
Systems

GC33-4010-4
File No. S370-21 (OS/VS,DOS/VS,VM/370)

OS/VS-DOS/VS-VM/370
Assembl'er Language

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Fifth Edition (January, 1975)

This is a reprint of GC33-4010-3 incorporating changes
released in the following Technical Newsletter:

GN33-8185 (dated October 15, 1974)

This edition applies to Release 4 of OSjVS1, Release 3 of
OS/VS2, and Release2 of VM/370, and Release 31 of DOSjVS
and to all other releases until otherwise indicated in new
editions or Technical Newsletters.

Changes are continually made to the information herein;
before using this publication in connection with the operation
of IBM systems, consult the IBM System/360 and Systemj370
Bibliography, GA22-6822, for the editions that are appl~cable
and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

A form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBM Nordic Laboratory, Product
Communications, Box 962, S-181 09 Lidingo 9, Sweden.
Comments become the property of IBM.

@Copyriqht International Business Machines Corporation 1972, 1973, 1974

ii

Read This First

This manual describes the OSjVS - DOSjVS - VM/370 assembler language.

The OSjVS - VM/370 assembler language offers the following improvements
over the OS/360 assembler language as processed by the F assembler:

1. New instructions and functions

2. Relaxation of language restrictions on character string lengths,
attribute usage, SET symbol dimensions, and on the number of entries
allowed in the External Symbol Dictionary

3. New system variable symbols

4. New options: for example, for the printing of statements in the
program listings or for the alignment of constants and areas.

The figure on the following pages lists in detail these assembler
language improvements and indicates the sections in the manual where the
instructions and functions incorporating these improvements are
described. If you are already familiar with the OS/360 assembler
language as processed by the F assembler, you need only read those
sections. Also included in the figure on the following pages are the
improvements of the DOSjVS assembler language over the DOS/360 assembler
language as processed by the D assembler.

NOTE: Sections I through L, describing the macro facility and the
conditional assembly language, have been expanded to include more
examples and detailed descriptions.

Note for VMj370 Users

The services provided by the OS Linkage Editor and Loader programs are
paralleled in VM/370 by those provided by the CMS Loader. Therefore,
for any reference in this publication to those OS programs, you may
assume that the CMS Loader performs the same function.

Certain shaded notes in this publication refer to "OS only" information.
Where you see these notes you may assume the information also applies
for VM/370 users.

iii

Page of GC33·4010·4
Revised Feb. 25, 1975
By TNL: GN33·8193

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

-- COMPARISON OF ASSEMBLERS
-'

Language Feature Assemblers

DOS/360 (D) DOS/VS OS/360 (F)
1------.

1. No of continuation lines allowed in 1 2 2
one statement

2. Location Counter value printed for 3 bytes 3 bytes 3 bytes
EOU, USING~ ORG (in ADDR2 field)

3. Self-Defining Terms
224_1 224_1 224_1 maximum value:

number of digits
binary: 24 24 24
decimal: 8 8 8
hexadecimal: 6 6 6
character: 3 3 3

4. Relocatable and Absolute Expressions
unary operators allowed: no yes no
value carried: truncated to truncated to truncated to

24 bits 24 bits 24 bits
number of operators: 15 15 15
levels of parentheses: 15 15 15

5. Alignment of Constants ALiGN/ constants constants
(with no length modifier) when NOALIGN not aligned aligned
NOALIGN option specified: option not

allowed

6. Extended Branching Mnemonics
for R R format instructions: no yes no

7. COpy Instruction
nesting depth allowed: none 3 none
macro definitions copied: no yes no

8. END Instruction

generated or copied END
instructions: no no no

9. All control sections initiated by a no yes no
CSECT start at location a in listing
and object deck

10. External Symbol Dictionary Entries
maximum allowed: 255 255 255

11. DSECT Instruction blank name entry: no yes no

12. DROP Instruction not allowed signifies all not allowed
blank operand entry: current base

registers
dropped

13. EOU Instruction
second operand as length attribute: no no no
third operand as type attribute: no no no

14. DCIOS Instruction; one multiple multiple
number of operands:

iv

•

OS/VS -
Described in

VM/370

2 B1B

4 bytes C4B
(up to 3
leading zeros
suppressed)

231 _1
C4E

32
10
8
4

C6B
yes
31 bits

19
19

constants 02
not aligned

D1H
yes

E1A
5
yes

yes El

no E2C

E2G
399
(including
entry symbols
identified by
ENTRY)

yes E3C

signifies all F1B
current base
registers
dropped

G2A
yes
yes

multiple G3B

COMPARISON OF ASSEMBLERS

Language Feature Assemblers

OSNS- Described in
DOS/360 (D) DOS/VS OS/360 (F) VM/370

"'-

15. Bit-length specification allowed: no yes yes yes G3B

16. Literal Constants G3C
multiterm expression for
duplication factor: no yes no yes
length, scale, and
exponent modifier: no yes no yes
Q.. or S-type address constant: no no no yes

17. Binary and Hexadecimal Constants G3D
number of nominal values: one one one multiple G3F

18. a-type address constant allowed: no no yes yes G3M

19. ORG Instruction sequence symbol sequence symbol sequence symbol any symbol H1A
name entry allowed: or blank or blank or blank or blank

20. Literal cross-reference: no yes no yes H1B

21. CNOP Instruction sequence symbol sequence symbol only sequence any symbol H1C
symbol as name entry: or blank or blank symbol or blank or blank

22. PRINT Instruction
inside macro definition: no yes no yes H3A

23. TITLE Instruction H3B
number of characters in name
(if not a sequence symbol): 4 4 4 8

24. OPSYN Instruction: no no yes yes H5A

25. PUSH and POP Instructions H6
for saving PRINT and USING status: no no no yes

26. Symbolic Parameters and
Macro Instruction Operands

maximum number: 100 200 200 no fixed J2C
maximum K1B

mixing positional and keyword: all positional all positional all positional keyword param- J3C
Parameters parameters parameters eters or operands K3C
or operands or operands or operands can be inter-
must come must come must come spersed among
first first first positional param

eters or operands

27. Generated op-codes START, CSECT, J4B
DSECT, COM allowed no yes no yes

28. Generated Remarks due to generated J4B
blanks in operand field: no no no yes

29. MNOTE Instruction J5D
in open code: no no no yes

30. System Variable Symbols J7
&SYSPARM: yes yes no yes
&SYSDATE: no no no yes
&SYSTIME: no no no yes

31. Maximum number of characters in K5
macro instruction operand: 127 255 255 255

32. Type and Count Attribute of L1B
SET symbols: no no no yes
&SYSPARM, &SYSNDX,
&SYSECT, &SYSDATE, &SYSTIME: no no no yes

v

- COMPARISON OF ASSEMBLERS
I

Language Feature Assemblers Described in

DOS/360 (D) DOS/VS 08/360 (F) OS/V8 -
VM/37"

33. SET Symbol Declaration L2
global and 10cal mixed: no, global must no, global must no, global must yes

precede local precede local precede local
global and local must immedi-
ately follow prototype state-
ment, if in macro definition: yes yes yes no

must immediately follow any source
macro definitions, if in open code: yes yes yes no

34. Subscripted SET Symbols L2
maximum dimension: 255 255 2500 32,767

35, SETC Instruction L3B
duplication factor in operand: no no no yes
maximum number of characters
assigned 8 8 8 255

36, Arithmetic Expressions L4A
in conditional assembly

unary operators allowed: no yes no yes
number of terms: '16 16 16 up to 25
levels of parentheses: 5 5 5 up to 11

37, ACTR Instruction allowed anywhere no, only immedi- yes no, only immedi- yes L6C
in open code and inside macro ately after global ately after global
definitions: and local SET and local SET

symbol symbol
declarations declarations

38. Options for Assembler Program
ALIGN no yes yes yes 02
ALOGIC no no no yes L8
MCALL no no no yes J8B
EDECK no yes no no Guide to the

DOSIVS Assembler

MLOGIC no no no yes L8
LlBMAC no no no yes J8A

vi

Preface

This is a reference manual for the OSjVS - DOSjVS - VM/370 assembler
language. It will enable you to answer specific questions about
language functions and specifications. In many cases it also provides
information about the purpose of the instruction you refer to, as well
as examples of its use.

The manual is not intended as a text for learning the assembler language.

Who This Manual Is For

This manual is for programmers coding in the OSjVS - VM/370 or DOS/VS
assembler language.

Major Topics

This manual is divided into four main parts (aside from the
"Introduction" and the Appendixes) :

PART I (Sections B and C) describes the coding rules for, and the
structure of, the assembler language.
PART II (Section D) describes the machine instruction types and their
formats.
PART III (Sections E through H) describes the assembler instructions.
PART IV (Sections I through L) describes the macro facility and the
conditional assembly language.

How To Use This Manual

Since this is a reference manual, you should use the Index or the Table
of Contents to find the subject you are interested in.

Complete specifications are given for each instruction or feature of the
assembler language (except for the machine instructions, which are
documented in principles of Operation, see "References You May
Need"). In many cases a "Purpose" section suggests why you might use
the feature; a "how-to" section explains use of a complex feature; and
one or more figures give examples of coding an instruction.

If you are a present user of the OS Assembler F or the DOS Assembler D,
you need only read those sections listed in the table preceding this
"Preface", which indicates those language features that are different
from the DOS or OS System/360 languages.

vii

'TA.BS: Tabs mark the beginning of the specifications portion of the
language descriptions. Use the tabs for quick referencing.

Tab - USING

!OS-DOS DIFFERENCES: Wherever the OS/VS and DOS/VS assembler languages
differ, the specifications that apply only to one assembler or the other
are so marked. The 'OS only' markings also apply for the VM/370
assembler.

KEYS: The majority of figures are placed to the right of the text that
dE!scribes them. Numbered keys within a figure are duplicated to the
lE!ft of the text describing the figure. Use the numbered keys to tie
the underlined passages in the text to specific parts of the figure.

Key- •

GLOSSARY: The glossary at the back of the manual contains terms that
apply to assembler programming specifically and to allied terms in data
processing in general. You can use the Glossary for terms that are
unfamiliar to you.

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
St:andard Vocabulary for Information Processing, which was prepared by
Subcommittee X3.S on Terminology and Glossary of American National
St:andards Commi ttee X3.

References You May Need

You may want to refer to

~stem/370 Principles of Operation, Order No. GA22-7000

for information on the functions of the machine instructions of the
assembler language and to

OS/VS - VM/370 Assembler Programmer's Guide, Order No. GC33-4021

for detailed information about the OSjVS - VM/370 Assembler.

Guide to the OOS/VS Assemble~, Order No. GC33-4024

for detailed information about the DOSjVS Assembler.

viii

SECTION A: INTRODUCTION • • • • • • •• 1

WHAT THE ASSEMBLER DOES • • •• 1
A1 -- THE ASSEMBLER LANGUAGE • • • •• 2

Machine Instructions • 2
Assembler Instructions • • • • • 3
Macro Instructions • • • • • •• 3

A2 THE ASSEMBLER PROGRAM • • • • 3
A2A -- Assembler processing Sequence 4

Machine Instruction Processing. 5
Assembler Instruction processing 5
Macro Instruction processing •• 8

A3 -- RELATIONSHIP OF ASSEMBLER TO
OPERATING SYSTEM • • • • • • •• 9

Services Provided by the
Operating System • • • • • 9

A4 -- CODING AIDS ••••••• '. 10
Symbolic Representation of
Program Elements • • • • • • • • 10
Variety of Data Representation • 10
Controlling Address Assignment • 10
Relocatability ••••••••• 11
Segmenting a program •••••• 11
Linkage Between Source Modules. 11
Program Listings •••••••• 11

PART I: CODING AND STRUCTURE • • • •• 13

SECTION B: CODING CONVENTIONS • • • • • 15
Standard Assembler Coding Form • 15

B1 CODING SPECIFICATIONS • • • • 16
B1A -- Field Boundaries • • • • 16

The Statement Field ••• • 16
The Identification-Sequence
Field • • • • • • • • • • 17
The Continuation Indicator
Field • • • • • • • • • • • • • 17
Field Positions • • • • • • 17

B1B -- Continuation Lines • • • •• 18
B1C -- Comments Statement Format •• 19
B1D -- Instruction Statement Format 20

Fixed Format • • • • • • • • • • 20
Free Format • • • • • • • • •• 20
Formatting Specifications • •• 21

SECTION C: ASSEMBLER LANGUAGE STRUCTURE 25

C1 -- THE SOURCE MODULE • • • • • • • • 26
C2 -- INSTRUCTION STATEMENTS • • • •• 26

C2A -- Machine Instructions • • •• 29
C2B -- Assembler Instructions • •• 30

Ordinary Assembler Instructions 30
Conditional Assembly
Instructions • • • • • • • • • • 32

C2C -- Macro Instructions • • • •• 33
C3 -- CHARACTER SET • • 34
C4 -- TERMS • • • • • • • • • • • • • • 36

C4A i- Symbols • • • • • • • • • • • 36
Symbol Definition • • • • • •• 38
R~strictions on Symbols • • •• 40

C4B -- Location Counter Reference. 41

ix

Contents

C4C Symbol Length Attribute
Reference • • • • • • • 44

C4D Other Attribute References. 46
C4E Self-Defining Terms • • • • • 46

C5 -- LITERALS • • • • • • • • • • •• 50
C6 -- EXPRESSIONS • • • • • • • • • • • 53

C6A -- Purpose • • • • • • • • • • • 53
C6B -- Specifications • • • • 55

Absolute and Relocatable
Expressions • • • • • • • 56
Absolute Expressions • • • • • • 57
Relocatable Expressions • • •• 58
Rules for Coding Expressions • • 59
Evaluation of Expressions • 60

PART II: FUNCTIONS AND CODING OF
MACHINE INSTRUCTIONS • • • • • 61

SECTION D: MACHINE INSTRUCTIONS • • 63

D1 -- FUNCTIONS • • • • • • • • • • 63

D2
D3
D4
D5

D6

D1A -- Fixed-Point Arithmetic • • • 64
Operations Performed • • • • • • 64
Data Constants Used • 64

D1B -- Decimal Arithmetic • • • •• 65
Operations Performed • • • •• 65
Data Constants Used • • • • •• 65

D1C -- Floating-Point Arithmetic •• 66
Operations Performed • • • • • • 66
Data Constants Used • • • • •• 66

D1D -- Logical Operations • • • •• 67
Operations Performed 67

D1E -- Branching • • • • • • • • • • 68
Operations Performed • • • • • • 68

D1F -- Status Switching • • • • •• 69
Operations Performed • • • • • • 69

D1G -- Input/Output • • • • • • •• 71
Operations Performed • • • • • • 71

D1H -- Branching with Extended
Mnemonic Codes • • • • • •• 72

D1I -- Relocation Handling • • 74
ALIGNMENT • • • • • • • • • • • • 75
STATEMENT FORMATS • • • • • • • • 78
MNEMONIC OPERATION CODES • • •• 79
OPERAND ENTRIES • • • • 80

General Specifications for
Coding Operand Entries • 80

D5A -- Registers • • • • • • 82
Purpose and Usage • • • • • •• 82
Specifications • • • • • • • • • 82

D5B -- Addresses • • • • • • • • • • 84
purpose and Definition ••••• 84
Relocatability of Addresses •• 85
Specifications • • • • • • • 86
Implicit Address • ~ • • • • • • 87
Explicit Address • • • • • • • • 87

D5C -- Lengths • • • • • • • • • • • 88
D5D -- Immediate Data • • • • • 90

EXAMPLES OF CODED MACHINE
INSTRUCTIONS •

RR Format •
RX Format ••

92
92
93

RS Format • • • • • • • • • •• 94
SI Format • • • • • • • • • •• 95
S Format • • • • • • • • • • • • 96
SS Format • • • • • • • • 97

PART III: FUNCTIONS OF ASSEMBLER
INSTRUC'J~IONS • • • • • • • • • • • 99

SECTION E: PROGRAM SECTIONING • • 101

E1 -- THE SOURCE MODULE • • • • • 102
'J~he Beginning of a Source
Module • • • • • • • • • • •• 102
'J~he End of a Source Module ... 102

E1A _.- The COpy Instruction 103
E1B .. - The END Instruction • • ... 105

E2 - - G l~NERAL INFORMAT ION ABOUT CONTROL
Sl~CTIONS •••••••••••• 107

E2A _.- At Different processing
Times • • • • • • • • • •• 108

E2E .. - Types ••••••••••• 110
Executable Control Sections •• 110

E2C
E2D
E2E:
E2P'

E2G

Heference Control Sections.. 110
Location Counter Setting •• 111
First Control Section. •• 113
The Unnamed Control Section 115
Literal pools in Control
Sections •••••••••• 115
External Symbol Dictionary
Entries • • • • • • • • • •

E3 -- DJe:FINING A CONTROL SECTION • • •
116
117
117
119
121

E3J1,
E3B
E3C

E3D

The START Instruction •
._- The CSECT Instruction •
... - The DSECT Instruction •
How to Use a Dummy Control
Section • • • • • • • • • • • •
Specifications • • • • • • • •
.-- The COM Instruction • • • •
How to Use a Common Control

121
122
124

Section • • • .. • • • • • • • • 124
Specifications • • • • • • •• 125

E4 -- EXTERNAL DUMMY SECTIONS • • •• 127
Generating an External Dummy
Section • • • • • • • • • • • • 127
How to Use External Dummy
Sections • • • • • • • • • •• 128

E5 DEFINING AN EXTERNAL DUMMY
SECTION • • • • • • • • •• 130

E51i -- The DXD Instruction • 130
E5B -- The CXD Instruction 131

SECTION F: ADDRESSING •••••••• 133

F1 -- ADDRESSING WITHIN SOURCE MODULES:
ESTABLISHING ADDRESSABILITY •• 133

How to Establish Addressability 134
F1li -- The USING Instruction • •• 134

The Range of a USING
Instruction • • • • • • 135
The Domain of a USING
Instruction • • • • • • 135
How to Use the USING
Instruction • • • • • 137
Specifications for the USING
Instruction •••••••••• 141

x

F1B -- The DROP Instruction • .' • • 144
F2 ADDRESSING BETWEEN SOURCE MODULES:

SYMBOLIC LINKAGE • • • • •• 147
How to Establish Symbolic
Linkage • • • • • • • • • • 147

F2A The ENTRY Instruction • 150
F2B The EXTRN Instruction • •• 151
F2C -- The WXTRN Instruction • •• 152

SECTION G: SYMBOL AND DATA DEFINITION 153

G1 -- ESTABLISHING SYMBOLIC

G2

REPRESENTATION ••••••••• 153
Assigning Values .. • • • • •• 154
Defining and Naming Data • •• 154

DEFINING SYMBOLS • • • • • • • • 155
G2A -- The EQU Instruction • • •• 155

G3 -- DEFINING DATA • • .. • • • • •• 161
G3A -- The DC Instruction • • • • • 162
G3B -- General Specifications for

G3C
G3D
G3E
G3F
G3G

G3H
G3I

G3J

G3K
G3L
G3M
G3N

Constants • • • • • • • •• 163
Rules for the DC Operand • •• 164
Information about Constants • • 165
padding and Truncation
of Values • • • • • • • • • • • 167
Subfield 1: Duplication Factor 168
Subfield 2: Type. • • • • •• 169
Subfield 3: Modifiers ••••• 170
Subfield 4: Nominal Value ••• 179

Literal Constants • • • •• 180
Binary Constant (B) • • •• 181
Character Constant (C). 182
Hexadecimal Constant (X) • • 184
Fixed-Point Constants
(H and F) • • • • • • • •• 186
Decimal Constants (P and Z) 188
Floating-Point Constants
(E, D and L) • • • • • • • • 190

The A-Type and Y-Type Address
Constants • • • • • • • •• 194
The S-Type Address Constant 196
The V-Type Address Constant 198
The Q-Type Address Constant 200
The DS Instruction • • • • • 201

How to Use the DS Instruction • 201
Specifications • • • • • • •• 206

G30 -- The CCW Instruction • • •• 209

SECTION H: CONTROLLING THE ASSEMBLER
PROGRAM. • • • • • • • • • • 211

H1 -- STRUCTURING A PROGRAM. 211
H1A -- The ORG Instruction • 212
H1B -- The LTORG Instruction • 214

The Literal Pool • • • • • 215
Addressing Considerations ••• 216
Duplicate Literals • • • • •• 217
Specifications • • • • • • •• 217

H1C -- The CNOP Instruction • • 218
H2 -- DETERMINING STATEMENT FORMAT AND

SEQUENCE • • • • • • • • • • 219
H2A -- The ICTL Instruction •• 219
H2B -- The ISEQ Instruction •• 221

H3 -- LISTING FORMAT AND OUTPUT • 222
H3A -- The PRINT Instruction • •• 222

H3B -- The TITLE Instruction 224
H3C -- The EJECT Instruction • 227
H3D -- The SPACE Instruction • 228

H4 -- PUNCHING OUTPUT CARDS • • • 228
H4A -- The PUNCH Instruction • 228
H4B -- The REPRO Instruction • 231

H5 -- REDEFINING SYMBOLIC OPERATION
CODES • • • • • • • • • • • •• 232

H5A -- The OPSYN Instruction • •• 232
H6 -- SAVING AND RESTORING PROGRAMMING

ENVIRONMENTS • • • • • • • • • • 234
H6A The PUSH Instruction • • • • 234
H6B -- The POP Instruction • • •• 234
H6C -- Combining PUSH and POP • • • 235

PART IV: THE MACRO FACILITY • • • •• 237

SECTION I: INTRODUCING MACROS •••• 239

Using Macros • • • • • • • •• 240
The Easic Macro Concept • • • • 243
Defining a Macro • • • • • •• 245
Calling a Macro • • • • • • • • 246
The Contents of a Macro
Definition • • • • • • • • 248
The Conditional Assembly
Language • • • • • 250

SECTION J: THE MACRO DEFINITION ••• 251

J1 -- USING A MACRO DEFINITION • • 251
J1A -- purpose. • • • • • • • •• 251
J1B -- Specifications • 252

Where to Define a Macro in a
Source Module • • • 252
Open Code • • • • • • • • 252
The Format of a Macro
Definition • • • • • • • • •• 253

J2 PARTS OF A MACRO DEFINITION •• 254
J2A The Macro Definition Header 254
J2B -- The Macro Definition Trailer 254
J2C -- The Macro Prototype Statement:

Coding • • • • • • • • • • • 255
Alternate Ways of Coding the
Prototype Statement • • • • • • 256

J2D -- The Macro prototype Statement:
Entries • • • • • • • • •• 256

The Name Entry • • • • • • •• 256
The Operation Entry • • • • 257
The Operand Entry • • • • • • • 258

J2E -- The Body of a Macro
Definition • • • • • • • • • 259

J3 -- SYMBOLIC PARAMETERS • • • • •• 260
General Specifications • • •• 260
Subscripted Symbolic Parameters 261

J3A positional Parameters • •• 262
J3B -- Keyword Parameters • • • • • 263
J3C -- Combining positional

and Keyword Parameters • 265
J4 -- MODEL STATEMENTS •••••••• 266

J4A -- Purpose • • • • • • • • •• 266
J4,B -- Specifications ••••••• 266

Format of Model Statements 266
Variable Symbols as Points of
Substitution • • • • • • • •• 267
Rules for Concatenation • • • • 268
Rules for Model Statement
Fields • • • • • • • • • • •• 269

J5 -- PROCESSING STATEMENTS • • • •• 272
J5A Conditional Assembly

Instructions • • • • • • • • 272
J5B Inner Macro Instructions • • 272
J5C The COpy Instruction • • • • 272
J5D The MNOTE Instruction • 273
J5E The MEXIT Instruction • 276

J6 -- COMMENTS STATEMENTS • • • • 277
J6A -- Internal Macro Comments

Statements • • • • • • • • • 277
J6B -- Ordinary Comments Statements 277

J7 -- SYSTEM VARIABLE SYMBOLS • • •• 278
J7A &SYSDATE • • • • • • • • • • 279
J7B &SYSECT.......... 280
J7C &SYSLIST •••••••••• 281
J7D &SYSNDX.......... 284
J7E &SYSPARM.......... 284
J7F &SYSTIME • • • • • • • • • • 287

J8 -- LISTING OPTIONS • • • • • • •• 287
J8A -- LIBMAC • • • • • • • • • • • 287
J8B -- MCALL • • • • • • • • • •• 288

SECTION K: THE MACRO INSTRUCTION • • • 289

K1 -- USING A MACRO INSTRUCTION • •• 289
K1A -- Purpose • • • • • • • • •• 289
K1B -- Specifications ••••••• 290

Where the Macro Instructions can
Appear • • • • • • • • • • 290
Macro Instruction Format • •• 290
Alternate Ways of Coding a Macro

K2
Instruction • • • • • • • • • • 291

ENTRIES • • • • • • • • • • •• 292
K2A -- The Name Entry • • • • • • • 292
K2B -- The Operation Entry • • •• 293
K2C -- The Operand Entry • • • •• 293

K3 -- OPERANDS • • • • • • • • • • • • 294
K3A positional Operands • • •• 294
K3B -- Keyword Operands • • • • 296
K3C -~ Combining Positional

and Keyword Operands •
K4 -- SUBLISTS IN OPERANDS • • •
K5 -- VALUES IN OPERANDS • • • •

• 299
300
302

K6 -- NESTING IN MACRO DEFINITIONS • • 307
307 K6A -- Purpose • • • • • •

Inner and Outer Macro
Instructions • • • • • • • •• 307
Levels of Nesting • • • • • • • 308
Recursion ••••••••••• 310

K6B -- Specifications ••••••• 311
General Rules and Restrictions 311
Passing Values through Nesting
Levels • • • • • • • • • • •• 312
System Variable Symbols in
Nested Macros • • • • • • • • • 314

SECTION L: THE CONDITIONAL ASSEMBLY
LANGUAGE •

L1 -- ELEMENTS AND FUNCTIONS
L1A -- SET Symbols • • • • • •

The Scope of SET Symbols •
Specifications • • • • • •
Subscripted SET Symbols -
Specifications • • • •

L1B -- Data Attributes ••••
What Attributes Are. • • •

317

••• 317
318
319
320

L1C -- Sequence Symbols • • • • • •

322
323
323
334

xi

L2 -- DECLARING SET SYMBOLS • • • •• 336
L2A The LCLA, LCLB, and LCLC

Instructions • • • • • • • • 336
L2B -- The GBLA, GELB, and GBLC

Instructions • • • • • • • • 340
L3 -- ASSIGNING VALUES TO SET SYMBOLS 343

L3A -- The SETA Instruction • • • • 343
L3B -- The SETC Instruction • • • • 345
L3C -- The SETB Instruction • • • • 347

L4 -- USING EXPRESSIONS • • • • • •• 349
L4A Arithmetic (SETA)

Expressions • • • • • • •• 349
L4B -- Character (SETC) Expressions 355
L4C -- Logical (SETE) Expressions • 359

L5 -- SELECTING CHARACTERS
E'ROM A STRING • • • • • • • •• 364

L5A -- Substring Notation • • • • • 364
L6 -- BRANCHING • • • • • • • • • 367

L6A The AIF Instruction ~ • •• 367
L6B -- The AGO Instruction • • •• 369
L6C -- The ACTR Instruction • • 370
L6D -- The ANOP Instruction • • • • 373

L7 -- IN OPEN CODE • • • • • • • • • • 374
L7A -- Purpose. • • • • • • • •• 374
L7B -- Specifications • • • • • • • 374

La -- IJISTING OPTIONS • • • • • • •• 376

APPENDIX I: CHARACTER CODES • • .377

APPENDIX II: HEXADECIMAL-DECIMAL
CONVERSION TABLE 383

APPENDIX III: MACHINE INSTRUCTION
FORMAT • • • • • •• 389

APPENDIX IV: MACHINE INSTRUCTION
MNEMONIC OPERATION
CODES • • • • • • • 391

APPENDIX V: ASSEMBLER INSTRUCTIONS • 407

APPENDIX VI: SUMMARY OF CONSTANTS •• 411

APPENDIX VII: SUMMARY OF MACRO
FACILITY ••

GLOSSARY

• 413

• • • 421

INDEX • • • • • • • • • • • • • • •• 437

xii

Section A: Introduction

What the Assembler Does

A computer can understand and interpret only machine
language. Machine language is in binary form and, thus,
very difficult to write. The assembler language is a
symbolic programming language that you can use to code
instructions instead of coding in machine language.

Because the assembler language allows you to use meaningful
symbols made up of alphabetic and numeric characters instead
of just the binary digits 0 and 1 used in the machine
language, you can make your coding easier to read,
understand, and change.

The assembler must translate the symbolic assembler language
into machine language before the computer can execute your
program, as shown in the figure below.

CODING SHEETS

or

TERMINAL

LISTINGS

ASSEMBLER

Main Storage of
COMPUTER

SOU RCE MODU LE
Assembler Language Input

OBJECT MODULE
Machine Language Output

LOAD MODULE

Section A: Introduction 1

Assume that your program, wri tten i,n the assembler language,
has been punched into a deck of cards called the sou:oce
deck. This deck, also known as a source module, is the
input to the assembler. (You can also enter a source
module as input to the assembler through a terminal.)

The assembler processes your source module and produces
an object module in machine language (called Qbject ccde) •
ASSUIne that the assembler punches this object module into
a deck of cards called the object deck.;

The IObject deck or object module can be used as input to
be p:t:'ocessed by another processing program, called the
linkage editor. The linkage editor produces a load nodule
that can be loaded later into the main storage of the
computer, which then executes the program. Your source
module and the object code produced is printed, along wi tb
other information on a program listing.

Al - The ~~ssembler Language

2

ThE~ i3ssembler language is the sym'tolic programming language
that lies closest to the nachine language in form and
contlS!nt. You will, therefore, find the asserr.bler language
useful when:

• You need to control your program closely, down to the
by·te and even bit level or

• You must write subroutines for functions that are not
provided by other symbolic programming languages such as:
ALGOl., COBOL, FORTRAN, or PLjI.

The ,assembler language is made up of statements that
reprcesent instructions or comments. The instruction
statements are the working part of the language and are
divided into the following three groups:

1. Machine instructions

2. Assembler instructions

3. Macro instructions.

Machine Instructions

A mclchine instruction is the symbolic representation 0 f
a machine language instruction of the IBM SysterrV370
inst:ruction set. It is called a machine instruction because
the assembler translates it int.o the machine language code
which the computer can execute. Machine instructions are
described in PART II: SECI'ION r: of this manual.

Assembler Instructions

An assembler instruction is a request to the asserobler
program to perform certain opera tions during the assembly
of a source module, for example, defining data constants,
defining the end of the source module, and reserving storage
areas. Except for the instructions, that define constants,
the assembler does not translate assembler instructions
into object code. The assembler instructions are described
in PARI' III; SECl'IONS E, F', G, and H and PART IV; SECTIONS
J, K, and L of this manual.

Macro Instructions

A macro instruction is a request to the assembler program
to process a predefined sequence of code called a macro
definition. From this definition, the assembler generates
machine and assembler instructions which it then J.:roce sses
as if they were part of the original input in the source
module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that you can call
for processing by coding the required macro instruction.
~hese IBM-supplied macro instructions are not described
in this manual.)

You can also prepare your own macro definitions and call
them by coding the corresponding macro instructions. This
macro facility is introduced in PART IV; SECTION I. A
complete description of the macro facility, including the
macro definition, the macro instruction and the conditional
assembly language, is given in PART IV; SECTIONS J, K, and
L.

A2 - The Assembler Program

The assembler pIOgram, also referred to as the "assembler",
processes the machine, assembler, and macro instructions
you have coded in the assembler language and produces an
object module in machine language.

Section A: Introduction 3

A2A - ASSE~1BLER PROCESSING SEQUENCE

4

The assembler processes the three types of assefubler
language instructions at different times during its
prcjcl~ssing sequence. You should be aware of the assembler I s
procl~ssing sequence in order to code your program correctly.
The figure below relates the assembler processing sequence
to the other times at which your program is processed and
eXElcuted •

.. 1 __ .. __ .. .,

TIMES

Coding
Time

Pre-Assembly
Time

Assembly
Time

Linkage
Edit
Time

Program
Fetch
Time

Execution
Time

PROGRAMMER

ASSEMBLER

• LINKAGE
EDITOR

LOADER

• can combine
linkage editing
and loading
operations
OS only

• CPU of
COMPUTER

..
The assembler processes most instructions on two occasions;

• fir~;t at ere-assembly time and later at assembly time. •
HowE~ver, 1t does some processing, for example, macro
proc:essing, only at pre-assembly time.

The assembler also produces information for other

•
processors. The linkage editor uses such information at
lin}c.age-edit time to combine object modules into load
iiiO,mlles. The loader loads your program (combined load

O
modules) into virtual storage (see GLOSSARY) at program

· fetch time. Finally, at execution time, the computer
executes the object code produced by the assembler at
assE:!mbly time. •

Machine Instruction Processing

The assembler processes all machine instructions and
translates them into object code at assembly time, as shown
in the figure below.

TIMES

Linkage
Edit

Program
Fetch

Execution

Machine
Instructions

Assembler Instruction Processing

Coded

Assembled
into
object code

Executed

Assembler instructions are divided into two wain types:

1. Ordinary assembler instructions

2. Conditional assembly instructions and the macro
processing instructions (MACRO, MEND, MEXIT and MNO'I~ •

Section A: Introduction 5

6

• ~le assembler processes ordinary assemtler instructions
at: .~ssembly time, as shown in the figure below •

TIMES

Coding

Pre-Assembly

Assembly

Linkage Edit

Program Fetch

Execution

NO'l'ES:

Ordinary
Assembler
Instructions and
assembly

•

time
expressions

DC
DS
CCW

• ENTRY
EXTRN
WXTRN
Address constants

•
1. The assembler evalua tes absolute and relocatable
expressions at assembly time; they are sometimes called
assembly time expressions.

~ 2. Some instructions produce output for processing after
assembly ti:roe.

PUNCH
REPRO

O
The assembler processes conditional assembly instructions
and macro processing instructions at pre-assembly time,
as shown in the figure below.

•
•

TIMES

Coding

Pre-Assembly

Assembly

Linkage Edit

Program Fetch

Execution

NOTES:

Conditional Assembly
(and macro processing)
instructions and

•

conditional assembly
ex ons

Fully
processed

• statements

1. The assembler evaluates the conditional assembly
expressions (arithmetic, logical, and character) at pre
assembly time.

2. The assembler processes the machine and assembler
instructions generated from pre-assembly processing at
assembly time.

Section A: Introduction 7

8

Macro Instruction Processing

•
... The assembler processes macro instructions at pre-assembly
~m~, as shown in the figure below.

TIMES

Coding

Pre-Assembly

Assembly

Linkage
Edit

Program
Fetch

Execution

Fully
Processed

Macro
Instructions

Macro
Definitions

Generated
Statements

N~rE: The assembler processes the machine and ordinary
• asuembler instructions generated from a macro definition

called by a macro instruction at assembly time.

ThE! assembler prints in a program listing all the
information it produces at the various processing tines
de ~;cribed in the above figures.

A3 - Relationship of Assembler to Operating System

The assembler is a programming component of the OS/VS,
VM/370, or DOS/VS. These system control programs provide
the assembler with the services:

• For assembling a source module and

• For running the assembled object module as a progIam.

In writing a source module you must include instructions
that request the desired service functions from the
operating system.

Services provided by the Operating System

OS/VS and DOS/VS provide the following services:

1. For assembling the source module:

a. A control program

b. Libraries to contain source code and macro
definitions

c. Utilities

2. For preparing for the execution of the assembler program
as represented by the object module:

a. A control program

b. Storage allocation

c. Input and output facilities

d. A linkage editor

e. A loader.

VM/370 provides the following services:

1. For assembling the source module:

a. An interactive control program

b. .Files to contain source code and macro defini tions

c. Utilities.

2. For preparing for the execution of the assembler programs
as represented by the object modules:

a. An interactive control program

b. Storage allocation

c. Input and output facilities

d. The eMS Loader.

Section A: Introduction 9

A4 -- Coding Aids

10

It. Gan be very difficult to write an assembler language
proqram using only machine instructions. The assembler
provides additional functions that make this task easier.
They are summarized below.

S}"mloolic Representa tion of Program Elements

Symbols greatly reduce programming effort and errers.
You can define symbols to represent storage addresses,
displacements, constants, registers, and almost any elereent
tha-t makes up the assembler language. These elements
include operands, operand subfields, terms, and expressions.
Symbols are easier to remember and code than numbers;
mor~~over, they are listed in a syml:ol cross- reference table
which is printed in the program listings. Thus, you can
easily find a symbol when searching for an error in your
codle.

V~r:Lety of rata Representation

You can use decima.l, binary, hexadecimal or character
representation which the assembler will convert fer you
into the binary values required by the machine language.

Controlling Address Assignment

If you code the appropriate assembler instruction, the
assembler will compute the displacement from a base address
of any symbolic addresses you specify in a machine
instruction. It will ins ert this displacement, along with
the base register assigned I:y ·the asseml:ler instruction,
in to the object code of the machine instruction.

At execution time, the object code of address references
must be in the base-displacement form. The computer 0 btains
the required address by adding the displacement te the
case address contained in the ba se register.

Relocatability

The assembler produces an object module that can be
relocated from an originally assigned storage area to any
other suitable virtual storage area without affecting
program execution. This is made easier because most
addresses are assembled in their base-displacement forrr.

Segmenting a Program

You can divide a source module into one or more control
sections. After assembly, you can include or delete
individual control sections from the resulting object
module before you load it for execution. Control sections
can be loaded separately into storage areas that are not
contiguous.

Linkage Between Source Modules

You can create symbolic linkages between separately
assembled source modules. This allows you to refer
symbolically from one source module to data defined in
another source module. You can also use symbolic addresses
to branch between modules.

Program Listings

The assembler produces a listing of your source module,
including any generated statements, and the object cede
assembled from the source module. You can control the
form and content of the listing to a certain extent. The
assembler also prints messages acout actual errors and
warnings about potential errors in your source module.

section A: Introduction 11

12

Part I: Coding and Structure

SECTION B: CODING CONVENTIONS

SECTION C: ASSEMBLER LANGUAGE STRUCTURE

13

14

Section B: Coding Conventions

This section describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements are usually written on a coding form
b~fore th~y are punched onto cards, or entered as source
statements through other forms of input (for example,
through terminals or directly onto tape) •

Standard Assembler Codinq Form

You can write assembler language statements on the standard
coding form (Order No. GX28-6509) shown below. ~he cclurrns
on this form correspond to the columns on a punched card
or positions on a source statement entered through a
terrrinal. ~he form has sface for program identification
and instructions to keypunch operators.

IBM IBM System 360 Assembler Codmg Form

14 16 20 26 30

*' A standard card form, IBM electro 6509. is av,1i1able for punching source statements from this form

Instructions for using this form are In any IBM Svsteml360 Assembler Reference Manual.

Address comments concerning tllis form to IBM Nordic Laboratorv, Pliblications Developmem,
Box 962 S - 181 09 Lidingo 9, Sweden.

GX28·6509·5 U!M 050

Printed in U.S.A.

Section B: Coding Conventions 15

Bl - Coding Specifications

16

B1A - FIELD BOUNDARIES

Assembler language statements usually cccu~y one 80-cclurrn
linE: en the standard ferm (for statements occupying more
than 80 columns, see Elf telow). Note that any }?rintable
character punched into any column of a card, or otherwise
entE~red as a" position in a source staterrent, is re~rcduced
in the listing printed ty the asserrtler. Each line of
th.e coding form is divided into three main fields:

~ The Statement field,

~ ~he Identification - Sequence field, and

• The Continuation Indicator field.

The Statement Field

The instructions and co:rr.ments s;taterr,ents rrust be written
in ·the statement field. ~he statement field starts in
the "begin" column and ends in the "end" cclun:n. Any
continuation lines needed must start in the "continue"
column and end in the "end" coluron. ~he asserrbler assu:rr.es
the fcllowing standard values for these columns:

~. The "begin" column is column 1

•• 'The "end" coluron is column 71, and

~. The "continue" column is column 16.

~hese standard values can be changed by using the ICTL
instruction. However, all references to the "begin",
"end", and "continue" columns in this manual refer to the
s1candard values descrited a1:ove.

IBM SY8tem 360 Assembler Coding Form

~oo ••• • -1 PUNWING I GRAPHIC -I
OATI!

INSTRUCTIONS r PUNCH I PA:::,wEFI

STAT&MENT

I
I

.... NIl"" ap..ttion

_
Com",.nll 2 • ,. 3. 360 50

A I~ E L OP COD OPE RA N 05
_ .. RE MA RK5 1 'I l-

i 61 CON TI NU AT ION L I NE5 MU 5 T 5T ART I N CO L U MN .. _ .

i

-
:

..
I I

·1
I

I I ,
1 - .-
"1

-1-- I-f--+- --
j

: ..

.. __ 1_'- _

T
I

.0 .,

Stmnt Field

GX28-6509·5 UIM 050

Printed in USA .

I _OF G-
CARD ~ CTAO NUMBER '*

I'
Ident.I,callon •

Sequence

" 73 80

D<

Ii
I I
I I

I

.l..
j

-- . +- .-
I

!

-
L

The Identification - Sequ:ence Field

The identification-sequence field can contain identification
characters or sequence numbers or both. If the ISEQ
instruction has been specified to check this field, the
assembler will verify whether or not the source statements
are in the correct sequence.

NOTE: The field the assembler normally checks lies in
columns 73 through 80. However, if the ICTL instruction
has been used to change the begin and end columns, the
boundaries for the identification-sequence field can be
affected.

The Continuation Indicator Field

The continuation indicator field occupies the column after
the end column. Therefore, the standard position for this
field is column 72. A non-blank character in this column
indicates that the current statement is continued on the
next line. This column must be blank if a statement is
completed on the same line: otherwise the assembler will
treat the statement that follows on the next line as a
continuation line of the current statement.

Field Positions

The statement field always lies between the begin and the
end columns. The continuation indicator field always lies
in the column after the end column. The identification
sequence field usually lies in the field after the
continuation indicator field. However, the ICTL
instruction, by changing the standard begin, 'end, and
continue columns can create a field before the begin column.
This field can then contain the identification-sequence
field.

Section B: Coding Conventions 17

BIB - CONTINUATION LINES

18

To continue a statement on another line, the following
applies:

Continuation

•
1. Enter a non-blank character in the continuation indicator
field (column 72). This non-blank character must not be

•
part of the statement coding. When more than one
continuation line is needed, a non-blank character must
be entered in column 72 of each line that is to be
continued.

2. Continue the statement on the next line, starting in
the continue column (column 16). Columns to the left of
thE! continue column must be blank.

Only two continuation lines are allowed for a single
assembler language statement. However, macro instruction
sta,tements and the prototype statement of macro defini tions
can have as many continua tion line s a s needed.

18"[IBM System. 360 Assembler Coding Form
GX28·6509·5 U/M 050

Printed In USA

~::::~ER ---r------------~-l:~~~. I DATe =t= 1-----+-1 -+-1 -+-1 +-1 +-1-J+---+---+-C-A-ROEL~.":'..-R·-ON_~~-~~_-~_--~
r--- ~.me OtMtr.nd

,--- +_+-+--1-+-+-+P,-+-,-U!,-,N+C,+H-+-1f-'t-t-+4-+-++-+--1-+-I+N-'+C-=-F-L !-=U+D+E=+-I-'-P+H+A-+=~~ 3.1-- I-- ~ __ 1--:-1-_1-- __ R. e.:.1"1 A .:.R'f-'K,+,S'+-t:C-IF0f-'N'lcT+I-I .:..:Nt=U~E:H~O+:.N'j_+_fX~+-H_-H_+-+-H :.* .. 1. ,. .•

: ::::=::::=:::~V::N:E:X:T:::L:I:N:E:=:::::~:=:::=~:::_+~-I __ -.. 'I-_.j.-+-._-++-_+-_+-_+I--+._ -j I-.. ~f-.+-+.....j..··· II_++-I.-I-++-+-I-l_+_:= :=~.~V+-I-"+4-1-++-+--11--f--1
~~~.~~~~~~~~~+ 
H-++·+H-+irl-H-+-H-+++1H-+-+-+-+++j++-+-+-H-+-+-+-I-++1++-++-I++++·++++-++-++-f-+·+-+-l-H--f-l+H-t--· .. 1--1--1--1- - -f--+-· 

H-++---ji--~-+-I-+-+-+-+--1I-+-++-t--l-l-+--+_+_~-l--I~+-+-I-;I-+-+--+-I-l- I----+--+-I--+--I---I--+-I~+_l_- +-11---1- j-++-t--I--f-+-+---t---t--t--t-+ .... - -- - -H-+-+-+-j-l-j--

r- ++-+-H-+++-lI--I-++f-+-I-++-+-+-++-H-+-+-+ -+- --" - ..... _- f-. .. ... ......- 1- - 1-1-· - -- .... - r- .-- f-f- - .---

.-- e-- --++--I-I-++++-l-l--H-+-+-+-HI-+-+ :1-- ~' +-+-+-+-++-++-+-+-+-+-+-+-++++++-+++-H-+ '1--f-- ··-·I-+-·~~··-I-..j. 
H- -+f-+-+++ +-++-j-t-+-+-t-H·-- - --+--- ---- .- - f- -+-I,--I-+-I---ji--I--I--r-+-I 

r- t +--l--~_I_-.j......j.._+_I__l_-I--I-l-I__l_·+-I--+--+-+_+_I-+ r-r--- I--c-I--. -1- - - -- ---
Li_~LL~~-LJ ______ L I , __ ~~~_L~~J_L~,~ 

• 



B1C - COMMENTS STATEMENT FORMAT 

Comments statements are not assemtled as part of the cbject 
module, but are only ~rinted in the assembly listing. 
As many comments statements as needed can be written, 
subject to the following rules: 

Comments 

• 
1. Comments statements require an asterisk in the begin 
column. 

• 

NOTE: Internal macro definition comments statements require 
a period in the begin column, followed by an asterisk (for 
details see J6A). 

2. Any characters, including blanks and special characters, 
of the IBM System/370 Character Set (see C3) can te used. 

3. Comments statements must lie in the statement field 
and not run over into the continuation indicator field; 
otherwise the statement fcllowing the comments statement 
will be considered as a continuation line of that COIurents 
statement. 

4. Comments statements must not appear between an 
instruction statement and its continuation lines. 

IBM IBM System 360 Assembler Coding Form 
GX2S.65CJ9.5 UIM 050 

Printed in U.S.A. 

PROGRAM 

f--------------------------------r------------I ~~;CRH~~~/oNS 1r-°R_'ffi_'C __ ~Ir-;--+ __ .+-I_r_41 __ +--+·_·G' ___ O_F ______ ~ 
1 PUNCH 1 I I 

30 n 40 45 50 5& eo 85 71 73 

.. T HIS I SAN 0 R 0 I N A R V COM MEN T S _.y~I_-."!.t_~+.T+E_+-~-t-Et_N+_T+',+_+W_+_Ht_I+C_+H_t_1I_C.j-A.-rN.+-+A_+P._ rP_I~l_IA.~fR. '-L~ N V_.I~ HER E I N \ 
~ AN ASSEMBLER PROGRAM. I ~J+.,--_ 

JI i 
- .-

I 

i 
I I .. - I_-•.. - -r'" - .. -- _ .. -
I ! , 

i 

l- I ! I 
~. ,--

+- I 
I -

I 
-"t-

I - --'--

.- c··' I-~-· -

I--r'-

1--

- , .. 1"- 1--

. r- -

-

f-

.-

.. '-

--
---

-

-. 

--

++-+-+-+-+-+-.1-+ r-~ 
~+++4444·rt-+++~t-.!-

t-. 

~ '++-+-f,-+-I 

. 

section B: Coding Conventions 19 



B1P INSTRUCTION STATEMENT FORMAT 

20 

8 

• • e 

'[he statement field of an instruction staterrent reust be 
forffatted tc include frcm one to four of the following 
4~ntries : 

1. A naIrie entry 

:2. An oJ;era ticn entry 

3~ An operand entry 

4. A rerrarks entry. 

The standard coding form is divided into fields that J;rovide 
fixed positions for the first three entries, as fcllo~s: 

Instructions 

IBlt(. IBM SYlt.m 360 AII .. mble, Coding Form 

~---.------- . '----------------------------.-~--,~--·I------.-I.--.--.-I.--.-I-r-.-----------. 

Ii:'· ,", ",,,, ~~i'it-,it-;l--~~,i-l'-J.: ... -.. , -..• 1~;·----5T.~.-... -.. ----~-'---::-~--.----1..J... _-__ -.. ~~~I.-.. _-, "'---., .... Co--'--I-'---,"""--I-'-~CA-.D-... -CTTOO-...--.• -,_=_-.------; 

GX_SUIM06O 

Printod in U,s.A. 

~L,!!=A!t!B=1-!E=+=-IL f-+-+-I--f84A~L+,-,R++_t'-+' ",-4 +'+-'"'1-"5,+-+-+-1-+-+ +-+-f-jf-+-++++- _ r t-t·· R ;. "1, A ~ ~ ~-t-. E III T ~ Y.. 1-- -, -.j--I-.~--+-+.-+.-t-~""""'H""++++ 

N~~~ ENT~Y OMITTED 

.. -.-.. I- -I- "" ' ++-1- - .+-1-+-+-++-1-1- +-t-t-f-t-t-+ 
FSFE~C:4-,T4D=+-1H-_HC::tS=_F_EFC_r_:T+++_f_t_t++++_H_+_+_+_1H_+++H_t_t+_l-t=_0f_P+:E+~ A~""Q.i- ~ NT R Y NO TI ~ E a .",-U.f-'I_ +:..R+=E"I'D'+-1t-+-++'+-I-+_+-+-+-+-'_1 

H-+++-+-HH-H-++-H-+-f--+t-+-H-t-H-t-+-H-HH-t+-H-t-H-+-+++-+-++-H-+-+-+++++-f-H-++++-Hf_+_++-H+1-f-t+-H++J, 
OPE~AND ENTRY IOMIT1ED j ORG 

I 
I 

~+-++-H-+-+-I-+-!-+-+-++++-H-t-++-!-t-I-++-t+IH-++-j--1H-t .. · t- ... "" - t- -- ... t- -+-+-.+.+-+-+- -I-++-I·+++++-J-H-+-I--+-·~++·H-t-t-+++-+· t-

.. -

An 8 -character name field starting in cclurrn 1 • 

A 5-character oJ;eration field starting in ccluIrin 10 • 

An oJ;erand field that begins in column 16. 

No·te that with this fixed format one blank se~arates each 
f:ileld. 

It is not necessary to code the narre, o~eration, and c~erand 
entries acccrding to the fixed fields on the standard 
Goding form.. Instead, these entries can be written in 
any ~csition, subject to the formatting specifications 
below. 



Formatting Specifications 

Whether using fixed or free format, the following general 
rules apply to the coding of an instruction statement: 

1. The entries must be written in the following order: 
name, operation, operand, and remarks. 

2. The entries must be contained in the begin column (1) 
through the end column (71) of the first line and, if 
needed, in the continue column (16) through the end cc1uron 
(71) of any continuation lines. 

O 3. The entries must be seIarated from each other by one 
or more blanks. 

4It 4. If used, the name entry must start in the begin column. 

S. The name and operation entries, each followed by at 
~ least one blank, must be contained in the first line cf 

an instruction statement. 

O 6. Th: operation entry must start at least one co1uRn tc 
the r1ght of the begin column. 

IBM IBM SYltem 360 AS!lsmbler Coding Form 
GX28-6509-5 U/M 050 

Printed in U.S.A. 

1--,"oo"_A" ----------,-------1 'UNCH'NG I G"APH'C 1 -1 ----1 T.:J. -TT~A;- ---;;;---------
L'";::::OG="A.,=M'::.:..." ______________ 1.:.0A_T" ___ .,._AT_' .. _'NT---1_'N_.,."_UC_T'O_N8_.1--r,_uNC_H_--'lL-J1_...l.-.-_1L----1 llJA"O.L'CTRONUM .. ~_",,~,~ 

Op,,,,,ron OpIr.nd Com".nll 

~N~A~M~E~~~~·~_~~~.A~L~R~~-'·~;P~~~4;~o~~6_~2+.~~~~~~~»~~4·~oR~E~M~A~~~·K~S~~:F-~~FI;~D ~~~MAT1 -~- ',J
h 

I-+-++-+-+--+-I-+-+r--H ~==t=:1~-++++--+-l~l--+++--+-l+++~---+--I-+~+4-+-H__H_+_+_+_IH-H- 1- ~-- --- 1-

- r-... f I 
NAME SAL RI/1 4 15" REMARKS - - FREE FORMAT ,-
~:.J:...l:=__+__+::.j:..:.J=-+--::w--:+_+4_iI-+-~+-+-+-:.iR=+-+-+-+-+-I_+_++=F+-+----FF++__H~I__+_++-+--1-+l-+---- -- -- ---- 1-

-tl .~!,'''. 
E N TRY ~ L L for E D 

-.'~~~~~~H+~~.~~~I- It 
~ fl 

1 41,1 5 ONLY OPERAND AND REMARKS 

oAlR "'5 NAME ENTRY OMITTED It 

- - '--'-
_ LLLL-- .or t 

THE NAME ENTRY: The name entry identifies an instruction 
statement. 

The following applies to the name entry: 

1. It is usually optional. 

2. It must be a valid symbol at assembly time (after 
substitution for variable symbols, if specified); for an 
exception see the TITLE instruction (H3B). 

- -1--- I-

1---

", II j" 
1 - I' , 
,'-- I II r 

-l---+----J-------jl----l--+-'{-+4 
•
1 Iii 

x I I 

.oj --- -I [ j-t 

11+1 
1- 1---1 [ ~-

II fl 

Section B: Coding Conventions 21 



22 

THE OPERATION ENTRY: The operation entry provides the 
symbolic operation code that specifies the machine, 
assembler, or macro instruction to be processed. The 
following applies to the operation entry: 

1. It is mandatory. 

2. For machine and assembler instructions it must be a 
valid symbol at assembly time (after substitution for 
variable symbols, if specified). The standard syrr.bolic 
o]p€!ration codes are five characters or less (see Appendixes 
IV and V) • 

~~;"~~.~':~,~~'~ija!~; •• ~·~,t<of, •• <;o~eg'.·,.'··dart be chan9~a,,'bYPf$~" 
tJ$trl.lqtiQp.s(a~",des~r*be<li.n a5) •• , 

3. For macro instructions it can be any valid symbol that 
is not identical to the operation codes described in 2 
above. 

THE: OPERAND ENTRY: The oper and entry has one or more 
ope~rands that identify and describe the data used by an 
instruction. The following applies to operands: 

1. One or more operands are usually required, depending 
on the instruction. 

2. Operands must be separated by commas. No blanks are 
allowed between the operands and the commas that separate 
them. 

3,. Operands must not contain embedded blanks, because a 
blank normally indicates the end of the operand entry. 
However, blanks are allowed if they are included in 
character strings enclosed in apostrophes (for example, 
C'J NI

) or in logical expressions ~ee L4C). 



THE REMARRS ENTRY: The remarks entry is used to describe 
~he current instruction. The following applies to the 
remarks entry: 

1. It is optional. 

2. It can contain any of the 256 characters ~r punch 
combinations) of the IEM System/370 character set, including 
blanks and special characters. 

~ 3. It can follow a~y operand entry. 

4. If an cptional operand entry is omitted, remarks are 
allowed if the absence of the operand entry is indicated 

~ by a comma, preceded and followed ty one or ~ore blanks. 

11M IBM SYItom/31iO A .. omblor Coding Form 

I'U'.""'" . I "" ..... 1 
ID.TI 

'_AUCT'ONI I ..-. =.~ 1'"000"-_ 
IT.n .... T -_ ... .. ....... 

I 
I 

~/l. 'AlA IV IS IllR 1 !O 18 Ie: ~ lulSlT 1!3~ is 11:113 
1-

IslR 1110 19 lAIN IV IEI~trIR Iv Islv 
I,.. Itll IAle fEll 10 I,. In Inll: lolp IRI1 l(llp IR 12 1

' lell lAIN [l<lsl. 

I 
IN 011 ICIA IT Is lAic liT Is T IARIT InM 

f--

I .. Ic INlol1 IslE IclT I.-
~Lo 

lAID IlIlc I!;:INID II: 

I 
J 

lAID IAIT IElo IF 
10 IN~ [Q IR 

I: .. Ir ,E n 

'rA .. 

IRlo I~ 
IMlo IRIE 

alp iNO 

GX28-6509-5 U/M 050 

Printed in U.S.A. 

OF . -.... -
I" - .. 

I 

Section B: Coding Conventions 23 



24 



Section C: Assembler Language Structure 

This section describes the structure of the assembler 
language, that is, the various statements which are allowed 
in the language and the elements that make up those 
statements. 

Section C: Assembler Language Structure 25 



Cl -- The Source Module 

A source module is a sequence of assembler language 
st.a1:ements that constitute ·the input to the assembler. 
Th.e figure on the opposite page shows an overall picture 
of 1:he structure of the assembler language. 

C2 - Instlruction Statements 

26 

The instruction statements of a source module are composed 
of olne to four entries that are contained in the statement 
field. Other entries outside the statement field are 
discussed in B1A. The four statement entries are: 

1. A. name entry (usually optional) 

2. A.n operation entry (mandatory) 

3. A,n operand entry (usually required) 

4. A. remarks entry (optional). 

No'rE:S: 

1. The figures in this sUbsection show the 'overall structure 
of the statements that represent the assembler language 
instructions and are not specifications for these 
instructions. The individual instructions, their purposes, 
and. their specifications are described in other sections of 
this manual (as cross-referenced in the figures). Model 
statements, used to generate assembler language statements, 
are described in J4. 

2. The remarks entry is not processed by the as'~mbler, but 
only copied into the listings of the program. It'As 
therefore not shown except in the overview opposite. 



EITHER 

NAME 

INSTRUCTION 
STATEMENTS 

OPERATION 

Source Module 
made up of 
Source Statements 

IBM SYSTEM/370 
CHARACTER SET 

COMMENTS 
STATEMENTS 

REMARKS 

CHARACTER 
STRINGS 

Section C: Assembler Language Structure 27 



28 



C2A -- MACHINE INSTRUCTIONS 

The machine instruction statements are described in the 
figure below. 

The instructions themselves are discussed in Part II of 
this manual and summarized in Appendix IV. 

NAME 
Entry 

A 
Symbol 
(or blank) 

OPERATION 
Entry 

A symbolic 
Operation 
Code 

OPERAND 
Entry 

One or more 
operands 
composed of 

Exp(Exp,Exp) 

or Exp (Exp) or or or 

Decimal 

e.g. 9 

or 

Location 
Counter 
Reference 
e.g. -I< 

Hexadeci mal 

e.g. X '09' 

Arithmetic 
combination 
of terms 

Symbol 
Length 
Attribute 
Reference 
e.g.L'HERE 

Binary 

e.g. B '1001' 

Exp C,Exp) 

Exp = Expression 

Which can be 
any of the 
following 

Character 

e.g. C 'JAN' 

Section C: Assembler Language Structure 29 



C2B -- ASSEMBLER INSTRUCTIONS 

30 

The assembler instruction statements can be divided into 
two main groups: ordinary assembler instructions and 
conditional assembly instructions. 

Ordinary Assembler Instructions 

Ordinary assembler instruction statements are described 
in the figure on the opposite page. 

These instructions are discussed in Part III of this manual 
and summarized in Appendix v. 



NAME 
Entry 

A 
Symbol 

(or blank) 

Duplication 
factor 

e.g. 

OPERATION 
Entry 

A symbolic 
Operation 
Code 

Operands can be 
composed of one 
to four subfields 

Type Modifiers 

'Decimal 
number' 

e.g. F '2' 

or 

Constant 
(Nominal 

Value) 

One or more 
constants of 
the format 
below 

(Expression) 

e.g. A(ADDR) 

1 Discussed more fully where individual instructions are described 

or 

OPERAND 
Entry 

One or more 
operands 

Expression 

e.g.':' + 4 

'Character 
string' 

e.g. C' A is B' 

or 

Operands can be 
composed of 

Character 
String 

e.g. 
'TO BE 
PUNCHED' 

Symbolic 
Option 

e.g. 

NOGEN 

Section c: Assembler Language Structure 31 



32 

Conditional Assembly Instructions 

Conditional assembly instruction statements and the rracrc 
processing statements (MACRO, MEND, MEXIT, MNOTE) are 
described in the figure below. 

The conditional assembly instructions are discussed in 
Section L and macro processing instructions in Section 
J; both types are summarized in Appendix V • 

.. I ........................................................................................ .. 

[ 

f 

Sequence 
Symbol 
.SEQ 

(or blank) 

Sequence 
Symbol 

NAME 
Entry 

I 
can be 

I 

or 

or 

I 

Variable 
Symbol 
& VAR 

Variable 
Symbol 

Arithmetic 
Expression 

&A +1 

or 

or 

I 

OPERATION 
Entry 

I 
must be 

I 
A symbolic 
Operation 
Code 

Expression 

or 
(Expression) 

I 

Which can be any 
combination of 
variable symbols 
and other characters 
that constitute an 

Logical 
Expression 

&81 OR &82 

or 

or 

OPERAND 
Entry 

Zero or more 
operands 
composed of 

Exp,'msg' 
MNOTE 
3,'ERROR' 

Character 
Expression 

'JAN&C' 

or 
(exp)seq sym 

(&A EQ1).SEQ 

Exp=Expression 

.. I----------------------------____________________________________________ ..J 



C2C -- MACRO INSTRUCTIONS 

Macro instruction statements are described in the figure 
below; the prototype statement of a macro definition, which 
serves as a model for the macro instruction statement, 
is also shown. 

Macro instruction statements are discussed in Section K 
of this manual and the prototype statement is discussed 
in Section J2. 

Prototype 
Statement 

Macro 
Instruction 
Statement 

Ordinary 
Symbol 
(or blank) 

or 

Symbolic 
Parameter 

Sequence 
Symbol 

or Variable 
Symbol 

Symbolic 
Operation 
Code 

Character 
String 
(excluding 
blanks) 

Zero or more 
Symbolic 
Parameters 

Zero or more 
Operands 
which can be 

or 

Each entry 
can have a 
value 

'Character 
String' 

(including 
blanks) 

section c: Assembler Language Structure 33 



C3 - Chal'acter Set 

34 

Terms, expressions, and character strings used to build 
source statements are written with the following characters: 

1. Alphameric Characters 

Alphabetic characters (or letters): A through Z, and 
$, i, @ 

Digits (or numerals) : o through 9 

2. Special characters 

.. - , = • * () I / , 1:1 ank 

Examples, showing the use of the 'above characters are given 
in the figure below. 

Normally, yeu would use strings of alphameric characters 
to represent data (terms, see C4), and special characters 
as~ 

a. Arithmetic operators in expressions 

b. Data or field delimiters 

c. Indicators to the assem1:ler for specific handling. 

Characters are represented 1:y the card-Funch cOIr,binaticns 
and internal bit cenfigurations listed in Appendix I. 
In addition to the printatle characters listed abcve, any 
of the 256 combinations for punched cards listed in AFFendix 
I can be used: 

1. Between paired apostrophes 

2. As statement remarks 

3. In comments statements 

4. In roacrc instructien oFerands (for restrictions see 
1(5) • 



Characters 

Alphameric 

Digits 

Special 
Characters 

+ 

/ 

+ or -

Blanks 

Comma 

Apostrophes 

Parentheses 

Ampersand 

Period 

Asterisk 

Equal sign 

Usage 

In symbols 

As decimal 
self-defining 
terms 

As Operators 

Addition 

Subtraction 

Multiplication 

Division 

(Unary) 

As Delimiters 

Between fields 

Between operands 

Enclosing 
character strings 

Enclosing subfields 
or subexpressions 

As indicators 
for 

Variable symbol 

Sequence symbol 

Comments statement 
in Macro definition 

Concatenation 

Bit-length 
specification 

Decimal point 

Location counter 
reference 

Comments statement 

literal reference 

Keyword 

Example 

LABEL NINE# 01 

01 9 

NINE+FIVE" 

NINE-5 

9*FIVE 

TEN/3 

+NINE -FIVE 

LABEL AR 3,4 

OPNDl,OPND2 

C'STRING' 

MOVE MVC TO(80),FROM 
(A+Bw(.C-D) 1 

&VAR 

.SEQ 

'*THIS IS A COMMENT 

&VAR.A 

DC CL.7'AB' 

DC F' 1. 7E4' 

>:c THIS IS A COMMENT 

L 6,=F'2' 

&KEY=D 

Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

Char. Set 

Constituting 

Terms 

Terms 

Expressions 

Terms 

Statement 

Operand field 

String 

Statement 
Expression 

Term 

(label) 

Statement 

Term 

Operand 

Operand 

Expression 

Statement 

Statement 

Keyword 
Parameter 

section C: Assembler Language Structure 35 



C4 -- 'lrerms 

PI term is the sma llest element of 
the assembler language that 
l~epresents a distinct and separa te 
'val ue. It can therefore te us ed 
alone or in ccmbina tion with other 
terms to form expressions. Terms 
have absolute or relocatable values 
1~at are assigned by the assemtler 
or are inherent in the te rms 
i:hemsel ves. 

Terms Term Can Be 

1\ term is absolute if its value 
does not change upon program 
l:elocation and is reloca table if 
its value changes upon relocation. 
~rhe various types of terms described 
l~low are summarized in the figure 
1:0 the right. 

Symbols 

Location 
Counter 
Reference 

Symbol 
Length 
Attribute 

Other Data 
Attributes 

Self-Defining 
Terms 

Absolute 

X 

X 

X 

X 

C'4A -- SYMBOLS 

36 

~furpose 

You can use a symbcl tc represent storage locations or 
arbitrary values. 

SYMBOLIC REPRESEN'IA'IICN: You can \<Write a symbol in the 
name field of an instruction. Ycu can t~en s~ecify this 
symtcl in tbe c~erands cf other instructions and thus refer 
to the former instructicn symbolically. This symtol 
represents a relocatatle address. 

'~ou can alsc assign an absolute value to a symbol ty coding 
it in the name field of an EQU instructicn with an c~erand 
whose value is absclute. This allo\<Ws you to use this 
symbol in instruction operands to represent registers, 
displacements in explicit addresses, innediate data, 
lengths, and implicit addresses with atsclute values. Fcr 
details cf these ~rcgraro elements, see C5. The advantages 
of symbolic over numeric representation are: 

1. Synbcls are easier te remember and use than numerical 
values, thus reducing prograrrrring errers and increasing 
programming efficiency. 

2. Yeu can use rreaningful symtels to descrite the ~rcgran 
elements they represent; for example, INFUT can name a 
field that is to contain input data, or INCEX can narre 
a register to te used for indexing. 

Relocatable 

X 

X 

Terms 

Value Is 

Assigned by Inherent in 
Assembler Term 

X 

X 

X 

X 

X 



3. You can change the value of one symbol (through an EQU 
instructicn) more easily than you can change several 
numerical values in rr-any instructions. 

4. Symbols are entered into a cross-reference table that 
the asserrt1er ~rints in the program listing. !his tatle 
helps you to find a symtol in a prograrr listing, tecause 
it lists (1) the numter of the staterrent in which the 
syretc1 is defined (that is, used as the name entry) and 
(2) the numters of all the staterr.ents in which the syrrtcl 
is used in the c~erands. 

!HE SYMEOI !AELE: !he assembler roaintains an internal 
tatle called a syntcl tat1e. When the asserr.tler ~rccesses 
your source staterrents for the first time, the assemtler 
assigns an atsolute or relocatatle value tc every syrrtc1 
that a~~ears in the name field of an instruction. The 
assemtler enters this value, which norrra11y reflects the 
setting cf the locaticn counter, into the symbol tatle; 
it also enters the attributes associated with the data 
represented by the syrrbol. !he values of the symtol apd 
its attritutes are availatle later when the asserrbler,'finds 
this syrrbcl cr attribute reference used as a term in/an 
operand or expression ~ttritute references used as terns 
are discussed in C4C and C4C below) • 

Specifications 

The three types of symbol recognized 
by the assembler are: 

1. Ordinary symbols 

2. Sequence symbols 

3. Variable symbols. 

Symbols 

ORDINARY SYMBOLS: Ordinary symbols 
can be used in the name and operand 
field of machine and assembler 
instruction statements. They must 
be coded in the format shown in 
the figure to the right. £. 

alphabetic character (letter) 

~ alpham.,;c cha,act." 

olR DIN S Y M 

NOTES: 

1. No special characters are allowed 
in an ordinary symbol. 

2. NO blanks are allowed in an 
ordinary syrrbo1 

Examples: 

HERE HOI X 
READER #12 y 

AOOl @33 z 
B002 $OPEN F2A 

Section C: Assembler Language Structure 37 



38 

VARI.l\BLE SYMBOLS: Variable symbols 
can only be used in macro processing 
and conditional assembly 
instructions. They must be coded 
in the format shown in the figure 
to the right. 

SEQUENCE SYMBOLS: Sequence symbols 
can only be used in macro processing 
and conditional assembly 
inst:ructions. They must be coded 
in t:he format shown in the figure 
to t:he right. 

Symbol Definition 

An ordinary symbol is considered 
defined when it appears as: 

1. The name entry in a machine or 
assembler instruction of the 
assE~mbler language. 

2. One of the operands of an EXTRN 
or iiXTRN instruction. 

NOTE: Ordinary symbols that appear 
in instructions generated from model 
sta1:ements at pre-assembly time 
are also considered defined. 

Var. Sym. 

ampersand 

alphabetic character (letter) 

~ 6 alpham.de eharaet,,, 

& IAR§YMI 

Examples: 
&A &PARAM 
&B & KEYWORD 
&C &CHAR3 

Seq. Sym. 

period d. alphabet;e eharae,", lIett.<I 

~ alpham,,;e eharacte" 

. SIE Q U S Y M' 

Examples: 

.SEQ 

.LOOPlI 

.EXIT20 

.TOOOI 



o 
• • 

The assembler assigns a value to 
the ordinary symbol in the name 
fields as follows: 

1. According to the address of the 
leftmost byte of the storage field 
that contains one of the following: 

a. Any machine or assemtler 
instruction (exceFt the EQU or 
OFSYN instructions) 

b. A storage area defined by 
the DS instruction 

c. Any constant defined by the 
DC instruction 

d. A channel command word defined 
by the CCW instruction. 

The address value thus assigned 
is relocatable, because the object 
code assembled from these items 
is relocatable; the relocatability 
of addresses is described in C5B. 

2. According to the value of the 
first or only expression specified 
in the operand of an EQU instruction. 
This expression can have a 

• relocatable or absolute value, which 
is then assigned to the Ordinary. 
symbol. The value of an ordinary 
symbol must lie in the range -2 31 

through +2311-1. 

Assembler Language Address Value Object Code 
Statements of Symbol in Hex 

Address of 

Relocatable AREA 
....-....... 

LOAD L 3,AREA LOAD--4 ~15a131 0 I xxxxi 

I 
AREA DS F • AREA--t Ixx x X xxxxi 

I F200t F200 DC F'200' • 1000 0 oocal 
~-

FUL~~ 
-

FULL EQU AREA}. 
TWOO EQU F200 · TWOO 

• Absolute 
R3 EQU 3 R3=3 

Address 
of FULL 
....-....... 

L R3,FULL 15 al31 0 I xxx x I A R3,TWOO 5A ~ r> xxx x ------Address of 
TWOO 

Section c: Assembler Language Structure 39 



40 

• • 

Restrictions on Symbcls 

UNIQUE DEFINITION: A symbol must 
be defined only once in a source 
mod1lle: 

E~i ther in the name field of a 
source statement 

or in the operand field of an 
l~XTRN or WXTRN instruction. 

This is true even for a source 
module which contains two or more 
control sections. 

NOTlE: The ordinary symbol that 
appE~ars in the name field of an 
~~~n~~ or TITLE instruction does 
not constitute a definition of that
symbol. It can therefore be used
in ithe name field of any other
sta1:ement in a source module.

CON~rRCL SECTION NAMES: A duplicate
symbol can, however, be used as
the name entry of a START, CSECT,
DSECT, or COM instruction. The

• first time a symbol is used to name
these instructions, it identifies
the beginning of the control section;

•
a d111plicate use of the symbol
identifies the resumption of an
interrupted control section.

PR~/IOUSLY DEFINED SYMBOL: In some
ins'tructions the symbols used in

• their operands must have been defined
in a previous instruction.
Previously defined symbols are
rE~quired for the operands of the
following instructions:

E~?U

CNOP

OHG

DC and DS (in modifier and
duplication factor expressions).

[8 F,IRST START o

EXTRN

SECOND CSECT

L REG3,ADRDR

B RESUMEl

DC A(READER)

rG FIRST CSECT

.RE~UM~f LA INDEX,20

END

C4B -- LOCATION COUN'IER REFERENCE

Purpose

The assembler runs a location counter
to assign storage addresses to your
program statements. It is the
assemtler's equivalent of the
instruction counter in the computer.
You can refer to the current value
of the location counter at any place
in a source module by specifying
an asterisk as a term in an operand.

THE LOCATION COUNTER: As the
instructions and constants of a
source module are being assembled,
the location counter ha s a val ue
that indicates a location in storage.
The assembler increments the location
counter according to the following:

1. After an instruction or constant
has been assembled, the location

O counter indicates the next availatle
location.

2. Before assembling the current
instruction or constant, the
assembler checks the boundary
alignment required for it and adjusts

~ the location counter, if necessary,
to indicate the proper boundary.

3. While the instruction or constant
is being assembled, the location
counter value does not change.
It indicates the location of the
current data after toundary alignment

•
and is the va lue a ssigned to the
s~bol, if present, in the name
fleld of the sta terr,ent.

4. After assembling the instruction
or constant, the assembler increments
the location counter ty the length

•

of the asserrbled da ta to indica te
I the next available location.

The assembler maintains a location
counter for each control section
in a source module; for complete
details about the location counter
set,ting in control sections, see
E2C. The assembler carries an
internal location counter value
as a 4-byte, 32-bit value, tnt it
only uses the low-order 3 bytes,
which are printed in the program
listings. However, if you specify
addresses greater than 2 24_1, you
cause overflow into the high-order
byte, and the assembler issues the
error message "LOCATION COUNTER
OVERFLOW" •

Location
in Hex

000004

8000007'8

000008·

ooooocG

000010

DONE

BEFORE

.DURING

AFTER

NEXT

Source
Statements

DC CL3'SOB'

EQU '"

DC P'200'

EQU *

OS 0

S·ection C: Assembler Language Structure 41

o
e
• •

NOTE: In the figure below, ,an example of a location counter
overflow (or wrap-around) is shown.

The internal address value of the symbol B is carried as
a 4-byte value, but the printed location only includes
the low-order 3 bytes •

The location counter value for instructions or constants
is usually printed as a 3-byte value. However, the 4-byte
Y.alu~, with up to 3 leading zeros suppressed, is printed
for the addresses specified in the ope;rands of~he.Jollowing
+!l,~t.~~.~1:~.?P~~ ... ,~QVr.?R~(~I1<i " .. USI.NG •...... Only .. 3 -bytE! • ...,al'U~E)

~QOs.'· a%'Efp~~nt~9;9~~!l~9P~+'flnd~.1n the above tnstxuctions.

o

42

You can control the setting of the location counter in
a palrticuUl.r control section by using the START or ORG
inst~ructions •

.. I .. __ ~

LOC

000000

000000

FF'FFFE

fJ~
000002

000004

Assembly Listings in Hexadecimal Representation

OBJECT CODE ADDR1 ADDR2

58506004

rFFFFFE

00D08

STMT

1

2

3

SOURCE STATEMENT

A START 0

• ORG -:~+X'FFFFFE'

L 5,4(,6)

**~ ERROR ~/~ (Location counter overflow)

•
Up to 3 leading zeros
are suppressed

4

5

6

B

C

D

BR 15

DC A(B)

EQU C

...

Specifications

~he lccaticn counter reference is
specified by an asterisk (*). The
asterisk can be s~ecified as a
relocatable term according to the
following rules:

1. It can only be specified in the
operands cf:

a. Machine instructions

b. The rc and rs instructions

c. ~he EQU, ORG, and USING
instructions.

•
2. It can alsc be s~ecified in
literal constants (see C5).

~he value of the location counter
reference (*) is the current value
of the locaticn counter of the
control section in which the asterisk
~) is specified as a terre. The
asterisk has the same value as the

.. address of the first byte of the
~ instruction in which it a~pears

(for the value of the asterisk in
address constants with duplication
factcrs, see G3J).

Loc. Ctr Ref

Location Source Address
in Hex Statements Value of.".

I • 000104
1

HERE B *+8 } same HERE
000108 B HERE+8 effect

iOOOllC~ONSTANT I
DC A(*) 0 CONSTANT

i OOO120KHERE L 3, =A (*) THERE

I I

Section C: Assembler Language Structure 43

C4C -- ~)Yl~BOL LENGTH ATTRIBUTE REFERENCE

44

When you specify a symbol length attribute reference, you
obtain the length of the instruction or data referred to
by .:l symbol. You can use this reference a s a term in
ins'truction operands to:

1. Specify unknown storage area lengths

2 .. Cause the assembler to compute length specification s
for you

3. Build expressions to be evaluated by the assembler.

Specifications

The symbol length attribute reference must be specified
according to the following rules:

1. ~rhe format must be L' immediately followed by a val id
symbol or the location counter reference (*).

2. ~~he symbol must be defined in the same source module
in \>lhich the symbol length attribute reference is spec ified.

3. The symbol length attribute reference can be used in
the operand of any instruction that requires an absolute
term. However, it cannot be used in the form L' * in an y
ins"truction olr expression that requires a previously defined
symbol.

The value of the length attribute
is normally the length in bytes
of the storage area required by
an instruction, constant, or field
represented by a symbol. The
assembler stores the value of the
length attribute in the symbol table
along with the address value assigned
to the syrobcl.

When the assembler encounters a
symbol length attribute reference,
it substitutes the value of the
attribute from the symbol table
entry for the symbol specified.

The assembler assigns the length
attribute values to symbols in the
name field of instructions as
follows:

• F?r machine instructions, ita ssigns
e1ther 2, 4, or 6, depending on
the format of the instruction.

• For the DC and DS instructions,
it assigns either the implicit or
explicitly specified length. The
length attribute is not affected
by a duplication factor.

For the EQU instruction, it assigns
the length attribute value of the

• leftmost or only term of the first
expression in the first operand,
unless a specific length attribute
is supplied in a second operand.

Note the length attribute values
of the following terms in an EQU
instructicn:

•• self-defining terrrs

~. lccaticn ccunter reference

e· ~
•

~he length attribute of the location
counter reference ~ is equal
to the length attr1bute of the
instruction in which the L'. appears.

For the rerraining asserrbler
instructions, see the specifications
for the individual instructions.

Source Module

MACHA MVC TO,FROM
MACHB L 3,ADCON
MACHC LR 3,4

TO DS CLSO
FROM DS CL240
ADCON DC A(OTHER)
CHAR DC C'YUKON'
DUPL DC 3F'200'

RELOCl EQU
RELOC2 EQU
ABSOLl EQU
ABSOL2 EQU

SDTl EQU
SDT2 EQU
SDT3 EQU

ASTERISK EQU

LOCTREF EQU

LENGTHl DC A (L'*)

LENGTH2 MVC TO (L '*) , FROM
LENGTH3 MVC TO (L' TO-20) ,FRO

Length A ttr.

Value of Symbol
Length Attribute
(at assembly time)

L'MACHA
L'MACHB
L'MACHC

L'TO
L'FROM
L'ADCON
L'CHAR
L'DUPL

L'RELOCl
L'RELOC2
L'ABSOLl
L'ABSOL2

80
80

240
240

L'SDTl eU L'SDT2
L'SDT3

L'ASTERISK 8 1

L'LOCTREF 0 1

L'. {4
L 'LENGTH!. 4
L '* 6
L'TO 80

Section C: Assembler Language Structure 45

C4D -- OTHER ATTRIBUTE REFERENCES

TheJ:e are other attributes which describe the
chalcacteristics and structure of the data you define in
a PJ:ogram. For example, the kind of constant you specify
or 1t:he number of characters you need to represent a value.
These other attributes are the type (TI), scaling ~I),
in.tf~ger (II), count (K I), and number (N I) attributes.

NOT1~: You can refer to these attributes only in conditional
assembly instructions and expressions; for full details,
see L1B.

C4 E -- SEI'..F-DEFINING TERMS

46

!lurpose

A self-defining term allows you to specify a value
E~xplicitly. With self-defining terms, you can specify
decimal, binary, hexadecimal, or character data. 'Ihese
t:erms have absolute values and can l:e used as absolute
terms in expressions to represent bit configurations,
absolute addresses, displacements, length or other
modifiers, or duplication factors.

Specificaticns

GENERAL RULES: Self-defining terms:

8 · Refresent rr.achine language binary
values

• Are absclute terms; their values
do not change upon program
relocaticn.

The assembler carries the values
represented by self-defining terms

•
to 4 bytes or 32-bits; the high
order bit is the sign bit.

DECI~AL: A decimal self-defining
term is an unsigned decimal number.
The assembler allows:

~. High-order zeros

•• A maximum of 10 decimal digits

• A range of values from 0 through
~ 2,147,483,647.

Self-Defining
Term

15
241
B'llll'
B'11110001'
B'100000001'
X'F'
X'Pl'
X'101'
C'l'
CiA'
C'AB'

r
l=Negative Value
O=Positive Value

Decimal
Value

15
241

15
241
257

15
241
257
241
193

49,602

4 bytes
(32 bits)

value bits

16

Self-Defining

Binary

Value 0:--------
1111

J.1110001
1111

11110001
100000001

1111
11110001

100000001
11110001
11000001

1100000111000010

~I
8 o

I value bits I

• '214 7 4 8 36 4 7'

Section C: Assembler Language Structure 47

48

EINARY: A binary self-defining
term must be coded in the format
shown in the figure to the right.
The assen'tbler:

O . Assembles each binary digit as
it is specified

•• Allows a maximum of 32 binary
diqits -

• Allows a range of values from

•
-2,147,483,648 through
2,147,483,647.

NOTE: When used as an absolute
term in expressions, a tinary self-

G
de:fining term has a negative value

. if the high -order tit is 1.

______________ aPrtroPhes must enclose digits

B ',110011 ••••• 101'
\ \ . 1 to 32 binary digits

blnarY _III!III!lIl

Examples Binary Value

B'101011~t--O knQ~

B'11101010111'

High-order
Ji.pn bit

B '11)1111 ••• 111'
1: •. :······

;;;;:; 32 digitS.

</l~

B ')10000 ••• 000'
• 32 digits

111P10101111

HEXAtECIMP,L: A hexadecimal self
defining terrr must be ccded as shown
in the figure to the right. !he
asserrtler:

• Assembles each hexadecimal digit

O intc its 4-bit binary equivalent
Uisted in the figure to the right)

•
• Allows a rraxirrurr cf 8 hexadecimal
digits

• Allows a range cf values from
4It -2,147,483,648 through 2,147,483,647.

NO!E: When used as an absolute
term in an expression, a hexadecirral

•
self-defining terrr has a negative

, value if the high-order tit is 1.

~ \'t'OPhes must enclose digit

X 'FF ... F56 '
\' "" hexadecimal 1 to 8 hexadecimal digits

;;:RI!I.iliI:t:;:

Conversion Table:

Hexadecimal
Digit

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Examples:

X'

X'A'

X'FFA'

8diQits8

X'7FFFFFFF'

X'80000000'
I •

4-bit
Decimal Binary
Equivalent Representation

0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

Binary Value

1000 all 01 01

1111111 111[0101

Section C: Assembler Language Structure 49

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

CHARAcrER: A character self-defining
terff ffust te ceded as sho~n in the
figure to the right. The assefftler:

• Allows any of the 256 punch
combinations when using punched
cards as input. 'Ihis includes the
printable characters, t.hat is,
blanks and special characters.

• Assembles each char acter into

•
its a-bit binary eguivalent. (A
table of characters and their tinary
equivalents can be found in Appendix
I) •

•
• Requires that twc ampersands
or apostrophes be specified in the
character sequence fer each ampersand 4It or apostrophe required in the
asseml::Iea term.

•• Allows a maximum of 4 characters.

C5 - Literals

50

Purpose

You can use literals as operands
in order to introduce data into
your program. However, you cannot
use a literal as a term in an
expression. The literal represents
data]::-ather than a reference to
data. This is convenient, tecause

1. The data yeu enter as numbers
for computation, addresses, or
messages to be printed is visitle
in the instruction in which the
Ii teral appears, and

2. YOll avoid defining constants
elsewhere in your source module
and then using their symbolic names
in machine instruction operands.

/arstroPhes must enclose characters

C'ABCD'

\ ~o 4 characters
character .: ••

Examples:

Character Characters Hexadecimal self-defining
term Assembled Value

CiA' X'Cl' ~ --0

L

C'l' 1
C' , (blank)
C'#' #
C I@' @

Ie /e
C'&&I &
C'" , ,
C'L' 'A' L'A
C"'" , "

C'FOUR'
~

FOUR

•

l,=F'200'
2,=A(SUBRTN)

X'F1 '
x ' 40'
X'7B'
XI 7C I

X' 50 I
X'7D'
X'D37DC1'
X'7D7D'

X'C6D6E4D9'

Binary
Value

11000001 ---
11110001
01000000
01111011
01111100

01010000
01111101

L
MVC MESSAGE(16),=C ' THIS IS AN ERROR'

The assembler assembles the data
specified in a literal into a
Wliteral poolw (fully described
in H1~. It then assembles the
address of this literal data in
the pool into the object code of
the instruction that contains the
literal specification. Thus the
assembler saves you a programming
step by storing your literal data
for you. The assembler also
organizes literal pools efficiently
so that the literal data is aligned
on the proper boundary alignment
and occupies the minimum amount
of space.

LITERALS, CONSTANTS, AND SELF
DEFINING TERMS: Do not confuse
literals with constants or self
defining terms. They differ in
three important ways:

1. In where you can specify them
in machine instructicns, that is,
whether they represent data or an
address of data.

2. In whether they have relocatable
or absolute values.

3. In what is assembled into the
object code of the machine
instruction in which they a ppea r.

The figure to the right illustrates
the first two points.

O. A Ii teral represents data.

• A constant is represented by
• its relocatable address. Note tha t

a symbol with an absolute value
does not represent the address of 8a constant, but represents immediate

•

data (see D5D) or an absolute
, address.

8
. A self-def ining term represents
data and has an absolute value.

Compare:

A literal with a relocatable address

L
L • 3,=F'33 1

3,F3e } same effect

F33 DC F 133 I

A Literal with a self-defining term
and a symbol with an absolute value

FLAG
ZERO

~~ ~~~:;!J .. meeffect
MVI FLAG,ZEROV

DS X
EQU XI 00 I

•
A symbol having an absolute address value

with a self-defining term •

LA 4 , LOCORE }
~ 4, ~ same effect

LOCORE EQU 1000

Section C: AssemBler Language Structure 51

52

The figur,e to the right illustrates
the thi rd point.

•• The address of the literal,
rather than the literal data itself
is asserobled into the objec t code.

•• The address of a constant is
assembled into the object code.
NOte that when a symbol with an

• absolute va lue represents immedia te
da ta, it is the absolute value that
is asserobled into the object code •

•
• The absolute value of a self

, defining terro_ is asserobled into
the object code.

hQ£_
n Hex

248

24C

250

Source Statements Object Code
in Hex

displacement

base '\

LITERAL L [[8 13 01~J2 .. 5 0 I •..... ~ ..
RELCON L

ABSCON TM

SELFD,T TM

FLAGCON EQU X'B8'

F200 DC F'200'

BYTE DS X

LTORG

r
em,

1000000C81 F'200 ' Pool

Specifications

A literal must be ceded as shown
in the figure to the right.

o The literal is specified in the
same way as the operand of a DC
instruction (for restrictions see
G3C) •

GENERAL RULES FOR LITERAL USAGE:
A literal is not a term and can
be specified only as a complete
operand in a machine instruction.
In instructions with the RX format
they must not be specified in
operands in which an index register
is also specified.

Because literals provide -read-only
data, they rrust not be used:

1. In operands that re~resent the
receiving field of an instruction
that modifies storage

2. In any shift or I/O ins~Luctions.

C6 - Expressions

C6A -- PURPOSE

You can use an expression to specifY:

8 An address

e An explicit length

• A modifier

• A duplication factor

• A complete eperand

You can write an expression with
a simple term or as an arithmetic
combination of terms. The assembler
reduces multi term expressions to
single values. Thus, you do not
have to cempute these values
yourself.

A

B

C

Literals

Literal Specification

l=loxt51F3 II

~: d(jplh:atipn typempc:llfiers
factor

o

EQU " .-, X---Y-+-1-3---P-/-Q-;j

Ie
MVC I TO+LITO-LIFROM ,(LIFROM) ,FROM

0/
DS (,X-Y,) XL (,P/Q-lo,)

/ e\ •

Section C: Assembler Language Structure 53

54

Expressions have absolute or relocatable values. Whether
an express~on is absolute or relocatable depends on the
value of the terms it contains. You can use the absolute
or relocatable ex~ression described in this sUbsection
in a machine instruction or any assembler instruction other
than a conditional assembly instruction. The assembler
evaluates relocatable and absolute expressions at asserrbly
timen Throughout this manual, the word "expression" refers
to these types of expression.

NOTE: There are three types of expression that you can
use only in conditional assembly instructions: arithmetic,
logical, and character expressions. They are evaluated
at pre-assembly time. In this manual they will always
be referred to by their full names; they are described
in detail in L4.

C6B -- SPECIFICATIONS

The figure below defines both absolute and relocatable
expressions.

o NO'l'E: The relocatable values that are paired must have

•
the opposite sign after the resolution o:':~ unary
operators.

Relocatable
Expression

Absolute
Expression

Expressions

Operators Allowed

Unary: + Positive
Negative

Binary: + Addition
- Subtraction
* Multiplication
/ Division

Abs. Exp = Absolute Expression

ReI. Exp = Relocatable Expression

Section C: Assembler Language Structure 55

5€,

Absolute and Relocatable Expressions

An expression is absolute if its
value is not changed by program
relocation; it is relocatable if
its value is changed upon program
relocation. A descriftion of the
factors that determine whether an
expression is absolute or reloca table
follows.

PAIRED RE:LOCATABLE TERMS: An
expression can be absolute even
though it contains relocatable
te rms, provided that all the
relocatable terms are paired. The
pairing o:f relocatable terms cancels
the effec·t of reloca tion. The
assembler reduces paired terms.to
single absolute terms in the
intermedi.ate stages of eva.luation.
The assembler considers relocatable
terms as paired under the following
conditions:

• The paired terms must be defined 8 in the saree control section of a
source module (that is, have the
same relocatability attribute) •

• The paired terms must have
• opposite sign~ after all u.nary

operators are resolved. In an

•
expression, the paired terms do
not have to be contiguous, that

. ~other terms can come between
the paired terms.

• The value represented ty the
~paired terms is absolut~.

Source Module

F'
F'
F'

X'F'
300
CIA'

~J ~ ________ ~~ ______ ~x

~----------------------------

Examples:

Paired Relocatable Terms •

B-A ~
C-A ,--..
+B-+C i > B-C
-A--B c:=::;> -A+B
LOCTREF-C
D-E
F-D

Unpaired Relocatable Terms

B
C
LOCTREF
D

Absolute
Expressions

Ie"
A+ABSA-B

D-E+ABSC
F-D+B-C
'----' '----'

paired paired

Relocatable
Expressions

Unpaired

I+ABSA
I+X'FF'
1-5::< (B-C),.

paired

Absolute Expressions

The assembler reduces an absolute
expression to a single absolute
value if the expression:

~ 1. Is composed of a symbol with
an absolute value, a self-defining
term, or a symbol length attribute
reference, or any arithmetic

~combination of absolute terms.

8 2. If it contains relocatable terms,
alone or in combination with absolute
terms, and if all these relocatable

• terms are paired.

Source Module

FIRST

A

B

C

ABSA

ABSB

ABSC

ABSD

Absolute
Expressions

CSECT
.

DC

DC

DC

EQU

EQU

EQU

EQU

END

O{~~SA
L'A

F'2'

F'3'

F'4'

100

X'FF'

B-A
L--,...I

Paired

't,:-A'

• {ABSA+ABSC-ABSC):<15

Abs. Exp.

________ 8 ____
8{'B-A I ~

. ABSA+15~-ABSD/(C-A+ABSA)

section C: Assembler Language Structure 57

o

•

sa,

gelocatable Expressions

A relQcatable expression is one
Whose value changes, for example,
by a 1000, if the object module
into which it is assembled is
relocated 1000 bytes away from its
originally assigned storage area.
The assembler reduces a reloca table
expression to a single relocatal:le
value if the expression:

1. Is composed of a singlE!
relocatable term, or

2. Contains relocatable terms, alone
or in combination with absolute
terms, and:

a. All the relocatable terms
but one are paired. Note that
the unpaired term gives the
eJcpression a relocatable value;
the paired relocatable terms
and other absolute terms
constitute increments or
decrements to the value of the
~npa ired term.

b. The relocatability attribute
of the whole ex~ression is that
of: the unpaired term.

c .. The sign preceding t:he unpaired
relocatable term must l~ positive,
after all unary operators have
been resolved.

COMPLEX R:ELOCATABLE EXPRESS IONS:
Complex relocatable expressions,
unlike relocatable expressions,
can conta.in:

a.. Two or more unpaired
relocatable terms or

b .. An unpaired relocatClble term
preceded by a negative sign.

Complex J:'elocatable expressions
can be used only in A-tYPE~ and y
type addJ:'ess constants (see G3J) •

Reloc. Exp.

ABSA EQU 10

ABSB EQU

ABSC EQU 10*(B-A)

END
~--------------------------------

Relocatable Expresssions:

(Belong to control section namedFIRST
and have same relocatable attribute as
A, B and C)

e:::+ABSM10
B-+A+C.-IO*ABSC .e
B-A+'+lOO~'ABSA+ABSA/ (C-A)

~~O~

•

Rules for Coding Expressions

The rules for coding an absolute
or relocatable expression are:

1. Both unary (operating on ont
value) and binary (operating on
two values) operators are allowed
in expressions.

2. An expression can have one or
more unary operators preceding any
term in the expression or at the
beginning of the expression.

• 3. An expression must not begin
with a binary operator, nor can

•
~t contain. two binary operators
l.n success l.cn.

•
4. An expression must not contain

· two terms in succession.

5. No blanks are allowed between
an operator and a term nor between
two successive operators.

6. An expression can contain up
to 19 unary and binary operators
and up to 6 levels of parentheses.
Note that parentheses that are part
of an operand specification do not
count toward this limit.

7. A single relocatable term is
not allowed in a multiply or divide
operation. Note that paired
relocatable terms have absolute
values and can be multiplied and
divided if they are enclosed in
parentheses.

8. A literal is not a valid term
and is therefore not allowed in
an expression.

Unary + -,

Binary

========pt -ABS

====pt - REL-ABS

Context determines whether
+ or - is unary or binary
operator

====I.~ A+B

====tt~ ABSC / ABSD + 15
=====9.~ REL-ABS

I Multiply I
~*3 INVALID
V,>:c+ 3 VALID

- Location counter
Reference

A::} ~ INVALID

Context determines whether
an asterisk (>:c) is the binary
operator for multiplication
or the location counter 8 -ABSA +)',c VALID

INVALID reference

~ ~----------------~

Leftmost operator betwee
two terms is binary

X' FF' (10 :;c A) INVALID --- --...--'e--rf,. >.

l5B'101' INVALID

Section C: Assembler Language Structure 59

60

o

• •

Evaluation of~ressions

The assembler reduces a multi term
expression to a single value as
follows:

t. It evaluates each term.

2. It pe]~fonns arithmetic operations
from left to right. However:

a. Ii: performs unar~ operations
befor4~ binary o:f:era tl.ons, arid

b. Ii: performs the bi:nary
opera1:ions of mul tipI~cation
and d:ivision before t e binary
operations of addition and
subtraction.

e 3. In division, it gives an integer
· re suI t; any fr action al po:rt ion is

d:ropped. 1:i vision by zero gives
0 ..

4. In parenthesized expressions,
• the assembler evaluates the inner

most expl::-essions first and then

•
considers them as terms in the next
outer level of expressions. It •
continues this process until the
outermos1: expression is evaluated.

5. A term or expression' s'
intermediate value and computed
result must lie in the range of
-2 31 through +231_1.

NOTE: It is assuroed that the
assembler evaluates paired
relocatable terms at each level
of expression nesting.

Absolute Expressions

A=5

A*--X'A' ~ 5~<+10= =7

~~O

" A=10 {A+I0/B ~ 10+10/2 ==9

B=2 (A+I0) /B 9 (10+10) /2¢>20/2 1=3

A=10 A/2 ==~

A=11 A/2 }e = =i>

A=1 =~ {1:~2A/2 ~ 10 * 1/2 9 10/2:=;

Value of
Expression

+50

15

10

5

5

o

5

Part II: Functions and Coding of Machine Instructions

SECTION 0: MACHINE INSTRUCTIONS

61

62

Section D: Machine Instructions

This section introduces the main functions of the machine
instructions and provides general rules for coding them
in their symbolic assembler language format. For the
complete specifications of machine instructions, their
object code format, their coding specifications, and their
use of registers and virtual storage (see GLOSSARY) areas
see the Principles of Operation manuals:

• IEM System/360 principles of Operation, Order No. GA22-
6821

• IBM System/370 principles of Operation, Order No. GA22-
7000

D 1 - Functions

At assembly time, the assembler converts the symbolic
assembler language representation of the machine
instructions to the corresponding object code. It is this
object code that the computer processes at execution time.
Thus, the functions described in this section can be called
execution time functions.

Also at assembly time, the assembler creates the object
code of the data constants and reserves storage for the
areas you specify in your DC and LS assembler instructions
~ee G3). At execution time, the machine instructions

can refer to these constants and areas, but the constants
themselves are not executed.

Section D: Machine Instructions 63

~JA -- FIXED-POINT ARI'IHMETIC_

64

You use fixed-point instructions
when you wish to perform arithmetic
operations on data represented in
binary form. These instructions
treat all numbers as integers.
If they are to oI;:erate upon data
represen1:ing mixed numbers (such
as 3.14 and 0.235) you must keep
track of the decimal point yourself.
For your constants you must I;:rcvide
the necessary number of binary
positions to represent the fractional
portion of the number specified
by using the scale mcdifier (see
G3B) •

Operations Performed

Fixed-point instructions allow you
to perform the operations listed
in the figure to the right.

Data Constants Used

In fixed-point instructions, you
can refer to the constants listed
in the figure to the right.

O NOTE: Except for the conversion
operations, fixed-point arithmetic
is performed on signed binary values.

Fixed - Point
Operations

Add

Subtract

Multiply

Divide

Arithmetic Compare
(taking sign into
account)

Load into registers

Store into areas

Arithmetic Shift of
binary contents of
registers to left or
right (retaining
sign)

Convert (packed)
decimal data to
binary

Convert binary data
to (packed) decimal
data

Constants Used

Fixed-Point

Binary

Hexadecimal

Character

Decimal (packed)

Address

Mnemonic
Operation Codes

AR, A, AH, ALR, AL

SR,S,SH,SLR,SL

MR, M, MH

DR,D

CR, C, CH

LR,L,LH,LTR,LCR,LPR,LNR,LM

ST, STH, STM

SLA,SRA,SLDA,SRDA

CVB

• CVD

Type

H and I:

B

X

C

P

Y, A, S, V and Q

D1E -- I:ECIMAL ARITEMETIC

Furpose

You use the decimal instructions
when you wish to perform arithwetic
operations cn data that has the
binary equivalent of decimal
representaticn, either in packed
or zoned form. These instructions
treat all nurrbers as integers.
For example, 3.14, 31.4; and 314
are all processed as 314. You must
keep track cf the decimal point
yourself.

Decirral instructions allo~ you to
perform the operations listed in
the figure tc the right.

rata constants Used

In decimal instructions you can
refer to the ccnstants listed in
the figure to the right.

•
NOTE: Exceft for the ccnversion
operations, decimal arithmetic is
performed on signed packed decimal
values.

Decimal Mnemonic Operation
Operations Codes

Add AP

Subtract SP

Multiply MP

Divide DP

Arithmetic Compare CP
(taking sign into
account)

Move decimal data MVO
with a 4-bit offset

Shift decimal data SRP
in fields to left or
right

Set a field to zero ZAP
and add contents
of another field

Convert zoned to PACK
packed decimal
data • Convert packed to UNPK
zoned decimal
data

Constants Used Type

Decimal (packed) P

(zoned) Z

Section D: Machine Instructions 65

.£.1 c . -- F'LCATING-FOINT J\RI'I'HMET I<~

6'6

You use floating-point instructions
when you wish to ferferm arithmetic
operations on binary data that
represents beth integers and
fractions. Thus, you do not have
to keep track of the decinel point
in yeur ccnfutaticns. Flcating
point instructions also allow you
to perfcrn, arithrretic cJ;:erations
on both very large numters and very
small nurr.bers, with greater precision
than with fixed-point instructions.

Floating-feint instructions allo~
you to perform the operations listed
in the figure te the right.

rata Constants Used

In floating-point instructions,
you can refer te the ccnstants
listed in the figure to the right.

l\OTE: Flcating-fcint ari t,hmetic
is performed on signed values that
rrust have a sfecial floating-point
forrrat. ~he fracticnal pcrtion

O
of floating-point nUmters, when
used in addi tien and subtz:action,
can have a normalized (no leading
zeros) cr unncrmalized fozIDat.

Floating - Point
Operations

Add ..
Subtract

Multiply

Divide

Halve
(division by 2)

Arithmetic Compare
(taking sign into
account)

Load into floating -
point registers

Store into areas

Constants Used

Floating - Point

Mnemonic Operation
Codes

ADR, AD, AER, AE, AWR
AW, AUR, AU, AXR

SDR, SD, SER, SE, SWR,
SW, SUR, SU, SXR

MDR, MD, MER, ME, MXR,
MXDR,MXD

DDR,DD,DER,DE

HDR,HER

CDR, CD, CER, CE

LDR, LD, LER, LE, LTDR,
LTER, LCDR, LCER, LPDR,
LPER,LNDR,LDER,LRDR,
LRER

STD, STE'

Type

E, D,and L

D1D -- LOGICAL OPERATIONS

Purpose

You can use the logical instructions
to introduce data, move data, or
inspect and change data.

Operations Performed

The logical instructions allow you
to perform the operations listed
in the figure to the right.

Logical Mnemonic Operation
Operations Codes

Move MVI, MVC, MVN, MVZ, MVCL

Logical Compare CLR, CL, CLI, CLC, CLCL,
(unsigned binary CLM
values)

AND (logical NR, N, NI, NC
multiplication)

OR (logical OR,O. 01, DC
addition)

Exclusive OR XR,X,XI,XC
(either or,
but not both)

Testing binary TM
bit patterns

Insert i n g characters IC,ICM
into registers

Store characters STC,STCM
into areas

Load address into LA
register

Logical Shift of SLL, SRL, SLDL, SRDL
unsigned binary
contents of
registers to left or
right

Replace argument TR.TRT
values by corresponding
function values from
table (translate)

Edit (packed and ED. EDMK
zoned decimal data)
values in preparation
for printing

Section D: Machine Instructions 67

D1E -- BRANCHING

You can use several types of
branching instructions, combined
with the logical instructions listed
in D 1 D, 1:0 code and control loops,
subroutine linkages, and the sequence
of processing.

Operations Performed

The branching instructions allow
you to pE~rform the operat:ions listed
in the fIgure to the right.

NOTE: Additional mnemonics for
• br anchinq on condition are described

in section r:1H below.

Branching Mnemonic Operation
Operations Codes

.!!!:!!!£!! depending) BCR, BC
on the results of

the preceding ~.
operation (that
sets the condition
code)

Branch to a BAlR, BAL
subroutine with a
return. link to
current code

Branch according BCTR,BCT
toa~con-

tained in a register
(count is decremented
by one before deter-
mining course of
action)

Branch by comparing
BXH, BXlE

~ value to fixed
comparand, (index
incremented or de-
cremented before
determining course
of action)

Temporary Branch in EX
orderto~a

specific machine
instruction

~1F -- STATUS SWITCHING

Purpose

You can use the status switching
instructions to communicate between
your prograrr and the system control
program. However, some of these
instructions are ~rivileged
instructions and you can use them
only when the CPU is in the
supervisor state, but not when it
is in the problem state. The
privileged instructions are marked
with a "pH in the figure to the
right.

Operations Performed

The status switching instructions
allow you to perform the operations
listed in the figure to the right.

Status Switching Mnemonic Operation
Operations Codes

Load program status information P LPSW

Load sequence of control registers P LCTL

Set bit patterns for condition code SPM
and interrupts for .E!0gram

Set bit patterns for channel usage P SSM
by system

Set protection ~ for a block of P SSK
storage

Set time-of-day clock P SCK

Insert protection m for storage P ISK
into a register

Store time-of-day clock STCK

Store identification of channel P STI DC, STIDP
or CPU

Store (save) sequence of control P STCTL
registers

Call supervisor for system SVC
interrupt

Call monitor for interrupts de- MC
pending on contents of
control register

Test bit which is subsequently TS
set to 1

Write or Read directly to or P WRD, RDD
from other CPU's

Set Clock Comparator P SCKC

Store Clock Comparator P STCKC

Set CPU Ti mer P SPT

Store CPU Timer P STPT

Store Then AN D System Mask P STNSM

Store Then OR System Mask P STOSM

Section D: Machine Instructions 69

70

D1G -- INPUT/OUTPUT

PUrpose

You can use the input/output
instructions, instead of the IBM
supplied system macro instructions,
when you wish to control your input
and output operations more closely.

Operations Ferformed

The input or output instructions
allow you to identify the channel,
or the device on which the input
or output operation is to be
performed. The operations performed
are listed in the figure to the
right. However, these are privileged
instructions, and you can only use
them when the CPU is in the
supervisor state, but not when it
is in the problem state.

Input or Output Mnemonic Operation
Operations Codes

Start I/O SID, SIOF

Halt I/O HID

Test state of channel TIO,TCH
or device being used

Halt Device HOV

section D: Machine Instructions 71

D1H -- BRANCHING WITH EXTENDED MNEMONIC CODES

72:

Purpose

The branching instructions described below allow you to
specify a mnemonic code for the condition on which a branch
is to occur. Thus, you avoid having to specify the mask
value required by the EC and BCR branching instructions.
The assembler translates the mnemonic code that represents
the condition into the mask value, which is then asserrbled
in the object code of the machine instruction.

The extended mnemonic codes are given in the figure on the
opposite page.

They can be used as operation codes for branching
~ instructions, replacing the BC and BCR machine instruction.

codes. Note that the first operand of the BC and BCR

•
instructions must not be present in the operand field of
the extended mnemonic branching instructions •

• NOTE: The addresses represented are explicit addresses;
however, implicit addresses can also be used in this type
of instruction.

Extended Code Meaning Format (Symbolic) Machine
Instruction Equivalent

~_o~·_~~

• • 0 • \.b2(X;,B2~ B } Unconditional Branch RX BC l5,D2(X2,B2)
BR R2 RR BCR l5,R2
NOP D2(X2,B2) } No Operation RX BC O,D2(X2,B2)
NOPR R2 RR BCR O,R2

Used After Compare Instructions

BH D2(X2,B2) } Branch on High RX BC 2,D2(X2,B2)
BHR R2 RR BCR 2,R2
BL D2(X2,B2) } Branch on Low RX BC 4,D2(X2,B2)
BLR R2 RR BCR 4,R2
BE D2(X2,B2) } Branch on Equal RX BC 8,D2(X2,B2)
BER R2 RR BCR 8,R2
BNH D2(X2,B2) } Branch on Not High RX BC 13,D2(X2,B2)
BNHR R2 RR BCR l3,R2
BNL R2(X2,B2) } Branch on Not Low RX BC ll,D2(X2,B2)
BNLR R2 RR BCR ll,R2
BNE D2(X2,B2) } Branch on Not Equal RX BC 7,D2(X2,B2)
BNER R2 RR BCR 7,R2

Used After Arithmetic Instructions

BO D2(X2,B2) } Branch on Overflow RX BC l,D2(X2,B2}
BOR R2 RR BCR l,R2
BP D2(X2,B2) } Branch on Plus RX BC 2,D2(X2,B2)
BPR R2 RR BCR 2,R2
BM D2(X2,B2) } Branch on Minus RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BNP D2 (X2 ,B2) } Branch on Not Plus RX BC 13,D2(X2,B2)
BNPR R2 RR BCR 13,R2
BNM D2(X2,B2) } Branch on Not Minus RX BC ll,D2(X2,B2)
BNMR R2 RR BCR ll,R2
BNZ D2(X2,B2) } Branch on Not Zero RX BC 7,D2(X2,B2)
BNZR R2 RR BCR 7,R2
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2)
BZR R2 RR BCR 8,R2

Used After Test Under Mask Instructions

BO D2(X2,B2) } Branch if Ones RX BC l,D2(X2,B2)
BOR R2 RR BCR l,R2
BM D2(X2,B2) } Branch if Mixed RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BZ D2(X2,B2) } Branch if Zeros RX BC 8,D2(X2,B2)
BZR R2 RR BCR 8,R2
BNO D2(X2,B2) } Branch if Not Ones RX BC 14,D2(X2,B2)
BNOR R2 RR BCR 14,R2

D2=displacement,X2=index register,B2=base register,R2=register containing
branch address (

section D: Machine Instructions 73

Q11 -- RELOCATION HAN[LING

74

Purpose

!OU use the relocation instructions
1n connnection with the relocate
feature <of IBM System/370.

Operations Performed

The relocation instructions allow
you to p,erforro the operations listed
in the figure to the right. However
~hese in~tructions are privileged '
1nstruct:Lons, and you can use them
only when the CPU is in the
supervisor state, but not when it
is in the problem state.

Relocation Mnemonic Operation
Operations Code

load Real Address LRA

Purge Translation
lookaside Buffer PTLB

Reset Reference Bit RRB

Set Clock Comparator SCKC

Store Clock Comparator STCKC

Set CPU Timer SPT

Store CPU Timer STPT

Store and AN 0 System STNSM
Mask

Store and 0 R Syste'm STOSM
Mask

D2 - Alignment

Purpose

The assembler automatically aligns the object code of all
machine instructions on halfword boundaries. For execution
of the IBM Systern/370 machines, the constants and areas
do not have to lie on specific boundaries to be addressed
by the machine instructions.

However, if the assembler option ~LIGN is set, you can
cause the assembler to align constants and areas; for
example, on fullword boundaries. This allows faster
execution of the fullwcrd machine instructions.

If the NOALIGN option is set, you do not need to align
constants and areas. They will be assembled at the next
available byte, which allows you to save space (no bytes
are skipped for alignment).

Alignment

section D: Machine Instructions 75

76

Specifications

MACHINE INSTRUCTION~: When the
assembler aligns machine instructions

O
on halfword boundaries, it sets
any bytes skipped to zero.

CONSTANTS AND AREAS: One of the
assembler options that can be set
in the job control language (that
initiates execution of the assembler
program) concerns the alignment
of constants and areas; it can
be specified as ALIGN or NOALIGN.

If ALIGN is specified, the following
applies:

•
• The assembler aligns constants
and areas on the boundaries implicit
in their type, if no length
specification is su~~lied.

• The assembler checks all
• expressions that re~resent storage

addresse~ to ensure that they are
aligned on the boundaries required
by the instructions. If they are
not, the assembler issues a warning
message.

If NCALIGN is specified, the
following applies:

•
• The ~.ssembler does not align
QQ.n.stant.s and areas on special
boundaries, even if the length
specification is omitted. Note
that the CCW instruction, however,
always causes the alignment of the
channel command word on a doubleword
t:oundary.

•
• The assembler does not: check
storage addresses for boundary
alignment.

NOTE 1: The assembler always forces
alignment if a duplicati()n factor
of 0 is specified in a C()Dstant
or area without a length modifier
(for an example, see G3N). Alignment
occurs when either ALIGN or NOALIGN
is set.

Sou rce Statements

L

A

3'AREA~

3,CONS~

AREA DS F

CONST DC F' 200'

L

A

3.AREA>
3,CONST

AREA DS

DS

Object Code

CONST

Full Word
Boundary

xxxxxxxx

000000C8

Can bean an
boundary

CONST

xxxxxxxx

CONST DC
DC

F' 200 I} 000000C8
FL4'200' Equiv.

NOTE 2: When NOAL1GN is sfecified,
the CNOP assembler instruction can
be used to ensure the correct
alignment of data referred to cy
the privileged instructions that
require specific boundary alignment.
The mnemonic operation codes for
these instructions are listed in
the figure to the right.

Mnemonic Operation Codes Meaning
for Privileged Operations

LPSW Load program status word.

ISK I nsert Storage Key.

SSK Set Storage Key.

LCTL Load Control registers.

SCK Set Clock.

STIDP ! Store CPU Identification

STCTL Store Control registers.

(Diagnose - not handled by assembler)

Section D: Machine Instructions 77

D3 -- Statement Formats

7B

Machine instructions are assembled
into object code according to one
of the six formats given in the
figure to the right.

When you code machine instructions
you use symbolic formats that
correspond to the actual rrachine
language formats. within each tasic
format, you can also COdE! varia tions
of the symbolic representation
(Examples of coded rrachine
instructions, divided into groups
according to the six basic formats,
are illustrated in [6 below).

The assembler converts only the

O operation code and the~erand
entries of the assembler language
statement into object code. The

•
asseml:ler assigns te the symbol
you code as a name entry the value

•
of the address of the leftmost
byte of the assembled instruction.
When you use this same symbol in
the operand of an assembler language
statement, the assembler uses this
address value in converting the

•
symbolic operand inte its object

· code form. The length attributE;
assigned to the symbcl de~ends on
the basic machine language format
of the instruction in which the
symbol appears as a name entry
(for details on the length attribute
see C4C) •

• A remarks entry is net converted
into object code.

Format

RR

RX

R8

8I

8

88

Example:

Length of Object Code
Reguired for the Assembled
I nstruction in Bytes

2

4

4

4

4

6

• (L I LABEL=4)

Assembler Language Statement

LABEL L 4,256(5,10)

8

Operation Register
Code Operand

Storage
Operand

/ __ 1----- 4 bytes -----I
Object Code

(machine language) of
Assembled Instruction
in Hex

RX Format

D4 - Mnemonic Operation Codes

Furpose

You nust sFecify an cFeration code
for each machine instruction
staten.ent. The ninen:cnic cpera tion
code indicates the type of operation
to be perforRed; fer examFle, "An
indicates the "addition" operation.
Appendix IV ccntains a complete
list of mnemonic operation codes
and the fernats of the corresponding
machine instructions.

Specificatiens

The general format of the machine
instructicn eFeraticn code is shown
in the figure to the right.

o The verb nust always be present.
It usually consists of one or two
characters and specifies the
operation to be performed. The
other itens in the cperation code
are not always present. The~
include:

~. The modifier which further defines
the cperaticn

• The type qualifier, which
indicates the type of data used
ty the instructien in its operation,
and

e . The fcrrrat qualifier, R cr I,
which indicates that an RR or SI
machine instruction forn,at is
assembled.

VERB [MODIFIER] [DATA TYPE] [MACHINE FORMAT]

Examples:

o{
~{

•

o

logical

atB
Ir--bi-na-r-y-'I

section D: Machine Instructions 79

os - Operand Entries

80

You rrust specify cne cr mere operands
in each machine instrueticm statenent
to previde the data. cr thE! location
of the data upon which the machine
operatio~ is to be perfcrroed. The
operand entries consist of: one or
more fields cr subfields depending
on the format of the instruction
being ceded. They can specify a
register, an address, a length,
and inmediate data.

You can code an operand entry either
with symbcls cr with self-defining
terms. You can omit leng1:h fields
or sutfields, which the assembler
will compute for you from the other
operand entries.

General Specifications fOl: Coding
Operand Entries

The rules for coding operand entries
are as fcllcws:

o A comma must separate operands.

• Farentheses nust enclcse subfields.

•
A COR.na n',ust se@rate subfields
enclosed in parentheses.

If a subfield is crritted because
it is in implicit in a symbolic
address, the farentheses that would

Ohave enclosed the sutfield II'ust
te cIritted. .

LM

MVI

MVC

MVC

MVI

MVI

0
4, ~/SAVE5
4 (12), C 'F'

'e ,/
TO (80), FROM • o (So:a), 240(S)

0
4 ~(, C 'F'

KEY C 'F' f '
Implicit
Address
See D5B

If twc subfields are enclcsed in
parentheses and separated by conrr.as,
the fcllowing aFplies:

If both subfields are omitted tecause
they are irnFlicit in a symbclic

Gentry, the separating cornua and
the Farentheses that ~ould have
been needed must also te omitted.

If the first subfield is emitted,

•
the comma that separates it froIt
the second subfield uust be written
as well as the enclosing parentheses.

If the secend subfield is omitted,

8
the £..Q!lli!@ that separates it from
the first subfield Itust be omitted,
however, the enclosing parentheses
Rust be written.

NOTE: flanks must not appear within
the eFerand field, except as part

• of a character self-defining terrr
or in the sFecif1caticn of a

• character literal.

L

L

L

L

MVC

MVC

MVC

MVC

MVC

~ 2,48{4,5) ---2,FIELD
. ~ Implicit

2,48{4,5)

Address
See D5B

Index Register

2,48 {~ is omitted

/8 Length
3 2 (,1 0) , 4 0 (10) Specification

I is omitted
32{8,lO) ,40{lO)

3,2{16,6) ,48(6)

8\
TO{lL6),~F_R_O_M ______ ~

Base Register
implicit in symbolic
address TO

section D: Machine Instructions 81

C5~ -- REGI.STERS.

82

Purpose and Usage

You can specify a register i~ an
operand for use as an arithmetic
accumulator, a base register, an
index register, and as a general
depositor~{ for data to which you
wish to reefer over and over.

You must be careful when specifying
a registeJc'whose contents have been
affected by the execution of another
machine instruction, the control
program, or an IEM-supp1ied system
macro instruction.

For some machine instructions you
are limited in which registers you
can specify in an operand.

Specifica1~

'Ihe expressions used to specify
registers must have absolute values;
in general, registers 0 through
15 can be specified for machine
instructions. However, the following
restrictions on register usage
apply:

1. The floating-point registers
(0, 2, 4, or 6) must be specified

~ for floating-point instructions:

• •
8

2. The even numbered registers (0,
2, 4, 6, 8, 10, 12, 14) must be
specified for the following groups
of instructions:

ae The double-shift instructions

bo The fu11word multiply and
diVide, instructions

Co The move long and compare
logical long instructions.

3. The floating-point registers
o and 4 must be specified for the

•
instructions that use extended
floating-point data:

AXR, SXR, LRDR, MXR, MXDR, MXC.

NOTE: The assembler checks the
registers specified in the
instruction statements of the above
groups. If the specified register
does not comply with the stated
restrictions, the assembler issues
a diagnostic message and does not
assemble the instruction.

Operation Code

Examples: L • LE

SLDA

SRDA
f)

SLDL

SRDL

e{ M

D

e{ MVCL

CLCL

0 AXR

Registers

a I AREA

4,. FLTAREA

Both register operands
must be even-numbered

REGISTER USAGE BY MACHINE
INSTRUCTIONS: Registers that are
not explicitly coded in the symbolic
assembler language representation
of machine instructions, but are
nevertheless used by the assembled
machine instructions, are divided
into two categories:

1. The base regist<ers that are
implicit in the symbolic addresses
specified. These implicit addresses
are described in detail in D5B •

•
The registers can be identified
by examining the object code of

•
the assembled machine instruction
or the USING instruction(s) that
assigns base registers for the
source module.

•
•

•
•
8

2. The registers that are used by
machine instructions in their
operations, but do not appear even
in the asserrbled object code. They
are as follows:

a. For the double shift and
fullword multiply and divide
instructions, the odd-numbered
register whose number is one
greater than the even-numbered
register specified as the first
operand.

b. For the Move Long and Compare
Logical Long instructions, the
odd-numbered registers whose
number is one greater than the
even numbered registers specified
in the two operands.

c. For the Branch on Index High
(BXH) and the Branch on Index

Low or Equal (EXLE) instructions;
if the register specified for
the second operand is an even
numbered register, the ~
higher odd-numbered register
is used to contain the value
to be used for comparison.

d. For the Translate and Test
(TRT) instruction, registers
1 and 2 are also used.

e. For the Load Mul tipl e (LM)
and Store Multiple (STM)
instructions, the registers that
lie between the registers
specified in the first two
operands.

REGISTER USAGE BY SYSTEM: The
control program of the IEM System/370
uses registers 0, 1, 13, 14, and
15.

Source Module

START 0

BALR 12,0

USING ~c ,12 8

L 3,FIELD

M 4,TWO

MVCL

BXH 3,4,ADRESS

Object Code
in Hex

• IS81310lclxxxi

Isc 141 0 Ic I xxxi

18613141clxxxi

TRT ARGUMENT(10),TABLE

LM 19813171clxxxi

o L..-____ ---'

Section D: Machine Instructions 83

DSB -- ADDRESSES_

84,

PUrpose and Definition

You can code a symbol in the name
field of a machine instruction
statement to represent the address
of that instruction. You can then
refer to t:he symbol in the operands
of other machine instruction
statements. The object code for
the IBM System/370 requires that
all addresses be assembled in a
numeric base-displacement :format.
This format allows you to specify
addresses that are relocatable or
absolute.

You must not confuse the concept
of relocatability with the actual
addresses that are coded as
relocatable, nor with the format
of the addresses that are assembled.

DEFINING SYMBOLIC ADDRESSE~: You
define s~nbols to represent either
relocatable or absolute addresses.
You can define relocatable addresses
in two ways:

• By using a symbol as the label in
the name field of an assembler
language statement or

•
By equa'!-ing a symbol to a relocatatle
expressl.0!l.

You can define absolute addresses

•
(or values) by equating a symbol
to an absolute expression.

REFERRING TO ADDRESSES: You can
refer to relocatable and absolute
addresses in the operands of machine
instruction statements. Such address
references are also called addresses
in this manual. The two ways of
coding addresses are:

~ Implicitly: that is, in a form
that the assembler must first convert
into an explicit base-displacement
form before it can be assembled
into ObjE!ct code.

e Explici t]:.Y.: that is, in a form
that can be directly assembled into
object c()de.

• • •

e

Symbolic
Addresses
(Defined)

DC

EQU

L

L

L

B

EQU

LA

LA

LA

3F'370'

i,A:MA;~4~

Address
References

3'~~
4,lU~"w'OlW

4 , 2.:.Jl<.~12).
tiOAaFG

Relocatable

Addresses

Absolute
Addresses

Relocatability of Addresses

Addresses in the base-displacement
form are relocatable, because:

• Each relocatable address is

I assembled as a displacement from
a base address and a base register.

A. The base register contains the
V tase address.

• If the otject module assembled
from your source module is relocated,
only the contents of the base
register need reflect this
relocation. This means that the
location in virtual storage of your
pase has changed and that your base
register must contain this new base
address.

• Your addresses have been assembled
as relative to the base address;
therefore, the sum of the
displacement and the contents of
the base register will point to
the correct address after relocation.

NOTE: Absolute addresses are also
assembled in the base-displacement
form, but always indicate a fixed
location in virtual storage. This

•
means that the contents of the base

, register must always be a fixed
absolute address value regardless
of relocation.

Q)
LO
U
X
II
c
CI)

E
~
~
is

....
c
CI)

E
fl
CQ

0.
I/)

is

TO

Source Module

START a
BALR 12, a
USING

I Base Address

DS

Object Code
in Hex

I Displacement I

FROM DS
CL80
CL240

Register 0 as a base
register is always
considered to contain
the absolute address
location 0

LA 3,1024

END

Section D: Machine Instructions 85

Specifications

~ACHINE OR OBJECT COI:E FOEMKt: All addresses asserrbled
into the object code of the IBM System/370 machine
instructions have the format given in the figure below.

Format Coded or Symbolic
Representation of
Explicit Addresses

Object Code
Representation
of Addresses

4 bits 4 bits 4 bits 12 bits 4 bits 12 bits bits
Operation
Code

Base
Reg
ister

Displacement Base Displacement
Reg-

RS

5I

D2(B2)

Dl(Bl)

55 D 1 (, Bl) , D 2 (B2)

RX D2(X2,D2)

5 Dl(Bll

R 1 and R3 represent registers
12 represents an immediate vc.lue
L represents a length value

. _ ~S:>_~E.:. ~1_:_ ~~ _.L.Iit:L.:..L..;~at&l~~

~ ~ ~~~~:.- _- _- T~- ~ ~ ~ t;B-.:···.l=i_l"","i~~~

The addresses represented have a value which is the sum
of:

•• A displacement and

8. The contents of a base register.

NOTE: In RX instructions, the address represented has

ister

a value which is the sum of a displacement, the contents 8 of a base register, and the contents of an index register.

Addresses

Implicit Address

An implicit address is specified

I
by coding one expres sien. The
expression can be relocatable or
absolute. The assembler converts
all implicit addresses into their

• l:ase-displacereent ferm before it
assembles them into object code.
The assembler converts im~licit
addresses into explicit addresses
only if a USING instruction has
been specified. The USING
instruction assigns both a base
address, from which the assembler
computes displacements, and a base
register, to contain the base
address. The base register must
be loaded with the cerrect base
address at execution time. For
details on how the USING instruction
is used when establishing
addressability, thus allowing
implicit references, see F1.

Explicit Address

AREA

Source Module

START
BALR
USING

L

DS

LA

END

o
12,0
*,12

!:
3,AREA

F

!!
4,1000

Object Code
in Hex

}!:;\i.i r .. ·.· .. ·· · .• · •.... : .•.... \ ;

/S 8 I 3 I 0 I C I xxx I
/\~

Base Register] DisPlacementl

1;;1f;~i~JM;~81
r---+--I_". ~
Always used as
base register for
absolute address Displacement
between 0 and
4095

An explicit address is specified
by coding two absolute expressions
as follows: Source Statement Object Code

in Hex

•
The first is an absolute expression
for the displacement, whose value
must lie in the range 0 through
4095 (4095 is the maximum value
that can be represented by the 12
binary bits available for the
displacement in the object code).

The second (enclosed in parentheses)

•
is an absol ute expression for the
l:ase register, whose value must
lie in the range 0 through 15.

If the base register contains a

LA

value that changes when the program L
is relocated, the assembled address
is relocatal:le. If the base register
contains a fixed absolute value
that is unaffected by program
relocation, the assembled address
is al:solute.

NOTES (for implicit and explicit
addr ess es) :
1. An explicit base register
designation must not accompany an
implicit address.
2. However, in RX instructions an

• index register can be coded with
an implicit address as well as with
an explicit address.
3. When two addresses are required,
one address can be coded as an

I explicit address and the other as
an implicit address.

L

MVC

Section D: Machine Instructions 87

D5C -- LENGTHS

88

Purpose

You can specify the length field in an S5-type instruction.
This alloy1s you to indicate explicitly the number of bytes
of data a1: a virtual storage location that is to be used
by the instruction. However, you can omit the length
specifica1:ion, because the assembler computes the numter
of bytes ()f data,to be used from the expression that
represents the address of -the data.

IMPLICIT LENGTH: When a length subfield is omitted from
an 55-tYPE~ machine instruction an implicit length is
assembled into the object code of the instruction. The
implicit length is either of the following:

1. For an implicit address (see D5B above) # it is the

O length attribute of the first or only term in the expression
representing the implicit address.

2. For an explicit address (see D5B above), it is the

•
length at"tribute of the first or only term in the expression
that represents the displacement.

For details on the length attribute of sym1:::ols and other
terms see C4C.

EXPLICIT LENGTH: When a length subfield is specified in

•
an 5S-type machine instruction, the explicit length thus
defined always overrides the implicit length.

NOTES:

•
1. An implicit or explicit: length is the effective length.

· The length value assembleq is always one less than the

•
effective length. If an assembled, length value of 0 is
desired, an explicit length of 0 or 1 can be specified.

2. In the 55 instructicns requiring one length value, the
allowable range for explicit lengths is 0 through 256.
In the 55 instructions requiring two length values, the
allowable range for explicit lengths is 0 through 16.

Lengths

Assembler Length Attribute Object Code
Language of term (symbols) in Hex
Statement

L= Length Value

e • Address
Implicit Lengths L TO FROM

MVC TO,FROM L'TO = 'Q I D214~1 xxxx Ixxxxi

,., :-.::;:,' .. ~.::?.:..

0
L

MVC TO+SO,FROM L'TO = lD21~Flxxxxlxxxxl
L'AREA S'

L1 L2
AP AREA, TWO =

L'TWO = ;'4.; IFA I 7 [31 xxxx 1 xxxxi
0 \

L

MVC 0 (, 10) , 80 (10) I D21oolAOOoiAOSoi

f(I

L

MVC FROM-TO(,10),SO(10) L'FROM =24Q I D21 EF[AOAO IAOSO I
I 4

Expl icit Lengths • Address
TO FROM

MVC TO (l'O) ,FROM L'TO = SO I D 21 9 F 1 xxxx I xxx~

... ·.,.,.,,'.,.'r''''''.:'x·,:,\:\·,,'
, ... ' .• ' .. ' . 8 L

MVC 0 ';;S 0 (10) 1 ID2f4FI AOOO IAOSOI • I ..
CLC 0(1,10) ,256 (10) 1 I DSI 00 I AOOO I A 1001

• 0(0,10) ,256(10) " CLC 1 I DSI0 0 IAOOOIAI001

TO DS CLSO
FROM DS CL240
AREA DS PLS
TWO DC PL4'2'

section D: Machine Instructions S9

~~D -- IMMEDIATE CATA

90

Purpose

In addition to addresses, registers, and lengths, some
machine instruction operands require immediate data. Such
data is assembled directl~' into the object code of the
machine instructions. You use immediate.data to specify
the bit patterns for masks or other absolute values you
need ..

You should be careful to specify immediate data only where
it is required. Co not confuse it with address references
to constants and areas or with any literals you specify
as the operands of machine instruction (for a compariscn
between constants, literals, and immediate data, see C5).

Immediate data must be spE~cified as absolute expressions
whose range of values depends on the machine instructicn
for which the data is required. The immediate data is o assembled into its 4-bit or ~ tinary representaticn •
according to the figure 011 the o};:posi te page.

Machine Instructions
in which immediate
data is required
(Op codes in

Appendix IV)

SRP

All BCR
All BC

ICM
STCM
CLM

NI
CLI

XI
MVI

01
TM

RDD
WRD

SVC

(SS)

(RR)
(RX)

(RS)

(SI)

(RR)

Range of Values
allowed for
immediate data

o through 9

o through 15
o through 15

o through 15

o through 255

o through 255

Examples Object Code
in Hex

SRP A'B"~
P-l p-o-I-7 or-'I 3";"'I-x-x-xx--'lr-x-x-xx-]

/ ""'~----S--
I Length ofl Addresses

Field A I

BCR08 t

BC II,AAA 147\Blolxxxxl

I , -----
. - AAA

Address

18 •
STCM 3,X'F':BBB IBEI31plxxxxi

CLI

TM

SVC

-----BBB
Address

Address
SLOT

SLOT, c;iJ}\' 1951 C i I xxxx I
8ii / \.

'F' 191 17FI xxxx I KEY ---Address
KEY

8

Immed. Data

Section D: Machine Instructions 91

DE) - Examples of Coded Machine Instructions

The examples in this sul:section
are g.roupE!d according to machine
instruction format. They illustrate
the various ways in which you can
code the operands of machine
instructions. Both syrobolic and
numeric representation of fields
and subfields are shewn in the
examples. You must therefore assume
that all symbols used are defined
elsewhere in the same source module.

'The ol:ject: code assembled from at
least one coded statement per group
is also included. A complE~te summary
of machine instruction formats with
the coded assembler languaqe variants
can be found in Appendix III and
IV.

RR Format

You use the instructions with the
RR format mainly to move data l:etween
registers~ The operand fields must
thus desi9nate registers, with the
following exceptions:

In BCR branching instructions when
a 4-l:it bl:anching Ira sk reI,:lace s
the first register specification

In SVC instructions, where an

•
immediate value (between 0 and 255)
replaces both registers.

•
NOTE: Symbols used in RR
instrucTI<msare assumed to be
equated to absol ute values l:etween
o and 15.

92

Name Operation Operand

ALPHAI LR 1,2

ALPHA2 LR INDEX,REG2

¥
GAMMA 1 BCR 0 8 ,12

DELTAI SVC 200.

DELTA2 svc TtflN

Assembly Examples:

Assembler Language Statement Object Code of
Machine Instruction

in Hex

ALPHAI LR 1,2~ ____ ------__

RR Format

I
operationl Register I
Code Operands

2 bytes

RX Format

You use the instructions with the
RX format mainly to move data between
a register and virtual storage.
By adjusting the contents of the
index register in the RX-instructions
you can change the location in
virtual storage being addressed.
The operand fields must therefore
designate registers, including index
registers, and virtual storage
addresses, with the following
exception:

O In Be branching instructions a 4-
tit tranching roask, with a value
between 0 and 15, replaces the first
register specification.

NOTES:

1. Symbols used to represent
• registers are assumed to be equated

to absolute values between 0 and
15.

•
2. Symbols used to represent implicit
addresses can be either relocatatle
or absolute.

3. Symbols used to represent
~ displacements in explicit addresses

are assumed to be equated to absolute
values between 0 and 4095.

Name Operation Operand

ALPHAl L 1,200(4,10)

ALPHA2 L REGl,200(INDEX,BASE)

~.~
BETAl L 2,200(,10)

BETA2 L

GAMMAl L

GAMMA 2 L

DELTAl L
k Literal Specification

4 , ,r:~, See C5

LAMDAl BC

. ""--------'

1:,DISPL (, BASE)

LAMDA2 BC TEN, ADDRESS o
Assembly Examples:

Assembler Language Statement Object Code of
Machine Instruction

in Hex

ALPHA1

5 4 0 C 8

RX Format

5 8 2 4 X X xl
"

,-'

GAMMAl L

Section D: Machine Instructions 93

94

RS Format

You use the instructions with the
RS format mainly to move data between
one or mOJ:e registers and virtual
storage or to compare data in one
or more r«:!gisters (see the BXH and
BXLE operations in Appendi:x IV).

In the Insert Characters under Mask
(I eM) and the Store Characters Under

O
Mask (STQ1) instructions ,when a
4,-bit mask, with a value between
o and 15, -replaces the second
register specification.

NOTES:

1. Symbols used to represent
• registers, are assumed to be equated

to at:solu"te values between 0 and
15 •

•
2. Symbols used to represent implicit
addresses can be either relocatable
or absolu·te.

3. Symbols used to represent
• displacements in explicit addresses

are assumed to be equated to absolute
values between 0 and 4095.

Name Operation

ALPHAl LM

ALPHA2 LM

BETAI STM

BETA2 STM

GAMMA 1 SLL

GAMMA 2 SLL

DELTAI ICM

DELTA2 ICM

Assembly Examples:

Assembler Language Statement

ALPHAI

RS Format

Operand

4,6,20(12)

REG4,REG6,20(BASE)
-~8~

4,6,AREA.

4,6,DISPL(BASE) • 2,15

2,0(15)

(1024 (10)

REG3:~~~,. IMPLICIT.
G"""

Object Code of
Machine Instruction

In Hex

DELTAI ICM 3,X'E' ,1024(10)

SI Format

You use the instructions with the
SI format mainly to move immediate
data into virtual storage. The
operand fields must therefore
designate iremediate data and virtual
storage addresses, with the following
exception:

o An immediate field is not needed
in the statements whose o~eration
codes are: LPSW, SSM, TS, TeE, and
TIO.

NOTES:

1. Symbols used to re~resent 8 immediate data are assumed to be
equated to absolute values between
o and 255.

•
2. Symbols used to represent implicit
addresses can be either relocatable
or absolute.

3. Symbols used to represent 8 displacements in explicit addresses
are assumed to be equated to absolute
values between 0 and 4095.

Name Operation Operand

ALPHAl CLI 40(9) ,X'40'

ALPHA2 CLI 8DISPL40(NINE) ,a~X40

BETAl CLI .-.,rMPLICIT ,r.t'll1W--8
BETA2 CLI ~Ey,C'E'

0 [GAMMAl LPSW 0(9)

GAMMA 2 LPSW NEWSTATE-....

Assembly Examples:

Assembler Language Statement Object Code of
Machine Instruction

In Hex

ALPHAl

81 Format Operation I mmed
Code Data 8! ~ Displacement

~.~ from Base
a:

Section D: Machine Instructions 95

96

S Format

You use the instructions with the
S format 1:0 perform I/O and other
system opE?rations and not to move
data in virtual storage.

The operation codes for these
instructions are given in the figure
to the right. They are assembled
into two bytes.

Mnemonic
Operation
Codes

SID

SIOF

HID

HDV

STIDP

STIDC

SCK

STCK

SCKC

STCKC

SPT

STPT

PTLB

RRB

Assembled Description
Operation
Code in
Hex

9COO Start I/O

9C01 Start I/O fast
release

9EOO Halt I/O

9E01 Halt Device

B202 Store CPU ID

B203 Store Channel
ID

B204 Set Clock

B205 Store Clock

B206 Set Clock Comparator

B207 Store Clock Comparator

B208 Set CPU Timer

B209 Store CPU Timer

B20D Purge Translation
Lookaside Buffer

B213 Reset- Reference Bit

55 Format

You use the instructions with the
55 format mainly to move data between
two virtual storage locations.
The operand fields and subfields
must therefore designate virtual
storage addresses and the explicit
data lengths you wish to include.
However, note the following
exception:

•

In the Shift and Round r;ecimal (SRP)
instruction a 4-bit iff-mediate data
field, with a value between 0 and
9, is specified as a third operand.

NOTES:

•
1. Symbols used to represent ~
registers in explicit addresses
are assumed to be equated to absolute
values between 0 and 15.

•
2. Symbols used to represent explicit
lengths are assumed to be equated
to absolute values between 0 and
256 for SS instructions with one
length specification and between
o and 16 for SS instructicns with
two length specifications.

8
3. Symbols used to represent implicit

• addresses can be either relocatable
or absolute.

4. Symbols used to represent
• displacements in explicit addresses

are assumed to be equated to absolute
values between 0 and 4095.

Name Operation Operand

ALPHAl AP 40(9,8) ,30(6,7)

ALPHA2 AP 40 (NINE,BASE8) ,30(SIX,BASE7)

"'.~~
ALPHA3 AP FIELDl,FIEL~8

ALPHA4 AP AREA(9) ,AREA2(6)

ALPHAS AP DISP40 (,8) ,DISP30 (,7)

~O~
BETAl MVC 0(80,8) ,0(7)

BETA2 MVC DISPO(,8) ,DISPO(7)

BETA3 MVC TO,FROM

SRP FIELDl X' 8 '30
"8/-" '

Assembly Examples:

Assembler Language Statement

ALPHAl

A 8 0 2

Lengths

SS Format Operation L1 L2 Base Displacement
Code 1 from Base 1

L

BETAl MVC 0 (80 , 8) , 0 (7)

Object Code of
Machine Instruction

in Hex

0 1 E

Base Displacement
2 from Base 2

Section D: Machine Instructions 97

98

Part III: Functions of Assembler Instructions

SECTION E: PROGRAM SECTIONING

SECTION F: ADDRESSING

SECTION G: SYMBOL AND DATA DEFINITION

SECTION H: CONTROLLING THE ASSEMBLER PROGRAM

99

100

Section E: Program Sectioning

This section explains how you can
subdivide a large program into
smaller parts that are easier to
understand and maintain. It also
explains how you can divide these
smaller parts into convenient
sections: for example, one section
to contain your executable
instructions and another section
to contain your data ccnstants and
areas.

You should consider two different
subdivisions when writing an
assembler language program:

1. The source module

2. The control section.

You can divide a program into two

O or more source modules. Each source

•

module is assembled into a separate
object module. The object modules
can then te combined into load

•
modules to form an executable
program.

You can also divide a source module

O
into two or more control sections.
Each control section is assembled
as part of an object module. By
writing the proper linkage edit

A control statements, you can select
~a complete object module or any •

individual control section of the
object module to be linkage edited
and later loaded as an executable
program.

SIZE OF PROGRAM PARTS: If a source
module becomes so large that its
logic is not easily comprehensible,
break it up into smaller modules.

Unless you have special programming
reasons, you should write each
control section so that the resulting
object code is not larger than 4096
bytes. This is the largest number
of bytes that can be ccvered by
one base register (for the assignment
of base registers to control
sections, see F1A) •

QQMMUNICATION BETWEEN PROGRAM PARTS:
You must be able to communicate
between the parts of your program:
'that is, be able to refer to data
in a different part or be able to
branch to another part.

Source
Program

Assembly
Time

• Source
Modules • Object

Modules

D B

END c:>
'----""'-

D
c

END c:>
'----~

Assembly
Time

Linkage
Edit
Time

Source Control
Modules Sections

Object
Modules

A

B

Source
Program

c

1

2

3

4

5

D

A
1 • Q 2

~
3

4

Q

~
-'

6

Program
Fetch
Time

• Executable
Program

1

2

Program
Fetch
Time

Executable

program

Section E: Program Sectioning 101

To communicate between two or more
source modules, you must symbolically
link them together: symbolic linkage
is described in F2.

To communicate between two or more
control sections within a source
module, you must establish the
addressability of each control
section: establishing addressability
is descril:ed in F1.

fa -- The Source Module

A source module is com~osed of
source s1:atements in the assembler
language~ You can include these
statemen1:s in the source module
in two ways:

1 •. You wl:-i te them on a coding form
• and then enter them as input, for

example, through a terminal or,
using punched cards, through a card
reader.

2. You specify one or more COpy
instructions among the source
statements being entered. When
the assembler encounters a COpy
instruction, it replaces the COpy
instruction with a ~redetermined

•
set of source statements from a
library. These staterrents then
become a part of the source module.

The Beginning of a Source Module

'Ihe first statement of a source
module c.:ln be any asserrbler language
statemen't, except MEXIT and MENr:,
that is described in this manual.
You can initiate the first control
section of a source roodule by using
the START instruction. However,
you can or must write some source
sta temen'ts before the beginning
of the first control section (for
a list of these statements see E2r:).

The End of a Source Module

OS
only The END instruction usually marks

.:.;~: ~.~~ ~~d: :~~~~:lm~~~l!1. However,

102

instructions. The assembler stops
assembling when it processes the
first END instruction. If no END
~nstrlJCtion is found, the assembler
will ge.nerate one.

Punched cards

or

Source Module

START

END

END

The
Assembler
Program

Source Mod.

Library

processed as comments
statements if the
LlBMAC option is
set (see J8A)

¢rt:al;tl.jfi~~ti i~ts~tn61Y pt(jcessing
of several ... ENe'

to .. be>p:t(jcessed~
assembly language
Section L.

ilj)O$.. ®l;¥9nEt>.Et4t> ~n$~t\lctiOrlis.allowe<1~
T~e .. as~exnble:r:' .• p;<:>esnotprocess· .any
. ~~~-eTuc.'t~()~that follows the END
instruction ..

E1A -- THE COFY INSTRUCTION

Purpose

I
The CCPY instruction allows you
to copy eredefined source statements
from a l~brary and include them
in a source module. Ycu thereby
avoid:

1. Writing the same, often-used
sequence of code over and over

2. Keypunching and handling the
punched cards for that code.

Source Statement

START

COpy EQUATES +

END

First Input
to Assembler
Program

COpy

Source Module

END

Effective
Input to
Assembler
Program

Section E: Program Sectioning 103

Specifica't:ions

The forma1: of the COpy instruction
statement is shown in the figure
to the riqht.

The symbol in the operand field
must iden1:ify a part of a library
called:

A member of a partitioned data
set

oos A <bQok in the source statement
libt'at;,

This memher (or book) contains the
coded sou:t:'ce statements to be copied.

The source coding that is copied
into a source module:

8. Is inserted immediately after
the COpy instr.uction

• Is inserted and processed

•
according to the standard instruction
statement coding format (described
in B1~ , even if an ICTL instruction
has been specified

• Must not contain either an ICTL
or ISEQ instruction

•• Can contain a COpy instruction.
Up to 5 levels of nesting of the
COpy instruction are allo\lJed.

tilQ$ UptQ31evels of nesting are
~:l:l9~~9;;

•• Can contain macro definitions
(see Section J) •

1.04

If a source macro definition is
copied into the beginning of a
source module, both the MACRO and
MEND statements that delimit the
definit iCln must be contained in
the same level of copied Gode.

NOTES:

1. The COPY instruction can also
be used t~o copy statements into
source macro definitions (see J5C).

2. The rules that govern the
occurrence of assembler language
statements in a source module
also govern the statements copied
into the source module.

Nare Operation ()perard

Blank COpy

Source Module • begin
1 10

OPEN

RO
ReI

COpy

MACRO
ANY .

START

COpy

lSQU
J;:9tJ

~cf' .-One or ~nary
Symbol

continue
16

end
71 Columns

COpy CODE2

END

Library
(Partitioned
data set)

E1B -- THE END INSTRUCTION

•

Purpose

You use the END instruction to mark
the end of a source module. It
indicates to the assembler where
to stop assembly processing. You
can also supply an address in the
operand field to which control can
be passed when your program is
loaded. This is usually the address
of the first executable instruction
in a source module.

Specifications

The format of the END instruction
statement is shown in the figure
to the right.

If specified, the operand entry
can be generated by substitution
into variable symbols. However,
after substitution, that is, at
assembly time:

1. It must be a relocatable
expression representing an address
in the source module delimited
by the END instruction, or

~ 2. If it contains an external symbol,
the external symbol must be the
only term in the expression, or

•
the remaining terms in the expression
must reduce to zero.

3. It must not be a literal.

Name

A sequence
symbol or
blank

Operation

END

Source Module A

A START 0
ENTERA BALR 12,0

USING *,12
ENTRY ENTERA

0
END ENTERA

Source Module B

B START 0
BALR 11,0
USING *,11
EXTRN ENTERA

•

Operand

A re1ocatab1e
expression or
blank

• END ENTERA + (Subexpression)

Section E: Program Sectioning 105

106

E2 - General Information About Control Sections

A control section is the smallest subdivision of a program
that can be relocated as a unit. The assembled control
sections contain the object code for machine instructions,
data constants, and areas.

Contrl Sect.

Section E: Program Sectioning 107

~:?A -- AT DIFFERENT PROCESS ING '1' !MES

Cons ider the concept of a control section at differen't
processin.g times.

~AT CODING TIME: You create a control section when you
write the~ instructions it contains. In addition, you
establish the addressability of each control section within
the source module, and provide any symbolic linkages between
control sections that lie in different source modules.
You also write the linkage editor control statements to
combine the desired control sections into a load Ir,odule,
and to provide an entry point address for the beginning
of program execution.

~AT ASSEMBLY TIME: The assembler translates the source
statements in the control section into object code. Each
source module is assembled into one object module. The
entire object module and each of the control sections it
contains is relocatable •

•
AT LINKAGE EDITING TIME: According to linkage editor ccntrol
statements, the linkage editor combines the Object code
of one or more control sections into one load module.
It also calculates the linkage addresses necessary for
communication between two or more control sections frcIr
different object modules. In addition, it calculates the
space needed to accommodate external dummy sections (see
E4) •

•
AT PROGRAM FETCH TIME: The control program loads the load
module into virtual storage. All the relocatable addresses
are converted to fixed locations in storage •

•
AT EXECUTION TIME: The control program passes control
to the load module now in virtual storage and your program
is executed.

108

NOTE: You can specify the relocatable address of the
starting point for program execution in a linkage editor
control statement or in the operand field of an END
statement.

CODING
TIME

Source
Modules

ASSEMBLY
TIME

~III

Object
Modules

LINKAGE
EDIT
TIME

Load
Modules

PROGRAM
FETCH
TIME

EXECUTION
TIME

X'23000'

First
Program

X'40000'

Second
Program

Section E: Program Sectioning 109

ExecutabJLe Contrel Sectio~

An executable control section is
one you initiate by using the START
or CSECT instructions and is

• assembled into object code. At
execution time, an executable control
section contains the binary data
assembled from your coded
instructions and constants and is
therefore executable.

An execu1:able control section can
also be initiated as "private code",
without using the S'IART or CSECT
instruction (see E2E) •

A reference control section is one
you initiate by using the OSEC'l,
COM, orl~llr instructi<;m and is not
assembled into object code. You

•

c~n use a reference control sect~on
e.~ther to reserve storage. areas
or to describe data to which you
can refer from executable centrol

110

sections 0' These reference control
sections are considered to be empty

.. a·t assembly time, and the actual

.. bina~1ta to which they refer
is not entered until execution time.

Assembly
Time

Source Module Object Module

EXEC START

REFER COM

Execution
Time

Load Module

E2C -- LOCATION COUNTER SETTING

The assembler maintains a separate
location counter for each control
section. The location counter
setting for each control section
starts at O. The location values
assigned to the instructicns and
other data in a control section
are therefore relative to the
location counter setting at the
beginning of that control section.

O However, for executable control
sections, the location values that

A appear in the listings do not restart
~at 0 for each subsequent executable

control section. They carryon
from the end of the previous control
section. Your executable control
sections are usually loaded into
storage in the order you write them.
You can therefore match the source
statements and object code produced
from them with the contents of a
dump of your program.

·1)O$F<i¥'.~~~~u#abl..e.bont;fol..$i¢~~~~~;.}
.tll!.·:L~ca.tj.on<ya.lllE!~ ..•.•• '711(i1;'.·.·.·1lJ?~~t.i;; .. :
1nt .~ .. ~ .•.. · •.•. :L ... ~.~'t.j.n.9s .. Cll"!CiYs..~t.~~~~:t:()itI
Qi .•. ··.·.·.~;K<q~P.ti··'t..l1e cQnt.P9~ •. ·.§~(:rt~p;n
.j.tl *t.j.~t.~~ijy ~ •... · •. S';r~f ~1l~tru9't.~q
"ithian()n-zei:oQperand~nt;y.

e For reference control sections,
the location values that appear

G
in the listings always start from

, Q.

Listed Location
in hex

Source Module

section E: Program Sectioning 111

o

•

112

You can continue a control section
that has been discontinued by another
control section and thereby
intersperse code sequences from
different control sections. Note
that the location values t:hat appear
in the listings for a control
section, divided into segments,
follow from the end of onE~ segment
to the beginning of the subsequent
segment.

Location
in Hex

Source Module

E2D -- FIRST CONTROL SECTION -
SPECIFICATIONS

The specifications below apply to
the first executable centrol section,
and not to a reference control
section.

INSTRUCTIONS THAT ESTAELISH THE
FIRST CONTROL SECTION: Any
instruction that affects the location
counter or uses its current value
establishes the beginning of the
first executable control section.
The instructions that establish
the first control section are listed
in the figure to the right.

The statements copied into a source o module by a COpy instruction, if
specified, determine whether or
not it will initiate the first
control section.

NOTE: The DSECT, COM, and;~I~
instructions initiate reference
control sections and do not establish
the first executable control section.

WHAT MUST COME BEFORE THE FIRST
CONTROL SECTION: The following
instructions or groups of
instructions, if specified, must
appear before the first control
section, as shown in the figure
to the right.

• The ICTL instructien, which,
if specified, must be the first
statement in a source module

O • Any source macro definitions
(see J1 B)

• The COpy instruction, if the
code to be copied contains only
OPSYN instructions or complete macro
definitions.

Any Machine Instruction

The Following Assembler Instructions:

CCW
CNOP o (COPY)
CSECT
CXD
DC
DROP
DS
END
EQU
LTORG
ORG
START
USING

\ /
These instructions are always
considered a part of the control
section in which they appear.

ource Module

ICTL

OPSYN

MACRO
MACl

MEND

MACRO
MAC 2

MEND

MACRO
MAC 3

MEND

"

First Contrl Sect.

These instructions or
macro definitions belong
to a Source Module, but
must appear before the
first control section.

Section E: Program Sectioning 113

WHA'I CAN CF'IICNALLY CO~E EEFORE
THE FIRST CON'IROL SEC'IION: 'Ihe
instructions or groups of
instructions that can c~tionally
be specified before the first control
section are shown in the figure
to the right.

A Any instructions copied by a COpy
~ .. instruction or generated by the
.. process ing of a macro instl:uction
~ before the first control section

must belon.g exclusively to 0ne of
the groups. of instructions shown
in the figure to the right.,

NOTES:

1. The EJECT, ISEQ, PRINT, SPACE,

•
or T rrLE instructions and comments

, statements: must follow the ICTL
instruction, if specified. However,

•
they can precede or appear between

, source macro definitions. 'I'he OPSYN
instruction must (1) follo\~ the
ICTL instrriction, if s~ecified,
and (2) precede any source macro
definition specified.

2. All thE! other instructions of
the assembler language must follow
any SOUrCE! macro definitions
specified.

3. All thE! instructions or groups
of instructions listed in the figure

•
to the ri9ht can also appear as
part of a control section.

114

Source Module

COpy
DXD
EJECT
ENTRY
EXTRN
,ISEQ
PRINT
PUNCH
REPRO
SPACE
TITLE
WXTRN

Comments Statements I
Common Control Sections I
Dummy Control Sections I
External Dummy Control Sections I

These instruc
tions or groups
of instructions
belong to a
Source
Module, but
are not con
sidered as part
of an exe.
cutable
control

E2E -- THE UNNAMED CONTROL SECTION

The unnamed control section is an
executable control section that
can be initiated in one of the
following two ways:

o 1. By coding a START or CSECT
instruction without a name entry

2. By coding any instruction, other
than the START or CSECT instruction,

~ that initiates the first executable
V control section.

The unnamed control section is
sometimes referred to as private
code.

All control sections ought to be
provided with names so that they
can be referred to symbolically:

1. Within a source module

2. In EXTRN and WXTRN instructions
and linkage editor control statements
for linkage between source modules.

NOTE: Unnamed common control sections
or dummy control sections can be
defined if the name entry is omitted
from a COM or DSECT instruction.

E2F -- LITERAL POOLS IN CONTROL
SECTIONS

Literals, collected into pools by
the assembler, are assembled as

O part of the executable control
section to which the pools belong.
If a LTORG instruction is specified
at the end of each control section,
the literals specified for that
section will be assembled into the

~POOI starting at the LTORG
instruction. If no LTORG instruction
is specified, a literal pool
containing all the literals used
in the entire source module is
assembled at the end of the first
control section. This literal pool

•
appears in the listings after the
END instruction.

NOTE: If any control section is
divided into segments, a LTORG
instruction should be specified
at the end of each segment to create
a separate literal pool for that
segment. (For a complete discussion
of the literal pool see H1B.)

Type Code Unnamed Control Notes
Assigned for Sections in separate·
External Symbol Source Modules
Dictionary

PC IIS~ART
/ , END

Unnecessary unless
dictated by specific -" programming pur-

~ pose

PC I' CSECT

.
END

I
Inadvertent and in-

PC "BALR 12,0 advisable initiation

USING):c,12 of first control sec-

.
END

PC signifies

Location
in hex

tion: instead, precede
with a named
START instruction

"private code"

Source Module

=A(ADR)

END

Section E: Program Sectioning 115

E2G -- EXTERNAL SYMBOL DICTIONARY
ENTRIES

The assembler keeps a record of
each control section and prints
the following information about
it in an External Symbol Dictionary.

1. Its symbolic name, if one is
specified

2. Its type code

3. Its individual identification

4. Its starting address.

The figure to the right lists:

1. The assembler instructions that

•
define control sections and dummy
control sections or identify entry.
and external symbols,

2. The type code that the assembler
assigns to the control sections or
dummy control sections and to the
entry and external symbols.

NOTE: The total number of entries
identifying separate control
sections, dummy control sections,
entry symbols, and external symbols
in the external symbol dictionary
must not exceed 399. External
symbols identified in a Q--type
address constant and specified as the

•
~ entrY......Q! a DSECT inst~ruction are
counted twice in determining this
total.

116

Name
Entry

optional

optional

0

•

Instruction Type code en-
tered into external
symbol dictionary

START SD} if na~.
entry IS

CSECT SD present

START PC } iinam.
entry is

CSECT PC omitted
Any instruction that
initiates the unnamed PC
control section

COM eM

DSECT none

ENTRY LD

EXTRN ER

DC(V-type ad- ER dress constant)

WXTRN WX

E3 - Defining a Control Section

You must use the instructions described below to indicate
to the assembler:

• Where a control section begins and

• Which type of control section is being defined.

E3A -- THE START INSTRUCTION

Purpose

The START instruction can be used only to initiate the
first or only executable control section of a' source If.cdule.
You should use the STAR'!' instruction for this purpose,
because it allows you:

1. To determine exactly where the first control secticn
is to begin; you thereby avoid the accidental initiation
of the first control section by some other instruction.

2. To give a symbolic name to the first control section,
which can then be distinguished from the other control
sections listed in the external symbol dictionary.

3. To specify the initial setting of the location counter
for the first or only control section.

Specifications

The START instruction rr-ust be the
first instruction of the first
executable control section of a
source module. It must not be
preceded by any instruction that
affects the location counter and
thereby causes the first control
section to be initiated.

The format of the START instruction
statement is given in the figure
to the right.

Name Operation

Any Symbol
or blank START

START

Operand

A self-defining
term, or blank

Section E: Program Sectioning 117

•
• •

118

The symbol in the name field, if
specified. identifies the first
control section~ It must be used
in the name field of any CSECT
instruction that indicates the
continuation of the first control
section. This symbol represents
the address of the first byte of
the control section and has a length
attribute value of 1.

The assembler uses the value of
the self-defining term in the operand
field, if specified, to set the
location counter to an initial value
for the source module. All control
sections are aligned on a doubleword
boundary. Therefore, if the value
specified in the operand is not
divisible by eight, the assembler
sets the :initial value of the
location counter to the next higher
doubleword boundary~ If the operand
entry is omitted, the assembler
se ts the Jni tial value to o.

Location In
Hex

000000

OOODOO

000D04
000D04

Further Examples:

• 001000 A
001000 B
000020 C • • 000000 D

FIRST START

END

START
START
START

START

o

X'1000'
4096
30

.......... ----.. ----............ ------........ ----~

O The source statements that follow
the START instruction are assembled
into the first control section.
If a CSECT instruction indicates
the continuation of the first control

•
sect ion, the source statements tha t
follow this CSECT instruction are
also assembled into the first control
section.

Any instruction that defines a new

•
or continued control section marks
the end of the preceding control
section or portion of a control
section. The END instruction marks
the end of the control section in
effect.

E3B -- THE CSECT INSTRUCTION

Purpose

FIRST

The CSECT instruction allows you to initiate an executable
control section or indicate the continuation of an
executable control section.

Specifications

The CSECT instruction can be used anywhere in a source
module after any source macro definitions that are
specified. If it is used to initiate the first executable
control section, it must not be preceded by any instruction
that affects the location counter and thereby causes the
first control section to be initiated.

Source Module

START o

END

CSECT

The format of the CSECT instruction
statement is shown in the figure Name Operation Operand
to the right.

Any Symbol Not required
or blank CSECT

Section E: Program Sectioning 119

The symbol in the name field, if
specified" identifies the control
section. If several CSEC'!'
instructions within a source module
have the same symbol in the name
field, the first occurrence initiates
the control section and the rest
indicate the continuation of the
control s(;!ction. If the first
control sC8ction is ini tia ted by
a START instruction" the symbol
in the name field must be used to
indicate any continuation of the
first control section.

NOTE: A CSECT instruction with
a blank name field either initiates
or indica·tes the continuation of
the unna~ed control section (see
E2E) •

The symbol in the name field
_represents the address of the first

byte of the control section and
has a lenqth attribute value of
1 •

•
The beginning of a control section
is aligned on a doubleword boundary.
However, ·the continuation of a

•
control s'ection begins at the next
available location in that. control
section.

•

120

The source statements that: follow
a CSECT instruction that either
initiates or indicates the
continuation of a control section
are assembled into the object code
of the control section identified
by that CSECT instructione

NOTES:

1. The end of a control section or
portion of a control section is
marked by:

a. Any instruction that defines a
new or continued control section
or

bo The END instructionti

Locin
Hex

• 000

Source Module

FIRST START o

END

Source Module Object Module

FIRST START 0

END

E3C -- THE DSECT INSTRUCTION

Purpose

You can use the DSECT instruction
to initiate a dummy control section
or to indicate its continuation.

A dummy control section is a
reference control section that
allows you to describe the layout
of data in a storage area without
actually reserving any virtual
storage.

How to Use a Dummy Control Section
Loc Source Module Object Module
in

The figure to the right illustrates Dec
a dummy control section.

A dummy control section (dummy
section) allows you to write a

~ sequence of assembler language
statements to describe the layout of

•
unformatted data located elsewhere in
your program. The assembler produces
no object code for statements in a
dummy control section and it reserves
no storage for the dummy section.
Rather, the dummy section provides a
symbolic format that is empty of

•
data. However, the assembler assigns
location values to the symbols you
define in a dummy section, relative
to the beginning of that dummy
section.

Therefore, to use a dummy section
you must:

4Dt1. Reserve a storage area for the
unformatted data

• Ensure that this data is loaded
into the'area at execution time

• Ensure that the locations of
the symbols in the dummy section
actually correspond to the locations
of the data being described

•• Establish the addressability
of the dummy section in combination
with the storage area (see F1A) •

•
You can then refer to the unformatted

I data symbolicall¥ by using the
symbols defined 1n the durr~y section.

FIRST START 0

.{ LA 10 ,BUFFER
US:N~UMMY ,10

CLI KEY,C'X'

.lillllljI11,1!·:il1.~~;,:?.·,,·· •• · •• ··.·.t; <!'~m~0[1f

ff
o
o
1
4

24
44
54
62
68

o

DUMMY DSECT
KEY DS C //
CODE DS CL3,/'/
NAME DS CJ;.,2c(

~~~~S ~t/'/~~~f~ 
HRS /-!1S CL8 
DEDtJerf DS CL6 
p~1 DS CL12 

END 

S~ction E: Program Sectioning 121 



The DSECT instruction identifies 
the beginning or continuation of 
a dummy control section (dummy 
section).. One or more dummy sections 
can be dE~fined in a source module. 

The DSEC~r instruction can be used 
anywhere in a source module after 
the ICTL instruction, or after any 
source macro definitions that may 
be specified. 

The format of the DSECT instruction 
stat emen1: is given in the figure 
to the right. 

The symbc)l in the name field, if 
specified, identifies the dummy 
section. If several DSECT 
instructions within a source module 
have the same symbol in the name 

• field, the first occurrence initiates 
the dummy section and the rest 

• indicate the continuation of the 
dummy se<::tion. 

NOTE: A DSECT instruction with 
a blank name field either initiates 
or indicates the continuation of 
the unnamed dummy section. 

The symbol in the name field 
represents the first location in 
the dummy section and has a length 
attributE~ value of 1. 

The location counter for a dummy 

• 
section is always set to an initial 
value of O. However, the 
continuation of a dummy section 

• begins a1: the next available location 
in that dummy section. 

1:22 

Name 

Any Symbol 
or blank 

Location in 
Hex 

DSECT 

Operation Operand 

Not required 
DSECT 

FIRST START a 

END 



O The source statements that follow 
a DSECT instruction belong to the 
dummy section identified by that 
DSECT instruction. 

NOTES: 

1. The assembler language statements 
that appear in a dummy control 
section are not assembled into 
object code. 

2. When establishing the 

e addressability of a dummy section, 
the symbol in the name field of 

•
the DSECT instruction or any symbol 
defined in the dummy section can 
be specified in a USING instruction. 

3. A symbol defined in a dummy 
section can be specified in an 

• 
address constant only if the symbol 

I is paired with another symbol from 
the same durrmy section, and if the 
symbols have the opposite sign. 

FIRST START o 

USING DUMMY1,lO or USING A,lO 

o 0 

SECOND CSECT 

~ 
ADCON DC A (FROM-TO 

END 

Section E: Program Sectioning 123 



~~D THE COM INS'IRUCTION 

124 

You can use the COM instruction 
to initiate a common cont.rol section 
or to indicate its continuation. 
A common control section is a 
reference control section that 
allows you to reserve a storage 
area that can be used by two or 
more source modules. 

How to Use a Corr.mon Centrol Section 

The figu:ce to the right illustrates 
a common control section. 

A common control section (common 

O 
section) allows you to describe 
a common storage area in one or 
more sou:cce modules. 

When the separately assembled object 

• 
modules are linked as one program, 
the re9a:ired storage space is 
reserve for the corrrnon control 
section. Thus, two or more modules 
share the common area. 

Only the storage area is provided; 
the assembler does not assemble 
the source statements that make 
up a common control section into 
object code. You must previde the 
data for the common area at execution 
time. 

• The assembler assigns locations 
to the symbols you define in a 
common section relative t.o the 
beginning of that common section. 

• This allows you to refer symbolically 
to the data that will be loaded 
at execution time. Note that you 

• must establish the addressability 
of a common control section in every 
source module in which it. is 
specified (see F1A). If you code 
identical common sections in two 
'or more source modules, you can 
communicate data symbolically cetween 
these modules through this common 
section. 

NOTE: You can also code a common 
control section in a source module 
written in the FORTRAN language. 
This allows you to communicate 
between assembler language modules 
and FORTRAN modules. 

Loc 
in 
Dec 

60 

o 

A 

Source Modules 

START 0 

8{ L 10,=A(AREA} 
USING AREA,lO • ST 3,SUM 

B START 0 

8{L 8,=A(AREA) 
USING AREA,8 • L 3,SUM 

END 

Object Modules 

B 



Specifications 

The COM instruction identifies the 
beginning or continuation of a 
common control section (common 
section) • 

One or more common sections can 
be defined in a source module. 

The COM instruction can be used 
anywhere in a source module after 
the ICTL instruction, or after any 
source macro definitions that may 
be specified. 

The format of the COM instruction 
statement is given in the figure 
to the right. 

NOTE: A COM instruction with a 
blank name field either initiates 
or indicates the continuation of 
the unnamed common section. 

The symbol in the name field 
represents the address of the first 
byte in the common section and has 
a length attribute value of 1. 

The location counter for a common 

• 
section is always set to an initial 
value of O. However, the 
continuation of a common section 

• begins at the next available location 
in that common section. 

If a common section with the same 
name (or unnamed) is specified in 
two or more source modules, the 4It amount of storage reserved for this 
common section is equal to that 
required by the longest common 
section specified. 

Name 

Any Symbol 

or blank 

Location in 
Decimal 

Operation 

COM 

Source Modules 

A START a 

• a 
a 

80 

B START a 

CL80 
CL240 

Operand 

Not required 

Reserved Storage 
for common control 
section XYZ when 
modules A and B 
are linkage edited 

1200 
bytes 

• 

Ao 
bytes 

j 

Section E: Program Sectioning 125 



O The sourCE~ statements that follow 
a COM instruction belong to the 
common section identified by that 
COM instruction. 

NOTES: 

1. The assembler language statements 
that appea.r in a common control 
section alre not assembled into 
object code. 

2. When establishing the 

• 
addressability of a common section, 
the ~~l in the name field of 
the COM instruction or any symbol 
defined in the common section can 
be specified in a USING instruction. 

126 

FIRST 

Source Module 

START °e 
COMMON,II USING • or USING A,II 

END 



M<rI~<Eid~i'1l.a.l··Dutnm.YSect:iot\S 
os 

Only 

PUrpose 

An external dummy section is a reference control section 
that allows you to describe storage areas for one or rrcre 
source modules, to be used as: 

1. Work areas for each source module or 

2. Communication areas between two or more source modules. 

When the assembled object modules are linked and loaded, 
you can dynamically allocate the storage required for all. 
your external dummy sections at one time from one source 
module (for example, by· using the GETMAIN macro 
instruction). This is not only convenient but you save 
space and prevent fragmentation of virtual storage. 

To generate and use external dummy sections, you need to 
specify a combination of the following: 

1. The DXD or DSECT instruction 

2. The Q-type address constant Source Module 

3. The CXD instruction. FIRST START 0 

O{~IAB=====D=XD====3D~~ 
DXD 2FL4 

Generating an External rummy Section 

I 
An external dummy section is 
generated when you specify a rxr 
instruction or a DSEcr instruction 
in combination with a Q-type address 

A constant that contains the name 
~of the DSECT instruction. 

S You use the Q-type address constant 
to reserve storage for the offset 
to the external dUff-my section whose 
name is specified in the operand. 
This offset is the distance in bytes 
from the beginning of the area 
allocated for all the external dummy 
sections to the beginning of the 
external durrrny section specified. 
You can use this offset value to 
address the external dummy section. 
The Q-type address constant is 
described in G3M. 

e{ 

EXT 
E1 
E2 
E3 
E4 

QA 
QB 
QEXT 

DUMMY 
D1 
D2 

DSECT 
DS 
DS 
DS 
DS 

DC 
DC 
DC 

DSECT 
DS 
DS 

END 

3C 
1C 
10H 
20F 

Q(A) 
Q(B) 
Q(EXT) • 
F 
2D 

Area allocated to 
contain external 
dummy sections • 

A 

Not an external 
dummy section 

offset to A 

L:ttOB 
offset to 

EXT 

Section E: Program Sectioning 127 



How to Use External Currrry Sections 

~o use an external dummy section, you rrust do the fcllcwir.g 
(as illustrated in the figure below) : 

o Identify and define the external durr,my section. ~he 
asserrbler will ccm~ute the length and alignrr.ent required. 

o Provide a Q-t~ ccnstant fcr each external dummy section 
defined. 

Use the CXC instructicn tc reserve a full~ord area into 

• 
which the linkage editor or loader will insert the tctal 
length of all the external dun:rr.y secticns that are specified 
in the source modules of your program. ~he linkage editcr 
computes this length frcm the lengths of the individual 
external durr.my sections supplied by the asserrbler. 

e Allocate a stcrage area u~dng the computed total length. 

~!Oad the address of the allocated area into a register 
(for this exarrple, register 11). Ncte that register 11 

roust contain this address throughout the whole prcgran • 

• Add, to the address in register 11, the cffset into the 
allocated area of the desired external durrrry secticn. 
The linkage editcr inserts this offset into the fullwcrd 
area reserved by the appropriate Q-type address ccnstar.t. 

8 Establisb the addressabil:h!Y of the external dummy section 
in corebination with the portion of the allocated area 
reserved for the external dumrry section • 

• You can now refer symbolically to the locations in the 
external durrrry secticn. 

128 

Note that the source statements in an external durrrry section 
are not asserrbled intc object code. Thus, at execution 
time you must insert the data described into the area 
reserved for the external durr.my sections. 



0/ 
B DSECT 

/ ITEM DS F 
~/ NO DS F 

SUM DS F II / ... / 
8// :::: 

0/ 

TWO START 0 / 100 200 
/ bytes bytes 

O{~R 3,BOFFS 
3,11 • USING B,3 __ / 

/ • , 
BOFFS DC Q(B)e 

ST 9,SUM 

END 

• 

Section E: Program Sectioning 129 



,te'~DefiiHrtg ... ~ .. ' ~etn.alDunimy . Section 
os ' 

billy 

E5A THE OXO INS'IRUCTION 

Purpose 

The OXD instruction allows you to 
identify and define an ex'ternal 
dummy sec:tion. 

Specifications 

The OXO instruction defines an 
external durrmy sectien. 'Ihe OXD 
instruction can be used anywhere 
in a source module, after the ICTL 
instruction or after any source 
macro dej:initions that may be 
specified. 

NOTE: ThE~ OSECT instruction also 
defines an external dummy section, 
but only if the symbol in the name 
field appears in a Q-type address 
constant in the same source module. 
OtherwisE~, a DSECT instruction 
defines a dummy section. 

The format of the LXC instruction 
is given in the figure to the right. 

8 The ~)l in the name field must 
appear 111 the operand of a Q-type 
address constant. This syml:;ol 
represents the address of the first 
byte of the external dummy section 
defined and has a length attribute 
value of 1 • 

• The subf:Lelds in the oFerand field 
are specified in the same way as 
in the os instruction. The assembler 
computes the amount of storage and 
the alignment required for an 
external dummy section from the 
area specified in the operand field. 

130 

The linkage editor or loader uses 
the infolcmation provided by the 
assembler to compute the total 
length of storage required for all 
external dummy sections specified 
in a program. 

NOTE: If two or more external dummy 
sections for different source modules 
have the same name, the linkage 
editor uses the most restrictive 
alignmen1:. and the largest section 
to compu11:e the total length. 

Name Operation 

A symbol DXD 

Example: 

A DXD 
l 

AOFFSET DC 

Operand 

Same format as the operand 
of a DS instruction 

lOFL3 

G. 
Q(A) 



-- THE CXD INSTRUCTION 

Purpose 

The CXD instruction allows you to 
reserve a fullword area in storage. 
The linkage editor or loader will 
insert into this area the total 
length of all external dummy sections 
specified in the source modules 
that are assembled and linked 
together into one ~rcgram. 

Specifications 

The CXD instruction reserves a 
fullword area in storage, and it 
can appear in one or more of the 
source modules assembled and combined 
by the linkage editor into one 
program. 

The format of the ext instruction 
statement is given in the figure 
to the right. 

The symbol in the name field, if 

O 
specified, represents the address 
of a fullword area aligned on a 
fullword boundary. This symbol 
has a length attribute value of 

A 4. The linkage editor or loader 
~ inserts into this area the total 

length of storage required for all 
the external dummy sections specified 
in a program. 

Name 

A symbol 
or blank 

Example: 

LENGTH 

Operation 

CXD 

Operand 

Not required 

Object Code 
in Hex 

boundary 

O 
I 4 bytes .. ., --.. 

CXD I XXXXXXXX I 

.~ 
Section E: Program Sectioning .131 



132 



Section F: Addressing 

This section describes the techniques and instructions 
that allow you to use symbolic addresses when referring 
to data. You can address data that is defined within the 
same source module or data that is defined in another 
source module. Symbolic addresses are more meaningful 
and easier to use than the corresponding object code 
addresses required for machine instructions. Also, the 
assembler can convert the symbolic addresses you specify 
into their object code form. 

Fl - Addressing Within Source Modules: Establishing Addressability 

By establishing the address ability 
of a control section, you can refer 
to the symbolic addresses defined 
in it in the operands of machine 
instructions. This is much easier 
than coding the addresses in the 
base-displacement ferm required 
by the System/370. The symbolic 
addresses you code in the instruction 

O operands are called implicit 
addresses, and the addresses in 
the base-displacement form are 

~ called explicit addresses, both 
of which are fully described in 
D5B. 

The assembler will convert these 
implicit addresses for you into 
the explicit addresses required 
for the assembled object code of 
the machine instruction. However, 
you must supply the assembler with: 

• 1. A base address from which it 
can compute displacements to the o addresses within a control section 
and 

•
2. A base register to hold this 
base address. 

8--------. o FIRST START 0 

I
LA 

Equivalent ~ 

o 
10,ADDRESb 

o 
\ 
ADDRESS DC 40 C'SAMPLE' 

END 

1411 A 1 0 I CO 4 0\ 
I • \ 

Section F: Addressing 133 



How to Establish Addressability 
Location 
in Hex 

Source Module 

To establish the addressability 
of a control section, you must, 
at coding time: 

O. Specify a base address from which 
the assembler can compute 
displacements 

•
• Assign. a base register to contain 
this base address 

•• Write the instruction. that loads 
the base register wi th thE~ base 
address. 

At assembly time, the implicit 
addresses you code are ~nle~ 

• 
into their eXFlici t base-displacement 
form; thE!n, they are asselrbled intc 
the object code of the machine 
instructicns in which they have 
been codE!d. 

A At execu1:ion tiIre, the base address 
~ is loaded into the base register 

and should rerrain there thrcughout 
the executicn of ycur program. 

E'lA - THE USING INSTRUCTION 

Purpose 

FIRST START 
BALR 
USING 

BEGIN 

ment 

22 CONADR DC 

L 

END 

The USING instruction allows you to specify a base address 
and assign one or more base registers. If you also load 
the base register with the base address, you have 
established addressability in a control section. 

134 

To use the USING instruction correctly you should: 

1. Rnow which locations in a control section are made 
addressable by the USING instruction 

2. Know where in a source module you can use these 
established addresses as implicit addresses in instruction 
operands. 

° 

Object Code 
in Hex 

12,0. 
• loslcl 01 

BEyIN, BEGIN::v, 

I . I • 
F'22' 



The Range of a USING Instruction 

The range of a USING instruction 
(called the USING range) is the 

• 
ft., 096 bytes beginning at the ~ 
address specified in the USING 
instruction. Addresses that lie 
within the USING range can be 

• converted fron; their implicit to 
their explicit form; those outside 

• the USING range cannot be converted. 

The USING range does not depend 
upon the position of the USING 
instruction in the source module; 
rather, it depends upon the location 
of ~he base address specified in 
the USING instruction. 

NOTE: The USING range is the range 
of addresses in a control section 

• 
that is associated with the base 

I register specified in the USING 
instruction. If the USING 
instruction assigns more than one 
base register, the composite USING 
range is the sum of the USING ranges 
that would apply if the base 
registers were specified in separate 
USING instructions. 

The Domain of a USING Instruction 

The domain of a USING instruction 
(called the USING domain) begins 
where the USING instruction appears 
in a source module and continues 
to the end of the source module. 
(Exceptions are discussed later 
in this subsection, under NOTES 
ABOUT THE USING DOMAIN.) The o assembler converts implicit address 
references into their explicit form: 

1. If the address reference appears 
in the domain of a USING instruction 
and 

2. If the addresses referred to 
lie within the range of the same 
USING instruction. 

~ The assembler does not convert 
address references that are outside 
the USING domain. The USING domain 
depends on the position of the USING 
instruction in the source module 
after conditional assembly, if any, 
has been performed. 

Source Module 

FIRST START 

L 5, INSIDE Gf 
.~-----I 

USING BASADR,BASREG ~ 

L 

L 

• OUTSIDE DS 

END 

Section F: Addressing 135 



1]6 



How to Use the USING Instruction 

You should specify your USING 
instructions so that: 

1. All the addresses in each control 
section lie within a USING range 
and 

2. All the references for these 
addresses lie within the 
corresponding USING domain. 

You should therefore place all USING 
instructions at the beginning of 
the source module and specify a 
base address in each USING 
instruction that lies at the 
beginning of each control section. 

FOR EXECUTABLE CONTROL SECTIONS: 
The figure to the right illustrates 
a way of establishing the 
addressability of an executable 
control section (defined by a START 
or CSECT instruction). You specify 

• a base address and assign a base 
register in the USING instruction • 

• At execution time the base register 
is loaded with the correct base 
address. 

Note that for this particular 
combination of the BALR and USING 
instructions r you should code them 
exactly as shown in the figure to 
the right. 

Location 
in Decimal 

0 
0 
2 

6 
10 

USING 
range 

4097 

Source Module 

FIRST START 0 
BALR 12,0 
USING 

*~ BEGIN L 
A 
ST Same 

address 
as BEGIN 

A DS F 
B DS F 
C DS F 

END 

Section F: Addressing 137 



If a con'trol section is longer than 
assign more than one base register. 
establish the addressability of the 
with one USING instruction as shown 
opposite page. 

4096 bytes, you must 
This allows you tc 

entire control section 
in the figure on the 

The assembler assumes that the base registers that you 

• 
assign contain the correct base addresses. The address 
of HERE is loaded into the first base register. ~'he 
addresses HERE+4096 and HERE+8192 are loaded into the 
second and third base registers respectively. 

~Note that you must define the address, EASES, within the 
first part of the total USING range, that is, the addresses 
covered by base register 9. This is because the explicit 

• address converted from the implicit address reference, 
is assembled into the LM instruction. At execution time, 
the assembled address must have a base register which 
already contains a base address at this point; the only 
base register loaded with its base address is register 
9 • 

• 
The addrE~ssabili ty of addresses in the USING range covered 

• by the second and third base registers is not completely 
established until after the LM instruction. 

138 

NOTE: Addresses specified in address constants (exce~t 
the S-typ~ are not converted to their base-displacement 
form. 



USING 
range 

D 

LONG 

o 
HERE 

START 
BALR 
USING 
LM 
B 
DC 
DS 

Source Module 

END 

o 
9,0 
HERE,9 
10,11, 
BEGIN 
A( 
OH 

Section F: Addressing 139 



FOR REFERENCE CONTROL SECT~: 
The figure to the right illustrates 
how to estal:lish the addressability 
of a dummy section. A dummy section 
is a reference control section 
defined by the DSEC7 instructions. 
Examples of establishing 
addressability for the other 
reference control sections are given 
in E3C and E4. 

o As the tase address, yeu sheuld 
specify the address of the first 
tyte of the durrrry seetien, BC that 
all its addresses lie within the 

• fertinent USIKG range • 

• 
The ~ss you load into the base 
register must be the address of 
the storage area being fOL~atted 
by the dummy section. 

Note that the assembler assumes 
that you are referring to the 

• symbolic addresses of the dummy 
section, and it computes 
displacements accordingly. However, 
at execut~ion time, the assembled 

• 
addresses refer to the location 
of real data in the storage area. 

140 

FIRST 

8- INPUT 

r 
USING 
range 

INDATA 
A 

8 p 

Source Module 

START 0 
BALR 12,0 
USING ':',12 
LA 11,INPUT 

~SING /~S8 ..... ~.~.~,11 
: 8>S 
DS 

DSECT 
DS 

DS 

END 

• 



Specifications for the USING Instruction 

The USING instruction must be coded 
as shown in the figure to the right. 

The operand, EASE, specifies a base 
address, which can be a relocatable 
or absolute expression. ~he value 
of the expression must lie between 
_22~ and 22~-1. 

The remaining operands specify from 
1 to 16 base registers. The operands 
must be absolute -expressions whose 
values lie in the range 0 through 
15. 

O The assembler assumes that the first 
base register (EASREG1) contains 

A the base address BASE at execution 
~ time. If present, the subsequent 

operands, BASREG2, BASREG3, ••• , 
represent registers that the 
assembler assumes will contain the 
address values, EASE+4096, 
BASE+8192, ••• , respectively. 

NOTES ABOUT THE USING DOMAIN: The 
domain of a USING instruction 
continues until the end of a source 
module except when: 

O. A subsequent CROP instruction 
specifies the same base register 
or registers assigned by the 
preceding USING instruction. 

~. A subsequent USING instruction 
specifies the same register or 
registers assigned by the preceding 
USING instruction. 

Name Operation 

Sequence USING 
symbol or 
'blank 

Example: 

USING 

USING 

Operand 

BASE, BASREGI G BASEREG2] eo 

BASE,9,lO,11 

Logical Equivalent 

First and 
second 
USING 
range 

Third 
USING 
range 

USING 
USING 
USING 

BREAK 

BASEl 

BASE,9 
BASE+4096,lO 
BASE+8l92,11 

START o 

USING 

DS 
. o DROP 

BASE2 DS 

USING 

eUS1NG 

END 

BASE 1 f"-' 1_1'"""-_---, 
Second 
USING 
domain 

BASE2 11 
f--'-'-----""'I 

Third 
USING 
domain 

Section F: Addressing 141 



NOTES AEOU~ ~HE USING RANGE: l~c 
USING ranges coincide when-the same 
tase address is s~ecified in t~c 
different USI~G instructions, even 
though the tase registers used are 
different. When two USING ranges 
coincide, tte assentler uses the 

• higher nurobered register for 
assentlin~ftl1e addresses ~i thin 

• the ccmnOIl USING ran~. In the 
example, this a~~lies cnly tc the 

• 
implici t addresses that a~pear after 
the second USING instruction. In 
effect, the first USI~G domain is 

• 
terIIiinated after the seccnd USING 
instructicn. 

142 

common 
USING 
range 

• 

Source Module 

r-------------------------
CONFLICT START 0 

USING 

A DS 

B DS 

USING • 
(A+4095) 

L • 
END 



~wo USING ranges overlap when the 
base address of one USING instruoticn 
lies ~ithin the range of another o USING instruction. When two ranges 
overlap, the assembler computes 

~ displacements fron the base address 
that gives the smallest displacement; 

• 
it uses the ccrresFcnding base 
register ~hen it assembles the 
addresses within the range cverlaF • 

• 
~his applies only to imFlicit 
addresses teat aFpear after the 
second USING instruction. 

EASE REGIS'IERS FOR AESOLU~E 
AD~RESSES: Absolute addresses used 
in a source module Rust alsc be 
made addressable. Absolute addresses 
require a base register other than 
the base register assigned to 
relocatable addresses (as described 
above) • 

However, the assenbler does net 
need a USING instruction to convert o absolute irrElicit addresses in the 
range 0 through 4,095 to their 

A explicit form. The assembler uses 
~register 0 as a base register. 

• 
risplacements are ccnFuted fren 
the base address 0, because the 
assembler assumes that a base er 
index of 0 implies that a zero 
quantity is tc be used in fcrning 
the address, regardless of the 

• 
contents of register o. ~he ~ 

, domain for this automatic base 
register assignnent is the ~hele 
of a source module. 

first 
USING 
range 

second 
USING 
range 

ABS 

USING 
range 
0·4095 

Source Module 

OVERLAP START 

USING 

DS 

DS 

DS 

USING 

L 

(RANGE2+4095) 

END 

Source Module 

START 0 

LA 

END 

o 

RANGE1,lO 

OH 

OH 

F 

first 
USING 
domain 

• RANGE 9 
second 
USING 
domain 

Object Code 
in Hex 

• • 

Section F: Addressing 143 



For absolute implicit addresses 
greater than 4095, a USING 
instruction must be specified 
according tc the fcllcwing: 

O. With a base address rep:resenting 
an atsolute expressicn, and 

•• With a base register that has 
not been assigned by a USING 
instruction in which a relccatable 
base address is specified • 

ABS 

USING 
range 
4096-8191 

Source Module 

START o 

LA 3,4095j 

LA 3,1(3) 

US~NG~4096 ,3-

LA 

• This case ~ister rrust be lcaded 
~ith tneJJase address specified. 

END 

F1B - THE DROP INSTRUCTION 

144 

You can use the DROP instruction to indicate to the 
assembler tha't one or more registers are no longer available 
as base r~:!gisters. This allows you: 

1. To free base registers for other programming purposes 

2. To ensure that the assembler uses the base register 
you wish :in a particular coding situation, for example, 
when two USING ranges overlap or coincide (as described 
above in :F1A, Notes about the USING range) • 

Object Code 
in Hex 

-4096 

1024 



o 

Specifications 

The DROP instruction must be coded 
as shown in the figure to the right. 

Up to 16 operands can be specified. 
They must be absolute expressions 
whose values represent the general 
registers 0 through 15. A CROP 
instruction with a blank operand 
field causes all currently active 
base registers assigned by USING 
instructions to be dropped. 

After a DROP instruction, the 
assembler will not use the registers 
specified in a DROP instruction 
as base registers. A register made 
unavailable as a base register by 
a DROP instruction can be reassigned 
as a base register by a subsequent 
USING instruction. 

Name 

Sequence 
symbol 
or blank 

USING 
range 

Operation Operand 

DROP BASREG1 

or blank 

Source Module 

DROPS START o 

DROP 

~BASREG~ ... 

Register 10 
unavailable 
as a base 
register 

Section F: Addressing 145 



o 
e 
• 8 

146 

A ~ROP instructien is net needed: 

• If the base address is being 
changed l:y a new USING instructien, 
and the same base register is 
assigned. Bewever, the new l:ase 
address must be loaded into the 
l:ase register. Nete that the 
implicit address "E" lies within 
the first USING derrain, and that 
the base address to which it refers 
lies within tr.e first USING range. 

• At the end of a source module. 

first 
USING 
range 

second 
USING 
range 

Source Module 

CHANGE START o 

USING A,9 

.--
A DS 

~. 
,.....f-

~~ 
~ 

B DS OB 

;.:":':"?:.::':.". 

.LA 9;a;2,. 

.US~NG B,9 

---

'--- -
END 



F2 - Addreaing Between Source Modules: Symbolic Linkage 

• 

This section describes symbolic 
linkage, that is, using symbols 
to communicate between different 
source modules that are separately 
assembled and then linked together 
by the linkage edit·or. 

How to Establish Symbolic Linkage 

You must establish symbolic linkage 
between source modules so that you 
can refer or branch to symbolic 
locations defined in the control 
sections of external source modules. 
To establish symbolic linkage with 
an external source module you must 
do the following: 

1. In the current source module, 
you must identify the symbols that 
are not defined in that source 
module, if you wish to use them 
in instruction operands. These 
symbols are called external symbols, 
because they are defined in another 
(external) source module. You 
identify external symbols in the 
EXTRN or WXTRN instruction or the 
V-type address constant. 

2. In the external source modules, 
you must identify the symbols that 
are defined in those source modules 
and to which you refer from the 

• 
current source module. These symbols 
are called entry symbols because 
they provide points of entry to 
a control section in a source module. 
You, identify entry symbols with 
the ENTRY instruction. 

3. You must provide the A-type or 
Y-type address constants needed 
by the assembler to reserve storage 
for the addresses represented by 
the external symbols. 

The assembler places information 
about entry and external symbols 
in the External Symbol ~ictionary. 
The linkage editor uses this 

• 
information to resolve the linkage 
addresses identified by the entry 
and external symbols. 

Current Source 
Module 

A START 

Other 
(External) 
Source 
Modules 

B START 

Linked Object 
Modules 

Section F: Addressing 147 



~o REFER ~C EXTERNAL rATA: You 

O 
should use the EX'IRN instructicn 
to identify the external symtol 
that represents data in an external 
source module, if you wish to refer 
to this data symtclically. 

For example, you can identify the 
address of a data area as an external Itt symtol and load the address constant 
specifying this' symbol into a tase 
register. 'Ihen, ycu use this base 
register when establishing the 

• addressatiiitYh of a dunny sect~on 
that forma s t is external data. 
You can now refer syrrtclically tc 
the data that the external area 
contains. 

You reust also identify, in the 
source module that contains the 

• 
data area,. the address cf ·the data 

· as an entl:y symbol. 

148 

Source Modules. 

CURRENT START 0 • 
EXTRN BUFFER . 

e{L lO,ADBUFF 
USING DATA,lO 

• AD BUFF DC A(BUFFER) 

"-
DA..TA DSECT 

KEY""- DS C 
CODE "DS CL3 
NAME bs CL20 
ADDR DS" CL20 
WAGES DS "CLIO 
HRS DS cbs 
DEDUCT DS CL6 " 
PAY DS CLl2" 

" 
END "'" ~-------J..., "'", 

OTHER START 0 ............ ,,-... 

ENTRY BUFFER • 
END 

linked 
Object Modu les 

CURRENT 



'10 BRANCH 'Ie AN E'XTERNAL AttRESS: 
You should use the V-type address 

~constant to identify the external 
symbol that represents the address 
in an external source module to 
which you wish te branch. Fer the 
specifications of the V-type address 
constant, see G3L. 

For example, you can lead into a 
~ register the v-ty~e address constant 

that identifies t e external symbcl. 

• 
Using this register, you can then 
branch to the external address 
represented by the symbol. 

If the symbol is the narre entry 
of a STAR'I or CSECT instruction 
in the other source rrcdule, and 
thus names an executable control 

• 
section, it is auterratically 

· identified as an entry symbol. 
If the symbcl represents an address 
in the middle of a control section, 

• 
you must, hewever, identify it as 
an entry symbol for the external 
source module. 

You can also use a combination of 
an EX'IRN instructicn tc identify 
and an A-type address constant to 
contain the external branch address. 
However, the V-type address constant 
is more ccnvenient because: 

1. You do not have to use an EXTRN 
instruction. 

2. The symbol identified is not 
considered as defined in the source 
module and can be used as the narre 
entry for any other statement in 
the same source nodule. 

Source Modules 

CURRENT START 0 

L 3,EXTADR 

8B.R 3 

• o 
EXTADR DC V(OTHER) 

END 

GaTHER START 0 

ENTRY SUBRTN8 

SUBRTN DS OH 

END 

Section F: Addressing 149 



!l1~ - THE El'TRY INSTRUCT lCN 

Purpose 

'Ihe entry instruction allows you 
to identify symtcls defined in a 
source module so that they can te 
referred to in anether seurce nedule. 
'Ihese symbols are entry symtols. 

Specifica1:ion~ 

The format ef the EN'IRY instructien 
is shewn in the figure to the right. 

ENTRY SYMECIS: The fcllo~ing applies 
to th~try symbels identified 
in the operand field: 

• They mllst te valid symtols. 

• They must be defined in an o executabl~:! control section,. 

• They must not be defined in a 
• dummy contrel sectien, a corr.n,en 

contrcl s~:!ctl.on, or an external 
contrel section. 

• 'Ihe length attribute value ef 
entry symtols is the sarre as the 
length attribute value of ·the symtol 
at its point ef definition. 

A symbol used as the name entry 
of a STAR1 er CSEC'I instructien 
is also automatically considered 

• an entry syrrtol and dees not have 
to be identified by an ENTRY 
instruction. 

The assembler lists each entry 
symtol of a seurce nedule in an 

• External Syrrbol rictionary. along 
wl.th entries for external syrrbels, 
corrmen control sections, and external 
contrel sections. The maximum 
numter of External Syrrtel Dictionary 
entries for each source module is 
399. 

00Sit'bE!~~~:bbllrn .~.~lnt>er? fextertl$l 
$~Ill£iold1H~f8IlClry '. ~n~rie$ ··(<:<?~.tt:o>l 
.~.~ctipnli·i~;nd.· •... E!7'1:e;nal ........ ~.~J:Ol~l) 
~llow,.edifnf~~~·.; .' 'I ~~xi~ll~ 
~+l~.w~:b~e·~tlptpe~·? ......•..... ~~PY .• ·.:s· .. ~.~.~·~.~ •..•..••.•.. ii.: 
;den't:1~i.editYt:J?"!,··.~l'3·'J'1t,~··· .. ·.tnstruc't;~()n . 
is<··l()O. 

• NOTE: A syrrbel identified in an 
EN'IRY iil:S"truction counts towards 
this rraxinurr, even theugh it may 
not be used in the name field of 

150 

a statement in the seurce medule 
nor censtitute a valid entry point. 

• FIRST 

0 
SUBRTN 

DUMMY • INVALID 

ENTRY 

I 

Name Operation Operand 

A sequence ENTRY One or more 

symbol or relocatable 

blank symbols separated 
by commas 

Source Module Entry in External. 
Symbol Dictionary 

Symbol Type Code 
1--' 

START D FIRST SD 

· 
ENTRY SUBRTN, INVALID SUBRTN LD 

· INVALID LD 

DS DH • · 
DSECT DUMMY none 
· 

DS F INVA.LID -· 
END 



F2B - THE EXTRN INSTRUCTICN 

Purpose 

The EXTRN instruction allows you 
to identify symccls referred tc 
in a source module cut defined in 
another scurce medule. These syrrbcls 
are e~ternal symbols. 

Specifications 

The format cf the EXTRN instructien 
staterrent is shown in the figure 
to the right. 

EXTERNAL SYMEOLS: The follewing 
applies to the external symtols 
identified in the c~erand field: 

•• They must be valid symtols. 

• They must not be used as the 
name entry cf a scurce staterrent 
in the source module in which they 
are identified. 

• They have a length attritute 
value of 1. 

•
• They must te used alene and 
cannet be paired when used in an 
expressien (fer ~airing ef terns 
see C6) • 

The assemcler lists each external 

•
symbel identified in a source module 
in the External Syrrccl cictienary 
along with entries for entry symtols, 
common control secticns, and e~ternal 
contrel sectiens. The ma~imum 
numter of External Synccl Dictienary 
entries for each source module is 
399. 

mii']i£Ui'um ne.t\: <r~.~¥~eiri~l 
idlct:in~1:1es ' .. f.cc,?nt:t(>l 

ana ·~ •.••• $yrnbol.s) 
!s<2$S..Tl'leroaxirr,ulI'l 

l.enurnber .. ()£entry .. symbOl.~·~ 
i£ied by the ENTRY.instructien 

laO;. 

NOTE: The syncol s~ecified in a 

8 
V-ty~e address constant is implicitly 

, identified as an external s~rr.bcl 
and ccunts towards this maX1mum. 

I 

EXTRN 

Name Operation Operand 

Sequence EXTRN One or more relocatable 
sYfl1bol symbols separated by 
or blank commas 

Source Modules Entry in External. 
Symbol Dictionary 

Symbol Type Code --
CURRENT START 0 CURRENT SD 

EXTRN OTHER OTHER ER 

· • L 3,EXTAD 
BR 3 

· 
L 4,ADSUBRT 
BR 4 

· • EXTAD DC A(OTHER) 
ADSUBRT DC v (SUBRTN) SUBRTN ER 

· • END 

--
OTHER START 0 OTHER SD 

ENTRY SUBRTN SUBRTN LD 
· 

SUBRTN DS OH 
· 

END 

Section F: Addressing 151 



~= - THE WXTRN INSTRUCTICN 

The ~XTRN instruction allows you 
to identify symtcls referred tc 
in a source module but defined in 
another source rredule. 

The ~XTR~ instruction differs from 
the EXTRN instructien as fellc~s: 

The EXTRN instruction causes the 
linkage editer to rrake an auterr~~ic 
search of libraries to find the 
module th.at ccntains the external 
symbels that you identify in its 
operand field. If tte rrodule is 
found, linkage addresses are 
resolved; then the rrcdule is linked 
to yeur module, which contains the 
EXTR~ instruction. 

The ~XTRN instructicn su~~resses 
this autematic search cf litraries. 
The linkage editor will only resolve 
the linkage addresses if the external 
syrobcls that you identify in the 
WXTRN operand field are defined: 

1. In a module that is linked and 
loaded along with the cbject rredule 
asserrbled froro your source module 
or 

2. In a module brought in from a 
library due tc the presence ef an 
EXTR~ instruction in another module 
linked and leaded with yours. 

Specificatien.§ 

The format cf the ~XTRN instructien 
staterrent is shown in the figure 
to the right. 

EXTERNAL SYMBOLS: The ext:ernal o symbols identifiedty a wXTRN 
instructien have the sarre properties 

• 
as the external symbels identified 
by the EXTRN instructicn. Hewever, 
the type code assigned to these 
external syrrtcls differs. 

~OTE: If a symbol, specified in 
• a V-'type address constant" is also 

identified by a wXTRN instruction 
in the sarre scurce rrcdule" it is 
assigned the same type code as the 
symbol in the WXTRN instruction. 

If an external symbol is identified 
ty toth an EXTRN and WXTRN 
instruction in the same source 

• 
module, t.he first declaratien takes 

· arecedence, and subsequent 
eclarations are flagged with warning 

messages. 

Name Operation 

Sequence WXTRN 
symbol 
or blank 

Source Module-

FIRST START 0 

8 EX:RN OUT,A--e . ,~ r--
~WXTRN WOUT,~ 

"'". WARNING".". 

• VCON DC V(WOUT) . 

END 

WXTRN 

Operand 

One or more relocatable 
symbols separated by 
commas 

Entry in External 
Symbol Dictionary 

1---. 

Symbol Type Code 

FIRST SD 

OUT ER 

~ ER 

WOUT WX 

WOUT WX 



Section G: Symbol and Data Definition 

This section describes the assembly time facilities which 
you can use to: 

1. Assign values tq symbols 

2. Define constants and storage areas 

3. Define channel command words. 

By assigning an absolute value to a symbol and then using 
that symbol to represent, for example, a register or a 
length, you can code machine instructions entirely in 
symbolic form. 

Gl - Establishing Symbolic Representation 

• • 
You define symbols tc be used as 
elements in your programs. This 
symbolic representation is superior 
to numeric representation because: 

• You can give meaningful names 
to the elements; 

• You can debug a program more 
easily, because the symbols are 
cross-referenced to where they are 
defined and used in your program. 
The cross-referenced statement 
numbers containing the symbols are 
printed in your assembly listing. 

Sou rce Modu.le 

e 
e 
e 
o 
• 

• You can maintain a program more 
easily, because you can change a 
symbolic value in one place and 
its value will be changed throughout 
a program. 

Some symbols represent absolute 
values, while others represent 
relocatable address values. The 
relocatable addresses are of: 

instructions 

constants 

storage areas. 

You can use these defined symbols 
in the operand fields of instruction 
statements to refer to the 

~ instructions, constants, or areas 
represented by the symbol. 

FIRST 

DATA REG 
EIGHTY 

• TW040 
BAS REG 

• RELOC 

• INSTR 

0 DATACON • TO 

FROM 

START 

· 
EQU 10 
EQU 80 
EQU 240 
EQU 12 

EQU * 
· • BALR 12,0 • USING *,BASREG 

· 
B INSTR 

· 
MVC TO'FROM~ 
L DATAREG,DATACON 

· 
DC F I 3 1 

DS CL(EIGHTY) 

DS CL(TW040) 

· · END 

• 

Section G: Symbol and Data Definition 153 



You can CJceate symbols and assign 
them absolute or relocatable values 
anywhere in a source module with 
an EQU instruction (see G2A). You 
can use these symbols instead of 
the numeric value they represent 
in the op~:!rand of an instruction. 

Defining a.nd Naming Data 

DATA CONS'rANTS: You can define 
a data constant at assembly time 
that will be used by the machine 
instructilons in their operations 
at execution time. The three steps 
for creating a data constant and 
introducing it into your program 
in. symbolic form are: 

o· 
e· 
e· 

define the data --------
provide a label for the data 

refer to the data by i t.S label. 

O 
The symbol used as a label represents 

, the address of the constant; it 
is not to be confused with the 8 assembled object code of t:he actual 
constant. 

Defining data constants is discussed 
in G3. 

LITERALS: You can also dE~fine data 
at its point of reference in the 
operand of a machine instruction 

~ by specifying a literal. 

Literal constants are discussed 
in G3C. 

STORAGE AREAS: You must usually 
reserve space in virtual storage 
at assembly time for insertion and 
manipulat:ion of data at execution 
time. The three steps for reserving 
virtual storage and using it in 
your pro9ram are: 

e. definE! the space 

8. prov ide a labe 1 f or the space 

e. refer to the space by its label. 

1~54 

Defining storage areas is discussed 
in G3N. 

Source Code Object Code 

• in Hex 

Equivalent {: 
5,LABEL IOOOOOOCA, 

5,=F'202' 
~ 

0 

• .LABEL 
~ 

DC F'202' -rOOOOOOOCA ---- , I • • • 

• ST 5,SPACE 

DS • F .SPACE 



CHANNEL COM~AND WORDS: When you 
define a channel command word at 
assembly time you create a command 
for an input or outfut operation 
to be performed at execution time. 
You should: 

• define the channel command word 

• provide a label fcr the word. 

Channel corrrrand words are discussed 
in subsection G3C. 

G2 -- Defining Symbols 

G2A -- ~HE EQU INS~FUCTION 

Purpo-se 

~he E~U instruction allows you to 
assign arsolute or relccatable 
values to symbols. You can use 
it for the following furfcses: 

~ 1. To assign single absolute values 
to syrrtols 

8 2. ~o assign the values of previously 
defined syrrtols or eXfressicns tc 
new symbols, thus allowing you to 
use different mnerrcnics fer different 
furfcses. 

~3. To comfute eXfressicns whose 
values are unknown at coding time 
or difficult to calculate. ~he 

e value of the expression is then 
. assigned to a syrrtcl. 

IIAbsolute I 
II Value 

INSTR 

ABS 

HEXA2 

BALR 

EQU 

EQU 

BEGIN~U 

OEXPR EQU 

12,0 

• X ' A2 1 

ABS } 

INSTR • 

I Relocatable I 
Value 

A-(B+C)/33-D , , • 

Section G: Symbol and Data Definition 155 



156 

Specifications 

The EQU instruction can be used 
anywhere in a source module after 
the ICTL instruction, or after any 
source maCl:'O definitions that may 
be specifi~:!d. Note, however, that 
the EQU instruction can initiate 
an unnamed control section (private 
code) if it is specified before 
the first control section (initiated 
by a START or CSECT instruction) • 

The format of the EQU instruction 
statement is given in the figure 
to the right. 

Expression 1 represents a value. It 
must always be specified and can have 
a relocatcLble or absolute value. The 
assembler carries this value as a 
signed four-byte (32-bit) number; 
all four bytes are printed in the 
program listings opposite ,the symbol. 

Any symbols appearing in these three 
expressions must have been. previously 
defined. 

EXPRESSION 1 (VALUE): The assembler 
assigns the relocatable or absolute 
value of expression 1 to the symbol 
in the name field at assembly time. 

Name Operation 

An ordinary EQU 
symbol or 
a variable 
symbol 

Operand 

I ndicates the 
absence of 
Expression 2 

EQU ' 



If expression 2 is omitted, the assembler also assigns 
a length attribute value to the symbol in the name field 
according to the length attribute value of the leftmost 
(or only) t~rm of expression 1. The length attribute value 
(described in C4C) thus assigned is as follows ~ee figure 

on following page) : 

1. If the leftmost term is a location counter reference 
(*), a self-defining term or a symbol length attribute o value reference, the length attribute. value is 1. Note 
that this also applies if the leftmost terrr. is a symbcl 
that is equated to any of these values. 

2. If the leftmost term is a symbol that is used in the name 
field of a DC or DS instruction, the length attribute value 

• 
is equal to the implicit or explicit length of the first (or 
only) constant specified in the DC or DS operand field. 

3. If the leftmost term is a symbol that is used in the 
name field of a machine instruction, the length attribute 

~value is equal to the length of the assembled instruction. 

4. Symbols that name assembler instructions, except the DC 
and DS instructions, have a length attribute value of one. 

O 
However, the name of a CCW instruction has a length 

· attribute value of eight. 

NOTE: The length attribute value assigned in cases 2-4 only 

I applies to the assembly-time value of the attribute. Its 
value at pre-assembly time, during conditional assembly 

I processing, ~s always 1. 

Further, if expression 3 is omitted, the assembler assigns 
a type attribute value cf "Un to the symbcl in the name 
field. 

Section G: Symbol and Data Definition 157 



Value 
assigned 
to Source Module Length Attribute Value 
symbol assigned to symbol 
is: in name field: 

SEC~~A START a At Assembly Time At Pre-assembly Time 

· • • RR LR 3,4 
RX A 3,FULL 
SS MVC TO,FROM 

· 
FULL DC F'33' 
AREA DS XL2000 
TO DS CL240 
FRm1 DS CL80 

· 
ADCONS DC AL1(A) ,AL2(B) ,AL3(C) 

· 
ADCCW CCW 2,READER,X'48',80 

· 
Absolute A EQU X'FF' 1 1 
Absolute B EQU L'FRo.M 0 1 1 
Relocatable C EQU *+4 1 1 
Absolute D EQU A*lO 1 1 

- ~-

Relocatable E EQU FULL j. 4 1 
Relocatable F EQU AREA+1000 2000 1 
Relocatable G EQU TO 240 1 
Absolute H EQU FROM-TO 80 1 
Relocatable I EQU ADCONS 1 1 

- --
Relocatable J EQU RR ,. 2 1 
Relocatable K EQU RX 4 1 
Relocatablel L EQU SS 6 1 

Relocatable M EQU SECTA 1 1 

Relocatable N EQU ADCCW • 8 1 -



o 

• 
• 

is 
spec , asse er ass 
attribute value to the symbol in the name field. This value 
overrides the normal length attribute value implicitly 
assigned from expression 1. 

If expression 2 is a self-defining term, the assembler also 
assigns the length attribute value to the symbol at 
pre-assembly time (during conditional assembly processing). 

1I1I~~q~~~IU.~;~~I~~~~is 
ler 

value as a type attribute value to the 
symbol in the name field. This value overrides the normal 
type attribute value implicitly assigned from expression 1. 
Note that the type attribute value is the EBCDIC character 
equivalent of the value of expression 3. 

Value Source Module Length Attribute Type Attribute 
assigned I Value assigned Value assigned 

._,'--"----
IAt At Pre-
Assembly assembly 
Time Time 

FIRST START • · 
AREA OS XL2000 2000 2000 X 

· Implicit I 
SDT EQU X'FF ' Attribute 1 1 U 

· Values 
1 1 U 

ASTERISK EQU * --

Value of } A EQU AREA,1000 o{ 1000 1000 U 
AREA 

255 B EQU SDT,4 4 4 U 
Value of } 
Location C EQU ASTERISK,4 4 4 U 
Counter at 
ASTERISK 

~}.-D EQU AREA"C IF I 2000 1 
E EQU SDT, ,C I N I 1 1 
F EQU ASTERISK, ,C I A I 1 1 

G EQU AREA,1000,C ' l 1 1000 1000 1 
H EQU SDT,4,C ' F' 4 4 F 
I EQU ASTERISK,4,C ' A ' 4 4 A 

AREA, 100 ,J~"(/ 
~ ~D ----.. 

f'..F J EQU 100 100 

Section G: Symbol and Data Definition 159 



160 

Using Prea.ssembly Values 

You can use the preassembly values assigned by the assembler 
in conditi.onal assembly processing. 

If only expression 1 is specified, the assembler assigns a 
preassembly value of 1 to the length attribute and a 
preassembly value of U to ·the type attribute of the symbol. 
These values can be used in conditional assembly (although 
referencel:; to the length attribute of the symbol will be 
flagged). The absolute or .relocatable value of the symbol, 
however, is not assigned until assembly, and thus may not be 
used at preassembly. 



THE 5YMECL IN THE NAME FIEL[: The asserrtler assigns an 
absolute er relocatable value, a length attribute value, 
and a type attribute value te the symbol in the name field. 

The absolute or relocatable value of the symbol is assigned 
at assembly time, and is therefere not available for 
conditional assembly processing at pre-assembly tirre. 

G3 - Defining D~ta 

This section describes the [C, [5, and CCW instructier;s; 
these instructions are used to define censtants, reserve 
storage and specify the contents of channel corrrrand wcrds 
respectively. Yeu can alse previde a label for these 
instructions and then refer to the data syrr.bclically in 
the operands ef rrachine and asserrbler instructions. lhis 
data is generated and storage is reserved at asserrbly tirre, 
and used by the machine instructions at execution tirre. 

Section G: Symbol and Data Definition 161 



G3A -- THE DC INSTRUCTION 

You specify the DC instruction to 
define the data constants you need 
for proglcam execution. The CC 
instruction causes the assembler 
to generate the binary representation 
of the data constant you specify, 
into a particular location in the 
assembled source'module. this is 
done at assembly time. 

TYPES OF CONSTANTS: The CC 
instruction can generate the 
followinq types of constants: 

4It Bina~onstants -- to define bit 
patterns 

• 
Character constants -- to define 
characte:r strings or messages 

162 

• 
Hexadecimal constants -- to define 
large bi't patterns 

• 
Fixed-Point constants -- for use 
by the fixed-point and other 
instructions of the standard set 

• 
Decimal constants -- for use by 
the decimal instructions 

_
Floating-Faint constants -- for 
use by the floating-I;oint instruction 
set 

• Address constants -- to define 
addresses mainly for the use of 
the fixed-point and ether 
instructions in the standard 
instruction set. 

0 FLAG 

• CHAR 

• PATTERN 

e {FCON 

• {peON 
AREA 

0 { ECON 

• {ADCON 

DC B'OOOIOOOO' 

DC C'STRING OF CHARACTERS' 

DC X'FFOOFFOO' 

L 3,FCON 
DC F'IOO' 

AP AREA,PCON 
DC P'IOO' 
DS P 

LE 2,ECON 
DC E'IOO.50' 

L 5,ADCON 
DC A ( SOMWHERE) 



G3B -- GENERAL SPECIFICATIONS FOR 
CONSTANTS 

'Ihe general format of the I:C 
instructions stateroents is shown 
in the figure to the right. 

The symbol in the name field 
represents the address of the first 
byte of the assembled constant. 4Dt If several cperands are Sfecified, 
the first constant defined is 

• 
addressarle ty the sy~bol in the 
name field. 'Ihe other constants 

• 
can te reached by relative, 
addressing. 

Each cperand in a I:C instruction 
stateRent ccnsists cf fcur subfields. 
'Ihe fcrmat of a DC instruction 
operand is given in the figure tc 
the right. 

The first three sutfields describe 
the ccnstant, and the fourth surfield 
specifies the norrinal value of the 
constant to be generated. 

Name 

Any Symbol 
or blank 

IFIRSTCON 

8FIRSTCON 

Operation 

DC 

DC 

D 
DC 
DC 
DC 

LA 

CLI 

Operand 

In the format 
described in the 

next figure 

• r , 
F'2',X'Al',C'HUM' 

Logical Equivalent 

F'2' 
X'Al' 
C'HUM' 

3,FIRSTCON 

5,4(3) 

• 

Required Order 
if all subfields 
are specified 

section G: Symbol and Data Definition 163 



Rules for the DC Operand 

o 1. The ,!1.pe subfield and the nominal 
~ value must always .be s~ecified. 

2. The duplication factor and 
modifier subfields are optional. 

• 3. When multiple operands are 
specifiea, they can be of different 
types. 

• 
4. When multiEle nO.roinal values 
are specIfied in the fourth sucfield, 
they must be separated by commas 
and be of the same type. 

• 5. The descriptive subfields a~ply 
to all the nominal values .. 

NOTE: Separate constants axe 
generated. for each separa1::e operand 
and nominal value specifiE~d. 

6. No blanks are allowed: 

o a. B~:!tween subfields 

~ b. Between multiple operands 

c. Within any subfields -
unles::; they occur as part of 

164 

• • 
the nominal value of a character 
constant or as part of a character 
self-defining term in a modifier 
expression or in the duplication 
factor subfield. 

MUST 

OPRNDS 

SEVERAL 

IVALUES 

SEVERAL 

VALUES 

IMIXED 

MIXED 

BETWEEN 

SEVERAL 

WITHIN 

• bc F'200' 
~ • r8" II 

DC C'FIRST' ,H'99' ,FL3'IOl' 

DC A(FIRST,SECOND,THIRD) 

DC F'lOO,200,300' ----1 • D Logical Equivalent 
Multiple 
nominal 
values not 

DC A(FIRST) 
allowed for 
character 

DC A (SECOND) constant 
DC A(THIRD) 
DC F'IOO' 
DC F'200' 
DC F'300' 

DC 
~.---~ 
AL3(ONE,TWO) ,2F'1,~ 

lJ Logical Equivalent 

DC AL3(ONE) 
DC AL3 (TWO) 
DC F'l' 
DC F'2' 
DC F'3' 
DC F'l' 
DC F'2' 
DC F'3' 

DC IOFL3'+4S6' 
II 7 • 

DC C'BOO HOO' F'9S' H'2' 

LL If • 

~ 
DC C'MESSAGE HAS BLANKS' 

DC . XL(A+B-C'N 0'+3) 'FO' 

L • 



Information acout Constants 

SYMBOI.,IC ADDRESSES OF CONSTANTS: 
Constants defined by the DC 
instruction are assembled into an 
object module at the location where 
the instruction is specified. 
However, the type of constant being 
defined will determine whether 
the constant is to be aligned on 
a particular storage boundary or 
not. (see below under Alignment 

~Of Constants) • The value of the 
symbol that names the DC instruction 

~iS the address of the leftmost byte 
(after alignment) of the first or 
only constant. 

THE LENGTH ATTRIBUTE VALUE OF SYMBOLS 
NAMING CONSTANTS: The length 
attribute value assigned to the 
symbols in the name field of 
constants is equal to: 

~ The implicit length of the constant 
when no explicit length is specified 
in the operand of the constant, 
or 

~The explicitly specified length 
of the constant. 

NOTE: If more than one operand 
is present, the length attribute 
value of the symbol is the length 
in bytes of the first constant 
specified, according to its 
implicitly or explicitly specified 
length. 

Type of 
constant 

B 

C 

X 

H 
F 

P 

Z 

E 
D 
L 

Y 
A 

S 
V 
Q 

Source Code Object Code 
in Hex 

DC XL7'AD' 

~OOOOOOOOOOOOAD I 
DC F'8' 

DC,(,;JA' ,C ' B' ,C ' C' ,C' D ' 

~i8i C2 C3 c41 

Implicit 
Examples 

Value of Length 
Length 1 Attribute 2 • as needed DC B'10010000' 1 

as needed DC C'WOW' 3 
DC CL8'WOW~~ 8 

as needed DC X'FFEEOO' 3 
DC XL2'FFEE' 2 

2 DC H'32' 2 
4 DC FL3'32'~ 3 

as needed DC P'123' 2 
DC PL4'123' 4 

as needed DC Z'123' 3 
DC ZL10'123' 10 

4 
8 

16 

2 DC Y(HERE} 2 
4 DC ALl (THERE) 1 

2 
4 
4 

1 Depends on type 

2 Depends on whether or not an explicit length is specified in constant 

Section G: Symbol and Data Definition 165 



ALIGNMENT OF CONSTANTS: The 
assemtler aligns constants on 
different boundaries according to 
the following: 

• On boundaries implicit to the type 
of constant, when no len9th 
specification is supplied. 

• 
On byte boundaries when an explicit 
length spec1f1cat10n is made. 

Bytes that are skipped to align 
a constant at the pro{:er boundary 
are not considered part of the 
constant. They are filled with 
zeros. Note that the automatic 
alignment of constants and areas 
does not occur if the NOALIGN 
assemtler option has been specified 
in the job control language which 
invoked the assembler. 

NOTE: Alignment can be forced to 
any boundary by a preceding DS (or 
DC) instruction with a zero 
duplication factor (see G3N). This 
occurs when either the AldGN or 
NOALIGN option is set. 

Type of 
Constant 

B 

C 

X 

H 

F 

P 

Z 

E 

D 

L 

y 

A 

S 

V 

Q 

Implicit Examples Boundary 
Boundary· Alignment 
Alignment1 

byte 
--

byte 
--

byte 

halfword 
DC H'2S' halfword 
DC HL3'2S' 

~ 
byte 

fullword DC F'22S' fullword 

DC FL7'22S' byte 

byte DC P'2934' 

~P 
byte 

byte DC Z'123S' byte 

DC ZL2'123S' byte 

full word DC 
E'1.25' 11 fullword 

DC ELS'1.2S' byte 

doubleword DC BD'9S' doubleword 

DC BDL7'9S' byte 

doubleword DC L'2.S7E6S' doubleword 

--
halfword DC Y(HERE) I) halfword 

fullword DC AL3 (THERE) byte 

halfword 

fullword 

fullword 

11 Depends ontype D 



Fadding and Truncation of Values 

The nominal values s~ecified fcr ccnstants are assembled 
into storage. The amount of space available for the nc~inal 
value of a constant is deter~ined: 

1. By the explicit length specified in the second c~erand 
subfield, or 

2. If no ex~licit length is s~ecified, by the implicit 
length according to the type of constant defined (see 
Appendix VI) • 

PADDING: If more space is available 
than is needed to accommodate the 
binary representation of the nominal 
value, the extra space is padded: 
11 

~ With binary zeros on the left for 
the cinary (B), hexadecimal (X), 
fixed-point (H,F), packed decimal 
(P), and all address (.A,Y ,S,V ,Q) 
constants 

~With EBCDIC zeros on the left 
~'11110000') for the zoned decimal 
(Z) constants 

~With EBCDIC blanks on the right 
~'01000000') for the character 
(C) constant 

NOTE: Floating-point constants 
(E,D,L) are also padded on the right 

with zeros (see G3I) • 

Source· Code 

DC BL2'lOl' 

DC XL3'FFAl' 

DC X'FFA' 

DC H'255' 

DC FL3'255' 

DC P'l234' 

DC PL4'l23' 

DC AL3(5l2) 

DC ZL4'l23' 

DC ZL4'3' 

DC C'FOUR' 

DC CL5'FOUR 

DC CL5 'A' 

0 

}. 

}. 

Padding 

Object Code 

2 bytes 

section G: Symbol and Data Definition 161 



TRUNCATION: If less space is 
available than is needed to 
accomodat~~ the nominal value, the 
nominal value is truncated and part 
of the constant is lost. Truncation 
of the nominal value is: 

8 On the left for the binary (B), 
hexadecimal (X), decimal (P and 
Z), and address (A and Y) constants. 

• 
On the ri9ht for the character (e) 
constant • 

• 
However, -the fixed-point constants 
(H and F) will not be truncated, 
but flagged if significant bits 
would be lost through truncation. 

NOTE: Floating-point constants 
(E,D,L) are not truncated; they 
are rounded (see G3I). 

NOTE: The above rules fOl:' padding 
and truncation also apply when the 
bit-length specification is used 
(see below under Subfield 3: 

Modifiers) • 

Subfield 1: Duplication Factor 

The duplication factor, if specified, 
causes the nominal value or multiple 
nominal values specified in a o constant to be generated -the number 
of times indicated by the factor. 

A It is applied after the nominal 
~value or values are assembled into 

the cons1:ant. 

168 

The factor can be specified by a 
~unsigned decirral self-defining term 

O
or by an absolute expreSS10n enclosed 

. in parent,heses. 

The exprE~ssion should have a positive 
value or be equal to zero. 

Any symbc)ls used in the expression 
must be previously defined. 

Source Code 

DC BL1'OOOlOOOOlOl~ 

DC XL3'FFIIFOFO' 

DC PL2'1234S' 

DC ZL3'1234S' 

DC AL2(131072) 

DC CL2'FOUR' 

DC CL1'ABCDE' 

DC H' 

DC 

Nominal Values 
too large for 
space provided 

0 

}e 
}e 

SINGLE DC~'240 

MULTIPLE DC 3FL1'3,4,5' 

• 

Truncation 

Object Code 

'l< * ERROR * * 

* * ERROR* * 

Binary 
Digits 

Hexadecimal 
Digits 

~ 
~ I .. 

1 byte 

Duplication 

Object Code 
in hpx 

~Q.£.FO© OFol 

e 
Lm@o 3040510304051 

EXPR DC (A-B+IO-3)A(ADDR) 



o 

• 

NOTES: 

1. A duplication factor of zero 
is permitted with the following 
results: 

a. No value is assembled. 

b. Alignment is fcrced according 
to the type of constant specified, 
if no length attribute is present 
(see above under Alignment of 

Constants) • 

c. The length attribute of the 
symbol naming the constant is • 
established according to the 
implicitly or explicitly specified 
length. 

2. If duplication is specified for 
an address constant containing a 
location counter reference, the 
value of the location counter 
reference is incremented by the 
length of the constant before each 
duplication is performed (for 
examples, see G3J) • 

Subfield 2: Type 

The type subfield must be specified. 
It defines the type cf constant 
to be generated and is specified 
by a single letter code as in the 
figure to the right., 

The type specificaticn indicates 
to the assembler: 

1. How the nominal value(s) specified 
in subfield 4 is to be assembled; 
that is, which binary representation 

O or machine format the object code 
of the constant must have. 

2. At what boundary the assembler 
aligns the constant, if no length 
specification is present. 

3. How much storage the constant 
is to occupy, according to the 
implicit length of the constant, 
if no explicit length specification 
is present (for details see above, 
under Padding and Truncation of 
Constants) • 

• Halfword 
boundary 

ZERODUP DC OH'3' 

• L ' ZERODUP=2 

NOALIGN DC _ ~3'3' 

V L 'NOALIGN=3 

Type 

at 

C Character 8-bit code for each Character 
X Hexadecimal 4-bit code for each hexadecimal digit 
B Binary Binary format 
F Fixed-point Signed, fixed-point binary format; 

normally a fullword 
H Fixed-point Signed, fixed-point binary format; 

normally a halfword 
E Floating-point Short floating-point format; normally a 

fullword 
D Floating-point Long floating-point format; normally a 

doubleword 
L Floating-point Extended floating-point format; normally 

two doublewords 
P Decimal Packed decimal format 
Z Decimal Zoned decimal format 
A Address Value of address; normally a fullword 
y Address Value of address; normally a halfword 
S Address Base register and displacement value; 

a halfword 
V Address Space reserved for external symbol 

addresses; each address normally a 
fullword 

0 .. 
Object Code 

in hex 

Examples: DC P'+234' 1234CI 

DC C'ABC' IC1C2C31 

DC X'FO' ~ 
DC H'2' 100021 

Section G: Symbol and Data Definition 169 



Subfield 3: Modifiers 

The threE~ modifiers that can be 
specified to describe a constant 
are: 

4Dt The leng1:h modifie~ (L), which 
explicitly defines the length in 
bytes desired for a constant. 

A 'Ihe scalE~ modifier (S), which is 
~ only used with the fixed-point or 

floatingpoint constants (for details 
see below under Scale Modifier) • 

~The exponent reodifier (E), that 
is only used with fixed-paint or 
floating-point constants, and which 
indicates the power of 10 by which 
the constant is to be wulti~lied 
before conversion to its internal 
binary format. 

e If multiple modifiers are used, 
they must appear in the sequence: 
length, scale, exponent. 

LENGTH MODIFIER: The length modifier 
indicates the number of bytes of 
storage into which the constant 
is to be assembled. It is written 
as Ln, where n is either of the 
followinq: 

o A decimal self-defining term 

.. An al:solute expression enclosed 
V in paren'theses. It must have a 

positive value and any symbols it 
~ contains must be previously defined. 

170 

LENGTH 

SCALE 

EXPON 

{\LL3 

DECSDT 

EXPR 

• ~ DC XLIO'FF' 

DC FS8'3S.92' .-----• 
DC EE3'3.414' ---• 
DC D~2]~'2.7182' 

• 
Length 

• DC FL3'9999' 

• DC XL(SYMBO~D)'F7A' 



When the length modifier is 
specified: 

• Its value determines the number 
of bytes of storage allocated to 
a constant. It therefore determines 
whether the nominal value of a 
constant must be padded or truncated 
to fit into the space allocated 
(s ee above under Padding and 

Truncation of Constants). 

41tNo boundary alignment, according 
to constant type, is provided (see 
above under Alignment of Constants). 

~Its value must not exceed the maximum 
length allowed for the various types 
of constant defined. (For the 
allowable range of length modifiers, 
see the specifications for the 
individual constants and areas from 
G3D through G3N.) 

Source Code 

PADTRUNC DC 

IMPLICIT DC C' 

For character constant: when no 
length is specified, the whole con
stant is assembled into its implicit 
I~ngth 

NOALIGN DC FL3' 

Assembled at the next 
available (byte) boundary 

Object Code 
in hex 

..... Fullword 

TOOLONG DC FL9'lO' **LENGTH ERROR** • 

Section G: Symbol and Data Definition 171 



Bil-IENG1H SFECIFIC!TICN: The length modifier can be 
specified tc indicate the number cf bits intc which a 
constant is to be assembled. The tit-length specificaticn 
is written as L.n, where n is either of the following: 

A decimal self-defining term 

An absolute expression enclosed in parentheses. It Rust 
have a positive value and any syrrbcls it contains must 
be previously defined. 

The value of n n:ust lie between 1 and the nurrher of bits 
(a mUltiple of 8) that are required to make up the Ir:axiIr·Ulf. 

number of bytes allowed in the type of constant being 
defined. Tbe bit length-specification cannot be used ~ith 
the S, V, and ~-type constants. 

Source Code 

HEXCHAR DC XL.41FI 

When only one operand and one nominal 
value are specified in a [·C 
instruction, the follcwing rules 
apply: 

• 
1. The bit-length specification 
allocates a field into whlch a 
constant is to be assembled • 

• The field starts at a byte boundary, 

• 
and can run over one or more Eyte 
boundaries, if the bit-length 

• specified is greater than 8 •. • 

Object Code 
Binary digits 

byte byte 

F o 

If the field does not end at a byte HEX3CHAR DC XL.121FFF' 

17'2 

boundary, if the bit-length specified 

• 
is not a multiple of 8, the remainder 
of the last byte is filled with 
zeros. 

byte 



~ 2. The nominal value of the constant 
is assembled into the field: 

• 
Starting at the high order end for 
the C, E, D, and L type constants. 

• Starting at the low order end for 
the remaining types of constants 
that allow bit-length specification. 

The nominal value is padded or 
truncated to fit the field (see 
above under Padding or Truncation 
of Constants) • 

~ Padding of character constants is 
with hexadecimal blanks, X'40'; 
other constant types are padded 
wi th zeros. 

NOTE: The length attribute value 
of the symbol naming a DC instruction 
with a specified bit-length is equal 
to the minimum number of integral 
bytes needed to contain the bit
length specified for the constant. 
L' 'I'RUNCF is equal to 2. Thus, a 

• reference to TRUNCF would address 
the entire two bytes that are 
assembled. 

Source Code 

PADC DC 

PADF DC FL.13'S79' 

field byte 

zeros at left 

• TRUNCF DC FL.13'8l93' 

Object code 
binary digits 

Section G: Symbol and Data Definition 173 



When more than one c~erand is 
specified in a tC instruction or 
more than one norrinal value in a 
tC o~erand, the above rules atout 
tit-length specificaticns also 
apply, except: 

.. 1. The first field allocated starts 

.. at a byte boundary, tut the 

• 
succeeding fields start at the next 
available bit. 

2. After all the constants have 
teen asserebled intc their respective 
fields, the bits remaining to make 

• 
up the last l::yte are filled with 
zero~. 

NO~E: If duplicaticn is specified, 
filling with zeros occurs once at 
the end of all the fields occu~ied 
by the duplicated constants • 

• 
3. ~he length attribute value of 

· ~~! naming the DC i~struction 
1S equal to the nureber cf 1ntegral 

174 

tytes that would be needed to contain 
tbe bit-length specified for the 
first constant to l::e asserrbled. 

8 L 'VALUES=2 

Source 
Code VALUES DC FL.10'161,21,57' 

Object 
Code 

8 L 'OPERANDS=1 

Source OPERANDS DC FL. 7' 8' ,CL .10' AB' ,XL .14' C4' 
Code 

Object 
Code 

byte 

Truncation of 
B at right 

byte 

• 



o 

• • • 

STORAGE REQUIREMENT FOR CONS~ANTS: 
The total amount of storage required 
to assemble a DC instruction is 
the sum of: 

1. The requirements for the 
individual DC operands specified 
in the instruction. 

The requirement of a DC operand 
is the product of: 

a. The length (implicit or 
explicit) , 

b. The number of nominal values, 
and 

c. The duplication factor, if 
specified. 

8 2. The number of bftes skipped 
for the boundary a11gnrnent between 
different operands. 

SCALE MODIFIER: The scale modifier 
specifies the amount cf internal 
scaling that is desired: 

Binary digits for fixed-point (H,F) 
constants 

Hexadecimal digits for floating
point (E,D,L) constants 

It can only be used with the above 
types of constant. 

The scale modifier is written as 
Sn, where n is either: 

o A decimal self-defining term or 

•
An absolute expression enclosed 
in parentheses. 

Both types of specification can 
be preceded by a sign; if no sign 
is present, a plus sign is assumed. 

SPACE DC 10H'3,4,S' ,10FL3'6,7,S' 

Space for Storage Requirements 

_/
OPERAND 1 

OPERAND 2 

• ALIGNMENT 

x x ';I;b' 

xi:' x:tO • • Second operand not 
al igned due to presence 
of length specification 

60 

90 

o 

TOTAL 11so1 
Bytes 

ALIGN DC C'ABC',F'9,10,11' 

_/
OPERAND 1 

OPERAND 2 

• ALIGNMENT 

Examples: -DC HS-132'S.SS' 

DC HS3~ 
DC FS(A+B-C*3) '2.3' 

DC ES12'19.3" I DC LS22'3.414' 

'i .. _ x ;ll~ ~j 

x li'~i ;~,~, ~) 

First operand can 
end on any byte 
boundary 

3 

12 

0-3 

TOTAL lIS-lsi 
Bytes 

Scale 

Allowable Range for 
Scale Modifier 

Fixed-point 
- 187 

Constants through 

(H,F) +346 

Floating-point 
Constants 

(E,D) o through 14 

(L) o through 28 

Section G: Symbol and Data Definition 17S 



176 

SCALE MODIFIER FOR FIXED- fQl.m 
CONS'IANTS: The scale modifier for 
fixed-point constants specifies 
the power of two by which the fixed
point constant must be multiplied 
aft.er its nominal value has been 

• converted to its binary 

• 
represen1tation, but before it is 
asseml::led in its final "scaled" 

• 
form. Scaling causes the binary 
point to move from its assumed f1xed 
position at the right of the 
rightmost bit positicn. 

DC H'2' 

Object Code 

Binary digits 

0000000+00000} . 

0000000+00010.00 I 

000000001000 0 1~ 

000000001000010.011 



NO'lES: 

1. When the scale ~cdifier has a 
positive value, it indicates the 

~ number of binary positions to te 
occupied ty the fracticnal pcrticn 
of the binary number. 

• 
2. When the scale ~cdifier has a 
negative value, it indicates the 
number of binary positions to te 
dele~ed fron the integer forticn 
of the binary number. 

3. When positions are lest tecause 
of scaling (or lack of scaling) , 

~ rounding occurs in the leftmost
tit of the lost pcrticn. The 
rounding is reflected in the 

~ rightroost pcsiticn saved. 

Source Code 

DC 

DC 

Converted to Binary 
Representation 

Object Code 

Binary digits 

Converted to Binary representation 

Converted to Binary representation 

Binary 
point 

• 

Binary 
- ........ ---11--'1 poi nt 

Converted to Binary representation 

Binary' 
point 

1 

Section G: Symbol and Data Definition 177 



SCALE MODIFIER FOR FLOATING-POINT 
CONSTANTS~ The scale modifier for 
floating-point constants must have 

O 
a posi ti VI::! value. It speci fies 
the number of hexadecimal positions 
that the :Eractional portion of the 
binary representation of a floating
point constant is to be shifted 

~to the right. The hexadecimal point 
is assumed to be fixed at the left 
of the leftffiost position in the 
fractional field. When scaling 
is specified, it causes an 
unnormali.zed hexadecimal fraction 
to be assembled (unnormalized is 
when the leftmost positions of the 
fraction contain hexadecimal zeros). 
The magni -tude of the constant is 

• 
retained :tecause the eXfonent in 
the characteristic port1on of the 
constant .is adjusted ur;ward 
accordingly. When hexadecimal 

•
positions are lost, rounding occurs 
in the leftmost hexadecimal position 
of the lost portion. The rounding 

~is reflected in the rightmost 
.,position saved. 

EXPONENT MODIFIER: 'Ihe exponent 
modifier specifies the power of 
10 by which the nominal value of 
a constant is to be multiplied 
before it is converted to its 
internal binary representation. 
It can only be used with the fixed
point (H,F) and floating-point 
(E,D,L) constants. The exponent 
modifier is written as En, where 
n can be either of the following: 

OA decimal self-defining term. 

A An absolute expression enclosed 
V in parentheses. 

pOS ·Any· ··.SYttt~()l$>U$~d. ··.irtthe~xPl'e$$i()n 
. must; .be>previously.def1ned. 

178 

The decimal self-defining term or 
A the express ion can be preceded by 
~a sign: if no sign is present, a 

plus sign is assumed. The range 
for the exponent modifier is -85 
through +75. 

Source Code 

DC E'4' 

DC ES2'4' 

DC E'3.3' 

@lolo@ 022:1 
I 

Object Code 
in Hex 

• U nnormal ized 
Fraction 

G]34CC~ 

• / 
ROUND DC ES2'3.3' \431003423 CD 

• 
Exponent 

Source Decimal Value Object Code 
Code before conver-

sion to binary Binary digits 

form 

DC H'4' 4 I 0 0 0 0 0 0 0 010 0 0 0 0 1 0 0 I 

• DC HE2'4' 400 I 0 0 0 0 0 0 0 III 0 0 1 0 0 0 0 I 

• ,.----. 
DC FE (A-B~'3) , 4 -• DC HE-2'400' 4 I 0 0 0 0 0 0 0 010 0 0 0 0 1 0 0 I 



NOTES: 

~ 1. ~he exponent modifier is not 
to be confused with the expcnent 

• 
that can be specified in the nominal 
value subfield of fixed-point and 
floating-point constants (see 
sections G3G and G3I) • 

• 
'l'he exponent modifier affects each 

nominal value specified in the 
operand, whereas the exponent written 
as part of the nominal value subfield 

• 
only affects the nominal value it 
follows. If both types of exponent 
specification are present in a DC 
operand, their values are 

• algebraically added together before 
the nominal value is converted to 
binary form. However, this sum 
must lie within the permissible 

Orange -85 thrcugh +75. 

•
. 2. The value of the constant, after 

any exponents have been applied, 
must be contained in the implicitly 
or explicitly specified length of 
the constant to be assembled. 

Subfield ij: Nominal Value 

The nominal value subfield must 
always be specified •. It defines 
the value of the constant (or 
constants) described and affected 
by the subfields that precede it. 
It is this value that is assembled 
into the internal binary 
representation of the constant. 
The formats for specifying nominal 
values are described in the figure 
to the right. 

How nominal values are specified 
and interpreted by the assembler 
is explained in the SUbsections 
that describe each individual 
constant, beginning at G3C. 

• DC 

~~'2.25'~ 
DC EE+2'2.25,2.25,225' 

DC 

Values Assembled 
in decimal 

225,2.25,2.25 

225,225,22500 

225 

o 
DC FE-20'2.25E+80' 2.25xl0 60 

Constant 
Type 

c 

B 

X 
H 
F 

P 
Z 
E 
o 
L) 

Y Address 

Nom. Value 

Formats of Nominal 
Value Subfields 

Single 
Nominal 
Values 

'Value' 

'Value' 

Multiple 
Nominal 
Values 

Not allowed 

'/, value, ...... val ue: 

I multiple values must I 
be separated by commas 

\ 

A} e Constants IValuel Iva~, value", ..... valuel 

Section G: Symbol and Data Definition 179 



Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

G3C -- LITERAL CQNSTANTS 

Purpose 

Literal constants allow you to 
define and refer to data directly 
in machine instruction operands. 
You do not need to define a constant 
separately in another part of your 
source module. The difference 
between a literal, a data constant, 
and a self-defining term is described 
in C5. 

Specifications 

A literal constant is specified 
in the same way as the operand of 
a DC instruction. The general rules 
for the operand subfields of a DC 
instruction (as described in G3E 
above) also apply to the subfield 
of a literal constant. Moreover, 
the rules that apply to the 
individual types of constants, as 
described in G3D through G3M, apply 
to literal constants. 

However, literal constants differ 
from ~C operands in the following 
ways: 

O · Literals must be preceded by an 
equal sign. 

•• Multiple operands are not allowed. 

A • 'l'he duplication factor must not 
V be zero. 

180 

"--~~------,,.------------,""""''''''--''''''''''. o 
L 3,=F'32' 

• MVC FIELD (24) 1,=6CL4'CANT' 

................. _ ............................. .. 



G3~ -- EINARY CONS~AN~ (E) 

Furpcse 

The tinary constant allcws ycu tc specify the precise bit 
pattern ycu want assemtled into storage. 

Specificaticns 

The constants of the subfields defining a binary constant 
are described in the figure telow. 

~NOTE: Each tinary ccnstant is asserrbled into the integral 
number of bytes required to contain the tits specified. 

Subfield 

1. Duplication Factor 

2. Modifiers 

Implicit Length: (Length 
Modifier not present) 

Alignment: 
(Length Modifier not present) 

Range for Length: 

Range for Scale: 

Range for Exponent: 

4. Nominal Value 

Represented by: 

Enclosed by: 

Exponent a,llowed: 

Binary Constants 

3. Constant Type 

Binary (B) 

Yes 

As needed 

B DC B'10101111' L'B 

C DC B'101' L'C 

Byte 

1 through 256 (byte length) 
.1 through .2048 (bit length) 

Not allowed 

Not allowed 

Binary digits 
(0 or 1) 

Apostrophes 

No 

Data Constants 

------.---- -----+--------.. '---_.'--11 

Number of Values per 
Operand: 

Padding: 

Truncation of 
Assembled Value: 

Multiple 

With zeros 
at left 

At left 

section G: Symbol and Data Definition 181 



G3E -- CHA:RAC'I:ER CONS'IAN'I~ 

Furpose 

The cbaracter constant allows yeu tc s~ecify character 
strings such as error messages, identifiers, or ether text, 
that the assembler will convert into their binary (EEerlC) 
repr1esent:ation. 

'Ihe centents of the subfields defining a character censtant 
are described in the figure en the c~pesite ~age. 

o Each eharacte-E. specified in the nerrinal value subfield 
is assembled into one byte. 

Multiple norrinal values are not allewed, because if a comma 
is s~ecified. in the nominal value subfield, the asserrtler 

• considers the comma a valid character and therefore 
asserrtles it inte its binary (EBCDIC) representation. 

NOTE: When apostrophes or ampersands are to be included 
in the asserrbled censtant u doutle apostrophes or deuble 

• 
ampersands rr.ust be specified. 'Ihey are assexrbled as single 
apostrophes and ampersands. 

182 



Subfield 

1. Duplication Factor 
allowed 

2.~ 

Implicit Length: (Length 
Modifier not present) 

Character Constants 

3. Constant Type 

Character (C) 

Yes 

As needed 

C DC C'LENGTH' L'C 6 • Alignment: Byte 
(Length Modifier not '!it! 

present) 

Range for length: 

Range for Scale: 

Range for Exponent: 

4. Nominal Value 
Represented by: 

Enclosed by: 

Exponent allowed: 

Number of values per 
Operand: 

Padding: 

Truncation of 
Assembled value: 

1 through 256 byte length) 

.1 through .2048 (bit length) 

Not allowed 

Not allowed 

Characters (All 256 
8-bit combinations) 

Apost rophes 

No 

One 

With blanks at right 
(X'40') 

At right 

DC CIA' 'B' 

Assembled 
A'B 
A&B 

DC C'A&&B' 

DC C'A,B' 
Assembled A 

Object Code (hex). 

/C1/6BI c21 

Section G: Symbol and Data Definition 183 



G3F -- HEXAtECIMAL CCNS~ANT (X) 

184 

You can use hexadecirral ccnstants to generate large tit 
~atterns more conveniently than with binary constants. 
Also, the hexadecimal values you specify in .a source ncdule 
allow you to corr.~are them directly with the hexadecimal 
values generated for the object code and address locaticns 
printed in the ~rcgrarr listing. 

Specifica'ticns 

~he contents of the sutfields defining a hexadecinal 
constant are descrited in the figure on the opposite page. 

~ Each hexadecimal digit specified in the riorr,inal value 

• 
sucfield is asserrcled intc four bits (their binary ~atterns 
can be found in C4E) • The implicit length in tytes cf a 
hexadecimal ccnstant is then half the nUff-ber of hexadecimal 

• 
digits specified (assuming that a hexadecimal zerc is added 
to an odd nurnter of di9its~ 



I 

X 

Hexadecimal Constants 

Subfield 3. Constant T~~e 

Hexadecimal (X) 

1.Duelication Factor 
Yes allowed 

2.Modifiers As needed 

Implicit Length: (Length X DC X'FFOOA2' L'X = ~::::e Modifier not present) Y DC X'FOOA2' L'Y = 

Alignment: 
(Length Modifier not present) Byte 

Range for Length: 
1 through 256 (byte length) 

.1 through .2048 (bit length 

Range for Scale: Not allowed 

Range for Exponent: Not allowed Q~l,fil, b,:\;,; 
4. Nominal Value Hexadecimal digits (0 ""~.,.' ",,,,,, ) 

~~.¥ .... ,""'I"'~., 
through 9 and A through Represented by: DC X'lF' 10001111111 
F) 

DC X'91F' 10000 100110001111111 
','·'·' .. ',i I ~1 byte __ 1 

.: 

Enclosed by: Apostrophes 

Exponent allowed: No 

Number of Values • per Operand: Multiple 

Padding: With zeros at left 

Truncation of 
Assembled value: At left 

Section G: Symbol and Data Definition 185 



§}G -- FIXEI:- FOINT CCNSTANTS (E ANI: F) 

Purpose 

Fixed-point constants allow you to introduce data that 
is in a forrr suitable fer the operations of the fixed-point 
machine instructions of the standard instruction set. 
The cons1:ants you define can alse be autcmatically aligned 
to the proper fullword or halfword toundary fpr the 
instructiens that refer te addresses on thes~ boundaries 
(unless the NCALGN option has teen specified; see I:2) • 

You can perform algetraic functicns using this type of 
constant because they can have positive or negative values. 

Specifications 

The contents ef the subfields defining fixed-point constants 
are described in the figure on the opposite page • 

• 'Ihe nominal value can be a si¥ned (plus is assumed if the 

• 
number is unsigned) integer ,raction, or rrixed number. 
follo~ed by an exponent (positive or negative). 'Ihe 

• 
exponent must lie within the permissible range. If an 

, exponent rrodifier (see G3B) is alse specified, the algebraic 
§.!!!!l ef the exponent and the exponent modifier lTust lie • 
within the perrnissitle range. 

1U6 



H or F 

Fixed~Point Constants 

Subfield 3. Constant T~~e 

Fuliword(F) Halfword (H) 

1. Duelication Factor 
Allowed Yes Yes 

2. Modifiers 

Implicit Length: (Length 4 bytes 2 bytes 
Modifier not present) 

Alignment: Full word Half word 
(Length Modifer not present) 

~ 

Range for Lengthl 
1 through 8 (byte length) 1 through 8 (byte length) 
.1 through .64 (bit length) .1 through .64 (bit length) 

Range for Scale: - 187 through + 346 - 187 through + 346 

Range for Exponent: - 85 through + 75 • - 85 through + 75 DC HE+90'2E-88' 
value = 2xlO 2A ..,. 

4. Nominal Value Decimal digits (0 through 9) Decimal digits (0 through 9) 
Represented by: • DC F'-200' DC H'+200' 

DC FS4'2.25' • DC HS4' .25' 

Enclosed by: Apostrophes Apostrophes 

Exponent allowed: Yes Yes 

DC F'2E6' • DC H '2E-6' 

Number of Values 
per Operand: 

Multiple Multiple 

Padding: With zeros at left With zeros at left 

Truncation of Not allowed Not allowed 
Assembled value: (error message issued) 

Section G: Symbol and Data Definition 187 



Some examples of the range of values 
that can be assembled into fixed
point constants are given in the 
figure to the right. 

length Range of Values that • can be Assembled 

The range of values depends on the 

8 implicitly or explicitly specified 
length (if scaling is disregarded) • 
If the value specified for a 
particular constant does not lie 
within the allowable rangE~ for a 
gi ven length, the constan1: is not 
assembleCll but flagged as an error. 

A fixed-~oint constant is asserrbled as fcllo~s: 

8 

4 

2 

1 

1. ~he specified number, multiplied by any exponents, 
is converted to a binary number. 

2. Scaling (see G3E) is perfcrrred, if sJ;ecified. If a 
scale modifier is not provided the fractional portion of 
the number is lost. 

3. The tinary value is rcunded, if necessary. ~he 
resulting number will not differ from the exact nurrter 
specified by rrore than cne in the least significant bit 
J;osition at the right. 

4. A negative nurrber is c,arried in 2' s corrplement forrr .• 

5. ~uplication is aJ;J;lied after the constant has been 
asserr:bled. 

G3E -- [ECIMAL CONS~AN~S (P AND~ 

The deci)[lal ccnstants allcw ycu tc intrcduce data that 

_2 63 

_2 31 

_2 15 

_2 7 

is in a form suitable for the operations of the decirral 
feature machine instructicns. the J;acked decimal constants 
(P-type) are used for processing ty the decirral instructicn 

188 

set. The zcned decirral ccnstants (Z-tYJ;e) are in the form 
~EC~IC representation) that you can use as a print irrage 
~xceJ;t the digits in the rightmost byte). 

Specifications 

The contents cf the subfields defining decimal constants 
are described in the figure on the opposite J;age. 

'Ihe nominal value can be a signed (J;lus is assumed if the 
number is unsigned) decimal number. A decimal J;oint can 
be written anywhere in the numter, but it does nct affect 

O 
the asse:mbly of the constant in any way. ~he specified 
digits are assumed tc ccnstitute an integer. Decimal 
constants are assembled as follows: 

• 
PACKEr; ~ECI~AL CCNS'.rAN~S :. Each digit is ccnverted into A 
its 4-bit binary equivalent. ~he sign indicator is ~ 
asserobled intc the rightmost four tits of the ccnstant. 

ZONE~ DECIMAL CONS~AN1S: Each digit is converted intc • 
~its a-bit EEC~IC representation. The sign indicatcr 

replaces the first fcur bits cf the lo~-crder byte of the 
constant. 

through 

" 
.. 
.. 

263 _1 

231 _1 

215 _1 

27_1 



P or Z 

Decimal Constants 

Subfield 

1. Duplication Factor 
Allowed 

2. Modifiers 

Implicit Length: (Len.gth 
Modifier not present 

Alignment: 

3. Constant Type 

Packed (P) 

Yes 

As needed 
P DC P'+S93' 
L'P = 2 

(Length Modifer not present Byte 

Range for Length: 

Range for Scale: 

Range for Exponent: 

4. Nominal Value 

Represented by: 

Enclosed by: 

Exponent allowed: 

Number of Values 
per Operand: 

Padding: 

Truncation of 
Assembled value: 

1 through 16 (byte length) 
.1 through .128 (bit length) 

Not allowed 

Not allowed 

Decimal digits (0 through 9) 

DC p'+SSS' 

·Ntm~l. 
Apostrophes 

No 

Multiple 

With Binary zeros 
at left 

At left 

Zoned (Z) 

Yes 

As needed 
Z DC Z'-S93' 
L'Z = 3 

Byte 

1 through-16 (byte length) 

.1 through. 128 (bit length) 

Not allowed 

Not allowed 

Decimal digits (0 through 9) 

DC Z'-S??~ 

~~; 
V fffBl~151 
Apostrophes • 
No 

Multiple 

With EBCDIC zeros 
(X'FO') 
at left 

At left 

DC P'S.S' 

DC 'P' 55' 

Section G: Symbol and Data Definition 189 



The range of values that can be 
assemrled into a decireal constant 
is shown in the figure to the right. 

G31 -- FLOATING-POINT CONSTANTS (E, D, and L) 

Type of Decimal 
Constant 

PACKED 

ZONED 

Floating-point constants allow you to introduce data tr.at 
is in a forrr suitable fer the operations of the floating
point feature instruction set. These constants have the 
following advantages ever fixed-peint censtants. 

1. You do not have to consider the fractional pertien cf 

Range of Values that 
can be Specified 

31 31 10 -1 through -10 

1016 _1 through _10 16 

a value yeu specify, ncr ~orry atcut the pcsiticn ef tr.e 
decimal peint when algebraic operations are to be performed. 

2. You can specify both much larger and rruch smaller values. 

3. You retain greater processing precision, that is, yeur 
values are carried in more significant figures. 

The centents of the subfields defining floating-peint 
constants are described in the figure en the opposite page. 

~ The nominal value can be a signed (plus is assurred if the 
number is unsigned) integer, fractien, er mixed number ~ 
follo~ed by an exponent (positive or negative). The .., 

~exponent_must lie within the permissitle range. If ar. 
exponent rrodifier (see G3E under ~edifiers) is also 
specified, the algebraic sum of the exponent and the 
exponent modifier must lie within the permissible range. 

190 



0, E or l 

Floating Point Constants 

Subfield 3. Constant Tyee 

SHORT (E) LONG (D) EXTENDED (L) 

1. Du~lication Factor Yes Yes Yes 
Allowed 

2.~ 

Implicit Length: 4 Bytes 8 Bytes 16 Bytes 
(Length Modifier Not 

Precent) 

Alignment: 
(Length Modifier Not Full Word Double Word Double Word 

Present) 

Range for Length: 1 through 8 (byte length) 1 through 8 (byte length) 1 through 16 (byte length) 

.1 through .64 (bit length) .1 through .64 (bit length) .1 through .128 (bit length) 

Range for Scale: o through 14 o through 14 o through 28 

Range for Exponent: - 85 through + 75 - 85 through + 75 - 85 through + 7,5 

4. Nominal Value Decimal Digits Decimal Digits Decimal Digits 
(Othroug~ ( 0 through 9) ( 0 through 9) 

Represented by: DC E'+S2S' DC D'!S2S' DC L'S2S' 
DC E'S.2S' • DC D'+.OOl'. DC L'3.414' a 

Enclosed by: Apostrophes Apostrophes Apostrophes 

Exponent Allowed: Yes • Yes 

D'-2.SEIO'. 
Yes 

L' 3. 712E-3fJ DC E'lE+60' DC DC 

Number of Values per Multiple Multiple Multiple 
Operand: 

Padding: With hexadecimal zeros at With hexadecimal zeros at With hexadecimal zeros at 
right right right 

Truncation of Assembled Not applicable Not Appl icable Not applicable 
Value: (Values are rounded) (Values are Rounded) (Values are Rounded) 

Section G: Symbol and Data Definition 191 



The range of values that can be 
assembled into floating-point 
constants is given in the figure 
to the right. 

If the value specified for a 
particular constant does not lie 
within these ranges, the constant 
is not assembled but flagged as 
an error. 

FORMAT: The format of the' floating
point constants is described below. 
The value of the constant is 
represented by two parts: 

~ 1. An exponent portion, followed 
by 

8 2. A fractional portion. 

192 

• A sign bit indicates whether a 
positive or negative number has 
been specified. The number specified 
must first be converted i.nto a 
hexadecimal fraction, before it 
can be assembled into the proper 
internal format. The quantity 
expressed is the product of the 8 fraction. and the number 16 raised. 
to a power. 

Type of Range of Magnitude (M) 
Constant of Values (Positive and 

E 

D 

L 

Type Called 

E Short 
Floating· 
Point 
Number 

D Long 
Floating· 
Point 
Number 

L Extended 
Floating· 
Point 
Number 

Negative) 

16-65 ~M ~ (1-16-6 ) x 16 63 

16-65 ~M ~ (1-16-14 ) x 16 63 

16-65 s..M S,(1-16-28 ) x 16 63 

(For all Three) 
Approximately 

5.4 X 10-79 ~M 57.2 X 1075 

Format 

Bits 0 1 78 

7-bit 56-bit 
+ Characteristic Fraction 

lLlliI'ii< )(+;;;llf;;};'!;U@18%ii!S;f)II'1 

Bits 0 1 78 

7-bit 
+ Characteristic 

flY, 

Bits 0 1 78 

7-bit -I 
l'~i '>\; ::,~\;, ,'\\"\'\'\i"r ;,\:1 

Low-order half of 
112-bit Fraction 

~_er_i_st_iC __ ~ __________________ ___ 

16
E [ra + ~+ l63+-. • • • ] 

where a,b,c .... are hexadecimal digits, and E is 
an exponent that has a positive or negative value 
indicated by the characteristic 

--

31 

63 

63 



BINARY REPRESENTATION: The assembler 
assembles a floating-point constant 
into its binary representation as 
follows: 

The specified number, multiplied 
by any exponents, is converted to 
the required two-part format. The 
value is translated into: 

o 1. A fractional portion represented 

• 

by hexadecimal digits and the sign 
indicator. The fraction is then 
entered into the leftmost part of 
the fraction field of the constant 
(after rounding) • 

~ 2. An exponent portion represented 

• 
by the excess 64 binary notation, 
which is then entered into the 
characteristic field of the constant. 

The excess 64 binary notation is 
when the value of the characteristic 
between +127 and +64 represents 
the exponents of 16 between +63 
and 0 (by subtracting 64) and the 
value of the characteristic between 
+63 and 0 represents the exponents 
of 16 between -1 and -64. 

NOTES: 

1. The L-type floating-point constant 
resembles two contiguous D-type 
constants. The sign of the second 
doubleword is assumed to be the 
same as the sign of the first. 

The characteristic for the second 
doubleword is equal to the 
characteristic of the first 
doubleword minus 14 (the number 
of hexadecimal digits in the 
fractional portion of the first 
doubleword) • 

2. If scaling has been specified, 
hexadecimal zeros are added to the 
left of the normalized fraction 
(causing it to become unnormalized) 
and the exponent in the 
characteristic field is adjusted 
accordingly. (For further details 
on scaling see G3B under Modifiers). 

3. Rounding of the fraction is 
performed according to the implicit 
or explicit length of the constant. 
The resulting number will not differ 
from the exact number specified 
by more than one in the last place. 

4. Negative fractions are carried 
in true representation, not in the 
2's complement form. 

S. Duplication is applied after 
the constant has been assembled. 

Binary Representation 

Source Code 

DC D'-9.7S' 

• 3F 
3E 

00 

Values Expressed 
in Characteristic 

Decimal 

127 
126 

65 
64 
63 
62 

a 

Excess 64 Binary Notation 

Object Code 
in Hex 

= - 9.75 

-64 

Oecimal 

+63 
+62 

[£!] 
a 

-1 
- 2 

-64 

Exponent of 16 
expressed by 
Characteristic 

section G: Symbol and Data Definition 193 



194 

This subsection and the three following sutsections 4escribe 
how the different ty~es o:E address constants are assen:b'1ed 
from expressions that usually represent storage addresses, 
and how the constants are used for addressing within and 
tetween source nedules. 

In the A-·ty~e and Y-ty~e address censtant, yeu can specify 
any of the three types of assemtly-time expressions (see 
C6) , whose value the asse«bler then cowputes and asse~bles 
into object code. You use this expression computatien 
as follo~1s: 

1. Relocatable expressions for addressing 

2. Absolute expressions for addressing and value 
computation. 

3. Ccrr:pIE!X relocatable expressions to relate addresses 
in different source nedules. 

Specificatiens 

The centents ef the surfields defining the A-type and Y
type address constants are described in the figure on the 
opposite page. 

NOTES: 

• 1. Ne bit-length specification is allowed when a relocatatle 

• 
or corrplex relocatatle ex):ression is specified. The only 
explicit lengths that can be specified with these addresses 
are: 

a. 3 or 4 bytes for A-type constants 

b. 2 bytes for y-type constants. 

2. The value of the lccatien counter reference (*) ~hen 
specified in an address constant varies from constant tc 
constant, if any cf the fcllowing er a combination of the 
follo~ing are specified: 

a. ~ultiple e~erands 

• t. Multiple nerrinal values 

• c. A duplication fact.or. 

The lecation counter is incremented with the length ef 
the previously asserrtled constant. 

3. ~hen the location counter reference occurs in a literal 
address constant, the value of the location counter is 
the address of the first tyte of the instruction. 



Address Constants 

A or Y 

Address Constants (A and Y) 

Subfield 3. Constant Type 

A-Type Y - Type • 1. Du~lication Factor Yes Yes A DC 5AL1 (>:c -A} 
allowed Object Code in Hex _ 0001020304 

2. Modifiers 

Implicit Length: (Length 4 bytes 2 bytes 
Modifer not present) 

Alignment: 
(Length Modifier not present) Full word Half word 

Range for Length: 
1 through 4 (byte length) 1 through 2 (byte length) 

.1 through .32 (bit length) .1 through .16 (bit length) 

Range for Scale: Not allowed Not allowed 

Range for Exponent: Not allowed Not allowed 

4. Nominal Value Absolute, relocatable, o'} { Absolute, relocatable, or • Represented by: comple~ relocatable • comple~ relocatable A DC Y ():: -A ,>:<-+:4) 
expressions expressions 

O- Af; DC A (ABSOL+ 10 ) DC Y(RELOC+32) values 

Enclosed by: Parentheses Parentheses 

Exponent allowed: No No 

Number of Values 
per Operand: Multiple Multiple 

With zeros at left With zeros at left 
Padding: 

Truncation of At left At left 
Assembled value: 

Section G: Symbol and Data Definition 195 



CAUiION: Specification of y-type address constants with 
relocata'ble expressions should be avoided in programs that 
are to be executed cn nachines having ~ore than 32,767 
tytes of storage capacity.. In any case, Y-type relocatable 
address constants should not te used in programs to te 
executed under IBM Systero/370 contrcl. 

The A-type and y-type addl:ess constants are processed 
as follow's: If the nonined value is an atsolute expression, 
it is computed to its 32-tit value and then truncated on 
the left to fit the implicit or explicit length of the 
constant. If the ncninal value is a relocatable or complex 
relocatable expression, i 1: is not completely evaluated 
until linkage edit tine when the object roodules are 
transformed into load modules. The 24-tit (or smaller) 
relocated address values are then placed in the fields 
set aside fcr then at assembly tine by the A-type and Y
type constants. 

G3K -- THE S-'IYPE A~~RESS CONSiANT 

You can use the S-type address ccnstant to assemble an 
explicit address (that is, an address in tase-displacenent 
form). You can specify the explicit address yourself or 
alIa" thE~ assembler to compute it from" an implicit address, 
using the current base register and address in its 
computation (for details cn implicit and explicit addresses, 
see [SB) .. 

Specificaticns 

The contents cf the sutfields defining the S-type address 
constants are described in the figure on the opposite page. 

The ncminal values can be specified in t~o ways: 

o 1. As on.:! absolute or relocatatle expression representing 
an implicit address 

196 

.2. As twCJ absolute expressions, the first of which 

• 
represents the displacement and the second, the base. 
register. 



Address Constants (8) 

8ubfield 3. Constant Tyee 

8 - Type 

1. DUQlication Factor 
Allowed Yes 

2. Modifiers 

Implicit Length: 2 bytes 
(Length Modifier not 

present) 

Alignment: Half word 
(Length Modifier not 

present) 

Range for length: 2 only (no bit length) 
(in bytes) 

Range for Scale: Not allowed 

Range for Exponent: Not allowed 

4. Nominal Value Absolute or I}O DC S(RELOC) Ic x;r1. 
relocatable expression DC S(10/8~ 10 O~ II i/ ... Represented by: Two absolute 1. 

In. 
( ........... ... /).~J:, 

expressions DC S(512(12» Ic "~Qi I].········· 

Enclosed by: Parentheses 

Exponent allowed: No 

Number of Values 
per operand : Multiple 

Padding: Not applicable 

Truncation of 
Assembled value: Not applicable 

Section G: Symbol and Data Definition 197 



!!3L -- THE V- 'IYPE AJ:J:RESS CONS'I'ANT 

~he V-type address constant allows you to reserve sterage 
for the address ef a lecatien in a contrel section that 
lies in another source module. You should use the V-ty~e 
address censtant enly te branch te the external address 
specified. This use is contrasted with anotr.er rr.ethed, 
that is: of specifying an external syrrtel, identified 
by an EXTRN instruction, in an A-type address constant 
(for a coroparison, see F2). 

Because you specify a symbol in 
a V-type address constant, the 
assembler assumes that it is an 

Source 
Module 

Object Module 
in Hex 

• external symbol. A value of zero 
is assembled into the spa.ce reserved A 

• 
for the V-type constant; the correct 
relocated value of the address is 
inserted into this s~ace by the 
linkage ,edi tor before your object 
program is loaded. 

Specifications 

START 0 

DC V(OUTSIDE) 

END 
B 

OUTSIDE 

The contents of the subfields defining the V-type address 
constants are described in the figure on the opposite ~age • 

• The symt:ol specified in the nominal value subfield does 
not censt1tute a def1nition of the symtol for the source 
module in which the V-ty~e address constant appears. 

198 

~he symbol specified in a V-type constant Rust not re~resent 
external data in an everlay ~rograrr. 

Load Modul 
in Hex 



Address Constants (V) 

Subfield 3. Constant Type 

V -Type 

1. Duplication Factor 
allowed Yes 

2. Modifiers 

Implicit l.ength: (Length 
Modifier not present) 

Alignment: (Length 
Modifier not present) 

Range for Length: 
( in bytes) 

Range for Scale: 

Range for Exponent: 

4. Nominal Value 

Represented by: 

Enclosed by: 

Exponent allowed: 

Number of values 
per Operand: 

Padding: 

Truncation of 
assembled value: 

4 bytes 

Full word 

4 or 3 only 
(no bit length) 

Not allowed 

Not allowed 

A single relocatable 
symbol 

Parentheses 

No 

Multiple 

With zeros at left 

Not applicable 

DC V(MODA) • DC V(EXTADR) 

Section G: Symbol and Data Definition 199 



200 

Furpose 

You use this constant te reserve storage for the offset 
into a storage area of an external dummy section. ~h€ 
offset is entered inte this space ~y the linkage editer. 
When the offset is added 1:0 the address of an overall tleck 
of storage set aside fer external dummy sections, it allows 
you to address the desired section. (F'or a descripticn 
of the use of the Q-type address ccnstant in cOIllbination 
with an external dummy section, see E4.) 

Specifications 

The contents of the sul:fiE~lds defining the Q-type address 
constant are described in the figure l:elow. 

~The SymrOl specified in the nominal value subfield must 
be prev ously defined as the latel of a tXt or tSEC~ 
statement. 

Subfield 

1. Duplication Factor 
allowed 

2.~ 

Implicit Length: (Length 
Modifier not present) 

Alignment: (Length 
Modifier not present) 

Range for Length: 
(in bytes) 

Range for Scale: 

Range for Exponent: 

4. Nominal Valu! 

Represented by 

Enclosed by: 

Exponent allowed: 

Number of Values per 
Operand: 

Padding: 

Truncation of 
Assembled Value 

3. Constant Type 

a-Type 

Yes 

4 bytes 

Fullword 

1-4 bytes 
(no bit length) 

Not allowed 

Not allowed 

A single relocatable 
symbol 

Parentheses 

No 

Multiple 

With zeros at left 

At left 

Address Constants (a) 

DC Q(DUMM~EXT). 
DC Q(DXDEXTl 



G3N -- THE tS INSTRUCTICN 

Pur~ose 

~he tS instruction allows you to: 

1. Reserve areas ef sterage 

2. Previde latels fer these areas 

3. Use these areas ty referring to the symtols defined 
as latels. 

The tS instruction causes no data te be asserrbled. Unlike 
the tC instruction (see G3E) , you do net have te s~ecify 
the nominal value (fcurth subfield) of a DS instruction 
operand. Therefore, the rs instruction is the test way 
of synbolically defining storage for work areas, 
input/out~ut buffers, etc. 

Named (Mnemonic) Areas Aligned on 
Areas for Fixed- Boundary 
Point Instructions 

Length Attribute of 
Symbols Naming Areas 
same as Implicit o Length of Areas 

.-------------~--F-U~I~lw-o-r-d----4------------'~~4---4 
How to Use the DS Instruction 

TO RESERVE STORAGE; If you wish 

• 
to take advantage of automatic 
toundary alignment (if the ALIGN 
option is specified) and implicit 

~ length calculation, you should not 
supply a length modifier in your 
operand specifications. You should 
specify a type subfield that 
corresponds to the type of area 
you need for your instructions 
(See individual ty~es in sections 

G3D through G3M) • 

FAREA DS F 

HAREA DS H 

AAREA DS A 

DUPF ".,."",,±:,:,t.:,,.,, 

1 0 full words of 
storage reserved 

Named Areas for 
Floating-Point 
Instructions 

EAREA DS 3E 

DEAREA~ 

9 double words 
reserved 

LAREA DS L 

Half word 

Full word 

Full word 

Full word 

Double word 

Double word 

2 

4 

L'DUPF=4 

Duplication has no 
effect on implicit 
length 

\ 
8 

16 

Section G: Symbol and Data Definition 201 



:202 

O Using a length modifier can give 
you the advantage of explicitly 

~ specifying the length attribute 
value assigned to the label naming 
the area reserved. However, your 
areas will not be aligned 
automatically according to their 

~ type. If you omit the nominal value 
in the operand, you should use a 
length modifier for the binary (E), 
character (C), hexadecimal ~), 
and decima-I (F and Z) type areas; 
otherwise their labels will be given 

• a length attribute value of 1. 

Area Specified 

0 
TEN DS CLIO 

TW056 DS XL256 

F3 DS FL3 

D7 DS DL7 

A2 DS AL2 

0 -.. 
Cl DS CL16 

C2 DS 
. ~.~ 

C3 DS 'C 

0 ..--.. 
Xl DS XL200 

X2 DS ~oo~ X3 DSH 

Duplic&tion factor 

has no effect on 

length attribute 

Area Length 
Reserved in Attribute 
in Bytes • 10 10 

256 256 

3 3 

7 7 

2 2 

16 16 

16 /)~t} • 1 

IA 200 

-~}. 200 ---



• 
When you need to reserve large areas you can use a 
duplication factor. However, you can only refer tc tte 

~ first area ty the label in this case. Ycu can also use 
~ the character (q and hexadecimal (X) field ty~es tc s~ecify 4It large areas using the length modifier. 

Area Specified Area Reserved Automatic Length Attribute 
of symbol used 
as Label 

in Bytes Boundary 

LARGEC DS 1000C 1000 

C2 DS 

XLARGE DS XLiboo 2000 

LARGERX DS 2XL2000 4000 

Alignment 

3 

8 

4 

Duplication has 
no effect 

NONE 1 

NONE 1000 

NONE 2000 

NONE 2000 

f 

Section G: Symbol and Data Definition 203 



204 

Although the nominal value is 
optional for a DS instruction, you 
can put it to good use by letting 

• the ass embler comfute the length 
for areas of the E, C, X, and decimal 
W or Z) type areas. You achieve 
this by specifying the general 

• format of the nominal value that 
wi 11 be placed in the area at 
execution time. 

TO FORCE ALIGNMENT: You can use 
the DS instruction to force alignment 
to a boundary that otherwise would 
not be pl:ovided. You do this by 

• using a 9uplication facto:r of zero. 
No space is reserved for such an 

• 
instruction, yet the data that 
follows is aligned .on the desired 

• boundary_:.. 

NOTE: Alignment is forced when 
either tbe ALIGN or NOALIGN assembler 
option is set (see C2) • 

Area Specified 

C1 OS 

Xl OS 

X2 OS 

P1 OS P 

P2 DS 

o 
Os 00 

AREA DS CL128 

o 
OF 
CiA' 

Area 
Reserved 
in bytes 

16 

2 

60 

3 

15 

5 

at----
Doublewor~ 

Length Atribut 
or computed 
implicit length 
of area 
(duplication 
disregarded) 

o 
16 

2 

2 

3 

3 

5 

8 AREA CJ 
8-------. 

Full word 

DS 
KEY OC 

ADCON OC AL3(SOMWHERE) 8 C 
~,,--,:::!\,~,;:::~ 

o 
OH 

3,SUM 

3,CONST 

3,RESULT 

HER E addresses 
same location as 
following 
instruction (LH) 

A Address of 
SOMWHERE 

Half word 

LH 

AH 

STH 



TO NAME FIELCS OF AN AREA: Using a du~lication factor 
of zero in a LS instruction also allows you to ~rcvide 
a lacel for an area cf stcrage without actually reserving 

• 
the area. You can use LS or LC instructions to reserve 
storage for and assign labels to fields within the area. 
~hese fields can then be addressed symcolically. (Ancther 

•
way of accorr~lishing this is described in E3C.) The whole 
area is addressable by its lacel. In addition, tte syrrcclic 

• 
label will have the length attricute value of the whcle 
area. Within the area each field is addressable by its 
label. The LA~E field has the same address as the sucfield o :CAY. However, r:A~E addresses 6 bytes, while DAY addresses 
only 2 bytes. . 

Symbol Length 
Attribute 

6 

20 

86 
2 

2 

2 

8 

8 

• • RECAREA DS 

DS CL4 

PAYNO 

NAME 

DATE 

DAY 

MONTH 

YEAR 

GROSS 

TAXES 

DS 

DS 

DS 

DS 

DS 

DS 

DS 

DS 

DS 

DS 

CL8 

CL8 

CLl8 

Format of 80 
Character Record 

RECAREA 

DATE 
DAY 
MONTH 
YEAR 

~2 byte~ 

Area not 
Aligned 

• 80 
bytes 
long 

Section G: Symbol and Data Definition 205 



206 

Specifications 

'Ihe forma1t of the r:5 instruction 
statement is given in the figure 
to the riqht • 

• 
The format of the operand of a DS 
instructic)n is 1dentical to that 
of the DC operand (see G3B) • 

The two differences in the 
specification of subfields are: 

The nominal value subfield is 
• ?pticnalin a D5 operand, but it 

• 

1S mandatory in a DC oferctnd. If 
a nominal value is specified in 

• 
a DS operand, it n.ust be valid • 

The reaximum length that can be 
specified in a :CS operand for the 
characteJ:' (C) and hexadecimal (X) 
type area,s is 65,535 bytes, rather 
than 256 bytes for the same r:c 
operands. 

Name Operation 

Any'Symbol DS 
or blank 

OPTIONl 

OPTION2 

AMUST 

LONGC 

LONGX 

LIMITEDC 

LIMITEDX 

Operand 

DS 

~:~~A!.ll::e DS 
<;;!)!::!~;., .. ",,~;:.~.:=, 

DC 3FL3,JllI1~ 

Ii 
DS CL655358 

DS XL65535 

DC CL256 'A' 

DC XL256 , 00 , 



~he label used in the name entry of a rs instructicn, like 
the label fcr a CC instructicn (see G3E) : 

~ 1. Has an address value of the leftrrost byte of the area 
reserved, after any bcundary alignment is performed 

8 2. Has a length attribute value, de~ending on the implicit 
. or ex~licit length of the type of area reserved. 

If the CS instructicn is specified ~ith Rore than one 
operand or more than one nominal value in the operand, 

•
the label addresses the area reserved for the field ttat 
corresponds tc the first nOIr:inal value cf the first o~erand • 

• 
~he length attribute value is equal to the length ex~licitly 

· specified or implicit in the first operand. 

• 

Boundary 
Alignment 

Only if 
Length 
Modifier 
is not 
specified 

Symbol 
Length 
Attribute 

Duplica
tion has 
no effect. 

Byte 1 

II R 

Explicit Length 

EXPL DS FL3 

DS 3DL5 

DS XL7000 ~------~\(~--------~ 

OPRNDS DS 3F'3C~1 II . 

DS FL3,2HL5 I U II 
I 

VALUES DS A(P,Q,R) I II 
I 
I 

MORE DS H I 7 8 9 I I 

'81 
n 

ODD 

Halfword 2 

Fullword 4 

Double word 8 

Full word 

None 

None 

Full word 

None 

Full word 

Half word 

4 

3 

5 

7000 

• 4 

3 

4 

2 

Section G: Symbol and Data Definition 207 



NOTE: Unlike the DC instruction, o bytes skipped for alignment are 
not set to zero. Also, nct~hing 

• is assembled into the storage area 
reserved by a DS instruction. No 
assumption should be made as to 
the contents of the reservE~d area. 

:208 

The size of a storage area that 
can te reserved by a DS instruction 
is limited only by the size of 
virtual st:orage or by the maxiIlium 
value of t:he location counter, 
whichever is smaller. 

Double word Boundary 

End of Last r-- Data Entry 

-,/A--__ 

x 

'--I

X 

X }ee 
LBbYtes~ 



G30 -- THE CCW INSTRUCTION 

Purpose 

You can use the CCW instruction to define and generate 
an eight-l::yte channel cOIl1Irand word for input/output 
operations. 

Doubleword 
Boundary 

bits 0 7 

Command 
Code 

bits 8 

Byte 

1 

31 

The channel command word is an 
eight-byte field aligned at a 
doubleword boundary, and contains 
the information described in the 
figure to the right. 

Address of data to operate upon I 2-4 

Specifications 

The format of the CCW instruction 
statement is given in the figure 
to the right. 

bits 

bits 

bits 

32 37 38 39 
r---~ 

40 47 

Must be Specified 
as Zeros 

Set to Zeros 
by Assembler 

63 

5 

6 

Byte Count or Length of Data 7 - 8 

Name 

Any sy.mbol 
or blank 

Operation 

ccw 

Operand 

Four operands separated 
by commas 

Section G: Symbol and Data Definition 209 



o 

• 
• 

210 

All fcur operands must be sEecified 
in the o:t:'der descrited Tn t e figure 
to the right. The generated channel 
command lrlord is aligned on a 
doubleword boundary. Any bytes 
skipped are set tc zerc. 

The symb!::>l in the name field, if 
present, is assigned the value of 
the address of the leftmost byte 
of the channel ccrrrrand word 
generated. The length attribute 
value of the symbcl is 8. 

o 
WRITE CCW 1,DATADR,X'48',X'50' 

Values are 
right justified 
in fields 

Assembled 
into 

Double Word 
Boundary 

Treated as 
as 3-byte 
A-Type 
address 
constant 

bits 

Must be Specified 
as Zeros 

L'WRITE=8 



Section H: Controlling the Assembler Program 

This section describes the assembler instructions that 
request the assembler to perform certain functions that 
it would otherwise perform in a standard predetermined 
way. You can use these instructions to: . 

1. Change the standard coding format for writing your 
source statements 

2. Control the final structure of your assembled program 

3. Alter the format of the source module and object code 
printed on the assembler listing 

4. Produce punched card output in addition to the object 
deck 

5. Substitute your own mnemonic operation codes for the 
standard codes of the assembler language 

6. Save and restore programming environments, such as the 
status of the PRINT options and the USING base register 
assignment. 

HI -- Structuring a Program 

The instructions described in this subsection affect the 
location counter and thereby the structure of a control 
section. You can use them to interrupt the normal flew 
of assembly and redefine portions of a control section 
or to reserve space to receive literal constants. Alse, 
you can use them to align data on any desired boundary. 

Section H: Controlling the Assembler Program 211 



Hl~ ,-- THE ORG INS'IRUCTION 

212 

Purpose 

You use the ORG instruction to alter 
the setting of the location counter 
and thus control the structure of 
the current control section. This 
allows you to redefine portions 
of a control section. 

For example, if you wish to build 
a translate table ~o convert EBC~IC 
character code into some other 
internal code) : 

o 1. You define the table as being 
fi lIed wi 1:h zeros. 

2. You use the ORG instruction to 
alter the location counter so that 

• 
its countE~r value indicates a desired 
location within the table. 

• 3. You ~define the data to be 
assembled into that location • 

• 
4. After l~epeating the first three 
steps until your translate table 
is complete, you use an ORG 
instruction with a blank operand 
field to alter the location counter 

A so that the counter value indicates 
V the next available location in the 

current control section (after the 
end of the translate table). 

Both the assembled object code for 
the whole table filled with zeros 
and the object code for the portions 
of the table you redefined are 
printed in the program listings. 
However, ·the data defined later 
is loaded over the previously defined 
zeros and becomes part of your 
object prograw, instead of the 
zeros. 

In other words, the ORG instruction 
can cause the location counter to 
point to any part of a control 
section, even the middle of an 
instruction, into which you can 
assemble desired data. It can also 
cause the location counter to point 
to the next available location so 
that your program can continue to 
be assembled in a sequential fashion. 

FIRST 

TABLE 

• 

INPUT 

Source Module 

START 

DC 
ORG 
DC 
DC 

ORG 

DC 
DC 

ORG 
DC 

ORG 
DC 

ORG 
DS 

0 

0 
XL256'OO' 
TABLE+O 
ClOt. 
C'l' 

TABLE+13 

C'D' 
C'E' 

TABLE+C'D' 
AL1(13} 

TABLE+C'Oo 
AL1(0} 

OH 

Object Code 

TABLE 
(in Hex) 

+0 FO 
FI 

+13 C4 
C5 

+196 OD 
OE 

+240 00 
01 

+255 

TR INPUT ,TABLE 

DS CL20 

END 



Specifications 

The format of the ORG instruction 
is shown in the figure to the right. 

The symbols in the expression in 
the operand field must be previously 
defined. The unpaired relocatable 
term of the expression (see C6E) 
must be defined in the same control 
section in which the ORG statement 
appears. 

4It The location counter is set to the 
• value of the expression in the 

operand. If the operand is omitted, 
the location counter is set to the 

~ next available location for the 
current control section. 

The expression in the operand of 
an ORG instruction must not specify 
a location before the beginning 
of the control section in which 
it appears. In the example to the 4It right, the ORG instruction is invalid 
if it appears between the beginning 
of the current control section and 
500 bytes from the beginning of 
the same control section. This 

• 
is because the expression specified 
is then negative and will set the 
location counter to a value larger 
than the assembler can process. 
The location counter will ·wrap 
around· (the location counter is 
discussed in detail in section C4B) • 

Name 

OS 
Any symbol 
or blank 

SECT1\. 

OC08 HERE 
OCOC • 
OD80 

IOD80\ • 

a FIRST 

Operation 

ORG 

Source Module 

START 

L 3,ADDR 

Operand 

A relocatable 
expr.ession 
or blank 

MVC TO,FROM • 
ORG 

~ L 4,AREA 
A 4,TWO 
ST 4,SUM 

END 

Source Module 

START 

• O~G *-500 

END 

• Section H: Controlling the Assembler Program 213 



NOTE: Using the ORG instruction 
to insert data assembled later at 
the same location as earlier data 
will not always work. 

• 
In the example to the right, it 
appea.rs as if the character constant 

• 
will be loaded over the address 

. constant. However, after 'the 

• 
character constant is loaded into 
the same location as the address 
constant, the relocation factor 
required tor the address constant 

• is added 1::0 the value of the 
const~nt. This sum then constitutes 
the object code that resides in 
the four bytes with the address 
ADDR. 

H1.!~ -- THE LTORG INSTRUCTION 

214 

PUrpose 

You use the LTORG statement so that 
the assembler can collect and 
assemble literals into a literal 
pool. A literal pocl contains the 
literals you specify in a source 
module either: 

• After the~ceding LTORG instruction 
or 

• 
After the~inning of thE~ source 
module. 

The assembler ignores the borders 
between control sections when it 
collects literals into po()ls. 
Therefore, you must be careful to 
include the literal pools in the 
control sections to which they 
belong ~or details see Addressing 
Considerations below). 

The creation of a literal pool gives 
the following advantages: 

1. Automatic organization of the 
literal data into sections that 
are properly aligned and clrranged 
so that no space is wasted 

2. Assembling of du~licate data 
into the same area 

3. Because all literals are cross
referenced, you can find the literal 
constant in the pool into which 
it has been assembled. 

ADDR 

CHAR 

Assembled 

ADDR 

1 
IX X x XI 

..-4 
(ADDR) 

1. BETA ~ 
IC2C5E3Cl) 

DC 

ORG 

DC 
Processing Sequence .. 

Loaded 

ADDRe 

1 
IC2C5E3C~ 

SOUi'm Module 

A START o 

=lit1 

=lit5 

• A (LOC) 

* -4 

C'BETA' • 

Relocation factor 
added to value 
of constant CHAR 
ADDR 

UL 



The Literal Pool 

A literal pool is created immediately 
after a LTORG instruction or, if 
no LTCRG instruction is specified, 
at the end of the first control 
section. 

Each literal pool has :four'lsegments 
into which the literals are stored 
(1) in the order that the literals 
are specified and (2) according 
to their assembled lengths, which, 
for each literal, is the total 
explicit or implicit length, as 
described below. 

• The first segment contains all 
literal constants whose assembled 
lengths are a multiple of eight. 

• The second segment contains those 
whose assembled lengths are a 
multiple of four, but not of eight. 

• The third segment contains those 
whose assembled lengths are even, 
but not a multiple of four. 

• The fourth segment, contains all 
the remaining literal constants 
whose assembled lengths are odd. 

The beginning of each literal pool 
• is aligned on a doubleword boundary. 

Therefore, the literals in the first 
segment are always aligned on a 
doubleword boundary, those in the 

• 
second segment on a full word 

I boundary, and those in the third 
• segment on a halfword boundary. 

FIRST 

Literal Pool 
Start 

o 

Source Module 

START 0 Assembled into 
Segment 

MVC TO,=3F'9' • AD 2,=D'7' 0 
IC 2,=XLl'8' • ,=CL3'JAN' • ,=2F'l,2' 0 
0 ,=I}'33' • • ,=~(ADDR) • • LTPJ 

,=XL8'05' 

END 

Section H: Controlling the Assembler Program 215 



Addressing Considerations 

If you specify literals in source 
modules with multiple control 
sections, you should: 

1. Write a LTORG instruction at 
the end of each control section, 
so that all the literals specified 

• 
in the section are assembled into 
the one literal pool for that 
section. If a control section is 
divided and interspersed among other 
control sections, you should write 
a LTCRG instruction at the end of 
each segment of the interspersed 
control section. 

2. When establishing the 
addressability of each control 
section, make sure (a) thai: the 
entire Ii t.eral pool for that section 

• 
is also addressable, by including 
it wi thin a USING range, and (b) 
that the literal specifications 

• 
are within the corresponding USING 
domain. 'I~he USING range and domain 
are described in F1A. 

216 

NOTE: All the literals specified 
after the last LTORG instruction, 
or, if no LTORG instruction is 
specified,. all the literals in a 
source module are assembled into 
a literal pool at the end of the 
first coni:rol section. YOll must 
then make this literal pool 
addressable along with the addresses 
in the first control section. This 
literal pool is printed in the 
program listing after the END 
instruction. 

USING 
range 
ONE 

USING 
range 
TWO 

TWO 

Source Module 

START 0 

USING 

LTORG 

CSECT 

USING 

LTORG 



Buplicate Literals 

If you specify duplicate literals 
within the part of the source module 

O that is controlled by a LTORG 
instruction, only one literal 
constant is assembled into the 
pertinent literal peel. This also 
applies to literals assembled into 
the literal pool at the end of the 
first or only control section of 
a source module that contains no 
LTORG instructions. 

•
Literals are duplicates only if 
their specifications are identical, 

Gnot if the object code assembled 
happens to be identical. 

When two literals specifying 

•
identical A-type (or y-type) address 

, constants contain a reference to 
the value of the location counter 
(*), both literals are assembled 
into the literal pool. This is 
because the value of the location 
counter is different in the two 
literals. 

Specifications 

The format of the LTORG instruction 
is given in the figure to the right. 

If an ordinary symbol is specified 
in the name field, it represents 
the first byte of the literal pool; 
this symbol is aligned on a 
doubleword boundary and has a length 
attribute value of one. If bytes 
are skipped after the end of a 
literal pool to achieve alignment 
for the next instructien, constant, 
or area, the bytes are not filled 
with zeros. 

Source Module 

BEGIN START 0 

Literal pool 1 

SECOND 

Literal pool 2 

END 

Name 

Any symbol 
or blank 

Action 

both are stored, each 
into a separate literal 
pool 

LTORG 

Operation Operand 

LTORG Not required 

Section H: Controlling the Assembler Program 217 



H~: -- THE CNap INSTRUCTION 

You can use the CNOP instruction 

• 
to align any instructien er other 
data on a specific halfword toundary. 
The CNOP instruction ensures an 
unbroken flow of executable 
instructicns by generating no

~operation instructions to fill the 
bytes ski~~ed to ~erform the 
alignment that you specified. 

For example, when yeu code the 

•

linkage to a subroutine, you may 
wish to pass parameters to the 
subroutine in fields irrmediately 
following the branch and link 

• instruction. These parameters, 
for instance, channel command words 
(see G30) , can require alignment 

on a specific boundary. 

• 
The subroutine ca·n then address 
the parameters you pass through 
the register with the return address. 

218 

Specifica.tiens 

r.rhe CISOF instruction forcE~s the 
alignrr:ent~ of the loca tion counter 
to a halfword, fullword, or 
doubleword boundary. It does not 
affect the location countE:!r if the 
counter is already properly aligned. 
If the specified alignmen1: requires 
the location counter tc be 
increment:ed, one to three no
operation instructions ~CR 0,0 
occupying two bytes each) are 
generated to fill the skipped bytes. 
Any single byte skipped to achieve 
alignment. to the first no--operation 
instructien is filled ~ith zeros. 

Assume location 
counter is at 
doubleword 

LINK BALR 2,10 

CCW lONE 

CCW I TWO 

CCW I THREE I 

Register Contents 
2 Return address 

(LINK + 2) 
Address of sub

routine 

Layout of 
Object Code 

double half half double 
word word word 

.[:~: ~:~ 
BCR 

LINK BALR 

CCW 

CCW 

CCW 

{

0(2 

• 8(2 
16(2 

BCR 

BCR 

BALR 

CCW ONE 
.-----4 

CCW TWO 

CCW THREE 



The format of the CNOP instruction 
statement is given in the figure 
to the right. 

The operands must be absolute 
expressions, and any symbols must 

Name 

O have been previously defined. 
The first operand, b, specifies 
at which even-numbered byte in a 

Any symbol 
OS or blank 

• 
fullword or doubleword the location 
counter is set. The second operand, 
w , specifies whether the byte is 
in a fullword (w=4) or a doubleword 
(w=8). Valid pairs of band ware 

as indicated in the figure to the 
right. 

NOTE: Both 0,4 and 2,4 specify 
two locations in a doubleword. 

H2 -- Determining Statement Format and Sequence 

You can change the standard coding conventions for the 
assembler language statements or check the sequence of 
source statements by using the fcl10wing instructions. 

H2A -- THE ICTL INSTRUCTION 

Purpose 

The ICTL instruction allows you to change the begin, end, 
and continue columns that establish the coding forrrat cf 
the assembler language source statements. 

For example, with the ICTL instruction, you can increase 
the number of columns to be used for the identificaticn 
or sequence checking of your source statements. By changing 
the begin column, you can even create a field before the 
begin column to contain identification or sequence numbers. 

Operation 

CNOP 

Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

CNOP 

Operand 

,w 

~ 
2,4 

• FULLWORD 

Section H: Controlling the Assembler Program 219 



You can use the ICTL instruction 
only once, at the very beginning 
of a source module. If you do not 
use it~ the assembler recognizes 
the standard values for the, regin, 
end, and continue columns. 

The ICTL instructicn, if specified, 
must be the first statement in a 
source module. 

The format of the IC'IL instruction 
statement is shown in the figure 
to the right. 

The operand entry must be one to 

O three decimal self-defining terms. 
There are only three Fcssible ways 
of specifying the operand entry • 

• The 2£erand b must alwclYs be 
4Et specified. 'Ihe operand e, when not 

specified, is assumed to be 71. 
• If the operand c is not: specified, 

or if e is specified as 80, the 
assembler assumes that continuation 
lines are not allowed. The values 

• 
specified for the three operands 
depend on each other. 

220 

NOTE: The ICTL instruction does 
not affect the format of statements 
l:rought in ty a COpy instruction 
or generated from a library macro 
definition. The asserobler processes 
these statements according to the 
standard tegin, end, and continue 
columns described in SE!ction E1A. 

BEGIN 

~ 
1 
1 

Columns 

[ Standard values for Column~ 

CONTINUE END 

I 

br----.....,........, , 
16 

ICTL 

Format I 
--

Name Operation Operand 

Blank ICTL b or 

b,e or 0 
b,e,c 

--

Operands I 
Specifies Allowable range 

• b Begin column 1 through 40 

ee End column 41 through 80 

8 c Continue column 2 through 40 

• Rules for interaction of b, e and c 

The position of the End column must 
not be less than the position of the Begin e 2:b+5 
column + 5, but must be greater than the 
position of the Continue column e > c 

--
The position of the Continue column 
must be greater than that of the Begin c>b 
column 

--



H2B -- THE ISEQ INSTRUCTION 

Purpose 

You can use the ISEQ instruction 
to cause the assembler to check 
if the statements in a source module 
are in sequential order. In the 
ISEQ instruction you specify the 

O columns between which the assembler 
is to check for sequence nurobers. 

The assembler begins sequence 

• 
checking with the first sta tement 
line following the ISEQ instruction. 
The assembler also checks 

• continuation lines. 

Sequence numbers on adjacent o statements or lines are compared 
according to the a-bit internal 
EBCDIC collating sequence. When 
the sequence number on one line 
is not greater than the sequence 
number on the preceding line, a 
sequence error is flagged, and a 
warning message is issued, but the 
assembly is not terminated. 

NOTE: If the sequence field in the 
preceding line is blank, the 
assembler uses the last preceding 
line with a non-blank sequence field 
to make its comparison. 

Specifications 

The ISEQ instruction initiates or 
terminates the checking of the 
sequence of statements in a source 
module. 

~he format of the ISEQ instruction 
is shown in the figure to the right. 

8 The first option in the operand 
entry must be two decimal self
defining terms. This format of 
the ISEQ instruction initiates 
sequence checking, beginning at 
the statement or line following 

• the ISEQ instruction. Checking 
begins at the column represented 8 by land ends at the column 
represented by r. The second 

O option of the ISEQ format terminat;,es 
the sequence checking operation. 

0 
73 80 Compares made 

ISEQ • L ONE ONE with TWO 

A TWO TWO with THREE 

ST THREE THREE with FOUR 

CARD 
FOUR with FIVE 

• CONTINUA 
FOUR 

FIVE 
and so on 

1 

ISEQ 

Name Operation Operand 

Blank ISEQ I, r I} or blank 

Column Specifies Rules for interaction 

• I~ leftmost column of ISr I must not be 
field to be checked , greater than r 

l"'-

I and r not allowed 
to lie between begin 
and end columns 

r .------

I.--" • rightmost column n~1 r must not be 
of field to be checked less than I 

Section H: Controlling the Assembler Program 221 



NOTE: The assembler checks only 
those statements that are specified 
in the coding of a source module. 
This includes any COpy instruction 
statement or macro instruction. 

However, -the assembler does not 
check: 

1. Statements inserted by a COpy 
instruction 

2. Statements generated from model 
statements inside macro definitions 
or from model statements in open 
code (stateroent generation is 
discussed in detail in Section J) 

3. Statements in library macro 
definitions. 

H3 .. Listing l='ormat and Output 

The instructions described in this 
section request the assembler to 
produce listings and identify output 
cards in the object deck according 
to your special needs. They allow 
you to determine printing and page 
formatt ing options other 1:han the 
ones the assembler program assumes 
by default. Among other things, 
you can introduce your own page 
headings, control line spacing, 
and suppI:ess unwanted detail. 

FDA -- THE PRINT INSTRUCTION 

222 

Purpose 

The PRIN'r instruction allows you 
to control the amount of detail 
you wish printed in the listing 
of your programs. The three options 
that you can set are given in the 
figure to the right. 

They are listed in hierarchic order; 
if OFF is specified, GEN and I:)ATA 
will not apply. If NOGEN is 
specified, CATA will not apply to 
constants that are generated. The 
standard options inherent~ in the 
assembler program are ON, GEN, and 
NODATA. 

Source Module 

FIRST START 0 

ISEQ 73,80 

T 
checking 
occurs 

ISEQ + 
T 

checking 
does not 
occur 

ISEQ 73,80 + 
T 

checking 
resumed 

END ! 

Hierarchy Description PR I NT options 

1 A listing is printed ON 

No listing.is printed OFF 

2 All statements generated by the 
processing of a macro instruction GEN 
are.p~ 

--
Statements generated by the 
processing of a macro instruction NOGEN 
are.!!Q1 Rrinted (Note: The 
MNOTE instruction always causes 
a message to be printed) 

3 Constants are printed..i!!.fiill in DATA 
the listing 

.-
Only the leftmost eight bytes of 

NODATA constants are printed in the 
listing 



Specifications 

~he format of the PRINT instruction 
statement is shown in the figure 
to the right. 

o At least one of the operands must 
be specified, and at most one of 
the options from each group. The 
PRINT instruction can be specified 
any number of times in a source 
module, but only those print options 
actually specified in the instruction 
change the current print status. 

PRINT options can be generated by 
macro processing, at pre-assembly 
time. However, at assembly time, 
all options are in force until the 
assembler encounters a new and 
opposite option in a PRINT 
instruction. 

NOTE: The option specified in a 
PRINT instruction takes effect after 
the FRINT instruction. If PRINT 
OFF is specified, the PRINT 
instruction itself is printed, but 
not the statements that follow it. 
If the NOLIST asserobler oFt ion is 
specified in the job control 
language, the entire listing for 
the assembly is suppressed. 

Name 

A sequence 
symbol or 
blank 

Operation 

PRINT 

PRINT 

Operand 

Section H: Controlling the Assembler Program 223 



IDB -- THE TITIJE INSTRUCTION 

The TITLE instruction allows you 
to: 

• 1. provide headin~s for each page 
of the assembly 11sting of your 
source modules. 

2. Identify the assembly output 
cards of your object modules. You 

• 
can specify up to 8 identification 
characters that the assembler will 

• 
punch in'to all the output cards, 
beginning at column 73. 

• 
The assembler punches seq~ 
numbers into the columns that are 
left, up to column 80. 

224 

Specifications 

The format of the TITLE instruction 
statement is given in the figure 
to the right. 

Any of the five options can be 
specified in the name field. 

8 'Ihe first three options for the 
name field have a special 
significance only for the first 
TITLE instruction in which they 
are specified. For subsequent TITLE 
instructions, the first three options 
do not apply~ . 

TITLE 'THIS IS A HEADING' 

r--______ ..x... ______ 2am Usting 

o THIS IS A HEADING 

PROG TITLE ' heading' • ~ 
~~---------~ 

PRQG 0003 

PROG 0002' 
73 80 

PROG 0001 e. 

Name 

.2Ption 

Or; 
A string of alpha-
rneric characters 
A variable symbol 
A combination of 
1 and 2 

4 A sequence symbol 
5 blank 

Operation 

TITLE 

Object Deck 

TITLE 

Operand 

A character 
string up to 
100 charac-
ters, en-
closed in 
apostrophes 



For the first TITLE instruction 
of a source module that has a non
blank name entry that is not a 
sequence symbol, the following 
applies: 

• Up to eight alphameric characters 
can be specified in any combination 
in the name field. 

These characters are punched as 
identification, beginning at column 
73, into all the output cards from 
the assembly, except those produced 
by the PUNCH and REPRO instructions. 

•

. The assembler sUbstitutes the current 
.value into a variable symbol and 
uses the generated result as 
identification characters • 

• If a valid ordinary symbol is 
specified, its appearance in the 
name field does not constitute a 
definition of that symbol for the 
source module. It can therefore 
be used in the name field of any 
other staterr.ent in the same source 
module. 

Object 
Deck 

Examples of TITLE instructions 
in separate source modules: 

Source Statement Value of 
variable symbol 

Punched into cards 
beginning at col. 73 

&ID~_T_I_T_L_E __ -+ ___ M_O_D_9_9 __ A ____ ~ ____ M_O_D_9_9_A ____ ~ 

PGM&N1 TITLE 200 PGM200 

1234 TITLE 1234 

SYMBOL TITLE SYMBOL • 

Section H: Controllling the Assembler Program 225 



o 
The chariicter string in the operand 
field is printed as a heading at 
the top of each page of the assembly 
listing. The heading is printed 
beginnin9 on the page in the listing 
followin.~ the page on which the 
TITLE instruction is specified. 
A new he.:lding is printed when a 
subsequent TITLE instruction appears 
in the source module. 

Each TITLE statement causes the 
listing ,to be advanced to a new page 
(before 'the heading is. printed) 

except when PRINT NOGEN is in use. 

Any prin·table character specif ied 
will appear in the heading, including 
blanks. Variable symbols are allowed. 
However, the following rules apply 
to ampersands and apostrophes: 

• A single ampersand initiates 
an attempt to identify a variable 

• symbol and to substitute its current 
value. 

Examples of headin~,_: ______ ..... ____ .'...-___ _ 
Source Statement 

-. 
TITLE 'HEADING &N' 

TITLE 'HEADING 

Value 
of 
Variable 
Symbol 

Printed Heading 

+---------11 

TWO HEADING TWO 

HEADING & I 

•• Double ampersands or apostrophes TITLE' HEADING FOU., , FIVE' 
specified, print as single ampersands 
or apostrophes in the heading. 

HEADING FOUR 

~. A sin~apostrophe ~ollowed 
by one or more blanks sl.mply 
terminates the heading prematurely. 
If a non-blank character follows 

226 

a single apostrophe, the assembler 
issues an error message and prints 
no heading. 

Only the characters print:ed in the 
heading count toward the maximum 
of 100 characters allowed. 

NOTE: The TITLE statement itself 
is not printed in an ass€~mbly 
listing. 

TITLE 'HEADING FOUR'REMARKS 

"'*ERROR** 



H3C -- THE EJECT INSTRUCTION 

Purpose 

The EJECT instruction allows you 
to stop the printing of the asserobly 
listing on the current page and 
continue the printing on the next 
page. 

Specifications 

The format of the EJECT instruction 
statement is shown in the figure 
to the right. 

The EJECT instruction causes the 
next line of the assembly listing 
to be printed at the top of a new o page. If the line before the EJECT 
instruction appears at the bottom 

• 
of a page, the EJECT instruction 
has no effect. An EJECT instruction 
immediately following another EJECT 
instruction causes a blank page 
in the listing. 

NOTE: The EJECT instruction 
statement itself is not printed 
in the listing. 

Name 

A sequence 
symbol or 
blank 

Pag,e 
Boundary 

I 

Operation Operand 

Not required 
EJECT 

Source Module Listing 

Previous statement-------e-.' .. , 
EJECT ..... 

Source Text r 
i··· 

I 
I 

EJECT . 

Page 
Boundary 

Page 
Boundary 

Section H: Controlling the Assembler Program 227 



InD -- THE SPACE INSTRUCTION 

You can use the SPACE ins'truction 
to inser1: one or more blank lines 
in the listing of a source module. 
This allows you to separate sections 
of code on the listing page. 

Specifications 

'I'he format of the SPACE instruction 
statement is given in the figure 
to the right. 

The operand entry specifies the 
number of lines to be left blank. 
A blank operand entry causes one 
blank line to be inserted. If the 
operand specified has a value greater 
than the number of lines remaining 
on the listing page, the instruction 
will have the same effect as an 
EJECT statement. 

NOTE: The SPACE instruction itself 
is not listed. 

Name Operation 

A sequence 
symbol or SPACE 
blank 

f.l4 - PunchmLg Output Cards 

The instructions described in this section produce punched 
cards as output from the assemtly in addition to those 
produced for the objec't module (object deck) • 

HijA -- THE FUNCH INSTRUCTION 

228 

Purpose 

The PUNCH instruction allows you to punch source or other 
statements into a single card. With this feature you can: 

1. Code PUNCH statements in a source module to produce 
control statements for the linkage editor. The linkage 
editor uses these control statements to process the ol:ject 
module. 

2. Code PUNCH statements in macro definitions to produce, 
for example, source statE~ments in other computer languages 
or for other processing phases. 

The card that is punched has a physical position irr.mediately 
after the PUNCH instruction and before any other TXT cards 
of the object decks that are to follow. 

SPACE 

Operand 

A decimal 
self-defining term 
or blank 



Specifications 

The PUNCH instruction causes the 
data in its oferand to be punched 
into a card. One PUNCH instruction 
produces one punched card, but as 
many FUNCH instructions as necessary 
can ce used. 

The PUNCH instruction statement 
can appear anywhere in a source 

O module except before and cetween 
source macro definitions. If a 

• 
PUNCH instruction occurs before 
the first control section, the 

•
resultant card punched will precede 
all other cards in the object deck. 

•
The cards punched as a result of 
a PUNCH instruction are not a logical 
part of the object deck, even though 
they can be physically interspersed 
in the object deck. 

The format of the PUNCH instruction 
statement is shown in the figure 
to the right. 

All 256 punch combinations of the 
IB~ System/370 character set are 
allowed in the character string 
of the operand field. Variable 
symbols are also allowed. 

Source Module 

MACRO 
MACDEFI 

MEND 

MACRO 
MACDEF2 

MEND 

• PUNCH 

FIRST START 0 

PUNCH 

PUNCH 

END 

Name 

A sequence 
symbol or 
blank 

Operation 

PUNCH 

Object Module 
(Card Deck) 

PUNCH 

Operand 

A character string of 
up to 80 characters, 
enclosed in apostrophes 

Section H: Controlling the Assembler Program 229 



.230 

• 
The posi "tion of each char acter 
specified in the PUNCH statement 

41tcorresponds to a column in the card 
to be punched. However, the 
following rules apply to ampersands 
and apos"troI,:hes: 

1. A single ampersand initiates 
an attempt to identify a variable 

~symbol and to substitute its current 
value. 

0 2. Double ampersc:nds or apostrophes 
are punched as s1ngle ampersands 
or apostrophes. 

8 3. A sin~aEostroEhe f~llowed 
EL. one or more blanks simply 
terminates the string cf characters 
punched. If a non-blank character 
follows a single aI,:cstrophe, an 
error message is issued and nothing 
is punched. 

Only the characters punched, 
including blanks, count toward the 
maximum of 80 allowed. 

NOTES: 

1. No sequence number cr 
identification is punched into the 
card produced. 

2. If the NCCECK option is specified 
in the EXEC statement of the job 
control language for the assemtler 
program, nc cards are ~unched: 
neither for the PUNCH or REPRO 
instructions, nor for the object 
deck of the assembly. 

PUNCH 

r-~--------------------------~---------

o 
Position 1 2 3 4 5 6 7 

PUNCH ,,' 

This position -' 
is always 
column 1 

1234567 

Examples: 

Source 
Statement 

PUNCH 'CHARS 

PUNCH 'CHARS 

13 15 

• &VAR' 

• /\ 
&& '" 

PUNCH 'CHARS A' B' 

! • PUNCH 'CHARS A'REMARKS 
':' ':< ':' ERROR ':< ':< ':< 

PUNCH 'CHARS A' REMARKS 

21 

13 15 

Column 

Value of 
Variable 
Symbol 

ABC 

21 

Characters 
Punched 

CHARS ABC 

CHARS &' 

CHARS A 

CHARS A 



1I4B -- THE REPRO INSTRUCTION 

Purpose 

The REPRO instruction causes the 
data specified in the statement 
that follows to be punched into 
a card. Unlike the PUNCH 
instruction, the REPRO instruction 
does not allow values to be 
substituted into variable symbols 
before the card is punched. 

Specifications 

The REPRO instruction 
on the statement line 
it to be punched into 
corresponding columns 
One REPRO instruction 
punched card. 

causes data 
that follows 
th-e 
of a card. 
produces one 

The REPRO instruction can appear 
anywhere in a source module except 

• before and between source macro • 
definitions. The punched cards 
are not part of the object deck, 
even though they can be physically 
interspersed in the object deck. 

The format of the REPRO instruction 
statement is shown in the figure 
to the right. 

The line to be reproduced can contain 
any of the 256 punch characters, 
including blanks, ampersands, and 
apostrophes. No substitution is 
performed for variable symbols. 

NOTES: 

Source Module 

IMACDEF2 

REPRO 
data 1 
FIRST START 

REPRO 
data 2 

REPRO 
data 3 

END 

Name 

A sequence 
symbol or 
blank 

1. No sequence numbers or identification is punched in 
the card. 

2. If the NODECK option is specified in the job control 
language for the assembler program, no cards are punched: 
neither for the PUNCE or REPRO instructions, nor for the 
object deck of the assembly. 

o 

Operation 

REPRO 

Repro appears before 
start of first control 
section; punched card 
will precede object 
deck, 

REPRO 

Operand 

Not required 

Section H: Controlling the Assembler Program 231 



I!f6 .. , ... Re(t.fiN..n.g Symho!ic Operation·· Codes 
os 

only 

!1'5A -- THE OPSYN INSTRUCTION 

232 

Purpose 

The OPSYN instruction allows you 
to define your own set of symbols 
to represent operaticn codes for: 

1. ~achine and extended mnemonic 
tranch instructions. 

2. Assembler instructions including 
conditional assembly instructions. 

You can also prevent the assembler 
from recognizing a symbol that 
represents a current operation code. 

The OPSYN instruction wust be written 
after the ICTL instruction and can 
be preceded only by the EJECt, ISEQ, 
PRINT, SPACE, and TITLE instructions. 
The CFSYN instruction must precede 
any source macro definitions that 
may be specified. 

The OPSYN instructicn has two basic 
formats as shown in the figure to 
the right. 

The operation code specified in 
• the ~ field or the oFerand field • 

must represent either: 

1. The operation code of cne of 
the machine or assembler instructions 
as described in PARTS II, III, and 
FART IV of this manual, or 

2. The operation code defined by 
a previous CFSYN instruction. 

• 
The OPSYN instruction assigns the 
EE2Eerti~ of the operation code 
specified in the operand field to 
the symbol in the name field. A 

~ blank in the operand field causes 
the operation code in the name field 
to lose its properties as an 
operation code. 

Name 

Any 

OSymbO!Or 
operation 
code 

An 
operation 
code 

NEW 

OPSYN 

Operation Operand 

QPSYN An operation 

COde. 

or 

QPSYN blank 

• 
OPSYN 

OPSYN • 

No longer recognized 
by the assembler as 
a valid operation code 

MVC 

in current source module 



O 
NOTE: The symbol in the. name field 
can represent a valid operation 
code. It loses its current 
properties as if it had been defined 
in an OPSYN instruction with a blank 
operand field. Further, when the 
same symbol appears in the name 

• field of two OPSYN . instructions 

• 
the latest definition takes 
precedence. 

o 

Both now possess the 
properties of the L R 
machine instruction 
operation code 

ST 

STH • 

Now represents 
STH machine 
operation 

Section H: Controlling the Assembler Program 233 



j&lQ'· •.• ·.w. •. sa.~~il1\ •.•• ·•·· •. ·Re~t()ritlgiPt()gramm.in9EnVirc)nmenfII 
os 

only 
The ins1:ructions described in this subsection can save 
and rest:ore the status of PRINT options and the base 
register assignment of your program. 

!~ -- THEJ.!U!.lLl..NSTRUC'r.lQlL 

Pur-pose 

The PUSH instruction allows you to save the current PRIN'I 
or USING status in "push·-down" storage on a last- in, first
out basis. You can restore this PRINT and USING status 
later, also on a last-in, first-out basis, by using a 
corresponding POP instruction. 

Specifications 

The format of the PUSH instruction 
statement is shown in the figure 
to the l:ight. 

One of the four options for the 
operand entry must be specified. 
The PUSH instruction does not change 
the sta 1:us of the current PR INT 
or USING instructions; the status 
is only saved. 

NOTE: When the PUSH instruction 
is used in co~bination with the 
POP inst:ruction, a maximum of four 
nests of PUSH PRINT - POP PRINT 
or PUSH USING - POP USING are 
allowed. 

Name 

A sequence 
symbol or 
blank 

Operation 

PUSH 

!;[6B -- THE FOI) INSTRUCTION 

234 

Purpose 

The PCP instruction allo'Jis you to restore the PRIN'I or 
US ING st.atus saved by thE~ most recent PUSH instruction. 

Specifications 

The format of the POP instruction 
is given in the figure to the right. 

One of the four options for the 
operand entry must be s~ecified. 
The FCP instruction causes the 
status Clf the current PRINT or USING 
instruct~ion to be overridden by 
the PRINT or USING status saved 
by the last PUSH instruction. 

NOTE: When the POP instJ:uction 
is used in combination with the 
PUSH instruction, a maximum of four 
nests of PUSH PRINT - POl? PRINT 
or PUSH USING - POP USING are 
allowed .. 

Name 

A sequence 
symbol or 
blank 

Operation 

POP 

PUSH 

Operand --
Options 

PRINT 1 
USING 2 
PRINT,USING 3 
USING,PRINT 4 

Operand 

PRINT 
USING 2 
PRINT,USING 3 
USING,PRINT 4 



In the opposite example, you can 

O see how the USING environment i.s • 
saved and restored by a combination 
of PUSH and POP instructions. 

NO'TE: The PUSH instruction does 

•
not change the current USING status; 
you must do this yourself. 

Source Module 

MACRO 

NEW 
PUSH 

USING 

POP 

MEND 

FIRST START 

USING 

USING 

BASENEW,12 

USING 

BASE,12 

BASENEW,12 

Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

Storage Stack 
for saved 
USING status 

u 

Section H: Controlling the Assembler Program 235 



236 



Part IV: The Macro Facility 

SECTION I: INTRODUCING MACROS 

SECTION J: THE MACRO DEFINITION 

SECTION .K: THE MACRO INSTRUCTION 

SECTION L: THE CONDITIONAL ASSEMBLY LANGUAGE 

237 



238 



Section I: Introducing Macros 

This section introduces the basic macro concept; what you 
can use the macro facility for, how you can prepare your 
own macro definitions, and how you call these macro 
definitions for processing by the assemtler. 

Read this section straight through before referring to 
the detailed descriptions identified by the cross-reference 
arrows. 

NOTE: IBM supplies macro definitions in system libraries 
for input/output and other control program services, such 
as the dynamic allocation of main storage areas. ~o frocess 
these macro definitions you only have to write the macro 
instruction that calls the definition. 

Section I: Introducing Macros 239 



Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

240 

FOR TEXT INSERTION: 'The main use of macros is to insert 
assembler language statements into a source program. 

[;~ time 

Source Module 

BEFORE 

J 

K 

L 

Pre-assembly 
or macro pro-
cessing time 

Macro Definition 

Name=TEXTIN 

D 

E 

F 

G 

H 

I 

You call a named sequence of statements (the macro 
~definitiOn) by using a macro instruction, or macro call. 

The assembler replaces the macro call ty the statereents 

a from the macro definition and inserts them into the source 
module at the point of call. The process of inserting 
the text of the macro definition is called macro generation 
or macro expansion. 'The assemtler expands a macro at Fre
ass emt:ly t iroe. 

'Ihe e>:panded stream of code then tecomes the input for 
processing at assembly time, that is, the time at which 
the assembler translates the machine instructions intc 
o.bject~ code. 

I ~SSemblYI 
time 

Source Module 

AFTER 

K 

L 



FOR TEXT MODIFICATION: You may want to modify the 
statements in a macro definition before they are generated. 

8 You can do this by supplying character string values as 
operands in a macro call. These values replace parameters 
in the statement to be generated. This means that you 
can change the content of the generated statements each 
time you call the macro definition. 

\ 

Source Module Macro Definition 

~ 0 C __ 

E Name = MODIFY 
F Parameters: X,Y,Z 

H 
I 

J 
K 

o --

Generated Result 

o I SeeK3) 

81 SeeJ3 > 

section I: Introducing Macros 241 



FOR TEXT MANIPULATION: You can also select and reorder 
the statelllents to be generated from a macro definition 
by using t.he conditional assembly language described later 
in this section. 

p 
Q 

Source 
Module 

~\I.·· fll;liiljl,!~;~ 

R 
S 

Macro 
Definition 

Name = SELECT 
Parameter: X 

If X=O, then generate 
first sequence; 
If X=1, then generate 
second sequence 

A 
B 
C 

~. 
F",""-_. __ +-~ 

Generated 
Result 

p 
Q 

o The condi 1:ional assembly language allows you to manipulate 
text gene]~ation, for example, by branching upon the result 
of a condition test. You can choose exactly which 

• statements will or will no·t be generated by varying the 
values you specify in the macro call. 

242 

• I Se. SECTION L > 



The Basic Macro Concept 

To use the complete macro facility provided by the assembler 
you must: 

• prepare ,a macro definition and 

• Call this definition using a macro instruction. 

These statements 
establish limits of 
a macro definition 

Prototype 0 i..-~ _______ ..J' 

Body of a r 
macro 
definition ) 

Sequence of 
Statements 

MEND 

Macro Instruction [8 MACNAME 

You can create a macro definition by enclosing any sequence 
of assembler language statements between the MACRO and 

~MEND statements, and by writing a prototype statement in 
which you give your definition a name. This name is then 

~the operation code that you must use in the macro 
instruction to call the definition. 

~ I SeeJ2C > 
~ I SeeK28 > 

Section I: Introducing Macros 243 



244 

~When you write a macro instruction in your source roodule, 
you tell t.he assembler to process a particular macro 

• defini ti0l'l!. The assembler produces assembler language 
statements from this macro definition for each macro 
instruction that calls the definition. 

Source Module 

Definition 

Generation of 
assembler 
language statements 

By using i:he macro facility you reduce programming effort, 
because: 

1. You write and test the code a macro definition contains 
once. You and other programmers can then use the same 
code as often as you like by calling the definition; which 
means that: you do not have to reconstruct the coding logic 
each time you use the code. 

2. You neE~d write only one macro instruction to call for 
the genercltion of many assembler language statements from 
the macro definition. 

When you clre designing and writing large assembler language 
programs, the above features allow you to: 

• Prepar.~ macro definitions, containing difficult code, 
for your less experienced colleagues. They can then call 
your definitions to generate the a~propriate statements, 
without having to learn the code in the definition. 

• Change the code in one place when updating or making 
corrections, that is, in the macro definition. Each call 
gets the latest version automatically, thus providing 
standard coding convention.s and interfaces. 

• Describe the functions of a complete macro definition 
rather than the function of each individual statement it 
contains, thus providing more comprehensible documentation 
for your source module. 

o I See SECTION K > 
• ~ SECTION J > 



Defining a Macro 

Defining a macro means preparing the statements that 
constitute a macro definition. To define a macro you must: 

1. Give it a name 

2. Declare any parameters to be used 

3. write the statements it contains. 

4. Establish its boundaries 

.. 

.. MACRO 

Prototype MAClD &PARAMl,&PARAM2 
"- '" 

I 

I. e • • Body of Macro 

~ MEND 

• Macro Instruction MAClD OPERANDl,OPERAND2 

~The MACRO and MEND instructions establish the boundaries 
of a macro definition. 

I You use the prototype statement to name the macro and to 
declare its parameters. In the operand field of the macro 

· instruction, you can assign values to the parameters 
declared for the called macro definition. 

• The bOdt of a macro definition contains the stateroents 
that wi I be generated when you call the macro. These 
statements are called model statements; they are usually 
interspersed with conditional assembly statements or ether 
processing statements. 

e See J2 0 > • Sea J3 > • SeeK2C > • See J2 E > 

Section I: Introducing Macros 245 



WHERE your CAN PLACE A MACRO DEFINITION: You can include 
a macro definition at the beginning of a source module. 0 r.: 

• This tYPE! of definition is called a source macro definition. LSee J 1 B 

• 
You can also insert a macro definition in a systerr or user 
library I(located, for example, on disk) by using the 
appropriate utility progrc~. This type of definition is 
called a library macro definition. The IBM-supplied macro 
definitions mentioned earlier are examples of library rracro 
definitions. 

Source Module 

..-------.~ 
Generated Resu It 

D 

--------------------'---------------------------------------1 

Source 
Modulell 

MACRO 

U 
MEND 

Calling a Macro 

Macro Library 

Source 
Module II 

Source 
Module III 

MACRO 

~ 
~ 

8 You can ,call a source macro definition only from the source 

• 
module in which it is included. You can call a library 

· macro definition from any source module. 

246 

> 



WHERE YOU CAN CALL A MACRO DEFINITION: You can call a 

O macro definition by specifying a macro instruction anywhere 
in a source module, except before or between any source 
macro definitions that may be specified. 

Source 
Module 

Macro Definitions 

MACRO MACRO 

Generated 
Result 

You can also call a macro definition from within another 

• 
macro definition. This type of call is an inner macro 
call; it is said to be nested in the macro definition. 

8 1 SeeK1B > 

8' SeeK6A > 

Section I: Introduc~ng Macros 247 



The Contents of a Macro Definition 

The body of a macro defini,tion can contain a combination 
of model statements, processing statements, and comments 
statements. 

Model Statements o 

• X=A 
Y=B 
Z=C 

Generated Statements 

A 

100 Oil m I 

MODEL STATEMENTS: You can write assembler language 0 r:See J4=> 
~ statements as model statements. The assembler copies them ~ 

exactly as they are written when it expands the macro. fa You can also use variable symbols as points of substitution 
~ in a model statement. The assembler will enter values 

in place of these points of substitution each time the 
macro is called. 

248 



The three types of variable symbol in the assembler language 
are 

1. Symbolic parameters, declared in the prototype statement 

2. System variable symbols (see J7) 

3. SET symbols, which are part of the conditional assembly 
language (see L1A). 

The assembler processes the generat.ed statements, with 
or without value substitution, at assembly time. 

PROCESSING STATEMENTS: Processing statements perform 
functions .at pre-assembly time when macros are expanded, 
but they are not themselves generated for further processing 
at assembly time. The processing statements are: 

1. Conditional assembly instructions 

2. Inner macro calls 

3. The MNOTE instruction 

4. The MEXIT instruction. 

Pre-Assembly Time Assembly Time 

Message printed 
in program 
listings 

• The MNOTE instruction allows you to generate an error 8' SeeJ50 > 
message with an error condition code attached, or to 
generate comments in which you can display the results 
of pre-assembly computation. 

o The MEXIT instruction tells the assembler to stop processing .' See J 5 E > 
a macro definition. ~he MEXIT instruction therefore 

~ provides an exit from the middle of a macro definition. 
~The MEND instruction not only delimits the contents of 

a macro definition but also provides an exit from the 
definition. 

Section I: Introducing Macros 249 



250 

COMMENTS STATEMENTS: One type of comments statement 
describes pre-assembly operations and is not generated. 
The other type describes assembly-time operations and is 
therefor(~ generated (for details see J6). 

The Conditional Assembly :Language 

The conditional assembly language is a programming language 
wi th mosi: of the features that characterize such a language. 
For example, it provides: 

1. Variables 

2. Data attributes 

3. Expression computation 

4. Assignment instructions 

5. Labels for branching 

6. Branching instructions 

7. SUt:stl~ ing operators that select characters from a string. 

You can llse the conditional assembly language in a macro 
definiti()n to receive input from a calling macro 
instruction. You'can produce output from the conditional 
assembly language by using the MNOTE instruction. 

You can use the functions of the conditional assembly 
language to select statements for generation, to determine 
their order of generation, and to perform computations 
that affect the content of the generated statements. 

The conditional assembly language is fully described in 
Section L. 



Section J: The Macro Definition 

This section describes macro definitions: where they can 
be placed in order to be available to call, how they are 
specified, and what they can contain. 

11 -- Using a Macro Definition 

J1A -- PURPOSE 

A macro definition is a named sequence of statements which 
you can call with a macro instruction. When it is called, 
the assembler processes and usually generates assembler 
language statements from the definition into the source 
module. The statements generated can be: 

1. Copied directly ·from the definition, 

2. Modified by parameter values before generation, or 

3. Manipulated by internal macro processing to change 
the sequence in which they are generated. 

You can define your own macro definitions in which any 
combination of these three processes can occur. Some macro 
definitions do not generate assembler language statements, 
but perform only internal processing, like some of the 
macro definitions used for system generation. 

Section J: The Macro Definition 251 



J1 El -- SPECIFICATIONS 

252 

Where to Define a Macro In a Source 
Module 

A macro definition within a source 
module must be specified at the 
beginning of that source module. 
This type of macro definition is 
called a source macro definition. 
A macro de!finition can also reside 
in a systE!m library; this type 
of macro i.s called a library macro 
definition. Either ty);:e c.an be 
called from the source module by 
the appropriate macro instruction. 

NOTE: A source macro definition 
can be ent:ered into a library and 
thereby bE!COme a library macro 
definit ion. A library macro 
definition can be included at the 
beginning of a source module and 
thereby bE~come a source macro 
definit ion. 

Some contl:"ol and comments statements 
can appear at the beginning of a 
source module along with the source 
macro definitions. They Ci3.n be 
used: 

• Before all macro definitions. 

• Between macro definitions. 

• After macro definitions and before 
open code 

All other statements of the assembler 
language must appear after any 
source macro definitions that are 
specified. 

• Open code is that part of a source 
module that lies outside of and 
after any source macro definition. 
Open code is initiated by any 
statement of the assembler language 
tha t appe·ars outside of a macro 
definition, except the ICTL, OPSYN, 
ISEQ, EJECT, PRINT, SPACE, or TITLE 
instruction, or a comments statement. 

Open Code 

Source Module 

comments 

comments 



At coding time, it is important 
to distinguish between source 
statements that lie in open code 
and those that lie inside macro 
definitions. 

NOTES: 

1. The ISEQ, EJECT, PRINT, SPACE, 
and TITLE instructions, and one 
or more comments statements, can 
appear between source macro 
definitions and the start of open 
code. However, in this position, 
the above instructions must not 
contain any variable symbols. 

2. After the start of open code, 
variable symbols are allowed in 
any statement. 

3. A macro definition must not be 
specified after the start of open 
code. 

The Format of a Macro Definition 

The general format of a macro 
definition is shown in the figure 
to the right .. 

The four parts are described in 
detail below. 

Macro Defn 

MACRO (Header Statement) 

ANYNAME (Prototype Statement) 

Body of Macro 

MEND (Trailer Statement) 

Section J: The Macro Definition 253 



J2 -- Parts of: a Macro Definition 

:J2.A -- THE ~ACRO DEFINITION HEADER 

Purpose 

The mac:ro definition header 
instruction indicates, the beginning 
of a macro definition. 

Specifications 

The MACRO instruction is the macro 
definition header; it must be the 
first statement of every macro 
definition. Its format is given 
in the figure to the right. 

!J2B -- THE MACRO DEFINI'tlON TRAILER 

254 

The macro definition trailer 
instruc,tion indicates the end of 
a macro definition. It also provides 
an exit when it is processed during 
macro e:lCpansion. 

The MEND instruction statement is 
the macro definition trailer; it 
must be the last staterr.ent of every 
macro d4?fini tion. Its format is 
given in the figure to the right. 

Header 

Name Operation Operand 

Not used, MACRO Not required 

must not be 
present 

Trailer 

Name Operation Operand 
--

A sequence MEND Not required 
symbol, or 
not used 



J2C -- THE MACRO PROTOTYPE STATEMENT: CODING 

Purpose 

The prototype statement in a macro 
definition serves as a model 
(prototype) of the macro instruction 

you use to call the macro definition. 

Specifications 

The prototype statement must be 
the second statement in every macro 
definition. It comes immediately 
after the MACRO instruction. 

The format of the prototype statement 
statement is given in the figure 
to the right. 

The maximum number of symbolic 
parameters allowed in the operand 
field is not fixed. It depends 
on the amount of virtual storage 
available to the program. 

If no parameters are specified in 
the operand field, remarks are 
allowed, if the absence of the 
operand entry is indicated by a 
oomma preceded and followed by one 
or more blanks. 

Name 

A name 
field 
parameter 
or blank 

Operation 

Prototype 

Operand 

Zero or more 
symbolic 
parameters 
separated by 
commas 

Sect~on J: The Macro Def~~tiQn 255 



Alternate Ways of Coding the 
prototype Statement 

The prototype statement can be 
specified in one of the following 
three ways: 

• The normal way, with all the symbolic 
parameters preceding any remarks. 

• An alternate way, allowing remarks 
for each parameter. 

• A combination of the first two ways. 

NOTES: 

1. Any number of continuation lines 
is allowed. However, each 

• 
continuation line must be indicateg 
by a nonblank character in the column 
after the end column on the preceding 
card. 

2. For each continuation line, the 
operand field entries (symbolic 

• 
parameters) must begin in the continue 
column otherwise the whole line and 
any lines that follow will be o considered to contain remarks. 

![2D -- THE MACRO PROTOTYPE STATEMENT: ENTRIES 

The Name EntE,Y 

Prototype Statements 

Standard value for 
column after End 
column is 72 

16 7172 

O{MOVE ~TO'&FROM'&LENGTHU.' ... '&PARAM'X 
&PARAM2,&PARAM3, ......•.•• &PARx 

~ 1 , ..... ,PARAM!5 REMARKS 

• Comma required 
after each parameter 

MOVE 

• 
o 

Column 16 

\ 
• MOVE 

except last 

FIELD TO WHICH DATA MOVE 
FROM, FLD. FROM WHICH DATA MVD 
LENGTH, MOVE LENGTH 

INDEX! 

I 

INDEX2 

PARAM15 REMARKS CONTINUED 
ON NEXT LINE, 
AND THE NEXT 

One or more 
blanks required 

TO, ATA MOVED TO 
FROM, DATA MOVED FROM • 

I 

x 
X 

X 

X 

X 

X 

X 

LENGTH, NO OF BYTES X 
Comma required PARAMl, &PARAM2, &PARAM3, ...... . 
after each PARAM!5 REMARKS CONTINUED 

.~~_x_:_;_:_~:_:_t ___ .~ON LAST LINE 

o 

You can l\tlri te a name-field parameter similar to the symbolic 
paramete:c, as the name entry of a macro prototype statement. 
You can ·then assign a value to this parameter from the 
name ent:cy in the calling macro instruction. 

256 



Specifications 

If used, the name entry must be 

I a variable symbol. If this parameter 
also appears in the body of a macro, 
it will be given the value assigned 
to the parameter in the name field 
of the corresponding macrc 
instruction. Note that the value 
assigned to the name field parameter 
has special restrictions that are 
listed in I<2A. 

The Operation Entry 

Purpose 

The operation entry is a symbol 
that identifies the macro definition. 
When you specify it in the operation 
field of a macro instruction, the 
appropriate macro definition is 
called and processed by the 
assembler. 

Specifications 

• The symbol in the operation field 
of the prototype statement 
establishes the name by which a 
macro definition must be called • 

• 
This name becomes the operation 
code required in any macro instruc
tion that calls the macro. 

, the operat on code 
specified in the prototype statement 
must not be the same as that 
specified in: 

1. A machine instruction. 

2. An assemtler instruction. 

3. The prototype statement of another 
source (or library) macro definition. 

Source Module • iDt ______ ~MA~C~R_O~~--------~ 
&NAM MOVE 

MVC &TO,&FROM 

MEND 

~ START 0 

HERE MOVE FIELDA,FIELDB 

, 
HERE MVC FIELDA,FIELDB 

END 

Section J: The Macro Definition 257 



.258 

Purpose 

The oper'and entry in a Pl:ototype statement allows you to 
specify positional or keyword parameters. These parameters 
represent the values you can pass from the calling macro 
instruction to the statements within the body of a macro 
definition. 

The operands of the macro prototype statement must be 
symbolic parameters separated by commas. They can be 
positional parameters or keyword parameters or both (see 
J3) • 

NOTE: The operands must be symbolic parameters; parameters 
in sublists are not allowed. For a discussion of sublists 
in macro instruction oJ;el:ands, see K4 • 



J2E -- THE BODY OF A MACRO DEFINITION 

Purpose 

The body of a macro definition 
contains the sequence of statements 
that constitutes the working part 
of a macro. You can specify: 

1. Model statements to be generated. 

2. Processing staterr.ents that, for 
example, can alter the content and 
sequence of the statements generated 
or issue error messages. 

3. Comments statements, some of 
which are generated and others which 
are not. 

4. Conditional assembly instructions 
to compute results tc be displayed 
in the message created by the MNOTE 
instruction; without causing any 
assembler language statements to 
be generated. 

Specifications 

The statements in the body of a 
macro definition must appear between 
the macro prototype statement and 
the MEND statement of the definition. 
The three main types of statements 
allowed in the body of a macro are: 

~ • Model statements (see J4) , 

~ • Processing statements (see J5) , 
and 

4Et • Comments statements (see J6) • 

NOTE: The body of a macro definition 
can be empty, that is, contain no 
st at ements • 

Machine 
Instructions 

Assembler 
Instructions 

Statements with 
variable symbols 
in 
Name,Operation 
and/or Operand 
Fields 

Conditional 
Assembly 
Instructions 

Macro (Inner) 
Instructions 

MNOTE 
Instruction 

MEXIT 
Instruction 

Internal 

Ordinary 

Result of Macro 
Expansion 

Section J: The Mac,ro Definition 259 



J:3 - Symbolic: Parameters 

Purpose 

• 
Symbolic parameters allow' you to 
pass values into the body of a macro 
defi.nition from the calling macro 

• 
instruction. You declare these 
parameters in the macro prototype 

• 
statement. They can serve as points 
of substitution in the body of the 

• 
macro definition and are replaced 

, by the values assigned to them by 
the calling macro instruction. 

By using symbolic parameters with 
meaningful names you can indicate 
the purpose for which the parameters 
~r substituted values) are used. 

General Specifications 

Symbolic parameters must be valid 
var.iabIE~ symbols, as shown in the 
figure 1:0 the right. 

e They have a local scope: that is, 
the value they are assigned only 

• 
applies to the macro definition 
in which they have been declared. 
'!he value of the parameter remains 
constan1: throughout the processing 
of the containing macro definition 
for evel:y calIon that definition. 

NOTE: Symbolic paramete:.:s must 

e not be multiply defined or identical 
to any ~)ther variable symbols within 
the given local scope. This applies 
to the system variable symbols 

;260 

describc:!d in J7, and local and 
global SET symbols described in 
L1A. 

Source Module 

MVC ,&PARAM2 

MEND 

OPEN START 

MVC 

END 

4-
Ampersand 

~ /----Alphabetic character 
~ 0 to 6 alphameric character 

1&lp/A RAMI 

prototype 

MEND 

Generated 
Result 



The two kinds of symbolic parameters 
are: 

o. positional parameters 

•• Keyword parameters. 

• 
Each pos itional or keyword parameter 
used in the body of a macro 

O 
definition must be declared in the 

I prototype statement. 

Subscripted Symbolic Parameters 

Subscripted symbolic parameters 
must be coded in the format shown 
in the figure to the right. 

O The subscript can be any arithmetic 
expression allowed in the operand 
field of a SETA instruction 
(arithmetic expressions are discussed 
in L4A). The arithmetic expression 
can contain subscripted variable 
symbols. Subscripts can be nested 
up to 5 levels of nesting. 

The value of the subscript must 
be greater than or equal to one • 

• The subscript indicates the position 
of the entry in the sublist that 

• 
is specified as the value of the 
subscripted parameter (sublists 
as values in macro instruction 
operands are fully described in 
K4) • 

Source Module 

It Macro I 
Definition J 

MACRO 0 • • -~ -
Prototype DEFINED &TO,&FROM= 

I 
MVC &Td 

I 
MEND 
START 0 

I Macro I DEFINED FIELDA,FROM=FIELDB Instruction 

'\ 
. 

MVC FIELDA,FIELDB 

END 

Source Module 

Format: 

MACRO 

SUBLISTS &POS,&KEY= 

MVC &POS(3}'&KEY(3~ 

MEND 

~ • START o 

SUBLISTS (A,B,C,D) ,KEY=(E,F,G,H) 

• 
MVC C,G 

END 

Section J: The Macro Definition 261 



J3j\ -- POSITIONAL PARAMETERS 

Purpose 

You should use a positional parameter 
in a macro definition if you wish 
to change the value of the parameter 
each time you call the macro 
definition. This is because it 
is easier to supply the value for 
a positional parameter than for 
a keyword parameter. You only have 
to wri tethe value you wish the 
parameter to have in the proper 
posi tion in the operand of the 
calling m.acro instruction. 

For keyword ~escribed below) 
parameters, you must write the 
entire keyword and the equal sign 
that precedes the value to be passed. 
However, if you need a large number 
of parameters, you should use keyword 
parameters. The keywords make it 
easier to keep track of the 
individual values you must. specify 
at each call, by reminding you which 
parameters are being given values. 

The general specifications for 
symbolic parameters described in 
J3 also apply to positional 
parameters. Note that the 
specification for each positional 
parameter declared in the prototype 
statement definition must be a valid 8 variable symbol. Values are assigned 
to the posi tional parametE!rS by 

• the ~orresponding positional operands 
specified in the macro instruction 
that calls the definition. 

262 

Pos. Paramo 

Source Module 

MACRO 
Macro 

Definition I--_:_:N_S:_A_R ___ Q~~ __ ----f 

Macro 
Instruction 

START 

POSPAR 

END 

ONE,TWO,THREE • 



J3B -- KEYWORD PARAMETERS 

Purpose 

You should use a keyword parameter 
in a macro definition for a value 
that changes infrequently. By 
specifying a standard default value 
to be assigned to the keyword 
parameter, you can omit the 
corresponding keyword operand in 
the calling macro instruction. 

Keyword parameters are also 
convenient because: 

1. You can specify the corresponding 
keyword operands in any order in 
the calling macro instruction. 

2. The keyword, repeated in the 
operand, reminds you which parameter 
is being given a value and for which 
purpose the parameters is being 
used. 

Specifications 

~he general specifications for 
symbolic parameters described in 
J3 also apply to keyword parameters. 
Each keyword parameter must be 
in the format shown in the figure 
to the right. 

~The actual parameter must be a valid 
.. variable symbol. 

A value is assigned to a keyword 
A parameter by the corresponding 
~keyword operand through the name 

of the keyword as follows: 

~1. If the corresponding keyword 
operand is omitted, the standard 

~value specified in the prototype 
statement becomes the value of the 
parameter for that call (for full 
details on values passed see K5). 

~2. If the corresponding keyword 
~operand is specified, the value 

after the equal sign overrides the 
standard value in the prototype 

A and becomes the value of the 
~parameter for that call (see K5). 

/ Variable Symbol 

/0 / Equal Sign Format: 

..... ___ ~---. /._L Sta.ndard Value 

~EYWORDI= DEFAULT 

lKEYWORDf= VALUE • Example: 
Source Module 

MACRO 

Key. Paramo 

Keyword Parameter 
Specification 

Keyword Operand 
Specification 

Prototype KEYS &KEYWORD=ABC,&KEY2=(A,B,C) 

MEND 

START o 
Standard value of 
KEYWORD 

Section J: The Macro Definition 263 



264 

o NOTE: A null character string can 
be specified as the standard value 
of a key\~ord parameter, and will 
be generated if the corresponding 

• keyword operand is omitted. 

OPEN 

Source Module 
. Null character 
string 

MACRO 

FXDPT 

L&TYPE &REG,AREA 
A&TYPE &REG,CONST 
ST&TYPE &REG,SUM 

MEND 

LH 3,AREA 
AH 3,CONST 
STH 3,SUM 

END 



J3C -- COMBINING POSITIONAL AND 
KEYWORD PARAMETERS 

Purpose 

By using positional and keyword 
parameters in a prototype statement, 
you combine the benefits of both. 
You can use positional parameters 
in a macro definition. for passing 
values that change frequently and 
keyword parameters for passing 
values that do not change often. 

Specifications 

positional and keyword parameters 

O can be mixed freely in the macro 
prototype statement. The same 
applies to the positional and keyword 

• operands of the macro instruction 
(s ee K3C). Note, however, that 

• 
the order in which the positional 
parameters appear determines the 
order in which the positional 

O 
operands must appear. Interspersed 

, keyword parameters or operands do 
not affect this order. 

Source Module 
MACRO 

~ 

MIX &Pl,&KEYl=A,&P2,&P3,&P4,&KEY2=,&P5 

~ e' 5 

MEND 

START 0 

MIX KEYl=B,ONE,TWO,THREE,KEY2=33,FOUR,FIVE • 
END 

Section J: The Macro Definition 265 



14 - Model Statements 

~J4A -- PURPCSlf.. 

Model s1:atements are sta'tements from which assembler 
languagE~ statementst are generated at pre-assembly time. 
They allow you to determine the form of the statements 
to be gE~nerated. Ey specifying variable symbols as pcints 
of subs1:itution in a model statement, you can vary the 
content of ~he statements generated from that model 
statement. You can also use model statements into which 
you substitute values in open code. 

~4B -- SPECIFICATIONS 

The following specifications also apply to model staterrents 
in open code. Exceptions are noted where applicable. 

Format of Model Statements 
Columns: Model Statement 

Model Stmnt 

A model statement consist:s of one 
or more fields separated by one 
or more blanks. 

o ________ ~1 

I~I- II ~[- I 
Fields: 

Each field or subfield can consist 
of: 

Name Operation Operand Remarks 

o An ordin~ character string 

• A variable symbol as a point of 
substitution 

• Any combina tion of ordinary 
character strings and variable 
symbols to form a concatenated 
string. 

266 

The statements generated at pre
assembly time from model statements 
must be valid machine or assembler 
instructions, but must not be 
conditional assembly instructions. 
They must obey the coding rules 
described in Section E or they will 
be flagged as an ~rror at assembly 
time. 

Examples: 

LABEL L 3, AREA 

LABEL L 3,20(4,5) 

&LABEL L 3, &AREA 

FIELD&A L 3,AREA&C 



Variable Syrrbols as Points of 
Substitution 

Values can be substituted for 
variable symbols that appear in 
the name, operation, and operand 
fields of model statements; thus, 
variable symbols represent pOints 
of substitution. The three main 
types of variable symbol are: 

o Symbolic pararr,eters (described in 
J3 above) , 

~system variable symbols (described 
in J7 below) , and 

~SET symbols (described in L1A) • 

NOTES: 

1. Symbolic parameters, SET symbols, 
and the system variable symbol, 
&SYSLIST, can all be subscripted. 
The remaining system variable symcols' 
&SYSN[;X, &SYSECT, &SYSPARM, &SYSDA'IE, 
and &SYSTIME cannot be subscripted. 

2. The fields in a statement 
generated from a model statement 

O appear in the listings in the same 
columns as in the model statement. 

~However, when values are substituted 
for variable symbols the generated 

A fields can be displaced to the 
Wright. 

Page of GC33-4010-4 
Revised Feb. 25, 1975 
By TNL: GN33-S193 

Fo,ma', A-A:::': Ch"acte, 
-:::::---- ~ 0 to 6 Alphameric Characters 

r;!9 .-'A-R-I--:..A-B-L ..... • 

Examples of 
Subscripted 
Variable 
Symbols: 

&PARAM(3) 

Name 

0 

.ABEL 
+LABEL 

&SYSLIST(I,3) 

&SYSLIST(2} 

Operation Operand 

10 16 

MVC AREAl,AREA2 

MVC AREAl,AREA2 

&OP &TO, &FROM 

Global 
SETA 
SETB 
SETC 

Local 
SETA 
SETB 
SErC 

&SETA(lO) 

&SETC(lS) 

model 

generate 

model 

~:::J (MVC) (AREAl) (AREA2) values 

+LABEL MVC AREAl,AREA2 generated 

I 
I r At least one blank between fields I 

&A &B &C,&D model ., (AREAl) , (AREA2 ) }8 
·1 

values to be 

~ substituted 
(LABEL) 

+LABEL FC f REAl ,AREA2 generated 

Section J: The Macro Definition 267 



268 

Rules~ ConcdtenatiQU 

When variable symbols are 
concatenated to ordinary character 
strings, the following rules apply 
to the use of the concatenation 
character (a period): 

The concatenation character is 
mandatory when: 

• • An alphameric character is to 
follow a variable symbol. 

• • A left parenthesis that does not 
enclose a sUbscript is to follow 
a variable symbol. 

a · A Eer ioS! (.) is to be genera ted. 
~ Two periods must be specified in 

the concatenated string following 
a variable symbol. 

• • 
• 

The concatenation character is not 
nece ssary when: 

• An Qrdinary character strinq 
precedes a variable symbol. 

• A ~ecial character, except left 
paren'thesis or period, is to follow 
a variable symbol. 

• A ~ariable ~~mbol follows another 
variable symbol. 

The concatena tion character must 

• 
not be used between a variable : ,symbol and its sUbscri'e!:.; otherwis e, 
the characters will be considered 
a concatenated string and not a 
sUbscripted variable symbol. 

DC 

DC 

DC 

Concatenated 
String 

&FIELD.A8 
&FIELDA 

• & DISP. (&BASE) 

Values to be 
Substituted 

Variable 
symbol 

&FIELD 
&FIELD,A 

&DISP 
&BASE 

Value 

AREA 
SUM 

100 
10 

Generated 
Result 

AREAA 
SUM 

100(10) 

I Concatenation character is not generated I 

D'&INT.!".:.-&FRA,CT &INT 99 • &FRACT 88 
DC 

D'&INT&FRACT' DC D'9988' • 
D' & INT. &FRAC'l" DC D'9988' 

optional 

1 Concatenation character is not ge~erated I 

• FIELD&A &A A FIELDA 

&Ae3-Dj &A A rB
.
3
-
D 

&B B 

&A&B AB • --
&SYM (,&SUBSCR)} &SUBSCR 10 

{ENTRY • &SYM (10) ENTRY 



Rules for Model Statement Fields 

'Ihe fields that can be specified 
in model statements are the same 
fields that can be specified in 
an ordinary assembler language 
statement. They are the name, 
operation, Qperand and remarks 
fields. It is also possible to 
specify a continuation - indicator 
field, an identification - sequence 
field, and a field before the begin 
column, if the appropriate ICTL 
instruction has been specified. 
Character strings in the last three 
fields (in the standard format only 
columns 72 through 80) are generated 
exactly as they appear in the model 
statement, and no values are 
substituted for variable symbols. 

~odel statements must have an entry 
in the operation field, and, in 
most cases, an entry in the operand 
field in order to generate valid 
assembler language instructions~ 

THE NAME FIEL~: The entries allowed 
in the name field of a model 
statement are given in the figure 
to the right, including the allowable 
results of generation. 

Variatle syrrbols must not be used 

O to generate comments statement 
indicators. 

NOTE: Restrictions on the name 
entry are further specified where 
each individual assembler language 
instruction is described in this 
manual. 

Name Allowed Not Allowed 
Field 

In Model ~ blank 
Statements ~ ordinary symbol 

• sequence symbol 
(before • variable symbol 
generation) • any combination 

of variable symbols 
and other character 
strings concatenated 
together 

In Generated ~ blank :*}O Statements • valid ordinary 
symbol 

(generated 
results) 

Section J: The Macro Definition 269 



THE OPERATION FIELD: The entries 
allowed in the operation field of 
a model statement are given in the 
figure to the right, including the 
allowable results of generation. 

o The operation codes ICTL and OPSYN 

• 
are not ,allowed inside a macro 
definition. The MACRO and MENC 
operation codes are not allowed 
in model statements; they are used 
only for delimiting m~cro 
definitions. 

• If the R:E:PRO operation code is 
specified in a model statement, 
no substitution is performed for o the variable symbols in the statement 
line following the REPRO statement. 
Variable symbols can be used alone 
or as part of a concatenated string 
to generate operation codes for: 

o · Any machine instruction, or 

•• The assembler instructions listed. 

• NOTE: The MNOTE and MEXI'!:. statements 
are not model statements; they are 
described in J5D and J5E 
respectively. 

The genel:"ated operation code must 
not be an operation code :for the 
followinq (or their OPSYN 
equivalents) : 

• • A macr() instruction, 

G!). A conditional assembly instruction, 
or 

• • The ass;embler instructions listed. 

270 

In Model 

(Before 
Generation) 

• 

Allowed 

• An ordinary...w.mQQ! that 
represents the operation 
code for: 
- any machine instruction: 
- a macro instruction 
- the following Assembler 

instructions: 

CCW EJECT ~1m;.I.t 

~~~P;i~~y • '~~!~~ 
COpy EQU START
CSECT EXTRN TITLE
Im1 ISEQ USING
DC LTORG WXTRN
DROP ORG MEXIT}
DS MNOTE
DSECT PRINT
\.IJ15;~ PUNCH
~ A variable symbol

~ A combination of
variable symbols and
other character strings
concatenated together

Generated ~ An ordinary_symbol that

Generated
Results)

represents the operation
code for:
- any machine instruction
- the following assembler

instructions:

CCW
CNOP
COM
CSECT
irJ.Ri
DC
DROP
DS
DSECT
III}(!

EJECT
liB;
ENTRY
EQU
EXTRN
LTORG
ORG

j1;1,111;;
PRINT
PUNCH
ilISI}

SPACE
TI'rLE
USING
WX'rRN

(MNOTE) •

Not Allowed

• blank

~ The asserflbler
operation codes:

O{ ICTL
OPSYN

.{
MACRO

. MEND

•

~ blank
~ a macro instruction

operation code
• a conditional

assembly operation
code:

ACTR
AGO
AGOB
AIF
AIFB
ANOP

COPY
ICTL
ISEQ
MACRO
MEND

THE OPERAND FIELP: The entries
allowed in the operand field of
a model statement are given in the
f.igure to the right, including the
allowable results of generation.

e NOTE: Variable symbols must not
be used in the operand field of

. a COPY, ICTL, ISEQ, or OPSYN
instruction.

THE REMARKS FIELD: Any combination
of characters can be specified in
the remarks field of a model ·e statement. No values are substituted
into variable symbols in this field.

NOTE: One or more blanks must be
used in a model statement to separate

• the name, operation, operand, and
remarks fields from each other.
Blanks cannot be generated between
fields in order to create a complete
assembler language statement.

Operand Allowed Not Allowed
Field

In~ • ~(ifvalid)
State menU • An ordinary_symbol

(Before • A character string.

Generation) combining alphameric
and special charac-
ters (but not variable

symbols)

• A variable sy'mbol

• A combination of
variable symbols and

other character
strings concatenated
together

In Generated • blank (if valid) • operand field of a:
Statemenl§ COPY, ICTL,

• Character Slrjng_ ISEQ or OPSYN
(Generated that represents a statement

Results) valid assembler or
machine instruction • operand field

Remarks Field

Ma:~AME ~ REMARKS ABOUT &TO

o
Generated

LABEL MVC FIELDA,FIELDB REMARKS ABOUT &TO

Example I: LCLC &ADDR

}

Conditional
Assembly

BASE' Statements &ADDR SETC

Model LA

Generated LA

Example II:· LCLA &A
LCLC &C

&A SETA 100

•
One or more blanks
must be generated

BASE

&C SETC '&A &A NOW IN REGISTER'

Model LA 3,&C LOOK HERE

itt~?P~ndAddiii~~~lr.marks
marks cotnbi6ed .. .m~r&ted

Generated LA 31()() 100 NOW IN REGISTER LOOK H R

Section J: The Macro Definition 271

J£) -- Processing Statements Conditional Assembry
Instruction

.J!ia: -- CONDITIONAL ASSEMBLY
l~STRUCTIONS

GBLA,GBLB,GBLC
LCLA,LCLB,LCLC

Condi tional assembly instlcuctions
allow you to determine at pre
assembly time the content of the
generated statements and ·the sequence
in which they are generated. The
instructions and their functions
are given ~n the figure to the
right.

Conditional assembly instructions
can be used both inside macro
definitions and in open code. They
are fully described in Section L.

SETA, SETB , SETC

AlF

AGO

ANOP

ACT~

!l~1L -- INNER MACRO INS'IRUCTIONS

Macro instructions can be nested inside macro definitions,
allowing you to call other macros from within your own
definitions. Nesting of macro instructions is fully
described. in 1<6.

~~C -- THE COpy INSTRUCTIQH

272

Purpose

The COpy instruction, inside macro definitions, allows
yo~ to copy into the macro definition any sequence of
statements allowed in the body of a macro definition.
These statements become part of the body of the macro
before macro processing takes place. You can also use
the COpy instruction to copy complete macro definitions
into the beginning of a source module.

The specifications for the COpy instruction, which can
also be used in open code, are described in E1A.

function Performed

Declaration of initial values
of variable symbols (global
and local SET symbols)

~gnment of values to
variable symbols (SET
symbols)

.f!ranchinQ

- Conditional (based on
logical test)

- Unconditional

- To next Sequential
instruction (No
operation)

Setting Loop.., Counter

J5D -- THE MNOTE INSTRUCTION

Purpose

You can use the MNOTE instruction
to generate your own error messages
or display intermediate values of
variable symbols computed at pre
assembly time.

Specifications

The MNOTE instruction can be used
inside macro definitions ~11[';tl:ii;;'I.I'

i~I~'I~~;~(, and its operation code can
be created by substitution. The
MNOTE instruction causes the
generation of a message which is
given a statement number in the
printed listing.

The format of the MNOTE instruction
statement is given in the figure
to the right.

o The n stands for a severity code.
The rules for specifying the contents
of the severity code subfield are
as follows:

A 1. The severity code can be specified
~ as any arithmetic expression allowed

1n the operand field of a SETA
instructione The expression must
have a value in the range 0 through
255.

•
o

2. If the severity code is omitted,
but the comma separating it from
the message is present, the assembler
assigns a default value of 1 as
the severity code.

3. An asterisk in the severity code
subfield causes the message and
the asterisk to be generated as
a comments statement.

4. If the entire severity code
subfield is omitted, including the
comma separating it from the message.
the assembler generates the message
as a comments stateroent.

Name

A sequence
symbol or
blank

Examples:

Source Statements

•

Operation

MNOTE

MNOTE

Operand

One of four options allowed:

O n, 'message' } error
, , message' message

,:c, , message'} 0 t
'message' c mmen s

Generated Result

MNOTE 2, 'ERROR IN SYNTAX' 2,ERROR IN SYNTAX

• MNOTE , , ERROR, SEV l' ,ERROR, SEV 1

• MNOTE ~fo,' NO ERROR' i~,NO ERROR

MNOTE8. NO ERROR' NO ERROR

Section J: The Macro Definition 273

274

NOTES:

1. An MNOTE instruction causes a message to be printed,
if the current PRINT option is ON, even if the PRINT NOGEN
option is specified.

2. The statement number of the message generated from an
MNOTE instruction with a severity code is listed among
any other error messages for the current source module.
However, the message is printed only if the severity code
specified is greater than or equal to the severity code
"nnn" in the assemble+ opt.ion, FLAG (nnn), contained in
the EXEC statement that invokes the assembler.

:.~9~$~~~;~· ~~l·!.11(li1·~~···
9$;<:<>Pctro1. .·.$>rog1f~tn.

3. The statement number of the comments generated traIT
an MNOTE instruction without a severity code is not listed
among other error messages.

Any combination of up to 256 characters enclosed in
apostrophes can be specified in the message subfield.
The rules that apply to this character string are as
follows:

•• Variable symbols are allowed (NOTE: variable symbols
can have a value that includes even the enclosing
apostrophes) •

•• Double ampersands and double apostrophes are needed 8
to generate one ampersand or one apostrophe. If variable
symbols have ampersands Ol~ apostrophes as values, the e values must have double ampersands or apostrophes.

NOTES:

1. Any remarks for the MNOTE instruction statement must
be separated from the apostrophe that ends the message
by one or more blanks •

•
2. Single apostrophes substituted or specified cause IT.essage
generation to stop where the single apostrophe appears.
If a single apostrophe is substituted in a position
immediately after the closing apostrophe of the MNOTE
instruction, then the apostrophe is printed. An error
message is issued because a closing apostrophe cannot be
found.

MNOTE Operand

3,'THIS IS A MESSAGE'

3, 'L,f&AREA,-8

3, 'DOUBLE &S'

3/DOUBLE L&APOS&AREA'

3, 'MESSAGE STOP'

3 'MESSAGE

... "'-.
Invalid remarks,
must be separated
from operand by
one or more blanks

Value of
Variable Symbol

, ,
&PARAM=ERROR

&A=10

&AREA=FIELD1

&S~

&APOS=II
&AREA=FIELD1

Generated
Result

3,THIS IS A MESSAGE

3,ERROR

3,VALUE OF &A IS 10

3,L'FIELD1

3,DOUBLE &

3,DOUBLE L'FIELD1

3,MESSAGE STOP

3,MESSAGE STOP RMRKS

Section J: The Macro Definition 275

~: -- THE MEXI'l~ INSTRUCTION

Purpose

The MEXIT instruction allows you
to provide an exit for the assembler
from any point in the body of a
macro definition. The MEND
instruction provides an exit only
from the end of a macro definition
(see J2B) •

Specifica~

The MEXIT instruction sta1:ement
can be used only inside macro
definitions. It has the format
given in the figure to the right.

The MEXI'I' instruction causes the
assembler to exit from a macro

•
definit ion to the next sequential
instruction after the macro
instruction that calls the
definition. ~his also applies
to nested macro instructions, which
are described in K6.)

Name

Sequence
symbol
or blank

I

MEXIT

Operation Operand

MEXIT Not required

MACRO

EXITS

A
B
C

MEXIT

D
E
F

MEND

START a

END

16 - Comments Statements

J6A -- INTERNAL MACRO COMMENTS STATEMENlS

Purpose

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

You write internal macro comments in the cody of a rracro
definition, to describe the operations performed at pre
assembly time when the macro is processed.

Specifications

Internal macro comments statements
can ce used only inside macro
definitions. An example of their
correct use is given in the figure
to the right.

No ~alues are substituted for any
~ar1able symbols that are specified
ln macro corrments statements.

J6B -- ORDINARY COMMENlS STATEMENTS

Purpose

Ordinary co~ments staterrents
(described in B1C) allow you to

make descriptive remarks about the
generated output from a macro
definit ion.

Specifications

Ordinary comments statements can
be used in macro definitions and
in open code. An example of their
correct use is shown in the figure
to the right.

Even though this type of statement
is generated along with the model
statements of a macro definition,
values are not substituted for any
variable symbols specified.

Columns

Columns
+

Begin column
(standard

value)

*
*

Begin column
(standard

value)

(1) (2)

Period

WILL NOT BE

Format
Asterisk }

11/ /AnV Character Strin,

* ~NT WILL BE GENERATED

Section J: The Macro Definition 277

17 -- SysteJn Variable Symbols

278

Purpose

System variable symbols are variable symbols whose values
are set by the assembler according to specific rules.
You can use these symbcls as points of substitution in
model statements and conditional assembly instructions.
points of substitution in model statements and conditional
assembly instructions.

General Specifications for System Variable Symbols

tern variable symbols:iSi~+?i~i~ &SYSPARM, and
!;~il';~I','I.~~~:'~ can be used as points of substitution both inside
macro definitions and in open code. The remaining system
variable symbols: &SYSECT, &SYSLIST, and &SYSN[;X, can be
used only inside macro definitions. All system variable
symbols are subject to the same rules of concatenation
and su.bstitution as other variable symbols (see J4B) •

System variable symbols must not be used as symbolic
parameters in the macro prototype statement. Also, they
must not be declared as SET symbols (see L2) •

The assembler assigns read-only values to system variable
symbols; they cannot be changed by using the SETA, SE~B,
or SETC instructions (see L3).

SCOPE OF SYSTEM VARIABLE SYMBOLS:
tem variable symb.g+~(~

·1·~~I~I~I.~I.·i· &SYSPARM, and ;1'1.11!.I~.;·l
have a global scope. This ~eans
that they are assigned a read-only
value for an entire source module;
a value that is the same throughout

I open code and inside any macro
definitions called. The system
variable symbols: &SYSECT, &SYSLIST,
and &SYSNDX, have a local scope.
They are assigned a read-only value
each time a macro is called, and
have that value only within the

• expansion of the called macro.

Purpose

You can use &SYSDATE to obtain the
date on which your source module
is assembled.

Specifications

The global system variable symbol
&SYSDATE is assigned a read-only
value of the format given in the
figure to the right.

NOTE: The value of the type attribute
of &SYSDATE (T'&SYStATE) is always
U and the value of the count
attribute (K'&SYSDATE) is always
eight. (Attributes are fully
described in L1B.)

Source Module

OPEN

Format:

Where:

Example:

Syst. Var. Sym.

8· Character String

Im/ddtyy,
mm gives the month
dd gives the day
yy gives the year

NOTE:

&SYSECT
&SYSLIST
&SYSNDX
are only allowed
inside macro
definitions

&SYSDATE

11/25/72 4-- Corresponds to date
printed in the page
heading of listings,
remains constant for
each assembly

Section J: The Macro Definition 279

~7B &SYSECT

Purpose

You can use &SYSECT in a ffacro
definition to generate the name
of the current control section.
The current control section is the
control section in which the macro
instruction that calls the definition
appears.

Specifications

The local system variable symbol
&SYSECT is assigned a read-only
value each time a macro definition
is called •

• The value assigned is the symbol
that rep:r:esents the name of the

~ current pontrol section from which
the macro definition is called.
Note that it is the centrol section
in effec"t when the macro is called.
A control section that has been

•
initiated or continued by
substitu~ does not affect the
value of &SYSECT for the expansion

280

of the ~lrrent macro. However,
it does iiffect &SYSECT for a

• subsequent macro call. Nested

•

macros cause the assembler to assign
a value "to &SYSECT that depends
on the control section in force
inside the outer macro when the
inner macro is called (see 1(6).

NOTES:

1. The control section whose name
is assig:ned to &SYSECT can be defined
by a STA:RT, CSECT, DSECT, or COM
instruction.

2. The v,alue of the type attribute
of SSYSECT, T'&SYSECT, is always
U, and the value of the count
attribute (1<'&SYSECT) is equal to
the numb4ar of characters assigned
as a value to &SYSECT. (Attributes
are fully described in L1E.)

&SYSECT

Source Module

MACRO MACRO

OUTER & NAME

& NAME CSECT DC A(&SYSECT)

DC A (&SYSECT)
MEND

INNER

MEND

END

J7C -- &SYSLIST

Purpose

You can use &SYSLIST instead of
a positional parameter inside a
macro definition, for example, as
a point of sUbstitution. Ey varying
the subscripts attached to &SYSLIST,
you can refer to any positional
operand or sublist entry in a macro
~all. &SYSLIST allows you to refer
to positional operands for which
no corresponding positional parameter
is specified in the macro prototype
statement.

Specifications

The local system variable symbol
&SYSLIST is assigned a read-only
value each time a macro definition
is called.

&SYSLIST refers to the complete
list of positional operands specified
in a macro instruction. &SYSLIST
does not refer to keyword operands.

However, &SYSLIST cannot be specified
as &SYSLIST alone. One of the two
forms given in the figure to the
right must be used as a point of
substitution:

o 1. To refer to a positional operand

• 2. To refer to a sublist entry of
a positional operand (sublists are
fully described in K4 below).

~The subscript n indicates the

•
position of the operand referred

• to. The subscript m, if specified,
indicates the position of an entry
in the sublist specified in the
operand whose position is indicated
by the first subscript n.

&SYSLIST

Macro
Instruction

I t&SYSLIST I
CLST r;;;: ,P 3, Pn -------.,

Point of substitution
in macro definition

Macro
Instruction

&SYSLIST

I &SYSLIST (n) I
CSUB ~ ~ P1,P2, •.... , (SE1,SE2,._.,~Em, ...), .. ~.

Point of substitution
in macro definition }

Section J: The Macro Definition 281

The subscripts nand m can be any
arithmetic expression allowed in
the operand of a SETA instruction
(see L3A)" The subscript n must

be greater than or, equal to O.
The subscJript m must be greater
than or equal to 1.

The figure to the right shows
examples of the values assigned
to &SYSLIST according to the value
of its subscript, m and n.

e lf the position indicated by n
refers to an omitted operand or

•
refers past the end of the list
~sitional operands specified,
the null character string is
substitut~~d for &SYSLIST (n). If
the pos ition (in a sublist) indica ted

8
by the second' subscript, m, refers
to an omi -tted entry or refers past

, the end o'Lt.he list of entti.e..a.
specified in the sublist referred
to by the first subscript, n, the
null character string is substituted
for &SYSLIST (n,m). Further, if
the nth positional operand is not

e a sublist, &SYSLIST(n,l) refers
to the op~:!rand but &SYSLIST (n ,m) ,
where m is greater than 1, will
cause the null character string
to be substituted.

•
NOTE: If the value of subscript

t n is zero, then &SYSLIST (n) is
assigned -the value specified in

282

the name field of the macro
instructitOn, except when it is a
sequence :symbol.

Macro Instruction:

NAME MACALL ONE,TWO,(3,4"6),,EIGH1

Point of substitution Value
in macro definition Substituted

&SYSLIST(2) TWO
&SYSLIST(3,2) 4

0
&SYSLIST(4) Null

• &SYSLIST(9) Null

• &SYSLIST(3,3) Null

• &SYSLIST(3,5) Null

• &SYSLIST(2,1) TWO
&SYSLIST(2,2) Null

0
&SYSLIST(O) NAME
&SYSLIST(3) (3,4,,6)

Attribute references can be made
to the previously described forms
of &SYSLIST. The attributes will
be the attributes inherent in the
positional operands or sublist
entries to which you refer.
(Attributes are fully described
in L1E.) However, the number
attribute of &SYSLIST, N'&SYSLIST,
is different from the number
attribute described in L1B. One
of the two forms given in the figure
to the right can be used for the
number attribute:

•
• To indicate the number of
positional operands specified in
a call

•
• To indicate the number of sublist
entries that have been specified

•
in a positional operand indicated
by the subscript.

NOTES:

1. For N'&SYSLIST, positional
• operands are counted if specifically

omitted by specifying the comma
that would normally have followed
the operand.

A 2. For N' &SYSLIST (n) , sublist entries
~are counted if specifically omitted

by specifying the comma that would
normally have followed the entry.

8
3. If the operand indicated by n

I is not a sublist, N'&SYSLIST~)
is 1. If it is omitted,
N'&SYSLIST(n) is zero.

ON' &SYSLIST
Macro Value of
Instruction N'&SYSLIST

MACLST 1,2,3,4 4
MACLST A,B, ,D,E ;}8 MACLST ,A,B,C,D
MACLST (A, B, C) , (D, E , F) 21 Counts sublists

1 as one operand

MACLST 0
MACLST KEY1=A,KEY2=B ~I Keyword operands I
MACLST A,B,KEY1=C 2 are not counted

eN' &SYSLIST (n)
Macro • Value of
Instruction N'&SYSLIST (2)

(n=2)

MAC SUB A, (1,2,3,4,5),B 5
MACSUB A, (1, ,3, ,5},B ;}8 MAC SUB A, (,2,3,4,5),B
MAC SUB A,B,C 1

0 • MACSUB A\,C 0
MACSUB A,KEY=(A,B,C) 0

MACSUB ~ II Keyword sublists I
o are not counted

Section J: The Macro Definition 283

J7D -- &SYSNDX

Purpose

You can attach &SYSNDX to the end of a symbol inside a
macro definition to generate a unique suffix for that
symbol each time you call the definition. Although the
same symbol is generated by two or more calls to the same
definition, the suffix provided by &SYSNDX produces two
or more tlnique symbols. ~[hus you avoid an error being
flagged 1:or multiply defined symbols.

Source Module

~ifications

The local system variable symbol
&SYSNDX is assigned a read-only
value each time a macro definition
is called from a source module.

• The ValUE! assigned to &SY~ is
a 4-digit: number, starting at 0001
for the first macro called by a

• program. It is incremented by one
for each subsequent macro call
(including nested macro c.:llls,
described in K6) •

•
NOTES:

1. &SYSNDX does not generate a valid
symbol, (ind it must:

&Pl&SYSNDX

• AREA&SYSNDX

OPEN

MACRO
CaNST &Pl,&P2

DC F'&P2'

OS F

MEND

START

&SYSNDX

Assume
&SYSNDX=OOO9

here 0

a. Follow the symbol ·to which
it is concatenated NOTE: AREAOOI0 DS F

•
b. B«a concatenated to a symbol
containing four charac·ters or
.J&§.§..

2. The value of the type attribute
of &SYSNDX (T'&SYSNDX) is always
N, and the value of the count
attributla (K' &SYSNDX) is always
four.

(Attribut.es are fully described
in L1B.)

TWO 00 1 0 and
TWO 0011 are
two different
symbols and
thus not mul
tiply defined

TWO,20CL.

---+~TWOOOll DC F'200'

AREAOOll DS F

THREE 30

,THREE0012,OC F'300'
~lE -- &SYSPARl~

:284

Purpose

You can use &SYSPARM to communicate with an assembler
source module through the job control language. Through
&SYSPARM, you pass a character string into the source

GAREA0012

module tiD be assembled from a job control language statement
or from a program that dynamically invokes the assembler.
Thus, you can set a character value from outside a source
module and then examine it as part of the source module
at pre-a,ssembly time, during conditional assembly
processing.

OS F

Specifications

The global system variable symbol

O &SYSFAR~ is assigned a read-only
value in a job contrel statement
or in a field set up by a program
that dynamically invokes the
assembler. It is treated as a
global SETC symbol in a seurce
module except that its value cannot
be changed.

7he largest value that &SYSPARM
can hold is 255 characters, which
can be specified by an invoking
program. However, if the PARM field
of the EXEC statement is used to
specify its value, the PARM field
restrictions reduce its maximum
possible length to 57 characters.

NOTES:

1. No values are substituted for
variable symbols in the specified
value, however double ampersands
must be used to represent single
ampersands in the value.

2. Double apostrophes are needed
to represent single apostrophes
because the entire PARM field
specification is enclesed in
apostrophes.

Example: Job Control Statement

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

&SYSPARM

//STEP EXEC ASMFC,PARM=(SYSPARM(DEBUG))

Source Module

OPEN START

AIF (' & SYSPARM' NE 'DEBUG'). SKIP

END

Branch to normal
conditional assembly
processing if &SYSPARM
is not equal to DEBUG

Section J: The Macro Definition 285

286

3. If SYSPARM is not specified in
a job control statement outside
the source module, &SYSPARM is
assigned a default value of the
null character string.

Purpose

You can use &SYSTIME to obtain the
time at which your source module
is assembled.

Specifications

The global system variable symbol
&SYSTIME is assigned a read-only
value of the format given in the
figure to the right.

NOTES:

Format: 5 - Character String

L-
hh.mm

Where: hh gives the hours
mm gives the minutes

Example: 22.15 ~

&SYSTIME

1. The value of the type attribute
of &SYSTIME (T'&SYSTIME) is always
U and the value of the count
attribute (K'&SYSTIME) is always
5.

\. -------;) 10.15 p.m.

"
2. For systems without the internal
timer feature, &SYSTIME is a 5-
character string of blanks.

Corresponds to the
time printed in the
page heading of
listings, remains
constant for each
assembly

In addition to the PRINT options that you can set fron
inside a source module, you can set other listing options
from outside a source module by using the job control
language. These options can be specified in the PARM field
of the EXEC statement or by a program that dynamically
invokes the assembler.

J8A -- LIEMAC

Purpose

The LIBMAC option allows you to print in the program
listings the library macro definitions called from your
source module, and any statements in open code following
the first END statement (coded or generated) that is
processed by the assembler.

Section J: The Macro Definition 287

The LIBMAC option, when set, causes:

• Any sta t,ements in open code that
follow the first END statement and

• All libr~ macro definitions called
to be px'inted in the pro9ram listings
after the first (or only) END
statement of the source module.

• NOTE: ~Iultiple ENe stat~ments can
be coded or generated and are
printed, but the first ENC statement
processed ends the asserobly.

288

The option NOLIBMAC suppresses the
listing of the itsms mentioned
above. It is the defaul1: option
that applies to the assembling of
source modules.

Purpose

The MCAI,L option allows you to list
all the inner macro instructions
that the assembler processes.

The MCAL,L option, when set, causes
all inner macro instructions
processed by the assembler to be
listed. The NOMCALL option
suppresses the listing of inner
macro instructions. It is the
default option that applies to the
assembling of source modules.

NOTE: The MLOGIC and ALOGIC options
concern the listing of conditional
assembly statements. Thf:!y are
discussed in L8.

MACRO

MAC 1]
MEND Source

Macro
MACRO Definitions

MAC 2]
MEND

OPEN START

LINK

OPEN

~

MACRO
LINK

MEND • MACRO
OPEN

MEND

~----------------------

Section K: The Macro Instruction

This section describes macro instructions: where they
can be used and how they are specified, including details
on the name, operation, and operand entries, and what will
~ generated as a result of that macro call.

After studying this section, you should be able to use
the macro instructions correctly to call the macro
definitions that you write. You will also have a better
understanding of what to specify when you call a macro
and what will be generated as a result of that call.

Kl -- Using a Macro Instruction

R1A PURPOSE

The macro instruction provides the assembler with:

1. The name of the macro definition to be processed.

2. The information or values to be passed to the macro
definition. This information is the input to a macro
definition. The assembler uses the information either
~ processing the macro definition or for substituting
values into a model statement in the definition.

The output from a macro definition, called by a macro
instruction, can be:

1. A sequence of statements generated from the model
statements of the macro for further processing at assembly
time.

2. Values assigned to global SET symbols. These values
can be used in other macro definitions and in open code
(see L 1A) •

Section K: The Macro Instruction 289

~J B -- SPECIFICATIONS

Where Macro Instructions Can Appea~

•
A macro instruction can be written
anywhere in the open code portion
~f a source module. However, the
statements generated from the called
macro de:finition must be valid
a'~semble:r language instructions

•
an'4 allo'iied where the calling macro
ins\ ructlon appears. A macro

290

•
inst~ctlon is not allowed before
or be~ween any source macro
definitions, if specified, but it

•
can be rt1ested inside a macro
definitiQi (see K6) •

Macro Instruction Format

The format of a macro instruction
statement is given in the figure
to the right.

The maxlmum number of operands
allowed is not fixed. It depends
on the amount of virtual storage
available to the program ..

If no operands are specified in
the operand field, remarks are
allowed if the absence of the operand
entry iSI indicated by a comma
preceded and followed by one or
more blanks.

The entx'ies in the name, operation,
and opel:and fields correspond to
entries in the prototype statement
of the called macro definition (see
X2) •

Source Module

Name

Any symbol
or blank

MACRO
MACl

MAC CALL

MAC CALL

END

Operation

Symbolic
Operation
Code

Source
Macro
Definitions

Must not cause generation
of instructions that are not
allowed before the START
instruction

Macro Inst.

Operand

Zero or more operands
separated by commas

Alternate Ways of Coding a Macro
Instruction

A macro instruction can be specified
in one of the three following ways:

O The normal way, with the operands
preceding any remarks.

~ The alternate way, allowing remarks
for each operand.

4It A combination of the first two
ways.

NOTES:

1. Any number of continuation lines

•
are allowed. However, each

• continuation line must ~ndicated
by a non-blank character in the
column after the end column of the
previous statement line (see B1B).

•
2. Operands on continuation lines
must begin in the continue column,
or

3. Otherwise, the assembler assumes
that any lines that follow contain
remarks.

NOTE: If any entries are made in
the columns before the continue
column in continuation lines, the
assembler issues an error message
and the whole statement is not
processed.

o
MACNORM TO,FROM,LENGTH,P4,P5, •••..••••.. P6,x

• MACALT

more
blanks

P7,P8, ,PEND REMARKS

Commas indicate
more operands
to follow

TO, fIELD INTO WHICH DATA MOVED
FROM'T FIELD FROM WHICH DATA MOVED

LENGTH,! NUMBER OF BYTES TO MOVE

P4, REMARKS

x
x

x

~~P:' REMARKS
x
x

•

P6, REMARKS
P7, REMARKS
P8, REMARKS
KEY=VALUE EVEN KEYWORD OPERANDS

Last Operand
requires no
comma

x
x
x

MACOMB TO,FROM,LENGTH, REMARKS x
A...---P 4, REMARKS x
~ 5, REMARKS x

6 , P 7 , • • . • . . • . . • P 8 , P 9 ,x
, ---fP10,PEND

Section K: The Macro Instruction 291

K.2 - Entries

~2A -- THE NAME ENTRY

purpose

You can use the name entry of a
macro instruction:

1.. Either to generate an .assembly
time labE~l for a machine or assembler
instruction.

2. Or to provide a conditional
assembly label (see sequence symbol
in L1C) :30 that you can branch to
the macro instruction at pre-assembly
time if you want the called macro
definition expanded.

Specifications

The name entry of a macro instruction
can be:

• an .?rdinary symbol

fa a variable symbol

•
a character string in whi.ch a
variable symbol is concat.enated
to other characters

292

Ga blank

A a sequence symbol, which is never
V generated.

OPEN

MEND

START

END

o

Parameter must be
coded if anything
is to be generated

I n Two Places

I n name field
of prototype

I n name field of
statement within
body of macro

Generated result

HERE LR 3,4

resu
be a valid symbol or

........ _---'L.-~ blank
->r-------,-....

LR 3,4

LR 3,4

LR 3,4

Nothing will be generated
by sequence symbol

LR 3,4

K2B -- THE OPERATION ENTRY

Purpose

The symbolic operation code you
specify identifies the macro
definition you wish the asse~ler
to process.

Specifications

The operation entry for a macro
• instruction must be a valid symbol

that is identical to the symbolic
operation code specified in the
prototype statement of the macro
definition called •

•

NOTE:. I f a source rr·acro definition
with the same operation code as
a library macro definition is called,

•
the assembler processes the source
macro definition.

K2C -- THE OPERANt ENTRY

Purpose

You can use the operand entry of
a macro instruction to pass values
into the called macro definition.
These values can be passed through:

1. The symbolic parameters you have
specified in the macro prototype,
or

2. The system variable symbol
&SYSLIST if it is specified in the
body of the macro definition (see
J7C) •

The two types of operands allowed
in a macro instruction are the
positional cperand and the keyword
operand (see K3). You can specify
a sublist with multiple values in
both types of operands (see K4) •
Special rules for the various values
you can specify in operands are
given in K5.

Source Module

END

System Library

Containing Library Macros

"CALLED"
expanded

Section K: The Macro Instruction 293

K3- Operand:s

K3A -- POSITIONAL OPERANDS

2'94

Purpose

You can use a positional operand to pass a value into a
macro definition through the corresponding positional
paramete.r declared for the definition. You should declare
a positional parameter in a macro definition when you wish
to change the value ~assed at every call to that macro
definition.

You can also use a positional operand to pass a value to
the system variable symbol &SYSLIST. If &SYSLIST, with
the appropriate subscripts, is specified in a macro
definition, you do not need to declare positional pararreters
in the prototype statement of the macro definition. Yeu
can thus use &SYSLIST to refer to any positional operand.
This allows you to vary the number of operands you specify
each time you call the same macro definition. The use
of &SYSLIST is described in J7C.

Specifications

o ,:!,he positional operands of a macro
1nstruction must be specified in
the same order as the positional

•
parameters declared in the called
macro definition.

O
Each positional operand constitutes
a character string. It is this
character string that is the value
passed through a positional parameter
into a macro definition.

Pas.Opnd

Source Module

MACRO

ORDER &Pl,&P2,&P3

DC C'&Pl'
DC C'&P2'
DC C'&P3'

MEND

OPEN START o

o

END

Examples of Macro Instructions:

MACCALL ~~tlE,9,8

~O
/

MAC CALL &A ,~Ot)O~Il) STRING·'

o
MACCALL +2, ,SYMBOL

MACCALL

DC CiA'
DC C'B'
DC C'C'

Each positional
operand can be
up to 255
characters long

00$121
Cherac::ters

Sublists
described in
L4

Section K: The Macro Instruction 295

The figure to the right illustrates
what happens when the number of
positional operands in the macro
instruction differs from the number
of positional parameters declared
in the prototype statement of the
called macro definition.

Number of
positional
parameters
in PrototYPE
of macro
definition

Number of Positional
Operands in macro
instruction

EQUAL GREATER
TH'AN

Valid, if
Operands
are correctly
specified

Meaningless,
unless &SYSLIST
is specified in
definition to
refer to excess
operands

~3B -- KEYWORD OPERANDS

296

Purpose ----

You can use a keyword operand to pass a value through a
keyword parameter into a macro definition. The values
you specify in keyword operands override the default values
assigned to the keyword parameters. The default value
should be a value you use frequently. Thus, you avoid
having to write this value every time you code the calling
macro instruction.

When you need to change the default value, you must use
the corresponding keyword operand in the macro instruction.
The keyword can indicate the purpose for which the passed
value is used.

LESS
THAN

Omitted operands
give null character
values to correspond-
ing parameters (or
&SYSLIST specifi-
cation)

Specifications

Any keyword operand specified in
a macro instruction must correspond
to a keyword parameter in the macro
definition called. However, keyword
operands do not have to be specified
in any particular order.

A keyword operand must be coded
in the format shown in the figure
to the right. If a keyword operand

~is specified, its value overrides

•
. ~he default value specified for

the keyword parameter.

The standard default value obeys
the same rules as the value specified
in the keyword operand (see K5) •

"Keyword"
sVtnbol has
upto 7
charcters
without

Key Opnd

Keyword
Operand

Corresponding
Keyword
Parameter

Examples of Keyword Operands: Sublist
described
in L4

MACKEY KEYWORD=

MACKEY KEYl=1,KEY2=2,KEY3=3

MACKEY KEY3=2000,KEYl=O,KEYWORD=HALLO

Section K: The Macro Instruction 297

29B

The following examples describe
the relationship between keyword
operands and keyword parameters
and the v,alues that the assembler
assigns tlO these parameters under
different conditions.

•
The keywo:rd of the operand
corresponds to a keyword p-arameter.
The value:Ln the operand overrides
the default value of the parameter •

•
The keywo:rd operand is not. specified.
The default value of the parameter
is used •

•
The keywo.rd of the operand does
not correspond to any keyword
parameter. The assembler issues
an error message, but the macro
is genera·ted using the default
values of the other parameters.

NOTE: The default value specified
for a keyword parameter can be the

• null char,acter string. The null
character string is a cha~'acter
string with a length of zero; it
is not a blank, because a blank
occupies .one character position.

•
Source Module

Null character
string is default
value

------------------------------------~----------~
MACRQ

MACCORR &KEYl=DEFAULT,&KEY2=,&KEY3=123

SHOW DC C'&KEYl&KEY2&KEY3'

MEND

OPEN START 0

o

MACCORR

END

Null default
value of KEY 2

K3C -- COMBINING POSITIONAL AND KEYWORD OPERANDS

Purpose

You can use positional and keyword operands in the sarre
macro instruction: use a positional' operand for a value
that you change often and a keyword operand for a value
that you change infrequently.

MACRO 2 3 4 5

MIXED &Pl,&P2,&P3,&P4,&P5,&KEY1=lO,&KEY2=A

Specifications

Positional and keyword operands
can be mixed in the macro instruction
operand field. However, the

~ positional operands must be in the
same order as the corresponding

•
positional parameters in the macro
prototype statement.

&KEYl

END

.. NOTE: The system variable symbol
~&SYSLIST(n) refers only to the

•
positional operands in a macro
instruction.

• MEND

START

MIXED

1 2 3 4 5

END

AREA2 DC lOFL5'2024'

section K: The Macro Instruction 299

K:4 -- Sublisb; in Operands

• • e

]00

Purpose

You can use a sublist in a positional
or keywo:rd operand to specify several
values. A sublist is one or more
entries separated by commas and
enclosed in parentheses. Each entry
is a value to which you can refer
in a macro definition by coding:

1. The corresponding symbolic
parameter with an appropriate
subscript or

2. The system variable symbol
&SYSLIST with appropriate subscripts,
the first to refer to the positional
operand and the second to refer
to the sublist entry in the operand.

&SYSLIST can refer only to sublists
in positional operands.

Specifications

The value specified in a positional
or keyword operand can be a sublist.

A symbolic parameter can refer to
the entire sublist or to an
individual entry of the sublist.
To refer to an individual entry,
the ~olic parameter must have
a subscript whose value jndicates
the posi~ of the entry in the
sublist. The subscript must have
a value greater than or equal to
one.

&KEY(l)

&Pl(l)

OPEN

Sublist

Source Module

value in
DC keyword

DC operand

MEND

START 0

FO DC F'O'

H20 DC H'20Q'

DC A(A,B,C)

END

The format of a sub1ist is given
in the figure to the right. A
sub1ist, including the enclosing
parentheses', must not contain more
than 255 characters.

The figure to the right shows the
relationship between subscripted
parameters and sub1ist entries if:

o A sub1ist entry is omitted,

•
The subscript refers past the end
of the sub1ist,

•
The value of the operand is not
a sub1ist,

• The parameter is not subscripted.

NOTE: The system variable symbol,
SSYSLIST(n,m) , can also refer to
sub1ist entries, but only if the
sub1ist is specified in a positional
operand.

Parameter

&PAR (3)

&PAR(5)

&PAR

&PAR(l)

&PAR(2)

&PAR

&PAR (1)

&PAR(2)

&PAR

&PAR(l)

&PAR(3)

&PAR(2)

&PAR(l)

Format:

One or more entries
separated by commas
and enclosed in
parentheses

Examples:

Subl ist specified
in corresponding
operand (or as
default value of
keyword parameter)

0(1,2,,4)

8(1,2,3,4)

Jr
A

·l~
• (A)

(A)

Valid sublist with the
null character string
as the only entry

Valua genaratad
(or used in
computation)

Null character string

Null character string

A

A

Null character string

(A)

A

8
(A) Null character string I Considered as ~
() Sublists ()

() Null character string

() .. Null character string

(A'JI ,e,D) Nothing

I This blank indicates I } 'ERROR*
end of operand field Unmatched left

(')
parentheses

Nothmg

Positional Operands

&POSPAR(3) A, (1, 2 , -3 , 4) 3

&SYSLIST(2,3) A, (1,2,3,4) 3

Section K: The Macro Instruction 301

K5 _. Values :in Operands

302

Purpose

You can use a macro instruction operand to pass a value
into the called macro definition. The two types of value
you can pass are:

1. E.xplicit values or the actual character strings you
specify in the operand.

2. Implicit values, or the attributes inherent in the data
represent:ed by the explicit values.

Attr ibutE!s are fully desc:r:ibed in L 1B.

Specifications

The expli.cit value specified in a macro instruction o{:erand
is a character string tha't can contain one or more variable
symbols.

The character string must not be
greater than 255 characters after
substitution of values for any
variable symbols. This includes
a character string that constitutes
a sublist (see K4).

The charalcter string valu4;s, including sublist entries,
in the operands are assigned to the corresponding parareeters
declared in the prototype statement of the called macro
definition. A sublist entry is assigned to the
corresponding subscripted parameter.

OMITTED OPERANDS: When a keyword
operand is omitted, the default
value specified for the corresponding
keyword parameter is the value

O assigned to the parameter. When
a positional operand or sublist

•
entry is om~tted, the null character
string is assigned to the parameter.

• NOTE: Blanks appearing between
commas do not signify an omitted
positional operand or an omitted
sublist entry.

SPECIAL CHARACTERS: Any of the
256 characters of the System/370
character set can appear in the
value of a macro instruction operand
(or sublist entry). However, the
following characters require special
consideration:

AMPERSANDS: A single ampersand
indicates the presence of a variable
symbol. The assembler substitutes o the value of the variable symbol
into the character string specified
in a macro instruction operand.

~The resultant string is then the
value passed into the macro
definition. If the variable symbol
is undefined, an error message is
issued •

•
Double ampersands must be specified
if they are to be passed to the
macro definition.

Source Module

MACRO

OMIT &Pl,&P2,&P3,&KEY1=DC,&KEY2=C

&KEYl &Pl&KEY2&P2'ALWAYS &P3'

MEND

OPEN START 0

OMIT

END

Value
Specified
In Operand

&VAR

&A+&B+3+&C,:< 1 0

Commas indicate
omission of first

This blank indicates
end of operand field

, , HERE

&P3 considered
omitted,
value = null

DC C'ALWAYS '

10,LIO~~----------~
Last positional
operand omitted,
no comma needed

Value Of
Variable

Symbols 0
XYZ

Character
String
Value
Passed

XYZ •
&A=2

&B=X

&C=COUNT

2+X+3+COUNT>:<10

BLANK BETWEEN 'BLANK BETWEEN

&®ISTER

NOTE&&&&

Section K: The Macro Instruction 303

304

APOSTROPHES:. A single apostrophe is used: (1) to indicate
the beginning and end of a quoted string, and (2) in a
length attribute notation that is not within a quoted
string.

QUOTED STRINGS: A quoted string is any sequence of o characters that be<)ins and ends with a single apostrophe
(compare with cond1 tional assembly character expressions tt described in L4B). Couble apostrophes must ce specified

•

inside each quoted string. This includes substituted
apostrophes .,

Macro instruction operands can have values that include
one or more quoted strings. Each quoted string can be
separated from the following quoted string by one or more

•
characters, and each mus1:: contain an even number of
apostrophes.

/o~
'QUOTED STRING'

Villue specified
in Operand

'&&NOTATION'

'&.MESSAGE'

, ,

• {'L"SYMBOL'

'L' '&VAR'

'"ES'

No apostrophes, single ampersands,
commas, bl.anks, or equal signs
allowed between quoted strings in
one operand

! AB' 'CD! E ' ;FGH& &, '
" ' QUClted strings

Value of
Variable
Symbol

Value Passed

'&&NOTATION'

BLANKS OK 'BLANKS OK'

, ,

, L' , SYHBOL '

'L' 'SYMBOL'

'QUOTEl 'AND 'QUOTE2

'AB'CD'E'PGH&&'

LENGTH ATTRIBUTE NOTATION: In macro
instruction operand values, the

O len~th attribute notation with
ord~nary symbols can be used outside
of quoted strings, if the length
attribute notation is preceded by

•
any special character except the
ampersand.

PARENTHESES: In macro instruction
operand values, there must be an
equal number of left and right

O
parentheses. They must be paired,
that is, to each left parenthesis

A belongs a following right parenthesis
"at the same level of nesting. An -

unpaired (single) left or right
~parenthesis can appear only in a
• quoted string.

T
(PAIRED

Examples:

Does not initiate
or end a quoted
string

,
PARENTHESES)

These parentheses
could be enclosing
a sublist

~ ~,~ (A,B,C,D,E), (A, (B) ,C,D)

}UNPAIRED PARENTHESES(Invalid
operand
value

(A(B)C)D(E)
L-.J

Level 1

I , L-J

Level 2 Level 2

Paired

• fIN' ('STRING;

(THES~)'UNPAIRED)
I Paired I

Section K: The Macro Instruction 305

o

o •

BLANKS: One or more blanks outside
a quoted! string indicates the end
of the €!ntire operand fiE~ld of
a macro instruction. Thus blanks
should only be used inside quoted
strings.

COMMAS: A comma outside a quoted
string indicates the end of an
operand value or sublist entry.
Commas that do not delimit values
can appear inside quoted strings
or paired parentheses that do not
enclose sub11sts.

EQUAL SIGNS: An equal sign can
appear i:nt.ne value of a macro
instruction operand or sublist
entry:

o As the first character,

8 Inside quoted stri~ or

o Between paired parentheses.

306

Examples of Macro Instructions: 0

MACCALL • BLANKS .-::::: 'OR~) •

MAC CALL

MACCALL

MAC CALL L .. ",,:.,.:., ... , ... ,', ,.',: , .. : : : .. ", R.,.:,., , ... ',." e: .. " .. : m, .. " ... , •... ,., .• ', ,'.,.,.,.,.,." .. rkS I ',ll',Hl MACCALL (A, (B,C,D) ,E, (F,

Examples of Macro Instructions:

MAC CALL A,B,C,D

MACCALL (A,B,C,D)

MACCALL 'IN CASE 1, MESSAGE N03 IS ISSUED'

J
paired I

MAC CALL ~3'5f6'

1
•

Also part of character
string if parentheses
do not enclose sublist

Examples of Macro Instructions:

I Could be literal specifications I

MACCALL
- c:=::---. .- /'

KEY==F'201', (=~~~=H'3')
• Character string ______

..---.
MAC CALL A'='B,C(A=B) • • MACCALL (A(B=l},C,D,E)

PERIODS: A period (.) can be used
in the value of an operand or sublist
entry. It will be passed as a period.

•
~owever, if it is used immediately
after a variable symbol it becomes

•
a concatenation character. Then,

•
two per iods are required if ~
is to be passed as a character.

K6 - Nesting in Macro Definitions

K6A -- PURPOSE

A nested macro instruction is a
macro instruction that you specify
as one of the statements in the
body of a macro definition. This
allows you to call for the expansion
of a macro definition from within
another macro definition.

Inner and Outer Macro Instructions

Any macro instruction you write

O
in the open code of a source module
is an outer macro instruction or
call. Any macro instruction that
appears within a macro definition e is an inner macro instruction or
call.

Character String
specified as value Value of
of Operand or Variable
Sublist Entry Symbol

3.4

(3.4,3.5,3.6)

&AS--e FIELD

&A.1 • 3

&A~ 3

&A&B e
&A~

&A=AREA}

&B=200

&DISP. (&BASE) &DISP=1000

&BASE=10

Source Module

MACRO

MEND

OPEN START 0

Value
Passed

3.4

3.4 3.5 3.6

FIELD1

31 •
3~

AREA200

AREA200

1000(10)

These are prototype
statements

Section K: The Macro Instruction 307

Levels of Nesting

•
The code <.;rene rated by a macro definition called by an inner
macro call is nested insid~:! the code genera ted by the macro
definition that contains the inner macro call. In the
macro definition called by an inner macro call, you can

30B

include a macro call to another macro definition. Thus,
you can nest macro calls at different levels •

• The .,!.ero leve!. includes outer macro calls, calls that

•
appear in open code; the first level of nesting includes
inner macro calls that appear inside macro definitions

O called from the zero level,; the second level of nesting
includes inner macro calls inside macro definitions that
are called from the first level, etc.

Macro Definitions

MACRO MACRO MACRO

U
MEND

MEND
MEND

Source Module

LEVEL 0 LEVEL. 1 LEVEL 2 LEVEL 3

START 0

Section K: The Macro Instruction 309

310

Recursion

You can also call a macro definition

•

recursivelY, that is, you can write
macro ins·tructions inside macro

•
definitions that are calls to the
containing definition. This allows
you t~Eine macros to process
recursive functions.

Source Module

MEND

OPEN START 0

RECURSE

END

prototype statement

Test here to
escape from
recursive

macro instruction

K6B -- SPECIFICATIONS

General Rules and Restrictions

Macro instruction statements can
be written inside macro definitions.
Values are substituted in the same
way.as they are for the model
statements of the containing macro
definition. The assembler processes
the called macro definition, passing
to it the operand values (after
substitution) from the inner macro
instruction. In addition to the
operand values described in K5
above, nested macro calls can specify
values that include:

• Any of the symbolic parameters
specified in the prototype statement
of the containing macro definition

• Any SET symbols declared in the
containing macro definition

• Any of the sys'temv~:t"iablfa sY!!!1?2~s
(~'~~~~I'~;~SX$~~')?il;"""'" ",. ;"';"

The number of nesting levels
permitted depends on the complexity
and size of the macros at the
different levels, that is: the
number of operands specified, the
number of local and global SET
symbols declared (see L1A) and the
number of sequence symbols used.

Exits taken from the different
levels of nesting when a MEXIT or
MEND instruction is encountered
are as follows:

1. From the expansion of a macro
definition called by an inner macro
call, an exit is taken to the next

•
sequential instruction that appears
after the inner macro call in the
containing macro definition.

2. From the expansion of a macro
definition called by an outer macro,
an exit is taken to the next

•.
sequential instruction that appears
after the outer macro call in the
open code of a source module.

Nesting

Macro Definitions

MACRO

Prototype OUTER

LCLC &C

&C SET

INNER & PI, &KEY! ;"&c • Inner call

MEND

MACRO

Prototype

Inner call

MEND

Source Module

OPEN START 0

MEND •• MEXIT '"--,-----

END

Section K: The Macro Instruction 311

31:2

Passing Va.lues through Nesting
le ve 1-2..

The value contained in an outer
macro instruction operand can te
passed through one or rrore levels

•
of ne sting. However, the value
specified in the inner rracro
instruction operand must be identical

A to the corres{:onding symbCllic
~ parameter declared in the prototype

of the containing rracro definition.

S'IhUS, a sublist can be passed and
. referred to as a sublist in the

•
macro definition called by the inner
macro call. Also, any symbol that
is passed will carry its inherent
attribute values through the nesting
levels.

Values can be passed from open code
through several levels of macro
nesting if inner macro calls at
each level are specified with
symbolic parameters as operand
values.

Prototype

Call

Prototype

Call

Source Module

MACRO

OUTER

MEND

MACRO

INNER

L
A
ST

MVC

MEND

START

END

0

&Q,&R,&S

3,&Q(2) •
3,&Q(1)}

3,&Q(3)

&R,&S

&Q &R

L 3,.AREA
A 3,F200
ST 3,SUM

MVC TO,FROM

O NOTE: If a symbolic parameter is
only a part of the value specified
in an inner roacro instruction

•
operand, only the character string
value given te the parameter by
an outer call is passed through

•
the nesting level. Inner Sublist.
entries and attributes of symbols ·
are not available fer reference
in the inner macro.

Prototype

Call

Prototype

Call

Source Module

MACRO

OUTER

INNER

MEND

MACRO

INNER

DC

DS

MEND

START 0

ND

&P,&Q.A

(ABC ,.f., DEF) ,~~+3

&R,&S

A&R (2)

XL (&S)

A (ADX ,ADY ,ADZ)

XL (TWOO+3)

Section K: The Macro Instruction 313

314

System '~ariable Symbols in Nested
Macros

The global read-only system variable
:3Y~?~~? &SYSPARM,Ba!$DATE; and
'Sl6Wm;~ are not affected by the
nesting of macros. The remaining
system '~ariable symbols are given
local read-only values that depend
on the position of a macro
instruc·tion in code and the operand
value specified in the macro
instruc-tion.

If &SYSLIST is specified in a macro
definit.ion called by an inner macro
instruc·tion, then &SYSLIST refers

O to the positional operands of the
inner macro 1nstruction •.

Source Module

MACRO

Prototype OUT

Call INl

MEND

MACRO

Prototype INl
DC A(&SYSLIST(2»

Call IN2 D,E,F

.MEND

MACRO

Prototype IN 2

DC Y(&SYSLIST(3»

MEND

START 0

Call

~ The assembler increments &SYSNDX by one each time it
encounters a macro call. It retains the incremented value ~

•
throu~hout the expansion of the macro definition that is
calle , that is, within the local scope of the nesting
level.

Source
Module

LEVEL 0

START 0

END

MACRO

OUTER

INNERl

MEND

LEVEL 1

Macro Definitions

MACRO

INNERl

INNER2

MEND

LEVEL 2

MACRO

U
MEND

LEVEL 3

Section K: The Macro Instruction 315

•
The assembler gives &SYSECT the character string value
of the name of the control section in force at the point

~where a macro call is made. For a macro definition called
by an innermacro call, the assembler will assign &SYSEC'l •
the name of the control section generated in the macro
definition that contains the inner macro call. The control

•
section must be generated before the inner macro call is
processed.

If no control section is generated within a macro

•
definition, the value assigned to &SYSECT does not change.
It is the same.for the next level of macro definition
called by an inner macro instruction.~

31:6

~&SYSECT has a local scope; its read-only value remains
constant throughout the expansion of the called macro
definition.

Source Module Macro Definitions

MACRO RO

OUTER INNERl INNER2

DC A(&SYSECT)

• DC A(&SYSECT)
INNER2

• MEND MEND
INNERl

MEND

LEVEL 0 LEVELl LEVEL2 LEVEL3

0 A S~~ART 0

Section L: The Conditional Assembly Language

This section describes the conditional assembly language.
with the conditional assembly language, you can perforrr
general arithmetic and logical computations as well as
many of the other functions you can perform with any ether
programming language. In addition, by writing conditional
assembly instructions in combination with other assembler
language statements you can:

1. Select sequences of these source statements, called
model statements, from which machine and assembler
instructions are generated

2. Vary the contents of these model statements during
generation

The assembler processes the instructions and expressiens
of the conditional assembly language at pre-assembly time.
Then, at assembly time, it processes the generated
instructions. Conditional assembly instructions, however,
are not processed after pre-assembly time.

The conditional assembly language is more versatile when
used to interact with symbolic parameters and the system
variable symbols inside a macro definition. However, you
can also use the conditional assembly language in open
code as described in L7 below.

Ll - Elements and Functions

The elements of the conditional assembly language are

1. SET symbols that represent data (see L1A)

2. Attributes that represent different characteristics
of data (see L1B)

3. Sequence symbols that act as labels for branching to
statements at pre-assembly time (see L1C).

The functions of the conditional assembly language are:

Section L: The Conditional Assembly Language 317

1. Declaring SET symbols as variables for use by the
conditional assembly lan9uage in its computations (see
L2)

2. Assi9ning values to the declared SET symbols (see L3)

3. Evaluating conditional assembly expressions used as
values for substitution, as subscripts for var~able syrrbols,
or as condition tests for branch instructions (see L4)

4. Selecting characters from strings for substitution in
and concatenation to other strings, or for inspection in
condi ticm tests (see LS)

SOl .Branching and exiting from conditional assembly loops
(see L6) •

III A - SET SYMBOLS

318

Purpose

SET symbols are variable symbols that prov-ide you with
arithmet:ic, binary, or character data, whose values you
can vary at pre-assembly time.

You can use SET symbols as:

1. Terms in conditional assembly expressions

2. Coun1:ers, switches, and character strings

3. Subscripts for variable symbols

4. VaIUE!S for substitution.

Thus, Sl~T symbols allow you to control your conditional
assembly logic and to generate many different statements
from thE! same model statement.

SUBSCRIPTED SET SYMBOLS: You can use a SET symbol to
represent an array of many values. You can then refer
to any ()ne of the values of this array by subscripting
the SET symbol.

The Scope of SET Symbols

You must declare a SET symbol before
you can use it. The scope of a
SET symbol is that part of a program
for which the SET symbol has been
declared •

•
If you declare a SET symbol to have
a local scope, you.can use it only
in the statements that are part
of:

•• The same macro definition or

•• Open code.

•
If you declare a SET symbol to have

, a global scope, you can use it in
the statements that are part of:

• The same macro definition, and

• A different macro definition,
and

• Open code.

You must, however, declare the SET

•
symbol as global for each part of
the program (a macro definition
or open code) in which you use it.

You can change the value assigned
to a SET symbol without affecting
the scope of this symbol.

THE SCOPE OF OTHER VARIABLE SYMBOLS:
A symbolic parameter has a local
scope. You can use it only in the
statements that are part of the
macro definition for which the
parameter is declared. You declare
a symbolic parameter in the prototype
statement of a macro definition.

The system variable symbols,
&SYSLIST, &SYSECT, and &SYSNDX have
a local scope; you can use them
only inside macro definitions.
However, the system variable symbols,
&SYSPARM ,1$I~Pl-\':t!~#::Mg'.~IIJt(:mi·
have a global scope; you can use
them in both open code and inside
any macro definition.

L

o
o

c

A

L

Source Module

Macro Definitions
Called

Section L: The Conditional Assembly Language 319

•
•

•
o

320

SET symbols can be used in model
statemen1ts from which assembler
language statements are generated,
and in conditional assembly
instructions. The three types of
SET symbols are: SETA, SETE, and
SETC. A SET symbol ff'ust be a valid
variable symbol, as shown in the
figure to the right.

A SET s~nbol must be declared before
it can be used. The instruction
that declares a SET symbol determines
its scope and type (see L2) •

The features of SET symbols and
other types of variable symbol are
compared in the figure to the right.

The value assigned to a SET symbol
can be changed by using the SETA,
SETB, or SETC instruction within
the declared scope of the SET symbol.
However, a symbolic parameter and
the system variable symbols are
aSSigned values that remain fixed
throughout their scope. Wherever
a SET s~nbol appears in a statement,
the assembler replaces the symbol
with the last value assigned to
the symbol.

SET Symbols

ampersand
al phabetic character
~ 6 alphameric characters

Format: & ~IE T S Y M BI

Declaration: •
Instruction ..

Operation Operand
Type Scope

LCLA
LCLB
LCLC

GBLA
GBLB
GBLC

Feature

Can be used:
In open code

In macro
definitions

Scope:
Local or

Global

Values can
be changed
within scope
of symbol

&ARITH SETA
& BOOLEAN SETB
&CHAR SETC

&A SETA
&B SETB
&C SETC

Types of Variable Symbol

SETA, SETB,
or SETC
Symbols

YES

YES

YES

YES

• YES

Symbolic
Parameters

NO

YES

YES

NO

• NO:
read only

value

local
local
local

global
global
global

System
Variable
Symbols

All

&SYSLIST
&SYSECT
&SYSNDX

&SYSPARM

• NO:
read only
value

O NOTE: SET symbols can be used in •
the name and operand field of macro
inst~ons. However, the value

• thus passed through a symbol~
parameter ~nto a macro definition

G is considered as a character string
and is generated as such.

Source Module

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

NAME START 0

&LIST

LCLC

SETC
SETC

MACCALL

END

&LIST,&LABEL

, eX, 'i,
'STRING'

• ····'·);;w··.ijj~r~;~~;
&LIST+1·"i'i;; ," .. '

,)D
\,:,:' ~

MACRO
&N MCCALL &P

&N DC

MEND

Q
STRLNG DC A(X,Y,Z)

Macro
Instruction

Macro

Definition

Called

Can only refer
to whole string

Generated
result

Section L: The Conditional Assembly Language 321

322

Subscripted SET Symbols -
.Specifications

A subscripted SET symbol must be
specified as shown in the figure
to the right.

~rhe subscript can be any arithmetic
expression allowed in the operand
field of a SETA instruction ~ee
L4A) •

A subscripted SET symbol can be
used anywhere an unsubscripted SET
symbol is allowed. However,
subscripted SET symbols must be
declared as subscripted by a previous
local or global declaration
inst:['uction.

~ The ~iubscr~pt refers to one of the

•
many posit1ons in an ~rrar>o of values
ident:ified by the SET sym 1. The
value of the subscript must not

• excee!d the dimension declared for
the array in the corresponding LCLA,
LeLB, LCLC, GBLA, GELE, or GELC
instI:uction.

NOTE: The subscript can be a
~~ubsc:ript?d SET s¥mbcl. Five levels

of subscr1pt nest1ng are allowed.

Format:

Example

&SETSYM{

Arithmetic Expression
whose value must not
be Oor ,.

LeLA &ARRAY (20)

• ARRAY

&ARRAY(lO) = 5 l __ ~ __

1 2 3 4 5 6 7 8 9101112

{

&ARRAY (5) =2
quivalent

&ARRAY(&ARRAY(10})=2

•

L1B - DATA ATTRIBUTES

What Attributes Are

The data, suc'h as instructions, constants, and areas, which
you define in a source module can te described in terrrs
of:

1. Type, which distinguishes one form of data froIT ancther:
for example, fixed-point constants from floating-~oint
constants, or machine instructions from macro instructions.

2. Length, which gives the number of bytes occupied by
the object code of the data.

3. Scaling, which indicates the number of positions occu~ied
by the fractional portion of fixed-point and decimal
constants in their object code form.

4. Integer, which .indicates the number of positions occupied
by the integer portion of fixed-point and decimal constants
in their object code form.

5. Count, which gives the number of characters that wculd
be required to represent the data, such as a macro
instruction operand, as a character string.

6. Number, which gives the number of sublist entries in
a macro instruction operand.

These six characteristics are called the attributes of
the data. The assembler assigns attribute values to the
ordinary symbols and variable symbols that represent the
data.

Section L: The Conditional Assembly Language 323

324

Specifying attributes in conditional
assembly instructions allows you
to control conditional assembly
logic, which in turn can control
the sequence and contents of the
statements generated from model
statements. The s~ecific purpose
for which you use an attribute
depends on the kind of attribute
being considered. The attributes
and their main uses are shown in
the figure to the right.

NOTE: ~rhe number attribute of
• &SYSLIS~~ and &SYSLIST (m,n) is

described in J7C.

Specifications

FORMAT: The format for an attribute
reference is shown in the figure
to the lcight.

• The attribute notation indicates

•

the attribute whose value is desired.
The ordinary or variable symbol
represents the data which possesses
·the attl::-ibute. The assembler
substitutes the value of the

•
attribut.e for- the attribute
reference.

WHERE A1~LOWED: An attribute
reference to the type, scaling,
integer I' count, and number attri1:utes
can be used only in a conditional
assembly instruction. The length
attribute reference can be used
.both in a conditional assembly
instruc1:ion and in a machine or
assembler instruction (for details
on this use see C4C) •

Attribute

Type

Length

Scaling

Integer

Count

Number •

Purpose Main Uses

Gives a letter that - In tests to distinguish
identifies type of between different data
data represented types

- For value substitution
- In macros to discover

missing operands

Gives number of - For substitution into

bytes that data length fields

occupies in storage - For computation of
storage requirements

Refers to the - For testing and regulating
position of the the position of decimal
decimal point in points
decimal, fixed-point

- For substitution into a and floating-point
constants scale modifier

Is a function of - To keep track of
the length and significant digits (integers)

scaling attributes
of decimal, fixed-
point, and floating-
point constants

Gives the number - For scanning and

of characters decomposing of

required to repre- character strings

sent data - As indexes in sub-
string notation

Gives the number - For scanning sublists

of sublist entries - As counter to test for

in a macro end of sublist

instruction operand
sublist

,

Attributes
I

Apostrophe

.I

Format: Attribute l
Notation •

'-------

Ordinary or
Variable ..
Symbol V

Examples:

e Attribute Reference

T'SYMBOL
L'&VAR
K'&PARAM

COMBINATION WITH SYMBOLS: The figure below shows the six
kinds of attributes and the type of symbol with which the
attributes can be corrbined.

NOTE: Whether or net an attribute reference is allowed
in open code, in macro definitions, or in toth, depends
on the type of symbol specified.

ATTRIBUTES SPECIFIED

Symbols Type Length Scaling Integer
Specified T' L' S' I'

.r('

r Ordinary Symbols YES YES YES YES
---~--

I IN OPEN CODE I <
SET Symbols YES NO NO NO

System Variable Symbols: YES NO NO NO

&SYSPARM,&SYSDATE,
" &SYSTIME

~

Ordinary Symbols YES YES YES YES
--------- -

SET Symbols YES NO NO NO
-----~- -- -----

Symbolic Parameters YES YES YES YES

liN MACRO DEFINITIONS I System Variable Symbols: YES YES YES YES
&SYSLIST

&SYSNDX,&SYSPARM, YES NO NO NO

&SYSDATE, &SYSECT,

"
&SYSTIME

100S- -. .\:(--.-.. -.) '---•• --. ----.. ._.---ii .. i' .i-.·{:·Lt •• ------.-- . .-'-- ---_ . ---"'

;\.C·l ·_-·····i\il _-_- ;. • '->.---.

--i~E$i. YES YES YES
.--.---_. . •• _.- •.••••.•. -. _,~'IN _._. __ --._\Jfolnary

-"

.- ._--- .--

" Ordinary SymbOls NO yeS NO NO

---_._.-
SymbOlic Parameters yeS yes YES YES

;.>-_.----- •. ---------_.

tNMAeR~-QefINIT'ON$

--'.-

System Variable YES yes YES YES

.'--- "
Symbol &SYSLIST

Count Number
K' N'

YES YES

YES NO

YES NO

NO NO

YES NO

YES YES

YES YES

YES NO

"-'-

NO NO

NO NO

yes yes
~---

yes yes
-- -

Section L: The Conditional Assembly Language 325

3:26

ORIGIN OF VALUES: The value of

•
an attr ibute for an ordinary symbol
specified in an attribute reference
comes 1:rom the data rep:resented
by the symbol, as shown in the
figure to the right.

The symbol must appear in the name
field of an assembler or machine
instruction, or in the operand field
of an EXTRN or WXTRN instruction.
The instruction in which the symbol
is specified:

1. Must appear in open code

2. Must not contain any variable
symbols, and

3. Must not be a generated
instruction.

Attribute
Notation o

T'

L'

s'
I nstruction I I

The value of an attribute for a o variable symbol specified in an
attribute reference comes from the
value substituted for the variable
symbol as follows (see also the
figure to the right) :

O$~. ··l..lP+§~.fi~~~f3a~<:ltbe>SY~'t:~m
P!)IY"l~~;?lpl~~YlllbOl,~l .• &$~9.Eqr,~$Y9,NDJ{:t

fS:(f~~' .••.. ~ .. 9¥. Ei~~d~S~~f+~'·

• ~:~~~:~~.~~;~s§;i~~:~~~~~~~t~
2. For symbolic parameters and the
system variable symbol, &SYSLIST,
the values of the count and number

•
attributes come from the operands
of macro instructions.

•
•

•

The values of the type, length,
scaling and integer attributes,
however, come from the values
represented by the macro instruction
operands, as follows:

a. If the operand is a sublist,
the entire sublist and each entry
of the sublist can possess
attributes.

b. If the first character or
characters of the operand (or
sublist entry) constitute an
ordinary symbol, and this symbol
is followed by either an
arithmetic operator (+,-,*, or
/) , a left parenthesis, a comma,
or a blank, then the values of
the attributes for the operand
are the same as for the ordinary
symbol.

c. If the operand (or sublist
entr~ is a character string
other than a sublist or the
character string described in
b. above, the type attribute
is undefined (U) and the length,
scaling and integer attributes
are invalid.

'---......---'
o

Symbolic
parameter
or
&SYSLIST

,..-----&--~.
K; Macro Instruc-
N tion Operand

N I&SYSLIST
N I&SYSLIST (n)

• Ordinary
Symbol

TI r---'----,

L I Statement
SI Label
II

•
EXTRN
or
WXTRN
Operand

Character string
not beginning
with a symbol

Symbolic
parameter
as inner
macro
instruction
operand

Section L: The Conditional Assembly Language 327

VALUES: Because attribute references
are allowed only in conditional
assembly instructions, their values
are available only at f:re'-assembly
time, except for the leng·th attribute
which can be referred to outside
conditional assembly instructions,
and is therefore also available
at assembly time (see C4C) •

NOTE: The system variabl'e symbol,
&SYSLIST, can be used in an attribute
referencE~ to refer to a macro
instruction operand, and, in turn,
to an ordinary symbol. Thus, any
of the a1:trihute values for macro
instruction operands and ordinary
symbols listed below can also be
substitut.ed for an attribute
reference containing &SYSLIST.

THE TYPE ATTRIBUTE (T'): The type
attributE~s a value of a single
alphabetic character that indicates
the type of data represented by:

O. A.n ordinary symbol

~. A macro instruction operand
'as
only

328

$ET~Yn1b6i •.•

The type attribute reference can
be used only in the operand field
of the SETC instruction or as one
of the values used for comparison
in the operand field of a SETB or
AIF instruction.

NOTE: O:rdinary symbols used in
the name field of an EQU instruction
have the type attribute value "un.

Howeveri1ftl~'t:h~rCi()petand of an
EQU,' ins~:r\l~t:.ionCClll, p~ used
~plic~t lY't:o~s~i9na type attribute
yalue tQ the.,SYtnhol in the name
field~

Type
Attribute

A

B
C
D
E
F
G
H
K
L

osP
()

orily R

S
V
X
Y
Z

M
W

T
$

o
Data Characterized_

For ordinary symbols and outer macro instructions
that are symbols

: Defined as labels for DC and DS instructions

A-type constant, implicit length, aligned (a
instruction label)
Binary Constant
Character Constant
Long floating-point constant, implicit length, aligned
Short floating-point constant, implicit length, aligned
Full-word fixed-point constant, implicit length, aligned
Fixed-point constant, explicit length
Half-word fixed-point constant, implicit length, aligned
Floating-point constant, explicit length
Extended floating-point constant, implicit length, aligned
Packed decimal constant
Q~tYPe·"a~t~~sChr)~~nt,!mplf6it,!~~gtHralign.H
A-, So, Q-, V- or V-type address constant, explicit length
S-type address constant, implicit length, aligned
V-type address constant, implicit length, aligned
Hexadecimal constant
Y·type address constant, implicit length, aligned
Zoned decimal constant

: Defined as labels for assembler language statements

Machine instruction
Macro Instruction
CCW instruction

: Identified as control section name (and T' &SYSECT)

: Identified as external symbol by EXTRN or
WXTRN instruction

A macro Instruction Operand that is:
A self-defining term
Omitted (has a value of a null character string)

When a symbol or macro instruction
operand cannot be assigned any of
the type attribute values listed
in the preceding figure, the data
represented is considered to be
undefined and its type attribute
is U. Specific cases of where U
is assigned as a type attribute
value are given in the figure to
the right.

THE LENGTH ATTRIBUTE (L'): The
~ length attribute has a numeric value

equal to the number of bytes occupied
by the data that is represented
by the symbol specified in the
attribute reference.

If the length attribute value is
desired for pre-assembly processing,
the symbol specified in the attribute
reference must ultimately represent

•
the name entry of a statement in
open code. In such a statement,
the length modifier (for CC and
DS instructions) or the length field
(for a machine instruction) , if
specified, must be a self-defining

• term. The length modifier or length
field must not be coded as a
multi term expression, because the
assembler does not evaluate this
expression until assembly time.

The length attribute can also be
specified outside conditional
assembly instructions. Then, the
length attribute value is not
available for conditional assembly

•

processing, but is used as a value
· at assembly time.

At pre-assembly time, an ordinary
symbol used in the name field of
an EQU instruction has a length
attribute value of 1. At assembly
time, the symbol has the same length
attribute value as the first symbol
of the expression in the first
operand of the EQU instruction.

Ordinary symbols that are used as labels:

.. for the L TORG instruction

.. for the EOU instruction without a third operand

.. for DC and DS statements that contain variable symboJs

Example: Ul DC &X'l'

DOS only
.. for DC and DS statements that contain expressions as

duplication factors

Example: DC (AA BB}F'15'

The SETC variable symbol

Source Module

MACRO
LENGTHS &Pl,&P2

AIF (L'&Pl LE 8) .MOVE

. MOVE ANOP
MVC &P2,&Pl

MEND

OPEN START • DATA DC FL7'7E+9' • AREA DS XL(L'DATA)

LENGTHS DATA,

MVC AREA, DATA

END

Section L: The Conditional Assembly Language 329

330

NOTES:

1. The length attribute reference,
when uSE~d in conditional assembly
processing, can be specified only in
arithmetic expressions (see L4).

2. A l«~ngth attribute reference to a
symbol ,~ith the type attribute value
of M, N~ 0, T, U, or $ will be
flagged .• Th~ length attribute for the
symbol ,~ill be given the default
value of 1.

THE SCALING ATTRIBUTE (S:'>: The
scaling attribute can be used only
when ref.erring to fixed-point,
floating-point, or decimal,
constan1:s. It has a numeric value
that is assigned as shown in the
figure 1:0 the right.

NOTES:

1. The I;caling attribute reference
can be llsed only in arithmetic
expressions (see L4).

2. When no scaling attribute value
can be determined, the reference is
flagged and the scaling attribute is
given the value of 1.

Constant
Types
Allowed

Fixed-Point

Floating
Point

Decimal

Examples:

Type
Attributes
Allowed

H,F, and G

D,E,L,and K

Pand Z

Value of Scaling
Attribute Assigned

Equal to the value of the
scale modifier
(-187 through +346

Equal to the value of the
scale modifer
(0 through 14 - D,E)
(0 through 28 - L)

Equal to the number
of decimal digits
specified to the right
of the decimal point
(0 through 31 - P)
(0 through 16 - Z)

PACKED DC P'+12.34S'
ZONED DC Z'+12.34S'

S'PACKED=3

S'ZONED=3

THE INTEGER ATTRIBUTE (I'): The integer attribute has

O a numeric value that is a function of (depends on) the
length and scaling attribute values of the data being
referred to by the attribute reference. The formulas
relating the integer attribute to the length and scaling
attributes are given in the figure below.

NOTE: The integer attribute reference can be used only
in arithmetic expressions (see L4) •

Constant Formula Examples
Type Relating the
Allowed I nteger to the

0 (attribute Length and
value) Scaling

Attributes

HALFCON DC HS6'-25.93'
Fixed-point
(H,F, and G) I'=8*L'-S'-1

Floating-point
(D,e,L, and K) I'=2,~(L'-1)-S'

Only for L-Type when L' > 8
I'=2*(L'-1)-S'-2

Decimal equal to the
number of decimal
digits to the left of
the assumed decimal
point after the
number is assembled

Packed (P) I'=2':<L'-S'-1

Zoned (Z) I'=L'-S'

8*2-6-1
ONECON DC FS8'100.3E-2'

8*4-8-1

EXTEND DC LS10'5.31~'
2.;,(16-1) -10 -2

PACK DC P'+3.513'
2':'3-3-1

ZONE DC Z1 3.513 1

4-3

Values
Of the
Integer
Attribute

9

23

4

9

18

2

1

Section L: The Conditional Assembly Language 331

THE CCUNT ATTRIBUTE (R'): The count
attribute applies only to macro
instruct ion operands, to SET symbols,
and to the system variable symbols.
It has a numeric value that is equal
to the number of characters:

•
~ That constitute the macro
1nstruction operand, or

<~S. Tba~"'?1.ildbef;eq'tiiredt6 A
Qtlly :repre~~~t:(J.~ .ll.¢~i;lraqt:ers't:r;i.n9 .V

th¢ .••. ~rEmt.v~~\1~<9f"t.he~E't •. ·.$ym~ol 00t;' tl1e>sl' st.~lQ Y<l:r:i.~l:?~~esy~n~l ...

3.32

NOTES:

1. The count attribute reference
can be used only in arithmetic
expressions (see L4) •

2.. The count attribute of an omitted
macro instruction operand has a
default value of O.

Macro Instruction •
Operands

All characters of operand
are included

ALPHA
(SUB,LIST,ALL)
2(10,12)
IA"BI

blank
II null character string

(omitted rand)

SET Symbols •

Delimiting apostrophes
not included

&C SETC IALPHA'
&C SETC
&C SETC ..

&B SETB 1
&B SETB 0

&A SETA 399
&A SETA XIFF I

~
&A SETA 0100

System Variable Symbols .•

Value of Count
Attribute

5
14

8
6
3
2
0

& SYSNDX= 0 9l21{1 ~.$¥,sj~o~~ .•.• li •• ···.!~)<

THE NUMBER ATTRIBUTE (N'): The
number attribute applies only to
the operands of macro instructions •

•
It has a numeric value that is equal
to the number of sublist entries
in the operand.

NOTES:

1. The number attribute reference
can be used only in arithmetic
expressions (see L4) •

2. N'&SYSLIST refers to the number
of positional operands in a macro
instruction, and N'&SYSLIST(m)
refers to the number of sublist
entries in the m-th c~erand (for
further details on the number
attribute of &SYSLIST see J7C).

Macro Instruction
Operand Sublist

(A,B,C,D,E)

(A)

A When operand is
not a sublist

(No operands)

Value of
Number Attnbute

1 + number of commas
separating the entries

•
5

6

4

1

1

o

section L: The Conditional Assembly Language 333

L,1 C - SEQUENCE: SYMBOLS

J34

You can use a sequence symbol in the name field of a
statement to branch to that statement at pre-assembly time,
thus al tIering the sequence in which the assembler processes
your conditional assembly and macro instructions. You
can ther,eby select the model statements from which the
assemble,r generates assembler language statements for
processing at assembly time.

Seq. Sym.

period (or dot)

Sequence symbols must be specified
as shown in the figure to the right.

Sequence symbols can be specified
in the name field of asse~bler
language statements and model
statements, except as noted in the
figure to the right.

Fonnat: ~.IPhabetie character

~o to 6 alphamarie char rs

• S'E QUE N C

Examples: • SEQ

• A1234

• #924

Statements in which
sequence symbols must not
be used as name entries

The following assembler instructions:

ACTR
COPY
EQU
GBLA
GBLB
GBLC
ICTL
ISEQ
LCLA
LCLB
LCLC
MACRO
OPSYN

DOS OSEe,:

The Macro prototype
instruction

Any instruction that already
contains an ordinary symbol
or variable symbol

--

--

o

• • •

Sequence symbols can be specified
in the operand field of an AIF or
AGO instruction to branch to a
statement with the same sequence
symbol as a label.

A sequence symbol has a local scope.
Thus, if a sequence symbol is used
in an AIF or AGO instruction, the
sequence symbol must be defined
as a label in the same part of the
program in which the AIF or AGO
instruction appears; that is, in
the same macro definition or in
open code.

NOTE: A sequence symbol in the
name field of a macro instruction
is not substituted for the parameter,
if specified, in the name field
of the corresponding prototype
statement (for specifications about
the name entry of macro instructions
see K2A) •

pen.
ode

Source Module

MACRO

MACONE

DS

MEND
MACRO

MEND

START

AGO

END

OH

RAT

DS OH

Section L: The Conditional Assembly Language 335

L2 - Declarill.g Set Symbols

You must declare a SET symbol before
you can use it. In the declaration,
you spec:ify whether it is to have
a global or local scope. The
assembler assigns an initial value
to a SET symbol at its point of
declara tion.

l~:2A -- THE LCLA, LCLB, AND LCLC
INSTRUCTIONS

PUrpose

You use the LCLA, LCLB, and LCLC
instructions to declare t:he local
SETA, SETB, and SETC symbols you
need.

Specifications

The format of the LCLA, I.CLB, and
LCLC instruction statements is given
in the figure to the right.

These instructions can bE! used
anywhere in the body of a macro
definition or in the open code
portion of a source module.

OQS ·'l'he~CL~..LC~B,and .:tCLC
ins'truct:iQn$i.·· .. ·l.~$s>egified, must
a.ppe.ar illllTte<2~,(ltel.y· .. ~()llowing . any
GBLA.,.GJ:!;LB(· •• ·B;~aL~ln,$tl:uGtions
thatnlaybe$~,cifl.'~d.

336

If.$i'e,c:tfl~d · .. ~nsi-de a. ma~:ro
definitiolltt.lle 'globa 1.<1E~cla:ra tion
inst.rue~.iQlls· •• ·In~sta~pear.·· iI@lediately
fQl19Wi~'9thEa .m.ac~o.·.·prot()t-Y'pe
statement ~.'~" .~~~qj.fied· Qu"t.side
a .·macro~t:fi~i~~onlthe ~Jlo~al
decl,ax;a:1fiol\l$llIg.~~.~pI'~.ax: fi1;st. in
opencod.~J1;~~~t:.~.,.they mus-t .·follow
any ••.. source·· .. ·.m<lFl:t<?·<lt:~,ir:t~ ••. "t..~~ons
specit1e4·<lnq.p,~e~El~~\"t.~e.begillnin9'
oft-hef 1:t:'stcQntrol;seci:~ion ifi

Name

Blank

Operation

LCLA,
LCLB,or
LCLC

Operand

One or more variable
symbols separated
by commas

Any variable symbols declared in
the operand field have a local
scope. They can be used as SET o symbols anywhere after the pertinent
LeLA, LCLB, or LCLC instructions,

•
but only within the declared local
scope.

MACRO

MEND
MACRO

&A2 cannot be used
here, outside its de -
dared scope

&A2 cannot be used

Section L: The Conditional Assembly Language 337

The assembler assigns initial values
to these SET symbols as shown in
the figure to the right.

LOCAL VARIABLE SYMBOLS MUST NOT
BE MULTIPLY DEFINEC: A local SET
variatle symbol declared by the
LeLA, LCL13, or LCLC instruction
must not be identical to any other
variable symbol used within the
same local scope. The following
rules apply to a local SET variable
symbol:

1. Within a macro definition, it
must not be the same as any symbolic_ o parameter declared in the prototy~e
statement.

2. It must not be the same as any

•
global va:riable symbol (see L2B)
declared 1fli thin the same local
scope.

3. The same variable symbol must
not be declared or used as two

~different~es of SET symbols,
for example, as a SETA and a SETB
symbol, within the same local scope.

NOTE 1: ,~local SET symbol should
not begin with the four characters
&SYS, which are reserved for system
variable symbols (see J7).

OO~.N()'rE 2: The global declarations
• tDllst preci~~e the local decl ar ations •

338

o

c

A

L

Instruction Initial Value assigned
to SET variable symbols
in operand fields

LCLA 0

LCLB 0

LCLC Null character
string

Source Module

MACRO

MULTDEF

LCLB

LCLC

MEND

START

LCLA

LCLB

END

&ARITH

.&Bc>OLiA~
$.ClIARS$n

o
&MAINA, R.1t:R"~'rA'

they are used in
different local
scopes

&MAINB, ~.p'-tV.J;,/J;o"'.I;"

&MAINC,&¢~~$T~:,&PARAM

Correct definition
of SETC symbol
(no symbolic
parameters
allowed in
open code)

SUBSCRIPTED LOCAL SET SYMBOLS:
A local subscripted SET symbol is
declared by the LCLA, LCLB, or tCLC
instruction. This declaration must
be specified as shown in the figure
to the right.

~The maximum dimension allowed is
32,767.

The dimension indicates the number

•
of SET variables associated with
the subscripted SET symbol. The

• assembler assigns an initial value
to every variable in the array thus
declared.

NOTE: A subscripted local SET
symbol can be used only if the
declaration has a subscript, which
represents a dimension; a
nonsubscripted local SE~ symbol
can be used only if the declaration
had no subscript.

Format:

LCLA }
LCLB,

or LCLC

Instruction

LCLA

LCLB

LCLC

Example:

•
Format:

Array Defined
Same initial values as for non-subscripted

SET symbols

LCLB & B (10) 10 10 10 10 I 0 I 0 I 0 ,0 I 0 I 0 I

Section L: The Conditional Assembly Language 339

L~B -- THE GBLA, GELE, ANr GELC
INSTRUCTIONS

You use -the GELA, GELE, and GBLC
instructions to declare the global
SETA, SE'rB, and SETC symbols you
need.

The format of the GELA, GELE, and
GBLC insitruction statelT:ents is given
in the figure to the right.

These instructions can be used
anywhere in the body of a macro
definition or in the open code
portion of a source module.

Any variable symbols declared in
the oper,and field have a global
scope. They can be used as SET

•
symbols ,anywhere after the pertinent
GBLA, GB:LB, or GBLC instructions.
However, they can be used only
within those parts of a program
in which they have been dec'lared

]·4:0

•
as global SET symbols, that is in
any macro def ini tion and in open.
code.

NOTE: Values can be passed between:

A. 'l'he macro definitions, MAC 1 ,
~and MAC2 L only by using the variable

symbols &B and &C •

•
• The macro definition, MAC2, and
open code, only by using 'the variatle
symbol &C.

O
. 'l'he macro definition, MAC 1 , and

, open cod,e, only by using the variatle
symbol &c.

Name

Blank

Operation

GBLA,

GBLB, or

GBLC

Source Module

MACRO

MAC 2

GBLB

START

&A
&B
&

o

One or more variable
symbols separated
by commas

& Bcannot be used
here, before its
declaration

here, because it
has not been de .
clared in open
code

The assembler assigns initial values
to these SET symbols as shown in
the figure to the right.

The assembler assigns this initial
value to the SET symbol only when

•
it processes the first GBLA, GBLB,
or GBLC instruction in which the
symbol appears. Subsequent GBLA,

~GBLB, or GBLC instructions do not
~reassign an initial value to the

SET symbol.

'··~\ln:$truQt:J:QP:
~J;.nstr:UQt~C:>ij'~

Instruction Initial Value assigned
to SET variable symbols
in operand field

GBLA 0
GBLB 0
GBLC Null character string

Source Module

MACRO
FIRST

GBLA &A 0 ---. &A=O
r---

-:---1-
~ &A can be J

used here

~
MEND

-
OPEN START 0

FIRST Processing

~ Sequence

value of &A
can be changed

in expansion of
macro FIRST

eG~LA &~ .~ Ii' &A= assigned value

" ,W II &A can be I used here

END V

Section L: The Conditional Assembly Language 341

GLOBAL VARIABLE SYMBOLS MUST NOT
BE MULTIPLY DEFINED: A global SET
variable symbol declared by the
GBLA, GBLB, or GBLC ins'truction
must not be identical to 'any other
variable symbol used in open code
or within the same macro definition.
The following rules apply to a
global SET variable symbol:

1. Within a macro definition, it
must not be the same as any symbolic

• parameter_ declared in the prototype
statement.

2. It must not be the same as any
• local variable symbol (see L2A)

declared within the same local
scope.

3. The same variable symbol must
not be declared or used as two

• different types of global SET symbol,
for example, as a SETA or SETB
symbol.

NOTE 1: A global SET symbol should
not begin. with the four characters
&SYS, which are reserved for system
variable symbols (see J7) ~

SUBSCRIPIJ'ED GLOBAL SET SYMBOLS:
A global subscripted SET symbol
is declared by the GBLA, GBLB, or
GBLC instruction. IJhis declaration
must be specified as shown in the
figure to the right.

e The maximum dimension allowed is
32,767.

The dimension indicates the number
of SET variables associated with 8 the subscripted SEIJ' s¥mbol. The

.. assembler assigns an l.ni tIaI value
~to every variable in the array thus

declared.

342

LCLA

LCLB

LCLC

GBLA

MEND

LCLA

LCLC

START

END

GBLA}
GBLB

GBLC

Instruction

GBLA

GBLB

GBLC

•
Array Defined

Same initial values as

for non-subscripted SET symbols

Global arrays are assigned initial
values only by the first global
declaration processed, in which
a global subscripted SET symbol
appears

Format:

Source Module

NOTES:

~ 1. A subscripted ~lobal SET symbol
can be used only ~f the declaration
has a subscript, which represents

8 a dimension; a nonsubscripted global
SET symbol can be used only if the
declaration had no subscript.

2. Wherever a particular global
SET symbol is declared with a

~dimension as a subscript, the
~dimension must be the same in each

declaration.

OOSNOTE: .• 'the"GaLat$Wl~C!(50).·
instrQctionmust pre¢E;!<1et.tl~STAR'l! 8 instruction.

MACRO

MAC 1

GBLA

GBLB

GBLC

&C SETC

MEND
MACRO

MAC 2
GBLB

...------i .. ~ MEND

&Al'&A2(4~.
&SWITCH (50)

&CHAR(lO),&C

. /0
.",.2(22) •

....................... /
'.CliJ,~JS1'

• &SWITCH (50)

OPEN START 0

=\-eGBLB

END

L3 -- Assigning Values to Set Symbols

LJA -- THE SETA INSTRUCTION

Purpose

The SETA instruction allows you to assign an arithmetic
value to a SETA symbol. You can specify a single value
or an arithmetic expression from which the assembler will
compute the value to assign.

You can change the values assigned to an arithmetic or
SETA symbol. This allows you to use SETA symbols as
counters, indexes, or for other repeated computations that
require varying values.

• &SWITCH (50)

Section L: The Conditional Assembly Language 343

344

o

The format of the S:ETA instruction
statement is given in the figure
to the right.

The variable symbol in thE! name
field must have been previously
declared as a SETA sy~in a GBLA
or LeLA instruction.

The assembler evaluates the
arithmetic expression in the operand

•
field as a signed 32-bit clrithmetic
valu~and assigns this value to
the SETA symbol in the name field.
An arithmetic expression is described
in L4A.

O SUBSCRIP'l~ED SETA SYMBOLS: The SETA
symbol in the name field can be
subscript~ed, but only if "the same

•
SETA symbol has been previously
declared in a GBLA or LCLA
instructi.on with an allowable
dimension.

The assembler assigns the value
of the expression in the operand

•
field to the position in "the declared
array given by the value of the
subscrip1:. The subscript expression
must not be 0, or have a negative

•
. value, OJ:- exceed the dimension
actually specified in the
declaration.

SETA
- ----~- ~-- -- -

Name Oper~tion Operand

A variable

Symbol.

SETA

LCLA

LCLA

• &SUBSCRA(20) SETA

Must be an arithmetic
expression allowed in
operand of SET A
instruction

&SUBSCRA

I

t t
2

&SUBSCRA(200) SETA

, .. ,.A •.......... n , .. a ... , .. ,r ... i .. t.,.h metiC ... , .. ,.e ... , .. x , .. p ,.r.",.e., .. , .. s s .. ,'" .. ,.i .. , o .. '" , •... n, ... , .. ,.,'.",'.'
, •. '.','.' ••• ,.:,'.:.,,' ..• :.:,::".,.:: ••• : ••••. ' ••• ,.', .. ' •••• : ••••• "., •.......................... '•. ,',• '.:,: •••• : .• ,:'".: ••• ,.', ••••• : ••••••• : ••• :: ••••••• : •• : •••• ,.:.'.',•.. : .. ,.: ••• : •• :.::.,' ••• ,: •••• ,:.' ••••• , •••••• ,:.'.' •• ' •• :.'.:.,.:.:': .. ': •••••••• '.: ...•... : .. , ;<i/:·····:··,:.·:·.,· .. :,',,:,.:····,.:

Allowable range of values
-i3'through ~'-1

&Al,&A2

• &SUBSCRA(lOO)

2000

2000 ':<:ERROR'!(NO
VALUE ASSIGNED

&Al SETA &SUBSCRA(20)
Value assigned

&Al=2000

L3B -- THE SETC INSTRUCTION

Purpose

The SETC instruction allows you to assign a character
string value to a SETC symbol. You can assign whole
character strings or concatenate several smaller strings
together. The assembler will assign the composite string
to your SETC symbol. You can also assign parts of a
character string to a SETC symbol by using the substring
notation (see L5) •

You can change the character value,assigned to a SETC
symbol. This allows you to use the same SETC symbol with
different values for character comparisons in several
places or for substituting different values into the same
model statement.

Specifications

ormat:

SETC

The format of the SETC instruction
statement is given in the figure
to the right.

Name Operation Operand

The variable symbol in the name
field must have been previously
declared as a SETC symbol in a GBLC
or LCLC instruction.

The four options that can be
specified in the operand field are:

A type attribute reference

A character expression (see L4B)

A substring notation (see L5)

A concatenation of substring
notations, or character expressions,
or both.

~The assembler assigns the character
string value represented in the
operand field to the SETC symbol
in the name field. The string
length must be in the range 0 (null
character strin~ through 255
characters.

BC

BC

A variable SETC
symbols

Value Examples:

&Cl SETC

&C2 SETC

&C3 SETC

&C4 SETC

One of four options,
exemplified below

T'&DATA
or

T'SYMBOL
Must appear alone
and must not be
enclosed in
apostrophes

Up to 255 characters
enclosed in apostrophes

Up to 255 characters

.. :.~:,Il_~i~_.
• or I, ABC' . 'DEF'

, ABC' . 'ABCDEF' (4 , 3)

Section L: The Conditional Assembly Language 345

NOTE : Wh~~n a SETA or SETB symbol
is specified in a character o expression, the unsigned decimal
v.alue of the symbol (with leading

•
zeros removed) is the character
value given to the symbol.

346

Character

Examples:
Value Assigned

Value of &A 1 to SETC symbols

&Cl
&C2
&C3

&C4
&CS

&C6

&C7
&C8

Format:

SETC
SETC
SETC

SETC
SETC

SETC

SETC
SETC

Examples:

&Cl SETC

'&Al'
'&Al'
'&A1 '

'-200'
'&A1'

'&A1+1 '
'1-&A1'

&C2 SETC (3}'ABC'

200
00200

-200

o

30
-30

•
&C3 SETC (3}'ABCDE' (1,3}

&C4A SETC (3}'ABC'.'DEF J • &C4B SETC 'ABC'. (3}'ABCDEP' (4,3

O{200
200
200

-200
o

00200

30+1
1-30

Value Assigned
to SETC symbol

Must be in the
range 1 through
255

•

o SUBSCRIPTED SETC SYMBOLS: The SETC
symbol in the name field can be----
subscripted, but only if the same
SETC symbol has been previously
declared in a GBLC or LCLC
instruction with an allowable
dimension.

LCLC
LCLC

Page of GC33-4010-4
Revised Feb. 25. 1975
By TNL: GN33-8193

The assembler assigns the character
value represented in the operand 'ABCDE'

~ field to the position in the declared
array given by the value of the
subscript. The subscript expression

•
must not be 0, or have a nega ti ve

· value, or exceed the dimension
actually specified in the
declaration.

Must be an arithmetic
expression allowed in
the operand of a SETA
instruction

~~--~~--~_\~----~I
t

2 10

&SUBSCRC(25) SETC 'ABCDEF'
I •

&Cl SETC

L3C -- THE SETB INSTRUCTION

Purpose

The SETB instruction allows you to assign a tinary bit
value to a SETB symbol. You can assign the bit values,

'&SUBSCRC(lO) ,

o or 1, to a SETB symbol directly and use it as a switch.

If you specify a logical expression (see L4C) in the operand
field, the assembler evaluates this expression to determine
whether it is true or false and then assigns the values
1 or 0 respectively to the SETB symbol. You can use this
computed value in condition tests or for substitution.

20

~c*ERROR** No
Value Assigned

Value assigned

&Cl=ABCDE

Section L: The conditional Assembly Language 347

348

The format of the SETB instruction
state~ment is given in the figure
to the right.

The variable symbol in the name
field must have been freviously
declared as a SETE s~nbol in a GELE
or LeLB instruction.

assigne~ti
:.tt'J,.but,~!!i"Slralue of N. .

The three options that can be
specified in the operand field are:

• 1. A binary value (0 or 1)

•
2. A binary value enclosed in
parentheses

.ti~~~~i~.;value .,~no~<?$e;(!
~t~~ft d ... , , T~i$
!~J?rE!~~fl., ," by~ "'Cl·~

··~·~'~,~~lf ... 51~tln~n9 ~.et"ir!t
l~()~?t~i .~t:t%'l.bU t~

t:>1+b,r'f.:l1an·th~ •. type
r~f e. l,f.'tpe~~ e

S,fJ .. " .. , .. ".. .,' .. " .. ' r ..•........ ' .ign#3:;~'V e
~:y~b~~ilf. .t:l1e . naltl~
~~",~lll~.,i~nQt~, e

;~$$l.'gn~···a.?yal11ce of1

•
3. A logical expression enclosed
in parentheses (see L4C) •

The a.ssembler evaluates the logical
expression, if specified, to
determine if it is true or false.
If it is true, it is given a value
of 1; if it is false, a value of

O O. The assembler assigns the
explicitly specified binary value
(0 OJ:' 1) or the computed logical

value (0 or 1) to the SETB symbol
in the name field •

• SUBSCRIPTED SETB SYMEOLS: The SETB
,:Symbol in the name fiE~ld can be
subscripted, but only if the same

•
SETB symbol has been previously
~~ in a GBLB or LCLE
instruction with an allowable
dimension.

The assembler assigns the binary
value explicitly specified or
implicit in the logical expression

A present in the operand field to
V the ...Eos ition in the declared array

given by the value of the subscript.
The subscript expression must not
be 0, or have a negative value,

~or exceed the dimension actually
specified in the declaration.

Format:

Name
A variable
symbol

Examples:

&Bl

&B2

&B3A

&B3B

Must be an arithmetic
expression allowed
in operand of a SETA
instruction

&SUBSCRB (72)

" &Bl SETB

Operation

SETB

SETB

SETB

SETB

SETB

LCLB
LCLB

Array:

&SUBSCRB

SETB

Operand

One of three options,
exemplified below • Values

Assigned

o • o

(I) '8 1

o

1 :~J:;

~~----~~~~~--~I
t t
2 10 50

SETB 1

>:0',(ERROR)',c)',c No VALUE ASSIGNED

&SUBSCRB (10)
Value assigned

&Bl=l

L4 - Using Expressions

There are three types of expressions that you can use only
in conditiqnal assembly instructions: arithmetic, character,
and logical. The assembler evaluates these conditional
assembly expressions at pre-assembly time.

Do not confuse the conditional assembly expressions with
the absolute or relocatable expressions used in other
assembler language instructions and described in C6. ~he
assembler evaluates absolute and relocatable expressions
at assembly time.

L4A -- ARITHMETIC (SE'IA) EXPRESSIONS

Purpose

You can use an arithmetic expression for assigning an
arithmetic value to a SETA symbol, or for computing a value
used during conditional assembly processing.

An arithmetic expression can contain one or more SET
symbols, which allows you to use arithmetic expressions
wherever you wish to specify varying values, for exam~le
as:

1. Subscripts for SET symbols ,symbolic parameters, and
&SYSLIST, and in substring notation.

You can then control loops, vary the results of
computations, and produce different values for substitution
into the same model statement.

Section L: The Conditional Assembly Language 349

350

Specifications

Arithmetic expressions ca:n be used
as shown in the figure to the right.

NOTE: When an arithmetic expression
is used in the operand field of

• a SETC instruction, the assembler
assigns the character value
representing the arithmetic
expression to the SETC symbol, after

• substituting values into any variable
symbols. It does not evaluate the
arithmetic expression.

Can be Used In

SET A instruction

AI F instruction
or
SETB instruction

Subscripted SET
symbols

Substring notation
(See L6)

Sublist notation

&SYSLIST

SETC instruction

Used As

operand

comparand
in arithmetic
relation

subscript

subscript

subscript

subscript

character
string in
operand

Example

&Al SETA &Al+2

AIF (&A':'lO GT 30) .A

&SETSYM(&A+IO-&C)

'&STRING' (&A*2,&A-l)

sublist (A,B,C,D)

when &A=1

&PARAM(&A+l)=B

&SYSLIST(&M+l,&N-2)

&SYSLIST(N'&SYSLIST)

• &C SETC '5-10t.'&A'
if &A=lO ~
then &C=5-10*1

The figure below defines an arithmetic expression (self
defining terms are described in C4E).

Arithmetic
Expression

Scaling
Integer
Count

or
Number

Operators Allowed

Unary: + positive
- negative

Binary: + addition
- subtraction

>:< multiplication
/ division

Arith. Exp = Arithmetic Expression

. ~

Arith. Exp ..

section L: The Conditional Assembly Language 351

352

The varicib1e symbols that are allowed
as terms in an arithroetic expression
are given in the figure to the
right.

Variable
Symbol

SETA

SETB

SETC }

&SYSPARM

QI$

Symbolic

Parameters

&SYSLIST(n}

&SYSLIST(n,m)

&SYSNDX

Restrictions

none

none

value must be an
unsigned decimal
self-defining term
in the range 0
through
2,14 7,483,(i4 7 . .-._.\
value must be a
self-defining term

} corresponding
operand or sublist
entry must be
a self-defining
term

none

Example Value

- -

- -
&C 123

&SYSPARM 2000

&PARAM X'A1'

&SUBLIST(3} C'Z'

&SYSLIST(3) 24

&SYSLIST(3,2} B ' 101'

- -

RULES FOR CODING ARITHMETIC
EXPRESSIONS: The following is a
summary of coding rules for
arithmetic expressions:

1. Both unary (operating on one
value) and binary ~perating on
two values) operators are allowed
in arithmetic expressions.

O
2. An arithmetic expression can
have one or more unary operators
preceding any term in the expression
or at the beginning of the
expression.

•
3. An arithmetic expression must
not begin with a binary operator,

•
and it must not contain two binary
operators in succession.

4. An arithmetic expression must o not contain two terms in succession.

S. An arithmetic expression must
not contain blanks between an
operator and a term nor between
two successive operators.

6. An arithmetic expression can
contain up to 24 unary and binary
operators and up to 11 levels of
parentheses.

Note that the parentheses required
for sublist notation, substring
notation, and subscript notation
count toward this limit.

Examples

Operators

Unary +,,,,,,

Binary +, -, ':' II

&c!~l- &D

·C:A

c::::::> - &A
&A

c:::=:::> &A - & B

Context determines whether a
+ or - is a Unary or
Binary operator

r::::::::::> & A - & B

100 r:=::::> &A/&B+100

c::::> &C-&D

c::=:::> &C * (-&D)

INVALID

INVALID

INVALID
INVALID e !

&C*I&D
&C + *&D

"----__ 1 ~ Leftmost operator between
two terms is Binary

X'FF' (lO~'&x)

¥'
,/" ,

"I'S"B '101'

INVALID

INVALID

Section L: The Conditional Assembly Language 353

•
• •

EVALUATION OF ARITHMETIC EXPRESSIONS:
The assembler evaluates arithmetic
expressions at pre-assembly time
as follows:

1. It evaluates each arithmetic
term ..

2. It performs arithmetic operations
from left to right. However:

a. It performs unary operations
before binary operations, and

b. It performs the binary
operations of multiplication
and division before the binary
operations of addition and
subtraction. .3. In division, it gives an integer

result; any fractional portion is
dropped. Division by zero gives
a 0 result.

4. In parenthesized arithmetic

•
expressions, the assembler evaluates
the innermost expressions first

•
and then considers them as arithmetic
terms in the next outer level of •

354

expressions. It continues this
process until the outermost
expression is evaluated.

5. The computed result, including
intermediate values, must lie in
the rangf~ -2 3 ~ through +2 31 -1.

Examples of Arithmetic Expressions Value of Arithmetic
Expression

&A*--X'A' ==t>
&A~
5i~+ 10 +50

&A=10,&B=2 fA+10/
&B ==¢

10+(lO/2} ==(> 15

20/:e·~ (&A+I0) /&B ===:> 10

&A=10

&A/2 ==t> 10/2 5

&A=11

&A/2 ===¢> 11/2 5

8, &A=1

&A/2 ~ 1/2 Q

&A=1

10i~&A/2 ~ 10/2 5

&A +

Final evaluation

L4B -- CHARACTER (SETC) EXPRESSIONS

Purpose

The main purpose of a character expression is to assign
a character value to a SETC symbol. You can then use the
S·tTC symbol to substitute the character string into a model
statement.

You can also use a character expression as a value for
comparison in condition tests and logical expressions (see
L4q. In addition, a character expression provides the
string from which characters can be selected by the
substring notation (see L5).

Substitution of one or more character values into a
character expression allows you to use the character
expression wherever you need to vary values for substitution
or to control loops.

Char. Exp.

Can be Used in' Used As Example

Specifications

Character (SETC) expressions can
be used only in conditional assembly
instructions as shown in the figure
to the right.

SETC instruction operand &C SETC 'STRINGO'

AI F instruction character AIF (' &C' EQ 'STRINGl') .B
or string in
SETS instruction character

relation

Substring notation first part , (2,5)=ELECT
(See. L5) of notation

Section L: The Conditional Assembly Language 355

356

A character expression consists of any combination of
characters enclosed in apostrophes. Variable symbols

O allowed. The assembler substitutes the ;representation
their values as character strings into the character
expression before evaluating the expression.

are
of

Up to 255 characters are allowed in a character expression.

NOTE:: At:tribute references are not allowed in character
express ions ' •

.. ______ 1 ____________ • _____________________ ..

Must not contain more than
255 characters
(including blanks) • Variable Restrictions Example Value

Symbol Substituted

&A SETA -0201
SETA sign and leading &C SETC '&A' 201

zeros are suppressed
stand alone zero &ZERO SETA 0
is used &C SETC '&ZERO ' 0

SETB none &B SETB 1 1

SETC none &C1 SETC 'ABC '
&C2 SETC I&C1 1 ABC

Symbolic none &PARAM=(ABC}
Parameters

&C1 SETC '&PARAM ' (ABC}

System none 0201
Variable
symbols

EVALUATION OF CHARACTER EXPRESSIONS:

•
The value of a character expression
is the character string within the
enclosing apostrophes, after the
assembler performs any substitution
for variable symbols.

•
Character strings, including variable
symbols, can be concatenated to
each other within a character

~expression. The resultant string

•

is the value of the expression used
in conditional assembly operations:
for example, the value assigned
to a SETC symbol.

A double apostrophe must be used to
generate a single apostrophe as part
of the value of a character
expression.

A double ampersand will generate a
double ampersand as part of the value
of a character expression. To
generate a single ampersand in a
character expression, use the
substring notation, for example,
('&&'(1,1».

NOTE: To generate a period, two

•
periods must be specified aftar-a
var1able symbol, or the variable
symbol must have a period as part of
its value.

•

Examples

Concatenation
operator is

: a period (.)

'ABC'

'&PARAM'

'A+B-C*D'

'&A+10'

'&A&A'

'ABC&C'

'&C'

'ABC&C.DEF'

• 'L"SYMBOL'

'&C~505'
'&C.505'

Value of
Variable
Symbols
Used

SYMBOL

10

15

DEF

DEF

&A=200
&C=AREA
&C=.

null

&C=null

2

2.

Value of
Character
Expression

o
ABC

SYMBOL

A+B--;C*D

10+10
(Not 20)
1515

DEFABCj •

DEFDEF

1 AREA + 10>,'<200

ABC .

null character
string

ABCDEF

L'SYMBOL

2.505

2.505

Resultant Value
must be in the
range 0 through
255 characters

Sec·tion L: The Conditional Assembly Language 357

358

CONCATENATION OF CHARACTER STRING
VALUES: Character expressions can
be concatenated to each other or
to substring notations in any order.
This concatenated string can then
be used in the operand field of
a SETC instruction or as a value
for comparison in a logical
expression.

o The resultant value is a character
string composed of the concatenated
parts •

• NOTE: The concatenation character
(a period) is needed to separate
the apostrophe that ends one
character expression from the
apostrophe that begins the next.

L4C .,- LOGICAL (SETE) EXPRESSIONS

Purpose

You can use a logical (Boolean)
expression to assign the binary
value 1 or 0 to a SETB symbol.

You can also use a logical expression
to represent the condition test
in an AIF instruction. This use
allows you to code a logical
expression whose value (0 or 1)
will vary according to the values
substituted into the expression
and thereby determine whether or
not a branch is to be taken.

Specifications

Logical (SETB) expressions can be
used only in conditional assembly
instructions as shown in the figure.
to the right.

Concatenated
String

Value of
Variable
Symbol

• 'DEF' AB

b
'&C' (1'3~ (4,3)

, ABC' • ' &C ' (4, 3) 'GHI' AB

, ABC' • ' &C ' • 'GHt t
, ABC' • ' , • 'GHI'

null character string

Can be Used As Example
used in

SETB

Resultant
Character
String
Value

ABCDEF.

ABCDEF

ABCGHI

Value must be
in the range 0
through 255
characters

Logical Exp.

instruction operand &B:' SETB (&B2 OR 8 GT 3)

AIF
instruction condition AIF (NOT &Bl OR 8 EQ 3}.A

test part
of operand

Section L: The Conditional Assembly Language 359

.360

The figu:ce on the opposite page defines a logical
expression.

NOTE: An arithmetic relation is two arithmetic expressions
separated by a relational operator. A character relation
is two character strings (for example, a character
expression and a type attribute reference) separated cy
a relati4:>na1 operator. The relational operators are:

EQ (lequal)

NE (:not equa 1)

LE (less than or equal)

LT (less than)

GE (q'reater than or equal)

GT (q'reater than)

Arithmetic
Expression
(defihed in

L4A)

Logical

Outermost Expression
must be enclosed in
parentheses in SETB
and AI F instructions

Logical Operators Allowed

addition
multiplication
negation

Optional parentheses
~ around terms and

expressions at this level

Relational Operators Allowed

equal

not equal

less than or equal

less than
greater than or equal

greater than

Items optionally
enclosed in
parentheses

Must be in the
range 0 through
255 characters

Must stand alone
and not be enclosed
in apostrophes

Section L: The Conditional Assembly Language 361

RULES FOR~ING LOGICAL EXPRESSIONS:
The follc,wing is a summary of coding
rules fol:' logical expressions:

1. A logical expression must not
contain t:wo logical terms in
success icm.

O
2. A logi.cal expression can begin
with the logical operator NOT.

3. A logical expression can contain
two logical operators in succession;
however, the only combinations

• allowed aLre: OR NOT or AND NOT.
The two operators must be separated
from each other by one or more
blanks.

4. Any logical term, rela'tion, or
inner l09ical expression can be
optionally enclosed in parentheses.

5. The rE~lational and logical
operators must be immediately
preceded and followed by at least •

• one blan)~ or other special character. ·

362

6. A logical expressic. ~an contain
up to 18 logical operators and up
to 17 levels of parentheses.

Note tha1t: the relational and other
operators used by the arithmetic
and char.acter expressions in
relations do not count toward this
total.

Examples of Logical Expressions

(&A GT 100 OR '&C' EQ F)

NOT &8 OR NOT o T

(NOT (

(NOT &B OR &A GE 10 AND &A LE 0)

~
('&C' EO 'ALLOC')

~
(, &C ' EQ ' ALLOC ')

(&A NE 10)

blank mandatory

•
•

•
•
•

EVALUATION OF LOGICAL EXPRESSIONS:
The assembler evaluates logical
expressions as follows:

1. It evaluates each logical term,
which is given a binary value of
o or 1.

2. If the logical term is an
arithmetic or character relation,
the assembler evaluates:

a. The arithmetic or character
expression specified as values
for comparison in these relations,
and then

b. The arithmetic or character
relation, and finally

c. The logical term, which is
the result of the relation.
If the relation is true, the
logical term it represents is
given a value of 1; if the
relation is false, the term is
given a value of O.

NO'IE: If two comparands in a
character' relation have characte
values of unequal length, the
assembler always takes the short
character vglY~ tQ l:!~ l~§§ tbgn
the longer one.

3. The assembler performs logical
operations from left to right.
However:

a. It performs logical NOTs
before logical ANDs and ORs,
and

b. It performs logical ANDs
before logical ORs.

r

er

4. In'parenthesized logical
expressions, the assembler evaluates

• the innermost expressions first

•
and then considers there as lOgiCal.
terms in the next Quter level of
expressions. It continues this
process until the outermost
expression is evaluated.

Examples of Logical Expressions

/0\ z::o~
«&A NE 100) OR T'&AREA EQ '&PARAM' (3,4» • • (, ABC' LT 'ABCD') Always true

• (given a value of 1)

(&B AND NOT (5 GT 3))

V
(&B AND (NOT (5 GT 3))) •
(&B OR &A AND ('&C' EQ 'B'))

(&B OR (&A AND ('&C' EQ 'B'))) •
(NOT (&Bl OR

Section L: The Conditional Assembly Language 363

LS ... Selecting Characters from a String

I,sA -- SUBSTRING NOTATION

364

Purpose

The substring notation allows you to refer to one or Rore
charactE!rS within a character string. You can therefore
either select characters from the string and use them fer
substitution or testing, or scan through a complete string,
inspecting each charactel~. By concatenating substrings
with other substrings or character strings, you can
rearrange and build your own strings.

Sp e c i f i c!!.!,gJ:!!!

The substring notation can be used only in conditional
assembly instructions as shown in the figure below.

Can be Used as Example
Used in

-"
SETC operand &Cl SETC 'ABC' (1,3)
instruction

part of
operand

operand &C2 SETC ' &Cl ' (1,2) • 'DEF '

SETB or Character
AIF value in AIF (' &STRING' (1,4) EQ 'AREA') .SEQ
instruction comparand
operand of character &B SETB (, &STRING' (1,4) • ' 9 ' EQ 'FULL9')
(logical relation
expression)

Value Assigned
to SETC symbol

ABC

ABDEF

o
• •
o

The substring notation must be
specified as shown in the figure
to the right.

The character string is a character
expression from which the substring
is to be extracted. The first
subscript indicates the first
character that is to be extracted
from the character string. The
second subscript indicates the
number of characters to be extracted
from the character string, starting
with the character indicated by
the first subscript. Thus the
second subscript specifies the
length of the resulting substring.

Examples

, ABCDE' (I, 5)

, ABCDE' (2, 3)

, &C' (3, 3)

'&PARAM' (3, 3)

Value of Variable Character Value
Symbol of Substring

ABCDE

BCD

ABCDE CDE

.((A+3 He 10) A+3

Section L: The Con~itional Assembly Language 365

366

The charclcter string must be a valid
character expression with a length,
N, in thE! range 1 through 255 characters.

The lengt:h of the resulting substring
must be Virithin the range 0- 255;

The subscripts, e1, and e2, must be
arithmetic expressions. The substring
notation is replaced by a value that
depends on the three elements: N, e1,
and e2, as summarized below:

• In the usual case, the assembler
generates~c<J:rrect substring of
the specified length.

•
When e1 has a value of M,'Co or a
negative value, the assembler issues
an error message •

•
When the value of e1 exceeds N, the
assembler issues a warninq message,
and a null string is generated.

•
When e2 has a value of 0, the
assembler generates the null
character string. Note that if e2
is negative, the assembler issues
an error message.

• When e2 indexes past the end of the
character expression (thans,
e1+e2 is eater than N+1 ,

qenerates a
includes only the
to the end of the
sian specified.

Examples: Assume 0<NS255

• O<elSN, 0<e2~N, and
eHe2SN+l

'ABCDEF' (2,5)

.el~O
'ABCDEF' (0

eel>N

'ABCDEF' (7,1>

• 'ABCDEF' (II, 0)

N=6

N=S: * WARN ING*

8 e2=0

r"lt:;....s-lu-e-o-fe-l-d-iS-reg-ar-d-ed I

eO<elSN, 0<e2~N, but
eHe2>N+ 1

Character Value
of Substring

null

null

null

"ABCDEF 8 (3,5) N=6 *WA:R,NING* CDEF

, ABCDEF' (3,4) CDEF

L6 - Branching

L6A -- The AIF INSTRUCTION

Purpose

The AIF instruction allows you to branch according to the
result of a condition test. You can thus alter the sequence
in which your assembler language statements are processed.

The AIF instruction also provides loop control for
conditional assembly processing r which allows you to control
the sequence of statements to be generated.

It also allows you to check for error conditions and thereby
to branch to the appropriate MNOTE instruction to issue an
error message.

Specifications

The AIF instruction statement must
be specified as shown in the figure
to the right.

Name

A sequence
Symbol or
Blank

Operation

AIF

allowed between
right parenthesis
and sequence
symbol

Section L: The Conditional Assembly Language 367

the assembler evaluates the logical
expression in the operand field o at pre-assembly time. If the· logical
expression is true (logical value= 1) ,
the next statement processed by

• the assembler is the statement named
by the sequence symbol. If it is

• false (logical value =0), the next.
sequential statement is processed. l

368

.CONTINU ANOP

• ERROR

.OUT

processing continues here

AlP

ANOP

processing continues here

to

The sequence symbol in the operand
field is a conditional assembly
label that represents an address
at pre-assembly time. It is the
address of the statement to which
a branch is taken if the logical
expression preceding the sequence
symbol is true.

The statement ideptified by the
sequence symbol referred to in the
AIF instruction can appear before
or after the AIF instruction.
However, the statement must appear

OWithin the 'local scope of the
sequence symbol. Thus, the statement
identified by the sequence symbol
must appear:

~. In open code, if the corresponding
AIF instruct10n does or

~. In the same macro definition
in which the corresponding AIF
instruction appears.

The sequence symbols .EACR and
.FORWARD are not multiply defined.
No branch can be taken from open
code into a macro definition or
between macro definitions, regardless
of nested calls to other macro
definit ions.

NOTE: For compatibility, the
assemblers described in this manual
will process the AIFB instruction
(B08/360) in the same way they
process the AIF instruction.

L6B -- THE AGO IN8TRUC~ION

Purpose

open

code

Source Module

AIF (I&C I EQ 'F') .FO~WARO

AIF (&A GT 5).BACK

ANOP

MEND

START 0

AIF (&0 NE 200).FORWARD

AIF ('&CHAR' NE I) I) .BACK

ANOP

END

The AGO instruction allows you to branch unconditionally.
You can thus alter the sequence in which your assembler
language statements are processed. This provides you with
final exits from conditional assembly loops.

Section L: The Conditional Assembly Language 369

The AGO instruction statement must
be specified as shown in the figure
to the riqht. Name Operation

A sequence AGO
symbol or
blank

Source Module

MACRO
MACAGO The statement identified by a

sequence symbol referred to in the
AGO instruction can appear before
or after ·the AGO instruction.
However, -the statement must appear

AGO • FORWARD

• within the local scope of the
sequence :symbol. Thus, the statement
identified by the sequence symbol
must appear

ANOP

AGO . BACK

•
• In open code, if the corresponding
AGO instruction does or

. F'C)RWARD ANOP
•• In the same macro definition

in which the corresponding ~GO
instruction appears. MEND

NOTE: For compatibility, the
assemblers described in this manual
will proc4:!ss the AGOB instruction
(BOS/360) in the same way they

process the AGO instruction.

Open

OpEN, START

o AGO

code .fORWARD ANOP

~~c -- THE ~CTR INSTRUCTION

370

The ACTR instruction allo\o1S you to set a conditional
assembly loop counter either within a macro definition
or in OpE!n code.

Each time- the assembler processes an AIF or AGO branching
instructj,on in a macro definition or in open code, the
loop counter for that part of the program is decremented
by one. When the number of conditional assembly branches
taken reaches the value assigned by the ~CTR instructicn
to the loop counter, the clssembler exits from the macro
definition or stops processing statements in open code.

END

o

By using the ACTR instruction, you
avoid excessive looping during
conditional assembly processing
at pre-assembly time.

Specifications

The format of the ACTR instruction
statement is given in the figure
to the right.

The ACTR instruction can appear
anywhere in open code or within
a macro definition.

A conditional assembly loop counter
is set (or reset) to the value of

~the arithmetic expression in the
operand field. The loop counter

•
has a local scope; its value is
decremented only by AGO and AIF
instructions and reassigned only
by ACTR instructions that appear
within the same scope. Thus, the
nesting of macros has no effect
on the setting of individual loop
counters.

The assembler sets its own internal
loop counter both for open code
and for each macro definition, if
neither contains an ACTR instruction.
The assembler assigns a standard
value of 4096 to each of these
internal loop counters.

Open
Code

Name

Sequence
symbol or
blank

ACTR

END

Operation

ACTR

MACRO
OUTER

ACTR

ACTR

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

ACTR

Operand

Section L: The Conditional Assembly Language 371

LOOP COUNTER OPERATIONS: Within
the local scope of a particular
loop counter (including the internal
coun1:ers run by the assembler) ,
the following occurs:

1. Each time an AGO or AIF' (also
AGOB or AIFB) branch is executed,
the assembler checks 'the loop counter
for ~~ero or a negative value.

2. If the count is not zero or
nega1:ive, it is decremented by one.

• 3. If the count is ze:ro, before
decrementing, the assembler will
take one of two actions:

•

•
•

372

a. If it is processing
instructions in open code, the
assembler will process the
rE~mainder of the instructions in
the source module as comments.
Errors discovered in these
instructions during previous
passes are flagged.

b. If it is processing
instructions inside a macro
definition, the assembler
terminates the expansion of tha t
macro definition and processes
the next sequential instruction
after the call~ng macro
instruction. If the macro
dE~fini tion is call'ed by an inner
macro instruction, the assembler
processes the next sequential
instruction after this inner
cellI, that is, con'tinues
pl:ocessing at the next outer
IE~vel of nested macros (for
IE~vels of nesting see K6A).

NOTE:: The assembler halves the
,ACTR counter value when it encounters
seri()us syntax errors in conditional
assembly instructions.

MACRO MACRO
r----------------------OUTER INNER

INNER

AIF (&A EQ 5) .OUT AGO .OUT

MEND MEND

L6D -- THE ANOP INSTRUCTION

o
•

Purpose

You can specify a sequence symbol
in the name field of an ANOP
instruction, and use the symbol
as a label for branching purposes.

The ANOP instruction performs ,no
operation itself, but you can use
it to branch to instructions that
already have symbols in their name
fields. For example, if you wanted
to branch to a SETA, SETB, or SETC
assignment instruction, which
requires a variable symbol in the
name field, you could insert a
labeled ANOP instruction immediately
before the assignment instruction.
By branching to the ANOP instruction
with an AIF or AGO instruction,
you would, in effect, be branching
to the assignment instruction.

Specifications

The format of the ANOP instruction
statement is given in the figure
to the right.

No operation is performed by an
ANOP instruction. Instead, if a
branch is taken to the ANOP
instruction, the assembler processes
the next seguential instruction.

ANOP

Name Operation Operand

A sequence ANOP Not required
symbol or
blank

Example

AGO .SEQ.

~SEQ ANOP

SETA 10 &A

Section L: The Conditional Assembly Language 373

L"1' -- In Open Code

Conditional assembly instructions in open code allow yeu:

1. To select at pre-assembly time statements or groups
of statements from the open code portion of a source Iredule
according to a pre-determined set of conditions. The
assembler further processes the selected statements at
assembly time.

2. To pass local variable information from open code through
parameters into macro definitions.

3. To control the comFutation in and generation of macrc
definitions using global SE~ symbols.

4. To substitute values into the model statements in the
open code of a source mod tile and control the sequence of
their generation.

L7B -- SPECIFICATIONS

All the conditional assembly elements
and instructions can be specified
in open code •

•
Conditional assembly instructions
can appear anywhere in opE~n code,
but they must appear after any 8 source macro definitions that are
specified.

DOS The globelland ,local ,declaration
instructi.ons(see L2) must appear
firs,t in open code; t.bat ;is # they
must follow any sO,urce macro
definitions specified and precede
the beginning of the first-control
section.

374

• Ope
Cod

FIRST

Source Module

START

END

The specifications for the
conditional assembly language
described in L1 through L6 also
apply in open code. However, the
following restrictions apply:

1. To attributes in open code: For
ordinary symbols, only references
to the type, length, scaling, and
integer attributes are allowed.

NOTE: References to the number
attribute have no meaning in
open code, because &SYSLIST is
not allowed in open code and
symbolic parameters have no
meaning in open code.

2. To conditional assembly
expressions in open code, as shown
in the figure to the right.

Expression Must not contain

Arithmetic .. &SYSLIST
(SETA) .. Symbolic parameters

) .. Any attribute references to symbolic parameters,
~ &SYSLIST,&SYSECT,&SYSNDX

Character .. &SYSLIST,&SYSECT,&SYSNDX
(SETC) .. Attribute r:eferences to &SYSLIST, &SYSECT,

&SYSNDX, or to symbolic parameters

~ Symbolic parameters

Logical • Arithmetic expressions with the items listed above
(SETB)

• Character expressions with the items listed above

Section L: The Conditional Assembly Language 375

376

PUrpose

The listing options allow you to
print the conditional assembly
statements in the sequence they
are proce:ssed. You can thus follow
the conditional assembly logic in
open code or in the code within
any macro definition.

Condition.al assembly statements
in the oplen code of a source module
or in a macro definition can be
printed in the program listings
in the order in which they are
processed, including iterations.
This must be requested by specifying
the desired options in the FARM
field of 'the EXEC statement for
the assembler program (job control
languag~, or by specifying the
options in fields set up by a program
that dynamically invokes the
assembler. The options are listed
in the figure to the right.

NOTE: For other listing options
see Ja.

Option Action

NOALOGIC No conditional assembly statements in open code
are printed

ALOGIC All conditional assembly statements in open code
that are processed are printed, including iterations

NOMLOGIC No conditional assembly statements inside macro
definitions, called from your program, are printed.
NOTE: Conditional assembly statements in source
macro definitions are always printed along with the
rest of the code in a source module (assuming the
PRINT option LIST)

MLOGIC All conditional assembly statements inside macro
definitions, that are processed when you call the
macro, are printed, including iterations

Appendix I: Character Codes

r------------T-----------------T---------T---------T-----------------,
I 8-Bit I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~--------~---+-----------------+---------+---------+-----------------i

00000000 12,0,9,8,1 t 0 00
00000001 12,9,1 1 01
00000010 12,9,2 2 02
00000011 12,9,3 3 03
00000100 12,9,4 4 04
00000101 12,9,5 5 05
00000110 12,9,6 6 06
00000111 12,9,7 7 07
00001000 12,9,8 8 08
00001001 12,9,8,1 9 09
00001010 12,9,8,2 10 OA
00001011 12,9,8,3 11 OB
00001100 12,9,8,4 12 oc
00001101 12,9,8,5 13 OD
00001110 12,9,8,6 14 OE
00001111 12,9,8,7 15 OF
00010000 12,11,9,8,1 16 10
00010001 11,9~1 17 11
00010010 11,9,2 18 12
00010011 11,9,3 19 13
00010100 11,9,4 20 14
00010101 11,9,5 21 15
00010110 11,9,6 22 16
00010111 11,9,7 23 17
00011000 11,9,8 24 18
00011001 11,9,8,1 25 19
00011010 11.9,8,2 26 1A
00011011 11,9,8,3 27 1B
00011100 11,9,8,4 28 1C
00011101 11,9~8,5 29 1D
00011110 11,9,8,6 30 1E
00011111 11,9,8,7 31 1F
Q0100000 11,0,9,8,1 32 20
00100001 0#9,1 33 21
00100010 0,9,2 34 22
00100011 0,9,3 35 23
00100100 0,9,4 36 24
00100101 0,9,5 37 25
00100110 0,9,6 38 26
00100111 0#9,7 39 27
00101000 0,9,8 40 28
00101001 0,9,8,1 41 29
00101010 0,9~8.2 42 2A
00101011 0,9,8,3 43 2B
00101100 0,9,8,4 44 2C
00101101 0,9,8,5 45 2D
00101110 0,9,8,6 46 2E
00101111 0,9,8,7 47 2F
00110000 12,11,0,9,8,1 48 30
00110001 9,1 49 31

I 00110010 9,2 50 32 L ____________ ~ _________________ ~ _________ ~ _________ ~ __ --------_______ J

Appendix I: Character Codes 377

r------------T-----------------T---------T---------T-----------------,
I 8-Bi t I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+-----------------~

00110011 9,3 51 I ~3
00110100 9,4 52 I 34
00110101 9,5 53 I 35
00110110 9,6 54 I 36
00110111 9,7 55 I 37
00111000 9,8 56 I 38
onl1100l 9,8,1 57 I 39
00111010 9,8,2 58 I 3A
00111v11 9,8,3 59 j 3B
00111100 9,8,4 60 I 3C
00111101 9,8,5 61 I 3D
00111110 9,8,6 62 I 3R
00111111 9,8,7 63 I 3F
01000000 64 I 40 blank
01000001 12,0,9,1 65 I 41
01000010 12,0,9,2 66 I 42
01000011 12,0,9,3 67 I 43
01000100 12,0,9,4 68 I 44
01000101 12,0,9,5 69 I 45
01000110 12,0,9,6 70 I 46
01000111 12,0,9,7 71, 47
01001000 12,0,9,8 72 I 48
01001001 12,8,1 73 I 49
01001010 12,8,2 74 4A
01001011 12,8,3 75 4B . (period)
01001100 12,8;4 76 4C <
01001101 12,8,5 77 4D (
01001110 12,8,6 78 4E +
01001111 12,8,7 79 4F
01010000 12 80 50 &
01010001 12,11,9,1 81 51
01010010 12,11,9,2 82 52
01010011 12,11,9,3 83 53
01010100 12,11,9,4 84 54
01010101 12,11,9,5 85 55
01010110 12,11,9,6 86 56
01010111 12,11,9,7 87 57
01011000 12,11,9,8 88 58
01011001 11,8,1 89 59
01011010 11,8,2 90 5A
01011011 11,8,3 91 5B $
01011100 11,8,4 92 5C *
01011101 11,8,5 93 5D
01011110 11,8,6 94 5E
01011111 11,8,7 95 SF
01100000 11 96 60
01100001 0,1 97 61 I
01100010 11,0,9,2 98 62
01100011 11,0,9,3 99 63
01100100 11,0,9,4 100 64
01100101 11,0,9,5 101 65
01100110 11,0,9,6 102 66
01100111 11,0,9,7 103 67
01101000 11,0,9,8 104 68
01101001 0,8,1 105 69
01101010 12,11 106 6A
01101011 0,8,3 107 6B , (comma)

------------~-----------------~---------~--------- ------------------

378

t--------------T-----------------T---------T---------T-----------------,
I 8-Bi t I Character Set I I I I

EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I

~------------+-----------------+---------+---------+-----------------~
I 01101100 0,8,4 108 6C %
I 01101101 0,8,5 109 6D
I 01101110 0,8,6 110 6E
! 01101111 0,8,7 111 6F
I 01110000 12,11,0 112 70

01110001 12,11,0,9,1 113 71
01110010 12,11,0,9,2 114 72
01110011 12,11,0,9,3 115 73
01110100 12,11,0,9,4 116 74
01110101 12,11,0,9,5 117 75
01110110 12,11,0,9,6 118 76
01110111 12,11,0,9,7 119 77
01111000 12,11,0,9,8 120 78
01111001 8,1 121 79
01111010 8,2 122 7A
01111011 8,3 123 7B #
01111100 8,4 124 7C. @
01111101 8,5 125 7D • (apostrophe)
01111110 8,6 126 7E
01111111 8,7 127 7F
10000000 12,0,8,1 128 80
10000001 12,0,1 129 81
10000010 12,0,2 130 82
10000011 12,0,3 131 83
10000100 12,0,4 132 84
10000101 12,0,5 133 85
10000110 12,0,6 134 86
10000111 12,0,7 135 87
10001000 12,0,8 136 88
10001001 12,0,9 137 89
10001010 12,0,8,2 138 8A
10001011 12,0,8,3 139 8B
10001100 12,0,8,4 140 8C
10001101 12,0,8,5 141 8D
10001110 12,0,8,6 142 8E
10001111 12,0,8,7 143 8F
10010000 12,11,8,1 144 90
10010001 12,11,1 145 91
10010010 12,11,2 146 92
10010011 12,11,3 147 93
10010100 12,11,4 148 94
10010101 12,11,5 149 95
10010110 12,11,6 150 96
10010111 12,11,7 151 97
10011000 12,11,8 152 98
10011001 12,11,9 153 99
10011010 12,11,8,2 154 9A
10011011 12,11,8,3 155 9B
10011100 12,11,8,U 156 9C
10011101 12,11,8,5 157 9D
10011110 12,11,8,6 158 9E
10011111 12,11,8,7 159 9F
10100000 11,0,8,1 160 AO
10100001 11,0,1 161 A1
10100010 11,0,2 162 A2
10100011 11,0,3 163 A3

i 10100100 11,0,4 I 164 A4
~ ____________ ~ _________________ ~ _________ ~ _________ ~ _________________ J

Appendix I: Character Codes 379

r------------T-----------------T---------T---------T-----------------,
I 8 -Bi t I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I
~------------+-----------------+---------+---------+-----------------~
I 10100101 11,0,5 165 AS
I 10100110 11,0,6 166 A6

10100111 11,0,7 167 A7
10101000 11,0,8 168 A8
10101001 11,0,9 169 A9
10101010 11~0,8,2 170 AA
10101011 11,0,8,3 171 AB
10101100 11,0,8,4 172 AC
10101101 11,0,8,5 173 AD
10101110 11,0,8,6 174 AE
10101111 11,0,8,7 175 AF
10110000 12,11,0,8,1 176 BO
10110001 12,11,0,1 177 B1
10110010 12,11,0,2 178 B2
10110011 12,11,0,3 179 B3
10110100 12,11,0,4 180 B4
10110101 12,11,0,5 181 B5
10110110 12,11,0,6 182 B6
10110111 12,11,0,7 183 B7
10111000 12,11,0,8 184 B8
10111001 12,11,0,9 185 B9
10111010 12,11,0,8,2 186 BA
10111011 12,11,0,8,3 187 BB
10111100 12,11,0,8,4 188 BC
10111101 12,11,0,8,5 189 BD
10111110 12,11,0,8,6 190 BE
10111111 12,11,0,8,7 191 BF
11000000 12,0 192 CO
11000001 12,1 193 Cl A
11000010 12,2 194 C2 B
11000011 12,3 195 C3 C
11000100 12,4 196 C4 D
11000101 12,5 197 C5 E
11000110 12,6 198 C6 F
11000111 12,7 199 C7 G
11001000 12,8 200 C8 H
11001001 12,9 201 C9 I
11001010 12,0,9,8,2 202 CA
11001011 12,0,9,8,3 203 CB
11001100 12,0,9,8,4 204 CC
11001101 12,0,9,8,5 205 CD
11001110 12,0,9,8,6 206 CE
11001111 12,0,9,~,1 207 CF
11010000 11,0 208 DO
11010001 11,1 209 01 J
11010010 11,2 210 02 K
11010011 11,3 211 D3 L
11010100 11,4 212 D4 M
11D10101 11,5 213 D5 N
11010110 .11,6 214 06 0
11010111 11,7 215 D1 P
11011000 11,8 216 08 Q
11011001 11,9 217 09 R
11011010 12,11,9,8,2 218 OA
11011011 12,11,9,8,3 219 DB
11011100 12,11,9,8,4 220 DC
11011101 12,11,9,8,5 221 DO L ____________ ~ _________________ ~ _________ L _________ L ________________ _

380

r------------T-----------------T---------T---------T-----------------,
I 8-Bit I Character Set I I I I
I EBCDIC I Punch I I Hexa- I Printer I
I Code I Combination I Decimal I Decimal I Graphics I

~------------+-----------------+---------+---------+-----------------~
11011110 12,11,9,8,6 222 DE
11011111 12,11,9,8,7 223 DF
11100000 0,8,2 224 EO
11100001 11,0,9,1 225 El
11100010 0,2 226 E2 S
11100011 0,3 227 E3 T
11100100 0,4 228 E4 U
11100101 0,5 229 E5 V
11100110 0,6 230 E6 W
11100111 0,7 231 E7 X
11101000 0,8 232 E8 Y
11101001 0,9 233 E9 Z
11101010 11,0,9,8,2 234 EA
11101011 11,0,9,8,3 235 EB
11101100 11,0,9~8,4 236 EC
11101101 11,0,9,8,5 237 ED
11101110 11,0.9,8,6 238 EE
11101111 11,0,9,8,7 239 EF
11110000 0 240 FO 0
11110001 1 241 F1 1
11110010 2 242 F2 2
11110011 3 243 F3 3
11110100 4 244 F4 4
11110101 5 245 F5 5
11110110 6 246 F6 6
11110111 7 247 F7 7
11111000 8 248 F8 8
11111001 9 249 F9 9
11111010 12,11,0,9,8,2 250 FA
11111011 12;11,0,9,8,3 251 FB
11111100 12,11,0,9,8,4 252 FC
11111101 12,11,0,9,8,5 253 FD
11111110 12,11,0,9,8,6 254 FE
11111111 12,11,0,9,8.7 255 FF ____________ ~ _________________ ~ _________ ~ _________ ~ _________________ J

Special Graphic Characters

~ Cent Sign * Asterisk > Greater-than Sign
Period, Decimal Point) Right Parenthesis ? Question Mark

< Less-than Sign ; Semicolon : Colon
(Left Parenthesis -, Logical NOT , Number Sign

+ Plus Sign - Minus Sign, Hyphen @ At Sign
I Vertical Bar, Logical OR / Slosh I Prime, Apostrophe
& Ampersand Comma = Equal Sign
! Exclamation Point % Percent " Quotation Mark
$ Dollar Sign - Underscore

Bit Pattern Hole Pattern
Examples Type Bit Positions

I 01 234567 Zone Punches Digit Punches

PF Control Character 00 00 0100 12 -9 - 4

% Special Graphic 01 101100 0-8-4

R Upper Case 1101 1001 11 - 9

a Lower Case 10000001 12 -0 - 1
Control Character, 00 11 0000 12-11-0 -9 - 8 - 1

I
function not yet I
assigned 1

Appendix I: Character Codes 381

382

Appendix II: Hexadecimal-Decimal Conversion Table

The table in this appendix provides for direct conversion of decimal and hexadecimal
numbers i~ these ranges:

r--------------T---------------,
I Hexadecimal I Decimal I

~--------------+---------------~
I 000 to FFF I 0000 to 4095 I l ______________ ~ _______________ J

Decimal numbers (0000-4095) are given within the 5-part table. The first two characters
(high-order) of hexadecimal numbers (OOO-FFF) are given in the lefthand column of the
table; the third character (xl is arranged across the top of each part of the table.

To find the decimal equivalent of the hexadecimal number OC9, look for OC in the left
co1um, and across that row under the column for x = 9. The decimal number is 0201.

To convert from decimal to hexadecimal·, look up the decimal number within the table
and read the hexadecimal number by a combination of the hex characters in the left
column, and the value for x at the top of the column containing the decimal number. For
example, the decimal number 123 has the hexadecimal equivalent of 07B; the decimal
number 1478 has the hexadecimal equivalent of 5C6.

For numbers outside the range of the table, add the following values to the table

r--------------T-----------,
I Hexadecimal I Decimal I

~--------------+-----------~
1000 4096
2000 8192
3000 12288
4000 16384
5000 20480
6000 24576
7000 28672
8000 32768
9000 36864
AOOO 40960
BOOO 45056
COOO 49152
DOOO 53248
EOOO l 57344
FOOO I 61440

--------------~-----------

Appendix II: Hexadecimal-Decimal Conversion Table 383

OOx
Olx
02x
03x

04x
05x
(l6x
07x

(l8x
09x
(lAx
OBx

OCx
OOx
OEx
OFx

lOx
llx
12x
13x

14x
15x
16x
17x

18x
19x
lAx
lBx

lCx
lDx.
lEx
lFx

20x
21x
22x
23x

24x
25x
26x
27x

28x
29x
2Ax
2Bx

2Cx
20x
2Ex
2Fx

30x
31x
32x
33x

34x
35x
36x
37x

3Bx
3'b
3Ax
3l8x

lex
31)x
lEx
llPx

384

x = 0

0000
0016
0012
0048

0064
0080
0096
0112

0128
0144
0160
0176

0192
0208
0224
0240

0256
0272
0288
0304

0320
0336
0352
0368

0384
0400
0416
0432

0448
0464
0480
0496

0512
0528
0544
0560

0576
0592
0608
06216

0640
0656
0672
0688

0704
0720
0736
0752

0768
07816
0800
0816

0832
08168
0864
0880

0896
0912
0928
09164

0960
0976
0992
1008

0001
0017
0033
004~)

006~;
008"
009?
0113

o 12~t
0145
016'1
011"1

019]
020')
022~;

0241

025"1
0273
0289
030!;

032'1
0337
0353
036!J

0385
040"
0'417
0433

044!J
0465
048"
049"1

05121
052~'
054!i
0561'

057i1
0593
060~'
062!;

06411
0657
0673
0689

070!,
072~
0731
07531

0769
078!i
0801
0811'

08331
0816S!
0865
0881

0891'
09131
092S'
0945>

0961
0977
0993
1009

2

0002
0018
0034
0050

0066
0082
0098
0114

0130
0146
0162
0178

0194
0210
0226
0242

0258
0274
0290
0306

0322
0338
0354
0370

0386
01602
0418
04316

0450
0466
0482
0498

0514
0530
0546
0562

0578
05916
0610
0626

0642
0658
06716
0690

0706
0722
0738
0754

0770
0786
0802
0818

0834
0850
0866
0882

0898
0914
0930
09166

0962
0978
0994
1010

3

0003
0019
0035
0051

0067
0083
0099
0115

0131
0147
0163
0179

0195
0211
0227
0243

0259
0275
0291
0307

0323
0339
0355
0371

0387
01603
041~
0435

01651
0467
0483
0499

0515
0531
0547
0563

0579
0595
0611
0627

06163
0659
0675
0691

0707
0723
0739
0755

0771
0787
0803
0819

0835
0851
0867
0883

0899
0915
0931
0947

0963
0979
0995
1011

16

0004
0020
0036
0052

0068
0084
0100
0116

0132
0148
0164
0180

0196
0212
0228
0244

0260
0276
0292
0308

0324
0340
0356
0372

0388
0404
0420
0436

0452
01668
0484
0500

0516
0532
0548
0564

0580
0596
0612
0628

0644
0660
0676
0692

0708
0724
0740
0756

0772
0788
0804
0820

0836
0852
0868
0884

0900
0916
0932
09168

0964
0980
0996
1012

5

0005
0021
0037
0053

0069
0085
0101
0117

0133
0149
0165
0181

0197
0213
0229
02165

0261
0277
0293
0309

0325
0341
0357
0373

0389
0405
0421
0437

0453
0469
0485
0501

0517
0533
0549
0565

0581
0597
0613
0629

0645
0661
0677
0693

0709
0725
0741
0757

0773
0789
0805
0821

0837
0853
0869
0885

0901
0917
0933
0949

0965
0981
0997
1013

6

0006
0022
0038
0054

0070
0086
0102
0118

0134
0150
0166
0182

0198
0214
0230
0246

0262
0278
0294
0310

0326
0342
0358
0374

0390
0406
0422
0438

0454
0470
0486
0502

0518
0534
0550
0566

0582
0598
0614
0630

0646
0662
0678
0694

0710
0726
0742
0758

0774
0790
0806
0822

0838
08516
0870
0886

0902
0918
0934
0950

0966
0982
0998
1014

7

0007
0023
0039
0055

0071
0087
0103
0119

0135
0151
0167
0183

0199
0215
0231
0247

0263
0279
0295
0311

0327
0343
0359
0375

0391
0407
0423
0439

0455
0471
0487
0503

0519
0535
0551
0567

0583
0599
0615
0631

0647
0663
0679
0695

0711
0727
0743
0759

0775
0791
0807
0823

0839
0855
0871
0887

0903
0919
0935
0951

0967
0983
0999
1015

8

0008
0024
00160
0056

0072
0088
0104
0120

0136
0152
0168
0184

0200
0216
0232
02168

0264
0280
0296
0312

0328
0344
0360
0376

0392
0408
04216
0440

0456
1)472
0488
0504

0520
0536
0552
0568

0584
0600
0616
0632

0648
0664
0680
0696

0712
0728
0744
0760

0776
0792
0808
0824

0840
0856
0872
0888

0904
0920
0936
0952

0968
0984
1000
1016

9

0009
0025
0041
0057

0073
0089
0105
0121

0137
0153
0169
0185

0201
0217
0233
0249

0265
0281
0297
0313

0329
0345
0361
0377

0393
0409
0425
0441

0457
0473
0489
0505

0521
0537
0553
0569

0585
0601
0617
0633

0649
0665
0681
0697

0713
0729
0745
0761

0777
0793
0809
0825

0841
0857
0873
0889

0905
0921
0937
0953

0969
0985
1001
1017

A

0010
0026
0042
0058

0074
0090
0106
0122

0138
0154
0170
0186

0202
0218
0234
0250

0266
0282
0298
0314

0330
0346
0362
0378

0394
0410
0426
0442

0458
0474
0490
0506

0522
0538
0554
0570

0586
0602
0618
0634

0650
0666
0682
0698

0714
0730
0746
0762

0778
0794
0810
0826

0842
0858
0874
0890

0906
0922
0938
0954

0970
0986
1002
1018

B

0011
0027
0043
0059

0075
0091
0107
0123

0139
0155
0171
0187

0203
0219
0235
0251

0267
0283
0299
0315

0331
0347
0363
0379

0395
0411
0427
0443

0459
0475
0491
0507

0523
0539
0555
0571

0587
0603
0619
0635

0651
0667
0683
0699

0715
0731
0747
0763

0779
0795
0811
0827

0843
0859
0875
0891

0907
0923
0939
0955

0971
0987
1003
1019

c

0012
0028
0044
0060

0076
0092
0108
0124

0140
0156
0172
0188

0204
0220
0236
0252

0268
0284
0300
0316

0332
0348
0364
0380

0396
0412
0428
0444

0460
0476
0492
0508

0524
0540
0556
0572

0588
0604
0620
0636

0652
0668
06816
0700

0716
0732
0748
0764

0780
0796
0812
0828

0844
0860
0876
0892

0908
0924
0940
0956

0972
0988
1004
1020

D

0013
0029
0045
0061

0077
0093
0109
0125

0141
0157
0173
0189

0205
0221
0237
0253

0269
0285
0301
0317

0333
0349
0365
0381

0397
0413
0429
0445

0461
0477
0493
0509

0525
0541
0557
0573

0589
0605
0621
0637

0653
0669
0685
0701

0717
0733
0749
0765

0781
0797
0813
0829

0845
0861
0877
0893

0909
0925
0941
0957

0973
0989
1005
1021

E

0014
0030
00166
0062

0078
0094
0110
0126

0'142
0158
0174
0'190

0206
0222
0238
0254

0270
0286
0302
0318

0334
0350
0366
0382

0398
0414
0430
0446

0462
01678
0494
0<;10

0526
0542
0558
0574

0590
0606
0622
0638

06516
0670
0686
0702

0718
0734
0750
0166

0782
0798
08116
0830

0846
0862
0878
0894

0910
0926
0942
0958

0974
0990
1006
1022

F

0015
0031
00u7
000:

007~
009~
0111
0\~7

0143
015)
0175
0191

0207
0223
0239
0255

0271
0287
0303
0319

0335
0351
0367
0383

0399
0415
0431
0447

OIlP
04H
04~!j

0511

0527
0543
0559
0575

0591
0607
0623
0639

0&55
0671
0687
0703

0719
0735
0751
0767

0783
0799
0815
0831

0847
0863
0879
0895

0911
0927
0943
0959

0975
0991
1007
1023

x = 0 1 2 3 4 5 6 1 8 9 A B C D E F
, -- -,

40x 1024 1025 1026 1021 1028 1029 1030 1031 1032 1033 1034 1035 1036 1031 1038 1039
41x 1040 1041 1042 1043 1044 1045 1046 1041 1048 1049 1050 1051 1052 1053 1054 1055
42x 1056 1051 1058 1059 1060 1061 1062 1063 1064 1065 1066 1061 1068 1069 1010 1011
43x 1012 1013 1014 1015 1016 1011 1018 1019 1080 1081 1082 1083 1084 10El5 10116 1081

44x 1088 1089 1090 1091 1092 1093 1094 1095 1096 1091 1098 1099 1100 1101 1102 1103
45x 1104 1105 1106 1101 1108 1109 1110 11 '11 1112 1113 1114 1115 1116 1111 1118 1119
46x 1120 1121 1122 1123 1124 1125 1126 1121 1128 1129 1130 1131 1132 1133 1134 1135
41x 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1141 1148 1149 1150 1151

48x 1152 1153 1154 1155 1156 1151 1158 1159 1160 1161 1162 1163 1164 1165 1166 1161
49x 1168 1169 1170 1111 1172 1173 1114 1175 1116 1111 1118 1179 1180 1181 1182 1183

"Ax 1184 1185 1186 1181 1188 1189 1190 1191 1192 1193 1194 1195 1196 1191 1198 1199
4Bx 1200 1201 1202 1203 1204 1205 1206 1201 1208 1209 1210 1211 1212 1213 1214 1215

4Cx 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
4Dx 1232 1233 1234 1235 1236 1231 1238 1239 1240 1241 1242 1243 1244 1245 1246 1241
4Ex 1248 1249 1250 1251 1252 1253 1254 1255 1256 1251 1258 1259 1260 1261 1262 1263
4Fx 1264 1265 1266 1261 1268 1269 1210 1211 1212 121.3 1274 1215 1216 1211 1278 1279

SOx 1280 1281 1282 1283 1284 1285 1286 1281 1288 1289 1290 1291 1292 1293 1294 1295
51x 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1301 1308 1309 1310 1311
52x 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327
53x 1328 1329 1330 1331 1332 1333 1334 1335 1336 1331 1338 1339 1340 1341 1342 1343

54x 1344 1345 1346 1341 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359
55x 1360 1361 1362 1363 1364 1365 1366 1361 1368 1369 1310 1371 1312 1313 1314 1375
56x 1376 1311 1378 1319 1380 1381 1382 1383 1384 1385 1386 1381 1388 1389 1390 1391
57x 1392 1393 1394 1395 1396 1391 1398 1399 1400 1401 1402 1403 1404 1405 1406 1401

58x 1408 1409 1410 1411 1412 1413 1414 1415 1416 1411 1418 1419 1420 1421 1422 1423
59x 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1431 1438 1439
SAx 1440 1441 1442 1443 1444 1445 1446 1441 1448 1449 1450 1451 1452 1453 1454 1455
5Bx 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1461 1468 1469 1410 1471

sex 1412 11173 111711 1415 1476 1411 1418 1419 11180 1481 1482 1483 1484 1485 1486 1481
5Dx 1488 1489 1490 1491 1492 1493 1494 1495 1496 1491 1498 1499 1500 1501 1502 1503
SEx 1504 1505 1506 1501 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519
5Fx 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535

60x 1536 1531 1538 1539 1540 1541 1542 1543 1544 1545 1546 1541 1548 1549 1550 1 ~~1
61x 1552 1553 1554 1555 1556 1551 1558 1559 1560 1561 1562 1563 1564 1565 1566 1561
62x 1568 1569 1510 1511 1512 1513 1514 1515 1516 1511 1518 1519 1580 1581 1582 1583
63x 1584 1585 1586 1581 1588 1589 1590 1591 1592 1593 1594 1595 1596 1591 1598 1599

64x 1600 1601 1602 1603 1604 1605 1606 1601 1608 1609 1610 1611 1612 1613 1614 1615
65x 1616 1611 1618 1619 1620 1621 1622 1623 1624 1625 1626 1621 1628 1629 1630 1631
66x 1632 1633 1634 1635 1636 1631 1638 1639 1640 1641 1642 1643 1644 1645 1646 1641
61x 1648 1649 1650 1651 1652 1653 1654 1655 1656 1651 1658 1659 1660 1661 1662 1663

68x 1664 1665 1666 1661 1668 1669 1610 1611 1672 1613 1614 1675 1676 1611 1678 1679
69x 1680 1681 1682 1683 1684 1685 1686 1681 1688 1689 1690 1691 1692 1693 1694 1695
6Ax 1696 1697 1698 1699 1100 1101 1102 1103 1104 1705 1106 1107 1708 1709 1710 1711
6Bx 1112 1713 1114 1115 1116 1711 1118 1119 1720 1721 1722 1723 1724 1725 1726 1721

6Cx 1128 1129 1130 1731 1132 1133 1134 1135 1736 1131 1738 1739 1140 1741 1742 1743
6Dx 1144 1745 1146 1141 1748 1149 1150 1151 1152 1153 1754 1755 1156 1157 1158 1159
6Ex 1160 1761 1762 1763 1164 1165 1766 1761 1168 1769 1770 1771 1772 1773 1774 1775
6Fx 1116 1111 1118 1119 1180 1181 1782 1183 1184 1785 1786 1787 1788 1189 1790 1791

10x 1192 1193 1194 1195 1796 1191 1198 1799 1800 1801 1802 1803 1804 1805 1806 1801
11x 1808 1809 1810 1811 1812 1813 1814 1815 1816 1811 1818 1819 1820 1821 1822 11123
1ZX 1824 1825 1826 1821 1828 1829 1830 1831 1832 1833 1834 1835 1836 1831 1838 1839
13x 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 llj55

14x 1856 1851 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1810 1871
15x 1812 1813 1874 1815 1816 1811 1818 1819 1880 1881 1882 1883 1884 1885 18ti6 1887
16x 1888 1889 1890 1891 1892 1893 1894 1895 1896 1891 1898 1899 1900 1901 1902 1903
11x 1904 1905 1906 1901 1908 1909 1910 1911 1912 1913 1914 1915 1916 1911 1918 1919

18x 1920 1921 1922 1923 1924 1925 1926 1921 1928 1929 1930 1931 1932 1933 1934 1935
19x 1936 1931 1938 1939 1940 1941 1942 1943 1944 1945 1946 1941 1948 1949 1950 1951
7Ax 1952 1953 1954 1955 1956 1951 1958 1959 1960 ,1961 1962 1963 1964 1965 1966 1961
1Bx 1968 1969 1910 1911 1912 1913 1914 1915 1976 1911 1918 1919 1980 1981 1982 1983

1Cx 1984 1985 1986 1981 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
1Dx 2000 2001 2002 2003 2004 2005 2006 2001 2008 2009 2010 2011 2012 2013 2014 2015
1Ex 2016 2011 2018 2019 2020 2021 2022 2023 2024 2025 2026 2021 2028 2029 2030 2031
1Fx 2032 2033 2034 2035 2036 2031 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047

Appendix II: Hexadecimal-Decimal Conversion Table 385

80x
81x
82x
83x

81lx
85x
86x
87x

88x
89x
8Ax
8Bx

8Cx
8Dx
8Ex
8Fx

90x
91x
92x
93x

94x
95x
96x
97x

AOx
I~ lx
i~2.x
j~3x

}~Ilx

}~5:K
}~6:K
J\7x

1~8x
1~9x
AAx
j\Bx

ACx
ADx
AEx
AFx

BOx
lalx
B2x
IB3x

IB4x
B5x
:a6x
B7x

S8x
B9x
SAx
SBx

SCx
BDx
SEx
BFx

386

x = \)
2048
2061l
2080
2096

2112
2128
2Ull
2160

2176
2192
2208
2224

22110
2256
2272
2288

2304
2320
2336
2352

2368
23811
21100
2416

2432
21l1l8
2464
2480

2496
2512
2528
2544

2560
2576
2592
2608

2621l
2640
2656
2672

2688
2704
2720
2736

2752
2768
2784
2800

2816
2832
28118
2864

2880
2896
2912
2928

2944
2960
2976
2992

3008
3021l
3040
3056

2049
2065
2081
2097

2113
2129
2145
2161

2177
2193
2209
2225

2241
2257
2273
2289

230'5
232.1
2337
23S3

2369
23£15
24(11
2411

2433
241il9
24£.5
24111

24!17
25'13
25:19
25 115

2561
25'17
25 'B
2609

26:25
261~ 1
26'57
26'13

2689
2705
2721
2737

27'B
2769
2785
2801

281 7
2833
28119
2865

2881
2897
2913
2929

2945
2961
2977
2993

3009
3025
3041
3057

2

2050
2066
2082
2098

2111l
2130
21116
2162

2178
2194
2210
2226

2242
2258
2271l
2290

2306
2322
2338
2354

2370
2386
2402
2418

2431l
21150
2466
2482

2498
2514
2530
2546

2562
2578
2591l
2610

2626
26112
2658
2671l

2690
2706
2722
2738

2754
2770
2786
2802

2818
2831l
2850
2866

2882
2898
2911l
2930

2946
2962
2978
2991l

3010
3026
3042
3058

3

2051
2067
2083
2099

2115
2131
2147
2163

2179
2195
2211
2227

2243
2259
2275
2291

2307
2323
2339
2355

2371
2387
21103
2419

2435
21151
2467
2483

21199
2515
2531
2547

2563
2579
2595
2611

2627
2643
2659
2615

2691
2701
2723
2739

2755
2771
2187
2803

2819
2835
2851
2867

2883
2899
2915
2931

2941
2963
2919
2995

3011
3027
3043
3059

4

2052
2068
2081l
2100

2116
2132
2148
2164

2180
2196
2212
2228

221l1l
2260
2276
2292

2308
2324
2340
2356

2372
2388
2404
2420

21136
2452
2468
2481l

2500
2516
2532
2548

2561l
2580
2596
2612

2628
2644
2660
2616

2692
2708
2724
2740

2756
2772
2788
2804

2820
2836
2852
2868

2881l
2900
2916
2932

2948
2961l
2980
2996

3012
3028
3044
3060

5

2053
2069
2085
2101

2111
2133
2149
2165

2181
2197
2213
2229

2245
2261
2277
2293

2309
2325
2341
2357

2373
2389
2405
2421

2437
2453
21169
2485

2501
2517
2533
25119

2565
2581
2597
2613

2629
2645
2661
2677

2693
2709
2125
2741

2157
2773
2789
2805

2821
2837
2853
2869

2885
2901
2911
2933

2949
2965
2981
2997

3013
3029
3045
3061

6

2054
2070
2086
2102

2118
2134
2150
2166

2182
2198
2211l
2230

2246
2262
2278
2291l

2310
232,6
2342
2358

2374
2390
2406
2422

2438
2454
2470
2486

2502
2518
2534
2550

2566
2582
2598
2614

2630
2646
2662
2618

2694
2110
2726
2742

2758
2774
2790
2806

2822
2838
2854
2810

2886
2902
2918
2934

2950
2966
2982
2998

3014
3030
3046
3062

7

2055
2071
2087
2103

2119
2135
2151
2167

2183
2199
2215
2231

2247
2263
2279
2295

2311
2321
2343
2359

2375
2391
2407
2423

2439
2455
2471
2481

2503
2519
2535
2551

2567
2583
2599
2615

2631
2641
2663
2679

2695
2711
2721
2743

2159
2715
2791
2807

2823
2839
2855
2811

2887
2903
2919
2935

2951
2967
2983
2999

3015
3031
3047
3063

8

2056
2072
2088
2104

2120
2136
2152
2168

2184
2200
2216
2232

2248
2264
2280
2296

2312
2328
2344
2360

2376
2392
2408
2424

2440
2456
2472
2488

2504
2520
2536
2552

2568
2584
2600
2616

2632
2648
2664
2680

2696
2112
2728
2744

2160
2776
2792
2808

2824
2840
2856
2872

2888
2904
2920
2936

2952
2968
2984
3000

3016
3032
3048
3064

9

2057
2073
2089
2105

2121
2137
2153
2169

2185
2201
2217
2233

2249
2265
2281
2291

2313
2329
2345
2361

2371
2393
2409
2425

2441
2457
2473
2489

2505
2521
2537
2553

2569
2585
2601
2611

2633
2649
2665
2681

2691
2713
2729
2745

2761
2171
2793
2809

2825
2841
2857
2873

2889
2905
2921
2937

2953
2969
2985
3001

3017
3033
3049
3065

A

2058
2074
2090
2106

2122
2138
2154
2170

2186
2202
2218
2234

2250
2266
2282
2298

2314
2330
2346
2362

2378
2394
2410
2426

2442
2458
2474
2490

2506
2522
2538
2554

2570
2586
2602
2618

2634
2650
2666
2682

2698
2714
2730
2746

2762
2718
2794
2810

2826
2842
2858
2814

2890
2906
2922
2938

2954
2970
2986
3002

3018
3034
3050
3066

B

2059
2075
2091
2107

2123
2139
2155
2171

2187
2203
2219
2235

2251
2261
2283
2299

2315
2331
2347
2363

2379
2395
2411
2427

2443
2459
2475
2491

2507
2523
2539
2555

2571
2587
2603
2619

2635
2651
2667
2683

2699
2715
2131
2747

2763
2179
2795
2811

2827
2843
2859
2875

2891
2907
2923
2939

2955
2971
2987
3003

3019
3035
3051
3067

C

2060
2076
2092
2108

2124
21110
2156
2112

2188
2204
2220
2236

2252
2268
2284
2300

2316
2332
2348
2364

2380
2396
2412
2428

2444
2460
2476
2492

2508
2524
2540
2556

2572
2588
2604
2620

2636
2652
2668
26f14

21tlO
2716
2732
2748

276"
2780
2196
2812

2828
2844
2860
2876

2892
2908
2924
2940

2956
2972
2988
1004

3020
3036
3052
3068

D

2061
2077
2093
2109

2125
2141
2157
2173

2189
2205
2221
2231

2253
2269
2285
2301

2317
2333
2349
2365

2381
2397
2413
2429

2445
2461
2477
2493

2509
2525
2541
2557

2513
2589
2605
2621

2631
2653
2669
2685

2101
2717
2733
2149

"765
2781
2191
2813

2829
2845
2861
2877

2893
2909
2925
2941

2957
2973
2989
3005

3021
3037'
3053
3069

E

2062
2078
2094
2110

2126
2142
2158
2114

2190
2206
2222
2238

2254
2270
2286
2302

2318
2334
2350
2366

2382
2398
2414
2430

2446
2462
2478
2494

2510
2526
2542
2558

2574
2590
2606
2622

2638
2654
2670
2686

2702
2718
2734
2150

2166
2182
2798
2814

2830
2846
2862
2878

2894
2910
2926
2942

2958
29711
2990
3006

302 •.
3038
3054
3010

F

2063
2079
2095
2111

2127
2143
2159
2175

2191
2207
2223
223'9

2255
2271
2287
2303

2319
2335
2351
2367

2383
2399
2415
2431

2447
2463
2479
2495

2511
2527
2543
2559

2575
2591
2607
2623

2639
2655
2671
2687

2703
2719
2735
2751

2167
2783
2799
2815

2831
2847
2863
21)79

2895
2911
2927
2943

2959
2975
2991
3001

3023
3039
3055
3071

x = 0 1 2 3 4 5 6 1 8 9 A B C D E F

COx 3012 3013 3014 3075 3016 3071 3018 3019 3080 3081 3082 3083 3084 .)vo:> 3086 3081
Clx 3088 3089 3090 3091 3092 3093 3094 3095 3096 3091 3098 3099 3100 3101 3102 3103
C2x 3104 3105 3106 3101 3108 3109 3110 3111 3112 3113 3114 3115 3116 3111 3118 3119
C3x 3120 3121 3122 3123 3124 3125 3126 3121 3128 3129 3130 3131 3132 3133 3134 3135

C4x 3136 3131 3138 3139 314O 3141 3142 3143 3144 3145 3146 3141 3148 3149 3150 3151
C5x ~152 3153 3154 3155 3156 3151 3158 3159 3160 3161 3162 3163 3164 3165 3166 3161
C6x 3168 3169 3110 3111 3112 3113 3114 3115 3116 3111 3118 3119 3180 3181 3182 3183
C1x 3184 3185 3186 3181 3188 3189 3190 3191 3192 3193 3194 3195 3196 3191 3198 3199

C8x 3200 3201 3202 3203 3204 3205 3206 3201 3208 3209 3210 3211 3212 3213 3214 3215
C9x 3216 3211 3218 3219 3220 3221 3222 3223 3224 3225 3226 3221 3228 3229 3230 3231
CAx 3232 3233 3234 3235 3236 3231 3238 3239 324O 3241 3242 3243 3244 3245 3246 3241
CBx 3248 3249 3250 3251 3252 3253 3254 3255 3256 3251 3258 3259 3260 3261 3262 3263

CCx 3264 3265 3266 3261 3268 3269 3210 3211 3212 3213 3214 3215 3216 3211 3218 3219
CDx 3280 3281 3282 3283 3284 3285 3286 3281 3288 3289 3290 3291 3292 3293 3294 3295
CEx 3296 3291 3298 3299 3300 3301 3302 3303 33{)4 3305 3306 3301 3308 3309 3310 3311
CFx 3312 3313 3314 3315 3316 3311 3318 3319 3320 3321 3322 3323 3324 3325 3326 3321

DOx 3328 3329 3330 3331 3332 3333 3334 3335 3336 3331 3338 3339 334O 3341 3342 3343
Dlx 3344 3345 3346 3341 3348 3349 3350 3351 3352 3353 3354 3355 3356 3351 3358 3359
D2x 3360 3361 3362 3363 3364 3365 3366 3361 3368 3369 3310 3311 3312 3373 3314 3315
D3x 3316 3311 3318 3319 3380 3381 3382 3383 3384 3385 3386 3381 3388 3389 3390 3391

D4x 3392 3393 3394 3395 3396 3391 3398 3399 340O 3401 3402 3403 3404 3405 3406 3401
D5x 3408 3409 3410 3411 3412 34'13 3414 3415 3416 3411 3418 3419 3420 3421 3422 3423
D6x 3424 3425 3426 3421 3428 3429 343O 3431 3432 3433 3434 3435 3436 3431 3438 3439
D1x 344O 3441 3442 3443 3444 3445 3446 3441 3448 3449 345O 3451 3452 3453 3454 3455

D8x 3456 3451 3458 3459 346O 3461 3462 3463 3464 3465 3466 3461 3468 3469 341O 3411
D9x 3412 3473 3414 3415 3416 3411 3478 3419 348O 3481 3482 3483 3484 3485 3486 3481
DAx 3488 3489 349O 3491 3492 3493 3494 3495 3496 3491 3498 3499 3500 3501 3502 3503
DBx 3504 3505 3506 3501 3508 3509 3510 3511 3512 3513 3514 3515 3516 3511 3518 3519

DCx 3520 3521 3522 3523 3524 3525 3526 3521 3528 3529 3530 3531 3532 3533 3534 3535
DDx 3536 3537 3538 3539 354O 3541 3542 3543 3544 3545 3546 3541 3548 3549 3550 3551
DEx 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3561
DFx 3568 3569 3570 3511 3572 3573 3574 3575 3516 3511 3518 3519 3580 3581 35i:l2 3583

EOx 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3591 3598 3599
Elx 3600 3601 3602 3603 3604 3605 3606 3601 3608 3609 3610 3611 3612 3613 3614 3615
E2x 3616 3611 3618 3619 3620 3621 3622 3623 3624 3625 3626 3621 3628 3629 3630 3631
E3x 3632 3633 3634 3635 3636 3631 3638 3639 364O 3641 3642 3643 3644 3645 3646 3641

E4x 3648 3649 3650 3f;51 3652 3653 3654 3655 3656 3651 3658 3659 3660 3661 3662 3663
E5x 3664 3665 3666 3667 3668 3669 3610 3611 3612 3613 3614 3615 3616 3671 3618 3619
E6x 3680 3681 3682 3683 3684 3685 3686 3681 3688 3689 3690 3691 3692 3693 3694 3695
E1x 3696 3691 3698 3699 3100 3101 3102 3103 3104 3105 3106 3101 3108 370'1 1710 3711

E8x 3712 3713 3714 3115 3116 3111 3718 3119 3120 3721 3122 3123 3124 3725 J7;"t1 3727
E9x 3728 3129 3130 3731 3132 3133 3134 3135 3136 3731 3138 3139 314O 3141 3742 3143
EAx 3144 3745 3146 3147 3148 3149 3150 3151 3152 3153 3754 3155 3156 3751 3758 3759
EBx 3160 3161 3162 3763 3164 3165 3166 3161 3168 3169 3110 3111 3112 3773 3174 3115

ECx 3716 3111 3118 3179 3180 3181 3782 3183 3184 3785 3186 3181 3188 3789 3190 3191
EDx 3192 3193 3194 3195 3196 3191 3198 3199 3800 3801 3802 3803 3804 3805 3806 31;01
EEx 3808 3809 3810 3811 3812 3813 3814 3815 3816 3811 3818 3819 3820 3821 3822 3823
EFx 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3831 3838 3i:l39

FOx 384O 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3352 3853 3854 38S5
Flx 3856 3851 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 31111
F2x 3812 3813 3814 3815 3876 3811 3818 3819 3880 3881 3882 3883 3884 3885 38i:l6 3tl81
F3x 3888 3889 3890 3891 3892 3893 3894 3895 3896 3891 3898 3899 3900 3901 3902 3903

F4x 3904 3905 3906 3901 3908 3909 3910 3911 3912 3913 3914 3915 3916 3911 3918 3919
F5x 3920 3921 3922 3923 3924 3925 3926 3"921 3928 3929 3930 3931 3932 3933 3934 3935
F6x 3936 3931 3938 3939 394O 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951
F1x 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3961

F8x 3968 3969 3910 3911 3912 3973 3914 3915 3916 3911 3918 3919 3980 3981 391;2 3983
. F9x 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999

FAx 400O 4001 4002 4003 4004 4005 4006 4001 4008 4009 401O 4011 4012 4013 4014 4015
FBx 4016 4011 4018 4019 402O 4021 4022 4023 4024 4025 4026 4021 4028 4029 403O 4031

FCx 4032 4033 4034 4035 4036 4031 4038 4039 404O 4041 4042 4043 4044 4045 4046 4041
FDx 4048 4049 405O 4051 4052 4053 4054 4055 4056 4051 4058 4059 406O 4061 4062 4063
FEx 4064 4065 4066 4061 4068 4069 401O 4011 4012 4013 4014 4015 4016 4011 4018 4019
FFx 408O 4081 4082 4083 4084 4085 4086 4081 4088 4089 4090 4091 4092 4093 4094 4095

Appendix II: Hexadecimal-Decimal Conversion Table 387

388

Appendix"III: Machine Instruction Format

ASSEMBLER OPERAND
BASIC MACHINE FORMAT FIELD FORMAT APPLICABLE INSTRUCTIONS

8 4 4 Rl,R2 All RR instructions
Operation except BCR,SPM,

Code Rl R2 and SVC

RR

8 4 4 Ml,R2 BCR
Operation

Code Ml R2

8 4 Rl SPM
Operation

Code Rl

8 8
Operation I SVC

Code I (See Notes 1,6,8,
and 9)

8 4 4 4 12 Rl,D2(X2,B2)
RX Operation Rl,D~ (,B2) All RX Code Rl X2 B2 D2 Rl,S2(X2) instructions

Rl,S2 except BC

8 4 4 4 12 Ml,D2(X2,B2)
Operation Ml, D2 (, B2)

Code Ml X2 B2 D2 Ml,S2(X2} BC
Ml,S2

(See Notes 1,6,8,
and 9)

8 4 4 4 12
Operation Rl,R3,D2(B2) BXH,BXLE,CDS,CS,LM,SIGP,

Code Rl R3 B2 D2 Rl,R3,S2 STM,LCTL,STCTL

RS

8 4 4 4 12
Operation Rl,D2(B2) All shift instructions

Code RI B2 D2 Rl,S2

8 4 4 4 12 RI,M3,D2(B2) ICM,STCM,CLM
Operation Rl,M3,S2

Code RI M3 B2 D2 (See Notes 1-3,7,
8,and 9)

Appendix III: Machine Instruction Format 389

390

SI

BASIC MACHINE FORMAT

Ea 8
Operation

Code 12

4 12

Bl 01

ASSEMBLER OPERAND
FIELD FORMAT

Dl(Bl},I2
Sl,I2

Dl(Bl)
Sl

(See Notes 2,3,6,

7,8 and 10)

APPLICABLE INSTRUCTIONS

All SI instructions except
those listed for the other
SI format.

LPSW,SSM,TIO,TCH,TS

r-+------=========~~==~---+--------------------4-------------------------.-----

[

16 4 12 Dl(Bl) SCK,STCK,STIDP,SIOF,STIDC,
'rwo-byte Sl SIO,HIO,HDV
Operation SCKC,STCKC,SPT,STPT,PTLB,
Code Bl 01 RRB

S

(See Notes 2, CLRIO,IPK,SPKA,SPX,STAP,
3, and 7) STPX

r-~-----------------------------'---;------------------------r------------------------------------

SS

lope~at10n 4 4 4
Code Ll L2 Bl
l

8 8 4
Operation
Code L Bl

8 4 4 4
Operation

12 4 121

01 B2 D~

12 4 12J
01 B2 02

12 4

Code Ll 13 Bl 01 B2 ~ 02
'--.

'----_.
Notes for A~Eendix III:

Dl(Ll,Bl) ,D2(L2,B2)
Sl(Ll) ,S2(L2)

01 (L,Bl) ,02 (B2)

Sl (L) ,S2

Dl(Ll,Bl) ,D2(B2) ,13
Sl(Ll),S2,I3
Sl,S2,I3

(See Notes 2,3,5,6,
7 and 10)

-

PACK,UNPK,MVO,AP,
CP,DP,MP,SP,ZAP

NC,OC,XC,CLC,MVC,MVN,
MVZ,TR,TRT,ED,EDMK

SRP

--
1. Rl, R2, and R3 are absolute expressions that specify general or floating-point reg

isterB. The general register numbers are 0 through 15; floating-point register num
bers are 0, 2, 4, and 6.

2. 01 and 02 are absolute expressions that specify displacements. A value of 0 - 4095
may bl:! specified.

3. Bl and B2 are absolute expressions that specify base registers. Register numbers are
o - 15.

4. X2 is an absolute expression that specifies an index register. Register numbers are
o - 15.

5. L, Ll, and L2 are absolute expressions that specify field lengths. An L expression
can specify a value of 1 - 256. Ll and L2 expressions can specify a value of 1 - 16.
In all cases, the assembled value will be one less than the specified value.

6. I, 12, and 13 are absolut;e expressions that provide immediate data. The value of I
and r:2 may be 0 - 255. 'l'he value of 13 may be 0 - 9.

7. Sl and S2 are absolute or relocatable expressions that specify an address.

8. RR, RS, and SI instruction fields that are blank under BASIC MACHINE FORMAT are not
exami:ned during instructlon execution. The fields are not written in the symbolic
opera:nd, but are assembled as binary zeros.

9. Ml and M3 specify a 4-bit: mask.

10. In IB:M System/370 the SIO, HIO, HDV and SIOF operation codes occupy one byte and the
low order bit of the second byte. In all other systems the HIO and SIO operation
codes occupy only the first byte of the instruction.

Appendix IV: Machine Instruction Mnemonic Codes

This appendix contains two tables of the mnemonic operation codes for all machine
instructions that can be represented in assembler language, including extended mnemonic
operation codes.

The first table is in alphabetic order by instruction. The second table is in numeric
order by operation code.

In the first table is indicated: both the mnemonic and machine operation codes, explicit
and implicit operand formats, program interruptions possible, and condition code set.

The column headings in the first table and the information each column provides follow:

Instruction: This column contains the name of the instruction associated with the
mnemonic operation code.

Mnemonic Operation Code: This column contains the mnemonic operation code for the
instruction. This is written in the operation field when coding the instruction.

Machine Operation Code: This column contains the hexadecimal equivalent of the actual
machine operation code. The operation code will apppear in this form in most storage
dumps and when displayed on the system control panel. For extended mnemonics, this
column also contains the mnemonic code of the instruction from which the extended
mnemonic is d.erived.

Operand Format: This column shows the symbolic format of the operand field in both
explicit and implicit form. For both forms, R1, R2, and R3 indicate general registers in
operand one, two, and three respectively. X2 indicates a general register used as an
index register in the second operand. Instructions which require an'index register (X2)
but are not to be indexed are shown with a 0 replacing X2. L, L1, and L2 indicate
lengths for either operand, operand one, or operand two respectively. M1 and M3 indicate
a 4-bit mask in operands one and three respectively. I, I2, and I3 indicate immediate
data eight bits long (I and I2) or four bits long (I3).

For the explicit format, 01 and 02 indicate a displacement and B1 and B2 indicate a base
register for operands one and two.

For the implicit format, 01, B1, and D2, B2 are replaced by S1, and S2 which indicate a
storage address in operands one and two.

Type of Instruction: This column gives the basic machine format of the instruction (RR,
RX, SI, or SS). If an instruction is included in a special feature or is an extended
mnemonic, this is also indicated.

Proqram Interruptions possible: This column indicates the possible program interruptions
for this instruction. The abreviations used are: A - Addressing, S - Specification, Ov -
Overflow, P - Protection, Op - Operation (if feature is not installed), and Other - other
interruptions which are listed. The type of overflow is indicated by: D - Decimal, E -
Exponent, or F - Fixed Point.

Condition code set: The condition codes set as a result of this instruction are indicated
in this column. (See legend following the table.)

Appendix IV: Machine Instruction Mnemonic Operation Codes 391

Add
Add

Instruction

Add Decimal
Add Halfword
Add Logical

Add Logical

Add Normalized, Extenc led

Add Normalized, Long
Add Norma I ized, Long
Add Normalized, Short
Add Norma I ized, Short

Add Unnormalized, Long
Add Unnormal ized, Long
Add Unnormalized,5hor
Add Unnormalized, 5hor

t

And Logical

And Logical
And Logical
And Logical Immediate

Branch and Link
Branch and Link
Branch and Save
Branch and Save

Branch on Condition
Branch on Condition
Branch on Count
Branch on Count
Branch on Equal
Branch on Eq ua I

Branch on High
Branch on High
Branch in Index High
Branch on Index Low or
Branch on Low
Branch on Low
Branch if Mixed
Branch if Mixed

Branch on Minus
Branch on Minus
Branch on Not Equal
Branch on Not Equal
Branch on Not High
Branch on Not High
Branch on Not Low
Branch on Not Low
Branch on Not Minus
Branch on Not Minus

Branch on Not Ones
Bronch on Not Ones
Branch on Not Plus
Branch on Not Plus
Branch on Not Zeros
Branch on Not Zeros
Branch if Ones
Branch if Ones
Branch on Overflow
Branch on Overflow

Branch on Plus
Brcmch on PI us
Branch if Zeros
Branch if Zeros
Branch on Zero
Branch on Zero
Branch Uncondi tiona I
Branch Unconditional

Clear I/O
Compare Algebraic

t

Equal

Compare Algebraic
Compare and Swap
Compare Decimal
Compare Double and 5w
Compare Halfword
Compare Logical

Clp

Compare Logical

392

Mnemonic
Operation

Code

A
AR
AP
AH
AL

ALR

AXR

AD
ADR
AE
AER

AW
AWR
AU
AUR
N

NC
NR
NI

BAL
BALR
BAS
BA5R

BC
BCR
BCT
BCTR
BE
BER

BH
BHR
BXH
BXLE
Bl
BLR
BM
BMR

BM
BMR
BNE
BNER
BNH
BNHR
BNL
BNLR
BNM
BNMR

BNO
BNOR
BNP
BNPR
BNZ
BNZR
BO
BaR
BO
BaR

BP
BPR
BZ
BZR
BZ
BZR
B
BR

CLRIO
C
CR
C5
CP
CDS
CH
CL

CLC

Machine Operand Format
Operation

Code Explicit Implicit

5A Rl, D2(X2, B2) or Rl, D2(, B2) Rl,52(X2)or Rl,52
lA Rl,R2
FA D 1 (L I, B 1), D2(L2, B2) 51 (Ll), 52(L2)or 51,52
4A R I, D2(X2, B2)or R I, D2(, B2) Rl,52(X2)or Rl,52
5E R I, D2(X2, B2)or R I, D2(, B2) R I, 52(X2)or Rl, 52

1 E Rl,R2

36 Rl,R2

6A R I, D2(X2, B2)or R I, D2(, B2) Rl,52(X2)or Rl,52
2A Rl,R2
7A Rl, D2(X2, B2)or Rl, D2(,B2) Rl, 52(X2)or Rl, 52
3A Rl,R2

6E R I, D2(X2, B2)or R I, D2(, B2) Rl,52(X2)or Rl,52
2E Rl,R2
7E R I, D2(X2, B2)or R I, D2(, B2) R I, 52 (X2)01' R I, 52
3E Rl,R2
54 R I, D2(X2, B2)or R I, D2(, B2) Rl,52(X2)or Rl,52

D4 Dl (L, Bl), D2(B2) 51(L),S2 or 51,52
14 Rl,R2
94 Dl (Bl),12 51,12

45 Rl, D2(X2, B2)or Rl, D2(, B2) Rl, 52(X2)or Rl, 52
05 Rl,R2
4D Rl,D2(X2,B2)or Rl,D2(,B2) Rl, 52(X2) or Rl, 52
OD Rl,R2

47 M I, D2(X2, B2) or M I, D2(, B2) Ml,52(X2)or Ml,52
07 Ml,R2
46 Rl,D2(X2,B2)or Rl,D2(,B2) Rl,52(X2)or Rl,52
06 Rl, R2
47(BC 8) D2(X2,B2)or D2(,B2) 52(X2) or 52
07(BCR 8) R2

47(BC 2) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 2) R2
86 Rl,R3,D2(B2) Rl,R3,52

-87 Rl,R3,D2(B2) Rl,R3,52
47(BC 4) D2(X2,B2) or D2(,B2) 52(X2) or 52
07(BCR 4) R2
47(BC 4) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 4) R2

47(BC 4) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 4) R2
47(BC 7) D2(X2,B2)or D2(,B2) 52(X2) or 52
07(BCR 7) R2
47(BC 13) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 13) R2
47(BC 11) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 11) R2
47(BC 11) D2(X2,B2)or D2(,B2) 52(X2) or 52
07(BCR 11) R2

47(BC 14) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 14) R2
47(BC 13) D2(X2,B2)or D2(,B2) 52(X2) or 52
07(BCR 13) R2
47(BC 7) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 7) R2
47(BC 1) D2(X2, B2) or D2~, B2) 52(X2) or 52
07(BCR 'I) R2
47(BC 1) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 1) R2

47(BC 2) D2(X2, B2) or D2(, B2) 52(X2) or 52
07(BCR 2) R2
47(BC 8) D2(X2, B2) or D2(, B2) 52(X2) or S2
07(BCR 8) R2
47(BC 8) D2(X2,B2)or D2(,B2) 52(X2) or 52
07(BCR 8) R2
47(BC 15) 02(X2, B2) or D2(, B2) 52(X2) or S2
07(BCR 15) R2

9DOI 02(B2) 52
59 ~ I, D2(X2, B2)or R I, D2(, B2) Rl,52(X2 or Rl,52
19 Rl,R2
BA Rl, R3, D2, (B2) Rl, R3, 52
F9 D 1 (L I, B 1), D2 (L2, B2) 51(Ll),52(L2)or 51,52
BB Rl, R3, D2(B2) Rl, R3, 52
49 Rl, D2(X2, B2)or R I, D2(, B2) Rl,52(X2)or Rl,52
55 Rl,D2(X2,B2)or Rl,D2('B2) Rl,52(X2)or Rl,52

D5 Dl (L, Bl), D2(B2) 51(L),S2 or 51,52

Type of
Program Interruption

I nstruc ti on Possible Condition Code Set
Instruction A S 0 P Op Othel 00 01 10 11

Add RX x x F Sum=O Sum<O Sum>O Overflow
Add RR F Sum=O Sum<O Sum>O Overflow
Add Decimal SS,Decimal x D x x Data Sum=O Sum<O Sum>O Overflow
Add Ha I fword RX x x F Sum=O Sum <0 Sum>O Overflow
Add Logical RX x x Sum=O(8) Sum 0(8) Sum= oCD Sum 0 CD
Add Logical RR Sum=O(8) Sum= 0(8) Sum= oCD Sum 0 CD
Add Normalized, Extended RR,Floating Pt. x E x B,C R L M
Add Normal ized, Long RX,Floating Pt. x x E x B,C R L M
Add Norma I ized, Long RR, Floating Pt. x E x B,C R L M
Add Normalized, Short RX,Floating Pt. x x E x B,C R L M
Add Normalized, Short RR, Floating Pt. x E x B,C R L M

Add Unnormal ized, Long RX, Floating Pt. x x E x C R L M
Add Unnormalized, Long RR, Floating Pt. x E x C R L M
Add Unnormalized, Short RX,Floating Pt. x x E x C R L M
Add Unnormal ized, Short RR, Floating Pt. x E x C R L M
And Logical RX x x J K

And Logical SS x x J K
And Logical RR J K
And Logical Immediate SI x x J K

Branch and Link RX N N N N
Branch and Link RR N N N N
Branch and Save RX x N N N N
Branch and Save RR x N N N N

Branch on Condition RX N N N N
Branch on Condition RR N N N N
Branch on Count RX N N N N
Branch on Count RR N N N N
Branch on Equal RX,Ext. Mnemonic N N N N
Branch on Equal RR, Ext.Mnemonic N N N N

Branch on High RX, Ext.Mnemonic N N N N
Branch on High RR, Ext .Mnemonic N N N N
Branch on Index High RS N N N N
Branch on Index Low or Equal RS N N N N
Branch on Low RX, Ext.Mnemonic N N N N
Branch on Low RR, Ext. Mnemonic N N N N
Branch if Mixed RX, Ext.Mnemonic N N N N
Branch if Mixed RR, Ext. Mnemonic N N N N

Branch on Minus RX, Ext.Mnemonic N N N N
Branch on Minus RR, Ext .Mnemonic N N N N
Branch on Not Equal RX, Ext.Mnemonic N N N N
Branch on Not Equal RR, Ext.Mnemonic N N N N
Branch on Not High RX, Ext.Mnemonic N N N N
Branch on Not High RR, Ext.Mnemonic N N N N
Branch on Not Low RX, Ext.Mnemonic N N N N
Branch on Not Low RR, Ext .Mnemonic N N N N
Branch on Not Minus RX, Ext.Mnemonic N N N N
Branch on Not Minus RR, Ext .Mnemonic N N N N

Branch on Not Ones RX, Ext.Mnemonic N N N N
Branch on Not Ones RR, Ext.Mnemonic N N N N
Branch on Not Plus RX, Ext.Mnemonic N N N N
Branch on Not Plus RR, Ext.Mnemonic N N N N
Branch on Not Zeros RX, Ext.Mnemonic N N N N
Branch on Not Zeros RR, Ext .Mnemonic N N N N
Branch if Ones RX, Ext.Mnemonic N N N N
Branch if Ones RR, Ext .Mnemonic N N N N
Branch on Overflow RX, Ext.Mnemonic N N N N
Branch on Overflow RR, Ext .Mnemonic N N N N

Branch on Plus RX, Ext.Mnemonic N N N N
Branch on Plus RR, Ext .Mnemonic N N N N
Branch if Zeros RX, Ext.Mnemonic N N N N
Branch if Zeros RR. Ext.Mnemonic N N N N
Branch on Zero RX, Ext.Mnemonic N N N N
Branch on Zero RR, Ext. Mnemon ic" N N N N
Branch Unconditional RX, Ext.Mnemonic N N N N
Branch Unconditional RR, Ext .Mnemonic N N N N

' .. "" ... "

Compare Alge?rai
~~

x x IZ
... ~ ~~ . Compare Algebraic Z

_:ompoce ::::::d c;c; .n .. rimni x x Data Z AA BB

R) x x Z AA BB
Compare Logical RX x x Z AA BB

Compare Logical SS x x Z AA BB

Appendix IV: Machine Instruction Mnemonic Operation Codes 393

Page of GC33·4010·4
Revised Feb. 25, 197.5
By TNL: GN33·8193

~.

Instruction

_.
Compan~ Logical

Cam pare, logi ca I
Characters under
Mask

Compare~ logical Immediat

Compare logi co I long

Compare" long
Comparc3, long

Compare~, 5hort
Compare,,5hort
Convert to Binary
Convert to Dec imal
Divide
Divide
Divide Decimal
Divide, long
Divide, long

Divide, Short
Divide, Short
Edit
Edit and Mark

Exclusive Or

Exclusive Or
Exclusive Or
Exclusive Or Immediate
Execute
Halve, long

Ha Ive, S,hort

Halt Oe'(ice

Halt I/O
Insert Character
Insert Characters

'J~~~r,

I Key

load
load
load Address
Load and Test
load and Test, Long
load and Test, Short

load Complement
Load Complement, long
load Complement, Short

load Control

load Ha I fword
load, l'Jng

load, Long
Load Multiple
Load Nf'gative
load Nf'gative, long
load Nf'gative, Short

load POI;itive
Load POliitive, long
load Positive, Short
load P5W

load Re,:!1 Address
load Rounded, Extended
to long
load Rounded, long to
Short
load, Short
load, Short , Monitor Call
Move Characters
Move Immediate

~.

394

Mnemonic
Operation

Code

CLR

ClM

ClI

ClCl

CO
CDR

CE
CER
CVB
CVO
0
DR
OP
DO
OOR

DE
OER
ED
EOMK

X

XC
XR
XI
EX
HOR

HER
HOV

HIO
IC
ICM

iL
15K

l
lR
lA
lTR
lTDR
LTER

lCR
lCOR
LCER

lCn

lH
lO

lDR
LM
lNR
lNOR
lNER

lPR
lPOR
lPER
lPSW

lRA
lROR

lRER

lE
lER

MC
MVC
MVI

Machine Operand Format
Operation

Code Explicit Implicit

15 R I ,R2

BO RI, M3, 02(B2) Rl,M3,52

95 DI(BI),12 51,12

OF RI, R2

69 R I, 02(X2, B2)or R 1,02(, B2) Rl, 52(X2)or RI, 52

29 RI,R2

79 R I, 02(X2, B2)or R 1,02(, B2) RI,52(X2)or RI,52

39 RI,R2
4F R I, D2(X2, B2)or R 1,02(, B2) R I, 52 (X2)or RI, 52
4E RI,D2(X2, B2)or Rl, 02(,B2) RI,52(X2)or Rl,52
50 R I, D2(X2, B2) or R 1,02(, B2) RI, 52(X2) or RI,52
10 RI,R2
FO 01, (ll, BI), 02(l2, B2) 51(L1), S2(l2)or 51,52
6D R I, 02(X2, B2), or RI, 02(, B2) RI,52(X2) or Rl, 52
20 RI,R2

70 R I, 02(X2, B2)or R 1,02(, B2) RI,S2(X2) or RI,52
3D RI,R2
DE 01 (l, B1), 02(B2) 51(l), S2 or 51,52
OF 01 (l, BI), 02(B2) SI(l),52 or 51,52

57 RI,02(X2,B2) or RI,02(,B2) RI,S2(X2) or Rl,S2

07 01(L,B1),02(B2) 51(l), S2 or 51,52
17 RI,R2
97 01 (BI), 12 51,12
44 R I, 02(X2, B2) or RI, 02(, B2) RI, S2(X2) RI,S2
24 RI,R2

34 RI,R2

9EOl
i OI,BI 51

9EOOI DI(BI)
43 R I, 02(X2, B2) or RI, 02(, B2) Rl,52(X2) or RI, 52

BF RI, M3~ 02(B2) Rl,M3,52

a~oe.:;I· ><:.) .."., .
• ,0 ,., .. '

09 RI,R2
58 R I, 02(X2, B2) or RI , 02(, B2) RI,52(X2) or RI,52
18 RI,R2
41 R I, 02(X2, B2) or RI, 02(, B2) RI,52(X2) or RI, 52
12 RI,R2
22 RI,R2
32 RI,R2

13 RI,R2
23 R I,R2
33 R I,R2

B7 RI, R3, 02(B2) RI, R3, 52

48 R I, 02(X2, B2) or RI , 02(, B2) RI,S2(X2) or RI,52
68 R I, 02(X2, B2) or RI, 02(, B2) R I, 52(X2) or RI,52

28 RI,R2
98 R I , R3, 02(B2) RI ,R3, 52
11 RI,R2
21 RI,R2
31 RI,R2

10 RI,R2
20 RI,R2
30 RI,R2
82 OI(BI) 51

Bl RI,D2(X2,B2) or RI,D2(,B2) RI,52(X2) or Rl,52

25 Rl, R2

35 Rl, R2

78 RI, D2(X2, B2) or RI, 02(, B2) R I, S2(X2) or RI,S2

38 Rl.R2

AF 01 (81),12 51,12
D2 DI (l, BI), 02(B2) SI(l), S2 or SI,S2
92 DI (BI), 12 SI,I2

I See Note I at end of
this appendix

Type of Program Interruptions
Instruction Instruction Possible Condition Code Set

A 5 Ov P Op Other 00 01 10 11
Compare Logical RR x Z

-
AA BB

Compare Logical R5 x x x XX yy ZZ
Characters under
Mask

Compare Logical Immediate 51 x Z AA BB
Compare Logical Long RR x x x x Z AA BB
Compare, Long RX,Floating Pt. x x x Z AA BB
Compare, Long RR, Floating Pt. x x x Z AA BB

Compare, Short RX, Floating Pt. x x x Z AA BB
Compare, Short RR,Floating Pt.) x Z AA BB
Convert to Binary RX x Data,F N N N N
Convert to Dec imal RX x) x N N N N
Divide RX x) F N N N N
Divide RR) F N N N N
Divide Decimal SS, Decimal x) x 'f p,Data N N N N
Divide, Long RX,Floating Pt. x) E x B, E N N N N
Divide, Long RR, Floating Pt.) E x B, E N N N N

Divide, Short RX, Floating Pt. x) E x B, E N N N N
Divide, Short RR, Floating Pt.) E x B,E N N N N
Edit SS, Decimal x x x Data S T U
Edit and Mark SS, Decimal x x x Data S T U

Exclusive Or RX x > J K

Exclusive Or SS x x J K
Exclusive Or RR J K
Exclusive Or Immediate SI x x J K
Execute RX x > G (May be set by this instruction)
Halve, Long RR, Floating Pt.) x N N N N

Ha I ve, Short RR, Floating Pt. x x N N N N
Halt Device S A AAM CC ML
Halt I/o S A DD CC GG KK
Insert Character RX x N N N N
Insert Characters under RS x x x UU TT SS
Mask

InsertStorag' K, RR x x x A N N N N
Load RX x x N N N N
Load RR N N N N
Load Address RX N N N N
Load and Test RR J L M
Load and Test, Long RR, Floating Pt. x x R L M
Load and Test, Short RR, Floating Pt. x x R L M

Load Complement RR F P L M 0
Load Complement, Long RR, Floating Pt. x x R L M
Load Complement, Short RR, Floating Pt. x x R L M
Load Control RS x) x x A N N N N
Load Halfword RX x x N N N N
Load, Long RX, Floating. Pt. x x x N N N N

Load, Long RR, Floating Pt. x x N N N N
Load Multiple RS x x N N N N
Load Negative RR J L
Load Negative, Long RR, Floating Pt. x x R L
Load Negative, Short RR, Floating Pt. x x R L

Load Positive RR F J M 0
Load Positive, Lorig RR, Floating Pt. x x R L M
Load Positive, Short RR, Floating Pt. x x R L M
Load PSN SI x x A QQ QQ QQ QQ

Load Real Address RX x x x A AAV MU AAP AAO
Load Rounded, Extended

to Long
RR, Floating Pt. x E x N N N N

Load Rounded, Long to RR, Floating Pt. x E x N N N N
Short

Load, Short RX, Floati ng Pt. x x x N N N N
Load, Short RR, Floating Pt. x x N N N N

Move Characters SS x x N N N N
Move Immediate SI x x N N N N

Appendix IV: Machine Instruction Mnemonic Operation Codes 395

Mnemonic. Machine
Operation OplH'Otion

Operand Format

,lB;inty
;.iiD.!Y'i

InstnJction

Move Long
Move Numeri(:s
Move with Offset

Move Zones
Multiply
Multiply
Multiply Decimal
Multiply Extended
Multiply Halfword

Multiply, Lon9
Multiply, Lon9
Multiply, Lon!g to
Extended
Multiply, Long to
Extended
Multiply, Short
Multiply, Short
No Operation
No Operotion
Or Logicol
Or Logicol
Or Logical
Or Logical Imrnedlote
Pock

Purge Translation Lookaside
8uffer
Read Direct
Reset Referenc·e 8it
Set Clock
Set Clock Comporator
Set CPU Timer ·$'ter.+ix·//.·.(·.·· '.'," .
S~t Pro!ilr~'!I~'~s~
·$it~·.··PSVf. ••. K!!y;f~9!'1!l\~~rjjI·······
Set Storage Key
Set System MO:5k
Shift and Round Decimal
Shift Left Double Algebroic

Shift left Double Logical
Shift Left Singfe Algebraic
Shift Left Single Logical
Shift Right Double Algebraic
Shift Right Double Logical

Sh ift ;~i., Sinule

Code Code

MVCL
MVN
MVO

MVZ
M
MR
MP
MXR
MH

MD
MDR
MXD

MXDR

ME
MER
NOP
NOPR
o
OC
OR
01
PACK

PTL8

RDD
RR8
SCK
SCKC
SPT
sex
SPM
SPKA;'
SSK
SSM
SRP
SLDA

SLDL
SLA
SLL
SRDA
SRDL

SRA
SRL

OE
DI
FI

D3
5C
IC
FC
26
4C

6C
2C
67

27

7C
3C

47(8C 0)
07(8C 0)
56
D6
16
96
F2

820D

85
8213
8204
8206
8208
$~19
04 '
J)2M;
08
80
FO
8F

8D
88
89
8E
8C

8A
88

Explicit

RI, R2
o 1(L, 8 I), D2(82)
DI (L I, 8 1), D2(L2, 82)

D 1(L, 81), D2(82)
RI,D2(X2,82)or RI,D2(,82)
RI,R2
D I (L 1,81), D2(L2, 82)
RI, R2
RI,D2(X2,82)or Rl,D2(,82)

Rl,D2(X2,82)or Rl,D2(,82)
RI,R2
Rl,D2(X2,82)or Rl,D2(,82)

Rl,R2

RI, D2(X2, 82) or Rl, 02(, 82)
RI,R2
D2(X2,82) or D2(, 82)
R2
RI,D2(X2,82)or Rl,D2(,82)
D 1(L, 81), D2(82)
Rl,R2
D1(81),12
D 1 (L 1,8 I), D2(L2, 82)

D 1(8 1),12
D 1(8 1)
Dl(81)
D 1(81)
Dl(81)
P,2{~~)
Rl
O;(li,J
Rl,R2
D1(81)
o 1(Ll, 8 1),02(82),13
Rl,D2(82)

RI,D2(82)
RI, D2(82)
RI,D2(82)
RI,D2(82)
RI,D2(82)

Sh ift '!::I'" Sinnle ,;

1 •• lid:l ;ljjj~·!.!;i~li.jit:.:i!;;;;)~!J:;J;I·;1·;~·.~,i:i;:;t;~g\ ... !,': /i.;.,il.······.p~.t'lh~:::~~.~~c·:I··· ciiP2~(B{~2~)· · ..• , ••. >.

Stort I/O
Start I/O Fast Release

Store
Store Channel ID
Store Character

Store Characters under
Mask
Store Clock
Store Clock CClmporotor
Store Control
·$fi't!CP:Q.~di'~i;\
Store CPU ID'
Store CPU Timer
Store Halfword
Store Long
Store Multiple

SIO
SIOF

ST
STlDC
STC

STCM

STCK
STCKC
STCTL

'···:~:~:::{;:E::: ~:;;::~$.i~P::·:~;::':'
. StlOP

STPT
STH
STD
STM

99CCOC)01 : 0 I (8 I)
01(81)

50 RI,D2(X2,82)or RI,D2(,82)
8203 D1(81)
42 RI,D2(X2,82)or RI,D2(,82)

8E

8205
8207
86

'·R212(
'6262
8209
40
60
90

RI ,M3, D2(82)

DI (81)
D 1(8 1)
RI,R3,D2(82)

;P2{a2f .• :
DI(8I)
D 1(8 1)
RI,D2(X2,82)or RI,D2(,82)
RI, D2(X2, 82)

~i;~ •• 'i;, ;~~:e(oft*'i:,':., $t~X:~
Rl,R2,D2(B2)

l;a~J~.;< J b2@2)' . .,

396

Store Short

Store Then AND System Mask
Store Then OR System Mask
Subtract

Subtract
Subtract Decimal
Subtract Ha Ifw,)rd
Subtroct Logiced
Subtract Logicell

STE

STNSM
STOSM
S

SR
SP
SH
SL
SLR

AC
AD
58

18
F8
48
5F
IF

RI,D2(X2,82)or RI,D2(,82)

D1(81),12
D1(81),,!2
RI,D2l.l'.2)

RI,R2
01 (L 1,8 I), D2(L2, 82)
RI,D2(X2,82)or Rl,D2(,82)
RI,D2(X2,82)or RI,D2(,82)
Rl,R2

Implicit

S1(L),S2 orSI,S2
S1(Ll),S2(L2) or SI,S2

SI (L), S2 or SI,S2
RI, S2(X2) or Rl,S2

S1(Ll),S2(L2) or SI,S2

RI, S2(X2) or RI, S2

RI,S2(X2) or RI,S2

Rl,S2(X2) or Rl,S2

RI,S2(X2) or Rl,S2

S2(X2) or S2

RI, S2(X2) or RI,S2
S1(L), S2 or SI,S2

SI,12
S1(L1),S2(L2) or SI,S2

SI,12
SI
SI
SI
SI
S2

Sf

SI
S1(Ll),S2,13 or SI,S2,13
RI,S2

RI, S2
RI,S2
Rl,S2
RI,S2
Rl,S2

I)~'j 1'!''?t.?~ i' .• •.•...... .••. •...•

51
SI

RI, S2(X2) or RI, S2
SI
Rl, D2(X2) or RI, S2

Rl,M3,S2

SI
SI
RI, R3,S2
52
SI
SI
Rl,S2(X2) or RI,S2
RI, S2(X2) or RI, S2
RI,R2,S2
52
Rl,S2(X2) or RI,S2

SI,12
SI,12
RI, S2(X2) or RI, S2

S1(Ll)(;S2(L2)or SI,S2
RI,S2 X2) or Rl,S2
RI,S2(X2) or RI,S2

I See Note 2 at end of
this appendix

Instruction
Program Interruptions
Possible Type of

Instruction A S O~ P Op Other

Move Long
Move Numerics
Move with Offset

Move Zones
Multiply
Multiply
Multiply Decimal
Multiply Extended
Multiply Halfword

Multiply, Long
Multiply, Long
Multiply, Long;
Extended
Multiply, Long!
Extended
Multiply, Short
Multiply, Short
No Operation
No Operation
Or Logical
Or Logical
Or Logical
Or Logical Immediate
Pack

Purge Translation Lookaside
Buffer

RR
SS
SS

SS
RX
RR
SS, Decimal
~~Floating Pt.

RX,Floating Pt.
RR,Floating Pt.
RX,Floating Pt.

RR, Floating Pt.

RX,Floating Pt.
RR, Floating Pt.
RX, Ext.Mnemoni<
RR, Ext.Mnemonic
RX
SS
RR
SI
SS

Read Direct SI
Reset Reference Bit S
Set Clock S
Set Clock Comparator S

x
x
x

x
x

x

x

x

x

x

x
x

x

x

x
x

S e ... : ... t..~ .. p V J i ... m.:fil.:.r : :: : :............. .~ SetPmftx: ~
,x

." S:~t.:~r()gra[Tl0?~.~ RR
'il~"'~O~';r[1 ~~t~~~i~.~~:tr()!!'i,!~~r!;;l··:···· is:

Set Storage Key RR
Set System Mask SI
Shift Left Double Algebraic RS
Sh ift and Round Decimal SS

Sh ift Left Double Logical RS
Shift Left Single Algebraic RS
Shift Left Single Logical RS
Shift Right Double Algebraic RS
Shift Right Double Logical RS

Store
Store Channel 10
Store Character

Store Characters under
Mask
Store Clock
Store Clock Comparator

~·!gr,~.s()7t~~1 ;.'illq.ilI9:i;.$.t()t.<:¢;~\4.~ijr~i;>···:;
Store CPU ID
Store CPU Timer
Store Ha If word
Store Long
St()r~MI:'It1p!~

0!(l$gni!Vi. ~t9t~f,t!flX;;!Y:"""':
'Store'Short '"

RS
RS
RS;'
S
S

RX
S
RX

RS

S
S
RS

:<;;:\~

S
RX
RX,Floating Pt.
RS

'$

Store Then AND System Mask SI
Store Then OR System Mask SI
Subtract RX

Subtract
Subtract Decimal
Subtract Ha If word
Subtract Logical
Subtract Logical

RR
~~Decimal

RX
RR

x
x

x

x

x

x

X

X

x

X

x
x
x
x

x

x
x
x

1<
~
P<

x x x
x
x

x
x
x
x x x Data
x x B
x

x E x B
x E x B
x E x x B

x E x

x E x B
x E x B

x
x

x
x

x A

x x
x

x x x
x x x

l~ I····
x x A

.:.i .:.::

x X

x F
0 x x Data

x

x
X

I"i':'::

I~
x x

x A
x

x X

X X

X X x A
x x x A
1(·x.: ,"',,':

I>< x x A
Ix x x A
Ix x
~ x x
~ Ix
lXi,.
P< x x

x x A
x x A

)(

F
0 x x Oata

x F

Condition Code Set

00 01 10 11

AAA AAB AAC AAD
N N N N
N N N N

N N N N
N N N N
N N N N
N N N N
N N N N
N N N N

N N N N
N N N N
N N N N

N N N N

N N N N
N N N N
N N N N
N N N N
J K
J K
J K
J K
N N N N

N N N N

N N N
AAQ AAS AAT
AAE AAG

.... f\J .. .~ . N>

RR RR RR Rk'\
...•

N N N N
N N N N
J L M 0
J L M 0

N N N N
J L M 0
N N N N
J L M
N N N N

N N N N

MM CC
....... , ..•

KK

N N N N
AAH CC AAI KK
N N N N

N N N N

AAJ AAK AAN AAG
N N N
N N NN
N ~. .~

.. r. .. {: :
N N
N N N N

N f\J N .. 1'.1

N N N
•.••• :.i.i:··N··:··:

N N N N
N N N N
V X Y 0

V X Y 0
V X Y 0
V X Y 0

W,H V,I W,I
W,H V,I W,I

Appendix IV: Machine Instruction Mnemonic Operation Codes 397

398

Instrucl'ion

Subtract Normalized,
Extended
Subtract Norma I ized, L
Subtract Normalized, L
Subtract Normalized, S
S,-!btract Normalized, S
Subtract UnnormJ I ized,

Subtract Unnorma I ized,
Subtract Unnorma I ized,
Subtract Unnorma I ized,
Supervisor Call
T est and Set

T est Channel
Test I/O
Test Under Mask
Translate
Translate and Test

Unpack
Write Direct
Zero and Add Decimal

ong
ong
hart
hart
Long

Long
Short
Short

Mnemonic
Operation

Code

5XR

SD
SDR
SE
SER
SW

SWR
5U
5UR
5VC
T5

TCH
TlO
TM
TR
TRT

UNPK
WRD
ZAP

Machine Operand Format
Opercltion

Code Explicit Implicit

37 Rl,R2

6B Rl, D2(X2, B2) or Rl, D2(, B2) Rl,52(X2) or Rl,S2
2B Rl,R2
7B Rl, D2(X2, B2) or Rl, 02(, B2) Rl,52(X2) or Rl, S2
3B Rl,R2
6F Rl,02(X2,B2)or Rl,02(,B2) Rl, S2(X2) or Rl,52

2F Rl,R2
7F Rl,02(X2,B2)or Rl,02(,B2) Rl, S2(X2) or Rl,S2
3F Rl,R2
OA I
93 01(Bl) 51

9F o 1(B 1) SI
90 01(Bl) 51
91 Dl(Bl),12 51,12
DC 01(L,B1),02(B2) SI (L), S2 or S 1,52
DO 01(L,B1),02(B2) 51 (L), 52 or SI,52

F3 01 (L I,B 1), 02(L2, B2) S 1 (Ll), 52 (L2) or S 1,52
84 01(Bl),12 SI,12
F8 01 (L 1, B 1), 02(L2,B2) 51(Ll),S2(L2)or 51,S2

Type of
Program Interruptions

Instruction Instruction
Possible

Subtract Normalized, RR, Floating Pt.
Extended
Subtract Normalized, Long RX,Floating Pt.
Subtract Normalized, Long RR,Floating Pt.
Subtract Normalized, Short RX,Floating Pt.
Su.btract Normalized, Short RR,Floating Pt.
Subtract Unnormalized, Long RX,Floating Pt.

Subtract Unnormalized, Long
Subtract Unnorma liz ed, Short

RR, Floating Pt.
RX,Floating Pt.

Subtract Unnormalized, Short RR, Floating Pt.
Supervisor Call RR
Test and Set SI

T est Channel SI
Test I/O SI
T est Under Mask SI
Translate SS
Translate and Test SS

Unpack SS
Write Direct SI
Zero and Add Decimal SS,Decimal

Program Interruptions Possibl~

Under Ov: D = Decimal
E = Exponent
F = Fixed Point

Under Other:
A Privileged Operation
B Exponent Underflow
C Significance
D Decimal Divide
E Floating Point Divide
F Fixed Point Divide
G Execute
GA Monitoring

Condition Code Set

H No Carry
I Carry
J Result = 0
K Result is Not Equal to Zero
L Result is Less Than Zero
M Result is Greater Than Zero
N Not Changed
o Overflow
P Result Expanent Underflows
Q Result Expanent Overflows
R Result Fraction = 0
S Result Field Equals Zero
T Result Field is Less Than Zero
U Result Field is Greater Than Zero
V Difference = 0
W Difference is Not Equal to Zero
X Difference is Less Than Zero
Y Difference is Greater Than Zero
Z First Operand Equals Second Operond

A S

x

x x
x

x x
x

x x

x
x x

x

x

x
x
x

x
x
x

AA First Operand is Less Than Second Operand

IOv

E

E
E
E
E
E

E
E
E

D

BB First Operand is Greater Than Second Operand
CC CSW Stored
DD Channel and Subchannel not Working
EE Channel or Subchannel Busy
FF Channel Operating in Burst Mode
GG Burst Operation Terminated
HH Channel Not Operotional
II Interruption Pending in Channel
JJ Channel Available

plOp

x

x
x
x
x
x

x
x
x

x

x

x
x

x x

Other

B,C

B,C
B,C
B,C
B,C
C

C
C
C

A
A

A
Data

00

R

R
R
R
R
R

R
R
R
N
SS

JJ
LL
UU
N
PP

N
N
J

Condition Code Set

01

L

L
L
L
L
L

L
L
L
N
TT

II
CC
VV
N
NN

N
N
L

KK
LL
MM

NN

00
PP
QQ
RR
SS
TT
UU
W
WW
XX
yy
ZZ
AM
MB
MC
MD
ME
AAF
MG
MH
AAI
MJ
MK
ML
MM
MN
MO
MP
MQ
MR
MS
MT
MU
MV
MW

AAX
MY
MZ

10

M

M
M
M
M
M

M
M
M
N

FF
EE

N
00

N
N
M

Not Operational
Available

11

Q
Q
Q
Q
Q

Q
Q
Q
N

HH
KK
WW
N

N
N
0

I/O Operotion Initiated ond Channel Proceeding With
its Execution
Nonzero Function Byte Found Before the First Operand
Field is Exhausted
Last Function Byte is Nonzero
All Function Bytes Are Zero
Set According to Bits 34 and 35 of the New PSW Loaded
Set According to Bits 2 and 3 of the Register Specified by Rl
Leftmost Bit of Byte Specified = 0
Leftmost Bit of Byte Specified = I
Selected Bits Are All Zeros; Mask is All Zeros
Selected Bits Are Mixed (;teros and ones)
Selected Bits Are All Ones
Selected bytes are equal, or mask is zero
Selected field of first operand is low
Selected field of first operand is high
First-operand and second-operand counts are equal
First operand count is lower
First operand count is higher
No movement because of destructive overlap
Clock value set
Clock value secure
Clock not operational
Channel I D correctly stored
Channel activity prohibited during ID
Clack value is valid
Clock value not necessarily valid
Channel working with another device
Subchannel busy or interruption pending
Clock in error state
Segment- or Page-Table Length Violation
Page-Table Entry Invalid (I-Bit One)
Reference Bit Zero, Change Bit Zero
Reference Bit Zero, Change Bit One
Reference Bit One, Change Bit Zero
Reference Bit One, Change Bit One
Segment Table Entry Invalid (I-Bit One)
Translation Available
First and second hand operands equal, secand operand
replaced by the third operand
No operation is in progress for the addressed device
Order cade accepted

Status stored

Appendix IV: Machine Instruction Mnemonic Operation Codes 399

400

RR Format

Operation

Code

00
01
02
03
04
05
06
07
08
09
OA
OB
OC

OE
OF

10
11
12
13
14
15
16
17
18
19
lA
lB
Ie
lD
IE
IF

20
21
22
23
24
25
26
27
28
29
2A
2B
2C.
2D
2E
2F

30
31
32
33
34
35
36
37
38

Name

Set Program Mask
Branch and Link
Branch on Count
Branch on Condition
Set Storage Key
Insert Storage Key
Supervisor Call

Move Long
Compare Logical Long

Load Positive
Load Negative
Load and Test
Load Complement
AND
Compare Logical
OR
Exclusive OR
Load
Compare
Add
Subtract
Multiply
Divide
Add Logical
Subtract Logical

Load Positive (Long)
Load Negative (Long)
Load and Test (Long)
Load Complement (:Lon9~
Halve (Long)
Load Rounded (Extended to Long)
Multiply (Extended)
Multiply (Long to Extended)
Load (Long)
Compare (Long)
Add Normalized (Long)
Subtract Normalized
Multiply (Long)
Divide (Long)
Add Unnormalized (Long)
Subtract Unnormalized (Long)

Load Posit-ive (Short)
Load Negative (Short)
Load and Test (Short)
Load Complement (Short)
Halve (Short)
Load Rounded (Long or Short)
Add Normalized (Extended)
Subtract Normalized (Extended)
Load (Short)

Mnemonic

SPM
BALR
BCTR
BCR
SSK
ISK
SVC

MVCL
CLCL

LPR
LNR
LTR
LCR
NR
CLR
OR
XR
LR
CR
AR
SR
MR
DR
ALR
SLR

LPDR
LNDR
LTDR
LCDR
HDR
LRDR
MXR
MXDR
LDR
CDR
ADR
SDR
MDR
DDR
AWR
SWR

LPER
LNER
LTER
LCER
HER
LRER
AXR
SXR
LER

Remarks

Appendix IV: Machine Instruction Mnemonic Operation Codes 401

RR Format

Operation

Code

39
3A
3B
3C
3D
3E
3F

RX Format

40
41
42
43
44
45
46
47
48
49
4A
4B
4C

4E
4F

50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F

Name

Compare (Short)
Add Normalized (Short)
Subtract Normalized (Short)
Mul tipl~r (Short)
Divide (Short)
Add UnnormalizE~d (Short)
Subtract Unnormalized (Short)

Store Halfword
Load Address
Store Character
Insert Character
Execute
Branch and Link
Branch on Coun"t
Branch on Condition
Load Halfword
Compare Halfwo:t:'d
Add Halfword
Subtract Halfword
Multiply Halfword

Convert to Decimal
Convert to Binary

Store

AND
Compare Logical
OR
Exclusive OR
Load
Compare
Add
Subtract
Multiply
Divide
Add Logical
Subtract Logical

Store (Long)

II

Multiply (Lon9 to Extended)
Load (Long)
Compare (Long)
Add Normalized (Long)
Subtract Normalized (Long)
Multiply (Long)
Divide (Long)
Add Unnormalized (Long)
Subtract Unnormalized (Long)

Mnemonic

CER
AER
SER
MER
DER
AUR
SUR

STH
LA
STC
IC
EX
BAL
BCT
BC
LH
CH
AH
SH
MH

CVD
CVB

ST

N
CL
o
X
L
C
A
S
M
D
AL
SL

STD

MXD
LD
CD
AD
SD
MD
DD
AW
SW

Remarks

rue Format

Operation

Code

70
71
72
73
74
75
76
77
78
79
7A
7B
7C
7D
7E
7F

Name

Store (Short)

Load (Short)
Compare (Short)
Add Normalized (Short)
Subtract Normalized (Short)
Multiply (Short)
Divide (Short)
Add Unnormalized (Short)
Subtract Unnormalized (Short)

RS,SI, and S Format

80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F

90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F

AO
Al
A2
A3
A4
A5
A6

Set System Mask

Load PSW
Diagnose L
Write Direct
Read Direct
Branch on Index High
Branch on Index Low or Equal
Shift Right Single Logical
Shift Left Single Logical
Shift Right Single
Shift Left Single
Shift Right Double Logical
Shift Left Double Logical
Shift Right Double
Shift Left Double

Store Multiple
Test under Mask
Move (Immediate)
Test and Set
AND (Immediate)
Compare Logical (Immediate)
OR (Immediate)
Exclusive OR (Immediate)
Load Multiple

Start I/O, Start I/O Fast Release
Test I/O
Halt I/O, Halt Device
Test Channel

Mnemonic

STE

LE
CE
AE
SE
ME
DE
AU
SU

SSM

LPSW

WRD
RDD
BXH
BXLE
SRL
SLL
SRA
SLA
SRDL
SLDL
SRDA
SLDA

STM
TM
MVI
TS
NI
CLI
01
XI
LM

SIO,SIOF
TIO
HIO,HDV
TCH

Remarks

See Note 2

See Note 1

Appendix IV: Machine Instruction Mnemonic Operation Codes 403

~---,----------------------.--T

RS,SI, and S Format

Name

Store Then AND System Mask
Store Then OR System Mask .

Load Real Address
(First byte of two-byte operation codes)

Store Control
Load Control

Compare Logical Characters under Mask
Store Characters under Mask
Insert Characters under Mask

Mnemonic

STNSM
STOSM

LRA

STCTL
LCTL

CLM
STCM
rCM

Remarks

~'--------..----------.-------------- .. ----.-----'----------.,--------------------..J

4:04:

Move Numerics
Move (Characters)
Move Zones
AND (Characters)
Compare Logical (Characters)
OR (Characters)
Exclusive OR (Characters)

Translate

MVN
MVC
MVZ
NC
CLC
OC
XC

TR

SS Format

Operation Name Mnemonic Remarks

Code

DD Translate and Test TRT
DE Edit ED
DF Edit and Mark EDMK

EO
El
E2
E3
E4
E5
E6
E7
W8
E9
EA
EB
EC
ED
EE
EF

FO Shift and Round Decimal SRP
Fl Move with Offset MVO
F2 Pack PACK
F3 Unpack UNPK
F4
F5
F6
F7
F8 Zero and Add Decimal ZAP
F9 Compare Decimal CP
FA Add Decimal AP
FB Subtract Decimal SP
FC Multiply Decimal MP
FD Divide Decimal DP
FE
FF

NOTES

1. Under the System/370 architecture, the machine operations for Halt Device and Halt
I/O are as follows:

\1001 1110 XXXX xxxol Halt I/O HIO

~001 1110 XXXX XXXll Halt Device HDV

(X denotes an ignored bit position)

Appendix IV: Machine Instruction Mnemonic Operation Codes 405

2 .. Under the System/370 architecture, the machine operations for Start I/O and Start
I/O Fast Release are as follows:

1001 1100 XXXX XXXO Start I/O SIO

1001 1100 XXXX XXX1 Start I/O Fast Release SIOF

(X denotes an ignored bit position)

Operation Name Mnemonic
Code

AE Signal Processor SIGP
BA Compare and Swap CS
BB Compare Double and Swap CDS
9001 Clear I/O CLRIO
B202 Store CPU 10 STIOP
B203 Store Channel 10 STIOC
B204 Set Clock SCK
B205 Store Clock STCK
B206 Set Clock Comparator SCKC
B207 Store Clock Comparator STCKC
B208 Set CPU Tillner SPT
B209 Store CPU Timer STPT
B20A Set PSW Key from Address SPKA
B20B Insert PSW Key IPK
B200 Purge Translation

Lookaside Buffer PTLB
B210 Set Prefix SPX
B211 Store Prefix STPX
B212 Store CPU Address STAP
B213 Reset Refel:ence Bit RRB

406

Operation

ACTR

AGO

AIF

ANOP

ccw

CNOP

COM

COpy

CSECT

DC

DROP

OS

OSECT

EJECT

END

ENTRY

Name Ent£Y

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

Any symbol or
blank

Any symbol or
blank

Must not be present

Any symbol or
blank

Any symbol or
blank

A sequence symbol
or blank

Any symbol or
blank

Any symbol or
blank

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

Appendix V: Assembler Instructions

Operand Entry

A SETA expression

A sequence symbol

A logical expression enclosed
in parentheses, immediately
followed by a sequence symbol

Must not be present

Four operands, separated by
COInmas

Two absolute expressions,
separated by a comma

Must not be present

Not required

One ordinary symbol

Must not be present

One or more operands, separated
by commas

One to sixteen absolute
expressions, separated by
conunas; or blank

One or more operands, separated
by commas

Must not be present

Must not be present

A relocatable expression or
blank

One or more relocatable symbols,
separated by commas

Appendix V: Assembler Instructions 407

408

QE.eration

EQU

EX'IRN

GBLA

GBLB

GBLC

IC'I'L

ISEQ

LCLA

ICLB

LCLC

LTORG

fJlACR01

~1END"

MEXIT1

MNOTE

Name Entry

An ordinary symbol
or a variable
symbol

A sequence symbol
or blank

Operand Entry

One to three operands,

One or more relocatable symbols,
separated by commas

Must not be present One or more variable symbols
that are to be used as SET
symbols, separated by commas 2

Must not be present One or more variable symbols
tha t are to be used as SET
symbols, separated by commas2

Must not be present One or more variable symbols
that are to be used as SET
symbols, separated by commas 2

Must not be present One to three decimal values,
separated by commas

Must not be present Two decimal values, separated
by commas

Must not be present One or more variable symbols
that are to be used as SET
symb9ls, separated by commas 2

Must not be present One or more variable symbols
tha t are to be used as SET
symbols, separated by commas2

Must not be present One or more variable symbols
that are to be used as SET'
symbols, separated by commas 2

'Any symbol or
blank

Not required

Must not be present Not required

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

Not required

Not req:uired

A severity code followed by a
comma (this much is optional)
followed by any combination of
characters enclosed in
apostrophe s

1Can be used only as part of a macro definition.
2SET symbols can be defined as subscripted SET symbols.

ORG

PRINT

PUSH

REPRO

.sETA

SETB

SETC

SPACE

START

TITLE

OS Any symbol or
only blank
DOS A sequence symbol
only or blank

A sequence symbol
or blank

A sequence symbol
or blank

A sequence symbol
or blank

A Sm.' A symbol

A SETB symbol

A Sm.'C symbol

A sequence symbol
or blank

Any symbol or
blank

A string of alpha
meric characters.
A variable symbol.
A combination of
the above.
A sequence symbol.
A blank

A relocatable expression or
blank
A relocatable expression or
blank

One to three operands

One or more operands, separated
by a comma

Not required

An arithmetic expression

A 0 or a 1, a SETB symbol, or a logical
expression enclosed in parentheses

A type attribute, a character
expression, a substring
notation, or 'a concatenation
of character expressions
and substri notations.

A decimal self-defining
term or blank

A self-defining term or blank

One to 100 characters, enclosed
in apostrophes

Appendix V: Assembler Instructions 409

410

USING

W-XTRN

Instruction

Model Statements3

Prototype Statement2

Macro-Instruction
Statement2

AssemblE~r Language
Statement3

A sequence symbol
or blank

A sequence syrobol
or blank

~ame Entry

An ordinary symbol,
a variable symbol,
a sequence
symbol, a combina
i:ion of variable
symbols and other
characters that is
E:!quivalent to a
symbol, or blank

A symbolic para
meter or blank

An ordinary symbol,
a. variable symbol,
a sequence symbol,
a. combination of
variable symbols
and other charac
ters that is equiv
alent to a symbol,2
or blank

An ordinary symbol,
a variable symbol,
a sequence symbol,
a combination of
variable symbols
and other charac
ters that is equiv
alent to a symbol,
or blank

1 Can only be used as pa:rt of a macro definition.

Operand Entry

An absolute or relocatable
expression followed by 1 to 16
absolute expressions, separated
by commas

One or more relocatable
symbols, separated by commas

Operand Entry

Any combination of char
acters (including
variable symbols)

Zero or more operands
that are symbolic parameters,
separated by commas

Zero or more positional
operands and/or zero
or more keyword operands
separated by commas 2

Any combination of charac
ters (including variable
symbols)

2 Variable symbols appearing in a macro instruction are replaced
by thEdr values before the macro instruction is processed.

3 Restrictions on the use of variable symbols
in statement fields are included in the descriptions
for each individual statement and in -Rules
for Model Statement Fields - (See J4B) •

Appendix VI: Summary of Constants

r------T---------T--------T--------T--------------T---------T---------T--------T---------,
I I I I I I NUMBER I , , I
I I I I LENGTH I I OF CON- I I I TRUN- ,
I I IMPLICIT, I MODI- I I STANTS I RANGE I RANGE ,CATION/ I
I I LENGTH I ALIGN- I FIER I SPECIFIED I PER I FOR EX- I FOR I PADDING I
I TYPE I (BYTES) I MENT I RANGE I BY , OPERAND I PONENTS 'SCALE I SIDE I
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
I C I as I byte ,.1 to I characters lone I I I right I
, I needed I , 256 (1) I I I I I I
~~-----+---------+--------+--------+--------------+---------+---------+--------+---------i
'X ,as I byte 1.1 to I hexadecimal I multi- I I ,left I
I I needed I I 256 (1) I digits I pIe I I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
I B I as I byte ,.1 to I binary , multi- I I I left I
I 'needed I I 256 I digits I pIe I , , ,
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
,F I 4 I word 1.1 to I decimal I multi- I -85 to I -187 tol left (3) I
I I I I 8 I digits I pIe , +75 I +346 I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
I H ,2 I half ,.1 to I decimal I multi- I -85 to I -187 I left (3) I
I I I word ,8 I digits I ple I +75 I +346 I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------i
I E I 4 I word 1.1 to I decimal I mUlti- I -85 to I I right (3) ,
I I , I 8 I digits I ple I +75 I 0-14, I
.------+---------+--------+--------+--------------+---------+---------+--------+---------~
I D ,8 I double 1. 1 to I decimal I multi- I -85 to I I right (3) I
I , I word I 8 I digits , pIe I +75 I 0-14 I I
t------+---------+------~-+--------+--------------+---------t---------+--------t---------i
I L I 16 , double I .1 to I decimal I multi- I -85 to I 0-28 I right (3) I
, I I word I 16 I digits I pIe I +75 I I I
~------_f---------+--------t_------_+------------_+---------+--------4--------t--------1
,P I as ,byte 1.1 to ,decimal 'multi- I I I left ,
, ,needed, , 16 , digits , pIe I , , ,
~------+---------+--------+--------+--------------+---------+---------+--------+---------i ,z I as ,byte 1.1 to ,decimal 'multi- I , ,left,
I I needed , , 16 , digits I pIe I I I ,
~------+---------+--------+--------+--------------+---------+---------+--------+---------~
I A ,4 ,word, .1 to I any 'multi- , I I left ,
I , , I 4 (2) 'expression 'ple' I , ,

_·,....· .. ·,.,.·+-............................. -±-.......... ,.,......,.,. -,+,.,. ---..................... 1
I I' 1 left I

.... ;;.;. +1 .. ___ .;.;..~ ___ ~+~ ______ ~~+~_~ ___ ~L~2~
,V ,4 ,word, 3,4 I relocatable I multi- I I left I
I I I I I symbol I pIe I I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------~
I S I 2 ,half, 2 only , one absolute 'multi- , , , ,
I I I word, I or relocatab-I ple I I I ,
, , , , , Ie expression, I I I I
, , I I I or two absol-, I I I I
I I I I I ute express- I I I I ,
I I I I I ions: I I I I I
I I I I I exp (exp) I , I I I
~------+---------+--------+--------+--------------+---------+---------+--------+---------~
I Y I 2 I half 1.1 to I any I mUlti- I I I left I
I I I word I 2 (2) I expression I ple I I I I
.------~---------~--------~--------~--------------~---------~---------~--------~---------~ I (1) In a DS assembler instruction c and X type constants can have length specification I
I to 65535. I
I (2) Bit length specification permitted with absolute expressions only. Relocatable A- ,
I type constants, 3 or 4 bytes only; relocatable Y-type constants, 2 bytes only. ,
I (3) Errors will be flagged if significant bits are truncated or if the value specified 1
I cannot be contained in the implicit length of the constant. I L __ J

Appendix VI: Summary of Constants 411

412

Appendix VII: Summary of Macro Facility

The four charts in this Appendix sununarize the macro facility described in Part IV of
this publication.

Chart 1 indicates which macro language elements can be used in the name and operand
entries of each statement.

Chart 2 is a sununary of the expressions that can be used in macro instruction statements.

Chart 3 is a sununary of the attributes that may be used in each expression.

Chart 4 is a sununary of the variable symbols that can be used in each expression.

Appendix VII: Summary of Macro Facility 413

Variable Symbois I

I Global SET Symbols Local SET Symbols System Variable' Symbols
Attributes I

I
I Symbolic I Sequence

Statement Parameter SETA SETB SETC SETA I SETB SETC &SYSNDX &SYSECT &SYSLIST &SYSPARM &SYSDATE &SYSTIME Type Length Scaling Integer Count Number Symbol

MACRO I
Prototype Name
Slatement Operand

GBLA Operand

GBLB Operand

GBLC Operand

LCLA Operand

LCLB Operand

LCLC Operand I

Model Name Name Name Name Name Name Name Name Name Name Name Name

Statement Operation Operation Operation Operoiion Operation Operation Operation Operation Operation Operation Operation

I Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand

SETA Name Name
1 !

Operan~ Operand Operand3 Operand9 Operand Operand3 Operanl Operand Operon; Operand
9 Operand Operand Operand Operand Operand

SETB Name Name
Operand

6 Operand5 Operand5
Opera"" OperancP Operand Operan~ Operand6 Operand Operan~ Operan~ Operand" Operand6 Operand" Operand5 Operand5 Operand5

SETC Name Name
Operand Operand7 OperandS Operand Operand7 OperandS Operand Operand Operand Operand Operand Operand Operand • Operand

AIF
Operand6 Operand6 Operand Operand6 Operand6 Operand Operand6 Operand6 Operand" Operand6 Operand

6 Operand4 Operand5 Operan~
Name

Operand5 OperandS Operand5 Operand

AGO Name
i Operand

ACTR Operon~ Operand Operand3 Operand2 Oper:md Ope rond3 Operon~ Operand Operan~ Operand
2 Operand Operand

I
' Operand

I i Operand I Operand

ANOP I Name

MEXIT I Name

MNOTE Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Name

MEND I I Name

Outer Name Name Name Name Name Name Name Name

Macro Operand Operand Operand Operand Operand Operand Operand Operand Operand

Inner Name I\Iame Name Name Name Name Name Name Name Name Name Name

Macro Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand Operand

Assembler Name Name Name Name Name Name Name

Language Operation Operation Operation Operation Operation Operation
Stat~ment Operand Operand Operand Operand Operand Operand

1. Variable symbols in macro-instructions are replaced by their IfOlues before processing.
2. Only if value, is self-defining term.
3. Converted to arithmetic +1 or .0.

I;: Only in character relations.
Only in arithmetic relations.

6. Only in arithmetic or character relations.
7. Converted to unsigned number.

IS.
Converted to charact~ 1 or O. "~i~!.!l~ll.~~;i 9. Only if ane to ten deCimal digits """ " , '" "

I I

Chart 2. Conditional ASsembly Expressions

Expression Arithmetic Expressions Character Expressions Logical EXpressions

Can contain • Self-defining terms

• Length, scaling,
integer, count, and
number attributes

• SETA and SETB
symbols1

• SETC symbols whose
values are a decimal
self-defining term·

• &SYSPARM if its
value is a decimal
self-defining term

• Symbolic parameters
if the corresponding
operand is a decimal
self-defining term

• &SYSLIST~) if the
corresponding
operand is a decimal
self-defining term

• &SYSLIST ~,m) if the
corresponding operand
is a decimal self
defining term

• &SYSNDX

t Values must be:

• Any combination of
characters enclosed
in apostrophes

• Any variable symbol
enclosed in
apostrophes

• A concatenation of
variable symbols and
other characters
enclosed in
apostrophes

• A type attribute
reference

• A 0 or a 1

• SETB symbols

• Arithmetic
relations 1

• Character
relations 2

2 A character relation consists of two character expressions
related by the operator GT, LT, EQ, NE, GE, or LE. Type
attribute notation and Substring notation may also be
used in character relations. The maximum size of the character
expressions that can be compared is 255 characters. If the two
character expressions are of unequal size, the the smaller one
will always compare less than the larger.

Appendix VII: Summary of Macro Facility 415

l'16

"E'Xpi:e ssi ()n

Operations
are

Arithmetic Expressions

+ - (unary and bi
nary), *, and Ii
parentheses per
mitted

Character Expressions

Concatenation, with a
period (.)

Logical Expressions

AND, OR, and NOT
parentheses per
mitted

r----.-------4--------.------------------~------------------------_+------------------------~
Range
of values

May be
used in

-2 3 • to +231 _1

• SETA operands

o through 255
characters

• SETC operands

• Arithmetic relations • Character relations 2

• Subscripted SET
symbols

• &SYSLIST subscript (s)

• Substring notation

• Sublist not.atj,on

o (false) or
1 (true)

• SETB operands

• AIF operands

1 An ari,thmetic relation consists of two arithmetic expressions
rela tell by the operators Gl', LT, EQ, NE, GE, or LE.

2 A character relation consists of two character expressions
related by the operator GT, LT, EQ, NE, GE, or LE. Type
attribute notation and Substring notation may also be
used in character relations. The maximum size of the character
expressions that can be compared is 255 characters. If the two
character expressions are of unequal size, the the smaller one
will always compare less than the larger.

Chart 3. Attributes

Attribute Notation

Type T'

ngth L'

Can be used with:

Ordinary Symbols de
fined in open code;
symbolic parameters
inside macro defini
tions; &SYSLIST(m),
&SYSLIST

Ordinary Symbols de
fined in open code;
symbolic parameters
inside macro defini
tions; &SYSLIST~),
and &SYSLIST(m,n) in
side macro definitions

Can be used only if Can be used in
type attribute is:

~ay always be used) 1. SETC operand
fields

2. Character
relations

Any letter except Arithmetic
M,N,O,T and U expressions

1-------+------+---------------1---"------."-.-,,---"---- -r-----------1
ling SI

Integer II

K'

N'

Ordinary Symbols de
fined in open code;
symbolic parameters
inside macro defini
tions; &SYSLIST(m),
and &SYSLIST(m,n) in
side macro definitions

Ordinary Symbols de
fined in ~pen code;
symbolic parameters
inside macro defini
tions; &SYSLIST(m),
and &SYSLIST(m,n) in
side macro definitions

Symbolic parameters,
&SYSL 1ST (m) and
&SYSLIST(m,n) inside
macro definitions

Symbolic parameters,
&SYSLIST and
&SYSLIST(m) inside
macro definitions

H,F,G,D,E,L,K,P,
and Z

H,F,G,D,E,L,K,P,
and Z

Any letter

Any letter

Arithmetic
expressions

Arithmetic
expressions

Arithmetic
expressions

Arithmetic
expressions

NOTE: There are definite restrictions in the use of these attributes (see L1~ •

Appendix VII: Summary of Macro Facility 417

Chart 4. Variable Symbols (Part 1 of 2)

Variable
Symbol

Symbolic1

parameter

----------;------------ -""---------"----,.--------------------,
Declared by: Initialized, Value changed May be used in:

or set to: by:
----------------"~----------r--------------_+------------------~

Prototype
statement

Corresponding (Constant
macro instruc- throughout
tion operand definition)

• Arithmetic
expressions
if operand
is decimal
;self-defining term

• Character
expressions

----------~---------------"~--------------r--"-------------~---------------------~

SETA

SErrE

SETC

8:SYSNDX'

LCLA or GBLA
instruction

o SETA
instruction

• Ari thme tic
expressions

• Character
expressions

----------------"------- ----"----------1------------------1
LCLB or GELB 0 SETB
instruction instruction

• Arithmetic
expr es s ions

• Character
expressions

• Logical
expressions

----------------"--"--------- --"._- --"-"-------------If-------------------t
LCLC or GELC S·tring of SETC
instruction length 0 instruction

(null)

The assembler Macro
instruction
index

(Constant
throughout
defini tion;
unique for
each macro
instruction)

• Arithmetic
expressions
if value is
decimal self
defining term

• Character
expressions

• Arithmetic
expressions

• Character
exrressions

-------.---- ---"-----------"-"".------""-.---"" ---" -_._-"""--------------11------------------1
8,SYSECT' The assembler Control (Constant • Character

expressions

&SYSLIST1

&SYSLIST
(n) 1

&SYSLIST
{n,m} 1

section in throughout
which macro definition;
instruction set by CSECT,
appears DSECT, START,

and COM)
--------1----"------------"" "---"""-"""-""----------11------------------1

The assembler Not applicable Not applicable • N'&SYSLIST in
ari thmetic
expressions

-----------1--- ------------"- ------"------"------+---------------1
The assembler Corresponding (Constant

macro instruc- throughout
tion operand definition)

• Arithmetic
expressions
if operand
is decimal
self-defining
term

----------r-------------- ---"" ----""-."------------11--------------------;
• Character

expressions

lCan be used only in macro definitions.

418

Chart 4. Variable Symbols cont. (Part 2 of 2)
~<~.-,....,..

!VarIable Declared by: Initia1iz ed, Value changed May be used in:
~ymbo1 or set to: by:

&SYSPARM PARM field User defined Constant • Arithmetic
or null throughout expression

assembly if value is
decimal se1f-
defining term

• Character
expression

&SYSTIME The assembler System time Constant • Character
throughout expression
assembly

&SYSDATE The assembler System date Constant • Character
throughout expression
assembly

'Can be used only in macro definitions.

Appendix VII: Summary of Macro Facility 419

420

This glossary has three main types of definitions that
aI=I=ly:

• To the assembler language in I=articular (usually
distinguished by reference to the words -assemtler-,
• assembly-, etc .•)

• To programming in general

• To data processing as a whole

If you do not understand the meaning of a data processing
term used in any of the definitions below, refer to the IEM
Data processing Glossary, Order No. GC20-1699.

IBM is grateful to the American National Standards Institute
(ANSI) for permission to reprint its definitions from the

American National Standard Vocabulary for Information
processing, which was prepared by Subcommittee X3~5 on
Terminology and Glossary of American National Standards
Committee X3.

ANSI definitions are preceded by an asterisk (*).

Glossary

Glossary 421

*absolute address: A pattern of characters
that;, identifies a unique storagE~ location
without further modification.

ai":solute expressiQ!!: An asserrbly-time
e>:pression whose value is not affected by
program relocation. An absolute expression
can represent em absolute address.

atsolute term: A term whose value is not
affected t:y relocation.

*address:
1:~identi fication, as reI=resented by a

name, label, or number, for a register,
location in storage, or any ether data
source or destination such as the
loca tion of a station in a
communication network.

2.. Loosely, any part of an inst:ruction
that specifies the location of an
operand for the instruction .. Synonymous
wi th address reference.

3. See at:solute address, base address,
explicit address, implicit address,
symbolic address.

~9,dress constaI1lt: A value, or an expression
rE~pres enting a value, used in the
calculation of storage addresses.

~g;dress reference: Same as address (2).

alignment: The positioning of the beginning
of a machine instruction, data constant, or
area on a proper boundary in virtual
st:orage ..

~J'pp.abetic chaI:acter: In assembler
programming, the letters A through Z and $,
• , @.

*~Jphameric: Same as alphanumeric.

*~lJ2p.anumeric: pertaining to a character set
that contains letters, digits, and usually,
ot:her characters, such as punctuation
marks. Synonymous with alphameric.

*AND: A logic operator having thE~ property
t'Fiat if P is a statement, Q is a statement,
R is a statement, ••• , then the AND of P, Q,
R I'.... is true if all statements are true,
false if any st~ateIrent is false,.

~:!'ithmetic expI.'ess ion: A conditional
assembly expression that is a combination
of arithmetic terms, arithmetic e~erators,
and paired parentheses.

2!J:!:hmetic~:ato~:
1., In assemblE!r programming, an operator

that can be used in an absolute or
relocatat:lE! expression, or in an
ari thmetic expression to indicate the

actions to be performed on the terros in
the expression. the arithmetic
operators allowed are: +,-, *, I.

2. See binary operator, unary operator.

arithmetic relation: Two arithmetic
~xpressions separated by a relational
operator.

*arithmetic shift:
1. A shift that does not affect the sign

position.
2. A shift that is equivalent to the

mul tiplication of a number t:y a
positive or negative integral power of
the radix.

arithmetic terff: A term that can be used
only in an arithmeitc expression.

array: In assembler programming, a series
of one or more values represented by a SET
symbol.

*assemble: To prepare a machine language
program from a symbolic language program by
substituting absolute operation codes for
symbolic operation codes and'absolute or
relocatable addresses for symbolic
addresses.

*assembler: A computer program that
assembles.

assembler instruction:
1. An assembler language sta tement tha t

causes the assembler to perform a
specific operation. Unlike the machine
instructions, the assembler
instructions are not transla-ted into
machine language •

2. See also conditional assembly
instruction, macro processing
instruction.

assembler language: A source language that
includes symbolic machine language
statements in which there is a one-to-one
correspondence with the instruction formats
and data formats of the computer. The
assembler language also includes statements
that represent assembler instructions and
macro instructions.

as§.§mb~im~: The time a t which the
assembler translates the symbolic machine
language statements into their object code
form (machine instructions). The assemtler
also processes the assembler instructions
at this time, with the exception of the
conditional assembly and macro processing
instructions, which it processes at
pre-assembly time.

attribute: A characteristic of the data
defined in a source module. The assembler
assigns the value of an attribute to the
symbol or macro instruction operand that
represents the data. Synonymous with data
attrihlte.

*base:
-1-.--A number that is multiplied by itself

as many times as indicated by an
exponent.

2. See floating-point base.

*base address: A given address frorr which an
absolute address is derived by corrbination
with a relative address. NOTE: In
assemtler programming, the relative address
is synonymous with displacement.

base register: A register that contains the
ba se address.

*Qinary: pertaining to the number
representation system with a radix of two.

*binary digit: In binary notation, either of
the characters, 0 or 1.

binary operator: An arithmetic operator
having two terms. The binary operators
that can be used in absolute or relocatable
expressions and arithmetic expressions are:
addition (+), subtraction (-),
multiplication (*), and division (~.
Contrast with unary operator.

*~it: A tinary digit.

bit-length modifier: A subfield in the DC
assemtler instruction that determines the
length in bits of the area into which the
defined data constant is to be assembled.

bit string: A string of binary digits in
which the position of each binary digit is
considered as an independent unit.

blank: In assembler programming, the same
as space character.

*blank character: Same as space character.

boundary: In assembler prograrr.rring, a
location in storage that marks the
beginning of an area into which data is
assembled. For example, a fullword boundary
is a location in storage whose address is
divisible by four. The other boundaries
are: doubleword (location divisible by
eight), halfword (location divisible by
two), and byte (location can be any
number). See also alignment.

* branch: Loosely, a conditional jump.

buffer: An area of storage that is
temporarily reserved for use in performing
an input/output operation, and into which
data is read or from which data is written.

*bug: A mistake or malfunction.

byt.e:
1. A sequence of adjacent binary digits

operated upon as a unit and usually
shorter than a computer word.

2. The representation of a character;
eight binary digits (bits) in
System/37 o.

call;
*-1-.-TO transfer control to a specified

closed subroutine.
2. See also macro call.

* character:
~~-letter, digit, or other symbol that

is used as part of the organization,
control, or representation of data. A
character is often in the form of a
spatial arrangement of adjacent or
connected strokes.

2. See blank character, character set,
special character.

character expression: A character string
enclosed by apostrophes. It can te used
only in conditional assenilily instructions.
The enclosing apostrophes are not part of
the value represented. Contrast with quoted
string.

character relation: Two character strings
separated by a relational operator.

character set:
*1. A set of unique representations called

characters, for example, the 26 letters
of the English alphabet, 0 and 1 of the
Boolean alphabet, the set of signals in
the Morse code alphabet, the 128
characters of the ASCII alphabet.

2. In assembler programming, the
alphabetic characters A through Z and
$, #, @; the digits, 0 through 9; and
the special characters + - * / , () =
• • & and the blank character.

*character string: A string consisting
solely of characters.

closed subroutine: A subroutine that can be
stored-at one-place and can be linked to
one or more calling routines. Contrast with
open subroutine.

Glossary 423

*code:
'-.-A se t of unambigous rules speci fying

the way in which data way be
represented, for example, the set of
correspondences in the standard code
for information interchange.

2. In data processing, to represent data
or a computer program in a symbolic
form that can be accepted by a data
processor.

3. To write Cl routine.
4. See condi t:ion code, object code,

operation code.

*£odinq: See s)~bolic coding.

collating se~~~~: An ordering assigned to
a, set of i terns, such that any twc sets in
that assigned order can be c<?l:lated.

*column: A vertical arrangerrent of
c:haracters or other expressions.

comments statE?ment: A staternen't used to
Include inforI1iarron that may b«~ hel };:ful in
running a job or reviewing an cut~ut
listing.

*~:.Q!!!'p'lement :
1. A number t:hat can be derived from a

speci fied number' ,by subtracting it from
a second specified number. For
example, in radix notaticn, the second
specified number may be given power of
the radix or one less than the given
};:ower of the radix. '!he negative of the
number is often represented by its
complemeni:.

2. See radix complement, twos complement.

complex relocatab!~_~~~sion: A
relecatable eJcpression that contains two or
more unpaired relocatable terms or an
unpaired relocatable term preceded by a
minus sign, after all unary operators have
been resolved" A complex relccatable
E!xpression is not fully evaluated until
program fetch time.

.'fomputer ~~am: A series of instructions
or statements ,/ in a form acceptable to a
computer, prepared in order to achieve a
certain result:.

*computer word: A sequence of bits or
characters trE:ated as a unit and ca};:able of
being stored in one computer location.

concatenation character: The period (.)
ihat is used to separate character strings
t:hat are to bE: joined tcgether in
conditional assembly processing.

lf24

condition code: A code that reflects the
result of a previous input/output,
arithmetic, or logical operation.

conditiQ~L~~~~Y: An assembler facili ty
for altering at pre-assembly time the
content and sequence of source statements
that are to be assembled.

conditional assembly expression: An
expression that the assembler evaluates at
pre-assembly time.

conditional assembly instruction: An
assembler instruction that performs a
conditional assembly operation. Conditional
assembly instructions are processed at
pre-assembly time. They include: the LCLA,
LCLB, LCLC, GBLA, GBLB, and the GBLC
declaration instructions; the SETA, SETB,
and SETC assignment instructions; the AIF,
AGO, ANOP, and ACTR branching instructions.

* condi ti~LjY!!!E: A jump tha t occurs if
specified criteria are met.

*£Qnsta~!: See figurative constant.

continuation line: A line of a source
statement into which characters are entered
when the source statement cannot be
contained on the preceding line or lines.

control program: A program that~ is designed
to schedule and supervise the performance
of data processing work by a computing
system.

control section: That part of a };:rogram
specified by the programmer to be a
relocatable unit, all elements of which are
to be loaded into adjoining virtual storage
locations. Abbreviated CSECT.

control statement: See linkage editor
control stateroent.

.£QEY: To reproduce data in a new location
or other destination, leaving the source
data unchanged, although the physical form
of the result may differ from that of the
source. For example, to copy a deck of
cards onto a magnetic tape.

count attribute (K'): An attribute that
gives the number of characters that would
be required to represent the data as a
character string.

* counter:
1:--A-device such as a register or storage

location used to represent the numter
of occurrences of an event.

2. See instruction counter, location
counter.

CPU: Central processing unit.

~: See control section.

data attribute: Same as attribute.

data constant: See figurative constant.

*debug: To detect, locate, and remove
mistakes from a routine or malfunctions
from a computer.

*decimal: Pertaining to the nurrber
representation system with a radix of ten.

declare: To identify the variable symbols
to be used by the asseIr:bler at pre-assembly
time.

*delimiter: A flag that separates and
organizes items of data.

*device: See s.torage device.

*dictionary: See external symbcl dictionary.

dimension: The maximum number of values
that can be assigned to a SET symbol
representing an array.

dimensioned SET symbol: A SET sy~bcl,
representing an array, followed by a
decimal number enclosed in parentheses. A
dimensioned SET symbol must be declared in
a global (GBLA, GBLB, or GBLC) or local
(LCLA, LCLB, LCLC) declaration instruction.

displ acement :
*1. Same as relative address.

2. In assembler programming, the
difference in bytes between a symbolic
address and a specified base address.

doubleword: A contiguous sequence cf bits
or characters which comprises two computer
words and is capable of being addressed as
a unit.
NOTE: In assembler programming, the
doubleword has a length of eight bytes and
can be aligned on a doubleword boundary (a
location whose address is divisible by
eight). Contrast with fullword, halfword.

*dummy: pertaining to the characteristic of
having the appearance of a specified thing
but not having the capacity to function as
such. For example, a dummy control
section.

dummy control section: A control section
that the.assembler can use to format an

area of storage without producing any
object code. Synonymous with dummy section.

dummy section: Same as dummy control
section.

dupli~tion.-i~£!:2!:: In assembler
programming, a value that indicates the
number of times that the data specified
immediately following the duplication
factor is to be generated. For example, the
first subfield of a DC or DS instruction is
a duplication factor.

*dynamic storage allocation: A storage
allocation technique in which the location
of computer programs and data is determined
by criteria applied at the moment of need.

EBCDIC: Extended binary coded decimal
interchange code.

entry name: A name within a control section
that defines an entry point and can be
referred to by any control section.

*entry point: In a routine, any place to
which control can be passed.

entry symbol:
1. An ordinary symbol that represents an

entry name (identified by the ENTRY
assembler instruction) or control
section name (defined ty the CSECT or
S~ART assembler instruction) •

2. See also external symbol.

~: (equal to) See relational operator.

*error message: An indication that an error
has been detected. Contrast with warning
message.

ESD: External symbol dicticnary.

excess sixty-four binary notation: In
assembler prograrrming, a binary notation in
which each e,xponent of a f loa ting-point
number E is represented by the binary
equivalent of E plus sixty-four.

execution time: ~he time at which the
machine-instructions in object code form
are processed by the central processing
unit of the computer.

explicit address: ~n address reference
which is specified as two absolute
expressions. One expression supplies the
value of a base register and the other
supplies the value cf a displacement. The
assembler assembles both values into the
object code of a machine instruction.

Glossary 425

§~enent: .
*1. In a fleat:ing-point representatJ.on, the

numeral, of a pair of numerals
representing a number, that indicates
the pewer to. which the bas!:! is raised.

2. See also. E!XCeSS sixty- four binary
netation.

e~enent medifier: A subfield :in the
c;perand ef t.he DC assembler instructien
t:hat indicates: the power of ten by which a
number is to. be multiplied before being
assembled as a data constant.

expr es s ien:
1. One er mere eperatiens represented by a

combination ef terms, and paired
pa rentheses.

2. See absolu.te expression, ari thmetic
expression, cemplex releca1:able
expression, relocatable expression.

3. See also. character expression.

Extended bina:rY..£9ded decimal intercha~
cede: A set of 256 characters, each
represented by eight bits.

external name: A name that can be referred
to. "'by any cent,rel sectien er separately
assembled modu.le; that is, a control
~:ectien name or an entry name in anether
medule.

externaLt:'eference.: A referencE~ to. a symbel
:that is def ined as an external name in
another medul€~.

_external symbol:
1. An erdinary symbol that represents an

external reference. An extE~rnal symbol
is identified in a seurce module by the
EXTRN er WXTRN assembler instruction,
or by the V- type address constant.

2. Lees ely, a. symbel contained in the
external symbol dictionary.

3. See also. ent,ry symbel.

_external symbol dictiona;y: Contrel
infermatien associated with an ebject er
load medule which identifies the external
symbols in the medule. Abbreviated ESD.

;g;~,!,RN: External reference.

fetch:
if::-Te lecate ,and load Cl quanti ty of data

frem sterage.
2.. In the Operating System (OS), to. ebtain

lead medules from auxiliary storage and
load them :into virtual sterage. See
also. leader (1) ..

L~ .26

3. In the risk Operating System (COS), to
bring a program phase into. virtual
sterage frem the core image library for
immediate execution.

4. A centrel pro.gram reutine that
accempli shes (1), (2), er (3). See also
leader (2).

5. The natne ef the system macr'e
instruction (FETCH) used to accemplish
(1), (2), er (3).

* fiqE!:~tiyg.£Q!!~:!:~!!:!:: "A preassigned, fixed,
character string with a preassigned, fixed,
data name in a particular pregramming
language.
NC'IE: In assembler pregramming, the two
types of figurative constant are:

a. data and address constants defined
by the DC assembler instructien.

b. symbels assigned values by the EQU
assembler instruction.

flag:
*1. Any ef varieus types ef indicaters used

fer identification. For example, in
assembler programming, the paired
apestrophes that enclose a character
expressien ef a queted string.

2.. In assembler pregramming, to indicate
the eccurrence of an error.

* fl~!:ing-pg1!!:!:_ba2~: In floating-peint
representatien, the fixed pesitive integer
that is the-base ef the pewer. NOTE: In
assembler programming, this base is 16.

fullwerd: A centigueus sequence ef bits or
characters which comprises a cemputer werd
and is capable of being addressed as a
unit.
NC'IE: In assembler pregramming, the
fullword has a length of feur bytes and can
be aligned en a fullwerd beundary (a
lecatien whese address is divisible by
feur). Centrast with deublewerd, halfwerd.

GE: (greater than er equal to.) See
relatienal operator.

~!!~f~!~:
*1. To. preduce a pregram by selectien ef

subsets frem a set ef skeletal ceding
under the centrel ef parameters.

2. In assembler programming, to produce
assembler language statements frem the
medel statements of a macro. definitien
when the definition is called by a
macro. instructien.

global scepe: Pertaining to. that part ef an
assembler pregram that includes the bedy of
any macro. definition called frem a seurce

module and the open code portion of the
source module. Contrast with local scope.

qlobal varial:le syml:ol:
1. A variable symbol that can be used to

communicate values between macro
definitions and l:etween a macro
definition and open code.

2. Contrast with local variable symbol.

~I: (greater than) See relational operator.

*halfword: A contiguous sequence of bits or
characters which comprises half a com~uter
word and is capable of being addressed as a
unit.
NOTE: In assembler programming, the
halfword has a length of two bytes and can
be aligned on a halfword boundary (a
location whose address is divisible by
two). Contrast with doubleword, fullword.

hexadecimal: pertaining to a number system
with a radix of sixteen; valid digits range
from 0 through F, where F represents the
highest units position (15).

iromediate data: Data specified in an SI
ty~e machine instruction that represents a
value to be assembled into the object code
of the machine instruction.

implicit address: An address reference
which is specified as one absolute or
relocatable expression. An implicit address
must be converted into its ex~licit
base-displacement form before it can be
asseml:led into the object code of a machine
instruction.

index register:
* 1. A regi ster whose content rr.ay be added

to or subtracted from the operand
address prior to or during the
execution of a computer instruction.

2. In assembler programming, a register
whose content is added to the c~erand
or absolute address derived frcm a
combination of a base address with a
displacement.

inner macro instruction: A macro
instruction that is specified, that is,
nested inside a macro definition. Contrast
with outer macro instruction.

*instruction:
1. A statement that specifies an o~eration

and the values or locat.ions of its
operands.

2. See assembler instruction, conditional
assembly instruction, rrachine
instruction, macro instruction.

* instruction counter: 'A counter that
indicates the location of the next computer
instruction to be interpreted.

instruction statement: See instruction (1).

integer attribute j!~L: An attribute that
indicates the number of digit positions
occupied by the integer portion of
fixed-point, decimal, and floating-point
constants in their object code form.

* interf!!E!;: To stop a process in such a way
it can be resmned.

* I/O: An abbreviation for input/output.

* jQb c2l}~rol~~~!:em~!!!:: A statement in a job
that is used in identifying the job or
describing its requirements to the
operating system.

* jump:
1. A departure fram the normal sequencE of

executing instructions in a computer.
2.. See conditional jump.

keyw9rd: In asserobler programming, an
ordinary symbol containing up to seven
characters. A keyword is used to identify a
parameter, called a keyword parameter, in a
macro prototype statement and the
corresponding macro instruction operand.

keyword operand; An operand in a macro
instruction that assigns a value to the
corresponding keyword parameter declared in
the prototype statement of the called macro
definition. Keyword operands can be
specified in any order, because they
identify the corresponding parameter l:y
keyword and not by their position.
NCTE: In assembler programming, the
specification of a keyword operand has the
format: a keyword followed by an equal sign
which, in turn, is followed by the valUE to
be assigned to the keyword parameter.

keywo~2_~~~~e!:~!: A symbolic parameter in
which the symbOl follOWing the ampersand
represents a keyword.
NOTE: In assembler programming, the
declaration of keyword parameter has the
format: a keyword parameter followed l:y an
equal sign which, in turn, is followed by a
standard (default) value ..

Glossary 427

label:
* ',:-Gne or more characters used to identify

a statement or an item of data in a
computer program.

:2. In ass embler prograrr.ming, t:he entry in
the name field of an asserobler language
sta tement. The three main t.ypes of name
entry are:
a. the ordinary symbol which

represents a label at assembly
time.

t. the sequence symbol which
represents a label at ~re-assembly
time and is used as a conditional
assembly branching destination.

c. the variable symbol that
represents a pre-assembly time
label for conditional assembly
processing and from which ordinary
symbols can be generated tc create
assembly-time labels.

*.!:~~:
1. A set of representations, conventions,

and rules used to convey infcrIl'a tion.
:2. See machine language, object language,

source language.

~~: (less than or equal to) See relational
o~erator.

*length: See word length.

length attribu~!!~l..: An attribute that
gives the number of bytes to be cccupied by
the object code for the data represented,
such as machine instructions, constants, or
.areas.

;length field: The operand entry cr SUbentry
in machine instructions that specifies the
number of bytes at a specific address that
are affected by the execution of the
instruc~ion.

length modifier: A subfield in the o~erand
of the DS Gr DC assembler instruction that
determines the length in bytes of the area
b~ be reserved or of the area intc which
the data defined is to be assembled.

*level: The degree of subordination in a
11ierarchy.

J-ibrary macro def.inition: A macro
definition stored in a program library.
The IBM-supplied supervisor and data
ma.nagement macro definitions (such as those
called by GET or PUT) are examFles of
library macro definitions. A library macro
definition can be included at the beginning
of a source module: it then becomes a
source macro definition.

428

* lin~!g~: In programming, coding that
connects two separately ceded routines.

linkage edit.2!: A processing program that
prepares the output of language translators
for execution. It combines separately
produced object or load modules; resolves
symbolic cross references among them;
replaces, deletes, and adds control
sections, and generates overlay structures
on request; and produces executable code (a
load module) that is ready to be fetched
into virtual storage.

linkage editor control statement: An
instruction for the linkage editor.

Ii teral: A symbol or a quantity in a source
program that is itself data, rather than a
reference to data. Contrast with figurative
constant.

li!~!~21: An area in storage into which
the assembler assembles the values of the
Ii terals specified in a source module.

* load: In programming, to enter data into
storage or working registers.

~-ID29~~: The out~ut of the linkage
editor; a program in a format suitable for
loading into virtual storage for execution.

loader:
1. Under the Operating System (OS), a

processing program that combines the
basic editing and loading functions of
the linkage editor and program fetch in
one job step. It accepts object modules
and load modules created by the linkage
editor and generates executable code
directly in virtual storage. The loader
does not produce load modules for
program libraries.

2. Under the Disk Operating System (~OS),
a supervisor routine that retrieves
program phases from the core image
library and loads therr into virtual
storage.

local scoEe: Fertaining to that part of an
assembler program that is either the body
of any macro definition called from a
source module or the open code portion of
the source module. Contrast with global
scope.

local variable symbol:
1. A variable symbol that can be used to

communicate values inside a macro
definition or in the open code portion
of a source module.

2. Contrast with global variable symbol.

*location: Any place in which data Iray be
stored.

location counter: A counter whose value
indicates the address of data assembled
from a machine instructien or a ccnstant,
or the address of an area of reserved
storage, relative to the beginning of a
control section.

*logie shift: A shift that affects all
positions.

logical expression: A conditional assembly
expression that is combination of legical
terms, logical operators, and paired
parentheses.

logical operator: In assembler programming,
an operator or pair of operators that can
be used in a logical expression te indicate
the action to be performed on the terms in
the expression. The logical operaters
allowed are: AND, OR, NOT, AND NOT, and OR
NOT.

loqical relation:
1. A logical term in which two expressions

are separated by a relational operator.
The relational operators allowed are:
EQ, GE, GT, LE, LT, and NE.

2. See arithmetic relation, character
relation.

logical term: A term that can be used only
in a logical expression.

loop:
* 1. A sequence of instructions that is

executed repeatedly until a terminal
condition prevails.

2. See loop counter.

leop counter: In assembler pregranning, a
counter to prevent excessive leoping during
conditional assembly processing.

LT: (less than) See relational operator.

*machine code: An operation code that a
machine is designed to recognize.

machine instruction:
*1. An instruction that a machine can

recogni ze and execute.
2. In assembler programroing, (locsely) the

symbolic machine language statements
which the assembler translates into
machine language instructions.

*machine language: A language that is used
directly by a machine.

macro:
~oosely, a mapro definition.
2. See also macro definition, macro

generation, nacro instruction, macro
prototype statement.

macro call: Same as macro instruction.

macro definition: A set of assembler
language statements that defines the name
of, format of, and conditions for
generating a sequence of assembler language
statements from a single source statement.

*macro expansion: Same as macro generation.

macro generation: An operation in which the
assembler produces a sequence of assemtler
language statements by processing a macro
definition called by a macro instruction.
Macro generation takes place at
pre-assembly time. Synonymous with macro
expansion.

macro instruction:
1. An instruction in a source language

that is equivalent to a specified
sequence of machine instructions.

2. In assembler programming, an assemtler
language statement that causes the
assembler to process a predefined set
of statements (called a macro
definition) • The staterr.ents normally
produced from the macro definition
replace the macro instruction in the
source program. Synonymous with macro
call.

macro instruct!2n_2Eg!~ng: An operand that
supplies a value to be aSSigned to the
corresponding symbolic parameter of the
macro definition called by the macro
instruction. This value is passed into the
macro definition to be used" in its
process ing.

macro libra£Y: See program library.

macro process!n9_in§!!ucti£Q: An assembler
instruction that is used inside macro
definitions and processed at pre-assemtly
time. These instructions are: MACRO, MENC,
MEXIT, and MNOTE.

macro prototype: Same as macro prototype
statement.

macro prototype statement: An assemtler
language statement that is used to give a
name to a macro definition and to provide a
model (prototype) for the macro instruction
that is to call the macro definition.

Glossary 429

~lain stor age:
* 1. The genera 1 purpose storage cf a

computer.
Usually, main storage can be accessed
directly by the operating :registers.

2. See also real storage, v irtual storage.

* !!lask: A pattern of characters -that is used
t.o control thE! retention or elimination of
Fortions of another pattern cf characters.

!!memonic opera.tion code: An opE~ration code
consisting of mnemonic symbols that
i.ndicate the nature of the o~eration to be
performed, thE! type of data used, or the
format of the instruction perforrring the
operation.

:~In enton i c sym bo 1 :
* 1. A sym:t::ol chosen to assist the human

memory, for example, an abbreviation
such as "mpy" for "multiply".

2. See also mnemonic o~eration cede.

value from the entry in the name field of
the macro instruction that corresponds to
the macro prototype staterrent.

NE: (not equal to) See relational operator.

* nest: To imbed subroutines or data in other
sutroutines or data at a different
hierarchical level such that the different
levels of routines or da ta can be executed
or accessed recursively.

nesting level: In assembler programming,
the level at which a term (or
subexpression) appears in an expression, or
the level at which a macro definition
containing an inner macro instruction is
processed by the assembler.

* no OP: An instruction that specific~lly
rnstructs the computer to do nothing,
except to proceed to the next instruction
in sequence.

model statement: A statement in the body a macro definition or in open code from
'which an assembler language staterr:ent can
be generated at pre-assembly time. Values
can be substituted at one or more ~oints in
.a model sta tement: one or more identical or
different statements can be generated from
·the same model statement under the control
of a condi tional assembly loop ..

of * NOT: A logic operator having the property
that if P is a statement, then the NOT of F
is true if P is false, false if F is true.

* ~odule:
1. A program unit that is discrete and

identifiable with respect t~o compiling,
combining with other units, and
loading, for example, the in~ut to, or
output from, an assembler, ccrr~iler,
linkage editor, or executive routine.

2. See ldad module, object rrodule, source
module.

name:
T:--A 1- to a-character alphameric term

that identifies a data set, a control
statement, an instruction statement, a
program, or a cataloged ~rocedure. The
first character of the name rr.ust be
alphabetic.

:2. See entry name, external name.
3. See also name entry, label.

!!ame entry: US'llally synonymous wi th label
(2). However ,the name entry of a model

s·tatement can be any string ef characters
i3·t pre-assembly tirre.

name field par;:lmeter: A symbolic parameter

* null character: A control character that
serves to accomplish ~edia fill or time
fill, for example, in ASCII the all zeros
character (not numeric zero). Null
characters may be inserted into or rereoved
from a sequence of characters without
affecting the meaning of the sequence, rut
control of equipment or the format may be
affected. Abbreviated NUL. Contrast with
space character.

null character stri~: Same as null string.

null strin9.:
* 1. The notion of a string depleted of its

entities, or the notion of a string
prior to establishing its entities.

2. In assembler programreing, synonymous
wi th the null character s·tring.

number attEib!!te (N~:
1. An at~ribute of a symbolic parameter

that gives the number of sublist
entries in the corresponding macro
instruction operand.

2. An attribute that gives the number of
positional operands in a macro
instruction (specified as N'&SYSLIST)
or an attribute that gives the number
of sublist entries in a specific
positional operand (sfecified as
N' &SYSLIST (n)) •

that is declarc~d in the name field of a * object code: Output from an assembler which
macro prototype staterrent. It is assigned a is itself executable machine code or is

430

suitable for processing to produce
executable machine code.

* object language: The language to which a
statement is translated. The machine
language for the IBM System/370 is an
object language.

* object module: A module that is the output
of an assembler or compiler and is input to
a linkage editor.

* object program: A fully compiled cr
assembled prqgram that is ready tc be
loaded into the computer. Contrast with
source program.

open code: That portion of a source module
that lies outside of and after any source
macro definitions that may be specified.

open subroutine: A subroutine that is
inserted into a routine at each place it is

the assembler language. Ordinary symbols
are also used to represent operation codes
for assembler language instructions. An
ordinary symbol has one alphabetic
character followed by zero to seven
alphameric characters.

outer macro instruction: A macro
instruction that is specified in open code.
Contrast with inner macro instruction.

* overflow: That portion of the result of an
operation that exceeds the capacity of the
intended unit of storage.

* overlay: The technique of repeatedly using
the same blocks of internal storage during
different stages of a program. When one
routine is no longer needed in storage,
another routine can replace all part of it.

used. Contrast with closed subroutine. * padding: A technique used to fill a block
NOTE: In assembler programming, a macro with dummy data.
definition is an open subroutine, because
the statements generated from the
definition are inserted into the source
module at the point of call.

* operand:
1. That which is operated upon.
2. See keyword operand, positional

operand.

* o~erating system: Software which controls
the execution of computer programs and
which may provide scheduling, debugging,
input/output control, accounting,
compilation. storage assignment, data
management, and related services.

* operation code: A code that represents
specific operations.

* opera tor:
1. In the description of a process, that

which indicates the action to be
performed on the operands.
NOTE: In assembler prograrrrring,
operands are referred to as terms.

2. See arithmetic operator, binary
operator, logical operator, unary
operator.

3. See also concatenation character.

* OR: A logic operat'Or having the property
that if P is a statement, Q is a statement,
R is a statement, ••• , then the OR of P, Q,
R ••• is true if at least one staterrent is
true, false if all statements are false.

ordinary symbol: A symbol that represents
an assembly-time value when used in the
name or operand field of an instruction in

paired parentheses: A left parenthesis and
a right parenthesis that belong to the sarre
level of nesting in an expression; the left
parenthesis must appear before its matching
right parenthesis. If parentheses are
nested within paired parentheses, the
nested parentheses must be paired.

paire'd relocatable terms: 'l'Wo relocatatle
terms in an expression with the same
relocatability attribute that have
different signs after all unary operations
have been performed. Paired relocatable
terms have an absolute value.

* parameter:
1. A variable that is given a constant

value for a specific purpose or
process.

2. See keyword parameter, name field
parameter, positional parameter,
symbolic parameter.

point of substitution: Any place in an
assembler language statement, particularly
a model statement, into which values can be
substituted at pre-assembly time. Variatle
symbols represent points of substitution.

positional ope!~nd: An operand in a macro
instruction that assigns a value to the
corresponding positional parameter declared
in the prototype statement of the called
macro definition.

pOSitional parameter: A symbolic parameter
that occupies a fixed position relative to
the other positional parameters declared in
the same macro prototype statement.

Glossary 431

~e-assemtly time: The time at which the
assembler process macro definitions and
~erforms conditional assembly oJ;:erations.

private code: An unnamed control section.

* program:
1. A series of actions propcsed in order

to achieve a certain result.
2. Loos ely, ,a rout ine.
:3. To de sign, wri te, and test a progr am as

in (1).
4. Loosely, to write a routine.
'5. See computer program, ob ject J;:rogram,

source program.

program fetch time:
1. The time a.t which a program (in the

form of load modules or J;:hases) is
loaded in·to virtual storage for
execution .•

:2. See also fetch (2), fetch (3).

* .gogram libra:£Y: A collection of available
computer programs and routines.

programmer macro definition: Locsely, a
source macro definition.

prototype statement: Sarre as macrc
prototype statement.

*pushdown list: A list that is constructed
a.nd maintained so that the next item to be
J:.-etr ieved and removed is the most recently
::;tored item in the list, that is, last in,
first out. Synonymous wi th pushdown stack.

pushdown stac~: Same as pushdown list.

~l!!.0t ed str ing: A char acter string enc losed
by apostrophes that is used in a macro
instruction operand to represent a value
1:hat can include blanks. The enclcsing
apostrophes are part of the value
J:epresented. Contrast with character
(~xpression.

* ~radix: In positional representation, that
int.eger, if it exists, by which the
significance of the digit place must be
multiplied to give the significance of the
next higher digit place. For example, in
decimal notat:ion, the radix of each place
is ten.

* ~radix complern4:!nt: A complement obtained by
subtracting eiich digit from cne less than
its radix, thEm adding one to ·the least
significant digit, executing all carries

432

required. For examJ;:le, tens complement in
decimal notation, twos corr.plernent in binary
notation.

read-only: A type of access to data that
allows it to read but not modified.

real storage: The storage of a IBM
System/370 computer from which the central
processing unit can directly obtain
instructions and data and to which it can
directly return results. Real storage can
occupy all or part of main storage.
Contrast with virtual storage.

recursive: Fertaining to a process in which
each step makes use of the results of
earlier steps.
NOTE: In assembler prograrrming, the inner
macro instruction that calls the macro
definition within which it is nested
performs a recursive call.

* register:
1. A device capable of storing a specified

amount of data such as one word.
2. See base register, index register.

relation: The comparison of two expressions
to see if the value cf one is equal to,
less than, or greater than the value of the
other.

relational operator: An operator that can
be used in an arithmetic or character
relation to indicate the comparison to be
performed between the terms in the
relation. The relational cperators are: EQ
(equal) , GE (greater than or equal to), GT
(grea ter than) , LE (less to or equal to) ,

LT (less than), NE (not equal to).

* relative add;~~: The number that specifies
the difference between the absolute address
and the base address. Synonymous with
displacement.

relocatability attribute: An attribute that
identifies the control section to which a
relocatable expression belongs. Two
relocatable expressions have the same
relocatability attribute if the unpaired
term in each of them belongs to the same
control section.

relocatable expression: An assembly-time
expression whose value is affected by
program relocation. A relocatable
expression can represent a relocatable
address.

relocatable term: A term whose value is
affected by program relocation.

* reloca te: In computer programming, to move
a routine from one portion of storage to
another and to adjust the necessary address
references so that the routine, in its new
location, can -ce executed.

relocation: Th~ modification cf address
constants to compensate for a change in
origin of a module, program, or control
section.

* rounding: Same as roundoff.

roundoff: To Qelete the least significant
digit or digits of a numeral and to adjust
the part retained in accordance with some
rule.

*routine:
1. An ordered set of instructions that may

have some general or frequent use.
2. See sucroutine.

scale modifier: A subfield in the cperand
of the DC assembler instruction that
indicates the number of digits in the
object code to be occupied by the
fractional portion of a fixed-point or
floating-point constant.

scaling attribute: An attribute that
indicates the number of digit positions
occupied cy the fractional portion of
fixed-point, decimal, and floating-point
constants in their object code forrr.

~cope: .
1. In assembler programming, that part of

a source prograR in which a variable
symbol can communicate its value.

2. See global scope, local scope.

self-defining term: An absolute term whose
value is/implicit in the specification of
the term itself.

seguence symcol: A symbol used as a
branching lacel for conditional assembly
instructions. It consists of a period
followed by one to seven alphameric
characters, the first of which must be
alphacetic.

SET symcol: A variable symbol used to
communicate values during conditicnal
assembly processing. It must be declared to
have either a global or local scope.

severity code: A code assigned by the
assemcler to an error detected in a source
module. A severity code can also be
specified and assigned to an error message
generated by the MNOTE instruction.

* sign_f1£: A binary digit occupying the sign
posi tion.

sig~EositiQg: A position, normally located
a t one end of a numeral, that contains an
indication of the algebraic sign of the
number.

* significant 1igi£: A digit that is needed
for a certain purpose, particularly one
that must be kept to preserve a specific
accuracy or precision.

* sourc~ lagg~g~: The language from which a
statement is translated.

source macro definition: A macro definition
Included in-a-source-mDdule. A source
macro definition can be entered into a
program library; it then becomes a library
macro definition.

source module: A sequence cf statements in
the assembler language that constitutes the
input to a single execution of the
assembler.

* sO~£~-EfQgf~m: A computer program written
in a source language. Contrast with object
program.

* space_£.!!~£tef: A normally nonprinting
graphic character used to separate words.
Synonymous with blank character. Contrast
with null character.

* sEeci~!_cha~££~f: A graphic character that
is neither a letter, nor a digit, nor a
space character.

* statement:
~-In-computer programming, a meaningful

\expression or generalized instruction
in a source language.

2. See job control statement, linkage
editor control statement, comments
statement, model statement.

* storage:
1. Fertaining to a device into which data

can be entered, in which they can be
held, and from which they can ce
retrieved at a later time.

2. Loosely, any device that can store
data.

3. See main storage, real storage, virtual
storage.

* ~~~~_alloc~~12n:
1. The assignment of blocks of data to

specified blocks of storage.
2. See dynamic storage allocation.

Glossary 433

* .!,tor~e protec:tioI}.: An arrangement for
preventing access to storage for either
reading, or writing, or both.

storage stack: Loosely, a pushdown list.

* ~~tring:
:1. A linear sequence of entities such as

characters or physical ele:ments.
~~. See bi t s1:ring, character string, null

string ..

i~st: A macro instruction o~erand that
contains one or more entries se~arated by
commas and enclosed in parentheses.

* subroutine:
-:1. A routine that can be part of another

routine.

substr ing:

1. A character string that has teen
extracted from a character expression.

2. See also substring notation.

substring notation: P. character expression
immediately followed by two subscripts,
separated by a co~ma, and enclosed in
parentheses. It can be used only in
conditional assembly instructions. The
value of the first subscript indicates the
position of the character within the
character expression that begins the
substring. The value of the second
subscript represents the number of
characters to be extracted from the
character expression.

:2. See closed subroutine, o~en subroutine. * ~witch: A device or J;:rogramming technique
for making a selection, fcr examJ;:le, a

33ubscript: One or more elements, enclosed
in parentheses, that appear immediately
after a variatle syrrbol or character
expression. The value of a subscriJ;:t
indica tes a posi tion in the array or string
of values represented by the variable
symbol or character expression.

;5ubscripted £SYSLIST: The system variable
symbol &SYSLIST inunediately followed by
either one sutscript or two subscriJ;:ts
seJ;:arated by conunas, and enclosed in
parentheses. The value of the first
subscript indicates the position cf a
!t::osi tional opE~rand in a macro instruction
and the value of the second subscript
indicates the position of the entry in the
sublist of th(~ posi tional operand indicated
by the first subscript.

_subscripteL~ET symbol:
1. A SET sy~)Ql that is immediately

followed by a subscript. A subscripted
SET symbol must be declared with an
allowable dimension before it can be
used. The value of the subscriJ;:t
indicates the position of the value
given to the subscripted symbcl in the
array represented by the SET symbol.

2. See also dimensioned SET symbcl.

:5ubscripted sY!!!122Iic paramet~!:: A syrrbolic
~arameter that is irrmediately followed by a
subscript. The value of the subscript
indicates the position of the entry in the
sublist in the macro instruction cferand
referred to by the symbolic parameter.

substitution: The action taken by the
assembler when it replaces a variable
symbol wi th a val ue, for example, during
the expansion of a rracro definition.

434

conditional jump.

* symbol:
1. A representation of something ty reason

of relationshi~, association, or
convention.

2. See mnemonic symbol, crdinary symbol,
sequence symbol, SE~ symbol, variatle
symbol.

* symbolic address: P.n address expressed in
symbols convenient to the computer
programmer.

* §ymb2.!!£-£22i!!9.: Coding tha t use s machine
instructions with symbolic addresses.
NC~E: In assembler programming, any
instruction can contain symbolic addresses.
In addition, any other portion of an
instruction may be represented with
symbols, for example, labels, registers,
lengths and immediate data.

symboli£-E~~!!!~te!::
1. A variable symbol declared in the

prototype statement of a macro
definition. A symbolic parameter is
usually assigned a value from the
corresponding cperand in the macro
instruction that calls the macro
definition.

2. See also keyword parameter, name field
parameter, positional parameter.

system loader: See loader (2) •

syste!!L!!!2.£EQ_2~!!n!ti2n: Loosely, a library
macro definition supplied by IB.~.

system_!!!2.£!:2_i!!§!!:~£tion: Loosely, a macro
instruction tnat calls for the processing
of an IBM-supplied library macro
definition, for example, the ATTACH macro.

~~~!!!-Y~!~!2'!~Y!!!Q.2.!: A va riable symbol 
that always begins with the characters 



&SYS. The system variable symbols do not 
have to be declared, because the assembler 
assigns them read-only values autcrratically 
according to specific rules. 

term: 
1:--The smallest part of an expression that 

can be assigned a value. 
2. See absolute term, arithmetic term, 

logical term, relocatable terrr. 

*translate: To transform statements from one 
language to another without significantly 
changing the meaning. 

*truncate: To terminate a computaticnal 
process in accordance with sorre rule, for 
example, to end the evaluation of a power 
series at a specified term. 
NOTE: In assembler programming, the object 
code for data constants can be truncated by 
the assembler. 

*twos complement: The radix complement in 
binary notation. 

tYEe attribute (TI): An attribute that 
distinguishes one form of data from 
another, for example, fixed-pcint ccnstants 
from floa ting-point constants or machine 
instructions from macro instructicns. 

unary operator: An arithrretic operator 
having only one term. The unary operators 
that can be used in absolute cr 
relccatable, and arithmetic expressions 
are: positive (+) and negative (-). 

unnamed control section: A control section 
that is initiated in one of the following 
three ways: 
1. By an unnamed STAR~ instructicn. 
2. By an unnamed CSECT instruction, if no 

unnamed START instruction appears 
before the CSEC~ instruction. 

3. By any instruction that affects the 
setting of the location ccunter. 

* variable: A quantity that can assume any of 
a gIven-set of values. 

~iaE1~~YmQQ~: In assembler programming, 
a symbol, used in macro and conditional 
assembly processing, that can assume any of 
a given set of values. It consists of an 
ampersand (&) follcwed by one to seven 
alphameric characters, the first of which 
must be alphabetic. 
NOTE: All variable symbols must be declared 
except the system variable symbols. 

virtg~1_2£2f~9~: Address space appearing to 
the user as real storage from which 
instructions and data are mapped into real 
storage locations. ~he size of virtual 
storage is limited only by the addressing 
scheme of the computing system rather than 
by the actual number of real storage 
locations. Contrast with real storage. 

warning message: An indication that a 
possible error has been detected. The 
assembler does not assign a severity code 
to this type of error. Contrast with error 
message. 

word: 
* -1-.--A character string or bit string 

considered as an entity. 
* 2. See computer word. 

3. See doubleword, fullword, halfword. 

* word leng!b: A measure of the size of a 
word, usually specified in units such as 
characters or binary digits. 
NOTE: In assembler prcgramming, the word, 
or fullword, contains 32 bits ~inary 
digits) or 4 bytes. 

~E=~round: Loosely, the overflow of the 
location counter when the value assigned to 
it exceeds 224-1 

Glossary 435 



4.:36 



(see period) 
+ (see plus sign) 
& (see.ampersand) 
&SYSDATE (system variable symbol) 279 

attributes of 279,325 
global scope of 279 

&SYSECT (system variable symbol) 280 
attributes of 280,325 
local scope of 279 
in nested macros 316 

&SYSLIST (system variable symbol) 281 
attributes of 283,325 
local scope of 279 
in nested macros 314 
notation allowed 281 
number attribute of 283 
subscripts for 281,282 

&SYSNDX (system variable symbol) 284 
attributes of 284,325 
local scope of 279 
in nested macros 315 

&SYSPARM (system variable symbol) 284 
attributes of 285,325 
global scope of 279 
specified in job control 

language 285 
under CMS 285-286 

&SYSTIME (system variable symbol) 286 
attributes of 287,325 
global scope of 279 

$ (see dollar sign) 
* (see asterisk) 

(see minus sign) 
/ (see slash) 
, (see comma) 
• (see number sign) 
Q) (see at sign) 

(see apostrophe) 
= (see equal sign) 

absolute address 84 
absolute expression 57,56 
A-con (see address constant, 

A-type) 
ACTR instruction 370 
address 

absolute 84 
base 85,133 
base displacement format of 86 
definition 84 
explicit 87 
implicit 87 
reference 84 
relocatable 84 
relocatability of 85 

address constant 

A-type 194 
location counter 
reference in 194 

defined by DC instruction 162 
External Symbol Dictionary 
entry for 116 

location counter reference in 
Q-type 200 

for external dummy section 
S-type 196 
V-type 198 
Y-type 194 

location counter 
reference in 194 

address reference 84 
(see also explicit address; 
implicit address; symbolic 
address) 

addressing 
between source modules 147 
within source modules 133 

AGO instruction 369 
AIF instruction 367 
alignment 75 

ALIGN option 75 
boundary 76,166 
of constants and areas 166,76 
forcing of 204,76 
of machine instructions 75 

ALIGN option 75,204 
ALOGIC option 376 
alphabetic character 

of character set 34 
in symbols 37,35 

alphameric (see character) 
alternate statement format 

for macro instruction 
statement 291 

for macro prototype statement 256 
number of continuation lines 

allowed 18 
ampersand (&) 35 

(see also double ampersand) 
as variable symbol indicator 

AND operator 361 
ANOP instruction 373 
apostrophe (') 

(see also double apostrophe) 
in attribute notation 324 
to delimit character strings 35 
to delimit quoted strings 304 

area (see data area) 
arithmetic expression 349 
arithmetic operator 

binary operator 
addition (+) 55,351 
division (/) 55,351 
multiplication (*) 55,351 
subtraction (-) 55,351 

unary operator 
negative (-) 55,351 
positive (+) 55,351 

Index 

Index 437 



.arithmetic relation 361 

.arithmetic term 
attribute reference 55,351 
self-defining 46 
SET symbol 318,351 
symbolic parameter 260,351 
system variable symbol 278~351 

array 
dimensioned SET symbol 322 

assembler instruction 30 
conditional assembly 32,317 
macro processing 32 
ordinary 30 

addressing 133 
controlling the assemblE~r 

program 211 
program sectioning 101 
symbol and data definition 153 

assembler language 2 
character set 34 
comments statement 19 
expressions 53 

(see also expression) 
assembly time 54,6 
conditional assembly 3 /.J9 

instruction statement 20 
assembler instructions 99,407 
machinE! instructions 63 
macro instructions 244,289 

literals ~iO 
option 

ALIGN 75 
ALOGIC 376 
FLAG 274 
LIBMAC 286 
MCALL 287 
MLOGIC 376 

program 3 
source module 26,102 
statement c:oding 15 
structure 25 
terms 36 

assembler proc:essing sequence 4 
assembly time 6 
pre-assembly time 7 , 8 

assembly time 
assembly into object code 5,108 
expression 54,6 

absolut:e 57 
complel: relocatable 58 

instructions processed during 5,6 
a.s s ignment instructions 

arithmetic 343 
character 345 
logical 347 

a.sterisk (*) 
(see also binary opera tor) 
as comments statement 
indicator 19 

as loc.ation counter reference 
indicator 43 

as multiplication operator 55,351 
with period, as internal macro 

comments statement indicator 277 
a.t sign (4) 

as alphabet:ic character 34 
a.ttribute 

438 

(see also l~elocatabili ty 
attribute) 

count lK ') 332 
integer (I') 331 
length (L') 329 
notation 324 
number (N') 333 
reference 324 
scaling (S') 330 
symbol length 44 
type (T') 328 

in character relation 361 
in SETC operand 345 

attribute notation 324 
attribute reference 

(see attribute) 
assembler processing sequence 4 

assembler instructions 6,7 
machine instructions 5 
macro instructions 8 

B-con (see data constant, binary) 
base address 85 

assigned by USING 134 
base-displacement form 84 

allowing relocatability of 
addresses 85 

assembled into machine 
instruction 86 

converted from implicit 
address 87,134 

base register 
assigned by USING 134 
loading 134 

begin column 16 
binary constant (B) 181 
binary operator (+,-,*,/) 

in absolute and relocatable 
expressions 55 

in arithmetic expressions 351,353 
bit string 

in binary self-defining term 48 
bit-length modifier 8,172 
blank 

character 35 
in operands 22 
opposed to null character 
string 298 

in self-defining term 50 
as special character 34 

Boolean 
expression (see logical 
expression) 

operator (see logical 
operator) 

boundary (see also alignment) 166 
boundary alignment (see 
alignment) 

branching 
conditional assembly 367 
extended mnemonic for 72 
machine instruction for 68 

buffer area 
formatted by a dummy section 121 



C-con (see data constant, 
character) 

call (see macro instruction) 
card (see punched card) 
card deck (see deck) 
CCW instruction 209 
central processing unit 4 
channel command word 209 
character 

alphameric (alphanumeric) 34 
digit 34 
expression 355 
letter 34 
relation 360 
set 34 
special 34 
string, null 298,303 

character constant (C) 182 
character expression 355 

concatenation operator 281 
between 357,359 

in SETC operand 345 
in substring notation 365 

character relation 
in logical expression 361,363 

character set 34,35 
character string 

(see also null character 
string) 

character constant (C~type) 182 
in character relations 360,361 
character self-defining term 50 
concatenation of character 
strings 359,268 

in macro instruction operands 302 
in MNOTE instruction 274 
in PUNCH instruction 229 
SETC operand 345 
in TITLE instruction 226 
type attribute 327 

CNOP instruction 218 
code 

condition 391 
machine 1 
mnemonic 79 
object 2 
open 252 
operation 22,79 
source 2 

coding 
conventions 15 
form 15 
time 4-8,108 

column 
begin 16 
continuation-indicator 16 
continue 16 
end 16 

COM instruction 124 
to continue common section 124 
to initiate common section 124 

comma (,) 35 
in character constants 182 

to indicate omitted 
operand field 80 
subfield 81 

between nominal values in 
constants 179 

between operands 35 
command 

(see channel command word) 
comments statement 19,27 

format 19,27 
in macro definitions 277 

common control section 
COM instruction for 124 
definition of 124 
establishing addressability of 124 

complex relocatable expression 58 
only in A-type and y-type 
address constants 194,58 

concatenation character (.) 
between character expressions 359 
in model statements 268 

concatenation operator (see 
concatenation character) 

condition code 391 
conditional assembly 

branching instructions 
ACTR 370 
AGO 369 
AIF 367 
ANOP 373 

elements 317 
data attributes 323 
sequence symbol 334 
SET symbols 318 

expression 349 
arithmetic 349 
character 355 
logical 359 

functions of 318 
instructions 

ACTR 370 
AGO 369 
AIF 367 
ANOP 373 
GBLA, GBLB, GBLC 340 
LCLA, LCLB, LCLC 336 
SETA 343 
SETB 347 
SETC 345 

loop counter 370,372 
in open code 374 
pre-assembly time 374,7 
processing 7 
substring notation in 364 

constant 
address 194-200 
data 154,161 
defined by DC instruction 161 
duplication ,factor subfield 168,163 
literal 180 
modifier subfield 163,170 
nominal value subfield 163,179 
padding of value 167 
truncation of value 168 
type subfield 163,169 

continue column 16 

Index 439 



continuation 
indicator field 17 
line 9,18 

control program 107 
control section 107 

common 124 
dummy 121 
executable, defined by 

CS ECT 110 , 119 
START 110,117 

external symbol dictionary 
entries for 116 

first 113 
literal pools in 115 
location counter setting 111 
processing times 108 
reference, defined by 

COM 110,124 
DSECT 110,121 
DXD 110,130 

unnamed 115 
O)PY instruction 103 

input to source module 102 
inside macro definitions 272 

counter 
instruction 41 
location 41,111 

loop 

(see also location 
counter) 

ACTR instruction 370 
count attribute (X') 332 
CPU (see central processing uni~ 
CSECT instruction 119 

to continue control section 119,120 
external symbol dictionary 
entry for 116 

to initiate executable control 
section 119,120 

CXD instruction 131 
cumulative length of external 

dummy sections 131,128 
for linkage: editor 13 1, 128 

m 
D-con (see floating point 
constant, long) 

data 
area 154,201 
attribute 323 
constant 154,162 

data attribute (see attribute) 
data constant 

binary (B) 181 
character (C) 182 
decimal ~,Z) 188 
defined by DC instruction '162 
fixed-point. (H,F) 186 
floating-point (E,D ,L) 190 
hexadecimal (X) 184 

data definition 154,161 
DC instruction 

440 

defining data 162 
operand 163 

subfields in operand 163 
arithmetic 65 
constants (P and Z) 188 
instructions 65 
self-defining term 47 

decimal constant 
integer attribute of 331 
packed (P) 188 
scaling attribute of 330 
zoned (Z) 188 

decimal point (.) 
for decimal arithmetic 65 
in decimal (P,Z) constants 188 
for fixed-point arithmetic 64 
in fixed-point (H,F) constants 187,176 
for floating-point arithmetic 66 
in floating-point (E,D,L) 
constants 191,178 

deck 
object 1 
source 1 

declaration instructions 
global 340 
local 336 

dictionary, external symbol 116,150 
dimensioned SET symbol 

declaration of 339,342 
displacement 

assembled into machine 
instruction 86 

computed from base address 87,133 
dollar sign ($) 

as alphabetical character 34 
double ampersand 

in character expression 357 
in MNOTE instruction 274 
in PUNCH instruction 230 
in TITLE instruction 226 

double apostrophe 
in character expression 357 
in MNOTE instruction 274 
in PUNCH instruction 230 
in TITLE instruction 226 

doubleword 
boundary 166 
data constants 166,191 

DROP instruction 144 
for freeing base registers 144 
not needed 146 
with USING 145,146 

DS instruction 201 
defining areas 201 
operand 206 
subfields in operand 206 
with 0 duplication factor 204,76 

DSECT instruction 121 
to continue dummy section 121 
external symbol dictionary 
entry for 116 

to generate external dummy 
section 127 

to initiate dummy section 121 
name in Q-type address 
constant 127,200 

with USING 140 
dummy control section 

definition of 121 
DSECT instruction for 121 



DXD instruction for 130 
establishing addressability of 121,140 
opposed to external dummy 
section 130 

duplication factor 
in SETC operand 346 
subfield of DCIOS operand 168 

DXD inst~uction 130 
external symbol dictionary 
entry for 116 

to generate external dummy 
section 127 

name in Q-type address 
constant 200 

EBCDIC (see extended binary coded 
decimal interchange code) 377 

E-con (see floating-point-
constant, short) 

EJECT instruction 227 
end column 16 
END instruction 105 

to end source module 102 
multiple 103 

entry symbol 
identified by ENTRY 150 

entry (see instruction statement 
entry; external symbol 
dictionary, entries) 

ENTRY instruction 150 
external symbol dictionary 
entry for 150,116 

identifying entry symbol 150 
for symbolic linkage 147 

EQ -- equal to 360 
(see also relational opera tor) 

I EQU instruction 156 
equal sign (=) 

to indicate literal 53,180 
in macro instruction operand 306 

ESD (see external symbol 
dictionary) 

establishing addressability 133 
of common section 124 
of dummy section 121,140 
of executable control section 120,137 
of external dummy section 128 
of large control section 138 
of reference control section 140 

excess-64 binary notation 
for exponent in floating-point 
constant 193 

executable control section 110 
establishing addressability of 137 
initiated by CSECT 119 
initiated by START 117 

execution time 4-8,108 
explicit address 

(see also base-displacement 
form) 

converted from implicit 
address 87,134 

in machine instruction 87 

exponent 
in excess-64 binary notation 193 
mOdifier 170,178 
in nominal value of constant 179 
portion of floating-point 
constant 192 

expression 
(see also assembly time 
expression; conditional 
assembly expression) 

absolute 57 
arithmetic 349 
Boolean (see expression, 
logical) 

character 355 
complex relocatable 58 
logical 359 

arithmetic relation in 361 
character relation in 361 

operators 
arithmetic 55,351 
concatenation 357 
logical 361 

relocatable 58 
terms in 

arithmetic 351 
logical 361 

extended floating-point constant 190 
extended mnemonic branching 
instruction 72,73 

external dummy control section 
allocation of storage for 127 
CXD instruction for 131 
DSECT instruction for 127 
DXD instruction for 130 
establishing addressability of 128 
generation of 127 
offset to 127 

external symbol 
identified by EXTRN 151 
identified in v-type address 
constant 149,198 

identified by WXTRN 152 
external symbol dictionary 116 

entries for 150,151 
EXTRN instruction 151 

II 

for data reference 148 
external symbol dictionary 
entry for 151 

identifying external symbol 151 
opposed to V-type address 
constant 149 

opposed to WXTRN instruction 152 
for symbolic linkage 147 

F-con (see fixed-point constant, 
fullword) 

fetch (see program fetch time) 
first control section 

initiated by 113 
literal pool in 115,216 
statements allowed before 114 

Index 441 



fixed-point 
arithmetic 64 
constant 186 
instruction 64 

fixed-point constant 
exponent modifier 178 
fullword (F) 186 
halfwQrd (H) 186 
integer attribute of 331 
scale modifier 176 
scaling attribute of 330 

FIJAG option 274 
floating-point 

arithmetic 66 
constant 190 
instruction 66 

floating-point constant 
base for 
exponent 

excess-64 binary notation 
for 193 

modifier 178 
in nominal value 179 

extended precision (L) 190 
fractional portion 192 
integer attribute of 331 
long (D) 190 
scale modifier 178 
scaling attribute of 330 
short (E) 190 

fc)rmat 
machine language 78,92 
source statement 20 

fc)rmatting 
COM instruction for 124 
data area using dummy section 121 
DSECT instruction for 121 

f:raction 
in fixed-poi.nt constants 186 
in floating-'point constants 192 
scale modifier to provide 
digits for 175-178 

scaling attribute to indicatE~ 330 
number of digits occupied by 

fr'action bar (/ -- see slash) 
fractional port:ion 

of floating-'point constants 192 
fullword 

boundary (sE~e boundary) 
constant 186 

GBLA instruction 340 
GBLB instruction 340 
GBLC instruction 340 
G:~ -- greater than or equal to 360 

(see also relational operator) 
q.eneration (see macro generation) 
cllobal 

(see ,also global scope, global 
variable symbol) 

declaration 340 
(llobal scope 

of SET symbol 319 
of system variable symbols 

442 

&SYSDATE 279 
&SYSPARM 284 

I &SYSTIME 287 
global variable symbol 

SET symbol 319 
system variable symbols 

&SYSDATE 279 
&SYSPARM 284 
&SYSTIME 287 

GT greater than 360 
(see also relational opera tor) 

m 
H-con (see fixed-point constant, 

halfword) 
halfword 

boundary (see boundary) 
constant 186 
instructions 

hexadecimal 
constant (X) 184 
digit 49 
notation in floating-point 
constants 193 

self-defining term 49 

II 
II (see integer attribute) 
ICTL instruction 219 
identification-sequence field 17 
immediate data 90 
implicit address 

converted to explicit address 87,134 
in machine instruction 87 
in USING domain 125 

index register 
in address reference 86 
in machine instruction operand 87 

inner macro instruction 
input 

to assembler program 2,102 
buffer 121 
to linkage editor 2,108 
to source module 102 

input/output instructions 70 
instruction 

assembler 3,30 
conditional assembly 32,317 
entry 21 
format (see machine 
instruction format) 

machine 2,29 
macro 33,289 
statement 16 
statement format 20 

instruction counter 41 
instruction entry (see 
instruction statement entry) 

instruction statement 2,26 



instruction statement entry 
name 21 
operand 22 
operation 22 
remarks 23 

instruction statement format 20 
integer attribute (I') 331 

formu:lra for 331 
IIO (see input/output) 
ISEQ instruction 221 

K' (see count attribute) 
keyword operand 296 

combining with positional 
parameters 299 

keyword parameter 263 
combining with positional 
parameters 265 

II 
L' (see length attribute) 
label 

ordinary symbol as 38 
sequence symbol as 335 
variable symbol as 344,345,348 

language (see assembler language) 
LCLA instruction 336 
LCLB instruction 336 
LCLC instruction 336 
L-con (see floating-point 
constant, extended precision) 

LE -- less than or equal to 360 
(see also relational opera tor) 

length 
attribute 329 
explicit 88 
implicit 88 

I modifier 159 
l~ngth attribute (L') 329 

in arithmetic expression 351 
in assembler language 
statement 45 

assembly time 158,159 
pre-assembly time 158,159 
value 

length field 
in machine instructions 88 
length modifier 170 
letter 34 
level (see nesting level) 

LIBMAC option 286 
library 

macro definition 252 
for statement to be copied 103 

library macro definition 
IBM supplied 239 
opposed to source macro 
definition 252 

printing of (option LIBMAC) 287 
linkage (see linkage edit 
processing) 

linkage edit processing 
control sections 108 
ESO entries for 116 
external dummy section 

CXO instruction 131 
Q-type address constant 200 

load module 1,108 
object module 1,108 
symbolic linkage information 

ENTRY 150 
EXTRN 151 
V-type address constant 198 
WXTRN 152 

linkage-edit time 4-8,108 
linkage editor 

address constants for 
A-type 194 
Q-type 200 
V-type 198 
y-type 194 

control statement 
created by PUNCH 228 
created by REPRO 231 

external symbol dictionary 116 
instruction for 

CXO 131 
listing control instructions 

EJECT 227 
PRINT 222 
SPACE 228 
TITLE 224 

listing options 
ALOGIC 376 
LIBMAC 286 
MCALL 287 
MLOGIC 376 

literal 50 
compared to data constants 

and self-defining terms 51 
constant 180 
duplicate 217 
pool 51,215 
specification 53 
subfields 53 

literal pool 215 
in control section 115 
initiated by LTORG 215 

load 
instruction 

fixed-point arithmetic 64 
floating-point arithmetic 66 
logical operations 67 

module 2,108 
time (see program fetch time) 

load module 
combined from object modules 2,108 
loaded by loader 4 
loaded at program fetch time 4,108 
produced by linkage editor 2,108 

load time (see program fetch 
time) 

loader 4 
local 

(see also local scope, local 
variable symbol) 

declaration 336 

Index 443 



local scope 
of ACTR instruction 371 
of sequence symbol 325 
of SET symbol 319 
of symbolic parameter 260,319 
of system variable symbols 

&SYSECT 319 
&SYSL1ST 319 
&SYSNDX 319 

local variable symbol 
SET symbol 318 

declaration of 336 
symbolic parameter 260 
system varia,ble symbols 

&SYSECT 280 
&SYSL1ST 281 
&SYSNDX 284 

location counter 41 
printed values 42 
setting for control sections 111 

location countE!r reference (*) 41 
in address constants (A and 
Y-type) 1 Lt· 4 

in expressions 55 
in literals 43 
in ORG operand 213 

logical expression 359 
in A1F operand 367 
coding rules for 362 
definition of 361 
evaluation of 363 
operators for 361 
in SETB opeJrand 340 
terms in 361 

logical operator 
AND, NOT, OR 361 
in logical expression 361 

logical relation 
(see also arithmetic relation, 
character relation) 

in logical expression 360 
operators for 360 

(see also relational 
operator) 

logical term 
in logical expression 361 

loop 
conditional assembly 370 
counter 370 

loop counter 370 
ACTR instruction for 370 

I.T -- less than 360 
(see also relational operator) 

IXORG instruction 214 
for literal pool 215 

machine instruction 
address in 84 

explicit 87,133 
implicit 87,133 

alignment of 75 
coding examples 92 
format of 78 
immediate data in 90 

444 

mnemonic operation code for 79 
object code from 78,92-97 
operand entry 80 
processing 5 
register usage in 83 
statement format 29,78 
types 64-74 

machine instruction format 
RR 92 
RS 94 
RX 93 
S 96 
S1 95 
SS 97 

machine language 1 
macro (see macro definition, 

macro instruction) 
MACRO assembler instruction 254 

(see also macro definition, 
header) 

macro call (see macro 
instruction) 

macro definition 245,251 
body of 248,259 
format 253 
header (MACRO) 254 
internal comments for 277 
library macro definition 246,252 

printing of (L1BMAC) 287 
as opposed to open code 252 
prototype statement of 243,255 
source macro definition 246,252 
statements in 

comments statements 248,277 
model statements 248,266 
processing statements 249,272 

symbolic parameters in 260 
trailer (MEND) 254 
where to specify 246,252 

macro expansion 240 
(see also macro generatio~ 

macro generation 240 
of comments 277 
controlled by conditional 

assembly language 242,317 
message produced by MNOTE 274,275 
model statement for 248,266 
of operation codes 270 
output from macro definition 240-242 
at pre-assembly time 

macro instruction 33,289 
alternate statement format 291 
call to a macro definition 240 
entry 

name 292 
operand 293 
operation 293 

format of 290 
inner 307 
nesting of 247,307 

levels 308 
operand 294 

&SYSL1ST 281,301 
keyword 296 
positional 294 
sublist 300 

outer 307 
printing of nested ~CALL) 288 



processing 8 
recursive call 310 
statement format 290 
values in operands 302 
where to specify 247,290 

macro instruction operand 
combining keyword and 

posit;.ional 299 
keyword 296 
positional 294 
sublist as value 300 
value of 302 

macro library 246,252 
macro definition in 246 

macro prototype statement 255 
alternate format 256 
entry 

name 256 
operand 258 
operation 257 

format of 255 
name field parameter in 257 
symbolic parameters in 258,260 

mask 

. keyword 263 
positional 262 

for branching 90 
as immediate data 92,94 

MCALL option 287 
MEND instruction 254 

(see also macro definition, 
trailer) 

as exit from macro definitions 249 
MEXIT instruction 276 
minus sign (-) 

(see also binary operator, 
unary operator) 

as subtraction operator 355,351 
MLOGIC option 376 
mnemonic operation code 

changing of (OPSYN) 232 
creating of, for macros 257 
generation of 270 
for machine instructions 79 
naming a macro definition 243,257 
structure of 79 
used in macro instruction to 
call a macro definition 243 

MNOTE instruction 273 
model statement '266 

concatenation in 268 
fields in 267 
format of 266 
points of substitution in 267 
rules for field contents 269 
variable symbols in 267 

modifier 
exponent 178 
bit-length 172 
length 170 
scale 175 
subfield in DC/OS operand 170 

module (see load module, object 
module, source module) 

m 
N' (see number attribute) 
name entry 

in assembler language 
instruction 21 

in conditional assembly 
instruction 32 

in EQU instruction 156,160 
in machine instruction 29 
in macro instruction 292 
in macro prototype statement 
in model statement 269 
in OPSYN instruction 232 
in TITLE instruction 224 

name field parameter 
assigning a value to 292 
of macro prototype statement 
opposed to symbolic parameter 

NE -- not equal to 
(see relational operator) 

nested macro instruction 247,307 
nesting level 

for COpy instructions 104 
for macro instructions 308 

no op (see no operation 
instruction) 

no operation instruction 
extended mnemonic for 73 
generated by CNOP instruction 

NOALIGN (opposite of ALIGN) 6 
NOALOGIC (opposite of ALOGIC) 
NOLIBMAC (opposite of LIBMAC) 
NOMCALL (opposite of MCALL) 
nominal value 

subfield in DC/OS operand 179 
NOMLOGIC (opposite of MLOGIC) 
NOT operator 361 
notation (see attribute notation, 
excess-64 binary notation, 
substring notation) 

null character string 
as default value of keyword 
parameter 264,298 

generation of 298,303 
in model statement 298,303 
opposed to blank 298 
as sublist entry 301 
as value in macro instruction 

operand 303 
number attribute (NI) 333 

of &SYSLIST 283 
in arithmetic expression 351 

number representation 
for decimal constants 188 
for floating-point constants 

number sign (#) 
as alphabetic character 34 

256 

256 
256,257 

218 

192 

Index 445 



object code 
of addresses 86 
of channel command words (CCW) 210 
of data constants (DC) 

padding 167 
truncation 168 

entered into 
common control section 124 
external dummy control 
section 128 

formats for machine 
instructions 78 

of lengths 
effective 88 
explicit 88 
implicit 88 

of machine instructions 92-97 
alignment 75 

registers assembled into 83 
registers not apparent in 83 
representation of decimal 
constants 188 

representation of floating-' 
point constants 193 

(see also excess-64 binary 
notation) 

fraction 193 
exponent 193 

object language (see object code) 
object module 

area reserved in, by OS 201 
assembled from source module 2,108 
automatic call for (EXTRN) 152 
combined into load module 2,108 
common control section in 124 
constant assembled into, fz"om 

DC instruction 161 
as opposed to source module 101 

open code 
conditional assembly in 374 
opposed to code inside macro 
definitions 252 

operand 
(see also operand entry, term) 
alternate format for 256,291 
combined with remarks in 

model statement 271 
combining keyword and 
positional 299 

in DC/OS instruction 163,206 
entry in assembler language 
instruction 22 

field 20 
format of 22,80 
keyword 296 
of macro definition 258 
of macro instruction 294 
positional 294 
subfield in DC/DS instruction 163,206 
symbolic parameter as 258,260 

operand entry 22 
address 8,[J 

446 

in assembler instruction 31 
combined with remarks in 

model sta'tement 271 

in conditional assembly 
instruction 32 

immediate data 90 
length 88 
in machine instruction 29 
in macro instruction 33,293 
in macro prototype instruction 258 
in model statement 271 
register 82 

operation code (see mnemonic 
operation code) 

operation entry 22 
in assembler instruction 21 
in conditional assembly 
instruction 32 

in machine instruction 29 
in macro instruction 293 
in macro prototype statement 257 
in model statement 270 

operator 
arithmetic 

binary 55,351 
unary 55,351 

concatenation (see 
concatenation character) 

logical 361 
relational 360 

OPSYN instruction 232 
option (see assembler, option) 
OR operator 361 
ordinary symbol 37 

as operation code for macro 
prototype statement 257 

opposed to sequence symbol, 
variable symbol 37,38 

ORG instruction 212 
outer macro instruction 307 
output 

from assembler program 2,108 
buffer 121 
from linkage editor 2,108 
from source module 2,108 

overflow 
of location counter 42 

padding of constants 167 
paired relocatable terms 56 

in absolute and relocatable 
expressions 57,58 

from dummy section, allowed in 
address constants 123 

parameter 
name field 256 
symbolic 260 

P-con (see decimal constant, 
packed) 

period (.) 
(see also concatention 
character, decimal point) 

with asterisk as internal 
macro comments statement 
indicator 19,277 

as bit-length indicator 172 



in macro instruction operand 
value 307 

as sequence symbol indicator 38,334 
plus sign (+) 

(see also binary operator, 
unary operator) 

as addition operator 55,351 
point of substitution 

in model statement 269-271 
variable symbol as 261 

POP instruction 234 
position 

of character in line after 
REPRO 231 

of character in PUNCH operand 230 
corresponding to coding sheet 

column 15 
positional operand 294 

combining with keyword 
operands 299 

in macro instruction 294 
positional parameter 262 

combining with keyword 
parameters 265 

pre-assembly time 4-8 
expression 

arithmetic 349 
character 355 
logical 359 

instructions processed during 7 
operation 

precision 
extended, floating-point 
constant (L-con) 190 

PRINT instruction 222 
private code 115 

(see also unnamed control 
section) 

processing sequence 
(see processing time) 

processing statements in macro 
definitions 272 

conditional assembly 
instructions 272-317 

COpy instruction 272 
inner macro instruction 272-307 
MEXIT 276 
MNOTE 273 

processing time 
(see also assembler processing 
sequence) 

assembly 4-8,108 
coding 4- 8, 108 
execution 4-8,108 
linkage edit 4-8,108 
pre-assembly 4-8 
program fetch 4-8,108 

program 
(see also object program, 
source program) 

execution 108 
linkage 101,108 
sectioning 101 

program fetch time 4,108 
program library (see library) 

program relocation 
affect on absolute terms 36 
affect on address references 
affect on relocatable terms 

programmer macro 
(see source macro definition) 

prototype statement (see macro 
prototype statement) 

PUNCH instruction 228 
punched card 

containing assembler language 
statements 1,15 

as input to assembler 102 
PUSH instruction 234 
pushdown list 234 

(see also in GLOSSARY) 

Q-con (see address constant, 
Q-type) 

quoted string 304 

II 
read-only storage (see literal 

pool) 
read-only value 

of literals 53 
of symbolic parameters 260 

Page of GC33-401Q-4 
Revised Feb. 25, 1975 
By TNL: GN33-8193 

85 
36,58 

of system variable symbols 270 
recursion 

of nested macro calls 310 
reference control section 110 

common section 124 
dummy section 121 
establishing addressability of 140 
external dummy section 127 
initiated by COM 124 
initiated by DSECT 21 
initiated by DXD 130 

register 82 
base 85,133 
index 86 
as operand in machine 
instruction 82 

usage in machine instruction 
operations 83 

relation (see arithmetic 
relation, character relation, 
logical relation) 

relational operator (EQ, GE, GT, 
LE, and NE) 360 

between arithmetic expressions 361 
between character strings 361 

relative address (see 
displacement) 

relocatability 
of addresses 85 
attribute 58 

Index 447 



relocatablE~ address 84 
relocatable expression 58,56 

complex relocatable 
expression 58 

processed at assembly time 6 
relocatable term 36 
relocate 

(see also program relocation) 
instructions 74 

REPRO instruction 231 
rounding 

of fixed-point constants 177 
of float:ing-point constants 178 

RR format 92 
RS format 94 
RX format 93 

S format 96 
S' (see scaling attribute) 

SI format 95 
SS format 97 
scale modifier 

for f iXE~d- point constants 176 
for floating-point constants 178 

scaling attribute ~') 330 
in formula for integer 
attribute 331 

S-con (see address constant, 
S-type) 

scope (see global scope, local 
scope) 

self-defining term 46 
in assembly-time expressions 55 
binary 48 
charactter 50 
in conditional assembly 
expressions 351 w361 

decimal 47 
in EQU operands 156-160 
hexadecimal 49 

sequence symbol 38 
as conditional assembly label 334 
format of 334 
local scope of 35 

SET symbol 318 
in arithmetic expression 349 
assigning value to 349 
in character expression 356 
declaration of 336 
in logical expression 361 
scope of 319 
as subscript 318 
subscripted 322 

SETA instruction 343 
SETB instruction 347 
SE'l'C instruction 345 
severity code 

in MNOTE operand 273 
sign 

448 

(see also sign bit) 
for decimal numbers 188 
for fixed-point numbers 186 
for floating-point nwnbers 190 

sign bit 
in fixed-point constants 186 
in floating-point constants 192 
in self-defining terms 47-49 

slash (/) 
(see also binary opera tor) 
as division operator 55,351 

source language (see assembler 
language) 

source macro definition 
opposed to library macro 
definition 252 

where to specify in source 
module 246,252 

source module 26,102 
addressing within (USING) 133 
assembled into object module 101 
beginning of 102 
control sections in 101 
copying statements into ~OPY} 103 
end of (END) 102 
input to assembler program 102 
literals in 214 
number of external symbol 
dictionary entries allowed in 116 

open code of 252 
as opposed to object module 101 
size of 101 
source macro definition in 246,252 
statements in 

comments 27,19 
instruction 26,20 

structure of 26 
symbolic linkage between 147 

source program 101 
SPACE instruction 228 
special character 34 

before attribute notation 305 
between operator and term 362 

START instruction 117 
external symbol dictionary 
entry for 116 

to initiate first (executa.ble) 
control section 113 

statements allowed before 113,114 
statement 

assembler language 2,15 
comments 19 
field 16 
format 

fixed 20 
free 20 

instruction 20 
macro prototype 255 
model 266,8 

status switching instructions 69 
storage (see virtual storage, 

pushdown list) 
storage allocation 

for external dummy sections 128 
store 

not allowed with literal 53 
operation 

string (see bit string, character 
string) 

sublist 
in macro instruction operand 300 
in nested macros 312,313 



referred to by 
subscripted &SYSLIST 300,281 
subscripted parameter 300,261 

subscript 
in &SYSLIST notation 281 
to indicate sublist entry 261,281 
nesting of 322 
for p~rameter 261 
for SET symbol 327 
in substring notation 365 
for variable 267 

subscripted &SYSLIST 
in nested macros 314 
reference to positional 
operand 281,282 

reference to sublist entry 281,282 
subscripts for 282 

subscripted character expression 
(see substring notation) 

subscripted parameter 261 
in nested macros 312,313 
reference to sublist entry 261 
subscript for 261 

subscripted SET symbol 318,322 
nesting of subscripts 322 
for SETA symbols 344 
for SETB symbols 348 
for SETC symbols 347 

subscripted variable symbol 267 
(see also subscripted 
&SYSLIST, subscripted 
character expression, 
subscripted parameter, 
subscripted SET symbol) 

substitution 
point of 267 
at pre-assembly time 7,8 

substring notation 364 
character expression in 366 
concatenated to character 
expression 359 

in SETC operand 345 
subscripts for 366 

suppression (see zero 
suppression) 

symbol 
definition of 38 
entry 150 
external 151 

dictionary (ESD) 116 
length attribute reference 44 
ordinary 37 
previously defined 40 
sequence 38,334 
system variable symbol 278 
table 37 
variable 38 

SET 318 
symbolic parameter 260 

symbol definition 
in assembler language 
instruction 38 

mnemonic operation code by 
OPSYN 232 

using EQU instruction 155 
symbol length attribute reference 44 

(see also attribute) 
symbolic address reference 84 

symbolic linkage 147 
symbolic parameter 260 

attributes of 325,327 
in body of macro definition 260,267 
as macro instruction operand 
value 311,312 

in macro prototype statement 
operand 255,200 

in model statement 266,267 
in nested macro instruction 311-313 
opposed to name field 

parameter 256,292 
symbolic representation 36,153 
system macro 

(see library macro definition) 
system variable symbol 278 

&SYSDATE 279 
&SYSECT 280 
&SYSLIST 281 
&SYSNDX 'i4 
&SYSPARM 2~j4 
&SYSTIME 287 

II 
T' (see type attribut~ 
term (sometimes called operand) 

absolute 36 
ordinary symbol 37 
self-defining 46 
symbol length attribute 
reference 44 

arithmetic 
attribute reference 46,351 
self-defining 46,351 
variable symbol 38,352 

logical 361 
relocatable 

location counter reference 41 
ordinary symbol 27 

terminal 
to enter statements 1 
input to the assembler 102 

TITLE instruction 224 
translation (see assembly) 
truncation of constants 168 
type attribute (T') 328 

in logical expression 361 
in SETC operand 345 
value 328 

type subfield in DC/DS operand 169 
twos complement 

representation for negative 
numbers 188 

III 
unary operator (+,-) 

in absolute and relocatable 
expressions 55 

in arithmetic expressions 351,353 

Index 449 



'unnamed control section 11 5 
external symbol dictionary 
entry for 116 

initiation of 115 
USING domain 

address reference within 135 
corresponding USING range 135 
definition of 135 
rules 'for 141 

US ING instruc1:ion 134-144 
for assigning base address 134 
for assigning base registers 134 
domain of 135 
for establishing 
addressability 134,137 

range of "135 
USING range 

address wi1:hin 135 
corresponding USING domain 135 
definition of 135 
overlapping of 143 
rules for 142 

v'ariable symbol 38 
(see also global variable 
symbol, local variable 
symbol) 

as point of substitution 267 
SET symbol 318 
symbolic parameter 260 
system variable symbol 278 

&SYSDATE 279 
&SYSEC,]~ 280 
&SYSLIST 281 
&SYSNDX 284 
&SYSPARM 284 
&SYSTIME 287 

V-con (see V-t:ype address 
constant) 

virtual storage 
(see also in GLOSSARY) 
allocation of 
program loaded into 108 

VM/370 
service provided by 9 

V-type address constant 198 
for branching to external 
control sE!ction 198,149 

external symbol dictionary 

450 

entry for 116 
identifying external symbol 
opposed to EXTRN instruction 
for symbolic linkage 147 

198 
149 

warning message 76 
word ' 

(see also full word) 
alignment 166,75 
boundary 166 
length 

wrap-around 
(see also overflow) 
of location counter 42 

WXTRN instruction 152 
external symbol dictionary 
entry for 116 

identifying external symbol 
opposed to EXTRN instruction 
for symbolic linkage 147 

t3 
X-con (see data constant, 

hexadecimal) 

Y-con (see address constant, 
Y-type) 

Z-con (see decimal constant, 
zoned) 

zero suppression 
in address values in listing 
in SETA symbol values 346 

147,152 
152 

42 



(') 
C 
-I 
» 
r 
o 
Z 
G> 
o o 
::j 
m 
o 
C 
Z 
m 

OS/VS - DOS/VS - VM/370 
Assembler Language 

GC33-4010-4 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such request, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Reply requested: Name: 

READER'S 
COMMENT 
FORM 

Yes D 
No D 

Job Title: ___________________ _ 

Address: ____________________ _ 
Zip _________ ___ 

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 



GC33-4010-4 

Your comments, ptlease ... 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

Fold 

Fold 

Business Reply Mail 

No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department 813 L 
1133 Westchester Avenue 
White Plains, New York 106.04 

In'.ematlonal BUllnel.1 Machlnel Corporation 
Data Proceiling Dlvlalon 
1133 Weltchelter AVEtnuo, White Plalnl, New York 10804 
(U.S.A. only) 

IIBM World Trade Co~)oraUon 
821 United Nationl PI,lza, New York, New York 10017 
(Irltem.tlonal) 

FOld 

First Class 
Permit 40 
Armonk 
New York 

Fold 

o en 
"< en 

o 
() 0 
C en 
-I -o ~ 
JJ 

"TI < 
o s: r _ 

o w 
» ........ 
r 0 
o » 
Z en 
C) ~ 
C 3 
Z C" 
m ~ 

r 
Q) 

:::J 
co 
c: 
Q) 
co 
CD 

'"T1 

CD 
Z 
P 
en 
w 
........ 
o r:., 

o 
en -< 
~en 

o 
o 
en -< 
~en 

< s: -w 
........ 
.9 



GC33·4010·4 

International Buslnels Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

IBM World Trade COlrporatlon 
821 United Nations P'laza, New York. New York 10017 
(International) 

o 
U'J -< 
U'J 

o 
o 
U'J -< 
U'J 

< 
~ -w ..... 
o 
» 
en 
en 
CD 

3 
C'" 

~ 
r 
III 
::J 
to 
c: 
III 
to 
CD 

" CD 
z 
p 
U'J 
W ..... 
c;:> 

'" ...... 

o 
U'J -< 
~U'J 

o 
o 
U'J -< 

51> 
< 
~ -w ..... 
9 

~ 
::J 
.-+ 
CD 
a. 


	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436
	437
	438
	439
	440
	441
	442
	443
	444
	445
	446
	447
	448
	449
	450
	replyA
	replyB
	xBack

