
.;
1
~

()

Systems

G C33-4021-1
File No. S370-21 (OS/VS)

OS/VS Assembler
Programmer's Guide

V 51 Release 2

VS2 Release 1

Second Edition (May, 1973)

This is a reprint of GC33-4021-0 incorporating changes
released in the following Technical Newsletters:

GN33-8146 (dated July 25, 1972)
GN33-8150(dated September 29, 1972)
GN33-8159 (dated December 1, 1972)

This edition applies to release 2 of OS/VSl, release 1 of OS/VS2
and to all subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made
to the specifications herein; before using this publication in
connection with the operation of IBM systems, consult the
IBM System/360 and System/370 Bibliography, Order No. GA22-6822,
and the IBM System/370 Advanced Function Bibliography, Order No.
GC20-l763, for the editions that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print chain.

Requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form is provided at the back of this publication for
reader,s comments. If the form has been removed, comments may be
addressed to IBM Nordic Laboratory, Programming Publications,
Box 962, S-181 09 Lidingo, Sweden. Comments become the property
of IBM.

@ Copyright International Business Machines Corporation 1972, 1973

2

\

a

()

Read This First

This Manual and Who It Is For

This manual is for programmers who code in the assembler language. It
is intended to help you assemble, link edit, and execute your program;
to choose and specify the assembler options you need; and to interpret
the listing and the diagnostic messages issued by the assembler.
This manual also serves as a guide to information contained in other
publications which is of importance to you as an assembler-language
programmer. To use this manual you should have a basic understanding of
the operating system as described in Introduction to OS, Order No.
GC28-6534. You should also have a good understanding of the assembler
language as described in OS/yS and DOSjVS Assembler Language, Order No.
GC33-4010.

Other Manuals You Will Need

In addition to OS/VS and DOSjVS Assembler Language, you should have the
following publications available when us~ng th~s manual:

System/370 Principles of Operation, Order No. GA22-7000
OS/VS JCL Reference, Order No. GC28-0618
OS/VS Linkage Editor and Loader, Order No. GC26-3803

How This Manual Is Organized

This manual has five main sections and seven appendixes:

Introduction describes the purpose of the VS assembler, its relationship
to the operating system, and its input and output. It also describes
how the operating system processes your program and reviews the concepts
of job, job .step, job control language, and cataloged procedures.

Job Control Statements for Assembler Jobs shows you how to invoke the
assembler for simple jobs (using cataloged procedures); describes the
assembler options and how to specify them; lists the job control
statements that make up the four assembler cataloged procedures; and
gives examples of how to use the cataloged procedures for more complex
jobs.

The Assembler Listing tells you how to interpret the printed listing
produced by the assembler.

3

Programming Considerations serves as a guide to information contained in
other programming manuals which you will find useful as an
assembler-language programmer. Among the topics discussed are:

• • • •

Designing your program
Specifying the entry point
Linking with modules written in other languages
Linking with processing programs

Adding Macro Definitions to a Library tells you how to catalog macro
definitions in the system macro l1crary or in a private library.

Appendix A gives definitions of terms used in this manual.
Appendix B gives the listing of the assembler sample program.
Appendix C shows the detailed format of the object deck.
Appendix D tells you how to invoke the assembler dynamically from a
problem program.
Appendix E describes the data sets used by the assembler and the
assembler's storage requirements.
Appendix F describes the SYSTERM listing.
Appendix G explains the diagnostic messages issued by the assembler.

4

f
\
\. /

(\
\ j

" \
\.

()

Contents

INTRODUCTION • 7
Purpose of the Assembler • • • • • 7
Relationship of the Assembler to the Operating System 7
Inpu t 7
Ou tpu t
Compatibility
How the Operating System Handles Your Program

Assembler •
Linkage Editor
Execution of Your Program
Loader •

Job Control Language and Cataloged Procedures
Jobs and Job Steps . .
Job Control Language

JOB CONTROL STATEMENTS FOR ASSEMBLER JOBS
Simple Assembly and Execution

As sembly
Assembly and Execution

Assembler Options
What Assembler Options Are . .
How to Specify Assembler Options .

The Assembler Cataloged Procedures .
Assembly (ASMFC)

7
8
8
8
8 .
8
8

· 10
· • 10

· . 11

· 13
. 13

· 13
· 14

15
· . 15

16
• • • • • • • 23

• • • • . • • • 24
Assembly and Link Editing (ASMFCL) • • 26

· 28
• 30

Assembly, Link Editing, and Execution (ASMFCLG)
Assembly and Loader-Execution (ASMFCG)
Examples

THE ASSEMBLER LISTING
External Symbol Dictionary (ESD)
The Source and Machine Language Statements .

Source Statement Fields
Relocation Dictionary (RLD)
Symbol Cross Reference
Literal Cross Reference
Diagnostics and Statistics

PROGRAMMING CONSIDERATIONS

• • • • • • • 32

34
• • 36

• • • • • • • • . • 38
• • • • • • 38

• • • • • • • • • • • 41
• • • • • • 42

• • • • • • • • • • 44
• • • • • 45

• 47
Designing Your Program. • • 47
Specifying the Entry Point into Your Program
Linking with Modules Produced by other Language Translators
Linking with IBM-Supplied Processing Programs

ADDING MACRO DEFINITIONS TO A LIBRARY

APPENDIX A. GLOSSARY . .

APPENDIX B. ASSEMBLER SAMPLE PROGRAM .

APPENDIX C.
ESD Card
TXT Card
RLD Card
END Card
SYM Card

OBJECT DECK OUTPUT .
Format
Format
Format
Format
Format

• • • • • • 48
• • • • • 48

• 49

50

• • 51

• • 57

• • 65
• • 65
• • 66
• • 66
• • 67
• • 67

5

APPENDIX D. DYNAMIC INVOCATION OF THE ASSEMBLER • • . . .

APPENDIX E. ASSEMBLER DATA SETS AND STORAGE REQUIREMENTS
Assembler Data Sets . •
Assembler Virtual Storage Requirements . • . .

APPENDIX F. THE SYSTERM LISTING

APPENDIX G. ASSEMBLER DIAGNOSTIC ERROR MESSAGES • • • • •
How to Use This Section . . . • . • .
Recurring Errors • . . . • • •

70

72
72
73

75

78
78
80

INDEX • 143

Figures

Figure 1. How the operating system handles your program
Figure 2. Jobs and job steps
Figure 3. The cataloged procedure concept . • . •
Figure 4. The assembler options (Part 1 of 5)
Figure 5. Cataloged procedure for assembly (ASMFC)
Figure 6. Cataloged procedure for assembly and link editing
(ASMFCL) .•.•••........... . . • . . .
Figure 7. Cataloged procedure for assembly, link editing, and

execution (ASMFCLG)••..
Figure 8. Cataloged procedure for assembly and loader-execution

(ASMFCG)
Figure 9. Assembler listing
Figure 10. External symbol dictionary .. .
Figure 11. Source and machine language statements
Figure 12. Relocation dictionary
Figure 13. Symbol cross reference •..
Figure 14. Literal cross reference ...•.......•.
Figure 15. Diagnostics and statistics. . ••.
Figure 16. Minimum requirements for a simple program
Figure 17. Assembler sample program (Part 1 of 11)
Figure 18. SYM card format
Figure 19. Assembler data set characteristics
Figure 20. SYSPRINT listing of the source statements used to show

SYSTERM output • • • • . . .
Figure 21. SYSTERM listing produced for the source statements

shown in Figure 20 • . . . • • . •

6

9
10
11
18
25

27

29

31
35
37
40
41
43
44
46
48
57
69
74

76

77

/

(~
I)

(J

Introduction

This section describes the purpose of the VS Assembler, its relationship
to the operating system, and its input and output. It also tells you
how the operating system processes your assembler language program and
reviews the concepts of job, job step, job control language, and
cataloged procedure.

Purpose of the Assembler

The purpose of the VS Assembler is to translate programs written in the
assembler language into object modules, that is, code suitable as input
to the linkage editor or loader.

Relationship of the Assembler to the Operating System

The VS Assembler is supplied with the OSjVS control program package. In
the same way as the linkage editor or loader, it is executed under
control of the os control program. For a complete description of the
relationship between a processing program and the various components of
the control program, refer to Introduction to os.

Input

As input the assembler accepts a program written in the Assembler
language as defined in Assembler Language. This program is referred to
as a source module. Some statements in the source module (macro or COpy
instructions) may cause additional input to be obtained from a macro
library.

Output

The output from the assembler consists of an object module and program
listing. The object module can either be punched, or included in a data
set residing on a direct-access device or a magnetic tape. From that
data set the object module can be read into the computer and processed
by the linkage editor or loader. The-format of the object module is
described in Appendix C.

The program listing lists all the statements in the module, both in
source and machine language format, and gives other important
information about the assembly (such as error messages). The, listing is
described in detail in the section "The Assembler Listing".

Introduction 7

Compatibility

The language supported ty the VS Assemtler is cero~atitle ~ith the ,
language su~~crted by the OS Assemtler F. All ~regrarrs which assemble
error-free under Assembler F will also assemble error-free under the VS
Assembler. However, the resulting object code rray in cdd cases be
different because ef the extended features of the language su~~orted ty
the VS Assembler (the extended attribute reference and SE~C facilities).

How the Operating System Handles Your Program

Cnce you have coded and ~unched your program, it rrust be frecessed by
the assembler and the linkage editor or loader before it can be
executed. (See Figure 1.)

ASSE~ELER

~he assembler translates your source module into an otject rredule, the
machine language equivalent of the source module. The object module,
however, is not ready for execution; it rrust first be ~recessed by the
linkage editor or leader.

LINKAGE ECI~OR

The linkage editor prepares your prograrr fer execution. The output of
the linkage editor is called a load module and can be executed by the
computer. ~he linkage editor can combine your prograro with other object
modules and load modules to produce a single load rredule. ~he linkage
editor stores your ~rograrr in a load module library, a collection of
data sets on a direct-access device. These load rrodules can be read
into the corrputer and and given control. The load module library may be
either permanent, so that you can execute your ~rcgrarr in later jobs, or
temporary, so that the program is deleted at the end cf yeur jeb.

EXECUiION OF YOUR PROGRF.M

Cnce you have included your program in a perrranent load rredule library,
you can execute it any number of times without assembly and linkage
editing. However, if you need to change yeur ~rograrr., ycu rrust assemble
and linkage edit it again. Therefore, you should not store your program
in a permanent load module library until it has been tested ~re~erly.
To save time during test runs, you can use a program that combines the
basic functions of the linkage editor with the executien ef yeur
program. That ~rogram is the loader.

LOADER

The loader performs most of the functiens of the linkage editor; in
addition, it loads your program into the core~uter and ~asses centrol to
your ~rograrr. The leader cannot, however, include your program in a

8

(j

load rrodule library. Fer a full description of the linkage editor and
loader, refer to Linkage Editor and Loader.

i')ii:}"rlitnr or the loader for pro-

proces!iing your program,
control to it.

The linkage editor output, the
load module, is placed on a
load module library.

Your program, in load module
format, is read into the com­
puter for execution.

COMPUTER

ASSEMBLER

LOADER

LINKAGE
EDITOR

YOUR
PROGRAM

SOURCE
MODULE

Figure 1. How the e~erating system handles your program.

Introduction 9

Job Control Language and Cataloged Procedures

JOBS AND JOE STEPS

Each time you request a service from the o~erating system, you are
asking it to perform a jot. A jot may consist ef several steEs, each of
which usually involves the execution of one ~rocessing program under the
contrel of the VS centrol program. For exarr~le, if ycu subrr.it a job to
the computer calling for assembly and linkage editing of a program, that
job will be a two-step jot. The concepts of jobs and jcb ste~s are
illustrated in Figure 2.

Figure 2. Jobs and job steps

10

SOURCE
MODULE

(
\

-~
()
\ / , /

:J

(J

JOB ceNTROL LANGUAGE

The job control language is your way of ccrrmunicating tc the c~erating
systeTh control ~rograrr. what services you want perfcrmed and what
auxiliary devices you want used. Job control language (JCL) statements
are usually punched into cards and supplied in the jcb stream together
with your scurce module and other data needed by the job.

For a detailed discussion of job contrcl language statements, see
JCLReference.

To save time and troutle, you can use predefined sets of JCL
statements that reside in a litrary. such a set cf statements, called a
cataloged procedure, can te included in your job by means. of a single
JCL statement naming the set. Figure 3 illustrates the concept of a
cataloged procedure.

There are several cataloged procedures available for assembler jobs.
They are described in the section "Job Contrcl statements for Assemb~er
Jobs".

Input
Stream

- -----

XX Job control
XX statements

--

XX from cataloged
procedure PRC D

Data

Figure 3. The cataloged procedure concept

-

Procedure
Library

Introduction 11

(
\

(\
")

(J

Job Control Statements for Assembler Jobs

The ~urpose of this section is to:

• Sho~ you how to invoke the assembler for sire~le jets (using
cataloged procedures) •

• Describe the assembler options and how to request them.

• List the job control statements that make u~ the fcur assembler
cataloged procedures.

• Give examples of how to use the cataloged procedures for more
ccmplex jebs.

Simple Assembly and Execution

This section gives you the minimum JCL statements needed for two simple
assembler jobs:

• Assembly cf your ~rogram to ~roduce a listing and an cbject deck.

• Assembly and execution of your ~rogram.

Eoth jobs use cataloged procedures to call the assembler.

ASSEMBLY

To assemble your program, use the following job centrol language (JeL)
statements:

Iljobname
II
IISYSIN

JOB
EXEC
DD

(your source

accountno,progrname,MSGL~VEL=

Identifies the beginning of your job to the operating system.
'jobname' is the name you assign to the job.
'accountno' specifies the account to which your job is charged,
a1d 'progrname' the name of the programmer responsible for
the job. 'MSGLEVEL=l' specifies that the job control
statements connected with this job are to be listed.
Check what parameters are required at your installation and
how they must be specified.

lIows immediately after this

Job Control Statements for Assembler Jots 13

These staterrents cause the assembler tc asserrble ycur Frcgrarn and to
produce a listing (described in the section "The Assembler Listing") and
an object module punched on cards (descriced in AFFendix C) •

If you do not want any object module cards to be Funched during the
job, use the following statements:

Iljobname JOB accountno ,pr:ogrnilme
II EXEC
IISYSIN DD *

(your source program)

ASSE~ELY ANC EXECUTION

The second parameter specifies the assembler option NODE
telling the assembler not to produce any punched object module. F
a full discussion of the assembler options, see "Assembler Options".

To run a job that both assembles and executes your prcgraIT:, ccde the
following statements:

Iljobname JOB
II EXEC
IIASM. SYS IN DD

(your source

IIGO.SYSIN DD

(data, if any, for your program)

Specifies that the input for procedure ste
after this statement.

Specifies that the input for step GO (execution of your progra
control of the loader) follows immediately after this statement.

The first step of the ASMFCG procedure executes the asserrbler. ~he
assembler ~roduces a listing, a punched object module on cards, and an
object module on a direct access device. The seccnd steF causes the
loader to be executed. The loader transforms the object module, which
was written on a direct access device by the asserrbler, into a load
module. In addition, the loader causes the load rrcdule (that is, your
program) to be executed.

14

i-\
\\)

(\
I.)

\ /

::J

If you do not want the assembler to punch an object deck in this
example, supply the following statements instead:

l/jobname
II
IIASM.SYSIN

JOB accountno,progrname,MSGLEVEL=l
EXEC ASMFCG,PARM.ASM=(OBJ,NODECK)
DD *

(your source program)

IIGO.SYSIN DD *

(data for your program)

Assembler Options

The PARM parameter specifies the assembler options OBJ (telling the
assembleno produce an object module on the partitioned data set used
as input by the loader) and NO DECK for step ASM (assembly) of t~e
procedure.

WHAT ASSEMBLER OPTIONS ARE

Assembler options,are functions of the assembler that you, as an
assembler language programmer, can select. For example, yeu can use
assembler options to specify whether or not yeu want the asserrbler to
produce an object deck; whether or not you want it to print certain
items in the listing; and whether or net you want it tc check your
program for reenterability.

The assembler optiens can be divided into four categories:

• Listing centrel eFtions, which determine the information to be
included in the program listing.

• Cutput control options, which specify the device cn which the
assembler object module is to be written and the contents of the
module.

• SYSTERM oFtiens, which determine the information to be included in
the listing produced on the SYSTER~ data set. This data set is
~rimarily for use by the Time Sharing Option (TSO) ef VS2.

• Other assembler eFtions, which specify miscellaneous functions and
values for the asseITbler.

Figure 4 lists all the assembler options. The underlined values are the
standard er default values. These values are used by the assembler for
options that you do not specify.

As you can see frem the figure, the options fall into two format types:

• Simple ~airs of keywords: a positive form (for example, ~ECK) that
requests a function, and an alternative negative fcrrr. (for example,
NCDECK) that rejects the function.

• Keywords that permit you to assign a value to a function (for
example, LINECOUNT(40».

Jot Control Staterrents for Asserrbler Jebs 15

HOW TO SPECIFY ASSEMBLER OPTIONS

You use the PARM field of the EXEC JCL statement calling the assembler
to specify the assembler options. Code FARM= fcllcwed by a list of
options that you have s~lected. Fo~ example,

//STEPA EXEC PGM=IFOXOO,PAR~='NODECK,FI,AG (5) ,NORLI:'

IFOXOO is the name of the assembler; three options are specified for the
execution of it. I:efault values are used for the other c~tions.

When you use cataloged ~rocedures, you will notice that most of them
contain an option specification in the EXEC staterrent fer the assembly.
To override such a s~ecification, include a FARM field with your options
in the EXEC statement calling the ~rocedure. If the cataloged ~rocedure
contains rrore than one step, you must add the procedure step name as a
qualifier to the PARM operand. For exarr~le,

//STEF1 EXEC ASMFCG,PARM.ASM='CBJ,NCDECK'

The .ASM is necessary to indicate the assembly step. As you can see in
the section "The Assembler Cataloged procedures", the ste~name for
asserrbly is always AS~. You must also remember that when you override
the FARM field in a procedure, the entire PARM field is cverridden. !he
PARM field specification in the cataloged procedure ASMFCG is PARM=OBJ,
and the CEJ option must be repeated when you override the PAR~ field.
Otherwise the assembler default value NCCEJ will be used. (For a more
detailed description of overriding operands on EXEC staterrents in
cataloged ~rocedures, refer to JCL Reference.

The PARM field is ceded according to the following rules:

•

•

Single quotes or parentheses must surround the entire PARM value if
ycu s~ecify two cr roore o~tions.

The options must be separated by corrrras. Ycu.rray s~ecify as many
oftions as you wish, and in any order. However, the length of the
option list must not exceed 100 characters, including separating
commas.

• The BUFSIZE, FLAG, LINECOUNT, or SYSPARM options must appear within
single quotes.

• If you need to continue the PARM field onte ancther card, the entire
PARM field must be enclosed in parentheses. However, any part of
the FAR~ field enclosed in quotes rrust not be ccntinued on ancther
card.

16

(\1
\)

/\
J

/

o

(J

The following examples illustrate these rules:

,PARM=DECK

,PARM= , LINECOUNT (401 ,

,PARM=(DECK,NOOBJECTl
or

,PARM='DECK,NOOBJECT'

,PARM='DECK,NOLIST,SYSPARM(PARAM1'
or

,PARM=(DECK,NOLIST,'SYSPARM(PARAM1'1
or

,PARM=(DECK,'NOLIST,SYSPARM(PARAM} '}

,PARM=(DECK,NOLIST,'LINECOUNT(35}' ,NOALIGN,
MCALL, 'BUFSIZE(MIN1' ,NORLDl

Only one option specified.

LINECOUNT, BUFSIZE, FLAG,
and SYSPARM must be sur­
rounded by quotes.

More than one option
specified. None of them
requires quotes.

More than one option
specified. SYSPARM must
appear within quotes.

The whole field must be
enclosed by parentheses,
because it is continued
onto another card. The
LINECOUNT and BUFSIZE
options must be within
quotes, and the portions
of the field that are en­
closed within quotes
cannot be continued onto
another card.

Jot Control Staterrents fer Asserrbler Jebs 17

Listing Control Options

NOALOGIC

NOESD

{

(nnn)
FLAG

JQL

LINECOUNT

!!IST

NOLIST

MCALL

{

(nn)

~

Conditional assembly statements processed in
open code are listed.

The ALOGIC option is suppressed.

The external symbol dictionary (ESD) is listed. (Refer
to "The Assembler Listing" for further information on
the ESD.)

No ESD listing is printed.

Diagnostic messages and MNOTE messages below
severity code nnn will not appear in the listing.
Diagnostic messages can have severity codes of 4,
8, 12, 16, or 20 (20 is the most severe), and
MNOTE severity codes can be between 0 and 255.
For example, FLAG (8) suppresses diagnostic
messages with a severity code of 4 and MNOTE
messages with severity codes of 0 through 7.

nn specifies the number of lines to be listed per
page.

An assembler listing is produced.

No assembler listing is produced. This option
overrides ESD, RLD, and XREF.

Inner macro instructions encountered during macro
generation are listed following their respective
outer macro instructions. The assembler assigns
statement numbers to these instructions. The MCALL
option is implied by the MLOGIC option; NOMCALL
has no effect if MLOGIC is specified.

NOMCALL The MCALL option is suppressed.

MLOGIC All statements of a macro definition processed during
macro generation are listed after the macro instruc­
tion. The assembler assigns statement numbers to them.

NOMLOGIC The MLOGIC option is suppressed.

Figure 4. The assembler options
(Part 1 of 5)

18

('\
I

n
_/

Listing Control Options (continued)

NORLD

LIBMAC

NOLIBMAC

XREF(FULL)

XREF (SHORT)

NOXREF

The assembler produces the relocation dictionary as
part of the listing. (Refer to "The Assembler Listing"
for further information on the relocation dictionary.)

The RLD is not printed.

The macro definitions read from the macro libraries
and any assembler statements following the logical
END statement are listed after the logical END
statement. The logical END statement is the first
END statement processed during macro generation.
It may appear in a macro or in open code; it may
even be created by substitution. The assembler
assigns statement numbers to the statements that
follow the logical END statement.

The LIBMAC option is suppressed.

The assembler listing will contain a cross reference table
of all symbols used in the assembly. This includes symbols
that are defined but never referenced. 'I'he assembler
listing will also contain a cross reference table of
literals used in the assembly.

The assembler listing will contain a cross reference
table of all symbols that are referenced in the assembly.
Any symbols defined but not referenced are not included
in the table. The assembler listing will also contain
a cross reference table of literals used in the assembly.

No cross reference tables are printed.

Figure 4. -The assembler options
(Part 2 of 5)

Job Control Statements for Assembler Jors 19

Output Control Options

NODECK

OBJECT
or CEJ

The otject module is written en the device s~ecified
in the SYSPUNCE rr staterrent. If this eFtien is
sFeciried together with the OEJECT o~tion, the otject
module will te written tcth cn SYSPUl\CE and en SYSGC.

The DECK option is suppressed.

The otject module is written on the device sFecified
in the SYSGO [r statement. If this c~ticn is
specified together with the DECK option, the otject
module will te written tcth cn SYSGO and en SYSPUNCE.

NCOEJECT The OEJECT option is su~~ressed.
or l\CCEJ

TEST The special source syrrtcl table (SYM cards) is
included in the otject rrodule. (See AF~endi~ C
fer details.)

NOTEST No SY~ cards are produced.

Figure 4. The asserrbler eptions
(Part 3 of 5)

20

•

(\
, I
\/

:J

~,J

SYSTE RM Options

NUMEER or
NUM

NONUMBER or
NONUM

NOSTMT

TERMINAL or
TERM

NOTERMINAL or
NCTERM

The line number field (columns 73-80 cf the in~ut
cards) is written in the SYSTERM listing for state­
Irents for which diagnostic inferrr.atien is given. 'Ihis
o~tion is valid only if TERMINAL is specified.

The NUMEER option is su~~ressed.

The statement number assigned by the assembler is
written in the SYSTER~ listing fer staterr.ents for which
diagnostic information is given. This o~tion is valid
only if 'I'ERMINAL is specified.

The STMT option is suppressed.

The assembler writes diagnostic information on the
SYSTERM data set. The diagnostic information, described
in detail in Appendix F, consists of the diagnosed state~
reent fcllowed by the error message issued. -

The TERMINAL option is suppressed.

Figure 4. 'Ihe assembler options.
(Part 4 ef 5)

Jot Control Statenents fer Assenbler Jobs 21

Other Assembler Options

ALIGN

NOALIGN

BUFSIZE (MIN)

BUFSIZE (STD)

RENT

NORENI'

{:

string)
SYSPAR.

(null
string)

All data is aligned on the proper boundary in the object
module; for example, an F-type constant is aligned on a
fullword boundary. In addition, the assembler checks
storage addresses used in machine instructions for
alignment violations.

The assembler does not align data areas other than
those specified in CCW instructions. The assembler
does not skip bytes to align constants on proper
boundaries. Alignment violations in machine in­
structions are not diagnosed.

The assembler uses the minimum buffer size (790 bytes)
for each of the utility data sets (SYSUT1, SYSUT2,
and SYSUT3). storage normally used for buffers is
allocated to work space. Because more work space
is available, more complex programs can be assembled
in a given region; but the speed of the assembly
is substantially reduced.

The buffer size that gives optimum performance is
chosen. The buffer size depends on the size of
the region or partition. Of the assembler working
storage in excess of minimum requirerrents, 37~ is
allocated to the utility data set buffers, and the
rest to macro generation dictionaries.

Refer to Appendix E for a more complete description
of the effects of BUFSIZE.

The assembler checks your program for a ~ossible
violation of program reentrability. Code that makes your
program non-r~entrant is identified by an error
message.

The RENT option is suppressed.

'string' is the value assigned to the system
variable symbol &SYSPARM ~xplained in
Assembler Language). Due to JCL restrictions, you
cannot specify a SYSPARM value longer than 56 char­
acters (as explained in Note 1 following this figure) •
~wo quotes are needed to represent a single quote,
and two ampersands to represent a single ampersand.
For example,

PARM=·OBJECT,SYSPARM«&&AM,·'BO) .FY)'

assigns the following value to &SYSPARM:

(&AM , • EO) • FY

Any parentheses inside the string
must be paired. If you call the asserrbler from a
problem program ~ynamic invocation) , SYSPARM
can be up to 256 characters long.

Figure 4. The assembler options.
(Part 5 of 5)

22

(~
\ /

:J

..

Note 1: ~he restrictions imposed u~on the FARM field lirrit the maximum
length of the SYSFARM value to 56 characters. Ccnsider the fcllo~ing
exam~le:

/1 EXEC ASMFC,PARM.ASM=(OEJECT,NOJ:ECR,
/1 • SYSFARM (AEC[• •••) .)

t t t· t
\" yo-- J

r-l r-l
o 0
t> t>

M
r-l

r-l
o
t>

56 bytes

r-l
o
t>

Since SYSFARM uses ~arentheses, it must te surrounded by quctes. ~hus,
it cannot be continued onto a continuation card. The leftmost column
that can be used is column 4 on a ccntinue card. A qucte and the
keywerd rrust a~~ear cn that line as well as the closing quotes. In
addition, either a right parenthesis, indicating the e~d cf the FAR~
field, er a ccrrma, indicating that the FAR~ field is centinued on the
next card, must be coded before or in the last cclurrn cf the staterr.ent
field (colu~n 71) •

Note 2: Even though the formats of some of the options previcusly
supported by OS Asserrbler F have been changed, you can use the old
formats for the following options: ALGN (new ALIG~, NCAIGN (NCAIIGN),
IINECNT=nn (LINECOUN~ (nn», LOA[(OEJEC~), and NOI.OAD (NCCEJEC~). This
support will, however, be continued only fer a lirrited nurrber ef VS
releases, so you should change te the new c~tions as secn as ~essible.
The Assembler F option [OS is not supported by the VS Asserrbler.

The Assembler Cataloged Procedures

This sectien describes the four assembler cataloged procedures and tells
you how to use them. ~hey are:

• ASMFC (assembly)

• ASMFCI. (asserrbly and linkage editing)

• ASMFCG (asserrbly and loader-execution)

• ASMFCLG (assembly, linkage editing, and execution)

~he procedure you choese on each occasion will de~end on the type cf
job yeu want to run. First, you rray want tc run an asserrbly tc ccrrect
your coding and key~unching errors. For this, you would use the ASMFC
procedure with the option NOLECR specified. In the next run ycu rray
want to asserrble and execute your program, in which case you can use
ASMFCG (or possibly ASMFCLG, if you use linkage editcr features nct
supported by the loader). When you have debugged ycur ~rcgrarr, yeu may
want to include it in a load ~odule library using ASMFCL.

The exam~les given in this section assurre that the catalcged
procedures yeu are using are identical to the cataloged procedures
delivered by IEM. Therefore, you should first rrake sure that ycur
installation has nct rr.cdified the ~rocedures after they were delivered.

Job Control Statements for Assembler Jcbs 23

ASSE~ELY (ASMFC)

The ASMFC ~recedure ccntains only one jot step: asserrtly. Ycu
use the name ASFMC to call this ~rocedure. The result of execution
is an object rrodule, in punched card fern, and an assenbler listing.

To call the ~rccedure use the following statements:

//jotname JOB {:arameters
//stepname EXEC {AS~FC }

PROC=ASMFC
//SYSIN CD *

scurce ncdule

The statements of the AS~FC procedure shown in Figure 5 are read from
the procedure library and merged into ycur inI=ut strearr. ~he SYSIN
staterrent s{:ecifies that the in~ut to the assembler (that is, your
source program) follows irrmediately after the statener.t.

24

/ "',
\, /

•

r~
\ i
\ j

,~J

IT] /IASMF'C
[2] I/ASM
[ID IISYSLIB

II
@]1/SYSUT1

II
IISYSUT2
II
IISYSUT3

llil IISYSPRINT
[ID I/SYSPUNCH

MAC='SYS1.MACLIB',MAC1='SYS1.MACLIB'
PGM=IFOXOO,REGION=128K
DSN=&MAC,DISP=SHR
DSN=&MAC1,DISP=SHR

PROC
EXEC
DD
DD
DD DSN=&&SYSUT1 , UNIT=SYSSQ ,SPACE= (1700, (600,1 OO) } ,

S EP= (SYSL IB)
CD

DD
DD
DD

DSN=&&SYSU'T2, UNIT=SYSSQ ,SPACE= (1700, (300, 50) } ,
SEP= (SYSLIB, SYSUT1)

DSN=&&SYSUT3, UNIT=SYSSQ ,SPACE= (1700, (300, 50) }
SYSOUT=A,DCB=BLKSIZE=1089
SYSOUT=B

ill This statement names the procedure and gives default values to
the symbolic parameters MAC and MAC1.

~This statement specifies that the program to be executed is
IFOXOO, which is the name of the assembler.
The REGION parameter specifies the virtual storage region that
gives best performance. It is possible to run the assembler in
64K, in which case you must change the region size parameter.
You can also add COND and PARM parameters.

~ This statement identifies the macro library data set. The
succeeding statement concatenates another macro library with it.
The default values for the DSN parameters of both data sets
are SYS1.MACLIB, the system macro library. You can change either
or both of the data sets in the EXEC statement calling the
procedure. For example, to concatenate your own macro library
with SYS1.MACLIB, code your EXEC statement as follows:

II EXEC ASMFC,MAC1=MYMACS

DISP=SHR indicates that the data set can be used simultaneously
by other jobs in the system.

~ SYSUT1, SYSUT2, and SYSUT3 specify the assembler work data sets.
The device classname SYSSQ represents either a direct access
device or a tape drive. The I/O units assigned to the class­
names are specified by your installation during system genera­
tion. Instead of a classname you can specify a unit name, such
as 2314. The DSN parameters guarantee dedicated work data sets,
if this is supported by your installation. The SEP and SPACE
parameters are effective only if SYSSQ is a direct access
device. The space required depends on the source program.

llil This statement defines the standard system output class as the
destination of the assembler listing. You can specify any
blocksize that is a multiple of 121.

~ This statement describes the data set that will receive the
punched object module.

Figure 5. Cataloged prccedure for assembly (ASMFC)

Job Control Statements for Assembler Jobs 25

ASSEMELY AND LINK EDITING (ASMFCL)

The ASMFCL ~rccedure censists of two jot steps: assenbly and link
editing. It produces an assembler listing, a linkage editor listing, ~
and a load module.

SYSGC contains the eut~ut from the asserrtly ste~ and the in~ut to the
linkage editor ste~. It can be concatenated with additional input to
the linkage editor. This additional in~ut can be linkage editer contrel
staterrents er other ebject modules.

To call the procedure, use the fellowing statements:

//jobname
//stepname
//ASlI..SYSIN

JOB
EXEC
[I:

ASlI.FCI.,

*

source program statements

/*
//LKEC.SYSIN CD

/*

otject nodule cr
linkage editor
centrel statenents

*

necessary only if linkage
editor is tc conbine ncdules
or read linkage editor control
information fron the jeb stream

Figure 6 shows the statements that make u~ the AS~FCL Frccedure. Only
those statenents net ~reviously discussed are ex~lained.

26

...

/-~ ,)

/

"

•

I/ASMFCL
IIASM
IISYSLIB
II '
IISYSUT1
II
IISYSUT2
II
IISYSUT3
IISYSPRINT
IISYSPUNCH

ill I/SYSGO
II

I2l IILKED
II

rnJ IISYSLIN
@ II
lli1 IISYSLMOD

II
[§] /ISYSUT1

II

PROC MAC='SYS1.MACLIB',MAC1='SYS1.MACLIB'
EXEC PGM=IFOXOO,PARM=OBJ,REGION=128K
~D DSN=&MAC,DISP=SHR
DD DSN=&MAC1,DISP=SHR
DD DSN=&&SYSUT1,UNIT=SYSSQ,SPACE=(1700, (600,100»,

DD

r:D
DD
DD
DD

SEP= (SYSLIB)
DSN=&&SYSUT2,UNIT=SYSSQ,SPACE=(1700, (300,50»,

SEP= (SYSLIB, SYSUT1)
DSN=&&SYSUT3,UNIT=SYSSQ,SPACE=(1700, (300,50»
SYSOUT=A,DCB=BLKSIZE=1089
SYSOUT=B
DSN=&&OBJSET, UNIT=SYSSQ,SPACE= (80, (200,50» ,

DISP= (MOD, PASS)
EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL) ,REGION=128K,

DD
DD
DD

DD

COND= (8 ,LT ,ASM)
DSN=&&OBJSET,DISP=(OLD,DELETE)
DDNAME=SYSIN
DSN=&&GOSET (GO) ,UNIT=SYSDA,SPACE= (1024, (50,20,1» ,

DISP= (MOD,PASS)
DSN=&&SYSUT1,UNIT= (SYSDA,SEP= (SYSLIN,SYSLMOD» ,

SPACE= (1024, (50,20»
[Z] IISYSPRINT DD SYSOUT=A

ill The SYSGO DD statement describes a temporary data set--the
object module--which is to be passed to the linkage editor.

~ This statement initiat~s linkage editor execution. The
linkage editor options in the PARM= field cause the linkage
editor to produce a cross-reference table, module map, and a
list of all control statements processed by the linkage editor.
The NCAL option suppresses the automatic library call function
of the linkage editor.

~This statement identifies the linkage editor input data set
as the same one produced as output by the assembler.

~This statement is used to concatenate any input to the linkage
editor from the input stream with the input from the assembler.

lli1This statement specifies the linkage editor output data set
(the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain
the load module, the DSN, ,parameter must be respecified and a
DISP parameter added. If the output of the linkage editor is
to be retained, the DSN parameter must specify a library name
and ~ember name designating where the load module is to be
placed. The DISP parameter must specify either KEEP or
CATLG.

[§]This statement specifies the utility data set for the linkage
editor.

ffiThis statement identifies the standard output class as the
destination for the linkage editor listing.

Figure 6. Cataloged procedure for asserrbly and link editing (ASMFCL)

Job Control Staterrents fer Asserrbler Jebs 27

ASSEMBLY, LINK EDI~ING AND EXECUTION (ASMFCLG)

The ASMFCLG censists ef three job steps: assembly, link editing and
execution. An assemcler listing, an otject deck, and a linkage editor
listing are produced.

The staterrents entered in the input strEarr te use thi~ ~recedure are:

//jocnaroe
//stepname
//ASM.SYSIN

JOB
EXEC
CD

ASMFCLG

*

source program statements

/*
//LKED.SYSIN DD

/*

object nedule cr
linkage editor
centrel staterrents

/ /GC • ddname DD
/ /GO. ddnarr.e DD
//GC.ddname DD

*

necessary only if linkage
editor is te concine ncdules
or read linkage editor control
information frorr the jcb strearr

parameters
Fararneters

* only
if
necessary

problero ~rograrr in~ut

/*

Figure 7 shows the statements that reake uF the AS~FCLG Frccedure. Only
those staterrents net I=reviously discussed are explained in the figure.

28

(\
. I

\. J

I/ASMFCLG
IIASM
IISYSLIB
II
IISYSUT1
II
IISYSUT2
II
IISYSU'I'3
IISYSPRINT
IISYSPUNCH
IISYSGO
II

rn IILKED
II
IISYSLIN
II

[2]1/SYSLMOD
II
IISYSUT1
II
IISYSPRINT

~I/GO

PROC MAC='SYS1.MACLIB' ,MAC1='SYS1.MACLIB'
EXEC PGM=IFOXOO,PARM=OBJ,REGION=128K
DD DSN=&MAC,DISP=SHR
DD DSN=&MAC1,DISP=SHR
CD DSN=&&SYSUT1,UNIT=SYSSQ,SPACE= (1700, (600,100» ,

SEP= (SYSLIB)
DD DSN=&&SYSUT2,UNIT=SYSSQ,SPACE=(1700, (300,50»,

SEP= (SYSLIB, SYSUT1)
DD DSN=&&SYSUT3,UNIT=SYSSQ,SPACE=(1700, (300,50»
DD SYSOUT=A,DCB=BLKSIZE=1089
DD SYSOUT=B
DD DSN=&&OBJSET,UNIT=SYSSQ,SPACE= (80, (200, 50» ,

DISP= (MOD,PASS)
EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL) ,REGION=128K,

COND= (8 ,LT ,ASM)
DD DSN=&&OBJSET,DISP=(OLD,DELETE)
DD DDNAME=SYSIN
DD DSN=&&GOSET (GO) , UNIT=SYSDA,SPACE= (1024, (50,20,1» ,

DISP= (MOD, PASS)
CD DSN=&&SYSUT1,UNIT= (SYSDA,SEP= (SYSLIN,SYSLMOD» ,

SPACE= (1024, (50,20))
DD SYSOUT=A
EXEC PGM=*. LKED. SYSLMOD, COND= ((8, LT, ASM) , (4 ,LT ,LKED))

00 The LET linkage editor option specified in this statement
causes the linkage editor to mark the load module as
executable even though errors were encountered during pro­
cessing.

~The output of the linkage editor is specified as a member
of a temporary data set, residing on a direct-access device,
and is to be passed to a succeeding job step.

~ This statement initiates execution of the assembled and
linkage edited program. The notation +.LKED.SYSLMOD identifies
the program to be executed as being in the data set described
in job step LKED by the DD statement named SYSLMOD.

Figure 7. Cataloged procedure for assembly, link editing, and execution
(ASMFCLG)

Job Control Statements for Assembler Jobs 29

ASSE~ELY AN[LOA[ER-EXECUTION rnSMFCG)

The ASMFCG procedure contains two jeb ste~s: assembly and
loader-execution. The loader link-edits, loads, and fasses centrel to
the program fer executicno

Both assembler and a loader listing are ~rcdueed, but the load module is
not included in a licrary.

To call the procedure use the follo~in9 staterrents:

//jol::narre JOB
//stepname EXEC ASMFCG
//ASM.SYSIN CD *

seurce ~regrarr

/*
/IGC.ddname DD parameters
//GO.ddnarre DD farameters
//GC.ddname DD * cnly

if
necessary

proclerr ~rcgrarr in~ut

1*

Figure 8 shows the statements that make up the ASMFCG frecedure. Only
those staterrents net freviously discussed are explained in the figure~

30

/-~
! \,

\)

..

)

(1
\-)

()

C)

IIASMFCG
IIASM
IISYSLIB
II
IISYSUT1
II
IISYSUT2
II
IISYSUT3
IISYSPRINT
IISYSPUNCH
IISYSGO
II

rn IIGO
II

[2] IISYSLIN
~IISYSLOUT

PROC MAC=' SYS1.MACLIB' ,l1AC1=' SYS1.MACLIB'
EXEC PGM=IFOXOO,PARr1=OBJ ,REGION=128K
DD DSN=&MAC,DISP=SHR
CD DSN=&MAC1,DISP=SHR
DD DSN=&&SYSUT1 ,UNIT=SYSSQ,SPACE= (1700, (600,100» ,

SEP= (SYSLIB)
DD DSN=&&SYSUT2,UNIT=SYSSQ,SPACE=(1700, (300,50»,

SEP= (SYSLIB, SYSUT1)
DD DSN=&&SYSUT3,UNIT=SYSSQ,SPACE=(1700, (300,50»
CD SYSOUT=A, DCB=BLKSIZE=1 089
DD SYSOUT=B
DD DSN=&&OBJSET,UNIT=SYSSQ,SPACE=(80, (200,50»,

DISP= (MOD, PASS)
EXEC PGM=LOADER,PARM='MAP,PRINT,NOCALL,LET',

COND= (8 ,LT ,ASM)
CD DSN=&&OBJSET,DISP=(OLD,DELETE)
CD SYSOUT=A

mThis statement initiates the loader-execution. The loader
options in the PARM= field cause the loader to produce a
map and print the map and diagnostics. The NOCALL option
is the same as NCAL. for linkage editor and the LET option is
the same as for linkage editor.

[2]This statement defines the loader input data set as the same
one produced as output by the assembler.

~This statement identifies the standard output class as the
destination for the loader listing.

Figure 8. Cataloged ~rocedure for assembly and loader-execution
(ASMFCG)

Job Contrel Statements for Assembler Jots 31

EXA~FLES

The fcllowing exam~les derronstrate the use of the assenbler catalcged
procedures. Normally, you will want to change or add parameters to the
procedures you use. The examples illustrate how yeu use the EXEC
statenent calling the ~rocedure to change or add parameters to EXEC
statements in the procedure; and ho~ you add DD statenents after the
EXEC statement calling the procedure to change er add LC staterrent
parameters. ihe rules for overriding parts of cataloged procedures for
the duration of a jot are explained in JCL Reference.

Example 1:

In the procedure ASMFC, the punched object deck can be su~~ressed and
the UNIT and SPACE ~arameters of data set SYSUT1 can be respecified by
coding the following statements:

Iistepnarr.e
IISYSUT1
IISYSIN

EXEC
CD
[L

ASMFC,PARM=NODECK
UNIT=2311 , SFACE= (200, (300,40»

*
scurce staterrents

1*

Example 2:

In the procedure ASMFCLG, the assembler listing can be su~~ressed and
the COND ~araneter, which sets conditions for execution of the linkage
editor, can be changed by the following staterr.ents:

Iistepname EXEC
II
IIAS~.SYSIN [L

AS~FCLG,PAR~.AS~=(NCLIST,OEJECT) ,
CONL.LKED= (8 ,LT ,PREVSTEP .ASM)

*
source staterrents

1*

Here PREVSTEP is the name of a previous EXEC statement calling an
assembler procedure in the same job.
Note: You cannet everride individual opticns in the FAR~ field. ihe
whole PARM field is al~ays overridden. iherefore, yeu rrust re~eat
OBJECT in the exarr~le above.

Example 3:

The fellowing exaff~le sho~s the use of the procedure ASMFCL to:

• Read input from a unlabeled nine-track tape en ta~e drive 282. The
tape has a blccking factor of ten.

• Fut the output listing on a tape labeled VOLIL=TAFE10, with a data
set name of PROG1 and a blocking factor cf five (605 divided by 121,
the record size for the assembler listing) •

• Block the SYSGO eutput of the assembler and use it as input to the
linkage editor with a blocking factcr of five.

•

32

Link-edit the module only if there are ne errers in the assembly
(COND=O) •

C)

.::-J

o Link-edit the module onto a previously allocated and cataloged data
set, USER.LIBRARY with a member name of PROG.

II
IIASM.SYSPRINT
II
IIASM.SYSGO
IIASM.SYSIN
II
IILKED.SYSLMOD

EXEC ASMFCL,COND.LKED=(O,NE,ASM)
DD DSN=PROGR1,UNIT=TAPE,DISP=~EW,KEEP),

VOL=SER=TAPE10,DCB=BLKSIZE=605
DD DCB=BLKSIZE=400
DD UNIT=282,LABEL=(,NL) ,DISP=OLD,

DCB=(RECFM=FSB,BLKSIZE=800)
DD DSN=USER.LIBRARY~ROG) ,DISP=OLD

Note: The order in which the overriding DD statements are specified
corresponds to the order of DD statements in the procedure. For
example, SYSPRINT precedes SYSGO in step ASM. The DD name ASM.SYSIN is
placed last among the overriding statements for step ASM, because SYSIN
does not exist in step ASM of the procedure.

The following example shows assembly of two programs, link editing of
the two object modules into one load module, and execution of the load
module:

IISTEP1
IIASM.SYSGO

IIASM.SYSIN

1*
IISTEP2
IIASM.SYSGO
IIASM.SYSIN

1*
IILKED.SYSLIN
IILKED.SYSIN

1*
IIGO • ddname
II

EXEC
DD

DD

source

EXEC
DD
DD

source

DD
DD
ENTRY

DD

ASMFC,PARM.ASM=OBJ
DSN=&&OBJSET,UNIT=SYSSQ, SPACE= (80, (200,50)) ,
DISP=(MOD,PASS) ,DCB=BLKSIZE=400

*
module 1

ASMFCLG
DCB=BLKSIZE=400,DISP=~OD,PASS)

*
module 2

DCB=BLKSIZE=400

*
PROG

(dd cards for GO step)

The LKED.SYSIN statement indicates that input to the linkage editor
follows. In this case it is a linkage editor control statement. ENTRY,
which identifies PROG, an external symbol in one of the two modules, as
the entry point into the load module. When the load module is executed,
that point in the module gets control first.

JCL Reference provides additional information on overriding techniques.

Jot Control Staterrents fer Asserrbler Jebs 33

The Assembler Listing

This section tells you how to interpret the printed listing produced cy
the assembler. The listing is ottained only if the ct:ticn L·IS'! is in
effect. Parts of the listing can be suppressed by using other options;
for information on the listing options, refer to nAsserrbler O~tionsn.

The six parts of the asserrbler listing are:

• External symbol dictionary (ESC)

• Source and object program

• Relocation dictionary (RLC)

• Syrrbol cross reference

• Literal cross reference

• Ciagnostics and statistics

Figure 9 shows the different parts of the listing. The function and
purpose of each of them, as well as the individual details, are
explained in the fcllcwing text and illustrations.

34

--~ (\

I

/

f\
. !

/

(\
\)

':)
EXAM EXTERNAL SYMBOL DICTIONARY PAGE

SYlI:BOL TYPE ID ADDR LENGTH LDID ASM 0100 09.46 01/05/72

PC 0001 000000 0001CO
SEARCH LC 000024 0001

PAGE 3
EXM~ SAlI:PLE PROGRA~

LOC OBJECT CODE
STl1T SOunCE S'IATE!-'EN'I

ADDRl ADDR2
ASM 0100 09.4601/05/72

52
53
54

*********************t***SAMPL050
* MAIN "WU'IINE * SAMPL051
*** SAMPL052

55 CSEC1 SAMPL053
000000 56 ENTRY SEARCH SAMPL054

57 BEGIN BALR R12,0 ESTABLISH ACCRESSABILITY OF PROGRAM SAMPL055
000000 05CO 58 USING *,R12 AND TELL THE ASSE~BLER SAMPL056

00002 59 LM R5,R7,=A(LISTAREA,16,LISTEND) LOAD LIST AREA PARAMSSAMPL057
000002 9857 C1A6 001A8 60 USING LIST,R5 REGISTER 5 POINTS TO THE LIST SAMPL058

00000 61 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE SAMPL059
000006 45EO C022 00024 62 'If.' SWITCH, NONE CHECK TO SEE IF NJIME WAS FOUNC SAMPL060
OOOOOA 9180 C020 00022 63 BO NO'ITHERE BRANCH IF NOT SAMPL061
OOOOOE 4710 C018 0001A 64 USING TABLE,Rl REGISTER 1 NOW POINTS TO TABLE ENTRySAMPL062

00000 6') t-10VE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPL063

*** ERROR *** 66+ 1,lEPROPER OPE~AND TYPES, NO STATEf.'ENTS GENERATEC

t ERROR tt*

67

68
69+*
70+
71+

MOUE TNUMBER, LNUlftBER FROM LIST ENTRY

MOVE
NEXT
L

TADDRESS,LADDRESS TO TABLE EN1RY
'It'i0 STATEMEt'n'S GENERATED FOR MOVE MACRO

2,LADCRESS

SAMPL066

000012 5820 500C
000016 5020 1004
00001A 9680 5008
00001E 8756 C004

OOOOC
00004
00008
00006

72 NOTTHERE
73

ST
01
BXLE
EOJ

2,TADDRESS
LSWITCH,NONE
R5,R6,MORE

TURN ON SWITCH IN LIST ENTRY
LOOP THROUGH THE LIST

SAMPL069
SANPL028
SAf.'PL029
SAMFL030
SAl-:PL075
SAMPL076
SAMPL077 74 ENC OF PROGRAf.', USER LIBRARY MACRO

EXAM

POS.ID REL.ID FLAGS ADDRESS

0001 0001 OC 000154
0001 0001 OC 000164
0001 0001 OC 000174
0001 0001 OC 0001A8
0001 0001 OC 0001BO

EXAM

SYMBOL LEN VALUE DEFN REFERENCES

BEGIN 00002 00000000 00057 00135 00143 00183
HIGHER 00002 0000004A 00090 00085
LADDRESS 00004 OOOOOOOC 00174 00070
LIST 00001 00000000 00170 00060
LISTAREA 00008 00000148 00132 00184
LISTEND 00008 00000198 00152 00184
LNAME 00008 00000000 00171 00084
LNUMBER 00003 00000009 00173
LOOP 00004 00000030 00083 00088 00091 00139

EXAM

SYMBOL LEN VALUE DEFN REFERENCES

=A(LISTAREA,16,LISTEND)
00004 000001A8 00184 00059

=F'128,4,128'
00004 000001B4 00185 00081

EXAM

STMT ERROR CODE MESSAGE

RELOCATION DICTIONARY

CROSS-REFERENCE

LITERAL CROSS-REFERENCE

ASSEMBLER DIAGNOSTICS AND STATISTICS

o IF0076
36 IF0016
65 IF0090
66 IF0197

SEQUENCE SYMBOL .TYPECGK IS UNDEFINED IN MACRO MOVE
ILLEGAL OR INVALID NAME FIELD

Figure 9.

UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING CONDITIONAL ASSEMBLY
*** MNGrE **.

Assembler listing

PAGE 6

ASM 0100 09.46 01/05/72

PAGE 7

ASM 0100 09.46 01/05/72

PAGE 8

ASM 0100 09.46 01/05/72

PAGE 9

ASM 0100 09.46 01/05/72

The Assemtler Listing 35

External Symbol Dictionary (ESD)

The external symbol dictionary (ESD) describes the ccr;tents of the ESC
records included in the object module produced by the assembler. It
describes to the linkage editor or loader the control sections and
external symbols defined in the module.

This section helps you find references between modules in a
multi-module program. 'Ihe ESI: may be particularly helt;ful in debugging
the execution of large programs constructed from several rrodules.

The ESD is explained in detail in Figure 10. For a full
understanding of the terms and concepts used in the figure, refer to
"Section E: Frogram Sectioning" and "Section F: Addressing" in
Assembler Language.

36

(~
')

The deck identification
obtained from the name
field of the first named
TITLE statement.

~~

EXAM

SEARCH

The type designator for the entry. The various type designators are:

CM

ER

LO

PC

SO

Common control section. A control section defined by a
COM instruction
Strong extemal reference. A symbol that appears in the
operand field of an EXTRN instruction, or is defined as
a V-type address constant.
External name (label definition). A symbol that appears in
the operand field of an ENTRY instruction.
Unnamed control section (private code). An unnamed
control section is generated as the result of an unnamed
START or CSECT instruction or the appearance of an
instruction affecting the location counter before the first
START or CSECT instruction.
Named control section. A control section identified by
a START or CSECT instruction with a label in the name
field.

WX Weak extemal reference. A symbol that appears in the
field of a WXTRN instruction.

XO External dummy section (pseudo register). A symbol that
appears in the name field of a OXO instruction, or appears
both in the name field of a OSECT instruction and the

EXTERNAL SYMBOL DICTIONARY

LENGTH LDID

0001CO

The external symbol dictionary identification
number (ESOID). This number is a unique
four - digit hexadecimal number identifying

module where the
item described by
the entry is defined.
(Only for types CM,
LO, PC, SO, and.XO).

trol section. (Only for
types CM, PC, SO, and
XO.

the entry. It is used to cross reference be­
tween the external symbol dictionary and the
relocation dictionary. It is also used by entries
of type LO to identify the control section in
which the external name is defined. (Only for
types CM, ER, PC, SO, WX, and XO).

Figure 10. External symbol dictionary

The version
of the
assembler

PAGE

ASM '0100 09_46 0 5/72

the control section in
which this symbol is
defined. (Only for
type LO).

The Assembler Listing 37

The Source and Machine Language Statements

The second section of the listing contains a copy of the source
statements of the module together with a copy of the object code
produced by the assembler for each of the source staterrents.

This section is the mest useful part of the listing because it gives you
a copy of all the statements in your source ~rograrr (exce~t listing
contrel statenents) exactly as they are entered into the machine. You
can use it to find simple punching errers, and together with the
diagnostics and statistics, to locate and correct errcrs detected by the
assembler. By using this section together with the cross reference
section, you can check that your l:ranches and data references are in
order. The location counter values and the object cede listed for each
statement hel~ yeu locate any errors in a storage dump. Finally, you
can use this part of the listing to check that your rracrc instructions
have been expanded pro~erly.

The source and machine language statements section is described in
detail in Figure 11. Fer terms that you are unfamiliar with, refer to
Assembler Language.

SOURCE STATEMENT FIELDS

The contents of the source statement fields in the listing (see Figure
11) are as fellows:

• All seurce statements except listing control statements are listed,
including statements generated from nacres and inserted by COFY
instructicns.

• The definitions of litrary macros that are called by the ~rcgram are
listed cnly if the LIBMAC option has been specified.

• The sta terr.ents genera ted a s the result of a macro instruction are
listed after the macro instruction in the listing unless PRINT NCGEN
is in effect.

• Unless the NOALOGIC option has teen specified, asserrbler and machine
instructions with variacle symbols in open code are listed both as
they ap~ear in the in~ut to the assembler and with values
substituted for the variable symbols.

• When the assembler detects an error, it normally inserts an error
indicator in the listing after the statement in error, and prints an
error message in the diagnostics and statistics secticn. Using the
FLAG opticn you can suppress error messages below a severity code
that you choose.

• MNOTE messages a~~ear inline where they are generated. MNC'IE
messages can be suppressed in the same way as errcr rressages using
the FLAG cpticn.

• Literals that have not been assigned locations by LTORG instructions
appear after the ENe instruction.

• A generated statement has the same format as the statement from
which it was generated, unless a sul:stituted value is longer than
the variable symbcl used in the model statement.

•

38

Any statement in which the assembler finds an errcr is listed, even
if it would not otherwise be listed. (Fer exam~le, an AIF statement

("',
'- /

r\
\)

•

o

in a called library macro definition) •

Fer a statement generated from a macro definition, columns 73-80
contain the columns from the model staterrent frcro which it was
generated.

~he Assembler Listing 39

EXM:

LOC

000000 05CO

000002 9857 C1A6

000006 Q5EO C022
OOOOOA 9180 C020
OOOOOE Q710 C018

••• ERROR

••• ERROR

000012 5820 500C
000016 5020 100Q

001A8

0002Q
00022
0001A

• ••

•••

OOOOC
00004

The location counter value (address in hexadecimal notation) of the
assembled code. Exceptions are the following values:
• For' END with an operand: the address.of the symbol in the operand.
• For ORG: the location counter value before the ORG operation.
• For COM, CSECT, or DSECT: the current address of the control

section.
• For ENTRY, EXTRN, WXTRN, or DXD: blank. Columns 1 • 80 of the

source statements
records, as explained
under "Source Statement
Fields".

00002

00000

00000

PAGE

STl1T SOURCE S'IATE~EN'I ASM 0100 09.q6 01/05/72

52 ••• SAMPL050
53 • MAIN qOU'IINE • SAMPL051
5q ••• SA~'PL052
55 CSEC'l SAMPL053
56 ENTRY SEARCH SAMPL05q
57 BEGIN BALR R12,O ESTABLISH ACCRESSABILITY OF PRCGRAM S~PL055
58 USING .,R12 AND TELL THE ASSE~BLER SAMPL056
59 LM R5,R7,=A(LISTAREA,16,LISTEND) LOAD LIST AREA PARAMS SAMPL057
60 USING LIST,R5 REGISTER 5 POINTS TO THE LIST SAMPL058
61 MORE BAL R1Q,SEARCH FIND LIST ENTRY IN TABLE SAMPL059
62 'III SWITCH, NONE CHECK TO SEE IF NPME WAS FOUNC SAMPL060
63 80 NO'ITHERE BRANCH IF NO'I SAMPL061
6Q USING TABLE,Rl REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPL062
6'; l-lOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPL063

66+
67

68
69+·
70+
71+

l,l~PROPER OPE~AND ~YPES, NO STATEIIENTS GENERATED
MOUE TNUI'BER,LNUl'BER FROII LIST ENTRY

MOVE TADDRESS,LADDRESS TO TABLE EN'IRY
NEXT ,£,.;0 STATEI'EN'I'S GENERATED FOR MOVE MACRO
L 2, LADI::RESS
ST 2,'IADDRESS

SAMPL066

SAMPL069
SMiFL028
SA/lPL029
SN<'FL030 -

The source statement number.
Used to cross reference between
this section and the cross

The effective address (result of adding together a base
register value and a displacement value) for:

First column: the first operand of an SI or SS type
instruction.

The machine language code produced from the source
statement on the same line. The entries are left·justified.
Machine instructions are printed in full, with a blank
inserted after every four digits. Assembler instructions
are printed in full only if the PRINT instruction option
DATA is in effect. For instructions that do not generate
any object code this field is blank.

Second Column: the second operand of an RS, RX,
or SS type machine instruction,
This column also contains:

For ORG: the location counter value after the
ORG operation.
For USING: the first operand value.
For EQU: the value of the symbol.

Both fields contain six- digits; however, if the high
order digit is zero, it is not printed.

Figure 11. Source and machine language statements

40

(~
\ J

o

Relocation Dictionary tRLD)

The relocation dictionary (RLC) describes the contents of the RLD records
passed to the linkage editor or loader in the object module. The
entries describe those address constants in the mcdule that are affected
by program relocation.

The section helps you find the relocatable constants in ycur program.

The RLD section is described in detail in Figure 12. For a
description of the different address constants Ir,enticned in th~ figure,
refer to the secticn "G3 -- Defining Data", in Assembler Language.

EXAM

POS.ID REL.ID FLAGS ADDRESS

0001 0001 OC 00015"
0001 0001 OC 000164
0001 0001 OC 00017"
0001 0001 OC 0001A8
Oq01 0001 OC 0001BO

RELOCATION DICTIONARY PAGE

ASM 0100 09.46 01/05/72

e address where the constant is stored
the location counter value assigned to
he definition of the constantl.

This two-digit hexadecimal number is interpreted as follows:

First digit: Identifies the type of entry:
0= A· or y. type address constant
1 = V· type address constant
2"" Q. type address constant
3 = CXD entry

Second digit: The first three bits indicate the length of
the constant and whether the base should be added or
subtracted:

Bits 0 and 1
00 = 1 byte
01 = 2 bytes
10- 3 bytes
11 .= 4 bytes

The ESDI D assigned to the ESD
entry for the control section in
which tbe referenced symbol is
defined, or to the ESD entry
identifying it as an external
reference.

Bit 2
0=+
1 =-

Bit 3
Always 0

Figure 12. Relocation dictionary

The Assembler Listing 41

Symbol Cross Reference

The symbol cress reference section of the listing lists the syrrbols used
in the module, indicating both where they are defined and where they are
referenced. This is a useful tool in checking the logic ef yeur ~rogram;
it helps you see if your data references and branches are in erder.

The symbol cress reference section contains all symbols in the
module, except those appearing in the operand field ef V-type address
constants. Thus, symbols that are not listed in the scurce and machine
language statements section because of a PRINT OFF or PRINT NOGEN
instruction will a~~ear in the cross reference table. (For a description
of V-type address constants and the PRINT instruction, refer te
Assembler Language.

Symbols that are undefined but referenced will alse be listed, and
identified as undefined. Duplicate definitions will alsc be identified
in the table.

Figure 13 describes in detail the items of the cress reference table.

Note: The cross reference entry for a syrr.bol used in a literal refers
to the asserrbled literal in the literal peol. Lock u~ the literal cross
reference table te find where the symbol is used.

42

/

/~ (\

\)

/~ (\

)

EXAM

SYMBOL LEN VALUE DEFN

BEGIN 00002 00000000 00057
HIGHER 00002 OOOOOOqA 00090
LADDRESS OOOOq OOOOOOOC 0017q
LIST 00001 00000000 00170
LISTAREA 00008 000001q8 00132
LISTEND 00008 00000198 00152
LNAME 00008 00000000 00171
LNUMBER 00003 00000009 00173
LOOP OOOOq 00000030 00083
LSWITCH 00001 00000008 00172
MORE OOOOq 00000006 00061
MORE OOOOq 000000q2 00088
NONE 00001 00000080 00076
NOTFOUND OOOOq 00000050 00092
NOTTHERE OOOOq 0000001A 00072
R1 00001 00000001 00159
R12 00001 OOOOOOOC 00165
R1q 00001 OOOOOOOE 00166
R2 00001 00000002 00160
R3 00001 00000003 00161
R5 00001 00000005 00162
R6 00001 00000006·00163
R7 00001 00000007 00164
SEARCH OOOOq 0000002Q 00080
SWITCH 00001 00000022 00075
TABLAREA 00008 00000058 00099
TABLE 00001 00000000 00178
TADDRESS OOOOQ OOOOOOOQ 00181
TNAME 00008 00000008 00182
TNUMBER 00003 00000000 00179
TSWITCH 00001 00000003 00180

REFERENCES

00135 001Q3 00183
00085
00070
00060
00184
0018Q
00084

00088 00091 00139
00072
00073
.···DUPLICATE···.
00062 00072 00080
00089
00063
00064 00081 00082
00057 00058
00061 00086 00093
00088 00091
00081 00083 00087
00059 00060 00073
00073
00059
00056 00061
00062 00080 00092
00082
00064
00071
00084

CROSS-REFERENCE

00092

00082

00090

00087 00090

The statement number of the
statement in which the symbol
is defined.

Either the address represented
by the symbol. or the value to
which it is equated.

The length (hexadecimal notation),
in bytes, of the field occupied by
the value of the symbol.

Figure 13. Symbol cross reference

PAGE 7

ASM 0100 09.Q6 01/05/72

The statement numbers of the
statements in which the symbol
appears in the operand field.

The Assembler Listing 43

Literal Cross Reference

The literal cross reference section lists all the literals that are used
in the prograIr:.

Figure 14 gives a detailed explanation of the items of the literal
cross reference table.

EXAM LITERAL CROSS-REFERENCE PAGE 8

SYMBOL LEN VALUE DEFN REFERENCES ASH 0100 09.46 01/05/72

=A(LISTABEA,16,LISTEND)
00004 000001A8 00184 00059

=F'1 8,4,128'
00004 000001B4 00185 00081

The statement numbers of the statements
in which the literal is used in the source
code input.

The statement number assigned to the
literal. Statement numbers for literals
are assigned after L TORG instructions
or after the END instruction.

The address represented by
literal (the address at which
literal is assembled).

Figure 14. Literal cross reference

44

('\,

\)

(\
\ -)

n

Diagnostics and Statistics

Figure 15 gives a detailed explanation of the diagnostics and statistics
section of the listing. 'Ihe following information may also be helpful
in interpreting this section.

The diagncstic messages issued by the assembler are fully documented in
Appendix G of this manual.

Error messages with the text IF0197 ***MNO'IE*** indicate that an ~NCTE
message has been written in the source staterrent secticn cf the listing.
The ~NOTE message is given a statement number which is indicated
together with this diagnostic message.

Errors encountered during the processing of library macrc definitions
reference the END statement. (This is because library macros are read
in by the assembler after the source cede.) However, if you s~ecify the
I,IBMAC assembler option, all system macro definitions will be listed
after the END statement; an error will then reference the statement
within the macro definition that caused the error.

To su~press error ffiessages and MNOTE messages below a specified severity
level, you can use the FLAG option.

The Assembler Listing 45

The statement number of the statement flagged.
For certain types of errors found in library
macros, the statement number given is that of
the END statement. For certain other types. of
errors the statement number given is zero, because
the assembler cannot locate the statement in error.

The messa~ identifier. It consists of
the three characters I FO and three numeric
characters giving a unique number to the
message.

The total number of
statements for which
error messages were
issued.

The text of the message. Many IIIC .. ~"~".'11

include a segment of the error in the
statement or a pointer to the vicinity of

ASSEMBLER DIAGNOSTICS PAGE 9

STMT ASH 0100 09.Q6 01/05/12

SEQUENCE SYMBOL .TYPECGJ< IS UNDEFINED IN MACRO
ILLEGAL OR INVALID NAME FIELD

o IF0076
36 IF0016
65 IF0090
66 IF0197
67 IF0078
74 IF0078
88 IF0196

UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURI~'l4R)NDIITIOI~AL ASSEMBLY
••• MNOTE •••
UNDEFINED OP CODE
UNDEFINED OP CODE

149 IF0236
MORE BAS BEEN PREVIOUSLY DEFINED
ILLEGAL CHARACTER IN EXPRESSION NEAR

tlJMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY =
HIGHEST SEVERITY WAS 8~~~~~~~~~
OPTIONS FOR THIS ASSEMBLY

ALIGN. ALOGIC. BUFSIZE (STD). NODECX. ESD.
NOMLOGIC, NONUMBER, NOOBJECT, NORENT. RLD.
SYSPARH 0

WORJ(FILE BUFFER SIZE = 2558
TOTAL RECORDS READ FROM SYSTEM INPUT
TOTAL RECORDS READ FROM SYSTEM LIBRARY
TOTAL RECORDS PUNCHED
TOTAL RECORDS

Statistical information
relating to input to and
output from the assembler.

A list indicating the
options in effect
during the assembly.

Figure 15. Diagnostics and statistics

46

XREF

The highest severity code encountered
during the assembly. Each message is
assigned a severity code indicating the
relative severity of the error. The
highest severity code encountered is
passed to the control program as the
return code of the assembly.

n
)

I~ .. J

Programming Considerations

The purpose of this sectien is to serve as a bridge between Assembler
Language and other manuals that you will use frequently when programming
in the asserrbler language. Among the topics discussed are:

• Cesigning your program

• Specifying the entry point into your prograrr.

• Linking with rrodules written in other programming languages.

• Linking with processing programs.

Designing Your Program

When you design your pregram to run under VS, you must make sure that it
follows the conventions required by that operating system. The minimum
requirerr-ents for a very simple program are given in Figure 16.

However, you will hardly ever write such a simple program and will
therefore want to refer to the section "program Design" in OSjVS .
Supervisor Services and Macro Instructions. Among the topics covered
there are:

• The linkage registers that the operating system uses in passing
control between various components of the centrcl ~regram, and
between the control program and your problerr pregrarr. You sheuld
use the same registers when calling your own programs.

• Acquiring the information in the PARM field of the EXEC staterroent.
In the sarre way as the assembler checks the options you specify for
it in the PARM field, you can have your own program check the
contents of that field.

• Saving the calling program's registers, so that they are net
modified by the called program.

• Establishing a base register.

• Providing a save area, so that any programs called by your program
can save the contents of your registers and restore the contents
upon return. Note that certain systerr macro instructions (such as
GET or PU~) call subroutines that assume that your program has
provided a save area.

• Virtual storage censiderations.

• Task creation.

Programming Considerations 47

The follewing coding shows the m1n1murn nurrber.ef instructions yeu
need for a simple ~regram. The ~rogram will be less than 4096
bytes long and will consist of only one central sectien. It will
not call any subreutines or use any other IEM-supplied macros
than SAVE and RETURN.

CSA

SAVE13

SAVE
USING

ST

(14, 12)
CSA,15

13,SAVE13

(yeur ~regram)

L
RE'IURN
1:S

13,SAVE13
(14,12)

F

(your constants and

END

Save registers fer calling routine
The control program passes control
to the routine using register 15;
use that register as a base
Store address of calling routine's
save area

Reload address of save area
Return to calling routine in AOS
Space to save address ef calling
routine's save area

data areas)

Figure 16. Minimum requirements for a sirr~le ~regrarn

Specifying the Entry Point into Your Program

When your otject medule is link edited, either alone, or together with
other modules, the entry ~oint into the lead rrodule ~reduced is
determined ty the linkage editor. (The entry point is the address in
the load module to which control is given ty the centrel ~rograrr, when
the load module is to te executed.)

Yeu can use the assembler END instruction or the linkage editor
ENTRY control statement to specify the entry point te the linkage
editor, as ex~lained under "Output From The Linkage Editcr" in Linkage
Editer and Leader.

~

Linking with Modules Produced by other Language Translators

The modules produced by the assemtler can te combined with other rr.odules
by the linkage editor. These modules can be object modules or load
modules, and may have teen originally written· in any ef the languages
supported by the o~erating system. This makes it possible for you to
use different programming languages for different ~arts ef ycur ~rogram,
allowing each part to te written in the language best suited fer it.

Hewever, when linking between modules produced by different language
translators you must make sure that each rredule cenferrrs to the data
formats and linkage cenventions required. If in~ut/cut~ut c~erations
are performed, yeu must also make sure that the appropriate ~L
statements are supplied for the data sets used in the different modules.
For informatien on the requirements for linking between modules written
in the assembler language and the protlerr-eriented lar.guages, refer to
the'programmer's guide for the particularcorepiler yeu are using.

48

Linking with mM-Supplied Processing Programs

You usually use the EXEC job control statement to load and give control
to a processing program of the operating system. However, you can also
load and give control to a sort program, a utility prcgram, or even a
compiler "dynamically", that is, J:y using a systerr. rr:acrc instruction
(LINK, XCTL, CALL, or ATTACH) in your own program. When calling a

program dynamically, make sure you follow the OS/VS linking conventions
described under "program resign n in OS/VS Supervisor Services and Macro
Instructions. You must also pass certain parameters to the processing
program. These parameters give the same information to the program as
you would supply in job control statements, if you called the program
with an EXEC statement. Appendix D describes how to call the assembler
dynamically. Dynamic invocation of each of the other IBM-supplied
processing programs is covered in one of the manuals describing that
program.

programming Considerations 49

Adding Macro Definitions to a Libra;ry

You can include your own macro definitions or other secticns of
often-used source code in the system macro library or in a ~rivate
library that you concatenate with the system macro library. A macro
library can consist of both macro definitions and sections of code to be
inserted by the COpy asserrbler instruction.

You use the IEBUPDtE ~rogram to add me~ers to a macro library. For
further information on IEEUPCTE and the utility centrcl staterr,ents
needed, refer to os/ys Utilities, Order No. GC35-0005. The following
example shows how a new macro definition, NEWMAC, is added to the sys~em
macro library (SYS1.MACLIE).

//CATMAC
//STEF1
//SYSUT1
//SYSUT2
//SYSFRINT
//SYSIN
./

./
/*

JOB
EXEC
1:1:
I:C
1:1:
DD
AI:C
MACRO
NEWMAC
LCLA

MENI:·
ENDUP

12345,BRCWN.JR, •••
PGM=IEEUPI:TE,PARM=MOD
I:SN=SYS1.MACLIB,DISP=OLD
I:SN=SYS1.MACLIB,DISP=OLD
SYSOUT=A
DAtA
LIST=ALL,NAME=NEWMAC,LEVEL=01,SOURCE=O

&OP1,&OP2
&PAR1,&PAR2

The SYSUT1 and SYSUT2 DD statements indicate that SYS1.MACLIE, an
existing program library, is to be updated. Out~ut frcrr the IEEUPCTE
program is printed on the Class A output device (s~ecified by SYSPRINT) •
The utility control statement ./ AI:D and the macrc definition fcllo~ the
SYSIN staterr.ent. t'he./ ADD sta tement specifies that the statements
following it are to be added to the macro library under the narr.e NEW~AC.
When you include rracro definitions in the library, the name specified in
the NAME parameter of the ./ AI:C staterr,ent must be the sarr,e as the
operation ccde of the macro definition~

50

f\
,)

Appendix A. Glossary

~he following terms are defined as they are used in this rranual. If you
do not find the terrr yeu are looking for, refer to the Index er to the
IBM rata processin~l~ary, Crder No. GC20-1699.

The terms are of three different kinds:

• refinitions made ty the American National Standards Institute
~NSI) • Such definitiens are marked ty an asterisk (~.

• Cefinitions valid for as. Such definitions are rrarked by an C.

• Cefinitions of terrrs that are used in describing the lcgic ef the CS
Assemtler. ~hey are included here only because they are used in the
assembler diagnostic messages. For further infcrrraticn cn these
terms, refer te OS/VS Assembler Logic, SY33-8041. Such definitions
are marked by an A. •

IE~ is grateful to the American Natienal Star:dards Institute
~NSI) fer ~errnission to reprint its definitions from the

American National Standard Vocatulary fer Infcrrratien
Precessing, which was prepared by Subcommittee X3RS on
Terminology and Glossary of Arrerican Natienal Standards
Cerrrrittee X3.

~his glcssary dces not explain terms pertaining to the assemtler
language. Such terms are covered in the glossary ef Asserrbler language.

a assemble: To prepare a machine language pregrarr frcrr a syrrbclic language
program by sutstituting machine operation codes for symtolic operation
codes and acsolute or relocatatle addresses for syrrbclic addresses.

*asserrtler: A cemputer Frogram that assembles.

Oassembler instruction: An assembler language source statement that
causes the assembler to perform a specific operatien. Asserrbler
instructiens are net translated into machine instructions.

a assembler language: A source language that includes syrrtclic rrachine
language staterrents in which there is a one-to-one correspondence with
the instruction formats and data formats of the computer. The assemtler
language also contains statements that represent asserrtler instructions
and rracro instructiens.

oassembler option: A function of the asserrtler requested fcr a particular
jot step.

a auxiliary storage: Online storage other than main storage; for example
storage on magnetic tapes or on direct access devices.

Ocatalcged ~rocedure: A set of job control statements that has been
placed in a partitioned data set called the ~recedure litrary, and can
be retrieved by naming it in an execute (EXEC) staterrer.t er started by
the SlAR~ cerrrrand.

Oconcatenated data sets: A group of logically connected data sets that are
treated as cne data set fer the duration of a job step.

* contrel program: A pregrarr that is designed to schedule and supervise
the performance of data processing work ty a cerrputing systerr.

A~pendix A. Glessary 51

ocontrol section: That part of a program specified by the programmer to
be a relocatable unit, all elements of which are to be loaded into
adjoining main storage locations.

odata set: The major unit of data storage and retrieval in the c~erating
systerr., ccnsisting of a collection of data in one of several prescribed
arrangements and described by control information to ~hicb the system
has access.

*diagnostic: Pertaining to the detection and isolaticn cf a malfunction or
mistake.

Aedited text: Source statements modified by the assembler for internal
use. The initial processing of the assembler is referred to as editing.

oentry point: A location in a module to which control can be ~assed from
another module or frcrr. the control program.

ESD: (See external symbol dictionary)

oexecute (EXEC) statement: A job control language (JeL) statement that
marks the beginning of a job step and identifies the ~rcgram to be
executed or the cataloged or in-stream procedure to be used.

oexternal symbol dictionary (ESC): Control inforrratien asscciated with an
object or load module which identifies the external syrrbcls in the
module.

Aglobal dictionary: An internal table used by the asserrbler during macro
generat10n to contain the current values of all unique global SErIA,
SETE, and SETC variables from all text segments.

Aglobal vector table: A table of pointers in the skeleton dictionary of
each text segment showing where the global variables are located -in the
global dictienary.

Oinput stream: The sequence of job control staterr.ents and data submitted
to an operating system on an input unit especially activated for this
purpose by the operator.

*

instructien:

1. A statement that specifies an operation and the values and
locations of its operands.

2. (See assembler instruction, machine instruction, and macro
instruction)

JCL: (See job control language)

*job: A specified group of tasks prescribed as a unit of work for a
computer. Ey extension, a job usually includes all necessary computer
programs, linkages, files, and instructions to the operating system.

Ojob control language (JCL): A language used to code job control
statements.

*job contrel staterr.ent: A statement in a job that is used in identifying
the Job or descr1bing its requirements to the operating system.

job step:

* 1 •

52

The execution of a computer program explicitly identified by a
job contrel statement. A job may specify that several job steps
be executed.

n -j

n . /

()

a 2. A unit of work associated with one processing program or one
cataloged procedure and related data. A job ccnsists of one or
more job ste~s.

a jobname: 'Ihe name assigned to the aOB statement; it identifies the jot
to the system.

* language: A set of re~resentations, conventions, and rules used to
convey information.

a language translator: A general term for any assembler, ccmpiler, or
other rout1ne that acce~s statements in one language and produces
equivalent statements in another language.

library: (See partitioned data set)

a library macro definition: A macro definition that is stored in a macro
library. The IBM-supplied supervisor and data management macro
definitions are examples of library macro definitions.

a linkage editor: A processing program that prepares the out~ut of
language translators for execution. It combines separately produced
object or load modules; resolves symbolic cross references among them;
replaces, deletes, and adds contrql sections; and generates overlay
structures on request; and produces executable code (a load module) that
is ready to be fetched into main storage and executed.

a linking conventions: A set of conventions for passing control between
different routines of the operating system.

a load rrodule: The output of a single linkage editor execution. A load
module is in a format suitable for loading into virtual storage for
execution.

a load rrodule library: A partitioned data set that is used to store and
retrieve load modules.

a loader: A processing program that perforrr;s the basic editing functions
of the linkage editor, and also fetches and gives control to the
processed program, all in one job step. It accepts oeject modules and
load modules created by the linkage editor and generates executable code
directly in storage. 'Ihe loader does not produce load modules for
program libraries.

A local dictionary: An internal table used by the assembler during macro
generation to contain the current values of all lccal SET symbcls.
There is one local dictionary for open code, and cne fer each macro
definition.

a location counter: A counter whose value indicates the assembled address
of a rrachine instruction or a constant or the address of an area of
reserved storage, relative to the eeginning of the centrel section.

* machine instruction: An instruction that a machine can recognize and
execute.

* machine language: A language that is used directly by the machine.

macro: (See macro instruction and macro definition)

macro call: (See macro instruction)

a macro definition: A set of statements that defines the name of, format
of, and conditions for generating a sequence of assembler language
statements frcm a single source statement. This statement is a macro
instruction that calls the definition. (See also library macre

Appendix A. Glossary 53

definition and source macro definition)

macro expansion: (See macro generation)

amacro generation (macro expansion): An e~eration in which the assembler
generates a sequence of assemEler language statements frem a single
macro instruction, under conditions described by a macro definition.

amacro instruction ~acro call): An assembler language statement that
causes the assembler to process a predefined set cf statements called a
macro definitien.

a macro library: A library containing macro definitions. 'Ihe supervisor
and data management macro definitions su~~lied by IBM (GET, LINK, etc.)
are contained in the system macro library. Private rr.acre libraries can
be concatenated with the system macro library.

amain storage: All ~rogram addressable storage from which instructions
may be executed and from which data can be leaded directly inte
registers.

module: (see load module, otject module, and source Ircdule)

a object module: The machine-language output of a single execution of an
assembler or a compiler. An otject module is used as in~ut te the
linkage editor or leader.

* online storage: Storage under the control of the central ~recessing unit.

a open code: The portien ef a source module that lies eutside of and after
any source rr.acro definitions that may be specified.

*operatinq system: Software which controls the executien of ccm~uter
programs and which may frcvide scheduling, debugging, input/output
control, accounting, compilation, storage assignment, data rr.anagerr.ent,
and related services.

A ordinary syrrbel attribute reference dictionary: A dicticnary used by the
assembler. The asserrbler puts an entry in it for each ordinary symbol
encountered in the name field of a staterr:ent. 'Ihe entry ccntains the
attributes (type, length, etc.) of the symbol.

option: (See assembler option)

a partitioned data set (library): A data set in direct access storage that
is divided into partitions, called members, each cf which can contain a
program or a part of a program. Each partitiened data set contains a
directory (er index) that the control program can use to locate a
program in the partitioned data set.

a procedure ste~: A unit of work associated with one processing ~rogram
and related data within a cataloged procedure. A cataloged procedure
consists of one or more procedure steps.

a process ing ~regrarr.:

54

1. A general term for any program that is not a control program.

2. Any program capable of operating in the ~roblerr, ~rogram state.
This includes IBM-distributed language translators, application
programs, service programs, and user-written ~rcgrams.

\.

(~
\. /

o program:

1 •

2.

A general term for any comeination of statements that can be
interpreted by a computer or language translator, and that
serves to perform a specific function.

To write a ~rogram.

programmer nacro definition: (See source macro definition)

o real storage: The storage of a System/370 corr:~uter frcrr which the
central processing unit can directly obtain instructicns and data and to
which it can directly return results.

* relocation dictionary: The part of an oeject or lcad ncdule that
identifies all addresses that must be adjusted when a relocation occurs.

o return code: A value placed in the return code register at the
completion of a ~rcgram. The value is established by the user and may
be used to influence the execution of succeeding ~rograrr.s cr, in the
case of an abnormal end of task, may simply be ~rinted fcr ~rograrr~er
analysis.

o sequential data set: A data set whose records are organized cn the basis
of their successive ~hysical positions such as on magnetic ta~e.

Oseverity code: A ccde assigned by the assembler to each error detected
in the source code. The highest code encountered during assembly becomes
the return code of the assembly step.

Askeleton dictionary: A dictionary built by the assembler for each text
segment. It contains the global vector, the sequence symbol reference
dictionary, and the local dictionary.

o source macro definition: A macro definition included in a source module,
either physically or as the result of a COpy instruction.

o source module: The source statements that, constitute the input to a
language translator for a particular translation.

o source statement: A statement written in symbols cf a ~rogramrr.ing
language.

*staterr.ent: A meaningful expression or generalized instruction in a
source language.

step: (See job step and procedure step)

ostepname: The name assigned to an execute (EXEC) statement. It
identifies a job step within a jot.

o symbolic ~arameter:

1. In JCL, a symbol preceded by an ampersand that appears in a
cataloged procedure. Values are assigned to syrrbolic ~arameters
when the ~rccedure in which they appear is called.

2. In assembler programming, a variable symbcl declared in the
prototype statement of a macro definition.

Asymbol file: A data set used by the assembler for symbol definitions and
references and literals.

o systerr. macro definition: Loosely, an IBM-su~plied library macro
definition which provides access to operating system facilities.

Appendix A. Glossary 55

* terminal. A point in a system or communication network at which data can
either enter cr leave cr both.

Atext segment. The range over which a local dicticnary has meaning. The
source module is divided into text segments with a segment for o~en code
and one for each macro definition.

*transforrn. To change the form of data according to specific rules.

* translate. '10 transfcrm sta tements from one language into another
without significantly changing the meaning.

ovirtual storage. Address space a~pearing to the user as real stcrage
from which instructions and data are ma~~ed into real storage locations.
'Ihe size cf virtual storage is limited l:y the addressing scheme of the
computing system and by the amount of auxiliary storage available,
rather than by the actual numl:er of real storage lccaticns.

56

Appendix B. Assembler Sample Program

The sample program shown in Figure 17 can be used as a test of the
functioning of the assembler after your system has been generated (see
OS/VSl System Generation Reference, Order No. GC26-3791). It also serves
serves as a good example of assembler language coding and of the
listing produced by the assembler.

The ~rograrr illustrates the definition and use 'of user-written macro
instructions, use of IEM-supplied rracrc instructicns, use cf durrmy
contrcl secticns, and the method of saving and restoring registers upon
entry to and exit from a program.

The data to be ~rccessed is assemcled as part of the ~rcgram. It
consists of a table and a list of entries that are compared with the
table. Each item in the tatle contains an argurrent narre (such as AI FHA)
and s~ace in which infcrmation concerning the name is to te placed.
Each entry in the list contains an argurrent narre and function values.
The fcrmats of the table entries and the list entries are different, and
both formats are descrited in dummy sections.

The ~rograrr searches the table for an argument name in the list. If a
match is found, the function values are reformatted and moved to the
appro~riate table entry. If an argurrent narre in the list cannet be
found in the table, a switch is set in the list entry. After all the
list entries have been processed, the list area and the table area are
compared with a table and a list containing the ~iedefined results. If
the tables and lists are equal, the routine executed ~roperly, and a
message is written On the operator's ccnscle to indicate this.

IFOSAMP EXTERNAL SYMBOL DICTIONARY

SYMBOL TYPE ID A~DR LENGTH LDID

SAMPLR SD 0001 000000 0003CO

Figure 17. Assembler sample prograrr.
(Part 1 cf 11)

PAGE

ASM 0100 15.00 01/03/12

Appendix B. Assembler Sample program 57

IFOSAMP - SAMPLE PROGRAM PAGE 2

LOC OBJECT CODE ADDR 1 ADDR2 STMT SOURCE STATEMENT ASH 0100 15.00 01/03/12

SAMPL002
SAMPL003
SAMPL004
SAMPL005
SAMPL006
SAMPL001
SAMPL008
SAMPL009
SAMPL010
SAMPL011
SAMPL012
SAMPL013
SAMPL014
SAMPL015
SAMPL016
SAMPL011
SAMPL018

000000

2
3 •
4 •
5 •
6
1
8 ••
9 ••

10 ••
11
12 ••
13 ••
14 ••
15
16 ••
11 ••
18 ••

PRINT DATA

THIS IS THE MACRO DEFINITION

MACRO
MOVE 'TO, 'FROM

DEFINE SETC SYMBOL

LCLC, nYPE

CHECK NUMBER OF OPERANDS

AIF (N' ESYSLIST NE 2) .ERROR1

CHECK TYPE ATTRIBUTES OF OPERANDS

19 AIF (T'nO NE T"FROM) .ERROR2
20 AIF (T' 'TO EQ 'C' OR T' ETO EQ 'G' OR T' 'TO EQ ~K') .TYPECGK

(T"TO EQ 'D' OR T"TO EQ 'E' OR T"TO EQ 'H') .TYPEDEH
(T'nO EQ 'F') .MOVE

21 AIF
22 AIF
23 AGO .ERROR3
24 .TYPEDEH ANOP
25 ••
26 ••
27 ••
28 nYPE
29 .MOVE
30 •
31
32
33
34 ••
35 ••
36 ••

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL

SETC T"TO
ANOP
NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
L'TYPE 2, 'FROM
ST'TYPE 2,'TO
MEXl'I

CHECR LENGTH ATTRIBUTES OF OPERANDS

31 .TYPECGK AIF ~"TO NE L"FROM OR L"TO GT 256).ERROR4
38 • NEXT STATEMENT GENERATED FOR MOVE MACRO
39 MVC 'TO, 'FROM
40 MEXIT
41 ••
42 ••
43 ••
44 .ERROR1
45
46 .ERROR2
47
48 .ERROR3
49
SO .ERROR4
51
52 •
53 •
54 •

ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

MNOTE
MEXIT
MNOTE
MEXIT
MNOTE
MEX~T

MNOTE
MEND

1, 'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED'

1, 'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED'

1, 'IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED'

1, 'IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED'

MAIN ROUTINE

55 SAMPLR CSECT
56 BEGIN SAVE (14,12)".

Figure 17. Assembler sample program
(Part 2 of .. 11)

58

SAMPL019
SAMPL020
SAMPL021
SAMPL022
SAMPL023
SAMPL024
SAMPL025
SAMPL026
SAMPL021
SAMPL028
SAMPL029
SAMPL030
SAMPL031
SAMPL032
SAMPL033
SAMPL034
SAMPL035
SAMPL036
SAMPL031
SAMPL038
SAMPL039
SAMPL040
SAMPL041
SAMPLOll2
SAMPLOll3
SAMPLO II II
SAMPL045
SAMPLOll6
SAMPLOll7
SAMPLOll8
SAMPLOll9
SAMPL050
SAMPL051
SAMPL052
SAMPL053
SAMPL054
SAMPL055
SAMPL056

'\
)

(\,
\ ./

~J

.:~.)

IFOSAMP - SAMPLE PROGRAM PAGE 3

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01/03/72

000000 47FO FOOA OOOOA
000004 05
000005 C2C5C7C9D5
OOOOOA 90EC DOOC OOOOC
OOOOOE 05CO

00010
000010 5000 COCO 00000
000014 9857 C398 003A8

00000
000018 45EO COC6 000D6
00001C 9180 COC4 000D4
000020 4710 COB6 000C6

00000

000024 D200 1003 5008 00003 00008

00002A 0202 1000 5009 00000 00009

000030 5820 500C OOOOC
000034 5020 1004 00004
000038 8756 C008 00018
00003C D5EF C248 COF8 00258 00108
000042 4770 C080 00090
000046 D55F C338 C1E8 00348 001F8
00004C 4770 C080 00090

000050
000050 4510 C06E 0007E
000054 0025
000056 8000
000058 E2C1D4D7D3C540D7
000060 D9D6C7D9C1D440C9
000068 C6D6E2C1D4D740E2
000070 E4C3C3C5E2E2C6E4
000078 D3

00079
000079 0000
00007B 4020
00007E
00007E OA23
000080 58DO COCO OOODO

000084 98EC DOOC OOOOC
000088 41FO 0000 00000
00008C 07FE

00008E 0700
000090 4510 COBO OOOCO
000094 0027
000096 8000
000098 E2C1D4D7D3C540D7

57+BEGIN B 10 (0,15)
58+ DC AL1 (5)
59+ DC CL5'BEGIN'
60 + S'D! 14, 12, 12 (13)
61 BALR R12,0
62 USING .• ,R12
63 ST '13,SAVE13

BRANCH AROUND 10

IDENTIFIER
SAVE REGISTERS

ESTABLISH ADDRESSABILITY OF PROGRAM
AND TELL THE ASSEMBLER WHAT BASE TO USE

64 LM R5,R7,=A~ISTAREA,16,LISTEN~ LOAD LIST AREA PARAMETERS
65 USING LIST,R5 REGISTER 5 POINTS TO THE LIST
66 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE
67 TM SWITCH, NONE CHECK TO SEE IF NAME WAS FOUND
68 EO NOTTHERE BRANCH IF NOT
69 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY
70 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS
71+. NEXT STATEMENT GENERATED FOR MOVE MACRO
72+ mc TSWITCH,LSWITCH
73 MOVE TNUMBER,LNUMBER FROM LIST ENTRY
74+. NEXT STATEMENT GENERATED FOR MOVE MACRO
75+ mc TNUMBER,LNtlo1BER
76 MOVE TADDRESS,LADDRESS TO TABLE ENTRY
77+. NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
78+ L 2,LADDRESS
79+ ST 2,TADDRESS
80 LISTLOOP BXLE R5,R6,MORE LOOP THROUGH THE LIST
81 CLC TESTTABL(240) ,TABLAREA
82 BNE NOTRIGHT
83 CLC TESTLIST(96) ,LISTAREA
84 BNE NOTRIGHT
85 WTO 'SAMPLE PROGRAM IFOSAMP SUCCESSFUL',ROUTCDE=(2,11)
86+ CNOP 0,4
87+ SAL 1,IHB0005A BRANCH AROUND MESSAGE
88+ DC AL2 (IHB0005-.) MESSAGE LENGTH
89+ DC B'1000000000000000' MCSFLAGS FIELC
90+ DC C'SAMPLE PROGRAM IFOSAMP SUCCESSFUL' MESSAGE

91+IHB0005 EQU •
92+ DC B'OOOOOOOOOOOOOOOO'
93+ DC B'0100000000100000'
94+IHB0005A OS OH
95+ SVC 35
96 EXIT L R13,SAVE13
97 RETURN (14,12) ,RC=O
98+ LM 14,12,12 (13)
99+ LA 15,0 (0,0)

100+ BR 14
101 •

DESCRIPTOR COCES
ROUTING CODES

ISSUE SVC

RESTORE THE REGISTERS
LOAD RETURN CODE
RETURN

102 NOTRIGHT WTO 'SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL' ,ROUTeDE= (2,11)
103+ CNOP 0,4
104+NOTRIGHT BAL 1,IHB0007A BRANCH AROUND MESSAGE
105+ DC AL2 (IHB0007-.) MESSAGE LENGTH
106+ DC B'1000000000000000' MCSFLAGS FIELD
107+ DC C'SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL' MESSAGE

Figure 17. Assembler sample program
(Part 3 cf 11)

Appendix B. Asserrbler Sarr~le Prcgram

00860000
00880000
00900000
01180000
SAMPL057
SAMPL058
SAMPL059
SAMPL060
SAMPL061
SAMPL062
SAMPL063
SAMPL064
SAMPL065
SAMPL066
SAMPL038
SAMPL039
SAMPL067
SAMPL038
SAMPL039
SAMPL068
SAMPL030
SAMPL031
SAMPL032
SAMPL069
SAMPL070
SAMPL071
SAMPL072
SAMPL073
SAMPL074
00480000
00500000
00428018
00428818
00429618

00430418
00432018
00432818
00560000
00600000
SAMPL075
SAMPL076
00260000
00700000
00800000
SAMPL077
SAMPL078
00480000
00500000
00428018
00428818
00429618

59

lFOSAHP - SAMPLE PROGRAM PAGE

LOC OBJEcr CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASH 0100 15.00 01/03/12

OOOOAO D9D6C7D9C1D440C9
OOOOAS C6D6E2C1D4D740E4
OOOOBO D5E2E4C3C3C5E2E2
OOOOBS C6E4D3

OOOOBB 0000
OOOOBD 4020
OOOOCO
OOOOCO OA23
0000C2 47FO C070
0000C6 96S0 500S
OOOOCA 47FO C02S
OOOOCE 0000
OOOODO 00000000
0000D4 00

0000D5 00
0000D6 947F COC4
OOOODA 9S13 C3A4
OOOODE 4111 COES
0000E2 SS30 0001
0000E6 D507 5000 100S
OOOOEC 4720 COEC
OOOOFO 07SE
0000F2 1B13

OOOON 4620 COD2
OOOOFS 47FO COF2
OOOOFC 1A13
OOOOFE 4620 COD2
000102 96S0 COC4
000106 07FE

00010S

OOOSO
OOOOS
0003S

00004
003B4
OOOFS
00001
00000
OOOFC

000E2
00102

000E2
000D4

00010S 0000000000000000
000110 C1D3D7CSC1404040
00011S 0000000000000000
000120 C2C5E3C140404040
00012S 0000000000000000
000130 C4C5D3E3C1404040
00013S 0000000000000000
000140 C5D7E2C9D3D6D540
00014S 0000000000000000
000150 C5E3C14040404040
00015S 0000000000000000
000160 C7C1D4D4C1404040
00016S 0000000000000000
000170 C9D6E3C140404040
00017S 0000000000000000
0001S0 D2C1D7D7C1404040

OOOBB

OOOSO

OOOOS

10S+lHB0007 EQU •
109+ DC B'OOOOOOOOOOOOOOOO' DESCRIPTOR CO~ES
110+ DC B'0100000000100000' ROUTING CODES
111+IHB0007A DS OH
112+ SVC 35 ISSUE SVC
113 B EXIT
114 NOTTHERE 01 LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY
115 B LISTLOOP GO BACK AND LOOP

116 SAVE13
117 SWITCH
11S NONE
119 •

DC F'O'
DC X'OO'
EQU X'SO'

120 • BINARY SEARCH ROUTINE
121 •

122 SEARCH
123
124
125 LOOP
126
127
12S
129

NI
LM
LA
SRL
CLC
BH
BCR
SR

130 Bcr
131 B
132 HIGHER AR
133 Bcr
134 NOTFOUND 01
135 BR

SWITCH,255-NONE TURN OFF NOT FOUND SWITCH
R1,R3,=F'12S,4,12S' LOAD TABLE PARAMETERS
R1,TABLAREA-16 (R1) GET ADDRESS OF MItDLE ENTRY
R3,1 DIVIDE INCREMENT BY 2
LNAME,TNAME COMPARE LIST ENTRY WITH TABLE ENTRY
HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE
S,R14 EXIT IF FOUND
R1,R3 OTHERWISE IT IS LOWER IN THE TABLE

R2,LOOP
NOTFOUND
R1,R3
R2,LOOP
SWITCH, NONE
R14

SO SUBTRAcr INCREMENT
LOOP 4 TIMES
ARGUMENT IS NOT IN THE TABLE
ADD INCREMENT
LOOP 4 TIMES
TURN ON NOT FOUND SWITCH
EXIT

136 •
137 •
13S •

THIS IS THE TABLE

139 DS
140 TABLAREA DC

141

142

143

144

145

146

147

DC

DC

DC

DC

DC

DC

DC

OD
XLS'O',CLS'ALPHA'

XLS'O',CLS'BETA'

XLS'O',CLS'DELTA'

XLS'O',CLS'EPSILON'

XLS'O',CLS'ETA'

XLS'O',CLS'GAMMA'

XLS'O' ,CLS 'IOTA'

Figure 17. Assembler sample program
(Part 4 of 11)

60

0043041S
0043201S
00432S1S
00560000
00600000
SAMPL079
SAMPLOSO
SAMPLOS1

SAMPLOS2
SAMPLOS3
SAMPLOS4
SAMPLOS5
SAMPLOS6
SAI'IPLOS7

SAMPLOSS
SAMPLOS9
SAMPL090
SAMPL091
SAMPL092
SAMPL093
SAMPL094

XSAMPL095
SAMPL096
SAMPL097
SAMPL09S
SAMPL099
SAMPL100
SAMPL101
SAMPL102
SAMPL103
SAMPL104
SAMPL105
SAMPL106
SAMPL107

SAMPL10S

SAMPL109

SAMPL110

SAMPL111

SAMPL112

SAMPL113

SAMPL114

(~
I
\,

(j

C)

~ .. J

(~)

IFOSAMP - SAl1PLE PROGRAM

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0100

0001SS 0000000000000000 14S DC
000190 D3C1D4C2C4C14040
00019S 0000000000000000 149 DC
0001AO D4E4404040404040
0001AS 0000000000000000 lS0 DC
0001 BO DSE4404040404040
0001BS 0000000000000000 151 DC
0001CO D6D4C9C3D9D6DS40
0001CS 0000000000000000 152 DC
0001DO D1CSC94040404040
0001DS 0000000000000000 153 DC
0001EO E2C9C1D4C1404040
0001ES 0000000000000000 154 DC
0001FO E9CSE3C140404040

155 •
156 • THIS
157 •

0001FS D3C1D4C2C4C14040 lSS LISTAREA DC
000200 OAOOO01DOOOOOOOO
00020S E9CSE3C140404040 159 DC
000210 OSOOOOOSOOOOOOE2
00021S E3CSCSE3C1404040 160 DC
000220 0200002DOOOOOOOO
00022S E3C1E44040404040 161 DC
000230 0000000000000001
00023S D3C9E2E340404040 162 DC
000240 1FOO01Dl00000000
00024S C1D3D7CSC1404040 163 LISTENI' DC
0002S0 000000010000007B

164 •
16S • THIS
166 •

002SS 167 DS
002SS 000001000000007B 16S TESTTABL DC
00260 C1D3r7CSC1404040
0026S 0000000000000000 169 DC
00210 C2C5E3C140404040
0021S 0000000000000000 170 DC
002S0 C4C5D3E3C1404040
002SS 0000000000000000 171 DC
00290 CSD7E2C9D3D6DS40
0029S 0000000000000000 172 DC
002AO CSE3C14040404040
002AS 0000000000000000 173 DC
002BO C7C1D4D4C1404040
002BS 0000000000000000 174 DC
002CO C9D6E3C140404040
002CS 0000000000000000 175 DC
002DO D2C1D7D1C1404040
002DS 00001DOAOOOOOOOO 176 DC
002EO D3C1D4C2C4C14040
002ES 0000000000000000 177 DC
002FO D4E4404040404040
002FS 0000000000000000 17S DC
00300 DSE4404040404040

Figure 17. Assembler sample program
(Part 5 cf 11)

XLS'O',CLS'LAMBDA'

XLS'O',CLS'MU'

XLS'O' ,CLS'NU'

XLS'O',CLS'OMICRON'

XLS'O',CLS'PHI'

XLS'O',CLS'SIGMA'

XLS'O',CLS'ZETA'

IS THE LIST

CLS'LAMBDA',X'OA',FL3'29',A(BEGIN)

CLS'ZETA' ,X'OS' ,FL3'S',A (LOOP)

CLS 'THETA' ,X' 02' ,FL3' 45' ,A (BEGIN)

CLS'TAU' ,X'OO' ,FL3'0',A (1)

CLa'LIST' ,X'lF' ,FL3'46S',A (0)

CLS'ALPHA',X'00',FL3'1',A(123)

IS THE CONTROL TABLE

OD
FL3'1' ,X'OO',A (123) ,CLS'ALPHA'

XLS'O',CLS'BETA'

XLS'O',CLS'DELTA'

XLS'O',CLS'EPSILON'

XLS'O',CLS'ETA'

XLS'O',CLS'GAMMA'

XLS'O',CLS'IOTA'

XLS'O',CLS'RAPPA'

FL3'29',X'OA',A(BEGIN) ,CLS'LAMBDA'

XLS'O' ,CLa'MU'

XLS'O',CLS'NU'

PAGE S

lS.00 01/03/72

SAMPLllS

SAMPLl16

SAMPLll1

SAMPL118

SAMPL119

SAMPL120

SAMPL121

SAMPL122
SAMPL123
SAMPL124
SAMPL12S

SAMPL126

SAMPL121

SAMPL12S

SAMPL129

SAMPL130

SAMPL131
SAMPL132
SAMPL133
SAMPL134
SAMPL13S

SAMPL136

SAMPL131

SAMPL13S

SAMPL139

SAMPL140

SAMPL141

SAMPL142

SAMPL143

SAMPL144

SAMPL14S

Appendix B. Asserrbler San~le Prcgram 61

IFOSAMP - SAMPLE PROGRAM PAGE 6

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01/03/72

SAMPL146 000308 0000000000000000
000310 D6D4C9C3D9D6DS40
000318 0000000000000000
000320 D7C8C94040404040
000328 0000000000000000
000330 E2C9C7D4C1404040
000338 00000SOSOOOOOOE2
000340 E9CSE3C140404040

000348 D3C1D4C2C4C14040
000350 OA00001DOOOOOOOO
000358 E9CSE3C140404040
000360 OSOOOOOSOOOOOOE2
000368 E3C8CSE3C1404040
000370 8200002DOOOOOOOO
000378 E3C1E44040404040
0003S0 8000000000000001
000388 D3C9E2E340404040
000390 9F0001D100000000
000398 C1D3D7CSC1404040
0003AO 000000010000007B

000000
000000
000008
000009
OOOOOC

000000
000000
000003
000004
000008
000000
0003A8 000001F800000010

00000
00001
00002
00003
00005
00006
00007
OOOOC
OOOOD
OOOOE
OOOOF

179

180

181

182

1S3 •

DC

DC

DC

DC

XL8'0',CL8'OMICRON'

XLS'0',CL8'PHI'

XL8'0',CL8'SIGMA'

FL3' 5' ,X' 05' ,A (LOOP) ,CLS' ZETA'

184 • THIS IS THE CONTROL LIST
185 •
186 TESTLIST DC CL8'LAMBDA' ,X' OAt ,FL3' 29',A (BEGIN)

187

188

189

190

191

192 •
193 •
194 •
195 RO
196 R1
197 R2
19S R3
199 RS
200 R6
201 R7
202 R12
203 R13
204 R 14
205 R15
206 •

DC

DC

DC

DC

DC

CL8'ZETA',X'OS',FL3'S',A(LOOP)

CL8'THETA',X'82',FL3'4S',A(BEGIN)

CL8'TAU' ,X'80' ,FL3'0' ,A(1)

CL8'LIST' ,X'9F' ,FL3'46S',A (0)

CL8'ALPHA',X'00',FL3'1',A(123)

THESE ARE THE SYMBOLIC REGISTERS

EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU
EQU

o
1
2
3
5
6
7
12
13
14
15

SAMPL147

SAMPL148

SAMPL149

SAMPL1S0
SAMPL151
SAMPL1S2
SAMPL153

SAMPL154

SAMPL1SS

SAMPL156

SAMPL157

SAMPL158

SAMPL1S9
SAMPL160
SAMPL161
SAMPL162
SAMPL163
SAMPL164
SAMPL165
SAMPL166
SAMPL167
SAMPL168
SAMPL169
SAMPL170
SAMPL171
SAMPLl72
SAMPL173

207 • THIS IS THE FORMAT DEFINITION OF ~IST ENTRYS SAMPL174
208 •
209 LIST
210 LNAME
211 LSWITCH
212 LNUMBER
213 LADDRESS
214 •

DSECT
DS
os
DS
DS

CL8
C
FL3
F

SAMPL175
SAMPL176
SAMPLl77
SAMPL178
SAMPL179
SAMPL180
SAMPL181

215 • THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPL182
216 •
217 TABLE DSECT
218 TNUMBER DS
219 TSWITCH DS
220 TADDRESS DS
221 TNAME DS
222 END
223

FL3
C
F
CL8
BEGIN
=A (LISTAREA, 16,LISTEND)

SAMPL183
SAMPL184
SAMPL185
SAMPL186
SAMPL187
SAMPL188
SAMPL189

Figure 17. Assembler sample program
(Part 6 of 11)

62

n
\ J

n , /

IFOSAMP - SAHPLE PROGRAM PAGE 1

LOC OBJECT CODE <, ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01/03/72

~,J 0003BO 00000248
0003B4 0000008000000004 224 =F ' 128,4,128 1

0003BC 00000080

Figure 17. Assembler sarr.ple program
(Part 7 cf 11)

'I IFOSAMP RELOCATION DICTIONARY PAGE 8

POS. II; REL.lD FLAG~ ADDRESS ASM 0100 15.00 01/03/72

0001 0001 OC 000204
0001 0001 OC 000214
0001 0001 OC 000224
0001 0001 OC 0002DC
0001 0001 OC 00033C
0001 0001 OC 000354
0001 0001 OC 000364
0001 0001 OC 000374
0001 0001 OC 0003A8
0001 0001 OC 0003BO

Figure 17. Assembler sample program
(Part 8 of 11)

IFOSAMP CROSS-REFERENCE PAGE 9

SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 15.00 01/03/72

BEGIN 00004 00000000 00057 00158 00160 00176 00186 00188 00222
EXIT 00004 00000080 00096 00113
HIGHER 00002 OOOOOOFC 00132 00127
1HBOO05 00001 00000079 00091 00088

(,) IHBOO05A 00002 0000007E 00094 00087
IHBOO07 00001 OOOOOOBB 00108 00105
IHBOO07A 00002 OOOOOOCO 00111 00104
LADDRESS 00004 OOOOOOOC 00213 00078
LIST 00001 00000000 00209 00065
LISTAREA 00008 000001F8 00.158 00083 00223
LISTEND 00008 00000248 00163 00223
LISTLOOP 00004 00000038 00080 00115
LNAME 00008 00000000 00210 00126
LNUMBER 00003 00000009 00212 00075
LOOP 00004 000000E2 00125 00130 00133 00159 00182 00187
LSWITCH 00001 00000008 00211 00072 00114
MORE OOOOq 00000018 00066 00080
NONE 00001 00000080 00118 00067 00114 00122 00134
NOTFOUND 00004 00000102 00134 00131
NOTRIGHT 00004 00000090 00104 00082 00084
NOTTHERE 00004 000000C6 00114 00068
RO 00001 00000000 00195
Rl 00001 00000001 00196 00069 00123 00124 00124 00129 00132
R12 00001 OOOOOOOC 00202 00061 00062
R13 00001 OOOOOOOD 00203 00096
R14 00001 OOOOOOOE 0020q 00066 00128 00135
R15 00001 OOOOOOOF 00205
R2 00001 00000002 00197 00130 00133
R3 00001 00000003 00198 00123 00125 00129 00132
R5 00001 00000005 00199 00064 00065 00080
R6 00001 00000006 00200 00080
R7 00001 00000007 00201 00064
SAMPLR 00001 00000000 00055
SAVE 13 00004 OOOOOODO 00116 00063 00096
SEARCH OOOOq 000000D6 00122 00066
SWITCH 00001 000000D4 00117 00067 00122 00134
TABLAREA 00008 00000108 00140 00081 00124
TABLE 00001 00000000 00217 00069
TADDRESS 00004 00000004 00220 00079
TESTLIST 00008 00000348 00186 00083
TESTTABL 00003 00000258 00168 00081
TNAME 00008 00000008 00221 00126
TNUMBER 00003 00000000 00218 00075
TSWITCH 00001 00000003 00219 00072

Figure 17. Assembler sample program

() (Part 9 cf 11)

Appendix B. Assembler San~le Prcgram 63

IFOSAMP LITERAL CROSS-REFERENCE PAGE 10

SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 15.00 01/03/72

=A(LISTAREA,16,LISTEND)
00004 000003A8 00223

=F' 128,4, 128'
00004 000003B4 00224

00064

00123

Figure 17. Assembler sample program
(Fart 10 of 11)

IFOSAMP ASSEMBLER DIAGNOSTICS AND STATISTICS PAGE 11

ASM 0100 15.00 01/03/72

NO STATEMENTS FLAGGED IN THIS ASSEMBLY
HIGHEST SEVERITY WAS 0
OPTIONS FOR THIS ASSEMBLY

ALIGN, ALOGIC, BUFSIZE(STD), NODECK, ESD, FLAG (0) , LINECOUNT(55), LIST, NOMCALL
NOMLOGIC, NONUMBER, NOOBJECT, NORENT, RLD, NOSTMT, NOLIBMAC, NOTERMINAL, NOTEST, XREF
SYSPARM ()

WORK FILE BUFFER SIZE = 2558
TOTAL RECORDS READ FROH SYSTEM INPUT 189
TOTAL RECORrs READ FROM SYSTEM LIBRARY 833
TOTAL RECORrs PUNCHED 0
TOTAL RECORDS PRINTED 373

(~\
I '
'-- /

Figure 17. Assembler sample program
(Part 11 cf 11) n

n
\ /

64

()

ESD CARD FORMAT

1
2-4
5-10
11-12

13-14
15-16

17-64

65-72
73-80

Appendix C. Object Deck Output

COl1tents

12-2-9 punch
Esr
Blank
Variacle field count -- nurncer cf bytes
cf information in variable field (columns 17-64)
Elank
ESDID cf first SD, XD, CM, FC, ER, or WX
in variatle field
Variable field. Cne to three 16-byte
items of the following format:

8 bytes ..., ... Name, padded with blanks

1 byte -- ESD type code
The HEX value is:

00 SD
01 LD
02 ER
04 PC
05 CM
06 XD (PR)
OA wx

3 bytes Address

1 byte Alignment if XCi otherwise

3 bytes Length, LDID, or blank

Blank
reck Ir and/or sequence nurncer ... -

clank

Ihe deck ID is the name from the first named TITLE
statement. The name can ce one tc eight al~ha­
rreric characters long. If the name is less than
eight characters long or if there is DC narne, the
rerraining columns contain a card sequence number.
(Coulmns 73-80 of cards ~roduced by PDNCH or REPRC
staternents do not contain a deck II: or a sequence
numcer .)

A~pendix C. Object reck Cut~ut 65

TXT Cll.RD FORMAT

Columns

1
2-4
5
6-8
9-10
11-12

13~ 14
15-16
17-72
73-80

RLD CARD FORMAT

Celumns

1
2-4
5-10
11-12

13-16
~7-72

17-18
19-20
21
22-24
25-72

73-80

Contents
<

12-2-9 punch
'IXT
Elank
Relative address of first instruction on card
Elank
Byte ceunt -- number of bytes in information
field (columns 17-72)
Blank
ESDID
56~byte information field
Deck ID and/or sequence number
The deck ID is the name from the first named TITLE
statement. The name can be one te eight al~hameric
characters long. If the name is less than eight
characters long or if there is nc narre, the re­
rraining columns contain a card sequence number.
(Columns 73-80 of cards ~roduced by PtNCH er REPRO
staterr.ents do not contain a deck II: or a sequence
number.) .

Conte~ts

12-2-9 punch
RLD
Elank
Data field count -- number of bytes of
information in data field (columns 17-72)
Elank
Data field

Relocation ESDID
position ESDID
Flag tyte
Absolute address to be relocated
Remaining RLD entries

Deck ID and/or sequence number --
The deck ID is the name froIT the first narred TI'II.E
staterrent. The name can be one to eight alphameric
characters long. If the narr.e is less than eight
characters long or if there is no name, the re­
maining columns contain a card sequence number.
(Cclumns 73-80 of cards produced by PUNCH or REPRO
statements do not contain a deck ID er a sequence
nurrber.)

If the rightmost bit of the flag byte is set, the following RLD entry
has the same relocation ESDID and position ESDID, and this infermation
will not be repeated; if the rightmost tit of the flag byte is net set,
the next RLD entry has a different relocation ESDID ar;d/er ~esitien
ESDID, and beth ESDIDs will be recorded.

,
For example, if the RI.D Entries 1, 2, and 3 of the program listing
contain the following information:

66

(\
, i
\ /

n , /

position Relocation
~mg12 ESDID Flag Address

Entry 1 02 04 OC 000100
Entry 2 02 04 OC 000104
Entry 3 03 04 OC 000800

Entry 1 Entry 2 Entry 3

Column: 17 18 19 20 21 22 23 24 25 26 27 28 2930 31 32 3334 35 36 37--72

ESD IDs

END CARr; FORMAT

1
2-4
5
6-8

9-14
15-16
17-32
33
34-43
44-45
46-47
48",49

50-52

53-72
73 80

SYM CARD FORMAT

Contents

12-2-9 punch
END
Elank

___ I '" _-.,.-_

Esd IDs blanks

Entry address from operand of ENe card in
source deck (clank if nc cperand)
Blank
EsrIr of entry point (clank if nc c-};:erand)
Blank
1 or 2
Order nurrber of the assembler: 5741SC103
Version level of the assenbler
Mcdification level of the assembler
Last two digits of the year in which the asserrbly
was run
ray of the year (counted sequentially: Jan 3 = 3,
Feb 3 = 34, etc) in which the asserrbly was run
Normally not used
reck Ir and/or sequence numter.
The deck ID is the name field from the first named TITLE
statement. The name can te cne tc eight al};:hameric
characters long. If there is no name or the name is less
than eight characters long, the rerraining colu~ns contain
a card sequence number. (Columns 73-80 of cards produced
by PUNCH or REPRO statements do net ccntain a deck ID or
a sequence number.)

If you specify the TEST assembler option, the assembler punches out
symbolic information concerning the asserrtled prograrr.. This cutput
appears ahead of the object module. The format of the card images for
SYM output is as follows:

Appendix C. Object reck Output 67

Columns

1
2-4
5-10
11-12

13-16
17-72
73-80

Contents

12-2-9 ~unch
SYM
Elank
Variable field count -- number of bytes of
text in variatle field (columns 17-72)
Blank
Variable field (see below)
Deck ID and/or sequence number --
The deck II: is the narre frorr the first narred 'II'ILE
staterrent. The name can be one to eight alphameric
characters long. If the narre is less than eight
characters long or if there is no name, the re­
rraining columns contain a card sequence number.
(Columns 73-80 of cards ~roduced by FtNCH or REPRO
staterrents do not contain a deck It or a sequence
numl::er .)

The variable field (cclumns 17-72) contains up te fifty-six bytes of SY~
text. The items rraking u~ the text are packed together; consequently,
only the last card may contain less than fifty-six bytes cf text in the
varial::le field. The formats of a text card and an individual text item
are shown in Figure 18. The contents of the fields within an individual
entry are as follows:

1. Organization (one byte)
Eit 0:

o = non-data type
1 = data type

Bits 1-3 (if nen-data type):
000 = space
001 centrol section
010 = dummy control section
011 = common
100 = machine instruction
101 = CCW
110 = Simr:ly relocatatle EQU, narred L'IORG, named CNCF,

or named ORG

Ei t 1 (if data type) :
o = no multiplicity
1 = multiplicity (indicates presence of M field)

Eit 2 (if data type) :
o = independent (not a packed er zcned decimal constant)
1 = cluster (packed cr zcned decirral ccnstant)

Bit 3 (if data ty~e):
o = no scaling
1 = scaling (indicates presence of S field)

Eit 4:
o = nane present
1 = name not present

Eits 5-7:
Length of name minus 1

2. Address (three bytes) displacement frem base cf centrel section

3. Symbol Name (zero to eight bytes) -- symbolic name of particular
item

68

n

()

(~
\. /

\~-)

()

NOte: The follwing fields are present enly for data-ty~e items.

4. Cata Type (one tyte) -- contents in hexadecirral

00 = C-type data
04 = X-type data
08 = B7"tyt=e data
10 = F-type data
14 = H-tYfe data
18 = E-type data
1C = D-tYfe data
20 = A-type or Q~type data
24 = Y-tYfe data
28 = S-type data
2C = V-ty~e data
30 = P-type data
34 = Z-tYfe data
38 = L-type data

5. Length (two bytes fer character, hexadecimal , or tinary items;
one byte for other types) -- length of data iterr ninus 1

6. Multiplicity - M field (three bytes) -- equals 1 if not present

7. Scale - signed integer - S field (two bytes) -- present only for
F, H, E, L, L, P and Z type data, and cnly if scale is ncn-zero.

2 4 5 10 111213 16 17 72 73 80
No.

12 of
Deck Sequence

2 SYM blank byte~ blank SYM text - packed entries ID & number
9 of

text
1

~ 56/ 8

Entry
N complete entries

Entry
(complete or (complete or
end portion) N~l head portion)

Variable size entries

~
Org. Address Symbol name Data Length Mult. Scale Org. Symbol)

type factor name)

3 0-8 1·2 3 2

Figure 18. SYM Card Fcrmat

Appendix C. Object Leck Output 69

Appendix D. Dynamic Invocation of the Assembler

You can inveke the asserrbler from your problem program when it is
executed, by using the CALL, LINK, XC'lL, or A'I'IACH rraere instruction.
If you use the XC'lL instruction, you cannot specify any assembler
options. The assembler will use the standard or default epticns. If
you use CALL, LINK, er ATTACH, you can specify both the assembler
options and LL names of the data sets to be used by the assembler. The
formats of these rracrcs are:

Name Operation Operand

[symbol] CALL IFOXOO, (optionlist
[,ddnamelist]), VL

{ LINK } EP=IFOXOO,
ATTACH PARAM=(optionlist

[,ddnamelist]}, VL=l

EP ~- specifies the symbolic name of the assembler (IFCXOO).

FA RAM specifies, as a sublist, address ~arameters tc be ~assed from
the problem program to the assembler. The first wcrd in the
address ~arameter list contains the address of the option list.
The second word contains the address of the ddnarre list.

optionlist -- s~ecifies the address of a variable length list containing
the options. This address must be written even if nc option
list is ~revided.

The option list must begin on a halfword bcundary. The first two bytes
contain a ceunt of the number of bytes in the remainder cf the list. If
no options are specified, the count must be zero. The option list is
free form with each field separated fron: the next by a cerr;rra. No blanks
or zeros sheuld a~~ear in the list.

ddnamelist -- specifies the address of a variable length list containing
alternate [Lnames for the data sets used during asserrbler
precessing. If standard DDnames are used, this operand can be
omitted.

The DDname list must begin on a halfword boundary. The first two bytes
contain a count of the number of bytes in the remainder cf the list.
Each name of less than eight bytes must be left-justified and padded
with blanks. If an alternate LCname is crritted, the standard name ~ill
be assumed. If the name is omitted within the list, the eight-byte
entry must contain binary zeros. Names can be emitted frerr the end
merely by shortening the list. The sequence of the eight-byte entries
in the DDname list is as follows:

70

rr\,
\)

(\
! \

J

"

n

-~,

,.~

Entry Standard Name

1 not applicable
2 not applicable
3 not applicable
4 SYSLIE
5 SYSIN
6 SYSPRINT
7 SYSPUNCH
8 SYSUT1
9 SYSUT2

10 SYSUT3
11 SYSGO
12 SYSTERM

VL -- specifies that the high-order bit is to be set tc 1 in the last
word of the list of address parameters in the macro expansion.
The assembler checks this bit to find out if a DDname list is
specified or not.

Note: If you invoke the assembler more than once from the same program,
make sure that RECFM=S is not specified for the SYSPRINT data set.

Appendix D. Dynamic Invocation of the Assembler 71

Appendix E. Assembler Data Sets and Storage
Requirements

This appendix describes the data sets used by the asserrbler (see Figure
19). It also describes the main storage and auxiliary storage
requirements of the assemtler. This description is ir.tended fcr
programmers who want tc alter the assembler's region or partition size
or data set parameters (such as tuffer size). A rrcre detailed
description of assemcler storage requirerrents a{:pears in CS/VS1 Storage
Estirrates, Crder Nc. GC28-p604.

ASSEMBLER DATA SETS

CDname SYSUT1, SYSUT2, and SYSUT3

The assembler uses the utility data sets as intermediate external
storage devices when processing the source program. These data sets must
be organized sequentially, and the devices assigned to them must be
direct access devices, magnetic tape units, or a combination of both.
The assembler does not support multivolume utility data sets. For
optimum performance, SYSUTl should be on a direct access device.

CDname SYSIN

This data set contains the input to the asserrbler -- tr.e scurce
staterrents to be ~rccessed. The input/output device assigned to this
data set may be either the device transrritting the in~ut strearr, cr
another sequential input device that you have designated. The cn
staterrent describing this data set appears in the input stream. The
IB~-supplied procedures do not contain this staterrent.

r:Dname SYSLIE

From this data set the assemtler ottains nacro definiticns and assembler
language staterrents that can be called by the COpy assemcler
instruction. It is a partitioned data set: each rracrc definition or
sequence of asserrbler language statements is a separate memcer, with the
member name being the macro instruction rrnerrcnic cr CCFY ccde name.

The data set may be SYS1.~ACLIB or a private macro litrary.
SYS1.~ACLIE contains macro definitions fcr the IE~-su~~lied nacro
instructicns. Private litraries and SYS1.MACLIB can te ccncatenated
with each other in any crder. Concatenated libraries must have the same
record length, but the clocking factors nay te different. Hc~ever, a
library with a high blocking factor must always come tefore a litrary
with a low clocking factor.

CDname SYSFRINT

This data set is used ty the assemtler to ~rcduce a listing. Cut~ut may
ce directed tc a ~rinter, magnetic tape, or direct-access storage
device. The assemcler uses the ASCII carriage-ccntrcl characters for
this data set. The srrallest blocksize recommended is 1089 (clocking
factor of 9).

72

n
J

(~
\ /

DDname SYSPUNCH

The assembler uses this data set to produce the object n.cdule. The
input/output unit assigned to this data set may be either a card punch
or an intermediate storage device capable of sequential access. ~his
output can be used as input to the linkage editor.

DDname SYSGO

This is a direct~access storage device or magnetic tape data set used by
the assembler. It contains the saroe out{:ut text (ebject n.edule) as
SYSPUNCH. It is used as input for the linkage editor.

DDname SYSTERM

This data set is used by the assembler te {:rcduce diagncstic
inforrration. The eut{:ut nay be directed to a remote terminal, a printer,
a magnetic tape, or a direct-access storage device. 1he assenbler uses
the ASCII carriage centrol characters for this data set. The smallest
blockzise recommended is 1089 (blocking factcr ef 9) •

ASSEMBLER VIR~UAL S~ORAGE REQUIRE~ENTS

The m1n1mum virtual stcrage partition or region required by the
assembler is 64K bytes. Eowever, better perfornance is generally
achieved if the assembler is run in 128K bytes of virtual storage. This
region size is recommended and is specified in the assenbler cataloged
procedures.

If more storage is allocated to the asserrcler, the size ef buffers and
work space can be increased. The amount ef sterage allccated te buffers
and werk s{:ace determines assembler speed and capacity. Generally, as
more storage is allocated to buffers, a given assenbly will run faster;
as more storage is allocated to work space, larger and rrcre ccrrplex
macro definitions can be handled.

You can control the cuffer sizes of SYSIN, SYSLIB, SYSPRINT,
SYSPU~CH, and SYSGO by specifying the blocksize (ELKSIZE) and number of
buffers (EUFNq as shown in Figure 19.

You can centrel the buffer sizes for the assembler utility data sets
WYSUT1, SYSUT2, and SYSUT3) and the size of the work space used during

macro processing, by specifying the BUFSIZE asserrbler c~tien. Of the
storage given to the assembler, the asserrbler first allecates storage
for the SYSIN and SYSLIE buffers according te the s{:ecificatiens in the
DD statements or the labels of the data sets. It then allocates storage
for the modules of the assembler. The rerrainder cf the {:artiticn or
region is allecated tc utility data set buffers and macro generation
dictionaries according to the EUFSIZE e{:tien specified:

BUFSIZE(STD) :

BUFSIZE(MIN) :

37% is allocated to buffers, and 63% to work space.
This is the default chosen, if ycu dc net s{:ecify any
EUFSIZE option.

Each utility data set is allocated a single 790-byte
buffer. The remaining storage is allocated to work
space. This allows relatively ccn{:lex nacre
definitiens to be processed in a given region or
partition size, but the s{:eed ef the assembly is
substantially reduced.

A{:pendix E. Assembler Data Sets and Storage Requirements 73

SYSUT1

E6
SYSLIB

~.ndU
COpy Calls

SYSPRINT SYSGO SYSPUNCH

cbJ l1(Ob~
SYSIN SYSLIB SYSPRINT SYSPUNCH

SYSTERM

LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80

RECFM You must specify You must specify F and A set by F set by assembler,

CD in LABEL or DO in LABEL or DO assembler. B set you may specify B
card card by assembler and/or T in label

except when F is or DO card
F ,FS,FBS,FB, F,FS,FBS,FB, specified and
FBST,FBT FBST,FBT BLKSIZE is not

specified. You
may add S or T
FA,FAB,FAS,FAT F,FB,FT,
FABS,FABT FBT

BLKSIZE You must specify You must specify Optional, but must Optional, but must
in LABEL or DO in LABEL or DO be a multiple of be a mUltiple of

® card, must be a card, must be a LRECL; if omitted LRECL; if omitted
multiple of multiple of BLKSIZE=LRECL BLKSIZE=LRECL

LRECL LRECL

BUFNO Optional; if Set by assembler Optional; if Optional; if
omitted 2 is used to 1 omitted 2 is used omitted 3 is used

for unit record and
2 for other devices

CD U = undefined, F = fixed length records, B= blocked records, S= standard blocks,
T = track overflow, A = ASCII code carriage control

® Blocking is not allowed on unit record devices. Blocking on other direct access can not
be greater than the track size unless T is specified on RECFM. If the BLKSIZE specified
is not a multiple of LRECL, the assembler truncates it to a multiple. For example, if
LRECL = 80, a BLKSIZE of 850 is truncated to 800.

Figure 19. Assembler data set characteristics

74

SYSGO

Fixed at 80

F set by assembler,
you may specify B
ood/or T in label
or DO card

F,FB,FT,
FBT

Optional, but must
be a mUltiple
LRECL; if omitted
BLKSIZE=LRECL

Optional; if
omitted 3 is used
for unit record and
2 for other devices

SYSUT1
SYSUT2
SYSUT3

N/A

Set by assembler
to U

If BUFSIZE (STD)
in effect, a value
between 790 and
8192 is chosen.
If BUFSIZ E (MIN)
in effect, 790 is
chosen

Set by assembler
to either 1 or 2

(\
\)

\)

Appendix F. Th. SYSTERM Listing

The SYSTERM data set, which gives you ra~id access to the diagnostic
messages issued during an assembly, is ~rirrarily designed fer the user
of the Time Sharing Option (TSO) of VS2. However, the data set can also
be directed to a printer, a magnetic tape, or a direct-access device.

You use the assembler option TER~INAL to specify that you want a SYSTERM
listing to be ~roduced-. Of course, you rrust also rrake sure that a DD
staterrent describing the data set is included.

Each diagnosed statement in the assembly listing ~rinted in the SYSTERM
listing irr~ediately fello~ed by the messages that are issued for the
statement. To help identify the position of the staterrent in your
program, twe additienal assemtler o~tions are available:

• NUMBER, which ~rints the line number(s} of the diagnosed statement.

• STMT, which prints the statement number assigned to the diagnosed
statement by the assembler.

The fermat ef the flagged statement as it appears in the listing is:

line No.(s) Statement No. Source record(s)
(option NUM) (option STMT) (Columns 1-72 of

the source
statement lines)

If a statement contains continuation lines, it will occupy several lines
in the listing, each identified ty a line nurrber (if c~ticn NU~BER is
used). If a statement in error is discovered during the expansion of a
macro, or of any inner macro called by an cuter rracre, the first line of
the outer macro instruction is listed tefere the flagged staterrent. If
a statement is flagged during variable symbol substitution in open code,
the first line of the model staterrent is listed as well as the generated
staterr.ent.

Figures 20 and 21 illustrate the content and format of SYSTERM output.
Figure 20 shows the source statement sectien of a SYSPRINT listing, and
Figure 21 shews the SYSTERM listing produced during the same assembly.
The example illustrates the rules given atcve. O~tiens TER~INAI,
NU~BER, and STMT were in effect during the asserr.bly.

The SYSTERM listing starts with the statement ASSEMBLER DCNE. At the
end of the listing the following diagnostic inferrration is given:

• NUMEER CF STATEMENTS FLAGGE~ IN THIS ASSEMBLY = nn
(Indicates the total number of source statements in error)

• HIGHEST SEVERITY COrE WAS nn
(Indicates the maximum severity code encountered)

• CFTIC~S FOR THIS ASSE~EIY
(Indicates the o~tions in effect fer this asserrbly)

Appendix F. The SYSTERM Listing 75

PAGE

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 14.59 01/03/12

000000

000000
000000 90EC DOOC
000004 05CO

000006 0000 0000
••• ERROR •••

OOOOC

00000

OOOOOA 0000 0000 00000

••• ERROR •••

OOOOOE 5840 C022
000012 5043 0000
000016 4130 3004
00001A 1923
00001C 4770 COOC

000020 0000

••• ERROR

000022 98EC DOOC
000026 07FE

000028 00000000

00002C OOOOOOEA

• ••

••• ERROR •••

00028
00000
00004

00012

OOOOC

00006

00002
00003
00004
OOOOC

1
2
3
4 .LOOP
5 'K
6 'PEL ('K)
7
8 .DONE
9

10 SAMPL2
11

MACRO
GENF 'P,'L
LeLA iK
ANOP
SETA 'K+1
DC P' 'L ('K) ,
AlP ('K LT N' 'L) .LOOP
MEND
GBLC '2
CSEC'I

12+
SAVE (14,12) ALL REGS ARE SAVED IN SUPERVISOR SAVEAREA
DS OH 00660000

13+ STH 14,12,12(13) SAVE REGISTERS 01180000
14
15
16 '2
17

18

19
20 LOOP
21
22
23
24
25

26+
+

BALR R12,0
USING .,R12 SET UP BASE REGISTER
SETC 'B'

. L R2, END END OF AREA

LA

L
ST
LA
CR
BNE
AIF
SR

SR

R3,A

R4,FO
R4,0 (R3)
R3,4 (,R3)
R2,R3
LOOP

THIS IS A
DUMMY COMMENT
TO SHOW

A STATEMENT CONTAINING
TOO MANY CONTINUATION CARDS
ZERO CONSTANT POR RESETTING AREA

RESET AREA A

('A' EQ

'2,'2
"2') .GO

B,B

OPEN CODE MODEL STATEMENT
WITH CONTINUATION CARD
OPEN CODE MODEL STATEMENT
WITH CONTINUATION CARD

27 .GO RETURN (14,12) EXIT FROM RTN

•

28+ LM 14,12,12(13) RES'IORETHEREGISTERS 00260000
29+ BR 14 RETURN 00800000
30 •
31 • CONSTANTS AND AREA ARE DELETED ON PURPOSE
32 •
33 GENF F,O GENERATION OF CONSTANTS
34+FO DC F'O'
35 GENF 1,234 EXAMPLE OP MORE THAN ONE CARD •

IN A MACRO INSTRUCTION
36+1234

37 R2
38 R3
39 RII
40 R12
41

DC P'2311'

E2U 2
EQU 3
EQU 4
EQU 12
END

Figure 20. SYSPRIN'I listing of the source statements used to show
SYSTERM output

76

ASSEMBLER (XF) DONE
17 L R2,END

IF0188 END IS AN UNDEFINED SYMBOL
18 LA R3,A

END OF AREA

THIS IS A
DUMMY COMMENT
TO SHOW

IF0188 A IS AN UNDEFINED SYMBOL
IF0069 EXCESSIVE CONTINUATION CARDS, TWO ALLOWED

25 SR &Q,&Q

26+ SR B,B
+

IF0188 B IS AN UNDEFINED SYMBOL
IF0188 B IS AN UNDEFINED SYMBOL

35 GENF 1,234
36+1234 DC F'234'

A STATEMENT CONTAINING
TOO MANY CONTINUATION CARDS
OPEN CODE MODEL STATEMENT
WITH CONTINUATION CARD
OPEN CODE MODEL STATE~ENT
WITH CONTINUATION CARD

EXAMPLE OF MORE THAN ONE CARD

IF0125 INVALID NAME- ILLEGAL EMBEDDED CHARACTER OR NON-ALPHABETIC FIRST CHARACTER
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = 4
HIGHEST SEVERITY WAS 8
OPTIONS FOR THIS ASSEMBLY

ALIGN, ALOGIC, BUFSIZE(STD), NODECK, ESD, FLAG (0) , LINECOUNT(55), LIST, NOMCALL
NOMLOGIC, NUMBER, NOOBJECT, NORENT, RLD, STMT, NOLIBMAC, TERMINAL, NOTEST, XREF
SYSPARM ()

• • •

•
•
•

•

Figure 21. SYSTERM listing ~roduced for the source staterrents sho~n in
Figure 20.

AI=pendix F. The SYS1ER~ Listing 77

Appendix G. Assembler Diagnostic Error Messages

This appendix lists all the diagnostic messages issued by the VS
Assembler. The messages are listed sequentially by statement numcer.

HOW TO USE ~HIS SEC~ION

Once you have found an error message in the diagnostics secticn of
your listing that you are not sure you understand fully, look up the
entry for the message in this appendix. ~he entry fer the message ~ill
give you the follewing items:

• The message numcer and the text of the roessage.
• Explanation ef the message.
• Assembler acticn in res~onse to the message.
• programmer response to correct the error.
• Operator res~onse·to correct the error (only for certain messages).
• Severity code assigned to the rr:essage.

The fellowing paragraFhs describe the messages as they appear in your
listing and explain in detail the various items of each entry in this
appendix.

The ~essage Itself

In the diagnostics section of your asserrbler listing yeu ~ill find
. the fellowing iterrs fer each message:

• The numcer of the statement in error.
• The message identification numter.
• The text ef the message.

STATEMENT NUMBER: For certain messages the statement numcer given is
always 0, either because the assemtler cannot identify the nurrber of the
staterrent in which the error occurs when it finds the error, or cecause
the error cannot be associated with a specific staterr.ent. For some of
these messages, the text ef the message identifies the macro in which the
error is found.

Fer errers found during the editing of a library rracre, the
statement numcer given is that of the last numbered statement in the
source module, unless the LIEMAC and MLOGIC assembler cFtiens are in
effect, as described below under "Explanation".

MESSAGE NUMBER: The message identification number is a unique numcer
consisting of the letters IFO followed ty a three digit nurrber.

TEXT: The text of the message is not always printed out in full in the
diagnostics section of the listing. However, the cerres~ending text in
this appendix is always fully printed out.

Certain rr.essages include information in the. message text te help you
localize the error within the staterrent. In the message text as it
appears in this sectien, Inn' denotes a nurrber and 'xxxxxxxx' a
character string. The number identifies a column in the operand of the
statement in error that is close to the celurrn where the errer is found.

78

..

n
\ /

The character string may represent a syrrtcl cr the wcrd MACRO. It is
limited te eight characters, so if the string containing the error is
longer, it is truncated.

Explanaticn

This iterr gives the probable cause or causes of the error rressage.
An error message is issued at the point where the assemt1er can no
longer make sense cf the text, not necessarily at the ~cint where the
real error cccurred. Fer example, if you want to code the
instruction LR 3,5, and leave out the R in the c~eraticn ccde, the
assembler will treat the instruction as a sterage-te-register
instructien, and give an error message for the second operand (unless
NOALIGN is specified).

If errors occur during the editing or expansion of a litrary macro
and the assembler options specified cause the 1egic ef the rracro
expansions EQ! te be ~rinted, error messages for the library macro will
be logged against the last numbered statement in the program. However,
if you use the LIEMAC and MLOGIC assemtler o~tiens, errcrs in library
macros will be logged against the staterrents in errcr. See the section
"Asserrbler O~tions" fer a discussion of these options.

Assemt1er Acti2E

This iterr. tells ycu hew the assembler reacts to the error. A
machine instruction usually causes zeros to be generated in its place in
the ebject rredule if a major error occurs anywhere in that instruction.
An assembler instructien is usually printed out but not processed
("processed as a comment"). Some machine and asserrbler instructiens,

however, are partially processed or processed with a default value. In
some cases the asserrbler terminates the ~ho1e assembly.

Programrr.~sFonse

This item tells yeu hew to correct the statement in error. It is
assumed that you will detect certain errors when an error message draws
your attentien te the statement. Thus, the ~rograrrrrer res~onse fer each
message dees not tell yeu to check for keypunching errors or to check
the use of the flagged statement.

Cperator Response

This item tells the operator how to ccrrect certain errcrs. The
operator respcnse is enly given for messages that are ~rinted cn the
operator's console. The operator will not change your source deck. He
may, however, do such things as change partition cr regien size, er
correct certain jcb centre1 errors.

A~pendix G. Assembler Diagnostic Error Messages 79

Severity Code

~he severity code indicates the seriousness cf the errer. The
severity cedes used by the VS Assemtler and their rreanings are shewn in
the following table.

Severity
Code

4

8

12

16

20

Explanation

Minor error; successful program execution is
probable

Significant error; unsuccessful program
execution is possible

Serious error; unsuccessful program execution
is probable

Critical error; normal execution is
impossible

Critical error; further assembly impossible,
assembly terminated ·

~he severity cede is the return code issued by the assembler when it
returns control to the operating systerr. ~he IBM-su~flied cataleged
procedures include a COND parameter on the linkage edit and execution
steps. The CON[parameter prevents execution ef these ste~s if the
return code from the asserrbler is greater than 8.

RECURRING ERRORS

If an errcr message recurs after the error situation has been
corrected and there seems to be nothing wrong with the statement, there
may be an error in the assemtler. If yeu sus~ect that this is the case,
make sure the program is correct and reasserrtle if necessary. If the
protlem still persists, de the following before calling IEM:

• Have your source program, macro definitions, and associated listings
available.

• If a COFY staterrent was used, e~ecute the IEBP~PCH utility te obtain
a copy ef the ~artitiened data set member specified in the COpy
statement.

• Make sure that MSGLEVEL=(1,1) was specified in the JOE statement.

80

n

IFOOOO

IF0001

IF0002

IF0003

()

UNrEF'INEr ERROR COrE IFOxxx

Explanation: An error code has teen generated by the assembler
fer which nc message has been defined. ~his is caused by a
logical errer in the assembler.

Assembler Action: Assembly continues.

Frogrammer Response: Perform the actions described under
"Recurring Errers" above before calling IBM.

Severity Cede: 16

SYS~'EM VARIABLE SYMBOI. xxxxxxxx USEr; AS SYMEOLIC PARAMETER IN
MACRO PROTOTYPE

Expla~ien: A variable symbol used as a symbolic parameter on
a macro prototype statement has the same characters as a system
variable symbol. The system variable syrrbcls are:

&SYSECT
&SYSLIST
&SYSNrX

&SYSPARM
&SYSTIME
&SYSrATE:

Assembler Action: Editing of the macro definition is terminated.
All statements in the macro definition are processed as
comments.

Pregrarrroer Response: Redefine the parameter with a variable
symbol other than &SYSFAR~, &SYSr;ATE, &SYSTIME, &SYSLIST,
&SYSECT, or &SYSNr;X.

SY~ECLIC PARAMETER xxxxxxxx IS DUPLICATED IN SAME MACRO
PROIJOTYPE

Explanation: Two identical syrrbclic ~ararreters have been
specified in the same macro protcty~e staterrent.

Asserrbler Actien: Editing of the macro definition is terminated.
All statements in the macro definition are processed as
cemments.

Pregraroroer ResFonse: Redefine one of the symbolic parameters
with-a-variabie symbol that is unique to that particular macro
definition.

Severi~y_Cede: 8

SYSTEM VARIAELE SYMEOL xxxxxxxx USED IN OPERAND OF GLOBAL OR
LOCAL DECLARATION

EXFl~~atien: A system variable symbol has been used in the
operand of a global or local declaration. The system variable
symbols are:

&SYSECT &SYSFARM

Appendix G. Assembler Diagnostic Error Messages 81

IF0004

IFOOOS

IF0006

82

&SYSLIST
&SYSNDX

&SYSTIME
&SYSDA'IE

Ass~mbler Ac~ion: The declaration conflicting with the system
variable symbol is ignored. All subsequent references to the
variable symbol in error are treated as references to the
system variable symbol.

Frogrammer Response: Redefine the variable syrrbcl using
character cc~binations other than those listed abcve in the
ex~lanaticn.

Severity Code: 8

GLOBAL OR LOCAL VARIABLE xxxxxxxx DUPLICA'IES A SYMEOLIC
FARAMETER IN SAME MACRO DEF-INITICN

Explanation: A variable symbol that ap~ears in the oFerand
field of a global or local declaration is identical tc a
syrrbclic ~arameter defined on the macro prototype earlier in
the macro definition.

Asserrbler Action: The declaration conflicting with the symbolic
parameter is ignored. All subsequent references to it are
treated as references to the syrrbclic pararreter that it
du~licates.

Frogrammer Response: Redefine the global or lccal variable with
a variable symbol that is unique to the rracrc definition.

GLCEAL OR LOCAL VARIAELE SYMBOL xxxxxxxx DUPLICATES PREVIOUS
DECLARATION

Explanation: A global or local variable syrrbcl was declared
twice in the same macro definition cr in o~en ccde.

Asserrbler Actien: 'Ihe second declaration of the var-ial:le symbol
is ignored. All subsequent references to it are treated as
references to the first declaration.

Prcgrarr,mer ResFonse: If the second declaration is LClx,
redeclare it using a variable symbol unique to the macro
definition or to open code. If the seccnd declaratien is GBLx,
redeclare it as for LCLx, but be sure that all declarations of
that global variable elsewhere in the pregrarr are identical.

Severity Cede: 8

UNrEFINEr VARIAELE SYMBOL xxxxxxxx

EXElanatiEE: A variable symbol has been referenced in this
statement that is not a system variable symbol; has not been
defined within the macro definitien as a syrrbclic ~arameter, a
local variable, or a global variable; cr has net been defined
in o~en cede as a local or global variable.

()

o

IF0007

(J
IF0008

Asserr.bler Action: The statement is processed as a comment,
unless the errcr has occurred in a macro instruction parameter.
If the macro instruction parameter contains an undefined
variable symbol, the parameter is assigned the value of a null
string.

Prcgrarrmer ResFonse: Lefine the variable syrrtcl as a symbolic
~ararreter, a local variatle, or a global variable; or, if
desired, reference a previously-defined variatle symtol of the
appropriate type. This message may te issued if an arr~ersand
errcneously a~~ears as the first character of an ordinary
symbol, and thus creates an unintended variacle syrrbcl.

Severity Code: 8

USAGE OF xxxxxxxx IS INCONSISTENT WITH I1S CECLARATICN

~xEI2TIat~~: A global or local variable symbol was defined as
dimensioned but was used without a subscript, or a glotal or
local variable symtol was defined as undirrensicned but was used
with a subscri~t.

Assembler Action: Editing of the staterrent that ccntains the
inconsistent usage is terminated, and the staterrent is processed
as a CCIrIrent.

programmer Response: Make the usage of the SET symbol
consistent with its glotal or local declaraticn, or make the
declaration cf the SET symbol consistent with its usage.

Severity Code: 8

CIRCULAR OPSYN STATEMENTS

Explanation: The assignment of a syncnym in the c~erand field
cf an OPSYN statement to the estatlished rrnencnic in the name
field results in the mnemonic being its own synonym. For
example:

ADD
PLUS
XYZ
ALL

OP.$YN A
OPSYN ALC

OPSYN PLUS
OPSYN XYZ

The final OPSYN statement in the abcve sequence is flagged·.

Asserrbler Acticn: The flagged OPSYN statement is processed as a
comment.

Programmer Response: Remove any OPSYN staterrent that results in
a circular definition, or alter such an OPSYN statement by
respecifying the synonym or the mnemonic.

Severity Code: 8

A~~endix G. Assembler Ciagnostic Error Messages 83

IF0009

IFOO 1 0

IF0012

84

ELIT LICTIONARY SPACE EXEAUSTEC

EXFlanatien: The work space available is not sufficient to
contarn-the dictionaries that are required to edit the macro
definition or open code.

Asserrbler Action: If a macro definition is being edited, the
remaIning statements up to the ~END statement are processed as
cemments~ and editing resurres. If epen ccde is being edited,
the rerraining statements up to the end-of-file are processed as
comments.

prcgraroreer ResEonse: Increase the size of the region or
partition that is allocated to assembly, or allocate more
dictionary space via the EUFSIZE assembler c~tien. See A~pendix
E ef this rranual.

Severity Code: 12

SOURCE MACRO xxxxxxxx HAS BEEN PREVIOUSLY LEFINEC

Expl~natien: 'Ihe mnemonic in the macro instruction prototype of
a source macro duplicates a mnemonic already defined as a
source macro.

Asserrbler Action: All statements in this macro definition are
processed as-comments. All subsequent references to the
mnemonic are treated as references to the first definition
associated with that op cede.

Frogrammer Response: provide a unique rrnerrenic e~ cede fer the
flagged rracre pretotype.

severity Ccde: 8

ICTL OR OPSYN STATEMENT APPEARS TOO LATE IN TEE PROGRAM

Ex}:lanation:

• The ICTL statement does net precede all cther statements in
the seurce medule; or

• The OPSYN statement does not appear before source macro
definitions and open code staterrents. The only statements
that can ~recede an CFSYN statement are: ICTL, ISEQ, TITLE,
PRINT, EJECT, SPACE, OPSYN, COpy (unless the rrerober co~ied
contains any other than the staterrents listed here) , and
comments statements.

Asserrbler Action: The ICTL or OPSYN staterrent is processed as a
corrrrent.

Programme~sponse: Place the ICTL or OFSYN statement at the
beginning of your program as described in the explanation al:ove.

Severity Code: 8

()

o

•.

o

IF0013

IF0014

IFOO 16

CPSYN NAME FIELt NOT OR1:INARY SY~EOL, .oR OPSYN OPERANt FIELD
NOT OR1:INARY SYMEOL OR ELANK

EXEl~~icn: lhe name or operand field of an OPSYN instruction
contains more than 8 alphanumeric characters or does not ~e9in
with an alphacetic character.

Ass~rrbleE Ac~ion: lhe CFSYN statement is processed as a comment.

Prcqrarrmer ResFonse: Correct the invalid name field or operand
field. <

Severity Cede: 8

INVALID OPCODE IN OPSYN OFERANC OR NAME FIELI

Explanation:

• The name field of an OPSYN instructicn with a blank cferand
field dces nct specify a machine instruction operation code,
an extended machine instructicn of era tier. ccde, cr an
assembler operation code; er

• lhe eferand field of an OFSYN instruction does not specify
a machine instruction operaticn cede, an extended machine
instruction operation code, or an asserrbler cferaticn code.

Assembler Action: The CFSYN staterrent is treated a comment.

prcqra~er ResFonse: ~ake sure that the name field contains a
valia-operation code, or supply a valid operation code in the
operand.

Severitx Cede: 8

ILLEGAL OR INVALID NA~E FIELD

Explanation: One of the following errors was detected.

• No name was found where one is required.

• A narre was sUfflied ~here none is allowed.

• An invalid character was found in the narre field.

Assembler Action: The statement is frocessed as a ccrrrrent,
unless~he-error has occurred in the name field of a macro
instruction. If the macro narre field Fararreter ccntains an
errcr, the Farameter is assigned the value of a null string.

froqrammer Response: SUPfly a name if one is required, omit the
name if one is not allowed, or correct the invalid character.

Eevefity Code: 8

Appendix G. Assemcler tiagncstic Errcr ~essages 85

IF0017

IFOP18

IF0019

86

. * COMMEN'IS S'IATE~ENT IS ILLEGAL OUTSI.DE MACRO I:EFINITION

EXElanation: An internal macro corrrr.ents staterrent (. *) aJ;~ears
outside macro definitions (in open code) •

Assembler Action: 'Ihe statement is ~rinted.

Pregrarrroer ResFonse: Remove the .* comments statement. If you
want~a comment, put an * in the begin column and follow it ty
the comment.

Severity Ccde: 4

MORE THAN 5 ERRORS IN THIS STATEMEN'I, ERROR ANA~·YS OF' 'lEE
STATEMENT IS 'IERMINA'IEI:

Explanation: The maximum numter of errcr rressages issued during
editing to each statement is 5. 'Ihe sixth errcr causes this
rressage.

Assembler Action: Error analysis for this staterrent is
terminated.

Pregrarrmer ResFonse: Correct the indicated errors and
reassemble. Any additional errors on this statement will te
detected in the next asserr.tly.

Seve~i ty Cede: 4

INVALII: OPERANt IN ICTL OR ISEQ STATEMENT

Ex}:lanation:

(1) The value of one or more o~erands in an Ie'lL staterrent is
incorrect. 'Ihe begin column must b'e within columns 1 to 40;
the end column must te within columns 41 tc 80 and at least 5
colurrns away fron: the begin column; and the continue column
must be within columns 2 to 40.

(2) Cne cf the following errors has occurred in an ISEQ
statement:

• The cJ;erand has an illegal range; the c~erand value
cannot fall between the begin and end columns, and the
second operand must not te less than the first.

• The c~erand field is invalid. 'lhe o~erand field must
contain two valid decirral self-defining terrrs,
separated ty a comma or te tlank.

Asserrbler Acticn: If a ~rogram contains an Ie'lL error, the
WhCi~grarr is processed as corrrrents. If cne ef the ISEQ
errors has occurred, no sequence checking is performed.

Programmer Response: Supply valid operand(s) •

Severity Cede: 8

n " /

n

IF0021

IF0022

IF0023

(J

IFC024

()

INVALID TER~ IN OPERAND

EXElanat1en: An invalid term has been used in an expression of
the operand.

Assembler Action: The state~ent is ~reeessed as a cerrrrent.

Frogrammer Response: Make sure the e~erand is a character
relation, an arithmetic relatien, a legical relatien, a SETx
syrrbel, a symbolic parameter, or a decimal self-defining term.

ICTL STATEMENT IS ILLEGAL IN COpy CODE

EXEI~.!}aticn: An IC'IL statement appears in code that is inserted
in the program by a COpy instruction.

Assembler Action: The ICTL staterrent is ~recessed as a ccrrment.

Frogrammer Response: Make sure the IC'IL instructien is net in
code'inserted by the COpy instructien. If used, the IC~L
instructien ~ust always be the first instruction in your source
module.

Severity Cede: 8

ILLEGAL MACRO, MEN!:, OR MEXIT STA'IEMENT - MAY APPEAR CNLY ViITHIN
MACRO DEFINITIONS

!xEI~nat!2.!l: MACRO, MEN!:, cr MEXp.r staterrents are net allowed
in open code. They can be used only in macro definitions.
This message will be issued if an instructier. ether than ICTL,
ISEQ, OPSYN, TITLE, PRINT, EJECT, SPACE, or COpy appears before
any macro definitions in your prograrr. Of course, any such COpy
instruction cannot copy any other staterrents than ISEQ, CPSY~,
TITLE, PRINT, EJECT, or SPACE. This rressage will alse be
issued, if an undefined o~eration code appears before your
macro definitions.

Asserrbler Actien: The illegal MACRO, MEND, er ~EXI~ statement
is processed as a comment.

Pregrarrmer ResFonse: Remove the statement from open code on
place it within a macro definition. Make sure that all your
macro definitions are placed at the beginning, befere o~en code.

UNPAIRE!: PARENS, OR ELANK FOUND INSIDE PAIRED PARENS

Explanation:

• Un~ired ~arentheses aFpear in the operand field; or

• A blank appears inside paired parentheses in the e~erand
field ef a macro instruction. This may be an errer in
sublist structure; or

A~~endix G. Assembler Diagnostic Error ~essages 87

IF0025

IF0026

IF0027

88

• A blank appears inside parentr.ese~ cf an arithrretic
ex{:ressicn; cr

• A term is missing in a logical expression.

Assembler Action: The operand in errcr is ig~ered.

FrogEammer Response: If unpaired {:arentheses a~~ear, be sure
that there is a right parenthesis for every left parenthesis.
Remove illegal blanks inside {:aired {:arentheses.

STATEMENT OUT OF SEQUENCE

Explanation: The input sequence checking specified by the ISEQ
instruction has determined that the flagged statement id out of
sequence.

Assembler Action: The statement is flagged and assembled,
however, the sequence number of the following statements will te
checked relative to this staterrent and net relative tc the
sequence cf ~revious statements.

Frogrammer Response: put the statelrent in the ~rc~er sequence.

Severity Code: 4

CHARACTERS AFPEAR BETWEEN THE EEGIN AND CON1INtE CCLUV~S C~
CONTINUATION CARt

£;xEl~nati$}: Cn a continuation card, the begin column and all
colurons between the begin column and the continue column
(usually column 16) must te tlank.

Assembler Action: Characters that appear between the begin
column and the continue column are ignored.

Programmer Response: Determine whether the operand started in
the wrong continue column or whether the preceding card
contained an erroneous continue punch in column 72.

Severity Code: 4

ICTL, ISEQ, MACRO, OR OPSYN STATEMENT APPEARS IN MACRO
DEFINITION

EXEl~~atiEE: One of the specified operations is used within a
macro definition, which is illegal.

Assembler Action: The illegal operation is ignored and the
statement is processed as a comment.

Frogrammer Response: Remove all ICTL, ISEQ, VACRC, and CFSY~
statements from within macro definitions. Make sure your ICTL
and OFSYN instructions precede ycur rracrc definitions, and that
each macrc definition ends with a MEND statement.

n
\ /

()

n

IF0028

IF0029

()

IF0030

IF0031

Severity Ccde: 8

ILLEGAL PRO'IO'IYPE KEYWORI: FARA~ETER DEFAULT VALUE

Explanation: A variatle syrntol is used as the default value cf
a keywcrd J;ararneter.

~!rbler Ac!icn: 'Ihe statement is ignored.

Frcgrarrrrer Response: Supply a vali~ default value fcr the
keywcrd ~arameter.

xxx:{XXXX IS AN ILLEGAL OPERANI: IN A GLOBAL OR LCCAL DECLARATION

Ex~lanaticn: In a glotal (GBLx) er lecal (LClx) 5E'I syrnbcl
declaraticn, the indicated operand does nct ccnsist cf ene or
more variable syrr~els that are separated by commas and
terminated with a tlank.

Asserrbler Ac!ien: The attempted global or local 5E'I symtol
de~laraticn is processed as a comment. Recovery is made in
certain circumstances and some valid variable syrr.bcls in the
declaraticn are recognized and defined correctly.

Frogrammer Response: Supply the cJ;erand with valid variatle
symbols and delimiters. Check all gletal and lecal
declaraticns.

Severity Code: 8

DECLARED DI~ENSICN OF xxxxxxxx IS ILLEGAL

~xplagation: 'Ihe declared dimension, which appears in the error
message, must be a nonzero, unsigned decimal integer, not
greater than 32,767, and enclcsed in J;arentheses.

Assem£lef~£tion: If the declared dimension was a decimal
self-defining term greater than 32,767, a default dimension of
32,767 is assigned to the variarle syrrbcl. Ir. all cther cases,
the variable syrntol declaraticn is igncred.

prcg~arrrr:er ResFonse: Supply a valid dimension.

Seve!.!!y_Ccd~: 8

SET STATEMENT NAME NOT A VARIABLE SYMBOL, OR SET STATEMENT NAME
INCONSISTENT WITH [ECLAREI: TYPE

~~l~~at.!cn: (1) The name field of a SET statement does not
consist of dn ampersand followed by from 1 to 7 alphameric
characters, the first of which is alphabetic.

Appendix G. Asserntler I:iagncstic Errcr ~essages 89

IF0032

IF0033

IF0035

90

(2) ~he symbol dces not match its previously declared type.
For instance, the sym1:ol ![light have been ~reviously defined as
LCLA, but the flagged statement may have tried to assign a SETC
character string to it.

(3) A systerr variable sym1:ol a~pears in the r.arre field of a
SE~x instruction. The system variable symbols are &SYSECT,
&SYSLIST, &SYSNI:X, &SYSPARM, &SYSDA~E, and &EYS~I~E.

Assembler Action: 'Ihe flagged staterrent is ~rccessed as a
comment.

Programmer Response: Assign a valid variable syrrbcl to the name
field of the SET statement (the symbol rr,ust l:e ~reviously
defined as a global or local variable), or be sure that the
usage of the sym1:ol corresponds to its ~revicusly declared type.

Severity Cede: 8

xxxxxxxx APPEARS IMPROPERLY IN THE OPERAND OF THIS STATEMENT

EXFlanation: The specified operand !=art is invalid.

Assembler Action: The statement is ~rccessed as a corrrrent.

Frogrammer Response: Check the syntax required fer the o!=erand
field cf this statement, and su~~ly a valid c~erand.

xxxxxxxx IS AN INVALII: LOGICAL OPERATOR

Ex~lanatien: The specified character string was fcund where a
logical c!=erator (AND or OR) was ex~ected.

Asserrbler Action: ~he statement is processed as a comment.

Programmer Response: Use either AND or OR, as appropriate, for
the logical operator.

Severity Code: 8

QUOTES NO~ PAIRED, OR ILLEGAL TERMINA'IION OF Qt{)~E S~RIl\G

EXQlanaticn: ~he quotes in the operand field of this statement
are unpaired, or the string is ille~ally terminated.

Assembler Action: ~he statement is processed as a comment.

Prcqrarrrrer Response: Su~ply any missing quotes.

Severity Code: 8

f\,
\. /

..

(J

IFC036

IF0037

()
IF0038

IF0039

()

ATTRIBUTE REF'ERENCE FOR xxxxxxxx IS INVALID

Explanation: 'Ihe flagged staterr.ent has atterr};ted to reference a
symbol that is not a valid ordinary or variable syrrbcl. 'Ihe
attributes referenced were one or more of the following: type
(T') , length (L'), scaling (S'), integer (I'), ccunt (1(1), and

number (N .) •

Asserrbler Action: The attribute referenced is ignored, and/or
the staterrent is ignored, and/or default value's for type,
length, and scaling attributes are supplied.

Programmer Response: Determine if a clerical error was made in
coding either the reference or the definition of the symbol that
appears in the message text; or supply a valid crdinary or
variable symbol where necessary.

Severity Code: 8

xxxxxxxx I S AN I I.,LEGAL SUBSCRI F'I

Explanation: 'Ihe subscript that appears in the message text
either is not enclosed by paired parentheses, or is an illegal
subscript.

Asserrbler Action: The statement that contains the illegal
subscript is processed as a comment.

Programmer Response: Ee sure the parentheses are paired, and
that a valid subscript app~ars inside them.

Severity Code: 8

xxxxxxxx IS AN INVALID SELF-DEFINING 'I'ERM

Explanation: 'Ihe characters specified in the message are
invalid in the operand field of a binary (type B), character
(type C) , decimal, or hexadecirr.al (type X) self-defining term.

Assembler Action: The staterr.ent that contains the invalid
self-defining term is processed as a comment.

Fro9rammer Response: Make sure that the characters used for a
self-defining term are consistent with the type cf term.

Severity Code: 8

xxxxxxxx IS AN INVALIC VARIABLE SYMBOL

Ex~lanation: The specified symbol does net ccnsist of an
ampersand fellowed by from 1 to 7 alphameric characters, the
first of which is alphabetic.

Assembler Action: The statement that contains the invalid
variable symbol is processed as a corrrrent. If the staterr.ent is
a rracre prototype statement, all statements in the macro
definition are treated as eornrrents.

prograrnme~ Response: Supply a valid variable symbol, or check

Appendix G. Assembler Diagnostic Errcr Messages 91

IF0042

IF0043

IF0046

92

that a single am~ersand is not used w~ere a double ampersand is
needed.

Severity Ccde: 8

PARAME1ER IN ~~CRO PRCTOTYPE OR ~ACRO INSTRUCTION EXCEE[S 255
CHARACTERS

EXEl~nati£E: A ~rameter value that appears in the operand
field of either a macro prototype or a macro instruction exceeds
255 characters in length.

Assembler Action: The first 255 characters cf the fararr.eter are
deleted. The remaining characters are used as the fararr.eter
value.

programmer Response: Limit the pararr.eter tc 255 characters or
se~arate it into t~o or more pararreters.

~ACRO INSTRUCTION PROTOTYPE SlA1EMENl HAE INVALID OF CeDE

• lhe c~eration code of a macro prototype statement is
previously defined as the e~eraticn ccde cf a rrachine,
assembler, or macro instructien; cr

• lhe c~eration code of a macro prototype statement is not a
~alid ordinary symtol; that is, it dces nct censist ef a
letter, fellcwed by 0 to 7 letters or digits or toth.

Assembler Action: lhe entire macro definition is processed as
comments.

Frcgrarrrrer ResEonse: Supply a valid crdi~ary syrrbcl that does
net cenflict ~ith any machine, asserrbler, er rracro instruction
operaticn ccde.

Severity Code: 8

S'IATEMENT COMPLEXI1Y EXCEEDED

Explanation: The expression evaluatien wcrk area has cverflo~ed
because the eXfression is too ccrr~lex. The ccrr~lexity of an
ex~ressicn is determined by the number of nested operators and
levels of parentheses. Up to 35 cperaters a~d levels of
~arentheses are allo~ed. For logical expressions, this total
allows 18 unary and tinary operators, and 17 levels cf
parentheses. For arithmetic expressiens in ccnditicnal
asserrbly, the total alloYis 24 unary and binary operators, and
11 levels of parentheses.

Asserrbler Acticn: The statement is processed as a ccrrrrent.

pro9rarnmer Response: Simplify the expressicn tc the lirrii ts
described in the explanation.

(;i
./

n
\. /

o

IF0047

IF0048

()
IF0049

~ . IF0050

UNEXPEC'IEI: ENI: OF FILE ON SYSTE~ INPUT (SYSIN)

Explanation:

• A continuation record was expected when an end-ef-file
eccurred en SYSIN (the source program ended); or

• End-af-file immediately fellews a REPRO ~taterrent; or

• End-af-file oecurs tefore an ENr card ha~ teen read.

Assembler Action: An EN!: staterr.ent is generated and a~~errbly
centinues.

Prcgrarrrrer Re~Fcnse: Determine if any statements were omitted
from the source program.

severity Code: 4

ICTL STATEMENT HAS NO OPERAND

!~!~nation: The ICTL staterrent requires an cJ;:erand, but none
is present.

Assembler Action: 'Ihe entire seurce rrcdule i~ ~rcce~~ed as
ccrrrrents.

fE2grammer Response: Supply from 1 to 3 decimal self-defining
terms to indicate respectively the begin, end, and continue
columns. If the ICTL statement is crritted, cclurrns 1, 71, and
16, respectively, are the default values.

CCFY STATEMENT OPERANr NO'I A VALID ORDINARY .tY~BCI.

EXFl~~~cn: 'Ihe operand of a COFY statement is not a symtol of
1 to 8 alphameric characters, the first of which is alphatetic •

.t§.§.~!!!!2lef~~Eion: 'Ihe COpy request is ~rcces~ed as a comment.

E~g!arrrrer R~~Fense: Supply a valid ordinary symtol in the
operand field.

Severity Code: 8

COpy S'IA'IE~EN'I DOES NC'I HAVE A~ OPERAN!:

Explanation: No operand found en this COpy staterrent.

Assembler Action: The staterrent is precessed as a ccrrrrent.

Frogrammer Response: Place the narre ef a rrerrcer te be cepied in
the cperand field, or remove t~e COpy staterrent.

A~pendix G. Assembler Ciagnostic Error Messages 93

IF0051

IFC052

IFC053

IF0054

94

UNEXPECTEr ENr OF rATA ON SYSIJ:EM LIBRARY (SYSLIB)

EXEI~natlen: An'end-of-file occurred on the input from a system
library before a ~END statement terminating a macro definition
was encountered.

~~~!bler Actien: IJ:he missing ~ENL statement is generated. 

fregrarrrrer ResE9nse: Determine if the MENC statement was 
omitted from the <library macro, or if the library contains an 
otherwise incomplete macro definitien, er if a rracrc call has 
been made to a non-macro definitien. 

UNARY OPERAIJ:OR NOT A PLUS CR ~I~US SIGN 

Explanation: An operator other than a Flus cr rrir.us sign 
a~~ears as a unary o~erator. Exce~t fer unary c~eraters, ~hich 
are lirrited te ~lus and minus signs, only one operator can 
appear between two terms. 

Asserrbler Action: The statement is processed as a cerrrrent. 

programmer Response: Supply the rrissing terrr cr a ccrrect 
c~eratcr. 

OF CCCE NOT FOUNr ON FIRS'I OR ONLY CARD 

EXFlanatien: 'Ihe complete statement name (if one is used) and 
the operation code, each followed by a blank, do not appear 
before the continuation indicator cclurrn cn the first card of a 
continued statement. 

Assembler Action: 'Ihe entire staterrent is ~rccessed as a 
corrrrent. 

Prcg!arrrrer ResEonse: ~ake sure that both the name and operation 
code of the statement a~~ear on the first card. Check for 
syntactic errors. 

INVALIr OPERATION COCE 

EXFI~~icn: 

• 'Ihe c~eration code specified is not a valid ordinary symtcl; 
or 

• A variable symbol in the operation field is invalid; or 

• 'Ihe resulting operation code after substituticn ~ith or 
witheut ccncatenation is not a valid ordinary syrrbel. 

f\ 
\ " - _/ 

o 



IF0055 

IF0057 

IF0058 

IF0059 

() 

Assembler Action: ~he statement is ~rccessed as a ccrrrrent. 

Frogrammer Response: Make sure that crdinary cr variable 
syrrbcls used in the o~eration field are valid. If ycu use 
variable syrrbcls with or without concatenation, make sure the 
resulting symtol is a valid ordinary sy~tcl. 

MEND S~A1EMEN1 GENERA~ED 

Explanation.ln end-of-file occurred cn the iny;ut frcrr, the system 
input device (SYSIN) or the systerr library (~YSLIB) befcre a 
MEND staterrent terminating a macro definition was encountered. 

Assembler Action: A MENC staterrent is generated. 

Frogrammer Response: Supply a MEND staterrent tc terrrinate the 
nacre definiticn. 

CUFLICATION FACTOR xxxxxxxx IN SETC EXPRESSICN NOT TERMINATEC 
BY A RIGH1 PARENTHESIS 

EXtl~Eat~cn: A SETC o~erand begins with a left parenthesis, tut 
a comma, a period, or a blank appears before the closing right 
parenthesis. 

Asserrbler Actien: The statement is y;rccessed as a ccrrrr,ent. 

Fragrammer Response: Supply a right y;arenthesis. 

Severity Code: 8 

NO ENDING QUC1E CN SETC EXPRESSICN 

~xQl~na~~cn: 1he character expression in the operand field of a 
SE1C statement must be enclosed in quotes. The statement ends 
before a delimiting quote. 

Asserrbler Acticn: ~he statement is processed as a comment. 

prcgrarrmer Res£onse: Supply any missing quotes. 

INVALIC TERM IN LOGICAL EXPRESSION 

Extlanation: One of the terms in the lcgical exy;ressicn is 
invalid in the ccntext. 

~sse!!£leE~cticn: ~he statement is processed as a comment. 

Appendix G. Assemtler Ciagncstic Errcr ~essages 95 



IF0060 

IFCO 61 

IF0062 

IF0064 

96 

Pregrarrrrer ResFonse: ~ake sure that th~ terms in the logical 
expression are valid. 

severity Code: 8 

END S~A~EMEN1 GENERATED 

Explanation: One of two errors eccurred. 

(1) End-of-file occurred en th~ systerr ir:l=ut device, (SYSIl\) 
before an ENL card was read. 

(2) The ACTR limit was exceeded in open code. 

~~gbler~ctien: An END statement is generated. 

pregrarrmer ResFonse: 

(1) Su~~ly a valid END statement; or 

(2) Either correct the conditional assemtly loop in open 
code so that the ACTR lirrit is nct exceeded, er set the 
ACTR limit in open code te a higter value. 

Severity Cede: 4 

CCPY NESl GREA1ER TEAN FIVE 

Explanation: The maximum limit of five nested levels cf CCFY 
staterrents is exceeded. 

Asserrbler Action: COpy processing terminates. 

prcgrarrmer ResFonse: Eliminate excessive levels of COpy 
statemen~ 

Severity Code: 8 

REQUIRED OPERAND FIELD ~ISSING 

Explanation: This statereent requires an c~erand in the c~erand 
field and nene is ~resent. 

Asserrbler Actien: lhe statement is processed as a comment. 

prcgrarr,rr:er ResFonse: Supply the missing operand. 

IN1ERLULE LICTIONARY SPACE EXEAUSTED 

Ex~lanaticn: The work space available is net sufficient to 
contain the dictionaries required te build either 

o 

() 



IF0065 

(J 

IF0066 

(1) 1he skeleton dictionary for a rracre defiT;itien er all of 
open code, or 

(2) 1he ordinary symbol attribute reference dictionary. 

1his message is always logged against statement numcer O. 

Assg~ble~ Action: If a macro is ceing ~rccessed, building of 
the skeleton dictionary for that macro definition is terminated 
and the macro will not ce expanded. If c~en ccde is being 
~recessed, the building of the open code skeleton dictionary is 
terminated and the program is processed as ccrrrrents. If space 
for the crdinary symbol attribute reference dictionary is 
exhausted, the tuilding of it is abandcned. 

prcgrarrrrer ResFonse: within the partition, increase the size of 
the regicn that is allocated to assembly, or allocate more of 
the partition to dictionary space via the BUFEIZE asserrbler 
cpticn (see A~pendix E) • 

.§eve~ity Cod~: 12 

EXPRESSION 2 OF EQU SYMEOL xxxxxxxx NOT IN RANGE 0-65535 

Ex~lanaticn: The value of the expressien specified in the 
second c~erand of the EQU instructicn where this syrrbcl is 
defined is net in the range 0-65535. 

This message is always logged against staterrent nurrber o. 

Asserrbler Action: The length attritute ef the syrrbcl is set to 1 

FrogrammerResponse: Make sure the value cf the seccnd o};erand 
cf the EQU instruction is in the range 0-65535, cr delete the 
second e};erand. 

Severity Code: 8 

EXPRESSION 3 OF EQU SY~BCL xxxxxxxx N01 IN RANGE 0-255 

EXE1~~.!on: 1he value of the expression specified in the third 
operand of the EQU instruction where this symcol is defined is 
not in the range 0-255. 

This message is always logged against statement numcer O. 

Assembler Action: 1he type attribute of the symcol is set to U. 

prcgE~r R~sFo~: ~ake sure the value of the third operand 
of the EQU instruction is in the range 0·255, or delete the 
third operand. 

Appendix G. Assemtler Ciagncstic Errcr ~essages 97 



IF0067 

IF0068 

IF0069 

IF0070 

98 

DECLARED DIMENSION FOR GLCBAL VARIAELE xxxxxxxx IN xxxxxxxx 
xxxxxxxx IS INCONSISTENT 

EXF12naticn: ~he declared dimension of a glotal variatle 
defined in a macro definition or in open code is not consistent 
with the declared dimension of the sarre glcbal variable in 
ancther rracre definition or in open code. 

This message is always logged against staterrent number O. The 
rressage text identifies the macro (or open cod~ where the 
error. is found. 

Asserrbler Actien: All references t~ the glcbal variable in the 
rracrc definition or in open cede where tbe inccnsistency was 
detected result in a null (zero) value. 

proq~~~~r Response: Be sure that all definitions of a given 
global variable have the same declared dimension. 

Severity Code: 4 

COpy MEMBER xxxx~x~x NCT FOUND IN LIERARY 

Explanation: The COpy memter shewn in the rressage text was not 
feund in the litrary. 

~ss~!bler A£!ien: ~he COpy statement is processed as a comment. 

pregrarrrrer ResFonse: Determine whether the litrary memter name 
is misspelled or whether an incorrect member name was 
referenced. Make sure the pre~er rracrc library is assigned in 
yeur JCL staterrents. 

Severity Code: 8 

~OO MANY CON~INUATION CARDS, TWC ALLOWE~ 

EXEl~ion: Only two continuatien cards are allowed for each 
statement, except for macro definition prototype and macro call 
statements. 

Asserrbler Actien: Excess continuatien cards are ~rccessed as 
cerrrrents. 

froq!ammer Response: Restructure the statement so that it can 
be contained on a total of three cards. Extensive remarks may 
be recorded as comment statements ty ceding an asterisk in 
celurrn 1 and elirrinating the continuation indicators. 

Severity Code: 4 

SUBS~ING NO~A~ICN IS NCT DELI~ITED EY CO~MA OR RIGB~ 
FAFENTBESIS 

Explanation: Two SETA expressions used in sul::string nctation 
are not se~arated ty a comma or enclesed in ~arentheses. 

~sserrbler~tien: ~he statement is processed as a comment. 

(\ 
: ) 
, J 

~I 
\ / 

\ / 



IF0073 

IFC074 

() 

IF0076 

programmer R~sponse: Supply the rr.issipg delirriter, cr check for 
other syntax errors that make this appear as sutstring notation. 

Severity Code: 8 

AGO OR AIF OPERAND NOT A SEQUENCE SY.MEOL 

EXQlanation: The symbol in the operand field of an AIF or AGO 
statement is not a period (.) followed by from 1 to 7 
alphameric characters, the first cf which is alphabetic. 

Assembler Action: The statereent is processed as a comment. 

Prcgrarrmer ResFonse: Supply a valid sequence symtol. 

Sev~!ity Cede: 8 

SE~UENCE SYMEOL XXXXXXXX IS MULTIPLY DEFINED IN xxxxxxxx 
xxxxxxxx 

Explanation: The sequence symtol in the narr.e field has teen 
used in the name field of a previcus staterr,ent wi thin the same 
rracre definiticn or open code. 

This message is always logged against staterr,ent number O. The 
rressage text identifies the macro «or open code) where the 
error is found. 

Asserrbler Action: All definitions of the sequence syrrbel after 
the first cne are ignored. All references tc the sequence 
syrrbel are treated as references to the first definition. 

programmer Response: provide unique sequence syrrbcls fer the 
rracrc definitien or open code. 

SE~UENCE SYMEOL xxxxxxxx IS UNDEFINED IN XXXXXXXX XXJ{XXXJ{X 

Ex~lanatien: A sequence symbol appears in the operand of an AIF 
or AGO statement, but does not appear in the name field of 
another statement in the same macro definitien er cpen cede. 

This message is always logged against statement numter O. The 
message text identifies the macro (er cpen ccde) where the 
error is found. 

Asserrbler Acticn: All statements which reference the undefined 
sequence symtcI are processed as corrrrents. 

prcg!arrmer ResFonse: Define the sequence symtol at the 
appropriate point, or reference a sequence symtol that is 
already defined. 

Severity Cede: 4 

Appendix G. Assembler Ciagnostic Error ~essages 99 



IF0078 

IF0080 

IF0081 

100 

UN[EFINE[ OP COrE 

EXEl~naticn: 1he mnemonic operation code of this statement does 
not correspond to any of the following: 
• a machine instruction operatien cede 
• an extended rrachine instruction operation code 
• an assem~ler instruction operatien ccde 
• a rracrc instruction operation code 
• an operation code that has teen defined 

by an OPSYN instruction. 
This message is also issued fer eperatien cedes that have been 
deleted by OPSYN instructions. 

Assembler Action: The statement is treated as a corrreent. If 
the statement appears tefore open ccde, all staterrents 
fellcwing it are considered to belong to open code. This means 
that any macro definitions following the errcr are treated as 
errors. 

Frograrnrner Response: Either make sure you use a valid renemortic 
eperatien cede, er make sure that the prcper OPSYN instructions 
are included in your program. 

Severity Code: 8 

A'IrRIBU'IE REFERENCE TO UNDEFINED SYMBOL 

!'xplanation: The symtol specified in a length (L I
), scaling 

(S I) , or integer (I I) attribute reference is either an 
undefined symtol or a symtolic pararreter (cr a &SYSLIST 
specification) representing an undefined sYIrbcl. 

• 'Ihe length attribute, if specified, is set to 1. 

• 1he integer or scaling attribute, if specified, is set to O. 

Programmer Response: ~ake sure the syrr.bel is defined. 

,Severity Ccde: 4 

[ECLARE[ TYPE FOR GLOBAL VARIABLE xxxxxxxx IN xxxxxxxx-xxxxxxxx 
IS INCONSIS1EN1 

Explanation: The type (GELA, GBLB, er GBLC) cf a global 
variable declared in a macro definition or in open code is not 
consistent with the type of the same global variable declared 
in another rracro definition or in open code. 

This message is always logged against statement number O. The 
rressage text identifies the macro (or open code) where the 
error is found. 

Asserrbler Actien: All references to the glcbal variable in the 
rracre definitien or in open cede where the inccnsistency was 
detected result in a null (zero) value. 

programmer Response: ~ake all declarations of the same global 
variable consistent. 

Severity Code: 4 

(\ 
\. / 

Q 



IF0085 

IFC087 

() 
IF0088 

IF0089 

() 

MACRO HEADER ~ISSING, MACRO NO~ EXPANDABLE 

EXF1~natien: ~he first statement of a library macro definition 
was not a MACRO statement, and the search for the macro 
definition is terminated. 

Asserrbler Action: The macro call is processed as a ccrrment. 

Frogrammer Response: Be sure that th~ library rracrc definition 
begins with a MACRO statement. 

INVALID MACRO rEFINITION PROTO~YPE, MACRO NOT EXPANDABLE 

Expl~nation: A comment statement a~~ears irrrr.ediately after a 
macro header (~ACRC statement) • 

Assembler Action: All the staterrents of the macro definition 
are processea-as comments. 

Frogrammer Response: Make sure that the staterrent irrrr.ediately 
fcllewing the rracro header is a rracro ~retcty~e staterrent. ~e 
ccrrrnents er any ether statements are permitted between the macro 
header and the prototype of a rracro definitien. 

seve~ity Cede: 8 

LIERARY MACRO PROTOTYPE LOES NOT MATCH MEMBER NAME, MACRO NOT 
EXFANCAELE. 

];xElanatien: ~he mnemonic operation code in the macro prototype 
in a library macro definition does not match the entry in the 
rracro library. 

Asserrbler Action: The macro instruction is processed as a 
comment. 

FregraIurer ResFonse: Enter the Iracrc defini tien in the library 
under the sarre name as the mnerronic op cede that a~~ears on the 
rracrc ~retcty~e. 

Severity Code: 8 

GENERA~·ION-~·IME DICTIONARY SPACE EXHAUS~EC 

Explanation: ~he workspace available is not sufficient to 
contain the dictionaries required to expand the macro, to extend 
a SETC variable, or to contain the basic glebal dictienaries. 

Assembler Action: If the global dictionary workspace is 
insufficient, the text is processed as comments. If there is 
insufficient space to extend the SETC variable, ex~ansion of 
the macro that contains the variable is terrriinated. If the 
space fer rracrc definition dictionaries is insufficient, calls 

A~~endix G. Assembler Diagnostic Error Messages 101 



IF0090 

IF0091 

IF0092 

102 

to those macros are not expanded. 

prcgrarrrner ResFonse: within the partition, increase the size of 
the region that is allocated to assembly, or allocate more of 
the partition to dictionary space via the BUF~IZE assembler 
c~ticn (see A~~endix E) • 

Severity Code: 12 
< 

UNI:EFINEI: SEQUENCE SYMEOL ENCOUNTERED DURING CONDITIONAL 
ASSEMBLY 

Explanation: A sequence syrecol referenced in the c~erand field 
cf this statement is undefined in the nacre definiticn or o~en 
code. This statement has been encountered during conditional 
assembly. 

Asserrbler Action: The statement is processed as a comment. 

Prcgrarrrrer ResFonse: Define the sequence symcol at an 
appropriate point, or reference a sequence symcol that is 
already defined. 

Severity Cede: 8 

KEYWORD PARAME'IER xxxxxxxx IS ~UPLICA'IE~ ON ~AME ~ACRC CALI. 

Explanaticn: A keyword ~arameter has appeared more than once on 
the same macro instruction. 

Assembler Action: The last value assigned tc the pararreter is 
used, the cthervalue(s) are igncred. 

prcgrarrrner ResFonse: Define only one value for each parameter. 

KEYWOR~ PARll.METER xxxxxxxx UNDEFINED IN ~ACRC DEFINITION 

Extlanaticn: A keyword parameter has been used in the nacro 
instructicn that is not a keywcrd pararreter in the rracro 
prctcty~e, cr an equal sign not surrounded by quotes is found 
in a positional parameter. 

Asserrbler Action: The extra keyword parameter in the nacro 
instructicn is ignored. 

Prcgrarr.rrer ResFonse: 

(1) Delete the keyword parameter and its value from the macro 
instruction; or 

(2) make the keyword parameter in the macro call correspond to 
one of the keyword parameters in the nacre prctcty~e; cr 

(3) define the keyword parameter in the c~erand field of the 
macro prototype; or 

(\ 
t ! 

\ / 

/ 



IF0100 

IF010l 

IF0102 

(4) if yeu want to include an equal si.gn in a positional 
parameter, enclose the parameter within single quctes. 

!:ICTIONARY SPACE EXEAUSTEI:, NO SKELETON DICTICNARY BUILT 

Explanation: 

o If the message is given for a ~acro definitien or for open 
code: no available space is left to build the skeleton 
dictionary after space has teen used fer the definition of 
global sy~bols, sequence symbols, or referenced ordinary 
symbols. 

• If the rr.essage is given for a rr:acrc instruction: dictionary 
space was exhausted during the editing of a library macro. 

~~~~~le~tion: The macro is not considered defined, and any 
calls to it are processed as comments. If the error occurs in
epen code, the entire asserntly is processed as cerrrrents.

Prcqrarr:rrer ResFonse: Wi thin the partition, increase the size of
the region that is allocated to assembly, or allocate more of
the partition to dictionary space via the BUF~IZE asserr.bler
cpticn (see A~~endix E) •

GENERATE!: OP COeE INVALI!: OR UNCEFINED

EXEI~~atien: ~he operation code created by sutstitution is not
a valid ordinary symbol or is not a valid machine, assemt,ler,
or macro instruction, or defined by an OP~YN instructien.

Ass~n~leE Actien: The generated statement is treated as a
corrrr,ent.

Frogrammer Response: Be sure that substituticn results in a
valid crdinary symtol that consists of frcm 1 te 8 al~hameric
characters, the first of which is alphabetic, and that the
resulting symtol is a defined operatien cede.

Seve~ity Cede: 8

GENERATE!: OP CO!:E IS ELANK

EXElanatiQn: ~he op code created by substitution contains no
characters, or from 1 to 8 blank characters.

Assembler Action: ~he generated statement is processed as a
comment.

Fregrarr.rr.er ResEonse: Be sure that substituticn results in a
valid ordinary symtol that consists of frcrr 1 tc 8 al~hameric
characters, the first of which is alphabetic.

Appendix G. Assemtler Diagnestic Errcr ~essages 103

IF0104 MORE THAN ONE 'II'ILE S'IATElt:ENT 1'.AMED

Explanation: This is at least the second TITLE staterrent that
contains sorrething other than a sequence syrrtcl er blanks in
the name field.

Assembler Action: The name field is ignored.

Programmer Response: Ee sure that the narre fields cf all but
cne TITLE statement contain only sequence syrrbcls or blanks.

~rity Cede: 4

IFC105. GENERATEr FIELr EXCEErS 255 CHARACTERS

IF0107

IF0108

104

EXElanatien: As a result of sutstitutien, a character string
that is ionger than 255 characters has been generated.

Asserrbler Action: 'Ihe first 255 characters are used.

~rcgrarr.roer ResFonse: Limit the generation of any character
string to 255 characters, minus the number of non-sutstituted
characters. ~imit sutstitution in the narre and c~eraticn
fields tc 8 characters, in the operand field to 255 characters.)

CHARACTER STRING USEL AS AN ARITHMETIC TERM EXCEEDS 10
CHARACTERS

~xFlanat~EE: A character string used in a SETA expression or in
an arithmetic relation in a SETE expression is longer than 10
characters. Ten is the maximum nurnter of characters ~erroitted
in a deciwal self-defining term.

Assembler Action: 'Ihe character string is re~laced by an
arithmetic value of zero.

pregrarr.mer ResFonse: Be sure that all character strings used as
described in the explanation are from 1 to 10 decimal digits
with a value in a range of 0 to 2,147,483,647. Alsc be sure
that the values cf all variables that contritute to the
generation of the character string are valid fer their ty~e.

Severity Cede: 8

CHARAcrER STRING USEL AS AN ARITHMETIC TERM CCNTAINS NON-DECIMAL
CHARACTERS

EXFI~~cn: A character string used in a SETA expression or in
an arithmetic relation in a SETE expression contains characters
ether than 0 through 9.

Asserrbler Acticn: 'Ihe character string is replaced ty an
arithmetic value of zero.

programmer Response: Ee sure that all character strings used in

n
\. ./'

o

IFO 1 09

IFO 110

(J

a SETA eXFression or as an arithmetic .relation in a SE~B
expression contain from 1 to 10 decirral digits with a value in
the range of 0 to 2,147,483,647. Alsc be sure that the values
of all variatles that contritute to the generaticn cf the
character string are valid for their type.

Severity Code: 8

CHARAC~ER S~RING USED AS ARITH~E~IC ~ERM IS A NULL S~FI~G

EXE1~Eati£TI: A character string used in a SETA expression or in
an arithmetic relation in a SETE expression is zero characters
in length.

~~bler Acticn: ~he character string is replaced ty an
arithmetic value of zero.

Programmer Response: Ee sure that all character strings used in
an arithrretic context are frorr 1 to 10 decirral digits ~ith a
value in a range of 0 to 2,147,483,647. Also make sure that
the values of all variatles tbat contribute tc the generation
cf the character string are valid.

Severity Code: 8

ARI~HME~·IC OVERFLOW IN INTER~Er:IA~E FESUL~ OF SE~A E)(PFESSICl'

Expl~!!aticn: During the evaluation of a SETA .expression, an
intermediate value was produced that was outside the range of
-231 to 231-1.

Asserrbler Action: ~he intermediate result is replaced ty an
arithmetIcvalue of zero.

programmer Response: Ee sure that the values cf all variables
that ccntritute to the intermediate result are valid. ~c
eXFressicn shculd ever attempt a value outside the range of
-231 to 231-1. Overflow may te avcided if yeu adjust the
sequence cf eXFression evaluation, or if you separate
components of the expression and evaluate therr individually
(FerhaFs by additicnal SET statements) before comtining them.

Severity Code: 8

Affendix G. Assembler Ciagnostic Error ~essages 105

IF0111

IF0112

IFO 113

IFO 114

106

SUESCRIPT EXPRESSION BAS A ZERO OR NEGATIVE VALUE

EXFlanatien: A term or a SETA expression used as the subscri{:t
en a dimensicned gletal or local variable syrrbcl results in a
zere or negative value.

Assembler Action: Any such reference te the dirrensiened
variable results in a null (zere) value.

prcgrarrrner ResFonse: Be sure that the values of all the
variables that contribute to the subscript are valid.
Expressions that are used as sutscripts rrust have a value in
the range cf 1 through the declare~ dimension of the glotal or
local variatle. A zero sutseript is allewed cnly en the system
variable &SYSLIST.

SUESCRIPT EXPRESSION EXCEEDS MAXIMUM DIMEN~ION

~xEI~naticn: A term or a SETA expression used as the sutscript
on a dimensioned global or local variable results in a value
greater than the declared dimensicn of the variable.

~§se~bleE Ac!ion: Any such reference results in a null (zero)
value.

Prcgrammer Response: Ee sure that all terrrs and variables that
ccntribute te the sutscript have valid values. Be sure that a
term er a SE~A expression used as a subscript has a value in
the range of 1 through the declared dirrensicn cf the global or
lecal variable.

Severity Code: 8

ILLEGAL REFERENCE ~ADE TO A PARAMETER THAT IS A SUELIST

Explanation: A reference has teen rr;ade in a SETA cr SETB
ex~ressicn (i.e., in an arithIT.etic context) tc a ~ararreter that
is a sublist.

Assembler Action: The reference to the ~ararreter results in an
arithmetic value of zero.

Pregrarrrner ResFonse: Check to see that the proper parameter is
being referenced. Be sure that an appropriate value is
assigned to a parameter that is referenced in a SE~A cr SE~B
ex~ressicn. Check for a missing subscript.

Severity Code: 8

NEGA~IVE DUPI.ICA~ICN FACTCR IN CHARACl'ER STRING

Explanation: A term or a SETA expressicn that is used as the
du~licaticn facter in a SETC operand results in a negative
value.

Assembler Action: The duplication factcr is set to an
arithmetic value of zero.

\ /

r

n

IF0115

IF0116

IF0117

Frogrammer ResEonse: Ee sure that any terrr cr ex};ression used
as a du~licaticn factor has a F,ositive value, and that the
values cf all variables that contribute to the duplication
factor are valid.

FIRST EXPRESSION IN SUBSTRING NOTATION HAS ZERO OR NEGATIVE
VALUE

Explanation: A term or SETA expression that is used tc s};ecify
the starting character for a sutstring o};eraticn has a zero or
negative value.

Assembler Action: The assemtler assigns the value of null to
the substring.

PrcqrarrJner ResFonse: A term, a SETA expression, or a
combination of variables used to produce the first expression
in a substring notation must result in a };ositive, ncnzero
value, net exceeding the length of the character string.

Severity Code: 8

SECaNt EXPRESS ION IN SUES'IRING NOTATION HAS NEGATIVE VALUE

EXFlanaticn: A term or SETA expression that is used tc s};ecify
the number cf characters affected by a substring e~eraticn has
a negative value.

Assembler Action: The value of th~ second ex~ressien cf the
substring notation is set to 0, that is, the asserrbler assigns
a value ef null to the substring.

Frograrnrner Response: A term, a SETA ex};ressicn, cr a
combination of variables used to produce the second expression
in a substring notation must result in a non-negative value.

Severity Code: 4

FIRST EXPRESSION IN SUESTRING NOTATION EXCEEDS THE LENGTH OF
'IHE STRING

Explanation: A term or SETA expression that s~ecifies the
starting character for a sutstring cperaticn s};ecifies a
character beyond the end of the string.

Assembler Action: The assembler assigns the value of null to
the substring.

prcgrarr:rrer ResFonse: ~ake sure the term, SE'IA expression, or
combination of variables used to produce the first expression
in a substring notation results in a value in the range ef 1
threugh the length of the character string.

Severity Code: 8

A};~endix G. Assembler Diagnostic Error Messages 107

IFOl18

IFOl19

IF0120

108

ACTR LINIT HAS EEEN EXCEEI:ED

EXEl~na!~cn: ~he number of AIF and AGO branches within the text
segment exceeds the value specified in the ACTR instruction or
the conditional assemtly loop counter default value.

Asserrbler Acticn: If a macro is being expanded, the expansion
is terminated. If open code is processed, all remaining
statements are processed as corrrrents.

Prcgrarrrr.er ResFonse: Correct the conditional assembly lco~ that
caused the ACTR limit to te exceeded, er set the AC~R value to
a higher nurrber.

severity Code: 8

ILLEGAL ~YPE A~TRIBUTE REFERENCE

Explanation: A type attritute reference is rrade te a symbol
defined by an EQU instruction with an invalid third e~erand.

~~!?ler Act~: ~he type attribute value is set to U.

PrcgEarrmer ResFonse: Correct the third operand on the EQU
instruction. It 'must be a self-defining term in the range
0-255.

ILLEGAL LENGTH ATTRIBUTE REFERENCE

EXFlanaticn:

• A length attribute reference specifies a SETx symtol; or

• A length attritute reference specifies a syrrtclic ~arameter
(or a &SYSLIST representation) that does nct re~resent an

ordinary symbol; or

• ~he ordinary symbol referenced by a length or integer
attribute reference is defined ty an EQU instructicn, and
the value cf the second operand of that instruction is not
in the range 0-65535; or

• ~he crdinary symbol referenced by a length or integer
attritute reference is defined in a DC cr DE instruction,
and the instruction contains a length rrcdifier that is net
a self-defining term.

Assembler Action: ~he length attribute is set tc 1.

frogrammer Response: Review the use cf the length attribute and
recede.

IF0123

IFO 124

IF0125

(J

ILLEGAL SCALE A'I'IRIEU'IE REF'ERENCE

Explanation:

•
•

A scaling attritute reference s~ecifies a ~E'Ix syrrbol; or

A scaling attritute reference s~ecif ies a syrr.tclic
fararreter (or a &SYSLIST representation) that dces not
represent an ordinary symbol; or

• A scaling attritute reference is rrade to an ordinary symtol
whose tYfe attritute is not H, F, G, E, ~, L, K, F, or Z; or

• 'Ihe ordinary symbol referenced by a scaling or integer
attritute reference is defined ~n a DC cr D~ instruction
containing a scaling modifier that is not a self-defining
term.

Asserrbler Action: The scale attribute is set to O.
----~----------

Prcgrarrrrer ResFonse: Review the use of the scale attritute and
recode.

Severity Ccde: 4

ILLEGAL IN'IEGER A'I'IRIBU'IE REFERENCE

Explanation:

• An integer attritute reference Sfecifies a SE'Ix symbol; or

• An integer attril:ute reference s{:ecifies a syrr:tolic
fararreter (or a &SYSLIST representation) that dces nct
represent an ordinary symbol; or

• An integer attritute reference is rrade to an ordinary symtol
whcse tYFe attritute is net H, F, G, E, D, I, K, P, or Z.

Assembler Action: The integer attribute is set to O.

prcgrarr.rr.er ResFonse: Review the use of the integer attritute
and recode.

Severity Code: 4

INVALID NAME - ILLEGAL E~BEDDED CHARACTER OR NON-ALPEAEETIC
FIRST CHARACTER

• 'Ihe syrrbol generated in the name field does not tegin with
an alphabetic character or it ccntains a sfecial character
cr an errbedded blank after substitution; or

• for the 'II'ILE instruction: the name field ccntains a
special character.

8~!!!2leE Action: 'Ihe name field is ignored.

RrcgrarrEer ResFonse: Be sure that the symbol generated in the
name field conf6rms to the rules for forming valid ordinary
symbols, or is a valid TITLE narre field entry. Alsc check to

Affendix G. Assemtler Diagncstic Errcr ~essages 109

IF0126

IF0127

IF0128

110

make sure that the values of all variables that contribute to
the generation of the symbol in the narre field are valid.

MORE THAN 5 ERRORS IN THIS STA'IEMEN'I, PROCEEEING OF 'IHE
STATEMENT IS 'IER~INATED

Explanation: Six or more errors were detected in ~recessing
this state~ent. The maximum nurrber of errcr rressages issued by
the ~recesser to each statement is. five.

Asserrbler Actien: 'Ihe sixth error causes this message to be
ISSUed, and rressages are not issued for any further errors in
this statement.

Frogrammer Response: Correct the indicated errcrs and check
carefully fcr errors teyond the ~oint indicated by the fifth
error message. Assemble again. Any additional errors will be
located in the next assembly.

VALUE OF CHARACTER STRING USED IN ARI'IHME'IIC CON'IEX'I EXCEEDS
2,147,483,647

Explanation: A characte; string used in a SETA expression or in
an arithmetic relation 1n a SETE expression exceeds a value of
2,147,483,647, which is the maxirr.urn value allcwed for a decirr.al
self-defining term.

Assembler Action: The character string is reflaced by an
arithmetic value of zero.

Prc9Earrrner Rg§Eonse: Be sure that all character strings used in
an arithmetic context are from 1 to 10 decimal digits and have
a value in the range of 0 to 2,147,483,647. Be sure that the
values of all variables that contribute t·o the generation of
the character string are valid.

GENERATEI: OP corE EXCEEr:S 8 CHARAC'IERS

EXElanaticn: 'Ihe syntax for mnemonic operation codes must
follow the same rules as ordinary symbols; that is, they must
be from 1 to 8 alphanumeric characters lcng and the first
character rrust be alphabetic.

Assembler Action: 'Ihe staternent that centains the illegal op
cede is ~rccessed as a co~rr.ent. Only the first 8 characters of
the generated ep cede a~pear in the printed statement.

Frogrammer Response: Ee sure that the values cf all variables
that contribute to the generation of the ep ccde are valid, and
be sure that nc attempt is made to generate an op code of more
than 8 characters.

(\
\)

o

IF0129

IFO 130

IF0131

•

IFO 132

()

GENERATE[SYMEOL IN NA~E FIELr EXCEEDS 8 CHARACTERS

Explanation: A generated symtcl that a~~ears in the narr>e field
exceeds 8 characters. It should te frcIT 1 tc 8 al~hanumeric
characters in length, and the first character should te
alphabetic.

Asserrbler Acticn: The name field is igncred. Only the first
eight characterE of the generated syrrbcl appear in the ~rinted
staterrent.

Frogrammer Response: Ee sure that the values cf all variables
that contribute to the generation of the symtol in the name
field are valid. Ee sure that no atterr~t is rrade tc generate a
syrrbcl cf rrcre than 8 characters.

Severity Cede: 8

FIRS'I SUBSCRIP'I OF &SYSLIST REFERENCE IS NEGA'lIvE

Explanation: A term or an arithmetic (SETA) expression that is
used as the first subscript of a &SYSLIST reference has
resulted in a negative value.

Asserrbler Acticn: The parameter reference is treated as a
reference to an cmitted opera~d.

Prcgrarrrrer ResFonse: Be sure that the values of all variables
that-contribute to the generation of the first subscript are
valid.

Severity Cede: 8

INCONSISTENT GLOEAL VARIAELE DECLARATION I SETx INSTRUCTION
IGNORED

Explanation: Glotal variatle declaratien inccnsistent ~ith a
~revious definition of the variable in ancther rracro definition
or in o~en ccde.

Assembler Action: The value of the global variable rerrains the
sarre and the SETx instruction is ignored.

~regrarr.rrer ResFonse: Correct all inconsistencies between glotal
variable declarations regarding dimension and type •

Severity Code: 8

REFERENCE '10 INCONSISTENTLY DECLAREr GLOEAL vARIAELE RESULTS IN
ZEFO VALUE

EXEl~Baticn: An attempt to obtain a value from a global
variable has been ignored because the declaration of the global
variable was inconsistent with a ~revicus declaraticn of the
sarre variable in another macro definition or in open code.
Either the dimension or the ty~e does nct agree.

Appendix G. Assemtler Ciagncstic Errcr Messages III

IF0133

IF0157

IF0158

112

Assembler Action: The reference to the global variable is
replaced by a null or zero value.

Programmer Response: Correct all inconsistencies among
declarations of the same global variable.

Severity Code: 8

NO WORK SPACE FOR OPEN CODE SKELETON DICTIONARY

EXFlanation: The allotted dictionary work space is insufficient
to build the skeleton dictionary for open code. Since the
generation process requires the open code dictionary,
generation is not attempted.

Assembler Action: The entire assembly is processed as comments.

programmer Response: within the partition, increase the size of
the region that is allocated to assembly, or allocate more of
the partition to dictionary space via the BUFSIZE assembler
option (see Appendix E).

Severity Code: 12

DC OPERAND VALUE TOO LONG

Explanation: The object code generated from an operand in a DC
instruction is too long. The maximum object code length of a
DC operand is 16,777,215 bytes.

Assembler Action: The specified value is ignored.

programmer Response: Make the constant shorter, or break it up
into two constants.

Severity Code: 8

NAME OF STATEMENT IN DSECT USED IN RELOCATAELE ADDRES'S CONSTANT

Explanation: A non-paired relocatable term used in an A-type or
y-type address constant is defined in a dummy section.

Assembler Action: The constant is ignored.

programmer Response:

• Make sure the relocatable term is not defined in a dummy
section; or

• Make sure the term defined in the dummy section is paired
with another term (with the opposite sig~ from the same
dummy section.

Severity Code: 8

•

IFC159

IF0161

CJ
IF0162

IF0163

(J

FELOCATAELE EXPRESSION AS EXPLICIT DISPLACEMENT IN S-TYPE
CONSTANT

EXF1~D~!icn: The disflacement used in an explicit S-type
address constant specification is a relocatable expression.

Assembler Action: The value of the cferand is set tc zero and
nc entry is rrade in the relocation dicticnary.

Prcgrarrrrer ResFonse: ~ake sure the displacement is specified as
an absolute expression, or specify an implicit address.

INVALI[LITERAL NEAR OPERAND COLUMN nn

EXFlanation: An invalidly constructed literal af~ears near the
Sfecified cferand column.

Asserrbler Action: The value of any reference to the invalid
literal is set to O.

PrcgrarfIIler ResFonse: A Ii teral should be constructed like a DC
or DS constant with the following exceptions:

• The literal is preceded by a equal sign.

a The dUflication factor must not be O.

Severity Ccde: 8

VALUE ERROR - SHOUL[EE BETWEEN 0 AND 9 NEAR CPERAND COLUMN nn

EXFlanaticn: A value is negative cr is net in the range cf 0 to
9, which is required by this instructicn.

~~~r Action: Zeros are generated in place of the machine 
inst~uction in the object module. 

Frogrammer Response: Ee sure the oferand field has a fcsitive 
value in the range of 0 to 9. 

Severity Ccde: 8 

MISSING OR INVALID SYMBOL IN NAME FIELD 

EXFl~natiEE: Cne of two errors has occurred: 

• A syrrbcl is missing in the name field where one is required. 

G The symbol in the name field is invalid. 

Asse~bler Action: The statement is processed as a comment. 

frcgrarrrrer ResFoDse: SUPfly a valid name. 

A~~endix G. Assembler [iagnostic Error ~essages 113 



IF0164 

IF0165 

IF0167 

114 

INVALIt OR ILLEGAL S'IART STATE~ENT 

Explanation: The START statement did net start the first 
contrel sectien in the assembly, er the c~erand cn the S~ART 
staterrent was net an absolute value. 

Assembler Action: The START staterrent is treated as a CSECT 
staterrent. 

prcgrarrrner ResEonse: Be sure that the srAR~ statement has an 
absolute operand and that it begins the first control section 
in the assembly. 

Severity Code: 4 

NULL PUNCH OPERAND OR PUNCH OFERAND EXCEEtS 80 CHARAC~ERS 

Explanatien: ~he o~erand of a FUNCH instruction either 
specifies only a null string surrounded by quotes, or is more 
than 80 characters long. 

Asserrbler Actien: The PUNCH statement is precessed as a comment. 

Frogrammer Response: Ee sure that the e~erand ef a PUNCH 
staterrent censists of from 1 te 80 character~ ~urreunded by 
quetes. 

Severity Code: 4 

SYMBOL FILE OU~ OF S'!'EP 

Explanation: References to the syrrbel file (an internal data 
file) eut ef ste~ because of an errer in the seurce ccde. ~his 
message is always accompanied by other error messages, not 
necessarily for the same staterr.ent. 

Asserrbler Action: Assembly continues, but results subsequent to 
the ~oint ef errcr may not be valid. 

Pregrarr~er ResFonse: This message will always be accompanied by 
user errors. Correct them and reassemble the program. 

If the message is issued even though the seurce cede i~ 
errer-free, de the following before calling IEM: 

• . Have your source program, macro definitions, and associated 
listings available. 

• If a COpy statement was used, execute the IEBP~PCH utility 
to obtain a copy of the partitioned data set member 
specified in the COpy statement. 

• Make sure that MSGLEVEL=(1,1) was specified in the JCE 
statement. 

Severity Cede: 16 

(~ 

o 



IF0168 

IF0169 

(J IFO 170 

IF0171 

() 

AN ARITHMETIC EXPRESSION NOT USED IN CON£ITICNAL ASSEMBLY 
CONTAINS MORE THAN 20 TERMS 

EXtlanaticn: An arithmetic expression used in a macro 
definition or in open code, but not in a conditional assemtly 
statement, contains more than 19 unary and bir.ary c{:eratcr.s and 
6 levels of parentheses. The rr,axiIr,uIf, nUIrber cf terms this 
ccrrbinaticn allo~s is 20. 

Asserrbler Action: ~he value of the expression is set to O. 

Pregrarr.reer ResFonse: Be sure that this arithmetic expression 
dces net contain more than 19 operators (unary and binary) and 
6 levels of parentheses. If greater cCIn{:lexity is necessary, 
use EQU statements to evaluate intermediate results. 

Severity Code: 8 

INVALI£ SELF'-I:EFINING TERM NEAR CPERAND COLUMN nn 

E.xplanation: A self-defining terrr, was invalidly s~ecified. 

Assembler Action: The value of the term is set tc zerc. 

Frogrammer Response: Check the syntax and ccrrect the error. 

Severity Code: 8 

'IliO ADJACEN~' BINARY OPERATCRS, OR BINARY OPERA'IOR EXFEC'IED EU~ 
NCT FOUN£ NEAR OPERANI: COLUMN nn 

Explanation: One of two errors has occurred. 

(1) Two binary operators appear ccnsecutively near the cclumn 
specified in the message text. This applies only to "*" 
~ultiply) and "I" (divide). 

(2) A binary operator was expected near the column specified in 
the message text, tut none was found. A single binary c{:erator 
must occur between all terms of an expressicr.. 

Asserrbler Action: The expression that contains the absent or 
illegal c{:eratcr is set to zero. 

Frogrammer Response: 
( 

(1) Eliminate ODe of the tinary operators. 

(2) Prcvide a binary operator. 

Severi!y Ccde: 8 

TITLE STATEMENT OPERAND EXCEEDS 100 CHARACTERS 

Extlanation: The operand of a ~I~LE instructicn ccntains more 
than 100 characters. 

Ap{:endix G. Assemtler Ciagnostic Errcr ~essages 115 



IFO 172 

IF0173 

IF0174 

116 

P.ssembler Action: ~he character string in the operand is 
truncated to 100 characters. 

programmer Response: Ee sure that the length cf the character 
string in the c~erand of a TI~LE statenent dces not exceed 100 
characters. 

Severity Code: 4 

VALUE OF ORG OPERAND IS LESS THAN ~'HE CON~ROL SEC'TION S'IAR'IIt\G 
p.rrRESS 

EXFI~.!}ation: 'The oJ;:erand of an eRG statement results in a value 
less than the starting address of the control section. 

Assembler p.ction: The ORG staterr,ent is prccessed as a corrrr.ent 
and has nc effect on the value of the locaticn ccunter. 

pregrarrE.er ResFonse: Be sure that the operand of the ORG 
statement is a positive relocatable expression, greater than 
the starting address of the contrel secticn, cr blank. 

Severity Code: 8 

ONE OR MORE SY~BCLS IN AN ORG OPERAND CO NO'I BELONG 'Ie 'IHE 
CURRENT CSECT, rSECT, OR COM 

Explanation: One or more of the symbols used in the operand of 
an ORG statement are not defined in the current control section 
(dummy, common or ordinary). 

Asserrbler Action: 'Ihe ORG statement is processed as a comment 
and the value of the location counter remains unchanged. 

programmer Response: Ee sure that all syrrbels used in the 
eperand field ef an ORG statement belong to (are defined by 
apJ;:earing in the name field of a statement within) the current 
control section. 

Severity Cede: 8 

ORG OPERAND IS ABSOLUTE, ~UST EE RELOCA'IP.ELE 

Explanation: An absolute term or expression used in the operand 
of an ORG statement must be a relocatable term, a relocatacle 
expression, or a blank. 

Asserrbler p.ction: The ORG instruction is precessed as a comment 
and the value cf the location counter rerrains unchanged. 

Prcgrarr,roer ResFonse: Be sure that the operand of an ORG 
statement is a relocatable term, a relocatable expression, or a 
blank. P.n ORG to an atsolute address is net Fcssible because 
the asserrbler assumes that all location references are 
relocatable. P. common error is an ORG tc o. Since the start 
cf the J;:rcgram is not absolute machine location 0 tut 
relocatable 0, replace the 0 with a syrr,bcl cr eXFressicn that 

f) 
\ / 

n 
" ./ 



IFC175 

IFC176 

(J 

IFC177 

IF0178 

(J 

makes reference to the labeled ~rcgrarr start. 

OFERANL SHOULL EEGIN WITH A QUOTE 

Explanation: A quote was expected tc begin a character string 
in the o~erand field, but was not fcund. 

Assembler Action: The invalid character string is ignored. 

Frogrammer Response: Supply the missing leading quote in the 
character string of the operand. 

Severity Ccde: 8 

UNFAIREL AMPERSANL NEAR OPERAND COLUMN nn 

EXFlanaticn: A single ampersand followed by a blank ~as found 
in a quoted character string. If an arr~ersand is desired as a 
character in a quoted character string, two ampersands must be 
coded. ~~persands must be either paired cr ~art of a valid 
variable symbol. 

Assembler Action: The character string that ccntains the 
illegal arrFersand is ignored. 

Prcgrarrmer ResFon~: Determine whether the ampersand is desired 
as a character in a quoted character string or whether the 
ampersand is intended as the beginning of a valid variable 
syrrbcl, and correct the error. 

Severity Code: 8 

MISSING OPERAN[ 

~xFlenaticn: This statement requires an operand, but none is 
found. 

Asserrbler Acticn: The statement which lacks the c!=erand is 
~rccessed<as a ccmment. 

prcgrarr,IT,er ResEonse: Su~ply a valid operand. 

SeveE11y Ccd~: 12 

SYNTAX ERROR NEAR OPERAND COLUMN nn 

EXFlanaticn: A syntax error has occurred in the operand of this 
statement. 

Assembler Action: The statement which ccntair.s the invalid 
c~erand is ~rccessed as a comment. 

Rrcqrarrrrer ResFonse: Correct the syntax of the operand. There 
are a large number of syntactic errors that can produce this 

Appendix G. Assembler Diagncstic Error Messages 117 



IFO 179 

IFO 180 

IFO 181 

IF0182 

118 

diagnostic. All of them require care~ul checking cf the syntax 
of the specific type of statement being processed. The error 
is logged at the point where the syntax beccrres awbiguous or 
unrecognizable, not necessarily at the point where the actual 
error occurs. 

Severity Ccde: 8 

OPERAND SUBFIEI.D NEAR OPERAND COLUMN nn MUS'! EE" AESOLU'!E 

Explanaticn: All terms and expressions used in the operand 
field of this statement must result in an absolute value. 

Assembler Action: The operand is prccessed as a ccrrment. 

Programmer Response: Ee sure that each terre cr expression used 
in the o~erand field of this statement has an absclute value. 
No relccatable expressions are allowed. 

Severity Code: 8 

OPERAND 2 OF CNOP ~UST BE EITHER 4 OR 8 

~xplanat!on: '!he second operand of a CNOP statement must be 
ei ther 4 or 8. 

Assembler Action: The CNOP staterr:ent is ~rccessed as a comment 
and no alignrrent is performed. 

Prcgrarrrrer ResFonse: Be sure that the second operand of a CNCF 
statement is either a 4 or an 8. 

Severity Code: 12 

OPERAND 1 OF CNOP MUST BE 0, 2, 4, OR 6 

Expl~~QE: 'Ihe first operand of a CNOP statement must te 0, 
2, ,4, or 6. 

Assembler Action: 'Ihe CNCP statement is ignored and no 
alignment is performed. 

programmer Response: Ee sure that the first c~erand cf a CNOF 
staterrent is a 0, 2, 4, or 6. 

Severity Ccde: 12 

CPERANI: 1 OF CNOP IS NOT LESS THAN OPERAND 2 

EXFlanaticn: The value of the first operand cf a CNCF statement 
rrust be less than the value of the seccnd cJ;:erand. 

Asserrbler Acticn: 'Ihe CNOP statement is processed as a comment 
and no ali~nment is performed. 

n , / 

o 



IFC183 

IF0184 

IF0185 

IF0186 

(J 

Pregrarr.rr.er ResFonse: Check the validity of each operand of the 
CNOP statement to be sure that the value of the second operand 
is greater than the value of the first c~eraLd. 

Severity Cede: 12 

~NCTE/CCW OPERANr EXCEErs 255 

EXFlanatien: The value of an c~erand used as an MNO~E severity 
cede or as the first operand in a channel cennand werd (CC~ 
exceeds 255. 

Assembler Action: The MNOTE is ~recessed as a cerrrrent. S~ace 
is allecated fer the CCW, tut the value fer the flagged e~erand 
is set te O. 

programmer Response: Check the validity ef the e~erand. 

Severity Code: 12 

INVALID RANGE ON CCw NEAR OPERAND COLUMN nn, 65535 IS ~AXI~U~ 
VALUE 

EXFl~Eatien: ~he value of the fourth operand of a channel 
command word has exceeded X'FFFF' (65535). 

Assembler Action: Space is allecated fer the CCW, but the value 
of the flagged operand is set to O. 

programmer Response: Check the validity cf the feurth e~erand 
ef the channel cemmand ~ord. 

ELANK EXPECTEr AS A rELIMITER NEAR OPERAND CCLUMN nn 

Ex~lanation: A blank ~as expected as a delirriter but nene ~as 
found. Subsequent characters bave ne syntactic rreaning, and 
the staterrent is ambiguous. 

Assembler Action: The statement that contains the invalid 
delirriter is ~rocessed as a corrRent. 

Pregrarrroer ReSFonse: Supply a blank delimiter. 

Severity Cede: 8 

INVALIt SYMEOL NEAR OPERAND COLUMN nn OF ENTRY, EXTRN, OR WXTRN 

Explanation: An improperly constructed syrrbel was found in the 
operand field of an ENTRY, EX~RN, or wX~RN staterr.ent. 

Asserrbler Actien: The statement that contains the invalid 
symbol is processed as a comment. 

Appendix G. Assembler Diagnostic Error Messages 119 



IF0187 

IFO 188 

IF0189 

IF0190 

120 

Frcgrarrmer ResFonse: Be sure that the syrrbcl in the c~erand 
field Gf EXTRN, WXTRN, or ENTRY staterrents cer.tain frcm 1 to 8 
alphameric characters, the first of which is alphacetic. 

SY~EOL LONGER THAN 8 CHARACTERS NEAR OPERAND COLUMN NN 

EXFlanation: A syml:ol that is rr.ore than 8 characters in length 
has appeared in the operand field of this staterrent. 

Asserrbler Acticn: The invalid symbol in the operand field is 
re~laced by a zero. 

Frogrammer Response: Ee sure that syrrbcls de net exceed 8 
characters in length. A rrissing cr mis~laced delirriter cr 
operatcr rray cause a symbol to appear longer than intended. 

Severity Code: 8 

xxxxxxxx IS AN UNDEFINED SYMBCL 

Explanation: lhe syml:ol that a~pears in the rressage text has 
not a~~eared in the name field of another staterrent, cr as an 
c~erand cf an EX1RN or WXTRN statement. 

Assembler Actiqn: Reference to the undefined syrrbcl results in 
a zero value. 

prcgrammer Response: Define the symbol in the program. 

~~Eity Ccde: 8 

INVALID EN'IRY OPERAND, LINRAGE CANNOT EE PERFORMEC 

Expl~~~!Qg: lhe symbol in the c~erand field of an ENTRY 
statement is invalid because it is either undefined or 
improperly defined. 

Asserrbler Ac!ion: lhe invalid symbol in the operand field is 
processed as a comment, and no linkage is provided if another 
program references it. 

Frcgrarrrrer ResFonse: refine the syml:ol at an aI;I;rcr:ria te ~lace 
in this ~rcgram, or correct it. A valid syrrbel ccnsists cf from 
1 tc 8 alI;hameric characters, the first of which is l:lank4 

Severity Code: 8 

CFERANr OF PUSH STAT~lENT IS NOT USING OR PRINT NEAR OPERAND 
COLUMN nn 

Explanation: The only syml:ols allcwed in the e~erand field of a 

.. 

n ,,--,/ 



IF0191 

IFC192 

() 

IF0193 

() 

PUSH or POP statement are PRINT and USING, in any order, 
separated by commas. 

Asserrbler Action: The PUSH instruction is precessed as a 
corrrrent. 

Programmer Response: Be sure the operand of the PUSH statement 
is either PRINT or ~SING or both. 

Severity Code: 4 

PUSH LEVELS EXCEED 4 NEAR OPERAND'COLUMN nn 

Explanation: More than 4 levels of PUSH and PCP staterrents ~ere 
atterrpted fer either PRINT or USING. 

Asserrbler Action: The PUSH instruction is processed as a 
cQrnment. 

Fregrarrner ResEonse: Rework the prograrr lcgic te require nc 
rrere than 4 levels of PUSH and POP fer USING and 4 fcr FRI~T~ 

OPERANt OF POP STATEMENT IS NOT USING OR PRI~rr NEAR CFERAlXD 
COLUMN nn 

Explanation: The only symtols allowed in the eFerand ef a PUSH 
er PCP staterrent are USING and PRINT, in any erder, seFarated 
by corrrras. 

Assembler Action: The POP instructicn is Frccessed as a comment. 

Frogrammer Response: Ee sure the cperand cf the FCP statement 
is either PRINT cr USING or tcth. 

FOP REQUEST NOT EALANCEI: EY PREVIOUS PUSH 

EXElanaticn: No PUSH request was issued Frier te this FCF 
request, cr rrore POP statements have been issued than FUSH 
staterrents. A PCP statement restores the USING or PRINT status 
saved by the most recent PUSH staterrent, en acne fcr ene basis. 

Asserrbler Actien: The PCF instruction is processed as a comment. 

Pregrarrreer ResEonse: Check for errors in balancing PUSH and POP 
statements, or rework the program logic to request balanced PUSH 
and POP statements. Repetition of a given cFerand (i.e., USING 
or PRINT) on a single PUSH or POP staterrent is treated as 
rrultiple staterrents, and could cause unbalanced PUSH and POP 
statements. 

Severity Ccde: 8 

Appendix G. Assemtler tiagncstic Errer ~essages 121 



IFO 194 

IF0195 

IFO 196 

IF0197 

122 

INVALID OP~ION IN PRINT STATE~ENT NEAR OPERANt COLUMN nn 

.Explanation: An option appears in the c~erand field cf a PRINT 
staterrent that is not one of the fcllowir.g: ON, OFF, GEN, 
NOGEN, DATA, and NODATA. 

Assembler Action: Tlie invalid operand is ignored. 

Prcgrarrreer-ResEonse: Be sure that only the options listed in 
the explanation above appear in the operand field of a PRINT 
statement. 

seve~ity<Ccde: 4 

INVALIt USING OR tROP STATEMEN~ NEAR OPERAND COLUMN nn 

EXFlanaticn: One of three errors tas cccurred: 

(1) register 0 is specified for other than the second c~erand 
cf a USING staterrent, or 

(2) a register number outside the range of 0 to 15 has teen 
used, or 

(3) a DROP staterrent has been issued for a register that was 
never assigned for use ty a USING staterrent. 

Assembler Action: The invalid register s~ecificaticn is set to 
zerc. 

Programmer Response: The second and following operands of a 
USING or DROP instruction must be decimal terms 0 to 15. 
Register 0 may only te specified as the seccr.d c~erand of a 
USING sta terrent. 

Severity Code: 12 

xxxxxxxx HAS BEEN PREVIOUSLY DEFINE!: 

Explanation: ~he specified syrrtcl has ~revicusly a~~eared in 
the name field of a stateITent cr in the c~erar.d field cf an 
EX~RN cr wX~RN instruction. 

Assembler Action: All references to the syrrbcl are inter~reted 
as references to the first definiticn cf the syrrbcl. 

prcgrarrrrer ResFonse: A given symbol must be defined only once. 
Determine which occurrence of the symbol you want to use, and 
change all others. 

Severity Ccde: 8 

*** MNOTE *** 
~xFlanaticn: An MNOTE statement has been encountered during the 
generaticn cf a rracro or in open code. The text of the MNOTE 
message appears in-line in the listing at the ~cint ~here it is 

n '- ~) 



<J 

IFO 198 

IFO 199 

() 

IF0200 

encountered. (Refer to CS/VE Assembler Language fer a 
description of the ~NCTE instruction.) 

Assembler Action: None. 

Pregralur.er Res£Q~: Investigate the reason for the MNOTE. 
Errors flagged by ~NOTE will often cause unsuccessful execution 
cf the program, depending upon the severity cede. 

~ri~y_Ced~: An ~NCTE is assigned a severity code of 0 to 255 
by the writer of the ~NCTE statement. 

\ 

INVALID TYPE DECLARED eN DCjDS/DXD CON STANT NEAR OPERAND CCl·U~l\ 
nn 

EXFlanaticn: O~erand sUbfield 2 is not a valid type for a DC, 
DS, or DXD staterrent. Valid types are the following: A, B, C, 
t, E, F, H, L, P, Q, s, V, X, Y, and Z. 

Assembler Action: The statement that contains the invalid type 
declaration is processed as a comment. 

Frogrammer Response: Supply a valid ty~e in e~erand subfield 2. 

Severity Code: 8 

INVALID LENGTH MODIFIER NEAR CFERANt COLUMN nn 

~xEl~ion: The length modifier in operand subfield 3 of this 
statement is invalid. The length attribute of a symbol is not 
allowed as a term in the length rrodifier ex~ressicn fcr the 
first c~erand cf the DC, DS, or ~XD statement in which the 
symbol is defined. F'or example, SYM DC CL (L' SY~) • AA' is 
invalid. 

Asserrbler Action: The statement that contains the invalid 
length mcdifier is processed as a CCRRent. 

Prcqrarrmer ResFonse: Supply a valid length modifier, or 
eliminate the explicit length modifier. 

Severity Code: 8 

INVALID SCAl·E MODIFIER NEAR OFERAND COLUMN nn 

Explanation: The scale modifier in operand sutfield 3 of a DC, 
DS, or DXD statement is invalid. The scale modifier should be 
either a decimal value or an absolute ex~ressicn enclosed in 
~arentheses. 

Assembler Action: The statement that ccntains the invalid scale 
rrcdifier is ~rocessed as a corrrrent. 

prc9rarrmer ResFonse: supply a valid scale modifier for the type 
of constant used. 

Severity Code: 8 

Appendix G. Assembler Diagncstic Errcr Messages 123 



IF0201 

IF0202 

IF0203 

124 

ILLEGAL OR INVALID EXPONEN'I MODIFIER IN DCjD ~jD}(D CONS'IAt\'I t\EAR 
OPERANL COLUMN nn 

Explanation: An exponent modifier used in a DC, DS, cr D}(D 
constant is not a decimal self-defining term, an absolute 
expression enclosed in parentheses, or prcduces a value outside 
the range allowed for that constant type. 

Asserrbler Action: The invalid or illegal operand is ignored. 

Programmer Response: Be sure that tr.e exponent rrcdifier used 
conforms to the rules for exponent rredifiers fcr each type of 
DC, DS, er D}(D ccnstant. 

Severity Code: 8 

ARITHMETIC PRECISION OF FLOATING-POIN~ CON~~AN~ LOS~ NEAR 
OPERANL COLUMN nn 

Explanation: Low order digits were lest duri~g the ccnstruction 
cf an L-, r-, er E-type constant, because the designated field 
was too sITal1 to contain the whole constant. 

Assembler Action: The value of the constant is set tc zero. 

Programmer Response: Check the length, scale, and expcnent 
modifier of the flagged constant. 

Severity Code: 8 

L-, D-, E-, F-, H-, OR Y-TYPE CCNSTAN~ ~RUNCA1EL, HIGE CRDER 
rIGITS LOST NEAR OPERANr: COIU~N nn 

Explanation: The high order digits of an L-, D-, E-, F-, H-, or 
Y-type ccnstant were lost tecause the designated field was too 
small to contain the whole constant. 

Assembler Action: processing ccntinues using the truncated 
constant. 

~rcgrarrrrer ResFonse: ~odify the explicit or implicit length of 
the constant, so that the value may be contained within the 
area designated for it. 

Severity Ccde: 4 

o 



IF0204 

IF0205 

IF0206 

, 

IF0207 

RELOCATABLE EXPRESSION NOT Al.l.eWEC IN. A- OR Y-TYPE AeeRESS 
CONSTANT WITH EIT LENGTH SPECIFICA'IION 

EXEI~natien: A relocatable expression in used to specify a 
constant for which bit length specification is used. This is 
not allowed. 

Asserrbler Actien: ~he value of the operand is set to 0 and no 
entry for this constant is made in the relocation dictionary. 

programmer Response: Convert the cperand te an absclute 
ex~ressicn, cr use a length of 3 cr 4 bytes fcr A-ty~e or 2 
tytes fer Y~ty~e constants. 

Severity Code: 8 

RELOCA~ABLE Y-'IYFE CCNSTANT, VAl.UE TRUNCATEJ: TO RIGHTMOST 2 
EY'IES 

~fiEI~natien: A relocatable Y-type constant has been declared. 
'I is is a warning only. All relocatable y-type constants are 
diagnosed in this manner tecause the asserrblerrrust Frovide an 
entry in the relecation dictionary for each one~ If the actual 
address is contained within the rightrrcst twc bytes and the 
coding is etherwise correct, when the program is loaded and 
relocation is considered the censtant will be reselved. If the 
address cannet be contained in the rightmost two bytes, it is 
likely that further relocatability errers will result. 

Asserrbler Actien: The value of the constant is truncated to the 
rightmost twc bytes. 

Programmer Response: Ee sure that the value cf the y-type 
constant will not exceed two tytes when the ~rcgrarrhas been 
loaded and the relccation factor has been considered. 

Severity Code: 4 

DUPLICA~·ION FACTCR ERRCR 

Expl~nat!£g: The duplication factcr in a DC, DS, er DXD 
statement is negative. 

Assg~E~£~ion: No storage is reserved fer the eperand, but 
alignment is performed as required by the type of constant used. 

programmer Response: Supply a ncn-negative du~licatien factor. 

severi~y Code: 8 

OPERAND OF Q-'IYPE CONSTANT DOES NCT NAME A CSECT OR eXI: 

Explanation: The symtol in the cperand field cf a Q-tYFe 
censtant rrust have teen previously defined as the name cf a 
DSEC~ cr DXD secticn. 

Assembler Action: The value of the constant is set tc o. 
programmer Response: eefine the syrrtol as the narre cf a r:SEC~ 
cr eXI: section. The symtol must te defined cefcre being used 

A~~endix G. Assemtler r:iagnostic Errcr ~essages 125 



IF0208 

IF0209 

IF0210 

126 

in the constant. 

Severity Cede: 8 

DISPLACEMENT GREATER THAN XIFFF' 

EXElanation: 'Ihe displacement of this statement or the address 
referenced by this statement is greater than XIFEF I (decimal 
4095). The displacement field in the rr.achine instruction must 
ccntain a value cf from 0 to 4095~ 

Assembler .Action: The case and displacerrent fields cf the 
rrachine instruction are set to o. 
Prcgrarrmer ResEonse: Correct the displacement term or 
expression or provide another base register with a USING 
statement. 

SeverityCcde: 8 

ALLRESSAEILITY ERROR - BASE ANI: DISPLACEMENT CANNOT BE RESOLVED 
AND ARE SET TO 0 

EXElanaticn: The assembler cannot resolve the address of this 
statement or the address referenced by this statement for one 
cf the follo~ing reasons: 

• 

• 

Current USING registers produce a displacement of less than 
o or greater than 4095. 

No USING registers are available. 

Assembler Action: The case and displacerrent fields cf the 
machine instruction are set to O. 

programmer Response: Make sure you have cerrectly set up base 
registers with the USING instruction. Be sure the referenced 
address can be specified by the value in a USING register plus 
a displacement in the range of 0 through 4095. 

Toe FEW OPERANrS 

~XElanaticn: More operands are required for this statement, tut 
they were not found. 

Assembler Action: The value of any rrissing cferand is set to o. 
Programmer Response: Supply the necessary cperands. Refer to 
PrinciEles cf Operation for details cn the cferands required 
fcr this instructicn. 

0·. 
\ / 

n / 



IF0211 

IFC212 

IF0213 

IF0214 

(J 

~OO MANY OPERANDS 

• Mere than 255 operands in a DC, CS, or CXC instruction; or 

• 100 many operands in a machine instructicn • 

Assembler Action: The extra operands are igncred. 

Frogrammer Response: Celete the extra cperands. Refer te 
FrinciEles cf OEeration for details on operar.ds required for 
individual rrachine instructions. 

FREMATURE ENC OF OPERANC NEAR OPERAND COLUMN nn 

EXE1anaticn: A term or an expression used as an operand is 
incomplete. 

Assembler Action: The value of the cperand is set tc O. 

Frogrammer Response: Supply the cbaracters necessary te 
terrrinate the eperand. 

CC~PLEXLY RELOCATAELE EXPRESSION NEAR OPERAND COLU~N nn 

EXElanation: 1he indicated operand contains a complexly 
relocatable expression. The expression should te atsolute or 
simply relocatable. 

Asserrbler Acticn: 1he value of the complexly relocatatle 
expresslonIs set to O. 

Frogrammer Response: Ee sure that only atsclute and sirrply 
relccatable expressions are used in the cperand field cf this 
staterrent. 

Severity Code: 8 , 

ILLEGAL USE OF LITERAL NEAR OFERAND COLUMN nn 

~xElanai~: A literal is used in an assembler instruction, in 
another literal, or in a field of a machine instruction where 
it is not allowed. 

Asserrbler Acticn: The value of the operand where the literal is 
used is set tc O. 

Prcgrarrmer ResEonse: Use a valid relocatable term or expression 
in place of the' literal. If applicable, replace the literal 
with the name of a CC statement which defines the sarre constant 
as the literal. 

Severity Code: 12 

Appendix G. Assembler Diagnostic Error Messages 127 



IF0215 

IFC216 

IFC217 

IF0218 

128 

ILLEGAL tELIMITER, RIGHT PAREN~HES1S EXPEC~EC NEAR OPERA~D 
COLUMN nn 

~xplanation: A right parenthesis was expected as a delimiter, 
but none was found. 

Assembler Action: The value of the cperand that is lacking a 
right parenthesis is set to O. 

Pregrarrrrer ResFonse: Supply a right parenthesis. 

ILLEGAL OPERANt FORMAT NEAR OPERAND COLUMN nn 

Ex£lanaticn: The operand of this staterr~nt is illegally 
constructed. 

ASSe!ble~ AC!icn: ~he value of the operand is set to O. 

prcgrarrmer ResFonse: Refer to principles of Cperation for 
details on the operand structure of this statement, and supply 
a valid operand. 

FELOCATAEILITY ERROR NEAR OPERANC COLUMN nn 

Ex£lanaticn: One of the following fields ccntains a relocatable 
value. All values in these fields rrust be acsclute. 

• 1rrmediate field in an SI instruction 

• ~ask field 

• Register Sfecification 

• Length modifier 

Asserrbler Acticn: If any of the above fields contains a 
relocatable value, the value of the field is set to O. 

Programmer Response: Be sure that the field contains an 
absolute value. 

Severity Code: 12 

INVALID REG1S~ER SPECIF1CA~10N - EVEN-NUMEEREt REGIS~ER RE~UIREC 

Expl~naticn: An odd-numbered register was specified in a 
context that requires an even-numbered register. 

Assembler Action: The invalid eperand is set tc O. 

programmer Response: Specify an availacle even-numbered 
register. Refer tc the PrinciFles cf OFeraticn fer details cn 
the register requirements of this instructior.. 

n -~/ 



IF0219 

IF0220 

() 

IF0221 

IF0222 

Severity Code: 12 

REGISTER OR I~MEDIATE FIELD OVERFLOW NEAR OPERANt COIU~N nn 

• The value ef the immediate field used in an SI instruction 
is greater than 255; or 

• A register number was specified that was greater than 15. 

Assembler Action: The value of the field where the overflow 
occurred-is setto O. 

Programmer Response: Be sure the value ef an irrrrediate field 
dces net exceed 255 and that no register nurrter greater than 15 
is s{:ecified. 

Severity Code: 8 

ALIGNMENT ERROR NEAR CPERAND CCLU~N nn 

Expl~nat~cn: The o{:erand of this instruction refers to a main 
storage location that is not on the boundary required ty the 
in struction • 

~rr~ler AC!ion: The faulty alignment is unchanged. 

Prcgrarrroer'R~sFon~: Align the main storage location referenced 
in the operand field. Refer to the Principles of Operation for 
details on the toundary requirerr.ents of this instruction. For 
rrachines that do not require data to be aligr.ed to certain 
boundaries, specify NCALIGN as an assembly option and no error 
will occur. 

Severity Cede: 4 

ILLEGAL INDEX REGISTER CR LENGTH MOBIFIER NEAR OPERANt CCIUlI.l\ nn 

E~!~natiQg: An index register or a length field was specified 
for a machine instruction where none is expected. 

Assembler Action: The invalid specificaticn is igncred • 

. Programmer Response: Correct the index register cr length field 
s};:ecificaticn. 

Severity Cede: 12 

INVALIt INJ:EX REGISTER SPECIFIED NEAR OPERAND CCLUMN nn 

EXFlanatien: A register numcer net in the range 0 - 15 has been 
s~ecified as an index register. 

Appendix G. Assemtler Diagnestic Errcr ~essages 129 



IF0223 

IF0224 

IF0225 

130 

Asserrbler Action: A default value of 0 (to indicate that no 
indexing is used) replaces the invalid index register 
specification in the machine instructicn. 

Prcgrarrreer ResFonse: Specify an available register in the range 
cf 0 to 15 as an index register. 

RELOCATABLE INDEX REGISTER SFECIFIED NEAR OPERANt COLUMN nn 

Explanation: A relocatatle value has been s~ecified as an index 
register. 

Assembler Action: A default value of 0 (to indicate that no 
indexing is used) replaces the invalid index register 
specification in the machine instructicn. 

Prcgrarrrrer ResFonse: Specify an absolute value in the range of 
o tc 15 as an index register. 

~~rity Cede: 12 

LENGTH ERROR NEAR OPERANt COLUMN nn 

EXJ;lanatien: 

• 

• 

7he length modifier of a constant is illegal or invalid for 
the type of constant; or 

A censtant of tYfe C, X, E, Z, or P is too long; or 

• A relecatable address constant has an illegal length. 

Assembler Action: The operand in error and any fcllo~ing 
e~erands ef the rc, [S, or DXD staterrent are ~rccessed as 
corr~ents. An address constant with an illegal length is 
truncated. 

fregEarrreer R~sEO~: SUfply a valid length modifier or decrease 
the length ef the oferand. 

Severity Code: 8 

RELOCA'I'ABLE LENG7H FIELD IN MACHINE INS7RUC'IION NEAR CFERAl'C 
COLUMN nn 

EXFlanatien: 'Ihe length field of this machine instruction is 
specified as relocatable; an absolute term or expression is 
required. 

Asserrbler Actien: The length field in errer is asserrbled to o. 
Frogrammer Response: Use an atsolute terrr cr ex~ressicn to 
sfecify the length field. 

f\ 
\ I 

'- j 



IFC226 

IF0228 

IF0229 

IF0230 

(J 

EASE REGIS'IER OF MACHINE INSTRUCTION Nor AESCLUTE NEAR OPERAND 
COLUMN nn 

~~l~E~!icn: An ex~licit base register has been specified as a 
relocatable value; an absolute term or .. expression is required. 

Assembler Action: 'I'he operand in error (base and displacement) 
is assembled to O. 

Irograrnmer Response: Use an atsclute terrr, cr ex~ressien to 
s~ecify the tase register. 

Severity Code: 12 

RELOCATABLE DISPLACEMENT IN MACHINE INS'IRUC'IION NEAR CPERAt\D 
COLUMN nn 

EXEl~naticn: In a machine instruction that has an explicit tase 
register specification, the s~ecification for the displacement 
field is relocatable. As this wculd irr~ly a seccnd base 
register, the corrbination is invalid. 

Assembler Action: 'Ihe displacement field of the machine 
instruction is-issembled to o. 
Irograrnmer Response: Either specify the dis~lacerr,ent as an 
absclute terre er ex~ression, or delete the e~~licit base 
register. 

Severity Code: 8 

POSSIBLE REEN'IERABILITY ERROR NEAR OPERANt CCLU~N nn 

EXE1~naticn: 'Ihis rr-achine instruction could store data into a 
control section or common area that is not dynamically acquired. 
This message is produced only when the REN'I asserrbler c~tion is 
s~ecified in the PAR~ field of the EXEC statement. 

Assembler Action: 'Ihe statement is asserrbled as written. 

lrograrnmer Response: If you want reentrant cede, ccrrect the 
instruction so tfiat it references a DSECT or other dynamically 
acquired space. Otherwise you can su~~ress reentrant checking 
by s~ecifying the NORENT assembler option. 

Note: Absence of this message dces nct guarartee reentrant 
cede, as the assemtler has no contrel ever addresses actually 
loaded intc base and inde~ registers at program execution time. 

Severity Code: 4 

BASE REGIS'IER NU~BER GREATER THAN 15 NEAR OPERANt CCIU~N nn 

Explanaticn: An ex~licit base register in a machine instruction 
or S-type address constant is greater than 15. 

Assembler Action: The tase register field cf the rrachine 

Appendix G. Assemtler Diagnestic Errcr Messages 131 



IF0231 

IF0233 

IF0234 

132 

instructicn is aEsembled to O. 

Prog~er ResFonse: Specify the base register in the range of 
o to 15. 

Severity Code: 12 

SYMBOL NOT PREVIOUSLY DEFINED - xxxxxxxx 

EXFlanaticn: A symbol in this statement is used in a way that 
requires Frevicus definition, tut it has net been Freviously 
defined. Fer examFle, a symbol in a duplication factor 
expression or modifier expression of a DC staterrent rr,ust be 
Freviously defined. 

Assembler Action: 'lhe value of the symbci cr the eXFression 
that contains it is set to O. 

Prcgrarrrner ResFonse: Define the symbol earlier in the program. 
Add a defining statement if it does not exist, or place the 
existing defining statement ahead of the staterr.ent that 
references it. 

Severity Code: 8 

MORE THAN 6 LEVEI.S OF PARENTHESES NEAR OPERANI: CCLU~1' 1'1' 

Expl~nat'!£!1: An eXFression in this statement 'contains more than 
six nested levels of parentheses. 

Assembler Action: The value of the expressicn is set to O. 

Froqrammer Response: Rewrite the eXFressicn tc reduce the 
nurrber ef levels of parentheses, or use a Frelirrinary statement 
(such as an EQU) to partially evaluate the expression. 

PREMATURE ENI: OF EXPRESSION NEAR OPERAND COLUV-N nn 

EXFlanatien: An eXFression in this staterrent ended Freroaturely 
due to one cf the following errcrs: 

• UnFaired Farenthesis 
• Illegal character 
• Illegal cFerator 
• Cperator not followed ty a terrr 

~!bl~r Ac!icn: 'lhe value of the expression is set to O. 

Prcgrarrroer ResFonse: Check the expression for omitted or 
mispunched characters or terms. 

Severity Code: 8 

(\ 
" I 

- / 

!. 

(~ 



IF0235 

:~.J 

IF0236 

(~) 

IF0237 

IF0238 

ARITHMETIC OVERFLOw NEAR CFERAND COLUMN nn 

Explanation: The intermediate value of a terrr er an e~~ression 
is net in the range -231 through 231-1. 

Asserrbler Actien: The value of the expression is set to O. 

greg!arr~er ResFonse: Rewrite the expression or term. The 
assembler computes all values using fixed-point full-word 
arithmetic. Or, perform arithrretic o~erations in a different 
sequence tc aveid overflow. 

Severity Cede: 8 

ILLEGAL CHARACTER IN EXFRESSICN NEAR OPERAN:C: COL·UV.N nn 

Expl~nation: Syntax error. A character in an expression has no 
syntactic meaning in the context used; the assembler cannot 
determine if it is a symtol, an o~eratcr, cr a delirriter. 

~sse~ble~ Action: The value of the ex~ression is set to O. 

grcgrarrregr ResFonse: Check the expression for unpaired 
parenthes~invalid delimiter, invalid operator, or a character 
(possibly unprintatle) that is net recognized by the assembler. 

The 51 characters recognized ty the asserrbler are: 

Letters: A through Z and $ # @ 
[igits: 0 through 9 
S~ecial Characters: + .. , = • * () • / & 
Elank 

CIRCULAR [EFINITION 

EXFlanaticn: The value of the first expression in the operand 
field of an EQU statement is dependent upon the value of the 
symbol being defined in the narre field. . 

Asserrbler Action: The value of the expression defaults to the 
current location counter value. 

Programmer Response: Remove circularity in the definition. 

Severity Code: 8 

ILLEGAL AMPERSAND IN SELF-DEFINING TERM NEAR OPERANC CCIU~l\ nn 

Explanation: An am~ersand in a self-defining term is unpaired 
and/or not part of a quoted character string. 

Assembler Action: The value of the expression ccntaining the 
self-defining term is set to O. 

Prcgrarrmer Res~onse: Check that all ampersands in the term are 
paired\and part of a quoted character string. (The only valid 

Appendix G. Assembler Diagncstic Error Messages 133 



IF0239 

IFC240 

IF0241 

IF0242 

134 

use of a single am{:ersand is as the fi·rst character of a 
variable symbol.) Note that arr.persands produced by substitution 
rrust also be ~aired. 

Severity Code: 8 

INVALID FLOA'IING POI N'T CHARACTERI S'IIC 

ExpI~~iQE: A cenverted floating-point constant is too large 
or too small for the field assigned to it. The allowable range 
is 7.2x1075 to 5.3x10-77. 

Asserrbler Action: 'lhe floating-point constant is assembled to O. 

pro9rarrrner ResEonse: Check the characteristic (exponent), 
exponent modifier, scale modifier, and mantissa (fraction) for 
validity. Remember that a floating-~eint ce~stant is routlded, 
not truncated, after conversion. 

CHARACTER STRING OR SELFI:EF'INING TERM TERMINATED BEFORE ENDING 
QUO'IE FOUND 

Explanation: The assembler has found what a~~ears to be a 
qucted character string or a self-defini~g terrr., but the 
closing quote is missing, or an illegal character is found 
before the closing quote. 

Asse~bler Action: The term or expression is igncred. 

Froqrammer Response: Supply the rrissing quete cr check fer 
other syntax errors. 

Severity Code: 8 

SECONI: OPERANr OF CCW NOT BETWEEN 0 and X'FFFFFF' 

Extlanaticn: The second operand of a CCw instruction, ~hich 
specifies the data address, is outside the range ef 0 te 
X 'FFFFFF'. 

Assembler Action: The low-order three bytes cf the e~erand are, 
used. 

Programmer Response: Supply a corr~ct term or expression for 
the second operand. 

Severity Code: 8 

SPACE OPERAND NO'I A SINGLE PCSI'I·IVE DECIMAL ~EIFrEF·Il\ING 'IER~ 

Expl~i£!!: 'Ihe o{:erand of a SPACE instruction is not a zero 
or positive decimal self-defining term. ~) 

.. / 



IF0243 

IF0244 

IF0246 

Asserrbler Action: The SPACE statement is processed as a comment. 

Pregrarrrrer ResFonse: Use a single decimal self-defining term 
with a zero or positive value. 

Severity Code: ~ 

FIRS~ CCW OPERAND IS NEGATIVE 

Explanation: The first operand (eerrrrand cede) ef a CCW 
instruction is negative. The value of the operand must te in 
the range 0- 255. 

Asserrbler Action: ~he CCW is processed as a comment. 

Pregrarrmer ResFonse: Supply an operand with a value in the 
range of 0--255. 

Severity Code: 8 

BI~S 38 AND 39 OF CCW OPERAND NC~' ZERO 

~xplanation: ~he bits specified as bits 38 and 39 of a COW 
instruction are not zero. 

Assembler Action: The tits are set as s~ecified. 

programmer Response: Correct the third o~erar.d ef the CC~ 
instruction. 

Severity Cede: 8 

LOCATION COUNTER OVERFLOW 

EXFlanation: ~he location counter is greater than X'FFFFFF' 
(224-1) , the largest address that can be contained in 3 tytes. 

Assembler Action: ~he location counter is 4 tytes long (only 3 
bytes appear in the listing and the object deck). The overflow 
is carried into the high-order tyte and the asserrbly centinues. 
However, the resulting code will probably not execute correctly. 

Programmer Response: The probable cause of the error is a high 
ORG statement value or a high START statement value. Correct 
the value or split up the control secticn. 

Severity_~: 8 

A~~enclix G. Assembler Diagnostic Error ~essages 135 



IF0254 

IF0255 

IF0256 

IF0257 

136 

ILLEGAL FORMAT OF SECONJ: OPERAND OF END STATE~ENT 

Ex~lanaticn: Seccnd operand of END instructicn is inccnsistent 
with the fcrrrat required. 

Asserrbler Action: Second o~erand ignored. 

prcgrarrmer ResFonse: Correct the operand. 

severity Ccde: 8 

FIXE1: OR FLOATING POINT EXPRESSION ERROR NEAR OPERAND CCIUIH~ nn 

EXFlanaticn: An error occurred during conversion of a decimal 
number into a. fixed-point or floating-point numcer. 

Assembler Action: The numter is asserr.bled as zercs. 

Frogrammer Response: Check the scale and ex~cr.ent rrcdifier of 
the number fGr validity. 

E~rity Cede: 4 
\ 

SYSGO 1:1: CARr MISSING -- NOOBJEC'I OP'IION USE1: 

EXElanaticn: A DD statement for the SYSGO data set is not 
included in the JCL for this assembly. The SYSGO data set 
normally receives the otject rrodule cut~ut of the asserrbler 
when it is to be used as input to the linkage editor or loader, 
executed in the same jot. 

Asserrbler Acticn: The program is assembled using the ~CCEJEC'I 
option. No output is written on SYSGO. If the 1:ECK option is 
specified, the otject module will be written cn the device 
s~ecified in the SYSPUNCH DD statement. 

Frogrammer Response: Optional. If the asserrbly is errcr free 
and the cbject medule has teen prcduced cn SYSPUNCH, you can 
execute it without reassembling. Otherwise, reassemtle the 
program and include a SYSC~ 1:1: staterrent in the JCL cr use a 
cataloged prccedure that includes it. (See the section liThe 
Assembler Cataloged Procedures" in this rranual.) 

SYSPUNCH 1:r CARr MISSING -- NO DECK OPTION USED 

~xEl~naticn: A DD statement for the SYSPUNCH data set is not 
included in the JCI.· for this assembly. The SYSPUNCH data set 
is normally used when the object rrodule cf the assembly is 
directed tc the card punch. 

Assembler Action: 'Ihe program is asserebled using the NODECK 
c~ticn. Nc deck is punched on SYSPUNCH. If the OBJEC'I e~tion 
has been s~ecified, the object module will be written on the 
device specified in the SYSGO 1:1: staterrent. 

prcgrarrrrer ResEonse: Optional. 'Ihe object module can be link 
edited and executed from SYSGO instead of SYSPUNCH by adjusting 
JCL. Otherwise, if you want a punch data set, reassemble the 

n , j 

(j 



IFC258 

IF0260 

~regram with a SYSPUNCH [[ statement. 

Eeve~ity Cede: 16 

INVALI[ ASSEMELER OPTION ON EXEC CARD -- OP~ICN IGNCRED 

~~lanatien: One or more of the asse~bler options specified in 
the PARM field of the EXEC statement are invalid. The error 
may be caused ty use of the wreng o~tien, a rriss~elled e~tion, 
er syntax errcrs in coding the options. 

~~~bler Ac!icn: Invalid options are ignored. ~he assemtly is 
performed using the valid options.

!fQgrammer Response: Check the spelling ef the c~ticns, the
length of th~ option list (100 characters maximum), and the
syntax of the option list. The optiens Irust be separated by
corrnas, and ~arentheses in the option list (including SYSPARM)
must be paired. Two quotes or ampersands are needed tc
represent a single quote or ampersand in a SYEPARM character
string. The section "Assembler Options" in this rranual
describes the asserr~ler options and how to code them.

Severi~y Code: 16

ASSEMBLY ~ERMINA~ED -- DD CARD MISSING FOR SYSxxx

Explanation: This assemtler jet step cannet be executed because
a [[statement is missing for ene of the fellewing assembler
data sets: SYSUT1, SYSUT2, SYSUT3, or SYSIN~ The missing [D
statement is indicated in the rr,essage text.

Asserrbler Actien: The assembly is terminated before any
staterrents are assembled. No asserrbler listing is preduced, so
this message is printed on the system output unit following the
job control language statements fer the asserrbly jeb ste~ and
en the o~erater's console.

programmer Response: Supply the rr:issing DD staterr,ent and
reassemble the program. The cataleged precedures su~~lied by
IBM centain all the required DD statements. ~hey are described
in the section "The Assembler Cataleged precedures" in this
rranual.

If the problem recurs, do the fellowing befcre calling IEM:

o Have your source program, rracro definitions, and associated
listings available.

• If a COpy statement was used, execute the IEBP~PCH utility
to obtain a copy of the partitioned data set member
specified in the COpy staterrent.

o Make sure that ~SGLEVEL=(l,l) was specified in the JCE
statement.

Cperatcr ResFcnse: If possible, supply the rrissing DD statement
in the JCL statements for the assembly and run the job again.

Severity Code: 20

Ap~endix G. Assembler Diagnostic Error Messages 137

IF0261

IF0262

138

ASSEMBLY TERMINATEr -- PERM I/O ERROR jcbnarre, ste~narr.e, unit
address, device tYfe, ddname, operation attempted, errcr
description

~XFl~naticn: A ~ermanent I/O error occurred on the assembler
data set indicated in the message text. This message, produced
by a SYNACAF macro instruction, alsc ccntains rrcre detailed
informaticn abcut the cause of the error and where it occurred.

Assembler Action: ~he asserrtly is terminated. De~ending on
where the errcr occurred, the assently listir.g u~ tc the ~cint
of the I/O errcr may be produced. If the listing is produced,
this message a~pears on it. If the listing is nct ~rcduced,
this message a~~ears on the operator's console and on the
system output unit following the jot centrcl language
staterrents for the assembler job step.

!roqrammer Response: If the I/C errcr is en SYSIN cr SYSLIE,
you may have concatenated the input or library data sets
incorrectly. Make sure the DD staterr'ent fer the data set 'hi th
the largest blccksize (BLRSIZE) is placed in the JCL tefore the
rr statements of the data sets concatenated tc it. Alse, make
sure that all input or litrary data sets have the sarre device
class (all DASD cr all ta~e).

In any case, reassemble the program: it may assemtle correctly.
If the protlem recurs, do the fcllowing befcre calling IEM:

• Eave your source program, rr.acro definitions, and associated
listings availatle.

• If a COpy statement was used, execute the IEBP~FCH utility
to obtain a copy of the partitioned data set memter
specified in the COpy staterrent.

• Make sure that MSGLEVEL=(1,1) was specified in the JCB
statement.

CEeratcr ResFcnse: If the I/O errcr is en SYSt~1, SYSU~2, or
SYSUT3, allccate the data set to a different vclume and rerun
the job. If the I/O error is on tape, check the tape for
errors.

Severity Ccde: 20

ASSEMBLY TERMINATEC -- INSUFFICIENT MAIN STORAGE

ExFlanaticn: The main storage allocated tc the asserrbler is not
encugh fcr assemtler tatles, working storage, and/cr utility
file buffers.

Assembler Action: The assently is terrrinated.

Froqrammer Response: Increase the size of the regicn cr
~artiticn allecated to the asserr.tler. Reasserrble the ~rogram.
If the ~rcblem recurs, do the following before calling IEM:

• Eave your source program, rracro definitions, and associated
listings availatle.

• Make sure that MSGLEVEL= (1, 1) was specified in the JCB
statement.

(\
\ I

IF0263

IF0264

0Ferator Res£~:

•

•

Increase the size"of the region allocated on the JOE card
or on the EXEC card for the asserobler jct ste~ and rerun
the jcb; cr

Run the job in a larger partition.

Severity Code: 20

ASSEMBLY TER~INATED -- PROGRAM LOGIC ERROR

EXFlanaticn: The assembly has been abnormally terminated
because of a logic error within the assembler.

Assembler Action: Atnormal terrr.ination. Ne asserrbler Ii sting
is ~roduced; the assemtler prints this message cn the system
out~ut device following the JCL statements for the assemtler
job step.

~rc9!arrrrer ResFonse: Do the following before calling IB~:

• Have yeur source program, macro definitions, and associated
listings availatle.

• If a COpy statement was used, execute the IEBFTPCH utility
·program to obtain a copy of the partitioned data set memter
specified in the operand field ef the COpy statement.

• Make sure that ~SGLEVEL=(1,1) was specified on the JCB
statement.

Severity Ccde: 20

TOO MANY ESD ENTRIES

Explanation: More than 399 entries have teen rrade in the
external syrrtel dictionary. Entries in the external symbol
dictienary are made for the following: control sections, dummy
sections, external references (EXTRN and "XTRN), ENTRY symbols,
and external dummy sections.

Asserrbler Acticn: Entries over the 399 limit are not added to
the dictienary and linkage is net provided fcr therr..

Prcqrarrrrer ResFonse: Subdivide your program and reassemtle each
sectron-individually. Be sure that there are not more than 399
ESt entries in each assemtly.

A~~endix G. Assembler Ciagnostic Error ~essages 139

IF0265

IF0266

IF0267

140

SYMEOL RESOLUTION rATA AREA HAS BEEN EXHAUSTED

EXFlanaticn:

• Too many literals have teen enccuntered since a I'lCRG
sta terrent wa s encountered, and the assembler has filled
available work space with literals; cr

• 'lhe assemtler has filled available wcrk sFace with ESC
entries.

Assembler Action: No assembly is performed.

Frogrammer Response:

• Insert more LTORG statements in the scurce deck cr allocate
rrore werking storage to the assembler; or

• If there are more than 399 ES~ entries in ycur source
rrodule, segment it into several rrcdules.

Severity Cede: 16

LAST ASSEMELER PEASE LOACEC WAS XXXXXXXX

EXFlanation: This message is issued by the atert rcutine when
the asserrbly is abnormally terrrinated.

Asserrbler Action: Abnormal termination.

frcgrarr~er ResFonse: Correct problems indicated by other error
messages and reassemble.

Severity Code: 4

SYSPRIN'I DD CARD MISSING -- NCIIS'l- CP'IION USEr

EXQlanatiQE: 'Ihe LIST option is specified, but the cr statement
for the SYSPRIN'I' data set is not included in the JCL for this
assembly. The SYSPRINT data set holds the cbject rr,cdule output
of the assembly normally directed to the printer.

Assembler Action: The program is assembled using the NOLIST
cpticn. The message is printed en the systen cutFut device
follcwing the JCI statements for the assembler job step and on
the operator's console.

PrcgE~r ResFonse: If you want a listing, reassemble the
prog~am with a SYSFRINT DD statement. Otherwise, do not
specify the LIST option.

CFeratcr ResFcnse: Supply, if possible, a SYSFRIN'I DD card for
the asserrbler job step and rerun the jcb.

~rity Ccde: 16

(~
\)

IFC268

IF0269

SYSTERM rr CARr MISSING - NOTERMINAL OPTION USEC

Explanation: The TERMINAL option is specified, but the DC
staterrent fer the SYSTERM data set is net included in the JCl
staterrents fer this assembly. The SYSTERM data set contains
diagnostic information output of the asserrbly, nerrra11y
directed te a rerrote terminal.

FrQgrammer Response: If you want a SYSTERM listing, rea~~emb1e
the program with a SYSTER~ DD statement. Otherwise, do not
specify the TERMINAL option.

Cper~tor Response: Supply, if pessitle, a SYSTERM DD card for
the assembly step and rerun the job.

Severity Code: 16

SYSLIB DD CARD MISSING

Explanation:

• A COpy instruction appears in the asserrbly, but ne SYSLIE
rc statement is included in the JCL staterrents; er

• An operation code that is not a rrachine, asserrt1er, er
source macro instruction operation cede aFFears in the
asserr.bly, but no SYSIIB DD statement is included in the JCL
statements. The assemt1er assumed the cperatien cede to be
a library rr:acro operation code.

Assembler Action:

• The COpy instruction is ignored; er

• The operation code is treated as an undefined operation
cede.

Programmer Response: Supply the missing rc statement or correct
the invalid operation code.

Severity Code: 16

AFpendix G. Assembler Ciagnostic Error Messages 141

~~
(
\ /

Index

Indexes to systems reference library manuals are consolidated in the publication OS/VS Master Index, Order Number GC28-0602.

For additional information on any sub ject listed below, refer to otl1er publications listed for the same subject in the Master Index.

adding macro definitions to a library 50
ALGN option 22
ALIGN option 23
alignment of instructions and data (see

ALIGN option)
ALOGIC option 18
ASMFC

description 24-25
example of use 13-14,32,33

ASMFCG
description 30-31
example of use 14-15

ASMFCL
description 26-27
example of use 33

ASMFCLG
description 28-29
example of use 32,33

assembler
dynamic invocation of 70,22
name of 16
purpose 7

assembler cataloged procedures 23-33
.assembler data sets 72-74
Assembler F, compatibility 8
assembler language 7
assembler listing 34-46

cross reference 42-44
diagnostics 45-46
external symbol dictionary 36-37
literal cross reference 44
relocation dictionary 41
source and machine language
statements 38-40

statistics 45-46
symbol cross reference 42-43

assembler options
description 15-23
how to specify 16-17

assembler sample program 57-64
assembler speed and capacity 73
assembler stQrage requirements 73-74
assembler work space 22,73
assembly, JCL for (see ASMFC)
assembly and execution, JCL for (see

ASMFCG; ASMFCLG)
assembly and link editing, JCL for (see

ASMFCL)
assembly, link editing and execution, JCL
for (see ASMFCLG)

assembly and loader-execution, JCL for
(see ASMFCG)

ATTACH macro 70

base register, establishing 47
BLKSIZE for assembler data sets 73
blocking and buffering information 73
buffer size

of SYSIN, SYSLIB, SYSPRINT, SYSGO, and
SYSPUNCH 73

of SYSUTl, SYSUT2, and SYSUT3 73
(see also BUFSIZE option)

BUFNO for assembler data sets 74
BUFSIZE option 22,73

• CALL macro 70
cataloged procedures

description 12
assembler 23-33
(see also ASMFC, ASMFCG, ASMFCL, ASMFCLG)
overriding parts of 32-33

changing parts of cataloged
procedures 32-33

COBOL (see problem-oriented languages)
compatibility with Assembler F 8
COND parameter 80

. conditional assembly statements in listing
(see ALOGIC option, MLOGIC option)

conventions for linking 49
COpy instruction 50
cross reference listing 42-44

data sets, assembler 72-74
SYSGO 73,74
SYSIN 72,74
SYSLIB 72,74
SYSPRINT 71,72,74
SYSPUNCH 73,74
SYSTERM 73,74
SYSUTl, SYSUT2, SYSUT3 73,74

data set characteristics, assembler 74
DD statements, overriding 32-33
DECK option 20
default values for assembler options 15
diagnostic messages

explanations 78-141
in listing 45-46
special data set for (see SYSTERM
listing)

suppressing (see FLAG option)
on terminal (see SYSTERM listing)

diagnostics 45-46
DOS option 23

Index 143

dynamic invocation of assembler 70,22
dynamic invocation of IBM-supplied

program 49

II
effective address 40
END card, object module 67
END instruction to specify entry point 48
entry paint 48
error messages (see diagnostic messages)
ESD (see external symbol dictionary)
ESD card 65
ESD option 18
ESDID (external symbol dictionary identifi­
cation number) 37,42

example of assembler language
program 57-64

examples of cataloged
procedures 13-15,32-34

EXEC statement, overriding parts of 32
execution of user program 8
external symbol dictionary 36-37

II
FLAG option 18
FORTRAN (see problem-oriented languages)

m
High-level language (see problem-oriented

languages)

D
IEBUPDTE utility program 50
inner macro instructions, listing of (see

MCALL option; MLOGIC option)
input to the assembler 7

II
JCL (job control language) 10
job 10
job control language 10
job control statements for assembler
jobs 13-33

job step 10 ..
LIBMAC option 19,78
library macro definitions

adding to library 50
errors in 45-46

(see also LIBMAC option)
listing of (see LIBMAC option)

library maintenance, macro 50
LINECNT option 23
LINECOUNT option 18
LINK macro 70
linkage conventions 47
linkage editor

144

choosing entry paint 48
examples 32,'33
purpose 8

linkage registers 47
linking with modules produced by other
language translators 48

linking with IBM-supplied programs 49
LIST option 18
listing control options 18-19
literal cross reference listing 44
literals in listing 38,44
load module 8
load module modification - entry point
restatement 48

LOAD option 23
loader

example of use 14-15
purpose 8

location counter in listing 40
LRECL for assembler data sets 74

II
machine language code in listing 40
macro definitions, library (see library

macro definitions)
macro instructions in listing, inner (see

MCALL option; MLOGIC option)
macro library 50

(see also SYSLIB)
MCALL option 18
messages (see diagnostic messages,
statistics)

message identifier number 46,78
message text 46,78
MLOGIC option 18,79
MNOTE message 18

Name of assembler 16
NOALIGN option 22
NOALOGIC option 18
NODECK option 20
NOESD option 18
NOLIBMAC option 19
NOLIST option 18
NOMCALL option 18
NOMLOGIC option 18
NONUMBER option 21
NOOBJECT option 20
NORENT option 22
NORLD option 19
NOSTMT option 21,75
NOTERMINAL option 21,75
NOTEST option 20
NOXREF option 19
NUM option 21
NUMBER option 21,75

OBJ option 20
object code in listing 40
object deck output 65-69

END 67
ESD 65
RLD 66-67
SYM 67-69
TXT 66

~\ (:

J

~\ (\

')
"\ j-

.--'-

)

object module
definition 7
records of 65-69

object module linkage 48
OBJECT option 20
options, assembler (see assembler options)
options in listing 46
output control options 20
output from assembler 7
overriding parts of cataloged

procedures 32-33

II
page size, assembler listing (see LINECOUN~
option)

PARM field
(see also assembler options)
acquiring information in 49
coding rules 16-17
overriding in cataloged

procedures 16,32
performance, influencing (see assembler

speed and capacity)
PL/I (see problem-oriented languages)
PRINT instruction 38,40
problem-oriented languages, linking
with 48

procedures, cataloged (see cataloged
procedures)

program design 47
program listing (see assembler listing)

m
RECFM for assembler data sets 74
recurring errors 80
reentrability check 22
relocatab1e constants 41
relocation dictionary 41
RENT option 22
return code 80
RLD (see relocation dictionary)
RLD card 66-67
RLD option 19

m
Sample program 57-64
Save area 47
Saving registers 47
Severity code 80,46

source and machine language statements in
listing 38-40

source module 7
source statement in listing 38-40
statement number 40,46,78
statistics listing 45-46
step 10
storage requirements, virtual 73
STMT option 21,75
SYM card 67-69
symbol cross reference listing 42-43
SYS1.MACLIB 50,72
SYSGO data set 73,74
SYSIN data set 72,74
SYSLIB data set 72,74
SYSPRINT data set 71,72,74
SYSPUNCH data set 73,74
SYSTERM data set 73,74
SYSTERM listing 75-77
SYSTERM options 21
SYSUT1, SYSUT2, SYSUT3 data sets 72,74

II
TERM option 21
TERMINAL option 21,75
terminal output (see SYSTERM listing)
TEST option 20
Time Sharing Option 75
TSO (see Time Sharing Option)
TXT card 66

use of assembler cataloged
procedures 13-15,32-33

utility data sets 72,74
(see also BUFSIZE option)

m
virtual storage requirements 73

II
work space, assembler 22,73

XCTL macro 70
XREF option 19

Index 145

G C33-4U~ 1-1

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

a en
< en
»
U'I
U'I
CD

3
C'"
en ..,
""0 ..,
0
to ..,
Q)

3
3
CD ..,
U'I"

G)
C

c:
CD

."

CD
;-

,-
\

S
en
CAl,
9
I\)

a en
<
~

""0
:::!o
::J
ro+
CD
C-
50
c en
~

(
G)
n
CAl
CAl
. .h-
e
I\)
-0. ,
-0.

(

\ /

(
"1

'.

--~

~J

()
C
-I
l>
r
a z
C)

0
a
-I -;
m
0

C
z
m

Os/vs Assembler
Progranuner's Guide

Order No. GC33-402l-l

Your views about this publication may help improve its usefulness; this form
will be sent to the author's department for appropriate action. Using this
form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your
IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:

READER'S
COMMENT
FORM

Yes D
No 0

Job Title: ___________________ _

Address: ____________________ _
___________ Zip ____________ __

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

liC~~-4UL1-l

Your comments, please ...

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

Fold FOld

n
c
-I
o
:xl

"T1 o
r
o
l>
r o ... z

Fold

Business Reply Mail

No postage stamp necessary if mailed in the U.S.A.

Postage will be paid by:

I nternational Business Machines Corporation
Department 813 L
1133 Westchester Avenue
White Plains, New York 10604

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

First Class
Permit 40
Armonk
New York

Fold

G)

r
Z
m

j

'::<
)

0 ~

en .' -< en
»
CI)
CI)

CD

3
0"
ro
iJ
(3
~
Q.)

3
3
CD
CI)~

G)
c
c:
CD

-n

ro

en
(.oJ
..,.j

0
r\J

0 en -<
~

~
::J
.-+
CD
Co

::J

C
en -1
?> ?
G)
(")
(.oJ
(.oJ

.i::.
0
I\.)
-"

.:...

