
Systems

GC33·4021·3
File No. S370-21 (OS/VS, VM/370)

OS/VS-VM/370 Assembler
Programmer's Guide

Page ofGC33-4021-3
Revised February 15, 1976
By TNL: GN33-8205

Fourth Edition (October, 1975)

This is a major revision of, and obsoletes, GC33-4021-2 and Technical Newsletters
GN33-8186 and GN33-8194. Changes to the text and to illustrations are indicated
by a vertical line to the left of the change.

This edition applies to release 5 of OSjVS 1, release 3 of OSjVS2, and release 3 of
VMj370, and to all subsequent modifications until otherwise indicated in new
editions or Technical Newsletters. Changes are continually made to the
specifications herein; before using this publication in connection with the operation
of IBM systems, consult the latest IBM System/360 and System/370 Bibliography,
GA22-6822, for the editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM representative
or to the IBM branch office serving your locality.

A form is provided at the back of this publication for readers' comments. If the
form has been removed, comments may be addressed to IBM Nordic Laboratory,
Product Communications, Box 962, S-181 09 Lidingo 9, Sweden. Comments
become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973, 1974, 1975

2

Read This First

This Manual and Who It Is For

This manual is for programmers who code in the assembler language. It
is intended to help you assemble, link edit, and execute your program;
to choose and specify the assembler options you need; and to interpret
the listing and the diagnostic messages issued by the assembler.
This manual also serves as a guide to information contained in other
pUblications which is of importance to you as an assembler-language
programmer. To use this manual you should have a basic understanding of
the operating system as described in Introduction to OS, Order No.
GC28-6534 and VM/370 Introduction, Order No. GC20-1800. You should also
have a good understanding of the assembler language as described in
OS/VS - DOS/VS - VM/370 Assembler Language, Order NO. GC33-4010.

OTHER MANUALS YOU WILL NEED

In addition to OS/VS - DOS/VS - VM/370 Assembler Language, you should
have the following publications available when using this manual:

System/370 Principles of Operation, Order No. GA22-7000
VS1 JCL Reference, Order No. GC24-5099
VS2 JCL, Order No. GC28-0692
VS JCL Reference, Order NO. GC28-0618
OS/yS Linkage Editor and Loader, Order No. GC26-3813

How This Manual Is Organized

This manual has six main sections and seven appendixes:

Introduction describes the purpose of the assembler, its relationship to
the operating system, and its input and output. It also describes how
the operating system processes your program and reviews the concepts of
job, job step, job control language, and cataloged procedures.

Job Control Statements for Assembler Jobs shows you how to invoke the
assembler for simple jobs (using cataloged procedures); describes the
assembler options and how to specify them; lists the job control
statements that make up the four assembler cataloged procedures; and
gives examples of how to use the cataloged procedures for more complex
jobs.

The Assembler Listing tells you how to interpret the printed listing
produced by the assembler.

3

Programming Considerations serves as a guide to information contained in
other pJrogramming manuals which you will find useful as an
assembI4~r-Ianguage programmer. Among the topics discussed are:

• Designing your program
• Specifying the entry point
• Linking with modules written in other languages
• Linking with processing programs

Adding r~acro Definitions to a Library tells you how to catalog macro
definitions in the system macro library or in a pri va te library.

Assembler Language programming under CMS ~onversional Monitor System)
is for programmers using the CMS operating system. Where OS information
differs from OMS information (for example, the SYSTERM listing), a
separat4e version of the information is located in the section for CMS
users. ~rwo manuals will provide useful when you are using CMS, VM/370:
Command Language Guide for General Users, Order No. GC20-1804, and
VM/370: Edit Guide, Order NO. GC20-1805.

Six of ·the following seven appendixes, apply to both OSjVS and VM/370.
Appendix F applies only to OSjVS~ The SYSTERM listing for VM/370 is
discuss,ed in 'Assembler Language Programming under the CMS'.

Appendix A gives definitions of terms used in this manual.
Appendix B gives the listing of t.he assembler sample program.
Appendix C shows the detailed format of the object deck.
Appendix D tells you how to invoke the assembler dynamically from a
problem program.
Appendix E describes the data sets used by the assembler and the
assembler's storage requirements~
Appendix F describes the SYSTERM listing for OSjVS.
Appendix G explains the diagnostic messages issued by the assembler.

4

Contents

INTRODUCTION • • • • • • • • • •
Purpose of the Assembler • • • •
Relationship of the Assembler to the Operating System
Input • • • • •
Output • • • • • • • • • • • • •
Compatibility •• • • • • • • •
How the Operating System Handles Your Program

Assembler • • • •
Linkage Editor
Execution of Your Program
Loader •••••

Job Control Language and Cataloged Procedures
Jobs and Job Steps
Job Control Language •••• • • • • • • • • • •

JOB CONTROL STATEMENTS FOR ASSEMBLER JOBS
Simple Assembly and Execution

Assembly •• • • • • •
Assembly and Execution

Assembler Options • • • •
What Assembler Options Are
How to Specify Assembler Options

The Assembler Cataloged Procedures • • • • • •
Assembly (ASMFC) •••••••••
Assembly and Link Editing (ASMFCL)
Assembly, Link Editing, and Execution ~SMFCLG)
Assembly and Loader-Execution (ASMFCG)
Examples •••••• • • • • • • • •

THE ASSEMBLER LISTING • • • • • • • •
External Symbol Dictionary (ESD) • • • •
The Source and Machine Language Statements • • • • •

Source Statement Fields • • • • •
Relocation Dictionary (RLD)
Symbol Cross Reference • •
Literal Cross Reference
Diagnostics and Statistics •

PROGRAMMING CONSIDERATIONS •

• • • • III!

Designing Your Program • • • • • • •
Specifying Your Entry Point into Your Program
Linking with Modules Produced by Other Language Translators
Linking with IBM-Supplied Processing Programs

ADDING MACRO DEFINITIONS TO A LIBRARY

ASSEMBLER LANGUAGE PROGRAMMING UNDER CMS
Introduction ~ • • • • • • • • • • • • • •
Creating an Assembler Language Program: The CMS Editor.

Overriding CMS File Defaults ••••••••
Assembling Your Program: The Assemble Command

ASSEMBLE Command Format • • • • • • • • • • •
Using SYSPARM. Under CMS ••••••• • • • • • • • • • • •
OMS Management of Your Assembly • • • • • • • • • • • •
Loading and Executing Your Assembler Program • • • • • • • • •

CMS Register Usage During Execution of Your Program •
Passing Parameters to Your Assembler Language Program • •

Assembler Macros Supported by CMS • • • •
Creating a Module of Your Program • • • • • • • • • • •

9
9
9
9
9

10
10
10
10
10
11
12
12
13

14
14
14
15
16
16
17
23
24
26
28
30
32

34
36
38
38
40
41
42
44

46
46
47
47
48

49

50
50
51
51
53
53
57
57
59
59
59
59
60

5

programming Aids • • • • • • • • • • • • • • • •
Assembler Data sets and Storage Requirements
The CMS SYSTERM Listing • • • • • •
Diagnostic Messages Written by CMS
Assemble Command Error Messages

APPENDIX A: GLOSSARY • • • •

APPENDIX B: ASSEMBLER SAMPLE PROGRAM •

APPENDIX C: OBJECT DECK OUTPUT · ESD Card Format · . · · · · TXT Card Format · · · · · · · · · RLD Card Format · · · · · · . END Card Format · . . . · · · · SYM Card Format · · · · ·
APPENDIX D: DYNAMIC INVOCATION OF THE ASSEMBLER

. .

APPENDIX E: ASSEMBLER DATA SETS AND STORAGE REQUIREMENTS •
Assembler Data Sets •
Assembler Virtual Storage Requirements • • • ~ • •

APPENDIX F: THE SYSTERH LISTING FOR OSjVS

APPENDIX G: ASSEMBLER DIAGNOSTIC ERROR MESSAGES
How to Use this Section • • • • •
Recurring Errors • • • • • • • •

INDEX

6

60
60
61
63
63

67

73

81
81
82
82
83
83

86

88
88
89

91

94
94
96

159

Figures

Figure 1. How the Operating System Handles Your Program
Figure 2. Jobs and Job Steps •••••••••
Figure 3. The Cataloged Procedure Concept •••
Figure 4. The Assembler Options (Part 1 of 5)
Figure 5. Cataloged Procedure for Assembly ~SMFC)
Figure 6. Cataloged procedure for Assembly and Link
Editing (ASMFCL) •••••• • • • • • • • • •

Figure 7. Cataloged Procedure for Assembly, Link Editing, and
Execution (ASMFCLG) • • • • • • • • • • • • • • • • •

Figure 8. Cataloged procedure for Assembly and Loader-Execution
(ASMFCG) •••••••••• • • • • • • • •

Figure 9. Assembler Listing • • ••••••
Figure 10. External Symbol Dictionary •••••••
Figure 11. Source and Machine Language Statements
Figure 12. Relocation Dictionary •••••••
Figure 13. Symbol Cross Reference ••••
Figure 14. Literal Cross Reference •••••••••
Figure 15. Diagnostics and Statistics •••••
Figure 16. Minimum Requirements for a Simple Program
Figure 17. Files Created During Assembly •••
Figure 18. SYSTERM Listing. • • • • • • • • • • • • • •••
Figure 19. Assembler Sample Program (Part 1 of 11) ••••
Figure 20. SYM Card Format ••••••••••
Figure 21. Assembler Data Set Characteristics •
Figure 22. SYSPRINT Listing of the Source Statements Used to Show

SYSTERM Output •
Figure 23. SYSTERM Listing Produced for the Source Statements

Shown in Figure 22 • • • • • • • • • • • • • • • • • • •

7

11
12
13
19
25

27

29

31
35
37
39
40
42
43
45
47
58
62
73
85
90

92

93

Introduction

This section describes the purpose of the VS Assembler, its relationship
to the operating system, and its input and output. It also tells you
how the operating system processes your assembler language program and
reviews the concepts of job, job step, job control language, and
cataloged procedure.

Purpose of the Assembler

The purpose of the VS Assembler is to translate programs written in the
assembler language into object modules, that is, code suitable as input
to the linkage editor or loader.

Relationship of the Assembler to the Operating System

The VS Assembler is supplied with the OS/VS control program package. In
the same way as the linkage editor or loader, it is executed under
control of the OS control program. For a complete description of the
relationship between a processing program and the various components of
the control program, refer to Introduction to os.

Input

As input the assembler accepts a program written in the Assembler
language as defined in Assembler Language. This program is referred to
as a source module. Some statements in the source module ~acro or COpy
instructions) may cause additional input to be obtained from a macro
library.

Output

The output from the assembler consists of an object module and program
listing. The object module can either be punched, or included in a data
set residing on a direct-access device or a magnetic tape. From that
data set the object module can be read into the computer and processed
by the linkage editor or loader. The format of the object module is
described in Appendix C.

The program listing lists all the statements in the module, both in
source and machine language format, and gives other important
information about the assembly (such as error messages). The listing is
described in detail in the section "The Assembler Listing".

Introduction 9

CompaUbility

The language supported by the VS Assembler is compatible with the
language supported by the OS Assembler F. All programs which assemble
error-free under Assembler F will also assemble error-free under the VS
ASsembler. However, the resulting object code may in odd cases be
different because of the extended features of the language supported by
the VS Assembler (the extended attribute reference and SETC facilities) •

How the Operating System Handles Your Program

Once you have coded and punched your program, it must be processed by
the assembler and the linkage editor or loader before it can be
executed. (See Figure 1.)

ASSEMBLER

The assembler translates your source module into an object module, the
machine language equivalent of the source module. The object module,
however', is not ready for execution; it must first be processed by the
linkage editor or loader.

LINKAGE: EDITOR

The linkage editor prepares your program for execution. The output of
the linkage editor is called a load module and can be executed by the
computer. The linkage editor can combine your program with other object
modules. and load modules to produce a single load module. The linkage
editor stores your program in a load module library, a collection of
data sets on a direct-access device. These load modules can be read
into the computer and and given control. The load module library may be
either permanent, so that you can execute your program in later jobs, or
temporary, so that the program is deleted at the end of your job.

EX ECUT ION 0 F YOUR PROGRAM

Once you have included your program in a permanent load module library,
you can. execute it any number of times wi thout assembly and linkage
editing. However, if you need to change your program, you must assemble
and linkage edit it again. Therefore, you should not store your program
in a permanent load module library until it has been tested properly.
To save time during test runs, you can use a program that combines the
basic functions of the linkage editor with the execution of your
program.. That program is the loader.

10

LOADER

The loader performs most of the functions of the linkage editor; in
addition, it loads your program into the computer and passes control to
your program. The loader cannot, however, include your program in a
load module library. For a full description of the linkage editor and
loader, refer to Linkage Editor and Loader.

The object module is read
into either the linkage
editor or the loader for pro
cessing.

The linkage editor output, the
load module, is placed on a
load module library.

puter for execution.

COMPUTER

ASSEMBLER

LOADER

LINKAGE
EDITOR

YOUR
PROGRAM

Figure 1. How the Operating System Handles Your Program

SOURCE
MODULE

Introduction 11

Job Control Language and Cataloged Procedures

JOBS AND JOB STEPS

Each ti.me you request a service from the operating system, you are
asking it to perform a job. A job may consist of several steps, each of
which usually involves the execution of one processing program under the
control of the VS control program. For example, if you submit a job to
the computer calling for assembly and linkage editing of a program, that
job will be a two-step job. The concepts of jobs and job steps are
illustrated in Figure 2.

Job
Assembly
and
Link,
Editing

<

Job Step
Assembly

Job Step
Link
Editing

Figure 2. Jobs and Job Steps

12

SOURCE
MODULE

JOB CONTROL LANGUAGE

The job control language is your way of communicating to the operating
system control program what services you want performed and what
auxiliary devices you want used. Job control language (JCL) statements
are usually punched into cards and supplied in the job stream together
with your source module and other data needed by the job.

For a detailed discussion of job control language statements, see
JCL Reference.

To save time and trouble, you can use predefined sets of JCL
statements that reside in a library. Such a set of statements, called a
cataloged procedure, can be included in your job by means of a single
JCL statement naming the set. Figure 3 illustrates the concept of a
cataloged procedure.

There are several cataloged procedures available for assembler jobs.
They are described in the section "Job Control Statements for Assembler
Jobs" •

Input
Stream

- ----

XX Job control
XX statements

-

XX from cataloged
procedure PRe D

Data

Figure 3. The Cataloged Procedure Concept

Procedure
Library

Introduction 13

Job Control Statements for Assembler Jobs

The purpose of this section is to:

• Show you how to invoke the assembler for simple jobs (using
cataloged procedures) •

• Describe the assembler options and how to request them.

• List the job control statements that make up the four assembler
cataloged procedures.

• Give examples of how to use the cataloged procedures for more
complex jobs.

Simple Assembly and Execution,

This section gives you the minimum JCL statements needed for two simple
assembler jobs:

• Assembly of your program to produce a listing and an object deck.

• Assembly and execution of your program.

Both jobs use cataloged procedures to call the assembler.

ASSEMBLY

To assemble your program, use the following job control language (JCL)
statements:

Iljobname JOB accountno,progrname,MSGL~VEL=l
II EXEC
IISYSIN DD

(your source program)

14

Identifies the beginning of your job to the operating system.
'jobname' is the name you assign to the job.
'accountno' specifies the account to which your job is charged,
and 'progrname' the name of the programmer responsible for
the job. 'MSGLEVEL=l' specifies that the job control
statements connected with this job are to be listed.
Check what parameters are required at your installation and
how they must be specified.

These statements cause the assembler to assemble your program and to
produce a listing (described in the section "The Assembler Listing") and
an object module punched on cards (described in Appendix C) •

If you do not want any object module cards to be punched during the
job, use the following statements:

Iljobname JOB accountno,progrname,MSGLEVEL=l
II EXEC ASMFC,PARM=NODECK
IISYSIN DD *

(your source program)

ASSEMBLY AND EXECUTION

To run a job that both assembles and executes your program, code the
following statements:

Iljobname JOB accountno,progrname,MSGLEVEL=l
II EXEC ASMFCG,
IIASM. SYSIN DD * ·········'·'·"""i"";''i\,pru:;Mj@:lm!j:0t!iri\11i~~!j.1;111111

(your source

IIGO.SYSIN DD

(data, if any, for your program)

procedure step ASM (assembly) f

input for step GO (execution 0

er) follows immedi

The first step of the ASMFCG procedure executes the assembler. The
assembler produces a listing, a punched object module on cards, and an
object module on a direct access device. The second step causes the
loader to be executed. The loader transforms the object module, which
was written on a direct access device by the assembler, into a load
module. In addition, the loader causes the load module (that is, your
program) to be executed.

Job Control Statements for Assembler Jobs 15

If you do not want the assembler to punch an object deck in this
example, supply the following statements instead:

Iljobname
II
IIASM.SYSIN

JOB accountno,progrname,MSGLEVEL=l
EXEC ASMFCG,PARM.ASM=(OBJ,NODECK)
DD *

(your source program)

IIGO.SYSIN DD *

(data for your program)

Assembler Options

WHAT ASSEMBLER OPTIONS ARE

The PARM parameter specifies the assembler options OBJ (telling the
assembler'to produce an object module on the partitioned data set used
as input by the loader) and NODECK for step ASM (assembly) of the
procedure.

Assembl'er options are functions of the assembler that you, as an
assembller language programmer, can select. For example, you can use
assembler options to specify whether or not you want the assembler to
produce an object deck; whether or not you want it to print certain
items in the listing; and whether or not you want it to check your
program for reenterability.

The assembler options can be divi.ded into four categories:

• Lis·ting control options, which determine the information to be
included in the program listi.ng.

• ~ut control options, which specify the device on which the
assembler object module is to be written and the contents of the
module.

• SYS~rERM options, which determine the information to be included in
the listing produced on the SYSTERM data set. This data set is
primarily for use by the Time Sharing Option (TSO) of VS2.

• Other assembler options, which specify miscellaneous functions and
values for the assembler.

Figure 4 lists all the assembler options. The underlined values are the
standard or default values. TheSE! values are used by the assembler for
options that you do not specify.

As you can see from the figure, the options fall into two format types:

• Simple pairs of keywords: a positive form (for example, DECK) that
requests a function, and an alternative negative form (for example,
NODECK) that rejects the function.

• Keywords that permit you to assign a val ue to a function (for
exarnple, LINECOUNT (40» •

16

HOW TO SPECIFY ASSEMBLER OPTIONS

You use the PARM field of the EXEC JCL statement calling the assembler
to specify the assembler options. Code PARM= followed by a list of
options that you have selected. For example,

//STEPA EXEC PGM=IFOXOO,PARM='NODECK,FLAG (5) ,NORLD'

IFOXOO is the name of the assembler; three options are specified for the
execution of it. Default values are used for the other options.

When you use cataloged procedures, you will notice that most of them
contain an option specification in the EXEC statement for the assembly.
To override such a specification, include a PARM field with your options
in the EXEC statement calling the procedure. If the cataloged procedure
contains more than one step, you must add the procedure step name as a
qualifier to the PARM operand. For example,

//STEP1 EXEC ASMFCG,PARM.ASM='OBJ,NODECK'

The .ASM is necessary to indicate the assembly step. As you can see in
the section "The Assembler Cataloged Procedures", the stepname for
assembly is always ASM. You must also remember that when you override
the PARM field in a procedure, the entire PARM field is overridden. The
PARM field specification in the cataloged procedure ASMFCG is PARM=OBJ,
and the OBJ option must be repeated when you override the PARM field.
Otherwise the assembler default value NOOBJ will be used. (For a more
detailed description of overriding operands on EXEC statements in
cataloged procedures, refer to JCL Reference.

The PARM field is coded according to the following rules:

• Single quotes or parentheses must surround the entire PARM value if
you specify two or more options.

• The options must be separated by commas. You may specify as many
options as you wish, and in any order. However, the length of the
option list must not exceed 100 characters, including separating
commas.

• The BUFSIZE, FLAG, LINECOUNT, or SYSPARM options must appear within
single quotes.

• If you need to continue the PARM field onto another card, the entire
PARM field must be enclosed in parentheses. However, any part of
the P~~M field enclosed in quotes must not be continued on another
card.

Job Control Statements for Assembler Jobs 17

The following examples illustra'te these rules:

, P ARM=DECK ,

,PARM='LINEOOUNT(40) ,

, P ARM= (DECK ,NOOBJECT)
or

,PARM='DECK,NOOBJECT'

,PARM='DECK,NOLIST,SYSPARM(PARAM) ,
or

,PARM=(DECK,NOLIST,'SYSPARM(PARAM) ')
or

,PARM=(DECK,'NOLIST,SYSPARM(PARAM) ')

,PARM=(DECK,NOLIST,'LINECOUNT(35) , ,NOALIGN,
MCALL,' BUFSIZE (MIN) , ,NORLD)

18

Only one option specified~

LINECOUNT, BUFSIZE, FLAG,
and SYSPARM must be surr
ounded by quotes.

More than one option
specified. None of them
requires quotes.

More than one option
specified. SYSPARM must
appear within quotes.

The whole field must be
enclosed by parentheses,
because it is continued
onto another card. The
LINECOUNT and BUFSIZE
options must be within
quotes, and the portions
of the field that are en
closed within quotes
cannot be continued onto
anothe r card.

Page of GC33-4021-3
Revised February 15, 1976
By TNL: GN33-8205

I Listing Control Options

ALOGIC

NOALOGIC

NOESD

(nnn)
FLAG

YFLAG

NOYFLAG

(nn)

Conditional assembly statements processed in
open code are listed.

The ALOGIC option is suppressed.

The external symbol dictionary (ESD) is listed. ~efer
to "The Assembler Listing" for further information on
the ESD.)

No ESD listing is printed.

Diagnostic messages and MNOTE messages below
severity code nnn will not appear in the listing.
Diagnostic messages can have severity codes of 4,
8, 12, 16, or 20 (20 is the most severe), and
MNOTE severity codes can be between 0 and 255.
For example, FLAG (8) suppresses diagnostic
messages with a severity code of 4 and MNOTE
messages with severity codes of 0 through 7.

Diagnostic message IF0205 and its severity code
will a~pear in the listing.

The YFLAG option is suppressed.

LINECOUNT nn specifies the number of lines to be printed

LIST

NOLIST

~ between headings in the listing.

An assembler listing is produced.

No assembler listing is produced. This option
overrides ESD, RLD, and XREF.

MCALL Inner macro instructions encountered during macro
generation are listed following their respective
outer macro instructions. The assembler assigns
statement numbers to these instructions. The MCALL
option is implied by the MLOGIC option; NOMCALL
has no effect if MLOGIC is specified.

NOMCALL The MCALL option is suppressed.

MLOGIC All statements of a macro definition processed during
macro generation are listed after the macro instrUc
tion. The assembler assigns statement numbers to them.

NOMLOGIC The MLOGIC option is suppressed.

Figure 4. The Assembler Options
(Part 1 of 5)

Job Control Statements for Assembler Jobs 19

Page of GC33-4021-3
Revised February 15, 1976
By TNL: GN33-8205

Listing Control Options (continued)

NORLD

LIBMAC

N OL I :sr·l1~~C

XREF (FULL}

, XREF (S HORT]

NOXREF

The assembler produces the relocation dictionary as
part of the listing. (Refer to "The Assembler Listing"
for further information on the relocation dictionary.)

The RLD is not printed.

The macro definitions read from the macro libraries
and any assembler statements following the logical
END statement are listed after the logical END
statement. The logical END statement is the first
END statement processed during macro generation.
It may appear in a macro or in open code; it may
even be created by Substitution. The assembler
assigns statement numbers to the statements that
follow the logical END statement.

The LIBMAC option is suppressed.

The assembler listing will contain a cross reference table
of all symbols used in the assembly. This includes symbols
that are defined but never referenced. The assembler
listing will also contain a cross reference table of
literals used in the assembly.

The assembler.listing will contain a cross reference
table of all symbols that are referenced in the assembly.
Any symbols defined but not referenced are not included
in the table. The assembler listing will also contain
a cross reference table of literals used in the assembly.

No cross reference tables are printed.

Figure L~. The Assembler Options
(Part 2 of 5)

20

Output Control 0 ptions

NODECK

OBJECI'
or oro

NOOBJECT
or NOOBJ

T'EST

NOTEST

The object module is written on the device specified
in the SYSPUNCH DD statement. If this option is
specified together with the OBJECT option, the object
module will be written both on SYSPUNCH and on SYSGO.

The DECK option is suppressed.

The object module is written on the device specified
in the SYSGO DD statement. If this option is
specified together with the DECK option, the object
module will be written both on SYSGO and on SYSPUNCH.

The OBJECT option is suppressed.

The special source symbol table
included in the object module.
for details.}

No SYM cards are produced.

(SYM cards) is
(See Appendi x C

Figure 4. The Assembler Options
(Part 3 of 5)

~---~--------~----- .~~--

SYSTERM Options

~'-------------r------------------'--' --,---- -----,-- ---,'- ",,~,,----,~-

NUMBER or
~UM

NONUMBER or
NONUM

NOSTMT

TERMINAL or
TERM

NOTERMINAL or
NOTERM

The line number field (columns 73-80 of the input
cards) is written in the SYSTERM listing for state
ments for which diagnostic information is given. This
option is valid only if TERMINAL is specified.

The NUMBER option is suppressed.

The statement number assigned by the assembler is
written in the SYSTERM listing for statements for which
diagnostic information is given. This option is valid
only if TERMINAL is specified.

The STMT option is suppressed.

The assembler writes diagnostic information on the
SYSTERM data set. The diagnostic information, described
in detail in Appendix F, consists of the diagnosed state
ment followed by the error message issued.

The TERMINAL option is suppressed.

Figure 4. The Assembler Options.
(Part 4 of 5)

Job Control Statements for Assembler Jobs 21

Other Assembler Options

ALIGN

NOALIGN

BUFSIZE (MIN)

BU FS IZ E (STD)

RENT

NOREN'I~

(string)
SYSPARM

JL

All data is aligned on the proper boundary in the object
module; for example, an F-type constant is aligned on a
fullword boundary. In addition, the assembler checks
storage addresses used in machine instructions for
alignment violations.

The assembler does not align data areas other than
those specified in CCW instructions. The assembler
does not skip bytes to align constants on proper
boundaries. Alignment violations in machine in
structions are not diagnosed.

The assembler uses the minimum buffer size (790 bytes)
for each of the utility data sets (SYSUT1, SYSUT2,
and SYSUT3). S"torage normally used for buffers is
allocated to work space. Because more work space
is available, more complex programs can be assembled
in a given region; but the speed of the assembly
is substantially reduced.

The buffer size that gives optimum performance is
chosen. The buffer size depends on the size of
the region or partition. Of the assembler working
storage in excess of minimum requirements, 37% is
allocated to the utility data set buffers, and the
rest to macro generation dictionaries.

Refer to Appendix E for a more complete description
of the effects of BUFSIZE.

The assembler checks your program for a possible
violation of program reentrability. Code that makes your
program non-reentrant is identified by an error
message.

The RENT option is suppressed.

'string' is the value assigned to the system
variable symbol &SYSPARM ~xplained in
Assembler Language). Due to JCL restrictions, you
cannot specify a SYSPARM value longer than 56 char
acters (as explained in Note 1 following this figure) •
Two quotes are needed to represent a single quote,
and two am~rsands to represent a single ampersand.
For example,

PARM='OBJECT,SYSPARM «&&AM,' 'BO) .FY) ,

assigns the following value to &SYSPARM:

(&AM, 'BO) .FY

Any parentheses inside the string
must be paired. If you call the assembler from a
problem program (dynamic invocation), SYSPARM
can be up to 255 characters long.

___________ ----'L-_______ " ______ " _____________________ --I

Figure 4. The Assembler Options.
(Part 5 of 5)

22

No·te 1: The restrictions imposed upon the PARM field limit the maximum
length of the SYSPARM value to 56 characters. Consider the following
exa.mple:

II EXEC ASMFC,PARM.ASM=~BJECT,NODECK,
I I • SYS P ARM (ABCD ••) .)

f r f i
,~--------------------~ ~----------------------J/oo

r-I
o
o

r-I
o
o

~ V ~
r-I 56 bytes r-I

o 0
o 0

Since SYSPARM uses parentheses, it must be surrounded by quotes. Thus,
it cannot be continued onto a continuation card. The leftmost column
tha.t can be used is column 4 on a continue card. A quote and the
keyword must appear on that line as well as the closing quotes. In
addition, either a right parenthesis, indicating the end of the PARM
fi4=ld, or a comma, indicating that the PARM field is continued on the
ne:!{t card, must be coded before or in the last column of the statement
fi4=ld (column 71) •

N01te 2: Even though the formats of some of the options previously
supported by OS Assembler F have been changed, you can use the old
formats for the following options: ALGN (now ALIGN), NOALGN (NOALIGN),
LINECNT=nn (LINECOUNT(nn», LOAD (OBJECT), and NOLOAD (NOOBJECT). This
support will, however, be continued only for a limited number of VS
releases, so you should change to the new options as soon as possible.
Th4= Assembler F option OOS is not supported by the VS Assembler.

The Assembler Cataloged Procedures

This section describes the four assembler cataloged procedures and tells
you how to use them. They are:

• ASMFC (assembly)

• ASMFCL (assembly and linkage editing)

• ASMFCG (assembly and loader-execution)

• ASMFCLG (assembly, linkage editing, and execution)

Th~= procedure you choose on each occasion will depend on the type of job
you want to run. First, you may want to run an assembly to correct your
coding and keypunching errors. For this, you would use the ASMFC
procedure with the option NODECK specified. In the next run you may
want to assemble and execute your program, in which case you can use
ASl1FCG (or possibly ASMFCLG, if you use linkage editor features not
supported by the loader). When you have debugged your program, you may
want to include it in a load module library using ASMFCL.

The examples given in this section assume that the cataloged
procedures you are using are identical to the cataloged procedures
delivered by IBM. Therefore, you should first make sure that your
installation has not modified the procedures after they were delivered.

Job Control Statements for Assembler Jobs 23

AS SEMBI.. Y (ASMFC)

The ASMFC procedure contains only one job step: assembly. You
use the name ASFMC to call this procedure. The result of execution
is an object module, in punched card form, and an assembler listing.

To call the procedure use the following statements:

//jobname JOB parameters
//stepname EXEC {ASMFC }

PROC=ASMFC
//SYSIN DD *

source module

The statements of the ASMFC procedure shown in Figure 5 are read from
the procedure library and merged. into your input stream. The SYSIN
statem,:mt specifies that the input to the assembler (that is, your
source progra~ follows immediately after the statement.

24

[I]IIASMFC
[2]IIASM
~JIISYSLIB

II
@]IISYSUT1

II
IISYSUT2
II
IISYSUT3

lQlIISYSPRINT
lIDl IISYSPUNCH

MAC='SYS1.MACLIB',MAC1='SYS1.MACLIB'
PGM=IFOXOO,REGION=128K
DSN=&MAC,DISP=SHR
DSN=&MAC1,DISP=SHR

PROC
EXEC
DD
DD
DD DSN=&&SYSUT1 , UNIT=SYSSQ ,SPACE= (1700, (600, 100)) ,

S EP= (SYSL IB)
CD

DD
DD
DD

DSN=&&SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50» ,
SEP= (SYSLIB,SYSUT1)

DSN=&&SYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50»
SYSOUT=A,DCB=BLKSIZE=1089
SYSQUT=B

00 This statement names the procedure and gives default values to
the symbolic parameters MAC and MAC1.

~ This statement specifies that the program to be executed is
IFOXOO, which is the name of the assembler.
The REGION parameter specifies the virtual storage region that
gives best performance. It is possible to run the assembler in
64K, in which case you must change the region size parameter.
You can also add COND and PARM parameters.

~ This statement identifies the macro library data set. The
succeeding statement concatenates another macro library with it.
The default values for the DSN parameters of both data sets
are SYS1.MACLIB, the system macro library. You can change either
or both of the data sets in the EXEC statement calling the
procedure. For example, to concatenate your own macro library
with SYS1.MACLIB, code your EXEC statement as follows:

II EXEC ASMFC,MAC1=MYMACS

DISP=SHR indicates that the data set can be used simultaneously
by other jobs in the system.

~ SYSUT1, SYSUT2, and SYSUT3 specify the assembler work data sets.
The device classname SYSSQ represents either a direct access
device or a tape drive. The I/O units assigned to the class
names are specified by your installation during system genera
tion. Instead of a classname you can specify a unit name, such
as 2314. The DSN parameters guarantee dedicated work data sets,
if this is supported by your installation. The SEP and SPACE
parameters are effective only if SYSSQ is a direct access
device. The space required depends on the source program.

~ This statement defines the standard system output class as the
destination of the assembler listing. You can specify any
blocksize that is a multiple of 121.

~ This statement describes the data set that will receive the
punched object module.

Figrure 5. Cataloged Procedure for Assembly (ASMFC)

Job Control Statements for Assembler Jobs 25

ASSEMBLY AND LINK EDITING (ASMFC..hl

The ASMFCL procedure consists of two job steps: assembly and link
editing. It produces an assembler listing, a linkage editor listing,
and a load module.

SYSGO contains the output from the assembly step and the input to the
linkage editor step. It can be concatenated with additional input to
the linkage editor. This additional input can be linkage editor control
statements or other object modules.

To call the procedure, use the following statements:

//jobname
//stepname
//ASM.SYSIN

JOB
EXEC
DD

ASMFCL

*

source program statements

/*
/ jLKED. SYSIN DD

/*

object module or
linkage editor
control statements

*

necessary only if linkage
editor is to combine modules
or read linkage editor control
information from the job stream

Figure· 6 shows the statements that make up the ASMFCL procedure. Only
those statements not previously discussed are explained.

26

I/ASMFCL
IIASM
IISYSLIB
II
IISYSUT1
II
IISYSUT2
II
/ISYSUT3
IISYSPRINT
IISYSPUNCH

[] IISYSGO
II

PROC
EXEC
DD
DD
DD

DD

[;D
CD
DD
DD

MAC='SYS1.MACLIB',MAC1='SYS1.MACLIB'
PGM=IFOXOO,PARM=OBJ,REGION=128K
DSN=&MAC,DISP=SHR
DSN=&MAC1,DISP=SHR
DSN=&&SYSUT1 ,UNIT=SYSSQ,SPACE= (1700, (600,100» ,

SEP= (SYSLIB)
DSN=&&SYSUT2,UNIT=SYSSQ,SPACE=(1700, (300,50»,

SEP= (SYSLIB, SYSUT1)
DSN=&&SYSUT3,UNIT=SYSSQ,SPACE= (1700, (300,50»
SYSOUT=A,DCB=BLKSIZE=1089
SYSOUT=B
DSN=&&OBJSET, UNIT=SYSSQ,SPACE= (80, (200,50)) ,

DISP= (MOD, PASS)
[2J IILKED EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL) ,REGION=128K,

II
~ IISYSLIN
1!1 II
rnJ I/SYSLMOD

II
[QJ IISYSUT 1

II

DD
DD
DD

DD

III IISYSPRINT CD

COND= (8 ,LT ,ASM)
DSN=&&OBJSET,DISP=(OLD,DELETE)
DDNAME=SYSIN
DSN=&&GOSET (GO) , UNIT=SYSDA,SPACE= (1024, (50,20,1» ,

DISP= (MOD,PASS)
DSN=&&SYSUT1,UNI~(SYSDA,SEP=(SYSLIN,SYSLMOD» ,

SPACE= (1024, (50,20»
SYSOUT=A

rn 'rhe SYSGO DD statement describes a temporary data set--the
object module--which is to be passed to the linkage editor.

~ This statement initiates linkage editor execution. The
linkage editor options in the PARM= field cause the linkage
c3ditor to produce a cross-reference table, module map, and a
list of all control statements processed by the linkage editor.
~rhe NeAL option suppresses the automatic library call function
of the linkage editor.

~~rhis statement identifies the linkage editor input data set
as the same one produced as output by the assembler.

~~rhis statement is used to concatenate any input to the linkage
editor from the input stream with the input from the assembler.

~~rhis statement specifies the linkage editor output data set
(the load module). As specified, the data set will be
deleted at the end of the job. If it is desired to retain
1:he load module, the DSN parameter must be respecified and a
DISP parameter added. If the output of the linkage editor is
1:0 be retained, the DSN parameter must specify a library name
and member name designating where the load module is to be
placed. The DISP parameter must specify either KEEP or
CATLG.

~~~his statement specifies the utility data set for the linkage 
editor. 

00 This statement identifies the standard output class as the 
destination for the linkage editor listing. 

Figure 6. Cataloged Procedure for Assembly and Link Edi ting (ASMFCL) 

Jot Control Staterrents fer Asserrbler acbs 27 



ASSEMBI~Y, LINK EDITING AND EXECUTION (ASMFCLG) 

The ASMFCLG consists of three job steps: assembly, link editing and 
execution. An assembler listing, an object deck, and a linkage editor 
listing are produced. 

The statements entered in the input stream to use this procedure are: 

//jobname 
//stepname 
I/ASM. SYS IN 

JOB 
EXEC 
DD 

ASMFCLG 

* 

source program statements 

/* 
//LKED .. SYSIN DO 

object module or 
linkage editor 
control statements 

/* 
//GO.ddname 
//GO.ddname 
//GO.ddname 

00 
DO 
DO 

* 

necessary only if linkage 
editor is to combine modules 
or read linkage editor control 
information from the job stream 

parameters 
parameters 

* only 
if 
necessary 

problem program input 

1* 

Figure 7 shows the statements that make up the ASMFCLG procedure. Only 
those statements not previously discussed are explained in the figure. 

28 



l/l\SMFCLG 
IIASM 
IISYSLIB 
II 
IISYSUT1 
II 
IISYSUT2 
II 
IISYSU'I' 3 
IISYSPRIN'I' 
IISYSPUNCH 
IISYSGO 
II 

rn III.KED 
II 
IISYSLIN 
II 

~ I/SYSLMOD 
II 
IISYSUT1 
II 
IISYSPRINT 

~I/GO 

PROC MAC=·SYS1.~ACLIB·,MAC1=·SYS1.MACLIB· 
EXEC PGM=IFOXOO,PARM=OBJ,REGION=128K 
DD DSN=&l-1AC,DISP=SHR 
DD DSN=&MAC1,DISP=SHR 
CD DSN=&&SYSUT1 ,UNIT=SYSSQ,SPACE= (1700, (600,100» , 

SEP= (SYSLIB) 
DD DSN=&&SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50» , 

SEP= (SYSLIB, SYSUT1) 
DD DSN=&&SYSUT3,UNIT=SYSSQ,SPACE=(1700, (300,50» 
DD SYSOUT=A,DCB=BLKSIZE=1089 
DD SYSOUT=B 
DD DSN=&&OBJSET, UNIT=SYSSQ, SPACE= (80, (200,50) ) , 

DISP= (MOD,PASS) 
EXEC PGM=IEWL,PARM=(XREF,LET,LIST,NCAL) ,REGION=128K, 

COND= (8 ,LT ,ASM) 
DD DSN=&&OBJSET,DISP= (OLD, DELETE) 
CD DDNAME=SYSIN 
DD DSN=&&GOSET (GO) ,UNIT=SYSDA,SPACE= (1024, (50,20,1» , 

DISP= (MOD,PASS) 
DD DSN=&&SYSUT1,UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD», 

SPACE= (1024, (50,20) ) 
DD SYSOUT=A 
EXEC PGM=*. LKED. SYSLMOD, COND= ( (8, LT, ASt-'l) , (4 ,LT ,LKED) ) 

ffiThe LET linkage editor option specified in this statement 
causes the linkage editor to mark the load module as 
executable even though errors were encountered during pro
cessing. 

~The output of the linkage editor is specified as a member 
of a temporary data set, residing on a direct-access device, 
and is to be passed to a succeeding job step. 

lm This statement initiates execution of the assembled and 
linkage edited program. The notation •. LKED.SYSLMOD identifies 
the program to be executed as being in the data set described 
in job step LKED by the DD statement named SYSLMOD. 

Figure 7. Cataloged Procedure for Assembly, Link Editing, and Execution 
(ASMFCLG) 

Job Control Statements for Assembler Jobs 29 



ASSEMBl~Y AND LOADER-EXECUTION (ASMFCG) 

The ASfr1FCG procedure contains two job steps: assembly and 
loader--execution. The loader link-edits, loads, and passes control to 
the program for execution. 

Bo1th assembler and a loader listing are produced, but the load module 
is not included in a library. 

To call the procedure use the following statements: 

//jobname JOB 
//stepname EXEC ASMFCG 
/ /ASM.,sYSIN DD * 

source program 

/* 
//GO.ddname DD parameters 
//GO.ddname DD paramete:rs 
//GO .. ddname DD * only 

if 
necessary 

problem program input 

/* 

FigurE! 8 shows the statements that make up the ASMFCG procedure. Onl y 
those statements not previously discussed are explained in the figure. 

30 



IIASMFCG 
IIASM 
IISYSLIB 
II 
IISYSU1'l 
II 
IISYSU'l'2 
II 
IISYSUT3 
IISYSPRINT 
IISYSPUNCH 
I/SYSGO 
II rn IIGO 
II 

[2] IISYSLIN 
(3] IISYSLOUT 

PROC 
EXEC 
DD 
CD 
DD 

CD 

CD 
CD 
CD 
DD 

MAC='SYS1.MACLIB' ,r1AC1='SYS1.MACLIB' 
PGM=IFOXOO ,PARr1=OBJ ,REGION=128K 
DSN=&MAC,DISP=SHR 
DSN=&MAC1,DISP=SHR 
DSN=&&SYSUT1 ,UNIT=SYSSQ,SPACE= (1700, (600,100» , 

SEP= (SYSLIB) 
DSN=&&SYSUT2,UNIT=SYSSQ,SPACE= (1700, (300,50», 

SEP= (SYSLIB, SYSUT1) 
DSN=&&SYSUT3,UNIT=SYSSQ,SPACE=(1700, (300,50» 
SYSOUT=A,DCB=BLKSIZE=1089 
SYSOUT=B 
DSN=&&OBJSET,UNIT=SYSSQ,SPACE=(80, (200,50», 

DISP= (MOD, PASS) 
EXEC PGM=LOADER,PARM='MAP,PRINT,NOCALL,LET', 

DD 
CD 

COND= (8 ,LT ,ASM) 
DSN=&&OBJSET,DISP=(OLD,DELETE) 
SYSOUT=A 

rnThis statement initiates the loader-execution. The loader 
options in the PARM= field cause the loader to produce a 
map and print the map and diagnostics. The NOCALL option 
is the same as NCAL. for linkage editor and the LET option is 
the same as for linkage editor. 

[2]This statement defines the loader input data set as the same 
one produced as output by the assembler. 

(3]This statement identifies the standard output class as the 
destination for the loader listing. 

Figure 8. Cataloged Procedure for Assembly and Loader-Execution ~SMFCG) 

Job Contrel Statements for Assembler Jots 31 



EXAMPLES 

The following examples demonstrate the use of the assembler cataloged 
procedures: Normally, you will want to change or add parameters to the 
procedures you use. The examples illustrate how you use the EXEC 
statement calling the procedure to change or add parameters to EXEC 
statements in the procedure; and how you add 00 statements after the 
EXEC statement calling the procE~dure to change or add 00 statement 
parameters. The rules for overriding parts of cataloged procedures for 
the duration of a job are explained in JCL Reference. 

Example 1: 

In the procedure ASMFC, the punched object deck can be suppressed and 
the UNIT and SPACE parameters o:f data set SYSUT1 can be respecified by 
codin9 the following statements: 

Iistepname 
IISYSUT1 
IISYSIN 

EXEC 
00 
DD 

ASMFC,PARM=NODECK 
UNIT=2311 ,SPACE= (200, (300,40» 

* 
source statements 

1* 

Example 2: 

In the procedure ASMFCLG, the assembler listing can be suppressed and 
the CONO parameter, which sets conditions for e xecuti on of the linkage 
editol::, can be changed by the following statements: 

Iistepname EXEC 
II 
IIASM .. SYSIN DD 

ASMFCLG,PARM.ASM=(NOLIST,OBJECT) , 
COND.LKED=(8,LT,PREVSTEP.ASM) 

* 
source statements 

1* 

Here PREVSTEP is the name of a previous exec statement calling an 
assembler procedure in the same job. 

Note: You cannot override individual options in the PARM field. The 
whole PARM field is always overridden. Therefore, you must repeat 
oBJECrr in the example above. 

ExamQle 3: 

The following example shows the use of the procedure ASMFCL to: 

• Read input from a unlabeled nine-track tape on tape drive 282. The 
tape has a blocking factor of ten. 

• Put the output listing on a tape labeled VOLID=TAPE10, with a data 
set name of PROG1 and a blocking factor of five (605 divided by 121, 
the record size for the assembler listing) • 

• Block the SYSGO output of 1:he assembler and use it as input to the 
linkage editor with a blocking factor of five. 

32 



• Link-edit the module only if there are no errors in the assembly 
(COND=O) • 

• Link-edit the module onto a previously allocated and cataloged data 
set, USER.LIBRARY with a member name of PROG. 

II 
IIASM.SYSPRINT 
II 
IIASM.SYSGO 
IIASM.SYSIN 
II 
I/LKED. SYSLMOD 

EXEC ASMFCL,COND.LKED=(O,NE,ASM) 
DD DSN=PROGR1,UNIT=TAPE,DISP=(NEW,KEEP), 

VOL=SER=TAPE10,DCB=BLKSIZE=605 
DD DCB=BLKSIZE=400 
DD UNIT=282,LABEL=(,NL) ,DISP=OLD, 

DCB=~ECFM=FSB,BLKSIZE=800) 
DD DSN=USER.LIBRARY(PROG) ,DISP=OLD 

Note: The order in which the overriding DD statements are specified 
corresponds to the order of DD statements in the procedure. For 
example, SYSPRINT precedes SYSGO in step ASM. The DD name ASM.SYSIN is 
placed last among the overriding statements for step ASM, because SYSIN 
does not exist in step ASM of the procedure. 

Example 4: 

The following example shows assembly of two programs, link editing of 
the two object modules into one load module, and execution of the load 
module: 

IISTEP1 
IIASM.SYSGO 

I II 
IIASM.SYSIN 

/* 
IISTEP2 
IIASM.SYSGO 
IIASM.SYSIN 

1* 
I/LKED.SYSLIN 
I/LKED. SYSIN 

1* 
llGO.ddname 
II 

EXEC 
DD 

DD 

ASMFC,PARM.ASM=OBJ 
DSN=&&OBJSET,UNIT=SYSSQ,SPACE= (80, (200,50», 
DISP=(MOD,PASS) ,DCB=BLKSIZE=400 

* 
source module 1 

EXEC 
DD 
DD 

ASMFCLG 
DCB=BLKSIZE=400,DISP=~OD,PASS) 

* 
source module 2 

DD 
DD 
ENTRY 

DD 

DCB=BLKSIZE=400 

* PROG 

(dd cards for GO step) 

The LKED.SYSIN statement indicates that input to the linkage editor 
follows. In this case it is a linkage editor control statement. ENTRY, 
which identifies PROG, an external symbol in one of the two modules, as 
the entry point into the load module. When the load module is executed, 
that point in the module gets control first. 

JCL Reference provides additional information on overriding techniques. 

Job Control Statements for Assembler Jobs 33 



The llssembler Listing 

This section tells you how to interpret the printed listing produced by 
the assembler. The listing is obtained only if the option LIST is in 
effect. Parts of the listing can be suppressed by using other options; 
for information on the listing options, refer to "Assembler Options". 

The six parts of the assembler listing are: 

• External symbol dictionary (ESD) 

• Source and object program 

• Relocation dictionary (RLD) 

• Symbol cross reference 

• Literal cross reference 

• Diagnostics and statistics 

Figure 9 shows the different parts of the listing. The function and 
purpose of each of them, as well as the individual details, are 
explained in the following text and illustrations. 

34 



EXAM EXTERNAL SYMBOL DICTIONARY PAGE 

SYtlBOL 'l'YPE ID ADDR LENGTH LDID ASM 0100 09.46 01/05/72 

PC 0001 000000 0001CO 
SEARCH LD 000024 0001 

PAGE 3 
EXM~ .sll~PLE PROGRA~ 

LOC OBJECT CODE 
STMT SOunCE S'IATE!-IEN'I 

ADDRl ADDR2 
ASM 0100 09.4601/05/72 

52 
53 
54 

***********************************************************************SAMPL050 
* MAIN "ROU'IINE * SAMPL051 
*********************************************************************** SAMPL052 

55 CSEC'l SAMPL053 
000000 56 ENTRY SEARCH SAMPL054 

57 BEGIN BALR R12,0 ESTABLISH ADCRESSABILITY OF PROGRAM SAMPL055 
000000 05CO 58 USING *,R12 AND TELL THE ASSE~BLER SAMPL056 

00002 59 LM R5,R7,=A(LISTAREA,16,LISTEND) LOAD LIST AREA PARAMSSAMPL057 
000002 9857 C1A6 001A8 60 USING LIST,R5 REGISTER 5 POINTS TO THE LIS'!' SAMPL058 

00000 61 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE SAMPL059 
000006 45EO C022 00024 62 'I~ SWITCH, NONE CHECK TO SEE IF NAME WAS FOUND SAMPL060 
OOOOOA 9180 C020 00022 63 EO NO'ITHERE BRANCH IF NOT SAMPL061 
OOOOOE 4710 C018 0001A 64 USING TABLE,Rl REGISTER 1 NOW POINTS TO TABLE ENTRySAMPL062 

00000 6') MOVE TSWITCH,LSWITCH MOVE FUNCTIONS SAMPL063 

*** ERROR *** 66+ 1, llV:PROPER OPE~AND 'l'YPES, NO STATE~ENTS GENERATED 

*** ERROR *** 

67 

68 
69+* 
70+ 
71+ 

MOUE 'INUMBER,LNUtflBER FROM LIST ENTRY 

MOVE 
NEXT 
L 

TADDRESS ,LADDRESS TO TABLE EN'IRY 
'lfiO STATEMENTS GENERATED FOR MOVE ~ACRO 

2,LADDRESS 

SAMPL066 

000012 5820 500C 
000016 5020 1004 
00001A 9680 5008 
00001E 8756 C004 

OOOOC 
00004 
00008 
00006 

72 NOTTHERE 
73 

ST 
01 
EXLE 
EOJ 

2,TADDRESS 
LSWITCH,NONE 
R5,R6,MORE 

TURN ON SWITCH IN LIST ENTRY 
LOOP THROUGH THE LIST 

SA~PL069 

SAMPL028 
SA~PL029 

SAMPL030 
SAfv;PL075 
SAMPL076 
SAMPL077 74 END OF PROGRA~, USER LIBRARY MACRO 

EXAM RELOCATION DICTIONARY 

POS.ID REL. ID FLAGS ADDRESS 

0001 0001 OC 000154 
0001 0001 OC 000164 
0001 0001 OC 000174 
0001 0001 OC 0001A8 
0001 0001 OC 0001BO 

EXAM CROSS-REFERENCE 

SYMBOL LEN VALUE DEFN REFERENCES 

BEGIN 00002 00000000 00057 00135 00143 00183 
HIGHER 00002 0000004A 00090 00085 
LADDRESS 00004 OOOOOOOC 00174 00070 
LIST 00001 00000000 00170 00060 
LISTAREA 00008 00000148 00132 00184 
LIST END 00008 00000198 00152 00184 
LNAME 00008 00000000 00171 00084 
LNUMBER 00003 00000009 00173 
LOOP 00004 00000030 00083 00088 00091 00139 

EXAM LITERAL CROSS-REFERENCE 

SYMBOL LEN VALUE DEFN REFERENCES 

=A(LISTAREA,16,LISTEND) 
00004 000001AS 00184 00059 

=F' 128, 4 , 128 • 
00004 000001B4 00185 00081 

EXAM ASSEMBLER DIAGNOSTICS AND STATISTICS 

STMT ERROR CODE MESSAGE 

o IF0076 
36 IF0016 
65 IF0090 
66 IF0197 

SEQUENCE SYMBOL .TYPECGK IS UNDEFINED IN MACRO MOVE 
ILLEGAL OR INVALID NAME FIELD 

Figure 9. 

UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING CONDITIONAL ASSEMBLY 
*** MNOTE *** 

Assembler Listing 

PAGE 6 

ASM 0100 09.46 01/05/72 

PAGE 7 

ASM 0100 09.46 01/05/72 

PAGE 8 

ASM 0100 09.46 01/05/72 

PAGE 9 

ASM 0100 09.46 01/05/72 

The Assem~ler Listing 35 



External Symbol Dictionary (ESD) 

The ext:ernal symbol dictionary (ESD) describes the contents of the ESD 
records included in the object module produced by the assembler. It 
describes to the linkage editor or loader the control sections and 
external symbols defined in the module. 

This section helps you find references between modules in a 
multi-module program. The ESD may be particularly helpful in debugging 
the eXHcution of large programs constructed from several modules. 

ThE~ ESD is explained in detail in Figure 10. For a full 
unders1:anding of the terms and concepts used in the figure, refer to 
"Section E: Program Sectioning" and "Section F: Addressing" in 
Assembler Language. 

36 



The type designator for the entry. The various type designators are: 

The deck identification 
obtained from the name 
field of the fi rst named 
TITLE statement. .,,,,,,\®Wt_ 

CM 

ER 

LO 

PC 

SO 

WX 

XO 

The name of the symbol 
described by the entry. 
(Only for types CM, ER, 
LO, SO, WX, and XO). 

EXAM 

SEARCH 

Common control section.· A control section defined by a 
COM instruction 
Strong external reference. A symbol that appears in the 
operand field of an EXTRN instruction, or is defined as 
a V-type address constant. 
External name (label definition). A symbol that appears in 
the operand field of an ENTRY instruction. 
Unnamed control section (private code). An unnamed 
control section is generated as the result of an unnamed 
START or CSECT instruction or the appearance of an 
instruction affecting the location counter before the first 
START or CSECT instruction. 
Named control section. A control section identified by 
a START or CSECT instruction with a label in the name 
field. 
Weak external reference. A symbol that appears in the 
field of a WXTRN instruction. 
External dummy section (pseudo register). A symbol that 
appears in the name field of a OXO instruction, or appears 
both in the name field of a OSECT instruction and the 

EXTERNAL SYMBOL DICTIONARY 

The external symbol dictionary identification 
number (ESOID). This number is a unique 
four- digit hexadecimal number identifying 

module where the 
item described by 
the entry is defined. 
(Only for types CM, 
LO, PC, SO, and XO). 

The length in bytes 
(hexadecimal notation), 
of the assembled con
trol section. (Only for 
types CM, PC, SO, and 
XO. 

the entry. It is used to cross reference be
tween the external symbol dictionary and the 
relocation dictionary. It is also used by entries 
of type LO to identify the control section in 
which the external name is defined. (Only for 
types CM, ER, PC, SO, WX, and XO). 

Figure 10. External Symbol Dictionary 

The version 
of the 
assembler 

PAGE 

The ESOIO assigned to 
the control section in 
which this symbol is 
defined. (Only for 
type LO). 

The Assembler Listing 37 



The Source and Machine Language Statements 

The second section of the listing contains a copy of the source 
statements of the module together with a copy of the object code 
produced by the assembler for each of the source statements. 

This section is the most useful part 0+ the listing because it gives 
you a copy of all the statements in your source program (except listing 
control statements) exactly as they are entered into the machine. You 
can use it to find simple punching errors, and together with the 
diagnostics and statistics, to locate and correct errors detected by the 
assembler. By using this section together with the cross reference 
section, you can check that your branches and data references are in 
order. The location counter values and the object code listed for each 
statement help you locate any errors in a storage dump. Finally, you 
can use this part of the listing to check that your macro instructions 
have been expanded properly. 

The source and machine language statements section is described in 
detail in Figure 11. For terms -that you are unfamiliar with, refer to 
Assembler Languag~. 

SOURCE STATEMENT FIELDS 

The contents of the source statement fields in the listing (see Figure 
11) are~ as follows: 

• All source statements except listing control statements are listed, 
including statements generated from macros and inserted by COpy 
instructions. 

• Th€~ definitions of library macros that are called by the program are 
listed only if the LIBMAC option has been specified. 

• The statements generated as the result of a macro instruction are 
listed after the macro instruction in the listing unless PRINT NOG.EN 
is in effect. 

• Unless the NOALOGIC option has been specified, assembler and machine 
instructions with variable symbols in open code are listed both as 
they appear in the input to the assembler and with values 
substituted for the variable symbols. 

• Wh€~n the assembler detects an error, it normally inserts an error 
indicator in the listing after the statement in error, and prints an 
error message in the diagnostics and statistics section. Using the 
FLAG option you can suppress error messages below a severity code 
thal t you choose. 

• MNOTE messages appear inline where they are generated. MNOTE 
messages can be suppressed in the same way as error messages using 
thE~ FLAG option. 

• Lit~erals that have not been assigned locations by LTORG instructions 
appear after the END instruction. 

• A generated statement has the same format as the statement from 
which it was generated, unless a substituted value is longer than 
thE~ variable symbol used in the model statement. 

38 



• Any statement in which the assembler finds an error is listed, even 
if it would not otherwise be listed. Wor example, an AIF statement 
in a called library macro definition) • 

• For a statement generated from a macro definition, columns 73-80 
contain the columns from the model statement from which it was 
generated. 

EXN~ 

LOC 

000000 05CO 

000002 9857 C1M 001A8 

000006 45EO C022 00024 
OOOOOA 9180 C020 00022 
OOOOOE 11710 C018 0001A 

••• ERROR ... 
... ERROR . .. 

000012 5820 500C OOOOC 
000016 5020 1004 00004 

The location counter value (address in hexadecimal notation) of the 
assembled code. Exceptions are the following values: 
• For END with an operand: the address of the symbol in the operand. 
• For ORG: the location counter value before the ORG operation. 
• For COM, CSECT, or DSECT: the current address of the control 

section. 
• For ENTRY, EXTRN, WXTRN, or DXD: blank. 

00002 

00000 

00000 

source statements 
records, as explained 
under "Source Statement 
Fields". 

PAGE 

ST11T SOunCE STATH'ENT ASM 0100 09.46 01/05/72 

52 ....................................................................... SAMPL050 
53 • MAIN qOU'lINE • SAMPLOS1 
511 ....................................................................... S}lMPL052 
55 CSEC'l 
56 ENTRY 
57 BEGIN BALR 
58 USING 
59 LM 
60 USING 
61 MORE BAL 
62 Tl" 
63 BO 
64 USING 
6') MOVE 

66+ 1, H':PROPER 
67 MOUE 

68 MOVE 
69+. NEXT 
70+ L 
71+ ST 

S}lMPL053 
SEARCH SAMPL054 
R12,0 ESTABLISH ACCRESSABILITY OF PROGRAM SAfI'PL055 
.,R12 AND TELL THE ASSE~BLER SAMPL056 
R5,R7,=A(LISTAREA,16,LISTEND) LOAD LIST AREA PARAMS SAMPL057 
LIST,R5 REGISTER 5 POINTS TO THE LIST SAMPL058 
R14,SEARCH FIND LIST ENTRY IN TABLE SAf.'PL059 
SWITCH, NONE CHECK TO SEE IF N~ME WAS FOUNt SAMPL060 
NOTTHERE BRANCH IF NOT SAMPL061 
TABLE,Rl REGISTER 1 NOW POINTS TO TABLE ENTRY SAMPL062 
TSWITCH,LSWITCH MOVE FUNCTIONS SAMPL063 

OPE~AND 'IYPES, NO STATEf.'ENTS GENERATED 
TNUl'!BER,LNUf'BER FROf.' LIST ENTRY SAMPL066 

TADDRESS,LADDRESS TO TABLE EN~RY SAMPL069 
TriO STATEl'!Etn'S GENERATED FOR MOVE r-<ACRO SAMPL028 

2,LADDRESS SAf.'PL029 
2,'lADDRESS SAAPL030 

The source statement number. 
Used to cross reference between 
this section and the cross 

The effective address (result of adding together a base 
register value and a displacement value) for: 

First column: the first operand of an "!;I or SS type 
instruction . 

The machine language code produced from the source 
statement on the same line. The entries are left·justified. 
Machine instructions are printed in full, with a blank 
inserted after every four digits. Assembler instructions 
are printed in full only if the PRINT instruction option 
DATA is in effect. For instructions that do not generate 
any object code this field is blank. 

Second Column: the second operand of an RS, RX, 
or SS type machine instruction. 
This column also contains: 

For ORG: the location counter value after the 
ORG operation. 
For USING: the first operand value. 
For EQU: the value of the symbol. 

Both fields contain six· digits; however, if the high 
order digit is zero, it is not printed. 

Figure 11. Source and Machine Language Statements 

The Assembler Listing 39 



Relocation Dictionary (RLD) 

The relocation dictionary (RLD) describes the contents of the RLD records 
passed to the linkage editor or loader in the object module. The 
entries describe those address constants in the module that are affected 
by program relocation. 

The section helps you find t.he relocatable constants in your program. 

The RLD section is described in detail in Figure 12. For a 
description of the different address constants mentioned in the figure, 
refer to the section "G3 -- Defining Data n

, in Assembler Langua~. 

EXAM 

POS.ID REL.ID FLAGS ADDRESS 

0001 0001 OC 000154 
0001 0001 OC 000164 
0001 0001 OC 000174 
0001 0001 OC 0001A8 
0001 0001 OC 000180 

The external symbol dictionary 
identification number (ESDI D) 
assigned to the ESD entry for 
the control section in which the 
address; constant is used as an 
operand. 

Rt~OCATION DICTIONARY PAGE 

ASH 0100 09.46 01/05/72 

location counter value assi 
efinition of the constant). 

This two-digit hexadecimal number is interpreted as follows: 

First digit: Identifies the type of entry: 
0" A- or Y- type address constant 
1 .. V- type address constant 
2'" Q- type address constant 
3 .. CXD entry 

Second digit: The first three bits indicate the length of 
the constant and whether the base should be added or 
subtracted: 

Bits 0 and 1 
00 = 1 byte 
01 = 2 bytes 
10 - 3 bytes 
11 .. 4 

The ESDI D assigned to the ESD 
entry for the control section in 
which the referenced symbol is 
defined, or to the ESD entry 
identifying it as an external 
reference. 

Bit 2 
0=+ 
1 ,.-

Bit 3 
Always 0 

Figure 12. Relocation Dictionary 

40 



Symbol Cross Reference 

The symbol cross reference section of the listing lists the symbols used 
in the module, indicating both where they are defined and where they are 
referenced. This is a useful tool in checking the logic of your program; 
it helps you see if your data references and branches are in order. 

The symbol cross reference section contains all symbols in the 
module, except those appearing in the operand field of V-type address 
constants. Thus, symbols that are not listed in the source and machine 
language statements section because of a PRINT OFF or PRINT NOGEN 
instruction will appear in the cross reference table. (For a description 
of V-type address constants and the PRINT instruction, refer to 
Assembler Language.) 

Symbols that are undefined but referenced will also be listed, and 
identified as undefined. Duplicate definitions will also be identified 
in the table. 

Figure 13 describes in detail the items of the cross reference table. 

Note: The cross reference entry for a symbol used in a literal refers 
to the assembled literal in the literal pool. Look up the literal cross 
reference table to find where the symbol is used. 

The Assembler Listing 41 



EXAM 

SYMBOL LEN 

BEGIN 00002 
HIGHER 00002 
LADDRESS 000011 
LIST 00001 
LISTAREA 00008 
LISTEND 00008 
LNAME 00008 
LNUMBER 00003 
LOOP 00004 
LSWITCH 00001 
MORE 00004 
MORE 000011 
NONE 00001 
NOTFOUND 00004 
NOTTHERE 00004 
R1 00001 
R12 00001 
R111 00001 
R2 00001 
R3 00001 
R5 00001 
R6 00001 
R7 00001 
SEARCH 000011 
SWITCH 00001 
TABLA REA 00008 
TABLE 00001 
TADDRESS 00004 
TNAME 00008 
TNUMBER 00003 
TSWITCH 00001 

VALUE DEFN 

00000000 00057 
OOOOOOliA 00090 
OOOOOOOC 00174 
00000000 00170 
00000148 00132 
00000198 00152 
00000000 00171 
00000009)00173 
00000036 00083 
00000008 00172 
00000006 00061 
00000042 00088 
00000080 00076 
00000050 00092 
0000001A 00072 
00000001 00159 
OOOOOOOC 00165 
OOOOOOOE 00166 
00000002 00160 
00000003 00161 
00000005 00162 
00000006 00163 
00000007 00164 
00000024 00080 
00000022 00075 
00000058 00099 
00000000 00178 
00000004 00181 
00000008 00182 
00000000 00179 
00000003 00180 

CFtOSS-REFERENCE 

REFERENCES 

00135 00143 00183 
00085 
00070 
00060 
00184 
00184 
00084 

00088 00091 00139 
00072 
00073 
.···DUPLICATE···· 
00062 00072 00080 00092 
00089 
00063 
00064 00081 00082 00082 00087 00090 

~~ni n~ii ::::: 00/00 
00059 00060 00073 
00073 
00059 
00056 00061 
00062 00080 00092 

ggg:~/ 
00071 
00084 

The statement number of the 
statement in which the symbol 
is defined. 

Either the address represented 
by the symbol. or the value to 
which it is equated. 

The length (decimal notation), 
in bytes, of the field occupied by 
the value of the symbol. 

Figure 13. Symbol Cross Reference 

42 

PAGE 7 

ASM 0100 09.116 01/05/72 

The statement numbers of the 
statements in which the symbol 
appears in the operand field. 



Literal Cross Reference 

The literal cross reference section lists all the literals that are used 
in the program. 

Figure 14 gives a detailed explanation of the items of the literal 
cross reference table. 

EXAM 

SYMBOL LEN VALUE DEFN REFERENCES 

=A(LISTAREA,16,LISTEND) 
00004 000001A8 00184 00059 

=F'128,4,128' 
00004 00000 B4 

LITERAL CROSS-REFERENCE PAGE 

ASM 0100 09.46 01/05/72 

The statement numbers of the statements 
in which the literal is used in the source 
code input. 

The statement number assigned to the 
literal. Statement numbers for literals 
are assigned after L TORG instructions 
or after the END instruction. 

Figure 14. Literal Cross Reference 

The Assembler Listing 43 



Diagnostics and Statistics 

Figure 15 gives a detailed explanation of the diagnostics and statistics 
section of the listing. The following information may also be helpful 
in interpreting this section. 

The diagnostic messages issuE~d by the assembler are fully documented 
in Appendix G of this manual. 

Error messages with the text IF0197 ***MNOTE*** indicate that an 
MNOTE message has been written in the source statement section of the 
listing. The MNOTE message is given a statement number which is 
indicated together with this diagnostic message. 

Errors encountered during the processing of library macro definitions 
reference the END statement. (This is because library macros are read 
in by the assembler after the source code.) However, if you specify the 
LIBMAC assembler option, all system macro definitions will be listed 
after the END statement; an error will then reference the statement 
within the macro definition that caused the error. 

To suppress error messages and MNOTE messages below a specified 
severity level, you can use the FLAG option. 

44 



The statement number of the statement flagged. 
For certain types of errors found in library 
macros, the statement number given is that of 

The message identifier. It consists of 

the END statement. For certain other types. of 
errors the statement number given is zero, because 
the assembler cannot locate the statement in error. 

the three characters I FO and three numeric 
characters giving a unique number to the 

The total number of 
statements for which 
error messages were message. 

The text of the message. Many messages 
include a segment of the error in the 
statement or a pointer to the vicinity of 

ASSEMBLER DIAGNOSTICS PAGE 

STMT ERROR ~ODE MESSAGE 

o IF0076 
36 IF0016 
65 IF0090 
66 IF0197 
67 IF0078 
74 IF0078 
88 IF0196 

149 IF0236 

SEQUENCE SyMBOL .TYPECGK IS UNDEFINED 
ILLEGAL OR 'INVALID NAME FIELD 
UNDEFINED SEQUENCE SYMBOL ENCOUNTERED 
••• MNOTE ••• 
UNDEFINED OP CODE 
UNDEFINED OP CODE 
MORE HAS BEEN PREVIOUSLY DEFINED 
ILLEGAL CHARACTER IN EXPRESSION NEAR 

NUMBER OF STATE20IENTS FLAGGED IN THIS ASSEMBLY = 
HIGHEST SEVERITY WAS 8 '~~:\~-:~~~:~~' ~~,~~~~~:~~~ OPTIONS FOR THIS ASSE2oIBLY~. 

ALIGN, ALOGIC, BUFSIZE(STD), NODECK, ESD, 'FLAG ( , 
NOMLOGIC, NONUMBER, NOOBJECT, NORENT, RLD, NOSTMT, N 
SYSPARM () 

WORK FILE BUFFER SIZE = 2558 
TOTAL RECORDS READ FROM SYSTEM INPUT 180 
TOTAL RECORDS READ FROM SYSTEM LIBRARY n 
TOTAL RECORtS PUNCHED 0 
TOTAL RECORDS PRI ~75 

A list indicating the 
options in effect 
during the assembly. 

Figure 15. Diagnostics and Statistics 

ASH 0100 09.46 01/05/72 

XREF 

The highest severity code encountered 
during the assembly. Each message is 
assigned a severity code indicating the 
relative severity of the error. The 
highest severity code encountered is 
passed to the control program as the 
return code of the assembly. 

The Assembler Listing 45 



Programming Considerations 

The purpose of this section is to serve as a bridge between Assembler 
La~~ and other manuals that you will use frequently when programming 
in the assembler language. Among the topics discussed are: 

• Designing your program 

• Specifying the entry point into your program. 

• Linking with modules written in other programming languages. 

• Linking with processing programs. 

Designing Your Program. 

When you design your program to run under VS, you must make sure that it 
follows the conventions required by that operating system. The minimum 
requirements for a very simple program are given in Figure 16. 

How'ever, you will hardly ever write such a simple program and will 
therefore want to refer to the section "Program Design" in OSjVS 
Supervisor Services and Macro Instructions. Among the topics covered 
there are: 

• The linkage registers that the operating system uses in passing 
control between various components of the control program, and 
between the control program and your problem program. You should 
use the same registers when calling your own programs. 

• Acquiring the information in the PARM field of the EXEC statement. 
In the same way as the assembler checks the options you specify for 
it in the PARM field, you can have your own program check the 
contents of that field. 

• Saving the calling program's registers, so that they are not 
modified by the called program. 

• Establishing a base register. 

• Providing a save area, so that any programs called by your program 
can save the contents of your registers and restore the contents 
upon return. Note that certain system macro instructions (such as 
GET or PUT) call subroutines that assume that your program has 
provided a save area. 

• Virtual storage considerations. 

• Task creation. 

46 



The following coding shows the m~n~mum number of instructions you 
need for a simple program. The program will be less than 4096 
bytes long and will consist of only one control section. It will 
not call any subroutines or use any other IBM-supplied macros 
than SAVE and RETURN. 

CSA 

SAVE13 

SAVE 
USING 

ST 

(14,12) 
CSA,15 

13,SAVE13 

(your program) 

L 
RETURN 
DS 

13,SAVE13 
(14,12) 

F 

(your constants and 

END 

Save registers for calling routine 
The control program passes control 
to the routine using register 15; 
use that register as a base 
Store address of calling routine's 
save area 

Reload address of save area 
Return to calling routine in AOS 
Space to save address of calling 
routine's save area 

data areas) 

Figure 16. Minimum Requirements for a Simple Program 

Specifying the Entry Point into Your Program 

When your object module is link edited, either alone, or together with 
other modules, the entry point into the load module produced is 
determined by the linkage editor. (The entry point is the address in 
the load module to which control is given by the control program, when 
the load module is to be executed.) 

You can use the assembler END instruction or the linkage editor 
ENTRY control statement to specify the entry point to the linkage 
editor, as explained under "Output From The Linkage Editor" in Linkage 
Editor and Loader. 

Linking with Modules Produced by other Language Translators 

The modules produced by the assembler can be combined with other modules 
by the linkage editor. These modules can be object modules or load 
modules, and may have been originally written in any of the languages 
supported by the operating system. This makes it possible for you to 
use different programming languages for different parts of your program, 
allowing each part to be written in the language best suited for it. 

However, when linking between modules produced by different language 
translators you must make sure that each module conforms to the data 
formats and linkage conventions required. If input/output operations 
are performed, you must also make sure that the appropriate DD 
statements are supplied for the data sets used in the different modules. 
For information on the requirements for linking between modules written 
in the assembler language and the problem-oriented languages, refer to 
the programmer's guide for the particular compiler you are using. 

Programming Considerations 47 



Linkin~J with IBM-Supplied Processing Programs 

You usua.lly use the EXEC job cont~rol statement to load and give control 
to a processing program of the operating system. However, you can also 
load and give control to a sort program, a utility program, or even a 
compiler "dynamically", that is, by using a system macro instruction 
~INK, XCTL, CALL, or ATTACH) in your own program. When calling a 

program dynamically, make sure you follow the OS/VS linking conventions 
describ.=d under "Program Design" in OS/VS Supervisor Services and' fJ!acro 
Instructions. You must also pass certain parameters to the processing 
program.. These parameters give t.he same information to the program as 
you would supply in job control statements, if you called the program 
with an EXEC statement. Appendix D describes how to call the assembler 
dynamically. Dynamic invocation of each of the other IBM-supplied 
processing programs is covered in one of the manuals describing that 
program. 

48 



Adding Macro Definitions to a Library 

yOU can include your own macro definitions or other sections of 
often-used source code in the system macro library or in a private 
library that you concatenate with the system macro library. A macro 
library can consist of both macro definitions and sections of code to be 
inserted by the COpy assembler instruction. 

You use the IEBUPDTE program to add members to a macro library. For 
further information on IEBUPDTE and the utility control statements 
needed, refer to OS/VS Utilities, Order No. GC35-0005. The following 
example shows how a new macro definition, NEWMAC, is added to the system 
macro library (SYS1.MACLIB). 

//CATMAC 
//STEP1 
//SYSUT1 
//SYSUT2 
//SYSPRINT 
//SYSIN 
./ 

./ 
/* 

JOB 
EXEC 
DD 
DD 
DD 
DD 
ADD 
MACRO 
NEWMAC 
LCLA 

MEND 
ENDUP 

12345,BROWN.JR, ••• 
PGM=IEBUPDTE,PARM=MOD 
DSN=SYS1.MACLIB,DISP=OLD 
DSN=SYS1.MACLIB,DISP=OLD 
SYSQUT=A 
DATA 
LIST=ALL,NAME=NEWMAC,LEVEL=01,SOURCE=O 

&OP1,&OP2 
&PAR 1, &PAR2 

The SYSUT1 and SYSUT2 DD statements indicate that SYS1.MACLIB, an 
existing program library, is to be updated. Output from the IEBUPDTE 
program is printed on the Class A output device (specified by SYSPRINT) • 
The utility control statement ./ ADD and the macro definition follow the 
SYSIN statement. The./ ADD statement specifies that the statements 
following it are to be added to the macro library under the name NEWMAC. 
When you include macro definitions in the library, the name specified in 
the NAME parameter of the ./ ADD statement must be the same as the 
operation code of the macro definition. 

Adding Macro Definitions to a Library 49 



Asse~mbler Language Programming under eMS 

This sE~ction of the manual is for programmers who code in the assembler 
languaqe under CMS (Conversational Monitor System). It is intended to 
help you assemble and execute your program, to choose and specify the 
options you need and to interpret the listing and the diagnostic 
messages issued by the Assembler. To use this section effectively, you 
should be familiar with the Assembler language described in OS/yS -
DOS/VS - VM/370 Assembler Lang~~~~. 

'Creating Your Assembler Language Program Using CMS' describes how 
you crE~ate an assembler language program using the CMS Editor, this 
section also desc::::-ibes how to define an OS data set as a CMS file. 

'Assembling Your program' describes the format of the eMS ASSEMBLE 
command, how you use the assembler options with CMS, and how CMS manages 
the assembly process. 

'~{ecuting Your Assembled program' describes the commands for 
execution and for executing more than one module in an assembly. This 
section also describes CMS register usage during program execution and 
how parameters are passed to the program. Finally this section tells you 
how to create a module of your program, so that it will execute when you 
invoke its filename. 

'programming Aids' describes the assembler data sets and storage 
requir4~ments of the assembler, and the diagnostics produced by CMS. 

Introduction 

This s«=ction describes the purpose of the assembler, the relationship of 
the assembler to CMS, and the input for and the output of the assembler. 

Purpose of the Assembler 

The purpose of the OSjVS - VM/370 assembler is to translate.programs 
written in the assembler language into object code, that is, suitable 
for ex«=cution on an IBM System/370 machine. 

Relationship of the Assembler to CMS 

The OS/VS - VM/370 assembler program is a part of VM/370; it is executed 
under control of the Conversational Monitor System (CMS). This assembler 
program is the same as that supplied with the OSjVS System. When you 
are us:ing CMS, the VM/370: Command Language Guide for General Users, and 
the VM/370: EDIT Guide should be used for more detailed information 
about eMS. 

As inpllt, the assembler accepts a program written in the assembler 
language as defined in the publication OS/yS - DOS/yS - VM/370 Assembler 
Langual~. This program is referred to as a source module. 

50 



Output 

The output from the assembler consists of an object module and program 
listing. The object module is stored on your virtual disk in a TEXT 
file. You can bring it into your virtual storage and execute it by 
using the CMS LOAD and START commands. The program listing lists all the 
statements in the module, both in source and machine language format, 
and gives other important information about the assembly (such as error 
messages). The listing is described in detail in the section 'The 
Assembler Listing'. 

Creating an Assembler Language Program: The CMS Editor 

To create an assembler language program using CMS, you can use the CMS 
EDIT command. The EDIT command invokes the CMS Editor, which provides 
an interactive environment for program creation, including subcommands 
that allow you to perform such fUnctions as inserting and deleting lines 
and automatic tab setting. When you create an assembler language 
program under CMS, the EDIT command is entered in the following form: 

EDIT filename ASSEMBLE 

where filename is the name of your file. You must ensure that you enter 
a filetype of ASSEMBLE, thus specifying to the Editor (and CMS) that you 
are creating an assembler language program. You can find a complete 
description of the Editor and its facilities in the publication VM/370: 
EDIT Guide. 

When you have created your assembler language program, you use the 
CMS ASSEMBLE command to invoke the assembler program to assemble your 
program file. 

OVERRIDING CMS FILE DEFAULTS 

When you issue the ASSEMBLE command, there are default FILEDEF's issued 
for Assembler data sets. You may want to override these with explicit 
FILEDEF's. The ddnames most likely to be overridden are: 

ASSEMBLE 

TEXT 

LISTING 

PUNCH 

CMSLIB 

(SYSIN input to the assembler) 

(SYSLIN output of the assembler) 

(SYSPRINT output of the assembler) 

(SYSPUNCH output of the assembler) 

(SYSLIB input to the assembler) 

The default FILEDEF's issued by the assembler for the ddnames are: 

FILEDEF ASSEMBLE DISK fn ASSEMBLE fm 

(RECFM FB LRECL 80 Block 800 

FILEDEF TEXT DISK fn TEXT fm 

FILEDEF LISTING DISK fn LISTING fm 

Assembler Language Programming Under CMS 51 



(RE:CFM FBA Block 1210 

FILEDEF PUNCH PUNCH 

FILEDEF CMSLIB DISK CMSLIB MACLIB * 

(RE:CFM FB LRECL 80 Block 800 

A FILEDEF, issued to any of the above ddnames prior to invoking the 
assembler processor, will override the default FILEDEF issued by the 
assembler. Let· s assume that there is an assembler source file in card 
deck form which you want to assemble. If you have this card deck read 
into your virtual machine reader, you must issue an overriding ~'ILEDEF 
prior t.O assembling, i.e., FILEDEF ASSEMBLE READER. Now we can invoke 
the assembler as follows: 

ASSEMBLE SAMPLE (options • 

The name "SAMPLE" will be used by the assembler as the filename for any 
TEXT or LISTING files produced by the assembler, provided a file SAMPLE 
ASSEMBLE does not exist on any accessed disk, in which case, an error 
message will be issued. 

Similarly, if you have a tape containing an assembler input file 
which you want to assemble, you must issue the following commands: 

FILEDEF ASSEMBLE TAPn (RECFM F LRECL 80 Block 80 or, 

if the file is blocked, 

FILEDEF ASSEMBLE TAPn (RECFM FB LRECL 80 Block 80*N 

folloWE!d by 

ASSEMBLE SAMPLE (options • • • • 

You can use OS data sets on CMS files by defining those data sets with 
the Fn,EDEF command. For example, 

Fn,EDEF ASSEMBLE DISK HAPPY ASSEMBLE B4 DSN=OS.DATASET 

where: 

B4 is the mode of the as disk to be accessed. 

DSN=OS.DATASET is the name of the OS data set to be used for input. 

To assE!mble ·this, issue: 

ASSEMBLE HAPPY 

The same examples used here for input files can be applied to other 
ddnames. Care should be taken that any attributes specified for the file 
conform to the assembler expected attributes or to the defined attributes 
for thE~ device, i.e., PUNCH LRECL 80 BLOCK 80, TERMINAL 132. 

52 



Assembling Your Program: The Assemble Command 

Once you have created or defined a source program, you assemble the 
program using the CMS ASSEMBLE command. This command invokes the 
Assembler Program. This section describes how you use ASSEMBLE. 

ASSEMBLE COMMAND FORMAT 

You use the ASSEMBLE command to create an object file from a source 
file. The source program can be created by the CMS Editor or it can be 
created externally and defined for use under CMS by the FILEDEF command. 
ASSEMBLE takes the following form: 

ASSEMBLE Filename (options [)] 

where filename is the name of the file you are assembling and options is 
a series of keywords used to specify functions associated with the 
assembler. 

The Filename Entry 

When your file has been created by the CMS Editor, you use the filename 
associated with the file when you issue the ASSEMBLE command. If your 
file has been defined for use under CMS by the FILEDEF command, you use 
a dummy or unique filename to be used by the assembler to define the 
LISTING and TEXT files the assembler produces. You need not enter the 
standard CMS filetype field, since the default filetype is ASSEMBLE. 

Assemble OQtions for CMS 

Assembler options are functions of the assembler that you, as an 
assembler language programmer, can select. For example, you can use 
assembler options to specify whether or not you want the assembler to 
produce an object deck; whether or not you want it to print certain 
items in the listing; and whether or not you want it to check your 
program for reenterability. In CMS, the assembler options can be 
divided into four categories: 

• Listing control options, which determine the information to be 
included in the program listing. 

• Output control options, which specify the device on which the 
assembler object module is to be written and the contents of the 
module. 

• SYSTERM options, which determine the information to be included in 
the listing produced on the SYSTERM data set. This data set is 
primarily for use by the Time Sharing Option (TSO) of VS2. 

• Other assembler options, which specify miscellaneous functions and 
values for the assembler. 

You will notice that in the discussion that follows, the options fall 
into two types: 

• Simple pairs of keywords: a positive form (for example, DEC~ that 
requests a function, and an alternative negative form (for example, 
NODECK) that rejects the function. 

• Keywords that permit you to assign a value to a function, for 
example, LINECOUNT (40~. 

Assembler Language Programming Under CMS 53 



Page of GC33-4021-3 
Revised February 15, 1976 
By TNL: GN33-8205 

You use the option field of the ASSEMBLE command line to enter the 
assembler options. The list of options must be preceded by a left 
paren1:hesis. Each option must be separa ted from the next by a blank 
space .. The closing parenthesis of the option field is optional. 

THE LISTING CONTROL OPTIONS: The list below describes the assembler 
options you can use to control the assembler listing. The default values 
are underscored. 

ALOGI<~ 

NOALOGIC 

NOESD 

1IST 

NOLIs~r 

MCAI .. L 

MLOGIC 

NOMLOGI~ 

LIBMAC 

NOLIB1~AC 

RLD 

NORLD 

I XREF (FULL) 

54 

Conditional assembly statements processed in open code 
are listed. 

The ALOGIC opt,ion is suppressed. 

The external symbol dictionary (ESD) is listed. 

No ESD listing is printed. 

An assembler listing is produced. 

No assembler listing is produced. This option overrides 
ESD, RLD, and XREF. 

Inner macro instructions encountered during macro 
generation are listed following their respective outer 
macro instruction. The assembler assigns statement 
numbers to th€!se instructions. The MCALL option is 
implied by the MLOGIC option; NOMCALL has no effect if 
MLOGIC is specified. 

The MCALL option is surpressed. 

All statements of a macro definition processed during 
macro generation are listed after the macro 
instruction. 'I1he Assembler assigns statement numbers to 
them. 

The MLOGIC option is supressed. 

The macro definitions read from the macro libraries and 
any assembler statements following the logical END 
statement are listed after the logical END statement. 
The logical END statement is the first END statement 
processed during macro generation. It may appear in a 
macro or in open code: it may even be created by 
substitution. The assembler assigns statement numbers 
to the statements that follow the logical END statement. 

The LIBMAC is suppressed. 

The assembler produces the relocation dictionary as 
part of the listing. 

The RLD is not printed. 

The assembler listing will contain a cross reference 
table of all symbols used in the assembly. This 
includes symbols that are defined but never referenced. 
The assembler listing will also contain a cross 
reference table of literals used in the assembly. 



I XREF (SHORT) 

NOXREF 

PRINT 

NOPRINT 

FLAG 

YFLAG 

NOYFLAG 

(nnn) 

.JQL 

Page of GC33-4021-3 
Revised February 15, 1976 
by TNL: GN33-8205 

The assembler listing will contain a cross reference 
table of all symbols that are referenced in the 
assembly. Any symbols defined but not referenced are 
not included in the table. The assembler listing will 
also contain a cross reference table of literals used 
in the assembly. 

No cross reference tables are printed. 

PRINT writes the LISTING file to the printer. 

You should select this option if you do not want the 
assembler to produce a LISTING file. 

DISK is the default value and places the LIS1ING file on 
a minidisk. 

Diagnostic messages and MNOTE messages below severity 
code nnn will not appear in the listing. Diagnostic 
messages can have severity codes of 4, 8, 12, 16, or 20 
(20 is the most severe), and MNOTE severity codes can 
be between 0 and 255. For example, FLAG (8) suppresses 
diagnostic messages with severity codes of 0 through 7. 

Diagnostic message IF0205 and its severity code 
will appear in the listing. 

The YFLAG option is suppressed. 

LINECOUNT I (nn) nn specifies the number of lines to be listed per page. 
~ 

THE OUTPUT CONTROL OPTIONS: are used to control the object module output 
of the assembler. 

DECK 

NO DECK 

OBJECT or OBJ 

NOOBJECT or 
NOOBJ 

TEST 

NOTEST 

The object module is written on the device specified 
for the PUNCH file. If this option is specified 
together with the OBJECT option, the object module will 
be written both on the PUNCH and TEXl files. 

The DECK option is suppressed. 

The object module is written on the device specified in 
the TEXT DD statement. If this option is specified t 
together with the DECK option, the object module will 
be written both on the TEXT and on PUNCH files. 

The OBJECT is su~pressed. 

The special source symbol table (SYM cards) is included 
in the object module. 

NO SYM'cards are produced. 

THE SYSTERM OPTIONS: Are used to control the SYSTERM file associated 
with your assembly. 

TERMINAL or 
TERM 

The assembler writes diagnostic information on the 
SYSTERM data set. The diagnostic information, described 
in detail in the section Assembler Data Sets and 
Storage Requirements, consists of the diagnosed 
statement followed by the error message issued. 

Assembler Language Programming Under CMS 55 

• 



NOTER.M 

NUMBE;B or 

NU~ 

NONU~[BER or 
NONU~[ 

NOSTftlIT 

The terminal option is suppressed. 

The line number field ~olumns 73-80 of the input 
records) is written in the SYSTERM listing for 
statements for which diagnostic information is given. 
This option is valid only if TERMINAL is specified. 

The number option is suppressed. 

The statement number assigned by the assembler is 
written in the SYSTERM listing for statements for which 
diagnostic information is given. This option is valid 
only if TERMINAL is specified. 

The STMT option is suppressed. 

OTHEFt ASSEMBLER OPTIONS; The options below allow you to specify various 
funct:ions and values for the assembler. 

RENT 

NOREl'r± 

ALIGl'! 

NOALIGN 

BUFSIZE (MIN) 

BUFS IZE (STD) 

(string) 

The assembler checks your program for a possible 
violation of program reenterability. Code that makes 
your program non-reentrant is identified by an error 
message. 

The RENT option is suppressed. 

All data is aligned on the proper boundary in the 
object module for example, an F-type constant is 
aligned on a fullword boundary. In addition, the 
assembler checks storage addresses used in machine 
instructions for alignment violations. 

The assembler does not align data areas other than 
those specified in CCW instructions. The assembler does 
not skip bytes to align constants on proper boundaries. 
Alignment violations in machine instructions are not 
diagnosed. 

The assembler uses the m~n~mum buffer size (790 bytes) 
for each of the utility data sets (SYSUT1, SYSUT2, and 
SYSUT3). Storage normally used for buffers is 
allocated to work space. Because more work space is 
available, more complex programs can be assembled in a 
given region; but the speed of the assembly is 
substantially reduced. 

The buffer size that gives the optimum performance is 
chosen. The buffer size depends on the size of the 
virtual machine. Of the assembler working storage in 
excess of minimum requirements, 37% is allocated to the 
utility data set buffers, and the rest to macro 
generation dictionaries. Refer to the section 
Assembler Data Sets and Storage Requirements for a more 
complete description of the effects of BUFSIZE. 

SYSPARM (?) 'string' is t.he value assigned to the system variable 
(null symbol SYSPARM (explained in Assembler Language, 
string) GC33....;4010). 

56 



Using SYSPARM under CMS 

In its parsing of the command line, CMS breaks the line into 
eight-character tokens. Therefore, the SYSPARM field under CMS is limited 
to an eight-character entry. However, you can enter larger items using 
the special question mark symbol (?) in the option field. When CMS 
encounters this symbol in the command line, it will prompt you with the 
message 

ENTER SYSPARM: 

You may then enter as many characters as you want up to the option limit 
of 100 characters. 

To use parentheses or embedded blanks in your SYSPARM field, you 
must also use the question mark. 

The following code is an example of how to use the question mark in 
the SYSPARM field: 

assemble test (load deck sysparm(?) 
ENTER SYSPARM: 

EEam, • bo) • fy 

Ri 

Overriding the SYSPARM Question Mark Entry 

If you enter the question mark in the SYSPARM field and attempt to 
override it with a subsequent SYSPARM entry, that SYSPARM entry 
overrides the question mark symbol, just as it is supposed to. 

However, once CMS encounters the question mark symbol you are 
prompted whether or not you override it. 

Therefore, if you have overridden the question mark you must press 
the Enter Key when CMS prompts you with ENTER SYSPARM. 

CMS Management of Your Assembly 

• 

When you assemble a program under CMS, permanent and temporary files are 
created and CMS performs certain processing steps. This section describes 
how CMS manages this processing. 

Files Created During Assembly 

During the assembly of your program, files are created by CMS. Some 
files are permanent, others temporary. The permanent files are: 

• An ASSEMBLE File, which is the source code used as input by the 
assembler. 

• The LISTING File, which contains the listing produced by the 
assembler, describing the results of the assembly. 

• The TEXT File, which contains the object code created during the 
assembly. 

Assembler Language Programming Under CMS 57 



Temporary files created during assembly are the SYSUT1, SYSUT2, and 
SYSUT3 files, which are used as work files during assembly of your 
program. 

INPUT TO ASSEMBLER 

Assembler 
Program 

Figure 17. Files Created During Assembly 

ASSEMBLER OUTPUT 

The utility files are placed on ·the Read/Write disk with the most 
available write space. 

The· TEXT and LISTING files are placed on one of three possible 
disks, if they are available. 

1. The~ disk on which the source file resides. 

2. The~ parent disk of the above disk (if it exists) • 

3. The~ primary disk. 

If all three attempts fail to place the information on a ReadjWrite 
disk, the assembly will terminate with an error message. 

File Processing by the Assemble.;: 

When assembling under eMS, there are two new files created, each with 
the filename of the source ASSEMBLE file, but with filetypes of TEXT and 
LISTING. During assembly, any files residing on the virtual disk being 
processed, with the filename of the file you are processing and 
filetypes of TEXT or LISTING will be erased. The new TEXT and LISTING 
files created during assembly take their place on your processing disk 
unless you specify otherwise. These files are erased even if you specify 
via NOloOAD and NOLIST that there will be no new files to replace them. 
OMS also defines the utility files for your assembly, thus eliminating 
the need for you to define them. At the end of assembly, all of the 
utility files are erased. 

58 



Loading and Executing Your Assembled Program 

Once you have assembled your program file, you can load and execute the 
resulting TEXT file (containing object code) using the eMS LOAD and 
START commands. The LOAD command causes your TEXT file to be loaded into 
storage in your virtual machine and the START command begins execution 
of the program. If you are assembling more than one file, use the eMS 
INCLUDE command to bring the additional files into storage. These 
commands and the options associated with them are described in VM/370: 
Command Language Guide for General Users. 

eMS REGISTER USAGE DURING EXECUTION OF YOUR PROGRAM 

eMS reserves four registers for its own use during the execution of an 
assembler language program. When control is received from the user 
program, the entry point address for the program is placed in register 
15. Register 1 contains the address of a parameter list, which contains 
any parameters passed to the program. Register 13 contains the address 
of the save area. Register 14 contains the section address to return 
control to the control program. 

PASSING PARAMETERS TO YOUR ASSEMBLER LANGUAGE PROGRAM 

eMS provides you with the ability to pass parameters to an assembler 
language program by means of the START command. The statement below 
shows how to pass parameters to your program using the CMS START command: 

START MYJOB PARM1 PARM2 

The parameters must be no longer than eight characters and must be 
separated by blanks. 

CMS creates a list of the parameters for use during execution. The 
parameter list for the command above would look like: 

PLIST DS 
DC 
DC 
DC 
DC 

OD 
CLa'MYJOB' 
CLa' PARM1' 
CLaw PARM2' 
aX'FF' 

where the list is delimited by the hexadecimal fence of FF's. 

Assembler Macros Supported by eMS 

There are several macros you can use in assembler programs. Among the 
services provided by these macros are the ability to write a record to 
disk, to read a record from disk, to write lines to a virtual printer 
etc, etc. All of the eMS Assembler Macros are described in VM/370: 
Command Language Guide for General Users. 

Assembler Language Programming Under CMS 59 

• 



Creating a Module of Your Program 

When you are sure that your program executes properly, you may want to 
create a module of it, so that you can execute it by simply invoking its 
filename on the command line. 

To create a module, you use the LOAD, GENMOD, and, in some cases, 
the LOADMOD commands. See the section on creating a module in VM/370: 
Command Language Guide for General Users for more information. 

Progra:mming Aids 

This section gives you reference information about the assembler. It 
describes the data sets used by the assembler, assembler storage 
requirE!ments, information about the assembler listing and SYSTERM 
listingr, and about the diagnostic messages generated by CMS. 

ASSEMBLER DATA SETS AND STORAGE REQUIREMENTS 

This sE!ction describes the data set used by the assembler. It also 
describes the main storage and auxiliary storage requirements of the 
assembler. This description is intended for programmers who want to alter 
the assembler's region or partition size or data set parameters ~uch as 
buffer size) • 

Assem.pler Data Sets for CMS Users 

This sE!ction describes the data sets used by the assembler to assemble 
your program under CMS; these data sets are referred to as files. 

DDname SYSUT1, SYSUT2, and SYSUT3: The assembler uses the utility data 
sets as intermediate external st.orage device s when processing the source 
progr~l. These data sets must be organized sequentially, and the devices 
assigned to them must be direct access devices, magnetic tape units, or 
a combination of both. The assembler does not support mutivolurne utility 
data SE!tS. 

DDname ASSEMBLE: This data set contains the input to the assembler -- the 
source statements to be processed. The input device assigned to this 
data SE~t may be DISK, RDR, or TAPE, or another sequential input device 
that you have designated. The FILEDEF command describing this data set 
appears in the input stream. 

DDname CMSLIB: From this data set whose filetype must be MACLIB the 
assembler obtains macro definitions and assembler language statements 
that CCln be called by the COpy or a macro assembler instruction. It is a 
partitioned data set: each macro definition or sequence of assembler 
language statements is a separate member, wi th the member name being the 
macro instruction mnemonic or COpy code name. The data set may be 
CMSLIB or a private macro library. OSMACRO contains macro definitions 
for thE~ IBM-supplied macro inst:r;'uctions supported by CMS. Private 
libraries and CMSLIB can be concatenated with each other in any order by 
the GU)BAL command. 

60 



DDname LISTING: This data set is used by the assembler to produce a 
listing. output may be directed to a printer, magnetic tape, or 
direct-access storage device. The default device is DISR. The assembler 

I uses the ANSI carriage-control characters for this data set. The 
smallest blocksize recommended is 1089 (blocking factor of 9). 

DDname PUNCH: The assembler uses this data set to produce a punched copy 
of the object module. The output unit assigned to this data set may be 
either a card punch or an intermediate storage device capable of 
sequential access. 

DDname TEXT: This is a direct-access storage device or magnetic tape 
data set used by the assembler. It contains the same output text ~bject 
modul~ as SYSPUNCH. It is used as input for the CMS LOADER. 

DDname SYSTERM: This data set is used by the assembler to produce 
diagnostic information. The output may be directed to a remote terminal, 
a printer, a magnetic tape, or a direct-access storage device. The 

, assembler uses the ANSI carriage control characters for this data set. 
The smallest blocksize recommended is 1089 ~locking factor of 9). 

Assembler Virtual Storage ReqUirements 

The minimum size virtual machine required by the assembler is 256R 
bytes. However, better performance is generally achieved if the 
assembler is run in 320R bytes of virtual storage. This size is 
recommended for medium and large assemblies. 

If more virtual storage is allocated to the assembler, the size of 
buffers and work space can be increased. The amount of storage allocated 
to buffers and work space determines assembler speed and capacity. 
Generally, as more storage is allocated to work space, larger and more 
complex macro definitions can be handled. 

You can control the buffer sizes for the assembler utility data sets 
(SYSUT1, SYSUT2, and SYSUT3) and the size of the work space used during 

macro processing, by specifying the BUFSIZE assembler option. Of the 
storage given, the assembler first allocates storage for the ASSEMBLE 
and CMSLIB buffers according to the specifications in the DO statements 
supplied by the FILEDEF for the data sets. It then allocates storage 
for the modules of the assembler. The remainder of the virtual machine 
is allocated to utility data set buffers and macro generation 
dictionaries according to the BUFSIZE option specified: 

BUFSIZE (STD): 

BUFSIZE (MIN) 

37% is allocated to buffers, and 63% to work space. 
This is the default chosen, if you do not specify any 
BUFSIZE option. 

Each utility data set is allocated a single 790-byte 
buffer. The remaining storage is allocated to work 
space. This allows relatively complex macro definitions 
to be processed in a given virtual machine size, but 
the speed of the assembley is substantially reduced. 

THE CMS SYSTERM LISTING 

I The SYSTERM data set gives you rapid access to the diagnostic messages 
issued during an assembly. The data set can also be directed to a 
printer, a magnetic tape, or a direct-access device. 

You use the assembler option TERMINAL to specify that you want a 
SYSTERM listing to be produced. 

• 

Assembler Language Programming Under CMS 61 



Each diagnosed statement in the assembly listing printed in the 
SYSTEID1 listing immediately followed by the messages that are issued for 
the statement. To help identify the position of the statement in your 
program, two additional assembler options are available: 

• Nm1BER, which prints the line number(s) of the diagnosed statement. 

• STMT, which prints the statement number assigned to the diagnosed 
statement by the assembler. 

The format of the flagged statement as it appears in the listing is: 

Line No.(s) 
(option NUM) 

Statement No. 
(option STMT) 

Source record(SI] 
(Columns 1-72 Clf 
the source 
statement lines) 

If a s1:atement contains continuation lines, it will occupy several lines 
in the listing, each identified by a line number (if option NUMBER is 
used). If a statement in error is discovered during the expansion of a 
macro, or of any inner macro called by an outer macro, the first line of 
the ou1:er macro instruction is listed before the flagged statement. If 
a statement is flagged during variable symbol substitution in open code, 
the fil:-st line of the model stat.ement is listed as well as the generated 
statemE~nt • 

Fiqure 18 shows the SYSTERM listing prod uced during the same 
assembly.. The example illustrates the rules given above. Options 
TERMINAL, NUMBER, and STMT were in effect during the assembly. 

The SYSTERM listing starts with the statement ASSEMBLER DONE. At 
the end of the listing the numbE~r of statements flagged in the assembly 
is generated: 

Nm~BER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = nn 
(Indicates the total number of source statements in error) 

ASSEMBLER (XF) DONE 
11 L R2,END 

IF0188 END IS AN UNDEFINED SYMBOL 
18 LA R3,A 

IF0188 11, IS AN UNDEFINED SYMBOL 

END OF AREA 

THIS IS A 
DUMMY COMMENT 
TO SHOW 

IF0069 E:XCESSIVE CONTINUATION CARDS, TWO ALLOWED 

• • • 

A STATEMENT CONTAINING • 
TOO MANY CONTINUATION CARDS 

25 SR iQ,iQ OPEN CODE MODEL STATEMENT • 
WITH CONTINUATION CARD 

26+ SR B, B OPEN CODE MODEL STATE~ENT • 
+ WITH CONTINUATION CARD 

IF0188 EI IS AN UNDEFINED SYMBOL 
IF0188 EI IS AN UNDEFINED SYMBOL 

35 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD • 
36+1234 DC F'234' 

IF0125 INVALID NAME- ILLEGAL EMBEDDED CHARAC~rER OR NON-ALPHABETIC FIRST CHARACTER 
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = 4 

~----------------------------------

Figure 18. SYSTERM listing 

62 



DIAGNOSTIC MESSAGES WRITTEN BY CMS 

If an err,or occurs during execution of the ASSEMBLE conunand, a message 
may be typed at the terminal, and, at completion of the command, register 
15 contains a nonzero return code. The messages are in two parts; a 
message code and the message text. The message code is in the form 
'DMSASMnnnt', where DMSASM indicates that the message was generated by 
the ASSEMBLE command program, nnn is the number of the message, and t is 
the type of the message. The message text describes the error condition. 

The actual message typed may not be complete. By using the CP SET 
(EMS G) command, the user can specify that the entire error message be 

typed, or only the error code, or only the text, or neither code nor 
text. The VM/370: Command Language Guide for General Users contains a 
description of the CP SET command. 

Diagnostic and error messages originating in the assembler are typed 
at the terminal in the form IFOnnn text, unless NOTERM is specified. 
Errors detected by the ASSEMBLE command program, which terminate the 
command before the system assembler is called, result in error messages 
(type E) • 

For additional information about the text, format, or codes 
regarding the messages for ASSEMBLE see VMj370 System Messages, Order 
No. GC20-1808. 

ASSEMBLE COMMAND ERROR MESSAGES 

DSMASM001E 

DMSASM002E 

NO FILENAME SPECIFIED 

Explanation: You have not included a filename in the 
ASSEMBLE command. 

Assembler Action: RC = 24 
Execution of the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Response: Reissue the ASSEMBLE command and 
specify a filename. 

FILE 'filename' ASSEMBLE NOT FOUND 

Explanation: The filename that you included in the ASSEMBLE 
command does not correspond to the names of any of the 
files on your disks. 

Supplemental Information: The variable filename in the text 
of the message indicates the name of the file that could 
not be found. 

Assembler Action: RC = 28 
Execution of 'the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Response: Reissue the ASSEMBLE with an 
appropriate filename. 

Assembler Language Programming Under eMS 63 



DMSASM003E 

DMSASM006E 

DMSAS~(007E 

DMSAS~[038E 

64 

INVALID OPTION 'option' 

Explanation: you have included an invalid option with your 
ASSEMBLE command. 

Supplemental Information: The variable option in the text 
of the message indicated the invalid option. 

Assembler Action: RC = 24 
Execution of the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Respons~: check the format of the ASSEMBLE 
command and reissue the command with the correct option. 

NO READ/WRITE DISK ACCESSED 

Exelanation: Your virtual machine configuration does not 
include a read/write disk for this terminal session or you 
failed to specify a read/write disk. 

Assembler Action: RC = 36 
Execution of the command terminates. The system remains in 
the same status as before the command was enterede 

Programmer Response: Issue an ACCESS command specifying a 
read/write disk. 

FILE 'filename' ASSEMBLE IS NOT FIXED, 80 CHAR RECORDS 

Assembler Action: Irhe ASSEMBLE source file that you 
specified in the ASSEMBLE command does. not contain fixed 
length records of 80 characters. The command cannot be 
executed. 

Supplemental Information: The variable filename in the text 
of the message indicates the name of the file that is in 
error. 

Programmer Response: You must reformat your file into the 
correct record length. CMS EDIT or COPYFILE can be used to 
reformat the file. 

FILE ID CONFLICT FOR DDNAME "ASSEMBLE" 

Explanation: You issued a FILEDEF command that conflicts 
with an existing FILEDEF for the ddname specified. 

Supplemental Info.rmation: The variable ddname in the tex·t 
of the message indicates the ddname in error. 

Assembler Action: RC = 40 
Execution of the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Response: Reissue the FILEDEF command with an 
appropriate ddname. 



DMSASM052E 

DMSASM070E 

DMSASM074E 

MORE THAN 100 CHARS, OPTIONS SPECIFIED 

Explanation: The string of options that you specified with 
your ASSEMBLE command exceeded 100 characters in length. 

Assembler Action: RC = 24 
Execution of the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Response: Reissue your ASSEMBLE command with 
fewer options specified. 

INVALID PARAMETER 'parameter' 

Explanation: You specified an invalid parameter for an 
option in the ASSEMBLE command. 

Supplemental Information: The variable parameter in the 
text of the message indicates the invalid parameter. 

Assembler Action: RC = 24 
Execution of the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Response: Check the format of the option with 
its appropriate parameters and reissue the command with the 
correct parameter. 

ERROR 1 SETTING ! AUXILIARY DIRECTORY 
RESETTING 

Explanation: There are two conditions which could cause the 
message to be generated: 

1. The disk containing the assembler modules (that 
is, the disk specified at Auxiliary Directory 
generation via the GENDIRT mode field) has not 
been accessed. 

2. An attempt to reset the File Status Table has 
failed, thereby removing the Auxiliary Directory 
from the search chain. Either the Auxiliary 
Directory was not included in the File Status 
Table chain, or a processing error has caused the 
disk containing the assembler modules to appear 
to be not accessed. 

Assembler Action: RC = 40 
Execution of the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Response: Verify that the disk containing the 
assembler modules has been accessed using the proper mode 
specification (that is, the mode specified via GENDIRT when 
the Auxiliary Directory was generated). If the error 
occurred resetting the Auxiliary Directory, contact 
installation maintenance personnel. 

Assembler Language Programming Under CMS 65 



DMSASM075E 

66 

DEVICE device name ILLEGAL FOR INPUT 

Explanation: The device specified in your FILEDEF command 
cannot be used for ·the input operation that is requsted in 
your program. For .~xample, you have tried to read data 
from the printer. 

Supplemental Information: The variable device name in the 
text of the message indicates the incorrect device that was 
specified. 

Assembler Action: RC = 40 
Execution of the command terminates. The system remains in 
the same status as before the command was entered. 

Programmer Response: Reissue your FILEDEF command specifying 
an appropriate device for the desired input operation. 



Appendix: A: Glossary 

The following terms are defined as they are used in this manual. If you 
do not find the term you are looking for, refer to the Index or to the 
IBM Data processing Glossarx, Order No. GC20-1699. 

The terms are of three different kinds: 

• Definitions made by the American National Standards Institute 
(ANSI) • Such definitions are marked by an asterisk (*). 

• Definitions valid for OS. Such definitions are marked by an O. 

• Definitions of terms that are used in describing the logic of the OS 
Assembler. They are included here only because they are used in the 
assembler diagnostic messages. For further information on these 
terms, refer to OSJYS - VM/370 Assembler Logic, GY33-8041. Such 
definitions are marked by an A. 

IBM is grateful to the American National Standards Institute 
(ANSI) for permission to reprint its definitions from the 

American National Standard Vocabulary for Information 
Processing, which was prepared by Subcommittee X3K5 on 
Terminology and Glossary of American National Standards 
Committee X3. 

This glossary does not explain terms pertaining to the assembler 
language. Such terms are covered in the glossary of Assembler Language. 

Oassemble. To prepare a machine language program from a symbolic language 
program by substituting machine operation codes for symbolic operation 
codes and absolute or relocatable addresses for symbolic addresses. 

*assembler. A computer program that assembles. 

Oassembler instruction. An assembler language source statement that 
causes the assembler to perform a specific operation. Assembler 
instructions are not translated into machine instructions. 

Qassembler language. A source language that includes symbolic machine 
language statements in which there is a one-to-one correspondence with 
the instruction formats and data formats of the computer. The assembler 
language also contains statements that represent assembler instructions 
and macro instructions. 

oassembler option. A function of the assembler requested for a particular 
job step. 

Oauxiliary storage. Online storage other than main storage; for example 
storage on magnetic tapes or on direct access devices. 

ocataloged procedure. A set of job control statements that has been 
placed in a partitioned data set called the procedure library, and can 
be retrieved by naming it in an execute (EXEC) statement or started by 
the START command. 

Qconcatenated data sets. A group of logically connected data sets that are 
treated as one data set for the duration of a job step. 

Appendix A: Glossary 67 



control program. A program that is designed to schedule and supervise 
the performance of data processing work by a computing system. 

Ocontrol section. That part of a program specified by the programmer to 
be a relocatable unit, all elements of which are to be loaded into 
adjoining main storage locations 0 

Odata set. The major unit of data storage and retrieval in the operating 
system, consisting of a collection of data in one of several prescribed 
arrangements and described by control information to which the system 
has access • 

• diagnostic. pertaining to the detection and isolation of a malfunction or 
mistake. 

Aedited text. Source statements modified by the assembler for internal 
use. The initial processing of ·the assembler is referred to as editing. 

*entry point. A location in a module to which control can be passed from 
another module or from the control program. 

ESD. (See external symbol dictionary) 

oexecutE~ (EXEC) statement. A job control language peL) statement that 
marks the beginning of a job step and identifies the program to be 
executE~d or the cataloged or in-stream procedure to be used. 

oexternal symbol dictionary (ESD). Control information associated with an 
object or load module which identifies the external symbols in the 
module .. 

Aglobal dictionary. An internal t.able used by the assembler during macro 
generat.ion to contain the current values of all unique global SETA, 
SETB, and SETC variables from all text segments. 

Aglobal vector table. A table of pointers in the skeleton dictionary of 
each text segment showing where the global variables are located in the 
global dictionary. 

Qinput :stream. The sequence of job control statements and data submitted 
to an operating system on an input unit especially activated for this 
purpose by the operator. 

* 

instruction. 

1 • A statement that specifies an operation and the values and 
locations of its operands. 

2. (See assembler instruction, machine instruction, and macro 
instruction) 

JCL. (See job control language) 

*job. Pl. specified group of tasks prescribed as a unit of work for a 
comput.er. By extension, a job usually includes all necessary computer 
programs, linkages, files, and instructions to the operating system. 

ojob control language (JCL). A language used to code job control 
statements • 

• job control statement. A statement in a job that is used in identifying 
the job or describing its requirements to the operating system .. 

68 



* 

o 

job step. 

1 • 

2. 

The execution of a computer program explicitly identified by a 
job control statement. A job may specify that several job steps 
be executed. 

A unit of work associated with one processing program or one 
cataloged procedure and related data. A job consists of one or 
more job steps. 

Ojobname. The name assigned to the JOB statement; it identifies the job 
to the system. 
language. A set of representations, conventions, and rules used to 
convey information. 

*language translator. A general term for any assembler, compiler, or 
other routine that accepts statements in one language and produces 
equivalent statements in another language. 

Olibrary. (See partitioned data set) 

Olibrary macro definition. A macro definition that is stored ina macro 
library. The IBM-supplied supervisor and data management macro 
definitions are examples of library macro definitions. 

Olinkage editor. A processing program that prepares the output of 
language translators for execution. It combines separately produced 
object or load modules; resolves symbolic cross references among them; 
replaces, deletes, and adds control sections; and generates overlay 
structures on request; and produces executable code (a load module) that 
is ready to be fetched into main storage and executed. 

Olinking conventions. A set of conventions for passing control between 
different routines of the operating system. 

Oload module. The output of a single linkage editor execution. A load 
module is in a format suitable for loading into virtual storage for 
execution. 

Oload module library. A partitioned data set that is used to store and 
retrieve load modules. 

Oloader. A processing program that performs the basic editing functions 
of the linkage editor, and also fetches and gives control to the 
processed program, all in one job step. It accepts object modules and 
load modules created by the linkage editor and generates executable code 
directly in storage. The loader does not produce load modules for 
program libraries. 

Alocal dictionary. An internal table used by the assembler during macro 
generation to contain the current values of all local SET symbols. 
There is one local dictionary for open code, and one for each macro 
definition. 

Olocation counter. A counter whose value indicates the assembled address 
of a machine instruction or a constant or the address of an area of 
reserved storage, relative to the beginning of the control section. 

*machine instruction. An instruction that a machine can recognize and 
execute. 

*machine language. A language that is used directly by the machine. 

~. (See macro instruction and macro definition) 

Appendix A: Glossary 69 



macro call. (See macro instruction) 

Omacro definition. A set of statements that defines the name of, format 
of, and conditions for generating a sequence of assembler language 
statements from a single source statement. This statement is a macro 
instruction that calls the definition. (See also library macro 
definition and source macro definition) 

macro expansion. (See macro generation) 

Omacro generation (macro expansio!!l • An opera tion in which the assembler 
generat~es a sequence of assembler language statements from a single 
macro instruction, under conditions described by a macro definition. 

Omacro instruction (macro call) • An assembler language statement that 
causes 

Omacro library. A library containing macro definitions. The supervisor 
and dat:a management macro definitions supplied by IBM (GET, LINK, etc.) 
are contained in the system macro library. Private macro libraries can 
be concatenated with the system macro library. 

Omain st:orage. All program addressable storage from which instructions 
may be executed and from which data can be loaded directly into 
registE~rs • 

Omodule.. (see load module, object. module, and source module) 

Oobject module. The machine-language output of a single execution of an 
assembler or a compiler. An object module is used as input to the 
linkage editor or loader. 

*online storage. Storage under the control of the central processing unit~ 

Oopen code. The portion of a source module that lies outside of and after 
any source macro definitions that may be specified. 

*operat:Lng system. Software which controls the execution of computer 
progr~ns and which may provide scheduling, debugging, input/output 
control, accounting, compilation, storage assignment, data management, 
and related services. 

Aordinary symbol attribute reference dictionary. A dictionary used by the 
assembler. The assembler puts an entry in it for each ordinary symbol 
encount.ered in the name field of a statement. The entry contains the 
attributes (type, length, etc.) of the symbol. 

Ooption.. (See assembler option) 

OE9-rtitioned data set (library). A data set in direct access storage that 
is divided into partitions, called members, each of which can contain a 
progr~n or a part of a program. Each partitioned data set contains a 
directory (or index) that the control program can use to locate a 
progr~n in the partitioned data set. 

oprocedure step. A unit of work associated with one processing program 
and related data within a cataloged procedure. A cataloged procedure 
consis·ts of one or more procedure steps. 

OE,!"oces:sing program. 

1. A general term for any program that is not a control program. 

70 



2. Any program capable of operating in the problem program $tate. 
This includes IBM-distributed language translators, application 
programs, service programs, and user-written programs. 

Oprogram. 

1. A general term for any combination of statements that can be 
interpreted by a computer or language translator, and that 
serves to perform a specific function. 

2. To write a program. 

programmer macro definition. (See source macro definition) 

Oreal storage. The storage of a System/370 computer from which the 
central processing unit can directly obtain instructions and data and to 
which it can directly return results. 

*relocation dictionary. The part of an object or load module that 
identifies all addresses that must be adjusted when a relocation occurs. 

Oreturn code. A value placed in the return code register at the 
completion of a program. The value is established by the user and may 
be used to influence the execution of succeeding programs or, in the 
case of an abnormal end of task, may simply be printed for programmer 
analysis. 

Osequential data set. A data set whose records are organized on the basis 
of their successive physical positions such as on magnetic tape. 

oseverity code. A code assigned by the assembler to each error detected 
in the source code. The highest code encountered during assembly becomes 
the return code of the assembly step. 

Askeleton dictionary. A dictionary built by the assembler for each text 
segment. It contains the global vector, the sequence symbol reference 
dictionary, and the local dictionary. 

osource macro definition. A macro definition included in a source module, 
either physically or as the result of a COpy instruction. 

Osource module. The source statements that constitute the input to a 
language translator for a particular translation. 

Osource statement. A statement written in symbols of a programming 
language. 

*statement. A meaningful expression or generalized instruction in a 
source language. 

step. (See job step and procedure step) 

Ostepname. The name assigned to an execute ~XEC) statement. It 
identifies a job step within a job. 

Osymbolic parameter. 

1. In JCL, a symbol preceded by an ampersand that appears in a 
cataloged procedure. Values are assigned to symbolic parameters 
when the procedure in which they appear is called. 

2. In assembler programming, a variable symbol declared in the 
prototype statement of a macro definition. 

Appendix A: Glossary 71 



Asymbol file. A data set used by the assembler for symbol definitions and 
references and literals. 

Osystem macro definition. Loosely, an IBM-supplied library macro 
definition which provides access to opera ting system facilities. 

*terminal. A point in a system or communication network at which data can 
either enter or leave or both. 

Atext segment. The range over which a local dictionary has meaning. The 
source module is divided into text segments with a segment for open code 
and one for each macro definition. 

*transform. To change the form of data according to specific rules. 

*translate. TO transform statements from one language into another 
without~ significantly Changing the meaning. 

ovirtual storage. Address space appearing to the user as real storage 
from which instructions and data are mapped into real storage locations. 
The si2:e of virtual storage is limited by the addressing scheme of the 
computing system and by the amount of auxiliary storage available, 
rather than by the actual number of real storage locations. 

72 



Appendix B: Assembler Sample Program 

The sample program shown in Figure 17 can be used as a test of the 
functioning of the assembler after your system has been generated (see 
OS/VS1 System Generation Reference, Order No. GC26-3791). It also 
serves as a good example of assembler language coding and of the 
listing produced by the assembler. 

The program illustrates the definition and use of user-written macro 
instructions, use of IBM-supplied macro instructions, use of dummy 
control sections, and the method of saving and restoring registers upon 
entry to and exit from a program. 

The data to be processed is assembled as part of the program. It 
consists of a table and a list of entries that are compared with the 
table. Each item in the table contains an argument name (such as ALPHA) 
and space in which information concerning the name is to be placed. 
Each entry in the list contains an argument name and function values. 
The formats of the table entries and the list entries are different, and 
both formats are described in dummy sections. 

The program searches the table for an argument name in the list. If 
a match is found, the function values are reformatted and moved to the 
appropriate table entry. If an argument name in the list cannot be 
found in the table, a switch is set in the list entry. After all the 
list entries have been processed, the list area and the table area are 
compared with a table and a list containing the predefined results. If 
the tables and lists are equal, the routine executed properly, and a 
message written on the operator's console to indicate this. 

IFOSAMP EXTERNAL SYMBOL DICTIONARY 

SYMBOL TYPE ID ADDR LENGTH LDID 

SAMPLR SD 0001 000000 0003CO 

Figure 19. Assembler Sample Program 
(Part 1 of 11) 

PAGE 

ASM 0100 15.00 01/03/72 

Appendix B: Assembler Sample Program 73 



IFOSAMP - SAMPLE PROGRAM PAGE 2 

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01/03/12 

SAMPL002 
SAMPL003 
SAMPL004 
SAMPL005 
SAMPL006 
SAMPL001 
SAMPL008 
SAMPL009 
SAMPL010 
SAMPL011 
SAMPL012 
SAMPL013 
SAMPL014 
SAMPL015 
SAMPL016 
SAMPL011 
SAMPL018 

000000 

2 
3 • 
II 
5 
6 
1 
8 •• 
9 •• 

10 •• 
11 
12 •• 
13 •• 
111 •• 
15 
16 •• 
11 •• 
18 •• 

PRINT DATA 

THIS IS THE MACRO DEFINITION 

MACRO 
MOVE 'TO,UROM 

DEFINE SETC SYMBOL 

LCLC nYPE 

CHECK NUMBER OF OPERANDS 

AIF (N"SYSLIST NE 2) .ERROR1 

CHEC:K TYPE ATTRIBUTES OF OPERANDS 

19 AIF ('1' ' 'TO NE T' 'FROM) • ERROR2 
20 AIF rr"TO EQ 'C' OR T"TO EQ 'G' OR T"TO EQ~K') .TYPECGlt 

(T"TO EQ 'D' OR T"TO EQ 'E' OR T"TO EQ 'H') .TYPEDEH 
(T"TO EQ 'F') .MOVE 

21 AlP 
22 AlP 
23 AGO .ERROR3 
211 .TYPEDEH ANOP 
25 •• 
26 .. .. 21 
28 
29 
30 
31 
32 
33 

'TYPE 
• MOVE .. 

311 •• 
35 •• 
36 •• 

ASSIGN TYPE ATTRIBUTE TO SETC SYMBOL 

SETC T"TO 
ANOP 
NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO 
L'TYPE 2,'FROM 
ST'TYPE 2,nO 
MEXn 

CHECK LENGTH ATTRIBUTES OF OPERANDS 

31 .TYPECGK AIF ~"TO NE L"FROM OR L"TO GT 256).ERRORII 
38 • NEXT STATEMENT GENERATED FOR MOVE MACRO 
39 MVC 'TO, 'FROM 
110 MEXIT 
41 •• 
42 •• 
43 •• 
114 • ERROR 1 
45 
46 .ERROR2 
111 
118 .ERROR3 
49 
50 .ERRORII 
51 
52 • 
53 • 
511 • 

ERROR MESSAGES FOR INVALID MOVE MACRO INSTRUCTIONS 

MNOTE 
MEXIT 
NNOTE 
MEXIT 
MNOTE 
MEXIT 
MNO'!'E 
MEND 

1, 'IMPROPER NUMBER OF OPERANDS, NO STATEMENTS GENERATED' 

1, 'OPERAND TYPES DIFFERENT, NO STATEMENTS GENERATED' 

1, 'IMPROPER OPERAND TYPES, NO STATEMENTS GENERATED' 

1, 'IMPROPER OPERAND LENGTHS, NO STATEMENTS GENERATED' 

MAIN ROUTINE 

55 SAMPLR CSECT 
56 BEGIN SAVE (14,12) ". 

Figure 19. Assembler Sample Pro9ram 
(Part 2 of 11) 

74 

SAMPL019 
SAMPL020 
SAMPL021 
SAMPL022 
SAMPL023 
SAMPL0211 
SAMPL025 
SAMPL026 
SAMPL021 
SAMPL028 
SAMPL029 
SAMPL030 
SAMPL031 
SAMPL032 
SAMPL033 
SAMPL034 
SAMPL035 
SAMPL036 
SAMPL031 
SAMPL038 
SAMPL039 
SAMPL040 
SAMPL041 
SAMPL042 
SAMPL043 
SAMPL044 
SAMPL045 
SAMPL046 
SAMPL041 
SAMPL048 
SAMPL049 
SAMPL050 
SAMPL051 
SAMPL052 
SAMPL053 
SAMPL054 
SAMPL055 
SAMPL056 



IFOSAMP - SAMPLE PROGRAM 

LOC OBJECT CODE ADDR1 ADDR2 

000000 47FO FOOA OOOOA 
000004 05 
000005 C2C5C7C9D5 
OOOOOA 90EC DOOC OOOOC 
OOOOOE 05CO 

00010 
000010 50DO COCO OOODO 
000014 9857 C398 003A8 

00000 
000018 45EO COC6 000D6 
00001C 9180 COC4 000D4 
000020 4710 COB6 000C6 

00000 

000024 D200 1003 5008 00003 00008 

00002A D202 1000 5009 00000 00009 

000030 5820 500C OOOOC 
000034 5020 1004 00004 
000038 8756 C008 00018 
00003C D5EF C248 COF8 00258 00108 
000042 4770 C080 00090 
000046 D55F C338 C1E8 00348 001F8 
00004C 4770 C080 00090 

000050 
000050 4510 C06E 0007E 
000054 0025 
000056 8000 
000058 E2C1D4D7D3C540D7 
000060 D9D6C7D9C1D440C9 
000068 C6D6E2C1D4D740E2 
000070 E4C3C3C5E2E2C6E4 
000078 D3 

00079 
000079 0000 
00007B 4020 
00007E 
00007E OA23 
000080 58DO COCO OOODO 

000084 98EC DOOC OOOOC 
000088 41FO 0000 00000 
00008C 07FE 

00008E 0700 
000090 4510 COBO OOOCO 
000094 0027 
000096 8000 
000098 E2C1D4D7D3C540D7 

PAGE 

STMT SOURCE STATEMENT ASM 0100 15.00 01/03/72 

57+BEGIN B 10 (0,15) 
58+ DC AL 1 (5) 
59+ DC CL5'BEGIN' 
60+ S'lM 14,12,12 (13) 
61 BALR R12,0 
62 USING .,R12 
63 ST 13,SAVE13 

BRANCH AROUND ID 

IDENTIFIER 
SAVE REGISTERS 

ESTABLISH ADDRESSABILITY OF PROGRAM 
AND TELL THE ASSEMBLER WHAT BASE TO USE 

64 LM R5,R7,.A~ISTAREA,16,LISTEND) LOAD LIST AREA PARAMETERS 
6, USING LIST,R5 REGISTER 5 POINTS TO THE LIST 
66 MORE BAL R14,SEARCH FIND LIST ENTRY IN TABLE 
67 TM SWITCH, NONE CHECR TO SEE IF NAME WAS FOUND 
68 BO NOTTHERE BRANCH IF NOT 
69 USING TABLE,R1 REGISTER 1 NOW POINTS TO TABLE ENTRY 
70 MOVE TSWITCH,LSWITCH MOVE FUNCTIONS 
71+. NEXT STATEMENT GENERATED FOR MOVE MACRO 
72+ MVC TSWITCH,LSWITCH 
73 MOVE TNUMBER,LNUMBER FROM LIST ENTRY 
74+. NEXT STATEMENT GENERATED FOR MOVE MACRO 
75+ MVC TNUMBER,LNlJIJBER 
76 MOVE TADDRESS,LADDRESS TO TABLE ENTRY 
77+. NEXT TWO STATEMENTS GENERATED FOR MOVE MACRO 
78+ L 2,LADDRESS 
79+ ST 2,TADDRESS 
80 LISTLOOP BXLE R5,R6,MORE LOOP THROUGH THE LIST 
81 CLC TESTTABL(240) ,TABLAREA 
82 BNE NOTRIGHT 
83 CLC TESTLIST(96) ,LISTAREA 
84 BNE NOTRIGHT 
85 WTO 'SAMPLE PROGRAM IFOSAMP SUCCESSFUL',ROUTCDE=(2,11) 
86+ CNOP 0,4 
87+ BAL 1,IHB0005A BRANCH AROUND MESSAGE 
88+ DC AL2(IHB0005-.) MESSAGE LENGTH 
89+ DC B'1000000000000000' MCSFLAGS FIELD 
90+ DC C'SAMPLE PROGRAM IFOSAMP SUCCESSFUL' MESSAGE 

91+IHB0005 EQU • 
92+ DC B'OOOOOOOOOOOOOOOO' 
93+ DC B'0100000000100000' 
94+IHB0005A DS OH 
95+ SVC 35 
96 EXIT L R13,SAVE13 
97 RETURN (14,12) ,RO=O 
98+ LM 14,12,12 (13) 
99+ LA 15,0 (0,0) 

100+ BR 14 
101 • 

DESCRIPTOR CODES 
ROUTING CODES 

ISSUE SVC 

RESTORE THE REGISTERS 
LOAD RETURN CODE 
RETURN 

102 NOTRIGHT WTO 'SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL' ,ROUTCDE= (2 , 11) 
103+ CNOP 0,4 
104+NOTRIGHT BAL 1,IHB0007A BRANCH AROUND MESSAGE 
105+ DC AL2(IHB0007-.) MESSAGE LENGTH 
106+ DC B'1000000000000000' MCSFLAGS FIELD 
107+ DC C'SAMPLE PROGRAM IFOSAMP UNSUCCESSFUL' MESSAGE 

00860000 
00880000 
00900000 
01180000 
SAMPL057 
SAMPL058 
SAMPL059 
SAMPL060 
SAMPL061 
SAMPL062 
SAMPL063 
SAMPL064 
SAMPL065 
SAMPL066 
SAMPL038 
SAMPL039 
SAMPL067 
SAMPL038 
SAMPL039 
SAMPL068 
SAMPL030 
SAMPL031 
SAMPL032 
SAMPL069 
SAMPL070 
SAMPL071 
SAMPL072 
SAMPL073 
SAMPL074 
00480000 
00500000 
00428018 
00428818 
00429618 

00430418 
00432018 
00432818 
00560000 
00600000 
SAMPL075 
SAMPL076 
00260000 
00700000 
00800000 
SAMPL077 
SAMPL078 
00480000 
00500000 
00428018 
00428818 
00429618 

Figure 19. Assembler Sample Program 
(Part 3 of 11) 

Appendix B: Assembler Sample Program 75 



IFOSAMP •. SAMPLE PROGRAM PAGE 4 

LOC OBJ1~eT CODE ADDR1 ADDR2 S'l'MT SOURCE STAT.EMENT ASH 0100 15.00 01/03/12 

OOOOAO D9DEiC7D9C1D440C9 
0000A8 C6D6E2C1D4D740E4 
OOOOBO D5E:i!E4C3C3C5E2E2 
0000B8 C6E~ID3 

OOOOBB oooel 
OOOOBD 402(1 
OOOOCO 
OOOOCO OA231 
0000C2 47FO C070 
0000C6 9680 5008 
OOOOCA 47FO' C028 
OOOOCE 0000 
OOOODO 0000'0000 
OOOODII 00 

0000D5 00 
0000D6 9117!' COCII 
OOOODA 9813 C3AII 
OOOODE 11111 COES 
0000E2 8830 0001 
0000E6 DS07 5000 1008 
OOOOEC 11720' COEC 
OOOOFO 078E: 
0000F2 1B13 

OOOOFIi 11620 COD2 
0000F8 117FO' COF2 
OOOOFC 1A 13: 
OOOOFE 46201 COD2 
000102 9680 COCII 
000106 07Fli: 

000108 

OOOSO 
00008 
0003S 

00004 
003B4 
OOOFS 
00001 
00000 
OOOFC 

000E2 
00102 

000E2 
000D4 

000108 0000000000000000 
000110 C1D3·D7C8Cl110401l0 
000118 0000000000000000 
000120 C2C5E3C11104040110 
000128 0000000000000000 
000130 CIIC5D3E3C14011040 
000138 0000000000000000 
000140 C5D1'E2C9D3D6D5110 
0001118 0000000000000000 
000150 C5E3C140110404040 
000158 0000000000000000 
000160 C7C1DIIDIIC1110401l0 
000168 0000000000000000 
000170 C9D6E3C140404040 
000178 0000000000000000 
000180 D2C1'D7D7Cl1104040 

OOOBB 

00080 

OOOOS 

108+IHOO007 EQU • 
109+ DC B'OOOOOOOOOOOOOOOO' DESCRIPTOR CODES 
110+ DC B'0100000000100000' ROUTING CODES 
111+IHB0007A DS OH 
112+ SVC 35 ISSUE SVC 
113 B EXIT 
114 NOTTHERE 01 LSWITCH,NONE TURN ON SWITCH IN LIST ENTRY 
115 B LISTLOOP GO BAOt AND LOOP 

116 SAVE13 
117 SWITCH 
118 NONE 
119 • 

DC F'O' 
DC X'OO' 
EQU X'SO' 

120 • BINARY SEARCH ROUTINE 
121 • 

122 SEARCH 
123 
124 
125 LOOP 
126 
127 
12S 
129 

NI 
LM 
LA 
SRL 
CLC 
BH 
BCR 
SR 

130 BeT 
131 B 
132 HIGHER AR 
133 BeT 
134 NOTPOUND 01 
135 BR 

SWITCH,255-NONE TURN OFF NOT FOUND SWITCH 
R1,R3,-F'128,4,1~8' LOAD TABLE PARAMETERS 
R1,TABLAREA-16 (R1) GET ADDRESS OP MltDLE ENTRY 
R3,1 DIVIDE INCREMENT BY 2 
LNAME,TNAME COMPARE LIST ENTRY WITH TABLE ENTRY 
HIGHER BRANCH IF SHOULD BE HIGHER IN TABLE 
8,R14 EXIT IF FOUND 
R1,R3 OTHERWISE IT IS LOWER IN THE TABLE 

R2,LOOP 
NOTFOUND 
R1,R3 
R2,LOOP 
SWITCH, NONE 
R14 

SO SUBTRACT INCREMENT 
LOOP 4 TIMES 
ARGUMENT IS NOT IN THE TABLE 
ADD INCREMENT 
LOOP 4 TIMES 
TURN ON NOT POUND SWITCH 
EXIT 

136 • 
137 • 
13S • 

THIS IS THE TABLE 

139 DS 
140 TABLAREA DC 

141 

1112 

143 

144 

145 

146 

1117 

DC 

DC 

DC 

DC 

DC 

DC 

DC 

OD 
XLS'O',CLS'ALPHA' 

XL8'0' ,CLS 'BETA' 

XLS'0',CL8'DELTA' 

XLS'O',CLS'EPSILON' 

XLS'O' ,CLS'ETA' 

XLS'O' ,CLS'GAMMA' 

XLS'O' ,CL8 'IOTA' 

Figure 19. Assembler Sample Program 
(Part 4 of 11) 

76 

0043041S 
0043201S 
00432S1S 
00560000 
00600000 
SAMPL079 
SAMPLOSO 
SAMPLOS1 

SAMPLOS2 
SAMPL083 
SAMPLOS4 
SAMPLOS5 
SAMPLOS6 
SUPLOS7 

SAMPLOSS 
SAMPL089 
SAMPL090 
SAMPL091 
SAMPL092 
SAMPL093 
SAMPL094 

XSAMPL095 
SAMPL096 
SAMPL097 
SAMPL09S 
SAMPL099 
SAMPL100 
SAMPL101 
SAMPL102 
SAMPL103 
SAMPL104 
SAMPL105 
SAMPL106 
SAMPL107 

SAMPL10S 

SAMPL109 

SAMPL110 

SAMPL111 

SAMPL112 

SAMPL113 

SAMPL114 



IFOSAMP - SAMPLE PROGRAM 

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASH 0100 

0001SS 0000000000000000 14S DC 
000190 D3C1D4C2C4C14040 
00019S 0000000000000000 149 DC 
0001AO D4E4404040404040 
0001AS 0000000000000000 150 DC 
0001BO D5E4404040404040 
0001BS 0000000000000000 151 DC 
0001CO D6D4C9C3D9D6D540 
0001CS 0000000000000000 152 DC 
0001DO D7CSC94040404040 
0001DS 0000000000000000 153 DC 
0001EO E2C9C7D4C1404040 
0001ES 0000000000000000 154 DC 
0001FO E9C5E3C140404040 

155 • 
156 .' THIS 
157 • 

0001FS D3C1D4C2C4C14040 15S LISTAREA DC 
000200 OAOOO01DOOOOOOOO 
00020S E9C5E3C140404040 159 DC 
000210 05000005000000E2 
00021S E3CSC5E3C1404040 160 DC 
000220 0200002DOOOOOOOO 
00022S E3C1E44040404040 161 DC 
000230 0000000000000001 
00023S D3C9E2E340404040 162 DC 
000240 1FOO01D100000000 
00024S C1D3D7CSC1404040 163 LISTEN£' DC 
00250 000000010000007B 

164 • 
165 • THIS 
166 • 

0025S 167 DS 
0025S 000001000000007B 16S TESTTABL DC 
00260 C1D3r7CSC1404040 
0026S 0000000000000000 169 DC 
00270 C2C5E3C140404040 
0027S 0000000000000000 170 DC 
002S0 C4C5D3E3C1404040 
002SS 0000000000000000 171 DC 
00290 C5D7E2C9D3D6D540 
0029S 0000000000000000 172 DC 
002AO C5E3C14040404040 
002AS 0000000000000000 173 DC 
002BO C7C1D4D4C1404040 
002BS 0000000000000000 174 DC 
002CO C9D6E3C140404040 
002CS 0000000000000000 175 DC 
002DO D2C1D7D7C1404040 
002DS 00001DOAOOOOOOOO 176 DC 
002EO D3C1D4C2C4C14040 
002ES 0000000000000000 177 DC 
002FO D4E4404040404040 
002FS 0000000000000000 17S DC 
00300 D5E4404040404040 

Figure 19. Assembler Sample Program 
(Part 5 of 11) 

XLS'O',CLS'LAMBDA' 

XLS'O' ,CLS'MU' 

XLS'O' ,CLS'NU' 

XLS'O',CLS'OMICRON' 

XLS'O',CLS'PHI' 

XLS'O',CLS'SIGMA' 

XLS'O' ,CLS'ZETA' 

IS THE LIST 

CLS'LAMBDA',X'OA',FL3'29',A(BEGIN) 

CLS'ZETA' ,X' OS' ,FL3' 5',A (LOOP) 

CLS'THETA' ,X'02' ,FL3'45',A (BEGIN) 

CLS'TAU' ,X'OO' ,FL3'0',A (1) 

CLS'LIST' ,X'1F' ,FL3'465',A (0) 

CLS'ALPHA',X'OO',FL3'1',A(123) 

IS THE CONTROL TABLE 

OD 
FL3'1' ,X'OO',A (123) ,CLS'ALPHA' 

XLS'O',CLS'BETA' 

XLS'O',CLS'DELTA' 

XLS'O',CLS'EPSILON' 

XLS'O',CLS'ETA' 

XLS'O',CLS'GAMMA' 

XLS'O',CLS'IOTA' 

XLS'O',CLS'KAPPA' 

FL3' 29' ,X' OA',A (BEGIN) ,CLS'LAMBDA' 

XLS'O' ,CLS'MU' 

XLS'O',CLS'NU' 

PAGE 5 

15.00 01/03/72 

SAMPL115 

SAMPL116 

SAMPL117 

SAMPL11S 

SAMPL119 

SAMPL120 

SAMPL121 

SAMPL122 
SAMPL123 
SAMPL124 
SAMPL125 

SAMPL126 

SAMPL127 

SAMPL12S 

SAMPL129 

SAMPL130 

SAMPL131 
SAMPL132 
SAMPL133 
SAMPL134 
SAMPL135 

SAMPL136 

SAMPL137 

SAMPL13S 

SAMPL139 

SAMPL140 

SAMPL141 

SAMPL142 

SAMPL143 

SAMPL144 

SAMPL145 

Appendix B: Assembler Sample Program 77 



IFOSAMP .- SAMPLE PROGRAM PAGE 6 

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0100 15.00 01/03/72 

00030S 0000000000000000 179 DC XLS'O',CLS'OMICRON' SAMPL146 
000310 D6D4C9C3D9D6D540 
000318 0000000000000000 180 DC XL8'0' ,CL8'PHI' SAMPL147 
000320 D7CaC94040404040 
000328 0000000000000000 181 DC XL8'0',CL8'SIGMA' SAMPL14S 
000330 E2C9C7D4C1404040 
000338 0000050S000000E2 182 DC FL3'S',X'OS',A(LOOP) ,CL8'ZETA' SAMPL149 
000340 E9C5E3C140404040 

183 * SAMPL1S0 
184 • THIS IS THE CONTROL LIST SAMPL1S1 
185 • SAMPL1S2 

000348 D3C1D4C2C4C14040 186 TESTLIST DC CLS'LAMBDA' ,X'OA' ,FL3'29',A (BEGIN) SAMPL153 
000350 OAOOO01DOOOOOOOO 
0003SS E9C5E3C140404040 187 DC CL8'ZETA' ,X'OS' ,FL3'S',A (LOOP) SAMPL154 
000360 OSOOOOOSOOOOOOE2 
000368 E3CBCSE3C1404040 188 DC CL8'THETA' ,X' 82' ,FL3' 4S' ,A (BEGIN) SAMPL1SS 
000370 8200002DOOOOOOOO 
000378 E3C1E44040404040 189 DC CL8'TAU' ,X'SO' ,FL3'0',A (1) SAMPL156 
000380 8000000000000001 
000388 D3C9E2E340404040 190 DC CL8'LIST' ,X' 9F' ,FL3' 46S' ,A (0) SAMPL1S7 
000390 9FOO01Dl00000000 
00039S C1DJD7CSC1404040 191 DC CL8'ALPHA',X'00',FL3'1',A(123) SAMPL158 
0003AO 000000010000007B 

192 • SAMPL1S9 
193 * THESE ARE THE SYMBOLIC REGISTERS SAMPL160 
194 • SAMPL161 

00000 19S RO EQU 0 SAMPL162 
00001 196 Rl EQU 1 SAMPL163 
00002 197 R2 EQU 2 SAMPL164 
00003 198 R3 EQU 3 SAMPL165 
OOOOS 199 RS EQU 5 SAMPL166 
00006 200 R6 EQU 6 SAMPL167 
00007 201 R7 EQU 7 SAMPL168 
OOOOC 202 R 12 EQU 12 SAMPL169 
OOOOD 203 R13 EQU 13 SAMPL170 
OOOOE 204 R 14 EQU 14 SAMPL171 
OOOOF 205 R1S EQU 15 SAMPL172 

206 • SAMPL173 
207 • THIS IS THE FORMAT DEFINITION OF 'LIST ENTRYS SAMPL174 
208 • SAMPL17S 

000000 209 LIST DSECT SAMPL176 
000000 210 LNAME DS CL8 SAMPL177 
OOOOOS 211 LSWITCH DS C SAMPL178 
000009 212 LNUMBER DS rL3 SAMPL179 
OOOOOC 213 LADDRESS DS F SAMPL180 

214 • SAMPL181 
21S • THIS IS THE FORMAT DEFINITION OF TABLE ENTRYS SAMPL182 
216 • 

000000 217 TABLE DSECT 
000000 218 TNUMBER DS 
000003 219 TSWITCH DS 
000004 220 TADDRESS DS 
000008 221 TNAME DS 
000000 222 END 
0003A8 00OOOlF800000010 223 

-----
Figure 19. Assembler Sample Program 

(P art 6 of 11 ) 

78 

SAMPL183 
SAMPL184 

FL3 SAMPL185 
C SAMPL186 
F SAMPL187 
CL8 SAMPL188 
BEGIN SAMPL189 
=A (LISTAREA, 16,LISTEND) 



IFOSAMP - SAMPLE PROGRAM 

LOC OBJECT CODE ADDRl ADDR2 STMT SOURCE STATEMENT 

0003BO 00000248 
0003B4 0000008000000004 224 =F • 1 28 , 4 , 1 2 8 • 
0003BC 00000080 __ -----------------------------

Figure 19. Assembler Sample Program 
(Part 7 of 11) 

IFOSAMP RELOCATION DICTIONARY 

roS.II) REL.lD FLAGS ADDRESS 

0001 0001 OC 000204 
0001 0001 OC 000214 
0001 0001 OC 000224 
0001 0001 OC 0002DC 
0001 0001 OC 00033C 
0001 0001 OC 000354 
0001 0001 OC 000364 
0001 0001 OC 000374 
0001 0001 OC 0003A8 
0001 0001 OC 0003BO 

Figure 19. Assembler Sample Program 
(Part 8 of 11) 

IFOSAMP CROSS-REFERENCE 

SYMBOL LEN VALUE DEFN REFERENCES 

BEGIN 00004 00000000 00057 00158 00160 00176 00186 00188 00222 
EXIT 00004 00000080 00096 00113 
HIGHER 00002 OOOOOOFC 00132 00127 
IHBOO05 00001 00000079 00091 00088 
IHBOO05A 00002 0000007E 00094 00087 
IHBOO07 00001 OOOOOOBB 00108 00105 
IHBOO07A 00002 OOOOOOCO 00111 00104 
LADDRESS 00004 OOOOOOOC 00213 00078 
LIST 00001 00000000 00209 00065 
LISTAREA 00008 000001F8 00158 00083 00223 
LISTEND 00008 00000248 00·163 00223 
LISTLOOP 00004 00000038 00080 00115 
LNAME 00008 00000000 00210 00126 
LNUMBER 00003 00000009 00212 00075 
LOOP 00004 000000E2 00125 00130 00133 00159 00182 00187 
LSWITCH 00001 00000008 00211 00072 00114 
MORE 00004 00000018 00066 00080 
NONE 00001 00000080 00118 00067 00114 00122 00134 
NOT FOUND 00004 00000102 00134 00131 
NOTRIGHT 00004 00000090 00104 00082 00084 
NOTTHERE 00004 000000C6 00114 00068 
RO 00001 00000000 00195 
Rl 00001 00000001 00196 00069 00123 00124 00124 00129 00132 
R12 00001 OOOOOOOC 00202 00061 00062 
R13 00001 OOOOOOOD 00203 00096 
R14 00001 OOOOOOOE 00204 00066 00128 00135 
R15 00001 OOOOOOOF 00205 
R2 00001 00000002 00197 00130 00133 
R3 00001 00000003 00198 00123 00125 00129 00132 
R5 00001 00000005 00199 00064 00065 00080 
R6 00001 00000006 00200 00080 
R7 00001 00000007 00201 00064 
SAMPLR 00001 00000000 00055 
SAVE 13 00004 OOOOOODO 00116 00063 00096 
SEARCH 00004 000000D6 00122 00066 
SWITCH 00001 000000D4 00117 00067 00122 00134 
TABLAREA 00008 00000108 00140 00081 00124 
TABLE 00001 00000000 00217 00069 
TADDRESS 00004 00000004 00220 00079 
TESTLIST 00008 00000348 00186 00083 
TESTTABL 00003 00000258 00168 00081 
TNAME 00008 00000008 00221 00126 
TNUMBER 00003 00000000 00218 00075 
TSWITCH 00001 00000003 00219 00072 

Figure 19. Assembler Sample Program 
(Part 9 of 11) 

Appendix B: Assembler 

PAGE 7 

ASM 0100 15.00 01/03/72 

PAGE 8 

ASM 0100 15.00 01/03/72 

PAG! 9 

ASM 0100 15.00 01/03/72 

Sample Program 79 



IFo.SAMP LITERAL CRo.SS-REFERENCE PAGE 10 

SYMBo.L LEN VALUE DEFN REFERENCES ASM 0100 15.00 01/03/72 

=A(LISTAREA,16,LISTEND) 
00004 000003A8 00223 00064 

=F'128,4,128' 
00004 000003B4 00224 00123 

-----------------------------~--------------

Figure 19. Assembler Sample Program 
(P art 1 0 0 f 11 ) 

IFo.SAMP ASSEMBLER DIAGNo.STICS AND STATISTICS PAGE 11 

ASM 0100 15.00 01/03/72 

NO. STATEMENTS FLAGGED IN THIS ASSEMBLY 
HIGHEST SEVERITY WAS 0 
o.PTIo.NS Fo.R THIS ASSEMBLY 

ALIGN, ALOGIC, BUFSIZE(STD), No.DECK, ESD, FLAG (0) , LINECOUNT(55), LIST, No.MCALL 
No.MLOGIC, No.NUMBER, NOo.BJECT, No.RENT, RLD, NOSTMT, No.LIBMAC, No.TERMINAL, No.TEST, XREF 
SYSPARM () 

Wo.RK FILE BUFFER SIZE = 2558 
TOTAL RECo.RDS READ FRo.H SYSTEM INPUT 
TOTAL RECORI:S READ FRo.M SYSTEM LIBRARY 
To.TAL RECORDS PUNCHED 

189 
833 

o 
373 TOTAL RECo.RDS PRINTED __________ 

-----
Figure 19. Assembler Sample Prog:ram 

(P art 11 of 11 ) 

80 



ESO CARO FORMAT 

Columns 

1 
2-4 
5-10 
11-12 

13-14 
15-16 

17-64 

65-72 
73-80 

Appendix C: Object Deck Output 

Contents 

12-2-9 punch 
ESO 
Blank 
Variable field count -- number of bytes 
of information in variable field (columns 17-64) 
Blank 
ESOIO of first SO, XO, CM, PC, ER, or WX 
in variable field 
Variable field. One to three 16-byte 
items of the following format: 

8 bytes -- Name, padded with blanks 

1 byte -- ESO type code 
The HEX value is: 

00 SO 
01 LO 
02 ER 
04 PC 
05 CM 
06 xo (PR) 
OA wx 

3 bytes Address 

1 byte Alignment if XO; otherwise 

3 bytes Length, LOIO, or blank 

Blank 
Oeck 10 and/or sequence number --

blank 

The deck 10 is the name from the first named TITLE 
statement. The name can be one to eight alpha
meric characters long. If the name is less than 
eight characters long or if there is no name, the 
remaining columns contain a card sequence number. 
(Coulmns 73-80 of cards produced by PUNCH or REPRO 
statements do not contain a deck 10 or a sequence 
number.) 

Appendix C: Object Deck Output 81 



TXT CAHD FORMAT 

1 
2-L~ 

5 
6-0 
9-'10 
11--12 

13--14 
15--16 
17--72 
73-- 80 

RLD CAHD FORMAT 

1 
2-1~ 

5-"10 
11--12 

13--16 
17--72 

17-18 
19-20 
21 
22-24 
25-72 

73--80 

Contents 

12-2-9 punch 
TXT 
Blank 
Relative address of first instruction on card 
Blank 
Byte count -- number of bytes in information 
field (columns 17-72) 
Blank 
ESDID 
56-byte information field 
Deck ID and/or sequence number 
The deck ID is the name from the first named TITLE 
statement. The name can be one to eight alphameric 
characters long. If the name is less than eight 
characters long or if there is no name, the re
maining columns contain a card sequence number. 
(Columns 73-80 of cards produced by PUNCH or REPRO 
statements do not contain a deck ID or a sequence 
number.) 

Contents 

12-2-9 punch 
RLD 
Blank 
Data field count -- number of bytes of 
information in data field ~olumns 17-72) 
Blank 
Data field 

Relocation ESDID 
position ESDID 
Flag byte 
Absolute address to be relocated 
Remaining RLD entries 

Deck ID and/or sequence number --
The deck ID is the name from the first named TITLE 
statement. The name can be one to eight alphameric 
characters long:. If the name is less than eight 
characters long or if there is no name, the re
maining columns contain a card sequence number. 
~olumns 73-80 of cards produced by PUNCH or REPRO 
statements do not contain a deck ID or a sequence 
number.) 

If the rightmost bit of the flag byte is set, the following RLD entry 
has th.~ same relocation ESDID and position ESDID, and this information 
will not be repeated; if the rightmost bit of the flag byte is not set, 
the ne:!Ct RLD entry has a different relocation ESDID and/or position 
ESDID, and both ESDIDs will be recorded. 

82 



For example, if the RLD Entries 1, 2, and 3 of the program listing 
contain the following information: 

position Relocation 
ESDID ESDID Flag Address 

Entry 1 02 04 OC 000100 
Entry 2 02 04 OC 000104' 
Entry 3 03 04 OC 000800 

Entry 1 Entry 2 Entry 3 

ESD IDs It' ~t' H AdireS: Ad;ress 
y 1\ 

Esd IDs blanks 

Flag Flag 
(set) (not 

set) 

END CARD FORMAT 

Columns 

1 
2-4 
5 
6-8 

9-14 
15-16 
17-32 
33 
34-43 
44-45 
46-47 
48-49 

50-52 

53-72 
73-80 

SYM CARD FOR~AT 

Contents 

12-2-9 punch 
END 
Blank 
Entry address from operand of END card in 
source deck (blank if no operand) 
Blank 
ESDID of entry point (blank if no operand) 
Blank 
1 or 2 
Order number of the assembler: 5741SC103 
Version level of the assembler 
Modification level of the assembler 
Last two digits of the year in which the assembly 
was run 
Day of the year (counted sequentially: Jan 3 = 3, 
Feb 3 = 34, etc) in which the assembly was run 
Normally not used 
Deck ID and/or sequence number. 
The deck ID is the name field from the first named TITLE 
statement. The name can be one to eight alphameric 
characters long. If there is no name or the name is less 
than eight characters long, the remaining columns contain 
a card sequence number. ~olumns 73-80 of cards produced 
by PUNCH or REPRO statements do not contain a deck ID or 
a sequence number.) 

If you specify the TEST assembler option, the assembler punches out 
symbolic information concerning the assembled program. This output 
appears ahead of the object module. The format of the card images for 
SYM output is as follows: 

Appendix C: Object Deck Output 83 



1 
2-1~ 

5-10 
11--12 

13·-16 
17--72 
73-- 80 

Contents 

12-2-9 punch 
SYM 
Blank 
Variable field count -- number of bytes of 
text in variable field (columns 17-72) 
Blank 
Variable field (see below) 
Deck ID and/or sequence number --
The deck ID is the name from the first named TITLE 
statement. The name can be one to eight alphameric 
characters long. If the name is less than eight 
characters long or if there is no name, the re
maining columns contain a card sequence number. 
(Columns 73-80 of cards produced by PUNCH or REPRO 
statements do not contain a deck ID or a sequence 
number.) 

The va:r:iable field (columns 17-72) contains up to fifty-six bytes of SYM 
text. The items making up the ·text are packed together; consequently, 
only the last card may contain less than fifty-six bytes of text in the 
variable field. The formats of a text card and an individual text item 
are shown in Figure 18. The contents of the fields within an individual 
entry .are as follows: 

1. Or9anization (one byte) 
Bi·t 0: 

o = non-data type 
1 = data type 

Bi·ts 1- 3 (if non-data type) :: 
000 = space 
001 = control section 
010 = dummy control section 
011 = common 
100 = machine instruction 
101 = CCW 
110 = Simply relocatable EQU, named LTORG, named CNOP, 

or named ORG 

Bit 1 (if data type) : 
o = no multiplicity 
1 = multiplicity (indicates presence of M field) 

Bit 2 (if data type) : 
o = independent (not a packed or zoned decimal constant) 
1 = cluster (packed or zoned decimal constant) 

Bit 3 (if data typ~ : 
o = no scaling 
1 = scaling (indicates presence of S field) 

Bi-t 4: 
o = name present 
1 = name not present 

Bi·ts 5-7: 
Length of name minus 1 

2. Address (three bytes) displacement from base of control section 

84 



3. Symbol Name (zero to eight bytes) -- symbolic name of particular 
item 

Note: The f~llowing fields are present only for data-type items. If the 
entry is non-data type and space, an extra byte is present which 
contains the number of bytes that have been skipped. 

4. Data Type (one byte) -- contents in he xadec imal 

00 = C-type data 
04 = x-type data 
08 = B-type data 
10 = F-type data 
14 = H-type data 
18 = E-type data 
1C = D-type data 
20 = A-type or Q-type data 
24 = y-type data 
28 = S-type data 
2C = V-type data 
30 = P-type data 
34 = Z-type data 
38 = L-type data 

5. Length (two bytes for character, hexadecimal , or binary items; 
one byte for other types) -- length of data item minus 1 

6. Multiplicity - M field (three bytes) -- equals 1 if not present 

7. Scale - signed integer - S field (two bytes) -- present only for 
F, H, E, D, L, P and Z type data, and only if scale is non-zero. 

2 4 5 10 11 1213 16 17 72 73 80 
No, 

12 of 
Deck Sequence 

2 SYM blank bytes blank SYM text - packed entries ID & number 
9 of 

text 
1 

~ 
56 8 

Entry 
N complete entries 

Entry 
(complete or (complete or 
end portion) N~l head portion) 

Variable size entries 

~ 
Org. Address Symbol name Data Length Mult. Scale Org, Symbol \ 

type factor name ~ 

I 
3 0-8 1·2 3 2 

Figure 20. SYM Card Format 

Appendix C: Object Deck Output 85 



Appe!ndix D: Dynamic IIlvocation of the Assembler 

You can invoke the assembler from your problem program when it is 
executE!d, by using the CALL, LINK, XCTL, or ATTACH macro instruction. 
If you use the XCTL instruction, you cannot specify any assembler 
options. The assembler will use the standard or default options. If 
you USE! CALL, LINK, or ATTACH, you can specify both the assembler 
options and DD names of the data sets to be used by the assembler. The 
formats of these macros are: 

Name Operation Operand 

[symbol] CALL IFOXOO, (option list 
[,ddnamelistl ), VL 

{LINK } EP=IFOXOO, 
ATTACH PARAM=(optionlist 

[,ddnamelistl), VL=l 

EP -- specifies the symbolic name of the assembler (IFOXOO). 

PARAM -.- specifies, as a sublist, address parameters to be passed from 
the problem program to the assembler. The first word in the address 
paramet:er list contains the address of the option list. The second word 
contains the address of the ddname list. 

optionlist -- specifies the address of a variable length list containing 
the opt: ions • This address must be written even if no option list is 
providE~d. 

The opt:ion list must begin on a halfword boundary. The first two bytes 
contain a count of the number of bytes in the remainder of the list. If 
no options are specified, the count must be zero. The option list is 
free form with each field separated from the next by a comma. No blanks 
or zeros should appear in the list. 

ddnamelist -- specifies the address of a variable length list containing 
alternate DDnames for the data sets used during assembler processing. 
If standard DDnames are used, this operand can be omitted. 

The DDname list must begin on a halfword boundary. The first two bytes 
contalll a count of the number of bytes in the remainder of the list. 
Each name of less than eight bytes must be left-justified and padded 
with blanks. If an alternate DDname is omitted, the standard name will 
be assumed. If the name is omitted within the list, the eight-byte 
entry must contain binary zeros. Names can be omitted from the end 
merely by shortening the list. The sequence of the eight-byte entries 
in the DDname list is as follows: 

86 



Entry Standard Name 

1 not applicable 
2 not applicable 
3 not applicable 
4 SYSLIB 
5 SYSIN 
6 SYSPRINT 
7 SYSPUNCH 
8 SYSUT1 
9 SYSUT2 

10 SYSUT3 
11 SYSGO 
12 SYSTERM 

VL -- specifies that the high-order bit is to be set to 1 in the last 
word of the list of address parameters in the macro expansion. 
The assembler checks this bit to find out if a DDname list is 
specified or not. 

Note: If you invoke the assembler more than once from the same program, 
make sure that RECFM=S is not specified for the SYSPRINT data set. 

Appendix D: Dynamic Invocation of the Assembler 87 



AppE!ndix E: Assembler 'Data Sets and Storage 
Req'tlirements 

This appendix describes the data sets used by the assembler (see Figure 
19). It also describes the main storage and auxiliary storage 
requirements of the assembler. This description is intended for 
programmers who want to alter the assembler's region or partition size 
or data set parameters (such as buffer size). A more detailed 
description of assembler storage requirements appears in OS/VS1 Storage 
Estima"tes, Order No. GC24-5094. 

ASSEMBLER DATA SETS 

DDname SYSUT1, SYSUT2, and SYSUT3 

The assembler uses the utility data sets as intermediate external 
storage devices when processing the source program. These data sets must 
be organized sequentially, and the devices assigned to them must be 
direct access devices, magnetic tape units, or a combination of both. 
The assembler does not support multivolume utility data sets. For 
optimum performance, SYSUT1 should be on a direct access device. 

DDname SYSIli 

This data set contains the input to the assembler -- the source 
statements to be processed. The input/output device assigned to this 
data set may be either the device transmitting the input stream, or 
another sequential input device that you have designated. The DD 
statement describing this data set appears in the input stream.. The 
IBM-supplied procedures do not contain this statement. 

DDname SYSLIB 

From this data set the assembler obtains macro definitions and assembler 
language statements that can be called by the COpy assembler 
instruction. It is a partitioned data set: each macro definition or 
sequence of assembler language statements is a separate member f with the 
membeI: name being the macro instruction mnemonic or COpy code name. 

ThE~ data set may be SYS1.MACLIB or a private macro library. 
SYS1.~mCLIB contains macro definitions for the IBM-supplied macro 
instructions. Private libraries and SYS1.MACLIB can be concatenated 
wi th E~ach other in any order. Conca tena ted libraries must have the same 
record length, but the blocking factors may be different. However, a 
libral~ with a high blocking factor must always come before a library 
with a low blocking factor. 

DDnamE:! SYSPRINT 

This data set is used by the assembler to produce a listing. Output may 
be directed to a printer, magnetic tape, or direct-access storage 

I device. The assembler uses the ANSI carriage-control characters for 
this data set. The smallest blocksize recommended is 1089 (blocking 
factor of 9) • 

88 



DDname SYSPUNCH 

The assembler uses this data set to produce the object module. The 
input/output unit assigned to this data set may be either a card punch 
or an intermediate storage device capable of sequential access. This 
output can be used as input to the linkage editor. 

DDname SYSGO 

This is a direct-access storage device or magnetic tape data set used by 
the assembler. It contains the same output text ~bject module) as 
SYSPUNCH. It is used as input for the linkage editor. 

DDname SYSTERM 

This data set is used by the assembler to produce diagnostic 
information. The output may be directed to a remote terminal, a printer, 
a magnetic tape, or a direct-access storage device. The assembler uses 

I the ANSI carriage control characters for this data set. The smallest 
blocksize recommended is 1089 (blocking factor of 9). 

ASSEMBLER VIRTUAL STORAGE REQUIREMENTS 

The minimum virtual storage partition or region required by the 
assembler is 64K bytes. However, better performance is generally 
achieved if the assembler is run in 128K bytes of virtual storage. This 
region size is recommended and is specified in the assembler cataloged 
procedures. 

If more storage is allocated to the assembler, the size of buffers and 
work space can be increased. The amount of storage allocated to buffers 
and work space determines assembler speed and capacity. Generally, as 
more storage is allocated to buffers, a given assembly will run faster; 
as more storage is allocated to work space, larger and more complex 
macro definitions can be handled. 

You can control the buffer sizes of SYSIN, SYSLIB, SYSPRINT, 
SYSPUNCH, and SYSGO by specifying the blocksize (BLKSIZE) and number of 
buffers (BUFNO) as shown in Figure 19. 

You can control the buffer sizes for the assembler utility data sets 
(SYSUT1, SYSUT2, and SYSUT3) and the size of the work space used during 

macro processing, by specifying the BUFSIZE assembler option. Of the 
storage given to the assembler, the assembler first allocates storage 
for the SYSIN and SYSLIB buffers according to the specifications in the 
DD statements or the labels of the data sets. It then allocates storage 
for the modules of the assembler. The remainder of the partition or 
region is allocated to utility data set buffers and macro generation 
dictionaries according to the BUFSIZE option specified: 

BUFS IZE (STD) : 

BUFSIZE (MIN) : 

37~ is allocated to buffers, and 63~ to work space. 
This is the default chosen, if you do not specify any 
BUFSIZE option. 

Each utility data set is allocated a single 790-byte 
buffer. The remaining storage is allocated to work 
space. This allows relatively complex macro 
definitions to be processed in a given region or 
partition size, but the speed of the assembly is 
substantially reduced. 

Appendix E: Assembler Data Sets and Storage Requirements 89 



I-

SYSLIB 

~.ndU 
COpy Calls 

• 

SYSIN SYSLIB SYSPRINT SYSPUNCH 
SYSTERM 

LRECL Fixed at 80 Fixed at 80 Fixed at 121 Fixed at 80 

RECFNI You must specify You must specify F and A set by F set by assembler, 

CD 
in LABEL or DO in LABEL or DO assembler. B set you may specify B 
card card by assembler and/or T in label 

except when F is or DO card 
F ,FS,FBS,FB, F,FS,FBS,FB, specified and 
FBST,FBT FBST,FBT BLKSIZE is not 

specified. You 
may add S or T 
FA,FAB,FAS,FAT F,FB,FT, 
FABS,FABT FBT 

BLKSI:i~E You must specify You must specify Optional, but must Optional, but must 
in LABEL or DO in LABEL or DO be a multiple of be a multiple of 

® card, must be a card, must be a LRECL; if omitted LRECL; if omitted 
multiple of multiple of BLKSIZE-LR ECL BLKSIZE=LRECL 

LRECL LRECL 

BUFNO Optional; if Set by assembler Optional; if Optional; if 
omitted 2 is used to 1 omitted 2 is used omitted 3 is used 

for unit record and 
2 for other devices 

U - undefined, F .. fixed length records, B- blocked records, S- standard blocks, 
T • track overflow, A - ASCII code carriage control 

® BI'ocking is not allowed on unit record devices. Blocking on other direct access can not 
be greater than the track size unless T is specified on RECFM. If the BLKSIZE specified 
is not a multiple of LRECL, the assembler truncates it to a multiple. For example, if 
LllECL .. 80, a BLKSIZE of 850 is truncated to 800. 

FigurE~ 21. Assembler Data Set Characteristics 

90 

SYSUT1 

L6 

SYSUT1 

SYSGO SYSUT2 
SYSUT3 

Fixed at 80 N/A 

F set by assembler, Set by assembler 
you may specify B to U 
and/or T In label 
or DO card 

F,FB,FT, 
FBT 

Optional, but must If BUFSIZE (STD) 
be a multiple in effect, a value 
LRECL; if omitted between 790 and 
BLKSIZE"'LRECL 8192 is chosen. 

If BUFSIZ E (MIN) 
in effect, 790 is 
chosen 

Optional; if Set by assembler 
omitted 3 is used to either 1 or 2 
for unit record and 
2 for other devices 



Appendix F: The SYSTERM Listing for OS/VS 

The SYSTERM data set, which gives you rapid access to the diagnostic 
messages issued during an assembly, is primarily designed for the user 
of the Time Sharing Option (TSO) of VS2. However, 'the data set can also 
be directed to a printer, a magnetic tape, or a direct-access device. 

yOU use the assembler option TERMINAL to specify that you want a 
SYSTERM listing to be produced. Of course, you must also make sure that 
a DD statement describing the data set is included. 

Each diagnosed statement in the assembly listing printed in the 
SYSTERM listing immediately followed by the messages that are issued for 
the statement. To help identify the position of the statement in your 
program, two additional assembler options are available: 

• NUMBER, which prints the line number(s) of the diagnosed statement. 

• STMT, which prints the statement number assigned to the diagnosed 
statement by the assembler. 

The format of the flagged statement as it appears in the listing is: 

Line No.(s) Statement No. Source record(s) 
(option NUM) (option STMT) (Columns 1·72 of 

the source 
statement lines) 

If a statement contains continuation lines, it will occupy several lines 
in the listing, each identified by a line number (if option NUMBER is 
used). If a statement in error is discovered during the expansion of a 
macro, or of any inner macro called by an outer macro, the first line of 
the outer macro instruction is listed before the flagged statement. If 
a statement is flagged during variable symbol substitution in open code, 
the first line of the model statement is listed as well as the generated 
statement. 

Figures 22 and 23 illustrate the content and format of SYSTERM 
output. Figure 22 shows the source statement section of a SYSPRINT 
listing, and Figure 23 shows the SYSTERM listing produced during the same 
assembly. The example illustrates the rules given above. Options 
TERMINAL, NUMBER, and STMT were in effect during the assembly. 

The SYSTERM listing starts with the statement ASSEMBLER DONE. At 
the end of the listing the following diagnostic information is given: 

• NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = nn 
(Indicates the total number of source statements in error) 

• HIGHEST SEVERITY CODE WAS nn 
(Indicates the maximum severity code encountered) 

• OPTIONS FOR THIS ASSEMBLY 
(Indicates the options in effect for this assembly) 

Appendix F: The SYSTERM Listing for OS/VS 91 



PAGE 

LOC OBJECT CODE ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0100 14.59 01/03/12 

000000 

000000 
000000 90EC DOOC 
000004 05CO 

OOOOC 

000006 0000 0000 00000 
••• ERROR ••• 

OOOOOA 0000 0000 00000 

••• ERROR ••• 

OOOOOE 5840 C022 
000012 5043 0000 
000016 4130 3004 
00001A 1923 
00001C 4770 COOC 

000020 0000 

••• ERROR ••• 

000022 98EC DOOC 
000026 01FE 

000028 00000000 

00002C O(IOOOOEA 
••• ERROR ••• 

00028 
00000 
00004 

00012 

OOOOC 

00006 

00002 
00003 
000011 
OOOOC 

1 
2 
3 
4 .LOOP 
5£K 
6 IPIL(n:) 
7 
8 .DONE 
9 

10 SAMPL2 
11 
12+ 
13+ 
14 
15 
16 12 
17 

18 

19 
20 LOOP 
21 
22 
23 
24 
25 

26+ 

MACRO 
GEliIF 'P,IL 
LCItA U 
ANOP 
SETA IR+1 
DC F' 'L (Ilt) , 
AIJ' (&It LT N'IL) .LooP 
MEND 
GBLC '2 
CSEC'I 
SAVE (14,12) ALL REGS ARE SAVED IN SUPERVISOR SAVEAREA 
DS OH 
sn! 14,12,12 (13) SAVE REGISTERS 
BAJ.R R12,0 
USXNG .,R12 SET UP BASE REGISTER 
SE~['C 'S' 
L R2,END END OF AREA 

LA 

L 
ST 
LA 
CR 
BNIE 
AU' 
SR 

SR 

R3,A 

RII,FO 
R4,0 (R3) 
R3,1I (,R3) 
R2,R3 
LOOP 

THIS IS A 
DUMMY COMMENT 
TO SHOW 

A STATEMENT CONTAINING 
TOO MANY CONTINUATION CARDS 
ZERO CONSTANT FOR RESETTING AREA 

RESET AREA A 

('A' EQ 
12,12 

'12') .GO 

B,S 

OPEN CODE MODEL STATEMENT 
WITH CONTINUATION CARD 
OPEN CODE MODEL STATEMENT 
WITH CONTINUATION CARD 

• • 

00660000 
01180000 

27 .GO RETURN (14,12) EXIT FROM RTN 
28+ LM 14,12,12 (13) RESTORE THE REGISTERS 00260000 
29+ BR 14 RETURN 00800000 
30 • 
31 • CONSTANTS AND AREA ARE DELETED ON PURPOSE 
32 • 
33 GEMF F,O GENERATION OF CONSTANTS 
34+FO DC F' 0' 
35 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD 

IN A MACRO INSTRUCTION 
36+12311 DC P'234' 

37 R2 EQU 2 
38 R3 EQU 3 
39 RII EQU 4 
40 R12 EQU 12 
41 END --

Figure~ 22. SYSPRINT Listing of the Source Statements Used to Show 
SYSTERM Output 

92 



ASSEMBLER (X F) DONE 
11 L R2,END 

IF0188 END IS AN UNDEFINED SYMBOL 
18 LA R3,A 

IF0188 A IS AN UNDEFINED SYMBOL 

END OF AREA 

THIS IS A 
DUMMY COMMENT 
TO SHOW 

IF0069 EXCESSIVE CONTINUATION CARDS, TWO ALLOWED 

• • • 

A STATEMENT CONTAINING • 
TOO MANY CONTINUATION CARDS 

25 SR &2, &2 OPEN CODE MODEL STATEMENT • 
WITH CONTINUATION CARD 

26+ SR B,B OPEN CODE MODEL STATE~ENT • 
+ WITH CONTINUATION CARD 

!F0188 B IS AN UNDEFINED SYMBOL 
IF0188 B IS AN UNDEFINED SYMBOL 

35 GENF 1,234 EXAMPLE OF MORE THAN ONE CARD • 
36+1234 DC F'234' 

IF0125 INVALID NAME- ILLEGAL EMBEDDED CHARACTER OR NON-ALPHABETIC FIRST CHARACTER 
NUMBER OF STATEMENTS FLAGGED IN THIS ASSEMBLY = 4 
HIGHEST SEVERITY WAS 8 
OPTIONS FOR THIS ASSEMBLY 

ALIGN, ALOGIC, BUFSIZE(STD), NODECK, ESD, FLAG (0) , LINECOUNT(55), LIST, NOMCALL 
NOMLOGIC, NUMBER, NOOBJECT, NORENT, RLD, STMT, NOLIBMAC, TERMINAL, NOTEST, XREF 
SYSPARM () 

Figure 23. SYSTERM Listing Produced for the Source Statements Shown in 
Figure 22. 

Appendix F: The SYSTERM Listing for OSjVS 93 



App1endi:x: G: Assembler Diagnostic Error Messages 

This appendix lists all the diaqnostic messages issued by the VS 
Assembler. The messages are listed sequentiall y by statement number. 

HOW TO USE THIS SECTION 

Once you have found an error message in the diagnostics section of your 
listing that you are not sure you understand fully, look up the entry 
for the message in this appendix. The entry for the message will give 
you the following items: 

• The message number and the 1text of the message. 
• Explanation of the message. 
• Assembler action in response to the message. 
• Programmer response to correct the error. 
• O~€rator response to correct the error (only for certain messages) • 
• Severity code assigned to the message. 

The following paragraphs describe the messages as they appear in your 
listing and explain in detail the various items of each entry in this 
appendix. 

The Message Itself 

In thE! diagnostics section of your assembler listing you will find the 
following items for each message: 

• The num.ber of the statement in error. 
• The message identification number. 
• The text of the message. 

STATEMENT NUMBER: For certain messages the statement number given is 
always 0, either because the assembler cannot identify the number of the 
statement in which the error occurs when it finds the error, or because 
the error cannot be associated with a specific statement. For some of 
these messages, the text of the message identifies the macro in which the 
error is found. 

For errors found during the editing of a library macro, the 
statement number given is that of the last numbered statement in the 
sourCE~ module, unless the LIBMAC and MLOGIC assembler options are in 
effect:, as described below under "Explanation". 

MESSAGE NUMBER: The message identification number is a unique number 
consisting of the letters IFO followed by a three digit number~ 

TEXT: The text of the message is not always printed out in full in the 
diagnostics section of the listing. However, the corresponding text in 
this appendix is always fully printed out. 

CE~rtain messages include information in the message text to help you 
localize the error within the statement. In the message text as it 
appears in this section, Inn' denotes a number and 'xxxxxxxx' a 
character string. The number identifies a column in the operand of the 

94 



statement in error that is close to the column where the error is found. 
The character string may represent a symbol or the word MACRO. It is 
limited to eight characters, so if the string containing the error is 
longer, it is truncated. 

Explanation 

This item gives the probable cause or causes of the error message. An 
error message is issued at the point where the assembler can no longer 
make sense of the text, not necessarily at the point where the real 
error occurred. For example, if you want to code the following 
instructions LR 3,5, and leave out the R in the operation code, the 
assembler will treat the instruction as a storage-to-register 
instruction, and give an error message for the second operand ~nless 
NOALIGN is specified) • 

If errors occur during the editing or expansion of a library macro and 
the assembler options specified cause the logic of the macro expansions 
not to be printed, error messages for the library macro will be logged 
against the last numbered statement in the program. However, if you use 
the LIBMAC and MLOGIC assembler options, errors in library macros will 
be logged against the statements in error. See the section "Assembler 
Options" for a discussion of these options. 

Assembler Action 

This item tells you how the assembler reacts to the error. A machine 
instruction usually causes zeros to be generated in its place in the 
object module if a major error occurs anywhere in that instruction. An 
assembler instruction is usually printed out but not processed 
("processed as a comment"). Some machine and assembler instructions, 

however, are partially processed or processed with a default value. In 
some cases the assembler terminates the whole assembly. 

Programmer Response 

This item tells you how to correct the statement in error. It is 
assumed that you will detect certain errors when an error message draws 
your attention to the statement. Thus, the programmer response for each 
message does not tell you to check for keypunching errors or to check 
the use of the flagged statement. 

Operator Response 

This item tells the operator how to correct certain errors. The 
operator response is only given for messages that are printed on the 
operator's console. The operator will not change your source deck. He 
may, however, do such things as change partition or region size, or 
correct certain job control errors. 

Appendix G: Assembler Diagnostic Error Messages 95 



Severi!:y Code 

The se~verity code indicates the seriousness of the error. The severity 
codes used by the VS Assembler and their meanings are shown in the 
following table. 

Severity 
Code 

4 

8 

12 

16 

20 

Explanation 

Minor error; successful program execution is 
probable 

Significant error; unsuccessful program 
execution is possible 

Serious error; unsuccessful program execution 
is probable 

Critical error; normal execution is 
impossible 

Critical error; further assembly impossible, 
assembly terminated 

The sE!verity code is the return code issued by the assembler when it 
returns control to the operating system. The IBM-supplied cataloged 
procedures include a COND parameter on the linkage edit and execution 
steps. The COND parameter prevents execution of these steps if the 
return code from the assembler is greater than 8. 

RECURRING ERRORS 

If an error message recurs after the error situation has been corrected 
and there seems to be nothing wrong with the statement, there may be an 
error in the assembler. If you suspect that this is the case, make sure 
the program is correct and reassemble if necessary. If the problem 
still persists, do the following before calling IBM: 

• H~Ne your source program, macro definitions, and associated listings 
available. 

• If a COpy statement was used, execute the IEBPTPCH utility to obtain 
a copy of the partitioned data set member specified in the COpy 
st:atement. 

• Make sure that MSGLEVEL=(1,1) was specified in the JOB statement. 

96 



lFOOOO 

lFO001 

IF0002 

IF0003 

UNDEFINED ERROR CODE IFOxxx 

Explanation: An error code has been generated by the assembler 
for which no message has been defined. This is caused by a 
logical error in the assembler. 

Assembler Action: Assembly continues. 

Programmer Response: perform the actions described under 
"Recurring Errors" above before calling IBM. 

Severity Code: 16 

SYSTEM VARIABLE SYMBOL xxxxxxxx USED AS SYMBOLIC PARAMETER IN 
MACRO PROTOTYPE 

Explanation: A variable symbol used as a symbolic parameter on 
a macro prototype statement has the same characters as a system 
variable symbol. The system variable symbols are: 

&SYSECT 
&SYSLIST 
&SYSNDX 

&SYSPARM 
&SYSTlME 
&SYSDATE 

Assembler Action: Editing of the macro definition is terminated. 
All statements in the macro definition are processed as 
comments. 

Programmer Response: Redefine the parameter with a variable 
symbol other than &SYSPARM, &SYSDATE, &SYSTIME, &SYSLIST, 
&SYSECT, or &SYSNDX. 

Severity Code: 8 

SYMBOLIC PARAMETER xxxxxxxx IS DUPLICATED IN SAME MACRO 
PROTOTYPE 

Explanation: Two identical symbolic parameters have been 
specified in the same macro prototype statement. 

Assembler Action: Editing of the macro definition is terminated. 
All statements in the macro definition are processed as 
comments. 

Programmer Response: Redefine one of the symbolic parameters 
with a variable symbol that is unique to that particular macro 
definition. 

Severity Code: 8 

SYSTEM VARIABLE SYMBOL xxxxxxxx USED IN OPERAND OF GLOBAL OR 
LOCAL DECLARATION 

Explanation: A system variable symbol has been used in the 
operand of a global or local declaration. The system variable 
symbols are: 

Appendix G: Assembler Diagnostic Error Messages 97 



IF0004 

IJo"'OOO 5 

IF0006 

98 

&SYSECT 
&SYSLIST 
&SYSNDX 

&SYSPARM 
&SYSTIME 
&SYSDATE 

Assembler Action: The declaration conflicting with the system 
variable symbol is ignored. All subsequent references to the 
variable symbol in error are treated as references to the 
system variable symbol. 

Programmer Response: Redefine the variable symbol using 
character combinations other than those listed above in the 
explanation. 

Severity Code: 8 

GLOBAL OR LOCAL VARIABIJE xxxxxxxx DUPLICATES A SYMBOLIC 
PARAMETER IN SAME MACRO DEFINITION 

Explanation: A variable symbol that appears in the operand 
field of a global or local declaration is identical to a 
symbolic parameter defined on the macro prototype earlier in 
the macro definition. 

Assembler Action: The declaration conflicting with the symbolic 
parameter is ignored. All subsequent references to it are 
treated as references 1:0 the symbolic parameter that it 
duplicates. 

Programmer Response: RE~define the global or local variable with 
a variable symbol that is unique to the macro definition. 

Severity Code: 8 

GLOBAL OR LOCAL VARIAB]~E SYMBOL xxxxxxxx DUPLICATES PREVIOUS 
DECLARATION 

Explanation: A global or local variable symbol was declared 
twice in the same macro definition or in open code. 

Assembler Action: The second declaration of the variable symbol 
is ignored. All subsequent references to it are treated as 
references to the first declaration. 

Programmer Response: If the second declaration is LCLx, 
redeclare it using a variable symbol unique to the macro 
definition or to open code. If the second declaration is GBLx, 
redeclare it as for LCLx, but be sure that all declarations of 
that global variable elsewhere in the program are identical. 

Severity Code: 8 

UNDEFINED VARIABLE SY~30L xxxxxxxx 

Explanation: A variabl4~ symbol has been referenced in this 
statement that is not a system variable symbol; has not been 
defined within the macro definition as a symbolic parameter, a 



IFO007 

IF0008 

local variable, or a global variable; or has not been defined 
in open code as a local or global variable. 

Assembler Action: The statement is processed as a comment, 
unless the error has occurred in a macro instruction parameter. 
If the macro instruction parameter contains an undefined 
variable symbol, the parameter is assigned the value of a null 
string. 

Programmer Response: Define the variable symbol as a symbolic 
parameter, a local variable, or a global variable; or, if 
desired, reference a previously-defined variable symbol of the 
appropriate type. This message may be issued if an ampersand 
erroneously appears as the first character of an ordinary 
symbol, and thus creates an unintended variable symbol. 

Severity Code: 8 

USAGE OF xxxxxxxx IS INCONSISTENT WITH ITS DECLARATION 

Explanation: A global or local variable symbol was defined as 
dimensioned but was used without a subscript, or a global or 
local variable symbol was defined as undimensioned but was used 
with a subscript. 

Assembler Action: Editing of the statement that contains the 
inconsistent usage is terminated, and the statement is processed 
as a comment~ 

Programmer Response: Make the usage of the SET symbol 
consistent with its global or local declaration, or make the 
declaration of the SET symbol consistent with its usage. 

Severity Code: 8 

CIRCULAR OPSYN STATEMENTS 

Explanation: The assignment of a synonym in the operand field 
of an OPSYN statement to the established mnemonic in the name 
field results in the mnemonic being its own synonym. For 
example: 

ADD 
PLUS 
XYZ 
ADD 

OPSYN A 
OPSYN ADD 

OPSYN PLUS 
OPSYN XYZ 

The final OPSYN statement in the above sequence is flagged. 

Assembler Action: The flagged OPSYN statement is processed as a 
comment. 

Programmer Response: Remove any OPSYN statement that results in 
a circular definition, or alter such an OPSYN statement by 
respecifying the synonym or the mnemonic. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 99 



IF0009 

IF0010 

IF0012 

100 

EDIT DICTIONARY SPACE EXHAUSTED 

Explanation: The work space available is not sufficient to 
contain the dictionaries that are required to edit the macro 
definition or open code. 

Assembler Action: If a macro definition is being edited, the 
remaining statements up to the MEND statement are processed as 
comments, and editing resumes. If open code is being edited, 
the remaining statements up to the end-of-file are processed as 
comments. 

Programmer Response: Increase the size of the region or 
partition that is allocated to assembly, or allocate more 
dictionary space via the BUFSIZE assembler option. See Appendix 
E of this manual. 

Severity Code: 12 

SOURCE MACRO xxxxxxxx HAS BEEN PREVIOUSLY DEFINED 

Explanation: The mnemonic in the macro instruction prototype of 
a source macro duplicates a mnemonic already defined as a 
source macro. 

Assembler Action: All statements in this macro definition are 
processed as comments. All subsequent references to the 
mnemonic are treated as references to the first definition 
associated with that op code. 

Programmer Response: Provide a unique mnemonic op code for the 
flagged macro prototype. 

Severity Code: 8 

ICTL OR OPSYN STATEMEN11 APPEARS TOO LATE IN THE PROGRAM 

Explanation: 

• The ICTL statement does not precede all other statements in 
the source module; or 

• The OPSYN statement does not appear before source macro 
definitions and open code statements. The only statements 
that can precede an OPSYN statement are: ICTL, ISEQ, TITLE, 
PRINT, EJECT, SPACE:, OPSYN, COpy (unless the member copied 
contains any other than the statements listed here), and 
comments statements. 

Assembler Action: The ICTL or OPSYN statement is processed as a 
comment. 

Programmer Response: Place the ICTL or OPSYN statement at the 
beginning of your program as described in the explanation above. 

Severity Code: 8 



IF0013 

IFO014 

IFO016 

OPSYN NAME FIELD NOT ORDINARY SYMBOL, OR OPSYN OPERAND FIELD 
NOT ORDINARY SYMBOL OR BLANK 

Explanation: The name or operand field of an OPSYN instruction 
'contains more than 8 alphanumeric characters or does not begin 
with an alphabetic character. 

Assembler Action: The OPSYN statement is processed as a comment. 

Programmer Response: Correct the invalid name field or operand 
field. 

Severity Code: 8 

INVALID OPCODE IN OPSYN OPERAND OR NAME FIELD 

Explanation: 

• The name field of an OPSYN instruction with a blank operand 
field does not specify a machine instruction operation code, 
an extended machine instruction operation code, or an 
assembler operation code; or 

• The operand field of an OPSYN instruction does not specify 
a machine instruction operation code, an extended machine 
instruction operation code, or an assembler operation code. 

Assembler Action: The OPSYN statement is treated a comment. 

Programmer Response: Make sure that the name field contains a 
valid operation code, or supply a valid operation code in the 
operand. 

Severity Code: 8 

ILLEGAL OR INVALID NAME FIELD 

Explanation: One of the following errors was detected. 

• No name was found where one is required. 

• A name was supplied where none is allowed. 

• An invalid character was found in the name field. 

Assembler Action: The statement is processed as a comment, 
unless the error has occurred in the name field of a macro 
instruction. If the macro name field parameter contains an 
error, the parameter is assigned the value of a null string. 

Programmer Response: Supply a name if one is required, omit the 
name if one is not allowed, or correct the invalid character. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 101 



IF0017 

IF0018 

IF0019 

102 

.* COMMENTS STATEMENT IS ILLEGAL OUTSIDE MACRO DEFINITION 

Explanation: An internal macro comments statement (.*) appears 
outside macro definitions (in open code) • 

Assembler Action: The statement is printed. 

Programmer Response: Remove the .* comments statement. If you 
want a comment, put an * in the begin column and follow it by 
the comment. 

Severity Code: 4 

MORE THAN 5 ERRORS IN THIS STATEMENT, ERROR ANALYS OF THE 
STATEMENT IS TERMINATED 

Explanation: The maximum number of error messages issued during 
editing to each statement is 5. The sixth error causes this 
message. 

Assembler Action: Error analysis for this statement is 
terminated. 

Programmer Response: Correct the indicated errors and 
reassemble. Any additional errors on this statement will be 
detected in the next assembly. 

Severity Code: 4 

INVALID OPERAND IN ICTL OR ISEQ STATEMENT 

Explanation: 

(1) The value of one or more operands in an ICTL statement is 
incorrect. The begin column must be within columns 1 to 40; 
the end column must be within columns 41 to 80 and at least 5 
columns away from the begin column; and the continue column 
must be within columns 2 to 40. 

(2) One of the following errors has occurred in an ISEQ 
statement: 

• The operand has an illegal range; the operand value 
cannot fall between the begin and end columns, and the 
second operand must not be less than the first. 

• The operand field is invalid. The operand field must 
contain two valid decimal self-defining terms, 
separated by a comma or be blank. 

Assembler Action: If a program contains an ICTL error, the 
whole program is processed as comments. If one of the ISEQ 
errors has occurred, no sequence checking is performed. 

Programmer Response: Supply valid operand (s) • 

Severity Code: 8 



IF0021 

IF0022 

IF0023 

IF0024 

INVALID TERM IN OPERAND 

Explanation: An invalid term has been used in an expression of 
the operand. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Make sure the operand is a character 
relation, an arithmetic relation, a logical relation, a SETx 
symbol, a symbolic parameter, or a decimal self-defining term. 

Severity Code: 8 

ICTL STATEMENT IS ILLEGAL IN COpy CODE 

Explanation: An ICTL statement appears in code that is inserted 
in the program by a COpy instruction. 

Assembler Action: The ICTL statement is processed as a comment. 

Programmer Response: Make sure the ICTL instruction is not in 
code inserted by the COpy instruction. If used, the ICTL 
instruction must always be the first instruction in your source 
module. 

Severity Code: 8 

ILLEGAL MACRO, MEND, OR MEXIT STATEMENT - MAY APPEAR ONLY WITHIN 
MACRO DEFINITIONS 

Explanation: MACRO, MEND, or MEXIT statements are not allowed 
in open code. They can be used only in macro definitions. 
This message will be issued if an instruction other than ICTL, 
ISEQ, OPSYN, TITLE, PRINT, EJECT, SPACE, or COpy appears before 
any macro definitions in your program. Of course, any such COpy 
instruction cannot copy any other statements than ISEQ, OPSYN, 
TITLE, PRINT, EJECT, or SPACE. This message will also be 
issued, if an undefined operation code appears before your 
macro definitions. 

Assembler Action: The illegal MACRO, MEND, or MEXIT statement 
is processed as a comment. 

Programmer Response: Remove the statement from open code on 
place it within a macro definition. Make sure that all your 
macro definitions are placed at the beginning, before open code. 

Severity Code: 8 

UNPAIRED PARENS, OR BLANK FOUND INSIDE PAIRED PARENS 

Explanation: 

• Unpaired parentheses appear in the operand field; or 

• A blank appears inside paired parentheses in the operand 
field of a macro instruction. This may be an error in 
sublist structure; or 

Appendix G: Assembler Diagnostic Error Messages 103 



IF0025 

IF0026 

IF0027 

104 

• A blank appears inside parentheses of an arithmetic 
expression; or 

• A term is missing in a logical expre ssion. 

Assembler Action: The operand in error is ignored. 

Programmer Response: If unpaired parentheses appear, be sure 
that there is a right ~lrenthesis for every left parenthesis. 
Remove illegal blanks inside paired parentheses. 

Severity Code: 8 

STATEMENT OUT OF SEQUENCE 

Explanation: The input sequence checking specified by the ISEQ 
instruction has determined that the flagged statement is out of 
sequence. 

Assembler Action: The s1:atement is flagged and assembled, 
however, the sequence number of the following statements will be 
checked relative to this statement and not relative to the 
sequence of previous statements. 

Programmer Response: Put the statement in the proper sequence. 

Severity Code: 4 

CHARACTERS APPEAR BETWEEN THE BEGIN AND CONTINUE COLUMNS ON 
CONTINUATION CARD 

Explanation: On a continuation card, the begin column and all 
columns between the begin column and the continue column 
(usually column 16) mus1: be blank. 

Assembler Action: Characters tha t appear between the begin 
column and the continue column are ignored. 

Programmer Response: Determine whether the operand started in 
the wrong continue column or whether the preceding card 
contained an erroneous continue punch in column 72. 

Severity Code: 4 

ICTL, ISEQ, MACRO, OR O]?SYN STATEMENT APPEARS IN MACRO 
DEFINITION 

Explanation: One of the specified operations is used within a 
macro definition, which is illegal. 

Assembler Action: The illegal operation is ignored and the 
statement is processed as a comment. 



IF0028 

IF0029 

IF0030 

Programmer Response: Remove all ICTL, ISEQ, MACRO, and OPSYN 
statements from within macro definitions. Make sure your ICTL 
and OPSYN instructions precede your macro definitions, and that 
each macro definition ends with a MEND statement. 

Severity Code: 8 

ILLEGAL PROTOTYPE KEYWORD PARAMETER DEFAULT VALUE 

Explanation: A variable symbol is used as the default value of 
a keyword parameter. 

Assembler Action: The statement is ignored. 

Programmer Response: Supply a valid default value for the 
keyword parameter. 

severity Code: 8 

xxxxxxxx IS AN ILLEGAL OPERAND IN A GLOBAL OR LOCAL DECLARATION 

Explanation: In a global ~BLx) or local ~CLx) SET symbol 
declaration, the indicated operand does not consist of one or 
more variable symbols that are separated by commas and 
terminated with a blank. 

Assembler Action: The attempted global or local SET symbol 
declaration is processed as a comment. Recovery is made in 
certain circumstances and some valid variable symbols in the 
declaration are recognized and defined correctly. 

Programmer Response: Supply the operand with valid variable 
symbols and delimiters. Check all global and local 
declarations. 

Severity Code: 8 

DECLARED DIMENSION OF xxxxxxxx IS ILLEGAL 

Explanation: The declared dimension, which appears in the error 
message, must be a nonzero, unsigned decimal integer, not 
greater than 32,767, and enclosed in parentheses. 

Assembler Action: If the declared dimension was a decimal 
self-defining term greater than 32,767, a default dimension of 
32,767 is assigned to the variable symbol. In all other cases, 
the variable symbol declaration is ignored. 

Programmer Response: Supply a valid dimension. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 105 



IF0031 

IF0032 

IF0033 

IF0035 

106 

SET STATEMENT NAME NOT A VARIABLE SYMBOL, OR SET STATEMENT NAME 
INCONSISTENT WITH DECLARED TYPE 

Explanation: (1) The name field of a SET statement does not 
consist of an ampersand followed by from 1 to 7 alphameric 
characters, the first of which is alphabetic. 

(2) The symbol does not match its previously declared type. 
For instance, the symbol might have been previously defined as 
LCLA, but the flagged s1:atement may have tried to assign a SETC 
character string to it. 

(3) A system variable symbol appears in the name field of a 
SETx instruction. The system variable symbols are &SYSECT, 
&SYSLIST, &SYSNDX, &SYSPARM, &SYSDATE, and &SYSTIME. 

Assembler Action: The flagged statement is processed as a 
comment. 

Proqrammer Response: Assign a valid variable symbol to the name 
field of the SET statement (the symbol must be previously 
defined as a global or local variable) , or be sure that the 
usage of the symbol corresponds to its previously declared type. 

Severity Code: 8 

xxxxxxxx APPEARS IMPROP1~RLY IN THE OPERAND OF THIS STATEMENT 

Explanation: The specified operand part is invalid. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: ChE~ck the syntax required for the operand 
field of this statement" and supply a valid operand. 

Severity Code: 8 

xxxxxxxx IS AN INVALID ]~OGICAL OPERATOR 

Explanation: The specified character string was found where a 
logical operator (AND o:c OR) was expected. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Use either AND or OR, as appropriate, for 
the logical operator. 

Severity Code: 8 

QUOTES NOT PAIRED, OR I:LLEGAL TERMINATION OF QUOTE STRING 

Explanation: The quotes in the operand field of this statement 
are unpaired, or the string is illegally terminated. 

Assembler Action: The s'tatement is processed as a comment. 



IF0036 

IF0037 

IF0038 

Programmer Response: Supply any missing quotes. 

Severity Code: 8 

ATTRIBUTE REFERENCE FOR xxxxxxxx IS INVALID 

Explanation: The flagged statement has attempted to reference a 
symbol that is not a valid ordinary or variable symbol. The 
attributes referenced were one or more of the following: type 
(T I) , length (L ' ), scaling (S'), integer (I I), count (K I) , and 
number (N I) • 

Assembler Action: The attribute referenced is ignored, and/or 
the statement is ignored, and/or default values for type, 
length, and scaling attributes are supplied. 

Programmer Response: Determine if a clerical error was made in 
coding either the reference or the definition of the symbol that 
appears in the message text; or supply a valid ordinary or 
variable symbol where necessary. 

Severity Code: 8 

xxxxxxxx IS AN ILLEGAL SUBSCRIPT 

Explanation: The subscript that appears in the message text 
either is not enclosed by paired parentheses, or is an illegal 
subscript. 

Assembler Action: The statement that contains the illegal 
subscript is processed as a comment. 

Programmer Response: Be sure the parentheses are paired, and 
that a valid subscript appears inside them. 

Severity Code: 8 

xxxxxxxx IS AN INVALID SELF-DEFINING TERM 

Explanation: The characters specified in the message are 
invalid in the operand field of a binary (type B), character 
(type C) , decimal, or hexadecimal (type X) self-defining term. 

Assembler Action: The statement that contains the invalid 
self-defining term is processed as a comment. 

Programmer Response: Make sure that the characters used for a 
self-defining term are consistent with the type of term. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 107 



IF0039 

IF0042 

IF0043 

IF0046 

108 

xxxxxxxx IS AN INVALID VARIABLE SYMBOL 

Explanation: The specified symbol does not consist of an 
ampersand followed by from 1 to 7 alphameric characters, the 
first of which is alphabetic. 

Assembler Action: The statement that contains the invalid 
variable symbol is processed as a comment. If the statement is 
a macro prototype statement, all statements in the macro 
definition are treated as comments. 

Programmer Response: Supply a valid variable symbol, or check 
that a single ampersand is not used where a double ampersand :is 
needed. 

Severity Code: 8 

PARAMETER IN MACRO PROTOTYPE OR MACRO INSTRUCTION EXCEEDS 255 
CHARACTERS 

Explanation: A parameter value that appears in the operand 
field of either a macro prototype or a macro instruction exceeds 
255 characters in length. 

Assembler Action: The first 255 characters of the parameter are 
deleted. The remaining characters are used as the parameter 
value. 

Programmer Response: Limit the parameter to 255 characters or 
separate it into two or more parameters. 

Severity Code: 8 

MACRO INSTRUCTION PROTOTYPE STATEMENT HAS INVALID OP CODE 

Explanation: 

• The operation code of a macro prototype statement is 
previously defined as the operation code of a machine, 
assembler, or macro instruction; or 

• The operation code of a macro prototype statement is not a 
valid ordinary symbol; that is, it does not consist of a 
letter, followed by 0 to 7 letters or digits or both. 

Assembler Action: The entire macro definition is processed as 
comments. 

Programmer Response: Supply a valid ordinary symbol that does 
not conflict with any machine, assembler, or macro instruction 
operation code. 

Severity Code: 8 

STATEMENT COMPLEXITY EXCEEDED 

Explanation: The expression evaluation work area has overflowed 
because the expression :is too complex. The complexity of an 
expression is determined by the number of nested operators and 



IF0047 

IF0048 

IF0049 

levels of parentheses. Up to 35 operators and levels of 
parentheses are allowed. For logical expressions, this total 
~llows 18 unary and binary operators, and 17 levels of 
parentheses. For arithmetic expressions in conditional 
assembly, the total allows 24 unary and binary operators, and 
11 levels of parentheses. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Simplify the expression to the limits 
described in the explanation. 

Severity Code: 8 

UNEXPECTED END OF FILE ON SYSTEM INPUT (SYSIN) 

Explanation: 

• A continuation record was expected when an end-of-file 
occurred on SYSIN (the source program ended); or 

• End-of-file immediately follows a REPRO statement; or 

• End-of-file occurs before an END card has been read. 

Assembler Action: An END statement is generated and assembly 
continues. 

Programmer Response: Determine if any statements were omitted 
from the source program. 

Severity Code: 4 

ICTL STATEMENT HAS NO OPERAND 

Explanation: The ICTL statement requires an operand, but none 
is present. 

Assembler Action: The entire source module is processed as 
comments. 

Programmer Response: Supply from 1 to 3 decimal self-defining 
terms to indicate respectively the begin, end, and continue 
columns. If the ICTL statement is omitted, columns 1, 71, and 
16, respectively, are the default values. 

Severity Code: 8 

COpy STATEMENT OPERAND NOT A VALID ORDINARY SYMBOL 

Explanation: The operand of a COPY statement is not a symbol of 
1 to 8 alphameric characters, the first of which is alphabetic. 

Assembler Action: The COpy request is processed as a comment. 

Programmer Response: Supply a valid ordinary symbol in the 
operand field. 

Severity Code: ,8 

Appendix G: Assembler Diagnostic Error Messages 109 



IFOOSO 

IFOOSl 

IFOOS2 

IFOOS3 

110 

COpy STATEMENT DOES NOT HAVE AN OPERAND 

Explanation: NO operand found on this COpy statement. 

Assembler Action: The s1:atement is processed as a comment. 

Programmer Response: Place the name of a member to be copied in 
the operand field, or remove the COpy statement. 

Severity Code: 8 

UNEXPECTED END OF DATA ON SYSTEM LIBRARY (SY SLIB) 

Explanation: An end-of-file occurred on the input from a system 
library before a MEND statement terminating a macro definition 
was encountered. 

Assembler Action: The missing MEND statement is generated. 

Programmer Response: Determine if the MEND statement was 
omitted from the library macro, or if the library contains an 
otherwise incomplete macro definition, or if a macro call has 
been made to a non-macro definition. 

Severity Code: 4 

UNARY OPERATOR NOT A PLUS OR MINUS SIGN 

Explanation: An operator other than a plus or minus sign 
appears as a unary operator. Except for unary operators, which 
are limited to plus and minus signs, only one operator can 
appear between two terms. 

Assembler Action: The st:atement is processed as a comment. 

Programmer Response: Supply the missing term or a correct 
operator. 

Severity Code: 8 

OP CODE NOT FOUND ON FIRST OR ONLY CARD 

Explanation: The complete statement name (if one is used) and 
the operation code, each followed by a blank, do not appear 
before the continuation indicator column on the first card of a 
continued statement. 

Assembler Action: The entire statement is processed as a 
comment. 

Programmer Response: Make sure that both the name and operation 
code of the statement appear on the first card. Check for 
syntactic errors. 

Severity Code: 8 



IFO054 

IFO055 

IF0057 

IFO058 

INVALID OPERATION CODE 

Explanation: 

• The operation code specified is not a valid ordinary symbol; 
or 

• A variable symbol in the operation field is invalid; or 

• The resulting operation code after substitution with or 
without concatenation is not a valid ordinary symbol. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Make sure that ordinary or variable 
symbols used in the operation field are valid. If you use 
variable symbols with or without concatenation, make sure the 
resulting symbol is a valid ordinary symbol. 

Severity Code: 8 

MEND STATEMENT GENERATED 

Explanation: An end-of-file occurred on the input from the 
system input device (SYSIN) or the system library (SYSLIB) 
before a MEND statement terminating a macro definition was 
encountered. 

Assembler Action: A MEND statement is generated. 

Programmer Response: Supply a MEND statement to terminate the 
macro definition. 

Severity Code: 8 

DUPLICATION FACTOR xxxxxxxx IN SETC EXPRESSION NOT TERMINATED 
BY A RIGHT PARENTHESIS 

Explanation: A SETC operand begins with a left parenthesis, but 
a comma, a period, or a blank appears before the closing right 
parenthesis. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Supply a right parenthesis. 

Severity Code: 8 

NO ENDING QUOTE ON SETC EXPRESSION 

Explanation: The character expression in the operand field of a 
SETC statement must be enclosed in quotes. The statement ends 
before a delimiting quote. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Supply any missing quotes. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 111 



IF0059 

IF0060 

IF0061 

IF0062 

112 

INVALID TERM IN LOGICAL EXPRESSION 

Explanation: One of the terms in the logical expression is 
invalid in the context. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Ma}~e sure that the terms in the logical 
expression are valid. 

Severity Code: 8 

END STATEMENT GENERATED 

Explanation: One of two errors occurred. 

(1) End-of-file occurred on the system input device (SYSI~ 
before an END card was read. 

(2) The ACTR limit was exceeded in open code. 

Assembler Action: An END statement is generated. 

Programmer Response: 

(1) Supply a valid END sta t.ement; or 

(2) Either correct the conditional assembly loop in open 
code so that the ACTR limit is not exceeded, or set the 
ACTR limit in open code to a higher value. 

Severity Code: 4 

COpy NEST GREATER THAN FIVE 

Explanation: The maximum limit of five nested levels of COpy 
statements is exceeded. 

Assembler Action: COpy processing terminates. 

Programmer Response: Eliminate excessive levels of COpy 
statements. 

Severity Code: 8 

REQUIRED OPERAND FIELD MISSING 

Explanation: This statement requires an operand in the operand 
field and none is present. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Supply the missing operand. 

Severity Code: 8 



lF0064 

IF0065 

IF0066 

INTERLUDE DICTIONARY SPACE EXHAUSTED 

Explanation: The work space available is not sufficient to 
contain the dictionaries required to build either 

(1) The skeleton dictionary for a macro definition or all of 
open code, or 

(2) The ordinary symbol attribute reference dictionary. 

This message is always logged against statement number o. 
Assembler Action: If a macro is being processed, building of 
the skeleton dictionary for that macro definition is terminated 
and the macro will not be expanded. If open code is being 
processed, the building of the open code skeleton dictionary is 
terminated and the program is processed as comments. If space 
for the ordinary symbol attribute reference dictionary is 
exhausted, the building of it is abandoned. 

programmer Response: Within the partition, increase the size of 
the region that is allocated to assembly, or allocate more of 
the partition to dictionary space via the BUFSIZE assembler 
option (see Appendix E) • 

Severity Code: 12 

EXPRESSION 2 OF EQU SYMBOL xxxxxxxx NOT IN RANGE 0-65535 

Explanation: The value of the expression specified in the 
second operand of the EQU instruction where this symbol is 
defined is not in the range 0-65535. 

This message is always logged against statement number O. 

Assembler Action: The length attribute of the symbol is set to 1 

Programmer Response: Make sure the value of the second operand 
of the EQU instruction is in the range 0-65535, or delete the 
second operand. 

Severity Code: 8 

EXPRESSION 3 OF EQU SYMBOL xxxxxxxx NOT IN RANGE 0-255 

Explanation: The value of the expression specified in the third 
operand of the EQU instruction where this symbol is defined is 
not in the range 0-255. 

This message is always logged against statement number O. 

Assembler Action: The type attribute of the symbol is set to U. 

Programmer Response: Make sure the value of the third operand 
of the EQU instruction is in the range 0-255, or delete the 
third operand. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 113 



IF0067 

IF0068 

IFO069 

IF0070 

114 

DECLARED DIMENSION FOR GLOBAL VARIABLE xxxxxxxx IN xxxxxxxx 
xxxxxxxx IS INCONSISTENT 

Explanation: The declared dimension of a global variable 
defined in a macro definition or in open code is not consistent 
with the declared dimension of the same global variable in 
another macro definition or in open code. 

This message is always logged against statement number O. The 
message text identifies the macro (or open code) where the 
error is found. 

Assembler Action: All rE~ferences to the global variable in the 
macro definition or in open code where the inconsistency was 
detected result in a null (zero) value. 

Programmer Response: Be sure that all definitions of a given 
global variable have the same declared dimension. 

Severity Code: 4 

COpy MEMBER xxxxxxxx NOT FOUND IN LIBRARY 

Explanation: The COpy mE~mber shown in the message text was not 
found in the library. 

Assembler Action: The COPY statement is processed as a comment. 

Programmer Response: De1:ermine whether the library member name 
is misspelled or whethel~ an incorrect member name was 
referenced. Make sure 1:he proper macro library is assigned in 
your JCL statements. 

Severity Code: 8 

TOO MANY CONTINUATION CARDS, TWO ALLOWED 

~xplanation: Only two continuation cards are allowed for each 
statement, except for macro definition prototype and macro call 
statements. 

Assembler Action: Excess continuation cards are processed as 
comments. 

Programmer Response: Restructure the statement so that it can 
be contained on a total of three cards. Extensive remarks may 
be recorded as comment statements by coding an asterisk in 
column 1 and eliminating the continuation indicators. 

Severity Code: 4 

SUBSTRING NOTATION IS NOT DELIMITED BY COMMA OR RIGHT 
PARENTHESIS 

Explanation: Two SETA expressions used in substring notation 
are not separated by a comma or enclosed in parentheses. 

Assembler Action: The statement is processed as a comment. 



IFO073 

IFO074 

IF0076 

Programmer Response: Supply the missing delimiter, or check for 
other syntax errors that make this appear as substring notation. 

Severity Code: 8 

AGO OR AIF OPERAND NOT A SEQUENCE SYMBOL 

Explanation: The symbol in the operand field of an AIF or AGO 
statement is not a period (.) followed by from 1 to 7 
alphameric characters, the first of which is alphabetic. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Supply a valid sequence symbol. 

Severity Code: 8 

SEQUENCE SYMBOL xxxxxxxx IS MULTIPLY DEFINED IN xxxxxxxx 
xxxxxxxx 

Explanation: The sequence symbol in the name field has been 
used in the name field of a previous statement within the same 
macro definition or open code. 

This message is always logged against statement number O. The 
message text identifies the macro (or open code) where the 
error is found. 

Assembler Action: All definitions of the sequence symbol after 
the first one are ignored. All references to the sequence 
symbol are treated as references to the first definition. 

Programmer Response: Provide unique sequence symbols for the 
macro definition or open code. 

Severity Code: 4 

SEQUENCE SYMBOL xxxxxxxx IS UNDEFINED IN xxxxxxxx xxxxxxxx 

Explanation: A sequence symbol appears in the operand of an AIF 
or AGO statement, but does not appear in the name field of 
another statement in the same macro definition or open code. 

This message is always logged against statement number O. The 
message text identifies the macro (or open code) where the 
error is found. 

Assembler Action: All statements which reference the undefined 
sequence symbol are processed as comments. 

Programmer Response: Define the sequence symbol at the 
appropriate point, or reference a sequence symbol that is 
already defined. 

Severity Code: 4 

Appendix G: Assembler Diagnostic Error Messages 115 



IF0078 

IF0080 

lFO081 

116 

UNDEFINED OP CODE 

Explanation: The mnemonic operation code of this statement does 
not correspond to any of the following: 
• a machine instruction operation code 
• an extended machine instruction operation code 
• an assembler instruction operation code 
• a macro instruction operation code 
• an operation code that has been defined 

by an OPSYN instruction. 
This message is also issued for operation codes that have been 
deleted by OPSYN instructions. 

Assembler Action: The statement is treated as a comment. If 
the statement appears before open code, all statements 
following it are considered to belong to open code. This means 
that any macro definitions following the error are treated as 
errors. 

Programmer Response: Either make sure you use a valid mnemonic 
operation code, or make sure that the proper OPSYN instructions 
are included in your program. 

Severity Code: 8 

ATTRIBUTE REFERENCE TO UNDEFINED SYMBOL 

Explanation: The symbol specified in a length ~'), scaling 
(S') , or integer (I') attribute reference is either an 
undefined symbol or a symbolic parameter (or a &SYSLIST 
specification) representing an undefined symbol. 

Assembler Action: 

• The length attribute, if specified, is set to 1. 

• The integer or scaling attribute, if specified, is set to o. 

Programmer Response: Make sure the symbol is defined. 

Severity Code: 4 

DECLARED TYPE FOR GLOBAL VARIABLE xxxxxxxx IN xxxxxxxx xxxxxxxx 
IS INCONSISTENT 

Explanation: The type (GBLA, GBLB, or GBLC) of a global 
variable declared in a macro definition or in open code is not 
consistent with the type of the same global variable declared 
in another macro definition or in open code. 

This message is always logged against statement number O. The 
message text identifies the macro (or open code) where the 
error is found. 

Assembler Action: All rE~ferences to the global variable in the 
macro definition or in open code where the inconsistency was 
detected result in a null (zero) value. 

Programmer Response: Make all declarations of the same global 
variable consistent. 



IF0085 

IFO081 

IFO088 

IF0089 

Severity· Code: 4 

MACRO HEADER MISSING, MACRO NOT EXPANDABLE 

Explanation: The first statement of a library macro definition 
was not a MACRO statement, and the search for the macro 
definition is terminated. 

Assembler Action: The macro call is processed as a comment. 

Programmer Response: Be sure that the library macro definition 
begins with a MACRO statement. Rerun the macrocall with 
assembler option LIBMAC on to get a complete diagnostic display 
of the macro definition. 

Severity Code: 8 

INVALID MACRO DEFINITION PROTOTYPE, MACRO NOT EXPANDABLE 

Explanation: A comment statement appears immediately after a 
macro header (MACRO statement) • 

Assembler Action: All the statements of the macro definition 
are processed as comments. 

Programmer Response: Make sure that the statement immediately 
following the macro header is a macro prototype statement. No 
comments or any other statements are permitted between the macro 
header and the prototype of a macro definition. Rerun the 
macrocall with assembler option LIBMAC on to get a complete 
diagnostic display of the macro definition. 

Severity Code: 8 

LIBRARY MACRO PROTOTYPE DOES NOT MATCH MEMBER NAME, MACRO NOT 
EXPANDABLE. 

Explanation: The mnemonic operation code in the macro prototype 
in a library macro definition does not match the entry in the 
macro library. 

Assembler Action: The macro instruction is processed as a 
comment. 

Programmer Response: Enter the macro definition in the library 
under the same name as the mnemonic op code that appears on the 
macro prototype. 

Severity Code: 8 

GENERATION-TIME DICTIONARY SPACE EXHAUSTED 

Explanation: The workspace available is not sufficient to 
contain the dictionaries required to expand the macro, to extend 
a SETC variable, or to contain the basic global dictionaries. 

Assembler Action: If the global dictionary workspace is 
insufficient, the text is processed as comments. If there is 

Appendix G: Assembler Diagnostic Error Messages 111 



IF0090 

IF0091 

IF0092 

118 

insufficient space to extend the SETC variable, expansion of 
the macro that contains the variable is terminated. If the 
space for macro definition dictionaries is insufficient, calls 
to those macros are not expanded. 

Programmer Response: Within the partition, increase the size of 
the region that is allocated to assembly', or allocate more of 
the partition to dictionary space via the BUFSIZE assembler 
option (see Appendix E) • 

Severity Code: 12 

UNDEFINED SEQUENCE SYMBOL ENCOUNTERED DURING CONDITIONAL 
ASSEMBLY 

Explanation: A sequence symbol referenced in the operand field 
of this statement is undefined in the macro definition or open 
code. This statement has been encountered during conditional 
assembly. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Define the sequence symbol at an 
appropriate point, or reference a sequence symbol that is 
already defined. 

Severity Code: 8 

KEYWORD PARAMETER xxxxxxxx IS DUPLICATED ON SAME MACRO CALL 

Explanation: A keyword parameter has appeared more than once on 
the same macro instruction. 

Assembler Action: The last value assigned to the parameter is 
used, the other value(s) are ignored. 

Programmer Response: Define only one value for each parameter. 
) 

Severity Code: 8 

KEYWORD PARAMETER xxxxxxxx UNDEFINED IN MACRO DEFINITION 

Explanation: A keyword parameter has been used in the macro 
instruction that is not a keyword parameter in the macro 
prototype, or an equal sign not surrounded by quotes is found 
in a positional parameter. 

Assembler Action: The eJctra keyword parameter in the macro 
instruction is ignored. 

Proqrammer Response: 

(1) Delete the keyword parameter and its value from the macro 
instruction; or 

(2) make the keyword parameter in the macro call correspond to 
one of the keyword parameters in the macro prototype; or 



IF0100 

IF0101 

IF0102 

(3) define the keyword parameter in the operand field of the 
macro prototype; or 

(4) if you want to include an equal sign in a positional 
parameter, enclose the parameter within single quotes. 

severity Code: 8 

DICTIONARY SPACE EXHAUSTED, NO SKELETON DICTIONARY BUILT 

Explanation: 

• If the message is given for a macro definition or for open 
code: no available space is left to build the skeleton 
dictionary after space has been used for the definition of 
global symbols, sequence symbols, or referenced ordinary 
symbols. 

• If the message is given for a macro instruction: dictionary 
space was exhausted during the editing of a library macro. 

Assembler Action: The macro is not considered defined, and any 
calls to it are processed as comments. If the error occurs in 
open code, the entire assembly is processed as comments. 

Programmer Response: Within the partition, increase the size of 
the region that is allocated to assembly, or allocate more of 
the partition to dictionary space via the BUFSIZE assembler 
option (see Appendix E) • 

Severity Code: 8 

GENERATED OP CODE INVALID OR UNDEFINED 

Explanation: The operation code created by substitution is not 
a valid ordinary symbol or is not a valid machine, assembler, 
or macro instruction, or defined by an OPSYN instruction. 

Assembler Action: The generated statement is treated as a 
comment. 

Programmer Response: Be sure that substitution results in a 
valid ordinary symbol that consists of from 1 to 8 alphameric 
characters, the first of which is alphabetic, and that the 
resulting symbol is a defined operation code. 

Severity Code: 8 

GENERATED OP CODE IS BLANK 

Explanation: The op code created by substitution contains no 
characters, or from 1 to 8 blank characters. 

Assembler Action: The generated statement is processed as a 
comment. 

Appendix G: Assembler Diagnostic Error Messages 119 



IF0104 

IF0105 

IF0107 

120 

Programmer Response: Be sure that substitution results in a 
valid ordinary symbol that consists of from 1 to 8 alphameric 
characters, the first of which is alphabetic. 

Severity Code: 8 

MORE THAN ONE TITLE STATEMENT NAMED 

Explanation: This is at least the second TITLE statement that 
contains something other than a sequence symbol or blanks in 
the name field. 

Assembler Action: The name field is ig~ored. 

Programmer Response: Be sure that the name fields of all but 
one TITLE statement contain only sequence symbols or blanks. 

Severity Code: 4 

GENERATED FIELD EXCEEDS 255 CHARACTERS 

Explanation: As a result of substitution, a character string 
that is longer than 255 characters has been generated. 

Assembler Action: The first 255 characters are used. 

Programmer Response: Limit the generation of any character 
string to 255 characters, minus the number of non-substituted 
characters. (Limit substitution in the name and operation 
fields to 8 characters, in the operand field to 255 characters.) 

Severity Code: 8 

CHARACTER STRING USED AS AN ARITHMETIC TERM EXCEEDS 10 
CHARACTERS 

Explanation: A character string used in a SETA expression or in 
an arithmetic relation in a SETB expression is longer than 10 
characters. Ten is the maximum number of characters permitted 
in a decimal self-defining term. 

Assembler Action: The character string is replaced by an 
arithmetic value of zero. 

Programmer Response: Be sure that all character strings used as 
described in the explanation are from 1 to 10 decimal digits 
with a value in a range of 0 to 2,147,483,647. Also be sure 
that the values of all variables that contribute to the 
generation of the character string are valid for their type. 

Severity Code: 8 



IF0108 

IF0109 

IF0110 

CHARACTER STRING USED AS AN ARITHMETIC TERM CONTAINS NON-DECIMAL 
CHARACTERS 

Explanation: A character string used in a SETA expression or in 
an arithmetic relation in a SETB expression contains characters 
other than 0 through 9. 

Assembler Action: The character string is replaced by an 
arithmetic value of zero. 

programmer Response: Be sure that all character strings used in 
a SETA expression or as an arithmetic relation in a SETB 
expression contain from 1 to 10 decimal digits with a value in 
the range of 0 to 2,147,483,647. Also be sure that the values 
of all variables that contribute to the generation of the 
character string are valid for their type. 

Severity Code: 8 

CHARACTER STRING USED AS ARITHMETIC TERM IS A NULL STRING 

Explanation: A character string used in a SETA expression or in 
an arithmetic relation in a SETB expression is zero characters 
in length. 

Assembler Action: The character string is replaced by an 
arithmetic value of zero. 

Programmer Response: Be sure that all character strings used in 
an arithmetic context are from 1 to 10 decimal digits with a 
value in a range of 0 to 2,147,483,647. Also make sure that 
the values of all variables that contribute to the generation 
of the character string are valid. 

Severity Code: 8 

ARITHMETIC OVERFLOW IN INTERMEDIATE RESULT OF SETA EXPRESSION 

Explanation: During the evaluation of a SETA expression, an 
intermediate value was produced that was outside the range of 
-231 to 231-1. 

Assembler Action: The intermediate result is replaced by an 
arithmetic value of zero. 

Programmer Response: Be sure that the values of all variables 
that contribute to the intermediate result are valid. No 
expression should ever attempt a value outside the range of 
-231 to 231-1. Overflow may be avoided if you adjust the 
sequence of expression evaluation, or if you separate 
components of the expression and evaluate them individually 
(perhaps by additional SET statements) before combining them. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 121 



IFO 111 

IF0112 

IF0113 

IF0114 

122 

SUBSCRIPT EXPRESSION HAS A ZERO OR NEGATIVE VALUE 

Explanation: A term or a SETA expression used as the subscript 
on a dimensioned global or local variable symbol results in a 
zero or negative value. 

Assembler Action: Any such reference to the dimensioned 
variable results in a null (zero) value. 

Programmer Response: Be sure that the values of all the 
variables that contribute to the subscript are valid. 
Expressions that are used as subscripts must have a value in 
the range of 1 through the declared dimension of the global or 
local variable. A zero subscript is allowed only on the system 
variable &SYSLIST. 

Severity Code: 8 

SUBSCRIPT EXPRESSION EXCEEDS MAXIMUM DIMENSION 

Explanation: A term or a SETA expression used as the subscript 
on a dimensioned global or local variable results in a value 
greater than the declared dimension of the variable. 

Assembler Action: Any such reference resul ts in a null (zero) 
value. 

Programmer Response: Be sure that all terms and variables that 
contribute to the subscript have valid values. Be sure that a 
term or a SETA expression used as a subscript has a value in 
the range of 1 through the declared dimension of the global or 
local variable. 

Severity Code: 8 

ILLEGAL REFERENCE MADE TO A PARAMETER THAT IS A SUBLIST 

Explanation: A reference has been made in a SETA or SETB 
expression (i.e., in an arithmetic context) to a parameter that 
is a sublist. 

Assembler Action: The l:eference to the parameter results in an 
arithmetic value of zero. 

Programmer Response: Check to see that the proper parameter is 
being referenced. Be sure that an appropriate value is 
assigned to a parameter that is referenced in a SETA or SETB 
expression. Check for a missing subscript. 

Severity Code: 8 

NEGATIVE DUPLICATION FACTOR IN CHARACTER STRING 

Explanation: A term or a SETA expression that is used as the 
duplication factor in a SETC operand results in a negative 
value. 

Assembler Action: The duplication factor is set to an 
arithmetic value of ze:ro. 



IF0115 

IF0116 

IF0117 

Programmer Response: Be sure that any term or expression used 
as a duplication factor has a positive value, and that the 
values of all variables that contribute to the duplication 
factor are valid. 

Severity Code: 8 

FIRST EXPRESSION IN SUBSTRING NOTATION HAS ZERO OR NEGATIVE 
VALUE 

Explanation: A term or SETA expression that is used to specify 
the starting character for a substring operation has a zero or 
negative value. 

Assembler Action: The assembler assigns the value of null to 
the sUbstring. 

Programmer Response: A term, a SETA expression, or a 
combination of variables used to produce the first expression 
in a substring notation must result in a positive, nonzero 
value, not exceeding the length of the character string. 

Severity Code: 8 

SECOND EXPRESSION IN SUBSTRING NOTATION HAS NEGATIVE VALUE 

Explanation: A term or SETA expression that is used to specify 
the number of characters affected by a substring operation has 
a negative value. 

Assembler Action: The value of the second expression of the 
substring notation is set to 0, that is, the assembler assigns 
a value of null to the substring. 

Programmer Response: A term, a SETA expression, or a 
combination of variables used to produce the second expression 
in a substring notation must result in a non-negative value. 

Severity Code: 4 

FIRST EXPRESSION IN SUBSTRING NOTATION EXCEEDS THE LENGTH OF 
THE STRING 

Explanation: A term or SETA expression that specifies the 
starting character for a substring operation specifies a 
character beyond the end of the string. 

Assembler Action: The assembler assigns the value of null to 
the sUbstring. 

Programmer Response: Make sure the term, SETA expression, or 
combination of variables used to produce the first expression 
in a substring notation results in a value in the range of 1 
through the length of the character string. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 123 



IFO 118 

IF0119 

IF0120 

124 

ACTR LIMIT HAS BEEN EXCEEDED 

Explanation: The number of AIF and AGO branches within the text 
segment exceeds the value specified in the ACTR instruction or 
the conditional assembly loop counter default value. 

Assembler Action: If a macro is being expanded, the expansion 
is terminated. If open code is processed, all remaining 
statements are processed as comments. 

programmer Response: Correct the conditional assembly loop that 
caused the ACTR limit to be exceeded, or set the ACTR value to 
a higher number. 

Severity Code: 8 

ILLEGAL TYPE ATTRIBUTE REFERENCE 

Explanation: A type attribute reference is made to a symbol 
defined by an EQU instruction with an invalid third operand. 

Assembler Action: The type attribute value is set to U. 

Programmer Response: Correct the third operand on the EQU 
instruction. It must be a self-defining term in the range 
0-255. 

Severity Code: 4 

ILLEGAL LENGTH ATTRIBUTE REFERENCE 

Explanation: 

• A length attribute reference specifies a SETx symbol; or 

• A length attribute reference specifies a symbolic parameter 
(or a &SYSLIST representa tion) that does not represent an 
ordinary symbol; 01: 

• The ordinary symbol referenced by a length or integer 
attribute reference is defined by an EQU instruction, and 
the value of the second operand of that instruction is not 
in the range 0-65535; or 

• The ordinary symbol referenced by a length or integer 
attribute reference is defined in a DC or DS instruction, 
and the instruction contains a length modifier that is not 
a self-defining term. 

Assembler Action: The length attribute is set to 1. 

Programmer Response: Review the use of the length attribute and 
recode. 

Severity Code: 4 



IF0123 

IF0124 

IF0125 

ILLEGAL SCALE ATTRIBUTE REFERENCE 

: Explanation: 

• A scaling attribute reference specifies a SETx symbol; or 

• A scaling attribute reference specifies a symbolic 
parameter (or a &SYSLIST representation) that does not 
represent an ordinary symbol; or 

• A scaling attribute reference is made to an ordinary symbol 
whose type attribute is not H, F, G, E, D, L, K, P, or Z; or 

• The ordinary symbol referenced by a scaling or integer 
attribute reference is defined in a DC or DS instruction 
containing a scaling modifier that is not a self-defining 
term. 

Assembler Action: The scale attribute is set to o. 

Programmer Response: Review the use of the scale attribute and 
recode. 

Severity Code: 4 

ILLEGAL INTEGER ATTRIBUTE REFERENCE 

Explanation: 

• An integer attribute reference specifies a SETx symbol; or 

• An integer attribute reference specifies a symbolic 
parameter (or a &SYSLIST representation) that does not 
represent an ordinary symbol; or 

• An integer attribute reference is made to an ordinary symbol 
whose type attribute is not H, F, G, E, D, L, K, P, or Z. 

Assembler Action: The integer attribute is set to o. 

Programmer Response: Review the use of the integer attribute 
and recode. 

Severity Code: 4 

INVALID NAME - ILLEGAL EMBEDDED CHARACTER OR NON-ALPHABETIC 
FIRST CHARACTER 

Explanation: 

• The symbol generated in the name field does not begin with 
an alphabetic character or it contains a special character 
or an embedded blank after substitution; or 

• for the TITLE instruction: the name field contains a 
special character. 

Assembler Action: The name field is ignored. 

Programmer Response: Be sure that the symbol generated in the 
name field conforms to the rules for forming valid ordinary 

Appendix G: Assembler Diagnostic Error Messages 125 



IF0126 

IF0127 

IF0128 

126 

symbols, or is a valid TITLE name field entry. Also check to 
make sure that' the values of all variables that contribute to 
the generation of the symbol in the name field are valid. 

Severity Code: 8 

MORE THAN 5 ERRORS IN THIS STATEMENT, PROCESSING OF THE 
STATEMENT IS TERMINATED 

Explanation: Six or more errors were detected in processing 
this statement. The maximum number of error messages issued by 
the processor to each statement is five. 

Assembler Action: The sixth error causes this message to be 
issued, and messages are not issued for any further errors in 
this statement. 

Programmer Response: Correct the indicated errors and check 
carefully for errors beyond the point indicated by the fifth 
error message. Assemble again. Any additional errors will be 
located in the next assembly. 

Severity Code: 8 

VALUE OF CHARACTER STRING USED IN ARITHMETIC CONTEXT EXCEEDS 
2,147,483,647 

Explanation: A character string used in a SE'IA expression or in 
an arithmetic relation in a SETB expression exceeds a value of 
2,147,483,647, which is the maximum value allowed for a decimal 
self-defining term. 

Assembler Action: The character string is replaced by an 
arithmetic value of zero. 

Programmer Response: Be sure that all character strings used in 
an arithmetic context are from 1 to 10 decimal digits and have 
a value in the range of 0 to 2,147,483,647. Be sure that the 
values of all variables that contribute to the generation of 
the character string aI:e valid. 

Severity Code: 8 

GENERATED OP CODE EXCEE:DS 8 CHARACTERS 

Explanation: The syntax for mnemonic operation codes must 
follow the same rules as ordinary symbols; that is, they must 
be from 1 to 8 alphanumeric characters long and the first 
character must be alphabetic. 

Assembler Action: The statement that contains the illegal op 
code is processed as a comment. Only the first 8 characters of 
the generated op code appear in the printed statement. 

Programmer Response: BE~ sure that the values of all variables 
that contribute to the generation of the op code are valid, and 
be sure that no attemp1: is made to generate an op code of more 
than 8 characters. 

Severity Code: 8 



IF0129 

IF0130 

IF0131 

IF0132 

GENERATED SYMBOL IN NAME FIELD EXCEEDS 8 CHARACTERS 

Explanation: A generated symbol that appears in the name field 
exceeds 8 characters. It should be from 1 to 8 alphanumeric 
characters in length, and the first character should be 
alphabetic. 

Assembler Action: The name field is ignored. Only the first 
eight characters of the generated symbol appear in the printed 
statement. 

Programmer Response: Be sure that the values of all variables 
that contribute to the generation of the symbol in the name 
field are valid. Be sure that no attempt is made to generate a 
symbol of more than 8 characters. 

Severity Code: 8 

FIRST SUBSCRIPT OF iSYSLIST REFERENCE IS NEGATIVE 

Explanation: A term or an arithmetic (SETA) expression that is 
used as the first subscript of a iSYSLIST reference has 
resulted in a negative value. 

Assembler Action: The parameter reference is treated as a 
reference to an omitted operand. 

Programmer Response: Be sure that the values of all variables 
that contribute to the generation of the first subscript are 
valid. 

Severity Code: 8 

INCONSISTENT GLOBAL VARIABLE DECLARATION I SETx INSTRUCTION 
IGNORED 

Explanation: Global variable declaration inconsistent with a 
previous definition of the variable in another macro definition 
or in open code. 

Assembler Action: The value of the global variable remains the 
same and the SETx instruction is ignored. 

Programmer Response: Correct all inconsistencies between global 
variable declarations regarding dimension and type. 

Severity Code: 8 

REFERENCE TO INCONSISTENTLY DECLARED GLOBAL VARIABLE RESULTS IN 
ZERO VALUE 

Explanation: An attempt to obtain a value from a global 
variable has been ignored because the declaration of the global 
variable was inconsistent with a previous declaration of the 
same variable in another macro definition or in open code. 
Either the dimension or the type does not agree. 

Appendix G: Assembler Diagnostic Error Messages 127 



IF0133 

IF0157 

IF0158 

128 

Assembler Action: The reference to the global variable is 
replaced by a null or zero value. 

Programmer Response: Correct all inconsistencies among 
declarations of the same global variable. 

Severity Code: 8 

NO OPEN CODE SKELETON DICTIONARY, ENTIRE ASSEMBLY FLUSHED 

Explanation: The allotted dictionary work space is insufficient 
to build the skeleton dictionary for open code. Since the 
generation process requires the open code dictionary, 
generation is not attempted. 

Assembler Action: The entire assembly is processed as comments. 

Programmer Response: Wi.thin the partition, increase the size of 
the region that is allc~ated to assembly, or allocate more of 
the partition to dictionary space via the BUFSIZE assembler 
option (see Appendix E) • 

severity Code: 12 

DC OPERAND VALUE TOO LONG 

Explanation: The specified value of an operand in a DC 
instruction is too long. The maximum length of a DC operand is 
16,777,215 bytes. 

Assembler ActionThe s~~cified value is ignored. 

Programmer Response: Make the constant shorter, or break it up 
into two constants. 

Severity Code: 8 

NAME OF STATEMENT IN DSECT USED IN RELOCATABLE ADDRESS CONSTANT 

Explanation: A non-paired relocatable term used in an A-type or 
Y-type address constan"t is defined in a durruny section. 

Assembler Action: The constant is ignored. 

Programmer Response: 

• Make sure the relocatable term is not defined in a dummy 
section; or 

• Make sure the term defined in the dummy section is paired 
with another term (with the opposite sign) from the same 
dummy section. 

Severity Code: 8 



IF0159 

IF0161 

IF0162 

IF0163 

RELOCATABLE EXPRESSION AS EXPLICIT DISPLACEMENT IN S-TYPE 
CONSTANT 

Explanation: The displacement used in an explicit S-type 
address constant specification is a relocatable expression. 

Assembler Action: The value of the operand is set to zero and 
no entry is made in the relocation dictionary. 

programmer Response: Make sure the displacement is specified as 
an absolute expression, or specify an implicit address. 

Severity Code: 8 

INVALID LITERAL NEAR OPERAND COLUMN nn 

Explanation: An invalidly constructed literal appears near the 
specified operand column. 

Assembler Action: The value of any reference to the invalid 
literal is set to O. 

Programmer Response: A literal should be constructed like a DC 
or DS constant with the following exceptions: 

• The literal is preceded by a equal sign. 

• The duplication factor must not be O. 

severity Code: 8 

VALUE ERROR - SHOULD BE BETWEEN 0 AND 9 NEAR OPERAND COLUMN nn 

Explanation: A value is negative or is not in the range of 0 to 
9, which is required by this instruction. 

Assembler Action: The entire machine instruction is set to O. 

Programmer Response: Be sure the operand field has a positive 
value in the range of 0 to 9. 

Severity Code: 8 

MISSING OR INVALID SYMBOL IN NAME FIELD 

Explanation: One of two errors has occurred: 

• A symbol is missing in the name field where one is required. 

• The symbol in the name field is invalid. 

Assembler Action: The statement is processed as a comment. 

Programmer Response: Supply a valid name. 

Severity Code: 4 

Appendix G: Assembler Diagnostic Error Messages 129 



IF0164 

IF0165 

IF0167 

130 

INVALID OR lLLEGAL START STATEMENT 

Explanation: The START statement did not start the first 
control section in the assembly, or the operand on the START 
statement was not an absolute value. 

Assembler Action: The START statement is treated as a CSECT 
statement. 

Programmer Response: Be sure that the START statement has an 
absolute operand and tha.t it begins the first control section 
in the assembly. 

Severity Code: 4 

NULL PUNCH OPERAND OR PUNCH OPERAND EXCEEDS 80 CHARACTERS 

Explanation: The operand of a PUNCH instruction either 
specifies only a null string surrounded by quotes, or is more 
than 80 characters long .. 

Assembler Action: The PUNCH statement is processed as a conunent. 

Programmer Response: Be sure that the operand of a PUNCH 
statement consists of from 1 to 80 characters surrounded by 
quotes. 

Severity Code: 4 

SYMBOL FILE OUT OF SYNC 

Explanation: The symbol file, which is an internal data file, 
has got out of step with the rest of the assembly process 
because of error recovery on a user error. 

Assembler Action: A sof-t recovery is attempted by continuing 
the assembly. Assembly results subsequent to the point of 
error may not be valid. 

Programmer Response: This message will always be accompanied by 
user errors. Correct them and reassemble the program. 

If the problem recurs, do the following before calling IBM: 

• Have your source program, macro definitions, and associated 
listings available. 

• If a COpy statement was used, execute the IEBPTPCH utility 
to obtain a copy of the partitioned data set member 
specified in the COpy statement. 

• Make sure that MSGLEVEL=(1,1) was specified in the JOB 
statement. 

Severity Code: 16 



IF0168 

IF0169 

IF0170 

AN ARITHMETIC EXPRESSION NOT USED IN CONDITIONAL ASSEMBLY 
CONTAINS MORE THAN 20 TERMS 

Explanation: An arithmetic expression used in a macro 
definition or in open code, but not in a conditional assembly 
statement, contains more than 19 unary and binary operators and 
6 levels of parentheses. The maximum number of terms this 
combination allows is 20. 

Assembler Action: The value of the expression is set to O. 

Programmer Response: Be sure that this arithmetic expression 
does not contain more than 19 operators (unary and binary) and 
6 levels of parentheses. If greater complexity is necessary, 
use EQU statements to evaluate intermediate results. 

Severity Code: 8 

INVALID SELF-DEFINING TERM NEAR OPERAND COLUMN nn 

Explanation: A self-defining term was invalidly specified. 

Assembler Action: The value of the term is set to zero. 

Programmer Response: Check the syntax and correct the error. 

Severity Code: 8 

TWO ADJACENT BINARY OPERATORS, OR BINARY OPERATOR EXPECTED BUT 
NOT FOUND NEAR OPERAND COLUMN nn 

Explanation: One of two errors has occurred. 

(1) Two binary operators appear consecutively near the column 
specified in the message text. This applies only to "*" 
(multiply) and "j" (divide). 

(2) A binary operator was expected near the column specified in 
the message text, but none was found. A single binary operator 
must occur between all terms of an expression. 

Assembler Action: The expression that contains the absent or 
illegal operator is set to zero. 

Programmer Response: 

(1) Eliminate one of the binary operators. 

(2) Provide a binary operator. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 131 



IF0171 

IF0172 

IF0173 

IF0174 

132 

TITLE STATEMENT OPERAND EXCEEDS 100 CHARACTERS 

Explanation: The operand of a TITLE instruction contains more 
than 100 characters. 

Assembler Action: The character string in the operand is 
truncated to 100 characters. 

Programmer Response: Be sure that the length of the character 
string in the operand of a TITLE statement does not exceed 100 
characters. 

Severity Code: 4 

VALUE OF ORG OPERAND IS LESS THAN THE CONTROL SECTION STARTING 
ADDRESS 

Explanation: The operand of an ORG statement results in a value 
less than the starting address of the control section. 

Assembler Action: The ORG statement is processed as a comment 
and has no effect on the value of the location counter. 

Programmer Response: Be sure that the operand of the ORG 
statement is a positive relocatable expression, greater than 
the starting address of the control section, or blank. 

Severity Code: 8 

ONE OR MORE SYMBOLS IN AN ORG OPERAND DO NOT BELONG TO THE 
CURRENT CSECT, DSECT, OR COM 

Explanation: One or more of the symbols used in the operand of 
an ORG statement are not defined in the current control section 
(dummy, common or ordinary) • 

Assembler Action: The ORG statement is processed as a comment 
and the value of the location counter remains unchanged. 

Programmer Response: Be sure that all symbols used in the 
operand field of an ORG statement belong to ~re defined by 
appearing in the name field of a statement within) the current 
control section. 

Severity Code: 8 

ORG OPERAND IS ABSOLUTE, MUST BE RELOCATABLE 

Explanation: An absolute term or expression used in the operand 
of an ORG statement must be a relocatable term, a relocatable 
expression, or a blank. 

Assembler Action: The ORG instruction is processed as a comment 
and the value of the lc~ation counter remains unchanged. 



IF0175 

IF0176 

IF0177 

Programmer Response: Be sure that the operand of an ORG 
statement is a relocatable term, a relocatable expression, or a 
blank. An ORG to an absolute address is not possible because 
~he assembler assumes that all location references are 
relocatable. A common error is an ORG to O. Since the start 
of the program is not absolute machine location 0 but 
relocatable 0, replace the 0 with a symbol or expression that 
makes reference to the labeled program start. 

Severity Code: 8 

OPERAND SHOULD BEGIN WITH A QUOTE 

Explanation: A quote was expected to begin a character string 
in the operand field, but was not found. 

Assembler Action: The invalid character string is ignored. 

Programmer Response: Supply the missing leading quote in the 
character string of the operand. 

Severity Code: 8 

UNPAIRED AMPERSAND NEAR OPERAND COLUMN nn 

Explanation: A single ampersand followed by a blank was found 
in a quoted character string. If an ampersand is desired as a 
character in a quoted character string, two ampersands must be 
coded. Ampersands must be either paired or part of a valid 
variable symbol. 

Assembler Action: The character string that contains the 
illegal ampersand is ignored. 

Programmer Response: Determine whether the ampersand is desired 
as a character in a quoted character string or whether the 
ampersand is intended as the beginning of a valid variable 
symbol, and correct the error. 

Severity Code: 8 

MISSING OPERAND 

Explanation: This statement requires an operand, but none is 
found. 

Assembler Action: The statement which lacks the operand is 
processed as a comment. 

Programmer Response: Supply a valid operand. 

Severity Code: 12 

Appendix G: Assembler Diagnostic Error Messages 133 



IF0178 

IF0179 

IF0180 

IF0181 

134 

SYNTAX ERROR NEAR OPERAND COLUMN nn 

Explanation: A syntax error has occurred in the operand of this 
statement. 

Assembler Action: The statement which contains the invalid 
operand is processed as a comment. 

Programmer Response: Correct the syntax of the operand. There 
are a large number of syntactic errors that can produce this 
diagnostic. All of them require careful checking of the syntax 
of the specific type of statement being processed. The error 
is logged at the point where the syntax becomes ambiguous or 
unrecognizable, not necessarily at the point where the actual 
error occurs. 

Severity Code: 8 

OPERAND SUBFIELD NEAR OPERAND COLUMN nn MUST BE ABSOLUTE 

Explanation: All terms and expressions used in the operand 
field of this statement must result in an absolute value. 

Assembler Action: The operand is processed as a comment. 

Programmer Response: Be sure that each term or expression used 
in the operand field of this statement has an absolute value. 
No relocatable expressions are allowed. 

Severity Code: 8 

OPERAND 2 OF CNOP MUST BE EITHER 4 OR 8 

Explanation: The second operand of a CNOP statement must be 
either 4 or 8. 

Assembler Action: The CNOP statement is processed as a comment 
and no 'alignment is performed. 

Programmer Response: Be sure that the second operand of a CNOP 
statement is either a 4 or an 8. 

Severity Code: 12 

OPERAND 1 OF CNOP MUST BE 0, 2, 4, OR 6 

Explanation: The first operand of a CNOP statement must be 0, 
2, 4, or 6. 

Assembler Action: The CNOP statement is ignored and no 
alignment is performed .. 

Programmer Response: Be sure that the first operand of a CNOP 
statement is a 0, 2, 4, or 6. 

Severity Code: 12 



IF0182 

IF0183 

IF0184 

IF0185 

OPERAND 1 OF CNOP IS NOT LESS THAN OPERAND 2 

Explanation: The value of the first operand of a CNOP statement 
must be less than the value of the second operand. 

Assembler Action: The CNOP statement is processed as a comment 
and no alignment is performed. 

programmer Response: Check the validity of each operand of the 
CNOP statement to be sure that the value of the second operand 
is greater than the value of the first operand. 

Severity Code: 12 

MNOTE/CCW OPERAND EXCEEDS 255 

Explanation: The value of an operand used as an MNOTE severity 
code or as the first operand in a channel command word (CC~ 
exceeds 255. 

Assembler Action: The MNOTE is processed as a comment. Space 
is allocated for the CCW, but the value for the flagged operand 
is set to o. 

programmer Response: Check the validity of the operand. 

Severity Code: 12 

INVALID RANGE ON CCW NEAR OPERAND COLUMN nn, 65535 IS MAXIMUM 
VALUE 

Explanation: The value of the fourth operand of a channel 
command word has exceeded X'FFFF' (65535). 

Assembler Action: Space is allocated for the CCW, but the value 
of the flagged operand is set to O. 

Programmer Response: Check the validity of the fourth operand 
of the channel command word. 

Severity Code: 12 

BLANK EXPECTED AS A DELIMITER NEAR OPERAND COLUMN nn 

Explanation: A blank was expected as a delimiter but none was 
found. Subsequent characters have no syntactic meaning, and 
the statement is ambiguous. 

Assembler Action: The statement that contains the invalid 
delimiter is processed as a comment. 

Programmer Response: Supply a blank delimiter. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 135 



IF0186 

IF0187 

IF0188 

IF0189 

136 

INVALID SYMBOL NEAR OPERAND COLUMN nn OF ENTRY, EXTRN, OR WXTRN 

Explanation: An improperly constructed symbol was found in the 
operand field of an ENTRY, EXTRN, or WXTRN statement. 

Assembler Action: The statement that contains the invalid 
symbol is processed as a comment. 

Programmer Response: Be sure that the symbol in the operand 
field of EXTRN, WXTRN, or ENTRY statements contain from 1 to 8 
alphanumeric characters, the first of which is alphabetic. 

Severity Code: 8 

SYMBOL LONGER THAN 8 CHARACTERS NEAR OPERAND COLUMN NN 

Explanation: A symbol that is more than 8 characters in length 
has appeared in the operand field of this statement. 

Assembler Action: The invalid symbol in the operand field is 
replaced by a zero. 

Programmer Response: Be sure that symbols do not exceed 8 
characters in length. A missing or misplaced delimiter or 
operator may cause a symbol to appear longer than intended. 

Severity Code: 8 

xxxxxxxx IS AN UNDEFINED SYMBOL 

Explanation: The symbol that appears in the message text has 
not appeared in the name field of another statement, or as an 
operand of an EXTRN or WXTRN statement. 

Assembler Action: Reference to the undefined symbol results in 
a zero value. 

Programmer Response: Define the symbol in the program. 

Severity Code: 8 

INVALID ENTRY OPERAND, LINKAGE CANNOT BE PERFORMED 

Explanation: The symbol in the operand field of an ENTRY 
statement is invalid because it is either undefined or 
improperly defined. 

Assembler Action: The invalid symbol in the operand field is 
processed as a comment, and no linkage is provided if another 
program references it. 

Programmer Response: Define the symbol at an appropriate place 
in this program, or correct it. A valid symbol consists of from 
1 to 8 alphameric characters, the first of which must be an 
alphabetic character. 

Severity Code: 8 



IF0190 

IF0191 

IF0192 

IF0193 

OPERAND OF PUSH STATEMENT IS NOT USING OR PRINT NEAR OPERAND 
COLUMN nn 

Explanation: The only symbols allowed in the operand field of a 
PUSH or POP statement are PRINT and USING, in any order, 
separated by commas. 

Assembler Action: The PUSH instruction is processed as a 
comment. 

programmer Response: Be sure the operand of the PUSH statement 
is either PRINT or USING or both. 

Severity Code: 4 

PUSH LEVELS EXCEED 4 NEAR OPERAND COLUMN nn 

Explanation: More than 4 levels of PUSH and POP statements were 
attempted for either PRINT or USING~ 

Assembler Action: The PUSH instruction is processed as a 
comment. 

programmer Response: Rework the program logic to require no 
more than 4 levels of PUSH and POP for USING and 4 for PRINT~ 

Severity Code: 8 

OPERAND OF POP STATEMENT IS NOT USING OR PRINT NEAR OPERAND 
COLUMN nn 

Explanation: The only symbols allowed in the operand of a PUSH 
or POP statement are USING and PRINT, in any order, separated 
by commas. 

Assembler Action: The POP instruction is processed as a comment. 

Programmer Response: Be sure the operand of the POP statement 
is either PRINT or USING or both. 

Severity Code: 4 

POP REQUEST NOT BALANCED BY PREVIOUS PUSH 

Explanation: No PUSH request was issued prior to this POP 
request, or more POP statements have been issued than PUSH 
statements. A POP statement restores the USING or PRINT status 
saved by the most recent PUSH statement, on a one for one basis. 

Assembler Action: The POP instruction is processed as a comment. 

Appendix G: Assembler Diagnostic Error Messages 137 



IF0194 

IF0195 

IF0196 

138 

Programmer Response: Check for errors in balancing PUSH and POP 
statements, or rework the program logic to request balanced PUSH 
and POP statements. Repetition of a given operand (i.e., USING 
or PRINT) on a single PUSH or POP statement is treated as 
multiple statements, and could cause unbalanced PUSH and POP 
statements. 

Severity Code: 8 

INVALID OPTION IN PRINT STATEMENT NEAR OPERAND COLUMN nn 

Explanation: An option appears in the operand field of a PRINT 
statement that is not one of the following: ON, OFF, GEN, 
NOGEN, DATA, and NODATA. 

Assembler Action: The invalid operand is ignored. 

Programmer Response: Be sure that only the options listed in 
the explanation above appear in the operand field of a PRINT 
statement. 

Severity Code: 4 

INVALID USING OR DROP STATEMENT NEAR OPERAND COLUMN nn 

Explanation: One of three errors has occurred: 

(1) register 0 is specified for other than the second operand 
of a USING statement, or 

(2) a register number outside the range of 0 to 15 has been 
used, or 

(3) a DROP statement has been issued for a register that was 
never assigned for use by a USING statement. 

Assembler Action: The invalid register specification is set to 
zero. 

Programmer Response: The second and following operands of a 
USING or DROP instruction must be decimal terms 0 to 15. 
Register 0 may only be specified as the second operand of a 
USING statement. 

Severity Code: 12 

xxxxxxxx HAS BEEN PREVIOUSLY DEFINED 

Explanation: The speci1:ied symbol has previously appeared in 
the name field of a statement or in the operand field of an 
EXTRN or WXTRN instruction. 

Assembler Action: All references to the symbol are interpreted 
as references to the first definition of the symbol. 



IF0197 

IF0198 

IF0199 

Programmer Response: A given symbol must be defined only once. 
Determine which occurrence of the symbol you want to use, and 
change all others. 

Severity Code: 8 

*** MNOTE *** 
Explanation: An MNOTE statement has been encountered during the 
generation of a macro or open code. The text of the MNOTE 
message appears in-line in the listing at the point where it is 
encountered. (Refer to OS/VS - DOS/vS - VM/370 Assembler 
Language for a description of the MNOTE instruction.) 

Assembler Action: None. 

Programmer Response: Investigate the reason for the MNOTE. 
Errors flagged by MNOTE will often cause unsuccessful execution 
of the program, depending upon the severity code. 

Severity Code: An MNOTE is assigned a severity code of 0 to 255 
by the writer of the MNOTE statement. 

INVALID TYPE DECLARED ON DC/DSjDXD CONSTANT NEAR OPERAND COLUMN 
nn 

Explanation: Operand subfield 2 is not a valid type for a DC, 
DS, or DXD statement. Valid types are the following: A, B, C, 
D, E, F, H, L, P, Q, S, V, X, Y, and Z. 

Assembler Action: The statement that contains the invalid type 
declaration is processed as a comment. 

Programmer Response: Supply a valid type in operand subfield 2. 

Severity Code: 8 

INVALID LENGTH MODIFIER NEAR OPERAND COLUMN nn 

Explanation: The length modifier in operand subfield 3 of this 
statement is invalid. The length attribute of a symbol is not 
allowed as a term in the length modifier expression for the 
first operand of the DC, DS, or DXD statement in which the 
symbol is defined. For example, SYM DC CL (L' SYM) • AA' is 
invalid. 

Assembler Action: The statement that contains the invalid 
length modifier is processed as a comment. 

Programmer Response: Supply a valid length modifier, or 
eliminate the explicit length modifier. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 139 



IF0200 

IF0201 

IF0202 

IF0203 

140 

INVALID SCALE MODIFIER NEAR OPERAND COLUMN nn 

Explanation: The scale modifier in operand subfield 3 of a DC, 
DS, or DXD statement is invalid~ The scale modifier should be 
either a decimal value or an absolute expression enclosed in 
parentheses. 

Assembler Action: The srAtement that contains the invalid scale 
modifier is processed as a comment. 

Programmer Response: Supply a valid scale modifier for the type 
of constant used. 

Severity Code: 8 

ILLEGAL OR INVALID EXPONENT MODIFIER IN DC/DS/DXD CONSTANT NEAR 
OPERAND COLUMN nn 

Explanation: An exponent modifier used in a DC, DS, or DXD 
constant is not a decimal self-defining term, an absolute 
expression enclosed in parentheses, or produces a value outside 
the range allowed for that constant type. 

Assembler Action: The invalid or illegal operand is ignored. 

Programmer Response: Be sure that the exponent modifier used 
conforms to the rules for exponent modifiers for each type of 
DC, DS, or DXD constant. 

Severity Code: 8 

ARITHMETIC PRECISION OF FLOATING-POINT CONSTANT LOST NEAR 
OPERAND COLUMN nn 

Explanation: Low order digits were lost during the construction 
of an L-, D-, or E-type constant, because the designated field 
was too small to contain the whole constant. 

Assembler Action: The value of the constant is set to zero. 

Programmer Response: Check the length, scale, and exponent 
modifier of the flagged constant. 

Severity Code: 8 

L-, D-, E-, F-, H-, OR Y-TYPE CONSTANT TRUNCATED, HIGH ORDER 
DIGITS LOST NEAR OPERAND COLUMN nn 

Explanation: The high order digits of an L~, D-, E-, F-, H-, or 
Y-type constant were lost because the designated field was too 
small to contain the whole constant. 

Assembler Action: ProcE~ssing continues using the truncated 
constant. 



IF0204 

IF0205 

IF0206 

Programmer Response: Modify the explicit or implicit lehgth of 
the constant, so that the value may be contained within the 
area designated for it. 

Severity Code: 8 

RELOCATABLE EXPRESSION NOT ALLOWED IN A- OR Y-TYPE ADDRESS 
CONSTANT WITH BIT LENGTH SPECIFICATION 

Explanation: A relocatable expression in used to specify a 
constant for which bit length specification is used. This is 
not allowed. 

Assembler Action: The value of the operand is set to 0 and no 
entry for this constant is made in the relocation dictionary. 

Proqrammer Response: Convert the operand to an absolute 
expression, or use a length of 3 or 4 bytes for A-type or 2 
bytes for Y-type constants. 

Severity Code: 8 

RELOCATABLE Y-TYPE CONSTANT, VALUE TRUNCATED TO RIGHTMOST 2 
BYTES 

Explanation: A relocatable Y-type constant has been declared. 
This is a warning only. All relocatable Y-type constants are 
diagnosed in this manner because the assembler must provide an 
entry in the Relocation Dictionary for each one. If the actual 
address is contained within the rightmost 2 bytes and the 
coding is otherwise correct, when the program is loaded and 
relocation is considered the constant will be resolved. If the 
address cannot be contained in the rightmost two bytes, it is 
likely that further relocatability errors will result. 

Assembler Action: The value of the constant is truncated to the 
rightmost 2 bytes. 

Programmer Response: Be sure that the value of the Y-type 
constant will not exceed 2 bytes when the program has been 
loaded and the relocation factor has been considered. 

Severity Code: 4 

DUPLICATION FACTOR ERROR 

Explanation: The duplication factor in a DC, DS, or DXD 
statement is negative. 

Assembler Action: No storage is reserved for the operand, but 
alignment is performed as required by the type of constant used. 

Programmer Response: Supply a non-negative duplication factor. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 141 



IF0207 

IF0208 

IF0209 

IF0210 

142 

OPERAND OF Q-TYPE CONSTANT DOES NOT NAME A DSECT OR DXD 

Explanation: The symbol in the operand field of a Q-type 
constant must have been previously defined as the name of a 
DSECT or DXD section. 

Assembler Action: The value of the constant is set to o. 

,Programmer Response: Define the symbol as the name of a DSECT 
or DXD section. The symbol must be defined before being used 
in the constant. 

Severity Code: 8 

DISPLACEMENT GREATER THAN X'FFF' 

Explanation: The displacement of this statement or the address 
referenced by this statement is greater than X'FFF' (decimal 
4095). The displacement field in the machine instruction must 
contain a value of from 0 to 4095. 

Assembler Action: The base and displacement fields of the 
machine instruction are set to O. 

Programmer Response: Correct the displacement term or 
expression or provide another base register with a USING 
statement. 

Severity Code: 8 

ADDRESSABILITY ERROR - BASE AND DISPLACEMENT CANNOT BE RESOLVED 
AND ARE SET TO 0 

Explanation: The assembler cannot resolve the address of this 
statement or the address referenced by this statement for one 
of the following reasons: 

• Current USING registers produce a displacement of less than 
o or greater than 4095. 

• No USING registers are available. 

Assembler Action: The base and displacement fields of the 
machine instruction are set to O. 

Proqrammer Response: Make sure you have correctly set up base 
registers with the USING instruction. Be sure the referenced 
address can be specified by the value in a USING register plus 
a displacement in the range of 0 through 4095. 

Severity Code: 8 

TOO FEW OPERANDS 

Explanation: More operands are required for this statement, but 
they were not found. 



IF0211 

IF0212 

IF0213 

Assembler Action: The value of any missing operand is set to O. 

Programmer Response: Supply the necessary operands. Refer to 
Principles of Operation for details on the operands required 
for this instruction. 

Severity Code: 12 

TOO MANY OPERANDS 

Explanation: 

• More than 255 operands on a DC, OS, or DXD instruction; or 

• Too many operands on a machine instruction. 

Assembler Action: The extra operands are ignored. 

Programmer Response: Delete the extra operands. Refer to 
Principles of Operation for details on operands required for 
individual machine instructions. 

Severity Code: 12 

PREMATURE END OF OPERAND NEAR OPERAND COLUMN nn 

Explanation: A term or an expression used as an operand is 
incomplete. 

Assembler Action: The value of the operand is set to O. 

Programmer Response: Supply the characters necessary to 
terminate the operand. 

Severity Code: 8 

COMPLEXLY RELOCATABLE EXPRESSION NEAR OPERAND COLUMN nn 

Explanation: The indicated operand contains a complexly 
relocatable expression. The expression should be absolute or 
simply relocatable. 

Assembler Action: The value of the complexly relocatable 
expression is set to o. 

Programmer Response: Be sure that only absolute and simply 
relocatable expressions are used in the operand field of this 
statement. 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 143 



IF0214 

IF0215 

IF0216 

IF0217 

144 

ILLEGAL USE OF LITERAL NEAR OPERAND COLUMN nn 

Explanation: A literal is used in an assembler instruction, in 
another literal, or in a field of a machine instruction where 
it is not allowed. 

Assembler Action: The value of the operand where the literal is 
used is set to O. 

Programmer Response: Use a valid relocatable term or expression 
in place of the literalo If applicable, replace the literal 
with the name of a DC s1:atement which defines the same constant 
as the literal. 

Severity Code: 12 

ILLEGAL DELIMITER, RIGHT PARENTHESIS EXPECTED NEAR OPERAND 
COLUMN nn 

Explanation: A right parenthesis was expected as a delimiter, 
but none was found. 

Assembler Action: The value of the operand that is lacking a 
right parenthesis is set to O. 

Programmer Response: Supply a right parenthesis. 

Severity Code: 8 

ILLEGAL OPERAND FORMAT NEAR OPERAND COLUMN nn 

Explanation: The operand of this statement is illegally 
constructed. 

Assembler Action: The value of the operand is set to O. 

Proqrammer Response: Refer to Principles of Operation for 
details on the operand structure of this statement, and supply 
a valid operand. 

Severity Code: 12 

RELOCATABILITY ERROR NEAR OPERAND COLUMN nn 

Explanation: One of the following fields contains a relocatable 
value. All values in these fields must be absolute. 

• Immediate field in an SI instruction 

• Mask field 

• Register specification 

• Length modifier 



IF0218 

IF0219 

IF0220 

Assembler Action: If any of the above fields contains a 
relocatable value, the value of the field is set to O. 

Programmer Response: Be sure that the field contains an 
absolute value. 

Severity Code: 12 

INVALID REGISTER SPECIFICATION - EVEN-NUMBERED REGISTER REQUIRED 

Explanation: An odd-numbered register was specified in a 
context that requires an even-numbered register. 

Assembler Action: The invalid operand is set to o. 

Programmer Response: Specify an available even-numbered 
register. Refer to the Principles of Operation for details on 
the register requirements of this instruction. 

Severity Code: 12 

REGISTER OR IMMEDIATE FIELD OVERFLOW NEAR OPERAND COLUMN nn 

Explanation: 

• The value of the immediate field used in an SI instruction 
is greater than 255; or 

• A register number was specified that was greater than 15. 

Assembler Action: The value of the field where the overflow 
occurred is set to o. 

Programmer Response: Be sure the value of an immediate field 
does not exceed 255 and that no register number greater than 15 
is specified. 

Severity Code: 8 

ALIGNMENT ERROR NEAR OPERAND COLUMN nn 

Explanation: The operand of this instruction refers to a main 
storage location that is not on the boundary required by the 
instruction. 

Assembler Action: The faulty alignment is unchanged. 

Programmer Response: Align the main storage location referenced 
in the operand field. Refer to the Principles of Operation for 
details on the boundary requirements of this instruction. For 
machines that do not require data to be aligned to certain 
boundaries, specify NOALIGN as an assembly option and no error 
will occur. 

Severity Code: 4 

Appendix G: Assembler Diagnostic Error Messages 145 



IF0221 

IF0222 

IF0223 

IF0224 

146 

ILLEGAL INDEX REGISTER OR LENGTH MODIFIER NEAR OPERAND COLUMN nn 

Explanation: An index register or a length field was specified 
for a machine instruction where none is expected. 

Assembler Action: The invalid specification is ignored. 

Programmer Response: Correct the index register or length field 
specification. 

Severity Code: 12 

INVALID INDEX REGISTER SPECIFIED NEAR OPERAND COIJUMN nn 

Explanation: A register number not in the range 0 - 15 has been 
specified as an index register. 

Assembler Action: A default value of 0 (to indicate that no 
indexing is used) replaces the invalid index register 
specification in the machine instruction. 

Programmer Response: Specify an available register in the range 
of 0 to 15 as an index register. 

Severity Code: 12 

RELOCATABLE INDEX REGISI)~ER SPECIFIED NEAR OPERAND COLUMN nn 

Explanation: A relocatable value has been specified as an index 
register. 

Assembler Action: A default value of 0 (to indicate that no 
indexing is used) replaces the invalid index register 
specification in the machine instruction. 

Programmer Response: Specify an absolute value in the range of 
o to 15 as an index register. 

Severity Code: 12 

LENGTH ERROR NEAR OPERAND COLUMN nn 

Explanation: 

• The length modifier of a constant is illegal or invalid for 
that type of constant; or 

• A constant of type C, X, B, Z, or P is too long; or 

• A relocatable address constant has an illegal length. 

Assembler Action: The operand in error and any following 
operands of the DC, DS, or DXD statement are processed as 
comments. An address constant with an illegal length is 
truncated. 



IF0225 

IF0226 

IF0228 

IF0229 

programmer Response: Supply a valid length modifier or decrease 
the length of the operand. 

Severity Code: 8 

RELOCATABLE LENGTH FIELD IN MACHINE INSTRUCTION NEAR OPERAND 
COLUMN nn 

Explanation: The length field of this machine instruction is 
specified as relocatable; an absolute term or expression is 
required. 

Assembler Action: The length field in error is assembled to O. 

Programmer Response: Use an absolute term or expression to 
specify the length field. 

severity Code: 4 

BASE REGISTER OF MACHINE INSTRUCTION NOT ABSOLUTE NEAR OPERAND 
COLUMN nn 

Explanation: An explicit base register has been specified as a 
relocatable value; an absolute term or expression is required. 

Assembler Action: The operand in error (base and displacement) 
is assembled to O. 

programmer Response: Use an absolute term or expression to 
specify the base register. 

Severity Code: 12 

RELOCATABLE DISPLACEMENT IN MACHINE INSTRUCTION NEAR OPERAND 
COLUMN nn 

Explanation: In a machine instruction that has an explicit base 
register specification, the specification for the displacement 
field is relocatable. As this would imply a second base 
register, the combination is invalid. 

Assembler Action: The displacement field of the machine 
instruction is assembled to O. 

Programmer Response: Either specify the displacement as an 
absolute term or expression, or delete the explicit base 
register. 

Severity Code: 8 

POSSIBLE REENTERABILITY ERROR NEAR OPERAND COLUMN nn 

Explanation: This machine instruction could store data into a 
control section or common area that is not dynamically acquired. 

Appendix G: Assembler Diagnostic Error Messages 147 



IF0230 

IF0231 

IF0233 

148 

This message is produced only when the RENT assembler option is 
specified in the PARM field of the EXEC statement. 

Assembler Action: The st4tement is assembled as written. 

Programmer Response: If you want reentrant code, correct the 
instruction so that it references a nSECT or other dynamically 
acquired space. Otherwise you can suppress reentrant checking 
by specifying the NOREN'l' assembler option. 

Note: Absence of this message does not guarantee reentrant 
code, as the assembler has no control over addresses actually 
loaded into base and index registers at program execution time. 

Severity Code: 4 

BASE REGISTER NUMBER GREATER THAN 15 NEAR OPERAND COLUMN nn 

Explanation: An explicit. base register in a machine instruction 
or S-type address constant is greater than 15. 

Assembler Action: The base register field of the machine 
instruction is a ssembleCl to o. 

Programmer Response: S~~cify the base register in the range of 
o to 15. 

Severity Code: 12 

SYMBOL NOT PREVIOUSLY D]~FINED - xxxxxxxx 

Explanation: A symbol in this statement is used in a way that 
requires previous definition, but it has not been previously 
defined. For example, a. symbol in a duplication factor 
expression or modifier expression of a DC statement must be 
previously defined. 

Assembler Action: The va.lue of the symbol or the expression 
that contains it is set to O. 

Programmer Response: Define the symbol earlier in the program. 
Add a defining statemen·t if it does not exist, or place the 
existing defining statement ahead of the statement that 
references it. 

Severity Code: 8 

MORE THAN 6 LEVELS OF PARENTHESES NEAR OPERAND COLUMN NN 

Explanation: An expression in this statement contains more than 
6 nested levels of parentheses. 

Assembler Action: The value of the expression is set to O. 



IF0234 

IF0235 

IF0236 

programmer Response: Rewrite the expression to reduce the 
number of levels of parentheses, or use a preliminary statement 
(such as an EQU) to partially evaluate the expression. 

severity Code: 8 

PREMATURE END OF EXPRESSION NEAR OPERAND COLUMN nn 

Explanation: An expression in this statement ended prematurely 
due to one of the following errors: 

• Unpaired parenthesis 
• Il,legal character 
• Illegal operator 
• Operator not followed by a term 

Assembler Action: The value of the expression is set to o. 

Programmer Response: Check the expression for omitted or 
mispunched characters or terms. 

Severity Code: 8 

ARITHMETIC OVERFLOW NEAR OPERAND COLUMN nn 

Explanation: The intermediate value of a term or an expression 
is not in the range -2 3 ' through 2 3 .-1. 
Assembler Action: The value of the expression is set to O. 

Programmer Response: Rewrite the expression or term. The 
assembler computes all values using fixed-point full-word 
arithmetic. Or, perform arithmetic operations in a different 
sequence to avoid overflow. 

severity Code: 8 

ILLEGAL CHARACTER IN EXPRESSION NEAR OPERAND COLUMN nn 

Explanation: Syntax error. A character in an expression has no 
syntactic meaning in the context used; the assembler cannot 
determine if it is a symbol, an operator, or a delimiter. 

Assembler Action: The value of the expression is set to O. 

Programmer Response: Check the expression for unpaired 
parentheses, invalid delimiter, invalid operator, or a character 
(possibly unprintable) that is not recognized by the assembler. 

The 51 characters recognized by the assembler are: 

Letters: A through Z and $ # @ 
Digits: 0 through 9 
Special Characters: + - , = . * () , / & 
Blank 

Severity Code: 8 

Appendix G: Assembler Diagnostic Error Messages 149 



IF0237 

IF0238 

IF0239 

IF0240 

150 

CIRCULAR DEFINITION 

Explanation: The value of the first expression in the operand 
field of an EQU statement is dependent upon the value of the 
symbol being defined in the name field. 

Assembler Action: The value of the expression defaults to the 
current location counter value. 

Programmer Response: Remove circularity in the definition. 

Severity Code: 8 

ILLEGAL AMPERSAND IN SELF-DEFINING TERM NEAR OPERAND COLUMN nn 

Explanation: An ampersand in a self-defining term is unpaired 
and/or not part of a quoted character string. 

Assembler Action: The value of the expression containing the 
self-defining term is set to O. 

Programmer Response: Check that all ampersands in the term are 
paired and part of a quoted character string. (The only valid 
use of a single ampersand is as the first character of a 
variable symbol.) Note that ampersands produced by substitution 
must also be paired. 

Severity Code: 8 

INVALID FLOATING POINT CHARACTERISTIC 

Explanation: A converted floating-point constant is too large 
or too small for the field assigned to it. The allowable range 
is 7.2x1075 to 5.3x10-77. 

Assembler Action: The floating-point constant is assembled to o. 

Programmer Response: Check the characteristic ~xponent), 
exponent modifier, scale modifier, and mantissa (fraction) for 
validity. Remember that a floating-point constant is rounded, 
not truncated, after conversion. 

Severity Code: 8 

CHARACTER STRING OR SELFDEFINING TERM TERMINATED BEFORE ENDING 
QUOTE FOUND 

Explanation: The assembler has found what appears to be a 
quoted character string or a self-defining term, but the 
closing quote is missing, or an illegal character is found 
before the closing quote. 

Assembler Action: The term or expression is ignored. 

Proqrammer Response: Supply the missing quote or check for 
other syntax errors. 

Severity Code: 8 



IF0241 

IF0242 

IF0243 

IF0244 

IF0246 

SECOND OPERAND OF CCW NOT BETWEEN 0 and X'FFFFFF' 

Explanation: The second operand of a CCW instruction, which 
specifies the data address, is outside the range of 0 to 
X'FFFFFF'. 

Assembler Action: The low-order three bytes of the operand are 
used. 

programmer Response: Supply a correct term or expression for 
the second operand. 

Severity Code: 8 

SPACE OPERAND NOT A SINGLE POSITIVE DECIMAL SELFDEFINING TERM 

Explanation: The operand of a SPACE instruction is not a zero 
or positive decimal self-defining term. 

Assembler Action: The SPACE statement is processed as a comment. 

Programmer Response: Use a single decimal self-defining term 
with a zero or positive value. 

Severity Code: 4 

FIRST CCW OPERAND CANNOT BE NEGATIVE 

Explanation: The first operand ~ommand code) of a CCW 
instruction is negative. The value of the operand must be in 
the range 0-255. 

Assembler Action: The CCW is processed as a comment. 

Programmer Response: Supply an operand with a value in the 
range of 0-255. 

Severity Code: 8 

BITS 38 AND 39 OF CCW OPERAND NOT ZERO 

Explanation: The bits specified as bits 38 and 39 of a CCW 
instruction are not zero. 

Assembler Action: The bits are set as specified. 

Programmer Response: Correct the third operand of the CCW 
instruction. 

Severity Code: 8 

LOCATION COUNTER OVERFLOW 

Explanation: The location counter is greater than X'FFFFFF' 
(224-1) , the largest address that can be contained in 3 bytes. 

Appendix G: Assembler Diagnostic Error Messages 151 



IF0254 

IF0255 

IF0256 

152 

Assembler Action: The location counter is 4 bytes long ~nly 3 
bytes appear in the lis·ting and the object deck). The overflow 
is carried into the high-order byte and the assembly continues. 
However, the resulting code will probably not execute correctly. 

Programmer Response: The probable cause of the error is a high 
ORG statement value or a. high START statement value. Correct 
the value or split up the control section. 

Severity Code: 8 

ILLEGAL FORMAT OF SECOND OPERAND OF END STATEMENT 

Explanation: Second operand of END instruction is inconsistent 
wi th the format required. 

Assembler Action: Second operand ignored. 

Programmer Response: Correct the operand according to the 
specifications given in OS/YS - VM/370 Assembler Logic. 

Severity Code: 8 

FIXED OR FLOATING POINT EXPRESSION ERROR NEAR OPERAND COLUMN nn 

Explanation: An error occurred during conversion of a decimal 
number into a fixed-point or floating-point number. 

Assembler Action: The va.lue of the operand is set to zero. 

Programmer Response: Check the scale and exponent modifier of 
the number for validity. 

Severity Code: 4 

SYSGO DD CARD MISSING -_. NOOBJECT OPTION USED 

Explanation: A DD staten~nt for the SYSGO data set is not 
included in the JCL for this assembly. The SYSGO data set 
normally receives the object module output of the assembler 
when it is to be used as input to the linkage editor or loader, 
executed in the same job. 

Assembler Action: The program is assembled using the NOOBJECT 
option. No output is wz'i tten on SYSGO. If the DECK option is 
specified, the object module will be written on the device 
specified in the SYSPUNCH DD statement. 

Programmer Response: Opt:ional. If the assembly is error free 
and the object module has been produced on SYSPUNCH, you can 
execute it without reassembling. Otherwise, reassemble the 
program and include a SYSGO DD statement in the JCL or use a 
cataloged procedure that. includes it. (See the section 
"Assembler Cataloged Procedures" in this manual.) 

Severity Code: 16 



IF0257 

IF0258 

IF0260 

SYSPUNCH DO CARD MISSING -- NODECK OPTION USED 

Explanation: A DO statement for the SYSPUNCH data set is not 
included in the JCL for this assembly. The SYSPUNCH data set 
is normally used when the object module of the assembly is 
directed to the card punch. 

Assembler Action: The program is assembled using the NODECK 
option. No deck is punched on SYSPUNCH. If the OBJECT option 
has been specified, the object module will be written on the 
device specified in the SYSGO DD statement. 

Programmer Response: Optional. The object module can be link 
edited and executed from SYSGO instead of SYSPUNCH by adjusting 
JCL. Otherwise, if you want a punch data set, reassemble the 
program with a SYSPUNCH DO statement. 

Severity Code: 16 

INVALID ASSEMBLER OPTION ON EXEC CARD -- OPTION IGNORED 

Explanation: One or more of the assembler options specified in 
the PARM field of the EXEC statement are invalid. The error 
may be caused by use of the wrong option, a misspelled option, 
or syntax errors in coding the options. 

Assembler Action: Invalid options are ignored. The assembly is 
performed using the valid options. 

Programmer Response: Check the spelling of the options, the 
length of the option list (100 characters maximum), and the 
syntax of the option list. The options must be separated by 
commas, and parentheses in the option list (including SYSPARM) 
must be paired. Two quotes or ampersands are needed to 
represent a single quote or ampersand in a SYSPARM character 
string. The section "Assembler Options" in this manual 
describes the assembler options and how to code them. 

Severity Code: 16 

ASSEMBLY TERMINATED -- DO CARD MISSING FOR SYSxxx 

Explanation: This assembler job step cannot be executed because 
a DO statement is missing for one of the following assembler 
data sets: SYSUT1, SYSUT2, SYSUT3, or SYSIN. The missing DD 
statement is indicated in the message text. 

Assembler Action: The assembly is terminated before any 
statements are assembled. No assembler listing is produced, so 
this message is printed on the system output unit following the 
job control language statements for the assembly job step and 
on the operator's console. 

Programmer Response: Supply the missing DD statement and 
reassemble the program~ The cataloged procedures supplied by 
IBM contain all the required DD statements. They are described 
in the section "Assembler Cataloged Procedures" in this manual. 

Appendix G: Assembler Diagnostic Error Messages 153 



IF0261 

154 

If -the problem recurs, do the following before calling IBM: 

• Have your source program, macro definitions, and associated 
listings available. 

• If a COpy statement was used, execute the IEBPTPCH utility 
to obtain a copy of the partitioned data set member 
specified in the COpy statement. 

• Make sure that MSGLEVEL=(1,1) was specified in the JOB 
statement. 

Operator Response: If possible, supply the missing DD statement 
in the JCL statements for the assembly and run the job again. 

Severity Code: 20 

ASSEMBLY TERMINATED -- PERM I/O ERROR I jobname, stepname, unit 
address, device type, ddname, operation attempted, error 
description 

Explanation: A permanen"t I/O error occurred on the assembler 
data set indicated in the message text. This message, produced 
by a SYNADAF macro instruction, also contains more detailed 
information about the ca.use of the error and where it occurred. 

Assembler Action: The assembly .i s terminated. Depending on 
where the error occurred, the assembly listing up to the point 
of the I/O error may be produced. If the listing is produced w 
this message appears on it. If the listing is not produced, 
this message appears on the operator's console and on the 
system output unit following the job control language 
statements for the assembler job step. 

Programmer Response: If the I/O error is on SYSIN or SYSLIB, 
you may have concatenated the input or library data sets 
incorrectly. Make sure the DO statement for the data set with 
the largest blocksize (BLKSIZE) is placed in the JCL before the 
DO statements of the data sets concatenated to it. Also, make 
sure that all input or library data sets have the same device 
class (all DASO or all 1:ape) • 

In any case, reassemble the program: it may assemble correctly. 
If the problem recurs, do the following before calling IBM: 

• Have your source program, macro definitions, and associated 
listings available. 

• If a COpy statement was used, execute the IEBPTPCH utility 
to obtain a copy of the partitioned data set member 
specified in the COpy statement. 

• Make sure that MSGLE!VEL= (1,1) was specified in the JOB 
statement. 

Operator Response: If the I/O error is on SYSUT1, SYSUT2, or 
SYSUT3, allocate the data set to a different volume and rerun 
the job. If the I/O error is on tape, check the tape for 
errors. 

Severity Code: 20 



lF0262 

lF0263 

ASSEMBLY TERMINATED -- INSUFFICIENT MAIN STORAGE 

Explanation: The assembler was unable to get at least 32K bytes 
of main storage for working storage, utility file buffers, and 
assembler tables and constants. 

Assembler Action: The assembly is terminat~d before any 
statements are assembled. No assembler listing is produced, so 
this message is printed on the system output device following 
the JCL statements for the assembler job step and on the 
operator's console. 

programmer Response: Increase the size of the region or 
partition allocated to the assembler. Reassemble the program. 
If the problem recurs, do the following before calling IBM: 

• Have your source program, macro definitions, and associated 
listings available. 

• Make sure that MSGLEVEL=(1,1) was specified in the JOB 
statement. 

Operator Response: 

• Increase the size of the region allocated on the JOB card 
or on the EXEC card for the assembler job step and rerun 
the job; or 

• Run the job in a larger partition. 

Severity Code: 20 

ASSEMBLY TERMINATED -- PROGRAM LOGIC ERROR 

Explanation: The assembly has been abnormally terminated 
because of a logic error within the assembler, or inconsistent 
input to the assembler. 

Examples: 

• &A(3.5) as an opcode or 

• Assembler input ends with a macrocall with a non-blank 
character in the column after end column. 

Assembler Action: Abnormal termination. No assembler listing 
is produced; the assembler prints this message on the system 
output device following the JCL statements for the assembler 
job step. 

Programmer Response: Do the following before calling IBM: 

• Have your source program, macro definitions, and associated 
listings available. 

• If a COpy statement was used, execute the IEBPTPCH utility 
program to obtain a copy of the partitioned data set member 
specified in the operand field of the COpy statement. 

• Make sure that MSGLEVEL=(1,1) was specified on the JOB 
statement. 

Severity Code: 20 

Appendix G: Assembler Diagnostic Error Messages 155 



IF0264 

IF0265 

IF0266 

156 

TOO MANY ESD ENTRIES 

Explanation: More than 399 entries have been made in the 
External Symbol Dictionary. Entries in the External Symbol 
Dictionary are made for the following: control sections, dummy 
sections, external references ~XTRN and WXTRN), ENTRY symbols, 
and external dummy sections. 

Assembler Action: Entries over the 399 limit are not added to 
the dictionary and linkage is not provided for them. 

Programmer Response: Subdivide your program and reassemble each 
section individually. Be sure that there are not more than 399 
ESD entries in each assembly. 

Severity Code: 16 

SYMBOL RESOLUTION DATA AREA HAS BEEN EXHAUSTED 

Explanation: 

• Too many literals have been encountered since a LTORG 
statement was encountered, and the assembler has filled 
available work space with literals; or 

• The assembler has filled available work space with ESD 
entries. 

Assembler Action: No assembly is performed. 

Programmer Response: 

• Insert more LTORG statements in the source deck or allocate 
more working storage to the assembler; or 

• If there are more than 399 ESD entries in your source 
module, segment it into several modules. 

Severity Code: 16 

LAST ASSEMBLER PHASE LOADED WAS xxxxxxxx 

Explanation: This message is issued by the abort routine when 
the assembly is abnormally terminated. 

Assembler Action: Abno:rmal termination. 

Programmer Response: Correct problems indicated by other error 
messages and reassemble. 

Severity Code: 4 



IF0267 

IF0268 

IF0269 

SYSPRINT DD CARD MISSING -- NOLIST OPTION USED 

Explanation: The LIST option is specified, but the DD statement 
for the SYSPRINT data set is not included in the JCL for this 
assembly. The SYSPRINT data set holds the object module output 
of the assembly normally directed to the printer. 

Assembler Action: The program is assembled using the NOLIST 
option. The message is printed on the system output device 
following the JCL statements for the assembler job step and on 
the operator's console. 

Programmer Response: If you want a listing, reassemble the 
program with a SYSPRINT DD statement. Otherwise, do not 
specify the LIST option. 

Operator Response: Supply, if possible, a SYSPRINT DD card for 
the assembler job step and rerun the job. 

Severity Code: 16 

SYSTERM DD CARD MISSING - NOTERMINAL OPTION USED 

Explanation: The TERMINAL option is specified, but the DD 
statement for the SYSTERM data set is not included in the JCL 
statements for this assembly. The SYSTERM data set contains 
diagnostic information output of the assembly, normally 
directed to a remote terminal. 

Programmer Response: If you want a SYSTERM listing, reassemble 
the program with a SYSTERM DD statement. Otherwise, do not 
specify the TERMINAL option. 

Operator Response: Supply, if possible, a SYSTERM DD card for 
the assembly step and rerun the job. 

Severity Code: 16 

SYSLIB DD CARD MISSING 

Explanation: 

• A COpy instruction appears in the assembly, but no SYSLIB 
DD statement is included in the JCL statements; or 

• An operation code that is not a machine, assembler, or 
source macro instruction operation code appears in the 
assembly, but no SYSLIB DD statement is included in the JCL 
statements. The assembler assumed the operation code to be 
a library macro operation code. 

Assembler Action: 

• The COpy instruction is ignored; or 

• The operation code is treated as an undefined operation 
code. 

Programmer Response: Supply the missing DD statement or correct 
the invalid operation code. 

Severity Code: 16 

Appendix G: Assembler Diagnostic Error Messages 157 





adding macro definitions to a library 49 
ALGN option 22 
ALIGN option 23 

under CMS 56 
alignment of instructions and data (see 
ALIGN option) 

ALOGIC option 19 
under CMS 54 

ASMFC 
description 24-25 
example of use 14-15,32,33 

ASMFCG 
description 30-31 
example of use 15-16 

ASMFCL 
description 26-27 
example of use 33 

ASMFCLG 
description 28-29 
example of use 32,33 

ASSEMBLE command, CMS 53 
format of 53 
filename entry 53 

ASSEMBLE ddname 51,60 
ASSEMBLE file, 

created by assembly 57 
assembler 

dynamic invocation of 86,22 
name of 17 
purpose 9 

assembler cataloged procedures 23-33 
assembler data sets 88-89 
assembler data sets (CMS) 60 
Assembler F, compatibility 10 
assembler language 9 
assembler listing 34-45 

cross reference 41-43 
diagnostics 44-45 
external symbol dictionary 36-37 
literal cross reference 43 
relocation dictionary 40 
source and machine language 
statements 38-39 

statistics 44-45 
symbol cross reference 41-42 

assembler macros under CMS 59 
assembler options 

description 16-23 
how to specify 17-18 

assembler options under CMS, 53-56 
listing control options 53,54 
other options 53,56 
output control options 53,55 
SYSTERM options 53,55-56 

assembler sample program 73-80 
assembler speed and capacity 89 
assembler storage requirements 89-90 
assembler storage requirements ~MS) 60 

assembler work space 22,89 
assembling a CMS program 53 
assembly, JCL for (see ASMFC) 
assembly and execution, JCL for (see 

ASMFCG i ASMFCLG) 

Index 

assembly and link editing, JCL for (see 
ASMFCL) 

assembly, link editing and execution, JCL 
for (see ASMFCLG) 

assembly and loader-execution, JCL for 
(see ASMFCG) 

ATTACH macro 86 

base register, establishing 46 
BLKSIZE for assembler data sets 89 
blocking and buffering information 89 
buffer size 

of SYSIN, SYSLIB, SYSPRINT, SYSGO, and 
SYSPUNCH 89 

of SYSUT1, SYSUT2, and SYSUT3 89 
(see also BUFSIZE option) 

BUFNO for assembler data sets 90 
BUFSIZE option 89 

under CMS 56 

CALL macro 86 
cataloged procedures 

description 12 
assembler 23-33 
(see also ASMFC, ASMFCG, ASMFCL, ASMFCLG) 
overriding parts of 32-33 

changing parts of 
cataloged procedures 32-33 

CMS editor program 51 
CMS, relationship to assembler 50 
CMSLIB ddname 51,60 
COBOL (see problem-oriented languages) 
compatibility with Assembler F 10 
COND parameter 96 
conditional assembly statements in listing 

(see ALOGIC option, MLOGIC option) 
conventions for linking 49 
COpy instruction 50 
creating a CMS object file 53 
creating a module (CMS) 60 
cross reference listing 41-43 

Index 159 



m 
data sets, assembler 88-90 

SYSGO 89,90 
SYSIN 88,90 
SYSLIB 88,90 
SYSPRINT 87,88,90 
SYSPUNCH 89,90 
SYSTERM 89,90 
SYSUT1, SYSUT2, SYSUT3 89,90 

data set characteristics, assembler 90 
DO statements, overriding 32-33 
DECK option 21 

under CMS 55 
default values for assembler options 16 
diagnostic messages 

CMS 63-66 
explanations 94-157 
in listing 44-45 
special data set for (see SYSTERM 
listing) 

suppressing (see FLAG option) 
on terminal (see SYSTERM listing) 

diagnostics 44-45 
DISK option 

under CMS 55 
DOS option 23 
dynamic invocation of assembler 86,22 
dynamic invocation of IBM-supplied 
program 48 

EDIT command (CMS) 52 
effective address 39 
END card, object module 83 
END instruction to specify entry point 47 
entry point 47 
error messages (see diagnostic messages) 
ESD (see external symbol dictionary) 
ESD card 81 
ESD opt.ion 19 

under CMS 54 
ESDID (external symbol dictionary identifi
cation number) 37,41 

eXamplE! of assembler language 
program 73-80 

exampl€!s of cataloged 
procedures 14-16,32-34 

EXEC st.atement, overriding parts of 32 
executi.on of user program 10 
externall symbol dictionary 36-37 

II 
file dE!faul ts (CMS) , overriding 51 
file dE!fini tions for CMS ddname, defa ul ts 
for ~)1-52 

FILEDE:E~ in (CMS) 51- 52 
default for 51-52 

file processed by assembler under CMS 58 

160 

FLAG option 19 
under CMS 55 

FORTRAN (see problem-oriented languages) 

m 
High-level language (see problem-oriented 
languages) 

o 
IEBUPDTE utility program 49 
INCLUDE command, 

to execute more than one file 59 
input to the assembler, CMS 50 
inner macro instructions, listing of (see 
.MCALL option; MLOGIC option) 
lnput to the assembler 9 

II 
JCL (job control language) 12 
job 12 
job control language 12 
job control statements for assembler 
jobs 14-33 

job step 12 

II 
LIBMAC option 20,94 

under CMS 54 
library macro definitions 

adding to library 50 
errors in 44-45 

(see also LIBMAC option) 
listing of (see LIBMAC option) 

library maintenance, macro 49 
LINECNT option 23 
LINECOUNT option 19 

under CMS 55 
LINK macro 70 
linkage conventions 46 
linkage editor 

choosing entry point 47 
examples 32,33 
purpose 10 

linkage registers 46 
linking with modules produced by other 
language translators 47 

linking with IBM-supplied programs 48 
LIST option 19 

under CMS 54 
listing control options 19-20 
listing control options (CMS) 53,54 
LISTING ddname 51,61 
LISTING file, 

created by assembler 57 
literal cross reference listing 43 
literals in listing 38,43 



LOAD command (CMS) 51 
to load text file 59 

load module 10 
load module modification - entry point 
restatement 47 

LOAD option 23 
loader 

example of use 15-16 
purpose 10 

location counter in listing 39 
LRECL for assembler data sets 90 

machine language code in listing 39 
macro definitions, library (see library 

macro definitions) 
macro instructions in listing, inner (see 

MCALL option; MLOGIC option) 
macro library 49 

(see also SYSLIB) 
MCALL option 19 

under CMS 54 
messages (see diagnostic messages, 
statistics) 

messages indentifier number 45,94 
message text 45,94 
MLOGIC option 19,95 

under CMS 54 
MNOTE message 19 
MNOTE option 

under CMS 55 

Name of assembler 17 
NOALIGN option 22 

under CMS 56 
NOALOGIC option 19 

under CMS 54 
NODECK option 21 

under CMS 55 
N:>ESD option 19 

under CMS 54 
NOLIBMAC option 20 

under CMS 54 
NOLIST option 19 

under CMS 54 
N:>MCALL option 19 

under CMS 54 
NOMLOGIC option 19 

under CMS 54 
NONUMBER option 21 

under CMS 56 
NOOBJECT option 21 

under CMS 55 
NOPRINT option (CMS) 55 
NORENT option 22 

under"CMS 56 
NORLD option 20 

under CMS 54 
NOSTMT option 21,91 

under CMS 56 

Page ofGC33-4021-3 
Revised February 15, 1976 
By TNL: GN33-8205 

NOTERMINAL option 21,91 
under CMS 55 

NOTEST option 21 
NOXREF option 20 

under CMS 55 
NOYFLAG option 19 

under CMS 55 
NUM option 21 
NUMBER option 21,91 

under CMS 55 

OBJ option 21 
object code in listing 39 
object deck output 81-85 

END 83 
ESD 81 
RLD 82-83 
SYM 83-85 
TXT 82 

object module 
definition 9 
records of 81-85 

object module, CMS 51 
object module linkage 47 
OBJECT option 21 

under CMS 55 
options, assembler (see assembler options) 
options in listing 45 
output control options 21 
output control options (CMS) 53,55 
output from assembler 9 
output from assembler, CMS 51 
overriding parts of cataloged 

procedures 32-33 

page size, assembler listing (see LINECOUNT 
option) 

passing parameters to your program 
(CMS) 59 

PARM field 
(see also assembler options) 
acqu~r~ng information in 48 
coding rules 17-18 
overriding in cataloged 

procedures 17,32 
performance, influencing (see assembler 
speed and capacity) 

PL/I (see problem-oriented languages) 
PRINT instruction 38,39 
PRINT option 

under CMS 55 
problem-oriented languages, linking 
~ith 47 

procedures, cataloged (see cataloged 
procedures) 

program design 46 
program listing (see assembler listing) 
PUNCH ddname 51,61 

Index 161 



Page of GC33-4021-3 
Revised February 15, 1976 
By TNL: GN33-8205 

iii 
RECFM for assembler data sets 90 
recurring errors 96 
reenterability check 22 
register usage under CMS 59 
relocatable constants 40 
relocation dictionary 40 
RENT option 22 

under CMS 56 
return code 96 
RLD (see relocation dictionary) 
RLD card 82- 83 
RLD option 20 

under CMS 54 

Sample program 73-80 
Save area 46 
Saving registers 46 
Severity code 96,45 
source and machine language statements in 
listing 38-39 

source module 9 
source statement in listing 38-39 
srART command (eMS) 51 

to begin execution under eMS 59 
statement number 39,45,94 
statistics listing 44-45 
step 12 
storage requirements, virtual 89 
srMT option 21,91 

under CMS 56 
SY~ card 83-85 
symbol cross reference listing 42-43 
SYS1.MACLIB 49,88 
SYSGO data set 99,90 
SYSIN data set 88,90 
SYSLIB data set 88,90 
SYSPF...RM option 

under CMS 56-57 
SYSPRINT data set 87,98,90 
SYSPUNCH data set 89,90 
SYSTE:RM data set 89,90 
SYSTERM ddname 61 
SYSTE~M listing 91-93 
SYSTERM options 21 
SYSTERM options (CMS) 53,55-56 
SYSU'l'1, SYSUT2, SYSUT3 data set 88,90 

162 

II 
TERM option 21 
TERMINAL option 21,91 

under CMS 55 
terminal_output (see SYSTERM listing) 
TEST option 21 

under CMS 55 
TEXT ddname 51,61 
TEXT file (CMS) 51 

created by assembly 57 
Time Sharing Option 91 
TSO (see Time Sharing Option) 
TXT card 82 

I!I 
use of assembler cataloged 
procedures 13-15,32-33 

using SYSPARM u'nder eMS 56-57 
utility data sets 88,90 

(see also BUFSIZE option) 

virtual storage requirements 89 
virtual storage requirements under CMS 

work space, assembler 22,89 

13 
XC'I'L macro 
XREF option 

under CMS 

86 
20 

55 

YFLAG option 19 
under CMS 55 

61 



(') 
C 
-f 
» 
r o 
Z 
G) 

o o 
=I 
m 
o 
C 
Z 
m 

OS/VS - VM/370 Assembler 
Programmer's Guide 

Order No. GC33-402l-3 

Your views about this publication may help improve its usefulness; this form 
will be sent to the author's department for appropriate action. Using this 
form to request system assistance or additional publications will delay response, 
however. For more direct handling of such request, please contact your 
IBM representative or the IBM Branch Office serving your locality. 

Reply requested: Name: 

READER'S 
COMMENT 
FORM 

Yes 0 
No 0 

Job Title: ____________________ _ 

Address: ____________________ _ 
__________________ Zip ________________ _ 

Thank you for your cooperation. No postage stamp necessary if maUed in the U.S.A. (Elsewhere, an IBM office 
or representative will be happy to forward your comments.) 



GC33-4021-3 

Your com mEInts, please ..• 

This manual is part of a library that serves as a reference source for systems analysts, 
programmers, and operators of IBM systems. Your comments on the other side of this 
form will be carefully reviewed by the persons responsible for writing and publishing 
this material. All comments and suggestions become the property of IBM. 

FOld FOld 

o 
C 
-i 
o 
JJ 

" o 
r-
C 
» 
5 ...................................................................... ·································2 

Fold 

Business Reply Mail 

No postage stamp necessary if mailed in the U.S.A. 

Postage will be paid by: 

I nternational Business Machines Corporation 
Department 813 L 
1133 Westchester Avenue 
White Plains, New York 10604 

Intematlonal Blllllne •• Machine. Corporation 
Data Proce •• lntJ Olvl.lon 
1133 We.tche.ter Avenue, White Plain., New York 10804 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Natl.on. Plaza, New York, New York 10017 
(Intematlonal) 

First Class 
Permit 40 
Armonk 
New York 

Fold 

G') 

r-
Z 
m 

~ 
< en 



GC33-4021 -3 

International Buslnell Machines Corporation 
Data Proces.lng Division 
1133 We.tche.lter Avenue, White Plains, New York 108014 
(U.S.A. only) 

IBM World Trade Corporation 
821 United Nailions Plaza, New York, New York 10017 
(International) 

o en -< en 

< 
~ -w ...... 
o 
» en 
~ 
3 
C'" 
CD ..., 
'"0 

cS ..., 
Q) 

3 
3 
CD 
""\ 
en 
G) 
c:: 
c: 
CD 

-n 
CD 
Z 
9 
en 
Co\) 
...... 
9 
I\) -
(3 
~ 
< .. en 
< 
~ -w ...... 
9 

'"0 ..., 
=:;' ..... 
CD 
C-

=:;' 
c en 
}> 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	replyA
	replyB
	xBack

