A W St

AT I i

Systems

GC33-4021-1
File No. §370-21 (0OS/VS)

OS/VS Assembler
Programmer’s Guide

VS1 Release 2

VS2 Release1

Second Edition (May, 1973)

This is a reprint of GC33-4021-0 incorporating changes
released in the following Technical Newsletters:

GN33-8146 (dated July 25, 1972)
GN33-8150 (dated September 29, 1972)
GN33-8159 (dated December 1, 1972)

This edition applies to release 2 of 0S/VSl, release 1 of 0S/VS2
and to all subsequent releases until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made
to the specifications herein; before using this publication in
connection with the operation of IBM systems, consult the

IBM System/360 and System/370 Bibliography, Order No. GA22-6822,
and the IBM System/370 Advanced Function Bibliography, Order No.
GC20-1763, for the editions that are applicable and current.

This publication was prepared for production using an IBM
computer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 Printer using a special print chain.

Requests for copies of IBM publications should be made to your
IBM representative or to the IBM branch office serving your
locality.

A form is provided at the back of this publication for
reader,s comments. If the form has been removed, comments may be
addressed to IBM Nordic Laboratory, Programming Publications,
Box 962, S-181 09 Lidingd, Sweden. Comments become the property
of IBM.

@ Copyright International Business Machines Corporation 1972, 1973

2

2

N

Read This First

This Manual and Who It Is For

This manual is for programmers who code in the assembler language. It
is intended to help you assemble, link edit, and execute your program;
to choose and specify the assembler options you need; and to interpret
the listing and the diagnostic messages issued by the assembler.

This manual also serves as a guide to information contained in other
publications which is of importance to you as an assembler-langquage
programmer. To use this manual you should have a basic understanding of
the operating system as described in Introduction to 0S, Order No.
GC28-6534. You should also have a good understanding of the assembler
language as described in 0S/VS and DOS/VS Assembler Language, Order No.
GC33-4010.

Other Manuals You Will Need

In addition to 0S/VS and DOS/VS Assembler Language, you should have the
following publications available when using this manual:

System/370 Principles of Operation, Order No. GA22-7000
0S/VS JCL Reference, Order No. GC28-0618
0S/VS Linkage Editor and Loader, Order No. GC26-3803

How This Manual Is Organized

This manual has five main sections and seven appendixes:

Introduction describes the purpose of the VS assembler, its relationship
to the operating system, and its input and output. It also describes
how the operating system processes your program and reviews the concepts
of job, job step, job control language, and cataloged procedures.

Job Control Statements for Assembler Jobs shows you how to invoke the
assembler for simple jobs (using cataloged procedures); describes the
assembler options and how to specify them; lists the job control
statements that make up the four assembler cataloged procedures; and
gives examples of how to use the cataloged procedures for more complex
jobs.

The Assembler Listing tells you how to interpret the printed listing
produced by the assembler.

Programming Considerations serves as a guide to information contained in
other programming manuals which you will f£ind useful as an
assembler-lanquage programmer. Among the topics discussed are:

Designing your program

Specifying the entry point

Linking with modules written in other languages
Linking with processing programs

Adding Macro Definitions to a Library tells you how to catalog macro
definitions in the system macro likrary or in a private library.

Appendix A gives definitions of terms used in this manual.

Appendix B gives the listing of the assembler sample program.
Appendix C shows the detailed format of the object deck.

Appendix D tells you how to invoke the assembler dynamically from a
problem program. '

Appendix E describes the data sets used by the assembler and the
assembler's storage requirements.

Appendix F describes the SYSTERM listing.

Appendix G explains the diagnostic messages issued by the assembler.

INTRODUCTION o & ¢« « ¢ o o ¢ o o o o o o o o o o o o o o o o

Purpose of the Assembler ¢ ¢ ¢ ¢ ¢ ¢ ¢ e e e e o .
Pelationship of the Assembler to the Operating System . . .
Input & ¢ ¢ i 0 h i e e e e e e e e e e e e e e e e e e e
OUtPUL & v ¢ v i i e
Compatibility e e e e e e e e e e e e e

How the Operating System Handles Your Program . . .« « « o o
Assembler . . ¢ 4 ¢ 4 e e e e e e e e e e e e e e e e e

Linkage EJitOor . . .« ¢ & ¢ ¢ ¢ ¢ o v ¢ e o e e e e e e e
Execution of Your Program . .« « « ¢ o o« & « o o & o o o
Loader o « v 4 4 4 4 e e e e e e e e e e e e e e e e e e
Job Control Language and Cataloged Procedures

Jobs and Job Steps . . « ¢ v ¢ ¢ v e e e e e e e e e e e
Job Control Language . . « « « « o o o o o o o o o o o o

JOB CONTROL STATEMENTS FOR ASSEMBLER JOBS « . .

Simple Assembly and Execution & . ¢ . .
Assembly . ¢ ¢ . v i i i e e e e e e e e e e e e e e e e
Assembly and Execution . . . < ¢ ¢ & ¢ ¢ ¢ 4 4 e 4 e e e W

Assembler Options .« « ¢ & ¢ ¢ o ¢ o o o o o 4 e e e e e e

What Assembler Options Are« & v ¢ ¢ + o o o « « o =
How to Specify Assembler Options« « .+ .

The Assembler Cataloged Procedures . . « « o o o o o o o « &
Assembly (ASMFC) e e e e e e e e e e e
Assembly and Link Edltlng (ASMFCL) . e e e e e

Assembly, Link Editing, and Executlon (ASMFCLG) e e e e .
Assembly and Loader-Execution (ASMFCG) . . . « « +« &« o« .« &
EXamples .« ¢ ¢« v ¢« ¢t 4 e s e e s e e e e 4 e 4 e e e o

THE ASSEMBLER LISTING e & e e o e 4 e o o o o o
External Symbol Dictionary (ESD) e e e e e e e e e e e e
The Source and Machine Language Statements

Source Statement Fields . . « « ¢ ¢ ¢« o« o o o o o o« o o« @
Relocation Dictionary (RLD) ¢ &« & +v ¢ o o « o o o o o o o &
Symbol Cross Reference ¢ v ¢ &+ ¢« ¢ o o o o o o o « &
Literal Cross Reference . . . « ¢« ¢ ¢ ¢ o ¢ ¢ o o o o o o &
Diagnostics and Statistics ¢ o 0 0 0 0 0 . ..

PROGRAMMING CONSIDERATIONS . . .« ¢ ¢ o ¢ o o o o o o o o o =
Designing Your Program . . . « « « o o o o o o« o o o o o o
Specifying the Entry Point into Your Program . . . « «. « .« .
Linking with Modules Produced by other Language Translators
Linking with IBM-Supplied Processing Programs« « .« .

ADDING MACRO DEFINITIONS TO A LIBRARY . . ¢ & ¢ « o o o« o &
APPENDIX A. GLOSSARY . & ¢« ¢ ¢« o o« o o o o o o o o o s « o =«
APPENDIX B. ASSEMBLER SAMPLE PROGRAM « « &« o« « &

APPENDIX C. OBJECT DECK OUTPUT . ¢ ¢« & o« o o o o o o o o o =«
ESD Card Format . . . ¢ ¢ ¢ ¢ 4 ¢ ¢ ¢ v v v e e e e e e
TXT Card FOormat .« o o o o o o v v o o o o o o
RID Card Format ¢ ¢ ¢ v v v v v v o o o o o o
END Card Format ,
SYM Card Format v o v o o o o

Contents

.
00000000

APPENDIX D. DYNAMIC INVOCATION OF THE ASSEMBLER ; e e

APPENDIX E. ASSEMBLER DATA SETS AND STORAGE REQUIREMENTS

Assembler Data Sets . . ¢ ¢ ¢« ¢ it e e e e e e e e e e e e .
Assembler Virtual Storage Requirements « ¢« o o« « & o« .
APPENDIX F. THE SYSTERM LISTING . . &« « o o o ¢ ¢« o s o o o« o o =
APPENDIX G. ASSEMBLER DIAGNOSTIC ERROR MESSAGES . . . ; e e e e e
How to Use This Section . . .+ ¢ ¢ ¢ ¢ v ¢ v ¢« ¢« o o o o o o o &
Recurring EXrOrS « &« o o o o o o o o o o o o s o o o o o o o
INDEX ¢ ¢ ¢ o o o o o o o o o o o o o s o o o o o s o o o o o o =

Figures

Figure 1. How the operating system handles your program
Figure 2. Jobs and job steps . « « ¢ ¢ ¢ ¢ ¢ ¢« « ¢ ¢ o o o & .
Figure 3. The cataloged procedure concept . « « o« &« o « o o o =
Figure 4. The assembler options (Part 1 of 5)
Figure 5. Cataloged procedure for assembly (ASMFC)
Figure 6. Cataloged procedure for assembly and link editing
(ASMFCL) e 5 4 s e e & s 4 e e s e s e s s+ 4 e & e o o e e s o
Figure 7. Cataloged procedure for assembly, link editing, and
execution (ASMFCLG) e e e e e e e e e
Figure 8. Cataloged procedure for assembly and loader-execution
(ASMFCG) & v &« + o o o « o s o o o o o o o o o o o o o o o o o =
Figure 9. Assembler listing & ¢ ¢ ¢ ¢« ¢« ¢ 4 ¢ o o o «
Figure 10. External symbol dictionary . . . « ¢ « ¢« o« o o o o« o =
Figure 1ll. Source and machine language statements « « « .
Figure 12. Relocation dictionary . « ¢« o ¢ ¢ o« o o o o o o o o
Figure 13. Symbol cross reference ¢ ¢« ¢ & o « o o o &
Figure 14, Literal cross reference « ¢ o« o o« o o« o « o
Figure 15. Diagnostics and statistics . . « « « ¢ ¢« & ¢« & o & o .

Figure 16. Minimum requirements for a simple program
Figure 17. Assembler sample program (Part 1 of 11)

Figure 18. SYM card format . . ¢ ¢« & ¢ & & v o o o o « o o o o .
Figure 19. Assembler data set characteristics e e e s
Figure 20. SYSPRINT listing of the source statements used to snow
SYSTERM output « « o ¢« ¢ ¢ ¢ ¢ v o o v o o o o « o o« o« o « .« e
Figure 21, SYSTERM listing produced for the source statements
shown in Figure 20 . . . ¢ ¢ & ¢« ¢ ¢ ¢ ¢ o o o o o o o o o o o s

L/

2
N
()

Introduction

This section describes the purpose of the VS Assembler, its relationship
to the operating system, and its input and output. It also tells you
how the operating system processes your assembler language program and
reviews the concepts of job, job step, job control language, and
cataloged procedure.

Purpose of the Assembler

The purpose of the VS Assembler is to translate programs written in the
assembler language into object modules, that is, code suitable as input
to the linkage editor or loader.

Relationship of the Assembler to the Operating System

The VS Assembler is supplied with the 0S/VS control program package. In
the same way as the linkage editor or loader, it is executed under
control of the 0S control program. For a complete description of the
relationship between a processing program and the various components of
the control program, refer to Introduction to OS.

Input

As input the assembler accepts a program written in the Assembler
language as defined in_Assembler lLanquage. This program is referred to
as a source module. Some statements in the source module (macro or COPY
instructions) may cause additional input to be obtained from a macro
library.

Output

The output from the assembler consists of an object mocdule and program
listing. The object module can either be punched, or included in a data
set residing on a direct-access device or a magnetic tape. From that
data set the object module can be read into the computer and processed
by the linkage editor or loader. The format of the object module is
described in Appendix C.

The program listing lists all the statements in the module, both in
source and machine language format, and gives other important
information about the assembly (such as error messages) . The listing is
described in detail in the section "The Assembler Listing".

Intxoduction 7

Compatibility

The language supported Ly the VS Assemkler is ccmpatikle with the |
language surrcrted ky the 0S Assemkler F. All prcgrams which assemble
error-free under Assembler F will also assemble error-free under the VS
Assembler. However, the resulting okject code may in cdd cases be
different because cf the extended features of the language sugported ky
the VS Assembler (the extended attribute reference and SEIC facilities).

How the Operating System Handles Your Program

Cnce you have coded and punched your program, it must ke prccessed by
the assemkler and the linkage editor or loader before it can ke
executed. (See Figure 1.)

ASSENMELER

The assemkler translates your source module into an ckject mcdule, the
machine language equivalent of the source module. The okject module,
however, is not ready for execution; it must first be rrccessed by the
linkage editcr or lcader.

LINKAGE ECITOR

The linkage editor prepares your prograr fcr execution. The output of
the linkage editcr is called a load module and can ke executed by the
computer. The linkage editor can combine your prograr with other okject
modules and load modules to produce a single load mcdule. The linkage
editor stores your rrograr in a locad module library, a collection of
data sets on a direct-access device. These load ncdules can ke read
into the computer and and given control. The load module likrary may ke
either permanent, so that you can execute ycur prcgram in later jcbs, or
temporary, so that the program is deleted at the end cf ycur jcb.

EXFCUTION OF YOUR PROGRAM

Cnce you have included your program in a permanent lcad mcdule library,
you can execute it any number of times without assembly and linkage
editing. However, if you need to change ycur rrogram, ycu rust assemkle
and linkage edit it again. Therefore, you should not store your program
in a permanent load module likrary until it has been tested rrcgerly.

To save time during test runs, you can use a program that comkines the
basic functions of the linkage editor with the executicn cf ycur
program. That prcgram is the loader.

LOALCER

The loader performs most of the functicns cf the linkage editor; in
addition, it loads your program into the ccrruter and rasses ccntxel to
your prograrm. The lcader cannot, however, include your program in a

P

load rodule library. Fcr a full description of the linkage editor and
loader, refer to Linkage Editor and Loader.

for processing by the assembler.

The object module is read
into either the linkage

editor or the loader for pro-
cessing.

After processing your program,
the loader gives control to it.

The linkage editor output, the
load module, is placed on a
load module library.

Your program, in load module
format, is read into the com-
uter for execution

Figure 1. How the crerating

COMPUTER

SOURCE
MODULE

ASSEMBLER

/AN

LOADER

LINKAGE
EDITOR

~

YOUR
PROGRAM

system handles your program.

OBJECT |
MODULE

LOAD
MODULE

Intrcduction 9

Job Control Language and Cataloged Procedures

JOBS AND JOE STEPS

Fach time you request a service from the cperating system, you are
asking it to perform a jok. B jok may consist cf several stegs, each of
which usually involves the execution of one processing program under the
contrcl of the VS ccntrol program. For examrle, if ycu submit a job to
the ccmputer calling for assembly and linkage editing of a program, that
job will be a two-ster jok. The concepts cf jcbs and jcb sters are
illustrated in Figure 2. '

Job
Assembly
and

Link.
Editing

<

Job Step
Assembly

Job Step
Link
Editing

Al

)

SOURCE
MODULE

ASSEMBLER

>

OBJECT
MODULE

LINKAGE
EDITOR

LOAD
MODULE

Figure 2. Jobs and job steps

10

N
N /

Y

JOB CCNTRCL LANGUAGE

The job _control lanquage is your way of ccrmunicating tc the crerating
system contrcl prcgram what services you want perfcrmed and what

auxiliary devices yocu want used.

Job control language (JCL) statements

are usually punched into cards and supplied in the jck stream tcgether
with your scurce mcdule and other data needed by the jok.

For a detailed discussion of jok contrcl language statemrents, see

JCL Reference.

To save time and troukle, you can use rredefined sets of JCL

statements that reside in a litrary.

Such a set cf statements, called a

cataloged procedure, can ke included in ycur job Ly means. of a single

JCL staterment naming the set.
cataloged procedure.

Figure 3 illustrates the concept of a

There are several cataloged procedures available for assenmbler jobs.
They are described in the section "Jok Contrcl Statements for Assemkler

Jobs".

Input
Stream

Procedure
Library

— -2 PRCD

Resulting Job Stream

XX Job control

XX statements

XX from cataloged
procedure PRCD

Figure 3. The cataloged procedure concept

Intrcduction 11

-

Job Control Statements for Assembler Jobs

The purpcse cf this secticn is to:

. Show you how to invoke the assembler for simple jcks (using
catalcged procedures) .

° Describe the assembler options and how to request them.

) List the job control statements that make ur the fcur assembler
catalcged procedures.

® Give examples of how to use the catalcged procedures fcr mcre
ccmplex jcbs.

Simple Assembly and Execution

This section gives ycu the minimum JCL statements needed for twc simple
assemkler jobs:

@ Assenbly cf ycur prcgram to produce a listing and an ckbject deck.
L) Assemkbly and execution of your rrogram.

Both jobs use cataloged procedures to call the asserkler.

ASSEMBLY

To assemkle your program, use the fcllcwing job ccntrcl language (JCL)
statements:

Identifies the beginning of your job to the operating system.

‘jobname’ is the name you assign to the job.
"accountno’ specifies the account to which your job is charged,
//jobname JOB accountno, progrname ,MSGLEVEL=1: and "progrname’ the name of the programmer responsible for

EXEC ASMFC:, the job. 'MSGLEVEL=1' specifies that the job control
//SYSIN DD * statements connected with this job are to be listed.
\ Check what parameters are required at your installation and

. ht) how they must be specified.
(your source program)

.

ogi ¥
| are included in the job from the procedure library. ASMFC is described under “The
Assembler Cataloged Procedures’.

Job Control Statements for Assembler Joks 13

These statements cause the assemkler tc assenkle ycur prcgram and to
produce a listing (described in the section "The Asserkler Listing®) and
an object module punched on cards (descriked in Arrendix C).

If you do not want any okject mcdule cards to be runched during the
jobk, use the follcwing statements:

//jobname JOB accountno,progrname,MSGLEVEL=1
// EXEC ASMFC,PARM=NODECK
//SYSIN DD * e

RM) specifies
telling the assembler not to produce any punched object module. For
a full discussion of the assembler options, see “’Assembler Options”,

g

S
| e

(your source program)

ASSEMELY ANLC EXECUTION

To run a jok that both assembles and executes your prcgram, ccde the
following statements:

;/j obname JOB accountno,progrname ,MSGLEVEL=1

EXEC ASMFCG...,,_
//ASM.SYSIN DD * o
\“\%&

R
Calls the procedure ASMFCG, containing job control statements for
execution of the assembler (in procedure step ASM) and the loader in
in step GO).

i

(your source program)
. Specifies that the input for procedure step ASM (assembly) follows
i i this statement.

//GO.SYSIN DD [

(data, if any, for your program)

The first step of the ARSMFCG procedure executes the assernkler. The
assenklexr produces a listing, a punched object module on cards, and an
object module on a direct access device. The seccnd step causes the
loader tc be executed. The locader transforms the okject module, which
was written on a direct access device ky the assernbler, into a lcad
module. In addition, the loader causes the load ncdule (that is, your
program) to be executed.

14

-

If you do not want the assembler to punch an object deck in this

example, supply the following statements instead:

;;jobname JOB accountno,progrname ,MSGLEVEL=1

EXEC ASMFCG,PARM,ASM=(0OBJ,NODECK)

//ASM.SYSIN DD *

//G0.SYSIN DD *

(your source program)

assembler to produce an object module on the partitioned data set used;

as input by the loader) and NODECK for step ASM (assembly} of the

(data for your program)

Assembler Options

WHAT ASSEMBLER OPTIONS ARE

Assemkler options are functions of the assembler that you, as an
assembler language programmer, can select. For example, ycu can use
assemkler options to specify whether or not ycu want the assenbler to
produce an cbhbject deck; whether or not you want it to rrint certain
items in the listing; and whether or nct ycu want it tc check ycur
program for reenterakility.

The assembler opticns can be divided into four categcries:

Figure # lists all the assemkler options.

Listing ccntrcl cptions, which determine the information to ke

included in the program listing.

Cutput control options, which specify the device cn which the
assemkler object module is to be written and the contents of the
module.

SYSTERM ogrticns, which determine the information to ke included in

the listing producded on the SYSTERM data set. This data set is
rrimarily for use ky the Time Sharing Opticn (TS0) cf VS2.

Other assemblex crtions, which specify miscellaneous functions and

values for the assembler.

The underlined values are the

standard cr default values. These values are used by the assemkler for
optiocns that you do not specify.

As you can see frcm the figure, the options fall into twc format tyres:

Simple rairs of keywords: a rositive form (for example, LCECK) that
requests a function, and an alternative negative fcrm (for examrle,
NCDECK) that rejects the function.

Keywords that permit you to assign a value to a function (for
example, LINECOUNT (40)) .

Jok Control Statements for Assenkler Jcks 15

HOW TO SPECIFY ASSEMBLER OPTIONS

You use the PARM field of the EXEC JCL statement calling the assembler
to specify the assemkler options. Code EARM= fcllcwed ky a list of
options that you have selected. For example,

//STEPA EXEC PGM=IF0X00,PARN='NODECK,FLAG (5) ,NORLL"

IFOX00 is the name of the assembler; three options are specified for the
execution of it. Tefault values are used for the cther cgticns.

When you use catalcged rrocedures, you will notice that most of them
contain an option specification in the EXEC statement fcr the assembly.
To override such a specification, include a FARM field with your options
in the EXEC statement calling the procedure. If the catalcged prccedure
contains mcre than cne step, ycu must add the procedure step name as a
qualifier to the PARM operand. For exarrle,

//STEE1 EXEC ASMFCG,PARM.ASMN='OBJ,NCDECK'

The .ASM is necessary tc indicate the assembly step. As you can see in
the section "The Assemkler Cataloged Prccedures", the stepname for
asserkly is always ASNM. You must also rememker that when you override
the EARM field in a procedure, the entire PARM field is cverridden. The
PARM field specificaticn in the cataloged procedure ASMFCG is PARM=0BJ,
and the CEJ option must ke repeated when ycu override the PARM field.
Otherwise the assembler default value NCCBJ will be used. (For a more
detailed description of overriding operands cn EXEC staterents in
catalcged rrocedures, refer to JCIL Reference.

The PARM field is ccded according to the following rules:

] Single quotes or parentheses must surrcund the entire PARM value if
ycu specify twe cr more options.

] The options must ke separated ky comras. Ycu mway srecify as many
ortions as ycu wish, and in any order. However, the length of the
ortion list must nct exceed 100 characters, including separating
comnas.

° The BUFSIZE, FLAG, LINECOUNT, or SYSPARM options must appear within
single quotes.

[If you need tc ccntinue the PARM field ontc ancther card, the entire
PARM field must be enclosed in parentheses. However, any rart of
the PARM field enclosed in quotes must nct ke ccntinued on ancther
card.

16

TN
J/

“

The following examples illustrate these rules:

, PARM=DECK

,PARM="'LINECOUNT (40}

, PARM= (DECK, NOOBJECT)

or
, PARM="'DECK, NOOBJECT"

,PARM="DECK,NOLIST, SYSPARM (PARAM) '

or

,PARM= (DECK,NOLIST, ' SYSPARM (PARAM) '}

or

, PARM= (DECK, 'NOLIST,SYSPARM (PARAM) ')

,PARM= (DECK,NOLIST, 'LINECOUNT (35) ' ,NOALIGN,

MCALL, 'BUFSIZE (MIN) ',NORLD)

Only one option specified.

LINECOUNT, BUFSIZE, FLAG,
and SYSPARM must be sur-
rounded by quotes.

More than one option
specified. None of them
requires quotes.

More than one option
specified. SYSPARM must
appear within quotes.

The whole field must be
enclosed by parentheses,
because it is continued
onto another card. The
LINECOUNT and BUFSIZE
options must be within
quotes, and the portions
of the field that are en-
closed within quotes
cannot be continued onto
another card.

Jok Control Staterents fcx Assenkler Jcks 17

Listing Control Options

ALOGIC

NOALOGIC

ESD

NOESD
(nnn)

FLAG[
0

(nn)

LINECOUNT[
(55)

LIST

NOLIST

MCALL

NOMCALL

MLOGIC

NOMLOGIC

Conditional assembly statements processed in
open code are listed.

The ALOGIC option is suppressed.

The external symbol dictionary (ESD) is listed. (Refer
to "The Assembler Listing®™ for further information on
the ESD.)

No ESD listing is printed.

Diagnostic messages and MNOTE messages below
severity code nnn will not appear in the listing.
Diagnostic messages can have severity codes of 4,
8, 12, 16, or 20 (20 is the most severe), and
MNOTE severity codes can be between 0 and 255.
For example, FLAG (8) suppresses diagnostic
messages with a severity code of 4 and MNOTE
messages with severity codes of 0 through 7.

nn specifies the number of lines to be listed per
page.

An assembler listing is produced.

No assembler listing is produced. This option
overrides ESD, RLD, and XREF.

Inner macro instructions encountered during macro
generation are listed following their respective
outer macro instructions. The assembler assigns
statement numbers to these instructions. The MCALL
option is implied by the MLOGIC option; NOMCALL
has no effect if MLOGIC is specified.

The MCALL option is suppressed.

All statements of a macro definition processed during
macro generation are listed after the macro instruc-
tion. The assembler assigns statement numbers to them.

The MLOGIC option is suppressed.

Figure 4. The assembler options

(Part

18

1 of 5)

e ‘\\
-/

Listing Control Options (continued)

RLD

NORLD

LIBMAC

NOLIBMAC

XREF (FULL)

XREF (SHORT)

NOXREF

The assemblexr produces the relocation dictionary as
part of the listing. (Refer to "The Assembler Listing"
for further information on the relocation dictionary.)

The RLD is not printed.

The macro definitions read from the macro libraries
and any assembler statements following the logical
END statement are listed after the logical END
statement. The logical END statement is the first
END statement processed during macro generation.

It may appear in a macro or in open code; it may
even be created by substitution. The assembler
assigns statement numbers to the statements that
follow the logical END statement.

The LIBMAC option is suppressed.

The assembler listing will contain a cross reference table
of all symbols used in the assembly. This includes symbols
that are defined but never referenced. The assembler
listing will also contain a cross reference table of
literals used in the assembly.

The assembler listing will contain a cross reference
table of all symbols that are referenced in the assembly.
Any symbols defined but not referenced are not included
in the table. The assembler listing will also contain

a cross reference table of literals used in the assembly.

No cross reference tables are printed.

Figure 4. -The assembler options

(Part 2 of 5)

Job Control Statements for Assembler Jokts 19

20

Output Control Options
DECK The okject module is written cn the device srecified
in the SYSPUNCH LL statement. If this cpticn is
specified together with the OBJECT ortion, the okject
module will ke written kcth cn SYSPUNCH and cn SYSGC.
NODECK The DECK option is suppressed.
OBJECT The okject module is written on the device specified
or CEJ in the SYSGO LrL statement. If this cpticn is
specified together with the LECK option, the okject
module will ke written kcth cn SYSGO and cn SYSPUNCH.
NCORJECT The OEJECT option is sugrressed.
or NCCEJ
‘| TEST The special source syrkcl table (SYM cards) is
included in the okject module. (See Arrendix C
fcr details.)
NOTEST No SYM cards are produced.
Fiqure 4. The assermbler cptions

(Part 3 of 5)

/"'\\

N

—
()

\ v/
N
J/

SYSTERM Options

NUMBER or
NUM

NONUMBER ox
NONUM

STMT

NCSTMT

TERMINAL or
TERM

NOTERMINAL or
NCTERM

The line numker field (columns 73-80 cf the inrut
cards) is written in the SYSTERM listing fcxr state-
ments for which diagnostic infecrmaticn is given. This
crticn 1is valid only if TERMINAL is specified.

The NUMBER option is surrressed.

The statement numkber assigned by the assembler is
written in the SYSTERM listing fcr statements for which
diagnestic information is given. This crticn is valid
only if TERMINAL is specified.

The STMT option is suppressed.

The assembler writes diagnostic information on the
SYSTERM data set. The diagnostic information, descrited
in detail in Appendix F, consists of the diagncsed state-
rent fcllowed by the error message issued. -

The TERMINAL option is suppressed.

Figure 4. The assemkler options.
(Part U4 cf 5)

Jok Control Statements fcr Assenmbler Jcbs 21

Other Assembler Options

ALIGN

NOALIGN

BUFSIZE (MIN)

BUFSIZE (STD)

RENT

NORENT

(string)
SYSFARM
(null

string)

All data is aligned on the proper boundary in the object
module; for example, an F-type constant is aligned on a
fullword boundary. In addition, the assembler checks
storage addresses used in machine instructions for
alignment violations.

The assembler does not align data areas other than
those specified in CCW instructions. The assembler
does not skip bytes to align constants on proper
boundaries. Alignment violations in machine in-
structions are not diagnosed.

The assembler uses the minimum buffer size (790 bytes)
for each of the utility data sets (SYSUT1, SYSUTZ2,
and SYSUT3). Storage normally used for buffers is
allocated to work space. Because more work space

is available, more complex programs can be assembled
in a given region; but the speed of the assembly

is substantially reduced.

The buffer size that gives optimum performance is
chosen. The buffer size depends on the size of
the region or partition. Of the assembler working
storage in excess of minimum requirenents, 37% is
allocated to the utility data set buffers, and the
rest to macro generation dictionaries.

Refer to Appendix E for a more complete description
of the effects of BUFSIZE.

The assembler checks your program for a possible
violation of program reentrability. Code that makes your
program non-reentrant is identified by an errorx

message. '

The RENT option is suppressed.

'*string' is the value assigned to the system

variable symbol §SYSPARM (explained in

Assemblexr Ianquage). Due to JCL restrictions, you
cannot specify a SYSPARM value longer than 56 char-
acters (as explained in Note 1 following this figure).
Two quotes are needed to represent a single quote,

and two ampersands to represent a single ampersand.
For example,

PARM="'OBJECT,SYSPARM ((§§AM, * ' BO) .FY) '

assigns the following value to §SYSPARM:
(6AM,"'BO) .FY .

Any parentheses inside the string

must be paired. 1If you call the assenmbler from a

problem program (dynamic invocation) , SYSPARM
can be up to 256 characters long.

Figure 4.

22

The assembler options.
(Part S of 5)

77N

Note 1: The restrictions imposed upon the FARM field linit the maximum
length of the SYSFARM value to 56 characters. Ccnsider the fcllowing
exarple:

// EXEC ASMFC,PARM.ASM= (OEJECT,NOLECK,
// "SYSERRM (BECL.eeeeecencnacecnacacaccasacaceccacacananns))

T

~"

56 bytes

col 1

col 4 —_—
col 13 (
col 68 \ —

Since SYSEARM uses rarentheses, it must ke surrounded ky quctes. Thus,
it cannot ke continued onto a continuation card. The leftmost column
that can ke used is column 4 on a ccntinue card. A gqucte and the
keywcrd rmust aprpear cn that line as well as the closing quotes. 1In
addition, either a right rarenthesis, indicating the erd cf the FARN
field, cr a ccmma, indicating that the EARM field is ccntinued on the
next card, must ke coded kefore or in the last cclumn cf the statement
field (column 71).

Note 2: Even though the formats of some of the ortions previcusly
supported ky 0S Asserbler F have been changed, you can use the old
formats for the following options: ALGN (ncw ALIGN) , NCALGN (NCALIGK),
LINECNT=nn (LINECOUNT (nn)), LOALC (OBJECT), and NOLCAD (NCCBJECT). This
support will, however, ke continued only fcr a limited number cf VS
releases, so you should change tc the new cpticns as sccn as pcssible.
The Assemkler F option LOS is not suppcrted ky the VS Assenbler.

The Assembler Cataloged Procedures

This secticn describes the four assembler cataloged procedures and tells
you how to use them. They are:

) ASMFC (assemkly)

e ASMFCL (asserbly and linkage editing)

] ASMFCG (asserkly and loader-execution)

° ASMFCLG (assemkly, linkage editing, and execution)

The procedure you chocse on each occasion will degend on the tyre cf
job ycu want to run. First, you may want tc run an assernkly tc ccrrect
your coding and keypunching errors. For this, you would use the ASMFC
procedure with the option NOLECK specified. 1In the next run ycu may
want to asserkle and execute your program, in which case you can use
ASMFCG (or possibly ASMFCLG, if you use linkage editcr features nct
supported by the loader). When you have dekugged ycur rrcgram, ycu may
want to include it in a load module likrary using ASMFCL.

The examples given in this section assume that the catalcged
procedures ycu are using are identical to the cataloged procedures
delivered Ly IEM. Therefcre, you should first make sure that ycur
installation has nct mcdified the procedures after they were delivered.

Job Control Statements for Assenkler Jcks 23

ASSENELY (RSMEC)

The ASMFC prccedure ccntains only one jok step: asserkly. Ycu
use the name ASFMC to call this prccedure. The result of execution
is an object module, in punched card form, and an assenkler listing.

Tc call the prccedure use the following statements:

//jokname JOB Farameters
//stepname EXEC {ASNFC

PROC=ASMFC }
//SYSIN LD *

scurce ncdule -

The statements of the ASMFC procedure shown in Figure 5 are read from
the procedure likrary and merged into ycur irrut stream. The SYSIN
statenent specifies that the input to the assembler (that is, your
source program) follows immediately after the staterert.

24

N

M //ASMEFC PROC MAC='SYS1.MACLIB"',MAC1='SYS1.MACLIB®

//ASM EXEC PGM=IFOX00,REGION=128K
//SYSLIB DD DSN=EMAC, DISP=SHR
// DD DSN=EMAC1, DISP=SHR

@ //SYSUT1 DD DSN=§£SYSUT1,UNIT=SYSSQ,SPACE= (1700, (600,100)) ,
// SEP= (SYSLIB)
//SYSUT2 LD DSN=§§&SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50)) ,
// SEP= (SYSLIB,SYSUT1)
//SYSUT3 DD DSN=€ §SYSUT3 ,UNIT=SYSSQ,SPACE= (1700, (300,50))

Bl //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1089

//SYSPUNCH LD SYSOUT=B

[@ This statement names the procedure and gives default values to
the symbolic parameters MAC and MACL.

This statement specifies that the program to be executed is
IFOX00, which is the name of the assembler.
The REGION parameter specifies the virtual storage region that
gives best performance. It is possible to run the assembler in
64K, in which case you must change the region size parameter.
You can also add COND and PARM parameters.

This statement identifies the macro library data set. The
succeeding statement concatenates another macro library with it.
The default values for the DSN parameters of both data sets
are SYS1.MACLIB, the system macro library. You can change either
or both of the data sets in the EXEC statement calling the
procedure. For example, to concatenate your own macro library
with SYS1.MACLIB, code your EXEC statement as follows:

// EXEC ASMFC ,MAC1=MYMACS

DISP=SHR indicates that the data set can be used simultaneously
by other jobs in the system.

@ sysuTl, SYSUT2, and SYSUT3 specify the assembler work data sets.
The device classname SYSSQ represents either a direct access
device or a tape drive. The I/O units assigned to the class-
names are specified by your installation during system genera-
tion. 1Instead of a classname you can specify a unit name, such
as 2314. The DSN parameters guarantee dedicated work data sets,
if this is supported by your installation. The SEP and SPACE
parameters are effective only if SYSSQ is a direct access
device. The space required depends on the source program.

[B This statement defines the standard system output class as the
destination of the assembler listing. You can specify any
blocksize that i1s a multiple of 121.

[6]l This statement describes the data set that will receive the
punched object module.

Figure 5. Cataloged prccedure for assembly (ASMF(Q)

Job Control Statements for Assemkler Jobs 25

ASSEMELY AND LINK EDITING (ASMEFCL)

The ASMFCL prccedure ccnsists of two jok steps: assenkly and link
editing. It produces an assembler listing, a linkage editor listing,
and a load module.

SYSGC contains the cutrut from the assemkly ster and the input to the
linkage editor steg. It can be concatenated with additional input to
the linkage editor. This additional input can ke linkage editcr contzxcl
statements cr other cbject modules.

To call the procedure, use the fcllowing statements:

//Jjobname JOB
//stepname EXEC ASNMFCL
//BSN.SYSIN T[T *

source program statements

/*
//LKELC. SYSIN CD *W
okject nmodule cr | necessary only if linkage
linkage editor editor is tc conkine rcdules
ccentrcl statements or read linkage editor control
- information from the jck strean
/*) ’

Figure 6 shows the statements that make up the ASMFCL rrccedure. Only
those staterments nct previously discussed are explained.

26

Vd ‘\‘
J
.
YN
£
~ S

//ASMFCL. PROC MAC='SYS1.MACLIB',MAC1='SYS1.MACLIB'

//ASM EXEC PGM=IFOX00,PARM=0BJ,REGION=128K

//SYSLIB [D DSN=EMAC,DISP=SHR

// ’ LD DSN=EMAC1,DISP=SHR

//SYSUT1 CD DSN=§E§SYSUT1,UNIT=SYSSQ,SPACE= (1700, (600, 100)),

V4 SEP= (SYSLIB)
//SYSUT2 DD DSN=§§SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50)),
V74 SEP= (SYSLIB, SYSUT1)

//SYSUT3 TCD DSN=£ESYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50))
//SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=1089

. //SYSPUNCH DD SYSOUT=B

@ //SYSGO DD DSN=§&OBJSET,UNIT=SYSSQ,SPACE= (80, (200,50)) ,
// DISP= (MOD,PASS)

Bl //LKED EXEC PGM=IEWL,PARM= (XREF,LET,LIST,NCAL) ,REGION=128K,
// COND= (8 ,L.T ,ASM)

@ //SYSLIN DD DSN=£&OBJSET,DISP= (OLD,DELETE)
/7 DD DDNAME=SYSIN

/. DISP= (MOD,PASS)

B] //SYSUT1 DD DSN=£&SYSUT1,UNIT= (SYSDA,SEP= (SYSLIN,SYSLMOD)) ,
SPACE= (1024, (50,20))

//SYSPRINT DD SYSOUT=A

[l The SYSGO DD statement describes a temporary data set--the
object module--which is to be passed to the linkage editor.

@ This statement initiates linkage editor execution. The
linkage editor options in the PARM= field cause the linkage
editor to produce a cross-reference table, module map, and a
list of all control statements processed by the linkage editor.
The NCAL option suppresses the automatic library call function
of the linkage editor.

B This statement identifies the linkage editor input data set
as the same one produced as output by the assembler.

@ This statement is used to concatenate any input to the linkage
editor from the input stream with the input from the assembler.

(Bl This statement specifies the linkage editor output data set
(the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain
the load module, the DSN parameter must be respecified and a
DISP parameter added. If the output of ‘the linkage editor is
to be retained, the DSN parameter must specify a library name
and member name designating where the load module is to be
placed. The DISP parameter must specify either KEEP or
CATLG.

[6] This statement specifies the utility data set for the linkage
editor. :

[71 This statement identifies the standard output class as the
destination for the linkage editor listing.

{g //SYSLMOD DD DSN=§ §GOSET (GO) ,UNIT=SYSDA,SPACE= (1024, (50,20,1)) ,

Figure 6. Cataloged procedure for asserbly and link editing (ASMFCL)

Job Control Statemwents fcr Assenbler Jcbs

27

ASSEMBLY, LINK EDITING ANC FXECUTICN (ASMFCLG)

The ASMFCLG ccnsists cf three job steps: assembly, link editing and
execution. BAn assemkler listing, an okject deck, and a linkage editor
listing are produced.

The statements entered in the input stream tc¢ use this prccedure are:

// jokname JOB
//stername EXEC ASMFCLG
//ASM.SYSIN TCD *

source rprogram statements

/%
//LKEC. SYSIN DD * 1
cbject mcdule cr necessary only if linkage
linkage editor (editor is tc corkine mcdules
ccntrcl statements or read linkage editor control
. information from the jcb strearm
/* ’)
//GC.ddname DD Farameters
//GO0.ddnare DD rarameters
//7/GC.ddname DD * only
. \ if
. necessary
problem program ingut
/% ’

Figure 7 shows the statements that make ur the ASMFCLC prccedure. Only
those staterents nct previously discussed are explained in the figure.

28

N
N4

9

//SYSLIB LD

// DD
//SYSUT1 TD

//SYSUT2 CD

/7
//SYSUT3 LD

//SYSPRINT LD
//SYSPUNCH DD
//SYSGO DD

V4

//SYSLIN DD

// LD
@ //SYSLMOD DD

/7’

//SYSUT1 CD

/7’
//SYSPRINT DD

cessing.

//ASMFCLG PROC MAC='S¥YS1.MACLIB',MAC1='SYS1.MACLIB'
//ASM EXEC PGM=1FOX00,PARM=0BJ,REGION=128K

DSN=§MAC, DISP=SHR

DSN=EMAC1,DISP=SHR
DSN=§§SYSUT1.,, UNIT=SYSSQ, SPACE= (1700, (600, 100)) ,
SEP= (SYSLIB)

DSN=§ £SYSUT2 ,UNIT=SYSSQ, SPACE= (1700, (300,50)) ,
SEP= (SYSLI1B, SYSUT1)

DSN=§ §SYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50))
SYSOUT=A, DCB=BLKSIZE=1089

SYSOUT=B

DSN=§ §0BJSET, UNIT=SYSSQ, SPACE= (80, (200,50)) ,
DISP= (MOD,PASS)

//
1 //LKED EXEC PGM=IEWL,PARM= (XREF,LET,LIST,NCAL) ,REGION=128K,

COND= (8,LT ,ASM)

DSN=& §0BJSET, DISP= (OLD, DELETE)

DDNAME=SYSIN

DSN=6§ §GOSET (GO) ,UNIT=SYSDA,SPACE= (1024, (50,20,1)) ,
DISP= (MOD,PASS)

DSN=£§SYSUT1,UNIT= (SYSDA,SEP= (SYSLIN, SYSLMOD)) ,
SPACE= (1024, (50,20))

SYSOUT=A

// GO EXEC PGM=*,LKED.SYSLMOD,COND= ((8,LT,ASM) , (4,LT,LKED))

[l The LET linkage editor option specified in this statement
causes the linkage editor to mark the load module as
executable even though errors were encountered during pro-

2 The output of the linkage editor is specified as a member
of a temporary data set, residing on a direct-access device,
and is to be passed to a succeeding job step.

Bl This statement initiates execution of the assembled and
linkage edited program. The notation *.LKED.SYSLMOD identifies
the program to be executed as being in the data set described
in job step LKED by the DD statement named SYSLMOD.

Figure 7. Cataloged procedure for assembly, link editing, and execution
(ASMFCLG)

Job Control Statements for Assemkler Joks

29

ASSENELY ANL LOALCER-EXECUTION (ASMECG)

The ASMFCG procedure contains two jcb stegs: assembkly and
loadexr-executicn. The loader link-edits, loads, and rasses ccntrcl tc
the program fcr executicn.

Both assembler and a loader listing are grcduced, but the lcad mcdule is
not included in a likrary.

To call the procedure use the following statements:

// jokname JOB
//stepname EXEC ASMFCG
//ASM.SYSIN TL[D *

SCurxce rrcgranm

/* \
//GC.ddname DD parameters
//G0.ddnare DD rarameters
//GC.ddname DD * cnly

. P if

. necessary

proklerm prcgram ingut
J

/*

Figure 8 shows the statements that make up the ASMFCG prccedure. Only
those statements nct previously discussed are explained in the figure,

30

TN
N4

@

//ASMFCG PROC MAC='SYS1.MACLIB',MAC1="'SY¥S1.MACLIB'

//ASM EXEC PGM=IFOX00,PARM=0BJ,REGION=128K
LT //SYSLIB LD DSN=8MAC, DISP=SHR
\\;) // LD DSN=§MAC1 ,DISP=SHR

//SYSUT1 LD DSN=§ESYSUT1,UNIT=SYSSQ,SPACE= (1700, (600,100)) ,
// SEP= (SYSLIB))

//SYSUT2 DD DSN=£&SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50)) ,
7/ SEP= (SYSLIB,SYSUT1)

//SYSUT3 DD DSN=§&SYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50))
//SYSPRINT LD SYSOUT=A,DCB=BLKSIZE=1089

//SYSPUNCH DD SYSOUT=B

. //SYSGO DD DSN=§§OBJSET,UNIT=SYSSQ, SPACE= (80, (200,50)) ,
// DISP= (MOD,PASS) v
m //GO EXEC PGM=LOADER,PARM='MAP,PRINT,NOCALL,LET',

// COND= (8,LT ,ASM)
//SYSLIN LCD DSN=§&OBJSET,DISP= (OLD,DELETE)
@] //SYSLOUT [D SYSOUT=A

[l This statement initiates the loader-execution. The loader
options in the PARM= field cause the loader to produce a
map and print the map and diagnostics. The NOCALL option
is the same as NCAL for linkage editor and the LET option is
the same as for linkage editor.

BlThis statement defines the loader input data set as the same
one produced as output by the assembler.

BlThis statement identifies the standard output class as the
destination for the loader listing.

4 Figure 8. Cataloged procedure for assembly and loader-execution
(ASMFCG)

Job Contrcl Statements for Assemkler Joks 31

EXAMELES

The fcllowing exanmples demonstrate the use of the assenkler catalcged
procedures. Normally, you will want to change or add rarameters to the
procedures you use. The examples illustrate how ycu use the EXEC
staterent calling the procedure to change or add parameters to EXEC
statements in the procedure; and how ycu add DL statements after the
EXEC statement calling the procedure tc change cxr add LL statement
parameters. The rules for overriding parts of cataloged procedures for
the duration of a jok are explained in JCL_Reference.

Example 1:

In the procedure ASMFC, the punched okject deck can be sugrressed and
the UNIT and SPACE rarameters of data set SYSUT1 can ke respecified Ly
coding the following statements:

//sternane EXEC ASMFC,PARM=NODECK
//SYSUT1 LD UNIT=2311,SEACE= (200, (300,40))
//SYSIN IT *

scurce statements

/*

Example 2:

In the procedure ASMFCLG, the assemkler listing can be suprressed and
the COND raramreter, which sets conditions for execution of the linkage
editor, can be changed ky the following statements:

//stepname EXEC ASNFCIG,PARM.ASN= (NCLIST,OEJECT) ,
// CONLC.LKED= (8,LT,PREVSTEP .ASM)
//RASNM.SYSIN T[T *

source statements

/*

Here PREVSTEP is the name of a previous EXEC statement calling an
assembler procedure in the same job.

Note: You cannct cverride individual opticns in the EARM field. The
whole PARVM field is always overridden. Therefore, ycu must regeat
OBJECT in the examgle above.

Example 3:
The fcllowing example shows the use of the procedure ASMFCL to:

L) Read input from a unlakeled nine-track tare cn tage drive 282. The
tape has a blccking factor of ten.

° Fut the output listing on a tare labeled VOLIL=TAFE10, with a data
set name of PROG1 and a klocking factor cf five (605 divided by 121,
the record size for the assemkler listing).

° Block the SYSGO cutput cof the assembler and use it as input to the
linkage editor with a blocking factcr cf five.

e Link-edit the module only if there are nc errcrs in the assemkly
(COND=0) .

32

/

N

r/—
l\\;>

9

-] Link-edit the module onto a previously allocated and cataloged data
set, USER.LIBRARY with a member name of PROG.

/7 EXEC ASMFCL,COND.LKED= (0,NE,ASM)
//ASM.SYSPRINT DD DSN=PROGR1,UNIT=TAPE, DI1SP= (NEW, KEEP) ,
/7 VOL=SER=TAPE 10, DCB=BLKSIZE=605
//ASM.SYSGO DD DCB=BLKSIZE=400

//RASM.SYSIN DD UNI1IT=282,LABEL= (,NL) ,DISP=0LD,"

DCB= (RECFM=FSB, BLKSIZE=800)
//LKED.SYSLMOD DD DSN=USER.LIBRARY (PROG) ,DISP=0LD

Note: The order in which the overriding DD statements are specified
corresponds to the order of DD statements in the procedure. For
example, SYSPRINT precedes SYSGO in step ASM. The DD name ASM.SYSIN is

-placed last among the overriding statements for step ASM, because SYSIN

does not exist in step ASM of the procedure.

Example U:

The following example shows assembly of two programs, link editing of
the two object modules into one load module, and execution of the load
module:

//STEP1 EXEC ASMFC,PARM.ASM=0BJ

//ASM.SYSGO DD DSN=§&§0BJSET,UNIT=SYSSQ, SPACE= (80, (200,50)) ,
DISP= (MOD, PASS) ,DCB=BLKSIZE=400

//ASM.SYSIN DD *

source module 1

Ve
//STEP2 EXEC ASMFCLG
//ASM.SYSGO DD DCB=BLKSIZE=400,DISP= (MOD, PASS)
//BASM.SYSIN DD *
source module 2
Ve
//LKED.SYSLIN DD DCB=BLKSI1ZE=400
//LKED.SYSIN DD *
ENTRY PROG
/*
//GO .ddname DD
// . (dd cards for GO step)

The LKED.SYSIN statement indicates that input to the linkage editor
follows. In this case it is a linkage editor control statement. ENTRY,
which identifies PROG, an external symbol in one of the two modules, as
the entry point into the load module. When the load module is executed,
that point in the module gets control first.

JCL Reference provides additional information on overriding techniques.

Jok Control Statements fcr Assentler Jcbs 33

The Assembler Listing

N

This section tells you how to interpret the printed listing produced Ly S

the assemkler. The listing is oktained cnly if the cpticn LIST is in

effect. Parts of the listing can be suppressed by using other options;

for information on the listing options, refer tc "Assermbler Orticns".

The six parts of the assembler listing are:

® External symbol dictionary (EST) -

e Source and object program

e Relocation dictionary (RLL) ¢

® Synmbol cross reference

e Literal cross reference

e CLCiagnostics and statistics

Figure 9 shows the different parts of the listing. The function and

purpose of each of them, as well as the individual details, are

explained in the fcllcwing text and illustrations.
7
T
"
N

34

EXAM EXTERNAL SYMBOL DICTIONARY PAGE 1
SYVBOL TYPE 1D ADDR LENGTH LDID ASM 0100 09.46 01/05/72
PC 0001 000000 0001CO
SEARCH Lc 000024
PAGE 3
EXAM SAMPLE PROGRAM

LOC OBJECT CODE

STMT SOURCE STATEMENT

ADDR1 ADDR2

ASM 0100 09.46 01/05/72

52 KEKKKEKFFARARARIRRRART KRR RR KRR KRR AR AR R AR R KRR AR RR KRR R ARk Rkt h kb ok ok SAMPL 050

53 # MAIN ROUTINE - * SAMPL0S 1

Sl *RkEkkERAEXAERERIRRR KRR A kbR kbbb hb kbbb r bR a bkt bk hhhha bk hdd btk kx SAMPLOS2

55 CSEC1T SAMPLO0S3

000000 56 ENTRY SEARCH SAMPLOS4

57 BEGIN BALR R12,0 ESTABLISH ACCRESSABILITY OF PRCGRAM SAMPL055

000000 05CO0 58 USING *,R12 AND TELL THE ASSEMBLER SAMPLO56

00002 59 LM RS,R7,=A (LISTAREA, 16 ,LISTEND) LOAD LIST AREA PARAMS SAMPL057

000002 9857 C1A6 001A8 60 USING LIST,RS REGISTER 5 POINTS TO THE LIST SAMPL058

00000 61 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE SAMPL0S9

000006 45E0 €022 00024 62 ™ SWITCH, NONE CHECK TO SEE IF NAMF WAS FOUNC SAMPL060

00000A 9180 €020 00022 63 BO NOTTHERE BRANCH IF NOT SAMPLO6 1

00000E 4710 C018 0001A 64 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPL062

00000 65 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPLO063

x4+ ERROR ##%# 66+ 1, LMPROPER OPERAND TYPES, NO STATEMENTS GENERATED

67 MOUE TNUMBER, LNUMBER FROM LIST ENTRY SAMPL066

#%% FRROR ### 68 MOVE TADDRESS,LADDRESS TO TABLE ENIRY SAMPL069

69+% NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO SAMFL028

70+ L 2,LADDRESS SAMPLO029

000012 5820 500C 0000C 71+ ST 2,TADDRESS SAMFL030

000016 5020 1004 00004 72 NOTTHERE OX LSWITCH, NONE TURN ON SWITCH IN LIST ENTRY SANPLO75

00001A 9680 5008 00008 73 BXLE RS5,R6,MORE LOOP THROUGH THE LIST SAMPLO76

00001E 8756 CO04 00006 74 EOJ ENC OF PROGRAM, USER LIBRARY MACRO SAMPLO077

EXAM RELOCATION DICTIONARY PAGE 6

POS.1D REL.ID FLAGS ADDRESS ASM 0100 09.46 01/05/72
0001 0001 ocC 000154
0001 0001 ocC 000164
0001 0001 oc 000174
0001 0001 (1] 0001A8
0001 0001 oc 0001BO

EXAM CROSS-REFERENCE PAGE 7

SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 09.46 01/05/72
BEGIN 00002 00000000 00057 00135 00143 00183

HIGHER 00002 0000004A 00090 00085

LADDRESS 00004 0000000C 00174 00070

LIST 00001 00000000 00170 00060

LISTAREA 00008 00000148 00132 00184

LISTEND 00008 00000198 00152 00184

LNAME 00008 00000000 00171 00084

LNUMBER 00003 00000009 00173

LOOP 00004 00000030 00083 00088 00091 00139

EXAM LITERAL CROSS-REFERENCE PAGE 8

SYMBOL LEN VALUE DEFN
=A (LISTAREA, 16,LISTEND)
00004 000001A8 00184
=F'128,4,128° .
00004 000001B4 00185

REFERENCES

00059

00081

ASM 0100 09.46 01/05/72

EXAM

STMT ERROR CODE MESSAGE

ASSEMBLER DIAGNOSTICS AND STATISTICS

PAGE 9

ASM 0100 09.46 01,05/72

0 IF0076 SEQUENCE SYMBOL .TYPECGK 1S UNDEFINED IN MACRO MOVE
36 1F0016 ILLEGAL OR 1INVALID NAME FIELD
65 1F0090 UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING CONDITIONAL ASSEMBLY
66 1IF0197 *** MNOTE #**
Figure 9. B2ssemkler listing

The Assenkler Listing 35

External Symbol Dictionary (ESD)

The external symkol dicticnary (ESD) describes the ccrtents of the EST
records included in the okject module prcduced by the assembler. It —
describes tc the linkage editor or loader the control sections and
external symbols defined in the mcdule.

N
N

This section helps you find references between modules in a
multi-module program. The ESLC may ke particularly helrful in debtugging
the executicn of large prcgrams constructed from several mcdules.

The ESD is explained in detail in Figure 10. For a full
understanding of the terms and concepts used in the figure, refer to R
"Section E: Frogram Sectioning" and "Section F: Addressing® in
Assemkler Language. ’

36

s

TITLE statement.

The deck identification
obtained from the name
field of the first named

| The name of the symbo!
described by the entry.

(Only for types CM, ER, .

LD, SD, WX, and XD)

Common control section. A control section defined by
COM instruction
a V-type address eonstant.

the operand field of an ENTRY instruction.
Unnamed control section (private code}. An unnamed

START or CSECT instruction or the appearance of an

START or CSECT instruction.
Named control section. A control section identified by

field.

field of a WXTRN instruction.

operand field of a Q-type address

ER Strong extemal reference. A symbol that appears in the
operand field of an EXTRN instruction, or is defined as

External name (label definition). A symbol that appears in

control section is generated as the result of an unnamed

instruction affecting the location counter before the first

a START or CSECT instruction with a label in the name
Weak extemnal reference. A symbol that appears in the name}
External dummy section (pseudo register). A symbol that

appears in the name field of a DXD instruction, or appears
both in the name field of a DSECT instruction and the

The version
of the
assembler

svwm}f

SEARCH LL

Figure 10.

Tvpffg)

PC 0001 000000 0001CO

The external symbol dictionary identification
| number (ESDID).
| four- digit hexadecimal number identifying

{ the entry. It is used to cross reference be-

: tween the external symbol dictionary and the
relocatlon dictionary. It is also used by entries i
of type LD to identify the control section in
WhICh the external name is defined. (Only for

EXTERNAL SYMBOL DI1CTIONARY
ADDR LENGTH LDID

000024 o, 0001

i

W@’#“W&mf@@% =

: The address in the
module where the
item described by
the entry is defined.
. (Only for types CM,
gg LD, PC, SD, and XD).

This number is a unique

< types CM,

External symbol dictionary

The length in bytes

: (hexadeclmal notation),
of the assembled con-
- trol section. (Only for

PAGE 1

ASM 0100 09.46 01/05/72

The ESDID assigned to
the control section in
which this symbol is
defined. (Only for

PC, SD, and type LD).

The Assembler Listing

37

The Source and Machine Language Statements

The second secticn of the listing contains a copy of the source
statements of the module together with a copy of the okject code /TN
produced by the assemkler for each of the source statements.

This section is the mcst useful part of the listing because it gives you:
a copy of all the statements in your source program (excert listing
contrcl statements) exactly as they are entered into the machine. You
can use it to find simple punching errcrs, and together with the
diagnostics and statistics, to locate and correct errcrs detected by the
assenkler. By using this section together with the cross reference
section, you can check that your kranches and data references are in
order. The location counter values and the okject ccde listed for each
statement helr ycu locate any errors in a storage dump. Finally, you
can use this part of the listing to check that your macrc instructions
have keen expanded rrcrerly.

The source and machine language statements secticn is descriked in
detail in Figure 11. Fcr terms that you are unfamiliar with, refer to
Assembler Language.

SOURCE STATEMENT FIELDS

The contents of the source statement fields in the listing (see Figure
11) are as fcllows:

e All scurce statements except listing control statements are listed,
including statements generated from macrcs and inserted by CCEY
instructicns. '

e The definitions of likrary macros that are called ky the prcgram are (‘\\
listed cnly if the LIBMAC option has been specified.

° The staterments generated as the result of a macro instruction are
listed after the macro instruction in the listing unless FRINT NCGEN
is in effect.

L) Unless the NOALOGIC option has keen specified, assembler and machine
instructions with variakle symkols in open code are listed both as
they arpear in the input to the assembler and with values
substituted for the variakle symkols.

) When the asserbler detects an error, it normally inserts an errcr
indicator in the listing after the statement in error, and prints an -
error message in the diagnostics and statistics secticn. Using the
FLAG opticn you can suppress error messages below a severity code
that you choose.

e MNOTE messages arrear inline where they are generated. MNNCIE
messages can be suppressed in the same way as errcr messages using
the FLAG cpticn.

e Literals that have not been assigned locations by LTORG instructions
appear after the ENLC instruction.

[A generated statement has the same format as the statement from
which it was generated, unless a sukstituted value is lcnger than
the variable symbcl used in the model statement.
e Any statement in which the assemkler finds an errcr is listed, even
if it would not otherwise ke listed. (Fcr example, an AIF statement (/\\

38

in a called library macro definition).

For a statement generated from a macro definition, columns 73-80
contain the columns from the model statement frcm which it was

generated.

The Assemkler Listing

39

3 A R SR oo
The location counter value (address in hexadecimal notation) of the
assembled code. Exceptions are the following values:
o For END with an operand: the address.of the symbol in the operand. \
J

® For ORG: the location counter value before the ORG operation,

o For COM, CSECT, or DSECT: the current address of the control
section.)

o For ENTRY, EXTRN, WXTRN, or DXD: blank.

For LTORG: the address assigned to the literal pool.

N

The title defined in
the operand field of
the TITLE statement

Columns 1 - 80 of the
source statements
records, as explained
under “’Source Statement
Fields”.

EXAM PAGE 3
ADDR2 STMT SOURCE STATEMENT r ASM 0100 09.46 01/05/72
52 SAESXEXBEERLLERIRRERFTRERERRRRRREREREBRRREAR SRR ERRRNSARE 2404444448808 SAMPLOSO
53 * MAIN ROUTINE *+ SAMPLOS1
SU SEESEEE1BEPRELERRRERREEERANRRARRERRABRERSRREAARIE SRR RRREE 4444444244 SAMPLOS2
000000 55 CSECH SAMPLO53
56 ENTRY SEARCH SAMPLOS4
000000 05C0O 57 BEGIN BALR R12,0 ESTABLISH ACCRESSABILITY OF PRCGRAM SAMPLOSS
00002 58 USING #*,R12 AND TELL THE ASSEVMBLER SRMPL056
000002 9857 C1a6 001A8 59 LM R5,R7,=A (LISTAREA, 16 ,LISTEND) LOAD LIST AREA PARAMS SAMPL0S57
00000 60 USING LIST,RS REGISTER 5 POINTS TO THE LIST SAMPLO58
000006 u45E0 C022 00024 61 MORE BAL R14, SEARCH FIND LIST ENTRY IN TABLE SAMPLOS9
00000A 9180 C020 00022 62 ™ SWITCH, NONE CHECK TO SEF IF NAMF WAS FOUNC SAMPLO60
00000E 4710 CO018 0001A. 63 J:le] NOTTHERE BRANCH IF NOT SAMPLO6 1
00000 64 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPL062
65 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPL063
#%% ERROR *##

66+ 1, iINPROPER OPERAND 1YPES, NO STATEMENTS GENERATED

67 MOUE TNUMBER, LNUMBER FROM LIST ENTRY SAMPL066
#%% ERROR #+#
68 MOVE TADDRESS,LADCDRESS TO TABLE ENIRY SAMPLO69
69+# NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO SANFL028
000012 5820 500C 0000C 70+ L 2,LADCRESS SAMPL029
000016 502051004 00004 T1+ ST 2,TADCRESS SRMPL0O30
———’ N—
* R /,
()

The source statement numbe
Used to cross reference between
this section and the cross

reference and diagnostics sections.

The effective address (result of adding together a base
register value and a displacement value) for:
First column: the first operand of an 5l or SS type
instruction.
Second Column: the second operand of an RS, RX,
or SS type machine instruction.
This column also contains:
For ORG: the location counter value after the
ORG operation.
For USING: the first operand value.
For EQU: the value of the symbol.
Both fields contain six-digits; however, if the high
order digit is zero, it is not printed.

The machine fanguage code produced from the source
statement on the same line. The entries are left-justified.
Machine instructions are printed in full, with a blank
inserted after every four digits. Assembler instructions
are printed in full only if the PRINT instruction option |
DATA is in effect. For instructions that do not generate

i1 any object code this field is blank. ?

Figure ll. Source and machine language statements

40

Relocation Dictionary (RLD)

The relocation dictiocnary (RLL) describes the contents of the RLID records
passed to the linkage editor or loader in the object module. The

entries describe those address constants in the mcdule that are affected
by prcgram relocaticn.

The section helps you find the relocatakle ccnstants in ycur program.
The RLD secticn is described in detail in Figure 12. For a

description of the different address constants menticned in the figure,
refer to the secticn "G3 -- Defining Data®", in Assemblexr Language.

EXAM RELOCATION DICTIONARY PAGE 6
POS.ID REL.ID FLAGS ADDRESS ASM 0100 09.46 01/05,72
0001 0001 oc 000154

0001 0001 oc 000164

0001 0001 oc 000174

0001 0001 oc 0001A8

0001 0001 oc 000180

. o

The address where the constant is stored
(the location counter value assigned to
the definition of the constant).

This two-digit hexadecimal number is interpreted as follows:

First digit: Identifies the type of entry:
0 = A- or Y- type address constant

1 = V- type address constant

2= Q- type address constant

3 = CXD entry

Second digit: The first three bits indicate the length of
the constant and whether the base should be added or
subtracted:

Bits 0 and 1 Bit 3
00 = 1 byte 0=+ Always O
01 = 2 bytes 1=-

10 = 3 bytes
1

The ESDID assigned to the ESD
entry for the control section in
which the referenced symbol is
defined, or to the ESD entry
identifying it as an external
reference.

The external symbol dictionary
identification number (ESDID)
assigned to the ESD entry for
the contro! section in which the
address eonstant is used as an

Figure 12. Relocation dictionary

The Assermkler Listing 41

Symbol Cross Reference

The symbol crcss reference sectiocn of the listing lists the syrbcls used
in the module, indicating both where they are defined and where they are
referenced. This is a useful tool in checking the lcgic cf ycur program;
it helps you see if your data references and kranches are in crder.

The symbol crcss reference section contains all symkols in the
module, except those appearing in the cperand field cf V-type address
constants. Thus, symktols that are not listed in the scurce and machine
language statements section kecause of a PRINT OFF cr PRINT NOGEN
instructicn will arpear in the cross reference table. (For a description
of V-type address constants and the PRINT instructicn, refer tc
Assemkler Language.

Symbols that are undefined kut referenced will alsc be listed, and
identified as undefined. Duplicate definitions will alsc be identified
in the takle.

Figure 13 descrikes in detail the items cf the crcss reference takle.
Note: The cross reference entry for a symkol used in a literal refers

to the asserbled literal in the literal pccl. Lock ur the literal cross
reference table tc find where the symbol is used.

42

EXAM CROSS-REFERENCE

SYMBOL LEN VALUE DEFN REFERENCES

BEGIN 00002 00000000 00057 00135 00143 00183
HIGHER 00002 0000004A 00090 00085

LADDRESS 00004 0000000C 00174 00070

L1ST 00001 00000000 00170 00060

LISTAREA 00008 00000148 00132 00184

LISTEND 00008 00000198 00152 00184

LNAME 00008 00000000 00171 00084

LNUMBER 00003 00000009 00173

LOOP 00004 00000030 00083 00088 00091 00139
LSWITCH 00001 00000008 00172 00072

MORE 00004 00000006 00061 00073

MORE 00004 00000042 00088 #*¢4¢DUPLICATE#*#¢#

NONE 00001 00000080 00076 00062 00072 00080 00092

NOTFOUND 00004 00000050 00092 00089
NOTTHERE 00004 0000001A 00072 00063

Rt 00001 00000001 00159 00064 00081 00082 00082 00087 00090
R12 00001 0000000C 00165 00057 00058

R14 00001 0000000E 00166 00061 00086 00093

R2 00001 00000002 00160 00088 00091

R3 00001 00000003 00161 00081 00083 00087 00090

RS 00001 00000005 00162 00059 00060 00073

R6 00001 00000006-00163 00073

R7 00001 00000007 00164 00059

SEARCH 00004 00000024 00080 00056 00061
SWITCH 00001 00000022 00075 00062 00080 00092
TABLAREA 00008 00000058 00099 00082

TABLE 00001 00000000 00178 00064
TADDRESS 00004 00000004 00181 00071
TNAME 00008 00000008 00182 00084
TNUMBER 00003 00000000 00179
TSWITCH 00001 00000003 00180

The statement number of the
statement in which the symbol
is defined.

PAGE

ASM 0100 09.46 01/05/72

appears in the operand field.

Either the address represented
by the symbol, or the value to
which it is equated.

The length (hexadecimal notation),
in bytes, of the field occupied by
the value of the symbol.

5 G SRR

The Symbol

e o

Figure 13. Symbol cross reference

The Assembler Listing

The statement numbers of the
statements in which the symbol

7

43

Literal Cross Reference

The literal cross reference section lists all the literals that are used
in the prograrm.

Figure 14 gives a detailed explanation of the items of the literal
cross reference table.

EXAM LITERAL CROSS-REFERENCE : PAGE 8

SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 09.46 01/05/72

=A (LISTAREA, 16 ,LISTEND)
00004 000001A8 00184 00059
=F*128,4,128"*
i 00004 000001B4 00\185 00081
i kS ", g,

i

The statement numbers of the statements |
in which the literal is used in the source
code input.

The statement number éssigned to the
| literal. Statement numbers for literals

are assigned after LTORG instructions
or after the END

literal (the address at whioh the
literal is assembled).

The length (hexadecimal notation),
in bytes, of the field occupied by
the literal.

SRR S

The literal

Figure 14. Literal cross reference

44

Diagnostics and Statistics

Figure 15 gives a detailed explanation of the diagnostics and statistics
section of the listing. The following information may also ke helpful
in interrreting this section.

The diagncstic messages issued by the assembler are fully documented in
Appendix G of this manual.

Error messages with the text IF0197 ***MNOTE#** indicate that an NMNCTE
message has been written in the source staterent secticn cf the listing.
The MNOTE message is given a statement numker which is indicated
together with this diagnostic message.

Errors encountered during the processing of library macrc definitions
reference the END statement. (This is because library macros are read
in by the assembler after the source ccde.) However, if yocu specify the
LIBMAC assembler option, all system macro definitions will be listed
after the END statement; an error will then reference the statement
within the macro definition that caused the error.

To suppress error messages and MNOTE messages below a specified severity
level, you can use the FLAG option.

The Assemkler Listing 45

" The statement number of the statement flagged
{ For certain types of errors found in library
macros, the statement number given is that of
4 the END statement. For certain other types of

i errors the statement number given is zero, because
the assembler cannot locate the statement in error.

.| The message identifier. It consists of :
| the three characters IFO and three numeric
' characters giving a unique number to the

The total number of |
statements for which
error messages were |
issued.

.+ The text of the i Many g
include a segment of the error in the {
.| statement or a pointer to the vicinity of

the error.

ASSEMBLER DIAGNOSTICS Al PAGE 9

STMT ERROR CODE MESSAGE ASM 0100 09.46 01/05/72

0 IFO0076 SEQUENCE SYMBOL .TYPECGK IS UNDEFINED IN MACRO

36 1F0016 ILLEGAL OR INVALID NAME FIELD

65 1F0090 UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING INDITIONAL ASSEMBELY
66 IF0197 *4s MNOTE ##*

67 1F0078 UNDEFINED OP CODE

74 1F0078 UNDEFINED QP CODE

88 1IF0196 MORE HAS BEEN PREVIOUSLY DEFINED

149 1F0236 ILLEGAL CHARACTER IN EXPRESSION NEAR #SPERAND COLUMN 3

NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY =

HIGHEST SEVERITY WAS 8 i .

OPTIONS FOR THIS ASSEMBLY
ALIGN, ALOGIC, BUFSIZE(STD), NODECK, ESD, n’.’m@:
NOMLOGIC, NONUMBER, NOOBJECT, NORENT, RLD, NOSTMT
SYSPARM

WORK FILE BUFFER SIZE = 2558

TOTAL RECORDS READ FROM SYSTEM INPUT 180

TOTAL RECORCS READ FROM SYSTEM LIBRARY 0

TOTAL RECORLS PUNCHED 0

TOTAL RECORDS PRINTED 275

55) , LIST, NOMCALL
TERMINAL, NOTEST, XREF

. T
The hlghest severlty code encountered
during the assembly. Each message is
assigned a severity code indicating the
il relative severity of the error. The

! highest severity code encountered is

:! passed to the control program as the
i return code of the assembly.

B

;
i

s

A list indicating the
options in effect

i during the assemblv
QM %

i Statlstlcal |nformat|on
. relating to input to and

Figure 15. Diagnostics and statistics

46

Programming Considerations

The purpose of this secticn is to serve as a bridge between Assembler
Language and other manuals that you will use frequently when programming
in the assembler language. Among the topics discussed are:

° Cesigning your program

] Specifying the entry point into your prograr.

° Linking with mecdules written in other programming languages.

e Linking with processing progrars.

Designing Your Program

When you design ycur prcgram to run under VS, you must make sure that it
follows the conventions required by that orerating system. The minimum
requirements for a very simple program are givemn in Figure 16.

However, you will hardly ever write such a simple program and will
therefore want to refer to the section "Prcgram Design" in 0S/VS
Supervisor Services and Macro Instructions. Among the topics covered
there are:

) The linkage registers that the operating system uses in passing
control between various components cf the ccntrcl grcgram, and
between the control program and your proklem prcgram. Ycu shculd
use the same registers when calling your own grograms.

® Acquiring the information in the PARM field of the EXEC statement.
In the same way as the assembler checks the options you srecify for
it in the PARM field, you can have your own program check the
contents of that field.

) Saving the calling prcgram's registers, so that they are nct
modified by the called program.

® Establishing a kase register.

e Providing a save area, so that any rrograms called by yocur prcgram
can save the contents of your registers and restore the contents
ugpon return. Note that certain system macrc instructicns (such as
GET or PUT) call subroutines that assume that your program has
provided a save area.

() Virtual storage ccnsiderations.

® Task creation.

Programming Considerations 47

The follcwing coding shows the minimum nurkber cf instructicns ycu
need for a simple prcgram. The program will be less than 4096
bytes long and will consist of only one ccntrol secticn. It will
not call any subrcutines or use any other IEM-supplied macros
than SAVE and RETURN.

CSA SAVE (14,12) Save registers fcr calling routine
USING csa,15 The control program passes control
to the routine usirg register 15;
use that register as a base
ST _ 13,SAVE13 Store address of calling routine's
save area
(ycur rrcgram)

L 13,SAVE13 Reload address of save area
RETURN (14,12) Return to calling routine in AOS

SAVE13 LS F Space to save address cf calling
- routine's save area

(your constants and data areas)

END

Figure 16. Minimum requirements for a simple rrcgram

Specifying the Entry Point into Your Program

When your okject mcdule is link edited, either alone, or together with
other modules, the entry point into the lcad ncdule rrcduced is .
determined ky the linkage editor. (The entry point is the address in
the locad module to which control is given ky the ccntrcl prcgram, when
the load module is to ke executed.)

Ycu can use the assembler END instruction or the linkage editor
ENTRY control statement to specify the entry point tc the linkage
editor, as exrlained under "Output From The Linkage Editcr"™ in linkage
Fditcr and Lcader.

Linking with Modules Produced by other Language Translators

The modules produced by the assemkler can ke cormbined with cther modules
by the linkage editor. These modules can be object modules or load
modules, and may have keen originally written in any cf the languages
supported by the orerating system. This makes it possikle for you to
use different programming languages for different parts cf ycur program,
allowing each part to ke written in the language Lkest suited fcr it.

Hcwever, when linking between modules produced by different language
translators you must make sure that each mcdule ccnfcrms to the data
formats and linkage ccnventions required. If input/cutput crerations
are performed, ycu must also make sure that the approrpriate LLC
statements are supplied for the data sets used in the different modules.
For informaticn on the requirements for linking between modules written
in the assembler language and the proklem-criented larguages, refer to
the 'programmer's guide for the particular compiler ycu are using.

48

O

Linking with IBM-Supplied Processing Programs

You usually use the EXEC job control statement to load and give control
to a processing program of the operating system. However, you can also
load and give control to a sort program, a utility prcgram, or even a
compiler "dynamically", that is, Ly using a system macrc instruction
(LINK, XCTrL, CALL, or ATTACH) in your own program. When calling a
program dynamically, make sure you follow the 0S/VS linking conventions
described under "Program LCesign" in 0S/VS Supervisor Services and Macro
Instructions. You must also pass certain parameters to the processing
program. These parameters give the same information tc the program as
you weoculd supply in job control statements, if you called the program
with an EXEC statement. BAppendix D describes how to call the assembler
dynamically. Dynamic invocation of each of the other IBM-supplied
processing programs is covered in one of the manuals describing that
program.

Programming Considerations 49

Adding Macro Definitions to a Library

You can include your own macro definiticns or cther secticns of
often-used socurce ccde in the system macrc library cr in a rrivate
likrary that you ccncatenate with the system macro likrary. A macro
library can consist of toth macro definitions and secticns of ccde to be
inserted by the COPY assembler instruction.

You use the IEBUPDTE rrogram to add members to a macro likrary. For
further information on IEEUPLCTE and the utility ccntrxcl statements
needed, refer to 0S/VS Utilities, Crder No. GC35-0005. The following
example shows how a new macro definition, NEWMAC, is added to the system
macro library (SYS1.MACLIE).

//CATMAC JOB 12345 ,BRCWN.JR, ...

//STEE1 EXEC PGM=IERUPLTE, PARM=MOD

//SYSUT1 LT CSN=SYS1.MACLIB,CI1SP=0LD

//SYSUT2 LT CSN=SYS1.MACLIB,DISP=0LD

//SYSERINT [T SYSOUT=A

//SYSIN DD DATA

./ ACC LIST=ALL,NAME=NEWMAC,LEVEL=01, SOURCE=0
MACRO

NEWMAC &O0P1,&0P2
LCLA §PAR1,8PAR2

3

MENL
./ ENDUP
/*

The SYSUT1 and SYSUT2 DD statements indicate that SYS1.MACLIB, an
existing program likrary, is to ke updated. Outrut frcr the IEEBUPLCTE
program is printed on the Class A output device (specified by SYSPRINT) .
The utility control statement ./ ALLC and the macrc definiticn fcllow the
SYSIN statement. The ./ ADD statement specifies that the statements
following it are to ke added to the macrc likrary under the name NEWMAC.
When you include macrc definitions in the library, the name specified in
the NAME parameter of the ./ ALL statement must be the same as the
operation ccde of the macro definition.

50

D

Appendix A. Glossary

The following terms are defined as they are used in this manual. If you
do nct find the term ycu are locking for, refer to the Index cr tc the
IBM LCata Processing Glossary, Crder No. GC20-1699.

The terms are of three different kinds:

° Cefinitions made Lty the American Naticnal Standards Institute
(ANSI) . Such definiticns are marked ky an asterisk (%) .

e Cefiniticns valid fcr 0S. Such definitions are marked by an C.

® Cefiniticns cf terms that are used in descriking the 1lcgic cf the CS
Assemkler. They are included here only because they are used in the
assembler diagnostic messages. For further infcrmaticn cn these
terms, refer tc 0S/VS Assembler lLogic, S¥Y33-8041. Such definitions
are marked by an A.

IEM is grateful to the American Naticnal Stardards Institute
(ANSI) fcr rermission to reprint its definitions from the
American National Standard Vocakulary fcr Infcrmaticn
Prccessing, which was prepared by Subcommittee X3K5 on
Terminology and CGlossary of Arerican Naticnal Standards
Cenrrittee X3.

This glcssary dces not explain terms pertaining to the assemkler
language. Such terms are covered in the glcssary cf Assenblex ILangquage.

O assemble: To prepare a machine langquage rrcgram frcr a symbclic language
program by sukstituting machine oreration codes for symkolic operation
codes and aksolute or relocatakle addresses for symkclic addresses.

* assenkler: A ccmputer prrogram that assembles.
Oassembler instruction: An assembler language source statement that

causes the assembler to perform a specific creraticn. Asserbler
instructicns are nct translated into machine instructions.

O assembler language: A source language that includes syrnkclic machine
language staterents in which there is a one-to-one correspondence with
the instruction formats and data fcrmats of the computer. The assemkler
language alsc contains statements that rerresent assenkler instructions
and racrc instructicns.

O assembler option: A function of the asserkler requested fcr a particular
jok ster.

O auxiliary storage: Online storage other than main storage; for example
storage on magnetic tapes or on direct access devices.

O catalcged rrccedure: A set cf job control statements that has been
placed in a partitioned data set called the rrccedure likrary, and can
be retrieved by naming it in an execute (EXEC) statemert cr started by
the START ccrmand.

O concatenated data sets: A group of logically ccnnected data sets that are
treated as cne data set fcr the duration of a job steg.

* contrcl program: A prcgram that is designed to schedule and supervise
the performance of data processing work ky a ccmputing systen.

Arpendix A. Glcssary 51

O control section: That part of a program specified by the programmer to
be a relccatable unit, all elements of which are tc be lcaded intc
adjoining main stcrage locations.

Odata set: The major unit of data storage and retrieval in the crerating N
systerm, ccnsisting of a ccllection of data in one of several prescriked (
arrangements and descriked Ly control informaticn to which the system)
has access.

xdiagnostic: Pertaining to the detection and isolaticn cf a malfunction or
mistake.

aedited text: Scurce statements modified by the assembler for internal
use. The initial processing of the assemkler is referred tc as editing. -

oentry point: A location in a module to which contrcl can be rassed frcm
another mcdule or frcm the control program.

ESD: (See external symkol dictionary)

Oexecute (FXEC) statement: A job control language (JCL) statement that
marks the beginning of a jok step and identifies the prcgram tc be
executed cr the catalcged or in-stream procedure to be used.

oexternal symbol dictionary (ESL): Control informaticn asscciated with an
object or load module which identifies the external symbcls in the
module.

aAglobal dictionary: An internal takle used Ly the assernktler during macro
genexration tc contain the current values of all unique global SETA,
SETB, and SETC variakles from all text segments.

Aglobal vector table: A table of pointers in the skeleton dictionary of
each text segment showing where the glokal variables are located in the
glokal dicticnary.

9

/,
~

Oinput stream: The sequence of jok contrcl statements and data submitted
to an operating system cn an input unit especially activated for this
purpose by the operator.

instructicn:

* 1. A statement that specifies an operation and the values and
lccations of its operands.

2. (See assembler instruction, machine instruction, and macro
instruction)

JCL: (See job control language) .
* job: A specified group of tasks prescribed as a unit of work for a

computer. Ey extension, a jok usually includes all necessary computer

programs, linkages, files, and instructions to the operating system.

0 job control language (JCL): A language used to code jok control
statements.

% job ccntrcl statement: A statement in a job that is used in identifying
the job or describing its requirements to the operating system.

job step:
* 1. The executicn cf a computer program explicitly identified by a

jek contrcl statement. A job may specify that several jok steps
be executed.

®

52

6] 2. A unit of work associated with one processing program or one
cataloged procedure and related data. A jcb ccnsists cf cne or
more jcb stegs.

O jobname: The name assigned to the JCB statement; it identifies the jok
to the system.

* language: A set of rerresentations, conventions, and rules used to
ot hekoat® A .
convey information.

0 language translatcr: A general term for any assenmkler, ccmrpiler, cr
other routine that accerts statements in one language and produces
equivalent statements in another language.

library: (See partitioned data set)

0 library macro definiticn: A macro definition that is stored in a macrc
library. The IBM-supplied supervisor and data management macro
definitions are examples cf library macro definitions.

0 linkage editor: A processing program that prerares the cutrut cf
language translatcrs for execution. It comkines separately prcduced
object or load modules; resolves symbolic cross references among them;
replaces, deletes, and adds control sections; and generates cverlay
structures on request; and produces executakle ccde (a lcad mcdule) that
is ready to be fetched into main storage and executed.

O linking ccnventions: A set of conventions for passing control between
different routines of the operating system.

0 load module: The cutput of a single linkage editor execution. A 1lcad
module is in a format suitable for loading into virtual storage for
execution.

0 load wodule library: A rartitioned data set that is used to store and
retrieve load modules.

O loader: B rprocessing prcgram that performs the kasic editing functions
of the linkage editcr, and also fetches and gives control to the
processed program, all in one jok step. It accerts okject mcdules and
load modules created ky the linkage editcr and generates executable ccde
directly in storage. The loader does not produce load modules for
program libraries.

A local dicticnary: An internal table used by the assemkler during macro
generation to contain the current values ¢f all lccal SET symkcls.
There is one local dictionary for open code, and cne fcr each macro
definition.

0 location counter: A ccunter whose value indicates the assembled address
of a rachine instructicn or a constant or the address of an area of
reserved storage, relative to the keginning cf the ccrtrcl section.

*« machine instruction: An instruction that a machine can recognize and
execute.

* machine lanquage: A language that is used directly by the machine.

macro: (See racrc instruction and macro definition)
macro call: (See macro instruction)

Omacro definition: A set of statements that defines the name of, format
of , and conditions for generating a sequence of assermkler language
statements frcm a single source statement. This statement is a macro
instruction that calls the definition. (See also library macrc

Aprrendix A. Glossary 53

definition and source macro definition)

macro expansion: (See macro generation)

omacro generation (macro expansion): An creration in which the assemktler
generates a sequence of assemElér language statements frcm a single
macro instruction, under conditicns described by a macro definition.

Oomacro instruction (macro call): An assembler language statement that
causes the assembler to process a predefined set cf statements called a
macro definiticn.

omacrc library: A library containing macro definitions. The supervisor
and data management macro definitions surrlied by IBM (GET, LINK, etc.)
are contained in the system macro likrary. Private macrc libraries can
be concatenated with the system macro likrary.

omain storage: All prcgram addressable storage from which instructions
may be executed and from which data can ke lcaded directly intc
registers.

module: (see load module, okject module, and scurce mcdule)

oobject module: The machine-language output of a single execution of an
asserbler or a compiler. An okject module is used as ingut tc the
linkage editcr or lcader.

* online storage: Storage under the contrcl of the central prccessing unit.

O open code: The pcrticn cf a source module that lies cutside cf and after
any source macro definitions that may be specified.

% operating system: Software which contrcls the executicn cf ccmputer
programs and which may prcvide scheduling, debugging, input/output
control, accounting, compilation, storage assignment, data managerment,
and related services. '

A ordinary symbcl attrikute reference dictionary: A dicticnary used by the
assemkler. The assembler puts an entry in it for each ordinary symkol
encountered in the name field of a staterent. The entry ccntains the
attributes (tyre, length, etc.) of the symbol. '

option: (See assembler option)

O partitioned data set (library): A data set in direct access storage that
is divided into partitions, called memkers, each cf which can ccntain a
program or a part of a program. Each partiticned data set ccntains a
directory (cr index) that the control program can use to locate a
program in the partitioned data set.

o procedure step: A unit of work associated with one processing prcgram
and related data within a cataloged procedure. A cataloged procedure
consists cf one or more procedure steps.

O processing prcgram:

1. A general term for any program that is not a control program.
2. Any program capakle of operating in the prcblem prcgram state.

This includes IBM-distributed language translators, application
programs, service programs, and user-written rrcgrams.

54

)

)

0O program:
1. A general term for any comkination cf statements that can be
interpreted by a computer or language translator, and that
serves to perform a specific function.
2. To write a prcgram.

programmer macrco definiticn: (See source macro definition)

Oreal storage: The storage of a System/370 corputer frcm which the
central processing unit can directly oktain instructicns and data and to
which it can directly return results.

* relocation dictionary: The part of an okject or lcad ncdule that
identifies all addresses that must be adjusted when a relocation occurs.

O return code: A value placed in the return code register at the
completion cf a prcgram. The value is established by the user and may
be used to influence the execution of succeeding precgrams cr, in the
case of an abnormal end of task, may simply ke rrinted fcr rrcgrammer
analysis,

0 sequential data set: A data set whose records are organized cn the kasis
of their successive rhysical positions such as on magnetic tage.

O severity ccde: A ccde assigned by the assembler to each error detected
in the source code. The highest code encountered during assembly becomes
the return ccde cof the assembly steg.

A skeleton dictionary: A dictionary kuilt ky the assembler fcr each text
segment. It contains the global vector, the sequence syrmbol reference
dictionary, and the local dictionary.

O source macro definition: A macro definition included in a source module,
either physically or as the result of a COPY instructicn.

0 source module: The scurce statements that: constitute the input to a
language translator for a particular translation.

O source statement: A statement written in symkols c¢f a grcgramming
language.

* statement: 2 meaningful expression or generalized instructicn in a
source language.

step: (See jok step and procedure step)

O stepname: The name assigned to an execute (EXEC) statement. It
identifies a job step within a jok.

0 symkclic parameter:

1. In JCL, a symbol preceded by an ampersand that appears in a
cataloged procedure. Values are assigned tc synbclic parameters
when the prccedure in which they appear is called.

2. In assembler programming, a variakle symkcl declared in the
prototype statement of a macro definition.

Asymkol file: A data set used by the assembler for symkol definitions and
references and literals.

0 systern_macrc definiticn: Loosely, an IBM-supplied likrary macro
definition which provides access to operating system facilities.

Appendix A. Glossary 55

* terminal. A point in a system or communicatiocn netwecrk at which data can
either enter cr leave cr both.

A text segment. The range over which a lccal dicticnary has meaning. The
source module is divided into text segments with a segment for orpen code
and one for each macro definition.

* transform. To change the form of data according to specific rules.

*x translate. Tc transfcrm statements from one language into another
without significantly changing the meaning.

O virtual storaqge. Address space arpearing to the user as real stcrage
from which instructions and data are mapred into real storage locations.
The size cf virtual storage is limited ky the addressing scheme cof the
computing system and by the amount of auxiliary storage availakle,
rather than by the actual numker of real storage lccaticns.

56

Appendix B. Assembler Sample Program

The sample program shown in Figure 17 can be used as a test of the
functioning of the assembler after your system has been generated (see
0S/VS1 System Generation Reference, Order No. GC26-3791). It also serves
serves as a good example of assembler language coding and of the

listing produced by the assembler.

The rrogran illustrates the definition and use of user-written macro
instructions, use of IEM-supplied macrc instructicns, use cf dunmy
contrcl secticns, and the method of saving and restoring registers upcon
entry to and exit from a program.

The data tc be rrccessed is assemkled as part of the rrcgram. It
consists of a table and a 1list of entries that are compared with the
table. Each item in the takle contains an argument nane (such as ALFHBA)
and srace in which infcrmation concerning the name is to ke placed.

Each entry in the list contains an argument narme and functicn values.
The fcrmats cof the table entries and the list entries are different, and
both formats are descriked in dummy secticns.

The programr searches the table for an argument name in the list. If a
match is found, the function values are reformatted and moved to the
approrriate table entry. 1If an argument name in the list cannct be
found in the table, a switch is set in the list entry. RAfter all the
list entries have keen processed, the list area and the table area are
compared with a takle and a list containing the predefined results. 1If
the tables and lists are equal, the routine executed properly, and a
message is written on the operator's ccnscle to indicate this.

IFOSAMP EXTERNAL SYMBOL DICTIONARY PAGE 1

SYMBOL TYPE 1ID ACDR LENGTH LDID ASM 0100 15.00 01,03/72

SAMPLR Sp 0001 000000 0003CO

Figure 17. Assemkler sample program
(Part 1 cf 11)

Aprendix B. Assembler Sample Program 57

IFOSAMP - SAMPLE PROGRAM

LOC OBJECT CODE ADDR1 ADDR2 STMT

SOURCE STATEMENT

2 PRINT DATA
3

4+ THIS IS THE MACRO DEFINITION

5 *

6 MACRO

7 MOVE &TO, §FROM

8 .*

9 .* DEFINE SETC SYMBOL

10 .+

11 LCLC - §TYPE

12 .+

13 .» CHECK NUMBER OF OPERANDS

1 .

15 AIF (N*S§SYSLIST NE 2) .ERROR1

16 .+

17 .+ CHECK TYPE ATTRIBUTES OF OPERANDS

18 .+

19 AIF (T'§TO NE T°§FROM) .ERROR2 :
20 AIF (T'6TO EQ 'C' OR T'§TO EQ 'G' OR T'ETO EQ ¢$K') .TYPECGK
21 AIF (T'$TO EQ D' OR T'$TO EQ "E' OR T'4TO EQ 'H') .TYPEDEH
22 AIF (T'§TO EQ °‘F') .MOVE

23 AGO .ERROR3

24 .TYPEDEH ANOP

25 .*
26 . ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL
27 .*

28 §TYPE SETC T'§TO
29 .MOVE ANOP

30 ¢ NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
31 LETYPE 2,§FROM

32 STETYPE 2,§TO

33 MEXIT
34 .*

35 .+ CHECK LENGTH ATTRIBUTES OF OPERANDS

36 .+
37 .TYPECGK AIF (L*$TO NE L'§FROM OR L'ETO GT 256) .ERRORY

38 + NEXT STATEMENT GENERATED FOR MOVE MACRO
39 MVC §TO, §FROM
40 MEXIT

41 .
42 . ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS

43 .+ .
44 _ERROR1 MNOTE 1,°'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED'
4s MEXIT
46 .ERROR2 MNOTE 1, 'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED®
47 MEXIT

48 .ERROR3 MNOTE 1, "IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED®
49 MEXIT

50 .ERROR4 MNOTE 1, *IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED®
51 MEND

52 *
53 MAIN ROUTINE

S4 *

000000 55 SAMPILR CSECT

Figure 17. Assembler sample program

(Part 2 of. 11)

58

PAGE 2

ASM 0100 15.00 01/03/72

SAMPL002
SAMPL003
SAMPLOOY
SAMPL005
SAMPL006
SAMPLO007
SAMPL008
SAMPLO009
SAMPL010
SAMPLO11
SAMPL012
SAMPLO13
SAMPLO 14
SAMPLO15
SAMPLO 16
SAMPLO17
SAMPL018
SAMPLO019
SAMPL020
SAMPL021
SAMPL022
SAMPL023
SAMPLO24
SAMPL025
SAMPL026
SAMPL027
SAMPL028
SAMPL029
SAMPL030
SAMPLO031
SAMPL032
SAMPLO33
- SAMPLO034
SAMPLO3S
SRMPL036
SAMPLQ37
SAMPL038
SAMPLO039
SAMPL0Y4O
SAMPLO41
SAMPLOY2
SAMPLO43
SAMPLOU4G
SAMPLO4S
SAMPLO46
SAMPL047
SAMPLO4S
SAMPLO49
SAMPLOS50
SAMPLOS1
SAMPL052
SAMPL053
SAMPLOS4
SAMPL055

56 BEGIN SAVE (14,12),,* SAMPLO056

~
~. ./

IFOSAMP - SAMPLE PROGRAM
LOC OBJECT CODE ADDR1 ADDR2

000000 47F0 FOOA 0000A
000004 05
000005 C2C5C7CID5
00000A 90EC DOOC 0000C
00000E 05CO

00010
000010 50D0 COCO 000D0
000014 9857 C398 003A8

006000
000018 4SE0 COC6 000D6
00001C 9180 COcCY 000D4
000020 4710 COB6 000C6

00000
000024 D200 1003 5008 00003 00008
00002A D202 1000 5009 00000 00009
000030 5820 500C 0000C
000034 5020 1004 00004
000038 8756 €008 00018
00003C DSEF C2u8 COF8 00258 00108
000042 4770 €080 00090
000046 DSSF C338 C1E8 00348 001F8
00004C 4770 €080 00090
000050
000050 4510 CO6E 0007E
000054 0025
000056 8000
000058 E2C1D4DTD3C540D7
000060 DID6CTDICIDULOCTY
000068 C6D6E2C1DY4DTUOE2
000070 E4C3C3CSE2E2C6E4
000078 D3

00079
000079 0000
000078 4020
00007E
00007E OA23
000080 58D0 COCO 00000
000084 98EC D0OC 0000C
000088 41FO0 0000 00000
00008C O7FE
00008E 0700
000090 4510 COBO 0goco
000094 0027
000096 8000
000098 E2C1D4D7D3C540D7

STMT SOURCE STATEMENT

57+BEGIN
58+

66 MORE

91+1HB000S
92+

93+
94+IHB0O00SA
95+

96 EXIT

97

98+
99+
100+
101 *
102 NOTRIGHT
103+
104 +NOTRIGHT
105+
106+
107+

PAGE 3

Figure 17. Bssemkler sample program
(Part 3 cf 11)

ASM 0100 15.00
B 10 (0,15) BRANCH AROUND ID
pC AL1(5)
DC CL5'BEGIN' IDENTIFIER
ST™ 14,12,12(13) SAVE REGISTERS
BALR R12,0 ESTABLISH ADDRESSABILITY OF PROGRAM
USING *,R12 AND TELL THE ASSEMBLER WHAT BASE TO USE
ST 13,SAVE13
M RS5,R7,=A (LISTAREA, 16 ,LISTEND) LOAD LIST AREA PARAMETERS
USING LIST,RS REGISTER 5 POINTS TO THE LIST
BAL R14, SEARCH FIND LIST ENTRY IN TABLE
™ SWITCH,NONE CHECK TO SEE 1F NAME WAS POUND
BO NOTTHERE BRANCH 1IF NOT
USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY
MOVE TSWITCH,LSWITCH MOVE FUNCTIONS
NEXT STATEMENT GENERATED FOR MOVE MACRO
Mve TSWITCH,LSWITCH
MOVE TNUMBER,LNUMBER FROM LIST ENTRY
NEXT STATEMENT GENERATED FOR MOVE MACRO
MVC TNUMBER , LNUMBER
MOVE TADDRESS,LADDRESS TO TABLE ENTRY
NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO
L 2,LADDRESS
ST 2,TADDRESS
BXLE RS5,R6,MORE LOOP THROUGH THE LIST
CLC TESTTABL (240) , TABLAREA
BNE NOTRIGHT
cLc TESTLIST (96) ,LISTAREA
BNE NOTRIGHT
WTO *SAMPLE PROGRAM IFOSAMP SUCCESSFUL',ROUTCDE= (2,11)
CNOP 0,4
BAL 1,1IHB000SA BRANCH AROUNLC MESSAGE
DC AL2 (IHB0005-%) MESSAGE LENGTH
DC B*1000000000000000° MCSFLAGS FIELC
DC C*SAMPLE PROGRAM IFOSAMP SUCCESSFUL' MESSAGE
EQU #
pcC B'0000000000000000°* DESCRIPTOR COLES
DC B*0100000000100000" ROUTING CODES
DS OH
svC 3s ISSUE SvC
L R13,SAVE13
RETURN (14,12) ,RC=0
M 14,12,12 (13) RESTORE THE REGISTERS
LA 15,0 (0,0) LOAC RETURN CODE
BR 14 RETURN
WTO *SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL',ROUTCDE=(2,11)
CNOP 0,4
BAL 1,1IHB0007A BRANCH AROUND MESSAGE
DC AL2 (IHB00O7-#) MESSAGE LENGTH
DC B*1000000000000000* MCSFLAGS FI1ELLC
DC C*SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL® MESSAGE
Appendix B. Assenbler Sanple Prcgram

01/03/72

00860000
00880000
00900000
01180000
SAMPLOS57
SAMPL058
SAMPLO59
SAMPLO60
SAMPL061
SRAMPL062
SAMPL063
SAMPLO6Y
SAMPL065
SAMPL066
SAMPL038
SAMPL039
SAMPL067
SAMPLO38
SAMPLO39
SAMPL068
SAMPL030
SAMPLO31
SAMPL032
SAMPLO69
SAMPLO70
SAMPLO71
SAMPL072
SAMPL073
SAMPLO74
00480000
00500000
00428018
00428818
00429618

00430418
00432018
00432818
00560000
00600000
SAMPLO075
SAMPL076
00260000
00700000
00800000
SAMPL077
SAMPL078
00480000
00500000
00428018
00428818
00429618

59

IFOSAMP - SAMPLE PROGRAM

LOC OBJECT CODE ADDR1 ADDR2 STMT

0000A0 DID6CTDICIDULOCI

0000A8 C6D6E2C1D4DT4OEY

0000B0 DSE2E4C3C3C5E2E2

0000B8 C6E4D3

000BB 108+IHB0007 EQU
Dc

SOURCE STATEMENT

*

0000BB 0000 109+ B*0000000000000000° DESCRIPTOR COLES
0000BD 4020 110+ c B*'0100000000100000°* ROUTING CODES
0000C0 111+18B0007A DS OH
0000C0 0A23 112+ svec 35 ISSUE SVC
0000C2 47F0 CO70 00080 13 B EXIT
0000C6 9680 5008 00008 114 NOTTHERE OI LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY
0000CA 47F0 €028 00038 115 B LISTLOOP GO BACK AND LOOP
0000CE 0000
000000 00000000 116 SAVE13 DC F°0'
00o0D4 00 117 SWITCH ©DC X*00°
00080 118 NONE EQU Xx*'80°*
119 =+
120 + BINARY SEARCH ROUTINE
121 #
0000D5 00
0000D6 947F COCH 000D4% 122 SEARCH N1 SWITCH,255-NONE TURN OFF NOT FOUND SWITCH
0000DA 9813 C3a4 003BY4 123 LM R1,R3,=F'128,4,128"' LOAD TAELE PARRMETERS
0000DE 4111 COES 000¥8 124 a R1,TABLAREA-16 (R1) GET ADDRESS OF MILDLE ENTRY
0000E2 8830 0001 00001 125 LooP SRL R3,1 DIVIDE INCREMENT BY 2
0000E6 D507 5000 1008 00000 00008 126 CLC LNAME, TNAME COMPARE LIST ENTRY WITH TABLE ENTRY
0000EC 4720 COEC 000FC 127 BH HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE
0000F0 078E 128 BCR 8,R14 EXIT IF FOUND
0000F2 1B13 129 SR R1,R3 OTHERWISE IT 1S LOWER IN THE TABLE
SO SUBTRACT INCREMENT
0000F4 4620 COD2 000E2 130 BCT R2,LO0P LOOP 4 TIMES
0000F8 47F0 COF2 00102 131 B NOTFOUND ARGUMENT IS NOT IN THE TABLE
0000FC 1A13 132 HIGHER AR R1,R3 ADD INCREMENT
0000FE 4620 COD2 000E2 133 BCT R2,LOOP LOOP 4 TIMES
000102 9680 CoOCy 000D4 134 NOTFOUND OI SWITCH, NONE TURN ON NOT FOUND SWITCH
000106 O7FE 135 BR R14 EXIT
136 ¢
137 + THIS IS THE TABLE
138 »
000108 139 DS 0D
000108 0000000000000000 140 TABLAREA DC XL8'0',CL8*ALPHA"
000110 C1D3D7C8C1404040
000118 0000000000000000 141 DC XL8'0*,CL8*BETA"
000120 C2CS5E3C140404040
000128 0000000000000000 142 oc XL8'0*,CL8 *DELTA’
000130 C4CSD3E3C1404040
000138 0000000000000000 143 nC XL8'0*,CL8 *EPSILON®
000140 CSD7E2C9D3D6D54U0
000148 0000000000000000 144 DC XL8°0*,CL8'ETA®
000150 CSE3C14040404040
000158 0000000000000000 145 DC XL8*0,CL8 '"GAMMA®
000160 C7C1D4D4CI404040
000168 0000000000000000 146 DC XL8°0',CL8°*IO0TA"
c

000170 CID6E3C140404040
000178 0000000000000000 147 XL8'0',CL8 "KAPPA' SAMPL114
000180 D2C1D7D7C1404040

Figure 17. Assembler sample program

(Part 4 of 11)

60

PAGE 4

ASM 0100 15.00 01/03/72

00430418
00432018
00432818
00560000
00600000
SAMPL073
SAMPL(80
SAMPLO081

SAMPL082
SAMPL083
SAMPLO8Y
SAMPL08S
SAMPL086
SAMPL087

SAMPL088
SRAMPL089
SAMPL090
SAMPL091
SAMPL092
SAMPL093
SAMPLO94
XSAMPL095
SAMPL096
SAMPL(097
SAMPL098
SAMPL(Q99
SAMPL100
SAMPL101
SAMPL102
SAMPL103
SAMPL104
SAMPL105
SRMPL106
SAMPL107

SAMPL108
SAMPL109
SAMPL110
SAMPL111
SAMPL 112
SAMPL113

®

IFOSAMP - SAMPLE PROGRAM

LOC OBJECT CODE

000188 0000000000000000
000190 D3C1D4C2CUCI4040
000198 0000000000000000
0001A0 DUE4404040404040
0001A8 0000000000000000
0001B0 DSE4404040404040
0001B8 0000000000000000
0001C0 D6D4CIC3DID6ED540
0001C8 0000000000000000
0001D0 D7C8CI4040404040
0001D8 0000000000000000
0001E0 E2CIC7D4C1404040
0001E8 0000000000000000
0001F0 E9CSE3C140404040

0001F8 D3C1D4C2CUC14040
000200 0A00001D00000000
000208 E9C5E3C140404040
000210 05000005000000E2
000218 E3C8C5E3C1404040
000220 0200002D00000000
000228 E3C1E44040404040
000230 0000000000000001
000238 D3CIE2E340404040
000240 1F0001D100000000
000248 C1D3D7C8C1404040
000250 000000010000007B

000258

00258 000001000000007B
000260 C1D3C7C8C1404040
000268 0000000000000000
000270 C2CSE3C140404040
000278 0000000000000000
000280 C4CS5D3E3C1404040
000288 0000000000000000
000290 C5D7E2CID3D6DS540
000298 0000000000000000
P002A0 CSE3C14040404040
000228 0000000000000000
p002B0 C7C1D4D4C1404040
000288 0000000000000000
0002C0 CI9D6E3C140404040
0002C8 0000000000000000
0002D0 D2C1C7C7C1404040
0002D8 00001D0A00000000
DO02E0 D3C1C4C2CHC14040
0002E8 0000000000000000
DOO2FQ DUE4404040404040
PO02F8 0000000000000000

ADDR1 ADDR2 STMT

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177

178

SOURCE STATEMENT

*
*
*
LISTAREA

LISTEND
*

*
*

TESTTABL

DC
DC
DC
DC
DC
DC

Dc

XL8'0*,CL8 *LAMBDA"
XL8'0°,CL8*MU"
XL8'0*,CL8°NU"
XL8'0°,CL8*OMICRON"
XL8'0*,CL8*PHI"
Xr8'0*,CL8*SIGMA"
XL8'0*,CL8"ZETA’

THIS 1S THE LIST

DC
DC
DC
DC
DC
DC

CL8'LAMBDA®,X'OA® ,FL3'29",A (BEGIN)
CL8'ZETA',X'05* ,FL3"'5",A (LOOP)
CL8'THETA' ,X'02' ,FL3'45" A (BEGIN)
CL8'TAU*,X'00" ,FL3'0",A (1)
CL8'LIST',X'1F*,FL3'465"',A (0)

CL8'ALPHA',X*00',FL3*1',A (123)

THIS 1S THE CONTROL TABLE

DS
DC

ol
DC
oles
ple
DC
DC
ol
£C
oC
DC

Fiqure 17. Assembler sample program

(Part 5 cf 11)

Appendix B.

oo
FL3'1',X'00*,a (123) ,CL8*ALPHA"

X.8°'0',CL8"'BETA"

XL8'0*,CL8 'DELTA"

XL8'0*,CL8 *EPSILON"
XL8*0*,CL8'ETA"

XL8'0*,CL8'GAMMA"

X1.8°0°*,CL8'IOTA"

XL8°'0" ,CL8"KAPPA"
FL3'29',X'0A',A (BEGIN) ,CL8'LAMBDA"
XL8'0*,CL8 *MU"

XL8'0',CL8 " *NU"

PAGE 5

ASM 0100 15.00 01/03/72

SAMPL115
SAMPL116
SAMPL 117
SAMPL118
SAMPL119
SAMPL 120
SAMPL 121
SAMPL 122
SAMPL123
SAMPL124
SAMPL 125
SAMPL 126
SAMPL127
SAMPL 128
SAMPL 129
SAMPL 130
SAMPL 131
SAMPL 132
SAMPL133
SAMPL 134
SAMPL135
SAMPL 136
SAMPL 137
SAMPL 138
SAMPL 139
SAMPL 140
SAMPL 141
SAMPL 142
SAMPL 143
SAMPL 144

SAMPL 145

00300 D5E4404040404040 ' —

Asserbler Sangple Prcgram 61

IFOSAMP - SAMPLE PROGRAM PAGE 6

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01,/03/72
000308 0000000000000000 179 cC XL8°0',CL8 'OMICRON" SAMPL 146
000310 D6D4CIC3DID6LSUO
000318 0000000000000000 180 DC XL8'0',CL8 'PHI" SAMPL 147
000320 D7C8CI4040404040
000328 0000000000000000 181 DC XL8'0',CL8'SIGMA’ SAMPL148
000330 E2C9C7D4CTI40U040
000338 00000505000000E2 182 DC FL3'5°,X'05',A (LOOF) ,CL8* ZETA* SAMPL 149
000340 E9CSE3C140404040

183 * SAMPL 150
184 * THIS IS THE CONTROL LIST SAMPL151
185 * SAMPL152
000348 D3C1C4C2CUC14040 186 TESTLIST DC CL8°'LAMBDA' ,X'0A',FL3'29°',A (BEGIN) SAMPL153
000350 0A00001D00000000 -
000358 E9CSE3C140404040 187 DC CL8°'ZETA*,X'05*,FL3'5",A (LOOP) SAMPL 154
000360 05000005000000E2
000368 E3C8CSE3C1404040 188 DC CL8°THETA® ,X*82',FL3'45" ,A (BEGIN) SAMPL155
000370 8200002D00000000
000378 E3C1E44040404040 189 DC CL8°'TAU" ,X'80',FL3'0°,A (1) SAMPL 156
000380 8000000000000001
000388 D3C9E2E340404040 190 ool CL8'LIST*,X*9F*,FL3'U65",A (0) SAMPL157
000390 9F0001D100000000
000398 C1D3D7C8C1404040 191 cC CL8*ALPHA' ,X*00*,FL3'1',A(123) SAMPL 158
0003A0 000000010000007B
192 * SAMPL 159
193 # THESE ARE THE SYMBOLIC REGISTERS SAMPL 160
194 = . SAMPL161
00000 195 RO EQU 0 SAMPL 162
00001 196 R1 EQU 1 SAMPL163
00002 197 R2 EQU 2 SAMPL 164
00003 198 R3 EQU 3 SAMPL 165
00005 199 RS . EQU 5 SAMPL 166
00006 200 R6 EQU 6 SAMPL167
00007 201 R7 EQU 7 SAMPL168
0000C 202 rR12 EQU 12 ’ SAMPL 169
0000D 203 R13 EQU 13 SAMPL170
0000E 204 R14 EQU 14 SAMPL171
0000F 205 R15 EQU 15 SAMPL172
206 * SAMPL173
207 =+ THIS 1S THE FORMAT DEFINITION OF ‘LIST ENTRYS SAMPL174
208 # SAMPL175
000000 209 LI1ST DSECT SAMPL176
000000 210 LNAME DS CL8 SAMPL177
000008 211 LSWITCH ©DS [of SAMPL178
000009 212 LNUMBER DS FL3 SAMPL179
00000C 213 LADDRESS DS F SAMPL 180
214 = . SAMPL181
215 # THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPL182
216 * SAMPL183
000000 217 TABLE DSECT SAMPL184
000000 218 TNUMBER DS FL3 SAMPL185
000003 219 TSWITCH DS c SAMPL 186
000004 220 TADDRESS DS F SAMPL187
000008 221 TNAME DS CL8 SAMPL 188
000000 222 END BEGIN SAMPL189
0003A8 000001F800000010 223 =A (LISTAREA, 16 ,LISTEND)

T

Figure 17. Assembler sample program
(Part 6 of 11)

62

IFOSAMP - SAMPLE PROGRAM PAGE 7

LOC OBJECT CODE “ ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01/03/72

0003B0 00000248
0003B4 0000008000000004 224 =F'128,4,128"
0003BC 00000080

Fiqure 17. BAssembler sample program
) (Part 7 cf 11)

IFOSAMP RELOCATION DICTIONARY ~ PAGE 8
POS.IC REL.ID FLAGS ADDRESS ASM 0100 15.00 01/03/72
0001 0001 oc 000204
0001 0001 oc 000214
0001 0001 oc 000224
0001 0001 oc 0002DC
0001 0001 oc 00033C
0001 0001 oc 000354
0001 0001 oc 000364
0001 0001 oc 000374
0001 0001 oc 0003A8
| 0001 0001 oc 0003B0

Figure 17. Assembler sample program
(Part 8 of 11)

IFOSAMP CROSS-REFERENCE PAGE 9

SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 15.00 01,/03/72

BEGIN 00004 00000000 00057 00158 00160 00176 00186 00188 00222
EXIT 00004 00000080 00096 00113
HIGHER 00002 000000FC 00132 00127
IHB0005 00001 00000079 00091 00088
IHBOOOSA 00002 0000007E 00094 00087
IHB0007 00001 000000BB 00108 00105
IHBOOO7A 00002 000000CO 00111 00104
LADDRESS 00004 0000000C 00213 00078

LIST 00001 00000000 00209 00065
LISTAREA 00008 000001F8 00158 00083 00223
LISTEND 00008 00000248 00163 00223
LISTLOOP 00004 00000038 00080 00115
LNAME 00008 00000000 00210 00126
LNUMBER 00003 00000009 00212 00075

LOOP 00004 000000E2 00125 00130 00133 00159 00182 00187
LSWITCH 00001 00000008 00211 00072 00114

MORE 00004 00000018 00066 00080

NONE 00001 00000080 00118 00067 00114 00122 00134

NOTFOUND 00004 00000102 00134 00131
NOTRIGHT 00004 00000090 00104 00082 00084
NOTTHERE 00004 000000C6 00114 00068

RO 00001 00000000 00195

R1 00001 00000001 00196 00069 00123 00124 00124 00129 00132
R12 ‘00001 0000000C 00202 00061 00062

R13 00001 0000000D 00203 00096

R14 00001 0000000E 00204 00066 00128 00135

R15 00001 0000000F 00205

R2 00001 00000002 00197 00130 00133

R3 00001 00000003 00198 00123 00125 00129 00132
RS 00001 00000005 00199 00064 00065 00080

R6 00001 00000006 00200 00080

R7 00001 00000007 00201 00064

SAMPLR 00001 00000000 00055
SAVE13 00004 000000D0 00116 00063 00096
SEARCH 00004 00000006 00122 00066

SWITCH 00001 000000D4 00117 00067 00122 00134
TABLAREA 00008 00000108 00140 00081 00124

TABLE 00001 00000000 00217 00069
TADDRESS 00004 00000004 00220 00079
TESTLIST 00008 00000348 00186 00083
TESTTABL 00003 00000258 00168 00081
TNAME 00008 00000008 00221 00126
TNUMBER 00003 00000000 00218 00075
TSWITCH 00001 00000003 00219 00072

Figure 17. BAssembler sample program
(Part 9 cf 11)

Appendix B. BAssembler Samnple Prcgram 63

1IFOSAMP LITERAL CROSS-REFERENCE PAGE 10
SYMBOL LEN VALUE DEFN REFERENCES ASM 0100 15.00 01,03/72 —
=A (LISTAREA, 16 ,LISTEND) \/)
00004 000003A8 00223 00064 (N
=F*128,4,128"
00004 000003B4 00224 00123
Figure 17. Assembler sample program -
(Part 10 of 11)
-
IFOSAMP ASSEMBLER DIAGNOSTICS AND STATISTICS PAGE 11
ASM 0100 15.00 01/03/72
INO STATEMENTS FLAGGED IN THIS ASSEMBLY
HIGHEST SEVERITY WAS 0
OPTIONS FOR THIS ASSEMBLY
ALIGN, ALOGIC, BUFSIZE (STD), NODECK, ESD, FLAG(0), LINECOUNT (55), LIST, NOMCALL
NOMLOGIC, NONUMBER, NOOBJECT, NORENT, RLD, NOSTMT, NOLIBMAC, NOTERMINAL, NOTEST, XREF
SYSPARM ()
WORK FILE BUFFER SIZE = 2558
TOTAL RECORDS READ FROM SYSTEM INPUT 189
TOTAL RECORLS READ FROM SYSTEM LIBRARY 833
TOTAL RECORLCS PUNCHED 0
TOTAL RECORDS PRINTED 373
Figure 17. BRssembler sample program
(Part 11 cf 11) (Y

64

9,

ESD CARD FORMAT

Cclumns

1
2-4
5-10
11-12

13-14
15-16

17-64

65-72
73-80

Appendix C. Object Deck Output

Contents

12-2-9 punch

EST

Blank

Variakle field count -- nurmker cf bytes

cf information in variable field (columns 17-64)
Elank

ESDID cf first sSp, XD, CM, EC, ER, or WX

in variakle field

Variable field. Cne to three 16-byte

items of the following format:

8 bytes -- Name, padded with blanks

1 byte -- ESD tyre code
The HEX value is:

00 SD
01 LD
02 ER
04 pC
05 CM
06 XD (PR)
0A WX

3 kytes -- Address
1 byte -- Alignment if XD; otherwise klank
3 bytes -- Length, IDID, or blank

Blank

LCeck Ir and/or sequence nurker --

The deck ID is the name from the first named TITLE
statement. The name can ke cne tc eight algha-
meric characters long. If the name is less than
eight characters long or if there is nc name, the
remaining columns contain a card sequence numker.
(Coulmns 73-80 of cards produced by PUNCH cr REPRC
statements do not contain a deck ILC or a sequence
numker.)

Arpendix C. Object Ceck Cutrut 65

IXT CARLC FORMAT

RLD CARC FORMAT

Cclumns

1

2-4
5-10
11-12

13-16

i1-172
17-18
19-20

21
22-24
25-72

73-80

1f the rightmost

will not be repeated;

Contents

12-2~9 punch

TXT

Elank

Relative address of first instruction on card
Elank

Byte ccunt -- number of bytes in information

field (columns 17-72)

Blank

ESTIC

56~byte informatiocn field

LCeck Ir and/or sequence numker --

The deck ID is the name from the first named TITLE
statement. The name can ke one tc eight alrhameric
characters long. If the name is less than eight
characters long or if there is nc name, the re-
maining columns contain a card sequence numker.
{Columns 73-80 of cards rroduced by PUNCH cr REPRC
staterents do not contain a deck ILC or a sequence
numker.)

Contents
Lontents

12-2-9 punch
RLD
Elank
Data field count -- number of bytes of
information in data field (coclumns 17-72)
Elank
Data field

Relocation ESDIC

Position ESCID

Flag kyte

Absolute address to be relocated

Remaining RLLC entries
Deck ID and/or sequence number --
The deck IrL is the name from the first named TITIE
statement. The name can be one to eight alphameric
characters long. If the name is less than eight
characters long or if there is no name, the re-
maining columns contain a card sequernce number.
(Cclumns 73-80 of cards produced by FUNCH or REPRO
statements do not contain a deck ID c¢r a sequence
nurber.)

bit of the flag byte is set, the following RLL entry
has the same relocation ESLCILC and rosition ESDID, and this infcrmation
if the rightmost kit of the flag byte is nct set,

the next RLLC entry has a different relocation ESDID ard/cx pcsiticn
ESDID, and kcth ESDIDs will be recorded. .

For example, if the RID Entries 1, 2, and 3 of the program listing
contain the following information:

66

a

Fosition Relocation
ESDID ESDID Flag Address
Entry 1 02 o4 0c 000100
Entry 2 02 04 oc 000104
Entry 3 03 ou oc 000800
Entry 1 Entry 2 Entry 3
Column: {17 18 19 20 21 22 23 24|25 26 27 28)29 30 31 32 3334 35 36|37—=72
00/04]0o{02]op]oo01]0o|oc|00] 01]04 oo]o1]00 |03 [ocfoo[o8] 0o |
——l I P [T) N— Y) -
ESD IDs Address Address Esd IDs Address blanks
Flag Flag Flag
(set) {not (not
set) set)
END CARLC FCRMAT
Cclunmns Contents
1 12-2-9 punch
2-4 END
5 Elank
6-8 Entry address from operand of ENL card in
source deck (klank if nc crerand) .
9-14 Blank
15-16 ESLCILC of entry point (klank if nc crerand)
17-32 Blank
33 1or 2
34-43 Order number of the assembler: 5741SC103
44-45 Version level of the asserbler
46-47 Mcdification level of the assembler
48~<49 Last two digits of the year in which the asserbly
was run '
50-52 LCay of the year (counted sequentially: Jan 3 = 3,
Fek 3 = 34, etc) in which the assembly was run
53-72 Ncrmally not used
73-80 Leck IrL and/or sequence nurker.

The deck ID is the name field from the first named TITLE

statement.

characters long.

a card sequence number.

The name can ke cne tc eight alrhameric

If there is no name or the name is less
than eight characters long, the remaining cclumns contain

(Columns

73-80 of cards produced

by PUNCH or REPRO staterments dc nct ccntain a deck IC or
a sequence number.)

SYM CARD FORMAT

If you specify the TEST assembler option, the assembler punches out

symbolic information concerning the assenkled prcgram.
appears ahead of the cbject module.

SYM output is as follows:

The format of

Appendix C.

This cutrut
the card images for

Object TCeck Output 67

Columns Contents

1 12-2-9 punch

2-4 SYM :

5-10 Elank

11-12 Variable field count -- number of bytes of
text in variakle field (cclumns 17-72)

13-16 Blank 3)

17-72 Variakle field (see kelow)

73-80 Deck ID and/or sequence number --

The deck IL is the nare from the first named TITLE
statement. The name can be one to eight alphameric
characters long. If the nare is less than eight
characters long or if there is no name, the re-
raining columns contain a card sequence numker.
(Columns 73-80 of cards rrcduced by FUNCH cr REPRC
statements do not contain a deck IL or a sequence
numker.)

The variable field (cclumns 17-72) contains up tc fifty-six bytes of SYN

text.

The items making ur the text are packed together; consequently,

only the last card may contain less than fifty-six bytes cf text in the

variakle field.

are shown in Figure 18.
entry are as fcllcws:

1.

68

Organization (cne
Bit O:
0
1

b

I}

The formats of a text card and an individual text item

The contents cf the fields within an individual

yte)

ncn-data tyre
data type

Bits 1-3 (if ncn-data tygre):

000
001
010
011
100
101
110

Bit 1 (if data ty
0
1

Bit 2 (if data ty
0

1

Bit 3 (if data tyre):
0

1

Bit U:

Bits 5-7:

p

p

{1 T T T 1

space

ccntrol section

dummy control secticn

ccnmen

machine instructicn

CCHW

Simply relccatakle EQU, named LTORG, named CKCE,
or named CRG

e):

nou

e

no multiplicity
multiplicity (indicates presence of M field)

)¢
independent (nct a packed cr zcned decimal constant)
cluster (packed cr zcned deciral ccnstant)

no scaling
scaling (indicates presence of S field)

name present
name not present

Length of name minus 1

Address (three kytes) -~ displacement frcr kase cf ccntrcl section

Symbol Name (zero to eight bytes) -- symbolic name of particular

item

)

)

Note: The follwing fields are present cnly for data-tyge items.

4. Trata Type

(one kyte) -- contents in hexadeciral
00 = C-type data
04 = X-type data
08 = B~tyre data
10 = F-type data
14 = H-type data
18 = E-type data.
1C = D-tyre data
20 = A-type or Q-type data
24 = Y-tyre data
28 = S-type data
2C = V-tyre data
30 = P-type data
34 = Z-type data
38 = L-type data

5. Length (two bytes fcr character, hexadecimal , or kinary items;

one byte for other types)

~- length cf data item minus 1

6. Multiplicity - M field (three bytes) -- equals 1 if not present

7. Scale - signed integer - S field (twc bytes)
F, H, £, L, L, P and Z type data, and cnly if scale is ncn-zero.

-- present only for

1 2 4 5 10 111213 16 17 72 73 80
. No,
12 of
' . Deck Sequence
; SYM blank bgftes blank SYM text — packed entries D number
text
1 3 6 2 4 56 8
.\ D
.
Entry . Entry
{complete or N compgte entries (complete or
end portion) N=1 head portion)
Variable size entries
Org. | Address Symbol name Data) ohath Mult. Scale | Org,| Symbol
type factor name
v 1 3 08 1 1-2 3 2

Figure 18. SYM Card Fcrmat

Appendix C.

Object LCeck Output

69

Appendix D. Dynamic Invocation of the Assembler

You can invcke the assembler from your problem program when it is

executed, by using the CALL, LINK, XCTL, cr ATTACH macrc instruction.

If you use the XCIL instruction, you cannot specify any assemkler

options. The assembler will use the standard or default cpticns. 1If

you use CALL, LINK, cr ATTACH, you can specify both the assemkler

options and LL names of the data sets to ke used Ly the assembler. The

formats of these racrcs are: .

Name Operation Operand

[symbol] CALL 1IFOX00, (optionlist «

[.ddnamelist]), VL
LINK EP=IFOX00,
ATTACH PARAM=(optionlist

[, ddnamelist]), VL=1

EP <- specifies the symkolic name of the assemblexr (IFCX00).

FARAM -- specifies, as a sulklist, address rarameters tc ke rassed from
the problem program to the asserkler. The first wcxd in the
address rarameter list contains the address of the option list.
The second word contains the address of the ddname list.

optionlist -- specifies the address of a variable length list containing
the options. This address must ke written even if nc option
list is rrcevided.

The option list must kegin on a halfword bcundary. The first two kytes N
contain a ccunt cf the number of kytes in the remainder cf the list. 1If)
no options are srecified, the count must be zero. The option list is ‘
free form with each field separated from the next by a ccnra. No blanks

or zeros shculd arpear in the list.

ddnamelist -- specifies the address of a variable length list containing
alternate LCnames for the data sets used during assenbler
prccessing. If standard DCnames are used, this operand can ke
omitted.

The DCname list must begin on a halfword boundary. The first two bytes
contain a count of the number of kytes in the remaindexr cf the list.
Each name of less than eight bytes must be left-justified and padded
with blanks. If an alternate L[Cname is cmitted, the standard name will
ke assumed. If the name is omitted within the list, the eight-kyte
entry must contain kinary zeros. Names can ke cmitted frcm the end
merely by shcrtening the list. The sequence of the eight-byte entries
in the [Cname list is as follows:

70

Entx Standard Name
Lntry

1 not applicable
2 not applicable
3 not applicable
4 SYSLIEB

5 SYSIN

6 SYSPRINT

7 SYSPUNCH

8 SYSUT1

9 SYsSuT2

10 SYSUT3

1 SYSGO

12 SYSTERM

VL -- specifies that the high-order bit is to be set tc 1 in the last
word of the list of address parameters in the macro expansion.
The assembler checks this bit to find out if a CCname list is
specified or not.

Note: If you invoke the assembler more than once from the same program,
make sure that RECFM=S is not specified for the SYSPRINT data set.

Appendix D. Dynamic Invocation of the Assembler A

Appendix E. Assembler Data Sets and Storage
Requirements

This appendix describes the data sets used by the assernkler (see Figure
19) . It also describes the main storage and auxiliary storage
requirements of the assemkler. This description is intended fcrx
programmers who want tc alter the assembler's region or partition size
or data set parameters (such as ruffer size). B mcre detailed
description of assemkler storage requirements aprears in CS/VS1 Storage
Estimates, Crder Nc. GC28-0604.

ASSEMBELER DATA SETIS

CDname SYSUT1, SYSUT2, and SYSUT3

The assembler uses the utility data sets as intermediate external

storage devices when processing the source program. These data sets must

e organized sequentially, and the devices assigned to them must be
direct access devices, magnetic tape units, or a combination of both.
The assembler does not support multivolume utility data sets. For
optimum performance, SYSUT1 should be on a direct access device.

CDname SYSIN

This data set contains the input to the asserxkler -- the scurce
statements tc be prccessed. The input/output device assigned to this
data set may be either the device transkitting the input streanm, cr
another sequential input device that you have designated. The LD
staterent describing this data set appears in the input stream. The
IBM~-supplied procedures do not contain this staterent.

CDname SYSLIE

From this data set the assemkler cktains macrc definiticns and assembler
language statements that can be called by the COPY assemkler
instruction. It is a partitioned data set: each racxc definition crx
sequence cf assembler language statements is a separate memker, with the
member name being the macro instruction nmnemcnic cr CCFY ccde name.

The data set may be SYS1.MACLIB or a private macro likrary.
SYS1.MACLIE contains macro definitions fcr the IBM-surplied racro
instructicns. Private likraries and SYS1.MACLIB can ke ccncatenated
with each other in any crder. Concatenated libraries must have the same
record length, but the klocking factors may ke different. Hcwever, a
library with a high blccking factor must always come kefore a litrary
with a low klocking factor.

CDname SYSPRINT

This data set is used ky the assemkler tc prcduce a listing. Cutrut may
ke directed tc a rrinter, magnetic tape, or direct-access storage
device. The assemkler uses the ASCII carriage-ccntrcl characters for
this data set. The smallest blocksize recommended is 1089 (klocking
factor of 9).

12

7N

DDname SYSPUNCH

The assembler uses this data set to produce the okject mcdule. The
input/output unit assigned to this data set may be either a card punch
or an intermediate storage device capakle cf sequential access. This
output can ke used as input to the linkage editor.

CDname SYSGO

This is a direct-access storage device or magnetic tape data set used ky
the assembler. It contains the same outrut text (ckject mcdule) as
SYSPUNCH. 1t is used as input for the linkage editcr.

DDname SYSTERM

This data set is used ky the assemkler tc rrcduce diagncstic

information. The cutput may be directed to a remote terminal, a printer,
a magnetic tape, or a direct-access storage device. 1The asserbler uses
the ASCII carriage ccntrol characters for this data set. The smallest
blockzise recommended is 1089 (klocking factcr cf 9).

ASSEMBLER VIRTUAL STORAGE RECUIRENMENTS

The minimum virtual stcrage partition or region required ky the
assembler is 64K bytes. Eowever, ketter performance is generally
achieved if the asserwbler is run in 128K bytes of virtual storage. This
region size is recommended and is specified in the assermbler cataloged
procedures.

If more storage is allocated to the asserxkler, the size cf buffers and
work space can be increased. The amount cf stcrage allccated tc buffers
and wcrk space determines assembler speed and capacity. Generally, as
more storage is allocated to kuffers, a given asserbly will run fasterx;
as more storage is allocated to work space, larger and ncre ccrrlex
macro definiticns can be handled.

You can control the kuffer sizes of SYSIN, SYSI.IB, SYSPRINT,
SYSPUNCH, and SYSGO by specifying the klocksize (BLKSIZE) and number of
buffers (EUFNC) as shown in Figure 19.

You can ccntrcl the buffer sizes for the assemkler utility data sets
(SYSUT1, SYSUT2, and SYSUT3) and the size of the work space used during
macro processing, by specifying the BUFSIZE asserkler crticn. Of the
storage given to the assembler, the assemkler first allccates stcrage
for the SYSIN and SYSLIE kuffers according tc the srecificaticns in the
LD statements or the labels of the data sets. It then allocates storage
for the modules of the assemkler. The remainder cf the partiticn or
regicn is allccated tc utility data set buffers and macro generation
dictionaries according to the BUFSIZE cpticn srecified:

BUFSI1ZE (S1D) : 37% is allocated to buffers, and 63% to work space.
This is the default chosen, if ycu dc nct specify any
EUFSIZE option.

BUFSIZE (MIN) : Each utility data set is allocated a single 790-byte
buffer. The remaining storage is allocated to work
space. This allows relatively ccrnplex macrc
definiticns to be processed in a given region or
partition size, kut the sreed cf the assembly is
substantially reduced.

Arpendix E. Assembler Data Sets and Storage Requirements 73

SYSLIB SYSIN
————#»{ Assembler
Macro and
COPY Calls

SYSTERM

p=ey

SYSUT1

SYSUT2

A

/ SYSPRINT

l;@ @‘(Objea mwululg

SYSGO

SYSPUNCH

\

SYSUT3

SYSUT1
SYSIN SYSLIB SYSPRINT SYSPUNCH $YSGO Sysur2
SYSTERM SYsuT3
LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 Fixed at 80 N/A
RECFM You must specify | You must specify | F and A set by F set by assembler,|F set by assembler, | Set by assembler
@ inLABEL or DD | in LABEL or DD | assembler. B set |you may specify B |you may specify B {to U
card card by assembler and/or T in label }and/or T in label
except when F is |or DD card or DD card
F,FS,FBS,FB, F,FS,FBS,FB, specified and
FBST, FBT FBST,FBT BLKSIZE is not
specified. You
may add Sor T
FA,FAB,FAS,FAT | F,FB,FT, F,FB,FT,
FABS,FABT FBT FBT

BLKSIZE

®

You must specify
in LABEL or DD
card, must be a

You must specify
in LABEL or DD
card, must be a

Optional, but must
be a multiple of
LRECL,; if omitted

-Optional, but must

be a multiple of
LRECL,; if omitted

Optional, but must
be a multiple
LRECL; if omitted

If BUFSIZE (STD)
in effect, a value
between 790 and

omitted 2 is used

to 1

omitted 2 is used

omitted 3 is used
for unit record and
2 for other devices

omitted 3 is used
for unit record and
2 for other devices

multiple of multiple of BLKSIZE=LRECL | BLKSIZE=LRECL |BLKSIZE=LRECL {8192 is chosen.
LRECL LRECL If BUFSIZE (MIN)
in effect, 790 is
chosen
BUFNO Optional; if Set by assembler | Optional; if Optional; if Optional; if Set by assembler

to either 1 or 2

@ U = undefined, F = fixed length records, B= blocked records, S= standard blocks,

T = track overflow, A = ASCII code carriage control

@ Blocking is not allowed on unit record devices. Blocking on other direct access ean not
be greater than the track size unless T is specified on RECFM. If the BLKSIZE specified
is not a multiple of LRECL, the assembler truncates it to a multiple. For example, if
LRECL = 80, a BLKSIZE of 850 is truncated to 800.

Figure 19.

74

Assembler data set characteristics

e

Appendix F. The SYSTERM Listing

The SYSTERM data set, which gives you rapid access to the diagnostic
messages issued during an assemkly, is prirarily designed fcr the user
of the Time Sharing Option (TSO) of VS2. However, the data set can also
be directed to a printer, a magnetic tare, or a direct-access device.

You use the assembler option TERMINAL to specify that you want a SYSTERM
listing tc be produced. Of course, you must alsc make sure that a DD
statemrent describing the data set is included.

Each diagnosed statement in the assemkly listing printed in the SYSTERM
listing immediately fcllowed by the messages that are issued for the
statement. To help identify the positiocn c¢f the statement in your
program, twc additicnal assemkler crtions are availakle:

° NUMBER, which rrints the line number (s) of the diagnosed statement.

] STMT, which prints the statement number assigned to the diagnosed
statement by the assembler.

The fcrmat cf the flagged statement as it appears in the listing is:

Line No.(s) Statement No. Source record(s)
{option NUM) | (option STMT) |{(Columns 1-72 of
the source

statement lines)

If a statement contains continuation lines, it will occupy several lines
in the listing, each identified ky a line nunker (if cpticn NUMBER is
used) . If a statement in erxrror is discovered during the expansion of a
macro, or of any inner macro called ky an cuter macrc, the first line of
the outer macro instruction is listed kefcre the flagged statement. If
a statement is flagged during variable symbol substitution in open code,
the first line of the model statement is listed as well as the generated
statenent.

Figures 20 and 21 illustrate the content and format of SYSTERM output.
Figure 20 shows the source statement secticn of a SYSFRINT listing, and
Figure 21 shcws the SYSTERM listing produced during the same assemkly.
The example illustrates the rules given akcve. Ogticrns TERMINAL,
NUMBER, and STMT were in effect during the asserbly.

The SYSTERM listing starts with the statement ASSEMBLER DCNE. At the
end of the listing the following diagncstic infcrration is given:

[) NUMBER CF STATEMENTS FLAGGEL IN THIS ASSEMBLY = nn

(Indicates the total number of source statements in error)
) HIGHEST SEVERITY COLE WAS nn

(Indicates the maximum severity code encountered)

() CETICNS FOR THIS ASSEMELY
(Indicates the ortions in effect fcr this ascenbly)

Arpendix F. The SYSTERM Listing 75

PAGE 2

LOC OBJECT CODE ADDRt ADDR2 STMT SOURCE STATEMENT ASM 0100 14.59 01/03/72

MACRO
GENF §P,SL
ICLA &K
.LOOP ANOP
K SETA §K+1
§PSL(6K) DC F'iL (§K) '
AIF (6K LT N'SI).LOOP
.DONE MEND

- h b b
eurg-ow:nsla\mcun_-
+

GBLC §Q
000000 SAMPL2 CSECT
SAVE (14,12) ALL REGS ARE SAVED IN SUPERVISOR SAVEAREA
000000 DS OH 00660000
000000 90EC DOOC 0000C STM 14,12,12(13) SAVE REGISTERS 01180000
000004 05CO BALR R12,0
00006 15 USING *,R12 SET UP BASE REGISTER
16 §Q SETC 'B'
000006 0000 0000 00000 17 ‘L R2,END END OF AREA
#4¢ ERROR #%#% -
00000A 0000 0000 00000 18 LA R3,A THIS IS A *
DUMMY COMMENT .
TO SHOW .
#4#% ERROR #¢¢
A STATEMENT CONTAINING .
TOO MANY CONTINUATION CARDS
00000E 5840 C022 00028 19 L RY4,FO ZERO CONSTANT FOR RESETTING AREA
000012 5043 0000 ~ 00000 20 LOOP ST R4,0 R3)
000016 4130 3004 00004 21 A R3,4 (,R3) RESET AREA A
000012 1923 22 CR R2,R3
00001C 4770 Co0C 00012 23 BNE Loop
24 AIF (*A* EQ '§Q').GO
25 SR §Q, 80 OPEN CODF MODEL STATEMENT .
WITH CONTINUATION CARD
000020 0000 26+ SR B,B OPEN CODE MODEL STATEMENT .
+ WITH CONTINUATION CARD
#%% FRROR $#*#
27 .Go RETURN (14,12) EXIT FROM RTN
000022 98EC DOOC ¢000C 28+ M 14,12,12(13) RESTORE THE REGISTERS 00260000
000026 O07FE 29+ BR 14 RETURN 00800000
30 =
31 * CONSTANTS AND AREA ARE DELETED ON PURPOSE
32
33 GENF F,0 GENERATION OF CONSTANTS
000028 00000000 34+F0 DC F'0'
35 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD .
IN A MACRO INSTRUCTION
00002C 000000EA 3641234 DC F*234*
% EFRROR **#*
00002 37 R2 EQU 2
00003 38 R3 EQU 3
00004 39 R4 EQU 4
0000C 40 R12 EQU 12

41

Figure 20. SYSPRINT listing of the source statements used to show
SYSTERM output

76

ASSEMBLER (XF) DONE
17

L R2,END
IF0188 END IS AN UNDEFINED SYMBOL
18 LA R3,A

IF0188 A 1S AN UNDEFINED SYMBOL

IFO069 EXCESSIVE CONTINUATION CARDS, TWO ALLOWE
25 SR §Q,8Q
26+ SR B,B
+

IFO188 B IS AN UNDEFINED SYMBOL

IFO188 B 1S AN UNDEFINED SYMBOL
35 - GENF 1,234
36+1234 DC F'234"

IFO125 INVALID NAME- ILLEGAL EMBEDDED CHARACTER OR NON-ALPHABETIC FIRST CHARACTER

NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY =
HIGHEST SEVERITY WAS 8
OPTIONS FOR THIS ASSEMBLY

ALIGN, ALOGIC, BUFSIZE (STD), NODECK, ESD, FLAG(0) , LINECOUNT (55), LIST, NOMCALL
NOMLOGIC, NUMBER, NOOBJECT, NORENT, RLD, STMT, NOLIBMAC, TERMINAL, NOTEST, XREF

SYSPARM ()

Figure 21. SYSTERM listing produced for the source statements
Figure 20.

END OF AREA
THIS 1S A
DUMMY COMMENT
TO SHOW

D

A STATEMENT CONTAINING *
TOO MANY CONTINUATION CARDS

OPEN CODE MODEL STATEMENT *
WITH CONTINUATION CARD

OPEN CODE MODEL STATEMENT *
WITH CONTINUATION CARD

EXAMPLE OF MORE THAN ONE CARD *

Appendix F.

»

»

The SYSTERM Listing

shown in

77

Appendix G. Assembler Diagnostic Error Messages

This appendix lists all the diagnostic messages issued by the VS
Assembler. The messages are listed sequentially by statement numker.

HOW TO USE _THIS SECTION

Once ycu have fcund an error message in the diagnostics secticn of
your listing that you are not sure you understand fully, look up the
entry for the message in this appendix. The entry fcr the message will
give you the follcwing items:

The message numker and the text of the message.

Explanaticn cf the message.

Assembler acticn in response to the message.

Frogrammer response to correct the errcr.

Orperator respcnse tc correct the error (only for certain messages) .
Severity code assigned to the message.

The fcllowing paragrarhs describe the messages as they appear in your
listing and explain in detail the varicus items of each entry in this
appendix.

The Message Itself

In the diagnostics section of your assembler listing ycu will find
. the fcllowing iters fcr each message:

] The numker of the statement in error.
] The message identification numker.
e The text cf the message.

STATEMENT NUMBER: For certain messages the statement numker given is
always 0, either because the assemkler cannot identify the nurmber of the
statement in which the error occurs when it finds the error, or kecause
the error cannot be associated with a specific statement. For some of
these messages, the text cf the message identifies the macro in which the
error is found.

Fcr errcrs found during the editing cf a library macrc, the
statement nunker given is that of the last numbered statement in the
source module, unless the LIBMAC and MLOGIC asserkler crticns are in
effect, as described below under "Explanation”.

MESSAGE NUMBER: The message identification number is a unique numker
consisting of the letters IFO followed ky a three digit number.

TEXT: The text of the message is not always printed out in full in the
diagnostics section of the listing. However, the ccrresgcnding text in
this appendix is always fully printed out.

Certain messages include information in the message text tc help you
localize the error within the statement. In the message text as it
appears in this secticn, 'nn' denotes a nurmker and "xxXxxXXXxx' a
character string. The number identifies a column in the operand of the
statement in error that is close to the cclurmn where the errcr is found.

78

The character string may represent a syrkcl cr the wcrd MACRO. It is
limited tc eight characters, so if the string containing the error is
longer, it is truncated.

Explanaticn

This item gives the probable cause or causes of the error message.
An error message is issued at the pcint where the assemkler can no
longer make sense cf the text, not necessarily at the rcint where the
real error cccurred. Fcr example, if you want to code the
instruction LR 3,5, and leave out the R in the creraticn ccde, the
assembler will treat the instruction as a stcrage-tc-register
instructicn, and give an error message for the second operand (unless
NOALIGN is specified).

If errors occur during the editing or expansion of a likrary macro
and the assembler options specified cause the lcgic cf the macroc
expansions not tc be rrinted, error messages for the likrary macro will
be logged against the last numbered statement in the program. However,
if you use the LIEMAC and MLOGIC assemkler crticns, exrcrs in library
macros will be logged against the statements in exrcr. See the secticn
“Asserbler Options" fcr a discussion of these options.

Asserklexr Action

This jtem tells ycu hcw the assembler reacts to the error. 2
machine instruction usually causes zercs to be generated in its place in
the cbject ncdule if a major error occurs anywhere in that instruction.
An assembler instructicn is usuvally printed out but not processed
("processed as a comment®). Some machine and assermbler instructicns,
however, are partially processed or prccessed with a default value. 1In
some cases the assermbler terminates the whole assembly.

Programmex Resgcnse

This item tells ycu hcw to correct the statement in error. It is
assumed that you will detect certain errors when an error message draws
your attenticn tc the statement. Thus, the progranmer resgcnse fcr each
message dces not tell ycu to check for keypunching errors or to check
the use of the flagged statement.

Cperator Response

This item tells the operator how to ccrrect certain errcrs. The
operator respcnse is cnly given for messages that are printed cn the
operator's console. The operator will not change your source deck. He
may, however, do such things as change rartition cr regicn size, cr
correct certain jcb ccntrcl errors.

Arpendix G. Assembler Liagnostic Error Messages 79

Severity Code

The severity code indicates the sericusness cf the errcr.

severity ccdes used by the VS Assemkler and their mearings are shcwn in

the following table.
Severity Explanation
Code
4 Minor error; successful program execution is
probable
8 Significant error; unsuccessful program
execution is possible
12 Serious error; unsuccessful program execution
is probable
16 Critical error; normal execution is
impossible
20 Critical error; further assembly impossible,
assembly terminated :

The severity ccde is the return code issued by the assemkler when
returns control to the operating syster.
procedures include a COND parameter on the linkage edit and execution
steps. The CONL parameter prevents execution cf these sters if the

return code from the assembler is greater than 8.

RECURRING ERRORS

If an errcr message recurs after the error situation has keen

The IBM-suggplied catalcged

it

corrected and there seems to be nothing wrong with the statement, there

may be an error in the assemkler.
make sure the program is correct and reasserkle if necessary.
proklem still persists, dc the following before calling IEM:

If ycu susgect that this is the case,

° Have your source program, rmacrc definitions, and associated listings
available.

] 1f a COFY statement was used, execute the IEBPTIPCH utility tc obtain

a copy cf the partiticned data set member specified in the COPY

statement.

@ Make sure that MSGLEVEL={1,1) was specified in the JCE statement.

80

2

—
\‘

——

IF0000

IF0001

IFC002

IF0003

UNLCEFINEL ERROR COLE IFCxxx

Explanation: An error code has keen generated by the assembler
fcxr which nc message has keen defined. This is caused by a
logical errxcr in the assembler.

Assembler Action: Assemkly continues.

Frogrammer Response: Perform the acticns described. under
"Recurring Errcrs" akove kefore calling IBM.

Severity Ccde: 16

SYSTEM VARIABLE SYMBCIL xxxxxxxx USELC AS SYMECLIC PARAMETER IN
MACRC PROTOTYPE

Exrlanaticn: A variable symbol used as a symkolic parameter on
a macro prototype statement has the same characters as a system
variable symkol. The system variakle syrbcls are:

6§SYSECT §SYSPARM
ESYSLIST ESYSTIME
ESYSNLX E§SYSTATE

Assembler Action: Editing of the macro definition is terminated.
All statements in the macro definition are processed as
comments.

Prcqgranmex Resronse: Redefine the parameter with a variakle
symbol other than &§SYSPARNM, ESYSCATE, ESYSTIME, &SYSLIST,
§SYSECT, or ESYSNILX.

Severity Code: 8

SYMNECLIC PARAMETER xxxxXXxXxX IS DUPLICATED IN SAME MACRO
PROTOTYPE

Explanation: Two identical syrkclic rarameters have been
srecified in the same macro prctctyre statement.

Asserbler Acticn: Editing of the macro definition is terminated.
All statements in the macro definition are processed as
ccmments.

Prcqranmer Response: Redefine one of the symkolic parameters
with a variable symbol that is unique to that particular macro
definition.

Severity Ccde: 8

SYSTEM VARIAELE SYMBOL xxxxxxxx USED IN OPERAKRD OF GLOBAL OR
LOCAL DECLARATION

xrlanaticn: A system variable symbol has been used in the
operand of a global or local declaration. The system variakle
symbols are:

ESYSECT ESYSPARM

Arrendix G. Assembler Diagnostic Error Messages 8l

IFO004

IF0005

IFC006

82

§SYSLIST E§SYSTIME
ESYSNDX §SYSDATE

Assembler Action: The declaration conflicting with the system
variable symbol is ignored. Bll subsequent references to the
variable symkol in error are treated as references tc the
system variable symbol.

Frogrammer Response: Redefine the variable symbcl using
character ccrkinations other than those listed akcve in the
exgplanaticn.

Severity Code: 8

GLOBAL OR IOCAL VARIABLE xxxXxXxXxXxXx DUPLICATES A SYMECLIC
EARAMETER IN SAME MACRO CEFINITICN

Explanation: A variakle symkol that aprears in the crerand
field of a glckal or local declaration is identical tc a
syrbclic rarameter defined on the macro prototype earlier in
the macro definition.

Assenblex Action: The declaration conflicting with the symkolic
parameter is igncred. All subsequent references to it are
treated as references to the symkclic parameter that it
duglicates.

Exrogrammer Response: Redefine the global cr lccal variable with
a variable symkol that is unique to the macrxc definition.

Severity Ccde: 8

GLCEAL OR LOCAL VARIABLE SYMBOL xxxxxxxx DUPLICATES PREVIOUS
DECLARATION

Explanation: A glokal or local variakle symbcl was declared
twice in the same macro definiticn c¢r in crer ccde.

Assenbler Acticn: The second declaration of the variakle symkol
is ignored. All subsequent references to it are treated as
references to the first declaraticn.

Prcgranmer Response: 1If the second declaration is ICIlx,
redeclare it using a variable symbol unique to the macro
definition or to open code. 1f the seccnd declaraticn is GBIx,
redeclare it as for ICLx, but be sure that all declarations of
that global variable elsewhere in the prcgram are identical.

Severity Ccde: 8

UNCEFINEL VARIAELE SYMBOL XXXXXXXX

Explanaticn: A variable symbol has been referenced in this
statement that is not a system variable symbol; has not.keen
defined within the macro definiticn as a symkclic parameter, a
local variable, or a glokal variakle; cr has nct been defined
in oren ccde as a local or global variable.

.

Assenblexr Action: The statement is processed as a comment,
unless the errcr has occurred in a macro instruction parameter.
If the macro instruction parameter ccntains an undefined
variable symwbcl, the parameter is assigned the value of a null

::> string.

{

> Frcgranmer Resgonse: LCefine the variakle syrkcl as a symbolic
paraneter, a lccal variakle, or a global variable; or, if
desired, reference a previously-defined variakle symkol of the
appropriate type. This message may ke issued if an arpersand
errcneously argears as the first character of an ordinary
symbol, and thus creates an unintended variakle symbcl.

Severity Code: 8

IF0007 USAGE OF xxXXXXXX IS INCONSISTENT WITH ITS LCECLARATICN

Explanation: A global or local variable symbol was defined as
dimensioned but was used without a subscript, or a glokal or
local variakle symkol was defined as undimensicned but was used
with a subscrirt.

Assembler Action: Editing of the statement that ccntains the
inconsistent usage is terminated, and the staterent is rrocessed
as a corrent.

Erogrammer Response: Make the usage of the SET symbol
consistent with its gloktal or local declaraticn, cr make the
declaraticn cf the SET symbol consistent with its usage.

Severity Code: 8

9
IF0008 CIRCULAR OPSYN STATEMENTS
Explanation: The assignment of a syncnym in the crerand field

cf an OPSYN statement to the estaklished mnemcnic in the name
field results in the mnemonic being its own synonym. For

example:
ADD OPSYN A
ELUS OPSYN ALT
XYZ OFSYN PLUS
- ALTC OPSYN XYZ

The final OPSYN statement in the abcve sequence is flagged.

Assermbler Acticn: The flagged OPSYN statement is processed as a
comment.

Frogrammer Response: Remove any OPSYN statement that results in
a circular definition, or alter such an OPSYN statement by
respecifying the synonym or the mnemonic.

Severity Code: 8

Arrendix G. Assembler LCiagnostic Error Messages 83

IFC009

IFO010

IFQ012

84

ECIT CICTIONARY SPACE EXBAUSTEL

Exrlanaticn: The work space available is not sufficient to
contain the dictionaries that are required to edit the macro
definition or open code.

Assenmbler Action: If a macro definition is being edited, the
remaining statements up to the MEND statement are processed as
comments, and editing resures. If cpen ccde is keing edited,
the remaining statements up to the end-of-file are processed as
comments.

Prcgrammer Resronse: Increase the size of the region or
partition that is allocated to assembly, or allocate more
dictionary space via the BUFSIZE assembler crticn. See Arpendix
E cf this manual.

Severity Code: 12

SOURCE MACRO xxXXXXxxxX HAS BEEN PREVIOUSLY CEFINEL

Explanaticn: The mnemonic in the macro instruction prototype of
a source macro duplicates a mnemonic already defined as a
source macro.

Asserbler Action: All statements in this macro definition are
processed as comments. All subsequent references to the
mnemonic are treated as references to the first definition
asscciated with that op ccde.

Frogrammer Response: Provide a unique mnermcnic cp ccde fcr the
flagged racrc rprctotype.

Severity Ccde: 8

ICTL OR OPSYN STATEMENT APPEARS TOO LATE IN THE PFROGRAM

Exglanation:

] The ICTL statement does nct precede all cther statements in
the scurce mcdule; ox

° The OPSYN statement does not appear before source macro
definitions and open code statements. The c¢nly statements
that can precede an CFSYN statement are: ICTL, ISEQ, TITLE,
ERINT, EJECT, SPACE, OPSYN, COPY (unless the mermber coried
contains any other than the statemrents listed here) , and
comments statements.

Assernblexr BActicn: The ICTL or OPSYN statement is processed as a
conrent.

Programmer Response: Flace the ICTL or OFSYN statement at the
beginning of your program as described in the explanation akove.

Severity Code: 8

IF0013

IFO0 14

IF0016

CPSYN NAME FIELL NOT ORLCINARY SYMROL, OR OPSYN OPERANL FIELD
NCT ORLCINARY SYMEOL OR ELANK

Explanaticn: The name or operand field of an OPSYN instruction
contains more than 8 alphanumeric characters or does not Lkegin
with an alphaketic character.

Assembler Action: The CPSYN statement is processed as a comment.

Prcgrarmer Resronse: Correct the invalid name field or operand
field.

Severity Ccde: 8

INVALID OPCODE IN OPSYN CFERANC CR NAME FIELLC

Explanation:

° The name field of an OPSYN instructicn with a blank crerand
field dces nct specify a machine instruction operation code,
an extended machine instructicn creraticn ccde, cr an
assemkler operation code; cr

e The crerand field of an OFSYN instruction does not specify
a machine instruction operaticn ccde, an extended machine
instruction operation code, cr an assenkler creraticn code.

Assembler Action: The CESYN statement is treated a comment.

Prcgramrwer Response: Make sure that the name field contains a
valid operation code, or supply a valid operation code in the
operand.

Severity Ccde: 8

ILLEGAL OR INVALID NAME FIELD

Explanation: One of the following errcrs was detected.

) No name was found where one is required.

) A nane was supplied where none is allowed.

e An invalid character was found in the nane field.
Assembler Action: The statement is processed as a cchnment,
unless the error has occurred in the name field of a macro

instruction. If the macrc name field parameter ccntains an
errcr, the rarameter is assigned the value of a null string.

Programmer Response: Supply a name if one is required, omit the
name if one is not allowed, or correct the invalid character.

Severity Code: 8

Appendix CG. Assemkler Ciagncstic Errcr Messages 85

IF0017

IF0018

IF0019

86

.* COMMENTS STATEMENT IS ILIEGAL COUTSIDE MACRO CEFINITION

Explanation: An internal macrc corments statement (.#*) arrears
outside macro definitions (in open code) .

Assembler Action: The statement is rrinted.

Prcgrarmer Resgonse: Remove the .* comments statement. If you
want a comment, put an * in the begin column and follow it Ly
the comment.

Severity Ccde: 4

MORE THAN 5 ERRORS IN THIS STATEMENT, ERROR ANALYS CF THE
STATEMENT IS TERMINATEL

Explanation: The maximum numker cf errcr messages issued during
editing tc each statement is S. The sixth errcr causes this:
message.

Assembler Action: Error analysis for this staterment is
terminated.

Prcgranmer Resgonse: Correct the indicated errors and
reassemble. Any additional errors on this statement will ke
detected in the next asserkly.

Severity Ccde: 4

INVALIC OPERANL IN ICTL OR ISEQ STATEMENT

Exrlanaticn:

{1) The value of one or more cperands in an ICIL statement is
incorrect. The begin column must be within columns 1 to 40;
the end column must ke within cclumns 41 tc 80 and at least 5
cclurrns away from the begin column; and the continue column
must be within columns 2 to 40.

(2) Cne cf the fcllowing errors has occurred in an ISEC
statement:

e The cperand has an illegal range; the crerand value
cannot fall between the begin and end columns, and the
second operand must nct ke less than the first.

@ The crerxand field is invalid. The orerand field must
contain two valid decimal self-definirg terrs,
separated ky a comma or ke klank.

Assenblex Acticn: If a program contains an IC1L error, the

whcle prcgram is processed as comnents. If cne cf the ISEC
errors has occurred, no sequence checking is performed.

Programmer Response: Supply valid operand (s) .

Severity Ccde: 8

IF0021

IFQ022

IF0023

IFC024

INVALID TERM IN CPERAND

Exrlanaticn: An invalid term has been used in an expression of

the operand.

Assembler Action: The statement is rrccessed as a ccmrent.

Erogrammer Response: Make sure the crerand is a character

relation, an arithmetic relaticn, a lcgical relaticn, a SEIx
syrbcl, a symbolic parameter, or a decimal self-defining term.

Severity Code: 8

ICTL STATEMENT IS ILLEGAL IN COPY CODE

Explggggicn: An ICTL statement appears in code that is inserted
in the program by a CCPY instruction.

Assembler Action: The ICTL staterent is prccessed as a ccmment.

Frogrammer Response: Make sure the ICTIL instructicn is nct in

ccde inserted ky the COPY instructicn. If used, the ICTL
instructicn must always be the first instruction in your source
module.

Severity Ccde: 8

ILLEGAL MACRO, MENL, OR MEXIT STATEMENT -~ MAY AFFEAR CNLY WITHIN
MACRO DEFINITIONS

Explanation: MACRO, MENLC, or MEXIT statements are nct allowed
in open code. They can be used only in macro definitions.

This message will ke issued if an instructicr cther than IC1TIL,
ISEQ, OPSYN, TITIE, ERINT, EJECT, SEACE, or COPY appears Lkefore
any macro definitions in your rrcgram. Of ccurse, any such COPY
instruction cannot copy any other statements than ISEC, CESYNX,
TITLE, PRINT, EJECT, or SPACE. This wressage will alsc be
issued, if an undefined operation code appears kefore your
macro definitions.

Assenblexr Acticn: The illegal MACRO, MENLC, cr MEXIT statement

is processed as a comment.

Prcqgranmer Resgonse: Remove the statement from open code on
place it within a macro definition. Make sure that all your
macro definitions are placed at the teginning, kefcre open code.

Severity Ccde: 8

UNFAIRELC P2RENS, OR ELANK FOUNL INSIDE PAIRELC PARENS
Explanation:

) Unrpaired parentheses appear in the operand field; or

® A blank appears inside paired parentheses in the cgerand

field cf a macro instruction. This may ke an errcr in
sublist structure; or

Arpendix G. Assembler LCiagnostic Error lMessages 87

° A blank appears inside parenthkeses cf an arithretic
exrressicn; cr

° A term is missing in a logical expression.

Assembler Action: The operand in errxcr is igrcred.

Frogrammer Response: If unpaired rarentheses agrear, be sure
that there is a right parenthesis for every left parenthesis.
Remove illegal blanks inside paired rarentheses.

Severity Ccde: 8

IF0025 STATEMENT OUT OF SEQUENCE

Explanation: The input sequence checking specified by the ISEQ
instruction has determined that the flagged statement id out of
sequence.

Assembler Action: The statement is flagged and assembled,
however, the sequence number of the following statements will ke
checked relative to this statement and nct xrelative tc the
sequence cf rrevious statements.

Erogrammer Response: Put the statement in the prcrer sequence.

Severity Code: U

IF0026 CHARACTERS AFPEAR BETWEEN THE BEGIN ANLC CONTINUE CCT_UIVI\c CK
CONTINUATION CARL

EXE anatlcn. Cn a continuation card, the begin column and all
columns between the begin column and the continue column
(usually column 16) must ke klank.

Assembler Action: Characters that appear between the begin
column and the continue column are ignored.

Programmer Response: Determine whether the operand started in
the wrong continue column or whether the preceding card
contained an erroneous continue punch in column 72.

Severity Code: 4

IF0027 ICTL, ISEQ, MACRO, OR OPSYN STATEMENT APPEARS IN MACRO
DEFINITION

Exrlanaticn: One of the specified operations is used within a
macro definition, which is illegal.

Assembler Action: The illegal operation is ignored and the
statement is processed as a comment.

Frogrammer Response: Remove all ICTL, ISEQ, MACRC, and CESYKN
statements from within macro definitions. Make sure your ICTL
and CFESYN instructions precede ycur rmacrc definitions, and that
each macxc definition ends with a MENLC statement.

88

),

IFC028

IFC029

IFO030

IF0031

Severity Ccde: 8

ILLEGAL PROCTIOTYPE KEYWORL FARANMETER DEFAULT VALUE

Explanation: R variakle symkol is used as the default value cf
a keywcrd rarameter.

Assernbler Acticn: The statement is ignored.

Excgranmer Response: Supply a valid default value fcr the
keywcrd parameter.

Severity Ccde: 8

Xxxxxxxx IS AN ILLEGAL OPERANC IN A GLOBAL OR LCCAL LCECLARATION

Exrplanaticn: In a glokal (GBLx) cr lccal (LCLx) SET symbcl
declaraticn, the indicated operand does nct ccnsist cf cne or
more variable symbcls that are separated by commas and
terminated with a klank.

Assenblexr Acticn: The attempted glokal or local SET symkol
declaraticn is processed as a comment. Recovery is made in
certain circumstances and some valid variable symbcls in the
declaraticn are recognized and defined correctly.

Frogrammer Response: Supply the cperand with valid variakle
symbols and delimiters. Check all glckal ard 1lccal
declaraticns.

Severity Code: 8

DECLARED DIMENSICN OF xxxxxxxXx 1S ILLEGAL

Explanation: The declared dimension, which appears in the error
message, must be a nonzerc, unsigned decimal integer, not
greater than 32,767, and enclcsed in parenthecses.

Assembler Action: If the declared dimension was a decimal
self-defining term greater than 32,767, a default dimension of
32,767 is assigned to the variakle symkcl. 1Ir all cther cases,
the variable symkol declaraticn is igncred.

Prcgranmer Resronse: Supply a valid dimension.

Severity Ccde: 8

SET STATEMENT NAME NOT A VARIABLE SYMBOL, OR SET STATEMENT NAME
INCONSISTENT WITE LCECLARELC TYPE

Exrlanaticn: (1) The name field of a SET statement does not

consist of an ampersand followed by from 1 to 7 alphameric
characters, the first of which is alrhakbetic.

Appendix G. Assemkler Ciagncstic Errcr Messages 89

IF0032

IFC033

IF0035

90

(2) The symbcl dces not match its previously declared type.

For instance, the symkol wmight have keen rrevicusly defined as
LCLa, but the flagged statement may have tried tc assign a SETC
character string to it.

(3) A system variable symkol éppears in the rame field cf a
SETx instruction. The system variable symbols are &SYSECT,
§SYSLIST, ESYSNLX, §SYSPARM, ESYSDATE, and &§SYSTINME.

Assembler Action: The flagged statement is rrccessed as a

comment.

Erogrammer Response: Assign a valid variable synbcl tc the name
field of the SET statement (the symkcl must ke rrevicusly
defined as a global or local variable), or be sure that the
usage of the symkol corresponds tc its rrevicusly declared tyre.

Severity Ccde: 8

XXXXXXXX APPERRS IMPROPERLY IN THE OPERAND OF THIS STATEMENT
Explanation: The specified operand part is invalid.

Assembler Action: The statement is prccessed as a conrent.

Erogrammer Response: Check the syntax required fcr the operand
field cof this statement, and surply a valid crerand.

Severity Ccde: 8

xxxXxxxxx IS AN INVALILC LOGICAL OPERATOR

Exrlanaticn: The specified character string was focund where a
logical cperatcr (BANLC or OR) was exrected.

Assenmbler Acticn: The statement is processed as a comment.

Prcqgrammer Response: Use either AND or OR, as appropriate, for
the logical operator.

Severity Code: 8

QUOTES NOT PAIRED, OR ILLEGAL TERMINATION OF QUOTE STRING

Explanaticn: The quotes in the operand field of this statement
are unpaired, or the string is illegally terminated.

Assembler Action: The statement is processed as a comment.

Prcqgrammexr Response: Suprly any missing quotes.

Severity Ccde: 8

D

IFC036

IF0037

IFO038

IFC039

ATTRIPUTE REFERENCE FOR xxxxxxxx IS INVALID

Explanation: The flagged statement has attempted tc reference a
symbol that is not a valid ordinary cr variakle symbcl. The
attributes referenced were one or more of the following: type
(T') , length ('), scaling (S*'), integer (I'), ccunt (K'), and
number (N').

Assenbler Action: The attribute referenced is ignored, and/or
the staterent is ignored, and/or default values for type,
length, and scaling attrikutes are surglied.

Programmer Response: Determine if a clerical error was made in
coding either the reference or the definition of the symkol that
arpears in the message text; or suprly a valid crdinary ox
variable symbcl where necessary.

Severity Code: 8

XXXXXxXx IS AN IILEGAIL SUBSCRIET

Explanaticn: The subscript that appears in the message text
either is not enclosed by paired parentheses, or is an illegal
sukscript.

Assembler Acticn: The statement that contains the illegal
sukscript is processed as a comment.

Frogrammer Response: Be sure the parentheses are paired, and
that a valid subscript appéars inside them.

Severity Code: 8

XxxxXxxxx IS AN INVALID SELF-DEFINING TERM

Explanation: The characters specified in the message are
invalid in the operand field of a binary (type E), character
(type C), decimal, or hexadecimal (tyre X) self-defining term.

Assembler Action: The statement that ccntains the invalid
self-defining term is processed as a comment.

Erogrammer Response: Make sure that the characters used for a
self-defining term are consistent with the tyre cf term.

Severity Ccde: 8

XXXXXXxx IS AN INVALIC VARIABLE SYMBOL

Exrlanaticn: The specified syrkcl dces nct ccnsist of an
ampersand fcllowed bty from 1 to 7 alphaweric characters, the
first of which is alphabetic.

Assembler Action: The statement that ccntains the invalid
variable symkcl is processed as a conrment. If the statement is
a racrc rrctctype statement, all statements in the macro
definition are treated as conmrents.

Prcgramnmer Response: Supply a valid variable symbol, or check

Appendix €G. Assemkler Diagncstic Exrrcr Messages 91

IFO042

IFO043

IFO0u6

92

that a single ampersand is not used where a doukle ampersand is
needed.

Severity Ccde: 8

PARAMETER IN MACRO PRCTCTYFE CR MACRO INSTRUCTION EXCEELS 255
CHRRACTERS

Explanaticn: A rarameter value that appears in the operand
field of either a macro prototype or a macro instruction exceeds
255 characters in length.

Assembler Action: The first 255 characters cf the rararmeter are

deleted. The remaining characters are used as the rarameter
value.

Frogrammer Response: Limit the parameter tc 255 characters orx
separate it into two or more rarameters.

Severity Ccde: 8

MACRC INSTRUCTION PROTOTYPE STATEMENT HAS INVALID CF CCDE
Exrlanaticn:

) The creration code of a macro prototype statement is
previously defined as the creraticn ccde cf a machine,
assemkler, or macro instructicn; cr

e The creration code of a macro prototype statement is not a
valid ordinary symkol; that is, it dces nct ccnsist cf a
letter, fcllcwed by 0 to 7 letters or digits or koth.

Assembler Action: The entire macro definition is processed as
comments.

Ercgranmer Response: Suprly a valid crdirary symbcl that doces
nct ccnflict with any machine, assenbler, c¢r macro instruction
operaticn ccde.

Severity Code: 8

STATEMENT COMPLEXITY EXCEELED

Explanation: The expression evaluaticn wcrk area has cverflowed
kecause the exrression is too ccrrlex. The ccrnplexity cf an
exrressicn is determined by the number of nested operators and
levels of parentheses. Up to 35 cperatcrs ard levels cf
rarentheses are allowed. For logical expressions, this total
allows 18 unary and kinary operatcrs, and 17 levels cf
parentheses. For arithmetic expressicns in ccnditicnal
asserbly, the total allows 24 unary and binary operators, and
11 levels of parentheses.

Assenbler RActicn: The statement is processed as a cchnrent.

Frogrammer Response: Simplify the exrressicn tc the linmits
described in the exrlanation.

Severity Ccde: 8

IFCOu7 UNEXFECTEL ENL OF FILE CN SYSTEM INFUT (SYSIN)

Explanation:

.- ° A continuation record was exrected when an end-cf-file
K#:) cccurred cn SYSIN (the source program ended); or

® End-of-file immediately fcllcws a REFRO statement; orx
e End-of-file occurs kefore an ENLC card has keen read.

Assembler Action: An ENL statenent is generated and assembly
continues.

Prcqranwrexr Resrcnse: Determine if any statements were omitted
from the source program.

Severity Code: U4

IFO048 ICTL STATEMENT HAS NO OPERAND

Explanation: The ICTL statement regquires an crerand, but none
is present.

Assembler Action: The entire scurce nmcdule is prccessed as
conrrents.

Programmer Response: Supply from 1 to 3 decimal self-defining
terms to indicate respectively the kegin, end, and continue
columns. If the ICTL statement is cmitted, cclumns 1, 71, and
16, respectively, are the default values.

, Severity Ccde: 8
9,

IFC049 CCFY STATEMENT OPFRANLC NOT A VALILC ORDINARY SYMBCL

Exrlanaticn: The ogperand of a CCFY statement is not a symkol of
1 to 8 alphameric characters, the first of which is alphaketic.

Assembler Action: The CCFY request is prccessed as a comment.

Prcgrammer Resrcnse: Supply a valid ordinary symkol in the
operand field.

- Severity Code: 8

" IFO050 COPY STATEMENT DCES NCT HAVE AN CEERANLC
Explanation: No operand found cn this COPY statement.

Assembler Action: The staterent is prccessed as a ccnrment.

Erogrammer Response: Place the name cf a menker tc be ccried in
the crerand field, or remove the COPY statement.

Severity Ccde: 8

Arrendix G. Assembler TCiagnostic Error Messages 93

IF0051

IFC052

IFC053

IFC0S54

94

UNEXFECTEL ENLC OF CATA ON SYSTEM LIBRARY (SYSLIB)

Exrlanaticn: An end-of-file occurred on the input from a systemr
likrary before a MEND statement terminating a macro definition
was encountered.

Asserbler Acticn: The missing NMENLC statement is generated.

Prcgranmexr Recsgonse: Determine if the MENLC statement was
omitted from the library macro, or if the likrary contains an
otherwise incomplete macro definiticn, cr if a wacxc call has
been made to a non-macro definiticn.

Severity Ccde: U

UNRARY OPERATOR NOT A PIUS CR NMNINUS SIGN

Explanation: An operator cother than a rlus cr mirus sign
arrears as a unary operator. Excert fcr unary cgeratcrs, which
are limited tc rplus and minus signs, only one operator can
appear Lketween two terms.

Assenbler BActicn: The statement is processed as a ccrment.

Erogrammer Response: Supply the missing term cr a ccrrect
creratcr.

Severity Ccde: 8

CE CCLCE NOT FOUNL ON FIRST OR ONLY CARD

Exrlanaticn: The complete statement name (if one is used) and
the operation code, each followed by a blank, do not appear
kefore the continuation indicatcr cclumn cn the first carxd of a
ccntinued statement.

Assembler Action: The entire statement is rrccessed as a
conment.

Prcgranmer Resgonse: Make sure that both the name and operation
code of the statement arrpear on the first card. Check for
syntactic errors.

Severity Ccde: 8

INVALIC OPERATION COLCE
Exrlanaticn:

] The creration code specified is not a valid ordinary symkcl;
or

® A variable symbol in the operation field is invalid; or

] The resulting operation ccde after sukstituticn with cx
withcut ccncatenation is not a valid ordinary synmbcl.

O

|
O

——
U

IF0055

IFC057

IF0058

IFC059

Assembler Action: The statement is prccessed as a ccrrent.

Frogrammer Response: Make sure that crdinary cr variable
synbcls used in the operation field are valid. 1If ycu use
variable syrmbcls with or without concatenation, make sure the
resulting symkol is a valid ordinary symkcl.

Severity Ccde: 8

MEND STATEMENT GENERATED

ExplanationAn end-of-file occurred cn the inrut frcm the system
input device (SYSIN) or the system library (SYSLIB) befcre a
MEND statement terminating a macro definition was encountered.

Assembler Action: A MENLC statement is generated.

Erogrammer Response: Supply a MENL statement tc terminate the
nmacrc definiticn.

Severity Ccde: 8

CUELICATION FACTOR xxxxXxxxx IN SETC EXPRESSICN NCT TERMINATEL
BY A RIGHT PARENTHESIS

a comma, a period, or a blank appears before the closing right
parenthesis.

Assenbler Acticn: The statement is rrccessed as a ccrment.

Frogrammer Response: Supply a right rarenthesis.

Severity Code: 8

NO ENDING QUOTE CN SETC EXFRESSICN

SEIC statement must be enclosed in quotes. The statement ends
before a delimiting quote.

Asserblexr Acticn: The statement is processed as a comment.

Prcgranmer Resgonse: Surply any missing quotes.

Severity Ccde: 8

INVALIC TERM IN LOGICAL EXPRESSION

Exrlanation: One of the terms in the lcgical exrressicn is
invalid in the ccntext.

Assermbler Acticn: The statement is processed as a comment.

Appendix G. Assemkler LCiagncstic Errcr Messages 95

IF0060

IFC061

IF0062

IFO064

96

Prcgranmer Response: Make sure that the terms in the logical
expression are valid.

Severity Code: 8

ENC STATEMENT GENERATED
Explanation: One of two errors cccurred.

(1) End-of-file occurred cn the systenr irrut device .(SYSIN)
kefore an ENL card was read.

(2) The ACTR limit was exceeded in open code.

Assenbler Acticn: An END statement is generated.

Prcqranmer Resronse:

(1) Surrly a valid END statement; or

(2) Either correct the conditional assemkly loop in open
code so that the ACTR limit is nct exceeded, cr set the
ACTR limit in open code tc a higker value.

Severity Ccde: 4

CCFY NEST GREATER THAN FIVE

Explanation: The maximum limit cf five nested levels cf CCEFY
staterents is exceeded.

Assenmbler Acticn: COFY processing terminates.

Prcgrammer Response: Eliminate excessive levels of COPY
statements.

Severity Code: 8

REQUIRED OPERAND FIELD MISSING

Explanation: This statement requires an crerand in the cperand
field and ncne is rresent.

Assenblexr Acticn: The statement is processed as a comment.

Prcgranmer Resronse: Suprly the missing operand.

Severity Ccde: 8

INTERLULCE LICTIONARY SPACE EXHAUSTED

Exgplanaticn: The work space availakle is nct sufficient to
contain the dictionaries required tc kuild either

O

O

IFC065

IFO066

(1) The skeleton dictionary focr a macrc defiriticn cr all cf
open code, or

(2) The ordinary symbol attribute reference dictionary.
This message is always logged against statement numker 0.

Assembler Action: If a macro is keing prccessed, building of
the skeleton dictionary for that macro definition is terminated
and the macro will not ke expanded. If cren ccde is being
prccessed, the building of the open code skeleton dictionary is
terminated and the program is prccessed as ccmments. If sfpace
for the crdinary symbol attribute reference dictionary is
exhausted, the kuilding of it is abkandcned.

Prcqgranmexr Resgonse: Within the partition, increase the size. of
the regicn that is allocated to assembly, or allocate more of
the partition to dictionary srace via the BUFSIZE asserbler
crticn (see Arpendix E).

Severity Code: 12

EXFRESSION 2 OF EQU SYMBOL xxxxxxxx NOT IN RANGE 0-65535
Exrlanaticn: The value of the expressicn srecified in the
seccnd cperand of the EQU instructicn where this symbcl is
defined is nct in the range 0-65535.

This message is always logged against statement nurber O.

Asserbler Acticn: The length attrikbute cf the synbcl is set to 1

Frogrammer Response: Make sure the value c¢f the seccnd corerand
cf the EQU ipstruction is in the range 0-65535, cr delete the
second cgerand.

Severity Code: 8

EXPRESSION 3 OF EQU SYMBCI =xXxxxxXxXx NOT IN RANGE 0-255
Explanation: The value of the expression specified in the third
operand of the EQU instruction where this symkol is defined is
not in the range 0-255.

This message is always logged against statement numker 0.

Assembler Action: The type attribute cf the symkol is set to U.

Prcgranmer Resgonse: Make sure the value of the third operand
of the EQU instruction is in the range 0+255, or delete the
third operand.

Severity Ccde: 8

Appendix G. Assemkler Ciagncstic Errcr Messages 97

IF0067

IF0O0638

IFO069

IFO070

98

DECLARED DIMENSION FOR GLCBAL VARIAELE XXXXXXXX IN XXXXXXXX
XXXXXXxX IS INCONSISTENT

Explanaticn: The declared dimension of a glokal variakle
defined in a macro definition or in open code is not consistent
with the declared dimension of the same glcbal variable in
ancther macrc definition or in open code.

This message is always logged against statement number 0. The
nessage text identifies the macro (or open code) where the
error. is found.

Assenblexr Acticn: All references to the glcbal variable in the
nacrc definiticon or in open ccde where thke inccnsistency was
detected result in a null (zero) value.

Programmer Response: Be sure that all definitions of a given
global variable have the same declared dimension.

Severity Code: 4

COPY MEMBER xxXxxxxX NCT FCUND IN LIBRARY

Explanation: The COPY memker shcwn in the message text was not
found in the likrary.

Assenblexr Acticn: The CCPY statement is processed as a comment.

Prcqranmer Resronse: Determine whether the likrary memker name
is misspelled or whether an incorrect member name was
referenced. Make sure the prcper macrc library is assigned in
ycur JCL statements.

5everity Code: 8

TOO MANY CONTINUATION CARDS, TWC ALLOWEL

Explanation: Only two continuaticn cards are allowed for each
statement, except for macro definition prototype and macro call
statements.

Assenbler Acticn: Excess continuaticn cards are rrccessed as
cenments.

Programmer Response: Restructure the statement so that it can
be contained on a total of three cards. Extensive remarks may
be recorded as comment statements ky ccding an asterisk in
cclunrn 1 and eliminating the continuation indicators.

Severity Code: 4

SUBSTRING NOTATICN IS NCT DELIMITED BY CCMMA OR RIGHI
FARENTHESIS

Explanation: Two SETA expressions used in sukstring nctation
are nct serarated ky a corma or enclcsed in parentheses.

Assenblexr Acticn: The statement is processed as a comment.

f\

Frogrammer Response: Supply the missing delimiter, cr check for
other syntax errors that make this appear as sukstring notation.

Severity Code: 8

IF0073 AGO OR AIF OPERAND NCT A SEQUENCE SYMEOL
Explanation: The symbol in the operand field of an AIF or AGO
statement is not a period (.) followed by from 1 to 7

alphameric characters, the first cf which is alrhabetic.

Assembler Action: The staterment is processed as a comment.

Prcqgrammer Response: Supply a valid sequence symkol.

Severity Ccde: 8

IFC074 SECUENCE SYMEOL xxxxxxxx IS MULTIPLY DEFINED IN XXXXXXXX
XXXXXXXX

Explanation: The sequence symkol in the name field has keen
used in the name field of a previcus statement within the same
racrc definiticn or open code.

This message is always logged against statement number 0. The
ressage text identifies the macro (or open code) where the
error is found.

the first cne are ignored. All references tc the seguence

. Assenbler Action: All definitions of the sequence symbcl after
\::> syrbcl are treated as references to the first definition.

—

EProgrammer Response: Provide unique sequence synbcls fcr the
racrc definiticn or open code.

Severity Ccde: 4

IFQ076 SECUENCE SYMEOL xxxxxxxX IS UNLCEFINED IN XXXXXXXX XXXXXXXX

« Exrlanaticn: A sequence symbol appears in the operand of an AIF
or AGO statement, but does not appear in the name field of
another statement in the same racro definiticn cr cren ccde.

. This message is always logged against statement numker 0. The
message text identifies the macrc (cr cpen ccde) where the
erxor is found.

Assenblexr Acticn: Rll statements which reference the undefined
sequence symkcl are processed as conments.

Prcgranmer Resyonse: Define the sequence symkol at the
appropriate point, or reference a sequence symkol that is
already defined.

Severity Ccde: 4

Arrendix G. Assembler LCiagnostic Error NMessages 99

IF0078

IFO080

IFC081

100

UNLEFINELC OP COLCE

Exrlanaticn: The mnemonic operation code of this statement does
not correspond to any of the following:

a machine instruction operaticn ccde

an extended machine instruction operation code

an assemkler instruction operaticn ccde

a macrc instruction oreration code

an operation code that has keen defined

by an OPSYN instruction.

This message is also issued fcr creraticn ccdes that have been
deleted by OPSYN instructions.

Assembler Action: The statement is treated as a comment. If

the statement appears kefore open ccde, all staterments
fcllcwing it are considered to belong to open code. This means
that any macro definitions follcwing the errcr are treated as
errcrs.

Erogrammer Response: Either make sure ycu use a valid mnemonic
cgperaticn ccde, cr make sure that the prcper CPSYN instructions
are included in your program.

Severity Code: 8

ATTRIBUTE REFERENCE TC UNDEFINEL SYMEOL

Explanation: The symkol specified in a length (L'), scaling
{S') , or integer (I') attribute reference is either an
undefined symkol or a symkolic parameter (cr a &SYSLIST
specification) representing an undefined symkcl.

Assenblexr Acticn:

] The length attribute, if specified, is set to 1.
) The integer or scaling attribute, if specified, is set to 0.

Programmer Response: Make sure the symbcl is defined.

.Severity Ccde: 4

CECLAREL TYPE FOR CGLOBAL VARIABLE xXXXXXXXX IN XXXXXXXX XXXXXXXX
IS INCONSISTENT

Explanation: The type (GBLA, GBLB, cr GBLC) cf a glcbal
variable declared in a macro definition or in open code is not
consistent with the type of the same glckal variable declarxed
in another racro definition or in open code.

This message is always logged against statement number 0. The
nessage text identifies the macro (or open code) where the
error is found.

Assenbler Acticn: BAll references to the glcbal variable in the
nacrc definiticn or in open ccde where the inccnsistency was
detected result in a null (zexo) value.

Programmer Response: NMake all declarations of the same glokal
variable consistent.

Severity Code: U4

/\\\
N

)

IF0085

IFC087

IF0088

IF0089

MACRO HEADER MISSING, MACRO NOT EXPANDABLE

Explanaticn: The first statement of a library macro definition
was not a MACRO statement, and the search for the macro
definition is terminated.

Assenbler Acticn: The macro call is processed as a ccrment.

Erogrammer Response: Be sure that the library macrc definition
kegins with a MACRO statement.

Severity Ccde: 8

INVALID MACRO CEFINITION PROTOTIYPE, MACRO NOT EXFANDABLE

Explanation: A comment statement arpears inmediately after a
macro header (MACRC statement).

Assembler Action: All the statements of the macro definition
are processed as comments.

1

Erogrammer Response: Make sure that the statement inmediately
fcllcwing the macro header is a macro rprctctyre staterent. Nc
ccnments cr any cther statements are permitted ketween the macro
header and the prototype cf a macrc definiticn.

Sevegity Ccde: 8

LIERARY MACRO PROTOTYPE LOES NOT MATCH MEMBER NAME, MACRO NOT
EXFANCAELE.

Exrlanaticn: The mnemonic operation code in the macro prototype
in a library macro definition does not match the entry in the
racro library.

Assermblexr Action: The macro instruction is processed as a
comment.

Frcgranmexr Response: Enter the macrc definiticn in the library
under the sare name as the mnemonic op ccde that arrears on the
racrc gprctctyrge.

Severity Code: 8

GENERATION-TIME DICTICNARY SPACE EXHAUSTEL
Explanation: The workspace available is not sufficient to

contain the dictionaries required to expand the macro, to extend
a SETC variakle, or to contain the kasic glckal dicticnaries.

Assembler Action: If the global dicticnary workspace is

insufficient, the text is processed as comments. If there is
insufficient space to extend the SETC variable, exransion of
the macro that contains the variakle is terminated. If the
srace fcr macrc definition dictionaries is insufficient, calls

Arpendix G. Assembler LCiagnostic Error Messages 101

to those macros are not expanded.

Prcgranmer Resgonse: Within the partition, increase the size of
the region that is allocated to assembly, or allocate more of
the partition to dictionary space via the BUFSIZE assembler
ceticn (see Arpendix E).

Severity Code: 12

IF0090 UNLEFINEL SEQUENCE SYMEOL ENCOUNTERED DURING CCNDITIONAL
ASSEMBLY

Explanation: R sequence syrtol referenced in the crerand field
cf this statement is undefined in the macrc definiticn cr ogen
code. This statement has been encountered during conditional

assembly.

Asserblex Acticn: The statement is processed as a comment.

Prcgranrwrexr Resronse: Define the sequence symkol at an
appropriate point, or reference a sequence symkol that is
already defined.

Severity Ccde: 8

IF0091 KEYWORD PARAMETER xxXxXxXxX 1S CUPLICATELC ON SAME MACRC CALL

Explanaticn: A keyword parameter has appeared more than once on
the same macro instruction.

Assembler Action: The last value assigned tc the rarameter is
used, the cther value(s) are igncred.

Prcqgranmer Response: Define only one value for each parameter.

Severity Ccde: 8

IF0092 KEYWCRL PARAMETER xxxxXxxx UNDEFINED IN MACRC DEFINITION

Exrlanaticn: A keyword parameter has been used in the macro
instructicn that is not a keywcrd parameter in the macro
prctctyre, cr an equal sign not surrounded by quotes is found
in a positional parameter.

Assenbler Action: The extra keyword parameter in the macro
instructicn is ignored.

Prcgranmexr Resgonse:

(1) Delete the keyword rarameter and its value from the macro
instruction; or

(2) make the keyword parameter in the macro call correspond to
one of the keyword parameters in the macrc prctctyre; cr

(3) define the keyword parameter in the cpexrand field cf the
macro prototype; or

102

(4) if ycu want to include an equal sign in a positional
parameter, enclose the parameter within single quctes.

Severity Code: 8

IF0100 CICTIONARY SPACE EXHAUSTEL, NO SKELETON DICTICNARY BUILT

Explanation:

° If the message is given for a macrc definiticn cr for oren
v ccde: nc available space is left to build the skeleton
dictionary after space has keen used fcr the definition of
glcbal symbols, sequence symbols, or referenced ordinary
symkols.)

e If the message is given for a macrc instructicn: dictionary
space was exhausted during the editing of a likrary macro.

Assembler Action: The macro is nct ccnsidered defined, and any
calls to it are processed as comments. If the error occurs in
cren code, the entire assemkly is prccessed as ccrnnents.

Prcqgranrer Response: Within the partition, increase the size of
the region that is allocated to assembly, or allocate more of
the partition to dictionary srace via the BUFSIZE assembler
cepticn (see Arrendix E).

Severity Code: 8

IF0101 GENERATEL OP COCE INVALIC OR UNCEFINED

\::> Exrlanaticn: The oreration code created by sukstitution is not
a valid ordinary symbol or is not a valid machine, assemkler,
or macro instruction, or defined ky an OPSYN instructicn.

Assenbler Acticn: The generated statement is treated as a
conment.

Frogrammer Response: Be sure that subkstituticr results in a
valid crdinaxry symkcl that consists cf frcw 1 tc 8 alrhameric
characters, the first of which is alphabetic, and that the
resulting symkol is a defined oreraticn ccde.

R Sevegity Ccde: 8

- IFC102 GENERATEL OP COLE IS ELANK

Exrlanaticn: The op code created by substitution contains no
characters, or from 1 to 8 blank characters.

Assembler Action: The generated statement is processed as a
comment. :

Frcqgranmer Resronse: Be sure that substituticn results in a
valid crdinary symkol that consists of frcm 1 tc 8 alrhameric
characters, the first of which is alphabetic.

Severity Code: 8

Appendix CG. BAssemkler Ciagncstic Errcr Messages 103

IFO104

IFC105.

IFC107

IF0108

104

MORE THAN ONE TITLE STATEMENT NAMED

Explanation: This is at least the seccnd TITIE statement that

contains scmething other than a sequence syrnkcl cr blanks in

the name field. //~\

Assembler Action: The name field is igncred. v

Frogrammer Response: Be sure that the name fields cf all but
cne TITLE statement contain only sequence synkcls cr blanks.

Severity Ccde: 4

GENERATEL FIELLC EXCEELS 255 CHARACTERS

Explanaticn: As a result of sukstituticn, a character string
that is lcnger than 255 characters has been generated.

Asserbler Acticn: The first 255 characters are used.

‘Prcgranmer Resronse: 1imit the generation of any character

string to 255 characters, minus the number of non-sukstituted
characters. (Limit sukstitution in the nawe and creraticn
fields tc 8 characters, in the operand field to 255 characters.)

Severity Code: 8

CHARACTER STRING USEL AS AN ARITHMETIC TERM EXCEEDS 10
CHARACTERS

Exrlanaticn: A character string used in a SET2 expression or in NS
an arithmetic relation in a SETR expression is longer than 10

characters. Ten is the maximum nurxker cf characters rermitted

in a decimal self-defining term.

Assembler Action: The character string is rerlaced by an
arithmetic value of zero.

Prcqranmer Resgonse: Be sure that all character strings used as

described in the explanation are from 1 to 10 decimal digits

with a value in a range of 0 to 2,147,483,647. Alsc be sure

that the values cf all variables that contrikute to the

generation of the character string are valid fcr their tyre. .

Severity Ccde: 8

CHARACTER STRING USELC AS AN ARITHMETIC TERM CCNTAINS NON-DECIMAL
CHARACTERS

Exrlanaticn: A character string used in a SET2 expression or in
an arithmetic relation in a SETBE expression contains characters
cther than 0 through 9.

Assenbler Acticn: The character string is replaced Ly an
arithmetic value of zero.

Erogrammer Response: Ee sure that all character strings used in (,T>
\

IFO109

IFO110

a SETA exrression cr as an arithmetic relation in a SETIB
expression contain from 1 to 10 decimal digits with a value in
the range of 0 to 2,147,483,647. BAlsc be sure that the values
of all variakles that contrikute toc the generaticn cf the
character string are valid for their type.

Severity Code: 8

CHARACTER STRING USED AS ARITHMETIC TERM IS A NULL STIRING

Explanaticn: A character string used in a SETR expression or in
an arithmetic relation in a SETE expression is zero characters
in length.

Assenbler Acticn: The character string is replaced ky an
arithmetic value of zero.

Erogrammer Response: EBe sure that all charactexr strings used in

an arithmetic context are from 1 to 10 decimal digits with a
value in a range of 0 to 2,147,483,647. BAlso make sure that
the values of all variakles that contribute tc the generation
cf the character string are valid.

Severity Code: 8

ARITHMETIC OVERFIOW IN INTERMECIATE RESULT OF SETA EXFRESSICN

1ntermed1ate value was produced that was out51de the range of
-231 to 231-1.

Assembler Action: The intermediate result is replaced ky an
arithmetic value of zero.

Erogrammer Response: Be sure that the values cf all variables

that ccontrikute to the intermediate result are valid. Nc
expressicn shculd ever attempt a value outside the range of
-231 to 231-1. Overflow may ke avcided if ycu adjust the
sequence cf exrression evaluation, or if you separate
components of the expression and evaluate them irdividuvally
(cerhaps by additicnal SET statements) before comkining them.

Severity Code: 8

Arrendix G. Assembler Ciagnostic Error Messages 105

IFO111

IFC112

IFO113

IFO114

106

SUESCRIPT EXPRESSION HAS A ZERO OR NEGATIVE VALUE

Explanaticn: A term or a SETA expressicn used as the subscrirt
cn a dimensicned glckal cr local variakle symkcl results in a
zerc cr negative value.

Assembler Action: Any such reference tc the dimensicned
variable results in a null (zerc) value.

Prcqgranrer Resronse: Be sure that the values of all the
variables that contribute to the subscript are valid.
Expressions that are used as sukscrirts must have a value in
the range cf 1 through the declared dimension of the glokal or
local variakle. A zero sulkscrirt is allcwed cnly cn the system
variable &SYSLIST.

Severity Code: 8

SUESCRIPT EXPRESSION EXCEELCS MAXIMUM DIMENSICN

Explanaticn: A term or a SETA expression used as the sukscript
on a dimensioned global or local variable results in a value
greater than the declared dimensicn cf the variable.

Assermbler Action: Any such reference results in a null (zero)
value.

Frcgrammer Response: Be sure that all terwms and variables that
ccentribute tc the sukscript have valid values. Be sure that a
term or a SETA expression used as a subscript has a value in
the range of 1 through the declared dimensicr cf the global ox
lccal variable.

Severity Code: 8

ILLEGAL REFERENCE NADE TC A PARAMETER THAT IS A SUEBLIST

Explanation: R reference has keen made in a SETA cr SETB
expressicn (i.e., in an arithretic ccntext) tc a parameter that
is a sublist.

Assembler Action: The reference to the rarameter results in an
arithmetic value of zero.

Prcgranmer Response: Check to see that the proper parameter is
keing referenced. Be sure that an appropriate value is
assigned to a parameter that is referenced ir a SETA cr SETB
expressicn. Check for a missing subscript.

Severity Code: 8

NEGATIVE DUPLICATICN FACTCR IN CHARACTER STRING

Explanation: A term or a SETA exprressicn that is used as the
durlicaticn factcr in a SETC crerand results in a negative
value.

Assembler Action: The durlication factcr is set to an
arithmetic value of zero.

N

AS

IF0115

IFC116

IF0117

Erogrammer Response: Be sure that any term cr exrressicn used
as a durlicaticn factor has a pcsitive value, and that the
values cf all variables that contribute to the duplication
factor are valid.

Severity Ccde: 8

FIRST EXPRESSION IN SUBSTRING NOTATION HAS ZERC CR NEGATIVE
VALUE

Explanation: A term or SETA expression that is used tc srecify
the starting character for a sukstring creraticn has a zero ox
negative value.

Assembler Action: The assemkler assigns the value cf null to
the substring.

Prcqranmer Response: A term, a SETA expression, or a
combination of variables used to produce the first expression
in a substring notation must result in a pcsitive, ncnzerxo
value, nct exceeding the length of the character string.

Severity Code: 8

SECONLC EXPRESSION IN SUBSTRING NOTATION HAS NEGATIVE VALUE

Exrlanaticn: P term or SETA expressicn that is used tc srecify
the number cf characters affected by a substring creraticn has
a negative value.

Assembler Action: The value of the second exrressicn cf the
substring nctaticn is set to 0, that is, the asserbler assigns
a value cf null to the substring.

Frogrammer Response: A term, a SETA expressicn, cr a
combination of variables used to produce the second expression
in a substring notation must result in a non-negative value.

Severity Ccde: U

FIRST EXPRESSION IN SUBSTRING NOTATION EXCEELCS THE LENGTH OF
THE STRING

Explanation: A term or SETA expression that sgecifies the
starting character for a sukstring creraticn sgecifies a
character beycnd the end of the string.

Assembler Action: The asserkler assigns the value cf null to
the substring.

Prcgranmer Response: Make sure the term, SET2 expression, or
combination of variables used to produce the first expression
in a substring notation results in a value ir the range cf 1
thrcugh the length of the character string.

Severity Code: 8

Arpendix G. Assembler LCiagnostic Exrror Messages 107

IFC118 ACTR LIMIT HAS EEEN EXCEELED

Explanaticn: The number of AIF and AGO branches within the text
segment exceeds the value specified in the ACTR instruction or
the conditional assemkly loop ccunter default value.

Assenbler Acticn: If a macro is being expanded, the expansion
is terminated. If open code is processed, all remaining
statements are processed as conments.

Prcgrammer Resronse: Correct the conditional assembly lcop that
caused the ACTR limit to ke exceeded, cr set the ACIR value to
a higher number.

Severity Code: 8

IFO119 ILLEGAL TYPE ATTRIBUTE REFERENCE

Explanation: A2 type attrikute reference is rade tc a symbol
defined by an EQU instruction with an invalid third cgerand.

Assenbler Acticn: The type attribute value is set to U.

Prcqgranmexr Response: Correct the third operand on the EQU
instruction. It must be a self-defining term in the range
0-255.

Severity Ccde: 4

IF0120 ILLEGAL LENGTB ATTRIBUTE REFERENCE
Exrlanaticn:
o A length attribute reference specifies a SETx symkol; or

e A length attrikute reference specifies a syrmkclic rarameter
(or a ESYSLIST rerresentation) that does nct rerresent an
ordinary symbol; or

] The ordinary symbol referenced by a length or integer
attrikute reference is defined ky an EQU instructicn, and
the value cf the second operand of that instruction is not
in the range 0-65535; or

° The crdinary symbol referenced by a length or integer
attriktute reference is defined in a DC cr DS instruction,
and the instruction contains a length mcdifier that is nct
a self-defining term.

Assembler Action: The length attribute is set tc 1.

Erogrammer Response: Review the use cf the length attribute and
reccde.

Severity Code: 4

108

IFC123

IFO124

—
U

IFO125

ILLEGAL SC2LE ATIRIBRUTE REFERENCE

Explanation:

° A scaling attrikute reference srecifies a SEIx syrbcl; or

° A scaling attrikute reference srecifies a symkclic
rarameter (or a &SYSLIST representation) that dces nct

represent an ordinary symbol; or

° A scaling attrikute reference is made to an ordinary symkol
whese tyre attritkute is nct H, F, G, E, L, L, K, F, cx Z; or

K The crxdinary symbol referenced by a scaling or integer

attriktute reference is defined in a DC cr DS instruction
ccntaining a scaling modifier that is not a self-defining
term.

Assenbler Action: The scale attribute is set to 0.

Prcgranmer Resronse: Review the use of the scale attrikute and
recode.

Severity Ccde: 4

ILLEGAL INTIEGER ATTRIBUTE REFERENCE

Explanation:

® An integer attrikute reference srecifies a SETx symbcl; orx

° 2An integer attrikute reference srecifies a syrkclic
parameter (or a €&SYSLIST representation) that dces nct

represent an ordinary symbol; or

e BAn integer attrikute reference is rade to an ordinary symkol
whcse tyre attrikute is nct H, ¥, G, E, £, L, K, F, cr Z.

Assembler Action: The integer attribute is set to O.

Prcqgranmer Response: Review the use of the integer attrikute
and recode.

Severity Code: 4§

INVALID NAME - ILLEGAL ENBEDDELC CHARACTER OR NON-ALPEAEETIC
FIRST CHARACTER

Exgrlanaticn:

e The symbcl generated in the name field does not kegin with
an alphaketic character or it ccntains a srecial character
cr an exbedded blank after substitution; or

) for the TITILE instruction: the name field ccntains a
srecial character.

Assembler Acticn: The name field is ignored.

Prcgranmer Resronse: Be sure that the symbol generated in the
name field conforms to the rules for forming valid ordinary
symkols, or is a valid TITLE name field entry. Alsc check to

Arrendix G. Assemkler Ciagncstic Errcr Messages 109

IF0126

IF0127

IFG128

110

make sure that the values of all variables that contrilkute to
the generation of the symkol in the name field are valid.

Severity Ccde: 8

MORE THAN 5 ERRORS IN THIS STATEMENT, PROCESSING OF THE
STATEMENT IS TERMINATED ~

Explanation: Six or more errors were detected in prccessing
this statement. The maximum nurmker cf erxcr nessages issued by
the prccesscr to each statement is.five.

Assenmbler Acticn: The sixth error causes this message to ke
issued, and messages are not issued for any further errcrs in
this statement.

Erogrammer Response: Correct the indicated errcrs and check
carefully fcr errors keyond the pecint indicated by the fifth
error message. Assemble again. Bny additional errors will ke
located in the next assemkly.

Severity Ccde: 8

VALUE OF CHARACTER STRING USED IN ARITHMETIC CONIEXT EXCEEDS
2,147,483,647

Explanation: A character string used in a SET2 expression or in
an arithmetic relation in a SETE expression exceeds a value of
2,147,483,647, which is the maximur value allcwed fcr a decimal
self-defining term.

Assembler Action: The character string is reglaced by an
arithmetic value of zero.

Prcgranmexr Resronse: Be sure that all character strings used in
an arithmetic context are from 1 to 10 decimal digits and have
a value in the range of 0 to 2, 147,483,647. Be sure that the
values cf all variables that contribute to the generation of
the character string are valid.

Severity Ccde: 8

GENERATEL OP COLE EXCEELS 8 CHARACTERS

Exrlanaticn: The syntax for mnemonic operation codes must
follow the same rules as ordinary symbols; that is, they must
be from 1 to 8 alphanumeric characters lcng arnd the first
character must be alphabetic.

Assemblex Action: The statement that ccntains the illegal op

ccde is prccessed as a comment. Only the first 8 characters of
the generated cp ccde arpear in the printed statement.

Frogrammer Response: EBe sure that the values cf all variables

that ccntrikute to the generation of the cr ccde are valid, and
ke sure that nc attempt is made to generate an op code of more
than 8 characters.

Severity Ccde: 8

D

IF0129

IFO130

IFO131

IFO132

GENERATELC SYMEOL IN NAME FIEILC EXCEEDS 8 CHRARACTERS

Explanation: 2 generated symkcl that arrears in the nare field
exceeds 8 characters. It should ke fremw 1 tc 8 alrhanumeric
characters in length, and the first character should ke
alphabetic.

Asserbler Acticn: The name field is igncred. OCnly the first
eight characters of the generated symbcl appear in the rrinted
statement. .

Frogrammer Response: EBe sure that the values cf all variables
that ccntribute to the generation of the symkol in the name
field are valid. Ee sure that nc attengt is made tc generate a
synkcl cf ncre than 8 characters.

Severxity Ccde: 8

FIRST SUBSCRIPT CF §SYSLIST REFERENCE IS NEGATIVE

Explanation: A term or an arithmetic (SETA) expression that is
used as the first subscript of a &SYSLIST reference has
resulted in a negative value.

Assenbler Acticn: The rarameter reference is treated as a
reference tc an cmitted orerand.

Prcgranwer Resronse: Be sure that the values of all variakles
that contribute to the generation of the first subscript are
valid.

Severity Ccde: 8

INCONSISTENT CLOEAL VARIAELE DECLARATION| SETx INSTRUCTION
IGNORED

Explanation: CGlokal variakle declaraticn inccnsistent with a
previous definition cf the variakle in ancther macrc definition
or in oren ccde.

Assembler Action: The value of the glcbal variable remrains the
samre and the SETx instruction is igncred.

Prcgranmer Resgonse: Correct all inconsistencies ketween glokal
variable declarations regarding dimension and type.

Severity Code: 8

REFERENCE TO INCCNSISTENTLY DECIARELC GLOEAL VARIABLE RESULTS IN
ZEFOC VALUE

Exrlanaticn: An attempt to obtain a value from a glokal
variable has been ignored because the declaration of the glokal
variable was inconsistent with a previcus declaraticn cf the
same variable in another macro definition or in open code.
Fither the dimension or the tyre does nct agree.

Appendix G. Assemkler Ciagncstic Errcr Messages 111

IF0133

IF0157

IFO158

112

Assembler Action: The reference to the global variable is
replaced by a null or zero value.

Programmer Response: Correct all inconsistencies among
declarations of the same global variable.

Severity Code: 8

NO WORK SPACE FOR OPEN CODE SKELETON DICTIONARY

Exrlanation: The allotted dictionary work space is insufficient
to build the skeleton dictionary for open code. Since the
generation process requires the open code dictionary,
generation is not attempted.

Assemblex Action: The entire assembly is processed as comments.

Programmer Response: Within the partition, increase the size of
the region that is allocated to assembly, or allocate more of
the partition to dictionary space via the BUFSIZE assembler
option (see Arpendix E).

Severity Code: 12

CC OPERANL VALUE TOO LONG

Explanation: The object code generated from an orerand in a DC
instruction is too long. The maximum object code length of a
DC operand is 16,777,215 bytes.

Assembler Action: The specified value is ignored.

Programmer Response: Make the constant shorter, or break it up
into two constants.

Severity Code: 8

NAME OF STATEMENT IN DSECT USED IN RELOCATAELE ACTRESS CONSTANT

Explanation: A non-paired relocatable term used in an A-type or
Y-type address constant is defined in a dummy section.

Assembler Action: The constant is ignored.

Programmer Response:

® Make sure the relocatable term is not defined in a dummy
section; or

° Make sure the term defined in the dummy section is paired
with another term (with the opposite sign) from the same
dummy section.

Severity Code: 8

D
N

2

>

IFC159

IF0161

IF0162

IF0163

RELOCATRELE EXPRESSION AS EXPLICIT DISPLACEMENT IN S-TYPE
CCNSTANT

address constant spec1f1cat10n is a relocatakle expression.

Assembler Action: The value of the crerand is set tc zerc and

nc entry is made in the relocaticn dicticnary.

Prcgranmer Response: Make sure the displacement is specified as
an absolute expression, or specify an implicit address.

Severity Ccde: 8

INVALIC LITERAL NEAR OPERAND COLUMN nn

Exrlanation: 2n invalidly constructed literal arrears near the
srecified crerand column.

Assenbler Acticn: The value of any reference to the invalid
literal is set tc 0.

Prcgranmer Response: A literal should be constructed like a LC
or DS constant with the following exceptions:

o The literal is preceded Ly a equal sign.
o The durlication factor must not be O.

Sevexity Ccde: 8

VALUE ERROR - SHOULLC EBE BETIWEEN 0 AND 9 NEAR CPERAND COLUMN nn

Exglanatlcn- A value is negative cr is nct irn the range cf 0 to
9, which is required ky this instructicn.

Assenbler Acticn: Zeros are generated in place of the machine
instruction in the object module.

Frogrammex Response: Ee sure the cperand field has a pcsitive
value in the range of 0 tc 9.

Severity Ccde: 8

MISSING OR INVALIC SYMBOL IN NAME FIELD

Exrlanaticn: Cne of two errors has occurred:

e A symbcl is missing in the name field wherevone is required.
o The symkol in the name field is invalid.

Assenblexr Acticn: The statement is processed as a comment.

Prcgranner Resgonse: Supply a valid name.

Severity Ccde: U

Arrendix G. Assembler LCiagnostic Error Messages 113

IFO164

IFO165

IFO167

114

INVALILC OR ILLEGAL START STATEMENT

Explanation: The START statement did nct start the first
contrcl secticn in the assemkly, cr the crerand cn the START
staterent was nct an absolute value.

Assembler Action: The START statement is treated as a CSECT

staterent.

Prcqranmer Resronse: Be sure that the ST2RT statement has an
absolute operand and that it begins the first control section
in the assemkly.

Severity Code: 4

NULL PUNCH OPERAND OR PUNCH OFERAND EXCEELS 80 CBARACTERS
Explanaticn: The operand of a FUNCH instruction either
specifies only a null string surrounded Ly quotes, or is more
than 80 characters long.

Assermblex Acticn: The PUNCH statement is prccessed as a comment.

Frogrammer Response: Ee sure that the crerand cf a PUNCH
staterent ccnsists of from 1 tc 80 characters surrcunded by
quctes.

Severity Code: 4

SYMBOL FILE OUT CF STEFP

Explanation: References to the synbcl file (an internal data
file) cut cf ster kecause of an errcr in the scurce ccde. This
message is always accompanied by other error messages, not
necessarily for the same statement.

Assenbler Action: Assembly continues, but results subsequent to
the recint cf errcr may nct ke valid.

Prcgramrmer Resronse: This message will always ke accompanied Ly
user errors. Correct them and reassemble the program.

If the message is issued even though the scurce ccde is
errcr-free, dc the following before calling I1EM:

e ° Have your source program, macro definitions, and associated
listings availatle.

® If a COPY statement was used, execute the IEBFTECH utility
to obtain a copy of the partitioned data set memker
specified in the COPY statement.

e Make sure that MSGLEVEI=(1,1) was specified in the JCB
statement.

Severity Ccde: 16

VR

IFC168

IF0169

IFO170

»

o

IFO171

AN ARITHMETIC EXPRESSION NCT USED IN CONLCITICNAL ASSEMELY
CONTAINS MORE THAN 20 TERMS

Exrlanaticn: An arithmetic expression used in a macro
definition or in open code, but not in a conditional assemkly
statement, contains more than 19 unary and birary creratcrs and
6 levels of parentheses. The maximur nunber cf terms this
ccrbinaticn allows is 20.

Asserbler Action: The value of the expression is set to 0.

Prcqranmer Response: Be sure that this arithmetic expression
dces nct ccntain more than 19 operators (unary and binary) and
6 levels of parentheses. If greater ccmrlexity is necessary,
use EQU statements to evaluate intermediate results.

Severity Ccde: 8

INVALIC SELF-LCEFINING TERM NEAR CFERAND COLUMN nn
Explanation: AR self-defining term was invalidly specified.

Assembler Action: The value of the term is set tc zexc.

Frogrammer Response: Check the syntax and ccrrect the error.

Severity Code: 8

TWO ADJACENT BINARY CPERATCRS, CR BINARY OPERATOR EXFECTELC BUT
NCT FOUNL NEAR OPERANL COLUMN nn

Explanation: One of two errors has cccurred.

(1) Two binary operators appear ccnsecutively near the cclumn
specified in the message text. This applies only to "*"
(multiply) and "/" (divide).

(2) A binary operator was expected near the column specified in
the message text, kut none was found. A single binary cgerator
must occur ketween all terms of an expressicr.

Asserbler Action: The expression that contains the absent or
illegal cperatcr is set to zero.

Erogrammer Response:

(1) Eliminate one of the kinary creratcrs.

(2) Prcvide a binary operator.

Severity Ccde: 8

TITLE STATEMENT OPERANLC EXCEEDS 100 CHARACTERS

Exrlanation: The operand of a TITLE instructicn ccntains more
than 100 characters.

Arrendix €. Assemkler Ciagnostic Errcr Messages 115

IFO172

IF0173

IFO174

116

Assembler Action: The character string in the operand is
truncated to 100 characters.

Frogrammer Response: Be sure that the length cf the characterx

string in the crerand of a TITLE statement dces nct exceed 100
characters.

Severity Code: 4§

VALUE OF ORG OPERAND IS LESS THAN THE CONTROL SECTICN STARTING
ALLRESS

Exrlanaticn: The operand of an CRG statement results in a value
less than the starting address of the control section.

Assembler Action: The ORG staterent is prccessed as a comment
and has nc effect on the value cf the lccaticn ccunter.

Prcgranmer Resgonse: Be sure that the operand of the ORG
statement is a positive relocatable expression, greater than
the starting address of the contrcl secticm, cr blank.

Severity Code: 8

ONE OR MORE SYNMBCLS IN AN ORG OPERANLD LO NOT BELCNG 1IC THE
CURRENT CSECT, LSECT, CR COM

Explanation: One or more of the symbols used in the operand of
an ORG statement are not defined in the current control section
(dummy, common or ordinary).

Assenbler Acticn: The CRG statement is processed as a comment
and the value of the location counter remains unchanged.

Frogrammer Response: Be sure that all symbcls used in the
cperand field cf an ORG statement kelcng tc (are defined by
aprearing in the name field of a statement within) the current
control section.

Severity Ccde: 8

ORG OPERAND 1S ABSCLUTE, NUST BE RELOCATAELE

Explanation: An absoclute term or expression used in the operand
of an ORG statement must be a relocatable term, a relocatakle
expression, or a klank.

Assenbler Acticn: The ORG instruction is prccessed as a comment
and the value cf the location ccunter remains unchanged.

Prcgranmer Resronse: Be sure that the operand of an ORG
statement is a relocatable term, a relocatable expression, or a
blank. 2n ORCG to an aksclute address is nct rcssible because
the assenbler assumes that all location references are
relocatable. 2 common error is an ORG tc 0. Since the start
cf the rrcgram is not absolute machine location 0 kut
relocatable 0, replace the 0 with a symbcl cx expressicn that

IFC175

IFC176

IFC177

IFGC178

makes reference to the lakeled prcgram start.

Severity Ccde: 8

CEFERANL SHOULL EEGIN WITH A QUCTE

Explanation: A quote was expected tc begin a character string
in the crerand field, kut was nct fcund.

Assembler Action: The invalid character string is igncred.

Erogrammer Response: Supply the missing leading qucte in the
character string of the operand.

Severity Ccde: 8

UNEAIRELC AMPERSANLC NEAR OPERAND COLUMN nn

Explanaticn: A single ampersand fcllcwed by a blank was found
in a qucted character string. If an arpersard is desired as a
character in a quoted character string, two ampersands must ke
coded. 2Ampersands must ke either paired cr rart cf a valid
variable symbcl. ‘

Assembler Action: The character string that ccntains the
illegal arpersand is ignored.

Prcgranmer Resronse: Determine whether the ampersand is desired
as a character in a quoted character string or whether the
ampersand is intended as the keginning cf a valid variable
synbcl, and ccrrect the error.

Severity Code: 8

MISSING OPERANL

Explanaticn: This statement requires an operand, but none is
found.

Assenbler Acticn: The statement which lacks the cperand is
rrccessed as a ccmment.

Prcqranmer Response: Supply a valid operand.

Severity Ccde: 12

SYNTAX ERROR NEAR OPERANLC COLUMN nn

Exrlanaticn: A syntax error has occurred in the operand of this
statement.

Assembler Action: The statement which ccntairs the invalid

crerand is prccessed as a comment.

Prcqgranmer Response: Correct the syntax of the operand. There
are a large number of syntactic errors that can produce this

Appendix G. Assembler Liagncstic Error Messages 117

IFO179

IFO180

IFO181

IF0182

118

diagnestic. 211 of them require careful checking cf the syntax
of the specific type of statement being processed. The error
is logged at the point where the syntax beccrnes ambigucus or
unrecognizable, not necessarily at the point where the actual
error occurs.

Severity Ccde: 8

OPERAND SUBFIELD NEAR CFERAND CCLUMN nn MUST EE ABRSCLUTE

Explanaticn: All terms and expressions used in the operand
field of this statement must result in an absolute value.

Assembler Action: The operand is prccessed as a ccnment.

Frogrammer Response: Be sure that each term cr expression used
in the crerand field of this statement has ar absclute valve.
Nc relccatable expressions are allowed.

Severity Code: 8

OPERAND 2 OF CNOF MNUST BE EITHER 4 CR 8

Explanation: The second operand of a CNOP statement must ke
either 4 or 8.

Bssembler Action: The CNOP statement is prccessed as a comment
and no aligpment is performed.

Prcgranmer Resgonse: Be sure that the second operand of a CKCF
statement is either a 4 or an 8.

Severity Code: 12 -

OPERAND 1 OF CNOF MNUST BE 0, 2, 4, CR 6

Explanation: The first operand of a CNOP statement must ke O,
2, 4, or 6.

Assembler Action: The CNCE statement is ignored and no
alignment is performed.

Frogrammer Response: Be sure that the first Cperand cf a CNOEF
statermrent is a 0, 2, 4, or 6.

Severity Ccde: 12

CPERENLC 1 OF CNOP IS NOT LESS THAN OPERAND 2

Exrlanaticn: The value of the first operand cf a CNCEF statement
must be less than the value of the seccnd crerand.

Assenbler Acticn: The CNCP statement is processed as a comment
and no alignment is performed.

O

IFC183

IFO184

IF0185

IFC186

Prcgranmexr Response: Check the validity of each operand of the
CNOP statement to be sure that the value of the second operand
is greater than the value of the first crerard.

Severity Ccde: 12

MNCTE/CCW OPERANL EXCEELS 255

Exrlanaticn: The value of an cperand used as an MNCIE severity
ccde cr as the first orerand in a channel ccrrand wcrd (CCWw)
exceeds 255.

Assembler Action: The MNOTE is rrccessed as a ccrnment. Space
is allccated fcr the CCW, kut the value fcr the flagged cperand
is set tc 0.

Erogrammer Response: Check the validity cf the cperand.

Severity Code: 12

INVALID RANGE CN CCW NEAR CPERANC COLUMN nn, 65535 IS MAXINUNM
VALUE

Exrlanaticn: The value of the fourth operand of a channel
command word has exceeded X'FFFF' (65535).

Assembler Action: Space is allccated fcr the CCW, kut the value
of the flagged operand is set to 0.

Erogrammer Response: Check the validity cf the fcurth cperand
cf the channel ccmmand word.

Severity Ccde: 12

ELANK EXPECTEL AS A LCELIMITER NEAR OPERAND CCLUMN nn

Exrlanation: A klank was expected as a delimiter but ncne was
found. Suksequent characters Lave nc syntactic meaning, and
the staterent is ambiguous.

Assembler Action: The statement that ccntains the invalid
delimiter is processed as a conment.

Prcgranrer Resgonse: Supply a blank delimiter.

Severity Ccde: 8

INVALIC SYMEOL NEAR OPERANC COLUMN nn OF ENTRY, EXTRN, OR WXTRN

Explanation: An improperly constructed syrbcl was found in the
operand field of an ENTRY, EXTIRN, cr WXIRN statement.

Assenbler Acticn: The statement that contains the invalid
symbol is processed as a comment.

Appendix G. Assembler Ciagnostic Error Messages 119

IF0187

IFO188

IFO189

IF0190

120

Ercqranmer Resronse: Be sure that the symbcl in the crerand
field ¢f EXTRN, WXTRN, or ENTRY statements ccrtain frcem 1 to 8
alphameric characters, the first of which is alphaketic.

Severity Code: 8 N

SYMECL LONGER THAN 8 CHARACTERS NEAR OPERAND CCLUMN NN

Exrlanation: A symkol that is ncre than 8 characters in length
has appeared in the operand field of this statement.

Assenbler Acticn: The invalid symbol in the operand field is
rerlaced by a zero.

Frogrammer Response: Be sure that symbkcls dc nct exceed 8
characters in length. A rissing cr misplaced deliriter cr
operatcr may cause a symbol to appear longer than intended.

Severity Code: 8

XXXXXXXx IS AN UNDEFINED SYMBCL

Explanation: The symkol that arrears in the nessage text has
nct arpeared in the name field cf ancther statement, cr as an
crerand cf an EXIRN or WXTRN statement.

Assembler Action: Reference to the undefined symbcl results in
a zero value.

Prcgrammer Response: Define the symbol in the program. (/\w
/

Severity Ccde: 8

INVALID ENTRY OPERAND, IINKAGE CANNCT EBEE PERFORMEL

==

statement is invalid because it is either undefined or
improperly defined.

Assenbler Action: The invalid symbol in the operand field is
proccessed as a comment, and no linkage is provided if another
program references it.

Ercgranmwexr Response: Lefine the symkol at an arrrcpriate rlace
in this prcgram, or correct it. A valid symbcl ccnsists cf from
1 tc 8 alrhameric characters, the first of which is klank.

Severity Code: 8

CEER2ANL OF PUSH STATEMENT IS NOT USING OR PRIKT NEAR OPERAND
COLUMN nn

Explanation: The only symkols allcwed in the crerand field of a </i>

Q

IFO191

IFC192

IF0O193

PUSH cr POP statement are PRINT and USING, in any order,
separated ky commas.

Assermbler Acticn: The PUSH instruction is prccessed as a
conment.

Programmer Response: Be sure the operand of the PUSH statement
is either PRINT or USING or both.

Severity Code: 4

PUSH LEVELS EXCEED 4 NEAR CPERAND COLUMN nn

Explanation: More than 4 levels cf PUSH and PCF statements were
atternrted fcr either PRINT or USING.

Assenbler Acticn: The PUSH instruction is processed as a
comment.

Frcqgranmer Resronse: Rework the program lcgic tc require nc
mcre than 4 levels of PUSH and POP fcxr USING and 4 fcxr ERINI-

Severity Ccde: 8

CFERANL OF POP STATEMENT IS NOT USING OR PRINT NEAR CEFERAND
COLUMN nn

Explanation: The only symtols allcwed in the crerand cf a PUSH
cr PCP statement are USING and PRINT, in any crder, serarated
ky corras.

Assembler Action: The POP instructicn is prccessed as a comment.

Frogrammer Response: Be sure the crerand cf the FCP statement
is either PRINT cr USING or kcth.

Severity Ccde: U

FOF REQUEST NOT EALANCEL BY PREVIOUS PUSH

Fxplanaticn: No PUSH request was issued gricr tc this ECF
request, cr mcre POP statements have been issued than FUSH

‘staterents. A PCP statement restores the USING or PRINT status

saved by the most recent PUSH statement, ¢n a c¢ne fcx cne basis.

Assermbler Acticn: The PCF instruction is processed as a comment.

Prcgranmer Resgonse: Check for errors in balancing PUSH and POP
statements, or rework the program logic to request kalanced PUSH
and POP statements. Repetiticn cf a given cperand (i.e., USING
or PRINT) on a single PUSH or POP statemrwent is treated as
nultirle staterents, and could cause unbalanced PUSH and POP
statements.

Severity Ccde: 8

RAppendix C. Assemkler LCiagncstic Errcr Messages 121

IFO 194 INVALID OPTION IN PRINT STATEMENT NFAR OPERANL COLUMN nn
.Explanation: An option appears in the crerand field cf a PRINT
statement that is not one of the fcllowirg: CN, CFF, GEN,
NOGEN, DATA, and NCDATA. (/\\

Assembler Action: The invalid operand is ignored. NI

Prcgranmer Resgonse: Be sure that only the options listed in
the explanation above appear in the operand field of a PRINT
statement.

Severity Ccde: 4

IF0195 INVALILC USING OR CROP STATEMENT NEAR OPERAND CCLUMN nn *
Explanaticn: One of three errcrs Las cccurred:

(1) register 0 is specified for other than the seccnd crerand
cf a USING statement, or

(2) a register number outside the range of 0 to 15 has keen
used, or

(3) a DROP statement has been issued for a register that was
never assigned for use ky a USING statement.

Assembler Action: The invalid register srecificaticn is set to
zerc.

Programmer Response: The second and following operands of a

USING or DROP instruction must be decimal terms 0 to 15.

Register 0 may only ke specified as the seccrd cperand of a (fﬁ\
USING statement. ./

Severity Code: 12

IFO196 XxxxxxxXxX HAS BEEN FREVICUSLY DEFINEL

Explanation: The specified syrkcl has previcusly agppeared in
the name field of a statement cr in the cperard field cf an
EXTIRN cr WXIRN instruction.

Assembler Action: Rll references to the symnbcl are interrreted
as references tc the first definiticn cf the synbcl.

Prcgranmwexr Response: A given symbol must be defined only once. «
Determine which occurrence of the symbol you want to use, and
change all others. :

Severity Ccde: 8

IF0197 *%% MNQOTE **+*
Exrlanaticn: An MNOTE statement has been encountered during the

generaticn cf a macro or in open code. The text of the MNOTE
message appears in-line in the listing at the pcint where it is (’i)

122

i
A

—~

9

IF0198

IFO199

IF0200

encountered. (Refer to GS/VE‘Assembler Lanquage fcr a
description of the MNCTE instruction.)

Assembler Action: None.

Prcgranmwer Respcnse: Investigate the reason for the MNOTE.
Erroxs flagged by MNOTE will often cause unsuccessful execution
cf the program, depending upon the severity ccde.

Severity Ccde: An MNCIE is assigned a severity code of 0 to 255
by the writer of the MNCTE statement.

INVALID TYPE DECIARED CN DC/DS/CXC CONSTANT NEAR OPERAND CCLUNK
nn

Explanaticn: Orerand subfield 2 is not a valid type for a DC,
DS, or DXD statement. Valid types are the following: A, B, C,
c, £, ¥/, B, L, P, Q, S, V, X, ¥, and Z.

Assembler Acticn: The statement that contains the invalid type
declaration is processed as a comment.

EFrogrammer Response: Supply a valid tyre in crerand subfield 2.

Severity Code: 8

INVALID LENGTH MCDIFIER NEAR CFERANL COLUMN nn

Explanation: The length modifier in operand sukfield 3 of this
statement is invalid. The length attribute of a symkol is not
allowed as a term in the length rmcdifier expressicn fcx the
first crerand cf the DC, DS, or LXD statement in which the
symbol is defined. For example, SYM DC CL (L*SYN) 'AA*' is
invalid. -

Assenbler Acticn: The statement that ccntains the invalid
length mcdifier is processed as a ccrrent.

Prcqgranmer Response: Supply a valid length modifier, or
eliminate the explicit length modifier.

Severity Code: 8

INVALID SCAIE MODIFIER NEAR OFERAND COLUMN nn

Explanation: The scale modifier in operand sukfield 3 of a CC,
DS, or DXD statement is invalid. The scale modifier should te
either a decimal value or an aksclute expressicn enclcsed in
parentheses.

Assembler Action: The statement that ccntains the invalid scale
mcdifier is processed as a comrent.

Prcgranmer Resgonse: Supply a valid scale modifier for the type
of constant used.

Severity Code: 8

Bppendix G. Assemkler Ciagncstic Erxrrcr Messages 123

IF0201

IF0202

IF0203

124

ILLEGAL OR INVALID EXPONENT MOCIFIER IN DC/DS/DXD CONSTANT NEAR
OPERANLC COLUMN nn

Explanation: BAn exponent modifier used in a DC, DS, cr DXD
constant is not a decimal self-defining term, an aksolute
expression enclosed in parentheses, cr rrcduces a value cutside
the range allowed for that constant tyrge.

Assenrbler Acticn: The invalid or illegal operand is ignored.

Frogrammer Response: Be sure that the expcnert ncdifier used
cenfcrms tc the rules for exponent ncdifiers fcr each tyrpe of
pC, DS, cxr DXD ccnstant.

Severity Code: 8

ARITHMETIC PRECISION OF FLOATING-POINT CONSTANT LOST NEAR
OPERANLC COLUMN nn

Explanation: Low order digits were lcst durirg the ccnstrxuction
cf an L-, [-, cr E-type constant, kecause the designated field
was tcc small to contain the whole constant.

Assembler Action: The value of the constant is set tc zero.

Frogrammer Response: Check the length, scale, and expcnent
modifier of the flagged constant.

Severity Code: 8

.-, b-, E-, F-, H-, OR Y-TYPE CCNSTANT TRUNCRATEL, BIGE CRLCER
CIGITS LOST NEAR OPERANLC COLUMK nn

Explanation: The high order digits c¢f an L-, D-, E-, F-, H-, OX
Y-tyre ccnstant were lost kecause the designated field was toc
small tc ccntain the whcle constant.

Assemblexr Action: Processing ccntinues using the truncated
ccnstant.

Prcgranrmexr Response: Modify the explicit or implicit length of
the constant, so that the value may be contained within the
area designated for it.

Severity Ccde: 4

“w

s
U

IF0204

IF0205

IF0206

IF0207

RELOCATABLE EXPRESSICN NOT ALLCWEL IN A- OR Y-TYPE ALCRESS
CONSTANT WITE EIT LENGTE SPECIFICATION

Explanaticn: A relocatable expression in used to specify a
constant for which bit length specification is used. This is
not allowed.

Assenmbler Acticn: The value of the operand is set to 0 and no
entry for this constant is made in the relocation dictionary.

Frogrammer Response: Convert the cperand tc an absclute
exrressicn, cr use a length of 3 cr 4 bytes fcxr A-tyre cr 2
kytes fcr ¥Y<tyre constants.

Severity Code: 8

RELOCATABLE Y-TYPE CCNSTANT, VALUE TRUNCATELC TO RIGHTMOST 2
EYTES

Exrlanaticn: A relocatable Y-type constant has keen declared.
This is a warning only. All relocatable Y-type constants are
diagnosed in this manner kecause the asserbler must rrovide an
entry in the relccation dictionary for each one. If the actual
address is contained within the rightmcst twc bytes and the
ccding is ctherwise correct, when the program is loaded and
relocation is considered the ccnstant will be resclved. 1If the
address cannct be contained in the rightmost two bytes, it is
likely that further relocatakility errcrs will result.

Assenbler Acticn: The value of the constant is truncated to the
rightmest twc bytes.

Erogrammer Response: Be sure that the value cf the Y-tyre
constant will not exceed two kytes when the rrcgram has been
lcaded and the relccaticn factor has been considered.

Severity Code: 4

DUPLICATION FACTCR ERRCR

Explanation: The duplication factcr in a DC, LS, cr DXD
statement is negative.

Assemblexr Action: No storage is reserved fcxr the cgerand, but
alignment is performed as required by the type of constant used.

Frogrammer Response: Supply a ncn-negative durlicaticn factor.

Severity Code: 8

OPERAND OF Q-TYPE CONSTANT DOES NCT NAME A LSECT OR LXT
Explanation: The symkol in the cperand field cf a Q-tyre
ccnstant rmrust have keen previously defined as the name cf a
DSECT cr DXD secticn.

Assembler Action: The value of the constant is set tc O.

Erogrammer Response: Lefine the syrkcl as the name cf a CSECT
cr LCXLC secticn. The symkol must ke defined kefcre being used

Arrendix G. Assemkler Liagnostic Errcr Messages 125

IF0208

IF0209

IF0210

126

in the constant.

Severity Ccde: 8

DISPLACEMENT GREATER THAN X'FFF'

Explanation: The displacement of this statement or the address
referenced by this statement is greater than X'FFF' (decimal
4095) . The displacement field in the machine instructicn must
ccntain a value cf from 0 to 4095,

Assembler .Action: The kase and displacement fields cf the

rachine instruction are set to 0.

Prcqgranmer Response: Correct the displacement term or
expression or provide another base register with a USING
statement.

Severity Ccde: 8

ACTCRESSAEILITY ERROR - BASE ANLC DISPLACEMENT CANNOT BE RESOLVED
AND ARE SET TO 0

Exrlanaticn: The assembler cannot resolve the address of this
statement or the address referenced by this statement for one
cf the following reasons:

e Current USING registers produce a displacement of less than
0 or greater than 4095,

e Nc USING registers are available.

Assembler Action: The kase and displacement fields cf the

machine instruction are set tc 0.

Frogrammexr Response: Make sure yocu have ccrrectly set ur base

registers with the USING instruction. Be sure the referenced
address can be specified by the value in a USING register plus
a displacement in the range of 0 thrcugh 4095.

Severxity Ccde: 8

TCC FEW OPERR2NILS

Exrlanaticn: Mcre operands are required for this statement, kut
they were not found.

Assembler Action: The value of any nissing cperand is set tc 0.

Erogrammer Response: Supply the necessary crperands. Refer to

Frincigples cf Operation for details cn the crerands required

fcr this instructicn.

Severity Ccde: 12

o

IFO211 TOO MANY OPERANDS
Explanaticn:
e Mcre than 255 operands in a CC, LS, or LCXLC instruction; or
] Too many operands in a machine instructicn.

Assembler Action: The extra orerands are igncred.

Frogrammer Response: Lelete the extra crerands. Refer tc
Frincirles cf Oreration for details on crerards required for
individual rachine instructions.

Severity Ccde: 12

IFC212 FREMATURE ENLC OF OPERANL NEAR OPERAND COLUMN nn

incomplete.

Assembler Action: The value of the crerand is set tc 0.

Exogrammer Response: Supply the chkaracters necessary tc
terrinate the cperand.

Severity Ccde: 8

IF0213 CCMPLEXLY RELOCATAELFE EXPRESSION NEAR OPERAND CCLUMN nn

Exrlanaticn: The indicated operand contains a complexly
relocatable expression. The expression should ke aksolute or
simply relocatatle.

Assenbler Acticn: The value of the complexly relocatakle
expression is set to 0.

Erogrammer Response: Ee sure that only aksclute and sinply
relccataktle expressicns are used in the cperard field cf this
statement.

Severity Code: 8

IFO214 ILLEGAL USE CF LITERAL NEAR CEFERANC COLUMN nn

Explanation: A literal is used in an assembler instruction, in
another literal, or in a field of a machine instruction where
it is not allowed.

Assenbler Acticn: The value of the operand where the literal is
used is set tc 0.

Prcgranmer Resgonse: Use a valid relocatable term or expression
in place of the literal. If applicable, replace the literal
with the name of a EC statement which defines the same constant
as the literal.

Severity Code: 12

Arpendix G. Assembler Ciagnostic Error Messages 127

1F0215 ILLEGAL TCELIMITER, RIGHT PARENTHESIS EXPECTEL NEAR CFERAND
COLUMN nn

Explanation: A right parenthesis was expected as a delimiter,
but none was found.

Assembler Action: The value of the cperand tkat is lacking a
right parenthesis is set to 0.

Prcqranrer Resronse: Supply a right parenthesis.

Severity Ccde: 8

IFC216 ILLEGAL OPERANLC FORMAT NEAR OPERAND COLUMN nn

Exrlanaticn: The operand of this statement is illegally
censtructed.

Assermbler Acticn: The value of the operand is set to 0.

Prcgranmer Resgonse: Refer to Erinciples of Cperation for
details on the operand structure of this statement, and supply
a valid operand.

Severity Ccde: 12

IFC217 RELCCATAEILITY ERROR NEAR OPERANLC COLUMN nn

Exrlanaticn: One of the fcllowing fields ccntains a relocatable
value. 211 values in these fields must ke aksclute.

] Inmediate field in an SI instruction
® Mask field

] Registexr specification

e Length modifier

Assenbler Acticn: If any of the above fields contains a
relocatable value, the value of the field is set to 0.

Programmer Response: Be sure that the field contains an
absolute value.

Severity Code: 12

1IFO218 INVALID REGISTER SPECIFICATION - EVEN-NUMEEREL REGISTER RECUIREL

Explanaticn: An cdd-numbered register was specified in a
context that requires an even-numbered register.

Assembler Action: The invalid cperand is set tc 0.

Erogrammer Response: Specify an availakle even-numbered
register. Refer tc the Principles cf Operxaticn fcr details cn
the register requirements of this instructior.

128

{;:). 1F0219
b

IF0220
@)

IF0221
¥

1F0222

Severity Code: 12

REGISTER OR IMMEDIATE FIEID CVERFLOW NEAR OPERANLC CCLUMK nn
Explanaticn:

) The value cf the immediate field used in an SI instruction
is greater than 255; or

® A register number was specified that was greater than 15.

Assembler Action: The value of the field where the overflow
occurred is set to 0.

Frogrammer Response: Be sure the value cf an inrediate field
dces nct exceed 255 and that no register nurnker greater than 15
is srecified.

Severity Code: 8

ALIGNMENT ERROR NEAR CFERAND CCLUMN nn

Explanaticn: The operand of this instruction refers to a main
storage Iocation that is not on the boundary required ky the
instruction.

Assenbler Action: The faulty alignment is unchanged.

Prcgranmer Response: Align the main storage location referenced
in the operand field. Refer to the Principles of Operation for
details on the koundary requirements cf this instructicn. For
wrachines that do not require data to be aligred tc certain
boundaries, specify NCALIGK as an assembly option and no error
will occur.

Severity Ccde: 4

ILLEGAL INDEX REGISTER CR LENGTH MOLIFIFR NERR OPERANC CCILUMK nn

Explanation: An index register or a length field was specified
for a machine instruction where none is expected.

Assembler Action: The invalid specificaticn is igncred.

Erogrammer Response: Correct the index register cr length field
srecificaticn.

Severity Ccde: 12

INVALILC INLCEX REGCISTER SPECIFIED NEAR OPERAND CCLUMN nn

Exrlanaticn: 2 register numker nct in the range 0 - 15 has been
specified as an index register.

Appendix G. Assemkler LCiagncstic Errcr Messages 129

IF0223

IFC224

IF0225

130

Asserblexr Acticn: A default value of 0 (to indicate that no
indexing is used) replaces the invalid index register
specification in the machine instructicn.

Prcqgrammer Resronse: Specify an available register in the range
cf 0 tc 15 as an index register.

Severity Ccde: 12

RELOCATABLE INDEX REGISTER SFECIFIELC NEAR OPERANL COLUMN nn

Explanation: A relocatakle value has been specified as an index
register.

Assembler Action: A default value of 0 (to indicate that no
indexing is used) replaces the invalid index register
specification in the machine instructicn.

Prcqranrer Resronse: Specify an absolute value in the range of
0 tc 15 as an index register.

Severity Ccde: 12

LENGTH ERROR NEAR OPERANLC COLUMN nn
Exrlanaticn:

° The length mcdifier of a constant is illegal or invalid for
the type of constant; or

) A ccnstant of tyre C, X, B, 2, or P is too long; or
) A relccatable address constant has an illegal length.
Assembler Action: The operand in errcr and arny fcllcwing
crerands cf the [C, LS, or DXL staterment are prccessed as

cornrents. An address constant with an illegal length is
truncated.

Prcgranmer Response: Supply a valid length modifier or decrease
the length cf the crerand.

Severity Code: 8

RELOCATABLE IENGTH FIEID IN MACHINE INSTRUCTION NEAR CFERANC
CCLUMN nn

Explanaticn: The length field of this machine instruction is
specified as relocatable; an absolute term or expression is
required.

Assenbler Acticn: The length field in erxcr is assermbled tc 0.

Erogrammer Response: Use an aksclute ternm cr expressicn tc
specify the length field.

Severity Ccde: &

‘_

%]

o

IFC226

IF0228

IF0229

IF0230

EASE REGISTER OF MACHINE INSTRUCTION NOT AESCLUTE NEAR OPERAND
COLUMN nn

Exrlanaticn: An exgplicit base register has keen specified as a
relocatable value; an absolute term or-.expression is required.

Assemblexr Action: The operand in error (kase and displacement)
is assembled to 0.

Frogrammer Response: Use an aksclute term cr expressicn to
specify the kase register.

Severity Code: 12

RELOCATABLE DISPIACEMENT IN MACHINE INSTRUCTION NEAR CEERANLC
COLUMN nn

Exrlanaticn: In a machine instruction that has an explicit kase
register specification, the specification for the displacement
field is relocatakle. As this wculd imply a seccnd base
register, the corbination is invaligd.

Assembler Action: The displacement field of the machine
instruction is assembled to 0.

Frogrammer Response: Either specify the displacement as an
absclute term cr expression, or delete the exrlicit base
register.

Severity Code: 8

POSSIBLE REENTERABILITY ERROR NEAR CFERANLC CCLUMN nn

Explanaticn: This rachine instruction could store data into a
control section or common area that is not dynamically acquired.
This message is produced only when the REN1T assembler crption is
specified in the PARNM field of the EXEC statement.

Assembler Action: The statement is assenkled as written.

Erogrammer Response: I1f you want reentrant ccde, ccrrect the
instruction so that it references a DSECT or other dynamically
acquired space. Otherwise you can surppress reentrant checking
by specifying the NORENT assembler option.

Note: Absence of this message dces nct guarartee reentrant
ccde, as the assemkler has no contrcl cver addresses actually
loaded intc base and index registers at program execution time.

Severity Code: U

BASE REGISTER NUMBER GREATER THAN 15 NEAR OPERANL CCLUMN nn

Explanaticn: An exrlicit base register in a machine instruction
or S-type address constant is greater than 15.

Assemblexr Action: The kase register field c¢f the machine

Bppendix G. BAssemkler Ciagncstic Errcr Messages 131

IFO231 .

IF0233

IF0234

132

instructicn is assembled to 0.

Programmer Resgonse: Specify the base register in the range of
0 to 15.

Severity Code: 12

SYMBOL NOT PREVICUSLY DEFINED = XXXXXXXX

Exrlanaticn: A symbol in this statement is used in a way that
requires rrevicus definition, kut it has nct keen greviously
defined. Fcr example, a symbol in a duplication factor
expression or modifier expression of a DC staterent must be
grevicusly defined.

Assembler Action: The value of the symbcl cr the expression
that centains it is set to 0.

Prcgranmer Response: Define the symbol earlier in the program.
Add a defining statement if it does not exist, or place the
existing defining statement ahead of the statement that
references it.

Severity Code: 8

MORE THAN 6 LEVEILS CF PARENTHESES NEAR OFERANLC CCLUMN NN

Explanaticn: An expression in this statement contains more than
six nested levels of parentheses.

Assembler Action: The value of the expressicr is set tc 0.

Erogrammer Response: Rewrite the expressicn tc reduce the
nunber cf levels of rarentheses, cr use a rreliminary statement
(such as an EQU) tc rpartially evaluate the expression.

Severity Code: 8

FREMATURE ENL OF EXPRESSION NEAR OPERAND COLUMN nn

Explanaticn: An exrression in this statement ended rrematurely
due to cne cf the following errcrs:

Unpaired rarenthesis

Illegal character

Illegal crerator

Cperator not followed tky a ternm

Assenbler Acticn: The value of the expression is set to 0.

Prcgranmwer Response: Check the expression for omitted or
mispunched characters or terms.

Severity Code: 8

)

-

e

IF0235

IFO236

IFC237

IF0238

ARITHMETIC OVERFIOW NEAR CFERANC COLUMN nn

Explanation: The intermediate value ¢f a term cr an expressicn
is nct in the range -231 through 231-1.

Assernblexr Acticn: The value of the expression is set to 0.

Prcgranmer Resronse: Rewrite the expression or term. The
assembler computes all values using fixed-point full-word
arithmetic. Or, perform arithretic operaticns in a different
sequence tc avcid cverflow.

Severity Ccde: 8

ILLEGAL CHARACTER IN EXFRESSICN NEAR OPERANLC COLUMN nn
Explanation: Syhtax error. A character in an expression has no
syntactic meaning in the context used; the assemkler cannot
determine if it is a symkol, an cperatcr, cr a delimiter.

Assembler Action: The value of the exrression is set to 0.

Prcgranmer Resronse: Check the expression for unpaired
parentheses, invalid delimitexr, invalid operator, or a character
(possibly unprintakle) that is nct reccgnized by the assembler.
The 51 characters recognized ky the assermbler are:

Letters: A through Z and § # 2

Cigits: 0 through 9

Special Characters: + - , = . % () ' / &
Elank

Severity Ccde: 8

CIRCULAR LCEFINITION

Exrlanaticn: The value of the first expression in the operand
field of an EQU statement is dependent upon the value of the
symbol being defined in the name field.

Assenbler Action: The value of the expression defaults to the
current location counter value.

Erogrammer Response: Remove circularity in the definiticn.

Severity Code: 8

ILLEGAL AMPERSAND IN SEILF-DEFINING TERM NEAR OPERANLC CCLUNMKN nn

Explanation: An ampersand in a self-defining term is unpaired
and/or not part of a quoted character string.

Assembler Action: The value of the expressicn ccntaining the
self-defining term is set to 0.

Prcgranmer Resronse: Check that all ampersands in the term are
paired and part of a quoted character string. (The only valid

Appendix G. Assembler Liagncstic Errdr Messages 133

IFO239

IFC240

IFO241

IFO242

134

use cf a single ampersand is as the first character of a

variable symkol.) Note that ampersands rrcduced by substitution

nust alsc be raired.

Severity Code: 8

INVALID FLOATING PCINT CHARACTERISTIC

Explanation: A ccnverted floating-point constant is too large

or too small for the field assigned to it. The allowakle range

is 7.2x1075 to 5.3x10-77.

Assenrblexr Acticn: The floating-point constant is assemkled to 0.

Prcqgrammexr Resgonse: Check the characteristic (exponent),
exponent modifier, scale modifier, and mantissa (fraction) for
validity. Rememker that a floating-pcint ccrstant is rounded,
not truncated, after conversicn.

Severity Ccde: 8

CHARACTER STRING OR SELFLEFINING TERM TERMINATED BEFORE ENDING
QUOTE FOUND

Explanation: The assemkler has fcund what arrears tc be a
qucted character string or a self-definirng term, but the
clcsing qucte is missing, or an illegal character is found
before the closing quote. v

Assenbler Acticn: The term or expression is igncred.

Erogrammer Response: Supply the missing qucte cr check fcr
cther syntax errcrs.

Severity Ccde: 8

SECONLC OPERANL OF CCW NOT EBETWEEN 0 and X'FFFFFF'

Exrlanaticn: The second operand ¢f a CCW instruction, which
srecifies the data address, is cutside the range cf 0 tc
X'FFFFFF"'.

Assembler Action: The low-order three bytes cf the crerand are.

used.

Programmer Response: Supply a corrgct term or expression for
the second operand.

Severity Code: 8

SPACE OPERAND NOT A SINGLE PCSITIVE DECIMAL SELFLEFINING TERNM

Explanaticn: The orerand of a SFACE instruction is not a zero
or positive decimal self-defining term.

IFO243

IFO244

IF0246

Assenbler Acticn: The SPACE statement is processed as a comment.

Prcqgranmwer Response: Use a single decimal self-defining term
with a zero or positive value. '

Severity Code: 4,

FIRST CCW OPERAND IS NEGATIVE

Explanation: The first operand (ccmmand ccde) cf a CCW
instruction is negative. The value of the operand must ke in
the range 0-255.

Assembler Acticn: The CCW is processed as a comment.

Prcqranmer Resronse: Supply an operand with a value in the
range of 0-255.

Severity Code: 8

BITS 38 AND 39 OF CCW CFERAND NCT ZERO

Explanation: The bits specified as bits 38 and 39 of a CCW
instruction are not zero.

Assembler Action: The kits are set as specified.

Frogrammer Response: Correct the third crerard cf the CCw
instructicn.

Severity Ccde: 8

LOCATION COUNTER OVERFLOW

Exrlanaticn: The locaticn counter is greater than X'FFFFEF'
(224-1) , the largest address that can be contained in 3 Lytes.

Assembler Acticn: The location counter is 4 kytes long (only 3
bytes appear in the listing and the object deck) . The overflcw
is carried into the high-order kyte and the assembly ccntinues.
Hewever, the resulting code will probably not execute correctly.

Programmer Response: The probable cause of the error is a high
ORG statement value or a high START statement value. Correct
the value or split up the contrcl secticn.

Severity Ccde: 8

Arpendix G. Assembler Ciagnostic Error Messages 135

IFO254

IF0255

IF0256

IF0257

136

ILLEGAL FORMAT OF SECONLC OPERANLC OF END STATENMENT

Fxrlanaticn: Seccnd operand of END instructicr is inccnsistent
with the fcrmat required.

Assenbler Acticn: Second orerand ignored.

Prcgranmer Response: Correct the operand.

Severity Ccde: 8

FIXEL OR FLOATING POINT EXPRESSION ERROR NEAR OFERAND CCLUNK nn

Exrlanaticn: An error occurred during conversion of a decimal
number into a. fixed-point or floating-point numker.

Assembler Action: The numker is assembled as zexcs.

Frogrammer Response: Check the scale and exrpcrent ncdifier of
the number fer validity.

Severity Ccde: 4

SYSGO LrC CARLC MISSING -- NOOBJECT OPTION USEL

Exrlanaticn: A DD statement for the SYSGO data set is not
included in the JCI for this assembly. The SYSGO data set
normally receives the okject rcdule cutput cf the assermbler
when it is tc be used as input to the linkage editor or loader,
executed in the same jok.

Assenbler Acticn: The program is assembled using the NCCEBJECT
option. No output is written on SYSGO. If the LECK option is
specified, the okject module will ke written cn the device
srecified in the SYSPUNCH DD statement.

Frogrammer Response: Optional. If the assernkly is errxcr free
and the ckject mcdule has keen prcduced cn SYSPUNCH, ycu can
execute it withouf reassembling. Ctherwise, reassemkle the
program and include a SYSGO LrC staterment in the JCL cr use a
cataloged rrccedure that includes it. (See the section “The
Assembler Cataloged Procedures" in this manual.)

Severity Ccde: 16

SYSPUNCH CLC CARLC MISSING -- NODECK OPTION USED

Explanaticn: A DD statement for the SYSPUNCH data set is not
included in the JCL for this assembly. The SYSPUNCH data set
is normally used when the okject nmodule cf the assermbly is
directed tc the card punch.

Assembler Action: The program is assenbled using the NOLECK
crticn. Nc deck is punched on SYSPUNCH. If the CBJECT crticn
bas been specified, the object module will be written on the
device specified in the SYSGO Lr statenernt.

Prcgranrer Response: Optional. The object module can be link
edited and executed from SYSGO instead cf SYSPUNCH by adjusting
JCL. Otherwise, if you want a punch data set, reassemkle the

TN

:;D

IFC258

IF0260

prcgram with a SYSPUNCH LLC statement.

Seve;ity Ccde: 16

INVALILC ASSEMELER OPTION ON EXEC CARD -- OPTICN IGNCRED

Explanaticn: One or more of the assembler options specified in
the PARM field of the EXEC statement are invalid. The error
may be caused Ly use of the wreng orticn, a misspelled crtion,
cr syntax errcrs in coding the options.

Assenbler Acticn: Invalid cptions are ignored. ‘The assemkly is
performed using the valid cptions.

Erogrammer Response: Check the srelling cf the cpticns, the
length of the option list (100 characters maximum) , and the
syntax of the option list. The crticns must ke serarated by
conmras, and rarentheses in the option list (including SYSPARM)
must be paired. Two quotes or arrpersands are needed tc
represent a single quote or ampersand in a SYSPARM character
string. The section "Asserxkler Ortiocns" in this mranual
describes the assembler options and how to code them.

Severity Code: 16

ASSEMBLY TERMINATED --~ DD CARD MISSING FCR SYSXXxX

Explanation: This assemkler jck ster cannct ke executed because
a LT statement is missing for cne of the fcllcwing assembler
data sets: SYSUT1, SYSUT2, SYSUT3, or SYSIN. The missing LT
statement is indicated in the message text.

Assenmblexr Acticn: The assembly is terminated kefore any
statements are assemkled. No asserkler listirg is prcduced, so
this message is printed on the system output unit following the
job control language statements fcr the assenkly jcb ster and
cn the creratcr's console.

Erogrammer Response: Supply the missing DD statewent and
reassemble the program. The catalcged prccedures supplied by
IBM ccntain all the required LLC statements. They are descriked
in the section "The Assemkler Catalcged Prccedures"™ in this
nanual.

If the proklem recurs, do the fcllowing kefcre callirng IEM:

° Have your source program, macro definitions, and associated
listings availakle.

(] If a COPY statement was used, execute the IEBPTPCH utility
to obtain a copy of the partitioned data set memker
specified in the COPY statement.

] Make sure that MSGLEVEI= (1, 1) was specified in the JCB
statement.

Creratcr Resgpcnse: If possikle, surrly the missing DD statement
in the JCL statements for the assembly and run the job again.

Severity Code: 20

Arrendix G. Assembler Piagnostic Error Messages 137

IF0261

IFC262

138

ASSEMELY TERMINATEL -- PERM I/0 ERROR jcbnare, stername, unit
address, device tyre, ddname, operation attempted, errcr
description

Explanaticn: A rpermanent I/0 error occurred on the assembler
data set indicated in the message text. This message, produced
by a SYNALAF macro instruction, alsc ccntains ncre detailed
infcrmaticn abcut the cause of the error and where it occurred.

Assembler Action: The asserkly is terminated. Derending on
where the errcr occurred, the asserxkly listirg ug tc the pcint
cf the I/0 exrrcr may be produced. If the listing is produced,
this message aprears on it. If the listing is nct prcduced,
this message appears on the operator's console and on the
system output unit following the jok ccntrcl language
statements fcr the assembler job step.

Frogrammer Response: 1f the I/C errcr is cn SYSIN cr SYSLIE,
you may have concatenated the input or library data sets
incorrectly. Make sure the LD statement fcr the data set with
the largest blccksize (BLKSIZE) is placed in the JCL kefore the
LLC statements of the data sets concatenated tc it. Alsc, make
sure that all input or likrary data sets have the same device
class (all DASD cr all tare).

In any case, reassemble the prcgram: it may assemkle correctly.
If the proklem recurs, do the fcllowing kefcre calling IBM:

) Have your source program, macro definitions, and associated
listings availakle.

e If a COPY statement was used, execute the IEBPIPCH utility
to obtain a copy of the partitioned data set memker
specified in the COPY statement.

e Make sure that MSGLEVEI= (1, 1) was specified in the JCB
statement.

Creratcr Resgcnse: If the 1/0 errcr is cm SYSU1I1, SYSUT2, or
SYSUT3, allccate the data set tc a different vclume and rerun
the jcb. If the 1/C error is on tape, check the tape for
errors.

Severity Ccde: 20

ASSEMELY TERMINATEL <- INSUFFICIENT MAIN STORAGE

EFxrlanaticn: The main storage allocated tc the asserbler is not
encugh fcr assemkler takles, working stcrage, and/cr utility
file buffers.

Assembler Action: The asserkly is terminated.

Erogrammer Response: Increase the size cf the regicn cr
partiticn allccated to the assenkler. Reassenktle the prcgram.
If the rrcblem recurs, do the following before calling IEM:

° Have your source program, rmacro definitions, and associated
listings availakle.

° Make sure that MSGLEVEL=(1,1) was specified in the JCB
statement.

&

/\\
S

IF0263

IFO264

Orerator Resgcnse:

° Increase the size-of the region allocated on the JOB card
or on the EXEC card for the assemblexr jck ster and rerun
the jcb; cr

] Run the job in a larger partition.

Severity Code: 20

ASSEMBLY TERMINATED -- PROGRAM LOGIC ERROR

Explanaticn: The assembly has been abnormally terminated
because of a logic error within the assembler.

Assembler Action: Aknormal terminaticn. Nc assembler listing
is prcduced; the assemkler prints this message cn the system
outrut device following the JCL statements for the assemkler
job step. '

Prcgrarmexr Resgonse: Do the following before calling IBN:

e Have ycur source program, macro definitions, and associated
listings availakle.

e If a COPY statement was used, execute the IEBEFTPCH utility
‘program to obtain a copy of the partitioned data set memker
specified in the operand field cf the COPY statement.

e Make sure that MSGLEVEL=(1,1) was specified on the JCB
statement.

Severity Ccde: 20

TOO MANY ESD ENTRIES

Explanation: More than 399 entries Lhave keen nmade in the
external symkcl dictionary. Entries in the external symbol
dicticnary are made for the following: control sections, dummy
sections, external references (EXTIRN and WXTIRN), ENTRY symbols,
and external dummy sections.

Assenbler Acticn: Entries over the 399 limit are nct added to
the dicticnary and linkage is nct provided fcr ther.

Prcgranmer Response: Subdivide your program and reassemkle each
section individually. Be sure that there are not more than 399
ESTC entries in each assemkly.

Sevexity Ccde: 16

Arpendix G. Assembler LCiagnostic Error Messages 139

IF0265 SYMEOL RESOLUTION CATA AREA HAS BEFEN EXHAUSTELD

Exrlanaticn:

° Too many literals have keen enccuntered since a LICRG
statemrent was encountered, and the assemkler has filled (/\\
available work space with literals; cx /

° The assemkler has filled available wcrk srace with ESC
entries.

Assembler Action: No assembly is performed.

Frogrammer Response: t

) Insert more LTORG statements in the scurce deck cr allocate
mcre wcrking storage to the assembler; or

° 1f there are more than 399 ESC entries ir ycuxr source
module, segment it into several mcdules.

Severity Ccde: 16

IFC266 LAST ASSEMELER PEASE LOALCEL WAS XXXXXXXX

Exrlanation: This message. is issued by the akcrt rcutine when
the assemkly is aknormally terminated.

Assenblexr Action: Abnormal termination.

Prcgranmer Resgonse: Correct problems indicated ky other errcr
messages and reassemble.

Severity Code: 4 A

IF0267 SYSPRINT DD CARD MISSING ~-- NCLIST CPTION USEL

Explanation: The LIST option is specified, but the LT statement
for the SYSPRINT data set is not included in the JCL for this
assembly. The SYSPRINT data set hclds the ckject mcdule cutput
cf the assembly normally directed to the printer.

Assembler Action: The program is assembled using the NOLIST \
crticn. The message is printed cn the systen cutrut device

fcllcwing the JCI statements for the assembler jok step and on

the operator's console.

Prcgranmer Resgconse: If you want a listing, reassemkle the
program with a SYSPRINT LD statement. Otherwise, do not
specify the LIST option.

Crexratcr Respcnse: Supply, if possiktle, SYSERINT DD carxd for
the asserbler jok ster and rerun the jck.

Severity Ccde: 16

=

140

~e

IFC268

IF0269

SYSTERM LLC CARL MISSING - NOTERMINAL QPTION USEL

Explanation: The TERMINAL opticn is srecified, but the DO
statement fcr the SYSTERM data set is nct included in the JCL
staterents fcr this assembly. The SYSTERM data set contains
diagnostic information ocutput of the assernbly, ncrrally
directed tc a rermote terminal.

Erogrammer Response: If you want a SYSTERM listing, reassemble
the program with a SYSTERM DD statement. Otherwise, do not
specify the TERMINAL option.

Cperator Response: Supply, if pcssikle, a SYSTERM DD card for
the assembly step and rerun the job.

Severity Code: 16

SYSLIB DD CARD MISSING

Explanation:

o A COFY instruction appears in the assenbly, but nc SYSLIE
LT statement is included in the JCL statements; cr

° An operation code that is not a machine, assemkler, cr
source macro instruction creration ccde arrears in the
asserbly, but no SYSIIB DD statement is included in the JCL
statements. The assemktler assumed the creraticn ccde tc be
a library macrc operation code.

Assemblexr Action:

° The COPY instruction is ignored; cx

° The operation code is treated as an undefined operation
ccde.

Programmer Response: Supply the missing LLC statement or correct
the invalid operation ccde.

Severity Code: 16

Appendix G. Assembler TCiagnostic Error Messages 141

~s

_/

_J

.assembler data sets

Index

Indexes to systems reference library manuals are consolidated in the publication OS/VS Master Index, Order Number GC28-0602.

—_— S e

For additional information on any subject listed below, refer to other publications listed for the same subject in the Master Index.

adding macro definitions to a library 50
ALGN option 22

ALIGN option 23

alignment of instructions and data (see
ALIGN option)

ALOGIC option 18

ASMFC
description 24-25
example of use 13-14,32,33
ASMFCG
description 30-31
example of use 14-15
ASMFCL
description 26-27
example of use 33
ASMFCLG
description 28-29
example of use 32,33
assembler

dynamic invocation of 70,22
name of 16
purpose 7
assembler cataloged procedures
72-74
Assembler F, compatibility 8
assembler language 7
assembler listing 34-46
cross reference 42-44
diagnostics 45-46
external symbol dictionary
literal cross reference 44
relocation dictionary 41
source and machine language
statements 38-40
statistics 45-46
symbol cross reference
assembler options
description 15-23
how to specify 16-17
assembler sample program 57-64
assembler speed and capacity 73
assembler storage requirements
assembler work space 22,73
assembly, JCL for (see ASMFC)
assembly and execution, JCL for (see
ASMFCG; ASMFCLG)
assembly and link editing, JCL for (see
ASMFCL)
assembly, link editing and execution, JCL
for (see ASMFCLG)
assembly and loader-execution, JCL for
(see ASMFCG)
ATTACH macro 70

23-33

36-37

42-43

73-74

base register, establishing 47
BLKSIZE for assembler data sets 73
blocking and buffering information 73
buffer size

of SYSIN, SYSLIB, SYSPRINT, SYSGO,

SYSPUNCH 73
of SYSUT1l, SYSUT2, and SYSUT3 73
(see also BUFSIZE option)

BUFNO for assembler data sets 74
BUFSIZE option 22,73

CALL macro 70
cataloged procedures
description 12
assembler 23-33
(see als6 ASMFC, ASMFCG, ASMFCL, ASMFCLG)
overriding parts of 32-33
changing parts of cataloged
procedures 32-33
COBOL (see problem-oriented languages)
compatibllity with Assembler F 8
COND parameter 80
conditional assembly statements in listing
(see ALOGIC option, MLOGIC option)
conventions for linking 49
COPY instruction 50
cross reference listing 42-44

data sets, assembler
SYsSGo 73,74
SYSIN 72,74
SYSLIB 72,74
SYSPRINT 71,72,74
SYSPUNCH 73,74
SYSTERM 73,74
SYsUT1l, SYsSUT2, SYSUT3 73,74
data set characteristics, assembler 74
DD statements, overriding 32-33
DECK option 20
default values for assembler options 15
diagnostic messages
explanations 78-141
in listing 45-46
special data set for (see SYSTERM
listing)
suppressing (see FLAG option)
on terminal (see SYSTERM listing)
diagnostics 45-46
DOS option 23

and

72-74

Index 143

dynamic invocation of assembler 70,22
dynamic invocation of IBM-supplied
program 49

effective address 40
END card, object module 67
END instruction to specify entry point 48
entry point 48
error messages (see diagnostic messages)
ESD (see external symbol dictionary)
ESD card 65
ESD option 18
ESDID (external symbol dictionary identifi-
cation number) 37,42
example of assembler language
program 57-64
examples of cataloged
procedures 13-15,32-34
EXEC statement, overriding parts of 32
execution of user program 8
external symbol dictionary 36-37

El

FLAG option 18
FORTRAN (see problem-oriented languages)

H

High-level language (see problem-oriented
languages)

IEBUPDTE utility program 50

inner macro instructions, listing of (see
MCALL option; MLOGIC option)

input to the assembler 7

=

JCL (job control language) 10

job 10

job control language 10

job control statements for assembler
jobs 13-33

job step 10

LIBMAC option 19,78
library macro definitions
adding to library 50
errors in 45-46
(see also LIBMAC option)
listing of (see LIBMAC option)
library maintenance, macro 50
LINECNT option 23
LINECOUNT option 18
LINK macro 70
linkage conventions 47
linkage editor
choosing entry point 48
examples 32,33
purpose 8

144

linkage registers 47
linking with modules produced by other
language translators 48
linking with IBM-supplied programs 49
LIST option 18
listing control options 18-19
literal cross reference listing 44
literals in listing 38,44
load module 8
load module modification - entry point
restatement 48
LOAD option 23
loader
example of use
purpose 8
location counter in listing 40
LRECL for assembler data sets 74

machinhe language code in listing 40
macro definitions, library (see library
macro definitions)

14-15

macro instructions in listing, inner (see

MCALL option; MLOGIC option)
macro library 50
(see also SYSLIB)

MCALL option 18
messages (see diagnostic messages,
statistics)
message identifier number
message text 46,78
MLOGIC option 18,79
MNOTE message 18

Name of assembler 16
NOALIGN option 22
NOALOGIC option 18
NODECK option 20
NOESD option 18
NOLIBMAC option 19
NOLIST option 18
NOMCALL option 18
NOMLOGIC option 18
NONUMBER option 21
NOOBJECT option 20
NORENT option 22
NORLD option 19

46,78

NOSTMT option 21,75
NOTERMINAL option 21,75
NOTEST option 20

NOXREF option 19

NUM option 21

NUMBER option 21,75

OBJ option 20
object code in listing 40

object deck output 65-69
END 67
ESD 65
RLD 66-67
SYM 67-69
TXT 66

-

N

e

wn

N

S

object module
definition 7

records of 65-69
object module linkage 48
OBJECT option 20

options, assembler (see assembler options)
options in listing 46
output control options 20
output from assembler 7
overriding parts of cataloged
procedures 32-33

page size, assembler listing (see LINECOUNT
option)
PARM field
(see also assembler options)
acquiring information in 49
coding rules 16-17
overriding in cataloged
procedures 16,32
performance, influencing (see assembler
speed and capacity)
PL/I (see problem-oriented languages)
PRINT instruction 38,40
problem-oriented languages, linking
with 48
procedures, cataloged (see cataloged
procedures)
program design 47
program listing (see assembler listing)

RECFM for assembler data sets 74
recurring errors 80
reentrability check 22
relocatable constants 41
relocation dictionary 41

RENT option 22

return code 80

RLD (see relocation dictionary)
RLD card 66-67 :

RLD option 19

Sample program
Save area 47

Saving registers 47
Severity code 80,46

57-64

source and machine language statements in

listing 38-40
source module 7
source statement in listing
statement number 40,46,78
statistics listing 45-46
step 10
storage requirements, virtual 73
STMT option 21,75
SYM card 67-69
symbol cross reference listing 42-43
SYS1.MACLIB 50,72
SYSGO data set 73,74
SYSIN data set 72,74
SYSLIB data set 72,74
SYSPRINT data set 71,72,74
SYSPUNCH data set 73,74
SYSTERM data set 73,74
SYSTERM listing 75-77
SYSTERM options 21
SYSUT1, SYSUT2, SYSUT3 data sets

TERM option 21

TERMINAL option 21,75

terminal output (see SYSTERM listing)
TEST option 20

Time Sharing Option 75

TSO (see Time Sharing Option)

TXT card 66

use of assembler cataloged

procedures 13-15,32-33

utility data sets 72,74
(see also BUFSIZE option)

38-40

72,74

<

virtual storage requirements 73

B

work space, assembler 22,73

K

XCTL macro 70
XREF option 19

Index

145

GC33-4021-1

BV

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017

(International)

((SA/SO) 12-0£ES ~*1 31d) 8pinD s JawweiBoly Jajquiassy SA/SO

L-120¥-€€0D 'V'S'N Ul paluliy

"

-

o

-

+ 3NM 0311040 ONOV 1ND » * -

0S/VS Assembler READER'S
Programmer's Guide COMMENT
FORM

Order No. GC33-4021-1

Your views about this publication may help improve its usefulness; this form
will be sent to the author’s department for appropriate action. Using this

form to request system assistance or additional publications will delay response,
however. For more direct handling of such request, please contact your

IBM representative or the IBM Branch Office serving your locality.

Reply requested: Name:
Yes E Job Title:
No Address:

Zip

Thank you for your cooperation. No postage stamp necessary if mailed in the U.S.A. (Elsewhere, an IBM office
or representative will be happy to forward your comments.)

GC33-4021-1

Your comments, please . . .

This manual is part of a library that serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your comments on the other side of this
form will be carefully reviewed by the persons responsible for writing and publishing
this material. All comments and suggestions become the property of IBM.

...

Permit 40

Business Reply Mail
No postage stamp necessary if mailed in the U.S.A.

...

Fold

JOSIME

Postage will be paid by:

International Business Machines Corporation
Department 813 L

1133 Westchester Avenue

White Plains, New York 10604

International Business Machines Corporation

Data Processing Division

1133 Westchester Avenue, White Plains, New York 10604

(U.S.A. only)
IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017

(International)

Fold

* 3NIT DNOV Q104 HO LN °

“3]14) aping s Jswiweiboly 13|quisssy SA/SO

((SA/SO) Lz-0L85

L-120P-€E0D °V'S'N Ul palulig

wi

