
Program Product

Licensed Material - Property of IBM

L Y28·6486· 2

IBM OS/VS COBOL Compiler
Program Logic

Program Number 5740-CB1

~nd Edi!im! (November 1976)

This edition replaces the previous edition (numbered LY28-6486-0) and its
technical newsletter (numbered LN20-9106) and makes them obsolete.

This edition cor·respo·nds to the second release of the IBII OS/VS COBOL
Compiler and to any subsequent releases unless otherwise indicated in
new editions or technical newsletters.

Technical changes are summarized under "Summary of Amendments" following
the list of figures. Each technical change is marked bya vertical line
to the left of the change. In addit ion, miscellaneous editorial and
technical changes have been made throughout the pUblication.

Information in this publication is subject to significant change. A~y
such changes will be published in new editions or technical newsletters.
Before using the publication, consult the latest IBII_~!~~L170
Bibliog~hYL GC20-0001, and the technical newsletters that amend the
bibliography, to learn which editions and technical newsletters are
applicable and .current.

Bequests for copies of IBII publications should be made to the IBM branch
office that serves you.

Forms for readers' comments are provided at the back of the publication.
If the forms have been removed, comments may be addressed to IBII
Corporation, P. o. Box 50020, Programming Publishing, san Jose,
California 95150. All comments and suggestions become the property of
IBII.

© Copyright International Business lIachines corporation 1974,19.76

(

Summary of Amendments

Date of Publication: November 1, 1976

Form of Publication: Revision, L Y28-6486- 2

OS!VS COBOL RELEASE 2

New: Programming Feature

Licensed Material - Property of IBM

Number 1

The text has been updated to reflect Release 2 of the OS!VS COBOL Compiler_ Major
updates include:

• Phase 04, a new phase that processes the COPY statement and performs BASIS processing.

• Phase 35, a new phase that processes USE FOR DEBUGGING statements and their operands.

• A new compiler option, LANGLVL, applies to those language elements where the
interpretation differs from the 1968 American National Standard, X3.23-1968, COBOL,
to the 1974 American National Standard. X3.23-1974, COBOL.

•
• Phases 05, 06, 08, and 80 flowcharts have been added.

• Extensive updates have been made to; Communications Area, Compiler Table
Formats, and Internal Text Formats in the Data Areas Section.

• Several updates, including a list of user ABEND codes, have been made to the
Diagnostic Section.

Miscellaneous Changes

Maintenance: Documentation Only

Some maintenance changes have also been made.

(

\

This publication describes the internal
design of the IBM OS/VS COBOL Release 2
compiler. The manual is intended for use
by persons involved in program support and
by systems programmers involved in alterinq
the program design for installations
requiring such alteration. It supplements
the compiler listing and its comments but
is nnt a.substitute for them.

The publication is divided into the
following sections:

• An introduction that describes the
compiler functions and specifies the
relationship of the compiler to the
operating system.

• A Method of Operations section that
includes a section on each of the
compiler phases. Within these
chapters, the material is organized by
phase functions and is not necessarily
presented in the order in which the
phase operations are performed.

• A Program Organization section that
includes one chart of the overall logic
flow for each phase and other charts
showing detailed descriptions of some
of the major phase routines.

• A Directory section that shows register
usage, flowchart labels, and the tables
used by each phase.

• A Data Areas section showing the
formats of the compiler Communication
Region, the dictionary, the internal
texts, the tables that occupy the
table-handling area, and the tables
that are created for object-time
debugging purposes.

• A Diagnostic Aids section.

• An appendix that describes the routines
that handle compiler tables and the
dictiona ry.

• An appendix that describes the object
module produced by the compiler.

• An appendix that describes the Report
Writer subprogram.

• An appendix that describes the
interface with the Conversational
Monitor System (CMS).

• A Glossary of special terms.

• Foldout Diagrams.

• An index.

Effective use of this manual requires an
extensive knowledge of the IBM Assembler
Language, OS/VS System Control, and the IBM
OS/VS COBOL language. Prerequisite and
related publications include:

IBM OS/VS superviso~~~~xice2-~nd ~~£~Q
Instr~tion§., Order No. GC28-0683

!.ruLQ2Lll.JlilLMa !!.a!lru!!~!!.L Ma££Q
Instruction§., Order No. GC26-3793

I~_Q~LVS-1inka!l~_Edit~£_a!!.~-1oad~,
order No. GC26-3813

~~VS Services Aids, Order
No. GC28-0633

IM~~iL~a!l~!!.LfoL~:I2i~!J!
proqram~, Order No. GC26-3837

I~_Q2LU-Yitl&al ~iQ£a!lL!£.~2S Metho~
lllAMt_PrQ!l£a!l!U.£!.2_Gui~~, Order
No. GC26-3838

Prerequsite Program Product documents
include:

IBM VS £gBO~ for O~![, Order
No. GC26-3857

IBM OS(VS COBOL compil~~_and Libra£~
Programmer's Guide, Order No. SC28-6483

5

Licensed Material -Property of IBM

The following extract from Government-;
Printing Office Form Number 1965-0795689 is
presented for the information and guidance
of the user:

"Any organization interested in reproducing
the COBOL report and specifications in
whole or in part, using ideas taken from
this report as the basis for an instruction
manual or for any other purpose is free to
do so. However, all such organizations are
requested to reproduce this section as part
of the introduction to the document •. Those
Ilsing a short passage, as in a book review,
are requested to mention 'COBOL' in
acknowledgment of the source, but need not
quote this entire section.

"COBOL is an industry language and is! not
the property of any company or group of
companies, or of any organization or group
of organizations. :y, :,'i;

"No warranty, expressed or implied, is made
by any contributor or by the COBOL
Committee as to the accuracy and
functioning of the programming system and
language. Moreover, no responsibility is
assumed by any contributor, or by the
committee, in connection therewith.

6

"Procedures have been established for the
maintenance of COBOL. Inquiries concerning
the procedures for proposing changes should
be directed to the Executive Committee of
the Conference on Data Systems Languages.

"The authors and copyright holders of the
copyrighted material used herein

PLOW-MATIC (Trademark of Sperry Rand
corporation), Programming for the
DNIVAC (R) I and II, Data Automation
systems copyrighted 1958, 1959, by
Sperry Rand Corporation; IBM
Commercial Translator, Porm No.
P28-8013., copyrighted 1959 by IBM:
PACT, DSI 27A5260-2760, copyrighted
1960 by Minneapolis-Honeywell

have specifically authorized the use of
this material in whole or in part, in the
COBOL specifications. Such authorization
extends to -the reproduction and use of
COBOL specifications in programming manuals
or similar publications."

(

SECTION 1. INTRODUCTION •••••••• 19
Relationship of the Compiler to the IBM
OS/VS System • • • • • • • • • •
Characteristics of the Compiler

Physical Characteristics • • •
Operational Characteristics

Input • • • • • • •
Output • • • • • • •

Design of the compiler • •
Compiler Data Sets • •
Compiler Phases • • • •

19
• • 19

• 19
• • 20
• • 20

20
20
21
21

• 21
22

Phase 00 (IKFCBLOO)
Phase 01 (IKFCBL01)
Phase 02 (IKFCBL02)
Phase 03 (IKFCBL03)
Phase 04 (IKFCBL04)
Phase 05 (IKFCBL05)
Phase 06 (IKFCBL06)
Phase 08 (IKFCBL08)
Phase 10 (IKFCBL 10)
Phase 12 (IKFCBL12)
Phase 1B (IKFCBL1B)
Phase 20 (IKFCBL20)

• • • • 22
22

• • 22
• • 22

• • • • 22

Phase 22 (IKFCBL22) ••••
Phase 21 (IKFCBL21)
Phase 25 (IKFCBL25)
Phase 3 (IKFCBL30) •••
Phase 35 (IKFCBL35)
Phase 4 (IKFCBL40) •
Phase 45 (IKFCBL45)
Phase 50 (IKFCBL50)
Ph ase 51 (IKFCBL51)
Phase 6 (IKFCBL60) • • •
Phases 62, 63, and 64 (IKFCBL62,
IKFCBL63, and IKFCBL64)
Phase 65 (IKFCBL65) ••••••
Phase 6A (IKFCBL6A) ••••••
Phases 70, 71, and 72 (IKFCBL70,
IKFCBL11, and IKFCBL72)
Phase 80 (IKFCBL80)

Compiler options • • • • • • •
storage Requirements •••••

• 22
• • 22

22
22

• 23
23

• • 23
• • 23
• • 23

• 23
23

• • 23
• 24

24
• 24

• • 24
• • 24
• • 24

25
• • 25
• • 25

29

SECTION 2. METHOD OF OPERATION 31
Phase 00 • • • • • • • • 31

Receiving Control from the Operating
System •••••••••••••••• 31

Returning Control to the Operating System 31
Processing Between Phases ••••••• 31

Phase Input/output Requests ••••• 34
Compiler Linkage to Data Management 44
Directing Error Messages and
Progress Messages to the SYSTERM
Data Set • • • • ••••
Segmentation Operations

Table and Dictionary Handling
Communications Area (COMMON) •
syntax-Checking compilations •
Terminal Error Conditions

PHASE 01 •
Compilation Parameters •
Return From Phase 02 •

PHASE 02 • • • • • • • • •
Compilation Paramet'?rs
Buffer Size Determination

• • 44
44

• • 44
• 44
• 45

• • 45

46
• 46

46

111
41

• 47

Licensed Material - property of IBM

Processing for the HATCH Option 48
Entering Statistical Information In
COMMON • • .. • • • • • • • .. • • • 48
Preparing For Federal Information
processing Standard (FIPS) Flagginq • 48
Information Returned to Phase 00 • • • 49
Error Condit ions •• ••••• ug

PHASE 03 • • • • • • .SO
Obtaining and Printing Error Messages 50
Returning Control to Phase 00 • 50

PHASE 04 •
Input
Output

Error Conditions
Tables Used • • • •

51
51

• S1
51

Main Flow of Control in PHASE 04 •
processing Routines Used •

• 51
51

• 51

PHASE 05 •
Input.
Output

Syntax Language Summary
Error Conditions

PHASE 06 •
Input.
Output

PHASE 08 •
Input.
Output. .•..
Processing . • .

Error Conditions .•
PHASE 10 • • . • • •
Major Working Routines

GETDL~ Routine • • •
GETIID Routine
GETCRD Routine • • •

Id2ntification Division
Environment Division ••

Configuration section ••••
Input-output section •

FILE-CONTROL Paragraph
I-a-CONTROL Paragraph

Data Division

• 52
52
52

• • • 52
52

• .. • 54
54
54

55
55.
55
55

• 55
56

• • • 56
• S6

56
<;1
57
51

• • <j 7
S8
58
58

• 59
File Section • • • • 59

File Description Entries • 59
Sort Description EntriAs • • 59
Record Description Rntries 60

Working-Storage and Linkaqe Sections • 60
communication Section •••• • 60

PHASE 12 ••••••••
operations in Other Phases

REPORT Clause ••••
Report Section Header

• 61
• 61

61
• 61
• 61 USE Sentences. • • • •

Procedure Division Verhs • •
Control~Field Save-Area Names
REDEFINES Clause • • • . • • .

• • • 61

producing the Report writer Subprogram
(RWS) •••••

Routine RDSCAN •
Routine PROCO 1 • • •

• 62
62

• (2

• 62
• 64

Licensed Material - Property of IBM

Routine PROC02 64
Routine FLUS H • • • •
Routine GNSPRT

• • • • 64

Generating Error Messages
Generating the Source Listing
Information for Later Phases

64
64
65

• " 65

PHASE 1B • • • • • • • • • • • • 66
procedure-names • • • • • • 66

Entering Procedure-names in the
Dictionary • • • • • • • • • • • • • • 67
Using the PNTABL and PNQTBL Tables •• 67

Storing Information • • • • 67
Moving Information into the
Dictionary • • • • • • • • • • • 67

Pr iority Checking for Segmentation •• 69
Verbs • • • • • • • • • • • • • • 69

Procedure-Branching Verbs •• 69
Input/output Verbs • • • • • • 69
Other Verbs • • • • • • 70

Declaratives • • • •• 70

PHASE 20 • • • • • • ••• • • • • • 71
Translating LD Entries into ATF-text • • 72

Processing Elementary Items • 72
Processing Group Items •••••••• 72

ProdUcing Incomplete Data A-text • • 72
Processing File Section Entries • • • 72

processing communication section
Entries • • • • • • • • • • • • 13
Processing Frrors • • • • • • 73

PHASE 22 • • • • • • • • • • • • 74
• • • • 74 Building Dictionary Entries

Dictionary Preprocessing • • •
completing Dictionary Entries

Generating Data A-Text • • • • • • •

74
76

• • 77
77 Q-Routine Generation ••••••

processing Errors • • • • • • • •
Building Tables for Later Phases

• • • 78
78

PHASE 21 • • • • • • • • 79
FD Dictionary Entries 79
SD Dictionary Entries 80
Linage-counter Entries. • • 80
Data A-text Elements • • • •••• 80

FIB Address Element • • • • 80
Block and Working-storage Section
Address Elements • • • • • • •
Constant and Address Constant
Defin! tion Elements •••••

Creation of Exit Lists • • •
DCB's and DECB's -- Address and
Constant Definition Elements •••

File Information Block (FIB) • •
Determination of Buffer Area Size

Clause Compatibility

PHASE 25 ••••••
Phase 25 Processing for the Debug
Da ta Set" • •••• • • • •

• • 80

80
• • 80

80
80

• 81
• • 84

• • 85

• • 85
85 Building the OBODOTAB Table

Building the DATA TAB Table • • • • • 86

PHASE 3 •• • • • • • • • 88
Glossary Building • • • • • • • • 88
Translation from PO-text to P1-text •• 89

READ Verb Strings • • • • • •• 89

statements with CORRESPONDING
options • • • • • • • • • • 89
SEARCH Verb Strings • • • • • • 91
Determining the Uniqueness of a
Name • • • • • • • •
Replacing Names with
Attributes •••
Debugging ••••
Error Processing •

Dictionary

PHASE 35 •••• , ••
Table Handling •••
Processing Routines
Non-Debugging Declarative
Considerations •

output • •

PHASE 4
Translation of P1-Text to P2-Text
Verbs •• • • • • • • • • • • • •

MOVE Statement -- subscripting
DEBUG Card • • • • •
ALTER Statement •••• • • •
PERFORM Statement • • • • • • •
COMPOTE Statement • • • • • • •
Multiple Results in Arithmetic
Statements •••••••••••
IF Statement • • • • • • • •

Nested IF Statement
SEARCH Format-2 (SEARCH ALL)

• 95

95
• 95
• 96

99
• .100

• 100

.• 102
• 103

.104

.104

.104
• 104

• • • 105
• • • 105
• • • 109
• • • 111

.113
• • • 113

• 113

Statement • • • • • • • • •
Syntax Analysis and Error Checking •
Method of Defining Verb Blocks ••

Phase 40 Initialization Routine

.113
• • 116

.116
• • 116

.116

.116
105 Routine
ISTROV Routine
IDBRKRoutine
IDLH03 Routine

• 1 16
• 116

SORT, MERGE Routines •••••• • • 116
• 116
.117

EOP Rout in e • • • • • •
GETNXT (GET13 and GET14) Routine •
EXITS (EXIT PROGRAM) Routine • 117

.117 GENNOD Routine •
GENPAR Routine •
GENTIM Routine
IlRSYS4 Routine

• • • • • • • 117
• • • • • 117

.117

PHASE 45 ••• • • • • •••••• 118
Initialization and ATM-Text Analysis •• 118
Creating P2-Text for Phases 50 and 51 .118

PHASE 50 • • • • • •
program Breaks •
Verb Strings •• • •••

Verb Process ing • • • • • • • •
Resolving subscripted and Indexed

• • • 119
.119
• 119
.120

References. • • • • • • • • •• .120
Hov subscripted Addresses Are
Calculated. • • • • • • • • • .121
using and optimizing subscript
References. • • • • • .122
Indexed Refereilces • • • • .123

Arithmetic Verb Strings •••• .124
Work Area •••••• • •• .124
Compile-Time Arithmetic ••• 125
Mode of operation •••• .126
Register and Storage Allocation •• 126

Generating A-text •••••••• 127
(

\

Literals and Virtuals • • • • • • • • • 131
Handling Phase 51 Verb Strings ••••• ,32
Additional processing for the OPT
Option • • • 132

PHASE 51 • • • • • • .133
E-Text • • .133
Program Breaks •• 13~
Segmentation control Breaks •• 13~
PB, GN, and VN Definitions. • .13~

Building PN and GN Equate Strings .134
Building the PNUTBL Table •• 135

Verb Strings •••••••••••••• 135
Input/output Verbs ••••••••• 135
Other Nonarithmetic Verb Strings •• 137
special considerations for
Nonarithmetic Verbs •. 138
Verbs Requiring Calls to
Object-Time Subroutines •• 139
DISPLAY Literals. • • • • .139
Generating System/370 Instructions .140
Text Generation for the OPT Option .140

Generating Object Code to Process VSAM
Files .•. . . • • .140
Generating Calls to the ILBOVCOO ann
ILBOV100 Subroutines •• 140

PHASE 6 •• • • • • • .141
Output of Phase 6 •• 141

Suppression of Output Listing ••• 142
Glossary and Listing Symbols •••• 142

Task Global Table storage Allocation •• 143
optimizing Storage for the Program
Global Table • • • • • • • • • • • • • • 144

• .144 Building the VN priority Table
Optimizing PNs and GNs ••••
Optimizing Literals and DISPLAY

• • • 146

Literals •••••••••••••• 147
optimizing Virtuals • • • •• ..147

Allocating storage for the program
Global Table • • • • • • •

OVERFLOW Allocation
VIRTUAL Allocation • • • • • • •
VIRTUAL EBCDIC NAMES Allocation
PN Allocation
GN Allocation
DCBADR Allocation
VNI Allocation • •
LITERAL Allocation •

Procedure A-text Processing

• .148
• .149
• • 149
• .149
• .149

.150

.150

.150
• .150
• • 151

Procedure A-te.xt Processing in a
Segmented Program ••••••••• 155
Listing A-Text. • • • • •• • .156
Execution-Time Base Register
Assignment . • . • • • • • • • .156

processing Data A-text, E-text, and
DEF-text •••••••••••••••• 157
processing the RLDTBL Table •••••• 157
Initialization Coding Generation. .157

PHASE 62 • • • • • • • • • • • • • .161
Output of Phases 62, 63, and 64 •• 161

suppression of Output Listing ••• 162
Task Global Table Storage Allocation •• 162
optimizing storage for the Program
Global Table •••••••••••••• 164

Licensed Material - property of IBM

Building the VN Priority Table ••
Processing PNs and GNs • • • • • •
Optimizing Literals and processing
DISPLAY Literals ••••••.
optimizing Virtuals • • • • •

.165

.165

• 165
.166

Allocating storage for the Program
Global Table • • • • • • • • • • • • • • 166

.166 DEBUG LINKAGE AREA Allocation
OVERPLOW Allocation • • • • •
VIRTUAL Allocation • • • •••
VIRTUAL EBCDIC NAMES Allocation
PH Allocat ion
GN Allocation
DCBADR Allocation
VNI Allocation • •
LITERAL Allocation
PROCEDURE BLOCK Allocation.

• 166
• .167

.167

Optimizing Register Assignments
Permanent Register Assignments.
Temporary Register Assignments •

optimizing and Allocating Storage for
the Procedure Division ••••••••

Building the PNLABTBL and GNLABTBL

• 167
.167
.168
• 168
.168
.168
• 168
.169
.169

.171

Ta bles • •• •. • • • • • . • .171
· 171 Incrementing the ACCUMCTR Counter

PHASE 63 • • • •
Initialization of Phase 63 • •
constructing Procedure Al-text

Control Routine ••••
Processing Programs with One

• .175
.175
.175
.175

Procedure Block • • • • • • .175
Processing for Branch Instructions •• 175

processing for Optimization Tnformation
Elements (C001-C007) • • . • • • .176

Processing for RPT-Origin (04)
Element • • • • • • • •
Processing for Address Reference
Elements. • ••••••••
Processing for Address Increment
Elements • ••••

• 176
(78)
• • • 176
(80)

.176
Processing for Incremented Address
(A4) Elements •• • • • .176

Constructing Debug-text •• 176
Counters Used in Phase 63 .177
Building the QGNTBL Table ••••••• 177
Making Entries in the RLDTBL Table ••• 177
processing in a Segmented program .177
Processing at End of Pile ••••••• 178

PHASE 64 • • • • • •
output of Phase 64 • • •

• . 179
.179

Processing Data A-text, E-text, and
DIF-text. • •••••••••• .179

Processing Procedure Al-tex~ •••
Initialization Coding Generation •
Processing the RLDTBL Table

PHAS.E 65 •
Processing the FLOW option • •
Common Processing For The STATE,

• • 179
• 183

• •• 183

• • • 187
• .187

SYMDMP, And TEST Options .187
Processing Debug-text ••• 187

Building the PROCTAS Table .187
Building the SEGINDX Tahle ••• 188

Further Processing for the STATE option 188
Further Processing For The SH!DMP Or
TEST options • • • • •••••• 188

Licensed Material - Property of IBM

Building the CARDINDX Table
Building the PROCINDX Table

Debug Data Set Processing
Final processing

• .188
• .188

• ••• 188
• .189

PHASE 6A • • • • • ••• 190
producing a Source Ordered
Cross-Refe renee .Listing .190
producing an Aplhabetically ordered
Cross-Reference Listing ••••• 191

PHASES 70, 71, AND 72
Input from Prior Phases
Phase 70 Error Processing

PARTBL and EACTBL Tables ••
PHXERR Tables

Generating Messages
Error Message Listing
FIPS Processing

PHASE 80 •••
In pu t • • • . •
output •••••

• .192
• • .192

• • 192
• • • • 193

• .193
• • 193
• .194

• ~ •• 194

• .195
• • • • 195

processing ••••••••.
• .195

• 195
• .195 scanning the Source Program • •

Generating Diagnostic Messages •
writing the Source Program • • •

• • • • 195
• .196

• .197 SECTION 3. PROGRAM ORGANIZATION
Flowcharts • • • • • • • • • • • • .197

• .309 SECTION 4. DIRECTORY • • • •
Flowchart Label Directory
Tables Used by Phases

• ••• 309

MICROFICHE DIRECTORIES • •

SECTION 5. DATA AREAS •••
Communications Area (COMMON)

• .313

• .311

• .324
• • .J24

COMPILER TABLE FORMATS. • • • • • .340
Notes on Compiler Table Formats ••• 340

INTERNAL TEXT FORMATS ••••• • .399
Notes on Text Element Formats •••• 399

IPTEXT • • • • • • • • .400
Data IC-Text • • .402
ATF-Text • • • .408
Data A-Text •• ". •••• • .409
Procedure IC-Text (PO Format) ••••• 411
procedure IC-Text (P1 Format) •• 419

PROCEDURE P1A-TEXT •••••••
Procedure IC-Text (P2 .Format)
ATM-Text • • • • • • • • • •
Procedure A-text.. • •••
Optimization A-Text
Procedure A1-Text
List ing A-Text
E-Text • • • • • . •
IREF-Text • • • • •
Debug-Text • • • • •

.' .

DICTIONARY ENTRY FORMATS •••
Notes on Dictionary Entry Formats
Procedure-Name (Paragraph) Entry •
Procedu.re-Name (section) Entry
FD Entry ••• ' ••••••••••

• .424
• .425
• .433
• .434
• .439
• .441
• .442
• .442
• .443
• .444

• .445
• .445
• .446
• .446
• .447

SD Entry •
RD Entry
LD Entry
CD Entry • • • • •
Condition-Name Entry
Index-Name Entry • •

...
.' .

.449

.44~

• •.• 450
• •• 450
• •.• 454

.454

• .455 DEBUG DATA SET TABLES
PROGSUM Table • • • • • • .456-
OBODOTAB Table • • • • • •
DATATAB Table
PROCTAB Table
CARDINDX Table • • • • • •
SEGINDX Table
PROCINDX Table
BCDPN Table • • ••.
VSAM File Information Block (FIB)

• .457
.458

• •• 465
• .465

.466
• •• 466
• •. 466

.467

SECTION 6. DIAGNOSTIC AIDS ••••••• 470
Procedure, To Force Core Dump • • .470
Response to System Error Recovery
Findings • • • • • • • • • • • • • • .470

.470 Compiler Data Set Activity •
Register Usage by Each Phase
Register Assignment ••••
Elements of Program Design •

Compiler Error Messages
ABEND Codes •• • • • • • •

Identifying the Version of the
compiler • • • • • • • • •
Current Phase and Record •
Saving Registers •••••
Buffers and Their contents •
Locating Tables

Diagnostic Assistance

APPENDIX A: TABLE AND DICTIONARY

• .470
• •• 483

.483
• .483

.483

• .486
.486
.487
.487
.488
.488

HANDLING (TAMER) • • • • • • • • .492
Access Dictionary Handling Routines •• 492

organization of the Dictionary • • • .492
Storage for the Dictionary • • • • • .493
Initialization of ACCESS Routines •• 493
ACCESS Routines 493

ENTNAM (Enter Attributes Given
Name) ••••••••••••• .494
ENTPTR (Enter Attributes Given
Pointer) • • • • • • • • • •• 494
GETPTR (Get Pointer) • • • •• 494
ENTDEL (Enter Delimiter Pointe~ •• 494
LATRNI'! (Locate Attributes Given
Name) ••••••••••••••• 495
LATRPT (Locate Attributes Given
Pointer) • • • • • • • . • • • .495
LOCNXT (Locate Next Entry) ••••• 495
LDELNM (Locate Delimiter Given
Name) ••••••••••••••• 495
LATACP (Locate Attributes Usinq
ACCESS Pointer) ••••••••• J496
LATGRP (Locate Attributes Given
Group Pointer) • • • • • • • • • • ~496

Table Handling with TAMER •••••• "496
CONTROL Fields •••••••••• ' .• 497

TIBs (Ta ble I nforma tion Blocles) ..497
TAMMs (Table Area Management Maps) .497
MASTAHs (Master TAMI'! Tables) .497

How Space is Assigned • • .498
TAMEIN Routine • • .498
PRIME Routine • • .498

• .499 \
• .499
• .499
• .499

TBGETSPC Routine •
!!DVDIC Routine
DICSPC Routine •
STATIC Routine •
TABREL Routine
INSERT Routine •
TAMEOP Routine •
TBSPILL Routine
TBWRITE Routine
TBREADIC Routine • •
GETALL Routine •

• • • • • • • 499
• .500
• • 500

.500
• .500

• • • 500

APPENDIX B: OBJECT MODULE
Overview of Object Module Fields
Initialization 1 Routine (INIT1)
Data Area • • • • • • • • •

Exit Lists • • • • • • •
Task Global Table (TGTI
Program Global Table (PGT)
Report writer Routines (RPT) ••••
Procedure
Q-Routines • • • • • •
COUNT Table ••• • • •
Initialization 2 Routine (INIT2)
Initialization 3 Routine (INIT3)

PROCTAB Table (PROCTAB)
SEGINDX Table (SEGINDX)

Segmented Object Module (TRANSIENT
AR EA) ••••••••••••••

• • 500

• .501
• .501
• .501

.502
• .502
• .505
• .510
• • 512
• .512
• ·512
• .512
• .513
• .513
• .514
• • 514

• .514

APPENDIX C; REPORT WRITER SUBPROGRAM •• 515
Structure of the Report writer
Subprogram (RWS) •••••••••••• 515
Elements of a Report Writer Subprogram
(RIlS) ••••••• • .515

Fixed Routines. • • .515
1ST-ROUT Routine •••••• 515
LST-ROUT Routine •• 515
WRT-ROUT Routine. • ••• 515

Parametric Routines ••••••• 520
USM-ROUT Routine. • ••• 520
CTB-ROUT Routine • • .520
ROL-ROUT Routine •• 520
RST-RDUT Routine •• 520
SAV-ROUT Routine. •••• • .5/.0
RET-ROUT Routine •• 520
INT-ROUT Routine • • • ~520
ALS-ROUT Routine. • .520
RLS-ROUTRoutine • • .521

Group Routines. • • • ~21
RPS-ROUT Routine. • • • •• • .521
RPF-ROUT Routine • • 521
CTH-ROUT Routine. •••• • .521
CTF-ROUT Routine • • .521
CHF-ROUT Routine • • 521

Licensed Material - property of IBM

CFF- ROUT Rout ine • •• • • .521
PGH-ROUT Routine ••• 521
PGP-ROUT Routine. .521
DET- ROUT Routine • • 522

Data-Names. • • • • .522
COBOL Word Data-names .522
Nonstandard Data-names. • • •• 522

Special Report Writer Verbs .523
Response to Procedure Division Verbs •• 524
Finding the Elements of a Report writer
Subprogram CRWS) •••••••••••• 524

Locating Data Items in a storage Dump 524
Locating Data Items in the Object
Module •••••••••••••••• 524
Locating Routines in a storage Dump .524
Locating Routines in the Object
Module • • • • • • • • • • • • •

Locating DET-ROUT and nSM-ROUT
Routines • • • • . • • . • • •
Locating CTF-ROUT and CTR-ROUT
Routines ••••••••.••

APPENDIX D: INTERFACE WITH
CONVERSATIONAL MONITOR SYSTEM (CMS)
Introduction • • • • • • • •

Functions • • • • • • •
Environment ••••••
Physical Characteristics •
Operational Considerations •

Source Program Filename
option List • • • • • • •
Issuing CMS FILEDE? Co~mands •

Method of operation ••••
Initialization • • •

.527

.527

.528

• .529
.529
.529
.529
.529
.531
.531
• .531
.532

• • • 532
• • 533

special Processing for TFXT and
SYSPUNCH Files •• • • •• ..533
Compiler Directory Information .• • 533
Error Processing. • .533

Ret~rning Control to the CMS Command
Environment ••• • .535

Program organization •
Directories •••••
Flowchart Label Directory • • • •
Diagnostic Aids

Data set Activity ••••
Register Usage • • • •••
Elements of Program Design •

Error Messages Issued by DMSCOB
CMS Service Routines Called by
DMSCOB • • • • •
Regist er Sa ving

GLOSSA RY •

DIAGRAMS •

INDEX

• • .535
.535

• • .539
.539
.539

• • .539
.539

• • 539

• •• 541
.541

• • .542

• • .547

.587

.c-

Figure 1. Flow of Control at End of
Compilation • • •• • • • • • • 32
Figure 2 (Part 1 of 2). Linkage
Codes to Phase 00 • • • • • • 33
Figure 3. Flow of Control for
Processing Between Phases 35
Figure 4. Optional Phase Processing • 36
Figure 5. Activity of the compiler
Data Sets and Buffer Assignments (Part
1 of 7) •••••••••••••••• 37
Figure 6. Table Usage During Record
Description Processing • • • • • • • • • 60
Figure 7. Phase 12 Input/Output Flow 63
Figure 8. Entering PNTABL and PNQTBL
Information in the Dictionary ••••• 68
Figure 9. Phase 20 Input/Output Flow. 71
Figure 10. Phase 22 Input/Output Flow 75
Figure 11. Building the OBODOTAB
Table • • • • • • • • • • •• • 87
Figure 12. P1-text Resulting from an
ADD CORRESPONDING Option • • • • • 90
Figure 13. P1-text Resulting from a
~OVE CORRESPONDING Option ••• •• 90
Figure 14. P1-text Written for SEARCH
Format-1 PO-text (Part 1 of 2) ••••• 92
Figure 15. P1-text Written for SEARCH
Format-2 PO-text. • • • • • • • • 94
Figure 16. P1-text Written for
Cond it ion-String Testing Multiple
Values without Using the VALUE ••• THRU
Clause • • • • • • • • • • • • •• • 97
Figure 17. P1-text Written for
Condition-String with VALUE ••• TRRU
Clause • • • • • • • • • • • • • • • 98
Figure 18. Tables and Output for the
Statement MOVE A(6) TO B(C,D,E) .105
Figure 19. DBGTBL Entries and P2-text
for DEBUG Card Processing ••••••• 105
Pigure 20. Table Entries and Output
for ALTER Statements •••••••••• 107
Figure 21. Execution of an ALTER
Statement • • • • • • • • • • • • .107
Figure 22. Flow of Control for
UTER/GO TO Statements. • • • • • .108
Figure 23. Effect of a PERFORM
Statement • • • • • • • • .109
Figure 24. Execution of a PERFORM
Statement • • • • • • • • • • •• • .110
Figure 25. Flow of Control for a
PERFORM Statement ••••••••••• 111
Figure 26. Evaluation of a COMPUTE
Statement • • • • • • • • • • • •• .112
Figure 27. strinqs Resulting from a
COMPUTE Statement ••••••••• 112
Figure 28. Evaluation of a Nested IF
Statement . • • • • • .113
Figure 29. Example of Phase 4 Output
for a SEARCH ALL Statement .•••••• 114
Figure 30. Flow of Execution for a
SEARCH ALL Statement •••••••••• 115
Figure 31. Arithmetic Processing
Svitches •••••••••••• • .125

Licensed Material - property of IBM

Figure 32. Parameter Cells for the
A-Text Generator (Part 1 of 4)
Figure 33. Analysis of an ON

• 128

Statement •• • • • • • • • • • •• 138
Figure 34. Analysis of a DISPLAY Verb 139
Figure 35. Symbols Used in the
Listing and Glossary to Define
Compiler-Generated Information.
Figure 36.. Use of Counters in COMMON
to Allocate Space in the TGT for
Variable-length Fields (Part 1 of 2)
Figure 31. PNUTBL, PNTBL, and GNTBL
Tables at the Beginning of
optimization processing • • • • • •
Figure 38. GNTBL Table after PN and
Equate strings Have Been Processed
Figure 39. GNTBL Table after the

.143

.145

• .146
GN
• .147

Relative Numbers Have Been Assigned •• 141
Figure 40. CONTBL, CON DIS, and LTLTBL
Tables after Processing Literals .148
Figure 41. CVIRTB and VIRPTR Tables
after Processing Virtuals ••••• 148
Figure 42. VIRPTR Table after VIRTUAL
Allocation ••••••••••••••• 149
Figure 43. PNTBL and GNTBL Values
after PGT Allocation ••
Figure 44. LTLTBL Table after Literal
Allocation • • • • . • . . . ••
Figure 45. Processing Procedure
A-text Elements (Part 1 of 3)
Figure 46. Contents of SYSUT4 When

.150

• 151

.152

Read by Phase 6 •••••••••••• 158
Figure 47. Processing Data A-text,
E- text, and DEF-text (Part 1 of 2) •• 159
Figure 48. Use of Counters in COMMON
to Allocate Space in the TGT for
Variable-length Fields (Part 1 of 2) • 163
Figure 49. CONTBL, CONDIS, and LTLTBL
Tables after Processing Literals •••• 165
Figure 50. CVIRTB and VIRPTR Tables
after Processing Virtuals ••••• 166
Figure 51. VIRPTR Table after VIRTUAL
Allocation. • • • • •••• 167
Figure 52. LTLTBL Table after Literal
Allocation. • • • • • • • • .168
Figure 53. optimizing Assignment of
Registers 14 and 15 •••••••
Figure 54. processing for
optimization Information Elements
(Part 1 of 3) • • • • •
Figure 55. contents of SYSUT4 when

.170

.172

read by Phase 64 ••••••••••• 180
Figure 56. processing Data A-text,
E-text, and DEF-text (Part 1 of 2)
Figure 57. processing Procedure
A1-text Elements (Part 1 of 4)
Figure 58. Explanation of Flowchart
Symbols • • • • • • • • • • • • •
Figure 59. Tables Used by Phases

• • 181

• .183

.198

(Part 1 of 2) ••••
Figure 60. TIB Usage

.313
••• 315

Licensed Material - Property of IBM

Figqre 61. Types of compiler Text
Produced by Each Phase •••••••• 316
Figure 62. Load Module Directory
(Part 1 of 4) •••.•••••• 317
Figure 63 (Part 1 of 5). External
Symbol Directory ••••••
Figure 64. Registers Pointing to

•• 321

COMMON •••••••••••••••• 324
Figure 65 (Part 1 of 2) •. LD Entry
Variable Information ••••••••• .452
Figure 66. SYSUT5 (Debug Data Set) •• 455
Figure 61 (Part 1 of 12). Register
Usage According to Phase • • • • • • • .471
.Figure 68. Register Usage at Execution 483
Figure 69. Register Usage at Execution
(OPT) • • • • • • • • • • • • • • • !483
Figure 10 (Part 1 of 2). Error
ftessages Ind icating Compiler Error
Figure 71. Location of Identifier

• .485

Constant ••••••.•.•••.••• 486
Figure 72. POINT Table Entry Format .488
Figure 13. Arrangement of Tables and
Dictionary Sections in contiguous Areas 492
Figure 14. Storage Map of a COBOL
Object Module • • • • • • • .501
Figure 15. Format of the Data Area •• 502
Figure 16. Fields of the Exit List •• 503
Figure 11. Fields of the Task Global
Table ••••••••••••••• 505

Figure 18. Fields of the Program
Global Table •••••••••• .510
Figure 79 (Part 1 of 4). Logic of the
Generated Report Writer subprogram • • .516
Figure 80. First GENERATE Statement
Logic Flow ••••••••••••••• 525
Figure 81. Logic Flow of All GENERATE
Statements After the First •••••• 526
Figure 82. TERMINATE statement Logic
Flow . . . • • • • . . . • • • . . • . .527
Figure 83. Report Writer Subprogram GN
Numbers • • • • • • • • . • • . .528
Figure 84. Relationships Among
CMS-COBOL Interface Routine, the COBOL
compiler, and CMS ••••••••••• 530
Figure 85. COBOL Compiler options
Under CMS •• • • • • • • • • 531
Figure 86. FILEDEF Commands Issued
for Compilation Under eMS •••• .532
Figure 87. Operations of DMSCOB
Routine at Initialization ••••••• 534
Figure 88. Load Module Directory ••• 535
Figure 89. External symbol Directory .535
Figure 90 (Part 1 of 2). Flowchart
Label Directory •••••••••••• 539
Figure 91. Register Usage by DMSCOB •• 540
Figure 92. Error Messages Issued by
DMSCOB •••••••••••. .540
Figure 93. CMS Service Routines
Called by DMSCOB ••••••• • .541

List of Charts

Chart AA (Part of 7) • Phase 00: Chart DK. Phase 22: READF4 Routine · .243
Overall Flow · · · · · · · .199 Chart DL. Phase 22: DICTBD Routine · .244
Chart AA (Part 2 of 7) • Phase 00: Chart DM. Phase 21: Overall Flow · · .245
READ Routine · · · · · · · .200 Chart DN. Phase 21 : FILEST Routine · .246
Chart All. (Part 3 of 7) • Phase 00: Chart DO. Phase 25: Overall Flow · · .247
WRITEA, WRITE, and WOUT Routines · · · • 201 Chart DP • Phase 25: ODOBLD,
Chart All. (Part 4 of 7) • Phase 00: BLDOBODO, and ENDP1 Routines · · · · · .248
liRITEA, WRITE, and WOUT Routines · · · .202 Chart DQ. Phase 25: BF-GPASS Routine .249
Chart All. (Part 5 of 7) • Phase 00: Chart DR. Phase 25: TESTSUBS and
I'lPCH and WGO Routines · .203 SETNAMS Routines · · · · · · · . · · .250
Chart All. (Part 6 of 7) • Phase 00: Chart EA. Phase 3: Overall Flow .251
READ Library Routines · · · · · · .204 Chart BB. Phase 3: GLOSRY Routine · .252
Chart All. (Part 1 of 7) • Phase 00: Chart EC. Phase 3: PHCTRL Routine · .253
PLSCALL Routines · .205 Chart ED (Part 1 of 5) • Phase 35:
Chart BA. Phase 01: Overall Flow · .206 PHCTRL Main Control Routine .254
Chart BB. Phase 02: Overall · · · · · .207 Chart ED (Part 2 of 5). Phase 35:
Chart BC. Phase 03: Overall Flow · · .208 ANLZUE'DS Routine · · · · .255
Chart BD (part of 4) • Phase 04: Chart ED (Part 3 of 5) • Phase 35:
IKFCBL04 · · · · · · .209 PNDEFRTN Routine · · · · · .256
Chart BD (Part 2 of 4) • Phase 04: Chart ED (Part 4 of 5). Phase 35:
BASISRTN · · · · · · .210 GOTAVERB Routine · · · · · · .251
Chart SD (Part 3 of 4) • Phase 04: Chart ED (Par~ 5 of 5) • Phase 35:
COPYRTN · · · · · · .211 ANLZVRBS Routine .258
Chart BD (Part 4 of 4) • Phase 04: Chart FA. Phase q: Overall Plow · · .259
COPYPROC · · · · · · .212 Chart FB. Phase 4 : IF Routine · .260
Chart BE (Part of 3) • Phase 05: Chart FC. Phase 4: PRFORM Routine · .261
Overall Floll · · · · · · .213 Chart FD. Phase 45: Overal.l Flow · .262
Chart BE (Part 2 of 3) • Phase 05: Chart FE • Phase 45: UNSTRING Routine .263
Lanquage Analysis Routine · .214 Chart FF. Phase 45: SORTXT Routine · .264
Chart BE (Part 3 of 3) • Phase 05: Chart Gil.. Phase 50: overall Flow · · .265
Input and Scanninq Routines (SCAN) · .215 Chart GB. Phase 50: PH5CTL Routine · .266
Chart BF (Part 1 of 4) • Phase 06: Chart GC (Part 1 of 2) • Phase 50:
Overall Plow · · · · · · · .216 GETNXT Routine · · · · · .261
Chart BF (Part 2 of 4) • Phase 06: chart GC (Part 2 of 2) • Phase 50:
IPTEXT ITEM Processors · · .211 GETNXT Routine · .268
Chart BF (Part 3 of 4) • Phase 06: Chart GD. Phase 50: Generate Routine .269
IPTEXT ITEM Processors · · · .218 Chart GE. Phase 50: 'XSPRO and KILSUB
Chart BF (Part 4 of 4) • Phase 06: Routines . · · · · · · · · · .270
IPTEXT ITEM Processors · · .219 Chart GF. Phase 51 : Overall Flow · · .211
Chart BG (part 1 of 2) • Phase 08: Chart GG. Phase 51 : DBGTEST Routine .272
Overall Flow · · · · · · · .220 Chart GR. Phase 51 : GETNXT Routine · .273
Chart BG (part 2 of 2) • Phase 08: Chart GI. Phase 51: PUTDEF Routine · .214
Data Division Flow · · .221 Chart GJ. Phase 51 : A-text Generator
Chart CA. Phase 10: Overall Flow · · .222 Routine . . . · · · · · · · · · · .275
Chart CB. Phase 10: IDDSCN Routine · .223 Chart HA. Phase 6: Overall Flov .276
Chart CC. Phase 10: ENVSCN Routine · .224 Chart HB. Phase 6: PH6 Routine · · · .271
Chart CD. Phase 10: DDSCN Routine · .225 Chart HC. Phase 6: PRFTWO Routine · .278
Chart CEo Phase 12: Overall Flow · · .226 Chart RD. Phase 6: SE6000 Routine · .219
Chart CF. Phase 12: RDSCAN Routine · .221 Chart HE. Phase 6: PDATEX Routine · .280
Chart CG. Phase 12: PROC01 Routine · .228 Chart HF. Phase 6: GINIT2 Routine · .281
Chart CH. Phase 12: PROC02 Routine · .229 Chart Ill.. Phase 62: Overall Flow · · .28.2
Chart CI. Phase 12: FLUSH Routine · .230 Chart lB. Phase 62: PH6 Routine .283
Chart CJ. Phase 12: GNSPRT and Chart IC. Phase 62: PRFTIW ROUt;.l.. ne · .284
SPCRTS Routines · · · · · · · · · .231 Chart ID (Part 1 of 2) • Phase 62 :
Chart CK. Phase 1 B: Overall Flow SE6000 Routine · · · · · · · · · · · · .285
(PDSCN Routine) · · · · · .. · · · .232 Chart ID (l.'art 2 of 2) • Phase 62:
Chart nFl. Phas€ 20: Overall Flow · · .233 SE6000 Routine · · · · · · · · .286
Chart DB. Phase 20: FILEST Routine · .234 Chart IE. Phase 63: Overall Filow · · .287
Chart DC. Phase 20: WSTSCT, LINKST, Chart IF. Phase 63: BRANCH Routine · .288
COMSCT, and REPORT Routines · · · · · .235 Chart IG. Phase 63: GNDEF Rouitine · .289
Chart DD. Phase 20: LDTEXT Routine · .236 Chart IH. Phase 63: PNDEF Routine · .290
Chart DE. Phase 22: Overall Flow · · .237 Chart II. Phase 63: ADREF Routine · .291
Chart DF. Phase 22: FSECT Routine · .238 Chart IJ. Phase 63 : C1REF Routine · .292
Chart DG. Phase 22: is EC'l' and LSECT Chart IK. Phase 64: Overall Flow · · .293
Routines . · · · · · · · · · .239 Chart IL. Phase 61.1: PDATEX Routine · .294
Chart DR. Phase 22: CDSECT Routine · .240 Cbart 1M. Phase 64: SE6000 Routine · .295
Chart DI. Phase 22: RSECT Routine .241 Chart IN. Phase 64: ADREF. RC4,
Chart DJ. Phase 22: LDTXT Routine · .242 Re8C. and RDOO 1 Routines · · · · · · · .296

Licensed Material - Property of IBM

chart 10. Phase 6~: GINIT2 Routine · .297 Chart KA (Part 2 of 5) • Phase 80:
Chart IP. Phase 65: Overall Plow . · .298 PIPS · · · · · · · .305
Chart IQ. Phase 65: TENPROC, Chart KA (Part 3 of 5) • Phase 80:
TWENPROC, and GTEQ10K Routines · .299" PIPS · · · · · · · .306
Chart IR (Part 1 of 3) • Phase 6A: Chart KA (Part 4 of 5) • Phase 80:
Overall Flow · · · · · · .300 FIPS · · · · · · · .307
Chart IR (Part 2 of 3) • Phase 6A: Chart KA (Part 5 of 5) • Phase flO:
Overall Flow · · · · · · · .301 FIPS · · · · · · · . .308
Chart IR (Part 3 of 3) • Phase 6A: . Chart VI'! (Part 1 of 3) • D.MSCOB
Overall FI IV · · · · · · · .302 (COBOL-eMS Interface Routine) .536
Chart JA. Phases 70, 71, and 72: Chart VM (Part 2 of 3) • D.I1SCOB
Overall Flov · · · · · · · .303 (COBOL-eMS Interface Rontine) .537
Chart KA (Part 1 of 5) • Phase 80: Chart VM (Part 3 of 3) • DMSCOB
FIPS · · · · · · · .30~ (COBOL-eMS Interface Routine) .537

I

\

Licensed Material - Property of IBM

QBeration Diagrams

Diagram 1. Part 1 • Design of the Diagram 2. Part 5. Method of
OS/VS COBOL compiler · · · · · · .549 Operation: Procedure Division
Diagram 1. Part 2. Design of the Translation · · · · · · · · · · · . . .567
OS/VS COBOL Compiler · · · · · · .551 Diagram 2. Part 6. Method of
Diagram 1 • Part 3. Design of the Operation: Object Module Production .56!1
OS/VS COBOL Compiler · · · · · · .553 Diagram 2. Part 7. Method of
Diagram 2. Part 1 • Method of Operation: optimization of Object
operation: Table of Contents · .555 Module (Optiona.l) · · · · · · · · .571
Diagram 2. Part 2. Method of Diagram 2. Part 8. !'let hod of
Operation: overview · · · · · · .557 Operation: Debug Data Set Creation
Diagram 2. Part 3. Method of (Optional) . · · · · · · · · · · .573
Operation: Control and Input/Output .559 Diagram 2. Part 9. Method of
Diagram 2. Part 3a. COpy and BASIS operation: Error Messages,
Processor . . . · · · · · · · · · · · .561 Diagnostics, and Cross-Reference
Diagram 2. Part 3B. Re format ted Listings . . · · · · · · · · · · · .575
Source Code Listing and Embedded Diagram 3. Phase 25 Operations .577
cross-references · · · · · · · · · · · .563 Diagram 4. Phase 3 Operations · · .579
Diagram 2. Part 4. Method of Diagram 5. Phase 62 operations .• 581
operation: Identification, Diagram 6. Phase 63 operations · . . .583
Environment, and Data Division Diagram 7. Phase 65 operations .585
Translation . . · · · · · · · · · · · .565

The IBM OS/VS COBOL Compiler analyzes
source modules written in the COBOL
language and translates them into object
programs suitable for input to the linkage
editor for subsequent execution on the
computer. This publication describes the
design of this compiler and the
characteristics of the object program which
it produces.

A COBOL compilation is a job step under the
control of the operating system. The OS/VS
COBOL compiler can also be invoked under
the Time Sharing Option (TSO) of the IBM
Operating System. The compiler, operating
under TSO, can be invoked most conveniently
by the Program Product, TSO COBOL Prompter,
Program Number 5734-CP1. The OS/VS COBOL
compiler can also be invoked under the IBM
virtual Machine Facility/370 Conversational
Monitor System (CMS).1 To use the compiler,
see the publication l~~_Q~LY~_£OBO~
~om~ile~_~nd_~iB~~~_f£Q~~mmg~s Ggide,
which explains how a COBOL compilation is
introduced to the operating system.

As a processing program of the IBM
Operating system, the compiler communicates
with the control program of the operating
system for input/output and other services.
The services provided by the control
program are described in the publications
I~~_OS/y~_su~~isQ±_~~£vi~§_2n~Ma~Q
In§!ructj,Qn§, I~!LQ~~Da!lLMan agem~i
Se±.!ice§_2uide, IBM_Q~~~~ll-t1~29.em§!!.i
t1~£±o Inst~ctiQn§.

PHYSICAL CHARACTERISTICS

The compiler consists of 31 phases; from 10
to 14 of these phases perform the actual
transformation of a source module into an
object program. Phase 04 is called only if

lThe COBOL-CMS Interface routine, which
allows compilation under CMS, is described
in "Appendix D: Interface with
Conversational 'Monitor System (CMS)."

Licensed Material - property of IBM

there is COpy or BASIS processing to be
performed. Phases 05, 06, and 08 are
called only if the Lister (LSTCOMP or
LSTONLY) option is in effect. Phase 12 is
called only if a Report section appears in
the Data Division. Phase 35 is called only
if WITH DEBUGGING MODE and USE FOR
DEBUGGING declaratives are present. Phase
45 is entered only if an UNSTRING verb is
encountered in the source program. If
optimization of the object code has been
requested through the OPT option, phases
62, 63, and 64 replace phase 6. Phase 80
is called to flag source statements which
do not meet the Federal Information
Processing Standard when the LVL option is
specified.

Phases 25, 65, 6A, 70, 71, and 72 are
also optional phases: phases 25 and 65
generate debugging information for the
SYMDMP, FLOW, and/or STATE options; phase
6A produces a cross-reference listing if
the user requests one; and phases 70, 71,
and 72 are used to list the error messages
if errors were found in the source module.

Of the other phases, phase 00 acts as
the interface between the compiler and the
operating system, phase 01 contains the
installation default values of compilation
parameters, phase 02 "performs compiler
initialization, and phase 03 issues error
messages for terminal error conditions.

The phases are organized
struct ure, but the overlays
through phase 00. Phase 00
throughout compilation. It
phases as they are needed.
sequence is as follows:

into an overlay
are controlled
is resident
links to other
The linkage

Phase 00 links to phases

01
03 (if disaster condition with

NODUMP)
04 (if COpy or. BASIS)
05 (if LSTCOMP or LSTONLY)
06 (if LSTCOMP or LSTONLY)
08 (if LSTCOMP or LSTONLY)
10
12 (if report writer)
1B
20
22
21
25 (if SYMDMP TEST)
3
35 (if USE FOR DEBUGGING)
4
45 (if UNSTRING)

Introduction 19

50
51
6 (if NOOPT)
62 (if OPT)
63 (if OPT)
64 (if OPT)
65 (if FLOW, STATE, SYM, or TEST)
6A (if SXREF, VBREF, VBSUM, or XREF)
70 (if any error message from phases

04 through 6A)
80 (if LVL)

Phase 01 links to phase 02.
Phase 70 links to phases 71 and 72.

OPERATIONAL CHARACTERISTICS

Input to the compiler consists of an OS/VS
COBOL program, written in the language
described in I~~-Y~_fQ~Q~_fo~Q2LY~.
The source program is read from the SYSIN
and, optionally, the SYSLIB or other
library data sets. Other input consists of
control cards for BASIS and COpy and for
batch multiple compilations.

The output of the compiler depends upon the
options specified by the user on the EXEC
statement, in the COBOL command string, or
at installation time. It may consist of:

1. A source program listing on SYSPRINTI

2. Compilation progress messages and
error messages on SYSTERM and error
messages on SYSPRINTI

3. The Data Division glossary on
SYSPRINTI

4. Formats of the object program global
tables on SYSPRINTI

5. Listing of the object code on
SYSPRINTI

6. A cross-reference listing on SYSPRINTI

7. An object deck on SYSPUNCH if the
compiler is not running under TSO or
CMS

8. The object program on SYSLIN

9. Debug data set on SYSUT5

20 section 1. Introduction

10. FIPS messages on SYSPRINT

11. Reformatted source listing with
expanded, embedded cross-referencing
information on SYSPRINT

12. Reformatted source deck on SYSPUNCH

13. A verb summary listing on SYSPRINT

The user can also request a conditional
or unconditional syntax-checking
compilation. When unconditional
syntax-checking is requested, the compiler
scans the source text for syntax errors and
generates the appropriate error messages,
but does not generate object text. When
conditional syntax-checking is requested,
the compiler scans the source text for
syntax errors and generates the appropriate
error messages. If no message exceeds the
warning (W) or conditional (C) level, a
full compilation is produced. Otherwise,
the object text is not generated.

"Compiler options" in this chapter
describes each of these options.

DESIGN OF THE COMPILER

The design of the COBOL compiler is based
on the structure of the source program.

In a COBOL source program, a clear
distinction is made between descriptions of
the operations to be performed and
descriptions of the data to be operated
upon. The Environment and Data Divisions
provide information about the files and
data items. The Procedure Division lists
the operations to be performed, and
specifies in what sequence and under what
conditions particular operations are to be
performed.

Diagram 1 (located within the Foldouts
at the back of this book) illustrates how
the compiler uses this distinction. Phases
10, 12, 20, 22, and 21, the data
translation phases, develop the Environment
and Data Divisions into areas of allocated
storage for data items (including the
specification of constant values where
required), and provide buffers and control
blocks for files. Phases lB, 3, 35, 4, 45,
50, and 51, the procedure translation
phases, break down the Procedure Division

loutput is written directly on SYSPRINT if
the NOLVL option is in effect. If the LVL
option is in effect, the output is written
on SYSUT6, which is used by phase 80 to
produce a listing on SYSPRINT.

into executable instructions. The output
of these phases is used by phase 6 or
phases 62, 63, and 64, the assembler
phases, to produce a machine language
program. The section "compiler Phases" in
this chapter discusses the function of each
phase.

The phases communicate with each other
by means of texts. Each phase produces a
text for input to a subsequent phase. The
text produced is the result of this phase's
analysis of the text it received. Texts
are written out on the compiler's work
files as a series of elements. (An element
is a logical unit of information; for
example, one type of Data IC-text element
is the description of a single data item.)
Those texts named "IC-text" ("internal
compiler") are passed from one translation
phase to another and those named "A-text"
("assembler") are used as input by phase 6
or phases 62, 63, and 64 (note that PO-,
Pl-, P1A, ATM-, and P2-texts are forms of
Pro.cedure IC-text). A summary of the
contents of each type of text is included
in the description of the phase that
produces it. The passing of text between
phases is shown in Diagram 1.

Phases also pass information in tables.
A table is a collection of information in a
specified format that is. left in storage.
Soae tables are built, ~sed, and released
all ~ithin one phase; others are passed
from one phase to another. (Some tables
are built by one phase for use by a
subsequent phase which does not follow
immediately; in this case, the table
remains in storage during all the
intervening phases. For example, CKPTBL
built by phase 10 for phase 21: this table
is resident in storage during phases 1B,
20, and 22, although not used.) The uses
of these tables are described in the
chapters on the phases which build and use
them.

A special type of table is the
dictionary. Each data-name, file-name, and
procedure-name in the program is entered in
the dictionary, together with all the
information collected about that item. The
dictionary is unique among the compiler's
tables in that it is the only table which
may overflow its allocated storage. If the
dictionary becomes too large, direct-access
data set SYSUT1 is used as a spill file to
hold the overflow. After the dictionary
has been built, the dictionary description
of an item is written (in Pl-text) in place
of that item's name (in PO-text). and the
dictionary is no longer needed.

Transfer of information also takes place
through COMMON, or the communications area,
a collection of cells of information

Licensed Material - property of IBM

resident in storage throughout compilation
and accessible to every phase. Each cell
holds a prescribed type of information;
these are listed in "Section S. Data
Areas."

The COMMON area is represented in each
phase by a DSECT which describes the
displacement of each field, with the same
name as it exists in the first phase 00
CSECT. The actual address of COMMON is
passed to the phase as a parameter of the
LINK macro instruction which gives control
to the phase.

COMPILER DATA SETS

The source module to be compiled appears as
input to the compiler on the SYSIN and,
optionally, the SYSLIB data sets.
Direct-access data set SISUTl and utility
data sets SYSUT2, SISUT3, SISUT4, SYSUTS,
and SYSUT6 are used as Hork files. The
output of compilation, depending on the
options specified by the source programmer,
appears on SYSPRINT. SYSLIN, SYSPUNCH, and
SYSTERM. Diagram 1 shows how these data
sets are used. Note that SYSUTS is not
really an internal work file, but is used
to hold output from the compile step if the
SYMDMP option is in effect. SYSUT6 is used
only ehen Federal Information Processing
Standard (FIPS) flagging has been
requested.

COMPILER PHASES

The following text lists the phases in the
order in which they receive control, and
summarizes the functions and text output of
each phase. The flow of information for
all phases, except phases 00, 01, 02, and
03, is shown in Diagram 1.

Phase 00 is resident in storage throughout
compilation. It handles most of the
interfaces to the operating system by the
compiler, both for receiving and returning
control, and for performing input/output
operations. When another phase has
control, it calls phase 00 to request
input/output operations and to access the
compiler's tables. Phase 00 also performs
interphase processing and links to the next
phase.

Introduction 21

Licensed Material - Property of IBH

Phas!L2.LlnFCBL01)

Phase 01 contains the installation default
values of compilation parameters. It
passes these to phase 02.

Phase 02 performs compiler initialization.
It processes the compilation parameters,
determines buffer sizes, and obtains
storage for buffers, tables, and the
dictionary.

Phase 03 issues error messages in the event
that a terminal error condition arises.
This phase receives control froll phase 00
and returns to phase 00, which then
terminates compilation of the program and,
for a batch compilation, all other programs
in the batch.

~h~§e 04-1IKFCBL04l

Phase 04 is an optional phase. It
processes the COpy statement. In addition,
it performs BASIS processing. COpy allows
insertion of pre written COBOL entries,
which reside in a library, into a COBOL
source program at compile time. COpy also
allows the user to alter these prewritten
entries at compile time. If the BASIS or
COpy facility is used, the LIB option must
be in effect. Phase 04 reads the
user-created COBOL libraries, and passes
the entire source program to phases 10 or,
optionally phase 12 and 1B or to phase 05
if LSTCOMP or LSTONLY is in effect.

Phase 05 is the first of three Lister
phases, which are used only when the
LSTCOMP or LSTONLY option is in effect. It
analyzes the syntax of the COBOL source
program and inserts syntactic markers
between the elements of the source program.

22 Section 1. Introduction

Phase 06 is the second Lister phase. It
inserts cross-reference information into
the. source program based on the syntactic
markers provided by phase 05. During one
or more passes of the file, phase 06
resolves references and merges them into
the source program.

Phase .ruL1IKFCBLOS)

Phase OS is the last Lister phase. It
produces Lister output in accordance with
the options specified. The output consists
of a reformatted listing of the source
program with cross-reference information;
the listing begins with a preface that
explains the cross-reference information
that is provided by the Lister. Depending
on the options in effect, phase OS will
provide a reformatted source deck and/or
pass the source program to phase 10 for
compilation.

Phase 10 (IKFCBL10l

Phase 10 is the first of the five data
translation phases. It reads the
Identification, Environment, and Data
Divisions of a source program and performs
syntax analysis for these divisions. From
the Environment and Data Divisions, it
produces Data IC-text, consisting of file
and data descriptions translated into
internal format., If the user requests a
source program listing, phase 10 produces
the listing for the Identification,
Environment, and Data Divisions.

Ph§§!L~IKFCBL12l

Phase 12 is the second data translation
phase; it receives control only if a Report
section appears in the Data Division. It
expands Report writer statements in the
Environment and Data Divisions into Report
Iriter subroutines, which are written ,out
as PO-text (see "Phase lB" below). If the
user requested a source program listing,
phase 12 produces the listing for the
Report Section.

Phase 1B is the first of the seven
procedure translation phases. It reads the

source program Procedure Division and
translates it into PO-text, one form of
Procedure IC-text containIng the procedure
statements in a format internal to the
compiler. In general, there is a
one-to-one correspondence between COBOL
Hords and PO-text codes. Data-names,
file-names, and procedure-names are
reproduced in PO-text in their external
EBCDIC forms. A dictionary entry is made
for every procedure-name. The dictionary
entry contains the internal procedure-name
(PN number) and attributes of the
procedure-name.

Phase 20, the third data translation phase,
reads Data IC-text and creates partial
dictionary entries, called !TF-text. Phase
20 also produces incomplete Dais A-t~
(see "Phase 21" belo~ for VALUE clauses.

Phase 22, the fourth data translation
phase, reads incomplete Data IC-text and
ATF-text. From these texts, it creates
complete entries for LDs, COs. and RDs
(record-level descriptions) and partial
(dummy) entries for SDs and FDs in the
dictionary. The entry for each item is
referred to by a unique dictionary pointer,
which is used by later phases as the
internal name of the data item. If any
data items tIere described by the OCCURS
clause tIith the DEPENDING ON option, phase
22 produces PO-text (see "Phase 1B" above)
for special sUbroutines called Q-Routines,
uhich calculate the lengths of the
OCCURS ..• DEP ENDING ON fi elds and the
locations of the fields that follow them.
Q~l::.te1&t, ~lhich provides information about
the point of definition of data-names and
file-names required for cross-reference
listings, is also created by phase 22 and
passed through phase 21 to phase 6 or 64.

Phase 21. the last data translation phase,
completes the SD and FD dictionary entries
and the translation of Data IC-text into
Data A-text. Q~~-!::.~l, ehich is used by
phase 6 or 64. provides address constants
to make the data area of the object program
addressable. and it specifies constant
values to be placed in the data area where
they are required (including fields for
DeBs. DECBs. FIBs).

Licensed Material - property of IBM

Phase 25 is an optional phase. It receives
control only if the user requested the
symbolic debug option (SYMDMP). Phase 25
builds two tables (DATA TAB and OBODOTAB) on
the debug data set (SYSUT5) which are used
by the object-time COBOL library debugging
subroutines.

Phase 3 is the second procedure translation
phase. It produces Rl=lg~l, a type of
Procedure IC-text, by replacing all
data-names, CD-names, file-names, and
procedure-names with their dictionary
attributes. If a procedure statement uses
the CORRESPONDING option, phase 3 breaks
this statement down into several
statements, each naming elementary data
items. If a Data Division glossary was
requested, phase 3 produces it.

Phase 35, an optional phase, is the third
procedure translation phase. It processes
USE FOR DEBUGGING statements and their
operands. Phase 35 is invoked only if WITH
DEBUGGING MODE is specified, and there are
USE FOR DEBUGGING declaratives present.
Phase 35 produces P1A-text to be processed
by phase 04.

Phase 4, the fourth procedure translation
phase, performs syntax analysis on the
P1-text. Its output is ~f.::.lgxt, in tlhich
complex and implied verbs (such as IF,
COMPUTE, CALL, PERFORM) are broken down
into simpler statements, and !~tl::.l~l
(which is a subset of P2-text) for the

UNSTRING verb.

Phase 45, the fifth procedure translation
phase, receives control only if an UNSTRING
verb is encountered in the source program.
It translates ATM-text from phase 4 into
P2-1~.i (see "Phase 4" above) for the
UNSTRING verb.

Introduction 23

Licensed Material - Property of IBM

Phase 50, the sixth procedure translation
phase, reads P2-text. Phase 50 begins the
process, which phase 51 will complete, of
breaking the P2-text down into ~£Q£edure
A-text -- assembler-like statements which,
in general, have a one-to-one
correspondence with machine instructions.
Phase 50 also produces ~Eiimization A-text,
used by phase 6 or 62 to eliminate
unnecessary storage duplication. The
output of phase 50 is Inte~~edia~ A-texi,
which consists of intermediate Procedure
A-text and intermediate optimization A-text
for input to phase 51; and, in the case of
literal definitions, final optimization
A-text for phase 6 or 62. For the
statement number option (STATE) or the

t symbolic debug option (SYMDMP), or the
j Interactive Debug facility (TEST), phase 50

generates linkages to object-time COBOL
library debugging subroutines.

Phase 51 continues the process phase 50
began of breaking down P2-text into
assembler-like statements, which in general
have a one-to-one correspondence with
machine instructions. The assembler-like
statements are written out as Procedure
A-igxt. Phase 51 also produceS-------
Qe.iimi~atiQ.!L!-t~i, used by phase 6 or 62
to eliminate unnecessary storage
duplication. For any of the debugging

I options (STATE, SYMDMP, FLOW, or the

J
Interactive Debug option (TEST», phase 51
generates linkages to object-time COBOL
library debugging subroutines.

Phase 6 is the assembler phase. It
combines all the information in the
Procedure A-text, Optimization A-text, and
Data A-text to produce an object program
suitable for input to the linkage editor.
The object program is written on SYSLIN
and/or punched on SYSPUNCH according to the
user's options. Phase 6 also produces an
object program listing, if requested. For
the statement number option (STATE), phase
6 produces ~eb~g-tgZ!, which contains the
card numbers of the source program
statements, and their location within the
object module.

24 section 1. Introduction

Phases 62, 63, and 64 are the optional
version of the assembler phase (phase 6);
these phases are given control if the user
requested the optimizer option (OPT), the
symbolic debug option (SYMDMP), or the
Interactive Debug option (TEST). Like
phase 6, the function of phases 62, 63; and
64 is to produce an object program suitable
for input to the linkage editor. Phase 62
reads and processes optimization A-text and
both phases 62 and 63 read Procedure A-text
which phase 63 converts into PrQ£gdure
A1-text. Phase 64 uses Data A-text and
procedure Al-text to complete the object
(machine language) program. The object
program produced by phases 62, 63, and 64
is optimized for instructions generated
from the Procedure Division. The object
program is written on SYSLIN and/or punched
on SYSPUNCH according to the user's
options. Phases 62 and 64 also produce an
object program listing if requested. For
the SYMDMP or the statement number option
(STATE), phase 63 produces Debug-text.

Phase 65 (IKFCBL65l

Phase 65 is an optional phase. It receives
control only if the user requested the
statement number option (STATE), the
symbolic debug option (SYMDMP), the flow
trace option (FLOW), or the Interactive
Debug option (TEST). For STATE, phase 65
uses the Debug-text written by phase 6 or
63 to produce two tables in the object
module. For SYHDMP and TEST, phase 65
builds the remaining tables for the Debug
data set on SYSUT5 (phase 25 has already
produced two of the tables and written them
on SYSUT5). For STATE, SYMDMP, or TEST
these tables are used by the object-time
COBOL library debugging subroutines. For
FLOW, phase 65 places the number of traces
requested in the variable portion of the
Task Global Table in the object module.
For any of the debugging options, the end
card of the object module is written in
phase 65. If the program is segmented and
if the OPT or SYMDMP option is in effect,
phase 65 copies onto SYSLIN and/or SYSPUNCH
the independent segments written on SISUT'
by phase 64.

Phase 6A is an optional phase. It receives
control only if the user requested a
cross-reference listing by specifying the

SXREF, XREF, VBREF. and/or VBSUH option.
In this case, phases 22 and 3 produced
~F-~~, specifying the internal card
number of the card in uhich every
data-name, file-name, and procedure-name in
the program was defined. This text was
read intermixed with other text and
rewritten by phase 6 or 64. Phase 6 or 64
also produced RE~te~, giving the card
number for every reference to a data-name,
file-name, or procedure-name. Phase 6A
uses these texts to urite the
cross-reference listing.

Phase 70 is given control only if source
program errors were detected by the
translation phases (phases 10 through 51) ,
or if the ERRHSG program-id is specified.
Its input is E-tex~. Any phase that found
an error produced an E-text element,
specifying the error message to be written.
These E-text elements aere passed on
intermixed tlith other text produced by the
phase until control vas passed to phase 51
(unless a syntax-checking compilation was
requested, in uhich case. E-text \:las
written on a separate data set as direct
input to phase 70 by phases 4, 50, and 51).
When phase 51 encountered an E-text element
aritten by another phase, or produced an
E-text element itself, it wrote the element
on a separate data set (see Diagram 1 for
the flou of E-text). This data set also
contained E-text from the data translation
phases. intermixed with Data A-text and
DEF-te:rct. In gener:al. E··text tias read and
saved in storage by phase 6 or 64. Phase
70 uses the E-text to produce a list of
error messages (and Harning messages if the
user requested them) on SYSPRINT and/or
SYSTERM. Phases 71 and 72 contain only
message texts and are linked, as needed, by
phase 70.

Phase 80 scans the source program for
deviations from the Federal Information
Processing standard (FIPS) and issues
messages along with the compiler print
output, including the source program
listing. Phase 80 is the last phase
executed when the LVL option is in effect.
Note that this phase can be optional only
if NOLVL was specified as the default at
installation time. Phase 80, which
performs its own input and output
operations, and obtains its input from
SYSUT6. Input consists of all output that

Licensed Material - Property of IBM

Bould have been written on SYSPRINT by
previous phases if the LVL option had not
been specified; phase 00 diverts all
SYSPRINT output to SYSUT6 whenever the LVL
option is specified. The output from phase
80 is written on SYSPRINT or SYSTERM; the
output consists of all data written on
SYSUT6 with the COBOL source program
flagged according to the specified FIPS
level. Upon completion, phase 80 sets the
return code and returns to phase 00.

CO~IPILER OPTIONS

The options listed beloa control certain
events during compilation. The compiler
recognizes the presence or absence of each
option. The user may set default values
for the options at installation time, or
they may be set via the EXEC statement or
the COBOL command under TSO or CMS at
compilation time. The NAME option may also
be set via the CBL card at compilation
time. The underscore indicates the defau~t
option that is assumed by the compiler if
not set otherwise.

SIZE = yyyyyyy
indicates the amount of storage, in
bytes, available for compilation.!
This information is used by phase 02.

BUF = yy,)'yyy
indicates the amount of storage, in
bytes, to be allocated to buffers. 1 If
both SIZE and BUP are specified, the
amount allocated to buffers is
included in the amount of storage
available for compilation. BuffeLs
are allocated in phase 02.

.§.2!!BQ;
NOSOURCE

I LIB
.H21U

indicates whether the source module is
to be listed or not. This listing is
produced by phases 10 and 12 for the
Identification, Environment, and Data
Divisions, and phase 1B for the
Procedure Division. If the compiler
is invoked by the COBOL Prompter under
TSO, the default value is NOSOURCE.
SOURCE is always in effect when LVL is
specified.

indicates that the SYSLIB data set is
to be opened. This information is
used by phase o~ to process BASIS and
COpy statements in the source program.

lThe SIZE and BUF compile-time parameters
can also be given in multiples of K
(K=1024 bytes), for example, SIZE=128K.

Introduction 25

Licensed Material - Property of IBM

If there are neither BASIS nor COpy
. statements in the source program,
specifying NOLIB allolls more efficient
processing.

LO!Q
NOLOAD

indicates whether the object program
is to be placed on a direct-access or
a tape volume so that the program can
be used as input to the linkage
editor. The object program is
written, if specified, by phase 6 or
62 and 64.

SYNTAX
CSYNTAX
NO.§!!!llX
NOCSYNTAX

indicates that a syntax-checking
compilation is to be done. When
SYNTAX (unconditional syntax-checking)
is specified, the compiler scans the
source text for syntax errors and
generates the appropriate error
messages, but does not generate object
code. Hhen CSYNTAX (conditional
syntax-checking) is specified, the
compiler scans the source text for
syntax errors and generates the
appropriate error messages. If no
message exceeds the warning (W) or
conditional (C) level, a full·
compilation is produced. oth~ruisef
the object text is not generated.
When SYNTAX is specified, all of the
following options are suppressed:
LOAD~ XREF. SXREF. CLIST, llOSUPHAP.,
PMAP. DECK. SYMDBP. OPT, TRUNC. Ftdw;
STiil'E, VBREF. VBSUM. COUNT, and NAME.
\,]hen CSYNTIIX is specified, the above
options are suppressed only if one or
more error (Ei or disaster (D) level
meisages are generated. If both
SYNTAX and CSYNTAX are specified,
CSYNTAX oV0rrides SYNTAX.

Bll.TCH
NOBA TCH
-----iJidicates whether batch compilation. is

reguested. uhich allol1s multiple
programs and/or subprograms to be
compiled with a single invocation of
the compiler. This information is
used by phases 10 v lB, and 6 or 64.
BATCH should not be specified for the
same compilation as SYMDHP. TEST, or
LVL. If both are specified, BATCH
overrides SYMDMP, TEST, or LVL.

NAME
ttQl!!!m

:i..xidicates to phase 6 or 64 that, if
the BATCH option is also specified, a.
linkage editor control card must.be
generated so that the object module
will be a separate load module.

26 Section 1. In trod uc tion

TER~J
NOT ERA
-----indicates to phase 00 that diagnostic

messages are to be directed to the
SYSTERM data set as well as the
SYSPRINT data set. Progress messages
are also directed to the SISTERH data
set. If the compiler is invoked under
CMS or by the COBOL Prompter under
TSO. the default value is TERM.

NUM
NONUM
-----indicates to phases 10. 12, and 1B, or

04 that line number.s recorded in
columns 1-6 of the source statements
are to be passed to the subseguent
phases in the internal compiler text
instead of compiler-generated card
numbers. If a source stah1ment number
contains a nonnumeric character or
appears out of seguence. the compiler
generates a. card number egual to the
last source statement number plus 1.
Hence" source statement numbers uill
appear in diagnost.ic messages and.
PMAP. CLIST. XREF, SIREr. REIDY TOleE.
FLO&. SYMDMP, and STITE references
rather than compiler-genera:ted card
numbers. If the compiler is invoked
by the COBOL Prompter under TSar the
default value is NUH.

OPT
NOOPT
-----oindicates that the object. module is to

be optimized by phases 62, 63, and 64
for instructions generated from the
Procedure Division.

FLOW=n[n] or FLOW
NOFLOlil
--indicates ahetter the object pl:ogram

ii to include the floK trace option.
This option causes a formatted trace
6f the last n[n] procedures executed
before an abnormalterrnination to be
printed at execution time. If this
option is specified, special P2-text
elements are produced by phase 4, and
phase 51 generates calls to the COBOL
library flou trace subroutine. Phase
02 places the number of traces
reguested in COMMON. At execution
time, initial control is passed to the
COBOL library flow trace subroutine by
the object-time COBOL library
debugging control subroutine. ehich is
called during INIT3.

STATE
NOSTATE
-----rJidicates ~hether the object program

is to include the statement number
option. whic~ prints the last
statement number and verb number
executed before the occurrence of an
abnormal termination. If this option

is specified, phase 6 writes
Debug-text on SYSUT2 or phase 63
writes Debug-text on SYSUT4 for use by
phase 65. At execution time, control
is passed to the COBOL library
statement number subroutine by the
object-time COBOL library debugging
control subroutine. STATE'shollld not
be specified for the same compilation
as SYHDHP. If both are specified,
SYHDHP overrides STATE.

SYKDHP
NOSYHDHP
----~ndicates that a formatted symbolic

dump of specified data areas is to be
printed on SYSPRINT dynamically, at
various points, as requested prior to
execution of a program; or that, in
the event of abnormal termination, a
formatted symbolic dump of all data
areas is to be printed on SYSPRINT.
SYHDKP should not be specified for the
same compilation as BATCH or STATE.
If both BATCH and SYHDHP are
specified, BATCH overrides SYKDKP; if
both STATE and SYHDHP are specified,
SYHDHP ~verrides STATE. If more than
one COBOL program with the SYKDKP
option is included in the job step and
if all of the Debug data sets are on
the same direct-access device, each
must be given a unique name.
Specification of SYKDHP automatically
causes OPT to be in effect for the
compilation. If WITH DEBUGGING KODE
and USE FOR DEBUGGING declaratives are
specified, SYHDHP will be cancelled.

TEST
E~

indicates that the program is to be
executed with the TSO Interactive
Symbolic Debug package. This option
overrides the STATE, FLOW, COURT, and
If WITH DEBUGGING HODE and USE FOR
DEBUGGING declaratives are specified,
SYKDKP will be cancelled.

SXREF
E§llll
UEF
IQliR

indicates that a cross-reference
listing is to be produced. If the
SXREF or the XREF option is specified,
special text elements are produced by
phases 22, 3, and 6 or 64, and phase
61 is called to generate the listing.
If SXREF is specified, an
alphabetically ordered cross-reference
listing is generated. If XREP is
specified, a cross-reference listing
ordered by source statement sequence
is qenerated. SXREP should not be
specified for the same compilation as
XREP. If both SXREP and XREF are
specified and if the compiler was

Licensed Material - Property of IBM

invoked by the COBOL Prompter, SXREF
overrides XREF. otherwise, if both
are specified, the last option
specified is used.

CLIST
1!2CLISI

indicates that global tables, literal
pool, register assignments,
Working-storage message, and a
condensed listing are to be produced
by phase 6 or phases 62 and 64. The
procedure portion of the listing will
contain only the source or
compiler-generated card number, verb
name, and relative location of the
first instruction for each verb.
CLIST should not be specified for the
same compilation as PRAP. If both
PH1P and CLIST are specified, PHAP
overrides CLIST.

SOPHlP
IQ§UPHA!

causes phase 6 or phases 62, 63, and
64 to suppress their output if a
D-Ievel or E-level error messaqe is
generated by the compiler.

DKAP
NODUP

indicates whether phase 3 is to print
a Data Division qlossary and whether
phase 6 or 62 is to print global
tables, literal pool, register
assignments, and the Working-storage
message.

PUP
IQl!KlP

W
HOZIS

indicates Whether qlobal tables,
literal pool, register assiqnments,
working-storage message, object code
listinq, and assembler language
expansion of the source module is to
be listed by phase 6 or phases 62 and
64. PKAP should not be specified for
the same compilation as CLIST. If
both PK1P and CLIST are specified,
the last one specified has precedence.

indicates whether the compiler is to
generate code to strip the sign when
comparing a signed external decimal
field to an alphanumeric field. If
ZiB is specified, the signed external
decimal field is moved to an
interaediate field and has its sign
stripped before beinq compared to the
alphanumeric field. Note that the
default value cannot be chanqed at
installation time.

TRONC
IQUllI£

indicates whether standard truncation

Introduction 27

Licensed Haterial - Property of IBM

is to be applied to computational
items. If TRUNC (standard truncation)
is specified and the number of digits
in the sending field is greater than
the number of digits in the receiving
field, the computational item is
truncated to the number of digits
specified in the PICTURE clause of the
receiving field when moved. with
nonstandard truncation, they are
truncated according to the actual
amount of storage each item occupies.
This option determines the
instructions generated by phase 51.

DECK
NO DECK -----or

~ndicates whether the object program
produced by phase 6 or by phases 62
and 64 is to be punched by phase 00 on
SYSPUNCH or, under CMS, on the. virtual
punch. Under TSO, the object program
is never punched.

RESIDENT
!Q!!!.§Im;.l!I

indicates whether the library
management facility is to be used.
The library management facility allows
a single copy of a library subroutine
to be shared by all COBOL programs in
the same or different partitions or
regioris. If DYNAM is specified,
RESIDENT is also in effect for the
compilation.

DYNAM
NODYNAM
----:indicates whether all user subprograms

are to be dynamically loaded at object
time. If DYNAM is specified, RESIDENT
is also in effect for the compilation.

Q.!!2:!!
APOST

a!2
NOSEQ

indicates to phases 10, 12, and 1B, or
04 to accept either the double
quota tion marks (II) or the apostrophe
(') as the character to delineate
literals and to use that character in
the generation of figurative
constants.

indicates whether phases 10, 12, and
1 B, or 04 are to check the sequence of
the source module statements. If the
statements are not in sequence and SEQ
is specified, a message is printed.
If the compiler is invoked by the
COBOL Prompter under TSO, the default
value is NOSEQ. If LSTCOMP or LSTONLY
is in effect, this option is ignored.

LINECNT = nn
indicates the number of lines to be
printed on each page of the compiler

28 Section 1. Introduction

~!
FLAGE

output listing. It is used as control
information by phase 00.

indicates to phase 70 the type of
messages that are to be listed for the
compilation. FLAGWindicates that all
warning and diagnostic messages are to
be listed. FLAGE indicates that all
diagnostic messages are to be listed,
but not warning messages.

SPA~J.1
SPACE2
SPACE3

SYST
SYSx

indicates to phase 00 the type of
spacing to be used on the listing.

indicates whetherSYSOUT or SYSOUx
(where 'x' is an alphanumeric
character) is the DDname of the file
to be used for data when SYSOUT is
specified (implicitly or explicitly)
in a DISPLAY statement. When more
than one program in a job step access
this file, the DDname specified in the
first program is used. .

VE!!~
NO VERB

indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if the
PKAP or CLIST compiler option is
specified or if READY TRACE is used in
the source program.

LVL.= c
NOLVL
-----indicates whether the Federal

Information Processing Standard (FIJ;>S)
flagger is to be activated. c
indicates the level of the standard to
be checked (A = low; B = low
intermediate; C= high intermediate; D
= full standard). Where LVL = c is
designated as the default at
installation time, NOLVL cannot be
specified at compile-time.

ENDJOB
NOENDJOB
-----rndicates whether or not, at the end

of each job, COBOL library subroutines
are to be called to delete modules,
free storage acquired through GETKAINs
issued by the COBOL program or COBOL
library subroutines, close DCBs opened
by subroutines and free their
associated buffers. Specifying ENDJOB
prevents fragmentation of storage fo~
programs executed on the system after
the COBOL program. This option takes
effect ata STOP RUN statement in any

program and at a GOBACK statement in a
main program only.

LSTONLY
LSTCOMP
!l.Q1.§.!

LSTONLY indicates that a listing of
the reformatted source program is to
be produced, but that the program is
not to be compiled; if the FDECK
option is in effect, the updated
source deck will also be produced.
LSTCOMP indicates that, in addition to
the listing and optional deck produced
by the LSTONLY option, the source
program is to be compiled. NOLST
indicates that the Lister is not to be
used. When NOLST is in effect, the
FDECK, CDECK, LCOL1, and LCOL2 options
are ignored. The L120 and L132
options are ignored if NOLST and
NOBATCH are specified.

CDECK
!l.Q£!lEq

CDECK indicates that the updated and
reformatted copy libraries are to be
punched. If the FDECK option is in
effect, the libraries will be punched
as part of the source deck. If the
NOFDECK option is in effect, the
libraries will be punched as a
separate deck. If NOLST is in effect,
this option is ignored.

FDECK
NOFDECK
-----pDECK indicates that an updated source

deck is to be produced. If the CDECK
option is in effect, the updated
source deck will include the updated
and reformatted copy libraries. If
NOLST is in effect, this option is
ignored.

LCOL1
LCOL2
-----LCOL1 indicates that the Procedure

Division is to be listed in
single-column format. LCOL2 indicates
that the Procedure Division is to be
listed in double-column format. If
NOLST is in effect, this option is
ignored.

L120
11J£

L120 indicates that the print line is
120 characters long. L132 indicates
that it is 132 characters long. If
NOLST is in effect, this option is
ignored unless BATCH is specified. If
L120 or L132 is specified on an EXEC
PARM card, the option is in effect for
any compilation with LSTCOMP or
LSTONLY in the batch compilation. The
L120 or L132 option on a CBL card is.
ignored.

COUNT
liQCO!B!1

COUNT indicates that an execution
summary is to be produced at the end
of execution of the compiled program.

VB REF
liQY!H!£;!:

VBREF indicates that a verb
cross-reference listing is to be
produced for the compiled program.
The VBREF option also implies the
VBSUM and VERB options.

VBSUM
NOVBSUM
--VBSU~! indicates that a verb summary

listing is to be produced for the
compiled program. The VBSUK option
also implies the VERB option.

DU.liE.
NODUMP

A!lY.
NOADV

DUMP indicates that the compiler will
issue an ABEND for a D-level message
condition caused by a possible
compiler error. NODUMP indicates that
the ABEND will not be issued and that
the D-level message will be produced.

indicates uhether or not records for
files with WRITE .•. ADVANCING need
reserve the first byte for the control
character. ADV specifies that the
first byte need not be reserved.

LANGLVL (11 £)
indicates which level of the American
National Standard (ANS) COBOL
definition should be used by the
compiler when it encounters those few
language elements whose meaning
changed from 1968 to 1974. The ANS
X3.23-1968 interpretation is indicated
by LANGLVL(1); the ANS X3.23-1974
interpretation is indicated by
LANGLVL(2), uhich is also the default.
New language elements (those not in
the 1968 ANS standard at all) are
unaffected by this option. They will
be accepted by the compiler even if
LANGLVL(l} is specified. All IBM
extensions to the language are also
unaffected.

STORAGE REQUIREMENTS

Phase 00, which is resident in storage
throughout compilation, occupies 18K bytes
of storage (where K=1024 decimal). The
additional storage required by each of the
other phases is as follows:

Introduction 29

Licensed Saterial - Property of IBM

Phase -01"
02
03
04
05
06
08
10
12
21
22
25

3
35

4
45
50
51

6
62
63

storage
.. t!.!L12n~L

236
14K

2K
20K
20K

4K
20K
38K
36~
26K*
34K*
10K*
16K**

8K
52K

8K
42K
50K
34K
20K
10K

30 Section 1. Introduction

64
65
6A
70
71
72
80
1B
20

(

26K
8K

12K
28K
20K
16K
36K
34K*
26K

Each. phase except phases 01 and 02 uses
TAMER tabl.es. and requires table space. The
amount of space needed for tables varies
greatly with each compilation.

------~-------------
*These pbases build' th~dicti~nary and
include from 2K to 3K bytes for ACCESS
dictionary-handling routines.

**An additional lKbytes is in9luded for
ACCESS routines; the dictionary is also
present .. dlJring th.isphase. .

Phase 00 (IKFCBLOO), the interface between
the COBOL compiler and the operating
system, is resident in storage throughout
compilation. Its major functions are:

1. Receiving control from the operating
system and, at the end of compilation,
returning control to it.

2. performing reallocation and linkage
functions after each of the other
phases has completed its operations.

3. Handling input/output requests from
the other phases and providing
routines to handle permanent
input/output errors.

4. Manipulating tables for the other
phases.

5. Providing a communications area
(COMMON) for the other phases.

RECEIVING CONTROL FROM THE OPERATING SYSTEM

Compilation is invoked by an. EXEC control
card or by a CALL, LINK, ATTACH, or XCTL
macro instruction containing the
compilation parameters. Phase 00 receives
the call at entry point START, and in
routine LINKA links to phase 01 and passes
the parameters to it for processing.

When phase 4, 6, 08, 64, 65, 6A, or 70 is
the last phase, it calls phase 00 to
terminate compilation of the current
program. If there are no more programs ~o
compile (BATCH), phase 00 puts a codeirito
register 15 indicating the highest source
program error severity level that was
encountered and branches on register 14 to
return to the operating system. If an
error occurs that stops compilation (see
"syntax-checking Compilations" and
"Terminal Error Conditions" in this
chapter), phase 00 returns to the operating

system in the same manner. When LVL is in
effect, phase 80 is the final phase and it
returns control to the system.

Phase 00 keeps track of which processing
phase is currently active by means of a
2-byte cell named LINKCNT. Routine LINKA
increments LINKCNT by 2 before it links to
the next phase so that, for example, the
value of LINKCNT is 2 at entry to phase 01.
LINKCNT is not incremented for phases 02,
71, and 72 since the linking of these
phases is transparent to phase 00. Also,
there is no unique value assigned to
LINKCNT for phase 03, the error handling
phase.

Figure 1 traces the routines used by
phase 00 for both normal and abnormal end
of com pila tion •

Other phases call phase 00 for
between-phase processing or for
input/output request with the following
sequence:

L
BALR
DC
DC

Notes:

register,=A(COS)
0, register
X'XY'
X'ZZ'

See note 1.

See note 2.
See note 3.

~-.--A(COS) is the relocated address of the
entry point to phase 00. Routine
LINKPHl passes this address.in
register 1 to each phase that it calls
into storage.

2. 'XY' is a hexadecimal linkage code.
'X' bits indicate the function to be
performed. 'Y' bits indicate the
affected file. 'Y' bits are ignored
when the functio.n does not involve a
file. See Figure 2 for 'XY' values.

3. 'ZZ' indicates functions to be
performed by phase 00. See Figure 2
for 'ZZ' values.

Other phases call the table handling
routines of phase 00 at the entry point of
each routine. These routines are discussed
in "Appendix A. Table and Dictionary
Handling."

Phase 00 31

Licensed !aterial - property of IBM

Permanent I/O Error
ro-
I SYNAD routine
IStore pointer to I
lexit code and reg-I
listers 0 and 1 in I
ICOMMON I
L-------~I---------~

L--____________ __

COPY/BASIS Library Error
or TAMER Cannot Continue

r-----------------,
IStore address of I
lerror message codel
lin COMMON I
I I
I I
L-------~i------~

---->!
I
V

I i
IIssue RETURN macrol
linstruction, if I
Inecessary, & link I
Ito phase 03 to I
Ihandle error I L---____________ ~

r--- ---,
ILink to phase 80 I
Ifor FIPS listing I
1 1<
1 1
1 I
I I -.I

I
I
I
V

I -,

IRestore system's I
I registers I
I I
1 I
, I
I I ~

I
I
I
V

I ---,

IBranch on register,
114 to the invoker I
lof the compiler 1
Icontrol program I
1 1
L--- !

Figure 1. Flow of Control at End of Compilation

32 Section 2. Method of operation

Call from a Phase with
Request for End of Job

r I

!Set EOJCALL switch!
land issue RETURN I
Imacro instruction I
I I
I I

- ,-------~
I ,
V

r -,
IGo to appropriate
linterlude routine
Ito purge files
I
I
I ---I ,

I
I
V

r --,
IRelease storage I
land close files I
I ,
I I
I I
L-----__ ~I--------

I
I
I
V

~

r ---,
IReset SPIE, place I

If LVLIRETCDE in register I
115 I
I 1
I I
I ,-----'

I

IIf
1
I
V

NOLVL

IRestore system's
I registers
I '
I
I
I~-------""I--------'

I
I
I
V

, I

IBranch on register I
114 to control
I program
I
I
I

Licensed Material - Property of IBM

r-.,,-- I

I X Code I Routine Called I Function of Routine I
i-- ,+- ~
I 0 I READ I Reads a utility data set. Passes back I
I I I to caller the storage address of the I
'I I logical record. I
I- I , -1
I 1 I to/RITE I PUTN: Writes a record, where caller I
I I , gives address and length of data. I
! I +- I
I 2 I WRITEI I PUT: Writes Data IC-text, where callerl
I I I gives address of data and the first I
I I I tuo bytes of data give length. I
I- I +- -I
I 3 I OPENLIB , Issues OPEN to library data set, and ,
I I I passes baclt the return code to the I
I I I calling phase I
I- I t- I
I 6 I CLOSET I Issues SVC 23 (temporary close). If a i
I I I second parameter byte containing I
I I I XIOO' follows the 'XY' code, the datal
I I I set uill not be purged before TCLOSE.I
1 I , If a second parameter byte contains I
I I I X'01 1 • the data set viII be purged I
I I I before TCLOSE. I
j I +--- I
I 7 I READ I Reads SYSIN. I
I I +- ~
I 8 I WOUT I Pads to the right with blanks to fill I
I I I up a record for the prin t da ta set. ,
I- I I I
I 9 I SEGPNT I Positions access mechanism to a disk I
I I i address supplied by caller (on ,
I I I SY SUT1) and reads the record. See I
I I I "segmentation Operations" in this I
I I I section. ,
I I-- I- i
I A 1 LINKB I Issues RETURN to terminate the previous,
I I I processing phase. I
I-- I +- ~
I B I EOJ I Returns to opera ting system. t
1----1-- I I
I C I SEGNOTE I Records the relative disk addresses of I
I' , Procedure A-text on SYSUT1 for phase I
I I , 51. See" Segmenta tion I
I I I operations" in this section. I
I- ,+- I
, D I EJECT or SKIP I Positions printer. The exact function I
" I is determined by a second parameter ,
I I , byte as follows: I
" I X'OO' eject I
I' I X'01' skip 1 line I
I' I X' 02' skip 2 lines I
I' ,X'03a skip 3 lines i
i I +- f
IE, WG01 ,PUT: Hoves logical record into a I 'I , buffer. If a second parameter byte ,
I' I containing X'CC' follolls the 'XY' ,
I' , code, the call lias not from phase 00 I
I I , internally but from another phase. I
I- I I I
, F ,CLOSER , When a file is to be closed, moves 'FF"
I I , into buffer to indicate end-of-file, I
I I , checks previous input/output I
I I , operation, writes and closes the ,
I' , file. I
"I ---I

Figure 2 (Part 1 of 2). Linkage Codes to Phase 00

r----,------,
IY Code I Data Set I
I-- I ~
I I I
I I I
I 1 I SYSUT1 I
I-- I ~
I I I
I 2 I SYSUT2 I
I-- I ~
I I I
I I I
I 3 I SYSUT3 I
I-- I ~
I I I
I I I
I I I
I----+------~
I I I
I I I
I I I
I I I
I I I
I I I
I 4 f SYSUT'l I
I-- I ---l
I 5 I SYSIN I
I ; -I
I 1 I
I 6 ,SYSPRINT I
I-- I ---l
I I I
I 1 ,
I I I
I I I
1 7 ,SYSPUNCH I
I-- I I
I I I
I 8 ,SYSLIN I
I-- I ~
I 9 I SYSLIB ,
I-- I I
I 1 I
, I I , , ,
,A I SYSTERM I
I-- I ~
I B 1 SYSUT5 I
I I I
, I I
I I I
I I I
1 I I
I I I
I I I
I I I
I , I
I , I
I I I
I I I
I I I
I I I
I I I
, I I
I I ,
I I I
~ _____ L--______ ~

Phase 00 33

Licensed Material - property of IBM

• I I
I ZZ Code I Meaning i
1--------1 -------1
I 01 I NOTE macro instruction to retrieve the absolute address. I
~ -~------ ~
I 02 I POINT macro instruction to cause processing to start at the specified block I
I I in the data set. I
~ -l------- ,
I· 03 I POINT macro instruction to rewind the data set. I
I I ~------------------------~
I 04 I BRITE UPDATE (disk only). I
~ I ---------------~---- I
I 05 ,Hhen preceded by an 'XY' code of Xe 22', WRITE on SYSUT2 from SYSUT5 buffer I
I I with a buffer size of 512 bytes; when preceded by an 'XY' code of X'02', I
I I READ from SYSUT2 into SYSUT5 buffer ~ith a buffer size of 512 bytes. I
L---______ ~. ______ __

__ _________________________________ J

Figure 2 (Part 2 of 2). Linkage Codes to Phase 00

Figure 3 shows the flol" of control for
processing bet~leen phases.

When the calling code received by phase
00 indicates that the next phase is to be
linked (I'AO'), phase 00 issues a RETURN
macro instruction and then uses LINKCUT to
determine ~lh ich phase interlude routine to
branch to.

Each interlude routine sets the PURGER
string and branches to purge data sets and
issue progress messages, as required. The
interlude routine then performs TCLOSE.
OPEN, and CLOSE operations, as necessary.
maltes any required changes to the buffer
pointer table through which buffers are
assigned to data sets; and determines which
phase is to be linked next and sets LIRKCNT
accordingly.

Each interlude routine exits to a common
routine in tlhich the value of the COBOL
space constant for the next phase is set.
If the next phase is larger than the
previous phase. the TIHER interlude routine
is called to move tables and free main
storage as necessary.

Finally, LINKCNT is incremented by 2,
and control is passed to the next phase
through the execution of a LINK macro
instruction.

Figure 4 shoMs the conditions under
Which optional phases are called.

If the LVL option has been specified
phase 00 links to phase 80 for Federal
Information Processing Standard flagging.

34 Section 2. Method of Operation

PHASE INPUT/OUTPUT REQUESTS

Phase 00 translates all phase input/output
requests for all phases except phase 80
into branches to data management routines
or SVCs. It switches the buffer pointers
in the point table if the data set is
double buffered, blocks and unblocks the
record s. and checlcs to determine whether
the operation is completed successfully.
If necessary, it also calls TAMER to handle
dictionary spill during phase processing
(see the section "Table and Dictionary
Handling"). Figure 5 sholls the
input/output requests for ea.ch phase.
Figure 2 shows the linkage codes used in
these requests.

When a permanent input/output error
occurs in any phase except phase 80, a
SYNAD routine (S1AA, SYlB, or SYAD) is
called to handle the error. and ghase 03,
the error handling phase, is linked. Phase
03 issues a SYNADAF macro instruction to
obtain the input/output error message and
then issues a iTO (write-to-operator) macro
instruction to print the message obtained.
Finally, phase 03 sets LINKCNT to 2 more
than the value assigned to phase 70 and
returns to phase 00 with an end-of-job
calling code (X'BO'). compilation is
abandoned via the routines described
earlier in this section under "Returning
Control to the Operating System."

Phase xx
r-
IWhen processing
t is completed.
t BAtR to COS

cos

• I
I
I
V

.-- I

ICalling code I
I (XIAO') indicates I
Ithat LINKB is to I
Ibe called I
I I
L--- J

,

I
I
I

LINKB V

tIssue RETURN
linstructions
I

I
JIlacrol

I
I , _____ J

I
I
I
V

CD

Licensed Material - property of IBM

-,--
.....

A\
I
t

CD
I
I

INTxx V , ,
IMove in purge I
Istring I
I I
L-- I J

I
I
I
V

r ,
IPurge, issue I
Iprogress messages I
las necessary I
I I
I I
I

I
I

Interlude I
Routine V

r, --------'----------,

ITCLOSE, OPEN, I
I CLOSE, as I
I necessary I
L. ________ ~,-------~

I
I
I
V , ,

IReassign buffers, I
las necessary I
L ________ ~,~------~

I
I
V

r ,
I Determine next I
Iphase to be calledl
land set LINKCNT I ,

I
V

®

,

I
1
V

ISet COBOL space
Ifor next phase
I
L--_____ ~,--------~

I
I
I
V , ,

ITAMER interlude I
Iprocessing if nextl
Iphase is larger I
Ithan last phase I
I I
L-- I J

I
I
I
V

r-----------------~
IIncrement LINKCNT
Iby 2
I
L--------'i--------~

I
I
I
V

I i

ILink to next phasel
I I
I J

Figure 3. Flow of Control for Processing Beteeen Phases

Phase 00 35

Licensed Material - Property of IBM

r-- ,--------,
I optional Preceding I Compiler I
I Phase Phase I option I
r- I .,
I 04 02 I LIB I
I I ,
I 05 02 I LSTONLY or I
I I LSTCOMP I
I-- I ,
I 06 05 I LSTONLY or I
I I LSTCOMP I
l- I ,
I 08 06 I LSTONLY or I
I I LSTCOMP I
r- t-- ,
I 25 21 I SYMDMP or I
I I TEST I
I t-- ,
I 35 30 I USE FOR I
I I DEBUGGING* I
r- t-- I
I 6A 60 I XREF I
I 64 I SXREF I
I 65 I VBREF I
I I VBSUM I
I-- t-- ,
I 62 51 I OPT I
I 63 I I
I 64 I I
I I .,
I 65 60 I SYMDMP or I
I 64 I TEST I
I-- I .,
I 70 Varies I If errors I
I , in source I
I I program I
I I 1
I 80 60 I LVL I
I 6A I I , 64 I I
I 65 I I
I 70 I I
I-- , ..
I*The WITH DEBUGGING MODE clause is I
I specified under the SOURCE-COMPUTER I
I paragraph, and the USE FOR DEBUGGING I
I statements follow the DECLARATIVES I
I header. I
L-- I

Figure 4. Optional Phase processing

36 Section 2. Method of operation

t>j
IQ I
~
H
<D

U'I .
II>' I
(}
cT
c:
cT
'4

0
HI

cT
=r"
<D

n
0
s
"Cl
.....
<D
H

t::I
III
cT
III

til
<D
cT
III

III
I:l
P.

III
~
HI
HI
<D
H

I>"
[/)

III
IQ
I:l
S
(I)
I:l
cT
III

."
III
H
cT

."
=r" 0
III HI
III

-..I <D

0 I
0

I
W
-..I

Phase SYSUTP SYSUT2' I SYSUT3 SYSUT45 SYSUT53 SYSIN SYSPRINT 6 SYSPUNCH SYSLIN SYSLIB SYSTERM

00
WRITE

OPEN spill OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN OPEN
02

WRITE CLOSE CLOSE WRITE

03 OPEN

Purge/TClOSE

00 if LIB &
PURGE

INT01 1 LSTONLYor
LSTCOMP
Buffers 4, 5 --

WRITE! WRITE
WRITE- -

READ OPEN
04 (if LIB) TCLOSE! Purge!

if LIB TCLOSE if LIB READ
READ if LIB

00
Purge/
TCLOSE if

INT04 LSTCOMP
or LSTONLY

05 (if LST)
WRITE READ READ READ
if LIB if LIB if LIB if NOLIB

00 Purge, TCLOSE TCLOSE
INT05 TCLOSE if LIB if LIB

06 (if LST) READ READ
WRITE WRITE

00 Purge. TCLOSE
INT06· TCLOSE

08 (if LST) READ WRITE WRITE WRITE WRITE

00 (if Purge,
Purge,

Purge if
LSTCOMP) TCLOSE TCLOSE FDECK!
INT08 if LIB

TCLOSE
CDECK

00 (if Purge if
LSTONLY) CLOSE CLOSE CLOSE CLOSE CLOSE FDECK! CLOSE CLOSE

INT08 CDECK, CLOSE

WRITE READ READ WRITE READ
10 Data Ie-text if LIB! if NOLlB!

E-text LSTCOMP NOLST

00
INTlO

Buffers 2,3 Buffers 4,5 Buffer 1

I Numbers specified in INTxx routines indicate the buffers used by the next phase. SYSIN. SYSPRINT, SYSPUNCH, SYSLIN. SYSLIB. and SYSTERM all use buffer 6,
2Use of SYSun: Phases 18,22,21, 25, and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end 01 phase 3. X DAP I~ a macro

instruction that reads what has previously been written (spilled); XDAP writes directly from tne dictionary to storage and. therefore. uses no buffer. After phase 3. SVSUT1 is available for use as a utility data set.
3 Use of SYSUT5: If the SYMDMP or TEST option is not in effect. SYSUT5 is not used.
4 Reading by phase 70: Phase 70 only reads E·text from SYSUT4 if the SYNTAX option is in effect or if phase 6 or phases 6.2. 63. and 64 have been bypassed, that is. no reading has been done since the TCLOSE in INT51. Otherwise, phase 6

or 64 passes the E·text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase "6 or 64 writes the E-text nn SYSUT3.
sUse of SYSUT4: .Phase 04 writes on SYSUT4and phases 10and 1S read fn~m SYSUT4 only It the LlS".Qption is in e:ffect, _If U:;e LlB_ option was not specified, that
.is, BASIS or COpy statements are not present i!.l" the source prC?!lram, phases 10 and 1 B read from SYSIN.

6u.se of SYSUT6: The SVSUT6 OOriame replaces"SYSPRINT wh-en LVL is specified. After phase 80 I?roc"e~"sing~ FI"p~"f"I"~.99..e-:_.o.!llp.!l!i§_Qi"t..ected t9 SYSPRINT or SYSTERM.
"' Use or SYSUT2: "Phase 04 outputs sour~ programs 1:0 SVSUT2 as BASIS control cards are processed. Phase 04 then reads SYSUT2 in order to process any COpy statements.

--

I
I
I

I

!

I:'"'
(}
CD
I:l
III
<D
P.

::0:

~
CD
H
III

'tI
H
o

"Cl

III
cT
'4

o
I-h

H
tIl
::0:

l.u '" CD
1.0
C

til H
(1) (1)

0
rt-.... l/1
0
::s
IV i>"

0
rt-....

IJI CI
(1)
rt- rt-
::r- o..c:
0
~ 0

HI
0
HI rt-::r-
0 (1)

'C!
(1) g H
PI EI
rt- 'C!
0
1:1 (1)

H

t::I
PI
rt-
PI

til
(1)
rt-
IJI

PI
1:1
~

til
C
HI
HI
(1)
H

i>"
IJI
IJI

1.0
::s
EI
(1)
1:1
rt-
IJI

'iii
I»
H
rt-

IV

0
HI

;;

Phase SYSUT1 2 SYSUT2 SYSUT3 SYSUT4s SYSUT53 SYSIN SYSPRINT 6 SYSPUNCH SYSLIN SYSLIB SYSTERM

12 WRITE WRITE READ READ WRITE READ
(Report Writer) PO-text Data IC-text if LIB! if NO LIB!

E-text LSTCOMP NOLST

00
INT12

Buffers 2,3

WRITE WRITE READ READ WRITE READ
lB2 XDAP PO-text if LIB! if NOLlB!

E-text LSTCOMP NOLST

Purge TCLOSE Purge
00 TCLOSE

INTIB
Buffers 4,5 Buffers 1,6

READ WRITE
Data IC-text Data IC·text

202 E-text Incomplete
Data A-text

ATF-text
E-text

00
TCLOSE Purge

INT20
TCLOSE

Buffers 2,3 Buffers 4.5 Buffers 1,6

WRITE WRITE WRITE READ
XDAP PO-text for Data IC-text Data IC-text

222
Q-Routines Data A-text Incomplete

DEF-text Data A-text
E-text ATF-text

E-text

00 Purge TCLOSE

INT22 TCLOSE
Buffers 2,3 Buffers 4,5 Buffers 1,6

WRITE WRITE READ WRITE
XDAP PO-text Data IC-text Data A-text

212 Data A-text E-text
DEF-text DEF-text
E-text

00
Purge TCLOSE Purge

INT21
TCLOSE

Buffers 2.3 Buffers 1,6 Buffer 4

If READ WRITE WRITE
SYMDMP DEF-text E-text DATATAB

252 OBODOTAB

I Numbers specified in INTxx rout;nes indicate the buffers used by the next phase. SYSIN. SYSPRINT, SYSPUNCH. SYSLIN, SYSLIB. and SYSTERM all use buffer 6.
2Use of SYSUT1: Phases 1 B, 22, 21, 25, and 3 use the dictionary. If dictj~nary spill occurs, SYSUT1 is used to write the o~erflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3. XOAP is a macro

instruction that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer. After phase 3, SYSUTl is available for use asa utility data I8t.
3Use of SYSUT5: If the SYMOMP or TEST option is not in effect, SYSUT5 is not used.
4 Reading by phase 70: Phase 70 only reads E-text from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62. 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSe in INT51. Otherwise, phase 6

or 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text~on SYSUT~.

SUse ofSYSUT4: Phase 04 writes on SYSUT4and phases 10and 1B read from SYSUT4 only if the LIB option is in effect. If the LIB option was not specified. that
is, BASIS or copy statements are not present in the source program, phases 10 and 1B read from SYSIN.

6UIS of SYSUT6: The SYSUT6 ODname replaces SYSPRINT when LVL is specified. After phase 80 procsuing, FIPS flaggeroutput is directed to SYSPRINT or SYSTERM.
--

I

!

f:"'I
o
(1)
1:1
IJI
(1)
~

til:

~
(1)
H
I»

'" H o
'C!
(1)
H
c+

o..c:

o
HI

H
til
til:

"II
IQ
s::
11
CD

U1 .
"" 0
r+
CI
r+
'<
0
HI.

r+
:>'
CD

n
0
iii
'0
CD
11

t;I
I»
r+ I
I»

tn
CD
r+
III

I»
::s
Po I
1:11
1:1
HI
HI
(I)

11

ID' I
III
III
IQ
::s
iii
(I)
::s
r+
til

-I'CJ
I»
11
r+

w
I'CJ
::r 0
I» HI
III
(I) ~ --0
0

W
\0

Phase SVSUT1 2 SVSUT2 SVSUT3 SVSUT4s SVSUT53 SVSIN SVSPRINT 6 SVSPUNCH SVSLlN SVSLlB SVSTERM
--

00 TClOSE

INT25
Buffers 2,3 Buffers 4,5 Buffer 1

WRITE READ WRITE WRITE WRITE
32 XDAP PO-text PI-text DEF-text

E-text E-text

Purge TClOSE Purge Purge CLOSE Purge CLOSE WRITE

00
CLOSE spill TClOSE Purge

INT3
OPEN utility Buffers 2,3 Buffers 4,5 Buffer 6
Buffers 1,6 or 1 II ICISYNT AX
" ICISYNTAX

WRITE WRITE READ WRITE ATM-text Pl-taxt E·text
4 P2-text READ Pl-text WRITE E-text

E-text
E-tsxt (If ATMotext lif

illCISYNTAX V2BUGDCLI V2BUGDCL)

00 Purge TClOSE TCLOSE

INT4 TClOSE lif (if

Buffers 1.6 V2BUGDCLI V2BUGDCLI
No SYNTAX Buffers: 2.3 Buffers 4.5
NoCSYNTAX
No UNSTRING

00
Purge TCLOSE Purge
TClOSE

INT4
Bufter 1 Buffers 2,3 Buffers 4,5 Buffer 6

CSYNTAX
No SYNTAX
No UNSTRING

Purge Purge Purge (if
00

INT4
TCLOSE V2BUGDCLI

Buffers 1.6 Buffers 2.3 TCLOSE
UNSTRING Buffers 4,5

No SYNTAX
NoCSYNTAX

00
Purge Purge Purge (if Purge

INT4
TClOSE V2BUGDCLI

S"uffer7 Buffers 2,3 TClOSE Buffer 6

CSYNTAX Buffers 4,5

UNSTRING
No SYNTAX

WRITE READ
35 PIA-text Pl·text

E·te.t E-text

00 Purge TCLOSE INT35 TClOSE

- .

I Numbers specified in iNTxJ(rDutines indicate the buffers used by the ne'xt phase. SYSIN, SYSPRINT. SYSPUNCH. SYSLIN. SVSLlB. and SYSTERM ell use buffer 6.
2UseafSYSUT1: Phases lB, 22. 21. 25. and 3 use the dictionary. If dictionary spill occurs, SYSUT1 is used to write the overflow. This will newr occur after phaso 3 since the dictionary is released at the end of phase 3. XDAP is a macro

instruction that reads what ha~ previously been writtel"! (spilled); XDAP writes directly from the dictionary to storage and. therefore, uses 110 buffer. After phase 3.SYSUT1 Is available for use as a utility data set.
3Use of SYSUT5: If the SYMDMP or TEST option is not in effect. SYSUT5 is not used.
4ReadingbY phase 70: Phase 70 only rcads E·text from SYSUT4 if the syntax OPtion is in effect or if phase 6 or phases 62, 63. and G4 hl!.ve been bypas~ed. that is, roo reading has been done since the TClOSE in INT51. OtherHise, phase 6

or 64 passes the E·text to phase 70 through ti table in storage. If the table exceeds 256 byte ... phase 6 or G.f- wdtE=s the E·text on SYSUT3.
5Use of SYSUT4: Phase 02 writes on SYSUT4 :md phases 10 and 1B read from SYSUT4 only it the LIB option is in effect. If the LIB option ~·"as not specified. that

is. BASIS or COpy statements are not prewnt in the source program. phases 10 and 1 B read from SY5IN.
6U,s i>fSYSUT6: The SYSUT6 DOnalnG replaces SYSPRINT WilC11 I..VL is specified. Atter phase 80 processing, FIPS flagger output is. directed to SVS?RINT or SYSTERM.

---- --------- ------- -------------------

!

t-'
n
CD
::s
III
CD
PI

:3

~
CD
H
1-"
I»
I-'

I'CJ
11
o
'd

I!l
r+
'<
o
HI

H
1:11
::;:

oj:: ~
0

IQ
a

til 11
til CD
0
t+- Ull
0
t:I

I>J

"-1
.

I!
:. CI
til
t+- t+-
tl" loCI
0
~ 0

HI
0
HI t+-

I=!"
0 CD

. ..g gl CD
11
I»
t+- ..g
0

~I l:I

I»
t+-
I»

til
CD
t+-
rn
I»
l:I
~

bI
a
HI
HI
CD
11

:DO
rn
rn

IQ
t:I
II
CD
l:I
t+-
rn

-ttl
I»
11
t+-
oj::

g.1
..., -

Phase SYSUT1 2 SYSUT2 SYSUT3 SYSUT4s SYSUT53 SYSIN SYSPRINT6 , SYSPUNCH SYSLIN SYSLIB SYSTERM

00 ' Purge
INT4 TClOSE

SYNTAX
Buffer 6

(Phase 70 next)

45 WRITE READ READ WRITE

(UNSTRING) P2·text ATM-text ATM-text E·text Ufnot (if not
E·text V2BUGDLLI V2BUGDLLI if (C) SYNTAX

00 Purge

INT45 TClOSE

SYNTAX
Buffer 6

(Phase 70 is
next)

.
TClOSE if 00 Purge TCLOSE Purge

INT45 TClOSE (if-not V2BUGDCl V2BUGDLU

CSYNTAX
Buffer 1 Buffers 2,3 Buffers 4,5 BufferS

00 Purge TCLOSE TClOSE lif Purge
INT45 TClOSE Ufnot V2BUGDCl)

V2BUGDLLI

No SYNTAX
Buffers 1,6 Suffers 2,3 Buffers 4,5

NoCSYNTAX

READ WRITE WRITE WRITE
P2·text Intermediate Final E·text
E·text Procedure Optimization if (C)SYNTAX

A·text A·text

50
Intermediate
Optimization
A·text

Intermediate
E·text

P2·text

00 Purge

INT50 TClOSE

SYNTAX
Buffers 3,4

(Phase 70.is
next)

00 TClOSE Purge

INT50 TClOSE

No SYNTAX
Buffers 4.6 Buffers 2,3 BufferS Buffer 1

1 Numben specified in INTxx routines indicate the buffers used by the next phase. SYSIN. SYSPRINT. SYSPUNCH. SYSLIN. SYSLIB. and SVSTERM all use buffer 6.
2Use of Sysun: Phases 1 B; 22. 21, 25. and 3 use the dictionary. If dictionary spill occurs, SYSUT~ is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro

instruction that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer. After phase 3, SYSUTl is available for use asa utility data set.
3UIS of SYSU'T5: If the SYMDMP or TEST OPtion is not in effect. SYSUTS is not used.
4 Readingby phase 70: Phase 70 only reads E-text from SYSUT4 if the SV.ntax option is in effect or if p~ase 6 or phases 62, 63, a~d 64 have been bypassed, that is, no reading has been done since the TCLOSE in INT51. Otherwise, phase 6
or 64 passes the E·text to phase 70 through a table In stoRlO". If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.

sUlllof SYSUT4: Phase 04 writes on SYSUT4 and phases 10 and 18 read from SYSUT4 only if the LIB option is in effect. If the LIB option was not specified. that
is, 8ASIS or COpy statements are not present in the source program, phases 10 and 18 read from SYSIN.

6Use of SYSUT6: TheSYSUT6 DDname replacesSVSPRINT when LVL is specified. After phase 80 proceSSing, FIPS flagger output is directed to SYSPRINT or SVSTERM •

I:"'
n
(1)

I:l
rn
CD
~

or:
~
CD
11
I»

ttl
11 o

..g
CD
11
t+
'<
o
HI

H
til
or:

~
1-'"
IQ
I:
H
C1>

(J1 .
Ii
....
1-'"
CI
1-'"

'"<I

0
H>

....
1:1"
C1>

g
13
'tl
1-'"

'"'" /1)
H

'='
PI
PI

til
/1)
!II

PI
1::1
Po

tl:I
I:
H>
H>
CD
H

>'
!II
!II
1-'-

IQ
1::1
13
CD
1::1
!II

-;;,
PI
H
(J1

ttl
1:1" 0
III H>
!II
/1) :;;;
0
0

"'"

Phase SYSUT12 SYSUT2 SYSUT3 SYSUT45 SYSUT53 SYSIN SYSPRINT 6 SYSPUNCH SYSLIN SYSLIB SVSTERM

WRITE READ WRITE WRITE
Procedure Intermediate Final E-text

A-text Procedure Optimization
A-text A-text

Intermediate
51 Optimization

A-text
Intermediate

E-text
P2-text

00 Purge Purge Purge

INT51 TCLOSE TCLOSE TCLOSE TCLOSE
(Phase 60 is Buffers 4,3 Buffer 2 Buffer 5 Buffer 1

next)

00 Purge Purge Purge

INT51 TCLOSE TCLOSE

OPT Buffers 1.2 Buffers 3,4

(Phase 62 is
next)

00 Purge
INT51 TCLOSE

SYNTAX Buffers 3,4

(Phase 70 is
next)

READ WRITE READ READ WRITE WRITE WRITE WRITE

Procedure Debug-text Optimization Data Object
A-text A-text A-text Module

TCLOSE TCLOSE
E-text

6
DEF-text

WRITE WRITE

DEF-text E-text if
ERRTBL
overflows,

REF-text

00 Purge Purge Purge Purge WRITE

I INT60 TCLOSE TCLOSE Purge

No Phase 65 Buffers 1,2 Buffers 3.4

I No Phase 6A

00 Purge Purge Purge WRITE
I

INT60 TCLOSE TCLOSE TCLOSE Purge
I

Phase 65 Buffers 4,3 Buffers 2,5 Buffer 1

No Phase 6A

I Numbers specified in INTxx routines indicate the buffers used by the next phase. SYSIN, SYSPRINT, SYSPUNCH, SYSLIN. SYSLlB, and SYSTERM all use buffer 6.
2use of SYSUT1: Phases 1 B. 22, 21. 25, and 3 use the dictionary. If dictionary spill occurs, SYSUTl is used to write the overflow. This will nev~r occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro

instruction that reads what has previously been written (spitted); XDAP writes directly from the dictionary to storage and, therefore, uses no buffer. After phase 3, SYSUT1 is available for use as a utility data set .
3 Use of SYSUT5: If the SYMDMP or TEST option is not in effect, SYSUTS is not used.
4 Reading by phase 70: Phase 70 only reads E-text from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62, 63, and 64 have been bypassed, that is, no reading has been done since the TCLQSE in INT51. Otherl.'lIise, phase 6

or 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.
5 Use of SYSUT4: Phase U4 writes on SYSUT4 and phases 10 and 1 B read from SYSUT4 only if the LIB option is in effect. If the LIB option was not specified, that

is BASIS or COpy statements are not present in the source program, phases 10 and 1B read from SYSIN.
6U;o of SYSUT6: The SYSUT6 DDname replaces SYSPAINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYSPRINT or SYSTERM.

----- ----- -- -- ---- - -- - - ------

t"'
1-'
o
/1)

1::1
!II
C1>
Po

13:
III
/1)
H
1-'
PI

ttl
H
o
'"d
CD
H
'<

o
H>

H
tl:I
13:

"'" ':j

IV 1-"
I.Cl
~

Ul H
en (I)
C'l
r+
1-" (J1

0
:::l

IV I>"
()

r+
1-"

::;: ..;
en 1-"
r+ r+
::r '<
0
P, 0

I-h
0
I-h r+

::r
0 ro
'0
ro ()
t1 0
~ e
r+ '0
1-" !-I'
0 !-'
:::l ro

H

t;I
~
r+
IlJ

Ul
ro
r+
til

IlJ
:::l
P,

to
.::
I-h
I-h
ro
t1

I>"
(/)
III

I.Cl
:::l
I!!
ro
:::l
r+
(/)

.....
'tI
f»
t1
r+

a-

0
I-h

~
~

Phase SYSUT1 2 SYSUT2 SYSUT3 SYSUT45 SYSUT53 SYSIN SYSPRINT 6 SYSPUNCH SYSLIN SYSUB SYSTERM

00 Purge Purge Purge Purge WRITE
INTGO TCLOSE TCLOSE TCLOSE Purge

Phase 65 Buffers 4.3 Buffers 2,5 Buffer 1

Phase 6A

00 Purge Purge Purge Purge Purge WRITE
INT60 TCLOSE TCLOSE TCLOSE Purge

Phase 6A Buffers 1,2 Buffers 3,4

No Phase 65

If OPT READ READ WRITE WRITE
62 Procedure Optimization

A-text A·text

00 Purge Purge
INT62 TCLOSE TCLOSE

Buffers 1,2 Buffers 3,4 Buffers 5

READ WRITE WRITE
63 Procedure Procedure Debug·text WRITE

A·text A l-text

00 Purge Purge
INT63 TCLOSE TCLOSE TCLOSE TCLOSE

Buffer 1 Buffers 2,3 Buffer 4 Buffer 5

WRITE READ WRITE READ WRITE WRITE
64 DEF·text. Procedure Data

independent Al-text E·text if A·text
segments ERRTBL DEF·text
if SYMDMP overflows, E·text

REF·text

00 Purge Purge Purge Purge Purge WRITE
INT64 TCLOSE TCLOSE TCLOSE Purge

(Phase 65 is Buffer 1 Buffers 2,3

next)

00 Purge Purge Purge Purge Purge WRITE
INT64 TCLOSE TCLOSE TCLOSE Purge

(Phase 6A is Buffers 1,2 Buffers 3,4

next)

00 Purge Purge Purge Purge Purge WRITE

INT64 TCLOSE TCLOSE TCLOSE Purge

(Phase 70 is Buffers 1.2 Buffers 3,4

next!

1 Numbers specified in INTxx routines indicate the buffers used by the next phase. SYSIN, SYSPAINT, SYSPUNCH, SYSlIN, SYSLIB, and SYSTERM all use buffer 6,
2 Use ofSYSUT1: Phases 1 B, 22, 21. 25. and 3 use the dictionary. If dictionary spill occurs. SYSUn is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro

instruction that reads what has previously been written (spilled); XDAP writes directly from the dictionary to storage and. therefore, uses no buffer. After phase 3. SYSUTl is available"for use asa utilitv data set .
3Use of SYSUT5: If the SYMDMP or TEST option is not in effect. SYSUT5 is not used.
4 Reading by phase 70: Phase 70 only reads E-text from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62. 63, and 64 have been bypassed, that is, no reading has been done since the TCLOSE in INT51. Otherwise, phase 6

or 64 passes the E-text to phase 70 through a table in storage. If the table exceeds 256 bytes, phase 6 or 64 writes the E-text on SYSUT3.·
5 Use of SYSUT4: Phase 04 writes on SYSUT4 and phases 10 and 1 B read from SYSUT4 only if the LIB option is in effect_ If the LIB option was not specified, that

is, BASIS or Copy statements are not present in the source program, phases 10 and 1 B read from SYSI N.
6Use of SYSUT6: The SYSUT6 DDnames replaces SYSPRINT when LVL is specified. After phase 80 processing, FIPS flagger output is directed to SYS-PRINT or SYSTERM.

t-<
()
ro
:::l
(/)
(I)
p,

::;:

~
(I)
t1
1-"
IlJ
!-'

I'd
11 o
'0
(I)
t1
r+
'<

o
I-h

H
to
t3:

"!I
IQ
r::
11
(1)

U'I

>-
C'l
~
--=
~

..q

0
H>

~
::r
(1)

n
0
s
"0
I-'
(1)
11

t:I
III
~
I»

en
(1)

~
In

III
I:'
po

m
r::
H>
H>
(1)

11

>-
In
In
IQ
I:'
S
(1)
I"
~
In

-;;
III
11
~

.....
"0
::r 0
III H>
In
(1)
0
0

~
w

Phase SVSUT1' SVSUT2 SVSUT3 SVSUT4s SVSUTS' SVSIN SVSPRINT 6 SVSPUNCH SVSLIN SVSLlB SYSTERM

If READ WRITE-READ READ WRITE WRITE WRITE
FLOW Independent ifSYSUT5 Debug-text DEBUG

STATE or segments if is assigned tables for
SYMDMP SYMDMP to tape SYMDMP

65 device only

If no TCLOSE Purge Purge
, SXREF. if OPT

XREF. Buffers 1.2

00
INT65

If SXREF TCLOSE TCLOSE Purge Purge
or XREF Buffers 1.2 Buffers 3,4

00
INT65

IfSXREF READ READ WRITE WRITE
or XREF DEF-text REF-text

6A

00 TCLOSE
INT6A if OPT

Buffers 1,2 Buffers 3,4

70 READ READ' WRITE WRITE
E-text E-text

00 CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE CLOSE

INT70

OPEN OPEN OPEN

80
WRITE WRITE WRITE

READ CLOSE CLOSE
CLOSE if TERM

1 Numbers specified in INTx)(rOlltines indicate the buffers used by the next phase. SYSIN. SYSPRINT, SYSPUNCH, SYSLIN. SYSLIB. and SYSTERM all use buffer 6,
2Use of SYSUTt: Phases 1 B, 22, 21. 25. and 3 use the dictionary. If dictionary spill OIXUrs, SYSUTl is used to write the overflow. This will never occur after phase 3 since the dictionary is released at the end of phase 3. XDAP is a macro

instruction that reads what has previously been written (spilled); XOAP writes directly from the dictionary to storage and, therefore. uses no buffer. After phase 3, SYSUTl is available for usa as a utility data set.
3Use ofSYSUT5: If the SYMOMP or TEST option is notin effect, SYSUT5 is not used.
4Reading by phase 70: Phase 70 only reads E-lexl from SYSUT4 if the syntax option is in effect or if phase 6 or phases 62. 63, and 64 have been bypassed. lhat is. no reading has been done since lhe TCLOSE in INT51. Otherwise, phase 6

or 64 passes the E-text to phase 70 through a table in storage. If the 'table exceeds 256 bytes. phase 6 or 64 writes the E-text on SYSUT3.
SU.of SYSUT4.: Phase 04 writes on SYSUT4 and phases 10 and 1B read from SVSUT4 onlv if the LIB option is in effect. If lhe LIB option was not specified.lhat

is, BASIS or COpy stalemants are not presenl in the souree program, phases 10and 1B read from SYSIN.
6(Ju of SYSUT6: The SYSUT6 DDname replaces SYSPRINT when LVL is specified. After phase SO processing, FIPS flagger output is directed to SYSPA1NT or SYSTERM.

--------- - -

SVSUT6

OPEN
READ
CLOSE

t:"'
C'l
(1)
I:'
In
(1)
po

t:lI

~
(1)
11
III
I-'

"0
11
o

"0
(\)
11
~

..q

o
H>

H
I:lI
t!C

Licensed Material - Property of IBM

Phase 00 does not use data management macro
instructions for OPEN, CLOSE, TCLOSE, READ,
and WRITE. To open files, phase 00 issues
SVC 19; to close files, SVC 20; to close
temporarily, svc 23. To read and write,
phase 00 updates the appropriate fiel~s of
the DCB and DECB, and then branches and
links to the data management READ/WRITE
routine. The address of this data
management routine is picked up from the
DCB.

The interlude (INTxx) routines, which
handle opening and closing of files, issue
one SVC for all files to be opened or
closed at a given time. Register 1 points
to a list which gives the address of DCBs
for all files to be included in this SVC.
The last entry in the list has the
high-order bit turned on to indicate
end-of-list.

If the TERM option is in effect, error
messages are directed to SYSTERM as well as
SYSPRINT (SYSOT6 for LVL option). However,
if SISPRINT cannot be opened or is a dummy
data set, error messages are directed to
SISTERM only.

In addition, if the TERM option is in
effect, a progress message is written to
SYSTERM (never SYSPRINT) by phase 00. The
progress message sta tes: "Release 2.0
OS/VS COBOL IN PROGRESS." If errors have
occurred, a message stating the number of
errors and the highest severity code
encountered during the compilation is also
written.

When a segmented program is being compiled,
phase 00 issues NOTE and POINT macro
instructions for phases 51, 6, 62, and 63.
Phase 51 keeps track of the sections of
Procedure A-text that belong to each
segment; phase 6 or phases 62 and 63 use
the information passed to them by phase 51
to construct the object module, segment by
segment.

In the P2-text processed by phase 51, a
segmentation control break signals a
section of text whose priority is different
from that of the section just processed.
SEGSAVE contains the relative track and

44 Section 2. Method of Operation

cylinder numbers on SISUT1 of the first
record in the section. Phase 51 then calls
the cos routine with a C1 in the XI
parameters (see "Receiving Control from
Another Phase" in this section for the
meaning of X and I). In response to these
parameters, the COS routine branches to the
NOTE routine, which issues a NOTE macro
instruction to retrieve the relative
address on SISUT1 of the record phase 00 is
about to write (that is. for the next
section). The NOTE routine places the
address in SEGSAVE, and phase 00 returns to
phase 51.

using the priority numbers in the SEGTBL
table entries, phase 6 or phases 62 and 63
first process all the sections for one
segment, then all the sections for the
next, and so on. Each time it picks up the
SEGTBL entry for a new section of Procedure
A-text, phase 6 or phases 62 and 63 call
the COS routine with a value of 91 in the
XI parameters. It also passes the relative
track and cylinder for the new section in
its SEGTBL table entry. In response to
these parameters, the COS routine branches
to the SEGPNT routine, which issues a POINT
macro instruction to the SISUT1 address of
the section. It then reads the first
record of the new section for phase 6 or
phases 62 and 63. Subsequent calls to read
records of the same section are made by
phase 6 or phases 62 and 63 with a value of
01 in the XY parameters.

When the OPT option is in effect g phase
62 reads, in order of ascending priority.
the sections of Procedure A-text that
belong to each segment to determine the
main storage requirem~nts for the program.

TABLE AND DICTIONARY HANDLING

A portion of storage is reserved throughout
compilation for tables. built and used by
the phases. All processing involving these
tables (inserting new entries, releasing a
table when no longer needed, etc.) is
handled by the group of routines known
collectively as TAMER. These routines are
resident in phase 00. They are described
in "Appendix A: Table and Dictionary
Handling."

COMMUNICATIONS AREA (COMMON)

The communications area (COMMON) is
resident in phase 00. It contains
informa Hon to which all phases can refer
directly. The format of COMMON is given in
"Communications Area" in "Section 5. Data
Areas. "

SYNTAX-CHECKING COMPILATIONS

An unconditional syntax-checking (SYNTAX)
compilation or the production of an error
(E) or disaster (D) level message during a
conditional syntax-checking (CSYNTAX)
compilation causes the compiler to produce
no object code and to print out the
appropriate messages on SYSPRINT (SYSUT6
for LiL option) and/or SYSTERM. The
CSYNTAX compilation, upon generating an E
or D level message, becomes in effect a
SYNTAX compilation and the SYNTAX switch in
the PHZSH3 cell in COMMON is set on. After
phase 22, any phase detecting a syntax
error sets the ERRSEV cell in COMMON to the
highest error severity level encountered.

After phase 4, E-text is on SYSUT4.
During INT4, phase 00 checks the SYNTAX
suitch. If it is on, phase 00 sets the
value of LINKCNT to indicate that phase 70
is to be executed next. The RDERRFIL bit
in the SHITCH cell in COMMON is set on to
indicate to phase 70 that E-text is to be
read from SYSUT4. After phase 70
processing, phase 00 either gives control
to phase 80 if the LVL option is in effect
or returns to the operating system via the
routines described earlier in this section
under "Returning Control to the Operating
system. "

If the SYNTAX switch is off, processing
continues with phase 50. Phase 50 writes
E-text on SYSUT4 if the CSYNTAX option is
in effect; the generation of an E level
message causes the SYNTAX switch to be set
on. During INT50, phase 00 performs the
same processing if the SYNTAX switch is on
as it does during INT4. If the SYNTAX
suitch is off, processing continues with
phase 51.

*1£ the TERM option is in effect and the
permanent input/output error did not occur
on a write to SYSTERM. the message is
written to SYSTERM as well as the console.
If the permanent input/output error
occurred on a Ifri te to SYSTERM and not
SYSPRINT, the message is written to
SYSPRINT (SYSUT6 for LVL option) as well
as the console.

Licensed Material - property of IBM

Phase 51 processing for the CSYMTAX
option is the same as phase 50 processing.
If phase 51 detects no syntax. error which
would cause an E level message, a full
compilation is produced.

TERMINAL ERROR CONDITIONS

The following conditions will cause
compilation to be abandoned. In each case,
if NODUMP is specified, phase 03 is called
to print an error message on the console or
SYSPRINT (SYSUT6 for LVL option); phase 03
then returns to phase 00. uhich returns to
the operating system via the routines
described earlier in this section under
"Returning Control to the operating
System."

1. A permanent input/output error is
encountered on a device.*

2. An invalid COpy or BASIS library name
is encountered.

3. TAMER cannot continue:

o Larger region needed.

e Compiler error.**

o A table has exceeded the maximum
permissible size.**

o Fragmented storage.**

**If the DUMP option is in effect, this
error causes an ABEND with a dump.

Phase 00 45

Licensed Material - Property of IBM

Phase 01 (IKFCBL01) is logically a part of
phase 00, but is a separate load module
because it is not required in storage
throughout compilation. The functions of
phase 01 are:

1. To contain the installation default
values of compilation parameters in a
module separate from the actual
initialization coding (phase 02
contains the actual initialization
coding) •

2. To pass these default values of the
compilation parameters, together with
any values of the compilation
parameters chosen by the user at
compilation time, to phase 02.

COMPILATION PARAMETERS

When phase 00 links to phase 01, it passes
the address of a parameter list that points
to the compilation options, altered DD
names, and augmented headings. The section
"Introduction" in this publication explains
the options that can be used on an EXEC

46 section 2. Method of Operation

control card or that can be passed by the
COBOL Prompter to the compiler if specified
as operands of the COBOL command under TSO.
These options can also be used in an
ATTACH, LINK, CALL, or XCTL macro
instruction. In addition, the macro
instruction parameters can specify a change
in the user data set names or an addition
to the standard page heading for the output
listing. (The standard page heading
consists of a page number only.) Phase 01
passes these parameters, together with
their installation default values, to
phase 02.

RETURN FROM PHASE 02

Phase 01 is a macro instruction. When
phase 02 has finished processing, it
returns to phase 01, thereby restoring
phase 01 registers and releasing phase 02
storage. Phase 01 branches to phase 00.
Phase 00 then issues a RETURN macro
instruction for phase 01, which restores
phase 00 registers and releases phase 01
storage.

Phase 02 (IKFCBL02) is the initialization
phase. It is logically part of phase 01,
which contains the installation default
values of compilation parameters. but phase
02 is a separate load module. 'rhe major
functions of phase 02 are:

~ Processing the compilation parameters
specified on the EXEC card or passed
with the CALL, LINK, XCTL, or ATTACH
macro instruction. (If the COBOL
command is used to invoke the compiler,
a LINK macro instruction is executed to
pass control to the compiler.)

o Determining buffer sizes for the
compiler data sets for all phases.

o Obtaining storage for tables, the
dictionary, and buffers.

o Entering information in COMMON to be
used for statistics in the program
listing.

o opening all required data sets to check
that they can be opened and to
determine the block sizes specified by
the user.

o Processing for the BATCH option.

o Building the table of COBOL space
constants in phase 00, using the BLDL
macro instruction which allous dynamic
calculation of phase sizes.

COMPILATION PARAMETERS

Phase 02 sets sHitches in COMMON locations
SWITV2. LISTERSH, PHZSW, PHZSW1. PHZSW2,
PHZSW3, and PHZSW4 for phase 00 to indicate
which of the following options were chosen:

ADV
BATCH LIB SOURCE
CLIST LOAD STATE
COUNT LSTCOl'lP SUP!UP
CSYNTli.X LSTOULY SXREF
DECK LVL SYMDMP
DIiAP L120 SYNTAX
DUMP
DYNAM L132 SYSx
ENDJOB NAME TERM
FLAG NU tl TEST
FLOW OPT VBREF
LANGLVL (112)
LCOL1 P~lAP VBSUl'!
LCOL2 QUOTE VERB
LCPY RESIDENT XREF
FDECK SEQ ZI~B

Licensed Material - property of IBM

From the BOF and SIZE parameters, phase
02 determines the amount of space that is
aVdilable (see "Buffer Size Determination"
belo~. From the SPlCE parameter, phase 02
sets the print control character both in
the carriage control field for SYSPRINT and
also in the COMMON location SPACING. From
the LINECNT parameter, phase 02 records in
COr-WON location CN'l'LPF the 'Talue for the
number of lines per page to ~e printed ill
the source card li~~ing.

If augmented page headings .ere given in
a macro instruction, phase 02 records them
for phase 00 so that it can set up the
pL:oper heading print format.

If the data set names were changed bV a
LINK, ATTACH, or xeTL macro instruction.
phase 02 changes the names in the DCB's.

phase 02 uses the control program to
determine the date of compilation, which it
records in CONMON.

BUFFER SIZE DETERMINATION

The compiler uses six buffer areas. Figore
5 shows, for each phase, the buffers used
by the data sets active in that phase.
Because buffers 1 through 5 are always used
for utility data sets, they are of uniform
size so that they can be used for diff~rent
data sets from phase to phase. Buffe~ 6 is
also used for a utility data set in phases
20,22,21.25,50, and 51; therefore. it
must be at least as large as the other
buffers. Buffer 6 may need to be larger
than the other buffers since in phases 10,
12, 1B, 3, and 6 it is used for up to three
double-buffered data sets. Note that in
Figure 4 if the two buffer numbers are the
same, the data set is single-buffered.

Note: If the BATCH option has been
specified, a seventh bu.ffer is used. This
buffer is used only b} the SYSIN data set
and is present throughout the compilation.
It is necessary to save the input cards of
subsequent compilations wi_hin a batch.

Phase 02 determines the total buff~r
size available from the BUF option on the
EXEC control card or in the COBOL command
string. If BUF was not specified but SIZE
Has, phase 02 calculates BUF from the
formula:

Phase 02 47

Licensed Material - Property of IBM

BUF = 1/4 (SIZE - 96K) + 4K

If neither BUF nor SIZE Has specified on
the EXEC control card or in the COBOL
command string, phase 02 sets BUF equal to
the default value specified at installation
time.

BUF is the total amount of storage
available for buffers. To determine the
buffer sizes from this value, phase 02:

1. Determines the block sizes of the user
data sets by opening the data sets;
or, if the block sizes have not been
given on the DD cards or have been
specified. incorrectly, assigns the
following default sizes:

• 80 bytes for SYSIN. SYSLIN,
SYSPU NCH, and SYS 1I B.

• 121 bytes (133 if L132 is in effect)
for SYSPRINT (SYSUT6 for LVL option)
and SYSTERM.

2. using these block sizes, determines
the reguired size of buffer 6 in
phases 10, 12, lB, 3, and 6, and
chooses the larger of these sizes as
the size of buffer 6. (If, for
example, the default block sizes were
assigned, the size of buffer 6 would
be 804 bytes.)

3. subtracts the size of buffer 6 from
BUF and divides the remainder equally
among the other five buffers.

4. Compares the size of buffer 6 to
buffers 1 through 5. If buffer 6 is
smaller , it maltes all the buffers the
same size, that is, one-sixth of BUF.

5. Finally, to ensure that the determined
buffer size is not greater than that
which the input/output devices can
handle, the maximum block size
permitted on the device is determined
via a DEVTYPE macro instruction and
compared with the calculated buffer
sizes. The smaller of these two is
chosen as the buffer size.

Phase 02 records the buffer sizes in
phase 00 buffer control blocks. Phase 00
uses the buffer control blocks to keep
track of how much of the buffer has been
used in blocking and unblocking records.

PROCESSING FOR THE BATCH OPTION

If the BATCH option has been specified and
if the compilation is the first uithin the
batch, phase 02 reads until it encounters a

48 section 2. Method of operation

card which is not a CBL card (COBOL options
card). Phase 02 then processes the options
contained on all the CBL cards and alters
switch settings in SRITV2, LISTERSW. PHZSW.
PHZSil, PHZSH2. and PHZSW3 in COMMON.
Phase 02 also saves the address of the
first non-CBL card in COMMON location
ADDRCARD and sets the BATCHSW switch in
COMMON to hexadecimal • 08' (CARDHELD). For
subsequent compilations in the batch, the
COMMON location ADDRCARD contains the
address of the next CBL card. After the
first compilation, phase 02 tests the
BATCHSW switch for a hexadecimal '08' and
obtains the address of the CBL card from
ADDRCARD and processes the options as
described above. In addition, areas in
phase 00 are initialized to their original
values for subsequent compilations •

ENTERING STATISTICAL INFORMATION IN COMMON

In addition to the information stored in
COMMON as a result of compiler option
parameters, phase 02 stores other
information in COMMON that it has
determined during storage and buffer
allocation. The total area to be used for
buffers is stored in BUFSIZE. The total
area available for compilation is stored in
CORESIZE. Phase 00 uses the information in
these cells, as well as the information in
PHZSW, PHZSH1, PHZSW2, PHZSW3, CNTLINE, and
SPACING (see "Compilation Parameters") to
produce statistical data for the listing.

PREPARING FOR FEDERAL INFORMATION
PROCESSING STANDARD (FIPS) FLAGGING

When the LVL option is specified, phase 02
enters the level character in the FIPLVL
cell in COMMON to indicate to phase 80 what
level of the FIPS standard is to be flagged
(A = low; B = lou intermediate; C = high
intermediate; D = full standard). Phase 02
also:

Q Sets the LIST bit in COMMON to indicate
that the source option is in effect.

o Replaces the SYSPRINT DDname with the
SYSOT6 DDname. (This data set receives
the source listing that is used for
input to phase 80 for FIPS flagging.)

o Opens the DCB for SYSUT6, or, if the
OPEN is unsuccessful, cancels the LVL
option.

G Moves the SYSUT6 DDname (or its
alternate DDname) and the DDname for
the FIPS output file into the DDNTBL
table.

INFORMATION RETURNED TO PHASE 00

ahen phase 02 has finished processing, it
returns to phase 01, restoring phase 01
registers and releasing phase 02 storage.
Phase 01 then branches to phase 00.

Phase 02 passes the following
information back to phase 00:

1. DCBs modified by the compilation
parameters.

2. The switches indicating the
compilation options.

3. The LINECNT indication.

q. An indication of the difference
between the maximum amount of storage
requested for tables, the dictionary,
and buffers, and the amount actually
received.

5. The address of the buffer area and the
buffer lengths.

6. The date of the compilation.

ERROR CONDITIONS

Phase 02 detects and handles the following
error conditions:

1. A data set cannot be opened. If the
data set is SYSLIB, when required for
any compiler data set, compilation is
terminated. If the data set is SYSIN,
SYSUT1, SYSUT2, SYSUT3, or SYSUTq. a
disaster message is written and
compilation is terminated. If the
data set is SYSUT5. a warning message
is written and the symbolic debug
(SYHDMP) option is canceled. If the

Licensed Material - Property of IBM

data set is SISLIN. when the LOAD
option is requested, a warning message
is written, the LOAD option is
canceled, and compilation continues.
If the data set is SYSPUNCH, when the
DECK option is requested, a warning
message is written, the DECK option is
canceled, and compilation continues.
If the data set is SYSUT6 when the LVL
option is specified, a warning message
is written and the LVL option is
canceled. If the data set is
SYSPRINT, when the NOTERM option is
requested, a disaster message is
written to the console and compilation
is terminated. However, if SYSTERM
can be opened when SYSPRINT (SYSUT6
for LVL option) cannot be opened, a
warning message is written to the
console and compilation continues. If
the data set is SYSTERM when the TERM
option is requested, phase 02 checks
to see if SYSPRINT is usable. If
SYSPRINT can be opened and it is not a
dummy data set, a warning message is
written to both SYSPRINT and the
console, the TERM option is canceled,
and compilation continues. However,
if the TERM option is requested but
SYSTERM cannot be opened and SYSPRINT
cannot be opened or is a dummy data
set, a disaster message is written to
the console and compilation is
termi na ted.

2. Specified storage device block size is
larger than the buffer space
allocated, or is not an even multiple
of the record length. The block size
is set to equal the length of one
logical record, and a message
indicating this is printed.

3. Invalid or insufficient SIZE or BUF
parameter. Warning only: an
alternate value is chosen.

Phase 02 qg

Licensed Material - Property of IBM

Phase 03 (IKFCBL03) is logically part of
phase 00, but is a separate load module
because it is reguired to be in storage
only if a terminal error condition occurs
(see "Terminal Error Conditions" in the
section "Phase 00"). Phase 03 is linked to
by phase 00 whenever a SYNAD routine exit
is to be taken, when TAMER cannot continue.
or vhen phase 00 encounters an invalid COpy
or BASIS library name.

The functions of phase 03 are to issue
error messages and to indica te to phase 00
that compilation is to be terminated.

OBTAINING AND PRINTI NG ERROR MESSAGES

Before linking to phase 03, phase 00 places
the address of a one-byte error code in the
KTRMNATE cell in COMMON. It also saves the
contents of registers 0 and 1 in the
SYNADR01 location in COMMON, these are
needed for the SYNADAF macro instruction.
The following codes are used:

Code
lh~;[ad~£j,.!!!all

00

*

01

~
02

06
07
08

09
OA
DB

lieSilling:
SYNAD exit for SYSLIB
SYNAD exit for all data

sets except SYSLIB and
SYSTERM

SYNAD exit for SYSTERM
Larger region needed
compiler error
A table has exceeded the

maximum permissible
size

Fragmented storage
Invalid BASIS reguest
Invalid library name

*If the DUMP option is specified, phase 00
issues an abend with dump instead of
linking to phase 03.

50 Section 2. Method of Operation

Phase 03 examines the code. If a SYNAD
exit is indicated, registers 0 and 1 are
loaded from COMMON and a SYNADAF macro
instruction is issued to obtain the
input/output error message. This message
with a COBOL prefix is then written out on
the console through the execution of a WTO
(write-to-.operator) macro instruction.

Phase 03 next calls phase 00 to print
out the message on SYSPRINT and/or SYSTERM
according to the following conditions. If
the error occurred on the SYSTERM data set,
the message is written out on SYSPRINT if
the SOURCE option is in effect. If the
error occurred on the SY5LIB data set, the
message is written out on SYSPRINT if the
SOURCE option is in effect and on SYSTERM
if the TERM option is in effect. If the
error occurred on a data set other than
SYSLIB or SYSTER~~ the message is not
written out on SYSPRINT, but is written out
on SYSTERM if the TERM option is in effect.

If a SYNAD exit is not to be taken,
phase 03 obtains the text and length of the
appropriate message and then calls phase 00
to print out the message on SYSPRINT and/or
SYSTERM depending upon whether the SOURCE
and/or TERM option is in effect.

RETURNING COliTROL TO PHASE 00

After printing the error message, phase 00
returns to phase 03. Phase 03 sets LINKCNT
to 2 more than the value assigned to phase
70 and sets the BATCHSW switch in COMMON to
indicate that compilation of other programs
in the batch is to be bypassed. Finally.
phase 03 returns to phase 00 with an
end-of-job (X'BO') calling code.

Phase 04 (IKFCBL04) implements the COpy
language of American National Standard
COBOL. X3.23-1974. by allowing insertion of
prearitten COBOL entries. which reside in a
library. into a COBOL source program at
compile time. COpy also allows the option
to alter these prewr:itten entries at
compile time.

Phase 04 reads the user-created COBOL
libraries and passes the entire source
program to phases 10 and lB. or to phase 05
if LSTCOl:!P or LSTONLY is in effect. The
LIB option must be in effect if the BASIS
or COpy facility is used.

The input to phase 04 can be source input
text and library text.

During BASIS processing SYSUT2 is used as
output during BASIS processing. This is
then read as source to process any COpy
statements. SYSUT4 is used as final output
from phase 04. If Lister is not to be
invoked. a source listing is produced on
SYSPRINT.

I ERROR CONDITIONS

Phase 011 contains text for error messages
and produces the error messages. It
produces E-text on SYSUT3 as it scans the
source program listings and analyzes
syntax.

I TABLES USED

Phase OLI creates the DCBTBL uhich contains
one entry for each unique library name.
Upon completion of PFocessing. phase 04
deletes DCBTBL.

Licensed Material - property of IBM

I MAIN FLOW OF CONTROL IN PHASE 04

Phase 04 invokes the PH04INIT subroutine to
initialize variables, allocate work area
storage and build the DCBTBL, then reads
the initial SYSIN record.

If BASIS is desired, phase 04 invokes
the BASISRTN subroutine to read and update
the BASIS library from SYSLIB. The
resulting source is written to .SYSUT2.

Phase 04 next invokes the COPYRTN
subroutine to scan SYSIN or SYSUT2 (if
BASIS) source for COpy statements. COPYRTN
invokes COPYROC to syntax check a COpy
statement and to read and update the source
from the identified COpy library member.

Hhen source end-of-file is reached,
phase 04 closes any COpy libraries that
have been opened.

I PROCESSI NG ROUTINES USED

]~SISR1!: The BASISRTN routine merges
source from the BASIS library specified
with the users source from SYSIN. matching
serial numbers appearing on the BASIS
INSERT and DELETE cards with those in
columns 1 through 6 on the BASIS library
source. When the merge is complete, SYSUT2
is TCLOSEd and made ready for COPYRTN
processing, and SYSLIB is closed.

COPYRTlI: The COPYRTN routine reads all
soii'rCe-input looking for a COpy verb that
is not part of a NOTE. comment line. or
comment entry. Whenever COPY is found,
COPYRTN invokes COPYROC to process the
statements. When source end-of-file is
reached. COPYRTN returns to the phase 04
controller routine for phase termination.

£QPYPRQ£: COPYROC validates the copy
statement.

The library is identified and opened.
The REPLACING arguments are passed and
saved in a work area. Any syntax or OPEN
errors uill result in the COPY statement
being nullified. If the COPY statement has
no errors, the COpy library is read and the
source updated according to the REPLACING
rules. At library end-of-file, COPYROC
returns control to COPYRTN.

Phase 04 51

Licensed Material - Property of IBM

control is given to phase 05 (IKFCBL05)
only when the Lister option (LSTONLY or
LSTCOMP) has been specified. Phase 05 is
the Lister scan phase, which analyzes the
syntax of the COBOL source program. This
phase inserts syntactic markers between the
various elements of the ·source program.
The syntactic markers are used by
subsequent phases to produce the
cross-references and to reformat the
program for the Lister option listing.

Phase 05 is divided into major functions
that:

• tokenize the output (COBOL source) into
syntactic units or words (the SCAN and
READ routines)

• decode Y instructions from the YBGN
t;able

• place COBOL source and inserted
syntactic markers into a large body of
contiguous storage known as the
BOLDAREA (in order that delayed
recognition of COBOL statements can
occur)

• output COBOL source and syntactic
markers in the correct sequence from
the HOLDAREA to SYSUT2

If NOLIB is in effect, the input to phase
OS is the COBOL source program. Input can
be read from the card reader or the system
input device. If COPY/BASIS is in effect,
the input is passed from phase 0" on SYSUT4
(source with COPY/BASIS resolved) and on
SYSUT3 (E-text).

The output from phase 05 is written on
SYSUT2. The output consists of the COBOL
source program with syntactic markers
inserted to identify the various elements
of the program. syntactic markers indicate
such items as new statement, reference
type, level number, indentation, and
qualifiers. If phase 05 detects .syntax
errors, the output also includes error and
recovery markers, to indicate that the
errors are to be identified in the Lister

52 Section 2. Method of Operation

output listing. Also, anyE-text read from
SYSUT3 is written on SYSUT2.

I SYNTAX LANGUAGE SUMURY

The syntax analysis done by Phase 05 is a
table-driven process whereby the table
entries (called Y-instructions in the Phase
05 assembler listing) control the
recognition of COBOL source and resulting
generation of phase 05 output.

{W} { Resmed word}
G[n] * Text-type byte

[0] P [A[B]]. Punctuation M[n] * Modifying byte
T Operand term C n *

(see Note 3) (see Note 5)

• Clause name X * Exit routine name

[0] [N] [I] / [{ number of items in clause }
name of first statement beyond

(see Note 4)

Notes:

1. Syntax language is written as a
sequence of statements, optionally
named, each of which contains a
sequence of items separated by commas.

2. Syntax language items perform tests,
define clauses, or control generation.
These functions are denoted by an
infixed period, slash, or asterisk.
respectively.

3. Tests may be:

o optional (brackets)
W testing reserved words
P punctua tion
T generic terms

For example, DATANAME, ALPHALIT. or
"clauses" (nul), such as "identif ier"
(IDFR), and test may specify A margin
(A), B margin (B), or both (AB).

4. Clause definition corresponds to the
COBOL use of brackets, braces, and
elipses:

a is optional (brackets)
N may be repeated (elipses)
1 select only one (braces)

Information after the slash specifies
end-of-clausei if omitted, the end of
the current statement is assumed.

5. Generation (of IPTEXT) is implied by
successful tests, and is explicitly
ordered by G, the type-byte implies
the length. M modifies one byte of
already generated text. C changes an
index to the current point of
generation for possible subsequent use
by M or C commands. X causes
execution of an exit routine.

6. Items in general return results in
quaternary logic. "True" means a
positive identification, "falsellmeans
a clear failure, "maybe" results from
generation or from a failed optional
test, and "disa~terll results from a
IItrue!! test followed by a IIfalse ll
within a clause where all items must
be found.

Licensed Material - Property of IBM

ERROR COUDITIONS

Phase 05 terminates upon detecting a syntax
error that it detects in the COBOL source
program. When such an error is detected,
phase 05 issues an error flag to signal
phase 08 that the following source cards
are to be passed on without processing.
Phase 05 then treats the balance of the
program as comment cards.

In addition to the condition mentioned
above, unusual termination of phase 05 can
occur if the source program contains:

• Too many (approximately 80 or more)
consecutive *-comments cards.

• Too many (approximately 100 or more)
consecutive blank cards.

If one of the above two conditions (of
phase 05) occurs, the file written on
SYSUT2 is incomplete.

Phase 05 53

Licensed Material - Property of IBM

Phase 06 (IKFCBL06), the Lister sort phase,
inserts cross-reference information into
the source program. Phase 06 makes two or
more passes of the file created by phase
05. Based on the syntactic markers
contained in the file, this phase inserts
pointers into the source program as
follows:

• At the place of definition of a name,
pointers to the places where references
to that name occur •

• At the places of reference, pointers to
the place of definition.

During each pass of the file, phase 06
resolves references and merges them into
the source program; the number of passes
depends on the amount of storage available
and the number of cross-references to be
processed. A partial dictionary of all
definitions is used by all passes. The
dictionary is continually updated by adding
new definitions as space becomes available
and deleting definitions that have been
completely processed and are no longer
needed.

Sq Section 2. Method of operation

The input for the first pass of phase 06 is
the file written on SYSUT2 by phase 05.
Input for subsequent passes of phase 06 is
the output of the previous pass. That is,
input is read alternately from SYSUT2 and
SYSUT3 (beginning with SYSUT2) •

The output of phase 06 is written
alternately on SYSUT3 and SYSUT2~ Output
of the first pass of phase 06 is always
written onSYSUT3 and output of the last
pass is always written on SYSUT2. The
output file consists of the source program
with cross-reference information embedded
in it; the contents of the file are printed
by phase 08.

The functions of phase 08 (IKFCBL08) are as
follous:

e Print the first page (preface) of the
Lister listing

• print the body of the Lister listing

• Depending on the options specified

Punch the reformatted source program
deck on SYSPUNCH

Pass the reformatted source program,
via SYSUT4 to phase 10 for
compilation

Hrite COPY/BASIS-related E-text on
SYSUT3

For the preface, phase 08 uses no input.

For the remainder of the listing, phase
08 reads input from SYSUT2. Input consists
of the source program uith embedded
cross-reference information from phase 06.

The output of phase 08 consists of:

o The preface uhich describes

The format of the listing

The use of statement numbers

The classification of references

The use of footnotes in the listing

The method of indentation

The reformatted declt that can be
obtained

The summary listing

o The Lister option listing

Licensed Material - Property of IBM

• An internal card-image COBOL source
program

• A reformatted source deck.

The Lister option preface and listing
are printed on SYSPRINT. The internal
card-image source program, which may serve
as input for subsequent compilation, is
produced on SYSUT4 if the LSTCOMP option is
in effect. The reformatted source deck is
produced on SYSPUNCH if the Lister FDECK
option is in effect.

From the source program with embedded
cross-reference information, phase 08
builds an entire page in storage. The
phase reformats the source program and
creates footnotes as required. When the
optimum place for a new page is reached,
phase 08 prints the created page on
SYSPRINT and then deletes the page from
storage. The process is repeated until all
data from SYSUT2 has been processed. To
produce the summary listing, phase 08
positions SYSUT2 at the beginning and reads
it again.

ERROR CONDITIONS

It is possible that some footnotes on some
COBOL programs may be lost. If a
particular COBOL program requires a very
large number of footnotes, there may not be
enough storage space to contain the
complete footnote table. In those cases,
some of the footnotes that could be printed
in the Procedure Division of the Lister
vill be handled as ordinary data
references, rather than as footnotes.

Upon encountering the error flag q phase
08 issues a message informing the user that
Lister processing has terminated because of
a source syntax error. The balance of the
program is then printed (and passed on
SYSUT4 r if LSTCOMP) without reformatting or
cross-referencing) •

Phase Otl 55

Licensed Material - Property of IBM

Phase 10 (I~FCBL10) reads the source
statements in the Identification,
Environment. and Data Divisions. As it
reads the card images of the source
program, it performs the following major
functions:

1. storing information from the
Environment and Data Divisions in the
form of Data IC-text and as entries of
tables supplementing the text (see
"Section 5. Data Areas" for formats) •

2. Sorting all other significant
information in other tables and in
cells of the COMMON communications
area (see "section 5. Data Areas" for
forma t) •

3. Analyzing the syntax of source
statements.

4. Writing each statement on SYSPRINT as
part of the source program listing, if
the user specified the SOURCE option.

5. Checking for the CBL card, if the user
specified the BATCH option. When the
CBL card is found, phase 10 sets on
the hexadecimal '08' (CARDHELD) and
hexadecimal '40' (END FOUND) values in
the BATCHSW switch in COMMON and
stores the address of the CBL card in
COMMON location ADDRCARD.

These functions are performed under the
control of three major working routines and
three division-processing routines. Among
the working routines, GETDLM supervises the
division processors and GETWD and GETCRD
supply them with input. Among the division
processors, IDDSCN processes the
Identification Division, ENVSCN the
Environment Division, and DDSCN the Data
Division.

syntax analysis, although not
specifically described here, is performed
as part of division processing. It
includes such functions as checking for
division headers and the proper position of
words and clauses. If user errors are
detected, the division processors call
routines of the generic name MSGxxx (where
xxx is the message number) to generate
E-text.

56 Section 2. Method of operation

There are three routines in phase
are used extensively by more than
the division processing routines.
are the GETDLM, GETWD, and GETCRD

GETDLM ROUTINE

10 that
one of

These
routines.

The major functions of the GETDLM routine
are:

• Searching for delimiters (division
headers, level numbers, etc.) and
passing control to the proper division
routines.

• Recognizing literals that are level
numbers and encoding them as such.

• causing termination of phase 10 when it
recognizes the Report Section, the
Procedure Division header, or
end-of-file on the input device.

GETWD ROUTINE

The major functions of the GETWD routine
are:

• Getting a logical unit from the input
card provided by the GETCRD routine.
identifying and encoding it, and
sending it to the calling routines for
processing. A logical unit is defined
as all the characters between one blank
and the next.

• If the NUM compiler option is not in
effect, generating a card number for
each input card, starting with 1 and
(except for Report writer statements)
incrementing by 1. If the NUM compiler
option is in effect, the user-specified
card number is converted to binary. In
either case, the current card number is
kept in a three-byte cell labeled
CURGCN and in the COMMON cell CURCRD.
If the STATE, TEST, or SYMDMP option
and the NUM option are in effect, a
warning (if) level messa'ge is issued if
card numbers are found to be out of
sequence. Beginning with the first
out-oi-sequence card number, phase 10
resequences the card numbers,

incrementing by one, until, and unless,
the source card numbers fall within the
ascending sequence again.

o Ensuring that the next logical unit is
valid for the division being processed.

Each logical unit is analyzed and encoded
into internal phase 10 code which tells the
processing routine what type of item it is
(COBOL word, qualified EBCDIC name, etc.).

GETCRD ROUTINE

The GETCRD routine gets the next card image
according to the user's options and writes
a line on SYSPRINT if the SOURCE option was
requested. If the LIB or LSTCOMP option is
in effect, the source program is read from
SYSUT4.

The GETWD and GETCRD routines are also
used by phases 1B and 12.

The Identification Division scan routine
(IDDSCN) is entered immediately after the
phase 10 initialization routines. The
input is scanned for an Identification
Division header. When it is encountered,
the cell for the next logical unit is
filled by .the GETWD routine and checked to
determine whether it is PROGRAM-ID. If it
is, the program-name is saved in the PROGID
ce.ll of COMMON (see "section 5. Data
Areas") to be used later either as the
CSECT name of the object module or to form
the names of segments in a segmented
program.

After the PROGRAM-ID (if any) has been
saved and if the SOURCE option was
specified, the Identification Division is
written on SYSPRINT. If DATE-COMPILED is
included, the information that follows it
is deleted, and the current date is
inserted from COMMON.

ihen another division header is
encountered by routine GETDLM, control
passes to the proper division scan routine.

When the Environment Division header is
encountered, the Environment Division scan
routine (ENVSCN) searches for the
Configuration and Input-Output sections and

Licensed Material - property of IBM

then branches to the routines that process
them. These routines produce the file
definition portion of Data IC-text (see in
"Section 5. Data Areas"), which will be
combined with the data definition portion
later in phase 10.

CONFIGURATION SECTION

The OBJECT-COMPUTER paragraph, including
the SEGMENT-LIMIT clause, and the
SPECIAL-NAMES paragraph are processed.

.§QURCE~OMm!Y!L~!!'!:a9.raI?!!.: If the WITH
DEBUGGING MODE clause is specified, the
V2BUGON switch in COMMON will be set on.

~JECT-COMm!!!!L~llg!:!!.I?!!.: If the
computer-name specified is IBM-370
(-model-number], the S370IN switch in the
PH1BYTE cell in COMMON is set to 1.

If PROGRAM COLLATING SEQUENCE, save the
name to be checked for during SPECIAL-NAMES
processing.

SEGMEN!=Lln!!-.£lause: When the priority
number specified is less than 50, this
number is stored in the SEGLMT cell of
COMMON. If no SEGMENT-LIMIT clause is
specified, or if the value exceeds 49,
SEGLMT is set to 49.

SPECIAk!i!MEL~!!.!:!!.~!!.I?!!.: The SPNSCN
routine processes the SPECIAL-NAMES
paragraph.

£yiRE!£X~~!_£lau2~: The literal
specified is checked for validity (based on
the setting of LANGLVL) and then stored in
the CURSGN cell of COMMON. Thereafter,
whenever phase 20 scans the PICTURE clause,
it recognizes the literal as the currency
sign.

DEg.H!L-POIN!_£la.!!2~: A code is entered in
the COMMAD cell of COMMON. Thereafter,
when phases 10, 12, and 1B scan numeric and
floating-point literals, commas instead of
periods are rec'ognized as decimal points.

.2I~::!lSl!!!~I2-11~!!!Q.!!ic::!l!!.!!!~: An entry is
made in the SPNTBL table for each
mnemonic-name, and in the ALPHTRL for each
alphabet-na!De. These table entries are
used by phase 1B in processing the
Procedure Division. When phase 1B scans
ACCEPT, DISPLAY, or WRITE statements, it
replaces any mnemonic-names with the proper
system-name by checking the SPNTBL table.
When it processes any SORT or MERGE verb
with COLLATING SEQUENCE specified, it
checks the ALPHTBL for a valid name.

Phase 10 57

Licensed Material - Property of IBM

INPUT-OUTPUT SECTION

The routines that process the Input-Output
section build and use the ENVTBL and QNMTBL
tables. The QNMTBL is a table of
variable-length names, with pointers to
each of its entries in the appropriate
fields of the ENVTBL entries. These tables
are released later in phase 10. Formats of
these tables are given in "Section 5. Data
Areas. "

The SELSCN routine processes the SELECT
clauses and produces partial Data Ie-text
(see "Section 5. Data Areas") from the
information obtained. At the end of
Environment Division processing. the text
is in the form of ENVTBL entries, one for
each SELECT clause in the source program,
and contains only file information.
subsequent Data Division processing uses
the ENVTBL entries for the completion of
Data IC-text (see "File section" in this
chapter). The text itself is translated
into Data A-text in phase 21 and is further
processed in phase 6 or 64.

For each SELECT clause, the file-name
and other pertinent information are entered
in the ENVTBL table. Variable-length names
are entered in QNMTBL; pointers to the
IH1HBTL entries are placed in the
appropriate ENVTBL fields.

For FILE STATUS clause processing,
.'):~;tSCil' passes control to the file status
routine to enter the FILE STATUS dataname
into the QNMTBL and to set a pointer to
QNMTBL in the corresponding ENVTBL table
field. A corresponding bit is also turned
on in the ENVT13L to indicate that a FILE
5'1' ATUS claus e has been specified.

For PASSWORD clause processing~ SELSCN
passes control to the password routine to
enter the password into the QNMTBL and to
set a pointer to QNMTBL in the
corresponding ENVTBL table field. A
corres~onding frit is also turned on in the
ENVTBL to indicate that a PASSWORD clause
has been specified.

The ALTSCN routine gains control from
SAENT whenever ALTERNATE is found in a
SELECT statement. ALTSCN first tests the
FRSTALT bit switch, checking for ALTERNATE
RECORD KEY under current SELECT. For all
ALTRR~ATE RECORD KEY clauses r CHKSAR enters
the data-name in QNMTBL. If the DUPLICATES
option is present, a bit is turned on in
INDTBL for that key. When another
ALTERNATE clause is found in NXTCOD, a

58 Section 2. Method of Operation

chain bit is turned on in the INDTBL entry.
contro': is returned to SAENT after FRSTAI.T
is reset.

When the ENVSCN routine encounters the
I-O-CONTROL paragraph header. it calls the
pertinent routines for processing the SAME,
RERUN, and APPLY clauses.

gliE Claus~: F'or each clause encountered,
the files named are entered into one of the
following tables:

Clause
SAME AREA
SAliE RECORD/AREA

Tal2.!.~
SATBL
SRATBL

At the end of Environment Division
processing ~ a unique number is assigned, to
each clause of each type (by means of
incrementing counters). For example, the
first SAME AREA clause is assigned the
number 1, the second SAME AREA clause is
assigned 2, and so forth. Similarly. the
first SAME RECORD AREA clause is assigned
1, the next clause 2. and so forth.

The ENVTBL table is then searched for
all the files named in SAME clauses q and
appropriate numbers are inserted into these
ENVTBL entries to identify the SAnE clauses
in shieh the files are named. For example,
if three SAME HECORD AREA clauses were
specified~ each file named in the first
clause would ha'i1e '81" in the SIUiE RECORD
AREA field of its ENVTBL entry: each file
named in the second SAHE RECORD AREA clause
lIould have "2" in that field. and so forth.
The appropriate sldtches are also set in
the ENVTBL entries. At this time, the
SATBL and SRATBL tables are released and
may be overlaid by new tables.

l~mg~l: An entry for the file named
is made in the CKPTBL table and a bit is
set in the entry to indicate whether the
"END OF REEL/UNIT" or the "integer-l
RECORDS" option was specified in the RERUN
clause. Both options can be .applied to one
file, and, in this case, two entries are
made in the CKPTBL table. In the ENVTBL
entry for the file, the CKPTBL bit is set
to 1 and a pointer to the.first of tllO
possible entries in the CKPTBL table is
inserted. A pointer to the second entry,
if specified, is entered in the first entry
in the CKPTBL table. Later when the FD
statement for this file is scanned, the
CKPTBL bit is tested. If it is land if
the "integer-1~ECORDS" option was
specified in the RERUN clause, the RERUN

bit in the PIOTBL table entry for the file
is set to 1. Phase lB uses this bit in
processing READ and WRITE statements.

EQtmat 2 (SO!IT::REIDB!l: An entry is made
in the CKPTBL table, vith the INTEGER field
set to O. The RERUNN switch in COMMON is
set.

!fRbY clay~: For each option, a switch is
set in the ENVTBL entry for the file-name
specified in the clause.

option
1
2
3
4

§ilich2ll
URITE-ONLY
CORE-INDEX
RECORD-OVE RFLOW
REORG-CRITERIA

Note that the data-name is entered in
the QNHTBL table, and a pointer to the
QNMTBL entry is placed in the ENVTBL entry
for this file.

MULTIPLE FILE TAPE Clause: clause is
treated as comments.-----

When the Data Division header is
encountered, the GETDLH routine calls the
DDSCN routine, uhich in turn calls the
routines that process the File,
aorking-storage, Linkage, and Communication
sections. If a Report section is
encountered, phase 00 is called to load
phase 12, which processes the Report
Section.

As the Data Division source statements
are encountered, the following step.s are
taken to form Data IC-text:

1. File and record information is entered
into a work area called ICTEXT.

2. Entries are made in the OD2TBL,
TOTTBL, QNMTBL. FNTBL, and RCDTBL
tables.

3. Information in the work area is merged
with the corresponding ENVTBL entry
(for file descriptions).

4. Data IC-text forFDs, LDs, SDs, and
CDs is generated and written on
SYSUT3. At this time, space is
reserved in the PIOTBL table.

completed Data IC-text is used in phases
22 and 21 to make dictionary entries for
data-names and file-names and to generate
Da ta A-text.

Licensed Material - Property of IBM

Data Division processing llses the ENVTBL
table and builds the FNTBL, OD2TBL, PIOTBL,
QNMTBL, RCDTBL, and TOTTBL tables. All of
these tables (see "Section 5. Data Areas"
for formats) except the ENVTBL table are
passed to phase lB. The PIOTBL table is
also used by phase 21, the OD2TBL table by
phases 22 and 25, and the TOTTBL table by
phase 22. The PIOTBL table indicates which
OPEN options and input/output verbs are
used for each file; and the OD2TBL table is
used to generate Q-routines (object module
subroutines used to calculate variable
lengths and locations for
OCCURS ••• DEPENDING ON fields).

FILE SECTION

When the File Section header is
encountered, the DDSCN routine calls the
appropriate routines to process FDs, SDs.
and LDs in the source program.

Each File Description (FD) entry is
analyzed, and information from the clauses
is entered in the work area ICTEXT. (The
REPORT clause requires special processing;
it is described in the chapter "Phase 12. 11)

A blank PIOTBL entry is created, and
pointers to this entry are placed in the
FNTBL and ENVTBL tables. The file-name
from the FD is entered in the FNTBL table
entry and the LABEL RECORDS switches are
set. The ACCESS RANDOM and mass-storage
switches are picked up from the ENVTBL
entry. Variable-length names such as LABEL
RECORD names are entered in the QNMTBL, and
pointers to these entries are placed in the
work area.

When this processing has been completed,
the ENVTBL entry and the file description
information from the work area are merged
into Data IC-text elements. Names from the
QNMTBL table are located (from their ENVTBL
pointers) and inserted where needed. Each
completed Data IC-text element is written
out. When File section processing has been
completed, the QNMTBL table is released.

Each Sort Description (SD) entry is placed
in a work area and is used to generate an
SD entry in Data IC-text.

Phase 10 59

Licensed Material - Property of IBM

When a level number is encountered
signaling a record description entry, the
entry is analyzed and information from the
clauses is put into a work area. If the
OCCU RS ••• DEP ENDING ON clause is included,
the object of the clause and its qualifiers
are entered in the OD2TBL (no duplicate
entries are made). A pointer to the entry
is inserted later into the Data IC-text for
the record description. (Each level number
results in a Data Ie-text element in
LD-text format; see "Internal Text
Formats. ")

For level-01 items, an RCDTBL entry is
made, consisting of a pointer to the most
recent file-name entry in the FNTBL,
followed by the record-name. This results
in the arrangement of pointers shown in
Figure 6. The relationships are used by
phase 1B when processing WRITE and REWRITE
statements to relate records to their
associated files.

'PIOTBL
r -------------------------,,<----,
I , I , , ,
, I , , , ,
~----------------------~ I

FNTBL
r----->r-----------------------------,

,
I
I
I

I Pointer to PIOTBL r---~

I
I
l-
I File-name
~------------------------~

RCDTBL
r

L-___ Pointer to FNTBL
l-
I
I
I Record-name L----________________________ ~

Figure 6. Table Usage During Record
Description Processing

60 Section 2. Method of operation

Then the LD-text is written out.

WORKING-STORAGE AND LINKAGE SECTIONS

The record descriptions in the
working-Storage and Linkage sections are
processed in much the same way as those in
the File section. However, since they are
not associated with files, no RCDTBL
entries are made.

COMMUNICATION SECTION

When the Communication Section header is
encountered, the DDSCR routine calls the
CDSCRA routine to process the CDs in the
source program. Each Communication
Description (CD) entry is analyzed and Data
IC-text elements are created. Record
descriptions in the communication section
are processed in much the same way as those
in the File section. However, since they
are not associated with files, no RCDTBL
entries are made.

Phase 12 (IKFCBL12) is loaded after phase
10 processing only if the source program
contains a Report section. Phase 12 reads
the source statements of the Report section
of the Data Division, producing one
complete Report writer Subprogram (RWS) for
each RD that it encounters. As it does so,
it also:

o Scans its input for errors and
generates any necessary E-text.

o Generates a listing of the Report
Section on SYSPRINT if the SOURCE and
NOLIB options are in effect .or on
SYSUT6 if LVL is in effect.

o Records information for later phases in
TAMER tables and in COMMON cells.

Phase 12 reads its input from SYSIN or
from SYSUT4 if LIB or LSTCOHP is in effect.
It writes its output, the RWS, in the form
of Data IC-text on SYSUT3 and in PO-text on
SYSUT2. Any E-text produced is a~so
written on SYSUT2, intermingled with the
PO-text. The input and output are
summarized in Figure 7. The RiS is
described, in "Appendix C. Report writer
subprogram."

If the VERB option is in effect, Listing
A-text is generated and passed to phase 60
or 64 so that the object program listing
can include verb-names and procedure names.
Each text element is simply a word in
EBCDIC format preceded by a code and a
count. For every Listing A-text element
written, a card number element is written
in PO-text. This card number (passed on
through the changing text forms) indicates
to phase 60 or 64 when to read a Listing
A-text element.

QgjB~IONS IN OTHER PHASES

In addition to normal processing of the
Data IC- and PO-texts, other phases perform
related operations in response to elements
of the source program or of the RiS. These
elements include the REPORT clause, the
Report section header, USE sentences, the
Procedure Division verbs INITIATE,
GENERATE, and TERMINATE, control-field
save-area names, and REDEFINES clauses.

Licensed Material - Property of IBM

REPORT CLAUSE

When a REPORT clause in an FD statement is
encountered, routine TBLRPT of phase 10
primes the RflRTBL table (first REPORT
clause only), sets a flag bit in the P1BTBL
table (first REPORT clause only). and
enters the report name into the RWRTBL
table (each REPORT clause encountered) •
Phase 12 later checks the flag bit and, if
it is not set, returns control to phase 00
without producing an RWS.

REPORT SECTION HEADER

upon encountering the Report section
Header. phase 10 sets the RPTWTR bit in the
SWITCH cell in COMMON. Roiltine"INT10 of
phase 00 later checks the bit and calls
phase 12 when it is set.

USE SENTENCES

Upon encountering a USE sentence in the
Declaratives Section of the Procedure
Division, phase 1B:

• Generates REPORT-ORIGIN, a special
Report flriter verb, to cause the
address counter to be set to the first
instruction in the RWS group routine
resulting from the report group
specified in the USE sentence.

Q Inserts, at that point in the RHS
routine, a link to the USE routine.

• Generates another Report writer special
verb, REPORT-REORIGIN, to reset the
address counter.

Note: "Report writer verbs are discussed
Under "Elements of a Report Writer
subprogram" in "Appendix C. Report writer
subprogram. II

PROCEDURE DIVISION VERBS

upon encountering an INITIATE, GENERATE, or
TERMINATE verb, phase 1B generates PO-text,
and phase 51 later generates linkage
between the main program and appropriate

Phase 12 61

Licensed Material - property of IBM

routines in the RWS. The INITIATE verb
results in a link to the INT-ROUT rOlltine,
TERMINATE to the LST-ROUT routine, GENERATE
report-name to the 1ST-ROUT routine, and
GENERATE detail-name to the DET-ROUT
routine.

CONTROL-FIELD SAVE-AREA NAMES

Upon encountering control-field save-area
names (which are generated by phase 12).
phase 22 generates a dictionary entry
consisting of the "-nnnn" name and the
attributes of the control field which had
been previously defined in the Data
Division. Further discussion of
control-field save-areas is provided under
"Nonstandard Data-names" in "Appendix C:
Report Writer Subprogram."

REDEFINES CLAUSE

Upon encountering Data IC-text for a Report
Writer REDEFINES clause, phase 22 so
processes it that the E-point name data
item generated from the COLUMN clause
points to the relative location in the
print-line work area, RPT.LIN, equal to the
integer specified in the COLUMN clause.
When an item is later to be moved to
RPT.LIN, the location can be determined
from the E-point name. The length is taken
from the PICTURE clause information in the
dictionary attributes for the item.
E-Point and RPT.LIN are discussed under
"Nonstandard Data-names" in "Appendix C.
Report Writer Subprogram."

Generating a complete subprogram is the
task of five routines in phase 12: RDSCAN.
PROC01, PROC02, FLUSH, and GNSPRT. Routine
GETDLM controls the flow of processing for
phase 12. That flow is tailored to the
particular source program, but the
following discussion explains the general
concept.

62 Section 2. Method of operation

The RDSCAN routine processes the RD
statement and is follol5ed by routine
PROC01, uhich processes the level-Ol
sentence. If that sentence is an
elementary item. routine PROC02 is called
upon to process each elementary-level
clause until the entire sentence has been
processed. At that pointu the FLUSH
routine is called to finish generating the
group routine. If the sentence is the
level-01 statement of a group item. routine
PROCOl processes the sentence. and routine
PROC02 is called to process the elementary
and lower-level group items following.
When that is done. routine FLUSH is called,
does its processing, and the compiler goes
on to the next level-01 level statement.

The PROcOl-FLUSH·or PROC01-PROCD2-FLUSH
loops continue until phase 12 has generated
RWS group routines for all of the level-01
statements defined in the source program.
Routine GMSPRT is then called on to
complete the RiS by filling in the fixed
and parametric routines and any necessary
dummy grOup routines. Phase 12 then checks
to see if the next logical record is an RD
statement, in which case another RiS is
needed and the process begins again with
routine RDSCAM. or if it is the Procedure
Division header. in which case phase 12.
being finished, returns control to phase
00.

ROUTINE RDSCAN

The RDSCAN routine is responsible for
processing the RD entry of the source
program. After first ensuring that an RHS
should be generated (by determining whether
the RHRTBL table is primed). it reads each
logical unit of the RD and processes it.
The routine operates in a loop-type scan.
checking each item to see if it is a
period, CODE clause, CONTROL clause, or
PAGE clause. If it is none of these, it is
treated as an error.

Routine RDSCAN then sets appropriate
switches and enters data into storage areas
and tables. It then gets a new record and
repeats the loop until it encounters a
period. When this happens. control returns
to routine GETDLM. which calls routine
PROCD1.

SYSIN (SYSUT4 if LIB or LSTCOMP)
r------------------"
ISource Program 1
I 1---.
1 (Report section) 1
'------------------~

storage (TA MER}
r--- ,
ITables passed to !
Iphase 12 I
1 I V ,
1 FNTBL 1---->1
1 PIOTBL I /\ I
I P1BTBL I I I

PHASE
12

Licensed Material - Property of IBM

SYSPRINTl (if NO LIB)
r------------------,To
,Source Program ,printer

r--->I ~------->
1 I (Report section) ,
, L ~ ,
1 ,
I , SYSUT3
, ,.., ---------, ---.1 To
I ,Data IC-text 'phase 20
t-> , 1-1 ---->
I , ,
I ~'--------.--------~I
I ,
I
I
1 SYSUT2
I r-----------------.ITo
I IPO-text and E-textlphase 1B

, ~>I ~------>
, I , ,
..... ->, '---
, I , ,

1 QLTABL I 1 l.------------------~ I
I REPTAB 1 ,
I RWRTBL I I 1
1 SPNTBL 1 I , , RCDTBL I 1 1
1 I 1 1
I I 1 I

J , V
! Storage (TAMER) , r-
1 ,Tables built by

storage (phase 00) , 'phase 12
r--- I

, ,
I 1---' , CTLTBL , COMMON I , DETTBL , I , GCNTBL
'--- J , NPTTBL

I QALTBL
1 RNMTBL
I ROLTBL , ROUTBL
I SMSTBL , SNMTBL , SRCTBL , SUMTBL

lSYSUT6 is used if the LVL option is in effect.

Figure 7. Phase 12 Input/Output Flow

~

, storage (phase 00)
, rr-----------------,
1 , ,
~>I COMMON ,
, , 1
I '--- I , , , ,
, storage (TAMER)
'r--- --,
I ,Tables passed to ,
1 1later phases ,
I , 1
, 1 DETTBL ,
1 , FNTBL ,
, , PIOTBL ,
, , P1BTBL I
, , REPTAB ,
L ___ > , RNMTBL ,

, ROUTBL I
, RWRTBL ,
, SPNTBL I
, RCDTBL ,
I ,
'~Qi~: Tables not I
,shown here are re-I
Ileased by phase 12, L-________________ J

Phase 12 63

Licensed Material - Property of IBM

ROUTINE PRoeOl

Routine PROC01 processes the level-01
record descriptions. Valid input for this
routine includes the period and the NEXT
GROUP, LINE, TYPE, and USAGE clauses. It
operates in a loop-type scan and processes
each clause in much the same way as the
RDSCAN routine does. since an level-01
elementary entry is permissible, other
clauses can also be valid. Before assuming
an error, routine PROC01, therefore,
branches to the PROC02 routine to check for
and process elementary-level clauses. Once
a valid clause is processed in one or
another of these routines, control returns
to the beginning of the loop in routine
PROC01.

Processing of the TYPE clause marks the
generation of the initial coding for the
group routines. Since the compiler has, at
that point, enough input to begin the group
routine, the first part of that routine is
generated here.

ROUTINE PROC02

Routine PROC02 is entered when routine
GETDLM encounters a level-02 through
level-49 entry or, at entry point PR02A,
during PROC01's scan of an level-01
elementary item. Its operation is similar
to that of routines RDSCAN and PROC01,
except that checks are made so that control
returns to routine PROCOl when appropriate.

ROUTINE FLUSH

When routine FLUSH is called. all the
information needed to complete one group
routine is avail~ble in the form of table
entries, contents of data areas in storage,
and switch settings. Routine FLUSH
generates the exit coding for the group
routine, and then returns control to
routine GETDLM.

ROUTINE GNSPRT

Routine GNSPRT is called when the GETDLM
routine encounters a new RD or the
Proc.edure Division header. At this point,
all group routines defined in the source
program have been written on SYSUT2 (in
PO-text), and all data needed to complete
the RiS is in storage. Routine GNSPRT
first writes out the necessary Data IC-text
on SY5UT3 and then, in order:

64 Section 2. Method of operation

1. Generates the WRT-ROUT routine.

2. Generates a dummy group routine for
any of the following groups not
defined in the source program:
Control Heading Final, Control Footing
Final, Page Footing, Page Heading,
Report Heading, and Report Footing.

3. Generates the INT-ROUT routine.

4. Generates, if a PAGE LIlUT clause lias
specified in the source program, an
ALS-ROUT routine and an RLS-ROUT
routine. If no PAGE LIMIT clause Has
specified, the RWS contains neither of
these two routines.

5. Generates one USM-ROUT routine for
each TYPE IS DETAIL group specified
under the RD statement being
processed.

6. Generates in order, one each of the
£ollo«ing routines: CTB-ROUT,
RST-ROUT. 1ST-ROUT, LST-ROUT, and
ROL-ROUT.

7. Generates any needed CTH-ROUT
routines. A CTH-ROUT routine is
needed for any control specified in
the source program after the highest
level (of FINAL) co~trol. If the
source program contains no TYPE IS
CONTROL HEADING report description for
su~h a control, routine GNSPRT
generates a dummy group routine here
to fill the need.

8. Generates any needed CTF-ROUT
routines. A CTF-ROUT routine is
needed under circumstances like those
for a CTH-ROUT routine.

9. Generates one SAV-ROUT routine and one
RET-ROUT routine.

Coincident with producing the RWS, phase 12
scans its input for syntax errors. Checks
are made to ensure that each routine is
both correct in itself and compatible with
the rest of the RiS. If errors are
detected, messages are written in E-text
and recovery is attempted. When necessary,
attempts to produce the particular RiS are
abandoned. The E-text is written
intermingled with PO-text, on SYSUT2.

As each record is read from SYSIN. a check
is made to determine if the SOURCE option
is in effect. If so, the source statement
is copied out on SYSPRINT (or SYSUT6 for
LVL option).

During its processing, phase 12 stores
various types of information for later

Licensed Material - Property of IBM

phases to use. For example, phase 12
builds the ROUTBL table. uhich contains the
specific GN numbers assigned to certain RWS
routines. Phase 1 B needs this informa tion
to process IUITIATE u TER!HNATE, GENERATE,
and USE BEFORE REPORTING statements. Such
items are stored in TAMER tables and in
cells in COMMON. For more details on this
subject, see Figure 7 and "section 5. Data
Areas."

Phase 12 65

Licensed Material - Property of IBM

Phase 1B (IKFCBL1B) reads the Procedure
Division of the source program. It is
entered, via phase 00, when the GETDLM
routine in phase 10,or 12 encounters the
Procedure Division header. As it reads
each card, image in the Procedure Division,
it performs the following major functions:

• Encoding the Procedure Division into
Procedure IC-text (PO-text format).

• Creating dictionary entries for
procedure-names.

• writing the Procedure Division on.
SYSPRINT (SYSUT6 for LVL option) if the
SOURCE option was specified by the
user.

• Testing the BATCHSWswitch in COMMON
for a he xadecima I '40' (ENDFOUND)
value, if the BATCH option was
specified by the user.' If this value
is on, the last card in the current
compilation has been read in phase 10
and, the switch is set off.' Phase 1B
then returns to phase 00. otherwise,
phase 1B checks for the CBL card, which
is a source delimiter. When a CBL card
is found, phase 1B sets on the
hexadecimal '08' (CARDHELD) value in
the BATCHSW switch in COMMON, stores
the address of the eBL card.in COMMON
location ADDRCARI>~ and returns to phase
00.

Phase 1B routines first process the
out-of-line procedures contained in the
Declaratives Section. (This processing is
described under "Declaratives" below.)
Then the in-line program is processed.

Tables passed from phase 10 and used by
phase1B include the P1BTBL~ PIOTBL, FNTBL,
RCDTBL, SPNTBL, and TOTTBL tables. Tables
passed from phase, 12 for Report writer
operations ~re the RWRTBL, DETTBL, ROUTBL,
and RNMTBL tables. The PNTABL and PNQTBL
tables are built during: phase1B. If the
VBREF or VBSUM.option is in effect, phase
1B will create theVERBDEF Tamer table.
(See "section !:i. Da ta Areas" for formats
of all these tables). Dictionary entries
are made for all source procedure-names.
Procedure IC-text (in PO-text format) is
generated from the procedure statements.
Formats for these texts and the dictionary
are given in "section-,S. Data Ar.eas."

66 Section 2. Method of Operation

The PDSCN routine controls Procedure
Division processing. The GETCRD and GETWD
routines supply the input in a manner
similar to the description under "Major
Working Routines" in the "Phase 10"
chapter. These and all other routines used
by both phases are indicated by an asterisk
in the subroutine directories for both
phases. Such routines do not remain in
storage from phase 10, but are reloaded
with phase 1B.

A major activity of phase 1B is writing
PO-text. This text is, roughly. the source
program Procedure Division recoded into a
form acceptable to later phases. Logical
units (source program words) are processed,
encoded, and written out one at a time.
Some information, such as card numbers, is
generated for PO-text'. All user-assigned
names are passed unchanged (preceded by
code and count fields) from the source
text. Verbs and other COBOL words are
replaced by unique 2-byte codes. For the
complete text formats. see "section 5.
Da ta Areas."

,If the VERB option is in effect, Listing
A-text is generated and passed to phase 60
or 64 so that the object program listing
can include verb-names and procedure names.
Each text element is simply a word in
EBCDIC format preceded by a code and a
count. For every Listing A-text element
written, a card number element is written
in PO-text. This card number (passed on
through the changing text forms) indicates
to phase 60 or 64 when to read a Listing
A,..text element.

At i'ts point of definition, each
procedure~name (paragraph-name or
section-name) is given a PI number. The
point of definition is that point at which

. the name appears in Area A of the source
program. PI numbers are assigned
sequentially starting witli 1 from cell
PNCTR in COMMON. The procedure-name is
entered in the dictionary, and written in
PO-text.

ENTERING PROCEDURE-NAaES IN THE DICTIONARY

The dictionary is a repository for all
information that can be gathered about each
user-assigned name in the source program
and dummy procedure-names for the beginning
and end ofothe Procedure Division and of
the Declaratives section. Such information
about a name comprises its attributes.
After the dictionary has been completed by
ph~se 21, the attributes are sUbstituted
for the name itself in the Procedure
IC-text produced by phase 3. In later
Proced ure IC-toext processing by phases 4,
45, 50, and 51, all information about the
name appears °conveniently in the text
stream, and the space required by the
dictionary can be released.

Dictionary entries for procedure-names
are made, using the DICOT and HASH tables,
by phase lB. A procedure-name may occur in
the source program at its point of
definition, where it is called a left-hand
name. The name may also occur as an
operand in a statement such as "GO TO
procedure-name." A procedure-name used as
anooperand is called a right-hand name.

A dictionary entry is made for each
left-hand name as it occurs in the source
text, and some of its attribute bits are
set at this time. Other attribute
information is not knoun until all
occurrences of the name as a right-hand
name have been read. (Verbs associated
vith right-hand naomes are discussed under
"Declaratives" and "Procedure-Branching
Verbs" later in this chapter.)

The phase lB routines do not make
entries directly in the dictionary by
themselves. Rather, they calloa special
group of routines called ACCESS routines,
uhich are resident during phase1B in the
area of storage below the phase 1B code.
These routines are designed especially to
build and use the dictionary. They are
also resident during phases 22, 21, 25, and
3, the other phases uhich use the
dictionary. They are described in
"Appendix A: Table and Dictionary
Handling."

USING THE PNTABL AND PNQTBL TABLES

The PNTABL and PNQTBL tables are used to
store certain attributes of procedure":names
before these attributes are entered in the
dictionary. The PNQTBL table contains
entries for certain procedure-names that
are qualified by section";names, while the
PNTABL table contains entries for certain
nonqualified procedure-names.

Licensed Material - Property of IBM

Entries are made in the PNTABL or the
PNQTBL tables when certain verbs are
encoun teredo (see IIProcedure-Branching
Verbs" and "DEBUG" belou), or when a
declarative section is processed O(see
"Decia ra ti ve sIt be10u). En tries ar e also
made for dummy names. Information may be
added to a table entry if the
procedure-name occurs again before the
dictionary entry is found. A new entry
uill be made for a previously entered
procedure-name only if the old entry has
already been deleted.

The formats of these entries correspond
e~act1y to the format of dictionary
attributes for procedure-names. Note that
a source statement may refer to a
procedure-name uhich has not yet been
defined and. therefore, is not yet in the
dictionary.

The dictionary is searched at the end of
every source program section. When the
procedure-name in the table matches the
procedure-name in the dictionary,
information from the switches in the table
is recorded in the dictionary attributes
fie1dg and the table entry is deleted. The
dictionary search techniques are different
for the PNTABL and PNQTBL tables.

At the end of the first source program
section. the dictionary is searched for
every procedure-name in the PNTABL. If a
dictionary entry is found, the information
is transferred and the PNTABL entry is
deleted. If no entry yet exists, the
search bit is turned on in the PNTABL
entry. This b!t indicates that the
procedure-name does not appear in the
portion of the dictionary previously
searched. At the end of the next source
program section. another search is
performed for each procedure-name then in
the PNTABL table. Whenever the search bit
is on for a given entry, the search is
restricted to the dictionary entries of the
most recent source program section (see
"LATACP" in "Appendix A. Table and
Dictionary Handling") •

The PNQTBL table contains the source
program section-name qualifiers of the
procedure-names entered. Thus. if the
source program section named in the table
has already been processed, a ° corresponding
entry can be foundoin the dictionary by a,
limited search (see "LDELNM" and "LATACP"
in "Appendix A. Table and Dictionary

Phase 1B 67\

, Licensed Material - Property of IBM

Handling"). The table entrY is deleted
after the information has been transferred
to the dictionary entry. If the
section-name has not yet been encountered,
no search is made. Therefore, this table
does not require search bits.

Figure 8 snows in diagram form an
example of the dictionary search. It
explains how the search would proceed for
several hypothetical procedure-names. Note
that the figure does QQ1 represent table
formats.

Dictionary Entry Hade
While Processing Section

3

USE OF DICTIONARY
i

I '
Pr,ocedure-name I

I
PN2 I

I
PN3 I

I
PNS I

I
PN7 I ,

USE OF PNTABL

Attribute Information Added
After processing Section

2

1

3

3

--,
I
i ...
I
I
I

-V
I

---t
i
J

•
I
I
I
I
I
I
I
I
i
I
I
I .
I ,
I

r-~----------------T'----------------T'---' I I Table Entry Madel I I I
I While Processing I I I I
I Section I Procedure-na,lIIe I ' Action Taken I I
I- I I U I

1 I PN3 Dictionary entry is found on first search. I I
I Table entry is deleted. I I
Ir--------------r---------------------------------------~, I
I PN7 On the first search, dictionary entry has notl I
I yet been made, so the search bit is set. I I
I On the second search. only entries for I I
I section 2 are searched. Since the name is I I
I still not entered in the dictionary, the I i
I search bit remains on. On the third ! ,I
I search. only section 3 entries are I I
I searched. The dictionary entry is found. I I
I and the table entry is deleted. I I
, ~ I

3 I PNS On the third search. the whole dictionary is i I
I searched for this name, which is in the I I
I table for the first time. The dictionary I I
I entry is found. and the table entry is I I
I deleted. I I L-__________________ ~, ________________ ~ ___ ~ I

,USE OF PNQTBL
i ----------~------------------------------~--------------,
I Table Entry Hade
t While Processing
I Section
I

2

Qualified
Procedure-name

PN2
in

Section 1

Action'Taken

I
I
I
-I

On the second search, the entries for section I
1 are immediately searched. The dictionary I
entry is found. and the table entry is I
deleted. 'I L-__________________ ~ ______________ ~ ________________ . __________________ ------------~,

Note: "section" as used in this
DICtionary sections are of fixed
sections.

figure refers only to source program sections.
length and do not correspond to source program

I
I
I
I
I
I
f
I
I
I
I ,
I
I
I

--------------------------------,~ Figure 8. Entering PNTABL and PNQTBL Information in the Dictionary

68 Section 2. Method of operation

PRIORITY CHECKING FOR SEGUENTATIOr-r

For each section-name. the segmentation
priority is entered in the dictionary. If
no priority number Has specified, zero is
entered as the priority. (In a
nonsegmented programs all sections are
gi~en a zero priority.) If a priority
nUlilber uas specified, its value is compared
to the value of the SEGLHT cell in COMMON
(set by phase 10; see "SEG£!ENT-LIHIT
Clause" in the "Phase 10" chapter). If the
priority number of the section-name is less
than SEGLHT. it indicates that the section
is part of the root segment. In this case,
the priority number of the section-name is
entered in the dictionary as zero. If the
priority number exceeds SEGL~, it is
entered as specified.

Each time a section-name is found whose
priority exceeds the value of SEGLHT, a
stlitch called SEGSti. whose location is
internal to phase 1B. is turned on. If, at
the end of Procedure Division processing,
this suitch still contains zero, it means
that the program is not segmented, and
SEGLHT is set to helcadecimal IFF'. If the
suitch is on. SEGLMT is left as it is. The
value of SEGLHT is used by later phases to
determine whether the program is segmented.

ll.ll verbs are encoded and aritten int·o
PO-text. In addition. the verbs discussed
belou require special handling.

PROCEDURE-BRANCHING VERBS

Procedure-branching verbs use the PNTABL
and PNQTBL tables. Entries in these tables
are used to set some of the attribute bits
in the dictionary entries for the
procedure-names. The process by which
dictionary entries are made from these
tables is described in this chapter under
"Using the PNTABL and PNQTBL Tables."

GO-!Q: The left-hand name (the procedure
name appearing in Area A, gQ! the object of
the GO TO statement) is entered into the
table. (ll GO TO statement preceded by a
procedure-name definition may be the object
of an ALTER statement elsewhere in the
program.) If the DEPENDING ON option is
used, no entry is made.

ill!:!: The left-hand name is entered.

ALTER: The procedure-name following the
~ord ALTER and the procedure-name following
the phrase TO PROCEED TO are entered.

Licensed Material - property of IBM

PERFORM ••• THRU: The procedure-name
following the THRU is entered. If the THRU
option is not used, the procedure-name
following PERFORM is entered. (This entry
directs phase 4 to provide a return of
control at the end of the PERFORM
procedure.)

INPUT/OUTPUT VERBS

suitches are set in the PIOTBL entry for
the file named in the input/output
statement. These switches indicate to
phase 21 how the file is used. In
additign, the following processing takes
place:

DELETE: The FILSVB subroutine checks that
the-file name specified in the DELETE verb
vas previously specified in a SELECT
statement. The subroutine turns on the
appropriate bit in the PIOTBL table if the
filename is valid.

QREN: If label- or error-processing
declaratives were written for this file,
GNs (generated procedure-name references)
for the declaratives are encoded in the
PO-text following the file-names in the
OPEN statements. The handling of these
declaratives is described below under
"Declaratives. "

READ: The PIOTBL entry for the file is
checked to de.termine whether the RERUN bit
is on. If it is, a special verb code is
used. The REDSVB routine also checks for
the word NEXT in the READ verb. If
present, the routine turns on the
appropriate bit in the PIOTBL table.

WRITE, REWRITE: The record-name is sought
in the RCDTBL table and from its FNTBL
pointer the file-name is found. ~he
file-name is then included in the PO-text
entry (in the form WRITE f~l~~~~
~cord=n~m~). For a WRITE statement, the
PIOTBL entry for the file is checked to
determine whether the RERUN bit is on. If
it is, a special verb code is used in the
PO-text. If the ADVANCING mnemonic-name
option of the WRITE statement-rs-llsed,-the
mnemonic-name is sought in the SPNTBL table
and replaced with the proper special-name.
If an INVALID KEY option is used, phase 1B
sets the appropriate PIOTBL bit to 1.

START: The STTSVB subroutine checks that
the file name specified in the START verb
was previously specified in a SELECT
statement. The subroutine turns on the
appropriate bit in the PIOTBL table if the
filename is valid. The subroutine also
checks for a KEY of REFERENCE and/or an
INVALID KEY clause. If either or both are
found, the subroutine turns on the
appropriate bites) in the PIOTBL table.

Phase 1B 69

Licensed !aterial - property of IBM

OTHER VERBS

!££l-pt, DISP&!I: The mnemonic-name used is
sought in the SPNTBL table and replaced by
the proper special-name.

~Y§: The attribute bits in the
dictionary entry for the specified
paragraph are set, using the PNTABL and
PNQTBL tables as described above.

EXHIBIT: A special EXHIBIT data-name is
generated.

READI: The SWTRCE switch in the SWITCH
cell in COBBON is set.

SORTI8ERGE: If the USING or GIVING options
are specified, the appropriate PIOTBL bits
are set in the entries for the files named.
If these files are also specified in label
or error-processing declaratives, a special
code is used for the USING or GIVING
elements in the PO-text.

If the COLLATING SEQUENCE phase is
specified, the ALPHTBL is scanned to ensure
that the phase is valid.

Report Writer Verb~: See the chapter
"Report Writer subprogram."

DECLARATIVES

When a declarative section is encountered,
the section-name (and paragraph-names, if
any) are entered into the dictionary. ('A
PNTABL entry is made for the section name,
with the declarative bit and the
appropriate bit to identify the type of
declarative set. Every paragrap~-na.e in
the section is also entered in this table,
with only the declarative bit set. These
bits are used later to set dictionary
attribute bits.

Each label or error declarative is given
a GN (generated procedure-name) number.
These numbers are assigned sequentially
starting with 1 from the GNCTR cell of
COBBON. If the USE sentence specified
file-name, the GNs are entered in the
appropriate fields of the FNTBL entry for
the file. If the USE sentence specified
INPUT, OUTPUT, EXTEND, or I-O, the GN
number is entered in a work area. If a USE
FOR ERROR declarative statement is
encountered, the appropriate PIOTBL table
bit is set to 1.

These work areas and tables are checked
when OPEN verbs are encountered. For each
file-name specified in an OPEN statement,
the corresponding FNTBL entry is inspected.

70 Section 2. Bethod of operation

If GNs were entered in the FNTBL table
during declarative processing, they are
inserted in the PO-text. Otherwise, the
work areas for the particular OPEN option
are used for GNs. If an ON INPUT GN for an
error declarative is found in the work
area, the GN. number is inserted in all OPEN
INPUT PO-text entries. The GNs for label
declaratives are determined for files whose
FD statements include a LABEL RECORD IS
data-name clause. OUTPUT and I-O GNs are
handled the same way.

The USESVB routine builds the GVNHTBL
table containing the fully qualified
data-names used in the GIVING option of the
STANDARD ERROR/EXCEPTION PROCEDURE
declarative for VSAM files. The routine
also builds the GVFNTBL table when a VSAB
file has been specified in the ON option o.f.
the declarative.

For a USE FOR DEBUGGING declarative, the
USEGEN label is used for the DEBUG .
processing code, and will be entered only
from DCLSCN at the start of the
declaratives. Following OSEBSG, a branch
will be inserted to label USEGN1. At label
USEGN1 a check is made for FOR followed by
.DEBUGGING; if found, the OSEDBG code is
executed; otherwise- the OSE verb code
(USECON) is restored to CUR COD and a branch
is taken to continue processing at OSEGN1.

The USEDBG verb is generated if a USE
FOR DEBUGGING declarative has at least one
valid operand. USEDBG Checks the V2BUGON
switch. If V2BUGON is not on, USEDBG
ignores all code for this USE sections and
scans to the next section-name, USE verb,
or END DECLARATIVES. If V2BUGON is on,
USEDBG checks for ALL PROCEDURES; if found,
BGALLPRC is tested to see if it has been
specified before. If so, a message is .
produced indicating that the second
occurrence of ALL PROCEDURES is ignored.
If valid, a procedure-name number for the
section-name, prior to USE, is entered in
BGALLPN and its priority number is entered
in BGALLPRI, and a USEDBG verb is
generated. V2BUGDCL is set onto indicate
a valid USE FOR DEBUGGING declarative has
been found. Control is transferred to
USEDCB which checks the BCD-name operand.
USEBCD generates an alphanumeric literal
representing the BCD-name operand. If it
is a qualified-name, it goes to QLTABL to
generate an alphanumeric literal for up to
30 bytes containing the name and its
qualifiers, separated by OF. If it is a·
BCD-name, the contents of CORBCD can be
used. Then the name is generated and
end~of-sentence is checked for; if so, exit
is to VRBENT, if not, return to search, for
more operands. If no operands are found
for the OSE verb, a message is produced and
the USE sentence is discarded.

Phas.e 20 (IKFCBL20) is the third of fi ve
phases that process the Data Division. It
follows phase 1B, overlaying it in storage.
Phase 20 is called by routine LINKPH1 of
phase 00 and returns control to phase 00
uhen it encounters an end-of-file condition
onSYSOT3. The primary concerns of phase
20 are the VALOE and PICTORE clauses of the
data descripti"ons, which it translates from
Data IC-text into ATF-text.

Phase 20 processing is initiated and
controlled by the BEGIN routine. It reads
each Data IC-text element ·and, from each LD
entry, it comp~tes and writes a partial
dictionary entry to be passed to phase 22.

SYSUT3 ,
I

Data IC-text I
E-text ,

I
I
J

storage (phase 00) , I

I I
i I

Licensed Material - property of IBM

After completing the partial entry, phase
20 writes it on SYSUTQ (the format of the
entry is called ATF-text) and reads the
next Data IC-text element, continuing until
SYSUT3 has been exhausted. All Data
IC-text for FDs. SDs, CDs, and keys for
table handling and any E-text encountered
is copied unchanged onto SYSUT4.

Phase 20 also scans its input for syntax
compatability and error conditions,
producing any necessary E-text; it produces
and passes tvo tables, the VALTRO and the
VALGRP, to later phases. The input and
output for this phase are summarized in
Figure 9.

SYSUTQ

• ,
I Incomplete Data ITo
I A-text Iphase 22

r--->IData IC-text '1---->
I IATF-text I
I IE-text I
I • .J

I
I
I
I Storage (phase 00)
I r ,
I I I
I I I

CO~HION I >1 PHASE 20 I >1 COMMON I
I I I , I
I I I I I

.J I -.J I • I

./\ I
I I
I I

Storage (TAMER) ! I Storage (TAMER)
I I I I
ITables built by I I I
fphase 20 I I I I
I 1< .J L--) I VALTRU table
I LABTBL table I IVALGRP table
I VALGRP table I I
I VALTRU table I I

• L .J

Figure 9. Phase 20 Input/Output Flow

Phase 20 71

Licensed Material - property of IBM

TRANSLATING LD ENTRIES INTO ATF-TEXT

Routine BEGIN first determines whether the
element read is an LD element; that is, one
resulting from a source program record
description entry of level numbers 01
through .49, 66, 77, or 88. If so, BEGIN
stores the current input card number in
COMMON and calls on routine LDTEXT. LDTEXT
copies the element f·rom the input buffer
into a work area, called ATFTXT, reads the
next record (Data IC-text element) into the
buffer, compares the current level number
to the next element's level number to
determine whether it is a group or an
elementary item, and calls the appropriate
roufines to create the ATF-text.

PROCESSING ELEMENTARY ITEMS

For an elementary item, the LDTEXT routines
described below produce a portion of an
ATF-text element that contains fields
identical to a dictionary entry except for
the addressing parameters. Routine DICTBD
of phase 22 fills these in later.

If there was a PICTURE flag in the Data
IC-text for the elementary item, the LDTEXT
routine calls routine GSPICT to distribute
the PICTURE into work areas. The kind of
character is stored in work area IPT and
the number of occurrences of that character
in IPLT. Subroutines, depending on the
type of the PICTURE, determine the length
of the item and its attributes.. The
attributes are entered in the variable
information field of the ATF-text element.

An indication of how many subscripts are
needed to refer to the item is set in the
text element by subroutine BMBSRN. The
REDEFINES bit is set from the REDEFINES
flag in the Data IC-text, and the object of
the REDEFINES clause is saved for
processing by phase 22. (If the REDEFINES
clause is internal, that is, generated for
the Report Section, and the subject of the
clause isa name plus a displacement, phase
22 adjusts the addressing parameters of the
object of the clause to reflect the
displacement.) The major code, which is
changed only when a new section header is
encountered, is moved from a work area to
an ATF-text field. In addition, the level
numbers are normalized as an aid to phase
3.

Routine BUSAGE utilizes the USAGE
information in the Data IC-text to
determine the size of the elementary item
if there was no PICTURE. It provides
enough information to set the minor code
field in the ATF-text element to the type

72 Section 2. Method of operation

of the entry and to fill in the variable
information field with a description of the
item. If there was a PICTURE, the USAGE
information, together with the PICTURE,
provides enough information to set the
minor code and variable information fields.

If a RENAMES clause is associated with a
data item, no partial dictionary entry
exists in the ATF-text element, and all
processing is done by phase 22. The BCD
names are passed on unchanged from the Data
IC-text element.

PROCESSING GROUP ITEMS

For a group item, the LDTEXT routines
produce a portion of an ATF-text element
that is identical to a dictionary entry
except for the addressing parameters and
the length of the group. These are later
filled in by phase 22.

The processing is the same as that for
elementary items with two exceptions.
Routine BUSAGE saves the USAGE, in area
GUI, to verify the USAGE of the elementary
items. Routine SRCHTB passes the keys for
table handling, if any, unchanged to phase
22.

PRODUCING INCO~~TE DAI!-!=IEXT

Phase 20 generates incomplete Data A-text .
elements for constants defined by VALUE
clauses. Information for constructing this
text comes from the Data IC-text read from
SYSUT3. For LD entries with VALUE clauses,
the value is given in the Data IC-text
element and is entered directly by routine
VALGEN into the incomplete Data A-text
element. Constants defined by VALUE IS
SERIES clauses are discussed under
"Building Tables f or Later Phases" in this
chapter. .For the formats of Data A-text
and Da ta IC-text, see "Section 5. Data
Areas."

PROCESSING FILE SECTION ENTRIES

When it encounters the File Section header-,
the BEGIN routine transfers control to
routine FILEST, which controls the
processing of the section. Routine FILEST
uses the BSUBRN routine to read the Data
Ie-text elements. If the next item read is
a cr~tical program break or if EOF is
enco~tered, routine FILEST returns control
to roUtine BEGIN.

When it encounters the Communication
Section header, the BEGIN routine transfers
control to routine COKSCT, which controls
the processing of the section. CD entries
are passed unchanged by routine CDTEXTi LD
entries are processed by routine LDTEXT as
described earlier.

PROCESSING ERRORS
---~-----

As phase 20 processes Data IC-text, the
clauses are checl~ed to determine whether

Licensed Material - Property of IBM

they are allowed to be used together. The
following is an example of the checking
that is performed.

When routine LDTEXT processes Data
IC-text elements for LD entries, some of
the clauses are processed before a
determination is made of whether the item
is a group or elementary item. Then, when
the LDTEXT routine determines whether the
item is a group or elementary item, it
eliminates any invalid clauses. For
example, if a PICTURE clause is given for a
group item, routine LDTEXT processes it.
Then when it determines the item is a group
item, routine ERRTN issues E-text for the
invalid PICTURE clause.

Phase 20 13

Licensed Material - property of IBM

Phase 22 (IKFCBL22) is the fourth of five
phases that process the Data Division.
Phase 22 follows phase 20, overlaying it in
storage. Its major functions are producing
dictionary entries, completing Data-A teAt,
and generating Q-routines.

Phase 22 processing is initiated and
controlled by the DIRECTOR routine. A Data
IC-text or ATF-text element is read from
SYSUT4 and distributed to work areas.
Routine DICTBD then completes fields in the
entry and places it in the dictionary.
While building the dictionary entry, phase
22 also checks for syntax compatibility and
error conditions. After phase 22 has
completed the dictionary entry for a given
text element, it picks up the next element
for processing, continuing until SYSUT4 has
been exhausted. All Data IC-text for FDs
and SDs and any E-text encountered is
copied unchanged onto SYSUT3.

Incomplete index-name entries (prefix
04) are entered into the dictionary by
routine READF4 when they are encountered.
Later, information is filled in by routine
XTEN~ a subroutine of DICTBD.

The input and output for this phase are
summarized in Figure 10.

]Q!#~~ICTIONARY ENTRIES

. The dictionary is used to store information
about procedure-names and data operands and
is the product of phases 1B, 21, and 22.
Phase 22 stores the current card number.

74 Section 2. Method of Operation

generated during phase 10 for each input
card in COMMON. It then calls the
appropriate routine for preprocessing of
the data item, and after the preprocessing
is finished, it calls routine DICTBD to
complete the entries. The routine makes
either complete or dummy dictionary
entries.

DICTIONARY PREPROCESSING

RENAMES Entries: If a RENAMES clause is
ass~ated~h a data item, routine RERAMS
goes to the dictionary and locates the data
item or items being renamed. The routine
picks up the attributes and addressing
parameters for the dictionary entry or
entries and assigns them to the RENAMES
item. The routine then places the
completed entry for the RENAMES item into
the dictionary. The entire dictionary
entry for a RENAMES item is formulated by
the RENABS routine.

~Eniri~: Before the dictionary build
routine is called to complete the
dictionary entry for an elementary item,
routine LDTXT obtains a dictionary pointer
for the item by calling an ACCESS routine,
GETPTR. (ACCESS routines are
dictionary-handling routines.)

A delimiter pointer is needed for group
items •

Level-88 entries are put into the
dictionary directly by the input routine
READF4.

Licensed Material - Property of IBM

INPUT OUTPUT
SYSUT4- SY5UT3-

i , r ,
IATF-text I IData A-text ITo
IData A-text I IData IC-text Iphase 21
I (incomplete) I r-->IDEF-TEXT • >
IData IC-text I I IE-text I
IE-text t t I I
'--- ,

I i .J

I
t
I
I SYSUT2
I r ,To
I I Iphase 3
l-->I Q-routines ~ >

I I
I .J

storage Storage
(in phase 00) (in phase 00)

r-- I .--- I i

I I I 1 I
I t I I I
I COl1HON l-- >1 PHASE 22 I- >1 COMMON
I t A 1 I I
I 1 I I I I
i .J I L I I

I 1\

I I
I I
I I

Storage (TAMER) I I Storage (TAMER)
r-- , I , ,
ITables passed to I I I I
,phase 22 I I I ,
1 1 I I ,
1 DICOT 1----' I l--> Dictionary I
1 HASH 1 1 1 I
I OD2TBL 1 I I t
1 VALTRU 1 I 1 1
1 VALGRP I I 1 1 , UPSTBL I I I 1

.J 1 , .J

1 I
I 1
V ,

storage (TAMER) , Storage (TAMER)
r , r ,
I Tables b uil t by 1 I Tables:
I phase 22 1 I DICOT
I , 1 FDTAB , GPLSTK 1 1 HASH
I QITBL I t INDKEY
1 QRTN '--->1 MASTODO
1 RDFSTK I oceTBL
I RNMTBL 1 QFILE
t SRCHKY 1 QVAR
1 I RENAMTB
1 I VALTRU
I I VARLTBL
L -' L

Figure 10. Phase 22 Input/Output Flow

Phase 22 75

Licensed Material - Property of IBM

£:!LD.icti.Q!lY.L~ntrie§: ,A skeleton
dictionary entry is created by routine
FSTXT. This entry contains only the file
name; the attributes are filled in by phase
21. The length of the VSAM FD dictionary
attributes is determined by phase 22 when
making the skeleton entry. This is true
for all other access methods. Routine
FSTXT writes the Data IC-text for the FD on
SYSUT3. Phase 22 determines if there is an
ISAM file which has'no RESERVE NO clause
and is opened INPUT or I-O.

Since Phase 21 processes the Data
IC-text for FDs, routine FSTXT passes this
text to SYSUT3 (the same file on which
phase 22 writes Data A-text) except for
user label record information.

A dictionary pointer is obtained and
processing of the entry is completed by
routine DICTBD and its subroutine FSTOOO.

A skeleton dictionary entry is also
created for any LINAGE-COUNTERs specified
for an FD.

£~ Dictionary-Entrie§: Routine CDTEXT does
the processing for the CD dictionary entry;
it creates a dummy level-01 entry and dummy
level-02 entries for each CD-name from
predefined attributes. Routine DICTBD
enters these in the dictionary.

~~i~B~ DictionarI-En~i~§: Routine
RDTXT does most of the processing for the
RD dictionary entry. At the end of this
processing, the entry is complete and
entered in the dictionary by routine
DICTBD.

~D.~iction~Y-j~i~§: SD entries are
handled like FD entries. Routine SDTXT
performs this processing.

COMPLETING DICTIONARY ENTRIES

The dictionary build routine, DICTBD,
completes these dictionary entries which
were begun in phase 20 by filling in
addressing information. Each data item is
addressed by a base locator number and a
displacement.

The addressing parameter field has three
parts, called i, d, and k, where i
specifies the type of base locator (BL,
BLL, or SBL), d specifies the displacement
of the item from the beginning of the area
controlled by the base locator, and k
specifies the base locator number.

Abase locator number is assigned to the
beginning of each major data area, such as
the Working-storage Section, and to each FD

76 Section 2. Method of operation

and SD entry. Then the displacement of
each item in these areas from the beginning
of the area is calculated. If the items in
the area occupy more than 4,096 bytes, a
second base locator number is assiqned to
the second 4,096 bytes, etc. (In this
case, CD and RD entries are considered to
be an extension of the Working-Storage
section and the same base locators are
used.)

There ar~ three types of base locators
(BL, BLL, and SBL) depending on the type of
data area. Base locator numbers are
assigned sequentially from counters in the
COMMON area.

n~ £2.!!D.ter Use
BL BLCTR BL numbers are assigned to

the Working-storage
section, the Communication
Section, the Report
Section, and to each FD,
CD, and RD entry.

BLL BLLCTR BLL numbers are assigned to
the Linkage Section, the
DEBUG-ITEM special
register, if specified,
label records, and to each
SD entry.

~BL SBLCTR See "Q-routine Generation"
in this chapter.

£2mEleiing Workinq-Storaqe_section Enirige:
The Working-storage Section contains only
LD entries. Routine DICTBD completes the
LD dictionary entries by filling in the
addressing parameter field for group and
elementary items and by determining the
length and the delimiter pointer for group
items.

Routine DICTBD assigns a base locator
number to the beginning of the
Working-Storage section. The type of the
base locator number is BL, and the base
locator number is the ,next available number
from field BLCTR in COMMON. The d part of
the addressing parameter is obtained from
the LOCCTR counter in COMMON. Each time a
data item is processed; ,the counter is
incremented by the number of bytes the
element will occupy at object time.

Routine DICTBD uses the GPLSTK table to
keep track of the length of group items.
It enters the length arid the delimiter
pointer (the dictionary'p6J:nte'r of the .
group delim:i ter) in the .dictionary entry
for the group. It also deletes the GPLSTK
table entry for the ,group.

!2~: The lengths of leve1-77 items are
not added to the GPLSTK table since they
are independent items., '

If an item contains a REDEFINES clause,
routine DICTBD calls routines REDEF and
RDSYN to process the item using tables
RDF'STK and RNMTBL. The REDEF routine makes
an entry in the RDFSTK table, giving the
length of the REDEFINES object and the
level number and current addressing
parameters of the REDEFINES subject. Then
the REDEF routine assigns the addressing
parameters of the REDEFINES object to the
REDEFINES subject. An entry is also made
in the RNHTBL table, giving the level
number o dictionary pointer, and length of
the object of the REDEFINES.

Hhen an item is encountered with a level
number less than or equal to the last level
number in the RDFSTK table, it is assigned
the addressing parameters from the entry.

The length of the REDEFINES object is
saved in the RDFSTK table to see whether
the length of the REDEFINES subject is less
than or equal to it. If the REDEFINES
subject is a group item, its length is
determined by the GPLSTK table. If it is
an elementary item, ,routine RDSYN
determines its length. (Routine RDSYN also
checks the name of the REDEFINES object
against the entries in the RNMTBL table to
see uhether or not it is valid.)

Table RNMTBL is also used if there are a
series of items with REDEFINES clauses. It
saves the names so that an item can
redefine an item that does not immediately
precede it in the series.

£Q.!!l.E.letiug1ile~io!LEnllie2: Routine
DICTBD uses its subroutine FSTOOO to
complete dictionary entries for FDs.
Subroutine FSTOOO performs two major
functions:

o It resolves the previous FD, if any.

o It completes the processing of the
current FD, if any.

Routine DICTBD processes SD entries in
the same way it processes FD entries,
except that the type of base locator number
assigned is BLL. These are obtained from
field 13LLCTR in CmIMOlf. and the first BLL
number used is 3. .

£Q!!l.Eleting Linkage section Entries:
Linkage Section entries are processed the
same as Working-storage section entries,
except that the type of base locator number
assigned is BLL. Fora label record item,
the first BLL is assigned. For other items
in the Linkage section, BLL numbers are
assigned starting with the first BLL number
not used for an SD entry. All level-77
items and all group items starting with
level-01 in the Linkage Section are
assigned unique BLL numbers.

Licensed Material - property of IBM

£Q~Ele!ing_£Q~~~i££1iO!L~g£iiQ.!L~ntri~§:
Routine CDTEXT calls routine DICTBD to
process the dummy CD entries that CDTEXT
has created. Location counter values are
saved so that every level-01 entry under a
CD starts at the same location. Base
locator numbers for level-01 entries are
assigned to these items as though they were
in the Uorking-storage section. The
location counter value for the CD FOR
INITIAL INPUT, if specified, is saved in
CDLCCTR in COMMON.

Completing~Q.~Seciion ~ntries: Routine
DICTBD adds no information to Report
Section entries before it puts them in the
dictionary.

Phase 22 completes the incomplete Data
A-text elements passed to it by phase 20 by
adding the location counter values. The
two prefix bytes (the X'10 Q indicator and
the length count affixed by phase 20) are
left to serve as an indicator to phase 21
that the text element needs no further
processing. Phase 21 deletes the first 2
bytes and then passes it unchanged to phase
6 or 64 and selects the Data IC-text
elements (for FDs and SDs) for translation
into Data A-text.

Phase 22 generates five types of Data
A-text elements itself. Hhile doing so, it
prefixes them with the same tuo bytes of
information discussed above. The four
types are:

o Horking-Storage Section address
elements.

o Constants from VALUE clauses.

o Data-name DEF elements.

• Verb DEF elements.

(> Q-routine identification elements.

To create these elements. phase 22 uses
information stored in COHf:lON, tables
GPLSTK, VERBDEF, and VALGRP, Data IC-text
created in phase 10 or 12 and passed by
phase 20, and ATF-text created by phase 20.

Phase 22 uses the following tables to
generate Q-routines: OD2TBL. QFILE, QVAR,
OBJSUB, QITBL, and QRTN. The OD2TBL table
is created by phase 10 and the other tables

Phase 22 77

Licensed Material - Property of IBN

by phase 22. The QFILE table is passed to
phases 21 and 3 and the QVAR table is
passed to phase 3; the OD2TBL. OBJSUB,
QITBL, and QRTN tables are released by
phase 22. (When the SYMDMP option is in
effect, however, the QITBL and QRTH tables
are passed to phase 25.) the OD2TBL
contains the qualified names of objects of
OCCURS ••• DEPENDING ON clauses.

Routine QVARBD combines the information
contained in the OD2TBL, the QRTN. the
OBJSUB, and the QITBL and QFILE tables into
the QVAR and QFILE tables for phase 3; the
QFILE table may be updated by phase 21.
The routine then releases the OD2TBL, QRTN.
and QITBL tables. (!then SYHDHP is in
effect, it releases only the OD2TBL table.)

If phase 10 created an OD2TBL table,
phase 22 checks each elementary item that
it processes to see whether or not it is in
the OD2TBL table. If it is, phase 22 sets
the dictionary entries of the item and all
its groups to reflect that they are objects
of OCCURS ••• DEPENDING ON clauses. If it is
a group item, routine XTEN performs the
processing; if it is an elementary item,
routine ELIPR handles the processing.
Routine ELIODO then places the dictionary
pointer for the item and a pointer to the
related OD2TBL entry in the QITBL table.
If an object of an aCCURS ••. DEPENDING ON
clause is encountered ehile processing the
File Section, its OD2TBL table displacement
is placed in the OBJSUB table.

When phase 22 encounters an ATF-text
element for an LD en try Hi th a pointer to
the OD2TBL table (that is, the item Has
described with an OCCURS •.• DEPENDING ON
clause), routine INTVLC marks all the group
items currently in the GPLSTK table as
variable in length by assigning a VLC
(variable-length cell) number from field
VLLCTR in COMMON to each item. If a
subject of an OCCURS ••• DEPENDING ON clause
is encountered ehile processing the File
section, its GN number is placed in the
OBJSUB table.

In addition, if an item follotfs a
variable-length field and is not a net! file
or record, it is variably located. To each
of these items, phase 22 assigns an SBL
(secondary base locator) number from field
SBLCTR in COMMON. At execution time, there
are secondary base locator cells (one for
each S BL num bel') in the Tas)e G 10 bal Tabl e
that contain the current location of the
variably located field. Phase 22 generates
Q-routines to calculate initial values and
changes in these secondary base locator
cells. .

Whenever phase 22 generates Q-Routine
text, a determination is made to see
whether or not it is the first time that

78 Section 2. Nethod of operation

Q-Routine text has been generated for this
record. If it is the first time, a GN
number is generated and routine QBUILD
places it in front of the Q-Routine text
for identification. This routine then
makes an entry in the QRTN table containing
the GN and the pointer to the OD2TBL table.
If it is not the first time, the QRTN table
is checked to see whether the pointer to
the OD2TBL table is there. If the pointer
is missing q it is put in.

Data A-text Q-routine identification
elements are generated for each Q-routine
and placed on the Data A-text data set.
These indicate that the Q-routines are to
be executed during initialization
processing at execution time.

As phase 22 processes Data IC-text and
ATF-text, a check is made of the clauses to
be sure that they are.alloved to be used
together.

EBCDIC names for keys for table handling
(prefix 01 or 02) are entered into the

SRCHKY table by routine READF4 while the
dictionary is being built. This table is
used for syntax checking whenever the names
are encountered.

Phase 22 builds eight tables for later
phases. In addition, it uses the VALTRU
table for syntax checking of the VALUE IS
SERIES clause, but then leaves that table
in storage for phase 3. The VALTRU table
is built by phase 20 and described under
that heading.

The QVAR and QFILE tables are built
during Q-routine generation and stored for
use by phase 3; the QFILE table may be
updated by phase 21. They are discussed
above under "Q-routine Generation."

During dictionary preprocessing
(described above), routine SRH200 creates
the INDKEY table.

The FDTAB table is built for phase 21.

If the SYMDMP or TEST option is in
effect, phase 22 primes and builds as many
as four tables, depending on the clauses in
the source program, for phase 25: the
OCCTBL. HASTODO, VARLTBL. and RENAMTB
tables.

Phase 21 (IKFCBL21) is the last of the five
phases that process the Data Division.
t1hen phase 21 is loaded into storage, the
dictionary is complete except that the FD
and SD entries and the LIIUGE-COUNTER
special register are dummy entries without
data attributes uritten by phase 22.

The input to phase 21 includes Data
IC-text, Data A-text (with two-byte
prefix), E-text, and four tables. The
PIOTBL table, built by phase 1B, and the
FDTAB table, built by phase 22, are used to
supply information about files for Data
A-text~ The QFILE table, built by phase
22, is updated if DeBs are created for
checkpoint files. The CKPTBL table, built
by phase 10, supplies information about
each REgUN statement in the source program.
Phase 21 uses the CKPTBL table to build the
RUNTBL table, which is used in phase 51 to
process verbs for RERUN files.

After phase initialization, each record
is read from SYSUT3 and the action to be
taken is determined. For a Data A-text
element, the 2-byte prefix attached in
phase 22 is removed, and the element is
copied onto SYSUT4; FD and SD elements are
selected for processing by phase 21; all
other records are copied unchanged onto
SYSUT4.

From the FD and SD Data IC-te·xt elements
and from information stored in the
dictionary and the PIOTBL and FDTAB tables,
phase 21:

Q Completes FD dictionary entries from
source program file description entries
in the File Section.

Q completes SD dictionary entries from
source program sort description entries
in the File section.

o Completes LINAGE-COUNTER entries.

o writes the Data A-text for DCBs, DECBs,
and buffers onto SYSUT4.

Phase 21 also produces E-text. If an error
(E) level message is generated and the
CSYNTAX option is in effect, the SYNTAX
option is forced into effect and the
options suppressed when SYNTAX is in effect
are turned off (see "Compiler options" in
the section"Introduction").

Licensed Material - property of IBM

The FD dictionary attributes work area (CI)
is filled in from Data IC-text in FD form
and from FDTAB table information in FD
form. Routine FSTXT and its subroutine
ACCMET do most of the processing. The
remaining information needed, that is, base
locator number, Q-Routine indication,
maximum record size, and recording mode
fields, is filled in by the FSTOOO routine.

The count and major code fields in the
dictionary entry are predetermined by the
Data IC-text. The access method field is
filled in from the information in the
access and organization fields of the Data
IC-text.

As phase 21 sets up DCB, DECB, and FIB
identifying elements for the file
(described in "Data A-text Elements" in
this chapter), subroutine ACCMET assigns
DCB and DECB identifying numbers from the
fields DCBCTR orDECBCT in COMMON and
subroutine AMTXT assigns FIB identifying
numbers from the AMICTR field in COMMON.
These numbers are placed in the dictionary
attributes work area •.

If the checkpoint bit in the Data
IC-text is set to 1, phase 21 searches the
CKPTBL table for the entry for the
file-name. The TYPE field in the CKPTBL
table is tested and if the "END OF
REEL/UNIT" option was specified, phase 21
builds a BSAM DCB for the checkpoint file
and makes one entry in the exit list. See
"Creation of Exit Lists" in this chapter.
If the "integer-1RECORDS" option was
specified, phase 21 builds a BSAM DCB for
the checkpoint file for eachunigue
external name and creates a RUNTBL table
entry from the CKPTBL 'table. In both
cases, the Chain Pointer field in the
CKPTBL table is tested and if it is not
zero, the other entry for the file-name is
processed as described above. After the
RUNTBL table is completed, the CKPTBL table
is released and the RUNTBL is made static.
Finally, the CKPCTR cell in COMMON is set
to the number of RERUN files with the
"integer-1 RECORDS" option.

If DCBs are generated for checkpoint
files and the QFILE, table is .present, phase
21 increments the DCB numbers in the QFILE
table by the number of DCBs created for
checkpoint files.

Phase 21 79

Licensed Material - property of IBM

While forming partial FD entries, the
ACCMET subroutine begins building the
SAMETB and SMRCDTBL tables. Routine FSTOOO
completes the fields in the tables.

Phase 21 builds the FD dictionary
entries, the File Information Block (FIB),
and the IND2TBL table entry if Record key
is specified for V~AM files.

In building the dictionary entries, FIB,
and IND2TBL table entry, phase 21 uses
FS-text as its input.

The SD dictionary attributes work area (CI)
is filled in from Data IC-text in SD form
and from FDTAB table information in SD
form. Routine SDTEXT fills in count and
major code information, which is
predetermined by the Data IC-text. Record
lengths, BLL information, Q-Routine
indication, and recording mode are filled
in by the FSTOOO routine which does most of
the processing for the. entry.

LINAGE-COUNTER ENTRIES

LINAGE-COUNTER entries are completed from
the Data IC-text and the dictionary.

Phase 21 generates the following types of
Data A-text elements from which phase 6 or
64 creates object text for the data area of
the object module.

• Block address elements

• COnstant definition elements

• Address constant definition elements

• DCB,. DECB, and FIB address elements

To create these elements, phase 21 uses
the COMMON area, the FDTAB table, Data
IC-text, and the PIOTBL table from phase
1B. If there is an entry for a file in the
PIOTBL table, the Data IC-text for the file
has a pointer to the table. The PIOTBL
table indicates the usage of the file. In
addition, phase 21 creates the SAMETB, and
SMRCDTBL tables to aid in producing Data
A-text.

80 section 2. Method of operation

FIB ADDRESS ELEMENT

Phase 21 creates a FIB address element for
each FD entry that describes a VSAM file.

BLOCK AND WORKING-STORAGE SECTION ADDRESS
ELEMENTS

Phase 21 creates a block address element
for each FD entry that describes a basic
access method (BSAM, BISAM, and BDAM) or a
queued access method (QSAM and QISAM) with
the SAME AREA clause.

The element contains the location of the
specified area in the object module data
area (that is·, the current value of field
LOCCTR in COMMON) and the first base
locator number assigned to the area.

CONSTANT AND ADDRESS CONSTANT DEFINITIO~
ELEMENTS

Constant, address constant, and virtual
reference definition elements are created
to build exit lists and to specify the
contents of DCBs and DECBs created for
files described in FD entries.

Creation of Exit Lists ,

Exit lists are built of constant and
address constant definition elements.

The area for the exit list is reserved
and the pointer to the list is indicated in
the DCBEXLST field. Some of the actual
entries to the exit list will be made at
object time by code generated by phase 51.

The format and contents of the exit list
are described in "Appendix B. Object
Module."

DCB'S AND DECB'S -- ADDRESS AND CONSTANT
DEFINITION ELEMENTS

File Information Block (FIBl

Phase 21 creates the fixed portion of the
File Information Block (FIB) for VSAM
files. The FIB work area is generated by
means of the GENFIB data macro. The AMTXT,
IDTXT, and FSTOOO routines fill in fields

of the FIB. and the BEGIN routine arites
the FIB as Data A-text (constant
definition) •

Phase 21 produces Data A-text address
elements and constant definition elements
uhich are used to create DCBs and DECBs.
The DCB and DECB address element specifies
the location of the DCB or DECB; the
constant definition, and address constant
definition elements specify the contents of
fields uithin the DCB or DECB. These Data
A-text elements are used by Phase 6 or 64
to produce the actual DCBs and DECBs.

In addition to the location of the DCB
or DECB, Mhich is the current value
(adjusted to fallon a double~IOrd boundary)
of the LOCCTR cell in COMMON, the DCB and
DECB address element contains the DCB or
DECB number assigned to the file from cell
DCBCTR or DECBCT in COMMON.

The contents of the DCBs and DECBs are
produced in several stages as information
becomes available. The following
discussion shows how phase 21 provides the
contents of some of the DCB fields. DCB
and DECB formats are given in ~~sys~m
Da!:!il,.~g§ and oS/vsL§yst2~a A£g!!§.

Hhen phase 21 encounters the Data
IC-text for an FD entry, the FSTXT routines

Licensed Material - Property of IBM

specify the size of the DCB for each file
and DECB for files uith basic access
methods (BISAH, BSAM, and BDAM). The size
is determined from the access method.
Using the Data IC-text information, phase
21 issues constant definition elements
which contain the information to be placed
into the fields of the DCB and DECB; for
example, file-name and organization.

If the file contains a SAME AREA or SAME
RECORD AREA clause, additional processing
described in "Block and l'lorking-storage
Section Address Elements" must be
performed.

Constant definition elements for the DCB
and DECB entries relating to the size of
the buffer area to be allocated for a file
are created after appropriate calculation.
In most cases, the compiler allocates all
the buffer area statically at compile time.
But in the case of QSAM or QISAM files, and
only for those unaffected by a SAME AREA
clause, the system allocates the buffers
automatically at OPEN time.

Phase 21 81

Licensed Material - Property of IBM

BUFFER AREA FOR I SINGLE FILE: The size of the buffer area to be allocated for any given
'file is dete'riiilned-'rii-generaI as follows:

If

Then

Cz maximum number of char.acters in a block {tC'.ken from E10CK CONTAINS rei TO:!
C2 CHARACTBRS)

r2 maximum number of records ill a block (taken frow BLOCK CONTAINS [rl TO] r2
RECORDS~ or default = I}

__ {size of AC~'aAL KEY -4, if direct BSA11 tlith lcey or direct EDlUl
KEY

o in any other case

r1 size of record length field

{
4 if RECORDING HODE V

o in any other case

b1 size of block length field

{
4 if RECORDING MODE V

,0 in any other case

RCD maximum data record size for the file (calculated by the compiler fLom the
maximum size of the relevant level-01 entries)

ELK block size

{C2 if CHARACTERS option specified in BLOCK CONTAINS clause

tbl + (KEY + r1 + RCD)*r2 in any other case

And also if

Then

BCE = buffer control block size

'12 for QSAR if RECORDING MODE S

V, or U
~
16 for BISAM or QISAR

8
0

for QSAM if RECORDING HODE F.

if neither BISAM, QISA5, nor QSAM

N total number of areas for file

number of alternate areas + 1 (taken from RESERVE .•. ALTERNATE ARBAS for
QSA11 or QISA~l)

(RCD ... 32 for QSM! if RECORDING [WDE 5

SR =~min [RCD. track capacity] + 8 for BSIM or BDIM if RECORDING MODE S

to in any other case

S total buffer area for file

BCB + (B1K*~ + SR

82 Section 2. Method of operation

Licensed Material - Property of IBM

BUFFER AREA INVOLVING MORE THAN OUE FILE: The total amount of buffer space to be
allocated depends, in addition;-on-t~resence of SAME AREA and SAME RECORD AREA
clauses. Three cases are shoun beloH. There are.!! files.! • ,where f (-i=k+1, ••• ,n) use
VSlI.B. BSlI.[1. or BDlUl, and Ithere f (i=1, ••• ,k) use some other access method. All S , RCD,
rl , bl • and KEY are determined according to the formulas and definitions shown in the
preceding paragraph.

Note: For automatically buffered files, as described above, the buffer area is allocated
only if the file is currently open.

Case 1.

If SAHE AREA was specified for all files

Case 2.

total size = max [S]
1SiSn

If SAME RECOR~AREA,uas specified for all files

k
total size L [S] -I- max [RCD] ... max [bl -I- rl ... KEY]

i=l lSiSn k<iSn

where max [RCD) represents the shared record area size
1SiSn

and max [bl ... rl ... KEY] represents the size of the shared
k<iSn

Case 3.

block length, record length, and key fields (if any) for
the BSlIH and BDA~l files.

If neither of the above clauses was specified for any file

n
total size = L [S]

i=l

SAME AREA clauses are processed by the SAME routine using the SAMETB tablei SAME
RECORD AREA clauses are processed by the SAMER routine using the SMRCDTBL table.

Phase 21 83

Licensed Material - Property of IBM

As phase 21 processes Data IC-text, a check
is made of the clauses to be sure that they
are allowed to be used together. This
section gives some examples of the checking
that is performed.

The clauses that can be Used in anFD
entry depend upon the access method of the
file. For example, RECORD KEY cannot be
used ~ith a physical sequential file.

84 Section 2. Method of Operation

Phase 21 contains a list of valid
clauses for each access method. When a
Data IC-text element for an FD entry is
encountered, the access method for the file
is determined. Then, as the entry is
processed, the clauses used are checked
against the list to determine that no
invalid clauses for that access method have
been used.

Phase 25 (IKFCBL25) is loaded only if the
SYHDHP or TEST option is in effect. The
major functions of phase 25 are:

,~ Building the OBODOTAB table and writing
it on the debug data set (SYSUT5) if
the program contains any
OCCURS ••• DEPENDING ON clauses

o Building the DATATAB table and writing
it on the debug data set (SYSUT5).

The operations of phase 25 are described
in Diagram 3. located with the foldouts at
the bad: of this pUblication. The
functions of the OBODOTAB and DATATAB
tables uhen SUlDI-IP is specified can be
found in tBH~~LVS COBOL Subroutine Library
R£2g~_1Qgi£. The tables are also used by
the program product IB~l OS COBOL
Interactive Debug ahen TEST is specified.

PHltSE 25 PROCESSING FOR THE DEBUG DATA SET

To build the OBODOTAB and DATA TAB tables,
phase 25 uses the following tables passed
from phase 22:

" The DICOT. table, lihich contains
information about the COBOL dictionary.

o The HASH table uhich is used in
locating dictionary entries.

" The QITBL table, which contains a COBOL
dictionary pointer for every object of
an OCCURS ••• DEPENDING ON clause.

" The QRTN table. which contains a COBOL
dictionary pointer for every subject of
an OCCURS •.• DEPENDING ON clause.

o The RENAHTB table. which associates
renamed data-names with their renamers.

" The OCCTBL table. Ithich contains
information about each subject of an
OCCURS clause.

" The BASTODO table, which identifies all
data-nallles tlhich do not contain an
acCURS •.• DEPENDING ON clause
themselves. but one of whose
subordinate items at the next level
does.

" The VARLTBL table, which contains an
entry for each variable-length item.

Licensed Material - Property of IBM

There is a DATATAB entry for each data
item in the Dat~ Division. There is also a
DATATAB entry for some of the
compiler-generated names associated with
the Report writer feature. There is an
OBODOTAB entry for each unique object of an
OCCURS ••• DEPENDING ON clause.

The OBODOTAB and DATATAB tables list the
characteristics of data items in the Data
Division. (See "Section 5. Data Areas"
for the format of the OBODOTAB and DATATAB
tables) •

Entries for either the OBODOTAB or
DATATAB table are built in a work area
(WRKAREA) in phase 25. Each entry in the

OBODOTAB and DATATAB tables is moved
directly into the debug data set buffer as
soon as it is completed. ·OBODOTAB entries
are entered in t'he debug data set on
fullword boundaries. DATATAB entries are
not aligned.

Certain of the DATATAB entries contain
pointers to OBODOTAB entries. Each DATATAB
entry for the subject of an
OCCURS ••• DEPENDING ON CLAUSE contains a
pointer to the OBODOTAB entry for its
corresponding object. The pointer consists
of the relative block number within the
OBODOTAB table and the displacement into
the block (in full words) • Each DATATAB
entry for a data-name subordinate to the
subject of an OCCURS ••• DEPENDING ON clause
also contains a pointer to the OBODOTAB
entry for the object of that
OCCURS ••• DEPENDING ON clause.

Phase 25 uses the OCCTBL table passed from
phase 22 and builds the ODOTBL table in the
process of building the OBODOTAB table.
Phase 25 processing for the OBODOTAB table
is shoun in Figure 11.

After the OBODOTAB table is built,
OCCTBL table entries are completed. The
completed OCeTBL table is used by routine
TESTSUBS during the building of the DATATAB
table later in the phase.

Phase 25 85

Licensed Material - Property of IBM

The BEGPASS routine controls building of
the DATATAB table entries, using the
SYMDICT DSECT. It performs the following
functions:

• Calls LOCNXT to read dictionary entries

• Calls GETDEF to get generated card
number for data-name from DEF-text.
RENAMES items are ignored.

CD CallsBLDRD to process RD level
entries.

• Calls SETNAM to build fixed portion of
entry. SETNAM calls PROCESLD to build
variable portion of entry for LD under

86 Section 2. Method of operation

FD, SD, Working-Storage, Linkage
Section.

o Calls PROCRENM to process RENAMES items
for data-name. PROCRENM calls ENTRDATA
to move complete entry in output
buffer.

• Branches to TESTSUBS to determine
subscripted items. TESTSUBS uses the
OCCTBL table for subscripting
information, and calls ENTRDATA as
above.

ENTRDATA routine calls WRITES to write
buffer on SYSUTS at end of buffer. PHASEND
routine releases tables and repositions
SYSUT4 when the dictionary processing is
complete.

tt::I
:or
Pl
III
CD

N
U'\

co
-l

"Il
1-"

I.Q
i!l
Ii
CD

-' ...
til
f:l
~.

I-'
P.
~.

I:f
I.Q

r+
(:l"
CD

o
til
o
t::I

~
\I>'
til

t-3
Pl
t:7'
I-'
CD

1 The COBOL s~urce
§ program contams

both OCCURS
and OCCURS ...
DEPENDiNG ON

~
~

If there are ODOs,
routine ODOBlD
builds the ODOTBl
table by:

8 Routine BlDOBODO builds the OBODOTAB
table on the Debug data set from information
stored in the dictionary, using entries in the
ODOTBl table to locate the data items which

2

clauses.

77 X USAGE IS COMP PIC 9(3).
77 Y USAGE IS COMP PIC 9(3).

01 A.
02 B OCCURS 2 TIMES.

4 Checking the ODOCT
counter defined in
phase 25 for the
number of the 000
entry to be processed.

03 C OCCURS 10 TIMES DEPENDING ON X. ODOCT counter

04 D OCCURS 10 TIMES DEPENDING ON Y.
05 EPIC 9.

Phase 22 builds the OCCTBl table
initializing it with the dictionary
pointer of each subject of an
OCCURS or an OCCURS ...
DEPENDING ON clause. A bit
is set to indicate the latter.

OCCTBl Table

Dictionary Length
Pointer Infonnation ODO

ODOBLD

Builds
the
ODOTBL
table

5 Using that number to
find the QRTN table
entry for that OCCU RS ...
DEPENDING ON clause.

QITBL Table
Dictionary
pointer to Displacement for for SW To be

Displ filled in by 6 The QRTN table entry
is used to find in the
QITBl table the
dictionary pointer for
the object of the 000
clause.

attributes of OD2TBL entry
of obiect of associated with
ODO clause ODO clause 100 B Phase 25

108~C~-+-+-+-+-+~~
118 I D

OCCTEST

Te3ts for
presence
of OCCURS .•.
DEPENDING ON
clause

D
;1 1·1 0 1 0 11 1 0

ODOTBL Table
Dictionary Displ'mnt in For
pointer to OCCTBL to OBODOTAB
attributes of OBODOTAB pointer
obiect oi pointer of 1 The dictionary pointer ODO clause correspond-

ing entry for the object of 000

Pointer 116
is inserted into the

for X ODOTBl table.

Pointer 126
for Y

comprise the OBODOTAB table. BlDOBODO
inserts a pointer (that is, the block number and
the displacement within the block) to each
OBODOTAB entry into its corresponding
ODOTBl entry.

BLDOBODO

Builds the
OBODOTAB
table;
completes
the ODOTBl
table

OBODOTAB Table
i

0-012 -1----1

0- 020-+-----1

ODOTBL Table
Dictionary Displ'mnt in For
pointer to OCCTBL to OBODOTAB
attributes of OBODOTAB pointer
obiect of pointer of
ODO clause correspond-

ing entry

Pointer 0012
for X
Pointer 0020
for Y

Finally, using the ODOTBl table,
routine ENDP1 fills in the OBODOT AB
pointer for each OCCTBl table entry
which is the subject of an 000 clause.

Dictionary Length Pointer to

ENDPl

Pointer Information ODO OBODOTAB
for for SW table entry

Displ for
100 OFF Displ = 116

108 C ON 0-012

118 D ON 0-020

Displ = 126

t-'
~.

o
CD
I:f
III
CD
P.

::;;:

~
CD
Ii
~.

II>
I-'

to
t1 o
"tl
CD
t1
c+

'<i

o
Hl

H
tIl
:3

Licensed Material - Property of IBM

By the time phase 3 (IKFCBL30) is loaded
into storage, almost all information on
source program names in PO-text has been
concentrated in the attributes of
dictionary entries. Supplementary
information is stored in the QVAR, QFILE,
INDKEY, and VALTRU tables. Phase 3 can nov
replace each name with its attributes, as
well as add information to verb strings
such as SEARCH and OPEN.

Phase 3 also perform.s any other
processing that requires the dictionary.
In this manner, storage space for the
dictionary and for dictionary ACCESS
routines is freed for subsequent phases.
Phase 3's use of the ACCESS routines and
descriptions of their functions are given
in "Appendix A. Table and Dictionary
Handling. II

Phase 3 processing thus consists of four
main operations, all dependent on the
dictionary:

• Building a Data Division glossary of
all source program data-names.

• Replacing source program names with
their attributes.

• Performing special processing on
procedure-names in segmented programs,
verb strings, and verb strings with
CORRESPONDING options.

• Performing any syntax analysis that
requires the dictionary.

Diagram 4 shows the overall flow of
phase 3 operations. Phase 3 input consists
of PO~text and E-text on SYSUT2, and the
dictionary and the QFILE, QVAR, INDKEY,
IND2TBL, and VALTRO tables in storage. Its
output consists of Pl-text and E-text on
SYSUT3, DEF-text on SYSUT4, the glossary on
SYSPRINT, and the DTAB table in storage ..

After the PHI NIT routine receives
control from phase 00 and performs
initialization for the phase, operations
occur in two stages: glossary~building
under the control of the GLOSRYroutine,
and translation of PO-text into Pl-text
under the control of the PHCTRL routine.

88 Section 2. Method of Operation

During the translation stage, special
processing is performed on READ verb
strings, OPEN verb strings: SORT and MERGE
verb strings ADD , SUBTRACT, and MOVE verb
strings with CORRESPONDING options; SEARCH
verb strings; source program names and
special registers; and syntax errors. If
USE FOR DEBUGGING declaratives exist in the
source program, additional special
processing is performed on procedure names
and.ALTER verb strings.

GLOSSARY·BUILDING

The PHI NIT routine determines from the SYM
bit of the PHZSil switch in COMMON whether
a glossary has been requested. If it has
not, the PHINIT routine tests the APPiRO
switch in the SWITCH1 cell in COMMON to
determine if APPLY WRITE-ONLY was specified
in the COBOL source program. If it was,
the PHINIT routine branches to the TSTWRO
routine, which scans the File Section
entries of the dictionary. For each file
definition entry in the dictionary in which
the WRITE ONLY switch is on, the TSTWRO
routine sets the major code to 7 in all the
data-name entries associated with the file.
When all the files have been processed, the
TSTWRO routine branches to the GLORET
routine, which initializes the translation
stage of processing, reads in the first
block of PO-text, and branches to the
PHCTRL routine. If APPLY WRITE-ONLY was
not specified, the PHINIT routine branches
to the GLORET routine, and processing
proceeds as described above.

If a glossary has been requested, the
PHINIT routine branches to the GLOSRY
routine, which prints out the glossary on
SYSPRINT and simultaneously performs the
same function as the TSTWRO routine.

The GLOSRY routine scans the dictionary
with the use of the DICNDl field in COMMON
(pointing to the last Procedure Division
entry created by phase lB, or UPSI entry
created by phase 22) and the DICND2 field
(pointing to the last Data Division entry
created by phase 22). As each data- name
is encountered in the dictionary, it is
placed in location PRLINE along with
.pertinent information from its attributes.
Phase 00 is then called to print PRLINE.
When necessary, the GLOSRY routine converts
numbers in the attributes from one mode to
another.

Before the GLORET routine branches to the
PHCTRL routine for the translation stage of
phase 3 operations, it stores the address
of the first PO-text element in location
PNTIN. The GETNXT routine moves the
identification code of the element (the
first halfword) into location GOTTEN. The
PHCTRL routine then tests GOTTEN to
determine the processing that should be
performed.

If the element is a READ or RETURN verb,
the PHCTRL routine calls the READFN routine
to insert the appropriate record-name after
the file-name. If the element is an ADD.
SUBTRACT, or KOVE verb followed by an
element for CORRESPONDING, the PHCTRL
routine copies out the entire statement as
P1-text, using the SEARCH routine to
determine the uniqueness of the operand.
It uses the CORRTN routine to break down
the statement into simple statements, each
containing one of the matching pairs of
elementary items.

If the element is a source program name,
the PHCTRL routine calls the SEARCH routine
to determine whether it is unique and then
calls the GENOP routine to replace the name
with its dictionary attributes and write it
out as P1-text. If the name is a special
register, however, the SEARCH routine
generates the appropriate P1-text element.

If the PHCTRL routine encounters a
SEARCH verb, it calls the STSRCH routine.
If the element is a source card number, the
PHCTRL routine places the number in CARDNO
and then writes the element out unchanged
on SYSUT3. All remaining elements are also
written out on SYSUT3 unchanged.

If the element is a file-name in an OPEN
verb string, the PHCTRL routine sets a
switch for the GENOP routine to add
information for label and error processing
to the string.

If the element is a VSAH file-name, the
FILENM routine initializes the Key Clause
workarea. This information is used by the
PHCTRL routine to determine that the file
specified in a subsequent KEY clause is a
VSAM file and by the DATANM routine to
determine that the data-name specified in
the KEY clause was specified on a RECORD
KEY data-name.

The CORRTN and STSRCH routines each
process the entire string associated with
its special condition. They use the SEARCH
routine to determine whether the names in
the verb string being processed are unique.

Licensed Material - Property of IBM

All these routines use the GENOP routine
to replace the names with their dictionary
attributes and write them out as P1-text
elements. The GENOP routine also generates
DEF-text for procedure-names if necessary.

The processing routines perform any
diagnostic analysis that requires the
dictionary. When a routine detects an
error requiring action parameters that. only
a subsequent phase can determine, it
substitutes an error symbol for the element
in error. When it detects an error
condition for which it can provide an
entire message, 'it calls the ERROR routine
with appropriate error parameters before
returning to the PHC~RL routine.

When the PHCTRL routine detects an end
of-file condition, it branches to the EOF
routine, which releases tables and returns
to phase 00.

The READFN routine checks the next PO-text
element in the input buffer after a READ or
RETURN verb to determine whether it is a
file-name. If it is not, the READFN
routine writes the verb element unchanged
on SYSUT3 and returns to PHCTRL. Phase 4
can detect the error without the
dictionary.

If a file-name does follow the READ verb
element, the next dictionary entry after
the file-name entry is checked to determine
whether it is a record- name. If it is, the
GENOP routine is used to build a P1-text
data-name reference element for the record
and to write it out after the file-name.
In the case of multiple records, the
attributes of the longest record in the
file are used. An error symbol is
substituted for the record-name attributes
if the dictionary entry following the file
name is not a record-name.

The CORRTN routine checks to determine
whether the operands in the source
statement are valid. It then matches the
subordinate, lower level data-names defined
within the source statement hierarchies,
and writes a P1-text statement for each
matching pair. This, in effect, breaks
down the CORRESPONDING option source
statements into a series of similar
statements, which together accomplish the
operations implied by the source statement.

Phase 3 89

Licen$ed Material - Property of IBM

Two sample CORRESPONDING PO-text
statements ,are given in Figures 12 and 13
along with the resulting Pl-text. The step
numbers given to the left of these ffgUres
refer to the procedure sequence below.

~i~~: The PHCTRL routine writes o~ as
P1-text the entire statement up to the next
crJ.tical program break. The source
statements are put out so tha<t. phase q can
perform a syntax check on ~hEiQ!l.

.---
IPO-text: -----
I
I
IP1-text: -----
Step 1 :

Step 5:

Step 5:

Step 5:

Step 5:

Step 5:

step 5:

Step 5:
I
IStep 6:
1..--';"'----

Figure 12.

ADD CORRESPONDING R TO K

ADD CORRESPONDING R TO K

ADD R TO K

AD,D R1 TO K1

ADD R2 TO K2

ADD Rn TO Kn

CORRESPONDI NG

P1-text Resulting from an ADD
CORRESPONDING Option '

s~gE-1: operand-1 and operand-2 are
checked to ensure that they are both group
items and valid data-names. Various
procedures are followed, depending' on what
the checks reveal.

If operand-1 is not an EBCDIC name or
data operand, no more processing is done on
the statement, and the next PO-text element
is read in. Phase q can detect this type
of error.

If operand-l is not an EBCDIC name but
is a data operand (for example, a literal),
the CORRTN substitute~ an error symbol for
the operand in P1-text, calls the ERROR
routine to put out error text, and reads in
the next PO-text element. Phase q can
detect this error, but the error symbol
indicates that phase 3 has already produ~ed
an error message.

If operand-1 is not a group item, error
text is generated, an error symbol is
substituted for the operand, and the next
PO-text element is read in. Phase q cannot
detect this error.

90 Section 2. Method of Operation

If operand-1 is valid, but operand-2 is
neither an EBCDIC name nor a data operand,
an error symbol is substituted for
operand-2 and a Pl-text strinq is produced
as follows:

Verb
Attributes
Preposition
Error symbol

r--------.----------------------------------,
IgQ=~.!j:: ,
I
,gl.::Bxt: ,
,step 1: ,
IStep 5: ,
,step 5: ,
IStep 5: ,
,Step 5:
I
,Step 5:
I
IStep 5: ,
,Step 6:
L--

Figure 13.

MOVE CORRESPONDING A(l) TO B

MOVE CORRESPONDING A(l) TO B

Ii OVE A (1) + TO B+

MOVE A(1) (TO B(

MOVE A (1) 0 TO BO

CORRESPONDING

P1-text Resulting from a MOVE
CORRESPONDING Option

The word CORRESPONDING is written after
the string, and then the next PO-text
element is read in. The string tells phase
q that no matching pairs were produced
because of an invalid operand-2.

If operand-1 is valid but operand-2 is
not a group item, then error text, a
Pl-text string containing an error symbol,
and the word CORRESPONDING are all written
out, and the next PO-text element is read
in.

~~: Assuming both operands are valid,
the subject (operand-1) hierarchy in the
dictionary is scanned for corresponding
items at the same relative level in the
object (operand-2) hierarchy.

Since the source statement operands have
already been checked by the dictionary,
handling routines, the CORRTN routine knows
which operand has the highest level
dictionary pointer. Before initiating the
object hierarchy search, it ensures that
the subject hierarchy pointer is at a lower
level than that of the object hierarchy.
If this is not the case, the operand-2
group becomes the subject hierarchy. This

is done to optimize the scan. since the
dictionary handling routines look for the
latest entry first through the HASH table
(see "Appendix A. Table and Dictionary
Handling") •

If a group item in the subject hierarchy
does not have a matching name at the same
level in the object hierarchy# the rest of
the items in the group are skipped. This
is done because there is no possibility of
finding a match for any of the items in the
group.

2~: The subordinate items in the
hierarchies are checked for conformity to
the source language regulations. (For
example, does the item contain a REDEFINES
or OCCURS ••• DEPENDING ON clause? If it
does. ignore the item.) No error symbols
or messages are generated unless no match
is found for any of the subject hierarchy
items. In this case, a P1-text string
(verb~ error symbol, preposition# error
symbol) is Hritten out to tell phase 4 that
there uere no matching items.

2~£2: lihen a correspondence is found,
assum1ng both items are valid, P1-text
statements similar to the source statement
are generated.

21~~: If there are no more corresponding
items, a P1-text element for CORRESPONDING
is written out, and the next PO-text
element is gotten •. The lIord CORRESPONDING.
tells phase 4 that the previous element was
the last of a complete CORRESPONDING
statellent.

For each table to be searched there is an
entry in the INDKEY table containing such
information as the length of the table, as

Licensed Material - Property of IBM

eel1 as pointers to attributes in the
dictionary for all the data items
associated with the table. The STSRCH
routine adds some of this information and
attributes to the SEARCH verb string.

The STSRCH routine first writes the verb
element out on SYSUT3 and then examines the
element that follows. This element should
be an EBCDIC name. If it is not, the
STSRCH routine abandons processing the text
as a SEARCH string and returns to the
PHCTRL routine to process it in the normal
manner. No error text is produced, as
phase 4 can detect the error.

If the element is an EBCDIC name, the
STSRCH routine uses the SEARCH routine to
determine that the name is unique. During
its processing the SEARCH routine places
the pointer to the dictionary entry for the
name in location ID1PTR. The STSRCH
routine uses this pointer as an argument to
find an entry in the INDKEY table that
contains the same pointer. This entry, in
turn, contains pointers to entries in the
dictionary for all the index-names, keys,
and OCCURS ••• DEPENDING ON objects
associated with this SEARCH verb string.

Figure 14 shows the PO-text input for a
SEARCH format-1 verb string including a
VARYING clause, along with the resulting
P1-text output. Note that either a data
name or a literal may be inserted after the
element for identiiier-1 to express the
length of the table. Also, depending on
the type of EBCDIC name in the VARYING
clause, any of three combinations of
P1-text elements may be inserted into the
string.

Figure 15 shovs input and output for the
SEARCH format-2 (SEARCH ALL) string.

Note that although in the source program
the SEARCH statement may continue beyond
the AT END through a number of conditional
and imperative statements, the STSRCH
routine stops processing before the AT END
and returns to the PHCTRL routine to handle
the remainder of the statement.

Phase 3 91

Licensed Material - Property of IBM

,
I R.hmuL 1 B.J2!U~!!!'
I
I r I i
1,,'4 ISE I
I ' '.J

I
I 'i i i 11231EBCDIC Namel , , ,

r i i

1541881

• i ----,
1231EBCDIC Namel ,

OR

r I i

1231EBCDIC Namel
L--.' -:J

r-,-:--,
14415Et
I , I

• I i
130lAttributest
L ' ,

Verb, SEARCH format-1.

Data-name, identifier-1
(table to be
searched) •

copied out unchanged.

Name replaced by its
dictionary attributes.

, , i Data-name, object of Attributes taken fro~
t30lAttributesi OCCURS ••• DEPENDING ON. dictionary, using pointer
L . in INDKEY table entry

that contains pointer to
identifier-1 dictionary
entry.

OR

r· I i
I 321Literal 1

"

r-,-:--,
1541881

I i I
I 36 I Attributesl
L_-'-____ --'

r i i
I 36 I Attributes I

,..--.--,
1541881

r--T- -,
t361Attributesi
, , 1

Represents maxim.um Literal taken from INDKEY
number of occurrences. table entry that contains

pointer to identifier-1
dictionary entry.

VARYING

Data"-name for
index-name-1 that
belongs +~ table.

Data-name for
index-name-1 that does
not belong to table,
if specified.

Data-name for
index-name-1 that
belongs to table.

VARYING

Data-name for
index-name-1 that does
not belong to table,
if specified.

copied out unchanged.

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry
for identifier-1.

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry
for identifier-1.

Added for phase "
convenience.

Name replaced by attributesl
found in dictionary. I

I
I L---______________ __ .--___ .J

Figure 14. P1-text Written for SEARCH Format-1 PO-text (Part 1 of 2)

92 Section 2. Method of Operation

r--'---'
I Pha§~_l~_Q~~Y~
I
I OR
I
1
1 i. ----,

1231EBCDIC Namel
L--I ~

iii

1541701
L __ -.I

r-,---,
1541A11

r • i
I 361Attributesl

r-r---1
1541881

ii,
130lAttributesi
L~. _____ --'

,..-,---,
1541701
L--L--.I

Licensed Material - Property of IBM

Data-name for
identifier-2 that
does not belong to
table. if specified.

Data-name for
in!'lex-name-1 that
belongs to table.

VARYING

Data-name for
identifier-2 that
does not belong to
table, if specified.

AT

END

--------------,
~~2~~Q~h~2~-l

Name replaced by attributes
found in dictionary using
pointer in INDKEY entry
for identifier-1.

Added for phase 4
convenience.

Name replaced by attributes
found in dictionary.

Copied out unchanged by
PHCTRL.

Copied out unchange~ by
PHCTRL.

L---______________________________ . ____________________________________ ~~---

Figure 14. P1-text written for SEARCH Format-1 PO-text (Part 2 of 2)

Phase 3 93

Licensed Material - Property of IBM

, iii i ,

14415FI 14415FI Verb, SEARCH format-2.

.--- i •
1231EBCDIC Namel
L--' ,

r I i

1541701

L--

L---I..--J

• I I
130lAttributesi
L I I

~

1 BBI Literal
L_ ____ --.II

r i I
130lAttributesi , . ,

~ I
130lAttributesi
L ' •

r i i
1361 Attributes 1

.--,------,
130 I Attributesl
L_ ____ --.II

OR

Data-name. identifier-l
(table to be
searched) •

Literal representing
number of leeys.

Attributes of first
key.

Attributes of last
key.

First index-name
attached to table.

Data name, object of
OCCURS ••• DEPENDING ON.

r i • Literal representing
I 321Attributesl maximum number of

occurr ences.

r-Y--, AT
1541701

END

Figure 15. P1-text Written for SEARCH Format-2 PO-text

94 Section 2. Method of Operation

copied out unchanged.

Name replaced by its
dictionary attributes.

Literal taken from IHDKEI
entry that contains
pointer to identifler-l
dictionary entry.

Name replaced with
dictionary attributes
pointed to in entry
containing pointer to
identifier-1 dictionary
entry.

Name replaced with
dictionary attributes
pointed to in entry
containing pointer to
identifier-1 dictionary
attribute.

Name replaced with
dictionary attributes
pointed to in entry
containing pointer to
identifier-1 dictionary
attribute.

Attributes taken from
dictionary using pointer
in INDKEY table entry
that contains pointer to
identifier-1 dictionar.y
entry.

Literal taken from
INDKEY table entry
that contains pointer to
identifier-1 dictionary
entry.

Copied out unchanged by
PHCTRL.

copied out unchanged by
PHCTRL.

, ,

I
/

Thl'! 5I;A1.H':H routine rJO"~1S th"" sm,rce program
na~e it is to analyze from the input buffer
to the locati0n WKAREI. It then determines
from the dictiQnaryuhether the name is
unique. If it is; the SEARCH routine
return9 to the PHC~RL routine to replace
the aame !fith its dictiona.ry attributes and
put the result out as P1-text.

al2.g£iaLRegj,ster§: If the nam", is not in
the dictionary, the SEARCH routine searches
for it in the SPCREG area, which contains
the names of special registers. Associated
with each name is a pointer to dummy
att~ibute£ in the REGATT area. The SEARCH
routine replaces the special register name
uith its !lummy attributes and calls the
GENDM:' routine to havp. them lfritten as
P1-text.

. '21H!liliilH!.-Rllil.§.§: In PO-text, <l name and
its qualifiers are in reverse order of
their'appea!:ance in the source program.
When the SEIRCH routine finds that a name
is a qualifying name, it calls the QUALIF
routine. The QUALIF routine searches the
dictionary for each name in the string of
qualifying and qualified naill~S. If the
qualified name is truly unique, the
location of its attributes in the
dictionary is returned to thePHCTRL
routine. Its qualifiers are discarded.

The PHCTRL routine calls the GENOP routine
to replace a name with its dictionary
attributes and then erite the result out in
P1-text format through the GENDAT routine.

Except for condition-names (which are
never passed) and special registers (~hich
contain zeros), the pointer to the
dictionary entry itself is appended to
these attributes. Although the dictionary
does not exist after phase 3 operations,
phases 50 and 51 use the pointer as an
argument in syntax analysis,_ and phase 6 or
64 uses it as an identification code.

The GENOP routine determines from the
attributes Which kind of P1-text element
should be generated. Special processing
for particular types of names is described
belovo

Data-names: Data-name reference elements
are-generated for data-names. A unique
data-name reference element is generated if
data name "as specified in a USE ERROR
DECLARATIVE with giving option. If the
Q-Routine bit in the attributes is on, the

Licensed Material - Property of IBM

QVAR tablH pointer is used to locate the GN
number to be added to the attributes. In
the case of an element~ry itAm, the ~N
number in the entry pointed to is used. In
the case of a group item, ~he GN number in
the entry for the next subordinate item is
used.

File-names: File-name reference items are
generated for file-names. Ii: the Q-Routin€
bit in the attributes is on, the QFILE
table is searched. using the point~r in the
attributes. for a GN number to be added to
the attributes.

If the OPENSN location contains a 1 (set
by the PHCTRL routine when it encounters an
OPEN verb element): the GENOP routine
searches for the GN numbers following the
file-name element for label and error
processing. These numb~rs are inserted
between the attributes and the dictionary
pointer in the resulting P1-text element •

If the file is a VSAM file, a 'SAM
file-name reference element is generated.

f~::.!!S!!!g2: CD-name reference items are
generated for file-names. If the Q-Routine
bit in the attributes is on, the QFILE
table is searched, using the pointer in the
attributes, for a GN number to be added to
the attributes.

Procedure-names: When the name is a
procedure=name-reference in a segmented
program~ GENOP routine searches the
dictionary for the section in which the
name is defined. It then adds the priority
number of the section to the attributes of
the procedure-name reference.

Condition-names: When the GENOP routine
encounters a condition-name, it creates a
P1-text string that associates the item
with the values for which it is to be
tested. It uses pointers in the dictionary
attributes of the condition-name to find
the dictionary attributes of the item, as
well as the test values in the VALTRU
table. Figure 16 shows the PO-text input
and P1-text output for a condition-string
without a VALUE ••• THRU clause. Figure 19
shows the PO-text and P1-text for a
condition-string with a VALUE ••• THRU
clause.

I Debugging

DEBUG-ITEM references are only valid in USE
FOR DEBUGGING declaratives. During phas~ 3
processing when the last such declarative
has been processed (END DECLARATIVES or
non-USE FOR DEBUGGING declaratives
encountered) the dictionary entries for a

Phase 3 95

Licensed Baterial - Property of IBM

DEBUG-ITEM are invalidated (ENDDBG
routine). Further references will result
in diagnostics. The ENDDBG routine
invalidates dictionary references to fields
of the DEBUG-ITEM special register by
inserting an invalid character as the first
character of each debugging special
register in the dictionary. ENDDBG will
guarantee ~hat Procedure Division
references to any DEBUG-ITEM field will be
flagged.

If ALL PROCEDURES was specified in any
USE FOR DEBUGGING declarativ~, DTAB is
primed and DTAB entries created for all
proceure-names'encountered, except those in
USE FOR DEBUGGING declaratives. PN
definition handling is p.rocessed by the
procedure-name handling routine (PRONA!).
If the program has WITH DEBUGGING MODE
specified, and one of the debug
declaratives has specified ALL PROCEDURES,
and this PN definition is not a debug .
procedure, then build and add an entry to
the DTAB for phase 35.

The ALTSCAN routine appends a BCD
literal element after each target PN in an
ALTER statement. Phase· 35 uses this
routine to build a debug verb for ALTER
procedure-names. ALTSCAN will loop until,
an error or all clauses of the ALTER
statement are processed. Process for each
iteration:

• Expects first PO element to be PN1

• Checks for and skips by TO PROCEED TO

96 Section 2. Method of operation

• Expects next PO element to be PN2.

• If valid ALTBCD, builds and generates
BCD literal. For PN2 after PN2 in
P1-text.

• Any deviation causes exit from ALTSCAN

Error Processing

The. processing routines branch to the ERROR
routine when E-text for a complete
diagnostic message can be generated. The
parameter list following each branch
consists of the message number, the
severity code, a count of the parameters if
any, and the addresses of the parameters.
The ERROR routine builds E-text for a
message in location ERMSG, calls phase 00
to write it out on SYSUT3 along with the
P1-text, and then returns to the calling
routine. Phase 3 also sets the ERRSEV cell
in COMMON to the highest error severity
level encountered. If an error (E) or
disaster (D) level message is generated and
theCSYNTAX option is in effect, the SYNTAX
option is forced into effect and the
options suppressed when SYNTAX is in effect
are turned off (see "Compiler options" in
the chapter "Introduction"). The format of
E-text is shown in "Section .5. Data Areas"
and the manne'J;' in which diagnostic messages
are later generated from it is described in
the chapter "Phases 70, 71, and 72."

/
.\

•

r---
t Ph~~L 1B-.Qutput

r--r--t
1541071
I , ,

r i i
1231EBCDIC Namel
L--' ----.I

r--r--t
1541071
I • I

I , I

I 30 I A ttribu tes I

iii

150 t 061
L~

i i

1* 1 Literal
L_..L-______ ---I

Ii'

IF

Condition-name

Elementary item

EQUALS

First value to be
tested.

I 1541541 OR
I L~

I
I ~~
, 1501061 EQUALS
! L--L--.J

I
I .-----r-
I 1* ILiteral Last value to be
I L tested.
I
I
1
1 Imperative Imperative
1 statement statement
1
r----------------
1 *Code identifying type of literal.

Licensed Material - property of IBM

Copied unchanged by PHCTRL.

Uses pointer in dictionary
entry for condition-name
to find entry for
elementary item.

writes elementary item
attributes from its
dictionary entry.

GENOP generates.

Taken from VALTRU table
entry pointed to in
c ondi tion-name
attributes.

GENOP generates.

.GENOP generates.

Taken from VALTRU entry
pointed to in
condition-name
attributes.

GENOP returns to
PHCTRL to handle
remaining processing.

I
I
I
I
~
I

Figure 16. P1-text written for Condition-String Testing Multiple Values without Using
the VALUE ••• THRU Clause

Phase 3 97

Licensed Material - Property of IBM

r-----------.--------
gh~l~-2utEY~ ghas~1-0u~~ut Keanin~of Element

i I t
1541071

• I I
1231EBCDIC Namel

Imperative
statement

I

Condi tion-name

i , i

1301 Attributes 1 Elementary item , , ,

• i i

1* I Literal 1
I ~

r--,----,
15415CI
'---,-_.J

I i ---,
1* ILiterall
I

Imperative
statement

NOT

LESS THAN

First value in
THRU option.

AND

NOT

GR EATER THAN

Second value in
THRU option.

copied unchanged by PHCTRL.

Uses pointer in dictionary
entry for condition-name
to find entry for
elementary item.

Writes elementary item
attributes from its
dictionary entry.

GENOP generates.

GENOP generates.

Taken from VALTRU entry
pointed to in
condi tion-name
attributes.

GENOP generates.

GENOP generates.

GENOP genera tes.

Taken from VALTRU table
entry pointed to in
condi tion-name
attributes.

GENOP returns to PHCTRL to
. handle remaining

processing.
--------.---------.~

*Code identifying type of literal. 1 L--- ___ ~ ___ . .J

Figure 17. P1-text Written for condition-String with VALUE •• ~THRU Clause

98 Section 2. Method of Operation

Phase 35 (IKFCBL35) processes the Procedure
Division for debugging. It first scans the
Declaratives section for USE FOR DEBUGGING
verbs and their operands, then adds to the
source program's text, the verb necessary
to cause invocation of the USE FOR
DEBUGGING declaratives. Phase 35 is
invoked only if WITH DEBUGGING MODE is
specified, and at least one USE FOR
DEBUGGING declarative is present at
completion of processing, all tables are
released and control is returned to phase
00.

Phase 35 is invoked by phase 00 to
lprocess USE FOR DEBUGGING declaratives,
verifying each operand. Phase 35 scans
Procedure Division IC-text for data items
for which debugging is specified, and
generates debugging text for processing by
later phases.

IKFCBL35 first scans the Declaratives
Section for USE FOR DEBUGGING verbs,
analyses each verb, and makes an entry in
the DTAB for each valid operand. If at
least one valid operand exists in a USE FOR
DEBUGGING sentence, a USE FOR DEBUGGING
verb is generated into the P1A-text. Upon
reaching the end of the debug declaratives,
the DTAB is complete and the rest of the
program is scanned for references to USE
FOR DEBUGGING operands.

Tvo types of debugging verbs are
generated as references to an operand of a
USE FOR DEBUGGING declarative are
encountered:

1. The DEBUG transfer of control verb
consists of a verb code and an option
byte. The option byte indicates the
type of transfer of control. Phase 35
generates DBBUG transfer verbs for the
situations listed below. If at least
one procedure-name is a USE FOR
DBBUGGING operand, then:

• Prior to a procedure-name
definition, if it is a USE FOR
DEBUGGING operand, but not if it is
a declarative section, or if it is
preceded by a COBOL conditional
sentence, unconditional GO
statement, END-DECLARATIVES control
break, or an EXIT verb.

• Prior to a GO statement

• Prior to an I/O and/or conditional
sentence.

Licensed Material - property of IBM

o Following a conditional sentence.

2. The DEBUG verb that later causes a.
call to the DEBUG subroutine (ILBOBUG)
to be made. Each call to ILBOBUG
causes at least one DEBUG declarative
to be invoked. The operands of this
verb are the procedure-name number and
priority number for the declarative to
be invoked, an alphanumeric literal
which will be the contents of the
debug-name, a dictonary attributes
item (dummy, if a DEBUG verb is
produced for a procedure-name), or an
alphanumeric literal giving the
contents of DEBUG-Contents, and an
optional byte giving additional
information about the USE FOR
DEBUGGING operand reference.

When specified as a USE FOR DEBUGGING
operand, the following items cause a DEBUG
verb to be generated:

o Any explicit reference to a QSAM or
VSAli file-name, or a CD-name.

o A ProcedUre-name reference tha t is the
first operand of an ALTER verb.

o A procedure-name definition.

• Any explicit reference to an identifier
when specifying, ALL REFERENCES ••• i
otherwise, only when the identifier is
changed.

I !Q~: Certain verbs, because of where the
language specifies the declarative to be
invoked, requires special processing.

In general, the DEBUG declaratives are
invoked prior to the execution of a
procedure-name and after the execution of a
verb.

Special processing is required for any
USE FOR DEBUGGING operand identifier that
is indexed or subscripted, so that it may
be properly handled by phase 50. A special
bit is set on in the attributes indicating
that this identifier has both subscripting
and debugging. Also, a DBGSS (debugging
subscript) verb string is built and
generated preceding P1-text containing any
such USE FOR DEBUGGING operands.

Source output (P1-text) and DEBUG output
are accumulated in separate tables until
the proper time (usually end-of-verb) when
both tables will be generated to P1A-text.

Phase 35 99

Licensed Material - property of IBM

~ig: At any given generation moment. only
one DEBUG verb will be put to P1A-text per
unique USE FOR DEBUGGING operand
referenced. unless the operand isa
subscripted or indexed identifier.

Some strings of debugging text are
produced twice (for example, when a
declarative must be invoked on the true and
false paths of a condition).

I TABLE HANDLING

RlTEX!: Phase 35 creates this table and
uses it to accumulate each verb string
until debug processing for it has been
completed, at which time the text in this
table is generated. Phase 35 deletes
P1TEXT upon completion of processing.

~~AB: Phase 35 builds or adds to the DTAB
table, saving the data descriptions of all
valid operands found in the USE FOR
DEBUGGING sentences. Upon completion of
building DTAB (at end of DEBUG declaratives
or END declaratives) it scans the remaining
Pl-text for operands that match the entries
in DTAB. Whenever a match occurs,
information from the DTAB entry is used to
build a debug verb for the operand. Phase
35 deletes DTAB upon completion of
processing.

DBGTXT: Phase 35 creates this table and
uses-rt to accumulate DEBUG verb text while
processing an input verb string. Phase 35
deletes DBGTXT upon completion of
processing.

VRBDN: Phase 35 creates this table and
uses-it to describe each data item
encountered by the current input in Pl-text
verb string. Phase 35 deletes VRBDN upon
completion of processing.

PH35VRBS: An internal table used when
analyzIng a verb string for USE FOR
DEBUGGING operands. PH35VRBS defines the
proper syntax analysis routine for a
specific verb, and its initial process
control flag settings. Each entry in
PH35VRBS contains the COBOL code for the
verb, initial analysis process control flag
settings, address of the verb analysis
subroutine (VRBANALZ), and the length of
the entry.

When phase 35 encounters a verb in the
Pl-text input stream, the PH35VRBS table is
searched for the proper entry corresponding
to the verb. The entry, with its initial
settings is then copied into a work area,
VRBINFO, which is utilized by phase 35
during verb analysis.

100 Section 2. Method of Operation

I PROCESSING ROUTINES

PHCTRL: The Phase Controller routine
(PHCTRL) controls the processing of phase
35. Upon entry to phase 35, PHCTRL
performs the following initialization
functions:

• Prime the DTAB table if not previously
done by phase 30

• Prime the P1TEXT table

• Prime the DBGTXT table

• Prime the VRBDN table

PH35INIT: A subroutine of PHCTRL,
initializes processing, inclUding Tamer
table priming. PHCTRL transfers control to
the ANLZUFDS routine, which analyzes the
USE FOR DEBUGGING sentences and builds a
DTAB table entry for each valid operand.
When control is returned to PHCTRL (no more
USE FOR DEBUGGING sections), it will
determine the category of the next input
element and transfer control to one of two
routines; GOTAVERB (processes all verbs
encountered), or PNDEFRTN (checks a PN
definition for debugging and may generate a
debug transfer verb as well).

AN~~2: A subroutine of PHCTRL, is
called to scan the entire verb sentence for
USE FOR DEBUGGING declaratives (Pl-text)
for proper operands until the end of all
debug declaratives, or END DECLARATIVES is
found. The VRBANALZ routine is used to
handle syntax variations, GETDI is used to
build the necessary VRBDN entries and debug
text, and GENTXT is used to generate the
contents of the P1TEXT and DBGTXT tables to
output. The Pl-text is read until the
first section PN definition in the
declaratives is found. For each USE FOR
DEBUGGING declarative, the USE FOR
DEBUGGING sentence is examined. A USE FOR
DEBUGGING statement must begin with a
section definition. Each operand is
checked for validity (for example; not RD,
index-name or special register). ANLZUFDS
invokes CKUFDOPS for each USE FOR DEBUGGING
declarative. In turn, CKUFDOPS invokes
CKUFDOP for each operand in the sentence.
CKUFDOP verifies the operand as valid and
unique (QSAM or VSAM file-name, CD-name,
PN, data-name). then adds an entry to the
DTAB table via the DTABADD routine. If a
PN, the BGALLPRC bit in COMMON must be
tested to verify that ALL PROCEDURES had
not been specified. If so, the PN must be
diagnosed as invalid and discarded. A PN
will be entered as FF, plus the PN number
in the DICTPTR field of the DTAB entry.
For a non-PN, the DICTPTR field contains
the dictionary pointer. A special check
must be made against each identifier to

ensure that PAGE-COUNTER, LINAGE-COUNTER,
LINE-COUNTER, or PRINT-SWITCH have not been
used as an operand of the USE, if so, they
are diagnosed and discarded.

Once it has been determined that an
identifier is valid, the size of the
operand must be compared to the MAXBGITM
cell in COMMON. At the end of phase 35,
MAXBGITM will contain the size of the
largest element for which debugging is
validly requested. (Maximum allowed,
however is 32K-57.)

If at least one operand in the sentence
is valid, a USE FOR DEBUGGING verb is
generated. Then input text, up to the next
declarative section or END DECLARATIVES, is
generated to output unchanged. When
END-DECLARATIVES or a non-USE FOR DEBUGGING
declarative section is enc'ountered, control
is returned to PHCTRL.

GOTAVERB: determines the verb and passes
contror-to ANLZVRBS.

ANLZVRBS: ANLZVRBS is a subroutine of
PHCTROL that processes complete P1-text
verb strings for debugging. This
subroutine searches each verb string
looking for operands that were specified in
a USE sentence. VRBANLZ routines are
invoked to handle specific SYNTAX and
processing variations. ANLZVRBS will find
other verbs in the internal phase 35 table
(PH35VRBS), and copy the initial VRBANALZ
control flags from the table. (PH35VRBS
defines the proper syntax analysis routine
for a specific verb and its initial process
control fl9-g settings. Each operand
produces only one debug verb for its use in
a given verb string (except subscripted or
indexed variables).

P1-text is kept in the P1TEXT table as
it is being read. The debug verb text is
also accumulated in the DBGTXT table as
debugging operands are matched in the verb
string. The P1TEXT table, and the DBGTXT
table are generated when end of verb is
determined (except for PERFORM, IF, ON, and
SEARCH). End of verb is determined by
searching for; card number, verb, or a
special keyword (AT~ END, NO (in RECEIVE),
DATA, WHEN, THEN, or AFTER (in PERFORM».
When one of these occurs, the following is
the sequence of the generation of tables:

• For verbs that end in an IF, UNTIL, or
WHEN condition, or GO TO DEPENDING ON,
DBGTXT is put out first, then P1TEXT.

• For special keywords (except THEN or
AFTER (in PERFORM) or ATEND (in
RETURN», the P1TEXT table including
special keywords, is generated, then
DBGTXT.

Licensed Material - property of IBM

• For special keywords THEN or AFTER (in
PERFORM) DBGTXT table, then P1TEXT
table excluding special keywords, is
genera ted.

• For special keyword AT END (for RETURN)
the P1TEXT table, excluding special
keywords, is generated, then the DBGTXT
table is generated.

VRBANALZ: The VRBANALZ subroutines invoked
by-ANLZVRBS at entry point based on the
address in PH35VRBS. The major objective
of each VRBANALZ SUbroutine is to process a
given verbs P1-text string, locating and
generating debug text for USE FOR DEBUGGING
operands encountered, with minimal
dependency on syntax analysis (VRBANALZ
subroutines only perform as much syntax
checking as necessary for location
verification).

Some VRBANALZ subrouties look only for
specific keywords that will give
information about data items encountered
before and/or after the keywords. Others
may perform more complex operations.

Because of the generality of the
VRBANALZ subroutines, it is possible to
combine the processing of several similar
verbs in one routine. Most of the VRBANALZ
subroutines may be invoked several times
while ANLZVRBS is processing a particular
verb string. On each invocation, most will
process what it recognizes, or copy what it
knows is unimportant (such as extraneous
COBOL words), then return to ANLZVRBS which
may determine analysis for the current verb
string if finished, and/or pass on the
current P1 element to GETDI which checks if
it is a USE FOR DEBUGGING operand.

Some routines process verbs whose
debugging analysis is very sensitive to
syntax. These routines often are invoked
only once for a given verb occurrence and
will stop analysis immediately if a syntax
incongruity is encountered.

Input to VRBANALZ is the current P1
element addressed by P1TXTPTR (address of
COMMON is in COSADR). Three sets of
control flags (switches) are:

• PH35FLGS: phase control flags
maintained continuously throughout
phase 35.

• CURVFLGS: verb control flags •
original settings copied from PH35VRBS
entry for the current verb and
maintained continuously throughout the
current verbs processing •

• ADDVFLGS: Additional verb control
flags initialized prior to the current
verb processing and maintained

Phase 35 101

Licensed Material - Property of IBM

continuously throughout the current
verbs processing.

output from VRBANALZ is P1-TEXT and
DEBUG-TEXT saved in their respective Tamer
tables, P1TEXT and DBGTEXT (some VRBANALZ
subroutines) will generate these tables to
P1A-TEXT when analysis deems it necessary.
Input flags (switches) maybe reset.

PNDEFRTN: The PNDEFRTN routine checks
procedUre-name definitions for debugging.
PNDEFRTN det ermines if the PN definition is
a USE declarative header. If so, any debug
text for a PN definition is saved in the
DBGTEXT table later to be generated
following the P1-text for· the USE verb.
For any other PN definition, the debug text
will be saved in the P1TEXT table. If this
is any PN definition not immediately
following an END DECLARATIVES, a
conditional sentence, an EXIT verb, or an
unconditional GO statement, a DEBUG
transfer verb is generated. The PN
definition element is saved in the P1TEXT
table. Later, when PN analysis is
complete, GENP1TT is called to generate the
P1TEXT table, including the PN definition
element, and possibly the DEBUG verb text
for the PN definition.

!B!QB: The ERROR sUbroutine builds and
produces E-TEXT for error messages and
associated parameters, and terminates
compilation, if necessary. If error vas
disaster level, phase and compiler
terminates, either immediately by ABEND, or
shortly via EOFRTN.

EOFRTN: The EOFRTN routine receives
control at end-of-file to release the
tables and to terminate phase processing.
EOFRTN guarantees that text tables have
been generated, and releases all Tamer
tables used by this phase.

I NON-DEBUGGING DECLARATIVE CONSIDERATIONS

Collecting information about various data
items encountered in a verb string as
potential debugging operands is handled by
the VRBDN table in phase 35. Each entry in
the VRBDN table corresponds to a potential
debugging operand in the verb string.
Information stored includes whether the
operand: 1) was found in the DTAB, 2) is
unique, 3) is subscripted, or 4) will
change value. Additionally, the entry
identifies the offset in the DBGTXT table
where the debug verb, if any was built for
this operand, is stored. When text is
generated form the DBGTEXT table, phase 35
references each entry of the VRBDN table to
determine if its corresponding debug verb
should be generated and where in DBGTEXT it
is located.

102 Section 2. Method of Operation

Four features of the deb~gging language
make it necessary for phase 35 to be aware
of the con text ·in which the operan d it is
processing appears:

1. If an identifier is specified as an
operand in a USE sentence without the
ALL REFERENCES phrase, the declarative
is to be invoked only if the
identifier is changed. With the ALL
REFERENCES phrase, the declarative is
invoked whenever the identifier is
explicitly referenced~

lote: When an identifier is
encountered with certain verbs you
cannot be sure if it will be changed
until a later word is recognized in
the verb (for example;
RELEASEIREiRITEliRITE.lf FROM is
specified, record-name has changed) •

2. Phase 35 is sensitive to the syntax if
the compiler has generated implicit
text. Phase 35 must not generate
debugging verbs for implici t text
operands. The following verbs require
special handling because of
compiler-generated text:

ADDISUBTRACTIMOVE CORRESPONDING
only the first string is eligible
for debugging. Subsequent
ADDISUBTRACTIMOVE verbs until
CORRESPONDING (signifying end of
string) are ignored.

READIRETURN
Record name has been appended after
file-name. Must be ignored.

WRITEI REWRITE
File-name has been inserted prior
to record-name. Must be ignored.

SEARCH
After identifier-1 will be either
identifier or literal. Ignore if
identifier as it was generated.

SEARCH ALL

a. When BBxxxx is encountered in input
ignore the next xxxx elements (keys
for table).

b. Next two elements, index-name and
identifier or literal must also be
ignored.

SORTIMERGE
Phase 30 generates three SORTIMERGE
strings as well as OPENICLOSE for
USINGIGIVING files. only one
invocation of the debug verb should
be generated for each applicable
operand only after the last string

3.

4.

generated for the SORTIMERGE
statement.

Upon recognition of certain non-verb
keywords to generate the appropriate
P1TEXT table and DBGTXT table. The
keywords are; AT, END, NO (in
RECEIVE), DATA, WHEN, THEN, and AFTER
(in PERPORM).

subscripting or indexing. When an
identifier is found 'which qualifies
for debugging, the next operand must
be checked to see if it is a left
parenthesis. If so, a bit is set on
in the attributes of an identifier to
indicate that this subscripted
identifier requires debugging. A verb
will also be put out which will
contain the actual subscript string.
This will be produced prior to the
source verb string.

!Qte: Debugging is only produced once for
any operand in a given verb string, but if
it is subscripted or indexed it will be
invoked once for each occurrence of the
subscripted variable in the verb string.

There are three types of output produced by
phase 35:

1. DEBUG transfer of control verb

4483
2401nn

DEBUG transfer
. option byte

where nn has the followng settings:

#GO
#PALLTHRU
tHERGE

GO
PALL THROUGH
MERGE

Licensed Material - prop erty of IBM

I 2. DEBUG verb:

I *
**

I xx

448A
DO •••

·34 •••
26/21/25/30*/34 •••
24nnxx**

DEBUG verb
PN reference of
USE FOR DEBUGGING
declaratives
DEBUG-NAME
DEBUG-CONTENTS
option byte

identifier, if subscripted or indexed,
a bit is on.

bit will be set on if this is the last
DEBUG verb in a series.

has the following settings:

tIDCD
iALTER
iPN
tFDREAD
tFDNREAD

'. ·tLASTDBG

ID or CD
ALTER
PN
FD for READ
PD not for READ
last DEBUG verb
in a series

I 3. DEBUG subscript verb:

4496
5200
30 eo •••

5201

left parenthesis
identifier

right parenthesis

Later phases use the DEBUG transfer verb
to update the Task Global Table with
DEBUG-LINE and type of transfer of control.
These fields are used by the ILBOBUG
subroutine when invoked for procedure-name
to properly set up debug-items.

Phase 35 103

Licensed Material - property of IBM

Phase 4 (IKFCBL40) continues the
transformation of a source program
Procedure Division into machine-language
instructions. Its main functions are:

• Transforms P1-text into P2-text

• Transforms P2-text into ATM-text for
the UNSTRING verb

• Analyzes syntax and checking for errors
in the P1-text statements.

• If COUNT is in effect, converts all
verbs to Data A-1;ext and defines block
nodes with a counter in both the count
table (Data A-text) and P2-text.

During phase 4, the card number of the
statement currently being processed is kept
ina three-byte cell labeled CARDNO,
internal to phase 4, and in the CURCRD cell
of COMMON.

Control flows through routine IDENT. This
routine scans the current input element,
anticipating either a procedure-name
definition, a verb, or a program break. If
the element is a procedure-name definition,
control is given to routine IDLHN. If a
verb is found, control is given to the verb
analyzer routine for that particular verb.
The verb analyzer processes the verb and
its operands. Program breaks are processed
by IDBRK, a subroutine of IDENT.

These routines return control to IDENT,
with the input pointer containing the
address of the next P1-text element.

There is a separate verb analyzer routine
for each COBOL verb.

The verb analyzer routines use a number
of tables while building a verb string.

The STRING table is used by most verb
analyzers that produce output. It holds an
output string while it is being built. The
string is held in the table, rather than
being put out in parts as it is built,
because:

104 Section 2. Method of operation

• A string is not issued unless it is
free of errors. This cannot always be
determined until the entire string is
produced.

• Sometimes the information that appears
at the end of a P1-text statement (for
example, UPON CONSOLE in a DISPLAY
st~tement) is put at the beginning of
the string as an aid to phase 51.

A string of P2-text is put out with a
maximum of five operands. If more than
five ·operandsare required by a single
verb, a continuation string is put out.
See the discussion of the DISPLAY string.
For an example of a continuation string,
see the discussion of the DISPLAY statement
in the chapter "Phase 51."

When phase 4 encounters an UNSTRING
verb, it first puts out P2-text for the
verb. All other information is put out on
SYSUT2 in the form of ATM-text for phase 45
to process. Phase 4 sets a bit (PH45BIT)
in the SWITCH1 cell in COMMON to indicate
that phase 45 is to be called to process
the UNSTRING verb, and passes the ATM-text
to it. If phase 4 encounters a Q-Routine
control break and the PH45BIT is on, it
writes all Q-Routine text on SYSUT2.

The following sections give examples of
phase 4 processing for several types of
verbs. These examples show the general
pattern of analysis for verbs and use most
of the phase 4 tables.

MOVE STATEMENT -- SUBSCRIPTING

Phase 4 processing for the MOVE statement
consists simply of producing a MOVE string
that gives the number of operands and names
the operands. For the input elements

MOVE A TO B

phase 4 generates the string

MOVE (2) A B

The ope~ands of a MOVE statement may be
subscripted. When subscripted operands are
encountered in any statement, the
generating routine first issues a SUBSCRIPT
string for each subscripted operand and
then issues the string for the verb. The
following MOVE statement exemplifies the
building of SUBSCRIPT strings:

Licensed Material - property of IBM

I

STRING Table DEFSBS Table output

MOVE (2)
SSIDl
SSID2

SUBSCRIPT (3)
A
6

SUBS CRIPT (3) A 6 SSID1
SUBSCRIPT (5) BCD E SSID2
MOVE (2) SSID1 SSID2

I
-I
I
f
I
I
I
I
I
f
I
I

SSID1
SUBSCRIPT (5)
B
C
D
E
SSID2 ,

igure 18. Tables and output for the Statement MOVE A(6) TO B(C,D,E)

MOVE A(6) TO BCC,D,E).

Processing for this statement is
illustrated by Figure 18, which shows the
contents of tables built for the statement
and the P2-text strings produced.

EXPL!li!IION: The MOVE verb, with 2 to
indicate the number of operands. is placed
in the STRING table. Then the first
subscripted operand is processed. For this
operand, a SUBSCRIPT string is built in the
DEFSBS table. (SUBSCRIPT is a special
COBOL verb used only within the compiler;
the DEFSBS table is a table similar to the
STRING table, but it is used only to hold
subscript information.)

The SUBSCRIPT string is used by phase 50
to resolve the subscripted reference. For
the first SUBSCRIPT string shown in Figure
18, this string means "Compute the address
of the sixth occurrence of A; place that
address into a temporary cell called
SSID1." At execution time, the address of
the data item to be moved will be held in
SSID1; therefore, SSIDl becomes the operand
of the MOVE verb. The same applies to the
second operand.

When the period ending the statement is
encountered, all three strings are put out.

DEBUG CARD

If a procedure-name is referred to by a
DEBUG card. phase 4 produces a CALL string.

The output generated for debugging
procedures is illustrated in Figure 19.

When routine IDLHN analyzes a PN
definition, it determines from the
attributes that this PN is referred to on a
DEBUG card. First, it issues a PN
definition e1ement~ Then, it obtains a GN
number from GNCTR in COMMON and issues a
CALL string with this GN as its operand.

The PN number and GN number are saved
together in table DBGTBL.

When a DEBUG card is encountered. the
DBGTBL table is searched for a PN number
that matches the one on the DEBUG card. In
the table, this PN number has a
corresponding GN number, and a GN
definition element is issued for this GN.
Therefore, the GN defines the location of
the debugging procedure.

ALTER STATEMENT

For each ALTER statement in a program, two
statements require ALTER processing: the
ALTER statement itself, and the GO TO
statement named in the ALTER statement.
Either of these statements may be
encountered first. When one statement of
an ALTER/GO TO pair is encountered, a VN
number is assigned, and a string of P2-text
is written using this VN number. A VNTBL
entry is made, giving the VN number and the
PN number to which it corresponds. When
the second statement of the pair is

r-- ..,..- I

I Input Statements I DBGTBL Table Output I
l-- -+- of
I PN1. ADD... I PNl GNl PN1. CALL GN1 ADD... I
I PN2. MOVE... I PN2 GN2 PN2. CALL GN2 KOVE... I
I DEBUG PN2 I GN2. DEBUG PN2 I
I DEBUG PNl I GN1. DEBUG PNl I
L-- '

Figure 19. DBGTBL Entries and P2-text for DEBUG Card Processing

Phase 4 105

Licensed Material - Property of IBM

encountered, this VNTBL entry supplies the
VN number for this statement's P2-text
output.

At execution time, each PN is assigned a
cell in the Program Global Table. (For the
format of the PGT, see the chapter "Object
Module.") In this cell, the address of the
first instruction for the PN is permanently
stored. Each VN is assigned a cell in the
VN field of the Task Global Table. (For
the format of the TGT, see "Appendix B.
Ob ject Module. ") However, the contents of
these cells are not permanent. When a
branch instruction is modified by an ALTER
statement (or a PERFORM statement as
described later in this chapter), the
address contained in the VN cell is
changed.

Figure 20 gives an example of phase 4
processing for two ALTER statements.

In this example, the first statement
read is PN1. This is a GO TO statement
referred toby an ALTER (the ALTER
statement follows PN3) •

2 When routine IDLHN examines the
definition of PN1, it det~rmines from
the attributes that this statement is
an altered GO TO statement. Then the
GO verb analyzer processes the
statement.

3 It obtains a VN number, which it stores
with PN1 in the VNTBL table, and puts
out two strings.

4 The GO VN1 string indicates that, when
this branch is executed, the branch
address is to be picked up from a
uniquely identified VN cell in the TGT.

5 EQUATE VN1 PN3 indicates that at
execution time the initial contents of
this VN cell is the address of PN3.
Until the value is changed by an ALTER
statement, the cell will be unchanged,

106 section 2. Method of operation

and any execution of PH1 will branch to
PN3. The equated address is also
placed in a: VN cell in the PGT.

(In a segmented program, the VN is given
the same priority as the PN to which it is
equa ted.)

2 When the ALTER PN1 statement is read,
the VNTBLtable is searched for PN1.
Since an entry is found, the
corresponding VN number (VN1) is used
as the receiving field of the MOVE.

6 At execution time, this MOVE statement
takes the address of PN2, which is
stored in a PN cell in the PGT, and
places it in the VN cell for VN1.

The execution-time operation of this
ALTER/GO TO pair of statements is
illustrated in Figure 21. The flow of
control resulting from this ALTER statement
is shown in Figure 22.

Figure 20 also illustrates a second
ALTER/GO TO pair.

7 In this case, the ALTER statement
~LTER PN4) is read first.

8 A search of the VNTBL table reveals
that no entry for PN4 has been made. so
the ALTER analyzer obtains a VN number
and enters that VN number with PN4 in
the table.

§Eg£i~l_g~Q£g22ing_tQ~Optimi~~tio~: When
the OPT option is in effect, most PN cells
are eliminated from the Program Global
Table. For addressing PNs without address
constants in the PGT, phases 62, 63, and 64
use Procedure Block base locators. Some GN
and PN cells remain unchanged by phases 62,
63, and 64. Phase 4. generates P2-text
optimization ~nformation elements (changed
to optimizationA-te~t elements by phase
50) to identify the type of element that
follows.

Licensed Material - property of IBM

r----------------------- I
I Input statements I VNTBL Table Output
r---------------- +-- --~------

1 PN 1. GO TO P N3 • 3 PN1 VN1 4 PN1. GO VN1

EQUATE VN1 PN3

7 ALTER PN4 TO PROCEED 8 PN4 VN2 MOVE PN6 VN2

TO PN 6.

PN2 •••••• PN2 •.•••

GO TO PN1. GO TO PN1

PN3 ••••• PN3 •••••

2 ALTER PN1 TO PROCEED 6 MOVE PN2 VN 1

TO PN2.

PN4. GO TO PNS. PN4. GO VN2

EQUATE VN2 PNS

PNS..... PNS •••••

PN6..... PN6 ••••• L---______________ __

Figure 20. Table Entries and output for ALTER Statements

I
IfMl~_20 TO_fM~
I
IPN2.
I
I GO TO PN1.
IPN3. ,
I !~TER--F.N1~PROCEE!LTO--F.!Q
, GO TO PN1.
I
,Assembler
Icoding L REG,VN
Ifor PN1 BR REG
,GO TO statement
I ,
,Assembler
coding for L O,PN2
ALTER statement ST O,VN

simplified assembler coding and the TGT
and PGT cells shown below. (only the
underscored statements are directly
involved in the logic of the ALTER
statement .)

PN (cells of PGT)
r --,
la(PN1) I
I I
I a (PN2) 1-----.
I ----f I
I a (PN3) I ,
L __________ ~ ,

I , ,
VN (cells of TGT) I
r----------,
I a (PN3) L _________ ~

A ,
,

, , , , ,
I

PGT and TGT cells
for execution of
ALTER code

Figure 21. Execution of an ALTER Statement

I ,
~ ,
I
I , , ,
I
I
I
I
I
I ,
I ,

Phase4 107

Licensed Material - property of IBM

Beginning
of

program
I ,
I ,

r------.> 1<
r----....,>, ,

I
V

I
no I
------------------------------->1 , PN3

I

I
, yes I
I I

I' I
If' 'v V I , r , , , ~ , ,

I I I I , , L---., PN2 ALTER 1----' , , , , ,
, L I , , ,
I-- ~
'Hotg: This illustrates the same example used in Figure 23. Assuming that no other ,
,ALTER or GO TO statements occur in this program, the flow of control will follow the 1
,single-line path the first time through and the double-line path every time after the ,
,first. 1
I J

Figure 22. Flow of control for ALTER/GO TO statements

108 Section 2. Method of Operation

Licensed Material - property of IBM

r-- ~ I ,

I Procedure Statement VNTBL Table PFMTBL Table output I
I ~
I SN1 SECTION. l~ SN1. 1
I SN2 SECTION. SN2 VN1 2 SN4 VN1 3 SN2. I
I PN3. ••• PN3. I
I GO VN 1 S I
I EQUATE VN1 SN4 6 I
I SN4 SECTION. 8 SN4. 7 I
I PNS. PERFORH SN1 THRU SN2. PNS. MOVE VN1 PFMSAV1 9 I
I MOVE GN1 VN1 I
I GO SN 1 I
I GN 1. MOVE PFMSAV1 VN1 I
I PN6. ADD... PN6. ADD... I
L--- ---L-____________ ~ ____________ . __ ~_____ J

Figure 23. Effect of a PERFORM Statement

PERFORM STATEMENT

Processing of a PERFORM statement resembles
that of an ALTER statement. The return
from a performed procedure is a GO string
with a VN as its object. This GO string is
placed at the end of the performed
procedure, just before the procedure
delimiter.

Phase 4 uses the VNTBL and PFMTBL tables
to keep track of the VNs. Figure 23 gives
an example of the use of these tables.

The dictionary attribu tes of
section-name SN2 indicate that it is
the object of the THRU option of a
PERFORM statement.

2 Routine IDLHN obtains a VN number from
the VNCTR cell of COMMON and enters VN1
and SN2 in the VNTBL table.

3 In the PFMTBL table, it enters VN1 and
the delimiter of SN2, which is SN4.

4 When section-name SN4 is encountered,
routine IDLHN knows it is the delimiter
of the performed procedure because it
is in the PFMTBL table. Therefore,
before the procedure-name. definition
element for SN4 is issued, routine
IDLHN sets up the return from the
performed procedure.

S It obtains the VN number from the
PFMTBL entry.

6 It issues a GO string to go to VN1.

7 It issues an EQUATE string to equate
VN 1 to SN4.

8 When the PERFORM statement (PNS) is
encountered, the verb analyzer PRFORM
issues instructions to set up the
return from the performed procedure.

9 It obtains a PFMSAV number from the
PFMCTR cell of COMMON. This number
represents a 4-byte cell in the Task
Global Table of the object program.
The value of VN1, which is the address
of the next sequential instruction
after the performed procedure, is saved
by moving it into this PFMSAV cell. A
GN number is obtained, and this GN is
moved into the VN1 cell. This GN is
defined at the point of return from the
PERFORM. The instructions issued at
this point cause restoration of the
original value of VN1.

At execution time, secti~ns SNl and SN2
are first executed in-line. VN1 contains
the address of section SN4, and thus the
"return" from the procedure (the statement
"GO VN1") actually causes control to pass
to SN4, the next sequential instruction.
Later in the program, the execution of
statement PNS causes SN1 and SN2 to be
executed again. This time, the return is
to GN1. The original value of VN1 is
restored, and PN6 is executed.

Figure 24 gives an example of how a
PERFORM statement operates at execution
time. Figure 25 illustrates the flow of
control for the program shown in Figure 24.

Phase 4 109

Licensed Material"" Property of IBM

r-------------------
1

'I PERFORM SEC2 THRU SEC3.
1

SEC1 SECTION.

SEC2 SECTION.

SEC 3 SECTIO N.

SEC4 SECTION.
GO TO SEC1.

~---,

!ssQ£i~ig~!22gmQlg~_£oding
Coding for

PERFORM

GN

(SEC1)

(SEC2)

(SEC3)

Coding for
Return
(SEC4)

L O,VN Save initial value.
ST O,PFMSAV
L O,GN
ST O,VN
L REG,PN+4
BR REG
L O,PFMSAV
ST O,VN

L
BR

REG, VN
REG

Branch to performed
procedure.

Reinitialize.

Load A (SEC4) •
Branch.

BgleYalli_~GT ~~g_~GT cel12
PN (cells of PGT)
.--
la (SEC1)
I
la (SEC2) I'
1---------1
1 a (SEC3) 1
I--------f
la(SEC4) I

GN (cells of PGT) , --,
,-4 a (GN1) 1
I ----'

¢
VN (cells of TGT)

'-> , ---,
la (SEC4)

,--1----'----.1, <-----.."

~P~MSAV (Cell~ of TGT) ~
'-> I 1--____ -.1

, I

!22Q£!~te~Assgmble~ coding if OPT ~s in Effect
coding for

PERFORM
MVC PFMSAV(4) ,VN Save initial value.

GN

(SEC1)

(SEC2)

(SEC3)

Coding for
Return
(SEC4)

LA O,GN
ST O,VN
L 11,Procedure block of PN
BC 15,Displacement of PN(11)

MVC

L
BR

VN(4) ,PF~lSAV

REG,VN
REG

igure 24. Execution of a PERFORM Statement

;110 Section 2. Method of operation

If necessary.
Branch to performed

procedure.
Reinitialize ..

Load A (SEC4) •
Branch.

~
1
1
1
1
1

Licensed Material - property of IBM

PERFORM

,
I
I
I
I
V

SEC2
SEC3

i ,
1<--------------------------
I<--~ ,

SEC1

I , , , ,
i i

, '--______ .J

II
VV

It No
II
II
vv

..-------.. ,

r I

Yes I ,

II. . , , ,
--------------~>'Reinitialize ~------------~

I I

II. 1\

SEC4 ,~---
I ,

I 1
I Not~:· This illustrates the same PERFORM statement shown in Figure 26. Assuming that,
Ino other procedure branching statements occur in this program, the flow of control willJ
Ifo11ov the single-line path the first time through and the double-line path every time
fafter the first. .

Figure 25. Flow of Control for a PERFORM statement

COMPUTE STATEMENT

Verb analyzer routine COMPUT, with its
major subroutine FORMLA, breaks. down the
arithmetic expression of a COMPUTE
statement into a series of simple
arithmetic strings. It uses two tables,
PNOUNT and PSIGNT, in the processing of the
arithmetic expression. PNOUNT conta.ins
operands and PSIGNT contains signs
(operators and parentheses) of the
expression.

These two tables are needed because the
hierarchy of arithmetic operators may
necessitate a rearrangement of the

expression. The hierarchy in descending
order is:

unary -
** * and I
+ and -

For example, the statement COMPUTE
X = A-B*C requires strings in the order

MULT C B IR1
SUB IRl A IR2
STORE IR2 X

where IR1 and IR2 are intermediate results.

Phase 4 111

Licensed Material - Property of IBM

r-- iii
I I PNOUNT IPSIGNT I
IInput I Table I Table IStrings stored I
IElementlContentslContentslin STRING Table I
I I I I I
I A I A I I I
I I I I I
I + I A I + I I
~ I I I f
I (I A I + I I
I I I I I
~ I I I of
I C I A I + I I
I I C I I I
~ I I I of
I I A I + I I
I I C I I I
I I I I I
I- I I I of
I D I A I + I I
I I C I I I
I I D I' I
1--, , +- I
, / I A I + I ,
, I C I I I
, I D I I I
I I I / I I
~--+ I I I
I E I A I + I I
I I C I 1 ,
I I D I I I
I lEI/I I
I I I +- I
1 I A I + I DIV E D IR1 ,
, I c, 1 I
, ,IR1 " ,
I G) I I I -t
I I A I + I SUB IR1 C I~2 I
I ,IR2 I I I
I I I I I
I * I AI + , ,
I I IR2' * I I
I I I I I
I F I A I + I I
I I IR2 I * I I
I I F I I I
I I I I of
I I A I + I MULT F IR2 IR31
I I IR3 I I I
I 0. I -+- I
I I IRq I I ADD IR3 A IRq I
I I I -+- I
I G I IRq I I I
I I G I I I
I I I I I
I 0 I I I SUB G IRq IRS I
I • I I I STORE IRS X I
~ I I
IRQ1~: The circled numbers in the figure I
Irefer to explanations in the text. I
L--

Figure 26 •.. Evaluation of a COMPUTE
Statement

112 Section 2. Bethod of Operation

Phase 4 builds a simple arithmetic
string to be placed in the STRING table
when the signs in the PSIGNT table indicate
that the arithmetic hierarchy of operators
requires a string. To build a string, the
last operator in the PSIGNT table is made
into a verb, the last two nouns in the
PNOUNT table are used as operands, and an
intermediate result is appended. (The
intermediate result is placed in the PNOUNT
table as an operand.) The following rules
apply when a string is to be built:

• If there are no more input elements,
all remaining strings are built.
(see 0 in Figure 26)

• If a right. parenthesis is encountered,
all strings up to the left parenthesis
proceeding backwards into the tables
are b~t.
(see ~ in Figure 26)

• If an operator ~s encountered that, in
the hierarchy of arithmetic operators,
is lower than or equal to the last sign
in PSIGNT, a string is built.
(see ® in Figure 26)

Figure 26 shows the evaluation of the
following COMPUTE statement:

COMPUTE X = A+(C-D/E)*F-G.

Each row in the figure shows table contents
after processing the input element in the
first column.

Figure 27 gives the final output from
the COMPUTE statement example used in
Figure 26:

COl!PUTE X =A+ (C-D/E) *F-G.

r-
I EVAL DMAX DCURRENT X
I DIV E D IR1 (-C)
I SUB IR1 C IR2 (*F)
I MULT F IR2 IR3 ~A)
I ADD IR3 A IRq (-G)
I SUB G IRq IRS (ST X)
I STORE IRS X

Figure 27. Strings Resulting from a
COl!PUTE Statement

As an aid to phase 50. an EVAL string is
issued preceding the arithmetic strings.
The EVAL str ing contains information such
as the maximum number of decimal places in
any operand, the number of decimal places
in the result, and the presence of ROUNDED
or ON SIZE ERROR clauses. Appended to any
string containing an intermediate result is
an indication of the use of that
intermediate result. For example, IRl is
used in a subtraction with C.

I MULTIPLE RESULTS IN ARITHMETIC STATEMENTS

For COMPUTE with multiple operands before
the equal (=), and for ADD, SUBTRACT,
MULTIPLY, and DIVIDE with multiple GIVING
operands, SETTBL is used to save the result
operands. After determining whether SIZE
ERROR is present. and analyzing the
arithmetic expression for COMPUTE, SETTBL
is used as the input stream to produce the
store into each result. The routine STORAN
is called once for each result.

IF STATEMENT

The IF verb analyzer, assisted by its major
subroutine PFINDL, evaluates IF statements
and issues strings consisting of a
relational verb, two operands to be
compared. and a third operand, which is a
GN reference for branching. The following
example shows the verb string issued from a
simple IF statement:

gll2!U!i2
IF A=B DISPLAY C.

ADD •••

strings
IF-NOTEQ A B GNl
DISPLAY C

GN1. ADD •••

Note that the condition is reversed in the
string to minimize the number of branches
required. The branch to the GN is taken if
the condition (A=B) is false, that is, if
the DISPLAY is not to be executed.

The PNOUNT and PSIGNT tables are used in
evaluating arithmetic expressions in IF
statements. The strings produced are the
same as for COMPUTE statements except that
the last string is a relational string (for
example. IF-EQ or IF-NOTGT) instead of a
STORE string.

The PSHTBL and PTRFLS tables are used in
evaluating IF statements. The PSHTBL table
collects branches to ELSE statements in
nested IF statements, and the PTRFLS table
collects branches within compound IF
statements.

Licensed Material - Property of IBM

Figure 28 shows how the PSHTBL table is
used in evaluating the following statement:

IF A=B THEN IF C=D THEN IF E=F STOP '0'
ELSE STOP '3' ELSE STOP '2' ELSE STOP '1'
ADD •••

r i I

I IStatus ofl
I Procedurel PSHTBL I
I Statement I Table I output String

,
I
I
I

Ir-- I I --f
r-->IIF A=B I GN 1 IIF-NOTEQ A B GN11
I I--- I I ~
h->IIF C=D I GN1 IIF-NOTEQ C D GN21

" I I GN2 I I

" I , I --f
h->I IF E=F I GN1 IIF-NOTEQ E F GN31

" I I GN2 I I

" I I GN3 I I

" l--- I I --f

" ISTOP , 0' I GN1 ISTOP '0' I
II I I GN2 IGO GN4 I

" I I GN3 I ,
II t--- I I I
I L->I ELSE STOPI GN1 IGN3. STOP '3 ' I
I I '3 • I I I
I I I GN2 IGO GN4. I
I Ir----+_ I ----1
L->I ELSE STOP I GN1 I GN2. STOP • 2'

I • 2 ' I I
I I IGO GN4
&-- } I

1.-->1 ELSE STOPI I GN1. STOP , 1 '
I '1' I I .. I I
I ADD ••• I IGN4. ADD •••

Figure 28. Evaluation of a Nested IF
Statement

(IFs and ELSEs are paired from the inside
outward.) The PSHTBL table saves the
procedure-names (GNs) generated for
branching to the ELSE statements. When an
ELSE is encountered, the last GN in the
table is issued as its procedure-name
definition.

SEARCH FORMAT-2 (SEARCH ALL) STATEMENT

I
I
I
1
I
I ..
I

The SEARCH ALL statement is executed by a
COBOL library subroutine. (For a
description of the SUbroutine, see the
publication !~~~~LY~_£OBQ1~Q~£QYting
Libra~y-progra~gi£. Therefore, phase 4
does not generate statements to perform the
search. Instead, it produces a parameter
list for the subroutine (the actual call to
the subroutine is generated by phase 50),

Phase 4 113

Licensed Material - Property of IBM

and it creates verb strings for the
imperati ve statements following AT END and
WHEN clauses.

Figure 29 gives an example of phase 4
output for a SEARCH ALL statement. The
example shows the P2-text that would be
produced for the following statement:

SEARCH ALL TABLE-K AT END GO TO NOT-FOUND
WHEN IEY-l (INDEX-K) = 5

AND IEY-2 (INDEX-I) = 10
IRD IEY-3 (INDEX-K) = DATANAME-K3

~OYE TABLE-I (INDEX-I) TO ENTRY-FOU}1D.

The verb analyzer first receives, as
P1-text inpnt, and saves TABLE-K and
the maximum number of occurrences.

Then it receives a count of the number
of keys, followed hy the keys
themselves. The dictionary pointer for
each key is entered into the KEITBL
table, with a flag byte of 00.

If any of the keys is found to be
sterling or floating point, a C-level
E-text element is generated, and the
statement is processed as though it were a
SEARCH format-1, with WHEN conditions being
processed by the IF analyzer and no special
WHEN statements generated.

After the table has been built, the
analyzer transfers control to the SEARCH
analyzer to scan the WHEN and AT END
clauses.

To generate verb strings for the
imperative statements following AT END and
WHEN, the SEARCH verb analyzer calls other
verb analyzers. However, the IF analyzer
is not called to generate conditional
statements. Instead, SEARCH returns
control to the SEARCH format-2 analyzer to
do special WHEN processing.

If the imperative statements following
the AT END or WHEN clauses do not
provide exits from the search, phase 4
generates GO TO NEXT SENTENCE. In the

114 Section 2. Method of operation

r-

example, this is accomplished via the
GO GN4 state,ment.

I GO GN1.
I G H2. GO PN50. (where Pl~50 is the PN
I number of NOT-FOntOD)
IG~ WHEN (3) 1

I \2) TABLE-K
I num-occur 2

I GN2
I ~ EVAL DMAX DCURRENT KEY-1.
I EQUATE 5 KEY-l.
I EVAL DMAX DCURRENT KEY-2.
I EQUATE 10 KEY-2.
I EVAL DMAX DCURRENT KEY-3.
I EQUATE DATANAME-K3 KEY-3.
I ENDWHEN (1) INDEX-K.3
I SUBSCRIPT (3) TABLE-K INDEX-K SSID1.1
, f:\ MOVE (2) SSID1 ENTRY-l"OUND. I
I W GO GN4. I

I I GN 1. GO GN3. I
IGN4. next sentence I
...--- ,-------·1

,

lIf KEY-l required two levels of I
subscripts or indexes, the first
subscript vould be put out as the fourth~
operand of the WHEN verb. If three
levels were required. the first two
subscripts would be operands 4 and 5 of
WHEN. All keys must be subscripted or
indexed when used in WHEN conditions.
but phase 4 does not produce SUBSCRIPT
strings or SSIDs for them.

2If TABLE-K has a fixed number of
entries, num-occur is a literal
specifying the number (the value I
following OCCURS in the data description I
for TABLE-K). If the table has a ,
variable number of entries, num-occur is!
the name of the data-item Hhich follows I
OCCURS ••• DEPENDING ON. I

13 The lowest level of indexing or
I
I
I
I
I

, subscripting for KEY-"I is passed as the
I operand of ENDWHEN, since it is needed
I for the search. _____________________________ -J

Figure 29. Example of Phase 4 Output for a
SEARCH ALL Statement

GU3, I

I CALL I
I subroutine I
I I

I

SEARCH ALL I
object-time I
subroutine I
r I

I
I

r >1
I I
I V
I
I
I
I
I
I I No
I I
I I

--,
I
I
I
\
I
I
I
I
\
\
I
I
I

Licensed Material - Property of IBM

GN2 r
lIm pera ti ve
I statement

> I follow ing
P1HEN

Exit from SEARCH
via GO statement
or next sentence

>

I I I
I I V
I I
I I

I Return at a
\specific number
lof bytes after
IGN3 (first

r-- -,
I Impera ti ve I
I statement I

Exit from SEARCH
via GO statement
or next sentence

I I l ------------> I following rl--------------------->
I I
I I
\ I I No
I I I
I I I
I I I
I L--

I
L

I exec u tab le
I instruction
I immediately
I follows
I parameter
I list)
I
I

IAT END I
I (if specified) \
I I L--_________ ----J

(The largest box indicates control flow within the SEARCH ALL object-time subroutine;
smaller bloclcs are executed in-line.)

Figure 30. Flow of Execution for a SEARCH ALL Statement

Figure 30 is a generalized chart showing
the floH of execution into and out of the
SEARCH ALL object-time subroutine.

Phase 4 checks ImEN conditions for
conformity to language rules by using the
KEYTBL table.

When the first part of the WHEN
condition is processed, the dictionary
pointer for the key named in the condition
is compared to that of the first key in the
KEYTBL table. If it matches, the flag byte
is set to 01 and the condition is valid.
Each part of the condition should name a
key matching an entry in the KEYTBL table,
arid its flag byte will be set.

After the entire WHEN condition has been
processed, the KEYTBL table is examined to
determine whether any key is tested in the
condition without all preceding keys being
tested. If this occurs, E-text is issued
and no P2-text is genera ted.

The user is not required to name the
keys in the WHEN condition in any
particular order. However, phase 4 must
produce a P2-text string giving the keys in
the order specified in the KEY IS clause.
To produce text in the proper order, the
STRING table is compared to the KEYTBL
table. The STRING table entry that matches
the first KEYTBL entry is used to produce
the first text string, and the entries are
then deleted from both tables. This
process continues until all strings for the
WHEN condition have been put out.

If, in any part of the WHEN condition,
none of the operands named is a key, or if
any other error condition is detected,
E-text is issued and no P2-text is
produced.

Phase 4 115

Licensed Material - Property of IBM

Phase 4, in subroutine ERROR, issues E-text
when an error is detected.

Primarily, phase 4 checks to see that
required COBOL words are present and in the
correct order, and that operands are
compatible with each other and in
permissible format for the statement in
which they are used.

In addition, phase 4 performs a limited
check of the relationship between
statements. For example, it can detect a
conditional statement that has no
conclusion.

It also checks miscellaneous special
requirements, such as: subscripts must be
integers; parentheses in logical and
arithmetic expressions must be paired, and
a maximum of twelve sort keys must not be
exceeded.

If the CSYNTAX or SYNTAX option is in
effect, E-text generated by phase 4 as well
as the E-text passed from phase 3 is
written on SYSUT4. Otherwise, E-text is
written on SYSUT1. Phase 4 also sets the
ERRSEV cell in COMMON to the highest error
severity level encountered. If an error
(E) or disaster (D) level message is
generated and the CSYNTAX option is in
effect, the SYNTAX option is forced into
effect. If the snlTAX option is in effect,
phase 4 issues an end-of-job call if no
messages were generated. If messages were
generated, control is returned to phase 00
which sets the value of LINKCNT to indicate
that phase 70 is to be executed next; error
messages are listed and the compilation is
termina ted. (See "s yn ta x-checking
compilations" in the chapter "Phase 00.")

The major routines used in defining verb
blocks and the functions they perform are
explained below.

This routine turns off the ENTRYSW,
FNDP1RNM, NIODEOS, NNODSW. NTIMSW.
TIMFLOStl. UPPROC, and VBSKIP switches.

116 Section 2. Method of operation

Before branching to the verb analyzer
routines, this routine calls TIMCNT.

This routine turns on NNODSW and NNODEOS.

IDBRK Routin§

If not a report writer declarative, this
routine turns on NNODSW, ENTRYSW, UPPROC,
NTIMSW, and turns off NNODEOS and VBSKIP.
If it is a report writer start, IDBRK turns
on VBSKIP; if it is a report writer end, it
turns off VBSKIP.

Just before FLOW is tested, this r06tine
turns on NNODSW, UPPROC, ENTRYSW, FNDPARNM,
and turns off NNODEOS. Then. if FLOW is
on, it turns on TIMFLOSW. Then GENTIM is
called. In addition, if there is a DEBUG
packet, at the end of IDLH10, GENTIM is
called again. Note: the test and code
generation for USE FOR DEBUGGING
paragraph-name precede the tests for FLOW.

Upon final exit from these routines, NNODSW
is turned on if INPUT or OUTPUT procedures
were specified. If INPUT or OUTPUT
procedures are specified, NTIMSW is also
turned on upon exit from processing the
INPUT or OUTPUT procedure phrase.

If COUNT is on, this routine indicates the
end of the COUNT Table in Data A-Text and
rounds the size of the COUNT Table to the
next even number.

This routine saves Listing A-Text in order
to maintain the last procedure-name for
GENPAR.

Prior to generating this verb, this routine
calls GENTIM, passing zero as the parameter
to be generated. Afterwards, NTIMSW is
turned on.

If COUNT is off. or if VBSKIP is on, GENNOD
returns. Otherwise, if NNODSW is on,
NODECTR is updated. In any case, Data
A-Text is generated. In addition, if
NNODSW is on, a COUNT verb with a counter
is generated, and NNODSW is turned off.

First GENPAR turns off UPPROC.
COUNT is off GENPAR returns.

Then, if
In any case,

Licensed Material - Property of IBM

Data A-Text for the paragraph,
section-name, or missing paragraph-name is
generated (using FNDPARNM), and FNDPARNM is
turned off.

First GENTIM turns off NTIMSW. If UPPROC
is on, it calls GENPAR. In any case, if
ENTRYSW is off, GENTIM generates a TIMERA
verb (with a zero or PROCCTR as the count,
depending on input parameters) and then
returns. GENTIM turns off ENTRYSW, and if
TIMFLOSW off, generates a TIMERB verb (with
PROCCTR as the count) and returns.
Otherwise it turns off TIMFLOSW and
generates a TIMERC verb with PROCCTR as the
first constant and with ISN or Card-number
as the second constant.

This routine puts the Data A-Text on
SYS004.

Phase 4 117

Licensed Material - Property of IBM

The function of phase 45 (IKFCBL45) is to
produce P2-text on SYSUT1 for the UNSTRING
verb. The phase is given control only if
phase 4 encounters a valid UNSTRING verb
string, in which case, phase 4 sets the
PH45BIT switch in SWITCH1 in COMMON. Phase
45 is called by phase 00 following phase 4
processing if phase 00 finds the PH45BIT
switch on.

Phase 45 operations consist of reading
and analyzing the ATM-text for the UNSTRING
verb, which phase 4 has written on SYSUT2,
and transforming it into P2-text. The
ATM-text consists of a series of sUbscript
strings followed by an UNSTRING verb
string; one or more of these series may be
present.

Phase 45 first primes the four tables,
SSCIN, SSDELIM, SSCOUT, and TXTOUT, which
are used during ATM-text analysis. These
tables are used by phase 45 only.

After priming the tables, phase 45
begins to process the ATM-text from SYSUT2.
The PH45CTL control routine examines the
input verb string and gets the count of the
operands in the string. It moves the
operands into work areas labeled DOP1
through DOP5 (hereafter, a reference to a
DOP is a reference to one of these work
areas). The PH45CTL routine then checks
whether the string is a subscript string.
If it is, the string is saved in the SSCIN
table and another input verb string is
read. If it is an UNSTRING verb string,
PH45CTL branches to the UNSTRING routine to
process it.

The UNSTRING routine scans the operands
and sets the appropriate flags to indicate
operand type. It also checks whether the

118 section 2. Method of operation

sending field is subscripted. If it is,
UNSTRING calls the FINDSSC routine to find
the corresponding subscript string and
enter it in the SSCOUT table. The FINDSSC
routine also enters the data item text
element in the TXTOUT table. If the
sending field is not subscripted, the
UNSTRING routine enters the data item text
element in the TXTOUT table only. The
UNSTRING routine branches to the proper
field analyzer to process delimiter fields,
receiving fields, delimiter-in fields,
count-in fields, pointer fields, and
tallying fields. The individual field
analyzers set flags and make entries in the
appropriate tables. When all of the DOPs
have been processed, control is returned to
the PH45CTL routine to refill the DOPs.

As ATM-text is analyzed and rearranged,
P2-text is created for phases 50 and 51.
The P2-text is generated so that the
subscript for a subscripted field is
calculated immediately before the field is
referred to. Also, any Q-routines which
must be called following the change of the
object of an OCCURS ••• DEPENDING ON clause,
are called immediately instead of after the
entire verb string has been analyzed.
P2-text elements, called Data-name
information for UNSTRING (2A),are also
created to pass information about UNSTRING
data items, such as address and size, which
is used by phase 51 when it generates
Procedure A-text.

The P2-text is formatted in the SSCOUT
and TXTOUT tables. The SORTXT routine
sorts the corresponding sections of these
tables, putting the text in the correct
order. Finally, P2-text is written on
SYSUT1.

Phase 50 (IKFCBL50) reads elements of
P2-text tlritten by phases 4 and 45 and,
depending up.on the type of each element,
either processes it or·passes it to phase
51 for processing. Output from phase 50
includes P2-text passed unchanged,
Intermediate A-text, and Intermediate
E-text, all uritten on SYSOT2 for phase 51,
and Optimization A-text ~ritten on SYSOT2
for phase 6 or 62. Intermediate E-text
consists of E-text passed from phase 4 or
generated by phase 50, to uhich is added a
prefix to make it readily recognizable.
Intermediate A-text consists of Procedure
A-text or optimization A-text, which is
generated by phase 50 and to which has been
added a prefix. If the SYNTAX or CSYNTAX
option is in effect, no prefix is added to
Intermediate A-text. .

Procedure A-text is generated by
analyzing P2-text verb strings and
generating elements that correspond to
assembler-language instructions. That is,
the elements combine to form name,
operation, and operand fields.
Optimization A-text is generated for use by
phase 6 or 62 in eliminating duplicate
references.

Input to phase 50 (a combination of
P2-text and E-text) is read from SYSOT1.
output is uritten on SYSOT2, except for
literals uritten as optimization A-text on
SYSOT3 (see the section "Literals and
Virtualsf' later in this chapter). In
addition, if the SYNTAX or CSYNTAX option
is in effect, E-text is written on a
separate data set, SYSUT4i and the ERRSEV
cell in COHMON is set to the highest error
severity level encountered. (E-text
processing is discussed under liE-text" in
the chapter "Phase 51. II)

Routine PH5CTL calls GETNXT. which
obtains P2-text .elements, determines what
type they are, and calls the routines
required to process them. The elements may
be of the follouing types:

o Program breaks

• Verb strings

• E-text

o Segmentation control breaks

o PB, GNp and VB definitions

Of these, only program breaks and
certain verb strings are processed by phase

Licensed Material - property of IBM

50. The others are passed to phase 51 for
processing. Elements of E-text are
prefixed with headers for identification by
phase 51, and copied as output.
Segmentation control breaks and PN, GN, and
VN definitions are written with an
optimization A-text prefix. Before a PN,
GN, or VN definition is copied, all entries
in the XSCRPT table, used in calculating
subscript values, are deleted. The section
"Using and optimizing subscript References"
explains uhy this is necessary.

Routine GETNXT uses program breaks to
determine where to issue a START macro-type
instruction. This indicates where in the
object-time coding the first executable
instruction is generated. The Procedure
Division. beginning-of-declaratives, and
end-of-declaratives breaks are used for
this. (All other types of program breaks
are ignored.)

If no beginning-of-declaratives break is
encountered, routine GETNXT issues the
Procedure A-text for START immediately
after finding the Procedure Division break.
If a beginning-of-declaratives break is
encountered, the START Procedure A-text is
isslied after the end-of-declaratives break
has been found.

Since the coding for a START macro is
always the same, this A-text is generated
from Constant A-text, which is described
later in this chapter.

The P2-text for a verb string consists of a
verb followed by from one to five operands.
Any operands beyond the fifth have been
placed into one or more continuation
strings by phase 4; the first operand of
the first string is the COBOL word FIRST,
and the last element of the last string is
the COBOL word END. (An example of this
appears in the discussion of the DISPLAY
string under "Verbs Requiring Calls to
Object-Time Subrolltines" in the chapter
"Phase 51. II)

Once routine PH5CTL has established that
an element of P2-text is a verb string, it ,

Phase 50 119

Licensed Material - Property of IBM

moves the operands into work areas labeled
DOP1 through DOP5 (hereafter, a reference
to a DOP is a reference to one of these
work areas). The verb code for the verb
currently being processed is moved into a
cell called GANLNO, where it is kept until
overlaid by the next verb code.

The PH5CTL routine then calls routine
XI S31, which determi,nes whether any of the
operands are subscripted or indexed
data-names. If one is, the pointer to the
desired occurrence has already·been
computed in phase 50 (subscripts and
indexes are ~esolved by processing
SUBSCRIPT verb strings, which always
precede the verb string in which they are
referenced; see the section "Resolving
Subscripted and Indexed References" later
in this chapter). The routine changes the
idk (addressing parameters) field in the
DOP from a subscripted or indexed reference
to a data-name reference. (A full
description of the idk field appears in
"Dictionary Entry Formats" of "Section 5.
Data Areas" under the addressing parameters
field of the LD dictionary entry.)

Upon return, routine PH5CTL checks to
see whether the verb string is one that is
to be processed by phase 50. Verb strings
processed by phase 50 include:

ADD
SUBTRACT
MULTIPLY
DIVIDE
EXPONENTIATION
Numeric IF
Numeric MOVE
SEARCH
DEBUG
INSPECT
DEBUG SUBSCRIPT
EVAL
STORE
SUBSCRIPT
EQUATE, when in SEARCH ALL
END OF, when in SEARCH ALL

The last five are verb strings 9reated
by phase 4. If the verb is one of those
listed, an appropriate verb processor is
called. Otherwise, routine PH5BVB is
called, which performs some checking of
phase 51 verb strings before passing them
as P2-text to phase 51 (see "Handling Phase
51 Verb Strings" in this chapter).

!!Q!g: .The PH5CTL routine distinguishes
between numeric and nonnumeric IF and MOVE
verb strings as follows: the numeric IF
verb has a different verb code from the
nonnumeric IF. For all MOVE strings,
control is given to the numeric MOVE
analyzer; if this routine finds nonnumeric
operands, it returns control to routine

120 Section 2. Method of Operation

PH5CTL with an indication that such is the
case.

VERB PROCESSING

From the verb code, routine PH5CTL
determines Which verb analyzer to call. If
the STATE, TEST, or SYKDMP option is in
effect, phase 50 generates a call to the
object-time COBOL library debugging
subroutine entry point ILBODBG4 before the
code to call any other object-time
sUbroutine except ILBOFLW1. The call to
ILBODBG4 is generated only once per verb,
even if the verb causes calls to more than
one subroutine. For details on the
object-time subroutines, see the
publication I~~L!S COBOL Subroutine
1~I-~ogFam Logic. In general, there
is a specific routine to analyze each COBOL
verb, but there are a few cases of overlap.
For example, all arithmetic verbs use parts
of a processor known as the arithmetic
translator.

The illustrations in this chapter show
P2-text strings as a verb followed by
data-names, and Procedure A-text elements
as assembler-language instructions. These
are simplifications for the reader: the
texts actually contain codes rather than
verbs, and the P2-text for data-names
contains the.dictionary attributes of the
item, rather than its. name. The actual
text formats, including the codes, are
shown in "Section 5. Data Areas."

!Qte: When phases 50 and 51 use registers
14 and 15 in their generated instructions,
Procedure A-text DESTROY and RESERVE
elements are passed to phase 6 or to phases
62, 63, and 64. The purpose of the DESTROY
element is to indicate that the contents of
the registers are not to be relied upon any
longer. The purpose of the RESERVE element

, is to indicate that the register may not be
used by phase 6 or by phases 62, 63, and 64
in the gener~ted code until a FREE element
for that register, issued by phase 50 or
51, is read.

RESOLVING SUBSCRIPTED AND INDEXED
REFERENCES

This section describes the processing of
the SUBSCRIPT verb string. It shows how
subscripted addresses are calculated and
how the XS5NT and X5CRPT tables are used to
eliminate duplicate calculation. Then the
handling of indexes (which are very similar
to subscripts and use the same tables) is
discussed.

To refer to a subscripted item. the object
program must know the displacement in bytes
of the desired occurrence from the
beginning of the subscripted field. To
calculate this displacement, the following
must be known:

• The number of bytes in the entire
subscripted field.

• The relative position in the field of
the desired occurrence.

The size of the field is knoun from the
Data Division description of the field,
including the PICTURE clause of the
elementary item. The relative position is
known from the value of the subscripts.

The examples which follow shoy three
levels of subscripting. The same concepts
(and the same formula) apply to one or two
levels of subscripting.

The formula used to calculate a
subscripted address is:

(subscript1*length1) + (subscript2*length~
+ (subscript3*length3)
- (length1+length2+length3)

This formula is used whether the
calculation is done. in phase 50 or in the
ob ject program.

The following discussions use examples
based on this entry in the Data Division:

02 FIELD OCCURS 10 THIES.
03 SUBFIELD OCtURS 10 TIMES.

04 ITEM OCCURS 10 TIMES PICTURE XX.

19.~ill-ID!.bs££i~t2: When all the
subscripts in a reference are literals, the
subscripted address can be calculated at
compile time (the calculation is done by
routine XSCOHP). If a reference is made to
ITEM (9, 8, 7), the calculation is:

(9*200) + (8*20) + (7*2) - (200+20+2) •

The value of the result is the displacement
in bytes of ITEM (9, 8. 7) from the
beginning of the subscripted field.

When the SUBSCRIPT string was first
encountered, an entry was made for it in
the XSCRPT table (the building of this
table is more fully described in the
section "Using and optimizing subscript
References"). One field of the entry,
called the idk field, contains a code, i, a
displacement, ~, and a base locator (BL)
Dumber. Ji. (BLs are assigned by phase 22;
for a description, see the chapter "Phase

Licensed Material - Property of IBM

22.") The value of ~ is the displacement
away from the BL of the beginning of the
subscripted field. After the formula has
been calculated, the results are added to
~. If this value is less than 4096 bytes,
it becomes the new value of d. If it is
4096 or greater, it is decremented by 4096;
this decremented value is then placed in
the g field of the XSCRPT table entry, and
the BL number is incremented by one. The
table entry now points to the desired
occurrence at execution time. (Note that
if the value of ~ exceeds a multiple of
4096, it is decremented by 4096 as many
times as required to make it less than
4096, and 1 is added to the BL for each
decrement. For example, if d=13,000, it is
decremented by 12,288 and the BL number is
incremented by 3.)

Da~~subscripts: When the subscripts
are data-names, their values vary at
execution time. Therefore, code must be
generated to perform the calculations in
the object program. This is done in
routine XSCOMP, using the A-text generator.

Suppose that reference is made to ITEM
(X, Y, Z). XSCOMP must first determine
whether each subscript is binary. If not,
code must be generated to get the value of
the subscript from the data area of the
object program, move it into a work area,
and convert the value in the work area to
binary. It is then handled as a binary
subscript, using the value in the \fOrk area
rather than the data area.

The generated code performs the
following actions at execution time:

o The value of ~ in the XSCRPT table (the
address of the subscd pted field) is
loaded into a register.

• The first subscript (X in the example),
in binary, is loaded into another
register. This subscript denotes the
desired occurrence number for FIELD,
the highest level in the hierarchy. If
FIELD is of constant length (that is,
if it does not contain the DEPENDING ON
option). the value of X in the register
is multiplied by a literal representing
the length of FIELD (200 bytes). If
FIELD does contain the DEPENDING ON
option, a value, instead of the
literal, is picked up from a VLC
(variable-length cell) where it was
placed by a Q-Routine. This value
represents the current length of FIELD.

• The result of this multiplication is
added to the value of d in the first
register. and this process is repeated
for each subscript.

Phase 50 121

Licensed Haterial - Property of IBM

• Phase 50 has generated a literal
(referred to in this discussion as
LITX) whose value is:

(length of FIELD + length of
SUBFIELD + length of ITEK).

o When the multiplications have been
finished and the final increment has
been added to the address in the
register, this literal is subtracted
from the register, and the result is
the address of the desired occurrence.

This computation is an exact duplicate
at execution time of the formula applied to
literal subscripts at compile time.

After routine XSCOMP has put out the
Procedure A-text for these instructions, it
changes the idk field of the XSCRPT table
entry for ITEM. It replaces the former
contents with the number of the register
which at execution time vill contain the
calculated address of ITEM (X, Y. Z), and a
code indicating that this is a register
number rather than a displa'cement.

.!!iXgd LiteraLand Data=.!!.ID!!g_ID!bscri:ets :
When the subscripts are mixed literals and
data-names, for example, ITE~ (X, 4, Z),
part of the calculation can be done in
phase 50 to save time in the object
program. XSCOMP multiplies the literal
l>llbscript by the length of the field it
l:efers to. In the example, this is 4*20
(SUBFIELD is 20 bytes long). This result
is subtracted from LITX before A-text for
LITX is generated. Then ir at object tillie,
the Inultiplications and additions lI'illbe, '
p8rformed for X and Z and this new va,lua of
LITX will be subtracted.

Note that. to arrive at a meaningful
value, the entire formula must be
evaluated. The intermediate results of a
subscript calculation are meaningless in
themselves.

Part of the function of the XSCRPT table is
to avoid duplicate calculations for a
subscripted reference. For example, given
the source statements:

PARAGRAPH1. MOVE ITEM (X, y, Z) TO D.
ADD ITEK(X, y. Z) TO E.

It is unnecessary to calculate the address
of ITEM (X, Y, Z) twice. When the ADD
statement is executed at object time, the
correct address will already be in a
register.

122 section 2. Kethod of Operation

TheP2-text for these statements would
be:

PN1. SUBSCRIPT (5) ITEM X Y Z SSID1
MOVE (2) SSID1 D
SUBSCRIPT (5) ITEM X Y Z SSID2
ADD (2) SSID2 E

When the first SUBSCRIPT string is
encountered, the XSCRPT table is searched
for a matching entry. llone ,is found, so an
entry is made after the instructions for
the subscript calculations have been
generated. This entry includes the idk
field described earlier and the dictionary
pointers for ITEM and all the subscripts.
(Note that the dictionary pointer is used
only because it provides a unique
identifier. The value of the pointer
itself is meaningless.) There is also a
field for the total length of the entry
(the exact format can be found in "section
5. Data Areas.")

An entry is also made in the XSSNT
table. This entry includes the subscript
number (SSID1) and a pointer to the XSCRPT
entry.

After the SUBSCRIPT string has been
processed, the MOVE string is encountered.
Routine XIS31 (also called XSUDB3) searches
the XSSNT table for SSID1. It uses the
pointer in the XSSNT table to piclt up the
idk field in the XSCRPT table. This field
replaces SSID1 in the DOP. and the verb is
now processed as if the operand were a
data-name.

The XSSNT entry for SSID1 is now
deleted, since it vill never again be
referenced. This is because phase 4 gave a
unique number to each subscript
calculation.

When the second SUBSCRIPT string is
encountered, the XSCRPT table is searched
for a match. The search is made on total
entry length (if this does not match, the
entries cannot be identical). When the
ma tch is found, an XSSNT entry is made for
SSID2, with a pointer to the same XSCRPT
entry as for SSID1.

If there are not enough registers for
the subscripted address to remain in a
register for the second time it is
referenced, code is generated before the
register is used to store the address in a
subscript save cell. (These cells are
located in the SUBADR field of the Task
Global Table.) An indication of this,
along with the cell number, is placed in
the. XSNIDK field of the XSCRPT entry, so
that the second time the address is needed.
the contents of the cell can be loaded into
'another register. The section "Register
and Storage Allocation" later in this

chap tar describes hou values in registers
are saved.

Thus. the XSNIDK field may ultimately
contain three types of information:

1. If all subscripts used in th.e
subscripted reference were literals.
the fi~ld contains a BL type. BL
number, and displacement, in the idk
format.

2. If one or more subscripts were
data-names, the field has been up~ated
to contain a register number and the
code indicating that this is a
register.

3. If the register is needed for some
other purpose before the subscripted
reference is used, the field contains
the number of the subscript save cell
in which the register contents have
been stored, with the appropriate
code.

Every time a PN, GN, or VN definition is
encountered in the P2-text, the entire
XSCRPT table must be deleted. The reason
is shown by the following source program
statements:

ON 2 AND EVERY 2 GO TO
P ARAGRAPH2.
MOVE ITEM (X, Y, Z) TO D.

PARAGRAPH2. ADD ITEM (X, Y, Z) TO E.

In this example, if PARAGRAPH2 is
entered through the branch in the ON
statement, the subscript calculations
generated for the MOVE will not have been
executed, and the register will contain
whatever value was left from the last time
it vas used. Therefore, the calculation
must be performed in PARAGRAPB2. Deleting
all the entries in the XSCRPT table
whenever a paragraph-name is encountered
assures that the code will be generated.

The XSCRPT table must also be deleted
when any verb is enco~ntered which can pass
control to any pOint other than the next
sequential instruction. An example of such
a verb is a SORT verb or any.VSAM verb.

Indexed references are resolved by the same
routines, applying the same logic, as
subscripted references. The difference in
their handling occurs because index-name
values are never known at compile time, and
because, at object time, the index-name
cells (each index-name is a 1-word cell in
the INDEX field of the TGT) contain values

Licensed Material - property of IBM

expressing a displacement in bytes from the
beginning of the indexed field. The value
in the cell corresponds to the following
formllla: '

(occurrence number - 1) * length of
elementary item

It is the responsibility of the source
programmer to set the value in the index
name via a SET statement before an indexed
reference is made. The SET verb performs
the same calculations for an index-name
that routine SSCRPT does for a subscript.

Indexing may be direct, indirect, or
Imixed (indexes and literals). Direct

indexing uses only index-names. Indirect
indexing uses literals as increments or
decrements. Mixed indexing consists of at
least one index with one or more literal
subscripts. Given the Data Division
statements:

02 FIELD OCCURS 10 TIMES INDEXED BY A.
03 SUBFIELD OCCURS 10 TIMES INDEXED BY B.

Oq ITEM OCCURS 10 TIMES INDEXED BY C
PICTURE XX.

a reference to ITEM (A, B, C) would be
direct indexing, and a reference to ITEM
(A+q, B-5, C+6) would be indirect indexing.

Direct Indexing: The P2-text contains a
SUBSCRIPT verb string with a special code
in the operands to indicate that they are
index-names rather than subscripts.
Entries in the XSCRPT and XSSNT tables are
made and used in the same way as for
subscripted references. Object code is
generated to place the value of g from the
idk field into a register and add the
values of all the index-names to it.

!ndi~~1_Indexinq: Routine SSCRPT
determines that there are literals in the
SUBSCRIPT string. These literals are
placed in an information gathering work
area. When the XSCRPT entry is made for
the indexed.field referenced, the
dictionary pointers are not entered, to
prevent a match from being found. This is
necessary for possibilities such as the
following:

!lOVE ITE!I (A+q, B-5, C+6) TO D.
MOVE ITEM (A, B, C) TO E.

If a normal XSCRPT entry was made for the
first statement, the dictionary pointers
would be identical and the second statement
would use the register set up by the first.
since the indexing does not point to the
same place, the operation would be
incorrect.

After routine XSCOMP has generated the
code to add the index-names (as described

Phase 50 123

Licensed Katerial - Property of IBM

. earlier under "Direct Indexing"), it tests
the information-gathering work area. When
literals are present, the routine generates
additional instructions. These
instructions load the literal into a free
register, multiply the register by the
length in the VLC for that level (in the
example, the literal q would be multiplied
by 200), and add this value to the register
pointing to the indexed field (this
register has already been incremented by
the index-name values). This process is
repeated for every literal. The
multiplication must be done because the
literals, unlike the index-names, represent
occurrence numbers, not displacements in
bytes.

l1;i.}f~d Lite~Lg~LDi£g£L1.~~exing: Mixed
indexing is processed as a combination of
direct and indirect. All index-names are
processed first, then each literal is
treated as an indirect increment.

ARITHMETIC VERB STRI NGS

The Arithmet ic
verb analyzers
verb strings.
statement·s and
phase 50.

Translator is a group of
used to process arithmetic
It is also used for all MOVE
IF statements processed by

Given the source program statement:

COMPUTE X=A+ (C-D/E) *F-G.

the following P2-text would be generated:

EVAL DMAX DCURRENT x .•.
DIV E D IR1 (-C)
SUB IR1 C IR2 (*F)
MULT F IR2 IR3 (+A)
ADD IR3 A IR4 (-G)
SUB G IR4 IR5 (ST X)
STORE IR5 X

For a description of how phase q generates
this string, see "COMPUTE statement" in the
chapter "Phase q" where this same example
is used.

For each verb string, the Arithmetic
Translator routines do the following:

1. Place information about each operand
in a ·work area.

2. Determine the .sizes of intermediate
and temporary fields, and check for
possible overflow by performing
compile-time arithmetic.

3. Determine the mode for the operation.

12q Section 2. Method of Operation

4. Allocate registers and temporary
storage for the operation.

5. Call the A-text Generator (described
later in this chapter) to produce the
Procedure A-text.

The formats of switches used by the
Arithmetic Translator routines are given in
Figure 31.

For each operand in a string, a work area
called an operand information buffer is set
up. There are three types of operands:

1. Data-name operands. In the example,
all the operands named in the source
program COMPUTE statement are
data-name operands.

2. Intermediate results. In the example,
these include all the operands named
with IR. Intermediate results are
required because arithmetic machine
instructions can handle only two
operands at a time. The result of one
arithmetic operation becomes an IR,
which is then used as an operand of
the next operation.

3. Temporary results. These are used by
series addition and subtraction with
multiple receiving fields. For the
source statement:

ADD M, N, 0 TO P ROUNDED, Q

a temporary result is required to hold
the sum of It, N, and o.

Each operand information buffer holds
information similar to an entry in the
table XINTR. This includes such attributes
as the mode of the operand, the number of
digits to the left and right of the decimal
point, and the largest possible value of
the operand. (The format of table XINTR is
given in "section 5. Data Areas. ") For a
data-name operand, these attributes are
found in the P2-text element. For
intermediate results or temporary results,
the information is found in table XINTR,
when the operand is used in the operation.
It was placed in the table after processing
of the string in which the intermediate or
temporary result was ££~!~£. The
attributes for the intermediate result that
is the result of the operation are filled
in after processing the operands which form
it (how the attributes are found is .
discussed in this section under
"compile-Time Ari thmetic"). When the MULT
string is processed, in the COMPUTE

Licensed Material - property of IBM

r------------. iii

/ XGSliT 11 XZSWT /
r'----r-----------------·------------;/I ~
/ Bit Heaning I / Bit Meaning I
r--~r---------------------_;14 ~
/ 0 Binary mode I I 0 XR3 contains address of second I
I 1 Arithmetic operation/, operand I
,2 Internal decimal mode 'I set XREG2 operand; XREG1 operand I
,3 Size error in floating-point I I already set I
I conversion I' 2 Both operands processed I
,4 Receiving field is floating-point I' 3 Length preset I
I 5 End of ADD CORRESPONDING ,,4 Use length after scaling I
,6 Size error option ,,5 Floating-point operation I
,7 Rounded option 1 I 6 Logical operation I
I ---------------~II 7 Binary I
, XG NSi I 1-' ----'-.---------------------i
~l--_r--------------------~I' Y1IRX+l in operand Buffers I
,Bit Meaning I • I
r&---;-------~--------------~II Equate I
,0 Decimal place added for rounding ,t name Bit Heaning I
,1 Divide rounded remainder option ,. ~
,2 IKF5011I-li' already printed "XLITZR 0 Zero literal f
,3 Minus exponent 'I XGNCON 1 Generated constant I
I 4 Bypass store operation I' XFTPT 2 Computational-lor I
I 5 ADD CORRESPONDING t , computational-2,
1 6 Size error I' XLITER 3 Literal ,
I 7 Subroutine entered at entry point 'I XINREG 4 Operand is in a register I
I XOTSEM I I XGDPFP 5 Double precision I , -------------------il' floating-point,
/ XOPROD I I XGOVFL 6 OverfloH may occur ,
~,----r-----------------------~, I XG2IRX 7 Double precision mode I
I Bit Meaning , , ~

I~---r-----'------'---------------~" Flag Byte in Phase 50 Internal Table for I
,0 All subscripts are numeric 'I Registers 0 through 5 I
,1 Subtract operation t t I
I 2 Division operation '1 Bit Heaning I
I 3 Di visor I I I
,4 Multiply operation 'I 0 Permanent flag for floating-point I
,5 Add or subtract operation I I registers I
,6 Floating-point mode II 1 subscripts being computed I
,7 Unused ,,2 Register being used for subscript I
I , , computa tion I
I I I 3 Register being used for an ,
1 I , intermediate result I
I I I 4 Register being used in double I
I I I precision mode I
f I I 5 Register not available ,
, I' 6 Register contains operand 2 I
, ,,7 Register contains operand 1 I
~i ___ -4 ____________________________ L.~i __ ~ ____________ . _________ J

Figure 31. Arithmetic Processing switches

statement example above, IR2 is found in
the XINTR table. The attributes of IR3 are
determined during processing of the HULT
string, and IR3 is then used as an operand
of the ADD string which follows.

If any of the operands are
floating-point, the floating-point verb
analyzer is called immediately to generate
the Procedure A-text. Otherwise,
compile-time arithmetic is performed.

No~: The operand information buffers are
defined on the same storage as the data

'. area for the SUBSCRIPT analyzer .•

Compile-time arithmetic is performed
with the maximum possible values of the
operands (.9 in every digit position). If
one of the operands is a literal, its
actual value is used. The purpose of
compile-time arithmetic is to determine if
overflow is possible, and to determine how
many places are required to hold the
intermediate or temporary result.

For example, assume that for the string
ADD IR3 A IR4 (-G), the attributes of A

Phase 50 125

Licensed .!aterial - Property of IBM

show that it has a PICTURE of 99V9 and the
attributes of IR3 (from tableXINTR) show
that it has a PICTURE of 9(3)V9(2). The
compile-time arithmetic 'for the maximum
value o.f the scaled operands is:

9990+99999=109989

The result determines the attributes
(including the maximum possible value) of
IRq, which are placed in table XINTR at the
end of the ADD processing.

If the intermediate result (IRq in this
case) exceeds or is equal to 10**30,
overflow is possible. To avoid overflow,
instructions are generated to truncate the
intermediate result down to 30 digits.

That is, let DMAX be the maximum number
of decimal places in any operand in the
source statement, let DIR be the number of
decimal places in the intermediate result,
and let IIR be the number of integer places
in the intermediate result. Then the rules
for truncation are:

1. If DIR exceeds DMAX and IIR+DMAX is
less than or equal to 30, then
low-order decimal places are truncated
from DIR until IIR+DIR=30.

2. If DIR exceeds DMAX and IIR+DMAX is
greater than 30, then low-order
decimal places are truncated from DIR
until it equals DHAX, and high-order
integer places are truncated from IIR
until DMAX+IIR=30.

3. If DIR is less than DMAX, then
high-order integer places are
truncated from IIR until DIR+IIR=30.

The mode of the operands determines the
mode of operation. In general,. the mode of
operation is predetermined (for example, if
one of the operands is floating-point, all
of the operands are converted to
floating-point and the operation is in
floating-point). However, for operations
involving binary and internal decimal
operands, routine XHSMD is used to perform
some tests to determine whether the
operation is to be in bipary or in internal
decimal.

If any of the operands is external
decimal, it is converted to internal
decimal unless it 'is in a MOVE statement.
If an operand is sterling nonreport, it is
converted to internal decimal unless it is
the target field of a MOVE or STORE verb.

·126 Section 2. Method of Operation

If any conversions are required, they
are handled by inline conversion or calls
to COBOL library subroutines, depending on
the complexity of the conversion. See the
publica tion ;u!ILQ.§/VS-.£Q1!Ql!._.§ubt.Q.!!ti~
1ibr~y-~Qgram Logic. for the generated
Galling sequences.

To assign registers for an instruction,
special register handling routines are
used. These are:

• XRASG or XRSUAS to assign a single
register

• XRDBIR to assign a register pair

o XRSASF to assign a floating-point
register

Phase 50 maintains an internal table for
registers 0 through 5, which are the
arithmetic work registers of the object
program. Each table entry contains a flag
indicating whether the register is being
used, how it is being used (for example, as
one of a pair), and what it contains (such
as a subscript or index calculation, or an
intermediate result). The format of this
flag byte is given in Figure 31.

If a register must be freed, routine
XFREER is called. The calling routine
passes the number of the register to be
freed to XFREER in the XREGNO cell of the
phase 50 data area. (X FREER is also used
by phase 50 when it is analyzing phase 51
verbs; see "Handling Phase 51 Verb
strings.") If registers 0 through 5 must be
freed, routine DFREER is called.

\

XFREER checks the register table entry
for the specified register and, if it is in
use, generates instructions to store it.
It must then indicate that the value
formerly in the register is no longer
there. If the register was being used for
an arithmetic operation, it updates the
operand information buffer by filling in
the number of the TEMP STORAGE (object-time
arithmetic temporary storage) cell in the
TGT where the register contents are stored.,
and the displacement of the cell in bytes
from. the beginning of the TEMP STORAGE
area. If the value in the register was a
subscript, XFREER changes the code of the
idk (addressing parameters) field in the
XSCRPT table entry (see "Using and
optimizing subscript References" earlier in
this chapter) to indicate that the value is
in a subscript save cell, and provides the
cell number. Subscript save cells are
assigned in the SUBADR field of the Task

Global Table (TGT) during program
execution.

operations in binary are performed in
registers. and the intermediate results are
left there whenever possible. Decimal
operations are performed in storage, with
the intermediate results placed in cells of
the TEMP STORAGE area.

Space in the TEMP STORAGE area is always
allotted in 8-byte (double !>fOrd) cells,
regardless of how many bytes are actually
requi~ed to hold the operand. (If more
than eight bytes are needed. two cells are
allotted.) To minimize total temporary
storage area used by the program, each TEMP
STORAGE cell is made available as soon as
the value in it is no longer needed.

TEMP STORAGE cells for arithmetic
operations are assigned by using the
counter TSMAI in C.OtUI0N (for the format of
COliMON, see "section 5. Data Areas").
TSMAX contains the number of the highest
numbered double word cell that has been
assigned. .1hen a nee TEHP STORAGE cell is
assigned, this counter is incremented by
one. As soon as the value in the TEMP
STORAGE cell is no longer needed, the cell
number is placed in table lAVAL. The next
time a TEMP STORAGE cell is required, XAVAL
is searched first. If it has any entries,
the cell found there is used, and the XAVAL
entry is deleted. Only if table XAVAL is
empty is a neH TEMP STORAGE cell assigned
from TSMAX.

Intermediate results are handled in such
a way that, as soon as possible after an
intermediate result has been computed, it
is used in the next computation and is then
no longer needed. In the COMPUTE statement
shown above, for example, IR3'is the result
of the MULT operation, and then is
immediately used as an operand of the ADD.

Note that an intermediate result is also
required after the last arithmetic
operation (IRS in the example) and that the
value is then moved into the data-name
result (X) via the STORE verb.. This is
necessary because the value may have to be
converted, truncated, or aligned to conform
to the format for X.

A temporary result, on the other hand,
must be saved until all operations
requiring it are finished. In the
statement:

ADD H, N, 0 TO P ROUNDED, Q.

the temporary result (the sum of H. N, and
0) is first added to P and then added to Q.
All steps involving P (rounding,
truncation, or conversion, if needed) are
completed before the temporary result is

Licensed Material - Property of IBM

added to Q. When the temporary result is
added to P, its value is moved into another
cell of the TEMP STORAGE, and the operation
is performed from that cell, lenving the
original temporary result unchanged.

GENERATING A-TEXT

A-text is generated from three sources:
Constant A-text, Direct A-text, and the
A-text Generator. The nature of the text
required determines which source is used to
generate a particular block of text.

£Q~nt A~1: This type of Procedure
A-text resides in the phase 50 constant
area. It is stored in the form of DCs,
ready to be written out when needed. It is
used for standard, frequently occurring
object-time operations .• such as START.

Direct A-text: This is generally written
as one block of instructions at a time by
routine GATXTV. The routine is called by
the verb analyzers using two parameters:

o Displacement of the desired block of
text from the beginning of the text
area

o Length of text to be written

The verb analyzer fills in the variable
fields. before calling GATXTV.

A-text Generator: The A-text Generator is
called~y-a-verb analyzer to write one
instruction of Procedure A-text at a time.
It also generates Optimization A-text for
virtual and literal definitions. It is
used frequently by the Arithmetic
Translator and by other analyzers requiring
the generation of A-text too variable to be
stored as constant or Direct A-text.

To call the A-text Generator, the verb
analyzer fills in the appropriate cells in
the parameter area (see Figure 32) and
calls a particular generating routine. The
genera ti ng routine usually has the sam e
name as the instruction it produces (for
example, HVC, LOAD). The A-text Generator
has no common entry point.

Before returning to the caller, the
generating routine sets the entire
parameter area to O.

·From the parameter information, the
~enerating routine determines exactly what
type of instruction to write. For example,
if the LOAD routine finds that the only
operands specified are two registers, it
writes an LR instruction. If a nonregister
operand is two bytes long, the generating

Phase 50 127

Licensed flaterial - Property of IBM

routine generates an LH. This occurs for a
cell such as a VLC, which is always a
halfword or a 2-byte literal. The A-text
Generator does not test the length of a
data-name.

r'---, I Parameter Cells for the A-text Generator I
I '" I I
I OPERAND-1 PARAflETERS I I I OPERAND-2 P ARAKETERS I
1r-----,,----------------------~IDefini-1 t~-----T----------------------f
IName I fleaning ,tion ,Element , Name Heaning ,
rl----~Ir_--------------------_+I----~Ir_----------~--;_-------------------~I
IOPl I Pointer to the DOP I I 1 F Address IOP2 Same as for the first

operand. , , (storage cell in the, Reference I
, ,phase) for a data-name I I
"operand. I I
, I , I
XL 1 I Length of operand (used I 1 H I XL2 Length of second

operand (for SS
instructions with two
lengths, such as APr
SP r ZAP). The
generating routine
decrements the value
by 1.

Ifor SS instructions such I I
I.s EX, MVC, AP). The I I
Iroutine, which generates I I
Ithe text, decrements this ,
I valu e by 1 before using I
lit, as required by these I
I instructions. I
I I

XiCl IFor arithmetic XL3 XWC2 Same as for the first
operand. loperands, specifies the

loperand's position in
Ithe TEMP STORAGE field
lof the TGT. TEMP
I STORAGE is used for
I"arithmetic operands
lonly.
I
l1!ltes 1 ~nd ~:
Displacement of the
8-byte slot containing
this operand from the
beginning of the TEMP
STORAGE field.

~~~-l: Number of bytes 
actually required by the 
operation. TEMP STORAGE 
space is always assigned 
in slots of 8 bytes, but 
frequently an arithmetic 
operand is shorter, 
using only a few of the 
low-order bytes. 

TALLY11First operand is TALLY. 
I 
I 

XL1 Address 
Reference 

XL2 IBDISP11Base (specifies a Base and 
I I register number) and I Di splacement 
I I displacement of operand. I " ________ ~ ______ -L, __ 

TALLY21Second operand is TALLY. 
I 
I 

BDISP21same as for the first 
loperand. 
I ", 

Figure 32. Parameter Cells for the A-Text Generator (Part 1 of 4) 

128 Section 2. Method of operation 

( 



Licensed Material - Property of IBM 

r--'---
I Parameter Cells for the A-text Generator 
~ '~i----'i-'-------'----'--------------------
I OPERAND-1 PARAMETERS I I 
1------,----------------------;IDefini-1 
IName Meaning Ition I Element 
I-- I I I 

RELAD110perand is referenced by I 1F I Relative 

VIR rrc 1 

tits relative location I I Address 
Iwithin a field. I I 
I I I 
I ~y.te-1: Code indicating I I 
Ithe type of cell being I 
Ireferenced (the codes I 
lare listed under 
I"Relative Address 
I Element" in the 
IProcedure A-text 
Iformats, given in 
I"Section 5. Data 
I Areas ll ) • 

I 
1~y.~-1: Number of bytes 
Ineededto express the 
laddress constant. 

~~2-1_@L~: 
Identifying number which 
pinpoints this cell 
within its field. 

Identifying number 
assigned from VIRCTR 
when the operand is a 
virtual. The number 
begins in byte 3. 

1F 

I 
I 
I 
I 
I Virtual 
I Reference 
I 
I 
I 
I 

GVIRT11Name of virtual (used 2F I 

I 
IXCON1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I with VIRTC1) • 
I 
IUsed for tHO distinct 
Itypes of information: 
I 
I (1) Operand is a. literal 
I 
I ~te-1::1§': Value of 
Iliteral, right-adjusted. 
I 
1~y.~-12: Length of 
I literal. 
I 
I (2) Operand is a DC-type 
Iconstant other than an 
laddress constant 
I 
I !!yte-1: Length of 
Iconstant. 
I 
i!!Y~S 2-17: Value of 
Iconstant, left-adjusted. L---__ ~ _________ _ 

XL17 

I 
I 
I Li teral 
Reference 

I OPERAND-2 PARAMETERS 
1 • 
I Name I Meaning 
-+---t 
IRELAD2 Unused. 
I 
I 
I 
I 
.1 
I 
I 
I 
I 
1 
I 
1 
I 
I 
I 
I 
I 
! 
1 
I 
I 
I 
I 
VIRTC2 Unused. 

GVIRT2 Unused. 

XCON2 Same as for the first 
operand. 

Figure 32. Parameter Cells for the A-Tex Generator (Part 2 of 4) 
.J 

Phase 50 129 



Licensed Material - property of IBM 

, , 
I Parameter Cells for the A-text Generator I 
I I I -r-----.-----------. ., 
I OPERAND-1 PARAMETERS I I I OPERAND-2 PARAMETERS I 
.... ---r, -'----..,---~-----_f Defini-I 'I ----t 
I Name I Meaning ,tion I Element , Name ,Meaning I 
1----111-- ......f--' 'I .. 

XGNl IGN number when operand is 1H lGenerated IXGN2, Same as for the first , 
la GN reference. Procedure-name I operand. I 
I Reference , I 
I I I 

XPNl IOperand is a PN 1F Procedure-namelXPN2 Same as for the first I 
I reference. Reference I operand. I 
I 'I 
1~:t!L.1: Code 00 I I 
I I I 
'~!te~: Priority number I i 
10fPN , , , 
I !ttte~J._!!!HL!l: PN I I 
'Damber 'I 
I I I 

XCNTR110perandis an item in one XL3 IGlobal Table IXCNTR21Same as for the first 
, lof the variably-located I Variably- t loperand. 

I fields of a Global Table., ,10 cated Ar ea, I 
I "Reference , , 
,~yte-1: Type code (the , I I 
Icodes are listed under I I I 
I"Global Table I " 
I Variably-located Area , " 
I Reference" in the, I I 
IProcedure A-text I 'I 

I ,formats, given in I 'I 
I I"Section 5. Datal 'I 
I IAreas"). I " 
, I I I I 
IPLUS1 ,Displacement from I XL3 PLUS2 ,Same as for the first 
i Ibeginning of allocated I operand. 
I Istorage of a t 
I Iright-adjusted operand. I , , , 
,XiNl loperand is a VN reference 
I I 
I I !!I.~-1: Cod e 00 
, I 
I IByte-1: Priority number 
I , 
, I ~teu~!l: VN 
I Inumber 
I , 
IGDEBG110perand is an item in a 
I I fixed-location field of 
, I a Global Table. 
, I 
I I Byte-1: Type code (the 
, Icodes are listed under 
I I "Global Table Standard 
, I Area Reference" in the 

:1 ,Procedure A-text 
, ,formats, given in 
I I~Section 5. Data 
, ,Areas"). 

:1 , 

1F 

IL2 

I 
I 
I 
Variable 
Pr oced ure- name 
Reference 

Global Table 
Standard Area 
Reference 

IGDEBG2 
I 
I , 
I 
I 
I 
I 
I :, 
I 
I , 

Same as for the first 
operand. 

Figure 32. Parameter Cells for the A-Text Generator (Part 3 of 4) 

130 Sect ion 2. !fet h od of Opera tion 



Licensed Material - Property of IBM 

i 
Parameter Cells for the A-text Generator 1 

Iii 
I OPERAND-1 PARAMETERSl I 
~.----~r-----------------------~IDefini-1 

I OPERAND-2 PARAMETERS; 
I i 

\., 
I 

IName Heaning Ition. I .Element I Name I M~aning r 
I I I I I . I J 

IBLREF110perand is a base XL2 Base Locator BLREF2 Unused. . I 
I' 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 I locator. Reference 
I I 
I I Byte-1: Type of base 
I I locator: BL, BLL" SBL 
I ·1 (llill field of idk) 
I , 
I Ilttte--4: BL number 
I t 
XREG1 IRegister number if first 

,operand is a re~ister 

IHB 

I 
I~: When this is 
lused, the second operand 
I (unless it is a register 
,also) is still 
Iconsidered the first 
Inon-register operand and 
lis placed in the 
loperand-1 cell. 
I 
IImmediate field value 
Ifor an SI instruction. 
I 

XXREG IRegister number for 
lindex register in an RX 
t instruction. , 

XL1 XREG2 

XL1 

XL1 

Register number for 
second register in an 

RR instruction. 

I 
I 

-----' 
Figure 32. Parameter Cells for the A-Text Generator (Part 4 of 4) 

The A-text Generator does not include 
literals and virtuals in the Procedure 
A-text. Rather, it writes the virtual with 
an optimization A-text prefix on SYSUT2 and 
writes the literal as optimization A-text 
on SYSUT3. At execution time, virtuals and 
literals are stored in the program Global 
Table. By processing optimization A-text, 
phase 6 or 62 can eliminate duplicate 
storage if the same. virt ual or. literal is 
used more than once.' 

For virtuals, the A-text Generator 
assigns an identifying number to the 
virtual and writes the number as Procedure 
A-text. The virtual itself is then written 
with an Optimization A-text prefix on 
SYSUT2, along with its identifying number. 

Virtual identifying numbers are assigned 
from the VIRCTR cell of COHHON. This 
counter is initialized to 1 in phase 00. 
The counter is incremented to indicate the 
number of virtuals required by the options 
that are in effect. Each virtual and the 
options for which it is required are listed 
belovo Although more than one option may 

require the same virtual, the virtual 
ap;pears only once. 

SRVO 
DBGO 

DBG5 
FLWO 
STNO 
CT10 
TOOO 
SGMO 

QPti.Q!!§~hat_~.ru!:ire th~ 
}!irtua!, 
NORESIDENT 
COUNT, FLOW, STATE, SYHDHP, 
TEST 
SYMD~lP 

FLOW 
STATE 
COUNT 
COUNT 
TEST, segmentation 

The total number of virtuals processed by 
phase 50 is equal to the number Qf virtuals 
required by the options in the above list. 
At the end of phase 50 initialization, the 
value in VIRCTR is one greater than the 
total number of virtuals processed by the 
phase. Within phase 50, whenever a new 
virtual is needed, the current value of 
VIRCTR is used as the virtual number, and 
then the counter is incremented. 'At the 
end of phase 51, the counter is decremented 
by 1. (VIRCTR is the only counter in 
COMMON handled in this manner. For all 
other counters, the value of the counter is 
incremented ~~for~ being used.) 

Phase 50 131 



Licensed Material - Property of IBM 

When a literal reference is required, 
the Procedure A-text element contains a 
code and a counter. The literal itself is 
put out as optimization A-text, and the 
LTLCTR counter of COMMON is incremented. 
An identifying number is assigned to the 
literal, so that phase 6 or 64 can 
determine which literal reference applies 
to a given literal. 

During phase 50 processing, the 
optimization A-text for a literal 
definition is written in SYSUT3; all other 
output from phase 50 is written in SYSUT2. 

Once the PH5CTL routine has determined that 
a verb s~ring is not one of those processed 
by phase 50, it calls routine PH5BVB to 
handle the verb string. 

The PH5BV~ routine first checks to see 
if the verb is .onethat will use registers 
o through 5 at execution time. If it'is, 
routine DFREER is called to free regist~rs. 
(DFREER is described in "Register and 
storage Allocation" earlier in this 
chapter. ) 

Routine PH5BVB then writes the header 
and operands of the verb string on SYSUT2 
as P2-text. Then it determines whether the 
verb is MOVE, EXAMINE, TRANSFORM, RECEIVE, 
or SEND; a MESSAGE condition; or a 
subroutine test verb generated for an IF 
(NOT) MESSAGE statement. If it is one of 
these, routine XSPRO is called. This 
routine checks to see whether there is an 
object of an OCCURS clause with the 
DEPENDING ON option in the data-name being 
moved into, examined, or transformed, in 
the CD-name, or in the data-name associated 
with a RECEIVE or SEND verb. When this. is 

132 Section 2. Method of Operation 

the case, routine XSPRO generates calls to 
Q-Routines. 

Finally, routine PH5BVB determines 
whether the verb is one that requires 
deletion of all the entries in the XSCRPT 
table. These verbs include: 

CALL 
LINK 
ENTRY 
SORT 
OPEN 
CLOSE 
ACCEPT 
RETURN 
READ 
MERGE 

WRITE 
REWRITE 
REPORT-CALL 
RELEASE 
ON 
STOP 
STRING 
UNSTRING 
SEND 

RECEIVE 
ACCEPT MESSAGE 
CANCEL 
VSAM READ 
VSAM WRITE 
VSAM REWRITE 
VSAM DELETE 
VSAM START 
VSAM OPEN 
VSAM CLOSE 

If the verb is one of the above, routine 
KILSUB is called to delete the XSCRPT table 
entries. 

If the OPT option is in effect, phase 50 
also performs the following functions: 

• Converts phase 4 optimization 
Information elements (43xx) to phase 50 
optimization Information elements 
(COxx) • 

• Primes the BLUSTBL table for the number 
of BLs and BLLs present in the program. 
For each reference to a data-name, it 
adds 1 to the entry for that BL or BLL. 
This table is used by phase 62 to 
assign permanent base registers to the 
BLs and BLLs. Phase 51 also updates 
the BLUSTBL table. 

• Writes GNUREF elements for Q-Routine 
calls. 



Phase 51 (IKFCBL51) functions in a similar 
manner to phase 50. Elements of text 
written by phase 50 are read from SYSUT2. 
Phase 51 checks each element and performs 
whatever processing is required, based on 
the type of element read. After 
processing, it writes the element as 
Procedure A-text on SYSUT1, as optimization 
A-text on SYSUT3, or as E-text on SYSUT4. 
(Optimization A-text is written immediately 
after any optimization A-text that was 
written on SYSUT3 by phase 50.) 

Input to phase 51 can be any of the 
following: 

.. Intermediate Procedure A-text 

.. Intermediate Optimization A-text 

.. Verb strings 

.. Intermediate E-text 

An element of Intermediate Procedure 
A-text may be a Q-Routine control break, or 
it may be text generated by phase 50 and 
requiring no further processing. If it is 
a Q-Routine control break, routine GETNXT 
generates an end-of-file macro instruction, 
if necessary, and writes the text element 
of 4440. otherwise, the element is merely 
copied as Procedure A~text output without 
the identifying prefix of 28 and its count 
field. 

An element of Intermediate optimization 
A-text, identified by a prefix of 27, can 
be a segmentation control break or a PN. 
GN, or VN definition. 

Verb strings written in P2-text require 
processing by one of the phase 51 verb 
analyzer routines. 

Whenever it encounters E-text in its input 
or generates an E-text element itself, 
phase 50 writes it out on SYSUT2 with an 
identifying prefix or, if the SYNTAX or 
CSYNTAX option is in effect, on SYSUT4 
without the prefix. E-text with the prefix 
is referred to as Intermediate E-text. 
Phase 51 recognizes it, discards the 
prefix, and writes the E-text out on 
SYSUT4. 

Licensed Material - Property of IBM 

To enable phase 00 to pass a return code 
back to the operating system at the end of 
compilation, phase 51 must determine the 
highest severity level encountered in the 
program. When routine GETNXT encounters an 
element of E-text or when the phase 51 
processing routines firid an error situation 
requiring that E-text be written, routine 
ERRPRO is called. This routine uses a cell 
in COMMON called ERRSEV (for the format of 
COMMON. see "Appendix A: Communications 
Area"). If any E-text was generated by 
phases 10, 12, 20, 22, and 21, ERRSEV was 
set by phase 21. Thereafter, ERRSEV is set 
by phases 3, 4, and 50 to the highest error 
severity level encountered • 

Routine ERRPRO adds 1 to the severity 
code of the current E-text element and 
multiplies this value by 4. (The code must 
be incremented by 1 because certain errors 
produce a severity code of 0; adding 1 to 
the severity code distinguishes such an 
error from no errors at all.) 

ERRPRO then compares this value to the 
current value of ERRSEV, and enters the 
code of the E-text into ERRSEV if it is 
higher. The E-text is then written out on 
SYSUT4. Note that this is the first time 
(unless the CSYNTAX or SYNTAX option is in 
effect) that E-text is separated from the 
other output of a phase, rather than 
embedded in it. 

If the CSYNTAX option is in effect and 
if any phase generates an error (E) or 
disaster (D) level message, the SYNTAX 
option is forced into effect. Following 
phase 50 processing if phase 00 finds the 
SYNTAX option in effect, phase 00 sets the 
value of LINKCNT to indicate that phase 70 
is to be executed next. If phase 00 finds 
that the CSYNTAX option is still in effect, 
processing continues with phase 51. If 
phase 51 detects no syntax error which 
would cause an error (E) or disaster (D) 
level message, a full compilation is 
produced. Otherwise, the SYNTAX option is 
forced into effect, the ERRSEV cell is set, 
and control is passed to phase 00. Finding 
the SYNTAX option in effect, phase 00 sets 
the value of LINKCNT to indicate that phase 
70 is to be executed next; error messages 
are listed and the compilation is 
terminated (see "syntax-checking 
compilationsll in the chapter "Phase 00 11 ). 

Phase 51 133 



Licensed Material - property of IBM 

'Routine GETNXT uses program breaks to 
determine where to issue the START 
macro-type instruction. This instruction 
indicates where in the object program 
control is to be passed by the 
initialization routines (see the discussion 
of these routines in the chapter "Phase 6") 
if the program is executed by PROGRAM-ID 
rather than at an alternate entry point. 

Each program break read by phase 51 
(except for segmentation control breaks 
that are handled as described below) is 
handled by the routines CHKSEG and STRTEST. 
CHKSEG examines the type of break and sets 
the bit configuration of STRTSW, a one-byte 
switch. STRTEST checks STRTSW to determine 
the exact point at which the START 
macro-type instruction should appear. 
STRTSW is also used to check the point at 
which current processing is taking place, 
for example, within the Report writer 
section. 

If no beginning-of-declaratives br~ak is 
encountered,. the START is written 
immediately after the Procedure Division 
break is encountered. If declaratives are 
present, the START is written after the 
end-of-declaratives break has been found. 

Phase 51 writes Procedure A-text on the 
direct-access device SYSUT1. When phase 6, 
or phases 62 and 63, read this text, 
segments must be read and processed in 
order of priority, rather than in the order 
in which they appear in the source program. 
To facilitate this, routine SEGENTR builds 
a table (called SEGTBL) containing the 
relative disk address of the beginning of 
each segment. 

The relative disk addresses are obtained 
through phase 00. (Note that phase 00 
handles all input/output requests for the 
other phases.) When phase 00 writes 
Procedure A-text for the first physical 
record of a segment, after the CHECK has 
been issued for that WRITE, it issues a 
NOTE macro instruction. The NOTE macro 
instruction returns the relative disk 
address of the record just written, which 
is saved in SEGSAVE, a cell internal to 
phase 00. 

The segmentation control break 
encountered by phase 51 signals the end of 
one segment and the beginning of a segment 
with a different priority. Routine GETNXT 
calls phase 00 with a request for the 

134 Section 2. Method of operation 

SEGNOTE function. (For a description of 
the calling sequence and parameters, see 
"Phase Input/Output Requests" in the 
chapter "Phase 00".) To complete the 
output for the previous segment, phase 00 
writes whatever is left in the buffer, and 
passes back to phase 51 the value in 
SEGSAVE, which is the starting address of 
the previous segment. Phase 51 stores this 
as an entry in SEGTBL, along with the 
priority number of the previous segment. 
(For the SEGTBL table format, see "Section 
5. Data Areas.") 

The call to SEGNOTE also indicates to 
phase 00 that the next time it writes on 
SYSUT1, it will be the beginning of a new 
segment and another NOTE must be issued. 

When a PN, GN, or VN definition is 
encountered, routine PUTDEF is called. 
This routine changes the definition to 
Procedure A-text and writes it out. 

For PN definitions, the PN number and 
the priority number are saved before PUTDEF 
is called. For VN definitions, the SEGLMT 
cell in CbMMON (see "Appendix A: 
communications Area") is tested to see if 
the program is segmented (a value other 
than hexadecimal FF in SEGLHT means the 
program is segmented). If it is segmented, 
the VN def in it ion is written as both 
Procedure A-text and optimization A-text. 

It is possible that earlier phases have 
generated more than one GN to define a 
single verb within a procedure statement. 
When this occurs, several GN definition 
elements are encountered in a row without 
any intervening text. If the source 
program included a procedure-name at this 
point, a PN definition also occurs, 
preceded by one or more GN definitions. 
since only one procedure-name is required 
to provide a branching point in the object 
program, the rest of the GNs can be 
eliminated. All the GNs (and the PN, ~f 
any) are collected in a phase 51 work area 
called GNLIST. from which they are written 
in optimization A-text as an Equate string. 
In Procedure A-text, only the PN definition 
is written or, if there was none, the first 
GN definition (the one with the lowest GN 
number). Phase 6 uses the Equate string to 
change all references throughout the 
program from the equated GNs to the one for 
which Procedure A-text was issued. 



If the OPT option is in effect, these PN 
and GN Equate st~ings a~e not w~itten. All 
PHs and GUs a~e w~itten in P~ocedu~e A-text 
~ega~dless of their position. Since no 
cells in the PGT a~e allocated for thei~ 
add~esses, it is not necessa~y to equate 
their add~esses. They a~e addressed 
instead by using a displacement from a base 
register. 

The sou~ce programmer may have coded some 
procedure-name definitions to which 
reference is never made. The address cells 
for such procedu~e-names can be eliminated. 
To do this, routine PNUSED in phase 51 
builds the PNUTBL table for phase 6 or 62. 

This table contains one bit for every PH 
definition in the program, ~ounded up to a 
multiple of 4. The size of the table is 
determined from the cell PNCTR in COMMON. 
This cell ~las incremented by phase 1 B every 
time a PN definition was created, and 
therefore contains a count of the total 
number of PNs in the program. All bits in 
the table are initialized to OQ and every 
time a PN is referred to throughout phase 
51 processing, the bit in the table 
corresponding to the PrJ nnmber is set to 1. 
Phase 62 uses the PNUTBL table to determine 
if a PH has been referenced. If it has not 
been referenced. no entry point proceSSing 
is done at the point of definition. 

Phase 51 processes input/output verbs, 
other nonarithmetic verb strings (including 
some ~equiring calls to object-time 
subroutines). and DISPLAY literals. As 
examples, the ON st~ing is discussed below 
under 910the~ Nonarithmetic Verb Stringsll 
and the DISPLAY verb unde~ "Verbs Requiring 
Calls to Object,..Time subroutines." Samples 
of coding are included in those 
discussions. 

If the STATE or the SYMDMP option is in 
effect, a call to the COBOL library 
debugging subroutine entry point ILBODBG4 
is generated for all verb analyzers (except 
FLOW and COUNT) which produce code 
branching outside the main line of the 
program. (RoHever g this call is not 
generated befo~e the call to the flow trace 
sUbroutines entry point ILBOFLW1.). When 
~outine PH5CTL encounters the READ, 
WRITE/RE~RITE. OPEN/CLOSE, RETURN, RELEASE, 
USE/ENDOSE for error and label 
declaratives q and checkpoint READ and WRITE 

Licensed Material - property of IBM 

verbs, it calls routine DBGTEST to generate 
the call. The call is also generated 
before the code generated to call any COBOL 
object-time subroutine or any program that 
is the ope~and of a CALL statement, and 
before any b~anch to a Q-Routine o~ to 
report writer routines (not including 
report w~i ter declara ti ves). For a 
desc~iption of the COBOL library 
subroutines, see the publication l~tl_Q~Y~ 
fQ~Q1-SuQ~outin~-1iQ£~~y-~rog£~~1Qgic. 

Phase 51 generates the object code required 
for the input/output ve~bs discussed in 
this section. There is a separate verb 
analyzer routine for each verb. Each 
~outine may share seve~al subroutines with 
othe~ analyzers. 

The coding generated is basically the 
~equ~ed linkage to an input/output routine 
and, therefore, depends on the access 
method. Additionally, the following 
factors influence the coding: the 
organization of the data records, the 
blocking factor, the ~ecording mode, 
multiple buffering, use of SAME RECORD AREA 
clause, inclusion of a RERUN clause, use of 
label ~ecords and declaratives, and the 
type of device. 

By convention, the following register 
assignments a~e used at execution time. 

o Before an input/output operation: 

If a DECB for a file is referred to 
in the generated code for an 
input/output operation. the address 
of the DECB is placed in both 
registers 1 and 3, and the address 
of the DCB for the file is placed 
in register 2. 

If a DECB for a file is not 
referred to in the generated code, 
the address of the DCB for the file 
is placed in both registers 1 and 
2. 

Register 15 contains the add~ess of 
the input/output ~outine that 
corresponds to the particular 
operation and access method. 

• After certain input/output operations: 

Register 1 contains the address of 
the next record to be read or the 
next area to be written in. 

o Before calls to object-time 
subrou tines: 

Phase 51 135 



Licensed Material - Property of IBM 

Register 15 contains the address of 
the COBOL library subroutine to be 
called. 

Register 1 contains the address of 
the parameter list, if any. 

Note: Before the first inline call for a 
SORT or MERGE statement to the ILBOSRTO 
subroutine, registers 0 through 5 contain 
parameters used by the subroutine. 

The code generated for input/output 
verbs is described in the paragraphs that 
follow. In cases where a call to a COBOL 
library subroutine is generated, the 
calling sequence is given in the 
publication U!LQ§.LYLmlillLID!brouting 
1~br~f~Qg~~g~£. 

OPEN~: The general form of the code is the 
expansion of the OPEN macro. Several 
additions may be made depending on the 
device and access method used. A call to 
the ILBOSAMO subroutine is generated for a 
BDAM file opened as output. Code is 
genera ted to move the address of the Error 
subroutine, ILBOSYNx, into the SYNAD 
address in the DCB, to move the address of 
ILBOSPAO into the DCB extension, to move 
the address of ILBOEXT1 into the exit list, 
and'if RERUN has been specified, to move 
the address of the Checkpoint subroutine, 
ILBOCKPO; into the exit list. The input is 
two strings, the first of which is used to 
generate device-type code and the OPEN 
macro expansion.· The second is used to 
generate the device-dependent code needed 
after the file is open. In addition, code 
is generated for each file so that an 
appropriate message can be produced on the 
console in the event of an unsuccessful 
open for a file. 

CLQ2E1: The code generated is the 
expansion of the CLOSE macro. Additions 
may be made depending on the device and 
access method used. A call to the ILBOSAMO 
sub~outine is generated for the CLOSE 
statement for a BSAM file. 

REAg~: This verb may cause either of two 
distinct sets of code: a GET or READ macro 
expansion is generated in most cases, with 
additions depending on the device and 
access method used; a COBOL library 
subroutine linkage is generated in special 
cases. 

1For VSAM files, all interfaces to the VSAM 
access meth od are handled by the library 
SUbroutines ILBOVOC and ILBOVIO. These 
subroutines are described in I~M 02LY2 
£OBOL S'!!Ql:2ut~~1~brgLg£oqr~1ll-1Q8ic. 

136 section 2. Method of Operation 

!RITE1: This verb may cause either of two 
distinct sets of code: a PUT or WRITE 
macro expansion is generated, with 
additions and modifications depending on 
the device and access method used; a COBOL 
library subroutine linkage is generated in 
special cases, for example, a WRITE 
statement for a BSAM file, or QSAM file. or 
printer spacing. 

Note: For the OPEN, CLOSE, READ. and WRITE 
verbs, Procedure A-text BLCHNG elements are 
written. This indicates to phase 6 or to 
phases 62, 63, and 64 that if they have 
permanently or temporarily loaded the 
associated BL into a register, they must 
reload the register or flag the register as 
no longer containing the BL. For ENTRY. 
SORT, MERGE. label declaratives 
initialization. and referencing the TOTALED 
AREA. Procedure A-text BLCHNG elements 
followed by the BLL reference instead of 
the base locator CBL) reference are written 
to indicate that a BLL has changed and must 
be reloaded into the permanently assigned 
register or that the internal phase 62 
temporary register cell (14 or 15) must be 
flagged as no longer containing the BLL. 

2!!!~: The START statement for ISAM files 
without the generic KEY specified, results 
in the macro expansion of an ESETL macro 
instruction, followed by a SETL macro 
instruction without the key class option. 

The START statement for ISAM files with 
the generic KEY specified, results in the 
generated code for a call to the START 
subroutine. Follouing the subroutine call, 
phase 51 generates the macro expansion of 
the ESETL macro instruction, followed by a 
SETL macro instruction with the key class 
option. 

DISPLAY: The DISPLAY statement results in 
the-generated code for a call to the 
ILBODSPO or ILBODSSO subroutine except for 
a DISPLAY of an alphanumeric literal, which 
results in the macro expansion of aUTO 
macro instruction. 

ACCEPT: The ACCEPT statement results in 
the generated code for a call to the ACCEPT 
subroutine, ILBOACPO. when the "FROM SYSIN" 
option is used. When the "FROM CONSOLE" 
option is specified or implied. a WTOR 
macro expansion is generated. 

RECEIVE: The RECEIVE statement results in 
the-generated code for a call to the 
RECEIVE subroutine, ILBORECO. The ACCEPT 
MESSAGE statement also results in the 
generated code for a call to the RECEIVE 
subroutine, ILBORECO. A switch byte is set 
to indicate that the call is for a message 
condition rather than a RECEIVE verb. 



SE!R: The SEND statement results in the 
generated code for a call to the SEND 
subroutine, ILBOSNDO. 

~I~!§: The STRING statement results in a 
call to the STRING subroutine, ILBOSTGO. 

UN~TRING: The UNSTRING statement may 
result in one or more calls to the UNSTRING 
subroutine, ILBOUSTO, and in two or more 
calls to the conversion subroutine, 
ILBOCVBO, at both entry points: ILBOCVBO 
and ILBOCVB1. The number and order of 
calls are determined by the types of 
operands specified in the UNSTRING 
statement. 

y~~: The USE verb, on entry to the 
Declaratives section, generates code which 
sets up fields (pointers) for the 
information requested, such as the address 
of a label or an error block. At the end 
of the section, the code needed to return 
to the object-time subroutine is generated. 

This section discusses the ON string as an 
example of a nonarithmetic verb string. 

When routine PH5CTL encounters an ON 
string, it moves the operands into a uork 
area and calls routine ON to process the 
string. 

The processing depends upon the options 
given in the ON statement. In the simplest 
case (ON 1), instructions are generated to 
test a switch to see if the statement 
completing the ON has been executed and, if 
it has, to branch around this statement. 

Figure 33 shows the Procedure A-text 
produced for an ON statement with an 
initial value, increment, and maximum 
value. The numbers of the following 
explanations refer to the circled numbers 
in the figure. 

o 

GN1 is the generated procedure-name 
assigned to the next sequential source 
program statement. A branch must be 
made to this statement when the ON 
condition is false (that is, in this 
example, when the ON instructions to 
test and increment the counter have 
been executed an odd number of times 
or more than 16 times). 

This instruction loads the contents of 
ONCTR1 into register 3. ONCTR1 is the 
identifying number of an ON control 
cell. At execution time, this cell 
will be incremented by 1 each time the 
ON statement is executed and compared 

o 

Licensed Material - property of IBM 

with the maximum value, as specified 
in the UNTIL option. 

Phase 51 assigns identifying numbers 
to ON control cells using the ONCTR 
cell in COMMON. At execution time, 
each ON control cell will occupy four 
bytes in the ONCTL field of the Task 
Global Table, or TGT (see "Appendix B. 
Object Module" for the format of the 
TGT) • 

Registers 1 and 2 are generally used 
in the object program for 
nonarithmetic operations. When a 
non arithmetic register is needed by a 
phase 51 verb, one will have been 
freed by phase 50's issuing of an 
instruction to store its contents in a 
subscript save cell, if necessary (see 
"Register and Storage Allocation" 1n 
the chapter "Phase 50" for a fuller 
description of register saving) • 
Subscript save cell numbers are 
obtained from the SUBCTR cell in 
COMMON. They correspond to SUBADR 
cells in the Task Global Table of the 
object program. The instructions to 
save the registers would precede the 
LOAD instruction. 

The literal 16 is not actually issued 
in the Procedure A-text. Rather, a 
literal definition element is issued, 
and the literal itself is written as 
optimization A-text (see "Literals and 
Virtuals" in the chapter "Phase 50"). 

This branch statement transfers 
control to GN1 (the next source 
program statement) when ONCTR1 
contains a value greater than 16. 

This statement causes a branch to GN1 
when ONCTR1 contains a value that is 
less than 2. 

XSASW1 identifies a cell that will 
control the increment (EVERY option) 
of the ON statement at execution time. 
The switch will be flipped each time 
the statement is executed and tested 
to determine whether the imperative 
statement should be branched around. 
The switch is used only if the 
increment is 2 or in the ON 1 case. 

Phase 51 137 



Licensed Material - property of IBM 

r------------------------------------------~. 
ISource statements I 
I---ON-~ND~VERY 2 UNTIL 16 MOVE A TO B.I 
I ADD C TO D. 
I 
IP2::.ru.:L~tring§ 
I ON 2 2 16 GN1. 
I MOVE (2) A B. 
IGN1. ADD (2) C D. 
I 
IProcedure A-text 
'---~--~NCTR1 
I LA 3,1 (3) 
, ST 3,ONCTR1 
I C 3,= (16) 
I L 2,A(GN1) 
I BCR NOTLO,2 
, C 3,= (2) 
t BCR LO,2 5 
I XI XSASW1.X'Ol' 
I CLI XSASW1,X'Ol' 
I BCR NOTEQ,2 
I instructions for MOVE 
IGN1. instructions for ADD L---____________ . __________________________ ~J 

Figure 33. Analysis of an ON statement 

The identifying numbers are assigned 
from cell XSWCTR in COMMON. They 
correspond to cells in the XSASW field of 
the Task Global Table in the object 
program. 

If the increment is not 2, an ON control 
cell is used to control the increment. 
Like the cell described in paragraph number 
2, it is assigned an identifying number 
from ONCTR in COMMON, and it is used in a 
similar manner. 

Some nonarithmetic verbs create special 
situations that require additional 
processing. These are described in this 
section. 

Nonarithmetic Conversions: In a few 
instances, nonarithmetic-data items must be 
expressed in binary during object program. 
execution. These instances are illustrated 
by the following source program statements: 

GO TO ABC DEPENDI NG ON X. 
PERFORM RTNA X TIMES. 

In both these cases, the value of X must 
be in binary when the statement is 
executed; however, the source programmer is 
not required to create'X as a binary data 
item. This situation also arises in some 
Q-Routines. 

138 section 2. Method of Operation 

To handle this, the verb analyzer calls 
routine DNTOR1. This routine determines 
whether the value is already in binary or 
must be converted. If conversion is 
needed, DNTORl generates code which 
converts the value at object time, and 
places the binary value in a work area in 
the TEMP STORAGE-2 field of the Task Global 
Table (leaving the value in the data area 
unchanged). The work area, rather than the 
data area. is then used ~hen the value is 
referred to. 

R£Q£edy~~ Bran£h!g~~~gmented Program: 
If a GO statement transfers control out of 
the current segment and the current segment 
is not the root segment, phase 4 has 
indicated this by passing a special verb 
code (see "Checking for segmentation in 
Procedure Branching" in the chapter "Phase 
4"). When phase 51 encounters this verb 
code, it generates a call to the COBOL 
library subroutine, ILBOSGMO. or if the OPT 
option is in effect, to ILBOSGIH (the 
calling sequence is given in the 
publication IBM OS~COBO~ sub~tiyg 
LibrarY-R£ogram Logic. This subroutine 
checks to see whether the necessary segment 
(the one containing the object of the GO 
TO) is already in storage, brings it into 
storage if it is not, initializes the 
segment, and transfers control to the named 
procedure. 

If the operand is a PN or GN in a GO TO 
statement with the regular GO verb code, a 
normal branch is made whether or not the 
program is segmented. No test need be 
made. because phase 4 only issued a regular 
GO verb code if the branch did not require 
segment initialization. 

If the operand is a VN, the SEGLMT cell 
in COMMON is tested. If the test indicates 
that the program is segmented (a value 
other than hexadeci~al FF), a call to 
ILBOSGMO is generated. If, at execution 
time, the VN is within the same segment, 
the subroutine will execute a normal 
branch. If the VN is not in the current 
segment q the subroutine will perform 
segment initialization. 

If the GO TO statement contains a 
DEPENDING ON option, SEGLMT is tested to 
see whether the program is segmented. If 
it is, a call to the COBOL library 
subroutine. ILBOSGMO. is generated. If the 
OPT option is in effect, a Call to the 
COBOL library subroutine, ILBOGDOO. is 
genera ted. This subroutine passes' control 
to the appropriate PN. If the program is 
segmented, the address of entry point 
ILBOSGM1 is passed in register 2 to the 
ILBOGDOO subroutine. This subroutine then 
determines which PN to branch to and passes 
control to entry point ILBOSGM1 to do 
standard processing for segmentation. 



yer~ill!irin~!~s to-iUdgct-Time 
Subrol1tine§ 

In this section, the DISPLAY verb is 
discussed as an example of a verb which is 
executed by a COBOL library sUbroutine. 
(This discussion assumes that neither the 

DYNAK nor RESIDENT option is in effect and 
that the COBOL library DISPLAY subroutine, 
ILBODSSO, cannot be used.) The discussion 
is based on the DISPLAY statement shown in 
Figure 34. In this example, A, B, C, D, 
and E are data-names whose USAGE is DISPLAY 
and whose PICTURE is XX. The numbers of 
the following explanations refer to the 
circled numbers in Figure 34. 

I 

Phase 4 puts a maximum of five 
operands in a string. since the 
number of operands in this DISPLAY 
statement requires a continuation 
string, the first operand generated by 
phase 4 is the COBOL word FIRST, and 
the last operand is the COBOL word 
END. This is the form of all 
continued strings. The second operand 
identifies the device and the third 
through next-to-last operands are the 
data items named in the source 
statement. (Note that the P2-text 
contains the attributes, not the 
names, of the data items.) 

1~Q.!!tQ~llat~1!i 
I DISPLAY ABC D E UPON CONSOLE. 
I 
IP2::.:!:.nl=. 
I DISPLAY (5) FIRST CONSOLE ABC ~ 
I DISPLAY (3) D E LAST 
I 
I f£Q. cedull.-A::!~i 

L 15, =V (ILBODSPO) 0 
BALR 1,15 
DC XL2'02' ~ 
DC XL1'00' 0 
DC XL3,000002' 
DC AL4(BC-DISP) 
DC XL2 '1F' 

DC X'FFFF' o 
Figure 34. Analysis of a DISPLAY Verb 

ILBODSPO is the name of the COBOL 
library DISPLAY subroutine. since it 
is a virtual (for a definition of 
virtuals, see the glossary), it is not 
uritten as part of the Procedure 
A-text. Rather, its virtual number is 
written as Procedure A-text; the name 
of the virtual itself is put out as 
Optimization A-text. See "DISPLAY 
Literals" below and "Literals and 
Virt~als" in the chapter "Phase 50" 

Licensed Material - property of IBM 

for a discussion of hOH this text is 
produced. 

This parameter gives the device code, 
which is 02 for CONSOLE. The section 
on ILBODSPO in the publication 1~~ 
OSLVS~Q1..2ubrQ!!tin~Libll!:.Lg~.Qg~s.!\ 
Logic, contains a complete list of 
device codes. 

This parameter and the three which 
follow it give operand information for 
data-name A. Each operand is 
specified in a 10-byte field. The 
description of ILBODSPO in the 
publication IBM OSLV~£QBOL S!!Q£Qutin~ 
l..ib~rr_progrill!LLoill:£, gives all the 
codes; the meanings of the codes used 
in this example are as follows: 

Code 0-0-

000002 

Meruling 
Specifies the type of 
the item. In this case, 
data-name A is 
nonnumeric, ready to 
display. 

Specifies the length of 
the item. Since the 
PICTURE for A is XX, the 
length is two bytes. 

IL4(BC-DIS~ Specifies a displacement 
of an item from the 
beginning of the table 
identified by a base 
code. 

1F Specifies the 
displacement of A from 
the beginning of the 
area controlled by its 
base locator. 

Following the description of A are 
similar 10-byte fields describing each 
of the other operands. The code FFFF 
follows the last description. 

No~: As a special case, the DISPLAY of a 
single alphanumeric literal UPON CONSOLE 
generates an in-line WTO 
(write-to-operator) coding, rather than a 
call to the library subroutine. 

If the STATE option has been specified, 
a call to the library subroutine ILBODBG4 
is generated before any DISPLAY coding. 

Generation of A-text, including literals 
and virtuals, is almost identical to that 
performad in phase 50. There is one 
exception, however. If a literal is in a 

Phase 51 139 



Licensed Material - Property of IBM 

DISPLAY statement that requires a call to a 
COBOL library subroutine, a separate 
DISPLAY literal Optimization A-text element 
is written. This element is of a different 
type than an internal literal. It is 
generated differently so that phase 6 or 62 
can build separate tables for internal and 
DISPLAY literals and search these tables 
using different techniques. 

If a variable-length move or compare is 
required, the MVCL (for a move) or the CLCL 
(for a compare) machine instruction will be 
generated. If a compare involves a field 
greater than 256 bytes in length or if the 
receiving field for a move is greater than 
512 bytes in length, the CLCL or MVCL 
machine instruction, respectively, is 
generated. If the receiving field for a 
move is right justified and the receiving 
field for the move is either greater than 
512 bytes in length or variable in length, 
a call is generated to the ILBOSMVO COBOL 
library subroutine. 

If the OPT option is in effect, phase 51 
generates the following text elements: 

• Procedure A-text BC elements'following 
a call to the COBOL library 
segmentation or GO TO DEPENDING ON 
subroutine. 

• Procedure A-text CO elements, 
specifically, COOl, C003, and C006. 

• Optimization A-text GNUREF (1C) 
elements, PNUREF (20) elements, GN-VN 

140 section 2. Method of operation 

(24) elements for PERFORM verbs, and VN 
(3~ EQUATE (44) PN (4C) elements, and 

Phase 51 contains a verb analyzer routine 
for each of the VSAM input/output verbs: 
OPEN, CLOSE, READ, WRITE, REWRITE, START, 
and DELETE. The VSAM verb routine: 

• Analyzes the operands in the verb 
string. 

• Creates the parameter list to be passed 
to the object-time subroutine that 
performs input/output operations for 
VSAM files. 

• Generates the calling sequence for 
object-time subroutine. 

The calling sequences to the COBOL 
object-time subroutines (ILBOVCOO, and 
ILBOVIOO) are described in I~~OS/VS_£OBOL 
~~h~Q~ting_1ib£arY_R£~~_Logic. 

GENERATING CALLS TO THE ILBOVCOO AND 
ILBOVIOO SUBROUTINES 

The COBOL object-time subroutines act as 
the interface between the COBOL object 
program and VSAM. It uses the File 
Information Block (FIB) (built by phase 
21), the File Control Block. (FCB) (created 
at object-time), and the parameter list and 
options list (created in the calling 
sequence for the subroutine by phase 51). 
Phase 51 determines the parameters and the 
list of options by examining the verb 
string following each VSAM verb. 



Phase 6 (IKFCBL60) prepares a machine 
language program suitable for input to the 
linkage editor. The elements of this 
program are described in the chapter 
"Object Hodule." The phase is divided into 
several sequential parts, each of which 
performs specific functions. These are, in 
order: 

o Determines object program storage 
allocation for the TGT (Task Global 
Table) by processing counters in COMMON 
and calculating the displacements of 
items that reside in the TGT at 
execution time. 

o optimizes literals, virtuals, source 
procedure-names. and compiler generated 
procedure-names by processing 
Optimization A-text and the PNUTBL 
table; determining storage allocation 
in the PGT (Program Global Table) for 
these items and calculating their 
displacements, using counters in 
COMMON. 

o with Procedure A-text as input, 
generates and writes machine language 
instructions. If the program is 
segmented, grouping the sections of 
instructions into segments. If the 
SXREF or the XREFoption was specified, 
writes procedure-name and data-name 
defi- nitions on DEF-text. and 
procedure- name and data-name 
references on REF-text, for input to 
phase 6A. 

.. With Data A-tex.t as input, writes 
object text for the data area of the 
object program. 

G writes object text for the TGT and 
PGT from the RLDTBL table and Data 
A-text. 

o writes object text for the INIT2, 
INIT3, and INIT1 routines of the object 
program, in that order. 

o Writes EXTRN statements for any 
program referenced by a CALL statement. 

.. Passes E-text to phase 70 by storing 
it in the ERRTBL table, or by writing 
it on SYSUT3 if the table overflows. 
If the TERM option was specified, 
incrementing the ERRNUM cell in COKMON 
each time a message definition element 
of E-text is encountered. 

Licensed Material - Property of IBM 

The output of phase 6 depends on the 
compiler options specified by the user or 
determined by defaults set at installation 
time. The SXREF and XREF options have 
already been mentioned. The following are 
the other options that determine the output 
produced by phase 6: 

CLIST 

DKAP 

LOAD 

DECK 

BATCH 
NAME 

Result 
Causes the-TGT, Literal Pool, 

PGT. register assignments, 
Working-storage message, and 
a listing of the object text 
to be written on SYSPRINT. 

Causes the TGT, Literal Pool, 
PGT, register assignments, 
working-storage message, and 
a condensed object program 
listing to be written on 
SYSPRINT. The object program 
is limited to the card 
number. verb name (or verb 
number if the program is 
segmented), and address of 
the first instruction for 
each verb. 

Causes the TGT; Literal Pool, 
PGT, register assignments, 
and the working-storage 
message to be written on 
SYSPRINT. This option has 
already caUsed phase 3 to 
print a Data Division 
glossary. 

Causes the object program to be 
written on SYSLIN. 

Causes the object program to be 
written (punched) on 
SYSPUNCH. 

If both the BATCH and NAME 
options are specified, they 
cause a linkage editor 
control card to be generated 
at the end of the object 
program, so that the object 
program will be a separate 
load module. If BATCH is 
specified, the relative 
number of this compilation in 
the batch appears among the 
statistics printed by phase 
6. 

Phase 6 141 



licensed Material - Property of IBM 

~ig: The linkage editor 
control card generated for the 
BATCH and NAME options is 
produced by phase 65 if the 
FLOW or STATE option is 
specified. 

FtoW[=n[n] Causes the flow trace facility 
to be included in the object 
program. The number [n[n]] 
of traces requested is 
retained in the FLOHSZ cell 
in COMMON and is passed to 
phase 65, which places the 
number in the variable 
portion of the TGT. 

STATE Causes the statement number 
facility to be included in 
the object program. phase 6 
writes Debug-text elements on 
SYSUT2 for use by phase 65. 

For all compilations, compiler 
statistics are written on SYSPRINT from 
COMMON, where they Here saved by phase 02. 

The user may specify both the LOAD and 
DECK options, in which case the object 
program is written on both SYSLIN and . 
SYSPUNCH. He may also specify NOLOAD and 
NODECKj in this case, he receives no 
executable copy of .his object prog~am. 

If no output was requested (no PMAP, 
LOAD, DECK, CLIST, DMAP, BATCH, NAME, 
STATE, SXREF, XREF, VBREF, or VBSUM), phase 
6 text processing is bypassed unless the 
TERM option was specified. In this case, 
phase 6 scans the E-text on SYSUT4 and 
increments the ERRNUM cell in COMMON. 
After phase 6 scans the E-text, it rewinds 
SYSUT4 and returns to phase 00. Phase 00 
uses the count in ERRNUM to write a message 
to SYSTERM giving the number of errors 
encountered for the compilation. Phase 6 
also sets a bit in COMMON to indicate 
whether phase 70 is required (see 
"suppression of Output Listing" below). 

If the SUPMAP (suppress map) option is in 
effect, no output is produced by phase 6 if 
a D-level or E-level error message was 
generated by any phase. This is determined 

142 Section 2. Method of Operation 

by testing the ERRSEV cell in COMMON. A 
value of 12 or greater means that at least 
one D-Ievel or E-Ievel message occurred. 

The ERRSEV cell was set by phases 2, 3, 
4, 50, and 51 every time they encountered 
or generated an element of E-text (see 
"E-text" in the chapter "Phase 51"). A 
test is made for this condition upon 
entering phase 6. If it occurs, a message 
is printed and the text is not processed 
unless SXREF or XREF is specified. 

If the SUPMAP condition occurs and 
neither SXREF or XREF was requested, phase 
6 terminates processing after it sets two 
bits in COMMON (bits 6 and 7 of the second 
byte of SWITCH). Bit 6 indicates that 
phase 70 is to be called, and bit 7 
indicates to phase 70 that E-text must be 
read from SYSUT4. However, if the TERM 
option was specified, phase 6 scans the 
E-text on SYSUT4 and increments the ERRNUM 
cell in COMMON. After phase 6 scans the 
E-text, it rewinds SYSUT4 and returns to 
phase 00. 

If SXREF or XREF was requested, text is 
processed but the only output is REF-text 
and DEF-text (which phase 6A uses to 
produce the cross-reference listing). The 
ERRTBL is built, or E-text is written on 
SYSUT3. A bit is set in COMMON (bit 6 of 
the second byte of SWITCH), indicating to 
phase 6A that phase 70 is required. If 
E-text was written on SYSUT3, bit 5 of the 
second byte of SWITCH is set to indicate 
that E-text must be read from SYSUT3. 

Phase 6 does not write object text in 
execution-time sequence. Rather, it 
instructs the linkage editor to reorder the 
text by assigning relative addresses. To 
do this, it allocates space for areas that 
will be· written later, incrementing the 
LOCCTR (location counter) cell of COMMON to 
reflect the relative location at execution 
time of the area currently being processed. 

The symbols used in the Listing and 
Glossary to define compiler-generated 
information are shown in Figure 35. 



Licensed Material - Property of IBM 

r----------,I-----------------------------------~ 
Isymbol, Definition I Description 
I I I 

BL 
BLL 
CKP 

DBGC 
DBGI 
DBGT 

DCB 
DEC 
DNM 
FIB 
GN 
INX 
LIT 

ON 
OVF 

Base Locator 
Base Locator for Linkage 
Checkpoint Counter 

Debug Card Number 
Debug Information Pointer 
Debug Transfer 

DCB Address 
DECB Address 
Source Data Name 
FIB Address 
Generated Procedure-name 
Index Cell 
Literal 

ON Counter 
Overflow Cell 

section 

PBL Procedure Block (Optimizer) 

PFM 
PN 
POV 

PERFORK Counter 
Source Procedure-name 
PGT Overflow 

PRM Parameter 
PSV PERFORM Save 
RSV Report Save Area 
SAY Save Area Cell 
S12 Input/Output Error Save Cell 

SA3 OPEN Parameter 

SBL Secondary Base Locator 
SBS Subscript Address 
SSVE Sort Save Area 
SiT switch Cell 
TLY Tally Cell 
TOV TGT OVerflow 
TS Temporary Storage Cell 
TS2 Temporary Storage (NOn-Arithmetic) 

See "BL" in IITask. Global Table" 
See "BLL" in "Task Global Table" 
See "CHECKPT CTR" in "Task Global 

Table" 
See "DEBUG CARD" in "Task Global Table" 
See "DEBUG PTR" in "Task Global Table" 
See "DEBUG TRANSFER" in "Task Global 

Table" 
See "DCBADR" in "Program Global Table" 
See "DECBADR" in "Task Global Table" 
See "Glossary Building" 
See "FIB" in "Task Global Table" 
See "GN" in I'Program Global Table" 
See "IND" in "Task Global Table" 
See "Literal" and "Display Literal" in 

"Program Global Table" 
See "ONCTL" in "Task Global Table" 
See "OVERFLOW" in "Program Global 

Table" ' 
See "PROCEDURE BLOCK'" in "Program 

Global Table" 
See "PFMCTL" in "Task Global Table" 
See "PN" in "Program Global Table" 
See "OVERFLOW" in "Program Global 

Table" 
See "PAR AM" in "Task Global" 
See "PFMSAV" in "Task Global Table" 
See "RPTSAV" in "Task Global Table" 
See "Save Area" in "Task Global Table" 
See "Save-Area -2" in "Task Glo bal 

Table" 
See "Save-Area-3" in "Task Global 

Table" 
See "SBL" in "Task Global Table" 
See "SUBADR" in "Task Global Table" 
See "Sort Save" in "Task Global Table" 
See "Switch" in "Task Global Table" 
See "Tally" in "Task Global Table" 
See "OVERFLOll" in "Task Global Table" 
See "TS" in "Task Global Table" 
See "TS-2" in "Task Global Table" 

TS3 Temporary storage (Synchronization) See "TS-3" in "Task Global Table" 
TS4 ,Temporary storage (Table-Handlin g) 

V (BCD NAME). I Vitrual 
VIR ,virtual Cell 

. vtc I Variable Length Cell 
VN I Variable Procedure-name 
VNI ,Variable-name Initialization 
He ,Working Cell 

I 
ISA IExhibit Save Area 
lSi IExhibit Switch 

See "TS-4" in "Task Global Table" 
See "Virtual" in "Program Global Table" 
See "Virtual" in "Program Global Table" 
See "VLC" in "Task Global Table" 
See "VN" in "Task Global Table" 
See "VNI" in "Program Global Table" 
See "working Cells" in "Task Global·, 

Table" I 
See "XSA" in "Task Global Table" I 
See "XSASi''' in "Task Global Table" I , L---______ ~ ________________________ --~--------~----

Figure 35. Symbols Used in the Listing and Glossary to Define Compiler-Generated 
Information 

TASK GLOBAL TABLE STORAG~!LLOCAtION 

When phase 6 receives control, the LOCCTR 
cell contains the relative address of the 
Task Global Table (TGT) in the load module. 
LOCCTR was set by phases 22 and 21, which 
added the length of the data area to that 

of the INIT1 routine. (These areas precede 
the TGT in the load'module.) 

Routine TGTINT first does preliminary 
computations to determine the length of the 
entire TGT. If this length exceeds, 4096 
bytes, one 4~byte OVERFLOW cell is 
allocated for each 4096-byte area after the 

Phase 6 143 



Licensed Material - Property of IBM 

first. Then this routine computes the 
locations of TGT fields after the OVERFLOW 
cells. 

Some fields of the TGT are constant in 
lengthi others are variable, depending on 
the requirements of the pl:ogram being 
compiled. For most of the variable fields, 
there is a counter in.COMMON used to 
compute its length. When the value has 
been used •. the counter is set to the 
displacement of the current field in the 
TGT. Figure 36 lists these counters and 
the TGT fieldS to which they correspond. 
In a register called RW1, a counter is kep~ 
of the displacement of the current field in 
the TGT. 

Some of the counters in COMMON specify a 
number of bytes. Others specify a number 
of entries, where each entry requires two 
or eight bytes. In the latter case, the 
value of the counter is multiplied by 2 or 
4 before it is used to compute 
displacements. 

This is done in routine DsPLAC, which is 
called for each variable-length field. Two 
parameters are passed to this routine: the 
address of the counter in COMMON, and the 
number of bytes for each entry. From the 
number of bytes, DsPLAC ·a1so determines 
boundary alignments. DsPLAC places the 
value of RW1 (the displacement of the field 
in the TGT) into the counter, and adds the 
length of the field to RW1. 

If the PMAP, CLIsT, or DMAP options are 
in effect, DsPLAC calls routine MAPLOC, 
which prints one line at a time. 

If the statement number option (STATE) 
or the flow trace option (FLOW) was 
specified, the SWITCH cell, the current 
priority cell (for STATE only), the TGTTAB 
pointer, and the TGTTAB information are set 
by phase 65. 

After the length of the entire TGT has 
been calc u1a ted, the value of RW 1 (the 
length of the TGT) is added to the LOCCTR 
cell. The value of the LOCCTR cell is now 
the displacement of the PGT. 

~~!MIZIN~ STORAGE FOR THE PROGRAM GLOBAL 
~!llE. 

The general function of this part of phase 
6 is to allocate space for the Program 

144 section 2. Method of Operation 

Global Table (PGT) in the same way that TGT 
storage was allocated. Before this can be 
done, however, the required space must be 
determined for the literals, virtua1s, and 
procedure-names that reside in this table 
at execution time. The routines that 
determine the lengths of these fields also 
optimize the contents of the fields by 
eliminating duplication. 

For optimizing, the PNUTBL table and 
optimization A-text are used. The 
processing of the PNUTBL table occurs 
first. Then the optimization A-text is 
read and processed. 

optiiniza t:Lon .A-text, which was generated 
by phases 50 and 51, contains the following 
kinds of elements: 

• EQUATE strings, which equate any 
procedure-names (PNs) and generated 
procedure-names (GNs) that refer to the 
same location (for a description of how 
and why these strings are built, see 
"Building PN and GN Equate strings" in 
the chapter "Phase 51"). 

• Literal definitions, containing the 
actual value of the literal. 

• DISPLAY literal definitions. 

• Virtual reference definitions for 
.input/output error routines. 

• Virtual definitions. 

• Variable procedure-name (VN) 
definitions, if the program is 
segmented~ 

VN definition elements are not used for 
optimization. They are included in the 
optimization A-text for a segmented program 
because they are used to build a table 
(called VNPTY) which must be in storage for 
the next part of phase 6 processing. As an 
element is read, it is entered unchanged 
into this table. After the Optimization 
A-text file has be.en closed, the VNPTY 
table is sorted in ascending order of 
priority number. 



Licensed Material - Property of IBM 

r-- i I I 
I I I Multiplication I 
I Counter I Contents From Earlier Phases I TGT Field Factor I 
~ I I ~ 
I TSMAX INumber of bytes needed for arithmetic temporary I TEMP 8 I 
I I storage. I STORAGE I 
~ I I ~ 
1 TS2M1X INumber of bytes needed for nonarithmetic I TEMP I 
I I temporary storage. I STORAGE-2 I 
I-- I I' 
I TS3MAX INumber of bytes of uork area for aligning I TEMP I 
I I non-SYNCHRONIZED data items. I STORAGE-3 I 
I I I., 
I TS4MAX INumber of bytes of work area for table-handling I TEMP I 
I I verbs. I STORAGE-4 I 
! +- 1-1 
I BLLCTR INumber of base locators assigned to Linkage I BLL 4 I 
I I Section. I I 
I I 1---:-1 
I VLCCTR INumber of variable-length cells (containing I VLC 2 I 
I I current length of a variable-length field). I I 
I I I., 
I INDEX1 INumber of index-names defined in INDEXED BY I INDEX 4 I 
I I clause. I I 
, I I ~ 
I SBLCTR INumber of secondary base locators (location of I SBL 4 I 
I I a field variably located because it follows a I I 
I I variable-length field) • I I I 
I-- t --+-----+., 
I BLCTR INumber of base locators assigned to files and I BL I 4 I 
I I eorking-storage. I I I 
I +- I I -----t 
I SUBCTR I Number of subscript save cells. I SUBADR I 4 I 
I-- I I -+ ., 
1 ONCTR INumber of ON control cells. I ONCTL I 4 I 
I-- I I I -----t 
I PFMCTR INumber of PERFORM control cells (for PERFORM X I PFMCTL I 4 I 
I I THiES) • I I I 
I-- I I I ., 
I PSVCTR INumber of PERFORM save cells. I PFMSAV I 4 I 
I-- I I I ~ 
I VNLOC* INumber of variable procedure-names. I VN I 8 I 
I-- I I I -----t 
I DECBCT INumber of DECBs. I DECBADR I 4 I 
I I I I -I 
I XSHCTR lNumber of EXHIBIT s~itches. I XSASW I I 
I-- I I I -I 
I XSACTR INumber of bytes for EXHIBIT saved area. I XSA I I 
~ I I -r -I 
I PARMAX IArea needed for parameter lists. I PARAM I 4 I 
I-- I I I -----t 
I !BICTR INumber of FIBs for VSAM files. I FIB I 4 I 
• -I 
I*The number of VNs in the program is passed to phase 6 in the VNCTR cell of COMMON, notl 

the VNLOC cell. However. this value is moved into the VNLOC cell and all further TGT I 
I processing uses VNLOC rather than VNCTR. (The number of VNs in the program must also I 
I be known for PGT allocation to determine the size of the VN field in the PGT. This I 
I value is saved in VNCTR.) I ________________________ . _______ J 

Figure 36. Use of Counters in COMMON to Allocate Space in the TGT for variable-length 
Fields (Part 1 of 2) 

Phase 6 145 



Licensed Material - Property of IBM 

r-- or- -, 
I I Multiplication I 
I Counter I Contents From Earlier Phases TGT Field Factor I 
r-------;---------------.----------------------------r---------~------------~~ 
I RPTSAV !Report writer save area requirements. REPORT 4 I 
I I SAVE I 
I I 
I CKPCTR INumber of checkpoint requests. 
I I 
• I 

CHECKPT 
CTR 

4 

I SA2CTR IUSE LABEL or USE ERROR procedure save area SAVE 
AREA-2 

4 I 
I 

-Ii 
I 
! 

i I requirements. 
....... - . 
I SA3CTR IMaximum number of files specified in an OPEN SAVE 

AREA-3 
4 

I I statement~ L---____ ~ ______________________________________________ . __ ~~ __________ ~. ________________ ~~ 

Figure 36. Use of counters in COMMON to Allocate Space in the TGT for Variable-length 
Fields (Part 2 of 2) 

QRtimizing PNs and GNs 

The first step in optimizing PNs and GNs is 
to allocate space in the compiler table 
area for the PNTBL and GNTBL tables. The 
lengths of these tables are determined from 
the values of PNCTR and GNCTR in COMMON, 
respectively. Then, in routine PNUPRO. the 
PNTBL is processed against the PNUTBL. 
(The PNTBL, containing one entry for each 
procedure-name in the program, is used only 
in phase 6; the PNUTBL was built by phase 
51. See ~Building the PNUTBL Table" in the 
chapter "Phase 51", for a description of 
how and why this table was created.) If a 
PNUTBL entry has a value of 1. the 
corresponding PNTBL entry is numbered. The 
numbers are sequential beginning with 1. 
If the PNUTBL entry has a value of 0, this 
means that the procedure-name is never 
referred to in the program and can be 
eliminated; therefore, the corresponding 
PNTBL entry is set to O. Once the PNTBL 
values have all been set, the PNUTBL table 
is released. 

Figures 37 through 39 ShOM an example of 
this processing for a program containing 
six PNs and six GNs. In Figure 37, the 
table entries are shown as they would 
appear after the PNUTBL processing. 

Optimization A-text is then read by 
routine READF2. Each time a PM or GN 
Equate string is encountered, READF2 calls 
the routines (PNEQUR or GNEQUR, 
respectively) that process these strings. 

146 Section 2. Method of Operation 

PNUTBL PNTBL GNTBL 
v---, ,---, r-i 

1 I 1 I 1 I 1 I I 0 I 
l--f I----f a----1 

2 I o I 2 I 0 I 2 I 0 I 
1---1 r--.f I----f 

3 I 1 I 3 I 2 I 3 lOr 
~ f---f ~----'j 

4 I 1 I 4 I 3 I 4 I 0 I 
1--1 &---f ~~ 

5 I 0 , 5 I o I 5 I o I 
l---f 1---1 ~-4 

6 I 1 I 6 I 4 I 6 I 0 I 
'-----I '----.J L---~ 

Figure 37. PNUTBL. PNTBL. and GNTBL Tables 
at the Beginning of 
optimization Processing 

Figure 38 shows the effect of a PM 
EQUATE string indicating that PN3 (the 
number found in the PNTBL entry for 
PN3, 2 in the example) is entered into the 
slot for GN1. If there were no other 
Equate strings read, the following would 
occur after the optimization A-text file 
had been closed: GN2 through GN6 lfOUld be 
assigned relative numbers sequentially, 
starting with the number after the last 
referenced PN number in the PNTBL table 
(which is 4 in the example). The GNTBL 
entries would then read 2, 5, 6, 7, 8, 9. 

If, however. as shown in Figure 38, a GN 
equate string is encountered equating GN2 
with GN4 and GN5, the relative number of 
GN2 is assigned to GN4 and GN5. This 
number will be 5, since GN2 will contain 
the next sequential number after PN6. 



GNTBL 
i i 

1 I 2 I Equates GN1 to PN3 
I of 

2 I 5 I 
.. I 

3 I 0 I 

4 isi}Equates GN2, GN4, 
a I and GN5, which it 

5 I 5 I can be assumed Hill 
I I be assigned a rela-

6 I 0 I tive number of 5. 
I ---I 

Figure 38. GNTBL Table after PN and GN 
Equate Strings Have Been 
Processed 

After the optimization A-text file has 
been closed, relative numbers are assigned 
to each GN not equated to a PN or another 
GR. The completed GNTBL table for the 
example is shOlfn in Figure 39. 

GRTBL 
I I 

I 2 I 
I -f 

2 I 5 I 

• ---t 
3 I 6 I 

I I 
4 I 5 I 

il- I 
5 I 5 I 
I---~ 

6 I 7 I 
I ---I 

Figure 39. GNTBL Tabie after the Relative 
Numbers Have Been Assigned 

!Qi~: In the object code listing, the 
optimized GNs are numbered sequentially 
starting with 1. The numbers to the left 
of the tables in Figures 37, 38, and 39 are 
A-text PN and GN numbers before 
optimization. They represent implicit 
positions in the tables. 

QPtimizi~~iterals and DISPLAY Literals 

The literal optimization routines are used 
to eliminate storage duplication in cases 
where the source programmer used the same 
literal more than once. Routine LTLRTN 
processes internal literals, and routine 
LTLDIS processes DISPLAY literals. These 

Licensed Material - Property of IBM 

routines build three tables: the CONTBL 
and CORDIS tables (for regular and DISPLAY 
literals, respectively) contain one entry 
for each unique literal, and the LTLTBL 
table contains an entry for each use of a 
Ii teral. 

When a literal definition is 
encountered, the CONTBL or CONDIS table is 
searched for an entry identical to the 
literal. (To be identical, two internal 
literals must meet the same boundary 
requirements as well as have the same 
value.) If no match is found, the new 
literal is entered into the CONTBL or 
CONDIS table. Any bytes skipped because of 
boundary alignment are filled with zeros. 
The displacement of this entry from the 
beginning of the table is placed in the 
LTLTBL table, with a bit set to indicate 
IIhether it is a CONTBL or CONDIS en try. If 
a match is found, only an LTLTBL entry is 
made. This LTLTBL entry is the 
displacement of the CONTBL or CONDIS entry 
that matched the literal being processed. 

Figure 40 sholls an example of these 
tables after all optimization A-text has 
been processed. The Optimization A-text 
contained literal definition elements for 
the folloeing literals: 

8, 3(DISPLAY), 3, 9, Y (DISPLAY), 8 

After the Optimization A-text data set 
is closed, the Literal Pool is Britten on 
SYSPRINT, using the contents of the CONTBL 
andCONDIS tables, if the PMAP, CLIST, or 
DMAP options are in effect. The Literal 
Pool is also written on SYSPUNCH and 
SYSLIN, as needed. 

The virtual optimization routine (VIRRTN) 
is used to eliminate storage duplication in 
cases wher e the same EBCDIC name of a 
called program is referred to in more than 
one CALL statement or in more than one call 
to a COBOL library object-time sUbroutine. 
The logic of this processing is similar to 
that of literal optimization. Two tables 
are built: the CVIRTB table contains one 
entry for each unique virtual, and the 
VIRPTR table contains one entry for each 
reference to a virtual. 

Phase 6 147 



Licensed Material - Property of IBM 

r-'-
CONTBL 

r I 
Literals I 8 I 

l- I 
I 3 I 
I ~ 
I 9 I Write text, 
L increment 

RW1, and 
CONDIS release , tables. 

DISPLAY I 3 I 
Literals l- I 

I y I 
L I 

LTLTBL 
r- I 

10 (CONTBL displacemen t of 8) I 
I I 
10 (CONDIS displacement of 3) I 
l- I 
11 (CONTBL displacemen t of 3) I 
l-
12 (CONTBL displacement 
l-

I 
of 9) I 

I 

Add PGT 
displace
ments andl 

15 (CONDIS displacemen t 
I 
10 (CONTBL displa'cemen t 

of Y) I 
I 

of 8) I 
---I 

I 
I 
I 
I 

r--------~---------~----~------~I 
INote: For this example, the values in I 
I LTLTBL assume that each CONTBL entry is I 
lone byte long and each CONDIS entry is I 
Ifive bytes long. I '--__ _ 
Figure 40. CONTBL, CONDIS, and LTLTBL 

Tables after Processing 
Literals 

When a virtual definition is 
encountered, the CVIRTB table is searched 
for an identical entry. If none is found, 
the new virtual is entered in the CVIRTB 
table. Into the VIRPTR table is entered 
the displacement of this virtual from the 
beginning of the CVIRTB table. If a match 
is found, only a VIRPTR entry is made. 
This VIRPTR entry contains the displacement 
in the CVIRTB table of the entry that 
matched the virtual being processed. 

Figure 41 shows the contents of these 
tables after processing Optimization A-text 
for a program containing the following 
virtuals: 

CVIRT1, CVIRT2, CVIRT3, CVIRT1, CVIRT2. 

148 Section 2. Method of Operation 

r---------------------------, 
CVIRTB 

j ~ I-------~, , 
L-. _____ --.J1 

CVIRT1 

CVIRT2 

CVIRT3 

I 
I 
I 
I 

Write text, I 
increment , 
RW1, and , 
release I 
tables. , , 

~---------------------------------~ 

When all Optimization A-text has been read, 
storage is allocated for the PGT and PGT 
initialization is done. Entries for the 
External symbol Dictionary are created for 
virtuals, and object text is written for 
virtuals and literals. Register RW1 is 
used throughout PGT allocation to hold the 
displacement of the field currently being 
processed. counters in COMMON are set to 
the displacements of their corresponding 
PGT fields from the beginning of the PGT. 

If the PMAP, CLIST, or DMAP options are 
in effect, the format of the PGT is written 
on SYSPRINT using routine MAPLOC. 



Preliminary calculations are made to 
determine whether the size of the PGT 
exceeds 4096 bytes. If it does, one 4-byte 
OVERFLOW cell is required for each 
4096-byte area after the first one. 

After the OVERFLOW CELLS field of the PGT 
has been calculated, the VIRTUAL field is 
processed. using the CVIRTB table, an 
External symbol Dictionary entry (ESD-text 
type 2) is ~ritten for each virtual unless 
the DINAH or the RESIDENT option is in 
effect. (If the RESIDENT option is in 
effect, no ESD or RLD item is written for a 
library subroutine; if the DINAK option is 
in effect, no ESD or RLD item is written 
for a library subroutine or a user 
subprogram.) Object -text is also written 
and entries are made in the RLDTBL table 
for subsequent writing of the Relocation 
Dictionary. 

The VIRCTR cell of COKftON is set to the 
displacement of the VIRTUAL field from the 
beginning of the PGT. (This value is 0 
unless OVERFLOW cells ha ve been allocated.) 

To determine the length of the VIRTUAL 
field, four bytes are allowed for each 
entry in the CVIRTB table. The calculated 
length is added to register Ri1. If the 
DINAM-and/or RESIDENT option is in effect, 
the CVIRTB table is used to enter in the 
PGT the EBCDIC names of those routines that 
are to be dynamically loaded. The CVIRTB 
table is kept for use during Procedure 
A-text processing, when its contents 
(E BCDIC names) vill be u sed to generate 
comments for CALL statements. 

The entries in the VIRPTR table are 
changed to contain displacements in the 
VIRTUAL field (see the example in Figure 
42). - The table is saved for subsequent use 
during Procedure A-text processing. 

Licensed Material - property of IBM 

r--------------------------------------------, 
VIRPTR 

r--------, 
I *+0 
1----4 
I *+4 
I 
I *+8 

• I *+0 
I 
I *+4 , 

*Indicates the displacement of the 
VIRTUAL field in the PGT (the value is 0 
if no overflow cells are present). 

I Note: Each VIRTUAL in the PGT is four 
long. I bytes , 

Figure 42. VIRPTR Table aftei VIRTUAL 
Allocation 

If the DINAK or RESIDENT option is in 
effect, an 8-byte cell for each library 
subroutine name is allocated in the PGT. 
In addition for the- CALL identifier, or if 
the DINAM option is in effect for the CALL 
literal, an 8-byte cell for each user 
subprogram name is allocated in the PGT. 
If neither option is in effect, this field 
does not exist. 

A count of the EBCDIC names ~o be placed 
in the PGT is kept in the BCDCTR cell in 
COMMON. This count is multiplied by 8 to 
reserve space for the list of names. After 
VIRTUAL allocation, register Ri1 contained 
the displacement of the VIRTUAL EBCDIC 
NAMES field; the displacement is saved in 
the BCDISP cell in COMMON and register RW1 
is incremented to reflect the allocated 
bytes for the VIRTUAL EBCDIC NAMES cells. 

After the VIRTUAL field or the VIRTUAL 
EBCDIC NAMES field, if allocated, has been 
processed, the value in register RW1 is the 
displacement of the PN field in the PGT. 
This value is saved in the PNCTR cell of 
COMMON. 

For each referenced PN in the PNTBL 
table, a 4-byte cell is allocated in the 
PGT. The PNTBL entry is set to the 
displacement of this cell from the 
beginning of the PGT. If a PN was not 
referenced (if the value in the PNTBL entry 

Phase 6 149 



Licensed Material - Property of IBM 

was 0), no space is allocated. In the 
example in Figure 37, only four 4-byte 
cells are required in the PGT. After the 
PNTBL table entries have been adjusted, the 
entry for PN3 exceeds the entry forPNl by 
four, and the entry for PN2 remains O. The 
total length of the PN field (16 bytes in 
the example) is then added to RW1. 

Figure 43 shows the PNTBL table for the 
same program as in Figure 37, after PN 
allocation in the PGT. The table is saved 
for use during Procedure A-text processing, 
when the values it contains will be used as 
displacements in instructions. 

PNTBL GNTBL 
.-----, r--.. 

1 1*+0 / / *+4 1 
1---1 ...--., 

2 / 01 2 1*+161 
1---' 1---4 

3 1*+4 1 3 1 *+20 1 
I---f 1---4 

4 1*+8 1 4 1*+ 161 
1--1 ...--., 

5 I o / 5 / *+161 
I---f 1---4 

6 1*+ 12/ 6 1*+241 
'-----I L-.J 

*Indicates the displacement in bytes of 
the PN field from the beginning of the 
PGT. 
~---
INote: The numbers to the left of the 
Itables are A-text PN and GN numbers. 
IThey specify implicit positions in the 
Itable. 
L--___ _ 

Figure 43. PNTBL and GNTBL Values after 
PGT Allocation 

The value in register RW1 is now the 
displacement of the GNfield in the PGT. 
This value is placed in the GNCTR cell of 
COMMON. 

For each unique GN, a 4-byte cell is 
allocated in the PGT. The GNTBL entry is 
set to the displacement of this cell from 
the beginning of the PGT. However, if the 
GN was equated to a PN or another GN, the 
GNTBL entry is set to the PGT displacement 
of that PN or GN. This is illustrated in 
Figure 43, which shows the GNTBL table 
after this processing using the same 
example as in Figures 37, 38, and 39. In 
this example. GN4 and GN5 were equated to 
GN2. Therefore, the GNTBL entries for GN4 
and GN5 contain the displacement of GN2. 
The PGT for this program will contain only 

150 Section 2. Method of.Operation 

three unique GN entries, or twelve bytes. 
After all entrie.s have been processed, the 
length of the GN field (12 in the example) 
is added to register RW1. 

The GNTBL table is saved for use during 
Procedure A-text processing. 

The DCBCTR cell in COMMON is used to 
determine how much space is required: four 
bytes are reserved for each DCB in the 
program. The DCBCTR cell is set to the 
displacement of the DCBADR field (the value 
of register RW1), and RWl is then 
incremented to reflect the allocated bytes. 

VNI Allocation 

The VNCTR cell of COMMON was used by 
earlier phases to count the number of 
variable procedure-names in the program. 
Eight bytes are allocated for every VN. 
The displacement of the VNI field (the 
value of RW1) is placed in the VNILOC cell, 
and the number of bytes allocated is added 
to reg ister RW 1. 

~RAL Allocation 

The displacement of the LITERAL field in 
the PGT (the current value of register RW1) 
is placed in the LTLCTR cell of COMMON. 
The length and contents of the LITERAL 
field will be identical to the CONTBL and 
CONDIS tables. 

For each LTLTBL entry that refers to 
CONTBL, the value in the LTLTBL table is 
replaced by the displacement of the 
specific literal from the beginning of the 
PGT. This displacement is calculated by 
adding the value already in the LTLTBL 
entry (which is the CONTBL displacement of 
the literal) to the value of RW1. An 
example is shown in Figure 44. 

The same processing occurs for LTLTBL 
entries that refer to CONDIS, except that 
the increment includes the length of the 
CONTBL table. This occurs because DISPLAY 
literals are placed after internal literals 
in the PGT, as illustrated by Figure 44. 
The LTLTBL table is saved for use during 
Procedure A-text processing. The lengths 
of the CONTBL and CONDIS tables are used to 
increment RW1. If the program is not 
segmented, the contents of the tables are 



used to urite object text, and the tables 
are released. In a. segmented program, the 
uriting of object text is delayed and" 
therefore, the tables are kept. 

LTLTBL 
I 

I *+0 
l-
I **+0 
I , *+1 
l-
I *+2 
I 
I **+5 
D 
I *+0 
I --I 

*Displacement of LITERAL field from 
I beginning of the PGT. 
1**Displacement of DISPLAY LITERAL field 
I from beginning of the PGT. 

Figure 44. LTLTBL Table after Literal 
Allocation 

PRQ£EDURE A-TEXT PROCESS!!~ 

Phase 6 reads Procedure A-text to produce 
machine-language instructions for the 
object program. One element of text is 
read and processed at a time, and the 
object code produced for this element is 
placed in a uork area called OU6REC. One 
or more elements are required to produce a 
complete instruction. When an instruction 
is complete, it is uritten out from the 
Hork area, and the LOCCTR cell in COMMON is 
incremented by the number of bytes written. 

If the instruction involves a base 
locator, the processing routine refers to 
or updates table REGKTX (see "Execution
Time Base Register Assignment" in this 
chapter)" which is a table internal to 
phase 6 (that is, not a TAMER table). Base 
locators Here assigned by phase 22; 
a discussion of their meaning appears in 
the chapter "Phase 22." 

Licensed Material - Property of IBM 

If the PMAP compiler option was 
specified, routine PUT is called to write a 
line of text on SYSPRINT every time a 
complete instruction has been created. If 
the CLIST option was specified, this 
routine is called only for each source 
progra m verb. 

If the STATE option is in effect, 
Procedure A-text is used to create 
Debug-text which is written on SYSUT2. 
Debug-text elements are written by the SY52 
routine for all card numbers encountered 
and contain the card number and its 
displacement within the object module. 
This text is used by phase 65 to produce 
the PROCTAB and SEGINDX tables which are 
written in the object module. If either 
the FLOW or the STATE option is in effect, 
phase 6 builds the TGTADTBL table which is 
used to pass debugging information to phase 
65. 

If the SXREF, XREF, VBREF, or VBSUM 
option is in effect, Procedure A-text is 
used to create REF-text and to Ifri te it on 
SYSUT3. This text, containing an element 
for every data-name, file-name, 
procedure-name, and verb in the program, is 
used by phase 6A .to produce a 
cross-reference listing. 

Figure 45 describes the processing for 
each type of Procedure A-text element. The 
individual elements are illustrated in 
"section 5. Data Areas." 

Note on base registers for the PGT ang~~T: 
At execution time, R12 always points to the 
beginning of the PGT and R13 always points 
to the beginning of the TGT. If the 
displacement of an item in the PGT or TGT 
exceeds 4096 bytes, an OVERFLOW cell must 
be used. The OVERFLOW cells fields of both 
the PGT and TGT are at fixed displacements 
from R12 and R13, respectively. Which 
OVERFLOW cell is to be used is determined 
from the value of the displacement, for 
example, a value from 4096 to 8191 bytes 
uses cell 1, from 8192 to 12,287 bytes uses 
cell 2, etc. An instruction is generated 
to load R14 or R15 from the OVERFLOW cell. 
Then, in the operand currently being 
processed, R14 or R15 is used as the base, 
and the displacement is decremented by 
4096, 8192, etc. 

Phase \;I 151 



Licensed Material - Property of IBM 

I i I 
ICode and Typel Action Taken I 
I-- -+ I 
12C* IStore in 3-byte cells Orr6C()N and XFCDNO. If Pl!AP or CLIST are I 
Icard number Irequested, read Listing A-text. Used to create an in-line constant for I 
I ITRACE instructions which call the DISPLAY object-time subroutine I 
I I (ILBODSPO). If STATE is requested, write Debug-text. I 
I-- 1 , 
130* 1 Using .PN number as an index, look in PNTBL (see "PN Allocation" in this 1 
IPN definition 1 chapter) to get displacement in PGT of the cell for this PN. create an I 
I IRLDTBL entry which will place the current value of LOCCTR in the PGT I 
I I cell. I 
I I -f 
134* ISame as PN definition, using GN number and GNTBL (see "GN Allocation" 1 
IGN definitionlin this chapter). 1 
I-- '1 -.,----------------'-f 
138* ICreate an indirect RLDTBL entry from this element and the PN reference 1 
IVN definitionlwhich follows it. 1 
I-- 1 . , 
13C I convert the current card number to an EBCDIC constant of the form: 1 
IEBCDIC card 1 I 
Iname I DC X'5' 1 
I I DC CL6'generated card number' 1 
I I , 
144 1 Use byte 2 of the element as index to a branch table. Phase 6 produces 1 
Imacro-type Ithe required coding. The contents of these elements are listed in the 1 
linstruction IProcedure A-text formats of "Section 5. Data Areas." 1 
~----~---------'-----------------------------'------------4 
1 *Indicates that no object text was written for this element. 1 
1**See note under "Procedure A-text Processlng." I L--. ___ _ 

Figure 45. Processing Procedure A-text Elements (Part 1 of 3) 

152 section 2. Method of operation 



Licensed Material - Property of IBM 

i , , 

I Code and Typel Action TaJcen I 
, I ~ 
148 IThis element contains, in machine language the first two bytes of an I 
I'operation I instruction. The first byte is the operation code; the second may I 
Icode Igive condition codes, registers, or other operands. For an RR type I 
I linstruction, this element contains the complete instruction. It is I 
I I written out as received. I 
I I ~ 
14c IThis is the operand of a LOAD instruction. Procedure branching is I 
lPM reference laccomplished by loading an address and then branching to it. Using I 
I Iregister 12** as a base, find displacement by using PN number as an indexl 
I finto PNTBL (see "PH Allocation" in this chapter). Usibg card number I 
I Istored in XFCDNO, write an element of REF-text for phase 6A, if SXREF or I 
I IXREF is in effect. I 
I I I 
150 ISame as PN refe~ence, using GN number and GNTBL (see "GN Allocation" I 
IGN reference lin this chapter). No REF-text is written. I 
r- I f 
154 IUse register 13** as base. Get displacement of VN field of TGT from I 
I VN reference I VNLOC cell in COBHON (see "Task Global Table storage Allocation" in this I 
I Ichapter). Use a VN number to compute displacement of this VN cell. I 
I I I 
158 IUse virtual number as an index in the VIRPTR table (see "VIRTUAL I 
I Virtual IAllocation" in this chapter). Table entry contains displacement , 
,reference lof this virtual in the PGT. ijse register 12** as a base. , 
I-- I ~ 
15C IThis element is the operand of an instruction which loads a base I 
IBL reference Iregister. Use register 13** as a base. Get displacement of BLL or BL I 
I Ifield in TGT from BLLCTR or BLCTR, respectively, in COMMON. Use BL I 
I Inumber to compute displacement of this cell. Update table REGMTX. I 
I-- I --I 
160 I Use register 13*':0 as a base. Displacement is picked up from a list , 
ITGT standard lof constants. This element refers to a cell in the fixed portion of I 
larea I the TGT. I 
Ireference I I 
I -I ---I 
164 IUse register 13** as a base (unless the element specifies the DCBADR I 
IGlobal Table Ifield of the PGT. which uses register 12**). Get displacement of the I 
Ivariably- ITGT or PGT field from the appropriate cell in COMMON, and use , 
!located area lidentifying number to compute displacement of this item (see IITask I 
I reference I Global Table storage Alloca tion" and Figure 36 in this chapter). I 
I-- I ---i 
168 IBytes 2 and 3 are used to find the correct entry in the LTLTBL table, I 
Iliteral I ehich gives the displacement of this literal in the PGT. Register 12** I 
I reference lis the base. , 
r-- ---I I 
16C IThis element is used to create an inline constant for a calling I 
IDC definitionlsequence. It is aluays preceded by the element 4424, the macro-type I 
I linstruction element signaling a DC definition (see Code 44 above in this I 
I I figure) • It is written out as received. I 
I I of 
170 ISpecifies the actual register number and displacement for the , 
Ibase and linstruction. It is written out as received. , 
Idisplacement I , 
r- · f 
I *Indicates that no object text ~as written for this element. , 
I**see note under "Procedure A-text Processing." I 

I 

Figure 45. Processing Procedure A-text Elements (Part 2 of 3) 

Phase 6 153 



Licensed Material - Property of IBM 

,--- 1 I 
ICode and Typel Action Taken I 
r-- I .. 
178 Isearch table REGMTX on i and ~ (BL type and BL number). If a match is I 
I address Ifound, the required BL is already in a register. Use that register as I 
I reference ,the base. If a match is not found, generate an instruction to load I 
I I register 14 or register 15 with the BL from the BL or BLL field of the I 
, ITGT and use that register as the base (see Code 64 above for generation , 
I fof the LOAD macro instruction). Displacement is the 9. field of the I 
1 I element~ Get card number from XFCDNO to write a.n element of REF-text. 1 
l---- I .. ., 
17C IThis element always follows the element 4404, the macro-type instruction I 
1 EBCDIC lelement for ENTRY. It is used to punch an ESD-text type 1 card for the I 
1 data-name 1 entry point. I 
1 reference 1 I 
I 1 , 
180 IThis element is required, for example, by the second MVC for a MOVE of I 
1 address Imore than 256 bytes. The element itself would have a value, in this 1 
lincrement Icase, of 256 bytes (the value of the increment). Add it to the d I 
1 1 (displacement) field of the preceding reference. I 
I 1 of 
184 IThis element is used to create an inline pointer to an item in a field I 
1 relative lof the TGT or PGT fora calling sequence. Get displacement of field I 
laddress Ifrom appropriate counter in COMMON and use identifying number to compute 1 
1 1 displacement of item. 1 
r-- 1 ---4 
I AO* 1 specifies the register used by a· macro-type instruction element 6 and must I 
I register Ifo110w certain of these elements (see the list of macro-type I 
Ispecificationlinstructions under "Procedure A-text" in "section 5. Data Areas ll ). I 
J--- I -----'j 
IA4 IThis element combines the address reference and increment I 
I incremented le1ements into one (see Codes 78 and 80 abov~ • I 
,address , I 
r-- I I 
IBO IUsed to create an in-line TGT or PGT pointer for a call to an object-time I 
icalling Isubroutine which requires a parameter containing a displacement from I 
Isequence Iregister 13 or register 12. I 
I displacement I I 
i---- I. of 
1 B4'~ I Used when a file-name or data-name occurs in a calling sequence to l~rite I 
!calling la REF-text element for phase 6A. obtain card number from XFCDNO. I 
: sequence I 1 
I dictionary I I 
I pointer I I 
r- I ., 
IB8* IUsed to write an element of REF-text. I 
ifile I I 
I reference I 1 
I . • ., 
I *Indicates that no object text was written for this element. I 
I **See note under "Procedure A-text Processing." I 

I 

Figure 45. Processing Procedure A-text Elements (Part 3 of 3) 

154 section 2. Method of Operation 



Phase 6 reads· Procedure A-text in the order 
in which it was written. 

Procedure A-text is read from the 
direct-access data set SYSUT1 using the 
segment priority (SEGTBL) table. For a 
description of how this table is built, see 
"segmentation Control Breaks" in the 
chapter "Phase 51." The table format is 
given in "Section 5. Data Areas." 

In phase 1B, the priority numbers of all 
sections in the root segment were set to O. 

Routine SEGPROC searches the SEGTBL 
table for the first entry whose priority is 
zero. It then calls COS in phase 00 with a 
request for SEGPNT, passing the relative 
disk address of this section. The SEGPNT 
routine in phase 00 positions the access 
mechanism to the correct address on the 
file. . (Additional information on this 
routine is in the chapter "Phase 00" under 
"Phase Input/Output Requests. II) The section 
of Procedure A-text is then read and 
processed. When a segmentation control 
break is encountered in the text, the 
SEGTBL is searched for other sections of 
the same priority. 

Note: A section is a series of source 
program procedure instructions grouped 
under the same section-name. A segment is 
all the instructions whose sections have 
the same priority, and a segment may 
consist of one or more sections. There is 
a SEGTBL entry for every section whose 
priority differs from that of the section 
preceding it. 

Licensed !aterial - property of IB! 

When all sections of one priority have 
been processed, the SEGTBL table is 
searched for a different priority, and the 
process is repeated. If the STATE option 
was specified, at the end of processing for 
each segment, the final LOCCTR value for 
that segment and the priority for the next 
segment to be processed are both written on 
SYSUT2 for phase 65. Object text for the 
segments is written throughout this 
processing, as machine instructions are 
generated. If any segment refers to 
another program via a CALL statement, an 
INSERT card for the called program is 
generated also. 

After the last nonroot segment has been 
processed, the LOCCTR cell of CO!HON is set 
to the location in the root segment of the 
PGT. Object text is then written from the 
CVIRTB, CONTBL, and CORDIS tables, which 
contain the values of virtuals and literals 
to be stored in the PGT ·(see "LITERAL 
Allocation" and "VIRTUAL Allocation" in 
this chapter). Then LOCCTR is set to the 
beginning of the Procedure Area of the root 
segment, which was saved in cell LOCPGM, 
and processing of the Procedure A-text for 
the root segment begins. The text is 
located on SYSUT1 by finding all entries of 
zero priority in the SEGTBL table. 

Listing A-text is processed concurrently 
with Procedure A-text. Generated by phase 
1B, it contains the EBCDIC names of 
procedure-names and COBOL verbs preceded by 
a code and a count. It is used to print 
procedure and ve~b-names alongside their 
associated code on the object program 
listing (if the PMAP option is in effect), 
to print verb-names (if the CLIST option is 
in effect), and in response to READY TRACE 
(if the VERB option is in effect). One 
~isting A-text element is read every time a 
card number element is encountered in 
Procedure A-text. 

Phase 6 155 



Licensed !aterial - Property of IBM 

Before Procedure A-text processing begins, 
permanent base registers are assigned. 
Register 12 is always assigned to the PGT, 
and register 13 to the TGT. Registers 6 
through 11 are availa~le to the data area. 
Of these registers, register 6 is 
permanently assigned to the beginning of 
the Wor!dng-Storage section if the program 
contains one. The rest are assigned to 
files in the order in which FDs occurred, 
and to additional working-storage. 

If the PMAP, CLIST, or DMAP options are 
in effect, a list of permanently assigned 
registers and the BLs (base locators) 
associated with them is written on 
SYSPRINT. 

At execution time, permanent base 
registers are loaded from the TGT by 
routine INIT3. (Registers 0 through 5 are 
work registers; instructions using these 
registers are generated from the Procedure 
A-text.) Registers 14 and 15 are used as 
temporary base registers. 

To assign base registers in procedure 
instructions, phase 6 refers to and updates 
table REGMTX (internal to Phase 6) which 
contains an entry for each of registers 6 
through 11, 14, and 15. Into an entry are 

156 section 2. Method of Operation 

placed the BL type and BL number (the ! and 
k of the idk field of an addressing 
parameter) of the area to which the 
register is currently pointing, .and the 
status of the register (that is, how it is 
being used). When a field of the data area 
is the operand of a procedure instruction, 
table REGMTX is searched for a matching ! 
and k. If it is found, this means that the 
register already contains the desired base 
locator and, therefore, the register can be 
used in the instruction. 

If .no register already contains the 
necessary base locator, an instruction is 
generated to load the base locator (which. 
is stored in the TGT) into temporary base 
register 14 or 15. 

When a register is used in an 
instruction, the status portion of the 
REGMTX entry is updated to indicate how it 
is currently being used. status bits may 
also be updated by the A-text macro-type 
instruction elements (see Figure 45 in this 
chapter). A list of these elements and 
their meanings appears in the Procedure 
A-text formats in "Section 5. Data Areas." 



fRQ£ESSI!!§ DATA A-TEIL._knXL-ill 
~~ 

The primary function of Data A-text 
processing is to place values into fields 
of the data area and Global Tables of the 
object program. Each element results in 
either the writing of an object text 
element or an entry in the RLDTBL. Some 
RLDTBL entries will later be written out as 
Relocation Dictionary (RLD-text) entries 
for the data area and as object text. 
Others, for the Global Tables, will be 
written as object text only. (These will 
be relocated by the object program.) 

SYSUT4, from which Data A-text is read, 
also contains E-text generated by phases 10 
through 51, and DEF-text for the 
cross-reference listing if the SIREF, IREF, 
VBREF, or VBSUK option is in effect. 
Figure 46 illustrates the contents of this 
data set when it is read by phase 6. 
Figure 47 describes how each type of 
element is processed. 

PROCESSING THE RLDTBL TABLE 

The maximum amount of space is obtained for 
the RLDTBL table by a call to GETALL in 
phase 00. The RLDTBL does not use a TIB. 
The calling sequence is: 

L 
BALR 

15,=A (GETALL) 
14,15 

The starting address of the. table area for 
the RLDTBL table is returned in register 0, 
and its length is returned in reglster 1. 

After end-of-file has been reached on 
SYSUT4, the RLDTBL table is processed. 
First, indirect address constants are 
resolved. 

Licensed Material - Property of IBM 

The table is then sorted in ascending 
order o~ target address. Object text is 
written for items that are in the Global 
Tables. This text consists of address 
constant definitions that will be stored in 
the Global Tables at execution time. No 
RLD-text is required for these items, 
because the addresses are relocated during 
program execution by routine INIT3. Object 
text is also written for data area address 
constants (obtained from address constant 
and indirect address constant definitions). 
For the data area address constants, 
RLD-text is written so that the linkage 
editor can relocate the addresses. 

After the RLDTBL table has been processed, 
initialization coding is generated using 
the routines that process Procedure A-text'. 

There are three initialization routines, 
called INIT1, INIT2, and INIT3. All three 
are resident in the root segment if the 
program is segmented. INIT2 is generated 
first, followed by INIT3. In the 
generation of INIT3. the QTBL table is used 
to generate code that will call the 
Q-Routines at the beginning of program 
execution to initialize variable-length 
fields. INIT1 is generated last, because 
it contains pointers to INIT2 and INIT3. 
The contents and functions of these three 
routines are described in detail in 
"Appendix B. Object Module." 

Phase 6 157 



Licensed saterial - property of IBM 

r--------------------------------------------------------------------------------------------, 

I 

Beginning of SYSUT4 

WRITTEN BY PHASE 21 

Data A-text 

E-text generated by 
phases 10,12,20,22, and 21 

Data-name, file-name 
DEF-text* 
(These types of text are 
intermixed.) 

I WRITTEN BY PHASE 25 
I 
I 
I 
I 
I 

E-text 

I WRITTEN BY PHASE 3 
I 
I 
I 
I 
I 
I 

Procedure-name 
DEF-text* 

I WRITTEN BY PHASE 51 
I 
I 
I 

E-text generated by 
phases 12, 1B, 3, 4, 50, 51 

End of File 

There are no control breaks provided 
between sections of text to distinguish 
text written by one phase from text 
written by another. 

During Data A-text processing, phase 6 
determines solely from the code (which 
is the first byte of the element) what 
type of text is contained in an element, 
and which routine is to be called to 
process it. 

E-text generated by phase 10 was passed 
to phase 21 intermixed with DATA IC-text. 

Read during Data A-text processing 

I 
I 
I 

E-text generated by phases 12, 1B, 3, 4, I 
and 50 was passed to phase 51 intermixed I 
with Procedure IC-text. However if the I 
CSYNTAX option was requested and neither I 
an error ~) nor disaster (D) level I 
message was generated, phases 3. 4, and I 
50 wrote E-text on SYSUT4. I 

I 
Ir--------------------------------------------------------------------------~ 
I*Produced only if SXREF, XREF, VBREF, VBSUM, or TEST option is specified. I , , 
Figure 46. Contents of SYSUT4 When Read by Phase 6 

158 Section 2. Method of Operation 



, 
ICode and Type 
~ 
100 
I E--text 
i 
I 
I 
I 
I 

Licensed Material - Property of IBM 

I ----~".-.--,- ........ - ... ------, 

I Action Taken I 
I I 
IAll E-text is built into a table called ERRTBL, ~hich is pas~ed to I 
Iphase 70. Phase 6 does not process the E-text. If the ERRTBL table ! 
loverfl01l1s the space allocated to it, all of the E-text is rellritten on I 
I SYSUT3,. and a bit in the SWITCH field of COMUON is set to indicate thisl 
Ito phase 70. I 
I I 
IThere are tuo types of E-text elements: message definitions and I 
I message parameters. ~!essage parameters are optional; h01';Ever .. if they I 
loccur, one or more message parameters immediately follow the message i 
Idefinition to which they apply (the uses of these elements are I 
lexplained in the chapter "Phases 70. 71, and 72"). Phase 6 c:.':.:".mines I 
leach element to determine its length, so that the correct nu~~er of I 
Ibytes may be stored in the table. To do so, it checks the third byte I 
lof the element. If the byte contains a zero, the element is a message I 
~definition lihose length is eight bytes. If the third byte is nonzero, I 
Ithe element is a message parameter of variable length, and the length I 
lis determined from the value of the second byte ~or the format of I 
IE-text and for the format of ERRTBL, see "Section 5. Data Areas"). I 
I -f 

104 IGenerate an RLDTBL entry that viII cause the address of the DCB I 
IDCB address Ito be placed in the correct cell of the DCBADR field in the PGT at I 
I !execution time. Get displacement of the DCBADR field from cell DCBCTR I 
I lin COMMON (see "DCBADR Allocation" in this chapter) and use the DCB I 
I Inumber to compute displacement of cell. Text element contains the I 
I Ivalue (relative address of the DCB) to be placed in the PGT cell. I 
I I I 
108 IGenerate an RLDTBL entry that will cause the address of the DECB I 
IDECB address Ito be placed in the correct cell of the DECBADR field of the TGT at I 
I lexecution time. Get displacement of the DECBADR field from cell DECBCTI 
I I in COMMON (see Figure 36 in this chapter) and use the DECB number to I 
I Icompute displacement of cell. Text element contains the value I 
I I (relative address of the DECB) to be placed in the cell. I 
fir-----------~I------------------------------------------------------------~I 

OC IGenerate an RLDTBL entry that will cause the address of the buffer 
Block address Ito be placed in the correct BL cell of the TGT at execution time. Get 

Idisplacement of the BL field from cell BLCTR in COMMON (see Figure 36 
lin this chapter) and use the BL number to compute displacement of the 
Icell. Text element contains the value (relative address of the buffer) 
Ito be placed in the TGT cell. 

14 

I 
IIf the value of the SIZE field of the element exceeds 1024 (SIZE 
Ispecified length of the block in fullwords), more than one BL has been 
lassigned to the buffer. For each 1024-word area after the first, 
lanother RLDTBL entry is made. The second RLDTBL entry will cause the 
Ibuffer address plus 4096 to be placed in the next BL cell of the TGT. 
1 I 
IGenerate an RLDTBL entry that will cause the address of the File I 

IFIB address 
I 

IInformation Block (Flm to be placed in the correct cell of the FIB I 
Ifield in the TGT at execution time. Get displacement of the FIB field I 

I Ifrom AMICTR ~ell in COMMON and use the FIB number to compute I 
I Idisplacement of cell. Text element contains the value (relative 1 
I laddress o'f the FIB) to be placed in the TGT cell. I 

• I -f 
120 IGenerate the COUNT option information. I 
I Data A-text I I 

Figure 47. Processing Data A-text, E-text, and DEF-text (Part 1 of 2) 

Phase 6 159 



Licensed !aterial - Property of IBM 

i i 
I Code and Type I Action Taken 
I-- I 
24 IGenerate an RLDTBL entry that will cause the address of the 
working-storagelworking-storage section to be placed in the correct BL cell of the 
section addresslTGT at execution time. Get displacement of the Bt field from cell 

IBLCTR in COMMON (see Figure 36 in this chapter) and use the BL number 
Ito compute displacement of the item. Text element contains the value 
I (relative address of the Working-Storage section) to be placed in the 
ITGT cell. 
I 
IIf the value of the SIZE field exceeds 1024 (SIZE specifies the length I 
lof the Working-Storage Section in fulluords). more than one BL has beenl 
lassigned. For each 1024-word area after the first, another RLDTBL I 
lentry is made. The second entry will cause the address plus 4096 to bel 
Iplaced in the next BL cell. , 

1 I . --4 
128 IWrite·object text that vi11 place the value of the constant into a I 
,Constant Ispecified location in the data area at e~ecution time. This type , 
I definition lof element is used to fill some fields of DCBs and DECBs, and to 1 
I linitialize data items for which a VALUE clause was specified. I 
I-- I. ~ 
12C IGenerate an RLDTBL entry that will cause the address of the I 
I Address tprocedure-name (PN) or generated procedure-name (GN) to be placed in I 
tconstant· la specified location of the data area at execution time. This type I 
I definition lof element is used to place pointers to routines in DCBs and exit I 
I llists. I 
I-----------------~I--~- ---; 
134 IThis type of element contains· a GN number for a Q-Routine. The I 
IO-Routine le1ements are built into a .table called QTBL. Each entry is resolved I 
lidentification Iso that it contains the actual address of the routine rather than I 
I 1simp1ythe GN number. This processing is identical to that for GN I 
I Ireferences in Procedure A-text (see Figure 45 in this chapter). When I 
I Iphase 6 generates the code of lNlT3 (one of the execution-time t 
I linitialization routines), it uses the QTBLtable to generate a call to I 
I Isome Q-Routines to initialize the data and table areas affected by I 
I IOCCURS ••• DEPENDING ON data items, where the object of the DEPENDING ON I 
IIc1ause is an item in iorking-storage. I 
1--1· .. I 
138 IGenerate an RLDTBL entry that will.cause the displacement in the I 
IBL reference ITGT of the BLnumber assigned to VSAB files to be placed in a specified I 
I Ilocation of the data area at execution time. I 
I I I 
13C IGenerate an RLDTBL entry that will cause the displacement in the I 
IBLL reference ITGT. of the BLL numbers assigned to VSAM files in the Linkage Section tal 
I tbe placed in a specified location of the data area at execution time. I 
I IThis type of element is used to complete the building of the FIB at I 
I lexecution time. I 
I I , 
148 IThis element is. present only if the SXREF, XREF ,VBREF, VBSUIf or TEST I 
1Data-name or loption was spcified. Each element is written out as it is encountered I 
I file-name Ion SISUT1, to be read by phase 6A. The chapter "Phase 6A" describes I 
IDEF-text Ihow. these elements are used. I 
I I ~ 
14C IThis element is present only if the SIREF, IREF, VBREF, VBSUIf or TEST I 
IProcedure-name lopt.ion was specified. Each element is written out as it is encountered I 
IDEF-text Ion .SISUT1, to be read by phase 6A. The chapter "Phase 6A" describes I 
I Ihow these elements are used. I 
I , 

Figure 47. Processing Data A-text, E-text, and DEF-text (Part 2 of 2) 

160 section 2. Method of Operation 



Phase 62 (IKFCBL62) is the first of the 
three phases that prepare a machine 
language program suitable for input to the 
linkage editor if the optimizer (OPT) 
option is specified. The elements of this 
program are described in the chapter 
"Object Module." The phase is divided into 
several sequential parts, each of which 
performs specific functions. The functions 
are: 

o Determines object program storage 
allocation for the TGT (Task Global 
Table) by processing counters in COMMON 
and calculating the displacements of 
items uhich reside in the TGT at 
execution time. 

o optimizes literals and virtuals by 
processing optimization A-text; 
determines storage allocation in the 
PGT (Program Global Table) for these 
items, for PN and GN cells, and for the 
DCBADR, VNI, and PROCEDURE BLOCK fields 
and calCUlates their displacements, 
using counters in COMMON. 

o With Procedure A-text as input, 
determines approximate object program 
storage requirements for the Procedure 
Division by calculating the Procedure 
blocJe number in uhich each PN or GN is 
located. If the program is segmented, 
groups the sections of instructions 
into segments. 

o optimizes usage for both permanent and 
temporary register assignments. 

The operations of phase 62 are described 
in Diagram 5, located with the foldouts at 
the back of this publication. 

copies of the object program and 
compilation information are put out by 
phases 62 and 64. Phase 64 may also put 
out REF-text and phase 63 may put out 
Debug-text. The output of phases 62, 63, 
and 64 depend on the compiler options 
specified by the user or determined by 
defaults set at installation time. The 
following are the options that determine 
the output produced: 

CLIST 

D~IAP 

XREF 
SXREF 

LOAD 

DECK 

BATCH 
NAME 

Licensed Material - property of IBM 

1i§.sul t 
Causes the TGT, Literal Pool, 

PGT, register assignments, 
Borking-Storage message, and 
a listing of the object text 
to be written on SYSPRINT. 

Causes the TGT. Literal Pool, 
PGT, register assignments. 
Working-storage message, and 
a condensed object program 
listing to be written on 
SYSPRINT. The object program 
is limited to the card 
number. verb name (or verb 
number if the program is 
segmented), and address of 
the first instruction for 
each verb. 

Causes the TGT, Literal Pool, 
PGT, register assignments, 
and the Working-storage 
message to be written on 
SYSPRINT. This option has 
already caused phase 3 to 
print a Data Division 
glossary. 

Causes a source ordered (XREF) 
or alphabetically ordered 
(SXREF) cross-reference 
listing to be written on 
SYSPRINT. Phase 64 writes 
XREF-text for use by phase 
6A. 

Causes the object program to be 
uritten on SYSLIN by phase 
00. 

Causes the object program to be 
written (punched) on SYSPUNCH 
by phase 00. 

If both the BATCH and NAME 
options are specified, they 
cause a linkage editor 
control card to be generated 
at the end of the object 
program, so that the object 
program will be a separate 
load module. If BATCH is 
specified, the relative 
number of this compilation in 
the batch appears among the 
statistics printed by phase 
64. 

Not~: The linkage editor 
control card generated for the 
BATCH and NAME options is 

Phase 62 161 



Licensed Material - Property of IBM 

produced by phase 65 if the 
FLOW, STATE, or SYMDMP option 
is specified. 

FLOW[=n[ n] Causes .the flow trace facility 
to be included in the object 
program. The number [n[n]] 
of traces requested is 
retained in the FLOWSZ cell 
in COMMON and is passed to 
phase 65, which places the 
number in the variable 
portion of the TGT. 

STATE Causes the statement number 

SYMDMP 
OR 

TEST 

facility to be included in 
the object program. Phase 63 
writes Debug-text elements on 
SYSUT4 for use by phase 65. 

Causes the symbolic debug 
facility to be included in 
the object program. Phase 63 
writes Debug-text on SYSUT4 
for use by phase 65. 

For all compilations, compiler 
statistics are written by phase 64 on 
SYSPRINT from COMMON, where they were saved 
by phase 02. 

If the PMAP, CLIST, or DMAP options have 
been specified, phase 62 causes the TGT, 
Literal pool, PGT, register assignments, 
and Working-Storage message to be written 
on SYSPRINT. Phase 64 causes the object 
program listing for the PMAP or CLIST 
option to be written on SYSPRINT. If the 
FLOW, STATE, or SYMDMP option is in effect, 
phases 62 and 64 create the TGTADTBL table 
which is used by phase 65. Phases 62, 63, 
and 64 also use the TGTADTBL table for 
interphase communication before completing 
it in phase 64 for use py phase 65. 

The user may specify both the LOAD and 
DECK options, in which case the object 
program is written on both SYSLIN and 
SYSPUNCH. He may also specify NOLOAD and 
NODECK; in this case, he receives no 
executable copy of his object program. 

If no output was requested (no PMAP, 
LOAD, DECK, CLIST, DMAP, BATCH, NAME, 
SYMDMP, STATE, SXREF, XREF, VBREF, or 
VBSUM), text processing is bypassed unless 
the· TERM option was specified. In this 
case, phase 64 scans the E-text on SYSUT4 
and increments the ERRNUIf. cell in COMMON. 
After phase 64 scans. the E-text, it rewinds 
SYSUT4 and returns to phase 00. Phase 00 
uses the count in ERRNUMto write a message 
to SYSTERM giving the number of errors 
encountered for the compilation. Phase 64 
also sets a bit in COMMON to indica~e 
whether phase 70 is required (see 
"suppression of Ouput Listing" below). 

162 Section 2. Method of Operation 

If the SUPMAP (suppress map) option is in 
effect, no output is produced by phases 62 
and 64 if a D-Ievel or E-level error 
message was generated by any phase. This 
is determined by testing the ERRSEV cell in 
COMMON. A value of 12 or greater means 
that a t least one D-Ievel or E-level 
message occurred. 

The ERRSEV cell was set by phases 2, 3, 
4, 50, and 51 every time they encountered 
or generated an element of E-text (see 
liE-text" in the chapter "Phase 51"). A 
test is made for this condition upon 
entering phase 62. If it occurs, a message 
is printed and the text is not processed 
unless SXREF or XREF is specified. 

If the SUPMAP condition occurs and 
neither SXREF or XREF was requested, phase 
62 terminates processing, calls phase 63, 
which does no processing and in turn calls 
phase 64, after phase 62 sets two bits in 
COMMON (bits 6 and 7 of the second byte of 
SWITCH). Bit 6 indicates that phase 70 is 
to be called, and bit 7 indicates to phase 
70 that E-text must be read from SYSUT4. 
If the TERM option was specified, phase 64 
scans the E-text on SYSUT4 and increments· 
the,ERRNUM cell in COMMON. After phase 64 
scans the E-text, it rewinds SYSUT4 and 
returns to phase 00.· 

If SXREF or XREF was requested, text is 
processed by phases 62, 63~ and 64 but the 
only output is REF-text and DEF-text (which 
phase 6A uses to produce the 
cross-·reference listing): The ERRTBL is 
also built by phase 64, or E-text is 
written on SYSUT3. A bit is set in COMMON 
(bit 6 or the second byte of SWITCH), 
indica ting to phase. 6 A that phase 70 is 
required. If E:-text was written on SYSUT3, 
bit 5 of the second byte of SWITCH is set 
to indicate that E-text must be read from 
SYSUT3. 

Phases 62 and 64 do not write object 
text in execution-time sequence. Rather 
they instruct. the linkage editor to reorder 
the text by assigning relative addresses. 
To do this, they allocate space for areas 
that will be written later, altering the 
LOCCTR (location counter) cell of COMMON to 
reflect the relative location at execution 
time of the area curren tly being processed. 

TASK GLOBAL TABLE STORAGE ALLOCATION 

When phase 62 receives control, the LOCCTR 
cell contains the relative address of the 
Task Global Table (TGT) in the load module. 



LOCCTR was set by phases 22 and 21, uhich 
added the length of the data area to that 
of the INIT1 routine. (These areas precede 
the TGT in the load module.) 

Routine TGTINT first does preliminary 
computations to determine the length of the 
entire TGT. If this length exceeds 4096 
bytes, one 4-byte OVERFLOW cell is 
allocated for each 4096-byte area after the 
first. Then this routine computes the 
locations of TGT fields after the OVERFLOU 
cells. 

Some fields of the TGT are constant in 
length; others are variable, depending on 
the requirements of the program being 
compiled. For most of the variable fields, 

Licensed 11aterial - property of IBM 

there is a counter in COMMON used to 
compute its length. When the value has 
been used, the counter is set to the . 
displacement of the current field in the 
TGT. Figure 48 lists these counters and 
the TGT fields to which they correspond. 
In a register called Ril, a counter is kept 
of the displacement of the current field in 
the TGT. 

Some of the counters in COMMON specify a 
number of bytes. Others specify a number 
of entries, vhere each entry requires two 
or four bytes. In the latter case, the 
value of the counter is multiplied by 2 or 
4 before it is used to compute 
displacements. 

, " • i i 

I I I I Multiplication I 
I Counter I contents From Earlier Phases I TGT Field I Factor I 
I-- I I I 4 
I TSMAX INumber of bytes needed for arithmetic temporary I TEHP I 8 I 
I I storage. I STORAGE I I 
I I I I ~ 
,TS2I1AX 1 Number of bytes needed for nonari thmetic , TEMP I 1 I 
I , temporary storage. I STORAGE-2 I I· 
I I I I --i'. 
I TS3MAX INumber of bytes of work area for aligning I TEMP , 1 I 
I I non-SYNCHRONIZED data items. I STORAGE-3 I I 
I-- I I I 4 
I TS4HAX INumber of bytes of work area for table-handling I TEMP I 1 I 
I I verbs. I STORAGE-4 I I 
• I , I I 
I BLLCTR INumber of base locators assigned to Linkage I BLL I 4 , 
I I Section. 'I I 
I I --;---------~,·----~------~I 
I VLCCTR ,Number of variable-length cells (containing I VLC I 2 I 
I I current length of a variable-length field). I I I 
I I --~I---------;I--------------f 
,INDEX1 INumber of index-names defined in INDEXED BY I INDEX , 4 I 
, I clause. 'I I 
, t I , ---I 
,SBLCTR I Number of secondary base locators (location of al SBL I 4 ., 
, , field .variably located because it follous a I I , 
, I variable-length field) • I' I 
, , , I f 
I BLCTR INumber of base locators assigned to files and I BL I 4 , 

·1 , Working-storage. 'I I 
I , I I ----t 
I SUBCTR ,Number of subscript save cells. i SUBADR I 4 I 
• , , I ~ 

,ONCTH INumber of ON control cells. I ONCTL I 4 I 
, , , , I 
I PFIICTR INumber of PERFORM control cells (for PERFORM X I PFMCTL I 4 , 
I f TI liES) • 'I' 
,! ,!! f 
,*The number of VNs in the program is passed to phase 62 in theVNCTR cell of COHHON, , 
I not the VNLOC cell. However, this value is moved into the VNLOC cell and all further , 
I TGT processing uses VNLOC rather than VNCTR. (The number of VNs in the program must , 
I also be known for PGT allocation to determine the size of the VN field in the PGT. I 
I This va lue is sa ved in V NCTR.) , , , 
Figure 48. Use of Counters in COlUiON to Allocate Space in the TGT for Variable-length 

Fields (Part 1 of 2) 

Phase 62 163 



Licensed Material - property of IBM 

i -,-------- I I 
, , I Multiplication , 
, counter I Contents From Earlier Phases I TGT Field Factor I 
r- , I I 
,PSVCTR INumber of PERFORM save cells. I PFMSAV 4 I 
r- I ----------------------------~I--------~-------------~ 
,VNLOC* INumber of variable procedure-names. 1 VN 8, 
l-- 1 l-f 
,DECBCT ,Number of DECBs. , DECBADR 4 , 
l-- I ,~ 
I XSWCTR INumber of EXHIBIT switches. I XSASW , 
.- +- 'f 
,XSACTR ,Number of bytes for EXHIBIT saved area. , XSA , 
, I I ~ 
,PARMAX IArea needed for parameter lists. I PARAM 4, 
l----_t_ I I 
,RPTSAV IReport writer save area requirements. , REPORT 4 , 
, 1 I SAVE , 
l--' I ,I ~ 
,CKPCTR ,Number of checkpoint requests. 1 CHECKPT 4 I 
, , I CTR , 
I I I I 
,SA2CTR IUSE LABEL or USE ERROR procedure save area I SAVE 4, 
, , requirements. I AREA-2 , 
r--- , I----Ij 
,SA3CTR ,Maximum number of files specified in an OPEN ,SAVE 4, 
, I statement. , AREA-3 I 
f--- It" 
,AMICTR INumber of FIBs for VSAM files. , FIB 4 I L---_____ ~ ___________ _ 

Figure 48. Use of Counters in COMMON to Allocate Space in the TGT for Variable-length 
Fields (Part 2 of 2) 

This is done in routine DSPLAC. which is 
called for each variable-length field. Two 
parameters are passed to this routine: the 
address of the counter in COMMON,. and the 
number of bytes for each entry. From the 
number of bytes, DSPLAC also determines 
boundary alignments. DSPLAC places the 
value of Rli1 (the displacement of the field 
in the TGT) into the counter, and adds the 
length of the field to RW1. 

If the PI1AP. CLIST, or DMAP options are 
in effect, DSPLAC calls routine MAPLOC, 
which prints one line at a time. 

If the STATE, FLOW, SYMDMP, or TEST 
option is in effect, the SWITCH cell, the 
CURRENT PRIORITY cell (initialized to zero 
only), the DEBUG TABLE PTR cell, and. the 
DEBUG TABLE information in the TGT are set 
by phase 65. 

After the length of the entire TGT has 
been calculated, the value of RW1 (the 
length of the TGT) is added to the LOCCTR 
cell. The value of the LOCCTR cell is now 
the displacement of the PGT. 

164 section 2. Method of Operation 

The general function of this part of phase 
62 is to allocate space for the program 
Global Table (PGT) in the same Hay that TGT 
storage was allocated. Before this can be 
done, however, the required space must be 
determined for the literals, virtuals, and 
procedure-names that reside in this table 
at execution time. The routines that 
determine the lengths of these fields also 
optimize the contents of the fields by 
eliminating duplication. 

For optimizing, phase 62 reads 
optimiza tion A-text from SYSUT3 and merges 
its information with information from 
tables and counters generated by earlier 
phases. This information is. used to 
perform the following functions: 

• Process virtual reference definitions 
for library subroutines to be called at 
exec ution time. 

• Build the VN priority (VNPTY) table. 

• Optimize and calculate storage 
requirements for literals, DISPLAY 
literals, and virtuals. 



• Build the VNPNTBL, BLVNTBL, PNATBL, and 
GNATBL tables. 

VN definition elements are not used for 
optimization. They are included in the 
optimization A-text for a segmented program 
because they are used to build a table 
(called VNPTY) which must be in storage for 
phase 62 and 63 processing. As an element 
is read, it is entered unchanged into this 
table. After the optimization A-text data 
set has been closed, the VNPTY table is 
sorted in ascending order of priority 
number. 

Processing PNs ~_§!§ 

Phase 62 builds the VNPNTBL, BLVNTBL, 
PNATBL, and GNATBL tables for PN and GN 
processing for the PGT. The VNPNSORT 
routine builds the VNPNTBL table from the 
VN EQUATE PN or VN EQUATE GN elements of 
optimization A-text. 

The GNVNRTN routine builds the BLVNTBL 
table from GN-VN PERFORM elements. 

The PGNARTN routine b.uilds the PNATBL 
and GNATBL tables. These tables list the 
PNs and GNs for which address constant 
cells are required in the PGT. 

The literal optimization routines are used 
to eliminate storage duplication in cases 
where the source programmer used the same 
literal more than once. Routine LTLRTN 
processes internal literals, and routine 
LTLDIS processes DISPLAY literals. These 
routines build three tables: the CONTBL 
and CONDIS (for regular and DISPLAY 
literals, respectively) tables contain one 
entry for each unique li,teral, and the 
LTLTBL table contains an entry for each use 
of a literal. 

DISPLAY literals are entered into the 
CONDIS table. 

When a nonliteral literal definition is 
encountered, the CONTBL table is searched 
for an entry identical to the literal. (To 
be identical, two internal literals must 
meet the same boundary requirements as well 
as have the same value.) If no match is 

Licensed Material - Property of IBM 

found, the new literal is entered into the 
CONTBL table. Any bytes skipped because of 
boundary alignment are filled with zeros. 
The displacement of this entry from the 
beginning of the table is placed in the 
LTLTBL table, with a bit set to indicate 
whether it is a CONTBL or CONDIS entry. If 
a match is found, only an LTLTBL entry is 
made. This LTLTBL entry is the 
displacement of the CONTBL entry that 
matched the literal being processed. 

Figure 49 shows an example of these 
tables after all Optimization A-text has 
been processed. The optimization A-text 
contained literal definition elements for 
the following literals: 

8, 3 (DISPLAY), 3, 9, Y (DISPLAY), 8 

After the optimization A-text data set 
is closed, the Literal Pool is written on 
SYSPRINT using the contents of the CONTBL 
and CONDIS tables, if the PMAP, CLIST, or 
DMAP options are in effect. The Literal 
Pool is also written on SYSPUNCH and 
SYSLIN, as needed. 

CONTBL 
.---, 

Literals \ 8 , 
J- ~ , 3 , 
\ ~ 
I 9 , write text, 

.J increment 
RW1, and 

CONDIS release 
r I tables. 

DISPLAY I 3 , 
Literals \ ~ , Y I 

.J 

LTLTBL 
r- , 
\ 0 (CONTBL displacement of 8) I 
I ----1 
\ 0 (CONDIS displacement of 3) I 
I --I 
11 (CONTBL displacement of 3) I 
l- I Add PGT 
\2 (CONTBL displacement of 9) I displace-
t-- ~ ments and 
15 (CONDIS displacement of Y) I save 
l-- ---1 table 
10 (CONTBL displacement of 8) I 
L-- --I 

r ~ 
INo!~: For this example, the values in I 
lLTLTBL assume that each CONTBL entry is I 
lone byte long and each CONDIS entry is , 
,five bytes long. I 
~ .J 

Figure 49. CONTBL, CONDIS, and LTLTBL 
Tables after Processing 
Literals 

Phase 62 165 



Licensed Material - Property of IBM 

The virtual optimization routine (VIRRTN) 
is used to eliminate storage duplication in 
cases where the same EBCDIC name of a 
called program is referred to in more than 
one CALL statement or in more than one call 
to a COBOL library object-time subroutine. 
The logic of this processing is similar to 
that of literal optimization. Two tables 
are built: the CVIRTB table contains one 
entry for each unique virtual, and the 
VIRPTR table contains one entry for each 
reference to a virtual. 

When a virtual definition is 
encountered, the CVIRTB table is searched 
for an ident ical entry. I f none is found, 
the new virtual is entered in the CVIRTB' 
table. Into the VIRPTR table is entered 
the displacement of this virtual from .the 
beginning of the CVIRTB table. If a match 
is found, only a VIRPTR entry is made. 

This VIRPTR entry contains the displacement 
in the CVIRTB table of the. entry that 
matched the virtual being processed. 

Figure 50 shows the contents of these 
tables after processing optimization A-text 
for a program containing the following 
virtuals: 

CVIRT1, CVIRT2, CVIRT3, CVIRT1, CVIRT2. 

When all Optimization A-text has been read, 
storage is allocated for the PGT. Entries 
for the External Symbol Dictionary and 
object text are generated for virtuals and 
literals. Register RW1 is used throughout 
PGT allocation to hold the displacement of 
the field currently being processed. 
Counters in COMMON are set to the 
displacements of their corresponding P.GT 
fields from the beginning of the PGT. 

If the PMAP, CLIST, or DHAP options are 
in effect, the format of the PGT is written 
on SYSPRINT using routine HAPLOC. 

If the SYMDMP option is in effect~ 12 bytes 
are allocated for the DEBUG LINKAGE AREA. 
Otherwise, no space is allocated for the 
field in the PGT. 

166 section 2. Method of Operation 

r-
I 
I £!11 Virtual!:! 
I 
I CVIRTB 
I I 

\ 

I CVIRT1 I write text, 
I ., increm.ent 
I CVIRT2 I RW1, and 
I , release 
I CVIRT3 I tables. 
I .J 

I 
l-

VIRPTR 

• --, 
I 0 (Disp. of , 
I CVIRT1) I 
I ., , 8 (Disp. of , 
I CVIRT2) , 
• 

., 
I 16 (Disp. of , Save 
I CVIRT3) .. .1 
I ., 
I 0 (Disp. of I 
I CVIRT1) I 
f ., 
I 8 (Disp. of I 
I CVI RT2) 1 

t I 

I 
1 
I Note: Each CVIRTB entry is eight bytes 
Ilong • 
• 
Figure 50. CVIRTB and 'VIRPTR Tables after 

Processing Vi.rtuals 

Preliminary calculations are made to 
determine whether the size of th~ PGT 
exceeds 4096 bytes. If .it does,: one 4-byte 
OVERFLOW cell is required for each 
4096-byte area after the first. Since 
OVERFLOW cell allocation occurs before the 
first reading of Procedure A~textin this 
phase, phase 62 cannot yet determine the 
number of PROCEDURE BLOCK cells that are 
required in the PGT. Therefore~ it 
allocates one additiona,l OVERFLOW cell to 
allow for the possibility that allocation 
of the PROCEDURE BLOCK ~ells'may cause the 
PGT to exceed the final 4096-byte area that 
has already been allocated. 



VIRTUAL Alloca~· 

After the .OVERFLOW CELLS field of, the PGT 
has been calculated, the VIRTUAL. field is 
processed. Using theCVIRTB table, an 
External Symbol Dictionary entry (ESD-text 
type 2) is written for each. virtual unless 
the DINAH or the RESIDENT option is in 
effect. (If the RESIDENT option is in 
effect., no ESD or RLD item is written for a 
library subroutine; if the DINAM option is 
in effect, no ESD or RLD item is written 
for a library subroutine or a user 
subprogram.) Object text is also written 
and entries are made in the RLDTBL table 
for subsequent writing of the Relocation 
Dictionary. 

The VIRCTR cell of COMKON is set to the 
displacement of the VIRTUAL field from the 
beginning of t.he PGT ~ (This value is 0 ' 
unless OVERFLOW cells have been allOCated.) 

To determine the length of the VIRTUAL 
field, four bytes are allowed. for each 
entry in the CVIRTB . table. Thecalculated 
length is added to r.egister RW1. If the 
DINAM and/or RESIDENT 9ption is in effect, 
the CVIRTB table is used to enter in the 
PGT the EBCDIC names of those routines that 
are to be dynamically loaded. The CVIRTB 
table is kept for'use during Procedure 
A-text processing, when its contents 
(EBCDIC na\lles) will be used to generate 
comments for CALL statements. 

. . 

The ent;ries in the VIRPTR table are 
changed to contain displacements in the 
VIRTUAL field (see the example in Figure 
51. The table, is' saved for subseque;nt, use 
during Procedure A-text and Procedure 
A1-text processing. 

If the DINAM or RESIDENT option is in 
effect, an 8-bytecell for,each library 
subroutine name is allocated in the PGT; in 
addition, if the DINAH optio:n is.in effect, 
an 8-byte cell for each use~ subprogram 
name is allocated in the PGT. If neither 
option is in 'effect,this'field does not 
exist. . 

'. ." , . . . 

A count of the EBCDIcnam~s:tobeplaced 
in the PGT is kept inthe;BCDCTR .cell in . 
COMBON. This count . is multiplied by 8 to 
reserve space for the list of names. After 
VIRTUAL alloca~ion, . register RW1contained 
the displacement. of the VIRTUAL EBCDIC 
NAMES field; the displacement lssaved in 
the BCDISP cell in. COHMON.and register Ri1 
is incremented to reflect'. the allocated 
bytes for the VIRTUAL. EBCDIC NAMES cells. 

Licensed Material - property of IBM 

..--
I 
I 
I 
i 
1 , 
1 
I 
I 
I 
I 
I 
I 

I 

I 

• 

VIRPTR 

*+0 

*+4 

*+8 

*+0 

*+4 

I~Indicates the displacement of the I 
I VIRTUAL field in the PGT (the value is 01 
I if no overflow cells are present). I 
J-- I 
I!~: Each VIRTUAL in the PGT is four I 
I bytes long. I , . , 

Figllre .51. VIRPTR Table after VIRTUAL 
Allocation 

PN Allocation 

After the·VIRTUAL field or·the VIRTUAL 
EBCDIC NAMES field, if allocated, has been 
processed, the value in register RWl is the 
displacement of the P~ field in the PGT. 
This value is saved in the PNCTR cell in 
COIiHON. 

only those PNsthat follow TO PROCEED TO 
in an ALTER statement and the section-names 
defined in· a USE statement in the 
Declaratives section require PN cells in 
the PGT. Phase 51 sets the RPNCNTR counter 
inCOKKON to th~ number of cells required. 
Phase 62 uses the RPNCNTR counter to 
allocate 4 bytes for each PN. The total 
length of the PN field is then added to 
register RW1. 

GN' Allocation 

After the PN field has been processed, the 
value in register RWl is the displacement 
of theGN field "in the PGT. This value is 
sa ved in the G NeTR . cell in COMHON. . . '. '. ..' 

. only thoseGNS that are used in 
instructions. for an AT· END phrase or an 
INV~LID KEY option,require GN cells in the' 
PGT. Phase'51 sets the RGNCTR counter in 
COMMON to the. number of cells required. 
Phase'62, uses the RGNCTR counter to 
~llocate 4 bytes for each GN. The total 
length of th~ GN field is then added to 
register RW1.-' . 

Phase 62 167 



Licensed Material - Property of IBM 

The DCBCTR cell in COMHON is used to 
determine the amount of space required: 4 
bytes are reserved for each DCB in the 
program. The DCBCTR cell is set to the 
displacement of the DCBADR field (the value 
of register Ril) , and Ril is th~n 
incremented to reflect the allocated bytes. 

The VNCTR cell of COMMON was used by 
earlier' phases to count the number of 
variable procedure-names in the program. 
Eight bytes are allocated for every VN. 
The displacement of the VNI field (the 
value of Ri1) is placed in the VNILOC cell, 
and the number of bytes allocated is added 
to register Ril. 

The displacement of the LITERAL field in 
the PGT (the current value of register Ril) 
is placed in the LTLCTR cell of COMMON. 
The length and contents of the LITERAL 
field will be identical to the CONTBL and 
CONDIS tables. 

For each LTLTBL entry that refers to 
CONTBL, the value in the LTLTBL table is 
replaced by the displacement of the 
specific literal from the beginning of the 
PGT. This displacement is calculated by 
adding the value already in the LTLTBL 
entry (which is the CONTBL disp~acement of 
the 1i teral) to the value of Ril. An 
example is shown in Figure 52. 

The same processing occurs for LTLTBL 
entries that refer to CONDIS, except that 
the increment includes the length of the 
CONTBL table. This occurs because DISPLAY 
literals are placed after internal literals 
in the PGT, as illustrated by Figure 38. 
The LTLTBL table is saved for use during 
Procedure A-text processing. The lengths 
of the CONTBL and CONDIS ,tables are used to 
increment Ri1. The contents of the tables 
are used to write object text, and the 
tables are released. 

168 section 2. Method of operation 

LTLTBL 
i I 

I *+0 I 
I , 
I **+0 I 
I f 
I *+1 I 
I I 
I *+2 I 
.. ,-----fl 
I **+5 I 
I I 
I *+0 I 
I I 

I f 
I *Displacement of LITERAL field from I 
I beginning of the PGT. I 
1**Displacementof DISPLAY LITERAL field I 
I from beginning of the PGT. I 
L---

Figure 52. LTLTBL Table after Literal 
Allocation 

Phase 6'2 does not allocate storage for the 
PROCEDURE BLOCK field until after it reads 
and processes Procedure A-text. It reads 
procedure A-text to determine the number of 
blocks, containing approximately 4096 bytes 
of storage', that are required for the 
optimized Procedure Division (see 
"optimizing and Allocating Storage for the 
Procedure Division" later in this chapter). 

After the allocation of storage for the 
other fields of the PGT, the value in 
register Ril is the displacement of the 
PROCEDURE BLOCK field in the PGT. This 
value is saved in the PRBLDISP cell in 
COMMON. After Procedure A-text processing, 
phase 62, using the PROCBL counter, 
allocates one 4-byte cell for each 
P roced ure bloc k • 

OPTIMIZING REGISTER-1~~IGN~ENTS 

Seven registers are used by the compiler to 
address Data Division items or OVERFLOW 
cells in the mac'hine language program. 
Registers 6 through 10 are assigned 
permanently, that is. for the entire object 
program; registers 14 and 15 are assigned 
on a temporary basis, that is, for single 
instructions or for short sections of code 
only. Phase 62 assigns registers 6 through 
9 before Procedure A-text is read, and 
register 10 after Procedure A-text is read. 
Use of registers 14 and 15 is determined as 
Procedure A-text is processed. 
optimization takes place for both permanent 
and temporary register assignments. 



PERMANENT REGISTER ASSIGNMENTS 

Phase 62 builds the BLASGTBL table for 
permanent register assignments. Before 
Procedure A-text is read, the REGHV1 
routine assigns the OVERFLOW cells of the 
TGT and the PGT to permanent registers, 
starting with register 6, except for the 
OVERFLOW CELL. Register 12 points to the 
PGT permanent register. Next, the BLSRCH 
routine searches the BLUSTBL table, built 
by phases 50 and 51, to determine the most 
frequently used base locator. That base 
locator 'is assigned to the next unassigned 
register. The process is repeated until 
each of registers 6 through 9 has been 
assigned. After Procedure A-text has been 
read, register 10 is assigned to the next 
most frequently used base locator if it is 
not needed for the additional OVERFLOW cell 
of the PGT. 

TEMPORARY REGISTER ASSIGNMENTS 

Registers 14 and 15 are assigned to base 
locators for single instructions or for 
short blocks of object code only. While 
Procedure A-text is being read, the ENTDRP 
and ENTDRPL routines build the DRPTBL and 
DRPLTBL tables, respectively, to optimize 
the assignment of these registers. 

Phase 62 optimizes the assignment of 
temporary registers by avoiding unnecessary 
repetition of load instructions. To do 
this, it assigns the first two unique base 
locators referred to in Procedure A-text to 

Licensed Material - property of IBM 

registers 14 and 15 by making entries in 
the DRPLTBL table. It builds the DRPTBL 
table from the subsequent base locators 
referred to until a condition is met which 
makes resolution of register assignment 
possible. These conditions are as follows: 

• A reference to a base locator whose 
previous assignment to a register is 
still in effect. 

G A PN, a GN~ or the entry point of a new 
program segment. 

o The base locator that will be 
permanently assigned to register 10 if 
that register is not needed for the 
extra OVERFLOW cell of the PGT. 

e A RESERVE, DESTROY, FREE, or BLCHNG 
element. 

Figure 53 exemplifies the optimizing 
process for base locator assignments to 
register 14 and 15. Phase 62 builds the 
DRPLTBL table for address increment 
elements as well as for address references. 
DRPLTBL table processing for address 
increments is done only if the increment is 
greater than 4095, in which case an 
additional generated instruction is needed 
to load the address of the data-name plus 
the address increment, which is at least 
4096 bytes, into temporary register 14 or 
15. Phase 62 adds 4 bytes to ACCUMCTR for 
each such LA instruction needed. The 
DRPLTBL entry for an address increment 
indicates to phase 63 which temporary 
register to use in the RX field of the LA 
instruction being generated. 

Phase 62 169 



Licensed Material - Property of. IBM' 

r-----~i------------------
IStepsl TemporaryBLls DRPTBL steps DRPLTBL 

8 
o 
o 
o 
o 
CD 
0) 
o 
G) 

BL=6 --------------~--------~~------------- > 

BL=7 > 

> 

> 

BL=8 8 

® 
> 

BL=10 >10 

BL=6 > 

> 

> 

> 

BL=10 

CD BL=11 ------------------------~--------> 11 o BL=12 ~----------~---~~------~.~> 12 

> BL=5***------------~~~~--~~--~·------~------------~~-----------------

BL=6 > 

-> 

> 

BL=10 
@ 

BL=7 7 > 

> 

> 

BL=10 t1s\ 
> 12~--~------~-~~---------BL=12 

Entry point (referenced PN or GN definition or new segment) 

R14* 

R15* 

R15* 

R 15* 

R14** 

R15** 

R14* 

R14* 

R14* 

R 14* 

R15* 

R14* 

R15** 

R14* 

, 

@ 
@ 
@ 
@ 
@ 
@ 

I i 
I *In icates that a load instruction is generated for this assignment by phase 63. I 
I **Indicates that the BL is already loaded and that no load instruction is generated by I 
, phase 63. I 
1***BL=5 is the base locator that will be loaded into register 10 if the additional , 
, OVERFLOW CELL for the PGT is not required. I 
I '. '. . .' . ., 
'E~E.la!l~tion : . . f:\" . ~ 
,The first two base locators which are read, BL=6 and BL;=7 (steps \.!..I and 2 ), are 
,entered immediately into the DFPLTBL table. This indicates to phase 63 th t 
linstructions are to be generated to load.these base locators into registers 14 and 15, 
I respectively. 
I 
I The next two base locators that are read, BL=8 and 
,entered into the DRPTBL table for later assignment to 

BL=10 (stepsGJand 0, are 
the DRPTBl tab'?e for later 

assignment to the DRPLTBL table. 

Sin. ce the next bas~ocator, BL=6, has already been.assigned. to regis.ter 14, it is 
assigned again (step ~) to register 14 in the DRPLTBL table and a flag is set to 
indicate that no load ~nstruction is necessary. .' . . '.' . 

BL=8 and BL=~ are then assigned to register 15 . (step 0).. ..' 
BL=10 (step~) is assigned to register 15 and a flag ~s set to indicate 

load instruction ~s necessary •. ' . f::'\ 
BL=11 and BL=12 are entered into .the DRPTBL (steps \.2) and 0). . . 

that no 

since BL=5is to be loaded into register 10 if it becomes av~ilable after Procedure 
A-text is read, it. is con.ditionallY~Signed to regist. e. r 14 and .. BL=11 .and BL=12 are 

I also assigned to register 14 (step 9 ) • '. • , . . , '. . .' '. '. 

I 
I , , , , 
t , 
I , , 

I The entire process. is essentially .,repeated ~ep .. s @throu9h@.)Untilthe 
,point of a procedure or segment is met (step ~) .where the, process is initiated 

entrYI 

,again. ' .. 

Figure 53. Optimizing Assignmen t. of Registers 14· and 15 

170 section 2. Method of operation 

I 
I 



OPTIMIZING AND ALLOCATING ST~E FOR TH! 
PRQ£EDURE DIllSIQ!! 

Whenever a PN or GN is referred to in an 
instruction, a check is made to determine 
whether the address of the Procedure block 
that contains the PN or GN has already been 
loaded into register 11. If it has not 
been loaded, then an instruction is 
generated to load the address of the 
Procedure block into register 11. 

As phase 62 reads Procedure A-text, it 
determines the Procedure block number for 
each PN and GN and builds the PNLABTBL and 
GNLABTBL tables. These tables are passed 
to phase 63, which generates the act.ual 
instructions necessary for establishing 
addressabili ty. 

To build the PNLABTBL and GNLABTBL 
tables phase 62 uses a counter, called 
ACCURCTR, to generate displacements within 
Procedure blocks. This counter is 
incremented with the length of each 
instruction occurring in the completed 
object program. phase 62 uses ACCUMCTR to 
determine when the displacement of the 
definition of a GN or PN from the beginning 
of the Procedure block exceeds 4095 bytes. 
When the displacement is greater than 4095 
bytes, a new Procedure block is begun. 

Phase 62 also builds the PNFWDBTB and 
GNFiDBTB tables for all PNs and GNs that 
are referred to prior to their definition 
point. since it cannot be determined 
whether the reference and the definition 
occur within the same Procedure block, it 
is not possible to determine whether the 
Procedure block address of the definition 
is already loaded into register 11 at the 
point where the reference is made to it. 
The forward branch tables (PNFWDBTB and 
GNFiDBTB) are used to accumulate the number 
of forward references to PNs and GNs, 
respectively, which mayor may not be 
defined in a different Procedure block. As 
the definition .point for a PN or GN that 
has been entered into the PNFiDBTB or 
GHFWDBTB table is encountered, the counter 
for that PN or GN is set to zero. 

Licensed Material - Property of IBM 

since references to PNs and GNs that 
have not yet been defined may entail an· 
additional instruction to load the 
Procedure block address of a different 
Procedure block, the number of bytes 
represented by the counters in the PNFWDBTB 
and GNFWDBTB tables must be added to the 
displacement in ACCUMCTR to. determine the 
current length of the Procedure block. 

Phase 62 sets a counter, called PROCBL, for 
use in building the PNLABTBL and GHLABTBL 
tables. PROCBL is incremented for each 
procedure block. The value contained in 
PROCBL is the Procedure block number for 
the current block of code. Using PROCBL, 
the DEFLD11 routine enters the Procedure 
block number of each referenced PH and GN 
definition in the PNLABTBL ahd GNLABTBL 
tables for use by phase 63. 

The NOBLST routine uses the PNCTR and 
GNCTR cells in CORMON to determ~ne the 
number of PN entries and GN entries, 
respectively, that are required in the 
PNLABTBL and GNLABTBL tables. 

Increm·enti!l.9.J:he ACCUMCTR £ounter 

As phase 62 reads Procedure A-text, it 
increments ACCUKCTR by the length of each 
machine language instruction that is part 
of the completed object program. Since the 
optimizer phases of the compiler use 
Procedure block addresses to address PNs 
and GNs, these phases eliminate and change 
some of the instructions in Procedure 
A-text. Phase 62, therefore, determines 
which instructions are to be eliminated or 
changed during the optimization process, 
and then increments ACCUMCTR accordingly. 
To increment ACCUMCTR, phase 62 uses the 
codes listed in Figure 54, Procedure 
A-text, the PNLABTBL, GNLABTBL, PNFWDBTB, 
and GNFWDBTB tables, and the PROCBL 
counter. 

Phase 62 171 



Licensed Material - Property of IBM 

r-- i i 
, , I Action Taken By 
I I Meaning/Procedure-Name I I 

,Code, Definition ,Phase 62 , Phase 63 
r-- I , I 
,COOliLoad instruction not I , 

,followed by branch in-I , 
'~truction., t 
I- t---------+_ 
I A Procedure-name waslAdd 4 to ACCUMCTR. ,Set COOl switch; 
I defined in same I ,replace L instruc-
, Procedure block. I Ition with LA in-
, I ,struction. Add 
, , ,Procedure base 
I I Iregister element. 2 
, , IAdd 4 to counters. 
I I IDO not rewrite 
, , COO 1. 
........- I 

B Procedure-name was Add 
defined in differ-

8 to ACCUMCTR. Set COOl switch; 
generate: L Rl1, 
Procedure block 
number element. 3 
Generate LA in
struction. 

ent Procedure 
block. 

C 

Add Procedure base 
register element.2 
Add 8 to counters. 
Do not rewrite 

IC001. 
+-, Procedure-name is 

not yet defined 
(forward 
reference) • 

orl 
IEnter procedure
Iname in PNFWDBTB 
,GNFWDBTB table. 
,Resolve procedure
I name definition 
Istatus by end of 
IProcedure block. 

I~--~---------------------~-----------

I , , 
I , 
! 

I 

I 
I ~ 
I Phase 64 I 
, i 
, I 
I I 
, I 
, i 
IFill in displace- , 
Iment using PNLBDTBLI 
lor GNLBDTBL table I 
land Procedure base I 
Iregister element. 2 I 
I I 
I I 
I I 
I I 
I , 
Fill in displace- I 
ment of Procedure I 
block in PGT using I 
procedure block I 
number element.2 I 
Fill in ~isplace- I 
ment of procedure- I 
name using PNLBDTBLI 
or GNLBDTBL table I 
and Procedure base I 
register element. 2 I 

, i 
I I 
, I 
, I 
, I , , 
I , 
I I 
I i 

'B2i~: 
I lThese 
, Phase 

, 
Phase 50 optimization information elements (COxx) are created by phase 50 from I 
40 optimization information elements (43xx). , 

I 
I 2Procedure Base , , 
I , 
I 
I , 
, 3Procedure Block , 
I , , , 

Register 

Bytes 

Number 

Bytes 

L---______ , ________ __ 

Element: 

0 1 2-3 

C8 = PN 
CC GN Register number PN/GN number 

Element: 

0 1 

C4 Block number 
L-

______ --____ L---________ . ____ ~ 

Figure 54. Processing for Optimization Information Elements (Part 1 of ,3) 

172 Section 2. Method of Operation 

, , 



Licensed ~aterial - Property of IBM 

r--- I ~------------.------------.----------- , 
I I I Action Taken By I 

-f I Ilieaning/Procedure-Name .... , --------------r-------------r---------
ICodel Definition status I Phase 62 I Phase 63 I Phase 64 I 
f-- I I +-- ---+--------------~, 
IC002lBranch-in point. Add 4 to ACCUMCTR. IIndicate that Pro- I I 
I I (Addressabili ty for 
I I Procedure block is 
I I uncertain.) 
II 
I , 
I I 
I I 

Icedure block I I 
laddress is to be I 1 
Iloaded at next re- ( ( 
Iference to PN or I I 
IGN. Do not rewritel I 
I C002. I I 
I I -f 

IC0031An address constant is Add 4 to ACCUMCTR. 
I I to be used for this 

IWrite Procedure A1-IProcess PN or GN I 
(text element iden- Ireference as in ( 

I I element; PGT to con-
I I tain a PN cell or GN 
I I cell. 
I I 
I I 
I I 
IC0041PERFORH exit. 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
1---+-1 ----

I 
I 
I 
I 
I 

COOS Return point from a 
performed procedure 
(G N definition). 
Element is followed 
a GN definition 
element. 

Itical to Procedure Iphase 6. ( 
I A-text element. I I 
IAdd 4 to counters. I I 
IDo not rewrite I I 
IC003. I I 
I I -f 

IFind all entries in Do not rewrite I I 
,the BLVNTBL for the C004. I I 
IVN whose reference I I 
Ifollous this ele- I I 
I ment. Enter I I 
Icurrent block num- I 1 
Iber in these I I 
Itable entries. I I 
I l.f 
IAdd 4 to ACCUKCTR. Search BLVNTBL to IFill in displace-
I determine if the I ment of Proce'dure 
I EXIT from the per- Iblock in PGT, using 

bYI formed procedure islProcedure block 
I lin the same Proce- Inumber element. 3 

I Idure block as the I 
I Ireturn point. I 
I IRewrite GN defini- ( 

Ition element with- I 
lout COOS. If 
(PERFORM Exit and 
Ireturn point are in 
Isame block, rewrite 
element without 
COOS. 
If they are not in 
same block, indi
cate that register 
11 contains Proce
dure block address 
of PERFORM exit. 
Rewri te element 
without COOS. 

f-- .f 
I!iQ!:§.: I 
I lThese Phase 50 optimization information elements (COxx) are created by phase 50 from I 
I Phase 4 optimization information elements (43xx). I 
I I 
I 3Procedure Block Number Element: I 
I I 
I Bytes 0 1 I 
I I 
I· C4 Block number I I L--_______ . .L---. _______ -' I 
L-________________ ----.---------______________________________________ .J 

Figure 54. Processing for Optimization Information Elements 1 (Part 2 of 3) 

Phase 62 173 



Licensed Material - Property of IBM 

i • 
I Action Taken By I 
I tKeaning/Procedure-Namef~----~-------------ri------------~------ri------------------~I 
,Code, Definition status I Phase 62 I Phase 63 I Phase 64 I 
It' ---~--III----------III---------~ 

,C006fLoad instruction, , I I 
I ,followed by an uncon- , 1 1 I 
I I ditional branch. 1 I , , 
I I I I I of 
I I A procedure-name ,Add 4 to ACCUKCTR ,Turn on LOADS& , I 
, I defined in same Ifor RX-type branch ,switch. I I 
, I Procedure blcok. linstruction to be IDO not rewrite 1 I 

, ,generated. ,C006. I , 
I +-----------~,-- , ~~ 
I B Procedure-name IAdd 8 to ACCUMCTR ITurn on LOAD5i IFill in displace- I 
I defined in dif- Ifor load of regis- Iswitch. Iment of ProcedUre I 
I ferent procedure Iter 11 and RX-type IDo not rewrite Iblocks in PGT, I 
I block Ibranch instruction IC006. lusing Procedure I 
I I to be generated. I I block number I 
I 1 , 1 element. 3 I 
, +I~'----------+I---------+I------------~' 
,C Procedure-name notlEnter procedure- ,Turn on LOADSW ,Write RX-type , 
I yet defined. ,name in PNFWDBT B ,swi tch. 1 branch instruction I 
, ,or GNF'liDBTB; ,Do not rewrite ,following the C006 I 
I ,resolve procedure- ,C006. Iload instruction. , 
, Iname definition I I , 
I Istatus by end ofl I I 
I I Procedure block. I , I 

r-- i i • i f 
INo!~: 
I lThese Phase 50 optimization information elements (COxx) are created by phase 50 from. 
I Phase 4 optimization information elements (43xx). 
I 
I 3Procedure Block Number Element: 
I , Bytes o 1 

C4 Block number 
I 
I 
I 

L-----____________ ~ ________________ ~ 

Figure 54. processing for optimization Information Elements 1 (Part 3 of 3) 

RROC~§!!~OR BRANCH INSTRUCTIONS: The 
PROCBL counter contains the number of 
Procedure blocks that are required for the 
Procedure Division. Each time that 
ACCUMCTR and the information in the 
PNFiDBTB and GNFWDBTB tables indicate that 
a PN or GN definition is at a location 
greater than 4095 bytes from the start of 
the Procedure block~ block transition takes 
place. The PROCBL counter is incremented, 
and ACCUKCTR is set to zero. 

When a branch is taken to a PN or GN 
wi thin the· Procedure block whose address 
already is loaded into register 11, an 
addition of 4 bytes is made to ACCUMCTR for 
the Rx-typebranch instruction. When a 
branch is taken to a PNor GN whose 
Procedure block is not already loaded into 
register 11, 8 bytes are added to the 
ACCUMCTR for the load of the Procedure 
block address and the RX-type branch 
instruction. 

174 Section 2. Method of operation 

Each time that the ENTPT01 routine 
processes a PN or GN definition, it 
determines whether the value in ACCOMCTR 
plus the number of bytes necessary to 
branch to the procedure-na~es listed in the 
PNFiDBTB or GHFiDBTB table is greater than 
4095 bytes. If it is not greater, then 
Procedure A-text processing continues. If· 
it is, then the ENTPT01 routine determines 
whether the definition being processed has 
a count of forward references in the 
PNFWDBTB or GNFiDBTB table. I·f it does 
not, a new Procedure block begins at this 
definition point. If.a count :is found, 
however, the number o,f bytes. r,epresented by 
the count is compared' with the' number of 
bytes in ACCOftCTR minus 4096. If the count 
value is low or equal, a new Procedure 
block begins at this defini.tion point. If 
it is high, the count field is set to zeros 
and this definition point remains within 
the current block. Phase 62 then makes new 
calculations to determine the size of the 
Procedure block. 



Phase 63 (IKFCBL63) is the second of the 
three phases that produce the machine 
language program. Its principal function 
is to produce Procedure Al-text, which is 
uritten on SYSUT2. Phase 63 produces the 
text according to the information supplied 
from phase 62. Upon completion, the text 
is passed to phase 64 where it is used to 
urite the machine language program. Phase 
63 also produces Debug-text on SYSUT4 if 
the STATE or SYMDMP option is in effect. 

Phase 63 produces Procedure A1-text from 
Procedure A-text by: 

o Inserting information for addressing 
PHs and GNs and Procedure blocks in 
instructions, such as displacements of 
Pl{s and GNs within a given block and 
the Procedure block number to be used. 

o Generating all remaining instructions 
for the object program except the load 
instruction elements required when a 
data-name is only temporarily 
addressable. 

o Reading the program in ascending order 
and writing Procedure Al-text in this 
order with the root segment first. 

The operations of Phase 63 are described 
in Diagram 6. located with the foldouts at 
the back of this publication. 

Routine PHAS63 performs the initialization 
process for phase 63. It saves LOCCTR for 
restoration at end of file, relocates all 
of the TIB addresses, and primes all the 
new tables used by the phase except for the 
QGNTBL. uhich is primed in routine QBEGIN 
if there are Q-Routines. If the program is 
segmented, a call to phase 00 is issued to 
request a POINT to the first section of 
text on SYSUT1. Otherwise, the . 
initialization routine requests phase 00 to 
read the first Procedure A-text buffer from 
SYSUT1. 

Phase 63 reads Procedure A-text from SYSUTl 
and writes Procedure A1-text on SYSUT2. 

Licensed Material - Property of IBM 

Procedure A1-text is described in 
"Section 5. Data Areas." 

CONTROL ROUTINE 

Routine GET serves as the control routine 
for phase 63 processing of Procedure A-text 
elements. It reads each element of 
Procedure A-text and branches to one of 
several routines for specific processing of 
each type of element. 

For Phase 50 and 51 optimization 
information (CO) elements, macro-type 
instruction (44) elements, and operation 
code (4S) elements, it branches to routines 
CO, MACRO and FOURTYS. respectively. 

For each of the other elements the GET 
routine uses the GETBTBL table to branch to 
the proper routine for specific processing 
of that element. 

PROCESSING PROGRAMS WITH ONE PROCEDURE 
BLOCK 

In programs that do not exceed one 
Procedure block in length, and that have no 
Report Writer or Declaratives Section, the 
procedure block address is loaded into 
register 11 only when the ENTRY macro-type 
instruction (4404) element and/or STA~ 
macro-type instruction (4420) element of 
Procedure A-text is read. 

PROCESSING FOR BRANCH INSTRUCTIONS 

The BRANCH routine processes the branch 
element that follows the PN or GN 
reference. It uses the SAVETBL and either 
the PNLABEL or GNLABTBL table to determine 
whether the referenced PN or GN is defined 
in the Procedure block currently loaded in 
register 11. If the PN or GN is defined 
outside of the Procedure block, a ProcedUre 
A1-text element is generated to load 
register 11 with the address of the 
Procedure block that does contain the PN or 
GN definition. The BRANCH routine then 
generates an Rx-type Procedure A1-text 
branch element instead of the RR-type 
Procedure-A text element so that an 
instruction will be generated to branch to 
the PN or GN. 

Phase 63 175 



Licensed Material - Property of IBM 

If the PN or GN is defined within the 
Procedure block that is currently loaded in 
register 11, the routine merely changes the 
RR-type branch instruction to an Rx-type 
branch instruction. The register number in 
the original instruction is changed to zero 
since register 11 is inserted in the branch 
instruction by phase 64. The PN (C8) or GN 
(CC) number element from the SAVETBL work 
area follows the instruction. 

PROCESSING FOR OPTIMIZATION INFORMATION 
~1~~~li1~=JcoQI=~00IL-------------------

Phase 63 processing for optimization 
information elements is described in Figure 
54 in the chapter "Phase 62." 

PROCESSING FOR RPT-ORIGIN (D4) ELEMENT 

An RPT-ORIGIN (D4) element indicates that 
an RLDTBL table entry is to be made for 
this location in the program. The location 
is the point of definition (or the point of 
definition plus 4 bytes) of the GN for a 
REPORT-ORIGIN verb. Routine D4 creates the 
RLDTBL entry for the location, saving the 
value contained in LOCCTR. It sets the 
high-order byte to hexadecimal '10' to 
indicate the purpose of this entry to phase 
64. The entry is used to generate text 
cards at the proper location; but phase 64 
does not produce an RLD card for this type 
of entry. When the ORIGIN macro-type 
instruction (4438) element is read later, 
LOCCTR is set by phase 64 to the value of 
LOCCTR at the time of the RPT-ORIGIN 
element. 

PROCESSING FOR ADDRESS REFERENCE (78) 
ELEMENTS 

Address reference (78) elements are 
generated to address data areas. The data 
areas are addressed by means of a 
displacement from a base locator. 

When an Address reference (78) element 
is found in Procedure A-text, routine GET 
branches to the ADREF routine for 
processing. 

PROCESSING FOR ADDRESS INCREMENT (80) 
ELEMENTS 

When Address increment (80) elements pccur, 
they follow Address reference (78) elements 

176 Section 2. Method of operation 

and indicate that an additional 
displacem~nt value is to be added to the 
value indicated by the Address reference 
(78) element to address a data-name. 

When routine GET finds an Address 
increment (89) element in Procedure A-text, 
it branches to routine ADINCR which 
determines whether the sum of the 
displacement and the value contained in the 
Address reference (78) element is less than 
4096 bytes. If the sum is less, then the 
ADINCR routine adds a byte containing X'OO' 
to the Address reference (78) element and 
writes the element in Procedure A1-text. 

If the ADINCR routine determines that 
the Sum is 4096 bytes or greater, it adds a 
byte containing X'OE' or X'OF', which 
indicates to phase 64 that LA instructions 
[that is, LA 14,4095(R) or LA 15,4095(R)] 
are to be generated using either register 
14 or register 15, respectively, to the 
Address increment (80) element and writes 
the element in Procedure A1-text. LOCCTR 
and ACMCTR are incremented by 4 for each 
multiple of 4095 bytes in the added 
displacement. 

PROCESSING FOR INCREMENTED ADDRESS (A4) 
ELEMENTS 

The Incremented address (A4) element in 
Procedure A-text is functionally a 
combination of the Address reference (78) 
and Address increment (80) elements and is 
treated as such by phase 63. The ADREF 
routine (if no load is required, that is, 
if the data-name is already in a register) 
changes the element into a Base 
displacement data-name element (see 
"Processing for Address Reference (78) 
Elements" in this chapter). If the IDREF 
routine changes the element, the increment 
portion of the Incremented address (A4) 
element is written out as an Address 
increment (80) element with the high-order 
bit of the low-order byte set to 1 to 
indicate that the increment has already 
been added. 

If the SYMDMP or the STATE option is in 
effect, Procedure A-text is used to create 
Debug-text which is written on SYSUT4. 
Debug-text elements are written by the SYS2 
routine. For all Card number (2C) elements 
encountered, CARDLOC (10) elements are 
written that contain the card number and 
its displacement within the object module. 



Debug-text also contains: 

o Discontinuity (40) elements "that are 
created when phase 63 combines two 
sections of equal priority that have 
discontinuous card numbers because of 
an intervening section or sections of 
different priority. 

o ENDSEG (20) elements that identify the 
last byte of each segment, or the last 
byte of Procedure Division code if the 
program is not segmented. 

Debug-text is used by phase 65 to 
produce debugging information for the COBOL 
library debugging subroutines. 

While producing Procedure A1-text, phase 63 
uses two counters: LOCCTR in COMMON and 
ACMCTR. LOCCTR is used to generate the 
relative displacements of each instruction 
listed and enter target addresses in the 
RLDT BL table. For details. see "Making 
Entries in the RLDTBL Table" in this 
chapter. 

AC5CTR is incremented for all code that 
is to be contained in the completed machine 
language program. It is used to generate 
the displacements of PN and GN definitions 
within each separate Procedure block. 
Routines PNDEF and GNDEF build the PNLBDTBL 
and GNLBDTBL tables for this purpose. 
Phase 64 uses these tables to generate the 
proper displacements. 

The QGNTBL table lists the Q-Routine GNs 
and their corresponding Procedure block 
numbers. These are needed by phase 64 to 
initialize Q-Routines during INIT3 
processing. The table is built from the 
GNLABTBL by phase 63 at each GN definition 
(34) element following the Q-BEGIN 
macro-type instruction (4440) element. 

RLD entries are made to: 

• Resolve iN addresses 

o Resolve the GNs for REPORT-ORIGIN verbs 

Licensed Material - Property of IBM 

o Produce RLD-text for the linkage editor 

An RLD entry contains the relative address 
within the object module for the entry 
item. 

Before an entry is made, the RLDTBL 
table is sorted. RLDTBL entries are 
created by phases 63 and 64; the RLDTBL 
table is completed and processed by phase 
64. Processing the RLDTBL table entails 
writing RLD-text is some cases. At object 
time, the linkage editor relocates 
addresses contained in the RLD-text. (Not 
all RLD entries cause RLD-text to be 
written. ) 

Routines PNDEF, GNDEF, and STARTMAC 
enter the relative address of an address 
constant in the RLDTBL table as well as the 
target address. 

Routine D4 makes entries for locations 
associated with REPORT-ORIGIN verbs. It 
sets a bit to indicate to phase 64 that RLD 
cards for these entries are not to be 
produced. For details on these entries, 
see "Processing for RPT-ORIGIN (D4) 
Elements," which appeared earlier. 

When a program is not segmented, phase 63 
reads Procedure A-text from SYSUT1 in the 
order in which it was written. When a 
program is segmented, Procedure A-text is 
read in order of ascending priority so that 
the procedure instructions for the root 
segment are processed first. 

The PHAS63 routine first determines 
whether the program is segmented by 
checking SEGLMT in COMMON. If SEGLMT does 
not contain X'FFI, the routine relocates 
the SEGTBL table and indicates to phase 00 
that a POINT macro instruction is to be 
issued to access the root segment in 
Procedure A-text. Processing of Procedure 
A-text begins at that point. 

In phase 1B, the priority numbers of all 
sections in the root segment were set to O. 

When the MACRO routine comes to the end 
of a section, it branches to the SEGBRK 
routine, which determines whether the end 
of the section is also the end of a 
segment. If it is the end of the segment, 
the routine searches the SEGTBL table for 
the next segment of next highest priority. 
If it is not the end of the segment, the 
SEGTBL is searched for the next section of 
the same priority. When the end of the 
SEGTBL table is reached, control passes to 
routine EOF. 

Phase 63 177 



Licensed Material - Property of IBM 

If the SYMDMP or the STATE option is in 
effect, at the end of processing for each 
segment, the final LOCCTR value for that 
segment and the priority for the next 
segment to be processed are both written on 
SYSUT4 for phase 65. 

!2~: A section is a series of source 
program procedure instructions grouped 
under the same section-name. A segment is 
all the instructions whose sections have 
the same priority, and ,a segment may 
consist of one or more sections. There is 
a SEGTBL entry for every section whose 
priority differs from that of the section 
preceding it. 

178 Section 2. Method of operation 

When all segments have been processed or at 
end of file in an unsegmented program, 
routine EOF calls routine RLDSORT to sort 
the final RLD entry. 

Then it releases the tables used by 
phase 63. except for the PNLBDTBL. 
GNLBDTBL, VNPTY. VIRPTR, LTLTBL, BLASGTBL, 
GNATBL, PNATBL. QGNTBL, and RLDTBL tables, 
which are passed to phase 64. Finally, it 
restores LOCCTR, and returns control to 
phase 00. 



Phase 64 (IKFCBL64) is the last of the 
three phases that produce the machine 
language program. The major functions of 
phase 64 are: 

o Completing the RLDTBL table and 
building the QTBL table by processing 
Data A-text. 

G Processing E-text and DEF-text. 

o Processing Procedure A1-text and 
entering displacements in the 
instructions generated by phase 63. 

e Hriting object text and REF-text from 
Procedure A1-text. 

o writing object text for the INIT2, 
INIT3, and INIT1 routines of the object 
program in that order. 

o writing object text and RLD-text from 
the RLDTBL table. 

An introductory discussion of the output 
generated by phase 64 in response to 
compiler options is given under "output of 
Phases 62, 63, and 64" in the chapter 
"Phase 62.11 

PROCESSING DATA A-TEXT, E-TEXT, AND 
DEF-TEXT. 

Phase 64 reads Data A-text from SYSUT4 
before it reads Procedure A1-text from 
SYSUT2. It does this because Procedure 
A1-text for segmented programs has been 
written by phase 63 in order of ascending 
priority with the root segment first. 
Therefore, phase 64 must complete all 
RLDTBL entries for the root segment before 
Procedure A1-text is read. 

The primary function of Data A-text 
processing is to place values into the data 
areas and fields of the Global Tables of 

Licensed Material - Property of IBM 

the object program. Each element results 
in either the writing of an object text 
element or an entry in the RLDTBL. Some 
RLDTBL entries will later be written out as 
Relocation Dictionary (RLD~text) entries 
for the data areas and as object text. 
Others, for the Global Tables. Hill be 
eritten as object text only. (These will 
be relocated by the object program.) 

SYSUT4, from which Data A-text is read, 
also contains E-text generated by phases 10 
through 51, and DEF-text for the 
cross-reference listing if the SXREF, XREF, 
VBREF, VBSUM, or TEST option is in effect. 
Figure 55 illustrates the contents of this 
data set when it is read by phase 64. 
Figure 56 illustrates hOH each type of 
element is processed. 

Phase 64 reads Procedure A1-text from 
SYSUT2 to produce the machine language 
instructions for the object program. One 
element of text is read and processed at a 
time, and the object code produced for this 
element is placed in a worlt area OU6REC. 
One or more elements are required to 
produce a complete instruction. When an 
instruction is complete, it is written out 
from the work area. 

If the PMAP option is in effect, the PUT 
routine is called to write a line of text 
on SYSPRINT every time a complete 
instruction has been created. If the CLIST 
option is in effect, this routine is called 
only for each source program verb. 

If the SXREF or the XREF option is in 
effect, Procedure A1-text is used to create 
REF-text, which is written on SYSUT3. This 
text, containing an element for every 
data-name, file-name, and procedure-name in 
the program, is used by phase 6A to produce 
a cross-reference listing. 

Figure 57 describes the processing for 
each type of Procedure A1-text element. 
The individual elements are illustrated in 
IIsection 5. Data Areas." 

Phase 64 179 



Licensed Material - Property of IBM 

r-------------------
I 
I start , , , 
I 
I 

, , 
I 
I , , 
I , 
I , 
I 
, End 
I 

Beginning of SYSUT4 
r---

Wr i ti~!L!rr.-Rha.2!L~l 

Da ta A-text 

E-text gen-erated by phases· 10, 
12, 20, 22, and 21 

DEF-text 2 (data-name, file-name) 

NOTE: These types of text are 
intermixed 

-, , 
I 
I 
I 
I 
I 
I 
t 
I 
I , 
I 
I 
I 

~ 4 
, .H~i t.!:mLlli Pha§g-d I 
I I 
, DEF-text 2 (Procedure-name) , 

I ------------------4 , Writte!L~.LPha§g_.21 I 
I , 
, E-text 3 generated by phases 12, , 
I 1B, 3, 4, 45, 50, 51 , , , 
I I 
, End of data marker for Data A-, , 
, DEF-, E-text (01) I 

~ -4( , writ.!:mL~~ Pha§g_~~ I 

: Debug-text if STATE or SYMDMP : 
, option is specified I 
L---._____ --I . 

Read during Data A-text processing1 

Not read by phase 64 -- passed to 
phase 65 

.-------------.----------~ 
"There are no control breaks provided between sections of text to distinguish text 
I written by one phase from text written by another. 
, During Data A-text processing, phase 64 determines solely from code (which is the 
I first byte of the element) .what type of text is contained in an element, and which 
I routine is to be called to process it. 
, E-text generated by phase 10 was passed to phase 21 intermixed with Data Ie-text. 
,2Produced only if the SXREF. XREF, or TEST option is specified. 
13 E-text generated by phases 12, 1B, 3, 4, 45, and 50 was passed to phase 51 intermixed 
I with Procedure IC-text. However, if the CSYNTAX option was requested and neither an 
I error (E) nor a disaster (D) level message was generated, phases 3, 4, and 50 write 
I E-text on SYSUT4. L---____ _ 

Figure 55. contents of SYSUT4 when read by Phase 64 

180 section 2. Method of Operation 



Licensed Material - property of IBM 

, I I 

ICode and Type I Action Taken I 
r-- ---+1-- ~ 
100 IAII E-text is built into a table called ERRTBL, which is passed to I 
IE-text Iphase 70. Phase 64 does not process the E-text. If the ERRTBL table I 
I loverflows the space allotted to it, all of the E-text is rewritten on I 
I ISYSUT3, and a bit in the SWITCH field of COMMON is set to indicate thisl 
I Ito phase 70. I 
I I I 
1 I There are two types of E-text elements: (1) message definitions andl 
I 1(2) message parameters. Message parameters are optional; however, if I 
I Ithey occur, one or more message parameters immediately follow the I 
I Imessage definition to which they apply (the uses of these elements are I 
I lexplained in the chapter "Phases 70,71, and 72"). Phase 64 examines I 
, leach element to determine its length, so that the correct number of I 
I Ibytes may be stored in the table. To do so, it checks the third byte I 
I lof the element. If the byte contains a zero, the element is a message I 
I ,definition whose length is 8 bytes. If the third byte is nonzero, the I 
, lelement is a message parameter of variable length, and the length is I 
I Idetermined from the value of the second byte (for the format of E-text I 
I land ERRTBL see "Section 5. Data Areas"). I 
I I of 
104 IGenerate an RLDTBL entry that will cause the address of the DCB to I 
IDCB address Ibe placed in the correct cell of the DCBADR field in the PGT at , 
I lexecution time. Get displacement of the DCBADR field from cell DCBCTR I 
I lin COliMON (see "DCBADR Allocation" in the chapter "Phase 62 11 ) and use I 
I Ithe DCB number to compute displacement of cell. Text element contains I 
I Ithe value (relative address of the DCB) to be placed in the PGT cell. , 
I I -f 
108 IGenerate an RLDTBL entry that will cause the address of the DECB to I 
IDECB address Ibe placed in the correct cell of the DECBADR field of the TGT at I 
I lexecution time. Get displacement of the DECBADR field from cell DECBCTI 
I lin COMMON (see Figure 48 in the chapter "Phase 62 11 ) and use the DECB I 
I Inumber to compute displacement of .cell. Text element contains the I 
I Ivalue (relative address of the DECB) to be placed in the cell. I 
I I ---t 

OC IGenerate an RLDTBL entry that will cause the address of the buffer 
block address Ito be placed in the correct BL cell of the TGT at execution time. Get 

Idisplacement of the BL field from cell BLCTR in COMMON (see Figure 48 
lin the chapter "Phase 62 11 ) and use the BL number to compute 
Idisplacement of the cell. Text element contains the value (relative 
laddress of the buffer) to be placed in the TGT cell. 
I 
I If the value of the SIZE field of the element exceeds 1024 (SIZE 
Ispecifies length of the block in full words), more than one BL has been 
lassigned to the buffer. For each 1024-word area after the first, 
lanother RLDTBL entry is made. The second RLDTBL entry will cause the 
Ibuffer address plus 4096 to be placed in the next BL cell of the TGT. 

I 
/14 

I -f 
IGenerate an RLDTBL entry that will cause the address of the File I 

IFIB address 
I 
I 
I 
I , 

IInformation Block to be placed in the correct cell of the FIB field in I 
Ithe TGT at execution time. Get displacement of the FIB field from I 
IAMICTR cell in COMMON and use the FIB number to compute displacement ofl 
Icell. Text element contains the value (relative address of the FIB) tol 
I be placed in the TGT cell. I 
, , 

Figure 56. Processing Data A-text, E-text, and DEF-text (Part 1 of 2) 

Phase 64 181 



Licensed Material - Property of IBM 

,.-- I 

ICode and Type Action Taken I 
I ~ 
124 IGenerate an RLDTBL entry that viII cause the address of the iorking- I 
IWorking-StoragelStorage Section to be placed in the correct BL cell of the TGT at I 
1 Section addresslexecution time. Get displacement of the BL field from BLCTR cell in I 
I ICOMMON (see Figure 48 in the chapter "Phase 62") and use the BL number I 
I Ito compute displacement of the item. Text element contains the value I 
I I (relati ve address of the Working-storage section) to be placed in the I 
, ITGT cell. I 
1 I If the value of the SIZE field exceeds 1024 (SIZE specifies the , 
I Ilength of the Working-storage section in fullvords), more than one BL I 
I Ihas been assigned. For each 1024-vord area after the first, another I 
I IRLDTBL entry is made. The second entry viII cause the address plus I 
I 14096 to be placed in the next BL cell. I 
I I I 
128 IWrite object text that viII place the value of the constant into a I 
I constant I specified location in the data area at execution time. This type , 
,definition lof element is used to fill some fields of DCBs and DECBs, and to I 
I linitialize data items for vhich a VALUE clause vas specified. I 
I I of 
12C IGenerate an RLDTBL entry that viII cause the address of the I 
I address I procedure-name (PN) or generated proced ure-name (GN) to be placed in I 
Iconstant la specified location of the data area at execution time. This type I 
I definition lof element is 'used to place pointers to routines in DCBs and exit I 
I llists. I 
~ I ~ 
34 IThis type of element contains a GN number for Q-Routine. The I 
Q-Routine lelements are built into a table called QTBL. Each entry is resolved I 
identification Iso that it contains the actual address of the routine rather than I 

Isimply the GN number. This processing is identical to that for GN 1 
Ireferences in Procedure A-text (see Figure 57 in this chapter). When 1 
Iphase 64 generates the code of INIT3 (one of the execution-time 1 
linitialization routines), it uses the QTBL and QGNTBL tables to 1 
Igenerate a call to some Q-Routines to initialize the data and table 1 
lareas affected by some OCCURS ••• DEPENDING ON data items, where the 1 
,object of the DEPENDING ON option is an item in the Working-storage 1 
ISection. 1 

• +- i 
138 IGenerate an RLDTBL entry that viII cause the displacement in the 1 
IBL reference ITGT of the BL number assigned to VSAM files to be placed in a specified 1 
1 Ilocation of the data area at execution time. I 
I I i 
13C IGenerate an RLDTBL entry that viII cause the displacement in the 1 
IBLL reference ITGT of the BLL numbers assigned to VSAM files in the Linkage Section tol 
I Ibe placed in a specified location of the d.ata area at execution time. 1 
I IThis type of element is used to complete the building of the FIB at 1 
I lexecution time. 1 
• I of 
148 ,This element is present only if the SXREF or theXREF option vas 1 
Idata-name or Ispecified. Each element is vritten out as it is encountered on 1 
I file-name ,SYSUT1, to be read by phase 6A. The chapter "Phase 6A describes 1 
IDEF-text Ihow-these elements are used. 1 
~------------~I------------------------------------------------------------~I 
14C IThis element is present only if the SXREF or the XREF option was I 
,procedure-name Ispecified. Each element is written out as it is encountered on I 
,DEF-text ,SYSUT 1, to be read by phase 6A. The chapter "Phase 6A" describes how I 
I ,these elements are used. , 
~, ______________ ~___ I 

Figure 56. Processing Data A-text, E-text, and DEF-text (Part 2 of 2) 

!ot~-.QJ!J!!!.ruL.!t~qiste!:§....f2L!.~..f2L!!.!!d TQ!: 
At execution time, register 12 always 
points to the beginning of the .PGT and 
register 13 always points to the beginning 
of the TGT. If the displacement of an item 
in the PGT or TGT exceeds 4096 bytes, an 

182 Section 2. Method of operation 

OVERFLOW cell must be used. The OVERFLOW 
cells fields of both the PGT and TGT are at 
fixed displacements from registers 12 and 
13, respectively. Which OVERFLOW cell is 
to be used is determined from the value of 
the displacement, for example, a value 



fron4096 to 0191 bytes uses cell 1, from 
8192 to 12 :287 bytes uses cell 2. etc. An 
instruction is generated to load register 
14 or register 15 from the OVERFLOW cell. 
Then. in the operand currently being 
processed, register 14 or register 15 is 
used as the base; and the displacement is 
decremented by 4096, 8192, etc. 

~fter Procedure Al-text has been processed, 
initialization coding is generated by phase 
64, using the GINIT1, GINIT2, and GINIT3 
routines. 

There are three initialization routines, 
called INIT1, INIT2, and INIT3. All three 
are resident in the root segment. INIT2 is 
generated first, followed by INIT3. In the 
generation of INIT3, the QTBL table is used 
to generate code that will call the 
Q-Routines at the beginning of program 
execution to initialize variable-length 
fields. I~ITl is generated last because it 
contains pointers to INIT2 and INIT3. The 

Licensed Material - Property of IBM 

contents and functions of these three 
routines are described in detail in 
"Appendix B: Object Bodule." 

After the initialization routines are 
generated (after Procedure Division or root 
segment processing). the RLDTBL table is 
processed. First, indirect address 
constants are resolved. Object text is 
~lritten for items that are in the global 
tables. This text consists of address 
constant definitions that will be stored in 
the Global Tables at execution time. 
Because the addresses are relocated during 
program execution by routine INIT3, no 
RLD-text is required for these items with 
one exception. RLD-text is written for 
relocating all PROCEDURE BLOCK cells 
contained in the PGT. Object text is also 
eritten for data area address constants 
(obtained from address constant and 
indirect address constant definitions) • 
For the data area address constants. 
RLD-text is written so that the linkage 
editor can relocate the addresses. 

r-- ---r -, 
ICode and Typel Action Taken I 
I I -i 
12C! IStore in 3-byte cells OU6CDN and XFCDNO. If PMAP or CLIST are requested, I 
Icard number Iread Listing A-text. Used to create an inline constant for TRACE I 
I I instructions that call the COBOL library DISPLAY subroutine (ILBODSPO). I 
! --t -I 
130 1 I Using PU number as an index, look in PNATBL to get displacement in PGT of I 
IPU definitionlthe cell for this PN. Create an RLDTBL entry that Hill place the cUrrentl 
I Ivalue of LOCCTR in the PGT cell. If there is no entry in the PNATBL, no I 
I IRLDTBL entry is created. I 
I- I -----4 
134 1 ISame as PN definition, using GN number and GNATBL. I 
IVN definitionl I 
I-- I -1 
138 1 ICreate an indirect RLDTBL entry from this element and the PN reference I 
IVN definitionlthat follows it. I 
! I -i 
13C IConvert the current card number to an EBCDIC constant of the form: I 
IEBCDIC card I I 
Iname I DC X'S' I 
I I DC CL6' generated card number' I 
I-- I I 
144 IUse byte 2 of the element as index to a branch table. Phase 64 produces I 
Imacro-type Ithe required coding. The contents of these elements are listed in the I 
I instruction IProcedure A-text formats given in "Section 5. Data Areas." I 
, i 
11 Indicates that no object text was written for this element. I 
12See "Note on Base Registers for the PGT and TGT" in this section. I 
L--- J 

Figure 57. Processing Procedure A1-text Elements (Part 1 of 4) 

Phase b" 183 



Licensed Material - Property of IBM 

r--- --~I----

I Code and Type I 
I I 

Action Taken 

148 IThis element contains in machine language the first 2 bytes of an 
loperation linstruction. The first byte is the operation code; the second byte 
Icode Igive condition codes, registers, or other operands. For an RR type 
I linstruction, this element contains the complete instruction. It is 
I Iwritten out as received. 
~ ---rl----~----
14C IThis is the operand of a LOAD instruction. Procedure branching is 

, 
I 

--f 
I 

may I 
I 
I 
I 

--I 
I 
I 
I 
! 
I ., 

IPN reference laccomplished by loading an address and then branching to it. Using 
I Iregister12 2 as a base, find displacement by using PN number as an index 
I linto PNATBL. Using card number stored in XFCDNO, Hrite an element o·f 
I IREF-text for phase 6A if SXREF or XREF is in effect. 
~----- ~ 
150 ISame as PN 
IGN reference I written. 
~----- -----jl~----

reference, using GN number and GNATBL. No REF-text is 

154 I Use R13 2 as base. Get displacement of VN f,ield of TGT from VNLOC cell 
IVN reference lin COMMON (see "Task Global Table storage Allocation" in the chapter 
I I "Phase 62"). Use a VN number to compute displacement of this VN cell. 

I 
I 

-f 
I 
I 
I 

~----- +1------- -------------------------f 
158 IUse virtual number as an index in the VIRPTR table (see "VIRTUAL 
Ivirtual IAllocation" in the chapter ~Phase 62"). Table entry contains 
I reference Idisplacement of this virtual in the PGT. Use register12 2 as a base. 

I 
I 
I 

r- I --------------~------------------., 
15C IThis element is the operand of an instruction that loads a base 
IBL reference Iregister. Use register13 2 as a base, get displacement of BLL or BL 
I Ifield in TGT from BLLCTR or BLCTR, respectively, in COMMON. Use BL 
I I number to compute displacement of this cell. 

I 
I 
I 
I 

~.--- ---1-1---
160 IUse register13 2 as a base. Displacement is picked up from a list 
ITGT standard I constants. This element refers to a cell in the fixed portion of 

--I 
of I 
the , 

larea ITGT. 
Ireference I 
~---- --I-I~------------------"----------~------------------
164 IUse register13 2 as a base (unless the element specifies the DCBADR 
IGlobal Table Ifield of the PGT, 'which uses register 12 2). Get displacement of the 
I variable ITGT or PGT field from the appropriate cell in COMMON, and use 
Ilocated area lidentifying number to compute displacement of this item (see "Task 
I reference IGlobal Table storage Allocation" and Figure 48 in the chapter "Phase 
I 162"). 
r---------+I---
168 IBytes 2 and 3 are used to find the correct entry in the LTLTBL table, 
I literal I which gi ves the displacement of this literal in the PGT. Register 12 
I reference I is the base. 
r-- I 
16C IThis element is used to create an inline constant for a calling 
IDC definition Isequence. It is always preceded by the element 4424. the macro-type 
I linstruction element signaling a DC definition (see earlier in this 
t Ifigure). It is written out as received. 
, ,--;1--
170 I Specifies the 
I base and I instruction. 
Idisplacement I 

actual register number and displacement for the 
It is written out as received. 

~ ~I--------------------------------------------------
11 Indicates that no object text was written for this element. 
12See "Note on Base Registers for the PGT and TGT" in this section. L---______________ __ 

Figure 57. Processing Procedure A1-text Elements (Part 2 of 4) 

184 Section 2. Method of operation 

I , ., 
I 
I 
I 
I 
I 
I ., 
I 
I 
I 
I 
I 
I 
I 
I ., 
I 
I 
1 

-4 
I 
I 
I 



Licensed Material - Property of IBM 

til 
I Code and Type I Action Taken I 
I I I 
178 IIf the! field contains X0 03', the BL, BLL, SBL, or SBS indicated is I 
,address lalready loaded. Use the register indicated in the low-order 8 bits of I 
Ireference Ithe ~ field for the base register. Displacement is the g field of the I 
I I element. If the i field contains a value other than X'03', save the I 
I Icontents of print buffers and generate load of register 14 or register I 
I 115 with the BL, BLL. SBL, or SBS indicated by the ~ field. If the I 
I ,high-order bit of the! field is on, use register 15; if it is off, use I 
, Iregister 14. Displacement is the g field of the element. In either I 
l Icase. get the card number from XFCDNO to write an element of REF-text. I 
I I I 
17C IThis element aluays follous the element 4404, the macro-type instruction I 
IEBCDIC lelement for ENTRY. It is used to punch an ESD-text type 1 card for the I 
I data-name lentry point. I 
I reference I I 
~ i 4 
180 IIf appended byte is not zero, print buffers are saved. One LA I 
laddress linstruction is generated for each multiple of 4095 in the sum of the I 
,increment Idisplacement saved for the 78 (or DO) and 80 elements. Buffer is I 
I Irestored; its displacement field is replaced by the amount in excess of I 
I lthe final multiple of 4095. Value of the 80 element is included in the, 
I I symbolic field as "+NNN." If appended byte is not zero, no LA I 
I linstruction is required since the displacement field is less than 4096. I 
, I r 
184 lThis element is used to create an inline pointer to an item in a field I 
,relative lof the TGT or PGT for a calling sequence. Get displacement of field , 
!address ,froGl appropriate counter in COMMON and lise identifying number to compute I 
I Idisplacement of item. I 
I I ~ 
lAO' ISpecifies the register used by a macro-type instruction element, and I 
Iregister 'must folloll certain of these elements (see the list of macro-type , 
Ispecification linstructions under "Procedure A-text" "Section 5. Data Areas. II) I 
I • ~ 
IA4 IThis element combines the Address reference (78) and Address increment I 
!incremented I (80, elements into one (see those elements in this table). ! 
I address , I 
~ I t 
IBO fUsed to create an inline TGT or PGT pointer for a call to an object-timet 
,calling Isubroutine that requires a parameter containing a displacement from 1 
I sequence I register 12 or register 13. ! 
Idisplacement I I 
I .j of 
IBill IUsed uhen a 'file-name or data-name occurs in a calling sequence to uritel 
Icalling fa REF-text element for ph~se 6A. Obtain card number from XFCDWO. I 
I sequ.ence I I 
I dictionary I , 
I pointer I , 
I I .q 
IB8 1 IUsed to write an element of REF-text. i 
lfile I , 
I reference I I 
I I ~ 
,BC I~enerate 3 DC instructions. used as parameters by the GO TO ••• DEPEND- I 
I segmentation lING ON and segmentation sUbroutines. Code generated is as follows: I 
land GO TO... I I 
I DEPENDING ON I DC X 'priority' , 
Icall parameterl DC X'Procedure block number' I' 
I , DC 12' displacement within Procedure block' I 
• I 
IIIndicates that no object text was written for this eleDlent. , 
IzSee "Note on Base Registers for the PGT and TGT" in this section. I 
, , 
Figure 57. processing Procedure A1-text Ele,ments (Part 3 of 4) 

Phase 64 185 



Licensed l1aterial - Property of IBM 

Ii. 
,Code and Type I Action Taken I 
r I ~ 
I C4 I Add displacement within PG~ of PROCEDURE BLOCK cell (or OVERFLOI~ cell) I 
I procedure Ito each instruction that establishes addressability for a Procedure I 
Iblock number I block. Use PRBLDISP cell in COMMON set by phase 62 for this purpose. I 
~ I ~ 
le8 IEnter displacement in branch instructions generated by phase 63. I 
I procedure basel using PNLBPTBL. I 
I register for I I 
IPHs I I 
f-- +-- f 
ICC IEnter displacement in branch instructions generated by phase 63. I 
Iprocedure basel using GNLBDTBL. I 
I register for I I 
IGNs I I 
I- I -I 
IDO ISpecifies actual register number, displacement from start of area con- I 
Ibase displace-Itrolled by base register, and a data-name dictiona.ry point.er. write I 
Iment data-namelbase and displacement, and branch to routine for processing dictionary I 
, I pointer. I 
I ' i -I' 
IlIndicates that no object text was written for this element. I 
12See "Note on Base Registers for the PG'l' and TGT" in this section. I 
'---
Figure 57. Processing Procedure .A1-text Elements (Part 4 of 4) 

186 Sectiorl 2. Method of operation 



The function of phase 65 (IKFCBL65) is to 
produce debugging information which is used 
by object-time COBOL library debugging 
sUbroutines and by the IBM OS COBOL 
Interactive Debug Program Product (Program 
Number 573ij-CB4). For information about 
the object-time COBOL library subroutines, 
see the publication I~H-~l!~£QBOL L~~y 
f~2g~m-Logi£. The phase is given control 
only if the flow trace (FLOW), statement 
number (STATE), symbolic debug (SYMDKP), or 
interactive debug (TEST) compiler option is 
specified by the user. The transfer of 
control to phase 65 is described in 
"Processing Between Phases" in the chapter 
"Phase 00." The operations of phase 65 are 
described in Diagram 7 located with the 
foldouts at the back ·of this publication. 

If FLOW is specified, phase 65 obtains the 
number (n[n]) of traces requested from the 
FLOWSZ cell in COHMON. The number is 
stored in the first byte of the DEBUG TABLE 
in the TGT. The ILBOFLWO subroutine 
requests storage for the Flow Trace table 
dynamically. For the FLOW option, the 
PNCHSW routine writes the flow trace 
information in the DEBUG TABLE. Further 
processing for the FLOW option is discussed 
in "Final Processing" later in this 
chapter. 

When STATE is specified, the object-time 
statement number subroutine (ILBOSTNO) uses 
the PROCTAB and SEGINDX tables. 

When SYHDMP is specified, the 
object-time symbolic debug subroutines use 
the Debug data set (SYSUT5) to produce the 
formatted symbolic dumps requested. When 
TEST is specified, the IBM OS COBOL 
Interactive Debug Program Product (Program 
NUmber 5734-CB4) uses the Debug data set. 
The Debug data set tables are created by 
phases 25 and 65 (see "Section 5. Data 
Areas" for a description of the Debug data 
set) • 

For the STATE option, phase 6 or 63 or 
for the SYMDMP or TEST option, phase 63 
created Debug-text, which is used by phase 

Licensed Haterial - Property of IBM 

65 to produce tables that provide 
information needed by the STATE or SYMDMP 
COBOL library subroutines or the IBM OS 
COBOL Interactive Debug Program. (Phase 6 
writes Debug-text on SYSUT2; phase 63 
writes Debug-text on SYSUT4.) Phase 65 
builds the PROCTAB and SEGINDX tables for 
either the STATE, SYMDMP, or TEST option. 
For the STATE option, the PROCTAB and 
SEGINDX tables are written in the object 
module; for the SYMDMP or TEST option, they 
are written on the Debug data set. The 
CARDINDX, PROCINDX, and PROGSUM tables are 
c~eated only for the SYMDMP and TEST 
options and are written on the Debug data 
set. The OBODOTAB and DATATAB tables have 
already been created for the SYMDMP and 
TEST options by phase 25. For the TEST 
option phase 65 also creates the BCDPN 
table and writes it on the Debug dataset. 

PROCESSING DEBUG-TEXT 

The RDF2 routine locates and reads the 
Debug-text, which is passed to phase 65 on 
SYSUT2 from phase 6 or on SYSUT4 from phase 
63. Debug-text elements are described in 
"Section 5. Data Areas." 

The F2PROCS branch table is used to 
branch to one of the routines that control 
the processing for the elements. 

Control 
BQ.!!j;in~ 
TENPROC 
TiENPROC 
FRTYPROC 

Elements 
PrQ£~gg 
CARDLOC 
ENDSEG 
Discontinuity 

The TENPROC routine builds the PROCTAB 
entries from the information in the CARDLOC 
elements. Each PROCTAB entry contains the 
rela ti ve address of the instruction 
generated for the card and verb number in 
the entry. Phase 65 divides any program or 
segment that exceeds 64K bytes in size into 
frag~ents less than 64K bytes in length and 
creates a final (dummy) PROCTAB entry to 
indicate the end of the each fragment. 

Phase 65 187 



Licensed Baterial - Property of IBM 

A SEGINDX entry is created for each 
fragment of the program. 

If the TENPROC routine determines that 
the code generated for the last verb causes 
the current fragment to eocceed the maximum 
size (64K bytes), it calls the GTEQ10K 
routine to handle the processing for the 
end of the fragment. The GTEQ10K routine 
calls the SNF routine to start the new 
fragment, make a SEGINDX entry for the old 
fragment, and begin collecting information 
for the next SEGINDX entry. 

The end of the Proced ure Division is 
signaled by an ENDSEG element. When the· 
RDF2 routine reads an ENDSEG element, it 
calls the TWENPROC routine to process the 
ENDSEG. 

If STATE is specified, the PROCTAB and 
SEGINnX tables are created and written in 
the object module as described above. 
Addresses passed in the TGTADTBL table are 
used to write the PROCTAB and SEGINDX 
tables in the object module. The TXPNCH 
routine writes the PROCTAB table in the 
object module following INIT3 .At end of 
file for Debug-text, the EOF2 routine 
writes the SEGINDX table, after the PROCTAB 
table in the object module. The addresses 
of the beginning of each of thePROCTAB and 
SEGINDX tables and of the end of the 
SEGINDX table are saved in the DEBUG TABLE 
in the TGT. 

The discussion of processing for the 
ST ATE option continues in "Final 
processing" la ter in this chapter. 

If SYKDBP or TEST is specified, phase 65 
processes the CARDINDX, PROCINDX, and 
PROGSU! tables for the Debug data set. 
Processing for the CARDINDX and PROCINDX 
tables occurs in conjunction with the 
processing for the PROCTAB and SEGINDX 
tables. If TEST is specified, phase 65 
then builds the BCDPN table. The PROGSU! 
table is processed after the other tables 
have been written .on the Debug data set. 

188 section 2. Bethod of Operation 

The CARDINDX table contains an entry for 
each fragment of the program and for each 
discontinuity in the COBOL instructions 
within a segment of the program. 

The discontinuity elements in Debug-text 
indicate the discontinuity in card numbers 
at the end of each noncontiguous section. 

When the RDF2 routine reads a 
discontinuity element, it branches to the 
FRTYPROC routine. This routine sets the 
DISCSW switch to indicate this special 
processing is to be done for the end of 
section. 

CARDINDX entries are created for 
discontinuity within segments and for each 
program fragment. 

After the TXPNCH routine moves a PROCTAB 
element into the SYSUT5 buffer, it 
determines whether the buffer is full. If 
the buffer is full, it calls phase 00 to 
write the buffer and builds a PROCINDX 
entry providing card and verb number 
information about the first entry in the 
block and the note address of the block 
after it has been written. The NOTE 
address of the first block of the PROCTAB 
table is saved for the PROGSUM table in the 
PROCTNTE save area. 

DEBUG DATA SET PROCESSING 

The TXPNCH routine writes the PROCTAB table 
on the Debug data set at the beginning of a 
new block •. 

At end of file on SYSUT4, control is 
transferred to the EOFON2 routine to 
collect information about the number of 
entries in each of the CARDINDX·, SEGINDX, 
and PROeINDX tables. It stores this 
information for the PROGSU! table in the 
CARDINUK, SEGINUK, and PROCNUK save areas, 
respectively. It then sorts the CARDINDX 
table in order of ascending card number 
priority. 

The EOFON2 routine then moves the 
CARDINDX, SEGINDX, and PROCINDX tables (in 
that order) to the buffer for the Debug 
da ta set (SYSUT5). (These tables are 
written on the Debug data set, beginning at 
a new block.) The EOFON2 routine saves the 
displacement within the buffer of the 



startof the SEGINDX and PROCINDX table in 
the SEGDSPL and PROCDSPL save areas, 
respectively. This information becomes 
part of the PROGSUM table. 

The EOFON2 routine then calls phase 00 
to write the tables and note those blocks 
that contain the beginning of a table. It 
saves the note information in the CARDNOTE, 
SEGNOTE, and PROCNOTE save areas for the 
PROGSUM table. 

All the information gathered by the 
EOFON routine is entered in the PROGSUM 
table. 

If the TEST option is specified, phase 
65 then reads DEF-text from SISUTl and 
builds the BCDPN table. The table is 
written on the Debug data set (SYSUT5). 
The device address of the first block of 
the table, along with the total number of 
blocks in the table, is inserted into the 
PROGSUM table. 

If the Debug data set is located on 
disk, the first 512-byte record is read 
back into the buffer, and the PROGSUM table 
is moved into the first lOS-byte field. 
The record is then rewritten on the disk. 
This processing is done in phase 65. 

If the Debug data set is located on 
tape, the ENDOFTBL routine issues a request 
to phase 00 to erite the end of file mark 
and reposition both SYSUT5 and SYSUT2 to 
the first record. Phase 00 is requested to 
read the first 512-byte record of SYSUT5 

Licensed Material - Property of IBM 

into the buffer and phase 65 inserts the 
PROGSUM table in the first lOS bytes. It 
calls phase 00 to write the buffer on 
SYSUT2 and to copy the remainder of the 
contents of SYSUT5 onto SYSUT2. Then it 
recopies SYSUT2 onto SYSUT5. 

For any of the options, the PNCHSW routine 
sets the fullword SHITCH in the TGT to 
reflect the options in effect and it also 
sets the DEBUG TABLE PTR in the TGT. If an 
error has occurred, the DEBUG TABLE PTR is 
set to zero and the corresponding bit in 
the PH6ERR cell in COMMON is set on. 
(Phase 70 examines the bits in PH6ERR to 
determine which error messages, reflecting 
errors detected in phase 6, 62, 63, 64, or 
65, are to be written.) The DEBUG TABLE is 
created from information produced during 
phase 65 processing and from information in 
the TGTADTBL table. and it is written in 
the TGT. Finally. the END card for the 
program is written in the object module, 
and if both the BATCH and NAME options have 
been specified~ a linkage editor control 
card is written for the object module. If 
the program is segmented, the object code 
for independent segments is obtained from 
SISUT1 and written in the object module. 
If TEST is in effect, phase 65 inserts the 
DEBUG TABLE information in the TGT of the 
object module. 

Phase 65 189 



Licensed Material - Property of IBM 

The function of phase 6A(IKFCBL6A) is to 
produce a cross-reference listing on 
SYSPRINT. The phase is given control only 
if the SXREF, XREF, VBREF, or VBSUM 
compiler option was specified by the user. 
The transfer of control is described under 
"Processing BetHeen Phases" in the chapter 
"Phase 00." 

Phase 6A tests the PHZSW1 byte in COMMON 
to determine whether the option specified 
is SXREF or XREF. If SXREF is in effect, 
phase 6A generates an alphabetically 
ordered cross-reference listing. Phase 6A 
tests the PHZSW4 byte in COMMON to 
determine uhether the option specified is 
VBREF, or VBSUM. If VBREF is in effect, 
phase 6A produces the verb cross-reference 
listing. If VBSUM is in effect, phase 6A 
produces the verb summary listing. If XREF 
is in effect, a cross-reference listing 
ordered by source statement sequence is 
generated. 

Phase 6A performs the following 
operations: 

• Reads DEF-text into storage until 
either storage is filled or end-of-file 
is reached. 

• Creates a DATA record and, if SXREF is 
in effect, a CONTROL record, for each 
DEF-text element. For SXREF, the 
CONTROL records are used in sorting the 
external names. 

• Reads REF-text and appends references 
to the proper DATA record (or OVERFLOW 
record) if the definition has been read 
into storage. 

• Prints each DATA record and its 
associated OVERFLOW records. 

These operations constitute the 
fundamental cycle that is repeated until 
all DEF-text has been processed. 

DEF-text for verbs has the same format 
and is processed in the same manner as 
DEF-text for data-names. Similarly, 
REF-text for verbs (VBREF only) has the 
same format and is processed in the same 
manner as REF-text for data-names. The 
only special processing for verbs is the 
re~ognition of the first verb-element and 
the first procedure-name thereafter. 

During phase initialization, phase 6A 
uses the GET ALL routine in TAMER (see the 

190 Section 2. Method of Operation 

chapter "Table and Dictionary Handling") to 
get all available storage for use in 
creating the DATATBL table, OFLOTBL table, 
and the CNTLTBL table (if the SXREF option 
is in effect), which contain the DATA 
records, OVERFLOW records, and CONTROL 
records, respectively. However, it does 
not use TAl1ER routines to access these 
tables. Therefore. phase 6A· is able to 
construct tables occupying more than 32K 
bytes. 

PRODUCING A SOURCE ORDERED CROSS-REFERENCE 
LISTING 

The maximum amount of space is obtained for 
the DATATBL and OFLOTBL tables by a call to 
GETALL in phase 00. 

The DEF-text is read from SYSUT1, where 
it was written by phase 6 or 64. There is 
one element of DEF-text for each data-name, 
file-name, and procedure-name in the source 
program. The text on SYSUT1 is read into 
storage until either storage is filled or 
end-of-file is reached. one DATA record is 
created for each DEF-text element. 

The REF-text is read from SYSUT3 or, if 
OPT is in effect, from file SYSUT1. There 
is one element of REF-text for each time 
the name is referred to in the source 
program. The text on SYSUT3 is read, one 
element at a time, until end-of-file is 
reached. 

For a data-name or file-name. the 
internal name is the dictionary pointer 
assigned by phase 22. For a 
procedure-name, the internal name is the PN 
number assigned by phase lB. The setting 
of a bit in each entry indicates whether it 
contains a dictionary pointer or a PN 
number. When a REF-text element is read, 
the high-order bit of the referencing card 
number is tested to determine whether the 
reference is to a data-name or to a 
procedure-name. (This test is made in case 
a dictionary pointer and a PN number were 
assigned the same value.) 

If the DEF-text element for the 
referenced data-name or procedure-name was 
processed in this cycle, the DATA record is 
in storage. For a REF-text element for a 
data-name, a binary search of the DATATBL 
table is made to locate the matching DATA 
record for the data-name. A REF-text 



element for a p~ocedure-name is matched 
directly by means of an algorithm with the 
DllTA recol:d for the procedure-name. If a 
[w.7.Gh is not found, the HEF-text element is 
ignored. If a match is found, the 
referencing card number contained in the 
REF-text element is placed in the DATA 
record. or if it is full, in an OVERFLOW 
record chained to it. If the current 
OVETIFLOl'1 rec ord is full, another OVERFLOI1 
record is added to the chain, and the 
referencing card number is inserted in the 
first three bytes of the record. If no 
OVERFLOU record is available, the last DATA 
record is split into three OVERFLOW records 
uhich are then placed on the overfloe-free 
chain. Before the referencing card number 
is placed in the nevly designated OVERFLOW 
record, the REF-text element is rechecked 
to ensure that the matching DATA record was 
not just deleted. At end-at-file, the 
REF-text data set is closed. 

At the end of the cycle, each DATA 
record and its associated OVERFLOW records 
are printed on SYSPRINT. 

If this is the last or only cycle, 
processing is completed \Ihen all names, 
defining card numbers, and referencing card 
numbers in storage have been printed. If 
this is not the last cycle, DEF-text is 
again read into storage. (If it vas 
necessary to split one or more DATA records 
into OVERFLOW records in the preceding 
cycle~ the DEF-text data set must be 
closed, revound, and reopened.) Names are 
read and ignored until the last name 
processed in the preceding cycle is 
reached. DATA records are created for 
unprocessed names and the cycle continues 
uith the reading. of REF-text. 

PRODUCING AN APLHABETICALLY ORDERED 
CROSS-REFERENCE LISTING 

The maximum amount of space is obtained for 
the DATATBL. OFLOTBL, and CNTLTBL tables by 
a call to GETALL in phase 00. 

The DEF-text is read from SYSUT1. The 
text is read into storage until either 
storage is filled or end-of-file is 

Licensed Material - Property of IBM 

reached. One DATA record and ODe CONTROL 
record are created for each DEF-text 
element. The CONTROL records are used in 
sorting the external names, which is done 
as the DEF-text is read. 

The REF-text is read from SYSUT3. The 
text on SYSUT3 is read, one element at a 
time, until end-of-file is reached and the 
bit is tested as described in "Producing a 
Source Ordered Cross-Reference Listing." A 
search of the DATATBL table is made for the 
matching DATA record and if it is found, 
the referencing card number is placed in 
the DATA record. or if it is full, in an 
OVERFLOW record chained to it. If the 
current OVERFLOW record is full, another 
OVERFLOW record is added to the chain, and 
the referencing card number is inserted in 
the first three bytes of the record. If no 
OVERFLOW record is available, the DATA 
record that is last on the chain of sorted 
DATA records is split into three OVERFLOW 
records vhich are placed on the 
overflow-free chain. Before the 
referencing card number is placed in the 
newly designated OVERFLOW record, the 
REF-text element is rechecked to ensure 
that the matching DATA record was not just 
deleted. If a matching DATA record is not 
found, the REF-text element is ignored. At 
end-of-file, the REF-text data set is 
closed. 

At the end of the cycle, each DATA 
record and its associated OVERFLOW records 
are printed in alphabetic order on 
SYSPRINT. The lines printed give the 
external name (from the DEF-text element), 
the card number of the statement in which 
the item vas defined (from the DEF-text 
element), and the card numbers of all the 
references (from the REF-text elements). 

If this is not the last or only cycle, 
DEF-text is again read into storage. 
(I(henever more than one cycle is required 
to process the entire DEF-text data set, 
the data set must be closed, rewound, and 
reopened.) Names are read and each name is 
compared with the last name processed in 
the preceding.cycle. If the name read 
alphabetically precedes the last name 
processed, it has already been processed. 
If the name read alphabetically follows the 
last name processed, the cycle continues 
with the creation of DATA and CONTROL 
records. 

Phase 6A 191 



Licensed Baterial - Property of IBM 

Phases 7'0,71, and 72 (IKFCBL70, IKFCBL71, 
and IKFCBL72) combine to generate all the 
compiler diagnostic messages for sourc,e 
program errors. Phase 70 contains all the 
codes except for the message texts for 
error messages generated by phases 20 
through 65 and the associated address 
constant tables used to' locate the text for 
anyone of these messages. Phase 70 
resides in storage during the entire 
message generation process and loads either 
phase 71 or 72 when message text is needed 
from one,of these phases. Phase 71 
contains the message texts for errors 
arising dur,ing processing by phase 20, 22, 
21, or 25; phase 72 contains the message 
texts for phases 3, 35, 4, 45, 50, 51, 6, 
62, 63, 64, or 65. Input to phase 70 
consists of E-text, passed from phases 04 
through 6A, which is either in storage or 
on SYSUT3 or SYSUT4. output consists of 
completed messages, which are written on 
SYSPRINT and/or SYSTERM. Phase 70 also 
produces a listing of all error messages in 
numbeJ;ed order if it finds that the name of 
the program is ERRMSG. 

INPUT FROB PRIOR PHASES 

Phases 04 through 51 produce E-text in the 
same manner. Whenever a processing routine 
detects a source program error, it writes 
out E-text message definition elements. If 
parameters are associated with the error 
message, the phase writes E-text message 
parameter elements directly after the 
message definition (see "section 5. Data 
Areas" for the formats). 

Phase 04 writes E-text for BASIS and 
COpy statements on SYSUT3. Phase 10 writes 
E-text interspersed with Data IC-texton 
SYSUT3. When phase 21 reads the Data 
IC-text, it writes the E-text back onto 
SYSUT4 without change, along with Data 
A-text and its own E-text. Phase 1B writes 
the E-text produced during PO-text 
processing on SYSUT2 with the PO-text. 
From then on until phase 51, E-text is 
added to the Procedure IC-text stream as 
errors are encountered. Phase 51 separates 
E-text and writes it, as veIl as its own 
E-text, on SYSUT4. Note, however. that the 
E-text is not interspersed with other texts 
if the CSYNTAX or SYNTAX option is in 
effect, instead phases 4, and 50 write 
E-text directly on SYSUT4. 

192 Section 2. Bethod of Operation 

If the compiler options are such that 
phase 6 or phases 62, 63, and 64 produce no 
output, then phase 7a reads the E-text from 
SYSUT4. otherwise, phase 6 or 64 reads in 
the E-text on SYSUT4 along with Data A-text 
and DEF-text. To avoid an extra 
input/output operation, phase 6 or 64 
attempts to save the E-text in storage for 
phase 70 in the ERRTBL table. The ERRTBL 
table, however, has a maximum size; if all 
the E-,text cannot be saved in it, phase 6 
or 64 puts the E-text for phase 70 on 
SYSUT3. 

If errors are encountered by phases 6, 
62, 63, 64, or 65, the corresponding bits 
in the PH6ERR cell in COHMON are set to 1. 
No E-text is written. Instead, phase 70 
tests the bits in PH6ERR to determine which 
messages are to be uritten and then 
generates these messages in the usual 
manner. Note that since there are only 10 
bits, phase 70 can only produce ten 
messages for phase 6. Any others must be 
produced by phase 6 itself. The presence 
of the text in phase 72 for these 
additional messages is for the error 
message listing only. 

PHASE 70 ERROR PROCESSING 

Upon receiving control from phase 00, phase 
70 uses the PABTBL, EACTBL, and PHxERR 
tables together' wi th E-text to construct' 

, error messages for the listing., The PH1ERR 
tabl~ is located in phase 70; the PH2EBR 
table is, located in phase 71; and the 
PH3ERR, PH4ERR, PH5ERR, and PH6ERR tables 
are located in phase 72. Messages for 
error conditions that arise during 
processing by phase 01, 04, 10, 12, or 1B 
are completely processed within phase 70. 

When an E-,text element produced during 
phase 20, 22, 21, or 25 processing is 
encountered,'phase 70 loads phase 71 into 
storage and picks up the address of the 
PH2EBR table which is located at the entry 
point IKPCBL71. Phase 70 stores these 
addresses in the corresponding entry in the 
PHBESS table and sets a switch to indicate 
that phase 71 has been loaded. Phase 70 
can then use the pointers in the PH2ERR 
table to find the message texts contained 
in phase 71. 



When an E-text element produced dUring 
phase 3, 35, 4, 45, 50, 51, 6, 62, 63, 64, 
or 65 processing is encountered, phase 70 
loads phase 72, to obtain the addresses of 
thePH3ERR, PH4ERR, PH5ERR, and PH6ERR 
tables as for phase 71. These addresses 
are entered in the PHMESS table and the 
switch is set to indicate that phase 72 has 
been loaded. Phase 70 can then use the 
pointers in the corresponding PHxERR table 
to find the message texts contained in 
phase 72. 

~RTBL and EACTBL Tables 

The PARTBL table is a fixed table assembled 
as part of phase 70 and is not handled by 
TAMER routines. It contains 3-byte 
pointers to all possible error message 
parameters, COBOL words, verbs, operations, 
etc., that are not programmer-supplied 
names. Its entries are of the form: 

<------------------3 bytess~---------------> 
r-------------------------------------------, 
I Pointer to parameter , 

The EACTBL table is a fixed table 
assembled as part of phase 70 and not 
handled by the TAMER routines. It contains 
3-byte pointers to error statements that 
describe which compiler action was taken 
because of the error, for example, 
"STATEI!ENT ACCEPTED AS WRITTEN.II Its 
entries are of the following form: 

<------------------3 bytes------------------> 

Pointer to statement 

The PHxERR tables are fixed tables 
. assembled as part of phase 70, 71, and 72 
and not handled by TAI!ER routines. For 
each message, an entry is made in the 
appropriate PHxERR table, where X has the 
following values: 

Value 
of x Phase --, 04,10,12, or 1B 

2 20,22,21, or 25 
3 3 or 35 
4 4 or 45 
5 50 or 51 
6 6,62,63,64, or 65 

Licensed Material - Property of IBI! 

Each entry is of the following form: 

< --------~--3 bytes-----------------> 
r 
I Pointer to text of appropriate message , 

The message text is found in phases 70, 71, 
and 72 (as described earlier in this 
chapter) • 

GENERATING MESSAGES 

The XNORML routine scans each E-text item 
in turn. It first moves the card number, 
message-phase number, and the severity code 
to the work area XU6REC. The severity code 
is of the form: 

IKFpxxxI - * 

where: 

p 

Value 
2LE 

1 
2 
3 
4 
5 
6 

XXX 

* 

is the phase number in which the 
error occurred, where: 

Phase 
04,10',12, or 1B 
20,22,21, or 25 
3 or 35 
4 or 45 
50 or 51 
6,62,63,64, or 65 

is the number of the message 

is the severity code, as follows: 

W = warning 
C conditional 
E error 
D disaster 

The XNORML routine next uses the pointer 
in the corresponding PHxERR table entry for 
the E-text entry to find the text of the 
message itself. It places the text in work 
area XU6REC. It scans bhe text entry for 
the presence of the symbols $, =, and /. 
The symbol $ indicates that a parameter 
following the E-text for this message must 
be inserted at this point. Parameters are 
taken either from the parameter entry 
itself or from the location pointed to 
indirectly through the PARTBL table by the 
value field of the parameter entry. 

Phases 70, 71, and 72 193 



Licensed Material - property of IBM 

The symbol = indicates that an error 
action message must be added. In this 
si tuation, a number directly follows the 
symbol. Phase 70 uses this number as a 
pointer to determine the displacement into 
the EACTBL table for the pointer to the 
appropriate error action message. 

The symbol/indicates that this is the 
end of the text for this message. 

The error action messages are in phase 
70 starting at location EACTOO. Routine 
XNORML moves the error action message into 
the work area immediately following the 
text for the message. The routine XPUT 
then writes the message on SYSPRINT and/or 
SYSTERM.l 

lRoutine XPUT calls phase 00 with a request 
to write to SYSPRINT. Phase 00 then 
determines whether SYSPRINT, SYSTERH, or 
both are to be written to and takes the 
appropriate action. 

194 section 2. Method of operation 

I ERliOR HE5~AGE LISTING 

On entry to phase 70 it determines if the 
program-id stored in COMMON is ERRMSG. If 
so, it is taken as a sign that this is a 
dummy compilation simply to produce a 
listing of all error messages in numerical 
order. This is done by scanning PHXERR and 
SEVTBL sequentially. 

I FIPS PROCESSING 

The FIPS processing phases (8s) cannot 
handle programs with syntax errors in the 
source. If phase 70 finds any errors of 
greater severity than W. a flag is set in 
COMNON (INFOHSG) to prevent FIPS 
processing. In addition some warning 
messages cause the flag to be turned on. 
Those that do not, have a bit (X'20 1 ) set 
on in their SEVTBL entry, indicating an 
informational message. 



The function of phase 80 is to flag the 
COBOL source statements that are at 
variance with the Federal Information 
Processing Standard (FIPS). The phase is 
given control only if the LVL compiler 
option is specified by the user or was 
defined as the default value at 
installation time. 

Phase 80 tests the FIPLVL switch in 
COKMON to determine which level of flagging 
has been specified (A = low; B = low 
intermediate; C = high intermediate; D = 
full standard) • 

Input to phase 80 is the COBOL source 
program listing on the SYSUT6 utility data 
set and the FIPS parameter list. If the 
LSTCOIIP option is in effect, the beginning 
of the Lister output (from phase 08) is 
identified by four bytes of binary zeros; 
the end of the Lister output is identified 
by four bytes of binary ones. 

Phase 02 changes the name of the output 
data set .for the source program listing 
from SYSPRINT or SYSTERH to SYSUT6 or their 
alternate DDnames when FIPS processing has 
been requested. The source program is 
written by phases 10, 12, and 1B. 

The FIPS parameter list is described 
below: 

Byte 
o 
4 

8 

12 

contents 
Address of COllMaN 
Address of DDname for input to 
phase 80 (SYSUT6) 
Address of DDname for output 
from phase 80 (SYSPRINT or 
SYSTER!!) 
Address of DDname for phase 80 
work da ta set (SYSUT1) 

The end of input to phase 80 is 
identified by the appearance of 999999 as 
the source sequence number. 

The oatput of phase 80 consists of the 
COBOL source program listing flagged 
according to the specified level of the 
Federal Information Processing Standard on 
SYSPRINT or SYSTER!!. 

Licensed Material - Prop erty of IBM· 

Processiilll 

If INFOMSG in COMMON is on, IKFCBL80 puts 
out error message number IKF8008 does not 
produce the source program. 

Phase 80 performs the following 
functions: 

• Scans each Division of the COBOL source 
program. 

• Generates diagnostic messages for 
exceptions to the standard. 

• Writes the source program and messages 
on SYSPRINT or SYSTER!. 

• Performs input and output operations. 

• Returns control to phase 00. 

SCANNING THE SOURCE PROGRAM 

The source program is scanned by the four 
scanning routines of phase 80. They are 
IDSCAN, ENVSCAN, DATASCAN, and PROCSCAN; 
they process the Identification, 
Environment, Data, and Procedure Divisions, 
respectively. These routines are under 
control of the IKFCBL80. routine and they 
use the GETLINE, PUTLINE, GETWORD, CHKCOPY, 
CHKGLBLS, HSGHNDLR, and VERBCHK routines. 

The scanning routines call the GETLINE 
routine to read a line of the source 
program and the GETWORD routine to 
determine each word of the line. 
Subroutines in each scanning routine check 
each word to see if it meets the FIPS 
standard. Diagnostic messages are issued 
for exceptio~s to the standard. 

When an exception to the FIPS standard is 
discovered in the source program, the 
MSGHNDLR and HSGWRITE routines are called 
to format the diagnostic message and to 
write it on the output data set. 

Each Division scanning routine contains 
the text of the messages that are issued by 
that routine. When the MSGHNDLR routine is 
called, the address of the message is 

Phase 80 195 



Licensed Material - Property of IBM 

passed to the routine and the routine 
formats it for printing by the MSGWRITE 
routine. 

WRITING THE SOURCE PROGRAM 
----------~--------------

Each time the GETLINE routine is called by 
pne of the scanning routines, it reads a 

196 Section 2. Method of Operation 

line of the source program and then calls 
the PUTLINE routine to write the line on 
SYSPRINT or SYSTERM. SYSTERM is used only 
if the user has specified the TERM option, 
or when operating under TSO or CMS. After 
the line is written on the output data set, 
control is returned to the scanning routine 
for PIPS processing. 



Licensed Material - property of IBM 

Flowcharts 197 



Licensed Material - Property of IBM 

FUNCTIONAL SYMBOLS 

:* ••• Al ••••••••• : 

,.. PROCESSING ,.. 
,.. BLOCK ,.. 

- -- -••• :tjl •••••••••••• 

. -. B1 *. 
.* .~ECISION *0 •• 

:to BLOCK .-
*0 .-*0 .* * •• * -

•• •• cl· .. ••••••• :¥~~~hA~A§E6c~R: 

- -............... 

··Dl······· - -.. PREPARATION .. 
.. BLOCK .. - -- -........... 

···El··········· -INPUT/OUTPUT .. 
BLOCK 

·····Fl·········· - -*-*-*-*-*-*-*-*-* • SUBROUTINE .. 
: BLOCK : ................. 

• •• ·.Gl.· •• •.•·.· •• *. 
•• PREDEFINED .... 
•• PROCESS •• .. .. .. .. ................. 

,ON-PAGE 
CONNECTOR 

l .... 
->* ,.. 

• C3 • - -
OFF-PAGE 
CONNECTOR 

L •••• >*02 • 
• Al .. 

- -.. ".. 

.. ··s3········· - -.. HOURSRTN .. 

- -: :~~::--j ....... . 
.. *-> .... 

BRANCH ·····c3·········· ·----UPOATE-----· 

- -
- -................. 
: ':;': 1 • .-> .... 
... ··03·········· - -- -- -- -- -................. 
;~i;: .->1 .... . '. 

E3 *. . '" .. .. .. --_.. . .---.. .. .. . . .. .. 
-

GOTO 1 nOlAl 

·····F3··*···*·*· ·SUBNM • . _.-._*-._.-*-*-. - -. . 
- -................. 

THE INAL BLOCK IS USED 
TO ENTRY AND EXIT 
POI F A ROD'rINE. 
BLO SHOWS AN ENTRY 
POI MED HOURSRTN. 

THE INSTRUCTION AT LOCATION 
BRANCH CALLS A SUBROUTINE 
NAMEO UPDATE. UPDATE IS 
A SMALL ROUTINE AND NO 
FLOWCHART OF IT IS PROVIDED. 

ON-PAGE E1URY CONNECTOR. 
ONE OR MORE BRANCHES TO 
THIS BLOCK APPEAR ON THIS 
PAGE OF THE FLOWCHART • 

OFF-PAGE ENTRY CONNECTOR. 
A BRANCH TO THIS BLOCK 
APPEARS ON ANOTHER PAGE (5) 
OF THIS FLOWCHART • 

THE INSTRUCTION AT LOCATION GOTO 
CALLS A SUBROUTINE NAMED SUBNM • 
THE LOGIC OF SUBNM IS SHOWN ON 
CHART YY STARTING AT BLOCK Ai. 

1 <-~~~~-~~~~TION 
L ••• 
I G3 •• 

• •• "G2"."..... ~ • *.. .'.. ~~A~~~~SE~~TBigg~EE10~N T~~~T~~~E 
• RETURN .<---- --_.. . .---~ OF THE FLOWCHART. 
• '" C *. .• .* ..... **...... R •• •• o •• •• • ••• 

S ••• 

! --------> 1 : n3 : 

:: ••• H3 •••••••• :: 

•• EXECUTE •• 
• * UTLXYZ •• .. .. .. .. ••••••••••••••• *. 

1 .-. J3 •• 

THIS BLOCK REFERS TO A ROUTINE. 
OR PROGRAM THAT IS DOCUMENTED 
IN SOME OTHEI<. PUBLICATION. 

· .... J2.......... .... .'.. g~~Ng~~~ ~3I~Lgg~N~~Tg~·PAg~N~ROL 
• RETURN .<--------*. . .---~ OF THIS FLOWCHART. · . .. .. *.** ••••••• *... •..• 

S RETURNED TO 
E POINT. (FOR 

THE POINT 
IS ROUTINE 
.) 

•.. * •• * •• 
• ·02 • 

1 -.A~' 
XX02Al -····K3········· - -: TAXRTN : ............... 

CONTROL BRANCHE.S TO AN ENTRY 
POINT ON ANOTHER FLOWCHART. 
BLOCK K3 SHOWS A BRANCH 
TO LOCATION TAXRTN THAT 

~~P~~~T~~G C~~R~L~K ~~~E 

Figure 58. Explanation of Flowchart symbols 

198 section 3. program organization 



Licensed Material - Property of IBM 

Chart AA (Part 1 of 7). Phase 00: Overall Flow 

.. .... At........... [FRoM-CALLING----

.. COS .. -------- PHASE .. .. ----------------............... 
j 

**··*81······**·· .. ,. --------------------
.. DECIPHER" [SET FIRST 1-0 SWITCH, 
.. LINKAGE .. -------- SINGLE BUFFER SWITCH 
: PARAMETERS: ::_~::~::~~~~ ______ _ 

.. · .. ···r··· .... 
• ¥. 

Cl *. 0" ... 
." ., YES 

.......... READ ... ' *,' *---l, 
*, . '" ...... 

.NO *02" TO READ 1 .. :;* 
· * • 

• D1 *'., 
• " +, YES 

•••••• PUT •• ,.'*---l 
" .. " ••• * • 

• NO *04" TO WRITEA 1 . * :;' 
· '. 

E1 "'. 
,+ * . 

• " +, YES 

"'"'''' PUTN ...... ' *---t ... '" ..... 
• NO .. 04" 'r-O WRITE 1 . * ~}' 

· * . 

. ... · . 
• A3 • 
.. * ... ·--v 

.'. A3 •• 
.• *. 

•• •• YES 

• ..... ~RINTE~ ...... *---! 
•• _* * .... It< 

.NO *04 • 1 . D1' 
+ + · 

.+. 
B3 •• .. .. 

•• •• YES 

•••••• PUNCH ..... " .--l 
*, ,. • •••• 

• NO .05 • 1 . B2' 
+ • · 

.'. 
C3 *. .. .. 

•• •• YES 
•• SYSLIN •• --1 ., .. .. , . . , .. . ... '" l·NO :O~2: 

+ • · 
··*·03·*·····*· · . "'RETURN TO PHASE • · . •••• * •••••••••• 

TO WOUT 

TO WPCH 

TO WGO 

• " Fi ... ... ::~;;~~*;~;;;~*:: ." F£AST'" *, .. ·P4 ......... u : ... +FS ........... : 
• .. ... YES ** MACRO AND .. • *COHP ILATION*. YES" "' .. RELEASE TAMER .. 

... EOJ • *-------->* .RELEASE COBOL.+------->*. IN BATCH DONE. *--------> CLOSE DATA SETS -------->. AND BUH'ER • 
• '. .;to'. :: SPACE:: *'.. ..'. • .. : SPACE : '. r~ ................. ..... ................ . ....... j .. ** ••••• 

· *. nETURI~ 
Gl ., ••• *.G2 •• ** ••• + •• . " ., ** •• ·**·GS·····*·*. ,. LINK NEXT". YES *.ISSUE RETURN .. .. RETURN TO • 

•• PHASE •• -------->*. MACRO ** • SYSTEM .. . , .. .. .. . . .. , ." .. .. . ............. . 
'. t~: '::': ·· .. ····1····· .. ·· .. . . .... 

.' . H2 *. ..* .. u3* •••••• *.* •••• * 4 ••• * •••• *. 
•••• *--INTERJ~UDEXX--. .SET L • • ••• Hs ••••••••• 

• :. ERROR ·:.~~------>:~~~~~N ~5~~~~Sf : _______ >! S¥ :-------->!LINK NEXT PHASE: 
•• • • .DETERMINE NEXT .. • NEC •• • 

•• ,. • PHASE·. • ••••••••••••••• 

. '1' y~S ........ t::::: rlr------~~~~ii~~~~ .. · .. · 
~:. __ !_~~_~_4 __ ~~~~ ····J2····· .. ··· 

: I~E~Lb~ : -------- [~iNK=~~~~~~= 

Flowcharts 199 



Licensed Material - Property of IBM 

chart AA (Pa rt 2 of 7) • Pha!3e 00: READ Rou tine 

.... 
*02 .-

FROM • Bl .--~ 
Olel· .-.... 

READ , •• 
B1 *. .* *. .* *, YES 

... FIRST READ ,,*-------> *. 0* • 
*" ,* * .. * 

FROM :~~~ .. *_>loNO 
06B2'" • .... 

READE ,,*. 
Cl *. 

,* *. 

• o. ···B2··········· B3 *, ,* ., 
'-READ TO FIRST .. " .. .... NO 

AREA ------> •. SINGLE BUFFER •• ---~ 
*. ..* .. .. .. .. . ... rs 

:O:!O: 

···C2··········· ···C3··········· ····C4········· 0* *. YES o o 0 0 
•• SINGLE BUFFER.*--------> READ --------> CHECK READ 

*. .* • o 
*. .• 

*. ". . .............. . r 
READe • *, .. *. 

200 

01 .. " D2 *. 
0* *. .." * . 

• '" SYSIN OR •• YES ,," ... " YES 
.. • SYSLIB ,,*-------->*. SYSLIB " *---! •. ,* *. ,* *...* *, •• *. ". * .. * ••••• : *::*: lONO i.-No :~:~: 
.. *-> .... 

.0 • ... E1........... E2 *. 
,* *. 

• CHECK .. YES • '-ENTIRE AREA-" 
PREVIOUS READ <--------*. USED •• ... *. 0* ................ 

1 .··Fl··········· • INITIATE NEW • 
READ 

*. .• *. 0* r ···.·P2·········· o 0 
.. INCREMENT USED • 
• LENGTH • 
o 0 
o 0 

·········[=~--~::::r······ 
····G2········· o 0 

.. EXIT • 
o 0 ............... 

READLIB 

section 3. Program organization 

------->. EXIT • 
o 0 . ............. . 



Licensed Material - property of IBM 

Chart AA (Part 3 of 7)0 Phase 00: WRITEA, WRITE, and WOUT Routines 

····Ai········· . . 
.. START .. 
• 0 ............... 

I [PHAsEs-wILLBRANcHANri-I:INKTo-COS:--REGISTERO 
--- ~~~~:~~~~!~:~~~:!!~~~~~-~~~~~~~-~:~~-

·····B1·········· .. .. .. .. 
•• GOSYSGO •• .. .. .. . . ........ 1" ...... 

. ····Cl·········· .. .. .. .. 
:: GSYSG2 :: .. .. 
········1········· :0:+ .. 

.. Bl .. 

. *. Ii~; .. " 
D1 ... D2' • +. • •••• 03 •••••••••• 

. " *. 0+ *. .. .. 
• " WRITE ON ... YES • .. ... NO .. GET SYSUT4 .. 

... BYSUTti .. +-------->+. zz=o • +------->* ADDRESS 
+, .+ +. .* • *. ." +.... .. 

+ •• " * .. " ••••••••••••••••• 
oNO 0 j 
1 r------------------------

• +, v 0+' E1 .... . .... E2.......... E3 .... 
,+ +. .. ,. 0+ +, 

.. " WRITE ON ... YES -MULTIPLY ZZ BY .. .." +. YES 
.... SYSUT5 .. *-------->+ 11 *-------->*. ZZ=Q .. *--------> +. ,+ .. .. *. ..* .. *..+ .. .. *.. .. •• 0* ••••••••••••••••• + ••• 

t~::~~· . I·NO 
• Bl • . . .... . .. 

F3 •• .• *. 
•• •• YES 

• 0 Z Z= Ii •• --------> .. .. . 
*0 .* •. o· r 

.0. 

G3 *. .* *. •• •• YES 
•• ZZ=8 • *--------> ·0 o. * .. o· ·0 0* r ... 

H3 •• .. .. .• .0 YES 
•• ZZ=12 0.--------> .. .. . .. . . .. .. r ···J3··········· . 

WRITE UPDATE 

···E4··········· o 
WRITE RECORD 

··.P4··········· 
.NOTE AND SAVE • 

ADDRESS --> 

···G4··········· 
.GET ADDR AND • 

POINT --> 

···H4··········· 
TCLOSE 

. 
--> 

········F=--------
····K3········· · . • RETURN • · . ............... 

Flowcharts 201 



Licensed Material - Property of IBM 

Chart AA (Part 4 of 7). Phase 00: WRITEAr WRITE. and §OUT Routines 

.... 
*04 '" 

FROM '" Bl *--1 0101 '" '" ***. WRITEA .··.·Bl········*· · . • PICK UP LENGTH '" 
'" FROM Ie-TEXT '" · . · . 

FROM ~;i:::::l··*·**··· 
OlEl '" '" .... 

WRITE .. *. 
• Cl *. *. 

.* *. YES 
"' .. UTILITY FILE .. *-----

*. .* *. 0* 
* .. * 

•••• ·NO 

FROM :°ril'" .->1 
OlB3 '" '" .... 

WOUT .*. 
D1 *. 

. * *. .* *. YES 
... .. PRINTER .. *----

*. 0* *. .. '" 

··r 
*"'*El·······*··· "'MOVE TO PUNCH '" 

AREA AND PUNCH · . ····· .. ·T·· .. 

202 

····Fl········· · . '" EXIT '" · . ............... 

TO SYSPRINT 
ONLY 

Section 3. 

.'. A2 ... • •••• A3 •••••••••• 

.. '" *. '" '" ····A4*········ .* "' .. YES '" • '" '" --)*.FIT IN OUTPUT. *--------)*MQVE TO OUTPUT *-------->* EXIT '" 
*. .* ... • '" ... *..* '" '" ••••••••••••••• * ... * •••••• * •••••••••• r ·····B2·········· · . · . '" PUT DELIMITER '" · . · . ····· .. ·1 .. ······ 

.' . C2 .~ .* •. ···C3··········· : ..... Cq ••••••••• : •••• CS ••••••••• 

.• *. YES ... .. . 
•• SINGLE BUFFER.*--------> PUT -------->. CHECK .-------->. EXIT • •. .* • • • * • .. .. .. .. . . .............. . ................ • •• * ••••••••••••• 

r .'. D2 •• • •••• D3 •••••••• ** ·*·D4··········· .... . . 
• • •• YES • SWITCH BUFFER • ····DS········· .. . 

... FIRST I/O • *------->. AREAS *--------> PUT -------->. EXIT .. .. .. . .. .. .. . . .. ~. . ............... . . .............. . r ·····£2·········· · . .CHECK PREVIOUS • ····E4········· .. . 
• I/O .-------> PUT · .. · . ................. 

.'. 

. ... · . • F3 • · ..... --~ 
-------->: EXIT : . ............. . 

F2 "'. ..·F3··········· •• ·*15 TERM·· •• NO .MOVE TO LINE. • •••• F4 •••••••••• 

--> ..... o~~~gT IN ..... -------->. ANRy~~fti~T ON -------->: EXIT : .. ... . ............. . .. .. rs 

.'. G2 •• • •••• G3 •••••••••• ···G4··········· 

· . •• * •••••••••••• 

•••• •• *"'··GS···*····· 
•• SYSPRINT •• YES • POINT TO" .MOVE TO LINE ... *' 

•• UNaSABLE OR •• -------->.SYSTERM BUFFERS*-------> AND WRITE ON -------->. EXIT >I< 

•• DMY DATA •• 1\. AND DECB. • SYSTERM 1\. • 
"'. SET •• •• • ••••••••••• * •• .. .. . ............... . r 

.*. 
R '. •• IS· • 

•• A 55 •• YES 
... M FOR ... -----*. SY M •• ".0 .• .. .. r .'. J2 •• 

• "'PH HAS •• 
•• ERROR MSG •• NO 

• • FOR SYSPRINT •• ---~ [----------
... & SYSTERM .. " ----- FOR SYSPRINT *... ONLY .. .. .... ----------

·YES • • 1 F3 : 

.*. 
K2 •• ..* .. K3 •••••••••• . *.. .SE TCHTO* 

.*IS THIS AN *. YES • ON '" 
*.ERROR MESSAGE.*-------->. SY AFTER .--------> *. .• • SY RINT ,.-*. .• • .. •. • * **"' ••• * •• _ •••• _ •• 

'NO 
L_>* _.* .• 

• F3 • . . 
••• * 

Program Organization 

:"' •• "'J5 •••• "' ••• *: 
• REINITIALIZE • 

---: SWITCH : · . ••• * •••••• "- •••••• 
A 

··"'K4***·*·· "' ••• ... KS.l ........ . 
• WRITE ON 

SYSPRINT 
• • rlRI'l'E ON 
--------> • SYSTERM 



Licensed Material ~ Property of IBM 

Chart AA (Part 5 of 7). Phase 00: WPCH and WGO Routines 

.... 
*05 .. 

FROM .. B2 *--1 
Olel :..... v 

WPCH .*. .*. 0*' 
B2 *. 83 *. B4 *. 

0* *. .* *. ." * . 
• " SYSPUNCH *. YES ." FIT IN *. NO ." *. YES 

... ACTIVE • *-------)*. OUTPUT AREA .. *-------).. FIRST PUT • *---
*. 0* *. ." *. ." ... ." *..* *..* * ... * * .. * * .. * 

FROM :~~: .. *_>l·NO l*YES l·NO 

OlD3 !....... <----------
WGO 0*' C2 .... . •.•. C3.......... • .•.• Cq ••.•.•.•.• 

. * *. .. .... .. 
• " .... YES" .. .CHECK PREVIOUS .. 

*.SYSLIN ACTIVE.*--- <--* MOVE" .. PUT .. *. .* *' .... .. *. .." .. .... .. . .", ................ · ........ I::::=-· 

**** · . .. J2 .. 
.. *-> 
.*** ·.·J2··········· . 

BLANK PUNCH <--

········T···· 
····K2········· · . ... EXIT .. · . • * ••••••••••••• 

···04··.········ 
PUT ................ 

___________________________________ J 

·····P3·········· · . .. PICK UP .. 
---->* POINTERS .. · . · . ................. 

1 .' . 
•• G3 *'.. : •••• G4 ••••••••• : o. FIT IN .0 YES. • 

•• OUTPUT AREA 0.--------). MOVE • ·0 ,. • • ·0'· . . . ·l·N~ ·········l···::::· 
->. • 

• J2 • . . .... . '. H3 ., o· .. ,. .0 YES 
• .. FIRST PUT ... ---·0 ,. ·0 o. ·0 .• r ..... J3.········· · . • CHECK PREVIOUS • 
• PUT • · . · . ········F:::::---
···K3··········· 

PUT . .............. . 

Flowcharts 203 



Licensed Material - Property of IBM 

Chart AA (Part 6 of 7). Phase 00: READ Library Routines 

204 

FROM 
0202 

..... 
·06 .. 
.. A2* .. . 
t 

READLIB ...... RLIBD ..... 
A2 *0 A4 *Oo 

Oo_ *0 ,* +0 •••• AS ••••••••• 
. * LIBRARY *. NO ,+ *0 YES .. RET TO PH 101 .. 

... OPENED .*-------------------------------->*. COPY .. +-------->*121 1B CALLING. *. CORRECTLY... ... ... • RTN W/ERR COE .. 
*Oo ,+ *...* ••••••••••••••• 

* ... " *. ,* 

.rs T~NATE r 
B2 *. • •••• B4 •••••••••• 

.. " ... .. STORE POINTER .. 
.. .. .... YES -TO ERROR CODE ,+ 

... SAME MEMBER •• ---~ -->+REGS 0 , 1 (FDa. *. .." .. SYNADAF) IN .. 
*.. .* .. COMMON .. '. t :~~;: READB ·······T······· 

.... .. *. 
C2 .... CI.i -. 

YES ........ •• +., .... " ;HASE 00"" *. NO .. ····CS········· .. 
_*.. FIRST I/O .. " .... ISSUED RETURN. *-------->* RETURN .. *. .." *. .• .. .. .... 0* •• 0* ••••••••••••••• 

•. .. " * .... . r I·
YES 

D2 *. • •••• 03 •••••••••• 

,. *. .. .. ····D4········· 
.. :: NEW MEMBER :: .:~~ _____ >: SAV~A~MBER • : I~~~§L6~ : ________ [~~~~=~~=~~~~£~= ...... '. ."' ..... "' ...... . 

=--~l:~---~:~] .. ····· 
"'''''''''''''E2''' "'.'" "'''''''*'''* · . • SAVE LIBRARY '" 
• NAME '" · . · . .... · .. r ...... 
·*"'·*P2"'·**··*··* 
*'" *'" "'* .'" "''''FIND (MACRO) .. 
** *. 
*'" *'" "'*"'*"'*.**"'**"'**** 

1 ... 
G2 * . 

. * "' . . * FIND *. NO 
•• SUCCESSFUL • *-------------------------------*. .• 

*. .* "' .. * 

rs 

RLIEGO .* . 
• "'*"'*Hl**"''''*''''''.*''' H2 "' . • * *'" . '" "'. *'" "'* YES .'" "'. *'" READ NOTE *"'<--------*.BASIS REQUEST. * *. "'''' "'. .• •• *'" *... · .. ····l::::------~r 

Section 3. 

"'**"'J2··"'**"'··· * RET W/REC TO • * PHASE 10/ 12/ • 
'" lB CALLING RTN • • "'* ••••••••• "' •• 

Program organization 



Chart 11 (Part 7 of 7). Phase 00: 

NO 

El 

TO cos 

H2 

FROM PLS 
CALLING 
PHASE 

AD 

~=I~~~ >-,N",O'-__ !>I 
MEMBE 

YES 

E3 

Licensed Material - Property of IBM 

PLSCALL Routines 

B3 

03 

I-O 
ERROR 

NO 

YES 

SYNAD 
ERROR 

NO 

YES 

Flowcharts 205 



Licensed Material - Property of IBM 

Chart BA. Phase 01: Overall Flow 

····A3········· 
: IKFCBLOl : ------- [~~~~R-F~~~=~~~:_~= .. · .. ·r· .... 
·····B3·········· .. . . 
•• LINK TO PHASE •• 
•• 02 •• .. .. .. . . ........ ]"' ..... 
····C3········· . . 

.. EXIT • . . ............... 

206 Section 3. Program organization 



Chart BII. Phase 02: Overall 

.. .. EUTER FROM 
....... Al······",,:e:* [ ____________ _ 

: IKFCBL02 :---- ~~~~~_~~ ______ _ ........... .-... 
1 
. -. 

ill * . . " .. . * FIRST IN *. NO 
;0;. BlITCH on .• ___ ~ 

... riOBATCH •• 
*. .* 

>/; •• " •••• 

rES :.:~) 
v ·····Cl·,."········ !¥5ED~~~~"~n~RgH: [ALSO-SETS------------

.. 51 ZES & SET *---- LONGPHSE = 

.COBOL SF CONSTS* LENGTH OF PHASE 00 ... 
• .. LENGTH OF THE LONGEST ........ 1"'..... '''-''----------
·····Dr·········· .SCAll P!1R!,H£TBRS* 
.. FRO!-\. EXEC CARD." 
.. CSL CARD, OR .. 
.. COBOL COHMAND .. · . ....... "' .......... . 

1 ·····E1·"'········ · . .. SET OPTION .. 
.. SWITCHES .. · -· . •••••••••• * •••••• 

1 
. *. 

." F~AVE *.... : •••• F2 ••••••••• : 

• " AUGMENTED ... YES" * 
... DDHAI"lES BEEN • "'-------,->* IIJOVE TO DCB' S ... *. PASSED ." .. .. 

*. . '" .. .. 

. ·l:~---------------~~~~~~~~j········ 
. '. 

• " Gl ..... : •••• G2*.*******: 
•• -.YES - * "*. NEW HEADER .*-------->* MOVE TO PRInT * .. .'" -. .'" 

'. j:~---------------~~~~~~] ....... . 
v 

:****Hl * •• *** •• "'! 
* GET DATE * ! cm'WILED * 

· *** **** ****. *** ** 

1 
**·Jl******· **** 

... OPEN ALL * 
.. REQUIRED FILES * 

1 
*·***Kl .*** .****. 
• + :it EDIT BLOCKING .. 
: !-'ACTOHS : .. ,~ 

-**.*.,. * •• ** ***** 
l **>t>t 
->* .. 

: B] : 

!).'*'* 

Licensed Material - property of IBM 

**** · . • B3 * 
* **** *--v .' . B3 *. *,*,...;..;oBIl****** ••• * * •• **05**.******* .. '" .. .. 

• f.. DUFFER *. YES .USE BUFFER SIZE* ~. GETMAIN FOR • *. SPECIFIED • *------->* SPECIFIED .-------->. NECESSARY • 
.'*. .*'. : : ": STORAGE : 

A.. •• .::OJ:;" ... ,~*.****.*.*** *.* •• ******:t"***.* 

.I~ 1 
•• C3 *'*. : ........ ·C4 ... ***.***.: :*~·*.C5*.***.*.*: 

• .. MAIN •• NO .. USE DEFAULT • • ESTABLISH • 
*.~:~~~g~FY~~7*.*-------->: BUFFER SIZE :----> : BUFFER AREAS : 

•..• * * *" * 
*. .• ***:1<**:1<********** ***********.*.*** 

rES 1 
v .*. 

:****D3*.** •• ***: .* D5 •• *. 
* CALCULATE NEW * YES • * •• 
• BUFFER SIZE .------------------------------- * . LIB SPECIFIED. * 
: : 04 *'.. .*-* 
**.******.*.***.. * ..• r 

DATE-----------------] !* *·"E5· *.* ..... *: 
BUFFER CONTROL ELOCKS .. RETURN * 
TAMER AREAS -----* INFORMATION TO * 
MAIN STORAGE LEFT * PHASE 00 • 
SWITCHES * * 
------------------- *.*.***."'*** .. * .... 

*"'** + • 
.. Ft~ • 

.. :1<**. *--t 
"'*·F4"'····"'····* 

1 . ' . 
F5 *. 

.* *. * YES •• * . ---------------> • READ CARD <--------*. BATCH MODE • * 

.. ··· .. ··1 .. ·· .. 
. ' . **"**G3* .* •• ***** G4 * . * * . * •• 

• RESET OPTION" YES .:;. *. 
• SWITCHES .<--------*. eBL CARD •• 

.. "'. .* • *..* 
*******.********* * .. " r 

.... *·*H4·**.****.* * STORE ADDRESS • 

:gKR~~~b g~iTgTI: 
.. IN COMMON • . . 
.* *** ••• ***. *.*.* 

1 . '. J4 *. ." "'. .* FIRST *. YES 

.. .. 
*. .* * .. * 

'NO 

*. COMPILATION .~----------------> 
*. .* "r' Ii 

**··*K4*.***·"··· .. * ****K5***·*···'" *RESET AREAS IN .. • 
.. PHASE 00 *-------->* EXIT .. .. .. . 
• .. ******* .. *.***** .****4.**** -tc***** 

Flowch arts 207 



Licensed Material -Property of IBM 

Chart BC. Phase 03: 

····Al········· · . • IKFCBL03 • ... : .... "1' ..... . 
·.···Bl·····!"···· · . -SAVE REGISTERS .. 
• ESTABLISH • 
*ADDRESSABILITY .. · . ·"··"r······ 

Overall Flow 

•......... ·····C2·········· FROM". • 
• -LOADS REGISTERS • 

.. i j-->i.:.::::~:::: .. ~ 
~" J... . ..... ..1........ . ... ~,.......... . .... M.......... .. .. ~ ......... .. 

• • •• ..ISSUE SYNADAF.." .... SET ES" •• I WTO •• 0" ... YES •• MACRO TO.. .. GET MESSAGE .. .. FOR TO" •• TO •• 
... SYNAD EXIT • *___ •• OBTAIN ERROR •• ------->*TEXT AND !.ENGTH*----->*SyST /OR *------->.. OUT •• *. .* •• MESSAGE"" .... BY OR" •• E •• *..* •• .... .... .... •• 'r -===-===--:=_-.:=-_:::::::r ...... · 
·····El·········· · . .. GET MESSAGE .. 
-TEXT AND LENGTH-· . · . 
········1·:=::~- ...... .. 

.. F4 .. 

.. .--~ .... 
TRMNATE • ... CHKPRNT ..... SKPRNTA .... WRTERR 

Fl *0 F2 *0 FJ 0 0 ••••• F4 •••••••••• 
. * *0 .* *0 .* *0 .. .. 

• -MESSAGE TO ... NO ... NaPRINT "'. YES ... WRITE TO *.. YES .BRANCH TO PHASE • 
.•• BE WRITTEN TO •• -----> •. (TSO) OPTION •• ------->.. SYSTERM ... -------->. 00 TO PUT OUT .. 

•• SYSTERM •• II .'O IN EFFECT.. /\ •• •• • MESSAGE .. •..• •..• *... . . .. .. .. .. ... .. . ............... . 
• YES .NO .NO j 
1 1 1<-----------------------

••• SJ(PRNT 
••••• G •••••••••• G2 •• • •••• G3 .......... . · . ..... . . 
• • • .. I/O ERROR •• YES .PURGE SYSPRINT • 
• .---- •• ON SYSPRINT • *---- .AND/OR SYSTERM • 
• G .. •• • • • AS NECESSARY • 

208 

~ ... ~ ......... : ····r· : ...... T· .... ' 

Sec.tion ·3. 

···82··········· ......... . . 
OPEN SYSPRINT . ................ 

l .... 
->. • 

• F4 • . . .... j 

CODE· 
OFF • 
SKIP: . ..... 

····J3········· • EXIT TO PHASE • 
• 00 • · . ............... 

Program organization 



Licensed ftaterial - Property of IBM 

I Chart BD (Part 1 of II). Phase 011: IKPCBL04 

A2 

( IKFCBL04 ) 

B2 
PH04INIT 

INITIALIZE 
PHASE 

C2 

GET A 
CARD 
(SYSIN) 

02 03 
BASISRTN 

IS,IT YES PROCESS 
BASIS BASIS 

PASS 

NO I 
E2 

COPYRTN 

PERFORM 
COPY 
PASS 

F2 
CLOSELIB 

CLOSE 
LIBRARY 
DeBs 

G2 G3 

PHASEOO 

BASIS YES CLOS.E FILE 2 
RUN (BASIS 

NORR FILE) 

NO I 
H2 

PHASEOO 

CLOSE 
SYSU'1'4 

J2 

( RETURN '1'0 
PHASB 00 

Flowcharts 209 



Licensed Material - Property of IBM 

Chart BD (Part 2 of 4). Phase 04: BASISRTlf 

BASISRTN 
A2 

( ENTER 

B2 

CKBASIS 

VERIFY BASIS 
LIBRARY 
EXISTS--
READ CARD 

C2 

INBSYSIN 

GET FIRST 
BASIS 
CONTROL CARD 

02 

~ 
BYSIN YES BASIS 

LIBRARY YES 
EOF 

AT EOF 

NO NO 

E2 E3 E4 

CKINSERT PROCDLIB 

INSERT NO READ 
OR DELETE INSERT CARD LIBRARY 
CARD IN SOURCE TO EOF 

YES 

F2 F4 

CKBSSCTL PHASEOO 

PROCESS TCLOSE 
INSERT/ WORl< FILE 
DELETE (S,{SUT2) 

G2 l' G4 
INBYSIN 

( ) GET NEXT 
EXIT 

S~SIN 
CARD 

210 Section 3. Program organization 



I Chart BD (Part 3 of 4). Phase 04: COPYRTN 

PROCESS 
COPY 

Licensed !aterial - Property of IBM 

Flowcharts 211 



Licensed Material - Property of IBM 

Chart BD (Part 4 of 4). 

OPEN. 
LIBRARY, 
FIND MEMBER 

C2 

ERRORS 
FOUND 

NO 

02 

SUPPRESS IS 
SPECIFIED 

NO 

E2 

REPLACING 
NEXT 

NO 

READ,UPDATE 
LIBRARY 
MEMBER 

Phase 04: COPYPROC 

YES 

YES 

YES 

03 

INDICATE 
NO PRINT 
OF COPIED 
TEXT 

E3 

CKARGS 

SYNTAX CHECK I 
SAVE 
REPLACING 
ARGUMENTS 

OUTPUT 
E-TEXT 

212 section 3. Program Organization 



Licensed Material - Property of IBM 

Chart BE (Part 1 of 3). Phase 05: Overall Flow 

A2 A3 

IKFCBL05 r ENTER PHASE 05 

I VIA PHASE 00 

82 
IN IT 

HOUSEKEEPING 

C2 

CTLBGN 

LANGUAGE 
ANALYSIS 
F-0UTINES 

02 

ENDPROG 

FLUSH 
HOLDAREA 
ONTO SYSUT2, 
CLOSE FILES 

E2 

EXIT TO 
PHASE 00 

Flowch arts 213 



Licensed Material - Property of IBM 

chart BE (Part 2 of 3). 

A1 
CTLBGN 

START A 
NEW CLAUSE 
BY PUSHING 
DOWN ONE LEVEL 

B1 
MAYBE 

DECODE A 
PORTION OF 
THE NEXT 
Y-INSTRUCTION 

Phase 05: Language Analysis Routine 

214 section 3. Program organization 

05 

YES 

CTLPOPUP 

EXIT 
FROM 
CLAUSE 



Chart BE (Part 3 of 3). 

A2 

C2 

02 

SCAN 

ENTRY 
POINT 

82 

IN 
ERROR 

RECOVERY 
MODE 

NO 

SCAN12 

FETCH TOKEN BY 
SCANNING NEXT 
ONE FROM CARD 

SCAN14 

BEGIN TOKEN 
TYPE 
DETERMINATION 

E2 

DETERMINE TOKEN 
TYPE AND STORE 
TOKEn IN 
IIOLDAREA 

83 

YES 

Phase 05: 

FETCH 
TOKEN PROM 
HOLDAREA 
INSTEAD OF 
CARD 

Licensed Material - Property of IBM 

Input and scanning Routines (SCAN) 

Flowcharts 215 



Licensed Material - Property of IBM 

I Chart BF (Part 1 of 4). Phase 06: 

NO 

C2 

D2 

F2 

BGNPASS 

START 
NEXT 
PASS 

MAINGET 

FETCH .. ONE 
IPTEXT 
ITEM 

MAINPUT 

PUT ONE 
IPTEXT 
ITEM 

EXCHANGE 
ROLGS OF 
SYSUT2 ~ SYSU'l'3 

J2 

YES 

Overall Flow 

ENTER PHASE 06 
VIA PHASE 00 

216 Section 3. Proqram organization 



Licensed Material - Property of IBM 

Chart BP (Part 2 of 4). Phase 06: IPTEXT ITEM Processors 

A2 . ;.A::;3_-:-BS:"TMX=---' 
BD$FX 

PROCESS BDEP 
ITEM. SET 
POSITION IN 
DEFINITION 
VECTOR AND 

C2 

r 

82 

SET TO 
DEFINITION 
STATUS 

MAINPUT 

(See Chart. OP 
Part 1) 

CO~YX 

BEGIN COPY 
ACROSS OF 
,AliL IPTBXT 
'IHMS 

I 

STEP STH 
NUMBER BY 1 
TO REFLECT 
88TH IT~ 

A4 

BREFX 

RESET ADDR 
POINTER TO 
REF VECTOR, 
SET REFERENCE 
STATUS 

C4 

I MAINPUT 

(See Chart OF 
Part 1) 

AS 

AleRTN 

MERGE IN 
ASCENDING 
ALPHA ORDER 
ALL 
DEFINITIONS 
IN CORE WITH 
THOSE ON THE 
IPTEX"l' INPUT 
FILE 

cs 1 
I I ENDPASS J 

(See Chart BF 
Part 1) 

Plowcharts 211 



Licensed Material - Property of IBM 

Chart BF (Part 30f 4). Phase 06: IPTEXT I TEl'! Processors 

Al 

EDREFX 

GET READY 
TO PROCESS 
EDREF 
ELEMENT 

Bl B2 YES 
MAINPUT 

IS NO 
REFERENCE (See chart BF 
STATUS Part 1) NO 

YES 
C3 

EDREFX6 

Cl C2 STORE 

IS STEP PAST REFERENC YES POINT FOR RENAMES OR EXPLICIT REDEFINES 
ARGUMENTS 

CURRENT 
STATEMENT 
NmlBER 

NO I D3 

01 
EDREFX2 CODE AS 

AN EDREF 
CONCATENATE 
EXPLICIT 
ARGUMENTS 
AND STEP TO 
ADDRESS THE 
RIGHTMOST E3 

MAINPUT 

(See Chart DF 
"'1 Part 1) 

EDREFX3 

RECaDE AND 
ATTEMPT TO 
RESOLVE 

PI F2 

MAINPUT 

RESOLVED NO (See Chart BF 
Part 1) 

YES 

Gl 

I:OREPX4 

CHECK FOR 
PRIOR 
RESOLUTION 

B3 

218 section 3. Program organization 



Licensed Material - Property of IBM 

Chart BF (Part 4 of 4). Phase 06: IPTEXT ITEM Processors 

A1 

ElREFX 

BEGIN 
PROCESSING 
ElREF ITEM 

B4 

EDREFX3 

B1 B2 YES REeaDE 
EDREFX7 EDRGP 

NO 
FULL RESOLVE 

(See chart DF IF LAST PASS 

Part 3) NO (See Chart BF 
Part 3) 

C2 

BDREFX 

YES GO TO 
PROCESS AS 
NORMAL 
REFERENCE 

NO 
(See Chart DF 
Part 3) 

03 
04 

EDREFXe 

NO GO TO 
01 RESET 

APPEMPT REFERENCE 
RESOLUTION STATUS 
WITH SECTION 
NAME AS SOLE 
IMPLICIT 
QUALIFIER 

E3 

CONSTRUCT 

E2 
AND ATTEMPT 
TO STORE TWO 

EDREFX4 REFERENCES 

YES (See Chart BF 
Part 3) 

NO 

F1 

ElREFX2 

Flovch arts 219 



Licensed Haterial - Property of IBM 

Chart BG (Pa rt 1 of 2). Phase 08: Overall Flow 

A2 

PC 

0- BEGIN 
PHASE 08 
PHASE-
CONTROL 

B2 1 
HOUSEKEEPING I 
PRINT 
PREFACE 

C2 1 
DMAIN 

PROCESS THE 
ID, ENV, AND 
DATA 
DIVISIONS 

D2 1 
PMAIN 

PROCESS THE 
PROCEDURE 
DIVISION 

E2 1 
END OF PASS-I. 
RETURN TO 
PHASE-
CONTROL 

F2 t 
SMAIN 

PRINT THE 
SUMMARY 

G2 1 
SHOR 

PRINT THE 
ALPHA INDEX 

H2 1 
PCEOF 

EXIT TO 
PHOO. 

220 Section 3. Program organization 



I Chart BG (Part 2 of 2). 

A2 

Phase 08: 

DHAIN 

BEGIN WITH 
LISTING 
PAGE 

BUILD 
STATEMEN'r 
INTO 
PAGE-AREA 

YES 

YES 

Licensed Material - Property of IBM 

Data Division Flov 

C3 

D3 

D4 

D5 

PUT 
STATEMENT 
NUMBER INTO 
SUMMARY 
TABLE 

PRINT A 
LISTING 
PAGE 

PACK 
PAGE-AREA 
OVER 
PRINTED 
STATEMENTS 

SET UP 
FOR NEXT 
PAGE 

B2 

Flowcharts 221 



Licensed Baterial - Property of IBM 

Chart CA. Phase 10: Overall Flow 

····A3········· ~------• • ENTER PHASE 10 
• IKFCBL10 ._- VIA PHASE 00 · . --------_:: .. ··r· .. ·· 

··a3······· . . . . 
• HOUSEKEEPING • . . . . 

..... [~, 
·.· .. e3·········· -IDoseN • • _+_+_._._*_t_._* 
• SCAN • 
·IDENTIFICATION • 
• DIVISION • 

·······l~:~: 
·•· .. 03·········· +ENVSCN • 
• _+-*-*-*-*-+-*-* 
• SCAN • 
• ENVIRONMENT • 
• PIVISION • 

·······r~=: 
:ti.ti;~fi3 ••••••••• : 
*-*-+-.-*-*-*_._* 
• SCAN DATA • 
• DIVISION • · . ....... '[" ...... 
.... F3··.······ • EXIT TO PHASE • ,. 00 • · . ............... 

222 Section 3. Progra~ Organization 



Licensecl Material -~roperty of .IBM 

Chart CB. Phase 10: IDDSCN Routine 

•••• Al •.••• *.... rn-------------• • ENTER FROM 
.. looseN *---- DUMTST 
... ... --------------............... 

1 
. *. .*. 

B! .... B2 *, .* *. .* *. .SET E 
.. " BATCH .... YES • *CBL PROGRAM- .. YES ... CARD *. COMPILATION .. *-------->*, DELIMITER • *-------->*ON , 
.... 0* *. .• .OF CB ... ." *.." ... AD * .. * * .. '" ••••••• I:: _____________________ iNO 

. '. Cl •• • •••• C2 •••••••••• 
... *. *----c s----- .. 

• • IO-DIVISION •• YES • GET WORn • 
*' • HEADER • *------->* AND END • 

•• ... • OF CE" 
*. .'" '" .. 

'. 'N~ ........ 1* ...... . 

1 GETDLM .*. CC01A2 .... *01.......... D2 *. 
"ID: ... •• *. • ••• D3 •••••• ,., •• 
• PUT OUT ERROR .. ,* *. YES .EXIT TO ENVSCN • 
.. TEXT • •• NEXT DIVISION. *-------->* ROUTINE • • *..*.... .. .....* ••••••••••••••• 

········l:~~::~~~ ______________ :~ IN~ 
.*. E2 ... • •••• E3 •••••••••• 

,* *. .. • 
• " •• YES • STORE • 

•• PROGRAM-ID • *--------> ... PROGRAM-ID NAME. 
•• .:to • • 

:to. • *" • .. 

**** *·l*N~ .. ::::· .. *1·· .. ····· .. 
¥ • • • 
.. F2 • • F3 ... 
.. .-> • *-> .... . ... . '. 

: •••• Fl •••••• * .. : .. F2 •••• : •• "'.P3 ••••••••• : 

• .. YES •• •• .. ----GETWD---- .. 
.. STORE DATE *<--------*.DATE COMPILED.* * GET NEXT WORn * 
• * •. .* • • .. • *... .. * ······T=------:r ................ . 

: ••• *G2****.**.*: 
• READ AND PASS .. 
• ID-DIVISION • 
: STATEMENTS : 

••••••••• * * •••• *. 

1 .'. GETDLM.'. 
••••• H2 •••••• ***. H3 •• H4 •• 

CC01A2 

• ----CHKEOS-----. •••• ...... • ••• H5 ••••••••• 
• GET NEXT WORn • .." •• YES •• •• YES .EXIT 'IO ENVSCN • 
• AND CHECK END .--------> ... IN A-MARGIN •• ------>*.NEXT DIVIS!ON •• -------->. ROUTINE .. 
• OF SENTENCE • •• .. • ... • • • • · .. .... .... . ............. . .................. ... .. .. .. . 

*NO *NO 
L_>. ...... l_>'4o ••••• 

• F3 .. • F2 .. . . . .. .... 

Flowcharts 223 



Licensed Baterial - Property of IBM 

Chart cc. Phase 10: ENYSeN Routine 

.. 

Section 3. 

····A2········· ~--------• • BRANCHED TO 
• ENVSCN *--- VIA GBTDLM · . ----------
·······1·· .. ···· · ..... 

• BII " ..... ~-~~ 
B2. '. '. GBTDLM ........ CD01A2 

.f t. ePR E • ...... • ••• B5 •• 4o; •••••• 

• ::Tig~P~gg~io;:.!!:~--->: c ·:---->*:;EXT DIVISIO;:'~---->: EXlio~IR~SCN : 
t. *. .... : : ~,. *. .:..+ . • •••••••••••••••• 

to of ••••••••••••••••• 't •• * 

I::----------------------·--~---r .'. C2 t. • •••• Cl •••••••••• 
of t. • • 

• • INPUT- '. YES • 
to OUTPUT .+------->* PROCESS 

t. SECTION of • 
t..+ • 

to .f •••••••• 
'NO L> •••••• 

• BII • • • .... 

Program organization 



Chart CD. 

Licensed Material - property of IBM 

Phase 10: DDSCN Routine 

····A2·.····.·. [-----------• • BRANCHED TO 
• DOSCN +--- FROM GETOLM · . ----------::::···1 .... ······· · . ... B2 • 
• +-> .... 

~"'. FDSCN FLVSCN B2 +0 ••••• B3.......... . .... B4 ......... . 
0+ to ... ...... '" 

.'" "'. YES • SCAN FILE '" .SCAN RECORDS OF-
• .FlLE SECTION .*-----)+ INFORMATION *------->+ FILE SECTION '" 

+0 0* '" '" '" '" +0.+ ... ... '" ... 

··1+N6 ••••••••••••••••• ········1········· 
• ... • WLvscn GETDLM ..... C2 +0 ••••• C3.......... ell "' . 

.... . . 
: .~:. :--1 

• + +0 ... '" •• +0 •••• cs ••••••••• 
• '" WORKING- .... YES '" SCAN RECORDS '" • '" *. YES '" EXIT TO PHASE '" 

"'. STORAGE • +----->+ AND CONSTANTS +-------->+. NEXT DIVISION. +-------->+ 00 '" 
.... SECTION • '" ... '" A"'. • '" ... '" 
+0.+ ... '" +0.+ ••••••••••••••• 

to •• ••••••••••••••••• "' •• * 

1+NO t~~ ..•... 
... 82 • . . .... 

••• LDSCN 
D2 "'. • •••• 03 •••••••••• .... . . . 

•• LINKAGE "'. YES • SCAN. LINKAGE • 
•• SECTION •• ------>* RECORDS .---> •. .* ... • "'... '" . *. .• • •••••••••••••••• r 

••• COsCNA 
E2 •• • ••• ".E3 •••••••••• . *.. • "" 

•• •• YES. * 
•• cOMMUNICAT!ON.*-------->. SCAN CD ENTRY • 

•• SECTION ... • • .... . . .. .. . ................. . 
. r 1 

F2 •• • •••• F3 •••••••••• .... . . 
•• REPORT •• NO .SCAN RECORDS OF. 

•• SECTION ... ---! • COMMUNICATION .----> 
•• •• • SECTION ... .. .. . . .. .. .... . ............... . rs :.~:.: 

..... G2·········· • SET UP FOR • 
• REPORT WRITER • 
.. (CALL VIA PHASE.---------------------------
• 00) • · . ................. 

Flowcharts 225 



Licensed Material - property of IBM 

Chart CEo Phase 12: Overall Flow 

····A2········· [-------------.. .. ENTER VIA 
'" IKFCBL12 *---- PHASE 00 .. .. ----------............... 

",,,,. j ··.··B2·········· · . .. SET SWITCHES .. 

.... · . .. A4 .. 

• ._! .... 
C.JOIAl ·····A4·.········ *GNSPRT .. 

*-*-*-*-*-*-*-*-* 
:if~EEA~I~~~!: 
.GET NEXT RECORD................... 

1 .'. 
B4 * .. .. * •• 

YES .. * * .. .. PRIME TABLES .. ---------------------------* .. RD (SEE NOTE) .. '" 

226 Section 3. 

· . · . 
~····T··"·· 

··*C2··········· 
• GET FIRST 

RECORD 

········r:::: .. 
··.··02·········· *RDSCAN .. 
*-*-*-*-*-*-*-*-* 
.. PROCESS RD *<-
.. STATEMENT GET .. 
.. NEXT RECORD '" 

·······T~::~ 
·····E2···· .. ···. ·PROCOl .. 
*-*-*-*-*-*-*-*-* -->* PROCESS LEVEL- *<--------------
.. 01 STATEMENT .. 
-GET NEXT RECORD • ........ 1' ...... . 

••• CI01Al 
F2 •• • •••• F3 ••••••••• 

•• •• • FLUSH • 
•• LEVEL-Ol t. YES *_*_._._*_._._*_. 

•• (SEE NOTE) o.-------->.GENERATE GROUP. 
•• •• • ROUTINE • .... . . * .. o· ••••.•••••••••••• 

*NO 

1 CH01Al 
·····G2····.··· •• 
·PROC02 • • -.-*-._.-._*-._+ 
• PROCESS ... 
... LEVEL-02-49 ... 
... STATEMENTS .. 

·······r::=: 
·····H2·····.···· ·FLUSH • • -.-._*_.-.-.-.-. 
• GENERATE GROUP • 

: RgMi4N~ECg~fi : ········r······· 
.'. J2 •• .. .. 

YES o. LEVEL-O! •• 
---••. (SEE NOTE) •• 

*. ' 0* •. .* .0 .* 
'NO l_> •••••• 

• A4 • • • .... 

Program Organization 

NOTE: 

*" .* *. ..* 
* .... " r ·"'.·C4········· .. EXIT TO PHASE '" 

.. 00 '" · . ............... 



Chart CF. Phase 12: RDSCAN Routine 

····A2········· · . .. RDSCAN .. · . ·· .. · .. r .. · .. 
... 

B2 t. 0_ to •••• B3 ••••••••• 
• " ... NO -RETURN TO PHASE-

... RWRTBL PRIMED. +------>* 00 .. 
*0 .* .. .. 

to 0+ ••••••••••••••• 
to ." 

RDPERD r:::-----------------------·····e2·········· · . .. POINT TO NEXT .. 
.. CLAUSE .. · . · . ··· .. ···r······· 

... 
02 to BORDA 

.+ *0 •••• 03 ••••••••• 
. * *0 YES" .. ... END OF SCAN • +-______ >*EXIT TO GETDLM .. 
to .* .. .. 

+0 ." ••••••••••••••• 
+0 o-r 

• +0 DccaDE 
E2 ... • •••• E3 .......... . 

• + +0 .. .. 
.. " .... YES .PROCESS CLAUSE .. 

+oO conE CLAUSE .. +--------)*ENTER IN RPTTBL*--> 
+0 .+ .. TABLE .. 

+oO .. '" .. .. +0 •• + ••••••••••••••••• r 
.+0 DOCTL 

•• F2 *_.. : •••• P3 ••••••••• : 

.. " CONTROL .... YES .PROCESS CLAUSE .. 
.... CLAUSE .. +------>* BUILD CTLTBL +--> .... .* .. TABLE .. 

+0 .. " .. .. *0 .. " ••••••••••••••••• r 
.+0 DOPAGE 

G2 *0 ••••• G3 •••••••••• 
e··e • • 

e. •• YES. • 
.e PAGE CLAUSE e.------->.PROCESS CLAUSE ._-.e e. • • .... .... : ................. : r ···.·H2······.··· · . • PROCESS AS • 
• ERROR .. · . · . ................. 

l~~ ····J2········· • • • EXIT TO GETDLM • · . ............... 

Licensed Material - property of IBM 

Flowcharts 227 



Licensed Material - property of.IBM 

Chart eG. Phase 12: PROC01 Routine 

228 section 3. 

····A2········· · . .. PRaCOl .. · . ............... 
"':;;::Ll<---~--~-,--------------··.··B2·········· · . .. POINT TO NEXT .. 
-->* CLAUSE .. · . · . ········r······· 

... 
C2 *. END01A 

SEE NOTE 
CHART CE 

.* *0 •••• e3 ••••••••• . * ... YES" .. 
... END OF SCAN • *-------->*EXIT TO GBTDLM .. 

*. .* .. .. *0 ." ••••••••••••••• 
... 0* r 

.*0 PRGP 
D2 •• • •••• 03 •••••••••• 

• * *0 • • 
.'" NEXT GROUP •• YES. • 

.... CLAUSE • *------->*PROCESS, CLAUSE *--> 
*0 0* • • 

to * .. 0*.. : ••••••••••••••• : r 
'*0 DOLINE 

E2 •• • •••• E3 •••••••••• 
. * *0 ... ... .* *. YES· .. 

... LINE CLAUSE .. *------->*PROCESS CLAUSE ----
*0 .* .. .. 
*0.* .. .. 

*0 .* ••••••••••••••••• r 
'*0 PRTP F2 ... . ..•• F3.......... • •... P4 .•......•. 

• " *0 .. .... .. 
0* ... YES. .... GENERATE .. 

.... TYPE CLAUSE • *-----,;..->*PROCESS CLAUSE *------->. BEGINNING OF .---
• ~ •• • •• GROUP ROUTINE • .... . .. . .. .. ................. . ............... . r 

."'. DOUSGE .... 
G2 *.. G3 '. 

~*'. ...~ ····G4········· .' '. YES •• USAGE IS '. NO • EXIT TO, CLERl • 
'. USAGE CLAUSE •• -------->.. DISPLAY •• ------->. (ERROR ROUTINE)' 

•• .' '. •• A. • '. .' .... . ............. . *. .• • .. ' 

1*NO t~~:· .. ·· . 
• B2 • . . .... 

••••••••• : ~PRo2A-iS-A-~ARTO~--
.---- PROC02 (CHART CH) 

ITEM. CONTROL RETURNS TO 
E • PROCOl AT PROllO .. , . ------------------········r······· 

PROllO .'. 
J2 '. .. '. 

YES • 'STATEMENT A'. NO ---*. VALID •• ------------------_______ _ 
·.LEVEL-01 .* '. ..' "' ... ' . 

Program Organization 



Licensed Material - Property of IBM 

Chart CR. Phase 12: PROC02 Routine 

.•. 
A2 *. ····Al········· .. * *oo * .. .* +. NO 

.. PROC02 *------>*.. DATA-NAME ... -----------1 .. .. +. .-••••••••••••••• *..* 
* ..• 

rES PERD02 ..... .......... ·····83·········· _SET AND .... .. 
-SAVE AME .. .. POINT TO NEXT .. 
.. FOR AND *----->* CLAUSE .. 
tENDO INES-" .. .. .... .. ................. ·::::···1········· .... 

.. .. .. .. 

.. c3 .. .. C4 .. 

.. *-> .. .--~ .... . ... 
.too CG01A2 

C3 *. • •••• C4 •••••••••• 

SEE NOTE 
CHART CE 

.. .. .... *PROCOl .. • ••• cs ••••••••• 
.. " LEVEL-Ol *oo YES *-*-*-*-*-*-*-*-*.. .. *. ELEMENTARY .. *-----)*CHECK VALIDITY *------>*EXIT TO GETDLM .. 

.... ITEM .. .. .. PROCESS OTHER .... .. *..* .. CLAUSES" ••••••••••••••• * .. + ••••••••••••••••• r 
PR02A .to END02A 

D3 to , ••• '.04 •••••••••• • * to .. .. 
.. .. .... YES • .. COMPLETE .. 

*0 .~ND OF SCA~ ••• ------:;.:, ~Wo~iSg~Ng9 : 
*...* • • 

. ·1·:N:6 . ~) ·.,.·~1'1'··I···:::·:~E 
CHART CE ..... E3.......... ENn02 · ... ····Eq·······.· .DETERMINE TYPE •• • 

• OF CLAUSE. • EXIT TO GETDLM • · .. . · . . ............. . ········r······· 
.'. F3 •• • •••• Fq.......... • •••• FS •••••••••• .... . .. . .o. VALID AND •• YES • IDENTIFY AND • • POINT TO NEXT • 

•• NOT USAGE •• ------>.PROCESS CLAUSE .• ------>. CLAUSE • .o .• • (SEE NOTE). • .... . .. . .. .. •......•.......... . ............... . 
'NO l 1 -> •••••• 

• c3 • 
• 0 .... 

PR02S0 .0. 
G3 * . .o. •. 

NO •• ..o 
-_.. USAGE. •• .. .. ... . . .. .. 

NOTE: CLAUSE PROCESSING ROUTINE rs 

OR PRG2 

BLANK WHEN 
ZERO 

JUSTIFIED RJUSTl 
VALUE RVAL11 

.IF GROUP INDICATE 

.0. 
H3 •• • •••• HU •••••••••• .... .... . 

•• LEVEL-Ot •• YES .: SET· SWITCH TO • 
•• ELEMENTARY • *------>.INDICA. TE ERROR .--~ 

•• ITEM.· *., ..• ..... .. . * .. + ••••••••••••••••••••• 
·NO • • .... 1 : C4 : 

. '. 
J3 *. .. . . 

... USAGE IS •• YES 
•• . DISPLAY .. +.:...:--~ .. .. ... . . •. . * •••• r '.::.i 
····K3········· • EXIT TO CLER3 • ->. (ERROR ROUTINE). · . ............... 

Flowcharts 229 



Licensed Material - Property of IBM 

Chart CI. Phase 12: FL USH Routine 

.... . . 
.. All • 
.. •••• *--.q 

XITS ..... XIT1 
All *0 ••••• AS •••••••••• •••• Al......... ..TYPE IS*.. .. .. 

.. .. .. " CONTROL .... YES -GENERATE END OF. 
• FLUSH .. -.HEADING FINAL.*------>* CHF-ROUT *---
.. .. to .* .. .. 
••••••••••••••• *0.* .. • 1 "r~ ................ . 

DONGP .. *0 .*0 XIT6 
Bl *0 ••••• E2.......... Ell to ••••• BS •••••••••• 

.. " *0 .... .. -TYPE IS*. .. .. 
.. -NEXT GROUP .... YES .. PROCESS NEXT .. .." CONTROL .... YES -GENERATE END OF-*. CLAUSE WAS 0*------>* GROUP -.FOOTING FINAL.*----->* CFF-ROUT 
-.SPECIFIED.- .. to .* .. 
*0.* .... t o .*.... 

. ·l:~---------------:=::::]········ '. I:~-----------::::=:I::::::~-
FLEXl .. "'.. EPFT XITXIT ...... Cl *0 ••••• e2........... ell *0 ••••• eS •••••••••• 

0* *0 .... .* *. .. .. 
.. " TYPE IS .... YES -GENERATE END OF. .. -NEED LINES "'.. YES .. INSERT LINES .. 

-.PAGE FOOTING 0.------->. PGE-ROUT .,-:---------:-------------------->.. COUNT •• ------->.COUNT IN SUMTBL. 
•• •• •• A..... TABLE • .. .. .. ..... . '. r~ .......... ....... . ·l·:~sEE-NOTE-------::::::::j········ 

• •• EPHO CHART CE 
D1 •• • •••• D2 •••••••••• .... .. ..··04··· ... ··· •• TYPE IS •• YES .GENERATE END OF. • • 

•• ~~GE HEADIN~ ••• -------->: PGM-ROOT :---------:----------:"--=.-------> :EXIT TO GETDLM : ... .. .. . ............. . ... .. . ............... . 
r . '. E1 •• • •••• E2 •••••••••• .... . . 

•• TYPE IS •• YES .GENERATE END OF. 
•• REPORT •• -------->. RPF-ROUT .---------------------------> 

•• FOOTING ... • • .... . . .. ... . ............... . r 
XITl ••• 

F1 •• • •••• P2 •••••••••• .... . . 
•• TYPE IS ... YES .GENERATE END OF • 

•••• ~gg~~G •• ' .-------->: RPH-ROUT :-----------------------------> .... . . .. .. . ............... . 
r 

XIT2 ••• XIT2A 
Gl •• • •••• G2 •••••••••• .. ... . . 

•• TYPE IS •• YES .GENERATE END OF • 
• ' •• DETAIL •••• -------->: DET-ROUT :-------:---------~------------> .... . . .. ... . ............... . r 

XIT3 ••• 
H1 •• • •••• H2 •••••••••• ..... . . 

•• TYPE IS •• YES .GENERATE END OF. 
... CONTROL •• -------->. CTH-ROUT .------------------.:..---------> 

•• HEADING •• • • .... . . .. .. . ............... . r 
XIT4 ••• 

J1 •• • •••• J2 •••••••••• .... . . 
• • TYPE IS •• YES .GENERATE END OF. 

•• CONTROL •• -------->. CTF-ROUT .------------------~-------*. FOOTING •• • • . 

23.0 

.... .. . *. .• • •••••••••••••••• 
*NO 
L_> •••••• 

• A4 • . . .... 

Section 3. Program organization 



Licensed Material - Property of IBM 

Chart CJ. Phase 12: GNSPRT and SPCRTS Routines 

····Ai .• •.·•.•• · . • GNSPRT .. · . ............... 
1 

GNLDPT . '. 
B1 *. . * •. 

: •••• 82 ••••••••• : 

•• ENTRIES IN ... YES .. GENERATE DATA .. 
... NPTTBL TABLE • +-------->* Ie-TEXT FOR .. 

... ." .. N-POINT NABES .. 
*. ." ... .. 

'. i::------------~:~~~~]········ 
& 

: •••• Cl ••••••••• : 

.. CLEAR NPTTBL .. 
• TABLE FOR NEXT '" 
: HD : .. ,. ............. ,.. 

GNGPLD 1 [-----_________________ _ 
••••• D1.......... INCLUDES ONE GRP.IND 
.. .. {LEVEL-Oll CONSISTING 
• GENERATE GRB = *---- OF ONE GP.NNNN (LEVEL-02) 
.. INO NAME "' NAME FOR EACH GROUP 
.. .. INDICATE CLAUSE IN THE 

: •••••••••••••• >I<! ~~:~~_~::~~::_~~~~:.: ____ _ 

DOROL ·····Fl·········· .. BUILD ROLTBL .. 
• TABLE BASED ON .. 
... ENTRIES IN .. ! SUMTBL TABLE : 

"' •••• ** •••••••• ** 

1 
: •••• Gl:1< •••••••• : 

.. GENERATE .. 

.. WRT-TOOT .. · . · . *.'1'** •• ****.*** •• 

J <------------------------1 
. '. 

HI *. *****H2* .*."'."' •• CLRD 

.. " .... '" .. 
.. '" NEED A". YES *GENERA.TE DUMMY'" 

... DUMMY GROUP • *-------->* GROUP ROUTINE .. *. ROUTINE .* .. 4: -. -. . -' ---------1 : ............... : 

INSROU r ~~~~g~i~~Jig~i~i~~~i~~-
:****Jl*********: ROUTINE BRANCH TO 
• ENTER NAMES OF .. 
.. ROUTINES INTO .. 
.. ROUTBL TABLE .. · . ***** .*********** 

1 CJ01A3 
*****Kl ***.**.*** 

CHF 
CFF 
PGP 
PGH 
RPH 
RPP 

PCTH21 
PCTF21 
PPGF 
PPGH 
PRPH 
PRPF 

SEE NOTE 
CHART CE 

*SPCRTS .. ****K2****** ••• 
*-*-*-*-*-*-*-*-* '" .. .. GENERATE REST *-------->*EXIT TO GETDLM • 
'" OF ROUTINES .... '" 
.. .. *.*****.* **.*** *** ••• ** •• *** •••• 

.... A3*........ . [ENTEREiJ---
.. "'---- FROM GNSPRT 
.. SPCRTS .. ----------· . . ............. . 

j 
·····83·········· · . GENERATE .. 

INT-ROUT .. · . · . ........ 1' ..... .. 
.'. .* C3 *. *.. : •••• C4 ••••••••• : : •••• CS ••••••••• : 

.. .PAGE CLAUSE... YES • GENERATE. • GENERATE • 
•• SPECIFIED •• -------->. ALS-ROUT .-------->* RLS-ROUT 

+. .* • ,... .. .. . .. 
. ·1' :~----------====~~~~~~;:::::::~--------::::::::j" * ••••• 

GUUSMR .>t: • 
.~*.*D3 ••• * ••• *"'. D4 •• 
• • .* * .. 
$ GEIlRATE ONE • • .NEED DUMMY •• NO * lTSM-ROUT FOR. -> • .o CTH-ROUT ... ---
,. EACH DET-ROOT • ... • * 
4: • ..... 

·······r .. ···· l" 
: .. "**E3 ••••••••• : : •••• E4 •• * •••• *.: 
• GENERATE. *GENERATE DUMMY • 
: CTD-ROUT : ---: eTB-ROUT : · ... . ••• *."' ... *"" ...... ~ ••• 

1 
·····F3*········· · . • GENERATE • 
" RST-ROUT * · , · . ·······r······ 
·*·"·G3*"'**·····* · . • GENERATE .. 

1ST-ROUT 

........ [ ....... . 
: •••• H3 ........... : 

• GENERATE * 
.. LST-ROOT • · . · . ·······r······ 
·****J3*········· · . * GENERATE • 

ROL-ROUT 

~-----------

. *. 
F4 •• ... * . 

• .NEED DUMMY ... NO 
-->*,; CTF-ROUT •• _--.. .. .. .. ..... rs 

: •••• G4 ........... : 

.GENERATE DUMMY • 
---. CTF-ROUT • · . · . . ........ "' ...... . 

·····Hq·········· · . GENERATE • 
SAV-ROUT .<--. · . ·······r······ 

·.···J4········ .. · . GENERATE • 
RET-ROUT • . · . 

····**··j· .. :~~·:~T' 
CJ01Al 

····1<4········. • RETURN TO • 
• GNSPRT • · . ............... 

Flowcharts 231 



Licensed Material - Property of IBM 

Chart CK. Phase 1B: Overall Flow (PDSCN Routine) 

····Al········· [-------------• ... IA PHASE 00. 
: IKFCBLXB :-- ~D~TB~~I§~~ROLS 
••••••••••••••• lNG. 1 --------- ry:~~)---

poseN .to .. "'= .t. 
Bl ... B2 ... 83 ... • •••• B" •••••••••• 

.. • • .. .. • +:.. ...... • SET CARDHELD • 
.. • BATCH ... YES ... op ... NO .. -CBL PROGRAM-.. YES • BIT • 

to COMPILATION o*----->*.PROG IN .*------>*. DELIMITER .*---->*CQMMON • 
to 0* "'oP 0 .+ to .. * +ADDR OF ... 
*0.* *0.* *0.+ • INA» • 

to .* *0 .+ *0 .'" •••••••• • •••• 
"'NO • ·NO l 
1<----------------------------------------J ->: *;:* : . . ... 

• 0. 
Cl *oo ••••• e2 •••••••••• . * *0 ... ... .* PROC t.NO'" ... 

"'.. DIVISION .. +-------->*PUT OUT E-TEXT ... 
to HEADER .* '" '" 

*0 .. '" '" '" *0 .+ ••••••••••••••••• 
oYES j 
1<------------------

CHRDCL .. "'.. OLSeN 
01 to ••••• 02 •••••••••• 

. * *. '" '" .* to YES'" .. 
"' .. DECLARATIVES oo.-------->. PROCESS USE • 

• 0 SECTION •• • • .... . . • oo o. • •••••••••••••••• 

: ::~: L>I::------------------1-------------------1 . 
DELIM • •• LHNAM 

E1 •• • •••• E2.......... • •••• E3 ••••••••• 0··. . .. . •• LEFT-HAND .0 YES • SET UP. .----DICENT------
•• NAME •• ------>.LEFT-HAND NAME .------>. PUT IN • 

• 0 o. -WITH ATTRIBUTES- • DICTIONARY • -0.* • *. • ·0 .• ••••••••••••••••• • •••••••••••••••• r 
••• VRBSCN •• 0 

Fl.. F3 .oo ••••• F" •••••••••• o· *. .••.•• 
... •• YES ...oo YES .PROCESS SPECIAL. *. VERB •• ____________________________ >. 0 SPECIAL VERB •• ------->. VERBS .--•. oo. ·0 .• • • ·0 .* •..••• ·0 .• •. .• • •••••••••••••••• r r .•. .·oo G1 •. • •••• G2.......... G3 •. • •••• G" •••••••••• .••. • • 0··0 • • 
•• END • 0 YES • RESET. • • REPORT •• YES • SUBS'l'ITU'l'E • 

•• DECLARATiVE •• ------->. DECLARATIVE • ... WRITER VERB •• -------->. ENCODED COBOL .--> .0 .* • SWITCH. .0 .• .PROC'S"l'ATEMENTS • • 0 o. • • .0.* • • •. .. ...........•..... ·0 .• • •••..•••••..•.•• 
·NO l ·NO 

1 _>:*::0: 1<------------------------.... •••.• H1.......... . ...• H3 ....•.•..• .. .. 
• END PROC DIV • .-----GENA------. 
• AND PHASE 1B • • PUT Otrl' ON • 
• PROCESSING • • SYSUT2 • .. .. .:::: ... j......... ·········l···::::· 
• • ->. • ono ono 
• *-> • • .... . ... 
····J1········· • EXIT TO PHASE • 

• 00 • o 0 ............... 

232 Section 3. Program organization 



Chart DA. Phase 20: Overall Flow 

····A2········· [-------------• ' • ENTER VIA 
• IKFCBL20 *---- PHASE 00 · . -------------............... 

_. j 
··82······· . . . . 

·INITIALIZATION .. 
.. PROCESSING .. . . 
····T· ... 

. *. D80lA1 
C2 *. • •••• C3 •••••••••• 

... NEXT ... *FILEST .. 
• "'SECTION IS ... YES *-*-*-*-*-*-*-*-* . 

... FILE SECTION • *------->* PROCESS FILE .. *. .* .. SECTION .. *. ." .. .. 

D . 
'. I:~------------::::::::j········ 
0-' DC01A! 

*. ·····03·········· T +. *WSTSCT .. 

.. : ~~G!S .. : .:~----->:-·-·pi~E;S·-·-: 
... RAGE." .WORKING-STORAGE'" 

... ." .. SECTION .. 

. . C--------------:::=:J·· ..... . 
0.. nCOlA3 

E ... • ••• *E3 •••••••••• 
0* T". *LINKST .. 

• -SE IS ... YES *-*-*-*-*-*-*-*-* 
... • *------->*PROCESS LINKAGE. 

•• S • .. .. SECTION .. 
*..* .. .. 

"1 :~-------------:::::::] ....... . 
. *. DC01F2 

... F~EXT ... ... :~~~;~~ .......... : 
•• SECTION IS *. YES *-.-._.-.-.-.-._ • 

•• COMM SECTION ... ------). PROCESS • 
•• •• • COMMUNICATION • 

... •• • SECTION • 

. ·l:~------------::::::::j········ 
.... DC01A5 

G2 •• • •••• G3 •••••••••• 
... ... ·REPORT • 

•• S IS •• YES' .-.-*-.-.-.-*-*-. ... • .--------).PROCESS REPORT • 
•• N •• • SECTION .. .... . . 

... ~ · j~ ___________ =::::::i········ 
·····H2··.··.· ... · . • TERMINATION .. 
• PROCESSING • · . · . ....... 1' ...... 
····J2········· • EXIT TO PHASE • 

• 00 .. · . ............... 

Licensed Material - Property of IBM 

Flowcharts 233 



Licensed Material - property of IBM 

Chart DB. Phase 20: 

····Al········· · . • FILEST ... · . ::::···1········ · . ... B1 ... , 
... *-> .... .'. B1 t. 

PILEST Routine 

DA01A2 

0- *0 •••• 82 ••••••••• 
• ... END OF •• YES ... RETURN TO .. 

-->*. SECTION OR • *-------->* MAINLINE • 
to FlLE.t • • 
to.t ••••••••••••••• 

to ot r NO 

.*0 FDTEXT .t. 

B4 

FLINAGE 

>----1>1 PROCESS LINAGE 

el .... . .. e2........... C3 .... . ...• Cq •......... 
ot *0 0* *. ... ... 

.... •• YES • PLACE FD ON ... .'" ANY LABEL to YES" ... 
.... FO ENTRY • *--------> SYSUT FOR PHASE --- .... RECORDS • *------>* BUILD LABTBL .. *. .* • 22. ·t o .t ... ... '. '. t' · ........ ....... '. · ·1·:~~----------:····:] ....... : 

• •• SDTEXT BBUBRN . 
D1 .... • •• D2 •••• ~...... • •••• D3 •••••••••• 

• t "'. ... ... 
• ... .... y,gS ... PLACE SO ON .... '" 

.... SD ENTRY 0*------> SYSUT FOR PHASE ------>*GET NEXT ENTRY *---! 
to ot ... 22'" • .. 

to ot ... ' ... 
to .t •••••••••••••••• • •••••••••••••••••••• 

*NO • ... .... 1 : Bl : 

. '. E1 t. 
o. too 0- ITEM IS •• NO •• LEVEL-01 •• ---•. .* .. . . .. .. 
rs 

·····F1·········· .CHECR IF. · . 
• LA • · . · . ...... ·1 ...... · 
·····G1·········· · . • SET APPROPRIATE. * CODES • · . · . ................. 

1<-::::---
·····Hl·········· ·WTEXT • . -.-.-._.-.-._.-. 

--.PROCESS LEVEL- • 
:01::3' EN¥:fE~ND: ................. 

234 section 3. ,Program Orqanizat:ion 



Licensed Material - property of IBM 

Chart DC. Phase 20: WSTSCT, LINKST. COMSCT, and REPORT Routines 

····Al.········· · . .. WSTSCT .. · . .. · .. ·1 ..... · 
··Bl······· . . 

.. INITIALIZE .. 
-AREAS, SWITCHES. 

• AND TABLES .. . . ........... 
1 DDom ··.·.Cl .•...• · •.• 

*LDTEXT .. 
*-*-*-*-*-*-*-*-* .. PROCESS LEVEL *<-
.. DESCRIPTION .. 
.. ENTRIES .. * •••••••••••••••• 

1 . '. 
D1 *. 

0* *. .. * ENDOF *. HO 
.... SECTION OR .. *--

.... FILE .. " .... .." 
+ ... " 

rM'" ···.E1··.··.·.· .. RETURN TO .. 
.. MAINLINE .. · . ................ 

····F2········· · . .. COMSCT .. · . ............... 
j 

··G2*······ . . 
.. INITIALIZE .. 

-AREAS, SWITCHES-
.. AND TABLES .. . . ........... 

1 DD01Al ·····H2·········· *LDTEXT .. 
*-*-*-*-*-*-*-*-* .. PROCESS LEVEL *<
.. DESCRIPTION .. 
.. ENTRIES .. ........ 1' ....... 

. '. 
J2 *. 

0* *. 
0* END OF *. NO 

.... SECTION OR .. *---*. FILE .. * *. .." * .. * 

r~o", ·· .. ·K2········· • RETURN TO • 
• MAINLINE • · . ............... 

····A3········· · . • LINKST • · . ............... 
j 

··B3······· . . 
• INITIALIZE • 

.AREAS, SWITCHES. 
• AND TABLES • . . ........... 

1 DDOlAl ·····C3········*· ·LDTEXT • . _._._.-.-.-._._ . 
• PROCESS LEVEL .<-
• DESCRIPTION • 
• ENTRIES • ........ 1' ....... 

. '. n3 •• .. . . 
•• END OF •• NO 

•• SECTION OR •• _--
•• FILE ... .. .. .... 

r~"., ····E3········· • RETURN TO • 
• MAINLINE • · . ............... 

····AS········· · . ... REPORT • · . ............... 
j 

·.as······· . . 
• INITIALIZE • 

.AREAS, SWITCHES • 
• AND TABLES • . . . ......... . 

1 DDOlAl ·····cs·········· ·LDTEXT • .-+-.-.-._._.-.-. 
• PROCESS LEVEL .<-
• DESCRIPTION • 
• ENTRIES • .. ...... 1' ....... 

. ' . DS •• .. .. 
... END OF •• NO 

•• SECTION OR • ---
... FILE .-.. .. . .... r .. ~, 
····£5········· • RETURN TO • 

• MAINLINE • · . . ............. . 

FlOWCharts 235 



Licensed Material -Property of IBM 

Chart DD. Phase 20: 

····Ai········· · . '" LDTEXT • · . · .. ···r .... · 
. *. GSPICT 

LDTEXT Routine 

Bl *. • •••• B2 •••••••••• 
.* *. • '" 

• '" PICTURE •• YES • CHECK AND '" 
"'. CLAUSE • *------>* ENCODE CLAUSE • *. .* '" • *..* • '" 

. ... 
• • 
• A4 • • ._-! .... 

BELEMI ·····A4·········· • CHECRS FOR '" 
• VALIDITY OF • 
• CLAUSES ON • 
"'ELEMENTARY ITEM-· . ········r······· 

.' . 
B4 *. 

.* *. '" • '" PICTURE •• YES • 
*.. PRESENT .*---->* 

*. .* '" *..* • 
* .. * r _~. -r~_-=r····· 
.*. VALGEN ·····cl·········· · . C4 *. • •••• CS •••••••••• 

.. * *. • CALL '" 
• DETERMINE • •• "'. YES • APPROPRIATE • 
'" SUBSCRIPT '" •• VALUE CLAUSE •• ------->.VALUE ANALYSIS • 
'" REQUIREMENT '" •• •• • ROUTINE • · . ................. .... .... : ............... : 

1 .'. 
n1 *. • * *. 

SRCHTB ···02··········· 
• _OCCURS AND *. YES -WRITE OUT 10 • 

: .::.: l·NO 
• "'-> .... 

BNORML ·····D4·········· • • .NORMALIZE LEVEL'" 
"'. INDEXED BY • *-------> NAMES AND KEYS • NUMBER .<-------------

"'. CLAUSE •• '" ON SYSUT4 • 
*. .* _ ··~~ ___ ::=r··· 

·····E1·········· · . • BRING IN NEXT • 
• ITEM • · . · . ................. 

· . • • _=····r .. ··· 
···Eq··········· 

• GENERATE 
ATF-TEXT ON 

SYSUT4 

·········r .. ··· 
. '. . P4 •• ... .. 

•• •• YES 
•• DATA-A TEXT •• ------> .. .. . .. .. 

• •• FS •••••••.•••• 

.GENERATE DATA • 
A-TEXT ON 

SYSUTIl 

' .• iI~ ••••••••• j •...••• 
1<--------------BUSAGE ·····G1·········· · . • CHECK USAGE • 

'" CLAUSE • 
• COMPATIBILITY • · . 

~·"·T·"··· 
·····H1·········· · . · . • ITEM ANALYSIS • · . · . ········r······· 

····GII········· • RETURN TO • 
• CALLER • · . . ............. . 

• •• BGROUP ••• VALGEN 
J1 •• ••••• ••••••••• J3 •• • •••• J4 •••••••••• . *.. • POR· •••• '" • 

• • •• YES. Y OF • • • "'. YES • CALL APPRO • 
•• GROUP •• ------->. C ON .----> •• VALUE CLAUSE •• ------>.VALUE ANALYSIS • 

•• • • • p. •. • '" • ROUTINE • •..• • • *..* • • .. '.. ................. .. .. . ............... . 
·NO "'NO l L_>. "'... • L_>* • ••• • _>* ••••• 

• A4. .D4. .D4. . . . . . . .... .... . ... 

236 Section 3. Program organization 



Licensed Material - property of IBM 

Chart DE. Phase 22: Overall Flow 

.····Al····.··.· [-----------.' • ENT:tR VIA 
• IKFCBL22 +--- PHASE 00 · . -------------

INIT 

....... j ....... . 
.·Bl······· · . .. INITIALIZE • 

• CONSTANTS AND • 
.. WORD AREAS • · . ........... 

OIR DK01Bl ·····01·········· *READFI.i • 
+-+-+-*-*-*-+-*-* -->+ GET NEXT • 
-LOGICAL RECORD • 
• FROM S¥SUT4 .. ........ 1' ...... . 

DIR010 ••• TERM 
E1 •• • •••• E2 •••••••••• 

0* *. • • • ••• E3 ••••••••• 
• • •• YES -RELEASE TABLES I. -RETURN TO PHASE-

•• EOF • +------->+ DELIMIT +------->* 00 • 
•• •• • DICTIONARY·· • 

+0 ot • • ••••••••••••••• 
+0 •• • •••••••••••••••• 

r 
•• ' ~:~~:~:~ *0 •• NO .;~i;F~.;~;~~~. [~ig :---------------------------~~~~~; 

•• PROGRAM BREAK. +------->+ ROUTINE +---- LSECT - ) 

• . . . . . . •... " . ........... .••. • ~~~~~:=-------------:------~~-----~~~~~~~-rs 

·····Gl·········· • SET UP FOR • 
• BRANCH TO • 

---.CORRES SECTION. 
: ROUTINE : ................. 

Flowcharts 237 



Licensed Material - Property of IBM 

Chart DF. Phase 22: FSECT Routine 

238 Section 3. 

...• A2.... ...•. ~NTERFROM-
• *--- DIRECTOR 
• FSECT • ------· . .. ' ............ . 

j 
··a2······· . . 

• INITIALIZE • 
,. SECTION .. 

• CONSTANTS • . . ........... 
1 .*. FSTXT 

C2 *. • •••• c3 •••••••••• . * *0 • • 
• • 4o. YES • PASS DATA • 

-->*. IS ITEM AN FD.*------>*IC-TEXT FOR FD *--------------j *0 0* • ON SYSUT3 • 
*0 .4o • • *0 .4o ••••••••••••••••• r 

'*0 SDTXT D2 *0 ••••• 03.......... • .•.• D4 .........• 
•• •• • • *----GETPTR-----+ 

•• 4o. YES • PASS DATA. *GET DICTIONARY • 
... IS ITEM AN so. *-------->*IC-TEXT FOR so *-------->* POINTER FOR • 

*0 • .. • ON SYSUT340 • ITEM • 
*0 .4o • •• • 

*0 ... • •••••••••••••••• r .'. 
E2 *. 

ot *. 0" IS ITEM ... YES .. 
... LEVEL-Ol • *------->* 

*0 0* • 
*0 •• 

*0 •• 
'NO 

1 DJOiA2 .··.·F2·········· *LDTXT .. *-.-.-.. -.-.-._._. 
• PROCESS LEVEL- .<--------------
• 01/49 ITEMS • 
• EN'rER INTO DICT. .. · .... ·L::~ 
..... ·G2··*······· ·READF4 • . -.. _*-*-._.-*-*-. • GET NEXT .<---------------------------
.LOGICAL RECORD • • FROM SYSUT4 • ........ 1' ...... . 

. '. 
H2 * • 

•• EOF OR •• 
NO .* CRITICAL *~ YES ---* . PROGRAM BREAK •• ~::~-.--.--) •• .. .. .. .. 

* ..• . 
j MOm 

····J3········· • RETURN TO • 
• MAINLINE • · . ............... 

Program Organization 

.. ...... r .. · .. 
···.·E4·········· ·-----XREF-,..----· 
• WRITE • 
• SXREF/XREF DATA. 
:A-I~~I~~f.EIF : · ...... r ...... 
·····F4·········· *----BCO E-----. 
.IF S CONO. 
.VAR ITER, • 
• DE COND • · . 
.... · .. r:::::: 
·····G4·········· ·DICTBD • . -.-*-.-*_.-.-.-• • ENTER ITEM INTO. 
• DICTIONARY • · . · .... ·T ...... · 



Chart DG. Phase 22: WSECT and LSECT Routines 

•••• P,l* ....... *. [ENTER-FROM-
.. *---- DIR010 
.. WSECT .. -----------

* * ••• 4< ........... . 

j 
··Bl······· • INI ZE .. 

.. S l" 

".... EA~~·" .. ........ . 
1 W01A2 ·····cl·········· *LDTXT .. 

*-*-*-*-$-*-*-*-* -->*PROCESS LEVEL- .. 

: °iN~~R ±~ 5i~~S: ................. 
1 DK01Bl ·····D1·········· *READFII .. 

*-*-*-*-*-*-*-*-* .. GET NEXT .. 
• LOGICAL RECORD .. 

: .. !~~~.~¥~~I~ •• : 

1 . '. 
E1 *. 

o .EOF OR "'. 
NO .. " CRITICAL .... ---*. PROGRAM BREAK." 

*. .* *. ." * .. * .YES 

1 DE01Al ···.Fl······.·· .. RETURN TO .. 
: MAINLINE ! ............... 

.... A3......... [ENTERFROM-.. *---- DIR010 
.. LSECT .. ----------· . ............... 

j 
·.B3······· ... INITIALIZE .. 

.. SECTION .. 
.. CONSTANTS .. 

*SWITCHESL• AND • . ~~~~.~~~~ ... 
1 WOlA2 .·.·.c3·········· *LDTXT • 

.-.-.-.-.~.-.-.- .. 
-->.PROCESS LEVEL- .. 

:O~N~~R ±~ Bi~~: ."'+ •••••••••••••• 

1 DK01Bl ·····03*········· oI<READF4 .. .-.-.-.-*-.. -.-.-* 
• GET NEXT .. 
"LOGICAL RECORD • 
• ON SYSUT4 .. ........ 1' ...... . 

.* . 
E3 •• 

."'EOF OR •• 
NO •• CRITICAL •• 
--•• PROGRAM BREAl< •• .. .. 

*. .• •.. * 

l~'"u, 
• ... ·P3· .. ••••••• .. RETURN TO • 

: MAINLINE : ................ 

Licensed Material - Property of IBM 

Flowcharts 239 



Licensed Material - Property of IBM 

Chart DB. Phase 22: CDSECT Routine 

. .•. A2......... [ENTER-FROM-
• *---- OIR010 
... CDSECT .. -----------· . ....... 1" ..... 

.. a2······· *IN • . . 
• c • • ~~I tAsN~. 

------~~~~J .... 
. *. DL01B2 C2 *0 ••••• c3.......... • •••• C4 ••••.••••• 

0* •• • • -DIeTBD • 
• • •• YES • SET UP ENTRY • *-*-*-*-*-*-*-*-* 

.... IS ITEM A CD • *------>* FOR CD *-------->* ENTER ITEM IN • 
... • • • •• DICTIONARY • 

*0 •• • •• • 

. "1' N~ ••••••••••• •••••• • ••••••• I :::::~~ __ 
DJ01A2 .f • ..... 02.......... 04 to 

*LDTXT .. 0* *0 
*_*_*_*_*_*_*_._* NO •• USER -. 

·PROCESS LEVEL-" J----------------------------.. SPECIFIED ." .. 01-49 ITEMS .. *0 CLAUSES." 
.. ENTER IN DIeT .. *0 ." 

········1·::::::::--- '"1-iris 

DKOiA2 ..... E2.......... . .... E4 .•........ 
*READF4 .. .. .. 
• _*_*_*_*_*_*_._* -GENERATE DUMMY" 
.. GET NEXT .. .. ATTRIBUTES .. 
-LOGICAL RECORD • •• 
• ON SYSUT4 • •• ······1······· ·······r······ 

F2 •• • •••• F4 •••••••••• 
•• BOP OR ., .----ENTNAM-----. 

NO •• CRITICAL ... • ENTER ITEM • -_.oo PROGRAM BREAK.. • DIRECTLY IN .---
•• • • • DICTIONARY .. .. .. . .. .. . " ................ . 

·YES 

1 DE01Al 

····G2········· +: RETURN TO +: 
• MAINLINE +: · . ............... 

240 section 3. Program organization 



Chart DI. 

Licensed Material - Property of IBM 

Phase 22: RS EeT Routine 

.... A2......... [ENTERFROM-
• *--- DIR010 
III RSECT • -----:'-... ---• • 

······r··· .. 
• IIIS ••••••• 

• ltl IZE • . . 
• c • *sw • 

·W • .. . .. 
1 
.t. QUAL C2 t. • •••• C3.......... . ...... et .......... . 

. " . ~s THIS ~'.. YES :DISTRIBUTE TEXT! :~F c 5 : 
-->* .~~NTROL ITE~ •• *------>: TO WORK AREAS :------->:TO C: 

*. .• • ... FIER" 'r ................. ·······r······ 
02 III. • •••• 03.......... • .••• 011 •...•....• 

• " t. .. .. +----GE'TPTR-----* 
." •• YES *OISTRIBUTE TEXT. *GET DICTIONARY • 

*.IS ITEM AN RD.*------->* TO WORK AREAS *------->* POINTER FOR .. •. .* • ... ITEM .. 
*0.* .. .... .* 'r roOU, ••••••••••••••••• ·······r······ 

.•••• E2.......... • .... E4 .......... . 
*LDTXT. .-----XREF------. ____ 111 ___ .-. ___ ._. .. WRITE .. 

-PROCESS LEVEL- .. *SXREF/XREF DATA. 

:Eg?rE~9iN~E~~CT: :A-!~~II~kft:tEIF : ••••••••••••••••• • •••••• * ••••••••• 

1 .····F4·········· .----BCO E----- • 
• IF I COND • 
• VAR , • 
'" DEL • 
• VARIABLE • 

~O'" ·······r::::: ••••• G2.......... • •••. G4 ••.•••.••. 
• READFij '" .DICTED '" .-._"'_.-.-.-.-*-. ._.-.-.-*-*-.-.-. 
'" GET NEXT .<------------------------------. ENTER ITEM IN '" 
.LOGICAL RECORD • • DICTIONARY • 
'" ON SYSUT4 '" • '" ········r······· ................ . 

... 
H2 •• 

• "'EOF OR "'. 
NO •• CRITICAL "'. 
---*.PROGRAM BREAK. '" .. .. 

*. .* 
• ·",y~S 

1 DE01A! ····J2········· • RETURN TO ... 
• MAINLINE • · . ............... 

Flowcharts 241 



Licensed Material - Property of IBM 

Chart DJ. Phase 22: LDTXT Routine 

242 Section 3. 

···.A2········· · . • LDTXT .. · .. ............... 
j 

··.··B2······.··. · . .. DISTRIBUTE .. 
.. ATF-TEXT TO .. 
.. WORK AREAS .. · . .. ······r··· .... 

. *. . •. 
C2 .0 c3 *, 0..·0 ..., 0- IS ITEM to YES • *IS THIS THE-, NO 

*0 LEVEL-Ol • *-------->*. FILE SECT • *---
., ,. to ." 

.0 ." *0 , • 
• , ." *0 ,-

'NO rs 
·····D ....•..... • SAVE ABOUT. 

:s~~v R~EW : 
.. RE .. · . ................. 

. '. 1 E2 *. ..E3 ••••••• 
,. *, ... .. 

." IS ITEM ... YES .. INITIALIZE ... 
• 0 LEVEL-77 • *------>* WORK AREAS, .<--.0 . '" .. SWITCHES ... 

• 0 ,* .. • 

.. t=::=-.... :::J····· 
·····P3·········· • INITIAL .. 
.. CONDITIONAL '" 
.. VARIABLE .. 
... PROCESSING • · . ................. 

1 '.0 GETPTR 
•• ~~ IT~.. : •• -n:G4 ......... : :~~~~~5 ... ~~~~~~: 

.o. A REPORT *0 NO "'GET DICTIONARY .... .. 
*0 SECTION NAME • *-------->* POINTER FOR *-------->*SXREF DATA* 

.... *. ~... A: ITEM : :A-~~~LI iEIF: '"" --r:. ................. ·······r······ 
."$V •• H3 •••••••••• • "'* "'*H 5* '" '" '" '" '" * '" ** 
• SET OF" "'----ECONDE-----'" 
... * IF ITEH IS COND'" * *----- *VAR DELIMITER, '" 
'" OF '" * DELIMIT COND '" 
• ER" • VARIABLE • 
*"'**"'**'" ** •• **** •• ***"'*.* ....... "'***'" 

Program organization 

1 DLOlE2 
***·*,1'5· .* •• * * •• * 
*DICTED * 
*-*-"'-*-*-*-*-"'-* .. ENTER ITEM IN'" 
: DICTIONARY :. 

.. *****"'**"'* •• * .... * 

j 
*"'·*K5·"'*·**~·* . . 

! RETURN : 

"'***"'.********* 



Licensed Material - Property of IBM 

Chart DK. Phase 22: READF4 Routine 

• •••• Bl •••••••••• 

• READF4 • · . 
"~·····I==---------~,-------------------------------···Cl··········· 

.. GET NEXT 
LOGICAL RECORD 

.. FROM SYSUT4 .. 

·········r····· 
.'. D1 t. 0_ *.. • ••• 02 ••••••••• 

.. .. .... YES .. RETURN TO .. 
*0 EOF 0*------->* CALLER .. 

*0 .. * .. .. 
t o .* ••••••••••••••• 

+0 O. r 
E1" *0 to ••••• E2 •••••••••• 

• + to • .. 
.*IS LOGICAL .... YES .. ENTER KEY IN • 

.... REC A KEY .. *------->* SRCHKY TABLE *--.... .* .. .. 
t o .* • • *0 .* ••••••••••••••••• r .... .*. RENAME 
Fi *0 F3 +0 ••••• F4 •••••••••• 

. * *. .* *0 '" • 
• *IS LOGICAL ... YES .. '" IS ITEM *0 YES -PROCESS RENAMES-

"'.REC ATF TEXT .. +------------------------------->*0 LEVEL-66 .. *------->*ITEM AND ENTER *--> "'.. ... *0 ... . • IN DICTIONARY .. 
to ... ... 0* • • 

*0 .* .... * ••••••••••••••••• . r .r (:::L~ 
Gl *. G3 *0 ...... G4 •••••••••• 

.. " .... ..* *. +----ENTNAM-----+ 
.. *15 LOGICAL *. YES .. " IS ITEM * .. YES .. ENTER ITEM .. .. ~:c ftMNDE~. '*---1 *0 *. LEVEL-B8 ... 0 *-------->: gI~~i6h~~N :---

*. .* v *..*.... * .. * •••• * .. * ••••••••••••••••• 

l·NO : G4 : l·NO .... 
. '. 

H1 * • .. " IS .... • ••• H3 ••••••••• 
.. -LOGICAL REC*.. YES .... 

.... A CRITICAL .. *------------------------------>* RETURN .. *. PROGRAM .* .... 
... BREAK. .. • •••••••••••••• 

*. o-r ·····Jl·········· · , .. SET conE TO .. 
-INDICATE ERROR .. · . · . .. · .... 1 .... · .. 
····Ki········· -RETURN TO PHASE-

.. 00 .. · . ............... 

Flollch arts 243 



Licensed Material - Property of IBM 

Chart DL. Phase 22: DICTBD Routine 

244 Section 3. 

• •• ·B2 •• • •••• •• · . ... DIeTBD ... · . · .... ·r· .. ·· 
.... FSEND FSTooa 

C2 ... • ...... Cq •••••••••• 
0* *. • ... 

• • END OF FILE-. YES •• RESOLVE LAST • 
•• SECT • *------->* *-------->* FILE • 

•• ." •• DESCRIPTION • *. 0* ••• 

··l:~--------------------------:--------:::::::j······ .. 
••• REDEF RDSYN D2 *. • •••• D3.......... • •••• 04 •••••••••• 

• '" •• ... ADDRESSING"'· • 
0* IS ITEM A"'. YES ... PAR ... -CHECR SYNTAX OF-

$:. REDEFINES • *-------->*SUBJEC TO *--..:..---->* REDEFINES • 
"'. SUBJECT • '" '" ADDR • • CLAUSE *. 0* *PARAM ECT* • 

··1::---------------::::::::---:::::---------::::::]·· ..... . 
. *. PRoc77 

E2 *. • •••• E3 •••••••••• 
. '" *. '" ... • '" IS ITEM •• YES • DELIMIT ALL • *. LEVEL-77 .*------->*GROUPS, IF ANY .---~ *. ' . '" • . ... *. .'" • ... *. 0* ••••••••••••••••••••• 

_NO • • .... 1 : J2 : 

. *. FSTOOO 
F2 "'. • •••• P3 ••• ,. •••••• 

0* *. ... RESOLV • • ••• F4 ••••••••• 

.. : .I~D7§~R~N • :.~:~ _____ >: cu~Rt N :-------->: RETURN : .0 ~ •• DICT •• • 
•. ~* • FDTA • • •••••••••••••• *. .• • •••••••••••••••• r .'. G2 •• • ..... G3 •••••••••• 

~. •• • ENTER N. • ••• G4 ••••••••• 
•• "'. YES • DICTI •• • 

•• IS ITEM A CD •• ------->. DELIMI _ .------->. RETURN • •• 0" .'CD,I •• • .. o· • • ••••••••.•••••• .. .. . ............... . r 
•• 0 GRIPR 

H2 *. ••••• • ••••••••• 
•••• • GROUP • • ••• H4 ••••••••• 

... IS THIS A •• YES • INDICT, •• • 
•• GROUP ITEM •• -------->. T PREV •• ------->. RETURN • ··.0 0.0. : ~~£~~* ~g4~~ : ................ . •. o· ..•••....•••.•••• 
: .:;.! l·NO 
• *-> .... 

ELIPR ·····J2·········· .ENTER ELEM ITEM. 

:DEt¥~~T Da~6ups,: 
• COMPLETE DATA • 
• A-TXT • ................. 

j 
····K2········· · . : RETURN : ............... 

Program organization 



Chart DM. Phase 21: 

Licensed Material - Property of IBM 

Overall Flow 

··.·A3········· [-------------.. .. ENTER VIA 
• IKFCBL21 *---- PHASE 00 .. . -------------

.ffi':·····r .... · 
.·B3······· ·INITIALIZE • 

.. WORK AREAS .. 
.. SETUP .. 

.. CHECKPOINT .. 
• DCB NUMBERS-

.... ·L:u, 
·····C3·········· *FILEST .. 
*-*-*-*-*-*-*-*-* _PROCESS FD AND .. 
• SD ENTRIES FROM. 
.. FILE SECTION .. 

... =· .... r .. · .. 
.. · .. 0)··.··· ... ··· · . -END OF PHASE 21. 
• PROCESSING • · . · . ................. 

j 
····E3········· .. EXIT TO PHASE .. 

.. 00 .. · . ............... 

Flowcharts 245 



Licensed Material - Property of IBM 

Chart DN. Phase 21: FILEST Routine 

····Ai·····.... ~--------------• • ENTER FROM 
• FILEST *--- BEGIN · . --------------

....... [:::------------------------------
. *. DM01A3 

Bl + • 

• + *. ····B2········· • • END OF •• YES • RETURN TO • 
-->*. SECTION OR • *------->* MAINLINE • 

"'. FILE.+ • • *..* ••••••••••••••• 
*. o-r 

• •• FSTXT ACCMET Cl .. . .... C2.......... . .... C3.......... . .... Cq.......... . .... cs ••••••••• 
• + *. • •• •• •• • . * •. YES • SET UP DCB IS. • FILL IN DeB'S • .PLACE ENTRY IN •• • 

+. FD ENTRY .+-------->* FOR ACCESS *-------->+ AND DECB'S FD *-------->* DICTIONARY *------->*GET NEXT ENTRY. 
•• •• • METHOD. • ENTRY • /I.. •• • *..+ • •• •• •• • 

+ ... + ••••••••••••••••• .................. ••••••••••••••••• • •••••••••••••••• 

r .*. SDTEXT 
D1 •• • •••• D2 •••••••••• .... . . 

NO •• •• YES • PROCESS SD • 
---.. SD ENTRY •• -------->. ENTRY .--------------------------_ .. .. . . .... . . .. .. . ............... . . 

246 Section 3. Program organization 



Licensed Material - Property of IBM 

Chart DO. Phase 25: OiYerall Flou 

-ENTER-FROM-j •••• 11.2 ••••••••• 
PHASE 00 IF -----.. .. 
SYMDMP OR .. IKFCBL25 • 
TEST IS .. .. -""''''''-- ...... T ..... . 

** ..... E1 ********* . . 
.. PHASEND .. . . 

··B2······· . . 
.. INITIALIZE .. 

.. BASE REGISTER .. 
*AND WORK AREA. . . · .... r···· 

. *. SORTREN 
C2 *. • •••• C3 •••••••••• 

• * *. ... .. 
• • ANY RENAMES •• YES .. SORT RENAMES .. 

... IN Pi{OGRAN • *-------)* TABLE .. *. 0* .. *. ." .. 

. ·l:~---------------~~~~~~~T ...... . 
. *. DP01A3 

.* D2 •• *. :.~~~~.~;~;:~ •• : ::~;~~g~~ ....... : 
0* ANY ODO'S *. YES • FROM DCCTPL, .. *-*-*-*-*-*-*-*-* 

..... :N PROGRAM ... ' *-------->: QI~~~t.E~RTN :-------->:~~i*~ ~go~~§t¥5: 
... ." .. .. .COMPLETE OCC'IBL* * •. " ............ "'* •• ')... • •••••••••••••••• 

l::~~~~~~-------------------------------------_J ·.··.E2·········· *BEGPASS • 
*-*-*-*-*-*-*-*-* .READ DICTIONARY. 
.. BUILD DATA TAB * 

·······c::: _____ :::lmm
: 

*** **F2** **** *** * * SAVE * * INFORMATION IN * * COMMON FOR * 
*PROGSUM OBJECT-* 
• TIME TABLE • 

·······r······ 
···*G2·** * .*.** 

• EXIT TO PHASE • 
* 00 * · . **. *** *** * **** * 

Flowchart:; 247 



Licensed Material - Property of IBM 

Chart DP. Phase 25: ODOBLD, BLDOBODO, and ENDP1 Routines 

····Al········· · . • ODOBLD • · . 
-:=r····· 

• *0 .t. 
Bl ..... B2 *. 

0- *0 .* t. 
o ... ... YES .. " ANY ODO ... NO 

• .END OF OCCTBL.*-------->*. ENTRIES IN ... _--
*0 .f *0 aceTBL .* ... ... *0 ..... 

*0 0* *0 •• 

1*NO : *:;* : 1-
YES 

• *-> .... 
• t. OP01A3 

Cl t. 
ot *0 •••• e2 ••••••••• 

.- •• NO. £KITTO '" 
........ ODO ENTRY ....... *---1 : B~gg~~~~ : 

*0 0* v ••••••••••••••• 
*0 0* •••• 

GETN 

I-YES : .:~. : 

·····D1·········· · . • CALCULATE N FOR-
• NUMBER OF 000 • 
-ENTRY IN OCCTBL* · . ....... 1' ..... . 
·····El·········· · . -FIND NTH OD2TBL* 

: PTRTI:riRTN : 

oo~"'T""" 

DP01M ····02········· .:exIT TO ENOp16 • 
'" ROUTINE .<--• • . ............. . 

......... Fl-···· ..... ~----------------· . ... ... NE 
• PREPARE ENTRY *---- E · . '" '" OF OB ••••••••••••••••• WHOSE 

QIFOUND 1 . ~:~----------:~ 
·····Gl·········· · . +----INSERT-----+ 
'" MAKE ODOTBL '" 
'" ENTRY '" · . ................. .... l .... 
'" * ->* * .H1 .. e2. 
• *--1· • .... v···· ·····H1········.· · . • POIt.'T TO NEXT • 

--.ENTRY IN aceTBL. 
• TABLE • • • ................. 

····Al········· .. . 
• BLDOBODO • · . :::: ... , ....... . 
· . • i!l • • .-> .... 
·····a3······.··· .SAVE D OHARY. 
• POI OF. 
• OBJEC 0 • 
'" IN '" · . ................. 

··.·AlI.··.····· . . 
• ENDP16 • '. . ............... ···.AS •• ••••••• · . • ENOPl • · . ............... 

• · • • . . . ... 
BLDOB02 1 ---------------> 

·····e3·········· r--------------- .... • • SET •• 
• PREPARE • T. • 
• PARAMETER ._-- • SET StoiITCH • 
• • ER '" '" .. .. 
. ...... ·1· .... ···· -------------- ........... ::I: __ _ 
··.··03········ .. · .---- N----+ 
• L • ·OIC'!' • 
• DINC '" · . 
······T·~:= 
·····E3·········· ·SE'I'NAMS • .-.-.-.-.-.-.-.-. 
.BUILD OOOBOTAB • 
'" ENTRY IN WORK • 
• IUU!A • ···· .. ·r::= 
·····Pl·········· ·ENTRDATA • ._.-._.-*_.-._.-. 
• ENTER IN • 
• OBODOTAB ON '" • SYSUTS .. 

~"T""'" 
··.··G3·····.···· • FILL IN .. 
• OBODOTAB • 
• POINTER IN • 
• ODOTBL ENTRY • · . . ............... . 

· . ·······r·· .. ··· 
.'. Jl •• 

.• ·oo •• •• NO 
•• END OF (J-OOTBL •• ---~ .. .. .. .. 

+ ... * ••• t-l'YES : B3 : . . .... 
DP01A5 

····Kl········· · . • EXIT TO ENOPl • · . ............... 

INDICATE 
NEXT BLOCK 
WR 

r,"~ 
····FS········· • RETURN TO • 

• BEGPASS • · . . ............. . 

248 section 3. Proqram orqanization 



Licensed Material - Property of IBM 

Chart DQ. Phase 25: BEGPASS Routine 

.... . ... . ... ... ... 
*A2* tA3_ 

• '--l • ·-1 .... . ... 
IJR01Fl DR01Fl ••••• A2........... • •••• A3 •••.•...•• 

•••• Al......... *ENTRDA'l'A • *ENTRDATA • 
• • *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* • BEGPASS. • ENTER DATATAB ... • ENTER DATATAB • 
• • -ENTRY IN SYSUTS* -ENTRY IN SYSU'l'S* 
••••••••••••••• • BUFFER. • BUFFER • j ................. . ............... . 
: .:~. L < ________________ L __________________ J .... 

NOENDD WRITES D001P2 ..... .......... ···s2··········· • NElrl' • • ••• Sq ••••••••• 
• • EOF .WRITE BUFFER • .... 
: D1 Y :--------• ON SYSUTS __ . __ o>! !.' -.-___ o>!U:[T TO PHAOEND: .. .... .............. . ................. ................ . ............... . 
.... ~.L ..... · . ... SAVE CURRENT ... 
• DIeT PTR IN ... 
... CURPTR ... · . .. · .... r ...... 

.......... 
----* 

. ... . . 
• eli • ..... . -~ 

0'0 e4 •• o· •. o. .0 YES 
• 0 SO ENTRY • *-l *. ' .• ... . . .. .. . ... 

tNO _ t .... 1 : A3 : 

. ·0 .•. 
04 t.. oS •• 0··0 .••. 

M AND' 
FROM ... 

•• -.YES.. ..NO 

ON • • 
•• LD UNDER RD .*-------> •. RPT.LIN ENTRYo.---! ... .. ·0 .. ·0.· .... r·· .. ·· to •• .0 o. • ••• 

0'0 

1··0 I·YES : Bl : .... 
FILED ••• NOGET 

E1 *. • •••• B2 •••••••••• . * *. ... • 
. .... E3.......... EI.! .0 ......... . • • 0... TO • 

•• DICT PTa IN.. NO • SET CARDNUM • .SET DCB NUM PUT. YES •• •• s • 
•• DEF-TEX'l' = ... ------>. CELL TO 0 .ACCESS METH IN .<------.0 FD ENTRY •• PT • 

•• CURPTR •• • .... . . • DATA'l'AB EN':rRY • .0 .. • • · . .... . . 
··l~----------:==J······· ->. • ->. • 

• A3 • • J2 • · . . . .... . ... 
BPASS12 ••• 

·········l···::::· ··l·N~ ·········l···::::· 
0'. Pi •• .. .. 

•• RD BEING •• YBS • P 
• 0 PROCESSED •• ----->. ·0 .• • ..... - . 

'Ol·N6 ·········L···::::· 
>. • 

• Bl • • • .... 
BPASS2 0'0 

Gl •• 
ot *. 

• -DIC'!' ENTRY ... YES 
-. IS A RENAMER ... -1 ·0 .-to ••. .. .. . ... 

l·NO 
: .:!.: 

DICTFl DR01AS DR01Al ..••. Hl.......... . .••• H3 ......... .. 
• SE'l'NAMS • .TES'l'SUBS • • _t ___ ._._._*_*_* ._._._+_._._._*-. 
: ~~o~I~D : : sij~g~Rr~ED :-1 
• DATATAB ENTRY • .I'l'EM , PROCESS. V 

.... 
NO 

F" ... • •••• 'S •••••••• ,. .... . . o. INDEXNAME ... YES .SET INDEX CELL • 
•• ENTRY •• ----->. NUMBER IN • 

t. •• t DATATAB ENTRY .. .... . . .. .. . ............... . 
• NO L 1 >: .~;.: . . . ... 

... 0 REPORTD 
Gil •• • •••• Gs •••••••••• ...... . . 

o • •• YES • SET SWITCH TO • 
... RD ENTRY 0.----->. INDICATE RD • 

•• • • • PROCESSING .. -... . . .. .. . ............... . 
·NO L 1 >: .::.: 

• • ..... 
0', 

R4 •• • •••• HS ......... . .-.. . . 
•• •• YES _INDICATE INPUT .. 

•• CD ENTRY ... ------>. OR OUTPtrl' CD .---l 
t.. •• .. • to.· • • •. o· ••••.•••••••••••••••• 

·NO • • 
L>. ••••• : A3 : 

• Bl • • ••• . . .... 
········1········· ········~l·······i·::·: 

Jl .. •• •• J3· ••• ..-. .".," •.• -" .• DROU'l ........ 
•• LD •• •• -. 

NO •• UNDER PO • .. •• • •• YES 

~---'.CD. s!!. wdNG •• ~::~_. ____ >'!o .----->.oENTRY RENAMEDo.-.o-.----,.! 
•• S:.&."tiE, •• •••• • 

•• LlCGE o. . . .. . 0-•••. •. o· •••.••.....••..•• • .... •• • • • ell • • • •••• 
DR01AS .... ... ..... . .... X2.......... X3 *. 

• .. *SETNAMS" ••• • 
• ----CALLDIN----. ....-.-.... -*-*-._. .•. ANO'l'HER •• YES 
:LOCATE 1lENAMER :----->:SEfNAfiI¥I'RiES :-----> •.•. RENAMER •••• ;:::~---.-.---o.---o-.-.-.---oo--->:C:=I~ 
• •• ENTRY. +0 o. ••••••••••••••••• .•••••••••••••••• ·0 .• 

'NO L>+ ••••• 
• A2 • · . .... 

• 

Flowcharts 249 



Licensed Baterial -Property of IBM 

Chart DR. Phase 25: 

····A1········· · . .. TESTSUBS ... · . ............... 
1 
, " 

B1 *, . * •. 
•• NUMBER OF *. 

.... SUBSCRIPTS .. " 
*.REQUlRED .* 

*. .* * .•.• 

TESTSUBS and SETNAMS Routines 

DIc;~~i~ !-> 1--::::::-------------Ir-----------:::---2r-----------::~::--3l ..... cl.......... . •..• c ."........ ..... ........•. . .•.. c" ......... . 
*ENTRDATA .. .. SET T .. .. SET T .. .. SET PT .. 
*-*-*-*-*-*-*-*-* .. INF .. .. INF ,.. .. INFO .. 
• ENTER IN SYSUTS* .. DATA .. .. DAT .. .. DATA ... 
• BUPFER" .. SET .. .. SET .. .. SET • .. .. • coo ... co ... cou 

.......... *1···· ..... ········r :~~:=::--------~=~=::.!---~=~--------~=~~j 
DQ01Al TESTSB2.". TESTSB6 

D2 *. • •••• D ••••••••• 
•••• D1......... .* ENTRY *. *---- -----* 

... RETURN TO" .. " CONTAINS ... NO .. Lac BOL'" 

.. BEGPASS" •• OCCURS CLAUSE.*---··_-)*O!CT WITH. 

.. .. ., •• It... 0 .. 
••••••••••••••• ...... ..... l ••• : ............... ,.,.: 

**· .. F!···· ... ··* · . '" ENTRDATA .. · . "" .. 1' ..... 
,', 

Gl ... 
..... t. 

• "'ENTRY PITS •• YES 
"'. IN SYSUTS • *---

•• BUFFER •• .. .. 
•.. * r ·····H1······.··· · . ·----WRITES-----. 

*WRITE BUFFER ON. * SYSUTS • · . ...... ·T ...... 

rs :.~~.: 
...... . ........ . 
"'SET TO'" 
"'THI OR • · . · . · . . "' ................ . 

TESTSB3 1 <--~--------------------
·····P2·········· [--------:.-• .• AS PARAMETER 
• SETS OCCURS PTR. FOR LATRPT 
• IN THIS COBOL .---- ACCESS RTN 
• DIeT ENTRY" ---------· . ·······1······· 

,', 
G2 "'. • •••• G3 •••••••••• .... . . 

•• ENTRY IS "'. YES .SET BIT IN VLC • 
:t .• VARIABLE-LNG • *-------->. INFO BYTE 

•• GROUP •• • *... • _ ·r--_=r···· 
····"'82·········'" · . .MOVE INFO FROM '" 
.TBL TO DATATAB ... 
... ENTRY • · . . ....... 1' ...... . 

••• TESTSBB ••• J2 .. . .... J3.......... J4 .. 

····"S········· · . • SETNAMS • · . 
'~"'r"'" .......... 

DIC • 
CT • 
DIeT· 
B • . .. .... "1' ....... 

·····CS·········· · . • SET BASE REG • 
.. FOR SYMtncT .. 
... DSF.CT • · . ............... ,.. ... "'. 

1 "'· .. ··D5*········· · . .SET CARD NUM IN'" 
: DATA'l'AB EnTRY : · . •••• "' ••••••••••• * 

1 
• .. ···ES··**· .... ·"'· .. · . • SET MAJOR CODE .. 
• IN DATATAB .. 
: ENTRY : .. ...... r .. · .. 
.. ··P5*········ · . • RETURN • · . • ........... ***. 

·····Jl··.···.··. · . • MOVE ENTRY TO • 
.• *. • ... .••. *SET B .* •. YES • MOVE ODODOTAB • •• LOWEST •• YES • DICA 

"'. aDO ENTRY • *-------->. PTR TO SAVE .------>.. LEVEL GROUP •• ------->.LEVEL 
•• •• • l.REf,. •• ... • 000 C 

: BUFFER :<--· . *... • • •..• ... • 

" c----------::~~:::=::==~--------~!:~----------:::=]··· ..... 
,', 

X2 •• • •••• X3 •••••••••• .... . ... 

''''''''1'''''''' 
····Kl········· • RETURN TO .. •• SUBSCRIPT •• NO • REDUCE • 

•• CT IS ZERO • "'------->.SUBSCRIPT COUNT.--, 
•••• ..... : BY ·ONE :.q. • CALLER • · . ..... ""., ....... . .. .. . ................... . 

·YES .. • L>. ••••• : D3 : 
• Cl '" "' ••• . . .... 

250 section 3. Program organization 



Chart EA. Phase 3: Overall Flow 

Licensed Material - Property of IBM 

····A3········· · . • IKFCBL30 ... · . ·· .... r··· .. 
··23······· . . 

• INITIALIZE • 

• ~~S~wI~~~·. • . . ........... 
..... J .. "'1ll 
*GLOSRY • ~--------*_*_*_*_*_*_*_t_* SCAN DIVISION 
• WRITE DATA *--- ENTRl ... DIVISION • DICT AND 
• GLOSSARY ... LIST ................. ----------

.... ~J."' ... 
*PHCTRL • [--------*_*_*_*_*_*_*_*_* -TEXT 
... CONTROL *-- UTE 
• PROCESSING OF ... FOR 
... IC-TEXT ELTS. ALL 

~"""'T""" --
.·.··E3·.········ • • 
• TERMINATION • 
'4 ROUTINE • · . · . 
·······r··· .. · 
..• ·F3········· ... EXIT TO PHASE ... 

• 00 ... • • ............... 

Flo weh arts 251 



Licensed lIaterial - Property of IBM 

Chart EB. Phase 3: GLOSRY Routine 

252 

····Al········· [------------.. .. BRANCHED TO 
.. GLOSRY *--- FROM PHINIT .. .. -----------............... 

1 .... . . 
.. B2 .. 

• '--l .... 
'*0 DleSCN 

B1 *0 ••••• 82 •••••••••• 
. * *0 .. .. 

.. " ANY DATA .... YES .GET DICTIONARY .. 
.... DIVISION .. *---___ >* ENTRY 

*0 .* 1\" 
*0 .. " .. .. 

•.• iI~ ········r······· 
1 .. ~ .. 

C2· ••• C3 •• .... cl......... .* *0 .* to 
.. .. NO .. " .... YES .. " *0 YES .LI 
.EXIT TO PHINIT .. ---*.DATA OPERAND .*----->I(:.HEADER-SWITCH.*------>* 
.. .. *0 .* to ON.*" *s ••••••••••••••• *0.* *0.* .. 

Section 3. 

*0 .* *0 .* ••• 
'" *NO 

PRINIT 1 ·····03·.········ · . .. MOVE DATA TO .. 
.. PRINT LINE .. · . · . ········1········· " 

PRINT <-------------------
···El··········· MOVE PRINT 

.. LINE TO .. 

.. Bg~F~~~p:r~~E .. ................ 
1 ... 

FJ *0 •••• ""F4 •••••••••• 
. * *0 .. .. .* •. YES" SET .. 

*0 END OF PAGE .*------>. HEADER-SWITCH • 
•• ... • ON • .... . . 

.. I::--~~-~~-::=:=j········ 
CHKENT .*. EC01A2 

G3 •• 

. * *. ····Gq········· •• LAST DATA -. YES -EXIT TO PHCTRL • 
•• DIVISION •• ------>* ROU'l'INE • 

•• ENTRY.· • -.... . ............. . 

Program Organization 

.. . -
'NO 
L_>* ••••• 

• B2 • . . .... 



Licensed Material - property of IBM 

Chart EC. Phase 3: PHCTRL Routine 

GETNX'T 

GET 
IC-TEXT 
ELEMENT 

C3 c4 
C5 Cl C2 

COPYIN GETNXT 

YES COPY VERB GET 
IN OUTPUT NEXT 
AREA ELEMENT 

NO 

D2 D3 D4 
D5 

COPYIN 

SORT NO READ NO COPY 

OR MERGE OR RETURN CORRESPONDING 
IN OUTPUT 
AREA 

YES YES 

E2 E3 E4 
SMERGE READEN STRSCH 

EXPAND TO APPEND PROCESS 

OPEN, CLOSE RECORD-NAME STRING IN 

FILES AFTER SEARCH 
FILE-NAME STATEMENT 

F4 F5 
CORRTN 

USES GETNXT, GENDAT, SEARCH, 
GET OPERAND AND GENOP TO DO THESE 

OPERATIONS. WHEN COMPLETE, NAMES. FIND 

NEXT ELEMENT ALREADY GOTTEN. MATCHES IN 
DICTIONARY 

G2 

SEARCH 

NO LOOK FOR 

SP'D VALUE IN 
DICTIONARY 

H3 
H2 GENOP 

YES GENERATE 
OPERAND 
USING 
ATTRIBUTES IN 
OUTPUT AREA 

Ji 
ENDDBG 

INVALIDATE SPECIAL YES 
DEBUG-ITEM REGISTERS 
DICTIONARY 
ENTRIES 

NO 

K2 K4 

ERROR GENDAT ALTSCAN 

GENERATE WRITE PROCESS 

E-TEXT DATA ALTER 
VERB 

Flowcharts 253 



Licensed lIaterial -Property of IBM 

Chart ED (Part 1 of 5). Phase 35: .PHCTRL Main Control Routine 

254 

1 PKerRL 
A1. 

B1 

Cl 

PH35INIT 

PHJ\SE 
INITIALIZED ~ 
INCLUDING 
TABLE PRIMES 

ANLZUFDS 
BUILD DTAB 
ENTRIES FROM 
UFO SENTENCES 
IN THE 
OECLARATlVES 

E1 

NO 

EOFRTN 56 

CLEANUP: 
INCLUDING 
TABLE 
RELEASES 

YES 

Section 3. 

J2 

(AT LEAST ONE D3 
PN IS UFO OPERAND) 

NO 

F2 

YES 

YES 

E3 

p1 
END DECLS 

CONTROL 
BREAK 

YES 

GETISTPN 35 
SPECIAL 
PROCESSING 
TO FIND FIRST 
PN AFTER 
DECLARATIVES 

F3 
GOTAVERB 

PROCESS ENTIRE 
>.::.:::~-~ VERB STRING 

FOR UFO 
OPERANDS 

G3 
GENP1GET 47 

GENERATE 
CURRENT Pl, 
GET NEXT pl 

GENP1GET 47 

GENERATE 
CURRENT Pir 
GET NEXT Pl 

u1 

Program organization 

NO 

YES 

E4 
CRDNBRTN 

DETERMINES IF 
DBG TRANSFER 
VERB IS 
REQUIRED 
BEFORE OR 
AFTER CARD 
NUMBER 

G4 

E5 

YES 

PNDEFRTN 9A 

CHECK PN 
FOR UFD 
OPERAND 



Licensed Material - Property of IBM 

Chart ED (Part 2 of 5). Phase 35: ANLZ tJFDS Rou tine 

3 
ANLZUFDS 
A1 

Bl 

D1 

£1 

GETNXTPI 

GET FIRST 
Pl TEXT 
ELEMENT 

C1 

NO 

GENPIGE'l' 

GENERATE PI 
GET NEXT Pl 

GENPIGET 

GENERATE Pl 
GET NEXT PI 

43 

47 

47 

SCANS USE FOR DEBUGGING (UFO) nECLARATlVES 
FOR PROPER OPERANDS I ADDING THEM TO DTAB 

K2 

B2 

SECTION 
PN 
DEFINITION 

YES 

GENERATE PN 
GET NEXT-PI 

GENERATE CARD 
NUMBER 
GET NEXT PI 

NO 

ERROR 

COMPILER 
ERROR 
339 

55 

NO 

c3 

H3 

B3 

ND 
DECLARATlVES 

YES 

CHECK UFO 
OPERANDS, 
VERIFY AT 
LEAS'l.' ONE 
VALID 

YES 

GENPIA 48 

GENERATE 
UFO VERB 

B4 

NO 

H4 

page 2 of 5 

Chart ED. Phase 35: ANLZUFDS Routine 

GENPIGET 47 

GENERATE PI 
GET NEXT pl 

E4 

COMPUTE BLLs 
REQUIRED FOR 
DEBUG- ITEM, 
ADD TO VALUE 
IN COMMON 

F5 

NO 

ERROR 55 

COMPILER 
ERROR 40 

Flowcharts 255 



Licensed 8aterial - Property of IBM 

Chart ED (Part 3 of 5). Phase 35: PNDEFRTN Routine 

9APNOEFl<irN 
AL 

ENTl<Y CHECKS PN DEFINITION 
FOR DEBUGGING 

B1 

PRESET 
INDICATOR: 
PN IS NOT UFn 
OPERAND 

C1 

GETVDNE 32 

CHECK PN OEF 
FOR DEBUGGING 

01 
02 03 

SAVP1GET 58 
RESET DEBUG 

PN NO 
SAVE PN TRANSFER VERB 

A UFO DEFINITION OPTION BYTE 
OPERAND IN P1TEXT TO DEFAULT 

TABLE FALLTHRU 
GET NEXT Pl 

YES 
J1 

E1 
E2, 

E3 
E4 ES 

SET BLDBGVRB GENP1TT 51 BLDBGTRN 39 
PN A POINTER TO FIRST BUILD, 

DECLARATIVES NO CAUSE DBGTEXT PN IN YES GENERATE CARD 
SECTION TO 'BE SAVED PROGRAM NUMBER GENERATE DEBUG 

DEFINITION ~~~~TEXT (PAST nECLS) IMMEDIATELY TRANSFER VERB 
ST,ART PROGRAM 

YES NO 

F1 F3 
F4 

SET BLDBGVRB BLOBGTRN 39 
OK TO 

POINTER TO GENERATE YES aUILD, 
CAUSE OeGTEXT PN FALLTHRU~::- GENERA'l~E DRBUG 
TO BE SAVED IN OE~FER TRANSFER VEIlD 
DBGTEXT TABLE :vERB FALLTHRU 

NO 

~ 
Gl 

SAVPIGET 58 

SAVE PN 
DEFINITION IN 
PITEXT TABLE 
GET NEXT pl 

Hl 
BLDBGVRB 40 

BUILD, SAVE 
DEBUG TEXT 
EITHER IN 
DBGTEXT OR 
PITEXT TABLE 

Jl 

Jl 
l-

GENPITT 51 

GENERATE 
PITEXT 
TABLE NOW 

Kl 

RETURN 

256 section 3. Program organization 



ChartED (Part q of S). 

G01'AVEIUI 
Ai 

INDICATE, 
S1'AR1' OF VEIUI 
STRING, 
PROCESSING 
VEIUI 

YES 

D1 
ABNDS1'1I'r 

END OF 
S1'A~T 
PROCESSING 

11 

CHECKS VEIUI S1'RIHG 
FOR DlIBUGGING 

Phase 35: GOTAVERB BOlltine 

C3 
COPY VBIUI 
1'ABLE BN1'RY 

1----i>I, ~:=~~ON, 
INUIAL VBIUI 

. ANALYSIS. FLAGS 

C4 

NO 

D4 
ANLZVRBS 

OPBRAIIDS 
REQUIRES 
VARYING 
SYH1'AX 
AWARENESS 

Licensed Material - Property of IBM 

12 
D 

C5 
CKDBGTRN l.OA 

BUILD, 
GENERATE, 
DEBUG 
1'RAIISFBR VERB 

Flowcharts 257 



Licensed Material - Property of IBM 

Chart ED (Part 5 of 5). Phase 35: ANLZVRBS Routine 

258 

ANLZVRBS 
A1 

INDICATE: 
PITEXT TO BE 
SAVED IN 
PITEXT TABLE 

c1 
SAVP1GET 58 

SAVE VERB IN 
PITEKT TABLE 
GET NEXT Pl 

E1 

G1 

COMPLETE VERB PROCESSING (SYNTAX , 
DATA ANALYSIS) 70 END OF VERB STRING 

E2 
PLUS!WRB 38 

GUARAIITES 
PAST ANY 
IMPLICIT 
TEXT 

*13-24 ,17A,24A,29 ,38 
G2 

VRBANALZ· * 
ONE OF MANY 

E3 
GENTXT: so 

. GENERATE 
SAVED DEBUG 
AND/OR PlTBXT 
FROM!'1'ABLBS 

'>----1>1 ::I~:~YSIS 

SAVE 
CURRENT Pl 
GET NEXT PI 

Section 3. 

ADDRESSED FROM 
VERB TABLE 
ENTY 

B2 
GETeI" 31 

CURRENT 
P1 FOR 
DEBUGGING 

Program organization 

P4 

B4 

INDICATE 
PlTEXT: MAY 
ONCE AGAIN BE 
GENERATED 
IMIIEDlATELY 

page 5 of 

Chart BD. Phase 3S: ANLZVRBS RoUt.ine 

E5 
SRCHWND 30 

YES PROCESS SEARCH 
>---i>I WHEN CONDITION 

GENERA'rES ANY 
SAVED PRIOR 
DBGTEX'l' 



Chart FA. Phase 4: 

Licensed Material - prop erty of IBM 

Overall Flow 

····A3········· [------------• • ENTER VIA . 
• IKFCBL40 *---- PHASE 00 · . ------------",,:: .... 1' ..... 

··B3······· . . ····B"········· *T S+ • • 
• _ • • IDENT • . . . . 
: .~;: Ll<~=~---·-----~::~]······· .... 
·····C3·········· · . _PROCESS PRvGRAM* 

->: ~~~N ~~~ : · . ········r······· 
.... BOF 

03 .... • •••• D" •••••••••• • * toO • • •••• 05 ••••••••• 
... t. YES • CLOSE FILES. • • EXIT TO PHASE. 

too END OF FILE .. +------>* TERMINATION *------->* 00 • 
toO ... • ROUTINES.. • 
too.* • • ••••••••••••••• 

to .* ••••••••••••••••• 

r 
..... VERB ANALYZERS 

E3 toO ••••• E4 •••••••••• . * toO • • .* *oO YES. • 
... VERB .. *------->* PROCESS VERB • 

t. ... • • 
t o .* .. .. 

.Ol*N6 ·········t···::::· 
->* .. 

: c3 : .... .......... . 
ES· 

F • " . · . ................. 

Flowcharts 259 



Licensed I!aterial. - property ofIBI! 

chart FB. Phase 4: IF Routine "." 

····Al········· [j----__ _ • • BRANCHED '1'0 
• IF *---- FROM IDENT · . ------

· . · . ····· .. ·r······· , ., .. 
FORMLA Dl··~.. ..D2·~~.~... OlCCOMJ?,·D .. ··: ... · ••••• os •••••••••• 

. * *. .* *. ., • 
• • COLLECT •• YES • _COND CLASS •• YES • P ',. . • • VALID *. YES • GENERATE • 

t. OPERANDS .*------>*.OR SIGN TEST .*------->*H ..... ----> ... COMBINATION .*------>* ERROR-FREE' • *. VALID .* *. NEXT 0* • • It. -.OF TERMS .". ". STRINGS •. 
t..* t..* • • *..* •. • 

to * .• * ............. .,..... • • • •••••••••••••••• 
'NO ."' ";'0 1'" 
J'" 1 .'. E2 *. • •••• E".......... E5 .. 

• * t. ...* +,; 
•• RELATION •• YES • *-----ERROR-----*.* WAS THIS * •. NO 

*. 0* $. TEXT. *.. .* •• TEST NEXT • *------> -GENERATE ERROR • ••. MESSAGE • *-! 
*. .• •• *..f *. 0* .................. * .. * •••• . r 1 rs :.:~': 

F2 .. . .••. P3.......... • •••. pll.......... . .•.. ps ..••.•.••• 
• • •• • •• 8UBSTI'TUTE·· • 

• • RELATIONAL •• YES .ERROR CONDITION. .DUMMY STATEMENT. • GENERATE • 
•• REQUIRED •• ------->. ASSUME '=.. • FOR INCORRECT .---- .SUBROUTINE TEST.--! 

•• ••• • ONE. • VERB • .... . .. .. . • * ••••••••••••••••• ••••••••••••••••• • •••••••••••••••••••• 

. t~~: .:;. : 1 : .:~. : . . .... 
Gl •• FA01BlI ••••• G3 •••••••••• 

.• *. ····G2·········· . · * END OF IF •• YES. * *-----ERROR-----. *. STATEMENT •• -------->. EXIT TO IDENT • "GENERATE ERROR • 
•• •• • •• TEXT • *... •••••••.••••.••• • .. .. . ............... . 

I·NO L ... . >. • 
• B3 • . . .... . '. H1 •• .• *. .. . .. 

• RELATIONAL •• *. .• 
-. .* ... -'YES 

L_>* ••••• 
• E3 -. . 
•••• 

260 'Section 3. 

' .. \ : 

Program Organization 

", . 



Licensed Material - property of IBM 

Chart Fe. Phase 4: PRFORM Routine 

... ·u.········ ~-----• . • BRANCHED '1'0 
• PRFORM *--- noM IDBtI'l' OR 'SORT · . -------.. ·· .. r·· .. · 

.•. .*. .t. 
Dl ... B2 ... 83 *. • •••• Slt •••••••••• 

. * *. .* *. .* *. • • 
• :* IS IT PNl ·:.~ ___ >.:·pR~z~mU .:.!~--->.:. VALID PH2 .:.!~--->: ~t~~ I~~ 6~ : 

*. .* *. .* *. <1* • PERFORM • 
*..t *..* *..* • • .'.ii6 toO .e * •• * ••••••••••••••••• 

1 : ';;': I"NO I·NO L>: .;;. : 
• *-> • • .... . ... 

PAOla" ••••• c •••••••••• •• ••• C3· •• ••• •• •• .... cl......... *---- YR-----.. . 
• •• 1'1 '1'ION • • DISCARD THRD • 
• BXXT TO ID2ft • • 0 OP *<-------* I'N2. PUT Ou'l' • 
• •• •• ERROR "l"EXT. II ................ .. . 

·······T .. ···.. ~:~~:~:: ....... . 
ISEND .e. V ••• D2 *. ... •••• D3.......... DII ·e • 

•••• END 'OF •••• YES : S'l'ORB: •• ":8 PRFO~" ••. YES ••••• 05 •••••••••• 
*. STATDlENT .*---->* APPROPRIATE .,.---->.. CALLED BY •• ----->. EXIT TO SORT • 

•• •• • STRINGS. •• SORT •• • • ... .; .'... : ............... : .... ; .. '... . ............. . . r r E2 •. • .••• E3.......... . .••• Eq ..•....... 
•• t. • •• • .. .0 YES •. GENERATE. .----GENSTR---- • 

•• UNTIL. • .... ---->.INITIAL S"rRINGS. j->.GENERA'rE PINAL .<-.0 .. •. . . STRINGS • .... . ... . .. .. ................. . ............... . 
. ~ .M.J........ I 'M~ 

• • • ••• pq ••••••••• • -----UN'rII.-----· • . • 
• GENERATE STRING.--- • EXI"r TO IDENT • 
• FOR CONDITION •• • · . . ............. . 

. '. 

.................. 

.... 
• • 
• H3 • 
". .--~ .... 

H2 .0 ..... H3 •••••••••• o. .. . . .. 0 YES : GENERA"rE 
•••• VARYInG .' •• ____ >:lNITIAL STRING !-----:.! 

•.•. o~·· : •••••••••••••••• 
• • · · r .'. J2 •• • •••• J3 •••••••••• . ··0 . . •• •• YES .----OKPFOP-----. 

•• N TIMES •• ··_--_>.CHECK THAT N IS. -. o. - VALID --... - . -. .. . ............... . 
'NO L L>. ••••• > ••• ~ •• 

.D3e .D3. • • • • •••• • ••• 

········r······· 
.'. Jq •• o· .. O. .0 NO 

- 0 AF'l'ER, ETC 0 • *---·0 .-.. .. . ... 
·YES L •••• ->. • 

• 83 • • • • ••• 

Flowcharts 261 



Licensed !aterial - Property of iBM 

Chart FD. Phase IJS: Overall Flow 

··.·Al···.····· ~--------• '" ENTER VIA 
• IKFCBL45 *---- PHASE 00 · . ---------...... 1' ..... 

.. Bl······· . • ····B2········· • PHASE" • • 
"'INITIALIZATION • • PH45CTL • . . . ,. . . .............. . 
··::···1······ j 

: Cl =_> < ________________ _ .... 
·····el·········· ·----GE -----+ 
• R • 
• ATM • 
• EL • · . ................. 

1 .'. D1 t. 0- to •••• 02 ••••••••• 
•• END OF to YES • EXIT TO PHASE • 

to ATM-TEXT .*------->* 00 • 
to .* •. • ...* ••• 41.. ••••••••••• 

to o-r ·····El·········· · . "'SAVE HEADER AND-
• OPERAND COUNT • · . · . ................. 

-------->1 ·····Fl·········· *---- -----+ 
• R T. · . · . · . ........ 1"' ..... 

·····Gl·········· · . • PLACE ELEMENT • 
• IN NEXT • 
• AVAILABLE oop • · . ········r······· 

.to ••• 
H1 to 82 to 3 •••••••••• . * to .* to • SA LETE • 

NO • • OPERAND •• YES •• SUBSCRIPT •• YES '. PT. ---*. COUNT-l=O • *----->.. STRING JUST •• ------:->.STR SSCIN • ...:--~, 
•• •• •• READ.' • • .... ..... ..... ., . 

262 

' .. ' ' .. ' .................... .. 
• 'NO • • 

Section 3. 

..... 1 : Cl : 

. '. J2 ". • •••• J3 •••••••••• 
...., • SET UP ERROR • • ••• J4 ••••••••• 

• ' UNSTRING '. NO • . MESSAGE - • . • EXIT TO PHASE • 
••• ~TRi~JUS: ••• ---->:·UNR~~~fZABLE:---:--->: 00 : .... . , . . ............. . ' .. ' ................ . 

• YES 

1 FC01Al FD01Al •••.. K2.......... • .... K3.......... . .... K4 ......... . 
'UNSTRING • 'SORTXT •• • • _._.-._._.-.-*-. +-*-'-'-'-'-'-'-". *----PUTDOP-----. 
• ANALYZE .----->'SORT TABLES FOR.----->* WRITE P2-TEXT *-~ 
• ATM-TEXT AND • • NEXT SET OF' '. • ON SYSUTl • 
'CREATE P2-TEXT • • P2-TEXT • ,. • ................. .................... . ................... . 

Program organization 

• • 
• Cl • · . .... 



Licensed Material - Property of IBM 

Chart FE. Phase 45: UNSTRING Routine 

····Al········· · . • UNSTRING ... · . ............... 
1 .'. B! *. ..B2 ••••••• 

• + *.. • PRIME ... 
• : ... ISF¥~~ = .. : .:~~ _____ > •• INTA E~tE ...... 

t. .* ... AND ... ... ( ' .. t" 
· ... ··.Cl·········· ........ . ... ... FIRST ... 
*----NXTSTR-----... TICN ... 
... GET NEXT nop ... E NUMBER. 
... ... OUT AND • 
• ... TABLES ... ................. . ....... . 

... . ..... · . ... ENTER DOPS 2 • 
*AND 3 IN TXTOUT* 
... AS IS ... · . ········r······· 

.-. 
F2 * • • * *. o. t. YES ... P 

•• FIE 4) .*-------->* 
*.5 -.* -SS 
t..* ... UT'" * .. * ••••••••••••••••• r ·····G2·········· · . .. ENTER oop II IN ... 

.. TXTOUT ... · . · . 
········1·::::::::---------------- : .::. L~ .... . '. H2 *. • •••• H3.......... . ..•. a" •••••••••• • * *. ... ...... ... 

... IS oopS = "'.. YES ... SET CTL2 FLAG • +----GETDOP-----* 
•• DELIMITED BY .*--------)* TO 'DELIMITER +----->* GET NEXT TEXT. 

"'.. ..'" ... FIELD'. • ELEMENT (DOP) • .. .. . .. . 
'. 'N~ ••••••••••••••••• ········r······· 
1 .' . ••••• J ........... Jil •• FB01B2 

• SET FLAG • • • •• • ••• Js ••••••••• 
• T ING • NCH. YES •• OOP •• NO • RETURN TO • 
:FI ~ND : :<------•. ~~N!t!=~riE~I .• ------>: PHII5CTL : 
• TABLE. • to.. • •••••••••••••• .... ....... .... . .. . 

1 ·····X2·· .. • .. ••••· · . • SET CTLl • 
• ' BREAK' FLAG ON. · . · . .............. "' .. 

L •.•• >. • 
• Hil • . . .... 

1 
. 

..... . ........ . · . m-------• • FIELD : :--- ~~~-----· . . ............... . 
l ... . 
_>* .t 

• Hil ' • . . .... 

Flowcharts 263 



Licensed Material - Property of IBM 

Chart FF. Phase 45: SORTXT Routine 

264 

.... Ai......... [ENTERED-FROM--------... *--- FIELD ANALYZER FOR 
'" SORTXT ... TEXT ITEMS (SCANTXT) 
'" .. -------------------.............. '" 

j 
·····Bl·········· .. SET '" 
"'DISPLACEMENT TO. 
.. TXTOUT AND .. 
• SSCOUT TO ZERO .. · . ................. 

1 <-------------------------------------------------------------------------------------------·····c ......... . ... GET OF" 
.SSCOO ADD .. 

-->* C .. 
.. OlSF .. · . ........ 1* ...... . 

. '. 01 ... • •••• 02 ......... . 
• " "'. .. GET OF" 

." IS NEX'I ,... YES *TXTOU ADD .. 
"'. ENTRY END • *-------->* C .. 

... MARKER • .. .. DlSF ENT" 
*..* .. '" 'r ........ r .. · .. 

..... E1.......... . .... E2 ......... . 

.. GET NEXT"" .. 
COMPLETE" "'GET STRING CODE'" 
SUBSCRIPT" .. AND OPERAND ... 
STRING: : COUNT, IF ANY : 

········1········· ········1::::::::-------------------------------------------
.' . ..... Pl.......... F2 *. • •••• P3 ......... . 

... .. o*IS NEXT.. '" .. 
*----PUTDOP-----* ." ELEMENT = ... YES .. INSERT FINAL • 

---.WHITE STRING ON. __ >*. "24" SEQUENCE. *-------->*SEQUENCE NUMBER. 
• SYSUT1. *. NO... • • · . ..... . . ................. · .]~ __________ :==J ....... 

"'····G2*········· • MOVE OPE • 
• INTO NEXT • 
"'AND SET OP • 
• LENGTH IN 
• BYTE • ........ "' ....... . 

1 NO NO 

H2···.. .* ••• H3 •••• "'..... H4· •• HS· •• 

Section 3. 

•••• ·----PUTDOP-----· •••• ••• • 
• '" OPERAND •• YES '" WRITE HEADER • •• END OF •• YES •• END OF •• 

•• COUNT-l=O •• ------->.AND FILLED DOPS.------->.. TXTOUT •• -----> •. ENTIRE TEXT-' ~. *. .• • (P2-TEXT). •• SECTION •• •• •• 
*. . '" • • •..• ·,0.* * .. * ••••••••••••••••• *. .• . •..• . r Al . I"YES 

J2 •• • •••• J3. •••••••• FB01B2 
•• •• • SET • • ••• Js ••••••••• 

• :·DO~~~EB~EN .:.:~ _____ >:CO~N~ ER: : ~B~~~TlO : 
... FILLED .. * A. OOP'S LED. •• .. .. .. . ............. . •. .• • ••••••••••• * •••• r .'. K2 •• .. .. 

NO .. * IS NEXT •• YES 
---.. ENTRY END ... -----*. MARKER •• .. . . ... .. . 

Program organization 



Chart GA. 

Licensed Material - property of IBM 

Phase 50: Overall Flow 

····A2········· ~------• • ENTER FROM 
• IKFCBLSO • ------ PHASE 00 · . --------............... 

..&.: t,j~;;;;;;-----------------------------------
...•. B2·········· Q---------*GETNXT • *-*-*-*-*-*_*_*_* NORMAL EXIT 
• GET NEXT *----- FROM PHSCTL 
• ELEMENT. IS IN GETNXT · . ····· .. ·r······· ---------

.*. . .... 
C2 ... C3 *. • •••• C4 •••••• • ••• • * toO .* *oO • DESTROY • 

• :*VERB STRING·:.~~-->.:·g~fI~~TIg~ .:.~:--->: op~¥~~g4ian : *. .* *. ... • TABLE • *...* *..* • • * •• * * .. * ••••••••••••••••• 
• YES tNO j 
1 1<------------------.••.. 02.......... . .. D3 ... ·.·•···· 

• • WRITE 
• MOVE OPERANDS. -INTERMEDIATE • 
• TO WORK AREA • OPTIMIZATION 
• • A-TEXT · . ·······r·· .... . .............. . 

l ... . ->. • 
• B2 • · . .... 

. ·.··E2·········· · . • UPDATE ANY • 
• SUBSCRIPTED • 
• ITEMS .+ · . ········r······· 

.*. .. *. F2 too ••••• F3.......... F4 ... 
. * *. • • oO* *oO •• *a YES • ANALYZE VERB • •• .oO YES 

•• PHASE 50 VERB.*----->. STRING *------> •. END OF STRING •• -> .. .. . . ... .. 
PH5BVB 

•. .o. • • *.. • •. .o. •.....•.••••••••. toO •• r l·No 
at. GD01Al 

G2 • .o ••••• G3.......... • •••• G" •••••••••• 
.o. VERB • .o • • .GENERATE + 

•• NEBDS REGS •• YES .STORE SUBSCRIPT. ._*_.-.-*-*-*-.-* 
•• 1-5 AT OBJECT •• ------>. REGISTERS 1-5 • • GENERATE PROC *--> 

•• TIME ... • IF NECESSARY * .A- OR INTERMED * 
• .o .o. • •• OPT A-TEXT • 

·J~-----=~==~r· .. ··· ................ . 
2··········· OUT 

ER • 
S AS 

ON • 

1 
••• GE01A" 

J2 •• • •••• J" •••••••••• .. ..o .RILSUB • .o. .. NO .o. ..o YES .-.-.-.-.-.-.-.-. 
~.o • +------> • .o S OPT. *----->. DESTROY *---•. ~: .o. A • .o *. .o • .o. : SUB~~~In OPT : 

•• .o+ •• •• • •••••••••••••••• 

I·YES t~~ .•.••• 
• B2 • · . .... 

GE01Al .····X2·········· ·XSPRO • • -*_.-._+-*-*_._. 
otGENERATE CALLS .----
: TO Q-ROUTINES : ,. ............... . 

Flowcharts 265 



Licensed Material - Property of IBM 

Chart GB. Phase 50: PH5CTL Routine 

····AI····,..···· [---------------... ... BRANCHED TO 
• PH5CTL ... ------- FROM PHSO 
... . ---------------............... : '::': I .. *-> .... 

GCDIAI ... ·.81·········· *GETNXT ... 
*-*-*-*-*-*-*-*-* -->* GET NEXT .. 
.. ELEMENT .. . . 
.. ······1 .. ······ 

~.~ EOFIN 
4'" Cl ... "'. : •••• C2 ••••••••• : •••• C3 ••••••••• 

• " ... YES .. TERMINATION • .. EXIT PHASE 50 ... *. END OF FILE .*-------->*ROUTINES (CLOSE*-------->* TO PHASE 00 .. *. .* ... FILES)" '" .. .... .'" .. . .............. . * .. * ••••••••••••••••• 

INa fCiiPPROPiiiATE-ANALYZERl----------------------------l 
.*. v. *. GDOIAI Dl *. • •••• D2.......... • ..... 03.......... D4 *0 * ••• *D5* ....... . 

•• .... .. MOVE OPNDS TO ..... .. • '" ... .GENERATE" 
." "'. YES '" WORK AREA.." .. 0* •• NO .-.-.-.-~-*-*-.-. 

•• VERB STRING. "'-------->.DETERMINE WHICH .. -------->.ANALYZE STRING *"-------->*.END OF STRING. "'------->. PROCEDURE 
• • •• '" ANALYZER.". *" "'. ... .. A-TEXT ...* • •• • "'... .. • ... .• ••••••••••••.•••• . .............. *... .. ... . ................ . 

l·NO t~;: ."' ... '" 
'" B1 '" . . .... 

CTLCOPY .... • •• 
E1 "'. E2 "' .. . "'... o. *0 

~~_. : ~~N 6E~~NI~~O~: • .:~~ _____ >.: ~N DEFINITIO~: .~~~ ___ > .WR~~~c~gfiR~N • 

266 

.. • .. '" ... .." .. A-1'EXT FORMAT. "'. .. ... .. .. . '" "' ... . . r 
........... 

ROC 

ES~~~Y • 
IZATION' • 

A-TEXT •••••••••••• * ••• 
l .... 
->. • 

'" 81 '" . . .... 

. ............... '" 
l ... "'''' 
->* • 

• B1 .. . . ... "' . 

section 3. Program organization 



Licensed Material - property of IBM 

Chart GC (Part 1 of 2). 

····Al········· · . .. GETNXT .. · . ............... 
:~~: ... _>j · . .... 
·····Bl·········· · . .. POINT TO NEXT .. 

r-->* ELEMENT IN .. 
: BUFFER : .................... . . : Bl : 1 
: •••• Cl ••••••••• : 

.SAVE COUNT FOR .. 

.. ELEMENT .. 
+ + 
+ • ................. 
: *::*: 1 .. *-> .... 

Phase 50: GETNXT Routine 

.+. • •• .• Dl *0+. .··D2·.··.···.·· .• 03 ..... : •••• 04 ••••••••• : •••• DS ••••••••• 
.. " .... YES .. READ NEXT" .. " +. YES" .. .RETURN TO PHASE. 

*0 END OF RECORD. +-_______ > RECORD ------>*. EOF .. *-------->+RELEASE TABLES *----... -->* 00 .. .... .*.. +............ 
*0 .* +..+.... ••••••••••••••• 

*. ,* •••••••••••••••• * .• * ••••••••••••••••• 

or r (:::=-! E1 *. • •• E2........... . •... E3.......... • ..•. E4 ..•...•.•. . * *. ...... .. 
.. " .... YES .. WRITE AS .. POINT TO NEW • .TURN OFF DEBUG • 

•• ;:~ROR MESSA~;: •• ------>. I~~~~~E¥~~:fE • : BUFFER: :CALLsw~¥~ftRESS : .. .. ... . 
•• •• ••••••••••• ••••• •• ................. • ........ :11 .......... . 

or .~>(:~) L>(~~:: 1 
Fl.. F2 •• • •••• P3.......... . .... pq ........... . 

•••• •••• .TU ONSWTO.. • 
•• •• YES •• STATE OR •• NO .SUP OUTPUT. • SAVE CARD • 

•• CARD NUMBER •• -------> •. SYSDMP OPTION ... ------->.OF ALLS TO.-------->. NUMBER .--------> 
•• •• •• •• • EGO. 1\. •• 

•• •• ..... • SU TINE.. • 

*··FS.·········· WRITE AS 
·INTERMEDIATE • 

PROCEDURE 
A-TEXT .. .. .. .. ....... ........ . ............... . . .............. . 

l·NO t~;: .. ··. 
• Eq • + + .... ... . .. Gi .. • •... G2.......... G3 •. .... . . .... 

•• q3 CODE •• YES • MOVE Co CODE • •• *. NO 
•• (FOR OPT) •• ------->. INTO ELEMENT .-------->.. 4304 CODE • *----> .. .. . . .. .. *. .• • • ... o· .. .. ................. . .. . 

or rs 

Hi .. • •••. H2.......... . .••. H3 .••.••.••. .... . .. . 
•• •• YES. •• • 

•• OPTSW ON •• -------->. OPTSW=O. • OPTSW=l .-----.. .. . .. . .... . .. . 
+Ol*N6 ·········l···::::· ................ . 

->. • 
• E4 • 
• + .... 

0+0 
Ji *. GBOiAl .... ····J2········· •• CRITICAL •• NO • RETURN TO • 

•• PROGRAN BREAK •• ------>. PHSCTL • .. .. . . *. .• • •••••••••••••• .. .. 
rs 

'+0 
K! * . • * ... 

•• •• YES • 
•• START BREAK • *-------> A .. .. . 

*. . • .. .. r ..... 
·02 • 
• Ai· 

+ + 
+ 

l ... . 
->* • 

• Bl • 
+ + .... 

Flowcharts 267 



Licensed Material - Property. of I~! 

Chart GC (Part 2 of ~ • 

..... 
*02 • 
.. A1-· . . 
! · '. Al *a 

0* * • .. * START *. YES 

.. ·~~~~mR~:~" .. *--1 
*. 0* ••••• 

• NO *01 .. 1 .. :~. 
· '. B1 * • 

.. " .. • * END *. YES 
.... DECLARATIVE ... ---~ 

.... BREAK .* .... .* * .. * ••••• r :~:~: 
.. *. .. *. 

Phase 50: GETNXT Routine 

Cl *. C2 .~ ••• c3 ••••••••••• 
. * *. 0* * • 

.. " Q-ROUTINE .... NO 0* SEGMENTA- *. YES. .. WRITE OUT .. 
.... .... ... BREAK .. '" .... " *--------)* .... :!~N BR~: ...... *-------> .. OPTl~~i~~ION .. ---1 

* ... " * •• * •••••••••••••••• • •••• rs I·NO ::li~: 
••• D1........... GBOlA1 • ····02········· .. WRITE OUT .. RETURN TO .. 

PROCEDURE .. PH5CTL .. 
A-TEXT .. .. ............... 

········1 .. · .. 
·····E ......... . 
• D • 
• su .. -OPTI N* · . · . ................. 

268 

l .... ->*01 .. 
.. B1 .. . . .... 

section 3. Program Organization 



Licensed Material - property of IBM 

Chart GD. Phase 50: 

····AI········· · . • GENERATE .. · . ....... r-.... 
·····Bl·········· · . -SET UP OP CODE .. 
-FOR INSTRUCTION-· . · . ........ 1" ...... 

·····cl·········· .. CALCULATE .. 
.. LENGTH FIELDS .. 
.. OR REGISTER .. 
.. FIELDS .. · . 
~::::~::l········· .... 

GCKOP3 ·····0 ......... . *0 FIRST-
*A PERANO* 
.. UP" · . · . ········r······· 

.'. 

Genera te Routine 

El *. ••••• • ••••••••• 
• * *. .. TE· 

•• ... YES • 0 TICN" 
...... LITERAL •• ' *------->: As T3 ON :---

*. ." • .. *. o· ••••••••••••••••• r .'. 
F! * . 

. " * • • • VIRTUAL OR ... YES .. 
... FIGURATIVE • *--------)* 

... CONSTANT 0* .. *. 0* .. S .. * .. * ••••••••••••••••• 

l::----------------~--------------
·····Gl·········· · . • CHANGE OP CODE .. 
.. IF NOT RR TYPE • · . · . 

PLu::·····T······· 
·····H1·········· · . .. SET UP PLUS .. 
• ELEMENT IF IN .. 
• EXISTENCE • · . ........ 1' ...... . 

GDOAGN .. *. .-. 
J1 *. J2 *. • ••••. 13.......... • •••• JII •••••••••• 

. * *0 .*.. • •• . 
•• SS •• YES •• SECOND •• NO • CHANGE. • CHANGE EACH If' 

•• INSTRUCTION •• ---____ >.. ADDRESS •• -------->.WORlC-AREA 2 TO .------>. POINTER 2 TO • 
•• •• •• COMPLETED.. • WORK-AREAl. • POINTER 1 • .... .... . .. . .. .. .. .. ................. . ................. . 

GNOPT r:: __________________ JES L: :~~: : 
••• Kl........... • •••• 2.......... GB01Al 

• C RK. • ••• K3 ••••••••• 
WRITE. * A • • RETURN TO • 

CONSTRUCTED -------->* P .------>. posen • 
A-TEXT • •• • 

• R ••••••••••••••• ............ ,.... . .... 

Flowcharts 269 



Licensed rtaterial - Property of IBM, 

Chart GE. Phase 50: XSPRO and KILSUB Routines 

270 

····A1········· · . .. XSPRO .. · . .. ·· .. T· .... 
... 

B1 ... • •••• B2 •••••••••• 
0* *. .. .. 

• " ... NO .. UPDATE .. 
... Q-BIT ON • *------->* SUBSCRIPT OPT .. 

... ." -TABLE (XSCRPT) .. 
*0.* .. .. ·"t' ·······T···· .. 

..... el.......... . .... e2 ......... . .. .... .. 
*----WRCOQ5-----* _UPDATE REGISTER-
-IF • OPT' WRITE .. .. TABLE .. 
.. coos .... .. .. .... .. 
········r······· 
: •••• D1 ••••••••• : 

.. GENERATE L 2, .. 

.. GNREF FOR .. 

.. Q-ROUTINE .. · . ········r······· 
... 

·······r::~: 
····02········· .. RETURN TO .. 

.. PH5CTL .. · . ............... 

El *. • •••• E2 •••••••••• 
. * *. .. .. . * *. YES" .. 

•• OPT REQUESTED.*-------->*ADD 1 TO RGNCTR* ... .* .. .. *..* .. .. 
* .. -

'NO ·······r······ 
···pz··········· 

.WRITE GNUREF .. 
<--------------- ELEMENT 

.... · . .. Gl .. 
.. *-> .... . .. 

· 
Gl *. • •••• G2 •••••••••• 

. " *. .. .. 
• " NUMBER OF ... NO • GENERATE .. •. 2:~~E:f:r~EOT? .• ------->: BALR 2,2 : .. .. . . .. .. 

[u, 
··.·Hl·······.· • RETURN TO ... 

• PHSCTL ... · . ............... 

Section 3. 

.... · .. r ...... 
·····H2·········· .SUBTRACT 1 FROM. 
• NUMBER OF • 
• Q-ROUTINES TO • 
• CALL • · . ................. 

l .... 
->* • • Gl • . . .... 

Program organization 

····A4········· • • 
• KILSUB • · . .. .... 1' ... .. 

. ........ . . 
IN· 
T • 
) . · . .. .. · .. r .. · .. · 

·····C4·········· · . • ZERO OUT • 
• DISPLACEMENT IN. 
: XSSNT TABLE : ...... ·r~:~ 
····04········· • RETURN TO • 

• PH5CTL • · . . ............. . 



Chart GF. 

Lioensed !aterial - Property of IBM 

Phase 51: Overall Flow 

• • ENTER VIA • • 
• •.• A2......... ~-------- .••. A .......... . 

• ILFCBLSl • ----- PHASE 00 • PH5C'l'L • · . ------_. . 
: :~~:~~:j.:::::~------------------~:~:] ...... . .... 

GH01Al . . ·· .. a2·········· ~----------*GETNXT· . 
*-*-*-*-*-*-*-*-* NORMAL EXIT 'GET TXT ELEMENT*----- FROM PHSCTL 
'PROCESS UNLESS' IS IN GETNXT 
... VERB STRING • ········r······· --------

.'. C2 *. • •• C3 ••••••••••• .. * to •••• C .......... . 
.. • '.. NO • WRITE' • EXIT TO PHASE • 

' .. VERB STRING .. *----> COMPILER ERROR ----->* 00 • 
toO of • MESSAGE' • • *. .o* ••••••••••••••• 

*0 .* •••••••••••••••• rs 

.'. 
D2 '. ···D3 ••••••••••• 

ot * • 
.. ' '.. YES 'WRlTE ELEMENT • 

' .. SEGMENTATION .. *--------> AS PROCEDURE 
'.. VERB .. ' • A-TEXT 

*. .' 
f • .o' r ... 

................ 
l .... -). . 

• B2 • • • .... 
E2 *. • •••• E3 •••••••••• 

0* *. • • 
.. • SYMDMP '.. NO • MOVE OPERANDS • 

*0 *0 ST~i~T 6R.o*" *---A"->:INTO WORK AREA : 
+. ..' • • 

J~ · .. ·····r· ... · 
F2 .4o ••••• F3 •••••••••• . *.4o • • 4o. •. NO • SELEC'l' • -------*4o VERB IN LIST ... ----> • APPROPRIATE • 

... ... • VERB ANALYZER • *4o.. • • 

'r~ · .. ····T···· .. 
•...• G2.......... . ...• G3 ......... . 
·OBGTEST •• • *-.-.-._*-.-.-*-. • GO TO • • GEN LOAD AND .----- • APPROPRIATE • 
• SALR INST'S FOR. • VERB ANALYZER. 
• ILBODBG4"'· • ................. . ............... . 

L •••• >. • 
• B2 • · . .... 

Flowcharts 271 



Licensed Material -Property of IBM 

Chart GG. Phase 51: DBGTEST Routine 

····Al········· · . .. DBGTEST .. · . ............... 
1 . '. 

B1 * • 
. * *. ····B2········· .* *0 YES" .. 

.. • SWITCH ON .. *-------->* RETURN .. 
*0 .* .. .. *0 .. " ••••••••••••••• 

* .. * 

····A3········· . . 
.. DBGRTNDO .. . . . ............. . 

J::-----------------------------------------------
·····Cl·········· · . -SET UP ILBODBG4* 
.. VIRTUAL .. · . · . 

····ALt.·· ••• • •• . . 
.. DBGRTNOl .. . . . ............. . 

····· .. ·I::::=-~~-~-----~-----~-----

272 

·····Dl·········· .. GENERATE: .. 
.. L 15,VCON .. 
.. BALR 14,15 .. 
.. DESTROY 14,15-· . .. · .... T .... · .. 
··.··E1·········· · . · . -TURN SWITCH ON .. · . · . ...... "1' ....... 

····Fl······.·· · . .. RETURN .. · . ............... 

section 3. Program Organization 



Licensed Material - property of IBM 

Chart GH. Phase 51: GETNXT Routine 

····Al········· · . • GETNXT • · . :::: ... j ....... . 
· . 
• B1 " • +-> •••• ·····81·········· · . • POINT TO NEXT • 
• tLEMENT IN " 
• BUFFER • · . ....... 1' ...... 
·····el·········· · . "SAVE COUNT FOR • 
• ELEMENT .. · . · .• ·::::···1··· .. ··•·· · . • D1 • • ._> .... 

-"-D1 •• .. ... 
•• INTERMED 0 •• YES 

·.OPTIMIZATION •• ---
•• A-TElW •• 

• 0 • It! ·0 o. r .. -
El •• o· •. o. INTERMED. •• YES 

.... GI01Al A2 too ••••• A3.......... • ..... All .••••.•.•. 
• + +.. • • +PUTDEF • 

__ >+ :;~NhErx&~¥O~: .:~~ __ >:MO'1R~g~~ECT: ______ >:-;S;U;-::;E;T·-: 
...... ...... : A-TEXT CODE : :FO~Ei¥fiI~~~)NXN : 

+oo .+ ••••••••••••••••• • •••••••••••••••• 
·NO l 1 -> •••••• 

-.-
• B1 • · . .... B2 ... • .. 83........... . •••. 811 ••...•.... 

..... • ... ".. YES • WRITE" : PLACE ENTRY IN : 
".SEGMENTATION .. +----> SEGMENTATION ------->. SEGTBL " 

... CONTROL ... • CONTROL BREAK- " " 
·.BLOCK." "" +oo .+ •••••••••••••••• • •••••••••••••••• 

1~ l .-->. • 
" B1 • · . .... 

···e2··········· 
• WRITE 

OPTIMIZATION 
A-TEXT ................ 

L •••• 
>. " 

• B1 • · . . ... -.-03 .0 ···04··········· .*. ·0 
_>.:~O~T:g~Ti~;:.~~----->· PR~i~~RE •. o. • A-TEXT ·0 .• . ... 

rs 

·····E3·········· .. . 
. .............. . 

l ... . ->. • 
• 81 • · . .... 

···E4··········· 
• GENERATE EOJ • • WRITE • 

•• PROCEDURE 0.--------------------- :MACRO IF NEEDEO:----->. Q-R.JUTINE BREA~ 
•• A-TEXT •• ·0 o. · . t. o. . ............... . r . ·0 ... 

. .............. . 
l ... . ->. • 

• B1 • · " .... 
Fl.. F3 •• • •••• F4 •••••••••• o. .. .. ERROR •• • ,. 

• • •• YES 0 . MESSAGE .0 YES" ,. 
•• INTERMEDIATE 0.----------------------> •. DEPINITION •• ------->. TEST SEVERITY • 

• 0 E-TEXT .* .0 .t • • 
to .* •..••• *0 •• •• •• • •••••••••••••••• 
~ ~ j 
1 1<-----------------_.-Gl .0 ... G2........... . •• G3 •.••.....•. 

. * •. .. .0 YES • READ NEXT • WRITE ERROR • 
TEXT •• END OF RECOao •• -----> RECORD .. o. . ·0 o. ·0 .• 

"NO 

1 GFom ····H1········ .. • RETURN TO • 

·········1······· ·········I::::::· . 
• B1 t " . .... . ·0 .•. 

82 •• H3 •• 0··. .* •. . . .0 YES • • PROGRAM ... YES 
• PH5CTL • .0 EOF •• ----->* .. SEGMENTED .*------> · . ............... ·0 .* .0 .• ·0.· ... . ... . * •••• r r ..... J2.......... . .... J3 .....•.... ,. .. . 

• POINT TO NEW •• • 
• BUFPER. .RELEASE TABLES .<--· .. . · .. . ·········L···::::· ••...•.. j ........ . 

>" • 
• 01 • · . .... . 

····K3···.···.· • EXIT TO PHASE • 
• 00 • · " ............... 

r'" ·····J4·········· · . .MAKE LAST ENTRY. 
• IN SEGTBL • · . · . ·······r .. ···· 
·····K4···.····.· • • 
• MAKE SEGTBL • 

----. STATIC • · . " . ................. 

Flowcharts 273 



Licensed Material - Property of IBM 

Chart GI. Phase 51: PUTDEF Routine 

····Al········· · . : PUTDEF : .. ····r .. ··· 
. '. 

B! *. 
• '" :to. 0'" "'. YES 

"'. VN DEFINITION. *--------> ... .* '" *. .* 

.0. ···B2········· ... · B3 *. ·.·B4··.··.··.· . 0* "'. 
-WRITE VN DEF • ." PROGRAM *. YES -WRITE VN DEF • 

AS PROCEDURE -------->*. SEGMENTED .. *--------> AS OPTIMIZATION 
A-TEXT *... '" '" A-TEXT '" .... .* * ••• ................ 

']~---=:J""" 
°NO 

.. ··C3······.·. ° • 
'" RETURN '" . . ............... 

. *. .*. . •. 01 *0 ••••• 02........... D3 .... D4 * . 
. * *. '" '" .* *0 0* *. • ••• 05 ••••••••• 

.. '" "'.. NO '" ENTER GN INTO .. .. .. *. NO .. '" "'.. NO '" '" 
"'.PH OEFINITION.*------->* GNLIST *-------)*. GNLIST FULL .. *------->*.OPT REQUESTED.*------->* RETURN .. 

*. .* '" '" *. .. '" *. .* '" .. *..* '" '" *0.* *..* ••••••••••••••• * •• * ••••••••••••••••• *. ... • ..... rs rs 'YES 

.•... E1.......... • .••. E3 ..•..••... .. ... 
• ENTER PN INTO • .SET CODE FOR GN. 
: GNLIST : : EQUATE STRING :---------------> .. .. 
....... ·1········· ------------------------------:~::::::::~::::~~---------------> 

••• PUTEQU ••• ..... Pl.......... F3 ... F4 .. .. ......... ····ps········ .. • SET CODE FOR PM. NO •• .... EQ. • •• LO • 
• EQUATE STRING. !---.. PN EQUATE •• <--------.. GNCNT:l •• ------->. RETURN .. .. .." .. .. . . •• •••••• ... • •• * •••••••••• * ........ r .... · :::::: ..... 'r 
: •••• G1 ••••••••• : ... G4 ..... : •••• GS ••••••••• : 

:p~5iB~I~o~N T~~S:--- .:. G~T~~g~TE .: • .::: _____ >: G~fto~O~~~Is~N : 
• PN ... ., •• • • • • .,... * • ................. ··l*N~ ::::::··1······""·· 

• HS '" 
• ••••• -> 

27IJ Section 3. Program organization 

... H4........... . .. HS .......... . . . 
WRITE PH EQUATE · . ................ 

--------------------->1 ···JIJ··.·.····· .. 
• WRITE PN DEF • 

. GNCNT=O ........ 1 .... · 
····K4······"'.· · . • RETURN • · . ................ 

. . 
WRITE GN EQUATE · . ................ 

1 .·*Js····.······ 
.WRITE GN DEF • 

GNCNT=O ................ 
j 

·"'··KS········· · . '" RETURN • · . • ••••••••••• It •• 



Licensed I!aterial - Property of IBM 

Chart GJ. Phase 51: 

····Al········· • A-TEXT • 
• GENERATOR · . ···· .. r· .. ·· 
·····Bl·········· · . • SET UP TYPE • 

: ~Rfi, (~CfF : ........ r .... · 
·····el·········· • c • 
• L S ... · . · . · . ................. 

A-text Generator Routine 

ROP3 1 <---------------------------------------------------------
·····D1·········· .OETERMINE FIRST-
• ADDRESS OPERAND. 
• AND SET UP • 
• A-TEXT • · . ········r······· 

. '. Bl •• • •••• E2 •••••••••• . * •. • • 
•• VIRTUAL, •• YES • GENERATE • 

•• LITERAL, OR • *-------->* OPTIMIZATION • 
•• FIG..* • A-TEXT • 

·.CONST.'" • • 

. ·l:~------------:::::=]········ 
·····Pl·········· · . -CHANGE OP CODE • 
• IF NOT RR TYPE • · . · . 

_~"""r""" 
·····Gl·········· · . • SET UP PLUS • 
• ELEMENT IF IN • 
• EXISTENCE • · . ········r···· .. · 

GDOAGN ."'. 
Hi + .. • * t. 0'" 55 "'.YES 

•• INSTRUCTION • *---------------j *. .-to ._ 
to ._ 

'NO 

... J1J......... J2···.. . .... J3 ........ .. .* to • • 
: •••• J4 ••••••••• : 

WRITE • YES •• SECOND •• NO "'MOVE WORK-AREA • • MOVE EACH • 
CONSTRUCTED <-------*. ADDRESS •• ------->.2 TO WORK AREA .------>. POINTER 2 TO ._--

A-TEXT •• COMPLETED... 1 • • POINTER 1 • ................ .... .... . ... .. .,................. . ............... . 
1 

. 
......... . ····K2········· = ______ >: R~yRTO : .. . . . ............. . .. 

Flowcharts 215 



Licensed Material - Property of IBM 

Chart HA. Phase 6: Overall Flow 

····A3········· ~-------------.. .. ENTER FROM 
.. IRFCBL6Q .. -------- PHASE 00 .. .. ------------.. · .. ·T~:~, 
·····83·········· *PH6 .. [--------------*-*-*-*-*-*-*-*-* INITIALIZE TABLES 
• .. -------- SWITCHES, AREAS FOR 
-INITIALIZATION" TGT, PGT OPEN FILES .. .. -------------.. · .... r::~: 
.· ... c3·········· *PRFTWO ... 
*-*-*-*-*-*-*-*-* ... PROCESS ... 
.. OPTIMIZATION ... 
.. A-TEXT .. 

· .. · .. ·r== 
···"'·03·········· *SE6000 • 
*-*-*-*-*-*-*-*-* .. PROCESS PROC .. 
... AND LISTING .. 
.. A-TEXT .. ................. 

1 HE01Al ·····E3·········· *PDATEX .. 
*-*-*-*-*-*-*-._* .. PROCESS DATA .. 
.. A-TEXT .. · . ··· .. ··r== 
·····F3·········· *GINIT2 ... • ••• F4 ••••••••• 
*-*-*-*-*-*-*-*-*... ... 
:GE~~¥~jE INfiT2,: : CLOSE : 
.. INfTl'" ••••••••••••••• ................. 1 

1<----------------------·····G3·········· · . • TERMINATION • 
• ROUTINES • · . · . ····· .. r······ 
····H3········· • EXIT TO PHASE • 

• 00 • · . ............... 

276 section 3. Program organization 



Chart HB. Phase 6: PH6 Routine 

·.·.Al········. ~------------.. • BRANCHED TO 
• PH6 *---- FROM PHASE 00 · . --------------.... · .. r·· .. 

.. . ..... . 
-IN ZE .. 

• L' *SWIT ,AREAS-· . · . ........... 
1 .*. HEADER 

Cl *0 ••• c2 ••••••••••• . * ... 
• " ... YES • PRINT PAGE .. 

... .. • LIST MODE ... ' *------> .. HE~~g~f" ~~NT .. 
to .* 

== l---::]' .... 
•• 01 ••••••• · . · . -INITIALIZE TGT .. · . · . 

=~""T"" 
··El······· · . · . _INITIALIZE PGT .. · . · . 

• m= .... T .... 
··Fl······· · . .. INITIALIZE .. 

·PROCEDURE-NAME .. 
.. USAGE TABLE .. · . .... ·L~u 
····Gl········· · . _EXIT TO PRFTWO .. · . ............... 

Licensed Material - Property of IBM 

Flowcharts 277 



Licensed Material - Property of IBM 

Chart HC. Phase 6: PRFTiO Routine 

····Ai········· · . .. PRFTWO .. · . ·· .. ··r .. · .. 
·····B1·········· .. OPEN SYSUT 2 .. 
.. (OPTIMIZATION .. 
.. A-TEXT FILE) .. 
.. PRIME TABLES .. 

• * 

~::::~::l········· .... 
READF2 ···Cl··········· 

.. READ NEXT 
RECORD 

·········1 .. ···· 
.*. 

.... · . • 02 . · .--~ .... 
F2EOF ENOPAT 

01 *. ···02··········· • •••• 03.......... • •••• D".......... HD01Al 
. * *. • L • • LIST PGT IF • .. •• DS ••••••••• 

. * *. YES .. • • ( • • .LIST MOPE OPEN.. • 
-------->:0 , T:-------->: SyS~~f.EtRIME :------->:EXIT TO SE6000 : .... END OF FILE .. *-------> CLOSE SYSUT2 *. .* ... *. .* • PR • '" • • •••••••••••••• 

* .• * ........... ..... . ............... . r 
.... VIRRTN TXPNH ESO 

El *. • •••• E2 •••••••••• ··.E3·········· .. .. " *. .. .. . * VIRTUAL .... YES .PROCESS VIRTUAL. . 
.... DEFINITION .. *------>* DEFINITION *------> PUNCH TEXT -----> PUNCH ESD *. .* .;. ELEMENT" .. *. .." .. .. * .. * ................. . . .............. . 

r .. *. INSRT 
Pi .... • •••• P3 •••••••••• 

. * *. ESS" .. 
.. " LITERAL .... YES *E SET UP." .. 

.... DEFINITION 0*-------->* L NE IF *------->* PUT IN TABLE .. *. .* .. MODE"" .. *..* *BO Y ALIGN.." .. * ... " ••• ••••••••••••• • •••••••••••••••• 

1* NO L •••• 
>* • 

.. cl .. . . .... 0.0 GNEQUE 
G1 .0 ••••• G2 •••••••••• 0··0 • • o. GN EQUATE .0 YES • PROCEsS GN • 

• 0 STRING o.------>.STRINGo PUT IN • 
•• •• • GNTBLo • ·0.· . . 

··l·N~ ·········l···::::· ->. • 
• Cl • . . .... 

H1° ••• 0 PNES~~ •• H2 ........ .. 
•• •• • PROCESS PN • 

• :. P~T~~X~TE .: .:~~ _____ >:~~~~~~. Pt2~E I~N: 
•• •• • GNTBL. • ·0 o. • • .. .. . ............... . 

·lNO.... l ... . 
->* • ->. • • 02 • . C1 '" . . . . .... . ... 

278 Section 3. Program organization 

. . .............. . 
l ... . 
->* • • C1 • . . •••• 



Licensed Material - Property of IBM 

Chart HD . Phase 6: SE6000 Routine 

.. ·.Al········· · . • SE6000 • · . ................ 
:'::': 1 .. *-> .... 
· .. ·.Bl·········· ·GET '" 
*-*-*-*-*-*-*-*-* .. READ ELEMENT .. 
: FROM SYSUTl : 

.. ······r······· 
. *. EOF ENDPTX Cl *. • •• c2........... . .... c3........... HE01Al 

.'" ... .. TERMINATION .. • ••• eli ••••••••• 
• '" ... YES +-CLOSE SY5UT1. .. .. ROUTINES FOR .... .. 

... END OF FILE • *--------> LIST LA.ST LINE. -------->*PROCEDURE-TEXT +-------->*EXIT TO PDA'IEX .. 
.. • ." .. .. .. PROCESSING \;.. .. *. ." .... ••••••••••••••• * .. " •••••••••••••••• • •••••••••••••••• 

'NO 

SE6::~~: =-~ {. aPPRO r-------------=~~--------------------------------~:~---------] D1 ... . .... D2........... . .. 03........... Dli :t • 

• +- *0 .... ." *. 
· .op CODE AND •• YES .PROCESS OF AND .. .. READ NEXT" •• OPERATION ... YES 

... ADDRESS • *------->* ADDRESS .--------> ELEMENT FROM --------> •. DESCRIPTIVE •• _--
•• ELEMENT .'" • ELEMENTS. • SYSUTl ..... ...* •• •. .• .. .. ................. ................ . .. . . r VtlOEFR r 

El •• • •••• E2.......... ..,.. •• E4 •••••••••• 

• :~~~bE~¥tu~i~~: .~:~ _____ ):~~~~~~g~I~~~~E: :pu~~fl~:~~§~~EV: 
.. .... .. .... ! .. **::::~: .. * .. : :.~~~~~¥~~~~: .. : 

'I NC l .... l .... ->: 81 : ->; 01 : 

v •••• 
••• PHD PRO 

Fl •• • •••• F2 •••••••••• 
•• •• .CREATE IN-LINE • 

• .PN BCD NAME •• YES • CONSTANT FROM • 
.. • ELEHENT • *-------->. PREVIOUS SYSUT4. '* • •• • ELEMENT • .... . . .. .. . ................ . 

*NO l .... . 
_)t • 

••• MAC PRO 

• Bl • · . .... 

Hi •• • •••• H2 •• * ••••••• 
•• •• .DETERMINE TYPE • 

•• MACRO •• YES • AND GO TO • 
•• IUSTRUCTION •• -------->. ROUTINE TO • 

•• ELEMENT •• • PROCESS • .. .. . . 
··l·N~ ·········l .. ·::::· 

->. • 
: Bl : .... 

••• SE6010 
Jl •. • •••• J2 •••••••••• .• *. • T • 

• .CARD NUMBER"'. YES • CORRE • 
•• ELEMENT •• -------->.SYSUT4 *. .• • LIST, .. .. . 

*0 o. . .•.•••••••••.••• l·No l .... 
->. • 

• Bl • · . .... 
GIDENL 

:.***Kl***.u**.: :~~~~~i.i:~~~~~*: 
• SPECIAL. • CONSTANT FROM .. 
• INTERNAL .-------->* SPECH'IED 
.. ELEtJIENT. '" ELEl'iENT · .. 

Flowcharts 279 



Licensed Material - Property of IBM 

Chart HE. Phase 6: 

····Ai···.··· ... · . : PDATEX : 

.2;~i:;::r"·" 
·····Bl·········· *GTF4B .. 
*-*-*-*-*-*-*-*-* -->* GET DATA OR .. 
.. ERROR ELEMENT .. · . ........ 1' ...... . 

. '. 
Cl *. .. " *. 

PDATEX Routine 

068R10 .. ··.c ......... . 
*8 IN .. 

06PN10 ···Cq··········· 
.. " .... YES *R NO. .AS ER* .. PUNCH TEXT 

.... ENO OF FILE o*-------->*L .. *-------->* +-------> AND RLD'S FROM *. .* .. .... .... RLDTBL .. 
"..'" .. 0*" .. * ... " r •• !* ••••••••••••••••• 

.. *. 06000 
D1 *. • •••• 02 •••••••••• 

.* *. .. .. 
.. " "'.. YES .. IDENTIFY AND .. 

.... DATA A-TEXT .. *-------->* PROCESS DATA .. 
.... .." .. A-TEXT .. *..* .. .. 

··l·N~ ·········l···::::· 
->* .. .. al .. . . .... 

: •••• E1 ••••••••• : 

• PUT E-TEXT IN .. 
---.TABLE FOR ERROR. 

: PROCESSING : ................. 

280 Section 3. Program organization 

........ 1' .... 
·····04·········· · . .SET UP REGISTER. 
.ASSIGNMENTS FOR. 
• MAIN PROGRAM • · . ...... ·r:::~: 
····E4··.····.· • • • EXIT TO GINIT2 • · . ............... 



Chart HF. Phase 6: 

····Al········· • • .. GINIT2 • · . ....... 1" ..... 

. ····Bl·········· • • .. GENERATE PGT • 
·INITIALIZATION .. • • • • 

~:""'T""'" 
·.··.el·········· · . • GENERATE TGT .. 
-INITIALIZATION • · . · . , ............... . 

GINI~3 1 ·····D1·········· · . -GENERATE CODING'" 
.. TO INITIALIZE .. 
.. VN CELLS .. · . 

n.:: ...... !"' .... · 
· .. ··El.· .• ·.··.· -GENERATE • • • 

• • .. • 

.~""·r""" 
·····Fl·········· • • -GENERATE 101'1'1 • 
.. CODiNG .. · . · . 

~"""T""'" 
·.·Gl··········· PUNCH AND 

.. Ll s-r IUIT1 .. 
.. CfR§~G cd&~CH. 

·········r····· 

GINIT2 Routine 

.+0 JA01A2 
Hi t. 

ot to •••• S2 ••••••••• . * to YES" • 
to ANY ERROR .+------>*EXI'r TO ERRLOD • 

to of .. '" 
t o .+ ••••••••••••••• t •• _ 

Lm ····Jl········· • • • EXIT TO CLOSE • • • ............... 

Licensed Material - Property of IBM 

Flowcharts 281 



Licensed Haterial - Property of IBM 

Chart IA. Phase 62: Overall Flow 

'" '" ENTER VIA 
. ... A3........... [------,-----

'" IRFCBL62 • ------- PHASE 00 · ",. .. -..:.-------------

.. · .. ·T:::~, 
.····e3·1<········ *PH6 ... 
*-*-*-*-*-*-*-*-* *INIT SWITCHESA • 
:~SRL~T kN~~G~: 

....... '1"== 
·····C3·········· *PRFTWO .. 
*-*-*-*-*-*-*-*-'" 
... PROCESS ... 
'" OPTIMI7.ATION '" 
.. A-TEXT '" ...... ·r~=: 
.·· .. ·03*········· *SE6000 ... 
*-*-*-*-*-*-*-*-* 
... PROCESS .. 
'" PROCEDURE .. 
.. A-TEXT .. •••••••••••••• .,*. 

""" ... J ....... . · . '" TERMINATION ... 
.. ROUTINES ... · . · . ........ 1"' ..... 
·· ... ·F3········· ... EXIT· TO PHASE ... 

iii< 00 ... · . ............... 

282 section 3. Program Organization 



Chart lB. Phase 62: 

Licensed Material - Property of IBM 

PH6 Routine 

.... A3......... ~INiTiALIzATioN-
• *--- ROUTINE 
• PH6 • ----------· . ...... 1' ..... 

··e3······· · . .. INITIALIZE .. 
-AND HANDLE MAP .. 

• SUPPRESSION .. · . 
·····r···· 

.0. C3 *. • •••• C4.......... • •• cS ..•.•..•••• 
• t *. .. .. 

.. *IS PROGRAM *. YES -SORT SEGTSL BY .. .. WRITE PHASE .. 
.... SEGMENTED .. +------->*PRIORITY NUMBER*--------> CARD *. ... .. .... 

+..t .. .. ··r----:==:=--:=J···· 
··03······· · . .. INITIALIZE .. 

.. COUNTERS AND .. 
.. SWITCHES .. · . ·· .. ·r .. ·· 

.0. 
E3 *. • •• E4 ••••••••••• 

.. * *. . .. *. YES .PRINT HEADER .. *. LIST MODE • *-------> AND MEMORY MAP *. .." .. .. +. ..+ 

=~ ·I~-·--=r·" ·····Fl.· ... · .... • COMPUTE 51 ZE OF. 
• roT AND .. 
.. DISPLACEMENTS .. 
.. OF ITS FIELDS .. 
o • 

_=· .. ·r·· .. ·· 
·····G3·········· o • 
-COMPUTE LENGTHS
.. OF FIELDS IN .. 
.. PGT. .. 
o • 

·······r::~: 
····H3.···.·.·· · . -EXIT TO PRFTWO .. • • ............... 

Flowcharts 283 



Licensed !aterial - property of IBM 

chart IC. Phase 62: PRFTWO Routine 

. ···AI········· · . .. PRFTWO .. · . .. · .. ·r~ ... 
··Bi· ..•.•• . . · . • PRIME TABLES • · . . . 

"_,····r· .. 
--> · 

···Cl··········· 
·OPT 

A-................. 
1 .•. 

D1 *. . * *. . * *. YES 

• ••• • • 
• 1\4 • · ..... --~ 

.'. A4 *. • •••• AS •••••••••• .* *. • • . * DISPLAY +. YES +-----!NSERT----+ 
... LITERAL .. *----->* INSERT IN • *. ... • CONDIS TABLE • *..+ • • 

··I·N~ ·········L···::::· 
>. • 

• El • · . .... . .. 
B4 +. • •••• BS •••••••••• 

.• * *. • • ... *. YES *-----!NSERT----* *.' GNUREF .*--->* MAXE ENTRY IN • *.. .+ • GNATBL • *..* • • 
··I·N~ •• .. • .. T:;::::; · . . .... . .. 

C4 *oO ••••• es •••••••••• 
.* *. • • . * * .. YES +-----INSERT----+ 

... PNUDEF .. *------>* MAKE ENTRY IN • 
*.. .* • PNATBL • *..* • • * ... * ••••••••••••••••• 

·NO L I >: .:~.: · . .... . ' . Oil *. • •••• 05 •••••••••• 
..* *. • • 

..GN PERFORM •• YES .-----INSERT---- • .. • EOP • *-------------------_________________ _ •• ELEMENT ... - _____ >. MAKE ENTRY IN • 
*. .* *. .+ * .. + 

: *::*: I·NO 
.. *-> .... 

END .*. 
E1 *. . * ... 

YES .* *. ---*. END OF BLOCK ... ... .* 
*0 .* 

* •. * r ... 
F! *. 

." *. • .. VIRTUAL ... YES 
... .. ~EFINITION ... ' .-::::...-.-->,! 

*..* '" .. * .• * ••••••••••••••••• 

IONO l .... 
->* .. .. E1 .. . . .... . '. Gl *0 ••••• G2 •••••••••• 

• * *. .. .. 
." ... YES *-----INSERT----* 

... VN REFERENCE •• -------->* MARE ENTRY IN·" 
.. • • .. .. VNPTY TABLE .. *..* .. .. * .. * ••••••••••••••••• 

'NO l I ->+ ...... 

. '. 
.. E1 .. . . .... 

H1 *. • •••• 82 •••••••••• ... *. *-----INSERT----* 
.. : .. DE~I&~N .. : .:~~ _____ >: I£~~~trI~uE : 

*. .* .. CONTBL .. *..* .. .. * •• * ••••••••••••••••• 
·NO l l_>* ...... _>* ...... 

*A4* *E1-. .. .. .. .... . ... 

PUNCH ···F3··········· • WRITE • 
• VIRTUALS, FSD' ~ 

• WRITE TEXT 
CARDS FOR TGT 

AND PGT • 

~·T····· 
·····H3·········· · . -RELEASE CONTBL • 
• AND CONDIS • · . · . ··· .... r···· .. 
···J3··········· 

•• •• • BLVNTBL '" ...'" . . 
··I"'N~ "'···"'····L··"'::::·-· >. • 

'" El • · . .... . .. 
Ell •• .."' •• ES •••••• "' ••• .... . . 

.:;N/~ I~N;:.!~~----->:-MAi(i?=i-IN-: 
•• •• '" VNPNTBL • "'... '" . *0 •• ."' ••••••••••••••• 

'NO l L_> ••••• '" _>'" ••••• 
• El'" "'El. . . . . .... . ... 

.'. J'II •• . '" .. 
• WRITE MEMORY • • *IS PROGRAM •• NO 

MAP O. N SYSPRINT "--->"'. SEGMENTED •• ------------j · '" ... .. .. .. ................ '''' .. 
" ," . 

, ID01A1 . ····RS········· .. . 
• ------->.EXIT TO SE6 0 00 • .. . · . . ............. . ................. 

284 Section 3. Program organization 



Licensed Haterial - Property of IBM 

Chart ID (Part 1 of 2). 

• •••• Al •••••••••• 

• 5E6000 • · . ............... 
Phase 62: SE6000 Routine 

~,i:!:: ·->l<-------~-;;;;-------------------... Bi........... . .... B ........•. 
READ -MAKE REG. • ••• e3 ........ . 

• PROCEDURE • EOF .. ASS ENTS" • EXIT TO PHASE .. r--> A-TEXT ELEMENT -------->* EG +------->* 00 • 
.. FROM SYSUTl .. .. ENTS •• • .. .' .............. . : ·~~::·······l······· ~::::~ .......... . 

.. .... . --~ 
.+. QPPRO .+. 

cl •• c2 ... . * *0 .+2-BYTE +. 
•• OPERATION •• YES •• BRANCH •• YES .. PR 

•• ELEMENT • +------->+. INSTRUCTION • +-------->* 
+0 .+ +0 .+ • P 

+0 0+ +... .. 
+ •• + ••• -

'NO r 
.' . 

·····C,,·········· . . 
• • ADD "TO • 

ING ------->+ ACCUMCTR .-> 
OAD - • COUNTER - • 

ION ... .. ...... . ............... . 
•• D2 •• +0 :~::~~g:~i:::::·: : .... 04 ......... : 

•• LOAD •• YES • SAVE. • ADD 4 TO • 
... INSTRUCTION • +-------->+ INSTRUCTION +-------->. ACCUMCTR +---

•• •• • UNTIL NEXT" '" COUNTER • 
... •• "'ELEMENT IS READ.. • 'r ····· .. ····l······ ................ . 

.......... [----------------------------. N OR GN • ~. w®w 
• I TO. ------... BRANCH i........ . ..... : ~ __________________ ~~~~ __ _ 

. '. 

l ... . 
->. .. 

• B1 • · . .... 
Fi .0 ••••• F2 •••••••••• . ··0 . . •• •• YES .SET APPROPRIATE • 

• 0 CO ELEMENT •• -------->. CO SWITCH • •. o· • • •. o· . . ·0 .• • •..•.•..•.••.••. r L>(:~:: (::)--1 
•• 0 •• 0 tr 

Gi •• G2 .0 G ••••• G" •••••••••• .... 0... o. • • 
• '" GN/PN •• YES •• ACCUMCTR < .0 YES •• IN .0 YES • ZERO CTR IN • 

•• DEFINITION '0.------__ >.. 4095 ... - _______ >.~ OR ... -------->. PNFWDBTB OR • .. .• .0 .• •. . • -GNFWDBTB TABLE • •. .• ·0 o. .0... • -

'. 'N~ • T~ '. r:~--------------:::::::l········· 
. '. H2 ... • ••.. 83.......... : .••. H" ••••••••. : 

•• ·~NTRY IN·· •• NO :~~~~A~~C~Mg¥ME: .----DEFLDli-----
.~ PNFWDBTB OR ... -------->.PN/GNFWDBTP AOO.-------->. PROC~SS LABEL • 

•• GNFWOBTB •• I\. *1 TO PROCBL CTR.. • ·0 . * • •• • ·0 .• •••••••••••.•.••• • •••..••.•.•••... 
• YES l 
1 ->: .::.: .... . '. J2 •• o· .. 

•• ACCUMCTR • 0 NO 
•• WITHOUT AODED •• ----

·.LOAD< •• 
•• 4095 •• .. .. 

·YES 
l_> •••••• 

• G4 • · . .... ... 0·. K1 •• K2 .0 .•••• K3 •••••••••• .. .. .... . . 
•• GN/PN ... YES •• ANY co ... YES .PROCESS FOR co • 

••• 0 REFERENCE •••• -------> •.•. SWITCH ON •• '" .-------->: CONDITION : .0.. .0.. . . •• • * •• •• • •••••••••••••••• 
·NO ·NO l t l •••• • ••• 

->. • ->. .. 
• C2 • • B1 • ..... . . .. . 

·02 • •••• • ••• 
• Ai· .. . 

Flowcharts 285 



Licensed lIaterial - Property of IBM 

Chart ID (Part 2 o! 2). Phase 62: SE6000 Routine 

286 

..... 
-02 • 
• AI-•• . 
t .'. Al +. • •••• A2.......... ~----------.* .... • • I NEN'l'LY 

.+ ADDRESS to YES +-----R6q.QO-----+--__ A 
•• REFERENCE .. +------->*PROCESS ADDRESS- LD 

... .... • REFERENCE ... DRLP'l'BL 
to •• .. • REGISTER 

to 0* ••••••••••••••••• ON 

I-No L>:~t··. -------------... -
... B1 • · . .... 

ot. .t. 
B1 *0 82 to ••••• B3 •••••••••• 

.... .... .." to • COOtl ... 
... *0 YES o*c004 SWITCH-. 'lES ... ENTER .. 

... VN REFERENCE 0*------->*. ON .t __ ... _____ >. BL IN *---! 
to .* to 0* .. BL" 

to ... *..,," .. .. 
to .+ to ." •••••••••••••••••••••• 

-NO -NO -01 .. 
L>:~t.. .. .B~ • 

.. B1 .. • 
• • .... 

. '. D1 to ••••• 02 •••••••••• . * to .. .. 
.. " EBCDIC PN .... YES • ADD 6 TO • 

... GENERATOR .. *----->* ACCUMCTR *--! 
to 0* • .. 

t o .* .. • 
to 0+ •••••••••••••••••••••• 

tNO .01 .. 1 .. :~. 
'+0 .t. 

El ... E2 +0 ••••• E3 •••••••••• 
• _GLOBAL ... • +:rERMAN-+. .. .. 

• " TBL VARI ..... YES .+ ENTLY ... NO .. ADD 4 TO .. 
... ABLY-LOCATED • +------->+. ADDRESSABLE • +------->+ ACCUMCTR *---! 

... AREA REF ... ... ." .. .. 
+0.+ +0.+ .. .. 

+0 .+ +0 .+ •••••••••••••••••••••• 
• NO -YES *01 .. 1 l •••• .. Bl· 

->+01 .. .. .. 
.. B1 .. .. · . .... 

0'. F! +0 ••••• F2 ......... . 
• +' +0 .. .. 

." ... YES +-----MACRO-----+ 
... MACRO ELEMENT. +------>+ PROCESS MACRO +---! 

+0 ." .. ELEMENTS .. 
+0 •• + .. .. 

+ •• " •••••••••••••••••••••• 
-NO +01 .. 
L>:"bi+.. .. .B~ • 

.. B1 .. .. . . .... 

Section 3. Program organization 



Chart IE. 

Licensed Material - Property of IBM 

Phase 63: Overall Flow 

····A2········· · . .. IKFCBL63 • · . .. ····r .... · 
··B2······· . . 

GET 

• INITIALIZE .. 
• TABLE BUFFERS • . . . . 

·····1······ 
··.c2········ .. ·· 

~NTERViA-------- PHASE 00 ---------

EOF ····.e3·········· . . ····c~········· .GET PROCEDURE • EOF "RELEASE TABLES r • -RETURN TO PHASE-
--> A TEXT ELEMENT ----->* ETC.. *---->* 00 • · . . .. . . . .............. . ......... 1'..... . ............... . 

..... MACRO 
D2 ... • •••• 03 •••••••••• 

. * too .. • 
.. '" ... YES • BRANCH TO • 

".MAcao ELEMENT .. *------>* APPROPRIATE *-
.. .. .. .. _MACRO ANALYZER • 
too.* .. • 

too ... • •••••••••••••••• r .'. E2 *oo 
oo- * . ... OPERATION ... YES .. 

•• CODE ELEMENT .. *------)*OP 
*.. .* .. 

too .. " • • * ... * ••••••••••••••••• r 
.*oo cO 

F2 too ••••• F3 •••••••••• 
. * to • • 

.. • ".. YES .. BRANCH TO .. 
-.C007 ELEMENT .*------>* APPROPRIATE .--> 

•• •• • C007 ANALYZER • 
•••• Ii' • . ~ .. . ............... . r ····*G2·········· · . • BRANCH TO • 

• APPROPRIATE • 
• ANALYZER • · . 
········1:::=::_--------------------
.··.·H2···· •. ·· ... · . • OTHER PROCEDURE. 

-4o A-TEXT • 
• ANALYZERS • · . ................. 

NOTE: VARIOUS ANALYZERS 
ADD TO ACHCTR AND LOCCTR 
AND PRODUCE PROCEDURE 
A1-TEXT 

Flowcharts 287 



Licensed Baterial - property of IBM 

Chart IF. Phase 63: BRANCH Routine 

288 Section 3. 

. ... A2......... [---PROM--.--
.. if ____ TABLE 
.. BRANCH" ESS BRANCR 
.. " CTIONS · .. · .. r··· .. --

.•. 
B2 tI. IE01C2 .* to •••• as ••••••••• 

• " PN/GN .:.~N~~O~ ____ •• _>;Tl5;~~~~~;~ag(~H;' _____ . ___ > • .. • ~BER SAVED .. !_.---7"--'.! RETURN TO G~T : 

*. ." .. .... .. ••••••••••••••• * .. * ••••••••••••••••• • •••••••••••••••• rs 

.•. 
C2 "' • 

• "'BRANCH *. 0* TO *. YES *I 
"'. DIFFERENT .*------>* *. PRoe.* *PR 

"'.BLOCK." .. 

. r~-----------=:::=j .......... 
TYPE '" • N TO • 
E • · . ·······r······ 

.......... 
00 • • · ON • · . ········r······· 

.......... 
MeTR'" 
FOR .. · TION '" • • ·······r······ 

···.·G2·········· • • 'T • ·cc --------------------------... ----------
.. PN .. · . ................. 

Program Organization 



Chart IG. 

Licensed Material - Property of IBM 

Phase 63: GNDEP Routine 

..... A2.. ••• ..... ~NTER-viA---
.. *-- BRANCH TABLE 
.. GNDEF .. ------------· . .. · .... r .... 
... ·.a2·········· .. ENTER .. 
• OISPLACEMENT IN • 
• PROCEDURE BLOCK
.. INTO GNLBDTBL' .. · . ...... ·T ...... 
·····e2·········· · . .. CALL PHASE 00 .. 
.. TO WRITE GN .. 
.. DEFINITION • · . ........ 1' ...... . 

. '. D2 to ••••• 03 •••••••••• . " .. . *----RLDSORT---- .. 
• :·F~~ ~H~SG~N·:.:~~ ___ >:~rR~B~NTJ~ :-__ 

to ." .. THIS GN .. 
t o .* .. .. 

to .+ ••••••••••••••••• r .'. E2 t. 
ot t. 0" ADDRESS ... YES .. 

... CONSTANT • *------->* 
to 0* .. 

to 0* .. .. 
t ... * ••••••••••••••••• 

F------------======~------- ..... . F2" to to I ..... F3.......... .. .... 4.......... : .::. L-1 IE01C2 
." to .. .... .. •••• FS ••••••••• 

• " IS C2 to YES .. TURN OFF C2 .. .. SAVE CURRENT .... .. 
... SWITCH ON • *------->* SWITCH *------>* BLOCK NUMBER *-------->* EXIT TO GET .. 

to .* .. .. A.. .. It... .. 
to ... .. ... • • •••••••••••••• . ~ .. ................. . ............... . r .+. 

G +. .• *. 
•• URE •• yl!;s 

... BLOCK LAST ... _--! 
*. .* ... ... .. .. . ... 

·NO • • .... 1 : F5 : 

. '. 82 ... .. . . 
.. • LAST BRANCH. ~ NO 

... CONDITIONAL ... ----------------------... --*. .• .. .. . .. ... 

rs 

·····J2·········· · . • ZERO PROCEDURE • 
• BLOCK .-------------------------------------------• • · . ................. 

Flowcharts 289 



Licensed Material - Property of IBM 

Chart IH. Phase 63: PNDEF Routine 

290 Section 3. 

····A2·.······· [------------• ... ENTER VIA 
: PNDEF : ----- ~~~:~~~~~ __ _ ...... r· .... 
·····B2·········· ... ENTER • 
"'DISPLACEMENT IN • 
• PROCEDURE BLOCK. 
• FROM PNLBDTBL • · . · ...... r ...... 
·····c2·········· · . • CALL PHASE 00 ... 
• TO WRITE PN ... 
... DEFINITION .. · . ........ ,.. ....... . 

1 .' . 
02 * . . * * . 

.. *PN HAS BEEN... NO *. REFERRED TO ... -~ *. 0* 
*. .* * .... '" •••• 

·YES • • 1 : K4 : 

.'. E2 .... . .... E3.......... . .... E4.......... . .... E5 ......... . ... *. • • *----RLDSORT----*· • 
... NEW ... YES. • *MAKE RLD ENTRY • • REPLACE OLD ... 

..... PROCEDURE .. :e<------->*ZERO OUT ACMCTR*------->* FOR PROCEDURE *-------->*FRDCEDURE BLOCK. 
"'.. BLOCK ... • ... BLOCK. • WITH NEW • *. ..'" ... >1<... ... ... 

. ·l:~---------------:=:::::=:=:=:------:=:::::=:::=~---___ ::::::::i········ 
.'. F2 *. • •••• P3 •••••••••• . * *. • • . * ADDRESS *. YES .----RLOSORT---- • 

.. " CONSTANT • *------->* MAKE PN RLD .. ... 0 ,,'" .ENTRY IN RLDTBL. *... • • 

··l:~------------::::::]········ 
.'. 

G2 ." ** ••• G3 •••••••••• 0··0 .. . 
.:. F~~ ¥RI~N~N ·:.:~ ____ >:--MA~~D~~R~i:D--: 

.. 0 • • .ENTR Y IN RLDTBL. ·0 .• • • 

··1·:~------------::::::]··· .. ··· : .::. L~ .... . '. H2 ." ••••• H3.......... • •••. H4 •••••••••• 
.• *. • *. . o. *0 YES • TURN OFF c2 • .ZERO PROCEDURE • 

• • c2 SWITCH ON •• -------->. SWITCH .------->. BLOCK • • " o· • .• • ." o· • •• • .. .. .................. . ............... . 
r .'. J2 •• o. t" o. SAME ." YES *. PROCEDURE 0.-------------------------------> 

.. 0 BLOCK •• .. .. 
*" o· r . '. 

.... · . • K4 • 
• *-> .... K2 .. . .... 1<3.......... IEOIC2 

of *. • • • ••• K4 ••••••••• 
".LAST BRANCH." NO .. SAVE CURRENT •• • 

• " CONDITIONAL 0 .------>* BLOCK NUMBER .--->. EXIT TO GET .. . " ." .. .. . ·0 o. .. • • •••••••••••••• .. ... . ............... . 
·YES 
l_> •••••• 

• 84 • . . .... 

Program organization 



Chart II. 

Licensed Material - Property of IBM 

Phase 63: ADREF Routine 

.... A2......... ~-NTERViA--• *---- BRANCH TABLE 
• ADUF • --------· . . MM·r··· .. 

.... .*. .. t. 
B2 ... B3 ... B4 ... • •••• BS •••••••••• 

• * too .* *. ... *. • CALL 00 • 
... ADDRESS *. NO ... *0 YES ... PERMANENT ... YES. • *. ALREADY .. *------>*. BL OR BLL .. *--->* .. REG ASSIGNED .. *-----'--->* EL DO • *. LOADED .* *. ... too .* • • *. ... *..+ *..* • • * •• * * .. * * •• * ••••••••••••••••• 
~ ~ ~ L 1 1 ~---- >* ••••• 

-- SBL OR • D2 • 
SBS • • --- .... 2·········· ......... . 00 • TO • 

• AD • 
ON • R1S*<--------
NGE • • · .. . ::::::··1········· ········1········· 

• 02 • 
• *-> •••• 

IEOlc2 ••••• 03 •••••••••• ····02········· . . • •• CALL PHASE 00 • 

• RETURN TO GET +<-l* TO WRITE • • •.• ELEMENT • ............... . . ·······r······ 
···.·E3····.····· -ADD 4 TO ACMCTR. 
-AND LOCCTR FOR • ---* LOAD • 
• INSTRUCTION • · . ................. 

•... F2......... [EnTiRVii---
• .--- BRANCR TABLE 
• ADINCR • ---------• • 

······r··"· 
.· •.• G2·········· · . • ADD INCREMENT • 
• TO VALUE IN • 
• DISPSAVE • · . ········r······· 

.'. H2 •• • •••• H3 •••••••••• 
•• +. • .• 

.*DISPSAVE > •• NO • ADD BnE OF • 
•• Q095 •• ----->. ZEROS .. .. . .... . . ·r ···· .. ·r· .. ··· 
•.... J2.......... . .... J3 ......... . 
• .. * • • ADD " TO ACMCTR.. • 
-FOR EACH UNIT >*---->* ZERO DISPSAVE • 
• 11095 •• • · .. . . "."M......... . ..... "r ..... 

..... X3.......... IE01C2 • • ····K4.·.· •.••• • CALL PHASE 00 •• • 
• TO WRITE .------>. RETURN TO GET * 
• ELEMENT *. • · . . ............. . ................. ' 

Flowcharts 291 



Licensed Material - Property of IBM 

Chart IJ. Phase 63: C1REF Routine 

.... Al......... [iNTEi-vIA---
'" *--- BRANCH TABLE 
• CIREF '" ----------· . · .. · .. r .... · 

. '. B1 "'. • •••• B3 •••••••••• 
•• PRDe '" • LOAD '" '" '" 

• '" BLOCK OF "'. NO '" ON FOR'" "'ADD 4 TO ACMCTR* 
*0 REF SAME AS .*-------->* NEW EDURE *------->* AND LOCCTR '" 

"'. CURRENT • '" • K.. '" 
*0.* '" '" '" • 

··i~~-·-~=:::::::::::~-=:::J· .... ··· 
·····el·.········ · . '" GENERATE LA ... 
-INSTRUCTION FORt 
• REFERENCE ... · . ................. 

1 ·····01·········· .GENERATE C8 OR ... 
*ee ELEMENT FOR .. 
.. PROCEDURE ... 
... Ai-TEXT .. · . ........ j"' ..... 
·····E1*········· · . • ADD 4 TO ACMCTR* 
... AND LOCCTR ... · . · . ................. 

I "",0' ····Fl· ... ····· .. * * ... RETURN TO GET ... 
* • ............... 

.... Gl......... @NTER-PROM-GET--
• .---- VIA BRANCH TABLE 
• GNREF • ----------------· . ...... 1' ..... 

••• IJ01Al 
Hl •• • •••• H2 •••••••••• 

•• •• ·C1REP • 
• • COOl SWITCH •• YES .-.-.-._._.-.-.-* 

• ~ ON •• ------->. PROCESS FOR • 
• 0 •• .PROCEDURE BLOCK. ·0 .• • • ·oo .• • •••••••••••••••• r ·····Jl·········· * • · . • SAVE IN SAVETBL. · . 

• * ...... ·E~-·--
··.·Kl········. · . • RETURN TO GET • · . ............... 

.... E3......... [ENTER-nOM---... *--- GET VIA BRANCH 
... PNREF ... TABLE 
... ... ------------.. .... 1' ..... 

.*. F3 *0 ••••• F".......... . •... FS •.•....... 
~. • ~ • •• CALL E 00 • 

~. ADDRESS .~ YES .ADD 2 TO ACMCTRt • TO E • 
.~ CONSTANT ... ------>. AND LOCCTR .------->. E ON. .. .. . .. . 

•• t. •••• : ••••••••••••••• :. • 

,J. .. ... ~.......... .. .. · .. r::~:: 
~... • • ····G5········· ... COOl SWITCH •• NO • SAVE PN IN.. • 

•• ON .. *------>. SAVETBL .-------->. RETURN TO GET • ·0 .• • • 1\. • 
..~. . . . ............. . .. .. . ............... . 

·YES 

1 IJ01Al ·····H3·········· ·C1REF • ._._._t_._._._._ • 
• PROCESS FOR .------------------------
.PROCEDURE BLOCK • . . ................. 

292 Section 3. Program organization 



Chart lit • Phase 64: Overall Flow 

..... Al-•••••• ••• ill--------
• • ENTER FROM 
• ILFCBL64 • -------- PHASE 00 · . ----------...... 1' ..... 

··Bl······· . . 
• INITIALIZE ,. 

• OPTIONS AND • 
• SWITCHES • 
• • ••••••••••• 

1 IL01Al ..... el·······.·· ·PDATEX • . _ ..... -._._.-.-.-. 
• PROCESS DATA • 
• A-TEXT • · . ................. 

1 IM01Al ..... Dl···.···.·· *SE600Q • • _I_t_I_' ___ ' ___ ' 

• PROCESS • 
• PROCEDURE • 
• Al':"TEXT • ....... 1'::::: 
• ••• ·El· •• •••• •• • tGINIT2 • 
• _t_t_t_*_t_t_t_. 
'GENERATE INIT2,' 
: INli~lTtND : 

~:""'T""" 
·.·.·Fl·········· · . • TERMINATION • 
• ROUTINES • · . · . ........ r .. · .. · 
····Gl········· • EXIT TO PHASE • 

• 00 • · . ... ~ .......... . 

Licensed Material - Property of IBM 

Flowcharts 293 



Licensed Material - Property of IBM 

Chart IL. Phase 64: 

····A1········· · . . 
.. PDATEX .. · . . ~;;~i:;~r .... 
·····B1·········· *GTF4B • 
*-*-*-*-*-*-*-*-* -->* GET DATA OR .. 
.. ERROR ELEMENT .. · . ········r······· 

PD ATEX Rou tin e 

. *. PDT03Q D6SR10 Cl *. • •••• c2.......... . •..• C3 ••.•...•.• 
." ... .. CLOSE SYSUTLi. .. .SORT R IN .. 

n6PN10 ···C4····*······ 
• " ... YES *R TELS NO* .ASCEND ER* .. WRITE TEXT 

•• END OF FILE • *-------->*L NEEDED. *------->* OF *--------> AND RLD'S FROM 
.. • • .. .. RLDTBL'" • AD .. .. RLDTBL .. *. 0* *E DIRECT..'" '" * .• " ••••••••••••••••• • •••••••••••••••• r . *. D6000 

D1 ... • •••• D2 •••••••••• . * ... .. ,. 
• " ... YES .. IDENTIFY AND .. 

... DATA A-TEXT • *------->* PROCESS DATA .. *. .* .. A-TEXT .. *..* .. .. 
'Ol*N6 ·········l···::::· 

->* .. .. B1 .. . . .... 
·····E1·········· · . .. PUT E-TEXT IN .. 

---.TABLE FOR ERROR. 
.. PROCESSING • · . ................. 

294 section 3. Program organization 

·········r····· 
·····n4·····*···· · . .SET UP REGISTER • 
.ASSIGNMENTS FOR. 
• MAIN PROGRAM • · . 
· .. ····T:::~: 
• •••• E4 ••••••••• :+ 

.EXIT TO GINIT2 • · . 



Licensed Material - Property of IBM 

Chart IH. Phase 64: 

····A1········· * * : 8E6000 : ............... 
: *::*: j 
.. *-> .... 
·····Bl·········· " + +------GET------+ 
.. READ ELEMENT .. 
.. FROM SYSUT2 .. 

" " ................. 
1 

SE6000 Routine 

.*. EOF ENDPTX 
cl .... • •••• C2.......... • •••• C3.......... ILOIAl 

.* .. * ..... YES : CLOSE SYSUT2. : : R5~~~~~~T~g~ : ....... C4"' ........ .. 
*. END OF l"ILE o*-------)*LIST LAST LINE.*-------->. PROCEDURE *------)*EXIT TO PDATEX .. *. .>1< .. .. '" Al-'fEXT" >to .. 

.... .." .. ".. PROCESSING" •• * ............ . * ... * •••• :fI............ .* •••• *** ••• *.~** 

: *::*: ro : *::" : 
...... *-> V ...... *--1 

SE6025 ...... OPPRO V GET 
.. " 01 .... *. : •••• 02 •••••••• ": 

.. • OP CODE AND*.. YES .PROCESS OP CODE. .. READ NEXT 
.... ADDRESS ... -------->* AND ADDRESS *-------> ELEHENT FROM 

.... ELEMENT •• ... ELEHENTS'" "SYSUT2 *. . >I< ... ... •. . * •• *¢***~ ........ >I< •• ,..* 
+NO 

v 
••• PUDPRO 

Fl.. .****F2*.**.**"'.* 
• '" •• .fICREATE IN-LINE: ... 

• • PN BCD NAME., YES • CONSTANT FROM * 
•• ELEMENT •• ------->"'PREVIOUS SYSUT4* 

• • • '" • ELEMENT • .. .'" . ... *. .• .**"' •••••• ** ••••• 
+NO l .. *. 

->* ,. 

.*. MACPRO 

• ai • · . •• ** 

Ill.. "' •••• H2.*.* •• ***. . • *. .DETERMINE TYPE .. . * MACRO .... YES • AND GO TO ... 
•• INSTRUCTION •• -------->. ROUTINE TO • 

"'. ELEMENT ... • PROCESS .. *... • ... 
*·l·N~ "'*·****·*l***::::* ->. • 

• B1 • 
* " •• ** ••• SE6010 

Jl "', *'" •• "'J2* ••••••• "' • 
• "'.. • GET '" 

•• CARD NUMBER*. YES '" CORRESPONDING • 
•• ELEMENT • "'-------->"'SYSUT4 ELEMENT. '" *. .* ... LIST, SAVE IF • 

.. , •• • PN ... 

"'l"'N~ ··*··***"'l*··::::* 
->* • 

... B1 • 

• * ... '" 
GIDEllL 

.* ••• Kl** ••• *.*** *** •• K2*.* •••• *.* 
• • .CREATE IN-LINE • 
,. SPECIAL" • CONSTANT FROM .. 
• INTERNAL .-------->* SPECIFIED '" 
• ELEMENT '" ... ELEMENT .. · .. '" ••• ** •• **.* •• *... . ........ ,.. ........ . 

l .. *'" ->. * 
* Bl '" · . • * •• 

• * . 
Dli "'. .. . . 

... .'" OPERATIon •• YES 
-------->*. DESCRIPTIVE •• _--t· *. .* *. .'" 

t •• * *>i<* • 

" " ."'** l"NO : D2 : 

* ... ···EII*···· .... ··'" • FORMAT LIS'! .. 

:PU~~~E~~R~~S~fmv: 
* INSTRUC'l'ION, '" 

: .. ~;~~!.~~~~+ .. : 
l .. *'" ->* • 

: D1 : 

*.*. 

Flowcharts 295 



Licensed Material - Property of IBM 

chart IN. Phase 64: ADREF, RC4, Rcac, and RD001 Routines 

296 

····AI········· · . .. ADREF '" · . ............... 
j 

·····Bl·········· · . ... SAVE CURRENT .. 
'" PRINT- LINE .. · . · . · .. ·· .. r .. · .. · 
·····Cl·········· .. GENREATE LOAD .. 
"'INTO R14 OR R1S-

: g~L~L6RB§'~S : · . .. ·· .. ·r·· .... 
·····01·········· *PUT R14 OR R1S '" 
... IN BASE FIELD ... 
.. AND ... 
"'DISPLACEMENT IN
• 01 SF FIELD .. ...... ·1 .. · .... 
····El········· .. RETURN TO .. 

... MAINLINE ... · . ............... 

····Gl········· · . ... RC4 ... · . · ...... r .... · 
·····Hl·········· "'FIND DISPLACE- ... 
.. MENT OF PRO- .. 
... CEDURE BLOCK .. 
'" CELL IN PGT .. · . · ...... 1 ...... · 
·····Jl·········· '" GENERATE BASE ... 
.. AND DISPLACE- • 
• MENT BLOCK • 
• NUMBER • · . ........ r ...... 
. ···KI········· • RETURN TO • 

• MAINLINE • · . ............... 

Section 3. 

····A3···.····· · . • Rc8C '" · . .. .... r .... · 
·····B3·········· · . '" FILL IN PRINT ... 
.. SYMBOLICS '" · . · . ········r······· 
·····C3*········· .. G CE- '" 
.. Rll '" 
.. BL ... 
.. F L IN • 
.. P A '" . .... ·r ...... 
"'···03········· • RETURN TO ... 

• '" MAINLINE .. · . ............... 

····G3········· · . • RDOOI • · . . ............. . 
j 

·····H3·········· • FILL IN BASE • 
• AND DISPLACE- • 
• MENT OUTPUT • 
• AREA • · . · .... · .. r .. · .. · 
····J3········· • RETURN TO • 

• MAINLINE • · . . ............. . 

Program organization 



Chart IO. Phase 64: 

····Al········· · . ... GINIT2 ... · . ...... 1' ..... 
·····Bl·········· · . • GENERATE PGT ... 
-INITIALIZATION ... · . · . . ~"""r"" .····el.········· · . • GENERATE TGT • 
·INITIALIZATION ... · . · . ................. 

GINIT3 1 ·····01·········· · . -GENERATE CODING-
TO IN1TIALIZE ... 

VN CELLS 

- .... ii: .. '.Fl .•••••••••• . 
• -·-··M,;; •• ,;;····· : 

• · . 
~"'''T'''''' 

..... Gl·········· ... SET AND LIST • 
• INI'll CODING.. ... 
• WRITE LAST • 
• CARD. ... · . ···· .. ··r .. ····· 

... 

GI NIT2 Routine 

Hl '. IA01A2 .* *oo •••• H2 ••••••••• . * too YES'" ... 
... ANY ERROR .. *------>*EXIT TO ERRLOD • 

too .* • • *oo.* ••••••••••••••• 
*oo .* 

.NO 

.... J .. 1I2l!' · . ... EXIT TO CLOSE • · . ............... 

Licensed Material - Property of IBM 

Flowch arts 297 



Licensed Material - Property of IBM 

Chart If'. Phase 65: Overall Floll' 

A BRANCHING TABLE 
IS USED TO DIRECT 
CONTROL TO ONE OF 
SEVERAL ROUTINES 
FOR HANDLING EACH 
DEBUG-TEX LEMENT. 

.... A2*........ [------FROM----
: IKFCBL65 :---- P ~~ S~t6~ . ...... . j........ ~----=:~~~:~--

PH65 ·*B2······· ·INITIALIZE .. 
,., .. P¥~~fES P~~~i ,., .. 

.. • DATA AREAS .. '" 

····r· .. 
·····C2·········· .. DETERMINE OP- .. 
"'TIONS IN EFFECT. 
.. SYSDMP STATE .. 
.. FLOW .. . . ........ 1' ..... .. 

. *. 
D2 •• 

. * * . . "-' *. YES 
... FLOW ONLY •• ---~ 

*. ." *. ." * .• " .* •• 

RDF2 

l*NO : G3 : 

EOF2 .* . 
• *"'E2**.* •••• *** E3 *. • ... *.E4."' •••••••• 
READ ELI' AND ...... "SORT SEGINDX BY. 

"'BUILD TABLES .. ." SYMDMP OR +,. NO ... ASCENDING * 
CONTROL R MS ---------- FOR SYMDMP AND ------->*. TEST OPTION • "'-------->* PRIORITY AND * 
TO THIS R INE 
AFTER LEMENT 
IS PRO UNTIL 
END-OF- E ON 
SYSUT2 OR SYSUTS. 

298 Section 3. 

• STATE * * .. IN EFFECT.* .WRITE IN OBJECT* 

-WRITE-:-CARDiNDX;j 
~~gi~g~XTABLES 
ON S¥SUTS ---------------

*. .• • MODULE • 
* ... * ******.**** •• **.* 

rs 

**·**F3.*·*·*· •• * *----EOFQN2-----* 
... COLLECT INFO * 

--------.... FOR PROGSUM TBL* * WRITE DEBUG * 
*INFO ON SYSUTS * 
*.*** •• ***".***** 

: ::~: Ll <---------------------
*****G3·***** .**. *----PNCHSW-----* 
• SET INFO FOR .. 
*TGT, WRITE END * 
: CARD : 

••• * ••••• * ••• * ••• 

:t<***K3*·····*·· • EXIT TO PHASE • 
: 00 : 
••• * .............. * 

Program organization 



Licensed Material - Property of IBM 

Chart IQ. Phase 65: TENPROC, THENPROC, and GTEQ10K Routines 

•••• A1......... ~NTBRFROMRDF2--
• .--- VIA BRANCH TABLE 
• TENPROC • SEE CHART IP01E2 · . -----------······r····· 

.'. Bl .~ ••••• B2 •••••••••• 
~. . ~ . .. 

~. • ~ YES • PROCESS FOR • 
• ~ VERB ~ .------>. VERB NUMBER • . ~ .. . . 

• a.. • • 

··l:~-==r···" 
••• ·.C1·········· 
• CALCULATE .. 
• RELATIVE ADDR • 
.OF CARD/VERB IN. 
- FRAGMENT • · . .. ······r······· 

•• a IQ01E5 
Dl .a ••••. D2 •••••••••• 

a .~L ADDR ; a.. YES :~l'~~1~2~._._._._: .a 6.lJ1( BY"I'ES a *-------->. END FRAGMENT • • a a. • START NEW • • a.. • FRAGMENT • 

··~ __ =r····· 
·····El·········· · . *----TXPNCR-----· 
• ENTER PREVIOUS • 
• PROCTAB ENTRl: • · . ····· .. ·r······· 

.•. 
Fl .a ••••• P2 •••••••••• 

a*·a • • 
~ .. CRDINXSW •• YES .BUILD CARDINDX • 

• a SWITCH ON a *------>- ENTRY *. a* .. .... . . 
··I~=J······· 

..... Gl·········· · . • MOVE RELATIVE • 
• ADDRESS INTO • 
.. PROCTAB AREA • · . ........ 1' ...... . 

... 
Hi .a 

~. ·a •• DISCSW •• NO 
•• SWITCH ON a +..,;-.-.. .. 

·.a a* • ~ a. 

rs 

·····Jl·········· · . • TURN OFF DISCSW • 
• SWITCH TURN ON • 
• CRDINXSW SWITCH'" · . ...... 'f=-
···.1<1*··.·.·.· .RETURN TO RDF2 • 

.. ROUTINE • · . ............... 

.... A3......... [iNiiRiRoM---
• *-- RDF2 VIA 
• TWENPROC • BRANCH TABLE 
• • SEE CHART ····· .. r··.. "'-"'--
·····B3·········· · . _CALCULATE DUMMY. 
.. ADDR WITHIN • 
• FRAGMENT • · . ........ 1' ...... . 

. *. IQ01ES C3 *. • •••• CI.j.......... • •••• es •••••••••• 
.•. * DUMMY *. *. NO ::'!'~i:~~._._._._: : RELATIVE : 

..~~D~~~E~ 6~f··----->: EN~Ta~G~~uT :------>:A&H~~SA~B~~~: 
*..* .. FRAGMENT"" .. 

··i~-==~=r·····" 
.·.·.03·.········ · . ·----TXPNCH-----* 
tENTER PREVIOUS .. 
.. PROCTAB ENTRY .. · . ................. 

1 IQ01ES ·····E3·········· ::1'~~:2~._._._._: 
.. START NEW • 
: FRAGMENT 

········r······· 
.·.·.P3·········· · . ... SET FRAGNO • 
*COUN"I'ER TO ZERO-• • · . 
·······l~:~: 
···.G3········· · . • RETURN TO RDF2 • · . ............... 

····ES········· · . • GTEQ10K • · . . ............. . 
1 ·····FS·········· · . .PUT DUNMl: ENTRl:. 

• INTO PROCTAB • 
• TABLE • · . ··· .. ··r······ 
·····GS·········· ·------SNF------. 
• MAKE SEGINDX • 
• ENTRY FOR OLD .. 
• FRAGMENT I START • 
• NEW • ................. 

. .... J. ...... 
• RETURN TO • 
• CALLER • · . ............... 

Flowcharts 299 



Licensed Material - Property of IBM 

Chart IR (part 1 of ~. Phase 61: overall Flow 

····Al········· r--------------• • ENTER FROM 
• IXFCBL6A • ------- PHASE 00 · . ----------............... 

1 ··Bl······· . . · . ·INITIALlZATION • · . . . 
.. ··r··· 

..... cl·····.···· .--- -----. 
• M • 
• IN • · . · . ········r······· 

. '. D1 •• 
.• ·oO .* •. YES ·0 SXREF BIT ON o.---l 

•. oO· 
t. oO. .. o· ..... 

.NO .02 • .... 1 . Ai· .. ... 
• E1 • • t ._> .... 

READDEF ···El.··· ••.. ·.· · --> READ DEF-TEXT · . 

. ... · . - A3 • .... • '--l 
READREF .+. EOFREP 

···A3··········· All '. • •• ........... 
.. - to PR NAME 

bNAbD • 1M • 
____ > • READ REF-TEXT • _______ >.:. END OF FILE·: .~ ___ > -OEF 

• • to .+ ". to ._ 

•••••••••••••••• to ._ 

to r 
B3" ".0 B4··· •• 

of *. of ... 
•• MATCHING toO NO.' DA'l'A-NAME t .. 

to PROC-NAME .. *<------*. REFERENCE •• 
... PROCESSED. • •• ... 
to.t to •• 

to .* to •• rs 
DNREF .rs ..... C3.......... c" t .. 

• • of to 
• LOCATE DATA. YES ... DATA-NAME t .. ---* RECORD VIA • ----to BEING ... 
-DIRECT LOOK-UP. -.PROCESSED •• • • to.· 
••••••••••••••••• to .' 

..... . ........ . 

..... _- RCH----· 

.L DATA. 
• BY .<--
• BI SEARCH. · . . ............... . 

'NO l_>* ••••• 
• A3 • · . .... 

................ 
1 

85·'· .oO 
.' _ WAS '. o' NAJoJE LAST •• YES 

' .. ONE PROCESSED •• _
'.IN CYCLE •• 

to oO • •. a· r .····CS·········· · . ---: Pgi~I i~g~r : • • · . ................. 
. '. 

DS toO 
oO. ALL •• 

·0 .• 
.. oO· rs 

. '. 
I
--~~-·:: .~:~~~I~:D.:: -<--

..... E4.......... E5 .. · . .... 
• SAVE HIGHEST • .-DATA RECORD •• NO 

NAME JUST .<-- •. SPLIT •• _--
PROCESSED • •• . oO. 

• • ·.oO. ·········1 ...... ···· .. T··· .. · r 
. '. Fl ... • •••• F2 •••••••••• . .. FLI........... . .. F5 ...••.••••. 

.. • •• .TURN ON BIT TO • 
• • •• YES • INDICATE ALL • 

... END OF FILE • *-------->* DEF-TEXT *--> 
•• •• • PROCESSED • 

to •• • • 
to of ••••••••••••••••• r 

• to FOUND .t. 

CLOSE 
.REF-TEXT DATA • 

SET. RESET 
SWITCHES. ................ 

l .... 
->+ • • El • · . .... 

Gl ... G3 to ••••• G4 •••••••••• 
.. ' NAME to 0* to • • 

YES •• PROCESSED •• .. -REF FITS IN.. YES • INSERT REF IN • <--*. IN LAST CYCLE.. -> •. DATA RECORD ... - ___ .... ___ >. DATA RECORD • .. .. ... .. . . .. .. t..... ··l·N; ·~l·N~ ·········l···::::· ->- • -A3 • · . .... ... . .. 
Hi •• 83 ... • •••• H,. •••••••••• .. ·0 ...0.. 

•• IS STORAGE .0 YES ... REF FITS IN •• YES • INSERT REF IN • 
•• FULL •• ---... ---...... ------------------- •• LAST OVERFLOW •• -------->.OVERFLOW RECORD • 

• 0.. • . . • 0 • . • -ciiAiNED] :~~~:~o~~ . . . . : ............... : 
·NO TO DATA .NO t 
1 -~:~~-- 1 ->* ••••• 

. ' . 
• A3 • · . .... ..... Jl.......... J3 .. . .... JLI ......... . .. 0... .---SPLIT ---. 

• FORMAT DATA • •• OVERFLOW... NO • SPLIT H • 
---.RECORD FOR NAME. _. SPACE .. _-----). SOURCE • 

300 

•• •• AVAILABLE... DATA R • .. ..... . •••.••••••••••••• ·0 .• • •••••••••••••••• 

Section 3. 

'YES j 
1 <---~------------

·.···X3·.·.··.·.· • • • ov RD-
• TO • 
• I • · . ................. 

Program organization 

L •••• >. • • A3 • . . 
•••• 

• CLOSE 
DEF-TEXT DATA 

SET • . .............. . 
• ••• Gs •••••••• • 

'RETURN TO PHASE' 
• 00 .<-:-· . . ............. . 



Licensed Material - Property of IBM 

Chart IR (Part 2 of 3). 

..... 
*02 • 
• A1· .. . 

READDF ! 
. ... 
• • 
• A2 • 
• '-1 •••• ,v 

Phase 6A: Overall Flow 

···Al ••••••.• · •• . .... 2.......... . .... All.......... 5 ......... . 
+-- ----+ +---COMPLETE--- • ----* • • A/ • .1 TREE- .SELECT N LOWEST-" • -->. READ DEF-TEXT. -PR ATA +------->+ FOR *-------->+ ALPHABETIC *------->* .. 
• •• • -UNPROC'D NAMES. • ER • · .. ... .. .. ·········r····· ········r········· ................. ................. ········1········· 

. '. Bl .~ ••••• 2* •••••••• • •••• BS •••••••••• 
• + *. .. BIT TO * .. .. 

... •• 'iES • TE ALL .. +---BUILDRTN--- .. 
... END OF FILE • +----->* TEXT. .. BUILD SEARCH • 

•• •• • ESSED. .. RECORD TABLES .. 
t o .* • .. .. • 

to .* ••••••••••••••••• • •••••••••••••••• 

I·NO : ':;': 1 
• *-> .... 0.. READRF 

Cl to ••• cs ••••••••••• 
• * NAME -. 

YES ... PROCESSED ... <--*. IN PREVIOUS •• to CYCLE ._ 
*0 •• 

to o-r 
. 

READ REF-TEXT . 
·········r····· 

.'. •• 0 •• e 

01 t. 04 •• D5 *oO 
0- *. .··e .. *. • .. STORAGE •• YES • YES •• REFFOR •• NO •••• 

•• •• FILLED •• 0.---1 - .<--------.. DATA-NAME 0.<------•. END OF FILE ." 

• 0 •• v D • *.. •• •• • • · . .... ... . •. o· •••• ................. .. .. -.. . 
·NO • • .... I : A2 : 

. '. 
I·NO t~::;;· . 

: Al •• . ... 
El +0 ••••• E2 •••••••••• 

•• D;FINITIO~o •• YES : FORMAT DATA : 
• • FOR DATA- •• ------->. RECORD FOR 

... NAME ... • DATA-NAME ·0 .• • • .. .. . ............... . 
'NO l I ->-••••• 

• H1 -. . .... 
••• DATAREF •• 0 

Fl.. • •••• F2.......... F3 •• . ··0 . . .... 
•• FIRST •• YES .---CHAINRTN----. •• MATCH IN •• NO 

•• PROCEDURE- •• ------->.cHAIN DATA-NAME· ... STORAGE THIS .. ---t 
-. NAME •• • DATA RECORDS • •• CYCLE o. .... -.. ·0.· 

··l·N~ · .. ······1········· . ·I·YES : .~;.: .... 
. ' . 

4.·······.· --- . . - . 
D • . . . ............... . 

••••• G1.......... • •••• G2.......... G3 •• • •••• G4 •••••••••• 
• .. .----INITRTN----. ...0 . . 
• FORMAT DATA • .INITIALIZE TREE. • .REF FITS IN •• YES • INSERT REF IN • 
• RECORD FOR .<-- • STRUCTURE FOR • • .. DATA RECORD ... ------". DATA RECORD • 
• PROCEDURE-NAME • • SORT. •• •• • • - .. . .... . .. 
::::::··1········· ········1········· ··I·NO .. ······1:::::::: 
• H1 • • cS • .. ._> • • .... . ... ... . .. 

H! .0 ••••• H •••••••••• 83 •• • •••• 84 •••••••••• . ··0 .--- ----. ..... . . 
YES •• FIRST NAME •• • - • • .REF FITS IN •• YES • INSERT REF IN • <--... OF A PAIR .-. E.. .. LAST OVERFLOW •• ------>.OVERPLOW RECORD. 

•• •• .1 ER • •• RECORO • • • • 

. ··l+Nf· :···· .. ·1········: ]~~~~J~~··I·N~·· :······T::::::~ 
• cS • . . .... . ' . ..... Jl.......... . .... J2.......... J3 .oO ••••• J4 ......... . 

• •• • ..... ·---ALFASPLT--- • 
• COMPARE NAMES; • .---BUILDRTN--- • •• OVERFLOW •• NO • SPLIT HIGHEST. 

---. INITIALIZE. ----. BUILD SEARCH • •• SPACE ~ .------->.ALPHABETIC DA'IA • 
• CONTROL RECORDS. • RECORD TABLES • ..AVAILABLE.. • CORn • • •• • ... o· • • ••••••••••••••••• ••••••••••••••••• ·0 .• • •••••••••••••••• 

'YES j I <------------------
·····K3·········· • ADD NEW • 
• OVERFLOW RECORD. 
• TO CHAIN AND • 
.. INSERT REF • · . ................. 

l .... ->. • 
• c5 • . . .... 

Flowch arts 301 



Licensed Material - Property of IBM 

Chart IR (Part 3 of ~ • 

..... 
• 03 • 
• A1· .. 
I ..... . ........ . 

... ERSE '" 
... ETIC· 
... OF DATA ... 
*R (LOW TO. 
... GH) ... ................. 

EOFRF 1<-----------------------···Bl······.···· .D~~I ~fm • 
N 

NT 

·········r····· 
. *. 

Phase 6A: 

c *. • •••• c2 • •••••••• 
0* ME *. • '" 

... HI ONE ... NO '" POINT TO NEXT • 
... PRO IN .. *------->* DATA RECORD • *. CY 0* • • *. .." • • * .. * ••••••••••••••••• cs 

.*. 0*' 
01 *0 D2 * • 

Overall Flow 

.. '" ALL *.. .* *. • ••• 03 ••••••••• 
... DEF-TEXT ... YES ... DATA RECORD... NO .RETURN TO PHASE. 

... NAMES .. *-------->*.. SPLIT .. *-------->* 00 • 
"' .. PROCESSED.'" *. ..'" • • *. 0* *... '" ••••••••••••••• 

* .. * * .. * l:: _____________________ JyES 

·····E1·········· · . • SAVE HIGHEST • 
• NAME PROCESSED ... 
... IN CYCLE • 

• * ................. 
1 ... ··Fl·· ... ······· * • 

• CLOSE DEF-TEXT '" 
• AND REF-TEXT • 
... DATA SETS • 

• * ........... "' .. "' .. 
1 ·····Gl·········· · . · . • RESET SWITCHES • 

• * · . .......... "' ..... . 

302 

l ... . 
->·02 • 

• Al • . . .... 

Section 3. Program organization 



Chart JA. 

Licensed Katerial - Property of IBM 

Phases 70, 71, and 72: Overall Flow 

.. ···A2········· ~---------.. .. ENTER VIA 
.. ERRLOD .. ------- PHASE 00 .. .. ------------............... 
: "::": 1 .. *-> ••• * .". 

82 *. 
. " *. .. -MESSAGES IN-.. YES .. 

.... TABLE .. +------>*ME 
*. .* .. 

*0 .. " .. .. * .. * ••••••••••••••••• r ,.····cz·· .. ·•····· · " +-----GTF4B-----+ -->* GET A RECORD .. " . · . ........ I :~~~~~~---------
.'. 

D2 *. ···D3··········· .* *. c 

--------] ENTER FROM 
:~::.22.._ -----

····DII •• ••••••• .* *. YES "" " _.END OF E-TEXT.*-----> IF .. ------->. EXIT TO CLOSE • 
*. .." .. R E· • • 

*. .." ............... 
* ... " r .'. 

E2 * • . * ., 
NO .. " IS THIS *. ---* .. E-TEXT .... 

*. .." 
--------] ENTER FROM 
:~:~.2~__ -----

4<. .* 
+ ... " rs (:~:Ll 
,*. v 

F2 *. • •••• F3 •••••••••• 
.* *. .. .. 

.. • PHASE .... YES .. PROCESS AND .. 
*.10.12.1B MSG 0*------)* LIST *---! *. .* .. .. *. .." .. .. * ... " ••• :to ••••••••••••••••• 

l"NO AI: B2 : .... 
YES 

0*' .... 
G2 *, G3 .... • •••• G4 •••••••••• 

,* *, ,* *. .. .. 
.. .. PHASE .... YES .. " PHASE 71 *. NO .. LINR TO PHASE • 

••• ~Or2~S~1,2: ••• -----> •.•. LOADED •••• ----->: 71 : .. o. .0.. . . 
'r .... ·······r:::~: 

H2 •• • •••• HIJ •••••••••• 
•• .•• *PHASE71 • 

•• PHASE 12 ... YES .-*-.-.-.-.-.-.-. 
•• LOADED ... --! . GET PH2ERR .. 

• .. .. • • ADDRESSES • ... .. .. ... ... .... . .............. ,.. 
I·NO : .::.: L>: .;;. : . . ..... 

···"'·J2·*········ · " • LINK TO PHASE • 
• 72 • · " · . ••••••••••••• * ••• 

1 JA01E5 ·····K2·'u .•••••• ·PHASE72 .. • -.-*_._.-.-*_._* 
'" GET PHXERR • 
'" ADDRESSES • · . ••••••••• * ••••••• 

l .;to •• 
_.>* ..• 

: F3 : 
••• * 

• •••• AS •••••••••• 

• PHASE71 • " . ............... 
1 ·····BS·········· · . • PASS ADDRESSES .. 

: FOR PH2ERR : · . . ............... . 
1 ····cs.········ .RETURN TO PHASE. 

: 70 : . ............. . 

• •••• ES •••••••••• 

: PHASE72 : 

······r····· 
··• .. ·FS·· .. ··•···· .PASS ADDRESSES • 
• FOR PH3ERR • 
: PH~~~R{lH~~~~frn,: · . . ...... 1' ..... . 
····GS······"·· 

.RETURN TO PHASE • 
• 70 • · . . ............. . 

Flowcharts 303 



Licensed Material - Property of IBM 

Chart KA (Part 1 of 5). Phase 80: FIPS 

";.1 ____ _ 

304 Section 3. Program organization 



Chart KA (Part 2 of 5). Phase 80: 

Ai 

G2 

PROCESS 
DATE-COMPILED 
PARA 

Licensed Material - Property of IBM 

FIPS 

Flolfch arts 305 



Licensed Material - Property of IBM 

Chart KA (Part 3 of 5). Phase 80: FIPS 

D1 

WORKING YES 
STORAGE 

NO 

E1 

[3 
F1 

YES 

NO 

G1 

YES 

306 Section 3. Program organization 



chart KA (Part 4 of 5). 

NO 

Phase 80: PIPS 

E2 

CASE NUMBERS 
DETERMINED BY 
VERB LENGTH 

Licensed Material - Property of IBM 

Flowcharts 301 



Licensed Material - Property of IBM 

Chart KA (Part Sof 5). Phase 80: FIPS 

308 section 3. Program organization 



Licensed Material - Property of IBM 

SECTION 4. DIRECTORY 

FLOWCHART LABEL DIRECTOR! DEFINITION REFERENCE 
bABEb £!!!ll PAGE BLOCK PAGE BLOCK 
DICTP1 DQ -0;- H'-- 01 -;;;-

DEFINITION REFERENCE DIR DE 01 D1 01 B1 
LABE1 £!!!RT .RAGE ~Q£! PAGE BLOCK 01 G1 
ACCMET DN 01 C3 0'1 C2-- DIR010 DE 01 E1 01 D1 
ANLZUFDS ED DLSCN CK 01 D2 01 D1 
ANLZVBS ED DNREF IR 01 C4 01 B4 

DOCODE CF 01 E3 01 E2 
BASISRTN BD DOCTL CF 01 F3 01 F2 
BEGIN DA 01 B2 01 A2 DOLINE CG 01 E3 01 E2 
BEGIN DI1 01 B3 01 A3 DONGP CI 01 B1 01 A1 
BELE!I DD 01 A4 01 J1 DOPAGE CF 01 G3 01 G2 
BGROUP DD 01 J2 01 J1 DOROL CJ 01 F1 01 D1 
BLDOB02 DP 01 C3 01 B3 DOUSGE CG 01 G3 01 G2 
BLDOB06 DP 01 G3 01 F3 DUMTST CA 01 B3 01 A3 
BLDOBO? DP 01 H3 01 G3 D6PN10 HE 01 C4 01 C3 
B!BSRN DD 01 C1 01 B1 D6PN10 IL 01 C4 01 C3 

01 B2 D6SR10 HE 01 C3 01 C2 
BNORI1L DD 01 D4 01 C4 D6SR10 IL 01 C3 01 C2 

01 CS D6000 HE 01 D2 01 D1 
01 J3 D6000 IL 01 D2 01 D1 
01 J4 

BPASS12 DQ C1 F1 01 E1 
01 E2 ELIPR DL 01 J2 01 E3 

BPASS2 DQ 01 G1 01 F1 01 H2 
BREAD DD 01 E1 01 D1 END IC 01 E1 01 AS 

01 D2 01 B5 
BSUBRN DB 01 D3 01 C3 01 c5 

01 C4 01 D1 
01 D2 01 D5 

B!JSAGE DD 01 G1 01 F1 01 E4 
01 E5 

CD seNA CD 01 E3 01 E2 01 F2 
CHKDCL CK 01 D1 01 C1 C'1 G2 

01 C2 01 H2 
CHKENT EB 01 G3 01 F3 ENDPTX HD 01 C3 01 C2 

01 F4 ENDPTX ID 01 B2 
CHKPRNT BC 01 F2 01 F1 ENDPTX IM 01 :::3 01 C2 

01 G1 ENDP13 DP 01 C5 01 A4 
CLOSE IA 01 E3 01 D3 01 B5 
CLOSE IK 01 F1 01 E1 ENDO 1A CG 01 :::3 01 C2 
CLRD CJ 01 H1 01 G1 END02 CH 01 E4 01 D4 
COPYPROC BD 01 END02A CH 01 D4 C'1 D3 
COPYRTN BD ENOPAT He 01 D3 01 D2 
CTCDECK GB 01 E1 01 D1 EOF EA 01 E3 01 D3 
CO IE 01 F3 01 F2 EOF FA 01 D4 01 D3 

EOF HD 01 C2 01 C1 
DATA REF IR 02 F3 02 D3 EOF IE 01 C3 

02 E4 EOF IM 01 C2 01 C1 
DELI! CK 01 E1 01 D1 EOFIN GB 01 c;2 01 C1 

01 D2 EOFREF IR 01 A5 01 A4 
01 E3 01 cs 
01 G2 EOFRF IR 03 B1 03 A1 
01 H3 C'3 C2 

DICSCN EB 01 B2 01 B1 EOF2 IP 01 E3 01 E2 
01 C2 EORDA CF 01 D3 ') 1 D2 
01 G3 EPFT CI 01 C2 01 Cl 

DICTENTR DR 01 C1 01 B1 
01 K2 

Directory 309 



Licensed Material - Property of IBM 

DEFINITION REFERENCE 
DEFINITION REFERENCE 1All1 £MRT PAGE !!.1Q£lS PAGE !!.1QflS 

1Hl!l1 £!!!BT RAG£; !!.1Q£!S. RAGE ]2LOCK GETNXT DK -0'- C1 -0'- B1 
EPHD CI 01 D2 '01 D1 
ESD HC 01 E4 01 E3 01 E2 

01 F4 
FDSCN CD 01 B3 01 B2 01 G4 
FDTEXT DB 01 C2 01 C1 GETOUT DD 01 E4 01 D4 
FILED DQ 01 E3 01 E4 GETPTR DJ 01 G4 01 G3 
F'L FX 1 CI 01 C1 01 B1 01 H3 

01 B2 GIDEN1 HD 01 K2 01 K1 
FLVSCN CD 01 B4 01 B3 GIDENL 1M 01 K2 01 K1 
FORMLA FE 01 D1 01 C1 GINIT3 HF 01 D1 01 C1 
FOUND IR 01 G3 01 C3 GINIT3 10 01 D1 01 C1 

01 D3 GNEQUE .HC 01 G2 01 G1 
FOURTY8 IE 01 E3 01 E2 GNGPLD CJ 01 D1 01 C1 
FSEND DL 01 C3 01 C2 . GNLDPT CJ 01 B1 01 A1 
FSEC 1 liF 01 C1 01 B1 . GNOPT GD 01 K1 01 J1 
FSEC 1 10 01 C1 01 B1 01 J2 
FSTXT DF 01 C3 01 C2 GNUSMR CJ 01 D3 01 C3 
FSTXT DN 01 C2 01 C1 01 CS 
FSTOOO D1 01 F3 01 F2 GOTAVERB ED 
FSTOOO DL 01 C4 01 C3 GRIPR DL 01 H3 01 H2 
FTER HF 01 G1 01 F1 GSPICT DD 01 B2 01 B1 
FTER IO 01 G1 01 F1 
FTIN3 HF 01 E1 01 D1 
FTIN3 10 01 E1 01 D1 HEADER HB 01 C2 01 C1 
F2 EO P' HC 01 02 01 D1 IDLHN FA 01 F3 01 E3 

I 01 H1 IFERR FB 01 E1 01 Dl 
IPSO FB 01 F1 01 E1 

GCKOP3 GD 01 01 01 C1 01 ES 
01 J4 01 FS 

GOOAGN GD 01 J1 01 H1 INIT DE 01 B1 01 A1 
GDOAGN GJ 01 H1 01 G1 INITL BD 
GET HD 01 D3 01 D2 INIT1 HF 01 F1 01 E1 
GET ID 01 B1 01 A1 INIT1 10 01 F1 01 E1 

01 C4 INSROU CJ 01 J1 01 H1 
01 D4 INSRT HC 01 F3 01 F2 
01 E2 INSRTCHK BD 
01 F2 ISEND FC 01 D2 01 C2 
01 H4 ITEMRN DD 01 H1 01 Gl 
01 K3 
02 A2 
02 B2 KOP3 GJ 01 D1 01 C1 
02 B3 01 JLI 
02 D2 
02 E2 LDSCN CD 01 D3 01 D2 
02 E3 LHNAM CK 01 E2 01 E1 
02 F1 LTLRTN HC 01 F2 01 F1 
02 F2 

GE'!' IE 01 C2 01 B2 MACPRO HD 01 H2 01 H1 
01 H2 MACPRO 1M 01 H2 01 H1 

GET 1M 01 D3 01 D2 MACRO IE 01 D3 01 D2 
GE TC RD CE 01 C2 01 B2 MAYBE BE 
GETD1M CB 01 02 01 C2 
GETDLr-! CB 01 H4 01 H3 NOENDO DQ 01 B1 01 A1 
GETDL11 CO C1 C4 01 BU 01 A2 

01 C3 01 A3 
01 D3 01 05 
01 F3 01 F2 
01 G2 01 G1 

I GETN DP 'J 1 01 01 C1 01 GS 
01 H4 

310 Section 4. Directory 



Licensed Material - Property of IBM 

DEFINITION REFERENCE 
1!.!H;1 fJi!RT PAGE BLOCK PAGE ~1Qf'!s 

DEFINITION REFERENCE PNEQUR HC 01-- ----- HO"1- H1 
l.!BE1 ~HART !:!2~ BLQ£!S. gAGE ~LOf!s' PRGP CG 01 D01 D2 
NO GET DQ 01 E1 01 D1 PRTP CG 01 F3 01 F2 
NOTSTP HB 01 F1 01 E1 PRINIT EB 01 D3 01 C3 

PRINT EB ()1 E3 01 D3 
OD2FND DP 01 F1 01 E1 (;1 C4 
OKCOMP FB 01 D4 01 D3 PROC77 DL 01 E3 01 E2 

01 E3 PR 0110 CG 01 J2 01 H2 
OPPRO HD 01 D2 01 D1 PR02A CG 01 H2 01 G2 

01 D4 PR02A CH 01 D3 01 C3 
OPPRO ID 01 C2 01 C1 PR0250 CH 01 G3 01 F3 

01 K2 PUNCH IC 01 F3 01 D1 
OPPRO 1M 01 D2 01 D1 PUTEQU GI 01 F4 01 D4 

01 D4 01 E3 
01 G1 

PDSCN CK 01 B1 01 A1 
PDTO 20 HE 01 B1 01 A1 

01 D2 QIFOUND DP 01 G1 01 F1 
01 E1 QUAL DJ 01 H3 01 G3 

PD T020 IL 01 B1 01 A1 QUAL DI 01 C4 01 C3 
01 E1 RDF2 IP 01 E2 01 D2 
01 D2 RDPERD CF 01 C2 01 B2 

PDTO 30 HE 01 C2 01 C1 01 E3 
PDTO 30 IL 01 C2 01 C1 01 F3 
PERD01 CG 01 B2 01 A2 01 G3 

01 D3 RDSYN DL 01 D4 01 D3 
01 E3 READ AA 02 B1 01 C1 
01 F4 READB AA 02 C1 02 B1 
01 G3 06 B2 
01 J2 READC AA 02 D1 02 C1 

PERD02 CH 01 B3 01 A2 READDEF IR 01 E1 01 D1 
01 B2 01 F4 

PGTINT HB 01 E1 01 D1 01 G1 
PGTINT IB 01 G3 01 F3 01 J1 
PHCTRL READDF IR 02 A1 01 D1 
PHINIT CE 01 B2 01 A2 02 C1 
PHINIT FA 01 R3 01 A3 02 H1 
PHTERM DA 01 ;-:2 01 G2 02 J1 

01 G3 03 G1 
PHTERM DM 01 03 01 C3 READF2 HC 01 C1 01 B1 
PH03 BC 01 B1 01 A1 01 E4 
PH5BVB CA 01 G2 01 F2 01 F3 
PH5CTL GA 01 B2 01 A2 01 G2 

01 D3 01 H2 
01 F4 READF2 IC 01 C1 01 B1 
01 G4 C 1 E1 
01 J3 READUB AA 06 A2 02 D2 
01 J4 READREF IR 01 A3 01 B3 

PH65 IP 01 B2 01 A2 01 C4 
PICTAN DD 01 B5 01 B4 01 F2 
PLSCALL AA 01 G4 
PLUS 1 GD 01 H1 01 G1 01 H1 
PLUS1 GJ 01 G1 01 F1 01 H4 
PNBPRO HD 01 F2 01 F1 01 K3 
PNBPRO 1M 01 F2 01 F1 
PNDEFRTN ED 01 E5 03 C2 

04 A1 

Directory 311 



Licensed Material - Property of IBM 

DEFINITION REFERENCE DEFINITION REFERENCE 
bABEb CHART PAGE BLOCK PAGE BLOCK LABEL ~HART PAGE BLOCK ~ BLOCK 
READRF -ra-- -02- CS- -02 -B5- THRESUBS DR -01 CiI 

02 F3 TRMNATE AA 06 B4 06 A4 
02 G4 06 G2 
02 H4 TRMNATE BC 01 F1 01 D5 
02 K3 01 E1 

REDEF DL 01 D3 01 D2 TWOSUBS DR 01 C3 
RELEASE Ie 01 H3 01 G3 TXPNH HC 01 E3 01 E2 
RE NAMS DK 01 FLI 01 F3 TXPNH IC 01 G3 01 F3 
RENM10 DQ 01 J4 01 J3' 
REPORTD DQ 01 G5 01 G4 
RETURN AA 01 G2 01 G1 VALGEN DD 01 C5 01 C4 
RLIBA AA 06 E2 06 C2 VALGEN DD 01 J4 01 J3 

06 D2 VIRRTN HC 01 E2 01 E1 
06 D3 VNDEFR HD 01 E2 01 E1 

RLIBD ~A 06 A4 06 A2 VRBSCN CK 01 F3 01 F1 
RLIBGO AA 06 H2 06 G2 WGO AA 05 C2 01 C3 
SDTEXT DB 01 D2 01 D1 05 B2 
SD TE fi' DN 01 D2 01 D1 05 C3 
SDTXT DF 01 D3 01 D2 05 D4 
SE6010 HD 01 J2 01 J1 UVSCN CD 01 C3 01 C2 
SE6010 1M 01 J2 01 J1 WOUT AA 04 D1 01 A3 
SE6025 HD 01 D1 01 C1 04 C1 

01 E4 WPCH AA 05 B2 01 B3 
SE6025 1M 01 D1 01 C1 WRITE AA 04 C1 01 B1 

01 E4 04 E1 
SKPRNT BC 01 G3 01 F3 IlRITEA AA 04 B1 01 D1 

01 F4 03 D2 
SKFRNTA BC 01 F3 01 F2 03 E1 

01 G2 IlRITE5 DQ 01 B2 
SKPRNT3 BC 01 H3 01 G3 WRTERR BC 01 F4 01 H2 
SORTREN DO 01 C3 01 C2 01 F3 
SRCHTB DD 01 D2 01 D1 
STEP1 Be 01 C1 01 B1 
srEP2 BC 01 D1 01 C1 XITXIT CI 01 C4 01 AS 

01 B4 
01 B5 

TERM DE 01 E2 01 E1 01 C2 
TESTSB2 DR 01 D2 01 C2 01 D2 

01 C3 01. E2 
01 C4 01 F2 

TESTSB3 DR 01 F2 01 D3 01 G2 
01 E2 01 H2 

TESTSB4 DR 01 H2 01 G2 01 J2 
01 G3 XIT1 CI 01 F1 01 E1 

TESTSB6 DR 01 D3 01 D2 XIT2 CI 01 G1 01 F1 
01 K3 XIT2A CI 01 G2 01 G1 

TESTSB8 DR 01 J3 01 J2 XIT3 CI 01 H1 01 G1 
TGTINT HB 01 D1 01 C1 XIT4 CI 01 J1 01 H1 

01 C2 XITs CI 01 A4 01 J1 
TGTINT IB 01 F3 01 E3 XIT6 CI 01 Bs 01 B4 

01 E4 XIT7 CI 01 AS 01 A4 

312 Section 4. Directory 



Licensed Material - Property of IBM 

.--~- ---, 
I Table and TIB Number I , Ir-------------------------------~----------------------------~ 
IPhase, Built or Changed by Phase Referenced Only , 
I , 
I 10 ALPHTBL(27), CKPTBL(8), ENVTBL(3), I 
I FNTBL( 10), HASH( 30), INDTBL (4) , I 
I INDXTB(34), KEYTAB(26), OD2TBL(9), I 
I PIOTBL(7), P1BTBL(2), QLTABL(1), I 
I QN!TBL(2), RCDTBL(11), RWRTBL(13), I 
I SATBL (5), SPNTBL (21), 5RATBL (6), I 
I TOTTBL (32), OPSTBL (29) I 
~ I i 
I 12 CTLTBL (14), DETTBL (17), GCNTBL (24) , I FNTBL (10), SPNTBL (21) I 
I HASH (30), NPTTBL (1 B), PIOTBL (7) , I I 
I P1BTBL(2), QALTBL(23), QLTABL(1), I , 
I RNMTBL (12), ROLTBL (15), ROUTBL(16) , I I 
, RIlRTBL( 13), 5MSTBL (2B), SNMTBL (35) , I I 
I SRCTBL (22), SOMTBL (19) I I 
I-- I --.. 
I 1B DICOT(2:), GVFNTBL(4), GVNMTBL(3), I ALPHTBL(27), DETTBL(17), FNTBL(10), I 
I H15H(30), PIOTBL(7), PNQTBL(6), I PIBTBL(2), P1BTBL(2), RCDTBL(11), I 
I PNTABL(5), QLTABL(1), RNMTBL(12), I ROUTBL(16), RWRTBL(13), SPNTBL(21) I 
I OSETBL (26), VRDEFTBL (14) I I 
~ I ~ 
I 20 VALGRP (6), VALTRO (33), LABTBL (13) I OD2TBL (9) I 
I-- I f 
I 22 DICOT(20), FDTAB(2B), GPL5TK(10), I OD2TBL(9), TOTTBL(32), UPSTBL(29), I 
I HASH(30), INDKEY(31), MA5TODO(13), I VALGRP(6), VALTRO(33) I 
t OBJSOB(5), OCCTBL(2) , QFILE(23), I I 
I QITBL(22), QRTN(21), Q5BL(25), QVAR(24),J I 
I RDF5TK (11), RENAMTB (3), RNMTBL (12) , I I 
, SRCH KY (34), VARLTBL (15), I 
I- +-- f 
, 21 CKPTBL(B), DATATAB(16), HA5H(30), , FDTAB(2B), DICOT(20), PIOTBL(7) I 
I IND2TBL (17), QFILE (23), RunBL (35) , I I 
, SAMETB(19).SMRCDTBL(5) I I 
I +- i 
I 25 OCCTBL(2), ODOTBL(14) I DICOT(20), HA5H(30), MA5TODO(13), I 
I I OD2TBL (9), QITBL (22), QIiTN (21) , I 
I I RENAMTB(3), VARLTBL(15) I 
~ +- --f 
I 3 DTAB(4), QFILE(23), QVAR(24), I DICOT(20), HASH (3:) , INDKEY(31), I 
I OSNGTBL(2B) I I 
I I IND2TBL(17), VALTRU(33), QSBL(25) I 
I- +- --f 
, 35 DBGTXT (6), DUB (4), PITEXT (5), VRBDN (7) , I L-__ -..L_ I _____________ --..1 

Figure 59. Tables Osed by Phases (Part 1 of 2) 

Dir=.:ctory 313 



Licensed !aterial -Property of IBM 

,--,.- , 
I I Table and TIB Number I 
I I- • ---t 
I Phase I Buil t or C hanged by Phase I Referenced Only I 
l-----t- -t-- ---t 
I 4 I DBGTBL (13), DEFSBS (18), KEYTBL (20) , I I 
I I PFMTBL(12), PNOUNT(14), PSHTBL(17) , I I 
I I PSIGNT (15), PTRFLS (16), SETTBL (21) ,1 I 
I I STRING (9), VARYTB(1), VNTBL(11) I I 
~II -f 
I 45 I SSCIN (5), SSCOUT (11), SSDELIM (20), I I 
I I TXTOUT(19) I I 
l-----t- I ~ 
I 5(1 I BLUSTBL(1C), XAVAL(2) , XINTR(1), I I 
I I XSCRPT(3), XSSN.T(4) I I 
I--- I I ---t 
I 51 I BLUSTBL(10) , GNCALTBL(16), PNUTBL(6), I ALPHTBL(27), RUNTBL(35), USETBL(26) I 
I I SEGTBL(15) I I 
I----t__ -11--- ~ 
I 6 I CONDIS(14) , CONTBL(9), CVIRTB(12), I PNUTBL(6), SEGTBL(15) I 
I I ERRTBL(10) , GNTBL(B) , LTLTBL(4), I I 
I I PNTBL(7), QTBL(3), RLDTBL(none). I I 
I I TGTADTBL(1), VIRPTR(13), VNPTY(17) I I 
~-+- ----------~---~I~---------------------------___t 
, 62 I BLASGTBL(16), BLVNTBL(23), CONDIS(14), I BLiJSTBL(10), PNUTBL(6), SEGTBL(15) I 
I , CONTBL(9), CVIRTB(12), DRPLTBL(25), I I 
I I DRPTBL (24), GNATBL (8), GNFWDBTB (21) , I I 
, I GNLABTBL(19), LTLTBL(4), PNATBL(7), I I 
I I PNFWDBTB(20), PNLABTBL(18), TGTADTBL(1),1 I 
I I VIRPTR(13), VNPNTBL(29), VNPTY(17) I I 
l-----t- I ~ 
I 63, GNLBDTBL (27), PNI.BDTBL (26), QGNTBL (24), I BLASGTBL (16), BLVNTBL (23), DRPLTBL (25) I 
I I RLDTBL(28), TGTADTBL(1), VNPTY(17) I GNATBL(8), GNLABTBL(19), PNATBL(7), I 
I I I PNLABTBL(18), SEGTBL(15), VNPNTBL(29) I 
I--- I I ~ 
I 64 I ERRTBL (10), QTBL (3), RLDTBL (28), I BLASGTBL (16), GNATBL (8), GNLBDTBL (27), I 
i I TGTADTBI.(1) I LTLTBL(4), PNATBL(7), PNLBDTBL(26). I 
I I I QGNTBL(24), VIRPTR(13), VNPTY(17) I 
.- I I i 
I 65 I CARDINDX(11) , PROCINDX(5), SEGINDX(16) I TGTADTBL(1) I 
I----t- -t-- I 
I 6A I CNTLTBL (none), DATATBL (none) ,I I 
I I OFLOTBL(none) I I 
I- I I i 
, 7 0 I I ER R T BL (1 0) I 
L ___ ---L- ' I 

Figure 59~ Tables Used by Phases (Part 2 of 2) 

314 Section 4. Directory 



o 
1-'
H 
ro 
o 
M
o 
H 
'< 

w .... 
111 

"" 1-'-
IQ 
t:: 
H 
ro 

0\ 
o 

8 
H 
ttl 

c:: 
Ul 
Pol 
IQ 
(]) 

TIB Processing Phases 
Number 10 12 IB 20 22 21 25 3 35 4 45 

0 

I QlTABl --- - .... VARYTB 

2 PIBTBl" ----- OCCTBl - ----- --3 ENVTBl GvNMTBl RENAMTB- ---- --4 INDTBL GVFNTBl DTAB DTAB 

5 SATBl PNTABl OBlSUB SMRCDTBl PITEXT SSCIN 

6 SRATBl PNQTBl VAlGRP --. DBGTXT 

7 PIOTBl --- 1--- --- 1------- VRBDN 

8 CKPTBl f- -- f---- --9 OD2TBl 1---- 1---1--- 1---- --- '-- STRING 

10 { FNTBl - ---- GPlSTK 

11 RCDTBl -- - RDFSTK VNTBl SSCOUT 

12 RNMTBl -- RNMTBl PFMTBl 

13 RWRTBl ----- LABTBl MASTODO --- - DBGTBl 

14 CTUBl ODOTBl PNOUNT 

15 ROlTBl VARlTBl- ---- -- PSIGNT 

16 ROUTal ..- DATATAB PTRFlS 

17 DETTBl - -- PSHTBl 

lB NPTTBl DEFSBS 

19 SUMTBl SAMETB TXTOUT 

20 DICOT ----------- --- .- KEYTBl SSDELIM 

21 SPNTBl --- -- QRTN-- -.----- SETiBl 

22 SRaBl QITBl - --- --
23 QAlTBl QFILE - --- --- --
24 GCNTBl QVAR -- .- .. 

25 QSBl -- ---- --- -
26 KEYTAB USETBl --- ---- --- --- --- ---- --- --
27 ALPHTBL 

2B SMSTBl FDTAB '---- USNGTBL 

29 UPSTBL UPSTBL 

30 HASH .- - I- _. --
31 INDKEY- --- --- --
32 TOTiBl I-- - .. 
33 VAlTRU --- 1----- ---r-
34 INDXTB SRCHKY 

35 SNMTBl RUNTBl - --- 1------ ---- ---- --
Legend: 
'ijhe"QNMTBl table also uses TIB 2 during phose 10 processing. 
"The REPTAB table (TiB 29) Is used only during Phose 02_ 

Note that the arrowhead indicates the last phase to process the table. Where more thon one arrowhead follows a table name, the last 
phase ~ either phase 6 or one of the optimizer phases. __ _ __ __ 

50 51 6 62 

XINTR TGTABTBL TGTABTBl 

XAVAl 

XSCRPT QTBl 

XSSNT lTlTBl lTlTBl -

PNUTBl - -.----
PNTBl PNATBl-

GNTBl GNATBl -

CONTBl CONTBl 

BLUSTBl 1------- ----ERRTBl - ---

CVIRTB CVIRTB 

VIRPTR VIRPTR -

CONDIS CONDIS 

SEGTBl - ..... -- ----
GNCAlTBL BLASGTBl 

VNPTY VNPTY-

PNLABTBl 

GNLABTBl 

PNFWDBTB 

GNFWDBTE 

BlVNTBl-

DRPTBl 

DRPlTBl -

-- ---ALPHTBL 

VNPNTBl 

--- --
-

63 64 65 

--- -- I-- ..... 

QTBl 

--- -- PROCINDX 

--- ----- -
ERRTBl f----

----- ---
CARDINDX 

1----- -. 

---- -- SEGINDX 

1----~ 

----
--
QGNTBl- ----PNlBDTBl -PNLBDTBL .... 
RLDTBL- ---

-- --

6A 70 

-- .... 
-- f-

t-' 
1-'-
o 
(I) 

~ 
(I) 
ll> 

:z 
~ 
(I) 
1"1 
~
I» .... 

ttl 

~ 
~ 
(I) 
H 
M
'< 

o 
HI 

H 
ttl 
3: 



Licensed laterial- Property of IBM 

... iii i I 
I IC (Internal Compiler) IA (Assembler) I E (Error) IXREF-Text I Debug-Text , 

, -i -----------4�------------+'--------~,---------------+,-------------~ 
IPhase 041 I' E-text I , I 
• I--,----------·--------+,-----------~I----------~I------------------,r_--------~ 
,Phase 10,Data IC-text , I E-text I I I 
.----- ,,----------~----------+I--~-------~I-------~'---------~---,~-------~ 
,Phase 121 Da ta IC-text , ,E-text , 1 , 
I I Procedure IC-text I " , I 
I I (PO-text for Report I I I , I 
, ,Writer subprogram), I' I , 
~------i ----_i_,--~-------~,------_i_,----------~~,~----------i 
I Phase 1 B, Procedure IC-text, ,E-text I , , 
I I (PO-text for , " , , 
, I Procedure Division) , " , , 
.., "I I--i 
,Phase 20 I ATF-text I Data A-te][t I E-text I I I 
I I ,(incomplete) " , I 
• f I I I I , 
,Phase 22,Procedure Ie-text ,Data A-text 'E-text ,DEF-text (f9r , , 
, , (PC-text for , " , ,data-names), , 
I ,Q-Routines) , I' , , 
~ -i --~~~I----------~'~~----~I~-----------+I----------~ 
IPhase 211 ,Data A-text t· E-text I , , 
~ -i I' I , , 
IPhase 3 ,Procedure Ie-text, IE-text ,DEF-text (for , I 
I , (P 1- form) , , ,procedure-names) I I 
~ 'I , --+- ---4 I I 
,Phase 351 Procedure IC-text I ,E-text I I , 
I , (PIA-form) , I I , , ., , --r' I i 
I Phase 4 ,Procedure IC-text, ,E-text I , , 
'I(P2-form) I 'I II 
I I AT M-text , I I , , 
I' I (( , ~ 
,Phase 45, Proc~dure Ie-text I , E-text , , 
I I (P2-textfor UNSTRING I I '( 
I 'verb) " 'I .- ,,---------------~,I------'-~ ( f 
IPhase 50, Procedure IC-text ,Intermediate IE-text , ( 
( , (P2-form) (Procedure (Inter- I , 
'( ,A-text' ,mediate , ( 
(' (Intermediate , E-text ( , 
'I ,Optimization , '( 
(I I A-text , I' 
~I---~I--·----------·-----·~(--------rl-----+I---------+,------~ 
(Phase 511 IFinal, E-text I I , 
'I (Procedure" I , 
'I lA-text I' I , 
'I I Final " , ( 
'I IOptimization II I I 
I I lA-text' I I I I 
.- I I I I I I 
,Phase 6 I I I ,REF-text ,Debug-text I 
~ -i "I I i 
,Phase 63, IProcedure, , IDebug-text , 
'I IA 1-text " I I 
" I --+-, I ~ 
,Phase 641 I "REF-text I I L--- I , ______ • ______ ~, ______ ~ __ ~,~, ________ ~, ______________ ~I ____________ ~ 

Figure 61. Types of Compiler Text Produced by Each Phase 

316 Section 4. Directory 



This section contains two directories to be 
used in con;unction with microfiche 
listings of-the compiler. Microfiche names 
are usually the same as the load module 
names shown in the directories. Figure 62 
associates load modules (listed in phase 
or der) wit h object module na mes, the C SECTs 
they contain, the flowcharts in which they 
appear, and the chapters of this . 
publication in which they are described. 

Licensed Material - property of IBM 

Figure 63 associates external symbols 
(listed in alphabetical orde1;) with the 
load modules in which they appear. Those 
external symbols that are CSECT names are 
designated as "SD." Those that are 
location definitions within a CSECT are 
designated as "LD." 

r-------,,----------~----------~i~----~ i ------------------.----------------, 
Load I Entry I CSECT IFlow- IRefer tol I 
Module I Point I Names Icharts IChapter I Function I 

I I I I I I " 
IIKFCBLOO START IIKFCBLOO tAA IPhase 001 provides an interface between I 
I IPHOSECT2 I I I the operating phases of the 1 
I I PROTBST1 I I I compiler and between the system I 
I IPHOTBST2 I I I and the compiler. Handles tablesl 
I 1 TBDATA I ,land the dictionary for the I 
I 1 I I I operating phases, as well as 1 
I 1 I I 1 requests for system input/output 1 
I I I I I operations. I 
I --+ I I I ---I 
IIKFCBL01 IIKFCBL01 IBA IPhase 011 contains installation default I 
I 1 1 I 1 values of compilation parameters. 1 
, -:of __+ I I I " 
IIKFCBLC21 IIKFCBL02 IBB IPhase 021 Initializes the compiler. I 
1 I I IKFO 21 I I I 1 
l-- I I I I I " 
IIKFCBL03 I PRC3 IIKFCBLC3 I BC IPhase 031 Issues error messages and returns I 
I I I I I I to phase 00 to terminate a 1 
I I I II· I compilation. 1 
r-----:of .---__+ I I I " 
I IKFCB~041 STRTI?H04 I IKFCB!.04 I IPhase 041 Performs COPY/BASIS functions. I 
~~------~I----------+I·------·--~I~---t_ I ---I 
IIKFCBLCSI I IKFOS01 I 1 Phase 051 Analyzes syntax of source program 1 
I I- I I I 1 and inserts syntactic markers fori 
I I I I I 1 Lister processing. I 
~1------41--·---------r1---------r1--~+_--__+ ---I 
IIKFCBL061 IIKF0601 1 IPhase 061 Inserts cross-reference information I 
I I I I I I into source program based on I 
I I I I I I syntactic markers. 1 
r I I I I I ---I 
IIKFCBL081 I IKFC801 I IPhase 081 produces Lister output. . I 
r I __+ I I I " 
IIKFCBL10lPH1A IIKF1C1 leA-CD IPhase 101 Reads the Identification, 1 
I I I I I I Environment, and Data Divisions 1 
I I I I I I of the source program and stores I 
I I I I I I the information in tables, the 1 
I I I I I I COMMON communicatior.s area, and I 
I I I IKF118 I I I Data IC-text for phase 20. I 
~~------~I----------+i---------I~---4-1 ---:of _---I 
IIKFCBL121PHRW IIKF101 ICE-CJ IPhase 121 Process.es Report Section of the 1 
I I I I I I Data Division and generates 1 
I I I I I I Report Writer Subprogram. I 
I I 1 1 I 1 1 
I I I IKJi'114 I I I 1 
~'--____ ~LL-____________ ~, __________ _4, ______ .~ I I 

Figure 62. Load Module Directory (Part 1 of 4) 

Microfiche Directories 317 



License4 Baterial - Property of IBM 

.--, iii i " 
I Load ,Entry I CSECT I Fl·.ow- IRefer tol I 
I Module I Point I Names IchartslChapter I Function I 
.. - I ---'---t I I I ---t 
IIKFCBL1BIPH1B ISDDEF1 ICK JPhase 1BIReadsthe Procedure Division of I 
I I IIKF101 I I I the source program and stores I 
I I I I I I its information in tables, the I 
I I I I I I dictionary, and PO-text and I 
I I I I I I Listing A-text. I 
I I I IKF1 OC I I I I 
..... I I I-I I ., 
I IKFCBL201 PH20 ISDDEF2 IDA-DD IPhase 201 Reads the Data IC-text from phase I 
I I I (or IKF200) I I I 10 and creates ATF-text for I 
I I I IKF20 1 B I I I phase 22. Produces incomplete I 
I I I IKF202 I I I Data A-text for VALUE clauses. I 
I I I I I I I 
I I I I I I I 
I I I I I I I 
I I I IKF209 I I I I 
I I I J i-----t ---t 
IIKFCBL221START22 IIKP202 IDE-DL IPhase 221 Reads Data IC-text and ATF-text I 
I I I I I I and generates dictionary I 
I I I I I I entries. Also generates I 
I I I I I I Q-Routines and DEF-text, and com-I 
I I IIKF209 I I pletes Data A-text from phase 20.1 
I I I I -t ---t 
IIKFCBL211PH2 IIKF201 fDM-DN Phase 211 completes FD and SD dictionary I 
I I I IKF203 I I entries and writes Data A-text I 
I f I IKF205 I I for DCBs, DECBs, and bU,ffers. I 
I f IIKF207 I I I 
I I IIKF209 I I I 
I I IIKF211 I I I 
I I IIKF213 I I I 
I I I IKF214 I I I 
I I I IKF215 I I I 
I-- I I I I I I 
IIKFCBL251PHASE25 IIKF251 IDO-DR IPhase 251 Produces the DATATAB and OBODOTAB I 
I I I IKF252 I I I tables on the Debug data set I 
I I IIKF25A I I I (SYSUT5) if the SYMDMP option is I 
I I I I I I in effect. I 
r-- -;. I I f I ., 
I KFCBL3C I IKFCBL3C IIKFCBL30 EA-EC IPhase 3 1 Reads the PO-text from phase1B, 1 

f 1 I f replaces the procedure-names withl 
I I I I their dictionary attributes, I 
I I I I expands SEARCH statements and I 
I I I f CORRESPONDING clauses, and writesl 
I I I I the text as P1-text for phase 4. I 
I I I I Also produces a Data Division I 
I I I I glossary, if requested. Writes I 
I I I I procedure name DEF-:otext for phase I 
f f I I 6A, if a cross-reference listing f 
I f I I has been requested. . I 

...----+ ---+ +- I ---t 
I IKFCBL3S I IKFCBL35 IKF40A Phase 351 Scans USE FOR DEBUGGING declara-
I I IKF40B I tives. Inserts debug verbs into 
I I IKF40BL I procedure IC-text, if required. 
I I IKF40C I 
I I I 
I I I 
I I I 
f I IKF409 I 
I I IKF401 I. 
I I IKF406 I 
L- "J ! 

Fiqure 62. Load Modu1~ Directory (Part 2 of 4) 

318 Section 4. Directory 



Licensed Material - Property of IBM 

r-------.-------------.i----'-------.i--~--~i--------,_----------~--------------- , 
, Load Entry I CSECT I Flow- IRefer to I 
I Module Point 1 Names Ichartslchapter Function I 
L- I I 1 , ,--------t 
IIKFCBL40lPH4 IKF40A 1 FA-FC phase 4 Performs syntax analysis on the , 
I I (or CBLl KF40 IKF40 B , P 1-text from phase 3, expands 1 
I I or PHINIT) IKF40B 1 & each complex or implied verb I 
1 I IKF40C I string into a series of simpler I 
I I IKF40D I strings, thus producing P2-text I 
1 I IKF40E I for phases 50 and 51. Produces 1 
'I IKF40F I ATM-text for the UNSTRING verb. I 
I I IKF409 I 1 
1 I IKF401 I I 
I 1 IKF406 1 1 
Ir- 1 --t ---i-I ---1------+----------------1 
IIKFCBL451PHASE45 IIKF450 IFD-FF IPhase 451 Translates ATM-text from phase 4 I 
1 1 (or PH45) 1 I I 1 for the UNSTRING VErb into 1 
1 I I I 1 I P2-text for phase 51. I 
I I I I' , , 
I I I IKF4 53 I , I , 
L --4 -+-------~I----+I-----~I-------------- i 
IIKFCBL50,PHASE50 IIKF501 IGA-GE Phase 501 Begins to break down the P2-text 1 
I I I 1 I from phase 4 int.o assembler- I 

I I I I language-like statements that I 
I I I I generally have a one-to-one I 
I IIKF503 1 1 correspondence to machine 1 
1 IIKF50A 1 t instructions. These are written I 
1 1 J I as Intermediate A-text,which I 
I I I 1 consists of Intermediate I 
! J 1 I Procedure A-text and Intermediatel 
I IIKF50F I 1 optimization A-text for input to I 
1 IIKF504 I I phase 51. Phase 50 also I 
I I IKF505 1 I produces optimization A-text to I 
I I I I help phase 6 or 62 to eliminate 1 

I I 1 I I storage duplication. I 
L------f --t I I -I 
rIKFCBL511PHASE51 IIKF501 IGF-GJ IPhase 511 Completes the breaking down of P2- 1 
1 1 ,IKF503 1 I 1 text into assembler-language-likel 
1 I 1 IKF502 I J I statements that generally have a I 
1 I IIKF50A 1 I I one-to-one correspondence to 1 
I 1 J IKF50G I 1 1 machine instructions. These are I 
1 I 1 1 I 1 written as Final Procedure A-text, 
I 1 I 1 I 1 for phase 6 or phases 62 and 63. , 
I I 1 1 1 1 It also produces Optimization 1 
I 1 I IKF5CM 1 I 1 A-text to help phase 6 or 62 to I 
1 I I IKF504 I I I eliminate storage duplication. 1 
I 1 1 IKF505 I I , 1 
1------+--------+1 -------+1 --+- 1 ----t 
IIKFCBL60 PHASE6 IKF601 IHA-HF ,Phase 6 Combines all the information from I 
I (or PH6) I I Procedure A-text, Optimization 1 
1 'I A-text, and Dat.a A-t.ext into an 1 
1 J J object module. Produces an , 
1 IKF609 I I object program listing, if I 
1 IKF610 1 J requested. Writes REF-text on 1 
1 I I reference to data-names, file- I 
1 1 J names, and procedure-names for 1 
1 I I phase 6A, if a cross-reference I 
I I I listing has been requested. I 
1 'I Writes Debug-text if the STATE I 
1 I I option has been requested. 1 
I--- I 1 I ----t 
IIKFCBL621PHASE62 IIKF62 IIA-ID JPhase 621 Reads optimization A-text and 1 
1 I I IKF623 1 1 J optimizes literals and virtuals; , 
1 1 IIKF625 1 I I reads Procedure A-text and 1 
1 I ,IKF626 I I 1 calculates Procedure block 1 
1 I IIKF627 1 I 1 numbers. Produces partial list- 1 
1 1 IIKF628 1 1 1 ings for DMAP, CLIST, and PMAP. I 
'-- '" I 
Figure 62. Load Module Directory (Part 3 of 4) 

Microfiche Directories 319 



Licensed Seterial - Property of IBM 

,------~ ---TI----------~I~----~I--------rl--------------·---------------------, 
I Load I Entry I CSECT IFlow- IRefer tol I 
I Module I Point I Names IchartslChapter I Function J 
...- I --+ 'I I ----t 
IIKFCBL631PHASE63 IIK,F63 ,IE-IJ IPhase 631 Produces Procedure A1-text from I 
I I IIKF631 I I ,Procedure A-text, generating all I 
I I I I' I remaining instructions for the I 
I I I I' I object program with the exceptionl 
I I , I I I of certain load instructions. I 
I I I I I I Writes Debug-text if the STATE orl 
I I , " I SYMDMP option has been requested., 
...--------f ---+ " I . ., 
IIKFCBL641PHASE64 ,IKF64 IIK-IO IPhase 641 Processes Data A-text and Proce- , 
I' IIKF643 , , I dure A1-text and completes the I 
I I IIKF644, I I object text. Produces an object I 
I I IIKF645 t I I program listing, if requested. , 
I I I IKF6455, I I Writes REF-text for phase 6A. I 
I II IK F6 46 I I I I 
I I I IKF6 4 7 I , , , 
I I , IKF6 48 , , I I 
~-----t ---+ --------rl-----+-------~I----,----------------------------~I 

IIKFCBL651PHASE65 IIKF651 IIP-IQ ,Phase 651 Produces debugging information for I 
I I (or PH65) I IKF652 I I ,the SYMDMP. FLOll, and/or STATE I 
I I I IKF653 I I (options in the TGT. Adds the I 
I I I I I I PROCTAB and SEGINDX tables I 
I I I I' I to the object module after INIT3 ( 
I I I I' I for STATE; completes the Debug I 
I I I I I (data set (SYSUT5) for SYMDMP. I 
I I I I I ,Called only if SYMDMP. FLOW. I 
I I I I I I and/or STATE has been requested. I 
...------f--------t ----+1 -----·+------+-I ------------------. ., 
IIKFCBL6AI IIKF6A01 IR IPhase 6AI Writes a cross-reference listing I 
I I I IKF6A 02 , I from DEF-text and REF-text. I 
I I I IKF601 A I I listing has been reguested. I 
I I I 'I listing has been requested. , 
...------f--------+ f I ., 
IIKFCBL70 PH7 ,IKF701 JA ,Phase 701 writes error messages for phases 10 I 
I (or IKFCBL 70) I IKF702 , I through 65, if a listing of error I 
I IIKF703, I messages has been requested. I 
I I " Called only if program errors , 
I I I I ha ve been detected during I 
I I I I compilation. ( 
I-- J. I I ( f 
IIKFCBL71 IKFCBL71 IIKF711 IJA IPhase 711 Contains message text for error ( 
I I I I (messages generated by phases 20, ( 
I I I' 1:2:2, 21. or 25. I 
I- . I I I I ----t 
IIKFCBL721IKFCBL72 (IKF7:21 IJA ,Phase 72( Contains message text for error ( 
I I ( I ( I messages genera ted by phases 3, ( 
I t I I 1 (4, "5, 50. 51, 6, 62. 63, 64. or I 
(( I I I I 65. I 
...--------f- ---+ I I I f 
IIKFCBL8CIIKFCBL80 CHKCOPY Phase 801 Scans the source program for 
(I CHKGLBLS I deviations from the Federal 

I DATA SCAN I Information processing Standard 
( ENVSCAN I (FIPS) and produces a listing. 
I FIPSVT I 
I GETLINE I 
I GETWORD I 
I IDSCAN I 
I IKFCBL80 I 
( MSGHNDLR I 
I MSGWRITE ~ 
I PROS CAN I 
I PUTLINE I 
I VERBeEK ( 

L ____ -4 _____________ ~~--____ --~ ___ ~ 
I 

Figure 62. Load Module Directory (Part " of ") 

320 Section 4. Directory 



I ---r,-- i 

1 I Loadl ICSECT I 
IExternal I Object Iwhere LD I 
ISymbol* IType 1 Module IAppears I 
I I ---+ 1 -f 
ICBLIKF40 ILD 1 IKFCBL40 IIKF408 1 
1 (or PR4 1 I 1 I 
I or PRINIT) I I 1 1 
I- I --+ I of 
ICHKCOPY ISD 1 IKFCBL80 1 1 
1 CHKGLBLS 1 1 I I 
1 DATASCAN I 1 I I 
IENVSCAN I I I I 
I FIPSVT I I I I 
IGETLINE I I I I 
IGETiORD I I I I 
I ID SCAN 1 I 1 I 
I I I +__ of 
IIKFCBLOO ISD IIKFCBLOOI I 
I- I --+ 1 -of 
IIKFCBL01 ISD I IKFCBL01 I I 
1 1--+ +__ I 
IIKFCBL02 ISD IIKFCBL021 I 
1 I I +__---of 
IIKFCBL03 ISD I IKFCBL03 I I 
I-- I --+ I of 
I IKFCBL04 ISD I IKFCBL041 I 
I-- I --+----+__ I 
IIKFCBL20 ISD I IKFCBL20 I I 
I I I +__ of 
IIKFCBL22 ISD IIKFCBL22j I 
I- I --+ I I 
IIKFCBL30 ILD IIKFCBL301 I 
I-- I I +__---of 
IIKPCBL60 ISD I IKFCBL60 I I 
I-- 1 I I I 
IIKFCBL65 ISD I IKFCBL65 I I 
I-- I 1 • -f 
IIKFCBL71 ISD IIKFCBL71I I 
I- I --+ I -of 
IIKFCBL72 ISD I IKFCBL72 I I 
I +-----+ I . -f 
IIKFCBL80 ILD IIKFCBL80lI.FCBL80 I 
I I --+ l----of 
IIKF0501 ISD IIKFCBL051 I 
I I I I -f 
IIKF0601 ISD I IKFCBL06 I I 
1 I --+ I -of 
IIKF0801 I SD I IKFCBL08 , I 
I-- I --+----+__ -f 
IIKF021 ISD I IKFCBL02 I I 
I-- -+----+ I t 
IIKF101 ISD IIKFCBL101 I 
I I. I 1 I 
I I. I I I 
I. 1 • 1 I I 
IIKF118 ISD 1 IKFCBL10 1 1 
I-- ' ..L.-- of 
1 *Use of "also" implies two separate CSECT 1 
1 cards, where one CSECT has a lengt.h of I 
1 zero in storage; "or" applies to LDs I 
1 wh ich are equa ted. 1 
'- ' 
Figure 63 (Part 1 of 5). External symbol 

Directory 

Licensed Material - property of IBM 

, , ~ --.".-------.., 
I I I Loadl ICSECT 1 
IExternal I I Object Iwhere LD I 
I symbol'" IType I Module IAppears 1 
I I I I I 
IIKF101 ISD IIKFCBL121 1 
I I • I I I 
I I. 1 1 1 
I. 1 • I I I 
IIKF114 ISD I IKFCBL12 I I 
I------------~I-·--+ --~I------~t 
IIKF101 ISD IIKFCBL1BI I 
I I • 1 I I 
I I • I I I 
I I. I I I 
IIKF109 ISD IIKFCBL1BI I 
I-- I --+----+__----.-f 
IIKF201 ISD IIKFCBL21I I 
I IKF 203 I • I I I 
IIKF205 I. I I I 
I I KF 207 I • I. I I 
I IKF209 I. I I I 
IIKF211 I. I I I 
IIKF213 I. I I I 
IIKF214 I. I I I 
IIKF215 ISD IIKFCBL21I I 
I-- I --+----+__ I 
IIKF201B ISD IIKFCBL201 I 
IIKF202 I. I' I I 
1 I KF 203 1 • 1 I 1 
IIKF204 I. 1 I 1 
I IKF 205 1 • I I 1 
IIKF 20 6 I. 1 I 1 
I IKF 20 7 I • I 1 I 
I IKF208 I. I I I 
IIKF209 ISD I IKFCBL20 I I 
I-- I --+ I 1 
IIKF202 ISD I IKFCBL22 I I 
I I . I I I 
, I.' I I 
I. 1 • I I I 
IIKF209 ISD I~KFCBL221 I 
I-- I 1 1 I 
IIKF251 ISD IIKFCBL251IKFI51 I 
IIKF252 ISD I I I 
IIKF2SA ISD 1 1 1 
1 I I I -f 
IKF40A SD IKFCBL401 I 
IKF40B I I 
IKF40B1 II 
IKF40C I I 
IKF40D .1 I 
IKF40E I I 
IKF40F I I 
IKF409 I I 
IKF401 I I 
IKF406 SD IKFCBL40 I I 

-f 
*Use of lIalso" 1mplies two separate CSECTI 
cards, where one CSECT has a length of I 
zero in storage; lIor" applies to LDs I 
which are equated. 1 

'- ' 
Figure 63 (Part 2 of 5). External Symbol 

Directory 

Microfiche Directories 321 



Licensed Material - Property of IBM 

r--- --~Ir------TI------~I~-------' 

I I I Load/ ICSECT I 
I External I I Object I where LO I 
I Sym bol* I Type I Module I Appears I 
I I I +-- of 
IIKF4SO ISO IIKFCBL451 I 
IIKF4S1 I. I I I 
IIKF452 I. I. I I 
IIKF453 ISO IIKFCBL45I I 
I --~I-----+I------~I~------of 
IIKFSOl ISO IIKFCBL50 
IIKF502 I. I 
I IKFS03 I. I 
,IKF SOA I. I 
IIKFSOB I. I 
IIKFSOC I. I 
IIKFSOD I. I 
IIKFSOE I. I 
IIKFSOF I. I 
IIKFS04 I. I 
I IKF505 ISO I IKFCBL50 
I --~I----~I~-----+I------~ 
IKFS01 ISO IKFCBL51 
lKFS02 I. 
lKF 503 I. 
lKF50 A I. 
IKFSOG I. 
lKF50H I. 
lKF501 I. 
IKF50J I. 
IKFSOK I. 
IKF50L I. 
IKFSOM I. 
IKF504 I. 
1KFS05 ISD IKFCBL51 
t-- I I +-- I 
IIKF6A01 ISD IIKFCBL6AI I 
I- I I I , 
I1KF6A02 ISO I1KFCBL6AI I 
t-- I I I .f 
I1LF601 ISD IIKFCBL601 I 
I I . I I I 
I I. I I I 
I I . I I I 
IIKF609 ISD IIKFCBL601 I 
I I I I , 
IIKF651 ISD I IKFCBL65 I I 
! I • I I I 
I I . I I I 
I I • I I I 
IIKF656 ISD I IKFCBL65 I I 
~ "I of 
I*Use of "also" implies two separate CSECTI 
I cards, where one CSECT has a length of I 
I zero in storage; lIor" applies to LDs I 
I which are equated. I 
1 , 

Figure 63 (Part 3 of 5). External Symbol 
Directory 

322 Section 4. Directory 

,--- i ~ I C 
I 1 I Load/ ICSECT I 
I External I IObject I where LD I 
Isymbol* IType IModule I Appears I 
I I I I I 
IIKF701 ISD IIKFCBL701 I 
I I • I I I 
I I • I I ! 
I I • I I I 
IIKF703 ISD IIKFCBL701 I 
I I I +-- of 
IIK,711 ISO IIKFCBL71I I 
I I I l----t 
IIKF721 ISD I IKFCBL72 I I 
t-- I --+ +-- -§ 
I MSGHNDLR ISD tIKFCBL801 I 
, I --+------1-- , 
IHSGWRITE ISO IIKFCBL801 I 
t-- I I +-- ~ 
IOPENEXIT ILO IIKFCBL80lIKFCBL80 I 
I I I +__---1 
IPHASE45 ILO I IKFCBL45IIKF450 I 
t-- I I +__ .f 
IPHASE50 ILO IIKFCBL50iIKFS04 I 
I-- I ---+----+__ I 
IPHASES1 ILO IIKFCBL51IIKF504·! 
I(or PH51) I I I I 
I-- I ---+----+__ , 
IPHASE6 ILD IIKFCBL60lIKF601 I 
, (or PH6) I I I I 
t-- I I +__ I 
IPHASE65 ILO IIKFCBL651IKF651 I 
I (or PH65) I I I I 
I I ---+ I , 
IPHINIT ILD I IKFCBL40 IIKF408 I 
I (or PH4 I I I I 
I or CBLIKF40) I I I I 
I I --+ ~ --I 
IPHRW ILD I IKFCBL12 IIKF101 I 
t-- I I+--., 
IPHOSECT2 ISD I IKFCBLOO I I 
I-- I ---+ I I 
IPHOTBST1 ISO I IKFCBLOO I I 
I I I +-- of 
IPHOTBST2 ISO IIKFCBLOOI I 
I- ,---+ I --I 
IPH03 ILD IIKFCBL03IIKFCBL03, 
I- I I +-- of 
IPH1A ILO IIKFCBL10lIKF10l I 
I-- I ---+----+__ .f 
IPH1B ILD IIKFCBL1BIIKF101 I 
I- ' -L--., 
I*Use of "also" implies two separate CSECTI 
I cards, where one CSECT has a length of I 
I zero in storage; "or" applies to LOs I 
I which are equated. I 
L-- I 

Figure 63 (Part 4 of 5). External Symbol 
Directory 



r-- i ----r I I 

I I I Loadl I CSECT I 
I External I IObject I where LD I 
Isymbol* IType I Module I Appears I 
l- I -+----+__ I 
IPH2 ILD IIKFCBL211IKF201 I 
~ +__ I I ~ 
IPH20 ILD IIKFCBL20lIKFCBL20 I 
I-- I --+ I , 
IPH4 ILD IIKFCBL40lIKF408 I 
I (or CBLIKF40 I I I I 
I or PHI NI T) I I I I 
~ I I I --t 
IPH45 ILD I IKFCBL45IIKF450 I 
~ I --+ I ~ 
IPH6 ILD I IKFCBL60 IIKF601 I 
I (or PHASE6) I I I I 
~ I I +__ ~ 
IPH65 ILD IIKFCBL651IKF651 I 
I (or PHASE65) I I I I 
~ I --+ I ~ 
IPH7 ILD IIKFCBL70lIKF701 I 
~ I --+ I I 
I PROCSCAN I SD I IKFCBL80 I I 
~ I --+ I ~ 
IPUTLINE ISD IIKFCBL801 I 
~ I I +__ , 
IRTRN85 ILD IIKFCBL80lIKFCBL80 I 
~ I I I ~ 
ISDDEF1 ISD IIKFCBL101 I 
I (also IKF101) I I I I 
l- I --+ I ~ 
ISDDEF1 ISD IIKFCBL1BI I 
~ I --+-----+__----1 
ISDDEF2 ISD I IKFCBL20 I I 
I (also IKF200) I I I I 
I I --+ +__ I 
I START ILD IIKFCBLOOIPHOSECT2 I 
l- I --+ I ~ 
ISTART22 ILD IIKFCBL221IKF202 I 
~ I I I I 
ITBDATA ISD IIKFCBLOOI I 
~ I I I ~ 
IVERBCHK ISD I IKpCBL80 I ~ 
I-- I I I , 

I *Use of "also" implies two separate CSECT I 
I cards, where one CSECT has a length of I 
I zero in storage; "or" applies to LDs I 
I which are equated. I , , 
Figure 63 (Part 5 of 5). External Symbol 

Directory 

Licensed Material - Property of IBM 

Microfiche Directories 323 



Licensed Material - property of IBM 

COMMUNICATIONS AREA (COMMOEl 

The communications area (COMMON) is 
resident in storage throughout compilation 
at the beginning of phase 00. The format 
of COMMON is defined as DSECTs in the 
remainder of the phases and, therefore, 
each phase can refer to any cell in COMMON 
by its own name. 

Phase 00 passes a parameter list to each 
phase, the first word of which always 
contains the address of COMMON. The phases 
use this value to set up and maintain. a 
register which points to COMMON, as shown 
in Figure 64. 

Much of the information saved in COMMON 
by phases 10 through .51 is used by phase 6 
or 62 to form the Task Global Table (TGT) 
and Program Global Table (PGT) of the 
object program. 

When the BATCH option has been 
specified, certain cells in COMMON are 
reset to their original values by routines 
in phase 02 for subsequent compilations 
after the first. These cells are indicated 
by an asterisk following the cell name. 

324 section 5. Data Areas 

SECTIQN 5. DATA AREAS 

r 
I Phase Register 
l-
I 01 ** 
I 02 10 
I 03 12 
I 04 ** 
I 05 09 
I 06 12 
I 08 09 
I 10 1 
I 12 1 
I 1B 1 
I 20 11* 
I 22 1 

• 21 1 
25 10 
3 ** 

35 ",* 
4 ** 

50 10 
51 no 

6 9 
62 9 
63 9 
64 9 
65 9 
6A 10 
10 9 
80 ** 

I *Except during ACCMET routine. 
1**No register maintained throughout 

". phase • • L' ________________________________________ ~ 

Figure 64. Registers pointing to COMMON· 



&s!! 
cos 

TIBO
TIB3S. 

APRII!2 
AIHSRT 
ADSTAT 
RELADD 
TAMNAD 

ACCESW* 

AMAlU 

ALSTA! 

LOCCTR* 

PROGID· 

LABELS· 

PRBLDISP 

PRCTR· 

GRCTa· 

VIRCTR· 

NO. of 
JU.U.§ 
12 

Disp lace me nt 
Hex; Decimal 
o 0 

8 each OOC 

4 each 12C 
130 
134 
138 
13C 

1 140 

3 141 

4 148 

8 14C 

2 154 

2 156 

2 158 

2 1S1 

2 1SC 

12 

300 
304 
308 
312 
316 

320 

321 

324 

328 

332 

340 

342 

344 

346 

348 

Licensed Material - Property of IBM 

purpose 
Executable instructions. This section of code is 

used as an entry point to phase 00 by other 
phases. See "Receiving Control from Another 
Phase" in the chapter "Phase 00." 

Table Information Blocks (TIBs) used by TAMER (see 
"Appendix A. Table and Dictionary Handling") • 
TIB20 is reserved for the DICOT table, and TIB30 
is reserved for the HASH table. The rest are 
aSSigned to various compiler tables throughout 
compilation; one 'lIB may be reassigned when the 
table for which it was used is released. 

Address constants of TAMER routines used by the 
phases in table management requests. 

ACCESS initialization switch (see "Appendix A. 
Table and Dictionary Handling"). 

Pointer to the main free area'for tables and the 
dictionary. 

pointer to the "last entry in the TAMM table (see 
"Appendix A. Table and Dictionary HandlingU). 

Relative address of the next location available in 
the object program. It is incremented by phases 
22 and 21 as they assign locations to data and 
then by phase 6 or phases 62, 63, and 64 as they 
assign locations to the Global Tables and 
procedure instructions. 

PROGRAM-ID from the Identification Division of the 
source program. It is saved to be used as the 
CSECT name of the object module. If the program 
is segmented, the name is the CSECT name of the 
root segment, and its first six characters are 
used with priority numbers to name the other 
segments. 

Label information. 

Displacement of PROCEDURE BLOCK cells in the PGT. 

Used in phase 1B as a counter for assigning unique 
PH numbers to source program procedure-names. In 
phase 6, it is set to the displacement of the PN 
field from the beginning of the PGT. 

Used in phases 10, 1B, 22, 4, 50, and 51 as a 
counter for assigning unique GN numbers to 
compiler-generated procedure-names. In phase 6 or 
62, ,it is set to the displacement of the GN field 
from the beginning of the PGT. 

Used in phases 50 and 51 as a counter for assigning 
unique identifying numbers to virtuals (names of 
external procedures). In phase 6 or 62, it is set 
to the displacement of the VIRTUAL field from the 
beginning of the PGT. 

Communications Area (COMMON) 325 



Licensed Material - Property of IBM 

Cell 
L"TLCTR* 

WCMAX* 

TSMAX* 

TS2MAX* 

ODOCTR* 

CKPCTR* 

SBLCTR* 

VLCCTR* 

BLLCTR* 

SEQERR* 

DICND2* 

No. of 
Bytes 
2 

2 

2 

2 

2 

2 

2 

2 

2 

2 

4 

Di~placement 
Hex. Decimal 
15E 3SO-

160 352 

162 354 

164 356 

166 358 

168 360 

16A 362 

16C 364 

16E 366 

170 368 

174 372 

326 Section 5. Data Areas 

Purpose 
Used in phases 50 and 51 as a counter to save the 

number of literals. In phase 6 or 62, it is set 
to the displacement of the LITERAL field from the 
beginning of the PGT. 

set by phases 50 and 51 to the size of the largest 
work area needed by any COBOL library subroutine. 
In phase 6 or 62, it is set to the displacement of 
the WORKING CELLS field from the beginning of the 
TGT. 

Set by phases 50 and 51 to the maximum number of 
doubleword cells needed for temporary storage at 
execution time by arithmetic verbs. In phase 6 or 
62, it is set to the displacement of the TEMP 
STORAGE field from the beginning of the TGT. 

Set by phases 50 and 51 to the number of bytes 
needed for temporary work areas by nonarithmetic 
statements. In phase 6 or 62, it is set to the 
displacement of the TEMP STORAGE-2 field from the 
beginning of the TGT. 

Set in phase 22 to the number of Q-Routines 
generated to initialize a field which contains an 
OCCURS ••• DEPENDING ON clause the object of which 
is ~n item in Working-Storage or Communication 
section or is in a basic file. A Q-Routine is a 
subroutine which. at execution time, calculates 
the length of a variable-length field created by 
the OCCURS ••• DEPENDING ON option, and the location 
of the variably-located field which may follow it. 
It is used in phase 6 or 64 to set up table QTBL. 

Set in phase 21 to the number of checkpoint 
requests. It is used in phase 6 or 62 to allocate 
space for the CHECKPT CTR field of the TGT. Phase 
6 or 62 sets it to the displacement of the CHECKPT 
CTR field from the beginning of the TGT. 

Used in phase 22 as a counter for assigning unique 
identifying numbers for secondary base locators 
(SBLs). In phase 6 or 62, it is set to the 
displacement of the SBL field from the beginning 
of the TGT. 

Used in phase 22 as a counter for assigning unique 
identifying numbers for variable length cells 
(VLCs). In phase 6 or 62, it is set to the 
displacement of the VLC field from the beginning 
of the TGT. 

Used in phase 22 to assign unique identifying 
numbers to Linkage Section base locators. In 
phase 6 or 62, it is set to the displacement of 
the BLL field from the beginning of the TGT. 

Count of source cards whose user-written card num
bers are out of sequence. Set by phases 10 and 
1B, and used by phase 70 in error message 
processin g. 

Dictionary pointer for the last dictionary entry 
made in phase 22. 



Cell 
DICND1* 

WSDEF* 

ERRSEV 

DICADR* 

DLSVAL* 

DICPTR* 

DCPTR* 

RPTSAV* 

SA2CTR* 

LCSECT* 

RGNCTR* 

ERF4SW* 

PTYNO* 

No. of 
Bytes 
4 

7 

1 

4 

4 

1 

3 

2 

2 

4 

2 

1 

1 

Displacement 
Hex. Decimal 
178 -376 

17C 

183 

184 

188 

1BC 

1BD 

190 

192 

194 

198 

19A 

19B 

3BO 

387 

38B 

392 

396 

397 

400 

402 

404 

40B 

410 

411 

Licensed Material - Prop erty of IB~I 

Purpose 
Dictionary pointer for the last dic,tionary en·try 

made in phase 1B. 

Set in phase 22 to the last seven bytes of the Data 
A-text element for Working-Storage section address 
definition, which gives the first base locator 
number. the starting address, and the length of 
the ~orking-Storage Section. When phase 6 or 62 
assigns permanent base registers for base 
locators, it uses this information because it 
assigns base registers to the Working-Storage 
Section first. 

Name 
HSSTRT 

HSBL 

USSIZE 

1 

3 

Meaning 
starting address of 

Working-storage 

BL number assigned to the 
beginning of Working-Storage 

Number of bytes occupied by 
tforking-storage 

Set by phases 21g 3, 4, 50. and 51 to the highest 
error severity level encountered in any phase. 
When phase 00 returns to the operating system, it 
passes a return code which indicates the highest 
sr.ror severity level encountered in the program. 

ACCESS communication cell (see "Table and Dictionary 
Han dl in gil) • 

ACCESS communication cell. 

ACCESS communication cell. 

ACCESS communication cell. 

set by phase 10 if a Report ~lri ter save area is 
needed at execution time. Used by phase 6 or 62 
to determine whether that area should be set in 
the TGT and then set to the displacement of the 
RPTSAV field from the beginning of the TGT. 

Set in phase 51 if a USE AFTER (BEFORE) STANDARD 
LABEL or USE AFTER STANDARD ERROR procedure is 
encountered. If this field is set, phase 6 or 62 
reserves an additional area (SAVE AREA-2~ in the 
TGT and enters its displacement in this cell. 

Length of the object module CSECT. 

Set by phase 6 to the number of unique GNs or, under 
the optimizer version of the compiler, set by 
phase 51 to the number of GNs requiring an address 
constant cell in the PGT. 

SNitch used by phases 6 or 62 and 64 and 70. 

Set by phase 51 to current priority number, and used 
by phase 00. 

communications Area (COMMON) 327 



Licensed Material - Property of IBM 

Cell 
COMMAD 

AMOVDC* 

SDSIZ* 

SEGLMT* 

CURSGN* 

DATABDSP 

INDEX1* 

IOPTRCTR* 

TS3MAX* 

TS4MAX* 

FLOWSZ* 

SYSTX 

RPNCNTR 

AGETALL 

IDENTL* 

BLCTR* 

No. of 
Byte§ 
2 

2 

4 

4 

1 

2 

2 

2 

2 

2 

1 

2 

4 

4 

2 

Displacement 
Hex. Decimal 
19C Li"'12-

19E 

1AO 

1A4 

1A8 

1A9 

1AA 

1AC 

1AE 

1BO 

1B2 

1B4 

135 

1B5 

1B6 

1B8 

1BC 

1CO 

414 

416 

420 

424 

425 

426 

428 

430 

432 

434 

436 

437 

437 

438 

440 

444 

446 

328 Section 5. Data Areas 

.f.!!rpos~ 
A comma followed by a decimal point. If the 

DECIMAL-POINT IS COMMA clause is specified, the 
order of the two is reversed; that is, a decimal 
point is followed by a comma. This cell is set by 
phase 10. This cell is used by phase 6 or 62 to 
set SWITCH in the TGT, or by phase 65 to set 
SWITCH with the STATE and/or FLOW options. 

Unused. 

Address constant for TAMER routines. 

Set by phase 22 to the size of the largest Sort File 
Description (SD) Entry in the program. 

priority number of the highest-numbered Procedure 
Division section to be considered part of the root 
segment. Set in phase 10 to the value specified 
in the SEGMENT-LIMIT clause, or to 49. If phase 
1B finds that the program is not segmented, it is 
set to hexadecimal 'FF' as an indication to later 
phases. 

Set in phase 10 to contain the literal specified in 
the CURRENCY-SIGN clause, and used by phase 20 to 
recognize this literal. 

contains displacement into SYSUT5 block of first 
entry in DATA TAB table, set by phase 25 for use by 
phase 65. 

Number of index-names defined in INDEXED BY clause. 
Set in phase 6 or 62 to the displacement of the 
INDEX field from the beginning of the TGT. 

Number of input/output pointers for APPLY WRITE-ONLY 
clause. 

Set by phases 50 and 51 to the number of bytes 
needed for temporary storage for the SYNCHRONIZED 
option. 

Set by phase 50 to the number of bytes needed for 
temporary storage by table-handling verbs. 

Set by phase 02 to the number 
for the flow trace option. 
Used by phase 65 to fill in 
TGT. 

of traces requested 
The default is 99. 
the DEBUG TABLE in the 

To save SYSX from PARM field for a batch compile. 

Unused. 

Under the optimizer version of the compiler, set by 
phase 51 to the number of PNs requiring an address 
constant cell in the PGT. Used by phases 62, 63, 
and 64. 

Address constant for TAMER routines. 

Set in phase 6 or 64 to the relative location of the 
first executable instruction. 

Used in phase 22 as a counter for assigning unique 
identifying numbers to base locators for files and 



VNCTR* 

ONCTR* 

PFMCTR* 

PSVCTR* 

XSACTR* 

XSWCTR* 

PH6ERR 

RELLOC* 

GTLNG* 

VNILOC* 

VNLOC* 

SOBCTR* 

No. of 
Bytes 

2 

2 

2 

2 

2 

2 

2 

4 

2 

2 

2 

2 

]isplacemenl 
~ ~imal 

1C2 450 

1C4 452 

1C6 454 

1C8 456 

1CA 458 

1CC 460 

lCE 462 

1DO 464 

1D4 468 

1D6 470 

1D8 472 

1DA 474 

Licensed Material - property of IBM 

Purpose 
Working-Storage Section. In phase 6 or 62. it is 

set to the displacement of the BL field from the 
beginning of the TGT. 

Used in phase 4 as a counter for assigning unique 
identifying numbers to variable procedure-names. 
In phase 6 or 62, it is set to eight times the 
phase 4 value. 

Used in phase 51 as a counter to assign unique 
identifying numbers to ON control cells. In phase 
6 or 62, it is set to the displacement of the 
ONCTL field from the beginning of the TGT. 

Used in phase 4 as a counter to assign unique 
identifying numbers to PERFORM control cells. In 
phase 6 or 62, it is set to the displacement of 
the PFMCTL field from the beginning of the TGT. 

Used in phase 4 as a counter to assign unique 
identifying numbers to PERFORM save cells. In 
phase 6 Or 62, it is set to the displacement of 
field PFMSAV from the beginning of the TGT. 

Relative location within an EXHIBIT or SORT save 
area of the next area to be assigned. It is used 
by phase 51 in processing EXHIBIT or SORT 
statements and then is set to the total number of 
bytes needed for the save area. In phase 6 or 62, 
it is set to the displacement of field XSA from 
the beginning of the TGT. 

(Not~: this counter is used and then increment
ed, unlike other counters ~Ihich are incremented 
and then used. The increment is equal to the 
number of bytes in the save area used.) 

Used by phase 51 as a counter to assign unique 
identifying numbers to EXHIBIT first-time switches 
and special ON switches. In phase 6 or 62, it is 
set to the displacement of field XSASrl from the 
beginning of the TGT. 

Used by phases 6 or 62 and 64 and 65 to indicate 
that an error message is to be generated by phase 
70. Bits 0-9 are correlated to messages IKF60011 
- IKF6010I. Phase 70 checks bits 0-9 and if a bit 
is set to 1, the corresponding message is 
generated. 

Set in phase 6 or 62 to the relative location, 
within the object module or root segment, of the 
beginning of the TGT. 

Set in phase 6 or 62 to the length of the TGT. 

Set in phase 6 or 62 to the relative location of the 
VN field from the beginning of the PGT. 

Set in phase 6 or 62 to the relative location of the 
VN field from the beginning of the TGT. 

Used in phase 4 as a counter to assign unique 
identifying numbers to subscripted references. In 
phase 6 or 62, it is set to the displacement of 
field SUBADR from the beginning of the TGT. 

Communications Area (COMMON) 329 



Licensed Material - Property of IBM 

~ 
Pll.RL1AX* 

PRBLNUM 

SPACING* 

CORESIZE 

COI1FLOW 

FIL5BUF 

ADA TAB 

DATATBNM 

OBODOTBN 

NODECTR 

PROCCTR 

AMICTR 

DBGLOC 

SWITV2 

No. of 
Bytes 
2 

1 

1 

4 

1 

3 

4 

4 

2 

2 

2 

2 

2 

2 

1 

3 

Displa~ement 
~L. Q~imai 
1DC 476 

1DE 

1DF 

1EO 

1E4 

1ES 

1E8 

1EC 

1FO 

1F2 

'F4 

1F6 

1F8 

1 FA 

1FC 

1FD 

478 

479 

480 

484 

485 

488 

492 

496 

498 

500 

502 

504 

506 

508 

509 

330 Section 5. Data Areas 

gy.rpos~ 
Set in phase 50 to the size of the parameter area 

needed for parameter lists for macro instruction 
expansion of some of the source statements. In 
phase 6 or 62, it is set to the displacement of 
the PARAH field from the beginning of the TGT. 

Set by phase 62 to the number of Procedure blocks in 
the program; used by phases 63 and 64. 

Set by phase 02 to the number of spaces between 
lines in the listing. Used by phase 6 or 64 for 
the statistics portion of the listing. 

Set by phase 02 to the total number of bytes 
available for this compilation. Used by phase 6 
or 64 for the statistics portion of the listing. 

Value for FLOW from EXEC card. 

Unused 

Used by phase 02 to store the address of the SYSUT5 
buffer. Phases 25 and 65 also use this cell. 

Note address for the first block of the DATATAB 
table of SYSUT5. 

Number of DATATAB blocks on SYSUT5. 

Total number of bytes used for OBODOTAB entries on 
SYSUT5. including the slack bytes needed to align 
each OBODOTAB entry on a fullword boundary and 
unused bytes at the end of a block. 

Number of node counters. 

Procedure~name counter. 

Used by phase 21 as a counter for assigning unique 
identifying numbers for File Information Blocks. 
Phase 6 or 62 sets the field to the displacement 
of the FIB field from the beginning of the TGT. 

Displacement of TDBGTRA in the TGT. 

Switch 

Na.!!!!il Bit 
NODUMP -,-

CNTFDECL 0 

COBOL2 2 

LSTRETXT 3 

IHFOMSG 4 

Unused 

Meaning 
The compiler will not 
issue an abend for 
D-Ievel message condition 
and will generate the 
message. (NODUMP option) 

Declaratives specified 
for COUNT. 

ANS 1974 interpretation. 

If E-text from phase 04. 

On if messages present 
that FIPS cannot process. 



£Stll 
TMCNTBSZ 

VTINITVN 

AMILOC 

INTVIRT 

LOCTMCTT 

VIOHRN 

J.I STERSif 

COLLOVAL 

COLHrvn 

CDLCCTR 

CO.LLITNO 

DICTNAME 

LNGDSP 

LNGBL 

APLSCALL 

BUGSTCRD 

INDEX 

DATE* 

CRDNUM 

BCOISP 

2 

2 

2 

2 

II 

2 

1 

3 

2 
2 

4 

2 

2 

4 
1 

3 
14 

6 

15 

3 

2 

Disp la ce ment 
Hex. Decimal 
200- -512--

204 

206 

208 

20A 

20C 

210 

212 

213 

214 

215 

218 
21A 

21C 

220 

222 

224 
228 

229 
22C 

23A 

240 

252 

516 

518 

520 

522 

524 

528 

530 

531 

532 

533 

536 
538 

540 

544 

546 

548 
552 

553 
556 

570 

576 

594 

Licensed Material - Property of IBM 

£.!!'£.P~~ 
Size of count table. 

Virtual number for VSAM. 

ReseL"ved 

set by phase 62 to the number of FIB cells. Tested 
hy phase 64. 

Virtual number for Initializa~ion routines ILnoINTO. 
Used by phases 62-64. 

Start of count table. 

virtJal number for ILBOV2CO.URed hy phas~R 62-64. 

Switch 

N~.!!!g 
LSTRDECK 
LSTRPCH 
LSTRCOMP 
LSTRONLY 
LSTRPRC2 
LSTR132 

ni.t 
o 
1 
2 
3 
II 
<; 

QJ!tiQ!! 
FDECK 
C!)F.CK 
LSTCOMP 
.LSTONLY 
LCOL2 
L132 

collating sequence LOW VALU.E. 

collating sequence HIGH VALUE. 

LOCCTR for CO INITIAL 

Literal number of PCS. 
Unused. 

pointer to dictionary name from LATPTR. 

Displacement of first LINAGE-COUNTER. 

BT, number of first LINAGE-COUNTER. 

Address of PLSCALL routine in phse OC. 
Unused. 

Card number of first PM following declaratives. 
Unused 

Index all 

Set by phase 02 to the date and time of compilation; 
reused as follows by phases 10 and 1B: 

U!:22 
0-3 
4-7 
8-11 

12-14 

~ani!l.9. 
Number of data-names 
Number of verbs 
Number of source cards 
Unused 

Used to hold object deck card number durinq 
processing by phases 62 through 64. 

set by phase 6 or 62 to the displacement of the 
EBCDIC NAME field in the PGT. 

Communications Area (COMMON) 331 



Licensed Material - Property of IBM 

!;;d! 
seneTR 

LINECNTX 

CO MPIT.ES 

eN'T'L INE 

ERR N HM * 

DBG0DISP 

SA3CTR* 

veONDISP 

snHIDR01 

No. of 
lUtes 
2 

2 

4 

2 

2 

2 

2 

2 

2 

8 

Displacement 
.!i§..L.. llf.£i.!!lt! 
254 596 

256 598 

258 500 

25C 604 

25E 606 

260 608 

262 610 

264 612 

266 614 

268 616 

332 Section 5. Data Areas 

.Rl!!:J2Qg 
Set by phase 6 or 62 to the number of ERCOre names 

to be placed in the PGT. This number is 
multiplied hy 8 durinq ph~se 6 or 62 processing 
and th~ resulting amount of space is reserved in 
the PGT. 

'1'0 S'l.ve LINECtlT from PIIRM fi~ld for a bat.ch compile. 

Number of compilations for the BATCH option. 

Set by phase 02 to the total number of lines per 
listing page. Used by phase 6 or 64 for the 
statistics portion of the listinq. 

Numher of errors for this compilation. 

Displacement of ILB008G0 virtual cell from the 
beginning of the PGT. 

Set to four times the maximum number of files 
specified in any OPEN statement. Phase 6 or 62 
reserves an additional area (SAVP. AREA-3) in the 
'l'GT and enters its displacp.ment in this cell. 

Displacement of VCON TOL field in TGT. 

Unused 

Used by phase ry3 to store registers ~ and 1 for the 
SYNADAF macro instruction. 



~gll 
ADDRCARD 

DCBCTR* 

OPTINSIf 

OPTINSW1 

No. of 
Byte§. 
4 

2 

OPTINSi2 1 

OPTINSi3 1 

OPTINSi4 

NUKINC R 

DEFCNT 4 

PRZSW 

SYMSK 

PHZSW1 1 

274 628 

276 630 

277 631 

278 632 

279 533 

27A 634 

27B 634 

27C 636 

280 640 

281 641 

Licensed Material - property of IBM 

PU~EQg 
Address of the CBL card saved by phase 02 or 10 for 

the BATCH option. 

Used in phase 21 as a counter for: assigning un iqlIe 
identifying numbers for DCBs (data control 
blocks). In phase fi or 62, it is set to the 
displacement of the DCBlDR field from the 
beginning of the PGT. 

Used to hold PJ.fZSW until PH ZSW is reset for t.h2 
BATCH opt ion. 

Used to hold PHZSW1 unt il PHZSW1 is rr; set for the 
DATCH option. 

Used to hold PH ZSli2 unti 1 PHZS 11'2 is r:eset for the' 
BATCH option. 

Used to hold PHZSW3 until PH'lSW3 is reset for: th;:> 
BATCR option. 

Used to hold PH ZSW4 until PHZSH4 is reset for the 
BATCH option. 

SYMDMP card number increment. 

Number of definition text elempnts. 

Set by phase 02 from the compilation option s. If 
the bit is on, the option \(a s choser.. 

Equate 
l!~.!!ljg Bit. QElj,21l 
LIST 0 SOURC~ 

LISTX 1 PMAP 
DECK 2 DECK 
LIN.K 3 LOAD 
SEQ 4 SEQ 
FLAGli 5 FLII.(;W 

LIBR 6 LIB 
ZWB 7 ZWB 

When SYNTAX is specifiad Phase 00 tnrns off all th? 
bits to negate the options listed bplow. TF 

CSYNTAX is specified ~nd 000 or more error: (~) or 
disaster (D) l<?vol messaql" is found, phas8 21, 10, 
40, or 50 turns off all the bits to neqat2 th2 
options listed below. 

LISTX 
DgCK 

LINK 

Same as PRZSW for additional options. 

Equate 
lfUjg lH! Q.E!121l 
XRFF () X'!EF 
CLIST 1 CLI,)T 
SOl 2 n:up 
FLOW 'l .LOH 
SX REF 4 SXRFF 
APOST 5 APOST 
riA PSP 6 SUP~lI.I' 

TRUNC 7 TfHlllC 

Communication~;Ar"'a (CO~WPI) 33'l 



Licensed Material - Property of IBM 

£~!.!. 
SYMSK1 

PHZS W2 

SYMSK2 

PHZS W3 

SY"ISK3 

PHZSW4 

SWITCfl* 

No. of Qispla~!. 
Bytes Heh Q~£imS!l 

282 642 

283 643 

1 284 1';44 

285 645 

2 286 646 

334 Sqctio~ 5. Data Areas 

£.YfJ2Q£1!:l 
Same as SYMSK for the following options; 

FLOW 
CLIST 
SXREF 

TRUNC 
SYM 
XREF 

Same as PHZSll for additional options. 

Equate 
Na~ 
TERM 
NU 11 
DY NUl 
BATCH 
N/\ ME 
SYMCAN 
STATE 
SYMDMP 

Bit o 
1 
2 
3 
4 
5 
6 
7 

~:t.io!!. 
TERM 
NUM 
DYNAI'! 
BATCH 
NAME 
SYM DI'! P ca nealed 
STATE 
SYMDMP 

Same as SYMSK for the following options: 

SYMDMP 
N/\ ME 

STATE 

Same as PHZSW for additional options. 

Eq uate 
Nll.!!!,g 
OPT 
RE SE lEe 
SYNTAX 
CS YNTA I 
NOP.RINT 
TEST 
COBDBG 
RND,lOB 
VERBR 

~.!1 
o 
1 
2 
3 
4 
5 
5 
6 
7 

Q.~.t.iQ.!l 
OPT 
RES IDENT 
SYNTA X 
CSYNT AX 
(T50 only) 
TRST 
TEST 
FNDJOB 
VERB 

The remaining bits are unused. 

Same as SYMSK for the following: 

TEST 

Same as PHZSW for additional options. 

Equate 
l!i!~ 
1S011 
VR BF 
CO TnITL 
TIMP.RL 
HE WAD V 

Unllsed 

Bit 
o 
1 
2 
3 
4 

Ql2!.i2!!. 
V8SUM 
VBRF.F 
COlJNT 

ADV 

TRACR, DEBUG, SYMDMP, ~nd Q-Routine information. 

Equate 
!!~!!l.~ 
SWTIl::P. 

Bit ~~~n.!!lg 
-0- Set by phase 1R if TPACE statement 

is encountered so that phase 4 
will generate TRACE coding at 
each procedure-name definition. 



PH1BYTE* 1 

Displacement 
~ Decimal 

288 648 

No6A 1 

RPTWTR 2 

SPILL 3 

COLATON 

MQVAR 5 

Licensed !!aterial - property of IEtl 

Purpose 
Set by phase 6 or 64 to indicate to 

phase 00 that the SXREF or XREF 
option has been canceled. 

Set by phase 10 to indicate whether 
to call phase 12. 

Set by phase 00 if dictionary spill 
occurs in phase 1B, 22, or 21. 

Switch indicating PROGRAM COLLATING 
SEQUENCE, not NATIVE, exists. 

Set by phase 22 if it builds a QVAR 
table. 

6 Unused. 

MQFILE 7 

SYMIFP 8 

SYS5TD 9 

SORTRTN 10 

RERUNN 11 

DSOU 12 

NOFITSW 13 

DOPH7 14 

RDERRFIL 15 

Switch. 

Equate 
Name 
F3TEXT 
QRTN1PBL 
BASIS 
F4TEXT 
S370IN 
INITBIT 
EOPPH1 
UPSIBT 

Set by phase 22 if it builds a 
QFILE table. 

Set by phase 25, when SYMDMP or 
TEST is requested, there is a 
floating-point item in the 
program. Tested by phase 62 to 
determine whether a virtual for 
ILBOTEF3 is to be generated. 

Set on if the SYSUT5 data set is on 
tape; set off if SYSUT5 is on 
disk. 

Set by phase 3 if the SORT-RETURN 
special register for the Sort 
Feature is specified and used by 
phase 51. 

Set by phase 10 if the RERUN clause 
for the Sort Feature is 
specified, and used by phases 21, 
51, and either 6 or 62 and 64. 

Source indicator for statistics. 

Indicates to phases 00 and 70 that 
phase 6 or 64 wrote E-tex·t on 
SYSUT3. 

Tested by phase 6 or 62 or 64 to 
determine whether to call phase 
70. 

Indica,tes that phase 70 must read 
E-text on SYSUT4. 

Bit 
-0-

1 
2 
3 
4 
5 
6 
7 

~!lI 
3,51 

62 
02 

21,3,4,51 
02 
10 
10 
10 

Used by 
6 
63 
00 
6 or 64 
50,51 
20 
1B 
20 

Communications Area (COMMON) 335 



Licensed Material - Property of IBM 

~ll 
STAESW 

BATCHSW 

SPACEX 

DECBCT* 

DCBNOXX 

BUFSIZE 

CURCRD* 

SWITCH2 

No. of 
§.ytes 
1 

1 

1 

2 

2 

4 

3 

1 

Displacement 
Hex. Q~imal 
289 649 

28A 

28B 

28C 

28E 

290 

294 

297 

650 

651 

652 

654 

656 

660 

663 

336 Section 5. Data Areas 

purpos~ 

STAE information for the BATCH option. 

Equate 
~ 
STAEON 
STAEFAIL 

Bit -0-
1 

Meani.illl 
STAE executed. 
STAE was not successful. 

The remaining bits are unused. 

BATCH option information. 

Equate 
!@~ Bit Meani.illl 
EOFSYSIN -0- End of file on SYSIN. 
ENDFOUND 1 Delimiter has been read. 
BOMBED 2 compiler tried to 

termina teo 
ENDIN1A 3 End of file reached by 

phase 10. 
CARD HELD 4 Card read by phase 02 is 

to be passed to 
phase 10. 

DONTSET 5 Bypass routine. 
NOTFIRST 6 Set after the first 

compile. 
LINISOFF 7 SYSLIN is not open. 

To save SPACE from PARK field for a batch compile. 

Used in phase 21 as a counter for assigning 
identifying numbers to DECBs. In phase 6 or 62. 
it is set to the displacement of the DECBADR field 
from the beginning of the TGT. 

Passes the DCB number for the optimizer phases. 

Set by phase 02 to the total number of bytes to be 
used for buffers. Used by phase 6 or 64 for the 
statistics portion of the listing. 

The card number of the text item currently being 
processed. 

Switch. 

Equate 
Na~ . 
OPTDISP 

PH63NOPR 

Bit 
o 

1 

Meaning 
Set to 1 by phase 50 if 

ILBODSPO is to be 
called; set to 0 if 
ILBODSSO is to be 
called 

Set to 1 by phase 62 if 
phase 63 is to perform 
no processing but call 
phase 64 



SWITCH1 

KTRMNATE 

RELSPACA 

KALOUT 

KKADS5 

LINKCNT 

KKPHOSW 

No. of 
!!ytes 

1 

3 

4 

4 

4 

4 

2 

1 

Displace~ 
~ Decimal 

298 

299 

29C 

2AO 

2A4 

2A8 

2AC 

2AD 

664 

665 

668 

672 

676 

680 

684 

686 

EOJCALL 

RERUNBT 

Licensed Material - property of IBM 

Purposg 
2 

3 

set to 1 by phase 00 if 
it receives a call for 
end-of-job processing. 

If there is a RERUN 
clause, phase 10 sets 
this bit to 1 to 
indicate to phase 51 to 
move the address of the 
Checkpoint subroutine 
(ILBOCKPO) into the 
exit list. 

The remaining bits are unused. 

Used for SYHDMP and UNSTRING communication. 

Equate 
Name 
RENAHON 

OCCTBON 

PH45BIT 

CVBBIT 

NEDBIT 

APPWRO 

ANEBIT 

ADRSYM 

Unused 

Bit 
-0-

1 

2 

3 

4 

5 

6 

7 

HeanilliL 
Phase 22 built RENAMTB 

table. 
Phase 22 built OCCTBL 

table. 
Set by phase 4 to 

indicate that phase 45 
is to be called for the 
UNSTRING verb. 

Set if the ILBOCVBO 
subroutine is needed. 

Set if the ILBONEDO 
subroutine is needed. 

APPLY WRITE ONLY 
specified in source 
program. 

Set if the ILBOANEO 
subroutine is needed. 

Set if the ILBOADRO 
subroutine is needed 

Pointer to error code for phase 03. (See the 
chapter "Phase 03" for a list of the codes and 
their meanings.) 

Address of RELSPACE (TAMER address constant). 

A (LOUT) pointer to SYSOUT DCB address. 

A (DS5) -- pointer to SYSUT5 DCB address. Phase 65 
uses this address in opening and closing SYSUT5. 

Set to the phase in main storage; used by phases 00 
and 03. 

Switch 

Equate 
~ 
KKPHORT 

MeanilliL 
Phase 00 has issued a 

RETURN macro 
instruction 

The remaining bits are unused. 

communications Area (COMMON) 337 



Licensed Material - Property of IBM 

£U! 
PHZEBR 

PRI,TBUF 

PROGSW 

KKPGR70 

INITSIZE 

DICND3 

PH25SW 

SYSTDD 

FIPLVL 

AHEADER 

ESDID 

BGALLPN 

BGALLP.RI 

V2BUGSW 

I BUGBLLNO 

BUGVLCNO 

MAXBGITM 

No. of 
Bytes 
1 

1 

1 

3 

1 

2 

2 

1 

1 

12 

2 

2 

, 
1 

2 

2 

2 

Displacement 
~ Decimal 
2AE 687 

2AF 

2BO 

2B2 

2B5 

2B6 

2B8 

2BC 

2BE 

2BF 

2CO 

2CC 

2DO 

2D2 

2D4 

2D5 

2D6 

2D8 

2DA 

688 

689 

690 

693 

694 

696 

700 

702 

703 

704 

716 

720 

722 

724 

725 

726 

728 

730 

338 Section 5. Data Areas 

Purpose 
Switch for error message. 

Printer carriage control character. 

switch for progress message. 

X'F6FAOO' -- phase 70 purge constant; reset by phase 
03. 

Unused. 

Size· of INIT1 as it is always generated. 

set by phase 22 to the dictionary pointer for the 
last dictionary entry in the File Section. 

Number of blocks written on SYSUT5 by phase 25. 

Used by phases 02, 60 and 62 to determine the final 
alphanumeric character for DISPLAY SYSOUx DD name. 

Set by phase 02 to indicate use level of FIPS 
flagging that is to be done by phase 80. 

Reserved 

ADCON for header routine in phase 00. 

Used by phase 62 to pass last ESD ID number to phase 
64. 

PN for USE-DEBUG all procedures. 

priority for USE-DEBUG QALL procedure. 

DEBUG switch. 

Equate 
.!Ul.m,g 
V2BUGON 
V2BOGDCL 
BGALLPRC 

BLL for DEBUG 

VLC for DEBUG 

Bit 
"0 , 

.2 

Meaning 
With debugging mode 
Debugging sections 
USE-DEBUG all procedures 

.:. 

Maximum size for DEBUG-ITEM. 



Licensed Material - Property of IBM 

I IDBYTES 28 2DC 732 One byte for each phase of the compiler. Each phase 
dynamically stores its change level number in its 
corresponding byte. 

IDPHOO 1 2DC 732 
IDPH01 1 2DD 733 
IDPH02 1 2DE 734 
IDPH03 1 2DF 735 
IDPH04 1 2EO 736 
IDPH05 1 2E1 737 
IDPH06 1 2E2 738 
IDPH08 1 2E3 739 
IDPH10 1 2E4 740 
IDPH12 1 2E5 741 
IDPH1B 1 2E6 742 
IDPH20 1 2E7 743 
IDPH22 1 2E8 744 
IDPH21 '1 2E6 745 
IDPH25 1 2EA 746 
IDPH30 1 2EB 747 
IDPH35 1 2EC 748 
IDPH40 1 2ED 749 
IDPH45 1 2EE 750 
IDPH50 1 2EF 751 
IDPH51 1 2FO 752 
IDPH60 1 2F1 753 
IDPH62 1 2F2 754 
IDPH63 1 2F3 755 
IDPH64 1 2F4 756 
IDPH65 1 2F5 757 
IDPH6A 1 2F6 758 
IDPH70 1 2F7 759 
IDPH71 1 2F8 760 
IDPH72 1 2F6 761 
IDPH80 1 2FA 762 

12 2FB 763 Unused 

1 307 775 Unused 

OUTLRECL 2 308 776 121 or 131 set by phase 02 for LISTER. 

OPTLVL ., 30A 778 LVL option saved for ba.tch 

OPTSHV2 1 30B 779 Option in SiITV2 saved for batch 

OPTLSTR 1 30C 780 Option in LISTERSH saved for batch 

PHOSti l' 30D 781 Switch byte used in phase O's. 

Equate 
~~ 1ill. Meaning 
SYSLIBNO 8 Switch for SYSLIB not 

available. 

2 30E 782 Unused 

ALIBEOD 4 310 784 Address of EOD exit for library 

ALIBSYNA 4 314 788 Address of SYNAD exit for library. 

LIBBUF 4 318 792 Address of library input area (phase 04 to phase 
00) • 

Communication Area (COMMON) 339 



Licensed Material - Property of IBM 

COMPILER TAB~ FORMATS 

This chapter contains the formats of all 
the tables that are handled through the 
TAMER routines (see "Appendix A: Table and 
Dictionary Handling"). These tables are 
distinguishable from others in that (1) 
additional storage can be obtained for 
them, and (2) they can be left in TAMER 
table space by one phase to be used by 
another. 

All other tables occupy fixed amounts of 
storage in the phases that use them. They 
are described in the chapters on the 
individual phases. 

340 Section 5. Data Areas 

NOTES ON COMPILER TABLE FORMATS 

• The top row of figures shows the number 
of bytes in the field. 

• define optional 
fields or a series of similar fields. 

• c = the number of bytes in the ~ 
that follows. 

• n = the total number of bytes that 
follow in the remainder of the ent~. 

• 1b = this field is one byte long. 



Licensed Material - Property of IBM 

ALPHTBL 
(TIB 27) Purpose rf----~i--------~r_----~----------_, 

Phase 10 builds this tablet 1 IVariable 1 256 
from scan of alphabets in I I I 
SPECIAL-NAMES paragraph. C lalphabet-jSvitchI256-byte I 

rhases Inyolv~ 
Phase 10 checks the table 
for alphabet-names found 
in CODE-SET clause. At 
end of SPECIAL-NAMES, 
phase 10 scans the table 
for alphabet-names found 
in PROGRAM COLLATING 
SEQUENCE. 
Phase 1~ checks the table 
for alphabet-names found 
in SORT or MERGE statements. 
Phase 51 deletes this table 
at termination of processing. 

The count of the number of bytes in the 
name that follows. 

Code 
01 
04 

08 

80 

Meaning 
PROGRAM COLLATING SEQUENCE 
STANDARD-1 (ASCII), no 256-byte 

translation table needed. 
NATIVE (EBCDIC), no 256-byte 

translation table needed. 
Literal already defined. 

If none of the above switches are on, the 
table entry is for a user-defined alphabet 
which is not the Program collating 
Sequence. If the Literal Already Defined 
bit is on, the next two bytes contain the 
literal number (if not ASCII or EBCDIC). 

BLASGTBL 
(TIB 16) purpose 

Iname I I Translation I 
I I 0 ITable I , " , 

, 
1 1 I Assign object-time 

permanently loaded 
registers. 

~--------+-----------~ 

~lu Freguency 
One entry for each 
register: 6-10. 

Phases Involved 
Phase 62 builds this table 
using~he BLUSTBL table. 
Phases 63 and 64 use the 
information to determine 

Type cell 

which BL or BLL or OVERFLOW 
cell is in a permanent register. 

The type cell contains one of the 
following values: 

Code 
FF 
FO 
00 
01 

Meaning 
TGT OVERFLOW 
PGT OVERFLOW 
data BL 
data BLL 

BL, BLL, I 
or OVERFLOW I 
number I , 

Compiler Table Formats 341 



Licensed Material - Property of IBM 

OVERFLOW cells for the TGT and PGT are 
assigned registers first. Sincg the 
number of PROCEDURB BLOCK ADDRESS 
c~lls has not yet been determined, it 
is impossible to know if another 
OVERFLOW cell will be required for the 
PGT. Therefore, phase 62 assigns 
reqisters 6 - 9 to the known OVERFLOW 
cells and to the most used data BLs 
and BLLs and reserves register 10 for 
the possible PGT OVERFLOW cell. If no 
OVERFLOW cell is needad, register 10 
is assigned to the next most used data 
8L or BLL. 

BLUSTBL 
(TIB 10) Pllrpoli~ ,.----, 

BtVNT13L 
(1'I B 2.1) 

contains a count of 
the references to 
each BL anil BU •• 

Entry pregue!l.£y. 
one entry for each 
BL and BLL assigned 
to the Data Division. 

Phases Involved 

I 3 I 
I ~ 
I Usage I 
I counter I , 

Phases50 and-51 build thh~ 
table-aurIng-the scan of P2-text. 
Phase 62 uses this table to 
assIgn-registers to the 
most used nata BLs/BLLs. 
8Ls 1 through n are followed 
by 13J.Ls 1 throu'!h !D. 

Puroosp 
optImIzp. qen8ration of 
instructions to return 
control from a performAd 
procedure to the ~N 
r<'!tllrn point. 

3Il.trLn~.9.!!.§n£.Y 
One entry for ear.h P.XI~ 

statement in the rang~ 
of a PERFORM statement. 

R!E!.§~.§_.I.!!:iQlyf9 
Phase 62 builds this t~ble 
~;~In~-~ptimization A-teKt 
processing upon reading a 
GN element for a PP.RFORM 

r ~-----------.- , 
I 2 I 2 I I 
.. I --+ ~ 
I GN number I VN number , Block I 
I I I number I L __________ -L---________ L-_______ J 

verb (24). Tt fills in the 
block number during Procedur~ 
A-~ext processinq upon reading 
the VN reference element which 
follows the C)04 element at 
th~ PEPPORM statem~nt ~xit. 
Phase 63 uses this table to determine whc+her: t h,= GN 
return poin':: (CO"5 element) is 
in the sam'" block as the> EXIT 
statemgnt and thus which 
Procedure Flock number is 
contained in raaister 11 upon return 
from the performed procedur8. 

342 Section~. Data lr?as 



Licensed Material - Property of IBM 

HNDX 
I 11) 

~H§ 
)-19 
10-23 

rBL 
I 8) 

RY.!.E2§g , , 
3 I I I 

I I -t 
Store information about I 
the first card number for I 
each program fragment I Card/verb numberl Priorityl Relative I 
and user-written I for first card I I fragment I 
discontinuity within a I in this group I I number I 
segment for use by the I 
COBOL library subroutines I G) 
when SYMDMP is specified. L----______ __ 

]!!i!Lf!~gY~!!£:I 
One entry for each program 
fragment and one entry 
for each noncontiguous section 
other than the first within 
a segment. 

Phases Involved 
Phase-6s-buIlds this table 
while-reading Debug-text on 
SYSUT4 on building the 
PROCTAB table. 
fha~2 writes this table 
on 5Y5UT5 and COBOL 
library subroutines use 
this table to relate card 
numbers to entries in 
the PROCTAB table. 

Contents 
Card-number 
Verb number 

(verb number is always 0 or 1) 

I I within this I 
I I priority 1 
~ ______ -L---________ _ 

.I 

Purp~ .---- T""----------r----
I B 1111 I 2 14 2 I Save RERUN statement 

information from source 
program scan. 

1-------+----+----+-------+ I ----I 

Entll-E.r.gguen£.y' 
One entry for each 
RERUN statement. 

Phase Involved 
Phase 1 Q builds this 
table-from RERUN 
statement .in the 
source program. 
Phase 21 adds DCB numbar 
and uses this table to 
build RONTBL and BSAM 
checkpoint file DCB. 

ftit. MeaningL-if on. 
o R9run every N record 
1 Rerun on END of REEL/UNIT 

2-7 Unused 

IExternal- IwelunusedlDCB numberltlInteger"IChain 
Iname of '0' lof check- Ifor RF.RUNlpointer 
I checkpoint I I IPoint filel file I {contains 
I file I I I I (contains, zeros if no 
I I I I Izeros forlother entry 
I I I I I SORT I for fil~) 
I 'I I I RERUN) I 
L t, I 

I 
I 
I 
I 
I 
I 
I 
.I 

compiler Table Format 343 



Licensed Material - Property of IBM 

~~ 
Sorts data-names and 
procedure-names for the 
SXREF option. 

r------------~---------- I ---, 

I 4 " 2 I 2 I 
I -+-------------------+- ~ 
IPointer tolPointer to CONTROL IPointer to I 
I associated Irecord for lower ICONTROL recorn. I 

Ent~:'LJ:reg!1ill1£Y I DATA record tname on first I for lower name , 
One entry (CONTROL record) I Icompare Ion next compare I 
for each DEF-text element.L-------------~-----------------~-----------------J 
Phases Involved 
Phase-6A-buIids and uses 
thIs-table to reorder 
data-names and procedure-
names alphabetically for 
the SXREP option. 

There is no TIB for this table 
Phase 6A uses the phase 00 routine 
GETALL to get space, but moves 
data in and out of the table by itself. 

CONDIS 
(TIB 14) 

CONTIn 
(TIE 9) 

PurllQ..§.g 
Store DISPLAY literals 
during literal 
optimiza tion. 

'1 

1 Variable I 
~ .. 
I I 

]!l!:!LE!:~g!!~!!£y 
I LitEral I 
I I 

One entry for each 
unique DISPLAY literal. 

Phases In volved 

L _____ __ 

Pha~~ or, under the optimizer 
version of the compiler, 
phase 62 builds this table 
while processing Optimization 
A-text. 
Phase 6 or Phase 62 uses this 
table with CONTBL and LTLTBL 
to eliminate duplicate 
DISPLAY literals. 

J 

gY!.QQg r-------' 
Store each non-DISPLhY 
literal value during 
optimization of literals. 

.§JliD-Egg uen U 
one entry for each 
unique non-DISPLAY 
literal. 

I Variable I 
.. ~\ 
I I 
I Lit eral I 
I I L ______ 'J 

Phases Involved 
fh~:§!L§-or:-iiiider the optimizer 
version of the compiler, 
phase 62 builds this table 
while processing optimization 
A-text. 
Ph~~!L!i_Q.L.J2h~2.§L'§l uses this 
table with CONOIS and LTLTBL 
to eliminate duplicate 
non-DISPLAY literals. 

344 Section 5. Data Areas 



Licensed Baterial - property of IBM 

~BL (Report Writer) 
I 14) Purpose , i i 

tTB 

store information on 
control-names to check 
validity and build 
routines using them. 

1 21 7 7 I 1 2 
, I I I 
In IDuplicate ISave name IFlaglLevel IGN number I 
I Iname (-nnnn) I (-nnnn) Ibytelof thislfor control I 
I lin EBCDIC lin EBCDIC I Icontrollheading I 

Entry Frequency I I I I I I I 
One for each control-name. I I (!) I C!) I ~I I I 

Phases Involved 
Phase 1~ routine RDSCAN 
builds th.is table. 
Phase 1~ routine GNSPRT 
and most other routines 
uSe this table to create 
CTB-ROUT. SAV-ROUT. 
RET-ROUT routines. 

L' __ L' __ ~ ______ ~lL-~~ ____ ~'L-~~'~ ____ ~ __________ ~' 

i 
I 2 , 
IGN number 
Ifor control 
I footing 

, 
I 2 2 Variable 
I I 
I Unused I Size of IControl-name including 
I Ipreviou~!qualifiers. and subscripts 
I lentry ~ (if any) in PO-text form. 
I , , 

I 12) Pgrpose 
store virtual definition 
elements during virtual 
optimization. 

8 

Virtual 
Entry Frequency 
One entry for each 
unique virtual. 

Phases Inyolved 
Ph,se 6 or, under the optimizer 
v~rsion of the compiler. 
phase 62 makes an entry 
when it finds a virtual 
definition during 
Optimization A-text processing. 
Phase § or phase 62 uses tbis table 
witb VIRPTB table to eliminate 
duplicate references to virtuals. 

In PO.,.text form: ® III IBain9. if oD 
0-2 Unused 

Bytgs C2D;t;ents 3 Control footing specified 
0 23 4-6 Unused 
1 05 7 Control heading specified 
2 - (byphen) 

3-6 nnnn @ Size of previous entry = X'0001' 
first entry in tbe table. 

for 

Compiler Table Pormats 345 

I 



Licensed !aterial - Property of IBM 

DATATBL 

DATATBL 

CD 

DBGTBL 
(TIB 13) 

Purpose 
Store information for 
XREF or SXREF processing 

I i 
3 I 33 I 2 

I I I 
IPointer tolExternal name in EBCDIC, I Ascending I 

Entry Freguency IdictionarYldefining card number, and Isource orderl 
One entry (DATA record) lentry for la variable number of refer-Ipointer I 
for each DEF-text element. I data name lencing card numbers I (SIBEF only) I 

Phases Involved 
Phase 6A builds and uses 
this table in producing 
an XBEF or SIREF listing. 

lor PH I I I 
I number • I I 
" " 

i i 1. 
2 I , 13 1 131 

I I I I 
IDescendingloffset in byteslPointer ILengthlPointer I 
Isource or-Ifrom start of Ito cur- lof ex-Ito first I 

Type will be 38 or 3C 
for DATA A-text. 

codelder point-Irecord to loca-Irent IternallOVERPLOil 
I er (SXREF I tion for the I (last) I name I record I 
I only) Inext referenc- IOVERFLOW I I I 
I ling card numberlrecord I I I , . , , 

purpose 
38 or 3C data A-text. 

1 I 
I 

3 

Save elements until end ofl 
phase, when all DeBs have Itype 

a address where 
IBL or BLL 

1 

I BL or BLL 
I number 

been generated and all I I address vill 
I stored 

bel 
addresses areknovn. I ,CD 
~ntry Freguency 
One entry for each BL or 
BLL address elemented 
created. 

Phases Inyolved 
Phase 21 builds this table 
for each 38 or 3C element 
it will be generating. 
Phase 21 uses this table 
to generate all 38 or 3C 
elements at end of phases'. 

Type vill be 38 or 3C code 
for DATA A-text. 

Purpose 
Store information on 
procedure-names referred 
to in DEBUG statements. 

Entry Freguency 
One entry for each 
procedure-name referred 
to by DEBUG. 

Phase§ Inyolyed 
Rhase 4 builds this table 
from PHs in P1-text 
referred to in DEBUG 
statements and from GNs 
from GNeTH in COBMON. 
Phase 4 uses this table 

J , , 

i 
I 2 
I 
I PN number for 
I procedure-name 
I 
I , 

to issue P2-text CALL state
ments to debug .procedures. 

i 

I 
I , 

I 2 
I 
IGH number for debug 
Iprocedure associated I 
Iwith procedure-name 
I 
i 

346 section 5. Data Areas 



:T 
06 ) 

IS 
18) 

There is no TIB for this table. 
Phase 6A uses the phase 00 routine 
GET ALL to get space~ but moves data 
in and out of the table by itself. 

Purpose 
Save newly created 
Debug-text elements. 

Phases Involved 
Phase 35 builds this 
table-and uses it to 
accumulate DEBUG verb text 
uhile processing an input 
verb string. 
Phase 35 deletes this 
table upon completion 
of processing. 

PorE2.2~ 

I 

I 
I 
I Number of 
I bytes 
I following 

Variable 

i I 

IVariable I 
I -f 
I DEBUG I 
I verb string I 
lelement I 
L -I 

Licensed Haterial - Property of IBM 

Variable Store subscript-defining 
string until all 
subscripts in statement 
are collected. 

I Pirst elemen t 
lin string 

Last elementl 
in string I 

Ent~gguen£! 
One entry for current 
string being built. 

Phases Involved 
Phase-q builds-this table 
from-pi-text of subscripted 
data-name. 
Phase 4 uses this table 
with STRING table to issue 
P2-text subscript strings. 

3L (Report Writer) 
17) PurpQ~ 

Store information on 
detail report group for 
processing SUM ••• UPON 
clauses and generating 
detail-names. 

ID!.ll:! Preguenc! 
One entry for each 
detail report group. 

Phases In vol ved 
Phase12 builds this 
table from scan of 
01-level statements. 
Phase 11 uses this table 
to process SUM ••• UPON 
clauses, and to generate 
USH-ROUT routine. 
Phase 1B uses this table 
to generate detail-names. 

I -T~--------~--~.r------------------- -, 
I 30 I 1 I 2 1 I 2 I 
I---- I I -+- .~ 
IDetail report I IGN numberl I Displacement of I 
I group data-namel lfor this lentry in RWRTBL for I 
I I ldetail I Ireport-name associatedl 
I I 1 report 1(";\ I with this deta il qroupl 
I G)1@Igroup 1011 
• I I . ,. " J 

. , 
I 2 I 
I ~ 
IGN number for OSH-ROOTI L ___________________ ___ 

compiler Table Formats 347 



I 

Licensed !aterial - Property of IBM 

Left-justified, padded with binary 
zeros in low-order bytes. 

Code for c'orrela ting SOURCE and 
SUM ••• UPON clauses • 

Length of preceding detail report 
group data-name. 

Code 
00- .!1~£!!in.9: 

This entry was made as the result of 
a detail report group encountered. 

DICOT 
(TIB 20) 

(2) 

2 

3 

4-7 

DRPLTBL 
(TIB 2S) 

FF This entry was made when an UPON 
clause was encountered. (This 
code is changed to 00 when a 
detail report group is 
encountered for the nata-name.) 

00 . First en try in the table is a dummy. 

Put:pos2 
Store starting address 
of each section in the 
dictionary. 

Entry~reque!!.s.::y 
One entry for each 
dictionary section. 

Phases Involved 

I • ~-, 

1.1 3 J 8 1 
.. , I ~ 

ICDIDisPlacement 101 
I lof section inl I 
I I dictionary I 1 

.J 

Phases 1B and-22 build this 
table-aS-they-build the 
dictionary. 
Pha~2-1]L-1lL_l1L_12L_~!!.g_lQ 
use this table to find 
dictionary sections. 

MeaningL-If~!! 
Section is not in storage. 
Section is now in storage 

Address on external device wher.e section 
has been spilled. 

In interlude before 
phase 30 (21 or 25) if 
both bits 1 and 2 are on, 
the 3 bit is set on. 
section has been spilled 
(note: 0 or 1 bit is on) 
This bit is set on and used 
only during phase 30 processing. 
A section, which has been 
spilled and read back into 
storage, has been modified and 
the copy on the external device 
is obsolete. 
Not used. 

purpose r----,~-------------------r--------------
Store information for 
addressing BL, BLL, SBL, 
SBS. or BDISP address 
increment items. 

Entn Frequen!;;y 
One entry for each of 
the above items if it is 
not assigned a permanent 
register. 

PhaselLInyolv~g 
Phase 62 builds this table 
during Procedure A-text 
processing. 
Phase 63 uses this table. 

I 
I 
10 
I 
I 1 
I 
I 

1 bit I 
I 

Load instruction 10 
required 1 1 
No load instructionl 
required I 

I 

1 bit 

Register 
Register 

1 

I , 
141 
151 

I 
I 

348 Section S. Data Areas 



DRPTBL 
(TIB 24) 

Cod9 -aD 
LlO 
20 
10 
08 
(cod~ 

DTAB 
(TIS 04) 

Bit 0'--
1 
2 
3 
II 

Licensed Material - Property of IBM 

If a load instruction is 
to be generated, it generates 
the instruction and inserts 
the proper temporary 
register to address the 
item. If no load instruction 
is to be generated, it uses 
the proper temporary register 
as the base in the instruction. 

.fY!:£~ 
optimize the use of 
temporary registers 
14 and 15. 

Entry Freguency 
One entry for each BL, 
BLL, SSL, SBS, or BDISP 
address increment if it 
is not assigned a 
permanent register and 
if a temporary register 
is unavailable. 

Pha§~_Inyolveg 

r--------~-----------, 
I 1 1. I . ',' lItem typelItem number, 
I I I 
I (2) I I 
L-- . ' _.I 

Phase 62 builds this table 
and keeps the entries until 
a decision is made as to 
which temporary register, 111 or 
15, should be used. 

~ni.!!g 
BL 
BLL 
SIlL 
SBS 
BDISP address increm~nt 

values are in hexadecimal) 

g.!!!:l!.Q~ r- , , 
Each entry describes a 
USE FOR DERUGGING (UFD) 
operand. 

Pha~~In vOl.!.5Hl 
Phase 30 builds this 
table-and makes entries 
for all the PN 
definitions in the 
proqiam after the debug 
declaratives if the 
BGALLPRC switch is on. 
Phase 35 deletes this 
table upon completion 
of processing. 

Me .sni!lg 
File namf.! 
Procedure name 
CD name 
Identifier 

I 1 I 1 1 2 I 
r--- I i 
IswitchlPN IPrioritYIPN number I 
I r:\ IReferencelnumber Ifor USE I 
I 0 lelement I for PN I I 
L-.:-----L- I 1 

I • • --, 
I 3 I Variahlel I .. +- I of 
IDICTPRT orlAlpha I I 
I PN <1)mber I Literal I I 
I 2 I I I 
L --4- L -.I 

All references of identifier 

I~ The PN number is preceeded by FF • 

compiler Table Formats 3119 



Licensed !aterial - PrQpeJ;ty of .IBM 

ENVTBL 
(TIB 3) Pur .l2Q§g 

Store file information 
from Environment Division 
to be merged with Data 
Division information to 
form Data Ie-text. 

Entry Freguencl 
One entry for each file. 

Phases Involved 
Phase 10 builds this 
table from Environm·ent 
Division. 
Phase 10 uses this table 
to merqe with Data 
Division information. 

350 Section 5. Data Areas 

• 1 -r-----r---~-----, 

I 3 I 8 / 2 , 1 I 1 I .. -t t---'-_t_ I ~ 
ISource cardlddname portion of IFlag IFlag IBufferl 
Inumber I system-name of file IfieldlfiE"ld loffset! 
t 1 padd·3d with blanks, I Ifor I 1 
I ,if necessary I CDI VSAM I I 
I I I !(2) I I l..---___ --4 

.L .1.--___ .1 

r- i ~----, 

I 2 I I 1 I 
l-----f_ I ~ 
lPointer tol"Integer" from RESERVE IUnused/ 
lentryin IAREAclause I I 
/ PIOTBL I (contains zeros if no I I 
I ~ reserve area specified) I / 
L ~ 

r---------~------r- -r------r----, 
/ 2 /21 2 11 /2 I 
l------+---_t_ I -+---~ 
INumber of IUnusedlPointer tolNumber IFlag / 
,TRACK LIMITI lentry in lassignedlfieldl 
Itracks I ICKPTBL Ito SAME I I 
1 I' IAREA If.:'\ I 
I I 1 CD Iclause I ~ I 
l..--- -'-___ --'-- ' '.J 

.----T I', , 
I 1 I I 5 I 1 I 2 I 
1-=-+--------+ +----+__ -f 
1~INumber assignedlunused/ct of IDisp. ofl 1 
1 Ito SAME RECORD I lIDs for lIDs in IUnusedl 
I IAREA clause I I file IINDTBL I I 
, I .1.-._ .L-_______ L--___ ~ 

,.----- ~, , 
I 1 I 2 I 11 
I -+------t--f 
IReservedlCt of IUnusedlCtl 

IPasswordl I I 
Ifor ALT I j I 

® I I I I 
L-~ ____ ~' __ ~ I L--J 

,.----- 1 --r-- I ~ -, 

I 31 I 4 I 4 I 4 I 4 I 
I I I I +------1 
I File-name ITRACKINQ[HNAL IACTUn I RECORD I 
lin FD entrYIAREA IKEY and IKEY and IKEY and I 
I lsize lqualifierslqualifierslqualifiersl 

~ ! ~~® ! ~ ! ® ~ 
a ....,.. ~----

I 4 I 4 4 14 
I I ---+ +---
IPointer to data-name IFILE-STATUS lPASSWORD IRELATI 
IqUalif~· rs from APPLYI and qualifiersl and qualifiersl K.EY an 
loption 5 I I Iguali-
I (REORG- RITERIA) ® I CD I ® I tiers 

--L..o- L--__ 



0) 

1° 

!lit tl.eanin~ 
a 1 = RANDOM ACCESS 

1-3 organization 
000 Not specified 
001 INDEXED 
010 DIRECT '1'1 ' 
011 DIRECT 'D I 
100 RELATIVR 

4-6 Unused 
7 1 = Integer specified in 

RESERVE ALTERNATE 
AREA field 

0 = No clause specified 
8 'OPTIONAL' qualifier specified 

in SELECT 
9 1 = SAME AREA specified 

10 Unused 
11 SAME RECORD AREA specified 
12 Unused 
13 1 CKPTBL pointer appears 

in this entry 
14 PIOTRL po in ter appears 

in this entry 
15 Word • ALTERNATE' specified 

in RESERVE clause 

Displacement for the first of two 
allowable entries for a file-name in 
table. 

f!it !1eani !!.9. 
TRACK-AREA 

0-1 00 Not specified 
01 = Data-n arne 
10 = In teger 

2 1 RELATIVE KEY 
3 1 NOMINAL KEY 
II 1 ACTUAL KEY 
5 1 RECORD KEY 
6 1 = WRITE ONLY 

I 

I 

I 

(0 

0 

0) 

Licensed Material - Property of IBM 

7 
8 
9-14 

15 

Bits 
0=3"-

4 
5 
6 
7 

lly:!:.§§ 
0-1 

2-3 

f!it 
') 

1 

2-4 
2 
'3 
4 
5 
n 
7 

FItE STATUS claus~ sPscified 
1 = WRITE VERIFY 
Unuse~ {10=RES~RVF jnteqer 
invalid} (12 mul+iple fil;;,s) 
1 = RECORD OVERFLOW 

Conteni§ 
Temporary storage for 

nhases 1~ and 1B 
CORE-INDEX 
1 = REORG-CRITERIA (APPI.Y) 
ASCII 
Unused 

Cont.ents 
i;llgth -'Of nam'~' (s) in byt2S 

(or lit?ral if TRACK AREA 
size is an intHQOr) 

Displacement of name in ONMTUL 

l1gg.nin9. 
1 ADDRESSED SEQUENTIAL 
1 = Organization parameter 

omitted in system-name 
OR~ANIZATION clause 
1 RELATIVE 

.1 INDEXF.D 
1 SEQ UENTJ J\ L 
1 Access ~ode is Dynamic 
ALTERNATE RECODD ~F.Y specified 
, Password data name with 

RECORD KEY clause. 

8Th is field is moved to FST E X'l' sO': t-ur arEa 
and is used there to contain LIN~GE 
information. It will not contain LINAGE 
information in the F.NV~BL. and if used 
for any other purpose will be oV0rlaid by 
FSTE leT. 

Compiler TabJe Pormats 351 



Licensed Haterial - Property of IBM 

ERRTBL 
(TI B 10) 

FDTAB 
(TIB 28) 

Purpose 
Store E-te.xt to separate 
it from Data A-text for 
phase 7. 

Ent1:Y-..E~quen£!. 
One entry for each 
message to be 
generated. 

Phases Involved 

i 
8 I 1 

I 
IE-text ,00 
Ifor basicl 
Imessage I 
L..-- I 

i I 

I 1 IVariable , I 
Ic I First 
I ,message 
I I parameter 
I 

i , , ... 
I 1 I 1 , Variable I 
+--+-+-- ~ 
100 Ic ILast I 
I I Imessage I 
I I Iparameter I 

• 

Phasg-f or, under the optimizer 
version of the compiler, 
phase 64 builds this table 
from E-text interspersed 
with Data A-text. 
Ph£§~-1Q uses this table 
to generate error 
messages. 

Pur:QQg 
Pass record description 
informa tion from phase 
22 to 21. 

Ent£Y.J:~guen£:i 
One entry for each FD in 
source program. 

Phas~lL In volyed 

~--~ -.----~------, 

2 2111 2111 3 I 
.. I I -t---lll- --+ I ~ 
IMaximuml Minimuml Fir3t ,Flag lMaximumlBufferlDictionarYI 
Irecord Irecord Ibase Ibyte llabel loffsetlpointer I 
Ilength Ilength Ilocatorl f.i\ Irecord I I I 
I , I number I ~ I size I I CD I 
L..-- • __ ~ --I.-___ --'---.J 

Phase 22 builds from record 
descriptions in ATF-text. Phase 21 
uses to generate DCBs, DECBs, 
and buffers 

(2) Bits 
'0-3-

4 

Use 
NUmber of base locators 
OD02 switch: ON, if any 
record descriptions 
contained more than one 
aDO clause. 

6 000 object switch: ON. if any 
record description contained 
the object of an ODD clause~ 

FNTBL 
(TIB 10) 

7 SAME RECORE AREA for this SD 

5 ODD switch: ON, if any record 
description contained an ODO 
clause. 

Used by phase 21 to qet dictionary 
attributes when LATRNM returns a 
duplicate code. 

PurpQ§g r'---------T-· i 
store Environment Divisionl 2 I 2 2 2 1 2 2 
informa tion about a file l-I------+I------+-,--+-----fl--------+----
for Procedure Division IPointer tolPointer tolUnusedlGN numberlGN number IGN numb 
processing. IPIOTBL IGVNI1TBL Ifor lforheaderlfortra 

Entry Freguen£:i 
One entry for each file. 

Phases Involved 
Phase~o-buIlds this 
table from ENVTBL and 
Data Division. 
Phase 1B uses this table 
in pr~edure Division 
proce ssing. 

lentry I ISTANDARD Ilabels Ilabels 
I I !ERROR I I 

.J.- .-' ___ -L. ____ ,--L-- --'--___ _ 

r---- ~------ri-ri----------' 

I 2 2 I 1 111 Variable 
I I --+-+ f 
IGN numberlGN numberlSwitch,clFile-namel 
Ifor BOV Ifor BOV Ib~ I 'in EBCDICI 
llabels Ila bels 1 \.!) " I 
L-_______ ..... _, t , , J 

352 Section 5. Data Areas 



Bits 0-
t 
2 
3 
4 
5 
6-7 

GCNTBL 
(TIB 24) 

Meaning. if on 
ACCESS RUDO! 
Mass storage file 
LABEL RECORDS ARE STANDARD 
LABEL RECORDS ARE OMITTED 
B~FORE (in USE statement) 
AFTER (in USE statement) 
Unused 

Purpo~ 

Store card numbers for 
statements that contain 
NEXT GflOUP or LINE 
clauses that may be in 
error; also, store card 
numbers for TYPE IS PAGE 
HEADING or TYPE IS PAGE 
FOOTING groups that may 
be in error. 

~ Freguen£:! 
One entry for each clause 
in error. 

Phases Inyolved 
Phase 12 builds and uses. 
It makes an entry for 
each clause that con
flicts with the PAGE 
LIMIT clause. Entries 
are saved until the end 
of the report, when it 
can be established whether 
these statements are ac
tually in error, as sig
nalled by the presence of 
at least one relative LINE 
or relative NEXT GROOP 
cla'use. 

" I I 3 I 3 I 
t-I =--+I-----,~ 
I CD I Card Num ber I 
" ----' 

These three bytes will contain 
the address of one of the follow
ing messages: 

ftSG94, for a NEXT GROUP clause error 
ftSG119, for a LINE clause error 
MSG165, for an illegal PAGE HEADING 
MSG166, for an illegal PAGE FOOTING 

GNTABL 
(TIB 8) purpose 

Determine which GNs 
require an address 
constant cell in the PGT. 

!!lUL.freguen£! 
One entry for each GN 
requiring an address 
constant cell in the PGT. 

Ehase.§ Inyolved 
Ehase61 builds this table 
from GNUREF elements in 
Optimization A-text. 

r-----, 
I 2 I 
J-I 
I GN numberl 
\..;.'-----' 

Licensed Material - property of IBM 

Compiler Table Formats 353 



Licensed Material - Property of IBM 

GNCALTBL 
(TIB 16) 

GNFWDFlTB 
(TI B 21) 

GNLABTBL 
(TI B 19) 

Phase 63 uses this table to 
determine whether a,GN 
requires an add.ress 
constant cAll. 
Phase 64. uses this table when 
deteriiilIii ng the address in 
the PGT of the GN cell to be 
used in an instruction. 

PU.r12Q!a~ r------------~------------_, 
store GN numbers 
for Q-Iloutines. 

En t ry.J:: re 9.!HUl£Y 
One entry for each 
GN number. 

Phases Involved 
Phase 51 builds this table 
and-Uses it to generate 
calls to the Q-routines 
after return f.rom the 
CALL statement. 

Purpo~ 
Optimize size of a 
procedure hlock. 

E.n11:Y.J::];:e q u e!l.£Y 
One entry for each 
forward reference to a 

I 2 I 
~ ~ 
I Count-1 of First GN I 
I Q-Routines number for I 
I to call Q-Routine call I 
'---- ~ 

'~I-----------'-----------' 
I 2 I 
.------------4-----------f 
I GN number Counter I 

~ 

GN within a Procedure Block. 

Phg.ses_Invol.!.f!.g 
ghalaE-2l builds this table 
from Procedure A-text. 
Phase 62 uses this table 
to-Keep-count of the 
number of U~byte load 
instructions of th~ 
Procedure Block which 
might be needed if a new 
block is begun hefore the 
GN is defined. 

.furpQ~ 
Determine inter-block 
and intra-block 
references. 

Rntu_Eregue!!.£y 
One ent.ry for each r.N. 

Phases Involved 
Phase62enters in th is 
table-t.he block number 
for each GN as it rp.ads 
Procedure A-text. 

, 
I .. 
I 
I 
I 
L 

Phg~-2d extracts the block 
number in which a GN is 
defined each time a GN is 
referr~d to. 

, 
1 I 

of 
Block I 
numher for I 
GN I .. 

354 Section 5. Data Areas 



ITBL 
27) 

8) 

~K 

10) 

Purpose 
Determine displacements 
from the beginning of 
the block for GN 
definitions. 

E..!!1n Freguenci 
One entry for each GN. 

Phase s In vol ved 
Phase 63 builds this table 
during Procedure A-text 
processing. 

I 
I 12 bits 

• I Displacemen t 
I from beginning 
I of block for GN , 

Licensed Material - Property of IBM 

Phase 64 uses this table to 
insert the displacement 
in generated instructions 
which address the GN. 

Purpose 
create and store a list 
of optimized GN numbers. 

Entry Freguency 
One entry for each GN 
number. 

Phases Involved 
Phase 6 builds this table 
from GNCTR and PN and GN 
equate strings. 
Phase 6 uses this table 

, 
2 I 

I 
INumber relativel 
Ito beginning ofl 
IPN cells I 
• 

to optimize procedure-names 
and process Procedure 
A-text and Listing A-text. 

Purpose 
count length of group 
item while subordinate 
items are being 
processed. 

Entry Freguency 
one entry for each group 
item being currently 
processed. 

Phases Inyolved 
jhase 2~ builds this 
table from dictionary. 
Phase 2l uses this table 
to determine group item 
length. 

• • 
4 I 2 I 2 3 

I I 
IFlag IOD2TBL displacement 
Ibyteslentry for OCCURS 

of IMaximum ISource 
Inumber of Icard 
,occurrences Inumber 
I (0, if none) I 

I I DEPENDING ON object 
I Iwithin group item 
I CD I (0, if none) . , I I 

• I 

, I 

I 3 3 4 I 
I r 
IPointer to dictionary I Pointer tolMaximum lengthl 
lentry for REDEFINES IdictionarYlof variable I 
10bject within group lentry for Igroup I 
I item (0, if none) I item I I 

.' 1« , 

• 
113 
I 
ILevel IAddress 
Inumberlparameters , , 

• 
I 1 1 I 
I I 
I Number of index-namesl Number of keys I 

(idk) I (0, if none) I (0, if none) I 
, , I 

Compiler Table Formats 355 



Licensed Material - Property of IBM 

CD Bits 
--0 

1 

2 

3 
4 

5 

6 
7 

8-11 

12-13 

14 

15-31 

. , 
I 2 2 I 2 
I I 
,Displacement of entrYIDisplacement of entrYIDisplacement 
Ifor item in INDKEY Ifor item in SRCHKY lentry for VAL 
Itable (0, if none) ,table (0, if none) Iclause litera 
, I I in V ALGRP tab 
, I ,if used 
I I I (0, if not) , , , 

• I 

I 2 1 I 
, , I 
I Displacement of I Flag I 
lentry for VALUE Ibytel 
Iclause literal in I (:;\ 
IVALTRU table, if I~ 
lused (0, if not) I 

Meaning 
1 = Group occurs more than once; 

alignment required. 

f2\ Bits 
\.::..J O-

1 = Group contains object of 
OCCURS DEPENDING ON 

= SYNC clause in item under 
group item 

1 = SYNC clause in group item 
1 = VALUE clause in group 

item 
1 = Condition-name under group 

item 
1 = Group is or is in a label record 
1 = Item itself contains an 

OCCURS ••• DEPENDING ON clause 
Hinor code (see "LD ENTRY" in 

"Section 5. Data Areas) 
Dictionary Entry Formats") .. 

Number of subscripts required 
00 = none 
01 1 
10 = 2 
10 = 2 
11 = 3 

1 = Item contains an OCCURS or 
OCCURS ••• DEPENDING ON clause 

Length of group or VLC 

1-3 
4-7 

Contents 
1= Master of an OCCURS ••• 
DEPENDING ON clause 
Unused 
Code 
100'0 
1111 

Meaning 
Justified 
Usage other than displ 

356 Section 5. Data Areas 

.~ 



GVF'NTBL 
(TIB 4) 

GVNKTBL 
(TIB 3) 

Licensed Material - property of· IBH 

gyrpo.§f I 
I 2 
.-----------------

"1 

I 
~ 

store displacement to 
entries i~ FNTBL for VSAM 
files referred to in USE 
AFTER STANDARD 
ERROR/EXCEPTION with 
GIVING option. 

I Displacement in FNTBLI L-______ ~~ ___________ ~ 

Entry preguencl 
One entry for each file-name 
mentioned in USF. Declarative. 

Phases Inyolve!! 
Phase 1B builds the table 
USIng the FNTBL. 
Phase 1B uses the table to 
IOC~the correct FNTBL 
for each fileneme mentioned 
in the Declarative and 
insert into FNTBL the 
displacement into the 
GVNMTBL of the fully 
qualified dataname in the 
GIVING option. 

Purpose i i 
11Variable 11 

I I I 
Store the data-name 
specified in the GIVING 
option of the STANDARD 
ERROR/EXCEPTION PROCEDURE 
Declarative for VSAM 
files. 

IOOldata-namelNumber of bytes in precedin g fieldl 

!!!1~reguen£I 
One entry for each 
Declarative. If the 
data-name is qualified 
the entry contains all of 
its qualifiers. 

Phases Involved 
Phase-1~ builds the table 
from the entries in the 
CURBCD and CURN data areas 

For qualified data-n.ames the following 
fields are added. 

and for qualified data names 
from the QLTABL table. 
Phase-1~ uses the table. 

compile!: Table ForlRats357 



Licensed Material - property of IBM 

HASH 
(TIB 30) 

INDTBL 
(TIB 4) 

Flag 
].yte 

INDKEY 
(TIB 31) 

PurEQ~ 
Store dictionary pointer 
for latest hash value. 

Entrv2:~quen£l 
One entry for each hash 
value. The table is 521 
bytes long, allowing for 
possible hash val ues. 

Phases Involved 

r------, 
I 3 I 
I- .. 
I Pictionary) 
I poin ter or I 
Izeros I 
L-. ____ -' 

177 

Phase 10 builds this table. 
Phas~s lB, 22L-~25L_£gQ_J 
use this table. 

PurpQg r 
I 4 4 
l- I 

1 
I 

Store information about 
ALTERNATE KEYS and their 
passwords and/or 
duplicate status; used 
to construct IC-text 
elements for alternate 
keys. 

IRECORDIPASSWORDIFLAG 

IK(0 I 
0 

I 
J 4 I J 
I 

EntrY2:reg~£Y I 1 

One entry for each 
ALTERNATE KEY clause. 
Phases Involved 
Phase 10builds INDTBL, 
thendeletes it after 
Data IC-text is passed. 

I 3 I 
1-.--------.. 
IGenerated Sourcel 
I card number 

RECORD KEY is a two-byte length 
of the name, followed by a 
two-byte displacement of the name 
in QNMTBL. PASSWORD is a 
two-byte length of the namei 
followed by a t wo-b yte 
displacement of the name in 
QNMTBL. The PASSWORD field is 
filled with zeros if n~ PASSWORD 
is specified. 

Meaning 
1 if another entry for the 
same file follows. 
1 if PASSWORD is specified 
for this key. 
1 if WITH DUPLICATES is 
specified. 

Purpo~ I 

0 

, 
I ., 
I 
I 
I 
.I 

Store OCCURS DEPENDING 
ON information for use 
in table handling. 

11 3 3 I 

Entry F~g£y 
One entry for each item 
that has an OCCURS 
clause and an INDEXED 
BY clause. 

I -+- I 1 
nJDictionarYIFlaglDictionary pointer INumber of 

I Ipointer tolbytelto object of OCCURS lindex-names 
I Isubjec~fl (.;\ lor maximum number I 
I Hable 0 10 lof occurrences C2:Q) I 
L--L- I ~. ______ _ 

358 Section 5. Data Areas 

1 

1 .. 
I 
I 
I 
I 
.J 



Phases Involved 
Phase 22 builds this 
table~rom Data IC-text 
data-names with OCCURS 
and INDEXED BY clauses. 
Phase 3 uses this table 
to process SEARCH and 
SEARCH ALL verbs. 

3 

I Dictionary 
Ipointer to 
I first ~d~X
I name \2) 

Licensed Material - Property of IBM 

Contents of dictionary pointer: .f!H 
0-2 

3 

Meani!!!!: 

Bits 
-0='1 

2-14 
15-23 

2TBL 
B 17) 

ITB 
B 34) 

contents 
Zeros 
Dictionary section 
Displacement in section 4 

5 

6 
7 

Unused 
1 Next th ree bytes conta in 

dictionary pointer 
o Next three bytes contain 

maximum number of occurrences 
Unused 
o Object of aCCURS ••• DEPENDING ON 

undefined 
No error found in OCCURS ••• 
DEPENDING ON object 

Un used 
1 Error detected in key processing 
o = No error found 

CD Field contains zeros if bit 5 in preceding 
field is set to 1. 

PU!;£Qm:l 
Store information on VSAM 
files for ORGANIZATION 
IS INDEXED. 

EntrY_fregue!l£Y 
One entry for each PD 
entry for VSAM files with 
ORGANIZATION IS INDEXED. 

Phases Involved 
Phase 21 builds this table 
from Data IC-text. 
Phase-1Q uses the table to 
build P1-text. 

r ---r--
I 3 I 
I- I 
IDictiona~pointerlidk 
lfor key ~ Ifor 
J • 

RECORD KEY, ALTERNATE RECORD KEY 
or RELATIVE KEY. 

Purpose 
Save all index-names 
associated with a data 
item. 

Entry Frequency 
One entry for each 
index-name associated with 
the data item currently 
being processed. 

I 1 .. 
104 
L 

• , 
111 Variable 
I I 

(hex) I cl Index-name , I 

1 

3 I' I 
-+--------1 

parameterslLevel numberl 
leey C) I I 
__ -"'-_-L-_______ .l 

, 
I 
I 

in EBCDIC I 

Compiler Table Formats 359 



Licensed Material - Property of IBM 

KEYTAB 
(TIB 26) 

Bits 
O=S 

6 
7 

KEITBL 
(TIB 20) 

Phases In vol·ved 
Phase 10 builds this table 
from level number entries 
in the source program Data 
Division. 
Phase 10 uses this table 
to append index-names 
to the Data IC-text LD 
entry for the data item. 

Purpose 
Save all key-names 
associated with a data 
item. 

Entry Frequenc'y 
One entry for each 
key-name associated 
with the data-item 
currently being 
processed. 

Pha sa s In vol ved 
Phase 10 builds from 
level-number entries 
in source program Data 
Division. 
Phase 10 uses this table 
to append key-name to 
Data IC-text LD entry 
for data item. 

Meaninq.&.-iL2!! 
None; contains zeros 
Descend ing key 
Ascending key 

Purpo§~ 
Used in SEARCH verb pro
cessing to check whether 
.keys in WHEN clause are 
valid for table in which 
binary search is being 
made. 

Entry Frequency 
,One entry for each key 
in SEARCH ALL statement 
currently being processed. 

Phases Involved 
Phase 4 builds this table 
while-Processing a SEARCH 
ALL statement. 
Phase 4 uses this table 
to make sure SEARCH ALL 
statement has correct 
keys for tabla and that 
all preceding keys are 
tested if the key is 
tested. 

360 Section 5. Data Areas 

I " , 
1 1 111 variable 1 
~+I-Ir-----~'-------;J 
IFlaglclKey-name in EBCDICI 
Ib03el I 4 
1 1 1 I I 
I I I . ____ --' 

rl----------------------------------~___, 
I 3 I 1 1 
~ ---+-:=-f 
I Addressing parameters fO~1item (IDK) 101 
Ifrom dictionary entry ~ II L ____ 4_--J 



!!;u.[ 
0-3 

U-15 
1€-23 

LABTBL 

d 
k 

Meaning 
Type of BL con~aining base 
address of area 

('000 BL 
0001 BLL 
0100 SBL 

Displacement from base address 
BL number 

Licensed Material - property of IBM 

Initially 0, but set to 1 whenever a 
HHEN condition for KEY is found during 
processing of this SEAFCH ALL statement. 

(TIE 131 R.ur.EQse I I , 

LTLTBL 
(TIB Ll) 

MASTODO 
('T'IB 13) 

Save label-record data
names refe~red to in a 
Data IC-text FD entry. 

I 2 111 Variable I 
\------+--+-------------------------/ 
IUnusedlclLABEL RECOPD data-name in EBCDIC I 

~ n t .[1.-1: re 9:lliill!<.Y 
One entry for each LABEL 
RECORD data-name referred 
to in the Data IC-text FD 
entry currently being 
processed. 

L-_____ ~ _____ _ 

Phases Involved 
Phase~o-builds this table 
from-Data IC-text FD entries. 
Phase 20 uses this table 
to-aIfferentiate label 
records from nonlabel 
records in processing 
Data IC-text LD entries. 

Pur£Q§~ I 

I 2 

J 

-, 
1 contains pointers to 

CONTBL and CONDIS tables 
during optimization of 
li+.erals. 

\--------------
IDisplacement from start 
Ifor literal 

-------/ 
of appropriate table of entrYI 

1 L ______________________________________ _ 
J 

EngLEf.§gy.§!!.9Y 
One entry for each 
reference to a literal. 

Phase s In vol ved 
Rhase 6or;lliider t he optimizer 
version of the compiler, 
phase 62 builds this. table 
while building CONDIS and CONTBL. 
~h~~_§ or, under the optimizer 
version of the compiler, 
phase 64 uses this table 
with CONDIS and CONTBL 
to. eliminate duplicate 
DISPLAY and non-DISPLAY 
literal s. 

~!!J;:EQ.2~ 
Identify masters of 
OCCURS ••• DEPENDING ON 
clause if SYMDMP or TEST 
is specified. 

r-------- --, 
131 
~----------~I 
I Dictionary pointer for I 
I master of an ODO I 
L 

Compiler Table Formats 361 



Licensed Material - Property of IBM 

f!..!!.if:Lf.£§g.Y§!l£.Y 
One entry for each master of an 
OCCURS ... DEPENDING ON clause. 

Phases Involved 
Pha;e22builds this table 
as-it-encounters OCCURS ... 
DEPENDING ON clauses. 
Phase 25 uses this table 
to-identify master of 
OCCURS ... DEPENDING ON clauses 
for the DATATAB table. 

NPTTBL (Report Writer) 
(~IB 18) £gr£22§ r------r--r 

OBJSUB 
err B '5) 

Store N.nnnn names that 
contain number of lines 
a particular report 
group occupies. 

£!ni!.LEf:.§gY.§!l£Y 

I 1 I 11 6 I 
1-----+-+---------11 
123 (hex) I071Name in EBCDIC, 
~ __ ~ __ ~___ J 

One entry for each report 
group that contains PLUS 
clause. This table is cleared 
at the end of each RD. 

Phases Involved 
Phase-'2-builds from 
relative line clauses. 
Rt~§§_11 uses this table 
to generate Data IC-text 
LD entries at the end 
of the RD. 

£.YL:I>2§S 
Relate files and CD 
entries, to obiects and 
subjects of OCCURS ... 
DEPFNDING ON clauses. 
It is used to build the 
QFI LE table. 

~!l.trY1reguen£y 

r i i , 

, 2 I 2 , 2 I 2 1 
I- I I. I ~ I DCB or I CDI CDI X' FFFF' I 
ICD I I I I 
INumberl I 1 I 
L .L.- I --' 

One entry for each fil"! or CD 
entry whose record descriptions 
contain at least one object 
and/or subject of an OCCURS ••. 
DEPENDI NG ON clause. 

Phases Involved 
Phase22-builds and uses this 
tableto build the QFILE table. 

Wher. present, this field contains the 
OD2TBL table displacement if the field 
refors to the object of an 000 clause, 
or :he GN number of the subject if the 
field refers to the subject of an 000 
clause. If the field contains a GN 
number, the high-order bit is ON. 

362 Section 5. Data Areas 



C:TBL 
IB 2) 

o 

)OTBL 
~I B 14) 

Licensed Material - property of IBM 

Purpose ... ~------------, 

store information about 
items in OCCURS and 
OCCURS ••• DEPENDING ON 
clauses if SYMDMP or TEST 
is specified and program 
contains an OCCURS or 
OCCURS ••• DEPENDING ON 
clause. 

I 3 ,2 , 
I- I ., 
IDictionary pointer ,Maximum number ~I 
Ifor subject of clauselof occurrences ~, 

----~~------------------~ 

--.,. --, 
I 2 I 2 I 
I I , 

EntrY-freguency I Number of 
Ito next 

byteslODO ,Reserved for , 
One entry for each. 
subject of an OCCURS 
or of an OCCURS ••• 
DEPENDING ON clause. 

Phases Involved 
Phase 22 builds this 
table as it encounters 
an OCCURS or an OCCURS ••• 
DEPENDING ON clause. 
Phase 25 uses this table 
and the-QRTN and QITBL 
tables to build the 
ODOTBL table. The ODOTBL 
table is then used 
to fill in the OBODOTAB 
pointers in this table. 

I occurrence 

The field contains either the number of 
occurrences for an OCCURS clause or the 
maximum number' of occurrences for an 
OCCURS ••• DEPENDING ON clause. 

If the subject of the. clause is a 
variable-length group, the field 
contains its VLC number. 

If this byte contains 0, the entry is 
for an OCCURS clause; if it contains 1, 
the entry is for an OCCURS ••• DEPENDING 
ON clause. 

Purpo·se 

(;\,switChIOBODOTAB pointe~orl 
~! ~ ~Object of ODO ~ ~ 

The field is present only when the 
entry is for an OCCURS ••• DEPENDING ON 
clause. Phase 22 fills the field with 
zeros. Phase 25 enters the OBODOTAB 
pointer; then the contents of the field 
are as follolis: 

Bits 
o-a 
9-15 

contents 
Relative block number within the 
OBODOTAB table 
Displacement in fullwords within 
the block 

---, 
Determine which entries I 3 I 2 I 2 1 
in the dictionary are 1-1------------+1- I 
objects of OCCURS... I Dictionary ,Displacement 10BODOTAB 
DEPENDING ON clauses and 1pointer for Iwithin OCCTBL IPointer for 
therefore must be entered lobject of 000 Ifor OBODOTAB lobject of 
in the OBODOTAB table if I I pointer 1000 

-t 
I 
t 
I 
1 

SYMDl'lP or TEST is speci- L' --------------.-------.------',----------..1 
fied and the program contains 
an OCCORS ••• DEPENDING ON 
clause. 

Entry Freguen£l: 
One entry for each 
OCCURS ••• DEPENDING ON 
clause. 

compiler Table Formats 363 



Licensed Material - Property of IBM 

OD2TBL 
(TIB 9) 

OFLOTBL 
(2) 

PPMTBL 
(TIB 12) 

Phase s In vol ved 
Phase 25 builds this table 
using the OCCTBL, QRTN, 
and QIT BL tabl es • 
ghase 25 uses this table 
to build the OBODOTAB 
table and to fill in the 
OBODOTAB pointers for objects 
of OCCURS ••• DEPENDING ON 
clauses in the OCCTBL table. 

Purpo2~ 
Store objects of OCCURS 
DEPENDING ON clauses and 
their qualifiers for 
Q-Routine generation • 

. Entry .Frequency 
One entry for each OCCURS 
DEPENDING ON clause. 

Pha se s In vol ved 
Pha§e 1Q enters EBCDIC 
names from OCCURS 
DEPENDING ON clauses. 
Phase 22 uses this table 
to generate Q-Routines. 

variable 

qualifierll001 
I I 
I I 

~pose ~ T---.,-----, 
Store referencing card 3 I 3 3 3 I 1 I 3 I 
numbers when the DATA'I'BL I I I I t , ~ 
table entry is full. nsedIReferenc-IReferenc-IReferenc-IRBfer~nc-IOff-IPoint-I 
in processing for the ling card ling card ling card ling card I~ I~rto I 
SXBEP or the XREF option Inumber Inumber lnumber Inumber I~ Ipre- I 

I I I I I I ceil ill g I 
Entry Frequency 
One entry for each refer
encing card number which 
cannot be stored in the 
DATATBL table entry for 
the data-name or the 
proced u re- nam e. 

Phases In volved 
Phase6Abuilds and uses 
this table to store 
referencing card numbers 
for the SXREF or the XREF 
option. 

Purpose 
Store procedure-names and 
VNs to be equated in 
PERFORM statements. 

Entll-Erequency 
One entry for each 
delimiting 
procedu re- name. 

I I I I I IOV.ER- I 
I I I I I I FLOW I 
I I I I I I l:Gcor d I 
I I t --L-____ ..L I .J 

r -r--- ----, 
I 2 I 2 I 
.. +-- ..,..---.;,..----~ 
I PN num ber of next I VN number corr?spnnili.ng I 
Iprocedure-name after Ito PN that; is the I 
lend-of-range lend-of-range I L- ~ ____________ J 

364 Section 5. Data Areas 



CD 

PIOTBL 
(TIB 7) 

Licensed !aterial - Property of IB! 

Phases Involveg 
Phase 4 builds this table 
from P1-text procedure-names 
and VNeTR in CO~~ON. 
Phase 4 uses this table to keep track of 
delimiters of performed procedures 
to set up return VNs. 

There is no TIB for this table. 
uses the phase 00 routine GET ALL 
space, but moves data in and out 
table by itself·. 

Phase 6A 
to get 
of the 

This byte contains binary values 3, 6, 9, 
12 as the OVERFLOW record contains 1, 2, 
3, 4 referencing card numbers. 

PurM.§§. i i 
store input/output 
information for a file 
from Procedure Division. 

I 4 I 
• -I 
I Switch I 

Entry Freque!!£! 
Iby~ I 
10 1 

One entry for each file. L .J 

Phases Involved 
Phase 10 reserves space 
for 'one-entry for each file. 
Phases 1B and 12 complete entries 
from Procedure Division. 

.~i~ 
1 
2 
3 
4 
5 
6 
7 
B 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
2f 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Pha~-11 uses this table to 
generate Data A-text. 

Statement referring to 
file, if bit is on 

OPEN INPUT 
OPEN OUTPUT 
OPEN 1-0 
CLOSE UNIT NO REWIND (OS) 
WRITE AFTER ADVANCING 
CLOSE WITH LOCK 
CLOSE 
REWRITE 
RERUN 
OPEN INPUT REVERSED 
READ (SEEK IN DOS) 
WRITE BEfORE ADVANCING 
USING 
GIVING 
USE 
WRITE AFTER POSITIONING 
BEFORE in USE 
OPEN NO REWIND 
WRITE 
USE ON file-name 
START 
INVALID KEY 
REVERSED 
RESERVED 
KEY OF REFERENCE (READ and START) 
DELETE 
GIVING data-name for USE procedures 
OPEN EXTEND 

. SEQUENTIAL ACCESS (DYNAMIC mode) 
RESERVED 
UNUSED 
RESERVED 

compiler Table Formats' 365 



Licensed Material - Property of IBM 

PNATBL 
(TIB 7) 

PNFWDBTB 
(TIB 20) 

PNLABTBL 
ITI B 18} 

PurJ2Qg r , 
Determine which PNs 
require an address 
constant cell in the PGT. 

I 3 I 
1 l 
I PN numberl 
L ____ --' 

]J!liLEl:gquen£1 
One entry for eaen PH 
requiring an address constant 
cell in the PGT. 

Phs..§~Invo!Y~1 
Phase 62 builds this table from 
PNUREF elements in optimization 
A-text. 
Pha~63 uses this table to 
determine which PHs require 
address constant cells. 
Phase 64 uses this table 
when determining the address 
in the PGT of the PH cell 
to be used in an instruction. 

PU.£Eose r-----,-
Optimize size of a 
Procedure Block. 

EntU-El:g9 ue!l.£1 
One entry for each 
forward reference to a 

I 
I 
I PN 

PN within a Procedure Block. 

Pha se s In vol ved 
Ehas~~§l builds this table 
from Procedure A-text. 
Eh~~_'§l uses this table t.o 
keep count of the number 
of 4-byte load instructions 
of the Procedure Block 
which miqht be needed if a 
new block is begun before 
the PH is defined. 

2 I 1 
I -f 

numberlConnterl 
.J 

PU.£EQ.2Q r, 
Determine interblock I I 
and intrablock references.. ~ 

E n i.£.Y..J:.£Q que n £1 
One entry foreacn PN. 

Ph~~InvolYg1 
Ph~mL.§l enters in th is 

IBlock numberl 
Ifor PN I L _______ .J 

ta~le the block number for 
each PM as it reads Procedure 
A-text .• 
Phase 63 extracts the block number 
In-which a PN is defined 
each time a PN is referred to. 

366 section 5. Data Areas 



PNLBDTBL 
(TIB 26) 

PNOUNT 
(TIB 14) 

Purpose 
Determine displacements 
from the beginning 
of the block for PH 
d~finitions. 

Entry Fregllim£Y 
One entry for each PN. 

Phases Involved 
Phase 63 builds this table 
during Procedure A-text 
proce ss in g • 

Licensed l!Iaterial - Property of IBM 

I ... 

I 12 bits I 
Ir---------~~----~ 
,Displacement from I 
Ibeginning of block I 
Ifor PH I 

I 

Phase 64 uses this table to insert 
the displacement in generated 
instructions which address the PN. 

purpose 
Stack operands of 
COKPUTE and IF 
statements. 

Entry Freguency 
One entry for each 
operand in statement. 

Phases Involved 
Phase 4 builds this table 
from P1-text scan. 
Phase 4 uses this table 
with PSIGNT table 
to stack operands until 
the string is ready to 
be created. 

variable 

ISame operand as in 

. ... 
I 1 1 
, I 
1(2) 

IP1-text, including I I 
Ibyte 0 identificationl I 
L -L--J 

C!) Number of preceding bytes in this entry. 

PNQTBL 
(TIB 6) Purpose 

Store information on 
references to qualified 
PHs for completion of 
dictionary entry. 

EntrLJ::reguen£Y 
One entry for each 
qualified PH. 

Phases Involved 
Phase 1B builds. this 
table from Procedure 
Division. 
Phase 1B uses this table 
to complete procedure
name dictionary entries. 

I I • --,-- • ... 
I 1111 Variable 1 2 I 1, 
I I I , .1 I 
I nlclProcedure-namelFlag 1 Unus-3d 1221 
I 1 lin EBCDIC , bytes, 
I I I !~! L I I 

I i -, 
111 Variable I 
I I -t 
IclProcedure-name qualifier inl 
I 1 EBCDIC I 
I • 

I I 
1 I 
L--J 

Compiler Table Formats 361 



Licensed !aterial - Property of IBM 

PNTABL 
(TIB 5) 

CD 

o Bit -0 

1-7 

PNTBL 
(TIB 7) 

Bit 

Purpo~ 
store information on 
references to each 
unqualified PH for later 
completion of PN's 
dictionary entry. 

Entry Frequency 
One entry for each PN 
that. is not qualified. 

Phases Involved 
Phase1Bbuilds this table 
fromProcedure Division •. 
Phase 1B uses this table 
to complete procedure
name dictionary entries. 

r. ill 
11 I11Variabie 2 I 
.. I I 1 -f 
In JclProcedure-IFlag IDictionary I 
I I Illame in Ib~slsearch codel 
! I! EBCDIC ! ~! 0 J 

--0 11ganinYL.J:.L2!! 
Procedure-name 
Section-name , 

2 

3 
4 
5 
6 

7 
8 
9 

10 
11 

12 
13 
14 
15 

Either nallle follows 
THRU in PERFORM ••• THRU, or follow 
PERFORM without THRU 

Referred to by ALTER 
Procedure-name of GO TO 
Procedure-name of EXIT 
Procedure-name following 

TO PROCEED TO in an 
ALTER statement 

Unused 
Referred to in DEBUG 
Defined in DEBUG 
Dummy section name 
Defined in Decldratives section (or 

in DEBUG statement referring to such 
section). Bits 12-15 describe the 
type of section. 

USE ••• ERROR section-name 
USE ••• LABELS section-name 
Unused 
USE ••• REPORTING section-name 

1!2ning-« if on 
Dictionary was search for 

this PH before this section. 
Unused. 

Purpose 
Create and store list of 
optimized PN numbers. 

Entry Freguency 
One entry for each 
optimized PN number. 

Phases Involved 

,.---- --, 
I 2 I 
~------------------------------- ~ IDisplacement of PN from start of PN cells inl 
jobject module I 
L ~ 

Phase 6 builds-this table 
fro;-PNCTR in COMMON and PH 
equate strings. 
Phase 6 uses this table 
to optimize PNs and 
process Procedure A-text. 

368 Section 5. Data Areas 



BL 
6) 

:INDX 
B 5) 

Ute 
0-19 

20-23 

Licensed I! at erial - Property of IBM 

Purpo.eg 
optimize procedure-names 
by eliminating those not 
referred to or, under 
the optimizer version 
of the compiler, 
determine entry points. 

EntrY-Ireguency 
One entry for each source 
program procedure-name. 

Phases Involved 
Pha~-21 reserves space 
for as many entries as 
there have been PNs 
counted in PNCTR. These 
entries are initially 
set to O. In later 
processing, phase 51 
turns on a bit each 
time the PN associated 
with the bit is 
referred to. 
Phase 6 uses this table 

• • 
I 1 bit I 
I I 
11 = Name is referred to I 
10 = Name is not referred tol L----. ________________________ ~ 

to eliminate names not 
referred to or, under the 
optimizer version of the 
compiler, phase 62 uses this 
table to determine which PNs 
are entry points. 

Purpose . , , 
store information about 
the PROCTAB table which 
is written on SYSUT5 if 
the SYMDMP option is in 
effect. 

Entry Freguency 
One entry for each block 
of PROCTAB entries. 

Phases Involved 

I 3 I 3 II I 
l- I -f 
ICard/verb IRelative addresslDevice andressl 
Inumber lof code for lof PROCTAB I 
Ifor first Ithis entry Iblock I 
lentry in Iwithin I I 
IPROCT~ ,segment I I 
Iblock~ I I I L ______ ~ __ ~!__________! ~ 

Phase 62 builds this table 
while reading Debug-text on 
SYSUTII and building the 
PROCTAB table. 
Phase 65 writes this table on 
SYSUTS-and COBOL library 
subroutines use this table to 
address entries in the PROCTAB 
table. 

£2.nU1l1.§ 
Card number 
Verb number 

Compiler Table Pormats' 369 



Licensed Material - Property of IBM 

PSHTBL 
(TIB 17) 

PSIGNT 
('rIB 15) 

PTRFLS 
(TIB 16) 

pur.EQ§g 
store GN numbers of 
, ELSE' branches in nested 
and compo_und IF state-
ments. 

EniuJ:reg uell£l 
One entry for each false 
branch. 

Phases Involved 
Phase 4 builds-this table 
from-P1-text and GNCTR 
in COMMON. 
Phase 4 uses this table 
to generate branches. 

Purpose 
Store operators in 
COMPUTE and IF 
statements. 

Entry FreqUency 
One entry for each 
operator in the state
ment being processed. 

Phases Involved 
Phase-i builds-this table 
from P1-text. 
Phase-i stacks operators 
until strings are ready 
to generate. This table 
is used with PNOUNT. 

Pur,2.Qg 
Store branches in an IF 
statement. 

Entry Freguency 
One entry for each 
decision in statement. 

Phases Involved 
Phase 4 builds this table 
from P1-text compound IF 
statements and GNCTR in 
COlUION. 
Phase 4 uses this table 
with PSHTBL to select true 
and false branches for 
P1-text. 

370 Section 5. Data Areas 

, I -----, 
I 1 I 2 I 
r- -+- -1 
I 16 Master GN IGN number I 
I 0 -= Otherwise I 
L 

r--------------------- , 
I 2 
I 
IP1-text 

I 
-f 

code for sign I 
~ 

, 
J 

r,----------------T'------ -.-
I I 2 I 2 
I I I 
11 'NOT' is IGN number for IGN number for 
I active I fall-through bypasslbranch 
10 'NOT' is , , 
I not acti ve I I 

-, 
I 

-! 
I 
I , 
I L ________________ ~ ____ • ______ ___ ~ ____________________ J 



BTBL 
IB 2) 

) Bits 0-
1 
2 
3 
4 
5 
6 
7 

0 Bi1~ 
0 
1 
2 
3 
4 
5 
6 
7 

PurpQg 
Pass information from 
phases 10 and 12 to 
phase lB. 

Entry Freguen!a 
One entry made at end 
of phase 10 processing 
and. optionally, at the 
of phase 12 processing. 

Phase s In vol ved 
Phases 10 and-'2 build 
this table from-stored 
informa tion. 
Phase 18 and/or 11 moves 
data into its ovn data 
areas. 

Byte-1, .!!Ite 2 
Unused INOLSII' 
COPYSW INSTSW 
BASISW INOERR 
Unused INOWSIf 
Unused DELSW1 
Unused DELSW2 
Unused DELSW3 
CPYXSW CPYCSW 

Byte-1, Byte 2 
Unused TOTUSD 
Unused Unused 
Unused Unused 
Unused USEPDL 
Unused USEPOE 
Unused SRTSW 
Unused Unused 
RPTWSW Unused 

Licensed !aterial - Property of IBM 

I , , 1 

12 I 8 8 "I 3 80 I 
I I I -f 
In ICard numberlCard numberlUnusedlLast I 
I lfor last Ifor last I Irecorell 
I Irecord readlrecord readl Iread I 
I 1 (packed) I (unpacked) I I I 
t I I .J 

I i 1 t t -, 
I 18 I 6 I 82 I 6 I 2 I 
I I I I -+----~ 
I Error I Sequence IINSERT tSequence IPhase I 
I information I number of Icarel worklnumber Iswitchesl 
Ion record Ilast recordlarea fromlfrom BASIS I ~ I 
I I read IBASIS I I \!J I 
L ' I L-______ --L-___ ----I 

I , i ~ 

I 24 I 82 8 I 8 I 2 I 
,. I J I -+-----f 
ISequence numberslWork arealLatest IBASIS I Phase I 
Ispecified on Ifor BASISICOPY Ilibrary- Iswitchesl 
IBASIS card Icard llibrarY-lname I I 
I I Iname I I 0 I 
• I _~I _______ ~'~ ________ ~I__ .J 

• 1 i, T-------, 

I 3 I 4 I 80 I 8 2 I 1 I 
1-1 ----+I---·-+-----+_ I , 
I Current IPhase IDouble ILibrary-namelContents ,Phase I 
Icard Isvitcheslbuffer fort for double- lof Iswitchesl 
I number I ICOPY... Ibuffer COpy Icolumns I 17.'\ I 
I I CD IREPLACING I 172 and 731 ~ I 
'-_____ ---&1_ I' --.I 

CD Bits !!.tlJLl !!:liL~ !!YiiLl 1lYiL! -0- Unused CDSURP CON2SW Unused 
1 Unused BUF2SW NWCDSW SURPSW 
2 Unused BUF3SW SKCD5W BUF5SW 
3 . Unused BUF4SW Unused Unused 
4 REPSW CONTSW Unused Unused 
5 Unused Unused Unused Unused 
6 Unused Unused Unused Unused 
7 Unused Unused DB RDS If Unused 

0) Bits Switches 
-0-6 ijDused -

7 FRGNSW 

Co~piler Table Formats 371 



Licensed Material - Property of IBM 

P1TEXT 
(TI B 05) purpose 

Save input P1-text 
elements and nevly 
created Debug-text 
elements. 

Phases Involved 
Phase 35 builds this 
table and makes entries 
in this table as it is 
process ing its inpu t 
once the determination 
has been made that no 
more debug declaratives 
exist. Phase 35 uses this 
table to accumulate verb 
strings until all debug 
processing is complete. 
Phase 35 deletes this 
table when processing is 
complete. 

Ii' 
J IVariablel 
• I I 
I Number IP1A-textl 
lof bytes lelement I 
I followingl I 
L ' I 

QALTBL (Report Writer) 
(TIB 23) .f.urpo~ , 

QFILE 
(TI B 23) 

Work table, for example, 
to store qualified names 
and qualifiers in reverse 
order of appearance 
in RD. . 

Entry FreguencI 
One for each name in the 
current string of a name 
and its qualifiers. 

Phases Involved 
Phase 12 builds this table 
as it scans a name and 
its qualifiers. 
Phase 12 uses this table 
~verse the order of a 
name and" its qualifiers. 

I Variable 
I 
IName(s) in EBCDIC, each 
Ipreceded by 1-byte count L _________________________ --J 

Pur~~ ,r---~--------~,----- -, 
Store Q-Routine GN I 21 2 I 
numbers connected with ~ --+- I 
CD entries or with QSA/!, IDCB number forlGN nmmber for single Q-Routine fori 
QISAM, or BISAI! files in I first file or I fi·le or for all Q-Routines for CD I 
which at least one of the ICD number lentry, or for chain of GNs, where I 
records contains an OCCURSI Ithere is more than one Q-Routine I 
DEPENIHNG ON clause. I G) lassociated with a file. I ® L--____________ ~_________________ _ __ ~ __ _J 

312 Section 5. Data Areas 



for SD 

IDl1ll.1. reg.l!.!m£.Y: 
One entry for each CD entry 
file or of this type. 

Phases Involved 
Phase 22 builds this table 
from Q-Routines for files or CD entries. 
Phase 21 increments the DCB. 
number for DCBs for checkpoint 
files. 
Phase 3 adds Q-Routine GN 
numbers to dictionary 
attributes for corresponding 
files or CD entries. 

Licensed Material - Property of IBM 

byte 1 = 09 
byte 2 = BLL# 

Table ends with a word of zeros. 

QGNTBL 
(TIB 24) 

QITBL 
(TIB 22) 

PurpQ.§g r---------,-------------" 
I 2 I Pass Q-Routine GN numbers 

and their Procedure block 
numbers from phase 63 to 
phase 64. This table is 
built only if there is a 
Q-BEGIN macro element 
passed in Procedure A-text. 

, I 
IGN numberlProcedure I 
t I block numberl 

Entll-freguen£l 
One for each Q-Routine GN. 

Phases Involved 
Phase 63 builds this table 
from the GNLABTBL. 
Phase 64 uses the data to 
InItIalIze Q-Routines 

I 

during processing for INIT3. 

Purpose 
Contains a pointer to 
the dictionary attributes 
of each OCCURS DEPENDING 
ON object entered in the 
'()D2TBL table. 

Entll.1.reguency 
One entry for each OD2TBL 
entry. 

Phases Involved 

I 

I 4 
I 
IPointer to entry 
lin dictionary for 
IOCCURS DEPENDING ON 
I variable 
I 

Phase 22 builds this table 
from dictionary and OD2TBL. 
Phase-2l combines this table 
with OD2TBL and QRTN 
tables to form QVAR table. 
ghase 2~ uses this table with 
QRTN and OCCTBL tables to 
build the ODOTBL table. 

• I 4 
I 
IDisplacement of 
lentry in OD2TBL for 
IOCCURS DEPENDING ON 
ivariable 
I 

:2) Table ends with a word of zeros. 

compiler Table Formats 373 



Licensed Material - Property of IBM 

QLTABL 
Purpose 
Store qualified names in 
reverse order of receipt 
(which was previously 
reversed) • 

Entry Frequency 
One-entry table con
taining name currently 
being processed and 
its qualifiers. 

Phases Involved 
Phase 1Q builds this 
table when qualified 
EBCDIC name is inserted 
in QNMTBL or OD2TBL. 

Variable 

Last qualifier-INumber of bytes, 
name in EBCDIC lin preceding 

Ifield 

Phases 12 and 1B build this 
table when qualified 

QNMTBL 
(TIB 2) 

EBCDIC name is written 
on PO-text. 

Purpose 
Store EBCDIC names C!) 
from Data and Environment 
divisions until Data 
IC-text is written. 

Entry Freguency 
One entry for each name 
of this type. 

Phases Involved 
phase 1~ builds this 
table from clauses in 
FD, SELECT, and APPLY 
statements. 
Phase 10 uses this table 
to write .out Data IC-text. 

Variable Variable 

InlclLast qualifier-lc,Second from last 
, I Iname in EBCDIC I ,qualifier-name 
, , , I lin EBCDIC 

For REPORT, LABEL RECORD, ACTUAL KEY, NOMINAL KEY, 
RECORD KEY, TOTALING-AREA, TRACK AREA, and APPLY 
REORG-CRITERIA clauses. 

QRTN 
(TIB 21) gurpose 

Store G N numbers of 
Q-Routines and OD2TBL 
pointers for each OCCURS 
DEPENDING ON clause in 
a record. 

Entry Freguency 
One entry for each 
record containing an 
OCCURS DEPENDING ON 
clause. 

Phases Involved 
Phase 22 bU1~dS this 
table from GNCTH in 
COMMON and OD2TBL. 

374 Section 5. Data Areas 

2 

I GN number 
lof first 
IQ-Routine 

2 4 

I Number of fields IDisplacement of 
Ithat follow IOD2TBL entry for 
, Ithefirst Q-Routine 



!SBL 
:TIB 25) 

lTBL 
(TIB 3) 

QVAR 
(TIB 24) 

Licensed Material - Property of IBM 

Phase 21 combines this 
table with OD2TBL and 
QITBL tables to form the 
QVAR table. 
Phase 25 uses this table 
with QITBL and OCCTBL tables 
to build the ODOTBL table. 

Purpose I 

I 1 
I 

Hold and transmit data 
on secondary base 
locators (SBLs). IFirst SBL number associated 

I an INCRA ver b 
Entry Frequency 
One entry for each INCRA 
verb generated. 

Phases In volved 

, 

phase 22 creates and passes 
this table to phase 3. 
Phase 3 uses this table to 
generate for each INCRA 
verb a P1-text literal 
the value of which equals 
the number of SBLs 
associated with the verb. 

Purpo~ I 

I 2 
I 

Store GN numbers for 
Q-Routines during Data 
A-text processing. IGN number of Q-Routine 

Entry F reguen£l: 
One entry for each 
Q-Routine definition 
in Data A-text. 

Phases Involved 

, 

Phase-2 or, under the optimizer 
version of the compiler, 
phase 64 makes an entry in 
this table when it finds a 
Q-Routine identification 
element in Data A-text. 
Phase 6 or phase 64 uses 
this table to initialize 
Q-Routines when 
generating INIT3 code 
for object module. 

purpose i 

withl 
I , 

Store Q-Routine GN 
numbers connected with 
items containing OCCURS 
DEPENDING ON clauses. 

4 I 2 I 

Entry Freguen£l: 
One entry for each item. 

I I 
IPointer to dictionarYIGN number fori 
lentry for object of IQ-Routine fori 
IOCCURS DEPENDING~ Ifirst item 
Ifor firs~item ~ I , 

r-----.--, 
I 4 I 
r- I 
I Dictionary I 
Ipointer fori 
Ilast item I 
I I 
• I 

Compiler Table Formats 375 



Licensed Material - Property of IBM 

!!its 
0-9 

10-22 
23-31 

RCDTBL 
(TIB 11) 

RDFSTK 
(TI B 11) 

Phases Involved r,------------------------,-, 
Phase 2 builds-this table I 2 141 
from QRTH, QITBL, and • I r 
OD2TBL tables. IGN number for last itemlOj 
Phase ~ adds Q-Routine I ---'-J 
GN numbers to 
dictionary attributes of 
items that are objects of 
OCCURS DEPENDING ON clauses. 

Contents 
Zeros 
Dictionary section number 
Displacement in section 

Purpog 
Store each 01-level 
record-name in FD Section 
until input/output verb 
processing. 

Entil-!gguel:!!:I 
One entry for each 
01-level entry in FD 
section. 

Phases Involved 
Phase 10 builds this table 
from 01-level statements. 
ghase_l~ uses this table 
in processing input/output 
sta tements. 

r---- i i 
I 2 III Variable 
• +-+---
IDisplacement of entrylclRecord-name 
Ifor file in FNTBL I I 
L ' I 

--, 
I 
~ 

in BBeDle! 
I 

-J 

~pose r 1 , T 

Store information 
about subject and 
object of FEDEFINES 
clauses. 

]JUil-! re 9 uQll£I 
One entry for each 
REDEFINES clause. 

Phases Involved 
ghase ££ builds this 
table from dictionary. 
Phase-ll uses this ~able 
to assign address 
parameter to items 
after REDEFINES clause. 

, 1 I 3 I 4 I 4 
.. t-- I t-
ILevel numberlContents of addresslUnusedlLength ofl 
lof REDEFINESlparameter field I I REDEFINES I 
Isubject I (idk) I lobject I L ' ____ L ______ L _________ J 

(!) First entry is a dummy 

RENA!!TB 
(TIB 3) ~E.Qg 

Store information for 
associating a renamed 
item with all of its 
renaming items if the 
SYMDMP or TEST option is 
specified. 

376 Section 5. Data Areas 

, ---., 
I] 3, 
J---- , 
IDictionary pointerlDictionary pointerl 
,for renamed item Ifor renaming item I 
« J 



REPTAB 
(TIB 29) 

RLDTBL o 

Entry Freguen£.Y 
On entry for each RENA~ES item. 

Phases Involved 
Phase 22 builds this table 
while processinq RENAMES clauses. 
Phas~_6~ uses this table to 
associate renamed items with 
renaming items. 

Licensed Material - Property of IBM 

purpose r-r-- ------------~ir-Ir_--------------------------_, 
Store COPY ••• 
REPLACING data-names 
to be used during 
read from library. 

l'IVariable 111 Variable I 
I~I~----------------+-+I------ ~ 
IclWord being replaced IclFeplacing word, literal, or I 
1 I I I ident ifier. J 

Entry Preguency 
One entry for each pair 
specified in the REPLACING 
clause of the COPY 
statement currently 
being executed. 

Phases Inyolved 
Phase 02 builds this 

, , 

table from COPY ••• REPLACING 
clause in source program. 
Phase 02 uses this 
table to replace data-names 
while source statements 
are being read from 
a library. 

(Phase 6) 
Purpose .----
Store information 
on items to be 
inserted in 
data area or a 
Global Table in the 
object module. 

Entry Freguen£.Y 
PN One entry for each 

definition, VN 
definition, and adcon 
in Data A-text. 

Phases Involv~!l 
Ehase 6 builds this table 
during Data A-text 
processing. 
Phase 6 uses this table to 
write RLD and text 
cards for object module. 

I 
I 
184 
I 
I 
194 
I 
I A4 = 
ICO = 
L 

DCB address or 
other Data 
A-text element 
GN or PN 
definition 
VN definition 
TGT adcon 

--L-~ __________________ __ 
J 

i , ~ 

I 3 I 3 I 
--+ I 1 ----of 

ITarget I Priori ty I Value I 
laddressl (0, if no lof adcon I. 

segmentation) I I 
1 I 
I I 
I I 
I I ...:..L-_______ .J 

compiler Table Formats 377 



Licensed !aterial - Property of IBM 

RLDTBL (Phases 63 and 64) 
(TIB 28) Purpose r 1 

CD 

Store information on 
items to be inserted in 
the data area or a Global 
Table in the object 
module. 

I 3 3 I 
I ~ 
ICode ITarget IPriority IValue ofl 
Idefininqladdressl (0, if no I~DCON I 
!item CD! !segmentation) I I 

Entry Frequency 
One entry for each PN 
and GN definition, 
VN definition, and each 
address constant in 
Data A-text. 

Pha se s In vol ved 
Phases 63 and 64 build 
this table during Procedure 
A-text and Data A-text 
processing. 
Phase 64 USes this table to 
write RLD and text cards for 
the object module and to 
resolve VN EQUATE PN and 
VN EQUATE GN addresses. 

Last entry in the table is followed 
by a byte of zeros. 

There is no TIB for this table. Phase 6 
uses the phase 00 routine GETALL to get 
space, but moves data in and out of 
the table by itself. When it receives 
control back from phase 00, phase 6 stores 
the first address in the table space in 
location ARLDTB and the length in bytes 'in 
location RLDSIZ. During processing, it 
uses location RLDINDEX as a counter of the 
bytes used so far. 

CD 

94 
1\4 
C4 

ll~!!ning: 
RPT-ORIGIN GN 
DCB address or other Data A-text 

element 
GN or PH definition 
VN definition 
IN1T1 ADCON address in TG~ 

RNMTBL (Phase 22) 
(TIB 12) Purpose r ~--, 

Store information 
on objects of 
REDEFINES clauses. 

~:Lf~quen£'y 
One entry for each 
REDEFINES clause. 

Phases Involved 
Phase 22 builds this table 
from dictionary. 
Phase 22 uses this table 
to check whether the 
REDEFINES clause is valid. 

378 section 5. Data Areas 

I 1 3 I I 
• +- I 1 
I Level nu mber I Pointer tol Dictiona ry I 
lof REDEFINESldictionarYlminor code I 
I subject lentry for I for object I 
I IREDEFINES I I 
I lobject I I 
L ____ , 

.I 



Licensed Haterial - Property of IBM 

RN~lTBL (Report Writer) 
(TIB 12) PUilml,§ r---------~,---- ------------r,----·----------, 

CD 

o 

store data-names 
of report groups. 

Entry_Frgg1lil.n£,I 
One for each REPORT 
GROUP that has a 
data-name and is not a 
detail report group. 

Phases Involved 

32 I 2 I I 
r--------rl---· ---------~I~----------i 
IData-name IGN number for this IliOP £QQ§ I 
Ifor reportlreport-group 100 NOP PLUS I 
Igroup innl 101 = NOP ZERO 10 
I EBCDIC Vi I I 
" I J 

Phase 12 builds this table 
from scan of report groups. 
Phase 1B uses this table 
to-generate coding in 
response to USE BEFORE 
REPORTING statements. 

Left-justified, padded with 
binary zeros in low-order bytes. 

First entry is a dummy. 

ROLTBL (Report Writer) 
(TIB 15) PUil~ I -, 

Store the SUM 
clause data-names 
and operand-names 
that are needed to 
create ROL-ROUT 
and RST-ROUT. 

Entry Frgg~'y 
One entry for eash sum 
rolled forward. 

Phases Involved 
Phase12DOROL-routine 
builds this table. 
Phase 12 GNSPRT routine 
uses this table to create 
ROL-ROUT and RST-ROUT. 

12 2 2 4 I 
II I I I ----i 
In ISUM IUnusedlDisplacement oflDisplacement of r:\1 
~Ilevell ISUM name entry ISUM name SNMTBL 01 
~I I I in SNMTBL (this lor nnnn por tion 0 f I 
I I I lis the item to IS.-name (this is I 
I I I Ibe rolled Ithe item into whichl 
I I I I forward) I the sum is to be I 
I I "I I I rolled) I 
L-~ ____ ~~ ____ ~ ________ ~ ____ ~ ______ ----------.----J 

4 

Contains zerosl 
to indicate 
end of entry 

Contains zeros if this is the·last 
entry in the table o Bytes 

o 
£Qnteni§. 
FF 

1 
2-3 

00 
Displacement 

Compiler Table Formats 379 



Licensed !aterial - Property of IBM 

ROUTBL (Report Writer) 
(TIB 16) PurI!0s~ 

RUNTBL 
(TIB 35) 

Store GNs for 
routines in each 
Report writer 
generated program. 

Entry FrgglliUl£.Y 
One entry for each 
report in Report 
section. 

Phases Involved 
fhase 12 builds and 
uses this table. 
Phase 1B uses this 
table in Report Writer 
verb processing. 

PurI!ose 
Collect and condense 
information about 
checkpoints. 

En try Frequency 
One entry for each 
valid RERUN statement 
specified with the 
'~integer-1 RECORDS" 
option. 

380 Section 5. Data Areas 

• , I 

12 2 I 2 2 I 2 
I I I 
IGN numberlGN numberlGN numberlGN numberlGN numberl 
Ifor Ifor Ifor Ifor Ifor 
IRPH-ROUT IRPF-ROUT IPGH-ROUT IPGF-ROUT 11ST-ROUT , , , , , 

~ i , 

12 2 2 12 2 I 
I I I 
,GN numberlGN numberlGN numberlGN numberlGN numberl 
Ifor Ifor Ifor Ifor Ifor I 
ILST-ROUT I~RT~ROUT IWRT-1 IWRT-2 ICTB-ROUT I 

I , 

2 I 2 2 I 2 
, I 

IGN numberlGN numberlGN numberlUnused 
Ifor 'for ,for , 
I ROL-ROUT IRS T-ROUT I RST-1 I 
I I I I 
I -,,'(he I I 
I I I I 
I , , , 

i 
, 2 , 
IGN number for deta 
Inow being processE 
I it is moved to 
IDETTBL at end of 
I processing for the 
I detail 
I 

i , i 

12 2 12 2 12 
I I I 
IGN numberlGN numberlGN number/GN numberlGN numberl 
I for I for I for PH- 1 I for ROL-11 for 
/CHF-ROUT leFF-ROUT , I lINT-ROUT 

" I 

I i 

2 I, 2 2 I 2 
I I 

,GN num~erlGN number'GN numberlGN numberl 
Ifor 'lfor Ifor Ifor 
IALS-ROUT IRLS-ROUT ISAV-ROUT IRET-ROUT 
I , ..a...... ' 

I 

I 2 
I 
IDeB number 
lof' RERUN 
Ifile 
I ' 

i 

I 2 , 
I DCB number 
lof checkpoint 
Ifile 
I 

4 

l"Integer" for 
IRERUN file 
I 
I 



Phases Involveg 
Phase 21 builds this 
table from the CKPTBL 
table. 
Phase 51 uses this 
table to generate 
coding to count and 
test "integer", 
for READs and WRITEs 
for RERUN files. 

RWRTBL (Report Writer) 
(TIB 13) Purpose 

Store information 
about a report-name. 

Er.1ll2req,Yjill£.I 
One entry for each 
report-name. 

Phg~~olveg 
Phases 10 and 12 build 
this table from scan of 
and RD entries. 
Phase 1B uses this table 
during-Scan of Report 
Writer verbs. 

Licensed Katerial - Property of IBM 

iii I 

30 I 5 I 2 I 2 I 
I +-- +-------/ 

IReport-namel-nnnn portion IPointer to ISize in I 
lin EBCDIC lof record-name Ifile-name-1Ibinary I 
I Ifor file-name-1Ientry in lof larger I 
I CD I I FNTBL I record I 
I , , I ~ 

i' --, 
I 5 I 2 2 I 

FDI I -/ 
I-nnnn portion oflPointer to entrYIDisplacement inl 
Irecord-name for Ifor file-na~2 IROUTBL of entryl 
L:ile-name-2 ~!in FNTBL ~ Ifor this reportJ 

Left-justified, padded with binary zeros 
in low-order bytes. 

CD Contains zeros, if report is to be 
written on only one file. 

SAMETB 
(TIB 19) PurposS! 

Save information on SAME 
AREA files until buffer 
allocation and Data 
A-text generation of DeB 
and DECB elements. 

Entry Frequenc.I 
One entry for each file 
named in a SAME AREA 
clause. 

Phases Involved 
Phm21 builds this 
table from Data IC-text. 
Phase 21 uses this table 
to allocate buffers 
and fill in fields for 
DC Bs and DECBs. 

r I I 

I 1 I 3 I 2 2 
I I I 
ISAME IRelative location I Number of IBlock size 
IAREA lin object module Ibuffers forlrounded up I 
Inumberlof DC~DECBI or Ique~ file Ito multiplel 
I IFIB \2J I ~ lof eight I 
~~I ________________ ~I~ _________ I~I __ ~~=a ____ --J! 

--,- I I I , 
1 I 1 14 bitsl4 bitsl 1 

I I I I of 
1BL numberlKey I IAccessl I 
Ifor this Ile~hl 0 

I method I I 
Ifile I 2b I l~ l (])I 

I I I 

Compiler Table Formats 381 



Licensed aaterial - Property of IBM 

SATBL 
(TIB 5) PUil.Q§~ 

CD 

Store file-names 
associated with SAME AREA 
clauses until all SAME 
clauses have been 
processed. 

Entry Freguenc'y 
One entry for each file 
in a SAME AREA clause. 

Phases Involved 
Phase 10 builds this table 
from SAME AREA clauses 
in source program. 
Phase 10 uses this table 
to check SAME AREA 
clause syntax. 

contains the relative location of 
the DECB for BASIC files except for 
BASIC files containing spanned 
records. For BASIC files containing 
spanned records and all other files, 
this field contains the relative 
location of the DCB. For VSAM files, 
the field contains the relative 
location of the FIB. 

Field 1 if this is a BASIC file. 
= 1 if this is a VSAM file. 

~ Maximum record size rounded to a 
multiple of 8 for VSAM file. 

I @ Field 

G) Bit -0-
1 

2 

3 

is set to zero for VSAM file. 

Meaning 
Format V 
Spanned records, ADVANCING or 

SAME RECORD AREA specified 
Direct BDAM file when REWRITE 

is used 
Direct BDAM or direct BSAM 

f He with key 

of ICard 
in I number 

I entry 
I 
I 

® 

£od~ 
0000 
0001 
0010 
0100 

2 
3-7 

c IFile-name 
lin EBCDIC 
I 
I 
I 

l!.£~s Method 
QSAM 
QISAM 
BISAM 
BSAM 

Meani~f on 
QSAM file containing 

spanned records 
BASIC file containing 

spanned records 
VSAM file 
Unused 

SEGINDX 
(TIB 16) Purpose 

Store information about 
program fragments if the 
SYMDHP or STATE option 
is specified 

i I 

Entry Frequenc'y 
one'entry for each 
program fragment. 

Phases Involved 

I 3 3 I 3 
I I I 
IPrioritYIAddress of thislTable-locator fori Table-locator 
Inumber Ifragment rela- IPROCTAB entry forlPROCTAB entry j 

I Itive to the Ifirst card/verb Ilast card/verb 
I Ibeginning of lin this fragment Ithis fragment 
! ! the segment ! CD ! Q) 

~ase 65 'builds this table 
wh'ile reading Debug-text and 
building the PROCTAB table. 
COBOL library subroutines use 
this table. 

CD For the SYMDMP option, the field contents are: 

382 Section 5. Data Areas 



Bits 
0-14 

15-23 

contents 
Relative block number in PROCTAB 
Displacement within block 

Licensed Material - Property of IBM 

For the STATE option, the field contents are: 

Bits 
0-23 

SEGTBL 
(TIB 15) 

Byte 
0-1 

2 
3 

SETTBL 
(TIB 21) 

content§ 
Displacement from the beginning of the 
PROCTAB entries in the object module 

Purpose 
I 1 
I 

I 
store disk addresses of 
sections of Procedure 
A-text. I priority numberJDevice 

Entry Frequency 
One entry for each 
segment control break 
encountered in P2-text. 

Phases Involved 
Phase 51 creates an entry when 
it finds a segment control 
break. Gets priority from 
PNOUT + 1 in phase 5, and 
device address from cell 
SEGSAV in phase 00. Phase 6 
or, under the optimizer 
version of the compiler, 
phases 62 and 63 use this 
table to combine sections 
into a segment. 

contents 
Relative track number 
Block number 
Zeros 

Purpose 
Store operands before 

i 
, Variable 

• 

i 

4 J 

f.I'\,' address \..Y 
I 

TO, UP, or DOWN in SET 
statement; store 
receiving fields 

I Element as encountered in P1-textl 

before ON SIZE ERROR 
or next verb in ADD or 
SUBTRACT statements with 
multiple receiving fields. 

En try Frequency 
One entry for each element 
of P1-text encountered 
before desired element 
is found in input buffer. 

Phases Involved 
Phase 4 builds this table 
while processing SET 
statements, or ADD or 
SUBTRACT statements with 
more than one storage field. 
Phase 4 uses this table 
to temporarily bypass 
operands in SETTBL 
table while it scans 
input buffer for desired 
element following 
these operands. 

compiler Table Formats 383 



Licensed lIaterial - Property of IBM 

SMRCDTBL 
(TIB 5) Purpose 

Save information on SAME 
RECORD AREA files until 
buffer allocation and 
Data A-text generation. 

Entry Fr~Yru!£Y 
One entry for each file 
named in a SAME RECORD 
AREA clause. 

Ph~s InJ[olve,g 
Phase 21 builds this 
table from Data IC-text 
and PIOTBL. 
Phase 21 uses this table 
to allocate record 
areas, to generate 
block address definitions, 
and to fill in DCB or DECB 
fields. 

i i 
I 3 2 I 
I I 

ISame IRelative locationlMaximumlFirst BLIFlag 
IRECORDlin object module Irecord Inumber Ibyte 
IAREA lof DCB or DECB Isize Ifor filel 
Inumperl for BASIC FILES, I I I CD 
I lor FIB I I I 
~! ____ -4! ____ C9~1~ ________ ~! ______ ,~! ______ ~! ____ ~ 

I 

1 I I 
r'---+I----------------------------------~ 
IFlaglKey length (if bit 3 is on in preceding field) I 
Ib~1 I 
I~I I L'~~LI __ . ____________________ , ____________________ ~ 

SMSTBL (Report Writer) 
(TIB 28) Purpog i I 

CD 

Store SUM clause 
operand-names for 
correlation of SUM 
and' SOURCE clauses. 

2 I c I 
I I 

c ISUM clause operand-name in EBCDICI ~ 

Entry Frequency 
One for each 
operand~name in a 
SUM clause. 

PhS2~S InJ[olve,g 
Phase 12 builds this 
table from SUM clauses. 
Phase 12 uses this table 
with SRCTBL and SUMTBL 
to generate USM-ROUT 
routine for each detail 
report group and to 
build ROLTBL. 

contains the relative 
location of the DCB for BSAM 
files containing spanned 

, records. For all other BASIC 
files, this field contains 
the relative location of the 
DECB. For VSAM files, this 
field contains the relative 
location of FIB. 

Bit Meaning 0- QSAM file containing 
spanned records 

1 BSAM file containing 
spanned records 

2 VSAM file 
3-7 Unused 

0 Bits -0--
1 

2 
3 

4-7 

0 First 

Me an i n g&.-li-21! 
Format V 
QSAM with spanned records 

and/or ADVANCING option 
Unused 
File is direct BSAM or 

direct BDAM 
Access method. 

0000 = QSAM 
0001 = QISAM 
0010 = BISAM 
0100 = BSAM 
1000 = BDAM 

entry is a dummy. 

384 Section 5. Data Areas 



Licensed Material - Prop erty of IBM 

SNKTBL (Report Writer) 
(TIB 35) J!!!rpose .,' ,r·..------------o--T'---." 

Store all data-names of 
SUM clauses. 

IDl try..1.t:M~y 
One entry for each SUM 
clause. 

Phases Involved 
Phase 12 builds this table 
from SUM clause. 
PhA§e 12 uses this table 
to correlate SOURCE and 
SUM clauses, build 
ROLTBL, and generate 
USM-ROUT routine. 

\ 32 \ 3 \ 
I \ I 
\Data-name for sum bucket CI)\ Unused\ 
I , ----J 

SPNTBL 
(TIB 21) Purpose i 3 11 iv ariable G) 

.. I I 

o 

I 3 IclMnemonic-name in 

Store function-name 
information from 
SPECIAL-NAMES paragraph 
in Environment Division. ., " 

Entry Frequency 
One entry for each 
function-name. 

Phases Involved 
Phase 10 builds this table 
from SPECIAL-NAMES 
paragraph. 
Phases 12 and 1B use this table 
to substitute function-
name for mnemonic-name 
in Procedure Division. 

Left-justified, padded with binary 
zeros in lOW-order bytes. 

First entry in the table is a dummy. 

Three possible configurations: 

~~Q 
a. 1-character 

literal in 
EBCDIC 

b. 54 

c. 55 

~.ttL.1 .!inL~ 
Unused Unused 

Code for COBOL Unused 
word used (see note 7 
under PO-text in 
Appendix C) • 

Code for carriage Unused 
control word 
(see note 5 under 
PO-text in 
Appendix C) • 

EBCDIC\ 

CD 

Compiler Table Formats 385 



Licensed Material - Property of IBM 

SRATBL 
(TIB 6) PUll~ 

Store file-names 
associated with SAME 
RECORD AREA clauses 
until all SAME clauses 
have been processed. 

Entry Frequenc'y 
One entry fGr each file 
named in a SAME RECORD 
AREA clause. 

Phases Involved 

ICount 
I files 
lentry 
I 

of I Card 
inl number 

lentry 
I 

I 
ofl 

I 
I 

30 

c IFile-name 
lin EBCDIC 
I 
I 

Phase 10 builds this table 
from SAME RECORD AREA 
clauses in source program. 
Phase 10 uses this table 

SRCHKY 
(TIB 34) 

to check SAME RECORD 
AREA clause syntax. 

Pur!!.Qg 
Save names of keys cited 
in KEY clause for group 
item until group item is 
processed. 

En.ifL F r .§g.!Hill£.Y 
one entry for each key 
named in KEY clause in 
current group item. 

Phases Involved 
Phase22builds this table 
from group items in 
Da ta IC- te xt. 
Phase 2 uses this table 
to make sure keys named 
are defined in group. 
If not, sets error bit 
in IBDKEY table for 
phase 3 reference. 

SRCTBL (Report Writer) 
(TIB 22) Purpose 

Store SOURCE clause 
operand names to 
correlate SOURCE and 
SU ~1 cl auses. 

En llLXf eg lliill£Y 
One entry for each 
SOURCE clause in each 
detail report group. 

Phases In vol ved 
Phase12biiI1ds this 
table while scanning 
detail report groups. 
Phase 12 uses this table 
in conjunction with SMSTBL 
and SUMTBL to generate 
SUM-ROUT routine for each 
detail report group. 

386 Section 5. Data Areas 

I i 1 • 
I 2 ,1 I Variable I 
1~------------rl~I~-------------~ 
101 = ASCENDING IclName of key in EBCDICI 
102 DESCENDINGI I I 

I I 

• I ---, 

I 2 2 I Variable I 
, I ~ 
ILength of IDisplacementlSoURCE operand with I 
ISOURCE clauselinto DETTBL lall qualifiers, indexes, I 
loperand-name lof detail I and subscripts (if any) I 
I Ireport grouplin PO-text format. I 
I Idata-name I I 
L- " .J 



[N 
I 5) 

OUT 
8 11) 

Purpose 
Save all subscript 
strings preceding an 
UNSTRING verb string. 

Entry Fr~~y 
One entry for each 
subscripted data-name 
in an UNSTRING statement 

Phases Involved 
ghase 45 builds and 
uses this table. 

f1lrpos~ 
Store subscript strings 
in the order in which 
they are to bHritten 
as P2-text. \..!) 

Eniil Fregueru;;y 
The table is divided 
into sections which 
contain the subscript 
strings for any 
subscripted data 
items that are 
referred to by the 
text in the corresponding 
section of the TXTOUT 
table. 

Phases Involved 
Phase 45builds and 
USes-this table with 
the TXTOUT table. 

Licensed Material - Property of IBM 

I i 
I 3 IVariable 
I I 
18439 (hex) followed IData-name 
Iby count of elementslreference 
Ithat follow I element 
I I 

t 

t 
I Variable 
I 
IData-name reference (30) 

(30) lor alphanumeric literal 
I (34) element for first 
Isubscript string , 

Variable 

Subscripted data- I 
name reference (31) I 
element with sub- I 
script string ID I 
number in place of I 
idk field I 

I I , 

I 3 I Variable Variable I 
I I I 
18439 (hex) followed I Data-name I Data-name reference (30) I 
Iby count of elements I reference (30) lor alphanumeric literal I 
Ithat follow I element I (34) element for first I 
I I Isubscript string I 
I " I 

r -, 
I 2 I 
I I 
IFFFF (hex) I 
Ito indicate I 
lend of subscriptl 
I information I 
I , 

Variable 

subscripted data- I 
name reference (31) I 
element with sub- I 
script string ID I 
number in place of I 
idk field I 

If the corresponding data item in 
the TXTOUT table is not subscripted, 
the entry consists of a halfword 
containing hex 'FFFF'. 

Compiler Table Formats 387 



Licensed Material - property of IBM 

SSDELIM 
(TIB 20) 

STRING 
(TIB 9) 

Purpo~ 
Save delimiters from an 
UNSTRING statement that 
have to be repeated. 

Entry Frequen£Y 
One entry for each 
delimiter that is 
either subscripted or 
follows a variable
length group. 

Phases Involved 
Phase 45 builds and uses 
this table. 

purpose 
Store verb strings 
while they are being 
built for output as 
P2-text. 

Entry Frequen£y 
One entry for each 
operand in current 
string. 

Phases Involved 
Phase 4 builds this table 
as-strings are processed. 
Phase~ uses this table to 
collect output before 
generating. 

SUMTBL (Report Writer) 
(TIB 19) Purpo~ 

Store data-names and 
operand-names from SUM 
clauses that are used 
to create USM-ROUT, 
INT-ROUT, RST-ROUT, and 
ROL-ROUT routines. 

Entil~reguen£Y 
One for each SUM clause. 

Phases Involved 
Phase12 builds this 
table from scan of 
SUM clauses. 
Phase 12 uses this table 
to ~uild USH-ROUT, 
INT~ROUT, RST-ROUT~ and 
ROL-ROUT routines. 

388 Section 5. Data Areas 

2 2 2 14 

IPointer to 1541D (hex)-15479 (hex)-
lentry in Icode for Icode for 
I SSCIN for I"DELIMITED I"ALL" if 
I subscript IBY" I specified 

Data-name 
informati< 
for UNSTRJ 
(2A) elemE 

,string (if I I 
I none containsl I 
I zeros) I I 

i 1 , • 
2 I 1 I 3 I I 

r--------+1------~1r_----------_+1---------1 
n ISUM levellcard number fori Reset level I 

I Ithis SUM clausel" I o I I I I 
~~ ______ ~' ________ ~'~ ________ ~ ____ ~' ___________ J 

, , 
2 I 4 I 

I f 
IDisplacement of entrylCode for IPointer to SUM I 
lin DETTBL for detail Inext fieldlname in SNMTBL I 
Iname in SUM ••• UPON I lor nnnn portion I 
Iclause I 0 lof S.-name I 
~ ____________________ ~ __________ ~ ______________ J 

r-----------~"------------~,r---------------------------, 

7 I 24 I 2 I 
I I I 

IE.-name I PICTURE for IDisplacement of entry I 
I (REDEFINES) ,name in I in SMSTBL for first I 
lin PO-te~IEBCDIC loperand-name in SUM clausel 
I format ~I I I 
I I 



Licensed Material - property of IBM 

2 

Displacement of entry IZerosl 
in SMSTBL for last I I 
operand-name in SUM clausel I 

Number of bytes in preceding field. 

contains zeros if this is last 
entry in table. CD Bits -0- Contents 

06 

Code 
00 

10 

FF 

rADTBL 
CB 1) 

1 E 
Meaning 2 . (period) 
Next two bytes contain 

displacement into SNMTBL. 
3-6 nnnn 

Next four bytes contain nnnn 
portion of S.-name. 

Next field contains nnnn 
portion of S.-name. 

purpose 
Store information needed 
by phase 65 for pro
cessing the SYMDMP, TEST, 
STATE, and FLOW options. 
Also used to pass infor
mation between phases 62, 
63, and 64. 

Entry Frequency 
Information entered 
depends upon options in 
effect. Only the first 
five fields are filled 
in if phase 60 builds the 
table. 

gMses Involved 
Phases 60 or 62, 63, and 
64 build this table. 
Phase 62 uses this table 
in processing the SYMDMP, 
STATE, and FLOW options. 

I 

I 2 
I 
I Displace
I ment of 
I DEBUG 
ITABLE in 
TGTG) 

2 

i 
4 I 4 

I 
RelativelRelative 
address laddress of 
of byte Ifirst in
after Istruction in 
INIT3 I Procedure 
(!)~ IDivision (in 

Iroot segment 
I when program 
lis seg~ted) 
1Q)0J 
I 

2 

i i 
I 4 4 I 4 
I I I 
IRelative Address INote add
address of STARTlress of 
o~3~RT of Q- I first 
~~ Routineslblock of 

or INIT21code gen
if no Q-Ierated for 
R~eslindepen-

I 

I 2 
I 

~ Ident seg
Iments on 
IS~~ 
1\.Vt.2J 
I 

Displacement of Displacement of 
ILBOFLWO virtual ILBOTEF3 virtual 
from beginning from beginning 

Displacement of 
ILBOSGMO virtual 
from beginning of 
PGT if TEST option 
is specified for a 
segmeC!)d program 

of PGT if of PGT if SYMDMP 
FLOW and and DYNAM/RESIDENT 
DYNAM/RESIDENT and program 
used ~1 . phase 64 contains f"loating-
~ point item used 

lonly ~. phase 64 
I\.!) 
! 

• 
21 

I 
ILength of transientl 
larea if program is 1 
Isegmented-used by I 
Iphase 64 to fill inl 
ITALENGTH field_in I 
ITGT I , , 

Compiler Table Formats 389 



Licensed Material - Property of IBM 

CD Filled in by phase 62. 

CD Filled in by phase 63. 

CD Filled in by phase 64. 

0 Filled in only if the SYHDMP or the STATE option is in effect. 

G) Contains zeros if the program is not segmented. 

TIBP (Alternate name for RNMTBL) 

TIBR (Alternate name for RDFSTK) 

TOTTBL 
(TIB 32) Purpose 

Store TOTALED option 
information from Data 
Division for use in 
Procedure Division 
processing and by 
phase 22. 

EnyY1requency 
One entry for each 
TOTALED option specified. 

Pha se s In vol ved 
Phase 10 builds this table 
from-source program FD 
entries. 
Phase 22 uses this table 
~assign BLLsto a 
TOTALED AREA data-name 
and items subordinate 
to it. 

1 1 

2 111 30 
I I 

02 IDisplacement of IcIData-name-3 froml 
lentry for associated I ITOTALED option 
Ifile in FNTBL table I lin EB~C form 
I I I \2) 

(!) Padding starts from low-order bytes. 

TXT OUT 
(TIB 19) Purpog 

Save UNSTRING verb 
strings. 

Entry Frequen£J: 
One entry for each 
UNSTRING verb string. 
The table is organ-
ized in sections which 
contain all the strings, 
except subscript 
strings, for an UNSTRING 
statement. 

390 Section 5. Data Areas 

I, I 
I 3 I 2 3 I Variable 
I I ----~l----------------
18465 (hex) 15496 I Verb information (24) I Text string elemen 
I followed I (hex) -I element containing Ifor DELIMITER, 
I by count I code I the sequence number I RECEIVING FIELD, 
lof elementslfor lof this string and IDELIMITER IN, COUN 
lthat follow I "FIRST"I the total number of lIN, POINTER, or 
I I I strings I TALLYING 

I 

I 2 
I 
154A1 
I (hex) 
I code 
Ifor 
I"END" 
I 

, I 

I I 
I 2 2 I 3 3 
I I 
IFFFF (hex) -18484 INumeric literallGN reference (AA) 

-I to indicate I (hex) I (BB) element I element which 
lend of I Iwhich contains Icontains the GN 
I string I (!) Ithe number of Inumber of the 
I I IQ-routine~ Ifirst0routine 
I I Ineeded \2; I 1 

I , 



, 
I 2 
, I 
,FFFF (hex) - I 
I to indicate G 
lend of string 1 
, . 

Licensed Material - property of IBM 

The field is present only if the text 
string is for a data item which is 
the object of an OCCURS ••• DEPENDING ON 
clause. 

UPSTBL 
(TIB 29) 

Bit 
0=1 

2-7 

USETBL 
(TIB 26) 

® Bits 
0 
1 
2 
3 
4 
5 
6 
7 

Purpo~ r'---rl-----------r'----~i------~--T'------~I 
Build during scan by phase,1 I 3 I 1 I 6 IVariab1el 
10 from SPECIAL-NAMES (if ~I---r'----------~I----+i------r'--~I~------;I 
not. used, must be I Icard I IUPSI-XI C IMnemonicl 
released) • ,n I number 106 I name 1 I name I 

I lof UPSI-X I I 'I I 
Phases In vol ved 
Phase 22 deletes this 
tab1eafter use. 

kD: CD : : /0. : 
" " • .J 

Count of bytes in UPSTBL 
entry. 
Card number of UPSI 
definition 
Type of entry and count. 

Meaning 
Type of entry 
11 = Mnemonic name 
10 = ON condition name 

• i 
11 I Variable 
~ I I 
I C 1 condition-I 
I Iname I 
I I I ICD I I 
I I , 

01 = OFF condition name 
Count of name which follows 

PUD!~ , I 

I 2 , 1 

i 
11 Variable 

I , 
C I con di tion-I 

Il!c;tme I 
r;-.,! I o I 

I I 

Associate USE DECLARATIVE 
information with 
procedure name. 

I I I 
\PN numberl Attributes I 
I I I 
I I ~ I Entry Freguenc~ ~1 ________ -4' __ ~~ __ ~! 

One entry for each USE sentence 
specified in.DECLARATIVES Section. 

Phases Involved 
Phase 1B builds this table from 
source program USE DECLARATIVE entries. 
Ph~e 51 uses this table to· generate 
variable entry code in DECLARATIVES. 

~ei!ningl if on 
Unused 
MULTIPLE FILE 
AFTER 
BEFORE 
REEL/UNIT 
FILE 
BEGINNING 
ENDING 

Compiler Table Formats 391 



Licensed Material - property of IBM 

USNGTBL 
('lIB 2) 

VALGRP 
(TIB 6) 

VALTRU 
(TIB33) 

Pgrpos~ 
Store dictionary pointer 
and PNs for Error or 
Label Declarative 
associated with the 
USING clause of SORT 
or MERGE verb until all 
file-names in clause have 
been processed. 

Entry Freguency 

, 
10-3 
I 
1 Dictionary 
1 , 

, i 

14-13 114-15 
1 1 , 

pointerlPNs for Error or IUnusedl 
I Label Declarative 1 1 , .. 

One entry for each file-name 
in SORT ••• USING clause. One 
entry for each file-name in 
MERGE ••• USING clause. 

Phase Involved 
Rnase 30 builds and uses this 
table during USING processing. 

Purpose 
Save Data A-text address 
constant definitions for 
group items containing 
VALUE clauses. 

IDltry Frequency 
one entry for each group 
item with a VALUE clause 
that is current by being 
processed. 

iii iii 
111111 3 1112 I 

I I 1 I 1 1 I 
110lcl2SIReiative address in object modulel ISize ofl 
I ~ ,where address constant is located®item , , " , , , , 

i i 
1 IVariable , 

I I I 
I c IAlphanumeric constant itselfl 
Im®1 , Phases Involved !~ ____ ~i ____________________________ ~' 

Fhases 20 builds this table 
from Data IC-text LD entries. 
Phase 22 adds the length of 
the group item and, if it is not 
an ALL constant, deletes the 
literal byte count~ 

.f,yrpose 
Store literals for 
VALUE ••• THRU clause in 
level-SS group item. 

IDlY::LFreg~.I 
One entry for each VALUE 
clause of this type. 

Phases Involved 
Phase 20 builds this 
table from Data IC-text 
LD entries. 
Phase 22 uses for syntax 
checking of the VALUE IS 
SERIES clause. 
Phase 3 uses this table 
to fill in P1-text 
literals with the actual 
values. 

Variable 

IclP1-text element 
~ for literal ® 

392 Section 5. Data Areas 



Data A-text prefix 

Humber of bytes to follow. 

Type of constant as follows: 

01 = Alphanumeric 
FF = ALL constant 

If not ALL constant this byte is 
deleted by phase 22. 

® In the high-order four bits: 

Licensed Material - property of IBM 

First byte contains the follouing 
code: 

Code 
32 

33 
34 
39 
75 

Type of Literal 
Numeric 
Floating-point 
Alphanumeric 
ALL constant 
ALL constant (one byte only) 

signifies the end of a series. 

o = Value is not followed by THRU 
8 = Value is followed by THRU 

The low-order bits contain the count 
of bytes in the next two fields. 

VARLTBL 
(TIB 15) 

VARYTB 
(TIB 1) 

fYrpose 
Store information about 
variable-length items 
needed for the DATATAB 
table if the SYMDMP or 
TEST option is specified. 

Entry Freguenc,I 
One entry for each 
variable-length item. 

Phases Involved 
Phase 22 builds this table 
using information in the 
GPLSTK table. 
Phase 25 uses this table 
while processing variable
length items for the 
DATA TAB table. 

Purpose 
Control GN numbers 
branched to in 
PERFORM ••• VARYING 
statement. 

Entry Freguenc:£ 
One entry for each 
PERFORM ••• VARYING 
statement. 

Phases Involve,g 
Rh~ builds this table 
from PERFORM ••• VARYING 
strings in P1-text. 
Phase 4 uses this table 
to issue P2-text strings 
with correct branches 
for different steps. 

, i 

I 3 I 3 
I I 
IDictionary pointer fori Maximum size 
I variable-length items I slack bytes) 

3 3 3 

(including I 
in bytes I , 

3 

I GN number 
I condition 
I branch 

forlVN number IGN number for IGN number 
Ifor variedlADD verb stringlfor MOVE GN 
Ibranches Ithat increments I , 

Compiler Table Formats 393 



Licensed Material - Property of IBM 

VIRPTR 
(TIB 13) 

VNPNTBL 
(TIB 29) 

~ 
00 
OF 
FO 
FF 

R!!rpos~ I 1 
Store pointers to 
CVIRTB during virtual 
optimization. 

I 2 I 
~I--------------------------------------------~ 
JDisplacement from start of PGT in the object module to I 
1 virtual I 

Entry Fregue!!£'y 
One entry for each virtual 
definition element. 

Phases llivolveg 
Phase 6 or, under the optimizer 
version of the compiler, 
phase 62 builds this table 
when it builds CVIRTB. 
Phase 6 or~se 6~ uses this 
table with CVIRTB to eliminate 
duplicate virtuals. After PGT 
allocation, each entry points 
to entry in PGT virtual field. 
Phase 64 uses this table to 
locate the constant (EBCDIC 
name) to be inserted in the 
object program listing, if the 
listing is requested. 

,fyrpose i 
Establish addressability I 

i 
1 I 

at PN definition , J 
location. IType (DIPN 

I 

Entry Freguenc,Y 
One entry for each VN 
EQUATE PN or VN EQUATE GN 
element encounterd during 
optimization A-text 
processing. 

Phases Involved 
Phase 62 builds this table 
during Optimization A-text 
processing. 
Phase 62 uses this table 
to update the ACCUMCTR 
counter by 4 for each load 
instruction to he generated 
by phase 63 for each PN or 
GN associated with an ALTER 
statement. 
phase 63 creates, for every 
entry in this table, RLD 
entries for the VNI cells in 
the PGT. The phase 
generates a load instruction 
of the current procedure Block 
into register ,11 at the point of 
definition of the PN or GN 
associated with an ALTER statement. 

~aninq 
PN, ALTER 
PN, PERFORM 
GN, ALTER 
GN. PERFORM 

I, , 
2 I 2 I 

I I 
or GN number IVN number I 

(code values are in hexadecimal) 

394 Section 5. Data Areas 



VNPTY 
(TIB 17) 

VNTBL 
(TIB 11) 

VRBDN 
(TIB 07) 

Licensed Material - Property of IBM 

,Ryrpose 
store VN numbers and 
associated prior'ity 
numbers to later compute 
the position of VNI 
cells in the object 
module. 

Entry Frgg.!!§!!£:! 
One entry for each VN 
number. 

Phases Involved 

• I 1 
1 
I priority , . 

Phase 6 or;-under the optimizer 
.version of the compiler 
phase 62 builds this table 
from segmentation elements in 
optimization A-text. 
Phase 6 or, under the optimizer 
version of the compiler, 
phase 64 sorts entries by 
priority numbers and uses 
the resulting order to 
compute the position of 
VNI cells in the object module. 

i 
I 2 
I 

numberlVN , numberl 
I 

gyrpose i' 1 store information on 
procedure~names that 
have been altered by an 
ALTER statement or are 
ends-of-range of 
PERFORM statements. 

Entry Freguenc:! 
One entry" for \ each 
procedure-name. 

Phases Involved 
Phase 4 builds this table 
from P1-text PNs and 
VNCTR in COMMON. 
Phase 4 uses this table 
to modify addresses 
and set up return VNs. 

purpose 
Describes each data item 
encountered by the phase 
in the P1-text for a 
specific verb for 
debugging. 

Phases Involved 
Phase 35 builds this 
table and uses it to 
describe each data item 
encountered by t he phase 
in the P1-text for a 
specific verb which may 
be considered for 
debugging. Phase 35 
deletes this table 
upon completion of 
processing. 

J 2 I 2 I 
I I I 
IPN numberlVN number corresponding to PN I 

I 
I 1 3 2 
I I I 
ISvitchlDictionarYIDisplace-
I Jpointer Iment in 
I CD I IDBGTXT 
'I I 

I 

I 2 
I I 
I Displacementl 
lin P1TEXT I 

Compiler Table Formats 395 



Licensed Material - Property of IBM 

Bit Meaning 
-0-- Valid entry 
1 Data item in DTAB table 
2 Generate data item debug text if statistics 

is on and duplicates is off 
3 Generate debug text twice 
4 Data item may change 
5 Duplicate Data item 
6 Data item in DTAB, subscrip~ed 

VRDEFTBL 
(TIB 14) 

XAVAL 
(TIB 2) 

XINTR 
(TI B 1) 

RYrpose 
Store information about 
the occurrences of COBOL 
verbs. 

Entry Fr~!l£'y 
One entry for each COBOL 
verb used. 

Phases Involved 
~ase 1B builds this 
table when VBREF or VBSUM 
is specified. 
Phase 22 uses this table 
to generate verb DEF-text. 

Purpo~ 
optimize use of 
arithmetic temporary 
storage by object module. 

EntryJ:reguency 
One entry for each 
8-byte slot. 

Phases .Involved 
phase 50 creates an entry 
for-eiCh slot as it is 
released. 
Phase 50 uses this table 
to obtaIn temporary 
storage that has been 
used and released in the 
object module. 

PurpQ~ 
store and analyze 
intermediate results in 
compile-time arithmetic. 

E ni£LKgg,y.!ill£.! 
One entry for each 
intermediate result. 

Phases In vol ved 
Phase-2Q builds this 
table from ID number of 
intermediate result 
passed from phase 4 
and its own analysis Qf 
operands in arithmetic 
5.tatements. 

396 Section 5. Data Areas 

I I ---,-Ii' 
11112 1111 111 

1 I -+- I -+--t 
148100lNumber of IEOIAlphabetic verblCOI 

loccurrencesl Isequence numberl 
• , , I 

I t i 

11 11Variable 11 
I I I II 
4LengthlFBIVerb-textlFFI 

C 1 

I 2 1 
1 I 
lID number of 8-byte slot available in Working-Storage I 
~--------------------------------------------------------~ 

r ----------~Ir_-----------, 

I 16 I 2 I 2 
I I I 
I Compile-time I Length after I Length afterl 
Ivalue in internallscaling in Iscaling in 
I decimal linternal decimallbinary 
L I __________ ~I __________ ~ 

Iii , 

I 2 2 I 2 I 2 I 
• I I -f 
INumber of INumber of I Length I Relative I 
Idigits afterldecimal placesloccupied I pointer in I 
Iscaling lafter scaling lin Working-I working- I 
I I IStorage I Storage I 
, , I 



Phase 50 uses this table 
to process compile-time 
arithmetic verbs. 

Licensed Material - property of IBM 

I , 

,1 1 2, 
I I. , , 
IRegisterlCharacteristicslIntermediatel 
Inumber lof ope~d Iresult I 
I I 0 I nu mbe r , 
" , I 

Bit ~nin9..&-if on 
-0- Register used in double-precision 

mode 
1 Overflow could occur 
2 Double-precision floating-point 
3 Operand is in register 
4 Operand is a literal 
5 Operand is floating-point 
6 Operand is generated constant 
7 Operand is literal ZERO 

:RPT 
[B 3) Purposg 

store subscript and 
index information for 
optimization. 

EntrLl!:gg~:l 
one entry for each sub
scripted or indexed item. 

Phases Involved 
Phase 50 builds this 
table from subscript verb 
strings passed by 
phase 4. 
Phase 50 uses this table 
to calculate address of 
subscripted or indexed 
item, or to generate 
object code for the 
calculation. 

. .t 

i .• i 
2 2 I" 3 I 4 

I I I 
In+1lNumber of 10lNew addressing IDictionary pointer 

,subscriptsl Iparameter of Ito unique identifier I 
lor indexesl Isubscripted or lof subscripted or 
! ! ! indexed item C9. indexed item 0 

3 

IFlaglDictionary pointer 
I byte I to unigue identifier 
I (;)IOf first subscrip~ 
1 ~Ior index-name ~ 

Compiler Table Formats 397 



Licensed Material - Property of IBM 

Bits 
0-3-

Megnin.9 CD Bits f.Qll~.:l:.§ 
0-9 Zeros 3 = Byte 2 contains number of 

register which contains 
new address· at object time. 

10-22 Dictionary section numb 

6 Bytes 2 and 3 contain the 
number of a SUBSCRIPT CELL 
which contains the new 
address at object time. 

If bits 0-3 contain any other value, then 
the configuration is as follows: 

Q) 

0 

23-31 

Bits 
0 

1-7 

Bi.:l:2 
0-1 

Displacement in section 

Meanin~if-2!!. 
Literal 
Unused 

ConiSll.:l:§ 
Zeros 

2-14 Dictionary section numb 

4-15 
16-23 

XSSNT 
(TIE 4) 

Fiel,£! .tleanill.9 15-23 Displacement 
i Type of BL containing base 

address of 
0000 
0001 = 
0100 = 

area: 
BL 
BLL 
SBL 

d 
k 

Displacement from base address 
BL number 

PUn!!2§.§ 
Store pointers to 
XSCRPT table dur ing 
calculation of sub
scripted or indexed 
addresses. 

Entry Fr.§.9.Y.§1l£.Y 
One entry for each entry 
in XSCRPT table. 

I I i 

I 2 I 2 I 
I I I 
lID number IDisplacement in XSCRPT I 
lof subscriptltable of new address I 
lor index I parameter of subscriptedl 
Icomputation lor indexed item I 
I I , 

Pha.ses Involved 
PhaseSObuildS this table 
while building XSCRPT table. 
Phase 50 uses this table 
to~ocate entries in 
XSCRPT table. 

398 Section 5. Data Areas 

in section 



The types of compiler text produced by each 
phase are given in Figure 61. In this 
appendix, there is a separate section 
describing each type of text. The sections 
are in the folloHing order: 

.. IPTEXT 

" Data IC-text 

o ATF-text 

" Data A-text 

.. Proced ure IC-text (PO Form) 

.. Proced ure IC-text (P1 Form) 

.. procedure IC-text (PH Form) 

.. Proced ure IC-text (P 2 Form) 

Q ATl1-text 

.. Procedure A-text 

.. Optimization A-text 

Q Procedure A1-text 

.. E-text 

II XREF-text 

., Debug-text 

With some exceptions, one IC-text 
element represents one sourC8 element. A 
source element is a COBOL reserved word, a 
punctuation symbol, an arithmetic operator, 
a relational symbol, an EBCDIC name, or a 
literal. The major exception is that one 
IC-text element represents a complete data 
item description. Other exceptions are: 
the word DIVISION is suppressed in division 
headers, the word SECTION is suppressed in 

Licensed Material - property of IBM 

section headers, and standard 
paragraph-names are omitted. 

All internal text elements begin with an 
identifier byte. In IC-text and E-text the 
first two bits of ~his byte contain a code 
with the following significance: 

Code 
01 

10 
11 
00 

Meaning 
1 byte follows 
2 bytes follow 
3 bytes follow 
The byte immediately following 

this gives the number of 
bytes that follow it. 

NOTES ON TEXT ELEMENT FORMATS 

.. The top row of figures shous the byte 
numbers occupied by each field. except 
where the field is preceded by a 
variable-length field • 

.. 1J4~i%ili:~~?~ii;;i!:;;,§Ji~Ii;~5f!; 1 e fi ne 0 ptio na 1 
fields or a series of similar fields • 

.. c = the number of bytes in the iig1~ 
that follows. 

.. n = the total number of bytes that 
follow in the remainder of the text 
elem!U!i. 

• 1b = this field is one byte long. 

• s = size, in Ilord.s, of the block 
section or area to lihich the elemenT. 
refers. 

• Pairs of characters in byte 0 are 
hexadecimal numbers. 

Internal Text Formats 399 



Licensed Material - property of IBM 

BASIC LISTER FORMAT 

r i , t i 
1 1 1 1 1 1 1 Variable I 
1-----f----f---+I-----4' 
Itype codelcard Ilength Itext I 
I f::'\ I column I I I 
I 0 I number I CD I I 
L ' , , , 

SYNTACTIC AND REFERENCE MARKERS (ONE BYTE) 

r'-----.... 
I 
I 
It yp e0code 
I 3 
L-

SYNTACTIC AND REFERENCE MARKERS (TWO BYTE) 

r- i 

I I 
, I 
Ityp~e code Imodifier code 
I 4 I L--- ~_~! _________ ~ 

(2) Type 
Code 

1!!u.l. 
50 

~s.n.~rul 
A COBOL source name (subject to 
cross-referencing) 

51 
52 

53 

54 

55 

58 

59 

A COBOL reserved word 
Syntactic string with no special 
lister importance (for example, 
text from a note paragraph) 
Left punctuation (printed on left 
end of string with no intervening 
blanks) 
Right punctuation (printed on 
right end of string with no 
intervening blanks) 
A prose element from an *-comment 
card 
Initial ETEXT elements (with card 
numbers) 
Subsequent ETEXT elements 
(w ithout card numbers) 

Length in bytes of the text in the 
following variable field. -

t::\ Type o Code 
(Hel) 
OC 
xx 

33 
34 

35 

Me~i.!!.SIL!!2~~ 
Marks beginning of a COBOL source 
Definition (range is 0-51 and 
denotes the nesting depth) 
Marks beginning of a COBOL source 
Statement in column 8, 10 or 
margin B 
Column 12 org re at er , 

400 Section 5. Data Areas 

3C 

3D 
3E 

3F 

36 

3A 

37 
38 

39 

o Type 
Code 
1I.§:l!; 
45 

44 

respectively 
Marks beginning of a COPY 
statement 
Marks end of a COpy statement 
Marks beginning of a copied 
library member 
Marks end of a copied library 
member 
Harks beginning of a reference to 
a source definition 
Harks beginning of a reference to 
the (TALLY, TALLYING) register 
Indent to the left two places 
Indent back to the right two 
places 
Cancel all outstanding BCLSEs. 

Meaning 
Indicates a COBOL source clause 
and the modifier code indicates 
where this clause belongs in a 
standard ordering. In phase 08, 
a COBOL source statement 
continuing several BCLSn -
clauses will have these sorted in 
ascending sequence on the 
modifier code value prior to 
printing and punching of that 
source statement. 
!odifier= C'E'.' Marks beginning 
of erroneous, .issing, or out of 
order COBOL source text. 



44 Modifier = caRl. Marks end of 
erroneous COBOL source text. 

The following codes have a four-byte 
format, and are used by phase 06 for 
creating and imbedding cross-reference 
information into the IPTEXT which is passed 
to phase 08: 

Code 
Hex n~sningLQsag~ 
qa- Marks end of a source DEFN 

reference (a source name followed 
by zero or more qualifiers). 
Phase 05 creates this and phase 
06 fills in the statement field. 

49 Marks end of a reference to a 
Procedure Division definition. 

The following codes are created by phase 
06: 

Code 
H.~ 
4A 

MeaningLUsage 
Information collected at the 
point of definition indicating 
the type and statement number of 
the reference. 

Licensed Material - Property of IBM 

4B Information collected at the 
point of definition indicating 
the type and statement number of 
the reference. May be moved to 
another definition prior to final 
output to phase 08. 
(Note: IPTEXT information passed 
to phase 08 will contain no 
CONDREFs. ) 

4C Tells phase 06 the statement 
number of the Procedure Division 
section from which the following 
CONDREFs came. 

The format for X'48' through X'4C' is as 
follows: 

r---~----------r---------------------, 
1 1 2 I 

• I I I 
ItypelreferencelReference/definitionl 
Icodeltype Istatement number I 

, J 

Internal Text Formats 401 



Licensed Material - Property of IBM 

LD ENTRY 
r i , 

I 01112 
.. I I 
1031nlLevel I 
I I I indicator! 

.-
13-5 
I--
ISource card 
I 

, , I , i 
16 17 ,8-9 110 , 11 
I I 1 I I 

numberlswitchlSwitchlOCCURS DEPENDINGISwitchlNumber of 
I byte I byte ION maximum Ibyte I indexes 

I I I 1 
I I I CD I 

I I 

0 
I 0 

I occurrences I CD 
I following 

I 1 I I 
., I 

L---L--L-____ J , I I I I 

0- r r I I I , i i i , 
I 12 I 131Variable 11 b I Variable 11 bl Variablel1 bl Variable IVariable I 

• -f--t- I I I I , I I ~ 
I Number oflc I Name of Ic I PICTURE Ic I Encoded I c IREDEFINESIOCCURS DEPENDING ON I 
1 keys I I data iteml I (actual) I I VALUE I Idata-namelpointer I 
I following I I I 1 CD I I 1 I 0) I 

CD 
I 

I I I I I I I 01 1 1 I 
L I I .I I I I 

__ ---L-
I I J 

R~i~: A series of logical records can follow the LD entry. The types of records are 
ordered as follows: 

1 i i I 

Value for 11b 11blVariable I ., condition-name Ir------ I +-----------. 
with multiple val ues 1 Switch byte (] c I Encoded 

Indexes (first) 
and/or 

Keys (second) 

Object of RENAMES 
or 

R EN AM ES T HRU 

VALUE I 
L- I , I 

r-----------~I-T.--·---------------------------__, 
11b 11blVariable I 
I- I I ~ 
IFlag byte @Ic IIndex-name or key-name in EBCDIC I 
~ , ~ 

rr-----------r'--'r-- --------, 
11b 11blVariable I 
I- ----~=+--+------------~I 
I ID code @IC I Na me in EBCDIC I 
L-- " ____ J 

SD ENTRY 

ED 

402 

~,.-------, 

I 01112 I 
r--+-~-----------~ 
1031nlLevel I 
I 1 lindicator 361 
II I (he x) I 

I , J 

~----------------'-'I------, , 
13 14-6 17-8 19-10 I 
l-=+- I I ~ 
1@lsource card numberlMinimum RECORDIMaximum RECORDI 
I I ICONTAINS valuelCONTAINS valuEI 
I I I I I 
'--....L- ' , J 

r--.---------.----- T'--T'-------------------------------------------------------" 
111112 113-20121122-51 I 
~~-------+-----+-+---- .-------------------------~ 
I@SAME RECORDIUnusealc ISor":-name in EBCDIC; low-order unused bytes padded withl 
I IAREA numberl I Iblanks I 
L--1. _______ --'- ----I 

ENTRY 
I I I , 1--. I I 

I 01'12 I 131 Variable 11b I 
l- I I of ..-;- -+--l 
I031nlLevel I IclUser-assigned 1001 
I I lindicator 341 I IEBCDIC report-name I 
I 1 I (hex) I I I I 
L I I --I I I --'-J 

Section 5. Data Areas 

, 
I , 
I 
I 
I 
I 

J 



FD ENTRY 
r i , , 
I 011 12 I 
rl-+I~I~----------I 
1 0 3 1 niLe ve 1 I 
I· I lindicator 381 
I 1 I (hex) I 
I I I I 
~I~I~~I--.---------~ 

Licensed Baterial - Property of IBM 

r i , I Iii I 

I 3- 5 16 - 131 14 115 1 16 11 7 11 8 -1 9 1 
I~--------+I~-Ir- +-- I I I --; 
ISource cardl @ISwitchlSwitchlSwitchlBuffarlDisplacement of I 
Inumber I' Ibyte Ibyte I byte loffsetlentry for file in I 
1 1 I ~ I 1 Ivalue IPIOTBL I 
I I 1 ~ 1 @ 1 @ 1 I I 
I "" I , J 

.---- i , • i -,- I 
120 121 122-23 124-25 126-27 128-29 I 
a- --+- I I I I ., 
INumber of areaslSwitchlInteger-1 IMinimum IMaximum INumber of I 
Ispecified in Iby~ Ispecified in Inumber of Inumber of ITRACK LIMITI 
IRESERVE clause I ~ IBLOCK CONTAINSlrecord by tes I record bytesltracks I 
l I I , 

..-- , I I I I I I , 
130-31 132-33 134 135 136 137 138 139-42 143 
a--- 1 I I 1 I· I 1 I of 
IUnusedlDisplacement oflSAME ISwitch 1 swi tch ISwitchl SAME 1 Unusedl Unusedl 
1 I entry for file IAREA Ibyte I byte Ibyte I RECORD I 1 I 
I lin CKPTBL Inumber I 

@ 
1 I IAREA I 1 I 

1 1 I 1 1 @I@ Inumberl I I , I I I • -..&.-. I I I I 

I , iii -.,. --T', ---,r------"T'~--T,---" 
144-45 146 147 148-49 150 151 152 153-54 1551 
a--- I I I I' I I I I I 
IBLOCK IswitchlCount of ID-IDisplacementlUnusedlLINAGEICount of IUnusedlc I 
I CONTAINS Ibyte Itext ele- lof IDs in I I IPASSWORDS I I I 
Imaximum countl Iments fol- IINDTBL I I Ifor 1 1 I 
I I Ilowing IDCNT I I" ALTERNATE I I' 
I 1 I 1 1',<;;\ 'KEY' I I I 
I I@ I , I I@I I I I I 
, f I , '" " , 

.--- ,- iii i 
IVariable IVariable I variable I Variable I Variable IVariable 
a--- I --rl-----------+I----------~I------------+I----------~I 
IFile-name ITRACK INOMINAL KEY I ACTUAL KEY andlRECORD KEY andIREORG-CRITERIAI 
lin FD e~trYIAREA sizeland qualifierslqualifiers Jqualifiers ,data-name and I 
I I I· 1 I I qualifiers I 
! ~ @ ! @ ___ !~@..;;..3 ___ --I-! _@..;;;23~ __ ---L!~@",-3 __ ---I~ 

I ~ i ,i 'i i 
tVariable I Variable IVariable I Variable IVariable IVariable I 
a--- I I 1 I 1 , 
IFILE STATUS IPASSWORDIRELATIVE KEY ITOTALING AREAILINAGE ,FOOTING I 
Idata-name andldata-name andland qualifiersldata-name andldata-nameldata-name I 
I qualifiers I qualifiers I qualifiers lor lor I 
I I I I!int~er lint~er I 
I@ I@ @ I@ ~I~ I 
'-----=-' , '.J 

Variable Variable 

Internal Text Formats 403 



Licensed Material - Property of IBM 

ID ENTRY 
r-- i i 
I 0 2 3 111-6 I 
• 1 ., 
IIC ICount IIC IFlaglCard I 
Itypeslof fixedllevellbytelnumber I 
I Ipositiont I I I 
I ' 03' I' 05' t@ I@ 1 I 
, I '" , 

CD ENTRY 
r iii i', 
101112 13-5 16 jVariable I 
t~l~t----------+I---------------rI----~Ir---------" 
103lniLevel ~Isource card numberlSwitchlCD-name inl 
I I I indicator ~I Ibyte . 1 EBCDIC 1 
Lt~~~!_(_h_eX_) _______ · ~I ________________ !~.~~~! _________ l 

li~i2: If bit 0 is set to 0 in the Switch byte, the following fields are also generated • 

.-- iii • ii' , • • IVariablelVariableiVariablelVariablelVariablelVariablelVariablelVariablel 1 variable I 

• I I I I I I I I , f 
IData- I Data- IData- I Data- I Data- IData- IData- IData- I I Data- I 
Ina@-1 I name-2 Iname-3 I name-II Ina@-s I na~-6 Ina@-7 In@-a I Ina~-'l I 
1 26 ~® ~® l@ I 2 I 2 I 2 I 2 I I 2 I 
I I I I I ~ . ~ 

Note: If bit 0 is set to 1 in the Switch byte, the following fields are also generated. 

I , Ii, i i 
IVariablelVariablelVariablelVariablelVariablelVariableI 

IData
Iname-l 
!@ 

I Data
Ina®-2 
I 26 

I Data
Iname-3 
!@ I . 

CRITICAL PROGRAM BREAK 
i i '1 

10 11 I 
,. I I 
1421Type of break I 
II ® I 
L I ' 

I @ DESTINATION TABLE ENTRY: 
I 

1 0-1 
l 
tnumber 
lof 
I occurrences 
I , 

, 
1 2 
I 
I number 
lof index 
I entries 
I , 

I 
I Variable 
I 
1 index
I name-l 
I 
I@ , 

1 @ INDEX-NAME FORMAT: 
.-- I I 

1 0 I I Variable 
I 1 1 
I Prefix I 1 EBCDIC for 
I I 1 index-name-n 
I Oil I C 1 
I.-

404 Section 5. Data Areas 

I Data-. 
In~-II 
I@.§J , 

, I 

IVariablel 
I , 
I index- I 
I name-2 I 
I I 
I I , ~ 

I Data
Ina®-s 
I 2 , 

••• 

1 Variable 
I 
I index
Iname-n 
I 
I@ , 

1 

I 
I 



CD 

® 

CD 

Code 
(hex) 
01-31 

32 
33 
34 
36 
37 
38 

39 

Bits -0-
1 

2-4 

5-7 

Bits 
-0-

1 
2 
3 
II 

5 

6 
7 

Bit§. 
o 

2-4 

= 
= 
= 
= 
= 
= 
= 

= 

~lliI 
Levels 01-49 
Level 77 
Level 88 
RD 
SD 
CD 
FD, or in Report 
Section, 
Special RD elements 
Level 66 

Code 
'-;-BLANK WHEN ZERO 
1 = JUSTIFIED 
!ype of VALUE Clause 
000 = No clause 
OC1 = Alphanumeric literal 
010 = Numeric literal 
011 = Floating-point literal 
100 = Figurative constant or ALL 
lC1 Figurative constant ZERO 
111 Condition-name with 

multiple values 
Type of USAGE 
000' No clause 
OC 1 = DISPLAY 
010 = COMPUTATIONAL 
011 = COMPUTATIONAL-1 
100 COMPUTATIONAL-2 
101 COMPUTATIONAL-3 
110 = DISPLAY-ST 
111 INDEX 

Code 
1 = 
1 = 
1 = 
1 = 
1 

= 

OCCURS DEPENDING ON 
REDEFINES 
PICTURE 
COPY 
Internal REDEFINES 

(RD entry) 
S.nnnn description and 

there,for e the PICTURE field 
contains the E.nnnn name 
from which the PICTURE 
information is to be 
extracted. 

1 = RENAMES data -name follows 
1 = SYNCHRONIZED 

Meaning. if SYNCHRONIZED 
o = SYNC LEFT 
1 = SYNC RIGHT 
RENAMES 'THRU data-name 

follows 
001 = SIGN is overpunch 

trailing 
011 = SIGN is overpunch 

leading 

Licensed Baterial - Property of IBM 

101 = SIGN is separate 
trailing 

111 = SIGN is separate 
leading 

5 If there is an OCCURS 
6-7 Unused' 

Contains zeros if this value is a 
condition-name with multiple values. 
These values follow the LD entry. 

VALUE encoded like a figurative 
constant, literal, or ALL character in 
Procedure IC-text, except: for numeric 
literal, digits not packed but in EBCDIC 
format, with sign in zone of low-order 
digit. 

Note: This field contains zeros when 
the-item is a condition-name that is 
part of a VALUE ••• THRU .• ~clause. 

(2) Zero if no REDEFINES clause. 

o a. If there is an OCCURS DEPEN DIH"G 0 N 
clause, the field is a 16-bit number 
representing displacement from start 
of OD2TBL of entry for object of 
clause. 

® 

b. If internal REDEFINES (RD entry), 
the field is a 16-bit number 
representing the displacement which 
added to the object gives address of 
REDEFINES subject. 

c. If neither, field is eight bits of 
zeros. 

Bits 
0-2-

3 
4 

5-7 

,£ontents 
Zeros 
1 
o Either value is upper limit 

of THRU range, or THRU was 
not speci fied. 

1 = Value is lower limit of 
range; upper limit name 
follows. 

Valu!a !1~in9. 
001 Alphanumeric literal 
010 Numeric literal 
011 Floating-point literal 
100 Figurative constant or ALL 
101 Figurative constant ZERO 

InternaL Text Formats 405 



Licensed Material - Property of IBM 

@ ~it.§ 
0-3 

4 
5 
6 
7 

l1§.l!ning 
Zeros 
Unused 

@ 

Code 
22 

23 

Bits 
0-5 

6 
7 

~it.§ 
0-2 
3-6 

7 

1 INDEXED BY 
1 = DESCENDING KEY 
1 = ASCENDING KEY 

Meaning. 
This name qualifies the name 

that follows. 
This is either a name without 

qualifiers, or it is the last 
(qualified) name in a string. 

~teni2 
Unused 
1 = SAME RECORD AREA 
Un used 

~lli!l12 
Un used 
Code 
1000 
0100 

B§£2I..L!Q.ll!t!. 

0010 
0001 
1 = ASCII 

F 
V 
U (invalid) 
S 

collating sequence 

ddname portion of system-name of file, 
padded with blanks, if necessary. 

Bits Cog.§ 
--0- 1 = RANDOM ACCESS 
1-3 fgSil Qrganization 

000 SEQUENTIAL'S' 
001 INDEXED 
010 DIRECT with REWRITE 'i' 
011 DIRECT 'D' 
100 RELAT IVE 

4-6 Reserved 
7 1 = RESERVE ALTERNATE AREA 

Bits -0--
1 
2 
3 
4 
5 

Meaning.jL2.!! 
OPTIONAL in SELECT 
SAME AREA 
Unused 
SAME RECORD AREA 
SAME SORT AREA 
This entry contains pointer to 

CKPTBL 
6 This entry contains pointer to 

PIOTBL 
7 Word 'ALTERNATE' specified in 

RESERVE clause 

406 Section 5. Data Areas 

@ 

@ 

§.ill 
o 
1 
2 

3-4 

5-6 

7 

2 
3 
4 
5 
6 
7 

Bits 
0=6 

7 

Bits 
0=3-

4 
5 
6 
7 

Code 
,;-COPY 
Unused 
RECORD CONTAINS CHARACTERS 
BLOCK CONTAINS option 

00 = Not specified 
01 = RECORDS 
10 = CHARACTERS 

LABEL RECORDS option 
00 Not specified 
01 = STANDARD 
10 OMITTED 
11 = Da ta':'name 

1 = REPORT clause 

~de 
TRACK AREA 

00 = Not specified 
01 = Data-name 
10 = Integer 

1 = RELATIVE KEY 
1 = NOMINAL KEY 
1 = ACTUAL KEY 
1 = RECORD KEY 
1 = WRITE ONLY 
FILE STATUS specified under 

SELECT 

~nin.!IL-if ill! 
Unused (4 multi pIe files) 
RESERVE integer 

not in valid range 
RECORD OVERFLOW 

Meaning« if on 
Unused 
CORE-INDEX 
. REORG-CRIT ERIA 
ASCII file 
Unused 



~ Bits Meanin!lL-.iLm! -0- TOTALING AREA 
1 TOTALED AREA 

(Unused after phase 1B) 
2 Format F 
3 Format V RECORDING MODE 
4 Format U 
5 Format S 

6-7 Unused 

Either name containing size of TRACK 
AREA preceded by count-byte of 
character or 2-byte field giving 
integer TRACK AREA count. 

Subfield Contents 
2-byte-count of bytes in 

all the subfields that 
follow in this field. 

-,--
2 Name of highest level 

qualifier preceded by 
1-byte count of 
characters. 

n Name of lowest-level 
qualifier preceded by 
1-byte count of 
characters. 

n+1 Zero. to separate this 
field from the next. 

If the option is not specified. the 
field consists of one byte of zeros. 

Series of all label record-names. each 
preceded by a 1-byte count of 
characters. 
Bi! Me~ninq 

o 1 = OUTPUT 
1 1 = Variable entries follow 
2 1 = CD for INITIAL INPUT 
3 1 Destination tabl,e specified 

Byte 
o 

1-c 

!12ning 
Count of bytes in the field that 

follows (c) 
EBCDIC name of data-name-n 

If a data-name is not specified. the 
field will consist of one byte of 
zeros. 

Licensed !aterial - Property of IBM 

Code 
@ J!l~l 

01 
02 
03 
04 
05 
06 
OE 

FSEVAM 
Bit 
-0 

1 
2-4 

2 
3 
4 
5 
6 
7 

LINESW 
Bit -'0 

1 
2 
3 
4 
5, 
6 
7 

Type of Break 
Data Division 
File Section 
Working-Storage Section 
Linkage Section 
Report Section 
Procedure Division 
Communication Section 

Meaning 
1 - 'AS' specified as 

organization parameter 
1 = no organization parameter 
ORGANIZATION clause 
RELATIVE 
INDEXED 
SEQUENTIAL 
ACCESS MODE DYNAMIC 
ALTERNATE RECORD KEY(S) 
PASSWORD specified 

Meaning 
LINAGE clause specified 
FOOTING option specified 
TOP option specified 
BOTTOM option specified 
Object by LINAGE is data-name 
Object by FOOTING is data-name 
Object by TOP is data-name 
Object by BOTTOM is data-name 

If the field is a data-name. it will be 
preceded by a one-byte count field. If 
in teger. the field will be eight bytes 
in length. If LINAGE clause or other 
three clauses are not specified, each 
unspecified field will be replaced by 
one byte of zero. 

Bit 
0-2 

3 
4 
5 

6-7 

!1eaning 
Level is ID 

Meaning 
Unused 
1 Another ID follows 
1 = PASSWORD specified 
1 = DUPLICATES specified 
Unused 

Internal Text Formats 407 



Licensed Material- Property of IBM 

...---r-T I I i i I • I 
Level 10 1112 13-5 16-7 18-9 110 111 112-13 I 
01-49 • I I +- I I I I I of 
or 77 1031 nl Level ICard IFlaglMaximum INumber INumberlLength of thel 
items I I I number Inumber I I number of lof lof litem in the I 

I 1m I 10 I occurrences I indexes I keys lobject module I 
I I I ..l.-

14-Vs.riable 

IEBCDIC name 
lof item 
I 
10 

I 

I I I 

I I 
I " Level 10 111 12 13-5 IVariable 

89 r-+-t------+ I I I 
items I031nl IX'33' ICard IEBCDIC 

CD 

I I I 
I I~ 
I 1\lA 
I 'I 

I (Level 
I number) 
I , 

Inumber Iname of 
I lite0 I I 3 
I I 

The maxmimum length of any element is 
204 bytes. 

The flag indicates the origin of the 
element, as follows: 

Bit MeMing 
-0- RENAMES ••• THRU clause 

1 Next element is an FD 
2 Next element is an SD 
3 Next element is an RD 
4 Conditional variable 
5 Data A-text follows 
6 VALTRU table entry 
7 VALGRP table entry 
9 ODO 
9 REDEFINES clause 

10 USAGE is not DISPLAY 
11 Item is or is in a LABEL record. 
12 Internal redefines 
13 RD 
14 RENAMES clause 
15 SYNCHRONIZED. 

The name is prefixed by a 1-byte count 
of its length. 

Either: 

1. A 1-byte length count followed by 
the objects of the REDEFINES 
clause, if flag bit 9 is on; or 

408 Section 5. Data Areas 

I I I 

I 
IVariable 
I 
I Partial 
I dictionary 
I a ttribu tes 

!~ 

2. A 1-byte length count followed by 
the object of the internal 
REDEFINES clause, if flag bit 12 is 
on; or 

3. A 1-byte length count followed by 
the Report section (RD) name, if 
flag bit 13 is on; or 

4. The field does not exist. 

Either: 

1. A 2-byte OD2TBL table displacement 
if flag bit 8 is on; or 

2. A 2-byte internal redefines 
displacement, if flag bit 12 is on; 
or 

3. The field does not exist. 

The attributes are prefixed by a 1-byte 
count of their length 

Either: 

1. 

2. 

3. 

4. 

A 2-byte VALGRP table displacement 
if flag bit 7 is on; or 
A 2-byte VALTRU table displacement 
if flag bit 6 is on; or 
A 2-byte VALGRP table displacement 
followed by a 2-byte VALTRU table 
displacement if flag bits 6 and 7 
are ·on; or 
The field does not exist. 



Licensed Haterial - Property of ZBH 

DCB ADDRESS 
..--r 
I 011-3 
• I 
1041Relative address 
I lobject module of 
, . ' 

DECB ADDRESS 

I 

14 
I 

in INumber 
DCBI 

I 

assigned from DCBCTR in COMMONI 
1 
I 

.--t ' i I I 
1 011-3 14 15-617-81 
r-+ ,----------------+I----------------------·---------41--~_4 
1081Relative address in INumber assigned from DECBCT in COMMON 100 s 
I ,object module of DECBI I 
, .' , 

BLOCK ADDRESS 
ii' i. i I 
10,1-3 14 15-6/1-81 
I 'I I , 
~OCIRelative address pointedlBL number -- first base locator numberlOO s 1 
I Ito by base locator lassigned to file from BLCTR in COMMON I 1 
I I described in next field I 1 1 

, , oJ 

FIB ADDRESS 
i i I , 

I 011-3 14 1 
I I I r 
1141Relative address in 
I lobject module of 

IFIB number -- File Informationl 
IBlock number assigned from 

BlocklAHICTR in COHMON I IFile Information 
I , 

COUNT INFORMATION 
.- I 
I 011-3 
I I . 
120lRelative address following 
I lo-routines during Data-A-text 
I ,'processing 

WORKING~STORAGE SECTION ADDRESS 
, I I 

1011-3 14 
I I . I 

'.. , I I 415-617 through ~ + c 
I I 1 
1001 c tActual constant I 
I I I (COUNT table information} 1 
1 I I I 

I , 

15-11 
I 

1241Relative address in IBL number -- first base locator number assigned I s 
I lobject module of Ito Working-Storage Section from BLCTR in 1 
I Iworking-Storage sectionlCOHHoN 
, ' I 

CONSTANT DEFINITION 
• iii I i 
1011-3 14 15-6/1 through 6 + c 1 
'-1 I 1 I I 
1281Relative address inlType of I c IActual constant. If ALL, I 

lobject module wherelcon~ntl loccupies only first byte. I 
!constant is located! \.!)! 0: ® ! 

I 

Internal Text Formats 409 



Licensed aaterial - Property of IBM 

:..; 

ADDRESS CONSTANT DEFINITION 
r--T iii 
I 011-3 
, I 
12CIRelative address in object 
I I module where address . 
I Iconstant is located 

14 15-7 I 
I .. I I 
ISize, in bytes, I Relative address in I 
lof address lobject module specified I 
I constant I by .address constant I 

DELIMITER 
i "1 

I 0 I 
~ , 
101@1 , , 

Q-ROUTINE IDENTIFICATION 
rr~.r--------------------------------------------, 
I 011-2 I 
r~----------------------------------~' 1341GN number -- generated procedure-~ame numberl 
I lassigned from GNCTR in COMMON I 

BL REFERENCE 
i I 
I 011-3 
• I 
1381 Relative address from beginning 
I lof the program where dis-
I I placement for base locator cell 
I Idescribed in next field is to 
I Ibe placed 
• I 

• 14 
I 
IBL number -- base 
1 number 
I 
I 
1 
I 

locator I 
I 
I 
I 
I 

BI.L REFERENCE 

CD 

410 

r--T------------------·--------------'I--------------------------" I I) 11-3 14 I 
I I --~.-+I--------------------~I 
13CIRelative address from beginning IBLL number -- base locator I 
I lof the program where displace-. Inumber I 
I I ment for base locator cell . I I 
I I described in next field is to· I I 
I I be placed I I 
, , , I 

Code 
.1hnl 

00 
01 
FF 

Meani!Ul 
Binary 
Alphanumeric 
ALL constant 

or figurative 
constant 

o If the constant is an ALL ~onstant, the 
format differs beginning with byte 5 
as follows, where d is tile number of bytes 
reserved for the constant: 

iii 
15-61718 through 7 + .c 
• II . 
I d I c.l Value specified for the constant 
L---L~' ________________ ~--------------~ 

This element is written un SYSUT4 by phase: 51 if the SYMDMP or the STATE and OPT 
options are in effect. It identifies the end of· Data A-text, DEF-text, andE-text 
and the beginning of Debug-text, which phase 63 writes on SYSUT4 for use by phase 65. 

Section 5. Data Areas 



PROCEDURE IC-TjXT (PO FORMATl 

PROCEDURE-NAME DEFINITION 
r" , , 

I 01112 through 1 + c 
.. I I 
105lclProcedure-name 
L ' , 

QUALIFYING EBCDIC NAKE 
ii' 
I 01112 through 1 + c 
.. I I 

in EBCDIC I 

I 22lclUser-assigned name in EBCDIC 
I 1 Ithat qualifies procedure-name 
I 1 lor data-name 
, " ------.----------------~ 

EBCDIC NAME 
oj i i 

1 01112 through 1 + c 
.. I I 
I 23lclUser-assigned name in EBCDICI 
L ' , 

REPORT WRITER RECORD CONTAINING CODE OPTION 
r I i 
I 0 I 112- 6 
.. I I -----~ 
124105160FOFOFOF1 or F2 

EBCDIC DATA-NAME OF GIVING OPTION FOR USE 
ERROR DECLARATIVE 

r" i i , 

I 0.1112 through 1 + c I 
} I I f 
1251clUse assigned EBCDIC name that wasl 
I I lobject of GIVING option I 
L ' , .J 

GN'S FOR ERROR/LABEL DECLARATIVES 
r iii 
I 01 112-3 14-5 
.. I' II 
12610AIGN number IGN number for 
I I for STANDARDlfile hea~ 
L ! ERROR Q) --1:abels '-.!J 

r" i 
16-7 18-9 
, I 
IGN number forlGN number for 
Ifile tra~er lend-of-v~.e 
llabels \!) llabels \!) 
L--- • 

r-------------------------------" 110-11 I 
• I 
IGN number for beginning-of-volumel 
llabels Q) I 
L ________ ~ ________________ ----~· 

Licensed Material - Property of IBM 

NOBERlC LITERAL 
r--i iii 
I 01112 13 I 
I I 1 I f 
1321nlPositions to IPositions to I 
, I Ileft of decimallright of decimal I . " 

r--- -, 
14 through 1 + n I 
.. I 
ILiteral in packed decimal formatl 

FLOATING-POINT LITERAL 
i , i i 

I 011 12-9 I 
I I I .. 
1331081Literal represented as I 
1 'Idouble-precision I 
, 1 ,floating-point number l 

ALPHAHUMERIC LITERAL 
I i 1 
, 01112 through 1 + C 
r-;-I 1 
1341clLiteral in EBCDICI 
L-4-~ ______________ ~ 

"EXHIBIT NAMED" NAME 
r t , I 

1 0,112 through 1 + c I 
~~I~I~---------------f 
,351clEBCDIC name used in EXHIBIT I 
I I I NAMED statement I L-~~ ________________________ ~ 

LISTIHG A-TEXT FOR PROCEDURE-NAMES 
iii , 

I 01112 through 1 + c I 
.. I I.. I 
,371clEBCDIC procedure-name I 
I 1 Ibit 0 of preceding field is I 
1 I I set to 1 I 
I ,., t 

Internal Text Formats 411 



Licensed Baterial - Property of IBM 

LISTING A-TEXT FOR VERBS 
i I I i I 

1 01112 through n In + I 
• I 1 I , . 
1371nlEBCDIC verb 
I 1 I 

1 Alphabetic ver.b 1 
Isequence number ·1 

L ' , , 

CRITICAL PROGRAM BREAK 
~i~i~-------' 

1 011 1 
I--+- (.)',';2 1 
1421Break code \.v. L __ 4-_________ ~i 

VERB 
r--,--
1 011 
.. 1 
1441Verb cOde01 

i 

RELATIONAL CODE 
r 
1 0 1 
I 
150 06 (hex) = Equal 

i 

1 
1 
1 

1 08 = Greater thanl 
1 OA 
I OC 
L 

PARENTHESIS 
, , 
I 011 
, I 
152100 (hex) 
1 101 

= Less than I 
= Not equal I 

= Left parenthesis I 
Right parenthesisl L_~~ ____________________ ~ 

ARITHMETIC OPERATOR 
, I i 

I 011 1 
I I I 
IS310perator code ~ L __ ~ _________ ~~i 

COBOL WORD , i i 

1 011 12 

• I , 

t ' .. 

IS41Word code ICode (Phases 10. 12. 
1 I land 1B only. not 
I I I passed on) 
1 I CD 1 

® 1 1 1 
I I I 

412 Section 5. Data Areas 

, 
1 
f 
I 
I 
t 
I 
1 , 

SPECIA L NAME 
i I I 

1 011 1 
.. 1 I'?I:sl 
ISSICode ~ 
1...-. .&' ____ . .1 

I COBOL WORD 2 
r-,---~-------ri--~ 

I 0 I 1 12 
~·~I-----------rl--~ 
1571 Wor~ode I 
I I ~ 10 
, I , 

FIGURATIVE CONSTANT 
I i I 

1 0111 
~'~I--------------------~·f 
I7SIEBCDIC value of figurativel 
I Iconstant I 
I...-~' __ ~ ______________ -.Ji 

STANDARD DATA-NAME REFERENCE 
i· i 

I 011 
... 1 
179101 = 
1 102-
I 105 = 

LINE-COUNTER I 
PAGE-COUNTER I 
TALLY I 

GENERATED PROCEDURE-NABE DEFINITION 
, i , 

1 011-2 I 
.. 1 , 
1881GN number -- identifying number 1 
I lassigned to compiler-generated 1 
I Iprocedure-names from COMMON field 1 
1 IGNCTR 1 

I 

GENERATED PROCEDURE-NABE REFERENCE 
i , 
I 011-2 
... 1 
IAAIGN number -- identifying number 
1 lassigned to compiler-generated 1 
I Iprocedure-names from COMMON fieldl 
I IGRCTH I , I I 



Licensed Material - Property of IBM 

ERROR SYMBOL G) Verb Code List.;" Code indicates the 
r-,-, type of v~rb. 
1 0111 
t-+::-f ~ Meaning 
IB9([l PO- and P1-text P2-text 
~.J 00 ADD ADD .. 01 SUBTRACT SO BTRACT 

02 I!ULTIPLY MULTIPLY 
CARD NUt!BER 03 DIVIDE DIVIDE 

• i 04 COMPUTE EXPONENTIATE 
1 011-3 05 STOEE 
I 1 06 END OF IF-E Q- NUMERIC 
1 C11 Source card number SENTENCE 

07 IF IF-NOTEQ-NUMEEIC 
08 ELSE IF-GT-NUMEEIC 

CD 
(OTHEE WISE) 

If there is no GN for this purpose, the 09 IF-NOTGT-NUMERIC 
field contains zeros. 01 IF-LT-NUMEEIC 

OB IF-NOTLT- NUMERIC 
OC IF-ALPHABETIC 

® 
Code OD IF-NOT-ALPHABETIC 
(hea ~ng. OE IF-NUMERIC 
01 Data Division OF IF-NOT-NuMERIC 
02 File Section 10 STOP STOP 
03 Working-Storage Section 11 GO GO 
04 Linkage Section 12 GO-DEPEND-FIRST 
05 Report Section 13 GO-DE PEND-MIDDLE 
06 Procedure Division 14 GO-DEPEND-LAST 
07 Start of declaratives 15 EVAL 
08 End of declaratives 16 IF-EQ-NONNuM 
09 Start of debug packets 17 IF-NOTEQ-NONNuM 
OA Start of Q-Routines 18 IF-GT-NONNuM 
OB Start of Report Writer 19 IF-NOTGT-NONNUM 

procedures 11 IF-LT-NONNUM 
OC End of Report Writer 1B IF-NOTLT-NONNm! 

procedures 1C ALTER MOVE-4 
OD End of segment 1D MOVE MOVE 
OE Communication Section 1E EXAMINE EXAMINE 
OF Date-compiled entry 1F TRANSFORM TRANSFORM 
FO Security entry 20 READ EEAD 
F1 Identification Division 21 OPEN OPEN 
F2 Program-ID entry 22 CLOSE CLOSE 
F3 Author entry 23 iEITE WElTE 
F4 Environment Division 24 EEiRITE REVEITE 
F5 Configuration Section 25 ACCEPT ACCEPT 
F6 Source-Computer entry 26 DISPLAY DISPLAY 
F7 Object-Computer entry 21 EXHIBIT EXHIBIT 
F8 Input-Output section 28 RESET RESET 
F9 File-control entry 

Internal Text Formats 413 



Licensed Baterial - Property of IBM 

29 
2A 
2B 
2C 
2D 
2E 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
3A 
3B 
3C 
3D 
3E 
3F 

40 
41 
42 
43 
44 
45 
46 
47 

148 
4A 
4B 
4C 
4D 
4E 
4F 
50 
51 
52 
53 
54 
55 
56 

____ Meanill.9--__ ___ 

PO- and P1-text P2-text 
READY READY 
RETUBN RETURN 
ON ON 
ENTRY ENTRY 
CALL CALL 
ENTER 
CANCEL 
USE (except UFD) 
EXIT 
REPORT-NOP 
GENERATE 
TERMINATE 
SORT 
RELEASE 
PERFORM 

INITIATE 
DEBUG (ON) 

INIT 
INCRA 
STEP 
UPDATE 

Q-CALL 
Q-RETURN2 
Q-RETURN3 
REPORT-CALL 
REPORT- SAVE-O 
REPORT-SAVE-1 
REPORT-SAVE-2 
REPORT-SAVE-3 
REPORT-SAVE-4 
REPORT-SAVE-5 
REPORT'"-RETURN-O 

CANCEL 

SORT 
RELEASE 
GO-N-TIMES 
SUBSCRIPT 

DEBUG 
START KEY 
TRACE 
EQUATE 
MOVE-1 (Report 

Writer verb) 
INIT 
INCRA 
STEP 
UPDATE 
USE-ERROR 
ENDUSE-ERROR 
US E-LABELS 
ENDUSE-LABELS 
ACCEPT MESSAGE 
USE-REPORT 
ENDUSE-REPORT 
Q-CALL 
Q-RETURN2 
Q-RETURN3 
RE PORT-CALL 
REPORT-SA VE-O 
REPORT-SAVE-1 
REPORT-SA VE-2 
REPORT-SAVE-3 
REPORT-SAVE-4 
REPORT-SAVE-5 
REPORT-RETURN-O 

414 Section 5. Data Areas 

57 
58 
59 
SA 
5B 
5C 
5D 
5E 

SF 

60 
61 

62 
63 
64 
65 
66 

67 

68 

69 

6A 

6B 

6D 

6E 

6F 

70 

71 

72 

73 
74 
75 

REPOR"'"'"RETURN-1 
REPORT-RETURN-2 
REPORT-RETURN-3 
REPORT-RETURN-4 
REPORT-RETURN-5 
REPORT-ORIGIN 
REPORT-REORIGIN 
SEARCH 

SEARCH ALL 

SET 

RE PORT - RETU RN-1 
REPORT-RETURN-2 
REPORT-RETURN-3 
REPORT-RETURN-4 
REPORT-RETURN-5 
REPORT-ORIGIN 
REPORT-REORIGIN 
Beginning of WHEN 

in SEARCH ALL 
End of WHEN in 

SEARCH ALL 
SET format-1 
SET format-2 

See note 
SEEK 
START 
UNSTRING 

(UP BY) 
following list 

READ (for 
RERUN file) 

WRITE (for 
RERUN file) 

GOBACK 

STRING 

START 
UNSTRING 
IF EQUAL 

(index-name) 
IF NOT EQUAL 

(index-name) 
IF GREATER 

(index-name) 
IF NOT GREATER 

(index-name) 
IF LESS 

(index-name) 
IF NOT LESS 

(index-name) 
EQUATE in SEARCH 

ALL 
SET format-2 

(DOWN BY) 
GO TO 

(segmentation) 
S eg menta tion 

initialization 
verb 

REA.D 
(for RERUN file) 

WRITE 
(for RERUN file) 

GOBACK 
EXIT program 
STRING 



76 

77 

78 
79 
7A 
7B 

7C 

7D 
7E 
7F 
80 
81 
82 
83 

84 

85 
87 
88 
8A 
BD 
90 
91 
92 
93 
94 
95 
96 

~~H",e.l:!:.aning 
PO- and P1-te·~x~t----P-2---t-e-x-t 
SETVLC SETVLC 

(for RENAME (for RENAME 
Q-Routine) Q-Routine) 

RECEIVE 

GNRPT 
. (for OPT) 

SEND 

DELETE (VSAM) 
DEBUG transfer 

of control 

HERGE 

INSPECT 
USE FOR DEBUGGING 
ENABLE 
DISABLE 

Flow trace 
(for source PN's 
only) 

RECEIVE 
OPEN (VSAM) 
CLOS E (VS AM) 
Subroutine test 
(for IF MESSAGE, 

STRING, and 
UNSTRING) 
GNRPT 
(for OPT) 
SEND 
READ (VSAM) 
WRITE (VSAM) 
REWRITE (VSAM) 
START (VS.AM) 

DEBUG transfer 
of control 

QCALL2 
(for UNSTRING) 

UNSTRING header (PH45) 
MERGE 
COUNT 
UFD Debug verb 

ACCEPT MESSAGE 
End-of-UFD section 
RFRSEG 
Debug subscript 
verb 

Note: Code 62 indicates SEGMENT-LIMIT and 
~used for E-text only. 

Code 
(he,&, 
00 
01 
02 
03 
04 

Operator 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

Licensed Haterial - Property of IBH 

Code 
11lll& 

00 
01 
02 
03 
04 
~5 
06 
07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 
10 
11 
12 

Special 
In!! 
cSP 
C01 
C02 
C03 
C04 
cos 
C06 
C07 
COB 
C09 
C10 
C11 
C12 
S01 
S02 
S03 
504 
505 
PAGE 

Error ~mb..Ql 
COBOL word 

code 
CO (hex) 

When Used 
Reservedword used 

invalidly. 
Undefined or 

multiply-defined 
symbol found. 

G) COBOL Word Code: Nu mber assigned to 
identify a COBOL word. Note that in 
phases 10, 12, and 1B of the compiler 
listing, these words appear in 
alphabetical order according to length 
of the word in the COBOL word table 
(COBWRD) • 

Code Word 
01- DATA 
02 SKIP1 
03 SKIP2 
04 SKIP3 
05 EJECT 
06 NSTD-REELS 
07 SUPPRESS 
OA ORG~NIZATION 
OC CORE-INDEX 
OD PROGRAM 
OE 'RF 
OF WRITE-ONLY 
10 TOTALING 
11 TOTALED 
12 COMMA 
13 DECIMAL-POINT 
14 FILE-LIMIT(S) 
15 MODE 
16 RECORDING 
17 REEL 
18 SYSIN 

Internal Text Formats 415 



Licensed !aterial - Property of IBM 

~~ Word 48 SORT-RETURN 
19 SYSOUT 49 SEPARATE 
1A TRACK-AREA 4A LEAVE 
1B MESSAGE 4B REREAD 
1C TRACK-LIMIT 4C DISP 
1D' DELIMITED 4D EXTENDED-SEARCH 
1E POIl~TER 4E MASTER-INDEX 
1F OVERFLOW IIF CIL-OVERFLOW 
20 COUNT 50 THEN 
21 DELIMITER 51 CYL-INDEX 
22 TIKE 52 WRITE-VERIFY 
23 EGI 53 THAN 
24 DATE 54 RECORD-OVERFLOW 
25 REORG-CRITERIA 55 ALPHABETIC 
26 DISPLAY 56 NUMERIC 
28 RESET 57 POSITIVE 
29 SEGKENT 58 NEGATIVE 
2A SUB-QUEUE-1 SA END-OF-PAGE (EOP) 
2B ON 5B CHARACTER 
2C SUB-QDEUE-2 5C NOT 
2D SDB-QUEUE-3 SD AND 
2E INITIAL 5E OR 
2F SYMBOLIC SF LIKIT (S) 
30 CURRENCY 60 TEXT 
31 QUEUE 61 BEGINNING. 
32 INDEX 62 ENDING 
33 S.TATUS 63 l!OBE- LABELS 
34 MODULES 64 OUTPUT 
35 MEMORY 65 LENGTH 
36 WORDS 66 INPUT 
37 SYNCHRONIZED (SYNC) 67 RANDOK 
38 OFF 68 PROCESSING 
39 RENAKES 69 BEFORE 
3A UP 6A REPORTING 
3B DOWN 6B 1-0 
3C FILE (in .Procedure Division and 6C WITH 

after File Section header) 6D REWIND 
3D OPTIONAL 6E REVERSED 
3E REMAINDER 6F IN:r'O 
3F POSITION 70 AT 
40 TAPE 71 INVALID 
41' TRAILING 72 AFTER 
42 ADDRESS 73 ADVANCING 
43 ALPHANUKERIC 74 CBL 
44 NUKBER 75 DEPTH 
45 CURRENT-DATE 76 LOCK 
46 TIKE-OF-DAY 77 SYSPUNCH 
47 TERl!INAL 78 CONSOLE 

416 Section 5. Data Areas 



Code 
W-
7A 
7B 
7C 
7D 
7E 
7F 
80 
81 
82 
83 
84 
85 
86 
87 
88 
89 
8A 
8B 
8C 
8D 
8E 
8F 
90 
91 
92 
93 
94 
95 
96 
97 
98 
99 
9A 
9B 
9C 
9D 
9E 
9F 
AO 
A1 
A2 
A3 
A4 

Word 
ALL 
CORRESPONDING (CORR) 
TALLYING 
LEADING 
UNTIL 
REPLACING 
BY 
DESTINATION 
GIVING 
ROUNDED 
SIZE 
ERROR 
RUN 
PROCEED 
THROUGH (THR U) 
VARYING 
USING 
COBOL 
DAY 
DESCENDING 
ASCENDING 
TRACE 
CHANGED 
NAMED 
LINKAGE 
CHARACTER (S) 
TIMES 
DEPENDING 
LINE (S) 
FIRST 
NEXT 
UPON 
PROCEDURE (in Procedure Division) 
EVERY 
TO 
IS, ARE 
FROM 
NO 
KEY 
RETURN-CODE 
END 
UNIT (S) 
FOR 
IN, OF 

A5 
A6 
A7 
A8 
A9 
AA 
AB 
AC 

AD 
AE 
AF 
BO 
B1 
B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
BA 
BB 
BC 
BD 
BE 
BF 
CO 
C1 
C2 
C3 
C4 
C6 
C7 
C8 
C9 
CA 
CB 
CC 
CD 
CF 
DO 
D1 
D3 
04 
D5 
D6 
D7 
D8 
D9 

Licensed Material - Property of IBM 

SECTION 
LAB EL- RETU RN 
DIVISION 
SORT-FILE-SIZE 
SORT-CORE- SIZ E 
SORT-MODE-S IZE 
SIGN 
SORT (appears in Procedure 

Division as verb with 36 code) 
MULTIPLE 
EXCEPTION 
FILLER 
ESI 
ASSIGN 
ACCESS 
EMI 
RES ERVE 
NOMINAL 
ACTUAL 
TABLE 
DYNAMIC 
Reserved 
SEQUENTIAL 
DEBUGGING 
INDEXED 
SORT-MERGE 
ALTERNATE 
AREA(S) 
SORT-MESSAGE 
RELOAD 
RELATIVE 
SEARCH 
TRACK(S) 
PASSWORD 
PROTECTION 
LIBRARY 
EXTEND 
VALUE (S) 
PRINT-SWITCH 
BLOCK 
RECORD 
RECORDS 
CONTROL(S) 
L1>.BEL(S) 
CONTAINS 
OMITTED 
STANDARD 
REPORT (S) 
REDEFINES 
PICTURE (PIC) 
BLANK 

Internal Text Formats 417 



Licensed Material - Property of IBM 

!;.Q.Qjg 
DA 
DB 
DC 
DD 
DE 

DF 
EO 
E1 
E2 
E3 
E4 
E5 
E6 
E7 
E8 
E9 
EA 
EB 
EC 
ED 
EE 
EF 
FO 

I F1 
F2 
F3 
F4 

I F5 
F6 
F7 
F8 

I F9 
FA 
FB 
FC 
FD 
FE 
FF 

Bits 
0-

1 
2 
3 

.R.Q.I;:.Q 
OCCURS 
JUSTIFIED (JUST) 
POSITIONING 
USAGE 
COMPUTATIONAL (COMP) 
COMPUTATIONAL-4 (COMP-4) 
COMPUTATIONAL-1 (COMP-1) 
COMPUTATIONAL-2 (COMP-2) 
COMPUTATIONAL-3 (COMP-3) 
WHEN 
RIGHT 
LEFT 
CODE 
PAGE 
FINAL 
REMOVAL 
HEADING 
DETAIL (DE) 
LAST 
FOOTING 
UPSI-O through UPSI-7 
GROUP 
TYPE 
PLUS 
LINAGE 
DISPLAY-ST 
RH 
PH 
BOTTOM 
CH 
NOTE 
CF 
TOP 
PF 
SENTENCE 
COLUMN 
INDICATE 
SOURCE 
SUM 

l1~ning 
FD. SD, RD 
Paragraph wor a. 
Section word 
Division word 

418 Section 5. Data Areas 

4 
5 
6 
7 

COBOL 
Code 01-
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 
OC 
OD 
OE 
OF 
10 
11 
12 
13 

Allowed in Environment Division 
Allowed in Data Division 
Allowed in Procedure Division 
Allowed in Identification 

Division 

WORD 2 
!!.2!:.Q 

BASIS 
ALSO 
REFERENCES 
PROCEDURES 
COLLATING 
SEQUENCE 
STANDARD-1 
NATIVE 
CODE-SET 
DUPLICATES 
INSERT 
DEBUG-ITEM 
DEBUG-LINE 
DEBUG-NAME 
DEBUG-SUB-1 
DEBUG-SUB- 2 
DEBUG-S UB- 3 
DEBUG-CONTENTS 



PROCEDURE IC-TEXT (P1 FORMATl 

PROCEDURE-NAME DEFINITION 
, iii , 

1 01112 throuqh 1+ c 12 + c 1 
• 1 1 I., 
I061c I Dicti'onary attributes IPriority I 
1 1 lof procedure-name Inumber if I 
1 I I (see "section 5 Inot a 1 
1 1 1 Data Areasll ) 0 1 section- 1 
1 1 1 Iname 1 
, " " 

PROCEDURE-NAME REFERENCE 
• iii , 

1 01112 throuqh 1 + c 12 + c 1 
I I I 1 , 
120lciDictionary attributes I Priority 1 
I 1 lof procedure-name Inumber if 1 
1 1 I (se e "Section 5 1 not a 1 
1 1 IData Areas ll ) 0 I section- 1 
I 1 1 Iname 1 
, " 'I 

FILE-NAME REFERENCE 
r I' I 
I 0111variable (9 to 16 bytes) 1 
I 1 1 of 
1211nlDictionary attributes of I 
1 1 Ifile (see "FD ENTRY" in 1 
! ! !"Section5. Data AreaS ll)0, 

Licensed Material - property of IBM 

SD ELEMENT 
Iii 

1 01112-9 
~~,----------~--------~ 
1211nlDictionary attributes for 
1 1 ISD (see .. SD ENTRY" in 
1 1 I"Section 5. Data Areas") 
, " 

r--T i , 

110111-12 In - 1 to n + 11 
~ 1 I 
I OIGN numberlDictionary I 
1t?::\1 for Q I pointer 1 
1~lroutines I I 
, " .J 

Bytes 10-12 are present only if the 
Q-bit is on. 

CD-NAME REFERENCE 
r i i 
I 01112 throuqh n - 2 
I 1 I 
I I I 
1251nlDictionary attributes 
1 1 lof CD-name (see "CD 
1 I I ENTRY" in "Section 5. 
I I , 

i 1 

In - 1 to I 
In + 1 I 
I 1 
I dictionarYI 
I pointer 1 
I I 
, --J 

Internal Text Formats 419 



Licensed Material - Property of IBM 

VSAM FILE-NAME REFERENCE 
r i • i' 
1 01112 through 9 110 1 
.11 --+- I 
I 26lnlDictionary, attributeslCountof I 
I lof file (see "FD I all GNs for I 
I IENTRY" in "Section 5.IQ-routines 1 
I IData Areas") lassociated I 
I I Iwith this I 
I I Ifile I 
L ' '.1 

r i , 

111-12 113-14 I 
I-------+__ , 
IGN number forlGN number for I 
Istring of 1STANDARD ERROR I 
IQ-routine GNsldeclarative(~)1 
L- -'--- I 

I i 

115-22 123-24 
~ I I 
I Res®.vedl Pointer to dictionarYI 
I 2 lentry for file I 
L ' ' , 

DATA-NAME REFERENCE 
, iii 

I 0 1112 to n - 5 or n - 2 I 
t I I , 
130lniDictionary attributes (see "LDI 
I I IENTRY" in ~ection 5. Data I 
1 I IAreas") ~ I 
, 'I __________ ~I 

420 Section 5. Data Areas 

.-- I 

In - 1 to n + 1 I 
• I 
I point~ to dictionan entry for I 
litem ~ , I 
'--- .J 

DATA-NAME REFERENCE IN KEY CLAUSE (VSAM 
FILES) 

• i, i, 
101112 to n - 61n - 5 I 
~+-+- 1 , 
130 In IDictionary attributes I Count of 1 

I I (see "LD ENTRY" in lall GNs fori 
I I "Section 5 (":;'\Data I Q-routines I 
I IAreas ll ) 0 I under item I 
, I I ~ 

~ 'i . 
In - 4 to n - 3 In ~ 2 In - 1 to n +1 
1 II I 
I First GN numberl Index I Poin ter to I 
lin series of IACB I dictionary I 
lall GN numbers Inumberlentry for I 
Ifor Q-routines I lite~ I 
lunder item I I 0 I 
L 'I I 

NUMERIC LITERAL 
r--~----------~I-----------' 
I 01112 13 I 
~I I I • 
1321n,Positions IPositions I 
I I Ito left of Ito right of I 
I I Idecimal Idecimal 1 
I •• I J 

I , 

14 through 1 + n I 
rl------------------~--~-1 
I Literal in packed,decimal formatl 
'-------~----~~----~--~----~I 



FLOATING-POINT LITERAL 
Iii , 

I 01 112-9 1 
I 1 I , 
1331081 Literal represented as I 
1 I Idouble-precision floating-I 
I I I point number I L __ ~~ ________________________ ~ 

ALPHANUMERIC LITERAL 
r i i , 
I 01112 through 1 + c 1 
I I I of 
13ql cl Literal in EBCDIC! L __ ~'~' _________________ ~ 

"EXHIBIT NAMED" NAME 
• i i 
I 01112 through 1 + c 
.. I I 
1351clEBCDIC form of name used in 
1 I IEXHIBIT NAMED statement 
L ' , 

INDEX-NAME REFERENCE 
r i' i i • 
101112 13-q 15-6 I 
I I I 1 1 , 
136Ic~) Index-namelLength ofl 
I I I I number Isubject I 

, , .J 

, 
17-9 
I 
IPointer to dictionary 
Ifor index-name 

entry I 
I 

LISTING A-TEXT FOR PROCEDURE-NAMES 
r i , 
1 0 11 12 through 1 + c 
• I 1 
1371clEBCDIC procedure name; the 
I I Ipreceding field is set to 1 , , 

Licensed Material - Property of IBM 

LISTING A-TEXT FOR VERBS 
iii 
I 01112 through n 
1--1 I 
1371nlEBCDIC verb 
I 1 I 
L..-' , 

, , 
In + 1 
I ~ 
IAlphabetic verb \ 
\sequence number \ 
, ~ 

DATA NAME REFERENCE FOR OBJECT OF GIVING 
OPTION OF USE ERROR DECLARATIVE . , . 

I 011 through n + 1 I 
r.-;I--------------------------~ 
13BISame as "Data-name Reference" (30) I 
I 1 element above I 
L--.~, __________________________________ ~, 

"ALL" LITERAL LONGER THAN ONE CHARACTER 
Iii -, 

10 1112 through c + 1 1 
,. 1 I 1 
1391clAlphanumeric value following ALL 1 
L--' I 

CRITICAL PROGRAM BREAK 
t i J 

1 011 1 
I 1 of 
Iq21Break code ~I , 

VERB 
iii 

1 011 1 
~I-+I----------------------~ 
IQqlVerb code 1 
I I (see noteG)under PO-text) I 

RELATIONAL CODE 
r'--r'-----------------------, 
I 011 I 
.. I I 
150 106 (hex) = Equal 1 
I lOB = Greater thanl 
1 lOA = Less than I 

L 

PARENTHESIS 
r--T,-----------------------------, 

I 011 1 
.. I , 
152100 (hex) = Left parenthesis I 
I 101 = Right parenthesisl L--.~, ____________________________ ~ 

Internal Text Formats Q21 



Licensed Material - Property of IBM 

ARITHMETIC OPERATOR 
r , 
I 011 
~ 1 
15310perator code 

COBOL WORD 
r , 
1 0 t1 
I I 
1541Word code 
I 1 (see note(2)under PO-text) 
L ' 

SPECIAL NAMES 
" , 
1 011 1 
I 1 ., 
1551Code 1 
I I 1 
II®I 
" .J 

NFILES 
.r--T,--------------------------, 
1 0 t1 1 
I I , 
1561Number of files in USING 1 
L __ ~ __________ __ 

COBOL WORD 2 

• 10 2 
.. 1 -f 
1571Word code I 
1 I(see note®under 1 
I 1 PC-te xt) I L-~ __________________ -J 

FIGURATIVE CONSTANT 
I i ---, 

I 0 f1 I 
.. 1 ---I 
1751EBCDIC value of 1 
I Ifigurative constant 1 
• ---J 

STANDARD DATA-NAME REFERENCE 
r , 
I 011 
I 1 
179101 
I 102 
I 105 
I 

(hex) = LINE-COUNTER 
PAGE-COUNTER 

= TALLY 

422 Section 5. Data Areas 

I 

GENERATED PROCEDURE-NAME DEFINITION 
.--, I 

1 011-2 1 
.. I -i 
1881GN number -- identifying number I 
I lassigned to compiler-generated I 
I Iprocedure-names from COMMON fieldl 
1 IGNCTR 1 . , . 

GENERATED PROCEDURE- NAliE REFERENCE 
i i , 

I 011-2 1 
~ I ~ 
IAAIGN number -- identifying number 1 
I I assigned to compiler-genera ted I 
I Iprocedure-names from COMMON fieldl 
I I GNCTR 1 L--~' __________________________________ -J 

ERROR SYMBOL 
r---r-o 
I 011 I 
,. I I 
IB9~) 
L--~ 

CARD NUHBER 

CD 

o 

o 

i , 
011-3 1 

I I ., 
ICllSource card number 1 
1 1 

® 
1 

1 1 I 
-.J 

Dictionary attributes, wi thOut count and 
major code fields. 

These fields appear only if the 
file-name reference is an operand in an 
OPEN statement. When a GN is not 
generated, the field contains zeros. 

Pointer contents: 

Bill 
0-1 
2-14 
15-23 

contents 
Unused 
Dictionary section number 
Displacement in section 

Dictionary attributes with two fields 
removed. Bits 1-4 of the flag byte 
field overlay bits 1-4 of level number. 
Bits 5-8 overlay count field preceding 
major code field. In the level number 
field, if bit 5 is on, the level is 01; 
if bit 6 is on, the level is 77. 
Otherwise, the bits are off. 

In addition, the sub field of zeros 
starting at the tenth bit of the 
characteristics field is deleted for 
alphanumeric items and elementary items 
with either report or sterling report 
pictures. 



In the case of data-name references to 
special registers, the addressing 
parameters field of the dictionary 
attributes contains an ID number 
according to the following schedule: 

ID 
FFOOOD-FF0007 
FF0008 

~peci alJeqis~£ 
UPSI 
CURRENT-DATE 
TIME-OF -D AY 
SORT-RETURN 
SORT-CORE-SIZE 
SORT-FILE-SIZ E 
SORT- MODE- SIZE 
LABEL.-RETURN 
RETURN-CODE 
SORT-MESSAGE 

FF0009 
FFOOOB 
FFOOOC 
FFOOOD 
FFOOOE 
FFOOOF 
FF0010 
FFOO 11 
FF0012 
FFOO 13 
FF0014 
FFOO 15 

1-3 
4-7 

Code 
(hen 
01 
02 
03 
04 
05 
06 
07 
08 
09 
OA 
OB 

DAY 
T.IME 
DATE 
WHEN-COMPILED 

Contents 
If-';-subject has variable 

length; bytes 5-6 contain 
VLC number. 

Unused 
1111 

Meaning 
Data Division 
File Section 
working-storage section 
Linkage Section 
Report Section 
Procedure Division 
Start of declaratives 
End of declaratives 
Start of debug packets 
Start of Q-Routines 
Start of Report Writer 

I 

® 

Licensed Material - Property of IBM 

OC 

00 
OE 
OF 
FO 
F1 
F2 
F3 
F4 
F5 
F6 , 
F7 
Fa 
F9 
FA 
FB 
FC 
FD 
FE 

Code 
Jh.ex) 

00 
01 
02 
03 
04 
07 

procedures 
End of Report Writer 

proce:dures 
End of segment 
Communication Section 
Date-Compiled entry 
Security entry 
Identification Division 
Program-ID entry 
Author entry 
Environment Division 
configuration Section 
source-compute:r entry 
Object-computer entry 
Input-Output Section 
File-Control entry 
I-O-Control entry 
Special-Names Section 
Date-Written entry 
Installation entry 
Remarks entry 

Operato£ 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 
Unary minus 

Error symbol 
COBOL word 

number 

When Used 
Reserve~word used 

invalidly. 
00 (hex) 

Bit 0 in byte 
1 is on for a 
verb. 

Undefined or 
multiply-defined 
symbol found. 

Internal Text Formats 423 



Licensed Material - property of IBM 

P1-A text is identical to P1-text with the 
following exceptions: 

10 Proced ure-name Reference 
, i i ---, 

1 01 1 2-3 I 
t-t- 1 ., 
I IPriority number IPN number 1 
IDOlof s6gment in lidentifying I 
I Iwhich PN is Isequential numberl 
I 1 located lof source pro- I 
I I Icedure name I 
I I lassigned from 1 
I 1 IPNCTR in COMMON I 
L ' , .J 

424 Section 5. Data Areas 

Additional verb codes: 
83 DEBUG transfer of control 
8A USE FOR DEBUGGING debug verb 
96 Debug subscript verb 



Licensed Material - property of IBM 

CEDURE IC-TEXT-1P2 FORMAT) 

~: The code byte of Procedure IC-text (P2 Format) is used to determine the length of the item: 

For codes less than 40, the length is in the next byte. 
For codes 40 through 7F, the length is two bytes. 
For codes 80 through BF, the length is three bytes. 
For codes CO through FA, the length is four bytes except for code F9 whose length is three 
bytes. 

,E- NA ME REFE RENCE 

Variable (9 to 16 by tes) 

1211nlDictionary attributes of file 
1 I I (see "FD ENTRY" "Section 5. 
I 1 IData Areas") 

RB INFORMATION 
I i 

01112 through 1 + c 
I I I 
1241clFollows verb string for EXAMINE, TRANSFORM, EVAL, ADD, SUBTRACT, MULTIPLY, DIVIDE, 
I I 1 UNSTRING, and DEBUG. 
I , , 

RB INFORMATION (VSA~ 

'i' i i o I 1 12 I 3 1 4 I 5- 7 
• 1 1 I I I 
1241 c 10 ACB 1 Execution-timel compile-time I Dictionary pointer 
I I@InuRerlinformation linfor~tion IRECORD KEY~ 
! ! ! ~ ~ @ ! ~ ~ dataname ~ 

NAME REFERENCE 
, i i 
I 01112 through n - 2 
I I I 
1251clDictionary attribu~es of CD-name 
I I I (see "CD ENTRY" in "Section 5. 
I I IData Areas ll ) 
, " 

I 
In-1 to n+1 
I 
IDictionary 
I pointer , 
I 

, 
I 
I 

tol 
I 
1 , 

USE, I 
I , 

Internal Text Formats 425 



Licensed Material - Property of. IBM 

VSAM FILE-NAME REFERENCE 
~, I , 

I 011 ,2 through 9 ,10 , 
~, , ~ 

,261n IDictionary attributes of ,Count of all GNs for, 
, , ,file (see "FD ENTRY" in 'Q-routines associated 1 
! J@!"Section 5. Data Areas") ! with this file J 

r----------·--~ir-------------~,--------',---------------------__,. , 
,11-12 113-14 ,15-22 123-24 , 
~---------+'------~---+'------41~----------------~1 
,GN number forlGN number for ,Reserved,Pointer to dictionary 1 
,string of ,STANDARD ER~I lentry for file '1 
I Q-routine GNs I declarative81([) I 1 
L--__________ ~I~_______ ~ , ~ 

DATA-NAME INFORMATION FOR UNSTRING 

10-11 

12AlniTypeiLengthiBase codelDisplacement 
I , Iflag, I 1 
I I I I I I 
11101 ®I ® I (2) 

Not§..: If bits 4-7 of the Type flag indicate an edited data item, the following fields are also 
generated. 

I I I ~ --,,-------------------------, 
, 0 I 1 I 2- 4 5, 6 17 - n + 1 
r~ I I 
12AlniSize of IBLANK WHEN INumber of lEd it mask 
I , Idata~temlzERO ~dicatorlbytes in I (PICTURE clause 
I I I ® I Q.Y I edi t mask I data item) , « I -, I ... , ________________________ --' 

for 

DATA-NAME REFERENCE 
,-,-,- ~ I 
I 01112 to n - 5 or n - 2 In - 4 In - 3 to n - 2 
rl~I-+I-----------------------~Ir---·------- ~.--------------
,30lniDictionary attributes of ICount of all GNs IFirst GN number in 
I I Idata-name (see "LD ENTRY" Ifor Q-Routines Iseties of all GN 
I I I in "Section 6 Data I under item I numbers for Q-Routines 
I I I Areas") ~ I 1 under item 
L--L-L ____________ ~_______ I • 

DATA-NAME REFERENCE FOR KEY CLAUSE 

I 
" n - 1 to n + 1 
I 
IPointer to 
Idictionar~ntr 
1 for item ~ 
I 

rl--TI~--------------~----------T'--' ~ • I I 
I 011 2 to n - 6 or n - 3 In - 4 In - 3 to n - 2 In - 2 In - 1 to n + 1 I 
~+----------------------+I--------------;I-----------~--~~I---rl------------~I 
130ln Dictionary attributes of ICount of all GNslFirst GN number in IIndex IPointer to 1 
1 I data-name (see "LD ENTRY"lfor Q-routines I series of all GN 1 ACB I dictionary entry I 
1 I in "Section ~ Data lunder item Inumbers for Inumberlfor item 1 
1 I Areas") 0 1 1 Q-rou tines under I 1 I'!\ 1 
I , 1 1 item 1 1 V I 
j , " I I t 

SUBSCRIPTED DATA-NAME REFERENCE 
,-,-,- '~I--~------------------~---------' 
I 01112 through n - 2 'n - 1 to n + 1 

~------------------------- --~----------+-----~--------------------~ 
131, n 1 Dict.ionary attributes of sUbscri~d data-no ame 1 pointe80 dictionary entry 
L ! ! (see "LD ENTRY" in Appendix D) ~ @ .... ! _______ "-V_3 ________________________ ~ 

426 Section 5. Data Areas 



NUMERIC LITERAL (DECIMAL) 
I i I 

I 01112 
I I 1 
1321nlPositions to 
I 1 lof decimal 
I I , 

FLOATING-POINT LITERAL 

, 
13 
1 

the leftlPositions to 
lof decimal 
I 

r--r--·~i-------------------

I 011 12-9 
I I 1 

Licensed Material - Property of IBM 

----------T'-------------------------, 
14 through 1 + n 1 
+--- I 

the rightlLiteral in packed decimall 
I format 1 
• I 

13310BILiteral represented as double-precision floating-point number 
L--L--.~I ______________ _ 

-----------------------------~ 

ALPHANUMERIC LITERAL 
I i I 
I 01112 through 1 + c 
I I I I 
1341clLiteral in EBCDICI 
, " I 

"EXHIBIT NAMED" NAME 
Iii , 

I 01112 through 1 + c 1 
I 1 1 I 
1351clEBCDIC form of name used in EXHIBIT NAMED statement 1 , . 

INDEX-NAME REFERENCE 
, iii i , 
101112 13-4 15-6 17-9 
I ill I 
136Inl@lIndex-nameILength of 
I I I 1 number I subAct 

IPointer to dictionary 

I II I I ~ 
, • I , • 

: entry 0 item . ----~ 

LISTING A-TEXT FOR PROCEDURE-NAMES 
I iii 

I 01112 through 1 + c I 
I- I I -! 
1371clEBCDIC procedure name; the I 
1 I Ipreceding bit is set to 1 1 
• n .J 

LISTING A-TEXT FOR VERBS 
I I i 
1 01112 through n 
I I I 
1371nlEBCDIC verb 
1 1 1 . . 

MULTIPLE GN REFERENCE 
Iii 

1 01 112-3 
I 1 I 

i 

In+ 
I 
IAlphabetic verb 
Isequence number . 

I 

14-5 
I 

13BI041GN numberl 1 GN numberl 
« « , , • I 

Internal Test Formats. 427 



Licensed Material - Property of IBM 

FIGURATIVE CONSTANT "ALL" (Greater than 1 
character) 

, i' i 
I 0111Variable I 
• I t I 
,39lclAlphanumeric literal following I 
t 'I ALL I , " , 

CRITICAL PROGRAM BREAK 
r I 
I 0"1 
4 I 
1421 Break code @ 
L I 

PHASE 4 OPTIMIZATION INFORMATION 
i C i 

I 0 t1 I 
, I I 
1431Type code ~ 
L I , 

RELATIONAL CODE 
f I I 
I 011 I 
, I I 
150106 (hex)= Equal I 
I 108 = Greater thanl 
I lOA = Less than I 
I 10C Not less I 
I I than I L __ ~ ____________________ ~ 

COBOL WORD 
I I 

I 011 
I I 
1541Word code 
I 1 PO-text) 

(See noteG)underl 
I L __ ~ __________ __ 

VERB 
I 

011 
I I 

I SPECIAL NAMES 

I 

12 
I 

• i 10 I 1 
.. I 
t 551Code 
I I (See Note® 
I I under PO-text) 

COBOL WORD 2 

• i I 0 I 1 
; I 
I 571 War d code fr:\ 
I 1 (See note~ 
I 1 under PO-text) 

NFILES 
i i 
10 11 
I I 
1561Number of files in USING 

FIGURATIVE CONSTANT 

• i , 
1 011 I 
~I I 
1751EBCDIC value of figurative constant I 
I.-~I----------------------------------~ 

STANDARD NAME REFERENCE 
i , 

I 011 
t 1 
179101 (hex) = LINE-COUNTER 
1 102 = PAGE-COUNTER 
1 105 = TALLY L--~I ______________________ ~ 

1841 Verb code (see note@ under 
I I 

PC-text) ICount of elements that follow 
1 for this 'statement 

1.-.1.--

GENERATED PROCEDURE-NAME DEFINITION 
I I 
I 011-2 
I I 
1881GN number -- identifying number assigned 
I Iprocedure-names from COMMON field GNCTJ 
I , 

GENERATED PROCEDURE-NAME REFERENCE 
I I 

I 011-2 
t I 

to compiler-generated I 
I 
I 

IAAIGN number -~ identifying number assigned to compiler-generated 
I Iprocedure-names from COMMON field GNCTR 

428 Section 5. Data Areas 



Licensed Material - property of IBM 

INTERMEDIATE RESULT REFERENCE 

• i 10 11-2 

• I I BA\ IR number -- identifying number assigned to intermediate result\ 
L I 

NUMERIC LITERAL (BINARY) 
r I 
I 011-2 
I I 
IBBILiteral in binary format L __ ~ ________________________ ~ 

TEMPORARY RESULT REFERENCE 
r i , 

1 011-2 I 
I \ of 
IBC\TR number 1 
L ' I 

CARD NUMBER 
i i 

011-3 1 
I: I I 
IC1\Source 'card number @ I 

I 

CARD NUMBER AS OPERAND OF FLOW VERB 
I i --, 

I 011-3 1 
I: I I 
IC2\Source card number I 

I 

PROCEDURE-NAME DEFINITION 
t I I I 

I 011 12-3 1 

• I I I IC71PrioritYIPN number. -- identifying sequential number of source I 
I Inumber Iprocedure-name, assigned from COMMON field PNCTR I 
1--..L-. J 

FILE-NAME REFERENCE 
I i 
\ 011-3 
I: I 
1 cal Dictionary pointer 
I I 

VARIABLE PROCEDURE-NAME DEFINITION 
r i' , 
1 011 12- 3 I 
~---I~--------------4\------------------------------------------------~ 
IC91Priority number oflVN number -- id~ntifying number assigned to compiler-generatedl 
I lsegment in which 1 variable procedure-names from COMMON field VNCTR I 
I IVN is located- I I L • .~I ______________________________________________________________ ~J 

Internal Text Formats 429 



Licensed Material - property of IBM 

PROCEDURE-NAME REFERENCE r. -,-- i 

I 011 12-3 I 
,.. I I I 
IDOIPriority number oflPN number -- idantifying sequential number ofl 

Isegment in which Isource procedure-name, assigned from COMMON I 
IPN is located Ifield PNCTR I 
I --'-- ' 

PROCEDURE-NAME REFERENCE FOR XREF 
• I I i 

I 011 12-3 I 
, I I I 
ID41Priority number oflPN number -- idantifying sequential number ofl 
1~lsegment in which Isource procedure-name, assigned from COMMON I 
I®I PN is located 1 field PNCTR. I 
I , I 

VARIABLE PROCEDURE-NAME REFERENCE 
r I ~ ---------------------------------------------------------------, 
I 011 12- 3 I 
.. I -+-1 ~---,----- I 
IDBIPriority number oflVN number -- identifying number assigned to compiler-generated, 
, ,segment in which ,variable procedure-names from COMMON field VNCTR , 
I IVN is located I I L • ____ ~I~ ______________________________________________________________ ~I 

GLOBAL TABLE REFERENCE (TYPE 1) 
r I ------------------------TI--------------------------------------------, 

12 I I 011 
,.. I 
IF91Cell code for Task Global Table 

I I @ I Displacement in bytes from start of cell I 
I 

GLOBAL TABLE REFERENCE (TYPE 2) 
t i , , 
I 011 
,.. I 
I FA ICell code for Task or Program Global Table €J) 
I I 

12-31 
I , 
I@I , , 

During phase 4 OPEN and CLOSE verb 
analysis, byte 2 (count and. major code 
field) of the file-name reference 
element is changed to one of the 
following: 

Contents 
00'11--

0001 

0000 
1000 

Meaning, 
if OPEN 

LEAVE 
REREAD 

DISP 

4-7 Contents ~~nifr[ 
oeoo OPEN INPUT 

Meaning, 
if CLOS E 
NO REWIND 
Default 

(REWIND) 
Unused 
REEL 

or CLOSED 
1111 OUTPUT 
0001 INPUT REVERSED 

These fields appear only if the 
file-name reference is an operand in an 
OPEN or SORT statement. When a GN is 
not generated, the field contains zeros 

430 Section 5. Data Areas 

Pointer contents: 

Bits 
0-1 
2-14 
15-23 

Contents 
Unused 
Dictionary section number 
Displacement in section 

For VSAM READ, C = 6 

Bit Meaning 
-0- 0 = SEQUENTIAL ACCESS or READ 

NEXT with DYNAMIC ACCESS 
1 = RANDOM or DYNAMIC ACCESS 

1-7 Unused 

Bit Meaning 
-0- 0 = No duplicate string follows 

1 = Duplicate string follows 
(READ INTO with MOVE only) 

1-7 Unused 

This field is used only for a READ verb 
wi th a KEY clause 



® 

0 

® 

count field:: 6 for READ verb, 
otherwis e = 3 

For START with KEY dataname clause, 
field = ACB~. otherwise = C 

Bit§ £; od§ Meru!ing 
0-1 00 Delimiter field 

01 Receiving field 
10 Delimi ter- in field 
11 Count-in field 

2-3 00 Unused 
4 ... 7 0000 Variable-length group 

0001 I'll ph an umer ic 
0010 Alphanumeric. right-

justified 
0011 Alphanumeric edited 
0100 Alphanumeric edited, 

right- justified 
0101 Numeric edited 
0110 External decimal, 

unsigned 
0111 External decimal with 

trailing overpunch 
1000 External decimal with 

leading over punch 
1001 External decimal with 

trailing separate sign 
1010 External decimal with 

leading separate sign 
1011 Binary 
1100 Internal decimal, 

unsigned 
1101 Internal decimal, 

signed 

If bits 11-7 of the Type flag are set to 
0000, this field contains the VLC 
number. For all other codes, the field 
contains the SIZE, or length of the 
complete data item to be moved. 

~yte £;ontent§ 
1 Base code 

XI aCI - BL 
X'14' - SBL 
X'28' - BLL 

2 X'01' 
3-4 BL number 

This field is set to zeros for a 
subscripted da ta item. 

This field is set to zeros for a 
subscripted data item. Otherwise it 
contains the displacement of the data 
item from the BL. 

This field contains the number of 
actual digits to the right of a real or 
assumed decimal point. It is present 
only for a receiving or delimiter-in 
field. If this field is present, the 
scaling factor is set to zero. 

@ 

Licensed Material - property of IBM 

The scaling factor represents the 
number of Ps to the left of the decimal 
point in a scaled integer. This field 
is present only for a receiving or 
delimiter-in field. 

This field contains the total size of 
the data item, including all editing 
characters and decimal positions. 

This field is set to X' FF' \then the 
data item contained a BLANK I~HEN ZERO 
clause; otherwise, it is se~ to X'DO'. 

Dictionary attributes with tliO fields 
removed. Bits 1-4 of the flag byte 
field overlay bits 1-4 of level number. 
Bits 5-8 overlay the count field 
preceding major code field. In the 
level number field, if bit 5 is on, the 
level is 01; if bit 6 is on, ~he level 
is 77. otherwise, the bits are off. 

In addition, the subfield of zeros 
starting at the tenth bit of the 
characteristics field is deleted for 
alphanumeric edited items and 
elementary items with report or 
sterling report pictures. 

In the case of data-name references to 
special registers, the addressing 
parameters field of the dictionary 
attribtues contains an ID number 
according to the following schedule: 

ID 
FFOOGO-FFea07 
FF0008 
FF0009 
FFOOOB 
FFOOOC 
FPOOOD 
FFOOOE 
FFOOOF 
FF0010 
FF 00 11 
FFOO 12 
FF0013 
FP0015 

Special Register 
UPSI-O through UPSI-7 
CU RRENT -DAT E 
TIME-OF-DAY 
SORT -RETU EN 
SORT-CORE-SIZE 
SORT-FILE-SIZE 
SORT-MODE-SIZE 
LABEL-RETURN 
RETURN-CODE 
DATE 
DAY 
TIME 
WHEN-COMPILED 

If this data-name reference contains a 
subscript or index address calculation 
ID number, the high-order bit is on, 
bits 1-7 contain zeros, and bits 8-23 
contain the ID number. The high-order 
bit is turned on by phase 4 when i~ 
assigns the ID number. 

Addressina parameters field in 
attribute~ has been replaced by unique 
subscript identifier element to match 
entry in DEFSBS table. 

contents of byte 2: 

Internal Text Formats 431 



Licensed Material - Property of IBM 

Bit 
-0- £,Qnteni2 

o Bytes 5-6 contain fixed 
length of subject. 

1 = Subject has variable 
length; bytes 5-6 contain 
VLC number. 

For a relative indexing clause, phase 4 
adds this field to the element. Phase 
50 recognizes the presence of this 
field from the number of bytes given in 
byte 1 of the element. 

Code 
(hen 
01 
02 
03 
04 
05 
06 
07 
OS 
09 
OA 
DB 

OC 

OD 
OE 
OF 
FO 
F1 
F2 
F3 
F4 
F5 
F6 
F7 

Code 
FS-
F9 
FA 
FB 
FC 
FD 
FE 

Code 
(hen 
02 

Meaning 
Data Division 
File Section 
Working-Storage Section 
Linkage Section 
Report Section 
Procedure Division 
Start of declaratives 
End of declaratives 
Start of debug packets 
Start of Q-Routines 
Start of Report Writer 

procedures 
End of Report Writer 

procedures 
End of segment 
Communication Section 
Date-Compiled entry 
Securi ty entry 
Identification Division 
Program-ID entry 
Author entry 
Environment Division 
Configuration Section 
Source-Computer entry 
Object-Computer entry 

Meaning 
Input-Output Section 
File-Control entry 
I-O-Control entry 
Special-Names Section 
Date-written entry 
Installation entry 
Remarks entry 

Meaning 
Precedes a Procedure-name 
definition element equated to a 
VN for an ALTER verb 

04 Precedes a Variable 
procedure-name reference 
element at a PERFORM verb exit 

05 Precedes a Generated 
procedure~name definition 
element at .the returning point 
of a performed procedure 

432 Section 5. Data Areas 

@ Bit 0 in byte 1 is on for a verb. 

@ Used to write an XREF element for 
procedure-name B in the following cases : 

• PERFORM A THRU B. 

• ALTER A TO PROCEED TO B. 

• A. GO TO B. (where A is altered) 

Code 
(he& 
02 
04 
06 
08 

Code 
~ 
00 
04 
08 
OC 
10 
14 
18 
1C 
1D 

1E 

20 
24 
28 
2C 
30 
34 

~ing 
SAVE AREA 
SWITCH 
Unused 
DEBUG 

Meaning 
DCBADR 
VLC 
ONCTL 
PFMCTL 
PFMSAV 
DECBADR 
XSA 
PARAM 
Single-precision 

floating-point 
Double-precision 

floating-point 
WORKING CELLS 
Temporary storage 
XSASW 
BL, SBL# BLL 
VIRTUAL 
FIB 

Except when the code for the preceding 
field 11 is 2C, 1D, or 1E, this field 
contains the identifying number from 
one of the COMMON counters as described 
in "Section 5. Data Areas." When the 
preceding field is 2C, this field 
contains the i and k fields of the 
addressing parameters, as follows: 

Bits 
0-3 

4-7 
8-15 k 

Value Meaning 
0000 BL 
0001 BLL 
0100 SBL 
0000 Unused 
Base locator number 

assigned from 
corresponding 
COMMON counter. 

When the code for the preceding field 
is 1D or 1E, this field contains zeros. 



lTK-TEXT 

ATM-text is a subset of Procedure IC-text 
(P2 format). It may contain all elements 
of P2-text except the following: 

Code 
21-
24 
33 
35 

Element Name 
FILE-NAMl!: REFERENCE 
VERB INFORMATION 
FLOATING-POINT LITERAL 
"EXHIBIT NAMED" NAME 

BA 
Be 
C9 
DO 
D4 
DB 
F9 

Licensed Katerial - Property of IBM 

INTERMEDIATE RESULT REFERENCE 
TEMPORARY RESULT REFERENCE 
VARIABLE PROCEDURE-NAME DEFINITION 
PROCEDURE-NAME REFERENCE 
PROCEDURE-NAME REFERENCE FOR XREF 
VARIABLE PROCEDURE-NAME REFERENCE 
GLOBAL TABLE REFERENCE (TYPE 1) 

For the formats of ATM-text elements, 
see the formats under "Procedure IC-text 
(P2 Format)." 

Internal Text Formats 433 



Licensed Material - Property of IBM 

PN AND GN DEFS AND PROGRAM BREAKS 
iii 

I 01112 
I I I 
I 271 n 124, C7, 
L I • 

or 88 elementsl 

MISCELLANEOUS A-TEXT 
r I , --, 

I 01112 I 
I I I • 
f281nlAll elements except 24, C7, 88 I 
I I I (see 27) and DO (see 29) I 
L , I 

E-TE XT 
r I 1 , 

I 01112 I 
,. I I ~ 
1291nlOO elementsl 
I ., J 

CARD NUMBER 
r--.-
I 011-3 

, 
I 

I- 1 
12C1 Source 
L_-,--_. 

~11 card number \..Y' 
~ 

SOURCE PROCEDURE-NAME DEFINITION 
r ill 
, 0 I 1 12-3 I 
I-~-t- , 
1301~IPN number -- number assigned I 
I 1 Ifrom PNCTR in COMMON I 
~~--~------

GENERATED PROCEDURE-NAME DEFINITION 
I i 

I 011-2 
I- I 

, 
I ., 

1341GN number -- number 
I IGNCTR in COMMON 
L-..L-

assigned froml 
. I 

VARIABLE PROCEDURE-NAME DEFINITION 
i , ,.- I 

1 01 1 12-3 1 
I- I 1- ., 
1381~IVN number -- number assigned I 
I 1 Ifrom VNCTR in COMMON I 
L ~ _____ __ 

EBCDIC PROCEDURE-NAME GENERATOR 
r---, 
101 Consists only of this one field. 
~., Used to create in-line DC 
13CI instruction for current card 
L---I number to be used by the TRACE 

verb. 

434 Section 5. Data Areas 

MACRO-TYPE INSTRUCTION 
r--Ti----~------rl----------~--------___, 

1011 12 I 
~I~I----------·rl------------------., 
144lTyp~ode IPriority number if 1 
1 I ~ Itype code is 4C I , . 

OPERATION CODE 
r , , 
1 011 I 
~+I-------------------" 
1481Machine operation code., 
I 100 ~ex) used for CNOP I 
L--~' ________________________ ~ 

r-------------------------------------" 
12 1 
• ----I 
,Value of second instruction I 
Ibyte: condition code, length, I 
I register, or immediate field @ I ," . 

PROCEDURE-NAME REFERENCE 
I , , -----------, 

I 01 1 12-3 I 
~I~I---TI----------------------------., 
14C 1 ~ IPN number assigned at point of 1 
I I ,definition from PNCTR (COMMON) I 
L--~~I ________________________________ ~I 

GENERATED PROCEDURE-NAME REFERENCE 
r--r--- , 
I 011-2 I 
r-i- ----------------------------1 
150lGN number assigned at point of I 
1 Idefinition from GRCTH (COMMON) I 
L--.~I ____________________________________ ~ 

VARIABLE PROCEDURE-NAME REFERENCE 
r--r---~I------~--------------------------, 
I 0 I 1 12-3 I 
'-1 I ---I 
1541~IVN number assigned at point of 1 
I 1 I generation from VNCTR (COMMON) I 



VIRTUAL REFERENCE 
I I 
I 011-2 
, 1 
1581VIR number assigned to source CALL 
I Istatement operand from VIRCTR 
I I (COMMON) 

BASE LOCATOR REFERENCE 
r i 1 

I 0 I 1 12 
.. 1 1 
15CITypelBL or BLL number 
1 Icodelassigned from BLCTR 
1 !~ !or BLLCTR in COMMON 

GLOBAL TABLE STANDARD AREA REFERENCE 
~·--~I------------·------------~ 
I 01 1 ~2 
I 1 1 
160lTypeiDisplacement in bytes froml 
I I~el start of specified area 
1 I\.V 1 «. , 

GLOBAL TABLE VARIABLY-LOCATED AREA 
REFERENCE 

• i 1 
I 0 I 1 12-3 

I 

I 
I- I I -----------------f 
1641TypelIdentifying number of 
I Icodel within specified area 

L !®! 
LITERAL REFERENCE 

I I , 

I 011-2 I 
I- I f 
1681Number of literall L __ ~ ____ . __________ ~ 

DC DEFtNITION 
, • i 

I 01112 through c + 1 
• I I 
16ClclActual constant , , 

BASE AND DISPLACEMENT 
i , 

011-2 1 
~'-+I------------------f 
1701~it§ contents 1 
I 10-3 Register number 1 
I 14 -1.5 Displacement 1 
I 

iteml 
I 
I 

Licensed Material - Property of IBM 

ADDRESS REFERENCE 
r , , , 
1 0 11-3 1 4- 6 1 
I 1 I f 
178 I Addressing r::;.,1 Dictiona~ 1 
I I parameters ~Ipointer ~ 1 
I I I 

EBCDIC DATA-NAME REFERENCE 
Iii i 
I 01112 through 1 + c I 
~~-----------------~ 
17ClclData-name in EBCDIC I 
I I I 1 
( II @ I , . , 

ADDRESS INCREMENT 
i i , 

I 011-3 1 
L I f 
180lValue that is to modify an 1 
I I address. Negative value in 1 
I 12's complement. I L--L-__________________________ ~ 

RELATIVE ADDRESS 
Iii , 

I 011 12 I 
r-+I------------+(------------41 
t841Code for (Size. in bytes,1 
1 1 object ~ule lof address I 
I 1 field ~ . Iconstant 1 
I 

r---.---------------, 
13-4 

• INumber of item in 
Ispecified field L--. ______________ ~ 

SPECIAL PHASE 6 ELEMENTS 

REGISTER SPECIFICATION 
r , , 
1 011 I 
• I I 
IAOIRegister number: I 
t 100 through CF (hex) I 
L , I 

Procedure PIA-Text 435 



Licensed Material - Property of IBft 

INCREMENTED ADDRESS 
i i 
I 011-3 
I I 

• 14-6 
I 

I A41 Addressing 
I I parCZ)eter 
I I 7 , 

I Dictionary 
IPoi~er 
, 8 , 

• 17-9 
I 
,Value .. of increment, 

I 

SPECIAL PHASE 6 ELEMENTS 

CALLING ~EQUENCE DIS·PLACEMENT 
r Iii 
, 011 ,2 , 
.. I II 
IBOICode for IBase codel 

I object ~dule I s w~ch I 
Ifield ~ I Q3I I , , , 

r'----------------~I 
13-4 I 
&-, ---------f 
INumber of item inl 
Ispecified field I 
L' ________________ ~ 

CALLING SEQUENCE DICTIONARY POINTER 
~ 

I 011-3 
.. I 
IB41Pointer to dictionary entry fori 
I ·Ifile-name, data-name, or 
I Isubscripted data-name. ® 
I , ~ 

FILE OR SUBSCRIPT REFERENCE ELEMENT 
I 

0,1-3 
a I of 
IB81Pointer todicti~rYI_ 
I lentry for file ~ I 
, , I 

436 section 5. Data Areas 

PARAMETER POR CALL TO SEGMENTATION AND GO 
TO DEPENDI NG ON SUBROUT lIES 

" I • I 011 12-3 I 
I I I r 
IBC IPrioritYIPN numberl 
" , , 

PHASE 50 OPTIMIZATION IHFORBATIOH 

• i I 011 

• I I COl Typ~COde 
I I 13 · . 

RPT-OlUGU 

• i i I 0,1-2 I 
.. I I 
I D41 GH nUllberl , 

(!) Bit 0 in byte 1 is on for a verb. 

@code 
Jb~l 

04 . 
08 
Oc 
10 
14 
18 

Assembler equivalent 
CNOP 0,4 
CNOP 2,4 
CNOP 0,8 
CHOP 2,8 
CHOP 4,8 
CNOP 6,8 

Byte 1 contains priority number of 
segment within which the procedure-name 
is located. 



CD Code 
(hexl. 
00 

Oij 

08 

DC 

10 

18 

20 

24 

28 

2C 

30 

3ij 

38 

3C 

40 

44 
4C 

50 

Me a n.i.ruL 
EQUATE -- equates variable 

procedure-names to initial 
value; followed by 
procedure-name reference. 

ENTRY -- defines entry point; 
followed by EBCDIC data-name 
reference giving entry point 
name. 

BLCHNG -- specific contents of 
base locator changed; followed 
by base locator reference. 

ENDOPT -- indicates end of 
register optimization. 

DECLARATIVES START -- indicates 
beginning address of 
Declaratives Section; produced 
only if the SYMDMP or STATE 
option is in effect. 

ADCON -- defines address 
constant; followed by relative 
address reference, 
procedure-name reference, 
calling sequence displacement 
element, or calling sequence 
dictionary pointer to which 
adcon points. 

START -- identifies first 
exec~table instruction. 

DC -- identifies constant; 
followed by DC definition 
element. 

RESERVE -- specifies registers 
not to be used by phase 6 or 
by phases 62, 63, and 6ij; 
followed by register 
specification element. 

FREE -- indicates registers no 
longer reserved; followed by 
register specification 
element. 

DESTROY -- indicates that 
contents of register were 
destroyed; followed by (2) 
register specification 
element. 

INIT -- indicates when permanent 
registers must be loaded. 

ORIGIN -- indicates where to set 
location counter for 
overlaying USE BEFORE 
REPORTING code; followed by 
generated procedure-name 
reference. 

REORIGIN -- indicates that the 
reset location counter is to 
be reset. 

Q-BEGIN -- indicates start of 
Q-Routine coding; destroys 
permanent register assignment. 

segmentation control break. 
Segment initialization (1-byte 

priority number in next 
field) • 

Dummy procedure-name reference 
element to force an XREF 
element to be written for the 

Licensed Material - Property of IBM 

Bits 
0-3 
4-7 

Code 
Jhexl. 

02 
Oij 
06 
08 
OA 

Code 
lhex) 

00 
04 
08 
OC 
10 
14 
18 
1C 
20 
24 
28 
2C 
30 
3ij 
3C 
40 
44 
48 
50 
54 
58 
5C 
60 
64 

following procedure-name 
reference element. 

Code 
0000 
0000 
0001 

Meanilli! 
Unused 
BL 
BLL 

Meaning 
SAVE-AREA 
SWITCH 
TALLY 
SORT-SAVE 
USDBGINF 

Meaning 
DCBADR 
VLC 
ONCTL 
PFMCTL 
PFMSAV 
DE.CBADR 
XSA 
PARAM 
WORKING CELLS 
TS 
XSASW 
SUBADR 
TS-2 
FIB 
SAVE AREA-2 
SAVE AREA-3 
RPTSAV AREA 
OVERFLOW 
CHECKPT CTR 
TS-3 
TS-4 
IND 
DBGTRA 
DBGCRD 

Bits Fiel£! Code Conte.n.:Lgr Me~n.!ng 
0-3 i 0000 BL 

0001 BLL 
0011 Address of data-name 

is in registe r 
specified in bits 
12-15. Referred to 
by zero displacement 
from register. 

0100 SBL 
0110 subscript cell 

4-15 d Displacement from start 
of area controlled by 
base locator. If a 
register is specified 
in bits 0-3, however, 
bits 4-11 contain 
zeros, and bits 12-15 
contain the register 
number. 

16-23 k Base locator number 
assigned from correspond
ing COMMON counter. 

Procedure PIA-Text 437 



Licensed Material -.Property of IBM 

Bits 0::;--
2-14 
15-23 

Code 
jhetl 

00 
04 
08 
DC 
14 
1C 
28 
2C 
30 
34 
38 
3C 
40 
44 

48 
4C 
50 
58 
5C 
60 
64 
68 

colU!m.i§ 
Unused 
Dictionary section number 
Displacement in section 

l1~aning 
INIT1 
TALLY 
PARAM 
BL 
SBL 
VLC 
BLL 
LITERAL 
INIT3 
CHECKPT CTR 
PGT 
TGT 
INIT2 
START (first executable 

instruction identified 
by START) 

PN 
VIRTUAL 
GN 
VN 
VNI 
SUBADR 
Temporary Storage 
External adcon (for address of 

transient area in segmented 
program) 

The following special phase 6 A-text 
elements are generated and then used 
by phase 6 to generate MVC 
instructions to initialize VN c.ells 
in the TGT: 

Identifier 
-llte __ 

90 

A8 

AC 

Text Element 
A 4 -byt e element that 
references the VNI cell in 
the PGT. 
A 1-byte element that 
indicates that the value 
in the P6PLUS field should 
be used as the "plus" 
element of the MVC 
instruction. 
A 1-byte element that 
indicates that the value 
in the P6LNG field should 
be used as the "length" 
element of the MVC 
instruction. 

438 Section 5. Data Areas 

@ 

@ 

Code 
1hW. 

00 
04 
08 
OC 
10 
14 
18 
1C 
20 
24 
28 
2C 
30 
60 
64 

Code 
.L~ 

00 
01 

Code 
1h~1. 
01 

02 

03 

05 

06 

Meaning 
INIT1 
TALLY 
PARAM 
BL 
SAVE2 
SBL 
FIB 
VLC 
PN 
GN 
BLL 
LITERAL 
DCB 
SUBADR 
Temporary storage 

~eaning 
No preceding base code. 
Base code precedes 

this eleme·nt. 

Me.ruli.ng 
Precedes a load instruc
tion which is not 
followed by a branch 
instruction 
Precedes any possible 
entry point for which 
addressability must be 
established 
Precedes a load instruc
tion for a PN or GN 
which must be processed 
with an address constant 
cell in the PGT 
Precedes a variable 
procedure-name reference 
element at a PERFORM 
verb exit 
Precedes a Generated 
procedure-name defini
tion element at the 
returning point of any 
performed procedure 
except a PERFORM ••• TIMES 
procedure in a nonseg
mented pr,ogram 
Precedes a load instruc
tion for a PN or GN 
which is followed by an 
unconditional branch 
instruction 

Phase 
Produced 
by 

50,51 

4,51 

50,51 

4 

4,51 

50,51 

Must be preceeded by either a 
4404 or a 2C element. 



VIRTUAL DEFINITION 
r i i 
1 01 112-3 
~ 1 1 
100100lVIR number assigned 
I I I VI RCTR in COKKON 
L----L-.......L.-

.-
14-11 

, 
I 
r 

froml 
I 
I 

~--------------------------~ 
IExterna1-nama in operand of 
ICALL statement, left-justified, 
Ipadded with blanks. L-----__________________________ ~ 

LITERAL DEFINITION 
r, i I 

101 11213 through 2 + c 
1 I I I 
I041TypelclVa1ue of literal 
I I~el I 
I I \2) I I 
L I ,. 

GENERATED PROCEDURE-NAME EQUATE STRING 
(NON-OPTIKIZER VERSION) 

r Ii, 
I 011 12-3 I 
I- J I ., 
1081n/2 IFirst GN number assigned 1 
I I (Number 1 to identify a location 
I lof fields 1 
1 Ito follow) I 
, I I .J 

r-------------------------.------~ 
I[Variable number of 2-byte 
1 fields containin g GN numbers] L _____ _ 

r-------------------------------, 
In through n + 1 
l--------
ILast GN number assigned to s~~e 
11ocation as others in string 
L 

SOURCE PROCEDURE-NAME EQUATE STRING 
(NON-OPTIKIZER VERSIOm 

r i i , 

I 011 12- 3 I 
I- I I ., 
I OC In/2 1 First PN number assigned I 
I I (Number I to identify a location I 
I I 0 f fi e1 ds I I 
I Ito fo11o~ 1 I 
I , I 

Licensed Material - Property of IBM 

r-------------------------------~ 
I[Variab1e number of 2-byte 
Ifie1ds containing GN numbers] L---____________________________ ~ 

I 
In through n + 1 
l---.------------~----------~ 
ILast GN number assigned to same 
[location as others in string 
I .J 

DISPLAY LITERAL DEFINITION 
.--. i I I 
I 011 1213 through 2 + c I 
I 1 1 1 ., 
110 IType·lcl Value of literal I 
II~el 1 1 
1 1l.2J I 1 1 

, 'f I 

I LITERAL DEFINITION (Larger than 255) 
.--. I 
1 01 1 12-3 
1-, I 1 
1541Type I C 
1 ICodel 

~~C) ! 

I --, 
14-3 + c I 
1 of 
I Values of 1 
I literal 1 
1 1 
I 

SEGMENTATION ELEMENT 
, i I' 
1 011 12-3 1 
Ir--+-- I I 
J141Priority number oflVN 1 
1 Isegment to which Inumberl 
I 1 VN belongs I I 
I , I 

GNUREF ELEMENT 
, t ---, 
1 011-2 1 
Ir--+-:--------------------------t 
11C 1 GN number for AT E~lD or INVALID KEY 1 
1 1 branches, or GNs at REPORT-ORIGIN 1 

.J 

Procedure PIA-Text 439 



Licensed Material - Property of IBM 

PHUREF ELEMENT 
r--~I-----------------------------------' 
1 011-2 1 
t~I~---------------------------4 
120lPN number for PHs following TO I 
I I PROCEED TO in ALTER statements I 
I lor Declaratives PN number I 

GN-VN ELEMENT PERFORM VERB 
r i , , 

1011-2 13-4 I 
I I --+- , 
1241GN number IVN number I 

lassociated withlassociated with I 
Ireturn point oflPERFORM exit I 
la performed I I 
I procedure I I , , , 

VARIABLE PROCEDURE-NAME EQUATE 
PROCEDURE-NAME OR VARIABLE PROCEDURE-NAME 
EQUATE GENERATED PROCEDURE-NAME ELEMENT 
(OPTIMIZER VERSION) 

VARIABLE PROCEDURE-NAME DEFINITION 
iii i 
I 0~112-3 I 
I I I , 
13S@VN number -- number assignedl 
I I I from VHCTR in COMMON I , , 

MACRO-TYPE INSTRUCTION 
r I 
I 011 
I I 4 
144100 I 

! !®! 

440 Section 5. Data Areas 

PROCEDURE-NAME REFERENCE 
, i i 

101112-3 
.. fQl I . 14C 2 PH number assigned at 
I I definition from PNCTR 

point ofl 
(COMMON) I 

~, , 

GENERATED PROCEDURE-NAME REFERENCE 
r , 
I 011-2 
• I 
ISOIGN number at point of 
I Idefinition from GNCTR 

I 
(COMMON) I 

I I 

CD Bits 
0-1-

2 
3 
4 
5 
6 
7 

Code 
00 

01 
10 
11 

1 
1 
1 
1 
1 
1 

Meaning 
No boundary requirement 
Halfword boundary 
Fullword boundary 
Doubleword boundary 
Floating-point number 
EBCDIC numeric value 
Binary number 
Packed decimal number 
EBCDIC character string 
Hexadecimal number 

I 

Byte 1 contains the priority number of 
the segment within which the 
procedure-name is located. 

® The code 00 indicates EQUATE. 



PROCEDURE At-TEXT 

The follovinq elements of Procedure A1-text 
are identical to their counterparts in 
Procedure A-text. 

~ Element Name 
2C CARD NUMBER 
30 SOURCE PROCEDURE-NAHE DEFINITION 
3~ GENERATED PROCEDURE-NAME DEFINITION 
38 VARIABLE PROCEDURE-NAME DEFINITION 
3C EBCDIC PROCEDURE-NAKE G~RATOR 
~~ KACRO-TYPE INSTRUCTION \!) 
~8 OPERATION CODE 
4C PROCEDURE~NAME REFERENCE (2) 
50 G~RATED PROCEDURE-NAHE RiFERENCE 

54 V~ABLE PROCEDURE-NAHE REFERENCE 
58 VIRTUAL REFERENCE 
5C BASE LOCATOR REFERENCE 
60 GLOBAL TABLE STANDARD AREA 

REFERENCE 
64 GLOBAL TABLE VARIABLY-LOCATED 

AREA REFERENCE 
68 LITERAL REFERENCE 
6C DC DEFINITION 
70 BASE AND DISPLACEMENT 
7C EBCDIC DATA-NAME REFERENCE 
84· RELATIVE ADDRESS 
AO REGISTER· SPECIFICATION 
BO CALLING SEQUENCE DISPLACEMENT 
B4 CALLING SEQUENCE DICTIONARY POINTER 
B8 FILE REFERENCE ELEMENT 
BC SEGHENTATION AND GO TO DEPENDING ON 

SUBROUTINE CALL PARAMETER 

The SPECIAL PHASE 6 ELEMENTS are also 
present in Procedure A1-text and are 
processed by phase 6~ if the OPT option is 
specified. 

ADDRESS REFERENCE 
, i , 

I 011-3 14-6 
• I 1 I 
178lAddreSSinq0lDiCtiOna~ I 
• t parameters 3 1 pointer ~ 1 
L ' , , 

Licensed !aterial • Property of IBM 

ADDRESS INCREMENT · . " I 011-3 I 4 1 
r-+I---------------rl---;I 
180lValue that is to 'C~ I 
I Imodify an address I ~ 1 , , , 

BLOCK NUMBER 
i , i 

1 011 1 
.. 1 I 
1 C4, Block number, 

PROCEDURE BASE REGISTER ELEMENT FOR PN'S 
i i 

• 011-2 ... 
I C81 PH number 

PROCEDURE BASE REGISTER ELEMENT FOR GN'S 
i , 

I 011-2 
r-,+I-----I 
I CCI GN number , , 

BASE DISPLACEMENT DATA-NAME 

• i I 1 011-2 13-5 
L • 1 I 
I DOl Addressinq ~ Dictiona® I 
1 I parameters ~pointer 5 I 
L--l ' f 

Procedure PIA-Text 441 



Licensed Haterial - property of IBM 

o 

A MACRO-TYPE INSTRUCTION element with a 
44 byte code (segmentation control 
break) has an added byte which contains 
the priority number. 

Present only for those PNs and GNs that 
have address constant cells in the PGT. 

!!i1§ 
0-1 
2-14 
15-23 

OF 

COllt.en.!§ 
Un used 
Dictionary section number 
Displacement in section 

Meaning 
LA instruction not to be 
generated 
LA instruction to be generated, 
using register 14 as base 
register 
LA ir.strnction is to be 
generated, using register 15 as 
base register. 

Bit§. EielSl £.Qde f..Q.!l!§.nt-2L~le£llin£l. 
a i 0 Use register 14 to 

address item. (A 
load instruction is 
generated if bits 2 
and 3 are on.) 
Use register 15 to 
address item. (A 
load instruction is 
generated if bits 2 
and 3 are on.) 

1-3 000 BL 
001 BLL 
011 Address of data-name 

is in register 
specified in bits 
12-15. Referred to 
by zero displacement 
from register. 

100 SBL 
110 Subscript cell 

4-15 d Displacement from start of 
area controlled by base 
locator. If a register 
is specified in bits 
0-3, however, bits 4-11 
contain zeros, and bits 
12-15 contain the 
register number. 

16-23 k 1 BL or BLL number 
assigned from BLCTR, 
or BLLCTR in COMMON 

2 subscript cell 
number 

3 S BL number assigned 
from SBLCTR in 
COMMON 

Por data-names with permanently 
addressable BLs, phase 63 changes the 

442 section 5. Data Areas 

Address reference element to a Base 
displacement data-name element, using 
the permanently assigned register 
number from the BLASGTBL table and the 
displacement given in the Address 
reference element. The contents of the 
field are: 

Contents 
Baseregister 

!!it§ 
0-3 
4-15 Displacement from start of 

area controlled by base locator 

LISTING A-TEXT FOR PROCEDURE-NAMES 
r-.,---,-
1 01112 through 1 + c 
1 I I 

1 

I 
~ 
I 17ClciEBCDIC procedure-name; 

I I Ibit 0 of the preceding 
1 I lis se t to 1 

field I 
I 
1 

LISTING A-TEXT FOR VERBS 
r-.-.- --~------r,~· ----, 
I 01112 through n In + I 
1--t-+- I ----i 
17ClniEBCDIC verb IAlphabetic verb I 
I I I I sequence number I 
L--~ _____________ L· ____ . ____________ ~l 

END OF LISTING A-TEXT 

MESSAGE DEFINITION 
i . iii , 

1 01 11 2/3-4 I 
j I I--t-- of 
100107100lIdentifying I 
I" I I I message number 1 
I I t I I 

~ 
15-7 
I 
ICard 
Inumber 
1 
I 

i , 

18 I 
1 ~ 
I Bi ts Con.imll§ I 
10-3 Severity code I 
~_ Pha::~umber_J 



MESSAGE PARAMETER 
r •• 
I 01112 
I I I I 
100In IIC-text identif(1)rl 
I I I for parameter 1 I 
L ' , , 

, 
13 through n + 1 

• IEither the actual value to be 
linserted, or a pointer to the 
IPARTBL field containing the 
I value. , 

Code 
(hex) 
05 
22 
23 
34 
42 
43 
44 
50 
52 
53 
54 
57 
75 
79 
81 
F9 
FA 
FE 

Meaning 
Alphanumeric literal 
Alphanumeric literal 
EBCDIC name 
Alphanumeric literal 
critical program break 
Level number 
Verb 
Relational 
Parenthesis 
Arithmetic operator 
COBOL word 
COBOL word 
Figurative constant 
Standard data-name· 
Procedure-name definition 
Global Table reference, Type 1 
Global Table reference, Type 2 
Dictionary pointer 

(not an IC-text element) 

DEF-TEXT ELEMENT FOR DATA-NAME DEFINITION 
f iii i , 

I 011-3 14-6 1718 to c + 71 
.. I I 1 1 ., 
1481Card IPointer to dic-lcIExternal- I 
I Inumber, tionary entry I Inalle in I 
'I ,for data-name 1 ,EBCDIC. I 
L I' , , I 

DEF-TEXT ELEMENT FOR PROCEDURE-NABE 
DEFINITION 

r i , 

1 011-2 13-5 
I I I 
14CIPN Icard Number 

I number I 
I 1 , , 

i i , 

1617 to c + 61 
I 1 , 
Icl Bxternal- I 
I Inalle in I 
I I EBCDIC I 
f , , 

Licensed Baterial - Property of IBM 

DEF-TEXT ELEMENT FOR VERB DEFINITION 
r iii I , 
1 01 112-3 14 15 I 
~ I I I I I 
148100 I Number of 1 EO 1 Al phabetic 1 
I 1 occurrences 1 Iverb sequence 1 
1 1 I I n umber I 
., I , .I 

iii i 
6171 819 to c + 71 

~ 1 I I r 
100lclFBIVerb text I , , 

END OF REF-TEXT and 
BND OF E-TEXT 

,------, 
I 0 I ...--., 
1771 10 I 
L-=--..J 

REF-TEXT FOR VERBS 
• i , 

10-2 I 314-5 
1 I I .. 
Icard Number I EO 1 ver~odel 

! (!) !! ~ ~ 

BEGINN ING OF REF TEXT 
,------, 
10-1 I ...--.. 
1~11 
I~ I 
'-=--.1 

RBF-TEXT 
ii' 
10-2 13-5 I 
~I-----------------+I------~-f 
I Pointer to .dictionaryl Card numberl 
lentry for data-name 1 1 
lor PH number 1 ® 1 
I " 

Procedure PIA-Text 443 



Licensed Elaterial .;.. Property of iBM 

CAFDLOC 
(i i i 
I 011-3 14-6 I 
I- 1 I I 
110lCard Icontents of LOCCTRI 
I Inumberlwhen card' . I 
I I I encountered I 
L I 

ENDSEG 
r i 

1 011-3 
I 1 

i 
14-6 
1 

1201 Zeros 
I I 
1 1 

1 contents of LOCCTRI 
lafter processing 
Ilast verb of 

I 1 I segment . , , 

SEGMENT 
i i , 

I 011 I 
1 I of 
130lPriO.)rity I 
I Inumber I 

t ! Q) ! 

DISCONTINUITY 
.--, 
10 I 
~ 
1401 
k-\I 
~I 
~ 

444 Section 5. Data Areas 

written by phase 60 or 64; read by 
phase 6A. 

8eaning 
o = Reference is. for 

data-name 
1 = Reference is for 

procedure-name 

For an unsegmented program, only one 
priority element is written; the 

. priority number is set. to zero. 

~. Indicates beginning of a noncontiguous 
section within a segment. 

® End-of-REF-text on file 3 and 
end-of-E-text if spilled on file 3. 
Written by phase 60 or phase 64. 

The alphabetic verb sequence number 
followed by X·OO·. 

The high-order bit is always set to O. 



Dictionary handling is performed by ACCESS 
routines described in "Appendix A: Table 
and Dictionary Handling." Phases 1B, 22, 
21, 25, and 3 use the dictionary. 

Phase 1'B enters procedure-names and 
their attributes in the dictionary. 

Phases 22 and 21 enter data-names and 
their attributes in the dictionary. If the 
SYKDMP option is in effect, phase 25 uses 
the dictionary to build the DATATAB and 
OBODOTAB tables for the Debug data set. 

Phase 3 replaces data-names and 
procedure-names in Procedure Division 
statements with their dictionary 
att:dbutes. 

Licensed Baterial - Property of iBM 

NOTES ON DICTIONARY ENTRY FORKATS 

• The top row of figures shows the number 
of bytes in the field. 

• litH M'Mi !tin-. define optional 
fields or a series of similar fields. 

• c = the number of bytes in the !ield 
that follows. 

• n = the total number of bytes that 
follow in the remainder of the ent~. 

• 1b = this field is one byte long. 

Dictionary Entry Formats 445 



Licensed Haterial - property of IBM 

PROCEDURE-NAME (PARAGRAPH) ENTRY 

HASH Table Pointer 
Delimiter 
Pointer 

Basic 
Fields Attributes 

~---...... ----~ ~~ 
r-~-.-_, 

111Variablel 
I I I 
IclName I 
I I I 
I I I 
, , I 
I I I 
I I --l 

r-----, 
I 1 I 
1-----1 
I Coun t I 
land I 
I major I 
IC~ I 
10 I L __ ---I 

r i I 

I 2 2 1 I I 
~I---------+-------~Ir---~I-------~ 
ICharac- IPN numberlUnusedlPriority I 
I teristicslof this I I Number I 
I I paragraph I I I 

: 0: : : 0 : 
'~ ______ -4' _____ ~I~ ____ ~I~ ________ J 

PROCEDURE-NAME (SECTION) ENTRY 

2-14 
15-23 

4-7 

Basic Delimiter 
Pointer ~ ::==~~~~~~~A~t~t~~~i~b~u~t~e~s~~~~~~==~ , , ,.---, 'I 

3 111Variable I I 1 I 2 I 2 I 
, I I • I I I I ~ 

Pointer to 
dictionary I 
en tr y for next I 
section- na me I 

IclName I ICount I ICharacteristicslPN IUnusedl 
I I I I and I I I number I I 
I I I Imajo~ I lof thisl I 
I I I Icodv. I 0 I section I I 
t I .J L----::::..J I " 

contents 
OO---Neither HASH table nor 

delimiter pointer 
01 Delimiter pointer 
10 HASH table pointer not followed 

by delimiter pointer 
11 HASH table pointer followed by 

delimiter 
Dictionary section .number 
Displacement in section 

contents 
Number-of bytes in attributes field. 

If 0, see variable information 
field under "LD ENTRY." 

Code Me~ing 
0000 LDentry under FD 
0001 LD entry under sD 
0010 LD entry under CD 
0011 VsAM file 
0100 LD entry in Working-Storage 
0101 LD entry in Linkage Section 
0110 LD entry in Report Section 
0111 LD en try under FD with 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

APPLY WRITE-ONLY (after phase 
FD en try 
SD entry 
CD entry 
FD entry with ASCII 
Condition-name entry 
Procedure-name entry 
RD entry 
Index-name entry 

3) I ® 

I , 

I 2 I 
Ir-------+I------------~ 
IPrioritY1PN number I 
I number lof next section I 

Bi:!;, MeaningL-if Q!! 
o SORT/MERGE input/output procedu 
1 Section-name 
2 Referred to by PERFORM 
3 Referred to by ALTER 
4 Procedure-name of simple GO TO 
5 Procedure-name of EXIT 
6 Procedure-name following 

TO PROCEED TO in an 
ALTER statement 

7 Unused 
8 Referred to by DEBUG 
9 Defined in DEBUG 

10 Dummy section-name 
11 Defined in Declara ti ves section 

or in DEBUG statement referri 
to such a section. Bits 12-1 
describe type of section. 

12 Declarative error routine 
13 Declarative label routine 
14 Declarative for DEBUGGING 
15 Declarative report section 

Not present in dictionary added by 
phase 30. 

446 Section 5. Data Areas 



~TRY 

~SB Table Poi nt er 
Delimiter 
Pointer 

3 

Pointer to nextl 
entry after 
last LD entry 
for this file 

Q) 

Basic 
Fields 
~ 
• i , 

111 Variable 1 
I I ., 
lei Name I 
I I 1 
I I 1 
I I I 
I I I 
1 I I 
I I I 
, , ..I 

Licensed Material - Property of IBM 

Attributes - -.-.----.., . 
I 1 I 1 I 1 
ll-----II I I 
ICount I IFlag1First 
I and I I by tel BL 
Imajor I I Inumber 
I code 1 I I 10 1101 
I I I I 
I I I I 
L.. ___ .J' , 

1 1 I 
I 

DCB I Access I 
numberlmethod and I 
or FIBII/O specifi-I 
numberlcations I 
for I I 
VSAH I I 
file I CD @ I 

! I 

Non-VSAM file 
I i 
I 2 1 I 
, I 
IDECB IHaximumlCount I 
Inumberlrecord land I/O I 
I Ilength loptions 01 
, , '" I 

VSAM file 
, I 

1 2 I I 
I I 

IIND2TBLIDisplacement I Number ofl 
lentry lof first entrylBLs I 
Icount lin IND2TBL I needed I 
1 I I for this I 
I I I file I 
«I " 

All files 

QSAM File 

• I 

I 1 I 
I of 
I option byte I 
I 

@ 
I 

I I 
• .J 

Dictionary Entry Formats 447 



Licensed !aterial - Property of IBM 

Bits --0-
1-2 

3 
4-7 

0000 

0001 

001C 

0100 

1000 

contents 
-'---Q~Routine indication 
00 Format V 
a 1 Format F 
10 Format U 
11 Format 5 
USE AFTER ERROR 
Number of BLs needed for this file 

Access 
t!gtho~ 

QSAM 

QISAM 

BISAM 

BSAM 

BDAM 

Clause specified 
Bit if bit is on 
-4 BEFORE'ADViNCING 

5 AFTER POSITIONING 
6 APPLY WRITE-ONLY 
7 AFTER ADVANCING 
4 START 

5-7 Unused 
4 APPLY REORG-CRITERIA 
5 TRACK AREA 

IS ••• CHARACTERS 
6 APPLY CORE-INDEX 
7 FREE 
4 NOMINAL or AerU AL 

KEY 
5 Direct organization 

6-7 Unused 
4 File organization 'D' 
5 Direct organization 
6 TRACK LIMIT 
7 Unused 

® VSAM entry 

Bit Contents 
-0- 1~~CCESS IS SEQUENTIAL 

1 1 = ACCESS IS RANDOM 
2 1 = ACCESS IS DYNAMIC 
4 Reserved 
5 Relative VSAM 
6 1 = VSAM indexed file 
7 1 = VSAM addressed 

s eguential file 

448 Section 5. Data Areas 

contents Bits 
0-3-

4 
5 

Number of bytes that follow 
1 = SAME RECORD AREA 
1 = SAME AREA 

6 
7 

1 = User label 
1 nonstandard label 

Location of item in data area of objec· 
module: 

Bits Field 
-0-3 -·-i-

4-15 d 

16- 23 k 

l1gillng 
Type of BL containing h 

address of area: 
0000 = BL 
0001 = BLL 
0100 = SBL 

Displacement from base 
address 

BL number 

This extra byte is present for all QSAI 
files after count and input/output opt: 

!l.it .!1g!!illlg 
o LINAGE 
2 FILE STATUS 



Licensed Material - property of IBM 

ENTRY 

Delimiter Basic 
ASH Table pointer pointer Fields Attributes ------ - ~ ..... 

ENTRY 

lASH Table Pointer 

Bi ts Contents 

3 

Pointer to 
next entry 
after last 
LD entry f 
this file 

Delimiter 
Pointer 

3 

Pointer to 
next entry 
after last 
LD entry ~ 
this file~ 

--0- 1 =-SAME RECORD AREA 
1-2 00 = Format V or S 

01 = FO.rmat F 
10 = Format U 

3 1 = ASCII collating sequence 
4-7 Number of BLLs needed for this 

file. 

I I I I i , 
111Variable I I 1 I 1 1 2 2 11 
~ I I • J 1 I I I 
IclName I ICount IFlaglFirst IMaximumlMinimumlO 
I I I land IbytelBL Irecord Irecord I 
I 
I 
I 
L 

I 
I 
I 
I 

Basic 
Fields 

I Imajor 
I ICC!) 
I I 2 
I , 

Attributes 

~~ 
II ,.---,~ 

111 Variable I 1 1 1 I 7 I 
II "~-II----I 
I c I Name I I Coun til 0 I 
I 1 I land I I I 
I I 1 I ma jor I I I 
I I I IC~ II I 
II 118 II I 
, , -.I ' J '----J 

Inumberllength Ilength 1 
I I I I 

! ! ! K9 

Dictionary Entry Formats 44~~ 



Licensed Material - Property of IBM 

LD ENTRY 

Delimiter 
HASH Table Pointer Pointer 

Basic 
Field s Attributes ------------ - --------

CD ENTRY 

HASH Table Pointer 

0 Bits Code 
-0-3 0000 

0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
10C1 
1010 
1011 
1100 
1101 

r----, Iii 
3 I 1 1 I 1 3 11 I Variable 

.......-;'·1 I 1 I 
If group item, 
pointer to next 
entry after 
last LD entry 

I cl Name 
I I 
I I 
I I 

ICount I IMinorlAddressinglFlaglLevel nUl 
I and I I cOde. I parame tersl bltel ber and 
Imajor I land Ifor item I ~ Ivariable 
Icode 1 I flags I 1 linformatj 

for group I 1 I I I I I I 10 @ I 0 I @ I @ I @ ( 

Delimiter 
Pointer 

II 
, , " " 

Basic 
Fields Attributes --""'--------.. ____ "....-----_ .. __ .--~ - me& .......... 

I , -, wr------r------r----~~~,r---~------------
111 Variable I I 1 13" ' ··1 1 2 
I I r 1-1 ---1-·---11----41---1-1--'-----
IclNama I ICount ICD IAddressinglFlaglNumber of oc-
I I I land Inumberlparameterslbytelcurrences of 
I I I Imajor I r.;;;.. Ifor item I r.;? I DESTINATION 
I I I I c~ I ~ I I ® ITABLE 
I I 110 I I @ I I , , J lo' .....;::::::.... __ ... L _____ 'L.-__ ....;;;~ __ ..J'~ __ -'-_______ _ 

Qeerand's Characteristic~ 1110 Alphanumeric edited 
Error detected for this 1111 Unused 

operand 4-5 Code Subscriets Reguired 
Fixed-length group 00 None 
Alphabetic 01 1 
Alphanumeric 10 2 
Variable-length group 11 3 
Report item 6 1 = OCCURS clause in this item 
Sterling report item 7 1 = REDEFINES clause for this 
Usage is index item 
External decimal 
External floating-point 

@ Internal floating-point 0 = 1 SRA 
Binary 

@) Internal decimal Location of item in da ta area of object 
Sterling nonreport module: 

450 Section 5. Data Areas 



@ 

@ 

Bits 
0-3 

4-15 

16-23 

Bit§ 
0 
1 
2 
3 

4 
5 

6-7 

Bits 
0-5-

6 
7-end 

1ielg ~~sniill! 
i Type of. BL containing base 

address of area: 
0000 = BL 
0001 = BLL 
0100 = SBL 

d Displacement from base 
address 

k BL number 

Meaning, if on 
INDEXED BY 
SYNCHRONIZED 
Subject of key 
If hit 2· = 1 
o = DESCENDING 
1 = ASCENDING 
Report HITH CODE 
DEBUGGED item is subscripted 

Contents 
00 SIGN is overpunch trailing 
01 SIGN is overpunch leading 
10 SIGN is separate trailing 
11 = SIGN is separate leading 

Contents 
Level number 
1 = Q-Rontine is required 
variable, according to 

Table 18. 

@ 

Licensed Material - Property of IBM 

During phase 3 operations, the flag 
byte field is removed. The first four 
bits overlay the first. four bits of the 
level number, and the last four bits 
overlay the count field preceding the 
major field. In the level number 
field, if bit 4 is on, the level is 01i 
if bit 5 is on, the level is 77. 
Otherwise, these bits are off. 

Each CD is assigned an identifying 
number beginning with the last DCB 
number plus 1. 

Bi ts Meaning 
0- 0 = INPUT 

1-5 
6 

7 

1 = OUTPUT 
Unused 
1 = Object of OCCURS ••• DEPENDING 

ON under CD entry 
Unused 

Dictionary Entry Formats 451 



Licensed !aterial - property of IBM 

i i 
, Characteristic 1 
t-- 1 
IFixed-length I 
IGroup Item 1 

Bits Contents 

1-17 Length of group. 

1 

.1 
I 
I 
I 

t-- I ---------------+--------+-------------------------------------------------~---~--------------~ 1 Element ary 1 
1 Alphabetic I 
I or I 
I Alphanumeric I 
lItem I 

1 
2-17 

18-32* 

33-41* 

1, if JUSTIFIED RIGHT. 1 
Length of itemi I 
Dictionary section number of entry for group in which this I 

item is included, if the group contains an OCCURS clause. I 
Displacement in section. I 

r-- I ----------------r-.--------r--------~--~---~------- ~ 
, External I 
I Decimal I 
I or 1 
IInternal I 
IDecimal 1 
I or 1 
IBinary I 
I I 
I I 
I-- 1 
IInternal 1 
I Floating-point I 
I , , 1 , 1 , I 

• 1 
I External 1 
I Floating-point I , , 
1 I 
I , 
I I 
I I 
I I 
I I 
I I 

1 
2-9 

10-17 
18- 32* 

33-41* 

1-16 
17 

18-32* 

33-41* 

1 

2 
3 

4-9 
10-17 
18- 32* 

33-41* 

1, if PICTURE contains S. 
Signed number. .If positive, the number is the total of Ps 

plus 9s to the right of decimal point. If negative, it 
is the number of Ps to the left of decimal. If 0, the 
item is an integer. 

Number of decimal digits. 
Dictionary section number of entry for group in which this 

item is included, if the group contains an OCCURS clause. 
Displacement in section. 

Unused 
o = Short form 
1 = Long ,form 
Dictionary section number of entry for group in which this 

item is included, if the group contains an OCCURS clause. 
Displacement;;in s.ection. 

, , , 
I 
I 
1 , 
I 
I 
I , 
I 
I 
I 
I 
I 

--------i 
o = Mantissa blank when positive 
1 = Plus sign when positive 
Same for exponent sign 
o = Implied decimal point 
1 = Real decimal point 
Scale of mantissa. 
Total length. 
Dictionary section number of entry for group in which this 

item is included, if the group contains an OCCURS clause. 
Displacement in section. 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

'1--------------___ r---------~----------------------------------------------~--------_____i I 
,Sterling 
I Non-Report 
Elementary Item 

1 

2 

3 

4-9 
10-14 
15-17 

18-25 
or 

18-32* 

33-41 * 
42-49* 

o = BSI shillings 
l' = IBI! shillings 
o = 1-character pence 
1 = 2-character pence 
o = BSI pence 
1 = IBI! pence 
Number of decimal places to the right of V in pence field. 
Number 0 f . poun d fiel d di gi ts. 
000 = No~sign specified. 
001 = Sign on high-order pound character 
010 = Sign on low-order pound character, 
011 = sign on: high-order shilling character 
100 = Sign on low-order pence character 
101 = Sign. on low.,.order decimal position in pence field 
(Values 110 and··111 are unused.) 
Number of character positions. 

or 
Dictionary section number of entry for group in which this 

item is included, if the group contains an OCCURS clause. 
Displacement in section. 
Number of character positions. 

I _____i 
1 *Entry contains these fields only if item is in a group with an OCCURS clause. The I 
I fields are not present after phase 3, but at the end of the dictionary attributes 1 
I three bytes are appended: either the length of the item this item is subordinate to,1 
I or the VLC of this item. I 
t , 

Figure 65 (Part 1 of 2). LD Entry Variable Information 

452 S.ection 5. Dat.a.AJ:ea. 



I 

Licensed Material - Property of IBM 

iii i 
,Characteristic I Bits ,Contents , 
, " I Ivariable-length, 1-2 ,Unused. , 
IGroup Item ,3-5 I Number of BLs or BLLs for items. , 
, I 6-17, VLC number. , 
I I 18-32* , Dictionary section number of entry for group in which this I 
I I' item is included, if the group contains an OCCURS clause. I 
I I 33-41* I Displacement in section. I 
~I----------------~I--------~'~------------~-----------------------------------------~ IAlphanumeric I 1 1, if JUSTIFIED RIGHT , 
,Edited Item , 2-9 Number of bytes following. I 
I I 10-17** All zeros. I 
I t 18-32* Dictionary section number of entry for group in which this I 
, , item is included, if the group contains an OCCURS clause. I 
I I 33-41 * Displacement in section. I 
, I 42-57 SIZE of item. , 
I I 58 to Byte 1 contains PICTURE character. Bytes 2 and 3 contain I 
1 I end count of consecutive occurrences. These three bytes I 
I I are repeated until the entir~ PICTURE is recorded. I 
I --;�-------r---------------------------------------------------------;I IElementary Item 
with Report 
PICTURE 

1 
2-9 

10-17** 
18-32* 

33-41* 
42 
43 
44 

45-49 
50-57 
58-65 
66 to 

end 

1, if Z or * in PICTURE 
Number of bytes following. 
All zeros. 
Dictionary section number of entry for group in which this 

item is included, if the group contains an OCCURS clause. 
Displacement in section. 
1, if BLANK WHEN' ZERO'; 
1, if * represents all numeric characters 
Unused. 
Number of digit places in item. 
Scalin 9 factor. 
SIZE of item. 
Byte 1 contains PICTURE character (except v or Pl. Byte 2 

contains count of consecutive occurrences. These two 
bytes are repeated until the entire PICTURE is recorded. 
Exception: For CR and DB, the first character appears in 
byte 1, the second in byte 2. 

r------------~------~I------------------·-----------------------------------~ Elementary Item 1 I 
with Sterling 2-9 I 
Report PICTURE 10-17**1 

18-32* , 
I 

33-41* 
42 
43 

44 
45 

46-57 
58-65 
66-73 
74-81 

Unused. 
Same as for Repo-rt ;PICTlJRE above. 
All zeros. 
Dictionary section number of entry for group in which this 

item is included, if the group contains an OCCURS clause. 
Displacement in section. 
1, if BLANK WHEN ZERO. 
0, if shilling delimiter is D. 
1, if shilling delimiter is S. 
Same as bit 43 for pounds. 
1, if no pounds field. 
Unused. 
Total length of item. 
Number of pound .integer places. 
Number of pence decimal places. 

I f 
I *Entry contains these fields only if item is in a group with an OCCURS clause. The. I 
I fields are not present after phase 3, but at the end of the dictionary attributes I 
I three bytes are appended: either the length of the item to which this item is I 
I subordinate, or the VLC of this item. I 
I **Entry does not contain these fieldS after phase 3. I 
, f 

Pigure 65 (Part 2 of 2). LD Entry Variable Information 

Dictionary Entry Formats 453 



Licensed Material - Property of IBM 

CONDITION-NAME ENTRY 

Delimiter 
Pointer 

Basic 
Fields Attributes HASH Table pointer ----------- ~_-----__ .. ~ ___ ~ ____ .. ~eD*sE ____ _ 

INDEX-NAME ENTRY 

HASH Table Pointer 
Delimiter 
Pointer 

r--r'-----" .r---., 
111 Variable I I 1 
I--+-I ----I ,..---
IclName I ICount 
I I I land 
I I I Imajor 
I I I IC~ 
II 1'0 
~, -,~------~, ,~~--~ 

Basic 
Fields 

~ ----------- .~. 
r , 
111 Variable 
,. I 
IclName 
I I . 
I I 
I I 
I I 
L , --J 

r'----' 
I 1 
1-----1 
ICount 
land 
Imajor 
Icode 
!@ 

• iii 
c 111 3 111 

r+----------+I-----rI~I----
10lPointer to dic- ISwitchlclValu, 
I Itionary entry I I Ifiel 
I I for data item tol I I 
I I be tested ~ I @ I I @ 
I I condition 0 I I I 
I I I I , 

Attribubes 

, i , 

1 1 2 I 2 1 
I I I I 
IFlaglIndex-name ILength of I 
Ibytelnumber takenlOCCURS clausel 
I Ifrom INDEX1 Isubject or I 
I@ I in COMMON I VLC I 
I I I 1 
I' I I 

If the switch = 1, the value field 
contains a 2-byte displacement in the 
VALTRU table of the object of the VALUE 
clause. If the switch = 0, the field 
contains the value itself. 

Bit 
o 

Meaning, if on 

1-7 

454 Section 5. Data Areas 

Subject is variable length; last 
field contains VLC number. 

Unused. 



When the SYMDMP, STATE, or TEST option is 
in effect, phases 25 and 65 build 
additional tables for debugging purposes. 

The tables are accessed during execution 
of the program or at abnormal termination 
of the program by the subroutines of the 
Symbolic Debug program. For details see 
the pUblication IBtl_OS/VS COBOL Subrouting 
Li!2.£s.U-!'£Qgram Logic. 

The tables list the characteristics of 
the data areas defined by the user as well 
as information about the relative location 
in the object module of the code associated 
with the card numbers generated for PNs and 
COBOL verbs. This information is used by 
the object-time COBOL library subroutines 
to ~roduce the dumps at user-specified card 
numbers or card and verb numbers or by the 
COBOL Interactive Debug Program. If 
abnormal termination occurs, this 
information is also used to associate the 
address of the instruction at which 
abnormal termination occurred with its 
corresponding card and verb number in the 
COBOL source program. 

The tables are also used by the IBM as 
COBOL Interactive Debug Program Product 
(Program Number 5734-CB4). 

Phase 25 builds the aBO DO TAB table if 
there are any OCCURS clauses with the 
DEPENDING ON option. It also builds the 
DATATAB table. Phase 65 builds the 
PROGSUM, PROCTAB, CARDINDX, SEGINDX, 
PROCINDX and BCDPN tables. 

The tables are made up of fixed-length 
512-byte blocks; a 1-byte field containing 
the hexadecimal value 'FF' marks the end of 

Licensed Material - Property of IBM 

usable information within a block. Table 
entries are never split across a block. 

The debug data set is single buffered 
and the address of the buffer is placed by 
phase 02 in location FIL5BUF in COMMON. 
Each phase that uses the debug data set is 
responsible for moving information into the 
buffer and marking the end of the buffer. 
Phase 00 is called only to write the buffer 
on the debug data set. 

Figure 66 shows the positions of the 
tables in the debug data set (SYSUT5). The 
PROGSUM table contains information about. 
and pointers to, the other tables in the 
da ta set. 

I PROGSUM 
I 
I 
I 

~ 'a, 

I OBODOT AB k---J 
1-----
I DATA TAB 

f PROCTAB ICJ 
j I . 
I CARDINDX 

• I SEGINDX 
I 
I PROCINDX 

• I BCDPN 

Figure 66. SYSUT5 (Debug Data Set) 

Debug Data Set Tables 455 



Licensed Material - Property of IBM 

The PROGSUM table is the first table in a debug data set. It consists of a single 
fixed-length 108-byte entry and contains information about the program and the debug data 
set itself. 

Di.§.Em!1~ 
Hex Decimal --0 --0--

8 8 
C 12 

1 C 16 

14 20 

18 24 

1C 28 

20 32 

24 36 
28 40 

2C 44 

30 48 
34 52 
36 54 

38 56 
3C 60 
40 64 
44 68 
48 72 
4A 74 
4C 76 
4E 78 

50 80 

52 82 

54 84 

56 86 
58 88 
5C 92 
60 96 

62 98 
64 100 
66 102 
68 104 
69 105 
6C 108 

Field 
PGPROGID 
PGDECLEN 
PGBL1 
PGBLL1 

PGSBL1 

PGDECB1 

PGVLC1 

PGINDX1 

PGDCB1 
PGENDDCB 

PGENDNDX 

PGDTDVAD 
PGDTNUM 
PGDTDSP 

PGPTDVAD 
PGDXDVAD 
PGSXDVAD 
PGPXDVAD 
PGCXNUM 
PGSXNUM 
PGPXNUM 
PGSXDSP 

PGPXDSP 

PGODONUM 

PGHASH 

PGNNUM 

PGPNDVAD 
PGTEFDSP 

PGSMDSP 
PGNBCD 
PGPH25W 
PGLNGTH 

PGFIB 

No. of 
Bytrua. 

8 
4 
4 
4 

4 

4 

4 

LI 
4 

4 

4 
2 
2 

4 
4 
4 
4 
2 
2 
2 
2 

2 

2 

2 

2 
4 
4 
2 

2 
2 
2 
1 
3 
4 

Description 
PROGRAM-ID 
Length of Declaratives Section 
BL1 address relative to the start of the TGT 
BLL1 address relative to the start of the 

TGT 
SBL1 address relative to the start of the 

TGT 
DECB1 address relative to the start of the 

TGT 
VLC1 address relative to the start of the 

TGT 
INDEX1 address relative to the start of the 

TGT 
DCB1 address in PGT 
End of the DECBs relative to the start of 

the TGT 
End of the indexes relative to the start of 

the TGT 
Device address of first block in DATATAB 
Number of blocks in DATA TAB 
Displacement in the block of the first 

DATATAB entry 
Device address of PROCTAB 
Device address of CARDINDX 
Device address of SEGINDX 
Device address of PROCINDX 
Number of entries in CARDINDX 
Number of entries in SEGINDX 
Number of entries in PROCINDX 
Displacement in the block of the first 

SEGINDX entry 
Displacement in the block of the first 

PROCINDX entry 
Number of bytes in OBODOTAB including the 

unused bytes at the end of the blocks 
Hashed compilation indicator which is 

matched by the COBOL library subroutine 
with the one in the Debug Table in the 
TGT. 

Number of blocks of BCDPNTBL 
Reserved 
Device address of first block of BCDPNTBL 
Displacement from beginning of PGT to 

ILBOTEF3 virtual if present 
Unused 
Number of entries in BCDPNTBL 
Number of blocks written by phase 25 
Length of PROGSU! 
Unused 
Address of first File Information Block 
(FIB) relative to the start of the TGT. 

Note: The only. fields that may be zero in this table are PGDECLEN, when there is no 
Declarative Section and PGODONUM, when there are no OCCURS ••• DEPENDING ON clauses and 
PGTEFDSP and PGSMDSP when the corresponding virtuals are not present. , For TGT addresses 
which do not exist, the address of the first byte following the previous cell is used 
because these cells are used in calculating the number of TGT cells of a given kind to 
dump. 

456 Section 5. Data Areas 



Licensed Material - property of IBM 

OBODOTAB TABLE 

The OBODOTAB table is an abstract of the DATATAB entries for all objects of 
OCCURS ••• DEPENDING ON clauses in the program. The OBODOTAB table, if present, follows on 
the next fullword boundary the PROGSUM table and contains one variable-length entry for 
each unique object of an OCCURS ••• DEPENDING ON clause •. Each entry begins on a fullword 
boundary within tlie block. 

The entries are essentially the same as the DATATAB entries for the same name. See 
the entries for elementary numeric items in the format of the DATATAB table. OBODOTAB 
entries differ only in that the card-number field is zero and the renaming and 
subscripting information is omitted. Table-locators within the DATATAB entries are used 
to access the OBODOTAB entries. See the subscripting information portion in the format 
of the DATATAB table. 

Displace.!!!~ 
~.! ~imal 
o 0 

1 1 

1+c 1+c 

2+c 2+c 
5+c 5+c 

CARDNUM 
MAJMIN 

No. of 
Bytes 

1 

c 

1 

3 
1 

COUNT-NAME-TYPE FIELD 

~glltion 
Count field: number of bytes (c) in name 

field 
Name field: number of bytes,· varies between 

1 and 30 
Count field: number of bytes in remainder 

of this entry 
Card number where name is defined 
Type of entry (For description of this field 

see corresponding field in DATATAB table) 

VARIABLE ATTRIBUTES FIELD 

For description of this field see corresponding field in DATATAB table. 

Debug Data Set Tables 457 



Licensed Material - Property of IBM 

DATATAB TABLE 

The DATA TAB table is the third table in the debug data set. It immediately follows the 
last entry of the OBODOTAB table, if that table is present. Otherwise, it follows the 
PROGSUM table., The DATATAB table lists the characteristics of each data item in the Data 
Division. The table consists of two fields, the Count-Name-Type field and the Variable 
Attributes field. The Count-Name-Type field has the same format for all entries. It 
varies in length from 7 to 36 bytes. The Variable Attributes field differs for each type 
of entry and is described on the following pages. 

~i.§12la£.§.!!l'§l!S No. of 
Hex DeciJ!!9.1 riels! Bytes -0- 0 

1+c 1+c 

2+c 2+c 

3+c 3+c CARDNUM 

6+c 6+c MAJMIN 

* Note 1: Number of bytes includes 
the byte field itself, if 
number of entries is not 
equal to zero. 

1 

c 

* 1 

3 

COUNT-NAME~TYPE FIELD 

Description 
Count field: number of bytes (c) in name 

field 
Name field: number of bytes varies between 

1 and 30 
Displacement field: Number of bytes from 

this field to TEST field (zeros if TEST 
field is not present) 

Count field: number of bytes in remainder 
of entry 

Card number where name is defined (contains 
zeros 

Type of 

4-7 

4-7 

for RENAMES 
entry 

Bit 
Sej:tin9.e 
OOOOXXXX 

0001XXXX 

0010XXXX 

0100XXXX 

0101XXXX 

0110XXXX 

1000XXXX 

1001XXXX 
1010XXXX 
1011XXXX 
XXXX0001 
1110XXXX 
1111XXXX 
XXXX0001 
XXXX0010 
XXXXOO 11 
XXXX0100 
XXXX0101 
XXXX0110 
XXXX0111 
XXXX1000 
XXXX1001 
XXXX10 10 
XXXX1011 
XXXX1100 
XXXX1101 
XXXX1110 
XXXX1111 

items) 

112aning 
Level description under 

FD 
Level Description under 

SD 
Level description under 

CD 
Level description in 

working-storage 
Level description in 

Linkage 
Level Description under 

RD 
FD entry (other than 

VSAM) 
SD entry 
CD entry 
FDentry (VSAM) 
organization sequential 
RD entry 
Index-name 
Fixed length Group 
Alphabetic 
Alphanumeric 
Variable-length group 
Numeric edited 
Sterling report 
Usage index 
External decimal 
External floating-point 
Internal floating-point 
Binary 
Internal decimal 
Sterling non report 
Alphanumeric edited 
RENAMES (level 66) 

mLdtem.: There are no variable attributes for an SD entry. 

458 Section 5. Data Areas 



RENAMES item (level 66L: 

Displacement 
He!. Decimal 

7+c --7+c-

8+c 8+c 

INDEX name: 
-7+c-7+c 

8+c 

A+c 

7+c 
8+c 

8+c 

10+c 

7+c 
8+c 

Field 
RENAMES 

INDFLAG 
INDXCELL 

INDLNG 

FIB 
ORGACC 

FD Item (other than VSAM1: 

7+c 
8+c 

7+c 
8+c 

gLI!§.!!!.: 
7+c 7+c 

DCBDECB 
ACCESSFLG 

No. of 
]ytes 

1 

variable 

1 
2 

2 

1 
1 

1 
1 

Licensed Material - property of IBM 

Descrip:!;.i.Q!! 
Bit 

Bit ~ing: Meaning 
7 XXXXXXX1 Next DATATAB entry 

renames the same item 
as this one does 

XXXXXXXO This is the last (or 
only) item renaming an 
item. 

Field contents are the same as the 
type-dependent portion of the level 
description item for the particular data 
type of the RENAMES item. 

Flag 
Bi:1;. .§.§tting Meaning 

0 1 Subject of OCCURS clause 
is variable length, 
next field contains 
VLC number 

1-7 Unused 
Index cell number in TGT 
Length of subject of OCCURS cIa use or VLC 

number 

FIB number 
ORGANIZATION and ACCESS clauses 
Bits Setting tleaning 
0-3- 1000XXXX Access sequential 

0100XXIX Access random 
0010XXXX Access dynamic 

6-7 XXXX0100 organization relative 
XXXX0010 organization indexed 
XXXX0001 organization sequential 

DCB or 
Access 
]1.:1;. 
0-3 

7 

DECB number 
method 

Setting2 
OOOOXXXX 
0001XXXX 
0010XXXX 
0100XXXX 
100CXXXX 
XXXXXXX1 

XXXXXXXO 

1XXXXXXX 
OXXXXXXX 

Meaning 
QSAM 
QISAM 
BISAM 
BSAM 
BDAM 
DECB Number in preceding 

byte 
DCB Number in preceding 

byte 

Output 
Input 

Debug Data Set Tables 459 



Licensed Baterial - Property of IBM 

RD Item: 
7+c--7+e 

A+c 1C+c 

Level Descri~ion item: 

LIIJECTR 

PAGECTR 

3 

3 

Addressing parameters of li.ne counter; 
contains zeros if line counter is not 
defined 
~ Settins§ Beaning 

0-3 OOOOXXXX BL entry 
0001XXXX BLL entry 
0100nXX SBL entr,y 

4-15 Displacement from BL 
16-23 BL Number 
Addressing parameters of page counter (same 

form as addressing parameters above). 
contains zeros if page counter is not 
defined . 

Variable attributes for level descriptic:m items are divided into two portions: (1) the 
type-dependent portion. and (2) subscripting information portion. The subscripting 
information portion is the same for· all level description item entries. It follows and 
is described after the type-dependent portion descriptions. 

(1) Type-dependent portio~: 

FIXED-LENGTH GROUP: 

7+e 7+c 
A+c 10 +e 

VARIABLE-LENGTH GROU~: 
7+e 7+c 
A+e 10+c 

D+c 13+c 

IDKFLD 
LVLRDEFN 

MAXSIZE 

VLCNUM 

3 
3 

3 
3 

2 

Addressing parameters (same form as above) 

Bit 
0-5 

6 
7-23 

Bit 
Settings 
XXXIXX1X 

Meaning 
Normalized level number 
REDEFINES 
Object-time storage size 

(in bytes) 

Addressing parameters (same form as above) 

Bit 
0-5 

6 
7-23 

Bit -0-
1-3 
4-15 

Bit 
Settings 
XXIXXX1X 

Bit 
Settings 
1XXXXXXX 

Meaning 
Normalized level number 
REDEFINES 
Maximum object-time 

storage size (in 
bytes) 

Meaning 
ODO master 
Unused 
VLC nUlRber 

!LEIiENTUL.-ALPHABET~ALPHANUMERIC. REPORT.&.-J.PITED-.STERLING. EXTERNAL FLOATING-POINT: 
7+e 7+c 3 Addressing parameters (same form as above) 
A+e 10+e JUSTRGT 3 

460 Section' 5. Data Areas 

Bit 
0-5 

6 
7 

8~23 

Bit 
settinS§ 

XXXXXX~X 
XIXIXXX1 

Meaning 
Normalized level number 
REDEFINES 
JUSTIFIED RIGHT 
Object-time storage size 

(in bytes) 



Licensed Material - property of IBM 

INTERNAL FLOATING-POINT: 

7+c"7+c 
A+c 10+c 

3 , Addressing parameters (same form as above) 
FLPTYPE 

B+c 11+c 2 

Bit 
0-5 

6 
7 

Unused 

BINARY, INDEX INTERNAL DECIIUL, EXTERNAL DECIMAL: 

xxxxxx,x 
XXXXXXXO 
XXXXXXX, 

" Meaning 
Normalized level number 
REDEFINES 
COMP-1 
COMP-2 

7+c 7+c 3 Addressing parameters (sama form as above) 
A+c 10+c NUMINF01 1 

Bit 
0-5 

6 
1 

B+c 11+c NUI!INFO 2 2 0 

1 

2 

3 

4-8 

9-13 

14-15 

Bit 
Setting,§ 

XXXXXX1X 
XXXXXXX1 
lIXXXXXX 
OXXX;XXXX 
X1XXIXXX 
xoxxxxxx 
XX1XXXXX 

XXOXXXXX 

XXX1XXXI 

XXXOXXXX 

~inq 
Normalized level number 
REDEFINES 
S in PICTURE 
Leading sign 
Trailing sign 
Separate sign 
overpunch 
significant digits left 

of decimal point 
No significant digits 

left of decimal point 
Significant digits right 

of decimal point 
No significant digits 

right of decimal point 
If bit 2 equals 1, 

number of digits to 
left of decimal point. 

If bit 2 equals 0, 
number of digits to 
right of decimal 
point. 

If bits 2 and 3 both 
equal 1, number of 
digits to right of 
decimal point. 

If only bit 2 or 3 
equals 1, number of Ps 
in picture 

Unused 

Debug Data Set Tables 461 



Licensed Material - Property of IBM 

(2) subscripting Information Portion: 
This portion of the Variable Attributes field begins immediately after the 
type-dependent portion. 

It ranges in size from 2 bytes for an unsubscripted item to a maximum of 20 bytes 
for an item belonging to 3 variable-length groups. 

462 Section 5. Data Areas 

1 Guide to ~ENAMES and subscripting 

Bit 
-0-

1 

2 

3 

4 

5 

6 

7 

Bit 
~tting2. 
1XXXXXXX 

X1XXXXXX 

XX lXXXXX 

XXX1XXXX 

XXXX1XXX 

XXXIX1XX 

XXXXXX1X 

XXXXXXX1 

1 VLC information 

Bit 
0" 

2 

3-6 
7 

Bit 
settings 
1XXXXXXX 

X1XXXXXX 

XX1XXXXX 

XXXIXXX1 

Meaning 
This item is renamed. 

The next DATA TAB entry 
renames it. 

This item contains an 
ODO clause. 

Item re quires a t least 
subscript. 

OCCURS clause connected 
with the most 
inclusi ve or only 
group; or elementary 
item contains an ODO. 

Item requires at least 
two subscripts. 

OCCURS clause connected 
with the less 
inclusive group of 2 
groups or the middle 
inclusive group of 3 
groups or elementary 
group contains an ODO. 

Item requires 3 
subscripts. 

OCCURS clause connected 
with the least 
inclusive group of 3 
groups or elementary 
item contains an ODO. 

~ing 
Most inclusive of 3 

groups or only group 
Less inclusive group of 

2 gro~ps or middle 
inclusiv.e group of 3 
groups 

Least inclusive group of 
3 groups 

Unused 
This item contains an 

object of an ODO or is 
the object of an ODO 
clause 

If bits 0, 1, or 2 equals 1, the 
displacement of next occurrence field for 
the associated group contains a VLC number 
(see note 2) • 



1st subscript 
(if present) 

(most inclusive 
with OCCURS) 

2nd subscript 
(if present) 

3rd subscript 
(if present) 

(least inclusive 
with OCCURS) 

1st subscript 
with 000 
(if present) 

2nd subscript 
with ODO 
(if present) 
3rd subscript 
uith 000 
(if present) 

(3) TEST Field: 

2 

2 

2 

Licensed Material - Property of IB[1 

Number of occurrences (maximum number if 
ODO) specified in OCCURS clause governing 
this item 

Displacement of next occurrence 
governed by OCCURS clause (see note 2) 

Number of occurrences (as above) 

2 Displacement of next occurrence governed by 
OCCURS clause 

2 

2 

2 

2 

2 

Number of occurrences (as above) 

Displacement of next occurrence 
governed by OCCURS clause 

OBODOTAB pointer for most inclusi.ve 
group or elementary item containing 
an 000 

Bit 
0-8 
9-15 

Contents 
Relative block number in OBODOTAB 
Displacement with block 
(in fulltlords) 

OBODOTAB pointer for less inclusive 
group (as above) 

OBODOTAB pointer for least inclusive 
group (as above) 

This portion immediately follows the subscripting information and is pointed to by the 
displacement field in the COUNT-NAME-TYPE portion. This field is present only for the 
following data types when the TEST option is in effect: 

1 

2 

Count 
Bit 
0-6 

7 

8 

9 

10-15 

of bytes following 
~in.9 
Unused 
o mantissa blank 
1 = sign plus when 

when po si ti ve 
positive 

o = exponent blank tthen posi ti ve 
1 = sign plus when positive 
o implied decimal point 
1 = real decimal point 
Scale of mantissa 

1 Count of bytes following 
1 PICTURE character 
2 Count of consecutive occurrences 

n+3 The preceding three bytes are repeated until 
the entire PICTURE is recorded 

Debug Data Set Tables 463 



Licensed !aterial - Property of IB! 

NUKERIC EDITED: 
1 
2 

2 

Count 
Bit 
-0-

1 

2 
3-7 
8-15 
0-7 

8-15 

of bytes followinq 
~inq 
1 = Blank when zero 
1 = * represents all numeric 

characters 
1 = Z or * in PICTURE 
Number of diqit places in item 
Scalinq factor 
Contains PICTURE character (except V 

or P) 
Contains count of consecutive 

occurrences 
N+2 These bytes are repeated until the entire 

PICTURE is recorded 

Note 1: For CR or DB, first character appears in byte 1, the second in byte 2. 

12te 2: All subscript length information precedes any OBODOTAB pointers. If the OCCURS 
cluase is applicable, the contents of the displacement field is as follows: 

1. For an elementary item, it is the machine lenqth of that item includinq any slack 
bytes that precede its next occurrence. 

2. For a fixed-length group, it is the length of the qroup includinq any slack bytes 
added at the end of the qroup before its next occurrence. 

3. For a variable-lenqth group, it is the VLC number for the VLC field which contains 
the number of bytes to the next occurrence. 

464 Section 5. Data Areas 



Licensed ftaterial - Property of IBM 

The PROCTAB table contains one 5-byte entry for each card and/or verb in the source 
listing of the COBOL Procedure Division. The table is ordered on three levels: 

1. priority (in ascending order of independent segments, with the root segment last) 

2. Card-number within priority 

3. Verb-number within card 

The last PROCTAB entry for a priority and for a program fragment has a card and verb 
number of zero. In addition, the relative address field contains the address of the 
first byte following all instructions for the segment with that priority. 

Di§!!.lacement 
Ru Decimal 

o 0 

3 3 

Field 
PTCDVB 

PTRELAD 

No. of 
Bytes 

3 

2 

~crip!ion 
Card number and verb number on source 

listing 

Bit contents 
-0:19 Card number 
20-23 Verb number 
Relative address of instructions for this 

entry within program fragment to which it 
belongs 

The CARDINDX table is a directory to the SEGINDX table and contains one 5-byte entry for 
each program fragment and one entry for each discontinuity in the COBOL instructions 
within a segment. Entries in the CARDINDX table are in ascending card number order and 
are accessed by indexing through the table sequentially. 

The CARDINDX table starts at the beginning of a block. 

Displacement 
Hex Decimal 0- --0--

3 
4 

3 
4 

Field 
CXCDVB 

CXPRIOR 
CXFRAG 

No. of 
Bytes 

3 

1 
1 

~crip!i.Q.!! 
Card number and verb number of first card 

represented by this entry 

Bit Contents 
0-19 Card nUmber 
20-23 Verb number 
Priority number associated with this card 
Relative fragment number within the priority 

to which this card belongs 

Debug Data set Tables 465 



I 

Licensed Material - :Propertyof IBM 

SEGINDX TABLE 

The SEGINDX table contains' one 10-byte ent,ry ~C?r"~ac~"pr<og:ra'~" fragment. " Th~ table is 
ordered on ascending ,fra gment nn mber: ".,,'" . i 

Di splace.!!!~.!ll 
Hex Decimal field -0- --0--- SXPRIOR 

1 1 SXREtAD 

4 4 SXPTLOC1 

7 7 SXPTLOC2 

No. of 
Bytes 

1 
3 

3 

3 

Description 
Zero. 

" ,'t,':;: 

Address ()f this frag'ment rela ti ve to the 
beginning of theprog.ram 

Table locator for PROCTAB entry of first 
card number and verb number in this 
fragment 

Bi~ contents 
0-14 ,Relative block number in, PROCTAB 
15-23, : Displacement ,within block 
Table Tocator for P,ROCTAB entry of last ca:rd 

and/or verb in this fragment 

The PROCINDX table is a summary index of 'the PRbCTAB tabl~ and contains one 10-byte entry 
for each block of PROCTAB entries. PROCINDX entries are ordered by relative block number 
in the PROCTAB table and are accessed by sea rching sequentially after indexing to a 
starting point determined by the block number from the SEGINDX table. 

3 

6 

3 

6 

BCDPN TABLE 

PXRELAD 

PXDEVADR 

No. of 
Bytes 

3 

,3 

4 

D"escription 
Card number and verb number of first entry 

in block of PROCT AB table. 

Bit, contents 
0-19 Card number 

20-'23 Verb number 
AddreSS of instructions for this entry 

relative to the beginning of the program. 
Device,.address of PROCTAB table block 
,related to this entry. 

",;./ . ,: 

The BCDPN table is a list of EBCDIC PH names and their corresponding line-numbers. It 
has 1 'entry for each PH in the COBOL program. Its maximum, length is 27 bytes. It begins 
at the beginning of a block. 

Displacement 
R§£ .Hex 
o 0 
3 3 
4 4 

Field Name 
PNLINPNO 
PNNUMBYT 
PNNAME 

466 Section 5. Data Areas 

Bytes 
3 , 

Var. 

Description 
Lb:eJ;i\lmberof PN 
Number of bytes following 
compressed PH name 

.~ . 

';.,- -',' 



Licensed Material - Property of IBM 

The file information block, a portion of the completed object module, is used at 
execution time by the ILBOINTO, ILBOVOCO, and ILBOVIOO COBOL library subroutine for 
processing input/output verbs used with VSAM files. The FIB is built by phases 21 and 
completed by the ILBOVOLO subroutine. 

o 
1 

o 
1 

Fixed Portion: 

Displacem~.!ll 
!!.~Z ~i.!!!al 

2 2 
9 9 
A 10 
B 11 

C 12 

D 13 

IF1 BID 
!P1BLVL 

field 
INAMED 
INAMECB 
IDEVICE 
IORG 

!ACCESS 

IRCDMODE 

Code: 

Bits 
0'-7-

Code: 

Bits 
0-7-

Code: 

Bit§ 
0-7 

No. of 
Bytes 

1 
1 

No. of 
Bytes 

7 
1 
1 
1 

Equate 
Nallle 
IORVPS 

IORGSQO 
IORGSQN 
IORGASC 

IORGSEQ 

IORGVIX 
IORGINO 
lORGIND 

IORGVRL 
IORGRLO 
IORGDIR 
IORGDIW 

IORGREL 

IORGVSA! 

1 

Equate 
Name 
IACCESQ 
IACCRU 
IACCDYN 

1 

Equate 
Name 
IRcDPIX 
IRCDVAR 
IRCDUND 
IRCDSPN 

Description 

PIB identification c-ode (II') 
PIB level number 

Description 
External name 
External name 
Device class and number 
ORGANIZATION 

Bit 
Settin~ Meaning 
1000 1000 VSAM ADDRESSED 

SEQUENTIAL 
1000 0100 SEQUENTIAL 
1000 0010 SEQUENTIAL 
1000 0001 ASCII file 

SEQUENTIAL 
1000 0000 SEQUENTIAL 

0100 1000 VSAM INDEXED 
0100 0100 INDEXED 
0100 0000' INDEXED 

0010 1000' VSAM RELATIVE 
0010 0100 RELATIVE 
0010 0010 DIRECT 
0010 000'1 DIRECT (WRITE/ 

REWRITE) 
0010 0000 RELATIVE 

0000 1000 VSAM File 

ACCESS MODE 

Bit 
~ttin~ Meaning 
1000 0000 SEQUENTIAL 
0100 0000 RANDOM 
0010 0000 DYNAMIC 

RECORDING MODE 

Bit 
Settin~ 1!eaning 
1000 0000 FIXED 
0100 0000 VARIABLE 
0010 000'0 Undefined 
0001 0000 SPANNED 

Source 
Co~ 

Code=S 

Code=C 

ORGANIZATION 
SEQUENTIAL 

Code=I 
ORGANIZATION 

INDEXED 

Code=R 
Code=D 
Code=W 

ORGANIZATION 
RELATIVE 

Debug Data Set Tables 

IS 

IS 

IS 

467 



Licensed Material - Property of IBM 

Displacement 
!!~!. lli:t£imal 

E 14 

F 

10 
11 
12 
13 
14 

16 
18 

1A 
1B 
1C 

1E 

20 
22 
23 
24 
26 
27 
28 
2A 
38 

3C 
40 

44 

48 

15 

16 
17 
18 
19 
20 

22 
24 

26 
27 
28 

30 

32 
34 
35 
36 
38 
39 
40 
42 
56 

60 
64 

68 

72 

Field 
ISil1 

ISW2 

ISW3 
ISil4 
IAPPLY1 
IAPPLY2 
IBLKLEN 

IRECLEN 
IRECDBL 

I RECNBL 
IRE SERVE 
ISTATDBL 

ISTATDDN 

ISTATLDN 
IKEYISW 
IKEYNO 
IKEYFNTL 
IPSWISW 
IPSWNO 
IPSWENTL 

IMISCAD 

ILABELAD 
IKEYLSTA 

IPSWLSTA 

468 Section 5. Data Areas 

No. of 
Byt.!Ui 

1 
~escription 

Miscellaneous switches 

Code: 

Bits 
0-7-

Code: 

Bits 
0-7-

Equa te 
Name 
ISOPTNL 
ISBLKED 
ISSAMREC 
ISS1ME 
ISLBOMIT 
ISLBSTAN 
ISLBUSER 

Bit 
§§ttin~ 
1000 0000 
0100 0000 
0010 0000 
0001 0000 
0000 1000 
0000 0100 
0000 0010 

~ing 
OPTIONAL specified 
File is blocked 
SAME RECORD AREA specified 
SAME RECORD specified 
LABEL RECORDS ARE OMITTED 
LABEL RECORDS ARE STANDARD 
LABEL RECORDS ARE dataname 

1 Mis cellaneous switches 

Equate 
Name 
ISADVAN 
ISPOSIT 
ISAFTER 
IS BEFORE 
ISNOSPAC 

Bit 
Setting§ 
1000 0000 
0100 0000 
0010 0000 
0001 0000 
0000 1000 

Meaning 
WRITE ADVANCING 
WRITE POSITIONING 
WRITE AFTER 
WRITE BEFORE 
WRITE WITHOUT SPACING 

1 
1 
1 
1 
2 

2 
2 

1 
1 
2 

2 

2 
1 
1 
2 
1 
1 
2 

14 
4 

4 
4 

4 

16 

.. Unused 
Unused 
APPLY statements 
APPLY ~tatements 
If 'BLOCK CONTAINS (integer-1 TO) integer-2 

CHARACTERS', field contains integer-2 • 
. If 'BLOCK CONTAINS (integer-1 TO) integer-2 

REcORDS, field = integer-2 x (IRECLEN + 
control) '" control + IASBFO 

Where control = 0 (Recording mode F or U) 
= 4 (Recording mode V, S, or D) 

lASBFO = 0 (Non-ASCII file) 
= Buffer offset (ASCII file) 

If BLOCK CONTAINS clause is omitted, field 
contents are same as for 'BLOCK CONTAINS 1 
RECORD' • 

Number of bytes in longest 01-entry 
Displacement in TGT of record's first base 

loca tor cell 
Number of base locators for RECORD AREA 
Reserve integer areas 
Displacement in TGT of base locator for STATUS 

data-name 
Displacement from base locat.or of STATUS 

data-name 
Length of STATUS data~name 
Miscellaneous switches 
Number of entries in key list 
Length of each entry in key list 
Miscellaneous switches 
Number of entries in password list 
Length of each entry in password list 
Reserved . 
Address in vari~ble length portion of FIB for 

miscellaneous clauses 
Address of labeling information block 
Address in variable length portion for first 

Key list entry 
Address in variable length portion of first 

passwor d list entry. 



Licensed Material - Property of IBM 

Supplementary Information for Miscellaneous Clauses (one for each clause) : 

Displacement 
Hex Decimal -0- --C---

2 

6 
8 

o 

1 
2 

4 

o 

1 
·2 

4 

2 

6 
8 

a 

1 
2 

4 

o 

1 
2 

4 

Field 
IMSW1 

IRERUNI 

I RERU NN 

IKEYS W 

IRKEYLDN 
IKEYDBL 

IRKEYDDN 

IPSWDIXN 

IPSWDLDN 
IPSWDDBL 

IPSWDDDN· 

No. of 
!tytes 

2 

4 

2 
8 

1 
2 

2 

1 
2 

2 

Code: 

Bit Equate 
Bits li~.!!l'§ 
0-7- IMRREOV 

Setting.e &eaning 

8-15 

1000 0000 RERUN at end of 
volume 

Unused. 

RERUN integer (Field contains zeros if RERUN 
not speci fied) 

Slack bytes 
External-name of RERUN clause 

Miscellaneous switches 

Code 
Bits 
0-7-

Equate 
lill.§ 
IKEYCOMP 
I KEYDUP 
IKEYID 

Switch 
Bit 
Setting§ 
1000 0000 
0100 0000 
0010 oooe 

Meani!l!l 
KEY is usage comp (binary) 
WITH DUPLICATES specified 
KEY is'internal decimal 

Length of RECORD·· KEY data name 
KEY is data names location, displacement in 

TGT. 
Displacement in record of RECORD KEY Record. 

Key information follows for each ALTERNATE 
RECORD KEY specified. 

Associated index number 
a none 
1 prime 
2 = first alternate 
3 second alternate 

n = (n-1)th alternate 
X'FF' = no password 

Length of password data-name. 
PASSWORD data name's locator; 

in TGT. 
displacement 

PASSWORD data name's displacement off 
locator. 

Debug Data Set Tables 469 



Licensed Material - Property of IBM 

This section contains aids for diagnosing 
errors that may have occurred in the 
compilation process. These aids are 
arranged under the following categories: 

1. Procedure for applying the service aid 
program IMASPZAP in the event that 
certain disaster level error messages 
are generated by the compiler. 

2. Compiler response to the findings of 
the system standard error recovery 
program. 

3. Data set activity. 

4. Register usage by each phase and 
execution-time register assignment. 

5. Elements of program design that can 
help determine from a dump the stage 
of processing at which compilation has 
halted due to compiler error. 

PROCEDURE TO FORCE CORE DUMP 

In certain cases, the DUMP option will not 
result in a storage dump. Using the SPZAP 
service aid program, you can force a 
storage dump with the following procedure: 

1. Locate the label TRMNATE ~n phase 
IKFCB100, CSECT PHOSECT2. 

2. Verify that its contents is X'9620', 
then replace the contents with 
X'OOOO'. 

More information on the SPZAP service 
aid program can be found in OSLY~§grvic~ 
Aids. 

RESPONSE TO SYSTEM ERROR RECOVERY FINDINGS 

Phases 00 and 02 interface with the system 
for compiler input/output operations and 
may, in the process, receive findings of 
the system error recovery program. In the 
case of phase 00, the SYNAD field of the 
DCB for each data set contains the address 
of a routine that generates an error 
message for that data set. The SYNAD 
routines associated with the data sets are 
as follows: 

470 Section 6. Diagnostic Aids 

Ro!!ii.~ 
SIAA 
SYAB 

SYAD 

!HUL§'~i 
SYSLIB 
SYSUT1, SYSUT2, SYSUT3, 

SYSUT4, SYSUT5, SYSUT1 
(dictionary spill), SYSIN. 
SYSPRINT (SYSUT6 for LVL 
option), SYSPUNCH, and 
SYSLIN 

SYSTERM 

When an error of this type occurs, phase 00 
terminates compilation immediately. 

As part of its initialization operations 
phase 02 saves the exit list in each DCB 
(which may have been overridden by a DD 
card for OPEN statement processing. It 
inserts the addresses of its own routines, 
and then attempts to open each data set to 
test whether it is ,present and operative. 

Routines starting at location EDIT check 
for such items as valid block size and 
insert default values if they are invalid. 
Routine OPENOK checks whether each data set 
can indeed be opened. Routine NODS1A then 
calls phase 00, placing a B in the X 
parameter when compilation is to be 
termina ted. 

Error messages are generated and placed 
in a table by routine QUE. When phase 02 
has completed its processing, routine PRINT 
is called to write the message on SYSPRINT 
and SYSTERM if the TERM option is in effect 
or on SYSUT6 if the LVL option is in 
effect. Phase 02 then returns control to 
phase 01 which returns control to phase 00. 

If neither SYSPRINT nor SYSTERM can be 
written on, messages are written on the 
console. If one of the two data sets can 
be written on, messages are written on that 
da ta set. 

COMPILER DATA SET ACTIVITY 

The compiler's use of data sets is shown in 
Figure 5 in the chapter "Phase 00." This 
table relates the phases and phase 
interludes to their requests that specific 
data sets be opened, written on, read from, 
or closed. 

REGISTER USAGE BY EACH PHASE 

The manner in which each phase uses 
registers is described in Ficrure 67. 



Licensed !aterial - Property of IBM 

,-,---~-,--,,--- ---r--- I 

I Phase , Register , Use , 
I -+----; ~ 

00 (IKFCBLOO) , 0-1 Ilfork. I 
I-- ;------- ., 
I 2 I Address of data to be put out on any PUT (WRITE). I 
I ;---, ---f 
I 3 ,Length of data for PUT (WRITE). I 
1------+ --------------i 
I 4 Il'lork. I 
I I i 
I I Base for PHOSECT2 CSECT. I 
l------t of 
I 5 I Base for IKFCBLOO CSECT. I 
I I , 
I 6 ,Points to buffer control block for logical input/output. I 
l-----; ., 
I 7 IPoints to buffer control block for physical input/output. I 
I I ---f 
I 8 I Return address minus 2 (linkage parameters). I 
1-----; i 
I 9 IAddress of file pointers (POINT TABLE) for the data set on I 
I I which input/output is currently being performed. I 
1-----; ---f 
I 10 I File number multiplied by 4. I 
I-- I -Q 
I 11 I Linkage. I 
I I ---f 
I I Base register for TBCOMM. I 
l-----; ., 
I 12 I Linkage. I 
I I I 
I I Base register for START. I 
I ~ ., 
I I Base register for TBDATA. I 
l- I ---f 
I 13 ILINK/RETURN information input/output request. , 
\------_+_ i 
I 14 I Linkage. I 
I , --t 
, I Work. I 
\--- I ., 
I 15 I Linkage. I 
I I ---f 
, I work. I 
I r-- i 
I I Base for PHOTBST 1. I 

l- I I I 
01 (IKFCBL01) I 0 I Unused. I 

l-----; --:-f 
I 1 I Linkage to phase 02. I 
I I ., 
I I Linkage to phase 00. I 
l- I I 
, 2 I Address of phase 00 parameter list. I 
I-- I ., 
, 3-4 I Unused. I 
l- I , 
I 5 I Base for CSECT IKFCBL01. I 
1-----; ., 
I 6-12 I Unused. I 
I-- ; ---f 
I 13 ,Points to phase 01 save area. I 
1-------+ ., 
, 14-15 I Unused. , 
• • I 

Figure 61 (Part 1 of 12). Register Usage According to Phase 

Diagnostic Aids 411 



Licensed Material - Property of IBM 

iii 
Phase , Register , Use I 

, 1 I 
02 (IKFCBL02) I 0 tLinkaqe to phase 00. I 

I I .. 
, 1 Work. 1 
I , , 
, 1 ILinkage to phase 00. I 
1 , .. 
, ,Work. , 
I , , 
1 2-4 ,Work. I 
~ , .. 
, 5 IBase for CSECT IKFCBL02. I 
t , 1 
, 6 ,Address of buffer control block. I 
r-~--- , .. 
, 7 I Work. , 
I , 1 
, 8 ,Address of DCB. I 
r-~ 1 .. 
, 9, Work. I 
I ·1 t 
I 10 ,Points to COMMON in phase 00. , 

~,------~,~----------------------------------------------.. , 11-12 ,Work. , 
I I , 
, 13 I Base for CSECT IKF021 ~ I 
~ 1 f 
1 14 IInternal linkage. 1 
'I .------------------~---------~ , 1 Work. I 
r- 1 .. 
1 15 IInternal linkage. 1 
1 1 , 
1 ,iork. , 

·--1-1 1 .. 
03 (IKFCBL03), 0-5 ,Work. , 

I , I 
1 6-10 I Unused. , 
I 1 , 
, 11 IBase for instructions. , 
~----t .. 
I 12 I Base for cos. , 
I , 1 
I 13 I Base for constants. , 
• , I 
, 14-15 , Linkaqe. , , , , 

04 (IKFCBL04), 0-7 ,Work. I 
I -+---------------------------------------------,~ I 8-12 I Base reqisters. , 
~ 1 f 
, 13-15 (Save area's linkage. , 

L ' , 

Fiqure 67 (Part 2 of 12). Register Osage According to Phase 

472 Section 6. Diagnostic Aids 



Licensed Haterial - Property of IBM 

----~i--------~I-------------- . 
Phase I Register I Use I I ·~I-------------------------------------------------~ 
05 (IKFCBL05) I 0-3 I Work. I 

~I--------~I-------------------------------------------------~ 
, 11-8 I Not used. I 
~-------~,--.----------.----------.------------.-------------~ 
I 9 I Base for COS/COHMON in phase 00. I 6--- -+ of 
, 10-13 IBase for phase 05 SAVE-AREA, data areas, language tables, I 
I I and all code. , 6--- I ~ 
, 111, Hajor linkage, work. I 
I I of 
, 15 I Subordinate linkage, work. , 

~ I , I 
06 (IKFCBL06) I 0 I Work. , 

r--------~I------------~------- 1 
I 1, Returns most subroutine results, work. , 
~ , . f 
, 2 ,Pointers to or addresses of structure table entries, work. , 
~-------+'------·----------------·------------------------~I , 3 I Work. 1 
6---'------,~--.----------------------------------------- of 
, 11-5 ,Carry values over long spans, work. , 
r-- , --------------------------~, 
, 6-9 ,Not used. , 
6--- --~,----------------------------------------------- ~ , 10, Base for current IP-text input item. , 
I , , 
I 11, Not used. I 
6--------~,---------------------------------------------- of 
, 12, Base for COS/COHRON in phase 00. , 
r-- -+ ~ 
, 13 I Base for SAVE-AREA, data, and code. , 
6---------r'--------------~------------------------------· of 
, 111, Linkage for all major subroutines. I 
I , ----------------------------~, 

. I 15 ILinkage for other subroutines, contains arguments for some. ,. 
, I f 

08 (IKFCBL08)I 0-3 I Work. , 
rl--~--~'------------------------------------------------of 
, 11-8 I Not used. , 
I , .. 
I 9, Base for COS in phase 00 I 
I I of 
I 10-12 IBase for first 12K of ~nstructions and constants. (Value ofl 
I ,R10 is 11096 greater than contents of R13.) I 
I • ~ 
I 13 IBase for system save area and declared. data areas. , 
6-------~I~--------------------------------~------------·~ I 111 ,Linkage. , 
I , I 
I 15 IExplicit argument and/or function. , 

----~I~ J 

Figure 67 (Part 3 of 12). Register Usage According to Phase 

Diagnostic Aids 1673 



Licensed Baterial - Property of IBM 

Iii i 
I Phase I Register I Use I 
~-----------+I--- , ---------------------------~I 

10 (IKFCBL10) I 0 ,Work. I 

! 
I 
1-'----, 
I ,12 (IKFCBL12) 
I 
I 
I 
t 
I 
I 

igure 67 (Part 

I -+---------------------------------------------------------~I 
I 1 IPoints to COMMON in phase 00. I 
..-.- I f 
I 2-7 I Work. I 
I I I 
I B IDuring Data Division processing, base of CSECT IKF112 I 
I I (FLUSH) • I 
I I I 
I IAt other times, work. I 
I---- , , 
I 9 IDuring Data Division processing, base of CSECT IKF107 I 
I , (LETTER) • I 
I , ----------------------------------------~ 
I 10 IPermanent base f6r IKF104 (COBWRD). , 
I---- I , 
I 11 IPermanent base for IKF103 (GETWD). , 
• -+--------~--------------------------------------- f 
I 12 IPermanent base for IKF102 (IDDIV1). I 
~------~I---------------------------------------------------~, 
I 13 IPermanent base for IKF101 (PH1SAV), pointing directly to the, 
I I phase 10 save area in that CSECT. I 
I I ,--------------------- .. 
I 14 ILinkage. I 
I---- I ---------------------~ 

15 ILinkage to TAMER. I 
I . f 
Temporary base for subroutines: 

Used to address --PROC01------
DDSCN 
ENVSCN 
LEVELQ 
FILCOQ 
SADSNQ 
IDDSCN 
UNLVSN 
PRONAQ 

in_£g£1: 
IKF113 
IKF110 
IKF 114 
IKF116 
IKF116 
IKF116 
IKF 115 
IKF106 
IKF10B 

I I 
t 0 IWork. 
~I--------~I--------------------------------------------~~ 
I 1 IPoints to COMMON in phase 00. I 
..-.--------+----------~---------------------------------- .. 
I 2-7 I Work. I 
I I , 
I 8 IDuring Data Division processing, base of CSECT IKF112 I 
I I (FLUSH) • I 
I rl------------.----------·--------~-------·------------~I 
I IAt other times, v~rk. I 
I I I 
I 9 IDuring Data Division processing, base of CSECT IKF111 I 
I I (RDSCAN) or base of CSECT IKF107 (LETTER). I 
.r--------rl--------------------------------------· ------------f 
I 10 IPermanent base for IKF104 (COBWRD). I 
I I I 
I 11 IPermanent base for IKF103 (GETWD). I 

.I-----------rl-----------------------------------------------------f 
I 12 IPermanent base for IKF102 (IDDIV1). I . ' , 
4 of 12) • Register Usage According to Phase 

474 Section 6. Diagnostic Aids 



Licensed Haterial - Property ofIBK 

iii • 
I Phase I Register I Use I 
l--------+I--- I . --f 
I 12 (IKFCBL12) I 13 IPermanent base for IKF101 (PH1SAV), pointing directly to thel 
I (continued) I I phase 12 save area in that CSECT. I 
I r-- I I 
I I 14 ILinkage. I 
I r-- I f 
I I 15 I Linkage to TAMER. I 
I I ~I------------~--------------- I 
I I ITemporary base for sUbroutines. I 
I I I f 

1 B (IKFCBL 1 B) I 0 I Work. I 
I-- I I 
I 1 ,points to COMMON in phase 00. I 
l- I , 
I 2-8 IWork. I 
r-- , f 
I 9 I Base of IKF109 (EIBSVB). I 
I Ir-------------~---------------------~I 
I I Base of IKF107 (LETTER). I 
l-- I f 
I 10 I Base of IKF104 (COBWRD). I 
I I --f 
I 11 I Base of IKF103 (GETWD). I 
l-- I --f 
I 12 IBase of IKF102 (IDDIV1). I 
I-- I I 
I 13 IBase of IKF101 (PH1SAV), pointing directly to the phase 1B I 

I I I save area in that CSECT. I 
I I -+~---------------- f 
I I 14 I Linkage. , 
I rl----~--tl·----------------- , 
I ,15 I Linkage to TAKER. I 
I , ~I-------------------------------------'----------f 
I , IAddressability to IKF107 (PDSCN) and temporary I 
I I I addressability to IKF109 (VARPQ) and to IKF106 (UNLVSN). I 
l- --+-------+ ---t 

20 (IKFCBL20), 0-6 ,Work. I 
I I f 
I 7 IAddress of input buffer area. I 
I-- I I 
I 8-10 IWork. I 
L I f 
, 11 I Address of COMMON, except during ACCHET routine. , 
I , ---t 
I 12 ,Work. I 
l-- I f 
, 13 IPointer to save area. , 
I-- I I 
, 14 I Branching. I 
r- I f 
I 15 IBase for all routines. I 

L- ' , J 

Figure 67 (Part 5 of 12). Register Usage According to Phase9 

Diagnostic Aids 475 



Licensed Baterial - property of IBM 

iii 
Phase , Register , Use , , ~ ~ 

21 «IKFCBL21), 0-1 ,Work. , 
I-- , -f 
, 2 ,BUFTAB pointer. , 
I I I 
I 3 -6 , Work. , 
l-- I .. 
I 7 IData IC-text pointer I 
, I , 
I 8 I Work. I 
r- ~ -f 
, 9 IFDTAB pointer. I 
I- I , 
I 10 IPIOTBL pointer. I 
l-- , -f 
I 11 IAddress of COMMON in phase 00. I 
I I .~------------------------~ 
, 12 I Base of PERMCODE. I 
r- , i 
I 13 IPointer to save area. I 
I-- I ~ 
I 14-15 ILinkage. I 

r- ,~ .. 
I 22 lIKFCBL22), 0-6 IWork. I 
, I-- , -f 
, I 7, Address of input "bUffer area. , 
, I-- , ~ 

, I 8-10 ,Work. I 
I r- I i 
, ,11 ,Address of COMMON, except during ACCMET routine. , 
, I , , 
, ,12 ,Work. I 
I l--' i 
, I 13 IPointer to save area. , 
, I , .... 
, ,14 I Branching. , 
, • , -i 
, , 15 IBase for all routines. , , , , , 

25 (IKFCBL25) , 0-8 ,Work. I 
I , , 
I 9 ,Base for SYMDICT DSECT. , 
r-----~ .. 
I 10 IPoints to COMMON in phase 00. I , . .. , 
, 11 ,Permanent base for first CSECT IKF251. , 
l-- f i 
, 12 ,Permanent base for second CSECT IKF252. I 
I , , 
, 13, Permanent base for data CSECT IKF25A. , 
l-----~ i 
, 14 I Linkage. , 
I , , 
, 15 ,Linkage. , 
I I .. 
I IBase for ACCESS routines. I 
, I 

Figure 67 (Part 6 of 12). Register Usage According to Phase 

476 Section 6. Diagnostic Aids 



Licensed Material - Property of IBM 

iii 
Phase I Register I Use I 

---+1-- I I 
3 (IKFCBL30) I 0 I Work. I 

I I --------1 
I I Frequently contains dictionary pointer to the entry I 
I I ,currently being processed. I 
I-- , ' ----4 
, 2 IFrequently points to the start of attributes in the I 
, I dictionary entry currently being processed. I 
I I , 
I 3 IFrequently contains dictionary pointer to the entry I 
I I currently being processed. I 

• I -I , 4-6 I Work. I 
I-- I , 
, 7-10 IPermanent bases for all routines and data. , 
I-- , 11 
, 11-12 I Rarely used (except by TAMER routines). I 

• I I , 13 ,Pointer to save area. I 
I--~ , -I 
I 14-15 I Branching to ,ACCESS routines. I 

I I I I 
, 35 (IKFCBL35) I 0-10 IWork. I 
I I- I I 
I I 11-12 IPermanent bases for all routines. I 
I I------_t_ -I 
'I , '13 I Pointer to SAVE AREA, base for most of data area. I 
I I I I 
I I 14, Branching; work. I 
I \- I -I 
I I 15, Linkage; work. I 
I I I , 

4 (IKFCBL40) I 0-6 I Work; used by verb analyzers, subroutines, and phase I 

I II controller. Register 5 also used by arithmetic routines I 
, I to save input buffer pointer while scanning SETTBL. , 
I I , 
, 7-11 IPermanent bases for the nonverb analyzer routines: phase I 
I I controller, subr,outines, and data area. I 

• I' -I , 12 IPoints to current element, either in input buffer or SETTBL.I 

• I I , 13 IUnused. I 
\- I .. 
I 14 I Branching. I 
I I ----4 
, 15 ,Temporary base register for the verb analyzer currently in , 
I I control. I 
I I .. 
I I Linkage to TAMER.. I 

L-________ ~ ____ 4-__ I \ 

Figure 67 (Part 7 of 12). Register Usage According to Phase 

Diagnostic ~ids 477 



Licensed aaterial - Property of IBM 

• . " i 1 

I Phase I Register I Use I 
i- I I 1 

45 (IKFCBL45) 1 0-1 I Work., 
I-- I , 
I 2-3 I Parameter registers between internal subroutines. I 
, 1 4 
I 4-8 I Work. , · , , , 9 I Pointer to current text elellent(DOP). , 
r---------1~----------------------------~-----~----------·--------4 
I ' 10 I Points to CO lUI ON in phase QO. , 
I I I 
I 11-12 IPermanent base for control routine, verb analyzer, and , 
I I subroutines. I 

• I 4 I 13 IPermanent bas~ for CSBCT containing constants. , 

• I , I 14-15 ILinkage. I 
- ........ - I 1 

50 (IKFCBL50) I 0-6 I Work. , 
i- I 4 
1 7 IBase of first CSECT in the phase, beginning with PH5CTL. I 
I I -----t 
I 8 IBase of second CSBCT, beginning with XINSCN. I 
r-- I 4 
I 9 I Temporary base for verb analyzer, routines beyond the third I 
I I CSECT. I 

• I I I 10 I Points to CO lUI ON in phase 00. I 
I I -f 
I 11 I Base of third CSECT, beginning 'with A-text Generator. I 

• I I 'I 12 I Base of phase 50 constant area (next-to-last CSECT). I 
1--- I -f 
I 13 IBase of phase 50 data area (last CSECT). I 
I I I 
I 14 I Linkage. I 
, I -f 
I 15 ITemporary base for some routines called by verb analyzers. I 

I-- I I 1 
51 (IKFCBL51) I 0-6 IWork. I 

i- I , 
I 7 I Base of first CSECT in the phase, beginning with PH5CTL. I 
r-- I of 
I 8 I Base of second CSBCT,beginning with XINSCN. I 
I I I 
I 9 I Temporary base for verb analyzer routines beyond the third I 
I I CSECT. I 
I l-of 
I 10 IPoints to COMMON in phase 00. I 
I-- I , 
I 11 t Base of third CSBCT, beginning with A-text Generator. I 
r-- I of 
I 12 I Base of phase 51 constant area (n.Qxt-to-last CSECT). I 
I ' I , 
I 13 I Base of phase 51 data area (last CSECT). I 
I---------t-----------~-----~---------------------------------- -f 
I 14 JLinkaqe. I 

• I , I 15 I Temporary base for so.e routines called by verb anal yzers. , 
.... ' , J 

Figure 67 (Part 8 of 12). Register Usage According to Phase 

478 Section 6. Diagnostic Aids 



'r-';"'~-

I Phase 
I 

Licensed Haterial - Property of IBM 

iii 
I Register I Use I 
I I --I 

6 (IKFCBL60) I 0-3 I Work. I 
I I , , .. 
, 4 I Input' for optimiiation A-text. I 
f- I ----. 
I 5-7 I Work. I 
~ I .. 
18 'I Base for the ;following CSECTs: I 
I 1 I 
I I IKF60l':'';''Performs phase initialization (switches, work 1 
1 I areas, etc.) : • I 
I "I IKF602, IKF603'-- Processing Listing A-text and Procedure I 
I I A-text. I 
I 1 " , 
I' 91Points to COMMON in phase 00. 1 
~' 1 .. 
I 10 IBase for the following CSECTs: I 
II I 
I I IKF602 -- Processes optimization A-text I 
I I IKF604' -- Processes Proced ure A-text and Data A-text; I 
I I' generates initialization routines. I . ~ .. 
I ' 111 BaSe,for IKF60 5 constants. I 
I I I 
I 12 I Base for CSECT',{IKF601 andIKF603). I 
l I .. 
I 13 I Points 'to phase 6 save area: base for CSECT containing' I 
I I constants (IKF 606) • I 
~ I , 
I 14-15 Itink'age to'subroutines. 1 

I- I I .. 
62 (IKFCBL62) 1 0-3 Plotk.< I 

I , I " I 
14' 'I Input for optimization A-text and Procedure A-text. I 
l---'- I ' .. 
I 5-7 I Work. I 
l---'- t , 
I Blaase for the"~oi~owinq CSECTs: I 
I r I 
I I IKF62 -- Performs phase initialization (switches, work I 
I I areas,et~.): processes the TGT and optimization A-text. I 
I I tKF623 ;-~'Proeesses Procedur,e A-text I 
, I ", " , " , , , 
I ' 9 ,- I Point's' to 'CONMON iri'pha~e 00 I 
'l---'-' , I """,,,., '. .' ' " , , , , .. 
I' 10"-1 Base"for the-following CSECTs: 1 
1 1 ' I 
1 1 - 'IKF62' ..;..;.. Performs' phase initialization (switches, work 1 
1 1 'areas,'etc.), processes the TGT and OPT A-text. I 
II , 
I 11"liork'~"! ~::' 1 
1 '~_I,., , ,__ .. 
I' 12' :!IBase for -CSECT containing constants IKF625. I 

'" 1 ' I I 13"IP'oi:nts,'tophase 62 save area.' 'I 
, T I 
1 14-15 ILinkage to subroutines. 1 

L .,' ,h '. 
Figure 67 (part 9 of 12)'. 'Re'gist.'er':usiq'~, le,cording to Phase 

Diagnostic Aids 479 



Licensed Baterial - Property of IBM 

,. 
I Phase 
I 

63 (IKFCBL63) 

, i i 
I Register I Use I 
I , f 
I 0-10 tWork. t 
I I , 
I 11 I Address of COIU!ON in phase 00. , 
, I f 
I 12 IBase for IKFCBL63. I 
• I 1 
I 13 ISave area and constants. , 
~'--~--~I------~------------------------------~--'------f 
I 111 I Return address fOr internal subroutines. , 
a , , 
t 15 ,Address of internal subroutines. , 

~------~---+,-- I I 
64 (IKFCBL64) I 0-3 ,Work. I 

~I------~I~--------------------~--------~----~--------f 
I II ,Input for Procedu~e A-text, Data A-text, and E-text. , 
~.--------,~--------------------~~------------~-----~ , 5-7 IWork. I 
~'--------~I------~------------------------~---------------f 
, 8 IBase for the following CSECTs: , 
, I I 
I , IKF611 -- Performs phase initialization (switches, work , 
, I areas, etc) I 
I I IKF6113 -- Processes Procedure A-text I 
~'------~I--------------------------~----~----~--------f 
, 9 ,Points to COMMON in phase 00. , 
• I I 
, 10 IBase for the following CSECT: , 
I I , 
, , IKF644 -- Processes Procedure A-text and Data A-text: , 
, ,generates initi.alization routines. , 
I , f 
, 11 ,Work. , 
a I I 
, 12 IBase for CSECT containing constants IKF6115. , 
, I f 
I 13 ,Points to phase 64 save area (IKF61155). , 
~ I' I 
, 14~15 'Linkage to subroutines. I 

~ ,--+-, I I 
65 (IKFCBL65) I 0-3 I Work. I 

I If 
I II IInput for Debug-text and for generating (TITCRD) DSECT. I 
I , ~ 

, 5-7 I Work. I 
i- I f 
I 8 IBase for CSECT IKF651~ , 
a . I I 
I 9 ,Points to COMMON in phase 00. I 
i--- I f 
I 10 ,Base for CSECT IKF652. I 
I , I 
, 11 I Work ~ , 
I I f 
I 12 ,Points to PROCTAB entries. , , , , 
, 13 ,Points to phase 65 save area; base for phase 65 constant' , 
, , CSECT IKF653. , 
, , I 
, 14-15 'Linkage to subroutines. , 
, I 

Figure 67 (Part 10 of 12). Register Osage According to Phase 

480 Section 6. Diagnostic lids 



Licensed Material - Property of IBM 

r I 
, Phase Register Use , 

~ -r-----~~--------------------------------------------~, 
6A (IKFCBJ;,61) I 0, Work. I 

, I~~-------------------------------------------- ~ 
I IReturn address when phase 6A has branched to phase 00. , 
I , , 
, 1 IWork. I 
I Ir--------------------------------------- ------,-------~ 
, ,Base for irtput DSECT. , 
~ I , 
I 2 IWork. I 
I ~ ~ 
1 I Pointer to data record being formatted. I 
1----, , I 
I 3-9 IWork. I 
~-------+ ~ 
I 10 I Base for IKF6A02. I 
~ I , 
I 11 IPoints to COMMON in phase 00. I 
I---- I of 
1 12, Base for CSECT IKF6A01. I 
II ----I 
I 13 IPoints to phase 6A save area (IKF6A01A). I 
I---- , of 
I 14 I Return address for internal subroutines. I 
1 I , 

-I 15 IWork. I 
1 I of 
1 I Address of internal subroutines. 1 
1 1 ----I 

70 (IKFCBL70j I 0';"4 IWork. I 
r I of 
I 5 IPoints to message in message table during processing of mostl 
I I messages • I 
I---- 'I 1 
1 6-7 I Work. 1 
1 1 of 
1 8' 1 Base for phase instructions. 1 
1 I ----I 
1 9 IPoints to COMMON in phase 00. 1 
r-- 1 ' of 
1 10 IBase for most constants. 1 
11----1 
1 11-14 IWork. 1 
~ 1 of 
1 15 1 Base for PUT, CONVERT, GET, STRING, and XPRIKE routines. 1 
, , I 

igllre 67 (Part 11 of 12). Register Usage According to Phase 

Diagnostic Aids 481 



Licensed Material - Property of IBM 

,----- i , • 

Phase , Register I Use I 
--~I--------;'------------ I 

80 , 0 Iwork. , 
(I KFCB L8 0- 8D) , , , 

r-------~,r_--------------------------~------------------,~ 
, 1 ,Base for IKFCBL80. I 
I I , 
, IWork. I r-- I ~ 
, 2-3 IDCB pointer for IKFCBL80. , 
I I , 
I ,Work. I 
I I -f 
I IBase for IKFCBL8C. I 
~. I ----1 
I 4 ,DTF pointer for IKFCBL80. , 
, r--- ~ 

I IBase for IKFCBL8C. I 
I 'I , 
I IWork. I r-- " ~ 
I 5 ,Base for IKFCBL8C. I 
I I , 
, IWork. , r-- I ~ 
I 6 I Internal link for IKFCBL8B, IKFCBL8C, and IKFCBL8D. I 
I I . I 
I I Work. I 
, I -f 
I 1-9 I Work. I 
~ f • 
I 10 IDCB pointer for IKFCBL84, IKFCBL86, and IKFCBL8D.' I 
I , .. 
I 11 IDCB pointer for IKFCBL8D. I 
I I I 
, I Work. , 
r , .. 
I 12 I Points to FIPSVT (FIPS vector table). , 
I I , 
, 13 I Save. I 
r-- I ~ 
I 14 I Link. I 
r-- , I 
I 15 I Base. I 
, , .J 

Figure 61 (Part 12 of 12). Register Usage According to Phase 

482 Section 6. Diagnostic Aids 



REGISTER ASSIGNMENT 

The compiler assigns registers for use at 
execution time according to the general 
rules indica ted in Figure 68. W'hen the OPT 
option is in effect, the register 
assignment is that indicated in Figure 69. 
The DRAP, PRAP. or CLIST option causes the 
permanent register assignm'ents for the data 
areas to be printed out along with the base 
locators associated with them. 

t. i 
IRegister I Assignment 
,r-------+---------------.-----------4 
I 0-5 IWork 
I 6 IPointer to beginning of 
, IWorking-storage 
,7-11 IPointers to FDs and then 
I Iremainder of Working-Storage 
I ,areas, if needed 
I 12 IPointer to PGT 
I 13 IPointer to TGT 
114,15 ITemporary base registers 
'~-----'-, ',' 

Figure 68. Register Usage at Execution 

i i 
IRegister I Assignment 
~I--------+---------------------------~ 

0-5 
6-9 

10 

I Work 
tAssigned in the following 
lorder: 
I First, TGT or ,PGT OVERFLOW 
Icells 
I Then, most used BLs or BLLs 
IAssigned to PGT OVERFLOW cell 
lif another OVERFLOW cell 
tresults from allocation of the 
IPROCEDURE BLOCK cells or 
lassigned to next most used BL 
tor BLL 

11 ,PROCEDURE BLOCK base register 
12 ,Pointer to PGT ' 
13 IPointer to TGT 

14,15 ,Temporary base registers L---______ L-______________ _ ____________ ~ 
Figure 69. Register Usage at Execution 

(OPT) 

ELEMENTS OF PROGRAM DESIGN 

Elements in the design of the compiler can 
be used to determine a number of facts when 
analyzing a compiler error: 

1. What conditions will cause the 
compiler itself to issue a message 
indicating compiler error? 

2. Which phase is currently processing 
when an error terminates compilation, 
and which record is it processing? 

Licensed Material - Property of IBM 

3. Where are re,gisters saved uhen one 
phase calls another, and what are 
their contents? 

4. Where are the buffers that are being 
used. and what do they contain? 

5. Where are the tables that are being 
Ilsed? 

Compil~~-!rror Messag~§ 

Certain error messages are issued only in 
case of compiler error. These messages 
take the following form: 

IKFpnnnI-D COMPILER ERROR. 

COMPILATION WILL NOT BE COMPLETE. 

where p is the phase number and nnn is the 
message number. Figure 70 explains the 
conditions which cause these messages to 

, occur. 

ABEND CODES 

If the DUMP option is specified, the 
following ABEND codes will appear (a 
description of the condition causing the 
ABEND, and the phase issuing the ABEND 
appear) : 

ABEND 
Phase Code 00--- 000-

001 
002 
006 
007 

008 
009 

22 220 

21 210 

30 312 

313 

314 

.Q~§£~1::eH.Q.!! 
SYSLIB SYNAD error 
SYSUTs files SYNAD error 
System SYNAD error 
Need larger size 
DICOT entry not found for 
section. spill request not 
met. TAMER request for 
non-printed table at TBL less 
than at MAST AM. 
Table size over 32K 
Fragmented core 
RENAMES error; occurs when 
IKFCBL22 is trying to 
calculate the length of an 
item with a RENAMES THRU 
clause and an error exists in 
the dictionary attributes in 
the characteristics of the 
object. 
Unrecognizable input, text 
from IKFCBL22. 
Last item referenced by 
ACCESS was elementary. 
Q-bit on, but pointer less 
than QVAR table pointer. 
Q-bit on, but no match in 
QVAR table. 

Diagnostic Aids 483 



Licensed Material - property of IBM 

35 

40 

45 

50 

60 
62 

ABEND 
Code 
316-

317 

319 

337 

339 

340 
341 

400 

450 

501 

502 
506 

507 

508 

509 
512 
605 
062 

~escri~io!! 
LATGRP return code 12 for 
CORRTR or end of table in 
INCRAV. 
Illegal minor code for 
data-name reference. 
Illegal level number for 
data-name reference. 
DEBUG-ITEM not in dictionary. 
UFD verb does not follow UFD 
section PN definition. 
UFD verb does not follow UFD 
section PN definition. 
No UFD verbs in declaratives. 
UFD operands not followed by 
BCD literal. 
Zero length items found in 
Pl-text or source error in 
arithmetic, while processing 
SETTBL. 
Unexpected verbs, 
unrecognizable input or 
missing subscript string. 
Error allocating even-odd 
pair of registers. 
Invalid subscript. 
Invalid data-type for sending 
field. 
Invalid operand 1 or 2 for 
arithmetic verb. 
Invalid floating point 
conversion. 
Invalid subscript combination. 
No match for IR in table. 
Error found processing input. 
Error found processing input. 

• ',~ :',:.'., '.~ ," t, .,", •• .\ 

484 section 6. Diagnostic Aids 

63 
64 

65 
70 

063 
601 
602 
603 

604 

605 

606 

608 

609 

613 
614 
615 

616 
617 
618 
619 
621 
622 
623 
624 
625 
626 
627 
628 

643 

065 
070 

Error found proc'essing input. 
Ox element, x ¢ ~, 10r 4. 
4C element', no P'NATBL entry. 
4C element, PN number less 
than 'table PN number. 
4C element, PN number greater 
than table PN humber. 
50 element,GN number less 
than GNATBL GN number. 
50 elemerit,GN number not in 
GNATBL. 
44 element, cod~ is less than 
or equal to 68 and invalid. 
~N number not found in 
QGNTBL. 
B02C found. 
4400 found~ 
88xx or 8Cxx found, xx 00 
or 06. 
8809 o,r 8C09 found. 
6438 found. 
644C found. 
8418 found. 
8420 found. 
8424 found. 
8448 found. 
8450 found~ 
8454 found. 
8800 or 8COO found. 
8806 or 8C06 found. 
78IODDKK, found. KK ¢ 00, 01, 
04, or 06. 
Error found processing 
deftext. 
No SEGINDX table entries. 
Error processing E-text. 

::' 



r--
I l!!essage 
r-

IKF0020I 

IKF19I 

1KF192 

IKF1009 

IKF1010 

IKF1090 

IKF1114 

IKF1198 

IKF20741 

IKF2152I 

IKF2256 

IKF3012I 

IKF3013I 

IKF30141 

IKF3016I 

IKF3017I 

IKF3019I 

IKF3020I 

IKF3037 

IKF3039 

IKF3040 

IKF3041 

II(F"068I 

IKF .. 088I 

IKF .. 1 .. 2I 

IKFlJ143I t , 
IKF5001I. I 

Licensed Material - property of IBl!! 

Explanation 

Due to a logic or machine error, a TA!ER routine cannot satisfy a table 
handling request. 

II aximum card number exceeded. NO! option canceled. Issued by phase 02, 
10, 12, 1B. 

SYl!!DMP or TEST option canceled due to NU! sequence error •. Issued by phase 
02, 10, 12, 1B. 

BASIS library not available. 

Unused end of data of SYSIN during phase 04 processing. 

Library load error during BASIS processing. No member or bad block. 

No library member or BASIS card. 

Insufficient compiler workspace for COPY-BASIS processing. 

Illegal minor code field for a RENAl!!ES entry. 

Unrecognizable input to phase 20, 22, or 21. Skipped to next phase. 

Illegal entry in UPSI table. 

No matched DCB in the QFILE table for a file. 

Pointer to dictionary entry less than the QVAR table entry for an 
elementary item. 

No match found in the QVAR table for an elementary item. 

Error in processing a CORRESPONDING option. 

Inva!id minor code field in dictionary entry. 

Invalid level found while processing glossary. 

Report name is invalid as used. Discarded. 

DEBUG-ITE! not in dictionary when expected. 

Unexpected verb follows USE FOR DEBUGGING section Paragraph name. 

NO USE FOR DEBUGGING declaratives. 

Unexpected input follows USE FOR DEBUGGING operand. 

Undefined data attributes. 

Procedure IC-text count field is O. Skipped to phase 50. 

Unrecognizable input on SYSUT2. 

Logic error. 1 subscript in the SSCIR string has been lost. 

Logic or machine error while trying to assign a double register. 
L-, ________ ~ __________________________ ------------------------------------------________ ~ 

pigure 70 (Part 1 of 2). Error Messages Indicating Compiler Brror 

Diagnostic Aids 485 



Licensed Material - Property of. IBM 

• 1 i 
t Message t Explanation I 

~------.r-------------------------~------------------------------------~ 
I 

IKFS0021 t 

IKFSOOSI 

IKFS0061 

IKFSOO7I 

IKFS0081 

IKFS0091 

IKFS0121 

IKF60031 

IKF600S1 

IKF60081 

IKF60101 

I 
I 
I 
I 
I 
I 
I 
I 
t 
I 
I 
I 
t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

Logic or machine error while processing a subscripted or indexed data-name. 

Logic or machine error ~hile processing a MOVE statement. 

Logic or machine error. . Unexpected input to the MOVE or STORE processor. 

Logic or machine error. Unexpected input to the arithmetic code generator. 

Logic or machine error. unexpected input to the floa Hng-point arithmetic 
routine. FPCVBH •. 

Logic or machine error. Lost subscript or index identifier in the XSSNT 
table. 

Logic or machine.error •. Lost intermediate result attributes in the XINTR 
table. 

Unknown Data A·text code found while processing on SYSUT4. 

Error found while processing Procedure A-text on SYS(JT1. 

STATE option canceled. 

All debugging options canceled. 

Figure 70 (Part 2 of 2). Error Messages Indicating Compiler Error 

• i I 
I Module IHexadecimal Displacement from I 
IName I Beginning of Module I 
~ I .--------I~ 
IIKFCBLOOI 
IIKFCBLOll 
IIKFCBL021 
IIKFCBL031 
IIKFCBL041 
IIKFCBLOSI 
IIKFCBL061 
IIKFCBL081 
IIKFCBL101 
IIKFCBL121 
IIKFCBL1BI 
IIKFCBL201 
IIKFCBL21 I 
IIKFCBL221 
IIKFCBL251 
IIKFCBL301 
IIKFCBL351 
I IKFCBL40 I 
IIKFCBL451 
IIKFCBL501 
IIKFCBL511 
I IKFCBL60 I 
IIKFCBL621 
IIKFCBL631 
IIKFCBL641 
IIKFCBL651 
IIKFCBL6AI 
IIKFCBL701 
I IKFCBL80 I 
~----~--.------

5B 
30 
08 
08 
OC 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
08 
OC 
08 
08 
08 
08 
08 
08 
08 
04 
08 
08 
08 
08 

Fi gure 71. Location of Identifier Constant 

486 Section 6. Diagnostic Aids 

'A unique identifier constant (C'VSCBL200' 
for this compiler) is located at a fixed 
displacement to enable the user to 
determine from a storage dump which version 
of the compiler was used .f.O.r,the 
compilation. The only e*cepti6n is module 
IKFCBLOO which contains copyright 
information instead of the identifier 
constant at the indicated displacement. 
The following information is found at 
hexadecimal 00 00 00: 5740-CBl COPYRIGHT 
IBM CORPORATION 1974, ~00143. The location 
of the identifier constant in ~he compiler 
is as given in Figure 71. 

If the compiler terminates execution while 
a processing phase (04, 05, 06, 08, 10, 12, 
lB, 20,22,21,253,35,4,45,50,51,6, 
62, 63, 64,65, 6/1., 7'0 or 80) is in 
storage, the phase can be identified in 
three ways. In a dump the first active 
Request Block (R~ is for phase 00, and the 
second is for the processing phase. The 
load point for the processing phase can be 
found by adding hexadecimal 20 to the 
origin point specified in the RB; the RB 
contains the address of a contents 
directory entry (CDE) which gives the load 
module name and the entry point. 



The name of the phase currently 
processing can also be found in either 
LINKCNT or LINKNAKE, both locations in 
phase 00. ,In LINKCNT the processing phase 
is expressed in a 2-byte code as follows: 

Code 
CHexad~imall 

2 
2 
4 
6 
8 
A 
C 
E 

10 
12 
14 
16 
18 
1A 
1C 
1E 
20 
22 
24 
26 
28 
2A 
2C 
2E 
30 
32 
32 

OR 

Phase 
-~ 

02 
04 
05 
06 
08 
10 
12 
1B 
20 
22 
21 
25 

3 
35 

4 
45 
50 
51 

6 
62 
63 
64 
65 
6A 
70 
80 

Execution of phases 70, 
71, and 72 is not 
required. ' 

OR 
Abnormal termination 
occurred. 

LINKNAKE contains an 8-byte name in the 
form IKFCBLxx, where xx is the phase 
number. 

The record' that is being processed at 
the time the error occurred can be related 
to a st~tement in the listing through a 
location in COKMON, CURCRD, which contains 
the current generated' card number. If 
there is no, listing available, the buffers 
for the files being read or written can be 
located and the, contents of the last bytes 
used can be examined. This process is 
described under "Buffers and Their 
Contents".in this chapter. 

',Licensed Material - Property of IBM 

Phase 00 places the address of the control 
program's save area in location KYSAVE+4. 
When phase 00 is called by another compiler 
phase, it places the address of the calling 
phase save area in'SAVER13. Phase 00 puts 
the address of its own save area (MYSAVE) 
in register 13. 

The calling phase registers can be 
located by adding decimal 12 to the address 
contained in SAVER13. This locates 
register 14, followed by register 15, etc. 

The 'following registers have 
significance in connection with a branch to 
COS, the location in phase 00 used for 
input/output requests: 

• Register 0: contains the address of 
the,X and Y parameters of the linkage 
request. (See Table 2 in the chapter 
"Phase 00. ") Register 0 can be used to 
verify that the calling phase is making 
a.legitimate request, for example, 
phase 20 cannot write on SYSPRINT. 
For PLS phases (04 and 35), register 1 
contains the address of the X and Y 
parameters. 

• Regj,§j;,,~2: contains the address 
within the calling phase from Which 
phase 00 is to. write if, the X parameter 
in register 0 is a request for a PUT. 
It can be used to determine whether the 
address' it contains is within the range 
of ' main storage allocated to the 
calling p~ase., 

• ~gi§~~£-1: Should contain the length 
of the data to be written if a PUT has 
been requested. The number must be 
less .thanthe size of the buffer but 
not equal to zero. 

If the calling phase is asking for 
action by a TAHER routine, the registers of 
the calling phase are saved in an area 
starting at location TBSAV1 by means of a 
STH 0.15 instruction. The registers can be 
found at, A (TBSAV1) • Register 14 contains 
the address of the instruction following 
the call to the TAKER routine; register 15 
contains the address of the TAKER routine 
entry point. 

,', 

~~§ and Their contents 

When,a processing phase requests an 
input/output operation by phase 00,. 
regist er 10 in phase 00 contains the data 
set number code (hex 01 through OB) 
multiplied by 2. This code is the 

Diagnostic Aids 487 



Licensed Material - Property of IBM 

displacement of an entry for the data set 
within the phase 00 POINT table. 

Figure 72 shows the format of a POINT 
table entry. Each consists of two bytes, 
the low-order bits of which contain buffer 
numbers (n). If a data set is 
double-buffered, the numbers are different. 
If it is single-buffered, the numbers are 
the same. If the first four bits of the 
entry contain a hexadecimal F, no physical 
input/output has been done on the data set 
in this phase. 

Bits contents 

0-3 
4-7 
8-11 
12-15 

X'O' or X'F' 
buffer number n 
XIO' 
buffer number 

L- • ---i 

Figure 72. POINT Table Entry Format 

The buffer number can be used to locate 
the buffer control block (BCB) for the 
buffer being used for the data set. Buffer 
control blocks are contained in an area 
starting at BUFCNLS-8 (displacements are in 
hexadecimal) as follows: 

!&.~tiQ!l 
BUFCNLS-8 

BUFCNLS+O 

BUFCNLS+8 

BUFCNLS+ 10 

BUFCNLS+18 

BUFCNLS+20 

BUFCNLS+28 

BUFCNLS+30 

BUFCNLS+38 

BUFCNLS+40 

BUFCNLS+50 

BUFCNLS+60 

BUFCNLS+70 

Control Block Second SISLIN BCB. 

Buffer 1 BCB. 

Buffer 2 BCB. 

Buffer 3 BCB. 

Buffer 4 BCB. 

Buffer 5 BCB. 

BCB for buffer 6 as a 
whole. 

First SYSPRINT BCB; bytes 
2 through 4 point to the 
beginning of buffer 6. 

Second SYSPRINT BCB. 

Two SYSTERM BCBs. 

Two SYSIN BCBs. 

Two 5ISLIB BCBs. 

First SYSPUNCH BCB; bytes 
2 through 4 point to the 
end of the SISTERM 
buffer area. SYSPUNCH 
and SYSLIN reuse the 
SYSIN and SYSLIB area. 

488 Section 6. Diagnostic Aids 

BUFCNLS+78 Second SYSPUNCH BCB. 

BUFCNLS+80 First SYSLIN BCB. 

The format of a BCB is as follows: 

~j:~§ 
o 

1-3 
4-5 

6-7 

X'OO' 
Address of buffer 
Bytes used so far for GET or 

PUT 
Length of buffer 

Note: The above does not apply to SYSUT5. 
Phases 25 and 65 perform buffer management 
processing for SYSUT5. 

Tahles currently being used by a phase can 
be located by taking the following steps: 

1. The Table Information Block (TIB) 
number for any table handled by the 
TAMER routines may be found in Figure 
59 (listed by phase), in Figure 60 
(listed by TIB number), or under 
"Compiler Table Formats" (listed 
alphabetically by table name). 

2. Add hexadecimal 34 to the .load address 
for phase 00 given in the dump. 

3. Add 
the 
00. 
TIB 

the result to the displacement of 
TIB shown in the listing for phase 

The result is the address of the 
(table information block) • 

4. The second, third, and fourth bytes in 
the TIB contain the address of the 
TAMM for the table. 

5. The second, third, and fourth byt es of 
the TAMM contain the address @f the 
table. The seventh and eighth bytes 
contain the number of bytes used so 
far in the table. 

The entry format for each table 
manipulated by TAMER routines is shown in 
"Section 5. Data Areas." 

DIAGNOSTIC ASSISTANCE 

When you telephone the IBK Program Support 
Representative for diagnostic assistance, 
you can get a faster and more precise 
response if you provide as much information 
about the problem as possible. To 
determine whether your problem has been 
documented, it is necessary that you 
provide certain items, referred to as 



search arguments, that are needed to 
retrieve such documentation. Search 
arguments include such items as component 
identification, when failure occurred, type 
of failure, phase that failed, and verb 
being processed. 

To assist you in determining search 
arguments, a COBOL Abstract Worksheet 
appears on the next page. The worksheet 
describes each search item, the search 
argument that identifies that item, and an 
explanation of how to find the search 
argument. For most efficient retrieval of 

Licensed Material - Property of IBM 

documentation regarding your problem, 
provide as many search arguments as you 
can. 

In addition to the search arguments, 
have as many of the following items 
available as possible when you telephone 
for diagnostic assistance: 

• JCL 
• source listing 
• dump 
• console sheet 
• program output 

Diagnostic Aids 489 



Licensed Material - property of IBM 

COBOL Abstract Worksheet (side A) 
r --------------------~I- ~ --------'--------, 
I Search Item , Search Argument , How to Find Argument I 
I 
, 1. 
I 

Component ID: 
5740-CB1-xxx where 
xxx is the program 
product version 
level 

+-----------~------+ 
, 1. 5740~CB1-xxx , The program. product version level is 

printed at the top of the first page 
the COBOL listing. It is also con
tained in byte X'14' of the load 
module. 

~ 
I , , ofl 

I 
I 
I 

, , 
I , , , I 

I 
I 

r- ---------------+--- ---+ .~--~-------~ 
2. Keyword 

(use as 
entry, , 
indicated):, , 

I 3. , 
I 
I 
I , 
I 

, Unsurel 
, r- -->, , , , 
, V , 
, Go to , 
, Side B , , , , , , , 
, 2. CMPL I 

----------~I~ ---+ 
Type of failure: 
one of the 
following: 

I 3. , , , 
I , 
, I 

abend = ABENDxxx , I 
wait = WAIT I , 
loop LOOP, I 
msg. 1 

1-----
= MSGIKFxxxxxl I 

I I 
I 4. 
I 
I 
I 

Failing phase: 
IKFCBLnn, where 
is the compiler 
phase number. 

I 4. IKFCBLnn , 
nn I I 

I , 
I , 

If unsure, check the JCL to see which 
step was being executed at the time of 
the failure. 

Location LINKNAME in phase 00 contains 
a name in the form IKFCBLxx, where xx 
is the compiler phase number. 

~ 
I 
I 
I 
I 
I 
I 
I 
I ., 
I 
I 
I 
I 

I I ___+ -----."..---~ 
5. COBOL verb being 

processed: (e.g., 
ADD, MOVE, GO) 

5. I A. , 
I 
I , 

Find the register used by the 
failing phase (argument 4 above) to 
point to COMMON; see "Register 
Usage" in this section l • 

GPRxx '. ." ~B. obtain the address of COMMON from 
~ I the register • 

. ".\' .••.. COIU!ON !tJ: C. 

. 
COMMON. I 

• -,1 
. I I 

I '14C'- IProgram ID I I 
I '153'Ientry I I 

~ :. '. ;tiD. 
I • 291" - I Card being I I 
I '297' I ~ I 

Verify that you are at the correct 
area for COMMON; the contents of 
COMMON address + X'14C' should be 
the same as the word coded on the 
PROGRAM-ID card (card 2 or 3 in the 
source program) • 

Find card number at COMMON address 
+ X'294' (e.g., 8000030 would indi
cate card 48 (hex. 30 = dec. 48). 

I . I processed , I 
I I I I E. Find the indicated card in the 
I L-- I source program and determine the 
I I COBOL verb being processed. 

• I ' ~ 
Jllf this worksheet has been rellovedfrom the OS/VS COBOL ProqramJtQgic !1anual, the I 
I address of COlUlON can be found by. using all of the registers listed under REG AT ENTRY I 
I TO ABEND. Starting with register 10 (then 11, then 9) perform steps Band C until I 
I step C results in a iBatch;then do steps D and E. . ' , 
, t 

490 Section 6. Diagnostic Aids 



Licensed Material - property of IBM 

COBOL Abstract Worksheet (side B) 
, I I , 

I Search Item , Search Argument I How to Find Argument I 
I-- " ---t 
I 1. Component ID: I 1. 5740-CB1-xxx I The program product version level is I 
, 5740-CB1-xxx, where, I printed at the top of the first page of, 
I xxx is the program , I the COBOL listing. It is also con- , 
I product version I 1 tained in byte X' 17' of the load 1 
,level. I I mod ule. I 
I-- +I--------T----------+I--- , 

2. Keyword entry (use , If unsure, check the JCL to see which 
as indicated): I step was being executed at the time of 

I 3. Type of failure: 
lone of the 
, following: 
, abend ABENDxxx 
, wait = WAIT 
I loop = LOOP 
, msg. = MSGIKFxxxxx 
I bad output 
, = INCORROUT 
1----------------
, 4. COBOL verb or 
I statement being 
I executed: , 
I , 

Go to 
Side A 

2. EXEC 

3. 

4. 

r +--
I 5. , 
I 

Optional COBOL 1 5. 
library module namel 
being executed: 1 

Unsure, the failure 
>1 , 

I , 
I , 
1 
I 
1 
1 
I 
I 
I 
I 
I 
I , 
I 
I 

--t 

I 
I 
I 
I 
I 

---t 
I 
I 
I 
I , 

A. Determines the CSECT name assigned 
to the failing program in the 
PROGRAM-ID source statement, which 
is usually the second or third card 
in the source program. 

B. Determine the length of the compiled 
CSECT from one of the following 
areas: 

o linkage editor map 

.. extent list 

G compiler generated Memory Map 

C. Use the PSW AT ENTRY TO ABEND to 
determine the address of the failing 
instruction. 

I 
I 
I 
I , 
I 
I 
I 
I , 
I 

I D. Is the failing instruction within 
the scope of the code compiled for 
the COBOL CSECT? If yes, see note 
below. If no, se. note 2 below. 

I 
I 
I 
I 
I , 
1 

1---.----- . +-- --------t 
I 6. 
I 
I 
I 
I 
I 

Special COBOL 1 6. 
features being used, 
(optional) : I 
(e.g., SORT, I 
SYMDMP) I 

I 

, 
1 
I 
I 
I 
• 

I 
1 , , 
I 

----I 

Diagnostic Aids 491 



Licensed Material - Property of IBM 

The tables that the compiler uses to store 
information within a phase or between 
phases are manipulated by a set of routines 
called TAMER (Table Area Management 
Executive Routines). TAMER is part of 
phase 00 and is resident in storage 
throughout compilation. 

The dictionary, which is an internal 
data set used by phases lB, 22, 21, 25, and 
3, is manipulated by a set of routines 
called ACCESS routines. ACCESS routines 
are loaded into storage as part of these 
phases. 

The. chapter "Phase 02" explains how an 
area for tables and the dictionary is 
obtained initially. TAMER obtains 
additional areas if they are needed. The 
new areas mayor may not be contiguous to 
the original area. Figure 73 shows the 
arrangement of tables and the dictionary in 
each contiguous area. 

I i I .. 
,Table 11 ••• ITable N,Main Free,Dictionary 
I 'I ,Area I SectionN L-______ ~. __ -L _______ ~ ________ ~~ __________ 4 

l I I 
,Dictionary I 
I Section 1 , 

---J'.----JJ 

Figure 73. Arrangement of Tables and 
Dictionary sections in 
Contiguous Areas 

ACCESS routines enter and retrieve 
dictionary entries. They are assembled by 
means of a macro instruction with phases 
lB, 22, 21, 25, and 3, the only phases that 
use the dictionary. only those routines 
that are needed in a phase are assembled 
with it. 

Using the ACCESS routines, phases lB, 
22, and 21 make dictionary entries for 
data-names and procedure-names in the. order 
in which the names are defined in the 
source program. (Phase lB makes entries 
for procedure-names; phases 22 and 21 makes 
entries for data-names.) Basically, a 
dictionary entry consists of a name and 
attributes. 

Formats for the types of dictionary 
entries are illustrated in "Section 5. 

492 Section 6. Diagnostic Aids 

Data Areas." Phases .1B, 22, and 21 do not 
use the LOCNXT ACCESS routine. 

Phase 25 uses the ACCESS routines to 
locate dictionary information used in 
building tables for the Debug data set. 

Phase 3 uses the ACCESS routines to 
replace data-names and procedure-names in 
procedure statements with their dictionary 
attributes. It tells the ACCESS routines 
the name and the ACCESS routines obtain the 
attributes from the dictionary entry for 
that name. 

It also uses the ACCESS routines to 
resolve qualification and the CORRESPONDING 
option. Phase 3 does not use "enter" 
ACCESS routines (those whose names begin 
with "ENT") or the GETPTR ACCESS routine. 

The ACCESS routines do not restore 
registers 0 and 1 on exit. 

ORGANIZATION OF THE DICTIONARY 

.The dictionary is divided into sections of 
512 bytes each. The location of a 
dictionary entry is indicated by its 
section and its displacement from the 
beginning of that section. The. DICOT table 
has an entry for each dictionary section, 
giving the starting address of that 
section. 

The ACCESS routines use the HASH table 
to keep track of the locations of 
dictionary entries. HASH is a hash table 
with 521 entries. When a dictionary entry 
is made for a name, its section. and 
displacement are entered in the HASH table 
entry for that name. When an ACCESS 
routine wants to find an entry, it 
determines the hash value of the name to 
find the HASH table entry for that name and 
obtains the section and displacement from 
the HASH table entry. 

If a name hashes to. the same value as a 
previous name, the section and displacement 
for the previous name are taken from table 
HASH and placed in front of the dictionary 
entry for the new name asa dictionary 
pointer. Then the section and displacement 
of the new entry are entered in the HASH 
table and duplicate hash.values are 
indicated. when an ACCESS routine wants to 
find an entry for a name and the HASH table 
indica tes that there were duplicat e hash 



values, it uses these dictionary pointers 
to search the dictionary, in reverse order, 
to find the specified name. That is, it 
obtains the section and displacement from 
the HASH table for the hash value and finds 
the name in the indicated entry. If the 
names match, this is the correct entry, 
unless duplicate names were defined. Then 
it looks at the entry with the section and 
displacement specified by the dictionary 
pointer of the last entry. This process 
continues until it has compared the names 
of all entries with duplicate hash values. 
At that time, it will either have found a 
single unique name, a duplicately defined 
name, or no name at all. It issues an 
error code if it does not find a name or if 
the name is duplicately defined. 

~: If a name is unique because it is 
qualified, the phases specify a range of 
dictionary entries to be searched when they 
call an ACCESS routine. This is explained 
in routine LATACP. 

STORAGE FOR THE DICTIONARY 

Generally, storage for a new dictionary 
section can be obtained from the free area 
between the tables and the dictionary (see 
Figure 73). If the free area is exhausted, 
a GETKAIN macro instruction is issued to 
obtain all available COBOL space, the area 
equal to the difference between the length 
of the longest phase and the length of the 
current phase. Areas obtained in this 
manner ar.e not contiguous. 

When the outstanding available area is 
exhausted, dictionary sections are written 
out on direct-access data set SISUT1 and 
the area is reused. The DICOT table is 
used to keep track of the dictionary 
sections. There is'an entry for each 
section, giving the beginning address of 
the section and an indication of whether or 
not it has .been written out (spilled). A 
dictionary section is' read back into 
storage, when it is needed, by SUbroutine 
MOVDIC,described under "Table Handling 
with TAKER" in this appendix. At the end 
of phase 3, all dictionary space in storage 
and the DICOT table and the HASH table are 
released. SYSUT1, the dictionary spill 
data set, is closed so that it may be 
reopened asa utility data set for later 
phases. 

When control passes from a smaller to a 
larger phase, any tables or dictionary 
sections in danger of; being overlaid by the 
new phase must bemov'ed to upper storage. 
This possibility exists when space for the 
table or dictionary section was obtained 
via a GETKAIN macro' instruction, as 

Licensed Material - property of IBM 

described above. The necessary moving is 
. done dur ing interphase processing by 
routines named TBINTPOO, TBINTP01, etc. 

In the following descriptions of the 
ACCESS routines, the format of the EBCDIC 
name pointed to is: 

Iii I 
No. of 1 1 1 1 
Bits 12 161n*8 1 

I 1 1 I 
contents IOOlntNamel 

where n is the number of characters in the 
name. -The entry starts on a fullword 
boundary and is a multiple of 4 bytes. 
Padding is with binary zeros starting with 
the low-order bytes. 

INITIALIZATION OF ACCESS ROUTINES 

To use the ACCESS routines, the phases must 
call routine INTACC to initialize them. 
INTACC primes the DICOT table upon 
receiving control for the first time and 
performs other initialization functions. 
The call to INTACC must follow the call to 
TAMEIN, the TAKER initialization routine. 
The calling sequence to INTACC is: 

L 
BALR 

15,=A (INTACC) 
14,15 

ACCESS ROUTINES 

ACCESS routines are available to perform 
the following functions. 

1. Enter attributes when given a 
data-name. 

2. Enter attributes when given the 
dictionary pointer. 

3. Get a dictionary pointer when given 
the data-name and the length of its 
attributes. 

4. Enter delimiter (dictionary pointer of 
the entry that delimits a group or 
section) when given the dictionary 
pointer of the group or section. 

5. Locate attributes when given a 
data-name. 

6. Locate attributes when given a 
dictionary pointer. 

Appendix A: Table and Dictionary Handling (TAMER) 493 



Licensed Material - Property of IBM 

7. Locate attributes of next entry when 
given a dictionary pointer. 

8. Locate delimiter Nhen given a 
data-name. 

9. Locate attributes when given ACCESS 
pointer (name of an entry that is a 
sub field of the last entry referred to 
by an ACCESS routin~. 

10. Locate attributes when given a 
data-name and a dictionary pointer to 
a group of which it is a subfield. 

Given the address of an EBCDIC name 
(procedure-name or data-name), routine 

ENTNAM makes a dictionary entry for it. It 
places its section and displacement in the 
HASH table and also in register 1, to be 
used by the calling phase as a dictionary 
pointer. The calling sequence is: 

L 
L 
BALR 

1 ,=A (parameter) 
15,=A (ENTNAli) 
14,15 

where parameter has the following format 
starting on a fullword boundary: 

No. of 
Bytes 

Contents 

r-- -,-- I 

I I I 
I 1 3 I 3 I 
I- I I ., 
ICodelAddresslCount of I Ad dress ofl 
I lof I Attri- I Attributes I 
I I EBCDIC I butes I I 
I IName I I I 
L--' ---L- I J 

where code is 0 for elementary items and 
paragraph-names, and 4 for group items and 
section- na me s. 

Given a dictionary pointer, that is, a 
section and displacement, routine ENTPTR 
enters a specified name and its attributes 
into the dictionary. The calling sequence 
is: 

L 
L 
BALR 

1 ,=A (parameter) 
15,=A (ENTPTR) 
14,15 

494 Appendixes 

where parameter h.as the following format 
starting on a fullword boundary: 

r-.-,------------r---------~ 

No. of I 
Bytes 11 3 1 

I I 
Contentsl161Address of ICount of 

I IEBCDIC NamelAttributes L-~ ____________ L-________ ~ 

r- I 

I I 
I 3 1 3 I 
r---------r---+I---------~, 
IAddress ofl 0 IDictionarYI 
IAttributesl IPointer I 
'"- ., I 

GiVen an EBCDIC name and the length of its 
attributes, routine GETPTR determines its 
section and displacement and places this 
dictionary pointer in register 1. The 
calling sequence is: 

L 
L 
BALR 

1 ,=A (parameter) 
15, =A (GETPTR) 
14,15 

where parameter has the following format 
starting on a fullword boundary: 

No. of 
Bytes 

Contents 

I I 

I I 
I 3 1 I 
,. I ., 
ICodelAddress of ICount of I 
I IEBCDIC namelAttributesl 
L----.~I ____________ ~ ________ _J 

where code is 8 for elementary items and 
paragraph-names, and 12 for group items and 
section-names. 

Given a dictionary pointer for a group item 
or section-name and its delimiter pointer, 
routine ENTDEL enters the delimiter pointer 
into the dictionary entry for the group 
item or section-name. A delimiter pointer 
for a group item is the section and 
displacement of the next group item on the 
same or a lower level. A delimiter pointer 
for a section-name is the section and 
displacement of the next section-name. The 
calling sequence is: 

L 
L 
BALR 

1 ,=A (parameter) 
15,=A (ENTDEL) 
14,15 



where parameter has the following format 
starting on a,fullword boundary: 

No. of 
Bytes 

Contents 

.-r-------,---,-
I I I I 
111 3 111 3 
1-1 I I I 
10 IDictionarYI 01 Delimiterl 
I IPointer I IPointer I 
L-' , , . 

Given an EBCDIC name, routine LATRNM 
locates its dictionary pointer and the 
starting address of its attributes. If the 
entry is found, the attributes starting 
address is placed in register 2, the 
dictionary pointer is placed in register 3, 
and register 15 is set to 0. If the entry 
is not found, the contents of registers 2 
and 3 are meaningless, and register 15 
contains a 4 if the name was not found and 
an 8 if the name was duplicately defined. 
The address of the located name as it 
appears in the dictionary will be saved in 
the DICTNAME in COMMON. Note: This 
address should never be saved across CALLs 
to phase 00. The calling sequence is: 

L 
L 
BALR 

1, = A (parameter) 
15,=A (LATRNM) 
14,15 

where parameter has the following format 
starting on a fullword boundary: 

No. of 
Bytes 

contents 

i 

I I 
11 I 3 
I I 
10 I Address of EBCDIC Namel 
• I 

Given a dictionary pointer for an entry, 
routine LATRPT locates the starting address 
of its attributes and places it in register 
2. The address of the located name as it 
appears in the dictionary will be saved in 
the DICTNAME in COMMON. !~~: This 
address should never be saved across CALLs 
to phase 00. The calling sequence is: 

L 
L 
BALR 

1 ,=A (parameter) 
15, =A (LATRPT) 
14,15 

where parameter has the following format 
starting on a fullword boundary: 

Licensed Material - property of IBM 

No. of 
Bytes 

contents 

.--,-------
I I 
111 3 
.-I--'~---
141Dictionary 
, I 

, 
I 
I 

-i 
pointer I 

I 

Given the dictionary pointer of an entry. 
routine LOCNXT locates the next entry. In 
register 2, it places the starting address 
of the next entry's attributes. In 
register 1. it places the dictionary 
pointer of the next entry. In register 3, 
it places the starting address of the 
EBCDIC name of the next entry. The calling 
sequence is: 

L 
L 
BALR 

1,parameter 
15, =A (LOCNXT) 
14,15 

where parameter has the follouing format 
starting on a fulluord boundary: 

I i 

I I No. of 
Bytes 111 3 

I I 
contents 10lDictionary Pointer 

'~I~I _____________ -----J 

Given the EBCDIC name of a group item or a 
section, LDELNM locates its delimiter. It 
places the starting address of the given 
name's attributes in register 2, the 
dictionary pointer of the data-name in 
register 3. and the delimiter pointer in 
register 1. It sets register 15 to 0. 

If an error is detected, one of the 
following codes. is placed in register 15. 
The address of the located name as it 
appears in the dictionary will be saved in 
the DICTNAME in COMMON. Note: This 
address should never be saved across CALLs 
to phase 00. 

Code in 
~§!~_12 

12 

8 

4 

~nin.Sl 
Unique name located was 

paragraph name or 
elementary item name. 
Registers 2 and 3 are set 
as above. 

Name is duplicately defined. 
Registers 2 and 3 contain 
meaningless information. 

Name was not found. 
Registers 2 and 3 contain 
meaningless infOrmation. 

Appendix A: Table and Dictionary Handling (TAMER) 495 



H 

Licensed Material - Property of IBM 

The calling sequence for LDELNM is: 

L 1 ,=A (parameter) 
L 15,=A(LDELN!!) 
BUR 14,15 

where parameter has the following format 
starting on a full word boundary: 

r- I 
No. of I I 
Bytes 11 3 I 

• I I 
contents 1161 Address of EBCDIC Namel 

l- I I 

LAll~~:!:~ Attributes !!§ing ACCESS 
pointer) 

Given the EBCDIC name of an entry that is a 
sub field of the last entry referred toby 
an ACCESS routine, routine LATACP puts the 
starting address of the attributes in 
register 2 and the dictionary pointer in 
register 3. The address of the located 
name as it appears in the dictionary will 
be saved in the DICTNA!!E in COMMON. Note: 
This address should never be saved across 
CALLs to phase 00. Register 15 is set to 
O. (This routine is used to locate ' 
qualified names. It limits the search of 
the dictionary.) 

If an error is detected, one of the 
following codes is placed iii register 15. 

Code in 
~gist~-1.2 

12 

8 
4 

Kea!!1:l!,g 
Last entry referred to was 

an elementary item. 
Name is duplicately defined. 
Name was not found. 

Registers 2 alid 3 contain meaningless 
information. 

The calling sequence for LATACP is: 

L 
L 
BALR 

1 ,=A (parameter) 
15,=A (LATACP) 
14,15 

where parameter has the following format 
starting on a full word boundary: 

I I 
No. of 1 1 
Bytes 111 3 

1 I 
Contents 181 Address of EBCDIC Name 

I I 

!2~: There must have been no call to a 
TAKER routine intervening between this 
routine and the last call to an ACCESS 
routine. 

1J96 Appendixes 

6\~Rf..1l&cat~-illWutes Given..§£oue 
poin~.n 

Given the EBCDIC name of an entry and the 
dictionary pointer of the group item or 
section-name of which it is a subfield, 
routine LATGRP puts the ,starting address of 
the entry's attributes in register 2 and 
the dictionary, pointer of the entry in 
register 3. It sets register 15 to o. The 
address of the 'located name as it appears 
in the dictionary will be saved in the 
DICTNAIIE in COMMON., !2:\:!: This address " 
should never be saved across CALLs ,to phase 
00. ' ' 

If an error occurs, one of thefoll()wi~g 
codes is placed in register 15. 

Code in 
Register ,5 

12 
Meaning 
Given dictionary pointer 

pointed to a 
paragraph~name ot 
elementary item name. 

8 
4 

Nameis,duplicately defined. 
Name was not found. ' 

Registers 2 and 3 contain meaningless 
information. 

The calling sequence for LATERP" is: 

L 
L 
BUR 

1 ,=A (parameter) 
15, =A (LATGRP) 
14,15 

where parameter has'the following':format 
starting on a fullwordboundary: ,',., 

No. of 
Bytes 

contents 

r iii I 

I" I II 
11 I 3 111 3 " I 
1 I I I , 
I 12 IAddresslOI Group or section I 
I lof I IDictionary Pointer 1 
I 1 EBCDIC I I .' 'r I 
I IName 'I 'I ' ' I " 
L--~L ______ ~~~ ________________ ~~ 

The address of the loca ted n~lDe-~ as ' it <. '. ••• 

appears in the~:i.ctionary will be sa'ved in' 
the DICTNA1!E in COSMON; 'Note: This " 
address should never' be saved ~cross CALLS 
to phase 00. ' ' 

TAMER (Table Area Management Executi~e 
Routines) resides permanently in main 
storage as part of phase 00 and is 
available to all phases to handle tables. 



.CONTROL FIELDS 

"he three' control fields described below 
are set up and used by the TAKER routines 
as aids in the handling of tables. 

For each table, there is a TIB in a fixed 
location in COMMON. A TIB may be 
reassigned when the table for which it was 
used is released. The TIB points to 
another control field for that table -- the 
TAM! (see below). Each TIB has the 
following format: 

i , , 
No. of 1 1 1 
Bytes , I 1 3 I 2 2 I 

l- I I I 
Contents 1 Eritry I TAM! 1 Table IGrowthl 

ILengthl Addressl Lengthl Factorl 
L-____ -L ______ -L------~ ____ ~ 

Entry Length 
number ,of bytes in a table entry. 

TAM! Address 
address of the TAI!M for the table. 

Table Length 
number. of bytes requested for the 
table (used by thel?RIME routine). 

Growth Fac::tor 
not used -- a table is always 
incr.eased 256 bytes at a time. 

' .. ' ~ 

For each. table there is a TAMK in a 
variablelocat.j.on within' a fixed block (the 
TA!K blo~k). Each TAKK points ·to a table 
and to theTIB for the table. The format 
of a' TAlUS: is: 

No. of 
ByteS· 

Contents 

Status 

r- ~I~.~I--r---------~I 

I . I 1 1 
1 1 3 12 1,2 4 1 
'~---4------~1 -+1~1~------4 
IStatuslTable IN11N2lTIB 1 

I Addressll I Address I 
~ ____ ~_ _.'_' -L. __ L-________ ~, 

code indicating the status of the 
table: 

Licensed Katerial - Property of IB! 

code -01 

02 

04 

Table Address 

H~nin!l 
Indicates that the table has 

been released so that its 
area is available as free 
area. 

Indicates that the table is 
static. No further entries 
will be made. 

Indicates that the table has 
been primed so that entries 
can be made. 

address of the first byte of the 
table. 

If Status Is N1 Is 0'1------- 0--

02 or 04 Number of bytes used so 
far 

If status Is 0,-------

02 

N2 Is 
Length of the freed 

area 

Number of unused bytes 
in the table 

04 Number of bytes 
assigned to the table 

TIB Address 
address of the TIB for the table. 

Each KASTA! contains the characteristics of 
a TA!ER area (contiguous space in storage 
assigned to TAMER). A MASTA! has the 
following format: 

< fullword > 
I I 

1 Beginning of area I 
l-- I 
ILength of area 1 .. ., 
IFirst free byte not used so far I , of 
ILength of free area left over I 
l-- I 
IFirst TAKM used by this MASTA! I 

• 1 
INext TAM! to be used by this MAST A! I 
l-- 1 
INumber of dictionary section within the 1 
1 !ASTAK 1 
I .J 

Appendix A: Table and Dictionary Handling (TAMER) 497 



Licensed Material - Property of IBM 

Each time a new TAMER area is assigned 
to TAMER through a GETMAIN macro 
instruction. one of two conditions can be 
true: 

1. The new TAMER area is contiguous to a 
current one, in which case ·an old 
MASTAM will be updated. 

or 

2. It is not contiguous to a current 
TAMER area, in which case a new MASTAM 
is created. 

since only three MASTAMs, at most, are 
needed (see "How Space is Assigned" 
below) , prc)visions are made for using only 
three con~ecutive GETMAINs without an 
intervening FREEMAIN macro instruction. 

HOW SPACE IS ASSIGNED 

At the beginning of compilation, a variable 
unconditional GETMAIN is issued to get the 
main TAMER area. A MASTAM is set up for 
the area. If more space is needed later 
on, COBOL space is requested through an 
unconditional GETMAIN [COBOL space is the 
difference in length between the longest 
phase (phase 4) and the current phase]. If 
the COBOL space obtained is contiguous to 
an old TAMER area. it is considered part ·of 
that TAMER area and the old MAST!M is then 
updated. 

If the next phase to process is not 
larger than the current phase. the COBOL 
space is kept. Since this space is kept 
only three MASTAMs are required. If the 
next phase to process is larger than the 
current phase, the tables that are to be 
passed between phases are packed and moved 
so that none of them are overlaid by the 
next phase. 

Within a TAMER area (and as indicated in 
the MASTAM), the tables start in lowest 
storage and the dictionary starts in 
highest storage. The TAMMs for the MASTAM 
are assigned contiguously within the TAMM 
block, and their order reflects the storage 
order of the tables to which they point. 

!Qtg: If several GETMAINs are issued, the 
areas obtained will usually be in low 
storage so that only one MASTAM will be 
used. 

TAKEIN is the TAMER initialization routine. 
It is called during phase 00 interphase 
processing (in routineINT1B)' and once 

498 Appendixes 

before phase 3 processing.' It is.also 
I called by phase, 02,. Its"operatii:>Il>s ar,e as 

follows: .... 

• Phase 02: 

Called before any other TAKERrouti~~. 
sets up the firstMASTAM for the TAME,R 
area requested at the beginning of,· > 
compilation. Sets up a TAMK and.TIB 
for the 'HASH table' (see '.'ACCES,S .' 
Dictionary Handling Routines" att.he 
beginning, of this appendix)'. i" 

• Phase 3: 

If the dictionary. was not spilled ' (that 
is. if no dictionary sections were 
written on SISUT1), no action is taken. 
If the dictionary ·isspilled. TAMEIN 
calls TBGETSPC which tries to get"more 
space for dictionary sections. If 
space is available, T,BREADIC·is c:alled; 
to ];ead back as manysection~ . as," 
possible. 

The calling sequence for TAMEIN is: 

L 15.=A(TAMEIN) 
BALR. 14.15 

PRIME Routin4jl 

Routine PRIME allocates space, iil' any TAMER 
area, to the table named in the calling 
sequence. The 'following steps aJ:;~ taken ,.in 
sequence until the ,required space is found: 

.:' ,:".t 

1. A check is made for the required area 
in the re.maining free space of the , ... ' 
current ,TAKER area. This .spaq~ ·is 
called the Main Free Area. If the 
area is too small'; the, Main.p:Iiee .:.Area 
contained in the other TAMER areas is 
checked. . .; . 

2. A check is made for the··.~equir~darea:.;: 
in the space made ava:ilable., by the 
release of tables by TAMER. . This 
space is called the Freed Area. 

3. An attempt is made to pack 't.~~'tahi~~ , 
(eliminating the free bytes between 
the .. primedand static taj)les)· to '. 
iilcrease the. size of.· .theHain Free. '.' 
Area wi thin a' TAllER area·.~.' ".' . 

4. A request is ma<1,e for COBOL :space. 

5. The primed tables are packed. that i~, 
all of the unused a·rea min.us the, 
length of one more entry for each 
table is considered available. 

6. An attempt is made to spill a 
dictionary section (write;.i t put· on 



SYSUT1). For steps 5 and 6, table 
space is assigned only on a single 
entry basis. 

If none of these methods is successful, 
compilation cannot continue. If space is 
found, a TAMM is created for the new table 
(or is just updated in the case of success 
in step 2). 

The PRIME routine can also be called 
internally by other routines just to find 
space. In this case, a TAMM is not created 
and the calling routine takes whatever 
action is necessary. 

The calling sequence for PRIME is: 

L 
L 
BALR 

1, =A (parameter) 
15,=A(PRIME) 
14,15 

where parameter has the following format 
starting on a fullword boundary: 

i i --, 
No. of I t , 
Bytes I 1 I 3 2 2 I 

I I t 
Contents I Entry ITIB I RequestedlGrowth I 

ItengthlAddresslsize IFactor I 
i i 

~GETSPC Routine 

Routine 'J'BGETSPC is called by routi.ne PRIME 
to obtain COBOL space. The space is 
requested through an unconditional GETMAIN 
macro instruction. A check is made to 
determine whether or not the space obtained 
is contiguous to a current TAMER area. If 
the space is contiguous and is in lower 
storage than the TAMER area, all of the 
tables in the TAMER area are moved to what 
is now the new beginning of the TAMER area. 
If the space is not contiguous, a new 
MASTAM is created, and the COBOL space 
becomes a new TAMER area. 

Routine MOVDIC reads back into storage a 
dictionary section that has been spilled. 
First, MOVDIC calls the PRIME routine to 
make space available for the section and 
then it reads the section back into that 
space. 

The calling sequence for MOVDIC is: 

L 
L 
BALR 

15 ,=A (MOVDle) 
3,=A{DICOTTABLE ENTRY) 

14,15 

Licensed Material - Property of IBM 

Routine DICSPC is called only by ACCESS 
routines, and requests space for a 
dictionary section. The space is provided 
by an internal call to the PRIME routine. 
PRIME returns the starting address of the 
section in register 1, and the ending 
address in register 2. 

The calling sequence for DICSPC is: 

L 15,=A(DICSPC) 
BALR 14,15 

Routine STATIC tenders a table static. 
This means that no new entries will be made 
in the table during the rest of the phase. 
It sets the TAMM for the table to static 
format, that is, to the form: 

.. 1 , 
No. of I I I 
Bytes 1 I 3 2 I 2 I 

I I , 
Contents 02 I Table IUsed IFree I 

I AddresslByteslBytesl 

The calling sequence to routine STATIC 
. is: 

L 
L 
BALR 

1 ,=A (TIB) 
15, =A (STATIC) 
14,15 

Routine TABREt releases a table when it is 
no longer needed so that its area can be 
used as a free area. It sets the TAMM for 
the table to released format, as follows: 

• No. of I 
Bytes. I 1 3 4 

• I 
I 

I- --t 
contents I 01 Table Released I 

I Address Bytes I ., 
i 

The TAMK aadress in the TIB is set to O. 
Both the TAMM and the TIB for the released 
table can now be used for another table in 
a call to routine PRIME •. 

Appendix A: Table and Dictionary Handling (TAMER) 499 



Licensed Material - Property of IBM 

is: 
The calling sequence for routine TABREL 

L 
L 
BALR 

1,=A(TIB) 
15,=A (TABREL) 
14,15 

Routine INSERT provides for inserting an 
entry into a table. It adjusts the 
displacement field of the TAMM for the 
table and returns to the phase the starting 
address (in register 2) and the starting 
displacement (in register 3) of the entry. 

If the area allocated to the. table will 
not hold the entry, routine INSERT calls 
PRIME to obtain additional space. 

The phases call INSERT with the 
following calling sequence: 

L 
L 
BALR 

1,=A (TIB) 
15, =A (INS ERT) 
14,15 

NQi~: If a table contains variable-length 
entries, the entry length specified in the 
TIB must be changed before a phase calls 
routine INSERT. 

Routine TAMEOP is called in the interlude 
before every phase to reset TAMER switches 
and to ensure that no tables being passed 

. from a shorter phase are overlaid by a 
longer phase. In phase 3, it releases 
dictionary space. 

The calling sequence for TAMEOP is: 

L 15,=A(TAMEOP) 
BALR 14,15 

Routine TBSPILL, which is called by PRIME, 
checks for the last dictionary section (the 
section in highest storage), and calls 
routine TBWRITE to spill it to provide 
additional storage for tables. If the 
section in highest storage is currently 
being built, the next-to-last one will be 
spilled. 

500 Appendixes 

After the .dictionary section is spilled, 
TBSPILL moves the first section (the 
section in lowest storage, and, therefore, 
closest to the tables) to the area just 
freed. 

Routine TBWRITE is called by routine 
TBSPILL to spill dictionary sections by 
writing them on the direct-access data set 
SYSUT1. TBWRITE uses the DICOT table to 
check and indicate the status of dictionary 
sections (see "ACCESS Dictionary Handling 
Routines" at the beginning of this 
appendix) • 

If a section has never been spilled, 
TBWRITE spills it by issuing the BSAM WRITE 
macro instruction. If a section has been 
spilled before, but has been changed since 
then, TBWRITE issues the XDAP macro 
instruction to put the fresh copy on 
SYSUT1. If a section has been spilled and 
has not been changed since then -- that is, 
an exact copy already exists on SISUT1 -
it is not spilled again. 

Routine TBREADIC is called by ftOVDIC to 
read a dictionary section back into 
storage. 

Routine GETALL is called by phases 6 and 
6A. Its function is to provide space for a 
table that may be in excess of 32K bytes, 
the normal maximum size. It is a request 
for all available table space in a 
contiguous area. The tables are packed 
and, if all available COBOL space has not 
yet been acquired, a GETMAIN macro 
instruction is issued for the remainder. 
The largest unused, contiguous area is 
found, and its starting address and length 
are passed back to the calling phase in 
registers 0 and 1, respectively. 

All subsequent use of that area is 
handled internally by the phase that called 
GETALL, since a call to TABREL is the only 
TAMER call which may legitimately follow a 
call to G~TALL in the same phase. At the 
end of the phase that called GET ALL, the 
area then becomes available for normal 
phase 00 table-handling procedures. 



The compiler produces an object module 
suitable for input to the linkage editor. 
After linkage editing, the module is 
arranged as shown in Figure 711. 

If the program is segmented, there are 
some differences in the object module. 
These are described in the section 
"segmented Object Kodule" later in this 
appendix. 

This section provides a brief description 
of the fields of the object .module as they 
appear in Figure 711. Each field is 
discussed in greater detail elsewhere in 
th is a ppendi x. . 

INIT1 
the initialization 1 routine at 
relative location 0 sets up registers 
and address constants for the program. 

DATA AREA 

TGT 

PGT 

RPT 

data areas are data constants defined 
in the Data Division. This includes 
FIBs, DCBs, DECBs, record areas, and 
some buffers. 

the Task Global Table contains 
information and work areas used by the 
program. 

the Program Global Table contains 
address constants and literals 
referred to by procedure instructions. 

Report Writer routines to process the 
Report Section. This field is 
discussed in "Appendix C: Report 
Wri ter Subprogram." 

PROCEDURE 
procedure instructions for the 
program. In a segmented program, this 
field contains only the instructions 
for the root segment. 

Q-ROUTlNES 
compute the length of variable-length 
fields defined by the OCCURS clause 
with the DEPENDING ON option, and the 
locations of the variably-located 
fields which follow them. 

Licensed !aterial - Property of IBM 

COUNT TABLE 

INIT2 

INIT3 

the COUNT table contains entries for 
each procedure-name and source verb 
(COUNT option). 

the initialization 2 routine stores 
address constants as part of program 
i ni tializa tio n. 

the initialization 3 routine 
establishes addresses in the global 
tables. 

PROCTAB and SEGINDX 

• I 

• I 
I 
I 
I 
I 

the PROCTAB and the SEGINDX tables 
contain debugging information created 
in response to a request for the 
statement number (STATE) option. 

INIT1 

DATA AREA 

TGT 

PGT 
I---, RPT 
I 
I PROCEDURE 

I 

I 
4 
I , 
I 
4 
I , 
I , 
I 

I- ----4 
I Q-ROUTINES I 
I ----4 
I COUNT TABLE 
I 
I INIT2 , 
I INIT3 
I 
I PROCTAB , 
I SEGINDX 

Figure 711. Storage Map of a COBOL Object 
Kodule 

INITIALIZATION 1 ROUTINE-JINIT1t 

The initialization 1 routine begins at 
relative location O. The coding of the 
routine is identical for every program; 
however, the address constants it contains 
differ with program requirements. These 
address constants were provided by phase 6 

I 
I 
I 
r 
I 
I 
I 
4 
I 

Appendix B: Object Module 501 



Licensed Material - Property of IBM 

or 64. This routine performs the following 
functions, in the order listed: 

1. Saves the registers of the calling 
program and the pointer to its Task 
Global Table or save area. 

2. Establishes address constants for this 
program's Task Global Table, Program 
Global Table, first instruction to be 
executed, and initialization 1, 2, and 
3 routines. 

3. Branches to INIT2 (described later in 
this chapter. 

".Branches to ILBOINTO COBOL Library 
Subroutine to do initialization for 
VSAM file processing. 

In addition to its initialization 
functions, the INIT1 routine also contains 
the following: 

1. A DCB exit routine for the QISA! 
delete code. 

2. A IIno-space li condition exit routine 
for BSAM and QSA! files. 

3. A DCB exit routine for a BISAM file 
CORE-INDEX option, if specified in the 
program. 

4. A save area. This is used if the 
program is re-entered. It contains 
the register contents as they were 
left when the program was last 
executed, to be loaded by INIT3. 

The data area of the COBOL program contains 
space for information provided in the 
source program Data Division. It holds 
control blocks, buffers, and record areas 
for files, and reserved storage for the 
working-Storage section, with data items 
initialized if the VALUE clause was 
specified. 

The forma t of the data area is shown in 
Figure 75. 

In the first part of the data area, all 
the information for each file is con'tiguous 
in storage. The information exists in the 
order in which FDs were written in the 
source program. 

The data area was generated by phase 22, 
Which indicated space allocation by setting 
the LOCCTR cell in COMMON and which placed 
some constants in exit lists, DCBs, DECBs, 
and working-storage where the VALOE clause 
was specified. 

502 Appendixes 

~i-------------------------------------------' IW'orking-storage I 
J , 
I Exit list I 

• I IDCB, FIB I 
~I-----'----------------'-----------------~ 
IDECB I 

• r IBuffer (unless the file is direct BSAM I 
I with key, direct BDAM, or named in a I 
I SA!E AREA or SAME RECORD ,AREA clause) I 

• • IRecord area if any WRITE ••• ADVANCING , 
I statement was written for this file , 
r.--------------------------------------------~ IBuffer for a direct BSAM file with keys , 
, or a direct BDAM file , 
I , 
I~ecord area, followed by buffer, for a , 
I SAME AREA or SAME RECORD AREA file I 
~,------------------------------------~ 
Figure 75. Format of the Data Area 

Formats for DCBs (data ,control blocks) 
and DECBs (data event control blocks) may 
be found in Q~LVS1~stgJL~ata Arell§, and 
.QU!L~Igem Da1a_Ar~ll§. 

A special discussion is given for exit 
lists since the system-defined format is 
not specific, and the compiler always 
generates exit lists with specific format 
and contents. 

EXIT LISTS 

The compiler generates an exit list for 
each file. At execution time, the exit 
list is located in storage immediately 
preceding the DCB for that file. Exit list 
entries are accessible to the COBOL program 
because of their location relative to the 
DCB. The list is accessed by the operating 
system via the DCBEXLST field of the DCB. 
This field contains the address of the exit 
list, which was placed there by phase 21. 

General information on exit lists may be 
found in the publication Q~!S Dat~ 
lI~!l!!m!!!1!.L~~~Guide. 

The compiler always generates the exit 
list in the order specified in Figure 76. 
If the object program does not contain one 
of the routines specified, the exit list 
entry is present, but deactivated. 

The primary function of the exit list is 
to provide the addresses of routines which 
are to be called by the operating system 
und~r certain conditions. However, the 
COBOL-generated exit list contains 



additional information for use by the COBOL 
program. These exit list entries are 
masked off from the system by having a 
hexadecimal 100' in the first byte of the 
en try. 

Figure 76 shows the format of the exit 
list and the text that folIous describes 
each entry, uhich is a fulluord in length. 

o Code 1 may be: 

Valu~ 
01 
02 
00 

.!:!~£ning 
input 
output 
inactive 

I) Code 2 may be: 

Value 
0'4-

00 
oc 
OD 

BOF, BOV-RTN 

Beaning 
output 
inactive 
input SUL 
input N SL 

address of a routine to process header 
labels. This routine Has uritten in 
the source program as a USE ••• 
[BEGINNING] LABELS declarative 
section. The same entry is used for 
both the FILE (beginning-of-file) and 
REEL/UN IT (beginning- of-volume) 
options. since the system does not 
distinguish between beginning of file 
and beginning of volume. The entry is 
initialized before the file is opened 
to contain the address of the 
beginning-of-file routine. 
Immediately after the file is opened, 
the address of the beginning-of-volume 
routine is moved into the entry. The 
instructions which change the entry 
are part of the COBOL-generated code 
for the OPEN verb. 

If the user did not provide a 
beginning-of-file label routine, the entry 
is initially inactive. If no 
beginning-of-volume routine was provided, 
the entry is deactivated after the file is 
opened. 

EOV-RTN 
address of the routine to process 
end-of-volume trailer labels. This 
routine aas written in the source 
program as a USE ••• [ENDING][REEL/UNIT] 
LABELS declarative section. The entry 
is initialized at OPEN time. 

Licensed Material - Property of IB~] 

<---------fuillford----------> 
r , 
I code 1 A (BOF,BOV-RTN) I 
! 1 
I code 2 A (EOV-RTN) I 
r-- -1 
I code 2 A (EOF-RTN) I 
I ~ 
I OA I A (TOTALING AREA) I 
r------~ I 
I 05 I A (DCB-EXIT-RTN) I 
• I ~ 
I 08 I A(ERROR-BIT-RTN) I 
r-- I , 
I 00 I A (INV-KEY-GN) I 
r I ~ 
I 00 I A (USE-ERROR-RTN) I 
a- I ~ 
I 00 ,reserved I 
, I I I 
I 00 I n INSL I-lax. Size I 
! I ~ 
I 06 I =V (ILBOCKP 1) I 
r. --1 
I 80 I A (CKPTDCB) I 
r-----1..- I 
I .•..•......•... DCB ••••••••••.•••..•.••... I 
L ~ 

Figure 76. Fields of the Exit List 

EOF-RTN 
address of the routine to process 
end-of-file trailer labels. This 
routine lfas Hritten in the source 
program as a USE ••• [ENDING][FILE] 
LABELS declarative section. The entry 
is initialized at OPEN time. 

TOTALING AREA 
address of the area specified as the 
TOTALING AREA data-name in the LABEL 
RECORDS clause. 

DCB-EXIT-RTN 
address of a routine called by Data 
Management during execution of OPEN 
for all QSAM or QISAM files and for 
BISAM files Hith the CORE-INDEX 
option. For QISAM, the routine sets 
the delete code in the DCBOPTCD field 
of the DCB. For BISAH, it initializes 
fields in the DCB for CORE-INDEX. The 
routine for QISAM or BISAM is located 
in INIT1. The exit list entry for 
these files is set by phase 21 for 
QSAM, the address is that of the COBOL 
library subroutine ILBOEXT1 which sets 
the DCBRECF~ field of the DCB. The 
exit list entry for a QSAM file is set 
by phase 51. 

The instructions necessary for the QISAH 
DCB exit routine are always generated, even 
if the program uses no QISAM files. Phase 
6 or 64 determined whether to generate the 
BISAH DCB exit routine by testing the 
INITBIT bit of the PH1BYTE cell in COBMON. 

Appendix B: Object Moaul~ 503 



Licensed Material ~ Property of IBM 

This bit is turned on during compilation if 
CORE-INDEX was specified. 

ERROR-BIT-RTN 
address of a routine used for BSAM and 
QSAM files, if a WRITE statement 
failed to execute because of a 
no-space condition. This routine sets 
the return code to indicate why the 
WRITE statement failed, and returns to 
the system, which then takes the SYNAD 
exit. The coding for this routine is 
located in theINIT1 routine. It is 
always generated, even if no BSAM or 
QSAM files are used in the program. 
The exit list entry pointing to the 
routine is set by phase 21. 

INV-KEY-GN 
address of the routine to handle an 
INVALID KEY condition for a particular 
READ, WRITE, REWRITE, or START 
statement. If no routine was written 
by the user, this entry is rendered 
inactive by placing a 1 in the 
low-order bit. 

The contents of this entry are changed 
or rendered inactive before each READ, 
WRITE, REWRITE, or START statement executed 
for the file. This is done because each 
INVALID KEY routine applies only to the 
statement for which it was written. When 
an input/output operation is executed, this 
entry always contains the address of the 
proper routine, or it is rendered inactive 
if no routine applies. 

The exit list entry is masked off from 
the system. It is not given .control 
directly by the system, but by 
COBOL-generated code in the following 
manner. When an error occurs during an 
input/output operation, the system gives 
control to the routine specified in the 
DCBSYNAD field of the DCB. This is the 
COBOL librarysubroutineILBOSYN. . If the 
error was caused by an invalid key, ILBOSYN 
checks for an active entry in this exit 
list position. If one is found, control is 
passed to the address specified, that is, 
the user's INVALID KEY routine. If none is 
found, but an active entry is found in the 
USE-ERROR-RTN exit list position for this 
file, control is passed to theUSE ••• ERROR 
routine. If neither of these routines was 
written by the user, the ILBOSYN routine 

504 Appendixes 

takes its own actions, as described in the 
publication IBM OS/VS_£Q!Q~ Subroutipe 
Program Logic. 

USE-ERROR-RTN 
address of a rout·ine to handle 
input/output errors for non-V SA! 
files. This routine was written by 
the user as a USE AFTER STANDARD ERROR 
declarative section. It is masked off 
from the system, and is given control 
after an input/output error in the 
same manner as the INVALID KEY 
routine, through the COBOL library 
subroutine ILBOSYN. This entry is 
interrogated first for any 
input/output error which is not caused 
by an invalid key condition. The 
address is placed in this entry when 
the file is opened. FS is posted if 
present. 

NSL Max. Size 
maximum number of bytes required for 
nonstandard labels for this file. If 
nonstandard labels are used, the user 
has written an SiC routine to process 
these labels, and has incorporated 
this routine into the system at 
installation time. This entry is 
available for interrogation by the SiC 
routines. It is masked off from the 
system's exit list examination. 
Further description of the 
requirements for nonstandard labels 
may be found in the publication I~ 
Q§L!.§.,..COBOL CO!l2il~_!!.n.g Library 
Erogr!!.!!!.~r's_Guide. 

• !.l represents: 

ILBOCKP1 

Meaning: 
input 
output 
1-0 

address of a second entry point to 
ILBOCKPO. The checkpoint subroutine 
is entered through ILBOCKP1 when the 
"END OF REEL/UNIT" option is specified 
in the RERUN clause. 

CKPTDCB 
. address of the checkpoint file DCB for 

a file in which checkpoints are being 
taken at "END OF REEL/UNIT." 



Licensed Material - property of IBM 

~!LQlQ!!!L TABLE 1!Q11. 

The Task Global Table is used to record and save information needed during execution of 
the object program. It begins with a series of fixed-length fields followed by a series 
of variable-length fields. These fields are illustrated in Figure 77 and are described 
in this section. 

I 
IRelative 
r--

Hex 
o 

48 
4C 
50 
54 
58 
5C 
5E 
60 

190 
194 
198 
19C 
110 
1A4 
116 
117 
1A8 
l1C 
1BO 
1B4 
1B8 
1BC 
1C4 
1C5 
1C6 
1C8 
1CC 
1DO 
1D8 
1DC 
1EO 
1E4 
1E9 
1EC 

I 
Loca tion I Field 

I --------~ 
~s: I 

o I SAVE AREA 
72 ISWITCH 
76 I TALLY 
80 ISORT SAVE 
84 IENTRY-SAVE 
88 ISORT CORE SIZE 
92 IRET CODE 
94 ISORT RET 
96 IWORKING CELLS 

400 ISORT FILE SIZE 
404 ISORT KODE SIZE 
408 IPGT-VN TABLE 
412 ITGT-VN TABLE 
416 IReserved 
420 ILENGTH OF VN TBL 
422 ILABEL RET 
423 IReserved 
424 IDB~ R14SAVE 
428 ICOBOL INDICATOR 
432 IA(INIT1) 
436 IDEBUG TABLE PTR 
440 ISUBCOK PTR 
444 I SORT-MESSAGE 
452 ISYSOUT DDNAKE 
453 I Reserved 
454 ICOBOL ID 
456 ICOMPILED POINTER 
460 ICOUNT TABLE ADDRESS 
464 IReserved 
472 IDBG R11 SAVE 
476 ICOUNT CHAIN ADDRESS 
480 IPRBL1 CELL PTR 
484 I Reserved 
489 ITA LENGTH 
492 I Reser ved 

I , 
Figure 77. Fields of the Task Global Table 

The lengths of the variable-length 
fields are determined by the requirements 
of the program (if not required, a 
particular field may not exist in the 
object program). The lengths of these 
fields are computed ill phase 6 or 62. In 
the chapter "Phase 6," Figure 36 shows the 
source of each variable TGT field. 

SAVE AREA 
the program's save area; used to 
provide standard subroutine linkage 
when this program is. called (by the 
operating System or by another 
program) and when this program calls 
other programs. 

r i I 

IRe1ative Locationl Field I 
fr------------~I~------------------i 

Hex Dec 
1F4 500 
1FS" 504 
1FC 508 
200 512 

beginning of 
Variable-length 
portion 

PCS LIT PTR 
DEBUGGING 
CD for INITIAL 
OVERFLOW CELLS 
BL CELLS 
DECBADR CELLS 
FIB CELLS 
DEBUG TRANSFER 
DEBUG CARD 
DEBUG BLL 
DEBUG VLC 
DEBUG MAX 
Reserved 
DEBUG PTR 
TEMP STORAGE 
TEMP STORAGE-2 
TEMP STORAGE-3 
TEMP STORAGE-4 
BLL CELLS 
VLC CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR cells 
ONCTL CELLS 
PFMCTL CELLS 
PFMSAV CELLS 
VN CELLS 
SAVE AREA=2 
SAVE AREA=3 
XSASW CELLS 
XSA CELLS 
PARMI CELLS 
RPTSAV AREA 
CHECKPT CTR 
VCON TBL 
DEBUG TABLE 

INPUT 

L--______________ ~ ____ ----"----------------J 

SWITCH 
a ful1word switch. Only the following 
bits are used: 

Bit ~~~ing 
-0- Indicates a size error in series 

addition or subtraction. If a 
SIZE ERROR clause was included 
in the source statement, and a 
size error occurs before all 
data items in the series have 
been added or subtracted, this 
bit is set to 1. It is tested' 
after the entire addition or 
subtraction is complete. If 
the value is 1, the 

Appendix B: Object Module 505 



Licensed flaterial - Property of IBM 

2 

3 

5 

6 

instructions generated for the 
ON SIZE ERRO.R clause are. 
executed. 

Used for TRACE. It is set to 1 
by the execution ,of 'a READY 
statement, and reset to 0, by a 
RESET statement. If the 
program uses a TRACE statement, 
there are instructions to ,test 
this bit at the point of 
definition for every source 
program procedure-name (PN). 
If it is on, the DISPLAY 
subroutine (ILBODSPO) is called 
to print the card number of the 
procedure-name (see the 
publicationIBl-OSLYS C~~Q1 
SubrQ.!!tiJ1g--1ib~llL-~!:Ul 
Logi£ for a description of the 
DISPLAY subroutine). 

Indicates program initialization. 
Set to 1 by routine .INIT3 to 
show that initialization has 
been. performed. Tested by 
INIT3 so that if the module'iis 
re-enter ed, INIT3 can perform 
re~entryfunctions instead of 
initialization functions. See 
"Initialization 3 Routine ll in 
this appendix. 

Main or subprogram stlitch. Set 
by IUIT2, if this is a main 
program (see the subroutine 
ILBOSTPO in the publication 
referred to above). 

Used for SYMDMP. It is set to 
by phase 65 if the symbolic 
debug option is in effect for 
the program. This bit is 
testeO by the object-time COBOL 
library debugging control 
subroutine ILBODBGO. 

Used for FLOW. It is set to by 
phase 65 if the flow trace 
option is in effect for the 
program. This bit is tested by 
the object-time COBOL library 
debuggirig control sUbroutine 
ILBODBGO. ,. ' 

Compile-time STATE bit. It is 
set to 1 by phase 65 if the 
statement number option, is in 
effect for the program. At 
execution time, this bit is, 
relocated to bit 10 by 
ILBODBGO. At execution time, 
this bit is set to 1 by 
ILBORECO when the MESSAGE 
condition being tested is true; 
it is also set to 1 by ILBOSTGO 
(for the STRING verb) or by 
ILBOUSTO (for the UNSTRING 

506 Appendixes 

verb) if an overflow condition 
occurs. This execution-time 
use is tested by generated 
code. 

7 Used for OPT. It is set to 1 by 
phase 62 if optimization has 
been requested for the program 
or by phase 65 if the SYMDMP, 
or STATE and OPT, or FLOW and 
OPT options have been 
specified. 

I, 8 Reserved 

9 Used for CALL, CANCEL, or a 
recursive CALL. Set to 1 by 
the genera.ted code for the CALL 
or CANCEL verb. Tested by 
INIT2 to determine if a 
recursive call condition 
exists. 

10 Execution-time STATE bit, 
relocated from bit 6 by ILBODBGO 
and tested by the debugging 
subroutines. 

11 set to 1 by the compiler if TEST 
option is in effect. 

12 QUOTE IS APOST bit. set to 1 if 
the apostrophe is to be used to 
delineate literals and to be 
used in the generation of' 
figurative constants. 

13 DBGFLPT bit. set to 1 by phase 
65 if, when SYMDMP is 
requested, there is a 
floating-point item in the 
program. Tested by ILBODBGO. 
Indicates that, following call 
to ILBODBGO, INIT3 contains DC 
of 2-byte displacement from 
beginning of PGT of virtual for 
ILBO'l'EF3. 

14 LONGTGT bit. Always set to 1. 

15 Indicates maximum length for a 
variable-length field. Before 
the execution of a Q-Routine, 
this bit is set to 1 if the VLC 
,and SBL for the field are to be 
set to their maximum possible 
values, rather than a value 
depending on the current value 
of a data item. The maximum 
value is the value of X in the 
clause "OCCURS X TIMES 
DEPENDING ON ••• ". 

16 ,SRVBIT bit. Indicates ILBOCOH 
subroutine is link edited uith 
the object module. 



17 

18 

19 

20 

21 

22 

set to 1 if ENDJOB is specified. 

Indicates that OBJECT-COMPUTER 
IBM-370 was specified. Used by 
COBOL Library subroutines. 

Indicates that Q-routines are to 
be executed in initialization 
mode. 

Set to 1 if COUNT is specified. 

set to 1 if the TRACE verb is 
specified. 

Indicates that an invalid SYNADAF 
was performed in the ILBOSYNO 
COBOL Library subroutine. 
Tested by code generated for 
Error Declarative. 

2q-31 DECIMAL-POINT IS COMMA clause 
byte. If this clause was 
specified, the byte contains a 
comma in EBCDIC. If not, it 
contains a decimal point. 

TALLY 
a fnllword used for source program 
references to the special register 
TALLY. 

SORT SAVE 
a fnllword used during the execution 
of a SORT/MERGE RETURN statement to 
contain the GN for the next sequential 
instruction following the RETURN. 

ENTRY-SAVE 
a fullword used to save the entry 
point of the program during INIT2 and 
INIT3 execution. 

SORT CORE SIZE 
a fullword for the SORT-CaRE-SIZE 
special register as used in the source 
program. 

RET CODE 
a halfword for the RETURN-CODE special 
register, which is used in the source 
program to provide a completion code 
on a STOP RUN, EXIT PROGRAM, or GOBACK 
statement, or to store the return code 
from a called program. It is the 
user's responsibility to set this 
code. 

SORT RET 
a halfword used to contain the return 
code from a SORT/MERGE operation. 

WORKING CELLS 
variable-length cells used by COBOL 
library subroutines called by the 
program. The total length of the 
field is 30q bytes. 

. -Licensed Haterial - property of IBM 

SORT FILE SIZE 
a fullword for the SORT-FILE-SIZE 
special register as used in the source 
program. 

\ 

SORT MODE SIZE 
a fullword for the SORT-MODE-SIZE 
special register as used in the source 
program. 

PGT-VN TBL 
a fullword pointer to that part of the 
VN field of the PGT containing VNs for 
independent segments. 

TGT-VI TBL 
a fullword pointer to that part of the 
VI field of the TGT containing VNs for 
independent segments. 

LENGTH OF VN TBL 
a halfword containing the length of 
that part of the VN field (the length 
is the same for both the TGT and PGT) 
containing VNs for the independent 
segments. 

LABEL RET 
the LABEL-RET.URN special register for 
nonstandard labels. If an error 
occurs in such a label, it is the 
user's responsibility to place a 
nonzero value into this 1-byte cell. 

DDBG R1QSAVE 
contents of register 14. Phase 51 
generates a call to ILBODBGQ, the Save 
register 14 routine of the Debug 
control subroutine (ILBODBGO), before 
any instruction which passes control 
outside the COBOL program. The 
address of this instruction is saved 
in this cell by ILBODBG4. 

COBOL INDICATOR 
identifies the object program as 
compiled by an OS/VS COBOL or American 
National Standard COBOL compiler. 

A (INIT 1) 
address of IIIT1 used for GOBACK, STOP 
RUN, and EX~T PROGRAM instructions, 
and for segmentati on coding. 

DEBUG TABLE PTR 
if the FLOW, STATE, SYMDKP, or TEST 
option is specified, this field 
contains displacement from the 
beginning ofINIT1 to the Debug Table. 

SUBCOK PTR 
address of the Subroutine 
communications area. 

SORT-MESSAGE 
eight bytes for the SORT-MESSAGE 
special register which is used in the 
source program to allow the user to 

Appendix B: Object Module 507 



Licensed Baterial - Property of IBM 

indicate to the Sort/Merge program 
where to place the messages it issues. 

SYSOUT DDNAME 
character which will be concatenated 
with "SYSOU" to create DISPLAY and 
TRACE EXHIBIT SYSOUT DDname. If field 
is zero, "T" is assumed. 

COBOL ID 
a 2-byte field containing a binary 
number number that indicates the type 
and version of the compiler. The 
number is 0008 (hexadecimali for the 
OS/VS COBOL compiler, release 1. 

COMPILED POINTER 
an address (INIT1+88) pointing to the 
WHEN-COMPILED information. 

COUNT TABLE ADDRESS 
relative address of the COUNT table 
from the beginning of the TGT. The 
COUNT table, which is generated by 
phase 60 or phase 64 if COUNT is 
specified, is located between the 
Q-routines, if any, and the INIT2 
routine. The count table is used only 
when the program terminates. 

DBG R11SAVE 
contents of register 11. When 
ILBODBG5, the Dynamic dumping routine 
of the Debug control subroutine 
(ILBODBGO) receives control, it places 
the return address to the inline code 
of the calling program in register 11. 
Therefore, the contents of register 11 
must be saved before the call to 
ILBODBG5. 

COUNT CHAIN ADDRESS 
address of the COUNT CHAIN for this 
program. The address is initialized 
to zero if count is specified; the 
address is filled in at execution 
time. 

PR BL 1 CELL PTR 
a fullword cell containing the address 
of the first PROCEDURE BLOCK cell in 
the PGT. 

TA LENGTH 
a halfword initialized by phase 6 or 
64 to the length of the largest 
segment with a nonzero priority. 

PCS LIT PTR 
a fullword cell containing the address 
of the PCS ,(Program Collating 
Sequence) alphabet. 

DEBUGGING 
a fullword cell containing the address 
of the beginning of the debugging 
cells in the variable portion of this 
table. 

508 Appendixes 

CD FOR INITIAL INPUT 
a fullword cell containing the address 
of the CD area with INITIAL INPUT 
clause. 

OVERFLOW 

BL 

if the TGT is longer than 4096 bytes, 
this field contains one fullword cell 
pointing to each 4096-byte area after 
the first. The cell is loaded into a 
register when a base is required for 
the overflow area. 

base locators. Each BL cell is a 
fullword containing an address in the 
data area. There is one BL pointing 
to the beginning of the working
Storage section and one for each file 
in the File Section. More than one BL 
is assigned if an area is larger than 
4096 bytes. The BL assignments are 
made by phase 22. The BLs for queued 
files do not contain initial values 
and are changed by the execution of 
certain input/output operations. 

DECBADR 

FIB 

DECB addresses. There is one fullword 
cell pointing to the address of the 
DECB for each basic file. 

File Information Block addresses. 
There is one full word cell pointing to 
the address of the FIB (address of the 
FCB during execution) for each VSAM 
file. 

I DEBUG TRANSFER 
a one byte cell indicating the DEBUG 
type for a PN. 

I DEBUG CARD -
a three-byte cell containing the card 
number. 

I DEBUG BLL 
a tvo-byte cell containing the 
displacement to the BLL cell. 

I DEBUG VLC 
a two-byte cell containing the 
displacement to the VLC cell. 

I DEBUG MAX 
a two-byte cell containing the maximum 
size of a DEBUG-ITEM. 

DEBUG PTR 
a fullword cell containing a pointer 
used by ILBOBUG to reference the debug 
subscript table. ) 

TEMP STORAGE 
temporary storage for arithmetic 
operations. TS space is allocated in 
doublevord blocks by phase 50. See 



"Register and storage Allocation" in 
the chapter "Phase 50." 

TEKP STORAGE-2 
temporary storage for nonarithmetic 
instructions. These cells are 
variable in length. An example of the 
use of TS-2 may be found under 
"Nonarithmetic Conversions" in the 
chapter "Phase 51." 

TEMP STORAGE-3 
temporary storage used to align fields 
of data described by the SYNCHRONIZED 
option. The field begins on a 
doubleword boundary. 

TEMP STORAGE-4 

BLL 

VLC 

SBL 

temporary storage cells used for the 
SEARCH ALL table-handling verb. The 
field starts on a doubleword boundary. 

base locators for the Linkage section. 
Each BLL cell is a full word containing 
the address of an area passed as a 
result of an ENTRY statementw a label 
record. a totaled area, a SORT 
description entry. or a GIVING option 
in a USE ••• ERROR statement. 

variable-length cells. Each VLC is a 
half word whose value is set by the 
execution of a Q-Routine. It contains 
the current length of a variable
length field. There is one VLC for 
each OCCURS ••• DEPENDING ON clause and 
all items to which it is subordinate. 

secondary base locators. Each SBL 
cell is a fullword set by the 
execution of a Q-Routine. It contains 
the current address of a field which 
is variably located because it follows 
a variable-length field. 

INDEX 
fullword cells. each containing the 
current value of an INDEX-NAME. There 
is one IND cell for each INDEX-NAME 
defined in an INDEXED BY clause. 

SUBADR 

ONCTL 

subscript addresses. Each SUBADR cell 
is a fullword containing the address 
for a subscripted reference. See 
"Resolving Subscripted and Indexed 
References" in the chapter "Phase 50." 

control counters for ON statements. 
Each is a fullword initialized to 
zero. See "Other Nonarithmetic Verb 
Strings" in the chapter "Phase 51" 
which discusses the ON statement. 

Licensed Material - Property of IBM 

PFHCTL 
PERFORM control counters and DEBUG 
saved location. Each PFMCTL cell is a 
fullword used for a PERFORM n TIMES 
statement to count the number of times 
the procedure has been performed. The 
instructions which use these cells are 
generated by phase 51. For DEBUG, a 
PFMCTL cell is used to save the 
contents of register 14 when the DEBUG 
packei is entered. DEBUG packets are 
called by BALR 14,15. See "PERFORM 
Statement" and "DEBUG Card" in the 
chapter "Phase 4." 

PFMSAV 

VN 

PERFORM saved locations. Each is a 
fullword used to contain an address. 
The statements using these cells are 
generated by phase 4. For PERFORM, 
the cell is used to store the address 
of the next sequential instruction 
after the performed procedure, ~hen 
that procedure is. being executed 
because of a PERFORM. This is to 
enable the procedure to be executed 
inline. 

variable procedure-names. Each VN 
cell is a double word containing the 
current address of a branch point 
which may change during program 
execution because of an ALTER or 
PERFORM statement. See "ALTER 
Statement" and "PERFORM Statement" in 
the chapter "Phase 4." 

SAVE AREA-2 
pointer to the save area provided for 
label- and error-processing 
declarati ves. 

SAVE AREA-3 

XSASW 

XSA 

PARAM 

variable number of fullwords used for 
OPEN parameters. 

1-byte EXHIBIT switches. These are 
used as first-time switches for the 
coding generated for the EXHIBIT 
CHANGED statement. They are also used 
in certain types of SORT statements 
and ON statements. 

EXHIBIT saved area cells. These are 
variable in length and are referred to 
in the coding generated for an EXHIBIT 
CHANGED statement. There is one XSA 
for each operand to be exhibited with 
a CHANGED option. These cells are 
also used for SORT and RELEASE verbs. 

parameter area of full words, 
containing parameter lists for macro 
instruction expansions of certain 

Appendix B: Object Module 509 



Licensed saterial - Property of IBM 

source statements. The size of the 
parameter area equals the largest 
number of words required for anyone 
expansion. 

RPTSAV 
six words used to save branch 
addresses during the execution of 
Report writer routines, if the Report 
writer is used. 

CHECKPT CTR 
fullword cells used to count the 
number of file records processed for a 
file for which checkpoints are to be 
taken. 

DEBUG TABLE 
this table is used by the flow trace 
statement number, and symbolic debug 
COBOL library subroutines. It is also 
used by the IBM OS COBOL Interactive 
Debug Program Product. It is built by 
phase 65; the format depends on the 
options specified. 

• If the FLOW option is specified: 

Jltl~ 
o 

1-3 

conten!:!! 
Number of traces requested. 
Unused 

• If the STATE option is specified: 

1!:l!:~ contents 
0-3 St~of Q-Routines, or if 

none, start of INIT2. 
4-7 Size of Declaratives (not 

including Report writer) 
Section. 

8-11 Address of PROCTAB in object 
module relative to beginning of 
INIT1. 

12-15 Address of SEGINDX in object 
module relative to beginning of 
INIT1. 

16-19 Address of end of SEGINDX in 
object module relative to 
beginning of INIT1. 

• If both the FLOW and STATE options are 
specified: 

1!ttg 
o 

1-19 

Contents 
Number-of traces requested. 
The same as shown above for the 
ST ATE option. 

• If the SYKDMP or TEST option is 
specified: 

n!:~ ~Qn.ten.ts 
0-3 Start of Q-Routines or, if none 

start of INIT2. 
4-5 Hashed compilation indicator 

~ee PROGSUM table in 
"section 5. Data Areas. lI ) 

510 Appendixes 

• If the SYKDMP and FLOW options are 
specified: 

£Qnten!:§ 
Number of traces requested 
The same as shown above for the 
SYMDMP option. 

PROGRAM GLOBAL'tABl&-Jf.GT) 

The Program Global Table contains data 
which procedure instructions reference. 
All the fields in the PGT are variable in 
length. The data contained in the PGT is 
generated by phase 6 or 62. PGT data is 
never modified by procedure instructions; 
rather, it remains constant throughout 
program execution. In the chapter "Phase 
6," the sections "Optimizing Storage for 
the Program Global Table" and "Allocating 
Storage for the Program Global Table" 
describe how the PGT is generated. 

The fields in the PGT are illustrated in 
Figure 78 and described in the text below. 

i i 
IDEBUG LINKAGE AREA I . , 
ICOUNT LINKAGE AREA I 
I , 
ITEST LINKAGE AREA I 
I I 
I OVERFLOW I 
rl-----------------------------------f 
IVIRTUAL I 
I I 
IVIRTUAL EBCDIC NAMES I 
• I 
IPN I 
r-------,--------------------------~, 
IGN I 
'~.--~------~--------------------~I 

IDCBADR I 
~,--~.----------------------------I 
IVNI I 
• f 
ILITERAL I 
I I 
IDISPLAY LITERAL I 
~.---------------------------------,f 
IPROCEDURE BLOCK I 
I 

Figure 78. Fields of the Program Global 
Table 

DEBUG LINKAGE AREA 
12-byte area which contains the 
linkage for dynamic dumps. The area 
contains the following code: 

ST 11,DBG R11SAVE in TGT 
L 11,=V(ILBODBG5) 



BR 11 ,; , 

(2 slack bytes) 

If the SYMDHP option is not specified, 
;this,12-byte area does not exist. 

. 'COUNT LINKAGE AREA 

TEST 

a-byte area which contains the linkage 
to the COUNT routine. If the COUNT 
option is not specified, this a-byte 
area does not exist,. 

LINKAGE AREA 
l6-byte field which contains the 
iin.ki;l.ge 'to1;:he ,IBM. ,OS COBOL . 
lI;iJeractive Debug Program Product 
(Program No. 5734-CB4) .when TEST wal>' 
specified forcomp:Llation. At the' 
start of execution. the field contains 
th~; ~ol1owing: 

. LR' 14,0 
BeTR. 1.4,0 
13CTR ·14,0 .' 
MvtO (14) ,X.' 07' 
LIt . 14~0 . 
BR~~ .. ' .. 14.. . 
(2.slack ~ytes) 

OVERFLOW 
if the entire PGT exceeds 4096 bytes 
in length, there is one fullword 
OVERFt9H cell pointing to each 
4096-byte section after .the first. 
The cell is loaded ipto a register 
when a base is needed to refer to the 
secti.on of the PGT. 

VIR TUA.L, ,.... .' 
each virtual is a fullword containing 
the .a.d,ciress of an. external procedure 
(the result of an ESD and RLD in the 
()bjElctJ!lodule) unless the DYNAH or 
RESIDENT option is in effect. If 
eithEl:t; option if! in. effect, the 
virtuals corresponding to library 
s.ubrQuti,nep ar~ wd tten asE.BCDIC 

.... '/ OQ. 00 00' 

If t11.e DYN~M option is in effect, the 
virtuals corresponding to user. 
subp:t;ogramsc::ontain :the relative 
displacement of the subprogram name 

,< ... from the beginning oft;he, PGT. It .. is 
required because of a CALL statement 

. in. the source program' or a bra'nch, to a 
COB,O~i libraryobject.,..:time subr.outine. 
Because of phase 6 or 62 optimization, 
a given virtual is stored only once no 
matter how many times it is used. 

VIRTUAL. EBCDIC NAMES ",' 
.EBCDIC na!DEls of library subroutines 
'and u$ersuJ>programs. ..If the DUAl! or 
RESIDENT'option is ill effect, the 
EBCDIC names of all. library 
subroutinestha;t are t~bedynamically 

PN 

GN 

Licensed Material - Property of IBM 

loaded are listed; in addition, if 
DYNAH is in effect, the EBCDIC names 
of all user subprograms that are to be 
dynamically called are listed. Each 
VIRTUAL EBCDIC NAME cell is a 
doubleword containing the name of the 
subroutine or subprogram, left 
justified and padded with blanks if 

.necessary.. If neither DYNAM or 
RESIDENT is in effect, this field does 
not exist. 

source program procedure-names. When 
the OPT option is in effect, only 
those PNs associated with ALTER and 
declaratives references receive PN 
cells. Each PM cell is a fullword 
containing the address of the first 
instruction in a block of coding. The 
addresses of the PNs are in the same 
order as their definition in the 
source program. The program branches 
by loading an address from the PGT and 
then branching to it. 

compiler-generated procedure-names. 
When the OPT option is in effect, only 
those GNs associated with AT END and 
INVALID KEY references receive GN 
cells. Each GN is a full word 
containing the address of the first 
instruction in a block of coding. GNs 
are used in the same way as PNs. They 
were generated to provide addresses 
for. branches implied but not stated in 
the source program. They are stored 
in the PGT in the order in which they 
were generated. 

DCBADR 

VNI 

DCB addresses. Each DCBADR cell is a 
fullword containing the address of a 
data control block in the data area of 
the program. There is one DCBADR cell 
for each DCB generated by phase 21 • 

variable procedure-name initialization 
cells. There is one doubleword VN 
cell for each variable procedure-name 
in the program. It contains the 
initial value of the VN, and is used 
to initialize the VN values in the 
TGT. VNs are generated by phase 4 to 
contain branch addresses which ·vary 
because of PERFORM or ALTER 
statements. See "PERFOFM Statement" 
and "AL.TER statement" in the chapter. 
"Phase 4" for a description of the 
generated logic. 

LITERAL 
. literals referred to by procedure 

instructions. The literals are 
variable in length. There is no 
dUplication in storage. since 

Appendix B: Object Module 511 



Licensed Saterial - Property of IBM 

duplicate literals were removed by 
phase 6 or 62 optimization. 

DI SPLAY LITERAL 
literals used by calling sequences 
rather than instructions. They are 
variable in length. Duplication was 
eliminated by phase 6 or 62. 

PROCEDURE BLOCK 
each cell is a full word containing the 
address of a Procedure block. The 
compiler assigns these cells only when 
the OPT option is in effect. 

This area of the program contains the 
special routines which handle the Report 
Writer feature. I.t is discussed in 
"Appendix C. Report writer Subprogram." 

In this area is located the object code for 
the instructions described in the source 
program Procedure Division. The area does 
not contain any COBOL library subroutines; 
these routines, if required for execution, 
are added to the load module by the linkage 
editor or, if the RESIDENT or DYNA! option 
is in effect, these routines are 
dynamically loaded at object time. If the 
program is segmented, this area contains 
the Procedure Division sections for the 
root segment. See Iisegmented Object 
Kodule" in this chapter. 

The object code for this area is 
produced by phase 6 or 64, which also 
generates code for the Report writer and 
Q-Routine areas. Note that phase 6 or 64 
does not make any distinction among these 
three areas. They occur in the object 
module in this order because PO-text was 
written in that order: by phase 12 for 
Report Writer, by phase 1B for the 
Procedure Division, and by phase 22 for 
Q-Routines. From phase 3 on, the compiler 
did not recognize the end of one area and 
the beginning of the next. 

Q-Routines are special routines generated 
for data items described by the . 
OCCURS ••• DEPENDING ON option. The function 
of these routines is to update the length 
of the variable-length data item when that 

512 Appendixes 

length changes, and to update the location 
of the field which follo"sit. The actual 
output of a Q,..Routl.ne isa new vallie in the 
appropriate VLC cell' of the TGT and the 
corresponding SBL cell (seethe description 
of the TGT in this chapter for the meaning 
of these cells) • 

only· the Q":Routine updates the pointers; 
it does .not change the contents of the data 
area involved. For this reason, if t.he 
OCCURS ••• DEPENDING ON area. is followed by 
another field within the same 01..:.1evel 
item, aIidthe OCCURS ••• DEP,ENDING ON .area 
becomes lonqer, the information immediately 
followinq the area before it changed is now 
no longer accessible: the pointer to it, 
in the SBL, has been moved. This can be 
avoided in the source program by moving 
data out of the SBL field before any change 
in the value of ,the DEPENDING ON object, 
and moving it back after the change. 

This problem does .not arise·,between one 
01-level item and the next, because each 01 
field of data.isallot:ted enough space for 
the maximum number of occurrences., 

The COUNT table is used by the COBOL 
library subroutine .ILBOTC30. It contains 
entries for each procedure-name and source 
verb. This table. is present. only if COUNT 
was specified. The format of each entry 
is: 

~ o 

1 

*2-4 
*5-6 

or 

s;;ont~ 
Identification c,ode 

s;;ode 
00 
01., 
02 

lIeaning 
end of table." 

'procedure-id 
, verb~id 

Length of en,try .• ' If byte 0 
contains OO,'th±s byte 
contains zero;,., 

cad' number.' 
Blocknullber 
If byte 0 contains 01, these 
. ,bytes contain 'zeros~ 
If byte o contains 02, the 

block number, ,of the count 
block for.' -executable 
verbs; the count block is 
00 for non-executable 
verbs. 

If byte 0 contains 02, the 
verb Dumber (PL-code) 

*7 to n+1 If' byte 0 contains,01, the 
. EBCDIC Daile of the 

" procedure 



The initialization 2 (INIT2) routine is 
entered from INIT1 each time the program is 
executed. It is generated by phase 6 or 
64. The routine performs the following 
functions: 

1 ~ stores the address of the save area 
(located at the beginning of the TGT) 
for this program, which is contained 
in register 13, into the save area of 
the calling program or the job 
sched'uler. 

2. stores the location of the save area 
of the calling. program or job 
scheduler into this program's save 
area, which is located at the 
beginning of the TGT. 

3. stores the address of the first 
executable instruction in the ENTRY 
SAVE cell of the TGT in case register 
14 is needed. INIT2 checks the SWITCH 
field of the TGT to determine if the 
program has been entered before. If 
so, it checks the SWITCH field to 
determine if this program has called 
another program and not yet received 
control back via a GOBACK or EXIT 
PROGRA! statement. This condition is 
known as a recursive call and causes 
the job step to be terminated. If 
INIT2 finds a recursive call, it 
passes control to ILBOSRV1 to issue an 
error message and terminate 
processing. 

4. If neither the RESIDENT nor the DYNA! 
option is in effect, branches and 
links to the COBOL library subroutine 
ILBOSRVO (see the publication ~ 
QUfi.£Q!!QL Sub!:Q!!iin.!LLi!!!:~f.!:ggnl!! 
~ to dete.rmine whether this is a 
main program or a subprogram in the 
run unit. sets a bit in the SWITCH 
field of the TGT according to the 
information returned. If the DYNAK or 
RESIDENT option is in effect, INIT2 
loads the COBOL library Subroutine 
communications area (SOBCOK) and 
stores the address in the TGT. It 
tests the SCKAIN flag in SOBCOK to 
determine if it is the main program. 
If it is a main program, INIT2 loads 
the COBOL library ENTER subroutine, 
ILBONTRO, and stores the address in 
SUBCOK. Otherwise, INIT2 issues a 

*This field is not present if byte 0 
contains 00. 

Licensed Material - property of IBM 

DELETE macro instruction for SOBCOK to 
reduce the system responsibility 
count. If ILBONTRO has not yet been 
loaded, INIT2 loads it and saves the 
address in SOBCOK. Then INIT2 obtains 
the address of ILBONTRO from SOBeOK, 
sets the SCLDLST flag in SOBCOM, and 
passes control to ILBONTRO to load all 
necessary COBOL library subroutines. 

The initialization 3 (INIT3) routine is 
executed whenever the program is entered. 
It is generated by phase 6 or 64. The 
functions of the routine are determined by 
testing a bit in the SWITCH field of the 
TGT to determine whether this is the first 
time the module has been entered. If it 
is, the INIT3 routine: 

1. Initializes the VN cells in the TGT 
from the values contained in the VN 
cells of the PGT. 

2. Relocates each address. constant in the 
TGT and PGT to its absolute location. 
(Ontil this routine is ~xecuted, the 
addresses are relative.to the 
beginning of the program.) This 
relocation is accomplished by adding 
the absolute location of the beginning 
of the program (the address of INIT1, 
which is in register 11) to the 
relative addresses. 

3. Loads and BALRs to the addresses of 
Q-Routines to initialize the VLC and 
SBL cells in the TGT for 
OCCURS ••• DEPENDING ON fields that 
depend on an item in working-storage. 

4. Loads permanent base. ~egisters from BL 
cells in the TGT. or~f the OPT option 
is in effect, loads permanent base 
registers from BL, BtL, and OVERFLOW 
cells in the TGT and PGT. (The 
meaning of permanent 'base registers is 
explained in the chapter "Phase 6" 
under "Execution-Time, Base Register 
Assignment. II) 

5. Branches to the first executable 
instruction in the object program (at 
location START, whose address is in 
register 14), or to the entry point in 
the coding generated for an ENTRY 
statement, which is the instruction 
following the BALR in the ENTRY 
coding. If the FLOW, STATE, SYMDMP, 
or COUNT option is in effect, the 
COBOL library debugging subroutine, 
ILBODBGO, is loaded and branched to 
before the branch to the instruction. 
If TEST was specified at compile time, 

Appendix B: Object Module 513 



Licensed Material - Property of IBM 

INIT3 determines if the TEST command 
has been issued for execution time. 
If it has, INIT3 branches to the IBM 
OS COBOL Interactive Debug Program 
Product (Program No. 5734-CB4). If, 
additionally, there is ,a 
floating-point item in the program, 
the branch to ILBODBGO is followed by 
a DC of the 2-byte displacement from 
the beginning of the PGT where the 
virtual for the ILBOTEF3 subroutine is 
located. 

If the testing of the SWITCH field 
reveals that the module was entered 
previously, INIT3 resets the program to its 
previous state by loading registers from 
the save area in INIT1. Then it branches 
as described in item 5, above. 

The PROCTAB table is used by the 
object-time COBOL library subroutine for. 
the statement number option. It contains 
entries for all the card numbers and verb 
numbers in the COBOL program. The format 
of each entry is: 

~ytg 
0-2 

3-4 

£.Q.!!teni§. 
Card number and verb number. The 
verb number is contained in the 
low-order 4 bits of byte 2. 
Displacement of the verb within 
the fragment. 

The SEGINDX table is used by the 
object-time COBO~ library subroutine for 

514 Appendixes 

the statement nUl!lberoption. It contains 
an entry for each fragment of the program. 
The format of each entry is: 

~1:te 
o 

1-3 
4-6 

7-9 

£.Q.!!~!li§. 
Zero. 
Fragment address. 
Relative address of first PROCTAB 
entry for this fragment. 
Relative address of last PROCTAB 
entry for this fragment. 

SEGMENTED OBJECT MODULE (TRANSIENT AREA) 

In a segmented program, the segment 
initialization subroutine ILBOGDO is always 
among the routines present. This routine 
is described in the publication ~H-Q~L!~ 
COBOL Subroutine Libra£Y-R~Qg~m LQgi£. 

If the user did not specify any 
Procedure Division sections with a priority 
lower than SEGMENT-LIMIT (or 49 by 
default), the procedure are~ of the root 
segment contains code generated by the 
compiler. 

There are two types of nonroot segments: 
fixed segments and independent segments. 
Fixed segments are always made available in 
the state in which correspond to the 
LANGLVL(n) option while independent 
segments have any GO TO statements reset to 
their initial values, if they have been 
modified by ALTER statements. The 
subroutine ILBOSGMO performs this resetting 
when necessary. It reinitializes those VN 
cells in the TGT which apply to this 
segment from the corresponding VN cells in 
the PGT. 



This chapter describes the Report iriter 
Subprogram (RiS), its structure, elements, 
and response to verbs in the Procedure 
Division. The RiS.is generated by phase 12 
from statements in the Report section of 
the Data Division. The operation of phase 
12 and associated activities in other 
phases are described in the chapter "Phase 
12". 

If·the OPT option is specified, the code 
generated for the Report iriter Subprogram 
is optimized for procedure-name 
addressabilityand register usage by phases 
62, 63, and 64 in the same manner as is the 
code generated for the other parts of the 
Procedure Division. The operation of 
phases 62. 63, and 64 is described in the 
chapters "Phase 62," "Phase 63, II and "Phase 
64." 

STRUCTURE OF tHE REPORT iR~~UBPRQ§B!! 
Ji!ll 

Each RiS is a complete subprogram which, 
when executed, produces a report according 
to the specifications coded in one RD 
statement and its associated group and 
elementary items. The RiS has a fixed 
logical structure; that is, it contains 
fixed, parametric, and group routines in a 
prescrib~d order and quantity. In certain 
cases. du.myroutine's are inserted to 
maintain the structure. The RiS produced 
contains all linkages and exits needed. 
Pigure 79 shows the logic of a Report 
iriter Subproqram. The codinq in the boxes 
is intended to be indicative rather than 
comprehensive. 

ILIAEI~S QF A REPORT iRI~1-~ROGRA! 
.1IYl. 

An RWS includes data items and three types 
of routines: fixed, parametric, and qroup. 
The data items are assiqned special 
data-names; these can be either COBOL 
words. which may be used in the source 
program. or nonstandard words, which may 
not. These routines and data-names are 
discussed later. together with the special 
internal Report writer verbs qenerated by 
the compiler. 

Licensed Material - Property of IB!! 

FIXED ROUTINES 

Fixed routines never vary in logical 
content. Phase 12 generates one and only 
one copy of each of them after all of the 
statements under an RD have been scanned. 
The three fixed routines are 1ST-ROUT, 
LST-ROUT, and WRT-ROUT. 

1ST-ROUT,Routine 

The 1ST-ROUT routine causes the first 
headings to be printed by calling on the 
RPT-ROUT and theCHF-ROUT routines. 
Routine 1ST-ROUT is executed when either 
GENERATE, report-name or the f'irst 
occurrence of GENERATE detail-name is 
encountered. 

The LST-ROUT routine, terminates the report. 
It causes the highest level control break 
(by setting CTL.LVL to 1) and then causes 
the final footings to be printed by callinq 
routines CFF-ROUT and RPF-ROUT. Routine 
LST-ROOT transfers control to the LAST-ROLL 
routine~ which provides return linkage to 
the main program. (LAST7ROLL is the name 
of a STORE instruction located just before 
the ROL-ROUT routine. It is not itself an 
RiS routine.) control then falls through 
to the ROL-ROUT routine. 

The WRT-ROUT routine writes a record from 
the output work area, RPT.RCD. It then 
moves blanks to CTL.CHR and to RPT.LIN. 
This routine contains two sets of coding if 
the program specifies two output files. 
The prograamer may suppress printing of a 
line by coding "!!OVE 1 TO PRINT-SWITCH". 

Appendix C: Report Writer Subprogram 515 



... Licensed Material - Property of IBM 

(INITIATE report-name) 

REPORT-CALL INT-ROUT-----------------1~-0 

(GENERATE report-name) 

REPORT-CALL IST-ROUT'---------------I---.( 
REPORT-CALL CT8-ROUT'----------------iI--~E__c 
REPORT-CALL USM-ROUT (for each detail in report, in order of sequence)I_+---I'" 

(GENERATE detail-name) 

REPORT-CALL DET-ROUT (for this detail),,) -------------+----0 
(TERMINATE report-name) 

REPORT-CALL LST-ROUT I 
I 

9 
1ST-ROUT 58 LST-ROUT ~ 

REPORT-SAVE-2 REPORT-SAVE-6 
IF FRS.GEN NOT = 0 IF FRS.GEN = 0 
REPORT-RETURN-2. REPORT-RETURN-6. 
REPORT-CALL WRT-ROUT MOVE 1 to cn. LVL, TER.COD 
MOVE 1 TO FRS. GEN REPORT-.CALL (LAST-ROLL) . 

*MOVE 1 TO PAGE-COUNTER REPORT-CALL CFF-ROUT 
REPORT-cALL RPH-ROUT MOVE 2 TO TER.COD 
REPORT-CALL CHF-ROUT-~ REPORT-CALL PGF-ROUT 
REPORT-RETURN-2 GO TO RPF-ROUT 

~ l 

\ RPF-ROUT 

CHF-ROUT 02-coding 
REPORT-CALL WRT-ROUT 

REPORT -SAVE-3 REPORT-RETURN::'6 
02-coding 

GO TO CTH-ROUT (highest 
level) or (if no controls exist) t r 5A REPORT -RETURN-3 

PGH-ROUT 

02~coding 
IF LlN,S!,,v = 0, GO TO , , (GNNN) ELSE MOVE 
LlN.SAV TO A8S.LIN 

RPH-ROUT * REPORT -CALL ALS-ROUT 
REPORT-CALL WRT-ROUT-

~ 
REPORT-SAVE-4 (GNNN) . 

02-coding MOVE 0 TO LIN.SAV, 
GO TO PGH-ROUT FRS. GRP, GRP. IND 5A 

REPORT-RETURN-4 
* Genera ted onl . if there is a PAGE clause. y .. 

(LAST-ROLL) 

REPORT-SAVE-2, then 
fall through to 
ROL-ROUT routine I 

I cb 
CFF-ROUT 

REPORT -SAVE-3 
02-coding 

REPORT-RETURN-3 

I 
pqF~ROUT 

REPORl'':';SAVE:..t 
02-codlng 

IF TER.COD = 2 REPORT-
RETURN-4. 

REPORT-CALL WRT-ROUT 
GO TO PG H-ROUT-, 

I 

58 

Pigure 79 (Part 1. .of 4). Logic of the Gen.~ated B.eport Writer Sabprograa 

516 Appendixes 



Licensed Material -' property of IB! 

DEl-ROUT (for this detail group) 

REPORT-SAVE-I 

REPORT-CALL 1ST-ROUT - ___ I-t-t. 
REPORT-CALL CTI~-ROUT---1f-"';:::"------------, 

REPORT-CALL USM-ROUT--+---, 
02-coding 

REPORT-RETURN-I 

3 

USM-ROUT (for this DEl-ROUT) 

REPORT-SAVE-2' .i.:/' .... 
for each statement with UPON 
clouse whose object is this 
DE and each statement with 
SOURCE-SUM correlation: 

ADD operand TO sum bucket. 

(may be mare than one operand 
or sum bucket) 

REPORT-RETURN-2 

*Source-controlis the nq(ii'e 
specified intheC9NTRQL , 
clause of the source program. 

**Control-fleld save area name. 

CTB-ROUT 

REPORT -SAVE-2 
MOVEOTO 
CTL.LVL. IF FRS .. GEN NOT = 2 
MOVE 2 TO FRS.GEN GO TO RST-ROUT 

(highest level) 

one set 
per' 
control 
level 

ADD I TO cn. LVL 
IF source-control" 
NOT = -nnnn"* 
MOVE 0 TO GRP .IND 
GOTORO~ROUT---------+-~ 

(after lowest level) 

REPORT-RETURN-2 

4 

one set 
per' 
control' 

" , Ijlvel' 

ROL-ROUT 

(lowest leveQ 

ADD (this level bucket) 
TO (higher level bucket) 
IF (this level-number) = 

ClL. LVL 
RPT-CALL SAV-ROUT--+-.-f 
GO TO (lowest level) 
CTF-ROUT---------+--t 

" (next-higher level) 

'REPORT'"RETURN-2 

figure 79. (Part2'of;, 4)~" Logic: of the Generated Report Writer Subprogram 

Appendix c: Report Writer subprogram 517 



Licensed Material - property of IBM 

RST-ROUT 

(lowest leve I) 
IF FRS.GEN=l RPT-RETURN-3. 
MOVE 0 TO sum bucket. 
MOVE source-control**TO 

-nnnn.**· 
IF this level number=Cll. LVL 
REPORT-RETURN-2. 
(next higher level) 

REPORT-RETURN-2 

If 2 files, 
code 
repeated 

5B J--..4---.(GNAA) 
If 2 files, 
code 
repeated 

WRT-ROUT 

RPT-SAVE-5 
WRITE FILE-NAME RECORD-NAME 
(-nnnn) FROM RPT. RCD AFTER 
ADVANCING LlN.NUM LINES 
GO TO (GNBB). 

RPT-SAVE-5 
WRITE FILE-NAME RECORD-NAME 
(-nnnn) FROM RPT. RCD AFTER 
ADVANCING COl LINES. 

MOVE 0 TO LINE-COUNTER 
ADD I TO PAGE-COUNTER. * 

(GNBB) . MOVE SPACES TO RPT. LIN 
MOVE 0 TO LIN. NUM 
RPT - RETURN-5 

Note: All calls of the WRT-ROUT routine are 
not shown. Other routines call it as 
often as necessary to print a II output 
lines to be produced. 

*Generated only if there is a PAGE clause. 
**Source-control is the name specified in the 

CONTROL clause of the source program. 
*** Control-field save area name. 

~ 
CTF-ROUT (lowest level) 

02-coding 
IF (this level number)=CTL. LVL 

RPT-CALL RET-ROUT 
GO TO (this level) CTH-ROUT. 
GO TO {next higher level} CTF-ROUT 

CTF-ROUT (highest level) 

RPT-CALL RET-ROUT 
IF TER.COD=O GO TO 
CTH (highest level). 
GO TO RST-ROUT. 

CTH-ROUT (highest level) 

. ~ 
\CTH-ROUT (control break level) JJ 

02-coding 
GO TO (next lower level) CTH-ROU 

CTH-ROUT (next lower level) 

CTH-ROUT (lowest level) 
GO TO RST-ROUT. 

Figure 79 (Part 3 of 4). Logie of the Generated Report.Writer Subprogram 

518 Appendixes 

12 

12 

~ 8 

- 8 



~ 
II 

ALS-ROUT* 

REPORT-SAVE-5 
IF LINE-COUNTER = 0 MOVE 1 TO 
. LlNE-COUNTE.R. 

MOVE 1 TO FRS.GRP 
SUBTRACT LINE-COUNTER FROM 

ABS. LIN GIVING LIN. NUM 
MOVE ABS. LIN TO LINE-COUNTER. 
REPORT-RETURN-5 

RLS-ROUi* 

REPORT -SAVE-5 .. 
IF LINE-COUNTER = 0 MOVE 1 TO 

LINE-COUNTER. 
IF LINE-COUNTER LESS THAN 

(integer for FIRST DETAIL) 
SUBTRACT LINE-COUNTER FROM 

(FIRST DETAIL MINUS 1) GIVI"IG L1N.NUM 
MOVE (FIRST DETAIL MINUS 1) 
TO LINE-COUNTER. 

IF FRS.GRP = 0 ADD 1 TO 
LINE-COUNTER ADD I TO 
LlN.NUM. 

REPORT-RETURN-5 

Note: Not all calls to ALS-ROUT and 
RtS-"ROUT are shown since each routine 
will be called as many times as necessary 
to determine line spacing. 

·Generated only if there is 0 PAGE clause. 
··Source-control is the name specified in the 

CONTROL clause of the source program. 
·"Control-field save area name. 

Licensed Material - property of IBM 

One for 
each 
control 

11 

SAY-ROUT 

REPORT-SAVE-5 
MOVE source-control·· (CTB 

value) TO -nnnn**· 
MOVE -nnnn+l 

(value previous to CTB) 
TO source-contro I. 

. 
REPO RT - RETURN-5 

12 

RET-ROUT 

REPORT-SAVE-5 
One for MOVE -nnnn**· TO 
each source-control. *. 
control 

REPO RT -RETURN-5 

9 

INT-ROUT 

REPORT -SAVE-2 
MOVE 0 TO CTL. LVL, PRINT SWITCH, 

GRP.IND, FRS.GEN, TER.COD, 
FRS.GRP, LIN. NUM, ABS.LlN, 
LIN. SAV, & all sum counters 

·MOVE 0 TO LINE-COUNTER 
·MOVE 1 TO PAGE-COUNTER 

REPORT-RETURN-2 

Figure 79 (part I! of .. 4). Logic of the Generated Report writer subprogram 

Appendix C: Report Writer subprogram 519 



Licensed Material - property. of IBM 

PARAMETRIC ROUTINES 

Parametric routines generally are fixed in 
structure but vary according to the data 
obtained from the source (level-Ol through 
level-49) statements. They may. also 
include statements or blocks of statements 
that are repeated as needed. 'Except as 
noted under USH-ROUT, RLS-ROUT, and 
ALS-ROUT, the RWS contains one and only one 
copy of each parametric routine. The nine 
parametric routines are discussed in the 
following paragraphs. 

The USH~ROUT routine adds the operands of 
all SUH clauses that either have UPON (this 
detail-name) or that appear as SOURCE items 
in a TYPE IS DETAIL group to as many sum 
buckets as required. A sum bucket is a 
work area that may be given a data-name by 
the programmer or else is assigned an 
S-point name by the compiler. (S-point 
names are described under "Nonstandard 
Data-names" in this appendix.) Phase 12 
generates one USH-ROUT routine for each 
DET-ROUT ~outine. If there is no PET-ROUT 
routine in an RWS, no USH-ROUT routine is 
generated. 

The CTB-ROUT routine acts as a control 
break supervisor. It tests for a change in 
value of a control field, always beginning 
with the highest level and continuing until 
either the lowest level is tested or a 
control break occurs. A break causes 
control to be passed to the ROL-ROUT 
routine, leaving the current control level 
number in location CTL.LVL. The CTB-ROUT 
routine contains one block of coding for 
each control level. 

ROL-ROUT Routine 
----------~----

The ROL-ROUT routine adds SUH-clause 
operands originally defined in another 
control group. It starts with the lowest 
level and continues until the level number 
of the current block is equal to the value 
found in CTL.LVL. At this point, control 
is transferred to the lowest level CTF-ROUT 
routine. Routine ROL-ROUT contains one 
block of coding for each control level. 

520 Appendixes 

The RST-ROUT routine moves,the current 
contents of sum buckets to control-field 
save areas and sets the sum buckets to zero 
for all control levels just processed by 
the ROL-ROUT routine. The RST-ROUT routine 
contains one block of coding for each ' 
control level. When the level number of 
the block being executed is equal to the 
value in CTL.LVL, control is returned to 
the routine that 'called the CTB-ROUT 
routine. 

The SAY-ROUT routine moves the current 
control name contents to a save area and 
the previous cont'rol name values to the 
current control names. 

The RET-ROUT routine resets the control 
names to their current values. 

!Qte: Routines SAY-ROUT and RET-ROUT are 
used only when processing TYPE IS CONTROt 
FOOTING or TYPE IS CONTROL FOOTING FINAL 
report groups. Therefore, any source 
control name areas contain the previous 
val~e (that is, the value prior to the 
control break) • 

The INT-ROUT routine sets initial values of 
all switches, counters, and SUft-names 
(data-names or S-point names). Routine' 
INT-ROUT is called when an initiate 
statement is encountered. 

The ALS-ROUT routine determines the line 
spacing for absolute lines. The ALS-ROUT 
routine is generated only if the RDentry 
contains a PAGE LIMIT clause. 



The RLS-ROUT routine determines the line 
. spacing for relative lines. Routine 
RLS-ROUT is generated only if the RD entry 
contains a PAGE LIMIT clause. 

GROUP ROUTINES 

Phase 12 generates one group routine for 
each level-01 record description 
encountered. The group routine selected is 
determined by the TYPE clause of the 
level-01 statement. The coding within the 
routine varies according to the level-01 
through level-49 statements associated with 
it. A level-01 elementary item contains 
all necessary information and, hence, 
results in a complete routine. 

If any of the group routines, except as 
discussed under DET-ROUT, CTH-ROUT, and 
CTF-ROUT routines, is not generated because 
there is no corresponding level-01 
statement, phase 12 supplies a dummy 
routine to maintain the fixed logical 
structure of the RiS. The nine group 
routines are discussed in the following 
paragraphs. 

RPR-ROUT Rout!~ 

The RPT-ROUT routine produces the report 
heading. There is one RPH-ROUT routine in 
an RiS; it results from a TYPE IS REPORT 
HEADING group. 

The RPF-ROUT routine produces the report 
foot~ng. There is one RPF-ROUT routine in 
an RRS; it results from a TYPE IS REPORT 
FOOTING group. 

The CTH-ROUT routine produces the control 
headings. There is one CTH-ROUT routine 
for each control (except FINAL) in the 
source program. It results from a TYPE IS 
CONTROL HEADING group. If there is no such 
group, a dummy CTH-ROUT routine is 
generated for each control below the 
highest (FINAL) level. If, however, there 
are no controls (again, except FINAL), 

Licensed Material - property of IBM 

there is neither an actual nor a dummy 
CTR-ROUT routine generated. 

The CTF-ROUT routine produces the control 
footings. There is one CTF-ROUT routine 
for each control (except FINAL) in the 
source program. It results from a TYPE IS 
CONTROL FOOTING group. If there is no such 
group, a dummy CTF-ROUT routine is 
generated for each control below the 
highest (FINAL) level. If, however, there 
are no controls (again, except FINAL) , 
there is neither an actual nor a dummy 
CTF-ROUT routine generated. 

The CHF-ROUT routine produces the heading 
for the highest (FINAL) level control. 
There is one CRF-ROUT routine in an RiS. 
It results from a TYPE IS CONTROL HEADING 
FINAL group. If there is no such group 
defined, or if there is no CONTROL clause 
in the program, a dummy CRF-ROUT routine is 
genera ted. 

The CFF-ROUT routine produces the footing 
for the highest (FINAL) level control. 
There is one CFF-ROUT routine in an RWS. 
It results from a TYPE IS CONTROL FOOTING 
FINAL group. If there is no such group 
defined or if there is no CONTROL clause in 
the program, a dummy CFF-ROUT routine is 
generated. 

The PGR-ROUT routine produces the page 
headings. There is one PGH-ROUT routine in 
an RiS; it results from a TYPE IS PAGE 
HEADING group. 

PGF-ROUT Routine 

The PGF-ROUT routine produces the page 
footings. There is one PGF-ROUT routine in 
an RiS; it results from a TYPE IS PAGE 
FOOTING group. 

Appendix C: Report Writer Subprogram 521 



.Licensed !aterial - Property of IBM 

DET-ROUT R~~ 

The DET-BOUT routine produces a detail line 
(or group of lines) of the report. There 
is one DET-BOUT routine for each TYPE IS 
DETAIL group. If there is no such group in 
the source program, there is neither an 
actual nor a dummy DET-ROUT routine 
generated. 

DATA-NUES 

Report Writer data-names are generated to 
identify counters, switches, and control 
fields. There are two types of data-names 
used in an RiS, COBOL word data-names and 
nonstandard ·data-names. 

COBOL Word Data-names 

The COBOL word data-names follow the rules 
for coding COBOL names and are accessible 
to the source programmer. They are 
PAGE-COUNTER, LINE-COUNTER, and 
PRINT-SWITCH. 

PAGl!-COUN~ER: A counter. generated only if 
there is a PAGE LIMIT clause in the RD 
entry. There can be only one PAGE-COUNTER 
in .an RiS. If present, it is initialized 
to 1 by the IUT-ROUT routine and used by 
the WET-ROUT routine. 

~!NE=&QY~IR: A counter generated only if 
there is a PAGE LIMIT clause in the RD 
entry. There can be only one LINE-COUNTER 
in an RiS. If present, it is initialized 
to zero by the INT-ROUT routine and reset 
to zero by the WRT-ROUT routine for each 
new pa'4.e. 

UllT-SWITQi: A1-byte switch generated by 
phase 12 for any program that contains a 
Report Section. (It may then be used by 
any.RWSgenerated for that program.) It is 
set to Oby the INT-ROUT routine, 
indicating that the current line is to be 
printed. The source programmer can use 
PRINT-SWITCH to suppress printing of a 
report group by coding" MOVE 1 TO 
PRINT-SWITCH" • 

The nonstandard data-names contain the 
special character "." or begin with a 
hyphen; they cannot, therefore, be used by 
the programmer. Da.ta-names in the form, 

~22 Appendixes 

"-.nnnn" (for example;E •. 0001) and' 
control-filed save area names have no limit 
and are uniquely numbered; the other nine 
appear once per report. The nonstandard 
data-names are: 

CT~~: A counter used by the CTB-ROOT, 
ROL-ROUT, CTF-ROOT, and RST-ROUT routi.nes 
to coordinate control break activities. It 
is initialized to 0 by theIIfT-·ROUT routine 
and set to 1 by the LST-ROUT routine. 

FRS.GE~: A l-byte switch used by' the 
1ST-ROUT and CTB-ROUTroutines to ensure 
that routine 1ST-ROUT is executed once 
only. After the 1ST-ROUT routine is 
finished_ FRS.GEN has a value of 1; after 
routine CTB-ROUTis executed, the value is 
2. FRS.GEN is also tested by routine 
LST-ROUT to determine whether a TERMINATE 
vas coded eithout an earlier GENERATE. 

GRP. IN)!: A Horlc area consisting of 1-byte 
switches. There is one sHitch'for each 
GROUP INDICATE clause in a TYPE IS DETAIL 
group. The switches are turned on by the 
CTB-ROUT routine and individually tested by 
DET-ROUT routines after control or page 
break activities so that items specified in 
a GROUP INDICATE clause Ifill. be moved to 
the output line worle area. The sWi tche.s 
may be treated as a group or individually, 
as follovs: 

e GRP.IND: Group name (level-01) for a 
set of GP.nnnn names. It is set to 0 
after a page or control break by the 
PGH-ROUT or the CTB-ROUT routine. 

til GP.nnnn: Elementary names· (level-02) 
following the GRP. IND.· They are testEld 
and, if zero. set to.1 by the DET-ROUT 
routine for a specific. TYPE IS DETAIL 
group. Each GP.nnnn represents one 
'I-byte switch. 

nL.COD: A 1-byte sHitch.tes.ted by the i 

PGF-ROUT routine to pr.event. printing of an 
extra page heading, and by·the .CTF-ROUT· 
routine (highest level) to determine if··.· 
control headings should be produced. It is 
initialized to 0 by the INT-ROUT routine 
and set to 1 by the LST-ROOT routine. 

RPT.RCD: The (fork area for the' record 
contaIning the output print line. ,It is 
133 bytes long and consists of either two 
or three parts .(CODE-Cellis optiona:/.l in 
the following order: CODE~Cel~i a1-byte 
cell used to hold the code specified in the 
CODE clause of the RD statement and defined 
in the SPECIAL-NAMES paragraph;. C;TL.CHR, 'a 
1-byte cell used to hold the carriage 
control character; and R?T. LIN Ii which. 
contains the .actual output print ·line. 
Note that, if there iSi.no·CODE clause,there 
viII be no CODE~Cell and ·'RPT.;'LIN. will be 



132 bytes. The equivalent COBOL coding for 
the RPT.RCD group would be: 

01 RPT. RCD. 
02 FILLER PICTURE X VALUE code. 
02 CTL.CHR PICTURE X VALUE SPACE. 
02 RPT.LIN PICTURE X(131) VALUE SPACE. 

ABS.LIN: A 2-byte counter used by the 
ALS-ROUT routine ·for absolute line spacing. 
It is initialized to 0 by the INT-ROUT 
routine and set to the appropriate value as 
report lines are produced. It is set, 
therefore, by all group routines generated 
as a result of source statements, but not 
by dummy group routines. 

~~SAV: A 2-byte save area. It contains 
either zero or an absolute line to be 
skipped to after a page heading is 
produced. If a Control Footing, Control 
Heading, or Detail report group contains a 
NEXT GROUP IS integer clause and if, after 
the presentation of that report group, the 
value of integer is less than or equal to 
LINE-COUNTER, then the integer is saved in 
LIN.SAV and the report group will space up 
to and including FOOTING. 

tI!~BQ~: A work area used in the WRT-ROUT 
routine in conjunction with the WRITE AFTER 
ADVANCING ••• LINES clause. LIN.NUM can be 
set by any group routine or by either the 
AtS-ROUT or the RLS-ROUT routine. Routine 
WRT-ROUT fills in LIN.NUM with zeros before 
exiting. 

FRS.GRP: A switch set to 0 after the 
PGH-ROUT routine is executed.· It is tested 
and set to 1 by a CTH-ROUT, CTF-ROUT, or 
DET-ROUT routine. If one of these groups 
is to be printed and if its first line is 
relative (that is, LINE PLUS integer), and 
if FRS.GRP is 0, the first relative line 
will be printed on either FIRST DETAIL or 
(LIN.SAV + 1). 

£Ql!1~k.D:elL~Y!L!~1!!!Re: Data -names 
in the form "-nnnn" are names of 
control-field save areas. (There are two 
save areas per control level.) 

A "-nnnn" name is also generated for any 
FD that contains a REPORT clause. The size 
of the level-Ol item is determined from the 
RECORD CONTAINS clause or is 133 characters 
by default. 

~£eint Data-names: Data-names in the form 
"E.nnnn" are generated from COLUMN clauses 
in elementary record descriptions. They 
use the special Ril-redefines of "RPT .LIN + 
COLUMN - (integer-l) ". 

~£eint Data-nam~: Data-names in the form 
liN. nnnn" are counters used to hold the 
number of lines· in a report group that 
contains a relative NEXT GROUP clause, at 

Licensed Material - Property of IBM 

least one relative LINE clause, or both •.. 
Using the N-point counter, the initial 
coding for a report group determines 
whether there are enough lines left on a 
page to print the entire group. 

§=EQin~_R2~2=n2m~e: Data-names in the form 
"S.nnnn" are used for accumulators (sum 
buckets) for Control Footing record 
descriptions that have a SUM clause but no 
data-name specified. They are generated so 
that coding of MOVE sum bucket TO E.nnnn 
can be produced. Attributes of the SUM 
clause are picked up in the normal manner 
except for the PICTURE which is picked up 
from the corresponding E.nnnn name 
generated for the sum bucket. If the 
statement has a data-name, S.nnnn is not 
generated. However, its PICTURE is picked 
up in the same manner as an S.nnnn name. 

SPECIAL REPORT WRITER VERBS 

Phase 12 generates five special verbs for 
use in the RWS: REPORT-CALL, REPORT-SAVE, 
REPORT-RETURN, REPORT-ORIGIN, and 
REPORT-REORIGIN. The first three of these 
are used for linkage between the main 
program and the RWS -- for example, as a 
result of a GENERATE statement -- and 
between routines of the RWS itself. Their 
equivalent assembler language coding is 
shown below. The remaining two verbs are 
used to process USE BEFORE REPORTING 
sentences. In the following descriptions, 
the PO-text and Pl-text verb codes are 
shown in parentheses after each verb. 

~PORT=£!1& (4F): The equivalent coding 
is: 

L 15,A(Called routine) 
BALR 1,15 

REPORT-SAVE-O through~EPOR!=§!VE-n 
(50-55): The equivalent coding is: 

ST 1,Save-cell-n 

!!~P°ltl=.Rll!!!U!=.L1h£Q1!g:h~~gORT-REX.URN-!! 
(56-5B): The equivalent coding is: 

L 1,Save-cell-n 
BCR 15,1 

~PORT=2RIGI! (5C): The execution of this 
verb causes the address counter to be set 
to the address of the Ri-NOP statement at 
the start of the specified routine. A link 
to the USE routine is inserted at this 
point. 

REPORT-REO~ (5D): The execution of 
this verb causes the address counter to be 
reset to the address it contained before 
the REPORT-ORIGIN was encountered. 

Appendix C: Report ir1ter subprogram 523 



Licensed Material - Property of IBM 

Once the Report Writer subprogram has been 
generated, it is called at particular entry 
points and executed as a result of 
INITIATE, GENERATE, and TERMINATE 
statements in the Procedure Division ot the 
source program. These responses are as 
follows: 

B~§Eonse 12-1NITIATE: As a result of 
INITIATE, a branch is made to the INT-ROUT 
routine of the particular report. Routine 
INT-ROUT is executed and control returns to 
the next instruction after the INITIATE. 

R~2Eonse t2-~NERAT~: The response to a 
GENERATE statement depends on whether the 
statement is the first such GENERATE or a 
subsequent one. Figures 80 and 81 
illustrate the two cases. The logic flow 
shown is that for GENERATE detail-name 
statements. The logic for GENERATE 
report-name statements is the same except 
that all DET-ROUT routines are skipped and 
all USM-ROUT routines, in the order of 
their DET-ROUT routines, are executed. 

Response to ~MINAT!: The response to a 
TERMINATE statement is illustrated in 
Figure 82. 

lINDING THE ELEME~TS-2I-~PQRT iRITER 
mtuROGRll-1nm.. 

It may become necessary to locate, in the 
object module or in a storage dump, the 
data items and routines that make up the 
RiS. This can best be done using a listing 
that includes a glossary and a 
cross-reference dictionary. The foll.owing 
discussion assumes the use of the DMAP and 
SXREF or XREF options. 

LOCATING DATA ITEMS IN A STORAGE DUMP 

The glossary lists the cells, switches, and 
work areas mentioned under "Data-names" in 
this appendix. A portion of the four 
pertinent columns of a typical glossary 
look, for example, like this: 

SOURCE NAME BASE DISPL INTRNL NAME 

. 
CTL.LVL· BL=3 088 DNM=2-426 

524 Appendixes 

To find cell CTL.LVL, turn to the memory 
map and find the BL ceils in the TGT. BL1 
is located at the address listed there and, 
8 bytes farther, BL3. To t·he contents of 
BL3 add the displacement (DISPL), 88. The 
result is the address of CTL.LVL. 

Note .that if there are registers 
available for eachBL needed in the 
program, one register is assigned 
permanently to BL3 and listed in the 
REGISTER ASSIGNMENT column of the memory 
map. In that case, add the DISPL to the 
contents of that register. 

LOCATING DATA ITEMS IN THE OBJECT MODULE 

To find references to a data item in the 
object module, note its internal name in 
the glossary and refer to the 
cross-reference dictionary. A portion of 
the cross-reference dictionary would look 
like this (again using CTL. LVL as the 
example): 

DATA NAMES DEFN REFERENCE 

CTL.LVL 0052 00100 00118 

To the left of the object module appear 
the numbers of the source statements that 
generate each section of code; to the 
right, in the remarks co~.umn, are the 
internal data-names. Among the 
instructions generated.for.sou;t"ce 
statements 001 00 and 00 n8ldll be found 
references to item "DRM~2-426", the 
internal name for CTL. Lft. .. 

LOCATING ROUTINES IN A STORAGE DUMP 

To locate RiS routines in storage, identify 
the desired routine in the object module 
(discussed below), add the relative address 
to the load address (shown in the Linkage 
Editor map), and proceed as in finding any 
other instruction or rC)litine. 



Licensed Material - property of IBM 

1ST-ROUT 

RPH- PGH-
1 ROUT I---- ROUT 

MAIN PROGRAM 

(IN-LINE CODE) I 
2 

GENERATE DET-ROUT 
detail-name cnl-
Next sequential 1 - CHF- - ROUT 
instNctien ROUT (Majer) 

2 1 through 

CTH-
ROUT 
(Minor) 

3 

I 
4 

CTB-
ROUT RST-

(NOP) ROUT 

--- USM~ROUT 

Pigure 80. First GENERATE statement Logic Plow 

Appendix C: Report writer Subprogram 525 



Licensed Baterial - Property of IBM 

MAIN PROGRAM 

(IN-LINE CODE) 

rcra:-
ROUT 

""""r-

rl SAV-· 
ROUT 

L..-.r---I 

Control 
break 
poth 

~L....-
ROL- _ 
ROUT - f--e 

I-

L..--

Non-
control 
break 
poth 

I 

CTF- CTF-ROUT 
ROUT I-- {lnter- ~ 

(Minor) medlote-I) 

RET- I I RET- I 
ROUT ROUT 

. f---- DEl-ROUT 

0-f-
CTH-ROUT CTH-ROUT 

(lriter
mediote-n) 

GENERATE 
detail-name 
Next seq. instr. 

STOP RUN 

(Mojor) 

2 ~~--------------------~ 

3 l--f-------------..., 

CTF-LOGIC: 
IF the CTF level = the control breok level, 
GO to CTH for thot level; else 
GO to eTF for next higher level. 

L.f USM
ROUT 

'---r--' 

J 
Figure 81. Logic Flow of All GENERATE statements After the First 

526 Appendixes 

CTF-ROUT 

(Inter-
mediate-n} 

~ 

r 
RET- I 
ROUT 

CTH-ROUT 

(Inter
mediote-I) 

t-.-
CTF-
ROUT 

(Major) 

r 
RET-
ROUT 

CTH-ROUT 

(Minor) 

• I RST- I 
ROUT 



MAIN PROGRAM 

(IN-LINE CODE) 

TERMINATE 
REPORT-NAME -1--...rLLSisr::j-RKo>LurTrl 

Ne,,1 Seq. Inslr. 

STOP RUN 

3 

ROL
ROUT 

Pigure 82. TERMINATE statement Logic Flow 

LOCATING ROUTINES IN THE OBJECT MODULE 

RiS routines can be found by scanning the 
name field of the object module for their 
GH numbers. Most of their GH numbers can 
be found by using Figure 83. Phase 12 
reserves 24 GN numbers while scanning each 
RD statement and assigns 17 of them to 
routines as shown. in this table. (The 
other four routines, DET-ROUT, USB-.ROUT, 
CTH-ROOT, and CTF-ROUT, are discussed 
separately below.) The GN numbers in 
Figure 83 may be considered absolute for 
the first Rlsand relative for any 
succeeding RiSs generated~ In the latter 
case, the·GN number .of the INT-ROUT routine 
can be used as a base. It may be found 
from the coding for the INITIATE statement, 
which is a branch to the lIT-ROUT routine, 
with the GH number of that routine 
indicated in the remarks column. 

Licensed Material - property of IBM 

CTF
ROUT 

(Minor) 

Ihrough 

CTF
ROUT 

(Mojor) 

There is one DET-ROUT routine generated for 
each detail group in the source program. 
Each DET-ROUT routine .has one corresponding 
USB-ROOT routine. The DET-ROUT routines 
can be found by.tracing from the level-01 
statement containing the TYPE IS DETAIL 
clause. The generated instruction would 
probably be: 

GN=032 EQU * 

This is the first instruction of the 
DET-ROOT routine and 032 is the GN number. 

Each DET-ROOT routine has one 
corresponding USM-ROUT routine. The 
USM-ROUT routine is assigned a GN number 
one less. than its DET-ROUT routine, in this 
case 031. 

Appendix C: Report iriter Subprogram 521 



Licensed Material - Property of IBM 

i 
GN I ROUTINE 

, I 
01 RPH-ROUT 
02 RPF-ROUT 
03 PGH-ROUT 
04 PGF-ROUT 
05 1ST-ROUT 
06 LST-ROUT 
07 WRT-ROUT 

010 CTB-ROUT 
011 ROL-ROUT 
012 RST-ROUT 
016 CHF-ROUT 
017 CFF-ROUT 
020 INT-ROUT 
021 ALS-ROUT 
022 RLS-ROUT 
023 SAV-ROUT 
024 RET-ROUT 

Figure 83. Report writer Subprogram 
Numbers 

528 Appendixes 

GN 

One CTF-ROUT and one CTH-ROUT routine are 
assigned to each control after the highest 
(FINAL) level control (whose heading and 
footing are provided by the CHF-ROUT and 
CFF-ROUT routines). If they are described 
in the source program, they may be found in 
the same way as the DET-ROOT routines. If 
not, they can be found by tracing the 
logic, using Figure 79 as a guide. 



The COBOL-CMS Interface routine is a module 
executable under the Conversational Monitor 
System (CMS) which allows the terminal user 
to compile a COBOL source program by 
invoking the IBM OS/VS COBOL Compiler. 

The COBOL-CMS Interface routine allows the 
terminal user a conversational means of 
specifying the options, input and output 
data sets, and libraries to be used by the 
COBOL compiler. It also dynamically 
allocates all data sets for the user. It 
stores the compiled code for execution 
either under OS/VS or under control of CMS 
(for information on the interface between 
the compiled code and CMS see I~~~LYg 
~Q~QL§..!!brQ!!tine P£QG£ru!L1Q9.!$. 

FUNCTIONS 

The COBOL-CMS Interface routine analyzes a 
COBOL command string from the terminal, 
constructs an option list, issues CMS 
FILEDEF commands according to the options 
specified, and calls IKFCBLOO to compile 
the source file. The relationships among 
the DMSCOB routine, the COBOL compiler, and 
CMS are descri-bedin Figure 84. 

ENVIRONMENT 

The COBOL-CMS Interface routine, DMSCOB, 
(known to CMS as the COBOL command module) 
operates under the Conversational Monitor 
System (CMS) in the virtual machine 
environment of the IBM Virtual Machine 
Facility/370 (VM/370). 

Licensed Material - Property of IB1'1 

The COBOL-CMS Interface routine is 
initiated when the COBOL command is issued 
through a terminal, such as the 2741 
Communications Terminal. 

Input to the COBOL compiler is from the 
file specified in the filename parameter. 
This is the COBOL source program. Only the 
device types: DISK, READER, and TAPE, are 
valid as input source file devices. The 
FILEDEF command for a DDname of a COBOL 
source program must be issued if the source 
file resides either on tape or in the 
virtual reader. The default medium is 
DISK. 

Diagnostic, informational, and prompting 
messages are typed at the terminal. 

The LISTING file which is produced by 
the compiler may be written on disk, the 
spooled printer, or to a dummy device. The 
object (TEXT) file produced by the compiler 
may be written as a disk file. a spooled 
punched deck, or to a dummy device. 

PHYSICAL CHARACTERISTICS 

The COBOL-CMS Interface routine resides on 
the CMS system disk with the IBM OS/VS 
COBOL compiler and is given control by the 
initialization routine of CMS. It consists 
of two object modules, DMSCOB and DMSCBD. 
DMSCOB constructs the option list, handles 
linkages to and from the compiler, and 
returns control at the end of compilation 
to the CMS command level. 

DMSCBD contains directory information 
about each phase of the compiler. After 
installation, DMSCBD is physically part of 
the DMSCOB module. 

Appendix D: Interface With Conversational Monitor System (CMS) 529 



Licensed Material - Property of IBM 

VM/370 

CMS 

COBOL 

CMSScrvice 
Routines 

Search FHe Status 
Table and DMSFST 
macros -

Load Module 

~: 

----~ 

. 

CMS-COBOL Interface 

DMSCOB 

Initialization 
procedure 

~ .. ':::.:.:.::: ..... ;,::::.;.:;::::.;.::::::.;.: ':':':::~:';'::::':""::::;':'::-:'~:::""':':-:-.:.;,::::' .. ':-:::-,:-:-:~ System 

.... functions 

.. 
Call Compiler 

DMSCBD 
!- - - - - ~-7I----

DMSFST macros 
(Compiler 
Directory 
Information) 

COBHAND 

WRITE ENTRY card 
for DMSILB 

Final 
processing 

"':'''''' .,.,.,., .. "'»,,,.,..... ,.>,.,.', ,., ,'. RETURN 

indica~es pointer in main storage 

indicates flow of control 

.i 

I .. 

COBOL Conlpiler 

IKFCBLOO 

'. :'. 

OPEN TEXT or 
SYSPUNCH f)le 

. :., 

... , .... 

'," 

",' ,,' 

":"':,1 

.. ~:. 

Figure Sq. Relationships AmongCMS-COBOL Interface Routine, the COBOL compiler, and CIiS 

, '.~ .. ; ..... '~. 

~" ' 

530 Appendixes 



OPBRATIOIAL CONSIDBRATIONS 

The DKSCOB routine is invoked when a COBOL 
command is entered at the terminal. The 
command consists of: 

• The command name COBOL 

• The source program Ifilename l 

• Any optional parameters that the 
terminal user may wish to specify 

The parameters specified in the COBOL 
command are used to build the option list 
and to issue the CftS FILEDEF commands 
needed for the output from the compiler and 
the DKSCOB routine. 

i2!£ce Prograa Filename 

The source program filename is a required 
positional parameter. It specifies the 
filename of the data set containing the 
COBOL source program that is to be 
compiled. The file must have a filetype of 
COBOL and have fixed-length records with a 
logical record length permissible for that 
device type. . standard search rules are 
followed to locate the specified file among 
those. disk directories currently accessible 
to the·l1ser. 

The option list consists of all parameters 
specified or iaplied in the COBOL command. 
~hese parameters may appear in any order in 
a set of parentheses following the 
filename. When an option and its default 
are both specified, the last to appear is 
.generally the one assumed. If any of the 
following mutually exclusive options are 
specified, the. last to appear is assumed: 

CLIST - PUP 

IREF - SXUF 

PRINT - DISK 

A aaximum of 100 characters, including 
delimiter blanks, between options are 
allowed within the set of parentheses. The 
options are listed in Figure 85. 

Licensed Katerial - Property of IBM 

.----- I 
I option I Default 
, I 
I NOSOtJRCE SOURCE 
ICLIST NOCLIST 
IDMAP NODMAP 
IP!AP NOPMAP 
I NOLOAD LOAD 
I DECK NODECK 
I NOSEQ SEQ 
IFLAGE FLAGW 
ISUPKAP NOSUPMAP 
ITRUNC NOTRUNC 
ISPACE2 SPACE1 
ISPACE3 SPACE1 
INUK NONUK 
IQUOTE APOST 
I STATE NOSTATE 
IFLOWnn NOFLOW 
IIREF NOIREF 
ISIREF NOSIREF 
IADV NOADV 
tNOTERK TER! 
INOLIB ILIB 
IBATCR ,NOBATCR 
,NAKE I NONAKE 
INOZiB IZWB 
ISIMDMP I NOSIMDMP 
10PT I NOOPT 
IRES I NORES 
IDINAH I NODYNAM 
I SYNTAX ,NOSINTAX 
ICSINTAI ,NOSYNT!I 
IPRINT* IDISK* 
1 NOPRINT* lDISK* 
ISIZE 181920 
, yyyyyy , 
IBUF yyyyy 12768 
15YSX I SYST 

Alternate Names 

NOSOU,SOU 
CLI,NOCLI 
DKA,NODMA 
PIU,NOPMA 
NOLOA,LOA 
DEC,NODEC 

lLAG,LAGi 
IStJP,NOSUP 
ITRU ,NOTRU 
IACE2,ACE1 
IACE3,ACE1 
I 
IQUO,APO 
ISTA,NOSTA 
FLO, NOFLO 
IRE,NOIRE 
SIR,NOSIR 
ADV,OADV 
NOTER,TER 

BAT,NOBAT 
NAM, NONJUl 

SYM,NOSYI'l 

DYN.MODYN 
SYN,NOSYN 
CSYN,NOSYN 
PRI.DI 
DI,NOPRI 
SIZ yyy 

BUF HY 

INOVERB IVERB INOVER,'ER 
10SDECK I IOSD 
I LSTCOMP I NOLST ILSTC,OLST 
ILSTONLY IHOLST ILSTO,OLST 
ICDECK I HOCDECK ICDE,OCDE 
IFDECK INOlDECK IFDE,OFDE 
ILCOL1 ILCOL2 IOL1,OL2 
IL120 IL132 IL12,L13 
I COUNT I NOCOUNT ICOU,OCOU 
IVBREF I NOVBREF IVBR,OVBR 
IVBStJM I NOVBSUM IVBS,OVBS 
I NODUKP I DUKP IODUM,DUM 
ILVL I NOLVL ILVL,OLVL 
IADV. INOADV IADV,OADV 

I ILANGLVL (1) ILANGLVL (2) I 
.. ' i ' 

ISee Note below. 
I 

Figure 85. COBOL Compiler options Under 
C!S 

I 

I , 

I 
I 
I 
I 
I 
I 
I 
I 

-I 
I 
I 
I 
~ 
I 

Note: The PRINT, NOPRINT, and DISK options 
apply only in the CMS environment. An 
explanation follows: 

• PRINT specifies that a program listing 
is to be produced. The listing 
includes page headings, line numbers of 
the statements in error, message 

Appendix D: Interface iith conversational l!onitor system (CLVlS) '- 531 



Licensed Material- Property of IBM 

identification numbers, severity 
levels, and message texts {as well as 
any other output requested by SOURCE, 
CLIST. DMAP. PMAP. XREF, or SXREF). 
The listing is printed at the spooled 
printer. 

• DISK specifies that a program listing 
(as described for PRINT above) is to be 
produced, but that it is to be written 
to the appropriate read/write disk with 
a filetype of LISTING instead of to the 
spooled printer. 

o NOPRINT specifies that the listing file 
described for PRINT above is not to be 
written either to the spooled printer 
or to the read/write disk described for 
DISK. 

o OSDECK specifies that the object 
program is to be executed under OS/VS. 
If OSDECK is not specified. it is 
assumed that the object program is to 
be executed under CMS. 

The DISK option is not recognized by the 
compiler. The FDEFLIST routine of DMSCOB 
processes this option by directing the 
compiler output specified for SYSPRINT to a 
disk file called LISTING. 

The other options that appear in Figure 
85 are described in "compiler options" in 
the chapter "Introduction." 

The DHSCOB module calls routine DHSFLD to 
issue FILEDEF commands. This co •• and is 
used to specify the input/output devices 
and data set characteristics that are 
required according to the user specified 
options. These data sets are listed in 
Figure 86. For a description of CftS see 
IB1LU!:t.~.L.b£hinLl~illlUll.Q 
G.2l!.!!!I§A!isrnal ~ll2L~t.Y (CftS) Pr2.Sl£n 
~qic. Order No.SY20-0881. 

The DMSCOB routine is invoked by the CftS 
command processor in response to a COBOL 
command from a terminal user. DftSCOB 
performs the initialization that is needed 
to call the IBft OS/VS COBOL compiler. 

After compilation is complete or. if any 
D- or E-level messages have been issued. 
after error processing is complete, DftSCOB 
receives control to close all files and 
return control to the CMS command 
environment. 

.rIF-1-·l--et-y-p--e-/-F-i-l-e-n-a-m-e~;rc-·o-n-d-1-·t-1-·-o-n--R-e-q-u-i-r-e-d~lrc-o-m-m-e-n-·t-----------------------------------------------1 

r- I' I 
ISYSUT1-SYSUTIJ IAlways created IErased a.t end of compilation. I 
r--- ------~·+I--~· ------------~I~~---------- ------------------------------------~ 
I SYSUT5 ISYMDMP option I written to disk where source file resides if that I 
r---------c------+I----------------Ilis read/write; if not. to its parent disk if that, 
I LISTING ISQURCE.DMAP,PMAP, lis read/write; or else to pr.imarydisk if that is f 
I (SYSPRINT) ICLIST,XREF,SXREF, I read/write. I 
, ,DISK options I I 
Ir--------------~Ir---· I f 
,TEXT INo E- or D-level IMachine-language code created by compiler; I 
, ,error messages ,written to same disk as SYSUTS and/or LISTING. , 
I , produced I I 
r-- " ., 
,SYSLIB I LIB option ,COpy or BASIS statements in source program. I 
r-- I I I 
ISYSTERM ITERM option ,Progress and diagnostic messages and compiler I 
, , Istatistics written to the terminal. I 
I I I ., 
ISYSPUNCH IDECK option IObject module is written on spooled punch. I 
~I---------------I~· I I 
ISYSUT61LVL option Icompiler SYSPRINT output passed on SYSUT6 to , 
, I ,FIPS processor; era.sed at end of qompilation. I 
L-- I , 

Figure 86. FILEDEF Commands Issued for Compilation Under CftS 

532 Appendixes 



INITIALIZATION 

The operations of DMSCOB at initialization 
are described in Figure 87. Most of the 
processing is described in the "Extended 
Descriptions" section of the diagram. See 
the sections "option List" and "Issuing CMS 
FILEDEF Commands" under "Operational 
Considerations" for further information. 
Additional explanations are given below 
for: 

• special processing for TEXT and 
SYSPUNCH files. 

• compiler directory information. 

• Error processing. 

~ial Processing for TEXT and SYSPUNCH 
rile,§ 

After the FILEDEF commands (described 
above) have been issued for the TEXT and 
SYSPUNCH files, the DMSCOB routine sets a 
flag in the CMS Control Block for each file 
to indicate that the auxiliary processing 
routine COBHAND is to be given control when 
these files are opened during compilation. 
The CMS OPEN procedure passes control to 
COBHAND after the OPEN has been completed. 

When the COBHAND routine is called, it 
writes a CMS Loader ENTRY control card on 
the TEXT or SYSPUNCH file. The control 
card is the first card in the compiled 
program. It starts in column 1 and 
specifies that ILBCMS is the external name 
of the module that is to be loaded with the 
compiled program. This is the entry point 
of the execution-time COBOL-CMS Interface 
routine, DMSILB. 

At execution time, when the user issues 
the LOAD command, the Loader loads the 
DMSILB routine along with the compiled 
COBOL program. When the user issues the 
START command, the DMSILB routine is given 
control to do the initialization necessary 
to run the compiled program under CMS. 

Licensed Material - Property of IBM 

(For a description of the execution-time 
COBOL-CMS interface, see I~H-QS/VS CO~OL 
~'!!!!~.Q.!!g!!!L1ibrarLR!:Q9.g!L!&.9.is:.. For a 
description of the CMS commands see I~n 
!i~!_Machin~-K~s:.i!i~!LlIQ_£Q~and 
ll!!g~g~_!!~!:!.,§_Guidg" Order 
No. GC20-1804.) 

!Qi~: If a program is compiled under CMS 
and the OSDECK option is specified, the 
ENTRY control card is not written in the 
object file. The program cannot 
subsequently be executed under CMS. 

At installation time the DMSGND routine of 
CMS resolves the necessary directory 
information for each phase of the COBOL 
compiler. This information is stored in 
the form of a DMSFST macro instruction in 
the DMSCBD module. After initialization, 
DMSCBD is physically part of the DMSCOB 
module. 

During compilation the CMS Loader 
searches the File status Table and all 
DMSFST macros whenever a LOAD instruction 
is issued for a phase of the compiler. It 
uses this information to locate the phase. 

For descriptions of the DMSGND routine, 
the DMSFST macro instruction, the CMS 
loader, and the File Status Table see IB~ 
virtual Machine Facilit!Lll~~~iio!!~l 
HQa!iQ~stem (CH2L-g!:Q9.~~m Logic, Order 
No. SY20-0881. 

During initialization, DMSCOB issues error 
messages for user errors involving the 
filename parameter. the file containing the 
COBOL source program, or any of the options 
specified. The error messages issued by 
DMSCOB are listed in the section 
"Diagnostic Aids." 

Appendix ,D: Interface with Conversational Monitor System (CMS) 533 



Licensed Material - Property of IBM 

INPUT 

Start 

PROCESSING 

INITIALIZATION 

CD 
® 
® 
@ 

® 
® 

Set flag in nucleus 

Validate filename 

Define output files 

Build option list 

Prepare worl' files 

Call compiler 

Control passes to 
IKFCBLOD 

Extended Description 

CD Set compile switch in OSSFlAGS located in NUCON (see IBM Virtual Machine Facility/370 Conversational Monitor System (eMS) Program Logic, 
Order No. SY20·0881 for the format of NUCON) 

CD Check command line from terminal for filename. 
Call eMS control program to verify fi,lename. 
Determine that file has fixed·length records. 

0 Call eMS control program to define a disk for permanent output files. 
Use COBOL source program disk if it is read/write; if rend only. use its parent disk if that disk is read/write; if read only, use primary disk if that 
disk is read/write. 

CD Build parameter list for specified compiler options in EBCDIC format. 
Set switches to control allocation of output devices. 
Flag invalid options. 

@ Call eMS control program to determine rend/write disk with most space for utility files. 
Call CM~ control program to erase any old TEXT, LISTING, and utility files with same filename as file being compiled. 
Call eMS control program to issue the CMS FILEDEF commnrds required by options specified. 

® Issue GETMAIN for storage nceded by compiler. 
Set address of DMSCBD in File Status Table Extension. 
Calli KFCBLOO to compile source file. 

Figure 87. operations of DMSCOB Routine at Initialization 

Appendixes 

Label Chart 

DMSCOB VM01Al 

CKFNAME VM01Dl 
STAT VM01Fl 

FINDRW VM01Jl 
ANYRW VMIlIG3 
USEIT VM02Gl 

OPTSCN VM02B4 

FDEFS VM03Gl 
FDEFLIST VM03Hl 

NOOPT VM03Al 
STDPLIST VM03G2 



RETURNING CONTROL TO THE CMS COHMAND 
ENVIRONMENT 

When DMSCOB receives control from IKFCBLOO, 
it saves the return code issued by the 
compiler and issues a warning message for 
any nonzero return code. It then calls 
other modules to perform required 
functions. The routines and their 
functions are as follows: 

Routin~ Function 
DMSFNSA close-aIl files 

DMSERS Erase all utility files 

DMSAUPD Update the user file directory 

DMSFLD Clear all file definitions 

DI!SSMN Reinitialize storage 

Then the routine resets switches, 
indicates that the virtual storage pages 
'used by the compiler are no longer required 
and can be released, sets a return code, 
and returns to the CMS command environment. 
Linkages to these routines are °described in 
"Linkages II in the section IIDiagnostic 
Aids. 1I 

For descriptions ofothe routines see n~ 
Viti ualJ!achi~_n£!li tya 70 Con!ll2!llj,Q~! 
Moni!QLUm:em (CMS) ...f~!!!:s!:.!Ll!.Qgic, Order 
No. SY20-0881. 

PROGRAM ORGANIZATIO! 

The COBOL-CMS Interface routine consists of 
two modules, DMSCOB and DMSCBD. DMSCBD 

Licensed Haterial - property of IBM 

contains all the executable code that is 
required for initialization and for 
transfer of control to the OS/VS COBOL 
Compiler. DMSCBD contains the directory 
information that is required by the Loader 
to locate the phases of the compiler. 
After system installation, DMSCBD is 
physically part of the DMSCOB module. 

This section describes the organization 
of the Interface Routine. A standard 
flowchart and directory information are 
provided. 

This section contains four directories to 
be used in conjunction with microfiche 
listings of the interface routine. 

Figure 88 associates loaod modules with 
the CSECTs they contain. Figure 89 
associates external symbols with the load 
modules in which they appear. Microfiche 
names are usually the same as the load 
module names shown in these directories. 

Figure 90 is a directory of all the 
labels that appear in othe flowchart in this 
appendix. 

,---
I External 
I 
I COBOL 
I DMSCBD 
I 
I DMSCOB 
I NUCON 

I 
Symbol I 

I 
Type 

LD 
ER 

SD 
ER 

, 
ILoad/Object 
I 

I 

Modulel 

I DMSCOB 
IDMSCOB (after 
I installation) 
IDMSCOB 
INUCON 

• 

Figure 89. External symbol Directory 

i , 

Load Module Entry CSECT Names I Function I 
r-----------~----------.--~-------- I I 

DMSCBD Non-executable 
code 

DMSCBD I contains directory information for I 
I compiler phases (part of DMSCOBo after I 
I installation). I 

~~------~------------~-----------+-- I 
DMSCOB COBOL DMSCOB I Initialization; link to compiler. Write I 

COBHAND I ENTRY card for object module. I 
, , 

Figure 88. Load Module Directory 

Appendix D: Interface with Conversational Monitor system (CMS) 535 



Licensed 8aterial - Property of iB8 

Chart V8 (Part 1 of 3). D8SCOB (COBOL-C8S Interface Romtine) 

····Al·4I:······· 1j": --.. t!---- -- . AT 
.. COBOL" . L • ....... '1"...... ,-------

·····Bl·········. · . -SAVE REGISTERS .. 
.. SET .. 
*ADDRESSABILITY .. · . ....... '1" ...... 

·····el·········· · . .. SET COMPILE .. [----------
.. SWITCH IN .. ------- OSBFLAGS IS LOCATED 
.. OSSFLAGS" CMS NUCLEUS • NUeON' .. .. ----..;---------== .. ·r ...... 
·····01·········· · . .. CHECK COMMAND .. 
.. LINE FOR .. 
.. FILENAME .. · . ········r······· 

. '. E1 too 
ot. *oo 

.. " FILENAME .... NO •• 
.... FOUND .. *------> •• 

*0 .* •• 
*oo.* •• •• 

M.. 'or ...... ·r ...... 
..... Fl.......... . .•.• P2 .....•.... 
•• CALL .... .. 
.. TO •• -SET RETURN CODE4-
•• •• .. 1 .--~ .. .. .. .. .. .. ...... . .................... . 

1 -02 .. 
.. D3* •••• 

.. .. *01 .. 

.. : G3. *--1 
•••• 

• -. ANYRW G1 *oo ••••••••••. ••••• G3.......... ~---------
.. .. .... • TO- .. .... DMSLADW GETS ACTIVE 

.. .. .... NO" .... .... ----- DISIt TABLE OF 1ST 
•• FILE FOUND •• ------->... ND.------->UCALL DMSLADW •• R/W DISK 

•• •• • • . A •• •• -----------.... . "'.. .. ··l·Y;S ••••••••••••••••• ········1········· :~~ .. 
• H4 .-1 . . .... 

••• ERROR3Q ••• ERROR6 
Hi •• • •••• H2.......... H3 •• • •••• SQ •••••••••• 

• • •• •• CALL DMSERR •• •••• •• CALL DMSERR •• 
• .FILE FIXED •• NO •• TO PRINT.. •• ANY Rl'W •• NO ••. TO PRINT •• 

•• LENGTH •• -------->.. ERROR MSG •• ..DISK ACCESSED •• ----->.. ERROR MSG •• 
•• •• •• DMSCOB03QE •• •• •• •• DMSCOB006E •• 

L>:b;· • 
• Cl • . . .... 

FINDRW 

···.·l·.y.·;~· :: .. ····1········:: ····.i;~· ::······1·····~~:: 

536 

Jl .. • •••• J2.......... • .•.. JQ •....••.•• .... .. . '" 
• .SOURCE FILE.. YES .SET RETURN CODE. .SET RETURN CODE. 

•• DISK Rl'W •• --~ • 3ft • • 6 • .. .. .. "'. .... .. . . . .. ... ..... ................. . ............... . 
·NO ·02 • l l 

• • ->.02 • ->*02 '" 1 . Cl· •••• • ••• 

• • D3 • • A3 '" 
* • • '" .... . ... ... 

Kl •• .. .. 
• .SOURCE DISK.. NO •• AN EXTENSION •• -----_____ . ______________ _ .. .. *. .• * ..• 

·YES 

L ..... 
*02 • 
'" Ai· •• . 

Appendixes 



Licensed Material - Property of IBM 

Chart V! (Pa rt 2 of 3). DMSCOB (COBOL-CMS Interface Routine) 

..... 
*02 • 
• At· .. 
I ·····Al·········· •• CALL W •• 

UTO GE VE •• 
•• DISK •• 
•• FOR •• 
•• D •• ········1······· 

. '. B1 t. 0+ _ • 

• "PARENT DI51<+. NO 
t. R/W •• __ ~ 

to •• eo ._ 

+0 .+ ••••• 
tYES .01 • .... 1 · GJ+ *02 • • • 

• cl +-> •. · . .... 
USEIT .· .. ·Cl·········· · . • SAVE MODE FOR • 

" OUTPUT FILES • · . · . 
~"·T""" 

·.···01····· .. ··· •• CALL DMSFLD •• 
•• TO ISSUE •• 
•• FlLEDEF FOR •• 
.. SOURCE •• .. .. 
········r .. ····· 

. '. B1 t. 0" •• 
YES •• PREVIOUS •• 
--_". FILEDEP •• 

+0 .+ .. ." 
+0 ." 

1+00 •••• . . 
" F2 • . .--~ .... 

0-' ERROR2 

•• ~~BSW;· to ::·~~u···· .. ~·:: 
." INDICATES •• YES.. •• 

".-STATE" ERROR. + ______ .. >'.. MSG •• 
to .+ •• 0 002E •• 

t o .+ •• •• 

--------~: t ······ .. 1· .... ·· .. 

PRECOBFD .-. 
Gl to ••••• G2 •••••••••• 

• + +0 • • 
.+ •• -SET RETURN CODE-

•• DEVICE TYPE ." • 2 +----> 
. to .+ • • 

to 0+ • " .. ... . ............... . 
[

iiiSR-:::>--Aii-
aOR ---,,> Sq 
TAP --.... > Bli 

ELSE--

ERROR7S ·.··.Jl·········· •• CALL DMSERR -•• 
•• TO ISSUE •• 
•• ERROR MSG •• 
•• DMSCOeD7SE •• .. .. 
·······r· .. · .. 
···.·Kl·········· • • • SET RETURN CODE. 
• 15 .------------------------· . • • ................. 

. .... 
·02 • 
• A3· . . . ... . . . 1 • All • 

• •••• ·-v 
coeENO FDCOEDSR .. •• ERROR38 

••••• A3.......... A4 ... • •••• AS •••••••••• 
•• •• .. .COESW2 •• •• •• 
•• CALL DMSFLD •• YES ... INDICATES ... •• CALL DHSERR •• 

->··TO CLEAR ALL •• <--1 ~---•. STATE ERROR •• ->"TO ISSDE MaG •• 
•• FILEDEP" S •• •• ' •• •• DMSeOB03BE •• .. .. ..... .. .. ········1········:-:: : .;;. : .... ··l·N~ ········1········· 

•••••••••• : E4 : • ._> .... .'. . .... s3.......... E4 .oO ••••• 8S •••••••••• 
•• CALL DMSSMN •• .. • • • • • 
•• TO.. ... FILEID •• YES .SET RETURN CODE. 
•• REINITIALIZE •• ..CONFLICT WITH •• ----- • 40 • 
•• STORAGE •• ... COMMAND •• • • .. .. ..... . . 
········1········· ·.·l.·N.' ~ ....... '[:;:~~:; 

OPTS eN ERROR10 ..... c3.......... C4 ... • •••• cS •..•...... · · . .... .. . . 
• CLEAR FST (FILE. • .OPTION LIST.. NO •• CALL DMSERR •• 
• STATUS TABLE) • •• NEXT ... --------> •• '1'0 ISSUE MaG •• 
• EXTENSION • *. ... •• DMSCOE070E •• · . ..,. .. .. 
~~i;::::l"'''''*' '. r~s ··· .. · .. t········· 
:.... ~ 

RESETSWT ••• 
••••• 03.......... Dq ., ••• ·.OS ••••• ••••• · . ..... . . 
• RESET ALL. •• OPTION *. NO .SET RETURN CODE • 
• SWITCHES. •• SPECIFIED 0 .-~ • 70 • • • ... .* '" • 
• • +...+ '" • ········1········· ·'l·Y~S :~i;: ········t:::::::: 

'" • A3 ... · . 
NXTOPTN •••• 

• •••• E3.......... • ..... E4 •••••••••• · .. . .INDICATE PAGES • .SCAN FIRST/NEXT. 
.'1'0 BE RELEASED • -->. OPTION (I · .. . • •• * 

·· .. ···r······ ··· .. ··1······ "~.oo. 
..... p3.......... P4 "'. . .... Ps ......... . · . ...., .. '" 
• RESTORE REGS • •• •• NO .INVALID OPTION. 
:SET RETURN CODE: ., ~~~ON VA~~~ ••• ------->: T~E§~~g~ :---! . ....... j......... ··l+Y;S ................ ~.::.: .... 

•• , ERRORS2 
G4 .oO ••••• GS •••••••••• 

····G3········· ..., •• • • 
• • ,.OPT LIST + ... YES +. CALL DMSERR •• 
• RETURN. ..NEW OPT> 100 •• -------> •• TO ISSUE MSG •• • • .0 o. .. DMSCOB052E •• ............... .... .. .. ·r ·······r······ 

••••• H4.......... • •••• HS •••••••••• 
• PROCESS ION •• • 
• BITS 'TO. .SET RETURN CODE. 
• C • • 24 • 
• p 1ST"· • · .. . ·::::···1········· 
• * • J4 • • .-> •••• GETNXT •• 0 

J4 •• .. ., 
YES •• ANY MORE •• 
---... OPTIONS •• .. . . ·0 .• ·0 .• r 

. *. R4 •• 
•• t. 

• .ANY INVALID.. YES 
•• OPT IONS FOUND, .----.. .. ... .. . , .. 

'NO 

t ..... 
*03 • * Ai· .. . 

................. 
ERROR3 

l .... 
->. *' 

'" A3 .. · . 110",** .. ···JS.· ... ··.·· .. .. 
.... CALL DMSERR •• --> •• '1'0 ISSUE MSG •• 
•• DMSCOB003E •• .. .. ·······r······ 
·····KS·········· · . • SET RETURN CODE • 
• 3 • · . * • . ............... . 

l ... . ->. • 
• A3 .. · . • ••• 

Appendix D: Interface with Conversational Monitor System (CMS) 537 



Licensed Uaterial _. Property of IBM 

Chart VM (Part 3 of 3). DMSCOB (COBOL-CMS Interface Routine) 

..... 
*03 ... 
... Ai· .. . 

NOOPT t ··· .. Al·.····.··· · . SET FIRST 
EXTENSION 
'ADDRESS ................. 
1 

•• • •• Bl· •• • ••••• • 
•• CALL DMSSMN ..... 
•• TO GET •• 
•• STORAGE FOR ... '" 
.. COMPILER •• .. .. ................. 

1 ·····Cl·········· •• CALL DMSLADW .... 
.. TO GET R/W I!< + 
•• DISK WITH •• 
.. MOST SPACE- ..... .. .. ................. 

1 . '. 
n1 *. 

. * "'. NO ." R/W DISK ... 

~---* . FOUND .... *. 0* 
10<. 0* ••••• *. 0* 

:~:~: fS 
···.·El·········· · . "'SAVE DISK MODE .. 
'" FOR UTILITY .. 
'" FILES .. · . 

,~ .. ·· .. r···· .. 
·····Fl·········· •• >II • 

"'.. CALL DMSERS "' ... 
•• TO ERASE •• 
•• FILES +. .. .. 

,,~: .. · .. r·· .... 
···"'·G:l*"'*.···*·· ** CALL DMSFLD ..... 
.. TO ISSUE ..,. 
.. FILEDEF FOR •• 
•• SYSLIB •• .. .. ................. , 

FDEFLIST 1 ··· .. Hl········· ... •• CALL D"'. 
•• TO •• 
•• 'FI R •• 
•• LI R •• 
•• OPTIONS •• ................. 

TERMFIL 1 ·····Jl······.··· ** CALL D FLD *'" 
•• T E •• 
•• FI FOR •• .. .. .. .. ................. 

l .... 
->. • • A2 • . . 

. ... · . • A2 • · .--~ .... 
FDEFTEXT ·····A2·········· •• CALL DMSFLD •• 

•• TO ISSUE •• .or. FILEDEF FOR •• 
•• TEXT •• .. .. ........ r ...... 
·····B2·········· • INDICATE • 
• AUXILIARY PRoe • 
• COBHAND FOR • 
• TEXT FILE • · . ................. 

FDEFLOAD 1 
*····C2·········· •• CALL DMSFLD •• 
•• TO ISSUE •• 
U: FILEDEF FOR ** 
•• SYSPUNCH •• .. ... . . ................. . 

1 ·····D2····· .. ~··* '" INDICATE • 
.AUXILIARY PRoe • 
• COBHAND FOR • 
• SYSPUNCH FILE • · . 

==: .. ·r .. · .. · 
·····E2····· .. •••• •• CALL FLD •• 
•• TO IE •• 
•• FI FOR •• .. 5·· .. .. 

ID,~:: .. ·T .. · .. · 
·····F2·**······· •• CALL D** .. .. 
•• R •• 
•• ES·· 
40», SYSUT~ •• ....... "' . ., ...... . 

STDPI.IST 1 ·+·**G2·········· · . • SET -STI,r:.lDARD • 
*PARAME'l'ER LIST ... · . · . .... · .. r~:= 
·(I .. ··H2·········· *IKFCBLOO • • _*-*-.-*_.-.• -.-. * LINK TO • * COMPILER .. · . ........ 1' ...... . 

COBCODE ••• 
J2 *. .. .. 

•• ERROR •• 
•• RETURN FROM ... 

·.COMPILER ... .. .. .. .. 
RC16----> G3 
RCO ----> H4 1
-i~i:~~~~~--~-

~§~=;~~~;~~~~J--- ____________ _ 

538 Appendixes 

. ... · . • A3 • . ... • ._-! 
ERROR4W 

·····A3·······.·· 
•• CALL DMSERR •• 
•• TO ISSUE •• 
•• ERROR MSG •• :eo. DMSCOBOOqW ... :eo. • • 

----------~~~~Iil ····AS········· 
NSTRUC-· • 

OR --"--. COBHAND • '------'--- · ...... r .. · .. · .................. 
1 ·····B3 .. •.• .• ••·· · . .SET RETURN CODE. 

: II :----· . . ............... . 
:* ••• BS ••••••••• : · . :SAVE REGISTERS : · . • •••• "' •• :f< •••••••• .... · . 

• C3 • • *--! .... 
ERROR8W WRITE 1 ·····C3··:t;······· •• CALL OM-SERR •• 

•• TO ISSUE •• 
•• ERROR MSG •• 
•• DMSCOB008W •• •• .:to ....... 1' ...... 
·····03*·*······· · . • SET RETURN CODE. 
• 8 .----> · . · . ................. .... · . : E3 ! __ 
.... 1 

ERROR12w V 
••• ... E3·· ....... • ••• 
•• CALL •• 
•• TO I •• 
• III ERROR ... 
• .. Dt-lSCOBO •• .. .. .... · .. T .... · .. 
···"'·F3·········· · . .SET RETURN CODE. 
• 12 .----> · . · . ..~ ................ . 
* •• $ · . .. G3 • 

.. •• u ._-, 

ERR~~1~~G3.~ ........ . 
•• CALL DMSERR ** 
.. TO ISSUE •• 
•• ERROR MSG •• 
.. DMSCOB016W •• .. . . 

-----------------] 
ACE ---

OF 

-----------:------

*·······1····· .. ·· : .::+: 
••••• ·--1 

DOFINIS v ..... U3.......... . .... H4 ......... . · ... . . 
.SET RETURN CODE. ..CALL DMSFNSA .. 
• 16 .-------->**TO CLOSE ALL •• 
• ••• FILES •• · ... . . ................. . ............... . 

1 
• •••• Jq •••••••••• .. .. 
•• CALL DMSERS •• 
•• TO ERASE •• 
..UTILITY FILES •• .. . . . ............... . 

UPDTDIR 1 ·····KII •.•••..•.• ··CALL •• 
•• TO •• .. .. 
•• DI RY •• .. .. ········r······· ..... 

·02 • 
• A3· .. . 

·····cs·········· •• CALL DMSSBS .. 
•• TO WRITE •• 
."'ENTRY CARD ON"'. 
• .. OUTPUT FILE •• .. .. .. .. · .. r ...... 
·····D5·········· · . · . !RESET SWITCHES : · . .. ...... r ...... 
·····ES··· ... ······ · . • RESTORE 
: HEGISTERS 

· . ............... . 
j 

· ····F5········· . 
: RETURN : . ............ "' . 



ir-------~----~i- i I 

I IDefinition IR~ference I 
ILabel IChart IPage Block IPage Block I 
Ir------rl ----; -------il---------~ 
IANYRi IVM 01 G3 I 01 
I I I 01 
I I 02 
ICKFNAME IVM 01 D1 01 
COBCODE IVM 03 J2 03 
COBEND IVM 02 A3 01 

I 02 
I 02 
I 02 
I 02 
I 02 
I 02 
I 02 
I 03 

DOFINIS IVM 03 H4 03 
I 03 

1 I 03 
I I 03 
I I 03 
IERAS IVM 03 F1 03 
IERROR1 IVM 01 E2 01 
IERROR12WIVM 03 E3 03 
IERROR16ilVM 03 G3 03 
,ERROR2 IVM 02 F2 02 'I 02 
IERROR3 IVM 02 J5 02 
1ERROR34 IVM 01 H2 01 
,ERROR38 IVM 02 A5 02 
IERROR4i IVM 03 A3 03 
IERROR52 IVM 02 G5 02 
IERROR6 I VI! 01 84 01 
I I 03 
IERROR70 IVM 02 C5 02 
t"ERROR75 I VM 02 J 1 02 
IERRQR8i IVM 03 C3 03 
IFDCOBDSKIVM 02 A4 02 
IFDEFCOB Ive 02 D1 02 
1FDEFLISTIVH 03 H1 03 
IFDEFLOADIVM 03 C2 03 
IFDEFS IVH 03 G1 03 
IFDEFTEXTIVH 03 A2 03 
IFDEFUT1 I va 03 F2 03 
IFDEFUT5 IVM 03 E2 03 
IFINDRi I VM 01 J 1 01 
IGETNXT I VH 02 J 4 02 
I I 02 
I NOOPT IVM 03 A1 02 
I I 02 
INOTFOUNDIVH 02 F5 02 
INXTOPTN IVH 02 E4 02 
I I 02 
IOPTSCN IVM 02 C4 02 
IPRECOBFDIVM 02 Gl 02 
I I 02 
IRESETSiTIVH 02 D3 01 
I I 01 
I I 02 
, , I 

K1 
G2 
B1 
C1 
H2 
J4 
Kl 
G2 
J2 
B5 
D5 
H5 
K5 
K4 
J2 
B3 
D3 
F3 
H3 
E1 
El 
J2 
J2 
F1 
A4 
K4 
H1 
B4 
J2 
G4 
H3 
D1 
C4 
H1 
J2 
Gl 
C1 
Gl 
B2 
Fl 
J1 
E2 
D2 
H1 
H4 
F5 
D4 
K4 
F4 
D4 
J4 
B4 
El 
Fl 
F2 
J2 
C3 

Figure 90 (Part 1 of 2). Flowchart Label 
Directory 

Licensed Material - Property of IBM 

r-----r ----.,.,- i I 

I I 
ILabel I Chart 
6-----j
ISTAT IVB 
ISTATERR IVH 
ISTDPLISTIVH 

IDefinition IReference I 
Page Block IPage Block I 

I TERHFIL I VH 
I UPDTD IR I VB 
I USEIT I Vt! 
I I 
I I 
I URITE I VB 
L-__ -'-__ ---L_ 

, ~ 

01 F1 I 01 E1 I 
01 G2 I 01 G1 I 
03 G2 I 03 F2 I 
03 J1 I 03 H1 I 
03 K4 I 03 J4 I 
02 Cl I 01 J 1 I 

I 01 H3 I 
I 02 B1 I 

03 C5 I 03 B5 I 

Figure 90 (part of 2). Flouchart Label 
Directory 

This section contains information for 
use in diagnosing difficultie. uith the 
COBOL-CHS Interface. Information is 
provided about: 

o Data set activity. 
o Register usage. 
o Elements of program design. 

DATA SE'l' ACTIVITY 

The DHSCOB routine issues FILEDEF commands 
for each of the data sets that are used by 
the compiler according to the user 
specified options. These commands are 
described in Figure 86 in the section 
"operational Considerations." 

REGISTER USAGE 

Register usage is described in Figure 91. 

ELEHENTS OF PROGRAM DESIGN 

Elements in the design of the DMSCOB 
routine can be used to determine 
information in case of error. This section 
provides information about: 

o Error messages issued by DMSCOB 
o CHS service routines called by DMSCOB 
o Register saving 

The error messages issued by DMSCOB are 
listed in Figure 92. 

Appendix D: Interface uith Conversational Honitor System (CMS) 539 



Licensed Saterial - Property of IBM 

Register 

1-10 
11-12 
13 
14-15 

Figure 91. 

Usage 

.Work 
Base 
Work 
work/Linkage 

Register Usage by DMSCOB 

r-----------Tj------- i i 

I Message I Explanation IIssued bYI 
t---. I , I 
IDMSCOB004W IMinor errors were detected during compilation; successful ICOBCODE I 
I lexecution of program is probable. Compilation is completed with IERROR4i I 
I lerror code of 4. I I 
, I I I 
IDMSCOBOOBi IErrors were detected during compilation; execution is possible. ,COBCODE , 
I Icompilation is complete with code of B. IERROR8i , 
, I I i 
IDMSCOB012W ,Serious errors were detected during compilation. Successful ICOBCODE I 
I lexecution of program is not probable. compilation is completed ,ERROR12i 1 
1 Iwith code of 12. 1 1 
I 1 . . 1 I 
IDMSCOB016W IVery serious errors were detected during compilation. ICOBCODE 1 
I ICompilation is not complete. Results are not predictable. ErrorIERROR16W·1 
I ,code of 16 is returned. . I 1 
, I I i 
I ,. 1 i 
IDMSCOB001E INo filename vas specified in the COBOL command. compilation is ICKFNAME , 
I Iterminated with an error code of 24. IERROR1 1 
I I I I 
IDMSCOB002E I The file named "filenam.e COBOL" is not found on an access disk. IFDEFCOB I 
I ICompilation is terminated with an error code of 2B. IERROR2 1 
I-- 1 . 1---1 
IDMSCOB003E IThe option(s) specified is not valid for the COBOL command. IGETNEXT I 
I ICompilation is terminated with an error code of 24. IERROR3 I 
, I I . i 
IDMSCOB006E INo disk is currently accessed in a read/write status. ISTATERR I 
I ICompilation is terminated with an error code of 36. IERROR6 1 
I- I I I 
IDMSCOB034E IThe specified file must have fixed-length records to be ISTAT I 
I lacceptable as input to the CMS COBOL command. compilation is IERROR34 1 
I Iterminated with an error code of 32. I I 
I I I i 
IDMSCOB03BE IA previously issued FILEDEFfor DDname COBOL to a disk device didlFDCOBDSK I 
I Inot contain the same filename and/or filetype as specified and IERROR38 I 
I limplied by the COBOL command. Compilation is terminated with an I I 
I lerror code of 40. I I 
I-- I I I 
IDMSCOB052E IMore than 100 characters of options including one blank between INXTOPTN I 
I . leach option were specifie·d. compilation is terminated with erroriERROR52 I 
1 Icode of 24. I I 
I I I I 
IDMSCOB010E IThe specified parameter is not expected in the COBOL command lOPTSCN I 
I Iline. compilation is terminated with error code of 24. IERROR10 I 
I I . 1 i 
IDMSCOB015E IThe specified device type is illegal for input to the COBOL IPRECOBFD I 
1 Icompiler. compilation is terminated with an error code of 40. IERROR15 I , , , 

Figure 92. Error Messages Issued by DMSCOB 

540 Appendixes 



The DaSCOB routine calls several routines 
to perform functions such as erasing disk 
files, issuing PILEDEP commands and error 
messages. These routines and the 
subroutines of DMSCOB which call them are 
listed in Pigure 93~ 

Normal OS/VS conventions are used for 
register saving. SAVE and RETURN macros 
are used in DMSCOB. 

Licensed Haterial - Property of IBH 

I I , service Routine DMSCOB Subroutines I 
I Called I 
I- -f 
I DMSAUPD UPDTDIR I 
I- .. 

DMSERR ERROR 1 
ERROR12i 
ERROR16W 
ERROR2 
ERROR3 
ERROR34 
ERROR38E 
ERROR4W 
ERROR52E 
ERROR6 
ERROR70 
ERROR75 
ERROR8il 

I .. 
, DMSERS I ERAS I 
I I DOFINIS I 
l- I .. 
I DMSFLD I COBEND I 
I I FDEFCOB I 
I I FDEFLIST I 
I I FDEFLOAD' I 
I I FDEFS I 
I I FDEFTEXT I 
I I FDEFUT 1 I 
I I FDEFUT5 I 
I I TERMFIL I 
I I . -----1 
I DMSFNSA I DOFINIS I 
l- I .. 
I DMSLADW I . ANYR~l I 
I I FINDRW I 
I I NOOPT I 
I-- +-- I 
I DMSSBS I WRITE I 
l- I -----1 
I DMSSMN I COBEND I 
I I NOOPT I 
I-- I -----1 
I DKSSTT I STAT I 

-..I 

Figure 93. CMS Service Routines Called by 
DMSCOB 

Appendix D: :Interface with Conversational Monitor System (CMS) 541 



Licensed (taterial ,;,property of :rBM 

The words listed below are defined 
acc~rding to their usage in this 
publication. In the case of generic terms, 
the.definitions would not necessarily be 
applicable outside of this context. 

!=ig!1-1!§§gmble~xtL: Internal compiler 
text generated in phases 22, 21, 50 and 51, 
and used in phase 6 or 62, 63, and 6q to 
produce the object module for the linkage 
editor. This includes Data A-text, 
Procedure A-text, Procedure A1-text, and 
optimization A-text. See "section 5. Data 
Areas" for formats. 

A&£E~: A group ox routines loaded into 
main storage along with phases 1 B, 20, 22, 
21, 25, and 3 that build and access the 
compiler's dictionary. See "Appendix A: 
Table and Dictionary Handling." . 

ATF-text: An internal compiler text 
generated by phase 20 for phase 22. It is 
used in preparing entries for the 
dictionary. See "Section 5. Data Areas" 
for formats. 

ATK-~: An internal compiler text 
generated by phase 4 for phase q5. It is 
used in creating P2-text for the UNSTRING 
verb. See nSection 5. Data Areas" for 
formats. 

base locator-L1liJ.: A full word cell in the 
TGT containing the address of a location in 
the data area of the object module. Phase 
22 assigns one or more base locators to the 
Working-Storage section, Communication 
section, Report Section, and each file in 
the File Section. Phase 6 or 62 assigns a 
register to each base locator. 

k~se, locator for Li~kaqe~§£tion~ll: 
Fullword in the TGT containing the address 
of an area passed as a result of an ENTRY 
statement, the address of a file label area 
provided by the control program, or the 
address of an SD area. BLLs are assigned 
by phase 22. 

1Ut: See ka§2-1oca to!:. 

~U: See ba~_!Q£9!.gr fQ!: Link~g~ Sectism. 

CD-text: A Data IC-text type that 
descriiies communication description 
entries. 

SQ2 Glossary 

~!2L libra{y sub{outines: Sllbrolltines 
used for operations that are too extensive 
to be coded in-line each time they are 
used. Stored in the COBOL library and 
linkage edited with the object module to 
produce an executable load modllle. 

£Q!2k..§l!!£.!: An area in main storage 
representing the difference in length 
between the longest compiler phase and the 
phase cllrrently processing, .available to 
store tables and dictionary sections. 

COMMON: A communications area resident in 
main storage throllghout compilation as part 
of phase 00 and accessible via a DSECT to 
every phase. Used to store miscellaneolls 
information and to pass information from 
one phase to another. The format is given 
in "section 5. Data Areas". 

~NTROL {eco[d: An a-byte record 
associated with a DATA record. It is Ilsed 
during the sorting process when phase 6Ais 
prodllcing an alphabetized cross-reference 
listing. 

QQU~T llbl~: A part of the object module 
only when the COUNT option is specified. 
It contains entries for each procedllre-naae 
and verb in the sOllrce program. 

critical prog{aa break: In Data IC~text, 
these are. the Data Division header, .Data 
Division section-names (File, . 
Working-Storage, Linkage, communication, 
and Report), the beginning and end of 
Q-Routine text, and-the beginning and end 
of Report writer text. In Procedure 
IC-text, they are Data Division headers, 
Report Section nalles, Procedure Division 
headers, Declaratives, End of Decl'aratives, 
beginning of debug packets, and end of 
program. 

Data A-tex!: Text generated by phases 22 
and 21 for phase 6 or 64 to generate the 
data and global table areas of the,object 
module. See "Section 5. Data Areas" for 
format. 

Da~C-text: Data Division inforaation 
collected by phases 10 and 12 and aerged 
with Environment Division information for 
ase by phases 20, 22, and 21 in prodllcing 
Data A-text and data-naae dictionary 
entries. 



g!ta operand: A literal, figurative 
constant, or data item described by a 
Record Description entry (with a numeric 
level number) and used as an operand in the 
source program. 

J2ATA..:.!:~~: . A qS-:-byte rec,ord built by . . 
ph~se 6~ . which contains information about a 
procedure-name or a data-name obtained from 
input DEF-t,ext. 'It may also contain 
references to the procedure-name or 
data-name. 

Debug-text: Text generated by phase 6 or 
63 and ,.usedbyphase. 65 for the STATE or 
SYKDKP opti.on. Ii; contains card numbers, 
their 'displacement within the object 
module, the Prioritypf each segment, and 
discontin~ity.elements (prpduced by phase' 
63 only). 

DEF-text· .Textproduced by phases 22 and 3 
for .. ~~,6A to use in generating the 
cross-reference. listing,. if the SXREF or 
the XR.EF optiqn is in effect.· 

de,liinite£:~'A~·.internal compiler text 
ca tegory tha t consists of. the following 
elements: critical program breaks, verbs, 
source procedure-names at point of 
definition,. andcompiler-generated 
p~oc.edure-ll:ames at point of definition.' 

delimiter pointe!::' A field'in dictionary 
entries for Data Division group items and 
Procedure Division section-names. For a 
group item, .. the delimiter pointer contains. 
the section ·number and dis.placement of. the 
n.ext group ,item on the same or lower level. 
For section-names" it contains the section. 
number and displacement of the next 
sec,ti,on,.~a me •. , . 

dictionan: A special table,. built by 
phases 1B, 22,·: and 21, into which all the 
attributes of every. data operand, nondata 
operand,· ... and. pro.cedure-name in. the source 
program ,are collected. Unlike.T AMER 
tables, the dictionary. may h.e spilled. onto 
external. storage if_ storage space is· not .. 
sufficient~ 

Si£!ignary attribute.§: Descriptive 
information about every source program name 
placed into the dictionary by phase 1B for 
procedure-names and by phases 22 and 21 for 
Da t!=,-' Div~sion, names, and incorporated by., 
phase ~ into P1-text. 

dictioilary..l!6fnter: The.Q.ictionary section 
number and displacement of a dictionary 
entry. The pointer is stored in the HASH 
table Cit .a location depending on. t~e hash 
valu4i!·ofthe name the en try .. describes~. If." 
twoor more;·names·hash to the. same vallie,· 
special processing is re.quired..see 
"lppend.ix . A: Table .apd· Dictionary 
Handling. " 

Licensed Katerial - Property of IBM 

!=~_1E!~Q~£~L: Text generated by 
phases 10 through 51 llhenever a sOl1r·=e 
program error is encountered. The text is 
collected by phase 6 or 64 and used by 
phase 70 to generate error messages. 

el~LJtfiLtiru!!.~!ul: One logical Ilnit 
of a string of text, such as the 
discription of a single data item or verb, 
preceded by a unique code identifying the 
element type. Each type has a fixed 
format, as given in "Section 5. Data 
Areas" • 

~n~I-l~s~~_~n!nL: contiguously-placed 
information in a table that describes one 
item. All entries in anyone table are 
usually fixed in length and format. See 
"Section 5. Data Areas". 

error: A deviation from source language 
rules discovered in the source program. 

!~~1§!~: External Symbol Dictionary cards 
that are punched in phase 6 or in phases 62 
and 64, containing control information 
which identifies each external symbol in 
the module. They are used by the linkage 
editor to put the modules identified by the 
external-names into the load module. 

PD-text: A type of Data Ie-text that 
describes files. 

fragmeA!: A portion of code having a 
maximum size of one less than 64K bytes 
(65,535). A fragment begins with the first 
byte of a verb and ends with the last byte 
of a verb preceding the verb with a final 
relative displacement greater than 64K 
bytes. This unit is used in processing for 
the STATE or SYMDMP option. 

qlob~i-t~!!le: See ~§.!s. GlQ.baLTable and 
~ogram_210b~L1~~le. 

Q!: See £rocedure-nameL-compiler
g~~ted. 

hierarchy-of operators: The order in which 
operations must be performed in an 
arithmetic expression. 

~~:L.!!n!!!£!!al £9J!leiler_tettl: Text 
generated in phases 10, 12, and 1B from the 
source program, modified by subsequent 
phases, and eventually converted to A-text 
or dictionary entries~see "Section 5. 
Data Areas" for formats. 

Glossary 543 



Licensed ~aterial - Property of IBM 

i~ii~~Q~du~~: The set of procedural 
instructions that are. part of the main 
sequential and controlling flo'w of the 
source program, that is, nO.t part of the 
Declaratives section or Sort input/output 
procedures. 

In:!=~il~dia te-.!~:!=: Te xt generated by 
phase 50 consisting of intermediate forms 
of Procedure A-text and Optimization 
A-text. Used only for input to phase 51. 

I!l.t~rmedi!l~~-t~:!=: Text generated by 
phase 50 consisting of E-text to which an 
identification prefix has been added for 
phase 51. 

in~~gigte~ul:!=: Where the source 
program specified an arithmetic computation 
using more than two operands, the output of 
one step in the computation which is then 
used as an operand in the next step. At 
execution time, intermediate results are 
held iri registers or in the TEMP STORAGE 
field of the TGT. 

LD~text: A Data IC-text type that 
describes level-numbered entries. 

Hain~~_Ar~: Main storage permanently 
allocated for tables and/or dictionary 
sections. The' 'Main Free Area is in that 
portion of ma'in storage iinmediately higher 
than COBOL space. 

.!!!g~L.£Q~: A 4-bit binary code 
identifying i;he.:,different types of 
dictionary entries. All data entries start 
with 0, and allnondata entries start 
with 1. 

Hg§:!=~of_~_Q~§_clau~_~ith the 
DEf!lill~_ID!..:.:2l!!:ion: A data-name for. a 
variable-length group item which does not 

. itself contain an OCCURS clause with the 
DEPENDING ON option, but at least one of 
its subordinate items at the next level 
does contain such an OCCURS clause. 

'!!!~£Q~: A 4-bitbinary code 
ident1fyirig the different categories ofLD 
entries. 

n2ng~_Q~~sng: A file description, 
communication description, sort 
description, report description, or 
condition-name used as an operand in the 
source program. 

544 Glossary 

QRj§~ hie~hY: The order of all group , 
and elementary items defined within the 
second group item in a HOVE CORRESPONDING 
statement. 

ob~ct_l!!.odu12: The output of a single 
execution of the compiler, and the input to 
the linkage editor. 

Q1!:!=imi2.ti2n-.!=~I.:!=: Text generated by 
phases 50 and 51 to be used in phase 6 'or 
62 to eliminate storage duplication for 
virtuals, literals, and procedure';'names. 
See "section 5. Data Areas" for. format. 

~l-of=!ig~~~: A section in the 
Declaratives portion of the Procedure 
Division, preceded by a USE statement. 

QIERFLQjL.£2£QJ::!!: A 16-byte record chained 
to a DATA record. It contains references' 
to the procedure-name or da ta-name which 
would not fit in the DATA record. 

PG~: See nQg:ram S!lOR!ll Tgblg. 

~~: One load module of the compiler. 

PN: See ~~~!!ure=~!l!!2' sou,"ce program_ 

~rioritt: The number assigned to a section 
1n the Procedure Division. All sections 
having the same priority are loaded 
together as a segment. One of these, the 
root segment, resides in main storage 
throughout execution of: the program. 'l'he 
other segaents are loaded in order of the 
priority number. each s'egment overlaying 
tbe one bef~re • 

E!:ocedure-name, com2!.ler-qgnerated_l§!!:t: A 
point in the procedure instructions which 
the compiler designates to be the object of 
a branch instruction and, therefore, 
defines by lIeans of: a GN number. 

E!:ocedure-name, sO~2-proqram (PUt: A 
user-assigned name.which appears in Area A 
of the soqrce program Procedure Division 
once, and which maybe used as the object 
of procedure-branching source statements. 

procedure-name,' variablL.1!lt: The object 
of a br .. anching instruction "hich may. vary 
at execution time because. it is modified by 
a PERFORM or ALTER statement. 

~~!~LA';"text: A text of assembler 
language-like instructions produced by 
phase 51 and qsed by phase 6 in generating 
uchine instructions for the object module 
or used by phases 62 and 63 in generating 
Pro.c::edure A1.;.text for phase 64. See 
"Section 5.' Data Areas" forfor.at. 



Proceda~e A1-te7~2 ~ ta~t O~ assewhler 
language::llT(e·-).li:S;:,~ II c:': io ns ',):!~ ad He e d by 
phase 63 and used by phase 64 in generating 
machine instructions for -tI,e object mo(lnle. 
See "Section 5. Data Areas" for format. 

R£Q£~£'§~P..1Q:f!1f: Unit. of add;:-essabilitl in 
the optimizer versj.on of the machine 
language program. Each P:;:ocedure block 
consists of appro:cimately 1:096 bytes of 
code. Host Plls and GUs uithin a Proc;edU:i.:·3 
block are addressed as displacements added 
to a base register uhich contains the 
address of the first instruction .::r£ the 
Procedure blocl,. 

Procedure IC--te:,t: ili.:e1:t has'3d on the 
sourceprograill-procedure Divisiol.l and 
Report Briter statements iu the Data 
Division Q It is generated ill its initial 
(PO) for-ruby phases "120 1Bo and 22. and 
modified by phases 3 and 4. Phases 50 and 
51 use it to generate Procedure n-text. 

ProglElL.f!.1obal TEhJ.& (PGfL~ An al~ea of 
main storage in the object Ulodule llhich 
contains virtualso literals. and address 
constants used by the ohject code of the 
generated prcgrar;" 

.Eb:.Qgg~'HLlil§§S~: il. nassage m~it·ten to the 
SYSTERtl dataset by phase 00 uhen the 
compiler is operating muder the Tillie 
Sharing OptiOD (rSO) of the operating 
system," 

PO-"i:ex'i:: The form of pj~oced.ll.re IC .. te:t"t 
created firsto by phas·es 12 (for Report 
Briter). 1B (for the Procedure Divisio~ u 
and 22 (fol: Q-Rontilles), as input to phase 
3. 

P1-·te,:t: 'rhe form of ProceauI:e IC·-te"~t 
Created by phase 3 as input. to phase tL 

P2-tezt: The form of Procedure Ie-text 
created by phase I~ a s in pu t to phases 50 
and 51. 

g=Rolltin~: Object module sUbI:outines 
generated by phase 22 and used to calculate 
the length of a variable-length field 
defined by an OCCURS ••• DEPENDING ON clause 
and the location of the U"ariablY'-located 
field uhich follows it. 

gyaliii.§fL!llHll.§: A useJ:-assigned name uhich 
must be referred to along uith anotheJ: name 
to be unique, since it is used to define 
mOJ:e than one item in the source progJ:am. 
FOJ: data-names, the qualifieJ: is the name 
of a group to Hhich this item is 
subordinate, and for procedure-names the 
qualifier is the section-name of the 
section in t-lhich the procedure is defined. 

U.censed NateLial .. Prop erty of IBH 

lnlE::t~L~,~ A. te:cc.: produced by phase 6 or 64 
for phase SA, if the SXREF or the IREF 
compiler option is in effect. to be used in 
producing a cross-reference listing. Each 
element indicates the card number of the 
statehlent in which a user-assigned name vas 
:ceierTed to. 

!1lJt:.I.§.!£:!;.: Information produced by phase 6 
or 64 for the linkage editor, indicating 
all address constants in the object module 
uhich @ust be relocated. 

1:QQ.L.§§£L!.!l§.!l.t: That portion of a segmented 
object module uhich is resident in storage 
throughout object program execution. 

SD-text: The forill of Data IC-text 
describing sor:t description entries. 

§.%1m.i!g2._.£§:§.!L1.Q£;S!ig!:._..lli!l1.L: A full Hord 
cell in the TGT contai~ing the address of a 
field in the data area which is variably 
located because it follous an 
OCCURS •• QDEPENDING ON field in the same 
recoI:d. 

section: A series of source progr:am 
pr:ocedur:e illS"tructions grouped under the 
same section-name. 

gSLlli.§l!i: '1'ha t por tion of a segmented 
object module uhich constitutes one load 
hlodule. It consists of all the 
instructions in those sections uith the 
sal~e priority. 

2'§Slli!~.!!i£r.Li.Q1!~ The feature by tlhich the 
source programmer can organize his object 
prograhl into several load modules, or 
segments, uhich may overlay each other 
during execution. 

2Qg~£§ !.!lggyl.§! The source program input to 
a singIe execution of the compiler. 

§ybject hig£archy: The order of all group 
and elementary items defined uithin the 
first group item to appear in a MOVE 
CORRESPONDING statement. 

Uble.J~piler tablet: A contiguous area 
in main storage containing information of a 
particular type. A table is composed of a 
variahle number of entries of a fixed, 
usually identical, format. 

table-locator: A field divided 
conceptually-into tvo parts, the first of 
uhich identifies the block vithin a table 
and the second of which specifies the 
displacement uithin the block at which an 
entry may be found. 

Glossary 545 



Licensed Material - Property of IBM 

TA~~R-l!able-A£~2_~~ng~~~~_~~g~ive 
!m!ll.inesl.: A group of routines resident 
throughout compilatiori in phase 00 and 
accessible to all phases, which get space 
for, build, and provide access to compiler 
tab;Les. 

TAMER spa~: space in main storage 
occupied by TAMER tables. It follows (that 
is, is in higher storage) COBOL space. 

1~2~.£lobaLTab~1:GTl.: An area of main 
storage in the object module containing 
information and work areas for use by the 
object program. Its format is given in 
"Appendix B: Object Module. II 

te~£~y~sult: A field temporarily 
allocated in the Tsportion of the TGT to 
hold the result of an arithmetic 
computation, where that result must be 
placed in several receiving fields and each 
receiving field may require conversion or 
truncation. The space is allocated by 
phase 50. 

~gxt: Information created and written on a 
work file by one phase for subsequent 
reading by another phase g representing a 
stage in the translation of the source 
module into an object module. 

12.1:: See Task 2.lo12~L~!:!lg. 

n!L.l!~Q.!.~-!~formatiQ!l~lockl.: One of 36 
eight-byte cells in COMMON uS2d to provide 
information about TArtER tables. The TIBs 

546 Glossary 

are numbered and can be reassigned after a 
table has been released. See "Appendix A: 
Table and Dictionary Handling." 

tr~si!illL~1,;.~: A portion of main storage 
reserved during execution time to contain 
segments which are not permanently resident 
in main storage. It contains one such 
segment at a time and is large enough to 
hold the largest non-resident segment in 
the program. 

variable-length field: A data item 
described by an OCCURS ••• DEPENDING ON 
clause, whose length depends on the value 
of the object of DEPENDING ON. 

~rb atring: A verb and its operands. 

virtual: T~e name of a procedure or table 
referenced by a procedure. but not defined 
in the source module. It is necessary 
because of a CALL to an external procedure 
or a branch to a COBOL library subroutine. 
At execution time, if neither the DYNAM nor 
the RESIDENT option vas specified, the 
address of all procedures r.eferred to by 
virtuals (which have been linkage edited 
into the load »lOdu.le) are stored in the 
Program Global Table. If the DYNAM or the 
RESIDEIIT option is in effect, library 
subroutines are dynamically loaded, and if 
the DYNAM option is in effect, subprograms 
are dynamically loaded. 



Licensed Material - Property of IBM 

DIAGRAMS 

Diagrams 547 





t::I .... 
I» 
IQ 

~ • In 

UI 

"" \0 

t::I .... 
I» 

IQ 

Ii! 
EI 

-" 

~ 
11 .... 
~ 

t::I 
CD 
In .... 

IQ 
I' 

o 
Ki 

c+ 
~ 
CD 

o 
til 

"-
tJf 
n o 
til 
o 
I:'" 

n 
o 
EI 

"" .... .... 
~ 

LISTER PHASES 

SYSIN 

'COBOL 
source program F"SY''\'YY'»,,::'<'0,'\'Y)>>"1 

SYSUT4 
If LIB and LSTONL Y 
or LSTCOMP 

LEGEND: 

~~~~~~~ 
Transfer of data to and
from data sets

Transfer of data
in storage

""If LVL is in effect, output is written on SYSUT6
instead of on SYSPRINT.

IP-text

PHASE 05

Scans Source
program.

Inserts
syntactic
markers.

PHASE 06 PHASE 08

Sorts source

I I
Produces

program. Lister option
output.

Inserts
cross-
references.

SYSPRINT**

If FDECK

If LSTCOMP

I:'"
o
m
::l
In
m
~

3

~
m
11
I»
I-'

It:J
11
o

"" l!l
"<I

o
HI

H
til
131

t:'
I»
III
11
I»
Iii
Ul

\J1
\J1

t:'
I»
IQ
11
I»
EJ ...

~
11
N .
t:'
CD
Ul
III
1::1

o
HI

....
".
CD

o
til

......
<I
til

g
til
o
L-'

n
o
II

'"
~

~

P".IC-••••• "d<-O... ~

r-"\\\\\%\\\~='!!~+ SVSUTJ
• • DotalC-led

SYS1N'

Source prog ldenli
ficulionfnwi.anmmt,
and 0010 Di"j.ion'l

" SOURCe
ood
NOlVL

PHASE .0

information
f~
Identification,
[n ... ironff'''"',
and D~to

and E-te~1

i'HASITO

Translate.
VALUE and
P'ClU~f
c'ou.es.

1
SYS1N' ~~~WM~~

Sourceprograrn
Proce<\ure Divilian

'II LSTCOMP u' LIB .. in ~ffcci. "'put i. rUdd 'n."
SVSUT4 iMIt''''' ,,' 'rnmSYSIN

"11 LVL IS ", dl1X:1. WlllUI i5wrill~"u"SYSUT6
ill<tc\odufunSYSPRfNT. ifa LIB ur LSTCOMP
.""""'ti.h"llh".uln ... "v ·,,,<lI'I!.

•• 'SYSUT3 If Ph,1SC JS isn.~JUirt·d.

fO-lexiond
[-leKlfo.
Proo;..dure

~WM'>\Wb§1tF~"'\"&~~ ~";::':r:"rcl!

g~r. ~~~ ~~::,,~c-,
~

~D"' .. my
~FD.CD.SD.

lO,ond
dictioll(l'Y
entrie.,
'Dmrl~tel Doter
A-Ted;
gencrot~,O-

lt~ en~ri".

• o""ineo.

PHASE 2\
Co"'pl~t".
dictionary
enlrie';
gen~rnte,

Oo'e A-I"d!,,'
OeB.,DECS, •
De'e",,;,,""

CO plete
FOand
SOent,i".

'11 the CSYNTAX or SYNTAX OPI,on
.. in elfeo::l. E·te"'l isw"lIen on
S'I'SUT4 for direct inp"ll~ pha;;:10.

PROCEDURE TRANSLATION PHASES lli:l~EI .. E;W~Yt:;!;J7;-;g,C:112j}~:*JBf8.;;;fi;7~t:-:[~§t7:~d~~r:J!i&'0i;f:\:;10'i6\\::{;;!i!~jg%.,.:.-f$W;±?>it~74b~£srif::5r1

L-'
o
C1)
::::t
Ul
C1)
P-

3:

~
CD
11
I»
~

I'd
11
o

't:I

l!l
rt

Iocj

o
HI

1-4
til
:I:

E
IQ
H

If.I
o
I>-t
+'
~
III
o
'"' III

....
CIS
'n
'"' QI

1;;
E

rc
QI
III

"" QI
o
'n
...1 e

Debug text for SYMDMP
o.STATE HOPTi, in

PROCTAS and SEc;INDX.

Prod.rce.
debugging
information
fo.FLOW,
STATE,or
SVMOMP.

PROCTAB, CARDINDX, SEGINOX, PRQCINOX, ond PROGSUM

Debug
Do.

IfERRTBl
overflow,

E-Iext

~fv!~f~!!~ r----------- ----------- -- ------ ----- ---------l
/ I

I

" I IfSXRfFor
I XREf re~ue.led

cro .. -reference
listing

ERROR PROCESSING P'~H~AS~E:S~~~*S7So/"!1S#1mt:*t3'
PHA5En PHASE 71

HD, TXT, ondRlD
,Iot"rnen!'> for obiect ______ :ro~r~ __________________ -t~;:7::;~ e~.:~5!.6_. ______________ __ -1/ ~'- _-Jr

1 E-le"tloph:ne70ifph:.,e.
I 62. 63, and 64 lextprClcejOing

Debug-I .. x' I bypa d •

. :>s£;;~:,J~J;;:7£A:0f!Vt+,*1At7:0'L0~j/J/::+tA7V\F,,~SUT'

IfLVl;. in eHect, outp!J1 ;swrillen on SYSUT6 in"cod of
SYSPRINT, except for noou'put from ph"", 80.

Conloin.
'eKhfo.

Conloin.
le~tf~

I 9; ~'-~~m :
SYSUTJ _o.!e!!~""~ ____________ .J

" ERRJBL
I overfl"w

ERRTBL

PHASE 70

PHASE 80

Do FIPS
proce~ing;
wrilesource
Ii.ling

'"' OJ
.r!
110
EI
o
U

...1
o
IQ
o
U

III
I>
"III
o
QI
...:
+'
11-1
o
1:1
til
'n
III
QI
Q

t'I'l

+'
1-1
CIS
III

. ...
EI
CIS
1-1
til
CIS
'n
Q

t'I'l
1l'I
1l'I

III
EI

fl
til
CIS
'n
Q

t;t
I»

IQ
H
I»
iii

N .
ttl
I»
H
rt'

....

::Ii
CD
rt'
::r
0
p.

0
HI

0
"C
CD
H
I»
rt'
0
=:I

1-3
I»
tI'
CD

0
HI

n
0
=:I
rt'
CD
=:I
rt'
til

t;t
I»
IQ
H
I»
iii
til

U1
U1
U1

~
OBJECT
MODULE
PRODUCTION

Phases 50

I I 51
6

Part 6

CONLL i--
AND I/O

Phases 00

I 01
02

Part 3

I Phase 04

Part3A

OPTIMIZATION
OF OBJECT
MODULE

Phases 62
63
64

Part 7

I

OVERVIEW

Part 2

]

REFORMATTED
SOURCE CODE
LISTING AND
EMBEDDED
CROSS-

I REFERENCES

Phases 05
06
08

Part3B

I
DEBUG DATA
SET
CREATION

Phases 25
65

Part 8

\DENTI FICATION
ENVIRONMENT
AND DATA
DIVISIONS
TRANSLATION

Phases 10
12
20
21
22

Part 4

PROCEDURE
DIVISION
TRANSLATION

ERROR

Phases 1B
3
35
40
45
50
51

Part 5

MESSAGES,
DIAGNOSTICS,
CROSS-
REFERENCE
LISTINGS

Phases 6A
70
71
72
80

Part 9

t" ,...
0
CD
=:I
til
CD
P.

13:
I»
rt'
CD
H ,...
I»

ttl
H
0

'1:1
CD
H
r+
'"I

0
HI

H
III
::Ii

t:I
I»

I.Cl
11
I»
IS
Ul

VI
U1
--I

t:I
PI

I.Cl
11
I»
EI

N

'tI
I»
11
(i-

N

3
(1)
(i-
~
0
~

0
HI

0
"C
(1)
11
PI
(i-....
0
1:1

0
CI
(1)
11
CI
(1)
C

INPUTS FUNCTIONS

Controls compilationa nd performs 110 functions COPY and
formatted listing Part 3

Translates Identification, Environment, & Data Divisions
Part 4

SYSLIB
Translates Procedure Division PartS

Produces Object Module

Part 6

Optimizes Object Module

Part 7

I I
(Other

User
Libraries

Produces Debug Data Set

PartS

Issues error messages, diagnostics, & cross-reference listings
Part 9

Reformats source code listing and embeds cross-references --1.1------, I

If SOURCE

If DECK

RESULTS

SYSPRINT or SYSTERM

Source listing
object module

SYSLINK

If LINK
L~~=----+-----c.~\ Object code

I
If SYMDMP

If XREF. SXREF. or LVL

If LSTONLY or LSTCOMP

If FDECK

If LSTCOMP

SYSUT5

Debug Data
Set

SYSPRINT or SYSTERM

Error messages
cross-reference
source listing with
F1PSfiag

SYSUT4

I:'"
0
(1)

::I
In
(1)
P.

3

~
m
11
I»

'tI
11
0

"C
m
11
(i-

'-=
0
HI

H
tJI
3

o
1-'.
III

<Q

lil
51
CIl

U'I
U'I
\0

o
1-'.
III

<Q
11
III
13

I\.)

'1j
III
H
rl"

LV

t3
CD
rl"
:r
o
p..

o
H1

o
'tl

CD
H
ill
rl"
1-'.
o
;:!

n
o
;:!
c+
11
o
I-'

III
;:!
p..

H
::J
'tl
s:::
c+

d
s:::
c+
'tl
s:::
c+

0
®

®

®

®
eD
®

INPUTS

Storage

LlNKCNT

'XV' code

'ZZ' code @

Description

Receives control frJm; returns control to operating system.

FUNCTIONS
r;;;'~'~~tc"'·""";Ai.lIC";;'4'lii!il'k\>"""(5£i::'·1·1 J 0 Recel,,, cOOHol from Operating System ~.'

~:".'.)I •. ~ ~~;;~~,:;.;~~~~.~~~~~-----~ [".'.1
'~1, Handles input/output requests ".,.

I'~.I~'~'· ~:' .. ~::~00:::-;-::~-:~:-::-:~--= " .•...• r--... ~ ® Manipulates tables for other phases d
., (';:\ ------------------ t"
~ ... '.- \.SJ Provides Communications Area r'.',j 'ii" _________________ P
k' ® ~e:~"::.c:"~~~o: __________ f'
I'.:~; ® Determines compiler buffer sizes and t.·l· .. L Opem compiler data sets. I/-
0"' "

L.::;:Jk'~·j!j<:.;.:J~;-;.-~·-·-,:; :-,-:·--;t:;;--';·:;-~~?~~~;-~~t

Module Chapter Chart r;;;;;;-- ,---- r---
lKFCBLOO Phase 00 AA

Provides Table Area Management Executive Routines (TAMER) for acquiring storag~ for and IK!=CBt.OO Table and
building tables. Dictionary

Hamling

Provides Communications area (COMMON) used to pass inform:ltion between phase~. ilKFCBLOO Section 5:
Communi-
cations Area
ICOMMON)

Contains installation default values of compilation parameters, determines user options. IIKFCBLOl Phase 01 AB

Processes compilation parameters, determines buffer sizes tor all phases, obtains storage for IKFCBL02 Phase 02 AC
tables, dictionary, and buffers, enters information in COMMON, opens data sets.

Activity of data sets and buffer assignments is summarized in Figure 10.

'XV' and '22' codes are summarized in Figure 5.
I -- -- ---- - -----

CD

SYSPRINT or SYSTERI\1

t,-1
1-'.
o
CD
::l
CIl
CD
p..

:z:
p;
rt
II)
H
1-'.
III

'1j
H
o
'tl
m
11
c+
'<

o
HI

H
to
t3

t:;I
III

IQ
1'1
III
iii
III

U1

'" ~

t:;I
1-"
III

IQ
I-!
III
Ii!

I\.l .
'd
III
H
IT

W
III

n o
~
III
1:1
p..

W
1>;0
til
H
til

'd
11
o
o
(i)
III
III
o
1'1

INPUTS

SYSIN

FUNCTIONS

r-~~~~~~l

I--+------------i> PHASE 044 I »l

Process BASIS and COPY statements.

~
~
" -S

f I···:.·.'.'.···, .. ·,· "'1 ... ~

~~.~ ":":

/:;-,

~r

RESULTS

SYSUT2

SYSUT4

SYSPRINT or
SYSUT6 if
LVL source
listing after

I:"'
o
III
l:'
III
III
p..

t:It

~
(i)
1'1
I»

'd
1'1 o
."
III
1'1
IT

'<l

o
HI

H
tIl
::3:

t:;j
I»

\Q
11
I»
II

'" .
'" I»
11
r+
W
tJI .
!:<I
CD
HI
0
11
II
I»
r+
r+
CD
p.

til
0
j:::
11
0
CD

n
0
p.
CD

I:'"
1/1
r+
I:S
\Q

III
I:S
p.

t'!I
II
tr
CD
P.
p.
CD
P.

n
11
g
1/1
I

11
to
HI

t:;j to 11
III
\Q

to
I:S

11
I»

0
CD .. 1/1

1/1

VI
CI\
W

INPUTS

SYSIN

COBOL Source
Program

SYSUT4

FUNCTIONS
SYSUT2

SYSUT2

If LIB
® Inserts cross-references information.

@

Description

®

®

©

@

Inserts syntactic markers to indicate such items as new statement, reference type,
level number, indentation. and qualifiers. Detects syntax errors and inserts error
and recovery markers.

Makes two or more passes of input source; inserts pointers at place of definition
to places of reference and at place of reference to place of definition.

Output is written alternately on SYSUT3 and SYSUT2 at each pass of input
source. Output of the last pass is always written on SYSUT2.

Prints preface consisting of format description, statement number uses, footnote
use, method of indentation. summary listing; lister option listing; punches
source program for later compilation if the FOECK and/or COECK option is in
effect; passes source program to phase 10 if the LSTCOMP options is in effect.

Prints reformatted source listing
with embedded cross-refsrences;

Punches reformatted source program;
If FDECK

Passes source program for compilation; If LSTCOMP

Writes COPY/BASIS E-text,
If Errors

Module Chapter

IKFCBL05 Phase 05

IKFCBL06 Phase 06

Phase 06

IKFCBL08 Phase 08

BESULTS

SYSPRINT

SYSPUNCH

Reformatted
source program

SYSUT4

SYSUT3

To IKFCBL10
(Part 4)

I:'"
o
CD
I:S
1/1
CD
j:b

3

~
CD
11
I»

'" 11 o
'tl
CD
11
r+
~

o
HI

1-1
tJI
3:

t;I
III
IQ
11
III
a
N ..

~"tI
11111
11111
::st'l"
~~
III •
t'I"
OCS:
::SID

t'I"
go
~

0
111

0
"CI
(I)
11
III
t'I" o
0 ::s o
H
~
(I)

::s
t'I" @
111
n
III @
t'I"
0
::s .
til
::s
CI
11
0
::s
a
(I)

::s
t'I" ..
III
1:1
~

t;I t;I III
III t'I"

\.CI III

~ t;I
a
Ul CI

Ul
U1
0'1 0
U1 1:1

FUNCTIONS

INPUTS

o Encodes Identification, Environment. and Data Divisions

Analyzes syntax

SYSUT3 o Generates Report Writer Subprogram

!--,----IDII>..jI!lIl@TranslatesVALUEandPICTUREciauses

@ Produces dictionary entries;

Generates Data A-text

Generates Q-routines

Description

Reads source cards and stores information in the form of Data IC-text, builds tables, sets
cells in COMMON, analyzes syntax, writes source on SYSPRINT if SOURCE is in effect
or on SYSUT6 if LVL is in effect. Reads source from SYSUT4 if LSTCOMP or LIB.

If source program contains Report Section, generates Report Writer Subprogram (for the
structure of this program see the chapter "Report Writer Subprogram") as Data IC-text
scans input for errors and generates E-text, writes Report Section on SYSPRINT if
SOURCE is in effect (or on SYSUT6 if LBL is in effect), builds TAMER tables and sets
COMMON cells. If VERB is in effect generates Listing A-text. Reads source from
SYSUT4 if LSTCOMP or LIB

Translates VALUE and PICTURE clauses from Data IC-text to ATF-text, writes partial
dictionary entry for each LO, scans input for errors and generates E-text, builds TAMER
tables .

Produces dum~y FD and SO dictionary entries, builds CD; LD. RD. and 10 entries,
completes Data A-text, generates a-routines, produces E-tl!xt. buitds TAMER tables;
completes FO and SO entries, writes Data A-text for DeBs and DE CBs. determines
buffer sizes, produces E-text.

Module

IKFCBL10

IKFCBL12

IKFCBL20

IKFCBL22

IKFCBL21

----cD

-----oo-@

Chapter Chart

Phase 10 I CA-CD

Phase 12 I CE-CJ

Phase 20 IDA-DO

Phase 22 I DE-DL

Phase 21 I DM-DN

If SOURCE

RESULTS

SYSPAINT or SYSUT6

Source listing of
Identification,
Environment &
Data Divisions and
Report Section

SYSUT2

SYSUT4

to'
~.

n
cD
::s
Ul
ID
~

cs:
~
ID
11
III
~

"tI
11 o
"0
cD
11
t'I"
'<
o
111

H
tIl
:3

t:I
III

I.Cl
11
III
53

to.) .
I'd
III
11
r!-

111 .
:::;:
(1)
r!-
tr"
0
p,

0
HI

0
"d
(1)
11
III
r!-....
0 ::s ..
I'd
11

0
0
0
(1)
P,
J:l

®
11
<1l

t:I
CI @
III
0
::s ®f
1-3
11
III
::s
III
III
r!-....
0
::s

t:I
I»

I.Cl
11
I»
a
{JI

111
C1\
-.J

SYSUT2

INPUTS FUNCTIONS RESULTS

SYSPRINT or SYSUT6 o Encodes Procedur~ Division If SOURCE

Storage SYSUT2 ® Inserts dictionary attributes in Procedure le·text --JJ---'-p'-"O""""'d"'","' •. "'n."'m""es:...... _____ .,

Expands CORRESPONDING statements

Dictionary ® ~:$S:~D-:t:m~n~a:t;:r-:-pe:~--
® Analyzes syntax

Expands verbs

Description Module

Reads Procedure Division of source program; creates dictionary entries for procedure-names:
writes Procedure Division on SYSPRINT if SOURCE is in effect (or on SYSUT6 if LVL is in
effect!; processes Declaratives Section; generates Listing A·text if VERB is in effect.
Reads source programs from SYSIN or SYSUT4 if LIB or LSTCOMP.

Creates P1-text; replaces source program names with dictionary attributes: builds Data I IKFCBL30 I
Division Glossary of all source program data-names; performs special processing on
procedure-names in segmented programs, verb strings, and verb strings with
CORRESPONDING options: performs syntax analysis requiring dictionary; releases
dictionary_

Processes USE FOR DEBUGGING statements, adds to source programs the text necessary to I IKFCBL35 I
cause invocation of the USE FOR DEBUGGING declaratives, only invoked if WITH
DEBUGGING mode is specified and a USE FOR DEBUGGING is present.

Transaltes PHext from SYSUT3'"' to P2-text on SYSUn; transforms P2-text to ATM-text IKFCBL40
on SYSUT2++ for UNSTR ING verb, expands complex and implied verbs.

Analyzes and translates UNSTR ING verb from ATM-text on SYSUT2+ + to P2-text on SYSUn. IKFCBL45

Processes arithmetic verbs from SYSUT1 to SYSUT2. IKFCBL50

Process input/output verbs and other non-arithmetic verbs from SYSRT2 to IKFCBL51

SYSun.

+ SYSUT2 if Phase 35 has been invoked.
++ SYSUT3 if Phase 35 has been invoked.

Chapter Chart

CK

Phase 30 I EA-EC

Phase 35 I ED·EI

Phase 40 FA-Fe

Phase 45 FO-FF

Phase 50 GA-GE

Phase 51 GF-GJ

110

SYSUTl

SYSUT3

L-----------f---lJ>=--lf ~~~~ization

to'
o
(1)

::s
UI
(I)
P,

Gl:

~
(I)
11
I»

I'd
11 o
'tl
(1)
11
r!
'<

o
HI

H
IJ:J
:::;:

t;I
PI

IQ

~
iii
!II

U1
0\
\0

t;I
PI

IQ
Ii
PI
iii

N

:
Ii
<+
0\

a:
(D

<+
::r o
p.

o
HI

o
't:I

I!l
PI
<+
o
1:1

o
tJ"
u.

~
<+
:01 o
~
~
CD

ttl
Ii
o
p.
g
<+
o

.1:1

0)

®

INPUTS FUNCTIONS
SYSUTl ~""'"'''''' ., ", .•.• """,';';.'.0'.',' .: "'" ;''':~'';;'='' : ... : .•

~~ 0 Produces mtermedi~te assembler-like instructions j:
SYSUT4 t, ---_______________ _

~; ® OptImizes Program Global Table -

SYSUT2

I--~--~~. Assigns base regIsters ':

Creates object program I ~

~; ~;:' .hJ.,J'" ' -~ -.;- I. ;, •. ~":'d-': I.. \ ii' ~~ ~'. -,.} ?~.,t;:~ :'..,;,~~t·",.~A~

SYSUT3

Description Module

Receives P2-text as input on SYSUT1; produces intermediate Procedure A-text. intermediate I IKFCBL5tl
Optimization A-text, and P2-text on SYSUT2. and Optimization A-text on SVSUT3.

Receives intermediate Procedure A-text and intermediate Optimization A-text, P2-text on I IKFCBL51
SYSUT2. produces Procedure A-text on SYSUT1_

When OPT is not in effect; determines object program storage for Task Global Table and I IKFCBL60
Program Global Table; optimizes literals, virtuals. source program procedure-names. and
compiler-generated procedure-names; generates and writes machine language instructions;
writes object text for data area of program, writes object text for initialization routines;
passes E-text to phase 70.
When OPT is in effect, the functions described in Part 7 of this diagram take place instead.

Chapter Chart

Phase 50 I GD

Phase 51 I GJ

Phase 6 I HA-H F

SYSUT1 RESULTS

SYSUTl----...
If XAEF or
SXREF

DEF-text

SYSUT3
/

If SXAEF or
XREF ".r

SYSLIN

ESD, TX'
and RL~

II LOAD
stateme
forobje
prograrr

SYSPUNCH

ESD, TXT, and RLD
II DECK statements for

object programs

SYSPRINT

PMAP, DMAP, or Global Tables:
CLiST literal pools, object

program listing ---SYSUT2

I
STATE

t-'
o
(D
1:1
!II
CD
p.

a:
~
CD
11 ...
I»
~

ttl g
't:I

~
<+
'<

o
HI

H
tIl
13

o
III

\Q

~
EI
!II

U1
-..I

0
III

\Q

11
III
EI

I\J .
"Cl
III
t1
-..I

13:
ID
\:J"
0
j:l<

0
HI

0
"C
ID
t1
III
0
1:1 ..
0
"C
EI
N

~
0
1:1

0
HI

0
t:r
W-
ID
C'l
tB
0
j:l<

I:l
I-'
ID

"0
"C
g
III
~

10

10

10

r®

INPUTS FUNCTIONS

SYSUTl

,-----------..,~~I @DeterminesstoragereQUirements

Optimizes literals, virtuals, PNs, GNs

~-------.... -111111 ® Generates object program with optimized ~ddress.ability

SYSUT2

SYSUT4
I----.-~ I @completesobjectprogram

Description

Determines object program storage allocation for Task Global Table; optimizes literals and
and virtuals by processing Optimization A-text, determines storage allocation in Program
Global Table for these, for PN and GN cells, and for OCBADR, VNI. and PROCEOURE
BLOCK fields; calculates displacements; determines object program storage requirements
tor Procedure DiviSion; optimizes usage for both IJermanent and temporary reglHer
assignments

Module Chapter Chart

IKFCBl62 I Phase 62 I IA·ID

Produces Procedure A I·text; inserts information for addressing PNs and GNs and Procedure I IKFCBl63 I Phase 63 I IE·IJ
Blocks in instructions; generates all remaining instructions, except load instructions;
writes segmented programs in order of ascemling IHIOflty

Completes instructions from Procoourl' A I \f~xt, wrile\ object program text and REF·text
from Procedure Al·text: writes INITI, INIT2. ilnf11NIT3; writ"l RlD·text

IKFCBl64 I Phase 64 I IK·ID

If DMAP, PMAP, or CLIST

If STATE or SYMDMP

SYSUT2

If LINK

If DECK

If PMAP. DMAP,
CUST

IfSXREF or
XREF

II SXREF or
XREF

RESULTS

SYSUT4

Storage

ERRTBL

SYSLIN

SYSUTl

DEF·text

SYSUT3

to<
C'l
ID
tI
!II
II)
~

II:

~
II)
11
~

"Cl a
"C

~
'<
o
Ht

H
at
13:

t:I
I»

oQ ...
I» ..
UI

U1
W

t:I
I»

oQ
t'I
I»
II

N

: ...
r+
(XI

til
CD
r+
1:1" o
~

o
o

"" CD ...
I»
r+
o
1::1

t:I
CD
t:r
~

oQ

t:I

l!l-
I»

en
CD
r+

o ...
m
r+
o
1:1

'0
~
o
1:1
I»
!:;

o
®

INPUTS

SYSUT3 '

SYSUT4

Description

IfSYMDMP

If STATE

If STATE or SYMDMP
~ndOPT

FUNCTIONS

@ Builds t~bles for SVMDMP

Writes Debug Data Set

® Produc;es debugging information for SYMDMP, STATE,

and FLOW

Completes Debug Data Set

Module Chapter Chart

If SYMDMP is in effect, builds OBODOTAB table for OCCURS .. DEPENDING ON clauses; I IKFCBl25
builds DATATAB table; writes tables on SYSUT5 data set.

Phase 25 I DO·DR

For the FLOW option, stores number of traces requested in DEBUG TABLE of Task Global I IKFCBl65
Table. For STATE. produces PRDCTAB and SEGINQX tables and writes them in object
module. For SYMDMP, produces CARDINDX, PROCrNQX. PROGSUM, PROCTAB, and
SEGINDX tables and write~ them Oil Debug Data Set (SYSUT5).

Phase 65 I IP-Ia

RESULTS

SYSUT5

SYSLIN

If LOAD and STATE

If DECK and STATE

SVSUT5

If SYMDMP

t"'
o
CD

Ii:
CD
~

til

~
CD
11 ...
eo

ttl ...
o

"" ~
r+
'<
o
H
til
til

t::I
I»
\Q
11
I»
iii

'" ,

n"C1
11 I»
o 11
lIIeT
III
1-0

!:tI,
(!)
H!
(!)tlI:
1"1 (!)
(!)eT
::t::r
00
(!)P.

t"'O
.... HI
III
eTO "" ::t (!)
\QI"I
III I»

eT
0
::t ..
t'iI
1"1
H.
0
H

01:
(!)
III
III
I»
\Q
(!)
III ..
t::I
I»
\Q
::t
0
III
eT
n
III .
I»
::t
P.

t::I
I»
\Q
1"1
III
iii
III

VI
...,J
\11

INPUTS FUNCTIONS

SYSUT4

E-text
r---t--r----------~ 0 Contains text for and produces error messages

Storage

I ERRTBL

~ ® Produces cross-reference listing

SYSUTl ~ @ Flags FIPS deviations

If XREF or SXREF
DEF-text J SYSUT3

If XREF or SXREF
REF-text

SYSUT6

Source
Listing

" LVL

Desaiption

0 Produces E-text as it scans source program listing and analyzes syntax.

Contains text for error messages.

Formats messages and prints them on SYSPRINT or, if TEAM is in effect. on SYSTERM.

® If XREF is in effect, produces a source-ordered cross-reference listing; if SXREF is in
effect, produces an alphabetically ordered cross-reference listing.

@) If lVl is in effect, scans COBOL source program after compilation is complete and produces
messages indicating deviations from the Federal Information Processing Standard (FIPSI.

Module

IKFCBL04
IKFCBLlO
IKFCBLl2
IKFCBLlB
IKFCBL20
IKFCBL22
IKFCBL21
IKFCBL25
IKFCBL30
IKFCBL35
IKFCBL40
IKFCBL45
IKFCBL50
IKFCBL51
IKFCBL60
IKFCBL62
IKFCBL63
IKFCBL64
IKFCBL65

IKFCBL71.70
IKFCBL72

IKFCBL70

IKFCBL6A

IKFCBLBO

Chapter

Phase 04
Phase 10
Phase 12
Phase 1B
Phase 20
Phase 22
Phase 21
Phase 25
Phase 3
Phase 35
Phase 4
Phase 45
Phase 50
Phase 51
Phase 6
Phase 62
Phase 63
Phase 64
Phase 65

Phases 70
71
72

Phases 70
71
72

Phase 6A

Phase 80

Chart

JA

IR I

I

MAJ

Error messages

II XREF or SXREF

-------i~ IILVL

RESULTS

SYSPRINT or SYSTERM

Listing~:

Error
crolos·reference
FIPS flag

-

t"'
n
In

fJ:
(I)
P.

Ill:

~
CD
11
~

"C1

~
(!)
1"1
eT
'<

o
HI

H
til
:z

t::I
I»
lQ

&l
iii
In

VI
-.I
-.I

t::I
I»
lQ
11 ,.
•
w
•
It!
::r
I»
In
CD

N
VI

o
~
11
I»
rt"
o
1::1
In

PHASE 22 QRTN Tabl. r QITBL Tabla 1
--t.

!2.!.!::!.lli
N~ NORENAMS

~
EXCHRENM

Pha .. 21 I PHASE25 1
via

Phase i Iinilializanon I II~~~RSI~

Legend:

D 0 Flow of Data
~

I
Flow of Control

Data set

D
Routine Table Branch Table

If any
000.
are present

OCCTEST

~

Phase 22

Test for .. presence
of 000.

If no
0005 ore
present ..

QILOOP

SRCHQRTN

OOOBLD

Build
OOOTBL ~

OCCTBL

OOOTBt: Tabl •

~
Build
OBOOOTAB
table;
complete
OOOTBL
table

,/

~

~ COBOL
Dictionary

These routines are U5ed by
BLOOBOOO and BEGPASS

~
,/

ENOPl

OBOOOTAB lobi.

~ Control passes
~toBEGPASS

PROCESLO

SETNAM

Build
entries
for
tobles ~

Routine"s
to process
dirferent
kinds of
entries

WRITES

~
Enter data
in tables,
prepare to
print entry
on Debug
data set

__ I~~ I
Debug GElutr

LOCNXT

BLDRO

BEGPASS

Build
OATATAB
lable

... TESTSUBS

Test for
subscripted
items; use
entries in
OCCTBL
lable

data
sel

Phase 22 VARLTBL
~I I-

Phase 22 MASTOOO
.. I I--- SYSUT~

t"'
n
ID
1::1
In
ID
j:b

::0:
I»
r+
ID
11
I»

ttl
11
0

"CI
ID
11
r+
'<

0
HI

H
tJI
til

t:I
~.

PI
\Q

:;l
III
1/1

VI
-.I
\0

t:I
~.

I»
\Q
11
I»
III

"'"
It!
I:r'
I»
1/1
CD

w

o
'tI
CD
11

~
~.

o
t:I
1/1

COMMON Dictionary

Contains all
names in source

r- PHZSWl I program with
their attributes.

TSlWRO IND2TBL

Changes major Record Key
code to 7 for MAP bit off
each data item

Information

in dictionary ~
MAPBi' under FD with

WRITE ONLY
switch on.

PHINIT GLOSRY GLORET

Initializes phase MAP Writes Data Initializes
PHASE 00 operations, bitan Division glossary. ... PHCTRL

branches to ~ performs operations.
TSTWROor TSTWRO Reads first
GLOSRY. operation. block of input.

SYSUT2

Legend:

.. ERROR routine called for errors requiring E-text. PHASE lB PO-text
.... SEARCH routine determines uniqueness in dictionary names E-text

in verb string.

...... GENQP routine replaces names with their dictionary
attributes. adds literals to condition strings, adds exit lists
to OPEN verb strings. inserts segmentation control breaks.
writes DEF-text.

<D @ @ Sequence of related operations.

~FIOWOf Control

GETNXT ..:.........-.. Flow of data Routines that

0 require next Reads input.
Data set word of input puts location

in buffer of
c=:::JT.bl. next word

in PNTIN.

DRou'in.

ALTSCAN

Process ALTER
verbs if any UfOs

ENDDBG

Invalidates DEBUG·
ITEM at end of
dictionary if UFOs

Source card number
CARDNO

I

READFN
READ. RETURN verbs ... Inserts record- ...

name after file-

TSlWRO, GLOSRY, name. ·
PHCTRL, and other

~"
CORRESPONDING in CORRTN
ADD, SUBTRACT, or
MOVE statements"" Expands into ...

simple statements
for matching
pairs. ·

eD Name: is it unique?
SEARCH

L.
Dummy attributes

Determines if of special registers
PHCTRL ® Name is unique

name is unique in

Reads text element, dictionary, ·
~

branches to appro·

~
@ Substitute attributes for unique name

priate routine. or
passes element on
without change. INDKEY Table J Da'a items and r STSRCH

PHASE 22 literals associated
with tables Adds attributes

of all data items
SEARCH verbs II .. associated with

tables.

All other elements passed on without change

ERROR

OVAR Table Converts error
codes and para-

E-text PNTIN I'''-''~ \ meters from
IUs~ by PO-text with data-names processing
processors) routines into

QFILE Table E-text.

PHASE 2 I GN's associated ~ • with file-names GENOP
and CO-names ...

VALTRU Table I V.lu',.ssoci."d Y
with lp.vel·B8 EOF
items Terminates

End·of·file '-
• PHASE 00

phase 3 opera- I-tions. Calls
·phase 00.

OTAB

If.1I PROCS
and WITH
OEBUGGlNG-
contains information
for all non·UFO PNs

GENOP
OEF-tex

\

t-'
~ .
o
CD
t:I
1/1
CD
J:lo

DC

~
CD
11
~.

I»
~

It!
11
o
'tI

~
t+

loci

o
HI

1-1
til
DC

t:I
I»
\Q

lil
I!I
rn

VI
CO ...

t:I
I»
\Q
H
I»
I!I

VI .
ttl
::r
I»
rn
ID

0\

'" o
"0'
ID
H
I»
~
o
t:I
rn

Pha", 62 \Msthe
following ,able. in
the same way'"
p"",,e6does:

eVIRTB
VIRPTR
VNPTY
PNUTBL
CONDIS
CONTBl
LTlTBl

Pha..,51 yj .. Ph,neOO

PH62

rnilioljUl~
liooRoutine.

SYSUTJ

I Print TG~

Optimj%o'ion
A-Tul

READF2

oplimizo·
tionA-Text
elemen"

r-'-----r------"
BtuSTBlloble~

Forbullding BLASGTBL

(ifPMAP
CLIST,
DMAP
option in
effed) .

Printliler",1
pool,DISPLAY
Iiter",l.a,,,IPGT
(ilrMAp, (LIST,
O""'APoplion i.
lneHec!]

Ph.ne 50

Legend:

BLASGTBLloble

~edloh91

DOQ--
1 1-..

Table Flow of Control

SYSPRINT

PNATallab!"

PNoddre"".

GNATBLtable

~ GNaddrcS$es

VNPNTaLtoble

Pmeed ,.

"'''''

1

Proce"f",r
procedure nome (PN)
definition

Precenror
generated
procedure-nome
(GNjdefinilion

,.1",0,- I I "" r"A"',~. I
~c~:"'~-Text I • reference I.

-!";-';;";'-;:;:-::c:':-t Pha,e63 --.
SE6020tabl,.

I '_o,h"bI. ~
forl'rocedure
A-text
pro.;eSlin!;l

R6202loble

I ',~,hT,". ~ for Procedure
A-t .. "toperolion
cl:ldeetem .. n"

~

Proce .. for
operationccxJe.

Several routine.
for proc""'ng
Procedure A-te~1
elementsond
"ddi"g to ACCUMCYR

PNOEFR ACCUMCTR
-.«>96

~C;;;j~~~ion ~

Procn.
lorGN

'-

I-

~
ORPTBllobie

-+t For buil~;ng DRPLrBL

R6400 DRPLTBtloole

Build.
DRPTIIland
DRPLTBl
forregi,ter
14ondl5
Optimizetion

Proce ..
operclion
code.

REGLIST

ENDPTX

For Reg 14-15A .. lg""""nl

. 2br'ebron,l,irulruclion

2

LoodinSlruction

All ct~e ..

Prinlpermar'lenlreg'.'er

new pro.;e- 1--4 dun, block!

I
OEFLDll

P~ procedure-

"""'" d~fi- PNlASTBL loble

~
Proce .. fo,

"_"pre-
ceding
bronch

SAVE i,,,I.ue
lionunril
block "....,b".

ADDlGTH

Add length
ofi,,,t,,,.:-

ACCUMTR

Fg • .)Uildillll PNFWOBTB

GNlABTBlrable
Fo,buildingGNFWDBlB

PNFWDBTBtabl ..

Pro" 10'
eno;!ofProce'
dureA-Text
ond Phase 11;~~~;t;MAP, DMAP -/ SYSPRINT

I:"'
o
ID
t:I rn
ID
j:l.

III

~
(1)
H
I»

ttl
H o
"0
(1)
H
r+

loci

o
HI

H
ttl
III

t:j
I!>
.Q

Ii
I!>
EO
Ul

lJ1
CD
W

t:j
I!>

\Q
1'1
I!>
51

0\

"CI
p-
I!>
Ul
CD

0\
w

o
'" CD
H
I!>
("I....
o
=:s
Ul

legend:

C

~
PHASE 63

Initialization;
relocate TlB
addres$cs;
prime tables
reod first

G"

Control

To odd lengths to :'uffer

L.a...r Relocates TIB oddresses ~

Table

Flow of Dolo

Flow of coo,}~ 0

Do
Routine Brendl Table

CO

Routines
CO element

-I Control for process-
routine ing CO

elements CRLA YTBl table

Branch tollie
to routine
for proce15-
ing CO
elements

~

Routines for MACRO
Control processing
routine Macro

element!

FOURTY8

~OPTRTBl table
For use with OPBTBl

by releasing
or paSSIng
tables, closing
files. etc.

SEGTBl table
~9mented programs r.lL ___ .-J

L-Phose51

~
from
Phose 62

Routines to VNPNT8l toble

~ procenoll For building RLO

Procedure PNLABTBlioble Phose 62
A-Text VNPTY toble To build PNLBDTBl
elements For building RLD PNlBDTBL toble Phase 64

Displacement of PN

PNATBl toble Phose 62
To build RLDTBl

PNREF

t;j
Process for

RlDTBl toble Phose 64 procedure
For Relocation Dictioncry CIREF

references
GNATBl toble Phose 62

Gcrlt'roie To build RLDTBl
L 11, BLOCK.
If necessary GNLABTBLtoble Ph;:;se 62

GNREF chonge L to LA To build GNlBDTBL
instruction

GNL8DTBL toble Pnose 64
Displacement of GN

ADREF

aLASGTBl table Phase 62

CNOPI

~ Routine. for
proces~lng

(NOP
elements CNOPT to:"lc

Number of lJyte~ for UPDATE
Phase 62

BRANCH
ACMCTR counter Lp
~ Block size

RLDSORT

Block size

Routine for
processing
branch
instruction

These
three
routines
ore called
by several
routines in
phase 63

.......... '~I ::;;iii:. .. B
Sort the
RlDTBl
usi..,gtarget
oddren
on key

r-~

WRITE .. Routines for
processing
all other
operation
code
elements SYS2

Writes
Debug-text
iF the STATE
or SYMDMP
option is in
effect

Write
Procedure
A-Iexl
elements

I:"'
o
CD
=:s
!II
CD
P.

13

~
(1)
H
I!>

"CI
H
o

'" cD
1'1
c+

0..::

o
HI

H
tIl
13

1;;1
II>

IQ
11
II>
!3
III

U1
(Xl

U1

1;;1
II>

IQ
11
II>
13

-..I

It!
::r
II>
III
(1)

C'\
111

o
'0
(1)

11
II>
o
::I
III

Pho
v

Phos,

~

Phase 63 or 6
SYSUT2

or
SYSUT4

Debug\ _
text --

PH65 RDF2

Initiol iza- Get next

I:. tion element

routines; .. and branch

prime to

tables processing
routines

4;GTADTBl tabl;

~ l F2PROcsl bronch
table

.-
legend:

0 D Data set
Branch Tobie

D
Flow of Data -8>

1m l_
Flow of ControT

I I
Routine Table

TENPROC

Process
CARDlOC
(10)
elements-
build '
PROCTAB CARDINDX table
CARDINDX
tobles -{ 1

L
PROCTAB table

1 """"'l..

TWENPROC 1 T '1
Process
ENDSEG (20) l
elements;
enter code
;nto PROCTAB
to indicate
end

THRTPROC

Process
SEGMENT
(30)
elements

FRTYPROC

Process
DISCONTINUITY
(40) element,·
turn on D ISC5W I
switch

EOF2

Process for
STA TE or
SYMDMP
options

l

"

GTEQlOK
"'TMUMC!b

'-:"NF
L SYMWRITE SYSUT5

Determine
end of

Start
TXPNCH

.... fragment
new

Write tables

~ fragment ... in doto set·
build table'sJ

~
KSTATf'

SYSP~NCH 1
_SEGINDX table

J-

SYSLIN

CARDINDX table

L 1--

1 -

PROCINDX table

~

~ SYSUT5 If program
is segmented

REGCOMAD 1
SYSUTl

L ENDOFTBl PNCHSW

-- EOFON2 Set Switch,
Debug ENDCODE

Collect in-
formation

table ptr,

for
Debug table Release

PROGSUM
for TGT; tobles;

table
write END determine

'-'
card, write options:

independent set return

segments codes

PROGSUM table
i~y ,

--.J

SYSUT2 &J or
SYSUT4

SYSLIN

t-'
o
(1)
::I
m
(1)
1=1>

:3

~
(1)
11
II>
f-'

It!
11
o
'0
(1)
11
'<

o
HI

H
tIl
:3

Licensed Material - Property of IBM

(Where more than one page reference is given, the major reference is first.)

-nnnn (Report Writer data.-name)
description 522
phase 22 generation of 62

A-text
(see also Listing A-text; Data A-text;
optimization A-text)

constant 127,132
definition 542
direct 127,132
generator routine

description 127-132
phase 50 flowchart 269
phase 51 flowchart 275
use in Arithmetic Translator
routines 124

A-text generator
description 127-132
flowcharts

phase 50 269
phase 51 275

A(INIT1) field (TGT)
description 507
location 505

ABEND codes 483-484
abnormal termination

compiler processing 31,32
SYMDMP processing for 85

ABS.LIN (Report Writer data-name) 523
access methods

BDAM
address elements 80
block address elements 80
buffer areas 82,83
constant definition elements 80

BISAM
address elements 80
block address elements 80
buffer areas 82,83
constant definition elements 80

BSAM
address elements 80
block address elements 80
bu£fer areas 82,83
constant definition elements 80

phase 21 processing 79-84
QISAM

block address elements 80
buffer area size 82
buffer areas 82,83

QSAM
block address elements 80
buffer areas 83
buffer area size 82
Q-routine generation 83

VSAM
address element 80
buffer area size 83

ACCESS routines
definition 542
description 492-500
ENTDEL 494-495
ENTNAM 494
ENTPTR 494
GETPTR 494
LATACP 496
LATGRP 496
LATRNM 495
LATRPT 495
LDELNM 495-496
LOCNXT 495
use

phase 1B 67
phase 3 88

ACCESW cell ~OMMON) 325
ACCMET subroutine 79
ACCUMCTR counter

incrementing of 171
use in phase 62 169

ACMCTR counter
use in ADINCR routine 176
use in phase 63 177

ADATAB cell (COMMON) 330
ADD string 125
ADDLGTH routine 583
ADDRCARD cell (COMMON)

description 333
use in phase 02 48
use in phase 1B 66
use in phase 10 56

addressing parameters 72
address calculation

indexed references 123
subscripted references (see subscripted

references)
address constant definition element

Data A-text format 409
DCB 80,81
DECB 80,81
phase 21 processing 80,81
phase 6 processing 160
phase 64 action 182

address constants of TAMER routines 325
address increment elements

phase 63 processing of 176
phase 64 action 185
procedure A1-text format 441
use in phase 62 169

address increments
phase 6 processing 155
phase 63 processing 176
phase 64 processing 185
Procedure A-text format 435

address reference elements
phase 63 processing of 176
phase 64 action 185

Inu",J(587

Licensed Material - Property of IBM

address reference elements (continued)
procedure A1-text format 441
use in phase 62 169

address references
phase 6 processing 155
phase 64 processing 185
Procedure A-text format 435

ADINCR routine
description 176
diagram of 583
flowchart 291

ADREF routine (phase 63)
description 176
diagram of 583
flowchart 291
incremented address processing 176

ADREF routine (phase 64), flowchart 296
ADSTAT cell (COMMON) 325
ADV option

bit in COMMON 334
description 29

AGETALL cell (COMMON) 328
AHEADER cell (COMMON) 338
AINSRT cell (COMMON) 325
ALIBEOD cell (COMMON) 339
ALIBSYNA cell (COMMON) 339
ALL literal, procedure IC-text format 421
allocating storage for the PGT,

phase 62 168-170
alphanumeric literal references, procedure
IC-text

PO format
PU format
P1 format
P2 format

ALPHTBL table
format 341

411-418
424

419-423
425-432

use in ph ase 10 57
ALS-ROUT routine 64
ALSTAM cell (COMMON) 325
ALTER statement, OPT option
processing 105-109

ALTSCN routine 58,96
AMAINF cell (COMMON) 325
American National Standard Code for
Information Interchange (see ASCII)

AMICTR cell (COMMON) 330
AMILOC cell (COMMON) 331
AMOVDC cell (COMMON) 328
ANLZUFDS routine

description 101
flowchart 255

APLSCALL cell (COMMON) 331
APOST option

bit in COMMON 333
description 28

APPLY clause 58
APPLY WRITE-ONLY clause, phase 3 processing
for 88

APPWRO switch (COMMON), use in phase 3 88
APRIME cell (COMMON) 325
arithmetic operator, Procedure IC-text

PO format 412
P1 format 422

arithmetic processing switches 125'
arithmetic translator routines

description 124-127
switches for 125

588

arithmetic verb strings 124-127
assembler-text (see A-text)
ATF-text

definition 542
format 408
generation by phase 20 71-72

ATM-text
definition 542
description 433
format (same as P2) 425
input to phase 45 118
phase 4 processing 104

ATM-text analysis, phase 45 118
ATFTXT buffer 72
ATTACH macro instruction

compilation parameters 46
invoking the compiler 31
phase 02 processing 47

base and displacement element
phase 64 action 184
Procedure A-text format 435

base displacement data-name element
phase 64 action 186
procedure A1rtext format 441

base locator number
(see also BL, BLL, SBL)
BL number

field in TGT 508
position in TGT 505

BLL number
field in TGT 509
position in TGT 505

Linkage Section (see BLL)
OPT option processing

optimizing register
assignments 168-170

phase 62 processing 1168-170
SBL number

field in TGT 509
position in TGT 505

base locator reference
phase 6 processing 154
phase 64 processing 184
Procedure A-text format 435

basic lister format, IPTEXT 400
BASIS statement, phase 4 processing 51
BASISRTN routine 210
batch compilation (see BATCH option)
BATC H option

function 26
phase 02 processing for 48
phase 1B processing 66
phase 10 processing 56
phase 6 processing 141-142
phase 62 output 161
phase 65 processing for 189
PHZSW2 bit (COMMON) 334
resetting COMMON cells 324

BATCHSW cell (COMMON)
description 336
phase 02 processing 48
phase 1B processing 66
phase 10 processing 56

BCDCTR cell
description 332
use in compiler options 149

BCDISP cell (COMMON) 331
BCDPN table

(see also TEST option)
description 466
phase 65 processing of 187-188

BDAM access method
address elements 80
block address elements 80
buffer areas 82-83
constant definition elements 80

BEGIN routine 71
BEGPASS routine

description 88
flowchart 249

between phase processing 31-33
BGALLPN cell (COMMON) 338
BGALLPRI cell (COMMON) 338
BISAM access method

BL

address elements 80
block address elements 80
buffer areas 80-83
constant definition elements 80

counter in COMMON 143
definition 542
field in TGT 509
phase 6 processing 154
phase 64 processing 184
position in TGT 505

BL field (TGT), phase 62 counter for 163
BL n umber (see BL)
BL reference element 184
BLASGTBL table

format 341-342
use in phase 62 169

BLCHNG elements, phase 51 processing 136
BLCTR cell (COMMON)

description 328
use in phase 22 76
use in phase 6

Data A-text processing 159
Procedure A-text processing 154
space allocation in TGT 143

use in phase 62 163
use in phase 64 184

space allocation 184
text processing 181

BLDOBODO routine
diagram of 87
flowchart 261

BLDRD routine 86
BLL, definition

field in TGT 509
phase 6 processing 154
phase 64 processing 184

BLL field (TGT), phase 62 counter for 163
BLL number (see BLL)
BLLCTR cell (COMMON)

description 326
use in phase 22 76
use in phase 6

Data A-text processing 154
space allocation in TGT 163

use in phase 62 163
use in phase 64 184

block address elements
Data A-text format 409
phase 6 processing 154

Licensed Material - Property of IBM

phase 21 processing 80
phase 64 action 181

block number element, procedure A1-text
format 441-442

BLs, optimization of 169-170
BLSRCH routine 169
BLUSTBL table

format 342
use in phase 50 132

BLVNTBL table
format 342
function 173
phase 62 processing 165

BMBSRN routine 72
branch instructions

phase 62 processing for 174
phase 63 processing for 175

BRANCH routine
description 175
diagram of 583
flowchart 288

BSAM access method
address elements 80
block address elements 80
buffer areas 80-83
constant definition elements 80

BUF option
description 25
phase 02 47"48

buffer pointer table 34
buffer size

compilation 47,48
determinatio~ for objett module 81

buffers
compilation 47,48
diagnostic aids 487-488
object program 82,83

BUFSIZE cell (COMMON)
description 336
use in phase 02 48

BUGBLLNO cell (COMMON) 338
BUGSTCRD cell (COMMON) 331
BUGVLCNO cell (COMMON) 338
building the PNLABTBL and GNLABTBL
tables 171

BUSAGE routine 72

CALL macro instruction
invoking the compiler 31
parameters passed to compiler 46
phase 01 processing 46
phase 02 processing 44

CALL string 105
calling sequence dictionary pointer element

phase 64 action 185
Procedure A-text format 436

calling sequence displacement element
phase 64 action 185
Procedure A-text format 436

card number
current

abnormal termination 487
phase 10 processing 55

Debug-text
description 444
phase 6 processing 151-152

Index 589

Licensed Material -Property of IBM

Procedure A-text
description 434
phase 6 processing 152
PO format 412
P1 format 422
P2 format 429

card number elements
phase 63 processing of 177
phase 64 action 183

CARDINDX table
building of 188
format

compiler 343
debug data set 465

CARDLOC elements
debug text processing for" 177
phase 65 processing 187

CARDNOTE save area, use in phase 65 ~89
CBL card " "

phase 02 processing 48
phase 1B processing 66
phase 10 processing 56

"CD (see communication description)
CD dictionary entries, for~at 450,451
CD entries, data IC-text format 402"·
CD for intitial input field (TGT) "

description 508
location 505

CD-name reference, procedure"IC-text
P1 format 419
P2 format 425

CD-names, phase 3 processirig 95
CD-text, definition 542
CDECK option 29
CDLCCTR cell (COI1MON) 331
CDSCNA routine 60
CDSECT routine flowchart 240
CDTEXT routine description 76
charts 197-308
checkpoint. debug processing 135
CHECKPT CTR field (TGT)

description 510
pbase 62 counter for 164
position 505
use of CKPCTR counter (COMMON) 146

CHP-ROUT subroutine (Report Writer
subprogram)

definition 521
function 521
GENERATE statement coding 526

CHKTBL table (see CKPTBL table)
CKPCTR cell (COMMON)

description 326
use in phase 21 79
use in phase 6 146
use in phase 62 164

CKPTBL table
description 58-59
format 343
u se in ph a"s e 21 79

clause compatibility 84
CLIST option

590

bit in COMMON 333
description 27
phase 02 processing 47
phase 62 output 161
phase 64 processing for 179
register assignment 483

CLOSE verb, debug processing 135
CLOSER routine, linkage code for 33
CLOSET routine 33
closing data sets 34
CMS interface routine

diagnostic aids 539-541
directories 535
environment 529
error messages 540
flowchart 536-538
functions 529
initialization 533
method of operation 532
operational considerations 531
option list 531
physical characteristics "529
program organization 535
relations with compiler 530
register usage 540
service routines 541

CNOP routine 583
CNTLINE cell (COMMON)

description 332
use in phase 00 48
use in phase 02 47

CNTLTBL table
description 190,191
format 344

COBEND routine, function 539
COB HAND routine

flowchart 537
function 539

COBOL command
(see also COBOL Prompter)
description of options 25-29
specifying compiler optio~s 25

COBOL ID field (TGT)
description 508
location 505

COBOL INDICATOR (TGT)
description 507
location 505

COBOL Interacti~e Debug Program (see TEST
option)

COBOL library subroutines, definition 542
COBOL Prompter

invoking the compiler 19
NUM option 26

COBOL space, definition 542
COBOL subroutines, definition 542
COBOL verbs

code list 413-415
internal code list
phase 50 processing
phase 51 processing

COBOL word check 116

413-415
120
135- 137

COBOL words, Procedure IC-text
internal code 416-418
PO format 412
P2 format 428

CODE clause, RDSCAN routine processing 62
codes, error, use in phase 03 50
COLHIVAL cell (COMMON) 331
COLLITNO cell (COMMON) 331
COLLOVAL cell (COMMON) 331
COLUMN clarise 62

COMFLOW cell (COMMON) 330
COMMAD cell (COMMON)

description 328
use in phase 10 57

COMMON
cells, description

ACCESW 325
ADATAB 330
ADDRCARD 333
ADSTAT 325
AGETALL 328
AHEADER 338
AINSRT 325
ALIBEOD 339
ALIBSYNA 339
ALSTAM 325
AMAINF 325
AMICTR 330
AMILOC 331
AMOVDC 328
APLSCALL 331
APRIME 325
BATCHSW 336
BCDCTR 332
BCDISP 331
BGALLPN 338
BGALLPRI 338
BLCTR 328
BLLCTR 326
BUFSIZE 336
BUGBLLNO 338
BUGSTCED 331
BUGVLCNO 338
CDLCCTR 331
CKPCTR 326
CNTLINE 332
COLHIV AL 331
COLLOVAL 331
COLLIT NO 331
COMFLOW 330
COMMAD 328
COMPILES 332
CORESIZE 330
COS 325
CRDNUM 331
CURCRD 336
CURSGN 328
DATABDSP 328
DATATBNM 330
DATE 331
DBGLOC 330
DBGODISP 332
DCBCTR 333
DCBNOXX 336
DCPTR 327
DECBCT 336
DEFCNT 333
DICADR 327
DICND1 327
DICND2 326
DICND3 338
DICPTR" 327
DICTNAME 331
DLSVAL 327
ERF4SW 327
ERRNUM 332
ERRSEV 327
ESDID 338

Licensed Material - Property of IBM

FIL5BUF 330
FIPLVL 338
FLOWSZ 328
GNCTR 325
GTLNG "329
IDBYTES 339
IDENTL 328
IDPHOO-IDPH80 339
INDEX 331
INDEX1 328
INITSIZE 338
INTVIRT 331
IOPTRCTR 328
KALOUT 337
KKADS5 337
KKPGR70 338
KKPHOSW 337
KTRMNATE 337
LABELS 325
LCSECT 327
LIBBUF 339
LINECNTX 332
LINKCNT 337
LISTERSW 331
LOCCTR 325
LOCTMCTT 331
LNGBL 331
LNGDSP 331
LTLCTR 326
MAXBGITM 338
NODECTR 330
NUMINCR 333
OBODOTBN 330
ODOCTR 326
ONCTR 329
OPTINSW 333
OPTINSW1 333
OPTINSW2 333
OPTINSW3 333
OPTINSW4 333
OPTLSTR 339
OPTLVL 339
OPTSWV2 339
OlJTLRECL 339
PARMAX 330
PFMCTR 329
PHZERR 338
PHZSW 333
PHZSW1 333
PHZSW2 334
PHZSW3 334
PHZSW4 334
PHOSW" 339
PH1BYTE 335
PH25SW 338
PH6ERR 329
PNCTR 325
PRBLDISP 325
PRBLNUM 330
PRINTBUF 338
PROCCTR 330
PROGID 325
PROGSW 338
PSVCTR 329
PTYNO 327
RELAPD 325
RELLOC 329
RELSPACA 337

Index 591

Licensed Material - Property of IBM

COMMON cells, description (continued)
RGNCTR 327

592

RPNCNTR 328
RPTSAV 327
SA2CTR 327
SA3CTR 332
SBLCTR 326
SDSIZ 328
SEGLMT 328
SEQERR 326
SPACEX 336
SPACING 330
STAESW 336
SUBCTR 329
SWITCH 334
SWITCH1 337
SWITCH2 336
SWITV2 330
SYMSK 333
SYMSK1 334
SYMSK2 334
SYMSK3 334
SYNADR01 332
SYSTDD 338
SYSTX 328
TAMN AD 325
TIB (Table Information Block) 325
TMCNTBSZ 331
TSMAX 326
TS2MAX 326
TS3MAX 328
TS4MAX 328
VCONDISP 332
VIOVIRN 331
VIRCTR 325
VLCCTR 326
VNCTR 329
VNILOC 329
VNLOC 329
VTINITVN 331
V2BUGSW 338
WCMAX 326
WSDEF 327
XSACTR 32,9
XSWCTR 329

counters used for TGT 143,144
definition . 542
function

overall design of compiler 21
phase 00 . 44

Program Global Table (PGT), relationship
to 324

register usage 324
Task Global Table (TGT). relationship

general 324
phase 6 142-146

use in
phase 00
phase 02
phase ':B
phase 10
phase 21
phase 3
phase 4
phase 50
phase 51
phase 6

44
48
66
56
79,80

88
104

127
133-137

148-152

Communication Description (CD)
phase 10 processing for 60
phase 20 processing 73

communication section dictionary entries,
phase 22 processing 77

communications area (see COMMON)
compilation directives

DEBUG card 105
compilation parameters (see options.

compilation directives)
compile-time

arithmetic 125-126
STATE bit (TGT) 506

COMPILED POINTER field ,(TGT)
description 508
location 505

compiler
COMMON, use of 21

(see also COMMON)
control information 25-29

(see also options; compilation
directi ves)

data sets 21
design 20-21
dictionary, use of 21

(see also dictionary)
dir~ctives (see compilation directives)
error handling (see error handling in

co mpila tion)
generated procedure-name (see GN)
initialization 47
input 20
options 25-29

(see also options)
output 20
overview 549
parameters (see options; compilation
directi ves)

phases 21-25
(see also phase 00; phase 01; phase
02; phase 03; phase 05; phase 06;
phase 08; phase 1B; phase 10; phase
12; phase 20; phase 22; phase 21;
phase 25; phase 3; phase 4; phase
45; phase 50; phase 51; phase 6;
phase 62; phase 63; phase 64; phase
65; phase 6A; phases 10, 71, and 72,
phase 80)

physical structure 549
relationship to operating system 19
storage requirements 29-30
structure 549
tables 21

(see also tables used by compile~
texts 399-444

(see also nata A-text; Data IC-text;
Debug-text; dictionary entries;
E-text; Listing A-text; Optimization
A-text; Procedure A-text; Procedu're
A1-text; Procedure IC-text: PO
format, P1 format, P2 format; XREF
text)

COMPILES cell (COMMON) 332
completing dictionary entries

description 76-77
phase 21 processing 79,80
phase 22 processing 74

COMPUT routine 111

COMPUTE statement 111-113
COMSCT routine

flowchart 235
function 73

CON DIS table
description 165
format 344
literal allocation 150-151
optimizing DISPLAY literals 147
segmented program processing 155
use in literal allocation 168

condition-name dictionary entries,
format 454

condition- names 95
conditions causing ABENDs 483-484
Configuration Section 57
constant A-text 127
constant definition elements

Data A-text format 414
description 80,81
phase 21 processing 80,81
phase 64 action 182

constucting procedure A1-text 175
CONTBL table

format 344
literal allocation 151
optimizing literals 148
phase 62 processing 165
segmented program processing 155
use in literal allocation 168

control breaks in segmentation 134
control card for linkage editor

NAME option 26-27
phase 60 processing 141

CONTROL clause, RDSCAN routine
processing 62

control informa tion (see options,
compilation directives)

CONTIlOL record
definition 542
description 190-191

control~field save-area names 61
Conversational Monitor System (seeCMS
interface)

COPY statement, phase 4 processing 51
COPYPROC routine 212
COPYRN routine 51
COPYRTN routine 211
CORESIZE cell (COMMON)

description 330
use in phase 00 48
use in phase 02 48

CORIlESPONDING options 89-91
CORRTN routine

CORRESPONDING option 89,88
phase 3 operations 89-91

COS cell (COMMON) 325
COUNT CHAIN ADDRESS field (TGT)

description 508
location 505

Licensed Material - Property of IBM

COUNT LINKAGE AREA field (PGT)
description 510

COUNT location 510
option 29

COUNT TABLE ADDRESS field (TGT)
description 508
location 505

counters
AMICTR 330
BLCTR

Data A-text processing 159
description 328
Procedure A-text processing 154
TGT space allocation 143-144

BLLCTR
Data A-text processing 154
description 326
space allocation in TGT 143-144

CKPCTR
description 326
use in phase 21 79
use in phase 6 146

COMPILES 332
DCBCTR

address and constant definition
elements 80

Data A-text processing 159
DCBADR allocation 151
description 333
FD dictionary entries 79

DECBCT
address and constant definition
elements 80,81

Data A-text processing 159
description 336
FD dictionary entries 79
TGT space allocation 163

ERRNUM
description 332
phase 6 output 142

GNCTR
DEBUG CARD processing 106
Declaratives processing 70
description 325
GN allocation 150

INDEX1
description 328
TGT. space allocation 144

LOCCTR
block and working-storage section
address elements 80

description 325·
phase 6 output 142
Procedure A-text processing 151
segmented pro\Jrams 153

Index 593

Licensed Material - Property of IBM

counters (continued)
LTLCTR

description 326
phase 50 processing

NODECTR 330
ODOCTR 326
ONCTL

descri ption 509
phase 51 processing

ONCTR
description 329
phase 51 processing
phase 6 processing

PARMAX
descri ption 330
phase 6 processing

PFMCTL 509
PFMCTR

description 329
phase 4 processing
phase 6 processing

PNCTR·
descri ption 329
phase 1B processing
phase 51 processing
phase 6 p~ocessing

PROCCTR 330
PSVCTF

description 329
phase 6 processing

RGNCTR 327
RPTSAV

description 327
phase 6 processing

SA2CTR
description 327
phase 6 processing

SA3CTR
description 332
phase 6 processing

SBLCTR
description 326
phase 6 processing

SBSCTR 143
SEQERR 326
SUBCTR

description 329
phase 51 processing

TSMAX

594

description 326
phase 50 processing
phase 6 processing

TS2MAX
de scri ption 326
phase 6 processing

TS3MAX.
description 328
phase 6 processing

TS4MAX
description 328
phase 6 processing

VIRCTR
description 325
phase 50 processing
phase 6 processing

132

137

137
143

109
143

66
135

150

143

146

164

146

143

137

163
163

143

143

143

131
148

VLCCTR··
description 326
ph~se 6 processing 143

VNCTR
description 329
phase 6 processing 150

VNLOC
description 329
Procedure A-text processing 154
TGT space allocation 143

XSACTR
description 329
phase 6 processing 143

XSWCTR
description 329
phase 6 processing 143
phase 51 processing 137

CRDNUM cell (COMMON) 331
critical program breaks

Data IC-text format 404
definition 542
Procedure IC-text

PO format 412
P1 format 421
P2 format 428

cross-reference listing
alphabeticallyordered 191
compiler options 25-29
phase 6A processing 190~191
source ordered 190

CSECT names in phases 317-320
CSYNTAX option

description 26
E-text processing 192
phase 00 processing for 45
phase. 02 processing for 47
phase 21 processing 79
phase 3 processing 96
phase 4 proces~ing 116
phase 50 processing 119
phase 51 processing 133
SYSUT4 contents with i58

CTB-ROUT routine
description 520
GENERATE statement processing

first statement 525
subsequent statements 526

generation of 64 .
use of CTL. LVLcounter· .522

CTF-ROUT routine
CTL.LVl cdunter 522
description 521
FRS.GRP switch 523
GENERATE statement processing 526
generation of 64
locating routine in object module 528
logic of Report writer

subprogram 516,517.
CTH-ROUT routine

description 521
FRS.GRP switch 524
GENERATE statement processing

. first statement 525
subsequent statement 526

generation of 64

locating routine in object module 528
logic of Report Writer

subprogram 516,517
CTL.LVL (Report Writer data-name) 522
CTLTBL table 345
CURCRD-cell (COMMON)

description 336
use in phase 10 56
use in phase 4 104

CURGCN cell 56
current card number

abnormal termination 487
phase 1A processing 56

CURSGN cell (COMMON) 328
CVIRTB table

format 345
optimizing storage for PGT 148,149
Segmented program processing 155
use for compiler options 149
use in phase 62 166

cO routine diagram of 583
C1REF routine flowchart 292

Data A-text
definition 542
formats 409-410
generation of 77
input/output operations 37-43
phase 20 processing 72
phase 21 processing 83
phase 6 processing

description 22
flowch art 280

phase 64 action for 181
phase 64 processing 179

descri ption 179
flowch art 294

DATA AREA field (object module) 502
DATABDSP cell (COMMON) 328
Data Control Block (see DCB)
Data Division

flow 221
general description of processing 20
phase 10 processing 59-60
glossary 88

Data Event Control Block (see DECB)
data management for compiler (see
input/output requests)

data operand, definition 543
DATA record

definition 543
description 190,191

Data IC-text
definition 542
formats 402-404
input/output operations 37-43
LD-text

definition 544
description 59

phase 10 processing 59
phase 21 processing 79
phase 21 processing 84

data set activity
CMS interface routine 439
compiler 37-43

Licensed Material - Property of IBM

data-name DEF-text element
A-text generation 79
phase 64 action 182

data-name definition elements, DEF-text
format 443

data-name information for UNSTRING elements
created by phase 45 118
procedure IC-text 426

data-name references, Procedure Ie-text
P1 format 420
P2 format 426

data-name subscripts
phase 50 processing 121,122
Procedure Ie-text format 426

data-names for Report Writer (see Report
Wri ter)

DATATAB table
built by phase 25 86
format 458-464

DATATBL table
description 190,191
format 346

DATATBNM cell (COMMON) 330
DATE cell (COMMON)

description 331
use in phase 02 47
use in phase 10 57

DATE-COMPILED clause 57
DBG R11SAVE field (TGT)

description 508
location 505

DBGFLPT bit ~GT) 506
DBGLOC cell (CONNON) 330
DBGTBL table

format 346-347
phase 4 processing 105

DBGTEST routine
description 135
flo wchart 272

DBGTXT table
description 100
format 347

DBGODISP cell (COMMON) 332
DC definition elements

format 435
phase 64 action 184

DCB (Data Control Block)
address elements

creation 80,81
Data A-text format 409
description 80,81

building for object module
address and constant definition
elements 80,81

FD dictionary entries 79
manipulation for compiler files 44

DCB address element, phase 64 action 181
DCBADR field (PGT)

description 511
location 510
phase 62 allocation 169
phase 64 processing for 181

DCBCTR cell ~OMMON)
address and constant definition
elements 80,81

Data A-text processing 159
DCBADR allocation 150
description 333

Index - 595

Licensed Material - Property of IBM

DCBCTR cell (COMMON) (continued)
FD dictionary processing 79
use in phase 62 168

DCBNOXX cell (COMMON) 336
DCPTR cell (COMMON) 327
DDBG R14SAVE field (TGT)

description 507
location 505

DDSCN routine
communication section processing 60
Data Division processing 59
flowchart 225
phase 10 overview 56

DEBUG BLL field (TGT)
description 508
location 505

DEBUG card
description (TGT) 508
location (TGT) 505
use in phase 4 105

debug data set
description 455
format 455-469
phase 25 processing for 85

DEBUG LINKAGE AREA field (PGT)
allocation for 166
description 510-511.
location 510

DEBUG MAX field (TGT)
description 508
location 505

debug options
COBOL Interactive Debug Program (see

TEST option)
phase 65 processing 187-189
TGT allocation for 164

DEBUG PTR field (TGT)
description 508
location 505

DEBUG TABLE field (TGT)
description 510
location 505
phase 65 processing 189

DEBUG TABLE PTR field (TGT)
description 507
location 505
phase 65 processing 189

debug-text
construction in phase 63 176
data sets used for 151
definition 543
description 151
format 444
input/output operations 37-43
phase 6 processing 151 . .
phase 63 processing of 176-177·
phase 65 processing 187~189

DEBUG TRANSFER field (TGT)
description 508
location 505

DEBUGGING field (TGT)
description 508
location 505

debugging (see diagnostic aids)
DEBUG VLC field (TGT)

description 508
location 505

596

DECB(Data Event Control Block)
address elements

Data A-text formats 409
creation 80,81
description 80,81

building for object module
address .and constant definition
elements 80,81 .

FD dictionary entries 79
manipulation for compiler files 44

(see also DECBCT cell)
DECB address element, phase 64 action
DECBADR field (TGT)

DECBCT cell (COMMON) 336
DECBCT counter (phase 6) 143
description 508
location 505
phase 62 counter for 164

DECBCT cell (COMMON)
Data A-text processing 159
description 336
TGT space allocation 143
use in phase 2 79
use in phase 62 164
use in phase 64 181

DECIMAL-POINT IS COMMA clause
COM MAD cell (COMMON) 328
phase 10 processing 57

DECK option
bit in COMMON 333
description 28
phase 02 processing 47
phase 62 output 161

Declarative Section
description 70
error declaratives 70
label declaratives 70

DEF-text
compiler processing 24-25
definition 543
formats 444
input/output operations ,37~,43
phase 22 processing 75
phase'6A processing 190,191
phase 64 action for 181 '
phase 64 processing of ,,' 179
phases involved 316

DEFCNT,cell (COMMON) 333
DEFLD11 routine

description 171
diagram of 581

DEFSBS table 347
delimiter, definition 543
delimiter pointer

definition 543
format 447

design of compiler
diagram' 581
general description. 20

destination table entiy, Data IC-text
DESTROY element

function 120
use in phase 62 169

DET-ROUT routine
description 522
FBS.GRP switch 523
GENERATE statement ,logic floW 526

181

404

logic of Report Writer
subprogram 527,316

phase 1B processing 61
DETTBL table

description 66
format 347-348
output of phase 1263

DEVTYPE macro instruction 48
diagnostic aids

ABEND codes 483-484
abnormal termination 31,32
buffers 487-488
CE worksheet 490-491
compiler error messages 485·486,483
current phase 486-487
description 470-491
registers

assignment 483
saving 487
usage by phases 471-482

system error recovery program 470
tables 313-315,488

!terminal error conditions 45
version of compiler 486

DICADR cell (COMMON) 327
DICND1 cell (COMMON)

description 327
use in phase 3 88

DICND2 cell (COMMON) 326
DICND3 cell (COMMON) 338
DICOT table

format 348
input to phase 25 85
organization of the dictionary 492
use in phase 1B 67

DICPTR cell (COMMON) 327
DICSPC routine 499
DICTBD routine

description 72,74
flowchart 244

dictionary
attributes, definition 453
definition 453
description 492

\

entries (see dictionary entries)
handling routines (see ACCESS routines)
organization 492,493
pointer, definition 453
spill

compiler data set activity 37-43
switch in COMMON 335
TAMEIN routine 498
TBSPILL routine 500

storage for 493
dictionary entries

(see also dictionary)
attributes

descriptions 446-454
phase 1B processing 66-68

base locator (see base locator)
building 74
completing

phase 21
phase 22

count field
FD

processing
processing

79

79,80
76

(see also FD dictionary entries)
completing 77

Licensed Material - property of IBM

phase 21 processing 79,80
preprocessing 76-77

formats 445-454
handling routines (see ACCESS routines)
LD 72

(see also LD dictionary entries)
major code

definition 544
FD dictionary entries 79

minor code, definition 544
partial 76
phase 02 processing
phase 1B processing
phase 21 processing
phase 22 74-77

47
66-68
79,80

phase 3 processing 95
RD 76

(see also RD dictionary entries)
REDEFINES clause 77
routines (see ACCESS routines)
SD

(see also SD dictionary entries)
completing 77
preprocessing 76
storage allocation 47

dictionary preprocessing 74-76
DICTNAME cell (COMMON) 331
direct A-text 127
direct indexing 123
DIRECTOR routine 74
directories, microfiche 317-323
discontinuity elements

phase 63 processing of 177
phase 65 processing 187

display literal definitions
optimization 147,165
optimization A-text format 439
PGT field 512
phase 6 processing 147

DISPLAY LITERAL field (PGT)
description 512
location 510

DISPLAY verb translator routine 139
DLSVAL cell (COMMON) 327
DMAP option

bit in COMMON 333
description 27
phase 02 processing 47
phase 62 output 161
register assignments 483

DMSAUPD routine, function 535
DMSCBD module

external symbol directory 535
function 535
load module directory 535

DMSCOB routine 533
(see also CMS interface routine)

DMSERR routine, called by DMSCOB 541
DMSERS routine

called by DMSCOB 541
function 535

DMSFLD routine
called by DMSCOB 541
function 535

DMSFNSA routine
called by DMSCOB 541
function 535

DMSGND routine 533

Index 597

Licensed Material - Property of IBM

DMSILB routine,
DMSLADW routine
DMSSBS routine
DMSSMN routine

ENTRY card punched for
541

541

called by DMSCOB 541
function 535

DMSSTT routine 541
DNTOR1 routine 138
DOFINIS routine, function 539
DOP1 workarea, use in phase 45 118
DRPLTBL table

format 348-349
function 169-170

DRPTBL table
function 169-170
format 349

DSPLAC routine (phase 6) 144
DSPLAC routine (phase 62) 164
DTAB table

description 100
format ·349

dump, producing a 29,470
DUMP option 29

ABEND conditions 483-484
description 29

DYN AM option
allocation of virtuals for 149
description 28
phase 02 processing 47
phase 51 processing 139
phase 6 processing for 148-149

533

phase 62 virtual EBCDIC names allocation
for 167

virtual allocation for 167

E-point name, phase 22 processing 62
E-text

definition 543
description 25
format 442
input/output operations 37-43
introduction 25
phase 20 71,72
phase 4 116
phase 51 133
phase 6

action taken 159
suppression of output listing 142
SYSUT4 processing 158

phase 64 action for 181
phase 64 processing of 179
phase 70 192-193
phases involved 316

E.nnnn (Report Writer data-name)
column clauses 523
nonstandard data-names 523

EACTBL table 193
EBCDIC card name element, phase 64 183
EBCDIC data-name reference element

phase 64 action 185
Procedure A-text format 435

EBCDIC name, Procedure IC-text format 411
EBCDIC procedure-name generator, Procedure
A-text format 434

EJECT routine 33
elementa~y item processing, phase 20 72

598

ELIODO routine 78
element (text), definition 543
ELSE clause 113
ENDCODE routine 585
ENDJOB option

description 28-29
parameter for 47
switch in COMMON 334

ENDOFTBL routine
diagram 585
function 189

ENDPTX routine (phase 6), diagram of 581
ENDP1 routine flowchart 261
ENDP16 routine, flowchart 261
ENDSEG elements

phase 63 processing of 177
phase 65 processing 187

ENDUSE verb, debug processing 135
ENTDEL routine 494-495
ENTDRP routine (phase 62) 169
ENTDRPL routine 169
ENTNAM routine 494
ENTPTR routine 494
ENTPT01 routine 174
ENTRDATA routine

description 86
flowchart 250

entry (table), definition 543j
entry points in phases 317-323
ENTRY-SAVE field (TGT)

description 507
location 505

Environment Division, phase 10
processing 57-58

ENVSCN routine
Environment Division processing 57
flowchart 224
phase 10 introduction 56

ENVTBL table
description 58
format 350-351

EOF routine (phase 63), diagram of 583
EOFON2 routine

description 188
diagram 585

EOFRTN routine 102
EOF2 routine, diagram 585
equate str ing

built by phase 51 134
GN 134
optimizing PNs and GNs 146
phase 6 processing 144
PN 134
use in Optimization 144

ERAS routine, function 539
ERF4SW cell (COMMON) 327
ERRNUM cell (COMMON)

description 332
passing E-text 141
phase orr processing 142

error, definition 543
error codes, use in phase 03 50
error declaratives

description 70
debug processing 133

error handling in compilation
clause compatibility 84
compilation in parameter ·errors 49

compiler errors 483
input/output errors

diagnostic aids 470
phase 02 processing 49
SYNAD routine 34
terminal 45

message generation, flowchart 303
(see also E-text)

severity 31
source program errors

phase 10 processing 56
phase 20 processing 73
phase 22 processing 78
phase 4 processing 116
terminal 45

terminal error conditions 45
error messages

CMS interface routine 540
generation by phase 12 64
printed by phase 03 50

error message texts 192
ERROR routine

phase 3
description 96
operations diagram 597

phase 4 116
error symbols, Procedure IC-text

PO format 412
P1 format 422

error text (see E-text)
ERRPRO routine 133
ERRSEV cell (COMMON) 327
ERRT BL table

forma t 352
E-text processing 159
general information 137
suppression of output listing 142

phase 7 processing 192
syntax-checking function 45
use in phase 3 95
use in ph~se 4 116
use in phase 50 119
use in phase 51 133
use in phase 6 142
use in phase 62 162
use in phase 64 181

ESD 149
ESD cards, definition 543
ESO-text, definition 543
ESDID cell (COMMON) 338
EVAL string 112-113
EVERY option 137
EXEC control card

compiler options 25
phase 00 processing 31

execution-time STATE bit (TGT) 506
EXHIBIT NAMED name, Procedure IC-text

PO format 411
P1 format 421
P2 format 427

exit lists 80
external symbol dictionary

description 148
microfiche directory 321-323

Licensed Material - Property of IBM

FO dictionary entries
completing 77
format 447
phase 21 processing 79,80
preprocessing 76

FO entries
Data IC~text format 403
description 59

FO text
definition 543
description 79

FDECK option 29
FOEFCOB routine, function 539
FOTAB table

format 352
use in phase 21 79
use in phase 21 80
use in phase 22 75

FIB field (TGT)
description 508
location 505

figurative constant ALL references,
Procedure IC-text format 428

figurative constant references, Procedure
IC-text

PO format 412
P1 format 422
P2 format 428

File Description dictionary entries (see FD
dictionary entries)

File Description entries 59
FILE-CONTROL paragraph 58
file information block field (TGT)

description 508
location 505

file-name DEF text element, phase 64
action 181

file-name reference elements
description 89
Procedure IC-text

P1 format 425
P2 format 429

file-name reference elements
phase 64 action 185
Procedure A-text format 436
Procedure IC-text format 419

File section
description 59
dictionary entries

phase 22 77
phase 20 72

FILEDEF commands
description 532
issued for CMS interface 532

FILEST routine (phase 20) flowchart 234
FILEST routine (phase 21)

description 72
flowchart 246

FIL5BUF cell (COMMON) 330
FINDRW routine, function 539
FINDSSC routine 118
FIPLVL cell (COMMON) 338
FIPS

processing for phase 8s 194

Index 599

Licensed Material • Property of IBM -

FIPS (continued)
flowcharts 304-308

fixed Report writer routines· 515
FLAG option

bit in COMMON 333
phase 02 processing 47

floating·point literal references,
Procedure IC-text

PO format 411
P 1 format 421
P2 format 427

floating·point operations 124-125
FLOW option

bit in COMMON 333
description 26
phase 02 processing 47
phase 6 output 142
phase 62 output 162
phase 65 processing 187
Procedure A-text processing 152

flow trace option (see FLOW option)
flowcharts 197-308
FLOWSZ cell (COMMON)

description 328
use in phase 65 187

FLUSH routine
description 64
flowchart 230

FNTBL table
Data Division processing 59
format 352-353
input to phase 12 63
output of phase 12 63
phase 1B processing 69
phase 10 processing 59

forcing a dump 470
FORMLA routine 111,112
FOURTY8 routine, diagram of 583
fragment, program, definition 543
FREE element

function 120
use in phase 62 169

FREEMAIN macro instruction 498
FRS.GEN (Report Writer data-name),
description 522

FRS.GRP (Report Writer data-name),
description 523

FRTYPROC routine
description 187
diagram 585

FSECT routine flowchart 252
FSTXT routine

FD processing 79
phase 21 processing 80

FSTOOO routine 77,79
F2PROCS branch table, use in phase 65 187

GATXTV routine 127-128
GCNTBL table 353
GENERATE statement

FRS.GEN data-name 524
logic flow

first statement 525
subsequent statements 526

,phase 1B processing of 61
response at execution time 523

600

special Report Writer verbs 524
1ST-ROUT routine 515

generated procedure-name (see GN)
generating data A-text 77
GENOP routine

condition-string processing
with VALUE clause 98
without VALUE clause 97

replacing names 95
phase 3 operations 88

GENOP routine, translation of PO text 89
GET routine (phase 63)

control 175
diagram of 583

GETALL routine (TAMER) 500
GETBTBL table, use in phase 63 182
GETCRD routine

phase 1B 66
phase 10 57

GETDLM routine
description 56
phase 10 56
phase 12

call to GNSPRT routine 64
RDSCAN routine 62

GETKAIN macro instruction
dictionary storage 493
TAMER area 497,498

GETNXT routine (Phase 3) 89,90
GETNXT routine (phase 50)

flowchart 267,268
introduction 119

GETNXT routine (phase 51)
flowchart 273
introduction 133

GETPTR routine 494
GETWD routine 56,57
global table (see Task Global Table;

Program Global Table)
global table references, procedure IC-text

format
type 1 430
type 2 430

global table standard area references 153
global table variable-located area
reference element

description 153
phase 64 action 184
Procedure A .. text format 435.

GLORET routine 88
GLOSRY routine

flowchart 252
glossary building 88
phase 3 operations 88

glossary (compiler)
processing for 88
symbols used in 142

glossary (for this book) 542-546
GN (compiler generated pr.ocedure-name)

allocation
phase 6 150
phase 62 167

definition
phase 64 action 184
procedure A-text format 434
PO text format 412
P1 text format 422
P2 text format 428

description, general 543
equate strings

building 134
Optimization A-text format 439
optimizing 146-147

error declaratives, Procedure IC-text
format 411

field (PGT) 511
generated procedure-name reference,

optimization A-text format 439
label declaratives, Procedure IC-text

format 411
number

phase 1B 70
phase 3 95
phase 4 105
phase 50 130
phase 6 150

optimizing 146-147
phase 1B processing
phase 4 processing
phase 50 processing
phase 51 processing
phase 6 processing
reference element

70
113

130
134

146

phase 64 action 184
Procedure A-text format 434
PO text format 412
P1 text format 422
P2 text format 428

GN-VN element for PERFORM verb,
optimization A-text format 440

GNCALTBL table, format 354
GNCTR cell (COMMON)

description 325
use in phase 1B
use in phase 4
use in phase 6

GNDEF routine
diagram of
flowchart

GNDEFR routine
GNEQUR routine
GNFWDBTB table

583
289

581
146

building of 171
format 354

GNLABT BL table
building of 171
format 354

70
105
149

use in phase 63 175
use of ACCUMCTR 171

GNLBDTBL table 355
GNREF routine

diagram of 583
flowchart 292

GNSPRT routine
description 64
flowchart 231

GNTBL table
format 355
GN allocation 150
optimizing GNs 146-147
Procedure A-text processing 152

GNU REF element s
optimization A-text format 439
phase 50 processing 132

GNVNRTN routine 165
GOBACK statement, ENDJOB option for 28-29

Licensed Material - property of IBM
\

GO string 106
GO TO DEPENDING ON call parameter element

phase 64 action 185
procedure A-text format 436

GO TO statement
phase 1B processing 69
with ALTER statements 105-108

GOTAVERB routine
description 101
flowchart 257

GPLSTK table
format 355-356
use in phase 22 76

group item processing, phase 20 72
GRP.IND (Report Writer data-name) 522
GSPICT routine 72
GTEQ10K routine

description 188
diagram 585
flowchart 299

GTLNG cell (COMMON) 329
GVFNTBL table 357
GVNMTBL table 357

HASH table
dictionary organization 492,493
format 358
input to phase 25 85
phase 3 processing 90
TIB30 cell (COMMON) 325
usage 313-314
use in phase lB 67

hierarchy of operators
definition 543
description 112

I-O-CONTROL paragraph 58
IC-text, definition 543

(see also Data IC-text; Procedure
IC-text)

IDBRK routine 104
IDBYTES cells (COMMON) 339
IDDSCN routine
. flowchart 223

Identification Division processing 57
phase 10 introduction 56

IDENT routine 104
identification, compiler version 486
Identification Division

compiler processing 20
phase 10

overview 56
processing 57

identifier constant 486
IDENTL cell (COMMON) 328
ID entry format, Data IC-text 104
idk field, phase 22 processing 76
IDLHN routine

ALTER statement processing 106
DEBUG Card processing 105
PERFORM statement processing 109
phase 4 overview 104

IDPHOO-IDPH80 cells (COMMON) 339
IF statement 113

Index 601

Licensed Material - property of IBM

IF string
IF statement processing 113
PERFORM statement processing 109

IF verb analyzer routine
flowchart 260
IF statement processing 113
IF MESSAGE statement processing 113

IKFCBLOO (see phase 00; producing a storage
dump)

IKFCBL01 (see phase 01)
IKFCBL02 (see phase 02)
IKFCBL03 (see phase 03)
IKFCBL04 (see phase 04)
IKFCBL05 (see phase 05)
IKFCBL06 (see phase 06)
IKFCLB08 (see phase 08)
IKFCBL1B (see phase 1B)
IKFCBL10 (see phase 10)
IKFCBL12 (see phase 12)
IKFCBL20 (see phase 20)
IKFCBL21 (see phase 21)
IKFCBL22 (sEe phase 22)
IKFCBL25 (see phase 25)
IKFCBL30 (see phase 3)
IKFCBL35 (see phase 35)
IKFCBL40 (see phase 4)
IKFCBL45 (see phase 45)
IKFCBL50 (see phase 50)
IKFCBL51 (see phase 51)
IKFCBL6 (see phase 6)
IKFCBL6A (see phase 6A)
IKFCBL62 (see phase 62)
IKFCBL63 (see phase 63)
IKFCBL64 (sEe phase 64)
IKFCBL65 (see phase 65)
IKFCBL70 (see phase 70)
IKFCBL 71 (see phase 71)
IKFCBL72 (see phase 72)
IKFCBL80 (see phase 80)
incremented address elements

phase 63 processing of 176
phase 64 action 185
Procedure A-text format 435

incrementing the ACCUMCTR counter 171
INDEX cell (COMMON) 331
INDEX field (TGT)

description 509
location 505
phase 6 processing 143
phase 62 counter for 163
use in phase 50 123

INDEX table, phase 22 output 75
index-name format, Data IC-text 404
index-name references

description 123-124
dictionary entry format 454
Procedure IC-text

PO format 421
P1 format 427

INDEXED BY clause 143
INDEX1 cell (COMMON)

description 328
use in phase 6 143
use in phase 62 163

indirect indexing 123,124
INDKEY table

format 358-359
phase 3 processing 88

602

SEARCH verb processing 92,93
INDXTB table 359-360
INDTBL table

description 58
format 358

IND2TBL table 359
initialization coding

description 157
flowchart 297
generation of

flowchart 281
phase 64 183

initialization of compiler 47
INITIATE statement 524
INITIATE verb, phase 1B procEssing for 61
INITSIZE cell (COMMON) 338
INIT1 routine (object module)

coding generation 157
description 501-502
location 501
written by phase 6 141,157

INIT2 routine (object module)
coding generation 157
description 513
location 501
wri tten by

phase 6 141,157
phase 64 183

INIT3 routine (object module)
coding generation 157
description 513-514
location 501
RLDTBL table processing 157
written by

phase 6 141,157
phase 64 183

inline procedures, definition 544
input/output

(see also access methods)
buffer assignments 37-43
compiler

buffer contents 487-488
buffer processing 47,48
data set activity 37-43
error messages 483
errors from phase requests 34
linkage codes 33,34
phase requests 34
phase 00 operations 31
register usage 471-482
response to system error

recovery 470
scanning routines 215
summary of phases 21-25
terminal errors 45

data set activity 37-43
errors

compiler messages 483
phase 02 processing 49
response to system recovery 470
result of phase requests 34
terminal 45

object module
(see also DCB; DECB)
buffer size 81
compiler processing for 80,81
data area 502
exit tests 502-504

requests
linkage codes for 33,34
phase 00 processing 31
phase 34

summary of phases 21-25
Input-Output Section 58,59
INSERT routine 500
INT-ROUT routine

COBOL word data-name processing 522
description 520
generation of 64
logic 516,517

Interactive Debug Program (see TEST option)
interlude routines

flow of control 35
linkage to data management 44
phase 00 processing 31,34

Intermediate A-text
data sets used for 119
definition 544
description 24
phase 50 processing 119
phase 51 processing 133

Intermediate E-text
data sets used for 119
description 119
definition 544
phase 50 processing 119
phase 51 processing 133

intermediate results
definition 544
work area for 124

intermediate result references, Procedure
IC-text format 429

internal compiler text 399-444
(see also ATF-text; ATM-text; Data
A-text; Data IC-text; Debug-text;
DEF-text; E-text; optimization A-text;
Procedure A-text; Procedure A1-text;
Procedure IC-text; XREF-text)

ATF-text format 408
ATM-text format 433
Data A·text format 409
Data IC-text format 402
Debug-text format 444
description 399
E-text format 442
optimization A-text format 439
Procedure A-text format 434
Procedure A1-text format 441
Procedure IC-text

PO format 411
P1 format 419
P2 format 425

types produced by each phase 316
XREF text format 443

internal text formats 399-444
interphase routines (see interlude
routines)

INTxx routines (see interlude routines)
INTVIRT cell (COMMON) 331
IOPTRCTR cell (COMMON) 328
IPTEXT

formats 400-401
generation of 53

IPTEXT ITEM processors 217
issuing CMS FILEDEF commands 532

Licensed Material - property ofIBM--

KALOUT cell (COMMON)
KEY TAB table 360
KEYTBL table

format 360-361
SEARCH processing

KILSUB routine
description 132
flowchart 270

KKADS5 cell (COMMON)
KKPGR70 cell (COMMON)
KKPHOSW cell (COMMON)
KTRMNATE cell (COMMON)

description 337
use in phase 03 50

label declaratives

337

114

337
338
337

debug processing 135
description 70

LABEL RET field (TGT)
description 507
location 505

LABELS cell (COMMON) 325
LABTBL table

format 361
input to phase 20 71

LANGLVL option 29
language analysis routine 214
LATACP routine

description 496
dictionary organization 493

LATGRP routine 496
LATRNM routine 495
LATRPT routine 495
LCOL1 option 29
LCOL2 option 29
LCSECT cell (COMMON) 327
LD dictionary entries

description 72
format 450
preprocessing 71

LD entries, Data IC-text format 402
LD-text

definition
description

LDELNM routine

544
59
495-496

LDTEXT routine
description 73
flowchart 236
phase 20 control 72

LDTXT routine, flowchart 242
LENGTH OF VN TBL field (TGT)

description 507
location 505

LIBBUF cell (COMMON) 339
LIB option

data set usage for 37-43
description 25-26
flowchart 207
parameters 47
phase 10 processing 57
switch for 295

LIN.NUM data-name 523
LIN.SAV data-name 523
LINE clause, input to PROC01 routine
LINE-COUNTER data-name 522

56

Index 603

Licensed Material - Property of IBM

LINECNT option
description 28
phase 02 parameters

LINECNTX cell (COMMON)
LINKCNT cell (COMMON)
LINK macro instruction

47
332

337

interphase processing 31
parameters 46
passing control to compiler 31
phase 02 47

LINKA routine 31
linkage editor

i nt rod uction 19
phase 6 overview 22
processing of CMS compiled program 533

Linkage Section
phase 10 processing 60
phase 22 processing 77

LINKB routine 35
LINKCNT cell (COMMON)

current phase 487
description 337
interphase processing 34
returning control to system 31
use in phase 4 116

LINKNAME cell 487
LINKPH1 routine 71
LINKST routine (phase 20), flowchart 235
LISTERSW cell (COMMON) 331
LISTING filename 532
listing

suppression of 142
symbols used in 142

Listing A-text
phase 60 processing 155

literal allocation, phase 62 168
literal definitions

A-text generation 127,131
optimization 147
optimization A-text format 439
phase 51 processing 139

LITERAL field (PGT)
description 511-512
location 510

literal reference element
phase 64 action 184
Procedure A-text format 435

literal subscripts 121,122
1i terals

description 511-512
optimization of 165

load module 46
load module microfiche directory 317-323
LOAD option

description 26
phase 02 parameters 47
phase 62 output 161
switch for 333

LOCCTR cell (COMMON)
description 325

604

use in ADINCR routine 176
use in phase 21 80
use in phase 22 76
use in phase 6 142-144
use in phase 63 175-178
use in RPT-ORIGIN processing 177

LOCNXT routine
description 495
phase 25 processing 86

LOCTMCTT cell (COMMON) 331
LONGTGT bit (TGT) 506
LNGBL cell (COMMON) 331
LNGDSP cell (COMMON) 331
LSECT routine flowchart 239
LST-ROUT routine

generation of 64
GN number 528
phase 1B processing 61

LSTCOMP option 29
LSTONLY option 29
LTLCTR cell (COMMON)

description 326
use in phase 50
use in phase 6
use in phase 62

LTLDIS routine

132
150

168

literal o~timization 169
phase 6 169
phase 62 165

LTLRTN routine
literal optimization 169
phase 6 169
phase 62 165

LTLTBL table
format 361
LITERAL allocation 150-151
literal optimization 169
phase 62 processing 165,168
processing Procedure A-text

elements 153
use in phase 62 168

LVL option 28
L 120 option 29
L132 option 29

macro instructions
ATTACH 31,46
CALL 31,46-47
FREEMAIN 498,499
RETURN 32
XCTL 31,46-47

MACRO routine, diagram of 583
maero-type instruction element

optimization A-text format 440
phase 64 action 183
Procedure A-text format 434

Main Free Area, definition 544
major code, definition 544
master of an OCCURS clause with the

DEPENDING ON option,. definition 544
MAPLOC routine

PGT storage allocation 1~8
TGT storage allocation 1~4.

MASTAM table 497-498,
MASTODO table

format 361-362
input to phase 25 85
output of phase 22 75

MAXBGITM cell (COMMON) 338
MESSAGE condition, phase,·50. processing
for 132

message definitions, E-text format 442
message parameters, E~tsxt format 443

microfiche directories
external symbol dictionary 321-323
load module 317-323

minor code
definition 544
description 450

mode of operation for arithmetic
strings 126

MOVDIC routine 499
MOVE statement 104
MOVE string 104
MOVE verb analyzer routine

subscript references 123
verb string processing 120

N.nnnn data-name 504
NAME option

bit in COMMON 334
description 26
phase 02 parameters 47
phase 6 output 137
phase 62 output 161
phase 65 processing for 189

nested IF. st atemen ts 113
NEWBLOCK routine 581
NEXT GROUP clause 64
NOBLST routine 171
NODECTR cell (COMMON) 330
nondata operand, definition 544
NOTE routine 44
NPTTBL table 362
NUM option

bit in COMMON 334
description 26
GETWD routine 56
phase 02 parameters 47

nu me r ic Ii te ral re ferenc es, Proced ure
IC-text

PO format 411
P1 format 420
P2 format 427

NUMINCR cell (COMMON) 333
NXTOPTN routine, function 539

object deck 28
object hierarchy, definition 544
object module

definition 544'
description 501-514
fields

.COUNT table 512
DATA AREA 502
EXIT lists 501-504
INIT1 501-502
INIT2 513
INIT3 513
locations 501
PGT 510

(see also Program Global Table)
PROCEDURE 512
PROCTAB table ·514
Q- Routines-. 512

Licensed Material - Property of IBM

RPT 512
SEGINDX table 514
TGT 505-510

(see also Task Global Table)
Transient Area 514

initialization coding generation
description 157
flowchart 297

segmented 514
storage map 501

object program listing
CLIST option 27
phase 6 output 141

OBJECT-COMPUTER paragraph 57
OBJSUB table, format 362
OBODOTAB table

built by phase 25 87,85
format 457

OBODOTBN cell (COMMON)
description 330

obtaining and printing error messages 50
OCCORS DEPENDING ON clause (see Q-routines;

OBODOTAB table)
OCCTBL table

format 363
input to phase 25 85
output of phase 22 75
usage 313,314

ODOBLD rou tine
diagram of 87
flowchart 261

ODOCT counter 87
ODOCTR cell (COMMON) 326
ODOTBL table

diagram of 87
format 363-364
use in phase 25 87

OD2TBL table
Data Division processing 59
format 364
input to phase 22 75
phase 10 processing 59

OFLOTBL
description 190,191
format 364

ON routine 137.
ON SIZE ERROR clause 113
ON statement 137
ON strings 137
ONCTL field (TGT)

counter used for 143
description 509
location 505
ON processing 137
phase 62 counter for 163

ONCTR cell (COMMON)
description 329
use in phase 51 137
use in phase 6 143
use in phase 62 163

OPEN verb, debug processing 136
operating systelil

compilation
abnormal termination 31,32
invocation 31

compiler, relationship to 19
data management (see input/output

requests)

Index 605

License9,'Material - Property of IBM

operating system (continued)
object module, relationship to (see
input/output requests; error handling
in compilation; object module)

returning control to 31,32
operation code element

format 434
phase 64 action 184

operators, hierarchy of
defini tion 543
description 111

OPPRO routine, diagram of 581
OPT option

assembler coding for 110
compiler characteristics for 19
description 26
PERFORM statement processing with 110
phase 02 processing for 55
phase 4 processing for 106
phase 50 processing for 132
phase 51 processing 135,140
phase 62 processing for 161-174
phase 63 processing for 175-178
phase 64 processing for 179-186
segmentation operations 44
text generation for 140

optimization A-text
compiler overview 25
def ini tion 544
formats 439
generation 127
input/output operations 37-43
literal processing 139
phase 50 127,132
phase 50 introduction 119
phase 51 introduction 133
phase producing 316

optimization information elements
phase 4 format 428
phase 50 format 436
phase 50 processing of 132
phase 62 processing 171-174
phase 63 processing of 172-174,176
processing for 172-174

optimizing assignments (registers 14 and
15) 170

Optimizing literals 165
optimizing register assignments 168-170
optimizing storage for the PGT 164
optimizing virtuals 166
OPTINSW cell (COMMON) 333
OPTINSW1 cell (COMMON) 333
OPTINSW2 cell (COMMON) 333
OPTINS W3 cell (COMMON) 333
OPTINSW4 cell (COMMON) 333
optional phase processing 36
OPTLSTR cell (COMMON) 339
OPTLVL cell (COMMON) 339
OPTSWV2 cell (COMMON) 339
op.tions

606

(see also compilation directives)
ADV 29
APOST 28
BATCH 26
BUF 25
CDECK 29
CLIST 27
CMS interface 531

COUNT 29
CSYNTAX 26
DECK 28
DISK 531
DMAP 27
DUMP 29
DYNAM 28
ENDJOB 28-29
FDECK 29
FLAG 28
FLOW 26
LANGLVL 29
LIB 25-26
LINECNT 28
LOAD 26
LCOL 29
LSTCOMP 29
LSTONLY 29
LVL 28
L120 29
L132 29
NAME 26
NUM 26
OPT 26
phase 62 output 161
PMAP 27
PRINT 531
QUOTE 28
RESIDENT 28
SEQ 28
SIZE 25
SOURCE 25
SPACE 28
STATE 26-27
SUPIUP 27
SXREF 27
SYMDMP 27
SYNTAX 26
SYST 28
SYSx 28
TERM 26
TEST 27
TRUNC 27-28
VBREF 29
VBSUM 29
VERB 28
XREF 27
ZWB 27

OPTSCN routine, function 539
out-of-line procedure, definition 544
OUTLRECL cell (COMMON) 339
output listing, suppression of 142
QU6REC work area, use in phase ,64 179
OVERFLOW cell (TGT) , '

allocation (pliase 62)-167' ,-
description 508 -
location 505

OVERFLOW cell (PGT) 511
OVERFLOW record

defini tion 544'
description 190,191

'i."

PAGE clause, RDSCAN routine
PAGE-COUNTER data-name 522
PARAM field (TGT)

description 509-510

processing 62

location 505
phase 6 processing 143
phase 62 counter for 164

parametric Report Writer routines 520,521
parentheses, Procedure IC-text

PO format 412
P1' format 421

PARMAX cell (COMMON)
description 330
use in phase 6 143
use in phase 62 164

PARTBL table 193
PDATEX routine (phase 6) flowchart 294
PDATE~ routine (phase 64) flowchart 294
PDSCN routine

description 66
flowchart 232

PERFORM cells (see also PFMSAV field
(TGT)) 329

PERFORM statement, phase 4
processing 109-111

PF routine (see PGF-ROUT routine)
PFINDL routine 113
PFMCTL field (TGT)

counter in COMMON 329
description 509
location 505
phase 6 processing 143
phase 62 counter for 163

PFMCTR cell (COMMON)
description 329
use in phase 4 109
use in phase 6 143
use in phase 62 163

PFMSAV field (TGT)
counter in COMMON 329
description 509
location 505
PERFORM statement processing 109
phase 6 processing 143
phase 62 counter for 164

PFMSAV number 109
PFMTBL table

forma t 364-365
PERFORM statement processing 109

PGF-ROUT routine
description 521
GN number 528

PGH-ROUT routine 521
PGNARTN routine 165
PGT (see program Global Table)
PGT-VN TABLE field (TGT) .

description 507 .
location 505

PH routine (seePGH- ROUT routine)
phase, definition' 544
phase, optional 36
phase 00

CSECT names 317
description 31-45
entry point

COS 35,44
(see also COMMON)
START 31 .

flowcharts 197-308
function 21'
input/out put requests 33,34
internal cells

Licensed Material - property of IBM

LINKCNT 31,487
LINKNAME 487
SEGSAVE 44

microfiche directory 317
register usage 471
SEGTBL table 44

phase 01
CSECT names 317
description 46
flo.wchart 206
function 22
microfiche ~irectory 317
register usage 471

phase 02
CSECT names 317
description 47-49
flowchart 207
function 22
microfiche directory 317
register usage 472

phase 03
CSECT names 317
description 50
diagram 597
flowchart 208
function 22
microfiche directory 317
register usage 472
returning control to phase 00 50

phase 04
description 51
diagram 561
entry point 317
flowcharts 209-212
function 22
input-output requests 51
microfiche directory 317
register usage 472
texts produced 316

phase 05 .
CSECT names 317
description 52-53
flowcharts 213-215
function 22
input/output requests 37
microfiche directory 317
register usage 473

phase 06
CSECT names 317
description 54
flowcharts 216-219
function 22
input/output requests 37
microfiche directory 317
register usage 473

phase 08
CSECT names 317
description 55
flowcharts 220~221
function 22
input/output requests 37
microfiche directory 317
register usage 473

phase 1B
CSECT names 318
description 66-70
entry point 318
flowchart 232

Index 607

Licensed Material - Property of IBM

phase 1B (continued)
function 22-23
input/output requests 37
internal cell SEGSH 69
microfiche directory 318
register usage 475
table usage 313
texts produced 316
TIB usage' 315

phase 3
CSECT names 318
description 88-98
entry points 318
flowcharts 251,253
function 23
input/output requests 38
microfiche directory 318
register usage 477
table usage 313
texts produced 316
TIB usage 315

phase 4
CSECT names 319
description 104-117
entry points 319
flowcharts 259-261
function 23
input/output requests 38
microfiche directory 319
optimization information elements 428.
register usage 477
texts produced 316
table usage 313
TIB usage 315

phase 6
CSECT names 319
description 141-160
entry points 319
flowcharts 276-281
function 24
input/output requests 31
microfiche directory 319
OU6REC internal cell 151
register usage 479
table usage 314
texts produced 316
TIB usage 315

phase 6A
CSECT names 320
flowcharts 300-302
description 190,191
function 24-25
input/output requests 42
microfiche directory 320
register usage 481
table usage 314
TIB I}sage 315

phase 10

608

communication section processing 60
CSECT names 317
description 56-60
entry point 317
flowcharts 222-225
function 22
input/output requests 37
internal cell CURGCN 56
microfiche directory 317
register usage 474

table usage 313
texts produced 316
TIB usage 315
work area ICTEXT 59

phase 12
CSECT names 317
description 61-65
flowcharts 226-231
function 22
generating error messages 64
input/output flow 63
input/output requests 37
microfiche directort 317
register usage 474-475
table usage 313
texts produced 316
TIB usage 315

phase 20
communication section processing 73
CSECT names 318
description 71-73
entry point 318
function: 23
flowcharts 233-236
input/output requests 37
DCBEXLST cell 80
microfiche directory 318
register usage 475
table usage 313
texts produced 316
TIB usage 315

phase 21
CSECT names 318
description 79-84
flowchart 245-246
function 23
input/output requests 38
microfiche directory 318
register usage 476
table usage 313
texts produced 316
TIB usage 315

phase 22
CSECT names 318
description 74-78
flowcharts 237-244
function 23
input/output requests 38
microfiche directory 318
register usage 476
table usage 313
texts produced 316
TIB usage 315

phase 25
CSECT names 318
description 85-87
diagram of operations 577
flowchart 247-250
function 23
input to 87
microfiche directory 318
operations 87
operations diagram 577
register usage 476
table usage 313
TIB usage 315

phase 35
CSECT names 318

description 99-103
entry point 317
flowcharts 254-258
function 23
microfiche directory 318
register usage 477
routines 100-102
table handling 100
table usage 313
TIB usage 315

phase 45
CSECT names 319
description 118
flowcharts 262-264
function 23
input/output requests 39
microfiche directory 319
register usage 478
table usage 313
texts produce~ 316
TIB usage 315

phase 50
CSECT names 319
description 119-132
entry points 319
flowcharts 265-270
function 24.
input/output requests 40
microfiche directory 319
optimization information elements 436
register usage 478
table usage 313
texts· produced 316
TIB usage 315

phase 51
CSECT names 319
description 133-140
entry points 319
flowcharts 271-275
function 24
input/output requests 40
microfiche directory 319
register usage 478
table usage 313
texts produced 316
TIB usage 315

phase 62
CSECT names 319
description 161- 174
diagram of 581
flowcharts 282-286
function 24,161
input/output requests 41
microfiche directory 319
operations 581
register usage 479
table usage 313
TIB usage 315

phase 63
CSECT names 320
description 175-178
diagram 583
flowchart 287-292
function 24
input/output requests 41
microfiche directory' 320
register usage 480
table usage 313

Licensed Material - Property of IBM

texts produced 316
TIB usage 315

phase 64
CSECT names 320
description 179-186
flowchart 293-297
function 24,179
input/output requests 42
microfiche directory 320
output 179
register usage 480
table usage 313
t~xts produced 316
TIB usage 315

phase 65
CSECT names 320
description 187-189
diagram 585
flowcharts 298-299
function 24,187
input/output requests 42
microfiche directory 320
register usage 480
table usage 314
TIB usage 315

phase 70
CSECT names 320
description 192-194
entry points 320
flowchart 303
function 25
input/output requests 43
microfiche directory 32C
register usage 481
table usage 314
TIB usage 315
XU6REC internal cell 193

phase 71
CSECT names 320
description 192-194
microfiche directory 320

phase 72
CSECT names 320
description 192-194
microfiche directory 320

phase 80
CSECT names 320
description 195-196
flowcharts 304-308
function 25
input/output requests 43
microfiche directory 320
register usage 482

PHASEND routine 86
PHAS63 routine 175,177
PHCTRL routine

flowchart 253
phase 3 control 88-89
SEARCH string processing 93

PHINIT routine
description 88
Glossary building 88,597

PHMESS table, use in phase 70 192
PHxERR tables 193,194
PHZERR cell (COMMON) 338
PHZSW cell (COMMON)

description 333
use in phase 02 47,48

Index 609

Licensed Material - Property of IBM

PHZSW1 cell (COMMON)
description 333
use in phase 02 47,48
use in phase 3 (SYM bit) 88
use in phase 6A 190

PHZSW2ceil (COMMON)
description 334
use in phase 02 47,48

PHZSW3 cell (COMMON)
description 334
statistical information 48
syntax-checking function 45
use in phase 02 47,48

PHZSW4 cell (COMMON) 334
PHOSW cell (COMMON) 339
PH1BYTE cell (COMMON)

configuration section processing 57
description 335

PH1ERR table, use in
PH2ERR table, use in
PH25SW cell (COMMON)

phase 70
phase 71

338

193,194
192

PH3ERR table, use in phase 72 192
PH4ERR table, use in phase 72 192
PH45CTL routine 118
PH45BIT bit (COMMON), set in phase 4 104
PH5CTL routine

debug option processing 135
flowchart 266
handling phase 51 verb strings 132
ON processing 137
verb string processing 119,120

PH5ERR table, use in phase 72 192
PH6 routine (phase 6) flowchart 277
PH6 routine (phase 62) flowchart 283
PH6ERR cell (COMMON)

description 329
phase 70 processing 193

PH6ERR table, use in phase 72 192
PH62 routine 581
PH65 routine 585
PIOTBL table

format 365
input to phase 12 63
output of phase 12 63
phase 1B processing 66
RERUN clause processing 58-59
use in phase 21 79
verb processing 69,70

PLSCALL routine 205
PMAP option

description 27
phase 02 parameters 47
phase 62 output 161
phase 64 processing for 179
register assignments 483
switch for 333

PN (source program procedure-name)
allocation (phase 62) 167
DEF-text

610

format 443
phase 64 action 179
Procedure A-text forinat 434
Procedure IC-text formats 411,419

description
definition 544
dictionary entry formats 446

phase 1B 66,67
phase 50 130
phase 51 134

equate strings
description 144
optimization A-text format 439

field (PGT) 511
number·

phase 1B 66,67
phase 4 104
phase 6 150

optimizing 146
reference element

phase 64 action 184
Procedure A-text format 434
Procedure IC-text formats 411,419

PNATBL table
format 366
phase 62 processing 165

PNCHSlf routine
description 189
diagram 585

PNCHSW switch, use in phase 65 189
PNCTR cell (COMMON)

description 325
use in phase 1B 66
use in phase 51 13~

PNDEF routine
diagram of 583
flowchart 290

PNDEFR routine (phase 62) 581.
PNDEFRTN routine· 102
PNEQUR routine 146
PNFWDBTB table

building of 171
format 366

PNLABTBL table
building of 171
format 366
use in phase 63 175
use of· ACCUMCTR 171

PNLBDTBL table, format 367
PNOUNT table

description 111~112
format ~67

PNQTBL table-
description 67,68
format 367

PNTABLtable
description 67,:68
format 368

PNTBL table
format 368
optimizing PNs 583
PN allocation 149-150
Procedure A-text elements 152,153

PNUREF element, optimization A-text
format 440

PNUTBL table
building of 135
format 369
optimizingPNs 146
phase 6 introduction 141

PRBLDISP ~ell (CO~MON)
description 325
phase 64 processing 186

PRBLNUM cell (COMMON) 330

PRBL1 CELL PTR field (TGT)
description 508
location 505

PRFORM routine
description 109
flowchart 2.61

PRFTWO routine (phase 6)
flowchart 278
diagram of 581

PRFTWO routine (phase 62) flowchart 284
PRIME routine

called by MOVDIC 499
description 498-499

PRINT option 531
PRINT*SWITCH data-names 522
PRINTBUF cell (COMMON) 338
priority, definition 544
priority elements, debug-text format 444
priority numbers in segmentation

checking in phase 1B 69
Configuration Section 57
procedure A-text processing 151-152,155

PROC BL counter
use in branch instruction

processing 174
use in building PNLABTBL and

GNLABTBL 171
use in phase 62 169

PROCCTR cell (COMMON) 330
procedure, in-line, definition 544
procedure, out-of-line, definition 544
Proced ure A- te xt

data sets used for 37~43
definition 544
formats 434-438
use in procedure block

allocation 168,169
procedure A1-text

d ef ini tion 545
formats 441-442
phase 64 action 179,183-186
phase 64 processing of 179
producing of 175

procedure base register for GNs element
phase 64 action 182
procedure A1-text format 441

procedure base register for PNs element
phase 64 action 182
procedure A1-text format 441

Procedure Block
allocation 168,169
definition 545
phase 63 processing for 175
segmentation processing 171

PROCEDURE BLOCK field (PGT)
description 51,2
location 510 :
overflow allo'cation 166

procedure block number element, phase 64
action 183

Procedure Division
compiler design 2.0
overview 21-25
phase 1B processing 66
procedure-name processing 104

Procedure field (object module)
description 512
location 510

Licensed Material - ~roperty of IBM

Procedure IC-text
data sets used for 37~43

definition 545
description 21
formats 411-432

procedure-name DEl-text element, phase 64
action 182

procedure-name reference, optimization
A-text format 440 '

procedure-name, compiler generated (see GN)
procedure-name, source program (see PN)
procedure-name, variable (see VN)
procedure P1A-text 424
PROCESLD routine 86
processing for branch instructions

phase 62 174
phase 63 17 5

processing for optimization information
elements 176

PROCINDX table
building of 188
format

compiler 369
debug data set 466

PROCNOTE save area, use in phase 65 188
PROCRENM routine 86
PROCTAB table

building of 187
format 46,5
location in object module 501
object module 514

PROC01 routine
description 64
flowchart 228

PROC02 routine
description 64
flowchart 229

producing a storage dump 29,470
producing file section entries 71
producing incomplete Data A-text 72
producing the report writer subprogram 62
PROGID cell (COMMON)

description 325
use in phase 10 57

program break 134
(see also critical program breaks)

program collating sequence, phase 05 57
Program Global Table (PGT)

base registers for 182
COMMON, relationship to 324
counters used for 146
definition 545
description 510-512
fields

COUNT LINKAGE AREA 511
DCBADR 511
DEBUG LINKAGE AREA 510
DISPLAY LITERAL 512
GN 511
LITERAL 511-512
locations 5,10
OVERFLOW 511
PN 511
PROCEDURE BLOCK 512
TEST LINKAGE AREA 511
VIRTUAL 511
VIRTUAL EBCDIC NAMES 511
VNI 511

Index 611

Licensed Material - Property of IBM

Program Global Table (PGT) (continued)
phase 6 introduction 141
phase 6 storage allocation 148-151
phase 62 storage allocation for 162-166
phase 64 processing for 179

progress messages
defini tion 545
interphase processing 34
SYSTERM data set 44
TERM option 26

PROGSUM table
building of 188
format 456

PROGSW cell (COMMON) 338
PSHTBL table

description 113
format 370

PSIGNT table
description 111-113
format 370

PSVCTR cell (COMMON)
description 329
use in phase 6 143
use in phase 62 164

PTRFLS table
description 113
format 370

PTYNO cell (COMMON) 327
PUT routine (phase 6) 151
PUTDEF routine

flowchart 274
PN definition 134

PO-text (see procedure IC-text)
P1-text (see procedure IC-text)
P1BTBL table

description 66
format 371
input to phase 12 63
outpu t of phase 12 63
use in phase 10 61

P1TEXT table
description 100
format 372

P2~text (see procedure IC-text)

Q-routine, definition 545
Q-routine generation 77-78
Q-routine identification elements

A-text processing for 77
phase 64 action 182

QALTBL table 372
QBEGIN routine 175
QBUILD routine 78
QFILE table

attribute replacement 95
format 372-373
phase 21 processing 79
use in phase 3 95

QGNTBL table
building of 177
format 373
use in phase 63 175
use in phase 64 182

QITBL table
diagram of 87
format 373
input to phase 25 85

612

QISAM access method 80-83
QLTABL table

format 374
input to phase 12 63

QNMTBL table
description 57-59
format 374

QRTN table
diagram of 87
format 374-375
input to phase 25 85

QSAM access method 80-83
QSBL table 375
QTBL table

format 375
Q-routine identification element 160
use in phase 64 182

QUALIF routine 95
qualified name, definition 545
qualifying EBCDIC name, Procedure IC-text

format 411
QUOTE option 28
QVAR table

dictionary attributes 95
format 375-376
phase 22 processing 75

QVARBD routine 78

RCDTBL table
Data Division processing 59
format 376
input to phase 12 63
output of phase 12 63

RC4 routine flowchart 296
RC8C routine flowchart 296
RD dictionary entries

Data IC-text format 402
description 59
format 449
preprocessing 76

RDFSTK table
format 376
use in phase 22 76,77

RDF2 routine
description 188
diagram 585

RDSCAN routine
description 62
flowchart 227

RDSYN routine 77
RD001 routine flowchart 296
READ routine

description 33
flowchart 200

READ statement 89
READ verb 136
READ verb, debug proc6ssing 135
READFN routine 89
READF2 routine (phase 6) 146
READF2 routine (phase 62) diagram 581
READF4 routine

description 74
flowchart 243

READLIB routine, flowchart 204
RECEIVE verb

phase 50 processing for 129
phase 51 processing 136

Record Description dictionary entries 60
(see also RD dictionary entries)

RECORD KEY clause 64
REDEF routine 76-77
REF-text

data sets used for 37-43
definition 545
format 443
phase 6A 190,191

REFLD11 routine diagram 585
REDEFINES clause, phase 22 processing
of 62,76-77

REGCOMAD routine, diagram 585
register assignment

CMS interface routine 539
description 155,156
NOOPT option 483
OPT option 483
optimization of 168-170
phase 51 verb processing 135

register specification element
format 435
phase 64 action 185

register usage
compilation 471-482
execution-time 155,156
saving registers 487
work registers 135

register 14, optimizing assignment of 170
register 15, optimizing assignment of 170
REGLIST routine 581
REGMTX table 151-156
REGMV1 routine

diagram 581
use in register assignments 169

RELADD cell (COMMON) 325
relational codes, Procedure IC-text

format 412
P1 format 421
P2 format 428

relative addresses element
format 435
phase 64 action 185

RELEASE verb, debug processing 135
RELLOC cell (COMMON) 329
relocation dictionary, VIRTUAL
allocation 149

RELSPACA cell (COMMON) 337
RENAMES, dictionary entries 74
RENAMS routine 74
RENAMTB table

format 376-377
input to phase 25 85

REPORT clause, phase 10 processing 61
REPORT routine flowchart 235
REPORT SAVE field (TGT), phase 62 counter
for 164

Report Section, phase 12 processing for 61
report section dictionary entries, phase 22
processing of 77

report section header, use in phase 10 61
Report writer

data-names 522,523
description 515-528
fixed routines 515
group routines 521,522
parametric routines 520,521

Licensed Material -property of IBM

routines generated for
subprogram 515-522

source statements, compiler response
to 516,517

subprogram
elements of 515-523
logic of 516-519

verbs 523,524
Report writer Subprogram (RWS), phase 12

processing for 61
REPORT-CALL verb 523
REPORT-ORIGIN verb

created by phase 1B 61
description 523
OPT processing for 176

REPORT-REORIGIN verb
created by phase 1B 61
description 523

REPORT-RETURN verb 523
REPORT-SAVE verb 523
REPTAB table

format 377
input to phase 12 63
output of phase 12 63

RERUN bit
Input/Output verb processing 69
RERUN clause processing 58-59

RERUN clause 58-59
RERUN verb, phase 51 processing 136
RESERVE element

function 120
use in phase 62 169

RESIDENT option
allocation of virtuals for 149
description 28
phase 02 processing 47
phase 51 processing for 139
phase 6 processing for 149
phase 62 virtual EBCDIC names allocation
for 167

virtual allocation for 167
RET CODE field (TGT)

description 507
location 505

RET-ROUT routine
description 520
generation of 65

RETURN macro instruction 32
RETURN verb, debug processing 135
REWRITE verb, debug processing 135
RGNCTR cell (COMMON)

description 327
use in phase 62 167

RLD-text
definition 545
description 156

RLDSORT routine, diagram 583
RLDTBL table

completion by phase 64 179
format 377,378
making entries in 177
phase 6 introduction 141
phase 64 action for 181
phase 64 table processing 183
processing Data A-text, E-text,
DEP-text 159-160

Index 613

Licensed Material - Property of IBM

RLDTBL table (continue~
processing Procedure A-text
elements 152

use in phase 63 176
RLS-ROUT routine 521
FNMTBL table

format 378,379
output of phase 12 63
phase 1B introduction 66
use in phase 22 77

ROL-ROUT routine
generation of 64
logic of report writer subprogram 517

ROLTBL table 379
root segment, definition 545
ROUNDED clause 113
ROUTBL table

description 66
format 380
output of phase 12 63

routines
ACCESS routines (see ACCESS routine~
interlude 37-43
Report writer 515-522
SYNAD 32,34
verb analyzer (see verb analyzer

routines)
RPF- ROUT routine

description 521
GN number 528

RPH-ROUT routine 521
RPNCNTR cell (COMMON)

description 328
use in phase 62 167

RPT field (object module)
description 512
location 501

RPT-ORIGIN elements
phase 63 processing of 176
Procedure A-text format 436

RPT.LIN work area, phase 22 processing 62
RPT.RCD data-name 522
RPTSAV field (TGT)

description 510
location 505
processing for 146

RPTSAV cell (COMMON)
description 327
use in phase 62 164
use in phase 6 146

PSFCT routine flowchart 241
RPTWTR bit (COHMON), use in phase 10 61
RST-ROUT routine

description 520
generation of 64

RUNT EL table
format 380-381
usage 313,314

RWFTBL table
description 66
format 381
input to phase 12 63
output of phase 12 63

F64CO routine diagram of 581

614

S.nnnn data-name 523
SAME AREA clause

buffer generation 83
I-a-Control paragraph processing 58-59
phase 21 processing 83

SAME RECORD AREA clause, phase 21
processing for 83

SAME RECORD clause 58
SAME routine 83
SAMER routine 83
SAMETB table

buffer generation 83
buffer processing 83
F]) dictionary entries 80
format 381
usage 313,314
use ~n phase 21 83

SATBL table
description 58
format 382

SAVE AREA field (TGT)
description 505
location 505

SAVE AREA-2 field (TGT)
description 509
location 505
phase 6 processing 146
phase 62 counter for 164

SAVE AREA-3 field (TGT)
description 509
location 505
phase 6 processing 146
phase 62 counter for 164

SAV-ROUT routine
description 520
generation of 64
GN number 528

SAVE routine 581
SAVETBL table, use in phase 63 175
SA2CTR cell (COMMON)

description 327
use in phase 6 146
use in phase 62 164

SA3CTR cell (COMMON)
description 332

SBL

use in phase 6 146
use in phase 62 164

counter used for 143
definition 545

SBL field (TGT)
description 509
location 505
phase 62 counter for 163

SBLCTR cell (COMMON)
description 326
use in phase 6 143
use in phase 22 76
use in phase 62 163

SD dictionary entries
Data IC-text format 402
format 449
phase 21 processing of 80
preprocessing 76

SD entries 59
SD-text, definition 545
SDSIZ cell (COMMON) 328

SDTEXT routine
description 80
SD dictionary entries 80

SEARCH routine
determining uniqueness 95
phase 3 processing 89

SEARCH verb analyzer routine 113-114
secondary base locator, definition 545
section, definition 545
SEGBRK routine 177
SEGENTR routine 134
SEGINDX table

building of 188
format 382,466
object module 514

SEGLMT cell (COMMON)
description 328
use in phase 1B
use in phase 10

segment, definition
segment elements

69
57

545

phase 65 processing 188
SEGMENT-LIMIT clause, phase 63 processing
of 177

segmentation
control breaks 134

439
171

44

definition 545
elements, format
optimization with
phase 00 processing
phase 1B 69
phase 10 57
phase 51 134
phase 6 155
phase 63 processing for 177

segmentation call parameter element
phase 64 action 185
procedure A-text format 436

SEGNOTE routine 33
SEGPNT routine

linkage codes to 33
segmentation operations 44

SEGPROC routine 155
SEGTBL table

format 383
Procedure A-text processing 155
segmentation control breaks 134
segmentation operations 44

SELECT clause 58
SELSCN routine 49
SEND verb

phase 50 processing 132
phase 51 processing 137

SEQ option
description 28
phase 02 parameters 47

SEQERR cell (COMMOm 326
sequence option

description 28
phase 02 parameters 47
swi tch for 333

SETNAMS routine
description 86
flowchart 250

SETTBL table 383
severity of errors 31
SE6000 routine (phase 6) flowchart 279

Licensed Material - Property of IBM

SE6000 routine (phase 62)
diagram of 581
flowchart 285,286

SE6000 routine (phase '64) flowchart 295
SIZE ERROR clause 113
SIZE option

description 25
error handling 49
phase 02 parameters 47

SKIP routine 33
SMRCDTBL table

buffer generation 83
FD dictionary entries 80
format 384
usage 313,314
use ~n phase 21 83

SMSTBL table 384
SNF routine (phase 65), diagram 585
SNMTBL table 385
SORT CORE SIZE field (TGT)

description 507
location 505

Sort Description dictionary Entries (see SD
dictionary entries)

Sort Description entries 59
SORT FILE SIZE field (TGT)

description 507
location 505

SORT-MESSAGE field (TGT)
description 507-508
location 505

SORT MODE SIZE field (TGT)
description 507
location 505

SORT RET field (TGT)
description 507
loca tion 505

SORT SAVE field (TGT)
description 507
location 505

SORTXT routine
description 118
flowchart 264

source listing, generated by phase 12 65
source module

definition 545
description 20

SOURCE option
description 25
Identification Division 57
phase 02 parameters 47
swi tch for 333

source program errors (see error handling
in compilation)

source program procedure-name (see PN)
SPACE option

description 28
phase 02 parameters 47

SPACEX cell (COMMON) 336
SPACING cell (COMMON)

description 330
use in phase 00 48
use in phase 02 47

SPCRTS routine flowchart 231
special names, Procedure IC-text

P1 format 412
P2 format 428

SPECIAL-NAMES paragraph 57

Index 015

Licensed Material - Property of IBM

special phase 6 elements, procedure A-text
format 435

SPNTBL table
configuration section processing 57
format 385
input to phase 12 63
output of phase 12 63
verb processing 69

SRATBL table
description 58
format 386

SRCHKY table
format 386
use in phase 22 75

SRCTBL table 386
SSCIN table

format 387
usage 313,314
use in phase 45 118

SSCOUT table
format 387
usage 313,314
use in phase 45 118

SSCRPT routine 123
SSDELIM table

format 388
usage 313,314
use in ph ase 45 118

STAESW cell (COMMON) 336
standard data-name references, Procedure
IC-text

format 412
P1 format 422
P2 format 428

START entry point 31
STATE option

bit in COMMON 334
debug text construction for 176
description 26-27
phase 02 parameters 47
phase 10 processing for 56,57
phase 50 processing 120,121
phase 51 processing 135
phase 6 output 142
phase 62 output 162
phase 63 processing for 176
phase 05 processing for 187,188
Procedure A-text processing 151
segmentation processing for 178
TGT allocation for 164

statement number option (see STATE option)
STATIC routine 499
STOP RUN statement, ENDJOB option
for 28-29
storage requirements for compiler 29-30
STRING table

COMPUTE statement processing 112
format 388
MOVE statement processing 104
SEARCH statement processing 113-114

STRING verb, phase 51 processing 137
strings

616

ADD 124
CALL 105
EQUATE 109
EVAL 113
GO 105,106
IF 113

MOVE 104
SUBSCRIPT 120,121

STSRCH routine
PO-text translation 89
SEARCH format-2processing 93

SUBADR field (TGT)
counter in COMMON 329
counter used for 143
description 509
location 505
ON processing 137
phase 62 counter for 163

SUB COM PTR field (TGT)
description 507
location 505
use in phase 51 137
use in phase 62 163

SUBCTR cell ~OMMON) 329
subject hierarchy, definition 545
subscript save cell

phase 50 126
phase 6 137

SUBSCRIPT string
. MOVE statement processing 104

resolving references 120-122
subscripted references

data-name
optimizing 121,122
procedure IC-text format 426
resolving 120-122

literal
optimizing 122,123
resolving 121,122

SUMTBL table 388-389
SUPMAP option

description 27
phase 02 parameters 47
phase 6 processing 142
phase 62 output 162
switch for 333

suppression of output listing 142
SWITCH cell (COMMON)

description 334
syntax-checking function 45
use in phase 10 (RERUNN bit)
use in phase 6 142
use in phase 70 159

SWITCH field (TGT)
description 505-507
location 505·

SWITCH1 cell (COMMON)
SWITCH2 cell (COMMON)
SWITV2 cell (COMMON)
SXREF option

description 27

337
336

330

interphase processing for 31
phase 02 parameters 47
phase 6 output 141,142
phase 6A processing 190,191
phase 62 output 161
phase 64 processing for 179
swicth for 333

SYAA routine

58-59

error recovery response 470
phase input/output requests 34

SYAB routine
error recovery response 470
phase input/output requests 34

SYAD routine
error recovery response 470
phase input/output requests 34

SYMDICT DSECT, function 86
SYMDMP option

debug linkage area for 166
debug text construction for 176
description 27
phase 02 processing for 47
phase 10 processing for 56,57
phase 22 processing 78
phase 25 processing for 85-87
phase 50 processing 120,121

176
187,188

phase 51 processing 135
phase 63 processing for
phase 65 processing for
segmentation processing
TGT allocation for 164

for 177-178

SYMSK cell (COMMON) 333
SYMSK1 cell (COMMO~ 334
SYMSK2 cell (COMMON) 334
SYMSK3 cell (COMMON) 334
SYMWRITE routine. diagram 585
SYNAD exit, phase 03 processing for
SYNAD routines

error recovery 470
phase input/output requests 34

SYNADR01 cell (COMMON)
description 332
phase 03 processing 50

syntactic and reference markers
IPTEXT format

one byte 400
two byte 400

syntax analysis, phase 05 52-53
SYNTAX option

(see also CSYNTAX option)
description 26
phase 00 processing for 45
phase 02 processing for 47
phase 21 processing 79
phase 3 processing for 96
phase 4 processing 116
phase 50 processing '19
phase 51 processing 133
E-text processing 192

syntax-checking compilations 45

50

syntax checking, compiler output for 20
SYSIN data set

buffer size determination 47
input to compiler 20

SYSLIB data set, CMS FILEDEF for 532
SYSLIN data set

compiler active 37-43
output of compiler 20

SYSOUT DDNAME field (TGT)
description 508
location 505

SYSPRINT data set
compiler activity .37-42
error messages to 44
Identification Division 57
output of compiler 26
phase 70 output 25

SYSPUNCH data set
CMS FILEDEF for 532
CMS processing of 533

Licensed Material - Property of IBM

compiler activity 37-43
output of compiler 20

SYST option 28
SYSTDD cell (COMMON) 338
SYSTX cell (COMMON) 328
System/370

phase 10 57
phase 50 127
phase 51 140

SYSTERM data set
CMS FILEDEF for 532
compiler activity 37-43
progress and error messages to 44
output of compiler 20
phase 70 output 25

SYSUT1 data set
CMS FILEDEF for 532
compiler activity 37-43
general 21

SYSUT2 data set
CMS FILEDEF for 532
compiler activity 37-43
general 21
STATE option 26 27 \

SYSUT3 data set
CMS FILEDEF for 532
compiler activity 37-43
Data Division processing 59
general 21

SYSUT4 data set
CMS FILEDEF for 532
compiler activity 37-43
contents in phase 64 180
general 21

SYSUT5 data set
CMS FILEDEF for 532
compiler activity 37-43
general 21

SYSUT6 data set
compiler activity 37-43
FIPS processing 28
general 21
LVL option 20,28

SYSx option
description 28
phase 02 processing for 47

SYS2 routine, diagram of 583

TA LENGTH field (TGT)
description 508
location 505

Table Area Management Executive Routines
(see TAMER)

Table Area Management Maps (TAMM) 497
table, definition 545
table entry definition 543
table formats 340-398
table handling (see TAMER)
Table Information Blocks (TIB)

COMMON cell 325
definition 546
TAMER Control field 496-497
usage 315

table locator, definition 545
Table usage 313,314
tables, locating 313,314
tables used by compiler, formats 340-398

Index 617

Licensed Material - Property of IBM

TABREL routine 499-500
TALLY field (TGT)

description 507
location 505

TAMEIN routine 49B
TAMEOP routine 500
TAMER

definition 546
description 492-500
initialization 49B
interphase processing 31
register usage 151
routines 49B-500
space, definition 546
storage allocation 49B

TAMM (Table Area Management Maps) 497
TAMNAD cell (COMMON) 325
Task Global Table (TGT)

61B

COMMON, relationship to 324
definition 546
base registers for 1B2
fields

A(INIT1) 507
BL 508
BLL 509
CHECKPT CTR 510
COBOL ID 508
COBOL INDICATOR 507
COMPILED POINTER SOB
COUNT CHAIN ADDRESS 508
COUNT TABLE ADDRESS SOB
DBG R11SAVE SOB
DDBG R14SAVE 507
DEBUG BLL SOB
DEBUG CARD 508
DEBUGGING SOB
DEBUG MAX SOB
DEBUG PTR SOB
DEBUG TABLE 510
DEBUG TABLE PTR 507
DEBUG TRANSFER 508
DEBUG VLC 508
DECBADR 508
description 505-510
ENTRY-SAVE 507
FIB 508
INDEX 509
LABEL RET 507
LENGTH OF VN TBL 507
locations 505
ONCTL 509
OVERFLOW 508
PARAM 509-510
PCS LIT PTR 508
PFMCTL 509
PFMSAV 509
PGT-VN TBL 507
PRBL1 CELL PTR 508
RET CODE 507
RPTSAV 510
SAVE AREA 505
SAVE AREA-2 509
SAVE AREA-3 509
SBL 509
SORT CORE SIZE 507
SORT FILE SIZE 507
SORT-MESSAGE 507-508
SORT MODE SIZE 507

SORT RET 507
SORT SAVE 507
SUBADR 509
SUBCOM PTR. 507
SWITCH 505-507
SYSOUT DDNAME 507
TA LENGTH 507
TALL Y 507
TEMP STORAGE 508-509
TEMP STORAGE-2 509
TEMP STORAGE-3 509
TEMP STORAGE-4 509
TGT-VN TBL 507
VLC 509
VN 509
WORKING CELLS 507
IS! 509
XSASW 509

phase 64 processing for 179
storageallocation 143

TBGETSPC routine 499
TBLRPT table 61
TBREADIC routine 500
TBSPILL routine 500
TBWRITE routine 500
TEMP STORAGE field (TGT)

description 508-509
-'. location 505

phase 6 counter used for 143
phase 6 processing 143
phase 62 counter used for 163
use in phase 50 126

TEMP STORAGE-2 field (TGT)
description 509
location 505
phase 6 counter used for 143
phase 6 processing 143
phase 62 counter for 163

TEMP STORAGE-3 field (TGT)
description 509
location 505
phase 6 counter used for 143
phase 6 processing 143
phase 62 counter for 163

TEMP STORAGE-4 field (TGT)
description 509
location 505
phase 6 counter used for 143
phase 6 processing 143
phase 62 counter for 163

temporary result, definition 546
temporary result references. Procedure
IC-text format 429

TENPROC routine (phase 65)
description 187
diagram 585
flowchart 299,313

TER .COD data-name 522
TERM option

bit in COMMON 334
description 26
error and progress messages 44
phas~ 02 parameters 47
phase 6 introduction 141

terminal error conditions 45
TERMINATE statement 524,527
TERMINATE verb. phase 1B processing of 6'
termination, abnormal 31.32

TEST LINKAGE AREA field (PGT) 511
TEST option

BCDPN table for 466
DATATAB field 458
data set for 37-43
description 27
INIT3 processing for 513
interphase processing for 31
parameters for 47
phase 10 processing
phase 25 processing
phase 62 output for

56
85
162

phase 65 processing for 187-189
TESTSUBS routine

description 86
flowchart 250

text (see Data A-text; Data IC-text; Debug
text; DEF-text; dictionary entries;
E-text; Listing A-text; optimization
A-text; Procedure A-text; Procedure
IC-text; REF-text; XREF-text)

definition 546
formats 399-444

TEXT filename
CMS FILEDEF for 532
CMS processing of 533

TGT (see Task Global Table)
TGT standard area reference element, phase

64 action 184
TGT storage allocation, phase 62 162-164
TGT-VN TABLE field (TGT)

description 507
location 505

TGTADTBL table
creation of 162
format 389-390
phase 6 151
use in phase 65 189

TGTINT routine
description 163
diagram of 581

THRTPROC routine
description 187
diagram 585

TIB (see Table Information Blocks)
TIB cell (COMMON) 325
TIE usage 315
Time-Sharing Option (TSO) 19
TOTTBL table

Data Division processing 59
format 390
phase 10 processing 59
usage 313,314

TMCNTBSZ cell (COMMON) 331
TRANSFORM verb, phase 50 processing 132
Transient Area field (object module)

description 514
definition 546

translating LD entries 72
TRUNC option

description 27-28
switch for 333

TSMAX cell (COMMON)
description 326
use in ph ase 50
use in phase 6
use in phase 62

127
143

163

Licensed Material - property of IBM

TWTWRO routine
description 88
Glossary building 88,597

TS2MAX cell (COHMON)
description 326
use in phase 6 143
use in phase 62 163

TS3MAX cell (COMMON)
description 328
use in phase 6 143
use in phase 62 163

TS4MAX cell (COMMON)
description 328
use in phase 6 143
use in phase 62 163

TWENPRPC routine (phase 65)
description 202
diagram 585
flowchart 299

TXPNCH routine (phase 65)
description 187
diagram 585

TXT OUT tabl.e
format 390-391
usage 313,314
use in phase 45 118

TYPE clause, input to PROC01 routine 64

UNSTRING routine
description 118
flowchart 263

UNSTRING verb
compiler characteristics for 19
phase 4 processing for 104
phase 45 processing 118,119
phase 51 processing 137

UNTIL clause 137
UPDATE routine, diagram of 583
UPSIBIT switch (COMMON) 335
UPSTBL table

format 391
use in phase 22 75

USAGE clause, input bo PROC01 routine 64
USE AFTER (BEFORE) STANDARD LABEL
declarative 327

USE AFTER STANDARD ERROR declarative 327
USE FOR DEBUGGING declarative 96,70
USE FOR DEBUGGING verbs 99-100
USE sentence

cell in COMMON for 327
debug processing 135
Declaratives processing 70
phase 1B processing of 61

USETBL table 391
USH-ROUT routine

generation of 64
logic of report writer subprogram 517

USNGTBL table 392
utility data sets 21

VALGEN routine 72
VALGRP table

format 392
input to phase 20 71
input to phase 22 75
output of phase 20 71

Index 619

Licensed Material - Property of IBM

VALTRU table
description 95
format 392-393
input to phase 20 71
input to phase 22 75
output of phase 20 71

VALUE clauses, A-text generation for 77
variable-length field, definition 546
variable-length record (see Q-routines)
variable procedure-name (see VN)
variable procedure-name definition,
optimization A-text format 440

VARLTBL table
format 393
input to phase 25 85
output of phase 22 75

VARYING clause 109
VARYTB table 393
VBREF option 29
VBSUM option 29
VCONDISP cell (COMMON) 332
verb analyzer routines

phase 4 111-116
phase 50 119-132
phase 51 135

verb information, Procedure IC-text
format 421

VERB option 28
verb string, definition 546
verb strings 104
verbs, Procedure IC-text

PO format 412
P1 format, 421
P2 format 425

VIOVIRN cell (COMMON) 331
VIRCTR cell (COMMON)

description 325
initialization 131
use in phase 50 131
use in phase 6 149

VIRPTR table
format 394
optimizing virtuals 147-148
processing Procedure A-text

elements 153
use in phase 62 166

VIRRTN routine (phase 6), optimizing
virtuals 147

virtual, definition 546
virtual definition elements

description 144,146-148
optimization A-text format 439

virtual EBCDIC names allocation 149,167
VIRTUAL EBCDIC NAMES field (PGT)

description 511
location 510

VIRTUAL field (PGT) 511
virtual identifying number 131
Virtual Machine Facility/370 529-541
virtual references

description 80
phase 21 processing 80
phase 64 action 184
Procedure A-text format 435

virtual storage 529
virtuals, optimization of 166
VLC field (TGT)

description 509

620

location 505
phase 6 processing 143
phase 62 counter for 163

VLCCTR cell (COMMON)
description 326
use in phase 6 143
use in phase 62 163

VM/370 529-541
VN (variable procedure-name)

phase 50 119
phase 51 134
phase 6 144
procedure A-text format 434
Procedure IC-text format 429

VN definition element 18~
VN field (TGT)

description 509
location' 505
phase 62 counter for 164

VN priority table, phase 62 processing 165
VN reference element, phase 64 action 184
VNCTR cell (COMMON)

description 329
use in phase 62 168

VNI field (PGT)
allocation (phase 62) 168
description 511
location 510

VNILOC cell (COMMON)
description 329
use in phase 6 150

VNLOC cell (COMMON)
description 329
use in phase 6 143
use in phase 62 164

VNPNTBL table
format 394
phase 62 processing 165

VNPTY table
des cription 165
format 395

VNTBL-table
description 104-109
format 395

VRBDN table
description 100
format 395-396

VRDEFT BL table 396
VSAM

debug FIB 467-469
FIB 80
interface 136,140
object code generation 140

VTINITVN cell (COMMON) 331
V2BUGSW cell (COMMON) 338

WCMAX cell (COMMON) 326
WG01 routine 33
work registers 155,156
WORKING CELLS field (TGT)

description 507
location 505

Working-Storage address elements
Data A-text format 409
description 1,60
phase 21 processing 80

phase 22 processing 77
phase 64 action 182

Working-s'torage dictionary entries, phase
22 processing 77

Working-Storage section, phase 10
processing 60

WOUT routine
description 33
flowchart 201,202

WPCH routine, flowchart 203
WRITE routine (phase 00)
description 33
flowchart 201,202

WRITE routine (phase 63), diagram of 583
WRITE verb, debug processing 135
WRITEA routine

description 33
flowchart 201,202

WRITE5 routine (phase 21) 86
WRT-ROUT routine, generation of 64
WSDEF cell (COMMON) 327
WSECT routine flowchart 239
WSTSCT routine, flowchart 235

XAVAL table
description 127
format 396

XCTL macro instruction 46,47
XFCDNO cell

description 152-154
use in phase 64 185

XFTPT switch 125
XGDPFP switch 125
XGNCON switch 125
XGNSW switch 125
XGOVFL switch 125
XGSWT switch 125
XG2IRX switch 125
XINREG switch 125
XINTR table

description 124,125
format 396-397

XIS31 routine 120
XLITER switch 125
XLITZR switch 125
XOPMOD switch, format 125
XREF option

description 27
interphase processing for 31
output of phase 6 141,1ij2
phase 02 parameters 47
phase 6A processing 190,191
phase 62 output 161
phase 64 processing for 179
switch for 333

Licensed Material - Property of IBM

XREF-text
formats ij43
input/output operations 37-43
phases producing 316

XSA field (TGT)
description 509
location 505
phase 6 143
phase 62 counter for 164

XSACTR cell (COMMON)
description 329
use in phase 6 143
use in phase 62 164

XSASW field (TGT)
description 509
location 505
phase 6 143
phase 62 counter for 164

XSCOMP routine 121,122
XSCRPT table

description 120-122
format 397-398

XSPRO routine
description 132
flowchart 270

XSSNT table
description 122
format 398

XSUDB3 routine 122
XSWCTR cell (COMMON)

description 329
use in phase 51 137
use in phase 6 143
use in phase 62 164

XTEN routine 74
XY code 31
XZSWT switch, format 125

YBGN table, phase 05 52
Y1IRX+1 switch 125

ZIi'B option
description 27
phase 02 processing 47

ZZ code, linkage to phase 00 34

1ST-ROUT routine
generation of 64
logic of report writer subprogram 516
phase 1B processing 61

Index 621

L Y28-6486- 2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(lnt~rnational)

o en
<: en
(')
o
OJ o
r
g
3
~.
CD

r
-<
N qc
~
oc
91
I':

IBM OS!VS COBOL Compiler
Program Logic
L Y28·6486· 2

Your comments about this publication will help us to improve it for you.
Comment in the space below, giving specific page and paragraph references
whenever possible. All comments become the property of IBM.

Please do not use this form to ask technical questions about IBM
systems and programs or to request copies of publications. Rather,
direct such questions or requests to your local IBM representative.

If you would like a reply, please provide your name and address
(including ZIP coue).

Fold on two lines, staple, and.ruul. NO'postagenecessary< if mailed in the U.S.A. (Elsewhere.
any IBM repr.cscntative will be happy to forward your comments.) Thank you for your
l.'Ooperation. < <

Reader's
Comment
Form

L Y28-6486-2

Fold and Staple

Business Reply Mail
No postage necessary if mailed in the U.S.A.

Postage will be paid by:

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

First Class Permit
Number 6090
San Jose, California

... "" .. " "" .. " " " ""
Fold and Staple

llrnllil
®

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
(U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

o en
"< en
(")
o
CII o
r

~
3
~.
iii
~

" r
~

