.) 



r-

i\1 
00 
I ... 
" "" UI 
I 

o 

n o 
~ ., .... 
IQ 
':r ,... 
.... 
tIJ 
3: 

n 
o ., 
'U . 

IEAVTMMT - Address Space Purge Resource Managen (Part 7 of 10) 

Input Process 9 
o. Clean up any globally 

located modules. 

Rellister 13 • Free the GXl. 

I' I Save area 
p. Reset the virtual 

fetch control block. 

~ q. Clean up the program ... 
call resources. 

r. Clean up the POST resources. 

• Free the SRBa essociated 
with any cross-memory 
requests. 

s. Clean up the virtual storage 
management resources. 

• Free the VRWPQEL. 

t. Clean up the lock 
management resources. 

• Reschedule the 
suspended SR Bs. 

• Frae the SRBs. 

u. Clean up the OL TEP 
resources • 

• Free all the OL TEP 
control blocks. 

6 

Output 

ASCB 

~rLlu I r -" 
r 

-"to. VFCB 
r D 
... ASCB ASTE LT 
.... D D D 

AXAT lXAT ETIB/ETIX 

D D D 
... SRBs 

D 
" VRWPQEl r 

D ... 
PURGEOQ ... r 

~ 

" • OL TEP common area 

• CHASCT 

• OEVTAB 

• MCT 

• OLTTAB 

• SECLST 

• RESTAB 



r
oo( 
N 
00 
I .... .... 

Vol 
\It 
I 

Q 

n o 
~ ., .... 
CO 
~ 
r+ 

3: 
CD 
r+ 
~ 
o 
Q. 

o 
-h 

o 
'0 
CD 

iii 
r+ .... 
o 
:J 

IEAVTMMT - Address Space Purge Resource Managers (Part 8 of 10) 

Extended Description Module Label 

o. The contents supervisor program manager frees the 
globally located modules. 

IEAVlKOO GXlHKEEP 

p. The virtual fetch service address space termination reo 
source manager resets the virtual fetch control block 
(VFCB) to indicate that the virtual fetch service address 
space is not active. 

CSVVFMEM 

q. An inline macro (PCARM) gives the program call authori- I EAVXPAM 
zation resource manager control. This resource manager 
cleans up the program call resources. 

r. The POST resource manager cleans up the resources IEAVEPST 
associated with the address space being terminated by 
freeing the SRB associated with any cross· memory 
POST requests. (The M.O. diagram for IEAVEPST 
describes POST processing.) 

s. The virtual storage management resou rce manager cleans lEA VG F AS 
up resources associated with the address space by freeing 
the VRWPQEL (virtual equals real wait or post queue 
elemend. (See the section "Virtual Storage Manage-
ment" for a complete description of the resource 
manager.) 

t. The lock management resource manager cleans up reo IEAVERM 
sources associated with the address space being termin-
ated by scheduling suspended SRBs. These SRBs will 
be freed after they complete their processing. (The M.O. 
diagram IEAVElK - SET LOCK Processing describes 
SETlOCK procesSing.! 

u. The OL TEP resource manager cleans up the resources 
associated with the address space being terminated by 
freeing the OL TEP control blocks: 

• OlTEP common area (module IFDOLT23) 
• CHASCT (OlT program control table) 
• DEVTAB (device tables) 
• MCT (module control table) 
• OlTTAB (OLT program link tablel 
• SECLST hest section list) 
• RESTAB (CDS equate resident table) 

(See the publication OL TEP Logic, for a complete description 
of the 0 l TE P resource manager.) 

IFDOLTOA 



~ IEAVTMMT - Address Space Purge Resource Managers (Part 9 of 10) , 
3: 
I ... 

c.o. 
0. 

3: 
< 
~ x 
> 
en 
r
r-

;IV 
ID 
() 
o 
< 
-I 
(I) ., 
:I 

3: 
lQ .. 
rio 

r
oo( 
N 
~ 
I ... ...., 

c.o. 
\It 
I 

c 

.... 
n 
ow 

(") 
o 
~ ., 
",. 

lQ 
';1' 
rio 

.... 
'" 3: 
(") 
o ., 
" . 

Input Process 

v. Cleen up the 3860 mass 
storage system resources. 

w. Clean up the RTM resources. 

• Free the SDWAs. 

x. Clean up the type 1 message 
resources • 

• Free the message 
table entries. 

V. Free the sse. 

z. Clean up the SRSs related to the 
address space . 

aa. Clean up the address space control 
block associated with the 
terminating address space; 

• Free the ASCe. 

• Indicate in the ASVT that the 
ASID is now free. 

2 Return to RTM2. 

ut 

o 
Message 

IVY n-' I 
sse 

D 
CJCJ 

To address space purge processing 
(lEAVTRTE) 

r... 
n 
~ 
III 
CD 
a.= 
3~ 
~:I. 
CD., ., .... 
... ·n 
aarfo 
.... CD 
ilia. 
IZ 

I» 
'Vrfo .,CD 
0., " ... CD!» ., .... 
rfolll 
'<0 
Oooft 
ooft 

H 
Htl 
tlZ 
3= 



.... 
-< 
N 
00 
I 
~ 
...... 
(II 
\II 
I 

0 

..... 
C) 
"oJ 

n 
0 
-a 
'< , ... 
10 =r .... 
.... 
= 3: 

n 
0 , 
-a . 
~ 
\Q 
00 
...... 

3: 
(I) .... 
=r 
o 
Q. 

o 
-h 

o 
-a 
(I) 

~ .... ... 
o 
:::J 

IEAVTMMT - Address Space Purge Resource Managers (Part 10 of 10) 

Extended Description Module Label 

v. The 3850 mass storage system resource manager marks ICB2AIR 
invalid all delayed response queue elements relating to 
the terminating address space . 

w. The RTM resource manager frees all the SOWAs (system IEAVTMRM 
diagnostic work areasl obtained from SOA (system 
queue area) during FRR processing in RTM1. 

x. The type 1 message resource manager cleans up the ra- IEAVTPMT 
sources by freeing any entries in the type 1 message 
table associated with the address space being terminated. 

y. The IEASMFSP memterm resource manager frees IEASMFSP 
the SSB. The SSB is used to keep track of the 
suspended address space. 

z. The address space purge routine uses the PURGEOO IEAVTMMT 
function to free the SRBs associated with the 
terminating address space. (The M.O. diagram 
IEAVEPCO - PURGECO Processing in section 
"Supervisor Control" fully describes this pro-
cessing.) 

aa. The virtual address space terminating routine acts as IEAVGCAS 
a resource manager to clean up the resources held by 
the terminating address space bV freeing the ASCB and 
indicating in the ASVT the ASIC of the address space 
associated with the terminating address space. 

2 The address space purge routine returns control to IEAVTRTE" 
RTM2 after all the resources have been freed. 

o .... 



3 
< en 

'" x 
l> 

en 
r
r-

r-
-< 
N 
00 
I .... ..., 
"" IJI 
I 

0 

..... 
n 
""" 
("') 
0 
"U 
'< ., ... 
!,Q 
:r 
w 
1-4 
till 
3 
("') 
0 ., 
"U 

.... 
\0 
00 ...., 

IEAVTMTC - Address Space Termination Processing (Part 1 of 4) 

CVT 

CVTRTMCT 

From RTM1, via a posted ECB, 
to terminate an address space 

~ RTCT 

CVTABIiND 

t Address 

SCVT 

C::, 
space termin· 
ation queue 

r--... ASCB 

1 

2 

3 

4 

5 

6 

7 

Reset the address space termination 
ECB. 

Dequeue the ASCB representing the 
address space to be terminated. 

Stop all processing inside the address 
space being terminated. 

• If an excessive spin is 
detected, inform the operator. 

Release any cross memory 
locks (CMU or the local 
lock. 

Purge any I/O operations . 

Stop tracing on all processors if 
terminating the system trace address 
space. Otherwise, free the system 
trace control block for the termi-
nating address space. 

Free any real and auxiliary 
storage. 

ECB 

10 D I 

ASCB 

ASCBFAIL 

... ... 
n 
CD 
::I 
IIJ 
CD 
Q,= 

;:q 
3CD 
mllJ 
rtrt 
CD., ., ... 
... n 
mrt 
... CD 
IIJQ, 

13 
m 

"art 
.,CD 
0., 
-U ... 
CDm 
~ti 
'<0 
0; 
; 

H 
H'" 
"'3 
3= 



,....' 
-< 
N· 
00· 
I .... 

..... 
"'" \II 
I 

e 

..... 
n ..... 
(") 
o 
~ ., .... 
IA 
J 
rio 

.... 
~ 
3: 
(") 
o ., 
'a . 
.... 
\0 
00 ..... 

3: 
CD 
rio 
J 
o 
a. 
o 
-h 
Q 
'a 
CD 

Gl 
rio .... 
o 
:::J 

lEA VTMTC - Address Space Termination Processing (Part 2 of 4) 

Extended Description 

Address space termination consists of two routines, 
IEAVTMTC and IEAVTMTR, both of which are resident in 
the master address space. When a system routine issues a 
CALLRTM TVPE=MEMTERM request, RTM1 gives control 
to the address space termination routine to: 

• Find and dequeue the ASCB (address space control block) 
representing the address space to be terminated. 

• Stop the processing in the address space. 

• Perform the actual tarmination . 

• Repeat the operation for all the ASCBs on the termina· 
tion queue. 

After this processing has completed for all the address 
spaces on the termination queue, IEAVTMTC 
goes into a wait state to wait for another address space 
termination request. 

1 Since this routine receives control after an SRB 
scheduled by RTM1 posts its ECB, IEAVTMTC sets 

the ECB to zero to allow for later entries. 

2 IEAVTMTC uses a CS (compare and swap) instruction 
to remove the last ASCB from the termination queue. 

The RTCT (recovery termination control tablel points to 
this queue. 

3 I EAVTMTC marks the address space non-dispatch able 
so that no new work can execute in the address space. 

If there is more than one online processor in a multi
processing environment, additional steps are taken to stop 
any activity in the address space. 

• Calls memory switch IIEAVEMSO) to set every 
PSAANEW field to point to the master address space. 

Module 

IEAVTMTC 

IEAVEMSO 

Label Extended Description 

3 (continued) 

• Spins until no other processor is executing work in the 
terminating address space and no other processor is 
executing work that holds the local lock of the termi
nating address space. If the length of the spin exceeds a 
predetermined time limit, lEA VTMTC gives control to 
the excessive spin notificetion routine (lEEVEXSN), 
which issues message IEE331A to inform the operator_ 

• Calls the bind break service routine (tEAVEBBR) to 
ensure that no processor has an active addresSing bind 
with the terminating address space. 

4 I EAVTMTC gives control to the lock manager resource 
manager to release any cross memory lOcks ICML) or 

the LOCA L lock, if any of these are held by the terminati n9 
eddress space. The CVTLKRM field of the CVT conteins 
the entry point address of the lock manager resource 
managar. 

5 I EAVTMT issues al) SVC 16 macro to give control to 
the I/O supervisor, which stops all activity for the 

address space being terminated. 

6 IEAVTMTC gives control to fEAVETRM to: 

• Stop trecing on each processor if the terminating address 
space is the system trace address space. 

• Remove all trace table copy headers ITTCH) for the 
terminating address space from the TTCH queue and free 
them if an address space other than the trace address 
space is terminating. 

The CVT field CVTTRCRM contains the entry point address 
of the system trace resource manager. 

. 7 I EAVTMTC gives control to the real storage manage-
ment routine to release all real page frames and all 

auxiliary storage pages belonging to the address space: The 
SCVTPTRM field of the SCVT cpnteins'the entry point 
address of the real storage management routine. 

Module 

IEEVEXSN 

IEAVEBBR 

IEAVLKRM 

IGCOOO1F 

IEAVETRM 

IEAVTERM 
ILRTERMR 

r-: 
.... ::l1li nCD 

Labal CDea 
:::IrI-.,.., 
CD ... 
D.~ 
ZCD 
ilia. .... 
CDZ ., . 
.... rI-
III CD ... ., 
ca ... 
Ie. 

CIt 

" .,0 
0'" 
'U 
CDM .,. 
.... Z 
'< = 
0 .. 
H 
~ :z 



3: 
< 
VI , 
X 
:> 

VI 
r
r-

::tI 
ID 
n 
o 
< 
-t 
ID .., 
3 

3: 
Ie 
3 ,... 

r
oo( 
N 
00 
I 

I-' ..... 
V4 
U1 
I 

o 

(") 
o 
"0 
'< .., .... 
Ie 
:r 
rl-

I-' 
\0 
00 ..... 

lEA VTMTC - Address Space Termination Processing (Part 3 of 4) 

Input 

Register 1 

It ASCB 

From module 
IEAVTMTR, 
aheran 
ATTACH 
request, to 
perform the 
termination ... 

Process 

8 Free invalid error records in 
the SYS1.LOGR EC recording 
buffer. 

9 Give control to the address space 
termination task (via ATTACHl. 

10 Perform the termination. 

• Indicate the address space to 
be terminated. 

• Indicate the MEMTERM 
options. 

• Give control to 
RTM2 to purge the address 
space resources. 

Via 
SVC13 

To dispatcher 
(JEAVEDSO) 

IEAVTREM 

Record resource 
manager 

IEAVTRT2 

RTM2 overview 

Output 

r.... 
o 
111 
::::J 
Ul 
111 
r:l. = ;Q 
3:111 
DlUl nn 
111.., .., .... 
... ·0 
DIn 
.... 111 
Ulr:l. 

13: 
DI 

'Un 
..,111 
0.., 
"0 .... 
11ID1 .., .... 
nUl 
'< o 
0-41 
-41 

H 
H~ 
~3: 

3: = 



r-
-< 
N 
00 
I .... .... 

(II 
VI 
I 

0 

..... 
n ..... 
n 
0 
-a 
'< ., .... 
IQ 
:T 
rio 

.... 
til' 
3: 

n 
0 ., 
-a 

.... 
\0 
00 .... 

3: 
III 
rio 
:T 
o 
a.. 
o 
-fl 

o 
-a 
111 
;;J 
rfo ..,. 
o 
::I 

lEA VTMTC - Address Space Termination Processing 

Extended Description 

8 I EAVTMC gives control to the record resource manager 
to mark as invalid any incomplete entries in the 

SYS1.I.OGREC recording buffer. 

9 Address space termination continues after module 
IEAVTMTC, the controller routine, attaches the 

address space termination task, I EAVTMTR, to perform 
the actual termination. IIEAVTMTR runs in the master 
address space.l 

10 The address space termination task indicates the ad-
dress space being terminated in register 0 and the 

MEMTERM options in register 1. IEAVTMTR givescontrol 
to RTM2. via SVC 13, to purge the address space resources. 
(See the M.O. diagram I EAVTRT2 - RTM2 Overview and 
the M .0. diagram I EAVTRTE - Address Space Purge 
Processing for the description of how RTM purges address 
space resources.! After control comes back from RTM2. 
the address space termination task gives control to the dis-
patcher. 

(Part 4 of 4) .-: .... :a nco 
Module Label 

CO 1ft 
::Jrt en., 

IEAVTREM 
co .... 
a.~ 
3CO 
lila. 
rt 
COZ .,111 
....rt 
IIIID 
~., 

en .... 
I~ 

fa 
"G 

IEAVTMTR .,0 
a ... 
'U 
COM 
.,tII' 
rtz 
'< .. .. 
0 ... 
H 

'" 3: 



~ 
I ... 
~ 
N 

,... 
~ 
00 
I ... 
~ 
Cool 

'" I 
= 
.... 
n ..... 
n 
o 
~ ., .... 
ra 
~ ... 
.... 
till 
3: 

~ ., 
'U . 

lEA VIPER - PFUn/SLIP and PFLIH/Space Switch Handler Interface (Part I of 4) 

From IEAVEPC 

Input --p rocess 

CVT LCCA 

I CVTRT .. I I lCCAPPSW .1 
... 

1 Determine whether there > 
are any traps to chacko 

• If not, 

2 Establish a recovery LCCA 

I LecAPINT I envlronmant. 

PSA 
... 
> 3 Suve the PER Interruption 

Information. 
FlCPERCO 

4 If a space switch inter· 
rupt has occurred, call 

FLCPERA the space switch handler. 

5 Switch to the home 
addressing mode. 

~ 6 Obtain the SLIP resources. PSA CVT .. 

I PSASUPER I CVTRTMS 

LCCA SHDR 

1 
lCCASLIP 

1 
SHORPFC 

6 

o utput 

LCCA 
Register 15 

" I 0 I lCCAPPSW 

... IEAVEPC .. 

"PSA FRR. 

PSACSTK V FRRSCURR 

FRRSFRRA 

r..lCCA 

LCCAPE~C .... I .. rf~AV I :1:111 I 
'I I .. lCCAPERA 

" PSA LCCA 
- .. I Ltc'SLlP I PSASUPER 

SHDR 

I SHDRPFC 

1 



r'" 
~ 
N 
00 
I ... ..... 
~ 
VI 
I 

o 

n 
o 
~ , .... 
10 
:J' 
t+ 
.... 
tII:I 
3: 

n o , 
" . ... 
..a 
00 ..... 

3: 
CD 
t+ 
:J' 
o 
D-

O 
-tI 

o 

" CD 

~ 
t+ .... 
o 
:J 

lEA VTPER - PFLlH/SLlP and PFLIH/Space Switch Handler Interface (part 2 of 4) 

Extended Description 

After detecting a PEA and/or space switch interruption, 
the program check FLiH (lEAVEPC) culls this module to 
provide an interface with the SLIP action processor 
\I EAVTSLP) and/or the space switch handler 
IJEAVTSSHI. 

1 IEAVTPER determines whether any SLIP traps have 
been defined by referring to the CVTATMS field (the 

pointer to the SLIP header control block). If there are no 
traps (CVTATMS=O), IEAVTPEA prevents future PEA 
interruptions from occurring in the interrupted program by 
setting the PEA bit in the resume PSW (LCCAPPSW) to zero. 
IEAVTPER then returns to IE~VEPC with a return code 
of zero. If CVTATMS'* 0, SLIP traps exist and need to be 
checked. Processing continues at the next step. 

2 I EAVTPEA adds an FAR (entry point VTPEAFAA 
in this modulel to the stack and initializes an FAA 

parameter list . 

3 IEAVTPEA saves the PEA code (FLCPEACD) and the 
address of the instruction causing the interruption 

(FLCPEAA) in the LCCA for use by IEAVTSLP. (See 
the M.a. diagram IEAVTSLP - SLIP Action Processor-Part 1 
for a description of IEAVTSLP.) 

4 I EAVTPEA checks the interrupt code in the 
LCCAPINT field. If a space switch interrupt 

has occurred, I EAVTPEA calls the space switch handler 
(lEAVTSSH). (See the M.a. diagram IEAVTSSH - SLIP 
Space Switch Handler for a diagram and extended description 
of IEAVTSSH.I 

Module Label 

IEAVTPER 

Extended Description 

5 lEA VTPER receives control with the cross memory 
mode in effect at the time of the PER or space 

switch interrupt. Because SLIP processing is always 
done in the home address space, I EAVTPER issues a 
CMSET SET macro to PSAAOLD (the horne 
address space). 

6 Before calling IEAVTSLP to process the PEA 
interruption,lEAVTPEA obtains several SLIP 

resources. IEAVTPER: 

• Sets the PSASLIP super bit to one for recursion control. 

• Obtains ownership of the processor's local SLIP work/save 
area to prevent this storage from being freed. 

• Increases the page fix counter (SHDAPFCI by one to 
prevent the command processor II EECB9051 from freeing 
the fixed portion of the IEAVTSLP load module page. 

If the SLIP work/save area does not exist (LCCASLlP=O) or 
is busy lthe high order bit of the LCCASLlP=1I, or if 
IEAVTSLP is not page-fixed (SHDRPFC < 11. the interrup
tion cannot be processed. IEAVTPEA sets the PEA bit in 
the resume PSW (LCCAPPSW) to zero to prevent future 
PEA interruptions. then returns to I EAVEPC with a return 
code of zero. If the resources have been obtained. processing 
continues at the next step. 

Module Label 

... 
~ :a:: 



~ lEA VTPER - PFLIH/SLIP and PFLIH/Space Switch Handler Interface (Part 3 of 4) 
3: 
I .... 
~ 
~ 

:;a 
ID 
n 
o 
< 
-t 
ID , 
5J 

3: 

~ 
t+ 

r
oo( 
N 
00 
I .... ...., 

"" 1.11 
I 

o 

..... 
n ..... 
n 
o 
"D 
'< , .... 
!,Q 
:r 
t+ 

.... 

." 
3: 

n o , 
"D . 
.... 
~ 
00 ...., 

Input 

LCCA 
L SLIP work/save I LCCASLIP ~area 

I 

SHDR LCCA 

I SHORPFC I I LCCASLIP 

Register 15 

I I 

Process 9 
" ) 7 Process the PER interruption. 

I ..... 
....-

8 Restore the cross memory 
environment at the time of 
the interruption. 

I .. 

9 Clean up and return. 
I'" 

I 

Return to 
IEAVEPC 

...... ...,. 

Output 

Work area extension 

"- I WAECLKIN 1 ) .. 
IEAVTSLP Register 1 SLPL 

I YI I SLIP 
processor • Register 13 Register save area 

I YI I 
" SHOR LCCA 
... 

SHORPFC LCCASLIP 

LCCAPPSW 

PSA 

Register 15 FLCEOPSW 

I I FLCSOPSW 

PSAEEPSW 

FLCSVILC 

FRRs PSASUPER 

FRRSCURR ,"- PSAGPREG 

PSACSTK 
FRRSFRRA 

PSASSAV 

LCCA 

I LCCASGPR I 



.... 
00( 
N 
C» 
I .... 
" C.I'I 
\II 
I 

CI 

n 
o 
"CJ 
I( ., ... 
Ie 
J 
t+ 

.... 
'" 3: 

n 
o ., 
"CJ . 

3: 
(II 
t+ 
J 
o a. 
o 
~ 

o 
"CJ 
(II 

al 
t+ ... 
o 
:l 

Diagram RTM·14. IEAVTPER - PFLIH/SLIP and PFLlH/Space Switch Handler Interface (Part 4 of 4) 

Extended Description 

7 IEAVTPEA uses a STCK instruction to place the current 
time of day in the WAECLKIN field for subsequent per

cent limit processing by IEAVTSLP. IEAVTPEA saves in
formation that could be overlayed by a recursive call for the 
external and SVC FLIH. IEAVTPEA also builds the 
IEAVTSLPparameter list (SLPL), indicating that a PEA in
terruption is to be processed, then calls IEAVTSLP to pro
cess it. (See the M.O. diagram IEAVTSLP - SLIP Action 
Processor-Part 1 for a description of IEAVTSLP.I 

IEAVTPEA issues a CMSET AESET macro to restore the 
cross memory environment to what it was at the time of 
the PER or space switch interrupt. 

8 IEAVTPER disables PSA protection to restore informa-
tion saved for the external and SVC FLlH, relinquishes 

ownership of the SLIP work/save area, and decreases the 
SHDRPFC counter by one. Depending on the code re
turned by IEAVTSLP, IEAVTPER takes the following ac
tion: 

Return code 
from lEA V.TSLP 

o 
4 

8 

All others 

IEAVTPER processing 

Leaves the return code unchanged. 

Leaves the return code unchanged. 

Turns off PER monitoring in the 
interrupted program by setting the 
PEA bit of the LCCAPPSW field to 
zero; sets a return code of zero. 

Sets the PER bit of the LCCAPPSW 
to zero and leaves the return code 
unchanged. 

IEAVTPER uses the return code to inform IEAVEPCthat 
it should either resume processing where the PEA inter
ruption occurred (return code = 0), or force recovery pro
cessing Ireturn code *0). Before returning to IEAVEPC, 
IEAVTPER sets the PSASLIP bit to zero and deletes the 
FRR. 

Module Label Extended Description 

Recovery processing 

Recovery for this module is designed to allow the system to 
continue executing et the risk of not processing a PEA in
terruption. When an error occurs, I EAVTPER receives con
trol at entry point VTPERFAR, where it attempts to re
lease all the resources obtained by I EAVTPEA and to retry 
at a point in IEAVTPEA where minimal processing is re
quired to return to IEAVEPC_ To do so, the FAR refreshes 
the registers necessary for the retry from the FAR para
meter list. If the error occurred before IEAVTPER saved 
these critical registers, the FAR percolates. Percolation also 
occurs if various RTM footprints indicate that critical reg
°isters expected by IEAVEPC might not be available. 

Module Label 

o 
~ 



IEAVTPVT - MODULE DESCRIPTION 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

DESCRIPTIVE NAME: SLIP PVTMOD LOAD/DELETE exit routine 

FUNCTION: 
This module processes a contents directory entry (CDE) whenever 
CDEs enter or leave the job pack area queue if the CDE matches 
a PVTMOD PER trap. 

ENTRY POINT: IEAVTPVL 

PURPOSE: 
Handles CDE ( s) coming onto the job pack queue and 
receives control from LINK. LOAD. IDENTIFY. Virtual 
Fetch. ATTACH. and XCTL. Hhen appropriate. IEAVTPVL 
starts PER monitoring by setting the PER control 
registers. 

LINKAGE: Via BASSM 14,15 

CALLERS: 
By the Contents Supervisor when a CDE is placed on the job pack 
queue and the extent list is valid (LINK, LOAD, IDENTIFY, XCTL, 
and. ATTACH) or when the module is brought into memory 
(Virtual Fetch). 

INPUT: 
Key input items are: 

SHDRPVMN field - Module name associated with PVTMOD PER trap 
SHDRPER field - Pointer to the non-ignore PER trap 
SHDRPERR field - Pointer to the PER range to be monitored 
SHDRPCDE field - CDE address of PVTMOD load 
SHDRPVAS field - ASID of PVTMOD load 
SCVAAS field - ASID selections for a trap 
ASCBASID field - Address space id 

OUTPUT: 
SCVAMDAI and SCVAMDA2 fields are set to the actual 

addresses to be monitored. 
SHDRPVTA field is turned on to indicate the PER trap 

is active. 
SHDRPVLP field is turned off. 
SHDRPCDE field contains the address of the CDE for the 

PVTMOD PER trap. 
Either SHDRPVTL or SHDRPVTG is set to indicate whether the 

module was loaded locally or globally. 
PER control registers are set to start PER. 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: Percolates Tram entry point, PVTFRR. 

ENTRY POINT: IEAVTPVD 

PURPOSE: 
Handles CDE(s) taken off the job pack queue and 
receives control from LINK. DELETE. and VIRTUAL 
FETCH. Hhen appropriate. IEAVTPVD stops PER 
monitoring by setting the PER control registers. 

LINKAGE: Via BASSM 14.15 

CALLERS: 
By the Contents Supervisor when a CDE is removed from 
the job pack queue. 

INPUT: 
Key input items are: 

SHDRPVMN field - Module name associated with PVTMOD PER trap 
SHDRPER field - Pointer to the non-ignore PER trap 

RTM-146 HVSIXA SLL: Recov Term Mgmt LY28-1735-0 (e) Copyright IBH Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - MODULE DESCRIPTION (Continued) 

SHDRPERR field - Pointer to the PER range to be monitored 
SHDRPCDE field - CDE address of PYTHOD load 
SHDRPVAS field - ASID of PVTHOO load 
SCVAAS field - ASID selections for a trap 
ASCBASID field - Address space ID 

OUTPUT: 
SHDRPVTA field is turned off. 
SHDRPVLP field is turned on indicating that the PVTMOD PER trap 

is waiting for IEAVTPVL to be entered to restart 
PER monitoring. 

PER control registers are reset to stop PER monitoring. 

EXIT NORMAL: Returns to the caller 

EXIT ERROR: Percolates from entry point. PVTFRR. 

ENTRY POINT: IEAVTPVR 

PURPOSE: 
Receives control from Virtual Fetch's resource managers 
on end of job step task and end of memory. Nhen 
appropriate. IEAVTPVR stops PER monitoring by setting 
the PER control registers. 

LINKAGE: Via BASSM 14.15 

CALLERS: 
By Virtual Fetch resource manager at the end of a job step 
task or end of memory. 

INPUT: 
Kay input items are: 

SHDRPTCB field - TeB of PYTHOD load 
SHDRPER field - Pointer to the non-ignore PER trap 
SHDRPVAS field - ASID of PYTMOD load 
RMPLASID field - Address space id 
RHPLASCB field - ASCB address 
RHPLTCBA field - TCB address for end of task 

OUTPUT: 
SHDRPVTA field is turned off. 
SHDRPVLP field is turned on indicating that the PYTHOD PER trap 

is waiting for IEAVTPVL to be entered to restart 
PER monitoring. 

PER control registers are reset to stop PER. 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: Percolates from entry point. PVTFRR. 

ENTRY POINT: PVTFRR 

PURPOSE: 
Functions as the FRR for IEAVTPVT. If the error is non 
recursive. PVTFRR records the error on SYS1.LOGREC. 
initiates a dump to provide output of the pertinent 
diagnostic information, and retries to release resources 
held by the mainline. 
If the error ~s recursive. PVTFRR issues a message to 
the system Clperator. zeroes the PER trap pointer in the 
SHDR. and then perco.Lates. The state of PER and the 
resources. which may have bean acquired for SLIP PER 
routines, are unpredictable. 

LINKAGE: 
Entered from RTM with the indicated register 
contonts 

LY28-173S-D (c) Copyright IBM Corp. 1987 Method of Operation RTH-147 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBH 

IEAVTPVT - MODULE DESCRIPTION IContinuod) 

CALLERS: RTH 

INPUT: SDNA 

OUTPUT: 
SDNA fields are set 
SDUHP is taken 

E)(lT NORMAL: Returns to the caller 

EXIT ERROR: Percolates to RTM from PVTFRR on a recursive error 

EXTERNAL REFERENCES: 

ROUTINES: 
Branch .enter lock manager routines 
Branch enter SDUHP 
Branch enter GETHAIN 
Branch enter FREEHAIN 
Branch enter recording facility 
Branch enter RISGNL routine 
Branch enter SLIP PER RISGNL routineIIEAYTSIS) 
Branch enter Cross Memory POST 

DATA AREAS: No data areas used. 

CONTROL BLOCKS: 
Common name Macro ID 

ASCB 
IEEBASEA 

CDE 

CVT 

PCCA 

PCCAT 
PSA 

SRB 

SCE 

SCVA 

SDNA 

SHDR 

XTLST 

IHAASCB 

IHACDE 

CVT 

IHAPCCA 

lHAPCCAT 
IHAPSA 

IHASRB 

IHASDNA 

IHAXTLST 

TABLES: No tables used. 

SERIALIZATION: 

Usage 

read 
read 

read 

read 

read 

read 
read and 
write 
read and 
",rita 
read 

read and 
write 
read and 
",rita 
read and 
writa 
read 

Function 

Obtains the current ASID. 
Obtains the master's ASCB 
address. 
Obtains the module nama. 
extent list. etc. 
Establishes addrassability 
to IEEBASEA. 
Obtains information about the 
active processor for RISGNL. 
Locates all active processors. 
Obtains the ASC8 and FRR 
addresses. 
Schedules IEAVTLCL to search 
the job pack queues. 
Obtains information about 
the SLIP trap. 
Obtains information about 
the SLIP trap. 
Obtains recovery information 
about the error. 
Obtains system SLIP 
information. 
Obtains the module's address 
and length. 

IEAVTPVT has the local lock on entry to serialize the 
manipulation of the CDEs on the job pack queue. IEAVTPVT 
obtains the CMS lock to serialize GETCELL/FREECELL processing 
from Nhich it obtains the SR8. Nhich is used to schedule IEAVTLCL. 
IEAVTPVT also obtains the dispatcher lock to serialize with 
IEAVTGL8. To prevent the deletion of SCEs from the SCE chain, 
IEAVTPVT increments the SHDR usa count. 

RTM-I48 HVS/XA SLL: Recov Term Hgmt LY28-1735-0 Ic) Copyright IBH Corp. 1987 



"Restricted Haterials of IBM" 
Licensed Haterials - Property of IBM 

IEAVTPVT - MODULE OPERATION 

IEAVTPVT receives control to process a contents directory entry 
(CDE) whenever CDEs enter or leave the job pack queue if tho 
CDE matches a PYTHOD PER trap. 

Entry point IEAVTPVL receivas control from tho Contents 
Supervisor when a CDE is placed on the job pack queue via a 
LINK, LOAD, IDENTIFY, XCTL, or ATTACH macro and the extent list 
is valid or when the module is brought into memory via Virtual 
Fetch. IEAVTPVL performs the following processingz 

• Sets the control register on all the processors to start 
PER monitoring if these conditions are valid: 

- A PYTMOD PER trap is enabled, that is, not active (the 
trap has not had its address range set). 

- The module name in the CDE matches the module name in tho 
PYTHOD trap. 

- The current address space matches one of tho eligible 
address spaces. 

Entry point IEAVTPVD receives control from the Contents 
SUpervisor when a CDE is removed from the job pack queue via a 
LINK, DELETE, Virtual Fetch. or XCTL macro and the extent list 
is valid. 
IEAVTPVD performs tho following processing: 

• If the CDE matches tho CDE for which PYTHOD PER monitoring 
is currently active, IEAVTPVT resets the control registers 
on all tho processors to stop PER monitoring. 

• Indicates that for a 'local' PYTHOD trap, tho local 
job pack queue should be searched for another occurrence 
of the module. IEAVTPVT schedules a local SR8. 

Entry point IEAVTPVR receives control fl"Olll Virtual Fetch 
resource manager on end of job step task or end of memory. 
IEAVTPYR performs the following processing: 

• Processes the end of task for the appropriate job step 
task and end of memory for tho proper address space in the 
same mannar as the processing at entry point IEAVTPVD. 
However, IEAVTPVR does not schedule an SRB if at end of 
memory. 

RECOVERY OPERATION: 
Retry is attempted only for the first entry into entry point, 
PVTFRR. The retry releases all obtained resources and 
returns to the caller. Before retrying. an SVC dump is 
taken, setting up a summary list to dump the relevant control 
blocks. 

On a recursive entry into PVTFRR, the FRR frees, if possible. 
the resources. Then PVTFRR percolates indicating to RTH that 
the remaining resource (the dispatcher lock or the CMS lock) 
is to be freed. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-149 



IEAVTPVT - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAVTPVL 
IEAVTPVD 
IEAVTPVR 
PVTFRR 

MESSAGES: 

(Displayed by the command processor) 
To the system operator: 
IEA414I SLIP unable to deactivate PER. 

(Issued through RECORD TYPE=HTO) 
IEA415I SLIP error attempting to activate/deactivate 
PER, dump scheduled. 

(Posts the SLIP command processor to issue this message) 

ABEND CODES: ~ 

WAIT STATE CODES: N~ 

RETURN CODES: ~ 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTPVL: 

Register 
Register 
Registers 
Register 
Register 
Register 

o - Irrelevant 
1 - Address of the CDE that has been added 

2-12 - Irrelevant 
13 - Address of 72 byte save area 
14 - Return address 
15 - Entry point (SHDRPVL1) (pointer defined) 

ENTRY POINT IEAVTPVO: 

Register 0 - Irrelevant 
Register 1 - Address of the COE that has been deleted 
Registers 2-12 - Irrelevant 
Register 13 - Address of 72 byte save area 
Register 14 - Return address 
Register 15 - Entry point (SHORPVD1) (pointer defined) 

ENTRY POINT IEAVTPVR: 

Register 
Register 

Registers 
Register 
Register 

o - Irrelevant 
1 - Address of a word containing the address 

of the RMPL passed to the resource manager 
2-12 - Irrelevant 

14 - Return address 
15 - Entry point (SHORPVR1) (pointer defined) 

ENTRY POINT PVTFRR: 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

Register 
Register 
Registers 
Register 
Register 

o - Points to a 200 byte work area in fixed SQA 
1 - Points to the SDHA 

2-13 - Irrelevant 
14 - Return address 
15 - Entry point 

REGISTER CONTENTS ON EXIT: 

RTM-150 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Propert,y of IBM 

IEAVTPVT - DIAGNOSTIC AIDS (Continued) 

ENTRY POINT IEAVTPYL: 

EXIT NORMAL: 

Registers 0-15 - Same as on entry 

EXIT ERROR: 

Registers 0-15 - Unknown 

ENTRY POINT IEAVTPYD: 

EXIT NORMAL: 

Registers 0-15 - Same as on entry 

EXIT ERROR: 

Registers 0-15 - Unknown 

ENTRY POINT IEAYTPVR: 

EXIT NORMAL: 

Registers 0-15 - Same as on entry 

EXIT ERROR: 

Registers 0-15 - Unknown 

ENTRY POINT PVTFRR: 

EXIT NORMAL: 

Registers 0-15 - Irrelevant 

EXIT ERROR: 

Registers 0-15 - Irrelevant 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-151 



"Restricted Matarials of I8H" 
Licensed Materials - Proparty of IBM 

lEAVTPVT - SLIP PVTHOD LOAD/DELETE exit routine STEP 01 

8y the Contants SUpervisor when 
a CDE is placad on tho job pack 
queue and the extent list is 
valid (LINK. LOAD. IOENTIFY. 
XCTL, and, ATTACH) or when tho 
module is brought into memory 

IVi ...... F •• chl. fL> 
IE~VL 

SHDR r----------> -: 
SHDRPVTP SHDRPVTA 
SHDRPVLP SHDRPER 
SHDRPVHN 

CDE : 

ICDNAHE I 

..J 

PSA :) ~ IpSALITA 

This module processes a contents directory 
antry (COE) whanever COEs anter or leave 
the job pack area queue if the COE matches 
a PVTHOD PER trap. 

[!!] This is the entry point 'for 
loading a CDE onto the local 
job pack queue. 

[2!] Checks 'for a valid load: 
The PVTHOD PER must be 

active. 
The CDE module name must 

match the module name in the 
trap. 
For a local trap, the 

current ASID must match the 
ASID in the trap. 

~ Issues the SETFRR macro to 
establish an FRR 
environment. 

/L........I\ 
\r--1/ SETFRR 

A. FRRAD=PVTFRRAD, 
PARHAD=(REGFRR), 
HRKREGS=(RI,R2), 
RELATED=('SLIP LOAD EXIT') 

~ Issues the SETLOCK macro to 
obtain the dispatcher lock. 
This is to serialize 
resources with IEAVTGLB 
while examining the ASVT 
entries. 

SETLOCK 

(OBTAIN) TYPE(DISP) MDDE(UNCOND) 
RELATED('SERIALIZE SLIP CONTROL REG 
SETTING' ) 

RTH-152 HVS/XA SLL: Recov Term Hgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBM" 
Licensed Haterials - Property of IBM 

IEAYTPVT - SLIP PYTHOD LOAD/DELETE exit routine 

SHDR r----------> 
~-------,-: 
SHDRPYTP SHDRPYTA 
SHDRPYLP SHDRPER 
SHDRPYHN 

CDE J 
1.-------,1 
CDNAME _ 

SHDR r----------> 
LIS_H_DRP_E_R ___ ---Ir: 
SCE • 

IL-SC_E_F"_D ________ ----II ~ 

Having obtained the 
dispatcher lock, per~orms 
the ~ollDwing checks again 
to ensure that the potential 
match is still valid: 
The PYTHOD PER must be 

active. 
The CDE module name must 

match the module name in the 
trap. 
For a lDcal trap, the 

current ASID must match the 
ASID in the trap. 

NOTE: IEAYTGLB camot change the 
SHDRPER field. 

1 061 Serializes the SCEs to ~ill 
in the PYTHOD address 

A. This processing requires examining the 
SCYA PYTMOD entry associated with the 
SCE. which is pointed to by SHDRPER. To 
prevent alteration of the chain of SCEs. 
IEAYTPYT increments the use COI.D'Its for 
the forward pointers to each SCE 
starting at the SHDR. This means the use 
count in the SHDR and all of the SCEs up 
to SHDRPER SCE are incremented. nus, 
the SCE chain up to SHDRPER is 
serialized. If the SCE chain is in use 
by another address space there will be 
no conflict. Incrementing the module use 
COI.D'It prevents IEECB905 from deleting 
this SCE. 

SCE J----------> B. Validates the next SCE. 

~I ----------------~I '/ SCECBID _ 

SCE 

SCECTR SCEFND 
SCEBKND 

SHDR 

SHDRBKHD SHDRFLCS ...--"'" 
SHDRXCHN 

If the SCE is invalid, replaces the 
pointer to that SCE wi th a pointer to a 
valid SCE. This is accomplished by 
starting with the SCE pointed to via the 
SHDRBKND and backing up the chain until 
an invalid SCE is found or the SCE 
SCEPTR is found. 

STEP 05 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RT1f-153 



"Restricted Materials of IBM" 
Licensed Materials - Propar~ of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 07 

CDE .---------> 1071 Validates the ASID for this 
, module. 
/ ICDGLOBAL r: ~ 

• 
S HDR : 

ISHDRPER SHDRPERJI-: 

SCVA : 

ISCYAJND SCVAASD r: 
A SCB : 

I=...-ar! 
CE · · S 

ISCEHHME I 

-' 

S HDR 

ISHDRPERA 

lj CVA S 

ISCVAASNO I 

CDE .---------> [!!] Loops through the extent 

ICDMIN r: \ list entries to check the 
I offsets. 

XTLST · · 
IXTutSBLA I 

..J 

CDE 

CDXLMJP 

XTLST 

XTLNRFAC 

XTLOOP l!!1 Loops through all the 
XTLST J--------.:.-> extents. 

IXTUtSBLA lJr) 
XTLST 

IXTLNRFAC 

RTH-1S4 HYS/XA SLL: Racov TeMII Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

lEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine 

SCVA r----------> 

LI~ ___ V~ ___ D_EP _________ ~I-: ) 

CDE 

I ... C_D_GL_O_B_A_L _________ ... r: 
PSA . 
r-I ------,I-.J 
PSATOLD . 

SCVA 

SCVAMD01 SCV~D02 

CDE 

CDENTPT 

SHDR 

SHDRFLCS SHDRXPVA 
SHDRYPLP 

PSA 

PSAAOLD 

ASCB 

ASCBASID 

TCB 

TCBJSTCA 

SHDR j'----------> 
ISHDRPERR SHDRC9S81 ) 

SCE 

~EPFLG 

SCVA 

SCVAADD 

CVT r----------> 

Llc_~ ___ ~ ___ p _________ ~I-: ) 
P!?A r-I --------.1-1 

PSAPCCAV . 

PCCAVT 

PCCATOOP 

~ If a valid offset is found, 
performs the following: 
Obtains the active bit. 
Saves the ASID, CDE, ASCB, 

and TCB addresses. 
Indicates whether the trap 

is local or global. 
Turns off the load pending 

bit. 

~ starts PER globally. 

~ Loads the PER control 
registers after the 
following processing has 
occurred: 

A. Initializes the parameter list for the 
IEAVTSIG subroutine. 

B. Loops through the PCCAVT entries to 
locate the active processors. 

C. Signals an active processor by issuing 
the RISGNL macro. 

/'----J, 
',-,/ RISGNL 

SERIAL, CPU=(1), EP=RISGRTN 

STEP 10 

I 

[ 

I 

I 

,SHDR 
/...-------. 

SHDRPCDE 
SHDRPVAS 
SHDRPVTL 
SHDRPVTG 
SHDRPASC 
SHDRPTCB 

,SHDR 
/ ...---------. 

SHORC9 
SHDRC9SB 
SHDRC9IF 
SHDRCRS 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-15S 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 12D 

P~S_A _________ :~I~--~:) 
IPSAPCCAV ~ 

XTLST J----------> 
~I --------~I /' XTLHSBLA . 

XTLST 

XTLNRFAC 

RETRYADR 

PrS-A---------!~lr----~:) 
IpSALITA r 

D. Calls the IEAVTSIG subroutine to load 
the PER control registers for the 
current processor. 

/L..:.....J, ',.-,;1 IEAVTSIG 1 

[!!] This is the FRR retry entry 
point ~or entry points 
IEAVTPVL and IEAVTPVD. 

~ I~ the use counts had been 
incremented, calls the 
internal subroutine DECUSECT 
to decrement the use counts. 

/L......J, ,,.-,/1 DECUSECT: 38 I 

~ Issues the SET LOCK macro to 
release the dispatcher lock. 

SETLOCK 

(RELEASE) TYPE(DISP) RELATED('SERIALIZE 
SLIP CONTROL REG SETTING') 

~ I~ this is a retry ~rom 
IEAVTPVD, issues the SETLOCK 
macro to release the CMS 
lock. 

SETLOCK 

(RELEASE) TYPE(CHS) RELATED('SERIALlZE 
GETCELL') 

[!!] Issues the SETFRR macro to 
delete the FRR environment. 

RTM-156 HVS/XA SLL: Recov Term "gmt LYZ8-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTHOD LOAD/DELETE exit routine 

By the Contents Supervisor when 
a CDE is removed from the job 

--. C:> 
IEAVTPVD 

SHDR r----------> .---------.-: 
SHDRPYTP SHDRPYTA 
SHDRPVLP SHDRPER : 
SHDRPCDE SHDRPVAS : 

PSA 

IpSAAOLD 1-: 
ASCB J 
IASCBASID I 

P~S_A _________ !~I~ __ ~:) 
IpSALITA r 

/L.........J, 

'r-l/ SETFRR 

D~ HRKREGS=IR1~R2)~ 
RELATED=('SLIP LOAD EXIT') 

[!!] Returns to the caller. 

~ This is the entry point ~or 
the deleting o~ a CDE ~rom 
the job pack queue. 

~ Checks that this DELETE 
request matches the previous 
LOAD request. The module 
name, CDE address, and ASID 
must all match the PVTHOD 
trap. 

A. If one of the checks fails~ returns to 
the caller • 

I!!] Issues the SETFRR macro to 
establish an FRR 
environment. 

/L.........J, 

'r-l/ SETFRR 

A ~ FRRAD=PVTFRRAD ~ 
PARHAD=IREGFRR)~ 
HRKREGS=( Rl~RZ), 
RELATED=I!SLIP DELETE EXIT') 

~ Issues the SET LOCK macro to 
obtain the dispatcher lock. 

SETLOCK 

IOBTAIN) TYPEIDISP) HDDEIUNCDNDJ 
RELATED('SERIALIZE SLIP CONTROL REG 
SETTING' ) 

STEP 18 

I 

, / 

LV28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-157 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine 

SHDR ~----------> r---------, -: 
SHDRPVTP SHDRPVTA 
SHDRPVLP SHDRPER 
SHDRPCDE SHDRPVAS : 

PSA 

IpSAAOLD r: 
ASCB . 
I ASCBASID 

I 

..J 

Rechecks the following 
initial conditions again to 
determine if they are still 
valid: 
The DELETE request module 

name matches the LOAD 
request module name. 
The DELETE request CDE 

address matches the LOAD 
request CDE address. 
The DELETE request ASID 

matches the LOAD request 
ASID. 

If the above conditions are still 
valid, continues processing. Otherwise, 
releases the lock and returns to the 
caller. 

1241 Calls the internal 
subroutine PEROFF to turn 
off PER processing. 

/~'r----------------------' 
,,--,/\ PEROFF: 40 1 

PSA ~r-----"':~ 1251 Issues the SET LOCK macro to r--------...... - -, release the dispatcher lock • 
... 1 P_S_AL_I_T_A ___ ---' 
- SETlOCK 

SHDR J----------> 
ISHDRPVTP SHDRPVTLI 

(RELEASE) TYPE(DISP) RELATED('SERIALIZE 
SLIP CONTROL REG SETTING') 

1261 If this is a local trap, 
schedules IEAVTLCL to search 
for the local PVTMOD. 

PSA ~ :/' A. Issues the SETLOCK macro to obtain the 
r-------------' r------,- CMS lock to serialize GETCELVFREECELL 
... \P_S_AL_I_T_A ____ ---' processing for this cellpool. 

SETlOCK 

(OBTAIN) TYPE(CMSJ MODEIUNCOND) 
RE LATED I 'SERIALIZE GETCELL-FREECELL', 
IEAVTPVT) 

r----------' r-----,- from the cellpool • 
SHDR ~ :'/ 8. Attempts to obtain storage for an SRB 

... IS_H_DR_C_P_ID ___ ---' 

STEP 23 

RTM-1S8 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restrictod Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine 

PrS_A _______ ~ ..... I r---.,:) C. ~:~~~ SETLOCK macro to release the 

IpsALITA r 
. SETLOCK 

SRB 

i :=-. 
SRB 

SRBPARH 

SHDR 

SHDRSRB 

~ 

(RELEASE) TYPEICMS) RELATED( 'RELINQUISH 
SERIALIZATION', IEAVTPVT) 

If the return code indicates that the 
GETCELL was successful, initializes the 
cell as an SRB and schedules the SRB to 
IEAVTLCL to search the local job pack 
queue. 

...-------', E. If the return code indicates that the 
...-----./ GETCELL for the SRB was not successful~ 

schedules IEAVTGLB to initiate an SRB to 
IEAVTLCL. 

Issues the SETFRR macro to 
delete the FRR environment. 

STEP 26e 

L..-.-----"SRB 
~-----~/r-------~ 

SRBID 
SRBASCB 
SRBEPA 
SRBRHTRA 
SRBPARH 

/~,~------------~ 

By Virtual Fetch resource 
manager at the end of a job 
step task or end of memory. 

lEA~~: 
R~M_P_L ________ :~I~ __ ~:) 
IRHPLRMHA r 

'r-1/ SETFRR 
~---------------~ 
D~ HRKREGS=IR1,R2), 
RELATED=I'SLIP DELETE EXIT') 

1281 Returns to the caller. 

!!J This is the entry point for 
end of task and end of 
memory from Virtual Fetch. 

~ Ensures that this request 
matches the LOAD request by 
checking the TeB address 
and/or the ASCB address. 

, / 

LY28-1735-0 (e) Copyright IBH Corp. 1987 Method of Operation RTH-159 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 30A 

SHDR r----------> 
.--------.-: 
SHDRPVTP SHDRPVTA : 
SHDRPVLP SHDRPER 
SHDRPASC SHDRPTCB : 

RMPL : ....-_____ --...J 

RHPLTERM RHPLASCB 
RHPLTCBA 

P~S_A _________ :~I~ ____ ~:) 
IpSALITA r 

SHDR r----------> ,..-------...., -: 
SHDRPVTP SHDRPVTA 
SHDRPVLP SHDRPER I 
SHDRPASC SHDRPTCB : 

RMPL 
.--------.-' 

RHPLTERH RHPLASCB 
RHPLTCBA 

RHRETRY 

A. If invalid, returns to tho caller. 

~ Issues the SETFRR macro to 
establish an FRR 
environment. 

/L-..J,\ 
'\,---,/ SETFRR 

A, FRRAD=PVTFRRAD, 
PARMAD=IREGFRR), 
HRKREGS=IR1,RZ), EUT=YES, 
RELATED=I 'SLIP VIRTUAL FETCH 
RESOURCE MANAGER EXIT') 

I!!] Issues the SET LOCK macro to 
obtain the dispatcher lock. 

SETLOCK 

IOBTAIN) TYPEIDISP) HODEIUNCOND) 
RELATEDI'SERIALIZE SLIP CONTROL REG 
SETTINS' ) 

§J Rechecks the initial 
conditions: 
The TCB address and/or the 

ASCB address Trom the LOAD 
request match this request. 
IT they are still valid, 
continues processing. 
Otherwise, perTorms cleanup 
at RMRETRV. 

~ Calls the internal 
subroutine PEROFF to stop 
PER processing. 

/L-..J,\ 

I \,---,/1 PEROFF: 40 

13s1 At RMRETRV, perTorms 
necessary cleanup 
processing. 

A. Issues tho SETLOCK macro to release tho 
dispatcher lock. 

SETLOCK 

IRELEASE) TYPEIDISP) RELATEDI'SERIALIZE 
SLIP CONTROL REG SETTING') 

RTH-160 HYS/XA SlL: Recav Term Mgmt lY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine 

B. Issues the SETFRR macro to delete the 
FRR environment. 

/L.......J, 

'r-l/ SETFRR 

D, HRKRESS=(Rl,RZ), 
RELATED=( 'SLIP VIRTUAL FETCH 
RESOURCE MANAGER EXIT') 

1361 Returns to the caller. 

RISGRTN ~ The RISGRTN internal 
subroutine is executed in 
each active processor via 
the RISGNL macro. 

A. Calls the SLIP RISGNL routine, IEAVTSIG. 
IL.......J, 

'r-l/! IEAVTSIG 

~, 

E-,/ 
DECUSECT 

~ The DECUSECT internal 
subroutine decrements the 
use count of each SCE 
previous to the one for 
which PVTMOD PER monitoring 
is occurring. 

STEP 358 

! 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation R1M-161 



"Rest .. icted Hate .. ials of ISH" 
Licensed Materials - Prope .. ty of IBM 

IEAVTPYT - SLIP PVTMOD LOAD/DELETE exit routine 

SCE r----------> 1391 
~I~ __ ED_E_L_P ______ ~I-: ) 

Releases the SCE (because it 
is no longer needed) by 
decrementing the use count 
in the SCE. The SCE has a 
forward pointer to this SCE. 
CS logic is used to control 
the updating of the use 
count and the forward 
pOinter fields. The backward 
pointer is not updated in 
this manner and may be 
as¥nchonous with the forward 
pOlnter. Therefore, by 
convention, prior to 
alterin~ the forward pointer 
a flag 1S set to indicate 
that the backward pointer 
may not be used. This flag 
is turned off once the 
backward pointer is 
synchonous with the forward 
pointer. 

SHDR : 

'--___ .....II-J 
SCE 

~ECTR 
~EBKHD 

SHDR 

~EFHD 

~> 
PEROFF 

40 1 The PEROFF internal 
~ subroutine turns off PER by 
. resetting the control 

registers on the current 
processor and issuing the 
RISGNL macro to any other 
processors • 

..--_ .... , G!1 Sets this trap as load 
.---------...... / pending and not active. 
SHDRFLCS SHDRYPVA 
SHDRXPLP 

PSA ,---------> 1421 Calls all the appropriate r-------.I..J '/ routines to turn PER off 
IpSAPCCAV _ globally. 

CVT 

Cvnw<MP 

PCCAVT 

PCCATOOP 

Issues an RISGNL macro to each active CPU 
(except in the case of a uni-processo .. 0 .. 

when the PCCAVT entry is fo.. the cu .... ent 
CPU 1 to reset the PER control registe .. s to 
zeros. 

PSA ~ :'/ A. Issues the RISGNL macro to execute the r--------...... r-----,- internal subroutine, RISGRTN. 
Llp_SA_P_C_C_AV _____ --' 
- B. Calls the IEAVTSIG routine to load the 

STEP 39 

~----I"SHDR 

'/ISHDRCREGI 

PER control registers with ze .. os fo .. the 
cur .. ent processo ... 

/~,.----------------~ '.....,;1 IEAVTSIG 1 

ITM-162 HVS/XA SLL: Recov Tarm Hgmt LY28-1735-0 (cl Copy .. ight IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine 

~> 
DUMP LIST 

~ The DUMPLIST internal 
subroutine constructs a list 
of storage areas to be 
dumped as a part of the 
summary dump. 

CVT 

ICVTl1AP 

r----------> 

r; ) ~ 
Lists the following storage 
areas as part of the summary 
dump: 

FRR work area 
SHDR CVT 

ISHDRCBID 
SHDR 
SCE 
SCVA 

SCE PCCAVT 

ISCECBID 
PCCA 
Control registers 

SCVA 

ISCVACBID 

PCCAVT 

PCCA : 

I-J 

CVT 

CVTRTMS CVTPCCAT 

SHDR 

SHDRPER 

SCE 

SCESCVA 

SCVA 

SCVALN 

SDWA 

SDHAGR05 

STEP 43 

LY28-1735-0 Ie) Copyright IBM Corp. 1987 Method of Operation RTM-163 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTMOD LOAD/DELETE exit routine STEP 45 

RTM 

~> SDWA PVTFRR 

ISDHAPARM .--------.:) 

SDWA r------' \ 
.---------..... r------./ 
SDHAPARM 

SHDR 

SHDRFLCS SHDRX41S 

PSA 

PSATOLD PSAAOLD 

CVT r---------> 
ICVTRTMS r: \ 

/ 

SHDR 

ISHORPER 1-; 
SCE . 
ISCETSO I-J 

SCE 

~CETSOU 

PSA :) ;J IPSATOLD PSAAOLD 

~ This entry paint ~unctions 
as the FRR ~or this module. 

~ Copies the diagnostic module 
data into the SDWA. 

[£] I~ entered at entry points 
IEAVTPVL and IEAVTPVD and 1~ 
this is a non-recursive 
error, the ~ollowing 
processing occurs: 

A. Moves footprints into the SOHA variable 
area. 

B. Issues a GETMAIN macro for dump summary 
storage. 

GETMAIN 

(RC) LV(SUMLEN) SP(23S) BRANCH(YES) 

C. Calls the intemal subroutine DUMP LIST 
to generate a list of storage areas. 
/L:....J\ 

I \ r--1 / I DUMP LIST : 43 

D. Issues an SDUMP macro to dump the data. 

/L-...J\ 
\r--1/ SDUMP 

MF=(E,(SDUMPPTR))~ 

BRANCH=YES~ ASID=(R4)~ 
SUMLIST=(SUMPTR), 
SDATA=(PSA~SQA,SUMDUMP) 

E. Issues the FREEMAIN macro to free the 
clump summary storage. 

FREEMAIN 

(RU) LV(SUMLEN) A((SUMPTR)) BRANCH(YES) 
SP(23S) RELATED('FREE SUMMARY LIST AREA') 

I 

I 

I 

:"I 

.J 

I 

\SDWA 
/...-----. 

SDHARECP 
SDHACID 
SDHASC 
SDWAHDAT 
SDHAMVRS 
SDHARRL 

\SDWA 
/r------. 

SDHASR07 
SOHASRll 
SDHASR12 
SDHAURAL 
SDHAVRA 

\SHDR 

/ISHDRPER 

RTM-l64 MVS/XA SLL: Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTPVT - SLIP PVTHOD LOAD/DELETE exit routine 

SHDR r----------> F. Issues the POST macro for SLIP's message 
processing. 

POST 
Lls_H_D_R_EC_8 ________ ~I-! 
BASEA 

..... IBAAS_C_B __ ----'�-; 
(SHDREC8 ~ TWENTY) BRANCH( YES) 
ERRET(CVTBRET) ASCB(BAASCB->I031P) 

CVT . 

..... ICVTBR __ ET __ ----" ~ 

G!] For all entry points the 
following processing of 
non-recursive errors occurs 
if a retry is not allowed: 

A. Sets the percolate code. 

B. Moves footprints into the SDHA variable 
area. 

C. Requests that RTM free any locks 
obtained by IEAVTPVT. 

D. If needed~ decrements the SLIP use 
counts in the SCEs via DECUSECT internal 
subroutine • 

SDWA J----------> 
r-, ----" 

SDHACLUP _ 

G!1 For a recursive error, 
IEAVTPVT does the following: 

A. Notifies the system operator (via 
message IEA414I). 

B. Zeros the PER trap pointer (SHDRPER). 

C. Requests that RTM free any locks 
obtained by IEAVTPVT. 

D. If tho seEs ware incremantech decrements 
the seEs use counts. 

E. Percolates. 

F. Issues the RECORD macro to notify the 
system operator. 

I 

STEP 47F 

I 

I 

,SHDR 

/ISHDRPER 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-165 



lEAVTREF - MODULE DESCRIPTION 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

DESCRIPTIVE NAME: LOGREC Recording Buffer Formatter 

FUNCTION: 
This module is a dump formatting exit that can be called from 
Print Dump 'PROMP) or the Interactive ProbleM C""trol Program 
(IPCS)' IEAVTREF is invoked when the IPCs/PRDMP LOSDATA verb 
is executed. IEAVTREF locates the LOGREC entries that are 
contained in the LOGREC recording buffer and invokes the EREP 
program to format and print the LOGREC entries. 

ENTRY POINT: IEAVTREF 

PURPOSE: Formats and prints the LOGREC recording buffer 

LINKAGE: LINK or ATTACH 

CALLERS: PRDMP or IPCS 

INPUT: The Common Exit Parameter List (BLSABDPL) 

OUTPUT: The formatted contents of the LOGREC buffer 

EXIT NORMAL: Retunns to caller 

ENTRY POINT: REFIO 

PURPOSE: Prints the formatted output from IFCRCGIF 

UNKAGE: BALR 

CALLERS: IFCRCGIF 

INPUT: 
The parameter list contains the address of the 
134 character formatted print line 
The Common Exit Parameter List (BLSABDPl) 

OUTPUT: None 

EXIT NORMAL: Returns to caller 

EXTERNAL REFERENCES: 

ROUTINES: IFCRCGIF - EREP service to format LOGREC entries. 

CONTROL BLOCKS: 
Common name macro id usage 

ABDPL BLSABDPL read 

CVT CVT read 

HDR IHAHDR read 

PSA IHAPSA read 

RBCB RTMRBCB read 

RCB R1l1RCB read 

RCBENTRY R1l1RCBE read 

SRB IHASRB read 

SERIALIZATION: None required 

RTM-166 MVSIXA SLL: Reeov Term Hgmt 

function 

Communication area between 
PRDMP/IPCS and user 
verb exit routines 
Establishes addressability 
to the RBCB. 
Required for the oxpansion of 
the RBCB. 
Establishes addressability 
to the CVT. 
Establishes addressability 
to the RCBs 
Contains the entries for the 
recording requests 
Contains the information for 
a single recording request 
Required for the expansion of 
the RBce. 

LY28-1735-0 (c) Copyright IBH Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTREF - "ODULE OPERATION 

IEAVTREF is a clump fonnaUing exit that is invoked to format 
and print the contents of the LOGREC Recording buffer. IEAVTREF 
locates the LOGREC buffer in the dump and passes each entry to 
IFCRCGIF. an EREP service that formats and prints the data. 
PRDMP/IPCS generates a table of contents entry for the output 
of the LOGDATA verb. 

Entry point IEAVTREF is given control by PRDMP or IPCS and 
performs the following processing: 

• Prints a header line identifying the output as the 
formatted contents of the LOGREC buffer. 

• Locates the LOGREC buffer in the dump. 

• Copies the LOGREC buffer into storage. and validates the 
information in the buffer header. If the header contains 
invalid da\a. the buffer contents will not be formatted •. 

Loads IFCRCGIF 

• Locates the oldest entry in the buffer by chaining backward 
through the entries. 

• For each entry in the buffer: 
- If the entry is not a LOGREC request. or if it is not 

ready. the entry is not processed. 
- If the entry is buffered. IEAVTREF passes the buffered 

data to EREP for formatting. 
- If the entry is not buffered. IEAVTREF aUempts to read 

the data into storage. If the data was available, it is 
passed to IFCRCGIF for formatting. 

RECOVERY OPERATION: 
Errors in IEAVTREF are handled by IPcs/PRDMP 

recovery routines. LOGDATA verb processing is terminated. and 
a message is issued indicating that IEAVTREF abended. 

LY28-1735-0 Ie) Copyright IBM Corp. 1987 Mathod of Operation RTH-167 



IEAVTREF - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAYTREF 
REFIO 

MESSAGES: 

Message taxts issued from this module arel 

IEA24001I LOGREC buffer could not be accessed. 
possible cause - data not in dump 

IEA24002I LOGREC buffer could not be formatted, 
header information is invalid. 

IEA24003I EREP enhancement is not available. 
LOGREC entries formatted as hexadecimal data. 

IEA24004I There are no LOGREC entries in the buffer. 

IEA2400SI Some entries could not be formatted due to 
errors in the recording process. 

IEA240061 This entry was incomplete at the time of the dump. 

IEA24007I This entry was not buffered and may contain 
invalid data 

IEA240D81 EREP formatting failed for this entry. It ."ill 
be formatted as hexadecimal data. 

IEA240091 Processing errors encountered in EREP formatting. 
Remaining antries formatted as hexadecimal data. 

IEA24D10I Unable to locate the next entry in the buffer. 

IEA240111 A non-buffered antry could not be located -
processing continues ."ith the next entry. 

IEA24012I A non-buffared entry could not be retrieved fram 
the dump. 

IEA240S01 LOGDATA processing completed successfully. 

IEA24060I LOGDATA processing terminated due to errors. 

ABEND CODES: ~ 

WAIT STATE CODES: ~ 

RETURN CODES: 

ENTRY POINT IEAVTREF: 

EXIT NORMAL I 

o - SUccessful completion 

ENTRY POINT REFIOI 

EXIT NORMAL I 

o - SUccessful completion 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTH-168 HVSIXA SLL I Racov Term Mgmt LY28-173S-D (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTREF - DIAGNOSTIC AIDS (Continued) 

8 - Not all entries were formatted 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTREF: 

Register 
Register 
Registers 
Register 
Register 
Register 

o - Irrelevant 
1 - Address of the BLSABDPL 

2-12 - Irrelevant 
13 - Address of the caller's register save area 
14 - Return address 
15 - Entry point address 

ENTRY POINT REFIO: 

Register 
Register 
Registers 
Register 
Register 
Register 

o - Irrelevant 
1 - Address of the parameter list 

2-12 - Irrelevant 
13 - Address of the caller's register save area 
14 - Return address 
15 - Entry point address 

REGISTER CONTENTS ON EXIT: Irrelevant 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-169 



"Restricted Materials of IBM" 
Licensed Materials - Propar~ of IBM 

IEAVTREF - LOGREC Recording Buffer Formatter STEP 01 

PRDMP or IPCS 

lEA~ 
n.is module is a dump formatting exit that 
can be called from Print Dump C PRDMP) or 
the Interactive Problem Control Program 
I IPCS). IEAVTREF is invoked when the 
IPCS/PRDHP LOGDATA verb is executed. 
IEAVTREF locates the LOGREC entries that 
are contained in the LOGREC recording 
buffer and invokes the EREP program to 
format and print the LOGREC entries. 

~ Print LOGDATA header 
/L-.J, 
,~/ ADPLESRV 

ABDPL, ADPLSPR2, PPRH 

CYT S---------=> 
,~ --------~I '/ CVTRBCB _ 

BLSABDPL 

.~ Locates the LOGREC buffer in 
the dump. If the buffer 
cannot be located, prints an 
error message. 

ADPLCVT 
A. Retrieves the RBCB pointer from the CVT 

/L-.J, 
,~/ ADPLESRY 

ABDPL, ADPLSACC, ADPLPACC, 
RETCODE I ACCRC ) 

RTMRBCB S---------=> 
1'-----I RBCBLRCB _ B. Retrieves the RCB pointer and length 

from the RBCB 
/L-.J, 
,~/ ADPLESRY 

ABDPL, ADPLSACC, ADPLPACC, 
RETCODE I ACCRC ) 

[!!] Allocates storage for the 
LOGREC buffer. 

GET11AIN 

I RU) LVI LBUFLEN+ TBUFLEN) A( RCBPTR) 

~ Calls the GETBUF subroutine 
to copy the LOGREC buffer 
from the dump into storage 
and validates the buffer 
header. 

/L-.J, 

I '~/I GETBUF: 07 

• 

-' 

• 

I 

· 

\BLSABDPL 
/.---.... 

ADPLDLEN 
ADPLBUFR 
ADPLPAAD 

\BLSABDPL 

/IADPLBUFRI 

Rnt-170 HYS/XA SLL: Recov TeMII Mgmt LY28-173S-0 (e) Copyright IBM Corp. 1987 



"Restricted Hatariels of IBtt" 
Licensed Haterials - Property of IBM 

IEAVTREF - LOGREC Recording Bu~er Formatter 

~ Loads the EREP formatting 
service. 

LOAD 

EP( FORMATTE~NAME) LOADPT( FORMATTER_BASE) 
ERRET(AFTE~LOAD) 

~ Calls the DEBLOCK subroutine 
to chain through buffer and 
format the entries using 
FORMATTER or models • 

.IL-..J, 

I 'r-l.ll DEBLOCK: 11 

A. Delete the EREP formatting routine I DELETE 
EP(FORMATTE~NAME) 

B. Free the storage for the LOGREC buffer 

FREEHAIN 

(RU) Lve LBUFLEN+TBUFLEN) AU RCBPTR) ) 

I 

STEP 05 

I 

• 

I 

• 

~LSABDPL 

.I IADPLBUFR I 

~LSABDPL 

.I I ADPLBUFR I 

LY2B-1735-0 (e) Copyright IBM Corp. 19B7 Method of Operation RTH-l71 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

lEAVTREF - LOGREC Recording Bu~~er Formatter STEP 07 

~> 
GETBUF 

BLSABDPL , 
/ 

ADPLDLEN ADPLPART 

BLSABDPL 

r3 :) 
IADPLDLEN 

Rr-C_B ____ --,S---------> 
RCBCNTL RCBRCB 
RCBBUFB RCBBUFE 
RCBTLNG RCBFREE 
RCBFLNG RCBBUFRS 

RCB J----------> 
~I --------~I /' RCBBUFRS _ 

RCB 

RCBFREE 

~ Copies the LOGREC bu~~er 
~rom the dump into storage 
and validates the header 
in~ormation. 

~ Copies the LOGREC bu~~er 
into the storage. I~ a 
~ailure occurs while reading 
the dump data set, prints an 
error message. 

A. Retrieves the LOGREC buffer from the 
dump 

/~, 

'r-1/ ADPLESRY 

ABDPL, ADPLSACC, ADPLPACC, 
RETCODE(ACCRC) 

B. Copies buffer to storage 

[!!I validates the bu~fer header. 
I~ the header is invalid, 
prints an error message. 
LOGIC: Check the 
acronym, 
beginning o~ bu~~er, 
end o~ bu~~er, 
buffer length, 
~ree painter, and 
~ree length. 

[!!] Recomputes the addresses in 
the header of the LOGREC 
bu~~er •. 

I 

I 

C 
I 

I 

• 

\BLSABDPL 

/IADPL8UFRI 

\BLSABDPL 

/IADPLBUFRI 

,RCB 
/r-----. 

RC8BUFB 
RCBBUFE 
RCBFREE 

RTH-172 MVS/XA SLL: Recov Term Hgmt LY28-1735-D (c) Copyright IBM Corp. 1987 



"Restricted Materials of 18M" 
Licensed Matedals - Property of IBM 

IEAVTREF - LOGREC Recording Buffer Formatter 

~> 
DEBLOCK 

Locates the LOGREC entries 
in the buffer and formats 
them using the EREP 
generalized input interface 
or the model processor. 

RCB r----------> [!!] Finds the oldest record in 
r-------..,-: 1,\ the buffer by chaining back 
IRCBBUFB RCBBUFE I : ,/ through the freed records. 

RCBE . 

I .... R_C_B_EA_P_P ____ ..... I-J 
RCB 

IRCBTLNG RCBFREE r---
RCBFLNG I 

RCBE 

I RC8EALEN Ir----I 

RCB r----------> 
IRCBTLNG RC8FLNG 1-: 
RCBE 

1 RCBENBFR I-J 
RCBE J----------> 
IRCBERDY RCBEDATAI ) 

RCBE 

RCBELEN 

RCB 

RCBBUFB RCBBUFE 
RCBTLNG 

Processes each complete 
entry in the buffer. 

A. If the entry is in the buffer 
Moves the data to a contiguous piece of 

storage if necessary 
If the record is complete and the EREP 

formatting routine is available, calls 
IFCRCGIF to process the record. If 
IFCRCGIF could not format the entry, 
calls the model processor to format the 
entry as hexadecimal data 
If the record is not complete, calls 

the model processor to format the the 
entry as hexadecimal data 

STEP 11 

I '\BLSABDPL 

[ /IADPLBUFRI 

'\RCB 

/IRCBFLNG 

/L--J'\r--------------~ 

RCBE J----------> 
r-I -----'I RCBERDY . 

LY28-173S-D (c) Copyright IBM Corp. 1987 

'\r--l/ FORMATTER 

FORMATTER_PARM, 
RETCODE( FMTRC) 

1--__ -1 '\B LSABDPL 
r-----~/r----.., 

/ L--J\ r---------------..... I ' ADPLEJEC 
\r--l/ ADPLESRV ADPLPSDH 

ADPLPSTM 
ABDPL, ADPLSFMT, ADPLPFMT ADPLPBLC 

ADPLPPTR 
ADPLPBAS 
ADPLPBLS 
ADPLPHEX 

Method of Operation RTM-173 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTREF - LOGREC Recording Bu~~er Formatter STEP 138 

RCBE J----------> '-1 -----.1 RCBERDY _ 

RCBE r----------> 
.---------.,-; " 
RCBEERFG RCBERDf t I. / 
RCBEDATA RCBEERID : 

RCB . 
IRCBBUFE I 

.J 

RCBE 

RCBELEN RCBEN8PT 

RCB 

RCBBUFB RCBTLNS 

BLSABDPL 

ADPLPART 

RCBE r----------> 
r------------~-: , 
RCBECNTL RCBENBFR : / 
RCBEERFG RCBENBPT 
RCBEERID RCBEAPP 

RCB : 

IRCBBUFB I 
-' 

RCBBUFE 

RCBE 

RCBELEN 

RCB 

RCBTLNG RCBFLNG 

B. If the entry is not in the buffer 
Attempts to retrieve the data from the 

dI.atp 
If the record is complete, calls 

IFCRCGIF to process t~ record 
If the record is not complate~ issues a 

message to indicate that the record was 
incomplete 

I '\BLSABDPL 

C / ADPLEJEC 
ADPLBUFR 

\BLSABDPL 
,..----...,/..-------..., 

• ADPLEJEC 
ADPLDLEN 
ADPLPAAD 
ADPLPSDH 
ADPLPSTH 
ADPLPBLC 

/~'r----------------------------~ 
ADPLPPTR 
ADPlPBAS 
ADPLPBLS 'r---1/ ADPLESRV 
ADPlPHEX 

ABDPL, ADPLSFHT, ADPLPFHT 

RTM-174 HVSIXA SLL: Recov Term Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTREF - LOGREe Recording Bu~~er Formatter 

I FCRCGIF 

PARAMETERS ~~: ~ Handles print requests for 
formatter. Performs the 

STEP 14 

-.I ~LSABDPL 

/IADPLBUFRI 

.-----... :) IEREPPARM 

requested carriage control 
and prints the recDrd to the 
Dutput data set. 

A. Prints the output line 
/L-..J, 
'r---l/ ADPLESRV 

ABDPL, ADPLSPRZ, PPRD 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-175 



IEAVTREM - MODULE DESCRIPTION 

"Restricted Haterials of IBM" 
Licensed Haterials - Property of IBM 

DESCRIPTIVE NAME: Record Resource Manager 

FUNCTION: 
This modulo is a resource manager that is given control at memory 
termination time. IEAVTREM scans the recording control buffers 
(RCBs) for entries belonging to the address space being 
terminated. If an entry is found that has not been marked ready 
for termination, IEAVTREM marks the entry as invalid. IEAVTRET, 
the record task, does not wait for the entry to be complet8d and 
removes the entry from the buffer without processing it. 

ENTRY POINT: IEAVTREM 

PURPOSE: See function 

LINKAGE: BALR 

CALLERS: IEAVTMTC 

INPUT: Resource manager's parameter list (RMPL) 

OUTPUT: None 

EXIT NORMAL: Retums to the caller 

EXIT ERROR: No exit error conditions 

ENTRY POINT: RCDRMRCV 

PURPOSE: 
Recovers from errors encountered during IEAVTREM's 
processing. 

LINKAGE: Standurd linkaqe for an ESTAE exit 

CALLERS: RTM 

INPUT: System diagnostic work area (SDHA) 

OUTPUT: None 

EXIT NORMAL: Terminates 

EXIT ERROR: Percolates 

EXTERNAL REFERENCES: 

ROUTINES: 
ESTAE service routine - Establishes the ESTAE 
environment. 

DATA AREAS: RHPL 

CONTROL BLOCKS: 
Common name Macro id Usage 

----------- --------
CVT CVT read 

PSA IHAPSA read 

RBCB RTMRBCB read, 
write 

RCB RTMRCB read, 
write 

RCBENTRY RTMRCBE read, 
write 

RMPL IHARMPL read, 
write 

RTM-176 MVSIXA SLL: Recov Term Hgmt 

Function 

Establishes addressability 
to the RBCB. 
Establishes addressability 
to the CVT. 
Establishes addressability 
to the RCB. 
Has recording request 
entries. 
Maps an individual buffer 
entry. 
Determines if an address 
space is terminating 

LY28-1735-0 (e) Copyright IBM Corp. 1987 



"Rastricted Hatarials of IBH" 
Licensed Hatarials - Property of IBM 

IEAVTREM - MODULE DESCRIPTION (Continued) 

SDHA IHASDHA 

TABLES: No tables used 

SERIALIZATION: 

road, 
writa 

normally or abnormally. Also 
provides a work area. 
Provides error information 
and servos as a 
communication area for RTH. 

Serialization is required botween IEAYTRET and IEAYTREM (the 
recording IIIGmory termination resource manager) during specific 
processing sections involving the recording buffers. 

Modulo IEAYTRET obtains the local lock when: 
• Releasing an entry from the recording buffers 
• Procassing of a temporary error 

Module IEAYTREH obtains the local lock when: 
• Scal'Vling the buffer for invalid records 

LVZS-173S-0 (c) Copyright I8M Corp. 1987 Method of Operation RTH-177 



IEAVTREM - MODULE OPERATION 

"Restricted Haterials cf 18M" 
Licensed Haterials - Property of IBM 

IEAVTREM receives control at memory termination time as a resource 
manager. IEAVTREM checks to see that entries in the recording 
control buffers (RCBs) that belong to the address space being 
terminated are marked ready for processing. If an entry is found 
that has not been marked ready, IEAVTREM marks the entry as 
invalid. 

Entry point IEAVTREM receives control from IEAVTMTC and performs 
the following processing: 

Checks the following conditions. If one is true, retums 
to IEAVTMTC: 

- Address space is terminating normally. 
- The record buffers control block (RBCB) is not 

initialized. 
- The RECORD function encountered a permanent error • 

• Establishes a recovery environment via an ESTAE. 

Attempts to serialize itself (via the local lock of masters 
address space) wi th two critical processing sections of 
IEAVTRET. These cri tical sections occur when IEAVTRET is 
performing temporary error cleanup and when IEAVTRET is 
processing an entry in the RC8. 

Scans each buffer for invalid entries, after serializing 
itself with IEAVTRET. 

• Checks the active count in the buffer to determine if any 
recording requests heve begun processing but have not yet 
completed. 

- If the active count is zero, there are no invalid entries 
in the buffer and IEAVTREM does not process them. 

- If the active count is not zero, IEAVTREM scans tho 
buffer for entries that are not marked ready. If 
IEAVTREH finds an entry that is not ready, IEAVTREH 
checks whether or not the entry belongs to the address 
space being terminated. If it does, the entry is marked 
invalid. IEAVTREM continues searching until all the 
entries in the buffer are processed. UEAVTREH ignores 
any entries that might have been put into the buffer 
after it began processing.) 

RECOVERY OPERATION: 
IEAVTREM employs an ESTAE recovery environment. If an error 
occurs during IEAVTREH's processing, entry point RCDRMRCV receives 
control. RCDRMRCV retries at RETRYPT to allow IEAVTREM to 
terminate normally and to allow memory termination to continue. 

RTM-178 HVS/XA SLL: Recov Term Hgmt LY28-173.5-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBM" 
Licensed Haterials - Property of IBM 

IEAVTREM - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAVTREH 
RCDRMRCV 

MESSAGES: None 

ABEND CODES: ~ 

WAIT STATE CODES: None 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTREH: 

Register 0 - Irrelevant 
Register 1 - Address of a fullNOrd that points to the 

resource manager's parameter list (RMPL) 
Registers 2-12 - Irrelevant 
Register 13 - Address of the caller's register save area 
Register 14 - Retum address 
Register 15 - Entry Point address 

ENTRY POINT RCDRMRCV: 

Register 0 - Code indication 
Register 1 - Address of the SOMA or en ABEND 

completion coda 
Register 2 - Address of the parameter list specified on 

the ESTAE macro, if no SOMA was availabla 
Registers 3-12 - Irrelevant 
Register 13 - Address of the caller's registar save area 
Register 14 - Return address 
Register 15 - Entry Point address 

REGISTER CONTENTS ON EXIT: 

ENTRY POINT IEAVTREH: 

Registers 0-15 - Irrelevant 

ENTRY POINT RCDRMRCV: 

Registers 0-15 - Irrelevant 

LY28-1735-0 (c) Copyright ISH Corp. 1987 Method of Operation RTH-179 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTREM - Record Resource Manager STEP 01 

IEAvntTC 

lEA~~ 

RMPL r---------> 
... 1 RMP __ LTY_P_E _______ r; ) 
CVT 

L-lcVTR_BCB __ -.lr: 
RTMRBCB : 

1 ... R8C_B_R_P_ER _______ 1-J 

PARAMETERS 

RHPL 

RCB r----------> 
I RCBBUFE RCBRTER ,-: 
RCBE · · -: 

RCBECNTL RCBENBFR · · RCBEERFG RCBERDY : 
RCBEHASI RCBEPASI : 
RCBENBPT RCBEERID : 
RCBEAPP : 

: 
RMPL : 

IRMPLASID I 
-J 

RCB 

RCBTLNG RCBFREE I 
RCBFLNG RCBACNT 

RCBE 

RCBELEN 
I 

\ 
.I 

This module is a resource manager that is 
given control at memory termination time. 
IEAVTREH scans the recording control 
buffers (RCBs) for entries belonging to 
the address space being terminated. If an 
entry is found that has not been marked 
ready for termination. IEAVTREH marks the 
entry as invalid. IEAVTRET. the record 
task. does not wei t for the entry to be 
completed and removes the entry from the 
buffer without processing it. 

~ If the address space is 
terminating normally, or if 
Record has suffered an 
error, return to the caller. 

[!!J Scan the Record Control I 

Buffers for entries 
belOngin~ to the address • 
space be ng terminated. If 
an entry is found, and it is 
not complete, mark it as 
invalid. 

RTH-180 HVS.IXA SLL: Reeov Term Hgmt LY28-1735-0 (0) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBH 

IEAVTRER - t40DULE DESCRIPTION 

DESCRIPTIVE NAME: Record Request Routine 

FUNCTION: 
This module determines whether the caller requested the recording 
function (via the RECORD macro) for an emergency request (by 
specifying TYPE=TERH) or for a non emergency request (by 
speci fying TYPE=LOSREC or TYPE=HTO) and prepares the buffer 
for recording of the error asynchronously under the recording 
task, IEAVTRET. . 

ENTRY POINT: IEAVTRER 

PURPOSE: 
Determines whether this is an emergency request 
(TYPE=TERH) or a non emergency request 
(TYPE=LOGREC) or (TYPE=HTO) and prepares the buffer 
area for the recording of errors. 

LINKAGE: BSH from glue module IEAVTRGR 

CALLERS: 
Issuers of the RECORD macro 

.that specify TYPE=LOGREC or TYPE=HTO (any key 0, suparvisor 
routine using module IEAVTRGR) 

• that specify TYPE=TERH (only module IGFPEHER) 

INPUT: 
Requast Options (contained in register 0, 

byta 0 
bit 0 
bit 1 
bit 2 
bits 3 - 5 
bit 6 
bit 7 

byte 1 
bit 0 

- Emergency request 
- Write to LOGREC 
- Write to operator 
- Reserved 
- Free unbuffered storage 
- Include errorid 

- Recovery via ESTAE 

bytas 0-1) 

(the recovery flags are no longer used, 
but have not been removed for 

bit 1 
compatability reasons) 

- Recovery via SETFRR 
(the recovery flags are no longer used, 
but have not been removed for 
compatability reasons) 

bit 2 - Buffer the data 
bit 3 - Do not buffer the data 

(if bits 2,3 both zero - Buffer if space available) 
bit 4 - Prefix data with standard LOSREC header 
bit 5 - Follow header with jobname 
bit 6 - Return time stamp 
bit 7 - POST caller when I/O complatas 

Length (contained in register 0, bytes 2-3) 

RECORD Parameter list (address in register 1) 
Header info - If header requested 
.lobname - If jobname requested 
ERRORID - If error id requested 
ECB If posting requested 
ASID - If posting requested 
Timeadr - If time stamp to be returned 
Subpool - If freeing of unbuffered storage requested, ~ 

subpool of user's buffer 
Dataadr - Address of data to be recorded 

Data (address in register 1) 

OUTPUT: Register 15 contains a return code 

LY28-1735-0 (e) Copyright IBM Corp. 1987 Method of Operation RTH-181 



lEAYTRER - MODULE DESCRIPTION (continued) 

EXIT NORMAL: Retums to the caller 

EXIT ERROR: Retums to the caller 

ENTRY POINT: RCDRCYR 

PURPOSE: Recovers from errors encountered during IEAVTRER. 

LINKAGE: standard linkage for en FRR exit 

CALLERS: R rH 

INPUT: System diagnostic NOrk area (SDNA) 

OUTPUT: Retry/percolation options in the SDNA 

EXIT NORMAL: Requests retry. 

EXIT ERROR: Requests percolation. 

ENTRY POINT: RERSRBEP 

PURPOSE: 
Issues the POST macro instruction for the 

ECB wei ted on by the Recording Task, IEAVTRET. 

LINKAGE: Via schedule SR8 from mainline 

CALLERS: Dispatcher 

INPUT: None 

OUTPUT: Nona 

EXIT NORMAL: Retums to the dispatcher. 

EXIT ERROR: Thera are no exit error concIi tions. 

EXTERNAL REFERENCES: 

ROUTINES: 
The Post service, via the POST macro 
The Schedule service, via the SCHEDULE macro 
The Setfrr service, via the SETFRR macro 
The Setlock service, via the SETLOCK macro 

DATA AREAS: There are no data areas 

CONTROL BLOCKS: 
Common name Macro ID Usage Fl.mCtion 

----------- -------- --------

"Restricted Materials of IBM" 
Licensed Haterials - Property of IBM 

ASCB IHAASCB read Contains the ASID of the 
caller's HOME address space. 

CVT CVT read Establishes addressability 
to the RBCB. 

PSA lHAPSA read Establishes addressability 
to the CVT. 

RBC8 RTHRBCB read, Establishes addressability 
write to the RCBs. 

RCB RTMRCB read, Contains the entries for the 
write recording requests. 

RCBENTRY RTMRCBE read, Contains the information for 
write, a single recording request. 
create, 
delete 

SOMA lHASOHA read, Provides error information 
write and serves as a 

communication area for R1M. 

R1M-182 HYSIXA SLL: Racov Term Hgmt LY28-1735-0 (0) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBH 

IEAVTRER - MODULE DESCRIPTION (Continued) 

SRB IHASRB 

SERIALIZATION: 

read, 
write 

Requests system processing. 

IEAVTRER uses CS and CDS logic to serialize its use of the 
Recording buffers with IEAVTRET, IEAVTREH. and other concurrent 
recording requests. 
IEAVTRER uses the CPU lock to obtain disablement during certain 
sections of critical processing. This is necessary to ensure 
that a HEHTERH does not interrupt this processing and leave 
the Recording buffers in an inconsistent state. If IEAVTRER 
is entered disabled, the CPU lock is not obtained. 

LV28-1735-0 Ic) Copyright IBM Corp. 1987 Method of Operation RTH-183 



IEAVTRER - MODULE OPERATION 

IEAVTRER receives control after a system routine issues the 
RECORD macro instruction specifying the type of recording 
request in the parameters. 

For an emergency request (TYPE=TERM), IEAVTRER performs the 
following: 

.Removes the oldest LOGREC entry from the chain of entrios 
ready to be written • 

• Places the entry data into the caller's area specified 
by tho DATAADR RECORD macro parameter • 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

• If the ontry data is larger than the caller'S area, 
IEAVTRER truncates the messages and sets a return code of 8. 
Otherwise, a return code of zero is set to indicate success • 

• Places the length of the data in register O • 

• Returns to the callor. If there are no scheduled LOGREC 
requests, IEAVTRER sets a return code of 4. 
(Note: System termination will repeatedly call until 
a return code of 4 is issued.) 

For a non emergency request (TYPE=LOGREC or TYPE=HTO)' 
IEAVTRER performs the following: 

.Establishes recovery via the SETFRR macro instruction • 

• Determines whether the request is to write to the 
LOGREC dataset (TYPE=LOGREC) or to send messages to the 
oporator (TYPE=HTO). 
Note. There are two recording buffers, one for writing data 
to the LOGREC dataset and one for writing messages to the 
operator • 

• Computes the nm"unt of buffer space requ~red by the request 
as follows (buffer space is allocated in double word 
multiples) : 

16 bytes for Record entry header (mapped by RTMRCBE) 
+ 24 bytes if a standard LOGREC header must be built 
+ 8 bytes if jobname is to be added 
+ the length of the data supplied or 4 bytes for 

an address if the record is not to be buffered 
+ 10 bytes if the errorid is to be added 
+ 8 bytes for the entry trailer 

.Determines if the buffer space partition for this type 
of entry have been exceeded. If so, the request is denied • 

• Determines if sufficiont space is available for the ontry 
from the RCBFLNG field of the RCB. 
If sufficient space is available, 

- Allocates the space for this entry 
- Builds the entry 
- Schedules an SRB that will POST the ECB waited on by 

the recording task, IEAVTRET 
- Issues a return code of zero indicating the request 

has been scheduled normally 

If the available space is insufficient and this is a buffered 
LOGREC request, 

- Allocates the available space for this entry 
- Builds a truncated entry and sets a return code of 

eight indicating the data has been truncated because 
of insufficient space 
(A truncated record must consist minimally of the header 
information, the jobnamo, and the errorid.) 

RTM-l~~ MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRER - MODULE OPERATION (Continued) 

If a truncated entry can not be built, IEAVTRER sets 
a return code of 12 indicating the request has not 
been scheduled because of a lack of buffer space. 

If the available space is insufficient and this is a buffered 
HTO request, 

- Sets a return code of 12 indicating the request has not 
been scheduled because of III lack of buffer space • 

• Returns control to the caller. 

RECOVERY OPERATION: 
IEAVTRER employs an EUT FRR recovery environment. If an error 
occurs during IEAVTRER's processing, entry point RCDRCVR 
receives control. RCDRCVR sets a flag in the RCB indicating to 
tha Recording Task, IEAVTRET, that recovery action is required. 
Subsequent requests involving this buffer are denied \.I1til the 
buffer has been reinitialized. 

LY28-173!i-O (cJ Copyright IBM Corp. 1987 Method of Operation RTM-l8!i 



IEAVTRER - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAVTRER 
RCDRCYR 
RERSRBEP 

MESSAGES: None 

ABEND CODES: ~ 

WAIT STATE CODES: None 

RETURN CODES: 

ENTRY POINT IEAVTRER= 

EXIT NORMAL: 

o - Successful completion 

"Restrioted Materials of IBM" 
Licensed Materials - Property of IBM 

4 - For TYPE = NTO or TYPE = LOGREC. a request for optional 
buffering has not been buffered but scheduled directly 
from the callers buffer. 
For emergency requests no more II'I8ssages. 

8 - Record for LOSREC is truncated 

EXIT ERROR= 

12 - A record has been lost because of the lack of space. 
16 - A record has been lost because of processing errors. 
20 - The recording request facility is inactive. 

ENTRY POINT RCDRCVR: 

EXIT NORMAL: 

4 - Retry to mainline 

EXIT ERROR: 

o - Percolate to the next laval of recovery 

ENTRY POINT RERSRBEP: Nona 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTRER: 

o - Request options and length 
1 - Address of data 

2-12 - Irrelevant 

Register 
Register 
Registers 
Register 
Register 
Register 

13 - Address of the callar's register save area 
14 - Return address 
15 - Entry Point address 

ENTRY POINT RCDRCYR: 

Register 0 - Address of a 200 byte FRR woNk area 
Register 1 - Address of the SDHA 
Registers 2-~3 - lrre1.avant 
Register 14 - Return address 
Register 15 - Entry Point address 

ENTRY POINT RERSRBEP: 

RTH-186 HVSIXA SLL I Racov TeMII Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRER - DIAGNOSTIC AIDS (Conti~) 

o - Irrelevant Register 
Register 
Registers 
Register 
Register 

1 - Base register (SRB parameter pointer) 
2-13 - Irrelevant 

14 - Return address 
15 - Irrelevant 

REGISTER CONTENTS ON EXIT: 

ENTRY POINT IEAVTRER: 

Register 
Registers 
Register 

0-1 - Irrelevant 
2-14 - Restored 

1.5 - Return Code 

ENTRY POINT RCDRCVR: 

Register 0-1.5 - Irrelevant 

ENTRY POINT RERSRBEP: 

Register 0-1.5 - Irrelevant 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-187 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRER - Record Request Routine STEP 01 

Issuers of the RECORD macro 
• that specify TVPE=LOGREC or 
TVPE=NTO (any key 0, supervisor 
routine using module IEAVTRGR) 
.that specify TVPE=TERH (only 

module IOfPEHE.) ~ > 
IEAVTRER 

CVT r----------> 
..... ICVT_RBC_B __ --'r: 
RTMRBCB 

II..RB_CB_R_P_ER ___ --JI-l 

RCBE J----------~ 

RCBECNTL RCBENBFR / 
RC8EERFG RCBEDATA 
RCBEAPP 

RTMRBCB 

RBCBLRCB 

RCB 

RCBBUFB RCBBUFE 
RCBTLNG RCBFREE 
RCBFLNG 

RCBE 

RCBELEN RCBENBPT...--'" 
RCBEERID 

PSA J----------> 
~I -------~I /' 
~SANSTK _ 

RTMRBCB 

RBCBLRCB RBCBHRC8 

PSA 

PSACSTK 

RCB J----------> 
'--1 -----.1 
~CBRTER _ 

This module determines whether the caller 
requested the recording function (via the 
RECORD macro) for an emergency request (by 
speci fying TVPE=TERH) or for a non 
emergency request (by specifying 
TVPE=LOGREC or TVPE=HTO) and prepares the 
buffer for recording of the error 
asynchronously under the recording task, 
IEAVTRET. 

~ If the Recording Facility is 
not initialized or has 
suffered an unrecoverable 
error, sets the return code 
to 20 and returns. 

~ If the request is for 
emergency processing, 
returns the oldest entry in 
the LOGREC RCB in the 
caller's buffer. 

~ Establishes an FRR recovery 
envirnoment and initializes 
the FRR parameter area. 

~ If the buffer for this 
request is marked unusable, 
posts the Recording task for 
cleanup processing and sets 
the return code to indicate 
that the request could not 
be scheduled because of 
processing errors. 

I 

[ 
[ 

,RTMRBCB 

/IRBCBRPERI 

,RCBE 

/1 RCBEERIDI 

,RCB 

/1 RCBFLNG 

------------>PSA 

IpSACSTK 

,PSA 

/lpSANSS 

A 

RTH-I88 MVS/XA SLL: Recov Term Hgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restrioted Materials of IBM" 
Licensed Materials - Property of IBM 

lEAVTRER - Record Request Routine 

R ... T_M_RB_C_B ____ J< .... r--~:----I--'I) 
IRBCBFLGS r 

A. Schedules un SRB to POST the Record 
task. IEAVTRET. 

1051 Processes the request by 
placing the data into the 
proper RCB. 

P,..S_A _______ J-...a I r-----..,;) A. =!:ry~ CPU lock for disablement if 

IpSALITA r 
. SETLOCK 

(OBTAIN) TYPE(CPU) REGSCUSE) RELATED( 
'OBTAIN DISABLEMENT FOR CRITICAL 
PROCESSING' ) 

Rr-C_B _____ : .... 1.-----.;) B. 

I RCBACNT r 
Increments the active request count in 
the active buffer. (This count indicates 
the number of requests currently acting 
on this RCB. It is used by the task to 

RCBE r----------> ,..--------.-1 , 
RCBECNTL RCBENBPT / 
RCBEERID RCBEAPP 

HDR 

'---___ ---'r; 
RTMRBCB 

1= RBCBCHAXn 
RCB I ,..-______ -...J 

I RCBBUFE 1 
RTMRBCB 

RBCBHSIZ RBCBCSIZ 
RBCBSSIZ 

RCBTLNG RCBCDS 

determine when to initiate cleanup if 
necessary. ) 

C. Allocates space for the data in the 
appropriate RCB. If the free area of the 
buffer is too small for the data. 
oreates a nonbuffered or trt.B\C8ted 
record if possible. 

STEP 04A 

IL...----...I~RB 

'1_' 1 SRBPARH 

LY28-173S-0 (e) Copyright IBM Corp. 1987 Method of Operation RTH-189 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRER - Record Request Routine STEP OSD 

RCBE r----------> D. Fills in tho entry header and trailer. 'L-----I"RCBE 
~------....,-: , 
RCBENTRY RCBECNTL 
RCBECTL2 RCBEAPP 

RCB . 

... 1 R_C_BBU_F_E ____ --1I-J 

RCB 

RCBTLNG 

CVT 

CVTTZ 

ASCB 

ASCBASID 

.---./ 
~------~/r-----~ 

RCBELEN 
RCBELREC 
RCBEHTO 
RCBENRAP 
RCBENBFR 
RCBEERFG 
RCBEIDS 
RCBEHASI 
RCBEAPP 
RCBEALEN 

PSA ~ :'/ E. If tho CPU lock was obtained for ,..---------.... ,..----"'1- disablement. releases the CPU lock. I ... P_S_A_LI_T_A ____ --1 
- SETLOCK 

RCBE r----------> 
,..--------..,-1 , 
... IR_C_B_EC_NT_L ___ ---II : / 
RCB : 

... IR_C_B_BU_F_E ____ --1I-J 

RCB 

RC8TLNG 

HDR r----------> 
... 1 H_D_R_C_PI_D ____ --1I- ~ ) 
RCB 

. 
~ ______ ....,-J 

RCBEECB RCBESUBP 
RCBEASID RCBENBPT 
RC8EERID 

HDR 

HDRTM 

RCB 

RCBBUFB RCBTLNG 

CVT 

CVTTZ CVTNUMB 

(RELEASE) TYPE(CPU) RESS(USE) RELATED( 
'CRITICAL PROCESSING COMPLETE') 

F. If speci Hed. builds tho standard LOGREC .I------I'HDR 
header in the buffer entry for the ("1/..-----. 
LOGREC record. The record type and HDRTYP 
record dependent swi tches for tho headar HDROPRN 
are specified by the caller in the HDROPSYS 
parameter list. HDRISNS 

HDRIXAM 
HORDS 
HDRCNT 

l.J'RCBE 
/.--------, 

RCBEFRES 
RC8EPOST 
RCBENBPT 

RTH-190 HYS/XA SLL: Recov Term Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Proper~ of IBM 

IEAVTRER - Record Request Routine 

S. Hovos the data to the buffer. RCB 

~ 
:) I RCBBUFB 

RCBE r----------> H. If an errorid was providod~ appends the 
orrorid to tho and of tho data in the 
buffer. I RCBEERID 1-; 

, 
/ 

RCB 

I RCBBUFE r: I. Harks the record as raady to ba 
procassed. HDR : 

IHDRTYP 1 
-J 

RCB 

RCBBUFB RCBTLNG 

PSA 

PSALITA 

J. Schedules an SRB to POST the Record 
task~ IEAVTRET. 

RTMRBCB J---------i~ 

IRBCBSRB I 1--,/ 

RTMRBCB 

RBCBFLGS 

PSA 

PSAGSCH7 

DECCOUNT K. Dacrements the activo requast CCU1t. 
RCB , 

/ 
RCBACNT 

PSA 

PSALITA 

RTMRBCB 

RBCBLCNT 

L. Deletos the FRR recovery environment. DELETFRR 
PSA 

~ :) 
IpSACSTK 

STEP OSG 

L 
• 

I 

• 

------------

,HDR 
/r----.., 

HDRTRUNC 
HDROSll 
HDROS12 
HDRDS13 

,RCBE 

/IRCBEROY 

,SRB 
/...----. 

SRBEP 
SRBPARM 
SRBLLREQ 

>PSA 

IpSACSTK I n ,PSA 
/lpSANSS 

LY28-173S-0 Ie) Copyright IBM Corp. 1987 Method of Operation RTM-191 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRER - Record Request Routine STEP 06 

RTM 

C:> RCDRCVR 
SDWA J----------> 
ISDNACHPC SDNACLUPI ) 

SDWA 

SDNA~ARH 

RTMRBCB 

RBC8LRC8 RBCBHRC8.---..I 

RCB .------" , .----------------------' / 
RC8ACNT 

SDWA 

SDNASR14 

Dispatcher 

RE~~: 
RTMRBCB J----------> 
r-I -----,1 
RBC8EC8 _ 

~. The RCDRCVR routine receives 
control from RTM when an 
error occurs in IEAVTRER's 
processing. If the buffer is 
damaged by the processing, 
RCDRCVR indicates that the 
buffer is temporarily 
unusable, and notifies the 
Record task, IEAVTRET, to 
perform cleanup. 

A. If the RC8 has been updated, marks the 
buffer unusablo. 

8. Dacroments the active request count • 

~ The RERSRBEP routine is the 
SRB routine scheduled by 
lEAVTRER to POST the 
Recording Task, IEAVTRET. 

A. POSTs the Record task, IEAVTRET. 

POST 

IRBCBECB, RCZERO) BRANCHIYES) 

8. Tums off the SRB in use flag. 

-.1 

• 

I 

C 
I 

,SDWA 

/ISDI'IASRsvl 

RTM-192 HVS/XA SLL: Racov Term Mgmt LY28-173S-0 Ie) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRET - MODULE DESCRIPTION 

DESCRIPTIVE NAME: Recording Task 

FUNCTION: 
This module Nrites records to SYS1.LOGREC or to the operator 
which have been scheduled via the RECORD macro. If requested. 
IEAVTRET Nill free unbuffered storage and/or post the caller 
after the requested processing is complete. IEAVTRET Nill 
Nrite a lost record sUlllmary to LOGREC if records Nere lost. and 
it passes control to the MeH HTO routine for an MeH operator 
message (decision on Nhether or not a message is required 
is made by the HCH routine.) 

ENTRY POINT: IEAVTRET 

PURPOSE: See function 

LINKAGE: Attach macro 

CALLERS: IEAVTHSI 

INPUT: Attachor's ECB 

OUTPUT: None 

EXIT NORMAL: 

EXIT ERROR: 

OUTPUT: AHachors ECB is posted Nith error code 

ENTRY POINT: RCDTSKR 

PURPOSE: Recovers from errors encountered during IEAVTRET 

LINKAGE: standard linkage for en ESTAE exit 

CALLERS: RTH 

INPUT: System diagnostic work area (SDHA) 

OUTPUT: Retry/percolation options in the SDHA 

EXIT NORMAL: Request retry 

EXIT ERROR: Percolates 

EXTERNAL REFERENCES: 

ROUTINES: 
ESTAE service - establishes the ESTAE environment 
GETHAIN service - obtains storage for the Nork buffer 
FREEMAIN service - frees the caller's buffer 
MCH NYO servict.! I :GF"WMSG) - NrHes machine ~ck messages 

to the operator if required 
PGSER service - releases the Nark buffer after processing 
HAlT service - waits for Nark to be done 
NYO service - Nrites messages to the operator 
POST service - signals the user that the request is complete 
SETLOCK service - obtains the local lock for serialization 

CONTROL BLOCKS: 
Common name Macro ID Usage Function 
----------- -------- --------
ASCB IHAASCB read Contains the ASID of the 

current address space 
ASVT IHAASVT read Indicates if an ASID is 

valid for posting 
CVT CVT read Establishes addressability 

LYZS-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-193 



IEAVTRET - MODULE DESCRIPTION 

LRB IHALRB read~ 
write 

PSA IHAPSA read 

R8C8 RTHRBCB read, 
write 

RCB RTHRCB read, 
write 

RCBENTRY RTHRC8E read~ 
writa, 
dalete 

SDUMP IHASDUMP read 
SDHA IHASDHA read~ 

write 

SRB IHASRB read. 
write 

SERIALIZATION: 

(Continued) 

to the R8C8. 

"Restricted Materials of IBM" 
Licensed Materials - Propert.Y of IBH 

MeH record header mapping 

Establishes addressabilit.Y 
to the CVT. 
Establishes addressability 
to the RC8s 
Contains the entries for the 
recording requests 
Contains the information for 
a singla recording request 

SDUMP parm list 
Provides error information 
and sarves as a 
communication area for RTH. 
SRB for posting IEAVTRET 
when a request is processed 

Serialization is required batween IEAVTRET and IEAVTREH (the 
recording memory termination resource manager) during specific 
processing sections involving the Recording buffers. 

Module IEAVTRET obtains the local lock to: 
• Release an entry from the Recording buffers 
• Process a temporary error 

Module IEAVTREH obtains the local lock to: 
• Scan the buffer for invalid records 

RTH-l94 HVSIXA SLL: Recov Term Hgmt LY28-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBH 

IEAVTRET - MODULE OPERATION 

This module is a never ending task which runs in Master's 
address space. 
IEAVTRET is given control by IEAVTHSI via the ATTACH macro. 

Hhen IEAVTRET is attached. it performs the following 
processing. 

• Establishes recovery via ESTAE 

• Builds an SRB in the RBCB 

• Obtains storage for rebuffering of the RCBs 

If any errors occur in this initialization phaset IEAVTRET posts 
the attachor with a return code of 4t and goes into a wait state. 

Otherwise. the attachor is posted with a return code of zero to 
indicate successful initialization. 

After successful initialization. the task processes any records 
that may have already been put into its buffer. It then goes into 
a wait state. . 

When IEAVTRET is posted. it performs the following processing 
for each Recording buffer: 

Hoves all ready records to the work buffer 

Hrites the records to SYS1.LOGREC or tho operator 

If requested. frees the users buffer and/or posts the 
users ECB specified in the request 

If records have been lost as indicated by the RBCBLCNT field of 
the RBCB, the lost record indication is written to SYS1.LOGREC. 

IEAVTRET then calls the MCH NrO routine to issue an operator 
message related to HeH LOGREC records. All logic relative to 
whether or not a message is required is performed by the MCH 
routine. 

The task returns to the wait state. 

RECOVERY OPERATION: 
IEAVTRET employs an ESTAE recovery environment. If an 

error occurs during IEAVTRET's processing, entry point RCDTSKR 
receives control. Each time an external routine is entered the 
address of the instruction following the routine and required 
interface is stored in the ESTAE parmlist. If we are percolated 
to by an external routine we retry at the point following this 
routine. 

RCDTSKR determines if it was in an external routine if so 
retry is effected following the call to this routine. If the 
error was an operation exception (SDHAABCC) or if record has 
already suffered a temporary error (RCBRTER), a dump of the code 
and work areas is taken, recording is turned off, and a message 
is written to the operator to this effect. If the error was not 
an operation exception. the interface is established from the 
ESTAE parmlist. and retry is initiated at at the point where the 
task wakes up from the wait state. 

LY28-1735-0 (c) Copyright IBH Corp. 1987 Method of Operation RTH-195 



IEAVTRET - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAvmET 
RCDTSKR 

MESSAGES: IEA896I - RECORDING FUNCTION NO LONGER ACTIVE 

ABEND CODES: ~ 

WAIT STATE CODES: ~ 

RETURN CODES: 

ENTRY POINT IEAvmET: 

o - Successful completion 

4 - Initialization failed 

ENTRY POINT RCDTSKR: 

EXIT NORMAL I 

4 - Retry to recording task mainline 

EXIT ERROR: 

o - Percolate to the next level of recovery 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTRET: 

Register 
register 
regis~ers 
register 
register 
register 

o - Irrelevant 
1 - Address of the attachor's ECB 

2-12 - Irrelevant 
13 - Address of the caller's register save area 
14 - Return address 
15 - Entry point address 

ENTRY POINT RCDTSKR: 

Register 
register 

registers 

registers 
register 
register 
register 

o - Code indication 
1 - Address of the SDHA or an ABEND 

completion code 
2 - Address of the recovery parameter area 

if no SDHA was available 
3-12 - Irrelevant 

13 - Address of the caller's register save area 
14 - Return address 
15 - Entry point address 

REGISTER CONTENTS ON EXIT: Irrelevant 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTM-196 MVSIXA SLL: Recov Term Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRET - Recording Task 

IEAVTMS1 

C:> JEAVTRET 

This module writes records to SYSl. LOGREe 
or to the operator which have been 
scheduled via the RECORD macro. If 
requested, IEAVTRET will free unbuffered 
storage and/or post the caller after the 
requested processing is complete. IEAVTRET 
will write a lost record summary to LOGREC 
if records were lost, and it passes 
control to the MeH HTO routine for an MeH 
operator massage Idecision on whether or 
not a message is required is made by the 
MCH routine.) 

~ Performs initialization for 
the recording task. 

ESTA ..----.... ' A. Establishes a recovery environment via 
.--------...... ---.,/ an ESTAE. 
ESTAFLGl ESTAFLG2 

ESTAE 

IRCDTSKR) PARAMIPARMLISTJ MFIE, 
ESTAE_EXEC) 

.. ---------...... - ---.,- record sUlllll'lary. 
CVT ~ :'/ B. Initializes header fields in the lost 

I-ICYTNUMB ____ ....I 

PSA ..----.... , C. Initializes the SRB used by the nucleus 
.--------.... r---,/ recording routine. 
PSATOLD PSAAOLD 

ASCB 

ASCBASID 

RTMRBCB J----------> 
IRBCBLLEN RBCBHLENI 

D. Obtains the work buffer from subpool 
250, above 16M on a page boundary. 

GETMAIN 

IRU) LVIREBUFLEN+DBUFLEN) AIREBUFADR) 
LOCIANYJ BNDRYIPAGEJ SPI25DJ 

E. Posts IEAVTMSI with a completion code of 
zero to indicate that the recording task 
initialization was successful. 

STEP 01 

I ,ESTA 
• / ESTAFLGl 

ESTAPARM 
ESTAFLG2 
ESTAFLG3 
ESTANEXT 

I ,RTMRBCB 

c= /IRBCBRPERI 

,HDR 
• / HDRTYP 

HDROPRN 
HDROPSYS 
HDRISNS 
HDRIXAM 
HDRDS10 
HDRCPID 

I ,SRB 
I / 

SRBID 
SRBFLNK 
SRBASCB 
SRBCPAFF 
SRBPASID 
SRBPTCB 
SRBEP 
SRBRMTR 
SRBSAVE 
SRBPKF 
SRBPRIOR 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-197 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRET - Recording Task 

AHAKE 1021 IEAVTRET is a never-ending 
task. Processing begins at 
this point whenever IEAVTRET 
is posted. When IEAVTRET is 
posted, it processes each 
Recording bu~~er as ~ollows: 

RCB J----------> I 031 ,.-------., r~ the buf~er has been 
marked as unusable and 
invalid, reinitializes the 
bu~~er. 

RCBACNT RCBRTER _ 

RCB J----------> 
'--1 -----.1 RCBRERT _ 

A. If the buffer was marked as invalid 
because of a processing error in 
IEAVTRER, takes an SYC dump. 

STEP 02 

~----~"RTMRBCB 

~/IRBCBSIU 1 

~\RTMRBCB 
..----..,,/ I RBCBECB 

'--------'-'\RCB 

/1 RCBRERT 

/~\r-----------~ 
\r--1/ SDUMP 

MF=(E,SVC51LST), HDRAD=DMPHDR 

RCB J----------> .--, -----.1 
RCBCNTL _ 

RCB r----------> B. Attempts to perform posting and FRESTOR 

~----~'\RCB 

~/IRCBTLNG 
~\LRB 

,..------.,-: \ processing for any records in the 
'L,.R_C_BBU_F_E ___ ....... I : ,/ buffer. [ /ILRBMACT 

,RCB RCBE 
.---------,-: 

RCBECNTL RCBELREC : 
RCBEFRES RCBENBFR 
RCBEPOST RCBEERFG : 
RCBEECB RCBESUBP 
RCBEASID RCBEDATA 
RCBEERID RCBEAPP 

LRB 

ILRBHTYPE LRBHMCH 1-: 
ASVT I .--_____ --,..J 

IASVTHAXU ASVTAVALI 

RCB 

RCBTLNS RCBFREE r
RCBFLNG I 

RCBE 

RCBELEN RCBENBPT • .---...1 

RTM-198 HVSIXA Sll: Recov Term Mgmt 

/1 RCBFLNG 

lY28-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRET - Recording Task 

RCB r----------> ,--------.... -: , 
RCBCNTL RCBFLNG / 
RCBBUFRS 

RTMRBCB : 

IRBCBLRCB I.J 

RCB 

RCBTLNS 

RCB J----------> 
I RCBCNTL RCBBUFRS I ) 

RCB 

RCBTLNG 

RCB r----------> 
r-------~-: " 
... IR_C_BBU_F_E ____ ..... I : ,/ 

RCBE 
r-------~-: 
RCBECNTL RCBELREC 
RCBERIV RCBENBFR 
RCBEERFG RCBERDY 
RCBERTYP RCBENBPT 
RCBEERID RCBEAPP 

RTMRBCB . 

IRBCBLRCB ,.J 

RCB 

RCBBUFB RCBTLNG I 
RCBCDS RCBFREE 
RCBFLNG 

RCBE 

RCBELEN I 

RCB J----------> 
~I ---------1 /' RCB8UFE . 

RCB 

RCBTLNG RCBFREE 
RCBFLNG 

C. Reinitializes the buffer header 
information. If the buffer is the LOGREC 
buffer, resets the partition data in the 
RBCB. 

~ Moves all ready records to 
the work bu~~er. This is 
done to avoid lost records 
because o~ a lack o~ space 
in the RCB. 

A. Initializes the work buffer. 

B. For each entry in the RCS: 
If the entry is ready, movos it to the 

work buffer and frees the entry in the 
real RCS 
If the entry is invalid, frees the 

entry from the buffer and increments the . 
lost record count. 
If the entry is not ready, terminatas 

the rebuffering loop. 

[!!] Loops through the work 
bu~~er and processes each 
entry. 

I 

STEP 03C 

• 
rt 

U 

[ 

I 

• 

I 

• 

,RCB 
/,----~ 

RCBCNTL 
RCBRCB 
RCBBUFB 
RCBBUFE 
RCBTLNS 
RCBFREE 
RCBFLNS 
RCBRTER 

,RCBE 

/1 RCBEALENI 

,RTMRBCB 
/r---~ 

RBCBHSIZ 
RBCBCSIZ 
RBC8SSIZ 

,RCB 
/r---~ 

RCBCNTL 
RCBRCB 
RCBBUFB 
RCBBUFE 
RCBTLNG 
RCBFREE 
RCBFLNG 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-199 



"Restricted Materials of IBM" 
Lioensed Materials - Property of IBM 

IEAVTRET - Recording Task 

RCBE r----------> .-------....,-: , 
RCBELREC RCBENBFR / 
RCBEDATA 

RCB : 

... 1 R_c_B_BU_F_E ____ ..... I.J 
RCBE 

RCBENBPT 

RCB 

RCBTLNG 

A. If the record is not buffered, checks it 
to ensure that it is addressable from 
master's address space. 

RCBE J----------> 8. Hrites the record to SYSl.LOGREC or to r-I--------,I '/ the operator's console. 
RC8EDATA . 

RCBE 

RCBELEN 

RCBE 

RCBELREC RCBEWTO 
RCBENBFR RCBEERFG 
RCBERTYP 

LRB I LRBHTYPE LRBMCLB 
LRBHMCH 

RCBE 

RCBELEN RCBENBPT 
RCBEERID 

r----------> C. If the data is not buffered, and an 
-: 

: 
: 
: 
: . r 

, errorid is to be appended, copies the 
/ data into the data buffar and appends 

the errorid. 

STEP OSA 

L.-.-----'VlDR 

/IHDRDS13 

RTH-200 HVSIXA SLL: Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRET - Recording Task 

RCBE r----------> I -: 
RCBECNTL RCBELREC : 
RCBEFRES RCBENBFR : 
RCBEPOST RCBEERFG . . 
RCBEECB RCBESUBP : 
RCBEASID RCBEDATA : 
RCBEERID RCBEAPP I 

: 
RCB I 

IRCBBUFE r: 
LRB : 

I LRBHTYPE LRBHMCH r: 
A SVT : 

IASVTMAXU ASVTENTY ,-: 
ASYTAVAL : 

: 
CVT I 

I CYTBRET I...J 

RCBE 

RCBELEN RCBENBPT~ 

RCB 

RCBTLNG RCBFLNG J 

'\ 
I / 

STEP 05D 

D. Performs posting and frsstor processing ........ I ___ ...I',\LRB 
and then daletes the entry from the work [/ 
buffer. I LRBMACT I 
~ '\RCB 
06 Releases the work buffer / 

storage I RC8FLNG 

PGSER 

(R. RELEASE) A«REBUFADR)) 
EA«REBUFADR+REBUFLEN+DBUFLEN-l)) 

RTMRBCB .----_ ..... '\ ~ r-----------II r----,/ If records were lost, writes 
a lost record summary record 
to SYS1.LOGREC (This record 
contains a count of LOGREC 
entries lost because of 
insufficient buffer space or 
because of processing 
errors). 

'------"'\HDR 

/IHDRTH RBC8LCNT 

CVT 

CYTTZ 

loa I Calls the MCH WTO routine /L--J'\r-----------., '\ r--I;' IGFPHHSG , 

RTMRBCB J----------> I 091 Returns to a wait state 
.---------" until posted again by 
IRBC8ECB _ IEAVTRER 

IE~I_m) HAlT 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-201 



lEAVTRET - Recording Task 

RTM 

J:;~ 
RCB r----------> 
... IR_C_BR_T_E_R ___ ....... r: 
SDWA : 

... IS_D_HA_P_A_RH ___ ....... I-J 

SrD_W_A ________ !~I~---~:) 
ISDHACIDB r 

SDWA r----------> 
....---------,-: 
SDHACI1PC SDHASRBH I 

SDHACLUP 

RTMRBCB 

IRBCBLRCB RBCBNRCBI-: 

RCB J I""" -----.1 
RCBRTER . 

"Restricted Materials of IBM" 
Licensed Materiels - Proparty of IBM 

~ The RCDTSKR routine receives 
control from RTM when an 
error occurs in lEAVTRET's 
processing. If the error is 
recoverable, RCDTSKR will 
attempt to retrv to a preset 
point in the ma1nline 
module. If the error is not 
recoverable, RCDTSKR issues 
a message indicating that 
Recording is no longer 
active, takes an SDUMP, and 
percolates to RTM. 

A. Fills in the RAS fields in the SDHA 

B. If the SRa failed, clears the SRa inuse 
bit. 

C. Takes an SDUMP. 
/L......J,\ 
\r---1/ SDUMP 

HF=(E,SVC5ILST), 
HDRAD=DUHPHDR 

D. Issues a HTO to indicate that recording 
has failed 

HTO 

('IEA896I - RECORDING FUNCTION NO LONGER 
ACTIVE") DESC(4) ROUTCDE(Z, 10) 

STEP 10 

I 

" 

I 

" 

I 

• 

'\RTMRBCB 

/IRBCBRPERI 

,\SDWA 
/.-----. 

SDHARECP 
SDHACID 
SDHASC 
SDHAHLVL 
SDHARRL 
SDWACIDB 

\RTMRBCB 

/IRBCBRPERI 

RTM-Z02 MYSIXA SLL: Recov Term Hgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials Df IBM" 
Licensed Materials - property o~ IBM 

LY28-1735-0 (e) Copyright IBM Corp. 1987 Method of Operation RTM-203 



;;0 
-I 
3: 
I 

N 
c 
.z:o. 

3: 
< 
VI 

" X 
> 
VI 
r
r-

;;0 
II) 
o 
o 
< 
-I 
II) ., 
3 

3: 
I.C 
3 .... 

r-
-< 
N 
00 
I 

I-' 
-..J 
VI 
\.71 
I 

c 

n 
o 

" '< ., .... 
I.C 
-:r .... 
1-1 
t:J:I 
3 

n 
o ., 
" 

lEA VTRMC - CALLRTM TYPE=RMGRCML Processor (Part I of 2) 

From IEAVLKRM to 
process CALLRTM requests 

Input 

Register D -.. 
Completion 
codp. 

Register 1 

New 
~ Parameter list 

SSRB + New SSRB 

V,+SSRBO<O 
_ _ (+ IHSAo'O 
SSRB IHSA 

;-- SSR~XSB /- IHSAXSB 

SSRBGPRS IHSAGPRS 

SSRBCPSW IHSACPSW 

SSRBFRRL IHSAFRRL 

SSRBFRRS IHSAFRRS 

XSB 

XSBXMCRS 

-~I FRRs 

FRRSCURR 

/ 
/ FRRSFRLA 

FRR { FRRSFLG2 
entries 

" 

Process 

" 1 Initialize a .. 
new SSRB. 

2 Process the 
v FRR stack 

entries . 

Output 

New .. 
SSRB V- I'DADO' 

SSRBCPSW 

" SSRBGPRS 

y 
SSRBFRRL 

/" SSRBXSB 

SSRBFRRS 1', 
F.RRS 

\ FRRSCURR 
\ 
\ 
\ 
\ 
\ FRRSRTMW 
\ 
\ 

XSB 

XSBXMCRS 

Return to 
IEAVLKRM 

to schedule the 
SSRB 

"-
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
I 

RT1W 

RT1TLPN 
=253 

RT1WRMGR 
='1'B 

RT1TREGS 
= comp 
code 

::0 
3: 
o 

o 
l> 
r 
r 

"U 
::0 
o o 
m 
(J) 
(J) 
o 



r
oo( 
N 
00 
I 

lEA VTRMC - CALLRTM TYPE=RMGRCML Processor (Part 2 of 2) 

.... .... 
"'" \J'I 
I 

o 

..... 
n ..... 
n 
o 

~ , ... 
!Q 
~ .... 
..... 
tit 
3: 

n 
o , 
" 
.... 

Extended Description' 

The lock resource manager UEAVLKRM! issues a 
CALLRTM TVPE=AMGACML at address space termina
tion time for each SA B or task in the terminating address 
space which holds the local lock of another address space • 
IEAVTRMC initializes an SSAB with information from an 
input SSRB (for SABs! or from an IHSA (for tasks! and sets 
the resume PSW in the SSAB to point to an SVC 13. When 
the SSAB is dispatch.ed, it abends. causing ATM1 to be en
tered. RTM1 can then route control to MODE=LOCAL 
FRAs for resource cleanup . 

1 IEAVTAMC initializes the new SSAB with the PSW • 
general purpose registers. cross memory registers, and 

the FAA stack from the input SSAB or IHSA. IEAVTRMC 
initialiles the ATM1 workarea portion of the FAR stack 
with control information so that ATM1, when entered for 
the SAB's abend, knows that the processing is on behalf of 
a CALLRTM TVPE=AMGACML . 

: 2 IEAVTAMC processes the FRR stack entries for RTM1. 
.... IEAVTAMC deletes FAAs from the FAA stack until an 

3: 
(II .... 
~ 
o 
a. 
o 
-h 

o 
" (II 

aJ .... ... 
o 
::l 

;:IU 
-t 
3: 
I 

N 
o 
\J'I 

FAA with MODE=LOCAL is found or until the stack is 
empty. 

Module Label 



IEAVTRRR - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTMI FRR Routines 

FUNCTION: 
IEAVTRRR is a collection of FRRs that protect several 
functions of RTM1's FRR processing. See the individual 
entry point descriptions for the specific RTMl function 
protected by each FRR. 

ENTRY POINT: RIRFRR 

PURPOSE: 
Protects IEAYTRIR from errors Whilo IEAYTRIR is 
using the software recording facility, RECORD, to write 
an ~HA to SYS1. LOGREC. 

LINKAGE: BALR 

CALLERS: RTH FRR Processing 

INPUT: 
Obtains error information and RTH control information 
from the SDHA. 

OUTPUT: Sets RAS and retry information in the SDHA. 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: There are no exit orror conditions. 

ENTRY POINT: RISFRR 

PURPOSE: 
Protects IEAVTR1S from errors while IEAVTR1S is 
obtaining an SQA SDHA. 

LINKAGE: BALR 

CALLERS: RTH FRR Processing 

INPUT: 
Obtains error information and RTH control information 
from the SDHA. 

OUTPUT: Sets RAS and retry information in the SDHA. 

EXIT NORMAL: Roturns to the caller. 

EXIT ERROR: There are no oxit error conditions. 

ENTRY POINT: RIIFRR 

PURPOSE: 
Protects IEAVTRII from errors While IEAVTRII is 
copying dump options, dump ranges and subpool lists to 
the SDHA. 

LINKAGE: BALR 

CALLERS: RTH FRR Processing 

INPUT: 
Obtains error information and RTH control information 
from the SDHA. 

OUTPUT: Sets RAS end retry information in the SDHA, 

EXIT NORMAL: Returns to the caller. 

RTM-206 I1VSIXA SLL: Recov Term Hgmt 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restrioted Materials OT IbM" 
Licensed Materials - Property of IBM 

IEAVTRRR - MODULE DESCRIPTION (ContinuecU 

EXIT ERROR: There are no exit error CC!'KIitions. 

ENTRY POINT: R1FFRR 

PURPOSE: 
Protects IEAVTR1F from errors when IEAVTR1F is 
processing HODE=LOCAL FRRs. 

LINKAGE: BALR 

CALLERS: RTM FRR Processing 

INPUT: 
Obtains error information and RTM control information 
from the SDMA. 

OUTPUT: Sets RAS and retry information in the SDMA. 

EXIT NORMAL: Retums to the caller. 

EXIT ERROR I There are no exit error ccndi tions. 

ENTRY POINT: R1XFRR 

PURPOSE: 
Protects IEAVTR1X from errors while IEAVTRlX is 
establishing an FRR's cross memory addressing environment 
via a CMSET instruction. 

LINKAGE: BALR 

CALLERS: RTM FRR Processing 

INPUT: 
Obtains error information and RTM centrol information 
from the SDMA. 

OUTPUT: Sets RAS and retry information in the SDMA. 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: There are no exit error ccndi tions. 

ENTRY POINT: R1GFRR 

PURPOSE: 
Protects IEAVTR1G from errors when IEAVTRIG is 
using GTF to trace the retum of an FRR. 

LINKAGE: BALR 

CALLERS: RTM FRR Processing 

INPUT: 
Obtains error information and R1M control information 
from tha SDMA. 

OUTPUT: Sets RAS and retry information in the SDMA. 

EXIT NORMAL: Retum. to thQ calleI;'. 

EXIT ERROR: There are no exit error conditions. 

EXTERNAL REFERENCES: 

ROUTINES: Nona 

DATA AREAS: No data areas are used. 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-207 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRRR - MODULE DESCRIPTION (Conti~) 

CONTROL BLOCKS: 
Common name Macro ID 
----------- --------
FRRS IHAFRRS 

LeCA IHALCCA 

PSA IHAPSA 

RTlH IHARTlH 

SDHA IHASDHA 

HSAVT IHAHSAVT 

TABLES: No tables used. 

SERIALIZATION: 

Usage Function 

wri te Sets the current FRR address 
in the FRR stack header. 

read obtains address of CPU 
work save area. 

read Obtains addresses of various 
FRR stacks and the LCCA. 

read and Obtains RTH control 
write information. 
read and Obtains error information and 
write sets retry information. 
read Obtains RTH work save area 

address. 

IEAVTRRR does not obtain any locks. IEAVTRRR runs disabled to 
serialize the RTH control information in the RTHI work area. 

RTH-208 HVSIXA SLL: Racov Tel"llt Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBH 

IEAVTRRR - MODULE OPERATION 

IEAVTRRR receives control to protect various modules via 
FRRs from errors that might occur during their processing. 

The general processing of an FRR contained in IEAVTRRR 
follows: 

- Calls the internal procedure, INITSDHA, to initialize the 
SDHA with standard RAS information, to set up for abort 
processing and to initialize the retry registers in the 
SDHA. 

- If the error is not recoverable, sets up for percolation. 
The variable recording area (VRA) of the SDHA is 
initialized with a message indicating the function that 
was forced to percolate. 

- If the error is recoverable, sets up for retry. The VRA 
of the SDHA is ini tialized with a messago indicating the 
function that was recovered. 

- Returns to RTH. 

RECOVERY OPERATION: 
Default recovery processing, contained in modulo 
IEAVTRTR, protects IEAVTRRR's processing. 

LY28-173S-0 (c) Copyright IBH Corp. 1987 Method of Operation RTH-209 



IEAVTRRR - D~A6N~ST~C AIDS 

ENTRY POINT NAMES: R1RFRR 
R1SFRR 
R1IFRR 
RlFF'RR 
R1XFRR 
R1GFRR 

MESSAGES: None 

ABEND CODES: N~ 

WAIT STATE CODES: None 

RETURN CODES: ~ 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT R1RFRR: 

Register 
Register 
Registers 
Register 
Register 

o - 200 byte FRR work area address 
1 - SDHA address 

2-13 - Irrelevant 
14 - Return address 
15 - Entry point address 

ENTRY POINT R1SFRR: 

Register 
Register 
Registers 
Register 
Register 

o 
1 

2 - 13 
14 
15 

- 200 byte FRR work area address 
- SDHA address 
- Irrelevant 
- Return address 
- Entry point address 

ENTRY POINT R1IFRR: 

Register 
Register 
Registers 2 -
Register 
Register 

o - 200 byte FRR work area address 
1 - SDHA address 

13 - Irrelevant 
14 - Return address 
15 - Entry point address 

ENTRY POINT R1FFRR: 

Register 
Register 
Registers 2 -
Register 
Register 

o - 200 byte FRR work area address 
1 - SDHA address 

13 - Irrelevant 
14 - Return address 
15 - Entry point address 

ENTRY POINT R1XFRR: 

Register 
Register 
Registers 
Register 
Register 

o - 200 byte F'RR work area address 
1 - SDHA address 

2 - 13 - Irrelevant 
14 - Return address 
15 - Entry point address 

ENTRY POINT R1GFRR: 

Register 0 - 200 byte FRR work area address 
Register 1 - SDHA address 
Registers 2 - 13 - Irrelevant 

RTH-210 HVS/XA SLL: Rocov Term "gmt 

I 

"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRRR - DIAGNOSTIC AIDS IContinuecU 

Register 
Register 

14- - Retum address 
16 - Entry point address 

REGISTER CONTENTS ON EXIT: 

ENTRY POINT RIRFRR: 

EXIT NORMAL: 

Registers U - 13 - ~~t restored 
Register 14- - Restored 
Register 16 - Not restored 

ENTRY POINT RlSFRR: 

EXIT NORMAL: 

Registers 0 - 13 - Not restored 
Register 14- - Restored 
Register 16 - Not restored 

ENTRY POINT RIIFRR: 

EXIT NORMAL: 

Registers 0 - 13 - Not restored 
Register 14- - Restored 
Register IS - Not restored 

ENTRY POINT RIFFRR: 

EXIT NORMAL: 

Registers 0 - 13 - Not restored 
Register 14- - Restored 
Register IS - Not restored 

ENTRY POINT RIXFRR: 

EXIT NORMAL: 

Registers 0 - 13 - Not restored 
Register 14- - Restored 
Register IS - Not restored 

ENTRY POINT RIGFRR: 

EXIT NORMAL: 

Registers 0 - 13 - Not restored 
Register 14- - Restored 
Register 16 - Not restored 

LY28-173S-0 Ie) Copyright IBM Corp. 1987 Method of Operation RTH-211 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRRR - RTHI FRR Routines STEP 01 

C:> IEAVTRRR 

RTM FRR Processing 

C:> R1FFRR 

SDWA r----------> 
ISDHACLUP r: \ 

/ 

FRRS : 

[FRRSRTMH I 
...J 

FRRS 

FRRSEMP 

SDWA :) 
~ ISDHARETY 

IEAVTRRR is a collection of FRRs that 
protect several functions of RTM1' s FRR 
processing. See the individual entry point 
descriptions for the specific RTMl 
function protected by each FRR. 

~ Processes errors in 
IEAVTRIF. 

A. Ini tializes the SDHA wi th standard RAS 
and retry information. 
/L.........J, 

1 
\"'--"1 INrrSDNA 

'RIFFRR ' 

B. If retry is not parmi tted from the 
error ~ places a message into the 
variable recording area of the SDHA 
indicating that IEAVTRIF encountered an 
error and could not recover. 

C. If retry is permitted from the error~ 
prepares to retry by setting various 
SDHA fields and by placing a retry 
message into the variable recording area 
of the SDHA. 

D. Returns to RTM. c;l 
, / 

[ 
[ 

I 

I 

\EED 

/IRTlTLPN 

,FRRS 

/IFRRSCURRI 

,SDWA 
/..------, 

SDHARTYA 
SDHARCDE 
SDHAURAL 
SDHAVRA 

RTM-212 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBH Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

XEAVTRRR - RTMI FRR Routines 

RTH FRR Procassing 

c:> 
RIGFRR 

SDWA r----------> 
L.IS_D_HAC_L_UP ____ ..... r: 
PSA . 

L-IPSAC_S_TK __ ---'I...i 
SDWA r---------> 
~IS_D_HAC __ L_UP ______ ~I-: ) 
PSA 

FRRS : .--______ ....,..J 

I FRRSCURR FRRSRTHKI 

FRRS 

FRRSEHP 

EED 

VALIDREC 

1021 Processes errors in 
lEAVTRIG. 

A. Initializes the SDHA with standard RAS 
and retry infoMIIStion. 
/~\ ''-''1 z-=- I . 'R16FRR ' . 

B. If retry is not permitted from the 
error, places a message into the 
variable recording area of the SDNA 
indicating that IEAVTR16 encountered an 
error and could not recover. 

c. If retry is permitted from the error, 
prepares for retry by setting various 
SDHA fields and by placing a retry 
message into the variable recording area 
of the SDHA. 

D. Returns to RTM. 

STEP 02 

L..------"'PSA 
I'lpSAPSAV 

, / 

, 

[ 
[ 
, 
• 

LY28-173S-0 (c) Copyright IBH Corp. 1987 Method of Operation RTM-213 



"Restricted Haterials of IBM" 
Licensed Haterials - Property of IBM 

IEAVTRRR - RTMl FRR Routines STEP 03 

RTH FRR Processing 

~> 
RlIFRR 

SDWA r----------> 
ISDHACLUP r: , 

/ 

FRRS : 

IFRRSRTHH 1 
..J 

FRRS 

FRRSEHP 

SDWA 

~ :) 
ISDHARETY 

RTH FRR Processing 

c~: 

PSA J----------> 
r--I ----..1 
PSACSTK _ 

~ Processes errors in 
IEAVTRlI. 

A. Initializes the SDHA with standard RAS 
and retry information. 
/L.......J, 

I \,-, II INITSIlItA 

'RlIFRR ' 

8. If retry is not parmi tteel from the 
error ~ places a message into the 
variable recording area of the SDHA 
indicating that IEAVTRII encountered an 
error and could not recover. 

C. If retry is parmi tted~ prepares for 
retry by setting various SDHA fields and 
by placing a retry message into the 
variable recording area of the SDHA. 

D. Retums to RTH. c;l 

1041 Processes errors in 
lEAVTR1R. 

A. Initializes the SDHA with standard RAS 
and retry information. /L.......J,~ ______________________ -, ',--, / I INITSDHA 

_ 'RIRFRR ' 

8. If the current stack is the same as the 
stack interrupted by IEAVTRIR~ issues an 
abend to force abort processing. The 
stacks cannot be untangled. IEAVTRRR 
aborts recovery. 

svc 13 <'---'> 
~------------------~ 

" / 

I 

[ 
[ 

,EED 

/IRTlTLPN 

,FRRS 

/ I FRRSCURR I 
,SDWA 
/..----, 

SDHARTYA 
SDHARCDE 
SDHAURAL 
SDHAVRA 

RTH-214 HVSIXA SLL: Recov Term Hgmt LY28-173!i-O Ie) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRRR - RTM1 FRR Routines 

SDWA r----------> 
~------------------~-: , 
LIS_D_HA_C_L_U_P ___ ..... I : / 

PSA 

..... IPSANS __ TK __ ---'r: 
FRRS : .--______________ --, ..J 

I FRRSCURR FRRSRTHN I 
FRRS 

FRRSEMP 

EED 

VALIDREC 

RTM FRR Processing 

C:> R1SFRR 

SDWA J----------> 
~I----..I SDHACLUP . 

c. If retry is not permitted from the 
error, and if the interrupted stack 
prior to the error is a super stack, 
percolates to tho super FRR with this 
stack. empty and ready to accept a new 
error • 

D. If retry is permitted from the error, 
prepares for retry by setting various 
SDHA fields. 

E. Returns to RTM. 

1051 Processes errors in 
JEAVTR1S. 

A. Ini tializof.; the SDHA with standard RAS 
and retry information. 
/~'r--------------------------------~ 
'r--1/ I . INITSDHA 

. 'RlSFRR 

8. If retry is not pemitted from the error 
or this is a recursive failure, sets up 
to percolate by indicating in the SDHA 
that the SALLOC lock. should be fread and 
by placing a percolation message into 
the variable recording area of the SDHA. 

C. If retry is permitted from the error, 
prepares for retry by seiting various 
SDNA fields and by placing a retry 
message into the variable recording area 
of the SDHA. 

D. Returns to RTH. 

STEP 04C 

"' / 

"' / 

LV28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-21S 



lEAVTRRR - RTM1 FRR Routines 

RTH FRR Processing 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

STEP 06 

C:> ~ Processes errors in 
IEAVTR1X. 

R1XFRR 

A. 

SDWA r----------> B. 

ISDHACLUP r: , 
/ 

FRRS . 
IFRRSRTMH I 

...J 

FRRS 

FRRSEMP 

SDWA 

~ :) 
ISDHARETV 

C. 

D. 

RTH-216 HVS/XA SLL: Recov Term Mgmt 

Initializes the SDHA with standard RAS 
and retry information. 
/L-...J, ',-, / I INIlSDHA I 'RlXFRR ' 

If retry is not permi Hed from the 
error, places a message into the 
variable recording area of the SDHA 
indicating that IEAVTRIX encountered an 
error and could not recover • 

If retry is permitted from the error, 
prepares for retry by setting various 
SDHA fields and by placing a retry 
message into the variable recording area 
of the SDHA. 

Returns to RTH. 

[ 
[ 

c;l 
, / 

,EED 

/IRTlTLPN 

,FRRS 

/IFRRSCURRI 

,SDWA 
/r---..., 

SDHARTYA 
SDHARCDE 
SDHAURAL 
SDHAVRA 

LY28-1735-0 Ie) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of !BM 

This page le~t blank intentionally. 

L.y28-1735-0 ee) Copyright IBM Corp. 1987 Method o~ Operation RTM-217 



~ 
I 

N ... .. 

r
-< 
N .. 
I ... .... 

CIt 
\II 
I 

Q 

..... 
n 
-.J 

tot 
til 
3 

n 
o 
~ . 

lEA VTRSO - RTMI Service Routines (part 1 of 6) 

Input 

Register 1 

It EED 

Register 4 

1+ tracking area 

Register 13 

Count of calls 
to IEAVTRS2 

Register 6 

Register 5 

1+ SNPPARMS 

I .. previous EEDs, 0, or 1 

From 
IEAVTRTM 

or 

From 
IEAVTRTM 

Process 

IEAVTR52: 

1 Copy the dump options into the 
EED. 

IEAVTRS3: 

2 Gather error informetlon In the 
EEDs and chain the EEDs together: 

A. Check for any previous EED 
processing. 

• If an ERRORID exists in the EED 

Return 
..... tothe 

caller 

EED (DUMPOTYP or OUMPXTYP) 

Storage 
ranges 

Register 0 

I 0 or 30 

RTM1WA 

RT1WEREX 



r-
oo( 
N 
Ot 
I .... 
'" (,01 
VI 
I 

c 

..... 
n ..... 
n 
o 
~ ., .... 
ra 
J .... 
.... 
tlII 
3: 

n 
o ., 
"a 

3: 
~ .... 
J o 
Do 

o .... 
o 
"a 
~ 

GJ .... .... 
o 
:7 

~ 
3: 
I 

N .... 
\0 

lEA VTRSO - RTMI Service Routines (part 2 of 6) 

Extended Description Module 

I EAVTRSO consists tlf several entry points called either In
ternally or by IEAVTRTM_ These entry po.ints are called 
to copy information Into EEDs or an SDWA, act as an 
Interface to the STATUS routine to make a task dispstchable, 
or act as an interiaceto IGFPTE~M to terminate the system_ 

1 The DUMPEED subroutine in IEAVTRS3 and the 
SRBTASKQ segment in IEAVTRTM calilEAVTRSO 

at entry point IEAVTRS2 to place dump options passed 
by the invoker of an ABEND, CALLRTM, or SETRP macro 
into an extended error descriptor IEED). On entry, register 
1 points to an EED, register 4 points to the tracking area la 
six-word parameter area of RTM's FRR), register 5 points 
to the dump options field ISNPPARMS), and register 13 
contains a count of the number of times this entry point 
has been called. The output from IEAVTRS2 is an EED 
containing the dump options and the storage ranges to be 

. dumped_ The EEDTYPE is either a DUMPOTYP or 
DUMPXTYP. 

2 Segments XMABTERM and SCHDRTM21n IEAVTRTM 
call IEAVTRSO at entry point IEAVTRS3 to place error 

information into EEDs and to chain the EEDs together as a 
single-threaded, forward-pointing queue with its origin in 
register 6. IEAVTRS3 determines if there are any EEDs. 
To do this I EAVTRS3 checks register 6. Register 6 either 
points to the EED chain, contains a one to indicate that a 
previous attempt to get an EED cell failed, or contains a 
zero to indicate no request for EED cells has been previously 
attempted. 

Label 

IEAVTRS2 

IEAVTRS3 

OLDEEDS 

Extended Description Module 

A. There are two situations where EEDs might have been 
previously requested. First, if a machine check occurred, it 
placed the hardware repair data, registers, PSW, and control 
registers three and four into EEDs. Second, if RTM1 set up 
a locally locked task or an SRB that suffered an STERM er
ror for ABEND processing, it placed the registers, PSW, and 
control registers three and four into EEDs. 

U no previous attempts to get an EED cell failed, 
IEAVTRS3 sets register 0 to a zero to indicate that process
ing is to continue. If a previous attempt to get an EED cell 
failed, IEAVTRS3 sets register 0 to a 30 so that RTM will 
skip further processing. 

IEAVTRS3 checks the EED chain to see if an error ID 
IERRORID) already exists. If one does, IEAVTRS3 sets 
the RT1WEREX flag in the RTM1WA to one. 

Label 



~ lEA VTRSO - RTMI Service Routines (Part 3 of 6) 
3: 
I 

N 
N = 

r
-< 
N 
00 
I .... .... 
"" us 
I 
= 
,... 
n ..... 
n 
o 
'tI 
'< , ... 
ID 
J .... 
I-f 
tlIf 
3: 

n 
o , 
'tI 

.... 
\0 
00 .... 

Input 

Register 4 

+ tracking 
area 

Register 13 

terror 
registers 

RTM1WA 

Register 5 

1+ dump options or 0 

SDWA 

~ 

Register 8 

.,. saved 
entry registers 

Process 

B. Get the needed storage for the new EEDs. 

• If the GETCELL failed, 

C. Place the registers, control registers, and 
PSW in an EED. 

D. Copy any dump options and ERRORID 
into the EEDs. 

E. Copy the falling instruction stream 
into the EED. 

Output 

Register 0 

30 

IJ 
EED (1 or more) 



r
oo( 
N 
00 
I .... .... ..,.. 

\,II 
I 

o 

..... 
n 
'oJ 

n 
o 
~ ., .... 
(Q 
:r 
t+ 

I-C = 3: 

n 
o ., 
'a . 
.... 
.0 
00 .... 

3: 
til 
r+ 
:r 
o 
a.. 
o 
-h 

o 
'a 
til ., 
III 
r+ .... 
o 
:::J 

;:0 
-I 
3: 
I 

N 
N .... 

lEA VTRSO - RTMI Service Routines (Part 4 of 6) 

Extended Description Module Label 

B. For new EEDs, IEAVTRS3 issues a GETCELL to ob
tain storage for any required EEDs. If a cell cannot be ob
tained, then IEAVTRS3 places a 30 in register 0 so that RTM 
will bypass further processing. 

C. I EAVTRS3 stores the registers and control registers 
three and lour, in the first EED on the chain. When RTMl 
is operating as a SLiH (second level interrupt handler!, the 
RTM1WA field contains a pointer to the PSW at the time of 
the error. IEAVTRS3 also places this PSW in the EED. 

D. IEAVTRS3 copies the dump options and storage 
ranges pointed to by register 5 into an EED. The invoker 
of the ABEND, CALLRTM, or SETRP macro passed these 
dump options and storage ranges to I EAVTRS3. If an 
ERRORID exists and has not been placed in an EED, 
IEAVTRS3 places it in an EED. The ERRORID has three 
parts: a sequence number (SDWASEQ #), a logical pro
cessor I D (SDWACPU 1) and a time stamp (SDWAERTM) . 
The EEDTYPE field determines if the EEDs are DUMPOTYP 
or DUMPXTYP. 

E. IEAVTR1A copies the six bytes of instruction stream 
that precede and the six bytes that follow the Instruction 
counter (IC) of the failing PSW into the EEDFAIN field 
of the EED. (See the M.O.diagram IEAVTR1A - RTMl 
Failing Instruction Processor.! 

NEWEEDS 

DUMPEED 

IEAVTR1A IEAVTR1B 

r-: 
... ::111 
nCD 
CD en 
:Itt en., 
CD ... 
a.~ 
3:10 
~a. 
103: 
~.~ 
I» CD ... ., 
en ... 
I~ en 
" .,0 .g .. 
CDM .,W 
r+3: 
Ie: = 
o 
-h 
H 
W :z 



;;c 
-t 
:3: 
I 

N 
N 
N 

:3: 
c:: 
V) , 
x 
> 
V) 
r
r-

r
-< 
N 
00 
I .... 

-....I 

"" YI 
I 

o 

1-4 
t:I:I 
:3: 

("') 
o , 
"'C 

.... 
-.0 
00 
-....I 

lEA VTRSO - RTMI Service Routines (Part 5 of 6) 

Input 

Register 3 

1+ TeB 

Register 4 

I + tracking area 

Register 12 

t secondary 
tracking area 

RTM1WA 

D 
Register 1 

From 
IEAVTRTM 

From 
IEAVTRTM 

Process 

IEAVTRS6: 

3 Make the requested task dispatchable. 

IEAVTRS7: 

4 Terminate the system. 

IEAVSETS 

STATUS 

To the 
caller 

IGFPTERM 

r ..... 
n 
/D 
::l 
III 
/D 
a. :: 

;0 
:3:/D 
III III 
r+r+ 
/D, , .... 
... ·n 
1lIr+ 
I-'ID 
ilia. 
1:3: 

III 
'Or+ 
,/D 
0' "D .... 
/Dill 
'1-' r+11I 
'< o 
O-ft 
-ft 

H 
Ht!:I 
t!:I3: 
% :: 



r-
-< 
N 
00 
I ... .... 
"" '" I 
0 

..... 
n ..... 
n 
0 

~ ., .... 
10 
;r 
rio 

.... 
til' 
3: 

n 
0 ., 
"U . ... 
\G 
00 .... 

'" -t 
3: 
I 

N 
N 

"" 

IEAVTRSO - RTMI Service Routines (Part 60f6) 

Extended Description 

3 Two places in the SCHDRTM2 segment of IEAVTRTM 
calli EAVTRSO at entry point I EAVTRS6. I EAVTRTM 

uses I EAVTRS6 to call STATUS when RTM wants to make 
a task dispatchable. The Input to IEAVTRS6Is: 

Register 3 - A pointer to the TCB to be processed 
Register 4 - A pointer to an area containing the saved 

registers 
Register 12 - A pointer to the secondary tracking area 

used to save the registers 

Entry point IEAVTRS6 passes this input to STATUS, 
which makes the task dispatchable. 

4 The MEMTERM segment of IEAVTRTM calls 
IEAVTRSO at entry point IEAVTRS7 if a OAT error 

has occured in an address space that may not be terminated 
CASCBNOMT=l} and the ASCBNOMD flag was set to one. 
IEAVTRS7 calls IGFPTERM to terminale the syslem. The 
inpul IEAVTRS7 passes to IGFPTERM is: 

Register 1 - A pointer to a two-word area. The first 
word is a pointer to the WTO message 
"IEA802W - DAT ERROR IN SYSTEM 
ADDRESS SPACE ... · The second word 
points to a LOGREC buffer (LRB). 
IEAVTRS7 calls IGFPTERM to issue 
message I EA802W and puts the system 
in a X' AOO' wait state. 

r-= .,.:u 
nCD 

Module Label CD 1ft ::J" 1/1., 
IEAVTRS6 CD ... a.n .. 

ZCD 
mil. 
rt 
CDZ 
"1) ... .. 
mCD ...., 
en .... 
I~ 

1ft 
'111 
.,0 

IEAVSETS O-fa 
11 
CDM 
.,cr:t 
rtz 

IEAVTRS7 IC = 
0 
-fa 

H 

IGFPTERM 
tG 
Z 



:IIU 
-t 
3 
I 

N 
N 
~ 

r
oo( 
N 
00 
I .... 

..... 
VI 
1.11 
I 

o 

n 
o 
1J 
'< ., .... 
IQ 
J 
0+ 

1-4 
tit 
3 

n 
o ., 
1J . 
.... 
\0 
00 ..... 

lEA VTRTC - Synchronize Fai1ing Tasks (Part 1 of 2) 

Input 

TCB 

RTM2WA 

From RTM2 overview 
IIEAVTRT2) to 
synchronize failing tasks . 

... p,o .... 

RTM2CC ~--- ---- -1 

.. 
=;>2 

':A..TCB 

- ........ TCB 

TCBFA 

TCBABWF 
_0-

3 

TCB familv queue 

~4 

) 5 

Determine whether this is a cancel 
recluest or an unrecovered task. 

• Cancel request. Go to step 3. 

• Unrecoverable task. Go to step 2. 

Walt for all the subtasks of the 
failing task In RTM2 processing to ... .. 

IEAVWAIT complete. ... r 

• Go to step 3. 

Stop the sub tasks of the task from 
any further processing. 

..oL ~ IEAYSETS , ." 
iMake the tasks 

.. II. 
I"U"' 

Indicate that all the subtasks are 
non· recoverable. 

Purge the resources for the tasks. 

• I/O resOurces. 

... .. 
IF""""''' A • Partlallv loaded programs. ....- 7 ,~r ~ •• 'r 

... .. 
• Paging I/O resources. ,- 7 IEAPTERM 

To RTM2 overview (lEAVTRT2' 

Output 

TCB 

... 
TCBFMW 

" 

TCB 

... 
TCBABWF 

lie TCB 

y 

TCBFA 

r... 
n 
CD 
:l 
UI 
CD 
a.: 

::a 
3CD 
~~ 
CD., 
"J'" ... n 
II)rt 
... CD 
Ula. 

13 
II) 

'art 
"JCD 
O"J 
-U ... 
CD II) ., ... 
rtUl 
'<0 
O-b 
-b 

H 
H~ 
~3 
3: 



r
oo( 
N 
00 
I .... ..... 

V. 
\11 
I 

g 

n 
o 
'0 
'< ., ... 
10 
;:r .... 
1-1 
tit 
3: 

n 
o ., 
'0 

3: 
II) .... 
;:r 
o 
a.. 
o 
~ 

Q 
'0 
III 

ill .... ... 
o 
:s 

:til' ..... 
3: 
I 

N 
N 
\11 

IEAVTRTC - Synchronize Failing Tasks (Part 2 of 2) 

Extended Description Module 

RTM2 synchronizes the termination of tasks in a TCB 
family queue to allow all the tasks to receive termination 
processing. RTM2 allows these subtasks to terminate and 
to have storage displays. This aids in debugging. 

RTM2 waits for all the tasks in RTM2 to complete proc· 
essing before terminating them (except for CANCEL 
requests). RTM2 stops all the tasks in the failing task's 
TCB family queue from any processing. including 
asynchronous exit processing. This prevents any additional 
termination requests for this TCB family queue. Then, 
RTM2 gives control to special purging routines (not the 
resource managers described In M.O. diagram I EAVTMMT -

• Address Space Purge Processing to clean up task resources. 

Label 

1 RTM2 synchronizes failing tasks for one of two IEAVTRTC RTCTLRCR 
reasons: there has been a CANCEL request from 

the system or operator; or the task cannot be recovered 
(M.O. diagram I EAVTAS1 - Recover Task Processing shows 
recovery processing). RTM2 checks the completion code of 
the task, in RTM2CC, for a X'n22' value, with the n being 
any alphanumeric value,and with the last 2 characters being 
"22." This completion code indicates a CANCEL. For 
CANCEL requests, RTM2 performssteps3,4,and 5, in that 
order. For unrecovered tasks, RTM2 performs steps 2, 3,4 
and 5, in that order. 

A cancel request must come through RTM1 using the 
CALLRTM macro. 

Extended Description 

2 RTM2 allows subtasks undergoing RTM2 processing 
indicated by the TCBRTM2 field to complete. Note 

that for unrecoverable tasks, control will go to step 3, 
and the tasks will be set non-clispatchable. 

3 RTM2 stops any further processing of the subtasks by 
giving control to the STATUS routine, with the 

request to make the subtasks non-clispatchable. The sub· 
tasks will be made dispatchable to finish RTM2 processing. 
Note that except for cancel requests, the subtasks will be 
allowed to finish RTM2 processing first. 

4 RTM2 sets the TCBFA field in each TCB of the TCB 
family queue to indicate that these tasks cannot be 

recovered. 

5 RTM2 now performs initial purging of some of the 
tasks' resources to prevent any contention for system 

resources. For example, a task set non-clispatchable while 
performing a FETCH request would not complete loading 
the requested program. No new FETCH requests would be 
honored. Also, no other tasks could use that requested 
program. Therefore, the RTM2 calls the partiallY 
loaded program purge routine to purge such resources. The 
same example would hold for I/O operations and paging 
I/O operations. For non-CANCEL requests, control 
goes to M.O. diagram IEAVTRT2 - RTM2 Overview. 

r= .... :0 nCD 
Module Label CD II) 

:sr+ en., 
RTCSTACK CD ... 

0.::1-
3CD 
I» a. 
r+ 
CD:Z .,1» 

RTCCSUB ........ 
I» CD 

IEAVSETS ... ., 
en ... 

At 
I ... 

at 

" .,0 
0; 
'IS 

IEAVTRTC CDH 
.,~ 

r+:z 
'< = 
0 

RTCINPRG 
~ 

H 
~ 
:z 



IEAVTRTD - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTMl ASID Service Routine 

FUNCTION: 
This module verifies that an ASID (received as input to RTM1) 
is a valid address space to terminate. If the address space 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

is valid, IEAVTRTD retums to IEAVTRTM to process the 
termination. If the address space is not valid, IEAVTRTD sets a 
retum code indicating that an attempt to terminate an address 
space that cannot be terminated was made. In addition. if the 
CALLRTM TYPE=MEHTERM macro was issued, IEAVTRTD records a 
message in SYS1.LOGREC. 

ENTRY POINT: IEAVTRSl 

PURPOSE: 
Verifies that an ASID, which was received as input to 
RTM1, represents a valid address space. 

LINKAGE: Via BALR 14. 15 

CALLERS: IEAVTRTM 

INPUT: 
Register 2 - Contains the ASID to be validated or the value 

zero representing the current address space. 

OUTPUT: 
Registor 0 - Set to a retum code for IEAVTRTM to determine if 

the validity check was a success or failure 
Register 2 - Set to the ASID of the current address space if 

the value was zero on entry . 
Register 8 - Set to the address of the ASCB for the given ASID 

Depending on the reason for failing the validity check, ona 
of three possible error descriptions is recorded in SYS1.LOGREC 
along with a portion of the ASCB. 

1.) MEHTERM for ASID >OOOOOOOC rejected. 
Damaged ASCB acronym missing at YYYYYYYY. 

2.) (*)MEHTERM rejected. 
ASID XXXXXXXX not assigned. 

3.) (*)MEHTERM rejected. 
ASID XXXXXXXX exceeds ASVTMAXU. 

If a scan of the ASVT finds an assigned slot that points to an 
ASCB (whore the ASCBASID matches X>OOOOOO(), then a third part 
is added to the error descriptions for 02 and #3. 

ASVT slot zzzz points to ASCB at yyyyyyyy 
with matching ASID. 

EXIT NORMAL: Retums to the caller, IEAVTRTM 

EXIT ERROR: 
Retries or reschedules the function from IEAVTRTR to a retum 
point in IEAVTRTM through FRR recovery. 

ENTRY POINT: IEAVTRSS 

PURPOSE: 
Records in SYSl.LOGREC that an attempt to terminate an address 
space. which may not be terminated (ASCBNOHT = '1'), was made. 

LINKAGE: Via BALR 14. 15 

CALLERS: IEAVTRTM 

RTM-226 MVS/XA SLL: Recov Tem Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTD - MODULE DESCRIPTION (Continued) 

INPUT: 
Register 1 - Contains the completion code associated with 

this MEMTERM request 
Register 2 - Contains the ASID of the address space that was 

requested to be terminated 
Register 4 - Points to the RESCHFRR 6 word parameter area (where 

the original registers 0-4 have been saved) 
Register 8 - ASCB address of the address space that was 

requested to be terminated 
Register 13 - Pointer to the MEMTERH requestor's register seve 

area 
Register 14 - Return address of the caller 

OUTPUT: 
By invoking the software recording facility, IEAVTRTD records 
that a request to terminate an address space that may not be 
terminated was attempted. 

EXIT NORMAL: Returns to the caller, IEAVTRTH 

EXIT ERROR: 
Reschedules the function from IEAVTRTR to a return point in 
IEAVTRTM through FRR recovery. 

EXTERNAL REFERENCES: 

ROUTINES: Branch enter recording facility 

DATA AREAS: No data areas used. 

CONTROL BLOCKS: 
Common name Macro 10 Usage Function 

----------- -------- --------
ASCB IHAASCB read Checks for a valid ASCB. 
ASVT IHAASVT read Obtains the entry of the 

ASIO being validity checked 
to determine if the ASID 
is assigned. 

CVT CVT read Uses the referenced CYTPTR. 
LCCA IHALCCA read Obtains the state of the 

processor (spinning or not). 
PSA IHAPSA read Obtains current address 

space, control block 
address, FRR stacks, etc. 

SOHA IHASDHA read and Sets up and wri tes to 
write SYSl.LOGREC to describe 

erroneous requests. 

TABLES: No tables used. 

SERIALIZATION: 
IEAVTRTD does not obtain any locks. However, the dispatcher 
lock is held on entry. 

LY28-173.6-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-227 



IEAVTRTD ~ MODULE OPERATION 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTD receives control to verify that an ASID (received as 
input to RTHl) is a valid address space to terminate. If the 
address space is valid~ IEAVTRTD returns to IEAVTRTH to process 
the termination. If the address space is not valid~ IEAVTRTD 
sets a return code indicating that an attempt to terminate an 
address space that cannot be terminated was made. In addition~ 
if the CALLRTH TYPE=MEMTERM macro was issued~ IEAVTRTD records a 
message in SYSl.LOGREC. 

Entry point IEAVTRSI receives control from IEAVTRTH whenaver 
the CALLRTH macro is issuad for a cross mamory ABTERM request 
or for a MEMTERM request. 
IEAVTRSI performs the following processing: 

• Checks the validity of the ASID~ received from IEAVTRTH, 
for the following conditions: 

- Is the ASID in the range of valid ASIDs? 
- Is the ASID currently assigned? 
- Does the ASVT entry point to a valid ASC8? 

If the responses to all the preceding questions are yes~ 
IEAVTRTD has a valid address space to be terminated. 
IEAVTRTD returns control to IEAVTRTH to terminate the address 
space. If tho ASID failed the validity check~ tho address 
space cannot be terminated. IEAVTRTD sets a return code 
(decimal 30) in register O. 

Entry point IEAVTRS5 receives control from IEAVTRTH whenever 
tho CALLRTH TYPE=MEMTERM macro is issued and an attempt to 
to terminate an address space that cannot be terminated was made. 
(Field ASCBNOHT equals one.) 
IEAVTRS5 performs the following processing: 

• Records in SYSl.LOGREC a message indicating that an attempt 
was made to terminate an address space that cannot be 
terminated. The message contains the ASID~ which was 
received as input~ the ASCB address associated with tho 
inj)ut ASID~ and register 14~ which has the return address 
of the requestor of the CALLRTH TYPE=MEMTERM macro. 

RECOVERY OPERATION: 
The logical phase recovery in IEAVTRTR protects IEAVTRTD. 
If the ASID fails to represent a valid address space~ IEAVTRTD 
attempts a retry for a MEMTERM request. If tho ASID represents 
a valid address space for a cross memory ABTERM or MEMTERM 
request~ IEAVTRTD attempts to reschedule the function. 

RTM-228 MVS/XA SLL: Reeov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restrioted Materials of IBM" 
Lioensed Materials - Property of IBM 

IEAVTRTD - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAYmSl 
IEAVTRSS 

MESSAGES: Nona 

ABEND CODES: ~ 

WAIT STATE CODES: Nona 

RETURN CODES: 

ENTRY POINT IEAYmSl: 

Register 0 - Contains decimal 30~ if the ASID failed the 
validi ty check 

ENTRY POINT IEAVTRS5: Nona 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAYmSI: 

Register o -

Register 1 -
Register 2 -

Register 3 -
Register 4 -

Register S -
Register 6 -

Function code for RTH1, equal to RTDlHEHT 
during MEHTERH processing 
Completion codes and flags 
Set to the ASID to be validity checked or tho 
value 0 representing the current address space 
Zero, as last used in IEAVTRTS 
Pointer to a tracking area for check pointing 
volatile registers 
Zero, as last used in IEAVTRTS 
Contains one of the following: 

a pointer to a chain of EEDs I if any were 
previously acquired) 

• zero (if there were no previous attempts to 
acquire EEDs) 

• the EEDnull value 11) I if an attempt to 
acquire an EED cell failed . 

Register 7 - Zero, as last used in IEAVTRTS 
Register 8 - Irrelevant 
Register 9 - RTH's base register 
Register 10 - Irrelevant 
Register 11 - RTM's second base register 
Register 12 - Contains a pointer to a secondary tracking 

area used to checkpoint recovery infomation 
Register 13 - Contains a pointer to the registers at the time 

of the error 
Clf not previously placed into the EEDs) 

Register 14 - Return address 
Register 15 - Irrelevant 

ENTRY POINT IEAYmSS: 

Register 0 - Function code for RTMl, equal to RTDlMEHT 
during MEMTERH 

Register 1 - Completion codes and flags 
Register 2 - Set to the ASID to be validity checked or the 

value 0 representing tho current address space 
Register 3 - Zero, as last used in IEAVTRTS 
Register 4 - Pointer to a tracking area for check pointing 

volatile registers 

LY28-173S-0 Ce) Copyright IBM Corp. 1987 Method of Operation RTH-229 



IEAVTRTD - DIAGNOSTIC AIDS (Continued) 

Register S - Zero, as last used in IEAVTRTS 
Register 6 - Contains one of the following: 

• a pointer to a chain of EEDs (if any were 
previously acquired) 

• zero (if there were no previous attempts to 
acquire EEDs) 

• the EEDnull value (1) (i f an attempt to 
acquire an EED cell failed 

Register 7 - Zero, as last used in IEAVTRTS 
Register 8 - ASCB address 
Register 9 - RTH's base register 
Register 10 - Irrelevant 
Register 11 - nTt1's -econci base register 
Register 12 - Contains a pointer to a secondary tracking 

"Restricted Materials of 18M" 
Licensed Materials - Proper~ of IBM 

area used to checkpoint recovery information 
Register 13 - Contains a pointer to the registers at the time of 

the error (If not previously placed into 
the EEDs) 

Register 14 - Return address 
Register 15 - Irrelevant 

REGISTER CONTENTS ON EXIT: 

ENTRY POINT IEAVTRS1: 

Register 

Registers 
Register 

Register 
Register 
Register 
Registers 
Register 
Register 

o - Set to a return coda for IEAVTRTH to determine 
if the validity check was a success or failure 

1-7 - Restored to the values on entry 
8 - Set to the address of the ASC8 for the given 

ASID 
9 - RTM's base register 

10 - Irrelevant 
11 - RTH's second base register 

12-13 - Restored to the values on entry 
14 - Return address 
IS - Irrelevant 

ENTRY POINT IEAVTRSS: 

Registors 
Registers 
Register 
Register 
Register 
Register 
Register 
Register 
Register 
Register 

0-4 - Restored to the values on entry 
S-6 - Irrelevant 

7 - Zero, as last used in IEAVTRTS 
8 - Address of the ASC8 for the given ASID 
9 - RTM's base register 

10 - Irrelevant 
11 - RTH's second base register 

12-13 - Restored to the values on entry 
14 - Return address 
15 - Irrelevant 

RTM-230 HVS/XA SLL: Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-173S-0 (c) Copyright IBM Corp. 1987 

. ~. 

Method of Operation RTM-231 



..... 
n ..... 
("') 
o 
~ ., ..,. 
IQ 
~ 
rio 

.... 
tIf 
3: 

("') 
o ., 
" . 

Diagram RTM-22. lEA VTRTE - Recursion Processor 2 (Part 1 of 2) 

SVRB SVRB 

~ V 

~ 
Current 
RTM2WA 

RTM2SCTX 

RTM2WA 

RTM2SCTC 

RTM2TRRA 

RTM2SKRA 

RTM2STRA 

RTM2CTRA 

From recursion 
processor 1 (I EAVTRT21 
to retry a 
section of 
code that failed. 

1 Locate the RTM2WA that 
represents the section of code 
that failed. 

2 Determine the least severe 
recursion handler available and 
update the RTM2WA. 

3 Restore the registers from the 
RTM2WA. 

4 Give control to the selected 
recursion acldress. 

To the section of code that failed • 
or to terminate the address space 
(as in RTM2 Initialization 
UEAVTRT21. step 2.1 

Current 
RTM2WA 



r
-< 
N 
00 
I .... ..... 

(.01 
\II 
I 
= 

(") 
o 
~ , .... 
10 :r .... 
I-t 
til 
3: 
(") 
o , 
'U 

.... 
\0 
00 ..... 

3: 
I) .... 
:r 
o 
a.. 
o 
-h 

o 
'U 
I) 

;;J .... .... 
o 
~ 

lEA VTRTE - Recursion Processor 2 . (Part 2 of 2) 

Extonded Description 

The recIJrsion proce~sor 2 lunclion routes conl,ol to a 
recursion handler lor the section of cmJe that failed. 

1 The recursion processor 2 locates the RTM2WA lor 
the failed section. It does this by matching the 

RTM2SCTX field passed as input with the RTM2SCTC 

field in the various RTM2WAs that represent the failed 
sections of the code; 

2 The recursion processor 2 checks for a non·zero value. 
in order of increasing severity, in four fields in the 

RTM2W": 

• RTM2TnnA - skip a small RTM2 function, such:ls a 
resource manager routine. 

• RTM2SKRA - skip a major R fM2 function, such as 
synchronizing lailing tasks or task recovery. 

• RTM2STRA - terminate the lob step. 

• nTM2CTRA - terminate the address space . 

to lind the least severe recursion handler. 

Module Label 

IEAVTRTE RTERCREX 

Extended Description 

For RTM2TRRA: The recursion processor 2 clears the 
section indicator in RTM2SCTR and allows the sRction 
to retry; it copies the address anel registers that will 
skip the failing section from that RTM2WA to the current 
RTM2WA passed as input. This enables the recursion proc
essor 2 to skip this section if It lalls again. The fields set in 
the current RTM2WA are RTM2SKRA and RTM2SFSA. 

For RTM2SKRA: The recursion processor 2 does nOf 

clear the section indicator in RTM2SCTR; this section 
must be skipped every time it is reached end not be 
allowed to exec\lte. 

For RTM2STRA and RTM2CTRA: The recursion proc
essor 2 clears no fields. These fields contain the addresses 
01 special recursion routines that handle serious errors. 

3 Prior to giving control to the section of code. the 
recursion processor 2 restores the registers from the 

RTM2SFSA field for RTM2SKRA processing. or from 
RTM2RREG for RTM2TRRA processing. 

4 Control goes to the appropriate section of code. 
using tile address selected in step 2. 

Module Label 

RTESFRE 

a 
-h 



3 
< en 

" ~ 
en 
r
r-

:0 
III n 
o 
< 
.... 
III ., 
a 
3 

~ ,.,. 

r
-< 
N 
C» 
I 

'"" ..., 
~ 
VI 
I 

o 

..... 
n ..... 
n 
o 

~ ., .... 
!O 
J ,.,. 
1-1 
till 
3 

n 
o ., 
'U . 

IEAVTRTE - RTM2 Exit Processing (Part 1 of 6) 

From IEAVTRT2 
to process ex it 
handling 

Input 

RTM2WA I ATM2FLX I- ----- - -

RTM2RTRX - Retry 
RTM2EOTX -Normal EOT 
RTM2ABX - Abnormal EOT 
RTM2MTR - Address space 

termination 
RTM2LTX - Termination of 

last task 
RTM2PRX - Termination of 

a permanent 
task 

RTM2DWX - Subtask waiting 
RTM2CVX - Convert· to . 

step 

TCB riB RB 

I ro 
RTM2WA 

D 

Process Output 

--1 Exit according to the indicator set 
in the RTM2F LX field: .. • Retry. .. Step 2 

• Normal EOT. Step 3 

• Abnormal EOT. Step 3 
: 

• Address space termination. .. Step 4 

... 
• Last task. Step 5 .. .. • Permanent task. Step 6 ,. .. 
• Subtask waiting. Step 7 .. 
• Convert·to -step. StepS 

TCB 

") 2 Process the retry operation by " .. freeing the RTM2WA, setting .. .. 
the appropriate fields, and IEAVSETS 
releasing the locks. 

STATUS 

.. IEAVEEXP 

To dispatcher .. 
EXIT prolog 

IIEAVEDSOI ... 

6 



r
oo( 
N 
00 
I 
~ 

'" CJII 
\II 
I 
= 
..... 
n ..... 
n 
o 
~ ., ... 
!Q 
J .... 
.... 
tIf 
3: 

n 
o ., 
1J . 

3: 
CD .... 
J 
o 
Q. 

o 
~ 

Q 
1J 
CD 

iil .... ... 
o 
;:, 

;0 
~ 
3: 
I 

N 
CJII 
\II 

IEAVTRTE - RTM2 Exit Processing (Part 2 0(6) 

Extended Description 

RTM2 exits to either EXIT prolog II EAVEEXP) or STATUS 
IIEAVSETS), depending on the settings of the RTM2FLX 
field of the RTM2WA, after task termination or address 
space termination . 

1 Exit processing determines the type of exit. 

2 IEAVTRTE frees the copied trace table pointed to by 
RTM2WA (RTM2TRTB) and the current RTM2WA, 

clears the TeB flags if no RTM2 SVRBs will remain on the 
RB queue after retry, and reloads the registers that will not 
be altered by exit (15, 0, 11 from the SVR B. lEA VTRTE 
then passes control.to EXIT prolog . 

Module Lebel 

IEAVTRTE 

RTECMEX 
RTEFREWA 

o 
oft 
H 
lilt 
Z 



~ lEA VTRTE - RTM2 Exit Processing (Part 3 of 6) 
3: 
I 

N 
(.ot 
Q\ 

3: 
< en , 
X :x:-
en 
r
r-

r-
oo( 
N 
00 
I .... ..... 

(.ot 
VI 
I 

CI 

..... 
n ..... 
n 
o 
~ ., .... 
e 
:r 
r+ 
I-t 

= 3: 

n 
o ., 
'U . 

Input 

TCB AB AB 

I n n I 
ATM2WA 

0 

Process 7 Output 

.. .. TCB 
3 Process the normal and abnormal 

-y 

EOT operations by freeing the 
.. 

ATM2WA. setting the appropriate 
TCBEOT fields. and releasing the locks. 

.. .. 
To dispatcher IEAVEEXP 
(lEAVEDSO) " .. 

EXIT prolog 

TCB .. 
4 

.. 
Process the address space ., 
termination requests by freeing the r 

ATM2WA. setting the appropriate 
fields. and releasing the locks. 

To dispatcher .. .. IEAVEEXP 
(lEAVEDSO) . 

, r 

EXIT prolog 

Via CALLATM 

>5 Process the last task in an ... .. IEAVTMTC .. address space . r 

Address space 
termination 

... .. 
To dispatcher , -r IEAVSETS 
(lEAVEDSO) 

STATUS 

6 



r
oo( 
N 
00 
I .... .... 

<.-. 
VI 
I 

o 

n 
o 
'U 
'< ., 
~. 

lQ 
'j' 
t+ 

.... 

." 
3 

n 
o ., 
'U 

.... 
\0 
00 .... 

3 
(I) 
t+ 
'j' 
o 
D-

O 
~ 

Q 
'U 
(I) ., 
AI 
t+ 
~. 

o 
::J 

;;Q 
-t 
3 
I 

N 
<.-. .... 

lEA VTRTE - RTM2 Exit Processing (Part 4 of 6) 

Extended Description Module 

3 IEAVTRTE sets the TCBEOT flag to indicate all RTM2 
processing is complete for this task. RTM2 frees the 

copied trace table and all RTM2 work areas. IEAVTRTE 
passes control to EX IT prolog. 

4 RTM frees the copied trace table and the 
RTM2WA and passes control to EXIT prolog. 

5 lEA VTRTE terminates the address space using 
CALLRTM TYPE=MEMTERM. The current task is set 

non-dispatchable to await completion of memory termin· 
ation . 

Label 

RTELTEX 

o • 
H 
~ 
3: 



~ lEA VTRTE - RTM2 Exit Processing (Part 5 of 6) 
3: 
I 

N 
(JOI 
00 

3: 
< 
VI .... 
X 
:I> 

VI 
r
r-

;:to 
ID 
n 
o 
< 
-f 
ID ., 
:I 

3: 
III 
:I 
r+ 

r
-< 
N 
00 
I .... 

"""" (JOI 

U'I 
I 

Q 

n 
o 
"0 
'< ., 
~. 

III 
;r 
r+ 

H 
tit! 
3: 

n 
o ., 
"0 

I~put 

TCB 

I 
RB RS 

n n I 
RTM2WA 

D 
TCB 

~ ---- - ---

TCB 
Jobstep 
TCB 

RTM2WA 

I I 

Process. ? 
) 6 Process a failing resident task. 

.. 

M 

To dispatcher 
(lEAVEDSOI 

t- -- 7 Post the waiting subtask. 
free the RTM2WA. and set ... 
the task as non-dispatchable. 

. 
To dispatcher .. 
IIEAVEDSOI 

) 8 Process the convert-to-step 
operations. 

To EXIT prolog 
IIEAVEEXPI 

.." 
~E~VSY_50 

POST 

IEAVSETS .., 
STATUS 

.." 
--'E~VSY50 

POST 

IEAVSETS 
.." 

STATUS 

. 
IEAVTRTM 

RTM1 

Output 

TCB 
) 

TCBDARNP 

/ TCBECB 

, ECB for EOT 

1 

" 
TCB 

/ TCBAECB 

, ECB 

1 

TCB Jobstep 

) TCB 

I , RTM2WA 

I I 

r .... 
o m 
::J 
UI 
m 
a.: 

;:a 
3m 
1IIU1 
rtrt 
CD "7 
"7 .... 
.... 0 
IIIrt 
....CD 
Ula. 
13 

III 
~rt 
"7 CD 
0"7 
"0 .... 
CD III 
"7 .... 
rtUl 
'< o 
O-h 
-h 

H 
H~ 
~3 
3 : 



r
-< 
N 
00 
I .... ..... 

f.oI 
UI 
I 

o 

.... 
n 
\J 

n 
o 
~ , ... 
IQ 
:r 
t+ 
toot 
tIIII 
3: 

n o , 
'U . 
.... 
\D 
00 ..... 

3: 
II) 
t+ :r o 
a. 
o 
-fI 

o 
'U 
It 

iii 
t+ ... 
o 
~ 

IEAVTRTE - RTM2 Exit Processing (Part 6 of 6) 

Extended Description Module 

6 When a resident task ends, normal processing (which in
cludes freeing the TCBI is impossible. IEAVTRTE 

posts the end-of-task ECB, to indicate completion, and sets 
the task permanently non-dispatchable using TCBDARPN . 

7 IEAVTRTE posts the ECB that the subtask is waiting 
for !located by TCBAECB). 1he jobstep task sets 

itself non-dispatchable to await ABTERM. RTM2 is entered 
from the top for the STEP ABEND. This is not regarded as 
a recursive entry. 

8 I EAVTRTE queues the current RTM2WA to the job-
step TCB. Then the jobstep task is abnormally termin

ated with a 200 completion code. The sub task terminates 
by branching to EXIT prolog_ If the jobstep TCB is already 
in RTM2 processing, it may be necessary to wait for it to 
complete critical processing before terminating it_ 

Label 

RTESWEX 

RTECONV 
RTECNVEX 

a 
-fa ... 
~ 
:z 



IEAVTRTF - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTM! Super FRR Retry Routine 

FUNCTION: 
This module is the retry routine scheduled by the super FRR. 
IEAVESPR. when the current stack at the time of error is the 
RTM stack. IEAVTRTF issues a CALLRTM TYPE=MEMTERM macro to 
terminate the current address space and cleans up the error 
environment. 

ENTRY POINT: IEAVTRTF 

PURPOSE: See function 

LINKAGE: BALR from RTM 

CALLERS: RTMI FRR processing 

INPUT: Register 15 is the entry point address 

OUTPUT: None 

EXIT NORMAL: Exit to the dispatcher 

EXIT ERROR: System aband code X' ODC' 

EXTERNAL RE~~RENe~S~ 

ROUTINES: None 

DATA AREAS: No data areas used 

CONTROL BLOCKS: 
COmlllon name Macro ID Usage 
----------- -------- Function --------

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASCB IHAASCB write Resets the type one SVC flag. 
CVT CVT read Obtains RTM and dispatcher 

routines entry addresses. 
LCCA IHALCCA read Obtains processor state -

ISRB or TASK). 
PSA IHAPSA read Obtains branch entry service 

routine addresses. lock 
indicators. control block 
addresses. etc. 

FRRS IHAFRRS write Cleans up FRR stacks. 
RTlH IHARTlH write Obtains and resets RTMI 

information. 

TABLES: No tables used. 

SERIALIZATION: 
IEAVTRTF does not obtain any locks. IEAVTRTF runs disabled to 
serialize the RTM stacks. IEAVTRTF obtains the RTM super bit 
to retain disablement during RTM MEMTERM processing. 

RTM-240 HYSIXA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTF - MODULE OPERATION 

IEAVTRTF receives control when the RTHl stack is the current 
stack at the time of the error. IEAVESPR, the super FRR, 
schedules IEAVTRTF as IEAVESPR's retry routine. IEAVTRTF 
issues a CALLRTM TYPE=MEMTERM macro to terminate the current 
address space and performs clean up processing of the error 
environment. 

Entry point IEAVTRTF performs the following processing: 

Sets an indicator in the tracking area of RTHl stack's 
RTHl work area so that any errors in the remainder of 
IEAVTRTF's processing will be protected by RTH1's 
abort recovery module (IEAVTRTR). 

• Issues a CALLRTH TYPE=MEMTERM macro to terminate the 
current address space. 

• Issues a SETFRR macro for each super stack to purge any 
recovery routines that may have been esatablished. 
IEAVTRTF sets the logical phase number (LPN) value of 
each super stack to zero to allow normal error 
processing to occur in RTH the next time the stack is 
used. The RTH super stack is not processed at this 
time to ensure abort recovery protection is not lost. 

• Purges all FRRs from the normal stack. 

• Determines whether any locks are held. 
- If the LOCAL lock is held, IEAVTRTF releases the 

LotAL intersect. 
- If the DISPATCHER lock is held. IEAVTRTF releases 

the GLOBAL intersect. 

Frees all locks held by the current unit of work. 

• Sets an indicator in the tracking area of RTH1 stack's 
RTH1 work area to ensure that normal recovery can be 
performed the next time the stack is used. 

• Makes the normal stack the current stack. 

Determines whethor IEAVTRTF is in SRB or TASK mode and 
then exits to the appropriate dispatcher entry point. 

RECOVERY OPERATION: 
This modulo's entire operation is that of recovory. 
If any errors occur during IEAVTRTF's processing, IEAVTRTR 
performs abort processing. 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-241 



IEAVTRTF - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTRTF 

MESSAGES: None 

ABEND CODES: 

X'ODe' - The current address space is considered unrecoverable 
and is therefore terminated by issuing a CALLRTM 
TYPE=HEMTERH macro with a reason code of X'04'. 

WAIT STATE CODES: ~ 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

Registors 0 - 15 - Irrelevant 

REGISTER CONTENTS ON EXIT: 

Registers 0 - 15 - Irrelavant 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTM-242 I1VS/XA SLL: Recov Term Hgmt LY28-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - PrQPOrty of IBM 

IEAVTRTF - RTMl super FRR Retry Routine 

RTMl FRR processing 

~> IEAVTRTF 

This module is the retry routine scheduled 
by tho super FRR, IEAVESPR, when the 
current stack at tho time of error i. the 
RTM stack. IEAVTRTF issues a CALLRTM 
TYPE=MEHTERH macro to terminate the 
current address space and cleans up the 
error environment. 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-2ft3 



3: 
< en 
"X 
> 
en 
r
r-

:a 
ID 
n 
o 
< 
-I 
ID ., 
51 

3: 
In 
51 
1+ 

r
oo( 
N 
00 
I .... 
~ 
(,01 
U'I 
I 

o 

..... 
n ..... 
n 
o 
~ ., .... 
IQ 
:r 
1+ 

.... 
= 3: 

n 
o ., 
'0 . 

lEA VTRTM - Processing SLiB Requests (part 1 of 4) 

From RTM1 
overview (IEAVTRTMI p Input rocess 

~~--------------------~ r-------------------------. Output 

RTM1WA 

PSA LCCA 

I ~ASUPER I I L~~R8M I 
Register 2 

t PSWat time 
of error 

1 Refresh the critical data and 
the restart PSW. 

2 Process the possible recursion: 

• Non·recurslve entry. 

• Expected recursion. or one =::!====~ 
covered by an FRR. 

• Unexpected recursion. 

3 Check if an FRR needs to be 1I~~"=~~~~O 
established. ... 

RTM1WA 

4 Determine the system state at :=f========f====qR~T~M~1~W~A~~1 the time of the error. 



r
-< 
N 
00 
I .... ..... 

CoI'I 

"" I 
o 

,... 
n ..... 
(") 
o 
~ ., .... 
!C 
~ ,... 
J-I 
a:I 
3 

(") 
o ., 
" . .... 
.,g 
00 ..... 

3 
CD ,... 
~ 
o 
a.. 
o 
; 

o 

" CD 

~ ,... .... 
o 
::J 

:;0 .... 
3 
I 

N 
~ 

"" 

lEA VTRTM :- Processing SLIn Requests (part 2 of 4) 

Extended Description 

This diagram illustrates the flow of control during RTM1's 
SLiH processing. 

1 Whenever RTM1 performs SLiH processing, RTM1 
first attElmpts to refresh critical common fixed con

stants. RTM1 invokes IEAVESAR !the supervisor router 
routine) to aid in the recovery of the failing processor 
by refreshing critical system control block pointers and 
fields (such as PSALCCAV and PSASCWA) that might have 
been overlaid. RTM1 also attempts, on its own, to refresh 
the restart new PSW and the CVT restart resource lock word 
(CVTRSlWD). No recovery of the original error is possible 
if a second error occurs during the processing of this segment. 
If a second error occurs, all information from the original 
error is lost. 

2 RTM1 continues SLIH processing for a non·recursive 
entry into RTM1, for an anticipated recursive entry, 

or for a recursion covered by one of RTM1's FRRs. Other· 
wise, RTM1 processes an unanticipated recursive entry by 
routing control to a recovery routine (RECVRRTM in 
module IEAVTRTR) that determines whether any recovery 
of this recursive error can be performed. 

Note: If RTM1 calls REcvARTM, control is not 
returned to IEAVTRTM. 

3 RTM1 calls the EST AECHK routine to see if an 
FR R needs to be established. If an errOr occurred in 

the modulI! IEAVSTAO, J;:STAECHK establishes an FRR. 
For errors in all other modules, no FRR is established. 

4 RTM1 determines the system state at the time of the 
error by examining indicators in the PSA, LCCA and 

the PSW at the time of the error. The succeeding flow of 
control during SLIH mode processiny depends on the system 
state (system mode or tesk mOdel. The system state is one 
of the following: supervisor control mode, physically dis
abled mode, globel spin lock mode, ylobal suspend lock 
mode,locally locked mode, type 1 SVC mode, SRB mode, 
EUT (enabled unlocked task with an established FRR) 
mode, or task mode. 

Module Label 

IEAVTRTM REFRESH 

IEAVESAR 

IEAVTRTM RECURSE 

SYSTATE 

a 
-fa 
toll 
l1li 
:z 



~ lEA VTRTM - Processing SUH Requests (Part 3 of 4) 
3: 
I 

N 
~ 
0. 

:::u 
CD 
n 
o 
< 
-f 
CD , 
:I 

3: 
co 
:I 
t+ 

.... 
00( 
N 
~ 
I .... .... 
'" VI 
I 

C 

.... 
n 
'oJ 

n 
o 
~ , ... 
IQ 
;;r 
t+ 
.... 
1:111 
3: 

n o , 
"g . 

Input 

RTM1WA 

I RTM1MODE I 
Registers 

SDWA 

D 

Process 

5 If the system stete Is task 
mode, set up the current 
task for RTM2. To RTM1 

overview 
(lEAVTRTM) 

Otherwise, route control to the i,-t(~~~~~] 
appropriate control prograrn "II 
recovery routine. 

6 Procass the retry. resume or 
continue with the termination. 

• Retry. 
• Resume. 
• Continue with termination • 

Routing to 
FRRs 

To RTM1 overview 
(lEAVTRTM) 

Output 

Register 0 

Register 3 

PSA 

PSARTM 

RTM1 
work registers 



r
oo( 
N 
00 
•• 
~ ..., 
CI'I 
1.11 

• o 

n 
o 
~ ., .... 
ra 
':T .... 
1-1 
till 
3: 

n o ., 
" . 

3: 
CD .... 
':T 
o 
a. 
o 
~ 

o 

" CD 

Cl .... .... 
o 
:J 

lEA VTRTM - Processing SUB Requests (Part 4 of 4) 

Extended Description Module 

For errors in task mode when the interrupt occurred. 
RTM1 schedules RTM2 to terminate the current task . 
RTM1 sets register 0 to indicate task termination and 
register 3 to point to the current TCB. This allows the 
reschedule section of IEAVTRTM to schedule the 
current task for termination. RTM1 sets the PSARTM 
to supervisor mode and gives control to the reschedule 
section. 

5 For er.rors in all other system states (see step 41, 
control program recovery must be performed. To 

effect this. recovery, the system recovery module 
(I EAVTRTSI receives control and routes control to any 
appropriate recovery routine (FRRI associated with the 
failing routine. . 

6 RTM1 analyzes the output from routing to FRRs 
in the SDWA to determine the next appropriate 

action in the handling· of the error. For retry requests, 
control goes to RTM's cleanup and exit processing. For 
valid resume requests, RTM1 establishes an interface 
to the reschedule processor function. Otherwise RTM1 
continues with termination, setting its work registerS 
to establish the correct Interface to the reschedule function. 

For DATERR entries to RTM1, RTM1 establishes the 
address space termination interface. RTM1 adjusts the 
datil areas used by the dispatcher to prevent the dis
patcher from attempting to reference any private areas 
in the failing address space. 

When the system Is In SRB mode. RTM1 determines if 
the SRB has a dependent tesk. If a dependent tesk 
exists and is in the current address space, RTM1 estll
blishes an ABTERM interface_ If the dependent task is 
not in the current address space, RTM1 establishes an 
XABTERM interface to cause RTM1 to reenter the task 
in the task's own address space. If RTM1 determines 
that there are no dependent tasks, RTM1 passes control 
to the dispatcher. 

Label 

SETUPABT· 

SYSRCVR 

SYSRCVR 

DATPERC 

SRBPERC 



3: 
< en 
"
X 
l> 

en 
r
r-

,., 
CD 
n 
o 
< 
-I 
CD , 
:I 

3: 
III 
:I 
t+ 

r
oo( 
N 
CO 
I .. ...., 

V. 
\.n 
I 

Q 

("') 
o 

" '< , .... 
III 
~ 
t+ 
1-1 
tIS 
3: 

("') 
o , 
" 

lEA VTRTM - Reschedule RTM 1 (Part 1 of 4) 

From RTMl overview 
IIEAVTRTMI to complete 

Input SUit mode processing Process 
~----, ... ~------, 

RTM's work registers 

Register 0 

I Function code 

Register 1 

Completion 
code 

Register 2 

I ASIO 

Register 3 

I t TCB 

Register 4 and Register 12 

+ Recoverv 
tracking area 
(2 registers I 

Register 5 

I .~ump I opllons 

Register 6 

I + HOs I 
Register 7 

I tAB I 

... 
) 1 

2 

3 

4 

Reschedule RTM on 
another processor, .. 
• Validity check the 

processor eddress, , 

• Issue SIGP on the failing 
processor, 

• Process the error conditions. 

I nitialize the recovery 
environment. 

• Establish SLIH mode recovery 
if a SLIH mode entry. 

• Establish the reschedule 
recovery. 

Reschedule RTM in the address 
space of the error. 

• Acquire and initialize an SRB. 

• Process the EEO •. 

• Sdledule the SRB. 

Raschedule RTM in the mode of 
the error. 

• Sdledule RTM2 X'431' 
(ABTERMI. 

• Reschedule RTM1 X'433'. 

6 

.. 
r 

Output 

PENDING 

SIGP 

.. SRB on global 
r;===:!:~ .. » dispatcher queue 

-.. EED 

I 
I 

TCB RB 

-+ SVC 13 

~ '\. 
r 

Saved SRB 

SVC13 
OR 

~ 

Seved 
local 
task 

+ SVC 13 

EEO s 

Dump 
OPtions 

Hardware 
info 

H 
f'II 

.-
~ 
n 
1'0 
::J 
CII 
1'0 
a. = ;a 
3:1'0 
IIICII 
t+rt 
1'0'" 
..,~ 

... ·0 
III"" .... 1'0 
CIIa. 

13: 
III 

-art 
"'1'0 
0.., " .... 
mill .., .... 
rtUl 
~ 

0 
O-ft 
..... 

H 
Htlill 
tIIlI3: 
3: = 



r
-< 
N 
co 
I .... ..... 

(II 
UI 
I 

o 

n 
o 
~ , ... 
IQ 
::T 
rio 

1-1 
till 
3: 

n 
o , 
'U 

.... 
'" CO ..... 

3: 
CD 
rio 
::T 
o 
Q. 

o 
-fI 

o 
'U 
CD , 
III 
rio ... 
o 
:l 

:0 
-C 
3: 
I 

N 
-'=' 
'" 

IEAVTRTM - Reschedule RTMI (Part 2 of 4) 

Extended Description 

ATM1 performs a reschedule service either when entered in 
service routine mode, or to complete SLIH mode processing. 
The basic input to the reschedule function consists of 
ATM1's work registers, which contain the necessary values 
to perform the requested service. 

1 RTMl attempts to process on another processor if e 
restart interruption caused the entry to ATM1 and the 

FAA on the current processor validly requested resume. This 
indicates that the interrupted program on the current pro
cessor was waiting for a resource held by another processor. 

• If the FAA returned a valic1 processor address, ATM1 
issues a SIGP instruction to another processor. As a 
result of the SIGP restart interruption. ATM1 begins 
processing on the signelled processor. 

• If the FAA returned en invalid processor address or 
if the restart could not be performed, ATM issues an 
ABEND causing the FAA of the interrupted program 
to receive control once again to clean up its resources. 

2 If ATM1 received control to perform a service, 
then some recovery has already been provided by an 

FAA established in IEAVTAT1 IAT1FAAI. If, however, 
ATM1 had been entered in SLIH mode. no FAR has been 
establ ished. 

• For SLIH mode entries, RTM1 places an FAR 
IATMSMFARI on the FRR stack. 

• Whether ATM1 received control in SLIH mode or 
in service routine mode, RTM1 places the reschedule 
FAA IRTMRSFRAI on the stack. This protects the 
reschedule function by two FRAs. The parameter areas 
of both FRRs are used to save registers and other infor
mation necessary for ATM1's recovery. 

Module Label 

IEAVTATM AESCPU 

AESCHED 

Extended Description Module 

3 ATM1 attempts to reschedule itself in another eddress 
space under two conditions: when an ABTERM func

tion has been requested and a nonzero ASID has been pro
vided Icross memory ABTEAMI, or when the system is in 
SAB mode and the associated task being terminated cannot 
be suspended lit cannot obtain the locallockl_ 

• ATM1 acquiras and initializes an SRB. A resource 
manager !the FAEESABS entry point in IEAVTATAI is 
established for the SAB. This resource manager frees the 
SAB and EEDs if an SAB's related task or address space 
is terminated before the SA B is dispatched. (See the 
description of the FAEESABS entry point in IEAVTATA.) 

• ATM1 obtains EEDs (extended -error descriptors) to 
contain the error registers, PSW, dump options, and 
error 10. If applicable; a pointer to these EEDs is placed 
in the SAB. 

• RTM1 schedules the SAB to the spacified address space 
to cause reentry to ATM1 in SAB mode Ireentry point 
IEAVTATX in IEAVTATlI. Operating as an SAB, 
ATM1 causes ATM2 to be invoked in the specified address 
space. 

4 ATM1 performs the reschedule mode function in 
three cases: for en ABTEAM of a task in the current 

address spece (ASID=OI; for e STEAM peging service; or 
for post-SLIH mode processing requesting the termination 
of a tesk in the current address space. 

• RTM1 reschedules page fault errors in either a locally
locked or an SAB routine for reentry into RTM1. 

• In all other cases, ATM1 schedules ATM2 to be 
dispatched from the failing routine. ATM1 places 
a painter to an SVC 13 (ABENDI instruction in 
the resume PSW; this instruction will be the first 
one executed when the routine in error regeins 
control. 

Label 

GETANSRB 

RESMODE 

SCHDRTM1 

SCHDRTM2 

a 
-It ... 
~ 
Z 



:IU lEA VTRTM - Reschedule RTMI (Part 3 of 4) -t :z 
I 

N 

'" Q 

:z Input Process 
< en Register 1 

" 5 )( I JIo Completion code 

en 
r- Register 2 
r-

ASID 

:IU Register 4 a. 
n I 4 Tracking area 0 
< 
-t 
a. ., 
9 

:z 
IQ 
9 
ft-

r-
-< 
N 
00 
I ... 

..... 
CI'I 
UI 
I t FRR work area Q 

,., Register 1 From RTM, 
n + SDWA to handlea 6 
~ 

n 
SDWA 0 

" D '< 
7 ., .... 

ID 
7 
t+ 

.... 
~ :z 
n 
0 ., 
" . ... 
..0 
00 ..... 

Reschedule RTM In the 
master scheduler address 
space. 

• Validate the ASID. 

• If this is an address space 
that cannot be terminated 
and a OAT error has 
occurred. terminate the 
system. 

.If this is an address space 
that cannot be terminated 
and a OAT error has not 
occurred. record the request. 

• If this is abnormal address 
space termination. invoke 
SLIP processing. 

• Place the ASCB on the queue 
of address spaces to be 
terminated. 

• POST the addrell space 
termination controller. 

Delete the reschedule recovery 
environment. 

Determine whether the 
function can be retriad: 

• Retry the function 
beyond the point of 
EED processing. 

• Clean up the resources 
end continue with 
terminations. 

To RTM1 
overview 
(JEAVTRTMI 

ToRTM, 
to retry 
(IEAVTRT11 

Output 

CVT ...... RTCT 

V 

(ASCB 

Termination 
queue chain r-- .... 

IEAVTMTC's SRB 
to be dispatched 

D 
SDWA 

D 
Queue 
of ASCBs· ,...,----, 
I I 
L ___ .J 

To RTM, to cOI'tl~;;--------------"'" 
with termination 
(IEAVTRT11 



,... 
-< 
N 
OCt 
I .... 
~ 
CIt 
\II 
I 

o 

.... 
n ..., 
(') 
o 
~ 
"' .... 
Ia :r 
rfo ... .. 
3: 
(') 
o 

"' 'V . ... 
..a 
OCt ..... 

3 
ID 
r+ :r o 
a. 
o 
-h 

o 
'U 
ID ., 
II) 
r+ .... 
o 
~ 

== 3 
I 

N 
\II .... 

IEAVTRTM - Reschedule RTMI (part40f4) 

Extended Description 

5 If the address space termination function has been 
requested. RTM1 attempts to schedule the address 

space termination controller pan of RTM ClEAVTMTCI. 
which resides in the master scheduler address space. 

• RTM1 verifies that the input ASIC represents a 
valid address space. 

• RTM1 calls IEAVTRS7 when an attempt has been 
made to terminate an address space because of a 
OAT error in an address space the system can not 
allow to be terminated. IEAVTRS7 calls IGFPTERM 
to terminate the system by issuing message I EAB02W 
and putting the system in an AOO wait state • 

• RTM1 calls IEAVTRS5 when a request has been 
made to terminate an address space that may not be 
terminated and a OAT error has not occurred. 
I EAVTRS5 records the fact that an attempt has 
been made to terminate an address space that may 
not be terminated by invoking the software recording 
facility. 

• If an address space is being terminated abnormally • 
RTM' callsthe SLIP processor (lEAVTSLPI. For a 
description of the SLIP processor. see the diagram 
SLIP Action Processor - Pan' ClEAVSLPI. 

• For a valid ASIO. RTM1 places the corresponding 
ASCB on the address space termination queue. Invalid 
ASIOs are ignored. 

• RTM1 schedules the address space termination con· 
troller's SRB to process the address space termination 
queue. 

If the request for address space termination was honored. 
RTM' passes a return code of zero to the caller. Other· 
wise. RTM1 returns a return code of 4. 

6 RTM, deletes the SLiH mode FRR. if applicable. 
and the reschedule FRR. If RTM1 had been entered 

in SLiH mode. recovery now reverts to the scheme of 
logical phase recovery routines. (See M.O. diagram 
I EAVTRTR - RTM' Recursion Processing for a description 
of logical phases.) 

Module Label 

IEAVTRTD IEAVTRS1 

IEAVTRSO IEAVTRS7 

IEAVTRTD IEAVTRS5 

IEAVTSLP 

IEAVTRTM WAKEMTC 

RESCHEO 

Extended Description 

7 The reschedule RTM1 function protects Itself with 
an FRR Ifunctional recovery routinel. The FRR 

determines whether thQ reschedule function can be retried 
past the portion of coda where the error occurred. or 
whether to continue with termination. The FRR request. 
retry only for errors that occur during processing non· 
essential to RTM1's handling of the original error. One 
such example of non·essential processing Is EED processing. 
If the FRR must continue with termination. the FRR 
cleans up the resources used during the reschedule function • 

This provides an additional parameter area used by the 
reschedule RTM1 FRA (RTMRSFRR). This FRR passes 
a continue with termination rIKluest. when entered • 

Module Label 

IEAVTRTR RTMRSFRR 

RTMSMFRR 

r-= 
... ::IIt 
nCD 
CDea 
:::J .. 
(I)'" 

Ii 
II 
CD:IE .,. ..... 
&DCD ....., 
(I) .... 

.I!. • ,. 
.,0 
.g" 
CD'" .,. 
r+3 
'< = 



;;a 
-j 
3: 
I 

N 
1.11 
N 

3: 
<: 
CJ) 

"
X 
1:0 

CJ) 
r
r-

;;a 
CD 
o 
o 
< 
-j 
CD .., 
3 

3: 
10 
3 ,.... 

r
-< 
N 
00 
I ...... 

"-I 
V4 
1.11 
I 

C 

..... 
o 
-...; 

(") 
o 
'0 
'< .., 
~. 

10 
:::r ,.... 
~ 

t:J:I 
3: 

(") 
o .., 
'0 

lEA VTRTM - System-Directed Task Termination (Part 1 of 2) 

nput 

TCB 

D 

From reschedule RTM! 
(lEAVTRTMI 
to terminate a tns . k P .. rocess 

1 Validate the inpu·. TCB. 

:> 2 StoP execution of the task. 

"- 3 Establish an interlace to RTM2. 
v 

"-
4 Ensure that the task can ... 

resume execution. 

... .. 
IEAVSETS .. .. 
STATUS 

... .. 
IEAVSY50 .. .. 

POST 

~TORTMI 
overview 
(lEAVTRTMI 

Output 

TCB 

"-
v 

Flags 

TCB 

+ RB 
t--. RB 

Camp ~ 
code Resume 

"- address 
SVC 13 

Flags Instruction 
v 

\ 

\.. EEDs 

Hardware 
data Dump 

options Registers 

I 

TCB 
"-
... 

Flags 

C/J 
-< en .... 
111 
:r: 
~ 
H 
;:a 
111 
o .... 
111 
~ 

.... 
):0 
C/J 
~ 

.... 
111 
;:a 

H 
Z 
):0 .... 
H 
o 
Z 

r.... 
n 
m 
::::J 
III 
m 
a. = ;:a 
3;m 
III III 
rtrt m.., .., .... 
... ·n 
IIlrt 
.... m 
lila. 
13: 

III 
-ort ..,m 
0-' 
'D .... 
mill .., .... 
rtlll 
'< o 
O-h 
-h 

H 
HtII:I 
t11:13: 
3: = 



r-
oo( 
N 
0) 
I .... 

...... 
tH 
\II 
I 

C) 

(") 
o 
~ ., .... 
III 
:T 
t+ 
I-t 
til 
3 
(") 
o ., 
'0 . 

3 
CD 
t+ 
:T 
o 
Il. 

o 
~ 

Q 
'0 
CD 

iI1 ,... .... 
o 
~ 

IEAVTRTM - System-Directed Task Termination (Part 2 of 2) 

Extended Description 

Since the task recovery and termination process (RTM21 
must operate under the TCB being serviced, RTM1 must 
modify the task control block structure nCB/RBI so 
that RTM2 receives control (via SVC 13) as an RB on 
the effected TCB. RTM1 performs validity checking to 
prevent erroneous modification of key 0 storage and 
unnecessary ABEND processing. The task must be 
stopped because in a multiprocessing environment, the 
task might be operating on another processor. Resetting 
the task's non-dispatchability indicators and wait 
indicators prevents deadlock situations. 

1 RTM1 ensures that the task passed as input exists 
on the TCB priority queue of the address space. 

(RTM1 does not check the priority queue if the current 
task is being terminatedJ RTM1 also checks whether 
or not the task had previously been passed to ABTERM 
but has not yet executed the SVC 13 (ABENDI instruction. 
If the TCB is invalid or the ABTERM is already in progress, 
RTM1 bypasses scheduling the ABTERM function. 

Module Label 

IEAVTRTM VALlDCK 

2 RTM1 cails the STATUS routine to stop the execution IEAVSETS CKNONCUR 
of the task on another processor in a multiprocessing 

environment. The task will not be redispatched while RTM1 
holds the local lock. For current tasks, no call is necessary 
sinc~ the task has already stopped execution. 

3 RTM1 aiters the resume address of the task to that 
when the task subsequently receives control it will 

execute an SVC 13 (ABENDI instruction to enter RTM2. 
The information concerning the error resides in the 
TCBIRB and EEO(s) for use by RTM2. 

4 These considerations affect the dispatchability of the 
TCB/RB being terminated: 

11 The wait count in the RB. 
21 The non-dispatchability flags in the TCB. 

I EAVTRTM enters POST via a branch to reduce the wait 
count. IEAVTRTM reissues the POST until it takes the 
RB out of a walt condition (when the wait count becomes 
0). STATUS 5ets the task forced-dispatchable by resetting 
all non-dispatchability flags. Thi5 function breaks any 
deadlock situations caused by routines that set tasks non
dispatchable and neglect to reset them. 

IEAVTRTM TCBRB 

SCHDRTM2 

IEAVSY50 

a 
oft ... • Z 



3 
< 
V) 

"
X 
l> 

V) 
r
r-

:;IC 
(I) 
() 
o 
< 
-I 
(I) , 
3 

3 
t.Q 
3 
t+ 

r
-< 
N 
00 
I .... 

--.J 
VI 
I.n 
I 

o 

C") 
o 
"C 
'< , 
1-1' 
t.Q 
::r 
t+ 

lEA VTRTM - Reschedule Locally Locked Task or SRB (Part 1 of 2) 

npu t 

ASXB 

U,,,, '" } rescheduling 
ASXBIHSA, 

a locally 
locked task ~ 

OR 

SSRB 

U"d '" I rescheduling 
an SRB Interrupt 
routine registers 

Interrupt 
PSW 

From reschedule RTM1 
IIEAVTRTMI to reschedule a 
locally locked task or SRB. .. 

EED 

D 
1-. 
f---

IHSA 

Interrupt 
registers 

Interrupt 
PSW 

Process 

) .. 1 Inltlallza the EED hlladar. 

) 2 Move the registers, PSW, .. 
and control registers 3 
and 4 into the EED. 

) 3 Put the EED addru. In 
thll ASXB (SSRBI. 

4 Put the completion code/flagl 
In the ASXB (SSRBI. 

5 Alter the relume PSW. 

To RTM1 overview 
IIEAVTRTM) 

Output 

EED 

JJ 
.. 
~ 

Registers. PSW, 
control registers 
3 and 4 

IHSA (SSRB) 

] t -EED 

Comp code 

Reason code 

t SVC 13 

Reluma PSW 

)I .. 

;Q 
m 
en 
(') 
:c 
m 
t:J 
c: 
r-
'" r
o 
(') 
l> 
r
r
< 
r
o 
(') 

" m 
t:J 

-I 
l> en 
" o 
;Q 

en 
;Q 
cr;, 



r
oo( 
N 
CIt 
I .... ..., 

CoN 

'" I 
CI 

o 
o 
~ , ... 
fQ 
;r .... 
.... 
1:11' 
3: 

o o , 
11 

3: 
CD .... 
;r 
o 
Q. 

o 
-fI 

o 
11 
CD 

~ .... ... 
o 
:::J 

;g 
-f 
3: 
I 

N 

'" '" 

lEA VTRTM - Reschedule Locally Lo~ked}'~ or SRD (part 2 or 2) 

Extended Dascrlptlon 

When an error occurs during page fault processing for a lo
cally locked task or an SAB routine, ATMl sets the task to 
be redispatched from the I HSA (or the SSA B) with an SVC 
13 (ABEND) instruction as the first instruction to be exe
cuted. When the SVC executes, the SVC IH gets control. 
It issues a CALLATM TVPE=SVCEAA macro since it ap
pears that an ineligible routine (that is a locked task or SAB 
routine) has issued an SVC. 

1 ATM1 clears the EED and sets the 10 field to indicate 
a register type • 

2 The registers, PSW, and control registers 3 and 4 from 
the time of the page fault are stored in the EE D. For a 

task, these values come from the IHSA (I HSAGPAS and 
I HSACPSW) and XSB (XSBXMCRS). For an SRB, these 
values come from the SSAB (SSRBGPRS and SSRBCPSW) 
and XSB (XSBXMCRS). For the locally locked task, if the 
suspended task holds a CML lock, IEAVTATM.issues a 
CMSET SET macro to establish addressability to the CML
locked address space in order to access the I HSA fields. 
After accessing the IHSA fields, IEAVTRTM issues a 
CMSET RESET macro to reestablish the cross memory 
status at the time of the entry to ATM. 

3 RTM1 alters register 0 in the I HSAGPRS field (for a 
task) or SSABGPAS field (for an SAB routine) to point 

to the EED. This becomes input to ATM1 upon reentry. 

4 ATM1 places the completion code and options flags in 
the register 1 slot in the IHSAGPAS or SSRBGPRS field • 

5 RTMl alters the PSW !the I HSACPSWor SSRBCPSW 
field} to point to an SVC 13 instruction within the RTM 

module. (This allows ATM1 to uniquely identify the re
entry as a reschedule function rather than a regular ABEND 
request issued by another routine.) 

Module Label 

IEAVTATM SCHDATM1 

SCHDRTM1 

. SCHDATM1 

SCHDRTMl 

SCHDRTM1 



3: 
< 
~ 
>< 
~ 

en ,... ,... 

,... 
~ 
N 
00 
I .... ...., 

"" '" I 
Q 

,.. 
n ..... 
(") 
a 
~ ., .... 
!O 
;r ... 
.... 
~ 
3: 
(") 
a ., 
"U . 
.... 
'" 00 ...., 

IEAVTRTM - RTMI Clean-up Processing (Part 10r2) 

Input 

RTM1WA 

D 

From RTM1 overview 
II EAVTRTM) to 
clean up resources used 

by RTM1 - .. Process 

RTM1 
registers 

D ) 1 -., 

2 

.. 

Free the RTM1 resources: 

• EEDs. 

• Intersects obtained by RTM. 

• Locks acquired by RTM1. 

• SDWA. 

• Program check the recursion 
indicators. 

• RTM1 recursion indicators. 

Free the failing system 
routine's locks. 

.. 3 Determine the type of exit. 

Output 

RTM1WA 

.. 

.. 

RTM 1 registers 

... .. 
-" 

To RTM1 ... exit 
processing 
(lEAVTRT1) 



r
oo( 
N 
Ot 
I ... 
" CII 
UI 
I 

CI 

,... 
n ..., 
n o 
~ ., .... 
fa 
~ 
0+ 

.... 
tlII 
3: 

n 
o ., 
" . 

3: 
CD 
0+ 
~ o 
a. 
o 
-h 

o 

" CD 

ill 
0+ .... 
o 
~ 

lEA VTRTM - RTM 1 Clean-up Processing (Part 2 of 2) 

Extended Description 

This diagram illustrates the functions performed by RTM1 
during cleanup processing. 

1 The cleanup processing frees any locks, E EDs, inter· 
sects, or an SDWA acquired during the RTM1 proces

sing that are no longer needed. 

2 Cleanup frees all intersects and locks currently held 
by the failing routine. FREELOCK (EP Name'" 

I EA V F R LK) performs this function. 

3 Cleanup deletes any recursion indicators in the 
RTM1WA or the current FRR. Cleanup then returns 

to the entry point/exit point processor with an indication 
of the type of exit to process. 

Module Label 

IEAVTRTM SVSCLEAN 

EXIT 

r-: 
bi: 
CD". 
::I .... 
CD., 
CD ... 
a.~ 
3CD ::.a. 
CD3 .,. ....... 
lieD ... ., 
CD ... 
II!. 

UJ ,. 
.,0 
0 .... 
'II 
CD ... .,. 
r+3 
'< = 
o .. 
i 



'" -f 
3: 
I 

N 
U'I 
00 

3: 
< 
CJ) 

" ~ 
CJ) ... ... 
;Q 
ID 
n 
o 
< 
-f 
ID ., .. 
3: 
!Q .. 
t+ 

... 
-< 
N 
00 
I 

I-' 

" (,.of 
U'I 
I 

o 

..... 
n ..... 
(") 
o 
~ ., 
~. 

!Q 
~ 
t+ 

.... 
= 3: 
(") 
o ., 
" . 

IEAVTRTR - RTMI Recursion Processing (Part 1 of 4) 

From RTM1 overview 
IIEAVTRTM) to process 
recursive entries into RTM1 
not handled by FRRs Process 

~~------------------------~ r------------------------------------, Output 

RTM1WA 

RTlTLPID 

+ Error information 

Register 0 

I Entry type 

Register 7 

4 Current stack 

1 Determine whether logical phase recovery 
can occur. 

• No, perform abort processing. 

• Yes. perform logical phase 
recovery processing. 

Abort Processing 

2 Terminate RTMl processing. 

• If required, place the system In a 
X'084' wait state. 

• Otherwise, perform cleanup. 

.... Step2 

_.~Step3 

To dispatcher or SRB 
dispatcher II EA V E DSO) 



r
oo( 
N 
co 
I .... ..... 

V. 
I.n 
I = 

n o 
~ ., .... 
IQ 
;r 
rio 

.... 
= :a:: 
n 
o ., 
"0 

.... 
\C 
CO ..... 

:a:: 
CD 
rio 
;r 
o 
a.. 
o 
-II 
C) 
'U 
CD 

Dl 
rio .... 
o 
~ 

~ :a:: 
I 

N 
I.n 
\C 

lEA VTRTR - RTMI Recursion Processing (Part 2 of 4) 

Extended Description Module 

In certain paths through RTM1 processing, recursions can
not be processed by FRRs (functional recovery routines). 
For example, the phase of the module that actually routes 
control to FRRs (module IEAVTRTS) cannot be protected 
by an FRR (that is, if this phase does not work, it cannot 
route to an FRR to protect itself). To handle these situa
tions where certain phases cannot be protected with an 
FRR, RTM1 uses LPRRs (logical phase recovery routines). 
To use LPRRs, RTM1 tracks its own processing. The track
ing information consists of two items: 

" An LPIO - A logical phase 10 that identifies the LPRR 
that can process the recursion. 

~ An LPN - A logical phase number that identifies the 
phase of RTM1's processing in control at thetime of the 
error. 

Recursion processing routes control to the LPRR identified 
by the LPIO. 

Label 

1 When I EAVTRTM discovers a recursive condition in IEAVTRTR RECVRRTM 
RTM1, it passes control to the recursion processing 

subroutine. Recursion processing first determines whether 
a logical phase identifier exists by checking the RT1TLPIO 
field of the RTM1WA. Any time an RTM1 logical phase 
uses an LPRR for recovery, it sets the RT1TLPI0 to a non
zero number. If the recursion processing routine finds a 
non-zero number in that field, it gives control to the correct 
LPRR. This processing is described in step 3. If it finds a 
zero, no specific LPRR exists and the abort LPRR receives 
control. 

Extended Description Module 

2 The abort processing subroutine initially determines: 

o If this is a recursive entry (an error encountered in abort 
processing). 

or 

• If an error occurred in IEAVTRTF (RTM super FRR 
retry routine). 

If one of the previous conditions is true, the system is placed 
in a X'084' disabled wait state with an appropriate reason 
code (8 or C). 

If one of the previous conditions is not true, abort processing 
does the following: 

• Issues a CALLRTM TYPEcMEMTERM macro to termi
nate the current address space. 

• Resets intersects. 

• Releases any locks. 

• Purges all recovery routines from each of the super stacks. 

• Purges all recovery routines from the normal stack. 

• Makes the normal stack the current stack. 

• Sets all supar bits to zero. 

Abort processing then gives control to either the dispatcher 
or the SRB dispatcher, depending on the mode at the time 
of the error. 

Label 

ABORT 

r- = .... ::u 
nCD 
CDUI 
:lc+ en., 
CD ... 
a.~ 
ZCD 
~a. 
CD:!: 
"11) ... c+ 
AID .... ., 
en ... m 
I ... 

US 
"G 
.,0 
O-ft 
'U 
CDM 
.,tJI:I 
""3: 
'< = 



~ lEA VTRTR - RTM J Recursion Processing (Part 3 of 4) 
3: 
I 

N .,.. 
Q 

3: 
< 
(I) , 
)( 
l=-

(I) 
r
r-

=0 
CD 
n 
o 
< 
""'f 
CD ., 
a 
3: 
co a 
~ 

r
oo( 
N 
00 
I ... ..... 

&1'1 

"" I 
CI 

(") 
o 
~ ., ... 
!Q 
;r 
~ ... 
til' 
3: 

(") 
o ., 
" 

Input 

RTM1WA 

RT1TLPN 

Register 12 

1+ Error information 

Register 0 

I Entry type 

Register 7 

1+ Current stack 

~------------------------------~ From 

Register 1 

I. SRB 
Register 2 

I.SRB extension 

Register 14 

1 Return address 

Register 15 

1+ Entry point 

PURGEOQ 

(lEAVEPOOI 

Process 

Logical Phase Recovery Processing 

3 Route control to the correct LPRR. 

• Recover from an error in routing to FRRs. 
• Recover from an error in restart processing. 
• Recover from an error in IEAVTRTM for 

management processing. 
• Recover from an error in post-SLIH processing. 
• Recover from an error when no SLIH pre

cessing can be performed. 
• Recover from an error in restart processing 

when no SIGP has been issued. 
• Recover from an error in FREECELL pro· 

cessing. 
• Recover from an error in FREEMAIN pro

cessing. 

FREESRBS: 

4 Free the SRB and EEOs obtained during XMABTERM 
processing in IEAVTRTM. 

RTM1 to retry the operation 
that failed. See Reschedule 
RTM1 (JEAVTRTMI 

PURGEOQ 



... 
-< 
N 
00 
I 

IEAVTRTR - RTMI Recursion Processing (Part 4 of 4) 

.... .... 
'" 1.11 
I 

o 

,.., 
n 
'oJ 

n 
o 
~ ., .... 
IQ 
J 
rio 

~ 

til 
3 

n o ., 
'U 

.... 
\0 

Extended Description 

3 When the RT1TLPID field is non-zero, an LPRR 
exists. The recursion processing routine routes 

control to the appropriate LPRR according to the type 
of recovery desired. (The RT1TLPN field of the RTM1WA 
indicates the logical phase in control.) RTM1 LPRRs 
recover from the following: 

• Errors in routing to FRRs. 
• Errors in restart processing. 
• Errors in mainline SLIH post-processing after routing 

to FRRs. 
• Errors in the mainline SLIH when no routing to 

FRR processing has been performed. 
• Errors in restart processing when no SIGP (signal 

processorl macro instruction was issued. 
• Errors in FREECELL processing. 
• Errors in FREEMAIN processing. 
• Errors in the management and control routing of 

ATM1 IIEAVTAT1) • 

~ If the LPRR can recover from the recursive error, it gives 
control to either I EAVTRTS or I EAVTRTM to resume 
processing the original error. Otherwise, the LPRR returns 
to ATM1 main processing to continue processing the 
new error. 

4 The PUAGEDO routina IIEAVEPDO) calls 
IEAVTATA (at entry point FREESABS, a task 

and address space termination resource manager) to 
free an SRB and the EEDs that IEAVTATM obtained 

3 and scheduled during XMABTERM processing. When 
~ an SRB's related task or address space was terminated 
l before the SAB was dispatched, FREESRBS returns the 
a. SRB to the supervisor SRB pool and the EEDs to RTM1's 
o EED pool. 
-fI 

o 
'U 
d) 

~ 
rio .... 
o 
;, 

Module Label 

LPRECOV1 

IEAVTRTR SAMDRCOV 
RVRSTRT 
AVPOSTSR 

AVNORTS 

AVNORST 
AVEEDFAE 
AVFAEEMN 

IEAVTRTA FREESRBS 

r-: 
...;111 nCD 
CD en 
::s .... en., 
CD ... 
a.~ 
3eD 
~a. 
CD:!: 
.,1» ....... 
!PCD .... ., 
III ... 

I» . ..-
1ft 

"D 
.,0 
O~ 

" CDH 
.,tIIII 
rt3 
~ = 
o 
-t. 

H 

" 3 



IEAVTRTS - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTM FRR Pracessing Madule 

FUNCTION: 
IEAYTRTS is tho _in control module for FRR processing. It 
controls the processing required in routing to FRRs. 

ENTRY POINT: IEAVTRTS 

PURPOSE: Provides the main functions of this module. 

LINKAGE: BALR 

CALLERS: IEAYTRI0 

INPUT: The R1111 work area 

OUTPUT: The RTHI work area. FRR stack and SOMA 

EXIT NORMAL: Retums to IEAYTRI0. 

EXIT ERROR: Returns to IEAYTRI0. 

ENTRY POINT: FRRETRN 

PURPOSE: 
Resumes FRR routing processing after the FRR returns to 
RTH. The caller. IEAYTRGl Can R1111 glue IIlOduleh is tho 
retum point for all FRRs. 

LINKAGE: BALR 

CALLERS: IEAYTRSI 

INPUT: Nona 

OUTPUT: Nona 

EXIT NORMAL I 
The exit is from module IEAVTRTS. This antry 
is a continuation of IEAVTRTS. 

EXIT ERROR: There are no exit error conditions. 

ENTRY POINT: EUTRTMIA 

PURPOSE: 
Acquires a new dynamic area for IEAYTRTS through the 
consecutive CALL and ENTRY statements. IEAYTRTS freed the 
original dynamic area When it had to enable itself to 
obtain the local lock for EUT FRR processing. 

LINKAGE: BALR 

CALLERS: IEAYTRTS 

INPUT: Nona 

OUTPUT: Nona 

EXIT NORMAL I The exit is from module IEAVTRTS. 

EXIT ERROR: There are no exit error conditions. 

ENTRY POINT: EUTRTMIB 

PURPOSE: 
Acquires a new dynamic area for IEAVTRTS through the 
consecutive CALL and ENTRY statements. IEAYTRTS freed the 

"RlI$tricted Haterials of ISH" 
Licensed Materials - Property of IBM 

RTM-Z62 HVSIXA SLL: Recov Term Mgmt LY2S-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTS - MODULE DESCRIPTION (Continued) 

original dynamic area when it had to enable itself to 
obtain the local lock for EUT FRR processing. 

LINKAGE: BALR 

CALLERS: IEAVTRTS 

INPUT: Nona 

OUTPUT: Nona 

EXIT NORMAL: The exit is from module IEAVTRTS. 

EXIT ERROR: There are no exit error conditions. 

EXTERNAL REFERENCES: 

ROUTINES: 
IEAVTR1C - SDMA Selection and Initialization Modulo via 

CALL 
IEAVTR1D - Retry/percolation Processing~ Lock freeing 

and mode swi tching Hodule (IEAVTRID is 
an entry point in module IEAVTR1C) via CALL 

IEAVTR1F - RTM1 FRR Routing Pre-Processor via CALL 
IEAVTRIG - RTM1 GTF Processing Module via CALL 
IEAVTR1R - RTMl RECORD Interface Module via CALL 
IEAVTR1X - RTM1 CMSET Interface Module via CALL 
IEAVTSLP - SLIP Action Processor via CALL 
IEAVTSSX - SLIP Space Switch Handler via CALL 

CONTROL BLOCKS: 
Common name Macro ID Usage Function 
----------- -------- --------
CVT CVT read and Sets the restart resource 

write word and obtains the SLIP 
control block pointer. 

ASCB IHAASCB read Sets information via the 
INTSECT macro. 

FRRS IHAFRRS read and Obtains FRR entry information 
write and set RTM control 

information in FRR entries 
LCCA IHALCCA read Obtains spin indicators. 
PSA IHAPSA read Obtains super bit~ lock 

status~ current ASCB and TCB 
addresses~ and FRR stack 
information. 

RTlH IHARTlH read and Obtains and sets RTMl control 
write information. 

SDMA IHASDMA read and Obtains and sets FRR input 
write and output information. 

SHDR IHASHDR read and Obtains and sets SLIP control 
write information. 

SVT IHASVT write Set by the INTSECT macro. 
TCB IHATCB write Sets fields to cause RTM2 to 

serialize with RTM1. 

LY28-173S-0 Ic) Copyright IBM Corp. 1987 Method of Operation RTH-263 



IEAVTRTS - MODULE OPERATION 

IEAVTRTS is comprised of savard antry points. Tho 
sacondary antry points intQ IEAYTRTS are a result of a 
structural requirom3rt "'Ore tnan a functional 0118. There is 
only ana primary function performed by this modula, tho 
ovarall control of tho FRR routing process. 

Tha main processing of IEAVTRTS is as follows: 

1) Acquiras and initializes a system diagnostic work araa 
(SDHA) for use by FRRs. IEAYTRTS calls IEAYTRIC to 
perform this function. IEAYTRIC handles tha di fferant 
procassing that is raquired of initial antry verses 
recursive entry. 

2) Invokes tho SLIP processing module, IEAVTSLP, to check 
abnormal termination conditions, such as completion coda 
and raason coda, against the currantly active SLIP 
traps, and to determine if any special SLIP action is 
required for this particular error occurrance. 

3) Obtains and saves tho current lock status. Many RTl1 
decisions are based on tho type of locks held. 

4) Determines if there are any FRRs available or eligible 

"Restricted Hatarials of IBM" 
Licansed Hatarials - Property of IBM 

to receive control. IEAYTRTS calls IEAVTRIF to examine the 
current state of tho system and the FRR stack. IEAVTRIF 
than daterminas if there are any FRRs that should be 
routed to. 

S) Serializes processing with RTH2 for EUT FRRs and prevents 
EUT FRRs from retrying if the error is a cancel type 
abnormal teraaination. 

To accomplish the RTl12 synchronization, IEAVTRTS must 
enable itsalf to obtain the local lock. Before enabling, 
IEAYTRTS must free the dynamic araa storage stack, thus 
losing its dynamic araa. (The dynamic areas in RTMl are 
useable only while disabled.) After obtaining the 
local lock, IEAYTRTS disables again and acquires a new 
dynamic area by calling antry point EUTRTl11A. The only 
use of this entry point is to acquire a new dynamic 
area. 

6) Preparas the FRR cross memory addressing environment. 
(See module IEAYTRlX.) 

7) Gives control to the most recently established FRR via a 
LPSH instruction. The retum address established for the 
FRR is within module IEAYTRG1. IEAYTRGl is a glue 
module responsible for reestablishing RTl1's addressing 
environment and calling IEAYTRTS at entry point FRRETRN 
to continua further FRR processing. 

8) If RTl12 is wai ting for this task to complete recovery 
processing, prevents retry from an EUT FRR. 

To accomplish the RTl12 synchronization, IEAVTRTS must 
enable itself to obtain the local lock. Before enabling, 
IEAVTRTS must free the dynamic area storage stack, thus 
losing its dynamic area. After obtaining the local 
lock, IEAVTRTS disables again and acquiras a new dynamic 
area by calling entry point EUTRTHIB. Tha only use of 
this entry point is to acquire a new dynamic area. 

9) Ensures that the SDHA describing each new software error 
is written to the SYS1.LOGREC data set. 

10) Performs the action of percolation, retry or resUllle as 

RTM-264 ttVSIXA SLL: Recov Term Hgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTS - MODULE OPERATION (Continueci) 

determined by module IEAVTRID. 

11) Repeats steps 3 through 8 U"Itil all FRRs have been 
routed to or until an FRR retries or resumes. 

12) Returns to IEAVTRI0 to process the final steps in 
an FRR retry or resume request, or to percolate the error 
to RTM2. 

LY28-173S-0 (e) Copyright IBM Corp. 1987 Method of Operation RTM-26S 



IEAVTRTS - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAVTRTS 
FRRETRN 
EUTRTHIA 
EUTRTHIB 

MESSAGES: None 

ABEND CODES: ~ 

WAIT STATE CODES: ~ 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTRTS: 

Registers 0 - 14 - Irrelevant 
Register 15 - Entry point address 

ENTRY POINT FRRETRN: 

Registers 0 - 14 - Ir~elevant 
Register 15 - Entry point address 

ENTRY POINT EUTRTMlA: 

Registers 0 - 14 - Irrelevant 
Register 15 - Entry point address 

ENTRY POINT EUTRTM1B: 

Registers 0 - 14 - Irrelevant 
Register 15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

ENTRY POINT IEAVTRTS: 

Registers 0 
Registers 1 

- Unpredictable 
- Abnormal termination completion code 

if attempt to obtain an SDNA failed 
Otherwise, unpredictable 

Registers 2 - 13 - Unpredictable 
Register 14 - Return point address 
Register 15 - Abnormal termination completion coda 

ENTRY POINT FRRETRN: 

Registers 0 - 15 - Irrelevant 

ENTRY POINT EUTRTMlA: 

Registers 0 - 15 - Irrelevant 

ENTRY POINT EUTRTM1B: 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTH-266 HVS/XA SLL: Recov Term Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTS - DIAGNOSTIC AIDS (Continued) 

Registers 0 - 15 - Irrelevant 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-267 



IEAVTRTV - MODULE DESCRIPTION 

"Restricted Materials of IBM" 
Licansed Materials - Property of IBM 

DESCRIPTIVE NAME: RTM PSACSTK Verification Module 

FUNCTION: 
This module checks the value in the PSACSTK to determine 
if it is a valid FRR (functional recovery routine) stack 
address when RTMI is entered in SLIH (second-level 
interruption handler) mode. 

ENTRY POINT: IEAVTRTV 

PURPOSE: See fU'lCtion 

LINKAGE: BALR 

CALLERS: IEAVTRTI 

INPUT: 
Registers in use by IEAVTRTI 
Register 14 - Return address 

OUTPUT: None 

EXIT NORMAL: Returns to IEAVTRTI 

ENTRY POINT: IEAVTEXS 

PURPOSE: SEE ENTRY POINT IEAVTEXS FOR DESCRIPTION 

LINKAGE: None 

CALLERS: None 

INPUT: None 

OUTPUT: None 

EXIT NORMAL: Returns to IEAVTRTI 

EXIT ERROR: The system enters a X'084' wait state. 

EXTERNAL REFERENCES: 

ROUTINES: 
IGFPTERM - Terminates the system with a 

X'084' wait state. 

DATA AREAS: None referenced 

CONTROL BLOCKS: 
Common name Macro ID Usage 
----------- --------

FRRS IHAFRRS read 

LCCA IHALCCA read 
PCCA !H~PCC~ read 

PSA IHAPSA read 

RTlH IHARTlH read 
SDHA IHASDHA read 

YSTAK IHAYSTAK read 

HSAVTC IHAHSAVT read 

RTH-Z68 MVSIXA SLL: Recov Term Mgmt 

Function 

obtains the length of each 
super FRR stack. 
Maps the HSAVTC 
Coni:tlins ow;essivo spin length 
factor 
obtains the address of the 
current FRR stack (PSACSTK) 
and the normal FRR stack 
(PSANSTK). 
obtains the stack mapping. 
Obtains tho length of an SDHA 
in a super FRR stack. 
obtains the number of entries 
in each super FRR stack. 
Obtains the addresses of the 
frr stack save areas. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTV - MODULE DESCRIPTION I~timmd) 

SERIALIZATION: IEAVTRTV does not obtain any locks. 

LY28-173!i-O Ic) Copyright IBM Corp. 1987 Method of Operation RTM-269 



IEAVTRTV - MODULE OPERATION 

IEAVTRTY receives control to check whether the PSACSTK field 
has a valid FRR stack address. 

Entry point IEAYTRTY receives control from IEAYTRTl and checks 
through these two sources: 

1. The normal FRR stack 
2. The super FRR stacks 

IEAVTRTY performs tho following three processing steps until 
a valid FRR stack address has baen found: 

1. Checks the normal FRR stack. 

IEAVTRTY compares the contents of the PSACSTK field 
(which contains tho address of the currently used 
FRR stack) with the address of the PSASTAK field 
(which contains the normal FRR stack). If they are 
aqual, RTHI has access to tho normal FRR stack. 
IEAVTRTV returns to IEAYTRTl. 

2. Checks the super FRR stacks. 

IEAVTRTY compares the contents of the 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

PSACSTK field with the address of each super FRR stack. 
If a match is found, RTHI has access to a super FRR 
stack. IEAVTRTV returns to IEAVTRTl. 

If no valid FRR stack address is found, RTMI camot continuo 
its initialization processing. IEAVTRTY invokes IGFPTERH to 
put tho system in a X'084' non-restartable wait state (reason 
codo=4) and to issue messago IEA797H. 

RECOVERY OPERATION: 
There is no recovery processing for IEAVTRTV. If a valid FRR 
stack address camot be found, IEAVTRTV invokas IGFPTERM to 
put the system in a X'084' non-restartable wait state (reason 
coda=4) and to issue message IEA797H. 

RTH-270 HVSIXA SLL: Recov Term Hgmt LY28-1735-0 (0) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTV - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAVTRTV 
IEAVTEXS 

MESSAGES: 

IEA797W - The pointer to the current FRR stack is not 
valid. 

ABEND CODES: ~ 

WAIT STATE CODES: 

X'Q84' RTM (recovery termination management) 
has encountered an uncorrectable error 
while trying to provide recovery or 
termination to some unit of work in the system. 
The wait state PSH (bits 40-47) 
contains a reason code of 4 which 
indicates that the PSACSTK does not 
have a valid FRR stack address. 

RETURN CODES: ~ 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTRTV: 

Registers 
Register 
Register 

0-13 - Irrelevant 
14 - Return address to IEAVTRTl 
15 - Irrelevant 

ENTRY POINT IEAVTEXS: Irrelevant 

REGISTER CONTENTS ON EXIT: 

EXIT NDRMAL: 

Registers 0-15 - Irrelevant 

LY28-1735-0 (0) Copyright IBM Corp. 1987 Method of Operation RTM-271 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRTV - RTM PSACSTK Verification Module 

IEAVTRTl 

lEA~~ 
This module checks the value in the 
PSACSTK to determine if it is a valid FRR 
(functional rocovary rout ina ) stack 
address when RTMI is entered in SLIH 
(sooand-level interruption handler) moda. 

lEA~: 
~ 

• 
,PSA 

/lpSARECURI 

RTM-272 HVSIXA SLL: Racov Term Hgmt LY28-173S-0 Ic) Copyright IBM Corp. 1987 



"Restricted Materials DT IBM" 
Licensed Materials - Property oT IBM 

This page left blank intentiona11~. 

LY28-1735-0 ,(c) Copyright IBM Corp. 1987 Method of Operati'on RTM-273 



~ lEA VTRTl - RTMI Initialization (Part 1 of 6) 
~ 
I 

N ..... 
.c-

~ 
<: 
(I) 

" x 
:I> 

(I) 
r
r-

;;0 
II) 
n 
o 
< 
-I 
CI) , 
a 
~ 
10 a ... 

r-
oo( 
N 
00 
I .... ..... 

(JoI 
UI 
I 

Q 

,.... 
n ..... 
o 
o 
"CJ 
'< , .... 
10 ::r 
r+ 

1-1 
tI:I 
~ 

o 
o , 
'tI 

"put From CALlRTM 

~ 

Register 1 

I CALLRTM flags and I completion code Is) 

Register 15 

I Entry point address I 
PSA 

D 
LCCA 

D 

Process 

1 

"-
r 2 

Perform initialization based on the 
type of en try: 

• For second level Interruption 
handler fSlIHI mode: 

- PROGCK 
- RESTART 
- SVCERR 
- OATERR 
- MACHCK reentry 

• For service mode: 

- STERM 
- ABTERM 
- MEMTERM 
- ABTERM reentry 

• For machlne-check mode: 

- MACHCK 

Process the second level Interruption 
mode entries: 

• Indicate the complellon codes for 
the Interruption. 

• Set en Indicator for the particular 
type of Interruption. 

• OO..!!Q! save the registers.· 

• Subsequent errors are detected 
by recursIve entries to RTM 1. 

6 

Output 

Rliglster 1 

IF lags and completion cOdefsl1 

Register 0 

IEntry point - function 10 I ... Register 2 

" 1+ ht half PSW I 
Resister 3 

I 1+ 2nd helf PSW 

Register 13 
.... 

I ,,~p Reo Isters e t 
Interruption 

Register 5 

1+ Dump options I 

.... 

~ 
:3: .... 
H 
Z 
H 
-I 
H 
lo 
r
H 

8 
H 
o 
Z 

r.... 
n m 
:;, 
III m 
a.: 

;III zm 
At III 
rtrt m., ., .... 
... ·n 
Atrt 
.... (D 
ilia. 
1:3: 

At 
'Vrt 
"(D 
0., 
'tJ .... 
(DAt ., .... 
rtlll 
'<0 
O~ 
~ 

H 
Htd 
td:3: z: 



r
oo( 
N 
Of 
I .... ..... 
~ 
\II 
I 

o 

.... 
n 
'-i 

n o 
~ ., .... 
ID 

~ 
.... 
til 
3 

n 
o ., 
'V . 
.... 
\0 
Of ..... 

lEA VTRTI - RTMI hlitialization (part 2 of 6) 

Extended Description Module Label 

RTM1 processing receives control via the CALLRTM 
macro. The expansion of the macro locates the correct 
entry point address into RTM1 from the RTM1 branch 
table (pointed to by the CVTBTERM field of the CVTI. 
RTM1 Initialization combines the various entry point 
data to create a common Interface for RTM1 processing. 

1 RTM1 initialization consists of saving the registers. I EAVTRT1 
saving the cross memory information (control registers 

3 and 41, indicating the completion codes, and, for a 
service mode entry, establishing a recovery environment 
basad upon tha type of entry. lEA VTRTV accompl ishes I EAVTRTV 
the latter for all S~IH mode entry points by verifying that 
the address in the PSACSTK points to a valid FRR stack. 
If it does, RTM1's initialization processing continues. If 
it does not, then IEAVTRTV invokes IGFPTERM to put 
the system in a X'084' wait state and to issue massage 
IEA797W. (SeetheM.O.diagram IEAVTRTV - RTM 
PSACSTK Verification Module). RTM1 performs three 
types of Initialization; one based on requests made by the 
interruption handlers (lH), another based on a service' 
request for en RTM1 service; and the last for machine 
check interruptions •. 

2 RTM1 Inltlalizations prepares the following entry 
points for SLIH mode: 

• Program check entry point - Used by the program PROGCK 
check IH when an invalid page fault or prugram check 
occurs. Wl)en the .program check IH passes RTM1 
a completion code, the registers and PSW have bean 
saved by the program check IH in the primary save 
arees of the PSA and LCCA Itogical conflgurarion 
communications areat When RTM1 duel not receive 
a completion code, initialization processing builds one 
from the Interruption code and the error Information 
in the secondary save area In the LCCA. (See the Super
visor Control section of the Sy.rem Logic Llbf'IITY for 
a description of the program check IH and the different 
save areas used.1 

Extended Description Module 

• Restart entry point - Used by the restart IH after the 
operator has requested RTM processing. The subsequent 
handling of a restart request in RTM is tailored to 
loop-breaklng, that is, a looping program is not allowed 
to retry, and a validly spinning program is allowed to 
request RTM to interrupt the program that owns the 
resource being waited upon. The restart IH has seved 
the registers in the LCCA and the resume PSW in the 
PSA. 

• SVC IH entry point - Used whenever an SVC is 
issued by a routine that is locked, disabled, In SRB 
mode, In EUT mode (enabled unlocked task with an 
established FRRI. or is under supervisor control (non
dispatchable supervisory functlonsl. Upon entry, 
lEA VTRT1 Issues a CMSET SET to the home address 
space. If the SVC is not an SVC 13 (an ABEND SVCI • 
RTM1 interprets it to be an error. The SVC IH has 
saved the registers. the cross memory. Information (con· 
trol registers 3 and 4). and the PSW. (See the SVC IH 
IIEAVESVCI diagram for a complete description of 
the SVC IH.) If the SVC was an SVC 13. and It was not 
laued by RTM. I EAVTRT1 interprets the entry point 
es an explicit request for ABEND processing. If the 
SVC 13 was Issued by RTM. error Information (regis
ters. cross memory Information, and the PSW) was put 
in an EED (extended error descriptor) by the RTM1 
Subroutines module IIEAVTRSO).IEAVTRT1 sets up 
the Interface to RTM1 melnline by using the Information 
in the EED. If an SRB Is percolating to Its ralated 
task's FRR, IEAVTRT1 obtains the completion code 
end the EED eddress from the TeB. 

Label 

RESTART 

SVCERR 

r-:I ... :a nm 
!~ en., m ... 
a.~ 
3m 
~a. 
mz 
.,CD ... ,... 
CD CD ... ., 
en ... 
II!. en 

" .,0 
,oft 
m ... 
~I 
~ :I 

0 oft ... 
~ z 



...... 
\Q ... 
0 .... 
~ cD 

1:11 
'-' as 

Q. .. 
= )( 

as 
Q c 
;: c = 0 
.t:I 'i ] ;:, 
.'t: c 
.s 0; 

c - 0 
u 

:E c 

; 0 
0; 

~ I :ll - GI ; E Q 

l! 'i 

S Ol 
.!! '1J c 
'1J CII 
0 

.. 
"-I x - Z W 

RTM-276 MVS/XA SLL. Reeov Term Mgmt 

"Restricted Materials of IBM" 
Licensed Materials - Property o~ IBM 

LY28-173S-0 ee) Copyright IBM Corp. 1987 



r
oo( 
N 
00 
I .... .... 

VI 
1.11 
I 

o 

(") 
o 
"a 
'< ., .... 
10 ::r 
r+ 
1-4 
til:! 
3: 

(") 
o ., 
"a . 
.... 
'" 00 .... 

3: 
CD 
r+ 
::r 
o 
Q. 

o .... 
o 
"a 
II> 

~ 
r+ .... 
o 
~ 

;:Q 
-I 
3: 
I 

N .... .... 

lEA VTRTl - RTMI Initialization (Part 4 of 6) 

Extended Description Module 

2 (continued) 

• DATERR entry point - Used by the program check IH 
when a recursive translation exception occurs during 
either the program check IH's processing, or RTM1's 
FRR processing. Before calling RTM1. the program check 
IH attempted to circumvant any further translation 
failures by altering control register 1 (the segment table 
origin register, which contains the master's STOR). Both 
the primary and secondary ASIOs equal the master's 
ASIO. The PSW Soblt is turned off. The current stack 
is that of the PC FLiH and IEAVTRT1 gives any FRRs 
on that stack control in the same environment in which 
RTM vYas entered. In this case, IEAVTRTl does not 
change the PSAAOLO from the ASCB of the home 
address space at the time of the OAT error. IEAVTRT1 
makes a check to see it the OAT error occurred in the 
home address space or in another address space. If the 
OAT error occurred in the home address space. 
IEAVTRTl passes control to mainline RTM1 to process 
the OAT error. If errors occur egain, the program check 
IH places the system in a disabled wait state. RTM1 does 
not allow normal recovery processing to occur during 
DATERR processing since the private areas of the 
failing address space are no longer addressable. If a 
supervisor control routine was in control when the 
original error occurred, then IEAVTRTl gives its FRR 
control with a special indication to warn it that private 
areas are no longer addressable !the ASID of the failing 
address space is specified on the CALLRTM macro. This 
ASIO is placed in the SOWA (SOWAFMIOI and passed 
to the FRRs.) The super FRR may recover the address 
space or terminate it (via MEMTERMI. If a super FRR is 
not available, RTM1 bypasses all recovery, records the 
incident and terminates the address space. If the OAT 
error occurred in an address space other than the home 
address space, IEAVTRTl conditionally obtains an SRB, 

Label 

OATERR 

If the SRB is obtained, IEAVTRT1 initializes it to run in 
the master's address space with the entry point OATMEM 
in IEAVTRTl and then schedules it (DATMEM will issue 
the MEMTERM macro for the address space suffering 
the OAT errorl. Whether the SRB is scheduled or not, 
lEA VTRT1 loads register 1 with a completion code at 
X 'OFC' and givas the PROGCK entry point in I EAVTRT2 
control. 

• MACHCK reentry - Used when RTMl sets up MCH IEAVTRTN 
(machine check handler) or ACR (alternate CPU 
recovery) for re-entry into RTM1 after RTM1 was ini· 
tially entered for a machine check. RTM1 uses this 
entry to attempt software recovery processing if a 
machine check caused software damage. 

RTMl is entered in the home mOde. On entry. register 
4 points to two words that contain the contents of 
control registers 3 and 4 at the time of the error. The 
passed PSW indicates the value of the PSW S-bit at the 
time of the error. 



::0 lEA VTRTI - RTMI . Initialization (Part S of 6) 
~ 
3: 
I 

N .... 
00 

r
oo( 
N 
00 
I .... .... 

CJII 
VI 
I 

Q 

..... 
n ..., 
o o 
~ ., .... 
CO 
J 
rio 

I-f 
tJI 
3: 

o o ., 
"CI 

.... 
\0 
00 .... 

Input 

Register 1 

I Flogs I 
·Register 13 

I • Save area I 
Register 14 

I Return address I 

Register 4 

I t SRB or TCB I 
Register 5 

I t R8 or 0 I 
Register 2 

I ASIO I 
Register 16 

lentry point address I 
Register 3 

I Dump options I 

Register 1 

I I 
Register 13 

I I 
Register 14 

I I 
Register 16 

I I 

Process 

... 
) 3 ... 

Po. 

.) 4 

? Output 

Register 1 I Flags and 
. completion code I 

Register 0 
Process the service mode entries. 

" I Entrv point - 1 • Save the caller's register •. function 10 

Register 13 • Indicate the completion code. I t Caller's registers I • Set an Indicator for the type of 
service requested. 

• Subsequent errors are handled Register 2 

bV an FRR. I ASID orO I 
Register 3 

I t TCB,orSRB I 
Register 5 

I Dump options. I RB.orO 

Process the machine check mode Register 6 
entries. " I t LOGREe buffer I 
• Save the registers. Register 0 

• Establish a recovery vie an FRR. I Entry pt 10 I 
Register 13 

I • Save areB I 

To RTMt overvlaw 
(lEAVTRTMI 



roo 
-< 
N 
00 
I .... ..... 

CIoI 
UI 
I 

c:t 

,... 
n ..... 
n 
o 

" '< , ... 
IQ 
~ 
rio 

.... 
\:If 
3 
n 
o , 
" .... 
-0 
00 ..... 

3 
CD 
rio 
~ 
o 
Q. 

o 
-t\ 

o 

" CD 

ill 
rio ... 
o 
::::I 

~ 
3 
I 

N .... 
-0 

IEAVTRTl - RTMI Initialization (Part 6 of 6) 

Extended Description Module 

3 RTM1 initialization prepares the following entry 
points for service mode entries; 

• STE RM entry point - Used by the reset subroutine 
of real storage management when an error occurs 
while processing a page fault. RTM1 is entered in 
home mode. The TCB must be addressable on entry 
to RTM1. Initielization processing only seves 
register 14 /the return eddress). The routine that 
suffered the paging error is forced to issue an 
ABEND instruction (SVC 13) to cause the linkage 
to RTM for recovery and termination services. 
I nitializ.ation processing for this entry point passes 
the address of the TeB or SRB that suffered the 
error. If a task suffered the error, the address of 
the RB is also passed. RTM retrieves the cross 
memory information of the error from the XSB 
associated with the SSRB, the RB, or the IHSA 
of the locked address space . 

• ABTERM entry points - Used by key 0, supervisor 
state routines to set a task up for entry to RTM2 for 
ABEND. There are two types of ABTERM entry; 
ABTERM with the ASID option; and ABTERM without 
the ASID. 

ABTERM with the ASID option is a request to 
terminate a task in an address space other than the 
current otle. RTM1 can get control in any cross 
memory mode. RTM1 executes this service mode 
request in the celler's environment and returns to 
the caller in the same environment. RTM1 schedules 
itself as an SRB into the specified address space 
to perform the ABTERM request. RTM1 saves the 
caller's registers in a caller·supplied save area. 

ABTERM without the ASID option is a request to termi· 
nate a task in the current address space. RTM1 saves the 
caller's registers and PSW, and performs the ABTERM 
request. RTM1 is invoked in home mode. 

Label 

STERM 

XABTERM 

CABTERM 

Extended Description Module Label 

• MEMTERM entry point - Used to request scheduling of MEMTERM 
an address space termination. Since there are no 
specific lock requirements, the caller must provide a 
register save area. RTM1 performs a MEMTERM 
asynchronously with dependencies on locks and the 
dispatcher. Therefore, control mayor may not return 
to the caller, depending on the lock status when the 
caller issuad the request. 

• ABTERM reentry - Used when RTM1 scheduled itself IEAVTRTX 
as an SRB during a previous entry when the caller 
requested ABTERM with the ASID option. When 
entered at this antry point, RTM1 is operating as an 
SRB in the specified address sapce. 

4 MCH (machine check handler) and ACR (alternate IEAVTRTN 
CPU recovery) use this entry point when requesting 

hardware recording and hardware damage repelr. The 
caller passes the address of a LOGREC buffer which contains 
all the information about the error. If RTM1 subsequently 
determines that software recovery is warranted, it will 
establish the appropriate software interface. 

a 
-It 
H 
~ 
3: 



~ lEA VTRTI - Address Space Termination on a DAT Error (Part 1 of 4) 

I 
N From the 
~ ~B~ 

Input patcher 

Register 1 

I 
SRB savearea 

lASID 

Completion code 

Reason code 

PSW1 

PSW1 

PSW2 

PSW2 
Re ister 0 

r-
oo( 
N 
Of 
I .... ..... 

CI'I 

'" I 
Q 

.... 
n ..... 
n 
0 

~ , .... 
ra ::r 
r+ 
.... 
!:If 
3: 

n 
0 , 
'U . 
.... 
..0 
01 ..... 

DATMEM: 

1 Establish a recovery environment. 

2 Obtain an EED cell. 

• If the cell is not obtained. 

3 Save the input Informetion in 
the EED end free the SRB 
storage. 

4 Call the lock rapalr routine. 

ToSRB 
dispatcher 

IEAVELKR 

Output 

EED 

r-... 
n 
CD 
:::I en 
CD a.: 
31 
=-=-CD., ., ... 
... n 
atrt 
...CD 
fila. 

13 
III 

-art 
.,CD 
0., 
'II'" CD at ., ... .1: 
!L"'" ... ...... ... z z: 



r
oo( 
N 
Of 
I .... .... 

CIt 
\II 
I 

ct 

n 
o 
~ ., .... 
a 
':1' 
t+ 
1-1 

'" 3: 

n o ., 
'a . 

lEA VTRTI - Address Space Termination on a DAT Error (Part 2 of 4) 

Extended Dasc:rlptlon Module Label 

DATMEM is an SRB routine scheduled by the DATERR entry IEAVTRT1 DATMEM 
point in IEAVTRT1. DATMEM is scheduled when a DATERR 
occurs in an address space other than the home address space. 
DATMEM will terminate this address space. 

1 DATMEM establishes its own FRR (DATMEFRRI for error 
recovery. 

2 DATMEM attempts to obtain an EED (extended error de-
scriptorl to use as a savearea. If an EED cell is not obtained, 

DATMEM increases the RTCTEEDC counter by one. 
(RTCTEEDC contains a count of the number of times an EED 
GETCELL failed in RTM1. RTCTEEDC was set to zero during 
I P LI DA TMEM freas the SRB storage, deletes the F RR. and 
returns control to the SRB dispatcher. . 

3 If an EED cell is obtained. DATMEM copies the ASIO, com
pletion code. reason code. PSW1, and PSW2 from the SRB 

save area Into the EEO. OATMEM then Issues a FREESRB 
command to free the storage for the SRB. 

4 OATMEM establishes serialization by obtaining the DISP 
lock and the globel intersect. DATMEM then calls the lock 

repair routine UEAVELKRI. 

The interface to the lock repair routine is as follows: 
Registar 0: The function code for the OAT error. 
Register 1: The systam completion code in bits 8-19. 
Register 13: The address of a two-word parameter list: 

1 st word - Contains zeroes 
3: 2nd word - Contains the address of a 
~ four·fullword parameter list 
':1' (WSACTRT1) 
o 
G. 

o 
-h 

o 
'a 
CD 

iii 
t+ .... 
o 
~ 

Extended Description Module 

4 (continued) 
The WSACTRT1 parameter list consists of: 

1st word - The address oftwo 
contiguous words containing 
the completion code and 
reason code. 

2nd word - The address of the failing 
PSW. 

3rd word - The address of two conti· 
guous halfwords containing 
the interrupt length code 
and interrupt code. 

4th word - The ASIO of the failing 
address space, right Justified. 

Register 14: OATMEM's return address. 
Register 15: The entry point address for IEAVELKR. 

When IEAVELKR returns control to DATMEM. DATMEM 
frees the OISP lock and the global intersect. 

Label 

D .. 
H 

I 



~ lEA VTRTl -' Address Space Tennination on a DA T Error (Part 3 of 4) 
3: 
I 

N 
00 
N 

3: 
< en , 
~ 
en 
r
r-

r
-< 
N 
00 
I .... ...... 

"" \11 
I 

o 

..... 
n ..... 
n 
o 
~ ., .... 
10 
;:r 
t+ 

loot 
till 
3: 

n 
o ., 
'U . 
.... 
~ 
00 ...... 

Input 

Register 0 

FRR work area 

From 
RTM 

Process 

5 Issue a CALLRTM TVPE=MEMTERM 

6 Free the EED cell and delete the re
covery environment. 

DATMEFRR: 

7 Free the resources obtained by DATMEM 
and percolate. 

ToRTM 

IEAVTRT1 



roo 
-< 
N 
00 
I .... 
~ 
(II 
\II 
I 

I:) 

..... 
n 
ow 

(") 
o 
~ ., .... 
fa 
'7 .... 
.... 
!I 
(") 
o ., 
"U . 

:3 
CD .... 
'7 
o 
ca. 
o 
~ 

o 
"U 
CD 

~ .... .... 
o 
:::I 

~ 
:3 
I 

N 
00 
(II 

lEA VTRTl - Address Space Termination on a OAT Error (Part 4 or 4) 

Extended Description 

5 IEAVTRT1 issues CALLRTM TVPE=MEMTERM to terml· 
nate the address space. The completion code is X'OD2'. 

6 DATMEM issues a FREECELL to free the EED cell and da· 
letes the recovery environment by issuing a SETFRR . 

IEAVTRT1 returns control to the SRB dispatcher. 

7 In error cases, IEAVTRT1 passes control to DATMEFRR 
for recovery. DATMEFRR places diagnostic Information 

in the SDWA. If DATMEM obtained an EED cell or the 
global intersect, it is freed. If DATMEM obtained the DISP 
lock, DATMEM requests thet RTM free this lock. DATMEM 
issues a SETRP to request recording of the SDWA and per· 
colatlon of the error. DATMEM returns control to RTM. 

Module Label 

IEAVTRT1 DATMEFRR 



::a 
-f 
3: 
I 

N 
00 
~ 

3: 
< en , 
~ 
en ... ... 
::a 
CD 
n 
~ 
-f 
CD ., 
a 
3: 
IC a ,... 

... 
-< 
N 
00 
I .... ..... 

(,H 

'" I 
Q 

..... 
n ..... 
o 
o 
~ ., .... 
IC 
::r ,... 
.... 
t:IIf 
3: 

o o ., 
"a . 

IEAVTRTI - RIM Exit Processing 

npu t 

RTM1 work register 

El(it type 
indicator 

CVT 

• Dispatcher 

t SRB exit 

t EXIT prolog 

Caller's register save area 

I I 

(part 1 of 2) 

From RTM1 overview 
(IEAVTRTMI 
to exit. .. p rocess 

" 1 ) Determine the type of exit. ... 

" ) a. On el(it typecdispatcher. 
IIEAVEDSOI. 

" ) b. On exit type"SRB. 

.. 
On exit type=EXIT ) c. 

v 
PROLOG. 

" d. On exit type=RETEXIT . 
v 

. 
IEAVEOSO 

Dispatcher 

. 
IEAVEDSO 

SRB exit 

IEAVEEXP --.. 

--.. Issuer of the 
CALLRTM macro 

... ... 
n 
CD 
::I en 
I'D a.: 

;Q 
3 I'D 
lit lit 
t+t+ 
CD.., .., ... 
.. ·n 
1Itt+ 
... CD 
en a. 
13: 

lit 
'at+ 
"'I'D 0.., 
'0..
CD lit .., ... 
t+1It 

~~ ... 
H 

H~ 
~Z z: 



r
oo( 
N 
00 
I .... 
" (J'I 
U'I 
I 
= 
..... 
n ..... 
n 
o 
~ , .... 
10 
J 
1+ 

.... 
'" 3: 

n 
o , 
'U 

IEAVTRTl - R1Ml Exit Processing (Part 2 of 2) 

Extended Description 

RTM 1 routines ellit from 9 common eleit routine within 
. module IEAVTRTI. 

1 RTMI ellit processing uses the elei! Ivpe delarmlned 
bV the module IEAVTRTM to perform the IIPPIO' 

prill Ie eleit procedure, as follows: 

a. When elliting to the dispatcher, lEA VTRT1 places the dis
patcher's exit point (the CVTODS field of the CVT) in 
register 15 • 

If the current stack is the normal stack, IEAVTRT1 turns 
off the EUT mode indicator (PSANSSl. It then branches 
to the address in register 15. 

b. When an SRB is to get contrOl, IEAVTRTl puts the SRB 
exit point (CVTSRBRT field of the CVTI in register 15. 

.... If the current stack is the normal stack, IEAVTRT1 turns 
: off the EUT mode indicator (PSANSSI. It then branches 
" to the address in register 15. 

c. When EXIT prolog is to get control, IEAVTRT1 places 
EXIT prolog's exit point (CVTEXPRO field of the CVT) 
in register 15. 

If the current stack is the normal stack, IEAVTRT1 turns 
off the EUT mode indicator (PSANSSl. It then brenches 
to the address in register 15. 

d. IEAVTRT1 reloads registers ()'15 from the 
register save area and executes a brench on 
register 14. For STERM, only register 14 
(the return addressl is restored. 

Module Label .'Extended Description Module Label 

IEAVTRTI fEAVTRTZ 

RT1EXIT2 

RT1EXIT4 

RT1EXIT6 

RT1EXITE 



3: 
c::: 
en 

" x 
> 
en 
r
r-

;:0 
ID 
o 
o 
< 
-l 
ID ., 
3 

3: 
c.c 
3 
r+ 

r-
-< 
N 
00 
I ..... 

-....I 
(;j 

lJ'1 
I 

o 

,... 
o 
"'" 
n 
o 
'tl 
'< ., 
...... 
c.c 
:T 
r+ 

H 
c:I 
3: 

(") 
o ., 
'tl 

..... 
\0 
00 
-....I 

lEA VTRT2 - RTM2 Initialization 

Input 

Register 0 

t ASCB or t 
DUMPOPTS or NULL 

L.....--------' 

Register 1 

I Flags 1 Completion code 

Register 3 

1+ CVT 

Register 4 

+ Current TCB 

Register 5 

I ~ 

(Part I of 2) 

From RTM2 
overview (I EAVTRT2) 
to initialize 
the RTM2WA 

Registers 
valid If 
not 
ABTERM 

LI.!..+_c_u_r_re_'n_t_S_V_R_B ___ -'t---~ 
R'\Jister 7 ~ 

1+ Current ASCB 1 '\ 
Re'llster 14 .--::-, -------,1 
+ Return address . 

Register 15 

, t Reason code 

TCB 

TCBRBP 

TCBCC 
cumpletion 
code 

TCBJSTCR 

TCBRTM12 

(Valid only if 
ABTERM) 

(Not valid 
if ABTERM) 

ESA 

1 Save the input data. 

2 Obtain the RTM2WA. 

If a recursive entry or no 

storage, 

3 Initialize the RTM2WA. 

CALLRTM 
TYPE= 
MEMTERM 

To RTM2 overview 
(IEAVTRT2) 

Output 

Register 4 

4 RB 

TCB RB 

ESA 

RTM2WA 

Initialized for: 

• Converted to step 

• Purge only 
• Recursions 
• Entry via RTM 1 
• Address space termination 

• Normal end·ol·task 
• Abnormal termination 

H 
rn 
~ .... 
::a .... 
N 

::a .... 
3: 
N 

H 
Z 
lot .... 
lot » 
r 
H 
N » .... 
lot 
o 

r.... 
n 
m 
J 
Ul 
m 
Q, = ::a 
:em 
IUUl 
rtrt 
m"J 
"J .... 
... ·n 
IUrt 
.... m 
UlQ, 

l:e 
IU 

'tJrt 
"Jm 
O"J 
'tJ .... 
mIU 
"J .... 
rtUl 
'<: o 
O-h 
-h 

lot 
Hto 
to::.:: 
::.:: = 



r
-< 
N 
00 
I .... 
~ 
(II 
\II 
I 

o 

(") 
o 
'0 
'< .., .... 
IQ 
J .... 
1-4 
tI:' 
3: 
(") 
o .., 
'0 

.... 
\0 
00 
~ 

3: 
(I) .... 
J 
o 
a. 
o 
; 

o 
'0 
(I) .., 
III .... .... 
o 
:::I 

;a 
-4 
3: 
I 

N 
00 
~ 

lEA VTRTI - RTM2 Initialization (Part 2 of 2) 

Extended Description 

RT M2 communicates between its various routines via Ihe 
RTM2WA. RTM2 initialization processing crOllles and 
initialize~ Ihe nTM2WA for subsequent use by the RTM2 
routines. The RTM2WA contains Ihe followin!! types of 
inlnrnmlion: 

• Address of the TCB. RB. CVT. ASCB. and SDWA 

• Registers and PSW at the time of the error. and flags 
indicating the system state for ABTERM and ABEND 
requests 

• Machine check information 

• DUMP options if any were passed 

• Address of any previous work art:a and indicators for 
recursive entries 

• Error 10 

Control goes from initialization to the RTM2 controller 
(represehted by the M.O. diagram IEAVTRT2 - RTM2 
Overviewl to continue processing. 

Register 0 contains either the address of the ASCB repre· 
senting the address space to be terminated if address 
space lermination is requested or the address of the dump 
options if dump options were supplied and entry is not via 
the RTMl ABTERM function. 

Rp.gister 1 contains the completion code and flags 
indicating Ihe type of request and options if the entry 
is not via the RTMl ABTERM funclion. II entry Is via 
the RTM 1 ABT ERM function. the dump options. 
complelion code. and type of request. are passed via the 
TCB fields. 

1 Initialization processing saves the input regislers and 
TCB lIags in the ESA. Those TCB fieldS set by 

RTM 1 are cleared to prevent confusion in case of racurslon. 
The TCB fields np.cessary lor recursion tracking are set. 
lEA VTRT2 blOCks asynchronous exits. If this is a recursive 
entry. IEAVTRT2 copies the recursion flags from the pre· 
vious ESA . 

Module Label 

IEAVTRT2 RT21NESA 

Extended Description 

2 IIlhe ESACTS flag is on. this ABEND is on a jobSlep 
task: RTM2 converted an ABEND to the step level. 

If so, the workarea required for the initial ABEND has 
been queued to this TCB and no new workarea should be 
acquired. II the IIag is off. storage Is acquired for an 
RTM2WA and RTM's copy of the SDWA. 

If it is not possible to obtain storage (RC=4, from GETMAINl, 
initialization processing passes control to the critical error 
routine, which attempts to take an SVC dump and terminate 
this address space. This is done since no storage remains in 
the LSQA. 

3 Initialization processing places the critical error 
routine address in the RTM2WA (RTM2CTRAI and 

sets an initialization phase recursion indicator (ESAINRECl 
in the ESA. If this is not a purge-only entry. or an entry on 
a jobstep TCB, initialization processing also places the step 
conversion recursion handler address in the RTM2WA 
(RTM2STRAl. The initialization processing routine initial· 
izes the RTM2WA, using data found originally in the input 
registers, the TCB, the RB queue, and, if the entry is from 
RTM1, the extended error descriptors (EEDS). Further 
initialization of RTM2WA occurs when IEAVTRT2 calls 
IEAVTR2A. I EAVTR2A obtains the six bytes of instruction 
stream that precede and the six bytes that follow the instruc· 
tion counter (lCl of the failing PSW and copies them in the 
RTM2FAIN field. (See M.O. diagram IEAVTR2A - RTM2 
Failing Instruction Processor.1 

Initialization processing terminates the address space if this 
is a recursive entry and if the ESAINREC flag is on. If 
control returns normally from initialization, Initialization 
processing resets the ESAINREC flag. 

Initialization processing issues the SNAPTRC macro to take 
a snapshot of the system trace table. 

Module Label 

RT2GETWA 

RT2CRERR 
RT2TMRY 

RT21NWA 
RT21NCNV 
RT21NCM 
RT21NEOT 
RT2INABD 
RT21NRT1 
RT21NMT 
RT2CYEED 
RT2MODE 
RT21NPG 
RT21NRCR 
IEAVTR2A 



~ :z 
I 

N 
01 
01 

,... 
< 
N 
011 
I .... ..... 

CIt 
UI 
I 

o 

o 
o 
~ ., .... 
10 
J 
ri-

1-1 
trI :z 
o o ., 
'U 

lEA VTRT2 - Recursion Processor 1 (part 1 of 2) 

Extended Description 

1 

• An intermediate level 01 recursion handling is eSlablished which causes a recursion on a 
non·jobstep TCB to abnormallv terminate the jobstep and reinitiate RTM2 processing 
at that level. This is preferable to the critical recursion handling because it may permit 
II larger number of TERM exits and resource managers to get control. If the error 
persists, the critical recursion handler will get control. However, if the error was due 
to an asynchronous event that does not recur, RTM2 processing should complete 
normallv at the jobstep level. 

• For critical RTM2 processing and lor situations for which no recovery is possible, a 
lourth recursion routine exists which will request an address space termination. This 
routine is also used when all other recursion routines have been exhausted. During the 
time that no RTM2WA exists in initialization and exit processing, the recursion control 
is managed using the ESA, and the critical recursion routine is alwavs invoked on an 
error. 

On recursion entries, these recursion handling routines make no attempt to determine 
Ihe cause of the error. 

On recursive entries, a purge back of SVRBs and RTM2WAs is not done, except for 
recursion during task recovery pre-exit processing. This permits full information to 
appeilr in a dump and also provides some loop control as a routine mUSI specificallv 
eSlilblish a recursion routine on this error for il to be applicable on the next. An RB 
purge is done lor task recovery 10 avoid passing error data for errors suffered bV routines 
used bV task recovery to the recovery exits. 

RTM2 uses Ihree sets of lIags to maintain contlol during recursion. RTM2 sets the 
RTM2SCTC flags as il enlers each section (lnd sels them to zero when the section is 
complete. When one 01 these flags is set, there is generallv a skip address which will 
cause the section 10 be bypassed il it does suffer an error. 

The RTM2SCTR flags contain the history of all the sections that have suffered a 
recursion which has not vet been recovered. The controller tests this flag prior 
to setting the RTM2SCTC flag for a given section and if it is on the recursion exit is 
laken 10 give Ihe recursion address control. These flags are necessary as RTM2 proc· 
essing follows a different order of paths hased on the tVpe of error encountered. 

The RTM2SCTX flags indicate to Ihe recursion exit handler the section whose recursion 
ilddress must be given control. When Ihe controller finds Ihe RTM2SCTR flag on for 
the seclion it is about to execute. it sets the corresponding RTM2SCTX flag and passet 
conlrol to Ihe eKit handler. The exil handler will then use the RTM2SCTX flag to 
locate the appropriate RTM2WA and recursion address for Ihis section. 

Extended Description 

1 The recursion processor 1 first copies any previous 
status information that applies for all failures. and 

combines the recursion information from the most recent 
failing sec;tion of code with all previous failed sections of 
code. (See the 11.1.0. diagram IEAVTRT2 - RTM2 Initiali' 
zation for a description of tha recursion indicators set for 
critical arror routina address and step conversion recursion 
handler address.l This provides a complete set of recovery 
inforl!'ation • 

2 Each section of code performs the operation described 
in steps 2·7. The section checks the RTM2SCTR field 

of the RTM2WA for a recursion indication. If this indicator 
shows that this section of code failed and has not been 
recovered, it cannot be reentered. Control goes to step 6. 
Otherwise, control continues to step 3. 

3 The section of code sets an indicator, in the RTM2SCTC 
fiald in the RTM2WA, that shows which section has 

control. If a recursion should occur, the position of this 
indicator (a bit! in the field 11 wordl will locate the section 
of code that failed. 

The section of code saves the registers, in the RTM2SFSA, 
that will be needed if tha section fails, and saves tha address 
of the code following the section in the RTM2SKRA: Using 

Module Label 

IEAVTRT2 RT21NRCR 

IEAVTRTC 

IEAVTRTC 
IEAVTRTE 

this information, the section of code can be skipped if necassary. 

4 Each section of code can be further divided into sub-
sections, bV using flags uniqua to the section. If a sec· 

tion can handle cartain recursions on its own, it sets another 
recursion address in the RTM2TRRA field and seves the 
registers in the RTM2RREG field. This permits, for example, 
a failing caller EST AE exit to be skipped, without causing 
all of task recovery to be skipped. 

6 The section clears the section indicator in the 
RTM2SCTC field, and the address in the RTM2SKRA 
field . 

6 After determining that this section has failed lin step 21, 
tha recursion processor 1 sets an indicator in tha 

RTM2SCTX field that indicates the section of coda that 
failed. 

7 The recursion processor 1 sets the RTM2RCRX field . 
When this field is set, the recursion procassor 2 will 

receive control to process the recursion. 



r
oo( 
N 
00 
I .... ..... 

(,.ot 
U'I 
I 

o 

n 
o 
'tJ 
'< ., .... 
!Q 
J 
t+ 

I-t 
till 
3: 

n 
o ., 
'tJ 

lEA VTRT2 - Recursion Processor 1 

Input 

nTM2WA 

RTM2pnEV' / 

ElCtended Description 

Previous 
RTM2WA 

RTM2SCTR 

RTM2SCTC 

(Part 2 of 2) 

From SVC FLIH 

oull1,,1 

The RTM2 recursion scheme contains lour levels 01 recur· 
sion routines. 

.... • While each RTM2 slIblunction operates "ask recovery, 
~ ABOlJMP, etc.) iI will set both a recursion routine 
..... allrfr!!ss and registers in the RTM2WA lor each 01 its 

lIelinahle lunctions. " each 01 these lunctions completes 
successfully, the suh'"nctions will ul1date the recursion 
address accordingly. 

3: 
CD 
t+ 
J o 
a.. 
o 
-II 

o 
'tJ 
CD 

~ 
t+ .... 
o 
:;, 

• The RTM2 controller will, prior to routing contro' to a 
suhlunc.ion, establish II recursion routine address which 
will cause .he suhlunction to be skil1ped if a recursion 
occurs ami the suhlllnction has no recursion address. IThis 
can occur when a suhfunction has not set a recursion 
address (hecause it wished to hp. skipped if the sp.ctlon 01 

thl! eoe'r. current'v executing should laill or it is in 
its recursion routinr. Am' has not sel a new addre5s.1 The 
controllar will additionallv sat a section lIag inriicating 
which subfunction has been entered. For a recursive en· 
try, the normal flow through RTM2 will be followed 
until it is necessary to route control to the subfunction 
which has recursed. That subfunction will then either 
be skipped or its recursion routine will gain control. 
There are certain parts of the controller code that are 
not defined specifically as sections (connection code I. 
During this time, the section flags are all zero. This 
condition is tested on entry to the controller and if it 
is met, control passes immediately to the recursion han· 
d'er, which causes a default action to be taken. 

1 Copy all the previous 
inlormation. 

2 Determine whelher this section 
of code has a recursion. 

• Yes 

• No, continue 

3 Save Ihe regislers and the address 
of the end of the section. 

4 Perlorm the section . 

5 Clear Ihe recursion indicators 
and the address 01 the section. 

6 'ndicote Ihls secllon Is 10 be 
recovered. 

7 Give contro' 01 the recursion 
to processor 2. 

6 

3 

'nput for step 2 
(RTM2SCTRI 

To recursion processor 2 
flEAVTRTEI 

Output 

Current RTM2WA 

r-: 
... ;:a 
nCD 
CDUI 
::J1t 
UI., 
CD .... 
a.~ 
XCD 
~a. 
CDX 
.,111 
.... It 
III CD .... ., 
UI .... 

III 
I .... 

UI 
"a 
.,0 
0-11 

" CDM 
'"lI~ 
ItX 
'< = 
o 
-II 
M 
~ 
Z 



IEAVTR1A - MODULE DESCRIPTION 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

DESCRIPTIVE NAME: RTM1 Failing Instruction Processor 

FUNCTION: 
This module obtains tho six bytes of storage that 
precede and tho six bytes that follow tho instruction 
counter (IC) in the failing program status word (PSH) 
and copies the failing instruction stream into either 
the SDHAFAIN field or the EEDFAIN field depending on 
the caller. 

ENTRY POINT: IEAVTR1A 

PURPOSE: 
Puts the failing instruction stream into tho 
SDWAFAIN field of the system diagnostic work 
area (SDWA)' 

LINKAGE: BALR 

CALLERS: IEAVTRII 

INPUT: The FAINPL 

OUTPUT: 
The failing instruction stream is in the SDWAFAIN 
in the interrupted/error SDWA. 

EXIT NORMAL: Returns to IEAVTRlI 

EXIT ERROR: Terminates 

ENTRY POINT: IEAVTR1B 

PURPOSE: 
Puts the failing instruction stream 
in tho EEDFAIN field of tho extended error 
descriptor block (EED). 

LINKAGE: BALR 

CALLERS: IEAVTRSO 

INPUT: 
Registers in use by IEAVTRSO. 
Register 1 - Address of the FAINPL 
Register 4 - Address of the RT1TRACK 
The FAINPSH contains the failing PSH. 

OUTPUT: The failing instruction stream is in tho EEDFAIN. 

EXIT NORMAL: Returns to IEAVTRSO 

EXIT ERROR: Terminates 

ENTRY POINT: R1AFRR 

PURPOSE: 
Recovers from errors encountered during IEAVTRIA's 
processing. 

LINKAGE: LPSW 

CALLERS: RTM1 

INPUT: 
Register 0 - Address of a 200 byte FRR work area 
Register 1 - Address of the SDWA associated with 

RTM's FRR stack. 

RTM-290 MVS/XA SLL: Recov Term Mgmt LV28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

IEAVTRIA - MODULE DESCRIPTION CContinued) 

Register 14 - Return eddress to RT111 
Register 15 - RLAFRR entry point address 

OUTPUT: 
The SD"ARCDE field of the SDHA contains a return code 
indicating either retry or continue with termination. 

EXIT NORMAL: Returns to RT111 

EXIT ERROR: No exit error conditions 

EXTERNAL REFERENCES: 

ROUTINES: 
IEAVTRV3 - Converts the real address in the PSNIC 

to a virtual address. 

DATA AREAS: 
- FAINPL-the failing instruction parameter list 

structure follows: 

1 Field 1 Decimal 1 Length 1 Description I 
I I Offset 1 I I 
1-----------1---------1--------1-----------------------------1 1 FAINPSH 1 0 1 8 1 Failing PSH 1 
1-----------1---------1--------1-----------------------------1 1 FAINTADR 1 8 1 4 I The target address for the 1 
1 1 1 1 failing instruction stream 1 
1-----------1---------1--------1-----------------------------1 1 FAINID 1 12 1 1 1 Identity of the caller 1 
1-----------1---------1--------1-----------------------------1 1 FAINLPN I 1~ 1 IlLogical pha_ number 1 
1-----------1---------1--------1-----------------------------1 1 FAINLPID 1 14 1 IlLogical phase identification 1 
1-----------1---------1--------1-----------------------------1 1 FAINAUDT 1 15 1 1 1 SWitch to current FRR stack 1 
1-----------1---------1--------1-----------------------------1 1 FAINISTK 1 16 1 4 1 Address of error stack 1 
1-----------1---------1--------1-----------------------------1 1 FAINRETY 1 20 1 4 1 IEAVTRIA' s processing 1 
1 1 1 1 variables 1 
1-----------1---------1--------1-----------------------------1 

CONTROL BLOCKS: 
Common name Macro ID Usage Function 

----------- -------- --------
CVT CVT read Obtains IEAVTRV3's address 

to convert addresses from 
real to virtual. 

EED IHARTl" read and Sets and frees one cell from 
write the EED pool that is used as 

a work area to contain the 
FAINPL. Adds the failing 
instruction stream to the EED, 
which is passed as a parameter 
to IEAVTRIB. 

FRRS IHAFRRS read and Adds and deletes one FRR from 
write RT11's FRR stack. 

PSA IHAPSA read and Obtains and changes the 
write address of the current 

FRR stack. 
RTlH IHARTl" read and Sets and resets the LPN and 

write LPID fields. 
SDHA IHASDHA read and Adds the failing instruction 

write stream to the SDHA, which is 
passed as a paremeter to 
IEAVTRIA. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-291 



IEAVTRIA - MODULE DESCRIPTION (Continued) 

TABLES: No tables used. 

SERIALIZATION: IEAVTRlA does not obtain any locks. 

RTtt-292 MVS/XA SLL: Recov Term Hgmt 

"Restricted J1aterials of IBM" 
Licensed J1aterials - Proporty of IBM 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Rostrictad Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR1A - MODULE OPERATION 

IEAVTRIA receives control to obtain the failing instruction 
stream around the instruction counter (IC) of the failing 
PSH and to put the stream into either the SDHAFAIN or the 
EEDFAIN field depending on the caller. 

Entry point IEAVTRIA receives control when IEAVTRlI is the 
caller to: 

Verify that the SDHA alrea~ contains the failing 
instruction stream. 

• Datermine the availability of the PSH at the time of 
the error. 

• Initialize the FAINPL. 

Entry point IEAVTRIB receives control ..man IEAVTRSO is the 
caller to save the LPN (logical phase number), and LPID 
(logical phase identification) in the FAINPL. IEAVTRSO builds 
the FAINPL prior to calling IEAVTRIA. 

This module does the following common processing: 

• Establishes the recovery environment via an FRR 
(functional recovery routine). 

• Verifies that the PSHIC has a virtual address. 

• Reads the failing instruction stream in the user's PSH 
key and copies it to the SDHA or EED, normally in one 
move. If the instruction stream overlaps a page 
boundary, copies it in two moves. 

- If the failing instruction stream is not 
accessible, RTMI requests a retry via its FRR. 

• Performs RTMl's failing instruction cleanup processing. 

• Returns to its caller. 

RECOVERY OPERATION: 
The FRR requests a retry: 

• At location RETRYl - if an error occurs while IEAVTRlA 
is copying in two moves the first 
segment of the failing instruction 
stream. The SDHAFAIN field or the 
EEDFAIN field might be partially 
filled-in. 

• At location RETRY2 - if an error occurs while IEAVTRIA 
is copying in two moves the second 
segment of the failing instruction 
stream or while copying in one move 
the complete failing instruction 
stream. The SDHAFAIN field or the 
EEDFAIN field contains hexadecimal 
zeross. 

- if an error occurs while IEAVTRlA 
is executing (other than copying 
the failing instruction stream). 

If a retry is not allowed (the SDHACLUP bit is on), the FRR 
requests percolation. 

Note: If an error occurs during recovery processing, RTM 
abort processing will get control. 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-293 



IEAVTRIA - MODULE OPERATION (Continued) 

The following chart sunmarizes IEAVTRIA' s recovery 
processing: 

"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

I Condition Retry Location Error Recorded on 
I SYSI. LOGREC 
I 
IFailure to copy Yes RETRYl No 
Ithe first segment 
lof the failing 
linstruction st~. 
I 
I Failure to copy Yes RETRY2 No 
I the second segment 
lof the failing 
linstruction stream. 
I 
IIEAVTRIA execution Yes RETRY2 Yes 
Ifailure. 
I 
I Failure to copy Yes RETRY2 No 
Ithe failing 
linstruction stream 
lin one move. 
I 
ISONACLUP bit I ( Percolation I N/A Yes 
lis on. I occurs) I 
I 

RTH-294 HVSIXA SLL: Recov Term Hgmt LY28-173S-0 :~) Copyright IBM Corp. 1987 



"Restrioted Materials of IBM" 
Licensed Materials - Property of IBM 

lEAVTR1A - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAVTRlA 
IEAYTRIB 
RIAFRR 

MESSAGES: None 

ABEND CODES: ~ 

WAIT STATE CODES: None 

RETURN CODES: 

ENTRY POINT IEAVTRlA: None 

ENTRY POINT IEAVTRIB: None 

ENTRY POINT RIAFRR: 

EXIT NORMAL: 

o - in the SDHARCDE field indicates termination 
4 - in the SDNARCDE field indicates retry 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTRlA: 

Register 
Register 
Register 
Register 

1 - FAINPL address 
13 - Register save area address 
14 - Retum address 
15 - Entry point address 

ENTRY POINT IEAYTRlB: 

Register 
Register 
Register 
Register 
Register 

1 - FAINPL address 
4 - RTI TRACK address 

13 - Register save area address 
14 - Retum address 
is - Entry point address 

ENTRY POINT RIAFRR: 

Register 0 - 200 byte FRR woMk area address 
Register 1 - SDNA address 
Registers 2-13 - Irrelevant 
Register 14 - Retum address 
Register 15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

ENTRY POINT IEAVTRlA: 

Registers 0-15 - Same as on entry 

ENTRY POINT IEAVTRlB: 

Registers 0-15 - Sama as on entry 

LY28-173S-0 (0) Copyright IBM Corp. 1987 Method of Operation RTM-29S 



IEAVTR1A - DIAGNOSTIC AIDS (Continued) 

ENTRY POINT RlAFRR: 

Registers 
Registor 
Register 

0-13 - unpredictable 
14 - Retum address to RTMI 
15 - unpredictable 

RTM-296 HVS/XA SLL: Recov Term Mgmt 

"Restricted Materials of IBM" 
Licensed Hatorials - Proporty of IBM 

LY28-1735-0 Ie) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR1A - RTMl Failing Instruction Processor 

IEAVTRlI 

C:> IEAVTR1A 

S ..... D_W_A ____ -,J----------> 
SDHAGR11 SDHANXTI 
SDHARPIV SDHAFAIN 

This module obtains the six bytes of 
storage that precede and the six bytes 
that follow the instruction counter I IC) 
in the failing program status word IPSH) 
and copies the failing instruction stream 
into either the SDHAFAIN field or the 
EEDFAIN field depending on the caller. 

~ Checks the SDWA for the 
failing instruction stream. 

A. If the SDHAFAIN field already contains 
the failing instruction stream, returns 
to the caller. 

B. If the SDHARPIV bit is on, indicating 
that the general registers and PSH at 
the time of the error are not available. 
returns to the caller. 

c. If the IC indicates that a failure 
occurred in IEAVTRIA. returns to the 
caller. 

EED J----------> 1021 
~I ---------,1 'I 

Save the LPN and LPID values 
from the FRR stack to be 
used for IEAVTR1A ' s 
recovery. 

RTlTRECC _ 

PSA 

PSATSTK PSACSTK 

EED 

RTITLPN RTITLPID 

FAINPL 

FAINLPID 

NOTE: The current FRR stack can be either 
the interrupted/error stack or RTM's stack. 
If the RTM stack is not the current FRR 
stack. IEAVTRIA locates the RTM stack. 
saves the LPN from there. switches to the 
RTM stack and turns on the FAINSHST bit in 
the FAINPL, which indicates that a switch 
occurred. 

If entered at entry point 
IEAVTR1A, proceeds to the 
COMMON section. 

STEP 01 

J ,FAINPL 

[ 
1 

FAINlPN 
FAINLPID 
FAINSHST 
FAINISTK 

[ 

LY28-1735-0 Ic) Copyright IBM Corp. 19B7 Method of Operation RTM-297 



"Restricted Materials cf IBM" 
Licensed Materials - Property of IBM 

lEAVTR1A - RTM1 Failing Instruction Processor STEP 03A 

IEAVTRSO 

I.~~: 
EED r---..,:) 
IRTlTLPN RTlTLPID~ 

~> 
COMMON 

FAINPL 

r3 :) 
ILENl 

FAINPL :) r3 ILENl LEN2 

FAINPL '\ 
/ 

FAINTADR LENl 
DISPl 

RETRYl 
FAINPL J----------> 
~I --------~I '/ 
~AINRSO . 

FAINPL 

FAINTADR FAINLPIDr---' 
LENl LEN2 

A. Saves LPN in the FAINPL (built prior to 
the call) and uses the current FRR 
stack. 

~ Establishes the FRR 
environment at entry paint 
R1AFRR. 

~ Calls IEAVTRV3 if the 
address in the PSWIC needs 
to be converted to a virtual 
address. 

/L-J,\ 

'r---1;1 TRANSLAT 

~ Determines whether the 
failing instruction stream 
will be copie~ in one or twa 
moves. 

A. If the PSHIC is within fivo bytes of 
oither location 0 or the last 
addressable storage location, copy the 
less than twelve bytes in one move. 

8. If the PSHIC is within fivo bytes of 
ei ther the start or end of a page, copy 
the twelve bytas in two moves. 

C. If the PSHIC is not within five bytes of 
either a page or storaga boundary, copy 
the twelvo bytos in one movo. 

I!!I Copies the complete failing 
instruction stream in one 
move or the first segment of 
a twa-part move. 

~ Copies the second setment of 
the failing instruct an 
stream in the last of a 
two-part move. 

If the first segment of the failing 
instructicn stream is not accassible, 
IEAVTRIA attempts to copy the second 
segment at location RETRYl. The SDHAFAIN 
field or the EEDFAIN field might be 
partially filled-in. 

I 

C 
• 

I 

I 

C 
C 
C 

• 

[ 

'\FAINPL 
/~ 

~ 
'\FAINPL 
/~ 

~ 

RTH-298 HVs/xA SLL: Recev Term Hgmt LY28-173S-0 (c) Ccpyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRIA - RTMI Failing Instruction Processor 

RETRY2 1091 Indicates the completion of 
the failing instruction 
stream processing. 

If ei thor the second segment of tho failing 
instruction stream or the complete failing 
instruction stream is not accossible, 
attempts a retry at location RETRY2 to 
perform nacessary cleanup. The SDHAFAIN 
field or the EEDFAIN field contains 
hexadecimal zeroes. 

If a failure occurs other than copying tho 
failing instruction stream. attempts a 
retry at location RETRY2 to perform 
necessary cleanup. 

FAINPL J----------> ~ 
I~----------~I '/ 

Performs the following 
common processing cleanup: 
-Resets the LPN to its value FAINSHST _ 

FAINPL 

FAINLPN FAINLPID .---' 
FAINISTK 

upon entry. 
-Deletes the FRR 
environment. 

~ Returns to the caller. 

STEP 09 

'-------"'FAINPL 
/IMOVESH 

, / 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-299 



"Restricted Haterials of IBM" 
Licensed Materials - PrQPBrty of IBM 

IEAVTRIA - RTMI Failing Instruction Processor 

R1Ml 

SDWA 
C:>I!!l 
RIAFRR 

The FRR performs the 
fallowing recovery 
processinga 

ISDNACLUP I-r----------~ If IEAVTRlA fails while copying in iwo 
.... --------'. : / IIOV8S the first segment of the failing 
FAINPL : instruction stream, requests a retry at 
..--______ ... -J location RETRYl for the second segment. 
FAINRSO LENZ 
HOVESH RECURSE 

SDWA 

SDHAPARH SDHACNT 
SDNARETY 

EED 

RTlSRJ1HI 

FRRS 

FRRSEHP 

RTCT 

RTCTCPID 

R1Ml does not record this error. 

If IEAVTRIA fails while copying in two 
moves the second segment of the failing 
instruction stream or while copying in one 
IIIOV8 the complete failing instruction 
stream, requests a retry at location RETRYZ 
to perform cleanup. R1Ml does not record 
this error. 

If IEAVTRIA fails while 8H8CUting any other 
instruction, requests a retry at location 
RETRYZ to perform cleanup. R1Ml records 
this error on SYSl.LOGREC. 

If the SDNACLUP bit is on, requests 
percolation. Prior to percolating, it frees 
the storage call that was allocated for the 
FAINPL. 

NOTE: If an error occurs during recovery, 
R1M abort processing (IEAVTRTR - R1Ml 
Recursion Processing) gats control. 

1131 Returns to RTMI. 

STEP 12 

.o...---........ 'EED 

[
/ RTITLPN 

RTlTLPID 

,SDWA 
/r----.... 

SDNASR06 
SDNASR07 
SDHASR08 
SDNASRll 
SDHARTYA 
SDNARCDE 
SDNARCRD 
SDNAUPRG 
SDHAMODN 
SDNACSCT 
SDNARE)CN 
SDNAEBC 
SDNAURAL 
SDHAVRA 
SDNACID 
SDHASC 
SDHAHDAT 
SDHAMVRS 
SDHARRL 

,FRRS 

r/ I FRRSCURR I 

L'FAINPL 

'1-1 RECURSE 

RTH-300 HVSIXA SLLz Recov Term Hgmt LY28-1735-0 Ic) Copyright IBM Corp. 1987 



"Restricted HIlterials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR1C - MODULE DESCRIPTION 

DESCRIPTIVE NAME: Service Module for IEAVTRTS 

FUNCTION: 
This module performs two main functions. 

Entry point IEAVTRlC performs the first function. which is 
performed once at the beginning of each error entry into 
RIM. IEAVTRIC obtains an SDHA based on the current system 
state. initializes that SOHA with error related 
information. and prepares the FRR stack. and RIM \'Iork area 
for the processing of this error. The error might be in 
the mainline. resulting in initial entry into RIM or it 
might be an error in an FRR. causing recursive entry into 
RTM. 

Entry point IEAVTRlO performs the second function. which 
is performed whenever an FRR has returned from its 
processing. IEAVTRlD prepares the SOHA, the FRR stack and 
RIMl work area for percolating to the next FRR, for retry 
or for resume processing. 

ENTRY POINT: IEAVTR1C 

PURPOSE: 
Obtains and initializes an SOHA, prepares the FRR stack 
and initializes the RTH environment whenever an error has 
occurred involving system routines. This might be an error 
in the mainline. causing initial entry into RIM or it 
might be an error in an FRR, causing recursive entry into 
RIM. 

LINKAGE: BALR 

CALLERS: IEAVTRTS 

INPUT: The RIMl \'Iork area 

OUTPUT: An initialized SOHA and FRR stack 

EXIT NORMAL: Returns to IEAVTRTS. 

EXIT ERROR: There are no exit error conditions. 

ENTRY POINT: IEAVTR1D 

PURPOSE: 
Processes the return of an FRR, copies FRR information 
from the SOHA to the RIMlHA. determines the correct RIM 
processing to take depending on the environmental 
conditions. and performs that processing: retry. resume, 
or percolation. 

LINKAGE: BALR 

CALLERS: IEAVTRTS and IEAVTRlF 

INPUT: The RIMl \'Iork area . 

OUTPUT: An updated FRR stack. SOHA and RIMl work area 

EXIT NORMAL: Retul~S to IEAVTRTS or IEAVTRlF. 

EXIT ERROR: There are no exit error conditions. 

EXTERNAL REFERENCES: 

LYZ8-1735-0 (cl Copyright IBM Corp. 1987 Method of Operation RTH-301 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRIC - MODULE DESCRIPTION (Continued) 

ROUTINES: 
IEAVTR11 - RTM1 SDNA Initialization Module via CALL 
IEAVTR1R - RTM1 RECORD Interface Module via CALL 
IEAVTRlS - RTM1 SDNA Allocation Module via CALL 
IEAVTSSX - SLIP Space Switch Handler via CALL 

CONTROL BLOCKS: 
Common name Macro ID 

ASCB IHAASCB 

CVT CVT 
FRRS IHAFRRS 

LCCA IHALCCA 

PSA IHAPSA 

RTlH IHARTlH 

SDNA IHASDHA 

SVT IHASVT 

TABLES: No tables used. 

Usage 

read 

write 

Function 

obtains the ASID of tho 
locally locked address 
space. 
Clears tho CVT restart word. 

read and Obtains various FRR status 
writes information and used by 

the SETFRR expansion. 
read Obtains address of CPU 

work save area. 
read Obtains addresses of various 

FRR stacks, the ASCB and 
LCCA. Also used by SETFRR 
expansion. 

read and Obtains and sets RTM control 
write information. 
read and Obtains control information 
write and sets FRR status indicators. 
read and Obtains information for the 
write INTSECT macro. 

RTM-302 HVSIXA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBM" 
licensed Materials - Property of IBH 

IEAVTRIC - MODULE OPERATION 

Entry point IEAVTRlC receives control once for each entry 
into RTMl to process FRRs. 

For an error encountered in mainline processing, IEAVTRlC: 

• Prepares the normal FRR stack for processing. The 
RTHl control information in each entry must be 
cleared in preparation for error processing. 

Calls IEAVTRlS to obtain an SOHA. 

• Calls IEAVTR1I to initialize the SDHA with error 
related information. 

For an error encountered in an FRR's processing, IEAVTR1C: 

If there are nested FRRs to be processed, copies the 
current error information (SDHA, selected RTMl work 
area information and 200 byte FRR work area) into a 
checkpoint area. Nested FRRs might be allowed to 
retry or resume if the information can be copied to 
the checkpoint area. If the information can not be 
copied, the nested FRRs will not be allowed to retry 
or resume. IEAVTR1C writes the SDHA, which 
represents the previous error, to SYSI.lOGREC and 
releases the locks as required. In either case, the 
SDHA is initialized with information about the new 
error. 

• If there are no nested FRRs to be processed, writes 
the SDHA representing the previous error to 
SYS1.lOGREC, releases the locks as required, and 
initializes the SOHA with information about the new 
error. 

Entry point IEAVTR1D receives control to perform post 
FRR processing whenever an FRR completes its processing 
and retums to RTM or whenever there is an FRR on the 
stack that must be removed in preparation for routing to 
the next FRR. IEAVTR10 performs the following 
processing: 

• updates the RTMl work area lock information to 
reflect locks that have been added by the FRR, locks 
that have been released by the FRR, and locks that 
have been requested to be released by the FRR via 
the SDHA. This information is important in making 
correct decisions durin9 IEAVTR1D's subsequent 
processing. 

• Examines the SOHA, the locks currently held, the 
super bi ts currently set and other system 
information to determine the type of action to be 
performed -- percolate, retry or resume. An 
indication of the type of action to be performed is 
saved in the RTMI work area for later use. 

• Ooes much of the actual processing required to 
process the percolation. retry or resume request. 
IEAVTR10 and IEAVTRTM will complete this processing. 

RECOVERY OPERATION: 
RTMl default recovery processing protects IEAVTR1C's 
processing against errors. IEAVTRTR performs default 
recovery processing. 

lY28-1735-0 (c) Copyright IBH Corp. 1987 Method of Operation RTM-303 



IEAVTRIC - DIAGNOSTIC AIDS 

ENTRY POINT NAMES: IEAVTRIC 
IEAVTRID 

MESSAGES: None 

ABEND CODES: ~e 

WAIT STATE CODES: None 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

ENTRY POINT IEAVTRIC: 

Registers 0 
Register 
Register 
Register 

- 12 - Irrelevant 
13 - Address of a standard register save area 
14 - The return address 
15 - The entry point address 

ENTRY POINT IEAVTRID: 

Registers 0 
Register 
Register 
Register 

- 12 - Irrelevant 
13 - Address of a standard register save area 
14 - The return address 
15 - The entry point address 

REGISTER CONTENTS ON EXIT: 

ENTRY POINT IEAVTRIC: 

Registers 0 - 15 - Same as on entry 

ENTRY POINT IEAVTRID: 

Registers 0 - 15 - Same as on entry 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTM-304 MVS/XA SLL: Recov Term Hgmt LY28-1735-0 (c) Copyright IBH Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBH 

JEAVTR1C - Service Module for IEAVTRTS 

IEAVTRTS 

c:> 
IEAVTR1C 

FRRS J----------> 
~I --------------~I \1 FRRSENTR . 

FRRS 

FRRSEHP 

PSA r----------> 
I PSACSTK PSANSTK r: ; 
FRRS 
.-------...,-: 
FRRSLAST FRRSCURR 
FRRSXFLG FRRSLCL 

EED . 
Ir-___ ~I...J 

RTlHRHSR . 

FRRS 

FRRSESZE FRRSEHP 

This module performs two main functions. 

Entry point IEAVTRIC performs the first 
function. which is performed once at the 
beginning of each error entry into RTH. 
IEAVTRIC obtains an SDHA based on the 
current system state. initializes that 
SDHA with error related information. and 
prepares the FRR stack and RTH work area 
for the processing of this error. The 
error might ba in the mainline, resulting 
in initial entry into RTM or it might be 
an error in an FRR. causing recursive 
entry into RTH. 

Entry point IEAVTRID performs the second 
function. which is performed whenever an 
FRR has returned from its processing. 
IEAVTRID prepares the SDHA, the FRR stack 
and RTHl work area for percolating to the 
next FRR, for retry or for resume 
processing. 

~ Processes an entry into RTM 
caused by an error in 
mainline code. 

A. Initializes the origin of this recovery 
environment to the address of the first 
FRR on the current FRR stack. 

8. Prepares the FRR entries on the normal 
FRR stack for RTH processing. 

The dispatcher issues a SETFRR purge 
request to delete all FRRs from the 
normal stack whenever a unit of work 
returns to the dispatcher. This macro 
request resets the FRR pointer to the 
first entry on the FRR stack but does 
not clear the RTH control information 
bits. which appear in the second word of 
each FRR entry. When a new error occurs. 
RTHl must clear the control information 
bits in all FRR entires so that RTHl 
uses the RTH control information that 
reflects the new error and not the 
previous error. 

Tha FRRSRCUR flag is set on in each FRR 
entry that does not represent a 
MODE=LOCAL FRR when a CALLRTH 
TYPE=RMGRCHL is being processed. This 
causes the non-MODE = LOCAL FRRs to be 
skipped. 

STEP 01 

• 
\EED 

IIRTlHOFRRI 

'\FRRS 
/,-----, 

LY28-l735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-305 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRlC - Service Module for IEAVTRTS STEP OlC 

FRRS r----------> 

... 1 F_R_RSC_U_R_R ___ --'r: 
EED • 

... 1 R_T_l_HG_F_R_R ___ --'I-J 

F1 ... :_RR_RS_S_ES_Z_E ___ ........ (-j-----S 
EED 

IRTlHGFRR 1-; 
SDWA ...-______ --,-J 

ISDHALCL SDHAGLBLI 

FRRS 

FRRSCURR 

EED r----------> 
IRTIHRTII RTIISDHAI-: ~ 
FRRS • 

IFRRSENTR I-J 

EED 

RTlHGFRR 

SDWA 

SDHACPUI SDHASEQI ...---.... 

C. Allocates a regular SDHA. 
I~'r------------------~ ',--,1 IEAVTR1S 

'A', 'R' 

D. Initializes the SDHA with error related 
information. 

I~'r-------------~ ',--,1 IEAVTRlI 

Processes an entry into RTM 
caused by an error in an FRR 
when there are nested FRRs 
on the FRR stack • 

A. Sets the RTM control information in each .L------"'SDWA 
nested FRR entry. [I 

ISDHAPERCI 
Harks each nested FRR entry as a nested --
FRR. ,FRRS 

Harks as a local or global FRR nested 
FRRs established by an FRR entered as a 
MODE=LOCAL or GLOBAL resource manager • 
These FRRs will be entered as a LOCAL or 
GLOBAL resource manager. 

B. Allocates a checkpoint SDHA. 
Il..-J, 
',--,1 IEAVTR1S 

'A', 'C', RETCODEIRlSRC) 

Ir------. 
FRRSNEST 
FRRSNLCL 
FRRSNGLB 
FRRSNRTY 
FRRSLCL 
FRRSGLB 

C. Hhen a checkpoint SDHA was obtained: ..L-----I'EED 

environment to the address of the first IRTIHOFRRI 
-Initializes the origin of this recovery [I 
nested FRR. - -
-Copies the error id from the previous ,SDWA 
SDHA to the new SDHA. 1 r-------, 

D. When a checkpoint SDHA was not obtained: 
-Writes the SDHA pointed to by the RTMI 
work area to SYS1.LOGREC. 
-Clears the CVT RESTART word if the 
error was a restart error. 
-Indicates in appropriate FRR entries 
that retry is not allowed. 
-Clears selected SDHA fields. 
-Initializes the SDHA with error related 
information. 

Il..-J'r------------; 
',--,1 IEAVTRIR 

o 

SDHAERFL 
SDHACPUI 
SDHASEQI 

RTM-306 HVs/xA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

IEAVTR1C - Service Module for IEAVTRTS 

EED r----------> 
-I , 

IRTITENPT RTIHRESTI : / 

FRRS : 

I FRRSESZE I..J 

/'----J, 

I 'r---l/I CLRSDHA 

/L-..J, 
EED ',--,/ IEAVTRlI 

RTlHGFRR 

FRRS 

FRRSEHP FRRSCURR r----' 

~ Processes an entry into RTM 
caused by an error in an FRR 
when there are no nested 
FRRs on the FRR stack. 

A. Hri tes the SDHA pointed to by the RTHI 
work area to SYS1.LOGREC. 

/L-..J, 

',--,1 IEAVTRIR 

0 

B. Obtains the mask of the locks currently 
held, the locks added by the FRR and the 
locks requested to be released as 
indicated in the SDHA. 

(~)I LOCKVERF 

I ~TlHRTCA 

C. Ensures no locks are invalidly released. 
I'----J, 

',--,1 KEPLOCKS 

RTlHRTCA, RTlHPERC 

D. Frees locks obtained by the FRR. 
/'----J, 

'.--. /! FRUICkS I LOCKSADD 

E. Frees any locks requested to be released 
~ FRR. 
/ , 

I 'r---l l FRLOCKS 

!RnKKFR 
F. Clears selected SDHA fields. 

I'----J, 

I ,,--,/1 CLRSDHA . 

I 

I 

STEP 03 

[ 
[ 

,CVT 

IICVTRsnml 

,EED 

/ I RTlHRSTH I 
,FRRS 

/ 1 FRRSNRTY I 

LY28-1735-0 (c) Copyright IBH Corp. 1987 Hethod of Operetion RTH-307 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRIC - Service Module for IEAVTRTS 

S. Initializes tho SDHA with tho new error 
information. 

STEP 03G 

'--I----"SDWA 

/ISDHAPERCI 

/~'r----------------------~ ''--''; l IEAVTRlI I 
FRRS J----------> H. Fixes the FRR stack if tho FRR deleted 
r-,------""1I, ~ any FRRs. 
FRRSCURR , 

- Tho deleted FRRs ara added back on tho 
FRRS stack. Thera entries ara marked 8S if 

FRRSESZE 

EED 

RTlNSFRR 

IEAVTRTS and IEAVTR1F 

JEA~~: 

they had alreacly racaived control. This 
will cause normal percolation processing 
to ra-delete tho FRRs. Re-deletion 
allows tho RTH control information in 
tho FRR entry to be cleared and any 
checkpoint SDHAs to be r9llloved from the 
chain of checkpoint SDMAs. 

I. Prepares tho stack for routing to the 
next FRR. 
/~'r-----------------------~ ',--,/1 NORMPERC 

1041 Returns to the caller. 

1051 Performs retry, resume and 
percolation processing upon 
return from an FRR. 

A. Obtains tho mask of the locks currently 
held, the lacks adclad by tho FRR and tho 
locks requested to be raleased as 
indicated in tho SOMA. 

(~)I 
:R=T=lH=R=rc==A================: 

LOCKVERF 

, / 

'-------I"EED 

/IRTlTLPN 

RTH-308 MVS/XA SLL: Recov Tem Hgmt LY28-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

IEAVTRIC - Service Module ~or IEAVTRTS 

FRRS r----------> 
r-------------~-: , 
FRRSESZE FRRSEHP / 
FRRSNEST FRRSNRTY : 

PSA 

1=. PSACS1X I"! 
EED 
r-------------~-: 
RT1HRSTH RTlHGFRR 
RT1NNSLB RT1HOFRR 
RTITENPT RTIHREST : 

SDWA .--__________ -, ..J 

SDHAI02 SDHAEXT2 
SDHARTYA SDHACPUA 
SDHARCDE SDHASPIN 
SDHARETY 

FRRS 

FRRSCURR 

EED 

RTlHLKHB RTlHCPUS .----' 
RT1HPERC RT1HSRTY 
RT1HNRTY RTIHRSUH 

B. Determines which RTH action is 
appropriate: retry, resume or 
percolation. The RTlHRRPI field of the 
RTH1 work area is set to indicate the 
determined action. 

C. Ensures no locks are invalidly released. /L--J,.--____________________ ~ 

'r---1/ KEPLDCKS 

RT1HRTCA, RTlHRRPI 

STEP OSB 

I 

LY28-1735-0 (c) Copyright IBH Corp. 1987 Method of Operation RTH-309 



"Restrictad Materials of IBM" 
Licensed Materials - Property of IBM 

JEAVTR1C - Service Module for JEAVTRTS STEP OSD 

EED r----------> 
~-------------,-: \ 
RTlHEEO RTIHFAIL 
RTIHGFAI RTIHRSTH 
RTIHGFRR RTIHRRPI 
RTIHPAS RTITENPT 
RTIHPERC RTIHSRTY 
RTlHNRTY RTlHRSUH 
RTlHREST MODESUPR 
MODEGSPN EEDSRBTP 
EEDNULL 

SDWA 
~----------,-: 
SDHARERR SDHART15 
SDHAFRLK 

FRRS 

IFRRSCURR FRRSFRRAI-; 

PSA : 
,-------------,...1 
IpSACSTK PSANSTK I 

EED 

RTIHSBIT RTIXPSHA 

SDWA 

SDHAEC2 SDHASRSV 
SDHARTYA SDHACHT 

PSA 

PSATSTK 

r---.,/ 

I D. Performs processing specific to the type"-1----1 
of action requirad for the FRR. 

Sets selectad fields in the SDHA in 
preparation of percolating to the next 
FRR. Locks obtainad by the percolating 
FRR are releasad as well as locks 
requested to be releasad by the FRR in 
the SOHA. Obtains an SQA SDHA and copies 
the contents of the global SOHA to the 
SQA SDHA if a global SOHA is currently 
in use but conditions no longer allow 
the use of a g~obal SOHA. This SOHA 
switch is requirad when there are no 
longer an global spin locks held or no 
super bits on. 

Constructs the PSH to be used in 
invoking the retry routine in the RTHI 
work area. Determines the cross memory 
control registers to be used in 
establishing the retry environment and 
saves them in the RTHl work area. A 
CMSET will eventually be usad to 
establish the retry environment using 
the cross memory information set here. 
Copies the retry registers from the SOHA 
to the RTHl work area. Sets retry 
register 15 to either the value from 
SOHASR15 or to the retry routines entry 
address depending on the selection of 
SETRP's RETRY15 option. Releases the 
locks as indicated in the SOHA only if 
the FRLKRTY option was speci fiad on a 
SETRP issued by the FRR. 

Clears the RTH control information in 
the routed to FRR entry for resume 
processing. 

[ 
, 

.J 

[ 

\FRRS 

/1 FRRSFLGI I 
\EED 
/ 

RTlHRSTH 
RTlHCPUN 
RTlNXH 
RTlXEREG 
RTlXPSHA 

\CVT 

/ I CYTRSTHD I 
\SDWA 
/ 

SOHAPERC 
SOHARTYA 
SDWACPUA 
SDHARCDE 
SDHASPIN 
SOHAREMR 

EED r-------.... \ E. Deletes FRRs that have been added to the "-------I\FRRS 
/ stack by the routad to FRR or re-deletes [/ 

F.RRs that have been deleted by the I FRRSCURR I 
routad to FRR. The re-deletion of FRRs --
causes initialization of the RTH control \EED 

RTlHGFRR 

FRRS 

FRRSCURR 

EED J----------> 
IRTlHRRPI RTIHPERCI 

information in the second word of the / 
FRR entry as well as causing checkpoint IRTlHGFRRI 
elements associatad with the deleted --
FRRs to be fread. 

F. Prepares the FRR stack for" percolating 
to the next FRR and indicates in the 
RTHI work area that RTHl processing is 
complete if there are no more FRRs to be 
given control. 

/~\r------------------" 
\~/~I ______ NO __ RM_P_ER_C ____ ~I 

RTH-310 MVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

IEAVTRIC - Service Module for IEAVTRTS 

FRRS r----------> 
IFRRSEHP FRRSCURR'-~ ) 

PSA J I .... P-S-ACS-TK--P-SANS--TK--,' 

EED 

RTlHWIT 

~ Returns to the caller. 

LY28-173,!;-O Ie) Copyright IBM Corp. 1987 

STEP 06 

IL..----I',EED 

'/IRTlHRRPII 

, / 

Hathocl of Operation RTH-311 



IEAVTRIF - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTMI FRR Routing Pre-Processor 

FUNCTION: 
This module is called by RTMI FRR processing to determine 
if there are any FRRs available and eligible to receive 
control. The results of this module's determination are 
returned to the caller via a return code. 

ENTRY POINT: IEAVTRIF 

PURPOSE: See function. 

LINKAGE: BALR 

CALLERS: IEAVTRTS 

INPUT: The FRR stack 

OUTPUT: Return code 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: Returns to the caller. 

EXTERNAL REFERENCES: 

ROUTINES: 
IEAVCCML - CHL lock cleanup routine (An entry point 

in module IEAVLKRH). 
IEAVTRID - RTHl FRR termination processing modulo 

(An entry point in module IEAVTRIC). 

DATA AREAS: No data areas used. 

CONTROL BLOCKS: 
Common name Macro ID Usage Function 
----------- -------- --------

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASCB IHAASCB read Obtains the ASID of the address 
space whose local lock is held. 

CVT CVT write Clears the CVT restart resource. 
FRRS IHAFRRS read Updates FRR entries and the 

and FRR stack header. 
write 

LCCA IHALCCA read Obtains address of CPU 
work save area. 

PSA IHAPSA read Obtains addresses of various 
FRR stacks and the 
LCCA. Also used by SETFRR 
expansion. 

RTlH IHARTlH read Obtains and changes RTM control 
and information. 
write 

SDHA IHASDHA read Uses error information and sets 
and status information. 
write 

TABLES: No tables used. 

SERIALIZATION: 
IEAVTRIF obtains the CPU lock to maintain disablement 
while processing in IEAVCCHL. 

RTH-3U HVSIXA SLL: Recov Term Hgmt LY28-1735-0 (c) Copyright IBH Corp. 1987 



"Restricted Materials of IBM" 
Licensed Haterials - Property of IBM 

IEAVTR1F - MODULE OPERATION 

IEAVTRIF receives control to determine whether or not any 
FRR entries are eligible to receive control to perform 
recovery processing. 

IEAVTRIF considers an FRR as eligible to receive control 
if one of the following is true: 

A super stack is the active FRR stack. A super stack 
is always considered to have an eligible FRR entry • 

• The normal stack has at least one FRR entry and a DAT 
error did not occur. 

The normal stack has s,t least one FRR entry, s DAT 
error occurred, bnd at least one super blt is on • 

• The normal stack has an entry that was established 
with the MODE=GL08AL option, currently holds ill global 
spin lock, a DAT error occurred, and all super bits 
are off. The FRR entries established with the 
MODE=GLOBAL attribute will be the only FRR entries to 
receive control. All other entries will not receive 
control. 

The normal stack has an entry that was established 
with the MODE=LOCAL option, no global spin locks are 
held, no MODE=GL08AL FRR entries exist, a DAT error 
occurred, and all super bits are off. The local lock 
of another address space must be held for MODE=LOCAL 
FRRs to be processed. The MODE=LOCAL FRRs will run 
in another address space. The processing to 
accomplish this space switch is performed by 
IEAVCCML. 

If an FRR entry does not meet one of the previous 
conditions to be considered eligible to receive control, 
IEAVTRIF deletes all entries from the stack. 

In concluding its processing, IEAVTRIF issues a retum 
code to the caller of either zero indicating that an 
eligible FRR entry does exist, or four indicating that 
there are no FRR entries to process. 

RECOVERY OPERATION: 
RTHI default recovery processing (contained in module 
IEAVTRTR) protects most of IEAVTRIF's processing against 
errors. During MODE=LOCAL FRR processing involving module 
IEAVCCHL, IEAVTRIF establishes an FRR environment. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-313 



IEAVTRIF - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTRIF 

MESSAGES: Nona 

ABEND CODES: Nona 

WAIT STATE CODES: ~ 

RETURN CODES: 

EXIT NORMAL: 

Register 15 contains ana of the following retuMn codas: 
o - There is an FRR eligible to receivo control 
4 - Thero are no more FRRs to process 

EXIT ERROR: 

Same as above 

REGISTER CONTENTS ON ENTRY: 

Registers 0 - 12 - Irrelevant 
Register 13 - standard register save area address 
Register 14 - RetuMn address 
Register 15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

Registers 0 - 12 - Restored 
Register 13 - Irrelevant 
Register 14 - Restored 
Register 15 - Contains a retuMn code 

RTH-314 HVS/XA SLL: Rocov Term Hgmt 

"Restricted Materials of IBM" 
Licensed Haterials - Property of IBH 

\. 

LY28-173S-0 (0) Copyright IBM Corp. 1987 



"Restricted Hatariels of IBM" 
Licensed Materials - Proporty of IBM 

IEAVTR1F - RTM1 FRR Routing Pre-Processor 

IEAVTRTS 

C:> lEAVTR1F 

PSA r----------> ...-------..,-: 
PSASUPER PSACSTK 
PSANSTK 

FRRS 

1 FRRSEHP FRRSCURR 1-: 
SDWA 

ISDNATEXC 1-: 
EED . 

IHODEDIS ,.J 

EED r----------> 
LIMO __ DE_~ __ PN ______ ~I-: ) 
FRRS . .--______ .... .J 

FRRSEMP FRRSXFLG 
FRRSRCUR FRRSNGLB 
FRRSGLB 

EED 

RTlTLPN 

FRRS 

FRRSELEN FRRSCURR ...--..1 

EED r----------> 
L-IRT_lNASC __ B __ -Ir: 
SDWA 

I-ISDNA_FH_I_D __ --'r: 
ASCB . 
r-I -------.I.J 
ASCBASID . 

This module is called by RTMl FRR 
processing to determine if there are any 
FRRs available and eligible to receive 
control. The results of this module's 
determination are returned to the caller 
via a return code. 

§] Determines if there are any 
FRRs eligible to receive 
control. 

If there is at least one FRR eligible to 
receive control, returns to the caller 
indicating that there is an FRR to be given 
control. If there are no FRRs apparently 
eligible to receive control, performs any 
special processing that may be necessary. 

[!!J Prepares to route control to 
MODE=GLOBAL FRRs when a DAT 
error is causing the FRR 
stack processing to be 
terminated. 

FRRs are going to be skipped because of a 
DAT error. If a spin lock is held, any FRRs 
established with MDDE=GL08AL must be given 
control. The stack is scanned and if any 
FRRs were established with MODE=GL08AL, the 
stack is not flushed. The MDDE=GL08AL FRRs, 
and only the MODE=GLOBAL FRRs, will be 
given control. All other FRRs will be 
skipped. 

/'-----J, 

',.-,;1 IEAVTR1D 

~ Prepares to route control to 
MODE=LOCAL FRRs when a DAT 
error is causing the FRR 
stack processing to be 
terminated. 

FRRs are going to be skipped because of a 
DAT error. If a LOCAL lock for other than 
the terminating address space is held, any 
HODE=LOCAL FRRs must have a chance to clean 
up the resources serialized by the lock. 
They cannot be given control now because 
RTH cannot allow an enabled FRR to get 
control while it is processing a DAT error. 
Therefore, special processing must be 
performed to allow the FRRs to run in a 
different address space. 

I 

STEP 01 

I 

[ 

I 

,EED 

/IRTlHGLBLI 

,FRRS 

/ I FRRSRCUR 1 

,EED 

/IRTlTLPN 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-3lS 



"Restricted Haterials of ISH" 
Licensed Haterials - Property of IBM 

IEAVTR1F - RTMl FRR Routing Pre-Processor STEP 03A 

EED .-----~, A. Establishes an FRR at entry point RIFFRR .1.' ____ -' 

,.---------' r----.... / in IEAVTRRR. 
RTlTLPN 

PSA 

PSATSTK PSACSTK 

P~S_A _________ :~I~ __ ~:) 
IpSALITA r 

Sr-D_W_A ____ -....I---------~ 
SDNAGRSV SDHAECl 
SDNACRGS 

PSA 

PSACSTK 

~-.,/ 

IEAVTRIF saves the currant logical phase 
number (LPN), sets the LPN to indicate 
that MODE=LOCAL processing is being 
performed, and obtains the CPU lock to 
ensure legal disablement around the call 
to IEAVCCML. 

SETLOCK 

(08TAIN) TYPE(CPU) RELATED(CPU) REGS(USE) 

EED ,..-----', 8. Releases all locks except the LOCAL lock 
,.---------' r----.... / and any CPU locks. 
RTlHLKHB 

PSA 

PSALITA 

IEAVCCML must obtain various locks in 
order to perform its function. All locks 
other than the LOCAL and CPU locks are 
released to prevent a lock hierarchy 
violation in IEAVCCMl. 

C. Calls IEAVCCML to process the LOCAL 
lock. 

The lock manager module, IEAVLKRM, is 
called et entry point IEAVCCML. IEAVCCML 
builds an SSRB and issues FRRSCOPY to 
save the normal stack into the SSRB. 
Lock ownership is transferred to the 
SSRB. The SSRB is set up to run in an 
address space other than the one which 
encountered the DAT error. The SSRB is 
passed to the CALLRTM TYPE=RMGRCHL 
function which ini tializes the SSRB so 
that it will abend and enter RTMI when 
it is dispatched. 

------------>PSA 

!:=::::l I PSACSTK I 

I I L'EED 

/IRTlTLPN 

'------"'EED 
1/ I RTlHLKMB I 

/~'r-------------; ',-,;l IEAVCCML 
~-------------------~ 

P ... S_A _______ :~ 1.-----.:) D. Deletes the FRR environment. 

IpSALITA PSACSTK r Restores the LPN and releases the CPU 
lock. 

RTM-316 MVS/XA SLL I Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRIF - RTMl FRR Routing Pre-Processor 

EED r----------> 
r------------,-: , 
RTINRSTH RT1TENPT / 
RTlNREST 

SDWA ....--______ -,..J 

SONAINCl SONASVCE 
SOMAPERC 

FRRS 

FRRSEMP 

PSA 

PSASUPER PSAHLHI 

LCCA 

LCCASPIN 

Per~orms cleanup processing 
i~ it has been determined 
that there are no FRRs 
eligible to receive control. 

If the error was a restart error and the 
CVT res tart word (CVTRSTHD) has not been 
cleared yet. clears the CVT restart word. 

If the error was caused by an ABEND macro. 
indicates in the SOMA that the SOMA should 
not be recorded. 

Initializes the SOMA fields. 

Returns to the caller with a 
return code indicating 
whether or not an FRR is 
eligible to receive control. 

STEP 04 

-'-------"'EED 

" / 

[ / I RTlNRSTH I 
,CVT 

[/ I CVTRSTHD I 
,FRRS 

[ / I FRRSCURR I 
,SDWA 
/r------, 

SOMARCRO 
SONAHLHI 
SDNASUPR 
SDNASPN 
SDMAEADR 
SDMAFRRE 

LY28-1735-0 (0) Copyright IBM Corp. 1987 Method of Operation RTM-317 



IEAVTR1G - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTM1 GTF Processing Module 

FUNCTION: 
This module uses the general trace facility (STF) to trace 
the event of receiving control back from a hnctional 
recovery routine 'FRR). 

ENTRY POINT: IEAVTR1G 

PURPOSE: See function. 

LINKAGE: 8ALR 

CALLERS: IEAVTRTS 

INPUT: None 

OUTPUT: None 

EXIT NORMAL: Returns to the callar. 

EXIT ERROR: Returns to the caller. 

EXTERNAL REFERENCES: 

ROUTINES: 
RIGFRR - FRR Recovery Routine for this module 

(An entry point in IEAVTRRR). 

DATA AREAS: No data aroas used 

CONTROL BLOCKS: 
Common nama 

FRRS 

Hacro ID 

IHAFRRS 

IHALCCA 

Usage 

road 
and 
write 
read 

Function 

Used by SETFRR macro. 

Obtains address of CPU 
work save area. 

"Restricted Haterials of I8H" 
Licensed Haterials - Property of IBM 

LCCA 

PSA IHAPSA read Obtains addresses of various 
FRR stacks. and 

RTlH 

HSAVT 

IHARTlH 

IHAHSAVT 

TABLES: No tables used. 

SERIALIZATION: 

read 

LCCA. Also used by SETFRR 
expansion. 
Obtains RTH control 
infonnation. 
Obtains RTH work save area 
address. 

IEAVTRIG does not obtain any locks. IEAVTRlG runs disabled to 
serialize the RTH stacks. 

RTH-318 HVS/XA SLL: Recov Term tfgIIIt LY28-173S-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR1G - MODULE OPERATION 

IEAVTRIG receives control whenever RTMI FRR processing has 
completed the action of routing to an FRR. 

IEAVTRIG performs the following processing: 

• Saves the callers logical phase number (LPN). 

Establishes an FRR environment at entry point RIGFRR 
in module IEAVTRRR. 

• Issues the HOOK macro to invoke GTF. 

• Deletes the FRR environment and restores the callers 
LPN. 

Note. The process of tracing FRR activity is bypassed if 
the current FRR stack is the PCFLIH stack. 

RECOVERY OPERATION: 
IEAVTRIG establishes an FRR environment to protect its 
processing errors. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-319 



IEAVTRIG - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTR18 

MESSAGES: None 

ABEND CODES: None 

WAIT STATE CODES: ~ 

RETURN CODES: ~ 

REGISTER CONTENTS ON ENTRY: 

Registers 0 - lZ - Irrelevant 
Register 13 - standard register save area address 
Register 14 - Return address 
Register 15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

Registers 0 - 15 - Restored 

RTM-3Z0 HVSIXA SLL: Recov Term Hgmt 

"Restrictocl ttaterials of IBM" 
Licensocl ttaterials - Property of IBM 

LVZS-I735-0 (0) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

lEAVTR1G - RTMI GTF Processing Module 

IEAVTRTS 

IEA~~: 
This module uses the general trace 
facility (GTF) to trace tha event of 
receiving control back from a functional 
recovery routine • FRR). 

E .... E_D ______ :S ,---"';) [!!] Saves the callers LPN. 

IRTlHRTCA RTITLPN ~ 

PSA I :) 
IpSACSTK PSAPSTK~ 

Establishes an FRR at entry 
point R1GFRR in lEAVTRRR. 

Calls GTF. 

STEP 01 

/L--J\r---------------------~ 
\.-,/ HOOK 

r-------------------~ 
EID=IEAFRR, TYPE=BPN 

DELHKFRR 1041 Deletes the FRR environment. 
P~S_A _________ !~,~--~:) 
IpSACSTK ~ 

1051 Restores callers LPN. 

!----------->PSA n 
LPSA 
/1"-' I PSACSTK 

'----------I\EED 
'/IRTlTLPN 

LY28-173S-0 (0) Copyright IBM Corp. 1987 Method of Operation RTM-321 



lEAVTR11 - MODULE DESCRIPTION 

"Restricted Hatarials of ISH" 
Licensed Materials - Property of IBM 

DESCRIPTIVE NAME: RTMl General SDWA Initialization Module 

FUNCTION: 
This module is called by RTMl FRR processing to ini tializa an 
SDHA with general error information. 

ENTRY POINT: lEAVTR11 

PURPOSE: Sea function. 

LINKAGE: BALR 

CALLERS: IEAVTRIC 

INPUT: The RTMI work area and FRR stack 

OUTPUT: An initialized SDHA 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: There are no exit error ccnditions. 

EXTERNAL REFERENCES: 

ROUTINES: 
RlIFRR - FRR Recovery Routine for this module (In module 

IEAVTRRR) 
IEAVTRIA - RTMI Failing Instruction Processor 

DATA AREAS: N.:I data areas used. 

CONTROL BLOCKS: 
Common nama 

-----------ASCB 

ASTE 

CVT 

FRRS 

LCCA 

PSA 

RTCT 

RTM2MA 
RTlH 

SOMA 

TCB 

HSAVT 

Macro ID --------
IHAASCB 

lHAASTE 

CVT 

IHAFRRS 

IHALCCA 

IHAPSA 

IHARTCT 

IHARTMU 
IHARTlH 

IHASDHA 

IIWTCB 

IIWCSAVT 

TABLES: No tables used. 

Usage 

read 

read 

read 

read 

read 

read 
and 
write 

read 
and 
write 
read 
read 
and 
write 
write 

read 

read 

RTM-322 MVSIXA SLL: Recov Term Mgmt 

Function 

Obtains the address space id 
(ASID). 
Obtains the segment table 
address. 
Obtains the RTCT address and 
time-of-day information. 
Obtains tho RTMl work area 
addross. Also used by the 
SETFRR macro. 
Obtains address of CPU 
work save area. translation 
exception address. SRB I S 

related task information. 
Obtains addrosses of various 
FRR stacks. the current ASCB 
and TCB. the LCCA and logical 
CPU id. Also used by SETFRR 
expansion. 
Obtains error id sequence 
number. 

Obtains error id information. 
Obtains RTM control 
information and error 
information. 
Contains initialized fields with 
error information. 
Obtains error type, mode at 
time of arror and RTM2 
work area. 
Obtains RTM work save area 
address. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRU - MODULE DESCRIPTION I Continued) 

SERIALIZATION: 
IEAVTRII runs disabled to serialize the FRR stack. the RTH1 
work area. and other RTHl control information. 

lY28-173S-0 (0) Copyright IBM Corp. 1987 Method of OJ)eration RTH-323 



IEAVTR1I - MODULE OPERATION 

IEAVTRlI receives control from RIMl FRR processing to 
initialize an SDHA with the following error information: 

• Copies the abend completion code and reason code I speci fied 
on either the CALLRIM or ABEND macro) into the SDHA. 

• Copies the error type I determined by the TYPE parameter of 
the CALLRIM macro that is used to invoke RIM processing) to 
set an error type indicator in the SDHA. The error types 
are program check~ machine check~ OAT error~ SVC error~ 
restart error and STERH re-entry. Some of the error 
types require additional processing in order to provide 
all the error information in the SOHA. These are: 

1) Machine check error 
The machine check handler passes RIM information about 
the machine check in EEDs. If the machine check 
handler provided an error id in the EEOs, RIM 
will use it instead of generating a new one in later 
processing. Also, various machine check error 
information is copied from the EEDs to the SDHA. 

2) SVC error 
Some SVC error entries might be caused by SRB to task 
percolation processing. For this type of SVC error, 
information about the error suffered by the SRB is 
passed to RIM via EEDs. The SDWA must be initialized 
wi th the SRBs error information obtained from these 
EEDs. The information taken from these EEDs includes 
the error id, 12 bytes of failing instruction stream, 
dump ranges and storage lists as well as the type of 
error suffered by the SRB Ie. g., program check). 
Additional processing is required for some of the 
error types. For example, if the SRB suffered a 
machine check. there will be an EED passed containing 
the machine check error information. The information 
from this EED must be used to initialize machine check 
information in the SDHA. 

3) STERH Re-entry 
Hhen RIM is entered for an STERH re-entry, the TCB 
contains the original error type. This error type is 
used to set the SDHA error type information. In 
addition, if the original error was a machine check, 
there will be an EED containing the machine check 
error data. The information from this EED must be 
used to initialize machine check information in the 
SDHA. 

• Copies the error registers and error PSHs from the 
RIMl work area extension (RTlX) into the SDWA. The source 
of the register and PSH information is dependent on the 
error type. Processing performed by IEAVTRTl and IEAVTRlO 
has made the source transparent to this module. The 
failing instruction module, IEAVTRlA, is called to 
initializo the SDHAFAIN Held with the 6 bytes of 
instruction stream on eithe.' side of the byte pointed to 
by the error PSH. 

• Copies the mode of the system at the time of error in 
the SDHAERRB field. This field indicates whether the 
system was in SRB mode or task mode. whether a type 1 SVC 
was processing, or whether any locks were held. 

• After an error id is generated, copies it into various SDHA 
fields. The error id can be used to associate an SDHA 
that is recorded in SYS1.LOGREC with an SVC dump taken by 
a recovery routine. It might also be used to associate 

"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

RIM-324 HVSIXA SLL: Recov Term Mgmt LY28-1735-0 Ie) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRU - MODULE OPERATION (Continued) 

multiple occurrences of SDHAs in SYS1.LOGREC as a result 
of more than one FRR requesting recording of the same 
error. An error encountered by an FRR while processing 
for a preceeding error might result in more than one SDNA 
in SYS1.LDSREC, one for the preceeding error and one for 
the FRRs error. All parts of the error ids Nill be the 
same except for the time stamp. Thus, the error id can be 
used to associate these related errors • 

• If dump options NOre provided, copies them into the SDHA. 
(Dump options might have been provided by the issuer of the 
CALLRTH or ABEND macro used to invoke RTH processing.) 
The dump options might point to a list of storage 
ranges or a list of subpools that must also be copied to 
the SDHA. FRR protection is established while copying 
these items. 

RECOVERY OPERATION: 
RTHI default recovery processing (contained in module 
IEAVTRTR) protects most of IEAVTRII I S processing against errors. 
Hhile copying any dump ranges, IEAVTRII uses an FRR to protect 
against any errors occurring during this processing. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-32S 



lEAVTR11 - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTRII 

MESSAGES: None 

ABEND CODES: ~ 

WAIT STATE CODES: Nona 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

Registers 0 - 12 - Irrelevant 
Register 13 - standard register save area address 
Register 14 - Return address 
Register 15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

Registers 0 - 15 - Restored 

RTH-326 J1\ISIXA SLL: Recov Term Hgmt 

"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

LY28-1735-0 Ie) Copyright IBM Corp. 1987 



"Restricted Materiall'l ?f II\H" 
Licensed Materials - Property of IBM 

lEAVTR11 - RTMI General SDWA Initialization Module 

IEAVTRIC 

lEA~~: 
SDWA J----------> 
~I ----------------~I '/ SDHARCF . 

EED 

RTIWRTCA RT1HABCC 
RTlHCRC 

SDWA 

SDHAABCC 

PSA 

PSATOLD PSAAOLD 

ASCB 

ASCBASID 

ASTE 

ASTESTA 

EED J----------> 
,r-------.1 
RTlTENPT . 

EED J----------~ 

RTlHEED RTlHMCHR • / EEDERFL EEDNULL 

EED 

RTlXDOPT EEDBASE 
EEDHHREP EEDIOMA 
EEDESEQI EEDECPUI 
EEDETIME 

This module is called by RTM1 FRR 
processing to initialize an SDHA with 
general error information. 

~ Initializes the SDWA with 
the ABEND and reason codes. 

~ Initializes the SDWA with 
the error type and related 
information. 

A. Indicates in the SDHA that a machine 
check occurred. 

Copies the machine check data and error 
id from the machine check EED. 

STEP 01 

_I 

rw 

.J 

I 

, 

.J 

,SDWA 
/r-----. 

SDHAABCC 
SDHAASID 
SDHACRC 
SDHAPGTA 
SDWAASI1 
SDHATC8 
SDHAASCB 
SDHAASST 
SDHASABC 
SDHAotRC 

,EED 

/IRTlHtRC 

,SDWA 
/r-----, 

SDHAHCH 
SDHAHCHK 
SDHAMCIV 
SDHAERFL 
SDHACPUI 
SDWASEQI 
SDHAERTH 
SDHAIOMA 

,EED 

/IRTlXDOPTI 

LV28-1735-0 Ic) Copyright IBM Corp. 1987 Method of Operation RTM-327 



"Restricted Haterials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR11 - RTMI General SDWA Initialization Module STEP 02B 

EED 

RTlHEED 
RTlHDAT 
EEDNULL 

EEOSRBTP : 
: 

RTINSVC -:---F-------) 

~------------~ I 
FRRS . 
IFRRSESZE FRRSEMP 

EED 

RTlNSAVl 

FRRS 

FRRSCURR 

I-J 

EED r----------> , 
RTIHPCFL RTIHREST 
RTlNSVC RTlHMCHR 
RTlNSTM2 EEDID 
EEDERFL EEDNULL 
DUMPOTYP HHREPTYP 
DUMPXTYP SUBPL TYP 
SDHATYP 

SDWA 

ISDNASLST SDNADSR 

TeB 

ITCBERTYP 

EED 

RTlHEED EEDFHRDP 
EEDSCDMP EEDSDPSL 
EEDSDSLX EEDXRGS 
EEDHHREP EEDIOMA 
EEDSPLS EEDSDNA 
EEDESEQI EEDECPUI 
EEDETIME EEDCOMU 

-: 
: 
: 
I 
: 
: 
: 
: 
: 
: 

,-: 
: 
: 

!-J 

\ 
/ 

EED J----------> 
IRTlHEED EEDNULL ! 

EED r----------> 
-' \ 

IRTlHOFRR RTlH~ESTI : / 

FRRS . 

IFRRSES~E I-J 

FRRS 

FRRSCURR 

EED J----------> .--1----,1 
~TlHPCFL _ 

B. 

C. 

D. 

E. 

F. 

RTM-328 MVS/XA SLL: Recov Tem Mgmt 

Indicates in the SDNA that a DAT error 
occurred. 

Harks all FRR entries as not being 
allowed to retry. 

Processes an SRB-TO-TASK percolation. (A 
special form of SVC error entry) 

An SRB suffered an error and percolated 
to its related task. The task had EUT 
FRRs at the time it was abnormally 
terminated by the SRB percolation. The 
SDNA passed to the EUT FRRs will contain 
information about the original SRB 
error. Error information, such as error 
id, failing instruction stream, abend 
completion and reason coda, dump 
options, and ranges and sub-pool lists, 
will be obtained from EEDs passed as II 

resul t of the SRB percolation. 

Indicates in the SDNA that an SVC error 
occurred. 

Indicates in the SDNA that a restart 
error occurred. 

Marks nested FRR entries as not being 
allowed to retry. 

Indicates in the SDMA that a program 
check error occurred. 

I , 

[ 

, 
[1 

LJ 

\FRRS 

/ I FRRSNRTY I 

\SDWA 
/..----. 

SDI'IAMCH 
SDNAMCHK 
SDHAPCHK 
SDNARKEV 
SDHASVCE 
SDNASTRM 
SDNAMCIV 
SDHAERFL 
SDNACPUI 
SDNASEQ# 
SDHASNPA 
SDHACOMU 
SDNAERTM 
SDNARTl2 
SDNAIOMA 
SDHASPLE 

\EED 

/IRTlXDOPT! 

,. 

e \FRRS 

/IFRRSNRTYI 

\EED 
[ 
[ 

I 

/ I RTlHRSTH! 

\SDWA 

/ISDHARKEVI 

,SDWA 

/ISDHAPCHKI 

LV28-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of I8H" 
Licensed Materials - Property of IBH 

IEAVTR1I - RTMI General SDWA Initialization Module 

EED r----------> 1 -: , 
RTIHPCFL RTIHREST : / 
RTlHSVC RTlHHCHR : 
RTlHSTM2 EEDID : 
EEDNULL HHREPTYP : 

: 
PSA : 

IpSATOLD r: 
TCB I 

ITCBERTYP I 
...I 

EED 

RTlHEED EEDFHRDP 
EEDHHREP EEDIDHA 

EED r----------> 
I~R_T_IH_P_~ __ 2 ______ ~I-: ~ 
SDWA . ...-______ -,...1 

SDNAPCHK SDHATEXC 
SDNAFAIN 

EED 

RTlNXM RTlHPAS 
RTlXEREG 

SDWA 

SDNAECI 

LCCA 

LCCAPYAD 

EED r----------> .--------..., -: , 
RTIHEED HDDEBYTE 
HODETYPI HDDESRB 
MODETC8 EEDSRBTP 
EEDNULL 

PSA : 

LI P_S_A_T_D_LD ____ --I1..J 
EED 

RTlHHODE 

TCB 

TCBMODE 

.---...,/ 

G. Processes an STERM re-entry error. 

The SDNA error type is set according to 
the original error reason as indicated 
in the TC8ERTYP field. If the error was 
a machine check, machine check data will 
be obtained from the machine check EED. 

§] Initializes the SDWA with 
the registers and PSW at the 
time of the error. 

~ Initializes the SDWA with 
information about the mode 
of the system at the time of 
the error. 

The SDNATYPI bi t is set on in the SDNA if a 
Type 1 SVC was in control at the time of 
the error. 

The SDHALDIS bit is set on in the SDNA if 
any lock was held at the time of the error. 

The SDNASRBM bit is set on in the SDNA if 
the system was in SRB mode at the time of 
the error. 

The SDHAENRB bit is set on in the SDNA if 
the system was in EUT mode at the time of 
the error. 

STEP 02G 

1 

-I 

I 

--. 

I 

I 

,SDWA 
/r------..., 

SDHAHCH 
SDNAHCHK 
SDHAPCHK 
SDNARKEY 
SDNAABTM 
SDHASYCE 
SDHASTRM 
SDHARPIY 
SDHAMCIY 
SDHAIOMA 

,SDWA 
/...-----..... 

SDHAGRSY 
SDHAECI 
SDHAAECI 
SDHATRAN 
SDHAEC2 
SDHAAEC2 
SDHATRN2 
SDHASRSY 
SDHACRGS 

,SDWA 
/.-----. 

SDHATYPI 
SDHAENRB 
SDHALDIS 
SDHASRBM 

LY28-1735-0 Ie) Copyright IBM Corp. 1987 Method of Operation RTM-329 



"Restricted Haterials of IBH" 
Licensed Haterials - Property of IBM 

IEAVTR1I - RTMl General SDWA Initialization Module STEP OS 

SDWA r----------> 
~------------,-: , 
SDHAMCHK SDHAERFL : / 
SDHASE(3 

PSA 

L-IPSA_TO_LD __ --Jr: 
EED 
r--------------.., -: 
RT1TENPT RT1XDOPT 
RTlHDAT 

TCB • 

I TCBRTHA TCBRTH2 1...1 
PSA 

PSACPULA 

r--------------.., -: 
SDHAS1 SDHASCND 
SDHAPRIH 

ASCB . 

L-IASC_BAS_I_D __ -.lI-J 
PSA 

PSATSTK PSACSTK 

EED 

RTlTLPN 

IHASNP r----------> r: ) ISNPSLIST SNPYS3 

SDWA . 

LIS_D_HA __ DS_R_p ______ ---1I..J 
IHASNP 

SNPSTOR 

[!!] Initializes the SDWA 
error-id. 

SDHAERTH is set from the TOD clock. 

If the other components of the error id 
I the logical CPU id, SDI'IACPUI, and sequence 
number, SDHASEQ#) are not already 
ini tialized and an RTH2 work area exists 
and contains an error id, the error id 
components are copied from the RTH2 work 
area to the SDHA. 

If the logical CPU id and sequence number 
are still not initialized, a new error id 
is generated. The sequence number, 
RTCTSEQ#, is incrmnanted and the new value 
placed in SDHASEU. The logical CPU id from 
PSACPULA is placed in SDHASPUI. 

~ Initializes the SDWA with 
any dump options, storage 
ranges or sub-pool list that 
might have been provided by 
the issuer of CALLRTM or 
ABEND. 

A. Establishes an FRR at entry point R1IFRR 
in IEAVTRRR. 

B. Moves the common section of the SNAP 
parameters into the SDHA. 

C. If storage ranges are provided in the 
SNAP parameters, copies them to the 
SDHA. 

I 

• 

~ 

[ 

~ 

I 

_. 

[ 

,SDWA 
/~-----., 

SDHAERFL 
SDHACPUI 
SDHASEQ# 
SDHAERTH 

,EED 

/ I RTlHSLST I 
,SDWA 
/ ,-------., 

SDHADPSL 
SDHADSR 
SDHADSRL 

RTH-330 HVS/XA SLL: Recov Term Hgmt LV28-173S-0 Ic) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRII - RTMI General SDWA Initialization Module 

I~NP r----------> 
~---------------~-: , 
L..ISNP_SUB_P __ ---II : / 
SDWA J 

SDNAXSPL SDHASPLE 
SDMASPLS 

IHASNP 

SNPSUBL 

PSA 

PSACSTK 

EED 

RTlSRHLO 

D. If a sub-pool list is provided in the 
snap parameters. and if our SDMA 
contains a sub-pool list extension. 
copies the sub-pool list to the SOMA. 

E. Deletes the FRR. 

STEP 06D 

...... ------'SDWA 

/ I SDHASPLN I 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RlM-331 



IEAVTRIN - MODULE DESCRIPTION 

DESCRIPTIVE NAME: FRR Stack Initialization 

FUNCTION: 
This modulo initializes the FRR stacks during system 
initialization (NIP) and for Vary CPU (online) so that 
SETFRR recovery can be defined. The Recovery stack 
Vector Table (RSVT) in the PSA is initialized to point 
to the FRR stacks. 

ENTRY POINT: IEAVTRIN 

PURPOSE: Initialize the FRR stack 

LINKAGE: Standard linkage on procedure call 

CALLERS: IEAVNIPO, IEEVCPR 

INPUT: 
Register 1 points to the PSA of processor to be 

ini tialized. 
Register 13 points to a 72 byte register save area. 
Also see Dependencies. 

ENQ/Lock Conditions: Same as caller 

OUTPUT: None 

EXIT NDRMAL: Returns to caller 

EXTERNAL REFERENCES: 

ROUTINES: None 

DATA AREAS: 
PSA, CVT, FRR stacks, vector table of lengths 
of FRR stacks (mapped by IHAVSTAK), LCCA 

CONTROL BLOCKS: PSA, CVT, LCCA 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTH-332 MVSIXA SLL: Recov Tenm Hgmt LV28-1735-0 Ie) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRIN - MODULE OPERATION 

The Recovery Stack Vector Table IRSVT) in the PSA is 
initialized to point to the respective FRR stacks: 

PSACSTK - points to the current FRR stack and is 
initialized to point to the normal FRR stack 

PSASSTK - initialized to point to the SVC-I/O-Oispatcher 
FRR stack 

PSANSTK - initialized to point to the normal FRR stack 
PSAMSTK - initialized to point to the machine check FRR 

stack 
PSAPSTK - initialized to point to the program check FRR 

stack 
PSAESTKI - initialized to point to the external FLIH 

FRR stack (non-recursive entries) 
PSAESTK2 - initialized to point to the external FLIH 

FRR stack (first level recursions) 
PSAESTK3 - initialized to point to the external FLIH 

FRR stack Isecond level recursions) 
PSARSTK - initialized to point to the restart FLIH 

FRR stack 
PSATSTK - initialized to point to the RTHI FRR stack. 

Note that this pointer is not contained in 
the RSVT table 

PSAASTK - initialized to point to the ACR FRR stack. 
Note that this pointer is not contained in 
the RSVT table 

The supervisor control FRR stackls) initialization is performed 
as follows: 

1) The entire stack is zeroed 
2) The stack header (4 words) is initialized to appear 

as follows: 
1st word - points to the first FRR entry in the stack 
2nd word - points to the last FRR entry in the stack 
3rd word - contains the length of each FRR entry 
4th word - contains the same pointer as the 1st word 

3) The first stack entry is initialized to point to the 
supervisor control FRR (IEAVSCRU). The CVTSPFRR field 
of the CVT contains the address of the super FRR. 
EXCEPTION: The first stack entry in the ACR stack will 
point to ACR's own FRR routine. 

The normal FRR stack initialization is performed as follows: 

1) The entire FRR stack is zeroed 
2) The stack header (4 words) is initialized as follows: 

1st word - contains the address of the first FRR 
entry minus 32 bytes 

2nd word - contains the address of the last FRR 
entry in the stack 

3rd word - contains the length value of an FRR entry 
4th word - contains the same pointer as the 1st word 

RECOVERY OPERATION: IEAVTR1N does not provide its own recovery environment. 

LV28-1735-0 (c) Copyl"ifJH :"BM Corp. 1967 Method of Operation RTH-333 



IEAVTRIN - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTRlN 

MESSAGES: None 

ABEND CODES: Nona 

WAIT STATE CODES: None 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

Register 
Register 
Register 
Register 

1 - Address of PSA 
13 - Address of the caller's register save area 
14 - Return address 
15 - Entry point address 

REGISTER CONTENTS ON EXIT: Irrel~t 

"Restricted Materials of IBH" 
Licensed Materials - Property of IBH 

RTM-334 HYS/XA SLLs Recov Term Hgmt LY28-173S-0 (c) Copyright IBH Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBH 

IEAVTR1N - FRR Stack Initialization 

IEAVNIPO, IEEVCPR 

lEAr:~: 
This module initializes the FRR stacks 
during system initialization (NIP) and for 
Vary CPU (online) so that SETFRR recovery 
can be defined. The Recovery Stack Vector 
Table (RSVT) in tho PSA is initialized to 
point to the FRR stacks. 

LV28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-33S 



IEAVTRIR - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTMI RECORD Inter~ace Module 

FUNCTION: 
This module is called by RTHI FRR processing to write 
diagnostic error information that is contained in the SDMA 
to the SYS1.LOGREC data set using the RECORD macro 
instruction. 

ENTRY POINT: IEAVTRIR 

PURPOSE: See function. 

LINKAGE: BALR 

CALLERS: IEAVTRTS and IEAVTRIC 

INPUT: 
A parameter indicating the SDHA to be recorded. A 
parameter value of 0 indicates that the primary SDHA 
pointed to by the RTHI work area is to be recorded. A 
nonzero parameter value indicates that a checkpoint SDHA 
pointed to by a checkpoint element (RTlI) is to be 
recorded. The parameter value is the addl"GSs of the 
checkpoint element (an RT1IJ. 

OUTPUT: SYS1.LOGREC contains diagnostic information. 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: Returns to the caller. 

EXTERNAL REFERENCES: 

ROUTINES: 
R1RFRR - FRR Recovery Routine for this module (Entry in 

module IEAVTRRRJ 

DATA AREAS: No data areas used. 

CONTROL BLOCKS: 
Common name Macro ID Usage Function 

----------- -------- --------

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

ASCB IHAASCB read Obtains the job name to be 
used in the SYSI. LOGREC 
record. 

CVT CVT read Obtains RECORD service 
routine entry address. 

FRRS IHAFRRS read Obtains FRR entry information 
and FRR stack header. 

LCCA IHALCCA read Obtains address of CPU 
work save area. 

PSA IHAPSA read Obtains addresses of various 
and FRR stacks, the ASCB and 
write LCCA. Also used by SETFRR 

expansion. 
RTlH IHARTlH read Obtains RTH control 

and information. 
write 

SDHA IHASDHA read Obtains diagnostic error 
and information. 
write 

HSAVT IHAHSAVT read Obtains RTH work save area 
address. 

TABLES: No tables used. 

RTH-336 HVSIXA SLL: Recav Term Hgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR1R - MODULE DESCRIPTION (Continued) 

SERIALIZATION: 
IEAVTR1R does not obtain any locks. IEAVTR1R runs disabled to 
serialize tho RTHl work area. 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-337 



IEAVTRIR - MODULE OPERATION 

IEAVTRIR receives control to determine if diagnostic 
error information that is contained in an SDHA should be 
recorded in SYSl.LOGREC data set. Information in an SDHA 
is recorded if the FRR requested recording, an RTMI error 
condition forced recording or SLIP forced recording as a 
result of the specification of ACTION=RECORD on a SLIP 
command. 

If recording is required, the following processing is 
performed: 

· If recording is forced because of an error in RTMI 
processing, places information about the RTMI error 
in the variable recording area of the SDHA. There 
are two errors that will cause RTMI to force the 
recording of the SDHA. They are: II) an inability to 
obtain storage for an SDHA (2) a failure to establish 
the FRRs cross memory environment. 

• Establishes an FRR environment at entry point RIRFRR 
in module IEAVTRRR to protect RTMI against errors in 
the RECORD process. The RTM super stack is mada tho 
active stack during this processing. 

• Issues the RECORD macro to write the SDHA's 
diagnostic error information to SYSl.LOGREC. 

• Deletes the FRR environment. The stack that was 
active at the time IEAVTRIR recaived control is 
restored as the active stack and control retums to 
the caller. 

RECOVERY OPERATION: 
RTMI default recovery processing (contained in module 
IEAVTRTR) ~rotBCts most of IEAVTRIR's processing against 
errors. During the ~ECORD processing. any e,'rors occurring 
will be protected through an FRR. 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTM-338 MVSIXA SLL: Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBH" 
Licensed Materials - Property of IBH 

IEAVTRIR - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTRIR 

MESSAGES: None 

ABEND CODES: None 

WAIT STATE CODES: None 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

Register 0 - Irrelevant 
Register 1 - Parameter address 
Registers 2 - 12 - Irrelevant 
Register 13 - standard regis tor savo area address 
Register 14 - Return address 
Register 15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

Registers 0 - 15 - Restored 

LY28-1735-0 Ie) Copyright IBM Corp. 1987 Hathocl of Operation RTH-339 



"Restricted Matarials of IBM" 
Licensed Haterials - Property of IBM 

IEAVTR1R - RTM1 RECORD Inter~ace Module STEP 01 

IEAYTRTS and IEAYTRIC 

C:> IEAVTR1R 
PrA_~ __ E_TE __ RS ________ ~~lr ____ ~:) 
IRTlIPTR r 
SDWA r----------> 
1..1 S_D_HA_R_C_R_D ______ --'r: 
PA~ETERS 

1..1 R_T_l_IPT_R ____ .... r: 
EED : r-------.... ..J 

RTINRCDR RTINFAIL 
RTlNGFAI 

PA~ETERS r---------> 
,L.R_T_II_P_TR ________ ~I-: ) 
EED : 

IRTINFAIL RTINGFAII-: 

FRRS • 
r--------. ..J 
IFRRSEHP FRRSCURRI 

FRRS 

FRRSENTR FRRSXENT ..---..1 

EED r----------> 
i-IHO_O_ES_RB __ --...Ir; 
ASCB : r-------.... ..J 

ASCBASCB ASCBJBNI 
ASCBJBNS 

SDWA ,..--_ .... , 
r--------.... r----"'/ 
SDNAFHID SDN"CpIJI 
SDNAASID SDNASEq# 
SONAERllt 

This module is called by Rlltl FRR 
processing to writa diagnostic error 
information that is contained in the SDIItA 
to the SYSl.LOGREC data sat using the 
RECORD macro instruction. 

~ Determines i~ there is any 
reason tD record the SDWA 
diagnostic error information 
in SYS1.LOGREC. 

The SONA is recorded if the SDHA record 
indicator is set, SLIP indicated recording 
as a result of ACTION=RECORD, or Rlltl 
forced recording. 

IEAVTRIR retums control to the caller if 
record processing is not to be done. 

. Otherwise, IEAVTRIR continuas processing 
the request. 

~ I~ recording o~ the SDWA is 
being forced by RTM1, sets 
up the variable recording 
area o~ the SDWA with the 
reason for forcing 
recording. 

R11t forcas the recording of an SDMA 
whenever an FRR is skipped because the 
GETMAIN to obtain the SOMA fails or because 
the CHSET issued to establish the FRRs 
cross mamory environment fails. The reason . 
for skipping the FRR is recorded in the 
SOMA variable recording area. 

§J Initializes the RECORD macro 
parameter list. 

A. Places the SDHA address into the RECORD 
macro parameter list. 

B. Places the job name into the RECORD 
macro parameter list. 

C. Places the error-id into the RECORD 
macro parameter list. 

I 

[ 
,EED 

/IRTlHSKIPI 

,SDWA 
Ir----.... 

SDNASKIP 
SOMARCRO 
SDNAHEX 
SDNAURAL 

Rllt-340 HVSIXA SLL: Recov Term Hgmt LY28-1735-0 Ic) Copyright IBM Corp. 1987 



"Restricted Materials of 1811" 
Licensed Materials - Property of 1811 

IEAVTRIR - RTMI RECORD Inter~ace Module 

Sr-D_W_A ____ ...,J----------:> 
SDHAI1CHK SDHAPCHK 
SDHARKEY SDHATEXC 

SDWA J----------:> 
I~ --------~I '/ SDHAVRA . 

SDWA 

SDHAURAL SDHARC1 
SDHARC2 SDHARC3 

SDWA 

SDHAVRA SDHARC1 
SDHARC2 SDHARC3 

SDWA 

SDHAURAL 

PSA 

PSATSTK PSACSTK 

J----------~ 
/ 

FRRRETPT 

P~S-A---------:~I~--~:) 
IpSACSTK r 

Sr-D_W_A ____ -..., J----------~ 
SDHAVRA SDHARCl 
SDHARC2 SDHARC3 

SDWA 

SDHAURAL 

r---...,/ 

D. Places the record type into the RECORD 
macro parameter list. 

~ Compresses the unused space 
from the SDWA. 

The SDHA recordable extensions are moved to 
eliminate any unused space between tho last 
used byte of the variable recording area 
and the first byte of the recordable 
extensions. 

~ Establishes an FRR 
environment at entry point 
RIRFRR in module IEAVTRRR. 

~ Invokes the software 
RECORDing Facility to record 
the SDWA. 

1071 Deletes the FRR environment. 

loa I uncompresses the SDWA. 

The recordable extensions are moved back to 
their original locations. 

I 091 Returns to the caller. 

STEP 03D 

I 

. 

_I 

[ 

,SDWA 
/~--.., 

SDHARC1 
SDHARC2 
SDHARC3 

------------>PSA n 
[ 

[ 
c;l 
, / 

,PSA 

/§ PSANSS 
PSACSTK 

,SDWA 
/~--.., 

SDHARCRD 
SDHADPVA 
SDHAURAL 
SDHAID 

,EED 

/IRTlTLPN 

LY28-173S-0 Ic) Copyright IBI1 Corp. 1987 Method of Operation RTH-341 



IEAVTR1S - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTM1 SDWA Allocation Module 

FUNCTION: 

uRastricted Haterials of IBM" 
Licensed Haterials - Propart,v of IBM 

This module is called by RTHI FRR processing Hhenaver a request 
has been made to either allocate or release an SONA. 

ENTRY POINT: IEAVTR1S 

PURPOSE: Sea fu1ction. 

LINKAGE: BALR 

CALLERS: IEAVTRIC and IEAVTRIO 

INPUT: 
standard paramaters are received as input. The parameter 
defines the raquast type, either to allocate or to frau an 
SDNA, and whether the request is for a normal or a 
checkpoint SDNA. 

The first parameter is a single EBCDIC character defining the 
raquest type as follONS: 

'A' - Allocate an SDMA 
'F' - Free an SDNA 

The second parameter is a single EBCDIC character further 
defining the action to be taken as follONS' 

'R' - A regular SDHA is to be processed 
'C' - A checkpoint SDHA is to be processed 

OUTPUT: Ei thor an allocated or released SOHA 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: There are no exit error concIi tions. 

EXTERNAL REFERENCES: 

ROUTINES: 
R1SFRR - FRR Recovery Routine for this module (In module 

IEAVTRRR) 

CONTROL BLOCKS: 
COIlIIIIOn nama 

ASCB 

FRRS 

LCCA 

PSA 

RTl" 

SDHA 

NSAVT 

YSTAK 

Hacro ID 

IHAASCB 

IHAFRRS 

IHALCCA 

IHAPSA 

IHARTlH 

IHASDHA 

IHANSAVT 

IHAYSTAK 

TABLES: No tables are used. 

Usage 

read and Obtains tho SDNA queue 
write anchor (RTHC). 
read Obtains address of the RTH1 

read 

read 
and 
write 

work area and FRR stack 
header information. 
Obtains address of CPU 
work save area. 
Obtains addresses of various 
FRR stacks, the ASCB and 
LCCA. Also used by SETFRR 
expansion. 

read and Obtains RTH control 
write information. 
write Contains diagnostic 

read 

read 

information. 
Obtains RTH work save area 
address. 
Obtains size of an FRR stack. 

RTH-342 tIYSIXA SLL: Racov Term Hgmt LY28-173S-D (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBH" 
Licensed Materials - Property of IBM 

IEAVTR1S - MODULE DESCRIPTION (Continued) 

SERIALIZATION: 
IEAVTR1S runs disabled to serialize the FRR stack~ RTHl 
work area~ and other RTHl control information. IEAVTR1S 
obtains the SALLOC lock to serialize the ASCBRTHC list. 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-343 



IEAVTR1S - MODULE OPERATION 

IEAVTR1S receives control whenever there is a request made 
by RTM1 FRR processing to either allocate or free an SOHA. 

Allocating an SOHA: 

The caller requests that an SOHA be allocated by indicating 
in the first parameter an "A" and in the second parameter 
either an "R" for a regular (non-checkpoint) SOHA or a "C" 
for a checkpoint SDHA. 

If the cul"'r.ant stack is a super FRR stack, at least one 
super bit is on, a global spin lock is held, or the 
error is a OAT error. IEAVTR1S allocates a global SOHA. 
IEAVTR1S then checks the second parameter to determine 
the type of global SOHA to allocate. 

If the request is to allocate a regular SOHA, the request 
is satisfied with a regular global SOHA. (There is one 
regular global SOHA associated with each of the FRR 
stacks~the current stack is used to determine which of 
the global SDHAs must be allocated.) 

If the request is for a checkpoint SOHA, the request is 
satisfied from the pool of global checkpoint SOHAs. 
(Unlike the regular global SOHAs. global checkpoint SDHAs 
are not preassigned to a particular stack. They are 
allocated as needed and any global checkpoint SOHA might 
be allocated to any of the stacks.) Associated with the 
pool is an allocation table. The table is used to track 
which global checkpoint SOHAs are currently allocated 
and. as diagnostic information. to which stack they are 
allocated. 

If an enabled unlocked task (EUT)' unlocked SRB or 
locally locked function suffers an error other than a 
OAT error, IEAVTR1S allocates an SQA SDHA from subpool 
239. To satisfied the request, IEAVTR1S first 
datermines if there are any free SOHAs anchored in the 
ASC8's RTMC list. If an SOHA cannot be obtained from 
the RTMC list, IEAVTR1S issues a GETMAIN macro for an 
SQA SDHA. IEAVTR1S then checks the second parameter to 
determine the type of global SDHA to allocate. 

If the second parameter requested a regular SDHA. storage 
is allocated from below the 16 Meg line and the allocated 
SDHA is added to the ASCB's RTMC list. 

If the second parameter requested a checkpoint SDHA, 
storage is allocated from above the 16 Meg line and the 
allocated SDHA is added to the ASCB's RTMC list. 

After the SDHA is allocated, IEAVTR1S initializes the 
SDHA structure. 

F rea ing an SDHA: 

The caller requests that an SDHA be freed by indicating 
in the first parameter an "F", The second parameter is 
irrelevant for a free request. 

IEAVTR1S frees the first checkpoint element anchored off 
the RTM1 work area's RTII chain. The release process is 
dependent on the type of checkpoint. which is indicated 
in the RT1IRTYP field. If the checkpoint is a global 
checkpoint. IEAVTR1S marks the global SDHA allocation table 
entry that corresponds to the checkpoint being released 
as free or no longer in use. If the checkpoint is an SQA 

"Restricted Materials of 18M" 
Licensed Materials - Property of IBM 

RTM-344 HVSIXA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBH Corp. 1987 



"Restricted Haterials of IBM" 
Licensed Haterials - Proper~ of IBM 

IEAVTR1S - MODULE OPERATION (Continued) 

checkpoint ~ IEAVTRlS marks tho RTHC hoader for tho 
checkpoint as free or not in use. The storage for an RTHC 
is not actually released (via a FREEMAIN macro) until RTHI 
processing has completed. 

RECOVERY OPERATION: 
RTHI default recovery processing (contained in module lEAVTRTR) 
protects most of IEAVTR1S's processing. IEAVTRlS uses an FRR 
to protect against most errors while it is obtaining storage 
for an SDNA via a GETMAIN macro. 

LY28-173S-o (e) Copyright IBM Corp. 1987 Method of Operation RTH-3ftS 



IEAVTRIS - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTRlS 

MESSAGES: None 

ABEND CODES: None 

WAIT STATE CODES: N~ 

RETURN CODES: 

EXIT NORMAL: 

o - The SDMA was allocated or freed successfully 
4 - The SDMA was not allocated 

REGISTER CONTENTS ON ENTRY: 

Register 0 - Irrelevant 
Register 1 - Address of parameter list 
Registers 2 - 12 - Irrelevant 
Register 13 - standard register save area address 
Register 1ft - Return address 
Regis~er 15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

EXIT NORMAL: 

Registers 0 - 14 - Restored 
Register 15 - Ruturn Code 

RTH-346 HVSIXA SLL: Racov Term Hgmt 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR1S - RTMI SDWA Allocation Module 

IEAVTRlC and IEAVTRI0 

C:> IEAVTRlS 
PARAMETERS \ ...-_______ ...1 ... __ ----.1 

REQTYPE SONATYPE 

EED r----------> 
I -: 

RTlHRTYP RTMC : 
RTMtFREE RTMtRT1S : 
RT1SS0NA FSTKSHA : 

: 
PARAMETERS : 

ISOHATYPE r: 
FRRS . 
IFRRSRTMH I 

...I 

EED 

RTlHRTCA RTlTLPN ~~ 
RTIHCSQA RTIHCGLB 
RTMtCPTR 

PSA 

PSALITA PSATSTK I 
PSACSTK 

ASCB 

ASCBRTMt I 

\ 
1 

PARAMETERS r----------> 

~IS_O_NA_TY_P_E ___ ~I-: ; 

EED 
.--------------~-I 
RTlHRTCA FSTKCNTL 
FSTKALLO FSTKSELM 

PSA . 
r----------,...1 
PSARSVT PSATSTK 
PSAASTK PSANSTK 

EED 

RTlHCGLB 

PSA 

PSACSTK 

This module is called by RTMl FRR 
processing whenever a request has been 
made to either allocate or release an 
SOHA. 

~ Allocates an SQA SDWA. 

The ASCB RTMC list is searched to find a 
free SOHA that qualifies for the particular 
type of request (regular or checkpoint) 
prior to issuing a GETMAIN macro for an 
SOMA. If a free SQA SOHA does not exist in 
the RTMC list, a global branch entry 
GETMAIN macro is issued to obtain the SOMA 
from subpool 239, below the 16M line for a 
normal SDHA request, above the 16M line for 
a checkpoint SDHA request. If the GETMAIN 
macro is unsuccessful and this is a request 
for a normal SOHA, the normal stack's 
global SDHA is allocated. This SOHA will be 
used to preserve error information and to 
record the fact that an FRR was skipped. 

~ Allocates a global SDWA. 

If an SOHA is already allocated 
( RTlHRTCA .. =O), then a new SOHA need not be 
allocated. In this case, the current SONA 
is either the correct global SOHA or it 
might be an SQA SONA. An SQA SDNA is 
acceptable for use under global conditions. 

If the alloca+.ion request is for a regular 
SOMA, the SONA associated with the erro" 
stack is allocated. If the request is for a 
checkpoint SDHA, an SOHA is allocated from 
the pool of global checkpoint SOHAs. If no 
SOHAs are available from the pool, IEAVTRIS 
returns an error indication to its caller. 

STEP 01 

I 

[ 
["1 

lJ 

_I 

-. 

,EED 
1...----. 

RTlHRTCA 
RTlHRTYP 
RTlTLPN 
RTlTLPID 
RTMtHDR 
RTMCCPTR 
RTMCFREE 
RTMCSUBP 
RTMCLNGT 

'-ASCB 

IIASCBRTMtI 

\EED 
1...---...., 

RTlHRTCA 
RTlHRTYP 
FSTKOSTK 
FSTKALLO 

LV28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-347 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRlS - RTMl SDWA Allocation Module STEP 03 

EED r----------> 
-: , 

RTlHRTYP RTlHCSQA : / 
RTlNCGLB RTlS : 
RTlSGLBL RT1SRTlI : 
RTlSSDHA RT1SRC1 : 
RTlSRC2 RTlSRC3 : 
RT1SPTRS RT1SNRC1 : 
RTlSNRC2 : 

· · PSA : 

IpSACSTK PSANSTK r: 
PARAMETERS · 
ISDNATYPE 

I 

...i 

EED 

RT1HRTCA RTlNNGLB 
RTlHNSQA 

SDWA .---------> I -: , 
SDNASNPA SDNAVRA : • / SDNARC1 SDNARC2 · · SDNARC3 SDHAPTRS : 
SDHANRC1 SDHANRC2 : 

: 
EED : 

I RTlHRTYP RTlHCSaA r: 
PSA : 

IpSACSTK PSANSTK r: 
PARAMETERS : 

ISDNATYPE 
I 

..J 

SDWA 

SDNAYSN I 

EED J----------~ 

RT1HCSaA RTHCRT1S / 
RT1SRT1I RT1IRTYP 
FSTKCNTL FSTKSELH 

EED 

RTlNNGLB RTlHNSQA r--..I 
RT1HRTII RT1IRT1I 

~ Saves the checkpoint error 
related RTMl work area 
information, the 200 byte 
FRR work area and the SDWA 
into the checkpoint area. 

The caller requested a checkpoint SDHA and 
a checkpoint was successfully obtained. The 
previous error information (currently in 
the SDNA), the 200 byte FRR ",ork area and 
Rnt1 work area, ",ill be copied to the 
checkpoint area thus freeing up the Rnt1 
work area, the 200 byte FRR work area and 
the SDNA for usa in processing the current 
error. 

~ Initializes the SDWA 
structure. 

Hhenever an SDHA is allocated, IEAVTRlS 
clears tha SDNA storage and ini tializas the 
SDNA structure with the address of the dump 
ranges and variable recording area sections 
of the SDHA • In addition, the pointers 
section of the SDNA is initialized ",ith 
pointers to all the appropriate recordable 
and non-recordable extensions. 

~ Frees the first checkpoint 
SDWA 

A request has been made to free a 
checkpoint element. The first checkpoint 
element anchored off the RTH1 work area is 
freed. If it is a global checkpoint, the 
global checkpoint array element for this 
checkpoint is marked as free. If it is an 
SaA checkpoint, the RTHC containing the saA 
SDNA is marked as free. 

r'1 

l.J 

I 

"1 

l.J 

I 

,EED 
/r---.... 

RTlNNGLB 
RTlHNSQA 
RTlHRTlI 
RTlISDNA 
RTlIRTYP 

,SDWA 
/r----. 

SDHAXPAD 
SDHADSRP 
SDHASRVP 
SDHAXIOH 
SDHAXSPL 
SDHAXLCK 

,SDWA 
/r----, 

SDNARECA 
SDHARCRD 
SDHADPLA 
SDNAVERF 
SDNAVID 
SDHAXPAD 
SDHAVRAL 
SDHAID 
SDHADSRP 
SDNASRVP 
SDHAXIOH 
SDHAXSPL 
SDHAXLCK 

,EED 

/IRTlHGFAII 

,EED 
/r----, 

RTlWNGLB 
RTlHNSQA 
RTlHRT1I 
RTHCFREE 
FSTKALLO 

RTIt-348 HVSIXA SLL: Racov TeMII Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRIX - MODULE DESCRIPTION 

DESCRIPTIVE NAME: RTMI CMSET Interface Module 

FUNCTION: 
This module establishes the cross memory addressing 
environment required by the FRR. The following options on the 
SETFRR macro control the environment: MODE=PRIMARY, 
MODE=FULLXM, MODE=LOCAL and MODE=GL08AL. 

ENTRY POINT: IEAVTRIX 

PURPOSE: See function. 

LINKAGE: BALR 

CALLERS: IEAVTRTS 

INPUT: Current FRR entry from the FRR stack 

OUTPUT: Cross memory environment of the FRR 

EXIT NORMAL: Returns to the caller. 

EXIT ERROR: Returns to the caller. 

EXTERNAL REFERENCES: 

ROUTINES: 
RIXFRR - FRR Recovery Routine for this module. RlXFRR 
is an entry point in module IEAVTRRR. 

DATA AREAS: No data areas are used. 

CONTROL BLOCKS: 
Common name Macro 10 Usage Function 
----------- -------- --------
ASCB IHAASCB read Obtains the ASID of the 

locally locked address 
space. 

CVT CVT read Obtains various system 
control block addresses. 

FRRS IHAFRRS read Obtains various FRR status 
information. 

LCCA IHAlCCA read Obtains address of CPU 
work save area. 

PSA IHAPSA read and Obtains addresses of various 
write FRR stacks, the ASCB and 

LCCA. Also used by SETFRR 
expansion. 

RTlH IHARTlH read and Obtains and sets RTM control 
write information. 

SDHA IHASDHA read and Obtains control information 
write and sets FRR status indicators. 

SVT IHASVT read Used by CMSET macro expansion 
TCB IKJTCB read Obtains the TeB key. 
HSAVT IHAHSAVT read Obtains RTM work save area 

address. 

TABLES: No tables used. 

SERIALIZATION: 
IEAVTRIX does not obtain any locks. IEAVTRIX runs disabled to 
serialize the RTMl work area. 

LY28-1735-0 Ic) Copyright IBM Corp. 1987 Method of Operation RTM-349 



IEAVTRIX - MODULE OPERATION 

IEAVTRlX determines if special processing is required tc 
establish the entry environment for tha current FRR. 

Special processing is required if MODE=PRIHARY or 
MOOE=FULLXH was speci tied on tha SETFRR macro that was 
issued to establish the current FRR, if RTM is processing 
a CALLRTM TYPE=RHGRCHL macro instruction, or if RTM is 
processing a nested FRR that was established by a 
MOOE=LOCAL or MOOE=GLOBAL SETFRR macro. If any one cf 
of these condi tiona is true, IEAVTRlX does the following 
processing: 

• Obtains the cross memory control information saved by 
tho SETFRR macro from the FRR stack extension area. This 
information will be used to establish the cross 
memory environment for the FRR. 

• Establishes an FRR environment, RlXFRR, to protect 
RTMI against errors. 

• If required, issues an CHSET instruction and sets the 
S-bit on in the PSH. 

• If the CHSET instruction failed or was not necessary, 
the following CHSET recovery processing is parformacl 
to establish either a: 
A) HOOE=LOCAL environment for the FRR -

This is done if either the MOOE=LOCAL option was 
specified on the SETFRR macro and a local lock 
is held or if a subsequent FRR is established by 
a local resource manager. 

or 

IEAYTRIX indicates in the SOMA that the FRR is 
receiving control as a local resource manager. 

B) HOOE=GLOBAL environment for the FRR -
This is dona if the MOOE=GLOBAL option was specified 
on the SETFRR macro and a global spin lock is held, 
if the FRR will run disabled, if the FRR is on the 
super stack, if at least one super bit is sat, or'if 
a subsequent FRR is ~tablished by the MODE =GLOBAL 
resource manager. 
IEAYTRIX indicates in the SOMA that the FRR is 
receiving control as a global resource manager. 

• Deletes ~EAVTRIX's FRR environment. 

If no special processing is needed to establish the FRR's 
environment, the FRR will run in tha current environment. 
IEAYTRIX sets the key mask value in control regis tar 3 to 
ei ther the TCB kay 'i f in task mode) or to the time of error 
kay 'if in SRB mode or if the error was a DAT error.) 

RECOVERY OPERATION: 
RTMI default recovery processing 'contained in module 

"Restricted Hateriel. cf IBM" 
Licensed Haterials - Property of IBM 

IEAYTRTR) protects S0lll8 of IEAVTRlX's processing against errors. 
IEAYTRIX uses an FRR to protect against most errors during its 
processing • 

RTM-UO HYS/XA SLL: Recov TeMII Hgmt LY28-1735-0 Ie) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBH 

IEAVTR1X - DIAGNOSTIC AIDS 

ENTRY POINT r~E: IFAVTRlX 

MESSAGES: None 

ABEND CODES: None 

WAIT STATE CODES: ~ 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

Registers 0-12 - Irrelevant 
Register 13 - Register save area address 
Register 14 - Retum address 
Register IS - Entry point address 

REGISTER CONTENTS ON EXIT: 

Registers I-IS - Restored 

LY28-173S-0 (0) Copyright IBM Corp. 1987 Method of Operation RTH-3S1 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR1X - RTM1 CMSET Interface Module 

IEAVTRTS 

C:> IEAVTR1X 

This module establishes the cross memory 
addressing environment required by the 
FRR. The following options on the SETFRR 
macro control the environment: 
MODE=PRIMARY~ MODE=FULLXM~ MODE=LOCAL and 
MODE=GLOBAL. 

FRRS J----------> ~ 
I FRRSENTR FRRSXENT I ) 

Processes the FRR in cross 
memory mode that is 
established via a CMSET 
instruction. 

FRRS 

FRRSEHP FRRSCURR r----' 
FRRSXSTA FRRSXH 

This processing is required if HODE=PRlMARY 
or MODE=FULLXM was specified on SETFRR 
macro to establish the FRR~ if RTM is 
processing a CALLRTM TYPE=RMGRCML macro~ or 
if RTM is processing an FRR established by 
a MODE=LOCAL or MODE =GLOBAL FRR. 

FRRS J----------> A. If MODE=PRIHARY specified, sets SASID 
,r-------___ , equal to PASID. 
FRRSPRIH _ 

STEP 01 

I EED r------'\ B. Establishes an FRR at entry point RIXFRR .&------' \PSA 
,---------~ .----.,/ in IEAVTRRR. 
RTlTLPN 

PSA 

PSATSTK PSACSTK 

EED r----------> C. Issues a CHSET instruction to establish 
the FRR cross memory environment if not 
processing for a CALLRTM TYPE=RMGRCML 
resource manager, an FRR established by 
a MODE=LOCAL resource manager and an FRR 
established by a HQDE=GLOBAL resource 
manager. 

L-IRT_l_HRMG_R __ ..... 1-: 
FRRS . ,--______ -.,..l 

FRRSXFLG FRRSNLCL 
FRRSNGLB FRRSSBIT 
FRRSFULL 

CMSETFLl 
EED r----------> 
r---------,-: \ 
RTlHFAIL RTlHRMGR / 
RTlHASCB HODEDIS 

FRRS 
r---------,-: 
FRRSNLCL FRRSNGLB 
FRRSLCL FRRSGLB 

PSA : 

I PSASUPER PSANSTK I..J 

EED 

RTlHKH 

ASCB 

ASCBASID 

D. If the CHSET failed or the CHSET was 
skipped because of processing for an 
RHGRCML, a MODE=LOCAL's FRR or a 
MODE=GLOBAL's FRR, then performs CHSET 
recovery processing. 

[ /lpSACSTK 

\EED 
/ 

RTlHFAIL 
RTlTLPN 
RTlTLPID 

\PSA 

[ /1 PSARTM1S I 
\EED 

/IRTlHFAILI 

I \PSA 

[ / I PSARTMlS I 
\EED 

[ /IRTlHFAILI 

\FRRS 

[ /IFRRSNRTYI 

RTM-352 HVSIXA SLL: Recov Term Hgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBM" 
Licensed Haterials - Property of IBM 

IEAVTRIX - RTMI eMSET Interface Module 

Prs_A _______ :-I . r---':) E. Deletes the FRR. 

IpSACSTK ~ 

EED J----------> 

r--I ---"1 RTlHGLBL . 

Processes the FRR in home 
mode. (No eMSET required.) 

A. Resets the CMSET fail indicator. 

B. If processing a HODE=GLOBAL FRR, sets up 
a global FRR environment. This is 
special processing needed when the error 
was a OAT error encountered by a 
globally locked routine while running on 
the normal FRR stack. This condition is 
detected by module IEAVTRIF. 

PSA r----------> C. Obtains the contents of control 

1-'::' .'/ rBgist9rs :3 and 4. 
IpSATOLD 
L.. --------' The contents are saved in the RTMI work 
EED area for use in establishing the FRR's 
r---------,~ retry environment if the FRR requests 
RTITENPT RTIHDAT 
HODESRB 

EED 

RTlHKM 

TeB 

TCBPKF 

retry to the cross memory state at the 
time of FRR entry. 

D. Sets the appropriate key mask in control 
register 3. 

STEP OlE 

------------>PSA 

:!:::=:::l I PSACSTK I 
I IL'EED 

[
/ RTlTLPN 

RTlTLPID 

,PSA 

/~ 

~ 
L.-------"EED 

~/IRTIHFAILI 
~'SDWA 

'/ISDHAGLBL\ 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-353 



IEAVTRIO - MODULE DESCRIPTION 

"Rastrictad Matarials of IBM" 
Licansad Materials - Proparty of IBM 

DESCRIPTIVE NAME: RTM Mainline SLIH Mode Processing 

FUNCTION: 
RTMI is the primary interfaca between supervisory routines 
that detect errors (for example, the first level interrupt 
handlers for program checks, machine checks, restart 
interrupts or any other supervisor routines that detect 
arror situations) and tha recovery routines that protect 
a supervisory path from errors. RTMI also schedules SVC 13 
( RTMZ) to inform tasks of an error detectad by the 
supervisor and to recover and terminate the task or 
memory as raquirad. 

ENTRY POINT: IEAVTRIO 

PURPOSE: See function. 

LINKAGE: BALR 

CALLERS: IEAVTRTI 

INPUT: 
The current FRR stack. and its RTMI work area, the abnormal 
termination reason code (savad in RTlHCRC by IEAVTRTl), 
and various other information contained in registars. 

OUTPUT: None 

EXIT NORMAL: IEAVTRTM 

EXIT ERROR: There are no axi t arror conditions. 

EXTERNAL REFERENCES: 

ROUTINES: 
ESTAECHK - Entry point in the SCB Resourca Managar module, 

IEAVTSBP 
FREEDCEL - Entry point in the RTM Recovery Routines modula, 

IEAVTRTR 
FREESPI - Entry point in the RTM Recovery Routines module, 

:':EA'IT!lTR 
IEAVESAR - Supervisor Analysis Routar Module via CALL 
IEAVTRTM - Mainline CALLRTM Servica Processor via CALL 
IEAVTRTS - RTMI FRR Processing Hodula via CALL 
IEAVTRIS - RTMI SDNA Allocation Module via CALL 
RECVRRTM - Entry point in the RTM Recovery Routines module, 

IEAVTRTR 

CONTROL BLOCKS: 
Common name 

-----------ASCB 

CSD 

CVT 

FRRS 

LCCA 

PCCAT 

PSA 

RTM-354 HVSIXA SLL: 

Macro ID Usage --------
IHAASCB read 

and 
write 

IHACSD read 

CVT read 

IHAFRRS read 

IHALCCA read 

IHAPCCAT read 

IHAPSA read 

Recov Tarm Hgmt 

Function 

Obtains the ASID of the 
current addrass spaca, sets the 
type 1 SVC indicator, updates 
the count of active CPUs and 
updatas the count of active 
TCBs. 
Obtains the mask of on-line 
CPUs. 
Obtains various system 
control block. addrassas. 
Obtains various FRR status 
information. 
Obtains address of CPU 
work save area. 
Obtains PCCA address for 
an on-line cPU. 
Obtains addresses of various 

LYZ8-1735-0 (c) Copyright IBH Corp. 1987 



"Restricted Materials of IBf1" 
Licensed Materials - Property of IBf1 

IEAVTR10 - MODULE DESCRIPTION (Continued) 

FRR stacks. the ASC8 and 
LCCA. Also used by SETFRR 
expansion. 

RB IHARB read Obtains PSH information from 
RB. 

RTlH IHARTlH read Obtains and sets RTM control 
end information. 
write 

SDHA IHASDHA read Obtains control information 
and and sets FRR status indicators. 
write 

SPI IHASPI read Obtains information about the 
error encountered by the SRB 
percolating to the current task. 

SVT IHASVT read Used by CMSET macro expansion. 
TCB IKJTCB read Obtains the TC8 protect key. 
HSAVT IHAMSAVT read Obtains RTM work save area. 

LY28-1735-0 (c) Copyright IBH Corp. 1987 Method of Operation RTH-3S5 



IEAVTR10 - MODULE OPERATION 

IEAYTRI0 receives control as the primary interface between 
supervisory routines that detect errors and the recovery 
routines that protect a supervisory path from errros. 
IEAYTRIO performs the following processing: 

• If RTH is entered recursively for the same recovery 
environment, calls the logical phase recovery routine 
RECVRRTH, which is an entry point in IEAYTRTR. Recursion 
is determined by checking the logical phase number in the 
RTH1NA of the current FRR stack. Some recursion is 
considered valid and does not result in a call to the 
logical phase recovery routine. 

• Determines if system level recovery is required. If system 
level recovery is required, IEAYTRI0 calls IEAYTRTS to 
process the FRR stack. IEAYTRTS is the main router for FRR 
environment recovery processing. control returns to 
IEAYTRIO. 

• Determines lrihether to perform percolation or to support 
retry or resume processing as indicated by the FRR. 

If all FRRs indicated that percolation should occur or if 
the system state was such that FRRs were not processed, 
percolates to RTH2 for task level '(E)STAE) recovery. 
If an SRB is percolating and has a related task, RTMl will 
force the related task to abnormally terminate. All 
information about the error encountered by the SRB is 
passed to tha task's recovery routines. Recovery 
processing is complete if the error was caused by an 
SRB that had no related task. 

If final processing is needed to support retry or resume 
processing from an FRR, establishes the cross memory 
addressing environment of the retry or resume routine, 
reloads the retry or resume processing registers, invokes 
the retry or resume processing entry point, and adjusts the 
RTH control structure if the retry or resume processing is 
from a nested FRR. 

• If a task's FRR attempts to retry. performs SRB-to-task 
serial percolation processing. The task will be abnormally 
terminated if an SRB related to the task encountered an 
error and caused serialized percolation to the task. The 
first serial percolation information (SPI) element anchored 
off the TCB is dequeued and the SRBs error information 
contained in it is presented to the current U'lit of work. 

RECOVERY OPERATION: 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

RTHl default recovery processing (contained in module IEAYTRTR) 
protects most of IEAYTRIO's processing. 

RTH-3S6 MYSIXA SLLI Recov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Rest rioted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR10 - DIAGNOSTIC AIDS 

ENTRY POINT NAME: IEAVTRI0 

MESSAGES: None 

ABEND CODES: 

An ABEND code of X' 071' with a reason code of X' OC' is issued 
when an attempt to reslJlllO a unit of work fails. 

WAIT STATE CODES: ~ 

RETURN CODES: None 

REGISTER CONTENTS ON ENTRY: 

Register 

Register 

Register 
Register 

Register 
Register 
Register 
Registers 7 -
Register 
Register 
Register 

o - Function code (e.g.t 1 for a 
program check) 

1 - Abnormal termination completion 
code and options 

2 - Address of the error PSH 
3 - Address of the ILC and 

interrupt code or 0 
4 - Irrelevant 
5 - Address of Dump options or 0 
6 - Address of EEDs or 0 

12 - Irrelevant 
13 - Address of error registers 
14 - Return address 
15 - Entry point address 

REGISTER CONTENTS ON EXIT: 

Following is the register content when exiting via a call 
to IEAVTRTM: 

Register 

Register 

Register 
Register 

Register 
Register 
Register 
Registers 
Register 
Register 
Register 

o - Function code (e.g. t 11 for an ABTERH 
request) 

1 - Abnormal termination completion code 
and options 

2 - Irrelevant 
3 - Address of the tesk control block 

(TCB) to be terminated or 0 
4 - Irrelevant 
5 - Address of Dump options or 0 
6 - Address of EEDs or 0 

7 - 12 - Irrelevant 
13 - Address of the error registers 
14 - Return address into IEAVTRI0 
15 - Entry point address of IEAVTRTM 

Following is the register content when exi ting to the 
FRRs retry routine: 

Registers 0 - 14 - Same content as the corresponding 
register positions in the SDHASRSV 
register area of the SDNA 

Register 15 - Either the entry point address of 
the FRR retry routine or the 
register 15 value from the SDNASRSV 
register area of the SDHA if the 
RETRY15 option of the SETRP macro 

LY28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTM-357 



IEAVTR10 - DIAGNOSTIC AIDS (Continued) 

was specified. 

Following is tho register content when exiting to the 
resume point: 

Registers 0 - 15 - Same content as when the system 
restart was ini Hated. Obtained 
from tho restart FLIH save area, 
LCCARSGR. 

RTH-3!i8 HVS/XA SLL: Recov Term Hgmt 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-1735-0 (e) Copyright IBM Corp. 1987 



"Restrictad ttaterials of IBM" 
Licensad ttaterials - Property of IBM 

IEAVTR10 - RTM Mainline SLIH Mode Processing 

IEAVTRTI 

!EA~~: 

PSA S---------> 
lr-"pSACSTK---PSAP-STJ(---'1 

PSA r----------> 
~lp_SA_L_C_R ________ ~I-: ) 
EED • 
r-------....,...i I RTlWABCC RTt1HTRTM I 
.RTIHDAT _ 

PSA 

PSACSTK 

E~E_D ______ !~I :) 
IRTlWABCC r 
CVT r----------> 
~ICVTRS __ Thm ____ ~I-: ) 
EED • 

~IR_T_IH_L_P_TA _____ ~I...i 
PSA 

PSACPULA 

PSA J----------> 
r-"I ----....,1 'I PSATSTK _ 

PSA 

PSACSTK 

RTMI is tho primary interface between 
supervisory routines that detect errors 
(for example. tho first level interrupt 
handlers for program checks. machine 
checks, restart interrupts or any other 
supervisor routines that detect error 
si tuations) and the recovery routines that 
protect a supervisory path from errors. 
RTMI also schedules SVC 13 (RTM2) to 
inform tasks of an error detectad by the 
supervisor and. to recover and terminate 
the task or memory as required. 

[2!] Clears PCFLIH recursion 
indicators. 

Tho PCFLIH recursion indicators must be 
clearad early in RTMI FRR processing so 
that program checks in RTM will not cause a 
system termination (wait state x'014') when 
tho original error was a DAT error. Tho 
first recursion byte. PSAPCF81. is not 
clearad if the program check first level 
interrupt handler was in control when the 
error occurred. 

~ Refreshes critical common 
fixed constants in key 
system control areas. 

No recovery of the original error is 
possible if a second error occurs during 
this refresh processing. All the 
information about the original error is 
simply lost if a second error does occur. 

A. Calls the supervisor analysis router. ,L.........J, 
'r--1;1 IEAVESAR 

B. Refreshes the restart new PSH. 

RTM obtains the restart resource 
(CVTRSThm) and refreshes the restart new 
PSH. Tho restart new PSH is refreshed 
only if the restart resource was 
available. 

C. Saves tho address of tho error stack in 
PSATSAV 

1 

STEP 01 

I , 

.J 

I 

[ 

I 

[ 

, 
, 

,PSA 
I~--"'I 

PSAPI 
PSAPCFUN 
PSAPCFB2 
PSAPCFB3 
PSAPCFM 

,EED 

'IRTlHCRC 

,PSA 

IlpSALCR 

,EED 

IIRT1HABCC1 

,PSA 

'lpSATSAV 

LV2B-I73S-0 (e) Copyright IBM Corp. 1987 Method of Operation RTM-3S9 



"Restricted Matorials of IBM" 
Licansed Materials - Proparty of IBM 

IEAVTR10 - RTM Mainline SLIH Mode processing STEP 03 

EED S---------> 1 031 
..... 1---""""'1' 

Processes initial entry into 
RTMl or an anticipated 
recursion into RTMl (e.g., 
abnormal termination oil an 
FRR). 

RTITLPN RCRDREC . 

E ... E_D ____ -..J----------> 
RTITLPN RTITREGS 
RHSRCHL RTlXPSWA 
RTlXPSWB 

EED r----------> 
1 RHSRCHL RCRDREC 1- - --.l) 
EED 

RTlHCRC RTITLPN 

PSA r----------> 
IpSACSTK PSANSTK r: 
EED : 

IFSTKCNTL I 

.J 

EED J----------> 
IRTlTENPT EEDNULL I ) 

EED 

RTlHEED RTlHDAT 

A. Saves tho error information~ such as tho 
registers and PSN~ in the RTHl work 
araa. 

8. Clears tho enUra RTHI work area and 
then ini tializos it with error 
information if this is "initial entry 
into RTH~ a recursive entry caused by 
processing in tho RECORD sorvica or an 
entry to process a CALLRTH TYPE=RHGRCHL. 

C. Re-initializos tho check point SDMA 
table and ~mic storaga araa headar~ 
if this is an initial error on the 
normal FRR stack. Thera should be no 
valid information in eithor araa in this 
case. This processing provides 
protection against possible errors that 
might have left these areas in an 
inconsistent state. 

/L--.J, 
'..--,/ IEAVTRST 

PURGE 

D. Frees up acquirad EEDs and a portion of 
the RTHI work araa ~ if RTHI was in 
control at the time of error but 
anticipated a recursive entry. 

,EED 
/ 

RTlHPSNI 
RTlHPSN2 
RTlXERES 
RTlXPSWA 
RTlXPSWB 
RTlXDOPT 

,EED 
rw / RTlNTRTH 

RTlHEED 
RTIHRCDR 
RTIHRHSR 
RTlHABCC 
RTlHCRC 

.J ,FRR$ 

/IFRRSRTHHI 

• ,EED 
I 

/IFSTKALLOI 

L..---...... ·'EED 
1/IRTlHEED 

/L--.J,.--____________________ ~ 

'..--,/ FREEDCEL 

RTH-360 MVS/XA SLL: Recov Term Hgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBH 

IEAVTR10 - RTM Mainline SLIH Mode Processing 

EED 

IRTIHCOY2 RTITLPN 

EED 

r3 :> 
IHGRINIT 

EED r----------> 
IRTlHDAT =r: 
PSA 

-: 
PSATOLD PSASTAK 
PSACSTK 

TCB I 

I TCBTCBID I 
.J 

PSA . r----------> 
r-------------~-. ~, 
ILPS __ A_SU_P_E_R ______ --II ~ / 

ASCB 

LIA_S_C_BTY __ P_l ___ --II-: 

LCCA 

.ILL_C_C_AS_R_BH _____ ..... r: 
EED . 
r----------..J 
,IRTlHDAT HODEBYTE 1 

PSA 

IpSAAOLD ~ 
'--------' 
EED 

IRTlHHODE I 

~ Calls RTMl recovery 
processing if an 
unanticipated recursion has 
occurred in RTMl processing. 

RECYRRTH is called to process recovery for 
the error. The recovery performed by 
RECYRRTH is dependent on the particular 
processing being performed in RTHl when it 
encountered this error. If recovery is not 
possible, RECYRRTH will perform RTH abort 
processing. 

/'--', 
'.--.;1 RECYRRTH 

~ Performs preliminary 
recovery processin~ for an 
error encountered n the 
ESTAE service routine, SVC 
60. 

ESTAECHK, an entry point in module 
IEAYTSBP, will add an FRR recovery routine 
to the current FRR stack if it determines 
that the ESTAE service routine, SVC 60, was 
processing at the time of the error. 

/'--', ,.--,;1 ESTAECHK 

~ Determines the current 
system state by checking 
system indicators 1n the PSA 
and LCCA. 

These checks will determine if system level 
FRR recovery should be initiated or if task 
level (E )STAE recovery is to be initiated. 
The mode byte in the RTHl work area will be 
set to reflect tho system state at the time 
of error. 

STEP 04 

L ~ 

• 

1 

C 

1 
I 

• 

,EED 
/r----, 

RTlHNPRS 
RTlHMODE 
RTlHLPN 
RTlHCOV2 
RTlNODMP 

,EED 
/r------, 

RTlHSRHD 
RTlHASCB 
HODESUPR 
HODEDIS 
HODEGSPN 
HODEGSUS 
HODELOC 
MODETYPl 
MODESRB 
HODETCB 

LY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-361 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR10 - RTM Mainline SLIH Mode Processing 

EED r----------> 1!!1 Performs FRR level recovery , I-I:: processing. 
MODEBYTE 

L. -------1 The main FRR recovery processing module. 
PSA : IEAVTRTS, is called to handle errors 
.-______ -.,..J encountered while a system level routine 
,pSANSS I was in control. The information retumed 
L. -------". from IEAVTRTS is analyzed to determine the 

processing required to complete the 
recovery operation. 

STEP 07 

/L--J,r--------------~ 
'r---1/ IEAVTRTS I 

EED r----------> 
.----------,-: , 
RTlHLPTA RTlHRTCA I / 

MODESRB 

SDWA : .--________ ~..J 

SDHAECI SDNAAECI 
SDHARCDE SDHASPIN 
SDHASERP SDHARETY 

PSA 

PSACSTK 

EED 

RTIHEED RTITENPT 
POSTRTS RTlXBASE 
RSCHDCPU ~ECOVRYI 

SDWA 

SDHAABCC 

EED r--------··-> 
IL-RT_l_HD_AT __ --'r- Prepares to abnormally 

terminate the current 
address space when a DAT 
error has occurred. 

Initializes the address space termination 
interface to the service mode portion of 
RTMI IIEAVTRTM) when the current address 
space has suffered unrecoverable dynamic 
address translation errors. In addition. 
data areas used by the dispatcher are 
adjusted to prevent it from attempting to 
reference the private storage area of tho 
failing address space. 

A. Determines if any locks higher than the 
dispatcher lock are held. 

'-----I"EED 
r-------~/.-------~ 

RTlHPSHl 
RTlHPSH2 
RTITLPN 
RTlTLPID 
RTlTSERP 
RTlTTRTS 

"-------'~'EED 

'/IRTlTLPIDI 

/L--J,r---------------------~ 
'r-"I/ SETLOCK 

TEST. TYPE=HIER. LOCK=DISP. 
REGS=( R12,R14) 

RTH-362 HVS/XA SLL: Recov Term Mgmt LY28-1735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR10 - RTM Mainline SLIH Mode Processing 

EED J----------> 
,r --------~I /' 
HODESRB . 

AseB 

ASCBCPUS ASCBASID .---...1 

EED r----------> 
r------------------~-: , 
RT1HRTCA RT1HRTH 
MDDETYPl 

SDWA .--_________________ ~ .J 
ISDHASNPA SDHADLSTI 

EED 

RTlHMEMT 

....--.... / 

B. If no higher lock is held. obtains the 
dispatcher lock. 

/~'r----------------------------------~ 
''''''/ SETLOCK 

~---------------------------------~ 
OBTAIN. TYPE=DISP. 
HODE=UNCOND • 
RElATED=IASCB.IEAVFRlKIIEAVFR 
LK)) 

C. If the CPU is not in SRB moda, prevents 
the dispatcher from storing status in 
the dead address space. 

D. If the CPU is in type 1 SVC mode, gats 
out of type 1 SVC mode. This is normally ...-----. 
done by the exit prologue routine, 
however, it cannot gat control since it 
always references lSQA. 

EED J----------> 1091 Prepares to percolate to an r"1-------,1 '/ SRB' s related task. 
RT1TREGS MDDESRB 

. Ini tializes the ABTERM interface to the 
EED service mode section of RTH1. IEAVTRTH. so 

RT1HABTl RT1HXMAB 

AseB 

ASCBASID 

that the SRB's related task is abnormally 
terminated. IEAVTRTM will queue the 
abnormal termination request if the SRB 
requested that the abnormal termination be 
serialized and if the task is currently in 
recovery processing. If the SRB does not 
have task affinity. no further processing 
on behalf of this error is required. 

STEP 08B 

_J '-ASeB 

[ /IASCBTYP11 

,EED 

[ / I HODETYPll 

,PSA 

/lpSARTH 

lY28-173S-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-363 



"Restricted Materials of 18M" 
Licensed Materials - Property of IBH 

IEAVTRI0 - RTM Mainline SLIH Mode Processing STEP 10 

EED r----------> 
-' , 

IRTINRTCA RTlNRTIII : / 

SDWA 

\ SDHAGRSV r: 
PSA 

IPSATOLD t-: 
TeB ....-______ ..... ..J 

\TC8TCBID TCBRTH2 I 
EED 

RTlHABTl 

[!2] Prepares to percolate the 
error to RTM2 for task level 
error recovery processing. 

Hhen the last FRRs has requested 
parcolation or when FRR processing was not 
required, the interface to the ABTERH 
function of the RTH1 service mode 
processor, IEAVTRTM, is initialized so that 
the task is abnormally terminated. 

RTH-364 MVS/XA SLL: Racov Term Mgmt LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Rastricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRI0 - RTM Mainline SLIH Mode processing 

r----------> [!!] Performs serialized 
...---------,-: , SRB-to-task percolation 
EED 

RTIHLPTA RTIHRTH 
RTlXEREG RTIXPSHA 
RTIHREST MODETCB 

TCB 

ITCBLLREQ TCBRCVRVI-; 

SPI 

ASCB 

I ASCBTCBG 1-: 
PSA : 

I PSASTAK I...J 
EED 

RT1HABCC RTITENPT 
POSTRTS NORTS 
EEDFREE2 EEDFREE3 
EEDFREE4 RT1HABTl 
RECOVRVl EEDNULL 

TCB 

TCBRBP TCBPERCP 
TCBPERCT 

SPI 

SPINXT SPIEED 
SPIHDDE SPIERTYP 
SPICMP SPICRC 

RB 

RBDPSH RBHCF 

SDWA 

SDHARTYA 

ASCB 

ASCBTCBS ASCBTCBL 

PSA 

PSACSTK 

~---~/ processing. 

An FRR is requesting retry under a task 
that has at least one SRB-to-task 
percolation elemant (SPl) c.ueued off the 
task control block (TCB). The first SPI 
will be dequaued and information about the 
SRB's error contained in the SPI will be 
presented to the task's recovery routine. 
This is accomplished by using the SRBs 
error information to abnormally terminate 
the task. 

STEP 11 

.L...---...J"EED 

[

/ RTlHRSTH 
RTlTLPN 
RTlTLPID 
110DESRB 

,TCB 
[1/ TCBCMP 

TCBFX 
TCBABTRH 
TCBLlREQ 
TCBRTH12 
TCBERTYP 
TCBHODE 
TCBARC 
TCBPERCP 
TCBRCVRV 
TCBPERCT 

LV28-1735-0 (c) Copyright IBM Corp. 1987 Method of Operation RTH-365 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVTRI0 - RTM Mainline SLIH Mode Processing 

EED J----------> [!!] Performs resume processing .-1-------,1 /' from an FRR. 
RSCHDCPU 

- The FRR was entered as a result of a 
SDWA restart request. The FRR has indicated that 

SDHALCPU 

FRRS 

FRRSEMP 

it is in a valid spin waiting for some 
global resource now held by a uni t of work 
on another CPU. It is assumed that the 
CMner of the resource is in an invalid~ 
disabled loop and should therefore be 
terminated. This termination is effected by 
causing a restart interrupt on the other 
CPU. The address of the other CPU. in 
SDHALCPU. was determined by the FRR. 

STEP 12 

EED J----------> A. If this is a nested FRR resume. restores 
the SDHA and RTMI work area information 
for the previous error and makes any new 
errors appear as a recursive error in an 
FRR. 

L-.---i',EED 

'--1 -----.1 RTlHRTlI _ 

EED r-----,:) 
IRTlHGFRR FRRRECUR~ 

CSD r----------> 
ICSDCPUAL CSDMASK 1-: ) 
PSA • 

IpSACPUPA I-J 

FRRS 

FRRSESZE FRRSLAST 

PCCAVT 

PCCATOOP 

PSA J----------> 
1-------.1 

PSACROEN _ 

/~,r-----------------------__, 
'~/~I _________ p_O_P_R_T_II ________ ~1 

B. If this is not III resume from a nested 
FRR. makes any error now appear as an 
initial or new error. 

C. Clears the RTM flag byte in all FRR 
entries after the current. Some flags 
that might be left on are the ones 
indicating nested FRRs or no retry 
allowed. 

D. Issues restart for looping CPU as 
identified by FRR. 

/~\r------------------------., 
,~/ DSGNL 

RESTART~ CPU=(l) 

E. If protection was disabled for the 
interrupted routine. disables protection 
for resume. 

/~\r_----------------------------_; 
\,--," PROTPSA 

DISABLE 

LCCA J----------> F. Issues a CMSET back to the interrupted 

I~--------------~I r-__ s_ta __ te __ • ____________________________ ~ 
LCCAR>CMR 

- CMSET 

(RESET) XMSAVE( LCCARXHR) CHKAUTH( YES) 

· / I RTlHRSTH I 

RTM-366 MVSIXA SLL: Recov Term Mgmt LY28-1735-0 (e) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

lEAVTR10 - RTM Mainline SLIH Made Processing 

PSA 

IpSANSS 
PSANSTK 

EED 

• ---------> 

n 
, 

PSACSTK / 

G • Sets the EUT flag in PSA (PSANSS) 
according to current EUT state. 

H. Loads restart error registers. 

I. Loads restart old PSH. 

STEP 12G 

I L...--------"\PSA 
'/lpSANSS 

I ..... R_T_1T_L_P_N ___ ---'r; <· ___ >1 LPSH PSARSPSN I 
~-----------------r FRRS ..-------..... -: 

FRRSESZE FRRSEMP 
FRRSXFLG FRRSEUT 

LCCA • 

,-I LC_C_ARSGR ___ -'I-i 

FRRS 

FRRSCURR 

oJ. Abnormally terminates the currant ...,i t 
of work. 

Some error occurred during RTM1's 
attempt to handle the FRR's resume 
request. RTMl issues an abend with the 
restart completion code of X'071' and 
reason code of X' OC·. This causes the 
same FRR to be re-entered with another 
error indication and with an option to 
retry. 

EED r----------> 1131 Processes retry 'from an FRR. 

IRTlHRTCA 1-; 
SDWA : 
..--------....1 
ISDHARCDE SDHARETYI 

EED J----------> A. Releases the EEDs. 

I I '/ RTlHRTM EEDNULL . 

EED 

EEDFREE5 RECOYRYl 

SDWA 

SDNACKr 

SDWA r----------> 

ISDIllAREHR 
-: " 

I : ./ 

FRRS J 
IFRRSCURR I 
PSA 

IpSACSTK 

EED 

IRT1HXM I 

EED j------"':'---> 

IRTlHRTlI 1 

B. 

~. 

Any EEDs acquired for this error are 
released as they are no longer needed. 

If the FRR requested to be deleted on 
retry, deletes the FRR from the FRR 
stack. 

If this' is a nostad FRR retry; restores 
the SDIIIA and RTMl work area information 
for the previous error and makes any new 
errors appear as a recursive error in an 
FRR. 

, \EED 

L / I RTlMRSTH I 
,CVT 

/ I CVTRSTHD I 

I 

[-sDWA 
/ISDMARCDEI 

------------>PSA n IpSACSTK 

\FRRS 

L 
/IFRRSFLGll 

,PSA 

L 
/lpsANSS 

,EED 

/IRTlXXH 

LY28-1735-0 Ic) Copyright IBM Corp. 1987 Method of Operation RTM-367 



"Restricted Haterials of IBM" 
Licensed Materials - Property of IBM 

IEAVTR10 - RTM Mainline SLIH Made Processing STEP 13D 

EED J----------> 
~I ----------------~I /' RTlHGFRR . 

FRRS 

FRRSESZE FRRSLAST 

EED 

FRRRECUR 

EED r----------> 
.---------.-: , 
RTlHRTM RTIHRTYP 
RTIHCSQA RTHCFR~E 
RTMCRTIS RT1SSDHA I 

SDWA : 

'--___ ~I-J 
EED 

RTMCCPTR 

ASCB 

ASCBRTMC 

r----./ 

EED J----------> 
'--1 -----.1 RTlXXH . 

/L.........J, ,,--,/1 POPRTlI 

D. If this is not a retry from a nested 
FRR~ makes any error now appear as an 
initial or new error. 

E. Establishes the FRR cross memory 
environment. 

CHSET 

I 
, 

[ 

[ 
[ 

,FRRS 

/IFRRSFLGll 

,EED 

/IRTITLPN 

,EED 
/r----. 

RTlTLPN 
RTMCCPTR 
RTMCFREE 

,PSA 

/lpSARTM I 
'\ASCB 

/IASCBRTMCI 

(RESET) CHKAUTH(YES) XHSAVE(RTlXXH) 

PSA r----------> 
.--------~-: , 
PSANSS PSACSTK / 
PSANSTK 

EED 

ILR_T_l_TL_P_N ____ -'r: 
FRRS : ...-______ ..... -J 

FRRSESZE FRRSEMP 
FRRSXFlG FRRSEUT 

EED 

RTIXEREG RTIXPSHA 

FRRS 

FRRSCURR 

F. 

G. 

H. 

RTM-368 MVS/XA SLL: Recov Term Mgmt 

Sets the EUT flag in PSA (PSANSS) ,PSA 
according to currant EUT state • I 

Loads retry registers. / I PSARTPSM I 
PSANSS 

Issues a LPSH to transfer control to the 
retry routine. 

< >1 lPSH PSARTPSH 1 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Haterials of IBM" 
Licensed Haterials - Proporty of IBM 

IEAVTRIO - RTM Mainline SLIH Mode Processing 

FRRS J----------> 
~IF-R~-R-nM------~1 1141 Calls IEAVTRTM to perform 

RTM1-to-RTM2 percolation. 
/L--J'~ ____________________ ~I 

'.---,;l IEAVTRTH 

~---------------------------~ 

STEP 14 

LY28-1735-0 (c) Copyright IBH Corp. 1987 Hothod of Operation RTH-369 



3: 
<: 
CIt , 
~ 
CIt 
r
r-

'" CD 
n 
o 
< 
-t 
CD ., 
51 

3: 
I§ 
rfo 

r-
oo( 
N 
00 
I .... .... 

C.H 
UI 
I 

Q 

.... 
n ..... 
0 
0 

~ ., ... 
ta 
::r 
rfo 

M 
t:IrlI 
3: 

0 
0 ., 
'U . 
.... 
\Q 
00 .... 

lEA VTRT2 - RTM2 Failing Instruction Processor (Part 1 of 4) 

From IEAVTRT2 

Process 

Register 7 

rc::J 1 

Register 8 

If RTM2WA 
2 

RTM2WA 

3 

RTM2EPSW 

Obtain the LOCAL lock if it 
is not already held. 

Establish the recovery 
environment. 

Copy the failing instruction 
stream. 

RTM2WA 

RTM2FAIN 

H ... 

... 
~ n 
CD 
:::J 
", 
CD 
11.:1 

:III zm 
~=-CD., .,.., 
~n 
II"" 
~m 
",11. 

Ii 
'a"" .,CD 
0., 
"foIo CD II .,.,. 
r+CIJ 
..: 

0 
~ ... ... .... 
CIIZ 
Zll 



r
-< 
N 
00 
I .... ..... 

CIt 
U'I 
I 

CI 

,... 
n ..... 
(") 
o 
~ ., .... 
to 
':1' .... 
.... 
tlI:I 
3 
(") 
o ., 
" . 
.... 
\G 
00 ..... 

3 
CD .... 
':1' 
o a. 
o 
-II 

o 
" CD 

~ .... .... 
o 
:::J 

;a 
-t 
3 
I 

CIt .... .... 

lEA VTRT2 - RTM2 Failing Instruction Processor (Part 2 of 4) 

Extended Description Module Label 

The RTM2 function provides additional Information 
regarding an error in RTM2WA. This additional information 
consists of twelve bytes of Instruction stream around the 
instruction counter (lC) in the failing PSW. During RTM2's 
initialization processing (see M.D. diagram IEAVTRT2-
RTM2 Initialization). IEAVTR2A obtains the six bytes of 
storage that precede and the six bytes of storage that follow 
the IC in the failing PSW and puts them in the RTM2FAIN 
field. RTM2 propagates this instruction stream from ESTAE 
(extended specify· task abnormal exit! to EST AE during 
recovery.· 

1 IEAVTR2A must hold the LOCAL lock to serialize 
functions within the home address space • 

2 To protect against possible errors when referencing the 
failing instruction stream, I EAVTR2A establishes an 

FRR environment. (See recovery processing at the end of 
this diagram) . 

3 IEAVTR2A reads the failing Instruction stream in the 
user's PSW key and caples It to the RTM2FAIN field • 

The number of moves required to copy the failing instruction 
stream depends upon the location of the IC (PSWIC) . 

• If the P~WIC is not within five bytes of a page or storage 
boundary,IEA.VTR2A copies the twelve bytes in one 
move. 

• If the PSWIC is within five bytes of location 0 or the 
last addressable storage location, I EAVTR2A caples the 
less than twelve bytes In one move. 

• If the PSWIC is within five bytes of the start or end of 
a page, I EAVTF.l2A copies the twelve bytes in two 
moves. 

If the failing instruction stream is not eccessible on the first 
and only move, then I EAVTR2A places hexadecimal zeroes 
in the RTM2FAIN field. RTM2 requests a retry. (See 
recovery processing). 

If the failing instruction stream Is not accessible on the first 
of a two-part move, then I EAVTR2A attempts the second 
move and the RTM2FAIN field might be partially filled-in. 
RTM2 requests a retry for the second move. (See recovery 
processing). 

RETRY1 



:IU lEA VTRT2 - RTM2 Failing Instruction Processor (Part 3 of 4) 
~ 
I 

CIoI .... 
N 

3 
< en 

" >< 
:I> 

en ,... 
r-

,... 
-< 
N 
00 
I .... .... 

CIoI 
\It 
I 

c::I 

~ 

n 
'"' 
0 
0 

~ ., .... 
III :r ,... 
.... 
I:ld 
3: 

0 
0 ., 
'U . 
.... 
-0 
00 .... 

Process 

4 Cleanup RTM2's failing 
instruction processing. 

••• ~Tocaner 

r-... 
n 
CD 
::J 
fII 
CD a.: 

::a 
3CD 
II)fII 
rtrt 
CD., ., ... 
... n 
IIrt 
.... CD 
fila. 

13 
II) 

'art 
.,CD 
0., 
'0 ... 
CD II) ., ... 
rtfll 
'<0 
O-h 
-h ... 
H~ 
l1li3 
3: 



r
-< 
N 
00 
I .... ...... 

"" UI 
I 

CI 

(") 
o 
~ ., .... 
Ie 
:r 
rio 

1-4 
tIS 
3: 
(") 
o ., 
" 
.... 
\Q 
00 
...... 

3: 
(I) 
rio 
:r 
o 
Q. 

o .... 
o 
" (I) 

;a 
rio .... 
o 
:::J 

lEA VTRT2 - RTM2 Failing Instruction Processor (Part 4 of 4) 

Extended Description Module Label 

4 IEAVTR2A performs the following cleanup functions: 

• Issues the SETFRR macro to delete the FRR environ- RETRY2 
ment. 

• Issues the SET LOCK macro to free the LOCAL lock if 
obtained on entry to IEAVTR2A. 

I EAVTR2A then returns to its caller. 

Recovery Processing 

I EAVTR2A attempts to recovery from an interruption via 
its FRR.· The FRR requests a retry from RTM at location 
RETRY1 ifan error occurs while IEAVTR2A is copying 
the failing instruction stream in the first of a two-part move. 
RETRY1 will attempt the second move. RTM does not 
record this error. 

The FRR requests a retry from RTM at location RETRY2 if: 

• An error occurs while IEAVTR2A is executing (other 
than copying the failing instruction streaml. RTM 
records this error on SYS1.LOGREC . 

• An error occurs while I EAVTR2A is copying the failing 
instruction stream in the last or only move. RTM does 
not record this error. 

Extended Description 

RETRY2 performs cleanup (sea step 41. 

If a retry is not allowed (SDWACLUP bit is onl, the FRR 
requests percolation. RTM1 records this error on 
SYS1.LOGREC. 

After recovery processing, IEAVTR2A returns to RTM1. 

The following chart summarizes IEAVTR2A's recovery 
processing. 

Module 

Condition Retry Location Error Recorded on 
SYS1.LOGREC 

Failure to copy Yes RETRY1 No 
the failing 
instruction stream 
in a two-part move 

lEA VTR2A execution Yes RETRY2 Yes 
failure 

Failure to copy Yes RETRY2 No 
the failing 
instruction stream 
in a one-pan move 

SDWACLUP bit (Percolation N/A Yes 
is on occursl 

Label 

r-= 
~:a 
nCD 
CD 1ft 
:::Sri' 
1ft., 
CD ... 
a.~ 
3CD 
~a. 
CDS 
"11) .... r+ 
II) CD ....., 
I., ~ 

I~ 
1ft 

"II 
.,0 
O-h 
'0 
CD'" 
.,~ 

r+3: 
'< = 
o 
-h ... 
~ 
Z 



3: 
< en , 
>< 
l> 

en ,... ,... 

'" CI) 
n 
o 
< 
-t 
CI) , 
!I 

3: 
Ul 
!I 
t+ 

,... 
-< 
N 
C» 
I .... ..... 
~ 
I.n 
I 

CI 

..... 
n ..... 
('") 
0 
'tI 
'< , .... 
Ul 
;T 
t+ 

1-4 
til 
3: 

('") 
0 , 
'tI . 
.... 
\0 
C» ..... 

IEAVTSCD - SCD FREEMAIN Routine (part I of 4) 

In 

RMPL 

RMPLJST -
RMPLASID -

ASCB 

FAAs 

D 

From task termination 
(lEAVTSKT) 

T 
.J 

.. 1 If not a job step task or not 
in the master address space, 
establish II recovery environ· 
ment and get the LOCA L lock. 

2 Remove all the SCBs from 
the TCB active queue. 

3 Chain all the non·FESTAE 
SCBs to the free SCB 
queue. 

4 Truncate the queue of free 
SCSs at 20 cells. 

5 Delete the recovery routine 
and release the local lock. 

Caller 

H 
1'/1 

~ 
(I) 

Output' n 
td 

I 

(I) 
n 
td 

"rI 
:q 
1'/1 
1'/1 

H 
Z 

:q 
0 
C 
-I 
H 
Z 

TCB .. AS 

TCBRBP "..-
J ABSCB=O 

TCBSTAB=O, 

ASCB 

ASCBAXSS r-... 
n ASXB CD 
:::I 
en 

ASXBSPSA CD 
D.: 

::III 
3CD 
Olen 
t+t+ 
CD., ., .... 
... n 
0It+ 
.... CD 
enD. 
13 

01 
"Ut+ 
.,CD 
0., 

FRRs 'U .... 
CD 01 

D 
., .... 
t+en 
'<0 
0"'" 

"'" H 
Htd 
~3 z: 



,... 
~ 
00 
I .... .... 

"" '" I 
e 

,.. 
n 
'oJ 

n 
o 
~ ., .... 
!G 
:r 
r+ 

to4 
~ 
3: 

n 
o ., 
'U . 
.... 
\0 
00 .... 

3: 
CD 
r+ 
:r 
o 
D. 

o .... 
o 
'U 
CD 
Ql 
r+ .... 
o 
:::::I 

lEA VTSCB - SCB FREEMAIN Routine (Part 2 of 4) 

Extended Description 

The SCB FAEEMAIN routine limits the number of celfs 
on the free-SCB-queue and frees any excessive storage. 
The task termination routine IIEAVTSKTI gives control 
to I EAVTSCB. 

1 If a non-job step task terminates in an address space 
other than the master address space. I EAVTSCB obtains 

the LOCAL lock and sets up the FAA to provide recovery. 

2 IEAVTSCB removes all the SCBs associated with the 
terminating task that have not yet been deleted from 

the TCB's ralated active chain. This module sets to zaro 
the TCB. field pointing to the active SCB chain (TCBSTABB). 
I EAVTSCB also sets to zero the field in every AB associated 
with the terminating task that indicates that a SCB is 
associated with the AB {ABSCBI. 

3 IEAVTSCB pieces the SCBs that needed storage 
obtained by a GETMAIN on the queue of free SCBs . 

4 I EAVTSCB scans the queue of free SCBs and limits 
the number of SCB cells on the queue to 20. I EAVTSCB 

returns any no longer needed storage to subpool 255. 

5 Before returning control to IEAVTSKT. IEAVTSCB 
deletes the FAA and frees the LOCAL lock. 

Module Label 

IEAVTSCB LOOPSCB 

REPEATF 

LOOP3 

ENDPA 

a • 
H 
CJIJ 
3: 



~ IEAVTSCB - SCB FREEMAIN Routine (Pari 3 of 4) 

::3: 
I 

VI ...... 
a.. 

::3: 
< 
til 
"
X 
J> 

Vl 
r
r-

;;0 
ID 
o 
o 
< 
-i 
ID , 
3 

::3: 
lC 
3 
rio 

r-
-< 
N 
t)) 

I 
I-' 
...... 
VI 
111 
I 

o 

(j 
o 
"0 
'< , 
..... 
lC 
:r 
rio 

I-f 

= ::3: 

(j 
o , 
"0 

RTM 

Input 

TCB RB 

TCBRBP ~-,. 

RBSCB 

TCBSTAB 

FRRs 

D 
SDWA 

D 

RECOVERY: 

6 Indicate that no SCBs 
are owned. 

IEAVTSKT 

Output 

SDWA 

D 

r.... 
n 
CD 
::J 
III 
CD 
a. : 

;;0 
::3: CD 
QlIII 
rtrt 
CD.., .., .... 
... ·n 
Qlrt 
.... CD 
ilia. 

1::3: 
QI 

'Urt 
..,CD 0.., 
1J .... 
CDQI 
.., .... 
rtlll 
'< o 
0-+1 
-+I 

H 
Ht12 
tI2:3: 
::3: : 



r-
~ 
N 
00 
I .... 

..... 
"" \II 
I 

o 

,.. 
n 
"-" 

(') 
o 
~ 
~ ..,. 
IQ 
J 
rfo 

.... 
til 
3: 
(') 
o 
~ 
'U 

.... 
\G 
00 ..... 

3: 
CD 
rfo 
J 
o 
a. 
o 
-II 

o 

" CD 
Q1 
rfo ..,. 
o 
:::J 

'" -t 
3: 
I 

"" ..... ..... 

IEAYTSCB - seB FREEMAIN Routine (Part 4 of 4) 

Extended Description Module 

6 If an unexpected error occurs, I EAVTSCB sets to 
zero the TCB field that points to the active SCB chain 

and the field in all task-related RBs that indicates an 
associated SCB. IEAVTSCB deletes the FRR and releases 
the LOCAL lock. 

Label 

IEAVFRB 

... = .... '" nCD CD en 
:::In en., 
CD .... a.n 

n 
ZCD 
~a. 
CDZ .,m .... n 
mCD ... ., 
en .... 
.t en 

'V 
.,0 
Coot. 
"a CDH .,'" nZ 
'< :I 

o 
oot. 
H 

'" 3: 



3 
< 
(I) , 
>< > 
(I) 
r
r-

;iIIJ 
CD 
n 
o 
< 
-I 
CD , 
a 
3 
to a 
t+ 

r
~ 
N 
00 
I .... ..... 

(/01 

UI 
I 

o 

n 
o 

~ , .... 
to 
J 
t+ 
.... 
1:11' 
3 

n 
o , 
'U 

.... 
\0 
00 ..... 

lEA VTSFR - SETFRR (Part I of 2) 

npu t 

Register 0 

1+ FRR I 
Register 1 

t current/normal 
stack 

Register 2 

Flags for SETFRR 
options (EUT and MODE) 

Register 14 

I Return address I 
Register 15 

I Entry pOint address I 
FRR stack 

t first entry -32 

t last entry 

Entry length 

t current entry 

/ FRR 0 extended area 

FRR 1 extended area 

t FRR 0 

Flags 

Parameter area 

~ t FRR 1 

Flags 

Parameter area 

SETFRR 
mucro .. P ocess r 

"> 1 Update the FRR stack. 

To the 
caller 

PURGE option 

Register 1 

I f stack updated I ADO-FLUSH option 

Register 14 Normal 

I Return address I FRR stack 

Register 15 t first entry -32 

I Entry point address I t last entry 

FRR stack Entry length 

f first entry -32 

( i 
FRR entry 

t last entry 

Entry length + FRRO 

t first entry -32 Parameter area 

Output 
ADO oPtion DELETE oPtion 

Register 1 Register 1 

'>1+ I f stack updated I 
v Register 3 Register 14 

I Current FRR entry I I Return address I 
Register 14 Register 15 

I Return address I I Entry point address I 
Register 15 FRR stack I Entry point address'l i first entry -32 

FRR stack t last entry 

t first entry -32 Entry length 

t last entry 

I 
t Current entry 

Entry length 

f current entry FRR 0 extended area 

I 
FRR 0 extended area ~ t FRRO 

FRR 1 extended area Flags 

FRR 2 extended area Parameter area 

+ FRR 0 F LUSH option 

Flags 
Normal' 

Parameter area FRR stack 

t FRR 1 t first entry -32 

Flags t last entry 

l Parameter area Entry length 

~ t FRR 2 t first entry -32 

Flags ~ 
Parameter area RTM1 workarea 

REPLACE option 

Register 1 

Ii stack updated I 
Register 3 

I Current FRR entry I 
Register 14 

I Return address I 
Register 15 

I Entry point address I 
FRR stack 

t first entry -32 

t last entry 

Entry length 

I t 
current entry 

FRR 0 extended area 

FRR 1 extended area 

t FRR 0 

Flags 

\ Parameter area 

t FRR 1 

Flags 

Parameter area 

r ... 
n 
CD 
:I en 
CD a.: 
:zi: 
~~ 
CD"J 
"J~ 
... n 
lI)rt 
... CD 
11111 

13 
II) 

"art 
"JCD 
O"J 
'U .... 
CD II) 
"J .... 
t+cn 
'< o 
0"", 

"'" H 
HQIlI wz :z = 



r
oo( 
N 
00 
I .... ..... 

"'" UI 
I 

C) 

n 
o 

" '< , 
~. 

Ul 
J 
t+ 

.... 
tII:I 
3: 

o 
o , 
'U 

3: 
CD 
t+ 
J 
o a. 
o 
~ 

o 
'U 
CD 
;: 
r+ ... 
o 
:I 

lEA VTSFR - SETFRR (Part 2 of 2) 

Extended Description 

I EAVTSFR alters the contents of an appropriate FRR stack 
based on the supplied options. 

1 The SETFRR macro calls this module to update the 
FRR stacks. Depending on the request. IEAVTSFR 

will add an entry to the current stack, delete an entry on 
the current stack. purge all the entries on the current 
Slack, flush all the entries on the normal stack. or flush all 
the entries on the normal stack and then add an entry to 
the normal stack. The six mutually exclusive options do 
the following: 

• ADD - The FRR address supplied as input is added to 
the stack and the current FRR entry pointer is updated 
to point to this new FRR address. If the caller specified 
the MODE=PRIMARY or FULLXM parameter on the 
SETFRR macro, I EAVTSFR saves the cross memory 
information in the extended area. IEAVTSFR sets flags 
in the second word of the entry to indicate the other 
oPtions chosen. If the stack is full, a X'07D' ABEND 
will occur if the caller requests another FRR be added. 

• REPLACE - Performs a replacement of the FRR address 
pointed to by the fourth word of the stack header by the 
input FRR address. If the caller specified the MODE= 
PRIMARY or FULLXM parameter on the SETFRR macro, 
IEAVTSFR saves the cross memory information in the 
extended area. I EAVTSFR sets flags in the second word 
of the entry to indicate the other OPtions chosen. If the 
FRR stack is empty, an addition equivalent to A is pe
formed. 

Module Lebel Extended Description 

• DELETE - Removes an FRR address from the stack by 
adjusting the fourth word of the stack header to point 
to the preceding FRR entry. If the stack is empty this 
delete function is a NOP. 

• PURGE - Adjusts the stack header to reflect an empty 
stack (sets the fourth word equal to the first 
word of the stack header). 

• FLUSH - A special option to be used only by the 
dispatcher, purges the normal FRR stack (making 
it emptyl and zeroes RTM recursion indicators in the 
RTM1 work area portion of the normel FRR stack. 

• ADD-FLUSH - A special option used only by the 
dispatcher, purges the normal FRR steck and adds the 
FRR for the SRB to be dispatched. 

Nota: 

Stacks depicted represent normal FRR stacks. Supervisor 
control FRR stacks have the first word of the header point
Ing to the first FRR entry rather than the address of the 
first entry -32. 

Module Label 



~ lEA VTSIG - SLIP PER RISGNL Routine (Part 1 of 2) 
3: J.. SLIP global PER activation/deactivation 
OCI routine IIEAVTGLB) 
CiI 

3: 
<: 
en 

" )( 
l> 

en 
r
r-

r-
oo( 
N 
OCI 
I ..... ..... 

(.of 

I.n 
I 

CiI 

..... 
n ...., 
0 
0 
'D 
'< ., .... 
!Q 
~ 
r+ 
.... 
= 3: 

0 
0 ., 
'D . 
..... 
\Q 
00 ..... 

Input 

1 Determine whether to 
activate or deactivate 
PER monitoring. 

-----r-----,,--,/ 2 Adjust PER monitoring. 

Output 

PSA 

FLCENPSW 

FLCSNPSW 

FLCINPSW 

IEAVTGLB 

(I) 
G) 
Z 
r-
:q 
o 
C 
-t 
lot 

r-.... n 
CD 
::r 
III 
CD 
a.: 

:q 
310 
IUIII 
rtrt 
10., ., .... 
.... n 
IUrt 
... 10 
ilia. 

'3 IU 
"art 
.,CD 
0., 
'U .... 
lOll) ., ... 
rtlll 
'<0 
0 .... .... 

lot 
H!:IIt 
"'3 3: : 



r
oo( 
N 
c» 
I .... ..., 

"" U'I 
I 

Q 

,... 
n .... 
n 
o 

" '< ., .... 
!Q 
~ 
r+ 

1-1 

= 3: 

n 
o ., 
" 
.... 
-0 

lEA VTSIG - SLIP PER R1SGNL Routine (Part 2 of 2) 

Extended Description Module 

This module either activates or deactivates PEA monitoring 
on each active processor in the system. 

1 The instruction fetch and storage alteration monitoring 
flags in the SHDA /the SHDAC91F and SHDAC9SA 

bits of the SHDACAEG fieldl indicate whether the caller's 
request is to turn PEA monitoring on or off. If either flag 
equals one, IEAVTSIG activates PEA monitoring by 
turning on the PEA bit in the I/O new PSW, the external 
new PSW, and the SVC new PSW IF LCI NPSW, 
FLCENPSW, and FLCSNPSW, respectivelyl. Otherwise, 
I EAVTSIG deactivates PEA monitoring by resetting these 
bits to zero. PSA protection is disabled 10 allow 
alteration of the PSW PEA bits. 

2 IEAVTSIG copies the SHDACAEG field values into 
PER control registers 9·11 . 

~ Recovery processing: 

3: 
III 
r+ 
~ 
o 
D.. 

o 
-+t 
o 

" III 

Gl 
r+ .... 
o 
:J 

None is established for this module. 

Label 

o 
-fa 



::a 
-t 
3: 
I 

(.01 
00 
N 

3: 
<: 
IJ) , 
X 
~ 

IJ) 
r
r-

::a 
CD 
n 
o 
< 
-t 
CD , 
a 
3: 
IQ a 
rio 

r
oo( 
N 
00 
I 
~ ..., 
(.01 

UI 
I 

o 

n 
o 

~ , ... 
IQ 
':T 
rio 

I-f 
till :z 
n 
o , 
'0 

lEA VTSKT - Task Purge Processing (Part 1 of 4) 

Input 

From RTM2 exit 
processing IIEAVTRTE) 

Register 1 ., 
RTM2WA 

I Flags t 
f TCB 

f ASCB 

ASCB 

ASCBASXB 

( ASXB 

ASXBTCBS 

First 

RTM2WA I 
......... Flags 

.... RTM2PURG 
purge only 

RTM2TYPE 

~ 
normal/abnormal 

TCB 

Flags I 
TCBLTC 

Flags 
TCBFJMC - mUSI 

complete 
CSECT.IEAVTRML 

Names of subsystem 
resource manager 

TCBLTC 

TCB 

TCBLTC=O 

{
Sample task structure } 
showing first two 
tasks to be selected 

1 Determine whether this 
is a recursive entry. 

• Yes 

L=~=~ 2 Check the conditions for 
normal termination. 

• Step must complete. 

• Subtasks exist. 

3 Set the correct sequence 
for abnormal processing. 

Resume 
processing 
after 
recursion 

Selected TCB 

TCBFBYT1 r-:II 
TCBPGNL ;-::::;-

TCBFLGS5 101 
TCBABWF~ 

TCBNDSP1 C1J 
TCBDARTo.;.;:}:.;;:...._-. 

TCBECB I 0 I 
"=== Register 1 

~ ] 
• 

Register 0 

I 1 

Register 15 

Register 7 

,. ASCB 

RTM2WA 

Resource 
manager 
save area 

r.... 
n 
CD 
:::J 
en 
CD a.: 

:0 
31D 
II) en 
r+r+ 
CD., ., .... 
.. ·n 
1I)r+ 
.... CD 
en a. 
13 

II) 
-ar+ 
.,CD 
0., " .... IDII) ., .... 
r+en 
~o 
0'" -h 

H 
HIJIj 
1JIj3 
3: 



r
oo( 
N 
00 
I .... .... 

c.-a 
I.TI 
I 

Q 

(") 
o 

" '< ., .... 
to 
:T 
rio 

1-1 
a:I 
3: 
(") 
o ., 
" 
.... 
\D 
00 .... 

3: 
ID 
rio 
:T 
o 
Q. 

o 
-t. 

o 

" ID ., 
III 
rio .... 
o 
~ 

IEAVTSKT - Task Purge Processing (Part 2 of 4) 

Extended Description Module 

Task purge processing removes the resources used by a task . 
RTM2 uses the task purge processing function to route 
cOlllrol sequentially to Installatlon·deflned and IBM·defined 
resource manager routines to remove their task-related 
r~sources. 

Task purge processing. will remove the resources of the 
lowest task in the TCB family queue first, and then ascend 
the queue to the current task, removing each task's resources. 

Task purgp. processing receives control from RTM2 eKlt 
processing. Input for task purge processing comes 
from M.O. diagram IEAVTRT2 - RTM2 Initialization, 
which shows the creation and Initialh:ation 01 the 
RTM2WA. 

1 Task purge processing performs recursion processing, IEAVTSKT 
as described in M.O. diagram I EAVTRT2 - Recursion 

Processor 1 . 

The RTM2TRRA field contains the addresses 01 routines 
that handle recursions lor processes in steps J. 4, and 5. 

• If a CANCEL recursion OCCUIS for step J, restart step 3 
by selp.cling the lowest task in the lamily and detaching 
it. For any other tYlle of recursion. terminate the 
alldress space. 

• If a subsystem resource manager fails. skip the failing 
subsystem resource manager on a recursive entry. If 
more than 2 lailures occur, skip all the subsystem 
resource m'anagers, and go to step 5. 

• II an IBM-delined resource manager lails. skip it on any 
recursive entries and continue processing the others. 

Label Extended Description 

2 For a normally terminating task, task purge pro
cessing checks the terminating task for step must 

complete stetus, for open data sets, end for existing 
subtesks. 

• For tesks hovlng step must complete statUI, terminate 
with a X'E03' ABEND code. 

• If subtesks exist, task purge processIng terminates the 
task being terminated with a X'A03' ABEND code. 
RTM2 will then regain control es a result of the SVC 13 
Instruction Issued to terminate the tesk. 

3 The terminating task may have active subtesks. In 
this case, task purge processing follows down the 

TCBL TC chain until It finds the lowest TCB las Indicated 
by a 0 In TCBL TC). Task purge processing then Issues II 

DETACH (see the section "Task Management" for a descrip· 
tlon of DETACH processing) for that TeB, with on Indi
cator to perform termination purging. DETACH will 
terminate the task if it is still active. Task purge pro
cessing detaches all the subtasks, and then purges the 
resources for the current task. 

Module Label 

... 
till 
3: 



~ IEAVTSKT - Task Purge Processing (Part 3 of 4) 
3: 
I 

(It 
00 
-'=' 

;IU 
ID 
n 
o 
< 
-t 
CD ., 
a 
3 
IQ 
:I 
rt-

r
oo( 
N 
00 
I .... 
" (J'I 
lit 
I 

g 

,... 
n 
\.J 

n 
o 
'U 
'< ., ... 
IQ 
:r 
rt-

.... = 3 

n 
o ., 
'U . 
.... 
\0 
00 ..... 

Input 

Register 1 

• RTM2WA I --
RTM2WA ; Flags 

I Flags t ..- RIM2PlIRG 
purge only 

_1 TCB 
RTM2TYPE 

t-JASCB 1\ normal/ahlloronal 

TCB 

AseB 
I Flags 

ASC8ASXB 
TCBLTC 

ASXB Flags 
TCBFJMC - must 

ASXBTCBS complele 

CSECT,IEAVTRML 

~ Names of installation 
resource managers 

Process 

) 4 

'> 5 

~ 

) 6 

) 7 

? 
... 

Route control to the 
installation resource ... .. 
managers. 

"I ,. Appropriate 
resource 
manager 

Purge the task resources. 

... .. 
"I ..,. Appropriate 

resource 
manager 

Prepare the RBs for exit 
processing. 

Indicate the last TCB is 
terminating. 

To RTM2 exit processing 
(lEAVTRTEI 

Output 
Register 1 Register 13 

t Parameter list 1 ~ t Save area 

Seve area 

Parameter list h 1 
RMPL Work area for 

resource 
managers 

U 
.. 

TCB 
[;" 

RTM2WA I 

0 ~ 

" RB ........ XSB 

U Ij RB 
..... XSB 

U 

I 

I 

r-.... 
n 
CD 
:J en 
CD a.: 

;:a 
3CD men 
rtt+ co-, ., ... 
.. ·n 
mt+ 
...CD en a. 
13: m 

'Ut+ 
.,CD 
0., 
'U .... com .,,.. 
rten 
'< o 
0-11 
-II 

H 
HM 
tIIIZ 
3: 



\ 

r-
oo( 
N 
01) 

I ... 
" (1'1 
U'I 
I 

C) 

..... 
n ..... 
n 
0 
"D 
'< ., .... 
IQ 
:T 
t+ ... 
= 3: 

n 
0 ., 
"D . ... 
\G 
01) 

" 

3: 
CD 
t+ 
:T 
o 
Q, 

o 
-h 

o 
"D 
CD 

ill 
t+ .... 
o 
::::lI 

lEA VTSKT - Task Purge Processing (Part 4 of 4) 

Extended Description Module 

4 Task purge processing gives control sequentially to 
installation-<lefined resource manager routines so they 

can free task-related resources. The module IEAVTRML 
contains the names of the installation routines. 

5 Go to the data management resource manager to close 
all data sets. (See M.O. diagram IEAVTSKT - Task 

Purge Resource Managers for a description of the task purge 
resource mangers.) If the data sets cannot be closed for a 
task terminating normally, terminate the task with a X'C03' 
ABEND code . 

Task purge processing gives control sequentially, in the ad· 
dressing mode indicated in the address field, to I BM-<lefined 
resource manager routines to free task·related resources. 
For normal termination, these routines are called in the 
following sequence: 

SVC dump IEAVTSDR 
Subsystem interface IEFJRECF 
Data management I FGOTCOA 
Timer I EAOPGTM 
System trace IEAVETRM 
IOE IEAVEEEP 
Type 1 message IEAVTPMT 
SPIE IEAVSPIE 
MSSFCALL SVC IEAVMFRM 
ENO/DEQ IEAVEN02 
WTOR IEAVMED2 
Region control task IEAVAR07 
VTAM ISTRAMAI 
TCAM IEDQOTOl 
Subsystem interface I EFJRECM 
TIOC IEDAY8 
Virtual fetch CSVVFMEM 
POST I EAR POST 
PCAUTH IEAVXPAM 
Real storage management IEAVTERM 
Timer I EAQPGTM 
IOE IEAVEEEP 
SCB I EAVTSCB 
3850 mass storage system ICB2AIR 
ENO/DEQ IEAVEN02 
Type 1 message IEAVTPMT 
SRB purge IEAVEPDO 

Label Extended Description Module 

For abnormal termination, these routines are called in the 
following sequence: 

SVC dump I EAVTSDR 
Subsystem support I EFJRECF 
Timer I EAOPGTM 
System trace IEAVETRM 
IOE IEAVEEEP 
Data management I FGOTCOA 
Type 1 message I EA VTPMT 
SPIE IEAVSPIE 
MSSFCALL SVC IEAVMFRM 
ENO/DEO IEAVEN02 
WTOR IEAVMED2 
Region control task I EAV AR07 
VTAM ISTRAMAI 
TCAM I EDQOTOl 
Subsystem interface I EFJRECM 
Allocation IEFAB4E5 
TIOC IEDAY8 
Virtual fetch CSVVFMEM 
POST IEARPOST 
PCAUTH IEAVXPAM 
Real storege management IEAVTERM 
IOE IEAVEEEP 
SCB IEAVTSCB 
3850 mass storage system ICB2AIR 
ENO/DEQ IEAVENQ2 
Type 1 message I EAVTPMT 
SRB purge IEAVEPDO 

These routines free any control blocks related to the task. 
Control returns from these routines to the task purge pro· 
cessing function. 

6 Task purge processing prepares the RBs (request blocks I 
of the failing tasks to exit by placing the address of an 

SVC 3 (EXITI in their RBOPSW field. When these RBs reo 
ceive control, they will go to EXIT. To ensure running in 
home mode,lEAVTSKT sets PASID=SASIDcHASID in the 
XSB, and sets the RBOPSW S-bit to zero. 

7 Task purge processing indicates, in the RTM2WA, if it 
is purging the last TCB in the address space. Control 

then goes to the exit processing, as shown by M.O. diagram 
I EAVTRTE - RTM2 Exit Processing. 

Label 

H 

'" 3: 



3: 
< 
(I) , 
x 
> 
(I) .... .... 

.... 
-< 
N 
co 
I .... ..... 
"" VI 
I 

o 

(") 
o 
~ ., 
"". !Q 
J .... 
1-1 
tlI' 
3: 
(") 
o ., 
'0 

.... 
\C 
co ..... 

lEA VTSKT - Task Purge Resource Managers (Part 1 of 8) 

From task purge processing (JEAVTSKT) 
to clean up task-related resources when 

Input Process 

1 Clean up the task-related IBM re
sources when a task terminates: 

(RMPL serves as input 
for all processes in step 11 

a. Clean up the SDUMP resources .. 

b. Clean up the subsystem inter
face resources. 

c. Clean up the data management 
resources. 

• Clean up the TCBDEBAD 

d. Clean up the timer resources. 

• Free the TaE and timer SRB. 
e. Clean up system trace resources. 

• Free TTCH for the termi
nating task. 

f. Clean up the laE resources . 

g. Clean up the type 1 messages. 

Common request 
router 

Output 

• Clean the message table entries. 

h. Clean up the SPIE/ESPIE =:::::!=========::::==~ 
CVT 

I CVTMSFCB I 
resources. 

• Free the SCA, PIE, and RPPs. 

i. Clean up the MSSFCALL SVC 
resources. 

j. Clean up the ENa resources. 

• Free the aCBs and aELs. 

• Print the messages . 

"name, name FAILED IN 'STEP MUST 
COMPLETE 'STATUS" 

"RESOURCE NAMED, name, name 
MAY BE DAMAGED" 

"FAI LED IN 'STEP MUST COMPLETE' 
DUE To abend code" 



r
oo( 
N 
C» 
I .... ..... 

(II 
UI 
I 

Q 

n 
o 
~ ., .... 
lQ 
-:r 
,to 

1-1 
tlII 
3: 

n 
o ., 
"CJ . 
.... 
..a 
00 ..... 

3: 
ID 
,to 
-:r 
o 
a. 
o 
-it 

o 
"CJ 
ID 

~ 
,to .... 
o 
~ 

lEA VTSKT - Task Purge Resource Managers (Part 2 of 8) 

Extended Description 

The IBM·defined task cleanup resource manager routines 
free resources held during task processing. The task purge 
processing routine, module lEA VTSKT, routes control 
to these resource manegers after estebllshlng an Interface 
via the RMPL (resource managar parameter list) In 
the RTM2WA. Control goes to each resource manager 
sequentially, in the appropriate addressing mode, until all 
resourca managars have performed their clean up processing. 

1 The task purge routine routes control to each of the 
task purge routine, which routes control to the next 

resource manager. This continues until all the resource 
managers have performed cleanup. 

a. The SDUMP resource manager frees system resources for: 

o The SDUMP SRB 

• Tasks and address spaces involved in an SDUMP 

• The DUMPSRV address space 

(Seethe M.O.diagram IEAVTSDR-SVC Dump Resource 
Manager in the section "Dumping Services" for a descrip' 
tion of the SDUMP resource manager.! 

b. The subsystem support managar builds a broadcast sub· 
systam interface to give control to all interested sub· 
systems. 

c. The data management resource manager cleans up the 
TCBDEBAD field of the TCB. (See Open/Close/EO V 
Logic for more information about the data management 
resource manager.) 

d. The timer resource manager frees the TOEs and timer 
SRBs associated with the task being terminated. (See 
the M.O. diagram I EAOPGTM - Timer Supervision, in 
section "Timer" for a description of the timer purge 
routine.! 

e. The system trace resource manager removes all trace 
table copy headers (TTCH) for the terminating task 
from the TTCH queue and frees them. (See M.O. dia· 
gram I EAVETRM - System Trace in the section "Trace" 
for a description of the system trace resource manager.) 

Module Label 

IEAVTSKT TPURG1 

IEAVTSDR 

IEFJRECF 

IFGOTCOA 

IEAOPGTM 

IEAVETRM 

Extended Description Module Labal 

f. The abnormal exit resource manager cleans up the reo IEAVTPMT 
sources for the task being terminated by freeing the IOE 
(interruption queue element>. 

g. The type 1 message resource manager cleans up the meso IEAVTPMT 
sage table pointed to from the CVTOMSG field of the 
CVT. 

h. SPIE delete processing frees the SPIE resources used by IEAVSPIE IGC0001 D 
the term inating task by freeing the associated SCA (SP I E 
control area) and the PIE (program interruption element) . 

i. The MSSFCALL SVC resource manager dequeues the IEAVMFRM 
MSSFCALL control blocks. 

j. The ENO resource manager frees the associated ENO reo IEAVEN02 
sources used by the terminating task by freeing the OCBs 
(queue control block) and OELs (queue element). The 
ENO resource manager also prints messages explaining 
which task failed while it controlled the resource. (See 
the section "Global Resource Serialization" for a de· 
scription of ENO processing.) 



3: 
<: 
(I) , 
x 
:> 
(I) 
r
r-

;;u 
CD 
n 
o 
< 
-I 
CD ., 
a 
3: 
Ul 
31 .... 

r-
~ 
N 
co 
I .... ..... 

(1'1 
U1 
I 

0 

..... 
n ..... 
n 
0 
"0 
'< ., .... 
IQ 
:T .... 
I-t 
1:1' 
3: 

n 
0 ., 
"0 

.... 
\0 
co ..... 

lEA VTSKT - Task Purge Resource Managers (Part 3 of 8) 

Process Output 

k. Clean up the WTOn resource.. :===!:=======~:=:~"r~ WWD I oORE WOoE 
• Free the WWB., ORE., and WOE.. ~ 

• Create the DOMCD. 

I. Clean up the region eonlrol task 
resource. 

• Free the TAXEs end TS8 •• 

m. Clean up the VT AM resourea •. 

Ii Free the VT AM control block •. 

n. Clean up the TCAM resources • 

• Free the PE8., PEVVAs, AlD., 
and TCX. 

• Reset the UCB field •• 

.. 

to. DOMCa 
)I 

r 

PEa PEWA AlB 

DOD 
• Terminate any proc:es.'n9 progfaml. 

Tex uca 

DO o. Clean up the subsystem Interface 
resources • 

• Inform the active subsystems 
via IEFSSREQ that a task has 
terminated. 

p. Clean up allocation resources 

q. Clean up the TlOC resources 

• Free the TSB. 

• Wait for a message 

r. Clean up the virtual fetch resources. 

• If this is a terminating job step 
task, reset the ASXB. 

6 

.... -" IEFJRASP 

Master 
subsystem, 
common 
request 
router 

Queue manager 
~blOCk 

TSB 

I ===!=========::::=::=~u 

IL:I====::====~=!>..~ ASXB I ASXBVFVT I 

r-.... 
n 
CIt 
:::J 
en 
CIt a.: 

::a 
ZCD Iben 
nn 
CIt., ., ... 
... ·n Ibn 
... CIt 
en a. 
13 Ib 

'Un 
.,CIt 
0., 
'a .... 
Cltlb ., ... 
nen 
'<0 
0-' 
-oft 

H 
HIlII 
~3 
3= 



r" 
-< 
N 
00 
I ... ..... 

(/II 
UI 
I 

o 

(") 
o 
~ , .... 
IQ 
;r ,.. 
loot 
till 
3: 
(") 
o , 
'U . ... 
-0 
00 ..... 

3: 
11) ,.. 
;r 
o 
a.. 
o 
-f\ 

o 
'U 
11) 

~ ,.. .... 
o 
;:, 

lEA VTSKT - Task Purge Resource Managers (Part 4 of 8) 

Extended DescrIptIon Modul. 

k. The communications task resource manager cleans up 
WTOR (write to operetor with replyl resources associ· 
ated with the task being terminated. by freeing control 
blocks. 

I. The region control task resource manager cleans up the 
resources associated with the task being terminated by 
freeing the TAXEs herminal attention exit elemend 
and TSBs herminal status blockl. (See the M.O. dia· 
grams for the region control task in the section "Address 
Space Services" for a complete description of the region 
control tesk resource manager.l 

IEAVMED2 

IEAVAR07 

m. The VTAM resource manager cleans up resources ISTRAMAI 
associated with the VTAM user task. These resources 
include storage. VTAM locks. and the following control 
blocks associated with the VT AM devices and 
applications active for the terminating task: 
• Active CRAs (component recovery areal 
• DEBs (data extent blocks) 
• FMCBs (function management control block) 
• NCBs (node control block) 
• ICEs (Jnactive connection element) 
• ACEs (active connection element) 
• DCEs (DEB chain elemend 
• PST (process scheduling table) 
• Application R DTEs (resource definition table) 
• Destination R DTEs 
• DVTs (destination vector table) 
• EPTs (entry point table) 

(See the publication VTAM Logic for a description of 
VT AM processing) 

Label Extended DelCflptlon 

n. The TCAM (telecommunications access method) 
resource manager frees the resources associated with 
the terminating task. This resource manager frees the 
PEBs (process extension block!. PEWAs (process entry 
work areas). AIBs (application interface blocks). and 
TCX (TCAM CVT extension! associated with the failing 
task. and it resets UCB (unit control block) fields. (See 
the publication TeAM Logic for a description of the 
TCAM resource manager.l 

o. The subsystem interface resource manager cleans up 
the resources associated with the failing task by notify- . 
ing the tactive subsystems. via the I EFSSREQ macro. 
of the task that just terminated. 

p. Only at abnormal termination does the allocation reo 
source manager clean up the queue manager block for 
the failing task . 

q. The TIOC (terminal input/output coordinator) re-
source manager cleans up the TSB for the task being 
terminated. 

r. If a job step task is terminating. the virtual fetch re-
source manager sets the ASXBVFVT field in the ASXB 
to zero. 

Modul. Label 

IEDQOT01 

IEFJRASP 

IEFAB4E5 

IEDAYB 

CSVVFMEM 

r- = 
... :;0 
nCD 
CD en 
::::sr+ 
en~ 
CD ... 
a.~ 
3CD 
~a. 
ID3 
~DI 
... r+ 
DlCD .... ~ en ... 
I~ 

'V 
~O 0" '11 
IDiot 
~~ 
r+3 
'< = 
o .. 



,., 
CD 
n 
o 
< 
-t 
CD ., 
a 
3: co a 
r+ 

r
-< 
N 
co 
t ... 

..... 
(.04 
UI 
t 

C 

n 
o 
~ ., 
~. 

co ::r 
r+ 

toot 

'" 3: 

n 
o ., 
't1 

... 
\0 
co ..... 

lEA VTSKT - Task Purge Resource Managers (Part S of 8) 

Process 

s. Clean up the POST resources. 

• Free the SRBs associated with 
any cross-memory requests. 

t. Ciean up the program call 
resources. 

u. Clean up the real storage management 
resources. 

• Free the PCBs, PFTEs, and FOEs 
and purge the TLBs. 

v. Clean up the timer resources. 

Output 

ASCB 

" v 

SRBs 

" v 

ASTE LT 

DD 
AXAT LXAT ETIB/ETIX 

DDD 
" PCB DO v 

• Free the TQE and the timer 
SRB. 

=::::====::!::::)fT..;Q;..E..;.S-,~ ->. TImM SRO. 

w. Clean up the I QEs for abnormal exit. 

... .... 
n 
CD 
:I 
(II 
CD a.: 
zi: 
111(11 
rfort 
CD., ., .... 
foIon 
IIIrt 
.... CD 
(II a. 
13 

III 
'Vrt 
.,CD 
0., 
'Ufolo 
CD III ., .... 
rt(ll 
'<0 
o oft 
oft 

H 
HtII' 
~z z: 



r-
-< 
N 
00 
I .... 

..... 
tI'I 
\II 
I 

0 

~ 

C') ...., 
n 
0 

~ , .... 
~ 
J 
r+ 

1-1 
til' 
3: 

n 
0 , 
'tI . 
.... 
~ 
00 ..... 

3: 
(II ,... 
J o 
a. 
o .... 
o 
'tI 
(II 

iil ,... .... 
o 
;:, 

lEA VTSKT - Task Purge Resource Managers (Part 6 of 8) 

Extended Description Module 

s. The POST resource manager cleans up the resources IEAVEPST' 
associated with the task being terminated by freeing 
the SRB associated with any cross-memory POST ra-
quests. (See the M.O. diagram IEAVEPST - POST 
Processing in the section "Task Management" for more 
details.l 

t. An in line macro (PCARM) gives the program call IEAVXPAM 
authorization resource manager control. This resource 
manager cleans up the program call resources_ 

u. The real storage management resource manager cleans IEAVTERM 
up the resources associated with tha task baing termi-
nated by freeing the PCBs (page control block). PFTE 
(page frama table entry). FOe (fix ownership entry). 
and purging TLB Itranslation lookaside bufferl. 

v. The timer resource manager frees the TOEs ana timer IEAOPGTM 
SRBs associated with the terminated task. (See the M.O. 
diagram I EAOPGTM - Timer Supervision in the section 
"Timer". for a description of the timer purge routine.l 

w_ The abnormal exit resource manager cleans up the re- IEAVEEEP 
sources for the task being terminated by freeing the 
loe (interruption queue element.l 

r: 
... ;:a 
nCD 

Label 
CDC/I 
:::Jrt 
C/I"J 
CD .... 
a.::I, 
3: CD 
~a. 
CD3 
"JI» 
.... rt 
mCD 
"'''J C/I ... 

m .... 
C/I 

'11 
"JO 
0 .... 
'U 
CDH 
"Jtr:I 
rt3 
'< : 
0 
-It 

H 
tr:I 
3 



.u .... 
3: 
I 

c,..e 
\0 
N 

.u 
II) 
(') 
o 
< 
.... 
II) , 
a 
3: 
!Q a .... 

,.... 
-< 
N 
00 
I .... ..., 

c,..e 
U1 
I 

CI 

,., 
(') .... 
n 
o 
lJ 
'< , 
~. 

!Q 
::r .... 
..... 
til' 
3: 

n 
o , 
lJ . 
.... 
\0 
00 ..., 

lEA VTSKT - Task Purge Resource Managers (Part 7 of 8) 

I nput Process 

TCB 

TCBSTAB 

ASCB 

ASCBAXSB 

~ WSAVT 

WSALSTAE 

Work 
save area 

FREESCBQ 

CVT 

1+ CVTICB 

SCB 

...... ASXB 

1\ 
) 
~ 
/ 

( 

ASXBSPSA 

SCB 

SCBXPTR 

SCBX 

ICBQHEAD 

Queue of MSS 
control blocks. 

D 

W 

x. Clean up the SCBs. 

• Limit the number of cells 
on the free SCB queue 
to 20. 

• Free the storage of the 
excessive cells. 

y. Clean up the 3850 mass storage 
system resources. 

z. Clean up the ENQ resources. 

• Free the QCBs and QE LB • 

• Print any messages. 

aa. Clean up the type 1 
messages. 

• Clear the message table 
entries. 

bb.Clean up the SRBs related to 
this task • 

To task purge 
processing (IEAVTSKT) 

Output 

r:BSTAB-o 
ASXB 

ASCBAXSB ASXBSPSA 

Work 

WSALSTAE FREESCBQ 

SCB 

SCBXPTR 

aCBs aELs 



r-
-< 
N 
00 
I ..... 

..... 
CJ'I 
UI 
I 

Q 

...... 
0 ..., 
("') 
0 
"U 
\( ., .... 
lQ 
J .... 
t-4 
til 
3 
("') 
0 ., 
"U 

..... 

..a 
00 ..... 

3 
CD .... 
:r 
o 
D-

O .... 
o 
"U 
CD 

aJ .... .... 
o 
~ 

lEA VTSKT - Task Purge Resource Managers (Part 8 of 8) 

Extended Description Module 

x. The SCB freemain routine frees the storage occupied IEAVTSCB 
by SCBs no longer needed. The SCB freemain routine 
limits the queue of available SCBs to 20 ceUs. (See the 
M.O. diagram I EAVTSCB - SCB Freemain. for a more 
detailed description.! 

y. The 3850 mass storage system resource manager ICB2AIR 
marks invalid all delayed response queue elements 
relating to the terminating task. 

z . The ENQ resource manager frees the associated IEAVENQ2 
ENQ resources used by the terminating task by 
freeing the QCSs (queue control blockl and QELs 
(queue elementsl. The ENQ resource manager 
prints messages explaining which task failed while 
the task controlled the resource. (See the section "Global 
RasourceSerialization" for a description of ENQ proces-
sing.l 

aa. The type 1 message resource manager cleans up IEAVTPMT 

the message table pointed to by the CVT (CVTQMSGI • 

bb.The task purge routine uses the PURGEDQ function IEAVEPDO 
to clean up any SRBs related to the terminating task. 

... = ... ::a 
neD 

Label C00 
::I ... 
0., 
CO ... 
a.n 

r+ 
3eD 
~a. 
C03 .,m 
... r+ mco ...., 
0 .... 
I~ 

0 

" .,0 
0 .... 
'II 
COH .,'" r+3 
'< = 
0 .... 
H 

'" 3 



3 
< en , 
X 
l> 

en 
r
r-

r-
oo( 
N 
00 
I ... 
~ 
CI'I 

'" I 
Q 

,...., 
() ..... 
n 
0 

~ , .... 
(Q 
:r 
rio 

I-t 
til 
3 

n 
0 , 
'U . ... 
\0 
00 
~ 

lEA VTSLB - SLIP Action Processor - Part 2 (Part 1 of 2) 

From IEAVTSLP Process 
~~~--------------------~ 

1 Determine if a SLIP trap 
matches the system conditions. 

2 Indicate the SCE is no longer 
in use. 

Diagram 
IEAVTSLB -

""I ••• SLIP Action 
~ Processor- Part 

- Trap 

To 
IEAVTSLE 

A 

SHDAFWD 

SHDACTA SCECTA 

H 
III 

r-... 
n 
CD 
:I en 
CD 
a.= 

::III 
ZCD 
~:I. 
CD., ., ... 
t'~ 
... CD ena. 
IZ 

I» 
"art 
.,CD 
0., " ... CDt» 
~t) 
\Co 
o~ 
~ 

H ... ~ 
~Z 
Z: 



r
oo( 
N 
00 
I .... ..., 

CJ'I 
UI 
I 

o 

n 
o 

~ ., .... 
U1 
J' 
t+ 
.... = 3 

n 
o ., 
"a . 
.... 
\Q 
00 ..., 

3 
lD 
t+ 
J' 
o 
a.. 
o 
-fI 

o 
"a 
lD 

~ 
t+ .... 
o 
::J 

lEA VTSLB - SLIP Action Processor - Part 2 (Part 2 of 2) 

ElCtended Description 

This module is called by IEAVTSLP. It routes control to 
the SLIP trap match routines IIEAVTSL1 or IEAVTSL2 
depending on tha parameters found in the SCVA) and 
processes the MATCH LIM and PRCNTLIM keywords. 
Seediagram IEAVTSLB-SLIP Action Processor- Part2-
Trap Checking for a description of I EAVTSLB's trap check
ing process. 

Module 

1 Starting with the last trap added to the chain, or the I EAVTSLB 
enabled non-IGNORE PER trap, IEAVTSLB compares 

the trap requirements !indicated in the SCE, SCVA pair) with 
the current system condition. When SLIP's caller is 
IEAVTRTS,IEAVTRT2,or IEAVTRTM,lEAVTSLBchecks 
only enabled non-PER traps; when SLIP's caller is 
IEAVTPER, IEAVTSLB checks only enabled PER traps. 
IEAVTSLB never' checks disabled traps. Diagram 
IEAVTSLB - SLIP Action Processor - Part 2 - Trap 
Checking describes the individual trap comparison process 
and, with Diagram IEAVTSL2 - SLIP Trap Matching 
Routine - Part 2 - ACTION Keyword Processing, the action 
taken when a match is found. After a trap is checked, pro
cessing continues at the next step. 

2 If a no-match condition is found and other traps 
remain to be tested, lEA VTSLB decreases the SCE 

use count by one, locates the next trap to be checked, 
and returns to step 1 to repeat the comparison process. 
Non-PER trap checking stops when a match is found 
or all the traps have been examined. PER trap checking 
stops when a match is found or the enabled non-IGNORE 
PER trap has been checked. If the search for a matching 
trap is being terminated, IEAVTSLB decreases the use 
counts in all the remaining serialized traps. 

Label 

SCEDECR 



3: 
< en , 
~ 
en .... .... 

;Q 
CD 
n 
~ 
-f 
CD ., 
a 
3: 
fQ a ,... 

.... 
00( 
N 
00 
I .... ..... 

(.01 

\11 
I 

CI 

..... 
n ..... 
n o 
~ ., .... 
fQ 
':T ,... 
.... 
tIIf 
3: 

n 
o ., 
'tI . 
.... 
\0 
00 ..... 

lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part 1 of 8) 

Input 

RTM2WA 

From step 1 of Diagram IEAVSTLB
SLIP Action Processor - Part 2 

Process Output 

I RTM2VRBC 

C Request block (PRB) 

SLPL 
1 When IEAVTRT2 is the caller, =!====:::::;~t:====1 

locate the register and PSW 

Pre· 
vious 
pair 

PSW Request block 

RBLINKB 
~ (SVRB) 

PSW 
RBGRSAVE 

-- RBLINKB .. ----••• RBGRSAVE 

Request block (SVRB) 

PSW 

RBLlNKB 

RBGRSAVE 

Non
SVRB 
pair 

Req.uest block (SVRB) Request block (SVRB) 

PSW PSW 

RBLINKB RBLINK 

RBGRSAVE RBGRSAVE 

\. 
'-----------~------------~ 

Error pair 

SCE I SCEFLGCS 

values to use in subsequent 
processing. Work area 



roo 
-< 
N 
00 
I .... .... 
~ 

'" I 
o 

n 
o 
~ , .... 
IA 
'::J" 
t+ 
.... 
af 
3: 

n 
o , 
'U . 
.... 
\0 
00 .... 

3: 
(II 
t+ 
'::J" 
o 
D. 

o .... 
o 
'U 

'" iiJ 
t+ .... 
o 
~ 

lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part 2 of 8) 

Extended Description Module 

This diagram describes the segment of IEAVTSLB that com- IEAVTSLB 
pares a trap's event qualifier keyword parameters with the 
current system status. 

1 When the coller is IEAVTRT2. IEAVTSLB determines 
from which request block IRS) it is to obtain the 

renister and PSW values necessary for later processing. The 
SLIP trap RBLEVEL keyword parameter Irecorded in 
the SCEFLGCS field) specifies one of three pairs of 
request blocks: the error pair, the previous pair, or a 
non·SVRB pair. IThe default value is the error.paid 
IEAVTSLB uses the register values in one of the RBs and 
the corresponding PSW in the other. It saves a pointer 
to the RB containing the registers in the REGSVRT2 field, 
and a pointer to the RB containing the PSW in the 
RBTRSAV field. It uses the register values, for example. 
to resolve indirect addresses. The PVTMOD, ADDRESS, 
and/or LPANUC match subroutines use the PSW • 

When I EAVTRT2 is not the caller, this step is skipped. 

Label 



~ lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part 3 of 8) 
3: 
I 

(II 
\0 
01) 

3: 
< 
~ 
)( 
2> 

en .... .... 

::v 
CD 
n 
o 
< 
.... 
CD ., 
a 
3: 

~ 
t+ 

.... 
-< 
N 
01) 

I ... 
~ 
(II 
Ul 
I 

CI 

.... 
n ..... 
n 
o 
"0 
'< ., ... 
III 
:r 
t+ 

.... 

." 
3: 

n 
o ., 
"0 . 

Input 

seE 

I seEseVA 

Process T? 
.. 

-v 2 Determine if the trap require· 

seVA ments match the system 
conditions by calling 
lEA VTSL 1 and/or 

SeVAPTR IEAVTSL2. 

6 

... To either or both 

... 

.. , 
IEAVTSL1 

SLIP trap 
matching 
routine 
Part 1 

N 

I 

.... 
ill 
"0 

n 
:r 
CD n 
".. ... 
:J 
Ul 

• , 
IEAVTSL2 

SLIP trap 
matching 
routine 
Part 2 

r-
h 
CD 
:I 
VI 
CD 
a.= 
zf 
III VI 
rtrt 
CD., ., ... 
.... n 
IIIrt 
...CD 
VIa. 
13 

III 
'Vrt 
.,CD 
0., -v .... 
CD III ., ... 
... VI 
'<0 
O~ 
~ 

H 
H~ 
~z 
3= 



r-
-< 
N 
00 
I .... 
'" c.o. 
IJ'I 
I 

Q 

.... 
o ..., 
n 
o 
~ , ... 
IQ 
;:r .... 
.... 
tI:f 
3 

n 
o , 
'a . 

3 
CD .... 
;:r 
o 
Q. 

o 
-II 

Q 
'a 
CD 

ill .... ... 
o 
::J 

lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part 4 of 8) 

E II tended Description 

2 Each event qualifier keyword that can be specified on 
the SLIP command has a corresponding ellternal sub

routine (contained in modules IEAVTSL1 and IEAVTSL21 
which determines whether the trap's keyword parameters 
match the current system conditions_ An event qualifier 
keyword is a keyword with parameters describing condi
tions which must match current system conditions before 
action is taken_ All keyword parameters are passed to 
IEAVTSLB as records in the SCVA. (Recall that each trap 
consists of an SCE and SCVA pair.) Beginning with the 'irst 
SVCA record, IEAVTSLB calls the corresponding sub
routine. The subroutine makes the comparison, sets a 
return code in ·register 15 indicating a match or no-match 
condition, and updates the SCVAPTR to point to the next 
record. 

If a match condition is 'ound and keywords rllmoin to be 
checked, IEAVTSLB goes to the next SCVA entry and 
calls its corresponding subroutine. IEAVTSLB repeats this 
process until a no-match condition is found, or all the key
words have been checked and their parameters found to 
match. If all the keyword parameters match, the subroutine 
corresponding to the ACTION keyword (EOL) receives 
control to take the action requested for the trap. Diagram 
IEAVTSL2 - SLIP Trap Matching Routine - Part 2-
ACTION Keyword Processing describes EOL processing_ 

When a subroutine returns a no-match condition, IEAVTSLB 
slops malch chacklng for the current trap, Dnd continues 
proc~ssin!l at step 4_ 

Module 

IEAVTSL1 
IEAVTSL2 

Label Elltandad Description 

This chart shows in which module each match routine is 
located: 

For event 
qualifier Go to 
keyword Module 

ADDRESS IEAVTSLI 
ASID IEAVTSL1 
ASIDSA IEAVTSLl 
COMP IEAVTSL1 
DATA IEAVTSL2 
ERRTYP IEAVTSL1 
J08NAME IEAVTSL1 
JSPGM IEAVTSL1 
LPAMOD IEAVTSl1 
MODE IEAVTSl1 
NUCMOD IEAVTSl1 
PVTMOD IEAVTSL2 
RANGE IEAVTSLI 
REASON IEAVTSl1 

IEAVTSLB only calls a match routine if its corresponding 
keyword is specified on the SLIP trap. 

Module Label 

r-: 
.... ::111 
nfD 
CD"" :lr+ 
en"'J 
CD .... 
a.:l, 
3CD 
~a. 
CD3 
"'JI» 
... r+ 
I» CD 
"''''J en ... 
I~ 

en 
'11 
"'JO 
0-111 
'D 
CDH 
"'JtG 
.... 3 
'< : 
o 
-III ... 
'" 3: 



~ lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part S or 8) 
3: 
I ..,. 

o 
o 

:IU 
CD 
() 

~ 
-t 
CD ., 
iii 

3: 
CO 
iii 
t+ 

r
oo( 
N 
00 
I .... 

..... 
til 
UI 
I 

o 

(") 
a 
~ ., ... 
CO 
:r 
t+ 
.... 
!:If 
3: 
(") 
a ., 
" . .... 
'" 00 ..... 

Input 

SCE 

SCESCVA 

Process 9 
3 Perform the requested action. 

SCVA 
-~ 

.. 
> 4 Perform match limit .. processing. 

SCVAMLNO 

SCVAMLSP 

C5 

Output 

~ .. 
... -,. IEAVTSL2 

SLIP trap 
matching 
routine 
Part 2 

SCE .. 
-y 

SCESCVA f'...a.. SCVA 

SCEFlGCS SCVAMLNO 

SCEMSG 



r
oo( 
N 
00 
I .... 
" till 
\11 
I 

o 

n 
o 
~ , .... 
IQ 
::1' 
ri' 

t-4 
tIf 
3: 

n 
o , 
" . 

3: 
(I) 
ri' 
::1' 
o 
A. 

o 
; 

(:) 

" (I) 

al 
ri' .... 
o 
:::J 

lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part 6 of 8) 

Extended "Description Modulo 

3 If all of the event qualifier keywords match, IEAVTSl2 IEAVTS12 
receives control to take the action requested bV the 

trap's ACTI9N parameters. This processing is described in 
the M.O. diagram lEA VTS12 - SLIP Trap Matching Routine 
Part 2 - ACTtON Processing. 

4 Match limit processing determines whether the number of 
matches for a particular trap equals or exceeds the 

maximum number the trap allows. IEAVTSlB performs 
match limit processing when a match occurs for a trap that 
specifies o~ h~s a default MATCHlIM value. IEAVTSlB: 

• Adds one to the current number of matches for the trap 
!the SCVAMlNO valuel. 

• Determines whether the current number of matches is 
greater than or equal to the match limit hhe SCVAMlSP 
value). 

• If the match limit is reached, disables the trap bv turning 
on the SCEDSABl bit in the SCEFlGCS field, and sets 
the SCEM411 M bit, which causes message I EA4111 to be 
issued. 

Label 



~ lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part 7 of 8) 
3 
I 
~ 
o 
N 

3 
< 
CJ) , 
X 
:> 
CJ) 
r
r-

r
oo( 
N 
00 
I .... 

...... 
(.01 
U'I 
I 

o 

,.. 
n ..., 
o 
o 
~ , 
~. 

ro 
'j' 
ri-

.... 
tI:f 
3 

o 
Q , 
'tI 

.... 
\0 
00 ...... 

Input 

SCE 

I SCEFLGCS I 

SHDR 

SHDRPER "'" SCE 

SCESCVA 

I SCVA 

SCVAPLSP 

SCE 

(4CE 
SHDR 

SHDRFWD 

SHDRPER SCEFLGCS 

(SCE 

SCEFLGCS 

Process 9 
') 
" 

5 Write a DEBUG trace record. 

...... ...... 
IEAVTSLS , r 

Determine 
system mode 

..ttL ..... .... i'" GTF 

Generalized 
traca facili ty 

) 6 Perform percent limit 
processing. 

... 
) 7 If a trap has been disabled. .. perform clean·up. 

.. - _ .. IEAVTSLS 

..... ..,.. 
Schedule a 
dump. 

.... ..... IEAVTSLS ,. rr 
Turn off 
PER 
monitoring. 

Diagram iEAVTSLB - SLIP 
ACTION Processor - Part 2 step 2 

Output 

.... Register 1 Parameter list 

or> 1+ Parameter list rl 

SHDR 

... SCE 
SHDRPER 

SCESCVA 

I SCEFLGCS 
SCVA 

SCEMSG 

') SCVAPLAC 

" 

" > Control register 9 I" 

I I 

I 

r .... 
n 
CD 
:::I 
III 
CD 
a.: 
zilr 
~~ 
CD"'J " .... ...·n 
Alt+ 
... CD 
ilia. 
13 

AI 
'Ut+ 
"'JCD 
O"'J 
-U .... 
CD AI " ... t+1II 
~O 
0 .... .... ... 
...~ 
~3 
3: = 



.... 
n ..... 
n o 
~ , ... 
CO 

~ 
.... 
trI 
3 

n 
o , 
'U . 

3 
~ :r o 
a. 
o .... 
o 
'U 
CD 

at 
" ... 
o 
::::II 

lEA VTSLB - SLIP Action Processor - Part 2 - Trap Checking (Part 8 af 8) 

Extended Description 

5 If the trap specifies the DEBUG option ISCEDEBUG~lI, 
IEAVTSLB bull,ds a parameter lilt for the generalized 

trace facility (GTFI and gives contral ta GTF by issuing 
an aplJrolJriate form of the HOOK macro. GTF writes a 
trace record containing Information relevant to IEAVTSLB'. 
processing for the trap. 

6 Percent limit processing determines whether the per· 
centage 0' time spent processing PER Intarruptlons 

exceeds the limit specified on the trep_ Whltn all 0' the 
following conditions are true. IEAVTSLB performs percent 
limit processing. 

• A PER jnterruption is being processed 

• An IGNORE PER trap match occurred or the enabled 
non·IGNORE PER trap has been examined 

• The trap usar requests percent limit processing Cthe 
SCVAPLSP field in the enabled non·IGNORE trap 
does not equal 991 

• A valid tlme-of-day ITOOI clock value was stored 
and a current TOO clock value cen be obtained 

lEA VTS LB does nqt perform the lim it check unti I approxi· 
mately 33 seconds have elapsed since the first valid PER 
interruption occurred. This eliminates the possibility of a 
false high initial percentage. To determine whether the 
percent limit has been exceeded. IEAVTSLB: 

• Subtracts the value in the WAECK LIN field "he TOO 
dnck va/tie at time 0' entry) from the current time 
to gat the accumulated time for the interruption 

• Adds the above value to the accumulated time spent 
procosslng all previous PER interruptions and storM 
the total In the SCVAPLAC field 0' the enabled 
non·IGNORE PER trap 

• Obtains the "umber of space switch interruptions 
since the-last percent limit calculation (SCVAPLSCI. 
multiplies that by tha time it takes to handla one 
space switch interruption (SHORSSTMI. and adds 
tha product to tha SCVAPLAC. 

• Computes the total time elapsed since the first valid 
PER interruption and stores it in the WAETOTT fiald 

Module Lebel Extended Description 

• Calculates tha percentage of time spent procasslng 
PER and spaca Iwitch Interruptions 

Module 

• Compares the. abova percentaga with tha percent limit 
stored In the SCVAPLSP field of tha enabled non·IGNORE 
PER trap 

If the limit Is exceeded, IEAVTSLB disables the trap by 
turning on the SCEDSABl bit In tha SCEFLGCS field. 
It setl the SCEM411P bit In the non-IGNORE trep to cause 
melsage IEA4111to ba Illuad In IUbsequant procesllng • 
Procelllng continual at step 1. 

7 If a trap has been disabled during match limit or percent 
limit procassing.IEAVTSLB performs cleanup 

processing. If the non·IGNORE PER trap was disabled. 
IEAVTSLB: 

• CaIiIIEAVTSLS to sc:hedule IEAVTGLB to Rin as an 
SRB. IEAVTGLB deactivates PER In the SYltem • 

• If the TROUMP or STOUMP option is coded on the 
trap. calls IEAVTSLS to schedula an SVC dump. 

• Adjusts the relurn code to request that the PSW PER bit 
be turned off In the resume PSW for the Interrupted 
process. 

• Enters zeros In control register 9 of the current proC8SlOr 
to help remove the effects 0' having PER on In tha system. 

If • non-PER trap was disabled and the TRDUMP option I. 

IEAVTSLS· 

eaded on the trap. IEAVTSLB cal.'. IEAVTSLS to schedule a IEAVTSLS 
dump. If an IGNORE typa PER trap Is disabled. lEA VTSLP 
performs no cleanup processing. . 

Label 



3: 
< 
CJ) 

"
X 
l> 

CJ) 
r
r-

;;0 
ID 
n 
o 
< 
-f 
ID , 
3 

3: 
Ie 
3 ,... 

r
-< 
N 
00 
I ..... 

.....a 
(.oj 

U1 
I 

c 

...... 
n ..... 
n 
o 
'C 
'< , .... 
Ie 
;r ,... 
1-1 
b:I 
3: 

n 
o , 
'C 

IEAVTSLC - SLIP/CMSET Intercept Interface Routine (Part 1 of 2) 

Issuer of 
CMSET macro 

P ocess t npu a. r 

SHDR 

CMS1 1 Route control to the appropriate 

r-v' CMR1 CMSET. 

CMR2 • If CMSET set 

• If CMSET RESET with 

SS1P 
CHKAUTH=NO parameter 

• If CMSET RESET with 
CHKAUTH=YES 

ASCB 

Ej ~ 

. ~ 2 If this is a space switch CMSET. 
call IEAVTSSH. 

v 

WSAC 

V register 
" 3 Return to the CMSET issuer. SLIP save 

area 

Output 

WSAC 

IEAVTSLC SLIP 
V 

po 

IEAVTSL8 

IEAVTSL9 

IEAVTSSH .. .. 
~ 

To the caller 

register 
save 
area 

H 
1"11 

~ 
-t en 
r 
o 

en 
r 
H 
'U 
"o 
3: en 
1"11 
-t 
H 
Z 
-I 
1"11 
:lIJ 
o 
1"11 
'U 
-I 

H 
Z 
-I 
1"11 
:lIJ 

: 
o 
1"11 

:lIJ 
o 
c: 
-t 
H 
Z 
1"11 r .... 

n 
(I) 
::::J 
UI 
(I) 
£l.: 

:lIJ 
3:(1) 
DlUI 
rtri
(I)" ., .... 
... ·n 
DI" .... (1) 
UI£l. 

13: 
DI 

'Urt 
.,(1) A., 
'tJ .... 
(l)DI ., .... 
rtUl 
Ie:: o 
0-41 
-41 

H 
HI:I:I 
1:1:13: 
3: : 



r
-< 
N 
00 
I .... ..... 

(.04 
U'I 
I = 

..... 
n 
ow 

(') 
o 
~ , .... 
III 
';j' .... 
1-1 

= 3: 
(') 
o , 
'0 . 

3: 

IEAVTSLC - SLiP/CMSET Intercept Interface Routine (Part 2 of 2) 

Extended Description 

I EAVTSLC intercepts calls to change a unit of work's ad
dressing envi"ronment. IEAVTSLC has separate entry points 
for the mecros it intercepts. 

I EAVTSLC - intercepts CMSET SET macros . 
IEAVTSLB - intercepts CMSET RESET macros when 

the parameter CHKAUTH=NO is coded. 
IEAVTSL9 - intercepts CMSET RESET macros when 

the parameter CHKAUTH=YES is coded. 

During SLIP initialization, the addresses of the CMSET rou
tines were-saved in the SLIP header (SHORI and replaced by 
the corresponding entry point addresses of this module. 
IEAVTSLC and lEAVTSSH assure the integrity of the SLIP 
trap in a cross memory environment no matter where a unit 
of work is operating. 

1 When a caller issues a CMSET SET, CMSET RESET with 
CHKAUTH=YES, or CMSET RESET with 

CHKAUTH=NO macro, IEAVTSLC passes control to the 
appropriate macro. (Recall that the entry points in system 
routines for ,these macros were saved in the SLIP header 
when SLIP was initialized.! The CMSET SET and CMSET 
RESET mecros adjust the addressing environment so that 
the caller can issue a PC or PT instruction. After the macro 
is executed, control returns to I EAVTSLC. 

2 If the' current PASIO is different from the PASI 0 prior 
to the CMSET and if the space switch flag (ASCBSSSPI 

Module 

in either the current or former ASCB is set. I EAVTSLC calls I EAVTSSH 
IEAVTSSH to perform a space switch. 

Label 

IEAVTSLC 
IEAVTSLB 
IEAVTSL9 

~ 3 IEAVTSLC returns control to the issuer of CMSET. 
';j' 
o 
Q. 

o 
"h 

o 
'0 
D 

D1 .... .... 
o 
:J 

::a 
-t 
3: 
I 
~ 

= U'I 

a 
-fa 
tot 
till 
:z 



:IG 
~ 
n 
o 
< 
-t 
~ ., 
a 
:3 
IQ a 
t+ 

n 
o 

" '< ., ... 
IQ 
J 
t+ 

.... 
tJj 

:3 

n 
o ., 
" . 

lEA VTSLE - SLIP Action Processor - Part 3 (Part 1 of 2) 

Input 

SHDR 

From 
IEAVTSLB 

I SHORFLG2 I ------~----------r_./ 
Work area extension 

I WAERTNCO I-----r-------r--./ 

1 Process anv message requests. 

2 Delete the recovery routine 
and set a return code. 

To the caller of IEAVTSLP 
(lEAVTRTS.IEAVTRT2. 
IEAVTRTM. or IEAVTPERI 

Output 

PSA 

PSACSTK RT1TLPN 

RT1TLPID 

Register 15 

I 



~ 

-< 
N 
00 
I .... ..... 

"" \It 
I 

o 

..... 
n 
~ 

o 
o 
~ ., 
.,o. 
ra =r .... 
toot 
tlIf 
3 

o 
o ., 
" . 
.... 
\G 
00 ..... 

3 
CD .... 
=r 
o 
a. 
o 
oft 

o 
" CD 

Dl 
t+ 
.,o. 
o 
:::I 

;:IQ .... 
3 
I 

.c
o ..... 

lEA VTSLE - SLIP Action Processor - Part 3 (Part 2 of 2) 

Extended Description 

lEA VTS LE initiates message processing requested t)y 
IEAVTSLP when a trap has been automatically disabled. 
IEAVTSLE also removes the recovery environment 
established by IEAVTSLP and returns to the caller of 
IEAVTSLP. 

1 If the SHDRPSTM bit in the SHDRFLG2 field 
equals one, lEA VTSLP processing has requested 

that a messageba issued. IEAVTSLE schedules 
IEECB915 to run,as an SRB in the master address 
space. IEECB916 posts the SLIP command processor 
communication (outine IIEECB9061. which performs 
the processing necessary to issue messages requested by 
IEAVTSLP. 

2 I EAVTSLE' deletes the recovery routine established 
by IEAVTSLP. If a PER interruption is being pro

cessed, I EAVTSLE copies the WAERTNCD field into 
register 15. Possible return codes and their meanings are: 

Return code 

o 
4 

8 

12 

Meaning 

Return to the interrupted program. 
Force recovery for the interrupted 
process. 
Turn off the PER bit in the resume PSW 
and return to the interrupted program. 
Turn off the PER bit in the resume PSW 
and force recovery for the interrupted 
process. 

Module 

IEAVTSLE 

Label 

AGAIN10 

SLlPRT 
a 
-h 
H 
till 
3 



3: 
<: 
en 

" ~ 
en 
r
r-

~ 
CD 
n 
o 
< 
-t 
CD ., 
:I 

3: 
10 
:I 
t+ 

r-
-< 
N 
00 
I .... ..... 

CI'I 
UI 
I 

0 

"" n 
'-II 

n 
0 

~ ., .... 
111. 
':r 
t+ 

.... 
l:1li 
3: 

n 
0 ., 
'U . 
.... 
\Q 
00 ..... 

lEA VTSLP - SLIP Action Processor - Part 1 (Part 1 of 6) 

CVT 

from IEAVTATS. 
IEAVTAT2. IEAVTATM. or 
IEAVTPEA 

SLPLENV 1 Establish an appropriate 
error recovery 
environment. 

• If processing a non.pEA 

trap, ........ StepS 
CVTATMS SHDAfWD 

SHDAFWD2 
SCE 

SCESCVA 

ASCB Control rtlyi'ttlr 1 

ASCBASID I I 
ASCBSTDA 

ASCBPEA 

LCCA 
Instruction 

LCCAPPSW VI J 
LCCAPERA 

CVT SHDA 

CVTATMSYI SltDHPEA 

2 Dlltermine if a PEA interruption 
can be processed. 

• If not, Allturn to 
IEAVTPEA 

FAA 

PSACSTK 
ATlTLPN 

AT1TLPID 



r
oo( 
N 
()I) 

I .... ..... 
"" \n 
I 

Q 

..... 
n .... 
(") 
o 
~ , .... 
IQ 
::::r 
rio 

I-t 

'" 3: 
(") 
o , 
'0 

3: 
~ 
rio 
::::r 
o 
Do 

o 
-t. 

o 
'0 
~ 

i! 
rio .... 
o 
~ 

lEA VTSLP - SLIP Action Processor - Part 1 (Part 2 of 6) 

Extended Description Module 

When Ihe SLIP facility is aclive. IEAVTSLP racaives conlrol 
from eithar a recovery terminalioo managemenl routine 
(lEI\ Vl RTM. IEAVTRT2. or IEAVTRT51 "5 p"rl of ilS 
normal errOr processing or from the program check 
FUll/SLIP interface routine (IEI\VTPrRl after a PER 
inlrlluplion occurs. IEAVTSLP flelermines whethl!r there 
is a SLIP Irap wilh ra'll/iremenls Ihal m"lch Ihe l:urrf!Ot 
SYSIt'1ll cnnfliliolls. 

There am two types of SLIP traps. PEB and non PER : 
• PER traps allow the programmer to fleline the PEn 

evant that is to trigger trap processing. Only one non· 
IGNORE PEA trap (any PEA trap that does not specify 
the parameter ACTION=IGNOREI can he em.llied at a 
time 

• Non·PEA traps allow the programmer to deslgo error 
. roco!!nltinn traps for errors that are handlefilly recovary 

lermination management (ATMI. 
Each trap is represented by a pair of control hlocks. the 
SL IP coolrol elemant (SeEI and Ihe SLIP coolrol elament 
variable ama (SCVAI. The SCEs are ch"Ioed together. with 
the newest trap being adlled at the end of the chain. The 
SHDRFWO field points to the oldest PER trap element. 
The SHDRFW02 field points to the oldest non-PEA 
trap element. 
When searching for II match, IEAVTSLP begins with the 
nl!wl!st trarl /last on the chainl. If the caller is IEAVTRTS, IEAVTSLP 
IEAVl RT2. or'IEAVTRTM, it checks only non·PER traps 
until a match is found or all the treps have been checked. 
When the caller is IEAVTPER, IEAVTSLP checks only 
PEA traps. and stops whon a match is found or the enabled 
non·IC1NORE PER trap has been checkefl. When II match 
Is fOllnd. IEAVTSLP parlarms the SLIP action specified 
by Ihe Iral)'s ACTION keyword paramet!!r. 
At varlo~s points in its processing. IEI\VTSLP must identify 
Ihe caller. "unable 10 do so. it Issues an ABEND with a 
system completion code of X'CSC'. 

1 IEAVTSLP refers to the SLPLENV lield to idl!ntify the 
caller. then establishes error recovery to suit thot 

environment. 

For IEAVTRTS: IEAVTSLP enters e logicel phase number 
in the RT1TLPN field to allow FRR recovery and sets the 
logical phase recovery routine 10 to the RTS FRA 
(RT1TLPI0=1), It substitutes the FAR stack chosen by 
RTM for the current stack (PSACSTK=SLPLATSFI and 
adds an FAR. Processing continues at step 5. 

IEAVTSLP 

lobol Extended Description 

For IEAVTAT2: IEAVTSlP obtains the local lock to allow 
setting an FRR and adds an FRR to the stack. It sets a 
section flag and changes an error recovery flag to allow 
section recovery. Part of the code to set up the error recovery 
environment is located in IEAVTRT2. (See the ATM2 
diagrams for diagrams and extended descriptions of 
IEAVTAT2.1 

For IEAVTRTM: IEAVTSLP determines if there is enough 
room in the FAA stack for the maximum number of FARs 
that might be needed for recovery in this environment. If 
not enough space exists, IEAVTSLP returns to IEAVTRTM. 
Otherwise, it adds an FAR to the current stack. Processing 
continues at the next step. 

For IEAVTPER: IEAVTSLP adds an FRR to the current 
(PCFLlH) stack. 

2 If one of the follOwing is true, a PER interruption 
cannot be processed: 

a. OAT is off Ithe OAT bit in the old PSW is off). 
b. The PER interruption is redundant (one that will 

be reported again). 
c. No enabled non·IGNORE PER trap exists 

(SHORPER=O). 

If condition a or b exists, I EAVTSLP returns to IEAVTPER 
with a return code of zero. When condition c is true, 
IEAVTSLP returns to IEAVTPEA with a return code of 
eight. In either case, the FRR is deleted before returning. 
If none of the conditions are true, normal processing con· 
tinues at the next step. 

Module label 

IEAVTSLP 

ERROR2 

ERROA3 

o 
of! 



~ lEA VTSLP - SLIP Action Processor - Part 1 (Part 3 of 6) 
3: 
I 
~ .... 
o 

3: 
< en 
"
X :.:-
en 
r
r-

::0 
CD 
n 
o 
< 
-t 
CD , 
a 
3: 
f,Q 
a 
t+ 

r
-< 
N 
Of 
I .... ..... 
"" 1.11 
I 

o 

n 
o 

~ , ... 
f,Q 
;:r 
t+ 

.... 
tI:f 
3: 

n 
o , 
1:1 

Input 

CVT 

CVTRTMS -
I\SHDR 

SHDRSTDP 

SHDRSTFP 

SHDRSTSB 

SHDRMLC 

SDHRMLT 

LCCA 

LCCAPERC 

LCCAPERA 

Process ? 
')3 If the fast path parameter 

ACTION=STRACE is requested 
on the SLIP command, trace 
the PER interruption. 

4 Determine if further processing 
of this PER interruption is 
necessary. .. Return to 
• If not, IEAVTPER 

Output 

') System trace table 

" 

TYPE=SPER entry 

r... 
n 
m 
::lI 
UI 
CD 
a.: 

::a 
3CD 
1IIU1 
t+t+ m., ., ... 
... n 
1IIt+ 
... CD 
Ula. 
13 

III 
'Ut+ 
.,CD 
0., 
'U .... 
mill ., ... 
t+UI 
'<0 
O-lt 
-It 

H 
... tu 
l1li3 
3 : 



.... 
-c 
N 
00 
I .... .... 

"" U'I 
I 

Q 

..... 
n .... 
(") 
o 
~ ., ... 
!Q 
J 
t+ 

.... 
tIIf 
3: 

n 
o ., 
" 
.... 
\Q 
00 .... 

3: 
CD 
t+ 
J o 
D-

O 
~ 

Q 

" CD 

GJ 
t+ ... 
o 
::::J 

;:IU 
-t 
3: 
I 
~ .... .... 

lEA VTSLP - SLIP Action Processor - Part 1 (Part 4 of 6) 

Extended Description Module 

3 If the fast path parameter ACTIONcSTRACE is reo 
requested (the SHDRSTFP bit is onl and if the SLIP 

event that requested the fast path ACTIONcSTRACE is 
still enabled (the SHDRSTDP bit is offl,l EAVTSLP issues 
the PTRACE macro to trace the PER interruption. The . 
MATCH LI M keyword processing provides no filters. Every 
PER interrupt results in a match condition. IEAVTSLP 
increments the match counter (SHDRMLCI via a compare 
and swap instruction . 

ACTIONcSTRACE processing generates an SPER entry in 
the system trace table. The SPER entry contains the current 
program interrupt trace data, the PER code, the interrupt 
address from the PSA, and the SLIP·PER trap·ID. 

If the match counter equals the match limit (SHDRM L Tl, 
I EAVTSLP disables the fast path ACTION=STRACE func· 
tion by satting the SHDRSTDP bit on, using a compare and 
swap instruction . 

Label 

FASTRACE 

STRACE 

Extended Description Module 

4 Processing of the PER interruption continues if one of 
the followi ng shuati ons occurs: 

• Fast STRACE has not been requested <the SH DRSTFP 
bit is off!. This PER Interruption will go through SLIP's 
complete filter and limit processing . 

• The PER interruption was traced but it caused a match 
limit condition to occur (SHDRMLC reached 
SHDRM L TI. The PER interruption is passed to 
lEA VTS LB for cleanup processi ng that will deactivate 
PER Interruptions within the system. 

IEAVTSLP deletes the FRRand returns to IEAVTPER with 
a retum code of zero if one of the following occurred: 

• Fast STRACE had been requested but is now disabled 
!the SHDRSTDP bit is onl. 

• The PER Interruption was traced and it did not cause a 
match limit condition . 

• The PER interruption was not recognizable. 

Label 

o ... 
H 
tIaI 
3: 



~ 
3: 
I 

'" .... 
N 

3: 
< en 
" ~ 
en 
r
r-

;10 
CD 
() 
o 
< 
-t 
CD ., 
::I 

3: 
Ul 
:I 
t+ 

r
oo( 
N 

. 00 
I .... ..... 

(II 
IJI 
I 

o 

..... 
() ..... 
n 
o 
~ ., ... 
Ul 
~ 
t+ 
1-1 

= 3 

n o ., 
'0 . 

lEA VTSLP - SLIP Action Processor-Part 1 (part 5 of 6) 

Input Process 

_ .. , _______ "_"'t..:) 5 Serialize the SLIP control 
CVl SHDA - ,---- v 

element (SCE) chain. I CVTRTMS 1/ SHDRCfR 

~_______ StfDAFWD 

.l SCE SUDRFLGS 

SCECTR SUDRrER 

SCEFWD ~ ( 

t=::=:::=::jl "\~SCE~ 
SCECTR 

( 
SCEFWD 

SCE 

SCEC1R 

SCEFWD 

Work area ex lellsion I WAECLK'N I .. 6 If processing the first valid 
PER interruption since enabling 
the non-IGNORE PER trap. 
save the time of day at entry. 

Output 

... SHDR SCE 
v 1/ 

SHDRCTR II' SCECTR 
~-------¥ ~------~ 

SHDRFWD ~ SCEFWD 

L..----..-I --------.. S.-tDRPER 

S~E 

5(;t:(;rH j 

t--SC-E-FW-D--I~ 
SCE 

SCECTR 

C SCEFWD 

SCE 

SCECTR 

SCEFWD 

.... SHDR 
=r=====T:::;y~==:::::tV 

SCE 

SHDRPER SCESCVA 

(SCVA 
SCVAPLST 

---=- To ~ fEAVTSLB 



r
-< 
N 
CIt 
I ... ..... 
~ 
\II 
I 

a 

n 
o 
~ , .... 
IQ 
';1' 
t+ 
.... 
till 
3: 

n 
o , 
'U . 

3: 
111 
t+ 
';1' 
o 
a.. 
o .... 
o 
'U 
111 

~ 
t+ .... 
o 
~ 

IEAVTSLP - SLIP Action Processor-Part 1 (Part 6 of 6) 

~lCtended Description Module 

6 I EAVTSLP serializes the SCE chain to preVent the 
SLIP commilnd processor flEECB905} Irom deleting 

a trap while this module is elCilmining it. To do so in most 
cases, IEAVTSLP adds one to the SeE use count in the 
SHOR control block ilnd one to the use counts in all but 
the last SCE on the chain. The one e1tception to this is 
when a PER interruption is being processed and Ihere are 
no enahled traps that specify the IGNORE parameter and 
have the same PER event type as the enabled non·IGNORE 
PER trap (the SHORPERI bit in the SHORF LGS lield 
equals 01. In this case, IEAVTSLP serializes onlv the SCEs 
up 10 the enabled non·IGNORE PER trap Ipointed 10 by 
the SHORPER fieldl. 

6 If this is not the first valid PER interruption since 
enabling the non·IGNORE PER trap, IEAVTSLP skips 

this step. A valid PER interruption is one for which none 
of the conditions in step 2 are true. IEAVTSLP enters the 
time-of.day clock value from the WAECLKIN field in the 
SCVAPLST field of the enabled non·IGNORE PER trap for 
subsequent use in percent limit processing. 

Label 

SCEINCR 

AGAIN4 
a 
~ 

= 3: 



3: 
< 
(I) 
..... 
~ 
(I) 
r
r-

;10 
CD 
n 
o 
< 
-t 
III , 
:J 

3: 
(Q 
:J ,... 

r
-< 
N 
00 
I .... .... 
~ 
\II 
I 

CI 

..... 
n 
'W 

n 
o 
~ , 
",. 
(Q 
J ,... 
.... 
till 
3: 

n 
o , 
'a 

.... 
\0 
00 .... 

IEAVTSLR SLIP Processor Recovery Routine - (Pa t 1 0(6) r 

From IEAVTRTS 

Input -..j~oces. 
ReqlSler 1 ) 1 Determine whether the FRR 

SDWA 
.. pSfameter lI.t I. complete. 

I SDWAPARM I 
/' .. 

2 Determine If the error I. ) 

fRR parameter list expected. 

AUDITWRD 

FRRISTK 

" ) 3 Clesn up Ihe resources. 

rSA 

PSARSVT 

PSACSTK 

, 

~ 
Output 1; 

I 

tn 
r-

SDWA 
lot 
"II 

~ SOWARTYA ; ") 

n 
SDWAPARO III 

tn 
(I) 

~ 
~ :III 
') SDWA I 

~ SDWAPARM i) FRR perameter ~ list 

AUDITWRD I III 
SDWAPARO ~ -. 
SDWAMDDN ~ 
SOWACSCT 

C 
-f 

SDWAREXN 
CVT ~ I CVTRSTWD I 
Floetlnll point 
regluer 0 

PSA I I 
PSARSVT 

PSACSTK 



r
-< 
N 
00 
I .... ..... 

c... 
\1'1 
I 

Q 

n 
o 

~ ., ... 
ta 
:r ,... 
.... 
till 
3: 

n 
o ., 
'U 

.... 
\Q 
00 ..... 

3: 
ID ,... 
:r 
o 
Do 

o 
-f\ 

o 
'U 
CD 

iiJ ,... ... 
o 
:::J 

IEAVTSLR - SLIP Processor Recovery Routine (Part 2 of 6) 

Extended DellC:ription 

This module provitfes rflcovery fOl thl! SLIP modules 
IIEAVTSU'.IEAVISLB. IEAVTSLE. IEAVTSLI. 
IEAVTSL2. and IEAVTSLS) ,10,1 ~he arlrhp.5s convert 
rout in!! II EAVT ADnl. II a rel:overahle ",ror occurs. 
it IlIlernl)!$ a retry al an "ppropriatl! poi .. 1 in SLIP 
prol:t!ssing Ill' IEAVTADIl. II an unrecoverable error 
OCCIIIS. IEAVTSLA rcqucsts percolation. Inp"IIo 
IE AVTSl.n is Ihe address of the FAA pammeler list 
containin,,'oolprinls lin AUDITWnD) SCI during 
sur processing. 

1 IFAVTSLA rleterminl!s whelher Ihe error occurred 
IlIllore IEAVTSLP finished enlering the hilsic recovery 

inlormalion in Ihe FnA Ilaram'eler liSl II 50 hhe ABPLIST 
bit in AUDllWAD equals zerol. the error is unrecoverable 
and IEAVTSLA returns to IEAVTATS to percolate. if the 
information has been saved IABPLIST=I). IEAVTSLR can· 
tinues processing. 

2 Cerlain errors that occur while IEAVTSLP.IEAVTSL2 
or IEAVTADn is processing arll anticipated; these 

include: 

• A page fault that occurs while IEAVTSLP is examining 
or retrieving the instruction that caused a PER interrup· 
tion. 

• A page fault that occurs while IEAVTSL2 is retrieving 
user·defined data. 

• A page fault that occurs while I EAVTADR is process· 
ing. 

• A page fault that occurs while IEAVTSL1 is examining 
the instruction that caused a PEA interrupt in the 
ASI DSA subroutine. 

• A CMSET SSARTO macro fails in the DATA subroutine 
of 'EAVTSL2. 

• A CMSET SSAATO macro fails in the ADACMSET sub
routine of IEAVTSLS. 

Module label Extended Description Module 

Each of thase errors has a footprint bit in the AUDITWAD 
field of the FRR parameter list. If any bit is one and are· 
try is possible hhe SDWACLUP and SDWAAPIV bits in the 
SDWAERAD field aqual zero), IEAVTSLA retries at an 
appropriate point in IEAVTSLP, IEAVTSL1, IEAVTSL2, 
IEAVTSLS. or IEAVTADA. These errors are not recorded 
on the SYS1.LOGAEC data set. IEAVTSLA requests a re
try and returns to IEAVTATS. 

3 For errors that are nol anticipated, IEAVTSlR: 

• Enters the module, CSECT. and FAA names in the 
SDWA for subsetluent recording . 

• Aeleases the restart lock word lif heidI. and restores 
flOaling poinl register zero (if it was in use when Ihe 
error occurred'! 

• If SLIP oblalned Ihe local lock, Ihl. module 
updales Ihe SDWA 10 cause RTM to free Ihe lock If 
percolalion occurs, bul nOl if a relry is allempted. 

• If IEAVTRTS called IEAVTSLP, this module adjusts 
the FAA stacks as required. 

lsbol 

r- = 
.... ;0 
nCD 
CD 1/1 
::lit 
1/1., 
CD .... 
a.~ 
3: CD 
~a. 
CD3 .,1» 
.,.It 
I» CD ... ., 
1/1 .... 

I» 
It! 

"a 
.,0 
O~ 
'U 
CDH 
.,~ 

It 3: 
'< = 



:IQ 

g 
o 
< 
.... 
CD 

EJ 
3: 
IQ 
51 
r+ 

,... 
-< 
N 
01 
I .... 

..... 
CJOI 

'" I 
o 

..... 
n ..... 
n 
o 
~ ., ... 
IQ 
;r 
r+ 
.... 
tIS 
3: 

n 
o ., 
" . .... 
\0 
01 ..... 

lEA VTSLR - SLIP Processor Recovery Routine 

Input 

SHOR SCE J SCECT" I 
seE 

SHORFWO 

SHoneTR 

SDWA FAR parameler list 

FRRWA$AV 

FRRSCEPT 

FRRSAPT 

Reginer 1 

Regisler 9 

SOUMP 
SHOR parameler IISI 

~ 
~~ seVA 

·lSCESCV.~ .... I __ ..... 

(Part 30(6) 

Process 

4 Indicate that the SeEs 
are no longer in use. 

5 Dump Ihe diagnostic 
Information. 

SOUMP 

Schedule 
anSOUMP. 

Output 

SCE 

SHOReTR 

FRR 



,.., 
n ..... 
o 
o 
'a 
'< , .... 
IQ 
J 
t+ 

.... 
~ 
3 

o 
o , 
'a 

lEA VTSLR - SLIP Processor Recovery Routine (Part 4 of 6) 

Extended Description Module 

4 To indicate the SCE chain is no longer serialized. 
IEAVTSLR subtracts one from the use counts in the 

SCE pointed to bV the FRRSCEPT field. and in each of 
the preceding SCEs on the chain . 

5 If a lower level recovery routine has not alreadv taken 
a dumpISDWAEAS=OI. IEAVTSLR builds an 

SDUMP parameter list and requests a full dump of the 
diagnostic information concerning this error. It also 
requests a summary dump containing information relevant 
to an error in SLIP, normally includiny: 

• The FRR parameter list lor IEAVTSLR. 

• The SCE and SCVA being processed at the time of the 
error. 

• The SLIP parameter list and associated work areas . .... 
~ • If a PER interruption was being processed at the time of 
.... the error, the SCE and SCVA representing the enabled 

non·IGNORE PER trap. 

3 
111 
t+ 
J 
o 
a. 
o .... 
CI 
'a 
111 

OJ 
t+ .... 
o 
~ 

Additional system information is also available in the 
summary and full dumps. 

Label 

r-= .... '" nCD 
CD VI 
:lrt 
VI., 
CD .... 
a.~ 
3CD 
=-a. 
CD 3: 
.,GI 
.... rt 
GlCD ...., 
en .... 
I~ 

en 
"0 
.,0 
0 .... 
'CI 
CDH 
.,tr:I 
rt3: 
'< :I 

o 
~ 

H 
tr:I 
3: 



~ lEA VTSLR - SUP Processor Recovery Routine (part 5 of 6) 
3: 
I 
~ ... 
00 

r-
oo( 
N 
00 
I ... 
~ 
LoI 
U'I 
I 

a 

..... 
n 
"-i 

(") 
0 

~ .., .... 
III 
J" 
rl-

H 
t:If 
3: 
(") 
0 .., 
" . ... 
..a 
00 .... 

Input 

FRRBASE 

FRRSAPTR 

SDWAPARM 

Process 

6 Determine whether to 
retry or percolate. 

Output 

IEAVTRTS 

SDW:o.SRtO 

SDI'NA,Sft t 

SDWASR12 

SDWASR13 

r-... 
n 
CD 
:::s 
II» 
CD 
a.: 
31 
mil 
r+r+ 
CD"J ., ... 
.... n 
mr+ 
... CD 
1Ia. 
13 

m 
"Gr+ 
"JCD 
0., 
11..-
CDm ., ... 
r+1I 
'< 

0 
0 .... .... ... .... 
.3 
3: 



/ 

r-
oo( 
N 
00 
I .... .... 

CIt 
UI 
I 

0 

'" (') .... 
(") 
0 
'0 
'< , .... 
to :s-
rio 

I-t 

= :3 
(") 
0 , 
'U 

.... 
'" 00 .... 

:3 
CD 
rio :s
O 
G-

O 
-fI 

Q 
'U 
III 

DI 
rio .... 
o 
~ 

lEA VTSLR - SLIP Processor Recovery Routine (Part 6 of 6) 

Extended Description 

6 .. a retry is possible hhe SDWAClUP bit in the 
S()WAERRD field equals 0). IEAVTSlR refreshes 

the registers used in the IEAVTSLE exit code and requests 
a retry at a point near the end of normal SLIP processing. 
If a retry is not possible (SDWACLUP~11. IEAVTSLR re
quests percolation • 

Module Label 



;;tI 
-I 
3: 
I 

J:\ 
N 
CI 

3: 
< en 
"
X 
> 
en 
r
r-

;;tI 
11) 
n 
o 
< 
-I 
11) , 
:I 

3: 
IQ 
:I .... 

r
-< 
N 
00 
I .... 

"-..I 
tJ'I 
U'I 
I 

CI 

,.. 
n 

n 
o 

" '< , 
~. 

IQ 
;r' .... 
1-1 
1:1:1 
3: 

n 
o , 
" 

IEAVTSLS - SLIP Processor Service Routine (Part 1 of 4) 

npu t 

Register 1 

I 

SDWA 

I I 
RTM2WA 

I I 
RB 

I I 
RTM1W 

I 

PSA 

I 
LCCA 

I 
ASCB 

I 

I 

I 

From IEAVTSLB, 
IEAVTSL1, or IEAVTSL2 .. 

I 

I 
I 

p rocess 

--" 
) 1 Determine the requested 

service to perform. 
To: 

• Determine system mode, 
go to step 2. 

• Schedule an SVCDUMP, 
go to step 3. 

• Schedule I EAVTG LB to 
turn off PER monitoring, 
go to step 4. 

~ ~ 2 Determine the system mode. 

6 

o t u pU t 

) 

.. 
Return to 
the caller 

SLPL 

~ 
r.... 
n 
CD 
:::J 
III 
CD 
a.: 

:0 
::rCD 
III In 
rtt+ 
CD ":I 
":I .... 
.... 0 
1IIt+ 
.... 11) 
1110. 

13: 
III 

'Ut+ 
":111) 
0":1 
'0 .... 
CD III ., .... 
rtlll 
'<0 
0-\ .... 

H 
HtG 
tG3: 
::r : 



::-

r-
-< 
N 
00 
I .... 
~ 
~ 
\II 
I 

Q 

.... 
n 
'oJ 

n 
0 

"CI 
'< ., .... 
~ 
J ,.. 
t-4 
till 
3 

n 
0 ., 
"CI . 
.... 
\0 
00 
~ 

3 
III ,.. 
J 
o 
D. 

o 
-fl 

o 
"CI 
CD 

Dl ,... .... 
o 
:::J 

;II 
-t 
3 
I 

.e
N .... 

lEA VTSLS - SLIP Processor Service Routine (Part 2 of 4) 

Extended Description Module 

1 I EAVTSLS uses the contents of register 1 to determine I EAVTSLS 
the requested service and branches to the appropriate 

routine. 

Register 1 

2 
3 

Service 

Determine system mode 
Schedule an SVCDUMP 
Schedule IEAVTGLB to turn off PER 
monitoring 

2 The DETRMODE subroutine refers to the various system 
control blocks shown in the input to determine the 

current mode of the system. (Which control blocks are 
examined depends on SLlP's called 

Label 

DETRMODE 



~ IEAVTSLS - SLIP Processor Service Routine (Part 3 of 4) 
3: 
I .... 

N 
N 

3: 

~ 
" X 
> 
CJ) 
r
r-

;;0 
III 
o 
o 
< 
~ 
III , 
3 

3: 
10 
3 
ri-

r
-< 
N 
00 
I .... 

-...j 

1.1< 
VI 
I 

c 

,.... 
o ...... 
n 
o 
'0 
'< , 
..... 
10 
:s
ri-

1-1 
t:I' 
3: 

n 
o , 
'0 

Input Process 

SCE SCVA 

/ 
SCESCVA 

,/ SCVALIST 3 

SCEFLGCS SCVAAS 

SCVASDAT 

SDWA RMT2WA 

SOWAMFID I RTM2FMID I 
rSA ASCB 

~ ASCBASID I 
SHDR 

SHDRSRB " 4 

SRB 

~ 

9 
Schedule an 
SDUMP 

.... 
~ 

.. 

... 

Schedule IEAVTGLB to 
turn PER monitoring ofL 

Schedule 

Return 10 

the calle 

-"" IEAVTADR 
~ 

Convert 
indirect 
address (es) 

.. 
" 

SDUMP 

Schedule an 
SDUMP 

Return to .. 
the callar 

IEAVTGLB 

... Turn off PER .. monitoring 

Output 

SCE 

> ~ 
SCVA 

I SCVALSD I 

SHDR 

.) SHDRSRB 

,SDUMP parameter 
list in work area 

SDUFLGl 

SDUSDATA 

SDUSTORA 

SDUASIDP 

SDUSUMLP 

SDUTUSID 

SRB 

~ 

r .... 
n 
10 
:J 
UI 
CO 
a. : 

::tI 
3:10 
IllUl 
rtrt 
CO.., .., .... 
... ·0 
Illrt 
.... 10 
Ula. 

13: 
II) 

"tIrt 
..,10 
0.., 
'1J .... 
mill .., .... 
rtUl 
'< o 
O-h 
-h 

I-f 
I-f~ 
~3: 
3:: 



r
oo( 

Sl 
I .... ..... 

CIt 
\II 
I 

Q 

.... 
n ..... 
n 
o 
~ ., .... 
IQ 

~ 
.... 
tI:I 
3: 

n 
o ., 
"0 . 

3: 
ID 
rio 
:T o 
a. 
o .... 
o 
"0 
ID 

iii 
rio .... 
o 
:::I 

lEA VTSLS - SLIP PJ:ocessor Service Routine (Part 4 of 4) 

Extended Description Module label 

3 To schedule an SOUMP, IEAVTSLS: IEAVTSLS OUMPIT 

• Builds an SOUMP parameter list in the work area pointed 
to by the SLPLLSTW rield, using the default SOUMP 
parameters . 

• Calls the Internallubroutlne CHNGOUMP. which modifies CHNGOUMP 
the SOUMP perameter list to correspond with the type 
of dump requested by the SLIP user In the SOATA, 
ASIOLST, LIST andlor SUMlIST keyword parameters • 

The LIST and SUM LIST keywords can specify address 
space qualifiers with the addresses supplied. CHNGOUMP 
calls the internal subroutine AORCMSET to convert any 
symbolic ASIOs (CU=current. P=primarv. S=secondarv. 
H=home) into explicit ASIOs for the SOUMP parameter 
list and to issue the CMSET SSARTO macro to these 
address spaces • 

The LIST and SUM LIST keywords require that Indirect 
addressles) be converted to direct addressles). CIINGOUMP 
calls IEAVTAOR to do this conversion. If a dump is In IEAVTAOR 
progress (RTCTSOPLl'O) or the Internal SLIP resource(s) 
are notevallnble (SCVALSIB"OI, an SOUMP cannot he 
scheduled. Insteed. CHNGDUMP returns to OUMPIT with IEAVTSLS OUMPIT 
an indicator that no dump CBn be taken. OUMPIT adds 
onl! to the IEA4121 message counter (SCEM412). The 
SLIP command processor communication routine 
(lEECB90S) is postl!d later In IEAVTSLE to Initiate 
ml!ssap processing. IEECB905 issues message IEA4121. 
informing the SLIP uSl!r that no dump WBS schedulad. 
(See the diagram and extended description of IEECB905 
in the section, "Commend ProcessIng.") 

If the ASIOLST keyword is specified, the ASIOLIST sub
routine processes the ASIOLST records by building a pa
rameter list of ASI05 for SOUMP. It is necessary for 
IEAVTSLS to identify SLIP's caller IIEAVTATM. 
IEAVTATS, IEAVTAT2. or IEAVTPEA) so that IEAVTSLS 
and SOUMP will use the proper cross memory environment 
!the PSW S-bit. PASIO. and SASIO). Using an input list of 
ASICs. some of which might be symbolic, IEAVTSLS builds 
the SOUMP parameter list. In the input list. each ASIO is 
identified by a code number (current=O. PASIO=1. 

ASIOLIST 

Extended Description 

SASIO=2, home=3. explicit ASIO"'4, and LLOC=51. If the 
input ASIO is a symbolic ASID. IEAVTSLS translates it 

. into an explicit ASIO before copying it into the SOUMP 
parameter list. 

After CHNGDUMP successfully completes, OUMPIT refers 
to the SDUMP parameter list (SDUASIOP) to determine If the 

. ASIDLST keyword was used to specify a lilt 0' ASIDs. ff 10. 

SDUMP Is requesied to dump the corresponding address 
space(s). ff the ASIDLST keyword was not specified. the 
address space to be dumped depends on the caller: 

Celler 

IEAVTPER 
IEAVTATS 

IEAVTRT2 

IEAVTATM 

Address lIJIICe to be dumped 

ASCBASID, the current addre •• space 
SOWAFMIO, the failing addresslpace. or 
ASCBASIO 
RTM2FMID, the failing address space. or 
ASCBASID 
The malter address space (ASIO"1 t 

DUMPIT Issues the epproprl.,te 'orm of the executable 
SOUMP mecro. The SOUMP return code ,. examined to 
determine the results of the dump request. 

If ., dump was not scheduled, the actIon taken depends on 
the typa of dump requested. If a dump of a failing .,ddress 
space was requested. OUMPIT attempts to Ic""'ule ., dump 
In the home address space Instead. If the failing dump 
request (either the first or second) was for the current eddress 
space or for a dump of the address lpace(s) specifIed on the 
trap, DUMPIT adds one to the SCEM412 message countar so 
the SLIP command processor communication routIne 
(lEECB90&) wllll.lue message IEE4121. 

4 To schedule I EAVTGLB to turn PEA monitoring off, 
IEAVTSLS: 

• Sets the IEAVTSLP function request bit lin SABPAAM) 
to one In the SLIP SAB. 

Module 

• ScheduleslEAVTGLB as a globel SAB If tha SAB Is available 
hhat Is. IEAVTGLB Is not already scheduled). 

• Sets the return code In the SLIP workarea to 8, which causes 
the Interrupted process to be resumed wIth PEA Interruptions 
disabled. . 

Label 

OUMPIT 

SCHEDGLB 

AGAIN19 



3: 
< en , 
~ 
en 
r
r-

;0 
CD 
n 
o 
< 
-f 
CD ., 
a 
3: 
10 
iii 
Ii-

r
oo( 
N 
00 
I .... .... 

(.01 

U1 
I 

I:) 

n 
o 
~ ., ... 
10 
':r 
Ii-

1-1 
t'J' 
3: 

n 
o ., 
'tI . 
.... 
\0 
00 .... 

lEA VTSLl - SLIP Trap Matching Routine Part 1 (Part 1 of 10) 

Input 

SCVA 

I SVCACOID I 

lCCA SDWA 

I LeCAPER. I I SOWANX" I 
SLPL SCE 

SLPLLSTW SCESCVA 

SLPLMADR ( SCVA 

Work area 
SCVAADDI 

SCVAADD2 
RBPTRSAV 

~ Request block 

RBPSWNXT-

From 
IEAVTSLB 

--p rocess 

... 
1 ) 

) 
y 2 

o utput 

-

Determine the event qualifier 
keyword and branch to the 
corresponding match routine. 
For: .. 
eADDRESS step 2' 

~ 
eASID step 3 .. 
eASIDSA step 4 

:. 
eCOMP step 5 

..:. 
eERRTYP stepS 

~ 
eJOBNAME step 7 

I ... 
eJSPGM step 8 

J .. 
elPAEP, LPAMOD. NUCEP step 9 

or NUCMOD ~ -;. 
eMODE I 

step 10 

.RANGE r 
step 11 

• REASON " step 12 

Determine whether the > Register 15 
ADDRESS keyword 

y I I parameters match. ... 
Return to 

r IEAVTSLB 

6 



r-
oo( 
N 
00 
I ... ..... 

c..a 
U'I 
I 

o 

..... 
n 
'-J 

n 
o 
~ , ... 
U2 
':r 

"' 1-1 
til 
3: 

n 
o , 
'a . ... 
~ 
00 ..... 

3: 
CD 

"' ':r o 
a. 
o .... 
o 
'a 
CD 

iiJ 
"' ... 
o 
~ 

lEA VTSLl - SLIP Trap Matching Routine Part 1 (Part 2 of 10) 

Extended Description Module Label 

IEAVTSL1 receives control from IEAVTSLB to determine 
whether the trap conditions specified on the SLIP command 
match the current system conditions. Each SLIP event 
qualifier keyword has a corresponding subroutine in 
I EAVTSL 1 or IEAVTl>L2, which determines whether the 
event qualifier keywords.l IEAVTSL1 processes the 
ADDRESS, ASID. ASIDSA, COMPo ERRTYP, JOBNAME. 
JSPGM, LPAEP, LPAMOD, MODE, NUCEP, NUCMOD, 
RANGE, and REASON event qualifier keywords. 
IEAVTSL1 passes keyword parameters in the SCVA . 
IEAVTSL1 compares the event specified in the keyword 
with the current system condition, and sets a return code 
in register 15 to Indicate a match (0) or no-match (4) 
condition. 

1 IEAVTSL1 determines which SLIP event qualifier 
keyword was specified and branches to the correspond· 

ing match routine . 

2 ADDRESS locates the address to be compared and 
determines if it falls within the address range specified 

on the trap (SCVAADD1 and SCVAADD21. The address 
used in the comparison depends on the caller. 

Caller 

IEAVTRTS 

IEAVTRT2 

IEAVTRTM 

IEAVTPER 

Address field to be compered 

SDWANXT1, the address taken from the 
PSW at the time of the error 
RB.PSWNXT in the request block selected 
by the RBLEVEL processing. (See step 1 
of the IEAVTSLB - SLIP Action 
Processor - Part 2 diagram.) 
SLPLMADR, the address of the CALLRTM 
BALR instruction that requested abnormal 
eddress space termination 
LCCAPERA, the address of the instruction 
causing the PER interruption 

IEAVTSL1 ADDRESS 

o 
~ 

H 
." 
3: 



3: 
< en , 
~ 
en 
r
r-

;IIa 
CD 
n 
o 
< 
.... 
CD , 
a 
3: 
!Q .. ,... 

r
oo( 
N 
00 
I .... ..... 

CIt 
\II 
I 

o 

o 
o 
~ , 
~. 

IQ 
J ,... 
.... 
till 
3: 

o 
o , 
" . .... 
\0 
00 ..... 

lEA VTSLl - SLIP Trap Matching Routine Part 1 

Input 

SDWA RB 

I SDWAPRIM I RBXSB 

SlWA XSB 

I SlWAPASD I XSBPASID 

SLFP SLPL 

D I SLPLPASD 

SLWA SCVA 

SLWAPASD I SCVASSA 

SLWASASD 

PSA I ./"""I ASCB I PSAAOlD ~I~=A=SC=B=A=S=ID====I 

SOWA RTM2WA 

I SDWACMPC I I RTM2CC 

SLPL I SLPLASCB 

SCE 

I SCESCVA 

ASCB n ASCBMCC 

SCVA .., 
SCVACCB 

SCVACCM 

SCVACCD 

(Part 3 of 10) 

Process 

3 Determine whether the 
ASIO keyword parameters 
match. 

Return to 
IEAVTSLB 

Output 

Register 15 

4 Determine whether the -.--------r--vt-----...J 
ASI DSA keyword parameters 
match. 

5 Detelmine iI the COMP 
keywold parameters 
match 

Return to 
IEATSlB 

Return to 
IEAVTSLB 



r- lEA VTSLl - SLIP Trap Matching Routine Part 1 (Part 4 of 10) r= 
-< .... '" 
N nCD 
00 CD II) 

I Extended Description Module Lebel :::J1t .... 11)" 

.... CD..-
til 3 The ASIO subroutine locates the ASIO to be IEAVTSL1 ASIO a.n 
1.11 

.... 
I compared. then determines if it matches any 3CD 

C) specified on the trap (SCVAASO). The ASIO used 
ilia. 
It 

in the comparison depends on the caller: 
CD3 ,.... .,1It 

n ........ 
.., Caller ASID to be compared III CD ... ., 
0 IEAVTRTS SDWAPRIM Ithe PASIO of the failing 11)" 

0 address space) If. 
" '< JEAVTRT2 XSBPASIO (the PASIO in the XSB of 

CII , 'V .... ihe RB located from the RBLEVEL .,0 
\Q O-h 
';3' keyword) 1J 
rto IEAVTRTM SLPLPASO Ithe PASIO of the address 

CD lot 
.,~ 

.... space being terminated} 1+3 
ail '< = 
3 IEAVTPER SLWAPASD Ithe PASIO of the address 0 
0 space at a time of the PER interruption) -fa 
0 lot , 
" If the ASI Os match. lEA VTSL 1 returns a match condition ~ 

3: 
(return code=O) • .... 

\0 4 The ASIOSA subroutine determines in what address IEAVTSL1 ASIOSA 00 .... space the storage alteration (SA) occurred. then 
determines whether this address space matches any of the 
address spaces specified with the ASIDSA keyword. 
If a match is found. lEA VTSL 1 returns a match condition 
to the caller (IEAVTSLB). 

If a page fault occurs while the ASIDSA subroutine is 
checking the instruction that caused the PER interrupt. 
SLIP's FRR (lEAvtSLR) receives control. JEAVTSLR 

3 has RTM reenter the ASIOSA subroutine at SL1SFAI L 
ID to return a no match condition to the caller . .... 
';3' 
0 5 The COMP subroutine determines which completion IEAVTSL1 COMP 
Q, 

code to compare, then checks whether it matches 
0 the trap's description of allowable completion code(s) -II 

0 
!the SCVACOMP field). The completion code compared 

" depends on the caller: 
ID , 

Caller Completion code field III .... 
IEAVTRTS SOWACMPC .... 

0 IEAVTRT2 RTM2CC :I 
IEAVTRTM ASCBMCC in the ASCB pointed to by the 

'" SLPLASCB field Ithe ASCB being terminated) 
-4 IEAVTPER Not applicable 3 
I 

'" N .... 



3: 
< en 

'" ~ 
en 
r
r-

;0 
CD 
(') 
o 
< 
-f 
CD ., 
9 

3: ro a ,... 

r
oo( 
N 
co 
I .... .... 

VI 
IJ'I 
I 

CI 

,.., 
(') 
...... 
n 
o 
'0 
'< ., .... 
ro 
;r ,... 
.... 
t:I:I 
3: 

n 
o ., 
'0 . 

lEA VTSLl - SLIP Trap Matching Routine Part 1 

Influt 

RTlTRACK RTM2WA 

I ATITEN.' I I A1M'EAAA I 
SCE SCVA 

I SCESCVA n SCVAERFL I 
PSA ASCB 

PSAAOlD V ASCBJBNI 
-

ASCBJBNS 

SOWA ASCB 

I I SDWAFMID ASCBJBNI 

ASCBJBNS 

Work are3 Asce 

I I RTM2FMID ASCBJBNI 

ASCBJBNS 

SlPL ASCB 

I } SLPlASCB ASCBJBNI 

ASCBJBNS 

SCE SCVA 

I ~I SCVAJND I SCESCVA 

(Part S of 10) 

Process 9 Output 

') 6 Determine" the ERRTYP --" Register 15 
v keyword parameters "'I I match. 

.. Return to .. IEAVTSLB 

" 1 Detarmlne " the 
" Register 15 > 

J JOBNAME keyword "'I 
parameters match. 

.. 
Return to 

-,. IEAVTSLB 

6 



r
-< 
N 
00 
I ... .... 

C/o! 
U'I 
I 

Q 

..... 
n ..... 
(") 
o 
~ ., 
",. 

10 :r 
Ii-

.... 
l:1li 
3: 

(") 
o ., 
'U 

... 
'" 00 .... 

:3 
ID 
Ii:r 
o 
Do 

o .... 
o 
'U 
ID 
Ql 
Ii
",. 

o 
:::J 

lEA VTSLI - SLIP Trap Matching Routine Part 1 (Part 6 of 10) 

Extended Description Module 

6 The field that the ERRTYP subroutine compares with IEAVTSL1 
the error typels) specified in the trap (SCVAERFL 

fieldl depends on the caller. When entry is from IEAVTRTS, 
the ERRTYP subroutine useS the error that caused entry 
to RTM (RT1TENPTI. For a match condition to exist: 

• The RT1TENPT field must match one of the error 
conditions specified in the trap, or 

• RT1TENPT must indicate an SVC error occurred, an 
SVC 13 (ABEND) must have been issued, and the trap 
must specify ABEND as an error type. 

If SLIP's caller Is IEAVTRT2, the ERRTYP sub· 
routine compares the error that caused entry to RTM 
(RTM2ERRA). A match results if RTM2ERRA matches 
any error type indicated in the SCVAERFL field, except 
abnormal address space termination. However, if the 
RTM2ERRA field indicates an abnormal address space 
termination error, and the trap specified ABEND as an 
error type, the result is also a match. 

If the caller is IEAVTRTM, the ERRTYP subroutine 
indicates a match only if the trap specified abnormal 
address space termination as the error type. 

Since a PER interruption is not an error condition, the 
ERRTYP subroutine is never called when processing 
a PER interruption. 

Label 

ERRTYP 

Extended Description Module Label 

7 The JOBNAME subroutine checks for a match IEAVTSL 1 JOBNAME 
between the jobname pointed to by the ASCBJBN I 

or ASCBJBNS fields in various ASCBs and the jobname 
specified on the SLIP trap hhe SCVAJND field). The 
environment determines which address spacels) is 
examined for a jobname match: 

Caller 

IEAVTRTS 

IEAVTRT2 

IEAVTRTM 

·IEAVTPER 

ASCBs used in the comparison 

If a falling address space has been identified 
and is not current ISDWAFMID#O and 
SDWAFMID=i' ASCBASID), its jobnamels) 
and the jobnamesls) from the current address 
space. Otherwise,IEAVTSL1 uses only the job· 
namels) from the current address SDace. 

If a failing address space has been identified 
and is not current (RTM2FMIDt\O and 
RTM2FMIDI'ASCBASID), its jobnamels) 
and the jobname(s) from the current address 
space. Otherwise, lEA VTSL 1 uses only the job· 
nameCs) from the current address space. 
The jobname(s) from the address space 
pointed to by the SLPLASCP field hhe 
address space being terminated). 

The jobnamels) from the current address 
space. 

D ... 
H 
W 
Z 



~ 
en 

" )( 
J:oo 

en .... .... 

.... 
-< 
N 
eo 
I .... ..., 

(II 
UI 
I 

CI 

..... 
n ..... 
n 
o 
~ ., .... 
10 
J 
t+ 

1-4 
tII:II 
3: 

n 
o ., 
" . 

lEA VTSLl - SLIP Trap Matching Routine Part 1 

Input 

PSA SDWA 

I I , PSATOLD SDWAERRA 

TCB SCVA 

1 ·1 
TCBJSCBB SCVAJND 

JSCB 

~ JSCBACT 

JSCB 
I ~ 

I JSCBPGMN 1 

SCE SCVA 
~,. 

SCESCVA SCVAMDA1 

SCVAMDA2 

SDWA SLPL 

I I SDWANXTt SLPLLSTW 

( SLPLMADR 

LCCA Work area 

LCCAPERC t, R"PTASAV 

LCCAPERA 
Request block 

RBPSWNXT 

(Part 7 of 10) 

Process 9 Output 

.... 
8 > Determine if the JSPGM _" Register 15 

" keyword paramaten "I I match • 

.. 
Return to .. IEAVTSLB 

" } 9 Determine if the LPAEP, " Register 15 
y 

LPAMOD, NUCEP,or "1 I NUCMOD keyword 
parameters match. 

Control register 9 

I I 
.. 

Return to .. IEAVTSLB 

6 



r
oo( 
N 
Of 
I .... 
'" ~ 1.11 
I 

C 

n 
o 
~ , .... 
IQ 
~ ,.. 
1-1 

'" 3: 

n o , 
" 

3: 
CD ,.. 
~ 
o 
Go 

o 
-fI 

o 

" ID 

aJ ,.. .,.. 
o 
::J 

lEA VTSLl - SLIP Trap Matching Routine Part 1 (Part 8 of 10) 

Extended Description Module 

8 II SLIP was called by IEAVTATS. IEAVTAT2. IEAVTSL1 
or IEAVTPEA, the JSPGM subroutine determines if the 

jobstep program name (JSCBPGMN) matches the name 
specified in the trap (SCVAJNOI. A no-match condition 
results when: 

• JSCBPGMN*SCVAJNO. 

• IEAVTATM called SLIP. IEAVTSL1 cannot obtain 
a jobstep program name from the terminating address 
space. 

• IEAVTATS called SLIP while processing a OAT, error 
(SDWATEXC=l). lEA VTSLl cannot obtain a jobstep 
name when thi!! type of error occurs. 

• IEAVTSL1 cannot test a jobstep name because either 
the PSA TO LO or the TCBJSCB B field equals 7ero. 

Label 

JSPGM 

Extended Description 

9 The main function ot the LPANUC subroutine Is to 
determine whether a given address !the load module 

address, the entry point address, or en alternate entry point 
address, i.e. elias) tails within the address range specified 
in the SLIP trap (SCVAMDA 1 and SCVAMOA21. The ad
dress used in comparison depends on the celler: 

Caller 

IEAVTATS 

IEAVTRT2 

IEAVTATM 

IEAVTPEA 

Addres. 

SDWANXT1, the address from the PSW 
at the time of the error 

ABPSWNXT field in the request block 
selected by the ABLEVEL processing 
done in step 1 

SLPLMAOA, the address of the CALLATM 
BALR instruction 

LCCAPEAA, the address of the instruction 
causing the PER interruption 

When processing a non-PEA trap, a PER trap for storage 
alteration (SA) or instruction fetch (IF) events. or a PER 
trep with the IGNOAE action specified, the LPANUC 
subroutine returns after determining if a match condition 
exists. 

If an enabled non-IGNORE PER trap for a successful 
branch (SBI event is being examined, the LPANUC sub
routine does further checking to determine if additional 
processing is necessery to limit SB monitoring to the 
range specified_ To do this, the LPANUC subroutine 
manipulates the type of PER monitoring performed when: 

• A match condition was found, the trap is for SB 
events. and an I F Interruption occurred. This 
situation indicates that the specified range has 
been entered. The LPANUC subroutine turns 
off I F PER monitoring and turns on SB PER 
monitoring by manipulating the SB and IF bits in 
control register 9. 

• A no-match condition was found and an SB 
interruption occurred. Because the instruction 
was executed outside the specified range, the 
LPANUC subroutine switches PER monitoring 
back to IF mode. 

Module Label 

IEAVTSLl LPANUC 



3: 
< en 

" x 
:J> 

en 
r
r-

;,u 
CD 
n 
o 
< 
-I 
CD ., 
a 
3: 
10 a ,... 

r
oo( 
N 
00 
I .... ..... 

"" UI 
I 

o 

..... 
n ..... 
n 
o 
lJ 
I( ., .... 
10 
;r ,... 
.... 
til 
3: 

n 
o ., 
lJ . 
.... 
\0 
00 ..... 

lEA VTSLI - SLIP Trap Matching Routine Part 1 

Input 

LCCA 

LCCAPERC 

LCCAPERA 

SCE SCVA 

SCESCVA SCVAMDAl 

SCVAMDA2 

SDWACRC I 
RTM2WA SCE 

I RTM2CRC I SCESCVA 

J~CVA SLPL 

SLPLASCS SCVARCM 

ASCS 
SCVACSP 

ASCSARC 

(Part 9 of 10) 

10 Determine if the MODE 
keyword parameters 
match. 

11 Determine if the RANGE 
keyword parameters 
matc~. 

12 Determine jf the REASON 
keyword parameters match. 

Return to 
IEAVTSLB 

IEAVTSLS SLPL 

Determine the I CONDWORD 
system mode 

Return to 
IEAVTSLB 

Register 15 

Control register 9 



... 
< 
N 
00 
I 

"'" ..... 
c.o. 
U'I 
I 

a 

..... 
n ..... 
(") 
o 
~ ., .... 
r.a :r .... 
.... 
till 
3: 
(") 
o ., 
" . 
"'" .a 
00 ..... 

3: 
CD .... 
:r 
o 
a. 
o 
-fa 

o 

" CD ., 
II .... .... 
o 
:::I 

lEA VTSLl - SLIP Trap Matching Routine Part 1 (Part 10 of 10) 

Extended Description Module 

10 The MODE subroutine calls IEAVTSLS to determine IEAVTSL1 
the current mode of the svstem. IWhlch control blocks 

are examined depends on IEAVTSLP's caller.1 MODE 
then compares the current mode with the mode specified 
in the trap ISCVAMOFLI • 

11 The RANGE subroutine is called onlv when pro-
cessing a PER interruption. RANGE determines if 

the address of the instruction that caused the PER interrup
tion ILCCAPERAI falls within the address range specified 
on the SLIP trap ISCVAMDA1 and SCVAMDA21. If so, 
the kevword matches. When processing a non-PER trap. a 
PER trap for storage alteration ISAI or instruction fetch 
(lFI t.vents. or a PER trap with the IGNORE action 
specified. 'the RANGE subroutine returns aher determin
ing if a match condition exists. 

If an enabled non·IGNORE PER trap for a successful 
branch ISBI event is being examined, the RANGE sub
routine does further checking to determine if additional 
processing is necessary to limit SB monitoring to the 
range specified bV the RANGE subroutine parameters. 
To do this. the RANGE SUbroutine manipulates the 
tvpe of PER monitoring performed when: 

• A 'match coridition was found. the trap is for SB events, 
and an IF interruption occurred. This situation indicates 

that the specified range has been entered. The RANGE 
subroutine' turns off IF PER monitoring and turns on 
SB PER monitoring bV manipulating the SB and IF 
bits in control register 9. 

• A no-match condition was found and an SB interruption 
occurred. Because the instruction was executed outside 
the specified range, this subroutine switches PER 
monitoring back to I F mode. 

Labal 

MODE 

RANGE 

Extended Description 

12 The REASON keyword allows a reason code to be 
specified on non·PER traps. The REASON subroutine 

determines whether there is a reason code and, if so, checks 
whether it matches the trap's description of allowable reason 
codelsl by examining the SCVAREAS field. The reason 
code compared depends on the caller: 

Caller Reason code field 

IEAVTRTS 
IEAVTRT2 
IEAVTRTM 

SDWACRC 
RTM2CRC 
ASCBARC 

Note: The REASON keyword cannot be spacifled without 
the COMP keyword. If it is or if the REASON keyword is 
specified on a PER trap or if the REASON keyword syntax 
is invalid, I EECB909 issues a message . 

Module Label 

REASON 

o ... 
tot 
till 
3: 



3: 
<: 
CJ) .... 
x 
> 
CJ) 
r
r-

;:a 
CD 
n 
o 
< 
.... 
CD ., 
iii 

3: 
!Q a ,... 

r-
oo( 
N 
00 
I .... .... 
"" '" I 
Q 

..... 
n 
-.; 

0 
0 

~ ., .... 
!Q 
J ,... 
1-1 

= 3: 

0 
0 ., 
" . 
.... 
'" 00 .... 

lEA VTSL2 - SLIP Trap Matching Routine Part 2 (Part 1 of 6) 

Input 

SCVA I SCVACOID I 

From 
IEAVTSLB 

1 Determine the event qualifier 
keyword and branch to the 
corresponding match routine 
or perform ACTION processing. 
For: 

• DATA, go to step 2 
• PVTEP or PVTMOO, go to step 3 
• ACTION processing, go to step 4 

r-... 
n 
CD 
::lI 
UJ 
CD 
G.: 

:l1li 
3:'CD 

~~ 
(II" ., .... 
.... n 
1I)t+ 
..,(11 
UJG. 

13 
II) 

"Gt+ 
.,CD 
a"'J 
'U .... 
(1111) .,.., 
t+UJ 
'< a 
a ... ... 

H 
Htu 
0:13 
3: 



,... 
-< 
N 
C» 
I .... .... 

c.... 
VI 
I 

c:::t 

(") 
o 
~ ., .... 
III 
~ 
t+ 

1-4 

'" 3: 
(") 
o ., 
'U . 
.... 
\0 
00 .... 

3: 
CD 
t+ 
~ o a. 
o 
; 

Q 
'U 
CD 

Dl 
t+ .... 
o 
:J 

lEA VTSt2 - SLIP Trap Matching Routine Part 2 (Part 2 of 6) 

Elltended Description Module Libel 

IEAYTSL2 receives control from IEAVTSLB to determine 
whether the trap conditions specified on the SLIP command 
match the current system conditions. Each SLIP event 
qualifier keyword (see System Commands for a description 
of event qualifier keywords) has a corresponding subroutine 
in I EAVTSL 1 or I EAVTSL2, which determines whether 
the event described by the keyword matches the current 
system condition .. 1 EAVTSL2 processes the OAT A, PVTEP, 
and PVTMOO event qualifier keywords. Keyword param
eters are ~ssed in the SCV A. I EAVTSL2 compares the event 
specified in the keyword with the current system condition, 
sets a return code in register 15 to indicate a match (0) or 
no-metch (4) condition, and updates the SCVAPTR to point 
to the next record. IEAVTSL2 also processes the action re
quested by the ~rap's ACTION parameters. This processing 
is described in diagram IEAVTSL2 - SLIP Trap Matching 
Routine - Part 2 - ACTION Keyword Processing . 

1 IEAVTSL2 determines which SLIP event qualifier key
word was specified and branches to the corresponding 

match routine. 



~ lEA VTSL2 - SLIP Trap Matching Routine Part 2 (Part 3 of 6) 
3 
I 
~ 
tJ'I 
0.. 

3 
< 
(I) 

" x » 
(I) 
r
r-

:;ID 
CD 
() 
o 
< 
-f 
CD ., 
a 
:a: 
III 
9 
t+ 

r
oo( 
N 
00 
I .... ..... 

tJ'I 
UI 
I 

Q 

n 
o 
"0 
'< ., 
"", 
tQ 
J 
t+ 

.... 
tJI 
:a: 
n 
Q ., 
"0 

.... 
\C 
00 ..... 

Input Process 7 
SCVA LCCA ... 

I LCCAPGA2 I 
) 2 Determine if the DATA ... keyword parameters 

SCVAINID match. 

SCVADAOP 

SCVADAVL SDWA 

SCVADAVM I S'WAGASV I SCVADAV 

Work area 

I AEGSVAT21 

6 

Output 

Register 15 

I I 
SCE SCVA 

... ...... ~ SCESCVA I SCVADACS 

..... .., IEAVTADR 

Convert SCEM413 
an address 

Register 6 
r(ata ... Return to It To data I IEAVTSLB 

SLPL Work area 

I SLPLLSTW n COMPDATA I 



~ 

-< 
N 
00 
I .... .... 

(.01 

I.n 
I = 

n 
o 
~ , .... 
IQ 
;r 
t+ 

.... 
til 
3: 

n 
o , 
'U 

.... 

..0 
00 .... 

3: 
CD 
tfo 
;r 
0 
Q. 

0 
-h 

0 
'U 
CD , 
III 
t+ .... 
0 
:J 

;0 
-I 
3: 
I 
~ 
(.01 .... 

lEA VTSL2 - SLIP Trap Matching Routine Part 2 

Extended Description 

2 The DATA subroutine determines whether the value in 
a given data area or register compares successfully with 

the data on the SLIP trap. The process is described in five 
steps, a • e. 
a. The DATA subroutine refers to the SCVAINIO field to 

determine the location of the data to be compared with 
the trap data. Possibilities are a storage location referred 
to by either a direct virtual address, an indirect address, 
or a register. For a storage comparlslon, IEAVTSL2 is
sues a CMSET SSARTO macro to the address space as
sociated with the ASIO qualifier of the DATA keyword. 
If IEAVTSL2 is already running in this address space, it 
does not issue the CMSET SSARTO macro. If the com· 
parison Involves a storage location referenced by a direct 
address, the DATA subroutine loads the address into 
register 6. If an indirect address is used, DATA calls 
IEAVTADR to convert it to a direct address. If unsuces
sful, IEAVTADR sets a nonzero return code. DATA 
considers this a no-match condition and continues pro
cessing at step d. If the indirect address is successfully 
converted, DATA places the converted address in register 
6. Ifreglster contents are to be compared, DATA locates 
the requested register in the appropriate register save 
area: 

b. 

IEAVTSLP 
caller Register save area used 
IEAVTPER LCCAPGR2 field 
IEAVTRTM A register save area pointed to by the 

previous IEAVTRTM FRR parameter list 
IEAVTRTS SDWAGRSV field 
IEAVTRT2 A register save area pointed to by the 

REGSVRT2 field in the request block 
determined by RBLEVEL processing 
(See step 1 of the IEAVTSLB - SLIP 
Action Processor - Part 2 diagram.) 

If the registers are unavailable (a possibility only when 
IEAVTRTS or IEAVTRT2 is SLIP's callerl, the DATA 
subroutine treats this as a no-match condition and con
tinues processing at step d. Otherwise, it loads the 
pointer to the saved register into register 6. At this point, 
register 6 contains the address of the data to be compared. 
I f the data to be compared is a storage location and SLIP's 
caller is IEAVTRTS, IEAVTRTM, or IEAVTPER the 
DATA subroutine uses an LRA (load real addressf in
struction to determine if the requested storage location 
is available. This is done to avoid page fault processing 
if the data is paged out. If the LRA instruction indicates 
the data Is not available, the DATA subroutine indicates 
a no·match condition and continues processing at step d. 
Otherwise, lEA VTSL2 considers the data available and 
match processing continUed. 
When IEAVTRT2 is SLIP's caller,IEAVTSL2: 
• Establishes the address space associated with the ASID 

qualifier of the DATA keyword as the primary and 
secondary address space by issuing a CMSET SET 
macro. 

• Enables the PSW for I/O and external interrupts so 
that page faults can be tolerated. 

• Copies the requested data into a page·fixed SLIP work 
area. 

(Part 4 of 6) 

Module 

IEAVTSL2 

IEAVTADR 

Label 

DATA 

Extended Description 

• Issues a CMSET SET Macro to the home address space, 
followed by a CMSET SSARTO macro to establish the 
address space associated with the AS 10 qualifier of the 
DATA keyword as the secondary address space. 

c. The DATA subroutine copies the requested data into a 
page·fixed SLI P workarea. If the data is unavailable even 
though the LRA instruction test was successful (step b), 
processing continues at step d. If a data-to-data compar
ison is requested, steps a·c are repeated to fetch the 
second comparand. If a data-to·value comparison is re
quested, the DATA subroutine uses the value specified in 
the trap (the SCVADAV field) as the other comparand. 
The comparison is done using the comparison operator re
quested In the trap (the SVCADAOP fieldl. If a match 
is found~ the DATA subroutine continue~rocessing at 
step e. IT the data does not match, the DATA subroutine 
indicates a nomatch condition and continues processing 
at step e. 

d. If the data is unavailable (it is paged out, the registers are 
not available, or IEAVTADR was unable to convert the 
indirect addressl, the DATA subroutine: 
• Adds one to the data unavailable counter 

(SCV ADACS), indicating the data for comparison 
could not be retrieved. 

• Sets a message indicator bit (SCEM413) and the 
SHDRPSTM bit to 1, causing the IEA4131 message 
to be sent to the SLIP user. If the trap is a PER type, 
DATA sets these bits the first time it finds data un· 
available. 

• I ndicates a no-match condition. 
e. If no other DATA parameters have been specified, 

IEAVTSL2 performs the following: 
• Issues a CMSET SET macro to restore the cross memo 

ory environment to home. 
• Indicates either a match or no match condition in the 

return code. 
• Returns to the caller. 
If other DATA parametars have been specified, the pro
cessing flow depends on the next logical operator and the 
present comparison conditon. 
Logical Operator Condition Processing Flow 
AND Match Returns to step a 
AND No Match Skips all subsequent 

DATA parameters within 
the current parentheses 
level and then returns to 
step e. 

OR Match Skips all subsequent 
DATA parameters within 
the current parentheses 
level and then returns to 
step e 

OR No Match Returns to step a 

Module Label 

r= .... ;:l1li 
nCD 
CD til 
::Irt 
til., CD ,.. 
a.~ 
ZCD 
~a. 
CD 3: 
.,1» 
.... rt 
DlCD .... ., 
til .... 

I:!. 
til 

"D 
.,0 
O-ft 
'tJ 
CUM 
.,~ 

rt3: 
'< = 
o 
-to 

M 
~ 
3: 



:z 
< en 

" X 
:J> 

en 
r
r-

;lU 
CD 
n 
o 
< 
-t 
CD ., 
31 

:z 
10 
51 
.+ 

r
oo( 
N 
C» 
I ... .... 

(,01 

\II 
I 

Q 

n 
o 

" '< ., .... 
10 
:r 
.+ 
1-4 
tI:I 
:z 
n 
o ., 
" . 

lEA VTSL2 - SLIP Trap Matching Routine Part 2 

Input 

SDWA AseB 

SOWAERRA I ASCBASIO 

SDWAFMID LCCA PSA 

SDWANxn I LCCAPERA PSAOLD 

SLPL Work area 

SLPLLSTW RBPTRSAV ASCBASXB 

SCVA Request block 

SCVAMDAl RBPSWNXl ASXBLTCB 

SCVAMDA2 

SCVAMDNM 

COE 

CDCHAIN 

CDNAME 

CDXLMJP 

CDATTR2 

XTLNRFAC 

XTLMSBLN 

XTLMSBAD 

(Pact 5 of 6) 

Process 

3 Determine if the 
PVTEP or the 
PVTMOD keyword 
parameters match. 

• .. ~~ Return to 
IEAVTSLB 

4 Perform ACTION processing. 

Output 

Register 15 

SLPL 

I ERRADDR I 
..... ~ Diagram IEAVTSL2 - SLIP Trap Matching 

Routine - Part 2 - ACTION Keyword Processi ng 

Return to 
IEAVTSLB 

r-
11 
CD ::s 
til 
CD a.: 

::u 
:ZCD 
~l!I. 
11)'" .., .... ..,·n m,. 
... CD 
til a. 
13 
m 

'U ... 
"'11) 
0.., 
'0 .... 
CDm 
..,~ "tII ~O 
O-h 
-h 

H 
H~ 
~3 :z: 



r
-< 
N 
00 
I .... .... 

till 
UI 
I 

Q 

n 
o 
~ ., .... 
IQ 
;r 
t+ 
.... 
D:I 
:3: 

n 
o ., 
"0 

:3: 
CD 
t+ 
;r 
o 
a. 
o 
-h 

o 
"0 
CD 

Dl 
t+ .... 
o 
::J 

lEA VTSL2 - SLIP Trap Matching Routine Part 2 

Extended Description 

3 The PVTMOO subroutine cannot perform match pro· 
cessing when: 

o IEAVTRTM called SLIP. In this case, the failing oddress 
spoce's control blocks are not available for searching. 

• IEAVTRTS called SLIP and the failing address space is 
not current (SOWAFMIO #:ASCBASIO) ora OAT error 
is being processed. In either of these situations, the pri
vate area control blocks are not available for searching. 

If SLlP's cailer is IE.AVTRTS or IEAVTPER and a CML 
lock is not held, PVTMOO attempts to obtain the LOCAL 
lock. IIf SLIP's caller is IEAVTRT2, IEAVTSLP obtained 
the LOCAL·lock when establishing the recovery environment 
in diagram I EAVTSLP - SLIP Action Processor - Part 1.1 
If unsuccessful, PVTMOO indicates a no·match condition 
and returns. 

PVTMOO determines which address to use in the comparsion 
and places it in the ERRAOOR field. The address used de
pends on the caller: 

Caller 

IEAVTRTS 

IEAVTRT2 

IEAVTPER 

Address 

SOWANXT1, the address from the PSW at 
the time of the error 
RBPSWNXT field of the request block 
selilcted by the RB LEVEL processing. (See 
step 1 of the SLIP Action Processor - Part 2 
(fEAVTSLB) diagram.l 
LCCAPERA, the address of the instruction 
that caused the PER interruption 

The PVTMOO subroutine performs the following processing: 

o For a storage alteration event or when called by 
IEAVTRT~ orIEAVTRT2-

Starting with the last TCB on the TCB chain, the 
PVTMOD subroutine searches the corresponding job step 
CDE chain for a module whose name matches the name 
specified in the trap, and whose beginning and ending 
addresses (as modified by any offsets specified in the trapl 

(Part 6 of6) 

Module Label 

IEAVTSL2 PVTMOD 

Extended Description 

span the address in the ERRADDR field. The search 
continues through the CDEand TCB chains until a match 
is found or the relevant chains have all been searched. 
IEAVTSL2 indicates the results of the search in register 
15. If PVTMOD obtained the local lock, PVTMOD 
releases it. 

• For instruction fetch or successful branch monitoring -

The PVTMOD subroutine determines whether the ad· 
dress in the LCCAPERA falls within the address range 
specified in the SLIP trap (SCVAMOA 1 and 
SCVAMDA21. 

• For an enabled non-IGNRORE PER trap that has had a 
successful branch (SBI event _. 

The PVTMOD subroutine determines if additional pro· 
cessing is necessary to limit SB monitoring to the range 
specified. To do this, the PVTMOD SUbroutine manip·· 
ulates the type of PER monitoring performed when: 

• A match condition was found, the trap is for SB 
evants, and an I F interruption occurred. This situ· 
ation indicates that the specified range has been 
entered. The PVTMOD subroutine turns off I F PER 
monitoring by manipulating the SB and I F bits in 
control register 9. 

o A no·match condition was found and an SB inter· 
ruption occurred. Because the instruction was 
executed outside the specified range, the PVTMOD 
subroutine switches PER monitoring back to I F mode. 

4 When keyword match processing is completed, 
IEAVTSL2 branches to the EOL subroutine to per· 

form the action requested by the trap's ACTION parameters. 
This processing is described in I EAVTSL2 - SLIP Trap 
Matching Routine Part 2. 

Module Label 

EOL 

r-: ... ~ nm men 
:Jr+ 
en"J m ... 
a.::I, 
ZCD 
~a. 
CDZ 
"Jm 
... rimm 
I-'"J en ... m 
II-' en 

'a 
"JO 
o-ta 

" CDM 
"Jar.li 
r+:z 
'< = 
a 
-h 

M 
tIIJ 
Z 



3: 
<: 
en , 
X 
> 
en 
r
r-

;;0 
~ 
o 
a 
< 
-I 
ID ., 
a 
3: 
to a 
ri-

r
oo( 
N 
C)) 

I .... 
..... 
'" \II 
I 

c 

n a 
~ ., ... 
to 
J 
ri-

M 
till 
3: 

n 
a ., 
'tJ 

.... 

..0 
00 ..... 

lEA VTSL2 - SLIP Trap Matching Routine - Action Keyword Processing (Part 1 of 6) 

Input 

seE 

I SCEFLGeS I 
SeE I ,SCEAFLG I 

SCE 

SCESeVA SCVA 

SCEFLes SCVADAUN 

seVATRD 

From diagram IEAVTSL2 - SLIP Trap 
Matching Routine - Part 2 step 4 

~process 

.. 
) 1 Process the massage indicating 

that a match has been found. 

.. 
2 Perform the requested action ) 

v (one of the steps 2a • gl. 

a Perform the IGNORE 
acti.on. 

.. 
) 

v b Perform the TRACE or 
TRDUMP action. 

3 

Output 

.... seE .. 

~ .. 
GTF Register 1 .. 

I Generalized 
trace 
facility 

SHOR 

lI' 
SHDRFlCS 

Parameter list 

Y"I I 
r .... 
n 
CD 
:J en 
CD a.: 

::a ::a o :a:CD n Alu) 
III r+r+ en CD.., en ., .... 
N .... n 
Z AI r+ 
CO) ... CD 

en a. 
13 

AI 
-Un 
..,CD 
0.., 
" .... CD AI .., ... 
r+en 
~o 
0; 
; 

H 
NtII:I 
tu3: 
3 : 



r
oo( 
N 
00 , 
.... ..... 
c... 
UI , 
o 

I-t 

= 3: 

(") 
o ., 
'U . 
.... 
\0 
00 ..... 

3: 
(1) 
t+ 
J 
o 
Q. 

o 
;, 

o 
'U 
(1) 

at 
t+ .... 
o 
:::lI 

lEA VTSL2 - SLIP Trap Matching Routine - Action Keyword Processing 

EJltended Description Module Label 

If all the event qualifier keywords specified on the trap have IEAVTSL2 EOL 
been compared and found to match the current system 
conditions, I EAVTSLB calls the EOL subroutine in 
IEAVTSL2 to take the action specified on the SLIP trap. 

1 When processing a non-IGNORE non-PER trap, or the 
first match for a non·IGNORE PER trap 

ISCEMATCH=OI, EOl: 

• Adds one to the IEA9921 message counter ISCEM9921. 

• Turns on the SHDRPSTM bit, which causes the SLIP 
command processor communication routine UEECB9051 
to be posted. IEECB905 issues message IEA9921, 
informing the SLIP user that a match has occurred. 
ISee the diagram and extended description of 
IEECB905.1 

2 To determine which action to take, IEAVTSl2 refers 
to bits in the SCEAFlG field. 

l:J0 ro 
Bit setting Action parameter step 

SCEIGNOR=t IGNORE a 

SCETRACE=1 or TRACE or TRDUMP b 
SCETRDMP=1 

SCENODMP=1 NODUMP c 

SCENOSVD=t or NOSVCDor 
SCENOSY A=1 or NOSYSAor 
SCENOSYM=1 or NOSYSMor d 
SCENOSYU=1 NOSYSU 
SCENOSUpc 1 NOSUP e 

SCEWAITc 1 WAIT f 

SCESVCDc 1 SVCD g 

SCESTRCE = 1 or STRACE or SDUMP h 
SCESTDMP = 1 

SCERECRD=1 RECORD I 

After the requested action has been teken, processing 
;IU continues at step 3. 
-I 
3: 
I 
~ 
~ .... 

(Part 2 of 6) 

Extended Description Module 

a IEAVTSL2 does nothing when the IGNORE action 
is specified. Processing continues at step 3. 

b The EOl subroutine requests that a GTF SLIP trace 
record be built by: 

• Initializing a parameter list for GTF. 

• Issuing the appropriate form of the HOOK macro, which 
gives GTF control to build the trace record. The EOl 
subroutine refers to the SCVATRD field to determine 
which tYpe of record to request ISLIP standard, SLIP 
standard plus user-defined data. or SLIP user·defined 
datal. 

If I EAVTRT2 is SLIP's caller, the EOL subroutine 
issues a TYPE=P HOOK macro, which results in a monitor 
call (MCI instruction being eJlecuted. For all other callers. 
a TYPE=BPN2 HOOK macro is used, which results in a 
branch entry to GTF_ 

Processing continues at step 3 . 

label 



3: 
< 
~ 
X 
:J»o 

en 
r
r-

r
-< 
N 
Ot 
I .... 

...... 

"'" 1.11 
I 

CI 

.... 
'" 3: 

n 
o , 
'U . 

lEA VTSL2 - SLIP Trap Matching Routine - Action Keyword Processing (Part 3 of 6) 

Input Process 9 
SCE 

I I 
... 

C Perform the NODUMP SCEAFLG " action. 

SCE 

I I " d Perform the NOSVCD. 
SCEAFLG 

) 
r NOSYSA. NOSYSM. 

and/or the NOSYSU 
action. 

SCE 

I I ~ e Perform the NOSUP 
SCEAFLG " action. 

SCE 

I I 
... 

f Perform the WAIT ) SCEAFLG 
action. 

CVT 

I CVTSTPRS I 
... 9 Perform the SVCD ) 

SCE " action. 

I SCEAFLG I 
. 

6 

Output 

" RTM2A RTlW 

I I " 
RTM2CCTL RT1WENTR 

RTM2A RTlW 

" RTM2COMF I RT1WENT2 I 
RTM2A RT1W 

... 

I I or RTM2COMF RT1WENT2 

_ .... PSA 

" 
PSAWTCOD r-..... Wait state debug area 

..I.. ... IEESTPRS I I 'I F" 

Display state 
information 
and wait 

.L ...... 
...... ..,. IEAVTSLS 

Schedule an 
SDUMP 



r
oo( 
N 
00 
I .... ..., 

CJtI 
\.II 
I 

o 

..... 
n ..... 
n 
o 
~ ., ... 
CO 
7 
1+ 

I-f 
till 
3: 

n o ., 
'U . 
.... 
~ 
00 ..., 

3: 
CD 
1+ 
7 o 
a. 
o 
-t. 
Q 
'U 
CD 

~ 
1+ ... 
o 
:::s 

lEA VTSL2 - SLIP Trap Matching Routine - Action Keyword Processing 

Extended Description 

C The EOl subroutine takes the following action. de
pending on SllP's caller: 

EDL action 

Module 

Caller 
IEAVTRTS 
IEAVTRT2 
IEAVTRTM 
IEAVTPER 

Sets the Rn NODMP bit to 1 to suppress dumps. 
Sets the RT2NODMP bit to 1 to suppress dumps. 
Nothing; there are no dumps to suppress. 
Not applicable; the NO DUMP option cannot 
be coded on PER traps. 

Processing continues at step 3. 

d The EOl subroutine takes the following ection, de
pending on SLIP's caller: 

Caller EDL action 
IEAVTRTS Sets the appropriate bit Is) to 1 to suppress 

dumps IRT1WNOSV, RT1WNOSA, 
RT1WNOSM, RT1WNOSUI. 

I EAVTRT2 Sets the appropriate bit lsI to 1 to suppress 
dumps IRTM2NOSV, RTM2NOSA, 
RTM2NOSM, RTM2NOSU) . 

I EAVTRTM Nothing; there are no dumps to suppress • 
IEAVTPER Not applicable; the NOSVCD, NOSYSA, 

NOSYSM, and NOSYSU options cannot be 
coded on PER traps. 

Processing continues at step 3 

e The EOl subroutine takes the following action, 
depending on SLIP's caller: 

Caller EDL action 
IEAVTRTS Sets the RT1WNOSP bit to 1 to Indicate to 

dumping services that dump requests should 
not be suppressed. 

IEAVTRT2 Sets the RTM2NOSP bit to 1 to Indicate to 
dumping services that dump requests should 
not be suppressed. 

I EAVTRTIIIl Nothing; there are no dumps. 
I EAVTPER Not applicable; the NOSUP option cannot be 

coded on PER traps. 
Processing continues at step 3. 

label 

(Part 40(6) r-: 
... :111 nCD 

Extended Description Module Label CD II) 
:3r+ 
11), 
CD ... 

'f Processing a walt option ISCEWAIT~1) requires that a.~ 
the processor be running disabled. When SLIP's caller is 3ID 

IEAVTRT2 hhe only enabled callerl, the EOl subroutine =.a. 
disables the current processor by using a STNSM instruction . ID:;: ,m 
This code saves the system mask from the current PSW and ..-r+ 
replaces it with a mask disabled for external and 1/0 inter· mCD 

~, 

ruptions. The EOl subroutine uses a compare and swap 11)..-
ICS) instruction to obtain the restart resource. If the Ie 
attempt is unsuccessful, EO l takes no wait action and pro- II) 

cessing continues at step 3. oa 
'0 

If the restart resource is obtained, the EOl subroutine: 
0 .... 

" • Builds a debugging area pointed to by the PSAWTCOO 
CD ... 
..,111 

field. r+:z 
• Sets up the stop/restart parameters. ~ = 
• Calls the stop/restart routine (lEESTPRS) to display IEESTPRS 0 .. 

lusing the disabled console communications facility) a ... 
message showing the registers, PSW, and cross memory III 
information. The system waits for a response before 

:;: 

continuing. If the system Is restarted, EOl frees the 
restart resource and, If IEAVTRT2 is the IEAVTSlP 
caller, restores the system mask. 

Processing continues at step 3. 

9 The EOl subroutine calls IEAVTSlS to request an IEAVTSl2 EOl 
SDUMP. IEAVTSLS 



::3: 
<: 
CJ) 

"-
~ 
CJ) 
r
r-

'" CD 
(') 
o 
< 
-I 
~ , 
3 

::3: 
IQ 
3 .... 

r
-< 
N 
00 
I ...... 

-..J 
VI 
I.n 
I 

o 

" o 
...... 

n 
o 

" '< , .... 
IQ 
:::r .... 
1-4 
t:J:I 
::3: 

n 
o , 
" 

IEAVTSL2 - SLIP Trap Matching Routine - Action Keyword Processing (Part 5 of6) 

Input Process 7 Output 

SCE 

~ 
System trace table .. h Perform the STRACE ~ J > 

" or STDUMP action. I 

SCE 

~ 
SYS1.LOGR EC 

" i Perform the RECORD ~ I action . I 

SCE 

~ ~ 3 Force recovery. 
" SLPL Work area extension 

/ " 
SLPLLSTW WAERTNCD 

Return to 
Diagram IEAVTSL2 - SLIP 
Trap Matching Routing - Part 2 

r 
~. 

n 
m 
:::I 
en 
m 
a.: 

;U 
3:m 
Qlen 
r+ .... m., ., .... 
~·n 
Ql .... .... m 
enD. 

13: 
Ql 

"0 .... .,m 
0., 
'0 .... 
mQl ., .... 
r+en 
'<: o 
O-ft 
-fa 

H 
HtlI:J 
tJ.'I3: 
3: : 



r
oo( 
N 
00 
I 
~ 

~ 

"" U'I 
I 

c::t 

n a 
'U 
'< .., .... 
CQ 
;r 
rio 

1-4 
tI:I 
:3: 

n a .., 
'U 

:3: 
111 
rio 
;r 
a 
Q. 

a 
-fI 

o 
'U 
CD 

D1 
rio .... 
a 
::I 

lEA VTSL2 - SLIP Trap Matching Routine - Action Keyword Processing 

Extended Description 

h The EOl subroutine builds the parameters required by 
the PTRACE macro for TYPE"SPER events. It then 

issues the PTRACE macro which gives control to the System 
Trace Formatter Routine (lTRF0009) to build the SPER 
entry in the Trace Table. 

The EOl subroutine takes the following action, de
pending on SLIP's caller: 

Caller 

IEAVTRTS 

IEAVTRT2 

IEAVTRTM 

IEAVTPER 

EOL action 

Sets the RT1WRCRD bit to 1 to indicate 
to RTMl that recording should be done 
for all FRRs and ESTAEs for this error. 
Sets the RTM2RCRD bit to 1 to indicate 
to RTM2 that recording should be done 
for all ESTAEs for this error. 
Nothing; there are no ESTAEs or FRRs 
entered in this path. 
Not applicable; the RECORD option can
not be coded on PER traps. 

3 If a PER interruption is being processed and the trap 
specified the RECOVERY action parameter, the EOl 

subroutine adjusts the return code to indicate that recovery 
processing for the interrupted program is required. 
IEAVTSlE passes the return code to IEAVTPER, which 
passes it to I EAVEPC. I EAVEPC forces a recovery of the 
interrupted program. ISee the diagram and extended 
description of IEAVEPC.l 

Module Label 

IEAVTSl2 EOl 

(Part 6 of 6) 

a 
"*' ... = :II: 



3: 
-== en , 
~ 
en 
r
r-

r
oo( 
N 
00 
I .... ...., 

"" I.n 
I 

Q 

n 
o 
1J 
'< ., .... 
\Q 
:T .... 
1-4 

= 3: 

n 
o ., 
1J . 
.... 
\0 
00 ...., 

lEA VTSRI - ITERM Processor 

Input 

Register 1 

I Completion code I 
Register 2 

[ t psw I 
Register 3 

I t registers I 
Register 4 

I t control registers 
3 and 4 I 

(Part 1 of 4) 

Issuer 
of 
CALLRTM 

-- Process Output 

1 Establish a recovery environment. 

ED 

2 Acquire an EED cell. .. 
--.. 

If no EED cell is acquired, go to 
step 4. 

EED .. ... 
>3 Fill in the EED with the error in- PSW .. formation. registers 

control registers 
3 and4 

SRIRETRY: Register 2 ... 
4 Set up the process for an abend . 

--v 

5 Delete the recovery environment. 

.. SVC13 I 
To the 

~ caller 
Register 0 

ItEEDoro I 
Register 1 

I Completion code I 



,.,. 
n ..... 
n 
o 

" '< , .... 
ID 
j' 
t+ 

1-1 
til:! 
3: 

n 
o , 
" 

3: 
CD 
t+ 
j' 
o 
a.. 
o 
-iI 

o 

" CD , 
III 
t+ .... 
o 
::J 

lEA VTSRI - ITERM Processor (Part 2 of 4) 

Extended Description 

ITERM is used to terminate a process (an SRB routine or a 
taskt that has been interrupted. IEAVTSRl processes a service 
mode call to RTM by setting up the interrupted process for an 
abend. 

1 IEAVTSR1 establishes its own FAR (SA1FAA) forre
covery. 

2 IEAVTSAl attempts to obtain an EED (extended error de
scriptor! cell for a savearea. If no EED cell is acquired, 

ITEAM continues processing and keeps no record of error infor
mation. 

3 I EAVTSA 1 saves registers 0-15, the PSW and control re
gisters 3 and 4 in the EED. IEAVTSA1 eventually pre

sents this error information to the recovery routines when 
the process (an SAB routine or a task) is redispatched. 

4 IEAVTSAl places the address of an SVC 13 in the old PSW_ 
When the process is redispatched, an ABEND is issued. Aeg

ister 0 either points to the EED containing the saved error in
formation or a zero if no EED was obtained. 

5 IEAVTSRl deletes the FRR and returns control to the 
caller. 

Module 

IEAVTSRl 

Label 

SA1AETRY 

o ... 
H 
~ 
3: 



r
-< 
N 
QI) 
I ... ..... 

"" til 
I 

o 

n 
o 
~ ., ... 
!Q 
J 
t+ 

1-4 

= :3: 

n 
o ., 
'U 

lEA VTSRI - ITERM Processor (Part 3 of 4) 

Input 

Register 0 

1+ FRR work area 

Register 1 

I+SDWA 

SDWA 

~ SDWAPARM 

tEED 

SDWA 

~ '4 SDWAPARM 

From 
RTM Process 

SR1FRR: 

6 Place the diagnostic information 
in theSDWA. 

7 If the error occurred in the 
GETCELL routine, retry. 

--r----------.r-v' 8 If the error did not occur in the 
GETCELL routine, free the EED 
and percolate. 

To 
IEAVTRTS 

To 
IEAVTRTS 

Output 



,... 
-< 
N 
00 
I ... .... 

"" UI 
I 

o 

..... 
() 
.,.; 

o 
o 
~ , .... 
!Q 
;:r 
rio 

1-4 
m 
3: 

n o , 
'U . ... ..., 
00 .... 

3: 
CD 
rio 
;:r 
o 
a. 
o 
; 

C 
'U 
CD 

~ 
t+ .... 
o 
;:, 

lEA VTSRI - ITERM Processor (Part 4 of 4) 

Extended Description 

6 ITERM's FRR places the following diagnostic information in 
the SDWA: component 10, component description, date of 

the assembly, version of the module, the FRR label, the module 
name, and the CSECT name, 

7 If the error occurred while ITERM was acquiring an EED 
cell, the FRR requests a retry at entry point SR1 RETRY and 

has RTM record the error, 

8 If the error did not occur while ITERM was acquiring an 
EED cell, no retry is attempted. The FRR frees the EED 

cell, requests error recording, and percolates, 

Module Label 

SR1FRR 

r-= ... '" nCD 
CD 01 
::fit en.., 
CD ... 
a.~ 
3eD 
~a. 
CD3 ..,m ...It 
mCD ... .., 
en ... m 
I ... 

en 
'1J 
..,0 
O-h 
11 
CDH ..,'" 1t3 
'< = 
o 
-h 

H 

'" Z 



0ItI 
-4 
3: 
I 

.1:\ 
~ 

lEA VTSSH - SLIP Space Switch Handler 

C) Input 
3: 
<: 
~ x 
l> 

en 
r
r-

r
-< 
N 
00 
I .... 

...... 
(,of 
UI 
I 

C) 

,.., 
n ..., 
n 
o 
~ ., .... 
UJ ::r .... 
I-f 
til' 
3: 

n 
o ., 
"tJ . 
.... 
\Q 
00 ...... 

SHDR 

SHDRPFC 

SHDRFWD 

SHDRPER 

SHDRPERJ 

SHDRPERA 

SVT 

~ 
SCVA 

SCVAPLSC 

ASCB 

ASCBASID 

ASCBJBNI 

ASCBJBNS 

SCVAASNO 

SCVAASD 

(Part 1 of 4) 

Issuer of 
a PT or PC 
instruction 

1 Establish a recovery environmertt 
and serialize the SHDR and SCE. 

2 Determine if PER monitoring needs 
to be adjusted. 

3 Adjust PER monitoring, if necessary . 

To 
IEAVTPER 

Output 

SHDR 

~ 
SCE 

SCECTR 

LCCA 

I LCMPP~ I 

n 
III 

~ 
H 
-I 
n ::z: 



r
oo( 
N 
00 
I 

I-' ..., 
(.It 
U1 
I = 

'" n ..... 
n o 
'0 
'< ., 
~. 

!.Q 
':1' 
rio 

.... 
'" 3: 

n 
o ., 
'0. 

I-' 
\0 
00 ..., 

3: 
III 
rio 
~ 
o 
a. 
o 
-h 

o 
'0 
III ., 
IP 
rio 
~. 

o 
:::::II 

IEAVTSSH - SLIP Space Switch Handler (Part 2 of 4) 

Extended Description Module 

I EAVTSSH intercepts calls to change a unit of work's ad· 
dressing environment and adjusts the PER bit in the PSW 
according to the parameters coded on the SLIP command. 
IEAVTSSH has separate entry points for the instructionsl 
macros it intercepts. 

I EAVTSS H - intercepts PT and PC instructions. (De· 
scribed in steps 1-3.) 

I EAVTSS1 - intercepts CMSET SET macros, CMSET 
RESET macros when the parameter 
CHKAUTH=YES Is coded, CMSET 
RESET macros when the parameter 
CHKAUTH=NO is coded. (Described 
in steps 4-6.) 

During SLIP initialization, the addresses of the CMSET rou· 
tines were saved in the SLIP header (SHDRI and replaced 
by the corresponding entry point addresses of IEAVTSLC . 
(I EAVTSLC executes the requested CMSET before calling 
IEAVTSSH.) Aftera CMSETSETorCMSETRESETmacro 
changes the addressing environment for a unit of work or 
before a PC or PT instruction completes a space switch 
operation, IEAVTSSH checks and adjusts PER monitoring 
before returning control to I EAVTSLC or to the issuer of 
the PC, or PT instruction. IEAVTSSH assures the integrity 
of the SLIP trap in a cross memory enVironment no matter 
where a unit of work is operating. 

1 IEAVTSSH establishes an FRR (See Recovery Pro· 
cessing at the end of this diagram) and serializes the 

SLIP header (SHDR) and SCE chain. Serialization is done 
so that this S LIP trap cannot be deleted byanother'l'outine 
until I EA VTSSH finishes checking and adjusting PER moni. 
toring. 

2 COMMON uses the parameters from the SLIP command 
to determine if the PER bit is to be left in its current 

state, turned on, or turned off. COMMON places a return 
code in register 1511ating which is to be done. 

label 

COMMON 

Extended Description 

3 I EAVTSSH uses the return code from COMMON to set 
the PER bit in the PSW of the interrupted unit of work 

(LCCAPPSW). IEAVTSSH either changes PER monitoring 
to on or off, or leaves PER monitoring in its present state, 
depending on the return code. I EA VTSSH returns control 
to I EAVTPER to finish processing the space switch inter· 
rupt. 

Module label 

H 
~ 
3: 



~ lEA VTSSH - SLIP Space Switch Handler (Part 3 of 4) 
3: 
I 
~ 
U1 
N 

3: 
< 
V) 

" x 
:I> 

V) 
r
r-

'" CD 
o 
o 
< 
-j 
CD , 
3 

3: 
IC 
3 
r+ 

r
-< 
N 
00 
I .... 

...... 
VI 
U1 
I 

o 

,.... 
o 
'oJ 

n 
o 
"0 
'< , .... 
IC 
~ 
r+ 

.... 
-.0 
00 
...... 

Input From IEAVTSLC Process 
~~--------------------------~ r---------------~------------~ 

SHDR 

SHDRPFC 

SHDRFWD 

SHDRPER 

SHDRPERJ 

SHDRPERA 

SVT 

~ 
ASCB 

ASCBASID 

ASCBJBNI 

SCEFWD 

SCEMHME 

SCVAPLSC 

SCVA 

SCVAJND 

SCVA 

SCVAASNO 

SCVAASD 

Register 15 

I 

4 Establish a recovery environment and 
serialize the SHDR and SCE. 

5 Determine if PER monitoring needs 
to be adjusted for the new address 
space. 

6 Adjust PER monitoring, if necessary. 

.... ~TO 
IEAVTSLC 

Output 

SHDR 

SHDRPFC 

SCE 

~ 

Current PSW 

r .... 
n 
ID 
::J 
rn 
ID 
a. = ;:a 
:::tID 
s»rn 
r+r+ 
ID., ., "". ... ·n 
S»r+ 
... ID 
rna. 
1% 

S» 
'Ur+ 
.,ID 
0., 
'D .... 
IDS» ., ... 
r+CII 
'<0 
O-ft 
~ .... 
.... tII:I 
tII:I% 
:::t = 



~ 

-< 
N 
00 
I ... 

..... 
"" \II 
I 

CI 

"" n ..., 
(") 
0 

" '< ., .... 
IQ 
J 

" M 
tilt 
3: 
(") 
0 ., 
" . ... 
\0 
00 ..... 

3: 
CD 

" J 
o 
Do 

o 
-h 

o 

" CD ., 
III 

" .... 
o 
~ 

lEA VTSSH - SLIP Space Switch Handler (Part 4 of 4) 

Extended Description 

4 IEAVTSSH uses the COMMON subroutine to establish 
an F R R ISee Recovery Processing at the end of this dia· 

gram) and to serialize the SLIP header and SCE chain. 

5 COMMON uses the parameters from the SLIP command 
to determine if the PER bit is to be left in its current 

state, turned on, or turned off. COMMON places e return 
code in register 15 stating which action is to be taken. 

6 I EAVTSSH uses the return code from COMMON to set 
the PER bit in the current PSW. Control returns to 

IEAVTSLC. 

Recovery Processing 

If an error occurs while IEAVTSSH is executing, RECOVERY 
receives control. The FRR releases the serialization of the 
SLIP header and SCE chain if serialization was completed. 
If a retry Is allowed, the FRR requests a retry from RTM 
to the caller of IEAVTSSH. If a retry is not allowed, the 
FRR requests that RTM continue with termination • 

1"'= .... ::111 
nCD 

Module Label CDC/I 
::I .... C/I., 

COMMON CD .... 
D.n .... 
3CD 
mD. .... 
CD3 
.,m ........ 
mCD ... ., 
(I) .... 

Ie. 
C/I 

'U 
.,0 
0-11 
'D 
CDM 
.,tIII 
.... 3 
'< = 
0 

RECOVERY -II 
M 
till 
3: 



::0 
CD 
n 
o 
< 
-f 
CD ., 
a 
:::r; 
(Q 
a 
t+ 

r-
-< 
N 
00 
I .... 

""" "" U'I 
I 

Q 

..... 
n 
'<oJ 

n 
0 
'0 
'< ., .... 
(Q 
J 
t+ 
.... 
tI:I 
:::r; 

n 
0 ., 
'0 . 
... 
'" 00 

""" 

lEA VTSSX - Space Switch Extension (Part 1 of 4) 

Input 

Register 1 FRR stack 

From 
IEAVTRTS 

1 Establish a recovery environment. 

2 Establish serialization of the SHDR 
and the SCE chain. 

Output 

SHDR I SHDAPFel 

SCE I seECTA I 

H 

"' 

Z 
til 
H 
o 
Z 

,.. 
~ n 
CD 
~ 
II) 
CD a.: 

::v 
ZCD 
11)11) 
rtrt 
CD., 
.,~ 

~~ 
.... CD 
II) a. 

I~ 
"a"" "(1 
0., 
'U~ 
CUll) ., .... 
rtll) 
'C 

0 
o~ 
~ 

H 
H~ 
~Z 
3: 



r
oo( 
N 
00 
I .... .... 

(II 
I.n 
I 

C) 

n 
o 

~ , .... 
to 
::r 
t+ 

.... 
tIIf 
:a:: 
n 
o , 
'U 

.... 
\D 
00 .... 

:a:: 
ID 
t+ 
::r o a. 
o 
-t\ 

o 
'U 
ID 

GJ 
t+ .... 
o 
:l 

lEA VTSSX - Space Switch Extension (Part 2 of 4) 

extenaed Uescription Module 

Before invoking an FAA, ATM1 IIEAVTATSI calls 
IEAVTSSX to set the PEA bit in the PSW that is used to 
give the FAA control. IEAVTSSX performs the same func
tion as IEAVTSSH hurn the PEA bit on or off as re
questedl, but Is tailored to meet the needs of ATM1. 

1 IEAVTSSX issues a SETFAA to establish its own FAA. 
(See Aecovery Processing at the end of this diagram. I 

2 IEAVTSSX serializes the SLIP header (SHOAl and SeE 
chain to prevant alteration of the SLIP environment by 

another caller. 

Label 



~ lEA VTSSX - Space Switch Extensjon (Part 3 of 4) 
3: 
I 
~ 

'" 0\ 

~ 
CD 
n 
o 
< 
-I 
CD ., 
a 
3 
!Q 
a .... 

r
oo( 
N 
00 
I .... ...., 

(If 

'" I 
o 

,.., 
n 
'oJ 

n 
o 
~ ., .... 
!Q 
'j' .... 
.... 
= 3 

n o ., 
"0 . 
.... 
\G 
00 ...., 

Input 

SHDR 

SHDRPFC 

SHDRFWD 

SHDRPER 

SHDRPERJ 

SHDRPERA 

seVAASNO 

seVAASO 

ASCB 

ASCBASID 

ASCBJBNI 

ASCBJBNS 

SVT I SVTSSEM I 

seE 

seVAPLse 

seVAIND 

Process 

3 Check if PER monitoring needs to be 
changed. 

4 Adjust PEA monitoring as needed. 

5 Delete the recovery environment. 

Output 

PEA 
byte 



r
-< 
N 
00 
I ... ..... 

C.H 
\11 
I 

a 

~ 

II1II 
3: 

n 
o 
~ . 

lEA VTSSX - Space Switch Extension (Part 4 of 4) 

Extended Description Module 

3 I EAVTSSX checks the old and new PASI Os and the pa
rameters on the SLIP command to determine if the PER 

bit is to be turned on or off_ 

4 IEAVTSSX sets the PER bit in the input mask of the 
PER byte. 

5 IEAVTSSX releases the serializlltion of the SCE chain 
and the SHOR, and deletes the FRR. 

Recovery Processing 

If an error occu rs while lEA VTSSX is executing, 
RECOVERY receives control. In case of an error, the FRR 
releases the serialization of the SeE chain and the SHOR if 
serialization had been completed. 

... If a retry is allowed, the FRR is deleted and control is given 
c;i to IEAVTRTS for eventual return to IEAVTSSX • 
..... 

3: 

~ =r 
o 
D-

O 
-II 

o 

" ID 

DI ,... ... 
o 
~ 

If no retry is allowed, the FRR gives control to 
IEAVTRTM to conti!"lue with termination. 

Label 

H 

I 



RTM-458 MVS/XA SLLI Recov Term Mgmt 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

INDEX 

abnormal end of task RTM-21 
RTM process flow RTM-21 

abnormal termination 
RTM2 services for RTM-6 

abort processing RTM-2S8 
ABTERM 

entry point 
See IEAVTRTl 

ACTION 
event qualifier keyword RTM-434 

action keyword RTM-440 
IGNORE RTM-440 
NODUMP RTM-442 
NOSUP RTM-442 
NOSVCD RTM-442 
NOSYSA RTM-442 
NOSYSM RTM-442 
NOSYSU RTM-442 
RECORD RTM-444 
STRACE RTM-444 
SVCD RTM-442 
TRACE RTM-440 
TRDUMP RTM-440 
WAIT RTM-442 

action processor 
SLIP 

part 1 function 
part 2 function 
part 3 function 

ADDRESS 

RTM-408 
RTM-396 
RTM-406 

SLIP keyword RTM-42S 
address space 

control block 
in SLIP debugging RTM-14 

purge processing 
function RTM-126 

purge resource managers 
function RTM-128 

termination RTM-7, RTM-21 
on a DAT error, function RTM-280 
processing, function RTM-138 
RTM process flow RTM-22 

address space control block 
See ASCB 

addressing mode 
of RTM modules RTM-3 

ASCB (address space control block) 
in SLIP debugging RTM-14 

ASID 
SLIP keyword RTM-427 

ASIDSA 
SLIP keyword RTM-427 

BLSQCFMT 
See also IEAVTFMT 
process flow RTM-49, RTM-SO, RTM-Sl 

BLSQECT 
See IEAVTFMT 

BLSQIFMT 

LY28-173S-0 (c) Copyright IBM Corp. 1987 

See also IEAVTFMT 
process flow RTM-49 

BLSQROUT 
See also IEAVTFMT 
process flow RTM-49, RTM-SO, RTM-Sl 

CABTERM 
entry point 

See IEAVTRTl 
CALLRTM TYPE=RMGRCML processor 

function RTM-204 
cancel RTM-21 

RTM process flow RTM-22 
COMP 

SLIP keyword RTM-427 
control block formatting 

See IEAVTFMT 
control block overview 

for RTM RTM-17 
for SPIE/ESPIE RTM-19 

control blocks used by SLIP RTM-14 
CSVEXIT 

process flow RTM-28 

DATA 
event qualifier keyword RTM-434 

DATERR 
entry point 

See IEAVTRTl 
diagnostic techniques 

for RTM RTM-ll 

EED 
format RTM-98 

errors 
recovering from RTM-3 

ERRTYP 
SLIP keyword RTM-429 

ESA bit summary 
format RTM-96 

ESPIE (extended specify program 
interruption exit) 

reset processing 
function RTM-86 

set processing 
function RTM-84 

test processing 
function RTM-88 

event qualifier keyword 
SLIP RTM-424 

exit processing 
RTM2 RTM-234 

Index I-I 



extended specify program interruption 
exit 

See ESPIE 

failing instruction processor 
RTMI RTM-290 
RTM2 RTM-370 

formatting 
EED RTM-98 
ESA bit summary RTM· '9'; 
FRRs RTM-IOO 
IHSA RTM-I02 
RTM2WA RTM-94 
RTlW RTM-IOO 
SCB RTM-98 
STKE RTM-I04 
XSB RTM-I04 

FREESRBS 
entry point 

See IEAVTRTR 
FRR (functional recovery routine) 

format RTM-IOO 
initializing stacks RTM-8 
routines RTM-3 
stack verification RTM-268 

functional recovery routine 
See FRR 

hardware error 
mode RTM-S 
processing RTM-21 

RTM process flow RTM-21 

IEAFSDW 
process flow RTM-49 

IEAFTESA 
process flow RTM-49 

IEAFTRT2 
See IEAVTFMT 

IEAIHSAF 
See also IEAVTFMT 
process flow RTM-52 

IEAIHSAP 
See IEAVTFMT 

IEASTKEP 
See IEAVTFMT 

IEAVEDSO 
process flow 

IEAVEEDO 
process flow 

IEAVEEXP 
process flow 

IEAVEMDL 
process flow 

IEAVEMSO 

RTM-39, 

RTM-28 

RTM-39, 

RTM-42 

process flow RTM-42 
IEAVESPI 

RTM-40 

RTM-40 

called by IEAVEPC RTM-68 
function RTM-64 

1-2 MVS/XA SLL. Recov Term Mgmt 

"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

IEAVGMOO 
process flow RTM-43 

IEAVPSRB 
entry point 

See IEAVESPI 
IEAVSPEX 

entry point 
See IEAVESPI 

process flow RTM-48 
IEAVSPI 

entry point 
See IEAVTESP 

process flow RTM-47 
IEAVSPIE 

entry point 
See IEAVTESP 

process flow RTM-47 
IEAVSPIP 

process flow RTM-47 
IEAVSPPF 

entry point 
See IEAVESPI 

IEAVSRB 
process flow RTM-48 

IEAVSSPF 
process flow RTM-48 

IEAVSTAO 
function RTM-70 
process flow RTM-43 

IEAVSYSR 
process flow RTM-28 

IEAVTABD 
process flow RTM-29, RTM-32, RTM-33, 

RTM-40 
IEAVTACR 

process flow RTM-44 
IEAVTADR 

process flow RTM-46 
IEAVTASI 

function RTM-76 
process flow RTM-29, RTM-31, RTM-33, 

RTM-40 
IEAVTAS2 

process flow RTM-29, 
RTM-40 

IEAVTAS3 
process flow RTM-29, 

RTM-40 
IEAVTERM 

process flow RTM-42 
IEAVTESP 

function RTM-80 
process flow RTM-47 

IEAVTFMT 
function RTM-94 

RTM-31, RTM-33, 

RTM-31, RTM-33, 

process flow RTM-49, RTM-50, RTM-5l 
IEAVTGLB 

function RTM-106 
recovery RTM-12 

IEAVTJBN 
function RTM-114 
recovery RTM-13 

IEAVTLCL 
function RTM-116 
recovery RTM-13 

IEAVTMMT 
function RTM-126, RTM-128 
process flow RTM-41, RTM-42 

IEAVTMTC 
function RTM-138 
process flow RTM-3S, RTM-42 

IEAVTMTR 
process flow RTM-35, RTM-42 

IEAVTPER 

LY28-l735-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials o'f IBM" 
Licensed Materials - Property of IBM 

'function RTM-142 
IEAVTPMT 

process flow RTM-40 
IEAVTPVD 

entry point 
See IEAVTPVT 

IEAVTPVL 
entry point 

See IEAVTPVT 
IEAVTPVR ' 

entry point 
See IEAVTPVT 

lEAVTPVT 
diagnostic aids RTM-150 
logic diagram RTM-152 
module description RTM-146 
module operation RTM-149 

IEAVTREF 
diagnostic aids RTM-168 
logic diagram RTM-17D 
module description RTM-166 
module operation RTM-167 

IEAVTREM 
diagnos'tic aids RTM-179 
logic diagram RTM-180 
module description RTM-176 
module op~ration RTM-178 
process flow ~n~-42 

IEAVTRER 
diagnostic aids RTM-186 
logic diagram RTM-188 
module description RTM-18l 
module operation RTM-184 
process flow RTM-44, RTM-45 

IEAVTRET 
diagnostic aids RTM-196 
logic diagram RTM-197 
module description RTM-193 
module operation RTM-195 
process flow RTM-45 

IEAVTRF2 
See also IEAVTFMT 
process flow RTM-49 

IEAVTRF3 
See also lEAVTFMT 
process flow RTM-5l 

IEAVTRF4 
See also IEAVTFMT 
process flow RTM-50 

IEAVTRF5 
See also IEAVTFMT 
process flow RTM-50, RTM-5l 

lEAVTRMC 
function RTM-204 
process flow RTM-39 

IEAVTRPI 
See IEAVTFMT 

IEAVTRP2 
See IEAVTFMT 

IEAVTRP3 
See IEAVTFMT 

IEAVTRP4 
See IEAVTFMT 

IEAVTRP5 
See IEAVTFMT 

IEAVTRRR 
diagnostic aids RTM-2l0 
logic diagram RTM-2l2 
module description RTM-206 
module operation RTM-2D9 

IEAVTRSO 
function RTM-2l8 
process flow RTM-36, RTM-37, RTM-39 

IEAVTRSI 

LY28-l735-0 ec) Copyright IBM CorP. 1987 

entry point 
See IEAVTRTD 

IEAVTRS2 
entry point 

See IEAVTRSO 
IEAVTRS3 

entry point 
See IEAVTRSO 

IEAVTRS5 
entrY point 

See IEAVTRTD 
IEAVTRS6 

entry point 
See IEAVTRSO 

IEAVTRS7 
entry point 

See IEAVTRSD 
IEAVTRTC 

function RTM-224 
process flow RTM-29, RTM-3D, RTM-31, 

RTM-32, RTM-33, RTM-38, RTM-40 
IEAVTRTD 

diagnostic aids RTM-229 
module description RTM-226 
module operation RTM-228 
process flow RTM-36, RTM-39 

IEAVTRTE 
function RTM-232, RTM-234 
process flow RTM-27, RTM-30, RTM-32, 

RTM-33, RTM-38, RTM-41 
IEAVTRTF 

diagnostic aids RTM-242 
logic diagram RTM-243 
module description RTM-240 
module operation RTM-24l 

IEAVTRTM 
function RTM-244, RTM-248, RTM-252, 

RTM-254, RTM-256 
process flow RTM-23, RTM-24, RTM-26, 

RTM-34, RTM-36, RTM-38, RTM-39 
IEAVTRTN 

entry point 
See IEAVTRTl 

IEAVTRTR 
function RTM-258 

IEAVTRTS 
diagnostic aids RTM-266 
module description RTM-262 
module operation RTM-264 
process flow RTM-24, RTM-26, RTM-36, 

RTM-38 
IEAVTRTV 

diagnostic aids RTM-271 
module description RTM-268 
module operation RTM-270 
process flow RTM-39 

IEAVTRTX 
entry point 

See IEAVTRTl 
IEAVTRTl 

function RTM-274, RTM-280, RTM-284 
process flow RTM-23, RTM-24, RTM-26, 

RTM-34, RTM-36, RTM-37, RTM-39, 
RTM-44 

IEAVTRT2 
function RTM-286, RTM-288 
process flow RTM-27, RTM-29, RTM-3D, 

RTM-31, RTM-33, RTM-38, RTM-40, 
RTM-43 

IEAVTRIA 
diagnostic aids RTM-295 
logic diagram RTM-297 
module description RTM-290 
module operation RTM-293 

Index 1-3 



process flow RTM-39 
IEAVTRIB 

entry point 
See IEAVTRIA 

IEAVTRIC 
diagnostic aids RTM-304 
logic diagram RTM-30S 
module description RTM-301 
module operation RTM-303 
process flow RTM-26, RTM-36, RTM-38, 

RTM-39 
IEAVTRIF 

diagnostic aids RTM-314 
logic diagram RTM-3IS 
module description RTM-312 
module operation RTM-313 

IEAVTRIG 
diagnostic aids RTM-320 
logic diagram RTM-321 
module description RTM-318 
module operation RTM-319 

IEAVTRlI 
diagnostic aids RTM-326 
logic diagram RTM-327 
module description RTM-322 
module operation RTM-324 

IEAVTRIN 
diagnostic aids RTM-334 
logic diagram RTM-33S 
module description RTM-332 
module operation RTM-333 

IEAVTRIR 
diagnostic aids RTM-339 
logic diagram RTM-340 
module description RTM-336 
module operation RTM-338 

IEAVTRIS 
diagnostic aids RTM-346 
logic diagram RTM-347 
module description RTM-342 
module operation RTfo1-';44 

IEAVTRIX 
diagnostic aids RTM-3S1 
logic diagram RTM-3S2 
module description RTM-349 
module operation RTM-3S0 

IEAVTRIO . 
diagnostic aids RTM-3S7 
logic diagram RTM-359 
module description RTM-3S4 
module operation RTM-3S6 

IEAVTR2A 
function RTM-370 
process flow RTM-29, RTM-40 

IEAVTSCB 
function RTM-374 

IEAVTSFR 
function RTM-378 

IEAVTSIG 
function RTM-380 

IEAVTSIN 
process flow RTM-43 

IEAVTSKT 
function RTM-382, RTM-386 
process flow RTM-27, RTM-30, RTM-33, 

RTM-41 
IEAVTSlB 

function RTM-394, RTM-396 
process flow RTM-46 

IEAVTSlC 
function RTM-404 

1-4 MVS/XA SLLI Recov Term Mgmt 

"Restricted Materials of IBM" 
Licensed Materials - property of IBM 

IEAVTSLE 
function RTM-406 
process flow RTM-46 

IEAVTSLP 
function RTM-408 
process flow RTM-39, RTM-40, RTM-46 

IEAVTSlR 
function RTM-414 
process flow RTM-46 

IEAVTSLS 
function RTM-420 
process flow RTM-46 

IEAVTSLI 
function RTM-424 
process flow RTM-46 

I EAVTSL 2 
function RTM-434, RTM-440 
process flow RTM-46 

IEAVTSL8 
entry point 

See IEAVTSLC 
IEAVTSL9 

entry point 
See IEAVTSLC 

IEAVTSRI 
function RTM-446 
process flow RTM-39 

IEAVTSSH 
function RTM-4S0 

IEAVTSSX 
function RTM-4S4 
process flow RTM-39 

IEAXSBP 
See IEAVTFMT 

IECVRSTI 
process flow RTM-44 

IEEVWKUP 
process flow RTM-44 

IEVOSPET 
process flow RTM-28 

IGCOOOID 
entry point 

See IEAVTESP 
IGC003 

process flow RTM-28 
IGC062Rl 

process flow RTM-28 
IGFPMRTH 

process flow RTM-2S, RTM-39 
IGFPWMSG 

process flow RTM-45 
IGNORE 

action keyword RTM-440 
IGVSTSKT 

process flow RTM-28 
IGX00028 

entry point 
See IEAVTESP 

IHSA (interrupt handler save area) 
format RTM-I02 

IlRTERMR 
process flow RTM-42 

interruption handler 
second level RTM-3 

introduction 
to RTM RTM-3 

IRARMEVT 
process flow RTM-44 

ITERM processor 
function RTM-446 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials a'f IBM" 
Licensed Materials - Praperty a'f IBM 

JOBNAME 
SLIP keyword RTM-429 

JSPGM 
SLIP keyword RTM-431 

key to logic diagrams RTM-53, RTM-54 
keywords 

SLIP 
ADDRESS RTM-425 
ASID RTM-427 
ASIDSA RTM-427 
COMP RTM-427 
ERRTYP RTM-429 
JOBNAME RTM-429 
JSPGM RTM-431 
LPAEP RTM-431 
LPAMOD RTM-431 
MODE RTM-433 
NUCEP RTM-431 
NUCMOD RTM-431 
RANGE RTM-433 
REASON RTM-433 

LCCA (logical configuration 
communication area) 

in SLIP debugging RTM-14 
logic for RTM RTM-53 
logical configuration communication area 

See LCCA 
LPAEP 

SLIP keyword RTM-431 
LPAMDD 

SLIP keyword RTM-431 

MEMTERM 
entry point 

See IEAVTRTl 
method of operation 

for RTM RTM-53 
MODE 

SLIP keyword RTM-433 

NODUMP 
action keyword RTM-442 

normal end-of-task processing RTM-6 
normal task termination RTM-21 

RTM process flow RTM-21 
NOSUP 

action keyword RTM-442 
NOSVCD 

LY28-1735-0 (c) Copyright IBM Corp. 1987 

action keyword RTM-442 
NOSYSA 

action keyword RTM-442 
NOSYSM 

action keyword RTM-442 
NOSYSU 

action keyword RTM-442 
NUCEP 

SLIP keyword RTM-431 
NUCMOD 

SLIP keyword RTM-431 

[!] 
PER (program event recording) 

activation/deactivation 
recovery RTM-12 

in RTM RTM-9 
PFLIH/SLIP and PFLIH/space switch 
handler interface 

function RTM-142 
prefixed save area 

See PSA 
processing SLIH requests in RTM 

function RTM-244 
PROGCK 

entry point 
See IEAVTRTl 

program event recording 
See PER 

PSA (prefixed save area) 
FRR stack verification RTM-268 
in SLIP debugging RTM-14 

purge subtasks RTM-7 
PVTEP 

event qualifier keyword RTM-434 
PVTFRR 

entry point 
See IEAVTPVT 

PVTMOD 
event qualifier keyword RTM-434 

RANGE 
SLIP keyword RTM-433 

RB (request block) 
in SLIP debugging RTM-14 

RCDRMRCV 
entry point 

See IEAVTREM 
REASON 

SLIP keyword RTM-433 
RECORD 

action keyword RTM-444 
recording processing RTM-181, RTM-193 
recording services RTM-9 
recover task processing in RTM 

function RTM-76 
recovery provided by RTM RTM-3 
recovery stack vector table 

See RSVT 
recovery termination management 

See RTM 
recovery termination management number 1 

See RTMl 
recovery termination management number 2 

See RTM2 

Index 1-5 



recursion 
processor 1 in RTM 

function RTM-288 
processor 2 in RTM 

function RTM-232 
removal of a SPI 

RTM process flow RTM-22 
request block 

See RB 
reschedule locally locked task or SRB in 

RTM 
function RTM-254 

reschedule RTMI 
function RTM-248 

residency mode 
of RTM modules RTM-3, RTM-14 

RESTART 
entry point 

See IEAVTRTl 
retry RTM-21 

RTM process flow RTM-22 
terminating tasks RTM-6 

routing to FRRs 
function RTM-262, RTM-301, RTM-332 

RSVT (recovery stack vector table) 
in RTM RTM-8 

RTM (recovery termination management) 
control block overview RTM-17 
introduction RTM-3 
method of operation RTM-53 
process flow RTM-21 
services RTM-3 
services process flow RTM-43 
support functions RTM-8 

RTMI (recovery termination menagement 
number 1) 

clean-up processing 
function RTM-256 

exit processing 
function RTM-284 

failing instruction 
processor RTM-290 

functions RTM-4 
initialization 

function RTM-274 
logical phase recovery 
processing RTM-260 

overview RTM-57 
recursion processing 

function RTM-258 
routing to FRRs 

function RTM-262 
service routines 

function RTM-218 
services process flow RTM-39 
SLIH mode RTM-4 

RTM2 (recovery termination management 
number 2) 

abnormal termination RTM-6 
exit processing 

function RTM-234 
failing instruction 

processor RTM-370 
functions RTM-5 
ini tialization 

function RTM-286 
normal termination RTI·j-6 
overview RTM-59 
recover task processing RTM-76 
recursion flags RTM-289 
recursion processor 1 

function RTM-288 
recursion processor 2 

function RTM-232 

1-6 MVS/XA SLL, Recov Term Mgmt 

"Restricted Materials 0" IBM" 
Licensed Materials - Property of IBM 

synchronization of failing 
tasks RTM-224 

RTM2 work area 
See RTM2HA 

RTM2HA 
format RTM-94 

RTM2HA (RTM2 work area) 
initialization RTM-59 

RTlH 
format RTM-IOO 

RIAFRR 
entry point 

See IEAVTRIA 

SCA (SPIE control area) 
in RTM RTM-ll 

SCB (STAE control block) 
created by STAE services RTM-8 
format RTM-98 
freemain routine in RTM 

function RTM-374 
SCE (SLIP control element) 

in RTM RTM-9 
in SLIP debugging RTM-14 

SCVA (SLIP control variable area) 
in SLIP debugging RTM-14 

second level interruption handler 
See SLIH 

service mode processing RTM-4 
service request block 

See SRB 
serviceability level indication 

processing 
See SLIP 

SETFRR RTM-9 
function RTM-378 

SHDR (SLIP header) 
in SLIP debugging RTM-14 

SLIH (second level interruption handler) 
mode processing RTM-4 

SLIP (serviceability level indication 
processing) 

action processing 
process flow RTM-9 

action processor 
part 1, function RTM-408 
part 2, function RTM-394 
part 2, trap checking, 
function RTM-396 

part 3, function RTM-406 
command processor 

recovery RTM-ll 
control element RTM-9 

in SLIP debugging RTM-14 
control element variable area 

in SLIP debugging RTM-14 
event qualifier keyword RTM-424 
global PER activation/deactivation 

function RTM-I06 
header 

in SLIP debugging RTM-14 
keyword 

ADDRESS RTM-425 
ASID RTM-427 
ASIDSA RTM-427 
COMP RTM-427 
ERRTYP RTM-429 
JOBNAME RTM-429 
JSPGM RTM-431 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



"Restricted Materials of IBM" 
Licensed Materials - Property of IBM 

LPAEP RTM-43l 
LPAMOD RTM-431 
MODE RTM-433 
NUCEP RTM-43l 
NUCMOD RTM-43l 
RANGE RTM-433 
REASON RTM-433 

local PER activation/deactivation 
function RTM-116 

PER RISGNL routine 
function RTM-380 

PER select interface 
routine RTM-1l4 

processor 
debugging aids RTM-ll 
recovery RTM-ll 
recovery routine, 
function RTM-4l4 

service routine, function RTM-420 
space switch handler 

function RTM-450 
trap matching routine 

part 1, function RTM-424 
part 2, ACTION processing, 
function RTM-440 

part 2, function RTM-434 
TSO element 

in SLIP debugging RTM-14 
SLIP control element 

See SCE 
SLIP control variable area 

See SCVA 
SLIP header 

See SHDR 
SLIP/CMSET intercept interface routine 

function RTM-404 
space switch extension in RTM 

function RTM-4S4 
specify program interruption exit 

See SPIE 
specify task abnormal exit 

See STAE 
SPI (specify program interrupt) 

removal RTM-22 
process flow RTM-38 

SPIE (specify program interruption exit) 
control area RTM-li 
create processing RTM-80 
delete processing RTM-82 

SPIE control area 
See SCA 

SPIE/ESPIE (specify program interruption 
exit/extended specify program 
interruption exit) 

checkpoint/restart processing RTM-92 
control block overview RTM-19 
exit processing 

function RTM-64 
processing RTM-IO 

function RTM-80 
program interruption processing 

function RTM-68 
SRB processing 

function RTM-66 
termination resource manager RTM-90 

SRB (service request block) 
to task percolation 

RTM process flow RTM-22 
SRIFRR 

entry point 
See IEAVTSRI 

SRI RETRY 
entry point 

See IEAVTSRI 

LY28-173S-0 (c) Copyright IBM Corp. 1987 

STAE (specify task abnormal exit) 
services RTM-8 

STAE control block 
See SCB 

STAE/ESTAE 

STE 

service routine 
function RTM-70 

in SLIP debugging RTM-lS 
step termination RTM-6 
STERM 

entry point 
See IEAVTRTl 

error processing RTM-2l 
RTM process flow RTM-2l 

service RTM-S 
STKE 

format RTM-104 
storage dump RTM-7 
STRACE 

action keyword RTM-444 
subtask termination RTM-6 
SVCD 

action keyword RTM-442 
SVCERR 

entry point 
See IEAVTRTl 

synchronize failing tasks in RTM 
function RTM-224 

system-directed task termination 
function RTM-2S2 

SYSl.LOGREC 
written to by IEAVTRET RTM-193 

task 
purge 

processing, in RTM, 
function RTM-382 

resource managers, in RTM, 
function RTM-386 

termination RTM-6 
term exits RTM-6 
TRACE 

action keyword RTM-440 
trap checking 

SLIP RTM-396 
TRDUMP 

action keyword RTM-440 

WAIT 
action keyword RTM-442 

WSACRTMK 
process flow RTM-2S, RTM-26 

XABTERM 
entry point 

See IEAVTRTl 
XSB (extended status block) 

format RTM-I04 

Index 1-7 



I-8 MVS/XA SLLI Recov Term Mgmt 

II Restricted Materials o'f IBM" 
Licensed Materials - Property o'f IBM 

LY28-173S-0 (c) Copyright IBM Corp. 1987 



MVS/Extended Architecture 
System Logic Library: 
Recovery Termination 
Management 

L Y28-1735-O 

READER'S 
COMMENT 
FORM 

"Ibis manual is part of a library that serves as a reference source for systems analysts, programmers, 
and operators of IBM systems. You may use this fonn to communicate your comments about this 
publication, its organization, or subject matter, with the understanding that IBM may use or distribute 
whatever jnfonnation you supply in any way it believes appropriate without incurring any obligation to 
you. 

Note: Copies of IBM publication ... are not stocked at the location to which this fonn is addressed. Please 
direct any requests for copies of publications, or for assistance in using your IBM system, to your IBM 
representative or to the IBM branch office serving your locality. 

Possible topics for comment are: 

Clarity Accuracy Completeness Organization Coding Retrieval Legibility 

If you wish a reply, give your name, company, mailing address, and date: 

What is your occupation? 

How do you use this publication? 

Number of latest Newsletter associated with this publication: 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an 
IBM office or representative will be happy to forward your comments or you may mail directly to the 
address in the Edition Notice on the back of the title page.) 



MVS/Extended Architecture System Logic Library: Recovery Termination Management 

"Restricted Materials of IBM" 
All Rights Reserved 
Licensed Materials - Property of IBM 
(Except for Customer- Originated Materials) 
OCopyright IBM Corp. 1987 
LY28-1735-0 

Reader's Comment Form 

S370-36 

o ... 
.." o 
0: 
> 
0" 
:l 
.0 

c: 
:l 

'" 
i 

Fold and tape Please Do Not Staple Fold and tope I 
--------------------------------------------------------------------------------------------------------------------------------------~ 

Fold and tope 

--.-. ~ _--.. ......... - ---...------ ....... -~---- ---=~=~=® 

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y. 

POSTAGE WILL BE PAID BY ADDRESSEE 

International Business Machines Corporation 
Department 058, Building 921-2 
PO Box 390 
Poughkeepsie, New York 12602 

NO POSTAGE 
NECESSARY 
IF MAILED 

IN THE 
UNITED STATES 

1",11"1,1,,11,,1,11,1,1,1,1,,1,,1111111,1111,,,1,1 

Please Do Not Staple Fold and tope 

Printed in U.S.A. 



MVS/Extended Architecture System Logic Library: Recovery Termination Management 

"Restricted Materials of IBM" 
All Rights Reserved 
Licensed Materials - Property of IBM 
«=Copyright IBM Corp. 1987 
LY28-1735-0 

--- ------- ...... ~ ------. -~-- -- ---=="= ~ =® 

S370-36 

Printed in U.S.A. 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	451
	452
	453
	454
	455
	456
	457
	458
	I-01
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	replyA
	replyB
	xBack

