GC33-4010-5
File No. S370-21

Systems

OS/VS-DOS/VSE-VM/370
Assembler Language

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

Sixth Edition (March 1979)

This edition, as amended by technical newsletter GN20-9372, applies to Release 4
of OS/VS1, Release 3 of OS/VS2, Release 2 of VM/370, DOS/VSE, and to any
subsequent releases until otherwise indicated in new editions or technical
newsletters.

Changes are periodically made to the information herein; before using this
publication in connection with the operation of IBM systems, consult the latest
IBM System/370 and 4300 Processors Bibliography, GC20-0001, for the editions
that are applicable and current.

It is possible that this material may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not
announced in your country. Such references or information must not be construed
to mean that IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests for IBM
publications should be made to your IBM representative or to the IBM branch
office serving your locality.

A form for reader’s comments is provided at the back of this publication. If the
form has been removed, comments may be addressed to IBM Corporation, P.O. Box
50020, Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use
or distribute any of the information you supply in any way it believes appropriate
without incurring any obligation whatever. You may, of course, continue to use the
information you supply.

© Copyright International Business Machines Corporation 1972, 1979

Read This First

This manual describes the 0S/VS - DOS/VSE - VM/370 assembler
language.

rhe 0S/VS - VM/370 assembler language offers the following improvements
over the 0S/360 assembler language as processed by the F assembler:

1. New instructions and functions

2. Relaxation of language restrictions on character string lengths,
attribute usage, SET symbol dimensions, and on the number of entries
allowed in the External Symbol Dictionary

3. New system variable symbols

4. New options: for example, for the printing of statements in the
program listings or for the alignment of constants and areas.

l'he figure on the following pages lists in detail these assembler
language improvements and indicates the sections in the manual where the
instructions and functions incorporating these improvements are
described. If you are already familiar with the 0S/360 assembler
language as processed by the F assembler, you need only read those
sections. Also included in the figure on the following pages are the .
improvements of the DOS/VS assembler language over the DOS/360 assembler
language as processed by the D assembler.

NOTE: Sections I through L, describing the macro facility and the
conditional assembly language, have been expanded to include more
examples and detailed descriptions.

Note for VM/370 Users

The services provided by the 0S Linkage Editor and Loader programs are
paralleled in VM/370 by those provided by the CMS Loader. Therefore,
for any reference in this publication to those 0OS programs, you may
assume that the CMS Loader performs the same function.

Certain shaded notes in this publication refer to "OS only" information.
Nhere you see these notes you may assume the information also applies
for VM/370 users.

Note for DOS/VSE Users

All references to DOS and DOS/VS are also applicable to DOS/VSE.

iii

COMPARISON OF ASSEMBLERS

iv

anguage Feature Assemblers . .
Language Fea OS/VS Described in
DOS/360 (D) DOS/VSE 05/360 (F) VM/370 '
1. No of continuation lines allowed in 1 2 2 2 ‘ B1B
one statement
2. Location Counter value printed for 3 bytes 3 bytes 3 bytes 4 bytes C4B
EQU, USING, ORG (in ADDR2 field) (upto 3
leading zeros
suppressed)
3. Self-Defining Terms CAE
maximum value: 2244 2244 2244 2314
number of digits
binary: 24 24 24 32
decimal: 8 8 8 10
hexadecimal: 6 6 6 8
character: 3 3 3 4
4. Relocatable and Absolute Expressions c6B
unary operators allowed: no yes no) yes
value carried: truncated to truncated to truncated to 31 bits
24 bits 24 bits 24 bits .
number of operators: 15 15 15 19
levels of parentheses: 5 5 5 6
5. Alignment of Constants ALIGN/ constants constants constants D2
(with no length modifier) when NOALIGN not aligned aligned not aligned
NOALIGN option specified: option not :
allowed
6. Extended Branching Mnemonics D1H
for RR format instructions: no yes no yes
7. COPY Instruction . . CE1A
nesting depth allowed: none 3 none 5
macro definitions copied: no yes no yes
8. END Instruction
generated or copied END
instructions: no no no . yes - E1
9. All control sections initiated by a] no yes no no E2C
CSECT start at location 0 in listing
and object deck
10. External Symbol Dictionary Entries E2G
maximum allowed: 255 511 255 399
' {including
entry symbols
identified by
. ENTRY)
11. DSECT Instruction blank name entry: no yes no yes E3C
12. DRORP Instruction not allowed signifies all not allowed signifies all F1B
blank operand entry: current base current base
registers registers
dropped dropped
13. EQU Instruction G2A
second operand as length attribute: no no no yes
third operand as type attribute: no no no yes
14. DC/DS Instruction; one multiple multiple multiple G3B
number of operands: "

COMPARISON OF ASSEMBLERS

Language Feature Assemblers .
guag OS/VS - Described in
DOS/360 (D) DOS/VSE 0S/360 (F) VM/370
15. Bit-length specification allowed: no yes yes yes G3B
16. Literal Constants G3C
multiterm expression for
duplication factor: no yes no yes
length, scale, and
exponent modifier: no yes no yes
Q- or S-type address constant: no no no yes
17. Binary and Hexadecimal Constants G3D
number of nominal values: one one one multiple G3F
18. Q-type address constant allowed: no no yes yes G3M
19. ORG Instruction sequence symbol sequence symbol | sequence symbol any symbol H1A
name entry allowed: or blank or blank or blank or blank
20. Literal cross-reference: no yes no yes H1B
21. CNOP Instruction sequence symbol sequence symbol | only sequence any symbol H1C
symbol as name entry: or blank or blank symbol or blank or blank
22. PRINT Instruction
inside macro definition: no yes no yes H3A
23. TITLE Instruction H3B
number of characters in name
{if not a sequence symbol): 4 4 4 8
24, OPSYN Instruction: no no yes yes H5A
25. PUSH and POP Instructions H6
for saving PRINT and USING status: no no no yes
26. Symbolic Parameters and
Macro Instruction Operands
maximum number: 100 200 200 no fixed J2c
maximum K1B
mixing positional and keyword: all positional all positional all positional keyword param- J3c
parameters parameters parameters eters or operands| K3C
or operands or operands or operands can be inter-
must come must come must come spersed among
first first first positional param-
eters or operands|
27. Generated op-codes START, CSECT, J4aB
DSECT, COM allowed no yes no yes
28. Generated Remarks due to generated J4B
blanks in operand field: no no no yes
29. MNOTE Instruction J5D
in open code: no no no yes
30. System Variable Symbols 47
&SYSPARM: yes yes no yes
&SYSDATE: no no no yes
&SYSTIME: no no no yes
31. Maximum number of characters in K5
macro instruction operand: 127 255 255 255
32. Type and Count Attribute of L1B
SET symbols: . no no no yes
&SYSPARM, &SYSNDX,
&SYSECT, &SYSDATE, &SYSTIME: | no no no yes

.

COMPARISON OF ASSEMBLERS

)

Language Feature Assemblers Described in
OS/VS -
DOS/360 (D) DOS/VSE 0S/360 (F) VM/370
33. SET Symbol Declaration L2
global and focal mixed: no, global must no, global must no, global must yes
precede local precede local precede local
global and local must immedi-
ately follow prototype state-
ment, if in macro definition: yes yes yes no
must immediately follow any source
macro definitions, if in open code: yes yes yes no
34. Subscripted SET Symbols L2
maximum dimension: 255 4095 2500 32,767
35. SETC Instruction . L3B
duplication factor in operand: no no no yes
maximum number of characters
assigned 8 255 8 255
36. Arithmetic Expressions L4A
in conditional assembly
unary operators allowed: no yes no yes
number of terms: 16 16 16 up to 25
levels of parentheses: 5 5 5 upto 11
37. ACTR Instruction allowed anywhere no, only immedi- | yes no, only immedi- | yes L6C
in open code and inside macro ately after global ately after global
definitions: and local SET and local SET
symbol symbol
declarations declarations
38. ' Options for Assembler Program
ALIGN no yes yes yes D2
: ALOGIC no no no yes L8
MCALL no no no yes JgsB
EDECK no yes no no Order No.
GC33-4024
MLOGIC no no no yes L8
LIBMAC no no no yes JBA

vi

Page of GC33-4010-5
As Updated 28 Dec 1981

Preface By TNL GN20-9372

This 1s a reference manual for the 0S/VS - DOS/VSE - VM/370 assembler
language. It will enable you to answer specific questions about
language functions and specifications. 1In many cases it also provides
information about the purpose of the instruction you refer to, as well
as examples of its use.

The manual is not intended as a text for learning the assembler language.

Who This Manual Is For

This manual is for programmers coding in the 0S/VS - VM/370 or DOS/VSE
assembler language.

Major Topics

How

This manual is divided into four main parts (aside from the
"Introduction®™ and the Appendixes) :

PART I (Sections B and C) describes the coding rules for, and the
structure of, the assembler language.

PART II (Section D) describes the machine instruction types and their
formats.

PART III (Sections E through H) describes the assembler instructions.
PART IV . (Sections I through L) describes the macro facility and the
conditional assembly language.

To Use This Manual

Since this is a reference manual, you should use the Index or the Table
of Contents to find the subject you are interested in.

Complete specifications are given for each instruction or feature of the
assembler language (except for the machine instructions, which are
documented in Principles of Operation -- see "References You May Need").
In many cases, a "Purpose" section suggests why you might use the
feature; a "Specifications" section explains use of a complex feature;
and one or more figures give examples of coding an instruction.

If you are a present user of the 0OS Assembler F or the DOS Assembler D,
you need only read those sections listed in the table preceding this
"Preface" which indicates those language features that are different
from the DOS or OS System/360 languages.

vii

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

TABS: Tabs mark the beginning -0of the specifications portion of the
language descriptions. Use the tabs for quick referencing.

Tab -

0S-DOS DIFFERENCES: Wherever the 0S/VS and DOS/VS assembler languages
differ, the specifications that apply only to one assembler or the other
are so marked. The '0OS only' markings also apply for the VM/370
assembler. - ‘

KEYS: The majority of figures are placed to the right of the text that
describes them. Numbered keys within a figure are duplicated to the
left of the text describing the figure. Use the numbered keys to tie
the underlined passages in the text to specific parts of the figure.

o @

GLOSSARY: The glossary at the back of the manual contains terms that
apply to assembler programming specifically and to allied terms in data
processing in general. You can use the Glossary for terms that are
unfamiliar to you.

IBM is grateful to the American National Standards Institute (ANSI) for
permission to reprint its definitions from the American National
Standard Vocabulary for Information Processing, which was prepared by
Subcommittee X3.5 on Terminology and Glossary of American National
Standards Committee X3.

References You May Need

You may want to refer to

IBM System/370 Principles of Operation, GA22-7000, or IBM 4300
Processors Principles of Operation for ECPS:VSE Mode, GA22-7070, the
definitive publications for machine instructions, and to

0S/VS - VM/370 Assembler Programmer's Guide, GC33-4021

for detailed information about the 0S/VS - VM/370 Assembler.

Guide to the DOS/VSE Assembler, GC33-4024

for detailed information about the DOS/VSE Assembler.

viii

Contents

SECTION A: INTRODUCTION ¢« ¢ « o o o o «

-

C4C -- Symbol Length Attribute
. Reference . . « « « « . . o . 44
WHAT THE ASSEMELER DOES

C4p -- Other Attribute References . 6

A1 -- THE ASSEMBLER LANGUAGE CY4E -- Self-Defining Terms 46

Machine Instructions C5 —— LITERALS < <« 4« « « o o« o « « « « 50

Assembler Instructions C6 -~ EXPRESSIONS . « ¢ « « « « « « « « 53

Macro Instructions . . « « « <« C6A == PUXPOSE & o o« o o o « « o « o« 53

A2 -- THE ASSEMBLER PROGRAM - C6B -- Specifications . . e« s« o« &« 55
A2A -- Assembler Processing Sequence Absolute and Relocatable

Machine Instruction Processing .
Assembler. Instruction Processing
Macro Instruction Processing . .

A3 -- RELATIONSHIP OF ASSEMBLER TO

OPERATING SYSTEM « « ¢ o o « o &

Services Provided by the
Operating System . . « « « « « - 9 PART II: FUNCTIONS AND CODING OF

Al —- CODING AIDS . . o o « « « .« -« - 10 MACHINE INSTRUCTIONS . . « « « « « « o 61
Symbolic Representation of
Program Elements

EXpressions . . . + « « « « « « 56
Absolute Expressions 57
Relocatable Expressions 58
Rules for Coding Expressions . . 59
Evaluation of Expressions . . . 60

o MUV WWWNONa

10 SECTION D: MACHINE INSTRUCTIONS 63

Variety of Data Representation . 10

Controlling Address Assignment . 10 D1 == FUNCTIONS . . « « « « « « « « « o 63
Relocatability « « « . . 11 D1A -- Fixed-Point Arithmetic . . . 64
Segmenting a Program « . « « « « 11 Operations Performed 64
‘Linkage Between Source Modules . 11 Data Constants Used 6#
Program Listings 11 D1B -- Decimal Arithmetic 65
' Operations Performed 65
PART I: CODING AND STRUCTURE .« . . « . 13 Data Constants Used . « « .« « . 65
‘ : ' . D1C -- Floating-Point Arithmetic . . 66
"SECTION B: CODING CONVENTIONS 15 Operations Performed 66
Standard Assembler Coding Form . 15 Data Constants Used 66
D1D -- Logical Operations 67
B1 -- CODING SPECIFICATIONS 16 Operations Performed 67
B1A -- Field Boundaries 16 D1E -- Branching 68
The Statement Field 16 Operations Performed 68
The Identlflcatlon—Sequence D1F -- Status Switching 69
Field . ¢ v ¢ ¢ 4 o o o o o o« o 17 Operations Performed 69
- The Continuation Indicator D1G -- Input/Output . « 71
Field . ¢ v ¢ o« o o o o o « « « 17 Operations Performed 71

Field Positions 17 D1H -- Branching with Extended
B1B -~ Continuation Lines 18 Mnemonic Codes .« . « « « . . 12
B1C -- Comments Statement Format < . 19 D11 -- Relocation Handling 74
B1D -- Instruction Statement Format 20 D2 == ALIGNMENT . +. & « « « « o s « « o 15
Fixed Format« « « « . . . 20 D3 -- STATEMENT FORMATS . . . e o o - 18
Free Format <. . '« « « 20 D4 -- MNEMONIC OPERAT ION CODES e a e« o 19

Formatting Specifications . . . 21 D5 —-- OPERAND ENTRIES . . « « « « « « 80
General Specifications for

SECTION C: ASSEMBLER LANGUAGE STRUCTURE 25 Coding Operand Entries 80

' DSA -- Registers 82

C1 -- THE SOURCE MOLULE +. « « . 26 Purpose and Usage « « « « . « - 82

C2 -- INSTRUCTION STATEMENTS 26 Specifications 82

C2A -- Machine Instructions 29 D5B -- AAAYESSeS « « « « « « « - - . 84

C2B -- Assembler Instructions . . . 30 Purpose and Definition 84

© Ordinary Assembler Instructions 30 Relocatability of Addresses . . 85

Conditional Assembly Specifications 86

Instructions . . ¢« o o « « o « o 32 Implicit Address . « ¢« « « « « o 87

C2C -- Macro Instructions 33 Explicit Address 87

C3 —— CHARACTER SET . v 2« « o « « « - - 34 D5C -- Lengths « « « « « « . 88

Ch —— TERMS « o o o « o« o« « o o« « « « « 36 D5D -~ Immediate Data « « « « « « - 90
CUA == SymbOlS v . o o« o« « « « « « o« 36 D6 -- EXAMPLES OF COLEC MACHINE

Symbol Definition 38 INSTRUCTIONS o « « « « « = « o« « 92

Restrictions on Symbols M40 RR Format « .« . « « « . 92

C4B -~ Location Counter Reference . 41 RX Format . « « « « o« « « « « « 93

ix

SI FOXmat « « « « « « « '« « o 95
S Format « « « « « « o o o« o« » « 96
SS FOormat « « « « o o o « « &« « 97
PART III: FUNCTIONS OF ASSEMBLER
INSTRUCTIONS ¢ o « o o o « o o« « « « 99
SECTION E: PROGRAM SECTIONING 101
E1 -- THE SOURCE MODULE . . « « « . - 102
The Beginning of a Source
Module « o . -« 102
The End of a SOurce Module . 102
E1A -- The COPY Instruction 103
E1B -- The END Instruction . . . 105
E2 ~- GENERAL INFORMATION ABOUT CONTROL
SECTIONS © ¢ ¢ o « o o o« « « o « 107
E2A -- At rifferent Processing
TiMeS « = « « « « « =« « « « 108
E2B -- Types . . e e « o o e <« 110
- Executable Control Sections . . 110
Reference Control Sections . . 110
E2C -- Location Counter Setting . . 111
E2D -+ First Control Section . . . 113
E2E -- The Unnamed Control Section - 115
E2F ~- Literal Pools in Control
Sections e e o « « 115
E2G -- External Symbol chtlonary
Entries « - - 116
E3 -- DEFINING A CONTROL SECTION « .o 117
E3A -- The START Instruction . . . 117
E3B ~-- The CSECT Instruction . . . 119
E3C -~ The DSECT Instruction . . . 121
How to Use a Dummy Control
Section « « « ¢ « o o o .. o & o 121
Specifications 122
E3D -- The COM Instruction 124
How to Use a Common Control
Section « v 4 4 v ¢ e e ¢ o o« « 124
Specifications . . . e o« « o« 125
E4 -- EXTERNAL DUMMY SECTIONS 127
Generating an External Dummy
Section e v 4 ¢ v 4 e e e o o« w127
How to Use External Dummy
Sections 128
ES -- DEFINING AN EXTERNAL DUMMY
SECTION .« ¢ ¢ o o o « e o e o 130
E5A -~ The DXD Instructlon « -« « « 130
E5B -- The CXD Instruction 131
SECTION F: ADDRESSING . « . « « « « « 133
F1 -- ADDRESSING WITHIN SOURCE MODULES:
ESTABLISHING ADDRESSABILITY . . 133
How to Establish Addressability 134
F1A -- The USING Instruction . . . 134
The Range of a USING
Instruction « o« « « « 135
The Domain of a USING
Instruction « o « o « 135
How to Use the USING
Instruction - . 137

RS Format « « « « « « o« 94

Specifications for the USING

Instruction . . . « <« ¢ o« o . o 141

F1B -- The DROP Instruction .

144

F2 -- ADDRESSING BETWEEN SOURCE MODULES :

: SECTION G:

G1

G2

G3

SECTION H: CONTROLLING THE ASSEMBLER
PROGRAM

H1

H2

H3

SYMBOLIC LINKAGE
How to Establish Symbollc
Linkage . . .

F2a
F2B
F2C

-- The EXTRN Instruction .
-~ The WXTRN Instruction .

-- ESTABLISHING SYMBOLIC
REPRESENTATION . ¢ <« « « @
Assigning Values
Defining and Naming Data .
—— DEFINING SYMBOLS . : <« «
G2A -- The EQU Instruction . .
—= DEFINING DATA . & « <« o « o
G3A -- The DC Instruction . .

G3B -- General Specifications for

Constants « « « o o « &
Rules for the CC Operand .
Information
Padding and Truncation
of Values . « o« « o o o 'u.
Subfield 1:.
Subfield 2:
Subfield 3:

TYPE « « o « =
Modifiers . .

-~ The ENTRY Instructlon .

3

.

‘.

about Constants .

3

SYMBOL AND DATA DEFINITION

Cuplication Factor

Subfield 4: Nominal Value . . .
G3C =- Literal Constants
G3D -- Binary Constant (B)
G3E -- Character Constant (C) .'. .
G3F -- Hexadecimal Constant (X) . .
G3G =-- Fixed-Point Constants
(Hand'F) « « « & o .
G3H -- Decimal Constants (P and Z)
G3I -- Floating-Point Constants
(E, Dand L) . . « e o e
G3J -~ The A-Type and Y- Type Address
Constants . « ¢« o « o « @
G3K --.The S-Type Address Constant
G3L -- The V-Type -Address Constant
G3M -- The Q-Type Address Constant
G3N -- The DS Instruction
. How to Use the LS Instruction .

Specifications

G30 =-- The CCW Instruction . .

e''ea @ o e e o o

-- STRUCTURING A PROGRAM . . .
H1A -- The ORG Instruction . .
H1B -- The LTORG Instruction .
The Literal Pool

. Addressing Considerations
Duplicate Literals

Specifications

H1C -- The CNOP Instruction ..

-- DETERMINING. STATEMENT FORMAT AND

SEQUENCE o« o o e o o
H2A -- The ICTL Instructlon .
H2B -~ The ISEQ Instruction .
-=- LISTING FORMAT AND OUTPUT. .
H3A ~- The PRINT Instruction .

-

147

147
150
151
152

153

153
154
154
155
155
161
162

163
164
165

167
168
169
170
179
180
181
182
184

186
188

190

194
196
198
200
201
201
206
209

211
211

212
214

215

216.
217
217
218

219

219

221
222

222

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

H3B -- The TITLE Instruction . . . 224 J5 -- PROCESSING STATEMENTS 272
H3C -- The EJECT Instruction . . . 227 J5A -- Conditional Assembly

- H3D -- The SPACE Instruction . . . 228 INStructions . .« « « « « o« - 272
H4 -- PUNCHING OUTPUT CARDS 228 J5B -- Inner Macro Instructions . . 272
H4A -- The PUNCH Instruction . . . 228 J5C -- The COPY Instruction 272
H4B -- The REPRO Instruction . 23 J5D -- The MNOTE Instruction . . . 273
HS5 -- REDEFINING SYMBOLIC OPERATION J5E -- The MEXIT Instruction . . . 276
CODES e . . . 232 J6 -- COMMENTS STATEMENTS 2717

H5A -- The OPSYN Instructlon . . o 232 J6A -- Internal Macro Comments
H6 —-- SAVING AND RESTORING PROGRAMMING Statements .« . .« o o« o « « o 277
ENVIRONMENTS 234 J6B -- Ordinary Comments Statements 277
H6A -- The PUSH Instruction 234 J7 -- SYSTEM VARIABLE SYMBOLS 278
H6B -- The POP Instruction 234 JTA == ESYSDATE v v o o o o o o « o 279
H6C -- Combining PUSH and POP . . . 235 JJIB == ESYSECT @« ¢ 2 o o« « « « « - 280
J7C == ESYSLIST . « « « « « « = « « 281
PART IV: THE MACRO FACILITY 237 JTD == ESYSNDX o o o o o « « = « « 284
JJIE == ESYSPARM <« « « « « o 284
SECTION I: INTRODUCING MACROS 239 J7F == ESYSTIME +. v « o « « « « o . 287
' J8 =-- LISTING OPTIONS .« 2 o « « o« « 287
Using Macros 240 JBA == LIBMAC = « = « o « « o« « o o 287
The Basic Macro Concept 243 JBB == MCALL v v v ¢ o o o o o« o« o 288

Defining a Macro 245

Calling a Macro 246 SECTION K: THE MACRO INSTRUCTION . . . 289
The Contents of a Macro

Definition - . - 248 K1 -- USING A MACRO INSTRUCTION 289
The Conditional Assembly K1A -- PUrPOSE - =« « « « = - - « - 289
Language 250 K1B -- Specifications 290
Where the Macro Instructions can
SECTION J: THE MACRO DEFINITION . . . 251 ADPEAT « « o o o o 4 e o - . 290
Macro Instruction Format . . . 290
J1 -~ USING A MACRODEFINITION . . « < 251 Alternate Ways of Coding a Macro
J1A -- PUYpPOSE . « « « o « « « - - 251 Instruction . . .« o 4 o o - . . 291
J1B -- Specifications e« e e o o« o « 252 K2 -- ENTRIES e e e e e e 292
Where to Define a Macro in a K2A -- The Name Entry e e e e e . 292
Source Module 252 K2B -- The Operation Entry 293
Open Code 252 K2C -- The Operand Fntry 293
The Format of a Macro K3 —= OPERANDS - « « « « « « « « « - - 294
Definition« - - « « . 253 K3A =-- Positional Operands 294
J2 -- PARTS OF A MACRO DEFINITION o e 254 K3B - Keyword Operands e e o o o o 296
J2A -- The Macro Definition Header 254 K3C -- Combining Positional
J2B -- The Macro Definition Trailer 254 and Keyword Operands 299
J2C -- The Macro Prototype Statement: K4 -- SUBLISTS IN OPERANDS . . « . . . 300
Coding < 255 K5 -- VALUES IN OPERANDS 302
Alternate Ways of Codlng the K6 -- NESTING IN MACRO DEFINITIONS . . 307
Prototype Statement 256 K6A —— PUXPOSE « = « o« « « « « - o 307
J2D -- The Macro Prototype Statement: Inner and Outer Macro
Entries 256 Instructions . « « « « 307
The Name Entry 256 Levels of Nesting 308
The Operation Entry 257 RECUTSION + v o 2 o o o« o « « - 310
The Operand Entry 258 K6B -- Specifications 311
J2E ~- The Body of a Macro General Rules and Restrictions 311
Definition 259 Passing Values through Nesting
J3 -- SYMBOLIC PARBMETERS 260 Levels 312
General Specifications 260 System Variable Symbols in
Subscripted Symbolic Parameters 261 Nested MacCYOS o « o o o o « « < 314

J3A -- Positional Parameters . . . 262
J3B -- Keyword Parameters 263 SECTION L: THE CONCITIONAL ASSEMBLY

J3C -- Combining Positional IANGUAGE « « « « o o o o o o « o « « - 317
and Keyword Parameters . . . 265
J4 -- MODEL STATEMENTS . « « « « « « « 266 L1 -- ELEMENTS AND FUNCTIONS . . . - . 317
JUA -- PUYpoOSe€ « « « « + + + o . - 266 L1A -- SET Symbols« - 318
JuB -- Specifications 266 The Scope of SET Symbols e « - 319
Format of Model Statements . . 266 Spelelcatlons e e . e e o 320
Variable Symbols as Points of Subscripted SET symbols -
Substitution 267 Specifications 322
Rules for Concatenation 268 L1B -- Data Attributes 323
Rules for Model Statement What Attributes Are. 323
Fields ¢« ¢ ¢ ¢« ¢« ¢« o« o« « « « - 269 L1C -- Sequence Symbols 334

xi

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

L2

L3

Ly

IS5

L6

L7

L8

-- DECLARING SET SYMBOLS . .

L2A -~ The LCLA, LCLB, and LCLC

Instructions
L2B -- The GBLA,
Instructions

-—- ASSIGNING VALUES TO SET SYMBOLS

L3A -- The SETA Instruction .
L3B -- The SETC Instruction .
L3C -- The SETB Instruction .
-- USING EXPRESSIONS

L4A -- Arithmetic (SETA)
Expressions

L4B -- Character (SETC) Expressions

L4C -- Logical (SETE) Expressions .

-— SELECTING CHARACTERS

FROM A STRING . . « « . =«
L5A -- Substring Notation . .
== BRANCHING « « ¢ « o o o «
L6A -- The AIF Instruction .
L6B -- The AGO Instruction .
L6C -- The ACTR Instruction .
L6D -~ The ANOP Instruction .
~< IN OPEN CODE ¢« ¢ ¢ « o o «

L7A -— PUYLOSE o« ¢ o« o « o =
L7B -- Specifications
-- LISTING OPTIONS

GELB, and GBLC

336
336

340
343
343
345
347
349

349
355

aca
oo b)

364
364
367
367
369
370
373
374
374
374
376

APPENDIX

APPENDIX
APPENDIX

APPENDIX

APPENDIX
APPENDIX

APPENDIX

GLOSSARY

INDEX .

xii

II:

III:

Iv:

Vi:

VII:

CHARACTER CODES

HEXADECIMAL-DECIMAL
CONVERSION TABLE . . .

MACHINE INSTRUCTION
FORMAT . & <« « o o « « &

DELETED 391

ASSEMBLER INSTRUCTIONS .
SUMMARY OF CONSTANTS . .

SUMMARY OF MACRO
FACILITY . « & o o « « =

.3717

383

389

-406

407

411

Section A: Introduction

What the Assembler Does

A computer can understand and interpret only machine
language. Machine language is in binary form and, thus,
very difficult to write. The assemkler language is a
symbolic programming language that you can use to code
instructions instead of coding in machine language.

Because the assembler language allows you to use meaningful
symbols made up of alphabetic and numeric characters instead
of just the binary digits 0 and 1 used in the machine
language, you can rake your coding easier to read,
understand, and change.

?he assempler must translate the symbolic assembler language
into machine language Lefore the computer can execute ycur
program, as shown in the figure below.

P
CODING SHEETS

YOUI’ » .
Program ilt—_::—_::>

e
(soue s]

SOURCE MODULE
Assembler Language Input

N

TERMINAL

ASSEMBLER

>
bject Deck

—=)

OBJECT MODULE
Machine Language Output

LINKAGE

LOAD MODULE

. Main Storage of
COMPUTER

0

Section A: Introduction 1

Assume that your program, written in the assembler language,
has been punched into a deck of cards called the scurce
deck. This deck, also known as a source module, is the
input to the assembler. (fou can also enter a source
module as input to the assembler through a terminal.)

The assembler' processes your source module and prcduces
an object module in machine language (called object ccde).
Assume that the assembler punches this object module into
a deck of cards called the okject deck.

The okject deck or object module can be used as input to
be preccessed by ancther processing program, calied the
linkage editor. The linkage editor produces a load module
that can be loaded later into the main storage of the
computer, which then executes the program. Your source
module and the object code produced is printed, alcng with
other information on a program listing.

Al - The Assembler Language

The assembler language is the symkolic programming language
that lies closest to the machine language in form and
content. You will, therefore, find the asserbler language
useful when:

* You need to control your program closely, down to the
byte and even bit level or

e You must write subroutines for functions that are not
provided by other symkolic programming languages such as:
ALGOL, COBOL, FORTRAN, or PL/I.

The assembler language is made up of statements that
represent instructions or comments. The instruction
statements are the working part of the language and are
divided into the following three groups:

1. Machine instructions

2. Assembler instructions .

3. Macro instructions.

Machine Instructions

A machine instruction is the symbolic representation of

a machine language instruction of the IBM System/370
instruction set. It is called a machine instruction because
the assembler translates it into the machine language ccde
which the computer can execute. Machine instructions are
described in PART I1; SECTION L of this manual.

A2 -

Assembler Instructions

An assembler instruction is a request to the assemnbler
program to perform certain operations during the assembly

of a source module, for example, defining data constants,
defining the end of the source module, and resexrving stcrage
areas. Except for the instructions that define ccnstants,
the assembler does not translate assemkler instructicns

into object code. The assembler instructions are described
in PART II1I; SECTIONS E, F, G, and H and PART 1V; SECTIONS
J, K, and L of this manual.

Macro Instructions

A macro instruction is a request to the assembler program
to process a predefined sequence of code called a racrc
definition. From this definition, the assembler gener ates
machine and assembler instructions which it then processes
as if they were part of the original input in the source
module.

IBM supplies macro definitions for input/output, data
management, and supervisor operations that you can call
for processing by coding the required macro instruction.
(These 1BM-supplied macro instructions are not described
in this manual.)

You can also prepare your own macro definitions and call
them by coding the corresponding macro instructions. This
macro facility is introduced in PART IV; SECTION I. A
complete description of the macro facility, including the
macro definition, the macro instruction and the conditional
assembly language, is given in PART IV; SECTIONS J, K, and
L.

The Assembler Program

The assembler rprogram, also referred to as the "assembler"®,
processes the machine, assembler, and macro instructions
you have coded in the assemkler language and produces an
object module in machine language.

Section A: Introduction

A2A - ASSEMBLER PROCESSING SEQUENCE

The assembler processes the three types of assembler
language instructions at different times during its
processing sequence. You should be aware of the assembler's
processing sequence in order to code your program correctly.
The figure below relates the assembler processing sequence
to the other times at which your program is processed and

executed. -
TIMES
SOURCE
. PROGRAMMER
Coding PROGRAM
Time
N
Pre-Assembly |
Tifne
> ASSEMBLER
Assembly
Time
Link:
E:;tage ~ LINKAGE
Time EDITOR
I ') LOADER
Program can combine
Fetch linkage editing
Time J -and loading
operations
0S only
Execution CPU of
Time 0 . COMPUTER
L—- S —

The assembler processes most instructions on two occasions;
first at pre-assembly time and later at assembly time. 0
However, it does scme processing, for example, macro
processing, only at pre-assembly time.

The assembler also produces information for other
processors. The linkage editor uses such information at

alinkage-edit time to combine object modules into load
modules. The loader loads your program (comkined load
modules) into virtual storage (see GLOSSARY) at program
fetch time. Finally, at execution time, the computer o
executes the object code produced ky the assembler at
assemkly time.

Machine Instruction Processing

The assembler processes all machine instructions and

translates them into okject code at assemkly time, as shcwn

in the figure belcw.

Machine
Instructions
Coded
Assembled
into
object code
Linkage
Edit
Program
Fetch
Executed
Execution

Assembler Instruction Processing

Assemblexr instructions are divided into two main tyges:

1. Ordinary assembler instructions

2. Conditional assenbly instructions and the macro
processing instructions (MACRO, MENL, MEXIT and MNOTH .

Section A:

Introduction

5

The assembler processes ordinary assemkler instructicns
0 at assembly time, as shown in the figure below.

Ordinary 0

Assembler — A \
Instructions and ENTRY
assembly " DC EXTRN
time DS WXTRN PUNCH
TIMES o expressions CCW Address constants REPRO
Coding

Pre-Assembly

Assembly

Linkage Edit

Program Fetch

Execution

NOTES :

1. The assembler evaluates absolute and relocatable
expressions at assembly time; they are sometimes called
assenmkly time expressions.

2. Some instructions produce output for proce551ng after ’
assenkly tire.

The assembler prccesses conditional assemkly instructicns
and macro processing instructions at pre-assembly time,
as shown in the figure Lelow.

Conditional Assembly
{and macro processing)
instructions and

conditional assembly
TIMES o expressions MNOTE

Coding

Pre-Assembly
Fully
processed

Assembly

Generated
statements Printed
message

Linkage Edit

Program Fetch

Execution

NOTES:

1. The assembler evaluates the conditional assembly
expressions (arithmetic, logical, and character) at rre-
assenmkly tirme.

'

2. The assembler processes the machine and assermbler
e instructions generated from pre-assembly processing at
assembly time.

Section A: Introduction

Macro Instruction Processing

The assembler processes macro instructions at pre-assembly
time, as shown in the figure kelow.

TIMES

Coding

Macro Macro
_ Instructions Definitions

Pre-Assembly

Fully
Processed

Assembly

Generated
Statements

Linkage
Edit

Program
Fetch

Execution

_

NOTE: The assembler processes the machine and ordinary
assembler instructions generated from a macro definition

called by a macro instruction at assemkly time.

The assembler prints in a program listing all the
informaticn it produces at the various processing times
described in the above figures.

A3 - Relationship of Assembler to Operating System

The assembler is a programming component of the 0S/VS,
VM/370, or DOS/VS. These system control programs provide
the assembler with the services:

e For assembling a source module and

e For running the assembled okject module as a progranm.
In writing a source module you must include instructions
that request the desired service functions from the
operating system.

Sexrvices Provided by the Operating System

0s/Vs and DOS/VS provide the following services:

1. For assembling the source module:
a. A control program

b. Libraries tc contain source code and macro
definitions

c. Utilities

2. For preparing for the execution of the assembler program
as represented by the okject module:

a. A control program

b. Storage allocation

c. Input and output facilities
d. A linkage editor

e. A loader.

VM/370 provides the following services:

1. For assembling the source module:

a. An interactive control program

b. Files to contain source code and macro definitions

c. Utilities.
2. For preparing for the execution of the assembler programs
as represented by the object modules:

a. An interactive control program

b. Storage allocation

c. Input and output facilities

d. The CMS Loader.

Section A: Introduction

A4 -- Coding Aids

10

It can be very difficult to write an assemkler language
program using only machine instructions. The assembler
provides additional functions that make this task easier.
They are surmarized belcw.

Symbolic Rerresentation of Program Elements

Symbols greatly reduce programming effort and errcrs.

You can define symbols to represent storage addresses,
displacements, constants, registers, and almost any element
that makes up the assemkler language. : These elements
include orerands, operand subfields, terms, and expressions.
Symbols are easier to rememker and code than numbers;
moreover, they are listed in a symkol cross-reference table
which is printed in the program listings. Thus, you can
easily find a symbol when searching for an error in your
code.)

Variety of Lata Representation

You can use decimal, binary, hexadecimal or character
representation which the assemkler will convert fcr you
into the binary values required by the machine language.

Controlling Address Assignment

I1f you code the aprrorriate assembler instruction, the)
assembler will compute the displacement from a base address
of any symbclic addresses you specify in a machine
instruction. It will insert this displacement, along with
the base register assigned Ly the assemkler instruction,
into the object code of the machine instruction.

At execution time, the object code of address references
must be in the base-displacement form. The computer obtains
the required address ky adding the displacement tc the
kase address contained in the base register.

~——

Relocatability

The assembler produces an object module that can ke
relocated fror an originally assigned storage area to any
other suitable virtual storage area without affecting
program execution. This is made easier because most
addresses are assembled in their Lkase-displacement forr.

Segmenting a Program

You can divide a source module into one or more control
sections. After assemkly, you can include or delete
individual ccntrol sections from the resulting object
module before you load it for execution. Control secticns
can ke loaded separately into storage areas that are not
contiguous.

Linkage Between Scurce Modules

You can create symbolic linkages ketween separately
assembled scurce modules. This allows you to refer
symbolically from one source module to data defined in
another socurce module. You can also use symbolic addresses
to branch between modules.

Program Listings

The assembler produces a listing of your source mcdule,
including any generated statements, and the object cade
assembled from the source module. You can control the
form and content of the listing to a certain extent. The
assembler also prints messages akout actual errors ard
warnings abcut potential errors in your source module.

Section A:

Introduction

11

Part I: Coding and Structure

SECTION B: CODING CONVENTIONS
SECTION C: ASSEMBLER LANGUAGE STRUCTURE

13

Section B: Coding Conventions

This section describes the coding conventions that you must
follow in writing assembler language programs. Assembler
language statements are usually written on a coding form
before they are punched onto cards, or entered as source
statements through other forms of input (for example,
through terminals or directly onto tape).

Standard Assenbler Ccding Form

You can write assembler language statements on the standard
coding form (Order No. GX28-6509) shown kelow. The cclumns
on this fcrm correspcnd to the cclumns on a punched card

or positions on a source statement entered through a
terrinal. The form has space for program identification
and instructions to keypunch ogeratcrs.

GX28-6509-5 U/M 050

IBM 1BM System 360 Assembler Coding Form) >
Printed in U.S.A.

PROGRAM
PUNCHING GRAPHIC PAGE oF

INSTRUCTIONS.
PROGRAMMER . oaTE PUNCH CARD ELECTAO NUMBER »*

STATEMENT

Narma

T (G ICRET) 20 75 30 35 40 as 0 55 [["o
* A standard card form, 18M electro 6509, is available for punching source statements from this form.

Insteuctions for using this form are in any 1BM System/360 Assembler Reference Manual.

Address comments concerning this form to 1BM Nordic Laboratory, Publications Development,

Box 962 5 - 181 09 Lidinge 9, Sweden.

Section B: Coding Conventions 15

16

Bl -- Coding Specifications

B1A - FIELD BOUNDARIES

0O

©0ee

Assembler language statement usually occupy one 80-column
line on the standard form (for statements occupying more
than 80 columns, see B1B below). Note that any printable
character punched into any column of a card, or otherwise
entered as a position in a source statement, is reproduced
in the listing printed by the assembler. All characters
are placed in the line by the assembler. Whether they are
printed or not depends on the printer. Each line of

the coding form is divided into three main fields:

The Statement field,

The Identification -Sequence field, and

The Continuation Indicator field.

The Statement Field

The instructions and comments statements must be written
in the statement field. The statement field starts in
the "begin" column and ends in the "end" column. Any
continuation lines needed must start in the "continue"
column and end in the "end" column. The assembler assumes
the following standard values for these columns:

° .The‘"begin" column is column 1

e The "end" column is column 71, and

¢ The "continue" column is column 16.

These standard values can be changed by using the ICTL
instruction. However, all references to the "begin",

"end®”, and "continue" columns in this manual refer to the
standard value described above. ’

Stmnt Field

GX28-6509-¢

IBM IBM System 360 Assembler Coding Form prined in U
PROGRAMMER lﬂAVE INSTRUCTIONS PUNCH CARD z\{cvmwwtn 4
STATEMENT j‘ Ldenttic
pos — poow po— "
1 8 10 14 18 20 28 30 35 40 45 50 55 80 85 7 73
L[alglEL olr|colo] lo]pE[r]aINID]S r[e[MalR]k]s TTTLK
cloNtli]nulalt]i]oln] Ll [nEls] MlulsTr] Isfrlalr[T] Tiin] Tclolt JulmIN] [1]6 Ny

€@

The Identification - Sequence Field

The identification-sequence field. can contain identification
characters or sequence numbers or both. If the ISEQ
instruction has been specified to check this field, the
assembler will verify whether or not the source statements
are in the correct sequence.

NOTE: The field the assembler normally checks lies in
columns 73 through 80. However, if the ICTL instruction
has been used to change the begin and end columns, the
boundaries for the identification-sequence field can be
affected.

The Continuation Indicator Field

The continuation indicator field occupies the column after
the end column. Therefore, the standard position for this
field is column 72. A non-blank character in this column
indicates that the current statement is continued on the’
next line. This column must be blank if a statement is
completed on the same line; otherwise the assembler will
treat the statement that follows on the next line as a
continuation line of the current statement.

Field Positions

The statement field always lies between the begin and the
end columns. The continuation indicator field always lies
in the column after the end column. The identification-
sequence field usually lies in the field after the
continuation indicator field. However, the ICTL
instruction, by changing the standard begin, end, and
continue columns can create a field before the begin column.
This field can then contain the identification-sequence
field. :

Section B:

Coding Conventions

17

'

B1B -

CONTINUATION_ LINES

@

18

Continuation

To continue a statement on another line, the following
applies: ;

1. Enter a non-blank character in the continuation indicator
field (column 72). This non-blank character must not be
part of the statement coding. When more than one
continuation line is needed, a non-blank character must

be entered in column 72 of each line that is to be
continued.

2. Continue the statement on the next line, starting in
the continue column (column 16). Columns to the left of
the continue column must be blank. Comments may be
continued after column 16.

Note that if an operand is continued after column 16 it
is taken to be a comment. Also if the continuation
indicator field is filled in on one line and the user
tries to start a totally new statement after column 16 on
the next line, this statement will be taken as a comment
belonging to the previous statement.

Only two continuation lines are allowed for a single
assembler language statement. However, macro instruction
statements and the prototype statement of macro definitions
can have as many continuation lines as needed.

IBM 1BM System 360 Assembler Coding Farm iﬁ:siuzi‘im 050
PROGRAM PUNCHING GRAPHIC PAGE OF
ermotmions
PROGAAMMER IBA‘E PUNCH CARD ELECTRO NUMBEA *
e R
Naine Operation Opersnd Commants ‘Sequance
1 L] 10 14 16 20 2% a0 35 40 45 50 85 60 86 71 73 0
PlulnjclH] T 1IN[clL[u]ole] TplHals]Elz RIE[MIAIR]K]S] TcloIN[TTiINIU[El Ton]] [x
NEX|T] [L1[NE ? | s
LA
L (A 1 Ui+]+ [+ |+ L+ (bl [+ (+p . n[+1x
nl+el Bi, 1B REMIARKS | NEIE NDIC X
cloinfr]i N[ulel Tiis] Elofu] Tik
L] 1], 0l+blepl+iolslo]- ; +eIX
OMMEINTT cl fris| [clolalpelp] JIN[rlo] RiEle] [11,] oMMENT] [[s] (] REMARIK
LA i, Dl+jo[+pj+p]+ e
oM MEN[T omMENT] T1is| [Co|alblelo] [V N[Tlo] [RIE[G] |1

.B1C_ - COMMENTS STATEMENT FORMAT

Comments

Comments statements are nct assemkled as part of the ckject
module, bkut are only grinted in the assembly listing.

As many comments statements as needed can ke written,
subject to the following rules:

1. Comments statements require an asterisk in the begin
column.

NOTE: Internal macro definition comments statements require
a period in the begin column, followed by an asterisk (for
details see J6a).

2. Any characters, including blanks and special characters,
of the 1IBM System/370 Character Set (see C3) can ke used.

3. Comments statements must lie in the statement field

and not rxrun over intoc the continuation indicator field;
otherwise the statement fcllowing the comments statement
will be considered as a continuation line of that conrnents
statement.

4. Comments statements must not appear tetween an
instruction statement and its continuation lines.

IB » - 5504 sl Cothng . GX28-6509-5 U/M 050
nﬂ ystem ssembler Coding Form Printed in U.S.A.

PROGRAM
= PUNCHING GRAPHIC PAGE oF

INSTRUCTIONS
PROGAAMMER DATE PUNCH CARD ELECTRO NUMBER -

STATEMENT

H
3
o
:
§
o
¥
a
g

§

i

' 8 1o 14 18 20 28 o 3s 10 s s0 s 80 85 y 7 23 80

TH|IS IS]AN O|R|D[! [NJAIR]Y| [C|O|M[MIEIN|T|S| |S|T|A|T|E|M|E|N]T

k|
k AIN| |AIS|S|EMIBILIE|R| |[P|R|O|G|R|AM|.

Section B: Coding Conventions

19

B1D

=- INSTRUCTION STATEMENI FORNAT

20

Instructions

The statement field of an instructicn staterent must ke
forratted tc include frcm one to four of the following
entries:

1. A name entry
2. An ogeraticn entry
3. An operand entry

4. A remarks entry.

Fixed Fcrmat

The standard coding fecrm is divided into fields that provide
fixed positions for the first three entries, as fcllcus:

IBM o 1BM System 360 Assambler Coding Form f':::s;o“::i’f‘ o0
PROGAAM / PUNCHING GRAPMIC PAGE oF
PAOGP, / X (OATE INSTRUCTION® PUNCH CARD ELECTAO NUMSEA *
o o STATEMENT Identification-
% Commenty. Sequence
i & £ £ 38 40 48 50 L1} 80 85 71 13 80
L 215 RIEMIAIRIKIS] [ENITIR]Y
D/RO|P, 10 NJAIME| [EN|TIRIY| |OMIITITIE|D
S|EIC{T|D C|SE|C|T O|P|E|RIAINID| |EIN[TIR|Y| [NJO|T} |RIE|QIU|I RIE|D
O[R|G Py OPERAND ENITIR]Y| |O]M]I [T/TIE[D]

Pn 8-character name field starting in cclumn 1.
A 5-character cperaticn field starting in cclumn 10.
An orerand field that begins in column 16.

Note that with this fixed format one ktlank separates each
field. .

Free Format

It is not necessary to code the name, cperaticn, and crerand
entries acccrding tc the fixed fields on the standard

coding form. 1Instead, these entries can ke written in

any pcsition, subject tc the formatting specifications
below.

Formatting Specifications

Whether using fixed or free format, the following general
rules apply to the coding of an instruction statement:

1. The entries must be written in the following order:

name, operation, orerand, and remarks.

2. The entries must be contained in the begin column (1)
through the end column (71) of the first line and, if
needed, in the continue column (16) through the end cclumn

(71) of any continuaticn lines.

3. The entries must be serarated from each other by one

or more blanks.

4. 1f used, the name entry must start in the begin column.

5. The name and operation entries, each followed by at
least one blank, must be contained in the first line cf

an instruction statement.

6. The operation entry must start at least one column tc

the right of the begin column.

GX28-6509-5 U/M 050

IBM IBM System 360 Assambler Coding Form Printed in USA.
PROGRAM PUNCHING GRAPHIC PAGE OF
PROGRAMMER DATE INSTRUCTIONS PUNCH CARD ELECTRO NUMBER
prer .
i e L] 10 Opwste 14 18 20 0‘:’;’" 30 35 40 45 50 L1 Commerts 80 (1] 71 23 Seautocn
NJAME BalLR| | Ti]¢],]i]s B RIE[MA]R -[-1 TeltIx]elo] [Flo[rIMla[T
ST g P LT
L1, ™
NIAME|TBlalL [R[1114], [1]sP [RlEM[alRIK]S] | [-|-] | [F[rIE[E] IFlo[r]MalT
B d |
NAME T[] T ‘ezxo
[ARAE O[N|L v

_?ALR 1[4],[1]5 NJAIMEE| [EINITIR|Y| [OM[I|T|T[E|D

THE NAME ENTRY: The name entry identifies an instruction

statement.

The following aprlies to the name entry:

1. It is usually optional.

2. It must be a valid symkol at assembly time (after
substitution for variable symbols, if specified); for an

exception see the TITLE instruction (H3B).

Section B:

Coding Conventions

21

THE OPERATION ENTRY: The operation entry provides the
symbolic operation code that specifies the machine,
assembler, or macro instruction to ke processed. The
following applies to the operation entry:

1. It is mandatory.

2. For machine and assembler instructions it must be a
valid symkol at assembly time (after substitution for
variable symbols, if specified). The standard symkolic
operation codes are five characters or less (see Appendixes
IV and V) .

3. For macro instructions it can be any valid symbol that
is not identical to the operation codes described in 2
above.

THE OFERAND ENTRY: The operand entry has one or more
operands that identify and describe the data used by an
instruction. The following applies to operands:

1. One or more operands are usually required, depending
on the instruction.

2. Operands must be serarated by commas. No blanks are
allowed between the operands and the commas that separate

them.

3. Operands must nct contain embedded blanks, because a
blank normally indicates the end of the operand entry.
However, blanks are allowed if they are included in
charactexr strings enclosed in apostrophes (for example,
C'J N') or in logical expressions (see L4C).

22

THE REMARKS ENTRY: The rerarks entry is used tc descrite

the current instructicn. The following applies to the
remarks entry:

1. It is cgticnal.

2. It can ccntain any of the 256 characters (or punch
combinations) of the IEM Syster/370 character set, including
klanks and special characters.

3. 1t can follow any operand entry.

4. If an cpticnal cperand entry is omitted, remarks are
allcwed if the absence cf the operand entry is indicated
by a comma, preceded and followed Ly one cr ncre klanks.

GX286503-5 U/M 050

IBM 1BM System 360 Assembler Coding Form Printed in US.A.
"‘OG"“" PUNCHING. GRAPHIC PAGE oF
DATE INSTRUCTIONS PUNCH g CARD ELECTRO NUMBER -
e STATEMENT o dmitication
Nome Opecation Oparend Commants . Soquence .
. o e 2 ™ s s w0
AL MaY]s L[r 10],[8 RIEMARRIK[S] MIU[sTT] [BE] [SEIP[ARRIAITIE[D] [FRlO
’i
S|R 1{0},|a IalN] lolele[rlalnpl [EN]T[R]Y] |BIY] [o]NE[[0]R] M|O[RIE
PlulNicH| |“[LABIE[L{ [oPicloip[E| |o[P[R(1], [OPIR 2]’ | [BIL {AIN[K]S!.

OM]IIT S[TIAIRT I[CIA[TIEIS] |AB/SIE[NICIE| |O|F| |0PNID]
N|O[NO[1 C[SEC|T
N|ON{O/2 E|N|D 11 RIEMARIK|S

Section B: Coding Conventions

23

Section C: Assembler Language Structure

This section describes the structure of the assembler
language, that is, the various statements which are allowed

in the language and the elements that make up those
statements.

Section C: Assembler Language Structure 25

C1 -- The Source Module

A source module is a sequence of assembler language
statements that constitute the input to the assemkler.
The figure on the orposite page shows an overall picture
of the structure of the assembler language.

C2 - Instruction Statements

The instruction statements of a source module are compcsed
of one to four entries that are contained in the statement
field. Other entries outside the statement field are
discussed in B1A. The four statement entries are:

1. A name entry (usually optional)

2. An operation entry (mandatory)

3. An operénd entry (usually required)
4. A remarks entry (optional).

NOTES:

1. The figures in this subsection show the overall structure
of the statements that represent the assembler language
instructions and are not specifications for these
instructions. The individual instructions, their purposes,
‘and their specifications are described in other sections of
this manual (as cross-referenced in the figures). Model
statements, used to generate assembler language statements,
are described in J4.

2. The remarks entry is not processed by the assembler, but

only copied into the listings of the program. It is
therefore not shown except in the overview opposite.

26

———

Source Module
made up of
Source Statements

r Source Statements are I

EITHER INSTRUCTION COMMENTS
STATEMENTS STATEMENTS
Which are of three
main types
MACHINE or ASSEMBLER MACRO
Instructions Instructions Instructions
[Which are composed of
one to four entries
NAME OPERATION OPERAND REMARKS
Which,for machine instruc- I
tions, is composed of I Which are composed of I
EXPRESSIONS
| Which are composed of |
Combination CHARACTER
TERMS —Jor! o terms STRINGS
[Which are composed of characters|
IBM SYSTEM/370
CHARACTER SET
—

Section C:

Assembler Language Structure 27

C2A -- MACHINE INSTRUCTIONS

The machine instructicn statements are described in the
figure below.

The instructions themselves are discussed in Part II cf
this manual and summarized in Appendix IV.

Literal

Which can be|
any of the
following

S
NAME OPERATION OPERAND
Entry Entry Entry
A A symbolic One or more
Symbol Operation operands
(or blank) Code composed of
Exp(Exp,Exp) A
Expression or Exp (Exp) or or or
Exp (,Exp) =H'9’
Arithmetic Exo = Exoressi
or combination P pression
of terms

A
Symbol

e.g. HERE

. Location
Counter

Reference
€.g, *

Symbol
Length
Attribute
Reference
e.g. L'HERE

A
Self-Defining
Term

Which can be
any of the
following

Decimal

ed. 9

Hexadecimal

e.g. X ‘DY’

Binary

e.g. B 1001

Character

e.g. C"JAN’

Section C:

Assembler Language Structure

29

C2B -- ASSEMBLER INSTRUCTIONS

30

The assemkler instruction statements can be divided into
two main groups: ordinary assemkler instructions and
conditional assembly instructions.

Ordinary Assembler Instructions

Ordinary assemrbler instruction statements are described
in the figure on the opposite page.

These instructions are discussed in Part III of this manual
and summarized in Appendix V.

NAME
Entry

A
Symbol
{or blank)

Entry

OPERATION

Code

A symbolic
Operation

OPERAND
Entry

T_‘

One or more
operands

For Data Definition

Instructions)

For all other
ordinary Assembler
Instructions

1
Operands can be Operands can be
composed of one composed of
to four subfields
] Expression Character " Symbolic
. . Constant 3 .
Duplication Type Modifiers (Nominal or String . Option
factor e.q. %44 e.g.’ e.g.
Value) g TO BE NOGEN
PUNCHED’ '
One or more
constants of
the format
e.g. 10,F,L3:200 below
‘Decimal (Expression) ‘Character
number’ or or string’
eg. F'2' e.g. A(ADDR) eg.C’'Ais B’

1 Discussed more fully where individual instructions are described

Section C:

Assembler Language Structure

31

Conditional Assembly Instructions

Conditional assembly instruction statements and the racrc
processing statements (MACRO, MEND, MEXIT, MNOTE) are
described in the figure below.

The conditional assembly instructions are discussed in
Section L and macro processing instructions in Section
J; both types are summarized in Appendix V.

~NAME OPERATION OPERAND
Entry Entry Entry

m | must be l | can be I
:equ;nlce Variable A symbolic Zero or more
SYI:PEI 0 or Symbol Operation operands
° . & VAR Code composed of
(or blank)

. Expression Exp,’ msg’

Sequence or)S/arlable o or or MNOTE or (exp)seq sym
Symbol ymbol {Expression) 3,'ERROR' (&A EQI1).SEQ

Which can be any
combination of
variable symbols
and other characters
that constitute an

Exp=Expression

Arithmetic Logical Character
Expression Expression Expression

&A +1 &B1 OR &B2 "JAN&C’

C2C -- MACRC INSTRUCTIONS

Macro instruction statements are described in the figure
below; the prototype statement of a macro definition, which
serves as a model for the macro instruction staterent,

is also shown.

Macro instructicn statements are discussed in Section K

of this manual and the prototype statement is discussed
in Section J2.

Symbolic Symbolic Zero or more
Parameter Operation Symbolic
Code Parameters

Prototype
Statement
can be
Macro
Instruction
Statement NAME OPERATION OPERAND
Entry Entry Entry

Zero or more

E\E Operands

which can be

l il

Ordinary i Sublists with
Symbol or Sequence or Variable Operands with | or | 10 or more
{or blank) Symbol Symbol one value entries
Each entry
can have a
value
Values
can be
Character ‘Character
String or String’
(excluding {(including
blanks) blanks)

Section C: Assembler Language Structure

C3 - Character Set

34

Terms, expressions, and character strings used to build
source statements are written with the fcllowing characters:

1. Alrhameric Characters

Alrhabetic characters (or letters):- A through Z, and
$I #' a

LCigits (or numerals): 0 throcugh 9
2. Special characters
+ - ,=.% () ' / & klank

Examples, showing the use of the above characters are given
in the figure below.

Normally, ycu would use strings of alphameric characters
to represent data (terms, see Cd4), and special characters
as:

a. Arithmetic cperators in expressions

b. Data or field delimiters

c. .Indicators to the assemkler for specific handling.

Characters are represented ky the card-runch ccrmbinaticns
and internal kit ccnfigurations listed in Appendix I.

In addition to the printakle characters listed abcve, any

of the 256 combinations for punched cards listed in Agrendix
I can ke used:

1. Between raired arcstrorhes
2. As statement remarks
3. 1In comments statements

4. In macrxc instructicn operands (for restrictions see
K5) .

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Characters Usage Example Constituting
Alphameric In symbols LABEL NINE#01 Terms
Digits As decimal 0l 9 Terms
self-defining
terms
Special
Characters As Qperators
+ Addition NINE+FIVE
- Subtraction NINE-5
Expressions
Multiplication 9*FIVE
/ Division TEN/3
+ or - (Unary) +NINE -FIVE Terms
As Delimiters
Blanks Between fields LABEL AR 3,4 Statement
Comma Between operands OPND1,0PND2 Operand field
Apostrophes Enclosing
character strings C'STRING' String
Parentheses Enclosing subfields MOVE MVC TO(80) ,FROM Statement
or subexpressions (A+Bx(C-D)) Expression
As indicators
for
Ampersand Variable symbol &VAR Term
Period Sequence symbol .SEQ (label)
Comments statement « *THIS IS A COMMENT Statement
in Macro definition
Concatenation &VAR.A Term
Bit-length DC CL.7'AB' Operand
specification
Decimal point DC F'l1.7E4' Operand
Asterisk Location counter x+72 Expression
reference
Comments statement * THIS IS A COMMENT Statement
Equal sign Literal reference L 6,=F'2"' Statement
Keyword &KEY=D Keyword
Parameter
L S T

Section C:

Assembler Language Structure 35

C4 -- Terms

A term is the smallest element of
the assembler language that
represents a distinct and separate

value. It can therefore ke used
alone or in ccmbination with other
terms to form expressions. Terms Terms Term Can Be Value Is
have absolute or relccatable values
that-are assigned by the assemkler
or are inherent in the terms Absolute Relocatable - Assigned by Inherent in
themsel ves. . Assembler Term
A term is absolute if its value Symbols ‘ X X X
does not change upon program
relocation and is relocatable if Location
its value changes upon relocation. Counter X X
The varicus types cf terms described Reference
below are summarized in the figure
to the right. Symbol ;
Length X X
Attribute
Other Data X X
Attributes
Self-Defining X X
Terms .
_

C4A -- SYMBOLS

136

Furpose

You can.-use a symbcl tc represent storage locations or
arbitrary values.

SYMBOLIC REPRESENTATICN: You can write a symbol in the
name field of an instruction. Ycu can tren sgecify this
synkcl in the cperands cf other instructions and thus refer
to the former instruction symbclically. This symkol
rerresents a relocatakle address.

You can alsc assign an absolute value to a symbol ky coding
it in the name field of an FQU instructicn with an cperand
whose value is absclute. This allows you to use this.
symbol in instruction orperands tc represent registers,
displacements in explicit addresses, innediate data,
lengths, and implicit addresses with aksclute values. Fcx
details cf these frcgramr elements, see L5. The advantages
of symbolic over numeric representaticn are: ‘

1. Symbcls are easier tc remember and use than numerical
values, thus reducing rrogramring errcrs and increasing
programming efficiency.

2. Ycu can use meaningful symkcls tc descrike the grcgram-
elements they represent; for example, INFUT can name a
field that is to contain input data, cr INCEX can namne-

a register to ke used for indexing.

3. You can change the value of cne symkol (through an EQU
instructicn) more easily than you can change several
numerical values in many instructions.

4. Symbols are entered into a crcss-reference table that
the assenkler prints in the program listing. This takle
helps you to find a symkol in a prcgrar listing, kecause
it lists (1) the numker of the statement in which the
syrkcl is defined (that is, used as the name entry) and
(2) the numkers of all the statements in which the synkcl
is used in the crerands.

THE SYMECI TABLE: The assembler maintains an internal
takle called a symkcl takle. When the assenkler prccesses
your source statements for the first time, the assemkler
assigns an aksolute or relocatakle value tc every synkcl
that aprears in the name field of an instruction. The
assemkler enters this value, which normally reflects the
setting cf the lccaticn ccunter, into the symbol takle;

it also enters the attrikutes asscciated with the data
represented by the synbcl. The values of the symkol and
its attrikutes are availakle later when the asserkler finds
this symbcl cr attribute reference used as a term in an
operand or expression (Attrikute references used as terxns
are discussed in CH4C and CU4L below).

Specifications

The three types of symbol recognized
by the assembler are:

1. Ordinary symbcls) '
... Symbols .
2. Sequence symbcls . .

3. Variable symbo]_s.

ORDINARY SYMBOLS: Ordinary symbols . alphabetic character (letter)
can be used in the name and operand
field of machine and assembler 0t 7 alphameric characters

instruction statements. They must
be coded in the format shown in
the figure to the right.

OlRDINS Y M

NOTES: Examples:

1. No special characters are allowed HERE #01 X

in an ordinary symbol. READER #12 Y
AQ01 @33 Z

2. No blanks are allowed in an B0O2 $OPEN F2A

ordinary symbcl

Section C: Assembler Language Structure 37

VARIABLE SYMBOLS: Variable symbols
can only be used in macro processing
and conditional assembly
instructions. They must be coded

in the format shown in the figure

to the right.

& A RS Y M

Examples:

N
ampersand

alphabetic character (letter)

0 to 6 alphameric characters

&A &PARAM
&B &KEYWORD
&C &CHAR3

Seq. Sym.

SEQUENCE SYMBOLS: Sequence symbols ﬁ
can only be used in macro processing
and conditional assembly
instructions. They must be coded

in the format shown in the figure

to the right.

.

Examples:

period

alphabetic character (letter)

0 to 6 alphameric characters
S"E QU S YM

.SEQ
.LOOP11
.EXIT20
.T0001

Symbol Definition

An ordinary symbol is considered
defined when it appears as:

1. The name entry in a machine or
assembler instruction of the
assembler language.

2. One of the operands of an EXTRN
or WXTRN instruction.

NOTE: Ordinary symbols that appear
in instructions generated from model
statements at pre-assembly time

are also considered defined.

The assembler assigns a value to
the ordinary symbol in the name
fields as follows:

1. According to the address of the
leftmost byte of the storage field
that contains one cf the following:

a. Any machine or assemkler
instruction (excert the EQU or
CESYN instructions)

b. A storage area defined by
the LS instruction

Ce.
DC

Any constant defined by the
instruction

d.
by

A channel ccrmand word defined
the CCW instruction.

The address value thus assigned

is relocatable, because the object
code assembled from these items

is relocatable; the relocatability
of addresses is descriked in L[SB.

2. According to the value of the
first or only expressicn specified
in the operand of an EQU instruction.
This expressicn can have a
relocatable or absolute value, which

is then assigned to the ordinary
symbol. The value of an ordinary
symbol must lie in the range -231
through +231-1,

Assembler Language Address Value, Object Code
Statements of Symbol in Hex
Address of
Relocatable AREA
LOAD L (58] 3] 0 xxxx]

3,AREA 0 LOAD —4

AREA DS F o AREA—# [xX_X x XXXX|
|
F200 DC F'200'° F200—/-4[00 0 0 00C8
y
FULL EQU AREA o FULL//
TWO0O EQU F200 TWOO
Absolute
R3 EQU 3 0 R3=3
Address
of FULL
A,
L R3,FULL 58310 xxxx
A R3,TW00 S5AT3J0[xxxx
Address of
TWO00
-

Section C:

Assembler Language Structure

39

Restrictions cn Symbcls A ———

UNIQUE DEFINITION: A symbol must
ke defined only once in a source
module:

o either in the name field of a
source statement :

o or in the operand field of an
EXTRN or WXTRN instruction.

This is true even for a source
module which contains two or more

control sections. L REG4, TABLE (INDEX)
NOTE: The ordinary symbol that
. . B
‘appears in the name field of an SECOND
OPSYN or TITLE instruction does DS CL256
“not constitute a definition of that
symkbol. It can therefcre be used
in the name field of any other
~ statement in. a source mcdule. SECOND - CSECT

CONTRCL SECTION NAMES: A duplicate
symbol can, however, be used as
the name entry of a START, CSECT,
DSECT, or COM instruction. The
o first time a symbol is used to name
these instructions, it identifies
the keginning of the control section;
o a duplicate use of the symbol
jdentifies the resumption of an
interrupted control section.

REG3,ADRDR

RESUMEl

A (READER})

PREVIOUSLY DEFINED SYMBOL: In some
instructions the symbols used in

o their operands must have been defined
in a previous instruction.
Previously defined symbols are
required for the operands of the
following instructions:

INDEX, 20

EQU
CcNOP
ORG

CC and DS (in modifier and
duplication factor expressions).

40

C4B -- LOCATION COUNTER REFERENCE

4
)
. /

Purpose

The assembler runs a location counter
to assign storage addresses to your
program statements. It is the
assenmkler's equivalent of the
instruction counter in the computer.
You can refer to the current value

of the location counter at any place
in a source mcdule by specifying

an asterisk as a term in an operand.

THE LOCATION COUNTER: As .the
instructions and constants of a
source module are keing assemkled,
the location counter has a value

that indicates a location in storage.
The assembler increrxents the location
counter according to the following:

1. After an instructicn or constant
has been assembled, the location Location Source f
counter indicates the next availakle in Hex Statements

o location.

2. Before assembling the current
instructicn or constant, the

assembler checks the koundary 000004 DONE DC CL3'SOB'
alignrent required fcr it and adjusts 0
} @ the location counter, if necessary, 000007~ BEFORE EQU *
' to indicate the prcper boundary.
v 0000084 @DURING DC F'200'
3. While the instruction or constant
is being assembled, the location 000000@ AFTER EQU =«

counter value does not change.
It indicates the lccaticn of the 000010 NEXT DS D
current data after koundary alignment
and is the value assigned to the

@ symbol, if present, in the name
field of the statement.

4. After assembling the instruction
or ccnstant, the assembler increments
the location counter Lty the length
of the asserbled data tc indicate

o the next available location.

The assembler maintains a location
counter for each control section
in a source module; fcr complete
details about the location counter
setting in control sections, see
E2C. The assembler carries an
internal location ccunteér value

as a U4-byte, 32-bit value, kut it
only uses the low-crder 3 bytes,
which are printed in the program
listings. However, if you specify
addresses greater than 224-1, you
cause overflow into the high-order
kyte, and the assembler issues *he
error message "LOCATION COUNTER
OVERFLOW".

Section C: Assembler Language Structure 41

NOTE: In the figure below, an example of a location counter
overflow (or wrap-around) is shown.

The internal address value of the symbol B is carried as
a 4-byte value, but the printed location only includes
0 the low-order 3 bytes.

The location counter value for instructions or constants

is usually printed as a 3-byte value. However, the 4-byte

value, with up to 3 leading zeros suppressed, is printed

s specified in the operands of the fcllowing
nd USING. Only 3-byte values |

_in the above instructions.

You can control the setting of the location counter in
a particular control section by using the START or ORG
instructions.

Assembly Listings in Hexadecimal Representation

LoC OBJECT CODE | ADDR1 ADDR2 STMT SOURCE STATEMENT
000000 1 | & sTarT o0
000000 ﬁFFFFFE 2 0 ORG #+X'FFFFFE'
FFFFFE 58506004 00D08 3 L 5,4(,6)
*k% ERROR ok (Location counter overflow)
000002 07FF 4 B BR 15
000004 5 Cc DC _A(B)
1000004 6 | D EwcC
——

Up to 3 leading zeros
are suppressed

42

Specifications

The lccaticr counter reference is
specified by an asterisk (*). The
asterisk can ke sgecified as a
relocatakle term according to tre
follcwing rules:

1. It can only ke specified in the
cperands cf:

a. Machine instructions
k. The IC and LS instructiocns

c. The EQU, ORG, and USING
instructions.

2. 1t can alsc ke sgecified in
literal constants (see C5).

The value of the locaticn ccunter
reference (*) is the current value
cf the lccaticn ccunter cf the
control section in which the asterisk
(*) is specified as a term. The
asterisk has the same value as the
address cf the first byte of the
instruction in which it agpears
(for the value cf the asterisk in
address constants with duplicaticn
factcrs, see G3J).

Loc. Ctr Ref
Location Source Address
in Hex Statements Value of *

')
000104 HERE B *+8 same HERE
000108 B HERE+8 | effect]
00011C" CONSTANT DC A(*) 0 CONSTANT
,000120I THERE L 3,=A(x*) THERE

| I Q
Section C: Assembler Language Structure 43

C4C -- SYMBOL LENGTH ATTRIBUTE REFERENCE

Purpose

When you specify a symbol length attribute reference, you
obtain the length of the instruction or data referred to
by a symbol. You can use this reference as a term in
instruction operands to:

1. Specify unknown storage area lengths

2. Cause the assembler to compute length specifications
for you ’

3. Build expressions to be evaluated by the assembler.

Specifications

The symbol length attribute reference must be specified
according to the following rules:

1. The format must be L' immediately followed by a valid
symbol or the location counter reference (¥*).

2. The symbol must be defined in the same source module
in which the symbol length attribute reference is specified.

3. The symbol length attribute reference can be used in

the operand of any instruction that requires an absolute
term. However, it cannot be used in the form L'#* in any
instruction or expression that requires a previously defined
symbol.

44

The value of the length attribute

is normally the length in bytes

of the storage area required by

an instruction, constant, or field
represented by a symbcl. The
assembler stores the value of the
length attribute in the symbol table
along with the address value assigned
to the symbcl.

When the assembler encounters a
symbol length attribute reference,
it substitutes the value of the
attrikute from the symbol table
entry for the symbol specified.

The assembler assigns the length
attribute values to symkols in the

name field of instructions as Length Attr.
follows:
0 For machine instructions, it assigns ——
either 2, 4, or 6, depending on Value of Symbol
the format of the instruction. Source Module Length Attribute
e (at assembly time)
For the DC _and DS instructions, ;
it assigns either the implicit orx mggﬁ IEVC goﬁgggﬁ i,ﬁgg@ o 2
explicitly specified length. The MACHC : LR 3’4 L' MAGHC 5
length attribute is not affected '
by a duplication factcr. To DS CL80 L'TO 80
1
For the EQU instruction, it assigns FROM Dbs CL240 L FROM 240
s ADCON DC A (OTHER) L'ADCON 4
the length attribute value of the CHAR pe ' YUKON ! L'CHAR 5
e leftmost or only term of the first DUPL DC %F'ZOO' L'DUPL 4
expression in the first operand,
unless a specific length attribute
is supplied in a second ogerand.
s RELOCL EQU L'RELOC1 80
ggtllyzggirﬁggfgﬁd RELOC2 EQU L'RELOC2 80
et e et e . ABSOLLl EQU L'ABSOL1 240
Note the lergth attribute values ABSOL2 EQU L'ABSOL2 240
ggstgicigii?w1ng termws in an EQU SDT1 EQU L'SDT1 | 1
- SDT2 EQU L'SDT2 o 1
)
@ - seif-defining terrms SDT3 EQU L'SDT3 1
)
0 e lccaticn ccunter reference ASTERISK EQU L'ASTERISK 01
0 - | LOCTREF EQU vrrocrrer (@)1
The length attribute of the location LENGTHL DC A (L'x) E:EENGTHI {2
counter reference (L'*) is equal
o to the lergth attri(but)e of tge LENGTH2 MVC TO (L') ,FROM Lix 6
instruction in which the L'* agrears. LENGTH3 MVC TO(L'TO-20) ,FROM L'TO 80
L

For the rermaining assentler
instructions, see the srecificatiocns
for the individual instructions.

Section C: Assembler Language Structure 45

C4D -- OTHER ATTRIBUTE REFERENCES

There are other attributes which describe the
characteristics and structure of the data you define in

a program. For example, the kind of constant you specify
or the number of characters you need to represent a value.
These other attributes are the type (T'), scaling (S'),
integer (1'), count (K'), and number (N') attributes.

NOTE: You can refer to these attributes only in conditional
assembly instructions and expressions; for full details,
see L1B.

C4E -- SELF-DEFINING TERMS

46

Purpose

A self-defining term allows you to specify a value
explicitly. With self-defining terms, you can specify
decimal, binary, hexadecimal, or character data. These
terms have absolute values and can ke used as absclute
terms in expressicns to represent bit configurations,
-absolute addresses, displacements, length or other
modifiers, or duplication factors.

Specificaticns

Self-Defining
GENFRAL RULES: Self-defining terrms: Self-Defining Decimal Binary
Term Value Value o
0 e Rerresent rmachine language binary _
values 15 15 1111
. 241 241 11110001
s Are aksclute terms; their values B'1111" 15 1111
do not ghange upon gprcegram B'11110001" 241 11110001
relccaticn. B'100000001" 257 100000001
X'F' 15 1111
X'F1' 241 11110001
X'iol’ 257 100000001
c'y’ s 241 11110001
c'a’ 193 11000001
C'AB' 49,602 1100000111000010
o 4 bytes !
< (32 bits) -
value bits
The assemkler carries the values 31 .30 24 16 8 0
represented by self-defining terms L; J- I | |
to 4 kytes or 32-kits; the high- —! -
cxdex kit is the sign bit. g
1=Negative Value
0=Positive Value

CECIMAL: A decimal self-defining
term is an unsigned decimal numker.
The assemkler allows:

o a High-cxder zercs

o e A maximum of 10 decimal digits

e A range of values from 0 througk
2,147,483,647.

Section C: Assembler Language Structure 47

EINARY: 2 kinary self-defining
tern must ke ccded in the format
shown in the figure to the right.
The asserkler:

0 e Assemkles each kinary digit as
it is sgecified

o e Allows a maximum of 32 Linary
digits

e RAllows a range of values fronm
-2,147,483,648 thrcugh

2,147,483,647.

NOTE: When used as an absolute

term in expressions, a kinary self-

defining term has a negative value
@ it the high-order kit is 1.

48

— ——
apostrophes must enclose digits

B'110011.....101"
1 to 32 binary digits

binary

Examples Binary Value

B'1010111?
— | @ ¥

B'11101010111" 11101010111

High-order
ggn bit
111...111'|=

32 digits 0 \

000...000'|= =231

0 32 digits

apostrophes must enclose digit

‘X'FF...F56'
hexadecimal 1 to 8 hexadecimal digits

DOs 1106,

Conversion Table:

.] 4-bit
Hexadecimal | Decimal Binary
Digit Equivalent| gepresentation
0 0 0000
1 1 0001
2 2 0010
3 3 0011
) . 4 1
HEXALCECIMAL: A hexadecimal self- 5 g 8183
defining terr must ke ccded as shown 6 6 0110
in the figure to the right. The 7 7 0111
assernkler: 8 8 1000
« Assembles each hexadecimal digit Z go iggé
o intc its 4-kit binary equivalent B 11 1011
(listed in the figure to the right) c 12 1100
s Allows a raximumr ¢f 8 hexadecimal ‘g iz iigé'
digits F 15 1111
e Allows a range cf values from
Q -2,147,483,648 through 2,147,483,647.
Examples: Binary Value

;6 6 Kexadecinal

NOTE: When used as an absclute -
term in an expression, a hexadecimal X'A 0000[1.010
self-defining termr has a negative
value if the high-order kit is 1.

X'FFA' [L1111117f 010

8 digitso

X'7FFFFFFF' = %31—1
‘31
X'80000000' = -2
o
-

Section C Assembler Language Structure 49

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

CHARACTER: 2 character self-defining e
tern nust ke ccded as shown in the apostrophes must enclose characters
figure to the right. The asserklerx:
C'ABCD'
e Allows any of the 256 punch dmmmwﬁém4
combinations when using punched %
cards as input. This includes the .
printable characters, that is, Examples:
klanks and special characters.
C???:ft.er' Characters | Hexadecimal Binary
e Assembles each character into :2"; INING{ A csembled | Value Value
its 8-bit binary equivalent. (A
° table of characters and their Linary o
equivalents can be found in Appendix - c'a’ A______E_EE___ 11000001
B o—
e e Requires that twc ampersands c'1’ 1 X'F1' 11110001
or apostrophes be specified in the c' ' (blank)] X'40°' 01000000
character sequence fcr each ampersand c'#’ # X'7B' 01111011
or apostrophe required in the C'e' e. . xX'7¢C! 01111100
assernkled term.
o e Allows a maximum of 4 characters. /e /0
cres’! & X'50! 01010000
e e crve ' X'7D' 01111101
C'L''A'[L'A X'D37DC1" :
CI Ttrvaee " Xl 7D7D|
C'FOUR' FOUR X'C6D6EADY!

CS5 - Literals

Purpose

L ‘ 1,=F'200"
L 2,=A (SUBRTN)
MVC MESSAGE (16) ,=C'THIS IS AN ERROR'

You can use literals as operands

in order to introduce data into
your program. However, you cannot
use a literal as a term in an
expression. The literal represents
data rather than a reference to
data. This is convenient, kecause

1. The data ycu enter as numbers
for computation, addresses, or

me ssages to be printed is visikle
in the instruction in which the.
li teral appears, and

2. You avoid defining constants
elsevwhere in your source module
and then using their symbolic names
in machine instruction operands.

50

—

The, K assembler assembles the data
specified in a literal into a
"literal pool" (fully described

in H1B) . 1t then assembles the
address of this literal data in

the pool into the object code of
the instruction that contains the
literal specification. Thus the
assembler saves you a programming
step by storing your literal data
for you. The assembler also
organizes literal pools efficiently
so that the literal data is aligned
on the proper boundary alignment
and occupies the minimum amount

of space.

LITERALS, CONSTANTS, AND SELF-
DEFINING TERMS: Do not confuse
literals with constants or self-
defining terms. They differ in
three important ways: :

1. In.where you can specify them
in machine instructicns, that is,
whether they represent data or an
address of data.

2. In whether they have relocatakle
or aksolute values.

3. In what is assembled into the
object ccde of the machine
instruction in which they agpear.

The figure to the right illustrates
the first two points.

oo A literal represents data.

s A constant is rerresented Ly

its relocatable address. Note that
a symbol with an aksolute value
does not rerresent the address of

a constant, but represents immediate

data (see D5D) or an absclute
address. :

e A self-defining term represents
data and has an absclute value.

Compare:
A literal with a relocatable address

i’ g’;§;33 ' }same effect
7
D

F33 C F'33'

A Literal with a self-defining term
and a symbol with an absolute value

MVC FLAG) 1
MVI FLAG, gt same effect
MVI FLAG 0

FLAG DS X

ZERO EQU X'00'

A symbol having an absolute address value
with a self-defining term

LA 4,LOCORE
LA 4, ?J;O]Oﬁo

LOCORE EQU 1000

}same effect

Section C: Assembler Language Structure

51

52

The figure to the right illustrates
the third point.

e The address of the literal,

rather than the literal data itself

is assembled into the cbject code.

o The address of a constant is
assembled intc the object code.
Note that when a symbol with an
absolute value represents immediate
data, it is the absolute value that
is assembled into the cbject code.

e The absolute value of a self-
defining term is assembled into

the object code.

LITERAL L 3,=F'200"'

RELCON L

ABSCON ™

SELFDT

FLAGCON EQU X'B8'

248 {F200 DC F'200'
24C|BYTE DS X

LTORG Literal
B250 |p00000cg = F'200" |Pool

r :

— .
I Source Statements Object Code
in Hex
) displacement
oc
in Hex base .

--L-----;-;---;--

Specifications

A literal must be ccded as shown
in the figure to the right.

0 The literal is specified in the
same way as the operand of a DC
instruction (for restrictions see
G3C) .

GENERAL RULES FOR LITERAL USAGE:

A literal is not a term and can

be specified only as a complete
operand in a machine instruction.
In instructions with the RX format
they must not be specified in
operands in which an index register
is also specified.

Because literals provide "read-only"
data, they rust not be used:

1. In operands that rerresent the
receiving field of an instruction
that modifies storage

2. In any shift or I/0 instructions.

C6 - Expressions

)

C6A -- PURPOSE

You can use an expression to specify:

o An address

o An explicit length
o A modifier

e A duplication factor

oA complete cperand

You can write an expression with

a simple term or as an arithmetic
combination of terms. The assembler
reduces multiterm expressions to
single values. Thus, you do not
have to ccmpute these values
yourself.

Literals

Literal Specification

nominal
value

h M
—_— _
/
| .
A EQU X=-Y+13-P/Q
B MvC { TO+L'TO~-L'FROM (L'FROM) ,FROM
[1
C DS /(X—Y)XL(P/Q\—IO)
Section C: Assembler Language Structure 53

54

Expressions have absolute or relocatable values. Whether
an expression is absolute or relocatable depends on the
value of the terms it contains. You can use the absclute
or relocatakle expression described in this subsection

in a machine instruction or any assemkler instruction cther
than a conditional assembly instruction. The assembler
evaluates relocatable and aksolute expressions at assenbly
time. Throughout this manual, the word "expression" refers
to these types of expression. '

NOTE: There are three types of expression that you can
use only in conditional assembly instructions: arithmetic,
logical, and character expressions. They are evaluated
at pre-asserbly time. In this manual they will always

be referred to by their full names; they are described
in detail in L4. '

C6B -- SPECIFICATIONS

v
)

;

The figure below defines both absolute and relocatable
expressions.

NOTE: The relocatable values that are paired must have

the opposite sign after the resolution of all unary
operators.

Absolute
Expression

Abs. Exp . Exp

Abs. Exp
+ or — or £

Abs. Exp

6r (Abs.Exp) or + Abs. Explor|— Abs. Exp}:

Abs.Exp | | Abs.Exp [1 Abs.Exp

Pairing of

Relocatable| 7\ PR e
Values Ordmall' | self- . |symbol
| BYmbol= 1o | Defining [or|Length |
| Vvalue | Term | !]Attribute}"

y
Relocatable

Expression
%

o Unary operators

Operators Allowed

Positive
Negative

Unary: +

Addition
Subtraction

Binary: +

Rel. Exp

r| (Rel. Exp) |or |+ Rel. Exp or
Abs. Exp |

Location
Counter
Reference

s
Ordinary
Symbol—
Relocatable
Value

Unary operators

m

¥ Multiplication
/ Division

Abs. Exp = Absolute Expression

Rel. Exp = Relocatable Expression

Section C:

Assembler Language Structure

55

Absolute and Relocatable Expressions ‘ﬁ . .]
Source Module

An expression is absclute if its

-value is not changed ky program FIRST CSECT
relocation; it is relccatable if T
its value is changed upon program Canbal A DS F
relocation. A descrigption of the paired o B DS - F
factors that determine whether an C DS F
expression is absclute or relocatable LOCTREF EQU Lo
follows. ABSA EQU X'F!
. ABSB EQU - 300
PAIRED RELOCATABLE TERMS: An ABSC EQU c'A!
expression can be aksolute even
though it contains relocatable . SECOND CSECT
terms, provided that all the .
relocatable terms are paired. The Can be D DS X
pairing of relocatalkle terms cancels paired 0 E DS X
the effect cf relocaticn. The F DS X
assembler reduces paired terms.to _ END
single absolute terms in the
intermediate stages of evaluation.
The assembler considers relocatable Examples:
terms as paired under the following . .
conditions: Paired Relocatable Terms o Absolute
Expressions
e The paired terms must be defined B-A
in the same contrcl section of a c-n e e
source module (that is, have the ~ gy '
same relocatability attribute). ti_t%'ﬁ ?AEB AiABS}-B .
e The paired terms must have g?gTREF ¢ D—E+ABSC
opposite signs after all unary F-D F-D+B-C
operators are resclved. In an : . i
expression, the paired terms do paired paired
&P ot have to be contigquous, that
is, other terms can come between
the paired terms. Unpaired Relocatable Terms : Relocatable
Expressions
e The value represented ky the Unpaired
epaired terms is absclute.
B B+ABSA
C ' E C+X'FF'
LOCTREF F-5%(B-C)
D ' paired
S

Absolute Expressions

The assembler reduces an absolute
expression to a single absolute
value if the expression:

1. Is composed of a symkol with

an aksolute value, a self-defining
term, or a symbol length attrikute
reference, or any arithmetic
combination of absolute terms.

2. If it contains relocatable terms,
alone or in combination with aksolute
terms, and if all these relocatable
terms are paired.

Source Module _

FIRST CSECT
A DC F'2'
B DC F'3'
c DpC F'4'

ABSA EQU 100
| aBsB EQU X'FF'

ABSC EQU B-A

. Paired
ABSD EQU %*—A

END

Absolute
Expressions

ABSA
o:
L'A
G {ABSA-!-ABSC -ABSC=*15
\

B-A
0 {ABSA+15-B+C-ABSD/ (C-A+ABSA)

Section C: Assembler Language Structure

57

58

Relocatable Expressions

" A relccatable expressicn is one

whose value changes, for example,
ky a 1000, if the cbject module
into which it is assemkled is
relocated 1000 bytes away from its

~originally assigned storage area.

The assembler reduces a relocatable
expression to a single relocatakle

value if the expression:

1. 1Is composed of a single
relocatable term, or

2. Contains relocatable terms, alone
or in comblnatlon with absolute
terms, and:

a. All the relocatable terms
but one are paired. Note that
the unpaired term gives the
expression a relocatakle value;
the paired relccatable terms
and other absolute terms
constitute increments or ~
decrements to the value of the
unpaired term. .

b. The relocatakility attrikute
of the whole expression is that
of the unpaired term.

"c. The sign preceding the unpaired
relocatable term must be positive,
after all unary operators have
been resolved.

COMPLEX RELOCATABLE EXPRESSIONS:
Complex relocatable expressions,
unlike relocatable expre551ons,
can contain:

a. Two or more unpaired
relocatable terms or

b. An unpaired relocatable term
preceded by a negative sign.

Complex relocatable expressions
can be used only in A-type and Y-
type address constants (see G3J) .

Reloc. Exp.
pa—
Source Module
FIRST CSECT
A D.C Hl 2]
B DC H'3!
C DC H'4!
ABSA EQU 10
ABSB EQU LRy
ABSC EQU 10#%(B-A)
END
Relocatable Expresssions:
(Belong to control section named FIRST
and have same relocatable attribute as . .
A, B and C)
SN A+ABSA+10
B~ +A+C 10:ABSC
-A+C+100*ABSA+ABSA/(C—A)

-

Rules for Coding Expressions

The rules fcr coding an absolute
or relocatable expression are:

1. Both unary (operating on one
value) and binary (operating on
two values) operators are allowed
in expressions.

2. An expression can have one or
more unary operatcrs preceding any
term in the expression or at the
keginning of the expression.

3. An expression must not begin
with a binary operatcr, nor can
0 it contain two binary operators

in successicn.

4. An expression must not contain
two terms in successicn.

5. No blanks are allowed between
an operator and a term nor between
two successive operators.

6. An expression can contain up

to 19 unary and binary operators
and up to 6 levels of parentheses.
Note that parentheses that are part
of an operand specification do not
count toward this limit.

An expression can contain up
15 ‘and binary operators

Operators
Unary +,-
Binary ty =i, [
+ - REL+-ABS e===—=—=—Ap - REL-ABS

Unary o Binary Context determines whether
] + or — is unary or binary
operator
<A —p A+B
ABSC/ABSD+15 =—————=pp ABSC / ABSD+15
REL+=ABS e REL-ABS
Multiply
43 INVALID
%+3 VALID

—~ .
Location counter
Reference

Axd a\\ INVALID
O/ABSA +¥ VALID
ABSA + % ABsB ~ INVALID

Context determines whether
an asterisk () is the binary
operator for multiplication
or the location counter
reference

TN

7. A single
not allowed

0.2 tevelsilor parentheses. o

relocatable.term is
in a multiply or divide

Leftmost operator between|
two terms is binary

]) POs
operation. Note that paired 2£$:LQE£L¥££ INVALID
relocatable terms have absolute 0/
values and can be multiplied and =
divided if they are enclosed in 15B'101" INVALID

parentheses.

8. A literal is not a valid term
and is therefore not allowed in
an expression. :

Section C: Assembler Language Structure 59

Evaluation of Expressions

The assembler reduces a multiterm
expression to a single value as
follows: |

1. 1t evaluates each term.

2. It performs arithmetic operations
from left tc right. Hcwever:

a. It performs unary operations
before binary crerations, and

b. 1t performs the binary
operations of multiplication
and division befcre the binary
operations of addition and
suktraction.

3. In division, it gives an integer
result; any fractional portion is
dropped. Livision by zero gives

0.

4. In parenthesized exrressions,
the assembler evaluates the inner
most expressicns first and then

considers them as terms in the next

‘outer level of expressions.

i ©
continues this process until the
outermost expression is evaluated.

5. A term or expression's
intermediate value and computed
result must lie in the range of
-231 through +231-1,

60

NOTE:
assemkler evaluates paired

relccatakle terms at each level
of expression nesting.

It is assumed that the

—_—

Absolute Expressions

Value of
Expression

—

Ax-- X'A'

\/o

A=5
3"+ 10 =

/

B=2 (A+10) /B => (10+10) /2>20/2 =
A=10 A/2 —>
A=1

=

[A/2
10%A/2 —=> 10% 1/2'10/2=

+50

15

1v

Stage |l

Final Evaluation

Part II: Functions and Coding of Machine Instructions

SECTION D: MACHINE INSTRUCTIONS

61

Section D Machine Instructions

This section introduces the main functions of the machine
instructions and provides general rules for coding them

in their symbolic assembler language format. For the
complete specifications of machine instructions, their
object code format, their coding specifications, and their
use of registers and virtual storage (see GLOSSARY) areas
see the Principles of Operation manuals:

e IBM System/360 Principles of Operation, Order No. GA22-
6821

e IBM System/370 Principles of Operation, Order No. GA22-
7000

D1 - Functions

\,

At assemkly time, the assembler converts the symbolic
assembler language representation of the machine
instructions to the corresponding object code. It is this
object code that the computer processes at execution time.
Thus, the functions described in this section can be called
execution time functions.

Also at assemkly time, the assemblexr creates the okject
code of the data constants and reserves storage for the
areas you specify in your LC and LS assemkler instructions
(see G3) . At execution time, the machine instructions
can refer to these constants and areas, kut the ccnstants
themselves are not executed.

Section D: Machine Instructions 63

LC1A -~ FIXED-POINT ARITHMETIC

64

Purpose

You use fixed-point instructions
when you wish to perfcrm arithmetic
operations on data represented in
binary form. These instructions
treat all numbers as integers.

~If they are to orerate upcn data

representing mixed numbers (such

as 3.14 and 0.235) ycu must keep
track of the decimal point yourself.
For your constants you must prcvide
the necessary number of binary
positions tc represent the fracticnal
portion of the number specified

ky using the scale mcdifier (see

G3B) .

Operations Performed

Fixed-point instructicns allow you
to perform the operations listed
in the figure to the right.

Data Constants Used

In fixed-point instructions, you
can refer to the ccnstants listed
in the figure to the right.

NOTE: Except for the conversion
operations, fixed-point arithmetic
is performed on signed binary values.

*m

Fixed - Point Mnemonic
Operations Operation Codes
Add | AR, A, AH, ALR, AL
Subtract SR, S, SH, SLR, SL
Multiply MR, M, MH

Divide DR, D

Arithmetic Compare CR,C,CH

(taking sign into
account)

Load into registers LR,L,LH, LTR, LCR, LPR, LNR, LM
Store into areas ST, STH, STM
Arithmetic Shift of SLA, SRA, SLDA, SRDA

binary contents of
registers to left or
right (retaining
sign)

Convert (packed) cvB
decimal data to)

binary

Convert binary data 0 CVvD

to (packed) decimal
data

Constants Used Type
Fixed-Point Hand F
Binary B
' Hexadecimal X
Character C
Decimal (packed) P
Address Y,A,S,Vand Q

O

CiE -- CECIMAL ARITEMETIC

’

@

Furpose

You use the decimal instructions
when you wish to perform arithretic
cperaticns cn data that has the
binary equivalent of decimal
representaticn, either in packed

or zoned form. These instructions
treat all nurkers as integers.

For example, 3.14, 31.4, and 314
are all processed as 314. You must
keer track cf the decimal pcint
yourself. o

Operaticns Perfcrmed

Cecirmal instructicns allow ycu to
perform the operations listed in
the figure tc the right.

fata Constants Used

In decimal instructions ycu can
refer tc the ccnstants listed in
the figure to the right.

NOTE: Excert fcr the ccnversicn
operations, decimal arithmetic is
performed on signed packed deciral
values.

“

Decimal Mnemonic Operation

Operations Codes
Add AP

Subtract SP

Mulitiply MP
Divide DP

Arithmetic Compare CP

(taking sign into

account)

Move decimal data MVO

with a 4-bit offset

Shift decimal data SRP

in fields to left or

right

Set a field to zero ZAP

and add contents

of another field

Convert zoned to PACK
packed decimal

data H

Convert packed to UNPK

zoned decimal

data

Constants Used Type
Decimal (packed) P

(zoned) A
N M

Section D:

Machine Instructions

65

LC1C —- FLCATING-FOINT ARITHMETIC

66

Furpose

You use floating-point instructicns
when ycu wish tc perfcrm arithmetic
operations on binary data that
represents kcth integers and
fractions. Thus, you do nct have

to keer track cf. the decimal point
in ycur ccrputaticns. Flcating-
point instructions also allow ycu
to perfcrn arithmetic crerations

on both very large numkers and very
small nurkers, with greater precision
than with fixed-point instructions.

Operaticns Perfcrred

Floating-pcint instructicns allow
you to perform the operations listed
in the figure tc the right.

LCata Constants Used

In floating-point instructions,
you can refer tc the ccnstants
listed in the figure to the right.

NOTE: Flcating-pcint arithmetic
is performed on signed values that
rust have a srecial floating-point
format. The fracticnal pcrtion

of floating-point numkers, when
used in additicn and subtracticn,

~can have a normalized (no leading

zercs) cr unncrrmalized format.

Floating - Point
Operations

Mnemonic Operation
Codes

ADR, AD, AER, AE, AWR
AW, AUR, AU, AXR

Add l

Subtract J SDR, SD, SER, SE, SWR,
SW, SUR, SU, SXR

Multiply MDR, MD, MER, ME, MXR,
MXDR,MXD

Divide DDR, DD, DER, DE

Halve HDR, HER

(division by 2)

Arithmetic Compare
(taking sign into
account)

CDR, CD, CER, CE

Load into floating -
point registers

LDR, LD, LER, LE, LTDR,
LTER, LCDR, LCER, LPDR,
LPER,LNDR,LDER,LRDR,
LRER

Store into areas STD, STE
Constants Used Type
Floating - Point E,D,and L
——n———

DID --

LOGICAL OPERATIONS

Purpose

You can use the logical instructions
to introduce data, mcve data, or
inspect and change data.

Operations Performed

The logical instructions allow you
to perform the operations listed
in the figure to the right.

B _m

Logical
Operations

Mnemonic Operation
Codes

I Move

MVI, MVC, MVN, MVZ, MVCL

Logical Compare

CLR, CL, CLI, CLC, CLCL,

(unsigned binary CLM

values)

AND (logical NR, N, NI, NC
multiplication)

OR (logical OR, 0, 0l,0C
addition)

Exclusive OR XR', X, XI, XC
(either........ or,

but not both)

Testing binary ™

bit patterns

Inserting characters IC, ICM

into registers

Store characters STC, STCM
into areas

Load address into LA

register

Logical Shift of
unsigned binary
contents of
registers to left or
right

SLL, SRL, SLDL, SRDL

Replace argument
values by corresponding
function values from
table (translate)

TR, TRT

Edit (packed and
zoned decimal data)
values in preparation
for printing

ED, EDMK

Section D:

Machine Instructions

67

C1E -- BRANCHING

68

Purpose

You can use several tyges of
branching instructions, comkined
with the logical instructions listed
in D1D, to code and control loops,
subroutine linkages, and the sequence
of processing.

Operations Performed

The kranching instructions allow
you to perform the operations listed
in the figqure to the right.

NOTE: Additional mnemonics for
branching on conditicn are described
in section LC1H below.

Branching
Operations

Mnemonic Operation
Codes

Branch depending
on the results of

the preceding
operation (that

sets the condition
code)

BCR, BC

Branch to a
subroutine with a
return link to
current code

BALR, BAL

Branch according

to a count con-
tained in a register
(count is decremented
by one before deter-
mining course of
action)

BCTR, BCT

Branch by comparing
index value to fixed
comparand, {index
incremented or de-
cremented before
determining course
of action)

BXH, BXLE

Temporary Branch in
order to execute a
specific machine
instruction

EX

C1F -- STATUS SWITCHING

Purpose

You can use the status switching
instructions to communicate ketween
your prograr and the system control
rrogram. However, some of these
instructions are privileged
instructions and you can use them
only when the CPU is in the
supervisor state, but not when it
is in the proklem state. The
privileged instructions are marked
with a "p" in the figure to the
right.

Operations Performed

The status switching instructions
allow you to perform the operations
listed in the figure to the right.

e
Status Switching Mnemonic Operation
Operations Codes
Load program status information LPSW
Load sequence of control registers LCTL.
Set bit patterns for condition code SPM
and interrupts for program
Set bit patterns for channel usage SSM
by system
Set protection key for a block of SSK
storage
Set time-of-day clock SCK I
Insert protection key for storage ISK
into a register
Store time-of-day clock STCK
Store identification of channel STIDC, STIDP
or CPU
Store (save) sequence of control STCTL
registers
Call supervisor for system SvC
interrupt
Call monitor for interrupts de- MC
pending on contents of
control register
Test bit which is subsequently TS
setto 1
Write or Read directly to or WRD, RDD
from other CPU’s
Set Clock Comparator SCKC
Store Clock Comparator STCKC
Set CPU Timer SPT
Store CPU Timer STPT
Store Then AND System Mask STNSM
Store Then OR System Mask STOSM

Section D: Machine Instructions 69

D1G _-- INPUT,/QUTPUT

Purpose

You can use the input/output
instructions, instead cf the IBM-
supplied system macro instructions,
when you wish to control your input
and output cperations more closely.

s Input or Output Mnemonic Operation
Operations Ferformed Operations Codes
The input or output instructions
allow you to identify the channel, Start 1/0 S10, SIOF
or the device on which the input ‘
or output operation is to be Halt 1/0 HIO
pexformed. The operations performed
are listed in the figure to the Test state of channel TIO,TCH
right. However, these are privileged or device being used
instructions, and ycu can only use HDV
them when the CPU is in the o Halt Device D
supervisor state, but nct when it ‘ .

is in the problem state.

Section D: Machine Instructions 71

Page of GC33-4010-0
Revised September 29,1972
By TNL GN33-8148 ~

C1H -- BRANCHING WITH EXTENDED MNEMONIC CODES

Purpose

The kranching instructions described below allow you to
specify a mnemonic code for the condition on which a kranch
is to occur. Thus, you avoid having to specify the mask
value required by the EC and BCR kranching instructions.
The assembler translates the mnemonic code that represents
the condition into the mask value, which is then asserkled
in the okject code of the machine instruction.

Specifications

The extended mnemonic codes are given in the figure on the
opposite page.

They can be used as operation codes for kranching

o instructions, replacing the BC and BCR machine instruction
codes. Note that the first operand of the BC and BCR o
instructions must not be present in the operand field of
the extended mnemonic branching instructions.

NOTE: The addresses répresented are explicit addresses;
however, implicit addresses can also be used in this type
of instruction.

72

Extended Code Meaning Format (Symbolic) Machine
Instruction Equivalent

B \ﬁZ(XZ,B2$] Unconditional Branch RX BC 15,D2(X2,B2)
BR R2 RR BCR 15,R2
NOP D2(X2,B2) No Operation RX BC 0,D2(X2,B2)
NOPR R2 } RR- BCR 0,R2

Used After Compare Instructions

BH D2(X2,B2) } Branch on High RX BC 2,D2(X2,B2)
BHR R2 RR BCR 2,R2
BL D2(X2,B2) } Branch on Low RX BC 4,D2(X2,B2)
BLR R2 RR BCR 4,R2
BE D2(X2,B2) } Branch on Equal RX BC 8,D2(X2,B2)
BER R2 RR BCR 8,R2
BNH D2(X2,B2) } Branch on Not High RX BC 13,D2(X2,B2)
BNHR R2 . . RR BCR 13,R2
BNL D2(X2,B2) } Branch on Not Low RX BC 11,D2(X2,B2)
BNLR R2 RR BCR 11,R2
BNE D2 (X2,B2) } Branch on Not Equal RX BC 7,D2(X2,B2)
BNER R2 RR BCR 7,R2

Used After Arithmetic Instructions
BO D2 (X2,B2) } Branch on Overflow RX BC 1,D2(X2,B2)
BOR R2 RR BCR 1,R2
BP D2(X2,B2) } Branch on Plus RX BC 2,D2(X2,B2)
BPR R2 RR BCR 2,R2
BM D2 (X2,B2)] Branch on Minus RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BNP D2(X2,B2) } Branch on Not Plus RX BC 13,D2(x2,B2)
BNPR R2 RR BCR 13,R2
BNM D2(X2,B2) } Branch on Not Minus RX BC 11,D2(X2,B2)
BNMR R2 RR BCR 11,R2
BNZ D2(X2,B2) Branch on Not Zero RX BC 7,D2(X2,B2)
BNZR R2 RR BCR 7,R2
BZ D2(X2,B2) } Branch on Zero RX BC 8,D2(X2,B2)
BZR R2 RR BCR 8,R2
BNO D2(X2,B2) } Branch on No Overflow RX BC 14,D2(X2,B2)
BNOR R2 RR BCR 14,R2

Used After Test Under Mask Instructions
BO D2(X2,B2) } Branch if Ones RX BC 1,D2(X2,B2)
BOR R2 RR BCR 1,R2
BM D2(X2,B2) } Branch if Mixed RX BC 4,D2(X2,B2)
BMR R2 RR BCR 4,R2
BZ D2(X2,B2) Branch if Zeros RX BC 8,D2(X2,B2)
BZR R2 } RR BCR 8,R2
BNO D2(X2,B2) Branch if Not Ones RX BC 14,D2(X2,B2)
BNOR R2] RR BCR 14,R2
BNM D2 (X2,B2) } Branch if Not Mixed RX BC 11,D2(X2,B2)
BNMR R2 RR BCR 11,R2
BNZ D2(X2,B2) } Branch if Not Zeros RX BC 7,D2(X2,B2)
BNZR R2 RR BCR 7,R2

D2=displacement,X2=index register,B2=base register,R2=register containing
branch address

Section D: Machine Instructions

73

D11 -- RELOCATION HANLCLING

74

PUI'EOSG

You use the relocation instructions
in connnection with the relocate
feature of IBM System/370.

Operations Performed

The relocation instructions allow
you to perform the crerations listed
in the figure to the right. However,
these instructions are privileged
instructions, and you can use them
only when the CPU is in the
supervisor state, but not when it

is in the proklem state.

— B ——
Relocation Mnemonic Operation
Operations Code
Load Real Address LRA
Purge Translation
Lookaside Buffer PTLB
Reset Reference Bit RRB
Set Clock Comparator SCKC
Store Clock Comparator STCKC
Set CP U Timer SPT
Store CPU Timer STPT
Store and AND System STNSM
Mask i
Store and OR System STOSM

Mask

D2 - Alignment

Alignment

Purpose

The assemkler automatically aligns the object code of all
machine instructions on halfword koundaries. For executicn
of the IBM System/370 machines, the constants and areas

do not have to lie on specific koundaries to be addressed
Lty the machine instructions.

However, if the assembler option ALIGN is set, you can
cause the assembler to align constants and areas; for
example, on fullword boundaries. This allows faster
execution of the fullwcrd machine instructions.

1f the NOALIGN option is set, you do not need to align
constants and areas. They will ke assemkled at the next
available byte, which allows you to save space (no bytes
are skipped for alignment).

Section D: Machine Instructions 75

Specifications

MACHINE INSTRUCTIONS: When the
assembler aligns machine instructions
on halfword boundaries, it sets

any bytes skipped to zero.

CONSTANTS AND AREAS: One of the
assemkler options that can be set

in the job control language (that
initiates execution cf the assembler
program) concerns the alignment

of constants and areas; it can

be specified as ALIGN or NOALIGN.

If ALIGN is specified, the following
applies: '

e The assembler aligns ccnstants
and areas on the boundaries implicit
in their type, if no length
specification is suprlied.

e The assembler checks all
expressions that represent storage
addresses to ensure that they are
aligned on the boundaries required
by the instructions. If they are
not, the assembler issues a warning
message.

If NCALIGN is specified, the
following applies:

e The assembler doces not align
constants and _areas on special
boundaries, even if the length
specification is cmitted. Note
that the CCW instruction, however,
always causes the alignment of the
channel command word on a doubleword
boundary.

e The assembler does not check
storage addresses for bcundary
alignment.

NOTE 1: The assembler always forces
alignment if a duplication factor

of 0 is specified in a constant

or area without a length modifier
(for an example, see G3N). Alignment
occurs when either ALIGN or NOALIGN
is set.

Source Statements Object Code

ALGN Half Word
Specified Boundary
3,AREAN_ [oo]s8]30] xxxx

AREA
3,CONS 5A
CONST
Full Word

/o\ Boundary

000000C8|

CONST DC F'200'

NOALGN Half Word
Specified Boundary
L 3,AREA 58|30|xxxgj~\
. AREA
A 3,CONST <:; 5A|30] xxxxl
CONST
ICan be on an
boundary

XXKXXXXXX

CONST DC F'200"] Q 000000C8

DS FL4

AREA DS F] .
Equiv.

DC FL4'200'EqWV

NOTE 2: When NOALIGN is sgecified,
the CNOF assembler instruction can
ke used to ensure the ccrrect
alignment of data referred to Ly
the privileged instructions that
require specific boundary alignment.
The mnemonic operaticn codes for
these instructions are listed in
the figure to the right.

i

nemonic Operation Codes
for Privileged Operations

Meaning

LPSW
ISK
SSK
LCTL
SCK
STIDP

STCTL

Load program status word
Insert Storage Key.

Set Storage Key.

Load Control registers.
Set Clock.

Store CPU |dentification

Store Control registers.

(Diagnose - not handled by assembler)

Section D: Machine Instructions 77

D3 -- Statement Formafs

78

Machine instructicns are assembled
into cbject code according to one
of the six formats given in the
figure to the right.

When you code machine instructions
you use symbolic formats that
correspond to the actual machine
language formats. Within each kasic
format, you can alsc ccde variations
of the symbolic representation
(Examples of coded machine
instructions, divided into groups
according to the six kasic formats,
are illustrated in L6 below).

The assembler converts only the
operation code and the operand

entries of the assembler language
statement into object code. The
assemkler assigns tc the symbol

you code as a name_entry the value
of the address of the leftmost

byte of the assembled instruction.
When you use this same symbol in

the operand of an assembler language
statement, the asserbler uses this
address value in converting the
symbolic¢ operand intc its object
code form. The length attribute
assigned to the symbcl derends on
the basic machine language format

of the instruction in which the
symbol appears as a name entry

(for details on the length attribute
see C4C) .

A remarks entry is nct converted
into object code.

|| Format Length of Object Code

Reguired for the Assembled
Instruction in Bytes

RR 2

RX 4 o (L'LABEL=4)

RS 4

ST 4

S 4

SsS 6

Example:

Assembler Language Statement

LABEL L 4,256(5,10)

ZOAD INTO

RX Format

QOperationRegister Storage
Code Operand Operand
l 4 bytes ‘
Object Code

(machine language) ot
Assembled Instruction
in Hex

R —

- D4 —~ Mnemonic Operation Codes

v

Furpose

You must specify an cperaticn code
for each machine instruction
staterent. The mnemcnic cperaticn
code indicates the type of cperaticn
to ke perfcrmed; fcr examgle, "A"
indicates the "addition" cperaticn.
Aprpendix IV ccntains a corplete

list of mnemonic operation ccdes

and the fcrmats of the corresgonding
machine instructions.

Specificaticns

The general format of the machine
instructicn creraticn ccde is shown
in the figure to the right.

The verk must always be rresent.
It usually consists of one cr two
characters and sgecifies the
operation toc ke performed. The
cther itens in the cperation ccde
are not always present. They
include:

e The modifier which further defines
the cgeraticn

e The type qualifier, which
indicates the type of data used

ky the instructicn in its oreration,
and

e« The fcrmat gqualifier, R cr I,
which indicates that an RR c¢r SI
machine instructicn fcrrat is
assemkled.

I

R

VERB [MODIFIER] [DATA TYPE] [MACHINE FORMAT]

Examples:
A 3/AREA
mve TO,FROM "
e AL 3,ARER 0
CVB . U 3,BINAREA
MVC D CITOTEROM
0 AE_ | 2,FLTSHRT

AD.

Section D:

normalized long

normalized short

2,FLTLONG

floating-point)

FIELD,X'ALl"

_—

Machine Instructions 79

D5 -- Operand Entries

80

Furpose

You must srecify cne cr mcre cperands
in each machine instructicn statement
to prcvide the data cr the location
of the data upon which the machine
operaticn is tc be rerfcrmed. The
operand entries consist of cne cr
nore fields cx subfields derending

on the format of the instruction
keing ccded. They can sgecify a
register, an address, a length,

and inmrediate data.

You can code an operand entry either
with symkcls cr with self-defining
terms. You can omit length fields
or sukfields, which the assembler
will compute for you from the cthlex
cperand entries.

General Specifications for Coding
Operand Entries

The rules for coding cperand entries
are as fcllcwus:

°A conma must sSeparate operands.

eparentheses nmust enclcse subfields.

A conpma must serarate subfields
enclosed in parentheses.

1f a sukfield is cmritted because

it is in implicit in a syrkeclic
address, the rarentheses that would
have enclosed the sukfield must

ke crmitted.

LM 4, 8, SAVES
MVI 4 (12),C°'F'
))
7~
MVvC TO (80}, FROM
/
MvC 0 (80,8), 240(8)
/ /
Mvi 4(12),C'F
MVI KEY, C'F'
Implicit
Address
See D5B
——

0
L

If twc sukfields are enclcsed in
parentheses and separated Ly connas,
the fcllcwirg agrlies:

If both sukfields are ormitted Lkecause
they are irplicit in a symbclic
entry, the separating comma and

the rarenthéses that wculd have

keen needed must also ke cmitted.

If the first subfield is cmitted,

the comma that separates it fror

the seccnd sukfield rmust be written
as well as the enclosing parentheses.

If the seccrd subfield is omitted,
the comma that separates it frcm
the first subfield must be omitted,
however, the enclosing rarentheses
must ke written.

NOTE: Elanks must not aprear within
the cperand field, excert as rart

of a character self-defining tern

or in the sgecificaticn cf a

0 character literal.

L 2,48(4,5)
[
L 2,FIELD.
! ~— Implicit
Address
See D5B
L 2,48(4,5)
Index Register
L 2,48 (’;5—)_ is omitted
/e Length
MVC 32(,710) ,40(10) |Specification
| is omitted
MVC 32(8,10),40(10)
MVC 32(16,6) ,48(6)

o

MvC TO(16,) ,FROM

Base Register
implicit in symbolic
address TO

',5),=CL64'A B'

MVC 32(c!

Section D:

M)

Machine Instructions

81

LC5A -- REGISTERS

82

Purpose and Usage

You can specify a register in an
operand for use as an arithmetic
accumulatoxr, a base register, an
index register, and as a general
depository for data to which you
wish to refer over and over.

You must be careful when specifying
a register whose contents have been
affected by the execution of another
machine instruction, the contrcl
program, or an IBM-supplied system
macro instruction.

For some machine instructions you

are limited in which registers you
can specify in an operand.

Specifications

The expressions used to specify
registers must have absoclute values;
in general, registers 0 through

15 can be specified for machine
instructions. However, the following J
restrictions on register usage
apply:

1. The floating-roint registers
(0, 2, 4, or 6) must be specified
for floating-point instructions:

2. The even numbered registers (0,
2, 4, 6, 8, 10, 12, 14) must be
specified for the following groups
of instructions:

a. The double-shift instructions

b. The fullword multiply and
divide instructions

c. The move long and compare
logical long instructicns.

3. The floating-point registers

0 and 4 must ke specified for the
instructions that use extended
floating-point data:

Registers

Operation Code

Examples:

MVCL

CLCL

AXR

g, DIVIDER

Both register operands
must be even-numbered

AXR, SXR, LRDR, MXR, MXDR, MXEL.

NOTE: The assembler checks the
registers specified in the
instruction statements of the above
groups. If the specified register
does not comply with the stated
restrictions, the asserbler issues
a diagnostic message and does not
assemkle the instructicn.

T
REGISTER USAGE BY MACHINE
INSTRUCTIONS: Registers that are | Source Module Object Code
not explicitly coded in the symbolic
assembler language representation

of machine instructicns, but are
nevertheless used by the assemkled
machine instructions, are divided
into two categories:

in Hex

START 0

BALR 12,0

1. The base registers that are
implicit in the symkolic addresses
specified. These implicit addresses USING *,12 0
are described in detail in D5B.
The registers can be identified
cby examining the object ccde of
the assembled machine instruction
Gor the USING instructicn(s) that |
assigns base registers for the b o

source module.
L 3,FIELD [58]3]0]c]xxx]

Implicit
Address

2. The registers that are used Ly
machine instructions in their
operations, but do not appear even

in the asserbled object ccde. They ‘ Zﬁgﬁ;;
are as follows: 0

a. For the double shift and
fullword multiply and divide M 4,TWO |5cf4]o]C]xxx]

o instructions, the odd-numbered)
register whose number is one
greater than the even-numbered 1 OF
register specified as the first MvCL WS [oE]ele]
operand.

b. For the Move Long and Compare) S
o Logical Long instructions, the Register 5 and 7

odd-numbered registers whose 1 are also used
number is one greater than the
even numbered registers specified
in the two operands.

BXH 3,4 ,ADRESS 186 [3[4]cxxx]

c. For the Branch on Index High
(BXH) and the Branch on Index
Low or Equal (BXLE) instructions;
if the register specified for (Eb Register 5
the second operand is an even- is also used
o numbered register, the next

higher odd-numbered register .
is used to contain the value Registers 1 and 2
to be used for comparison. 0

are also used

TRT ARGUMENT (10) , TABLE
d. For the Translate and Test

(IRT) instructicn, registers :
o 1 and 2 are also used. |DD JO9 [CTxxx [C[xxx]

e. For the Load Multiple (LM)
and Store Multiple (STM) | M
instructions, the registers that

o lie between the registers

[98]3]7]c]xxx]

specified in the first two

operands. Registers 4,5, and
o 6 are also used
REGISTER USAGE BY SYSTEM: The !

control program of the IBM System/370
uses registers 0, 1, 13, 14, and
15.

Section D: -Machine Instructions 83

D5B -- ACDRESSES

84

Purpose and Definiticn

You can code a symbol in the name
field of a machine instruction
statement to represent the address
of that instructicn. Ycu can then
refer to the symbol in the operands
of other machine instruction
statements. The object code for
the IBM System/370 requires that
all addresses be assembled in a
nameric kase-displacement format.
This format allows you to specify
addresses that are relocatakle or
absolute.

You must not confuse the concept

of relocatakility with the actual
addresses that are coded as
relocatakle, nor with the format

of the addresses that are assemkled.

CEFINING SYMBOLIC ADDRESSES: You
define symbols to represent either

relocatable or absolute addresses.
You can define relocatable addresses
in two ways:

By using a symbol as the label in
the name field of an assembler
language statement cr

By equating a symbol to_a relocatakle

expression.

You can define absolute addresses
(or values) by equating a symbcl
to an absolute expression.

REFERRING TC ADLRESSES: You can
refer to relocatable and absolute
addresses in the operands of machine
instruction statements. Such address
references are also called addresses
in this manual. The two ways of
coding addresses are:

Implicitly: that is, in a form

that the assembler must first convert
into an explicit base-disrlacement
form before it can be assemkled

into object ccde.

Explicitly: that is, in a form
that can be directly assembled into
object code.

DC

Symbolic
Addresses

(Defined)

Address
References

3F'370"'

Relocatable
Addresses

Absolqte
Addresses

Relocatability of Addresses

Addresses in the base-displacement
form are relocatable, because:

e Each relocatakle address is
assembled as a displacement from
a base address and a base register.

e The base register contains the
rase address.

e If the okject module assembled
from your source module is relocated,
only the contents cf the base
register need reflect this
relocation. This means that the
location in virtual storage of your
tase has changed and that ycur base
register must contain this new base
address.

e Your addresses have been assemkled
as relative to the base address;
therefore, the sum of the
displacement and the contents of

the kase register will point to

the correct address after relocation.

NOTE: Absolute addresses are also
assembled in the base-displacement
form, but always indicate a fixed
location in virtual storage. This
means that the contents of the base
register must always be a fixed
absolute address value regardless
of relocation.

Source Module

START 0
Base Address paT,R 12,0
L) USING #,12
3 .
2118 .
o | |Ix
X 1
RE
R
Q
gllls
2113
o .
Y10 DS CL80
Y !l rrOM DS CL240

Object Code
in Hex

MvC T0(80) ,FROM [D2]4 Flc|co8]clc58]

|_Base Address |
Base Register (12)

Displacement

Register O as a base
register is always
considered to contain
the absolute address
location 0

~ 0

(41[3ToJoT400]

Base
Register

Displacement

Section D: Machine Instructions 85

Page of GC33-4010-4
Revised July 31, 1976
By TNL: GN33-8207

Specifications

Addresses

MACHINE OR ORJECT COLCE FORMAT: All addresses asserbled
into the object ccde of the IBM System/370 machine
instructions have the format given in the figure kelow.

Format Coded or Symbolic : Object Code
Representation of " Representation
Explicit Addresses . of Addresses
8 bits 4 bits| 4 bits | 4 bits| 12 bits 4 bits| 12 bits
- | Operation Base | Displacement | Base | Displacement
Code Reg~ Reg-
: ister ister

RS D2 (B2)

SI D1(B1)

SS D1(,Bl),D2(B2)

| RX D2(X2,B2)

Index
) Register
| § | p1(B1) OPCODE _______
R1 and R3 represent registers
12 represents an immediate valiue
L represents a length value .
| A

The addresses represented have a value which is the sum
of : ' o ‘

0 e A displacerent and

oo The contents of a. base register.

NOTE: ' In RX instructions, the address represented has
a value which is the sum of a displacement, the ccntents
o of a base register, and the contents of an index register.

86

Implicit Address

An implicit address is specified
by coding one expressicn. The
expression can be relocatable or
absolute. The assembler converts
all implicit addresses into their
kase-displacement form before it
assembles them into object code.
The assemkler converts imglicit
addresses into explicit addresses
only if a USING instructicn has
been specified. The USING
instruction assigns both a base
address, from which the assemkler
computes displacements, and a base
register, to contain the Lase
address. The base register must
ke loaded with the ccrrect base
address at execution time. For
details on how the USING instruction
is used when establishing
addressability, thus allowing
implicit references, see F1.

Explicit Address

An explicit address is specified
by coding two absolute expressions
as follows:

The first is an absolute expression
for the displacement, whose value
must lie in the range 0 through
4095 (U095 is the maximum value
that can be represented by the 12
binary kits available for the
displacement in the object code).

The second (enclosed in parentheses)
is an absolute expression for the
kase reqgister, whose value must

lie in the range 0 through 15.

If the base register contains a

value that changes when the program
is relocated, the assembled address
is relocatakle. 1f the base register
contains a fixed absolute value

that is unaffected by program
relocation, the assembled address

is aksolute.

NOTES (for implicit and explicit
addresses) :

1. An explicit base register
designation must not accompany an
implicit address.

2. However, in RX instructions an
index register can be coded with

an implicit address as well as with
an explicit address.

3. When two addresses are required,
one address can be coded as an
explicit address and the cther as
an implicit address.

LA

fmvc

4,X'400' (,10)

Tmplicit |
Address

3,AREA (4)

[41]4]J0]aT400]

[58]3]4]c xxx]

3,256(4,12)

Explicit
Address

0(80,10) ,FIELD

[58]3T4]c100]

Source Module Object Code
in Hex
START 0
BALR 12,0
USING x%,12
L 3,AREA | [58]3]0[Cxxx)
AREA DS F Base Register Displacement
La 4,1000 | [41]4]o]o[3E8
* Always used as
‘ base register for
END absolute address | |Displacement
between 0 and
4095
AR
-
Source Statement Object Code
in Hex

D22 F]A000]c [xxx]

Section D:

Machine Instructions

87

D5C_-- LENGTHS

88

Purpose

You can specify the length field in an SS-type instruction.
This allows you to indicate exrlicitly the number of bytes
of data at a virtual storage location that is to be used
by the instruction. However, you can omit the length
specification, because the assembler computes the numker
of bytes of data to be used from the expression that
represents the address of the data.

Spécifications

IMPLICIT LENGTH: When a length subfield is omitted from
an SS-type machine instruction an implicit length is
assemkled into the object code of the instruction. The
implicit length is either of the following:

1. For an implicit address (see DSB above), it is the
length attribute of the first or only term in the expressicn
representing the imgplicit address.

2. For an explicit address (see DSB above), it is the
length attribute of the first or only term in the expression
that represents the displacement.

For details on the length attribute of symkols and other
terms see CUC.

EXPLICIT LENGTH: When a length sukfield is specified in
Oan SS-type machine instruction, the explicit length thus
defined always overrides the implicit length.

NOTES:

1. An implicit or exrlicit length is the effective length.
The length value assembled is always one less than the
effective length. 1f an assembled length value of 0 is
desired, an explicit length of 0 or 1 can ke specified.

2. In the SS instructicns requiring one length value, the
allowable range for explicit lengths is 0 through 256.

In the SS instructions requiring two length values, the
allowable range for exrlicit lengths is 0 through 16.

Assembler
Language
Statement

Length Attribute
of term (symbols)

Object Code
in Hex

L= Length Value

Implicit Lengths
MVC TO,FROM

MVC TO+80,FROM

AP AREA,TWO

MVC /0(,10) »80(10)

MvC

~
FROM-TO (,10) ,80(10)

L'TO =

L'TO =

L'AREA
L'TWO

8a

L'FROM =240

+ Address
L TO FROM

| D2 | 4F [xxxx | xxxx|

L

FDZ | 4F| xxxx [xxxx|
L1 L2

—
|FA| 7[3| xxxxI xxxx|

(-

L

[D2Joo0]ao00]a050]
S—

L
[D2]eF[a020]a050]

Explicit Lengths

T0(160) ,FROM

_ Address
e TO FROM

I DZ I 9—1;| XXXX I xxx;I

MvC L'TO = 80
s R QR

MVC 0(80,10),80(10) 1 [D2[4F[A000]A050]
I v

CLC 0(1,10),256(10) 1 |p5]oofacoo]aloo]
| v

CLC 0(0,10),256(10) 1 [D5To0Ta000]A100]

TO DS CL80

FROM DS CL240

AREA DS PLS8

TWO DC PL4'2'

Section D:

Machine Instructions

D5D -- IMMEDIATE LCATA

Purpose

In addition to addresses, registers, and lengths, some
machine instruction operands require immediate data. Such
data is assembled directly into the object code of the
machine instructions. You use immediate data to specify
the bit patterns for masks or other absolute values you
need.

You should ke careful to specify immediate data only where
it is required. TCo not confuse it with address references
to constants and areas cr with any literals you specify

as the operands of machine instruction (for a comgariscn
between constants, literals, and immediate data, see C5).

Specifications

Immediate data must be specified as absolute expressions
whose range of values depends on the machine instructicn
for which the data is required. The immediate data is

0 assembled into its 4-bit or 8-bit kinary representaticn e
according to the figure on the opposite page.

90

| immed: Data

Machine Instructions
in which immediate
data is required

Range of Values
allowed for
immediate data

Examples Object Code
in Hex

(Op codes in
Appendix V)
SRP (s5) 0 through 9 SRP A,B, m
LFO l 7| 3|xxxx|xxxx]
Ntregmns! vt———
A B
Length of Addresses
Field A
S | -
All BCR (RR) 0 through 15 BCR 8,3 [07]8]3]

All BC (RX)

0 through 15

BC 11,2A [47]B]0]xxxx]

—_—
AAA
Address
ey Ja—
ICcM (RS) 0 through 15 STCM 3,X'F',BBB |BE|3|F]xxxx|
STCM m—-‘
CLM Address
Address
a » sLoT
NI (S1) 0 through 255 CLI SLOT,C'A! |95|c1|xxxx|
CLI
MV ™M KEY,X!7E!
oI
™ Address
RDD KEY
WRD
svC (RR) 0 through 255

svc 128 0

Section D: Machin

e Instructions

91

D6 - Examples of Coded Machine Instructions

The examples in this suksection

are grouped according tc machine
instruction format. They illustrate
the varicus ways in which ycu can
code the operands of machine
instructions. Both symbolic and
numeric representation of fields

and subfields are shcwn in the
examples. You must therefore assume
that all symbcls used are defined
elsewhere in the same source module.

The okject ccde assembled from at
least one coded statement per group
is also included. A ccrmplete summary
of machine instruction formats with
the ccded assembler language variants
can be found in Appendix 111 and

Iv. .

RR Format

You use the instructicns with the Name Operation : Operand I
RR format mainly to move data ketween ALPHAL LR 1,2 !
registers. 1The orerand fields must

thus designate registers, with the ALPHA2 LR INDEX ,REG2

following exceptions:

In BCR branching instructions when
a a WU-kit kranching mask reglaces

the first register specification GAMMA1 BCR

In SVC instructicns, where an DELTAL . 8VC
e immediate value (ktetween 0 and 255)

replaces both registers. DELTA2 svc

NOTE: Symbcls used in RR
instructions are assumed to be
equated tc absclute values ketween
0 and 15.

Assembly Examples:

Object Code of

Assembler Language Statement 2 .
gulee Machine Instruction

in Hex

ALPHAlL LR 1,2

RR Format | 18 12

Operation| Register
Code Operands

I 2 bytes

92

RX Format

You use the instructions with the

RX format mainly to move data between
a register and virtual storage.

By adjusting the contents of the
index register in the RX-instructions
you can change the locaticn in
virtual storage being addressed.

The operand fields must therefore
designate registers, including index
registers, and virtual storage
addresses, with the following
exception:

In BC branching instructicns a 4-
kit kranching mask, with a value
between 0 and 15, replaces the first
register specification.

NOTES:

1. Symbols used tc rerresent
registers are assumed to be equated
to aksolute values between 0 and
15.

2. Symbols used to rerresent implicit
addresses can be either relocatatle
or aksolute.

3. Symbols used to represent
displacements in explicit addresses
are assumed to be equated to aksolute
values between 0 and 4095.

Name Operation Operand
ALPHAL L 1,200(4,10)
ALPHA2 L REGL, 200 (INDEX, BASE)
~@
BETAL L 2,200(,10)
BETA2 L REG2 ,DPL (C_E-A%'E’)' INo Indexing
GAMMAL L 3, IMPLICIT
GAMMA2 L 3, IMPLICIT (INDEX)
| Literal Specification
DELTAL L See C5
LAMDAL BC | 7,DISPL(,BASE)
LAMDA2 BC N,ADDREss
D

Assembly Examples:

Assembler Language Statement

RX Format

GAMMA1

ALPHAl L 1,200(4,10}

L Z,IMPLICIT(4)

Object Code of
Machine Instruction
in Hex

5 8|114|A{0 Cc 8

Operation| Registers Displacement

Code R1 _;og Base from Base
E

5 812[4]|xXx]IxXx x X

Section D:

Machine Instructions 93

RS Format r Name Operation Operand
ALPHAL LM 4,6,20(12)

You use the instructions with the

RS format mainly to move data between ALPHA2 LM . REG4,REG6,20 (BASE)
one or more registers and virtual \\e/
storage or to compare data in one

or more registers (see the BXH and '

BXLE operations in Appendix IV). BETAL ST™ 4'6'AREA0

In the Insert Characters under Mask BETA2 STM 4,6,DISPL(BASE)
(ICM) and the Store Characters Under

Mask (STCM) instructions, when a AMME

4-bit mask, with a value between G 1 SLL 2,15

0 and 15, replaces the second AMMZ

register specification. G 2 SLL 2,0(15)
" NOTES:

} DELTAl IcM

1. Symbols used to rerresent

registers are assumed to be equated

to aksolute values between 0 and DELTA2 1CM

15. ‘ '

2. Symbols used to represent imglicit
addresses can be either relocatakle

or aksolute. '
: Assembly Examples:

_ 3. Symbols used to represent ,
displacements in explicit addresses Assembler Language Statement Object Code of
are assumed to be equated to aksolute ;
values ketween 0 and 409S.

Machine Instruction
In Hex

ALPHAl LM 4,6,20(12)

Registers .
Operation Displacement
RS Format Code R1 %? Base| o Base
M3

B F |3 |E|A |4 0 O

DELTA1 ICM 3,X'E',1024(10)

SI_Format

You use the instructicns with the

SI format mainly to move immediate
data into virtual stcrage. The
operand fields must therefore
designate irmediate data and virtual
storage addresses, with the following
exception:

An immediate field is not needed
in the statements whose operation
codes are: LPSW, SSM, TS, TCH, and
TIO.

NOTES:

1. Symbols used to represent
immediate data are assumed to be.
equated to absolute values ketween
0 and 255.

2. Symbols used to represent implicit
addresses can be either relccatable
or absolute.

3. Symbols used tc represent
displacements in explicit addresses
are assumed to be equated to absolute
values between 0 and 4095.

Page of GC33-4010-0
Revised September 29, 1972
By TNL GN33-8148

Name Operation Operand
ALPHAl CLI 40(9),X'40"
ALPHA2 CLI ODISPL4 0 (NINE) ,H§:X4 0
BETAL CLI O\IMPLICIT,QEN/ o
BETA2 CLI \KEY ,C'E"

0 lGAMMAl LPSW 0(9)
GAMMA?2 LPSW NEWSTATE __ o

R

Assembly Examples:

Assembler Language Statement

Object Code of
Machine Instruction
In Hex

9 5|4

0|90 2 8

Sl Format Operation Immediate . |
Code Data 2 & | Displacement
&S| from Base
[
— s |

Section D:

Machine Instructions 95

Page of GC33-4010-0
Revised September 29, 1972
By TNL GN33-8148

96

S_Format

You use the instructions with the
S format to perform I/0 and other
system operations and not to move

. data in virtual storage.

The operation codes for these
instructions are given in the figure
to the right. They are assembled
into two bytes.

Mnemonic Assembled Description
Operation Operation
Codes Code in
Hex
SI0 9C00 Start 1/0
SIOF 9C01 Start 1/O fast
release
HIO 9EQ00 Halt 1/0
HDV 9EO1 Halt Device
STIDP B202 Store CPU ID
STIiDC B203 Store Channel
ID
SCK B204 Set Clock
STCK B205 Store Clock
SCKC B206 Set Clock Comparator
STCKC B207 Store Clock Comparator
SPT B208 Set CPU Timer
STPT B209 Store CPU Timer
PTLB B20D Purge Translation
Lookaside Buffer
RRB B213 Reset: Reference Bit

SS Format

You use the instructions with the

SS format mainly tc move data between
two virtual storage locations.

The operand fields and subfields
must therefore designate virtual
storage addresses and the explicit
data lengths you wish to include.
However, note the following
exception:

In the Shift and Rcund Lecimal (SRP)
instruction a 4-bit imrmediate data
field, with a value between 0 and
9, is specified as a third ogerand.

NOTES:

1. Symbols used to represent Lase
registers in explicit addresses

are assumed to be equated to aksolute
values between 0 and 15.

2. Symbols used to represent explicit
lengths are assumed to be equated

to absolute values between 0 and

256 for SS instructions with one
length specification and ketween

0 and 16 for SS instructicns with

two length specifications.

3. Symbols used to represent imglicit
addresses can be either relocatakle
or aksolute.

4. Symbols used to represent
displacements in explicit addresses
are assumed to be equated to aksolute
values between 0 and 409S5.

Name Operation Operand
ALPHAL AP 40(9,8),30(6,7)
ALPHA2 AP 40 (NINE,BASES8) ,30(SIX,BASE7)
ALPHA3 AP FIE% o
ALPHA4 AP AREA(9) ,AREA2(6)
ALPHAS AP DISP40(,8) ,DISP30(,7)
BETAL MVC 0(80,8),0(7)
BETA2 MVC DISPO(,8),DISPO(7)
BETA3 MVC TO,FROM o
SRP | FIELD1,x'8"',3
N

Assembly Examples:

Assembler Language Statement Object Code of
Machine Instruction
in Hex

ALPHAL AE 40(9,8),30(6,7)

F A|(8|5]|]8|0 2 8}710 1 E

Lengths
SS Format |Operation{ L1 L2 |Base| Displacement |Base| Displacement
Code L 1 | from Base 1 2 | from Base 2

BETAL MVC 0(80,8),0(7)

Section D: Machine Instructions 97

Part III: Functions of Assembler Instructions

SECTION E: PROGRAM SECTIONING
SECTION F: ADDRESSING
SECTION G: SYMBOL AND DATA DEFINITION

SECTION H: CONTROLLING THE ASSEMBLER PROGRAM

99

This page left blank intentionally

Section E: Program Sectioning

This section explains how you can
sukdivide a large prcgram into
smaller parts that are easier to
understand and maintain. It alsc
explains how you can divide these
smaller parts into convenient
sections: for example, one section
to contain your executable
instructions and another section
to contain your data .ccnstants and
areas.

You should consider two different
subdivisions when writing an
assemkler language prograr:

1. The source module
2. The control section.

You can divide a prcgram into two
or more source modules. Each source
module is assembled into a separate
object module. The object modules
can then ke combined into load
modules to form an executable

0 program.

You can also divide a source module
into two or more contrcl sections.
Each control section is assembled
as part of an object module. By
writing the proper linkage edit
control statements, you can select
a complete object module or any
individual control section of the
object module to be linkage edited
and later loaded as an executable
program.

SIZE OF PROGRAM PARTS: 1If a source
module becomes so large that its
logic is not easily comprehensible,
break it up into smaller modules.

Unless you have special programming
reasons, you should write each

control section so that the resulting

object code is not larger than 4096
bytes. This is the largest numker
of bytes that can ke ccvered by

one base register (for the assignment

of base registers toc control
sections, see F1Aa).

COMMUNICATION BETWEEN PROGRAM PARTS:
You must be able to communicate
ketween the parts cf your program:
that is, be akle to refer to data
in a different part or be akle to
kranch to another rart.

Assembly Program
) Time Fetch
®© @ e
Source Object
Modules Modules
A A
END : %
B B
Source l:> % 9
Program END Executable
Program
C C
END
Assembly Linkage Program
Time Edit Fetch
Time Time
Source Control Object
Modules Sections Modules
A A
1 qﬂb 1
2 $ 2 @ 1
2
B[(3 3
4
Source 4 4 Executable
Program program
5 g 6
Clie 6

Section E: Program Sectioning 101

To communicate between two or more
source modules, ycu must symbolically"
link them together; symbolic linkage
is described in F2.

To communicate between two or more
control sections within a source
module, you must establish the
addressability of each control
section; establishing addressabkility

v is descriked in F1.
Source Mod.
El -- The Source Module
I Punched cards

A source module is ceonpesed of
source statements in the assemkler
language. You can include these

statements in the source module
in two ways: or
1. You write them on a coding form
o and then enter them as input, for
example, through a terminal or,
using punched cards, through a card

Library

reader. 0

2. You specify one cr more COPY
instructions among the source
statements being entered. When
the assemkler encounters a COPY
instruction, it replaces the CCPY
instruction with a predetermined
set of source statements from a The
OIibrary. These statements then Assembler

become a part of the source module. Program
The Beginning of a Scurce Module i___L

The first statement of a source

module can ke any asserbler language

statement, except MEXIT and MENLC,

that is described in this manual.

You can initiate the first control

section of a source rocdule by using '
t‘he START instruction. However, R —
you can or must write some source Source Module
statements before the beginning

of the first contrcl section (for START
a list of these statements see E2L). .

direct
input

copied
input

The End of a Source Module

L)

Statements here are
processed as comments
statements if the
LIBMAC option is

set (see JBA)

102

" ''NOTE: Conditional assembly processing
only - can determine which of several

| " substituted END instructions is to be
processed. The conditional assembly
language is described in Section L.

!'Dos Only one END instruction is allowed.

o The assembler does not process any
instruction that follows the END
instruction.

E1A -- THE COEY INSTRUCTICN

Purpose

The CCPY instruction allows you

to copy predefined source statements
from a library and include them

in a source module. Ycu thereby
avoid:

1. Writing the same, often-used
sequence of code over and over

2. Keypunching and handling the
punched cards for that code.

Page of GC33-4010-4
Revised July 31, 1976
By TNL: GN33-8207

CcopPY

Source Statement

START

COPY EQUATES

Source Module

First Input
to Assembler
Program

END

Effective
Input to
Assembler

Program

Section E:

Program Sectioning 103

104

Specifications

The format of the COPY instruction
statement is shown in the figure
to the right.

The symbol in the operand field
must identify a part of a library
called:

A memker of a partitioned data
set

o

This member (or bcck) ccntains the
coded source statements to be copied.

The source coding that is coried
into a source module:

o Is inserted immediately aftex
the CCPY instruction

e Is inserted and prccessed

according to the standard instruction

statement coding fcrrat (described
in B1D), even if an ICTL instruction
has keen specified

e Must not contain either an ICTL
or ISFQ instruction

e Can contain a COPY instruction.
Up to 5 levels of nesting of the
COPY instruction are allowed.

e Can contain macro definitions
(see Section J).

If a source macro definition is
copied into the beginning of a
source module, both the MACRO and
MEND statements that delimit the
definition must be contained in
the same level of copied code.

NOTES:

1. The COPY instruction can also
be used to copy statements into
source macro definiticns (see J5C).

2. The rules that govern the
occurrence of assembler language
statements in a source wodule
also govern the statements copied
into the source module.

iy

Name Operation Operand
One ordinary
Blank COPY Symbol
‘ Source Module e Library
— ' p (Partitioned
gin continue en
; 0 " 71 Columns dataset)
COPY MAC1
MAC]

OPEN

COPY CODE2

START

COPY CODEl

3,AREA

E1B -- THE ENC INSTRUCTION

Furpose

You use the END instruction to maxk
the end of a source module. It
indicates tc¢ the asserbler where

to stop assembly processing. You
can also supply an address in the
operand field to which control can
ke passed when ycur program is
loaded. This is usually the address
of the first executable instruction
in a source module.

Specifications

The format of the ENL instruction
statement is shown in the figure
to the right.

If specified, the cperand entry

can ke generated by substituticn
into variable symbols. However,
after subkstitution, that is, at

assembly time:

1. It must ke a relccatable
expression representing an address
in the source module delimited

ky the END instructicn, or

2. If it contains an external symbol,
the external symbol must ke the

only term in the expressicn, or

the remaining terms in the expression
must reduce to zero.

3. It must not be a literal.

symbol or

F__
Name Operation Operand
A sequence END A relocatable

expression or

blank blank
Source Module A
A START 0
ENTERA BALR 12,0
USING %,12
ENTRY ENTERA
END ENTERA
Source Module B
B START 0
) BALR 11,0
USING w1l
EXTRN ENTERA
END ENTERA + (Subexpression)

Section E:

Program Sectioning

105

This page left blank intentionally.

E2 - General Information About Control Sections

Contrl Sect.

A control section is the smallest subdivision of a prcgram
that can be relocated as a unit. The assembled control
sections contain the object code for machine instructicns,
data constants, and areas.

Section E: Program Sectioning 107

E2A -- AT DIFFERENT PROCESSING TIMES

Consider the concept of a control section at different
processing times. ‘

o AT CCDING TIME: You create a control section when you

108

write the instructions it contains. 1In addition, you
establish the addressability of each control section within
the source module, and prcvide any symbolic linkages between
control sections that lie in different source modules.

You also write the linkage editor control statements to
combine the desired control sections into a load rodule,

and to provide an entry point address for the beginning

of program execution.

AT ASSENMBLY TIME: The assembler translates the source

statements in the control section into object code. Each
source module is assembled into one object module. The
entire object module and each of the control sections it
contains is relocatable.

AT LINKAGE EDITING TIME: According to linkage editor ccntrol
statements, the linkage editor combines the object code

of one or more control sections into one load module.

It also calculates the linkage addresses necessary for
communication between two or more control sections frcr
different okject mcdules. 1In addition, it calculates the
space needed to accommodate external dummy sections (see
E4) .

AT PROGRAM FETCH TIME: The control program loads the load
module into virtual storage. BAll the relocatable addresses
are converted to fixed locations in storage.

AT EXECUTION TIME: The control program passes contrcl
to the load module now in virtual storage and your program
is executed.

NOTE: You can sprecify the relocatakle address of the
starting point for program execution in a linkage editor
control statement or in the operand field of an END
statement.

— _
CODING ASSEMBLY LINKAGE PROGRAM EXECUTION
TIME TIME EDIT FETCH TIME
TIME TIME
Source - Object Load
Modules Modules Modules
X'23000"

First
Program

Section C

Section B l o |
Section A

/

\Section D 0 I

X'40000°"
Second
Program
Section F
1 Section E o i
L M

Section E: Program Sectioning 109

E2B -- TYEES

110

Executable Contrcl Sections

An executable control section is

one you initiate by using the START
or CSECT instructions and is
assemkled into object ccde. At
execution time, an executable control
section contains the binary data
assembled from your coded
instructions and constants and is
therefore executable.

An executakle contrcl section can
also be initiated as "private code",
without using the START or CSECT
instruction (see E2FE).

Reference Control Sections

A reference control section is one
you initiate by using the DSECT,
COM, or DXD instruction and is not
assembled into object code. You
can use a reference control section
either to reserve storage areas

or to describe data to which you
can refer from executable ccntrol
sections. These reference control
sections are considered tc be empty
at assembly time, and the actual
kinary data to which they refer

is not entered until execution time.

Source Module

Asseinbly
Time

EXEC START

REFER COM

- Execuﬁon
Time

Object Module -~ Load Module

EXEC

>

=

.I.]L..‘.._ : g ;

Empty of data

E2C -- LOCATION COUNTER SETTING

The assembler maintains a separate
location counter for each control
section. The location counter
setting for each ccntrcl section
starts at 0. The location values
assigned to the instructicns and
other data in a control section
are therefore relative to the
location counter setting at the
keginning of that ccntrol section.

Listed Location
However, for executable control in hex Source Module

sections, the location values that
appear in the listings do not restart
at 0 for each subsequent executable
control section. They carry on

from the end of the previous contrcl
section. Your executable control
sections are usually loaded into
storage in the order you write them.
You can therefore match the source
statements and object code produced
from them with the ccntents of a
dump of your program.

> For 'executable contrcl sections,
‘the 'location values that appear -
in the listings always start from
0, except the control section
initiated by a START instruction.
with a non-zero operand entry.

OFor reference contrcl sections,
the location values that appear
in the listings always start from
0.

Section E: Program Sectioning 111

112

o You can continue a control section
that has keen discontinued by ancther
control section and thereby
intersperse code sequences from
different control sections. Ncte
that the location values that appear
in the listings for a contrcl
section, divided into segments,
follow from the end of cne segment

to the beginning of the subsequent
segment

Location
in Hex

Source Module

——

SUBONE CSECT

END

+ E2D -- FIRST CONTROL SECTION -

/ SPECIFICATIONS

os!
Conly.

The specifications below apply to
the first executable ccntrol section,
and not to a reference control
section.

INSTRUCTICNS THAT ESTAELISH THE
FIRST CONTRCL SECTION: Any
instruction that affects the location
counter or uses its current value
estaklishes the beginning of the
first executable control section.

The instructions that establish

the first control section are listed
in the figure to the right.

The statements copied into a source
module by a COPY instruction, if
specified, determine whether or

not it will initiate the first
control section.

' NOTE: The LSECT, COM, and EXD

instructions initiate reference
control sections and dc nct establish
the first executable control section.

WHAT MUST CCME BEFORE THE FIRST
CONTROL_SECTION: The fcllowing
instructions or groups of
instructions, if srecified, must
appear before the first control
section, as shown in the figure
to the right.

e The ICTL instructicn, which,
if specified, must be the first
statement in a source module

0S '« The OPSYN instruction

e Any source macro definitions
(see J1B)

e The COPY instructicn, if the

code to be copied contains only
OPSYN instructions or ccmglete macro
definitions.

Any Machine Instruction

cew
CNOP

n (COPY)
CSECT
CXD
DC
DROP
DS
END
EQU
LTORG
ORG
START
USING

The Following Assembler Instructions:

These instructions are al
considered a part of the

section in which they appear.

ways
control

First Contrl Sect.’

Source Module

ICTL

OPSYN

MACRO
MAC1

MEND

These instructions or
macro definitions belong
to a Source Module, but
must appear before the
first control section.

MACRO
MAC?2 'i'

MEND

MACRO
MAC3

MEND

. START

First control
. section . «

Section E: Program Sectioning 113

114

WHAT CAN CETICNALLY COME EFFORE
THE FIRST CONTROL SECTIION: The

instructions or groups of
instructicns that can cptionally

be srecified kefore the first control
secticn are shown in the figure

to the right.

Any instructions ccried by a COPY
instruction or generated ky the
processing of a macrc instruction
before the first control section
must kelong exclusively tc one of
the groups of instructions shown
in the figure to the right.

NOTES:

1. The EJECT, ISEQ, PRINT, SPACE,
or TIILE instructions and comments
statements must follow the ICTL
instruction, if specified. However,
they can precede or appear ketween
source macro definiticons. The OPSYN
instruction must (1) follow the

ICTL instruction, if srecified,

and (2) precede any source macro
definition specified.

2. All the other instructions of
the assembler language must follow
any source macro definitions
specified.

3. All the instructions or groups

of instructions listed in the figure
to the right can also appear as

part of a control section.

Source Module

The following Assembler Instructions:

— COPY
DXD
EJECT

ENTRY
EXTRN
ISEQ
PRINT CAN
PUNCH
REPRO
SPACE
TITLE
WXTRN

[Comments Statements |

| common Control Sections |

These instruc-
tions or groups
of instructions
belong to a
Source
Module, but
are not con-
sidered as part
of an exe-
cutable
control
section.

] Dummy Control Sectionﬂ

| External Dummy Control Sections l

Iiny Conditional Assembly Instruction I

6—}-4 Macro InstructionsJ
EGIN AR

-- THE UNNAMED CONTROL SECTION

E2E
)

The unnamed contrcl secticn is an

‘executable control section that

can be initiated in cne of the
following two ways:

1. By coding a START or CSECT
instruction without a name entry

2. By coding any instruction, other
than the START or CSECTI instruction,

that initiates the first executatle
control section.

The unnamed control section is
sometimes referred tc as rrivate

‘code.

E2F

1-,

All control sections ought to be
provided with names so that they
can ke referred to symbolically:

Within a source module
2..In EXTRN and WXTRN instructions

and linkage editor ccntrol statements
for linkage between source modules.

.NOTE: Unnamed common ccntrol sections

-'or dummy control sections can ke
defined if the name entry is omitted
from a COM or DSECT 1nstruct10n.

-- LITERAL POQLS IN CONTROL

SECTIONS.

. Literals, collected into pools by

the assembler, are assembled as
part of the executable control
section to which the pcols belong.
If a . LTORG instruction is specified
at the end of each control section,

. the literals specified for that

section will ke assembled into the
pool starting at the LTORG
instruction. If no LTORG instruction
is specified, a literal pool
containing all the literals used

in the entire source module is
assemkled at the end of the first
control section. This literal pool
appears in the listings after the

END instruction.

NOTE: If aﬂy contrcl section is

divided into segments, a LTORG
instruction should be specified

~at the end of each segrent to create

a separate literal pool for that
segment. (For a comrlete discussion
of the literal pool see H1B.)

Type Code Unnamed Control Notes
Assigned for Sections in separate
External Symbol Source Modules
Dictionary
”' PC |, START
EE
END
0 Unnecessary unless
dictated by specific
\ programming pur-
pose
PC CSECT
END
i1
Inadvertent and in-
PC BALR 12,0 advisable initiation
USING#,12 of first control sec-
. tion: instead, precede
END with a named
START instruction
PC signifies "private code"

F

Location

in hex

Source Module

Section E:

Program Sectioning 115

E2G_-- EXTERNAL SYMBOL DICTIONARY

116

ENTRIES

The assemkler keeps a reccrd of
each control section and prints
the following information about
it in an External Symbol TLCictionary.

1. 1ts symkolic name, if cne is
specified

2. 1ts type code
3. Its individual identification
4. Its starting address.

The figure to the right lists:

1. The assembler instructions that
define control sections and dummy
control sections or identify entry
and external symbols, 0

2. The type code that the assembler
assigns to the control sections or
dummy control sections and to the
entry and external symbols.

NOTE: The total number of entries
identifying separate control
sections, dummy control sections,
entry symbols, and external symbols
in the external symbol dictionary
must not exceed 399. External
symbols identified in a Q-type
address constant and specified as the
name entry of a DSECT instruction are

counted twice in determining this
total.

Name Instruction Type code en-
Entry tered into external
symbol dictionary
optional START SD) if name
: entry is
CSECT SD) present
START PC | if name
entry is
CSECT PC) omitted
Any instruction that
initiates the unnamed PC
control section
optional COM CM
optional DSECT none

ENTRY

EXTRN

DC(V-type ad-
dress constant)

WXTRN

ER

ER

- E3 — Defining a Control Section

;

You must use the instructions described kelow to indicate
to the assenbler:

e Where a control section begins and

e Which tyre of ccntrcl section is keing defined.

E3A -- THE START INSTRUCTION

Purpose

The START instruction can be used only to initiate the
first or only executable control section of a source mcdule.
You should use the START instruction for this purpose,
because it allows you:

1. To determine exactly where the first control secticn
is to begin; you thereby avoid the accidental initiation
of the first control section by some other instruction.

2. To give a symbolic name to the first control section,
which can then be distinguished from the other contrcl
sections listed in the external symkol dictionary.

3. To specify the initial setting of the location counter
for the first or only control section.

Specifications

The START instruction must be the
first instruction of the first
executable control section cf a
source module. It must not ke
preceded by any instructicn that
affects the location counter and

thereky causes the first control .

section to be initiated. _ ' Name Operation Operand
The format of the START instruction Any Symbol A self-defining
statement is given in the figure : or blank START term, or blank
to the right.

Section E: Program Sectioning 117

The symbol in the name field, if

o specified, identifies the first
control section. It must be used
in the name field of any CSECT

0 instruction that indicates the
continuation of the first control
section. This symbcl represents
the address of the first kyte of
the control section and has a length
attribute value of 1.

The assembler uses the value of
the self-defining term in the operand
Q field, if specified, to set the
location counter to an initial wvalue
for the source mcdule. All control
sections are aligned on a doubleword
boundary. Therefcre, if the value
specified in the operand is not
divisible by eight, the assembler
sets the initial value of the
o location counter to the next higher
doubleword boundary. If the operand
entry is omitted, the assembler
sets the initial value to 0.

118

Location In
Hex

000000

000D0O0

000D04 0

000D04 .

Further Examples:

001000 A
001000 B
000020 C
000000 D

Source Module

FIRST

START

FIRST CSECT

CONTINUE DS F
END
START X'lao0Q"
START 4096
START 30

START -

AN

. __
| : Source Module

FIRST START 0

The source statements that follow
the START instruction are assembled
into the first control section.

If a CSECT instruction indicates

the continuation of the first control
section, the source statements that
follow this CSECT instruction are
also assembled into the first control 3
section.

Any instruction that defines a new
or continued control section marks
the end of the preceding contxol
section or portion of a control
section. The END instruction marks
the end of the control section in
effect.

FIRST CSECT

" E3B -- THE CSECT INSTRUCTION .

END

Purpose

The CSECT instruction allcws you to initiate an executable
control section or indicate the continuation of an
executable control section.

Specifications

The CSECT instruction can be used anywhere in a source
module after any source macro definitions that are
specified. If it is used tc initiate the first executable
dontrol section, it must not be preceded ky any instructicn
that affects the location counter and thereby causes the
first control section to ke initiated.

The format of the CSECT instruction
statement is shown in the figure Name Operation Operand
to the right.

Any Symbol Not required
or blank CSECT

Section E: Program Sectioning 119

Page of GC33-4010-0
Reviscd September 29, 1972
By TNL GN33-8148

120

U
Source Module

FIRST START 0

The symbol in the name field, if
specified, identifies the control
section. If several CSECT o SECOND CSECT
instructions within a source module

have the same symbol in the name .
field, the first occurrence initiates
the control section and the rest
indicate the continuaticn of the
control section. If the first
control section is initiated by

a START instruction, the symkol

in the name f£ield must be used to
indicate any continuvation of the
first control section.

NOTE: A CSECT instruction with

a blank name field either initiates
or indicates the continuation of
the unnamed contrel secticn (see
E2E) .

The symbol in the name field

represents the address of the first END

kyte of the control secticn and
has a length attribute value of
1.

The beginning of a control section
is aligned on a docubleword boundary.
However, the continuation of a

control section begins at the next r—_—— S
available location in that control Loc in Source Module Object Module

a CSECT instructiocn that either

section. Hex n

The source statements that follow

initiates or indicates the
continuation c¢f a control section
are assembled into the object code
of the control section identified
by that CSECT instruction.

NOTES:

1. The end of a control section or
portion of a control section is
marked by:

a. Any instruction that defines a
new or continued control section
or -

b. The END instruction.

FE3C -- THE DSECT INSTRUCTION

PUIEOSG

You can use the LCSECT instruction
to initiate a dummy ccntxrol section
or to indicate its continuation.

A dummy control secticn is a
reference control section that
allows you to describe the layout
of data in a storage area without
actually reserving any virtual
storage.

How to Use a Cummy Control Sectiocn -

Loc Source Module Object Module

in
The figure to the right illustrates Dec
a dummy contrcl secticn.

FIRST START O

A dummy control section (dummy .
section) allows you to write a O{LA 10,BUFFER
0 sequence of assembler lanquage USINGg DUMMY, 10
statements to describe the layout of . 0\
unformatted data located elsewhere in CLI KEY,C'X"'
your program. The assembler produces . o 2 —
no object code for statements in a o BUFFER DS - CL80 _—
dummy control section and it reserves q .
0
0
1
4

no storage for the dummy section.
Rather, the dummy section provides a

symbolic format that is empty of DUMMY DSECT

data. However, the assembler assigns KEY DS c P

location values to the symbols you CODE DS CL3 -

define in a dummy section, relative NAME DS cL20’

to the beginning of that dummy 24 ADDR DS //”Chzo

section. 44 WAGES Dg// CLl0
54 ||HRS _ o5 cL8

Therefore, to use a dummy section 62 | | DEDUET DS CL6

you must: 68 \|pat DS cLl2

END
o e Reserve a storage area for the o
unformatted data

e Ensure that this data is loaded
into the area at execution time

e Ensure that the locations of

the symkols in the dumry section
actually correspond to the locations
of the data being described

o e Establish the addressakility
of the dummy section in combination
with the storage area (see F13).

You can then refer to the unformatted
data symbolically by using the
symkols defined in the dummy section.

Section E: Program Sectioning 121

122

Specifications

The DSECT instruction identifies

the keginning or continuation of

a dummy control section (dummy
section). One or mcre dummy sections
can be defined in a source module.

The DSECT instruction can be used

anywhere in a source module after

the ICTL instruction, cr after any
source macro definitions that may

ke specified.

The format of the LSECT instruction
statement is given in the figure
to the right. :

The symbol in the nanme field, if
specified, identifies the dummy
section. If several LCSECT
instructions within a source module
have the same symbol in the name
field, the first occurrence initiates
the dummy section and the rest
indicate the continuation of the
dummy section.

NOTE: A DSECT instruction with

a blank name field either initiates
or indicates the continuation of
the unnamed dummy section.

The symkol in the name field
represents the first location in
the dummy section and has a length
attribute value of 1.

The location counter fcr a dummy
section is always set to an initial
value of 0. However, the
continuation of a dummy section
kegins at the next available location
in that dummy section.

Location in
Hex

Name Operation Operand
Any Symbol Not required
or blank DSECT

Source Module

" |FIRST

START O

END

FIRST START 0

USING DUMMY1,10|or USING A,10

: g o
-

DUMMY1 DSECT

Aoty DS H

B - DS B

c DS CL30 :
The source statements that follow . S -
a DSECT instruction belong to the . a

dummy section identified by that
DSECT instruction.

NOTES:

SECOND CSECT

1. The assembler language statements
that appear in a dummy control
section are not assembled into ADCON bC A (FROM-TO
object code. : .

2. When estaklishing the
addressability of a dummy section,
the symbol in the name field of

the DSECT instruction or any symbol
defined in the dummy section can

ke specified in a USING instruction.

3. A symbol defined in a dummy
section can ke specified in an
°address constant only if the symkol
is paired with another symbol from
the same durmy secticn, and if the
symbols have the opposite sign.

END

Section E: Program Sectioning 123

E3C

-- THE COM INSTRUCTION

124

Purpose

You can use the COM instruction

to initiate a common control section
or to indicate its continuation.

A common control section is a
reference control secticn that
allows you to reserve a storage

area that can be used by twc or
more source modules.

How to Use a Common Ccntrcl Section

The figure to the right illustrates
a common control secticn.

A common control section (common
section) allows you tc describe

a common storage area in one or

more source modules.

When the separately assemkled okject
modules are linked as cne program,
the required storage space is-
reserved for the commen control)
section. Thus, two or more modules
share the common area.

Only the storage area is provided;
the assembler does not assemble

the source staterents that make

up a common control section into
object code. You must prcvide the
data for the common area at execution
time.

The assembler assigns locations

to the symbcls you define in a

common section relative to the
beginning of that cormcn section.
This allows you to refer symbolically
to the data that will be loaded

at execution time. Note that you
mast establish the addressabkility

of a common contrcl secticn in every
. source module in which it is
specified (see F1A). If you ccde
identical common sections in two

or more source modules, ycu can
communicate data symbolically Lketween
these modules through this common
section.

"NOTE: You can alsc ccde a common
control section in a source module
written in the FORTRAN language. -
This allows you to communicate
ketween assemkler language modules
-and FCRTRAN modules.

]
‘Loc
in Source Modules Object Modules
Dec
) A START 0

‘a”1.10,=A(AREA)
USING AREA,10

‘ST 3,SUM

.

END

B START 0

e{L 8,=A (AREA)
USING AREA,S8

L 3,SUM

END

Page of GC33-4010-0
Revised September 29,
By TNL GN33-8148

1972

Specifications

The COM instruction identifies the
beginning or continuation of a
common control section (common
section) .

One or more commcn sections can
be defined in a source module.

The COM instruction can be used

anywhere in a source module after

the ICTL instructicn, or after any .

source macro definitions that may Name Operation Operand

ke specified. Any Symbol . Not required
blan ' COM

The format of the COM instruction
statement is given in the figure
to the right.

| |
Location in “Source Modules

Decimal

The symbol in the name field, if
specified, 1dent1f1es the common’
control sectlon.m If\several coM

Reserved Storage
for common control
section XYZ when
modules A and B
are linkage edited

of thei ommon Sectlon-ﬁjy;ﬁﬁh,

NOTE: A COM instructicn with a
blank name field either initiates
or indicates the ccontinuation of
the unnamed common section.

320
bytes

The symbol in the name field
represents the address of the first
byte in the common section and has
a length attribute value of 1.

The location counter for a common
section is always set tc an initial
value of 0. However, the
continuation ¢f a common secticn
begins at the next availakle location
in that common secticn.

B START O
1200

bytes

If a common section with the same

name (or unnamed) is srecified in

two or more source modules, the 0 XYZ coM 6
amount of storage reserved for this 0 TO - DS CL80

common section is equal tc that 80 FROM

required by the longest common
section specified.

. DS |

@ 0

¢ CL240 -

Secﬁion'E:

Program

Sectioning 125

126

The source statements that follow
a COM instruction belong to the
common section identified by that
COM instruction. :

NOTES:

1. The assembler language statements
that appear in a common control
section are not assembled into
object code. '

2. When establishing the
addressakility of a common section,
the symbol in the name field of

the COM instructicn or any symbol
defined in the common section can
be specified in a USING instruction.

—

Source Module .

FIRST

.END

START 0 »
USING COMMON,1l

or USING A,ll

E4 -
| 5
i only

External Dummy Sections

Purpose

An external dummy section is a reference control section
that allows you to describe storage areas for one or mcre
source modules, to be used as:

1. Work areas for each source module orx

2. Communication areas between two or more source rnodules.

when the assembled object modules are linked and locaded,
you can dynamically allocate the storage required for all
your external dummy sections at one time from one source
module (for example, by using the GETMAIN macro
instruction). This is not only convenient but you save
space and prevent fragmentation of virtual storage.

To generate and use external dummy sections, you need to
specify a combination of the following:

1. The DXD or DSECT instruction

2. The Q-type address constant Source Module

3. The CXD instruction. FIRST START 0

Generating an External Cummy Section Q
\
. . EXT DSECT
An external dummy section is El DS 3C
generated when you specify a LXC E2 DS 1C 5
instruction or a DSECT instruction E3 DS o |1
in combination with a Q-type address E4 DS 20F |

constant that contains the name
of the DSECT instruction.

You use the Q-type address constant
to reserve storage for the offset

to the external dummy section whose OA DC 0(a)
name is specified in the operand. 0 OB Do 0 (B)
This offset is the distance in bytes QEXT DC 0 (EXT)

from the beginning of the area
allocated for all the external dummy 9
sections to the beginning of the
external durmy secticn specified.

You can use this offset value to
address the external durmy section. DUMMY DSECT
N D1 DS F
The C-type address constant is 0o Y .
described in G3M.
END

o |a DXD 3D |-
B DXD___ 2FL4 |\|

Area allocated to
contain external
dummy sections

T 0

EXT

Not an external
dummy section

offset to A

offsetto B

offset to
Y o EXT

Section E: Program Sectioning 127

How tc Use External Cumnmy Secticns

To use an external dummy section, you rust dc the fcllcwirg
as illustrated in the figure kelow):

Identify and define the external dummy section. The-
asserbler will ccmpute the length and alignment required.

eProvide a O-type ccnstant fcr each external dummy section
defined.

Use the CXC instructicn tc reserve a fullwcrd area intc
which the linkage editor or loader will insert the tctal
length of all the external dumry secticns that are specified
in the source modules of your program. The linkage editcr
computes this length frcm the lengths cf the individual
external dunmy sections supplied ky the asserkler.

oAllocate a stcrage area using the ccmputed tctal length.

Load the address of the allocated area into a register
(for this exanple, register 11). Ncte that register 11
mrust contain this address throughout the whole prcgranm.

Add, to the address in register 11, the cffset into the
allocated area of the desired external dumny secticn.

The linkage editcr inserts this cffset intc the fullwcrd
area reserved by the appropriate ¢-type address ccnstart.

Estaklish the addressakility cf the external durmy section
in corbination with the portion of the allocated area
resexrved fcr the external dumry section.

You can now refer symkolically to the lccaticns irn the
external dummy secticn.

Note that the source statements in an external dunny secticn
are not asserkled intc cbject ccde. Thus, at executicn

time you must insexrt the data descriked into the area
reserved fcr the external dumry sections.

128

0OS only

Linkage Source Modules
editor

ONE

Area to contain

3 : L wd external dummy
1200 | LENGTH CXD sections

.
oGETMAIN XXX e
L.)

Register 11

- Double word
\ Boundary
e AOFFS DC
B DSECT /| B \
ITEM DS F /
o NO DS F S,
SUM DS F "
. i)
£/
o/
TWO START 0 / 100 200
. / bytes bytes
o {L 3,BOFFS | /
AR 3,11 /
0 USING B,3 __-
. ’ }
14
BOFFS DC Q(B) E
ST
y

Section E: Program Sectioning 129

E5 -- Defiﬁing _an External 4,Durt(ug_1y ‘Section
3 °">fv'f '

ES5A -- THE DXD INSTRUCTION

Purpose

The DXD instruction allows you to
identify and define an external
dummy section.

Specifications

The DXD instruction defines an
external durmy secticn. The DXD
instruction can be used anywhere
in a source module, after the ICTL
instruction or after any source
macro definitions that may be
specified.

NOTE: The DSECT instruction also
defines an external dummy section,
but only if the symbol in the name
field appears in a Q-tyre address
constant in the same source module.
Otherwise, a DSECT instruction
defines a dummy section.

The format of the LXL instruction)
is given in the figure to the right. Name Operation Operand

A symbol DXD Same format as the operand
of a DS instruction

a The symbol in the name field must
appear 1in the operand of a Q-type
address constant. This symkol
represents the address of the first
byte of the external dummy section ' 0
defined and has a length attribute
value of 1.

Subfields

Duplication { Type |Modifiers
Factor

~ominal
Value

oThesubfields in the orerand field
are specified in the same way as
in the DS instruction. The assembler
computes the amount of storage and Example:
the alignment required for an —
external dummy section from the

area specified in the operand field. T} D%D 10FL3
The linkage editor or loader uses ’ 0}
the information provided by the AQFFSET DC Q(a)

assembler to compute the total
length of storage required for all
external dummy sections specified
in a program.

NOTE: If two or more external dummy
sections for different source modules
have the same name, the linkage
editor uses the most restrictive
alignment and the largest section

to compute the total length.

130

oly: o R
ESB -- THE CXD INSTRUCTION

Purpose -

The CXD instruction allows you to
reserve a fullword area in storage.
The linkage editor or loader will
insert into this area the total
length of all external dummy sections
specified in the source modules

that are assembled and linked
together into one prcgram.

Specifications

The CXD instruction reserves a

fullword area in storage, and it —

can appear in -one or more of the Name Operation Operand
source modules assembled and combined

by the linkage editor into one A symbol CXD Not required
program. . or blank

The format of the CXLC instruction)

statement is given in the figure

to the right. =

The symbkol in the name field, if pbkctCode
o specified, represents the address in Hex

of a fullword area aligned on a F
fullword boundary. This symbol bu”WWd
" has a length attribute value of oundary
4. The linkage editor or loader Example:
o inserts into this area the total 4 bytes

length of storage required for all ~a
the external dummy sections specified LENGTH CXD I XXXXXXXX

in a program. /ji;q

N

Section E: Program Sectioning 131

This page left blank intentionally

Section F: Addressing

7/

This section describes the techniques and instructions
that allow you tc use symbolic addresses when referring
to data. You can address data that is defined within the
same source module or data that is defined in another
source module. Symbolic addresses are more mweaningful
and easier to use than the corresponding object code
addresses required for machine instructions. Alsc, the
assemkler can convert the symbolic addresses you specify
into their object code form.

F1 — Addressing Within Source Modules: Establishing Addressability

By establishing the addressability .
of a control section, ycu can refer

to the symbolic addresses defined
in it in the operands cf machine
instructions. This is much easier FIRST START 0
than coding the addresses in the .
kase~displacerent fcrm required » .
by the System/370. The symbolic . e —
agdresseg you code in the instructicn La 10,ADDRESS m €040

operands are called implicit

addresses, and the addresses in Equivalent { * o
the base-displacement form are \
called explicit addresses, both LA 10,X'40'(0,12)} {41]alo]co40
of which are fully described in .
LSB.

o

The assembler will convert these
implicit addresses fcr you into
the explicit addresses required !
for the assembled ckject code cf : Explicit
the machine instruction. However, Address
you must supply the assembler with: o

displ. base

\
40 |ADDRESS DC C'SAMPLE'

0 1. A base address from which it
can compute displacements to the

o addresses within a control section
and

2. A base register to hold this END
kase address.

Section F: Addressing 133

How to Estaklish Addressability

Location Source Module Object Code
in Hex in Hex
To establish the addressability
of a control section, you must) FIRST START 0 0 o 05]cjo
at coding time: BALR 12,0

USING BEGIN, 12 BEGINQ
BEGIN . o el I

o e Specify a base address from which
the assemkbler can compute
displacements

Displacement

o e Assign a base register to contain
this base address

g N N O O

CONADR DC F'22"'

\S]

o e Write the instruction that loads 2
the base register with the base
address.

At assembly time, the implicit

addresses you code are converted
ointo their explicit kase-displacement

form; then, they are assembled intc

the ckject code of the machine

instructicns in which they bhave

been coded. .

5,CONADR |58

At execution time, the kase address

o is lcaded into the kase register
and should remain there thrcughcut
the executicn of ycur program.

F1A -~ THE USING INSTRUCTION

Purpose

The USING instruction allows you to specify a base address
and assign one or more base registers. If you also lcad
the base register with the base address, you have
established addressability in a control section.

To use the USING instruction correctly you should:

1. Know which locations in a control section are made
addressable by the USING instruction

2. Know where in a source module you can use these

estaklished addresses as implicit addresses in instruction
operands.

134

The Range of a USING Instruction

The range of a USING instruction
(called the USING range) is the
4,096 bytes beginning at the Lase
address specified in the USING
instruction. Addresses that lie
within the USING range can ke
converted from their implicit to
their explicit form; those outside
the USING range cannct be ccnverted.

The USING range does not depend

upon the position cf the USING
instruction in the source module;
rather, it deprends upon the locaticn
of the base address specified in
the USING instruction.

NOTE: The USING range is the range
of addresses in a control section
that is associated with the base
register specified in the USING
instruction. If the, USING
instruction assigns mcre than one
base register, the composite USING
range is the sum of the USING ranges
that would apply if the base
registers were specified in separate
USING instructions. If register 0
is specified as the base register,
the USING range will be location 0
through 4095 regardless of the base
address specified.

The Comain of a USING Instruction

The domain of a USING instruction
(called the USING domain) begins
where the USING instruction appears
in a source module and continues

to the end of the source module.
(Exceptions are discussed later

in this subsection, under NOTES
ABOUT THE USING DOMAIN.) The
assemblexr converts implicit address
references into their explicit form:

1. If the address reference appears
in the domain of a USING instruction
and

2. If the addresses referred to
lie within the range of the same
USING instruction.

The assembler does not convert
address references that are cutside
the USING domain. The USING domain
depends on the position of the USING
instruction in the source module
after conditional assermbly, if any,
has been performed.

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-3

——

Source Module

USING
range

FIRST

START

Will not be
L 5,INSIDE converted

USING BASADR,BASREG o

USING
domain

L 5,INSIDE o

converted

5 OUTSIDE : %} Cannot be

OUTSIDE DS F

Section F:

Addressing 135

This page left blank intentionally.

136

How to Use the USING Instruction

You should specify your USING
instructions so that:

1. All the addresses in each control
section lie within a USING range
and

2. All the references for these
addresses lie within the
corresponding USING domain.

You should therefore rlace all USING
instructions at the beginning of
the source module and specify a

base address in each USING
instruction that lies at the
beginning of each control section.

FOR EXECUTABLE CONTROL SECTIONS:
The figure to the right illustrates
a way of estaklishing the
addressability of an executakle
control section (defined by a START
or CSECT instruction) . You specify
a base address and assign a base
register in the USING instruction.
At execution time the base register
is loaded with the correct base
address.

Note that for this particular
comkination of the BALR and USING
instructions, you should code them
exactly as shown in the figure to
the right.

Location
in Decimal

OO\N'NOO

USING
range

4097

Source Module

Address of
‘t’ BEGIN

FIRST

BEGIN

QwpP

START
BALR
USING

USING
domain

Same
address
as BEGIN

Section F:

Addressing 137

138

If a control section is longer than 4096 bytes, you must
assign more than one base register. This allows you tc
establish the addressability of the entire control section
with one USING instruction as shown in the figure on the
opposite page.

The assembler assumes that the base registers that you
assign contain the correct base addresses. The address
of HERE is loaded into the first base register. The
addresses HERE+4096 and HERE+8192 are loaded into the
second and third base registers respectively.

Note that you must define the address, BASES, within the
first part of the total USING range, that is, the addresses
covered by base register 9. This is because the explicit
address converted from the implicit address reference,

is assembled into the IM instruction. At execution time,
the assembled address must have a kase register which
already contains a base address at this point; the only
base register loaded with its base address is registe

9. v :

The addressability of addresses in the USING rangé covered
by the second and third base registers is not completely
established until after the LM instruction.. :

NOTE: Addresses specified in address constants (excert
the S-type) are nct converted to their base-displacement
form.

USING
range

Source Module

LONG START
BALR
| USING
f HERE M
B
BASES DC
BEGIN DS

|- 4{ HERE+4095 I
4 HERE+4096

{10

o { HERE+8192 l

e HERE+12287

0

9,0

HERE,9,10,11
10,11,BASES

BEGIN R

A (HERE+4096 ,HERE+8192)
OH

USING
domain

END

Section F:

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

Addressing

139

FOR REFERENCE CONTROIL SECTIONS:

The figure to the right illustrates
how to estaklish the addressability
of a dummy section. A dummy section
is a reference control section
defined by the DSECT instructions.
Examples of establishing
addressability for the other
reference control sections are given
in E3C and E4.

As the kase address, ycu shculd
specify the address of the first
kyte cf the dumny secticn, sc that
all its addresses lie within the

0 rertinent USING range.

The address you load into the base
register must be the address of
the storage area being formatted
by the dummy section.

Note that the assembler assumes
that you are referring to the
symbolic addresses of the dummy
section, and it computes
displacements accordingly. However,
at execution time, the assembled
addresses refer to the location

0 of real data in the storage area.

140

Source Module

FIRST

o--INPUT

1

[INDATA
A

USING
range

START 0

BALR 12,0

USING *,12

LA 11, INPUT—
USING //INDATA,ll
DS XLZQO

° USING

* domain

i Q@

Specifications for the USING Instruction

The USING instruction must ke coded
as shown in the figure to the right.

The operand, BEASE, specifies a Lkase
address, which can be a relocatakle

or absolute expression.

The value

of the expression must lie between

=224 gnd 234-1.

The remaining operands specify from

1 to 16 base registers.

The operands

must ke aksclute expressicns whose
values lie in the range 0 through

15.

The assembler assumes that the first
base register (BASREG1) contains
the kase address BASE at executicn

time.

If present, the subsequent

operands, BASREG2, BASREG3,...,
represent registers that the
assemkler assumes will contain the
address values, BASE+4096,
BASE+8192,..., resgectively.

NOTES ABOUT THE USING DOMAIN: The
domain of a USING instruction
continues until the end of a scurce

module except when:

e A subsequent LCROP instruction
specifies the same base register
or registers assigned by the
preceding USING instruction.

e A subsequent USING instruction
specifies the same register or
registers assigned by the precedlng

USING instruction.

Name I Operation l

Operand

END

Sequence | USING |BASE,BASREGI[,BASEREGZ] ...
symbol or
blank
Example:
USING BASE,9,10,11
Logical Equivalent
USING BASE,9
USING BASE+4096,10
"USING BASE+8192,11
S
Source Module
BREAK START 0
USING BASE1l,10....
° First
USING
BASEl DS domain
First and
second 0 DROP
USING
range
BASE2 DS
Third USING
USING .
range

Third
USING
domain

Section F:

Addressing 141

NOTES AEQUT THE USING RANGE: 1IwcC
USING ranges coincide when the same
tase address 'is specified in twc
different USING instructicns, even

“though the kase registers used are

142

different. . When two USING ranges
coincide, thle assenkler uses the
higher numbered register for
.asserkling the addresses within
the ccmron USING range. In the
example, this arrlies cnly tc the
implicit addresses that appear after
the second USING instruction. 1In
effect, the first USINC domain is
terminated aftexr the seccnd USING
instructicn.

Source Module

A
common B
USING
range
| [(A+4095)

CONFLICT START

USING

DS

END

first
USING
domain

second
USING
domain

Source Module

OVERLAP START 0

USING RANGEL,10

RANGE1 DS OH

. first
USING
domain

first
USING
range

OH

Iwo USING ranges overlap when the
kase address of cne USING instructicn
lies within the range of ancther
USING instructicn. When twc ranges
cverlap, the assemkler computes
displacements frcm the kase address
that gives the smallest displacement;
it. uses the ccrrespcnding base L
registexr when it asserkles the
addresses within the range cverlag. . o/
This applies only tc implicit

addresses that aprear after the) __JRANGE2+MEQ
second USING instruction.

second
USING
range

RANGE2,

second
USING
domain

END

BASE REGISTFRS FOR RAESOLUIE
RCCRESSES: Aksclute addresses used
in a source mcdule must alsc ke
rade addressable. Aksolute addresses Source Module Object Code
require a kase register cther than e in Hex
the kase register assigned to ABS START 0

relocatakle addresses (as descriked :
abave) .

—

However, the assenkler does nct ;
need a USING instruction to convert USING
absolute implicit addresses in the range
range 0 thrcugh 4,095 to their 0-4095 . o
explicit form. The asserklexr uses USING
register 0 as a base register. I domai 0
Cisplacements are ccrmputed freorm - orer
the tase address 0, kecause the !
assenkler assumes that a kase cr
index of 0 implies that a zero
quantity is tc ke used in fcrring
the address, regardless of the
contents cf register 0. The USING
o domain for this automatic kase END
register assignment is the whcle
cof a source mcdule.

LA

{41]6|0]0jo0F]

Section F: Addressing 143

Source Module Object Code
in Hex

| base register ‘

ABS START 0

For aksolute implicit addresses LA 3,4095 41{3|0|0|FFF
greater than 4095, a USING ! o Latfsjololerr]
instruction must ke specified ‘ LA 3,1(3) [41]3]3fojoolj

according tc the fcllcwing:

e With a base address representing USING
an aksolute expressicn, and i range
4096-8191

e With a base register that has
not keen assigned ky a USINGC
instructicn in which a relccatable
base address is srecified.

—

4117]0]3]400

base

This kase register must ke lcaded register

with the base address specified.

F1lB - THE DROP INSTRUCTION

144

Purpose

You can use the DROP instruction to indicate to the
assembler that one or more registers are no longer available
as base registers. This allows you:

1. To free Lkase registers for other programming purposes

2. To ensure that the assembler uses the base register
you wish in a particular coding situation, for example,
when two USING ranges overlap or coincide (as described
above in F1A, Notes about the USING range) .

Specifications

The CROP instruction must be coded
as shown in the figure to the right.

I Name Operation Operand

Up to 16 operands can be specified.
They must be absolute expressions
whose values represent the general
registers 0 through 15. A LCROP
instruction with a blank cperand
field causes all currently active
base registers assigned by USING
instructions to be dropped.

Sequence DROP BASREGL EﬁASREGa .o
symbol

or blank or blank

‘_
Source Module
DROPS START 0
USING BASE ,10 ,
I BASE DS
“ After a DROF instruction, the S
assembler will not use the registers USING S
specified in a DROP instruction e DROP =~ 10
as base registers. A register made 9 . Register 10
unavailakle as a base register by unavailable
e a DROF instruction can be reassigned as a base
as a kase register by a subsequent register
USING instruction. | USING]%ASE,IOQ

restored
USING
domain

END

Section F: Addressing 145

146

A LCROF instructicn is nct needed:

e If the base address is bkeing
changed ky a new USING instructicn,
and the same base register is
assigned. BHBcwever, the new kase
address must be loaded into the
kase registexr. Ncte that the
implicit address "E" lies within
the first USING dcrain, and that
the base address to which it refers
lies within the first USING range.

e At the end of a source module.

Source Module

first
USING
range

CHANGE

second
USING
range

START .O
USING
A DS
29
B DS

[25

OUS ING

second
USING
domain

END

F2 — Addressing Between Source Modules: Symbolic Linkage

This section describes symbclic
linkage, that is, using symkols

to communicate between different
source modules that are separately
assembled and then linked together
by the linkage editcr.

How to Establish Symbolic Linkage

You must estaklish symbclic linkage
between source modules so that you
can refer or kranch tc symbolic
locations defined in the control
sections of external source modules.
To establish symbolic linkage with
an external source module you must

do the following: —
Current Source Linked Object
1. In the current source rodule, Module Modules
you must identify the symkols that
are not defined in that scurce : 1} A sTarT
module, if you wish to use them
in instruction orerands. These _Bl
a symbols are called external symkols, a
kecause they are defined in another ~C1
(external) source module. You
identify external symbols in the

EXTRN or WXTRN instruction or the

V-type address constant. Other

' External
2. In the external source modules, éotmgl)
you must identify the symbols that Modules

are defined in those source modules
and to which you refer from the B START
current source module. These symbols

o are called entry symbols Lecause
they provide points cf entry to
a control section in a source module. Bl
You identify entry symbols with
the ENTRY instruction.

3. You must provide the A-type or o
Y-type address constants needed ‘ C START
bky the assembler tc reserve storage
for the addresses represented by
the external symbcls. 1
C

The assembler places information
about entry and external symbols
in the External Symbol Tictionary.
The linkage editor uses this
information to resolve the linkage
addresses identified by the entry
and external symbols.

Section F: Addressing 147

148

T0 REFER TC _EXTERNAL [ATA: You
should use the EXIRN instructicn

to identify the external symkol
that represents data in an external
source module, if you wish to refer
to this data symkclically.

For example, you can identify the
address of a data area as an external
symkol and lcad the address ccnstant
specifying this symkol into .a kase
register. Then, ycu use this kase
register when establishing the
addressakility cf a dunny secticn
that formats this external data.

You can now refer syrktclically tc
the data that the external area
contains. :

You must also identify, in the
source module that contains the .
data area, the address cf the data -
as an entry symbol.

Source Modules

CURRENT START 0
EXTRN BUFFER“

G{L . 10,ADBUFF
USING DATA,10

ADBUFF DC A (BUFFER)

|

Linked

Object Modules

AN .
DATA DSECT

KEYN DS C

CODE DS .CL3
NAME DS CL20
ADDR DS _ CL20
WAGES DS > CL10

HRS DS . C
DEDUCT DS CL6 N -
PAY DS CLl2 ™
~
END h

CURRENT

OTHER

START 0~.__
ENTRY BUFFER ™

T0 BRANCH TC AN EXTERNAL ALCLCRESS:
You should use the V-type address
constant to identify the external
symkol that represents the address
in an external source module to
which you wish tc kranch. Fcr the
specifications of the V-type address
constant, see G3L.

For example, you can lcad intc a
register the V-type address constant

that identifies the extermnal synmkcl.
Using this register, you can then
kranch to the external address
represented by the symkol.

"If the symkcl is the narme entry>

cf a START or CSECT instruction

in the other source mcdule, and
thus names an executakle control
sectiocn, it is autcratically
identified as an entry symbol.

If the symkcl regpresents an address
in the middle of a control section,
you must, hcwever, identify it as
an _entry symbol for the external
source mcdule. .

You can alsc use a comkination of
an EXIRN instructicn tc identify

and an A-tyre address constant to
contain the extermal kranch address.
However, the V-tyre address constant
is more ccnvenient kecause:

1. Ycu do nct have to use an EXIRN

instructicn.

2. The symbcl identified is not

considered as defined in the source
module and can ke used as the name

entry for any other statement in

“the 'same source mcdule. -

L
Source Modules :
CURRENT START 0

L 3,EXTADR

‘E'BR 3
EXTADR DC V(OTHER)

END

‘I’OTHER START 0 }
ENTRY SUBRTN

SUBRTN DS OH. o '

END

‘Section F: Addressing 149

F2A -

THE ENTRY INSTRUCTICN

150

PurEose

The entry instruction allows you

to identify symkcls defined in a
source module so that they can ke
referred to in ancther scurce mcdule.
These symbols are entry symkols.

Specifications

The format cf the ENIRY instructicn
is shcwn in the figure to the right.

ENIRY SYMECLS: The fcllcwing applies
to the entry symkcls identified.
in the crerand field:

e They must ke valid syrkols.

e 'They must be defined in an
executakble control section.

e They must not ke defined in a
dummy contrcl secticn, a ccrrcn

contrxcl section, or an external

contrcl section.

e The length attrikute value cf
entry symkols is the same as the
length attribute value of the symkol
at its pcint cf definiticn.

A syrmkol used as the name entry
of a START cr CSECT instructicn
is also autcmatically considered
an entry symkcl and dces nct have
to be identified by an ENIRY
instructicn.

The assemkbler lists each entry
symkcl of a scurce ncdule in an
External Symbol TCictionary along
with entries for external syrmkcls,
conmrcn ccntrol sections, and external
contrxcl sections. The maximum
numker cf External Symkcl Dicticnary
entries for each source module is

m nupber of external
ctionary entries (contrc

A synkcl identified in an
ENIRY instruction counts towards
this maximum, even thcugh it may
not be used in the name field of
a statement in the scurce mcdule
nor ccnstitute a valid entry point.

Name Operation Operand
A sequence ENTRY One or more
symbol or relocatable
blank symbols separated
by commas

Source Module

" Entry in External
Symbol Dictionary

Symbol Type Code
FIRST START 0 FIRST SD
ENTRY SUBRTN, INVALID{SUBRTN LD
0 . INVALID| LD
SUBRTN DS OH
DUMMY DSECT DUMMY none
INVALID DS F INVALID -
END

F2B - THE EXTEN INSTRUCTICN

Purpose

The EXTRN instruction allcows you

to identify symkcls referred tc

in a source module kut defined in
another scurce mcdule. These syrmbcls
are external symkols.

Specificaticns

The format cf the EXTRN instructicn
staterent is shown in the figure Name Operation Operand
to the right.

Sequence EXTRN One or more relocatable
symbol symbols separated by
or blank commas
FXTERNAL SYMBOLS: 1The follcwing
applies to the external symkols
identified in the crerand field:
0 e They must be valid symkols. —
e They must not be used as the Source Modules Entry in Extemale
name entry cf a scurce statement Symbol Dictionary
;?etggezggzgszodule in which they Symbol Type Code
CURRENT START 0 CURRENT | SD
e They have a length attrikute :
value of 1. EXTRN OTHER OTHER ER
e They must ke used alcne and
o cannctybe fraired when used in an L 3,EXTAD
expression (fcr rairing cf terms BR 3
see C6) . *
The asserkler lists each external L 4 ,ADSUBRT
symbcl identified in a source module ER 4
ein the External Syrmkcl Cicticnary *
along with entries for entry symkols,
commcn control secticns, and external EXTAD DC - A(OTHER)
contrcl secticns. The maximum ADSUBRT DC V (SUBRTN) SUBRTN ER
numker of External Symkcl Dicticnary ‘
entries for each source module is
399. END
D The raximum number cf external o
""" symkol dictionary entries (ccntrcl OTHER START 0 OTHER SD F
_sections ‘and. external symbols) ENTRY SUBRTN SUBRTN D
‘allowed is 511. The maximum : .
‘allowable: number of entry symkols
fldentlfxed by the ENTRY 1nstxuctxcn ,
is 200, : £ e SUBRTN DS OH
NOTE: The symkcl srecified in a
V-tyre address constant is implicitly
°identified as an external symkcl END
and ccunts towards this maximum.

Section F: Addressing 151

F2C -

THE WXTRN INSTRUCTICN

152

PurEose

The WXTRN instruction allows you
to identify symkcls referred tc
in a source module kut defined in
another scurce ncdule.

The WXTRN instruction differs from
the EXTRN instructicn as fcllcws:

The EXTRN instruction causes the
linkage editcr to make an autoratic
search of libraries to find the
module that ccntains the external
symbcls that you identify in its
operand field. If the module is
found, linkage addresses are.
resolved; then the mcdule is linked
to ycur module, which contains the
EXTRN instruction.

The WXTRN instructicn surpresses

this autcratic seaxrch cf litkraries.
The linkage editor will only resolve
the linkage addresses if the external
symbcls that you identify in the
WXTRN orerand field are defined:

1. In a mcdule that is linked and
loaded along with the ckject mcdule
asserbled from your source module
or

2. In a module brought in from a
likrary due tc the rresence cf an
EXIRN instruction in another module
linked and lcaded with ycurs.

Specificaticns

The format cf the WXTIRN instructicn
statement is shown in the figure
to the right.

EXTERNAL SYMBOLS: The external
symbcls identified ky a WXTRN

instructicn have the same prcrerties
as the external symtcls identified
ky the EXTIRN instructicn. However,
the type code assigned to these
external syrkcls differs.

NOTE: If a symbol, specified in
a V-type address constant, is also
identified Ly a WXTRN instruction
in the same scurce ncdule, it is.
assigned the same type code as the
symkocl in the WXIRN instructicn.

If an external symkol is identified
ky kcth an EXIRN and WXIRN
instruction in the same source
module, the first declaraticn takes -
Erecedence, and suksequent
declarations are flagged with warning
messages.

Name Operation Operand

Sequence WXTRN One or more relocatable
symbol symbols separated by
or blank commas

Source Module

Entry in External
" Symbol Dictionary

Symbol Type Code

FIRST START 0 FIRST SD

o EXTRN OUT,A~__ o ouT ER

v T2 ER

WXTRN WOUT,A wouT WX
+xWARNING sx =

VCON DC V (WOUT) wWouT WX

END
RN —

Section G: Symbol and Data Definition

This section describes the assemkly time facilities which
you can use to:

1. Assign values to symbols
2. Cefine constants and storage areas
3. Define channel command words.

By assigning an absolute value to a symbol and then using
that symbol to regresent, for example, a register or a
length, you can code machine instructions entirely in
symbolic form.

Gl - Establishing Symbolic Representation

You define symbols tc be used as

elements in your programs. This
0 symkolic representaticn is superior
a to numeric representation because:

e You can give meaningful names
to the elements;

e You can debug a program more [Source Module F

easily, because the symbols are
cross-referenced tc where they are

defined and used in your program. FIRST START

The cross-referenced statement : .

numbers containing the symbols are

printed in your assembly listing. DATAREG EQU 10
EIGHTY EQU 80

e You can maintain a program more TWO40 EQU 240

easily, because ycu can change a o BASREG EQU 12

symbolic value in one place and

its value will be changed throughout o RELOC EQU *

a program. * o

Some symkols represent absolute BALR 12,0

values, while others represent USING x*,BASREG

relocatable address values. The .

relocatable addresses are of:

B INSTR
instructions ¢ >’g
constants INSTR MVC TO,FROM /

storage areas. L DATAREG , DATACON
You can use these defined symbols o .
in the operand fields of instruction DATACON bC Fe3
statements to refer to the 0To DS CL (EIGHTY)
instructions, constants, or areas
represented by the symbol. FROM Ds CL(TWO40)

END

-

Section G: Symbol and Data Definition 153

Assigning Values

You can create symbcls and assign
them absolute or relocatable values
anywhere in a source module with

an EQU instruction (see G2A). You
can use these symbols instead of
the numeric value they represent

in the operand of an instruction.

Defining and Naming Data

DATA CONSTANTS: You can define

a data constant at asserbly time
that will be used by the machine
instructions in their operations
at execution time. The three steps
for creating a data constant and
introducing it into your program

in symbolic form are:

e define the data

e provide a label for the data

e refer to the data by its label.

The symbol used as a label represents
the address of the ccnstant; it

is not to be confused with the
assemkled okject code of the actual
constant.

Cefining data constants is discussed
in G3.

LITERALS: You can also define data
at its point of reference in the
operand of a machine instruction
by specifying a literal.

Literal constants are discussed
in G3cC.

STORAGE AREAS: You must usually
reserve space in virtual storage

at assemkly time fcr insertion and
manipulation of data at execution
time. The three steps for reserving
virtual storage and using it in
your program are:

e define the space

e e provide a label fcr the space

154

e refer to the space by its label.

Defining storage areas is discussed
in G3N.

Equivalent [

QLABEL

—

Source Code

L 5,LABEL

L 5,=F'202'

N’

0

DC F'202'

Nsg———

Object Code
in Hex

000000CA

0000000CA

e——

5,SPACE

Q@

CHANNFL COMMAND WORDS: When ycu
define a channel command word at
assembly time you create a command
for an input or output operation
to be performed at execution time.
You should:

o define the channel ccmmand word
e provide a label fcr the word.

Channel ccrrand wcrds are discussed
in suksectiocn G3C.

G2 -- Defining Symbols

G2A. -- THE ECU INSTRUCTION

Purpose B . INSTR BALR 12 ’ 0
The ECU instruction allows you to : S o
assign aksolute cr relccatakle ; ABS EQU X'A2'
values to symbols. You can use Absolute .
it for the fcllowing rurgcses: Value
— HEXA2 ; EQU ABS |

1. To assign single aksolute values L o
to syrkols

BEGIN EQU INSTR
2. 10 assign the values of previously

edefined symkols or exgressicns tc
new symbols, thus allowing you to cﬂ°““”e
alue

use different mnencnics fcr different
rurpcses. :

A-(B+C)/33-D

93. To compute exgressicns whcse
values are unknown at coding time
or difficult to calculate. The
value of the expression is then

oassigned tc a symkcl.

Section G: Symbol and Data Definition 155

Specifications

The EQU instruction can be used
anywhere in a source module after
the ICTL instruction, or after any

source macro definitions that may . Name Operation Operand
be specified. Note, however, that -

the FQU instruction can initiate An ordinary EQU 4 options:
an unnamed control section (private symbol or Expression 1
code) if it is specified before ‘M avariable

the first control section (initiated symbol
by a START or CSECT instruction).-

The format of the FQU instruction
statement is given in the figure

s . : ’ Indicates the
to the right. : ‘ absence of

_ Expression 2 |.

—

Expression 1 represents a value. It
must always be specified and can have
a relocatable or absolute value. The
assembler carries this value as a
signed four-byte (32-bit) number;

all four bytes are printed in the
program listings opposite the symbol,

Any symbols appearing in these three
expressions must have been previously
defined. \

EXPRESSION 1 (VALUE): The assembler -
assigns the relocatable or absolute
value of expression 1 to the symbol
in the name field at assembly time.

156

If expression 2 is omitted, the assembler also assigns

a length attribute value to the symbol in the name field
according to the length attribute value of the leftmost

(or only) term of expression 1. The length attribute value
(described in C4C) thus assigned is as follows (see figure
on following page) :

1. I1f the leftmost term is a lccation ccunter reference
(*) ., a self-defining term or a symkol length attrikute
value reference, the length attribute value is 1. Note
that this also applies if the leftmwost term is a synhcl
that is equated tc any cf these values.

2. If the leftmost term is a symbol that is used in the name
field of a DC or DS instruction, the length attribute value
'o is equal to the implicit or explicit length of the first (or

only) constant specified in the DC or DS operand tield.

3. If the leftmost term is a symbol that is used in the
name field of a machine instruction, the length attribute
value is equal to the length of the assembled instruction.

4, Symbols that name assembler instructions, except the DC
and DS instructions, have a length attribute value of one.
However, the name of a CCW instruction has a length

o attribute value of eight.

NOTE: The length attribute value assigned in cases 2-4 only
applies to the assembly-time value of the attribute. Its

value at pre-assembly time, during conditional assembly
proces51ng, is always 1.

Further, if expression 3 is omitted, the asserklexr assigns
a type attrikute value cf "U" tc the syrkcl in the namre
field.

Section G: Symbol and Data Definition

157

]

Value
assigned
to Source Module. Length Attribute Value
symbol assigned to symbol
is: in name field: |
SECTA START 0 At Assembly Time At Pre-assembly Time
RR LR 3,4
RX A 3,FULL
SS MVC TO ,FROM
FULL DC F'33"
AREA DS XL2000
TO DS CL240
FROM DS CL80
ADCONS DC ALl (A) ,AL2(B) ,AL3(C)
ADCCW CCW 2 ,READER,X'48"',80
L]
Absolute | A EQU X'FF' 1 1
Absolute |B EQU L'FROM o 1 1
| Relocatable| C EQU *+4 1 1
Absolute |D EQU A*10 1 1
Relocatablej E EQU FULL W 4 1
Relocatable| EQU AREA+1000 2000 1
Relocatable| G EQU TO 240 1
Absolute | H EQU FROM-TO 80 1
Relocatable| T EQU ADCONS 1 1
Relocatable| J EQU RR 2 1
Relocatable| K EQU RX 4 1
Relocatable| L, EQU SS 6 1
Relocatable| M EQU SECTA 1 1
Relocatable| N EQU ADCCW 0 8 1

158

05 EXPRESSION 2 (LENGTﬁ#ATTkIBU'f'E VALUE) : If expression 2 is

@)hly‘ :

‘o8

specified, the assembler assigns its value as a length

attribute value to the symbol in the name field.

overrides the normal length attribute value implicitly
assigned from expression 1.

This value

If expression 2 is a self-defining term, the assembler also
assigns the length attribute value to the symbol at
pre-assembly time (during conditional assembly processing).

'EXPRESSION 3" (TYPE-ATTRIBUTE VALUE}): If expression 3 is

only

specified, it must be a self-defining term. The assembler

‘assigns its EBCDIC value as a type attribute value to the

This value overrides the normal
type attribute value implicitly assigned from expression 1.
Note that the type attribute value is the EBCDIC character
o equivalent of the value of expression 3.

symbol in the name field.

Value Source Module Length Attribute Type Attribute
assigned Value assigned Value assigned
At At Pre-
Assembly |assembly
Time Time
FLIRST START e
AREA DS XL2000 (2000 2000 X
4 Implicit
SDT EQU X'FF! Attribute 1 1 U
. Values
1 1 U
ASTERISK EQU * L
Value of 1] EQU AREA,1000 (1000 1000 | U
AREA Q ’
255 B EQU SDT, 4 o 4 4 U
Value.of
Location l c EQU ASTERISK, 4 4 4 U
Counter at
ASTERISK
D EQU AREA,,C'F' 2000 . 1 F
E EQU spT,,C'N' 1 1 N 0
F EQU ASTERISK,,C'A' 1 1 A
G EQU AREA,1000,C'1"' |1000 1000 1
H EQU spT,4,C'F! 4 4 F
I EQU ASTERISK,4,C'A’ 4 4 A
3 EQU AREA,loo,laa“/W Iloo\‘F

Section G: Symbol and Data Definition

159

Using Preassembly Values

You can use the preassembly values assigned by the assembler
in conditional assembly processing,

If only expression 1 is specified, the assembler assigns a
preassembly value of 1 to the length attribute and a
preassembly value of U to the type attribute of the symbol.
These values can be used in conditional assembly (although
references to the length attribute of the symbol will be
flagged) . The absolute or relocatable value of the symbol,
however, is not assigned until assembly, and thus may not be
used at preassembly.

160

THE SYMBCL IN THE NAME FIFILLC: The assernkler assigns an
absolute cr relccatakle value, a length attrikute value,
and a tyre attrikute value tc the symbcl in the name field.

The aksolute cor relocatable value of the symkol is assigned
at assenkly time, and is therefcre not available for
conditional assemkly processing at pre-assenrkly time.

0s The type and length attribute values of the symbol are

oMyavallable for condltional assembly processing under the
following ccndit1cns. .

 ﬁThe sy”bcl in the nane fleld must be an trdinary symbol.

‘Mefinlng ternms.

G3 - Defining Data

This section descrikes the [C, L[S, and CCW instructicrs;
these instructions are used to define ccnstants, reserve
storage and specify the ccntents of channel ccrmrand wcrds
respectively. Ycu can alsc prcvide a lakel for these
instructions and then refer to the data symkclically ir
the orerands cf machine and assenbler instructions. 1This
data is generated and storage is reserved at assenkly time,
and used by the machine instructions at executicn tire.

Section G: Symbol and Data Definition 161

G3A -- THE LC INSTRUCTION

162

Purpose

You specify the DC instruction to
define the data ccnstants you need
for program execution. The LC
instruction causes the assembler

to generate the binary representation
of the data constant you specify,
into a particular location in the
assemkled source module; this is

done at assembly time.

TYPES OF CONSTANTS: The LC

instruction can generate the
following types of constants:

Binary constants -- tc define bit
patterns
Character constants -- to define

character strings or messages

Hexadecimal constants -- to define
large bit patterns

Fixed-Point constants -- for use

by the fixed-point and other
instructions of the standard set

Decimal constants -- for use by

the decimal instructions

Floating-Foint constants -- for

use bty the floating-point instruction
set

Address constants -- to define

addresses mainly for the use of
the fixed-point and cther
instructions in the standard
instruction set.

o { FCON
o { PCON

AREA

o { ECON

o { ADCON

AP
DS
LE
DC

DC

B'00010000"
C'STRING OF CHARACTERS'
X'FFOOFFO00'

3,FCON
F'100'

AREA,PCON
P'l00'
P

2 ,ECON
E'100.50°

5,ADCON
A (SOMWHERE)

/G3B -- GENERAL SEECIFICATIONS FOR

,CONSTANTS
Name Operation Operand
Any Symbol DC One or more
or blank QOperands|separated
: by comm
In the format
described in the
next figure
r N
The general format of the LC | FIRSTCON DC F'2',X'Al',C'HUM' |
instructions statements is shcwn 1

in the figure to the right. Logical Equivalent

The symbol in the name field OFIRSTCON DC Fra2

represents the address cf the first DC X'al!

byte cf the assembled constant. DC C'HUM'
0 1f several cperands are specified,

the first ccnstant defined is LA 3,FIRSTCON

‘ 0 addressakle ky the synkcl in the

name field. The other constants CLI 5,4(3)

can ke reached ky relative —
o addressing. o

SUBFTIELD Se,

Each cperand in a CC instruction
staterent ccnsists c¢f fcur subfields.

The format cf a LC instruction 5 3 4

operand is given in the figure tc } . .

the right. Duplication Type Modifiers Nominal
' Factor Value(s)

The first three sukfields descrite
the ccnstant, and the fourth sukfield
specifies the nominal value cf the
constant to be generated.

12
Required Order

if all subfields
are specified

Section G: Symbol and Data Definition 163

Rules for the DC Operand

0 1. The type subfield and the nominal Fr200
o value must always be specified. o
2. The duplication factor and ' ‘ o
modifier subfields are optional.
3. When multiple operands are - OPRNDS DC C'FIRST',H'99',FL3'10l"
specified, they can ke of different)
types. : e SEVERAL DC A(FIRST,SECOND,THIRD)
[VALUES DC__F'100,200,300' | o
. L ogical Equivalent -
4. When multiple nominal values ' Multiple
are specified in the fourth sukfield, “"Im':z' .
they must be separated by commas _ :ﬂ:\zed?or
and be of the same' type. , SEVERAL ~ DC A(FIRST) character
: : DC A (SECOND) constant
S. The descriptive subfields apply DC = A(THIRD)
to all the nominal values. VALUES pC F'l00'
: S R : DC F'200'
NOTE: Separate constants are) ‘ DC F'300'

generated for each separate 'operand
and nominal value specified.
‘ [MIXED DC AL3(ONE,TWO),2F'Ll,2,3"}

Logical Equivalent

MIXED DC AL3(ONE)
DC AL3(TWO)
DC F'l’
DC F'2'
DC F'3
DC F'l'
DC F'2'
DC F'3"
_

I
BRETWEEN DC l(}?L? '+456"
6. No blanks are allowed:

@ .. sctucen subfielas | SEVERAL DC C'BOO HOO',F'95',H'2"
e b. Between multiple orerands ' o 6
. €. Within any subfields --) . /N .

unless they occur as part of WITHIN DC C'MESSAGE HAS BLANKS
the nominal value cf a character
0 constant or as part of a character DC XL(A+B-C'N O'+3)'F0'
self-defining term in a modifier o
o expression or in the duplication

factor subfield.

E EE—————_— e

164

Information akout Constants

SYMBOIIC ADCRESSES OF CONSTANTS:
Constants defined by the DC
instruction are assembled into an
object module at the location where
the instruction is specified.
However, the type of ccnstant being
defined will determlne whether
the constant is to be aligned on
a particular storage boundary or
not. (see kelow under Alignment
oof Constants) . The value of the
symbol that names the DC instruction
is the address of the leftmost kyte
(after alignment) of the first or
only constant.

THE LENGTH ATTRIBUTE VALUE OF SYMEOLS

NAMING CONSTANTS: The length
attribute value assigned to the
symkols in the name field of
constants is equal to:

The implicit length cf the constant
‘when no explicit length is specified
in the operand of the ccnstant,

or

The explicitly specified length
of the constant.

NOTE: If more than cne orerand

is present, the length attribute
value of the symbol is the length
in kytes of the first ccnstant
specified, according to its
implicitly or explicitly specified
length.

Source Code Object Code
in Hex
HEXCON DC XL7'AD!
&-] 000000000000AD |
FULLCON DC F'8'
00000008
MANYCONS DC ,c'B',Cc'Cc',Cc'D!
[C1 c2 c3 c4
Type of | Implicit E Value of Length
constant| Length' xamples Attribute?2
B asneeded |DC B'10010000° 1
o} asneeded |DC C'WOW' 3
DC CL8'WOW' 8
X asneeded |DC X'FFEEOQOO' 3
DC XL2'FFEE' 2
H 2 |DC H'32' 2
F- 4 |DC FL3'32" 3
P asneeded |[DC P'123" 2
DC PL4'123" 4
Z asneeded |DC Z'123"' 3
DC ZLl10'123" 10
E 4
D 8
L 16
Y 2 |DC Y (HERE) 2
A 4 |DC ALl (THERE) 1
S 2
\ 4
Q 4
1 Depends on type

2Depends on whether or not an explicit length is specified in constant

Section G: Symbol and Data Definition 165

166

ALIGNMENT OF CONSTANTS: - The

assemkler aligns constants on

different boundaries according to -

the following:

o on boundaries implicit to the t

ype

of constant, when noc length
specification is supplied.

On byte boundaries when -an exgl
length specification is made.

Bytes that are skipped to align
a constant at the proper bounda
are not considered part of the
constant. They are filled with
zeros. Note that the automatic
alignment of constants and area
does not occur if the NOALIGN
assemkler ortion has been sreci
in the job control language whi
invoked the assembler.

NOTE: Alignment can be forced t
any boundary by a preceding DS
DC) instruction with a zero
duplication factor (see G3N).
occurs when either the ALIGN or
NOALIGN option is set,

icit~

ry

s
fied
ch

o

(orx

This

T‘I’Lype of |Implicit Examples Boundary
Constant |Boundary Alignment
Alignment'
B byte
C byte
X byte
DC H'25' halfword
H halfword DC HL3'25' byte
F fullword |DC F'225" fullword
DC FL7'225" N byte
byte DC P'2934' byte
Z byte DC 7'1235" byte
DC ZL2'1235" byte
E fullword |[DC E'1.25" / fullword
DC EL5'1.25" byte
D |[doubleword [DC 8D'95" doubleword
DC 8DL7'95" byte
L |doubleword |[DC L'2.57E65" doubleword‘
Y halfword |DC Y (HERE) ‘/ halfword
A fullword |DC AL3 (THERE) byte
S halfword
v fullword
Q fullword
'.
I Depends on type "
R —————

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

Fadding and Truncation of Values

The ncminal values specified fcr ccnstants are assembled
into stcrage. The amount of space availakle for thke rcrmiral
value of a ccnstant is determined:

1. By the exrlicit length specified in the second cperand
sukfield, cr

2. If nc explicit length is srecified, Ly the implicit
length according to the type of constant defined (see
Bppendix VI).

PAPDING: If more space is available
than is needed to accommodate the
kinary representation cf the nominal
value, the extra space is padded:

Source Code Object Code
a with binary zeros on the left for

the kinary (B), hexadecimal (X), 2 bytes
fi xed-point (H,F), packed decimal Binary
(P) , and all address (A.Y,S,V,9Q) BL2'101"' 0 0000000000000/101 Digits
constants . '
. Padding i lef
With EBCDIC zeros cn the left f;a:ﬂ;:;;t
(X'FO') for the zoned decimal (Z) except the charac-
constants ter constant Hexadecimal
' - — Digit:
With EBCDIC blanks cn the right . oS
(X'40') for the character (C) XL3'FFAL'
constant X'FFA"
NOTE: Floating-pocint constants H' 255
(E,D,L) are also padded on the right
with zeros (see G3I). FL3'255"
P'1234"
PL4'123"
AL3(512)
ZL4'123"!
ZL4'3!

Padding is on
right for charac-
ter constants

C'FOUR' [cépeEany
CL5'FOUR o [cépéeE4DYa0]
CL5'A' r [cil40404040]

Section G: Symbol and Data Definition 167

TRUNCATION: If less srace is
available than is needed to
accommodate the nominal value, the
nominal value is truncated and part
of the constant is lost. Truncaticn

of the nominal value is: T---
Source Code Object Code
°On the left for the binary (B),
hexadecimal (X) , decimal (P and ~_ 1byte

7)) , and address (A and Y) constants.

Binary

0000101 Digits

X DC BL1'00010000101'
On the right for the character (C) y

constant. i

Truncation is on
left for all constants
except character
‘constants

However, the fixed-pcint constants
: (8 and F) will nct be truncated,

but flagged if significant Lits

would be lost through truncation.

NOTE: Floating-point constants DC XL3'FF11FOFQ'
(E,C,L) are not truncated; they
are rounded (see G3I).

T1FOFO Hexa'ld‘emmal
: ——l Digits

XX

DC PL2'12345"

NOTE: The akove rules for padding DC 2L3'12345' o
and truncation also apply when the
kit-length specification is used ‘
(see below under Subfield 3: DC AL2(131072)
Modifiers) .

1 byte

Truncation is on

right for character
constants

DC CL2'FOUR'
DC CL1'ABCDE'

DC H'E5536 + *x ERROR* *

* * ERROR * *

Nominal Values
too large for
space provided

Subfield 1: Duplication Factor

The duplication factcr, if specified,
causes the norinal value cr multigle
0 nominal values specified in a

Duplication

constant to be generated the number

of times indicated by the factor. Object Code

It is applied after the nominal in hex
value or values are assembled into

the constant. DC 3H'240'

The factor can be specified by an

unsigned decimal self-defining term

or by an absolute expression enclosed
o in parentheses.

rmsisve——

DC 3FL1'3,4,5' [030405030405030409|

r———

DC (A-B+10-3)A (ADDR)

The expression should have a positive
value or ke equal tc zero.

Any symbols used in the expression
must ke previcusly defined.

168

NOTES:

1. The value of a location counter
reference in a duplication factor is
the value before any align to
boundaries, according to the type of
constant specified.

2. A duplication factor of zero
is permitted with the following
results:

a. No value is assembled.

E. Alignment is fcrced according
to the type of constant specified,
if no length attribute is present
(see akove under Alignment of
Constants) .

c. The length attrikute of the

symbol naming the constant is o

established according to the
implicitly or explicitly specified

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

ZERODUP DC OH'3!

NOALIGN DC OHL3'3!
L'NOALIGN=3

o Halfword
boundary

L' ZERODUP=2

length.

3. If duplication is specified for
an address constant containing a
location counter reference, the
value of the location counter
reference is incremrented by the
length of the constant before each
duplication is perfcrmed (for
examples, see G3J).

Subfield 2: Type

The type subfield must be specified.
It defines the type cf constant

to be generated and is specified

ky a single letter ccde as in the
figure to the right.

The type specificaticn indicates
‘to the assembler:

1. How the nomrinal value(s) sgpecified
in subfield U is to be assembled;
that is, which binary representation
or machine format the cbject code

of the constant must have.

2. At what koundary the assembler
aligns the constant, if no length
specification is present.

3. How much storage the constant

is to occupy, according to the
implicit length of the constant,

if no explicit length specification
is present (for details see above,
under Padding and Truncation of
Constants) .

Machine Format

Code | Type of Constant
(o Character

X Hexadecimal
B Binary

F Fixed-point

H Fixed-point

E Floating-point
D Floating-point
L Floating-point
P Decimal

4 Decimal

A Address

Y Address

S Address

\% Address

| Addres

8-bit code for each Character

4-bit code for each hexadecimal digit

Binary format

Signed, fixed-point binary format;
normally a fullword

Signed, fixed-paint binary format;
normally a halfword

Short floating-point format ; normally a
fullword

Long floating-point format; normally a
doubleword

Extended floating-point format; normally
two doublewords

Packed decimal format

Zoned decimal format

Value of address; normally a fullword

Value of address; normally a halfword

Base register and displacement value;
a halfword

Space reserved for external symbol
addresses; each address normally a
fullword

xternal dummy section

Examples:

Object Code
in hex

DC P'+234' 234cC
DC C'ABC' clcac3

DC X'FO' B

DC H'2! 0002

!

Section G: Symbol and Data Definition 169

Subfield 3: Mcdifiers

The three modifiers that can be PR,
specified tc describe a ccnstant LENGTH DC XL10'FF
ares: SCALE DC FS8'35.92"
gt
a The length modifier (L), which 0
explicitly defines the length in
kytes desired for a ccnstant.

EXPON DC EE3'3.414'
The scale modifier (S), which is =
only used with the fixed-point or o
floatingpoint constants (for details
see below under Scale Modifier).

ALL3 DC DLJS3ES50'2.7182'

L

The exponent modifier (E), that
is only used with fixed-point or o
floating-point constants, and which
indicates the power of 10 by which
the constant is to be multirlied
before conversion to its internal
kinary format.

If multiple modifiers are used,
they must appear i1n the sequence:
length, scale, exponent.

LENGTH MOLDIFIER: The length modifier
indicates the number of bytes of
storage intc which the constant 1
is to be assembled. It is written
as Ln, where n is either cf the
following:

DECSDT DC FL3'9999'
0 A decimal self-defining term

An aksolute expressicn enclosed a
in parentheses. It must have a
pos?tive value and any symwbols it EXPR DC XL (SYMBOQL-ADDR+3%*B-L'D)'F7A"

o contains must be previously defined.

170

When the lenqgth mecdifier is
specified:

Its value determines the number

of bytes of storage allocated to

a constant. It therefore determines
whether the nominal value of a
constant must be radded or truncated
to fit into the space allocated

(see above under Padding and
Truncation of Constants).

No koundary alignment, according
to constant type, is provided (see
above under Alignment of Constants).

Its value must not exceed the maximum

length allowed fer the various types
of constant defined. (For the
allowable range of length modifiers,
see the specifications for the
individual constants and areas from
G3C through G3N.)

IR

Source Code

PADTRUNC DC CL3'ABCDE'

IMPLICIT DC C'ABCDE'

J For character constant: when no

length is specified, the whole con-
stant is assembled into its implicit
length

NOALIGN DC FL3'513'

Assembled at the next
available (byte) boundary

Object Code
in hex

Two bytes
truncated

'c1c2C3c4c5|

«— Fullword
- DOundary

|

TOOLONG DC FL9'10' * *LENGTH ERROR=* *

Section G: Symbol and Data Definition

171

172

BIT-IENGTH SEECIFICATICN:

The length mcdifier can ke

specified tc indicate the numker cf bits intc which a

constant is to be assemkled.

The kit-length specificaticn

is written as L.n, where n is either of the following:

A decimal self-defining term

An aksolute expression enclosed in parentheses.

1t must

have a positive value and any syrkcls it ccntains must

be previcusly defined.

The value of n must lie ketween 1 and the nunber cf bits
(a multiple of 8) that are required to make up the maximun
nunber of bytes allowed in the type of ccnstant keing

defined.
" the &, V, and ¢-type ccnstants.

When only one operand and one nominal
value are specified in a LC
instruction, the follcwing rules
apply:

1. The bit-length specification
0 allocates a field intc which a
constant is to be assembled.

eThe field starts at a byte boundary,
and can run over one or more tyte
boundaries, if the bit-length

°specified is greater than 8.

If the field does not end at a byte
boundary, if the bit-length specified
is not a multiple of 8, the remainder
of the last byte is filled with
2€exros.

Tre kit length-specificaticn cannot be used with

! Source Code Object Code

Binary digits

HEXCHAR DC XL.4'F'

byte byte

HEX3CHAR DC XL,12'FFF'

byte byte }byte

1111111111114

e e ——

FFF—J
00

2. The nominal value cf the constant
is assembled into the field:

Starting at the high order end for
the C, E, O, and L tyre ccnstants.

Starting at the low order end for
the remaining types of constants
that allow kit-length specification.

The nominal value is padded or
truncated to fit the field (see
above under Padding or Truncation
of Constants).

Padding of character ccnstants is

o with hexadecimal blanks, X'40‘;
other constant types are padded
with zeros.

NOTE: The length attribute value

of the symbol naming a DC instrxuction
with a specified bit-length is equal
to the minimurm number cf integral
bytes needed to contain the bit-
length specified for the constant.
L'*TRUNCF is equal to 2. Thus, a
reference tc TRUNCF would address

the entire two bytes that are
assemkled.

—

Object code
binary digits

Source Code

PADC DC CL.11'A’

byte byte‘
11000001010|00000
ET—— e

ﬁj? field

Filled with
zeros i

Padding by L
zeros at left 1_5_7?‘0
Truncation of B

TRUNCC DC CL.11'AB' at right
byte geq byte 3 byte

11000001J110/00000

Z=

TRUNCF DC FL.13'8193'

fisld

7 1
1400000000[00001f000
I |

First 13 bits
of 8193

Truncation at
left

11100000000000@“
8193

Section G: Symbol and Data Definition 173

174

When nore than cne crerand is
specified in a LC instruction or
more than cne ncrinal value in a
LC orerand, the akove rules skout
kit-length specificaticns alsc
aprly, excert:

1. The first field allccated starts
at _a kyte bcundary, kut the
succeeding fields start at the next
available kit.

2. After all the constants have

keen assernkled intc their resgective
fields, the Lkits remaining to make
up the last kyte are £illed with
Z2€X0s.

NOTE: If durlicaticn is specified,
filling with zeros occurs once at
the end cf all the fields occuried
by the durlicated constants.

3. The length attrikute value cf

the symbol naming the LC instruction
is equal to the nunber cf integral
kytes that would ke needed tc ccntain
the bit-length specified for the
first constant tc ke assenbled.

‘ ‘ o L'VALUES=2

Source

VALUES DC FL.10'161,21,57"
Code

byte byte

I

1lo107j000011100:

Object
Code .

o] @ 1@

°L 'OPERANDS=1

Source

Code OPERANDS DC FL.7'8',CL.10'AB',XL.14"'C4"
ode -

byte - byte byte

byte
I

byte

ooooodfifioooooiil
Object 7 s ey & 0
Code $
J
Truncation of’
: B at right
s T

STCRAGE REQUIREMENT FOR CONSTANTS:
The total amount of storage required
to assemble a DC instruction is

the sum of:

1. The requirements for the
individual LC operands specified
in the instruction.

The requirement of a CC operand
is the product of:

a. The length (implicit or
explicit) ,

k. The number of ncrinal values,
and

c. The duplicaticn factor, if
specified.

2. The number of bytes skipped
for the koundary alignmwent between
different operands.

SCALE MODIFIER: The scale modifier
specifies the amount cf internal
scaling that is desired:

Binary digits for fixed-point (H,F)
constants

Hexadecimal digits fcr flcating-
point (E,D,L) constants

It can only be used with the above
types of constant.

The scale modifier is written as
Sn, where n is either:

A decimal self-defining term or

An absolute expression enclosed

in parentheses.

Both types of specification can
ke preceded by a sign; if no sign
is present, a plus sign is assumed.

Space for
o OPERAND 1
OPERAND 2

0 ALIGNMENT

SPACE DC 10H'3,4,5',10FL3'6,7,8'

Storage Requirements

3 x 3k

X
3 x| x 10
i i E 4 p B

Second operand not
aligned due to presence
of length specification

TOTAL

ALIGN DC cC'ABC',F'9,10,11'

o OPERAND 1
OPERAND 2

o ALIGNMENT

i gt

First operand can
end on any byte
boundary

TOTAL

60
90

150
Bytes

Bytes

Examples:

DC HS-132'5.55"

bC HS3'2.25'!

DC FS(A+B-C#3)'2.3!

DC ES12'l19.3"

DC LS22'3.414'

Allowable Range for
Scale Modifier

Fixed-point
Constants

(H,F)

- 187
through
-+346

Floating-point

Constants
(E,D) 0 through 14
(L) 0 through 28

Section G:

Symbol and

Data Definition 175

Object Code
Binary digits
DC H'2' 0000000400000010'
0000000400001000'
[]
SCALE MODIFIFR FOR FIXED-POINT
CONSTANTS: The scale modifier for
fixed-point constants srecifies
~ the power of two by which the fixed-
point constant must be multiplied 0000000000001001|
after its nominal value has been
converted to its binary
representation, but before it is
o assemkled in its final "scaled”
form. Scaling causes the binary 0000000000001001|
Opoint to move from its assuméd Eixed .
position at the right of the
rightmost bit positicn. J

176

NOTES:

1. When the scale ncdifier has a
positive value, it indicates the

o nuwber of binary positions to ke
occuried ky the fracticnal gcrticn
cf the binary numker.

2. When the scale mcdifiexr has a
negative value, it indicates the
nurxber of binary positions to ke

o deleted from the integer gorticn
cf the binary numker.

3. When pcsitions are lcst kecause
of scaling (or lack of scaling),
rounding cccurs in the leftmost-
kit of the lcst pcrticn. The
rounding is reflected in the

o rightmost pcsiticn saved.

Source Code

Converted to Binary

Representation

R,
Object Code

Binary digits B
Binary
point

00000000]1000[1000

DC, HS+4 Y8 . 5(

Asembled Constant

00000000[L000jL000

"‘"“‘ﬂ'

Converted to Binary representation

100000000

Binary

v point

10{001000

L_j’o'

Assembled Constant

OOOOOOOODOOOOOlOOO
1

\

Converted to Binary representation

DCyHS-2"l;

Assembled Constant

.@E point

00000000j0000001111

o'

Converted to Binary representation

Assembled Constant

—* Binary
y point

(o501

00000000j0000100111

Section G: Symbol and Data Definition

177

{DOS
~ must be previously defined.

178

SCALE MODIFIER FOR FIOATING-PQINT
CONSTANTS: The scale modifier for

floating-point constants must have

a positive value. It specifies

the number of hexadecimal pcsiticns
that the fractional portion of the
kinary representation of a floating-
point constant is to be shifted

to the right. The hexadecimal point

is assumed to be fixed at the left
of the leftmost positicn in the
fractional field. When scaling

is specified, it causes an
unnormalized hexadecimal fraction
to be assemkled (unnormalized is
when the leftmost positions of the
fraction contain hexadecimal zeros).
The magnitude of the constant is
retained kecause the exgonent in
the characteristic portion of the
constant is adjusted upward
accordingly. When hexadecimal
positions are lost, rounding occurs
in the leftmost hexadecimal position
of the lost portion. The rounding
is reflected in the rlghtmost
p051t10n saved

FXPONENT MOLIFIER: The exponent
modifier specifies the power of
10 by which the nominal value cof
a constant is to be multiplied
before it is converted to its
internal binary representation.
It can only be used with the fixed-
point (H,F) and floating-point
(E,D,L) constants. The exponent
modifier is written as En, where
n can be either of the following:

2 decimal self-defining term.

An absolute expression enclosed
in parentheses.

Any symbols used in the expre851on

The decimal self-defining term or
the expression can be preceded by
a sign: if no sign is present, a
plus sign is assumed. The range
for the exponent modifier is -85
through +75.

Source Code

DC E'4!

DC ES2'4'

DC E'3.3"

ROUND DC ES2'3.3'

[2]

Object Code
in Hex

r@®

Normalized
Fraction

I.:';
J Lo
[«)
[«)
Sy
. E

Unnormalized
Fraction

[41]34cCCD

=
L)

o
O

e

" Exponent

Source Decimal Value Object Code
Code before conver-
sion to binary Binary digits
form
DC H'4' 4 |[00000000/00000100]
DC HE2'4!' 400 {[00000001{210010000]
o
DC FE(A-B%3)'4] -
DC HE-2'400"' 4 [00000000/00000100]
_7 N

NOTES:

1. The exponent modifier is not
to be confused with the expcnent
that can be specified in the nominal

value sukfield of fixed-roint and

floating-point constants ({see
sections G3G and G3I).

The exponent modifier affects each
nominal value specified in the

operand, whereas the exponent written
as part of the nominal value subfield
only affects the ncminal value it

follows. If both types of exponent
specification are rresent in a DC
operand, their values are
algekraically added together before
the nominal value is converted to
kinary form. However, this sum
must lie within the permissible

orange -85 thrcocugh +75.

02

The value of the constant, after
any exponents have been applied,
must be contained in the implicitly
or explicitly specified length of
the constant to be assembled.

Subfield 4: Nominal Value

The nominal value subfield must
always be specified. It defines
the value of the ccnstant (or
constants) described and affected
ky the sukfields that grecede it.
It is this value that is assemkled
into the internal kinary
representation of the constant.
The formats for specifying nominal
values are described in the figure
to the right.

DOSOnly one nominal value is allowed'

in binary (8 and hexade01mal (X)
constants, ; i

How nominal values are specified
and interpreted by the assewbler
is explained in the subsections
that descrike each individual
constant, beginning at G3C.

DC E'2,25E+2,2.25,225E=2"

DC EE+2'2.25,2.25,225"

Values Assembled
in decimal

225,2.25,2.25

225,225,22500

DC FE+2'2.25E+2,2.25,2.25,22500E~4"'

DC FE-20'2.25E+80'

60

2.25x10

Too large for
4 bytes

Nom. Value

Formats of Nominal
Value Subfields
Constant Single Multiple

Type Nominal Nominal

Values Values
["Value’ Not allowed
B8
X
H
F
P \ 'Value' 'Value, value,......val ue/
4 "

multiple values must
E
D be separated by commas
L)
3
A
Y | Address
S pConstants| (Value) (Value, value,....... value)
Q
\
P

Section G:

Symbol

and Data Definition

179

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

G3C -- LITERAL CONSTANTS

Pur pose

Literal constants allow you to
define and refer to data directly

in machine instruction operands.

You do not need to define a constant
separately in anothexr part of your
source module. The difference
between a literal, a data constant,

and a self-defining term is described

in CS5.

Specifications

A literal constant is specified

in the same way as the operand of

a DC instruction. The general rules
for the operand subfields of a DC
instruction (as described in G3E
above) also arply tc the subfield
of a literal constant. . Moreover,
the rules that apply to the
individual types of constants, as
described in G3D through G3M, apply
to literal constants.

However, literal constants differ -
from EC operands in the fcllowing
ways:

e Literals must be preceded by an
equal sign.

e e Multiple operands are nct allowed.

180

e The duplicaticn factcr must not

be zero.

MVC FIELD(24),=6CL4'CANT'

o Multiple Nominal
Values are allowed

Data Constants
G3C -- BINARY CONSTANT (B)

Furgcse

The kinary ccnstant allcws ycu tc srecify the precise kit
Fattern ycu want assermkled into storage.

Specificaticns

The ccnstants cf the sukfields defining a binary ccnstant
are described in the figure Lkelow.

NOTE: Each kinary ccnstant is assembled intc the integral
nurrber of bytes required to contain the kits srecified.

Binary Constants
Subfield 3. Constant Type
Binary (B)
1. Duplication Factor Yes
e l
2. Modifiers As needed
Implicit Length: (Length B DC B'10101111' | L'B = lw
Modifi
odifier not present) C pc B'101' L'c = 1
Alignment:
{Length Modifier not present)| Byte
Range for Length: 1 through 256. (byte length))
.1 through .2048 (bit length)
Range for Scale: Not allowed
Range for Exponent: Not allowed
4. Nominal Value Binary digits
(Oor1)

Represented by:

Enclosed by: Apostrophes

Exponent allowed: No

Number of Values per Multiple
Operand:

X With zeros
Padding: at left

Truncation of
Assembled Value : At left

S

Section G: Symbol and Data Définition 181 .

G3E -- CHARACTFR CONSTANT (C)

182

Furgcse

The cltaracter constant allows ycu tc srecify character
strings such as error messages, identifiers, or cther text,
that the. asserbler will convert intoc their kinary (EBCLIC)
representation.

Specificaticns

The ccntents of the sukfields defining a chkaracter ccrstant
are descriked in the figure cn the cgpcsite rage.

Each character specified in the ncminal value subfield
is assembled into one Lyte. '

Multiple nominal values are nct allcwed, kecause if a comma
is srecified in the nominal value sukfield, the assenkler
considers the comma a valid character and therefcre
asserkles it intc its kinary (EBCLCIC) rerresentaticn.

NOTE: When arostrophes or ampersands are to be included
in the assenbled ccnstant, doukle apostrcrhes or dcukle

ampersands must ke specified. They are asserbled as single
apostrorhes and ampersands. :

Character Constants

Subfield 3. Constant Type
Character (C)
1. Duplication Factor Yes
allowed
2. Modifiers As needed

Implicit Length: (Length

] 1 L} -
Modifier not present) C DC C'LENGTH L'c 6
Alignment: Byte
(Length Modifier not »se
present)

1 through 256 (byte length)
Range for length: .1 through .2048 (bit length)
Range for Scale: Not allowed
Range for Exponent: Not allowed
4. Nominal Value DC C'A''B! Obiject Code (hex).

Represented by:

Characters (All 256
8-bit combinations)

'B

A bled A
ssemble A&B

———=

DC C'A&&B’
Enclosed by: Apost rophes
Exponent allowed: No
Number of values per One DC C'A,B'

Operand:

Assembled A, B

[c1[6B]c2]

With blanks at right

Padding: (X'40")
Truncation of
Assembled value: At right

Section G: Symbol and Data Definition

183

G3F -- HEXALCECIMAL CCNSTANT (X)

184

Furgcse

You can use hexadeciral ccnstants to generate large kit
ratterns more ccnveniently than with binary constants.
Also, the hexadecimal values you specify in a scurce ncdule
allow ycu tc corgpare them directly with the hexadecimal
values generated for the okject code and address lccaticns
printed in the prcgram listing.

Specificaticns

The ccntents cf the sukfields defining a hexadeciral
constant are descriked in the figure cn the cpposite fpage.

Each hexadecimal digit specified in the norinal value
sukfield is assermkled intc fcur bkits (their kinary ratterns
can be found in C4E). The implicit length in kytes cf a
hexadecimal ccnstant is then half the nurber of hexadecimal
digits specified (assuming that a hexadecimal zerc is added

to an odd nurker cf digits).

Subfield

Hexadecimal Constants

3. Constant Type

1.Duplication Factor

Hexadecimal (X)

allowed Yes
2.Modifiers As needed

Implicit Length: (Length
Modifier not present)

X DC X'FFOOA2'
Y DC X'F00A2'

e
<%
(]
z

Alignment:
{Length Modifier not present)

Byte

Range for Length:

1 through 256 (byte length)
.1 through .2048 (bit length)

Range for Scale:

Not allowed

Range for Exponent:

Not allowed

4, Nominal Value

Represented by:

Hexadecimal digits (O
through 9 and A through
F)

DC X'1F'

DC X'91F' [0000}1001]0001]1111

Object Code (hex)

<—1 byte—»

Enclosed by: Apostrophes
Exponent allowed: No

Number of Values

per Operand: Multiple
Padding: With zeros at left

Truncation of
Assembled value:

4_7

At left

Section G: Symbol and Data Definition

185

G3G_-- FIXEL-ECINT CCNSTANTS (E ANL F)

Purpose

Fixed-point ccnstants alleow you to intrcduce data that

is in a fcrm suitakle fcr the creraticns cf the fixed-gocint
rachine instructions of the standard instruction set.

The ccnstants you define can alsc ke autcmatically aligned
to the proper fullword or halfword koundary for tle
instructicns that refer tc addresses con these boundaries
(unless the NCALGN ortion has keen specified; see L2).

You can perform algekraic functicns using this type of
constant because they can have positive or negative values.

Specificaticns

The ccntents cf the sukfields defining fixed-point constants
are described in the figure on the opposite fpage.

The nominal value can ke a signed (rlus is assumed if the
number is unsigned) integer, fraction, or mixed number
follcwed by an exponent (positive or negative). The
exponent must lie within the permissikle range. If an

o exponent nodifier (see G3B) is alsc specified, the algekraic
sur cf the exronent and the exponent mcdifier must 1lie o
within the rermissikle range. :

186

Fixed-Point Constants

Subfield 3. Constant Type
Fullword(F) Halfword (H)

1. Duplication Factor

Allowed Yes Yes
2. Modifiers
Implicit Length: {Length 4 bytes 2 bytes
Modifier not present) .
Alignment: Full word Half word

(Length Modifer not present)

Range for Length:

1 through 8 (byte length)
.1 through .64 (bit length)

1 through 8 (byte length)
.1 through .64 (bit length)

Range for Scale:

— 187 through + 346

— 187 through + 346

Range for Exponent:

— 85 through + 75 o

— 85 through + 75
valu

DC HE+90'2E-88"

4, Nominal Value
Represented by:

Decimal digits (O through 9)

DC F'-200" o

Decimal digits {0 through 9)

e = 2x102°

pC H'+200'

DC FS4'2.25" DC HS4'.25!
Enclosed by: Apostrophes Apostrophes
Exponent allowed: Yes Yes

pc rr2es' (@) |pc m r2p-6
Number of Values Multiple Multiple
per Operand: _
Padding: With zeros at left With zeros at left

Truncation of
Assembled value:

Not allowed

Not allowed

(error message issued)
1

Section G: Symbol and Data Definition

187

can be Assembled

through 2

63

231

Some examples of the range of values
that can Ee assembled,in%c fixed- Length Range of Values that
point constants are given in the o
figure to the right.

. . : 63
The range of values depends on the 8 -2
implicitly or explicitly specified 4 : _231
length (if scaling is disregarded). .
If the value specified for a » C, _215
particular constant does not lie :
within the allowable range for a 1 _o7
given length, the constant is not N IR
assembled but flagged as an error.

R fixed-pcint constant is assernbled as fcllows:

1. 1The srecified numker, multiplied ky any expchents,
is ccnverted to a kinary numker. .

2. Scaling (see G3E) is perfcrred, if srecified. if a
scale modifier is not prov1ded the fracticnal porticn cf
the number is lost.

3. The kinary value is rcunded, if necessary. The
resulting number will not differ from the exact nunkter
specified Lty mcre than cne in the least 51gn1f1cant bit
rosition at the right.

4. A negative nurnker is carried in 2's cernplement form.

5. Cuglication is applled after the constant has been
asserkled.

G3H -- CECIMAL CONSTANIS (P AND 2)

188

Furpcse

The decimal ccnstants allcw ycu tc intrcduce data that
is in a form suitakle for the operations of the decimal
feature machkine instructicns. The fracked decimal constants

" (P-tyrpe) are used for processing ky the'deciral instructicn

set. The zcned decirmal ccnstants (Z2-type) are in the form
(EBCLIC representation) that you can use as a print inage
(excerpt the digits in the rightmost Lyte).

Specifications

The contents cf 'the sukfields defining decimal constants
are described in the figure on the opposite rage.

The ncminal value can ke a signed (rlus is assumed if the
nurber is unsigned) decimal number. A deciral goint can
be written anywhere in the numker, kut it does nct affect
the assenmbly of the constant in any way. The specified
digits are assumed tc ccnstitute an integer. CTecimal
constants are assemkled as follows:

PACKEL CECINAL CCNSTANIS: Each digit is ccnverted into
its 4-bit binary equivalent. The sign indicatoxr is
asserbled intc the rightmost four kits of the ccnstant.

ZONEL DECIMAL CONSTANIS: Each digit 'is ccnverted intc
its 8-bit FECLIC representation. 'The sign indicatcr
replaces the first fcur kits cf the lom crder byte of the
constant. .

-1
-1

Decimal Constants

Subfield 3. Constant Type
Packed (P) Zoned (Z)
1. Duplication Factor
Allowed Yes Yes
2. Modifiers
Implicit Length: (Length As needed As needed
Modifier not present) P DC P'+593' Z DC 2'-593"
L'P = 2 L'z = 3
Alignment:
{Length Modifer not present)l Byte Byte

Range for Length:

1 through 16 (byte length)
-1 through .128 (bit length)

1 through 16 (byte length)
/1 through .128 (bit length)

Range for Scale:

Not allowed

Not allowed

Range for Exponent:

Not allowed

Not allowed

4, Nominal Value Decimal digits (O through 9) Decimal digits (0 through 9) | DC P'5.5"
DC P'+555" DC Z'-=555"
Represented by: \ m C o
SEEC@ e brss
Enclosed by: Apostrophes Apostrophes o
Exponent allowed : No No
Number of Values
per Operand: Multiple Multiple
With Binary zeros With EBCDIC zeros
Padding: at left (X'FO')
at left
Truncation of At left At left

Assembled value:

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

Section G: Symbol and Data Definition 189

The range gf values that can be
§ssembled.1ntc a deciral constant Type of Decimal Range of Values that
is shown in the figure to the right. Constant can be Specified
| eacken 1031-1 through -1031
ZONED 101°-1 through -101°
N .
G31 -- FLOATING-POINT CONSTANIS (E, D, and 1)
Eurpcse

190

Floating-roint constants allow you to introduce data thrat
is in a fcrr suitakle fcr the crerations cf the flcating-
roint feature instruction set. These ccnstants have tle
following advantages cver fixed-pcint ccnstants.

1. Ycu do nct have to consider the fractional pcrticn cf
a value ycu srecify, ncr worry akcut the pcsiticn cf tlre
decimal pcint when algekraic cperations are tc be perfcrmed.
2. Ycu can specify koth much larger and ruch smaller values.

3. You retain greater rrocessing grecisicn, that is, ycux
values are carried in more significant figures. '

Specificaticns

The ccntents of the sukfields defining floating-pcint
constants are descrited in the figure cn the orpposite rage.

The ncminal value can be a signed (plus is assumed if the
numker is unsigned) integer, fracticn, cr mixed number
follcwed by an exponent (positive or negative). The
exponent must lie within the permissikle range. 1If ar
exponent mcdifier (see G3B under Mcdifiers) is also
specified, the algekraic sum of the exponent and the
exponent mcdifier must lie within the permissikle range.

Floating Point Constants

Subfield 3. Constant Type
SHORT (E) LONG (D) EXTENDED (L)
1. Duplication Factor Y \
Allowed] * Yes ves

2. Modifiers
Implicit Length: 4 Bytes 8 Bytes 16 Bytes
(Length Modifier Not

Precent)
Alignment: : .
(Length Modifier Not Full Word Double Word Double Word

Present)

Range for Length:

1 througﬁ 8 (byte length)
.1 through .64 (bit length)

1 through 8 (byte length)
.1 through .64 (bit length)

1 through 16 (byte length)
.1 through .128 (bit length)

Range for Scale:

0 through 14

0 through 14

0 through 28

Range for Exponent: — 86 through + 75 — 85 through + 75 — 86 through + 75
4, Nominal Value Decimal Digits Decimal Digits Decimal Digits
' (0 through 9) . {0 through 9) (0 through 9)
Represented by: " DC E'+525" DC D'=-525" DC L'525!
DC E'5.25' DC D'+.001"' DC L'3.414'Q
Enclosed by: Apostrophes Apostrophes Apostrophes
Exponeﬁt Allowed: Yes . Yes Yes

oc E'1E+60' (@)

DC D'-2.5E10"°

.DC L'3.712E-3'

Number of Values per
Operand:

Multiple

Multiple

Multiple

Padding:

With hexadecimal zeros at
right

With hexadecimal zeros at
right

With hexadecimal zeros at
right

Truncation of Assembled
Value:

Not applicable
(Values are rounded)

Not Applicable
{Values are Rounded)

Not applicable
{Values are Rounded)

Section G: Symbol and Data Definition

—

191

The range of values that can be
assembled into floating-point
constants is given in the figure
to the right.

I1f the value specified for a
particular constant does not lie
within these ranges, the constant
is not assembled but flagged as
an error.

FORMAT: The format of the floating-
point constants is descriked below.
The value of the constant is
represented by two parts:

o 1. An exponent portion, followed
by

o 2. A fractional porticn.

oA sign bit indicates whether a
positive or negative number has
keen specified. The number specified
must first be converted into a
hexadecimal fraction, befcre it
can be assembled into the proper
internal format. The quantity
expressed is the product of the
Ofraction and the number 16 raised
to a power. 9

192

Type of Range of Magnitude (M)
Constant of Values (Positive and
Negative)
B 1678 <M < (1-167%) x 16°3
D 167°% <M < (1-16714) x 1653
L 1675 <M <(1-1672%) x 16°3
(For all Three)
Approxim‘ately
5.4 x 107/9<M<7.2 x 107°
F
Type | Called
E Short
Floating-
Point
Number
D Long 7-bit 56-bit
Floating- Characteristic : Fraction
Point V22| Ny
- Number -| Bits 01 78 63
r 7-bit ’ High-order half of

L Extended
; Floating-
Point
Number

Characteristic 112-bit Fraction

Low-order half of
USED FOR 112-bit Fraction
SECOND HALF
OF LCON

Characteristic (Hexadecimal Fraction

16E

a

|

1

T
;\[_+g+g+....]
| be 162" 163

I

where a,b,c. . . . are hexadecimal digits, and E is
an exponent that has a positive or negative value
indicated by the characteristic

63

BINARY REPRESENTATION: The assembler
assembles a floating-point constant
into its kinary rerresentation as
follows:

The specified number, multigplied
by any exponents, is converted to
the required two-part format. The
value is translated intc:

1. A fractional portion represented
ky hexadecimal digits and the sign
indicatoxr. The fraction is then
entered into the leftmost part of
the fraction field of the constant
(after rounding).

0 2. An exponent porticn rerresented

e_by the excess 64 binary notation,
which is then entered into the
characteristic field of the constant.

The excess 64 binary nctaticn is
when the value of the characteristic
ketween +127 and +64 rerresents

the exponents of 16 ketween +63

and 0 (by subtracting 64) and the
value of the characteristic between
+63 and 0 represents the exponents
of 16 between -1 and -64.

NOTES:

1. The L-type floating-point constant
resemkles two contiguous D-tyge
constants. The sign of the second
doukleword is assumed to be the

same as the sign of the first.

The characteristic for the second
doubleword is equal to the
characteristic of the first
doubleword minus 14 (the number
of hexadecimal digits in the
fractional portion of the first
doutkleword) .

2. If scaling has been specified,
hexadecimal zeros are added to the
left of the normalized fraction
(causing it to become unnormalized)
and the exponent in the
characteristic field is adjusted
accordingly. (For further details
on scaling see G3E under Modifiers).

3. Rounding of the fraction is
performed according tc the implicit
or explicit length of the constant.
The resulting number will not differ
from the exact number specified

ky more than cne in the last place.

4. Negative fractions are carried
in true representaticn, nct in the
2's complement form.

5. Duplication is applied after
the constant has been assembled.

Binary Representation

Source Code Object Code

in Hex

A{N

DC D'-9.75" |c1fs|c]ooooo0000000]
haractenstico\
_ l 00000 1
T
Hexadecimal Decimal
ey 127
7B 126
. L]
O o
40 64
3F 63
3E 62
00) 0 —-64
Values Expressed Exponent of 16
in Characteristic expressed by
Characteristic

Excess 64 Binary Notation

Section G: Symbol and Data Definition 193

G3J -- THE A-TYPE ANLC Y-TYPE ADLCRESS CCNSTANIS

194

This subsection and the three following suksections descrikte
how the different types cf address constants are assermktled
from expressions that usually represent storage addresses,
and hcw the constants are used for addressing witkin ard
ketween scurce mcdules. , :

Furrcse

In the A-type and Y-tyre address ccnstant, ycu can specify
any cf the three types of assemkly-time exrressions (see:
C6) , whose value the assembler then computes and assenktles
into cbject code. You use this expressicn ccrmputaticr

as follows: ‘ :

1. Relocatakle expressions for addressing

2. Absolute expressions for addressing and value
computaticn.

3. Ccrplex relocatable expressions to relate addreéseﬁ :
in different scurce rcdules.

Specificaticns

The contents cf the subfields defining the A-type and Y-
tyre address constants are descriked in the figure on the
oprposite page. S

NOTES:

1. Nc bit-length specification is allowed when a xelccatakle
or conplex relccatakle exrression is specified. The cnly
explicit lengths that can be specified with these 'addresses
are: ,

a. 3 cr 4 bytes for A-type constants

b. 2 bytes for Y-type constants.
2. The value of the lccaticn ccunter reference (#)-ﬁhén5
specified in an address constant varies from constant tc
constant, if any cf the fcllcwing cr a ccrnkination of the
follcwing are sgecified: ' . :

a. Multirle crerands

k. Multigple ncrinal values

c. A duglication factor.

The lccation counter is incremented with the length cf
the rprevicusly asserkled constant. ‘

3. TWhen the location counter reference cccurs in a literal
address ccnstant, the value of the locaticn counter is
the address of the first kyte of the instruction.

l

]

Address Constants?

Address Constants (A and Y)

Subfield 3. Constant Type
A — Type Y — Type
1. Duplication Factor Yes Yes A DC 5ALIL (*-2)
allowed Obiject Code in Hex —| 0001020304 I
2. Modifiers
Implicit Length: {Length 4 bytes 2 bytes
Modifer not present)
Alignment:
(Length Modifier not present) | Full word Half word

Range for Length:

1 through 4 (byte length) o
.1 through ,32 (bit length)

1 through 2 (byte length)
.1 through .16 (bit length)

Range for Scale:

Not allowed

Not allowed

Range for Exponent:

Not allowed

Not allowed

4, Nominal Value

Represented by:

Absolute, relocatable, or
complex relocatable
expressions

Absolute, relocatable, or .
complex relocatable
expressions

+4)

A DC Y(x-A,

DC A(ABSOL+10) DC Y (RELOC+32) 0 A
values
Enclosed by: Parentheses Parentheses
Exponent allowed: No No
Number of Values .
per Operand: Multiple Multiple
With zeros at left With zeros at left
Padding:

Truncation of
Assembled value:

At left

At left

Section G: Symbol and Data Definition 195

. CAUTION: Sgecificaticn cf Y-type address constants with

relocatable expressions should ke avoided in programs that
are tc be executed cn rachines having nmcore than 32,767
kytes of stcrage cagacity.. In any case, ¥Y-tyre relccatakle
address constants shculd not ke used in programs tc ke
executed under IBM System/370 ccntrcl.

The A-tyre and Y-type address constants are rrocessed

as follows: If the ncrinal value is an aksolute expressicn,
it is computed to its 32-kit value and then truncated cn
the left tc fit the implicit or exrlicit length of tte
constant. If the ncrinal value is a relccatable cr ccrplex

‘relocatable expression, it is not completely evaluated

until linkage edit time when the ckject rcdules arxe
transformed into load modules. The 24-kit (cr smaller)
relocated address values are then placed in the fields
set aside fcr them at assemkly time by the A-type and Y-

‘tyre constants.

G3K -- THE S-TYPE ACLCRESS CONSTANT

" Furgcse

You can use the S-type address ccnstant tc assemble an
explicit address (that is, an address in kase-disrlacement
form) . You can sgecify the explicit address yourself cr
allow the assembler to compute it from an implicit address,
using the current kase register and address in its
computation (for details cn implicit and explicit addresses,
see L[5B) .

Specificaticns

The contents cf the sukfields defining the S-tyre address
constants are descriked in the figure cn the oprcsite rage.

The ncminal values can ke Specified in twc ways:

1. As one aksoclute or relocatakle expressicn representing
an implicit address '

2. As two aksolute expressions, the first of which

) rerresents the displacement and the seccnd, the haseo

196

register.

Address Constants (S)

Subfield 3. Constant Type
S — Type
1. Duplication Factor
Allowed Yes
2. Modifiers
Implicit Length: 2 bytes
(Length Modifier not
present)
Alignment: Half word

(Length Modifier not
present)

Range for length:

2 only (no bit length)

(in bytes)
Range for Scale: Not allowed
Range for Exponent: Not allowed

4. Nominal Value

Represented by:

Absolute or
relocatable expression

Two absolute
expressions

DC S (RELOC)
DC s(1024)

DC S(512(132))

Enclosed by: Parentheses ‘
Exponent allowed: No
Number of Values

per operand : Multiple
Padding: Nf‘)t applicable

Truncation of
Assembled value:

Not applicable

‘___7

Section G: Symbol and Data Definition

197

G3L_-- THE V-TYPE ACCRESS CONSTANT

Purgcse

The V-tyre address constant allows you tc reserve stcrage
for tke address cf a lccaticn in a contrcl section that
- lies in another source module. You should use the V-tyre
address ccnstant cnly tc kranch tc the external address
specified. This use is contrasted with ancther methcd,
that is: of specifying an external syrkcl, identified
by an EXIERN instruction, in an A-type address ccnstant
(for a corparison, see F2).

Because you specify a symkol in

~a V-type address constant, the. Source Object Module Load Module
assembler assumes that it is an _ ‘Module in Hex in Hex
external syrbol. A value of zero
is assembled into the space reserved A A
for the V-type constant; the correct START 0
relocated value of the address is
inserted into this space Ly the ‘
linkage editor before your object Q
END
B B
OUTSIDE X'3000' [ouTsIiDE
- L
Specificaticns

The contents cf the sukfields defining the V-type address
constants are descriked in the figure on the orpcsite rage.

The symkcl specified in the ncrminal value subfield dces
not ccnstitute a definition of the symkol for the scuxce : .
module in wkich the V-tyre address constant agprears.

The symbcl specified in a V-type constant must nct rerresent
external data in an cverlay prcgrarm.

198

Address Constants (V)

Subfield 3. Constant Type
V — Type
1. Duplication Factor
allowed Yes
2. Modifiers
_Implicit Length: (Length 4 bytes
Modifier not present)
Alignment: (Length
Modifier not present) Full word
Range for Length: 4or3 onl\}

{ in bytes) {no bit length)
Range for Scale: Not allowed
Range for Exponent: Not allowed

|

4, Nominal Value

Represented by:

A single relocatable
symbol

DC V(MODA)

DC V(EXTADR)

Enclosed by: Parentheses
Exponent allowed: No

Number of values

per Operand: Multiple
Padding: With zeros at left

Truncation of
assembled value:

Not applicable

Segtion G: Symbol and Data Definition

199

Page of GC33-4010-0

Revised September 29, 1972

By TNL GN33-8143

Furgpcse

You use this constant tc reserve stcrage fcr the cffset

into a storage area of an external dummy secticn.

The

offset is entered intc this space ky the linkage editcr.
when the offset is added to the address of an overall klcck
of storage set aside fcr external dummy sections, it allows

you tc address the desired section.

(For a descripticn

of the use cf the Q-tyre address ccnstant in combinaticn
with an external dummy section, see EU.)

Specificaticns

The contents cf the sukfields defining the C-tyre address
constant are descriked in the figure kelcw.

The symkcl specified in the ncrinal value subfield must

ke previously defined as the lakel of a LXLC cr LSECT

statemxent.

200

Address Constants (Q)

Subfield 3. Constant Type

Q-Type

1. Duplication Factor Yes

allowed

2. Modifiers 4 bytes

Implicit Length: (Length

Modifier not present)

Alignment: (Length Fullword

Modifier not present)

Range for Length: 1-4 bytes

(in bytes) (no bit length)

Range for Scale: Not allowed

Range for Exponent: Not allowed

4. Nominal Value
Represented by

A single relocatable
symbol

DC Q(DUMMYEXT)
DC Q(DXDEXT) o

Enclosed by: Parentheses
Exponent allowed: No
Number of Values per Multiple

Operand:

Padding:

With zeros at left

Truncation of
Assembled Value

At left

G3N -- THE CS INSTRUCTICN

Furgose

The LS instruction allows you to:
1. Reserve areas cf stcrage
2. Prcvide lakels fcr these areas

3.

as lakels.

The LS instruction causes no data tc be assembled.
(see G3B), you do nct have tc sgecify
(fcuxth sukfield) of a LS instructicn
Therefore, the L[S instruction is thke kest way

the LCC instruction
the nominal value
cperand.

of syrbolically defining storage for wcrk areas,

input/output buffers, etc.

How to Use the DS Instruction

TO RESERVE STORAGE; If ycu wish
to take advantage of automatic
koundary alignment (if the ALIGN
option is specified) and implicit

e length calculaticn, ycu should not
supply a length modifier in your
operand specifications. You should
specify a type subfield that
corresponds to the type of area
you need for your instructions
(See individual tyges in sections
G3D through G3M) .

Use these areas ky referring to the symkols defined

Unlike

Named (Mnemonic)

Areas Aligned on

“]

Length Attribute of

Areas for Fixed- Boundary Symbols Naming Areas
Point Instructions same as Implicit
o Length of Areas
FAREA DS F Full word 4
HAREA DS H Half word 2
AAREA DS A Full word 4
DUPF DS_10F Eull word L'DUPF=4 |}
10 full words of ..)uplicati?n hefs-no
effect on implicit
storage reserved
length
Named Areas for
Floating-Point
Instructions
EAREA DS 3E Full word 4
DEAREAS DS 9D| Double word 8
9 double words
reserved
LAREA DS L Double word 16
a——-ﬁ
Section G: Symbol and Data Definition 201

202

Using a length modifier can give
you the advantage of explicitly
specifying the length attribute
value assigned to the label naming
the area reserved. Hcwever, your
areas will not be aligned
automatically according to their
type.
in the operand, you should use a
length modifier for the binary (B),
character (C) , hexadecimal (X) .,

and decimal (F and Z) type areas;
otherwise their labels will be given
a length attribute value of 1.

If you omit the nominal value

A2 DS AL2

Area Specified Area Length
Reserved in Attribute
0 in Bytes
TEN DS CL10 10 10
TWO56 DS XL256 256 256
F3 DS FL3 3 3
D7 DS DL7 7

has no effect on
length attribute

Duplication factor

When you need tc reserve large areas ycu can use a

duplicaticn factor. However, you can only refer tc ttre
0 first area ky the lakel in this case. Ycu can alsc use

the character (C) and hexadecimal (X) field tyres tc sgecify
e large areas using the length ncdifier.

Area Specified Area Reserved| Automatic Length Attribute
in Bytes Boundary of symbol used
Alignment as Label
LARGEF\)S lOFL3 30-\\| NONE 3
LARGEDleS[lOOD 800~~ -DOUBLE WORD 8

-
-~
~—

Q_">| | I l___

LARGEA}DS 60A/240~\\\FULL WORD 4
9;')' i —

Duplication has

no effect
LARGEC DS 1000C 1000 NONE 1
c2 DS CL’lOOO 1000 NONE 1000
Maximum of
65,535 allowed
XLARGE DS XL2000 | 2000 NONE 2000
LARGERX DS 2XL2000| 4000 NONE 2000

Section G: Symbol and Data Definition 203

204

9 boundary.

Although the nominal value is
optional for a DS instruction, you
can put it to good use by letting
the assembler ccmpute the length

for areas of the B, C, X, and decimal
(P or Z) type areas. You achieve
this by specifying the general

format of the nominal value that

will be placed in the area at
execution time.

TO FORCE ALIGNMENT: Ycu can use

the DS instruction to force alignment
to a koundary that otherwise would
not be provided. You do this Ly
using a duplication factor cf zero.
No space is reserved for such an
instruction, yet the data that
follows is aligned on the desired

NOTE: Alignment is forced when
either the ALIGN or NOALIGN assembler
option is set (see [2).

Area Specified

*| Length Atribute
or computed

N ¢
Area ITpllCIt length
Reserved ovarea

. (duplication
in bytes

disregarded)

16 16

2 2

60 2

3 3

15 3

5 5
—

DS

DS

DS
DC
DC

DS
LH
AH

oD

CL128

oF
CIAI

| Double word l

O =3

* Full word I

AL3 (SOMWHERE) e CHXXXXXX

S
A Address of
SOMWHERE
nOH og Half word '
3,8UM LH
3,CONST AH
STH 3,RESULT STH
HERE addresses
same location as
following
instruction (LH)
————

TO NAME FIFLLCS OF AN AREA: Using a dugplication factcr

of zero in a LS instruction also allows you to prcvide

a lakel for an area cf stcrage withcut actually reserving
the area. You can use L[S or LC instructicns tc reserve
storage fcr and assign lakels tc fields within the area.
These fields can then ke addressed symkolically. (Ancther
way of acccmplishing this is described in E3C.) The whcle
area is addressable ky its lakel. 1In additicn, tle syrnkclic
label will have the length attrikute value of the whcle
Within the area each field is addressable by its

area.
label. The LATE field has the same address as the sukfield
CAY. However, CATE addresses 6 kytes, while LAY addresses
only 2 bytes.
I
Format of 80
Character Record
Symbol Length ' 2aunj nto an
Attribute i
80 | RECAREA DS 0CLS80
e DS CL4 L
6 | PAYNO DS CL6
20 | NAME DS CL20
o 6 | DATE DS OCL6
2 |DAY DS CL2
2 |MONTH DS CL2
2 | YEAR DS CL2
DS CLl10
8 | GROSS DS CL8
8 | TAXES DS CL8
DS CL18
Area not
Aligned
RECAREA
3
DATE
DAY qﬁ%
MONTH
YEAR \ 80
l 2 bytes I ?g;;s
__

Section G: Symbol and Data Definition

205

206

Specificaticns

The forrmat cf the LS instruction
statement is given in the figure
to the right.

The format cf the crerand of a DS
instruction is identical to that
of the LC crerand (see G3B).

The two differences in the
specificaticn of sukfields are:

The ncminal value sukfield is
cpticnal in a L[S operand, but it
is mandatcry in a LCC cgerand. 1If
a nomrinal value is specified in

a LS operand, it mwust ke valid.

The raximum length that can ke
specified in a L[S operand for the
character (C) and hexadecimal (X)
type areas is 65,535 Lkytes, rather
than 256 bytes for the same LC
operands.

PSR _
Name Operation Operand
Any Symbol DS QOne or more
or blank § separated

ol Operand Format |

Modifiers

Zero or more
Nominal Values|

Duplication
Factor

Type

OPTIONl1 DS

OPTIONZ2 DS

AMUST DC

LONGC DS CL65535°
LONGX DS XL65535
LIMITEDC DC CL256'A’

LIMITEDX DC XL256'00'

The label used in the name entry of a LS instructicn, 1like
the label fcr a LC instructicn (see G3B):

1. Has an address value of the leftmost kyte of the area
reserved, after any kcundary alignment is performed

2. Has a length attrikute value, derending on the imglicit
cr exrlicit length of the type of area reserved.

If the LS instructicn is specified with mcre than one

cperand or more than one nominal value in the ogerand,

the label addresses the area reserved for the field tlat
0corresponds tc the first nominal value cf the first orerand.

The length attribute value is equal to the length exrlicitly

specified or implicit in the first cperand.

Boundary Symbol
Alignment | Length
Attribute
Only if
Length Duplica-
Modifier tion has
is not no effect.
specified
Implicit Length 0
C DS 'E::D Byte 1
H DS !::]—_—j Halfword 2
F DS C— Fullword 4
1
D DS |] Double word 8
1
A DS I | 1 1 Full word 4
|
|
|
Explicit Length :
1
EXPL DS FL3 !.':___:l None 3
DS 3DL5 [|| S¢ I 104 | None 5
b
DS XL7000 L S 1 None 7000
|
1
|
OPRNDS DS 3F,3C [i 1 LI 1| Fullword 4
DS FL3,2HL5 f J Il J None 3
VALUES DS A(P,Q,R) l| | | | Full word 4
1
MORE DS H'7,8,9" L 1 i Half word 2
(
|
|

Section G: Symbol and Data Definition

207

208

NOTE: Unlike the DC instruction,
bytes skipped for alignment are
not set to zero. Also, ncthing

is assembled into the storage area
reserved by a DS instruction. No
assumption should be made as to
the contents of the reserved area.

The size of a storage area that

can ke reserved by a DS instruction
is limited only by the size of
virtual storage or by the maximum
value of the location counter,
whichever is smaller.

Double word Boundary J

End of Last
Data Entry

P

SKIPPED\DS 3D
\

A~

|
e
e

Unknown

Contents

|¢—— 8 bytes ————P|

G30 -- THE CCW INSTRUCTION

Purpcse

You can use the CCW instruction to define and generate
an eight-kyte channel ccrrand wcrxd for input/output
operations.

_7 “
Doubleword
/ Boundary
Byte
bits 0 7
Command 1
Code
bits 8 31
Address of data to operate upon 2-~4
The channel comrand word is an
eight-byte field aligned at a)
doukleword koundary, and contains bits 32 373839
the information described in the Flags 00
figure to the right. ©] | Must be Specified 5
| asZeros
]
bits 40 47
Set to Zeros 6
by Assembler
bits 48 63
Byte Count or Length of Data 7-8
Specifications
, Name Operation Operand
The format of the CCW instruction
statement is given in the figure Any symbol CcCwW Four operands separated
to the right. or blank by commas
‘4-7

Section G: Symbol and Data Definition 209

210

All fcur cperands must ke specified
in the order descriked in the figure
to the right. The generated channel
command word is aligned c¢n a
doubleword koundary. 2ny byte

‘skipped are set tc zerc.

The symbol in the name field, if
rresent, is assigned the value of
the address of the leftmost kyte
of the channel ccrmrmand word
generated. The length attrikute
value of the symkcl is 8,

into

r‘ m——
o L'WRITE=8
WRITE CCW 1,DATADR,X'48',X'50"
Values are
PR Absolute .Relocatable Absolute Absolute
right justified . or Absolute .
in fields Expression Expression Expression Expression
Assembled

o\‘E”xxxxxx]

4 8llo ollo o 5 of

Object Code
in hex

Double Word
Boundary

bits

Treated as
as 3-byte
A-Type
address
constant

7-8 bytes

28105

[00000000]

01001000

32 37

Must be Specified
as Zeros

Section H: Controlling the Assembler Program

Hl --

This section describes the assembler instructions that
request the assembler to perform certain functions that
it would otherwise perform in a standard predetermined
way. You can use these instructions to:

1. Change the standard coding format for writing your
source statements

2. Control the final structure of your assembled program

3. Alter the format of the source module and object code
printed on the assembler listing

4. Produce punched caxrd outrut in addition to the object
deck

5. Substitute your cwn mnemonic operation codes for the
standard codes of the assemkler language

6. Save and restore programming environments, such as the
status of the PRINT options and the USING base register
assignment.

Structuring a Program

The instructions described in this subsection affect the
location counter and thereby the structure of a control
section. ' You can use them to interrupt the normal flcw
of assembly and redefine rortions of a control section
or to reserve space to receive literal constants. Alsc,
you can use them to align data on any desired boundary.

Section H: Controlling the Assembler Program

211

H1A -- THE ORG_INSTRUCTION

Purgose

You use the ORG instruction to alter
the setting of the lccation counter
and thus control the structure of
the current control section. This

allows you to redefine portions Source Module
of a control section. _—
FIRST START 0 Object Code
For example, if you wish to kuild : o
a translate table (to convert EBCLIC : TABLE
character code intc scme other TABLE DC XL256'00} (in_Hex)
internal code) : ORG TABLE+0 +0
DC c'o’ FO
a 1. You define the table as keing DC cr'1’ Fl
filled with zeros. : .
2. You use the ORG instruction to
alter the location counter so that ORG TABLE+13 +13
its counter value indicates a desired :
location within the table. DC c'D' c4
DC C'E' ‘ C5
3. You xedefine the data to be . A
assemkled intc that location. o . S
4. After repeating the first three | ORG TABLE+C'D'| +196
steps until your translate takle DC ALY (13) 0D
is complete, you use an ORG DC AL1(14) OE
instruction with a blank operand .
field to alter the locaticn counter
so that the counter value indicates ORG TABLE+C'Q'| +240
€@ the next available location in the A DC AL1(0) 00
current control section (after the 5. DC ALL(1l) 01
end of the translate table). . .
Both the assembled object code for +255
the whole table filled with zeros ORG
and@ the object code for the portions GOON DS OH
of the table you redefined are :
printed in the program listings. TR INPUT, TABLE
However, the data defined later .
is loaded over the previously defined INPUT DS CL20
zeros and becomes part of your .
object programr, instead of the .
ZeXros. END

In other words, the ORG instruction
can cause the location counter to
point to any part of a control
section, even the middle of an
instruction, into which you can
assemble desired data. It can also
cause the location counter to point
to the next available location so
that your program can continue to

be assembled in a sequential fashion.

212

~

Page of GC33-4010-0
Revised September 29, 1972
By TNL GN33-8148

. . I Name Operation Operand
Specifications
gs bol A relocatable
ny symbo! ORG :
The format of the ORG instruction or blank E:Zrlz:'(on
is shown in the figure to the right.
Source Module :
SECTA START ;
Location ’
in Hex
0C08 | HERE L 3,ADDR ;
ococ MVC TO, FROM
0 : (1)
0D80 ORG HERE+4 i

The symbols in the expression in
the operand field must be previously
defined. The unpaired relocatable

term of the expression (see C6R) :ﬁ:ﬂgggﬁﬂ
must be defined in the sare contrcl addross X'COG
section in which the ORG statement
appears.

0 The location counter is set to the 0D80 ORG

value of the expression in the 0D80 0-———) L 4 ,AREA

operand. If the operand is omitted, A 4 ,TWO
the location counter is set to the ST 4,SUM
next available location for the
current control section.

END

The expression in the orerand of
an ORG instruction must not specify
a location kefore the beginning
of the control section in which
it appears. In the example to the
0 right, the CRG instruction is invalid
if it appears between the beginning
of the current control section and
500 kytes from the beginning of
the same control section. This
o is because the expression specified
is then negative and will set the
location counter to a value larger
than the assembler can process.
The location counter will "wrap
around" (the location counter is
discussed in detail in section CUB) .

o Negative

Source Module

0 |FIRST START

o ORG %=500

END

I |

Section H: Controlling the Assembler Program 213

NOTE: Using the ORG instruction
to insert data assembled later at
the same location as earlier data
will not always work.

In the example to the right, it
appears as if the character constant
will ke loaded over the address
constant. However, after the
character constant is loaded intc
the same location as the address
constant, the reloccaticn factor
required for the address constant
is added to the value of the
constant. This sum then constitutes
the okject code that resides in

the four bytes with the address
ADLCR.

H1B -- THE LTORG INSTRUCTION

PurEose

You use the LTORG statement so that
the assemkler can collect and
assemble literals into a literal
pool. A literal pccl ccntains the
literals you specify in a source
module either:

0 After the preceding LTORG instruction
o

214

X

After the beginning of the source
module.

The assembler ignores the borders
between control sections when it
collects literals into pools.
Therefore, you must be careful tc
include the literal pools in the
control sections to which they
belong (for details see Addressing
Considerations belcw).

The creation of a literal pcol gives
the following advantages:

1. Automatic organizaticn of the
literal data into sections that
are properly aligned and arranged
so that no space is wasted

2. Assembling of duglicate data
into the same area

3. Because all literals are cross-
referenced, you can find the literal
constant in the pool into which

it has keen asserkled.

ADDR DC A (LOC)
ORG * =4
CHAR DC C'BETA'! o
Processing Sequence
_—
Relocation factor
Assembled Loaded added to value
of constant CHAR
ADDR ADDR o ADDR
(X X X X |C2C5E3C1 | L |
*=4
(ADDR)
l BETA
e,
|C2C5E3Cl|

Source Module

A START 0

=lit1

=1it2

o
o

The Literal Pool

A literal pool is created immediately
after a LTORG instruction or, if

no LTCRG instruction is specified,

at the end of the first control
section.

Each literal pool has four segments
into which the literals are stored
(1) in the order that the literals
are specified and (2) acccrding

to their assembled lengths, which,
for each literal, is the total
explicit or implicit length, as
described below.

The first segment contains all
literal constants whose assembled
lengths are a multiple of eight.

The second segment contains those
whose assembled lengths are a
multiple of four, but not of eight.

The third segment contains those
whose assembled lengths are even,
but not a multiple of four.

The fourth segment contains all
the remaining literal constants
whose assembled lengths are odd.

The keginning of each literal pocl
is aligned on a doubleword koundary.
Therefore,: the literals in the first
segment are always aligned on a
doubleword koundary, those in the
second segment on a fullword
boundary, and those in the third
segment on a halfword boundary.

Source Module

ﬂ

—

FIRST

Literal Pool
Start

START 0

MvC TO,=3F'9"

aD 2,=D'7"

1c 2,=XL1'8"
,=CL3'JAN'
/=2F'1,2"

0 ,=H'33"
o ,=A (ADDR)

(=XL8'05"

Assembled into

Segment

Section H: Controlling the Assembler Program

215

216

Addressing Considexations

domain.

If you specify literals in source
modules with multirle control
sections, you should:

1. Write a LTORG instruction at
the end of each control section,
so that all the literals specified
in the section are assembled into
the one literal pool for that
section. If a contrcl section is
divided and interspersed among other
control sections, ycu should write
a LTCRG instruction at the end of
each segment of the interspersed
contxol section.

2. When establishing the
addressability of each control
section, make sure (a) that the
entire literal pool for that section
is ~also addressable, by including

it within a USING range, and (k)
that the literal specifications

are within the correspcnding USING
The USING range and domain
are described in F1A. :

NOTE: All the literals specified
after the last LTORG instruction,
or, if no LTORG instruction is
specified, all the literals in a
source module are assembled into

a literal pcol at the end of the
first control section. You must
then make this literal pool
addressable along with the addresses
in the first control section. This
literal pool is printed in the
program listing after the END
instruction.

Source Module

USING
range
ONE

=
ONE

START O

USING ONE,BASREGL
:

:

LTORG

Literal Pool

USING
range
TWO

TWO

CSECT

USING

LTORG

Literal Pool

END

Cuplicate Literals
Source Module Action

If you specify duplicate literals BEGIN START 0
within the part of the source module B
that is controlled by a LTORG . ,=X'FO0'
instruction, only one literal Cozorgr /}oboth are stored
constant is assembled into the e
pertinent literal pccl. This also o ‘=X'MFF'60"
applies to literals assembled into :fl(ax'EFOO')eﬁm is stored
the literal pool at the end of the f’f e
first or only control section of ‘A:=F12008 |
a source module that contains no LTORG\F N
LTORG instructions.

' \4 both are stored, each
Literals are duplicates only if * Literal pool 1 into a separate literal
their specifications are identical, pool
not if the cbject code assembled
happens to be identical. SECOND CSECT /e

When two literals specifying
identical A-type (or Y-type) address
constants contain a reference to 0
the value of the location counter

(*) , koth literals are assembled
into the literal pool. This is
kecause the value cf the location

counter is different in the two
literals. LTORG

Literal pool 2

END
Specifications
The format of the LTORG instruction I Name Operation Operand
is given in the figqure to the right.
Any symbol LTORG Not required

If an ordinary symbol is specified or blank

in the name field, it represents . —
the first byte of the literal pool;

this symbol is aligned on a

doubleword koundary and has a length

attribute value of one. If kytes

are skipped after the end of a

literal pool to achieve alignment

for the next instructicn, constant,

or area, the bytes are not filled

with zeros.

Section H: Controlling the Assembler Program 217

H1C -- THE CNOP INSTRUCTION

Register Contents

Assume location 2 Return address
. counter is at (LINK+2)
Pu rpose doubleword) 10 Addre:ss of sub-
boundary o routine
—t—
You can use the CNOP instruction .——» CNOP 6,8
to align any instructicn cr other ‘
data on a specific halfword koundary. LINK BALR 2,10
The CNOP instructicn ensures an
unbroken flow of executable CCW ONE
instructicns by generating no-
operation instructions to fill the CCW TWO

bytes skirped to perform the

alignment. that you specified. CCwW THREE

For example, when ycu ccde the

Layout of

linkage to a subroutine, you may !
wish to pass parameters to the Object Code
subroutine in fields irmrediately Equivalent D
following the branch and link double half full\ half double
instruction. These parameters, | word ~ word word, word word
for instance, channel command words i
(see G30), can require alignment BCR 0,0 BCR
on a specific boundary. 9 BCR 0,0 BCR
The subroutine can then address BCR 0,0 Bcﬂ
the parameters you pass through
the register with the return address. LINK BALR 2,10 \ BALR
CCW CCW ONE
CCW CCW TWO
CCW CCW THREE

Specificaticns

The CNOF instruction forces the
alignmwent cf the lccation counter

to a halfword, fullword, or
doubleword kcundary. It does not
affect the location counter if the
counter is already prcperly aligned.
If the specified alignment requires
the location counter tc be
incremented, one to three no-
operation instructicns (BCR 0,0
occupying two bytes each) are
generated to fill the skipped Lytes.
Any single kyte skirred to achieve
alignment to the first no-operation
instructicn is filled with zeros.

218

The format of the CNOP instructicn
statement is given in the figure
to the right.

Page of GC33-4010-4
Revised Feb. 25, 1975
By

TNL: GN33-8193

The orerands must be absolute I Name Operation Operand
expressions, and any symbols must
have been previously defined. og Anysymbol CNOP b,w
The first operand, b, specifies or blank [\
at which even-numbered byte in a Sequence symbol e
fullword or doubleword the location DOS o blank 0
counter is set. The second operand,
w , specifies whether the byte is
in a fullword (w=4) or a doubleword 0,4 24 0.4 24
(w=8) . Valid pairs of b and w are
as indicated in the figure to the FULLWORD FULLWORD
right. HALFWORD| HALFWORD | HALFWORD [HALFWORD
NOTE: Both 0,4 and 2,4 specify Bwelee BwelBWe BweIBwe BWeIBWe
two locations in a doubleword. | DOUBLEWORD |

Y S o o

H2 -- Determining Statement Format and Sequence

You can change the standard coding conventions for the
assembler language statements or check the sequence cf
source statements by using the fcllowing instructions.

H2A -- THE ICTL INSTRUCTION

PUI'EOSG

The ICTL instruction allows you to change the begin, end,
and continue columns that estaklish the coding format cf
the assembler language source statements.

For example, with the ICTL instruction, you can increase

the number of columns to be used for the identificaticn

or sequence checking of your source statements. By changing
the begin column, you can even create a field kefore the
begin column to contain identification or sequence numbers.

Section H: Controlling the Assembler Program 219

220

You can use the ICTL instruction
only once, -at the very beginning
of a source module. If you do not
use it, the assembler recognizes
the standaxrd values for the, kegin,
end, and continue columns.

Specifications

The ICTL instructicn, if specified,
must be the first statement in a
source module.

The format of the ICTL instruction
statement is shown in the figure
to the right.

The operand entry must be one to
three decimal self-defining terms.
There are only three rcssible ways
of specifying the operand entry.

The operand b must always be
specified. The operand e, when not
specified, is assumed to be 71.

If the operand c is not specified,
or if e is specified as 80, the
assembler assumes that continuation
lines are not allowed. The values
specified for the three operands
depend on each other.

NOTE: The ICTL instructicn does
not affect the format of statements
krought in ky a COPY instruction
or generated from a library macro
definition. The assembler processes
these statements according to the
standard kegin, end, and continue
columns described in Section B1A.

LStandard values for Columns I

BEGIN

CONTINUE

v

16

1
Columns

Standard
identification
sequence field

I Format }

Name Operation Operand
Blank ICTL b or
b,e or o
b,e,c
IOperands
Specifies Allowable range

0
0
O-

Begin column

End column

Continue column

1 through 40

41 through 80

2 through 40

0 Rules for interaction of b, e and ¢

The position of the End column must
not be less than the position of the Begin
column + 5, but must be greater than the

position of the Continue column

e 2b+5

e>c

The position of the Continue column

must be greater than that of the Begin c>b

column

‘H2B -=- THE ISEQ INSTRUCTION

Purpose

You can use the ISEQ instruction

to cause the assembler to check

if the statements in a source module
are in sequential order. 1In the
ISEQ instruction you specify the
columns between which the assemkler
is to check for seguence numbers.

The assembler begins sequence
checking with the first statement
line following the ISEQ instruction.
The assembler also checks
continuation lines.

Sequence numbers on adjacent
statements or lines are compared
according to the 8-bit internal
EBCDIC collating sequence. When
the sequence number on one line

is not greater than the sequence
number on the preceding line, a
sequence error is flagged, and a
warning message is issued, but the
assembly is not terminated.

NOTE: If the sequence field in the
preceding line is blank, the
assembler uses the last preceding
line with a non-blank sequence field
to make its comparison.

Specifications

The ISE¢ instruction initiates or
terminates the checking of the
sequence of statements in a source
module.

The format of the ISEQ instruction
is shown in the figure to the right.

The first option in the operand
entry must ke two decimal self-
defining terms. This format of
the ISEQ instruction initiates
sequence checking, beginning at
the statement or line fcllowing
the ISEQ instruction. Checking
begins at the column rerresented
by 1 and ends at the column
represented by r . The second
option of the ISEQ format terminates
the sequence checking cperation.

————— S ——
73 80 Compares made
ISEQ 73,80
/e L { ONE ONE with TWO
4 A) [___two | TwOwith THREE
/ ST \ [THREE| THREE with FOUR
/ o [____FOUR | FOUR with FIVE
CONTINUA ION CARD
! | and so on

I
e—
Name Operation Operand
Blank ISEQ I r o
or blank o
Column Specifies Rules for interaction

leftmost column of
field to be checked

1 and r not allowed
to lie between begin
and end columns

rightmost column
of field to be checked

0 —

I<r I mustnotbe
greater thanr
r21 r mustnot be

less than |

Section H: Controlling the Assembler Program

221

H3 .-

NOTE: The assembler checks only
those statements that are specified
in the coding of a source module.
This includes any COPY instruction
statement or macro instruction.

However, the assembler does not
check:

1. Statements inserted by a COPY
instruction

2. Statements generated from model
statements inside macrc definitions
or from model statements in open
code (statement generation is
discussed in detail in Section J)

3. Statements in library macro
definitions.

Listing Format and Output

The instructions described in this
section request the assembler to
produce listings and identify output
cards in the object deck according
to your special needs. They allow
you to determine printing and page
formatting options other than the
ones the assembler program assumes
by default. Among other things,
you can introduce your own page
headings, control line spacing,
and suppress unwanted detail.

H3A -- THE PRINT INSTRUCTION

Purpose

The FRINT instruction allows you

to control the amount of detail

you wish printed in the listing

of your programs. The three ortions
that you can set are given in the
figure to the right.

They are listed in hierarchic order;
if OFF is specified, GEN and LATA
will not apply. If NOGEN is
specified, CATA will not apgly to
constants that are generated. The
standard options inherent in the
assembler program.are CN, GEN, and

NODATA.

222

Source Module

FIRST START 0
ISEQ 73,80
checking
occurs
1 ISEQ T
checking
does not
occur
ISEQ 73,80
checking
resumed
END l
o ——
Hierarchy Description PRINT options
1 A listing is printed ON
No listing is printed OFF
2 All statements generated by the
processing of a macro instruction GEN
are_printed
‘Statements generated by the
processing of a macro instruction NOGEN
are not printed (Note: The
MNOTE instruction always causes
a message to be printed)
3 Constants are printed in full in DATA
the listing .
Only the leftmost eight bytes of
constants are printed in the NODATA
listing

i The PUSH and FOP instructions,

Specifications

The format of the PRINT instruction
statement is shown in the figure
to the right.

At least one of the operands must

be srecified, and at most one of

the options from each group. The
PRINT instruction can be specified
any numker of times in a source
module, but only those print options
actually specified in the instruction
change the current print status.

PRINT options can ke generated by
macro processing, at pre-assemkly
time. However, at assembly time,
all options are in force until the
assemkler encounters a new and
opposite option in a PRINT
instruction.

described in H6, also influence
“the PRINT options by saving and
.restoring the PRINT status.

NOTE: The option specified in a
PRINT instruction takes effect after
the FRINT instruction. If PRINT

OFF 1is specified, the PRINT
instruction itself is printed, but
not the statements that follow it.
1f the NOLIST assembler ortion is
specified in the job control
language, the entire listing for

the assembly is suppressed.

Operand

Name Operation
A sequence

symbol or PRINT
blank

S —

OFF] |, NOGEN.

Any sequence of
specification allowed

Section H: Controlling the Assembler Program

[ON] GEN [NODATA
+DATA

223

Page of GC33-4010-5
As Updated 28 Dec 1981
By TNL GN20-9372

H3B -- THE TITLE INSTRUCTION

PUIEOSQ

The TITLE instruction allcws you
to:

1. Provide headings for each rage
of the assembly listing of your
source modules.

2. 1ldentify the assembly output
cards of your okject mcdules. You
can specify up to 8 identification

OCharacters that the assembler will
punch into all the output cards,
keginning at column 73.

- Dos Up to 4 ide
are allowed.

The assembler punches sequence
numbers into the columns that are
left, up to column 80.

NOTE: The name field of the TITLE
instruction is generated throughout
the assembly listing, preceding the
generation of the operand data from
any TITLE instruction.

Specifications

The format of the TITLE instruction
statement is given in the figure
to the right.

Any of the five options can ke
specified in the name field.

0'Ihe first three options for the
name field have a sgecial
significance only for the first
TITLE instruction in which they
are specified. For subsequent TITLE
instructions, the first three opticns
do not apply.

224

TITLE ’THIS IS A HEADING ’

Program Listing

‘u"ﬂﬂSISI\HEAEHNG

‘PROG TITLE ‘ heading’

| 4
(
(

; PROG 0003
; PROG 0002
73 80 ,Object Deck
PROG 0001
)

_
Name Operation Operand
option
1 A string of alpha- TITLE A character
a meric characters stringup to -
2 A variable symbol 100 charac-
3 A combination of ters, en-
1and 2 closed in
4 A sequence symbol apostrophes
5 blank

For the first TITLE instruction

of a source module that has a non-
blank name entry that is not a
sequence symbol, the fcllcwing
applies:

Up to eight alphameric characters
can ke specified in any combination
in the name field.

| DOSs Up to four alphameric characters
‘can be specified.

These characters are punched as
identification, beginning at column
73, into all the outrut cards from
the assembly, except those produced
by the PUNCH and REFRO instructions.
The assemkler substitutes the current
Gvalue into a variable symkol and
uses the generated result as
identification characters.

OIf a valid ordinary symbol is
specified, its appearance in the
name field does not cconstitute a
definition of that symbol for the
source module. It can therefore
be used in the name field of any
other statement in the same source
module.

in separate

Examples of TITLE instructions
source modules:

Object
Deck

Source Statement

Value of
variable symbol

Punched into cards
beginning at col. 73

B

&ID\O TITLE MOD99%A MOD99%A
PGM&N/ TITLE 200 PGM200 J
1234 TITLE 1234

SYMBOL _TITLE SYMBOL

Section H: Controllling the Assembler Program 225

226

The character string in the operand
field is printed as a heading at

the top of each page of the assembly
listing. The heading is printed
beginning on the page in the listing
following the page on which the
TITLE instruction is specified.

A new heading is printed when a
subsequent TITLE instruction appears
in the source module.

Each TITLE statement causes the
listing to be advanced to a new page
(before the heading is printed)
except when PRINT NOGEN is in use.

Any printable character specified
will appear in the heading, including
blanks. Variable symbols are allowed.
However, the following rules apply
to ampersands and apostrophes:

e A single ampersand initiates

an attempt to identify a variable
symbol and to substitute its current'
value. ')

e Double ampersands or apostrophes
specified, print as single ampersands
or apostrophes in the heading.

e A single apostrophe followed

by one or more blanks simply
terminates the heading prematurely.
If a non-blank character follows

a single apostrophe, the assembler
issues an error message and prints
no heading.

Only the characters printed in the
heading count toward the maximum
of 100 characters allowed.

NOTE: The TITLE statement itself
is not printed in an assembly
listing.

TITLE 'HEADING ONE'

HEADING ON

Examples of headings:

Source Statement Value Printed Heading
of
Variable
Symbol

TITLE 'HEADING &N' TWO| HEADING TWO

TITLE 'HEADING && 'i !

TITLE 'HEADING FOUR';FIVE'

TITLE 'HEADING FOUR'REMARKS
ERROR

HEADING & '

HEADING FOUl

H3C -- THE EJECT INSTRUCTION

Purpose

The EJECT instruction allows you

to stop the printing of the assembly
listing on the current page and
continue the printing cn the next
page.

Specifications

The format of the EJECT instruction
statement is shown in the figure
to the right.

The EJECT instruction causes the

next line of the assembly listing

to be printed at the tcr of a new
page. If the line before the EJECT
instruction appears at the bottom

of a page, the EJECT instruction

has no effect . An EJECT instruction
immediately following another EJECT
instruction causes a blank page

in the listing.

NOTE: The EJECT instruction
statement itself is not printed
in the listing.

Name Operation Operand
A sequence Not required
symbol or EJECT
blank
Source Module Listing
\/W
Page Previous statement —
Boundary ~ __ T @ I
undary esect@® o] Page
.) Boundary
Source Text | Source Text
. Page
Boundary
M~~~
CEE———— —
Section H: Controlling the Assembler Program 227

H3D -- THE SPACE INSTRUCTION

PurEose

You can use the SPACE instruction

to insert one or more blank lines

in the listing of a source module.
This allows you to separate sections
of code on the listing gage.

Specifications
Name Operation Operand
The format of the SPACE instruction: .
statement is given in the figure A sequence A decimal
to the right. . symbol or SPACE self-defining term
blank or blank

The operand entry sgecifies the
numker of lines to be left blank.

A blank operand entry causes one
klank line to be inserted. 1f the
operand specified has a value greater
than the nurker of lines remaining

on the listing page, the instruction
will have the same effect as an
EJECT statement.

NOTE: The SPACE instruction itself
is not listed.

H4 - Punch'mg Output Cards

The instructions described in this section produce punched
cards as output from the assemkly in addition to those
produced for. the object module (object deck).

H4A -- THE FUNCH INSTRUCTION

228

PUIEOSQ

The PUNCH instruction allows you to punch source or other
statements into a single card. With this feature you can:

1. Code PUNCH statements in a source module to produce
control statements for the linkage editor. The linkage
editor uses these control statements to process the okject
nodule.

2. Code PUNCH statements in macro definitions to rroduce,
for example, source statements in other computer languages
or for other processing phases.

The card that is punched has a physical position immediately
after the PUNCH instruction and before any other TXT cards
of the object decks that are to follow.

Specifications

The PUNCH instruction causes the
data in its operand to be punched
into a card. One PUNCH instruction
produces one punched card, but as
many FUNCH instructions as necessary
can ke used. :

The PUNCH instruction statement

can arpear anywhere in a source
module except before and ketween
source macro definitions. 1If a
PUNCH instruction occurs Lkefore

the first control section, the
resultant card punched will precede
all other cards in the object deck.

The cards punched as a result of

a PUNCH instruction are not a logical
part of the okject deck, even though
they can ke physically interspersed
in the object deck.

The format of the PUNCH instruction
statement is shown in the figure
to the right.

All 256 punch combinations of the
IBM System/370 character set are
allowed in the character string
of the operand field. Variakle
symbols are also allowed.

Object Module

Source Module {Card Deck)
MACRO
MACDEF1 data 3
MEND
data 2
MACRO N
MACDEF2
MEND data 1
e PUNCH ‘datal’
FIRST START 0 a
— plece
- 0

PUNCH 'data2’ 9ur\°“°d

mqu
PUNCH rdata3"’ puc
END

Name Operation Operand

A sequence PUNCH A character string of
symbol or i up to 80 characters,
blank enclosed in apostrophes

Section H: Cohtrolling the Assembler Program 229

230

The position of each character
specified in the PUNCH statement
corresponds to a column in the card
to be punched. However, the
following rules apply to ampersands
and apostrorhes:

1. A single ampersand initiates

an attempt to identify a variable
symbol and to substitute its current
value.

2. Double ampersands or apostrophes
are punched as single ampersands
or apostrophes.

3. A single arostrorhe followed
by one or more blanks simply

terminates the string cf characters
punched.
follows a single apcstrophe, an
error message is issued and nothing
is punched.

Only the characters punched,
including blanks, count toward the

1f a non-blank character]

PUNCH '"%HT

Position

PUNCH

This position
is always
column 1

1234567

13 15 21

1234567

21 Column

E :
maximum of 80 allowed. Xamples
WSource Value of | Characters
NOTES: Statement Variable | Punched
1. No sequence number cr Symbol
identification is punched into the
card produced.
' C o ‘e H 'CHARS &VAR'
2. 1f the NCLECK option is specified PUNC ¢ R ABC CHARS ABC
in the EXEC statement of the job 0
control language for the assemkler
program, no cards are punched:
neither for the PUNCH or REPRO PUNCH 'CHARS && "! CHARS &'
instructions, nor for the object
deck of the assembly.
PUNCH 'CHARS A'y, B' CHARS A
PUNCH 'CHARS A'REMARKS
% % % ERROR # % %
PUNCH 'CHARS A' REMARKS CHARS A

H4B -- THE REFRO_INSTRUCTION

Purpose

The REPRO instruction causes the
data specified in the statement
that follows to be punched into

a card. Unlike the PUNCH
instruction, the REPRO instruction
does not allow values tc ke
substituted into variable symkols
ktefore the card is punched.

Specifications

Source Module

_9

&~
[I MACDEF1 /
F S
L I MACDEF2 | I Repro appears before
- start of first control
section; punched card
REPRO will precede object
data 1 < deck
FIRST START 0
REPRO
data 2 4—————————[In middle of object deckJ
REPRO
data 3 In middle of object deck |
END

The REPRC instruction
on the statement line
it to be punched into

causes data
that follows
the

corresponding colurns cf a card.
One REPRO instruction produces one
punched card.

The REPRO instruction can appear
anywhere in a source module except
before and between source macro
definitions. The punched cards
are not part of the object deck,
even though they can be physically
interspersed in the object deck.

The format of the REPRO instruction
statement is shown in the figure
to the right.

The line to be reproduced can contain

any of the 256 punch characters,
including blanks, ampersands, and
apostrophes. No substitution is
performed for variakle symbcls.

NOTES:

OBJECT

,f DECK

Comes before

object deck
Name Operation Operand
A sequence REPRO Not required
symbol or
blank

1. No sequence numbers or identification is punched in

the card.

2. If the NODECK ortion is specified in the job control
language for the assembler program, no cards are punched:
neither for the PUNCH or REPRO instructions, nor for the

object deck of the assembly.

Section H: Controlling the Assembler

Program

HS . Redefining Symbolic Operation Codes

_only

HS5A -- THE OPSYN INSTRUCTION

232

Purpose

The OPSYN instruction allows you
to define your own set of symbols
to represent operaticn codes for:

1. Machine and extended mnemonic
kranch instructions.

2. Assembler instructions including
conditional assembly instructions.

You can also prevent the assembler

from recognizing a symbol that
represents a current operation code.

Specifications

The OPSYN instruction must be written
after the ICTL instruction and can

ke preceded only by the EJECTI, ISEQ,
PRINT, SPACE, and TITLE instructions.
The CESYN instruction must precede
any source macro definitions that
may be specified.

The OPSYN instructicn has two basic
formats as shown in the figure to
the right.

The operation code specified in
the name field or the crerand field
must represent either:

1. The operation code of cne of

the machine or assembler instructions
as described in PARTS 1I, 111, and
PART 1V of this manual, or

2. The operation code defined by
a previous CESYN instruction.

The OPSYN instruction assigns the
propexrties of the operation code
specified in the operand field to
the symbol in the name field. A
Flank in the operand field causes
the operation code in the name field
to lose its properties as an
operation code.

e
Name Operation Operand
Any
symbol or An operation
operation OPSYN code
code
or
An
operation OPSYN blank
code
NEW OPSYN MVC
MVC OPSYN o

No longer recognized

by the assembler as

a valid operation code

in current source module

NOTE: The symbol in the name field
can represent a valid opreration
code. It loses its current
properties as if it had been defined
in an OPSYN instruction with a bklank
operand field. Further, when the
same symbol appears in the name
field of two OPSYN instructions

the latest definition takes

0 precedence.

OPSYN LR

Both now possess the
properties of the LR
machine instruction
operation code

OPSYN ST

OPSYN STH o

Now represents
STH machine
operation

Section H: Controlling the Assembler Program 233

Saving and Restoring Programming Environments

The instructions described in this sukbsection can save
and restore the status c¢f PRINT ortions and the base

register assignment of your program.

H6A -- THE PUSH INSTRUCTION

Purpose

The PUSH instruction allows you to save the current PRINT
or USING status in "push-down" storage on a last-in, first-

out basis. You can restore this PRINT and USING status
later, also on a last-in, first-out basis, by using a

corresponding POP instruction.

Specifications

The format of the PUSH instruction Name

Operation

Operand

statement is shown in the figure
to the right.

A sequence
One of the four orptions for the symbol or
operand entry must ke specified. blank
The PUSH instruction does not change

PUSH

Options
PRINT 1
USING 2
PRINT,USING 3
USING,PRINT 4

the status of the current PRINT
or USING instructions; the status
is only saved.

NOTE: When the PUSH instruction
is used in corbination with the
POP instruction, a maximum of four
nests of PUSH PRINT - POP PRINT

or PUSH USING - POP USING are
allowed.

H6B -- THE POP INSTRUCTION

Purpose

The PCP instruction allows you to restore the PRINT or
USING status saved by the most recent PUSH instruction.

Specifications

The format of the POP instruction Name

Operation

Operand

is given in the figure to the right.

One of the four options for the A sequence
operand entry must be specified. symbol or
The PCP instruction causes the blank
status of the current PRINT or USING
instruction to be overridden by

POP

Options
PRINT 1
USING 2
PRINT,USING 3
USING,PRINT 4

the PRINT or USING status saved
by the last PUSH instruction.

NOTE: When the POP instruction

is used in combination with the
PUSH instruction, a maximum of four
nests of PUSH PRINT - POP PRINT

or PUSH USING - POP USING are
allowed.

234

H6C -- COMBINING PUSH ANL POP

In the oprosite examrle, you can
see how the USING environment is
0 saved and restored by a combination

of PUSH and PCP instructions.

NOTE: The PUSH instructiocn does
not change the current USING status;
you must do this yourself.

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

Source Module

MACRO

NEW
PUSH

.

USING

POP

USING

BASENEW, 12

USING

" MEND

FIRST START

USING

BASE,12

NEW

END °

.

, POP

PUSH USING

e USING BASENEW,12

USING,

Storage Stack
for saved
USING status

empty

Section H: Controlling the Assembler Program 235

236

Part IV: The Macro Facility

SECTION I: INTRODUCING MACROS
SECTION J: THE MACRO DEFINITION
SECTION K: THE MACRO INSTRUCTION

SECTION L: THE CONDITIONAL ASSEMBLY LANGUAGE

237

This page left blank intentionally.

Section I: Introducing Macros

This section introduces the basic macro concept; what you
can use the macro facility for, how you can prepare ycur
own macro definitions, and how you call these macro
definitions for processing by the assemkler.

Read this section straight through before referring to
the detailed descriptions identified by the cross-reference
arrows.

NOTE: IBM supplies macro definitions in system libraries
for input/output and other control program services, such

as the dynamic allocation of main storage areas. To prccess
these macro definitions ycu only have to write the macro
instruction that calls the definition.

Section I: Introducing Macros 239

Page of GC33-4010-4
Revised Feb. 25, 1975
By TNL: GN33-8193

240

Using Macros

FOR_TEXT INSERTION:
assembler language statements into a source program.

The main use of macros is to insert

Assembly
time

Source Module

AFTER

Coding Pre-assembly
time or macro pro-
cessing time
Source Module Macro Definition
BEFORE
Name=TEXTIN
D
- E
8
F
G
H
I

You call a named sequence of statements (the macro
definition) by using a macro instruction, or macro call.
The assembler replaces the macro call ky the statements

from the macro definition and inserts them into the source

module at the point of call. The process of inserting

the text of the macro definition is called macro generation

Or macro expansion.

assembly time.

The assembler expands a macro at pre-

The expanded stream of code then kecomes the input for
processing at assembly time, that is, the time at which
the assembler translates the machine instructions intc

object code.

FOR (6] C : You may want to modify the
statements in a macro definition kefore they are generated.

8You can do this by supplying character string values as
operands in a macro call. These values replace parameters
in the statement tc be generated. This means that you
can change the content of the generated statements each
time you call the macro definition.

B

[IR

Source Module Macro Definition Generated Result

RUGHBHE

Section I: Introducing Macros 241

FOR TEXT MANIPULATION: You can also select and reorder
the statements to be generated frcm a macro definition

by using the conditional assembly language described later
in this section.

ﬂ

Source Macro Generated
Module Definition Result

0 g

Name = SELECT
Parameter: X

If X=0, then generate
first sequence;

If X=1, then generate
second sequence

0'Ihe conditional assembly language allows you to manipulate

242

text generation, for example, by branching upon the result
of a condition test. You can choose exactly which
statements will or will not be generated by varying the
values you specify in the macro call.

See SECTION L

The Basic Macro Concegt

To use the complete macro facility provided by the assembler
you must:

e Prepare a macro definition and

e Call this definition using a macro instruction.

» MACRO

Prototype o MACNAME
r

These statements
establish limits of | Body ofa
a macro definition | macro Sequence of
definition Statements

~

L
> MEND

Macro Instruction L—e MACNAME

You can create a macro definition ky enclosing any sequence

of assembler language statements between the MACRO and a
MEND statements, and by writing a prototype statement in

which you give ycur definition a name. This name is then o

the operation code that you must use in the macro
instruction to call the definition.

Section I: Introducing Macros 243

244

When you write a macro instruction in your source mwodule,
you tell the assembler to process a particular macro 0
definition. The assembler produces assemkler language

See SECTION K >
statements from this macroc definition for each macro - §:>
L4

instruction that calls the definition. 0 See SECTION J

- F
Macro
Definition

Source Module

OMacro Instruction

Generation of
assembler
language statements

By using the macro facility you reduce programming effort,
because:

1. You write and test the code a macro definition contains
once. You and other programmers can then use the same
code as often as you like by calling the definition; which
means that you do not have to reconstruct the coding logic
each time you use the code.

2. You need write only one macro instruction to call for
the generation of many assembler language statements from
the macro definition.

When you are designing and writing large assembler language
programs, the above features allow you to:

e Prepare macro definiticns, containing difficult code,
for your less experienced colleagues. They can then call
your definitions to generate the arprorriate statements,
without having to learn the code in the definition.

e Change the code in cne place when updating or making
corrections, that is, in the macro definition. Each call
gets the latest version automatically, thus providing
standard coding conventions and interfaces.

e Describe the functions of a complete macro definition
rather than the function of each individual statement it
contains, thus providing more comprehensikle documentation
for your source module.

Defining a Macro

Defining a macro means preparing the statements that
constitute a macro definition. To define a macro you must:

1. Give it a name
2. Declare any parameters to be used
3. Write the statements it contains.

4. Establish its boundaries

¥ MACRO
Prototype MACID &PARAMI,&PARAM2 J

\ —
v

Body of Macro

JU———

$ MEND

Macro Instruction MACID OPERAND1,OPERAND2

o The MACRO and MENL instructions establish the boundaries
of a macro definition.

You use the prototype statement to name the macro and to e

declare its parameters. 1In the operand field of the macro
instruction, you can assign values to the parameters o m
declared for the called macro definition.

o‘rhe body of a macro definition contains the statements o I
that will be generated when you call the macro. These e

statements are called model statements; they are usually
interspersed with conditional assemkly statements or cther
processing statements.

Section I: Introducing Macros 245

eYou can call a source macro definition only from the source
module in which it is included.

246

WHERE YOU CAN PLACE A MACRO DEFINITION:

You can include

a macro definition at the beginning of a source mcdule.

This type of definition is called a sourxce macro definition.

You can also insert a macro definition in a system or user

library (located, for example, on disk) by using the
appropriate utility program.

called a library macro definition.
definitions mentioned earlier are examples of library racro

definitions.

Source Module

MACRO

SOURCE

~ This type of definition is
The IBM-supplied macro

Generated Result

O =

S

Macro Library

LIB2

LIB2

Source
Module |

MACRO MACRO /o MACRO
LIBL LIB2 LIB3 .
MEND MEND I
MEND
o L‘ LIB2 o
LIB2
Source
Module 1l
Source
Module Il
_ - ___

Calling a Macro

macro definition from any source module.

You can call a likrary

WHERE YOU CAN CALL A MACRO LCEFINITION: You can call a

macro definition by specifying a macro instruction anywhere a See K1B
in a source module, except before or between any source

macro definitions that may ke specified.

m
Source L Generated
Module Macro Definitions Result
MACRO MACRO

You can also call a macro definition from within another
macro definition. This type of call is an inner macro

call; it is said to be nested in the macro definition. o See K6 A

Section I: Introducing Macros 247

The Contents of a Macro Pefinition

The body of a macro definition can contain a combination
of model statements, processing statements, and comments
statements.

Model Statements Generated Statements

| A

2 { Points of Substitution |

MODEL STATEMNENTS: You can write assemkler language
0 statements as model statements. The assemkler copies them o
exactly as they are written when it expands the macro.
You can also use variable symbols as points of sukstituticn
in a model statement. The assembler will enter values
in place of these points of sukstitution each time the
macro is called.

248

The three types of variable symbol in the assembler language
are

1. Symbolic parameters, declared in the prototype statement
2. System variable symbols (see J7)

3. SET symbols, which are part of the conditional assembly
language (see L13).

The assembler processes the generated statements, with
or without value substitution, at assemkly time.

PROCESSING STATEMENTS: Processing statements perform
functions at pre-assembly time when macros are expanded,

but they are not themselves generated for further processing
at assembly time. The processing statements are:

1. Conditional assembly instructions
2. Inner macro calls
3. The MNOTE instruction

4. The MEXIT instruction.

Pre-Assembly Time Assembly Time
Macro
Definition
~]
MNOTE

Message printed
in program
listings

./\—/\\

° The MNOTE instruction allows you to generate an error o

message with an error condition code attached, or to
generate comments in which you can display the results
of pre-assembly computation.

e The MEXIT instruction tells the assembler to stop processing e

a macro definition. The MEXIT instruction therefore
provides an exit from the middle of a macro definition.
The MEND instruction not cnly delimits the contents of
a macro definition but also provides an exit from the
definition.

Section I: Introducing Macros 249

250

COMMENTS STATEMENTS: One type of comments statement
describes pre-assembly operations and is not generated.
The other type describes assembly-time operations and is
therefore generated (for details see J6).

The Conditional Assembly Language

The conditional assembly language is a programming language
with most of the features that characterize such a language.
For example, it provides:

1. Variables

2. Data attributes

3. Expression computation

4, Assignment instructions

5. Labels for branching

6. Branching instructions

7. Sukstring operators that select characters from a string.
You can use the conditicnal assembly language in a macro
definition to receive input from a calling macro
instruction. You can produce output from the conditional
assembly language by using the MNOTE instruction.

You can use the functions of the conditional assemkly
language to select statements for generation, to determine
their order of generation, and to perform computations

that affect the content of the generated statements.

The conditional assembly language is fully described in
Section L.

Section J: The Macro Definition

This section describes macro definitions: where they can
ke placed in order to be available to call, how they are
specified, and what they can. contain.

J1 - Using a Macro Definition

J1A -- PURPCSE

A macro definition is a named sequence of statements which
you can call with a macro instruction. When it is called,
the assembler processes and usually generates assembler
language statements from the definition into the source
module. The statements generated can Le:

1. Copied directly from the definition,
2. Modified by parameter values before generation, or

3. Manlpulated by internal macro processing to change
the sequence in which they are generated.

You can define your own macro definitions in which any
combination of these three processes can occur. Some macro
definitions do nct generate assembler language statements,
but perform only internal processing, like some of the
macro definitions used for system generation.

Section J: The Macro Definition 251

J1B -- SPECIFICATIONS

Where to Define a Macro In a Source
Module

A macro definition within a source
module must be specified at the
beginning of that source module.
This type of macro definition is
called a source macro definition.
A macro definition can also reside
in a system library; this type

of macro is called a library macro
definition. Either type can be
called from the source module by . Open Code
the appropriate macro instruction.

NOTE: A source macro definition [- Source Module
can ke entered into a library and
thereby become a library macro | = OPSYN
definition. A library macro
definition can be included at the ISEQ
beginning of a source module and EJECT
thereby become a source macro PRINT
definition. SPACE
v TITLE
Some control and comments statements Comments
can appear at the beginning of a MEND
source module along with the source .
macro.definitions. They can be i | - MACRO
used : : MAC2
Before all macro definitions. ’ ISEQ
a MEND EJECT
o Between macro definitions. ‘ PRINT
' SPACE
After macro definitions and before TITLE
open code Comments
All other statements of the assemkler
language must appear after any
source macro definitions that are

specified.

.Ogen Code

ooEen code is that part cf a source
module that lies outside of and
after any source macro definition.
Open code is initiated by any
statement of the assembler language
‘that appears outside of a macro
definition, except the ICTL, OPSYN,
1SEQ, EJECT, FRINT, SPACE, or TITLE
instruction, or a comments statement.

252

At coding time, it is impcrtant
to distinguish between source
statements that lie in open code
and those that lie inside macro
definitions.

NOTES:

1. The ISEQ, EJECT, PRINT, SPACE,
and TITLE instructions, and one
or more comments statements, can
appear between source macro
definitions and the start of oren
code. . However, in this position,
the akove instructions must not
contain any variable symbols.

2. After the start of oren code,
variable symbols are allowed in
any statement.

3. A macro definition must not ke

specified after the start of open
code.

The Format of a Macrc Definition

The general format of a macro
definition is shown in the figure
to the right.

‘The four parts are described in
‘detail below.

Macro Defn

MACRO (Header Statement) I

ANYNAME (Prototype Statement) |

Body of Macro

MEND (Trailer Statement)

Section J: The Macro Definition

253

J2 - Parts of a Macro Definition

J2A -- THE MACRO CEFINITION HEADER

PllrEOSG

The macro definition header
instruction indicates the beginning
of a macro definition.

Specifications

The MACRO instruction is the macro
definition header; it must be the
first statement of every macro
definition. Its format is given

in the figure to the right.

J2B -- THE MACRO DEFINITION TRAILER

254

Purpose

The macro definiticn trailer
instruction indicates the end of

a macro definition. 1t alsc provides
an exit when it is processed during
macro expansion.

Specifications.

The MEND instruction statement is
the macro definition trailer; it
must ke the last statement of every
macro definition. 1Its format is
given in the figure to the right.

Header
-

Name Operation Operand
Not used, MACRO Not required
must not be
present
Name Operation Operand
A sequence MEND Not required
symbol, or
not used

S E—

J2C -- THE MACRO PROTOTYPE STATEMENT: CODING

Purpose

The prototype statement in a macro
definitionh serves as a model
(prototype) of the macro instruction
you use to call the macxo definition.

Specifications

Prototype

The prototype statement must be
the second statement in every macro
definition. It comes immediately

after the MACRO instruction. . Name Operation Operand
The format of the prctotype statement A name A symbol Zero ar more
statement is given in the figure field symbolic
to the right. parameter parameters
or blank separated by
commas

The maximum number of symbolic

parameters allowed in the orperand

field is not fixed. It depends
on the amount of virtual storage .
available to the program. ——

parametey
the opexand field,

If no parameters are specified in
the operand field, remarks are
allowed, if the absence of the
operand entry is indicated by a
comma preceded and fcllowed by one
or more blanks.

Section J: The Macro Definition 255

Blternate Ways of Coding the Prototype Statements

Prototype Statement

PARAM2, INDEX2

after the end column on the preceding
card.

o klPARAML5 | REMARKS CONTINUED
TT/—ON NEXT LINE,
AND THE NEXT

2. For each continuation line, the
operand field entries (symbolic
parameters) must begin in the continue
e column otherwise the whole line and
any lines that follow will be Column 16
o considered to contain remarks,

I

Standard value for Standard value for
Continue column is 16 column _after End
The prototype statement can be column is 72
specified in one of the following 16 172
three ways:
MOVE [{TO,&FROM,&LENGTH,.....,&PARAM,X|
a The normal way, with all the symkolic o JQIPARAM2 , 8 PARAM3, . v cc.ve. « » &PAR[x
parameters preceding any remarks. €§ﬁ</};,.....,PARAM15 REMARKS
e An alternate way, allowing remarks 0 Comma required
for each parameter. after each parameter
except last
OA combination of the first two ways. ..
MOVE %5 FIELD TO WHICH DATA MOVEDX
NOTES: - FROM, FLD. FROM WHICH DATA MVDKx
o LENGTH, MOVE LENGTH I
1. Any number of continuation lines : %
is allowed. However, each . 1%
continuation line must be indicated 0 KPARAML, INDEX1 X
by a nonblank character in the column 3 X
e
X
x|
X|

\ One or more

blanks required o

' ‘

© vove Yo ima voves To
FROM, DATA MOVED FROM
— BLENGTH, NO OF BYTES
Comma required| kIpARAMI , & PARAM2 , & PARAM3,
after each PARAM15 REMARKS CONTINUED
parameter ON LAST LINE

o

J2D -- THE MACRO PROTOTYPE STATEMENT: ENTRIES

The Name Entry

Purpose

You can write a name-field parameter similar to the syrbeclic
parameter, as the name entry of a macro prototype statement.
You can then assign a value to this parameter from the

name entry in the calling macro instruction.

256

Specificaticns

If used, the name entry must be

a variable symbol. If this parameter
also appears in the body of a macro,
it will be given the value assigned
to_the parameter in the name field

of the corresponding macrc

instruction. Note that the value
assigned to the name field parameter
has special restrictions that are

Source Module

listed in K2A. : ——o MACRO
&NAM MOVE &TO,&FROM
The Operation Entry .
&NAM MVC &TO, &FROM
Purpose METD
. START 0
The operation entry is a symbol .
that identifies the macro definition. HERE MOVE FIELDA,FIELDB

When you specify it in the operation
field of a macro instruction, the
appropriate macro definition is
called and processed by the
assembler.

Specifications

The symbol in the operation field

of the prototype statement
establishes the name by which a

o es

o

HERE MvCc FIELDA,FIELDB

N

macro definition must be called.
This name becomes the operation
code required in any macro instruc-
tion that calls the macro.

specified in the prototype statement
must not be the same as that
specified in:

1. A machine instruction.

2. An assemkler instruction.

3. The prototype statement of another
source (or library) macro definition.

Section J: The Macro Definition 257

258

The Cperand Entry

Purgose

The operand entry in a prototype statement allows you to
specify positional or keyword parameters. These parameters
represent the values you can pass from the calling macro
instruction to the statements within the body of a macro
definition. :

Specifications

The operands of the macro prototype statement must be
symbolic parameters serarated by ccmmas. They can be
positional parameters or keyword parameters or both (see
J3) .

NOTE: The operands must be symbolic parameters; parameters
in sublists are not allowed. For a discussion of sublists
in macro instruction cperands, see Ki.

J2F -—- THE BODY OF A MACRQ DEFINITION

Purpose

The body of a macro definition
contains the sequence of statements
that constitutes the working part
of a macro. You can specify:

1. Model statements to be generated.

2. Processing statements that, for
example, can alter the content and
sequence of the statements generated
or issue error messages.

3. Comments statements, some of
which are generated and others which
are not.

4. Conditional assembly instructions
to compute results tc be displayed
in the message created by the MNOTE
instruction; without causing any
assembler language statements to

ke generated.

Specifications

The statements in the body of a
macro definition must appear between
the macro prototype statement and
the MEND statement of the definition.
The three main types of statements
allowed in the body of a macro are:

e Model statements (see JU),

e Processing statements (see J5),
and

e Comments statements (see J6)