

Program Product

SC28-6483-2
File No. S370-24

IBM OS/VS COBOL
Compiler and Library
Programmer's Guide

Program Number 5740-CB1
5740-LM1

-~- ------ - ---- ~--- ~ -~-- - - -----_ ... ------,,-

First Edition (June 1984)
Changes are made periodically to the information herein; these changes will be
incorporated in new editions of this publication.

Products are not stocked at the address given below. Requests for copies of this
product and for technical information about this product should be directed to
your IBM marketing representative.

A Program Comment Form (for your comments about the PROFS/PO product) and a
Reader's Comment Form (for your comments about this book) are provided at the back of
this publication. If the Program Comment Form has been removed, address comments to:
IPS Product Support Center, IBM Corporation, P.O. Box 152560, Irving, Texas 75015-2560.
If the Reader's Comment Form has been removed, address comments to: IBM Corporation,
Department 6DD, 220 Las Colinas Boulevard, Irving, Texas 75062.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright International Business Machines Corporation 1984

Who Should Read this Book?

If you are a business professional who has a need for the
decision-making tools available on the IBM Personal
Computer as well as the principal support functions
available on the IBM Professional Office System (PROFS),
or if you want to know how to use the PROFS Personal
Computer Connection (PROFS/PC2), you should read this
book.

What this Book Will Tell You

This book, Using the PROFS Personal Computer
Connection, tells you how to install PROFS/PC2, what you
need to know and do before you use the product, how to
use PROFS/PC2, how to tailor the main menu to suit your
needs, and how to respond to the messages you may get
from time to time while you are using PROFS/PC2.

You should read the "Introduction" to get an orientation
to the whole system and to perform the tasks, especially
the one-time tasks, necessary for you to use PROFS/PC2.
The "Introduction" tells you how to:

• Install PROFS/PC2 .

• Log on to the VM host where you're running PROFS.
(A host system is the data processing system to which

To the Reader Vll

The COBOL communications user must write
a message control program (MCP) to handle
messages transmitted between remote
stations and the central computer before
they can be processed by a COBOL program.
General te lecommunica tions access method
(TCAM) information, as veIl as specific
guidelines for creating an HCP, can be
found in the publications:

!~_Q~!~~1g£Qm~n!£atiQft2-!~2
~ethQg_1I£!~1~Qn~Ei~_aUg-la~liti~,
Order No. GC30-2042

!BM_Q~/VS TCAM_£~Qg£a~~~2_~uig~, Order
No. GC30- 2041

The list of publications that follows
contains the title and IBM form number of
each IBM publication referred to in this
publication:

!l1Q1.Q_CML!l§g£..!.2_Guide_f~_£Q~Q1. Order
No. SC28-6469

Q.§L!~_1i!!kage_~di tOL£u,HLLoagfi, Order
No. GC26-3813

QS/V~l_£!~i!!g_~nd_Y~_~Y!Q~, Order
No. GC24-S0 90

Q~vs~~~nniag_Quide_IQ£_gg!ga§g_2,
Order No. GC28-0667

OS/VS~_~~leas~_~_~Yiq~, Order
No. GC28-0671

OS/VS JCL Reference publications:

Q~!~1-~£~Refe£gn£~, Order
No. GC24-5099

Q~VSl-4£l~£!i£~, Order No. GC24-
5100

Q~VSl~£~, Order No. GC28-0692

OS/VS Checkpoint/Restart, Order
No. GTOO-0304

QSLV~l_~tQ£~~_~§li~glg~, Order
No. GC24-50 94

.QUVSL~lQ!:~~Esti~!&§., Order
No. GC28-0604

IBM Q~_11~Ql_~Q~Ql_f£Q!Et~_Iermi~1
l!§~C2_Q!iig~-A!lL.Refe~!l£g, Order
No.. SC28-6433

as/vs Data Management publications:

Q~LVS1_Q~1~_~a!l~g~mgnt_fQI_~Y2ig!
f.£Qg!:ammg~§, Order No. GC26-3837

Q§LY§~_§Y2t§ill_~~Q9~~IDID!ng_~!Q~~~Yl __ Q~t~
~~n~g§ill§n~, Order No. GC26-3830

Q§LY§1_822§§2_~§tbQg_§§~Y!2§2' Order
No. GC26-3840

QSLYS2_A~~e~~_MetbQ~_Ser~i~e~, Order
No. GC26-3841

onent: Access
No. GT26-38 3

QSL~~_1~a~g!2' Order No. GC26-3795

OSL.!.L!irtua 1 ll2~!!~H~_A££22_~ihQ1.
~AM1-Programmer~2~gigg, Order
No. GC26-3838

OS/VS Data Management Services Guide,
Order No. GTOO-0303

OS/VS Data Management Macro
Instructions, Order No. GTOO-030S

.Q.SL.!~_1I~g3~_1!~!:~!:.I.i. __ 1i!!~ag~_!g!lQ!:,:
gnd_~QadeLl1~2§ag:g2' Order
No. GC38-1007

!]I1_Q~_£O BO ~_!!!lg~~£ t i!.~Lllg~.!rn_I§!:.!!in~!.
User' 2_Guide and_IH~I~£g!!.£§, O.rder
No. SC28-6465

~!~1 De~ygging:-i~i~, Order
No. GC 24-5093

Q§LY§~_§Y2t§ill_~~Q9~~IDID!ng_~!Q~~~Y:
Q§Qygg!ng_tl~nggQQ~, Order Nos. GC28-0708
and GC28-0709

OS/VS1 Utilities, Order No. GC26-3901

OS/VS2 Utilities, Order No. GC26-3902

OS ~Q£lL~£g~_~~2g~a~§!:':~§_~~~, Order
No. SC33-4001

Q~!S_~Q£!L~g£g:g_£~Q~~~'s Ggig~,
Order No. SC33-4035

Q~~Q!:lL~~~~Install~tiQn_R~f§~!!£~
Material, order No. SC33-4004

Q~!~_~Q..tiL~!ti:gg_IY.2ta!lation Ref~£'~B.£g
~~i.!!l, Order No. SC33-4034

The OS/VS COBOL Compiler and Library,
Release 2, is designed according to the
specifications of the followinq industry
standards (as understood and inte.r preted by
IBM as of April, 1976):

• The highest level of American National
Standard COBOL, X3.23-1974 (excepting
the Report Writer Module). ANS COBOL
X3.23-1974 is compatible with and
identica 1 to In terna tional Organization
for Standardization/Draft International
Standard (ISO/DIS) 1989-COBOL.·

• The highest level of American National
standard COBOL, X3.23-1968 (including
the Report Writer module). ANS COBOL
X3.23-1968 is compatible with and
identical to ISO/R 1989-1972
Programming Language-COBOL.

Quick Reference to PROFS is a handy reference card to
PROFS tasks. Use it as a quick memory jogger. (Order
no. GX20-2408)

IBM Personal Computer Publications

For more information about the PC, you may want to
refer to the following books:

Disk Operating System, Version 2.0 or 2.1 tells you how
to use DOS on the PC. (Order no. 6024001)

IBM Personal Computer 3278/79 Emulation Control
Program User's Guide explains how to use your IBM
PC or IBM PC XT with the IBM PC 3278/79 Emulation
Control Program, that is, the program that lets you
emulate, or imitate, the functions of an IBM 3278
typewriter keyboard and either the IBM 3278 Model 2
Display Station or the IBM 3279 Model 2A Color
Display Station. (Order no. 1502422)

IBM 3270 Personal Computer Control Program User's
Guide and Reference explains keys, functions, and
procedures that are used to perform tasks on the IBM
3270 Personal Computer. The IBM 3270 Personal
Computer Control Program is designed to operate on
the IBM 3270 Personal Computer machine
configuration 5271 standard models 2, 4, and 6, when
installed with IBM Personal Computer Disk Operating
System, Version 2.0 or 2.1. (Order no. 1837434)

X PROFS/PC2

The PROFS Personal Computer Connection (PROFS/PC2) lets
you work with selected PROFS tasks on the IBM Personal
Computer. By using the 3278/79 adapter, the PC 3270, or the
IBM Asynchronous Communications Adapter, you can transfer
DOS files from the PC to the host system and you can transfer
files from the host system to the PC. (Throughout this book,
the PC 3270, both hardware and software, and a PC with the
3278/79 adapter card and the 3278/79 Control Program are
referred to as the "PC 327x.") Then you can work with these
files either on the PC in a stand-alone mode or on the host
system. You can move your incoming mail from PROFS to
PROFS/PC2 to open and respond to at a more convenient time
or place. PROFS/PC2 lets you look at, reply to, forward, erase,
file, and resend notes. You can also create new notes.
Actions you take during note processing can be transferred to
the PROFS host system for processing or distribution to other
PROFS users. If you have an optional printer attached to
your Personal Computer, PROFS/PC2 lets you print PROFS
documents that you've transferred from the host system.

What You Need to Use PROFS/PC2

Hardware
You can perform both host-attached and stand-alone tasks by
means of anyone of the following products:

• IBM Personal Computer or IBM Personal Computer XT
with the following:

Introduction 1-1

INTRODUCTION • • • • • • • •
Executing a COBOL Program • • • •

Compilation

18
18
18

Linkage Editing • • • • •
Loading

• • 19

Execution • • • • • • • • •
Operating System Environments

19
19
19
19 OS/VS 1 • • • • • • • • • • • •

OS/VS2 • • • • • • • • • ••• • . • . 19
Conversational Monitor system 19

JOB CONTROL PROCEDURES • 20
Control Statements. • • 22

Job Management • • • • • • 22
Preparing Control statements • 22

Name Field • • • 23
opera tion Field •••••• 23
Operand Field • • • • . • 23
Co m men ts Fie 1 d • • • • • • • 2 4

Conventions for Character Delimiters • 24
Rules for Continuing Control
statements • • • • • • • • • • • • • • 24
Notation for Describing Job Control
statements • • • • • ~ • • • • • • • • 25

JOB statement •• • • • • . • • •• 25
Identifying the Job (jobname) ••• 25

Job Parameters • • • • • • . 26
Supplying Job Accounting
Information • • • • • • • 26
Identifying the Programmer . 27
Displaying All Control statements,
Allocation, and Termination
Messages (MSGLEVEL) ••••• 27
specifying Conditions for Job
Termination (CONm • • • • . • • 27
Requesting Restart for a Job (FD) • 28
Resubmitting a Job for Restart
(RESTART) ••••••••••••• 29

priority Scheduling Job Parameters •• 30
Setting Job Time Limits (TIME) • • • 30
Assigning a Job Class (CLASS) • 30
Assigning Job Priority (PRTY) ••• 30
Requesting a Message Class
(MSGCLASS) • • • • • • • • • •• 30
Specifying Main Storage
Requirements for a Job (REGION) 31
Holding a Job for Later Execution • 31
Specifying Address Space (ADDRSPC) • 31

EXEC Statement • • • • • • •••••.• 32
Identifying the step (stepname) 32

Positional Parameters •••••• 32
Identifying the Program (PGM) or
Procedure (PROC) • • • • • • • • • • 32

Keyword Pa rameters • • • • • • • • 34
Specifying Job step Accounting
Information (ACCT) • • • • • • 34
Specifying Conditions for
Bypassing or Executing the Job
Step (CO ND) •••.•••• • 35

Passing Information to the
processing Program (PARM) • 37
options for the Compiler • • • 38
options for the Lister Feature ••• 44
Options for Use Under TSO Only • . • 45
options for the Linkage Fditor ••. 47
opt ions for the Loa der . . . 47
options for Execution .•.•• 48
Requesting Restart for a Job Step
(RD) • • • • • . . . • . 49
Priority Scheduling EXEC Parameters 50
Establishing a Dispatching
Priori ty (DPRTY) • • • • . • • • . . 50
Setting Job step Time Limits (TIME) 50
specifying Main storage
Requirements for a Job step
(REGION) • . • • • . . • • .
Specifying Address Space (ADDRSPC)

DD Statement • • . . • • •
Additional DD statement Facilities ••

JOBLIB and STEPLIB DD Statements ••
SYSABEND and SYSUDUMP DD Statements
SYSCHK DD statement • . • • . .
JOBCAT AND STEPCAT DD statements .

PROC Statement • • • •
PEND Statement .••
Command Statement . • . . • . • • • .

• 51
• 51
· 51
• 69
· 69
· 69
· 69

70
· 70
· 70
· 70
• 70 Delimiter statement

Null S ta tement • • . • . • 70
Co mmen t St a tement • . • .
BATCH compilation . . ••
Data Set Requirements

compiler • • • • • •
SYSUT1, SYSUT2, SYSUT3, SYSUT4,

· 71
· 71
· 73

73

SYSUT5, SYSUT6 • • 73
SY SIN • 74
SYSPRI NT . 74
SYSTERM • 74
SYSPUNCH • . . •• ..• .• 74
SYSLIN • • . 75
SYSLIB and/or Other COpy Libraries • 76

Linkage Editor . • • . 76
SYSLIN • • • 76
SYSPRINT • • 76
SYSTERM . • • 77
SYSLMOD .• 77
SYSUT1 . • • 78
SYSLIB • • . .••..• 78
User-Specified Data Sets . . 78

loader • . . • 78
SY SLIN • • ••• . • . • . • 78
SYSLIB . • • . • . . •. • 78
SYSLOUT • • • • . . 79

Execution Time Data Sets . • • 79
DISPLAY Statement . • • • • 79
ACCEPT statement . • . . .•.. 80
EXHIB!T or TRACE Statement . 80
COBOL Debugging Aid s . . • . 80
Abnormal TerminationDu~r 81
COUNT option . • • . • • • . 81
COBOL Subr outineLibra ry • • • • . . 81

USER NON-VSAM FILE PROCESSING 82
User-Defined Files • • • • • • • 82

File Names and Data Set Names • • 82
Specifying Information about A File • 83

File Processing Techniques • • • • 83
Data Set organization • • • • • 83
Accessing a Physical Sequential File • 85
Specifying ASCII File Processing. 90
processing ASCII Files • • • • • • • • 91

Block Prefix. . • • • • • • • • 91
Handling Numeric Data Items from
ASCII Files • • • • • • • • • • • • 92

Direct File processing •••••••• 92
Dummy and capacity Records ••••• 94
Sequential Creation of Direct Data
Se t •. • • • . • • • . . • • • . • 9 5
Random Creation of a Direct Data
Set • • • • • • • • •
sequential Reading of Direct Data
Sets • • • • • • • • • • • • • •
Ra ndom Reading, TJpda ting, an d
Adding to Direct Data Sets
Multi v'ol ume Da ta Sets
File Organization Field of the

97

98

98
99

System-Name • • • • • • • .100
Randomizing Techniques. • ••• 101

Relative File processing. • ••. 110
Sequential Creation •• 111
sequential Reading • • • • • • 112
Random Access ••••••••••• 112

Indexed Sequential File Processing •• 119
Indexes ••••.••.•••••• 120
Indexed Sequential File Areas ••• 122
Creating Indexed Sequential Files .123
Reading or Updating Indexed
Sequential Files Sequentially ••• 127
Accessing an Indexed Sequential
File Randomly • • • • • .129

Using the DD Statement •••.•••.• 131
creating a Non-VSAM Data Set ••.•• 131

Creating Unit Record Data Sets ••• 133
Creating Data Sets on Magnetic Tape 133
Creating sequential (BSAM or QSAM)
Data Sets on Mass storage Devices .133
Creating Direct (BDAM) Data Sets •• 134
Creating Indexed (BISAM and QISAM)
Data Sets ••••••••••••• 134
Creating Data Sets in the output
Stream • • • • • • • • • • • • • • • 134
Examples of DD Statements Used To
Create Data Sets. . • • • • • .135

Retrieving Previously Created
Non-VSAM Data sets. • • • • • • .138

Retrieving cataloged Data Sets ••• 138
Retrieving Noncataloged (KEEP)
Da ta Set s •• • • • • • • • • • • • 139
Retrieving Passed Data sets .139'
Retrieving Data through an Input
Stream ••••••••••••••• 139
Examples of DD statements Used to
Retrieve Data Sets ••••••••• 140

DD Statements that Specify Unit
Record Dev ices • • • •
Cataloging a Data Set
Generation Data Groups
Naming Data Sets •
Extending Non-VSAM Data Sets •

• • 141
• • 141
• • 141
• • 142
• • 142

Additional File Processing Information .142
Da ta Con trol Block • • • • • • • • 143

Overriding DCB Fields • • • • • • .143
Identifying DCB Information .143

Error processing for Non-VSAM COBOL
Files • • • • • • • • • • •• 143
Volume Label in g • • • • • • • 154
Standard Label Format ••• 155
Standard User Labels • • .155

User Label Totaling ••• 156
Nonstandard Label Format .156
Nonstandard Lapel processing .157
User Label Procedure. .157

ASCII File Labels ••••••••• 158
ASCII Standard Label Processing •• 159
ASCII User Label Processing .159
User Label Exits. • • • .159

NON-VSAM RECORD FORMATS • • • 160
Fixed-Length (Format F) Records
Unspecified (Format U) Records • •
Variable Length ~ormat ~ Records ••

APPLY WRITE-ONLY Clause

.160
• 161
• 161
.164

Spanned (Format S) Records •.•
S-Mode Capabilities •• • •••
Sequential S-Mode Files (QSAM) for

• • 164
.165

Tape or Mass Storage Devices. .165
Source Language Considerations ••• 166
processing Sequential S-Mode Files
(Q SAM) • • • • • • • • • • • • .166

Directly Organized S-Mode Files
(BDAM and BSAM) ••.••••• .168

Source Language Considerations ••• 168
Processing Directly Organized
S-Mode Files (BDAM and BSAM)

OCCURS Clause with the DEPENDING ON
option • • • • • • • •

.169

• 170

VSAM FILE PROCESSING. .173
Types of VSAM Data Sets • • • • • .173

Entry-Sequenced Data Sets ••• 173
Key-Sequenced Data,Sets .173
Relative Record Data Sets .•• 174

Access Method Services .•••••••• 174
The DEFINE Command. • • • • .174

Functions of the DEFINE Command •• 174
Specification of the DEFINE Command 175
Defining a Master Catalog: DEFINE
MASTERCATALOG •.•••.••.•• 175
Defining a User Catalog: DEFINE
USERCATALOG ••••.••••.•• 176
Defining a VSAM 'Data Space: DEFINE
SP ACE •• . • •
Defining a KSDS
Defining an RRDS •

.176
• • • 177

.179
Defining an ESDS • • • • • • • • 179
Reusable Data Sets ••
Miscellaneous DEFINE Cluster

.179

Considerations. • • • • • • • .180
COBOL File Processing Considerations •• 180

File Processing Techniques. . •• 180
ESDS P rocessinq • • • • . 180
KSDS and RRDS Processing. .181

Password Usage. • • • • • .181
Current Record Pointer. .181
Use of the START Verb .183
Error Processing Opti ons • • • 183

The Importance of Status Key. .183

Invalid Key • • • •••••••
EXCEPTION/ERROR Procedure
Error Handling Considerations

Opening a VSAM File • • • •

• • 183
• • 183

.184
• .185
• • 185 Opening an Unloaded File • • • •

Opening an Empty File • • • •
opening a File Containing Records
OPEN status Key Values ••••••
Dynamic Invocation of Access Method
Services for KSDS and RRDS Data

• 185
• 186
• 186

Sets •••••••••••••••• 186
Initial Loading of Records into a
File • • • • • • • • • • ••••••• 188
Writing Records into a VSAM File ••• 188

ESDS Considerations • . • • • • • • 189
KSDS Considerations - (ACCESS IS
SEQUENTIAL) •..••.•••••• 189
KSDS Considerations - (ACCESS IS
RANDOM/DYNAMIC) •.••••
RRDS Considerations • . • • • •

Rewriting Records On a VSAM File •
ESDS Considerations •.••
KSDS considerations • . • •

Reading Records on a VSAM File
ESDS Considerations • . ••

• • 189
• • 189
• • 189
• .189
• • 189
• • 189
• • 189

KSDS Considerations - (ACCESS IS
SEQUENTIAL) •••••••••••• 190
KSDS Considerations - (ACCESS IS
RANDOM) •••••••••••••• 190
KSDS Considerations - (ACCESS IS
DYNAMIC) ••••••••••••• • 190
RRDS Considerations •••••••• 190

Deleting Records on a File. • • .190
status Key settings for Action
Requests • • • • • • • • • • •
C 1 os in g a F i 1 e • • • • • • • •

COBOL Language Usage with VSAM • • •
Writing a VSAM Data Set
Retrieving Records From A VSAM Data

• .190
• • 191
• • 193
• • 193

Set ••••••••••••••••• 195
Updating A VSAM Data Set. • • • .198

Job Control Language For VSAM File
Processing ••••••••••••••• 201

DD Statement for a User Catalog .201
DD Parameters Used with VSAM • • • • .201
VSAM-Only JCL Parameters • • • • • • .201

Converting Non-VSAM Files to VSAM Files 201
using COBOL ISAM Programs With VSAM
Files ••••••••••••••••. 202
VSAM Features Not Available Through
COBOL • • • • • •• 202

LISTER FEATURE • • .203
Operation of the Lister Feature

Programming considerations • •
The Listing •• • • • • • • •

• • • .203
• .203
• .203
• .204

• • 204
• .204

The Output Deck • • • • •••
Reformatting of Identification and
Environment Divisions • • • •
Data Division Reformatting ••
Procedure Division Reformatting
Summary Listing

••• 207
• • 209

The Source Listing • • .210
Format Conventions • .210
Type Indicators • • 211

The Summary Listing
General Appearance •

• • • • • .211
• • 211

The output Deck • • • • • •••• • .211

Specifying the Lister

SYMBOLIC DEBUGGING FEATURES
Use of the Symbolic Debugging
FeaturE::S •••

ST ATE Option • • • • • • •
FLOW option • • • • • . •
SYMDMP Option ••••••
Object-Time Control Cards

DEFAULT SYSDBG DATA SET

.212

.213

.213

.213

.214
• • .214

.215

.216
Symbolic Debugging under Information
Management System (PP5734-XX6,
5740-XX2) •••••••. .217

.217

.218
Sample Program -- TESTRUN

Debugging TESTRUN

OUTPUT • • • • • • • •
Compiler output
Displaying a List of Diagnostic
Messages • • • • . • •

Object Module
Linkage Editor Output

Comments on the Module Map and
Cross Reference List •
Linkage Editor Messages

Loader output •. • . . . • .
COBOL Load Module Execution Output

Requests for output
Operator Messages

System output

PROGRAM CHECKOUT
1 i s t er f ea t u r e •
SYNTAX-Checking Only compilation .
Debugging Language • • • . • • • .

Debugging Lines • • • • • • . .
Declarative Procedures--use for
Debugging • • • • • • • • • • •
TRACE, EXHIBIT, and ON • . •••

Following the Flow of Control
Displaying Data Values during
Execution • • • • . . • . • •

.231

.231

• • 238
· •• 239

· .240

.242
'.242
.243
.243
.246
.246
.246

· .247
.247
.247

• •• 247
.248

.248

.251

.251

Testing a Program Selectively
Testing Changes and Additions to

.251

.253

Programs . • • • • • • • . • . .254
• 254 Abend Dumps .••••••••

User-Ini tiated Dumps . . • •
Errors That Can Cause a Dump

Input/Output Errors
Errors Caused by Invalid Data
Other Errors • • • . • •

Completion Codes • • . • •
Finding Location of Program
Interruption'in COBOL Source

· .254
.255

· .255
.255
.256
.257

Program Using the Condensed Listing 259
Using the Abnormal Termination Dump .260

Finding Data Records in an Abnormal
Termination Dump •••••••... 268
Locating Data Areas for Spanned
Records ••.••.••••..•• 274
Locating TCAM Data Areas. • • .275

Incomplete Abnormal Termina tion
Scratching Non-VSAM Data Sets
Obtaining Execution statistics

Debugging and Testing ••••
Optimization Methods •.•••

Resequencing the Program.
Insight into SYMDMP output •.

.277

.278

.278

.279

.279

.279

.279

Common Expression Elimination .•• 279
Backward Movement .•••••• 279
Unrolling . • •• .280
Jamming . • • • • • . •• 280
Unswitching •. 280
Incorporating Procedures Inline •. 281
Tabling • • • • • • • . • .281
Efficiency Guidelines .• 281

PR OG RAMM IN G TECHNIQU ES • . • .282
Gene ra 1 Considerations • . • • • • 282

Spacing the Source Program Listing .282
Coding considerations •• 282

Environment Division ••••••••.• 282
APPLY WRITE-ONLY Clause •• 282
QSAM Spanned Records •..••••• 282
APPLY RECORD-OVERFLOW Clause •• 283
APPLY CORE-INDEX Clause •••... 283
BDAI1-W File Organization • • .283

Data Division • . • . • • • •• • .283
Overall Considerations •••.•••• 283

Maximum Data Division Size ••..• 283
Prefixes. . • . • .283
Level Numbers • • • • • .284

File Section. • • • • • • • .284
RECORD CONTAINS Clause •• 284

Communication Section •••••••• 284
CD Entries. • • • • • • • •• 284

Working-Storage Section •• 285
Separate Modules • • • • .285
Locating the Working-Storage
Section in Dumps • •

Data Description •
REDEFINES Clause
RENAMES Clause.
PICTURE Clause •
SIGN CIa use
USAGE Clause ••

• .285
· .285
• .285
• • 286
• .286
• .287
• .288

special considerations for DISPLAY
and COMPUTATIONAL Fields. • .290
Data Formats in the Computer •••• 290

. Proced ure Di vision • • . • . • • • • • • 292
Modularizing the Procedure Division .292

Main-Line Routine ••• 292
Processing Subroutines. • .292
Input/Output Subroutines. • .293

Collating Sequences •• 293
Use of the UPSI Switches •• 293
Intercepting I/O Errors ••••••• 293

Errors That May Escape Detection •• 294
Intermediate Results. • ••••• 294

Intermediate Results and Binary
Data Items. • • • • • •• 294
Intermediate Results and COBOL
Library Subroutines
Intermediate Results Greater than
30 Digits •• • • •
Intermediate Results and
Floating-Point Data Items
Intermediate Results and the ON
SIZE ERROR Option

Verbs • • • • • • •
CALL Statement •
CANCEL Statement
CLOSE Statement
COMPUTE statement
IF Statement ••
MOVE Statement ••

• • 294

· .294

• .294

• • 295
• .295

.295
· .295
• .295
• .295
• .295
• .296

NOTE statement. . • • • • .296
OPEN Statement ••••••••••. 296
PERFORM Verb •••••••.•••. 2~6
READ INTO and WRITE FROM Options •. 296
WRITE ADVANCING with LINAGE,
FOOTING, and END-OF-PAGE . .297
RECEIVE Statement ••••••••• 297
SEND Statement. • • . • . . .297
ENABLE/DISABLE Statements .297
START Statement .298
STRING Statement. • . • •• 298
TRANSFORM Statement .298
UNSTRING Statement • • . .299

Using the Report writer Feature .• 299
REPORT Clause in FD .299
summing Technique .• 300
Use of SUM. • . • • . • .300
SUM Routines. . . . • • .300
output Line Overlay • • • • .301
Page Breaks .• 302
WITH CODE Clause . • • . •• 302
Control Footings and Page Format •• 303
Floating First Detail Rule .304
Report writer Poutines • • • • .304

Table Handling Considerations .304
Subscri pts • • • • • .304
Index-Names .305
Index Data Items. • .305
OCCURS Clause •• 305
DEPENDING ON Option ••• 305
SET Statement . • • • .306
SEARCH Statement. • . . .307
Building Tables ••••••• 309

Queue Structure Considerations. • .309
Accessing Queue Structures through
COBOL ••••••••••••. 312

Specifying ddnames with Elementary
Sub-Queues. • • . • • • • • .313
Rules for Queue Structure
Description • • • • • • • .315

CALLING AND CALLED PROGRAMS .316
Specif ying Linkage • • • • • • • .316

Linkage in a Calling COBOL Program •• 317
Linkage in a Called COBOL Program •• 317

Dynamic Subprogram Linkage ••.•• 318
Correspondence of Identifiers in
Calling and Called Programs •• 322

File-Name Arguments •• • • • • .322
Linkage in a Calling or Called
Assembler-Language Program •• •• 322

Conventions Used in a Calling
Assembler-Language Program ••••• 323
Conventions Used in a Called
Assembler- Language Program •••• 325

Communication with Other Languages •• 326
Sample CALLING and CALLED Programs •.• 327
Link-Editing Programs •• • • .331

Specifying Primary Input. • .332
Specifying Additional Input .332

INCLUDE Statement .333
LIBRARY Statement .333
ALIAS Statement .333
NAME Statement. • .333
ENTRY Statement .334
ORDER Statement .334
PAGE Statement. • .334

p·rograms Compiled with the DYNAM
and/or Resident options • • • • •

Specifying DYNAM/RESIDENT
Specifying NODYNAM/RESIDENT
specifying NODYNAM/NORESIDENT

Linkage Editor Processing
Example of Linkage Editor

• .334
• .335
• .335

.336
• .338

Processing. • • • • • • •• • .339
Overlay Structures •••••• e •••• 340

Considerations for overlay. • .340
Linkage Editing with Preplanned
Overlay • • • • • • • • •
Dynamic Overlay Technique

Loading Programs • • • • • • •
Specifying Primary Input ••
Specifying Additional Input

• .340
• • 341
• .346
• .346
• .346

LIBRARIES • • • • • • • • • .347
Kinds of Libraries • • • • • .347

System Libraries Used in COBOL
Applications • • • • • • • .347

Link Library. • ••••• 347
Procedure Library •• 348
Sort Library • • • • .348
COBOL Subroutine Library ••• 348

Libraries Created by the user •• 349
Automatic Call Library. • .349
COBOL Copy Library. • .349
COpy Statement • • •••••• 351
BASIS Card. • • • • • • • • • .351
JOB Libr ary • • 353

Sharing COBOL Library Subroutines ••• 353
Concatenating the Subroutine Library .353

Creating and Changing Libraries •• 354

USING THE CATALOGED PROCEDURES ••••• 356
Calling Cataloged Procedures.. • .356

Data Sets Produced by Cataloged
Procedures. • • • • • . • • • .356

Types of Cataloged Procedures •• 357
programmer-Written Cataloged
Procedures. • • • • • • . •• • .357

Testing Programmer-Written
Procedures. • • • • • ••••• 357
Adding Procedures to the Procedure
Library • •.• • • • • ••••••• 357

IBM-Supplied cataloged Procedures •• 358
Procedure Naming Conventions. .359
Step' Names in Procedures •••••• 359
unit Names in Procedures.. • .359
Da ta Set Names in Procedures •••• 359
COBUC Procedure •• 359

'COBUCL Procedure •••.•••••. 359
COBULG Procedure. • • .359
COBUCLG Procedure •. 361
COBUCG Procedure. • .361

Modifying Existing Cataloged Procedures 362
overriding and Adding to cataloged
Procedures. • ••••••••••• 362

Overriding and Adding to EXEC
Statements. • • • • • • • .362

Examples of Overriding and Adding
to EXEC Statements ••.•••••• 362

Testing a Procedure as an In-Stream
Pr ocedur e • • • • • • .363
Overriding and Adding to DD
Statements ••••• • .364

Examples of Overriding and Adding
to DD statements • • • • • .364

using the DDNAME Parameter. • .366
Examples of Using the DDNAME
Parameter • • • • • • • • .' •• 366

USING THE SORT/MERGE FEATURE. .368
Sort/Merge DD Sta temen ts • •• ...368

Sort Input DD Statements • • .368
sort output DD statements .368
Sort Work DD Statements ••••••• 368

SORTWKnn Data Set considerations •• 368
Input DD Statement. • .369
OU t put DDS tat men t • • • • . • 36 9
SORTWKnn DD statements. • • •• 369

Additional DD Statements. • .370
Sharing Devices between Tape Data Sets .370
Using More Than One Sort/Merge
Statement in a Job ••••••••••. 370
SORT Program Example ••.•••••.• 370
cataloging SORT/MERGE DD Statements •• 371
Linkage with the SORT/MERGE Program •• 371

Completion Codes •••••••••• 371
Terminating the Sort Program from
the COBOL PROGRAM • • • • • • • .372

Locating Sort/Merge Record Fields •.• 372
Locating Last Record Released to
Sort/Merge by an Input procedure •
Sort/Merge Checkpoint/Restart
Efficient program Use •• • •

Data Set Size • • • • • • •

.372

.372

.372
. .373

Main storage Requirements • • ••
Sort/Merge Diagnostic Messages
Defining Variable-Length Records •

Sorting Variable-Length Records

• • 373
.373
.374
.374
.375 Sort/Merge for ASCII Files ••

Other Collating Sequences

OS/VS Sort/Merge Debug Feature

... 375

.377

USING THE SEGMENTATION FEATURE .378
Using the Perform Statement in a
Segmented Program • • • . • • • .378
Operation .••.•••••••••• 379
LANGLVL Option and Re-Initialization .379
Compiler Output ••••••••••• 379

USING THE CHECKPOINT/RESTART
Taking a Checkpoint

FEATURE •• 394
.394

Checkpoint Methods •••• .394
DD statement Forma ts • • • •
Designing a Checkpoint • • • . •
Messages Generated during Checkpoint

..• 394
.396
.396
.396 Restarting a Program •

RD Parameter • • •
Automatic Restart
Deferred Restart •

CHECKPOINT/RESTART DATA SETS

.396

.397

.397

.398

USING THE COMMUNICATION FEATURE .401
Writing a Message Control Program .404

Functions of the Message Control
Progra m • • . • • .404
User Tasks .•.•••••..•••• 404

Defining the Buffers. • • .• .426
Activating and Deactivating the
Message Control Program •.•.•• 426

Defining the MCP Data sets and
Process Control Blocks. • .427
Defining Terminal and Line Control
Areas ••••• : • • • • • .427
Designing the Message Handler ••• 429

ANS Standard MCP Requirements •• 432
ENABLE/DISABLE: Operator Command
Interface ••••••••••••• 432
ENABLE/DISABLE--KEY Phrase ••••• 433
ENABLE/DISABLE INPUT TERMINAL ••• 433
ENABLE/DISABLE INPUT (without
TERMINAL) ••••.••• .434
ENABLE/DISABLE OUTPUT •• 434
Specifying Characteristics for
Symbolic Destinations ••••••• 435
communications Job Scheduling (CJS) 436
Summary of ANS Standard MCP
Requirements •••••••••.•• 441

JCL for the MCP • • • • . . •• • .444
Assembling, Link-Editing, and
Executing an MCP • • • • .444

Assemblinq an MCP •• 445
Link-Edi ti ng an MCP • • • • • • • • 445
Executing an MCP • • • •• 445

Writing a TCAM-Compatible COBOL Program 446
~esting a COROL TP Program.. • .446
Communicating between a COBOL
Program and the MCP •••• 449

Defining the Interface. • • • .449
Activating the Interface •••••• 455
Transferring Messages between the
COBOL Program and the MCP •• • •• 455
Deacti va ting the Interface ••••• 455
Additional Interface Considerations 455

Using TCAM Service Facilities •• 456

• .457
• • • 457

MACHINE CONSIDERATIONS •.••
Minimum Machine Requirements
Compiler Size Requirements •

OS/VS2 and the Region Parameter
Intermediate Data Sets Under
OS/VS2, Release 1 •••••••

Execution Time Considerations
Sort/Merge Feature Considerations

• .457
• .457

• .458
• .458
• .460

APPENDIX A: SAMPLE PROGRAM OUTPUT .461

APPENDIX B: COBOL LIBRARY SUBROUTINES .472
Subroutines for Subprogram Linkage ••• 472

ENTER Subroutine (ILBONTRO) •• 472
NORES Initialization Subroutine
(ILBOBEGO) ••••••••••••• 472
Object-Time Options Subroutine
(I LBO P R M 0) • • • • • • • • • • • • • 4 7 2

STOP RUN Subroutine (ILBOSRVO) ••• 472
STOP RUN Messages Subroutine
(ILBOMSGO) .••••.••••••• 472
STOP RUN Termination Subroutine
~LBOSTTO} .•••••••••••• 472

Object-Time Program Operations ••••• 473
COBOL Library Conversion Subroutines .473

Separate Sign Subroutine (ILBOSSNO) 473
COBOL Library Arithmetic subroutines .476
COBOL Library Subroutines for Testing
Conditions at Object Time •••••• 476

Class Test Subroutine (ILBOCLSO) •• 476
COMPARE Subroutine (ILBOVCOO) .476

Compare with Figurative constant
Subroutine (ILBOIVLO) ••••

COBOL Library Data Manipulation
.476

Subroutines •• • • • • • • • • .476
MOVE Subroutine (ILBOVMOO and
ILBOVM01) ••••••.•••••• 476
MOVE Subroutine for System/370
(ILBOSMVO) • • • • • • • • • • .476
MOVE to Alphanumeric-Edited Field
Subroutine (ILBOANEO) •••.••• 476
MOVE to Numeric-Edited Field
Subroutine (ILBONEDO)
MOVE Figurative Constant

• •• 476

(ILBLOANFO) ••••••• .477
TRANSFORM Subroutine (ILBOVTRO) •• 477
STRI NG Subroutine (ILBOSTGO) • • • .477
UNSTRING Subroutine (ILBOUSTO) ••. 477
IN SPECT Subroutine (ILBOl NSO) .477

COBOL Library Data ~anagement
Subroutines • . • • • • • • • .

DISPLAY, TRACE, and EXHIBIT
Subrou tine (IL BODSPO) ••••
DISPLAY Subroutine (ILBODSSO)
ACCEPT subroutine (ILBOACPO) •
Generic Key START Subroutine

.477

.477

.477

.477

(ILBOSTR 0) • • • . . • . • • • • • .478
Checkpoint Subroutine (lLBOCKPO) •• 478
Wait Subroutine (ILBOWAT) .478
Error Intercept Subroutine
(I L B OE R R 0) . . • • • • . •
Error Intercept Subroutine
(ILBOSYNO) •• • • • •
Label Handling SUbroutine
(1LBOLBLO) • • . • .
Printer overflow Subroutine
(ILBOPTVO) • • • • • • • •
Printer spacing Subroutine
(ILBOSPAO) • • • • • • • •

B5AM WRITE/CLOSE and BDAM OPEN
Subroutine (ILBOS AMO) .•••
B5AM READ Subroutine (ILBOSPNO)
Q5AM I/O Subroutine (ILBOQIO)
DCB Exit Subroutine (ILBOEXTO)

.478

.478

.478

· •• 478

· .. 478

.478
•• 478

.479
· .• 479

VSAM Initialization Subroutine
(1LBOINTO) ••..••••••••• 479

VSAM open and Close Subroutine
(1LBOVOCO) ••••••••••••• 479
VSAM Action Request Subroutine
(1LBOVIO 0) • • • • • • • • • •
RECEIVE Subroutine (ILBORECO)
RECEIVE Initialization Subroutine

.479

.479

(1LBORNTO) • • • • • • •• • •• 479
Queue Analyzer Object-Time
Subroutine (ILBOSQAO)
Queue Structure Description

.479

Subroutine (ILBOQSUO) •••• .479
Messag e Count Subroutine (ILBOMSC) .479
Queue Structure Scan
(Communications) subroutine
(1LBOQSS) ••••••••••••• 479
Job Scheduler Subroutine (ILBOSCD) .479
ENABLE/DISABLE Subroutine (ILBONBL) 480
Communications Job scheduler
Utility (ILBOCJS) ••.•••••• 480
Declarative Save Area Chaining
Subroutine (ILBOCHNO) ••••• •• 480
GETCORE Subroutine (ILBOCMMO) .480
SEND Subroutine (ILBOSNDO) ••••• 480

SEND Initialization SUbroutine
(ILBOSNTO) • • • • • • • • • • ••• 480

COBOL Library Subroutines for Special
Features ••••••••••••••• 480

Sort/Merge Feature Subroutine
(I L BO S RT 0) • • • • • • • • • •
Merge Subroutine (ILBOMRGO)

• • .480

Sort Subroutine (ILBOSMGO) •••
sort Deb ug S ubro utin e (I LBOSDBO)
Alternate Collating Sequence

• .480
• .480
• .480

Compare Subrou ti ne (ILBOAC S) • • . .481
SEARCH Subroutine (ILBOSCHO) •••• 481
Segmentation Subroutine (II.BOSGMO) .481
GO TO DEPENDING ON Subroutine
(ILBOGDOO) ••••••.•••••• 481
Date-and-Time Subroutine (ILBODTEO) 481
3886 optical Character Reader
Interface Subroutine (ILBOOCRO) •. 481
ABEND Request Subroutine (ILBOABNO) 481

Ob ject -Time Debuggin g • • • • • • • • .481
Debug Control Subroutine (ILBODBGO) 481
Use-for-Debugging Subroutine
(I LB OB UG) ••••••••••••• 482
Flow Trace S ubrou tin e (ILBOFLWO) • . 482
Statement Number Subroutine
(ILBOSTNO) ••.•••••••••• 482
Symbolic Dump Subroutine (ILBOD10
and ILBOD20) •••••••••••• 482
SYMDMP Error Message Subroutine
(IL BODBEO) • • • • • • . • • . • • .482

COUNT Initialization Subroutine
(ILBOTCOO) ••••••.•• ~ ••• 482
COUNT Frequency Subroutine
(ILBOCT10) ••••••.•••••• 482
COUNT Termination Subroutine
(ILBOTC20) • • • • • • . •• •• 482

COUNT Print Subroutine (ILBOTC30) .482
Object-Time Debugging under Information
Management System (PP5734-XX6) •• .483

SPIE Subroutine (ILBOSPIO) ••.•• 483
Calling And Storage Information .483

APPENDIX C: FIELDS OF THE DATA CONTROL
BLOCK • • • • • • • • • • • • • •• 490

APPENDIX D: COMPILER OPTIMIZATION .496
Performance Considerations • • • • . • .496
Block Size for compiler Data Sets .496
How Buffer Space Is Allocated to
Buffers ••••••.••••••••• 497

APPENDIX E: INVOCATION OF THE COBOL
COMPILER AND COBOL COMPILED PROGRAMS •• 499

Invoking the COBOL compiler •• 499
Invoking COBOL compiled Programs ••• 500

APPENDIX F: SOURCE PROGRAM SIZE
CONSIDERATIONS • • • •••

Compiler Capacity
Minimum Configuration SOURCE
PROGRAM Size ••••••••

Effective storage Considerations • •
Linkage Editor capacity

APPENDIX G: INPUT/OUTPUT ERROR

• .501
• .501

• .501
• • 501
• .502

CONDITIONS. • • • • • • • •••• 504

APPENDIX H: CREATING AND RETPIEVING
INDEXED SEQUENTIAL DATA SF.TS • • • .510

Creating an Indexed Data Set ••.. 510
Retrieving an Indexed Data Set ••. 512

APPENDIX I: CHECKLIST FOR JOB CONTROL
PROCEDURES •••••••••••••.• 514
compilation ••••••••.•.... 514

Case 1: Compilation Only -- No
Object Module Is to Be Produced •. 514
Case 2: Source Module from Input
Stream. • • • • • • • .514
Case 3: Object Module Is to Be
Punched .••••••••.••.• 514
Case 4: Object Module Is to Be
Passed to Linkage Editor. • • .514
Case 5: Object Module Is to Be
Saved ••••••••..••••• 515
Case 6: COpy Statement in COBOL
Source Module or a BASIS Card in
the Input Stream. • . • . • • .515

Linkage Editor .•..•..•.••.• 515
Case 1: Input from Previous
Compilation in Same Job .•••.. 515
Case 2: Input from System Input
St re am • • • • . • • • • • • 515
Case 3: Input Not from Compilation
in Same Job • • • • • .515
Case 4: Output to Be Placed in
Link Library. . • . • • • • .516
Case 5: output to Be Placed in
Private Library •••••.•••. 516
Case 6: output to Be Used Only in
this Job. • • • • • • • • .516

Execution Time. • • . • • • • .516
Case 1: Load Module to Fe
Executed Is in Link Li brary • . • .516
Case 2: Load Module to Be
Executed Is a Member of Private
Library ••• y •••••••••• 516
Case 3: Load Module to Be
Executed Is Created in Previous
Linkage Editor Step in Same Job •. 517
Case 4: Abnormal Termination Dump .517
Case 5: DISPLAY Is Included in
Source Module ••••.•..••• 517
Case 6: DISPLAY UPON SYSPUNCH Is
Included in Source Module ••••• 517
Case 7: ACCEPT Is Included in
Source Module (Except for Format 2
or ACCEPT MESSAGE) •..••..•. 517
Case 8: Debug Statements EXHIBIT
or TRACE Are Included in Source
Module •••••.•••.•..•• 517
Case 9: Object Time Symbolic
Debugging a pt ions .517
Case 10: COUNT Option ..•. .517

APPENDIX J: FIELDS OF THE GLOBAL TABLE .519
Task Global Table .• 519
Program Global Tab Ie • • . • . • • 527

APPENDIX K: DIAGNOSTIC MESSAGES
Compile-Time Messages
Object-Time Messages •

completion Codes •
Informative Messages •

. . ., .529
.• 529

.529

.529

.529

Diagnostic Messages -- MCS
Consid erations • • .
COBOL Object Program Unnumbered
Messages • • . • • •

Queue Analyzer Messages • • ••••

APPENDIX L: RESOLVING COBOL COMPILER
PROBL~MS

AFPENDIX M: 3886 OPTICAL CHARACT~R
READER PROCESSING ••••
OCR COBOL Capabilities •.•.•••

• .537

· .538
• .539

• .543

· .544
• .544

OCR I/O Requests • • • . • • • • •. 544
OCR STATUS KEY. • • • . • • . • :545
Implementing an OCR Application .549
Document Design • .. .549
Do cu men t D es c rip t ion • • . 5 5 0
COBOL File and Record Descriptions •. 552
Procedural Code ..•••..•. 552

Exception Handling with ILBOOCRP .. 552
Sample Program •..•.•.••.•• 553

Format Pecord Assembly Example .•• 553
Processing Tapes from the 3886 OCR,
Model 2 .•• 560

INDEX .561

Figure 1. Job Control Procedure 21
Figure 2. Using a Cataloged Procedure 21
Figure 3. Control Statements • 22
Figure 4. General Format of Control
Statements • • • • • • ••
Figure 5. JOB Statement •• • •
Figure 6. EXEC Statement ••••
Figure 7. Significant Characters for
Compiler 0 ptions
Figure 8. Compiler, Linkage Editor,
and Loader PARM options ••••
Figure 9. The DD Statement (Part 1
of 3) • .. • • • • • • • • • • ..
Figure 9. The DD Statement (Part 2

23
26

• 33

• 38

46

53

of 3) • • • • • • • • • .. • • • • • 54
Figure 10. Device Class Names
Required for IBM-Supplied Cataloged
Procedures • • • • • • • • • 59
Figure 11. Mass Storage Volume states 64
Figure 12. Data Set References 66
Figure 13. Example of a Batch
Compilation • • • • • • • • • .. • • • • 72
Figure 14. Creation of Four Toad
Modules with Programs PROG1 and PROG2
and BASIS Library Members PAYROLL and
PAYROLL2 • • • • • • • 73
Figure 15. Data Sets Used for
Compilation • • • • • •••• 75
Figure 16. Data Sets Used for linkage
Editing •• • • • • • • • 77
Figure 17. Determining the File
Processing Technique • .. • • • • 84
Figure 18. COBOL Clause for Physical
sequential File Processing •••••• 86
Figure 19. DEN Values 86
Figure 20. DD statement Parameters
Applicable to Physical sequential
OUTPUT Files • • .. • • • • . • . • . • • 89
Figure 21. DD statement Parameters
Applicable to Physical sequential
INPUT and 1-0 Files •• • • • • • • • • 90
Figure 22. Directly organized Data as
it Appears on a Mass storage Device
Figure 23. Sample Format of the First

93

Two Tracks of a Direct File •.•••• 94
Figure 24. Sample Space Allocation
for sequentially Created Direct Files . 96
Figure 25. Sample Space Allocat~on
for Randomly Created Direct Files ••• 97
Figure 26. Mass Storage Device
Overhead Formulas • • • • • 103
Figure 27. Mass Storage Device
Capacities ••••••••• .103
Figure 28. Mass storage Device Track
capacity ••••••••• .104
Figure 29. Partial List of Prime
Numbers (Part 1 of 2) ••••••••• 105
Figure 30. Sample Program for a
Randomly Created Direct File (Part
of 2) .•••••.••.••••
Figure 31. Direct File Processing on
Mass Storage Devices • . • • • • •
Figuri~32. JCL Applicabie to Directly

.106

.108

Organizeq Files & •••• 109

Figure 33. Relatively Organized Data
as it Appears on a Mass Storage nevice .111
Figure 34. Sample Format of Two
Tracks of a Relative File •••.• 111
Figure 35. Sample program for
Rela ti ve File Processing (Part of 4) • 114
Figure 36. Relative File Processing
on Mass Storage Devices
Figure 37. JCL Applicable to
Relatively organized Files
Figure 38. Track Index
Figure 39. cylinder Index
Figure 40. Blocked Records on an
Indexed File • • • . • • • • •
Figure 41. Unblocked Records on an

• 118

· • 120
• • 120

• 121

• 121

Indexed File ••.•••••••••. 122
Figure 42. Cylinder Overflow Area ••• 123
Fi~ure 43. Independent Overflow Area .123
Figure 44. DD statement Parameters
Applicable to Indexed Files opened as
Output .•••••.••.•••••• 126
Figure 45. Example of DD Statements
for New Indexed Files •••.••.•• 127
Figure 46. DD statement Parameters
Applicable Indexed sequential Piles
Opened as INPUT or 1-0 •...•.••. 129
Figure 47. Indexed sequential Pile
Processing on Mass Storage Devices • • 131
Figure 48. DD Statement Parameters
Frequently Used in Creating Data sets .132
Figure 49. Parameters Frequently Used
in Retrieving PreviouslY Created Data
Sets .••••.•••....••.. 138
Figure 50. Parameters Used To Specifv
unit Record Devices .•.••••••. 141
Figure 51. Links between the SELECT
Statement, the DD statement, the Data
Set Label, and the Input/Output
Statements • . • . • • • . • • · . 143
Figure 52. Flow of Control in COBOL
After Error Detected on .
BSAM/QISAM/BDAM/BISAM I/O.· .••••• 145
Figure 53. Flow of Control in COBOL
~fter Error Detected on QS,AM I/O
jig~~e 54. ·Ex~mpl~ of Use of GIVING
Option in Error Declarative (Part 1 of
3) •••••••••••••••• •
Figure 55. Recovery from an Invalid
Key Condition or from an Input/Output
Error • • • • . • . • • • .
Figure 56. Input/Output Error
Processing Pacilities ••••

147

. 150

.154

.155
· • 158

.158
158

F i q u r e 5 7 • Ex it Lis t C od e s • • • •
Figure 58. Parameter List Formats
Figure 59. Label Routine Return Codes
Figure 60. Fixed-length (Format F)
Records . • • • . • • • • , • • •
Figure 61. Unspecified (Format U)
Records • • • • • • • • • . • • .
Figure 62. Unblocked V-Mpde Records
Figure 63. Blocked V-~ode Records

.160

• 161
.162

· . 162

Figure 64. Fields in Unblocked V-Mode
Records •••••••••••••••• 163
Figure 65. Fields in Blocked V-Mode
Records •• • • • • • • • • .163
Figure 66. First Two Blocks of
VARIABLE-FILE-2 • • • • • • .164
Figure 67. Control Fields of an
S-Mode Record • • • • • • • • • .166
Figure 68. One Logical Record
Spanning Physical Blocks •••••••• 166
Figure 69. First Four Blocks of
SP A N - F I L E • • • • • • • • • •• • • 167
Figure 70. Advantage of S-Mode
Records Over V-Mode Records •• 167
Figure 71. Direct and Sequential
Spanned Files on a Mass Storage Device 168
Figure 72. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON option ••••••.••• 171
Figure 73. Defining a VSAM Indexed
Data Set (KSDS) with Both Primary and
Alternate Keys ••••••••••••• 178
Figure 74. status Key Values And
Their Meanings. • • • • • • • •• .184
Figure 75. Error Handling Actions
Based on COBOL Program Coding.. • .185
Figure 76. (Part 1 of 2) Status Key
Values for OPEN Requests. • •• • .187
Figure 77. (Part 1 of 2) Status Key
Values for Action Requests. •• • .192
Figure 78. COBOL Statements
Frequently Used for Writing into a
VSAM Data Set •••••••••.•.• 194
Figure 79. COBOL Statements
Frequently Used for Retrieving Records
From a VSAM Data Set •••••••••• 196
Figure 80. COBOL statements
Frequently Used for Updating a VSAM
Data Set •••••••••••.•••• 199
Figure 81. Sample Identification and
Environment Division Output Listing •• 204
Figure 82. Sample Data Division
output Listing ••••••••••••• 206
Figure 83. Sample Procedure Division
Qutput Listing ••••••••••••• 208
Figure 84. Sample Summary Listing ••• 209
Figure 85. Individual Type Codes Used
in SYMDMP output ••••••••••• 219
Figure 86. Using the SYMDMP Option to
Debug the Program TESTRUN (Part 1 of
11) •••••••••••••• • .220
Figure 87. Examples of Compiler
Output (Part 1 of 4) • • • • •• • .232
Figure 88. A Program that Produces
compiler Diagnostics and Explanations .239
Figure 89. Glossary Definition and
Usage • • • • • • • • • • • • • .239
Figure 90. Symbols Used in the
Listing and Glossary to Define
Compiler-Generated Information .240
Figure 91. Linkage Editor output
Showing Module Map and Cross-Reference
List. • •..••••••.•••. 241
Figure 92. Module Map Format Example .244
Figure 93. Execution Job Step output .245
Figure 94. system Message
Identification Codes .•.•••.•. 246

Figure 95. Program with USE FOR
DEBUGGING ••••••.•••••••.. 250
Figure 96. Example of Program Flow

• . • . . . • • . • • • . • • 252
Figure 97. Selective Testing of B •.. 253
Figure 98. COBOL Program That will
Abnormally Termina te (Part 1 of 3) • • .264
Figure 99. Load List of program That
will Abnormally Terminate .267
Figure 100. Program with Data
Interrupt (Part 1 of 5) .269
Figure 101. Locating the QSAM Logical
Record Area ••.••..•.••.•. 274
Figure 102. Logical Record Area and
Segment Work Area for BDAM and BSAM
Spanned Records ••••••.••.•• 275
Figure 103. Fields of the RECEIVE Queue
Block • • . •. • .••••• 276
Figure 104. Fields of the SEND Queue
Block . • • • • . • • • • • .276
Figure 105. Structure of a TCAM
Record .277
Figure 106. Codes Used in the TCAM
Control Byte ••.•••.•••.•. 278
Figure 107. Data Format Conversion •. 289
Figure 108. Relationship of PICTURE
to storage Allocation • ~ •••••.• 292
Figure 109. Treatment of Varying
Values in a Data Item of PICTURE S9 •• 292
Figure 110. Using the STRING
Statement • • • • • . • . • • .298
Figure 111. Using the UNSTRING
Statement •• • • • • . • • • .299
Figure 112. Sample Showing GROUP
INDICATE Clause and Resultant Execution
Output ••.••.••.•.••• •. 302
Figure 113. Format of a Report Record
When the CODE Clause is Specified .302
Figure 114. storage Layout for Table
Reference Example • • • • .306
Figure 115. Rules for the SET
Statement ••••.••• _ • .307
Figure 116. A Queue Structure with
Three Levels of Sub-Queues •••••• 310
Figure 117. A Sample Queue structure
Descripion ••.••..•.••••. 311
Figure 118. Sample Message Retrieval
options ••••••••••• 313
Figure 119. Using ddnames with Queue
Structures ••••...••• .314
Figure 120. Format for Input to Queue
structure Description Routine .315
Figure 121. Calling and Called
Programs. • • • • . • . . • • • • .316
Figure 122. Sample Calling and Called
Programs Using Dynamic CALL and CANCEL
S tat e men t s (Pa r t 1 0 f 3) •••• • 3 1 9
Figure 123. Linkage Registers .322
Figure 124. Effect of STOP RUN
Statement • • • • • • • • . • • • .325
Figure 125. Sample Linkage Coding
Used in a Calling Assembler-Language
Program .•..•••.••.••••• 326
Figure 126. Sa_pIe calling and Called
Programs (Part 1 of 7) • • • • .. .327
Figure 127. Save Area Layout and
contents ••••••.••••• .332

Figure 128. CALL with DYNAM and
RESIDENT ••••••••.•• • .335
Figure 129. CALL With NODYNAM and
RESIDENT. • • • . • • • • • • • .335
Fioure 130. CALL with NODYNAM and
RESIDENT With CALL Literal Option ••• 336
Figure 131. CALL With NODYNAM and
NONRESIDENT • • • . • • • . •• • .336
Figure 132. Sample JCL for
Called/Calling Programs Compiled with
the DYNAM and RESIDENT options .337
Figure 133. Sample JCL Used for a
Calling Assembler-Language Program and
a Called COBOL Program • • . • •• .338
Figure 134. Specifying primary and
Additional Input to the Linkage Editor 339
Figure 135. overlay Tree Structure •. 341
Figure 136. Sample Deck for
Linkage-Editor Overlay Structure •••• 342
Figure 137. Sample COBOL Main Program
and Assembler-Language Subprogram
using Dynamic overlay Technique (Part
1 of 3) • • • • • • • • •• • .343
Figure 138. Format of a Library ••. 348
Figure 139. Entering Source
statements into the COpy Library •••• 350
Figure 140. Updating Source
statements in a COpy Library. • . .350
Figure 141. COBOL Statements to
Deduct Old Age Tax •••••••.•. 352
Figure 142. Programmer Changes to
Source Program ••••••.•••••• 352
Figure 143. Changed COBOL Statements
to Source COpy Library Statements .352
Figure 144. Concatenating the
Subroutine Library •••••••••• 354
Figure 145. Example of Adding
Procedures to the Procedure Library •• 358
Figure 146. Statements in the COBUC
Procedure • • • . • • • • • .360
Figure 147. Statements in the COBUCL
Procedure • • • • • • •• • •••• 360
Figure 148. Statements in the COBULG
Procedure • • • • • • .• • ••.• 360
Figure 149. Statements in the COBUCLG
Procedure • • • • • • • • • •••• 361
Figure 150. Statements in the COBUCG
Procedure • • • • • • • • • •• 361
Figure 151. Sort Feature Control
Cards ••.••••••••••• 370
Figure 152. Sorting Variable-Length
Records Whose File-name Description and
sort-File-name Description Correspond .376
Figure 153. Segmentation of Program
SAVECORE •••••••••••••••• 378
Figure 154. Sample segmentation
Program (Part 1 of 14) •••• • .380
Figure 155. Restarting a Job at a
Specific Checkpoint Step •• 398
Figure 156. Using the RD Parameter •• 399
Figure 157. Modifying Control
Statements Before Resubmitting for
Step Restart. • • • • • • •• • •• 399
Figure 158. Modifying Control
Statements Before Resubmitting for
Checkpoint Restart ••••• ,. • .400
Figure 159. Message Flow between
Remote stations and a COBOL Program •• 402

Figure 160. A Message Control Program
for Communication Application (Part 1
of 20) • • • • •• •• • • • • 406
Figure 161. Macros that can be coded
in a Message Handler ••.•. 430
Figure 162. Replacing the Mer Jobname
CSECT • • • • . • • • . • .433
Figure 163. Exam?le of Message
Formation for a Fixed Line Size
Destination Supporting Vertical
positioninq . • • • • • • • • • . .437
Figure 164: Communications Job
Scheduling •••.•...••••••. 439
Figure 165. Sample CJS Application
(Part 1 of 2) •••••••• .440
Figure 166. ANS Standard MCP
Requirements (part 1 of 2) ••.••.. 442
Figur& 167. Sample JCL for Testing a
Communication Job without TCAM. .4u7
Figure 168. Sample JCL for Running a
Communication Job in a Quasi-Terminal
Environment .••.•.......... 448
Figure 169. Sample JCL for Running a
Communication Job with a Remote
Terminal • • . • • • . • • • • .448
Figure 170. Creating a TCAM Data Set
for Testing without Terminals (Part 1
of 2) •••••••••• • • • • .451
Figure 171. A COBOL Program That
Processes TCAM Messages (Part 1 of 2) .453
Figure 172. Functions of corOL
Library Conversion Subroutines (Part 1
of 2) ••••••••• • •••• 474
Figure 173. Function of COBOL Library
Arithmetic Subroutines ••••. 475
Figure 174. Calling and storage
Information for COBOL Library
Subrou tines (Part 1 of 6) .484
Figure 175. Data control Block Fields
for Physical Sequential Files (QSAM) .. 491
Figure 176. Data Control Block Fields
for Direct and Relative Files Accessed
Sequentially (BSAM) •..•...••• 492
Figure 177. Data Control Block Fields
for Direct and Relative Files Accessed
Randomly (BDAM) ••.•. . • • • . .• 493
Figure 178. Data Control Block Fields
for Indexed Sequential Files Accessed
Sequentially (QISAM) ••.•.••.•• 494
Figure 179. Data Control Block Fields
for Indexed sequential Files Accessed
Randomly (BISAM) ••••••.•••.. 495
Figure 180. sample Constant Area Used
in SYNADAF Processing (Part 1 of 3) •• 505
Figure 181. A Sample Job to get a
Dump of a Constant Area • • • • .507
Figure 182. Creating an Indexed Data
set • • • • • • • • • • • • . • • .511
Figure 183. Area Arrangement for
Indexed Data Sets •• • • • • • • .512
Figure 184. Retrieving an Indexed
Data Set. • • • • • • • • • • • • .513
Figure 185. General Job Control
Procedure for Compilation ••••••• 514
Figure 186. General Job Control
Procedure for a Linkage Editor Job step 516

Figure 187. General Job Control
Procedure for an Execution-Time Job
St e p • • • . • • • •• •••• • • • 51 7
Fiqure 188. Fields of th~ Task Global
Table (Part 1 of 3) • • • • • • • .520
Figure 189. Fields of the Program
Global Table •••• • ••••• 527
Figure 190. Format of COBOL Parameter
Data Area .•••••••••••••• 545
Figure 191. IBM-supplied Data
Division COpy Member (Part 1 oi 2) .546
Figure 192. IBM-supplied Procedure
D i vision COP Y Member (Part 1 of 2) • • .548
Figure 193. OCR STATUS KEY Values
(Part 1 of 2) ••••••••••••• 550
Figure 194. Requesting OCR Functions
and Information Returned •••••••• 553
Figure 195. Sample Document •.•••• 555

Figure 196 ... Format Record Assembly
Coding Example. • • • • . • • . • .556
Figure 197. Sample Data ...•.••• 557
Figure 198. Sample COBOL OCR
Processing Program (Part 1 of 3) .558

An OS/VS COBOL program can be processed
by the IBM Operating System. The operating
system consists of a number of E!Q£gssing
££Qg~§ and a £2~!£~~g~~.

The processing programs include the
COBOL compiler# service programs, and any
user-written programs.

The control program supervises the
execution or loadi ng of the processing
programs; controls the location# storage,
and retrieval of data; and schedules jobs
for continuous processing.

A request to the operating system for
facilities and scheduling of program
execution is called a .iQ.l!.. For example# a
job could consist of compiling a program by
utilizing the COBOL compiler. A job
consists of one or more jQQ stg£2# each of
which specifies execution of a program.
The programmer can make requests to the
operating system by using job control
sta temen ts.

Each job is headed by a JOB statement
that identifies the job. Each job step is
headed by an EXEC statement that describes
the job step and calls for execution.
Included in each job step are data
definit.ion (DD) statements, which describe
data sets and request allocation of
input/output devices.

The data processed by execution of any
processing program must be in the form of a
g~1~-2g1- A data set is a named, organized
collection of one or more records that. are
logically related. Information in a data
set mayor may not be restricted to a
specific type# purpose# or storage medium.
A data set may be# for example, a source
program, a library of SUbroutines, or a
group of data records that is to be
processed by a COBOL program.

A data set resides in one or more
!.Qlumg§_ A volume is a unit of external
storage that is accessible to an
input/output device. For example, a volume
may be a reel of tape or it may be a mass
storage device.

To facilitate retrieval of a data set,
the serial nrimber of the volume upon which
it resides can be entered, along with the
data set name l in either the system £S.glog
of data sets (SYSCTLG) or in the VSAM

18

£!1!!Qgl or in both (if they are not the
same). The catalog itself is a data set
residing on one or more mass storage
devices. It is organi2ed into indexes that
relate each data set name to its location-
the volume in which it resides and its
position within the volume. Only the data
set name and DISP parameter need be
specified to identify a cataloged data set
to the sys tern.

The catalog is originally created by a
utility program. Once the catalog exists,
any non-VSAM data set residing on either a
mass storage device or a magnetic tape
volume can be cataloged automatically by
use of a catalog subparameter in a DD
statement that refers to the data set.
VSAM data sets are cataloged through Access
Method Services.

Several input/output devices grouped
together and given a single name when the
system is generated constitute a g,gyic~
class. Each device class can be referred to-by a collective name. For example# one
device class called SYSDA could consist of
all the mass storage devices in the
installation; another called SYSSQ c6uld
consist of all the mass storage devices and
tape devices.

Four basic operations are performed to
execute a COBOL program:

• compilation

- Linkage editing

-Loading

• Execution

COMPILATION

Com pila tion is the process of
translating a COBOL source program into a
series of instructions comprehensible to
the computer, i.e., machine language. In
operating system terminology, the input
(source program) to the compiler is called
the 2QQ££~~Qgule_ The output (compiled
source program) from the compiler is called
the obj~£~_mod~le.

LINKAGE EDITING

The linkage editor is a service program
that prepares object modules for execution.
It can also be used to combine tvo or more
separately compiled object modules into a
format suitable for execution as a single
program. The executable output of the
linkage editor is called a !Q~g_~dule,
which must always be stored as a member of
a partitioned data set.

In addition to processing object
modules, the linkage editor can combine
previously edited load modules, with or
without multiple object modules, to form
one load module.

During the process of linkage editing,
external references between different
modules are usually resolved.

LOADING

The Loader is a service program that
processes object and load modules, resolves
any references to subprograms, and executes
the loaded module. All these functions are
performed in one step. The Loader cannot
produce load modules for a program library.

For detailed information on the Loader,
see the publication Q~LY~_1ift~~g~£~itQ~
~n~_Lo~Q~~, where a discussion of invoking
the Loader can be found in "Using the
Loader."

EXECUTION

Actual execution is under supervision of
the control proqram,which obtains a load
module from a library, loads it into main
storage, and initiates execution of the
machine language instructions contained in
the load mod ule.

The IBM as/vs COBOL Compiler and Library
operates under control of OS/VS1 or OS/VS2
(with or without TSO), and under the CMS
component of VM/370. OS/VS1 and OS/VS2 can
operate as independent systems or under
control of VM/370.

OS/VS1

The OS/VS1 control program divides
storage into a numbe~ of discrete areas
called partitions. Job steps are directed
to these partitions using a priority
scheduling system; that is, jobs are not
executed as encountered in the job stream·
but according to a priority code. The
OS/VS1 control program provides for:

• priority scbeduling of jobs using the
class code

• Concurrent scheduling and execution of
up to 15 separately protected jobs

• Reading one or more input streams

Por furtber information about the
various optional features of the OS/Vs1
control program. see tbe publication Q~!li1
fl~nning_ang_U2~_~g1~g·

OS/VS2

The OS/VS2 control program divides
storage into areas called regions. Like
OS/VS1, the OS/V52 control program uses a
priority scheduling system and provides for
concurrent execution of up to 255 tasks.
In addition, the OS/VS2 control program
provides for assignment of storage regions
on a variable basis according to a region
code. For further information about the
various optional features of the 05/'52
control program, see the publication !2~!~~
glgnni~_gng_a§g_~g1~~·

CONVERSATIONAL MONITOR SYSTEM

The Conversational Monitor System (CMS)
is a time-sharing system that depends upon
the control program component of Virtual
Machine Facility/310 (VM/370) for real
computer management. eMS provides an
extensive range of conversational
programming capabilities a t. a remote
terminal. The CMS command language
simplifies file and data handling through
the use of simple terminal commands. For a
detailed description on the use of the
OS/VS COBOL Compiler and Library under CMS,
see the publication 1~H-Y~Ll1Q_£~~ Use£~~
~~igg_!Q£_£Q~Q1. This guide contains a
list of restrictions and limitations· for
using the OS/VS COBOL Compiler under CMS.

Introduction 19

communication between the COBOL
programmer and the job scheduler is
effected through nine job control
statements (hereinafter called control
statements):

1. Job sta tement

2. Execute statement

3. Data Definition statement

4. PROe statement

5. PEND statement

6. Command Statement

7. Delimiter statement

8. Null Statement

9. Comment Statement.

Parameters coded in these control
statements aid the job scheduler in
regulating the execution of jobs and job
steps, retrieving and disposing of data,
allocating input/output resources, and
communicating with the operator.

The job_§ll!ill!gnt (hereinafter called
the JOB statemen~ marks the beginning of a
job an4, when jobs are stacked in the input
stream, marks the end of the control
statements for the preceding job. It may
contain accounting information for use by
an installation's accounting routines, give
conditions for early termination of the
job, regulate the display of job scheduler
messages, assign job priority, request a
specific class for job scheduler messages,
specify the amount of main storage to be
allocated to the job, and hold a job for
later execution.

The ~~~tatem~nt (or EXEC
statement) marks the beginning of a job
step and identifies the program to be
executed or the cataloged procedure to be
used. It may also provide job step
accounting information, give conditions for
bypassing the job step, pass control
information to a processing program, assign
a time limit for the execution of the job
step and specify the amount of main storage
to be allocated.

The datLde.fiJl.itiQ1L§.tate~!l! (or DD
statement) describes a data set and

20

requests the allocation of input/output
resources. The DD statement parameters
identify the data set, give volume and unit.
information and disposition, and describe
the labels and physical attributes of the
data set.

The £.RQ~§ls.lgm~:nl appears as the first
control statement in a cataloged procedure
or an in-stream procedure and is used to
assign default values to symbolic
parameters defined in the procedure.

The g~lilLsts.lgmg!ll appears as the last
control statement in an in-stream procedure
and marks the end of the in-stream
procedure. For further information about
in-stream procedures, refer to the topic
"Testing a Procedure as an In-Stream
Procedure" in the chapter "Using t.he
Cataloged Procedures."

The £.Q!!.nnd_§!ate!!~n! is used by the
operator to enter commands through the
input stream. Commands can activate or
daactivate system input and output units,
request printouts and displays, and perform
a number of other operator functions.

The delimiter statement and the null
2i~~i are markers-in-an input stream.
The delimiter statement is used, when data
is included in the input stream, to
separate the data from subsequent control
statements. The null statement can be used
to mark the end of the control statements
for the entire job {preventing subsequent
statements from being associated with this
job) •

The comment statement can be inserted
before or-after-;Uy-control statement and
can contain any information deemed helpful
by the person who codes the control
statements. Comments can be coded in
columns 4 through 80. The comment cannot
be continued onto another statement. If
the comment statement a ppears on a system
output listing, it can be identified by the
appearance of asterisks in colUmns 1
through 3.

The sequence of cont.rol statements
required to specify a jo,b is called a jQQ
control procedure.

For example, the job control procedure
shown in Figure 1 CQuld be placed in the
input stream to compile a COBOL source
module.

r- ,
IIIJOB1
IIISTEP1
1/ISYSUT1
IIISYSUT2
IIISYSUT3
IIISYSUT4
IIISYSPRINT
JIISYSPUNCH
IIISYSIN

JOB
EXEC
DD
DO
DD
DD
00
DD
DD
deck)

PGM=IKFCBLOO,PARM=DeCK
OSNAME=&&UT1,UNIT=SYSDA,SPACE=(TRK, (40»
OSNAME=&&UT2, UNIT=SYSSQ,SPACE= (TRK, (40»
DSNAME=&&UT3, UNIT=SYSSQ,SPACE= (TRK, (40»
OSNAME=&&UT4,UNIT=SYSSQ,SPACE=(TRK, (40»
SYSOUT=A

J
J
I
J
f
I
I
I
I
I
1

S YSOUT= B

*
I (source
f/*
L--

Figure 1. Job Control Procedure

In the illustration, JOB1 is the name of
the job. The JOB statement indicates the
beginning of a job.

STEPl is the name of the single job step
in the job. The EXEC statement specifies
that the IBM OS/VS COBOL Compiler
(IKPCBLOO) is to execute the job. The
statement also specifies that a card deck
of the object module is to be produced
(PARM=DECK) •

The SYSUT1, SYSUT2, SYSUT3, SYSUT4,
SYSUT5 (if the SYMDMP or TEST option is
spec if ied in the PARM parameter of the EXEC
card), and SYSUT6 (if the LVL option is
specified in the PARM parameter of the EXEC
card) DD statements define utility data
sets, used by the compiler to process the
source module. The names of the data sets
defined by SYSUT1, SYSUT2, SISUT3, SYSUT4,
SYSUTS and SYSUT6 are &&UT1, S&UT2, &&UT3,
&&UT4, &&UTS and &&UT6, respectively.
SYSUT1 must be on a mass storage device
(UNIT=SYSDA). The system will allocate 40
tracks of space to SYSUT1
[SPACE=(TRK, (40»]. The other four utility
data sets are assigned either to any
available tape, in which case the SPACE
parameter is ignored, or to a mass storage
unit (UNIT=SYSSQ).

The SYSPRINT DO statement defines the
da ta set tha t is to be printed. SYSOUT= A
is the standard designation for data sets
whose destination is the system output
device, usually indicating that the data
set is to be listed on a printer.

The SYSPUNCH DD statement defines the
data set that is to be punched. By
convention, SYSOUT=B designates a card
punch.

The SYSIN DD state.ent defines the data
set (in this case, the source module) that
is to be used as input to the job step.
The asterisk (*) indicates that the input
data set follows in the input stream.

The delimiter (/*) statement separates
data from subsequent control statements in
the input stream.

output from this job step includes any
diagnostic messages associated with the
compilation. They are printed in the data
set specified by SYSPRINT.

Note: S ISO A, SYSSQ, A, and Bare
IBM-specified device class names. If they
are to be used, they must be incorporated
at system generation time.

.J

To avoid rewriting these statements, and
the possibility of error, the programmer
may place frequently used procedures on a
system library called the procedure
library. A procedure contained in the
procedure library is called a cataloged
2~~~~~. A cataloged procedure can be
called for execution by placing in the
input stream a simple procedure that may
require only the JOB and EXEC statements.

If slightly mOdified, the procedure in
the previous example can be cataloged,
i.e., placed in the procedure library. For
example, if it vere cataloged and given the
name CATPROC, it could be called for
execution by placing the statements shown
in Figure 2 in the input stream.

t"

IIIJOB2 JOB
IIISTEPA EXEC
IIISTEP1.SYSIN DO
J (source deck)
11*

PROC=CATPROC

*

,
I
t
I
I ,

I
_____________ --J

Figure 2. Using a Cataloged Procedure

In Figure 2, JOB2 is the name of the job.
STEPA is the name of the single job step.
The EXEC statement calls the cataloged
proced ure containing STEP1 to execute the
job step (PROC=CATPROC).

Job Control Procedures 21

A procedure can be tested before it is
placed in the procedure library by
converting it into an in::§.tr!!S.!Lprocedut:~.
An in-stream procedure can be executed any
number of times during a job. For further
information about in-stream procedures,
refer to the topic "Testing a Procedure as
an In-stream Procedure" in "Using the
Cataloged Procedures. l1

"User Pile Processing" and "Appendix I:
Checklist for Job Control Procedures"
explain, with numerous examples, the
preparation of job control procedures.
UDa ta Set Requirelllen ts" describes required
and optional data sets for compilation,
linkage editing, and execution time job
steps. The chapter "Using Cataloged
Procedures" provides informa tion about
using and modifying cataloged procedures.

The section "Control Statements," below,
shows the format and use of the parameters
and subparameters that can be specified for
each job control statement. Some
parameters of the statements are described
only briefly. Por further information, see
the publication QSLIL!l~.L~~~!!£~. The
syntactic format descriptions in this
chapter can be used as a reference for the
exact format and for the use of each
parameter.

The COBOL programmer uses the control
statements shown in Figure 3 to compile,
linkage edit, and execute programs.

JOB MANAGEMENT

Control statements are processed by a
group of operating system routines known
collectively as job management. These job
management routines interpret control
statements and commands, control the flow
of jobs, and issue messages to both the
operator and the programmer. Job
management comprises tvo major components:
a job scheduler and a master scheduler.

The job_§chegul~ is a set of routines
that reads input streams, analyzes control
statements, allocates input/output
resources, issues diagnostic messages to
the programmer, and schedules job flow
through the system.

22

• i ,

IS ta temen t I Func tion ,
I-----_t__ -t
,JOB I Indicates the beginning of a 1
I I nev job and describes that 1
I t job. I
~ I f
,EXEC IIndicates a job step and 1
I I describes that job step; I
J I indicates the load module or I
, I cataloged procedure to be I
, I executed. I
I I ~
tDD lDescribes data sets, and I
I J controls device and volume 1
I , assignment. 1
• -+-- -f
IdelimiterlSeparates data sets in the J
I I input stream from control I
, , statements; it ma y folloll ,
I J each data set that appears inl
I I the input stream, e.g., afterl
I I a COBOL source module punchedl
I) deck. ,
I I ~
Icomment lcontains miscellaneous remarks 1
I t a nd notes wri t ten by the f
J I programmer; it may appear 1
J J anywhere in the job stream 1
I J after the JOB statement ,
, I (except wi thi n data or I
J I source) • t L- L-______________ _

J

Figure J. control Statements

The master scheduler is a set of
routines-that accepts operator commands and
acts as the operator's agent within the
system. It relays system messages to the
operator, performs system functions at his
request, and resp_onds to his inquiries
regarding the status of a job or of the
system. The master scheduler also relays
all communication between a processing
program and the opera tor.

PREPARING CONTROL STATEMENTS

Except for the comment statement,
control statements are identified by the
initial characters // or 1* in card columns
1 and 2. The comment statement is
identified by the initial characters 1/* in
columns 1 through 3. Control statements
may contain four fields: name, operation,
operand, and comment, as shown in Figure 4.

, i-

t J
J t
I statement I
r--- I
J Job I , Execute J
I Data Definitionl
J Procedure • I Command I
I Delilli ter I
I Null J
t Comment 1
f Pend I
r- •
t 'optional. L-______________ __

Columns
I i •

11213 J 4
I ,

Il/Iname JOB operand'
1I/Iname l EXEC operand
It/lname' DD operand
Il/tname' PROC operand
1111 operation (command)
11*1 comments'
1I1I
11/1* comments
1I/Iname1 PEND

• I

Fields

comments'
comlllents'

comments1

co.ments l

operand comments'

..
t
-f
t ,
t ,
I
I
I , ,
I
I .,
I
J

Figure 4. General Format of Control statements

The name contains from one through eight
alphanumeric characters, the first of which
must be alphabetic. The name begins in
card column 3. It is followed by one or
more blanks. The name is used, as follows:

• To identify the control statement to
the operating system

• To enable other control statements in
the job to refer to information
contained in the named statement

• To relate DD statements to files named
in a COBOL source program

The operation field is preceded and
followed by one or more blanks. It may
contain one of the following operation
codes:

JOB
EXEC
DD
PROe
PEND

If the statement is a delimiter statement,
there is no operation field and comments
may start after one blank.

The operand field is preceded and
followed by one or more blanks and may
continue through column 71 and onto one or
more continuation cards. It contains the
parameters or subparameters that give
required and optional information to the
operating system. Parameters and
sub parameters are separated by commas. A
blank in tbe operand field causes the
system to treat the remaining data on the
card as a comment. There are two types of
parameters: positional and keyword
(Figures 5, 6, and 9).

f2~tiQn~1~~met~: Positional
parameters are the first parameters in tbe
operand field, and they must appear in the
specified sequence. If a positional
parameter is omitted and other positional
parameters follow, the omission must be
indicated by a comma. If other positional
parameters do not follow, no comma is
needed.

Keyword Parameters: A keyword parameter
may be placed anywhere in the operand field
following the positional parameters. A
keyword parameter consists of a keyword,
followed by an equal sign, followed by a
single value or a list of subparameters.
If there is a subparameter list, it must be
enclosed in parentheses or single quotation
marks; the subparameters in the list mllst
be separated by commas. Keyword parameters
may appear in any sequence.

Sub parameters are either positional or
keyword. positional and keyword
subparameters for job control statements
are shown in Figures 5, 6, and 9.
positional subparameters appear first in
the parameter and must be in the specified
sequence. If a positional sub para meter is

Job Control Procedures 23

omitted and other positional sub parameters
follow, a comma must indicate the omission.

optional comments must be separated from
the last parameter (or the 1* in a
delimiter statement) by one or more blanks
and may appear in the remaining columns up
to and including column 71. An optional
cOllment may be continued onto one or more
continuation cards. Comments can contain
blanks.

Note: comments in the optional comments
fIeld follow different procedures from
those on the comment statement.

CONVENTIONS FOR CHARACTER DELIMITERS

Commas, parentheses, and blanks are
interpreted as character delimiters. If
they are not intended by the programmer to
be used as delimiters, the fields in which
they appea r must be enclosed in single
quotation marks, indicating that the
enclosed information is to be treated as a
single field. When an apostrophe (or a
single quotation mark, since the same
character is used for either) is to be
contained within such a field, it must be
shown as two consecutive sinili-!l!!Qtatio!!'
marks (5-8 punch), ~Qi as a double
quotation mark (1-8 punch). For eXample,

Wm. O'Connor

should be shown as

'Wm. O· 'Connor'

This convention applies to three fields:
programmer's name in the JOB statement,
information in the PARM parameter of the
EXEC statement, and accounting information
in the JOB and EXEC statements.

RULES POR CONTINUING CONTROL STATEMENTS

Except for the comment statement,
control statements are contained in columns

24

1 through 71 of cards or card images. If
the total length of a statement exceeds 11
columns, or if a parameter is to be placed
on separate cards, theoperatinq system
continuation conventions must be used •. To
continue an operand field:

1. Interrupt the field at the end of a
complete parameter or subparameter,
including the comma that follows it,
at or before column 11.

2. Include any commments desired by
following the interrupted field with
at least one blank.

3. Optionally, code any nonblank
character in column 12.

4. Code the identifying characters II in
columns 1 and 2 of the following card
or card image.

5. continue the interrupted operand
beginning in any colUmn from 4 through
16.

comments other than those on a comment
statement can be continued onto additional
cards after the operand has been completed.
To continue a comments field:

1. Interrupt the Gomment at a convenient
place.

2. Code a nonblank character in column
72.

3. Code the identifying characters II in
columns 1 and 2 of the following card
or card image.

4. Continue the comments field beginning
in any column after column 3.

Any control statements in the input
stream that the job scheduler considers to
contain only continued comments will print
on a system output listing with a 11* in
columns 1 through 3. Comments written on a
comment statement cannot be continued.

NOTATION FOR DESCRIBING JOB CONTROL
STATEMENTS

The notation used in this publication to
define the syntax of job control statements
is as follow s:

1. The set of symbols below define
control statements, but they are never
written in an actual statement.

Name
hyphen

Itor" symbol

braces { }

brackets [

ellipsis

superscript 1 2 3

£Y£.QQ§~
Joins lower-case
letters, words, and
symbols to form a
single variable

Indicates alternatives

Indicate that the
enclosed is a group of
related items, only
one of which is
required

Indicate that the
enclosed are optional
items. Brackets are
also used with
alterna ti yes to
indicate that a
default is assumed if
no alternative is
listed

Indicates that the
preceding item or
group of items can be
repeated

Indicates a footnote
reference

2. Stacked items, enclosed in either
brackets or braces, represent
alternative items. No more than one
of the stacked items can be written by
the programmer.

3. Upper-case letters and words, numbers,
and the set of symbols listed below
are written in an actual control
sta teme nt exactly as shown in the
statement definition. (Any exceptions
to this rule are noted in the
definition of a control statement.)

Name
single quotation mark
asterisk
comma
equal sign
parentheses
period
slash

•
=
()

/

4. An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Hot~: Many of these defaults can be
changed at system generation time.

5. Lower-case letters, words, and symbols
appearing in a control statement
definition represent variables for
which specific information is
substituted in the actual statement.

6. Blanks are used in Figures 5, 6, 8,
and 9 to improve the readability of
control statement definitions. In
actual statements, blanks would be
interpreted as delimiters.

The JOB statement is the first statement
in the sequence of control statements that
describe a job. The JOB statement can
contain the following information:

1. Name of the job.

2. Accounting information relative to the
job.

3. programmer's name.

4. Indication of whether or not the job
control statements are to be printed
on the system output listing.

5. Conditions for terminating the
execution of the job.

6. Job priority assignment, job scheduler
message class, and real or virtual
region size.

pigure 5 is a general format of the JOB
statement.

.Identifying the Job {jobn~.!!n

The jobname identi.fies the job to the
job scheduler. It must satisfy the
positional, length. and content
requirements for a name field. No two jobs
being handled by a priority scheduler
should hav~ the same jobname.

Job Control Procedures 25

• i i 1

,Name IOperation, Operand i
&-- t- I ~
I I I
I t gQsi!iQ.!!al..f.Yamet~ J

I II
Illjobname JOB H ([account-number] [*accounting-information) 1 2 3] I
I I I
I 1[,programmer-name]· 5 1
I I J
1 '.Kglwo£~n~1~:&2 J I. I
I H M SGLE VEL= (x, y)]6 1
, I [TIME= (minutes, seconds)] I
I I [CLASS=jobclass) I
I I(COND= «code,operator) [, {code, operator)] 7) 8] 1
I I(PRTY=job priority] 1
II [M SGCt ASS=classname] 1
I H REGION=valueK] I
I J(RD=reguestJ I
J I * t
I J[RESTART=<{ stepname } [,checkid])] J
f I stepname.procstepname f
I I[NOTIFY=user id]9 ,
, I r { HO LD }] 1 0 1
• I L TYPRUN= SCAN ,

: ~ [ADDRSPC= {~i!i}] :
1-_ -L-.:: ~

J t If the information specified (account-number and/or accounting- informa tion) conta ins I
I blanks, parentheses, or equal signs, the information must be delimited by single I
, quotation marks instead of parentheses. 1
I 21f only account-number is specified, the delimiting parentheses may be omitted. I
I 3The maximum number of characters allowed between the delimiting quotation marks is I
J 142. J
I 4If programmer-name contains any special characters other than the period, it must be ,
J enclosed within single quotation marks. 1
J 5The maximum number of characters allowed for programmer-name is 20. I
I 6X = 0, 1, or 2 is the JCL message. 1
1 Y = 0 or 1 is the allocation message level. 1
I Note that the value 1 may be used in place of (1~1). J
I 7The maximum number of repetitions allowed is 7. ,
I 8If only one test is specified, the o~ter pair of parentheses may be omitted. I
, 9For TSO only. I
110SCAN is for OS/VS1 only. I
l.-

Figure 5. JOB Sta tement

For job accounting purposes,tbe JOB
statement can be used to supply information
to an installa tion' s accounting procedures.
To supply job accounting information, code
the positional parameter first in the
operand field.

26

.J

r- -,
J (acctt,additional accounting infocmation) J
1.- ---'

Replace the term "acctl" with the account
number to which the job is charged; replace
the term "additional accounting
informationttwith other items required by
an installationts accounting routines. The
requirement can be established with a
cataloged procedure for the input reader.
otherwise, the account number ,is considered
optional.

• subparameters of additional accounting
information must be separated by
commas.

• The number of characters in the account
number and additional accounting
information must not exceed a total of
142.

• If the list contains only an account
number, the programmer need not code
the parentheses.

• If the list does not contain an account
number, the programmer must indicate
its absence by coding a comma preceding
the additional accounting information.

• If the account number or any
subparameter of additional accounting
information contains any special
character {except hyphens), the
programmer must enclose the number or
subparameter in apostrophes (5-8
punch). The apostrophes are not passed
as part of the information.

The person responsible for a job codes
his name or identification in the JOB
statement, following the job accounting
information. This positional parameter is
also passed to an installation'S routines.
As a system generation option, the
programmer's name can be established as a
required parameter. The requirement can
also be established with a cataloged
proced ure for the in pu treader. otherwise,
this parameter is considered optional.

• The number of characters in the name
cannot exceed 20.

• If the name contains special characters
other than periods, it must be enclosed
in apostrophes. If the special
characters include apostrophes, each
must be shown as two consecutive
apostrophes, e.g., 'T.O·'NEILL'.

• If the job accounting information is
not coded, the programmer must indicate
its absence by coding a comma preceding
the programmer-name.

• If neither job accounting information
nor prog rammer-name is prese nt# the
programmer need not code commas to
indicate their absence.

Di~J215lzing All Control_st~1~~n12L
AllocaliQll~~d Te£~instiQn_~g~g~§
111~GLEn!J..

The MSGLEVEL parameter indicates whether
or not the programmer wants control
statements and/or allocation and
termination messages to appear .in his
output listing. TO receive this output,
code the keyword parameter in the operand
field of the JOB statement.

r- ,
I I
1. ~

The letter "x" represents a job control
language message code and can be assigned
the value 0, 1, or 2. When x = 0 is
specified, only the JOB statement,
incorrect control statements, and
associated diagnostic messages are
displayed. When x = 1 is specified, input
statements, cataloged procedure statements,
and symbolic SUbstitution of parameters are
displayed. When x = 2 is specified, only
input statements are displayed.

The letter "y" represents an allocation
message code and can be assigned the value
o or 1. When y = 0 is specified, no
allocation, termination, or recovery
messages are displayed, unless an ABEND
occurs during problem program execution.
If an ABEN D occurs, termina tion messages
are di spla yed. When y = 1 is specified,
all allocation, termination, and recovery
messages are displayed.

• If the value 1 is selected for both
codes, the value may be specified once
without the parentheses; i.e.,
MSGLEVEL=l is the same as
MSGLEVEL= (1, 1).

• The default values are taken from the
reader procedure.

• If an error occurs on a control
statement that is continued onto one or
more cards, only one of the
continuation cards is printed with the
diagnostic messages.

~~cifYing_conditiQn§_tor_~Q~_Iermi~ati~
EQlifrL

To eliminate unnecessary use of
computing time, the programmer might want
to base ·the continuation of a job on the
successful completion of one or more of

Job Control Procedures 27

its job steps. At the completion of each
job step, the processing program passes a
number to the job scheduler as a return
code. The CONDparameter provides the
means to test each return code as many as
eight times. If anyone of the tests is
satisfied, subsequent steps are bypassed
and the job is termina ted.

To specify conditions for job
termination, code the keyword parameter in
the operand field of the JOB statement.

~ ,
ICOND=«code,operator), •• , (code,operator»)
L--- J

See the COND parameter on the EXEC
statement for a discussion of the operator
values and the codes issued by the compiler
and linkage editor at the end of a job
step.

!2!~:

• The subparameters EVEN and ONLY cannot
be specified as part of the COND
parameter on the JOB statement.

The restart facilities are used in order
to minimize the time lost in reprocessing a
job that abnormally terminates. These
facilities permit execution of jobs that
abnormally terminate to be automatically
restarted.

Execution of a job can be automatically
restarted at the beginning of the job step
that abnormally terminated (step restart)
or within the step (checkpoint restart).
In order for checkpoint restart to occur,
the CBKPT macro instruction must have been
executed in the processing program prior to
abnormal termination. The CHRP!' mac.ro
instruction is activated by the COBOL
source language RERUN clause. The RD
parameter specifies that step restart can
occur or that the action of the CHKPT macro
instruction is to be suppressed.

To request that step restart be
permitted or to request that the action of
the RERUN clause be suppressed, code the
keyword parameter in the operand field of

. the JOB statement.

RD=request • I L--, ___ ~

28

Replace the word flrequest" with:

R to permit automatic step
restart

HC to suppress the action of the
CHKPT macro instruction and not
to permit automatic restart or
deferred restart

NR to request that the CHKPT macro
instruction be allowed to
establish a cheCKpoint, but not
to permit automatic restart.
Deferred restart is permitted
through specification of
RESTART on the resubmitted job.

RNC -- to permit step restart and to
suppress the action of the
CHKPT macro instr uction

Each of these requests is described in
greater detail in the following paragraphs.

RD=R: If the processing programs used by
the job do not include any CRKPT macro
instructions, RD=R allows execution to be
resumed at the beginning of the step that
causes abnormal termination. If any of the
programs do include one or mo.re CHKPT macro
instructions, step restart can occur if a
step abnormally terminates before execution
of a CHKPT macro instruction; thereafter,
checkpoint restart can occur.

RD=NC or RD=RNC: RD=NC or RD=RNC should be
specified to suppress the action of all
CHKPT macro instructions included in the
programs. When RD=HC is specified, neither
step restart nor checkpoint restart can
occur. When RD=RNC is specified, step
restart can occur.

RD=!!!.: BD=NR permits a CHKPT macro
instruction to establish a checkpoint, but
does not permit automatic restart.
Instead, at a later time, the job can be
resubmitted and execution can begin at a
specific checkpoint. (Resubmitting a job
for restart is discussed later.)

Before automatic step restart occurs,
all data sets in the restart step with a
status of OLD or MOD, and all data sets
being passed to steps following the restart
step, are kept. All data sets in the
restart step with a status of NEW are
deleted. Before a utoma tic checkpoint
restart oc~urs, all data sets currently in
use by the job are kept.

If the RD parameter is omitted and no
checkpoints are taken, automatic restart
cannot occur. I.f the RD parame~er is
omitted but one or more checkpoints are
taken, automatic checkpoint restart can
occur.

• For as/VS1 restart can occur only if
MSGLEVEL=1 is coded on the JOB
statemen t.

• If step restart is requested, each step
must be assigned a unique step name.

• If no RERUN clause is specified in the
user's program, no checkpoints are
written regardless of the disposition
of the RD parameter.

• For detailed information on the
checkpoint/restart facilities, see the
publication OSLYS Ch~.!££oint/Restart.

The restart facilities can be used if
the job is abnormally terminated and the
programmer wants to reSUbmit the job for
execution. These facilities reduce the
time required to execute the job since
execution of the job is resumed, not
repeated.

Execution of a resubmitted job can be
restarted at the beginning of a step (step
restart) or within a step (checkpoint
restart) • In order for checkpoint restart
to occur, a program must previously have
had a checkpoint record written. The
RESTART parameter specifies where execution
is to be restarted.

If execution is to be restarted at a
particular job step, code the keyword
parameter in the operand field of the JOB
statement before resubmitting the job.

r------------·-------------------------------
1 REST ART=s tepname
L-

Replace the word "stepname" with the
of the step at which execution is to
restarted. Replace step name with an
asterisk (*) if execution is to be
restarted at the first job step.

name
be

"1

I

If execution is to be restarted at a
particular checkpoint within a particular
job step, code the keyword parameter in th~
operand field of the JOB statement before
resubmitting the job.

r--------- -----------------,
I BESTART=(stepname,checkid) J
L- ___________ J

Replace the word stepname with the name of
the step in which execution is to be
restarted. Replace the term "checkid" with
the 1- to 16-character name that identifies
the checkpoint within the step.

If execution is to be restarted at a
checkpoint r the resubmitted job must
inclUde an additional DD statement. This
DD statement defines the checkpoint data
set and has the ddname SYSCHK. Do not
include a SYSCHK DD statement if step
restart is to be performed.

If the RESTART parameter is not
specified on the JOB statement of the
resubmitted job, execution is repeated.

• If execution is to be restarted at or
within a cataloged procedure step, give
both the name of the step that invokes
the procedure and the procedure step
name, as helow.

"1

RESTART=stepname.procstepname t
J

• If step restart is performed,
generation data sets that were created
and cataloged in steps preceding the
restarted step must not be referred to
in the restart step or in steps
following the restart step by means of
the same relative generation numbers
that were used to create them. For
example, a generation data set assigned
a generation number of +1, would be
referred to as 0 in the restart step or
steps following the restart step.

• Backward references cannot be made to
steps that precede the restart step
using the following keyword parameters:
PGM, COND, SUBALLOC, and VOLUME=REF,
unless in the last case the referenced
statement includes ~OLUME=SER=(sert).

• For detailed information on the
checkpoint/restart facilities, see the
publication OS/VS_Che£~.Qoint/rtest~.£!.

Job Control Procedures 29

PRIORITY SCHEDULING JOB PARAMETERS

~tting Job Time Limits It.!l1ID..

To assign a limit to the computing time
used by a job, code the keyword parameter
in the operand field.

-----,
T 1l'lE= (min utes, seconds) •

'-- J

Such an assignment is useful in a
multiprogramming environment where more
than one job has access to the computing
system. The time is coded in minutes and
seconds to represent the maximum time for
execution of a job.

• The number of minutes cannot exceed
1439 and the number of seconds cannot
exceed 59. If the job is not completed
in this time it is terminated.

• If the job requires use of the system
for more than 24 hours (1q39 minutes)
specify TIME=1440. This number
suppresses job timing.

• If the time limit is given in minutes
only, the parentheses need not be
coded; e.g., TIME=5.

• If the time limit is given in seconds,
the comma must be coded to indicate the
absence of minutes; e.g., TIME=(,45).

• If the TIl'lE parameter is omitted, the
default job time is assumed.

To assign a job class to a job. code the
keyword parameter in the operand field of
the JOB statement.

r---,
I CLASS=jobclass J
~ ~

The meaning and use of the term "jobclass"
is pre-defined by each installation. If
the CLASS pa rameter is omitted, the default
job class of A is assigned to the job.

30

• If an installation provides
time-slicing facilities in an OS/'S1
system, the CLASS parameter can be used

to make the job part of the group of
jobs to be time-sliced. Time-slicing
permits the processing of tasks of
equal priority so that each is executed
for its specified period of time. At
system generation* a group of
contiguous partitions are selected to
be used for time-slicing, and each
partition is assigned at least one job
class. If the job is to be
time-sliced, specify a class that was
assigned only to the partitions
selected for time-slicing.

Assigning Job PrioritLlfR!!l

To assign a priority other than the
default job priority (as established in the
input reader procedure), code the keyword
parameter in the operand field of the JOB
statement.

I

1 PRTY-=nn

Replace the letters "nn" with a decimal
number from 0 through 13 {the highest
priority number is 1~.

If an installation provides time-slicing
facilities in a system with OS/VS2. the
PRTY parameter can be used to make the job
part of a group of jobs to be time-sliced.
At system generation, the priority of the
time-sliced group is selected. If the job
priority number specified corresponds with
the priority number selected for
time-slicing, then the job will be
time-sliced.

If the PHTY parameter is omitted, the
default job priority is assigned to the
job.

MQ!~: Whenever possible, avoid using
priority 13. This is used by the system to
expedite processing of jobs in which
certain errors were diaqnosed. It is also
intended for other special uses by future
feat ares of systems with priority
schedulers.

With the quantity and diversity of data
in the output stream, an installation may
want to separate different types of output
data into different classes. Each class is
directed to an output writer associated
with a specific output unit. The MSGCLASS

parame"ter allolls routing of all messages
issued by the job scheduler to an output
class other than the normal message
class, A.

To choose such a class, code the keyword
parameter in the operand field of the JOB
statement.

r------------------
I MSGCLASS=x
L ------------------~

Replace the letter "x" with an alphabetic
{A-Z) or numeric (0-9) character. An
output writer, which is assigned to process
this class, will transfer this data to a
specific device.

If the MSGCLASS parameter is omitted,
job scheduler messages are routed to the
standard output class, A.

• For a more detailed discussion of
output classes, see the appropriate
pI a!l!!.iruI_~.!l d U g.Ji!!i de.

~~g£ifying~aiD-~orage Reguirement2 for_~
~Q!LjREGIONl

For jobs that require an unusual amount
of main storage, the JOB statement provides
the REGION parameter. The REGION parameter
specifies the maximum amount of main
storage to be allocated to the job. This
amount must include the size of those
components required by the user's program
that are not resident in main st?rage.

The REGION parameter is used in
conjunction with the ADDRSPC parameter to
determine the total amount of main storage
available to a program and to either allow
or disallow paging.

JiQig: The REGION parameter has different
meanings for OS/VS1 and OS/VS2. see the
publication Q§'L~_J.£L~~£!i£,g2 for detailed
information.

To specify a region size, code the
keyword parameter in the operand field of
the JOB statement.

REGION=(nnnnnxK(,nnnnnyK)
,
I

To request the maximum amount of main
storage required by the job, the term
"nnnnnx" should be replaced with the number
of 1024-byte areas allocated to the job,
e. g., REGION-=52K. This number can range
from 1 to 5 digits but cannot exceed 16383.

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested. it is assumed
that the default value is that established
by the input reader procedure.

The REGION parameter can be used lIith
either the VIRT or REAL options of the
ADDRSPC parameter.

• Region sizes for each job step can be
coded by specifying the REGION
pa rameter in the EXEC sta temen t for
each job step. However. if a REGION
parameter is present in the JOB
statement, it overrides REGION
parameters in EXEC statements.

• For information on storage requirements
to be considered when specifying a
region size, see the appropriate
~.tQ£g9.~_~1!!!~1~2 publication.

TO temporarily prevent a job from being
selected for processing. code the keyword
parameter in the operand field of the JOB
sta temen t.

r--------------------------1--------------' I TYFRUN={HOLD I L ______________________ §f~ _______________ J

The job is then held until a RELEASE
command is issued by the operator. This
specification is particularly useful when
one job must be run after another job has
terminated.

HOLD specifies that the job is to be
held until the operator issues a RELEASE
command. SCAN (for OS/YS1 only) specifies
that the JCL for a job is to be scanned for
syntax errors but that the job is not to be
executed. If SCAN is specified for OS/YS2,
a JCL error viII occur.

To take advantage of the storage
facilities offered by OS/VS1 and OS/VS2,
always specify ADDRSPC = '1FT or omit the
parameter.

{
VIRT}

ADDRSPC= REAL
L-

,
I
I

..J

Job Control Procedures 31

Note that the compiler and its object code,
including library subroutines, can run
VIRTUAL, and should be run that way unless
a non-COBOL program in the partition
requires the REAL option.

The EXEC statement defines a job step
and calls for its execution. It contains
the following information:

1. The name of a load module or the name
of a cataloged procedure that contains
the name of a load module that is to
be executed. The load module can be
the COBOL compiler, the linkage
editor, the loader, or any COBOL
proqram in load module form.

2. Accounting information for this job
step.

3. Conditions for bypassing the execution
of this job step.

4. Computing time for a job step or
cataloged procedure step, and main
storage region size.

5. Compiler, linkage editor, or loader
options chosen for the job step.

Figure 6 is the general format of the
EXEC sta teme nt.

H~i~: If the information specified is
normally delimited by pa rentheses but
contains blanks, parentheses, or equal
signs, it must be delimited by single
quotation marks instead of parentheses.

The stepname identifies a job step
within a job. It must satisfy the

32

positional, length, and content
requirements for a name field. The
programmer must specify a stepname if later
control statements refer to the step.

POSITIONAL PA~AMETERS

Id.!m,tifiing the Progra!!~f~l1L.Q.Lel:Q£!ltg!!!:~
JERQ£l.

The EXEC statement identifies the
program to be executed in the job step with
the PGM parameter. To specify the COBOL
compiler, code the positional parameter in
the fifst position of the operand field of
the EXEC statement.

.- -----------------,
J PGM=IKFCBLOO I
L .J

It indicates that the COBOL compiler is the
processing program to be executed in the
job step.

To specify the linkage editor* code the
positional parameter in the first position
of the operand field of the EXEC statement.

.------ ----------------------,
J PGM=IEWL I
L--

This indicates that the linkage editor is
the processing program to be executed in
the job step.

The PGM parameter depends upon the type
of library in which the program resides.

J

If the job step uses a cataloged procedure,
the EXEC statement identifies it with the
PROC parameter, in place of the PGM
parameter.

rr------------·---r----~ --,
J JOper-1
lName lationl Operand
I-- J-+
t I I
I I J
III(stepna me)1 I EX EC IIPGM =progname I
1 J I PGM=*.stepname.ddname
4 J I PRoC=procname
• 'J procname
J I 1 PGM=*.stepname.procstep.ddnalie
, I 1
1 I I ~ywor4 Pa~!~£!
I J I
I I .qACCTz }
J 'l~ACCT.procstep

J "

3 - SJ (accounting-information)

I
I
~
I
t
I
I
J ,
I ,
J
I
I
I
t

, 1 I~COND2 }
t JI ~COND. procstep
• J J

(code, operator[,stepname(. procstep]]) •••) 6 7J '.
J
I
J
I
t
f ,

J 'IU{PARM2} 3 a 9J
I J J~PARM.procstep = (option[.option] •••)
I I t
t J J~TIME }
J I 10T1f1E .procstep =
1 I J
tIl ~R EG 10 N }
t l I OREGION. procstep

{IIi nutes, secondS.]

= valueK]
t J I

: : :~:~. procstep} = request]
t J J

: : lff~;~~i. procstep} (value 1, _alae 2)]
I J J
J II~ADDRSPC} {VIRT}]
J J IOADDRSPc.procstep = REAL
r----------L----'---
1 lstepname is required when information from this control statement is referred to in
1 later job step.
1 ZIf this format is selected, it may be repeated in the EXEC statement once for each
I step in the cataloged procedure.
1 3If the information specified contains any special characters except hyphens, it must
I be delimited by single quotation ~arks instead of parentheses.
I .If accounting-information contains any special charactecs except hyphens, it must be
I delimited by single quotation marks.
J 5The maximum number of characters allowed between the delimiting quotation marks or
t parentheses is 142.
f 6The maximum number of repetitions allowed is 7.
J 7If only one test is specified, the outer pair of parentheses may be omitted.
1 alf the only special character contained in the value is a comma, the value may be
I enclosed in quotation marks.
t 9The maximum number of characters allowed between the delimiting quotation marks or
, parentheses is 100.
L-

Figure 6. EXEC statement

J
I
t
I
t ,
J
t
I
1
f ..

al ,
J
t , ,
I
I
I
t
J
1
J
J
I
I
.J

Job Control Proceduces 33

1 •. Tem~xary libra£i~ are temporary
partitioned data sets created to store
a prograa until it is ~sed in a later
job step of the same job. This type
of library is particularly useful for
storing the program output of a
linkage editor run until it is
executed in a later job step. To
execute a program from a temporary
library, code the positional parameter
in the first position of the operand
field of the EXEC statement.

,
PGM=*.stepname.ddname J

-----------------~

The asterisk (*) indicates the cur~ent
job step. Replace the terms stepname
and ddname with the names of the job
step and the DO statement within the
procedure step, respectively, in which
the temporary library is created.

If the temporary library is created in
a catalogued procedure step, in order
to call it in a later job step outside
the procedure, give both the name of
the job step that calls the procedure
and the procedure stepname by coding
the positional parameter in the first
position of the operand field of the
EXEC statement.

---------------------------,
PGM=*.stepname.procstepname.ddname , _________ • _____________________________ J

2. The §I2tem librg£Y is a partitioned
data set named SYS1.LINKLIB that
contains nonresident control pt'ogram
routines, and proce.ssor programs. To
execute a program that resides in the
system library, code the positional
parameter in the first position of the
operand field.

r- ---------,
I PGM=progname

Replace the term progname with the
member name or alias associated with
this program. This same keyword
parameter can be used to execute a
program that resides in a 1?ri v~!.g
lib~£~. Private libraries are made
available to a job wi th a special DD
statement (see ·'Additional DD
statement Facilities").

3. Instead of executing a particular
program. a job step may use a
£~taloged-E£Q£~g~£~. A cataloged
procedure can cont.ain control

34

I

statements for several steps, each of
which executes a particular program.
Cataloged p.rocedures are members of a
library named SYS1.PROCLIB. To
request a cataloged procedure, code
the posi tiona 1 parame ter in the first
position of the operand field of the
EXEC statement.

r- -,
J PROC= procna me ,
L--__ __

__-J

Replace the term p.rocname with t.he
unqualified name of the cataloged
procedure (see "Using the DD
statement" for a discussion of
qualified names).

liQ1~: A procedure may be tested before it
is placed in the procedure library by
converting it into an in-stream procedure
and placing it within the job step itself.
In-stream procedures are discussed in the
section, "Testing a Procedure as an
In- streamProced ure" in the chapter "Using
the Cataloged Procedures."

KEYWORD PARAMETERS

~~£iIYiQg_~QQ_S1~E_!££Q~nliQg_InfQt~~liQn
1A£CTl

When executing a multistep job, or a job
that uses cataloged procedures, the
programmer can use this parameter so that
jobsteps are charged to separate accounting
areas. To specify items of accounting
information to the installation accounting
routines for this job step, code the
keyword parameter in the operand field of
the EXEC statement.

,
ACCT=(accounting information) t ____________________J

Replace the term "accounting information"
~ith one or more sub parameters separated by
commas. If both the JOR and EXEC
statements contain accounting information,
the installation accounting routines decide
how the accounting infot'mation shall be
used for the job step.

To pass acc6unting information to a step
within a cataloged procedure, code the
keyword parameter in the operand field of
the EXEC statement.

, ,
, ACCT. procstep= (accounting information) I
'-------- ---------------,~

procstep is the name of the step in the
cataloged procedure. This specification
overrides the ACCT parameter in the named
procedure step, if one is pcesent.

~Qg£if Y i J!9.~Q!!d i liQ!UL.iQL.!U!Ea§.§.i n 9._Q£.
~!g£utiD.9.-th~~Q!LSt~CONDl.

The execution of certain job steps is
based on the success or failure of
preceding steps. The COND parameter
provides the means to:

• Make as many as eight tests on return
codes issued by preceding job steps or
cataloged procedure steps, which were
completed normally. If anyone of the
tests is satisfied, the job step is
bypassed.

• Specify that the job step is to be
executed even if one or more of the
preceding job steps abnormally
terminated or only if one or more of
the preceding job steps abnormally
terminated.

TO specify conditions for bypassing a
job step, code the keyword parameter in the
operand field of the EXEC statement.

I ,

1 COND={(code,operator,[stepname), ••• , I
1 (code ,opera tor, [s tepname]) , L-________________ _

J

The term "code" may be ceplaced by a
decimal numeral to be compaced with the job
step return code. The return codes for
both the compiler and the linkage editor
are:

00 Normal conclusion

04 Warning messages have been listed,
but program is executable.

08 Ercor messages have been listed;
execution may fail.

12 Severe errors have occurred;
execution is imp~ssible.

16 Terminal errors have occurred;
execution of the processor has been
terminated.

The compiler issues a return code of 1&
when any of the following are detected:

• BASIS member-name is specified and no
member of that name is found

• Required device not available

• Not enough main storage is available
for the tables required for compilation

• A table exceeded its maximum size

• A permanent input/output error has been
encoun tered on an external device

The return codes have a correlation with
the severity level of the error messages.
With linkage editor messages, for example,
the rightmost digit of the message number
states the severity level; this number is
multiplied by 4 to get the appropriate
return code. With the COBOL compiler. 04,
08, 12, and 16 are equal to the severity
flags: W, C, E, and D, respectively.

The term "operator" specifies the test
to be made of the relation between the
programmer-specified code and the job step
return code. Replace the term operator
with one of the following:

GT (greater than)
GE (greater than or equal to)
EQ (equal to)
LT (less than)
LE (less t.han or equal to)
NE (not equal t.o)

The term "stepname" identifies the
previously executed job step that issued
the return code to be tested and is
replaced by the name of that preceding job
step. If stepname is not specified, code
is compared to the return codes issued by
all preceding steps in the job.

Replace the term stepname with the name
of the preceding job step that issues the
return code to be tested.

If the programmer codes

COND={(4,GT,STEP1) , (8,EQ,STEP2»)

the statement is interpreted as: "If 4 is
greater than the return code issued by
STEP1, or if STEP2 issues a return code of
8, this job step bypassed."

Job Control Procedures 35

• If only one test is made, the
programmer need not code the outer
parentheses, e.g., COND=(12,EQ,STEPX).

• If each return code test is made on all
preceding steps, the programmer need
not code the terms stepname, e.g.,
COND= { (4 ,GT) , (8 ,EQ)) •

• When the return code is issued by a
cataloged procedure step, the
programmer may want to test it in a
later job step outside of the
procedure. In order to test it, give
both the name of the job step that
calls the procedure and the procedure
stepname, e.g., COHD=«code,operator.
stepname.procstep), •••).

Abnormal termination of a job step
normally causes subsequent steps to be
bypassed and the job to be terminated. By
means of the COND parameter, however, the
programmer can speci.fy execution of a job
step after one or more preceding job steps
have abnormally terminated. For the COND
parameter, a job step is considered to
terminate abnormally if a failure occu.rs
within the user's program once it has
received control. (If a job step is
abnormally terminated during scheduling
because of failures such as job control
language errors or inability to allocate
space, the remainder of the job steps are
bypassed, whether or not a condition for
executing a later job step was specified.)

To specify the condition for executing a
job step, co de the keyword parameter in the
operand field of the EXEC statement.

r-
I
I COHD= { EVEN}

ONLY L---______________________ __
.J

The EVEN or
excl usi ve.
be coded in
return code
between, or

ONLY subparameters are mutually
The subparameter selected can
combination with up to seven
tests, and can appear before,
after return code tests, e.g.,

COND= (EVEN, (4.GT,STEP3))

CORD= ((8,GE,STEP1), (16,GEt ,ONLY)

The EVEN subparameter causes the step to
be executed eYen when one or more of the
preceding job steps have abnormally
terminated. However, if any return code
tests specified in this job step are
satisfied, the step is bypassed. The ONLY
subparameter causes the step to be executed

36

only when one or more of the preceding job
steps have abnormally terminated. However,
if any return code tests specified in this
job step are satisfied, the step is
bypassed.

When a job step abnormally terminates.
the COND parameter on the EXEC statement of
the next step is scanned for the EVEN or
ONLY subparameter. If neither is speci
fied, the job step is bypassed and the EXEC
statement of the next step is scanned for
the EVEN or ONLY subparameter. If EVEN or
ONLY is specified, return code tests, if
any, are made on all previous steps
specified that executed and did not
abnormally terminate. If anyone of these
tests is satisfied, the step is bypassed.
otherwise, the job step is executed.

If the programmer codes

COND=EVEN

the statement is interpreted as: "Execute
this step even if one or more of the
preceding steps abnormally terminated
during execution." If COND=ONLY is coded,
it is interpreted as: "Execute this step
only if one or more of the preceding steps
abnormally terminated during execution."

If the COND parameter is omitted, no
return code tests are made and the step
will be bypassed when any of the preceding
job steps abnormally terminate.

• When a job step that contains the EVEN
or ONLI subparameter refers to a data
set that vas to be created or ca taloged
in a preceding step, the data set will
not exist if the step creating it was
bypassed.

• When a jobstep that contains the EVEN
or ONLY subparameter refers to a data
set that vas to be created or cataloged
in a preceding step, the data set may
be incomplete if the step creating it
abnormally terminated.

• When the job step uses a cataloged
procedure, the programmer can establish
return code tests and the EVEN or ONLY
subparameter for a procedure step by
including, as part of the keyword COND,
the procedure stepname, e.g.,
COND.procstepname. This specification
overrides the COND parameter in the
named procedure step if one is present.
The programmer can code as many
parameters of this form as there are
steps in the cataloged procedure.

• TO establish one set of return code
tests and the EVEN or ONLY subparameter

for all steps in a procedure, code the
COND parameter without a procedure
stepname. This specification replaces
all COND parameters in the procedure if
any are present.

Job steps following a step that
abnormally terminates are normally
bypassed. If a job step is to be executed
even if a preceding step abnormally
terminates, specify this condition, along
with up to seven return code tests:

~ ,
IIISTEP3 EXEC PGM=CONVERT, Xl
tIl COND=(EVEN, (4,EQ,STEP1» ,... I L- _______ -"

Here, the step is executed if the return
code test is not satisfied, even if one or
more of the preceding job steps abnormally
terminated. If a job step is to execute
only when one or more of the preceding
steps abnornally terminate, replace EVEN in
the above example with ONLY.

If the EXEC statement calls a cataloged
procedure, the programmer can establish
return code tests and the EVEN or ONLY
subparameter for a procedure step by.coding
the CON.D parameter followed by the name of
the procedure step to which it applies:

,--- ,
IliSTEP4 EXEC ANALYSIS,COND. XI
tIl REDUCE=(16,EQ.STEP4.LOOKUP),ONLY) •••••

---~

Here, the cataloged procedure step named
REDUCE will be executed only if a preceding
job step has abnormally terminated and the
procedure step named LOOKUP does not issue
a return code of 16. The programmer can
code as many COND parameters of this type
as there are steps in the procedure.

~§sing Inform£!tiQD._12-t.~ Processing
Pr rullll!Llf AR 1ft.

For processing programs that require
control information at the time they are
executed. the EXEC statement provides the
PARK parameter. To pass information to the
program, code thekeyvord parameter in the
operand field.

1

PARM=(Option[,option] •••)

This will pass options to the compiler~
linkage editor, loader, or object program
when anyone of them is called by the PGM
parameter in the EXRC statement or to the
first step in a cataloged procedu.re.

To pass options to a compiler, the
linkage editor, loader~ or the execution
step within the named cataloged procedure
step~ code the k.eyword parameter in the
operand field.

PARM.procstep=(option[,option] •••)
J

Any PARM parameter already appearing in the
procedure step is deleted. and the PARM
parameter that is passed to the procedure
step is inserted.

A maximum of 100 characters may be
written between the parentheses or single
quotation marks that enclose the list of
options. The COBOL compiler selects the
valid options of the PARK field for
processing by looking for significant
characters (usually three) of each key
option word. When the keyword is
identified. it is checked for the presence
or absence of the prefix NO, as
appropriate. The programmer can make the
most efficient use of the option field by
using the significant characters instead of
the entire option. Figure 1 lists the
significant characters for each option (see
"Options for the Compiler" for an
explanat ion of each).

Job Cont.rol Procedures 37

...-----
I J
,Option I
J- I
I ADV ,
, APOST I
I BATCH I
I B crF I
I CDECK ,
I CLIST •
J CSYNTAX I
I COUNT 1
I DECK I
J DAAP I
I DUMP I
J DTN AM J
I ENDJOB f
I FDECK J
J FLAGE tV) I
J FLOW t
, LANGLVL J
I LCOLl/LCOL2 I
1 LIB J
I LINECNT J
I LOAD I
J LSTONLY/LSTCO~P J
, LVL I
J L132/L120 I
I NAME ,
~ NUM J
I OPTIMIZE 1
I PMAP J
I PRINT I
J QUOTE 1
• RESIDENT I
! SEQ I
I SIZE I
t SOURCE J
J SPACE ,
I STATE I
1 SUPMAP t
, S XREF I
J SYMDMP I
J SYNTAX f
1 S Ysx J
t TERM J
1 TEST 1
I TRUNC I
J VBSUM I
J VBa E1" I
, VERB I
j XREF t
t ZWB I

Siqnificant
Characters

ADV
APO
BAT
BUF
CDE
Cl.I
CSY
COU
DEC
DMA
DUM
DYN
END
PDE
LAG, LAGW
FLO
LANGLVL
OL1/0L2
LIB
CNT
LOA
LSTO/LSTC
LVL
L13/L12
NAM
NUM
OPT
PMA
PRI
QUO
RES
SEQ
SIZ
SOU
ACE
STA
SUP
SIR
SYH
SYN
SIS
TEE
TES
TRU
VBS
VBR
VER
XRE
ZWB

,
I
1 .,
I
1
J
I

• I

• J
1 ,
I
J
J , ,
I
J
J
t
J
I
J ,
I
J
I
J
I
1
J
J
I
I
I
J

• I
I
J
J
J ,
J
I ,
I
I
1
J

1-. .L-- .J

Figure 7. Significant Characters for
Compiler options

Note: The compiler recognizes the
significant characters to set the proper
options. If an option is incorrectly
spelled, the compiler default option is
used.

The IBM-supplied default options
indicated by an underscore in the following

38

discussion can be changed when the compiler
is installed. The forma"t of the PARM
parameter is illustrated in Figure 8.

• When a subparameter contains an equal
sign, the entire information field of
the PARM parameter must be enclosed by
single quotation marks instead of
parentheses~ e.g.,

PARM=fSIZE=160000,PMAP'. This is the
recommended (that is~ most efficient)
technique. other ways of specifying
special characters in the PARM
parameter are described in OS/VS_Jf~
IHi~fg.£g!l£g •

• When an option and its default (such as
IREF and NOXREP) are both specified~
the last encountered option is
generally the one assumed. (Exceptions
to this rule are cited in the option
descriptions.) Accordingly, the
programmer may change one of the many
options without repunching the entire
EXEC card.

SIZE=yyyyyyy
indicates the amount of main storage~
in bytes, available for compilation
(see "Machine Considerations"). The

COBOL default value is 131,072 bytes,
or 128K.

BUF=yyyyyy
indica t~..s the a mount. of main storage
to be allocated to buffers. If both
SIZE and BUF are specified, the amount
allocated to buffers is included in
the amount of main storage available
for compilation (see "Appendix D:
Compiler optimization" for information
about how buffer size is determined).

HQ~: The SIZE and BUF compile-time
parameters can be given in multiples
of K, where K=1024 decimal bytes. Por
example, 131,072 decimal bytes can be
specified as 128K.

LANGLVL Pll)
specifies whether the 1968 or the 1974
American National Standard COBOL
definition (as understood and
interpreted by IBM) is to be used when
compiling those source elements whose
meaning has changed. LANGLVL(1) tells
the compiler to use the 1968 ANS
standard (X3.23-1968) if the compiler
encounters any of those source
elements whose definition has changed;
this interpretation would be the one
that was used by Release 1 of the
compiler. LANGLVL(2) tells the

compiler to use the 1974 ANS
standard (X3.23-1974) when
encounteringany--offhose-rede-:fl.ned
elements. LANGLVL(2) is the default.

Generally speaking, the language
level supported by the Release 2
compiler includes all of that
supported by Release 1. The Release 2
compiler will accept not only source
programs written in the new (1974)
language, but also source programs
that were or are written in the older
(1968) language. However, the
superset relationship between the new
and the older languages is not
absolute; there are a few exceptions-
elements whose meaning has changed
because of ANS redefinition. It is

only these few elements that are
controlled by the LANGLVL option.

(These elements are identified in
Section III of Appendix A of IBM
VS COBOL for OS/VS.) Language-
elements whose meanings did not
change from 1968 ANS to 1974 ANS
(the vast majority of the language)
are unaffected by the LANGLVL option,
as are all IBM extensions and those
language elements new in the 1974
ANS definition. The compiler accepts
all such elements regardless of the
LANGLVL specification. LANGLVL
affects only that small percentage of
elements whose definition changed from
1968 to 1974.

Job Control Procedures 3~.1

The LANGLVL specification does affect
the operation of the PIPS flagger.
When the FIPS .L Vt option has been
specified, selecting the 1968 ANS
standard will cause FIPS flagging to
be done to those corresponding
specifications; selecting the 1974 ANS
standard causes FIPS flagging to be
done according to the newer
specifications.

SO!!~CE
NOSOURCE

indiGates whether or not the source
module is to be listed.

CLIST
NOCLIST
----Indicates whether or not a condensed

listing is to be produced. If
specified, the procedure portion of
the listing will contain generated
card numbers (unless the NUM option is
in effect), verb references, and the
location of the first instruction
generated for each verb. Global
tables, literal pools, register
assignments, and information about the
Working-storage section ar~ also
provided. CLIST and PMAP are mutually
exclusive options. (If both are
specified, COBOL rejects the one
specified first.)

IQt~: In nonsegmented programs, verbs are
listed in source order. In segmented
programs, the root segment is first,
followed by the indiVidual segments in
order of ascending priority.

DMAP
NODM1P
-----rndicatesw hether or not a glossary is

to be listed. Global tables, literal
pools, reqister assignments, and
information about the Working-Storage
section are also provided.

PMAP
NOPMAP
----indicates whether or not register

assignments, global tables, literal
pools, information about the
Working-storage section, and an
assembler-language expansion of the
source modules are to be listed.
CLIST and PKAP are mutually exclusive
options. (If both are specified,
COBOL rejects the one specified
first.)

!21~: If anyone of the options CLIS~,
DMAP, and PKAP is specified, the comp1ler
will produce a message giving the
hexadecimal length and starting address of
the Working Storage Section. Fo.r an

illustration of the use of these options,
see the "Output" section.

VERB
NOVERB

indicates whether procedure-names and
verb-names are to be listed with the
associated code on the object-program
listing. VERB has meaning only if
PMAP or CLIST is in effect. VERB is
automatically in effect if SYMDMP,
STATE, or TEST is in effect. NOVERB
yields more efficient compilation.

Note: If READY TRACE debugging
statements are used in the program,
VERB will cause paragraph-names rather
than card numbers to be displayed at
execu tion time.

LO'1D
NOLOAD

indicates whether or not the object
module is to be placed on a mass
storage device or a tape volume so
that the module can be used as input
to the linkage editor. If the LOAD
option is used. a SIS LIN DD statement
must be specified.

DECK
!fQDE~!

aQ.

indicates whether or not the object
module is to be punched. If the DECK
option is used. a SYSPUNCH DD
statement must be specified.

NOSEQ .
indicates whether or not the comp1ler
is to check the sequence of the source
module statements. If the statements
are not in sequence, a message is
printed.

l!.21~: For examples ofwha t the SO UReE.
DMAP, PMAP. and SEQ options produce, see
"Output. "

LINECNT=nn
indicates the number of lines to be
printed on each page of the
compilation source card listing. The
number specified by nn must be a
2-digit integer from 01 to 99. If the
LINECNT option is omitted, 60 lines
are printed on each page of the output
1 isting.

Job Control Procedures 39

12tg: The compiler regu~res three
lines of what the user has specified
for its headings. (For example, if
~ll=55 is specified, then 52 lines are
printed on each page of the output
listing.)

~li~
NOZWB

indicates whether or not the compiler
generates code to strip the sign from a signed external decimal field when
comparing this field to an
alphanumeric field. If ZWB is
specified, the signed external decimal
field is moved to an intermediate
field, in which its sign is removed,
before it is compared to the
alphanumeric field. ZWB complies with
the ANS standard; NOZWB should be used
when, for example, input numeric
fields are to be compared with SPACES.

LVL=A/B/C/D
NOLVL
-----specifies what level of FIPS (Federal

Information Processing standard)
flagging is to be used.- -- A-~- B, -C, and

40

D correspond to the levels Low,
Low-Intermediate, High-Intermediate,
and Full, respectively. If flaggin9
is specified, source clauses and
statements that do not conform to the
specified level of lIPS are
identified. See the publication IBll
Y~.-£QBOL fQLQ~L!§ for a complete list
of the statements flagged at each
level.

Not,g§:

1. If LVL is the SYSGEN default6 its
assigned val~e can be overridden
at compile time with any level
except NOLVL. If NOLVL is the
SYSGEN default, it can be
overridden at compile time with
any level.

2. If the LVL option is in effect,
the SYSUT6 data set must be
specified.

3. If both LVL=A/B/C/D and TERM are
specified, the compiler listing
output to SYSPRINT for options
such as SOURCE, PMAP, and XRE? are
not produced.

4. The option SOURCE is automatically
turned on if LVL is specified. If
TERM is off, a listing is produced.
If TERM is on, there is no listing.
(See note 3.)

5. If both LVL and BATCH are
specified, LVL is rejected.

~!~!
FLAGE

6. The LANGLVL option controls the
version of FIPS that will he used.
Requesting LANGLVL{l)--the 1968
ANS standard--causes flagging to
be done according to the 1972 FIPS
specifiea tions. Requestinq
LANGLVL{2)--the 1974 ANS
standard--causes flagging to be
done according to the 1975 FIPS
speci fications.

7. Generally,FIPS flagging will not
be done if the compiler has
detected any source errors (that
is, if the return code is not
zero). The only exceptions
concern a few W-level messages
(such as IKF1100-W) that are
purely informational; detecting
these will not prevent FIPS
flagging. The FLAGE option should
not be used, since W-Ievel messages
will not be listed and results are
unpredictable.

8. If the compiler detects a
D-Ievel error, PIPS will not
execute, nor will any of the
compiler's usual messages or
listings be produced. A
return code of 16 will be the
only indication that this has
occurred. To overcome this
difficulty, recompile with a
specification of NOLVL, then
remove the source errors as
ipdicated by the compiler, and
finally recompile -again with LVL.

indicates the type of messages that
are to be listed for the compilation.
FLAGW indicates that all warning and
diaqnostic messages are to be listed.
FLAGE indicates that all error
messages are to be listed, but that
the warning messages are not to be
liste-d. Note. With the use of
FLAGE, and only W-Ievel errors, the
return code will be zero.

SUPMAP
NOSUPMAP
--indicates whether or not the object

code listing, and object module and
link edit -decks are to be suppressed
if an E-Ievel or D-level message is
generated by the compiler.

1lR.!£l!1
SPACE2
SPACE.3

indicates the type of spacing that is
'':0 be used on the source card listing
generated when SOURCE is speCified.
SPACE1 specifies single spacing,
SPACE2 specifies double spacing, and
SPACE3 specifies triple spacing.

TRUNC

!!QnYl!~
applies to movement of COMPUTATIONAL
arithmetic, fields. If TRUNC (standard
truncation) is specified and the
number of digits in the sending field
is greater than the number of digits
in the receiving field, the arithaetic
item is truncated t.o the number of
iigits specified in the PICTURE clause
of the receiving field when moved. If
NOT,RUNC is specified, movement of th~
1 tem -rs dependent on -the size of the
field (halfword, full word).

WlQ1~
APOST

indicates to the compiler that either
the double quote (It) or the apostrophe!
(') is acceptable as the character to
delineate literals and ~o U~A that
character in the generation ot
figurative constants.

STATE
NOST AT E
----indicates whether or not the number o'f

the COBOL statement being executed at
the time of an abnormal termination is
desired. STATE identifies the number
of the statement and the number of the
verb being executed. If the STATE
option is used, a SYSDBOUT DO
statement must be specified at
execution time for the output data set
on which the statement number message
can be written. For more information,
see "Debugging Facilities" in the
cha pter "Program Checkout. 11

FLOWr =nn]
NOFLOW
---indicates whether or nO,t a formatted

trace is desired for a va,riable number
of procedures execu ted before an
abnor ma 1 termination. The number of
procedures traced is specified by nn,
where DD may be any integer value from
one to 99. FLOW[=nn] must be
specified at compile time to generate
the necessary trace linkage; however,
specifying .nn may be deferred until
execution time. If an is omitted, the
default value is employed. This value
is either 99 or that specified at
program product installation.
specifying NOFLOW at compile time
precludes specification of the Flow
Trace option at execution time. A
S'{SDBOUT DO statement must be includad
for the output data set on lfhich the
trace can be written. See "Options
for Execution" for more Information.

SYMDMP
NOll!tlH1f

requests a formatted dump of the data
area of the object program at abnormal
termination. with this option, the
programmer may also request dynamic
dumps of specified data-names at
strategic points during program
execution. See "Symbolic Debugging
Features" for more information.

1. If the SYMDMP option is in effect,
the SYSUTS data set must be
specified, and the NULLFILE or
DUMMY parameter should not be
specified on its DD statement.

2. If the BATCH option is requested,
SYMDHP is rejected.

3. If WITH DEBUGGING MODE is
specified and one or more USE FOR
DEBUGGING statements are in the
program, the SYMD~P option is
rejected.

4. Specification of the SYMDMP option
automatically yields the OPTIMIZE
feature, discussed below, and
rejects the STATE option because
SYMDMP output includes STATE
output at abnormal termination.

For a disc ussion of the FLOW, 5T AT E, and
SYMDMP options, and their value to the
COBOL programmer, see the chapter entitled
"Symbolic Debugging Features." A SYSDBOUT,
SYSDBG, and debug file DD codes are
required at execution time.

OPTIMIZE
NOOPTIMIZE

causes optimized object code to be
generated by the compiler,
considerably reducinq t.he use of
object program main storage. In
general, the greater the number of
COBOL Procedure Division source
statements, the greater the percentage
of reduction in the amount of main
storage required.

Igt~: The optimizer feature is
automatically in effect when the
SYMDMP or TEST feature is specified.

Job Control Procedures 41

SYNTAX
CSYNTAX
NOSYNIAX
NOCSYNTAX

42

indicates whether object code
generation is to be suppressed--that
is, vhetbe~ the compiler will only
scan the source text for syntax' errors
(with appropriate error messages being
produced) •

SJNTAX causes syntax checking only,
with absolute suppression of object
code generation.

CSYNTAX causes syntax checking ~ith
conditional object code generation: a
full compilation is produced ~slong
as no errors exceed the W or C level;
if one or m6re E-level. or higher.
sever ity errors are discovered, the
compiler· does not generate the object
code.

NOSYNTAX causes normal compilation,
with both syntax checking and object
code generation.

1.

2.

3.

4.

When the SYNTAX option is in
effect, all of the following
compile-time options are
suppressed:

LOAD
XREF
SXREF
CLIST
NOSUPMAP
PMAP

DECK
SYMDMP
TRUNe
OPTIMIZE
FLOW
STATE

NAM.E
COUNT
VBSUti
VBREF
DMAP

Unconditional syntax checking is
assumed if all of the following
co~pile-time options are
specified:

NOLOAD
NOXREF
NOSXREF

NOCLIST
NOPMAP

SUPMAP
NODECK

CSYNTAX and SYNTAX are mutually
exclusive. CSYNTAX will override
SYNTAX.

If CSYNTAX is specified and an E
or D-Ievel diagnostic message is
encountered before or during the
operation of phase 21 or during
the operation of phases 30, 40,
45, 50, or 51, the SYNTAX option
replaces CSYNTAX, and the options
listed in Note 1 above are sup
pressed. However, certain types of
output may be produced (for example,

NUM
NONUM

a DMAP) , depending on hu~ much work
the compiler had completed before
the error was discovered.

5. When .CSYNTAX has been specified
and an E-Ievel or higher error is
detected, the final pa.rts of . the
compilation procedure execution of
phases 60, 62, 63, or 64 (which deal
with code generation) are not
executed. Beca use of this, any
existing syntax errors that could
only he detected by these latter
phases of compilation will l!2i be
discovered and made known to the
user during the CSYNTAX run; they
will only come to light during a
later full compilation-

-----indicates whether or not line numbers
have been recorded in the input and,
rather than compiler-generated source
numbers, should be used in error
messages, as well as in PMAP, CLIST,
STATE, XREF, SIREF, and FLOW. NOHUM
indicates that the compiler-generated
numbers should be used in error
messages as well as in PMAP, CLIST,
STATE, XREF, SIREF, and FLOW.

Note: If when the NUM option is in
effect the compiler discovers a
non-numeric character in a line number
or if ascending numeric sequence is
broken, the compiler invalidates the
number. The compiler then takes the
last valid card number in sequence,
adds a 1 to that number and begins
genera~ing card numbers from that
point. The increment is 1. Six
digits is the maximum sequence number.
The card that follows 999999 will he
flagged and NUM, SY~DMP, and TEST
canceled. STATE and FLOW will not be
canceled.

If LSTCOMP is in effect, the statement
number generated· by the lister feature
is used regardless of NUM or NONUM
specification.

IREF
@!RM

indica teswhe ther or not a
cross-reference listing is produced.
If IREF is s,pecified, an unsorted
listing is produced with data-names
and procedure-names appearing in two
parts in source order.

SIBEP
t!QU1U~!

indicates whether Or not a sorted
cross-reference listing is produced.
If SIREr is specified, a sorted
listing is produced with data-names
and procedure-names in alphanumeric
order.

• XREF and SIBEF are mutually
exclusive. If both are specified,
COBOL rejects the one specified
first.

• Some data names used in STRING,
UNSTRING, SEARCH, and USE FOR
DEBUGGING statements are not part of
the compiler-generated code, and
therefore will not appear in an IREF
or SIREF listing.

• Group names in a MOVE CORRESPONDING
statement will not be listed in an
XREF or SXREF listing; however, the
elementary names within those groups
will be listed.

• Because most of the Report writer
code is generated before the com
piler creates the dictionary, most
of the Report Writer data names do
not appear in an XREF or SXREF
listing.

LIB
.l2ll!!

indicates whether or not a COpy and/or
a BASIS request will be part of the
COBOL source input stream. If no
library facilities are to be used, the
specification of NOLIB will save
compilation time.

BATCH
NOB.A~l!

indicates whether or not multiple
programs and/or subprograms are to be
compiled with a single invocation of
the compiler. In the BATCH
environment all compiler options
specified on the EXEC card, plus all
default options, will apply to every
program in the batch unless specific
options are overridden on the CBL
card, which must be included for each
proqram. See "Batch compilation" for
more information on batch compilations
and the CBL card.

When BATCH is specified, the LVL and
SyftDKP options will be rejected. In
addition, the BUP, L120/L132, and SIZE
options are precluded froa use on a

Job Control Procedures 42.1

CBL card and will be rejected if
speci fied.

NAME
NONAME
-----rndicates whether or not programs in a

batch compilation environment will be
link-edited into one or more load
modules. If NAME is specified~ each
succeeding program in the batch will
be link-edited into a separate load
module. This option will remain in
effect for the entire compilation
unless NONAME is specified on the CBL
card for an individual program. If
NONAME is specified on the eBL card,
no name will be generated for this
compilation. Names for the load
modules vill be formed according to
the rules for forming module names
from the PROGRAM-ID. See "Batch
Compi.lation" for more details on batch
compilation and the CBL card.

!Q.!.~: If the BATCH option is not
specified, NONAME will be in effect.

RESIDENT
!Q.!liSIQEN!

requests the COBOL Library Management
feature. When one program in a given
region/partition requests the RESIDENT
option, the main program and all
subprograms in that region/partition
should also request it.

Note: The RESIDENT option is
automatically in effect when the DYNAM
option is invoked.

DYNAM
NOQIlll1

2!.§!
SYSx

causes subprograms invoked through the
CALL literal statement to be
dynamically loaded and through the
CANCEL statement to be dynamically
deleted at object time (instead of
link-edited with the calling program
into a single load module).

Note: When both NORESIDENT and
i~~iNAM are either specified or
implied by default, and a CALL
identifier statement occurs in the
source statement being compiled, the
COBOL Library Management Facility
option (RESIDENT) is automatically in
effect. A printed statement of this
is given in the compiler output. (For
a discussion of the COBOL Library
Management FacilitJ~ see the section
"Sharing COBOL Library Subrou"tines" in
the "Libraries" chapter.)

indicates whether SYSOUT or SYSOUx,

where x must be alphanumeric (that is~
0-9 or A-Z except for T), is the
ddname of the file to be used for
debug output (READY TRACE, EXHIBI~ or
DISPLAY statement. The specification
in the program that is first to ~ccess
the file is chosen.

ENDJOB
NOEND.JOB
---indicates whether or not, at the end

of each run-unit (which is assumed to
begin with the highest-level COBOL
program called), the COBOL library
subroutine I1BOSTTO is to be called to
delete modules and free main storage
acquired through GETMAINs issued by
COBOL library subroutines. ENDJOB
takes effect either at a STOP RUN in
any program, or at a GO BACK statement
in a main program only. Violation of
the restriction against mixing RES and
NORES modules within a run-unit may
cause an unpredictable execution-time
abend when ENDJOB is in effect, even
in programs which ran successfully
without ENDJOB.

~Q!~: When a non-COBOL program, such
as IMS or an installation-defined
assembler program, links to COBOL load
modules many times within a job step,
the resulting accumulation of
GETMAIN-acquired areas and loaded
modules may result in execution-time
abends. In order to prevent
fragmentation and overload of storage
in such an environment~ the ENDJOB
compiler option must be specified.
This will cause ILBOSTTO to be loaded
at the normal termination of the
run-unit to free all GETMAIN areas
and~ in a RES environment, to delete
any loaded subroutines and
dynamically-invoked subprograms. The
only GETMAIN areas not freed by
ILBOSTTO are those obtained when
opening a random indexed BISAM file
for which the options APPLY CORE-INDEX
and/or TRACK-AREA IS integer
CHARACTERS have been specified; before
terminating, the user should close
such files within the COBOL program.

since ILBOSTTO is always loaded, it
must be made available at execution
time (by placing it in the link pack
area or by specifying the COBOL
library on a STEPLIB DO statement for
the GO step). If ILBOSTTO is not
placed in the link pack area, it
should be explicitly deleted by the
invoker of the COBOL run-unit;
otherwise, one copy of this subroutine
will remain in the user region after
the run-unit has completed.

Job control Procedures 43

1)21
NOlDV

indicates whether or not records for
files with WRITE ••• lDVANCING need
reserve the first byte for the control
character. ADV specifies that the
first byte need not be reserved, but
that the compiler will add one byte
to the LRECL for the control
character.

COUNT
!!Q.£QON~

indicates whether or not code is to be
generated to produce verb execution
summaries at the end of problem
program exeqution. Each verb is
identified by procedure-name and by
statement number# and the number of
times it was used is indicated. In
addition, the percentage of verb
execution for each verbvith respect
to the execution of all verbs is
given. A summary of all executable
verbs used in a program and the number
of times they are executed is
provided. COUNT implies VERB. COUNT
requires both SYSDBOUT and SYSCOUNT
DD statements at execution time. For
a more detailed discussion on the use
of the COUNT option, see the chapter
"Program Checkout. II

Q2~~
NODUMP'

specifies whether the compiler should
produce a dump or an informative
message in the event it encounters a
D-level ("disaster") error condition
during its processing. The compiler
will abnormally terminate after pro
ducing the dump/message.

DUMP specifies that a dump (but no
message) is to be produced. This dump
will contain a four-digit user
completion code. See Appendix K for
more information on these codes.
(Note: The most frequent cause of
comprler abend is insufficient SIZE
value--a user completion code of 0003.
In this case, rerun the program spec
ifying a larger value.)

NODUMP specifies that the compiler is
to produce an informative message
(but no dump) •

If analysis of the message or dump
does not solve the problem, see
Appendix L for the procedure to follow
in calling IBM for assistance.

VBSUM
~QY~§2~

44

provides a brief summary of verbs
used in the source program and a

count of how often each verb appeared.
This option provides the user with a
quick search for specific types of
statements. VBSUM implies VERB.

VBREF
~QY~B£![

provides a cross-reference of all
verbs used in the program. This
option provides the programmer with
a quick index to any verb used.in
the program. VBREF implies VERB
and VBSUM.

There are five compiler options for using
the lister feature of the compiler. Note
that either LSTONLY or LSTCOMP must be
selected for the other four options to have
meaning unless the BATCH option is
specified. In a batch compilation, if some
or all of the programs are to be compiled
using the lister feature, L120 or L132 must
be specified in the FARM field of the EXEC
card, even if LSTCOMP or LSTONLY are to be
specified on the CBL card.

For detaile~ information on the use of the
lister, see the chapter "The Lister
Feature." The options are listed in Figure
6, 'where:

LSTONLY
LSTCOMP
NOLST
----indicates whether the lister feature

is to be used. LSTONLY specifies that
a reformatted listing is to be
produced bat that no compilation is to
occur. LSTCOMP specifies that both a
ref ormat ted list ing is t.o be prod uced
and compilation is to occur in the
same job step.

PO.ECK
NOPDECK
---indicates whether a copy of the

reformatted source program is to be
written on the SYSPUNCH data set.
Since FDECK has meaning only with
either LSTONLY or LSTCOMP, the lister
oatput will be both a reformatted
listing and a reformatted deck.

CDECK
NOCOECK
----riidicateswhether or not COpy

statements are to be expanded into
COpy members in the SYSPONCH output.

The COpy members are to be expanded in
the reformatted deck requested through
FDECK. If CDECK is specified with
NOFDECK, only the expanded COpy
sta tements are produced.

LeOL1
1&OL2

indicatesvhether the Procedure
Division part of the listing is to be
in single or double column format.

Job Control Procedures 44.1

L120
L1ll

indicates whether the length of each
line of the reformatted listing is to
be 120 or 132 characters long.

In addition to the preceding compiler
options, the following options are designed
for ~se with the Time Sharing option (T50).

Time sharing provides the COBOL programmer
with facilities for entering, compiling,
and testing programs at his terminal. (For
further information on the Time Sharing
Option, see the Program Product publication
!~~~~_COBOL_fIQm~!~~min~!
~!r's-2uide andR~feIj!l!£g.) These options
are listed in Figure 8, where:

Job Control Procedures 45

r •
J Compiler: , , ,
I {PARM } [,SOUBCE l [,DMAP] ,
, PARM. procstep = ([SIZE=yyyyyyy][• BUF=yyyyyy][, LANGLVL (1/~J) , NOSOURCEJ ' NODMAP I
I I
1 r,PMAP] r,SUPMAP l r,LOAD J r,DECK l [,SEQ l J
1 L,liOP!t!f L,NOSUPl1Afj lrNOLOAD lr!QJl!~!ij , NOSEQj I
J I
I r, TRUNC] r, CLIST l r,l1£AGW] r, Q!loT~l •
I [,LINECNT=nn]lrl!QtRU!£ L-NOCLISIj lrFtAGE ~APOSTj ,
I J
I [,2.PA£lil] r,STATE] r.XREF] f,SXBEF] [,NAM.E 1 J
J ,SPACE2 L, NOS!!!~ l!l!Q!!LE! L-l!Q~!REF_ ,!ONAUj I
"SPACE3 I
I t
, [.BATCH J [,FLOW[:nnJl r,TERM ..] r,PRINT {(*)S } ..] ,
I ,!211!I£H ,l!OFLOW J lr NOTEll.r! . L,l'!2fR!!I (dsname) I
t I
t r,SYMDMP J r,OPTIM1ZE J r,SYNTAX J [,LVL=A/B/C/D] I
I L,!iOSII1Ql1f L,lioOPTIH1Zr; L. NO~Il!IAI I
J I
J r,TEsT .. 1 [,ENDJOB] r,CSYNTAX J [,LIB l r,NUM l I
1 L, !!.QI~~! j , ~1!QJO 11 l! l!Q CS lB.!!! , !!QLI Jij lr !21H!!1 j J
t I
I r,RESIDENT] [,DYNAM] [, VERB] r,ZWB J [,§YSI] I
J L,!!QB]SI1!EN! , NODll.!!1 ,NOVERB l!NOZWB ,SYS·x 1
J I
I r,ADV J [.COUNT] r,DUMP l ~'LSTONLY 6J[,LCOL1 6J I
, L,NOADV ,~OUNT l! NODUlt~ , LSTCOMP .1£QL2 I
1NO~ I
t I
~ [,FDECK 6l [.CDECK 6l f,L 11~ 6l r. VBSUM l r. VBREF]> 1~3 I
1 ,!fop Q~~.K j , Noc~g j ~ L 120 j L, NO V BS!!!!j lr NOVBllI:: I
r I
1 Lin kage Editor: I
1 I
I {PARM }. fl{MAP}l I
I PARM. procst.ep = [X REP' J [, LIST] [.OVLY]) I
~ f
ILoader: I
f I

: {!!::. procstep} = [:~:Al~] [::~:ES] ~;~~LL] [:~~rt;!] [: ;i;::!~~~J :
I I
I [,PRINT] t
t [, EP=name] , !!QPR1!~. 1 ~ ,

r f
J Execution: I
I ,
I {PARM} [FLowr:nn 1]· [, DEBUG] I
I PARM. procstep :: {[user parameters]/ !!Ql1&! • NODE BUG [, UPSI (nnnnnnnn)] ,
J I
t [, A1XBLD] I
I , NOA.IIJaI! r ,QUEUE{value-list)]) lZ3 I
.- -------- -- f
11 If the information specified conta ins any special characte.rs, it must be delimited by ,
I single quotation marks instead of parentheses. I
,ZIf the only special character contained in the value is a cOlima. the value may be I
I enclosed in parentheses or quotation marks. I
13 Themaximum number of characters allowed between the deli1liting quotation marks or I
1 parentheses is.100. ,
,-These options should be used in the Time Sharing environment only. I
J STso-only forma t. I
16 These options are used to request the lister fea ture. I

--.------------------------~ '
Figure 8. compiler, Linkage Editor, and Loader PARM Options

46

PRINT
{

(*) }

(dsname)
l!Q.PRll!

indicates whether or not the program
listing is to be suppressed, placed on
the out pu t data set specified by
dsname, or displayed at the terminal.
If PRINT is specified, the listing
will include page headings, line
numbers of the statements in error,
message identificati~n numbers,
severity levels, and message texts (as
well as any other output requested by
SOURCE, CLIST, DMAF, P~AP, XREF, or
SIBEF). If (*) is specified instead
of data-set name, the printed output
is sent to the term inal. If PRINT
alone is specified, a listing data set
is created on secondary storage and
named according to standard da ta set
naming conventions. NOPRINT specifies
that no listing is to be printed. If
nei ther PRINT nor NOPRINT is
specifiedand anyone or more of the
options SOURCE, CLIST, DMAP, XREF, or
PMAP are specified, PRINT is the
default. Otherwise, NOPRINT is the
default. If PRINT is specified in a
non-TSO environment, it is ignored.

TERM
NOTERlI
---indicates whether or not progress and

diagnostic messages are to be printed
on the SISTERM terminal data set. The
severity level of the messages may be
controlled by the FLAG option. If
PRINT (*) is specified, then NOTERM is
the default, to ensure that messages
appear only once. If TERM is
specified in a non-TSO environment,
the output that normally goes to the
SISTERM DO data set is written on the
SYSTERM file if a SYSTERM DD card bas
been included. If there is no SISTERM
DD card, a warning message is issued.

TEST
NOTEST
--indicates whether or not the program

can be debugged at the terminal using
the program product IBM OS COBOL
Interactive Debug (Program Number
5734-CB4). A program that is compiled
without the TEST option is
unacceptable to the Interactive Debug
command processor. Complete
information on COBOL Interactive Debug
is contained in IBM as COBOL
l!!1tla£ti.!LQgQuq Ierir1!9.1:Q~~
Guide~nd Ref~£ID!£~.

When TEST is in effect, the COBOL
compiler produces optimized object code.
When you specify TEST, you cannot also

specify FLOW, STATE, COUNT, SYMDMP, or
BATCH.

If the TE,T option is in effect, the
SISUT5 data set must be specified.

The TEST option is rejected if both
WITH DEBUGGING MODE is specified and
one or more USE FOR DEBUGGING
statements are in the program.

QEtions for the Links!SULj~gilQ!:

MAP

XREF

LIST

OVLY

indicates that a map of the load
module is to be listed. If MAP is
specified, XREF cannot be specified,
but both can be omitted.

indicates that a cross-reference list
and a module map are to be listed. If
XREF is specified, MAP cannot be
specified.

indicates that any linkage editor
control statements associated with the
job step ~re to be listed.

indicates that the load module is to
be in the format of an overlay
structure. This option is required
when the COBOL Segmentation feature is
used.

The format of the PARM parameter is
illustrated in Figure 8. For examples of
what the MAP, XREY, and LIST options
produce, see "Output. tI Linkage edito.r
control statements and overlay stru~tures
are explained in "Calling and Called
Programs." There are other PARM options
for linkage editor processing that describe
additional processing options and special
attributes of the load module (seethe
publication QS.L!S._1!n.!.a~~{!itor an.S!
Load,g,!;l..

MAP
NO MAP
----indicates whether or not a map of the

loaded module is to be produced that
lists external names and their
absolute addresses on the SYSLOUT data
set. If the SYSLOUT DD statement is
not used in the input deck, this
option is ignored. An example of a
module map is shown in "output."

Job Control Procedures 47

R.~~
NOBES

CA~!:.

indicates whether or not an automatic
search of the link padt area queue is
to be made. This search is always
made after processing the primary
input (SYSLIN), and before searching
the SYLIB data set. When the RES
option is specified, the CALL option
is automatically set.

NOCALL (NCAL)

LET
NOLET

indicates whether or not an automatic
sea rch of the S ISLl B da ta set .1s to be
made. If the SYSLIB DD statement is
not used in the input deck, this
option is ignored. The NOCALL option
causes an automatic NORES.

-----indicates whether or not the loader
will try to execute the object program
when a severity level 2 error
condition is found.

S.I~~=1QQI1
SIZE=size

specifies the size, in bytes, of
dynamic main storage that can be used
by the loader. This storage must he
larqe enouqh to accommodate the object
program.

EP=name
specifies the external name to be
assigned as the entry point of the
loaded program.

ERINT
NOPRINT

indicates whether or not diagnostic
messages are to be produced on the
SYSLOUT data set.

The format of the PARM parameter is
illustrated in Figure 8. The default
options, indicated by an underscore, can he
changed a t system genera tion with the
LOADER macro instruction.

These options are specified through the
PARM parameter, as illustrated in Figure 8.
Note that a slash must immediately precede
the first COBOL-defined option coded. (If
user parameters themselves are to include
a slash or slashes, then an additional,
trailing slash must be added to demark the
user parameters' end. All data following
the last slash is considered to be COBOL
system parameter information, and will
not be passed to the program.)

48

If an execution-time parameter field
is passed to a program, a load of the
library subroutine ILBOPRM will be issued.
If this subroutine is not available to the
loader, an 806 abend may occur. One way
to circumvent this problem is to place
an INCLUDE SYSLIB(ILBOPRM) statement in
the link edit SYSLIN data stream, which
would link this subroutine into the load
data set.

User Parameters
The programmer can code any parameters
he wishes to pass to a main COBOL
program. For information on how to
access such parameters, see the "USING
option" as described in I~~-I~_£Q]Q~
foL-QUVS.

FLOV[=nn]
NOFLOW
---If the FLOW option is specified at

compile time for a trace of procedure
names, at execution time a value for
un may be specified that overrides any
value set at compile time. If FLOW is
requested at compile time with no
value for !U!., a value should be
specified at execution time. A
default of 99 is assumed for lHl if it
is not specified at either step and
PLOW is in effect; otherwise, nn is as
previously specified.

The PLOW trace may be suppressed at
execution time by specifying NOFLOW.
FLOW cannot be specified as an option
for exedution if it is not specified
at compilet~me or if NOFLOW is in
effect by default. See the sections
"Debugging Facilities" and "Options
for the Compiler" for additional
information.

DEBUG
NODEBUG

DEBUG indicates that USE FOR DEBUGGING
declarative procedures are in the
program and should in fact be
activated during th~s execution.
NODEBUG indicates that even though
such declarative procedu.resvere
included in the program, they are not
desired and their execution is to be
suppressed. (Note that this DEBUG
switch has meaning only if the source
program was compiled with the WITH
DEBUGGING MODE clause.)

UP 51 (n nnnnnnn)
assigns values (either ~ero or one) to
the eight switches UPSI-O, UPSI-1,
UPSI-2, ••• UPSI-7. (The default
values are zeros.) These values are
then available in the COBOL program
through the condition names associated
with them in the SPECIAL-NAMES
paragraph.

AIXBLD
NOAIXBItA2

for VSAM KSDS and RRDS data sets,
AIXBLD indicates that COBOL should
invoke Access Method Services to
complete the file and index definition
procedures. NOAIXBLD indicates that
the user has already performed such
definitions himself ahead of time, and
has no need for this service.

In general, better performance is
obtained if the user provides such
definitions himself (NOAIXBLD). If
AIXBLD is specified, substantial
amounts of additional storage are
required for COBOL execution (the
exact amount depending on specific

Job Control Procedures 48.1

system configuration). Also, a
SYSPRINT DO card is necessary for any
Access Method Services messages that
may be produced.

For more detail, see "Dynamic
Invocation of Access Method services
for KSDS and RRDS output Data sets" in
the section "VSAM File Processing."

QUEUE{value-list)
specifies a queue-name structure (in
value-list) which is the strQcture
that viII cause this program to be
scheduled for execution. For more
detail, see "Communications Job
Schedulinq" in the section "Using the
Communications Feature."

The restart facilities can be used in
order to minimize the time lost in
reprocessing a job that abnormally
terminates. These facilities permit the
automatic restart of jobs that were
abnormally terminated during execution.

The programmer uses this parameter to
tell the operating system: (1) whether or
not to take checkpoints during execution of
a progra m, and (2) whether or not to
restart a proqram that has been
interrupted.

A checkpoint is taken by periodically
recording the contents of storage and
registers during execution of a program.
The RERUN clause in the COBOL language
facilitates taking checkpoint readings.
Checkpoints are recorded onto a checkpoint
data set.

Execution of a job can be automatically
restarted at the beginning of a job step
that abnormally terminated (step restart)
or within the step (checkpoint restart).
In order for checkpoint restart to occur, a
chec kpoint must have been taken in the
processing program prior to abnormal
termination. The RD parameter specifies
that step restart can occur or that the
action of the CHKPT macro instruction is to
be suppressed.

To request that step restart be
permitted or to request that the action of
the CHKPT macro instruction be suppressed
in a particular step, code the keyword
parameter in the operand field of the EXEC
statement.

r-
J RD=request L-__ J

Replace the word "request" with:

a to permit automatic step restart.

Ne

NR

The programmer must specify at
least one RERUN clause in order
to take checkpoints.

to suppress the action of tbe
CHKPT macro instruction and to
prevent automatic restart. No
checkpoints are taken; no RERUN
clause in the COBOL program is
necessary.

to request that the CHKPT macro
instruction be allowed to
establish a checkpoint, but to
prevent automatic rest~rt. Tbe
programmer must sp..eeify at least
one RERUN clause in order to take
checkpoints.

RNC -- to permit step restart and to
suppress the action of the CHKPT
macro instruction. No
checkpoints are taken; no RERUN
clause in the COBOL program is
necessary.

Each request is described in greater detail
in the following paragraphs.

RD=!: If the processing programs used by
this step do not include a RERUN statement,
RD=R allows execution to be resumed at the
beginning of this step if it abnormally
terminates. If any of these programs do
include one or more CHKPT macro
instructions (through the use of the RERUN
clause), step restart can occur if this
step abnormally terminates before execution
of a CHKPT macro instruction; thereafter,
checkpoint restart can occur.

RD=NC or RD=RNC: RD=NC or RD=RNC should be
specified to suppress the action of all
CHKPT macro instructions included in the
programs used by this step. When RD=NC is
specified, neither step restart nor
checkpoint restart can occur. When RD=RNC
is specified, step restart can occur.

!Q=NR: RD=NR permits a CHKPT macro
instruction to establish a checkpoint, but
does not permit automatic restarts.
However, a resubmitted job could have
execution start at a specific checkpoint.

Before automatic step restart occurs,
all data sets in theresta rt step vi th a
status of OLD or MOD, and all data sets
being passed to steps following the restart
step, are kept. All data sets in the
restart step with a status of NEW are

Job Control Procedures 49

deleted. Before automatic checkpoint
restart occurs, all data sets currently in
use by the job are kept.

If the RD parameter is omit ted and no
CHKPT macro instructions are e.%ecuted,
automatic restart cannot occur. If the RD
parameter is omitted but one or more CHKPT
macro i.nst.ructions are executed, automatic
check.point restart can occur.

• If the RD parameter is specified on the
JOB statement, RD parameters on the
job's EX EC statements are iqno.red.

• Restart can occur only if MSGLEVEL=1 is
coded on the JOB statement.

• If step restart is requested for this
step, assign the step a unique step
name.

• When this job step uses a cataloged
procedure, make restart request for a
single procedure step by including, as
part of the RD parameter, the procedure
stepname, i.e., RD.procstepname. This
specification overrides the RD
parameter in the named procedure step
if one is present. Code as many
parameters of this form as there are
steps in the cataloged procedure.

• To specify a restart request for an
entire cataloged procedure, code the RD
parameter without a procedure stepname.
This specification overrides all RD
parameters in the procedure if any are
present.

• .If no RERUN clause is specified in the
user's program, no checkpoints are
written, regardless of the disposition
of the RD parameter.

• For detailed information on the
checkpoint/restart facilities, see the
publication Q~!~_Check2ointLR~1art.

.E§!:~blishing-LDis2fttcli.l!.9.-f.riQ1::itL'DPR.n1..
(OS/VS2 only)

The DPRTY parameter allows the
programmer to assign to a job step, a
dispatching priority different from the
priority of the job. The dispatching
priority determines in what sequence tasks
use main storage and computing time. To
assign a dispatching prior ity to a job

50

step, code the keyword parameter in the
operand field of the EXEC statement.

,
DPRTY:(value 1.value 2) I

Both "value 1" and "value 2" should be
replaced with a number from 0 through 15.
"Value 1" represents an internal priority
value. "Value 2" added to "value 1"
represents the dispatching priority. The
higher numbers represent higher priorities.
A default value of 0 is assumed if no
number is assigned to "value 1." A default
value of 11 is assumed if no number is
assigned to "value 2."

• Whenever possible, avoid assigning a
number of 15 to "value 1." This number
is used for certain system tasks.

• If "value 1" is omitted, the comma must
be coded before "value 2" to indicate
the absence of "value 1," e.g.,
DPRTY= (. 14) •

• If "value 2" is omitted, the
parentheses need not be coded, e.g.,
DPRTY:12.

• When the step uses a catalogea
procedure, a dispatching priority can
be assigned to a single procedure step
by including the procedure step nalle in
the DPRTY parameter, i.e.,
DPRTY.procstepname={value 1, value 2).
This parameter may be used for each
step in the cataloged procedure.

• To assign a single dispatching priority
to an entire cataloged procedure, code
the DPRTY parameter without a procedure
step name. This specification
overrides all DPRTY parameters in the
procedure if there are any.

To assi gn a limit to the computing time
used by a single job step, a cataloged
procedure, or a cataloged procedure step,
code the keyword parameter in the operand
field of the EXEC statement •

r-
J TIME=(minutes,seconds) L-__________________________________ _

such an assignment is useful in a
multiprogramming environment where more
than one job has access to the computing

system. ftinutes and seconds represent the
maX1mum number of minutes and seconds
allotted for execution of the job step.

• If the job step requires use of the
system for 24 hours (1440 minutes) or
longer. the programmer should specify.
TIME=1440. Using this number
suppresses timing. The number of
seconds cannot exceed 59.

• If the time limit is given in minutes
only, the parentheses need not be
coded; e.g., TIME=5.

• If the time limit is given in seconds.
the comma must be coded to indicate the
abse.nce of minutes; e.g., TIME=(,45).

e When the job step uses a cataloged
procedure, a time limit for a single
procedure step can be set by qualifying
the keyword TIME with the procedure
step name; i.e •• TIME. procstep=
(minutes.seconds). This specification
overrides the TIME parameter in the
named procedure step if one is present.
As many parameters of this form can be
coded as there are steps in the
cataloged procedure.

• To set a time limit for an entire
procedure, the TIME keyword is left
unqualified. This specification
overrides all TIME parameters in the
procedure if any are present.

e If this parameter is omitted, the
standard job step time limit is
assigned.

~~g£ if y,!.ng.J1 a i.!L .. ~.!Q~~ Reg!!irem,,gn t s f or ~
~Qb S!~-'REGION)_

The REGION parameter permits the
programmer to specify the size of the main
storage region to be allocated to the
associated job step. The REGION parameter
specifies the maximum amount of main
storage to be allocated to the job. This
amount must include the size of those
components required by the userts program
that are not resident in main storage.

The REGION parameter is used in
conjunction with the ADDRSPC parameter to
determine the total amount of main storage
available to a program and to either allow
or disallow paging.

!21~: The REGION parameter has different
meanings for OS/VS1 and OS/V52. See the
publicationOSLVS_~£1_~!..!ic~§ for detailed
information.

To specify a region size, code the
keyword parameter in the operand field of
the EXEC statement.

REGION= (nnnnnK)
,
I

To request the maxillu. amount of main
storage required by t.he job, replace the
term "nnnnn" with the maximum number of
contiguous 1024-byte areas allocated to the
job step. e.g., REGION=52K. This number
can range from 1 to 5 digits but must not
exceed 16383.

If the REGION parameter i~ omitted or if
a region size smaller than the default
region size is requested, it is assumed
that the default value is that establiShed
by the input reader procedure.

eRegion sizes for each job step can be
coded by specifying the BEGION
pa rameter in the EXEC sta temen t for
each job step. However, if a REGION
parameter is present in t.he JOB
statement, it overrides REGION
parameters in EXEC statements.

• For information on storage requirements
to be considered when specifying a
region size, see the appropriate
st~gg~E§!im~!~§ publication.

TO take advantage of the storage
facili ties offered by OS/VS 1 and OS/VS2,
always specify AOORSPC=VIRT.

r-
1
I ADDRSPC= {

VI.!!!}
REAL

Note that the compiler and its object code,
including library subroutines, can run
VIRTUAL, and should be run that way unless
a non-COBOL program in the partition
requires the REAL option.

The data de£inition (DO) statement
identifies each data set that is to be used
in a job step, and it furnishes info.rmation
about the data set. The DD statement
specifies input/output facilities requir~d

Job Control Procedures 51

for using the data set; it also establishes
a logical relationship between the data set
and input/output references in the program
named in the EXEC statement for the job
step.

Figure 9 is a general format of the DD
statement.

52

Parameters ,used most frequently for
COBOL ptograms are discussed in detail.
The other parameters (e.g •• SEP and AFr)
are mentioned briefly. For further
information, see the publication Q~LY~_J~b
~~~. 



.-- , , ---_ ... ..,. 
IName 1 operation I Operand ~. 

----~----~-------~ r- i I 

• {ddname } 1 I DD t 
(see below and next page) ~ 

----------------------.------~------------------------~ 
III I I 
1 procste p. ddna me I , 
L- a • 

r 
I Operand 2 

.. 
I 
I 

• I 
I 
I 
t 
I 
I [DDNAME=ddname] 
I 
I , 
j , 
J 
J 
I 
I 
I 

{

DSNAMEl 

DSN f = 

[ DUKMY] 

dsname 
dsname (element) 
*. ddname 
*.stepname.ddnalle 
*.stepname.procstep.ddname 
&&nalle 
&&name(element) 
NUtLF.ILE 

12 

, (QNAME=processname)l4 ! [nCB= (liS[:s::.:ttributeSl ] 

I DCB=( *.ddname 
, *.stepname.ddname 
I ·*.stepname.procstep.ddnaae 

[ .SIlbParaaeter-list 1,] 

I 
J [SEP= (SU bparalleter list) -l 11 

,AFF=ddname J 
• [COPIEs=nnn] 

7 

t [ OUTLIM=nuliber] 

: [TEBM~;1 : 
I I 
t f2§i tioM.~bpa!:~iG ·l!ll2IUyREnu.nU§. I 

: [UNIT= (name[ ,[n/P][,DEl'ERllt: ,SEP=(list o. f up to 8 ddna.es) ]) 9] 11 13 : 
, ~NIT=(AFF=ddnaae) . . I 
I [!les= (character set code ,FOLD [ , VilIFY])] I 
I, I .... - . 

f See notes a t end of fig ure. I L-__________ . ____________________________________________________________________ .~ _____ , ~ 

Figure 9. The DD Statement (Part 1 o.f 3) 

Job Control Procedures S3 



.--
I Operand 2 

l
I 
I 

: SPACE= ( {~~~ } 
• averaqe-record-length , 

, (primary-quantity[,secondary-quantity], 

, 
J 

----i 
I , , , 
1 
I , I 

I 
J 

[directory- or index-quantity]) [ , RLSE] ,ALX . 
[

, riXLG J 
[, ROUND]) J 

I ,CONTIG 

• I SPACE= (ABSTR, (quantity ,beginning-address[ , directory- or index-quantity]») 

• 
: SPLIT= (n, {CYL } , {primary-quant.ity[ ,secondary-quantity])) 
I average-record-length , 
~ SUBALLOC=( {~!~ } , (primary-quantity[ ,secondary-quantity] 
J ,average-record-length 

i [.directory-qnantity». {::::::me.ddname . } 
I stepname.procstep.ddname 

!~~g~UKE} =~ PRIVATE l.[ RETAIN l.[ volulle sequence number 1.[ volume count][.J 

: SER= (volume-serial-n umber( Yolume-serial-nu mber ]I 0 ••• )ll 
: REF:: {~~~~:=me } ) 
I *.stepname.ddname 
, *.stepname.procstep.ddname 
1-----------------------
I See notes at end of figure 
L-

Figure 9. The DD statement (Part 2 of 3) 

54 

J 
I , 
I 
1 
I 
1 
1 
I 
J 
t 
J 
f 
I 
t 
J 
J 
1 
I 
I 
I 
I 
I ., 
I 
J 



r0-
t operand 2 ..
I , 
I NL 
I LABEL= ([ data-set-sequence-number] .. ~1 r. PASSWORDl [f'IN J 
I NSL ~NOPWREA~ ,OUT 
I SUL 
t ~M 
J BU 
t AUL 
, At 

i [Drsp: ( 
1 

[l!.RR~ OLD 
SHR 
MOD [

,DELETE 1 ,KEEP 
,PASS 
,CATLG 
.UNCATLG 

1 [s YSOUT= (classname[ .. program-name]( , form-no. ])] 
t 

" 

rFeB= (image-id [,ALIGN]) 
L , V ERIPY 

J 
I [AMP=(subparameters) 15] 
l-
I tThe name field must be blank vhen concatenating data sets. 

[
, EXPDT=yydddl 
• RETPD=xxxx J 

1 ZA 11 parameters are optional to allow a programmer flexibility in the use of the DD 
I statement; however, a DO statement with a blank operand field is meaningless. 

I 
J 
I 

I 3It the positional parameter is specified, keyword parameters other than DeB cannot 
I specified. 

be I 

I ·For OS/VS2 only. 
t sIt sub parameter-list consists of only .2{!g subparameter and no leading comma 
I (indicating the omission of a positional subparameter) is required, the delimiting 
t parentheses may be omitted. 
1 61f subparameter-list is omitted, the entire parameter must be omitted. 
1 7See "UseI:'-Defined Files" fo.r the applicab le subpa rameters. 
I eSee the publication Q~!~~£1-Ref~~£g. . 
f 9If only name is specified, the delimiting parentheses may be omitted. 
110rf only one volume-serial-number is specified, the delimiting parentheses may be 
, omitted. 
11 t The SEP and AFF parameters should not be confused with the SEP and AFF subparameters 
J of the UNIT parameter. 

J 
1 
J 
I 
I 
I 
1 
I 
I 
t 
I 
1 
J 

11z The value specified may contain special characters if the value 
1 a postrophes. If the only special character used is the hyphen. 
J enclosed in apostrophes. If DSNAME is a qualified name, it may 
t without being enclosed in apostrophes. 

is enclosed in J 
the value need not bel 
contain periods I 

,13The unit address may contain a slash, and the unit type number may contain a hyphen, 
1 without being enclosed in apostrophes, e. g., UNIT=293/5,UNIT=2400-2. 
J14The QNAME= parameter is used in COBOL teleprocessing and must be the name of a TeAM 
1 destination queue. 
J lSThis parameter is for use with VSAM only. The subparameters are described in the 
! chapter "VSAM File Processing." 
L-

Fiqure 9. The DD Statement (Part 3 of 3) 

I 
I 
I 
I 
1 
J 
f 
.I 

Job Control Procedures 55 



1i~.!!.Lf.!~!g 
ddname (Identifying the DD statement) 

is used: 

• To identify data sets defined by 
this DD statement to the compiler or 
linkage editor (see "Compiler Data 
Set Requirements" and "Linkage 
Editor Data Set Requirements"). 

• To relate the data sets defined in 
this DD statement to a file 
described in a COBOL source program 
(see "User-Defined Files"). 

• TO identify this DD statement to 
other control statements in the 
in put stream. 

procstep. ddname 
is used to alter or add DD statements 
in cataloged procedures.. The step in 
the cataloged procedure is identified 
by procstep. The ddname identifies 
either one of the following: 

• A DO statement in the cataloged 
procedure that is to be modified by 
the DD statement in the input 
stream. 

• A DO statement that is to be added 
to the OD statement in the procedure 
step. 

!_~!.tl~r (DefininLQg,ta_in an Inl!ut 
~!:~n) 

indicates that data immediately 
follows this DD statement in the input 
stream. This parameter is used to 
specify a source deck or data in the 
input stream. The data cannot contain 
II or 1* in the first two character 
positions of any record unless the DLM 
parameter is used. If (while scanning 
JCL) the system encounters a card that 
does not begin with II, it logically 
inserts a IISYSIN DD * card before it. 
The SYSIN data set thus created is 
delimited by the next 1* or II job 
control card encountered. 

DA TA ParSll!!tter (De!.ining.-Q~!a in an .Input, 
Streaa) 

56 

also indicates a JCL deck or data in 
the input stream. The end of the data 
set must be indicated by a delimiter 
statement. The data cannot contain /* 
in the first two characters of any 
recprd unless the DLK parameter 'is 
used. The DD DATA statement must be 
the last DD statement of the job step. 
II may appear in the first and second 
positions in the record, for example, 
when the data consists o.f control 
statements of a procedure that is to 
be cataloqed. 

DL~f~~~~Chan~illg_Qatg_Qg!i~itgr_fQ£ 
InID!:L~!!!.) 

specifies the delimiter to be used 
instead of /* or II to terminate data 
defined in the input st~eam. 
Assigning a different delimiter allows 
the standard delimiter f/* or II) to 
be used as data in the input stream. 
The DLM pa~ameter has meaning only on 
DD* and DO DATA statements. The data 
must be terminated with the characters 
assigned in the DLM parameter. 

DUMMY ParameterlBypassing_!!g.!l£g 
Allocation and ~Yi-QEQ£a~iQll§-2n_~h~~2i~ 
§.gi) 

allows a program to attempt I/O 
operations on a data set during 
execution without the operating 
systemfs pe~forming actual operations 
on the da ta set. (Programs compiled 
with the LANGLVL(2) option can specify 
the COBOL source statement SELECT 
OPTIONAL to obtain this ability and 
thus avoid supplying a dummy DD 
statement.) The DUMMY parameter is 
valid only for COBOL input sequential 
data sets. No device allocation# 
external storage allocation, or 
cataloging takes place for dummy data 
sets. When the DUMMY parameter is 
specified, a read request to an 
"opened" file results in an end of 
data set exit. 

For a VSAM data set, if DUMMY is 
specified, an attempt to read results 
in an end-of-data condition. 
AMP='AMORGt must be specified if DUMMY 
is specified; see "VSAM-only JCL 
Parameter" in the chapter "VSAM Pile 
processing. " 

NO!&..:. Compiler work. files (including 
SYSUT5 and SYSUT6) cannot be described 
as DD DUMMY. 

Data in the input stream is temporarily 
transferred to a direct-access device for 
later high-speed retrieval. Normally, the 
system stores it in a format that is not 
under control of the programmer. However, 
in some situations the programmer may be 
able to assign his own values through use 
of the BLKSIZE subparameter of the DCB 
parameter. He may also indicate the number 
of buffers to be assigned to transmitting 
the data, through use of the BurNO 
parameter. For example, he may assign the 
following: 

DCB=(BLKSIZE=800,BUFNO=2) 

In YS1 and VS2 Release 2 ~nd later, maximum 
performance is obtained for SYSIN and 
SYSOUT data sets when BLKSIZE=80 and 
BUrN0:1 are used. If not supplied by the 



problem program, it can be supplied by the 
DCB parameter on the DD statement. If 
omitted from both sources, the defaults are 
BLKSIZE=80 and BUFNO=2. 

Jll1i!1Lf£!:~U!~g!tl-1Rg~gr vi.llil2 pa cgJ!!9.tl 
Q~L.!S2_w i tIL TSQ) 

specifies that space is to be reserved 
in internal tables so that data set 
requirements that arise during a TSO 
terminal session can be satisfied. 
This allows deferred definition of a 
data set until it is required. During 
LOGON processing for T50, no devices 
or external storage are allocated to a 
data set defined by a DD DYNAM 
statement. When a data set is 
required, the actual device and 
external storage for the data set is 
then allocated. see the publication 
.Q~LVS2 TSO Guide, Order No. GC28-0644, 
for further information. 

!Q!.g: No other parameter can be 
specified on a DD statement where 
DYNAH is specified. 

~Q~!~~-f£~~ete!:-1p02~~nin~he Deiinitio! 
QI._£ Dat£_SeU 

defines a pseudo da ta set that. will 
assume the characteristics of a real 
data set if a subsequent DD statement 
of the step is labeled with the 
specified ddname. When the DDNAME 
parameter is specified, it must be the 
first parameter in the operand. All 
other parameters, except the DeB 
subparameters BLKSIZE, BUPNO, and 
OIAGNS, are ignored and should be 
omitted when the DDNAME parameter 
appears (see "Using the cataloged 
procedures"). 

The ddname specifies a DD statement 
that, if present, supplies the 
attributes of the data set. If it is 
not present, the statement is ignored. 

DS!!ME Pa~A!~~~Igenti!Yin~lh~~ata~~lt 
allows the programmer to specify the 
name of the data set to be created or 
to refer to a previously created data 
set. Various types of names can be 
specified (see "using the DO 
statement" for a discussion of the 
various names) as follows: 

• :t:J!llI--!U!alifi.g9.-D.n~.:. For da ta 
sets to be retrieved from or stored 
in the system cat alog. 

• Gen~ation 9A1.sL9.!:Q!:uL.!!n~i. For an 
entire generation data group. or any 
single generation thereof. 

• Sim~~2: For data sets that 
are not cataloged. 

• Reference names: For data sets 
whos;-na;es-;r;-given in the DSNAME 
parameter of another DD statement in 
the same job. 

• I~~pora~~_n£~~~ For temporary data 
sets that are to be named for the 
duration of one job only. 

If the DSNAME parameter is omitted, 
the operating system assigns a unique 
name to the data set. (This parameter 
should be supplied for all except 
temporary data sets to allow future 
referencing of the data set.) DSNAKE 
may be coded DSN. 

~SNAMI-SYQQa~a~~te!:~ 
dsname 

specifies the fully qualified 
name of a data set. This is the 
name under which the data set can 
be cataloged or otherwise 
identified on the volume. 

dsname (element) 
specifies a particular generation of a 
generated data group, a member of a 
partitioned data set. or an area of an 
indexed data set. To indicate a 
generation of a generated data group, 
the element is a zero or a signed 
integer. TO indicate a member of a 
partitioned data set, the element is a 
name. To indicate an area of an 
indexed data set. the element is 
PRIME, OYFLOW, or INDEX (see "Using 
the DD statement" for information 
about generation data groups and 
examples of partitioned data sets). 

*. ddname 
indicates that the DSNAKE parameter 
(only) is to be copied from a 
preceding DO statement in the current 
job step. 

*.stepname.ddname 
indicates that the DSNAME parameter 
(only) is to be copied from the DD 
statement, ddname, that occurred in a 
previous step. stepname, in the 
current job. If this form of the 
subparameter appears in a DD statement 
of a cataloged procedure, stepname 
refers to a previous step of the 
procedure, or. if no such step is 
fOllnd ,to a previous step of the 
current job. 

*.stepname.procstep.ddname 
indicates that the OSNA"E parameter 
(only) is to be copied from a OD 
statement in a cataloged procedure. 
The EXEC statement that called for 

Job Control Procedures 57 



execution of the procedure, as well as 
the step and DD statement of the 
procedure, must be identified. 

&&name 
allows the programmer to supply a 
temporary name for a data set that is 
to be deleted at the end of the job. 
The ope.rating system subs-t.i tutes a 
unique symbol for this sub parameter. 
The programmer can use the temporary 
name in other steps to refer to the 
data set. The same symbol is 
substituted for each recurrence of 
this name within the job. Upon 
completion of the job, the name is 
dissociated from the data set. The 
same temporary name can be used in 
other jobs without ambiguity. 

&&name (element) 
allows the programmer to supply a name 
for a member of a temporary 
partitioned data set that will be 
deleted at the end of the step. 

NtJLLFILE 
serves the same function as the DUMMY 
parameter (described above). 

Q!!I~~~~~~_lnefinin]L!a~_Oata t2-~ 
A££es§ed-IlLTCA1U. 

specifies the name of a TPROCESS macro 
that def~nes a destination queue for 
messages that are to be processed by 
an application program and creates a 
process entry ~or the queue in the 
Terminal Table (see the section 
"Defining Terminal and Line Control 
Areas" in the chapter entitled "Using 
the Teleprocessing Featu.-re tf ). 

Not!t: The DCB parameter is the only 
parameter that can be coded on a DD 
statement with the QNAME parameter. 
The only operands that may be 
specified as subparameters are 
BLKSIZE, BtJ~L, LRECL, OPTCD, and 
RECFM. 

DCll_~~teLjDe§£Iibin£L1l!e Altributes of 
11H~_Da ta~etl 

58 

allows the programmer to specify at 
execution time, rather than at 
compilation time, information for 
completing the data control block 
associated with the data set (see 
"Execution Time Data Set Requirements" 
and "Additional File Processing 
Information" for further information 
about the data control block and DCB 
subparameters). 

The first subparameter of this 
parameter may be used to copy DCB 
attributes from the data set label of 

a cataloged data set or from a 
preceding DD statement (see the 
publication QS.LILJCL._R~fe~~ for 
detailed information about the DCB 
s ubpa ra meter) • 

,S,lP and AFLf.Srame~jQ£!i.m.izi!!g.£.ha nn~! 
Usage) 

allow the programmer to optimize the 
use of channels among groups of data 
sets. SEP indicates channel 
separation and APr indicates channel 
affinity. SEP and APF are ignored for 
any data sets that have been allocated 
devices by the automatic volume 
recognition (AVR) option. 

If neither parameter is supplied, any 
available channel, consistent with the 
UNIT parameter requirement, is 
assigned. The affinity parameter 
groups two or more data sets so that 
they can be separated from another 
data set requesting channel 
separation. For indexed sequential 
data sets these parameters are written 
in the same way as those for any data 
set. For VSAM data sets, these 
parameters should not be used if the 
data and its index reside on unlike 
devices. They can be used in 
succeeding DO statements to refer to 
the first DD statement. ~efining an 
indexed sequential da ta set. However, 
the second and third OD statements 
cannot request separation from or 
affinity to one aaother because they 
are unnamed. Thus, to establish 
channel separation and affinity for 
all of the areas, the name 
subparameter of the UNIT parameter 
must be used to request specific 
dey ices on specific chann~ls. 

UNll-fArameter (Requesting_a UnitL 
specifies the quantity and types of 
input/output devices to be allocated 
for use by t.he data set. 

If the UNIT parameter is not specified 
in the current DD statement~ there are 
several ways in which the unit 
information may be inferred by the 
system: 

• If the current data set has already 
been created and it is either beinq 
passed to the current step, or if it 
has been cataloged~ any unit name 
specified in this DO statement is 
ignored. 

• If the REP subparameter of the 
VOLUME parameter is specified, the 
current data set is given affinity 
with the data set referred to; that 



data set's defining DD statement 
provides the unit information. 

• If the current data set is to 
operate in the split cylinder mode 
with a previously defined data set, 
it will reside on the unit specified 
in the DD statement for the previous 
da ta set. 

• If the current data set is to use 
space suballocated from that 
assigned to a previously defined 
data set, it will reside on the same 
unit as the data set from which the 
space is obtained. 

• If the current data set is assigned 
to the standard output class (sysOUT 
is specified), it is written on the 
unit specified by the operator for 
class A. 

If the current data set is in the input 
stream (defined by a DD * or DD DATA 
statement), the DD statement defining the 
data set should not contain a UNIT 
parameter. 

If this parameter specifies a mass 
storage device for a data set being 
created, it is also necessary to reserve 
the space the data set will occupy, using 
another parameter of the DO statement. For 
Vs~M data sets, the APF and sEP 
subparameters should not be used if the 
da ta and its index reside on unlike 
devices. Depending on the way in which the 
space will be used, the SPACE, SPLIT, or 
sUBALLOC parameter can be specified. These 
parameters are discussed under individual 
headings. 

If the UNIT parameter specifies a tape 
device, no SPACE, SPLIT, or SUBALLOC 
parameters are required. 

The UNIT parameter must be specified if 
VOLUME=SER is specified in the DD 
statement. 

name 
specifies the name of an input/output 
device, a device class name, or any 
meaningful combination of input/output 
devices specified by an installation. 
(Mass storage devices and magnetic 
tape devices can be combined. No 
other device type combination is 
allowed.) Names and device classes 
are defined at system generation time. 
The device class names that are 
required for IBM cataloged procedures 
and are normally used by most 
installations are shown in Figure 10. 
These names can be specified by the 

n 

p 

DEFER 

installation at system generation 
time. 

The block size specified in the source 
program (in the BLOCK CONTAINS clause 
or in the record description) must not 
exceed the maximum block size 
permitted for the device. For 
example. the maximum block size for 
the IBM 2314 is 1294 characters. and 
the maximum block size for the IBM 
2400 series is 32.760 characters. 

liot~: When device-independence is 
specified by use of UT as the device 
class in the ASSIGN statement in the 
Environment Division, the device 
chosen by the system will be dependent 
on the OD statement. Therefore. if 
the user's installation has both an 
IBM 2314 and an IBM 3330 that may be 
used as utility devices, the user 
should write 

BLOCK CONTAINS 7294 CHARACTERS 

(or any number smaller than 7294) to 
ensure that the block can be contained 
on orie track. 

specifies the number of devices to be 
allocated to the data set. If this 
parameter is omitted. 1 is assumed. 

specifies parallel mount. 

indicates deferred mounting. Deferred 
mounting cannot be specified for a new 
output data set on a mass storage 
device or for an I5AM data set. 
For VSAM data sets, it indicates that 
the volumes are not to be mounted 
until access method services requires 
them. 

sEP=(list of up to eight ddnames) 
specifies unit separation. 

AFF=ddname 
specifies unit affinity. 

r-------.--- , . 
1Class NamelClass FunctionslDevice Type I , , 
IsY55Q I writing 
I Jreading 
• I 
ISysDA I writing 
f treading 

I ----.f 
Imass storage I 
Imagnetictape I 
+- ~ 
1 mass storage I 
, I 
~ J 

Figure 10. Device Class Names Required for 
IBM-Supplied Cataloged 
ProcedUres 

Job Control Procedures 59 



~QR~a~a!~!~I-1Re~Y~2ti~g_Additional 
Q~!~ Set~ie§L 

is specified when more than one copy 
of the output data sets is desired. 
It can be specified only with the 
SISOUT parameter on the same DD 
statement. The maximum number of 
copies that can be requested is 255. 
For further information on the use of 
the COPIES parameter, see the 
publication OSLVS JCL~g£Yi~g2. 

QQItIfi-fg~et~_lS~~f~n[_Qut~l_Re£Qrd 
t.i.ID.i!) 

is specified. for OS/VS1 only. to 
limit the number of logical records to 
be included- in the output data set 
being routed through the output 
stream. For OS/VS2, OUTLIM is 
ignored. When the limit is reached, 
an exit provided by the system 
Management Facilities option is taken 
to a user-supplied routine that 
determines whether to cancel the job 
or increase the limit. If the exit 
routine is not supplied, the job is 
canceled. The largest number that can 
be specified is 16717215. 

The OUT LIM parameter has meaning only 
if the system Management Facilities 
option is in use in the system and 
job, and step data collection was 
selected at system generation. OUTtIN 
is iqnored unless SISOUT is coded in 
the operand field of the same DD 
statement. If OUTLIN is not 
specified. the system default will be 
used unless SYSODUMP or SYSABEND is 
being processed; in this case no 
output limiting is done. 

H!H!1~I1!m.tlgLl!fQ.tiiL.~ll telL of ~pecia 1 
Deyice) 

speci fies different in.forma tion for 
OS/VS1 and OS/VS2. For VS1. the TERM 
parameter notifies the system to the 
presence of an RTAM (Remote Terminal 
Access Method) device used with RES 
(Remote Entry Services). For VS2 with 
TSO, the TERM parameter notifies the 
system that a data set is coming from 
or going to a time sharing terminal. 

See the publication QUllLRE~_~t!!!! 
.f.tQg~m.ti~LQy.ide, Order 
No. GC28-6818, for detailed 
information on Remote Entry Services. 

/ 

l~R~~~~.ete~: 
RT 

60 

indicates that a remote unit record 
device is in use for iTA" and that the 
usual allocation processing is to be 
bypassed. RT can only be specified on 

TS 

a DD statement for a job that is a 
system task. RT should not be 
specified on DD*, DD DATA and SYSOUT 
DD statements. 

indicates to the system that the input 
or output data being defined is coming 
from or going to a time sharing 
terminal. If TSO is not in use. the 
DD statement containing the TERM 
parameter is treated as a DO DUMMY 
statement. Only the DeB parameter can 
be specified with TERM=TS; any other 
parameters specified on the same DD 
statement are ignored.' 

~~~~~l~~l~pecifYin~~h~~ct~~_~~1-fQt 
a 1403 or 3211 Printex:)

describes the character set to be used
for printing an output data set on a
1403 or 3211 printer. In order to use
a particular special character set, an
image of the character set must be
contained in SYS1.IMAGELIB, and the
chain or train corresponding to the
character set must be available for
~se. The UCS parameter. the DDNAME
parameter, and the DCB subparameters
RKP, CYLOPL. and INTVL# are mutually
exclusive. For further information on
the ues parameter, see the publication
Q~L!~~llt.~!!L£!:QllU!!!illL.L i h:>.!i._
j!atLManagem!Ult·

Q~~SuQ~a~~~!~£~:
character set code

POLO

identifies the special character set
to be used for printing the data set.

specifies that the chain or train
corresponding to the desired character
set is to be loaded in the fold mode.
The fold mode is described in the
publication il!L2811_~2ntroL!!nit,
Order No. GA24-3112.

VERIFY
specifies that the operator is to
verify that the correct chain or train
is mounted be:fore the data set is
printed. If the VERIFY subparameter
is specified and the FOLD sub parameter
is not, a comma must precede VERIFY
since FOLD is a positional
subpa rameter and its absence IIUSt be
indicated.

~~A~E Pail.!!!.f~L1!!.!.Q.£lli!lg_~2§2iQraq~
~2~£~

specifies space to be allocated in a
mass storage volume. Although SPACE
has no meaning for tape volumes, if a
data set is assigned to a device class
that contains both mass storage
devices and tape devices, SPACE should
be specified. For VSAM data sets,
space i~ allocated through access
method services.

TWO forms of the SPACE parameter may
be used, with or without absolute
track address (ABSTR). The ABSTR
parameter requests that allocation
begin at a specific address.

~{f~~:T~Ub£A£S~1~f§~ }
TRK
CYL
average-record-Iength

specifies the unit of measurement in
which storage is to be assigned. The
units may be tracks (ABSTR o·r TRK),
cylinders (CIL), or records
(average-record-length, expressed as a
decimal number). In addition, the
AB5TR sub parameter indicates that the
allocated space is to begin at a
specific track address. If the
specified tracks are already allocated
to a nothe r da ta set, the y will not be
reallocated to this data set.

Noi~: For I5AM data sets, only t.he
elL or ABSTR subparameter is
permitted. When an I5AM data set is
defined by more than one DD statement,
all must specify either elL or AB5TRi
if some statements contain CYL and
others ABSTR, the job will be
abnormally terminated.

(p.r ima ry-qua nti ty[, seconda ry-qua ntit y)
(,directory- or index-quantity])

specifies thea moun t of space to be
allocated jor the data set. The
primary quantity indicates the number
of records, tracks, or cylinders to be
allocated when the job step begins.
For 15Al"l data sets, this subparameter
specifies the number of cylinders for
the prime, overflow, or index area
(see ftExecutionTime Data Set
Requirements lt). The secondary
quantity indicates how much additional
space is to be allocated each time
previously allocated space is
exhausted. This sl1bparameter must !!Q.!
be specified when defining an I51K
data set. If a secondary quantity is
specified for a sequential data set,
the program may receive control when
additional space cannot be allocated

RLSE

to write a record. The directory
quantity is used when initially
creating a partitioned data set (PDS),
and it specifies the number of
256-byte records to be reserved for
the directory of the PDS. It can also
specify the number of cylinders to be
allocated for an index area embedded
within the prime area when a new 15AM
data set is being defined (see the
publication Q~L!~~k_E~f~~~).

li~: The directory contains the name
and the relative position, within the
data set, for each member of a
partitioned data set. The name
requires eight bytes, the location
four bytes. Up to 62 additional bytes
can be used for additional
information. For a directory of a
partitioned data set that contains
load modules, the minimum directory
requirement for each member is 34
bytes.

indicates that all unused external
storage assigned to this data set is
to be released when processing of the
data set is completed.

{ ~~iG }
CONTIG

ROUND

qualifies the request for the space to
be allocated to the data set. MXIG
requests the largest single block of
storage that is greater than or equal
to the space requested in the primary
quantity. ALX requests the allocation
of additional tracks in the volume.
The operating system will allocate
tracks in up to five blocks of
storage, each block equal to or
greater than the primary quantity.
CONTIG requests that the space
indicated in the primary quantity be
contiguous.

If this subparameter is not
specified, or if any option cannot be
fulfilled, the operating system
attempts to assign contiguous space.
rf there is not enough contiguous
space, up to five noncontiguous areas
are allocated.

indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.
It can be used only when average
record length is specified as the
first subparaaeter.

quanti ty
specifies the number of tracks to be
allocated. For an IS1ft data set, this

Job Control Procedures 61

quantity must be equivalent to an
integral number of cylinders; it
specifies the space for the prime,
overflow, or index area (see
"Execution Time Data Set
Requirements") •

beginninq address
specifies the relative number of the
track desired, .here the first track
of a volume is defined as O. (Track 0
cannot be requested.) The number is
automatically converted to an address
based on the particular device
assigned. For an ISAM data set this
number must indicate the beginning of
a cylinder.

directory quantity
defines the number of 256-byte records
to be allocated for the directory of a
new partitioned data set. It also
specifies the number of tracks to be
allocated for an index area embedded
within the prime area when a new
indexed data set is being defined. In
the latter case, the number of tracks
must be equivalent to an integral
number of cylinders (see the
publication Q.sLlS_~CL_l!eference).

~PL~£g~g~~_1!1!~1ing_~~§§-sto£aqe
~Ei!£&

!!

is specified when other data sets in
the job step require space in the same
mass storage volume, and the user
wishes to minimize access-arm movement
by sharing cylinders with the other
data sets. The device is then said to
be operating in a split cylinder mode.
In this mode, two or more data sets
are stored so that portions of each
occupy tracks within every allocated
cylinder.

~ot~: SPLIT should not be used a)
when one of the data sets is an ISAM
data set, or b) under VS2 Release 2 or
later.

indicates the number of tracks per
cylinder to be used for this data set
if CYL is specified. If the average
record length is specified, ~ is the
percentage of the tracks per cylinder
to be used for this data set.

{
eYL }
average-record-length

62

indicates the units in which the space
requirements are expressed in the next
subpa ca meter. The units may be
cylinders (CIL) or physical records
(in which case the average record

length in bytes is specified as a
decimal number not exceeding 65,535).
If the average record length ~s given,
and the data set is defined to have a
key, the key length must be given in
the DeB parameter of this DD
sta tement.

primary-quantity
defines the number of cylinders or
space for records to be allocated to
the entire group of data sets.

secondary-quantity
defines the number of cylinders or
space for records to be allocated each
time the space allocated to any of the
data sets in the group has been
exhausted and more data is to be
written. This quantity will not be
split.

A group of data sets that share
cylinders in the same device is
defined by a sequence of DD
statements. The first statement in
the sequence must specify all
parameters except secondary quantity,
which is 6ptional. Each of the
statements that follow the first
statement must specify only I, the
amount of space required.

SQBALLOC Parameter lAllQ£giinq_Mas§_~lQrag~
~acel

permits space to be obtained from
another data set for which contiguous
space was previously allocated. This
enables data sets to be stored in a
single volume. Space obtained through
suballocation is removed from the
original data set, and may not be
further suballocated. The SUBALLOC
parameter should not be used to obtain
space for an 151M data set, nor should
it be used under VS2 Release 2 or
later.

Except for the subparameters
described below, the subparameters in
the SUBALLOC parameter ha ve t he salle
meaning as those described in the
SPACE parameter ..

SUBALLoe Subparameters:
ddname

indicates that space is to be
suballoca ted from the da ta set defined
by the DD statement. ddname, that
appears in the current step.

stepname.ddname
indicates that space is to be
suballocated from the data set defined
by the DD statement, ddname, occurring
in a previous step, stepname. If this
form of the sub parameter appears in a
DD statement in a cataloged procedure,
stepname refers to a previous step of
the procedure, or if no such step is
found, to a previous step of the
current job.

stepname.procstep.ddname
indicates that space is to be
suballocated from a data set defined
in a cataloged procedure. The first
term identifies the step that called
for execution of the procedure, the
second identifies the procedure step,
and the third identifies the DD
statement that originally requested
space.

!Q1YME-1!Q1L~~~~~t~~-1~g£ifying_yolumg
In£ormatiQnl

specifies information about the
volume{s) on which an input data set
resides, or on which an output data
set will reside. A volume can be a
tape reel, or a mass storage device.
Volumes can be used most efficiently
if the programmer is familiar with the
states a volume can assume. Volume
states involve tvo criteria: the type
of data set the progrdmmer is defining
and the manner in which the programmer
requests a volume.

Data sets can be classified as one
of two types, !~QQ£a£I or
!!Q~!gmQorary. A temporary data set
exists only for the duration of the
step that creates it. A nontemporary
data set can exist after the job is
completed. The programmer indicates
that a data set is temporary by
coding:

• DSN AM E=&&name

• No DSNAME parameter

• DISP=(NEW,DELETE). either explicitly
or implied, e.g •• DISP={,DELETE)

• DSNAME=reference, referring to a DD
statement that defines a temporary
data set.

All ot.her data sets are considered
nontemporary. If the programmer
attempts to keep or catalog a passed
data set that was declared temporary.
the system changes the disposition to
PASS unless DEPER was specified in

theUNIT parameter. Such a data set is
deleted at the end of the job.

The manner in which the programmer
requests a volume can be considered
specific or nQR2~cif!£. A s~ecific
reference is implied whenever a volume
with a specific serial number is
requested. Anyone of the following
conditions denotes a specific volume
reference:

• The data set is cataloged or passed
from an earlier job step.

• VQLUPlE=SER is coded in the DD
sta tement.

• VOLUME=REF is coded in the DD
statement, referring to an earlier
specific volume reference.

All other types of volume references
are nonspecific. (Nonspecific
references can be made only for new
data sets, in which case the system
assigns a suitable volume.)

The state of a volume determines
when the volume will be demounted and
what kinds of data sets can be
assigned to it.

~a§~stor~Vol~~g2: Mass storage
volum es differ from ta pe volumes in
that they can be shared by two or more
data sets processed concurrently by
more than one job. Because of this
difference, mass storage volumes can
assume different volume states than
tape volumes. The volume state is
determined by one characteristic from
each of the following groups:

Mount
~haracter!sti£§.
Per manent ly

Resident
Reserved
Removable

Allocation
~ha£a£t!ll:i§!i£§
Public

Private
storage

~~!!g~1!1_£~id~Qi volumes are
always mounted. The permanently
resident characteristic applies
automatically to:

• All physically permanent volumes,
such as 2305 Fixed Head storage.

• The volume from which the system is
loaded (the IPL volume).

• The volume containing the system
data sets SYS1.LINKLIB,
SYS1.PBOCLIB, and job scheduler
queue.

Job Control Procedures 63

64

• Other volumes can be designated as
perma nently resident in a special
member of SYS1.PROCLIB named
PRESRES.

Permanently resident volumes are
always public. The £~2~sl
characteristic applies to volumes that
remain mounted until the operator
issues an UNLOAD command. They are
reserved by a MOUNT command referring
to the unit on which they are mounted
or by a system parameter library
entry. The !:tlQvable characteristic
applies to all volumes that are
neither permanently resident nor
reserved. Removable volumes do not
have an allocation characteristic when
they are not mounted. A reserved
volume becomes removable after an
UNLOAD command is issued for the unit
on which it resides.

The allocation characteristics,
public, private, and storage, indicate
the availability status of a volume
for assignment by the system to
temporary data sets, and, if the
volume is removable, when it is to be
demounted. A Eubli£ volume is used
primarily for temporary data sets and,
if it is permanently resident, for
frequently used data sets. It must be
requested by a specific volume
reference if a data set is to be kept
or cataloged on it. If a public
volume is removable, it is demounted
only when its unit is required by
another volume. The programmer can
change a public volume to private
status by specifying VOLUME:PRIVATE.
A priv~~ volume must be requested by
a specific volume reference. A new
data set can be assigned to a private
volume by specifying VOLUME=PRIVATE.
If the volume is reserved, it remains
mounted until the operator issues an
UNLOAD command for the unit on which
it resides. If it is removable, it
viII be demounted after it is used,
unless the programmer specifically
requested that it be retained
(VOLUftE=.RETAIN) or passed
(DISP:,PASS). Once a removable volume
has been made private, it vill
ultimately be demounted. To use it as
a public volume, it must be remounted.
A 2~~ volume is used as an
extension of main storage, to keep or
catalog non temporary data sets having
nonspecific volume requests. Th~
programmer can assign the PRIVATE
option to storage volumes.

Figure 11 shows how mass storage
volumes are assigned their mount and
allocation characteristics.

r--------------~ ,
I 1 Allocation ,
J ,Characteristic I
I Mo un t 1-------,- j ~
ICharacteristic ,public tPrivate ,storagel
~ I + • ~
IPermanently Jsystem lsystem 'system I
I Resident Jparm. lparm. lparm. I
I Jlibrary ,library ,library1
J J or I 1 I
t ,Default I I I
.. t +----+-----1
'Reserved 1system Jsystem Isystem t
I I parm. 1 parm. I parm. t
• Ilibrary tlibrary JlibrarYI
I I or 1 or 1 or t
I JMOUNT IMOUNT ,MOUNT 1
1 ,command lcommand Icommand)
, -t- I +------~
JRemovable fDefault ,VOLUME= I na J
J I IPRIVATE J I I- L --L .J-____ ~

fna = Not applicable t

Figure 11. Mass Storage Volume States

~~g~lic raEe_!Ql~~2: The volume
state of a reel of magnetic tape is
also determined by a combination of
mount and allocation characteristics:

Mount
~ha!:~£1~ti21i£2.
Reserved
Removable

Allocation
£hf!!:a£te!:i§li£§
Private
Scratch

.J

The reserved-scratch combination is
not a valid volume state. Reserved
tape volumes assume their state-when
the operator issues a MOUNT command
for the unit on which they reside.
Thev remain mounted until the operator
issues a corresponding UNLOAD command.
Reserved tapes must be requested by a
specific volume reference.

A remoyabl~ tape volume is assigned
the 2rivate characteristic when one of
the following occurs:

• It is requested with a specific
volume reference.

• It is requested for allocation to a
non temporary data set.

• The VOLUME parameter is coded with
the PRIVATE option.

A removable-private volume is
demoanted after its last use in the
job step, unless the programmer

. requests that it be retained.

All other tape volumes are assigned
the £emovable~sc£~tch state. The tape

volumes remain mounted until their
unit is required by another volume.

vol~~_PaI~~!Q!-fg£ili1i~§: The
facilities of the VOLUME parameter
allow the programmer to:

• Bequest private volumes (PRIVATE)

• Request that private volumes remain
mounted until the end of the job
(RETAIN)

• Select volumes when the data set
resides on more than one volume
(volume-sequence-number)

• Request more than one nonspecific
volume (volume-count)

• Identify specific volumes (SER and
REF)

These facilities are all optional.
The programmer can omit the VOLUME
parameter when defining a new data
set, in which case the system assigns
a suitable public or scratch volume.

!QbQHE ~ub~~!g~§~
PRIVATE

indicates that the volume on which
space is being allocated to the data
set is to be made private. If the
PRIVATE, SER, and REF subparameters
are omitted for a new output data set,
the system assigns the data set to any
suitable public or scratch volume that
is available.

RETAIN
indicates that this volume is to
remain mounted after the job step is
completed. Volumes are retained so
that data may be transmitted to or
from the data set, or so that other
data sets may reside in the volume.
If the data set requires more than one
volume, only the last volume is
retained; the other volumes are
previously dismounted. Another job
step indicates when to dismount the
volume by omitting RETAIN. If each
job step issues a RETAIN for the
volume, the retained status lapses
when execution of the job is
completed.

volume-sequence-number
is a 1- to 4-digit number that
specifies the sequence number of the
first volume of the data set that is

read or written. The yolume sequence
number is meaningful only if the data
set is cataloged and earlier volumes
are omi t ted.

volume-count

SER

REF

specifies the number of volumes
required by the data set. Unless the
SER or REP subparameter is used this
subparameter is required for every
multivolume output data set.

specifies one or more serial numbers
for the volumes required by the data
sets. A volume serial number consists
of one to six alphanumeric characters.
If it contains fewer than six
characters, the serial number is left
justified and padded with blanks. If
SER is not specified and DISP is not
specified as NEW, the data set is
assumed to be cataloged. and serial
numbers are retrieved from the
catalog. A volume serial number is
not required for new output data sets.
Two volumes should not have the same
serial number. When the SER parameter
is included, the volume is treated as
PRIVATE commencingllith allocation for
the current job step. If this
subparameter is specified, the UNIT
parameter must also be specified.

indicates that the data set is to
occupy the same volume(s) as the data
set identified by dsname *.ddname,
*.stepname.ddname, or *.stepname.
procstep.ddname. Figure 12 shows the
data set references.

If SER or REP is not specified, the
control program will allocate any
nonprivate volume that is available.

1!lllt_£ll~!.~!tt!:_lQ~2.~!:ibin£LD.~iL~~t._1&llell
specifies information about the label
or labels associated with the data
set. If a data set is passed from a
previous job step, label information
is retained from the DD statement that
specified DISP=(,PASS). A LABEL
parameter, if specified in the DD
statement receiving the passed data
set, is ignored. If the LABEL
parameter is omitted and the data set
is not being passed. standard labeling
is assumed. The operating system
verifies mounting when the label
parameter specifies standard labels
(SL) or standard and user labels
(SUL). Nonstandard labels can be
specified only when installation-

Job Control Procedures 65

r- -,
I Option I Refers to I
I I f
IREP=dsname SA data set named dsname I
r ,------+1--4
IREF=*.ddname IA data set indicated by DD statement ddname in the J
f ,current job step I
r- I -~
I REF=*.stepname. ddname ,A da ta set indicated by DD statement ddname in the job t
I Jstep stepname t
I- I -f
fREP=*.stepnalle.p,rocstep.ddname, A data set indicated by DD statement ddname in the •
t I cataloqed procedure step procstep called in the job step.
I I stepname (see "Using t he Cataloged Proced urestI) f
L- I ____ J

Figure 12. Data set References

written routines to write and process
nonstandard labels have been
incorporated into the operating system
(see "User Label Processing" and the
publication Q~L~~~La~~ls for
information about writing these
routines).

1!~E~YRE~a!~'ter~:
data-set-sequence-number

66

is a 4-digit number that identifies
the relative location of the data set
with respect to the first data set in
a tape volume. (Fo,r example, if t.bere
are three data sets in a magnetic tape
volume, the third data set is
identified by data set sequence number
0003.) If the data set sequence
number is not specified, the operating
system assumes that it is 0001. (This
option should not be confused with the
volume sequence number, which
represents a particular volume for a
data set.)

specifies the kind of label used for
the data set. AL indicates American
Nationa 1 standard labels. AUL
indicates American National Standard
user labels. BLP indicates tha t the
system is not to perform label
processing for the tape data set. LTK
indicates that the data set bas a
leadingtapellark. A, indicates that
the data set has standard labels and
another subparameter follows. NL
indicates no labels. SL indicates IBM
standard labels. NSL indicates

nonstandard label. SUL indicates IBft
standard and user labels.

EXPDT=yyddd
RETPD=xxxx

specifies how long the data set shall
exist. The expiration date,
EXPDT=yyddd, indicates the year tyy)
and the day (ddd) that the data set
can be deleted. The period of
retention, RETPD=xxXX, indicates the
period of time, in days, that the data
set is to be retained. If neither is
specified, the retention period is
assumed to be zero.

PASSWORD
indicates that the data set is to be
made accessible only when the correct
password is issued by the operator.
The operating system assigns security
protection to the data set. In order
to retrieve the data set, the operator
must issue the password on the
console.

NOPWREAD

IN

OUT

indicates that the data set can be
read without the password, but the
correct password must be issued by the
opera tor be'fore the da ta set can be
changed, extended, or deleted.

indicates that the data set is to be
processed for input on1 y.

indicates that the data set is to be
processed for output only.

nrsp Paramete£~~ifying_~gi~~~1-~l~!!§
s!lLDi§l!2§iti,on}

describes the status of a data set and
indicates what is to be done with it
after its last use, or at the end of
the job. The job,scheduler executes

the requested disposition functions at
the completion o.f the associated job
step. If the step is not executed
because of an error found by the
system before trying to initiate the
step (e.g., an error in a job control
language statement) , the remaining
statements are read and interpreted;
hovever, none of the succeeding steps
are executed, and the requested
dispositions are not performed. This
parameter can be omitted for data sets
created and deleted during a single
job step. Additional information
about the relationship between the
DISP parameter and the volume table of
contents is contained in "Additional
File Processing Information."

!H.~g~ubllara meters:
NEW

OLD

SUR

MOD

indicates that the data set is being
generated in this step. If the status
is omitted, the NEW subparameter is
assumed.

indicates that the data set specified
in the DSNAME parameter already
exists.

has meaning only in a multiprogramming
environment for existing data sets
that reside on mass storage volumes.
This subparameter indicates that the
data set is part of a job in which
operations do not prevent simultaneous
use of the data set by another job.
FO.r a non-VSAM data set that is to be
shared, the DD statement DISP
para meter should be specified as
DISP=SHR for every re.ference to the
data set in a job. Unless this is
done, the data set cannot be used by a
concurrently operating job, and the
job viII have to vait until the
particular file is free.

l!21g: For VSAM data sets, this
subparameter alone does not guarantee
that sharing will take place. For
mO.re information see the chapter "Data
Security and Integrity" in the
publication Q~~-yir1~al~~~~
!£~§2-~hod_J.VSAML.f!.:2g£gmmer.!.§
~uidg.

causes logical positioninq after the
last record in the data set. It
indicates that the data set already
exists and that it is to be added to,
rather than read. When MOD is
specified and neither the volume
serial number is given nor the data
set cataloged or passed from an
earlier job step, MOD is ignored and

NEW is assumed. If the volume serial
number is given, it is assumed that
the data set is on the specified
volume.

DELETE

KEEP

PASS

CATLG

causes the space occupied by the data
set to be released for other purposes
at the end of the current step. If
the da ta set is ca taloged, an d the
catalog is used to locate it,
reference to the dataset is removed
from the catalog. If it is on a mass
storage device, all references are
removed from the volume table of
contents, and the device space is made
available for use by other data sets.
If the data set is on tape, the volume
in which the data set resides is then
a vail able for use by other da ta sets.

ensures that the data set remains
intact until a DELETE parameter is
exercised in either th~ current job
orsome subsequent job. If the data
set is on a mass storage device, it
remains tabulated in the volume table
of contents after completion o.f the
job. When the volume containing the
data set is to be dismounted, the
operator is advised of the
disposi tion ..

indicates that the data set is to be
referred to in a later step of the
current j6b, at which time its
disposition may be determined. When a
subsequent reference to this data set
is encountered, its PASS status lapses
unless another PASS is issued. The
final disposition of the data set
should be specified in the last DD
statement referring to the data set
within the current job.

While a data set is in PASS status,
the volume(s) on which it resides are,
in effect, retained; that is, the
system will attempt to avoid
demounting them. If demounting is
necessary, the system will ensure
proper remounting, through operator
messages. The unit name specified on
the DD statement in the receiving step
must be consistent with the unit name
in the passing step ..

causes the creation, at the end of the
job step, of an index entry in the
system catalog pointing to the data
set. The data set ca n be referred to
by name in subsequent jobs, without
the need for volume serial number or
device type information from the

Job control Procedures 67

programmer. Cataloging also implies
KEEP.

UNCATLG
causes the index entry that points to
this data set to be removed from the
index structure at the end of this
step. The data set is not deleted.
If it is on a mass storage volume,
reference to it remains in the volume
table of contents.

JiQig: The absence of DELETE, KEEP#
PASS, CATLG, and UNCATLG indicates
that no special action is to be taken
to alter the permanent or temporary
status of this data set. If the data
set was created in this job, it will
be deleted at the end of the current
step. If the data set existed before
this job, it will be kept.

The third subparameter indicates the
disposition of the data set in the event
the job step terminates abnormally. This
is the conditional disposition
subparameter. Explanations for DELETE,
KEEP, CATLG, and UNCATLG are the same as
those for normal termination. The
f~llowing points should be noted when using
the third sub parameter.

• If a conditional disposition is Dot
specified and the job step abnormally
terminates, the requested disposition
(the second subparameter) is performed.

• Data sets that were passed but not
received by subsequent steps because of
abnormal termination will assume the
conditional disposition specified the
last time they were passed. If a
conditional disposition was not
specified at that tiae, all new data
sets are deleted and all other data
sets are kept.

• A conditional disposition other than
DELETE for a temporary data set is
invalid and the system assumes that it
is DELETE.

~I~QU'l Paramtlg!:-1RQutinSLl!!!ta set throu!!!!
ihg~~~reagl

schedules a printinq or punching
operation for the data set described
by the DD statement.

~I~QQI~ubearameters:
classname

68

speci fies the system output class on
which the data set is to be written.
A class name is an installation
specified 1-character name designating
the oat put class to which the data set
is to be written. Each classname is

related to a particular output unit.
Valid values for the SYSOUT parameter
are A through Z and 0 through 9. A is
the standard output class.

H21~: Classes 0 through 9 should not
be used except in cases where the
other classes are not sufficient.
These classes are intended for future
features of systems.

(classname[, program-name][,form-no])
classname specifies the class
associated with the output device to
which the output data set is to be
written. output writers route data
from the output classes to system
output devices. The DD statement tor
this data set can also include a unit
specification describing the
intermediate mass storage device and
a.D estimate of the space required.. If
there is a special installation
program to handle output operations,
its program-name should be specified.
Program-name is the member name of the
program, which must reside in the
system library. If the output data
set is to be printed or punched on a
specific type of output form, a
4-digit form number should be
specified. Porm-no. is used to
instr uct the opera tor of the form to
be used in a message issued at the
time the data set is to be printed.

• If both the program-name and form-no.
are omitted, the delimitinq parentheses
can be omitted.

• If the Direct SYSOUT Writer is used to
write a data set, both the form-no.
and program-name are ignored. All
parameters on the DD statement, i.e.,
UNIT or SPACE, are also ignored •

f£~~~~~mgte~~eg£ifYiRY-Qut~t fQ£-s-1l1!
f£in!.g!:_~~_3525_£~~~_Pun£~)

is used to select the forms control
image to be used to print an output
data set on a 3211 printer, or a 3525
card punch with the read feature. The
FCB parameter will be ignored if the
data set is not written to either one
of these devices. The FCB parameter,
the DDNAME parameter and the DCB
subparameters RKP, CYLOFL, and INTVL,
are mutually exclusive.

l£!LSubparameters:
illage-id

identifies the image to be loaded into
the forms control buffer. For further
information on the forms control

buffer. see the publication as/vs Dat~
!1~~~U!!!§U fOL~ystem Proqrammer§.

ALIGN
VERIFY

requests the operator to check the
alignment of the printer forms before
the data set is printed or to verify
that the image displayed on the
printer is the desired one.

!tlf_pa~~L1SJ2.gcifyinq Information fo£
'y~AM Proce2§.i.n.g)

specifies information to be used for
processing by VSAM. The AMP parameter
and its subparameters are described
under "VSAM-only JCL Parameter" in the
chapter "VSAM File Processing".

By specifying certain ddnames, the
programmer can request the operating system
to perform additional functions. The
operating system recognizes these
spec ia 1- purpose ddna mes:

• JOBLIB and STEPLIB to identify private
user libraries

• SYSABEND and SYSUDUMP to identify data
sets on which a dump may be written

• SYSCHK to identify t he checkpoint da ta
set written during the original
execution of a processing program.

• JOBCAT and STEPCAT to identify VSAM
user catalogs.

JOBLIB AND STEPLIB DD STATEMENTS

The JOBLI Band STEPLI B DD statements are
used to concatenate a userts private
library with the system library
(SYS1.LINKLIB). Use of JOBLlB results in
the system library being combined with the
private library for the duration of a job;
use of STEPLIB, for the duration of a job
step. During execution, the library
indicated in these statements is scanned
for a module before the system library is
searched.

The JOBtlB DD statement must appear
immediately after the JOB statement and its
operand field must contain at least the
DSNAME and OISP parameters. The DISP
parameter must contain PASS as the second
subparameter if the library is to be made

available to later job steps. Only one
JOBLIB statement may be specified for a job
but more than one library may be specified
on a JOBLIB statement. The JOBLIB
statement is meant to concatenate existing
private libraries with the system library.
It need not be specified for load mod Illes
created in the job or for permanent members
of the system library (see "Checklist for
Job Control statements" and "Libraries" for
examples) •

The STEPLIB DD statement may appear in
any position among the DD statements for
the job step. The library should be
defined as OLD. If the library is to be
passed to other job steps, the second
subparameter of the DISP parameter should
be coded PASS. A later job step may then
refer to the library by coding its STEPLIB
DO statement as follows:

//STEPLIB DD DSNAME=*.stepname.STEPLIB, X
II DISP=(OLD,PASS)

The STEPLIB statement overrides the
JOBLIB statement if both are present in a
job step.

SYSABEND AND SYSUDUMP OD STATEMENTS

The ddnames SYSABENO or SYSUDUMP
identify a data set on which an abnormal
termination dump may be written. The dump
is provided for job steps subject to
abnormal termination.

The SYSABEND DO statement is used when
the programmer wishes to inclUde in his
dump the problem program storage area, the
system nucleus, and the trace table if the
trace table option had been requested at
system generation time.

The SYSUOUMP DO statement is used when
the programmer wishes to include only the
problem program storage area.

The programmer may rout the dump
directly to an output writer by specifying
the SISOUT parameter on the DD statement.
In a mul ti programming environment, the
progra IDIDer may also define the intermedia te
direct-access device by specifying the UNIT
and SPACE parameters.

SYSCHK DO STATEMENT

The SYSCHK DO statement is required when
a job is being submitted for deferred
checkpoint/restart. It defines a

Job Control Procedures 69

checkpoint data set written during the
original execution of a processing program.
For detailed information about the
checkpoint/restart facilities. see the
publication ~L!~Ch~£~ointL~2taI1.

The SYSCHK DD statement must immediately
precede the first EXEC statement of the
resubmitted job when restart is to begin at
a checkpoint. The RESTART parameter must
be included on the JOB statement; otherwise
the SYSCHK DD statement will be ignored.

Different SYSCHK DD statement parameter
spec if ication rules apply depending on
whether the checkpoint data set is
cataloged or not. These rules are
discussed in detail in the publication
Q~LY~J£1_Refer~n£g.

JOBCAT AND STEPCAT DD STATEMENTS

The JOBCAT DD statement specifies the
VSAM user catalog that is to be available
throuahout a VSAM processing job, while the
STEPCAT DD statement specifies the VSAM
user ca talog that is to be a vailable for a
single job step in a VSAM processing job.
For more detailed information on the
facilities provided by the JOBCAT and
STEPCAT DD statements, as well as the
specification rules, see the publication
~~L!~Vi~YA1-~iQ~~~ AC£g22_~ethog_J!~!~l
££Qg~~g£~_~~!de.

The PRGC statement may appear as the
first control statement in a cataloged
procedure and must appear as the first
control statement in an in-stream
procedure. The PROe statement must contain
the term PRoe in its operation field. For
a cataloged procedure, the PRce statement
assigns default values to symbolic
parameters defined in the procedure; its
operand field must contain symbolic
parameters and their default values. The
PRGe statement marks the beginning of an
in-stream procedure; its operand may
contain symbolic parameters and their
defa ul t va lues.

The PEND statement must appear as the
last control statement in an in-stream
procedure and marks the end of the
in-stream procedure. It must contain the

70

term PEND in the operation field. The PEND
statement is not used for cataloged
procedures. For further information about
in-stream procedures, see .fTesting a
procedure as an In-Stream Procedure" in
"Osing the Cataloged Procedures."

The opera tor issues commands to the
system via the console or a command
statement in the input stream. Commands
can also be issued to the system via a
command statement in the input stream.
However, this should be avoided since
commands are executed as they are read and
may not be synchronized with execution of
job steps. Command statements must appear
immediately before a JOB statement r an EXEC
statement, a null statement, or another
command statement.

The command statement contains
identifying characters VI) in colUmns
and 2, a blank name field, a command, and,
in most cases, an operand field. The
operand field specifies the job name, unit
name, or other information being
considered.

Note: A command statement cannot be
continued, it must be coded on one card or
card image.

The delimiter statement marks the end of
a data set in the input stream. The
identifying characters 1* must be coded
into columns 1 and 2. the other fields are
left blank. Comments are coded as
necessary.

1iQ!.~: The end of a data set need not be
marked in an input stream that is defined
by a DD * statement.

The null statement is used to mark the
end of a job in an input stream. It causes
the card reader file to be effectively
closed. The identifying characters II are
coded into columns 1 and 2, and all
remaining columns are left blank.

The comment statement is used to enter
any information considered helpful by the
programmer. It may be inserted anywhere in
the job control statement stream after the
JOB statement. (The comment statement
contains a slash in columns 1 and 2, and an
asterisk in column 3. The remainder of the
card contains comments.) Comments are
coded in columns 4 through 80, but a
com men t may not be con tinued 0 nto another
statement.

When the comment statement is printed on
an output listing, it is identified by the
appearance of asterisks in columns 1
through 3.

The batch compile feature is used to
compile multiple programs or subprograms
with one invocation of the compiler. The
object programs produced from the batch
compilation may be link-edited into either
one load module or separate load modules.

This feature must be requested at
compile time by specification of BATCH in
the PARM field or, if a cataloged procedure
is used, in the PARM.COB field of the EXEC
card. In the BATCH mode, all options
specified on the EXEC card, as well as all
default options, apply to every program in
the batch unless specific options are
overridden, via the CBL card, for an
individual compilation.

The CBL card must be the first card in
each program within a batch mode. The CBL
card, in addition to separating logical
program units, may be used to change
existing options (as they were specified
or defaulted to on the EXEC card) for that
individual program, and has the following
format: .

r-- ,
I J
JCBL [option 1X,option 2] ••• [,option'n] •
, I
L- --J

The letters £]1 may appear in any three
consecutive columns 1 through 12, and the
option{s) specified may be any PARM
compiler option (s) gxc~H~!. SIZE, BUF, BATCH,.
L120, L132, SYMDMP. and LVL, which are
ignored if indicated.

• A sequence number may appear in columns
1 through 6 of the CBL card.

• In most cases, an option specified on
the CBL card overrides the correspond
ing EXEC card option for compilation
of that one program only. However,
this is not true in the case of options
that require use of a file that will
be used in a subsequent compilation
in the batch, or in a subsequent job
step. Generally speaking, it is unwise
to use the CBL card to specify any such
option, because use of that file in
compilation may cause an abend. Options
in this category are LOAD, LIB, DECK,
FDECK, and CDECK.

If some programs in a batch compilation
require the use of one of these options
and the other programs do not, specify
the option on the EXEC card, and then
specify the NO ••• form of the option
on those CBL cards where the option is
not wanted. For example, if programs
2, 3, and 5 in a batch compilation
require FDECK and programs 1 and 4
require NOFDECK, then FDECK should
be specified (or defaulted to) on the
EXEC card, and NOFDECK specified on
the CBL cards for programs 1 and 4.
(It would not be possible to specify
or default to NOFDECK on the EXEC
card and then override it with FDECK
on a CBL card.)

• If a CBL card is present and BATCH is
not specified on the EXEC card, the CBL
card is regarded as an invalid
statell ent.

• If the compiler NAME option is
specified on the CBL card, a linkage
editor NAME control card is generated
for this compilation, facilita ting the
link-editing of the program into a
separate load module.

• The output of a batch compilation may
be executed only if the member name
specified at compile time is the name
specified at execution time.

• The batch option may be used in
conjunction with BASIS. This facility
provides the COBOL programmer with th~
ability to combine a (multiple) BASIS
library member{s) and/or a (multiple)
COBOL source program(s) with one
invocation of the compiler.

• The BATCH option and the ~YMDMP option
are mutually exclusive.

Job Control Procedures 71

When the batch option is used in
combination with BASIS, the following rules
apply:

1. All the BASIS library members to be
compiled must be members of the
partitioned data set(s) referred to by
the SYSLIB DD data set name(s).

2. Each BASIS library member must contain
only one source program.

Figure 13 shows that with one invocation
of the COSUCL cataloged procedure (see the
chapter "Using the Cataloged Procedures"),
the programs COMPILE1, COMPILE2, and
COMPILE3 are compiled and two load modules
created as follows:

r------------------

1. COMPILE1 and COMPILE2 are link-edited
together to form one load module with
the member name of COMPILE2. a typical
calledlcalling situation. (For
further discussion of articulation
between COBOL programs, see the
chapter "Called and calling
Programs".) In this case~ the entry
point o.f the load module is still the
first program, COMPILE1.

2. COMPILE3 is link-edited to create the
load module with the member name of
COMPILE3.

Figure 14 shows that with one invocation
of the COBUCL procedure the programs PROG1
and PROG2 and BASIS library members PAYROLL
and PAYROLL2 are compiled and four load
modules are created. (An example of how to
execu.te load mod ules created wi th the BATCH
feature using the procedure COBUCL is qi ven
in Figure 1.3.)

,
Illjobname
IIICOMPILE

JOB
EXECl
DD

1, BATCH, MSGL EVEL= 1
COBUCL,PARM.COB:'BATCH,NAME'

I
I
J
I
I
J
I
J
I
J ,

, IICOB. SYSIN
I CBL NONAME

ID DIVISION.
PROGRAM-ID.

CBL NAME
ID DIV IS.ION.
PROGRAM-ID.

CBL NAME
ID DIVISION.
PROGRAft-ID.

*

COMPILE1.

COMPILE2.

COMPILE3.

I
I
J
t
I
t
I

1/* I
IIILKED.SYSLMOD DD DSN=BATCHRON,SPACE=(TRK, (10,5,2) ••••• J
1/* J
IIICOMPILE2 EXEC PGM=COMPILE2 I
IIISTEPLIB2 DD DSN=BATCHRUN2,DISP=SHR,.... I
III (Cards needed to execute CO~PILE1 and COftPILE2) I
1/* t
'1ICOftPILEJ EXEC PGM=COftPILE3 ,
'IISTEPLIB DD DSN=BATCHRUN. DISP=SHR... •• I
III (Cards needed to execute COMPILE3) •
1/* J
~ ~
11In the compile step, no special JCt is needed for SISLIN because the cosueL cataloged I
I procedure is used (see the cba pter 1IUsing The cataloged Procedures"). I
12 In the link-edit step, a partitioned data set is created with the DSN of BATCHRUN. I .L-____________________________ . ______________ ___

Figure 13. Example of a Batch Compilation

72

,- ,
Jlljobname
IIICOMP
~//COB.SYSLIB

I//COB.SYSIN

JOB
EXEC
DD
DD

1,BATBASIS,MSGLEVEL=1
COBUCL,PARM.COB='BATCH,NAME,LIB'
DSN=LIB1?OS, ••• l

I
t
I
I
I
I ,

J CBL
I
J

• I
J CBL
JBASIS
1 CBL
fBASIS
, CBL
1
I
t
J
1/*

* NAME, NOLI B
IDENTIFICATION DIVISION.
PROGRAM-ID. PROG1.

NAME
PAYROLL
NAME
PAYROLL2
NAME, NOLIB
IDENTIFICATION DIVISION
PROGRAM-ID. PROG2.

J
f
J , ,
I
J
I
I
I
f
I

J I /LKED. SYSLl10DZ DD DSN=BATCHBAS,SPACE=(TRK, (10,5,~), ••• • I 1/*
I-
J1This partitioned
!ZThe load mod~les
I partitioned data

data set contains as separate members PAYROLL and PAYROLL2.
of these four COBOL programs exist as separate members of a
set named BATCHBAS.

-f
J ,
J

~ ~

Figure 14. creation of Four Load Modules with Programs PROG1 and PROG2 and BASIS
Library Members PAYROLL and PAYROLL2

COMPILER

A number of data sets may be defined for
a compilation job step; six of these
(SYSUT1, SYSUT2, SYSUT3, SYSUT4, SYSIN, and
SYSPRINT) are always required. SYSUT5 is
required if the SYI1DMP or TEST option is
invoked. SYSUT6 is required if FIPS
flagging is requested. Additional data
sets (SYSLIN. SYSPUNCH, SYSTERI1, and SYSLIB
and/or other COpy libraries) are optional.

For compiler data sets other than
utility data sets, a logical record size
can be specified by using the LRECL and
BLKSIZE subparameters of the DCB parameter.
The values specified must be permissible
for the device on which the data set
resides. LRBCL equals the logical record
size, and BLKS.IZE equals LRECL multipl.ied
by a, where n is equal to the blocking
factor. If this information is not
specified in the DD statement, it is
assumed that the logical record sizes for
the unblocked data sets have the following
defa ul t values:

Unblocked
~ta S~l
SYS.IN
SYSLIN
SYSPUNCH
SYSLIB or other

COpy libraries
SYSPRINT
SYSTERfIl

Default
Val~_ll!Yl£.2l.

80
80
80

80
121 or 133

121

!Q~: The default for SYSPRINT has a value
of 133 if 132 is selected with LSTCOMP or
LSTONLY.

The ddname that must be used in the DD
statement describing the data set appears
as the heading for each description that
follows. Figure 15 lists the function,
device requirements, and allowable device
classes for each data set. (See" Appendix
D: Compiler Optimization" for further
information on blocked compiler data sets
other than utility data sets.)

The DD statements using these ddnames
define utility data sets that are used by
the compiler when processing the source
module. The data set defined by the SYSUT1
Dn statement must be on a mass storage
device. Except for SYSUT5, which is needed
at execution time, these data sets are

Job Control Procedures 73

temporary and have no connection with any
other job step. For example, the DD
statement

//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK, (40,10»

specifies that the data set is to be
written on any available mass stor~ge
device, with a primary allocation of 40
tracks. Additional tracks, if required,
are to be allocated in groups of 10. The
data set is to be deleted at the end of the
job step (by default).

IQi~: The NULLPILE or DUMMr parameter or
the RLSE subparameter of the SPACE
para meter should never be specified for any
of these data sets. In addition, the data
sets must be single volume, since the
compiler uses the TCLOSE facility
extensively and TeLOSE will not reposition
multivolume data sets.

The data set defined by the SYSIN DD
statement contains the input for the
compiler, i.e., the source module
statements that are to be processed. The
data set assigned to this DD statement is a
sequential data set, or a member of a
partitioned data set. It may be part of
the input stream. If so, it is commonly
referred to as a SYSIN data set. For
example,

IISYSIN DD *
specifies that the input data set follows
in the input stream.

This data set is used by the compiler to
prod uce a listing. OutPllt may be directed
to a printer, a mass storage device, or a
magnetic-tape device. The listing will

74

include the results of the default or
specified options of the PARM paramete.r
(i.e •• diagnostic messages, the object code
listing) • For e.xample .. in the DD statement

/ /SYSPRI NT DO SYSOUT=A

SYSOUT is the disposition for printer data
sets. and A is the standard output class
.for printe.r da ta sets.

The data set defined by the SYSTERM DD
statement is used for certain compiler
output for a TSO terminal user when the
TERM option is specified. The compiler
output consists of diagnostic and progress
messages and compiler statistics. For
example:

//SYSTERt1 DD TERf'l=TS

TERM=TS indicates that the SYSTER~ data
set is to be directed to the TSO terminal.

The data set defined by the SYSPUNCH DD
statement is used to punch an object module
deck or. if FDECK or CDECK is specified, to
punch a source deck. This data set can be
directed to a card punch.. mass storage
device, or magnetic tape. For example. in
the DD statement

IISYSPUNCH DD SYSOUT=B

SYSOUT is the disposition for punch data
sets, and B is the standard output class
for punch data sets.

Note: The SYSPUNCH DD statement is not
required if NODECK is in effect. SYSPUNCH
may be either a sequential da ta set or a
member of a PDS.

.-- .
J 1 Device Allowable
I ddnalle Type Function 1 Requirements Device Classes •
'-J -+- --of
ISYSIN Jlnput/outputlReading the source 1Card reader 1SYSSQ. SYSDA, or th~1
I (required)' Iprogram IIntermediate storagelinput stream device,
• ., I I • (specified h y DO * ,
I I J I lor DD DATA) I
.- 'I -+- , ---I
,SYSPRINT I IWriting the storage 1Printer ISYSSQ, SISDA, stand-I
J (required) I ,map, listings, and IIntermediate storagelard output class A t
I I I and messages I I I
f- ,. I -+- ,
fSYSTERM J ,Writing diagnostic loutput device I I
1 {optional) I land progress messageslTSO terminal, I
f- ,I- I t ~
fSYSPUNCH , IPunching the object ,Card punch ISYSCP, SYSSQ, SYSDA"
I (optional)J Jmodule deck IMass storage Istandard output I
I I. ,Magnetic tape Jclass B I
I I I I f ~
JSYSLIN, Icreating an object ,Mass storage ,SY55Q, SYSDA t
I (optional), Imodule data set as ,Magnetic tape 1 I
a J ,output from the com- I t I
I t Ipiler and input to I J J

I I Ithe linkage edi tor J 1 1
f-- I Iff --f
ISYSUT1 I Utility IWork data set needed ,Mass storage lSYSD1 J
I (required) I I by the compiler. I I
I I Idnring compilation I 1 •
I-- ,''- I --+- f
JSYSUT2 t ,Work data set needed ,Mass storage lSYSSQ, SYSDA f
, (required) 1 I by the compiler J Magnetic tape 1 I
I I Jdurinq compilation J 'I t
f- ~ I- J J of
,SYSUT3 I ,Work data set needed lMass storage ISYSSQ, SYSDA J
I (required) • I by the compiler I Magnetic tape 1 1
I • Iduring compilation I I I
I- I l- I t --t
fSYSUT4) IWork data set needed ,Mass storage JSYSSQ. SYSDA J
I (required) t f by the compiler I Magne tic tape J t
, 1 Jduring compilation , I ,
• ,''- I f ~
ISYSUT5 J ,Work data set needed (Mass storage fSYSSQ, SYSDA J
I I 1 when SYMDMP or TEST ll1aqne tic tape) I
I I ,option is in effect t t J
I-- I I -+- I --f
I SYSUT6 J Utility I Work data set needed ,Mass storage I SYSSQ, SYSDA I
I I t \f hen LiL option is in, Magne tic ta pe I ,
I • ,effect I I 1
I-- • i- J 1 --f
,SYSLIB I Library Joptional user source IMass storage ISY5DA t
J and/or I tprogram libraries , I I
lother COPYI J I J J
Ilibraries I. I , J
I (optional) I. I I t
I-- I -'-- -.L- of
IIQt.~: Once created, a SYSUT5 data set can be moved only to a device of the same type. I
,That is, if the SYSUT5 data set is put on tape at compile time, that data set cannot bel
I moved .to a disk at execution time. The SYSHT5 da ta set must be unblocked. I
~ J

Figure 15. Data Sets Used for compilation

~YS~IN an object module. It may be on a mass
storage or magnetic tape device. For
example:

The device defined by the SISLIN DD
statement is used by the compiler to store

Job Control Procedures 75

IISYSLIN DO
II
II
II

OSNAME=&&GOFILE,
DISP= (MOD,PASS) ,
UNIT= SISD A,
SPACE=(TR~,{30,10»)

x
X
I

The temporary name of the data set is
GOFILE, the parameter DISP=(MOD,PASS)
indicates that the data is to be created or
added to in this job step and is to be
passed to another job step, which may be
the linkage editor step. The device to be
assigned for storage is a mass storage
device on which 30 tracts are initially
allocated to the data set. If more space is
needed, tracks are allocated 10 at a time.

Note: The SYSLIN DO statement is not
~;~~ired if NOLOAD is in effect. SYSLIN
may be either a data set or a member of a
POSe

These DD statements define the libraries
(PDS's) that contain the data requested by
COpy state~nts (in the source module) or
by a BASIS card in the input stream. The
DD statement must be SYSLIB if a BASIS
library is to be included, or if the COpy
statement does not specify a library name
(by qualifying the text name). Libraries
must always be on mass storage devices.
Note that more than one partitioned data
set may be used for the library function by
concatenating them with SYSLIB (see
"Libraries" for an example). Although only
one SYSLIB statement may be used in a
compilation job step, multiple user-defined
COpy libraries may be used. For example,
in the DD statements

//SYSLIB
/IHOUSELIB
//PRIVLIB

DD DSNAME=USERLIB,DISP=OLO
DDOSNA ME='COPYX, DISP=OLD
DD DSNAME=COPY~,DISP=OLD

the names of the source libraries are
USERLIB* COPYX, and COPYZ. DISP=OLD
indicates that the libraries have been
created in a previous job and are
cataloged, or have been created in a
prev ious ste p in this job. No other
information need be given if the specified
libraries ha ve been ca taloged.

Notes: Maximum b10cksize for any COpy
library is 16K (there is no such
restriction for BASIS).

When concatenating SYSLIB, the library
with the largest blocksize must be
specified in the first DD statement.

76

The SYSLIB and other COpy library DD
statements are not required if NOLIB is in
effect.

LINKAGE .EDITOR

pive data sets are required for linkage
editor processing. Others may be necessary
if secondary input is specified. In the
following discussions, the ddname that must
be used in the DD statement describing the
data set appears as the heading for each
description of the particular data set.
For any user-defined data set, the ddnaae
is defined by the programmer. Pigure 16
lists the function, device requirements*
and allowable device classes for each data
set.

The SYSLIN DD statement defines the data
set that is primary input to linkage editor
processing. Norma 11 y this data set
consists of the output from a previous
compilation job step. The primary input
may also be linkage editor control
statements, such as the INCLUDE, LIBRA.RY,
or OVERLAY statements (see "Calling and
Called Programs"). The input device
assigned to this data set is either the
device transmitting the input stream. if
the input is an object module deck, or a
device designated by the programmer.
However, the data set may simply be passed
from the previous compilation job step.
For example, in the DD statement

//5YSLI5
II

DD DSNAME=*.STEPNAME.SYSLIN, X
DISP=(OLD,DELETE)

the data set is defined in the SISLIN DD
statement contained in the compiler job
step, STEPNAME. DISP=(OLD.DELETE)
indicates that the data set was created in
a previous job step and is to be deleted at
the end of this job step.

SYSPRINT

The data set defined by the SYSPRINT DD
statement is used ,by the linkage editor to
produce a listing. For example:

I/SYSPRINT OD SYSOUT=!

Output may be directed to a printer or to
an intermediate data set. The listing aa,
include any options specified by the PAIU!
parameter of the EXEC statement (a module
map or cross reference list, diagnostic or
informative messages, etc.).

,.-- ,I' -r------,
I I I Device, Allowable I
I ddname J Type J Function 1 Requirements 1 Device Classes ,
.-- I I -+- I ~
,SYSLIN IInputl I primary input data, IMass storage ,SYSSQ, SYSDA, or the inputl
I (required) loutput I normally the output IMagnetic tape J stream device (specifiedt
, 1 I of tbe compiler ,Card reader. by DO * or DD DATA) I
I-- • I I , of
ISYSPRINT , IDiagnostic messages IPrinter lSISSQ, standard output I
I (required) II Informative messages ,Intermediate I class AI
, t I Kodule map J storage J I
I J t Cross-reference list I J I
I 'I , -+- -i
ISYSLMOO I loutput data set for IMass storage ISYSDA I
I (required) J I the load module, I J

.... -- 1 tit- .,
ISYSUT1 lutilitylwork data set IMass storage ISISDA t
I {required) I I 1 I I
r-- +----t I I of
ISYSLIB I LibrarYI Automatic call librarY1Mass storage ISISDA I
I (required) I I (SYS1.COBLIB is the, f I
I for COBOL 1 I name of the COBOL I I I
,Library J J subrou tine library) 'I I
I subroutines 1 J J I I
I- 1 ---+ I I --t
I SYSTERM I I Numbered erro,r/warning) Printer I J
I (required, I messages ITSO terminal I J
J if TERM op- I I J II
, tion is I J I I I
I specified) I I It'
I- I I I-+- ..
IUser-specified, I Additional object IMass storage ISYSDA, SYSSQ I
J (optional) I I modules and load I Magnetic tape I •
, 1 1 modules I' I
L- ' • --L-- .J

Figure 16. Data Sets Used for Linkage Editing

The SISTER! DD statement is optional: it
describes a data set that is used only for
numbered error/warning messages. Although
intended to define the terminal data set
when the linkage editor is being used under
TSO, the SYSTERM DD statement can be used
in any environment to define a data set
consisting of numbered error/warning
messages that supplements the SISPRINT data
set.

SYSTER" output is defined by including a
SISTER" DD sta'tement and speci.fying TER" in
the PARM field of the EXEC statement. When
SYSTERM output is defined, numbered
messages are then vri tten to both the
SYSTERft and SISPRINT data sets.

The SYSTER! DD statement is specified as
follolls:

IISYSTERM DO SYSOUT:!

The SYSLMOD DD statement defines the
output data set, in this case the lo~d
module. The load module must be placed in
a library as a named member. The library
can be the Link Library (SYS1.LINKLIB) or a
private user-defined library. such
libraries must always reside on a mass
storage device, and space for the library
is allocated when the library is created.
For example, in the DO statement

IISISJ.MOD DD DSNAME=SYS 1. LINKLIB(MEMBER) , X
II DISP=OLD

the load module, ME~BER, is stored as a
member of the link library. DISP=OLD
indicates that the library is already
created and additions are to be made to it.

IISISLliOD
1/
II
II
II

DD DSNAME=LIBl (BALANCE),
DISP=(NEW,CATLG) ,
VOLUME=SER=111111,
SPACE={TRK, (40,10,1»,
UNIT=SYSDA

x
X
X
X

Job Control Procedures 11

The load module, BALANCE, is to be a member
of a library, LIB1, which is to be created
in this job step, with BALANCE as its
firstmember. The mass storage volume to
which it is directed is identified by the
serial number, 111111. A primary quantity
of 40 tracks is allocated to the library
with an additional allocation for one
256-byte record to be used for the
directory. If more space is needed for the
library, tracks are added, 10 at a time.
(However, no additional space can be
allocated for the directory.)

IQt~: If the load module is placed in a
pri vate libr ary, the JOBLI B or STEPLID DD
statements must be specified in subsequent
jobs that execute load modules from the
library.

The SYSUT1 DD statement defines a
utility data set used by the linkage editor
when processing object modules and load
modules. The data set must be on a mass
storage device. It is a temporary data set
and has no connection with any other job
step. For example:

IISYSUTl DD UNIT=SISDA,SPACE=(TRK,{40,10»

The data set is initially allocated 40
tracks on any available mass storage
device. If more space is neededj tracks
are added, 10 at a time. A temporary name
is assigned to the data set for the job
step.

The SYSLIB DD statement assigns the
named partitioned data set to the automatic
call library from which modules may be
automatically obtained by the linkage
editor to resolVe external references.

//SYSLIB DD DSNAME;SYS1.COBLIB,DISP=SHR

This statement assigns the COBOL subroutine
library to the automatic call library.
When there is a possibility that the
compiler ~dy have generated calls to any
COBOL library subroutines, the SISLIB
statement must be specified (see "Appendix
B: COBOL Library subroutines" for a list
of library subroutines, their functions,
and entry points).

78

Additional data sets may be defined for
linkage editor processing. ~hese data sets
may be used as additional input sources of
object modules or load modules. They may
also be concatenated with the primary input
data set or the automatic call library (see
"Libraries").

LOADER

One data set (SISLIN) is required for
loader processing. Three are optional
(SYSLIB, SYSLOUT and SYSTERl'I). (These
ddnames can be changed during system
generation with the LOADER macro
instruction.) In addition, any DD
statements and data required by the loaded
program mus·t be included in the input deck.

In the following discussions, the
default ddnaae for the DO statement
describing the da ta set appears as the
heading for each description of the
particula.r data set.

The SYSLIN DD statement defines the data
set that is primary input to the loader.
This input can be either object modules
produced by the COBOL compiler or load
modules produced by the linkage editor, or
both. The loader allows both object module
and load module conca tenation on SISLIN.
The data sets defined by the SISLIN DD
statements can be either sequential data
sets or members of a partitioned data set,
or both.

The SYSLIB DD statement defines the data
set containing IBM or user-vri tten library
routines to be included in the loaded
program. The SYSLIB data set is searched
when unresolved references remain after
processing SYSLIN and, optionally,
searching the link pack area of OS/VS2 or
the resident reenterable modules feature of
OS/VS1. The library may contain either
object modules or load mod Illes but not
both. The data set defined by the SISLIB
DD statement must be a partitioned data
set.

The SYSLOUT DO statement defines the
data set used for error and warning
messages and for an optional map of
external references. The data set must be
a sequential data set. The record format
of S YSLOU'!' is always ass umed to be F BSA.

EXECUTION TIME DATA SETS

Any number of data sets may be used for
execution time processinq. These data
sets, or files, are identified in the
source program, and each must be described
by a DD statement. The ddname is used to
link the DD statement to the COBOL ASSIGN
clause in the source program that specifies
the ddname. DD statement requirements for
the DISPLAY, ACCEPT, EXHIBIT, and TRACE
statements are discussed in the following
text. DD statements that specify COBOL
debugging aids and an abnormal termination
dump are also discussed. Use of either the
Sort or the RERUN feature requires
additional DD statements. For information
about these statements, see "Using the sort
Feature" and .fUsing the CheckpointlRestart
Feature."

The DISPLAY statement requires an
associated DD statement unless the data is
to be displayed on the console. The DD
statements needed for each form of the
DISPLAY statement are as follows:

!n.!!l?!.~L.1 :

{
identifier}

DISPLAY ••• UPON SYSPUNCH
literal

IISYSPUNCH DD applicable parameters

It is assumed that SI~UN£!! is an
unblocked data set that has a logical
record length of 80 characters. For
example:

IISYSPUNCH DD SYSOUT=B

However, the programmer can specify a
blocked data set by using the subparameters
of the DCB parameter as follows:

RECFM=FB,BLKSIZE=n*80

where:

n is the blocking factor

SYSPUNCH must be on a device where blocking
is permitted. For example:

IISYSPUNCH
II
II
II

DO UNIT=SYSSQ,
DCB= (RECFM=FB,
BLKSIZE=160),
LABEL= (, NL)

When the UPON option is omitted, SYSOUT is
the default option.

{

identifier}
DISPLAY

literal

IISYSOUT DD applicable parameters

x
X
X

It is assumed that SYSOUT is an
unblocked data set that has a line width of
121 characters (1-byte for the control
character) •

Por example:

I/SYSOUT DD SYSOUT=A

However. the prog.rammer can specify an
alternate line width, recording mode,
andlor a blocked data set by using the DCB
parameter. To specify an alternate line
width, the subparameters of the DCB
parameter are used as follows:

LRECL=line width+1,BLKSIZE=LRECL value

To specify a blocked da ta set, the
subparameters are used as follows:

RECF!=FBA,LRECL=line width+1,
BLKSIZE=n* (LRECL value),

where:

n is a blocking factor

SYSOUT must be on a device where blocking
is permitted. The extra character in LRECL
allows for the carriage control character.
For example, to specify an alternate line
width, the following SYSOUT statement can
he used.

IIS1S0UT
II

DD SYSOUT=A,DCB=(LRECL=133, X
BLKS'IZE= 133)

Job Control Procedures 79

To specify a blocked data set, the
following SYSOUT statement can be used.

IISYSOUT
II
II
II
II
II

DD DSNAM E=PRINTOUT,
U NIT= Sf SD A, ••• ,
DC B= (REeF M=.FB A,
LRECL=121,
BLKSI ZE=605) ,
VOLUME=SER=111111

Note: If the problem uses the Sort/Merge
feature, remember that SYSOUT is the
default error message data set, and a
conflict can arise. See "Additional DD
Statements" in the chapter "Using the
Sort/Merge Feature" for suggested
solutions.

~!.llli~_l :
The DISPL}Y statement can use a

mnemonic-name rather than a system-name.

x
X
X
X
X

{

identifier}
DISPLAY ••• UP3N mnemonic-name

Ii teral .

where mnemonic-name is associated with the
word SYSPUNCH or SYSOUT in the Environment
Di vision.

{

. SYSPUNCH}
II .

SYSOUT
DD applicable parameters

The ACCEPT statement requires an
associated DD statement unless the data is
being accepted from the console, format 2
of the ACCEPT statement is used, or ACCEPT
MESSAGE is used (making possible use of the
options DATE, DAY, and TIME). The OD
statements for each form of the ACCEPT
statement are as follows:

ACCEPT identifier

When the FROM option is omitted, SYSIN is
the default option.

IISYSIN DD applicable parameters

~xam1?le 2:

ACCEPT identifier PROM mnemonic-name

where mnemonic-name is associated with the
word SYSIN in the Environment Division.

IISYSIN DD applicable parameters

It is assumed that SYSIN is an unblocked
da ta set tha t has a logical record length
of 80 characters.

80

For example:

IISYSIN DD *
(data)

1*

However, the programmer can specify a
blocked data set bI using the subparameters
of the DCB parameter as follows:

RECFM=FB,BLKSIZE=n*80

where:

~ is the blocking factor

SYSIN must be on a device where blocking is
permitted. For example:

l/SYSIN
II
II
II

DD U NIT=2400, ••• ,
DCB= (RECFM=PB,
BLKSIZE=160) #

LABEL= (, Nt)

x
X
X

If a logical record length of other than 80
cha.racters is desired, it must be specified
in the LRECL field of the DCB parameter.

The EXHIBIT or TR.ACE statement requires
a SYSOUT DD statement as discussed fat:
O.ISPLA Y.

liQte: If the job step already includes a
SYSOUT DD statement for some other use,
another may not be inserted since all
SYSOUT output from any source in the job
step will be merged onto the one SYSOUT
data set defined for that job step.

.1£ one or more of the options FLOW,
STATE, and SYMDMP is in effect, the
following DD statement must be used:

IISYSDBOUT DD applicable parameters

If the output is routed through the output
stream and written on a syst~m output
device, the following may be used:

IISYSOBOUT DD SYSOUT=A

The recording mode is FBA. The user
can, however, specify a blocked data set
and alternate recording mode by using the
DCB subparameters.

!Qte: It is assumed that SYSDBOUT is an
unblocked data set that has a line width of
121 bytes (one byte for a control
character) •

See the chapter "Symbolic Debugging
Features" in this manual.

The following DO statement must be used
to make the COBOL library module ILBODBEO
available at execution time:

IISTEPtIB DO DSN=SIS1.COBLIB.OISP=SHR

If an error message is printed by the
debugging modules, the COBOL library module
ILBODBEO is loaded dynamically from
SYS1.COBLIB. This module is not link
edited into the COBOL object program.

To obtain an operating system
hexadecimal dump in case the job is
abnormally terminated by the system, or by
executing the COBOL statemen t CALL
tILBOABNO' USING iAentifier, one of the
following DO statements must be used:

IISYSABEND DO applicable parameters.

IISYSUDUMP OD applicable parameters.

The dump provided when the SYSABEND DD
statement is used inclUdes the system
nucleus, the program storage area, and a

. trace table, if the trace table option vas
requested at system generation. The
SYSUDUMP DO statement provides a dump of
the program storage area. The applicable
para meters a re those for a ph ysical
sequential data set. If the dump is routed
through the output stream and written on a
system output device, the following DD
statement may be used:

IISYSUDUMP DD SYSOUT=A

!Qi~: If a COBOL program abnormally
terminates. then a formatted dump is
provided for all COBOL programs compiled

with the SYMDMP option which could include
the aonormally terminating program and its
callers, up to and including the main
program. The IISYSABEND or IISYSUDUMP DD
card need not be included. For a
discussioa of the symbolic dumping option,
as well as of other COBOL symbolic
debugging options, see the chapter entitled
"Symbolic Debugging Features."

If the COUNT option is in effect, the
following DD statement must be used:

/ /SYSD BOUT DD applicable parameters

Pot example, if the output is routed
through the output stream and written on a
system output device, the following may be
used:

IISYSDBOUT DD SYSOUT=A

In addition to the SYSDBOUT DO
statement, the SYSCOUNT OD statement must
also be used:

/ISYSCOUNT DD SYSOUT=A

The user may concatenate a library of
selected COBOL Object-time subroutines with
the link library. (For information on how
this can be accomplished, see the section
"Sharing COBOL Library Subroutines" in the
chapter entitled "Libraries lt).

Job Control Procedures 81

This section describes the processing of
non-VSAM files. A description of VSAM file
processing is in the section "VSAM File
Processing."

!!~::nEFINED FILES

Files that are processed in a COBOL
program must be described as data sets to
the operating system. Whenever a file is
specified in a program by the following
statement:

SELECT [OPTIONAL] file-name
ASSIGN TO assignmen t-name

this file must be described in an FD
file-name entry and in a DD statement in
the execution-time job step. The ddname in
the DD statement is a portion of the
assignment-name (sometimes also known as
"system-name tt) specified in the ASSIGN TO
clause. In the assignment-name

UT-2400-S-TAXRATE

TAXRATE is the ddname portion of the
assignment-name.

li21g: The device-number specified in the
assign ment-n ame is ignored by the compiler.
Actual device allocation is a function of
the DD statement.

FILE NAMES AND DATA SET NAMES

The terms nfile" (COBOL usage) and "data
set" (operating system usage) have
essentially the same meaning. There may,
however, be a difference between the
file-name and the da ta set name. The data
set name always represents a specific data
set. The file-name can. at different
times, represent different data sets. The
DD sta tement allows a programmer to select.
at the time his program is executed, the
specific data set that is to be associated
with a particular file-name. This facility
can be especially powerful when applied to
input data sets.

The file-name is a name known within the
COBOL progra m. Chanqing a file-name

82

requires changing input/output statements
and recompiling the program. Changing a DD
statement when a program is executed is a
simple procedure.

As an example, consider a COBOL program
that might be used in exactly the same way
for several different master files. It
might contain the clause

SELECT MASTER ASSIGN TO
DA-3330-D-MASTERA ••••

In that case, the following DD statements,
Y§~t di~!lI_ti~. would assign the
different named data sets to the program:

//ftASTERA
//ftASTERA
//I1ASTERA

DD DSNAME=MASTER1, •••
DD DSNAME=MASTER2, •••
DD DSNAME=MASTER3 ••••

If the first DD statement appears in the
job step that calls for execution of the
program, any reference within the program
to MASTER is a reference to the data set
named MASTER1; if the second DO statement
appears, the reference is to MASTER2; if
the third, the reference is to MASTER3.

However, if a file-name within a program
is always to be applicable to only a single
data set, the names might be written as
follows:

SELECT TAXRATE ASSIGN TO
UT-2400-S-TAXRATE •••

The applicable DD statement might be:

//TAXRATE DD DSNAME=TAXRATE, •••

Of the names, the ddname portion of the
assignment-name that appears in the ASSIGN
clause and the ddname of the DD statement
must always be the same. The file-name and
the data set name may be the same, or they
may be different. (Of course. the
file-name in the SELECT sentence must be
the same as the FD name.)

If t40 or more files on direct-access
devices have the same ddname and are open
at the same time (i.e., the output from the
files is being merged into one data set),
the files must have no conflicting
attributes. The foregoing also applies to
SYSOUT data sets if they are written on an
intermediate direct-access device.

The use of the DISPLAY~ EXHIBIT, or
READY TRACE verbs causes the library to
open the target ddname (SYSOUT~ SYSPUNCH,
etc.) If the programmer has also assigned
one of his output files to the same ddna.e,
he must ensure that he has opened, written,
and closed his file before the first
execution of any of the previously
mentioned verbs.

Additional considerations when using the
sort feature are described under
"Additional DD statements" in the chapter
"Using the sort Feature."

SPECIFYING INFORMATION ABOUT A FILE

Some of the information about the file
must always be specified in the PO entry,
SELECT sentence, APPLY, and other COBOL
clauses. at he.r informat ion must be
specified in the DD statement. For
example, the amount of space allocated for
a mass storage output file must be
specified in the DD statement by the SPACE~
SPLIT, or SUBALLOC parameters. certain
characteristics of files cannot be
expressed in the COBOL language, and may be
specified on the OD statemen t for the file
by the DCB parameter. This parameter
allows the programmer to specify
information for completing the data control
block associated with the file (see
"Additional File processing Information"
for a discussion of the data control block,
and "Appendix C: Fields of the Data
Control Block").

Each file used in the program must be
referred to by a particular file processing
technique. Fou r p.rocessinq techniques are
discussed in this publication. They are
physical sequential (QSAt1), direct (BSAM,
BDAM), relative (BSAM, BDAM), and indexed
(OISAM, BISAH).

A fifth processing technique, called
partitioned data organization (BPAM), is·
discussed throughout the publication, when
it is used for program storage.

A eartiti~1 data set (PDS) is composed
of named, independent groups of sequential
data" each of which is called a memb~.
Each member has a simple name stored in a
directory that is part of the data set and
that contains the location of each member's
starting point. Partitioned data sets are
used to store programs, and are often
referred to as li~~ries.

The full range of facilities available
in BPAH are not available to the COBOL
programmer. A partitioned data set may be
referred to in COBOL only by treating its

.members as physical sequential data sets.

DATA SET ORGANIZATION

A non-YSAM data set used by a COBOL
program can have one of four types of
organization: physical sequential, direct,
relative, and indexed. The first type
(sequential) may be on any input/output
device that is supported. All other types
must be on mass storage devices (see Figure
11 for information in determining the file
processing technique to be used, according
to data set organization).

1.

2.

3.

4.

A £.hz2icU-2~gj!!H!tia! data set is one
in Which records are organized solely
on the basis of their successive
physical positions.

A ~i£g£! data set is one in which
records are referred to by use of
relative trac,! addressing. An ACTUAL
KEY specifies the track relative to
the first track allocated to the data
set and identifies the record on the
track.

A £elatiY~ data set is one in which
records are referred- to by use of
relative ~£~ addressing. A NOMINAL
KEY identifies the record location
relative to the first record in the
data set.

An iridexed data set is one in wbich
records are arranged on the tracks of
a mass storage device so as to permit
access in logical sequence (according
to a key that is part of every
record). A separate index or set of
indexes maintained by the system
indicates the location of each record.
This permits random, as well as
sequential, access to any record.

User Non-VSAK File Processing 83

.- i I. •
I J Permissible J I I
I ,ACCESS Clause and Record Formats, JFile I t
I File Processing)Organization Field..-- i I Device IProcessingJorganization J
J Requirements I(N) in system-namelBlockedlUnblocked,Requirements ,Techniqne ,Clause f
I I I. I +-- I -i
,Write, r~ad, and IACCESS SEQUENTIAL IF,V,S JF,V,U) Mass storage IQSAM ,Sequential I
f update standard I or ACCESS clausel , J Magnetic Tape, , (defaul t) I
I sequential file J is omitted t I IUnit Record J I I
t I N=S I J I 1 I •
I- I I I I I -f---------i
I Wri te and read a I ACCESS SEQUENTIAL I I F I Mass Storage laSAM I Should not be
I mass storage file I or omitted J I I I ,specified
f with relative 'N=Rt I J I I
J record addressing I J t I I 1
I-- -+- I I I I ..
J Read and update I ACCESS RANDOM I J F I Mass Storage ,BDAli I
I a mass storage I N=R I J It'
I file with relative I 1 I I I I
I record addressing J J I I t I
I-- I) I I I -~
ICreate and read a IACCESS SEQUENTIAL I IF,V,U,S ,Mass storage ,BSAM J
I mass storage file I or omit ted I t J t I
,with relative ,N=D I' I I I
I track addressing I • I I I I
I- -t- I I I +-----i
! Create, read, update, J ACCESS RANDOM II F, V, U, S I Hass Storage I BDAM I
J and insert into a I N=D or W (REWRITE) I t I , f
I mass storage file -, I I , I ,
, with relative I I I I I •
,I track addressing • J I I , •
I-- J I J I I -t
,Create a mass ,ACCESS SEQUENTIAL JF IF Illass Storage JQISAM I
I storage file with , or omitted , I I , I
I indexed sequential I N=I I I f I I
I organization I I I J f I
I-- i- I I I I ~
,Read and update IACCESS SEQUENTIAL IF IF I~ass storage IQISAM I
I a mass storage t or omit ted I J J I I
I filevitb indexed I N=I I I I I J
I organization I I I J I ,
I- I f I I I ..
tRead, update, and JACCESS RANDOM IF IF ,Mass Storage IBISAM I
, insert into I N=I I I J f I
I a mass storage I I J I I ,
, f ilewith indexed I I I I , I
I random I 1 I I I t
I orqani'Zation I " I I J
l- --...L- -L-" • .1.-_______ ---'

Figure 17. Determining the File Processing Technique

84

ACCESSING A PHYSICAL SEQUENTkAL PILE

A physical sequential file may only be
accessed sequentially, i.e., records are
read or written in the order in which they
appear on the file. The file processing
technique used to create and retrieve a
pbysical sequential file is QSAM (Queued
sequential Access Method). Figure 18 shows
the COBOL clauses that may be used with
these files. Special considerations for
these clauses are as follows:

1. The RESERVE clause can be used to
specify more buffer areas, allowing
overlap of input/output operations
with the processing of data. If this
clause is not used, additional buf.fers
may be specified by using the BUFNO
option in the DD statement. If no
additional buffer areas are specified,
two buffers are reserved by the
system. When the SA~E AREA clause is
specified for the file, the number of
buffers used is determined from the
RESERVE clause or if the RESERVE
clause is not present, it is given a
default of two. The BUFNO option in
the DD statement is ignored if the
SAME AREA clause is specified.

2.' If a WRITE AFTER POSITIONING statement
is used, the record size specified
in the FD entry must allow for the
carriage control or stacker select
character, even though the character
is not to be printed or punched.
For example, if the record size
specified in the FD entry is 121,
the actual record is 121 characters;
however, only 120 characters are
printed or punched.

If the NOADV compiler is specified
and a WRITE BEFORE/AFTER ADVANCING
statement is used, the situation is
the same as above; the record size
specified in the FD entry must allow
for the control character, even though
the character is not to be printed.

When the ADV compiler option is
specified and a WRITE BEFORE/AFTER
ADVANCING statement is used, the
record size specified in the FD
entry should be the same as the
record to be printed. (The compiler
adds one to the length specified in
the FD when it sets the logical
record length in the DCB.)

Not~:

• If the immediate destination of the
record is a device that does not
recognize a carriage control or
stacker select character, the system
assumes that the control character

is the first character of the data.
If the WRITE BEFOBE/AFTER ADVANCING
statement or the WRITE AFTER
POSITIONING statement is not used,
the first byte of the record is
treated as data by the punch or
printer.

The compiler may direct extra
records, containing the appropriate
control Characters, to the file to
effect printer spacing as. specified
in the WRITE BEFORE/AFTER ADVANCING
sta tement. These extra records are
for spacing purposes only and will
not appear externally if the file is
assigned to an online printer.
However, if the file is assigned to
a device that does not recognize the
control characters (for example. a
tape or a direct-access device), the
extra records are written onto the
file. These extra records are
produced only if ADVANCING more than
three lines is specified or if both
the BEFORE and AFTER options are
specified for a file.

l. If the input device is the card
reader, RECORDING MODE IS F should be
specified. If RECORDING ~ODE IS V or
S is specified, the first 8 bytes of
the record viII be interpreted as the
control bytes required for files with
format V or 5 records.

4. If physical seguen tia 1 files are on
magnetic tape, the record block size
should be at least 18 bytes. Records
less than 18 bytes in length will be
read vith no problems, unless a parity
check occurs. If a parity check
occurs while reading a record less
than 18 bytes, it will be treated as a
noise record and skipped over.

5. The S (standard) option can be
specified in the DCB BECFM
subparameter for a fixed/blocked
record data set with only standard
blocks (i.e •• having no truncated
blocks or unfilled tracks within the
data set, except for the last block of
the last track). If a fixed/blocked
data set is created through the use of
an American National standard COBOL
program, a truncated physical block
may be written only by the executions
of the CLOSE or CLOSE UNIT (or REEL)
statement. Use of the standard block
option (particularly .for direct-access
devices having the Rotational
positional Sensing feature) results in
significant I/O performance
improvements.

6. The T (TRACK OVERFLOW) option can be
specified for the DCB RECF~

User Non-YSAK File Processing 85

Data Management Device Access KEY OPEN Access CLOSE
Techniques Type Method Clauses Statement Verbs Statement

QSAM TAPE SEQUENTIAL NOT INPUT READ [INTO] [REEL]
ALLOWED [REVERSED J AT END

[WCK] NO REWIND NO REWIND

[LEAVE] POSITIONING
REREAD DISP
DISP

1-------- ------------
OUTPUT WRITE [FROM]

[O~MN] [{ BEFORE}
ADVANCING] LEAVE AFTER

REREAD

DISP [AFTER POSITIONING]

1--------
EXTEND

QSAM MASS SEQUENTIAL NOT INPUT READ [INTO] [UNIT)

STORAGE ALLOWED AT END [LOCK)

1-------1------------
OUTPUT WRITE [FROM)

INVALID KEY

1-------- WRITE [FROM)

[{ BEFORE}
ADVANCING] EXTEND AFTER

[AFTER POSITIONING)

1---- - --- 1----------- 1-------
1-0 READ [INTO) [LOCK)

AT END

WRITE [FROM)

INV ALID, KEY

REWRITE [FROM)

Figure 18. COBOL Clause £or Physical seGJuential File processing

subparameter of the DD statement for
QSAM files with RECORDING MODE V, 5,
or F. Specification of the T option
is equivalent to including the APPLY
RECORD-OVERFLOW option in the source
program, but use of the T option in
the DD statement allows the user to
make his selection at object time.

Figures 20 and 21 show the parameters in
the DD statement that may be used with
physical sequential .files. All parameters
except the DCB are descr ibed in "Job
Control Procedures." Additional DCB
subparameters not shown in the illustration
are required for use with the Sort/Merqe
feature (see the chapter "Using the
Sort/Merge Feature"for information on
these parameters).

The DCB subparameters that ca.D be
specified in the DD statement for physical
sequential files are as follows:

86

DCB=[DEN= CO, 1,213.14}]
[,TRTCH= (CI EfT, ET}]
[,PRTSP= {O J 1 j213}]
(,MODE::: {C J E}]
[, STACK: { 1 '2}]
[,OPTCD={WICJWCITIQ1Z}]
r ,BLKSIZE=integer]
[, B UFNO:integer)
[,EROPT:::(ACCfSKPIABE}]
[,RECFM=C F IVlulDIB/SITJ[AIMJ1J
(,DIAGNS=TRACE)
(, F tJNe= {I I R J PI W f 0 J X J T}]

DE N= {O 11 J 2,3}
can be used with magnetic tape, and
specifies a value for the tape
recording density in bits per inch as
listed in Figure 19. If no value is
specified, 800 bits-per-inch is
assumed for 7-track tape, 800
bits-per-inch for 9-track tape without
dual density and 1600 bits-per-inch
for 9-track tape with dual density,
depending on the inst.al1ation's
generic definitions for unit names.

, i ,
1 I Tape Recording Density I
1 • (Bits per inch) I
I I f
JDEN Valuel 1 Track 9 Trac.k I
• I ,
I 0 I 200 I
I 1 • 556 I
I 2 1 800 800

• I 3 I 1600 I
I 4 1 6250 I
t- ---J

Fiqure 19. DEN Values

TRTCH={C1EITIET}
is used with 1-track tape to specify
the tape recordinq technique, as
follows:

C - Specifies that the data-conversion
feature is to be used; if data
conversion is not available, only
format F and format U records are
supported by the control program.

E - specifies that even parity is to
be used; if omitted, odd parity is
assumed.

T - Specifies that BCD to EBCDIC
conversion is required.

ET- specifies that even parity is to
be used and BCD to EBCDIC
con version is required.

PETS P= {O 11 12 t 3}
specifies the line spacing on a
printer as 0, 1, 2, or 3. If PRTSP is
not specified, 1 is assumed.

The PRTSP subparameter is valid only
if the unit specified for the file is
a printer. It is not valid if the
file is a report file, nor is it valid
if the WRITE statement with the
BEFOREI AFTRR ADVANCING option or WRITE
AFTER POSITIONI NG is specified in the
COBOL source program. Single spacing
always is assumed for a printer unless
other information is supplied.

MODE= {CI E}
can be used ~ith a card reader, a card
punch or a card-read punch
and specifies the mode of operation
as follows:

C - Specifies card image (column
binary) mode.

E - Specifies EBCDIC code.

If this info.rmation is not supplied
by any source, E is assumed.

ST ACK= {112}
can be used with a card reader, a card
punch, or a card-read punch, and it
specifies which stacker bin is to
receive the card. Either 1 or 2 is
specified. If this information is not
supplied by any source, 1 is assumed.

STACK should not be used when the
WRITE sta tement :with the AFTER
ADVANCING or POSITIONING option is
used to specify pocket selection.

OPTeD= {WICI TI QI Z}
requests an optional service provided
by the system as follows:

W - To perform a write validity check
(on mass storage devices only).

C - To process using the chained
scheduling method (see the
publication OSLV~_Data Kanag~~l
~ervic~Guid~) •.

T - To request user totaling facility.

Q - To translate to or from ASCII on
tape

Z - TO request the search direct
option (see the publication QU!~
~A!~_H~n~~m~~~£vic~Guide).

HQ!~ If the validity check is
specified, the system verifies that
each record transferred from main
storage to mass storage is written
correctly. Standard recovery
procedures are initiated if an error
is detected.

BLKSIZ E=integer
is used to specify the block size.
This clause is used only when BLOCK
CONTAINS 0 RECORDS vas specified at
compile time.

BUFNO=number of buffers
is used to specify the number of
buffers to be assigned to the file
when neither the RESERVE nor the SAME
AREA clause is specified for the file
in the source program. The maximum
number is 255.

EROPT={ACClsKPtABE}
specifies the options to be executed
if an error occurs in writing or
readinq a record as follows:

ACC - To accept the error block for
processing.

User Non-VSAM File Processing 87

SKP - To skip the error block.

ABE - To terminate the job.

There are two cases when the
subparameter can be specified:

• If no error processing declarative
(USE sentence) is specified, the
option is taken immediately.

• If an error processing declarative
is specified, the option is taken
after the error declarative returns
control via a normal exit (and only
if that is the case).

If no option is specified, ABE is
assumed.

RECFM={F/vluID[BISIT] [AIM]}
specifles the form-a-t-of-Ehe
records on the data set
(see the JCL manual for the

ways in which these individual
subparameters can be combined).
Only the Sand T subparameters
have meaning for COBOL; COBOL
ignores all others.

F - records are of fixed length.

V - records are of variable length.

U - records are of undefined length.

D - ASCII records of variable length.

B - records are blocked.

S - to expect the data set to consist
of standard blocks.

T - to use the TRACK OVERFLOW option
(this specification has the same
effect as including the APPLY
RECORD-OVERFLOW option in the
source program) •

A - records contain ANS device control
characters.

M - records contain machine code
control characters.

DIAGNS=TRACE
specifies the open/Close/EOV trace
option which gives a module-by-module
trace of Open/Close/EOV·swork area
and the DCB. The Generalized Trace
Facility with the proper options
specified must be active in the system
while the job that requested the trace
is running; the options are MODE=EXT
and TRACE=USR.

FUNC={IJRIPIWIOIXIT}
specifies the type of data set to he
opened for the 3525
Card-Read-Punch-Print as folloWS:

I - interpret-punch data set.
R - read
P - punch
W print
D - data protection for a punch data

set
X - printer
T - two-line printer.

por the valid combinations of these
values see the publication OSL!~_~l!
Refer~.

r---,
I Device ~ype I

r---------------------+---------------------T---------___________ ~---------------------J
I Parameter I Mass Stcrage I ~agnetic Tape I Unit Record I
~---------------------+---------------------~---------------------~---------------------~
I DSNAME I as I
~---------------------+---i
I UNIT I as I
~---------------------+---T---------------------~
I VOLUME I as I na I
~---------------------+---------------------T---------------------+---------------------~
I LABEL] SI. I SL BIP] NI I
I I SUI. I NL I. 'IM I I
I I I NSI. Al I I
J] I SUL AVI. I I
~---------------------+---------------------+---------------------i---------------------i
I SPACE I as I na I
~---------------------+---------------------+---~
I SUEALLOe) as I na I
~---------------------+---------------------+--------------------------------------~----i
I SPLI'I I as I na I
~---------------------+-------~-------------~---------------------T---------------------~
I DISP I NEw {,KEEP l I SySOU~=A,B... I
I] MOC g PASS] I
I J ,CA~LG I I
I J ,DELETE I I
~---------------------t---------------------T---------------------+---------------------~
I DeB Device Dependent] OP~CD=W, WC I ~R~eH, DEN I PRTSP, ~CDE, STACK I
~---------------------+---------------------~---------------------t---------------------i
I DCB General 1 OF~ec=e/~, BUFNO, BLKSIZE w EROP~=ABE I EFOF'I=Ace I
I] RECFM=as I <printer cnly) I
I I I EFOP'I=AEE I
~---------------------~-------------------------------____________ i _____________________ ~

I as = Applicable sutparameters I
I na = Net applicable I L ___ J

Figure 20. DD Sta tement, Parameters Applicable to Physical sequential OUTPUT Files

User Non-YSAl1 File Processing 89

r---,
J Device ~ype I

r---------------------t---------------------T---------------------T---------------------J

I Parameter I Mass Storage I Magnetic ~ape I Unit Record I
~---------------------+---------------------~---------------------~-----------~---------~
) DSNAME J as J

~---------------------t---------------------T---------------------T--------------~------~
I UNIT 1 Not required I Not required I I
I 1 if cataloged I if cataloged] as I
r---------------------t---------------------t---------------------t---------------------~
I VOLUME I Not required I Not required I I
I I if cataloged I if cataloged I na I
~---------------------+---------------------+---------------------t---------------------~
I LABEL I Sl I SL BIP J na I
I) SUI I NI L 'I~ I I
1 I I NSI Al I I
I 1 I SUL AUL I I
~---------------------+---------------------~----~----------------~----------------~----~
I SPACE] na I
~---------------------+---~
I SUBALLOC I na I
~---------------------+---~
I SPLI~] na I
~---------------------+---~
I DISP] ein l ,KEEP ~ I I J SHR 0 PASS I
I 1 #CA~LG I
I] ~UNCATIG I
I I #DELE~E I
~---------------------+---------------------T--------------------~---------------~-----~
I DCB Device Dependent) I ~RTCHo CEN) ~eDE, S~ACK I
~---------------------+---------------------~---------------------~---------------------~ I DCE General 1 OP'ICt=C/T, BLKSIZE~ EUF~O. ERCF~=ACC,'SKF, AEE, RECFM=as I
~---------------------~---~
I as = Applicable subpar.ameters I
I na = Not applicable I L ___ J

Figure 21. DD Sta tement Parameters Applicab Ie to Physical sequential INPUT and 1-0 Files

SPECIFYING ASCII FILE PROCESSING

If a program will process an ASCII
(American National standard Code for
Information Interchange) QSA~ file, the
user must identify it as such in one of two
ways. One techniqu~ is to use the CODE-SET
~ase of the COBOL FD statement to
reference an alphabet-name that was defined
as STANDARD-1(which is equivalent t.o
ASCII) • The other technique is to use the
COBOL ASSIGN clause, with assignment-name
having the following format: .

comment-C-(buffer offset)-name

where:

C

90

an organization code which specifies
that an ASCII-encoded sequential file
is to be processed, or that an /
ASClI-collated·sort is to be
performed.

buffer offset

name

a tvo-character field that indicates
the length of the block prefix for
that file. This entry is required if
a non-zero block pref ix exist S; it
must, however, be omitted when an
ASCII-collated sort is requested.

a field of 1 to 8 characters that
specifies the system-recognized name
of the file. It is this external name

that appears in the name field of the
DD card for the file.

If this ASSIGN technique is used,
LANGLVL(1) must be specified.

PROCESSING ASCII FILES

Record format allowed for ASCII files
are the following: mode F (fixed length),
mode U (undefined), and mode D (variable
length. D-mode records are of variable
length with a four-byte record descriptor
field for each record. The COBOL
programmer processing variable-length
records specifies V-mode records. Then the
format information generated from the DCB
parameter is internally converted to D
mode. Format-D records cannot be
explicitly specified by the user in a COBOL
program.

Block Prefix

An ASCII file may have a variable-length
field, called a block prefix, preceding the
first logical record in a physical record.
If this prefix exists on an ASCII file, its
length must be indicated at compile time in
the buffer offset field of the ASSIGN
clause. The compiler places this length in
the DCB parameter at compile time.

Whether the optional block prefix
contains the block length or simply user
information depends on the type of file
specified (input or output) and the
internal record mode (i.e., F, U, or D).
These distinctions are made in the
discussion that follows.

Files Opened as Input: Input files with
either blocked or unblocked records have an
optional block prefix of 0 to 99 bytes that
does not contain the block length but may
contarn-user information. For D-mode
records, however, a block prefix of length
four may contain the block length.
Regardless of the record format, file
processing is identical to that for files
coqed in EBCDIC.

Files Opened as Output: The block prefix
for output files applies only to D-mode
records and, when specified, must have a
length of 4. The prefix must contain the
length of the block, which length includes
the buffer offset.

For any ASCII output file the ASSIGN
clause may include a buffer offset of four.
Alternatively, the programmer may omit this

specification from the ASSIGN clause,
instead making use of the phrase BLOCK
CONTAINS 0 RECORDS. The offset can then be
specified at execution time in the JCL.
However, if BLOCK CONTAINS 0 RECORDS is
used, the following options must be
included in the JCL:

BUFOFF=(n)
must be included in the DCB parameter
of the DD card, where n is the length
of the block prefix from 0 to 99
characters on input, and either 0 or 4
on output.

BLKSIZE=(n)
must be included on the DD card, where
n is the size of the block, including
the length of the block prefix.

Notes:

• If a block prefix exists on an ASCII
file and the BLOCK CONTAINS clause with
the CHARACTERS option is used, the
length of the block prefix must be
included in the BLOCK CONTAINS clause.

• If either the RECORDS option is
specified or the BLOCK CONTAINS clause
is omitted, the compiler compensates
for the block prefix (if specified).

Additional JCL considerationa for ASCII
data sets follow.

LABEL=

where AL specifies American National
Standard labels, AUL specifies American
National Standard and user labels, and NL
indicates no labels. --

The subparameters below are specified in
the DCB parameter of the DD statement:

OPTCD=Q, where 2 specifies an ASCII-encoded
data set.

RECFM=D, where D represents a
variable-length record, is an optional
parameter. Whether or not this
parameter is specified at execution
time, the programmer must specify an
ASCII file in the ASSIGN clause as
well as a mode-V record. The compiler
converts from mode V to mode D, or to
the internal representation for a
variable-length record.

BUFOFF=(L) , where L indicates a four-byte
block prefix that contains the block
length including the block prefix.

User Non-VSAM File Processing 91

Handling_!~gric Qa!~It~2_f~Qm AS~I
ri!~§

It is highly recommended that the
pI:'ogrammertake advantage of the separately
si gned numer i<;: data type. The SIGN clause
(see "SIGN Clause" in the chapter
"Programmer Considerations lt) can be used to
specify the position and the mode of
representation of the operational sign of
numeric data items.

DIRECT FILE PROCESSING

The direct file processing technique is
characterized by the use of the relative
track addressing scheme. When this
addressing scheme is used~ the tracks of
mass storage devices are consecutively
numbered from 0 to !! (where 0 equals the
first track of the file, and!! equals the
last track). The positioning of logical
records in a file is determined by the
ACTUAL KEY supplied by the user in the
Environment Division. The first part of
the key, called the track identifier~
specifies either the track on which space
for the record is first sought or the track
at which the search for a record is to
begin. The second part, called the record
identifier, serves as a unique identifier
for the record. Files with direct data
organization must be assigned to mass
storage devices. ;

r- -------------------,
J Forllat •
I ~
I ,.
I!~TUA~ KEY ~ data-name I
I I

-------------------~

Data-name may be any fixed item from 5
through 259 bytes in length and must be
defined in the File Section, working
storage section, or Linkage section. The
following considerations apply when
defining the ACTUAL KEY:

92

• :tt9.£k Id en tili~
The first four byt~s of data-name are
the track identifier. The identifier
is used to specify the relative track
address for the record and Ilustbe
defined as a 5-integer binary data item
whose maximum value does not exceed
65,535.

• ~£Q:[g,-Identifi~!:
Therellainder of data-name~ which is 1
through 255 bytes in length, is the
record identifier. It represents the
symbolic portion of the key field used
to identify a particular record on a
t.I:'ack.

The following example illustrates the
use of the ACTUAL KEY clause:

r-
. JENVIRONMENT DIVISION.
I
I
I
I ACTUAL KEY IS THE~ACTUAL-KEY.

• J ,
I D AT A D.I VI SION.
I
I
I
,WORKING-STORAGE SECTION.
,01 THE-ACTUAL-KEY.

1
f
J
I
I
I
1
1
I ,
J
I
I ,

I 05 TRACK-IDRNT PIC 59(5) CO~p
I 05 RECORD-IDENT PIC X(25).

SYNC.,
I

NO!~: The same record identifier may
appear more than once in the same file when
using COBOL. However, using the same
record identifier is not recommended for

'the following reasons:

1. If they appear on the same traCk, only
the first occurrence can be retrieved
(using BDAM).

2. If an extended search is used in
either creating or updating a file,
the position of records containing
duplicate record id·en tifiers may be
unpredictable.

With direct file processing, records
.IIUS·t be unblocked and Ilay be V-, u- ~ F-, or
"S-llode records. Figure 22 illustrates
:those parts of a directly organized fil·e
that are 6f importance to a COBOL
programmer.

r-- ----------------,
t INDEX I

GAP I POINT t
I I 1 I RO R1 R2
I I I J ,------.-... ,

" r ,
I I I J r , r--------, r- j -, ,.- , ,
I V 1 V t TR.ACK I ICAPACITYI I I 1 I J I I I
I I G I ADDRESS, G ,RECORD 1 G ICOUNTIKEYIDATAI G lCOUNTIKEYIDATAI G
I I -I

'--____ .J
L- .J I --L----J

I , L- _______________ - _____________ J

Figure 22. Directly Organized Data as it Appears on a Mass Storage Device

Each track contains the following:

!n1!!.Ll.2i1l1
There is one index point to indicate
the physical beqinninq ·of each track.

~lQ~~l.
Gaps separate the different areas on
the track. Certain equipment
functions take place as the gap is
rotating past the read/write head.
The length of the gap varies with the
device, the location of the gap, and
the length of the preceding area. For
instance, the gap that follows the
index point is a di·fferent length than
the gap that follows the track
address.

Track Address
----~hIs-fie1d defines the physical

location of the track. It indicates
the cylinder in which the track is
located and the read/write head that
services the track.

!Q_~a£i1Y Recor~l.
This field indicates the amount of
unused space a vailab1e for additional
records on the track.

Rl.L_R2,_J!..lL£.L in
These are physical records that
contain the fo110_ing:

£Q~~~s -- control information

~~-- the- record identifie.r
(1-255 bytes) as
specified by the
programmer in the ACTUAL
KEY claQse.

the-data moved into the
FD before a WRITE
statement was executed.

The following example illustrates the
relationship between the ACTUAL KEY and the
positioning of records on a mass storage
device during the creation of a direct
file.

r.------------------------------------·------,
1ENVIRONMENT DIVISION. t
J •
I I
, I
J ACTUAL KEY IS THE-ACTUAL-KEY. I
I 1
I I
I ,
IDATA DIVISION. I
IFILE SECTION. I
I PD DIR.ECT-FILE I
I LABEL BECORDS ARE STANDARD. I
101 REC-l PIC 1(200). I
I I
I 1
I I
IWORKING-STORAGE SECTION. I
10 1 T HE- A CT U A L-K.E Y • I
I 05 TRACK-IDENT PIC S9(5) CORP SYNC.t
I 05 RECORD-IDENT PIC 1(3). I
•

User Non-VS'" File Processing 93

r- ,
J count Key Data Count Key Data Count Key Data I ,

i , , i i , , i --. I
I TRACK 0 G ,AAAIREC-1, G ICCC IREC-1, G IBBBJREC-11 I
I I .J L- L- a
J • I T • , , • , r- J , -, I
I TRACK G IDDDIREC-1, G IFFFIREC-11 G I JEEEIREC-11 I , L- -L--.L--__ .I L... ,
I I
t._ ..
Figure 23. Sample Format o.f the First Tvo Tracks of a Direct File

consider REC-1 being writ.ten six times; the
contents of THE-ACTUAL-KEY varying with
each WRITE instruction:

THE-ACTUAL-KEY

TRACK,RECORD
IDENTIIDENT
I I ,

WRITE J 0 • AAA,
I---+---f

WRITE 2 f 0 J CCCa

• t ,
WRITE 3 I 0 1 BBB,

1---+--"
WRITE 4 I 1 J DDDI

• I I
WRITE 5 J 1 I FFFJ

r---+--~
WRITE 6 J 1 J EEEI

I I .J

Relative track 0 and relative track 1 of
the mass storaqe device will appear as
shown in Figur~ 23.

When the WRITE statement is executed,
the system seeks the track tbat corresponds
to the number contained in TRACK-IDENT. It
then searches for the next available
position into which a record may be placed.
The system writes a count area, writes the
contents of RECORD-IDENT in the key area,
and writes the information co.ntained in
REC-1 in the data area.

Note: The record identifier is not
Included in the level-01 record description
(REC-l). It will, however, be moved into
the output buffer before heing written on
the mass storage device. Buffer areas,
therefore. wil1 be large enough to
accommodate both the contents of BEC-1 and
the record identifier.

94

Once a direct file has been created,
records can be added randomly on tracks
formatted sequentially. Unless a track is
already filled with data records, it is
formatted by the compiler via the writing
of dummy records (mode F) or of one
capacity record (mode U, V, or S).

In order to format tracks, a COBOL
subroutine executes instructions to write
dummy reco,rds for F-mode files or write
capacity records for v-, u-, or S-mode
files. Dummy records are identified by the
presence of the figurative constant
HIGH-VALUE in the first byte of the record
identifier portion of the ACTUAL KEY
(unless changed by the program collating
sequence, in which case the byte contains
X'FF'). This indicates to the system that
a record can be added to the file in the
space assigned to the dummy record. (The
user should not attempt to retrieve a dummy
.recordby moving this configuration to the
record identifier because it is considered
an invalid key.) A capacity record is a
single record at the physical beginning of
each track that indicates the amount of
space available for additiona.l records. As
V-, U-, or S-mode records are added to a
track, the capacity record is written
accordingly. Capacity records are never
made available to the user.

When a file is created, it should
contain enough dummy records, or
appropriately written capacity records, to
allow for future expansion. Once the file
is closed, more space cannot be allocated
and the extent of the file cannot be
increased.

!2~: Tracks that have been assigned to a
file but are not forjatted, are considered
"allocated." The user should not attempt
to write on tracks that. have been allocated
but not formatted~

The file processing technique used to
create a direct file sequentially is BSA!!
(Basic sequential Access Method).

• The associated COBOL statements are
summarized in Figure 31.

• The associated JCt parameters are
summarized in Figure 32.

The ACTUAL KEY is required. It
specifies the relative track number on
which the record is to be written. Since
access is sequential, all records will be
written serially in the sequence in which
they are moved into the output buffer. It
is, therefore, necessary that all records
to be written on the first track (track
identi fier = 0) be processed before records
to he written on the 2nd, 3rd, ••• , nth
track (track identifier = 1, 2, •••• n-1)
are processed.

When records are written sequentially,
the user need not update the contents of
the track identifier portion of the ACTUAL
KEY. A COBOL subroutine will update it as
follows:

• Records will be written on the first
available track until space is no
longer a vailable. A t such tiae, the
COBOL subroutine will increment the
track identifier by 1, and continue
writing on the next track.

• The value of track identifier used by
the system is made available to the
user in the track identifier portion of
the ACTUAL KEY after the record is
writ.ten.

• After a CLOSE or CLOSE UNIT statement
has been executed, the COBOL subroutine
places the relative track number of the
last track written on (for a data,
dummy, or capacity record) in the track
identifier of the ACTUAL KEY.

• If the user updates the contents of
track identifier and attempts to write
on track 2 when tracks 0 through 4 are
already full, the system will
automatically adjust the track
identifier to 5 (the next track with
available space).

If the user wishes to skip tracks, the
number of tracks, equal to the number of
tracks to be advanced, must be added to the
track identifier. The COBOL subroutine
will then add dumm yrecords (F'-mode) or
write capacity records (V-, U-, or S-mode)

to complete the intervening track (s) (see
tlDummy and Capacit y Records"). If the
value of track identifier for the initial
WRITE is not 0, the subroutine will
complete the preceding tracks with dummy or
capacity records.

~f!~I_ A.L1Q~!nQl{_l.QR_~II&L~_!Q.1LID11-ll1M:
When a file is created sequentially, the
number of primary tracks specified on the
DD card must be available on the primary
yolume. If this quantity is not available,
the job will not begin execution. Once
execution begins however, the final
allocation of space will not be made until
the file is closed.

The following discussion illustrates the
space allocated to a direct file created
using BSA!!. Figure 24 is an example of a
user program that:

• writes 350-1/2 tracks and then closes
the file.

• specifies SPACE=(TRK,(200,100») on the
associated DD card.

TR1C!=~~!1-£1~y§~_~£~cifie~:

1. If the TRACK-LI~IT clause specifies
TRACK-LIMIT = 499 and the file is
closed after writing only 350-1/2
tracks:

Note: A COBOL subroutine will for.at
all-remaining tracks up to and
including the SOOth track. This
represents 150 extra tracks on which
records may be added.

2. If the TRACK-LIMIT clause specifies
TRACK-LIMIT = 300 and the program
continues writing all 350-1/2 tracks:

Note: The TRACK-LIMIT clause is
ignored and the system allocates and
formats as if no TRACK-LIMIT clause
had been specified.

TRACK-LIM!L£!ause-1!.QL~~£i!ieg: If the
TRACK-LIMIT clause is not specified, the
system vill allocate the primary extent
(i.e., 200 tracks) and up to 16 secondary
extents (i.e., 100 tracks each), as
required. In Figure 24, the system
allocates the first 200 tracks, all of
which are completed. The second
allocation, of 100 tracks, is also
completed. The next 100-track allocation
is, however, only partially used. The file
is closed after writing on 350-1/2 tracks.
At this time:

User Non-VSAM File processing 95

r-
I
I-
J
I
I
I
t
I
I ,
J
I
J

. I
I
I
I
I
I
I
I
I
I
I
J
I
I
I-
I
I
I

• A COBOL subroutine will format the rest
of the 351st track. (Note that 351
tracks are actuallY relative tracks 0
through 350)

• The balance of 49 tracks will remain
allocated but will not be formatted.

Specified as TRACK-LIMIT=499

t

I
J

200 , 1st allocation
I I

written on f------f
formatted I I

J J
J 100 I 2nd allocation r----D I 51 1
f-----4 3rd allocation
• 49 I
1----_.

formatted I 100 1}4th allocation
I f
J ,
J------~

J I
I unused I

~
1!21~:

!2t.~; In some of the foregoing cases, the
number of tracks alloca t.ed to the file
exceeds the number of tracts formatted by
the COBOL subroutine. If the excess space
was requested in track or block units, it
should be released by specifying the RLSE
option of the SPACE parameter.

TRACK-LIMIT Clause Not Speci fied
,
t

---t
j

t
r--------, I
I , I
I , ,
J 200 1 1st allocationl

written on J , ,
and/or .. ----~ I

• I I
formatted I • J

I 100 t 2nd allocationl
I-- ~ t
I 51 I I (r -f 3rd allocationJ

unformatted 49 I t
f-- , 1
I , I , unused , I
I I I

~
t
J
f
I
i ,

A.-- .,
I

1. SPACE=(TRK,(200,100» on a single volume. I
2. The user program writes 350-1/2 tracks before closing the file. f

Figure 24. Sample Space Allocation for sequentially Created Direct Files

96

,-

• t A

I r------'
I I I
1 1 J
I I 300 J
I I I
I t J
, Specified as, I
I TRACK-LIMIT=949 r----~
J J I
J I 100 I
t ~-----~
I I I
I ! 100 I
I
I
l-
I
I
I
I
I
I
I
I

• I ,
t ,
J
J
t

TRACK-LIMIT
clause not
specified

1-'-----,

A

Cl} I I
I I
1 I
1-----1
II
1 un used I
I 1
I 1

lJ\N\"J

formatted

formatted

B
,----,
J ,

I 100 J
J I
1 1
I 100 J
I I formatted
I I
J 100 I
r-- ,
• I
I 100 1
'--____ .J

B

I-~}
1 100 •
I I

formatted

I I
1 unused I
I 1
J I

~

C

1501)
J-----~
I 50 ,)
1----1
II
lunusedl
I t
~

C

,--1}
1 100 I
1-----4
t 1
I unused I
I t
I J

'vvvvJ

,
I
J
I
t
I
I
1
I

formatted J
I

allocated I
I
I
I
t
I
I ..
I

• I
J
I ,
I
I

formatted I
J ,
I
I
J
1
I

------------------~
, SPACE=(TRK,(300,100) on Volumes A, B, and C I
'-----,
Figure 25. Sample Space Allocation for Randomly C~ated Direct Files

The file processing technique used to
create a direct file randomly is BDAM
(Basic Direct Access Method).

• The associated COBOL statements are
summarized in Figure 31.

• The associated JCL parameters are
summarized in Figure 32.

Figure 30 (sample program) illustrates
the random creation of a direct data set.

The ACTUAL KEY is required. When a
direct file is created randomly, records
need not be written in any particular
sequence. The system seeks the track

specified in the track identifier portion
of the ACTUAL KEY and writes the record in
the next available position on that track.

When a file is created using BDAM, the
number of tracks specified in the primary
extent must be available on the primary
volume. If there are secondary volumes,
one secondary extent must b~ available on
each of the secondary volumes. If these
extents are not available, the job will not
begin execution. Once execution begins,
the fin~l allocation of space is determined
by the TRACK-LIMIT clause and the SPACE and
volume-count parameters of the DD card when
the file is opened as an output file.
Figure 25 illustrates the allocation and
formatting of space when the TRACK-LIMIT
clause is specified as well as when it is
not specified (see .tDuamy and Capaci ty
Record s" for a detini tion of ~s.1.!ii!. and
1,gns.!:) •

User Non-lSAR File processing 91

1. When a TRACK-LIMIT clause is specifed
(Figure 25), the system will do the
followiog:

a. Allo~ate tracks, by blocts. until
the quantity specified by tbe
TRACK-LIftIT clause has been
equaled or just exceeded.

b. Format only the space specified in
the TRACK-LIMIT clause, even if
the space formatted is less than
the space allocated.

2. When a TRACK-LIMIT clause is not
specified (Figure 25), the first
volume will be allocated and formatted
according to the primary allocation
quantity. and any succeeding volumes
will be allocated and formatted from
the secondary quantity, one quantity
per volume.

Records cannot be written on those
tracks that were allocated but unformatted.
Any attempt to do so viII have
unpredictable results. Unformatted tracks
can be released by specifying the BLSE
option in the SPACE parameter on the
corresponding DD statement. Only space
requested in track or block units can be
released. If the CYL subparameter was
specified, the unformatted tracks cannot be
released.

Unlite direct files created with BSAM,.
the BDAM processing tech.nique allocd. tes and
formats tracks when the file is opened.
This is significant because the system will
not allocate secondary extents if the user
attempts to write on more tracks than the
quantity initially formatted.

liS!.t.!t: The extended search option may be
used during random creation. See "Random
Reading, Updating, and Adding to Direct
Data sets" for a .detailed description.

The file processing technique used to
read a direct file sequentially is BSAM
(Basic sequential Access Method).

• The associated COBOL statemeRts are
summarized in Figure 31.

• The associated Jct parameters are
summarized in Figure 32.

When a direct file is being read
sequentially, records are retrieved in
logical sequence. This logical sequence

98

corresponds exactly to the physical
sequence of the records on the mass storage
device. Dummy records, if present,. are
also made available.

For reading a file sequentially, the
ACTUAL KEY clause need not be specified;
however:

• If the key is not specified, the user
will have no way of distinguishing
between real and dummy records (F-mode
only). Dummy records can be recognized
by testing for the presence of the
figurative constant "HIGH VALUE" in the
first position of the record
identifier.

• If the ACTUAL KEY clause is specified,
the record's key will be placed in the
record identifier portion of the ACTUAL
KEY during the execution of a READ
statement. The track identifier,
however, remains unchanged.

~ndom lle~ding£.~tin£lL_~.!!L!gg,ing_iQ
Direct-12At.~t§.

The file processing technique used to
read. update, and add to a direct file
randomly is BDAM (Basic Direct Access
Method).

• The associated COBOL stat·elllents are
summarized in Figure 31.

• The associated Jet parameters are
summarized in Figure 32.

When records are being retrieved from a
direct file randomly, the ACTUAL KEY is
required to determine the track and to
locate a particular record on that track.
When a match is found, the data portion of
the record is read. For an add operation,
after locating the track, the system
searches for the next available position on
the track, and writes the new record. For
an update operation, after locating the
track, the system searches for the record
specified in the record identifier portion
of the ACTUAL KEY. (Note. A record in
variable length BDAM files can be updated
only with a record of the same length.)

In all of the foregoing cases, the
specified track is the only one searched.
If the desired record cannot be found, or
room for an additional record cannot be
found, the search terminates with an
INVALID KEY condition. If the user wishes
to extend the search to a specific number
of tracks or to the entire file, the DCB
OPTCD and tIMeT subparameters should be
specified on the corresponding DD card.
(Figure 30 illustrates the use of extended
search.)

~Yl!ivolume Qata S~!§

Multivolume data sets, like
single-volume data sets, may be created
either randomly or sequentially.

~~y'!UltiaUreatiQD.: When a file is
crea ted sequentially, the number of trac ks
specified in the primary extent must be
available on the primary vol urne and the
number of tracks specified in the secondary
extent must be available on each of the
secondary volumes. If extents are not
available, execution of the job will not
begin. Once execution begins, the primary,
and as many secondary allocations as
possible, are given to the first volume {up
to 16 extents per volume). Subsequent
volumes are allocated from the secondary
specifica tion.

If the CLOSE UNIT statement is executed,
the current extent is formatted, volume
switching procedures are executed, and the
contents of ACTUAL KEY are updated to
reflect the relative track number of the
last track on the old volume. This is
illustrated in the following example.

Consider the creation of a multivolume
file whose space is allocated by:

SPACE: (TRK, (300, 100))

1. When execution begins, the system
allocates 300 tracks on the first
volume. When the 300 tracks are used
up, the system allocates 100 traCKS
more. Up to 16 allocations of 100
tracks each are possible.

2. If, after writing on 450 tracks, a
CLOSE UNIT statement is executed, a
COBOL subroutine will format the
remaining 50 tracks of the current
allocation before making the next unit
available.

3. After the CLOSE UNIT statement is
executed, a COBOL subroutine places
the relative track number of the last
track written on (for a data, dummy,
or capacity record) in the track
identifier of the ACTUAL KEY.

!2t~: A CLOSE UNIT statement always
formats the tracks remaining on that unit
from the current allocation. The
formatting of tracks on the last unit, when
a CLOSE file-name statement is executed,
depends on the presence or absence of a
TRACK-LIMIT clause, just as it did for
single-volume files (see "space Allocated
for Single- Volume Files"). The RLSE
option of the SPACE parameter applies only
to the unforma tted tracks at the end of the
last unit.

Automalic Volume switching: The user may
choose to permit voluae switching to occur
automatically. This can be accomplished by
writing on all allocated tracks until no
more are available, or may be made
available. This procedure, however, does
not guarantee a specifiC distribution of
records over the volumes, the placement of
a particular record on a pa rticula r volume,
or whether the data set is, in fact,
multivolume.

!Qte: If the user permits system
controlled volume switching, but specifies
the file be created on more than one volume
[e.g., VOL=SER=(V1,V2,V3)]; the system may
write the entire file on the primary volume
if there is enough room. The next time an
attempt is made to open that file, since
the system expects it to reside on three
volumes, an ABEND will occur.. This can be
avoided by specifying:

VOL= (",3, SER= (V 1, V2, V3))

This specifies the file be contained on Qn~
or mor~ volumes.

To create a file with records
distributed as evenly as posible over
several volumes, the programmer must
calculate the amount of space his file will
require (see "Determination of File Space")
and divide by the number of volumes. The
result of this calculation (rounded) should
be specified as both the primary and
secondary allocation of the SPACE parameter
of the associated DO statement. The
programmer should execute CLOSE UNIT before
the end of the initially allocated space on
the first volume (that is, execute the
CLOSE UNIT before writing the record that
is to be first on the second volume).

For example, to distribute 2232 132-byte
records as evenly as possible on two 2314
volumes, 37 tracks per volume are required
and the SPACE parameter should specify
(37,37). After writing the 1116th record
the programmer should execute CLOSE UNIT
and continue writing.

If the required space is overestimated
and the records do not fill the last
track(~, the compiler vill vrite dummy
records to complete them. Theserecords
are included in the record count and should
be taken into account when trying to
address reco.rds on subsequent volumes.

If the space required is underestimated,
automatic volume switching may occur before
the CLOSE UNIT is executed since space on
the first volume is filled. If this has
happened, the CLOSE UNIT starts a third
volume.

User Non-VSAM File processing 99

If no secondary allocation has been
specified and the program issues a CLOSE
UNIT statement, the job will terminate
abnormally, since the allocation of
subsequent volumes is taken from the
secondary allocation field of the SPACE
parameter.

In the creation of an output file,
performance is improved by specifying the
CONTIG subparameter of the SPACE parameter
in the DD statement. However, space
allocation is more efficient if CONTIG is
not specified.

.B!!!QQ!lL£I.gati2.!!: when a file is created
randomly, space allocation and formatting
is done as described in .1Random creation of
a Direct Data Set" (Figure 25). It is
important to note that a CLOSE UNIT
statement is not permitted when creating a
fi Ie randoml y.

The following description pertains to
Figure 25:

1. When the TRACK-LIMIT clause is
specified, the total extent of the
file is 950 tracks. The only valid
track identifiers are 0 through 949:

• Tracks 000 through 499 are contained
on volume' A.

• Tracks 500 through 899 are contained
on volume B.

• Tracks 900 through 949 are contained
on volume c.

2. When the TRACK-LIMIT clause is not
speci fied, the total ex ten't of the
file is 500 tracks. The only valid
track identifiers are 0 through 499:

100

• Tracks 000 through 299 are contained
on volume A.

• Tracts 300 through 399 are contained
on volume B.

• Tracks 400 through 499 are contained
on volume c.

The single character "0" or "W",
specifying the file organization, must be
coded as part of the system-name. The user
should be aware of the following
differences:

• sequentially accessed files must specify
organization "0".

• Randomly accessed files may specify "Dn
or "W". When opened input or output "D"
and "W" function identically.

1. Opened output ("0" and "~"):

WRITE adds a new record. If a
record containing the same key
already exists# the system will add
the record anyway_ The result will
be records with duplicate keys.

2. Opened I-O (nWI1):

a. REWRITE automatically searches
for a record with a matching
record identifier. and updates
it.

h. WRITE adds a new record to the
file whether or not a duplicate
key already exists.

3. Opened 1-0 (nD"):

a. REWRITE updates the file only if
the preceding input/output
statement was a READ of the same
record.

b. WRITE adds a new record to the
file, whether or not a duplicate
key already exists. if the
preceding input/output statement
was anything other than a READ
of the same record.

!ot~: When a file is opened 1-0 (BDAM
"D") the contents of ACTUAL KEY are
moved to a save area during the
execution of a READ statement. During
the execution of a WRITE statement, the
contents of ACTUAL KEY are compared to
the contents of the save area to
determine whether the system should add
or update a record. A check is also
made to assure that the preceding
input/output statement was a READ. If
it was a WRITE of any record, a new
record is added to the file. opening a
file 1-0 (BDAM "W") omits the save and
compare steps entirely. The system adds
a record when a WRITE statement is
executed and updates a record when a
REWRITE statement is executed. It is,
therefore, more efficient to use BDAM
OW" than it is to use BDAM "0" if it is
known in advance whether the record
should be added or updated.

!H~t~ain.~.t.io1Lof.-!il~~acg: To determine
the amount of space a data set .requires,
the following variables should be
considered:

Device Type
Track Capacity
Tracks per Volume
Cylinders per Volume
Data length (block size)
Key Length
Device Overhead

Device overhead refers to the space
required on each track for hardware data,
i.e., address markers, count areas,
inter-record gaps, Record 0, etc. Device
overhead varies with each device and also
depends on whether the blocks are written
with keys. The formulas in Figure 26 may
be used to compute the actual space
required for each block, including device
overhead.

Figure 27 lists device storage capacity,
and Figure 28 lists capacity in records per
track for several mass storage devices.

Programmers who require more detailed
information on mass storage devices may
refer to the IBM Systell/370 ~stem~YJ!UU,
Order No. GA22-7001.

!Qt.!!: Specification of the US" option in
the DCB subparameter RECFM can increase
33.30 performance (see the description o.f
RECFM earlier in this chapter).

One method of determining the value of
the track identifier portion of the ACTUAL
KEY is called indirect addressing.
Indirect addressing generally is used when
the range of keys for a file includes a
high percentage of unused values. For
example, employee numbers may range from
000001 to 009999, but only 3000 of the
possible 9999 numbers are currently
assigned. Indirect addressing can also be
used with nonnumeric keys. A nonnumeric
field (e.g., alphanumeric), when moved to a
computational field, will be packed and
then converted to binary notation. Since
packing eliminates the zone fields, the
final binary item vill be numeric.

Indirect addressing means that the key
is converted to a value for the track
identifier by use of some algorithm
intended to limit the range of addresses.
Such an algorithm is called a £~gQmiziag
technigue. Randomizing techniques need not
produce a unique address for every record;
in fact, such techniques usually produce
~!no!!!.!2. Synonyms are records whose keys
randomize to the same address.

TWO objectives must be considered in
selecting a randomizing technique:

1. Every possible key in the file must
randomize to an address withi n the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few synonyms as possible.

Note that one way to minimize synonyms
is to allocate more space for the file than
is actually required to hold all the
records. For example, the percentage of
locations actually used might comprise only
80 to 85 percent of the allotted space.

User Non-VSAK File Processing 101

Division/Remainder M~g: One of the
simplest ways to address a directly
organized file indirectly is to use the
division/remainder method.

1. Determine the a mount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. The packing factor should
be approximately 20 percent of the
total space allotted to contain the
data file.

2. select the nearest prime number that
is less than the total of step 1. A
~ime number is a number divisible
only by itself and the integer 1.
Figure 29 is a partial list of prime
numbers.

3. Clear any zones from the key that is
to be used to calculate the track
identifier of actual key. This can be
accomplished by moving the key to a
field described as COMPUTATIONAL.

4. Divide the key by the prime number
selected.

5. Ignore the quotient; utilize the
remainder as the relati ve location
within the data file.

For example, assume that a company is
planning to create an inventory file on a
2314 disk storage device. There are 8,000
different inventory parts, each identified
by an 8-character part number. Using a 20
percent packing factor, 10,000 record
posi tions are allocated to store the data
file.

~~lho~: The closest prime number to
10,000, but under 10,000, is 9973. Using
one in ventor y part number as an example, in
this case 425DF3514, and clearing the
zones, we have 25463514. Dividing by 9973
a quotient of 2553 results in a remainder
of 2445. Thus, 2445 is the relative
location of the record within the data file

102

corresponding to part number 25DF3514. The
record address can be determined from the
relati ve location as follows:

1. Determine the number of records that
can be stored on a track (e.g., 13 per
track on a 2314, assuming each
inventory record is 200-bytes lon~.

HQ!~: Because each data record has
nondata components, such as a count
area and inter-record gaps, track
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
inter-record gaps occupy addi tional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte requirements for records of
various si~es on a track (see Figures
26-28) •

2. Divide the relative number (2445) by
the number of records to be stored on
each track.

3. The result. quotient = 188. now
becomes the track identifier of the
actual key.

Method_.!!: Utilizing the same example,
another approach will also provide the
relative track address. Method B is
illustrated in Figure 30:

1. The number of records that may be
contained on one track is 13.
Therefore, if 10,000 record locations
are to be provided, 770 tracks must be
reserved.

2. The prime number nearest, but less
than 770, is 691.

3. Divide the zone-stripped key by the
pr ime val ue. (I n the exa mple,
25463514 divided by 691 provides a
quotient of 36850 and a remainder of
164. The remainder is the track
identifier.)

r- , i

I I Bytes Required by Each Data Block I
J f-
a Device I Blocks with Keys
I Type r--
t I Bi
I- I
I 2314(2319) I 146+1.04J(KL+DL)
t 2305-1 t 634+KL+DL
I 2305-2 I 289+KL+DL
I 3330-1,-2,}J
1 3330-11 1 191+KL+OL
• 3340 I 242+KL+OL
I 3350 J 261+KL+OL
I- I

Bn

45+KL+DL
634+KL+DL
281;)+KL+DL

191+KL+OL
242+KL+DL
261+KL+OL

I ai is any block but the last on the track.
I Bn is the last block on the track.
I DL is data length.
I KL is key length. 1-____________________ __

Figure 26. Mass storage Device Overhead Formulas

r-- ~ i

J Device Volume 1 Track I
J Type Type I capacity I Trac ks per
l- I t I
I 2314(2319) I Disk I 1294 1 20
I 2305-1 J Disk J 14136 1 8
t 2305-2 f Disk I 14660 J 8
I 3330-1,-2 J Disk j 13030 , 19
I 3330-11 J Disk 1 13030 j 19 , 3340 I Disk J 8535 J 12
I 3350 , Disk J 19069 I 30
l- I . , ,
I Notes:
J Ca pacity is indicated in bytes. For
I disk devices, total capacity is the
t number of bytes per demountable pack.
1-

Figure 27. Mass storage Device Capacities

Blocks without Keys

Bi

101+1.043(DL)
432+0L
198+0L

135+DL
161+0L
185+0L

cylinder
Number of

t Cylinders
+----
I 200
I 48 , 96
J 404
I 808
I 348
J 555 ,

•
I

• I
I
I
I
I
I
J
I

~

• f
Bn I ,
DL I
432+DL I
198+DL I

I
135+0L I
161+0L I
185+DL I

f
I
I
I
t

----,
Total I

Capacity I ,
29,116,000 I

5,428,224 I
11,258,880 I

1 0 1, 15 1, 21 0 • 203,502,340 I
34,944,168 ,

311,498,850 • --f
I
f
1 ,
I
J

User Non-VSAM File Processing 103

Maximum Bytes per Record \;ecordS / Maximum Bytes per Record
Formatted Without Keys per Formatted with Keys

Track

2305-1 2305-2 2314 3330-1 3340 3350 2305-1 2305-2 2314 3330-1 3340 3350
(2319) (3330-11) (2319) (3330-11)

14136 14660 7294 13030 8368 19069 1 13934 14569 7249 12974 8273 18987
6852 7231 3520 6447 4100 9442 2 6650 7140 3476 6391 4005 9360
4424 4754 2298 4253 2678 6233 3 4222 4663 2254 4197 2583 6151
3210 3516 1693 3156 1966 4628 4 3008 3425 1649 3100 1871 4546
2480 2773 1332 2498 1540 3665 5 2278 2682 1288 2442 1445 3583

1996 2278 1092 2059 1255 3024 6 1794 2187 1049 2003 1160 2942
1648 1924 921 1745 1052 2565 7 1446 1833 877 1689 957 2483
1388 1659 793 1510 899 2221 8 1186 1568 750 1454 804 2139
1186 1452 694 1327 781 1954 9 984 1361 650 1271 686 1872
1024 1287 615 1181 686 1740 10 822 1196 571 1125 591 1658

892 1152 550 1061 608 1565 11 690 1061 506 1005 513 1483
782 1040 496 962 544 1419 12 580 949 452 906 449 1337
688 944 450 877 489 1296 13 486 853 407 821 394 1214
608 863 411 805 442 1190 14 406 772 368 749 347 1108
538 792 377 742 402 1098 15 336 701 333 686 307 1016

478 730 347 687 366 1018 16 276 639 304 631 271 936
424 676 321 639 335 947 17 222 585 277 583 240 865 .
376 627 298 596 307 884 18 174 536 254 540 212 802
334 584 276 557 282 828 19 132 493 233 501 187 746
296 544 258 523 259 777 20 94 453 215 467 164 695

260 509 241 491 239 731 21 58 418 198 435 144 649
230 477 226 463 220 690 22 386 183 407 125 608
200 448 211 437 204 652 23 357 168 381 109 570
174 421 199 413 188 617 24 330 156 357 93 535
150 396 187 391 174 585 25 305 144 335 79 503

128 373 176 371 161 555 26 282 133 315 66 473
106 352 166 352 149 528 27 261 123 296 54 446

88 332 157 335 137 502 28 241 114 279 42 420
70 314 148 318 127 478 29 223 105 262 32 396
52 297 139 303 117 456 30 206 96 247 22 374 .

Figure 28. Mass storage Device Track capacity

104

r- .---------------, r , ,
I , Nearest Prime I I , Nearest Prime J
I I Number Less than J J J Number Less than ,
J Number , Number • • Number J Number I
I I of " I I f
f 500 I 499 I J 6000 1 5987 J

• 600 I 5.99 J I 6100 , 6091 I
I 700 I 691 I J 6200 I 6199 t
I 800) 797 J f 6300 I 6299 I
J 900 I 887 I I 6400 I 6397 I
I 1000 I 997 J i' J 6500 J 6491 t
I 1100 I 1097 I I 6600 , 6599 I
I 1200 I 1193 J I 6700 1 6691 I
j 1300 1 1297 I 1 6800 I 6793 I
I 1400 I 1399 J I 6900 I 6899 I
J 1500 J 1499 1 J 7000 I 6997 I
1 1600 J 1597 I I 7100 1 7079 J
I 1700 I 1699 I I 7200 I 7193 I , 1800 J 1789 I J 7300 , 1297 , '

1 1900 J 1889 I . I 7400 I 7393 J
J 2000 J 1999 I I 7500 1 7499 I
I 2100 1 2099 I I 7600 I 7591 ,
J 2200 J 2179 I . I 7700 I 7699 I
I 2300 I 2297 • J 1800 , 7793 t
I 2400 I 2399 I I 7900 J 1883 I
I 2500 J 2477 1 . I 8000 • 7993 I
I 2600 J 2593 I I J 8100 I 8093 I
J 2700 • 2699 I I 8200 , 8191 I
1 2800 I 2797 , J 8300 I 8297 I
t 2900 I 2897 , J 8400 I 8389 I
J 3000 I 2999 I I 8500 I 8467 • , 3100 1 3089 I J 8600 I 8599 I
I 3200 I 3191 I . J 8700 I 8699 I
1 3300 t 3299 I I 8800 I 8193 ,
J 3400 1 3391 I I 8900 1 8893 I
I 3500 J 3499 I I 9000 I 8999 I
J 3600 I 3593 • I 9100 I 9091 I

• 3700 I 3697 I • 9200 I 9199 t
I 3800 I 3197 J 9300 I 9293 J
,I 3900 1 3889 • • 9400 • 9397 I
J 4000 I 3989 I 9500 I 9497 I , 4100 I 4099 I 9600 • 9581 ,
I 4200 I 4177 I 9700 I 9697 I
1 4300 I 4297 , 9800 I 9791 I
1 4400 I 4397 I 9900 I 9887 • I 4500 , 4493 • 10,000 I 9973 I
I 4600 I 4597 I 10,100 I 10,099 J
I 4100 , 4691 I 10,200 I 10,193 I
I 4800 J 4799 a 10,300 I 10,289 I
I 4900 I 4889 • 10,400 I 10,399 I
I 5000 I 4999 I 10,500 I 10,499 I
I 5100 J 5099 t 10,600 I 10,597 ,
I 5200 I 5197 I . .. , 5300 I 5297 I Figure 29. Partial List of prime Numbers
I 5400 t 5399 I (Part 2 of 2)
I 5500 J 5483 I
I 5600 J 5591 I
I 5700 I 5693 I
J 5800 I 5791 I , 5900 I 5897 I
L- A .I

Flgure 29. Partial List of Prime Numbers
(Part 1 of 2)

User Non-VSAK File Processing 105

00001
00002
00003
00004
COOOS
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
0004S
00046
00047
00048
00049
00050

00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00201
00202
00203
00204
00205
00206

00207
00209
00210
00211
00212
00213
00214

00303
00304
00305
00306
00307
00308
00309
00310
00311
00312
00313
00314
00315
00316

Figure 30.

106

IDENTIFICATION DIVISION.
PROGRAM-ID. METHOD B.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
PILE-CONTROL.

SELECT D-PlLE ASSIGN DA-2314-D-MASTER
ACCESS IS RANDOM ACTUAL KEY IS ACT-KEY
TRACK-LIMIT IS 691. • (!)
SELECT C-FILE ASSIGN UT-S-CARDS.

DATA DIVISION.
PILE SECTION.
FD D-PlLE

LABEL RECORDS ARE STANDARD.
01 D-REC.

02 PART-NUM PIC X(8).
02 NUN-ON-HAND ·PIC 9(4).
02 PRICE PIC 9(S)V99.
02 FILLER PIC X(181).

PO C-FILE
LABEL RECORDS ARE OMITTED.

01 C-REC.
02 PART-NUM PIC X(8).
02 NUM-ON-HAND PIC 9(4).
02 PRICE PIC 9(S)V99.
02 FILLER PIC X(61).

WORKING-STORAGE SECTION.
77 SAVE PIC S9(8) COMP SYNC.
77 QUOTIENT PIC S9(5) COMP SYNC.
01 ACT-KEY.

02 TRACK-ID PIC S9(S) COMP SYNC.
02 REC-ID PIC X(8).

PROCEDURE DIVISION.
OPEN INPUT C-FILE OUTPUT D-FILE.

READS.
READ C-FILE AT END GO TO EOJ.
MOVE CORRESPONDING C-REC TO D-REC.
MOVE PART-NUM OF C-REC TO REC-ID SAVE.
DIVIDE SAVE BY 691 GIVING QUOTIENT REMAINDER TRACK-ID.~'~-----(!)

WRITES.
EXHIBIT NAMED TRACK-ID C-REC.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

INVALID-KEY.

EOJ.
DISPLAY 'INVALID KEY • TRACK-ID REC-ID.

CLOSE C-FILE D-FILE.
STOP RUN.

Sample Program for a Randomly Created Direct File (Part 1 of 2)

OC0010
000010
000011
000039
000040
C00041
000043
C00047
C00049

IKF8003I-W
IKF8003I-W
IKF8002I-W .
IKF8003I-W
IKF8003I-W
IKF8003I-W
IKF8002I-W
IKF8002I-W
IKF8003I-W

RANDOM OPTION OF ACCESS MODE IS CLAUSE IS AN EXTENSION TO LEVEL A.
ACTUAL KEY IS CLAUSE IS AN EXTENSION TO LEVEL A.
TRACK-LIMIT CLAUSE IN SELECT SENTENCE IS AN EXTENSION TO ALL LEVELS.
CORRESPONDING OPTION IS AN EXTENSION TO LEVEL A.
QUALIFICATION OF DATA-NAMES AND PARAGRAPH-NAMES IS AN EXTENSION TO LEVEL A.
REMAINDER IN DIVIDE STATEMENT IS AN EXTENSION TO LEVEL A.
EXHIBIT STATEMENT IS AN EXTENSION TO ALL LEVELS.
APOSTROPHE USED AS QUOTE IS AN EXTENSION TO ALL LEVELS.
USE OF MULTIPLE FILE-NAMES IN CLOSE STATEMENT IS AN EXTENSION TO LEVEL A.

XXGO EXEC PGM=*.LKED.SYSLMOD,COND=«5,LT.COB),(5,LT,LKED»
XXSTEPLIB DD DSN=VSCBL1.LIB,DISP=SHR.UNIT=2314,VOL=SER=DB143
XXDD1 DD DSN=&SYMDBG,DISP=(OLD,DELETE)
XXSYSDBOUT DD SYSOUT=A
//GO.SYSUDUMP DD SYSOUT=G
X/SYSUDUMP DD SYSOUT=A
//GO.SYSOUT DD SYSOUT=G
X/SYSOUT DD SYSOUT=A ~
XXSYSPUNCH DD SYSOUT=E ~
//GO.MASTER DD SPACE=(TRK,(500,100) ,RLSE),
/ / DC~ ~TCD=E, LH1CT=5) , UNIT=2 314
//GO.CARDS DD *~ ~
// \.V
IEF236I
IEF237I
IEF237I
IEF237I
IEF237I
IEF237I
IEF237I
IEF237I
IEF237I
IEF237I

ALLOC. FOR FIG18
230 ALLOCATED TO
234 ALLOCATED TO
250 ALLOCATED TO
230 ALLOCATED TO
250 ALLOCATED TO
230 ALLOCATED TO
250 ALLOCATED TO
235 ALLOCATED TO
230 ALLOCATED TO

GO
PGM=*.DD
STEPLIB
DD1
SYSDBOUT
SYSUDUMP
SYSOUT
SYSPUNCH
MASTER
CARDS

TRACK-ID 00149 C-REC 82900801CD1
TRACK-ID 00149 C-REC 82900801CD2
TRACK-ID 00149 C-REC 82900801CD3
TRACK-ID 00149 C-REC 82900801CD4
TRACK-ID 00070 C-REC 82900031
TRACK-ID 00149 C-REC 82900801CD5
TRACK-ID 00149 C-REC 82900801CD6
TRACK-ID 00149 C-REC 82900801CD7
TRACK-ID 00149 C-REC 82900801CD8
TRACK-ID 00149 C-REC 82900801CD9
TRACK-ID 00149 C-REC 82900801CD10
TRACK-ID 00149 C-REC 82900801CDll
TRACK-ID 00149 C-REC 82900801CD12
TRACK-ID 00149 C-REC 82900801CD13
TRACK-ID 00149 C-REC 82900801CD14
TRACK-ID 00149 C-REC 82900801CD15
TRACK-ID 00149 C-REC 82900801CD16
TRACK-ID 00039 C-REC 829000003
TRACK-ID 00149 C-REC 82900801CD17
TRACK-ID 00149 C-REC 82900801CD18
TRACK-ID 00149 C-REC 82900801CD19
TRACK-ID 00149 C-REC 82900801CD20
TRACK-ID 00157 C-REC 82900809

'TRACK-ID 00149 C-REC 82900801CD21
TRACK-ID 00149 C-REC 82900801CD22

STEP1

TRACK-ID 00149 C-REC 82900801CD223
TRACK-ID 00149 C-REC 82900801CD24
TRACK-ID 00149 C-REC 82900801CD25
TRACK-ID 00149 C-REC 82900801CD26

X

00800270
00800280
00800290
00800300

00800310

00800320
00800330

Figure 30. Sample Program for a Randomly Created Direct File (Part 2 of 2)

F I PS messages
for LVL=A

User Non-VSAM File Processing 107

Figure 30 is a sample COBOL program that
creates a direct file using method B (see
"Randomizing Technique") and provides for
the possibility of synonym overflow.
Synonym overflow will occur if a record
randomizes to a track that is already full.
The following discussion highlights some
basic features. Circled numbers in the
program example refer to corresponding
numbers in the text that follows.

1. Since this randomiz in g technique <D
employs the prime number 691 as its
divisor, the largest possible
remainder is 690. By the interaction
between the TRACK-LIMIT clause @ and
the SPACE parameter Q) , t he program
formats 692 tracks (i.e., relative
tracKS 000-691). This establishes
track 691 as the only track that can
contain synonym overflow from track
690.

2. The DCB subparameter ® OPTCD=E is
specified. If a synonym overflow
condition arises, an extended search
will be employed, and the additional
record will be written in the first
available position on the following
tracK (s) •

File Data Management Access
Organization Techniques Method

D BSAM SEQUENTIAL

D BDAM RANDOM

W BDAM RANDOM

3. The DCB subparameter ® LIMCT=5 is
specified. This limits the extended
search to five tracks. If no room is
found within this limit, an invalid
key condition results. A value should
always be specified for the LIMCT
subparameter when OPTCD=E is
indicated. Otherwise, the default
value of tIMeT, which is zero, will
result in an error that will be
treated as an exceptional input/output
condition.

Note: The randomizing technique chosen
should minimize the number of synonym
overflows for two reasons:

KEY

1. The more extended search is employed
during file creation, the more it will
be required during record retrieval.
Extended searches increase access time
proportionately.

2. When an extended search is employed,
the adjusted value of the track
identifier is not made available to
the user after the execution of a
WRITE statement. The user~ therefore.
has no way of knowing the track on
which an overflow record is actually
written.

OPEN Access 'CLOSE
Oauses Statement Verbs Statement

ACTUAL INPUT READ [INTO) [UNIT)
AT END [WITH LOCK)

1-------- -------
OUTPUT WRITE[FROM)

INVALID KEY

ACTUAL INPUT SEEK [WITH LOCK)

READ[lNTO)

INVALID KEY

1-----------------
OUTPUT SEEK

WRITE[FROM)

INVALID KEY

1-----------------
1-0 SEEK

READ[lNTO)
INVALID KEY

WRITE[FROM)

INVALID KEY

ACTUAL 1-0 SEEK [WITH LOCK)
READ [INTO)

INVALID KEY
WRITE[FROM)

INVALID KEY

REWRITE [FROM)
INVALID KEY

Figure 31. Direct File processing on Mass storage Devices

108

i

.--
1
I
t

DD Statement Parameters Applicable to BS1M Input Files

, ,
J
j

ai' -,-- I i --r --,., --- ,-~------~
IDSNAMEtDevice IUNIT VOLU~E ILABEL JSPACEJSUBALLOCISPLITI DISP
J- I f I 1
las IMass tnot requiredl[SL orl
I JStoraqe lif catalogedISUI.] las
I I required f I I
f J I I I
I I I I I

--+ ,
J J{OLD}

fPASS I na Ina I SHR ,KEEP
I I ,CATLG
I I ,DELETE
j J , IJNCATLG

t-' If' I --'--
t-
t
I
f

DD Statement Parameters Applicable to BSAM Output Files

~. , • j , , ~

IDSNAME,Device IUNIT VOLUME ILABEL ISPACEISUBALLOCISPLITI DISP
I I I I J I -+-
las ,Sass I
I I Storage I
I Irequiredl
I I 1

as J[SL or J as las Ina I NEW rEEP

}

ISUL] I RLSE f 1 t .,CATLG
I I J I I , PASS
I J I I I ,DELETE

I I I I j J I I !Ql~: MOD not
lIt 1 I J I ~ meaningful
I • I

I I • ~ -i-

DCB I
-+-------1

na I
I
I
J
t

--f
l
J
!
1

• DCB I
I -----t
J {DSORG=DA] I
• OPTCD=[W., T] J
I I
I t
I J
) 1
1 - ----t

--t
I
I
t

DD statement Parameters Applicable to BDAM Input and 1-0 Files
f
J
t

I , , i ' i 1 i
IDSNAHEIDevice lUNIT VOLUME ILABEL tSPACEISUBALLOCJSPLITI DISP
t- I J -+I-----+.----+-------r----+---------I I
I as I Plass I not req uire dII SL or t
I IStorage tif catalogedJSUL] Jna
I Jrequired) I t
I J I J 1
J I I I J

f t{ OLD} russ I na J na I SHR ,KEEP
I I .,CATLG

• t , UNCATLG
J I ., DELETE

1-' , " • I

I
I
I
I

DD Statement Paraaeters Applicable to BDAM Output Files

t-- iii if. ,

IDSNAPlEJDevice JUNIT VOLUME ILABEL)SPACEtSUBALLOC,SPLIT, DISP
• I I I I I •
las JPlass J as JISL orlas las Ina
I JStorage I 'SUB] laLSE I I
t I required' I I f I
1 J t I I I I
J I I I. I J
I t II I I I
i-- I • ,.. •

,as = Applicable subparameters
Ina = Not applicable L-________________ __

Figure 32. JCL Applicable to Directly orqanized Files

NEW {:~!~iG}
.PASS
,DELETE

Note:t'lOD not
ieaningful

, --t
I DCB I
I -f
J as specifiedl
tat file I
,creation I
I I
t t
, --t

of
I
I
t

--r,------' of
I DCB J

• • I[DSORG=DA] I
J OPTCD=(if , E] I
ILIMCT:n I
J ,
J J
I I . ~

I
I _ ______ .J

User Non-YSAK File Processing 109

RELATIVE FILE PROCESSING

Relative file processing is
characterized by the use of the relative
record addressing scheme. When this
addressing scheme is used, the position of
the logical records in a file is determined
relative to the first record of the file
starting with the initial value of zero. A
NOMINAL KEY is used to identify randomly
accessed records. Files with relative data
org~nization must be assigned to mass
storage devices.

r-------.------------------------------------,
, Format
l-
I
I~Q~INA1 KEY IS data-name
I

I
t
I
I
I

1.-
_____ .J

Data-name must be defined as an
8-integer binary item whose value must not
exceed 16,777,215. NO~INAL KEY must be
defined in the Working-storage section.

The following example illustrates use of
the NOMINAL KEY clause:

r
,ENVIRONMENT DIVISION.

• I
I
I
t
J
I

NOMINAL KEY IS THE-NOMINAL-KEY.

I DATA DIVISION.
I
J ,
IWORKING-STORAGE SECTION.

,
J

• j

J
J
I

• I
I
J
I
I
I

177 THE-NOMINAL-KEY PIC 59(8) COftP SYNC. J L---__ ~J

The relative file processing technique
supports onl y unblocked fixed-length
records.

Figure 33 illustrates those parts of a
relatively organized file that are of
importance to a COBOL programmer. The
track format is similar to the format
desc.ribed for directly organized files (see
section "Direct File processing"). The
following is a list of significant
differences:

110

1. The records (Rl, R2, ••• , Rn) are
formatted without a key area.

2. The COUNT area contains a record ID:

a. 2 bytes containing the cylinder
number.

b. 2 bytes containing the read/Ilrite
bead.

c. 1 byte containing a record number
from 1 through 255.

Records on mass storage devices will
always appear sequentially ranging from 0
to n, where ~ equals the highest key
contained in the file.

The following example illustrates the
rela tionship between the NOftINAL KEY and
the positioning of records on a mass
storage device.

r- ----------------------------,
,ENVIRONMENT DIVISION. •
I 1
I I
I f
I NOMINAL KEY IS THE-NOMINAL-KEY. I
I I
I I
J I
,DATA DIVISION. •
,FILE SECTION. I
JFD RELATIVE-FILE I
I LABEL RECORDS ARE STANDARD. t
J 01 REC-l PIC X (80) • I
J I
, I
I I
IWORKING-STORAGE SECTION. I
1 I
I I
I I
177 THE-NOMINAL-KEY PIC S9(8) CaMP SYNC., _________________________ .J

Consider REC-1 being written 200 times.
with each execution of the WRITE statement,
the content ofTHE-NOIlINAL-KEY is
incremented by 1, from o through 199.
Since a 2314 mass storage device has room
for only thirty nine 80-character records
on each track (see "Determination of pile
space" in "Direct File processing") REC-1
will be written as follows:

• Relative records 0 through 38 viII be
on the first track.

• Relative records 39 through 199 viII be
on the second through sixth tracks.

r------------------
• I

INDEX
POINT

I
t
J
V

GAP
I
I
I
I

RO

~ .-----, t -,
ITRACK -J JCAPACITYI

, , ,
Rl R2 ,
~ ~ 1
..-------, r-- , , I
J J I J t J 1

I
I
t
I
I
I
I

G I ADDRESS I G ,.RECORD I G I COUNTI DATA J G ICOUNTJDATAI G I
'-----.I -.I J '--- I

I
• .J

Figure 33. Relatively Organized Data as it Appears on a Mass Storage Device

r- ,
I I
I count Data count Data Count Data Count Data I
I r---~---' i i ---, r , -, r , , J
I G I 01 ,00, 1 J REC- 1 • G I 0 1 ,00, 2 t R E C- 11 G J01,00,3IREC-ltG Gt01,OO,25IREC-1J ,
j 1st TRACK t 1 (0) J t I (1) J I 1 (2) I f t (38) f t
I

'----_____ J -L-__ J .J L .L--_J 1
1 t
I r---~----' • i --, ..- I , r ~--, I
I G , 01 ,0 1 , 11 REC- 11 G ,01,01,2IREC-11 G t 0 1 , 0 1 , 31 B EC- 11 G G,01,Ol,25IREC-l) t
J2nd TRACK J t (39) J I I (40) J I t(ij1) I J t (11) I I
I '---- J --' '---- J ... L --' f
I 1
I J

Figure 34. Sample Format of Two Tracks of a Relative File

If the two tracks assigned to RELATIVE FILE
are "cylinder 01 track 00" and "cylinder 01
track 01," they would appear as shovn in
Figure 33.

It is important to note that information
about the length of each record, the
capacity of each track and the relative
record number, as indicated by the NOMINAL
KEY is used by the system to determine the
exact location of each record. As
indicated in Figure 34, the system converts
each relative record number into a unique
cylinder number, head number, and record
number, which are written in the count area
of each ph ysical record.

!Qt~: Since count areas do not appear in
1-0 buffers and there are no key areas,
buffer size need be only large enough to
accommodate data in REC-l.

~2£I..Y.ential creation

Relative files must be created
sequentially using the file processing
technique BSAK (Basic sequential Access
Method).

• The associated COBOL statements are
summarized in Figure 36.

• The associated JCL statements are
summarized in Figure 31.

Figure 35 illustrates the creation of a
relative data set.

Records in relative files~ are arranged
sequen tially in the order in which they
were written. The first record written is
relative record 0, the second record is
relative record 1, the sth record written
is relative record n-1. A file containing
1000 records viII thus con tain relati ve
records 0 through 999. The clause that
allows the user to specify the relative
record needed is the NOMINAL KEY clause.

When a relative file is being created,
the NOMINAL KEY clause may be specified.

• If the NOMINAL KEY is specified and the
value in the NOMINAL KEY (when a WRITE
statement is executed) is grea ter than
the next sequential relative number,
the necessary number of dummy records

I is written by the compiler so that the
actual record is written in the
specified relative position. If the
NOMINAL KEY for a WRITE statement is

User Non-VSAM Pile Processing 111

less than the next sequential relative
record number, the key is ignored and
the record is written in the next
available position.

• If the NO"INAL KEY is not specified,
the system begins writing at relative
record 0 and increments the relative
record number by 1 for each additional
WRITE statement. When the key is not
specified, the user is responsible for
insertion of dummy records. The only
time the compiler will add dummy
records is during the execution of a
CLOSE or CLOSE UNIT statement.

NO!£: Dummy records are identified by
the presence of the figurative constant
HIGH-VALUE in the first position o£ the
record.

The relative block number of the last
record written is placed in the NOMINAL KEY
after a WRITE, CLOSE, or CLOSE UNIT
statement, if the key is specified.

Once a file is created, more space
cannot he allocated and the extent of the
file cannot be increased. The only way to
add records to an already existing file is
to replace dummy records. Therefore, to
allow for future additions, the user should
create the file with as many excess dummy
records as desired.

The allocation of space to a rela tive
file (both single-volume and multivolume)
is similar to the allocation of space
described for a sequentially created direct
file. Highlights and essential differences
are discussed below:

• The rela ti ve file processing technique
does not include a TRACK-LIMIT clause.
space alloca tion and formatting will,
therefore, be determined by an
interaction between the SPACE parameter
of the DD card and the number of
records wr it ten.

• The total number of tracks formatted
will be determined when the file is
closed. Dummy records viII be added to
complete the current track, if
necessary_

• Tracks that are allocated but
unformatted# and have been requested in
track or block units, can be released
by specifying the RLSE subparameter on
the DD statement.

• When a unit of a multivolume file is
closed, all tracks that have been
allocated on the current unit are
formatted (initialized with dummy
records) betore the next unit is made

112

available. The RtSE subparameter of
the DD statement applies only to the
allocated tracks at the end of a data
set.

IQ1~: In order to determine the amount of
space a data set requires, see Figures
26-28.

~gy~ntial Reading

The file processing technique used to
read a relative file sequentially is BSA"
(Basic Sequential Access Method).

• The associated COBOL statements are
summarized in Figure 36.

• The associated Jct parameters are
summarized in Figure 37.

When a relative file is being read
sequentially, the recorqs are made
available in the sequence in which the
records were written. Dummy records are
also made available. The NOMINAL KEY, if
specified, viII be ignored.

Random Acc~§.

The file processing technique used to
read or upda"te a relative file randomly is
BDAM (Basic Direct Access Method).

• The associated COBOL statements are
summarized in Figure 36.

• The associated JCL statements are
summarized in Figure 37.

since a relative file cannot be created
randomly. the following restrictions exist:

1. The file cannot be opened as an output
file.

2. The WRITE verb is not permitted.

A relative file with 8DAM can be opened
as input or 1-0. Records are made
available according to the contents of
NOMINAL KEY. If the user wishes to update
a file, it must be opened as I-O. Records
can then be read into a single buffer,
upda ted in tha t buffer, and rewrit ten from
that buffer. If the user wishes to add
records to a file, the file must have been
crea ted wi th excess dummy records. If
dummy records are present# the file can be

opened as I-O and dummy records can be
replaced by the additions. If dummy
records are not present, additions cannot
be made.

JQ!~: Records cannot be deleted, but can
be replaced by dummy records.

Figure 35 illustrates several basic
characteristics of the relative file
processing technique. It creates a
relative file {R-FIL~ using a card file
(C-FILE) as input. C-FILE consists of 11
cards in the following sequence:

Card
lH!JItQ~

1
2
3
4
5
6
1
8
9

10
11

010
020
030
040
050
060
000
070
080
090
100

NAMEOl
NAME02

NAME03
NA~E04

N AME05
NAME06

THIS CARD IS OUT OF SEQUENCE
NAME07

NAME08
NA£1E09

NAME10

The program, during creation, exhibits
the contents of NOMINAL KEY after the
execution of each WRITE statement. After
crea tion, the rela ti ve file is closed,
reopened as an input file, and written out
on the printer. The following discussion
highlights some basic features. Circled
numbers in the program example refer to
corresponding numbers in the text.

1. The nominal keys, <D # that have been
exhibited contain t.be relative record
numbers of real records on the file.
Relative records 10, 20, 30, 40, 50,
60, 61, 70, 80, 90, and 100 are real;
all others are dummy records' formatted

by a COBOL subroutine. Note the
nominal key N-KEY = 61. The initial
value taken from C-FILE, card 7, was
000. This value, however, was not in
logical sequence since relative
records 000 through 060 had already
been written. Therefore, a COBOL
subroutine ignored the value 000 and
adjusted it to the next appropriate
relative record number (i.e., 61).

2. The contents of N-KEY for the first
WRITE, @ , was 10. This means that
a COBOL subroutine formatted relative
records 0 through 9, placing the
constand HIGH-VALUE in the first
position of each record.

Note: The constant HIGH-VALUE is
exhibited as a blank since FF is not a
printable character.

3. The contents of N-KEY for the second
WRITE, ® , was 20. Therefore, the
COBOL subroutine formatted relative
records 11 through 19.

4. The contents of N-KEY for the seventh
WRITE, ® , was initially 000. As
exp~ained in step 1 , N-KEY was
adjusted to 61 and the record vas
written in the next available
posit ion.

5. Since this file was created on a 2314
mass-storage device, the track
capacity for R-FILE is 39 records per
track. Relative record 100 is,
therefore, on the third track. since
the file is closed after writing
relative record 100, the COBOL .
SUbroutine formats the rest of the
third track. In this case, it means
the addition of 11 dummy records, ~,

User Non-VSA! File processing 113

eOOOl
ee002
e0003
CC004
00005
ce006
CC007
00008
C0009
COOI0
e0011
e0012
C0013
C0014
C0015
e0016
C0017
00018
C0019
C0020
e0021
C0022
C0023
C0024
C0025
e0026
C0027
00028
C0029
C0030
CC031
C0032
C0033
C0034
C0035
C0036
C0037
00038
C0039
C0040
C0041
C0042
C0043
C0044
C0045
00046
C0047
00048
C0049
C0050
C0051

00101
00102
00103
00104
00105
00106
00107
00108
00109
00110
00111
00112
001125
001126
001127
00113
00114
00115
00116
00117
00118
001184
001185
001186
00201
00202
00203
00204
002041
002042
002043
002044
002045
002046
00205
00206
0'0207
00208
00209
00210
00211
00212
00213
00214
00215
00216
00217
00218
00219
00220
00230

Figure 35.

114

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATER.
REMARRS. ILLUSTRATE CREATION OF A RELATIVE FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT R-FILE ASSIGN DA-2314-R-MASTER
ACCESS IS SEQUENTIAL
NOMINAL REY IS N-REY~

SELECT C-FILE ASSIGN UR-S-CARDS.
SELECT R-FILE2 ASSIGN DA-2314-R-MASTER.
SELECT PRTFILE ASSIGN UR-S-PRTOUT.

DATA DIVISION.
FILE SECTION.
FD R-FILE

LABEL RECORDS ARE STANDARD
RECORDING MODE IS F
DATA RECORD IS DISK.

01 DISK PIC X(80).
FD R-FILE2 LABEL RECCRDS ARE STANDARD.
01 DISR2 PIC X(80).
FD C-FILE

LABEL RECORDS ARE OMITTED
DATA RECORD IS CARD.

01 CARD.
02 C-KEY PIC 9(3).
02 FILLER PIC X(77).

FD PRTFILE LABEL RECORDS ARE OMITTED.
01 PRT."

02 FILLER PIC X.
02 FIELDl PIC X(132).

WORKING-STORAGE SECTICN.
77 N-KEY PIC 59(8) COMP SYNC.
PROCEDURE DIVISION.

OPEN INPUT C-FILE
OUTPU'I R-FILE.

Rl. READ C-FILE AT END GO TO EOJ1.
MOVE C-KEY TO N-REY.
WRITE DISK FROM CARD.
EXHIBIT NAMED N-REY. GO TO Rl.

EOJl.
CLOSE C-FILE R-FIIE.
OPEN INPUT R-FILE2 OUTPUT PRTFILE.

R2. READ R-FILE2 AT END GO TO EOJ2.
MOVE DISK2 TO FIELD1.
WRITE PRT AFTER 1 LINES GO TO R2.

EOJ2.
CLOSE R-FIl~2 PRTFILE. STOP RUN.

sample program for Relative File processing (part 1 of 4)

Ftlt-LEYEL LhKAGE EDITOR OPTIuNS SPECIFIED lIST,XREF,LET
DfF~ULT OPTION'S' USeD - SIZE-I 196608,65536)

CROSS REFERENCE TABLE

C,r.TROL SeCTION

NAME OKlGIN
C~fATER 00
1L80COMO* BCO

luaosp * 030

IlBlJEXT * 1120

ILBOQIO * 1110

ILBOSAM * 1CEO

llaOSPA * llA8

IlBOSRV * 2818

lLiWBEG * lCA8

HSUCMM * 2000

lLSOCYS * 3160

ILSoMSG * 3518

L~CATION RefERS
188
7CO
le8
100
120

,,868
l810
<lS78

EMilY AOORES')

LENGTH
B8A
169

9FO

50

56E

4C8

670

48E

128

38B

412

F2

TO SYMBOL
ILBOSRVO
ILBOEXTO
ILBOSAHO
(L80SPAO
ILBOCOMO
ILeOeOH
ILBOBEGO
ILBOSN02
00

TGTAL LENGTH 3670

ENTRY

NAME

I L80COH

I L800S'0

IL80EXTO

IL80QIOO

ILBOSAMO

I L80SPAO

1L80SA.VO
ILBOSRV1

ILBOBEGO

ILBOCMMO

ILBOCVBO

I LBOMSGO

.N 'ONTROL SECTION
ILBOSRV
ILBOEXT
I LBO SAM
ILBOSPA
(LBOCOMO
(LBOCOMO
(LBOBEG

LOCATION

BCO

032

1722

1712

1CE2

21AA

2822
2826

2CAA

2002

3162

351A

SUNRESOLVEO'WJ

•••• GO DOES NOT EXIST BuT ~AS BEEN ADDEO TO DATA SET
AUTHCRIZATION CODe IS u.

N-J(EY = 00000010 I N-J(EY = 00000020
N-J(EY " 00000030
N-J(EY = OO()OOOIiO
N- J<EY = 00000050
N-J(EY = .00000060 'i'
N-J(EY "00000061 \!J
N-J(EY " 00000070
N-J(EY = 00000080
N-J(EY " 00000090
N-J(f.Y .. 00000100

NAME LOCAT ION

ILBOOSSO

ILBOEXTl

ILBDSPA1

ILBDSR5
ILBOSTPl

ILBDCMMl

ILBOCVB1

LOCAT ION
lBC
1C4·
7CC
104

21fC
2B6C
2B14

032

1726

21AE

2822
2826

2006

3166

REFERS TO

NAME LClCATION N~"'E

ILBOS'A2

ILBOSR3
ILBOST

SYMBOL
ILBOSR5
ILBOQIOO
ILBOOSPO
ILBOSRVl
ILBOCVBO
ILBOCMMO
ILBOMSGO

21B2

2822 ILBOSR
282A ILBilSTPO

IN CONTROL SECTION
ILBOSP.~

ILBOQIO
ILBOOS~
ILBOSRV
ILBOeVe
ILBOCM~
IUOMSG

Fiqure 35. sample Program for Relative File Processing (Part 2 of 4)

LO:ATION

2822
2t12A

User Non-VSAM File Processing 115

10 NAMEOl
10 NAMEOl
10 NAMEOl
10 NAMEOl
10 NAMEOl CD 10 NAMEOl
10 ~AMEOl
10 NAMEOl
10 NAMEOl
10 t\AMEOl

010 NAMEOl
20 NAME02
20 t\AME02
20 NAME02
20 NAME02
20 NAME02 CD 20 NAME02
20 NAME02
;;0 NAl-JEOZ
20 NAME02

020 NAME02
30 NAME03
30 NAME03
30 NAME03
30 NAME03
30 NAME03
30 NAME03
30 NAME03
30 t\AME03
30 NAME03

030 NAME03
40 NAME04
40 NAME04
40 NAME04
40 NAME04
40 NAME04
40 NAME04
40 NAl1E04
40 NAME04
40 NAME04

040 NA~lE04
50 NAMF05
50 NAME05
50 NAtv.E05
50 NAME05
50 NAME05
50 NAME05
50 NAME05
50 NAME05
50 NAME05

e50 NMjE05
60 NAME06
60 NAl-~E06
60 NAME06
60 NAME06
60 NAME06
60 NA~:E06
60 NAl'-:E06
60 NAME.06
60 NI'Il"JE06

060 NAl'-lE06
:::;EQUE~CE 0 ceo THIS CARD IS OUT OF

Figure 35. sample Program for R.elative File Processing (Part 3 of 4)

116

r-
')

70
70
70
70
70
70
70
70

070
80
80
80
80
80
80
80
80
80

080
9C
90
90
90
90
90
90
90
90

090
CO
00
CO
00
00
00
00
CO
00

100
CO
CO
00
CO
00
00
CO
00
00
00
00
00
00
00
CO
00
CO
00
00

NAME07
NAt-'JE07
NAt-'JE07
NAME07
NAME07
NAMEO?
NAMEO?
NAMEO?
NAMEO?

NAME08
NAME08
NAME08
NAME08
NAME08
NAME08
NAME08
NAr-;E08
NAME08
NAME08

NAME09
NAME09
NAl':E09
NAME09
NAMl:.09
NAMl:.09
NAME09
NAME09
NAl'1I:.09
NAl':I:.09

NAME10
NAME10
NAM,e;lO
NAl':E10
NAME10
NAME10
NAM:t.lO
NAlvjI:.10
NAMl:.10
l\AME10
NAME10
NAMEI0
NAME10
NAME10
NAME10
NAME10
NAME10
NAME10
NAME10
NAME10
NAME10
NAME10
NAl'!E10
NAME10
NAME10
NAME.10
NAME10
NAME10
NAME10

Fiqure 35. Sample Program for Relative File Processiuq (Part 4 of 4)

User Non-VSlM File Processing 117

... t'l\'I Data Management Access KEY OPEN Access CWSE
00 I.Q

~
TechDiques Meth9d Clauses Statement Verbs ~tatement

H
<D

w
0\

BSAM SEQUENTIAL [NOMINAL) INPlIT READ[INTO) {UNIT)

AT END [WITH LOCK)

~
<D
~
rt- ~-------,......------ ~------....
..::
<D

NOMINAL OlITPlIT WRITE[FROM)

INVALID KEY

~
<D

"0 ,.,
0
n
(D

fIl
fIl
='

I.Q

0
~

BDAM RANDOM NOMINAL INPlIT READ [INTO) [WITH LOCK)
:z
~

INVALID KEY

fIl
til fo------- ------
Vl
rt-
0 READ[lNTO)
H
~

I.Q
<D

INVALID KEY

I

1-0 REWRITE[FROM)

INVALID KEY
t:I
<D
<11:1
n I

<D
fIl

INDEXED SEQUENTIAL FILE PROCESSING

The indexed sequential file processing
technique arranges ·records on the tracks of
a mass-storage device in a sequence
determined by keys. The key is a control
field that ·is a physical part of the record
(defined in the .FD) and is specified by the
RECORD KEY clause in the Environment
Division. The RECORD KEY clause identifies
for the compiler the location and length of
that item within the data record that will
contain the key. It must always be
specified.

r-
I Format

~--------------------------------------~
I
j RECORD KEY IS data-name
I L-________________________ . _____________________ J

~ata-nam~ may be any fixed-length item
from 1 through 255 bytes in length.

When tvo or more record descriptions are
associated with a file, a similar field
must appear in each description, and must
be in the same relative position from the
beginning of the record, although the same
data-name need not be used for both files.

Data-name must be defined to exclude the
first byte of the record in the following
cases:

1. .Files v ith unblocked records.

2. Files from which records are to be
deleted.

3. Files whose keys might start with a
delete-code character (HIGH-VALUE).

For further information, see
OS/VS Data Management Services Guide.

The position of each logical record in a
file is determined by indexes created with
the file and maintained by the system. The
indexes are based on the RECORD KEYS and
provide the following capabilities:

• Write and later read or update logical
records in a sequential, ascending
order (using QISAM) based on the
collating sequence of. the keys. This
is done in a manner·similar to that for
sequential organization.

• Read or update individual logical
records in a random manner (using
BISA~. This method is somewhat slower
per record than reading according to a
collating sequence~ since a search for
pointers in indexes is required for the
retI" ieval 'of each record.

• Insert new logical records at any point.
within the file (using BISAM). Using
the indexes, the system locates the
proper position for the new record and
makes all necessary adjustments so that
the sequence of the records, according
to the keys, is maintained.

User Non-VSAH File Processing 119

r---,
J I
J DD Statement Parameters Applicable to ESA~ Input Files I
J I
r------T--------T----T-------T------T--------------------T------------------T-----------~
ILSNAMEp::evice JUNITIVClU~E IlABEL I SPACE, SUEAlLOC, SPlI'I I DISP I DCB I
~------+--------+----~-------+------+--------------------+------------------+-----------i
las IMass Jnot requiredl[SL orl J{OlD} l,PASS I I na I
I I Storage I if cataloged I SUI] I na I SHR ,KEEP I I
I I required I I J I, CA'ILG I I
J I I I I I, DELETE I I
I I I I J . I fI UNCATLG I I
~------~--------~------------~-----~--------------------~------------------~-----------~
~---~
J I
I DD Statement Parameters Applicatle to BSA~ Out~ut Files I
I I
r------T--------T----T-------T------T-----T--------T-----T------------------T-----------i
IDSNAMEjDevice IUNITIVOlU~E ILAEEL !SPACEISUBALLOCISPIITI DISP I DeB I
~------+--------+----~-------+------+-----+--------+-----+------------------+-----------i
las lMass I as ! [SL orlas las Jna I NEW ~"KEEP ~ ICP'ICD={W,'I} I
I] Storage I I SUL] I RLSE I I I .1' CA'IlG I [DSORG=DA] I
I Jrequired]) I] I I .PASS I I
I I J I I J I I ., DELETE I I
I I) I I I J I I I
I I I I j I I I Note: MOD not I I
! J J I I I j I rreaningful I I
~------~--------~------------~------~-----~--------~-----~------------------~----~------i
~---------------------------------~---i
1 I
I DD State~ent PARAMETERS Applicable to EDA~ Input and I-C Files I
I I
~------T--------T----T-------T------T--------------------T------------------T-----------~
IDSNAME]Cevice 1UNI'I]VOLUME ILABEL I SPACE,SUBAlLOCnSFLI'I I DISP I DCB I
~------+--------t----~-------+------+--------------------+------------------+-----------1
las IV-ass lnot required! [SL orl 1 {OLD} \~PASS I las has been!
1 I Storage 1 if cataloged I SUL] I I SHR , KEEP I s~ecified I
I I required I 1 I na J 1#1 CA'ILG I I
I J I) I I. UNCA'IlG I I
I I 1 J J I" DELETE I I
r------~--------~------------~------~--------------------~------------------~-----------i
las = A~~licable subpararneters I
Ina = Not applicable I l __ ~----------J

Figure 37. JCL Applicable to Relatively Organized Files

There are two basic types of indexes:
track indexes and cylinder indexes. There
is one track index for each cylinder in the
prime area (see "Indexed File Areas" for a
description of prime area). The track
index is written on the first track of the

cylinder that it indexes. Each entry in
the track index contains the identification
of a specific track in the cylinder and the
highest key on that track (Figure 38).

Figure 38 is the representation of a
track index with the following areas:

r---,
1 RO Normal Overflew Nor~al Overflow 1 I ~ _______ ______ _______ _______ /

1 r----' r----' r-----T----' r-----T----' r-----T----' r-----T----' 1
I 10100) ICOCRI 100010100011 10001010001) 100025'10002/ 100025100021 1 I l ____ J l ____ J l _____ ~ ____ J l _____ ~ ____ J l _____ ~ ____ J L _____ ~ ____ J 1

/ Horne Key Data Key Data Key Data Key Data I
I Address 1 l ___ - _________________________________ J ,

Figure 38. Track Index

120

liome Address -- This field defines the
physical location of the track in
which the index appears. It
indica tes the cylinder in which the
track is located and the read/write
head that services the track.

~OCR (Cylinder Overflow Control Record)
-- When a cylinder overflow area is
specified (see "Indexed Sequential
File Areas" for a description of
overflow areas), RO of each track
index is used to keep track of
overflow records and space available
in the cylinder 0 verf low area.

l!Q.£mal En try -- The"re is one normal and
one overflow entry for each usable
track in the cylinder. The Normal
Entry contains tvo areas:

• !l~Y -- the key of the highest
record on the track specified in
the Data area

• Data -- the home address of one of
the-prime tracks in the cylinder

Figure 38 shows that the highest key
on track 1 is 10 and the highest key
on track 2 is 25.

2.!tilloLEntry The overflow entry is
originally the same as the normal
entry. It is changed when an
attempt is made to add a record to a
prime track on which space is no
longer available. In this case, the
overflow entry keeps track of the
logical sequence of records although
physically the record may be added
to an overflow area.

There is one cylinder index for each
file in which prime area data occupies more
than one cylinder. The cylinder index
contains one entry for each cylinder in the
prime area; each entry pointing to the
track index for a particular cylinder
(Figure 39).

.- -,
tl
I r---T--' r , --, r----,----, I
JI00500100001 100945100011 101550100021 ••• 1
)1-- I ---J' JL-' J 1
I Key Data Key Data Key Data t

! "CYliDdJ address/ :
I I

J

Figure 39. Cylinder Index

The cylinder index is formatted in the
same fashion as the track index. Figure 39
shows that the highest key on cylinder 0 is
500~ the highest key on cylinder 01 is 945,
the highest key in cylinder 02 is 1550,
etc.

!Q!~: If an indexed sequential file is
b~ing read randomly, the system locates the
g~ven record by its key after a search of
the cylinder index and the track index
within the indicated cylinder. If the file
is being read sequentially, starting, with
the first record, no index search is
performed.

Records, in indexed sequential files,
may be either blocked or unblocked; but
must be F-mode records. Fiqures 40 and 41
illustrate blocked and unblocked records as
they appear on prime tracks of mass. storage
devices.

BLOCKED RECOHDS

Count: contains control information

~~y: contains the key of highest record in
the block.

~~ta'1£_lL .- •• 6t: each contains the
information defined in the ED; including
its own record key.

r---,
I r-------T-----T-------T-------T-------, r-------T-----T-------T-------T-------, I
I I COUNT I KEY] DA~A1 I DATA2 I DA~A3) 1 COUNT) KEY IDA~A4 I DATA5 I DATA6 I I I L _______ ~ _____ ~ _______ ~ _______ ~~ ______ J L _______ ~ _____ ~ _______ ~ _______ ~ _______ J I

I -- ---...,- ---- --- ~ -- I
I I
) I
I 1st Bleck 2nd Eleck I L __ ---J

Figure 40. Blocked Records on an Indexed File

User Non-VSAM File Processing 121

r------------------~----------------------,
I I
I r-----T---T-----' r-----T---T-----' J
I JCOUN~IKEYJDA~Al] JCOUN~IKEYJDATA21 I) l _____ ~ ___ 4 _____ J L _____ ~ ___ ~ _____ J)

I ~ --------------- I
I 1st Block 2nd Block J L ___ J

Figure 41. Unblocked Records on an Indexed
File

UNBLOCKED RECORDS

£.2y.!!i: contains.control information

K~I: contains the key of the record that
is in the block.

~!~-11LL-11l£~l£~: each contains the
information defined in the PD; including
its own record key.

The programmer specifies the structure
of an indexed sequential file and space to
be allocated for it in the DD statement for
the file when the file is created. In some
instances, more than one DD statement is
required. (These DD statements are
described in "Using the DD Statements -
Single Volume Files.") The space being
allocated must be divided into one, two, or
three areas, depending on the needs of the
programmer. These areas are: prime area,
index area, and overflow area. The
overflo.v a rea is optiona 1.

f~i.~!~~~: The prime area is the area in
whiCh data records are written when the
file is created or reorganized. These
records are in a sequence determined by the
record keys. The track indexes also use a
po.r t ion of the reser ved pr ime area. To
reserve prime area space so that new
logical records may be inserted without
forcing records into an overflow area
(described below), dummy records (records
containing the figurative constant
HIGH-V ALUE in the first c.haracter position)
may be written when the file is being
created. The prime area may span multiple
volumes and may consist of several
noncontiguous areas.

!~d~x Ar~~: The index area contains the
cylinder indexes and, if requested, master
indexes (described later) for the file.
This area exists for any file that has a

122

prime area on more than one cylinder.
Space for this area will be allocated
separately from the prime area if
specifically requested. The index area
must be contained within one volume, but
that volume need not be the same device
type as the prime area volume. If not
specifically request~d, the index area will
automatically be constructed in the
independent overflow area, or, if there is
no independent overflow area, it is
constructed in the prime area.

Q.!g.tf1.2LA.[~~: The overflow a.rea is the
area in which space is allocated for
records forced from their original (prime)
tracks by the insertion of new records.
The fact that some records are stored in
these areas, physically out of sequence,
does not change the ability of QISA~ to
read the file in a logical sequence. An
overflo·w area need not be specified if
reco.rds are either not going to be added to
the file, or sufficient space vas
originally reserved by writing dummy
records in the prime area.

There are three ways in which space for
an overflow area may be allocated:

1. Cylinder Overflow (Figure 42). TraCKS
on each cylinder can be reserved to
hold the overflow of that cylinder
(cylinder overflow option).

2. Independent Overflow (Figure 43).
Space may be requested for an
independent overflow area, using the
dsname (OVFLOW) DD statement, either
on the same volume or on a separate
volume of the same device type as that
of the prime area.

3. If the prime area is not filled when
the file is created, the space
remaining on the last cylinder on
which data has been written will be
designated as an independent overflow
area (even though it is not requested
directly). If a separate independent
overflow area is requested, the
remainder of the prime area is
available for resuming a load
opera tion.

Additional iaformation about indexed
file structure is contained in the
publication OS/YS ~!angg~~~~£~ices
Q.!!i~·

r- --,
I I I I I I I I 1 I
I ICYLOICYL1,CYL2ICYL3ICYL4ICYL5ICYL6J I
I I .. • J I Track Indexes I I
I I i of 1
I I I I I I
I I I I I I
I Prime Area) I
I I , l d • J J I 1 1 I
t I I I I • i I J J I J
I 1 I • I J
I I I I J j I 1
1 Cylinder Over,flow Area • I
I I I I I I i J
t -'----'- I I I .J I
I I
'- .J

Figure 42. Cylinder Overflow Area

An advantage of having a cylinder overflow
area is that additional seek operations are
not required to loca te 0 verf low records. A
disadvantage is that there will be unused
space if additions are unevenly distributed
throughout the file.

r --,
J I 1 1 t
I 1 I I I 1 I 1 j

I ICYLOICYL11CYL21 CYL31 ICYLX ICYLY J
1 • t t ---t
I J Track Indexes , I I
I I-- , 1 I
1 I I 1 1 J

• I Prime Area t tIndependent)
J I I 1 J I t overflow I
I J I I I I I Area I
I t I I 1 I J I I
I • --.J

I
'------
Figure 43. Independent Overflow Area

An advantage of having an independent
overflow area is that less space need be
reserved for overflows. A disadvantage is
that accessing overflow records requires
additional seek operations.

J
t
1
t
1
I
I
I
I

• 1
I
I

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflows caused by
additions and an independent overflow area
to be used as the cylinder overflow areas
are filled.

Indexed files must be created
sequentially using QISAM (Queued Indexed
Sequential Access Method). Records must be
arranged and written in ascending order
according to the contents of RECORD KEY.
If a WRITE statement is executed and the
current contents of RECORD KEY is less than
or equal to the previous contents of RECORD
KEY, an INVALID KEY condition will result.

The structure of an indexed sequential
file, and the space to be allocated to it,
is specified in a DD statement(s). The
space, which can be allocated in several
different ways, must be sufficient for all
areas of the file.

~~_~IAI~~~liI REQUIREM~NTS_fQE_l!Q~X~n
FIll~: The special parameter ['equirements
for DD statements that define new. indexed
sequential files are discussed below. The
discussion is oriented to indexed
sequential files on one volume. Many of
the parameters used for creating
multivolume files are not discussed here.
For more detailed information about
parameters for 'both single-volume and
multivolume files, see either of the
publications QUY.S_!l.£~_llglg:tg.!l£g 0[' QfiL!~
JJ;L~g£Yi£~§.·

ddname (name field)
The name field of the tirsLQLQ.!llY DD
statement defining the indexed
sequential file can contain the
symbolic identification ddname or
procstep.ddname. Succeeding DD
statements for the file must not be
named.

DSNAME (DSN)
This parameter must be specified and
is coded as follows:

{
DSNAME} =

,DSN {

dSname}

&&name
[(element)]

The first subparameter, dsname, or
&&name must be the same in all the DD
statements defining one data set. The
element subparameter. INDEX, PRIME, or
OVFLOW, indicates the type of area
defined by the DD sta tement. If more
than one DD statement is used to
define a file, the order in ~hich the
statements should be placed in the
input stream is as follows:

DD DSNAM~=dsname(INDEX)
DD DSNAME=dsname{PRIME)
DD DSNAME=dsname(OVFLOW)

User Non-VSAM File Processing 123

SPACE

Deviation from this sequence results
in abnormal termination of the job.
If the element subparameter is omitted
PRIME is assumed. Note that an
indexed sequential file cannot be
specified by statements containing
only index and overflow elements.

This parameter specifies the space to
be allocated for each of the separate
areas on the device and must be
included. only cylinder (CIL) or
absolute track (ABSTR) requests are
permitted, and with ABSTR the
designated tracks must encompass an
integral number of cylinders. All the
DD statements defining one indexed
sequential file must specify the same
subparameter, either CYL or ABSTR.
When all the DD statements specify
CYL, all must also specify or omit
CONTIG, depending on whether the space
allocated is to .be contiguous or
noncontiguous. The directory or index
quantity subparameter of the SPACE
parameter is used to request the
numher of cylinders to be allocated
for an index area embedded within the
prime area (see "Space Parameter" in
"Job Control Procedures"). An
embedded index resides in the middle
of a track and saves searching time by
first determining which half of the
track contains the requested record.

SPI.I T

DISP

DeB

124

Th is pa rame ter should never be
specified for an indexed sequential
file, either for sharing a cylinder
with indexed sequential files or for
sharing it with an indexed sequential
file and another type of file.

This parameter is written as it would
be for any new file that cannot be
cataloged. The CATLG subparameter
must not be specified unless only one
DD statement is used to allocate the
file space (see "Cataloging Files" for
additional information about
cataloging indexed sequential files).

This parameter must be specified for
each DD statement and is coded as
follows:

DCB= (DSORG=IS
[, BUFNO=lnteger]
[,OPTCD={YII) 81 Wj LJ H) U,NTM=integer}]
(, BLKSIZE=integer])

The DSORG=IS subparameter is required
and indicates that the organization of
the file is sequential. The DCB
subparameters of all the DO statements

defining one file must not conflict.
For example, if the OPTCD=Y
subparameter appears in the first DD
statementt the subsequent DD
statements should also contain
OPTCD=!. .To avoid any errors, code
all the DCB subparameters on the first
DD statement. Code DCB=*.ddname on
the remaining statements; ddname is
the name of the OD statement that
contains the DCB subparameters. The
subparameters are discussed belove

BUFNO=number of buffers
This subparameter is u~ed to specify
the number of buffers to be assigned
to the file if no RESERVE or SAME AREA
clause is specified for the file in
the source program. The maximum
number is 255; however, the maximum
number allowed for an installation may
differ and is established at system
generation time.

OPTCD=options
This subparameter is used to tell the
system that certain additional
facilities are to be provided for this
file. Any combination of the
following options can be specified for
the OPTCD subparameter. If more than
one option is specified, the options
are written as a character string
(i.e., without intervening commas or
blanks). Note that if certain of
these options are used, an additional
subparamet~r must also be specified as
indicated. In addition to the
information supplied, the COBOL
compiler will supply OPTCD=L.

• OPTCD=L: This option requests
that the control program delete
marked records. ~arked records
will be deleted when space for
new records is required.

• OPTCD=!: This option requests
that a cylinder overflow area be
created. It specifies that a
certain number of tracks on each
cylinder are to be reserved to
contain any overflow records
from other tracks on that
cylinder. Another DCB
subparameter, CYLOFL=xx, must
also be written. The xx
specifies the number of tracks
on the cylinder to be reserved
for the overflow area. The
maximum number is 99.

• OPTCD=I: This option requests
that an independent overflow
area be reserved. It is used in
conjunction with DSNAME=dsname
(OVFLOW) parameter in the DD

statement used to allocate the
independent area.

• OPTCD=M: This option requests
that a master index be created
(see "Master Index" for a
discussion of master indexes).
Another DCB s ubpa.rameter ~
NTM=xx, must also be written.
I t specifies the maximum number
of tracks to be contained in the
cylinder index before a higher
level index is created. The
maximum value that can be
specified is 99.

• OPTCD=R: This option requests
reorganization criteria
feedback~ as described in
"Reorganizing Files."

• OPTCD=W: This option requests
the system to perform a vrite
validity check.

• OPTCD=U: This option requests
that track index en tries be
accumulated in main storage
until there are enough entries
to fill a track. When the track
is full all the entries will be
written out. If enough main
storage cannot be obtained
entries will be written two at a
time.

The following is an example of how
the OPTCD subparameter can be used:

DCB=(DSORG=IS,OPTCD=K,NTM=20)

The foregoing example requests that a
master index be created when the
cylinder index exceeds 20 tracKs.

BLKSIZE=integer
specifies the blocksize. This clause
is used only if BLOCK CONTA.INS 0
RECORDS vas speci fied at compile time.

B2!~: Figure 44 shows the parameters that
may be used in a DD statement When
processing indexed sequential files opened
as output. Additional information about
indexed sequential file structure is
contained in the publication g~~Ai!
bugu~ervi~2-~!t. '

Y~illg_ih~_QQ_~lg1g~gn12-==_~ingle=!Q!~~~
!11~§: The following examples refer to
files that can be contained on one volume.
Additional information about DO statements,
including details on multivolume file
allocation, can be found in the publication
OSL~JCL ggfe£gn£~.

All three areas for an indexed
sequential file can be contained on a
single volume if they are small enough. If
such is the case and the programmer elects
to allow the system to subdivide storage
into the prime and index areas when the
file is created, he need only code the
following DO statement:

Ilddname DD
II
II
II

DSNAME=dsname (PRIME) •
SPACE=(CYL,(no. of
cylinders»#UNIT=unit,
DCB=(DSORG=IS, •••)

x
X
X

The DD statement given liIill produce a prime
area with the index area occupying the last
cylinder~) of the space in the prime area.
If any tracK(s} remain on the last cylinder
after the index area, they are used as an
independent overflow area; if no track(s}
remain~ an overflow area does not exist.

If the programmer definitely wants an
independent overflow area, he must provide
a second DD statement as follows:

Iiddname
II
II
II
II
II
II
II
II
II

DD DSNAME=dsname{PRIME) ~
SPACE=(CYL, (no. of
cylinders»,UNTT=unit,
VOLUME=SER=222222,
DCB=(DSORG=IS.OPTCD=I~ •••)

DD DSNAME=dsname(OVFLOW)~
SPACE={CYL, (no. of
cylinders»,UNIT=unit,
VOLUME=SER=222222~
DCB=*.ddname

X
X
X
X

x
X
X
X

These DD statements will produce a prime
area and a separate overflow area with the
index area at the end of the overflow area.
All three areas reside on the same volume.

Note: When more than on DD statement is
used~ only the first can be named. The
others must not ha ve a data defini tion name
(ddname) but all must have the same data
set name (dsname).

User Non-V5AM File processing 125

r-------~ ,
iddname I ddname used only for first DO •
I I statement of each file f
l-----_t_ .,
,DSNAME I {dsname} (INDEX) J
j (DSN) l &&name (PRIME) J
J /COVFLOW) I
I f!Q~: If more than one DD J
I Jstatement is used, elements I
, Jmust be in this order. I
I- I of
IDevice JMass storage reguired J
~ t ~
I UNIT I DEFER not permitted I
r--------+-- ,
ISEP, AFF1Restricted, see "Job Control I
I f Procedures" I
l------__+__ ~
1VOLUME I Volume sequence number subparam-,
I I eter not applicable J
~-----+- -f
JLABEL I S1, I
I- J of
ISPACE J CYL , ["CONTIGJ J
" ABSTR f
I- I ...
ISUBALLOC,Not applicable 1
r- I ~
JSPLIT JNot applicable I
l-----t ---t
tDISP I [KEEP J J
J I NEil :PASS I
J 1 ,DELETE I
I------_+_ ...
IDCB2 JRequired: DSORG=IS J
i IOptional: BUFNO=xxx BLKSIZ E=xxxx j
II 0 PTC D= (W J M i Y I I I R t L I U} J
I------L. ...
IIMOD not meaningful. CATLG allowed only I
I if all areas are allocated with a single,
I DD statement J
t2The DCB parameter should be the same fori
, each DD statement J

Figure 44. 00 Statement Parameters
Applicable to Indexed Files
opened as Output

If the programmer desires more control
in the placement of the index area, he can
subdivide storage before the data set is
created by providing another DD statement
as follows:

Iiddna me
II
II
II
/1
II
II
//
/1
1/

126

DO DSNAME=dsname{INDEX),
SPACE=(CYL,{no. of
cylinders)),UNIT=unit,
VOLUME=SER:333333,
DCB= (DSORG=IS¥ •••)

DD DSNAME=dsname{PRIME),
SPACE=(CYL,(no. of
cylinders».UNIT=unit¥
VOLUME=SER=333333,
DISP=(disp),OCB=*.ddname

.I

x
X
X
X

X
X
X
X

These DD statements will produce tvo
separate areas: index and prime. Each
area is on the same volume.

If, along with more control of his
index, the programmer wishes an independent
overflow area, a third DD statement
(OVFLOW) can be specified, as detailed
earlier. The sequence will be:

/Iddname
II

.0.0 DSNAME=dsname (INDEX) , •••
DO DSNAME=dsname (PRIME) , •••
OD DSNAME=dsname(OVPLOW), ••• //

These DD statements will produce three
separate areas: index, prime, and
overflow.

Note that the OPTCD subparameter of the
DCB parameter in each of the DD statements
must specify an independent overflow area
(OPTCO=I). All three areas reside on the
same volume if so specified in the VOLUME
parameter.

HQig: The sequence of the OSNAME parameter
elements in all of the foregoing examples
must be followed when placing the DD
statements into the input stream, or an
abnormal termination of the job viII
result.

The example in Figure 45 defines a new
indexed sequential file that consists of
three separate areas. All three areas
reside on the same volume. The volume is
on an IBM 2314 Disk Storage Drive.

£~taloqing Files: An indexed file can be
cataloged if:

• All the areas of the file are allocated
with a single DD statement. Such a
file is cataloged in the usual manner
by specifying the OISP parameter in the
DO statement:

DISP=(NEW,CATLG)

• The areas are allocated with more than
one DD statement, but all volumes are
on the same type of device. Such a
file is cataloged using the IEHPROGM
utility program {see the publication
OS/VS Utilities).

An indexed sequential file that is being
created cannot be cataloged if its areas
are on different device types. An existing
indexed sequential file cannot be cataloged
through the specification of the CATLG
subparameter of the DISP parameter in the
DD statement.

r----------------------
I IIFILE DD DSNAI1E=ISM (INDEX) , UNIT=2314,SPACE= (CYL, (1)), X
1 II VOLUME=SER=11111',DCB=(DSORG=IS,OPTCD=I, •••)
I II DD DS N AME=ISM (PRlttE) , UNIT=231 4, SPACE= (C iL, (S)), X
I II VOLUME=SER=111111,DISP={,KEEP) ,DCB=*.FILE
I II DD DSNAME;::ISM(OVFLOW),UNIT=2314,SPACE=(CYL,(1», X
I II VOLUME=SER='11'1',DISP={,KEEP),DCB=*.FILE
'-----, J

Figure 45. Example of DD Statements for New Indexed Files

!~i~: The DD statement(s) defining a new
or existing indexed sequential file can
appear in cataloged procedures.

&a!£ulatinY-~Eg~Rgg£ir~gllt2: To
determine the number of cylinders required
for an indexed sequential file, the
programmer must consider the number of
records that viII fit on a cylinder, the
number of records that will be processed,
and the amount of space required for
indexes a nd overflow areas. In making the
computations, additional space is als~
required for device overhead.

!Qte: The allocation of space to the
different areas of an indexed sequential
file is permanent. New allocations can be
achieved only by recreating the filp. It
is, therefore, important to remember :

• Unused space on the last cylinder on
which data was written, in the prime
area, is converted to an' independent
overflow area. Space allocated in
excess of this cannot be released and
wi 11 be wa sted.

• Excess space allocated to overflow or
index areas cannot be released.

Detailed information on space allocation
can be found in the publication ~LYS Daia
a~nagemg~_~~ice§_QYi~~.

Ma§ter !ng~~: QISAM provides a master
index facility to avoid inefficient serial
searches of large cylinder indexes. The
master index provides an index to the
cylinder index. The programmer can specify
with the DCB parameter in his DD
statement (s) (see "DD statement
Requirements for Indexed sequential Files"
in "Creating Indexed sequential Files")
that a master index be built if the size of
a cylinder index exceeds a certain number
of tracks. Each entry in the master index
points to a track of the cylinder index.
If the size of the master index exceeds the
number of tracks specified in the NTM
parameter of the DD statement, the master
index is automatically indexed by a higher
level master index. Three such higher
level master indexes can be constructed.

£Q~Q1_~Q~§id~rgliQn§: When creating
indexed sequential files, the QISAM file
processing technique is used. The
following COBOL programming considerations
should be noted:

• RECORD KEY Clause. The FECORn KEY
clause in the SELECT sentence of the
Environment Division is required. It
is used to specify the location of the
key within the record itself. If the
RECORD KEY clause has a PICTURE clause
that specifies that the item is binary
(COMPUTATIONAL), zero is the lowest
number acceptable as the first record.
A negative key is considered to be
larger than a positive key; therefore,
if a record is inserted into the file,
a negative key would place the record
after those records with positive keys.

• Dummy Records. To reserve space for
mcords to be added at a later time,
when creating indexed sequential files,
dummy records can be written with the
delete code (the figurative constant
HIGH-VALUE) in the first byte. Dummy
record s and their deleti on are
described in "Using the WRITE
Statement."

• Required and optional COBOL statements
are summarized in Figure 47.

~~g~i~g_Qr_ll~ating-InQ~g1_~gg~ntisl
Files ~gSl!!entiall.I

QISAM can be used to read or update an
existing indexed sequential file. Adding a
record to an already existing file,
however, can be done only with BISAM {see
"Accessing an Indexed File Randomly").

When QlSAM is used to read an input
file, the READ statement makes available
one logical record at a time in an
ascending sequence determined by the record
keys. Dummy records are not made
available. If there are records in the
overflow area, this sequence will not
correspond exactly t~ the physical sequence
of the records in the file. The file must
have been created using QISAM.

User Non-VSAM File Processing 127

,

r

When QISAM is used to update an 1-0
file, the READ and REWRITE statements
permit updatinq-in-place or deletion of a
loqical record. Logical records are read
sequentially and may be either updated and
rewritten, or rewritten unaltered, from the
same area. Alteration of record length or
insertion of new records is not permitted.
A logical record is marked for deletion by
moving the figurative constant HIGH-VALUE
into the first character position of the
record and then using the REWRITE
statement. Records in the file that
contain this deletion code are not made
a va i la b Ie on in pu t.

The discussion that follows is primarily
concerned with indexed sequential files
that can be contained on a single volume.
Additional information about processing
existing indexed sequential files accessed
sequentially, including multivolume files,
can be found in the publication OS/!~1
g~iglln£g·

f~£a~tgI._llgg111£~ill!ts: In t.he DD
statement(s) indicating an existing indexed
file, the following differences and
requirements should be noted:

DCB
The DSORG=IS subparameter must be
specified, whereas the BUFNO
subparameter is optional. The OPTeD
field must not be specified again.
Any OPTCD subparameter facilities that
were specified when the file was
created are in effect as long as the
data set exists. For example, if the
programmer specified the
write-validity check option (OPTCD=W)
when he created the file, the option
is still in effect.at the time of any
subsequent WRITE statement. The
BLKSIZE and LRECL subparameters must
not be specified.

DSN AME(DSN)

DISP

This parameter is written
DSNAME=dsname. The element
subparameters (INDEX~ PRIME, OVFLOW)~
must not be written.

The first subparameter must be OLD.
The second subparameter cannot be
CATLG or UNCATLG (see "Cataloging
Files" above for more information on
cataloging indexed sequential files).

liQ!~: For further information about
Indexed Sequential parameters, see "DD
Statement Requirements for Indexed

128

sequential Files" in "Creating Indexed
Sequential Files."

only one DO statement is needed to
specify an existing file if all of the
areas are on one volume. The following is
an example of a DD statement that can be
used when processing a single-volume QISAK
file.

Iiddname DD
1/
1/

DSNAME=dsname,
DCB=(DSORG=IS~ •••),
UNIT=unit,DISP=OLD

Further details about DD statements for
existing single-volume and multivolume
indexed sequential files can be found in
the publication Q~L!~_~~1-Ref~£~~g.
R~fere.n£~.

Note: Figure 46 shows the parameters that
may be used in a DD statement when
processing indexed sequential files opened
as INPUT or I-O. Additional information
about indexed file structure is contained
in the publication Q~L!li-Q~l~~~~~~
~~~_2.~ig~· 

x 
X 

R~orq~nizing Files: As new records are 
added to an indexed sequential file, chains 
of records may be created in the overflow 
area if one exists. The access time for 
retrieving records in an overflow area is 
qreater than that required for retrieving 
records in the prime area. Input/output 
pe rformance is, therefore, sharply reduced 
when many overflow records develop. For 
this reason, an indexed sequential file can 
be reorganized as soon as the need becomes 
evident. The system maintains a set of 
statistics to assist the programmer when 
reorganization is desired. These 
statistics are maintained as fields of the 
file's data control block. They are made 
available when APPLY REORG-CRITERIA is 
specified. If these statistics are 
desired, t.he OPTCD subparameter of the DCB 
parameter must have included the OPTCD=R 
parameter in each of the DD statements when 
the file vas created. Additional 
information about reorganizing files is 
contained in the publication OS/V~_Q~1~ 
lJ.gnage~nt Services GJ!i4g. 

~~gy~tia!-Bgi~i~x~1-Q2in~_the START 
~1atgm~n1: For indexed sequential INPUT 
and I-O files~ retrieval starts with the 
first nondummy record in the file. If the 
programmer wishes to begin processing at a 
point other than the beginning of the file, 
he can do so through the use of the START 
verb. When the START statement is used# 
the retrieval starts sequentially from the 
record specified in the NOMINAL KEY. 



~ 1 , 
jddname J ddname used only for first DD ~ 
, I statement of each file f 
~ I ~ 
IDSNAME J dsnamel 
I I j 
t U!Qlg: Element subparameter must t 
I lnot be used. I 
~-----+ ~ 
I Dev ice ,Mass storage req uired , 
r I ~ 
,UNIT ,Applicable subparameter I 
I I I 
IJ!Ql~: Not needed if file is I 
I J ca taloged. I 
r -It--~--- t 
,SEP. AFFIRestricted; see "Job Control I 
I I Procedures" I 
~ f ~ 
IVOLUME IApplicable subparameters I 
r- I , 
ILABEL JSt i 
t- I --------..f 
,SPACE INot applicable I 
t I .. 
JSUBALLOCINot applicable I 
1- I .. 
ISPLIT fNot applicable I 
r 4 ~ 

IDISPJ [,KEEP] 1 
I I 01. D 1 , PAS S J 
• I ,DELETE J 

~ J , 
IDCB JRequired: DSORG=IS 1 
t I I 
t loptional: BUFNO=xxx (not allowed I 
I I for B1SAM) 1 
I J LRECL=xxx I 
a- -t 
,lCATLG UNCATLG not permitted. I L---____________________________________ __ 

Figure 46. DD Statement Parameters 
Applicable I ndexed sequential 
Files Opened as INPUT or I-a 

~Q~QL£Q!U!id~S!ilin2: When processing an 
already existing file with QISAM, the 
following COBOL programming considerations 
should be noted: 

• RECORD KEY Clause. The RECORD KEY 
always in the SELECT sentence of tile 
Environment Division is required. just 
as it is when creating the file. Note 
other record key considerations under 
"Accessing an Indexed Sequential File 
Randomly.1t 

• Delete option. In order to keep the 
number of records in the overflow area 
to a minimum, and to eliminate 
unnecessary records, an existing record 
may be marked for deletion. This is 
done by moving the figurative 

constant HIGH-V~LUE into the first 
character position of the record (unless it 
has been changed by the program collating 
sequence--in which case a X'FF' must be 
moved). The record is not physically 
deleted unless it is forced off its prime 
track by the insertion of a new record (see 
"Using the WRITE Statement" in "Accessing 
an Indexed File Randomly"), or if the file 
is reorgani~ed. Records marked for 
dGletion may be replaced (using B1SA1'1) by 
new records containing equivalent keys. 
Execution of the READ statement in QISAM 
does not make available a record marked for 
deletion, whether the record has been 
physically deleted or not. Dummy records 
and deletion are discussed further in 
"Accessing an Indexed sequential File 
Randomly." 

!£~§~i~~Indexed segy~nlial-Yil~ 
19!!gQAlly 

The file processing technique used for 
random retrieval of a logical record, the 
random updating of a logical record, and/or 
the random insertion of a record is BISAM 
(Basic Indexed sequential Access Method). 
wnen accessing an indexed sequential file 
randomly, both NOMINAL KEY and RECORD KEY 
must be specified. The format of the 
NOMINAL KE Y is descr ibed br lef ly below: 

J Format 
~----------------
I 
J NOMINAL KEY IS data-name 
I 
• 

"1 

1 
--t 

t 
J 
I 
.J 

Data-name may be any fixed-length 
working storage item from 1 through 255 
bytes in length. If it is part of a 
logical record, it must be at a fixed 
displacement from the beginning of that 
record description (see the publication !!Hi 
IS COBOL for OS/Vs_for additional 
information). 

Since a RECORD KEY is used to identify a 
record to the system, the record keys 
associated wit h the logical records of t,he 
file may be thought of as a table of 
arguments. When a record is read or 
written, the contents of NOKINAL KEY is 
used as a search argument that is compared 
to the record keys of the file. 

User Non-VSAK File Processing 129 



I 
/ 

The following example illustrates the 
use of the NOMINAL KEY clause. 

ENVIRONMENT DIVISION. 

NOMINAL KEY IS NOM-KEY 
RECORD KEY IS REC-KEY. 

DATA DIVISION. 
FILE SECTION. 
FD INDEXED- FILE 

LABEL RECORDS ARE STANDARD. 
01 REC-1. 

02 DELETE-CODE PIC X. 
02 REC-KEY PIC 9(5). 

WORKING-STORAGE SECTION. 
77 NOM-KEY PIC 9(5). 

Because of their complementary use of 
the indexed file organization, much of the 
information discussed above for QISAM also 
applies to BISAM. Differences are noted 
be low. 

!!§!.n,!L.!.h~_Jiglr~~.e.!~!!!~!!1: The programmer 
can use the WRITE statement to add a new 
record into an indexed file. The record is 
added on the basis of the value specified 
in the NOMINAL KEY. The contents of the 
NOMINAL KEY are used to locate the two 
records in the file between which the new 
record is to be inserted. The records 
sought are those that have values less than 
and greater than the values in the nominal 
key field. Two methods can be used to add 
records. 

In the first method, the key to be added 
is a new key value. The record is inserted 
in place so that the sequence of the keys 
is maintained. If an overflow area exists, 
the insertion may cause records to be 
forced off the prime track into the 
overflow area. Dummy records forced off 
the track in this way are physically 
deleted and are not written in the overflow 
area. 

In the second method, the key of the 
record to be added has the same value as 
that of a known dummy record. If the dummy 
record has not been physically deleted, it 
is replaced by the new record. If it has 
been physically deleted, the record is 
inserted as though it had a new key value. 
If the key of the record to be added has 
the same value as a record other then a 
dummy record, an INVALID KEY condition will 
result. 

130 

• Records with a key higher (or lower) 
than the current highest (or lowest) 
key of the file may be added. 

• Whenever a WRITE statement is executed 
the contents of RECORD KEY and NOMINAL 
KEY must be identical. Except in the 
case of dummy records, this value must 
be' unique in the file. 

Usin,!Lthe REWRITE state~~n1: If a record 
is to be updated, the indexed file should 
be opened as 1-0 and the REWRITE statement 
should be used. All REWRITE statements 
must be preceded by a READ statement. 
However, a READ statement can be followed 
by either a WRITE, REWRITE, or another 
READ. 

Note: Whenever a REWRITE statement is 
;iecuted the value contained in NOMINAL KEY 
and RECORD KEY must be identical. 

.Y.§!ng:_.!.!~_n!Q.2iaig,m~D.l: Records are 
retrie ved on the basis of the value 
specified in the NOMINAL KEY. If the key 
of a record marked for deletion is 
specified and the record has not been 
physically deleted, it will be produced. 
If the record has been physically deleted~ 
the READ statement will cause an INVALID 
KEY condition and control will go to the 
INVALID KEY routine if specified. 

12.!.g,: Although the RECORD KEY clause must 
be specified, no value need be moved to the 
record key field before the execution of 
the READ statement. The search for the 
desired record is based on the con tents of 
NOMINAL KEY. 

COB01_~~idg£.ati2!!.§: When processing an 
indexed file randomly, the following COBOL 
programming considerations should be noted~ 

• RECORD KEY Clause and NOflINAL KEY 
Clause. The RECORD KEY and NOMINAL KEY 
clauses in the SELECT se.ntence of the 
Environment Division are required. The 
RECORD KEY clause is used to specify 
the location of the key within the 
record itself. The NOMINAL KEY is used 
as a search argument to locate the 
proper record, and must not be defined 
within the file being processed. Note 
that since a RECORD KEY is defined 
within a record, the contents of RECORD 
KEY are not available after a WRITE 
statement has been executed for that 
record. 



I ........... ~ KEY OPEN ~ CLOSE ......... Medaad a- sa&elllellt Ven. sa .... t 

QlSAM SEQUENTIAL RECORD INPUT READ [INTO) [WiTIf LOCK) 
NOMINAL AT END 

START 
INVALID 
KEY r------- -- ------

OUTPUT WRITE [FROM) 
INVALID KEY r------- --------

I'() READ [INTO) 
AT END 

START 
INVALID 
KEY 

REWRITE [FROM) 

BISAM RANOOM RECORD INPUT READ [INTO) [WiTIf LOCK) 
NOMINAL INVALID KEY 1------- r-- - ------

I.() READ [INTO) 
INVALlD"KEY 

WRITE (FROM) 
INVALID KEY 

REWRITE [FROM) 
, INVALID KEY 

Figure 47. Indexed Sequential File processing on Mass storage Devices 

• TRACK-AREA Clauss. Specifying the 
clause results in a considerable 
improvement in efficiency when a record 
is added to the file. If a record is 
added and the TRACK-AREA clause was not 
specified for the file* the contents of 
the NOMINAL KEY field are unpredictable 
after the WRITE statement is executed. 
In this case, the key must be 
reinitialized before the next WRITE 
statemen t is e,xecu ted. 

Even if TRACK-AREA is specified, if the 
addition of a record causes another 
record to be bumped off the track and 
into the overflow area, the contents of 
the NOMINAL KEY are unpredictable after 
a WRITE. 

• APPLY REORG-CRITERIA Clause. If the 
OPTCD=R parameter was specified on the 
DD card for an indexed sequential file 
vhen it was created, the APPLY 
REORG-CRITERIA clause can be used to 
obtain the reorganization statistics 
when the file is closed. These 
statistics are moved from the data 
control block to the identifier 
specif~ed in the clause when a CLOSE 
statement is executed for the file. 

• APPLY CORE-INDEX Clause. This clause 
specifies that the highest level index 
will reside in core storage during 
input/output operations. Otherwise, 
the index viII be searched on the 
volume, and processing time will be 
longer. 

• Required and optional COBOL statements 
are summarized in Figure 41. 

Each da ta set tha t is defined by a DD 
statement is either to be created, or has 
been previously,created and is to be 
retrieved. In either case, the data set 
must have a dispOSition; for example, if 
the data set is being created, the 
disposition must indicate whether the data 
set is to be cataloged, kept, or deleted. 
Other DD parameters may simply, indicate 
that the data set is in the input stream or 
that ultimately the data set is to be 
printed or punched. 

The following sections summarize the DD 
statement parameters and show examples for 
various uses of the DD statement. These 
sections include information about 
cataloging data sets and creating or 
referring to generation data groups; 
examples of cataloged data sets and 
partitioned data sets are included. For 
additional information about partitioned 
data sets see "Libraries." Also see 
"Appendix I: Checklist for Job Control 
Procedures" for additional examples of the 
DD statement used in job control 
procedllr.es. 

CREATING A NON-VSAM DATA SET 

when creating a non-VSAM data set, the 
programmer ordinarily will be concerned 
with the following parameters: 

1. The data set name {DSNAMm parameter, 
which assigns a·name to the data set 
being created. 

User Non-VSAM File Processing 131 



2. The unit (UNIT) parameter~ which 
allows the programmer to state the 
type and quantity of input/output 
devices to be allocated for the data 
set. 

3. The volume (VOLOM~ parameter~ which 
allows specification of the volume in 
which the data set is to reside. This 
parameter also gives instructions to 
the system about volume mounting. 

4. The space (SPACE) ~ split cylinder 
(SPLIT) ~ and suballocation (SUBALLOC) 
parameters~ for mass storage devices 
only, which permit the specification 
of the type and amount of space 
required to accommodate the data set. 

5. The label (LABEL) parameter, which 
specifies the type and some of the 
contents of the label associated with 
the data set. 

6. The disposition (DISP) parameter, 
which indicates what is to be done 
with the data set by the system when 
the job step is completed. 

1. The DeB parameter, which allows the 
programmer to specify additional 
information to complete the DCB 
associated with the data set (see 
"User-Defined Files"). This allows 
additional information to be specified 
at execution time to complete the DeB 
constructed by the compiler for a data 
set defined in the source program. 

Figure 48 sho~s the subparameters that 
are frequently used in creating data sets. 
Additional subparameters are discussed in 
"Job Control Procedures." 

r-{:::~;~}-=-1~~~;~~~:::::::~i----------------------------------------------------------, 
I ~&&name(element)~ 
I 
I UNIT=(name[,unit count]) 
I 
I 
I 
I 
I 
I 
I 
J 
I 
J 
I 
I 

{

VOLUME} 
=([PRIVA~EJ [nRETAIN] [,volume-sequence-numberJ [,volume-count] 

VOL 

[

SER=cvolume-serial-nUmber[,VOlUme-serial-nUmberJ ••• )] 

dsnarre 
*.ddname 

"REF= *.stepnarre.ddname 
*.stepnarre.procstepoddnawe 

1 SPACE=( {~~~ ~ 
I average-rEcord-length) 
I 
I 
I 

[,directory-quantity]» 

J [CYL ] I SPLIT=(n" 
I dverage-record-length 
I 
I 
I LABEL={[data-set seguence-numcer], 

,Cprimary-quantity[,seccndary-guantity] 

[,(primary-quantity, [secondary-quantity])] 

{ ~~ l·[EXPDT=YYddd]) 
NSL ,RE~PD=~~~~ 

SUL 
I 
I 
I 

I DISP= ( [NEW] [:. ~~~~TEJ [: ~~i~TE] 
I MeD "FASS ,CATLG 
J "CATLG I 

1 I 
I DCB=(subpararreter-list) I L __________________________________________________________________________________ ~ ____ J 

Figure 48. DD statement Parameters Frequently Used in Creating Data Sets 

132 



Data sets whose destination is a printer 
or card punch are created with theDD 
statement parameters UNIT and DCB. 

!H!!I: Required. Code unit information 
uS1ng the 3-digit address (e.g., UNIT=OOE), 
the type (e.g., UNIT=1403), or the 
system-generated group name (e.g., 
UNIT=PRINTER). 

Q,g! Required only if the data control 
block is not completed in the processing 
program. Valid DCB subparameters are 
listed in "Appendix C: Fields of the Data 
Control Block. tI 

Tape data sets are created using 
combinations of the DD statement parameters 
UNIT, LABEL, DSNAME, DCB, VOLUME, and DISP. 

lH!!!: Required, except when volumes are 
requested using VOLUHE=REF. A unit can be 
assigned by specifying its address, type, 
or group name, or by requesting unit 
affinity with an earlier data set. 
Multiple output units and defer volume 
mounting can also be requested with this 
para meter. 

1ABEL: Required when the tape has user 
labels or does not have standard labels, 
and when the data set does not reside first 
on the reel. It is also used to assign a 
retention period and password protection. 

DSN!~: Required for data sets that are to 
be cataloged or used by a later job. 

J!£..!!: Required only when data control block 
information cannot be specified in COBOL. 
Usually, such attributes as the logical 
record length (LRECL) and buffering 
technique (BFTEK) will have been specified 
in the processing program. other 
attributes, such as the OPTeD field and the 
tape recording technique (TRTCH), are more 
appropriately specified in the DD 
statement. Valid DCB subparameters are 
listed in "Appendix C: Fields of the Data 
Control Block." 

!QLUME: optional, this parameter is used 
to request specific volumes. If VOLUME=REF 
is specified, and the existing data sets on 
the specified volume(s) are to be saved, 
indicate the data set sequence number in 
the LABEL pa rameter. 

DISP: Required for data sets that are to 
be cataloged, passed, or kept. The 
programmer can specify conditional 
disposition as the third term in the orsp 
parameter to indicate how the data set is 
to be treated if the job step abnormally 
terminates. 

Creati.llil~£.gY,gntial-1BSAM_Q!:_Q~.!ID...J2~1~ 
Sets on Mass storage Device§ 

sequential data sets are created using 
combinations of the DD statements 
parameters UNIT, DSNAME, VOLUME, LABRL, 
DISP, DCB, and one of the space allocation 
parameters SPACE, SPLIT, or SUBALLOC. 

!!l!!I: Required, except when volumes are 
requested using VOLUME=REF or space is 
allocated using SPLIT or SUBALLOC. Assign 
a unit by specifying its address, type, or 
group name, or by requesting unit affinity. 

!!~l!!11~: Required for all but temporary 
data sets. 

~~~~1: Required to specify label type and 
to assign a retention period or password
protection.

~£~: Required only when data control block
information is not completely specified in
the processing program. usually, such
attributes as the logical record length
(LRECL) and buffering technique (BFTEK)
will have been specified in the processing
program. other attributes, such as the
OPTCD field are more appropriately
specified in the DD statement. Valid DeB
subparameters are listed in "Appendix C:
Fields of the Data Control Block."

!QLUl1~: optional. This parameter requests
specific volumes (SER and REP), specific
volumes when the data set resides on more
than one volume (seq #), multiple
nonspecific volumes (volcount), private
volumes (PRIVATE), or private volumes that
are to remain mounted until the end of the
job (RETAIN).

QISP: Required for data sets that are to
be cataloged, passed, or kept. The
programmer can specify conditional
disposition as the third term in the DISP
parameter to indicate how the data set is
to be treated if the job step abnormally
terminates.

~f!CEL_SPkll.L_~BALkQ£: One of these is
required for all new mass storage data
sets.

User Non-VSAM File processing 133

Direct (BDAM) data sets are created
using the same subset of DD statement
parameters as sequential data sets, with
the exception of the SPLIT parameter.
Valid DCB subparameters for BDAM data sets
are listed in "Appendix C: Fields of the
Data Control Block."

~I~gting_IDg~~Q_l~I~!~_~ng_Q!~!~L_Q~i~
~~!§

Indaxed (IS AM) data sets are created
using combinations of the DD statement
parameters UNIT, DSNIME, VOLUME. LABEL~

DISP, DCB, and SPACE. The 151M data sets
occupy tl1ree areas of storage: an i!Hl~~
~~gg that contains master and cylinder
indexes, a £rim~~~~ that contains the
data records and track indexes, and an
optional Q~grflQ~_g~~g to hold additional
records when the prime a rea is e.xhausted.
Detailed information on creating and
retrieving indexed sequential data sets is
presented in "Appendix H: Creating and
Retrieving Indexed Sequential Data sets."

New data sets can be written on a system
output device in much the same way as
messages. A data set is directed to the
outpui stream with the SYSOUT and DCB
parameters.

~!~OUT: Required. The output class
through which the data set is routed must
be specified. Out. pu t classes are
identified by a single alphanumeric
character.

Q~B: Required only if complete data
control block information has not been
specified in the processing program.

134

When using a priority scheduler, data
sets are not routed directly to a system
output device. They are stored by the
processing program on an intermediate mass
storage device and later writ.ten on a
system output. device. In addition to the
SYSOUT and DCB parameters, DD statements
defining a data set of this type can also
contain UNIT and SPACE parameters. All
other parameters must be absent.

~I~QUT: Required. The output class
through which the data set is routed must
be specified. Output classes are
identified by a single alphanumeric
character.

Q£B: Required only if complete data
control block information has not been
specified in the processing program. Data
control block information is used when the
data set is written on an intermediate mass
storage volume and read by the output
writer. However, the output writer's own
DCB attributes are used when the data set
is written on the system output device.
Valid DCB parameters are listed in
"Appendix C: Fields of the Data control
Block."

!!Hll: Opt.ional. An in te.rmed.iate mass
storage device is assigned if UNIT is
specified. I default device is assigned if
this parameter is omitted.

SP~: optional. Estimate the amount of
mass storage space required. A default
estimate is assumed if this parameter is
ami tted.

Note: When a Direct SYSOUT Writer is used
(OsjYS1 only), the scheduler functions as a
sequential scheduler. The 5Y50UT data sets
of the particular output class from any of
the elegible job classes are not stored on
an intermediate storage device, but are
written directly to the system output
device. When Direct 5YSOUT Writer is used,
all the parameters on the DD card are
ignored. For detailed information on
Direct SY50UT Writer, see the publication
Q~/V51_flanni~g~ng~2~~ide.

The following examples show various ways of specifying DD statements
for data sets that are to be created. In genera1 8 the number of
parameters and subparameters that are specified depend on the
disposition of the data set at the end of the job step. If a data set
is used only in the job step in which it is created and is deleted at
the end of the job step8 a minimum number of parameters are required.
However, if the data set is to be cataloged8 more parameters should be
specified •

.E.I~!!!.£!Ll: Creating a data set for the current job step only ..

IISYSUT1 DO UNIT=SYSDA.SPACE=(TRK,{50,100)

This example shows the basic required DD statement for creating and
storing a data set on a mass storage device. The UNIT parameter is
required unless the unit information is available from a nother source.
If the data set were to be stored on a unit record or a tape device, the
SPACE parameter would not be needed. The operating system assigns a
temporary data set name and assumes a disposition of (NEW, DELETE) ..

~.xnJ!!~_l: Creating a data set that is used only for the current. job.

IISYSLIN
II

DD DSNAME=&&TEMP,DISP=(~OD,PASS) .UNIT=SYSSQ.
S PACE= (TRK, (50))

This example shows a DD statement that creates a data set for use in
more than one step of a job. The system assigns a unique symbol for the
name, and this same symbol is substituted for each recurrence of the
&&TEftP name within the job. The data set is allocated space on any
available mass storage or tape device. If a tape device is selected r

the SPACE parameter is ignored. The disposition specifies that the data
set is either new or is to be added to (MOD), and is to be passed to the
ne~t job step (PASS). This DD statement can be used for specifying the
data set that is created as output from the compiler and that is to be
used as input to the linkage editor. By specifying MOD, separately
compiled object modules can be placed in sequence in the same data set.

liote: If MOD is specified for a data set that does not already exist,
the job may be abnormally terminated when a volume reference name, a
volume serial number, or the disposition CATLG is specified or when the
dsname is indicated by a backwards reference.

User Non-VSAM File Processing 135

EXMll!Ll: Creating a data set that is to be kept but not cataloged.

liTE MPFILE
II

DD DSN=FILEA,DISP=(,KEEP),SPACE=(TRK,(30,10}),
UNIT=DIRECT,VOL=(,RETAIN,SER=AA70)

x

The example shows a DD statement that creates a data set that is kept
but not cataloged. The data set name is FILEA. The disposition (,KEEP)
specifies that the data set is being created in this job step and is to
be kept. It is kept until a disposition of DELETE is specified on
another DO statement. The KEEP parameter implies that the volume is to
be treated as private.. private implies that the volume is unloaded at
the end of the job step but because BETAIN is specified, the volume is
to remain mounted until the end of the job unless another reference to
it is encountered. The DIRECT parameter is a hypothetical device class,
containing only mass storage devices. The volume with serial number
AA70, mounted on a device in this class, is assigned to the data set.
Space for the data set is allocated as specified in the SPACE parameter.
The data set has standard labels since it is on a mass storage volume.

If the volume serial number were not specified in the foregoing
example, the system would allocate space in an available nonprivate
volume. Because KEEP is specified, the volume becomes private.
(Another data set cannot be stored on a private volume unless its volume
serial number is speci fied or affini ty with a da ta set on the volume is
stated.) The volume serial number of the volume assigned, if
applicable, is included in the disposition message for the data set.
Disposition messages are messages from the job scheduler, generated at
the end of the job step.

lixaill.£!.g,~~: creating a data set and cataloging it.

IIDDNAMEA
II
II
II

DD DSNAME=INVENT.PARTS,DISP=(NEW,CATLG),
LABEL= (., EXPDT=77031) , UNIT=DACLASS.
VOLUME=(, REF=*.STEP1.DD1) ,
SPACE= (CYL,(5, 1) "CONTIG)

x
X
X

This example shows a DD statement that creates a data set named
INVENT.PARTS and catalogs it in the previously created system catalog.
The data set is to occupy the same volume as the data set referred to in
the DD statement named DD1 occurring in the job step named STEP1. The
UNIT parameter is ignored since REF is specified. Five cylinders are
allocated to the data set, and if this space is exhausted, more space is
allocated, one cylinder at a time. The five cylinders are to be
contiguous. The disposition (CATLG), implies that the volume is to be
private. The INVENT. PARTS is to have standard labels. The expiration
date is the 31st day of 1977.

~a!£!~_~: Adding a member to a previously created library.

IISYSLMOD DD DSNAME=SYS1.LINKLIB{INVENT),DISP=OLD

This DD statement adds a member named INVENT to the link library
(SYS1.LINKLI~. When a member is added to a previously created data
set, OLD should be specified.

136

Exam~2: Creating a library and its first member.

IISY5LMOD
II

DD DSNA~E=USERLIB(MYPROG)~DISP={.CATLG).
SPACE= (TRK~ (50,30~3» ,UNIT=3330,VOLUME=SEB=111111

x

This DD statement creates a library, USERLIB, and places a member,
MYPBOG, in it. The disposition (,CATLG) indicates that the data set is
being created in this job step (NEW is the default condition for the
DISP parameter and is indicated by the comma) and is to be cataloged.
The data set is to have standard labels. Space is allocated for the
data set in a volume on a mass storage device that is an IBM 3330 unit.
Initially, 50 tracks are allocated to the data set, but when this space
is exhausted, more tracks are added, 30 at a time. The SPACE parameter
must be specified when the library is created, and it must include
allocation of space for the directory. SPACE cannot. be specified when
new members are added. If additional space is required when new members
are added, the secondary allocation, if specified, will be used. Three
256-byte records are to be used for the directory. The volume serial
number of the volume on which the library is to reside, is 111111.

~xamEl~_l: Replacing a member of an existing library.

/ISYSLMOD DD DSNAME=MYLIB{CASE3) ,DISP=OLD

This DD statement replaces the member named CASE3 with a new member
with the same name. If the named member does not exist in the library,
the member is added as a new member. In the foregoing example, the
library is cataloged.

~Y~!i: creating and adding a member to a lib-rary used only for the
Cl1.rr en t job.

//SYSLfilOD
II

DD DSNAME=&&USERLIB(filYPROG) ,D.ISP=(,PASS) ,UNIT=SYSDA,
SPACE=(TRK,(50,,1»

This DD statement creates and adds a member to a temporary library.

x

It is similar to the DD statement shown in Example 6, except that a
temporary name is used and the data set is not cataloged nor kept but is
simply passed to the next job step. Since the data set is to be used
only for this one job, it is not necessary to specify VOLUME and LABEL
information. This statement can be used for a linkage edit job step in
which the module is to be passed to the next step.

Note: .If DlSP= (, DELETE) is specif ied for a Ii brary, the ent.ire library
will be deleted.

User Non-'SA" Pile processing 137

RETRIEVING PREVIOUSLY CREATED NON-VSAM DATA
SETS

The parameters that must be specified in
a OD statement to retrieve a previously
created data set depend on the information
that is available to the system about the
data set. For example,

1. If a data set on a magnetic-tape or
mass storage volume was created and
cataloged in a previous job or job
step, all information for the data
set, such as volume, space, etc., is
stored in the catalog and data set
label. This information need not be
repeated. Only the dsname and
disposition parameters need be
specified.

2. If the data set was created and kept
in a previous job but has not been
cataloged, information concerning the
data set, such as space, record
format# etc., is stored in the data
set label. However, the unit and
volume information must be specified
unless available elsewhere.

3. If the data set was created in the
current job step, or in a previous job
step in the current job, the
information in the previous DD
statement is available to the system
and is accessible by referring to the
previous DD statement. Only the
dsname and disposition parameters need
be specified.

N.Q!~: A programmer may wish to change the
previous disposition of a data set. For
example, if KEEP was specified when the
data set was created, the DD statement that
retrieves the data set may change the
disposition by specifying CATLG.

Figure 49 shows the parameters that are
used to retrieve previously created data
sets.

Input data sets# assigned a disposition
of CATLG or cataloged by the IEHPROGM
utility program, are retrieved using the DD
statement parameters DSNAME, DISP, LABEL,
and DCB. The device type, volume serial
number, and data set sequence number (if
tape) are stored in the catalog.

138

r---,

J
I
I
]

j
dsname \ I dsname(element) I
*Qddnarre I
*.stepname.ddnarre I
&&name I
&&name(elellient)

{
DSNAME}

DSN

UNIT-=(narreI,n])

DCE=(sutparameter-list)

CID "KEEP ,KEEP
I DISP=([~ODJ . CATLG [

LELE'IE]

SHR ,PASS [

DELETE]

,CA'ILG
UNCATLG J

I UNCA'ILG
1
I
I LAEEI=(sutpararreter-list)
I
I
: {VOLUME} =(sutparameter-list)
J VOL
I L __ _

Pigure 49. Parameters Frequently Used in
Retrieving Previously Created
Data sets

DS,!AME: Required. .The da ta set m nst be
identified by its cataloged name. If the
catalog contains more than one index level,
the da ta set name must be fully qualified.

QI~f: Required. The status (OLD or SHR)
of the data set must be given and an
indication made as to how it is to be
treated after its use, unless it is to
remain cataloged. The programmer can
specify as the third term in the DISP
parameter a conditional disposition to
indicate how the data set is to be treated
if the job step abnormally terminates.

ilBEb: Required only if the data set does
not have a standard label.

Q~1!: Regn ired only if complete da ta
control block information is not specified
by the processing program and the data set
label. To save recoding time, DCB
attributes can be copied from an existing
DCB parameter and modified if necessary.
Valid DCB subparameters are listed in
"Appendix C: Fields of the Data control
Block."

Note: In addition to the disposition
UNCATLG, a cataloged data set can be passed
to a later step (PASS) or deleted (DELETE).

Input data sets that vere assigned a
disposition of KEEP are retrieved by their
tabulated name and location, using the OD
statement parameters DSNAME, UNIT, VOLUME,
DISP, LABEL, and DCB.

~NAME: Required. The data set must be
identified by the name assigned to it when
it was created.

UN!!: Required, unless VOLUME=REF is used.
The unit must be identified by its address,
type, or group name. If the data set
requires more than one unit, give the
number of units. Deferred volume mounting
and unit separation can be requested with
this parameter.

IQ1QME: Required. The volume(s) must be
identified with serial numbers or, if the
data set was retrieved earlier in the same
job, with VOLUME=REF. If the volume is to
be PRIVATE, it must be so designated. If a
private volume is to remain mounted until a
later job step uses it, RETAIN should be
designated.

QI~g: Required. The status (OLD or SHR)
of the data set must be given and an
indication made as to how it is to be
treated after its use. The programmer can
specify conditional disposition as the
third term in the DISP parameter to
indicate how the data set is to be treated
if the job step abnormally terminates.

L!~IL: Required if the data set does not
have a standard label. If the data set
resides with others on tape, its sequence
number must be given.

Q~~: Required for all indexed sequential
data sets. Otherwise, required only if
complete data control. block information is
not supplied by the processing program and
the data set label. To save recoding time,
copy DCB attributes from an existing DCB
parameter, and modify them if necessary.
Valid DCB sub parameters are listed in
Appendix c.

!H~lI:ieving Passed Data sets

Input data sets used in a previous job
step and passed are retrieved using the DD
statement parameters DSNAME, DISP, and
UNIT. The data set's unit type, volume

location, and label information remain
available to the system from the original
DD statement.

1!S.NAME: Required. The original data set
must be identified by either its name or
the DO statement reference term
*.stepname.ddname. If the original DO
statement occurs in a cataloged procedure,
the procedure stepname must be included in
the reference term.

Q!~: Required. The data set must be
identified as OLD, and an indication made
as to how it is to be treated after its
use. The proqrammer can specify
conditional disposition as the third term
in the DISP parameter to indicate how the
data set is to be treated if the job step
abnormally terminates.

Mli!l: Required only if more than one unit
is allocated to the data set.

Data sets in the form of decks of cards
or groups of card images can be introduced
to the system through an input stream by
interspersing them with control statements.
To define a data set in the input stream,
mark the beginning of the data set with a
DD statement and the end with a delimiter
statement. The DO statement must contain
one of the parameters * or DATA. Use DATA
if the data set contains job control
statements and an * if it do~s not. Two
DCB subparameters can also be coded when
defining a data set in the input stream:
BLKSIZE and BUFNO. Coding the DLM
parameter permits termination of data with
a delimiter other than 1*.

• The input stream can be on any device
supported by QSAM.

• Each job step and procedure step can be
associated with several data sets in an
input stream. All such data sets
except the first in the job must be
preceded by DD * or DD DATA statements.

• The characters in the records must be
coded in BCD or EBCDIC.

• If the data is preceded with a DD *
statement, a 1* delimiter following the
data is optional.

User Non-VSAM File processing 139

~x~£1~_l: Retrieving a cataloged data set.

//CALC DD OSNAffE=PROCESS,DISP=(OLO,PASS,KEEP)

This OD statement retrieves a cataloged data set named PROCESS. No
UNIT or VOLUME information is needed. Since PASS is specified, the
volume in which the data set is written is retained at the end of the
job step_ PASS implies that a later job step will refer to the data
set. The last step in the job referring to the data set should specify
the final disposition. If no other OD statement refers to the data set,
it is assumed that the status of the data set is as it existed before
this job. In the event of an abnormal termination, the KEEP disposition
explicitly states the disposition of the data set.

!!.M!..£le 1: Retrh~ving a data set that was kept but not cataloged.

liTE MPFI LE D D DSNAME=FILEA,UNIT=DIRECT,VOLUME=SER=AA70,DISP=OLD

This DO statement retrieves a kept data set named FILEA. (This data
set is created by the DO statement shown in Example 3 for creating data
sets.) The data set resides on a device in a hypothetical device class,
DIRECT. The volume serial number is AA70.

/ISAMPLE
//STEP1

/ISYSLIN
/ISTEP2
/ISYSLIN

Referring to a data set in a previous job step.

JOB
EX Ee PGM.=IKFC BLOO, PARM=OECK

DD DSNAME=ALPHA,DISP={NEW,PASS) ,UNIT=SYSSQ
EXEC PGM=IEWL
DO *. STEP1. SYSLIN ,DTSP= (OLD ,DELETE)

The DO statement SYSLIN in STEP2 refers to the data set defined in
th.e DD statement SYSLIN in STEP1.

]Z@.El!L!: Retr ieving a member of a library.

//BANKING DD OSNAME=PAYROLL(HOURLY),DISP=OLO

The DD statement retrieves a member, HOURLY, from a cataloged
library, PAYROLL.

140

DO STATEMENTS THAT SPECIFY UNIT RECORD
DEVICES

A DD statement may simply indicate that
data follows in the input stream or that
the data set is to be punched or printed.
Figure 50 shows the parameters of special
interest for these purposes.

~ ,
I •

: {~ATA} :
t J
J SYSOUT=! I
, I
f UNIT=name j

f t
• DCB=(subparameters) I
• 1
J-- of
I Bote: The DeB parameter can be I
I specified, where permissible, for data)
I sets on unit record devices. For I
I example, it can be specified for t
, compiler data sets (other than SYSUT1, I
I SYSUT2, SYSUT3, and SYSUT4) and data •
, sets specified by the DD statements J
I required for the ACCEPT and DISPLAY I
J statements, when any of these data sets f
I are assigned to unit-record devices. I L-________________ __

Figure 50. Parameters Used To Specify
unit Record Devices

!x~~E!~l: specifying data in the card
reader.

IISYSIN DO *

The asterisk indicates that data follows
in the input stream. The data must be
followed by a delimiter statement if it
contains liar 1* in columns 1 and 2.

!~amEle 2: Specifying a printer data set.

IISYSPRINT DD SYSOUT=!

SYSOUT is the system output parameter; A
is the standard device class for printer
data sets.

]xamplg_l: specifying a card punch.

IISYSPDNCH DD SYSQUT=B

B is the standard device class for punch
devices.

CATALOGING A DATA SET

A data set is cataloged whenever CATLG
is specified in the DISP parameter of the
DD statement that creates or uses it. This
means that the name and volume
identification for the data set are placed
in a system index called the catalog. (See
"processing vith QISAM" in the section
"Execution Time Data Set Requirements" for
information about cataloging indexed
sequential data sets.) The information
stored in the catalog is always available
to the system; consequently, only the data
set name and disposition need be specified
in subsequent DD statements that retrieve
the data set. See Example 4 in "Creating
Non-VSlM Data sets," and Example 1 in
"Retrieving Non-VSAM Data sets."

If DELETE is specified for a cataloged
data set, any reference to the data set in
the catalog is deleted unless the DD
statement containing DELETE retrieves the
data set in some way other than by using
the catalog. If UNCATLG is specified for a
cataloged data set, only the reference in
the catalog is deleted; the data set itself
is not deleted.

!{Q.t~: A "cataloged data setU should not be
confused with a "cataloged procedure" (see
"Using the Cataloged Procedures").

GENERATION DATA GROUPS

It is sometimes convenient to save data
sets as elements or generations of a
generation data group (DSNAME=dsname
(element»). A g~!lg~9.tiQ1!_d.atL~ is a
collection of successive, historically
related data sets. Identification of data
sets that are elements of a generation data
group is based upon the time the data set
is added as an element. That is, a
generation number is attached to the
generation data group name to refer to a
particular element. The name of each
element is the same, but the generation
number changes as elements are added or
deleted. The most recent element is 0, the
eleme~t added previous to 0 is -1, the
element added previous to -1 is -2, etc. A
generation data group must always be
cataloged.

User Non-VSAM File Processing 141

For example, a data group named PAYROLt
might be used for a weekly payroll. The
elements of the group are:

PAYROLL (0)
PAYROLL (-1)
PAYROLL(-2)

where PAYROLL(O) is the data set that
contains the information for the most
current weekly payroll, and is the most
recent addition to the group.

When a new element is added, it is
called ele me nt (+n) ,where n. is an integer
greater than O. For example, when adding a
new element to the weekly payroll, the DO
statement defines the data set to be added
as PAYROLL(+l); at the end of the job the
system changes its name to PAtROLL(O). The
element that was PAtROLL{O) at the
beginning of the job becomes PAYROLL(-1) at
the end of the job, and so on.

If more than one element is being'added
in the same job, the first is given the
number (+1), the next (+2) and sO on.

NAMING DATA SETS

Each data set must be given a name. The
name can.consist of alphanumeric characters
and the special characters, hyphen and the
+0 (12-0 multipunch). The first character
of the name must be alphabetic. The name
can be assigned by the system, it can be
given a temporary name, or it can be given
a user-assigned name. If no name is
specified on the DD statement that creates
the data set, the system assigns to the
da ta set a u ni que name f or the job step.
If a data set is used only for the duration
of one job, it can be given a temporary .
name (DSNAME=&&name). If a data set is to
be kept but not cataloged, it can be given
a simple name. If the data set is to be
cataloged it should be given a fully
qualified data set name. The fully
qualified data set name is a series of one
or more simple names joined together so
that each represents a level of
qualification. For example, the data set
name DEPT999.SKITH.DATA3 is composed of
three simple names that are separated by
periods to indicate a hierarchy of names.
Starting from the left, each simple name
indicates an index or directory within
which the next simple name is a unique
entry. The rightmost name identifies the
actual location of the data set.

Each simple name consists of one to
eight characters, the first of which must
be alphabetic. The special character
period(.) separates simple Bames from

142

each other. Including all simple names and
periods, the length of a data set name must
not exceed 44 characters. Thus, a maximum
of 21 qualification levels is possible for
a data set .name.

Programmers should not use fully
qualified data set names that begin with
the letters SIS and that also have a P as
the nineteenth character of the name.
Under certain conditions, data sets with
~he above characteristics will be deleted.

EXTENDING NON-VSAM DATA SETS

A processing program can extend an
existing data set by adding records to it.
If the EXTEND phrase of the OPEN statement
is specified (QSAM data sets only), COBOL
positions the data set illlmedia tely
following the last logical record.
Subsequent WRITE statements then add
records as though the data set had been
opened with the OUTPUT phrase. (If LINAGE
was specified, the initial position at the
time of the OPEN EXTEND is assumed to be at
the beginning of a page.) The DD statement
for the data set to be extended need be no
different than for a normal COBOL output
file. Although the user need not specify
DISP:MOD on the DD statement, the system
implements the EXTEND request as if it had
been; consequently, any system restrictions
for DI5P=MOD also apply to the EXTEND file.

When OPEN EXTEND is not specified in the
COBOL program, a sequential data set (Q5AM
or other) can still be extended by
including DISP=MOD on the DD statement for
the data set's retrieval. When MOD is
specified, the system positions the
appropriate read/write head after the last
record in the data set.

If a disposition of CATLG for an
extended data set that is already cataloged
is indicated, the system updates the
catalog to reflect any new volumes caused
by the extension. Wben extending a
multivolume da ta set where number of
volumes might exceed the number of units
used, the programmer should either specify
a volume count or deferred mounting as part
of the yolume information. This ensures
data set extension to new volumes.

The following topics are discussed in
this section: the data control block,
error processing for COBOL files, and
volume and data set labels.

"ore information about input/output
processing is contained in the publication
~Ll~~!A-Hanagem~a~rvices Guid~.

DATA CONTROL BLOCK

Each non-VS'" data set is described to
the operating system by a data control
block (DCB). A data control block consists
of a group of contiguous fields that
provide information about th~ data set to
the system for scheduling and executing
input/output operations. The fields
describe the characteristics of the data
set (e.g.* data set organization) and its
processing requirements (e.g., whether the
da ta set is to be read or written). The
COBOL compiler creates a skeleton DeB for
each data set and inserts pertinent
information specified in the Environment
Division, PD entry, and input/output
statements in the source program. The DCB
for each file is part of the object module
that is generated. Subsequently, other
sources can be used to enter information
into the data control block fields. The
process of filling in the data control
block is completed at execution time.

Additional informa tionthat completes
the DCB at execution time may come from the
DD sta tement for the data set and, in
certain instances, from the data set label
when the file is opened.

Once a field in the DCB is filled in by
the COBOL compiler, it canno.t be
overriddenby a DD statement or a data set
label. For example, if the buffering
factor for a data set is specified in the
COBOL source program by the RESERVE Clause,
it cannot be overridden by a DD statement.
In the same way, information from the DD
statement cannot be overridden by
information included in the data set label.

The links between the DCB, DD statement,
data set label, and input/output statements
are the filename, the sy stem name in the
ASSIGN clause of the SELECT statement, the
ddname of the system-name, and the dsname
(Figure 51).

1. The filename specified in the SELECT
statement artd in the PD entry of the
COBOL source program is the name
associa ted vi th the DCB.

2. Part of the system-name specified in
the ASSIGN clause of the source
program is the ddname link to the DD
statement. This name is placed in the
DCB.

3. The dsname specified in the DD
statement is the link to the physical
da ta set.

The fields of the data control block are
described in the tables in Appendix c.
They identify those fields for which
information must be supplied by the source
program, by a DD statement, or by the data
set label. For further information about
the data contrQl block, see the discussion
of the DeB macro instruction for the
appropriate file processing technique in
the publication Q.S.LI~ata_H.s.J!age!!!tD.l
Services Guide.

r--------------------, r-------------------,
I SELECT I J Data Set I
I

1
I Other
J Input/Output
I Statements I L _____________________ J

I Latel J

I
DD I

1 Statement I L ___________________ J

I
I

Figure 51. Links between the SELECT Statement, the DD Statement, the Data Set Label, and
the Input/Output Statements

UseE' lJon-iSAfl File Processing 143

ERROR PROCESSING FOR NON-YSAM COBOL FILES

The actions taken after an I/O error depend
~n a number of things:

• What access method is being used

• What type of error it is

• What sort of error handling
statements the program contains
(if any)

• For certain error types on a
QSAM file, what DCB EROPT
s~bparameter was specified

If an error declarative, a file status
clause, or an invalid key clause is
specified for a particular file, the
DCBSYNAD field of the data control block
for that file contains the address of an
entry point in ILBOSYNO (COBOL's error
intercept library subroutine). ILBOSYNO
has 5 entry points (ILBOSYN1, 2, 3, 4,
and 5) corresponding to each of the five
access methods supported (other than
VSAM); they are QSAM, BSAM, BDAM,
QISAM, and BISAM. If no error declarative,
file status clause, or invalid key clause
is specified, no SYNAD routine is
activated and the appropriate system
action is taken.

In general, error handling for BSAM,
QISAM, BDAM, and BISAM is identical.
Figure 52 shows what happens when the
access method has detected an error and
given control to the COBOL SYNAD
routine. The program will either continue
at the next statement following the
I/O statement that caused the error, or

144

abend -- depending on the type of error
and the error handling language in the
program.

Error handling for QSAM files, however, is
different and more complex, because of these
additional factors:

1. The choice of EROPT subparameter (whether
ACC, SKP, or ABE) affects some conditions

2. The presence or absence of a FILE STATUS
clause affects most conditions

3. COBOL itself does some error checking,
and handles conditions it finds
differently

Figure 53 shows this logic flow. Note that
there are three general possibilities,
depending on whether the error is a
QSAM-detected space problem, some other
type of QSAM-detected problem, or a
COBOL-detected problem. Errors in the
last category are such things as OPEN and
CLOSE failures, attempts to 'read/write/rewrite
on an unopened file, attempts to r~ad past
end-of-file, and the like. (These are errors
·that would fall into the FILE STATUS
classifications of 90 or higher.) A program
encountering an error on a QSAM file will
continue, abend, or terminate the job step
with a return code of 12.

BSAM

1-0 ERROR
ILBO SYN2

QISAM
1-0 ERROR
ILBO SYN3

ISSUE
SYNADADF
AND FORMULATE
ERROR MESSAGE

BDAM
1-0 ERROR
ILBO SYN4

EXIT TO
ERROR

DECLARATIVE*

RETURN TO
SYSTEM*

BISAM
1-0 ERROR
ILBO SYN5

EXITTO
INVALID KEY

ROUTINE*

*EXECUTION OF COBOL PROGRAM THEN CONTINUES FOLLOWING THE 1/0 STATEMENT THAT RAISED THE ERROR.

Figure 52. Flow of Control in COBOL After Error Detected on BSAM/QISAM/BDAM/BISAM I/O

User Non-VSAM File Processing 145

SPACE NOT FOUND BY QSAM FOR
WRITE OR CLOSE REEL/UNIT
(INVALID KEY CONDITION - FILE
STATUS KEY OF 34; EQUIVALENT
TO x37 ABEND CODE) **

9
EXIT TO

INVALID KEY
PHRASE*

EXIT TO
ERROR

DECLARATlVE*

ERROR DETECTED BY COBOL ITSELF
(CONDITION EQUIVALENT TO FILE
STATUS KEY OF 90 OR HIGHER)

ISSUE MESSAGE
IKF1151, DO STOP
RUN PROCESSING

EXITTO
ERROR

DECLARATIVE*

CONTINUE
PROGRAM

EXECUTION

OTHER ERRORS

DETECTED BY QSAM

NO
(=ABE)

ISSUE SYNADAF
AND MESSAGE
IKF1111

EXIT TO
ERROR

DECLARATIVE

RETURN TO
QSAM FOR

'ACCEPT/SKIP'·

ON EXIT FROM DECLARATIVE,
RETURN TO QSAM.IF EROPT=
ACC/SKP, COBOL PROGRAM WILL
THEN CONTINUE; IF EROPT=ABE,
PROGRAM WILL BE ABENDED.

CONTINUE
PROGRAM

EXECUTION

"EXECUTION OF THE COBOL PROGRAM THEN CONTINUES FOLLOWING THE I/O
STATEMENT THAT RAISED THE ERROR.

'"FILE STATUS KEY 34 IS NOT ISSUED FOR A SORT-GIVING FILE.

Figure 53. Flow of Control in COBOL After Error Detected on QSAM I/O

146

co~~~ng~_~Al~~§-1Qr Input/outEY!
k~~~llg

The COBOL programmer has at his disposal
several language features which enable him
to be notified of an input/output error and
its exact nature -- information he can
utilize to attempt a retry if possible.

Thes~ language features are: the FILE
STATUS clause, the INVALID KEY clause, and
the USE AFTER ERROR declarative. See IBM
VS COBQLfQr OS/VS for complete details-on
the proper use of these features.

User Non-VSAM File Processing 147

FILE STATUS Key

The FILE STATUS clause may be specified for
QSAM files in order to provide a means of
testing the success of individual I/O
operations and determining more closely the
specific nature of an error condition when
it arises. QSAM FILE STATUS may be used
alone, or in conjunction with the error
declarative procedure (described below) •
In the latter case, the FILE STATUS key is
set by COBOL before the error declarative
is given control.

QSAM status key values are explained
in the table below.

INVALID KEY Option

The INVALID KEY option, when specified,
applies only for the specific input/output
operation requested; when the operation is
terminated successfully, the INVALID KEY
clause is nullified. This means that the
file has no constant INVALID KEY routine
associated with it, but that the active
INVALID KEY routine is the one specified on
the current input/output verb. For files
accessed randomly and for output files
accessed sequentially, an INVALID KEY
clause may be specified with the verbs
READ, WRITE, and START.

Note: The INVALID KEY routine is given
control only for input/output errors
specifically attributed to an INVALID KEY
condition; no return is made to the system
from such a routine. Hence, this option
merely informs the programmer that one of
these conditions arose -- this may be all
he needs to know -- and no direct return to
the system is possible, nor is any further
information on the nature of the error
available at the COBOL source level.

148

INVALID KEY conditions (those which pass
control to INVALID KEY clauses), as
interpreted by COBOL, vary with the access
method used, but may be generally described
as follows: record not found, duplicate
record. and sometimes space for output not
found.

A single USE AFTER STANDARD ERROR
declarative defines, for a certain subset
of the files within a COBOL program, a
series of operations to be performed for
the express purpose of determining the
exact nature of an input/output error and
attempting to recover from that error.
This series of operations may cover as
broad or restrictive a subset of the files
as the programmer wishes. A single
declarative may be applied to all OOTPU1,
all INPUT, or all 1-0 files, a single file,
or any number of files; it is the
programmer's responsibility to ensure no
conflict of applicability arises.

For example, within the same program, a
single file may be opened as OUTPUT, INPUT,
and 1-0 at different states of processing.
Three separate error declaratives may be
coded for this file, since the proper
declarative will be activated just before
the file is opened. For additional
information on declaratives, see IBM VS
CORQL-iQ£_OSL!~. ------

The declarative also offers a very
potent and flexible tool for determining
the natur~ of input/output errors; it is
the GIVING option which may be specified
for any of the subsets of files mentioned
earlier. within the GIVING clause,
data-name-l is specified and will contain a
136-byte descriptive error message after an
input/output error on a READ, WRITE,
REWRITE, or START verb. This field must
reside in working storage. It will contain
spaces for logic errors on QSAM files.

STATUS KEY 1

Value Meaning

o Successful completion

1 At end (no next logical record,
or an OPTIONAL file not available
at OPEN time)

3 Permanent error (data check,
parity check, transmission error)

9 Other errors

Data-name-2 can be specified optionally
and will contain the block in error if data
transfer actually took place; this
restricts its applicability to input
operations -- specifically* READs.
Data-name-2 may be defined in the
Working-storage Section or in the Linkage
Section. Defining it in the
Working-Storage Section requires that
enough storage be reserved within the
program's data area to contain the block in
question. The block will be moved into
data-name-l from the buffer if the system
indicates data transfer did take place:
otherwise, no move will be executed.
Defining data-name-2 in the Linkage Section
results in space being reserved wi thin th-e
object program only for 4 bytes per 4K
bytes of the block ; the block is
referenced in the buffer by means of these
cells.

. Besides storage and performance
considerations, one reason for defining
data-name-2 in the Linkage Section is that
data-name-l should be examined thoroughly

STATUS KEY 2

Value Meaning

o No further information

o No further information

o No further information

4 Space not found to add requested
output record; for example, file's
extents could be exhausted

o OPEN or CLOSE failed (OPEN
failure could result from missing
DD card)

2 Logic error; for example, attempt
to open a file already open,
attempt to open a file previously
closed with a lock, attempt to
close a file already closed or
never successfully opened,
attempt to read/write/rewrite on
an unopened file or a file opened
in the wrong mode (e.g., WRITE on
file opened INPUT), attempt to
read after end-of-file has been
reached

before any reference to data-name-2 is
made. For example, if a declarative
specified for a single file, which is
opened INPUT and OUTPUT, within the program
is entered because an input/output error
occurred on a WRITE verb for that file, an
attempt to access data-name-2 will result
in an abnormal termination. Data-name-1
should be checked for input/output
operation, access method, block address,
and so on* before data~name-2 is referenced
at all. Figure 54 shows an example of this
type of checking.

Figure 54 shows a single error
dec~~~~tive which has been specified for
tw.O files. one QSAI1 assi qned to tape and
one BISAM. For simplicity, processing of
each f i1e is kept separa te in the
declarative, even though some common
processing could have been done. Each file
has the same logical record length; if they
had different lengths, a problem might
arise when the entry coding of the
declarative attempts to move the offending
block into data-name-2.

User Non-VSAMFile processing 149

00001
00002
COO03
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035 * 00036 * 00037 * 00038 * 00039 * 00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057

IDENTIFICATION DIVISION.
REMARKS.

THIS PROGRAM CAUSES 1-0 ERRORS FOR A QSAM AND ISAM FILE AND
WILL DEMONSTRATE THE USE OF THE ERROR DECLARATIVE.

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT QSAM-FILE.
ASSIGN TO UT-S-QSAMFILE.

SELECT BISAM-FILE,
ASSIGN TO DA-I-BISMFILE.
ACCESS IS RANDOM.
NOMINAL KEY IS NOMINAL-KEY,
RECORD KEY IS RECORD-KEY.'

DATA DIVISION.
FILE SECTION.
FD QSAM-FILE,

RECORDING MODE IS F,
LABEL RECORDS ARE OMITTED.
RECORD CONTAINS 100 CHARACTERS,
DATA RECORD IS QSAM-RECORD.

01 QSAM-RECORD PIC X(100).
FD BISAM-FILE,

RECORDING MODE IS F,
LABEL RECORDS ARE STANDARD,
RECORD CONTAINS 80 CHARACTERS,
DATA RECORD IS BISAM-RECORD.

01 BISAM-RECORD.
05 FILLER PIC x.
05 RECORD-KEY PIC XeS).
05 FILLER PIC X(74).

WORKING-STORAGE SECTION.
01 SYNAD-RECORD COpy ERRSRCD1.
01 SYNAD-RECORD.

THIS RECORD IS FORMATTED TO SHOW ALL FIELDS IN DATA-NAME-1
(THE SYNADAF MESSAGE). NOT ALL FIELDS WILL BE REFERENCED
IN A PARTICULAR PROGRAM.

05 FILLER PIC X(8).
05 INPUT-BUFFER-ADDRESS PIC X(4).
05 NUMBER-OF-BYTES-READ PIC 9(4) USAGE COMPo
05 FILLER PIC X(36).
05 JOBNAME PIC X(8).
05 FILLER PIC X.
05 STEPNAME PIC X(8).
05 FILLER PIC X.
05 UNIT-ADDRESS PIC X(3).
05 FILLER PIC X.
05 DEVICE-TYPE PIC XX.

88 MASS-STORAGE-DEVICE VALUE 'DA' •
88 MAGNETIC-TAPE-DEVICE VALUE 'TA' ..
88 UNIT-RECORD-DEVICE VALUE ·UR'.

05 FILLER PIC X.
05 DDNAME PIC X(8).
05 FILLER PIC X.
05 OPERATION-ATTEMPTED PIC X(6).

Figure 54. Example of Use of GIVING option in Error Declarative (Part 1 of 3)

150

00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
C0075
00076
00077
00078
00019
00080
00081
00082
00083
00084
00085
00086
00081
00088
00089
00090
00091
00092
00093 •
00094 •
00095 •
00096 •
00091
00098
00099
00100
00101
00102
00103

05 FILLER PIC X.
05 ERROR-DESCRIPTION PIC X(15).

88 WLR-ERROR VALUE 'WRNG.LEN.RECORD-.
88 INVLD-REQ VALUE 'INVALID REQUEST-.

05 FILLER PIC X.
05 ACCESS-METHOD-DATA.

10 UNIT-RECORD.
15 FILLER PIC X(15).
15 UR-ACCESS-METHOD PIC X(6).

10 MAGNETIC-TAPE REDEFINES UNIT-RECORD.
15 RELATIVE-BLOCK-NUMBER PIC 9(7).
15 FILLER PIC X.
15 TA-ACCESS-METHOD PIC X(5).
15 FILLER PIC X(8).

10 MASS-STORAGE REDEFINES UNIT-RECORD.
15 LAST-ACTUAL-ADDRESS PIC X(14).
15 FILLER PIC X.
15 DA-~CCESS-METHOD PIC X(6).

05 SYSTEM-USE PIC X(8).
01 NOMINAL-KEY PIC 9(5).
LINKAGE SECTION.
01 ERROR-DATA PIC X(100).
PROCEDURE DIVISION.
DECLARATIVES.
ERROR-EXAMPLE SECTION.

USE AFTER STANDARD ERROR PROCEDURE
ON QSAM-FILE. BISAM-FILE,
GIVING SYNAD-RECORD, ERROR-DATA.

DISPLAY' •• ERROR DECLARATIVE ENTERED FOR'
OPERATION-ATTEMPTED' OPERATION •• '.

DISPLAY SYNAD-RECORD.
IF ERROR-DESCRIPTION IS NOT EQUAL TO 'UNKNOWN COND'

AND
OPERATION-ATTEMPTED IS NOT EQUAL TO "UNKNOWN"

GO TO DECLARATIVE-1.

IF OPERATION OR ERROR TYPE IS UNKNOwN. CALL ASSEMBLY
LANGUAGE ROUTINE TO CHECK MORE DEEPLY.

IF DA-ACCESS-METHOD IS EQUAL TO 'QSAM Q,
CALL 'ERRANAL',

USING SYSTEM-USE~ QSAM-FILE, ACCESS-METHOD-DATA;
ELSE

CALL 'ERRANAL'II
USING SYSTEM-USE. BISAM-FILE, ACCESS-METHOD-DATA.

GO TO DECLARATIVE-EXIT.

Figure 54. Example of Use of GIVING Option in Error claratve (Part 2 of 3)

User Non-VSAM pile processing 151

00105
00106
00107
00108
00109
00110
00111
00112
00113
00114
00115
00116
00117
00118
00119
00120
00121
00122
00123
00124
00125
00126
00127
00128
00129
00130
00131
00132
00133
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144

DECLARATIVE-l.
•
• CHECK EXPECTED QSAM OR BISAM ERROR CONDITION.
•

*

IF WLR-ERROR.
DISPLAY· •• WRONG LENG~H RECORD ERROR AS EXPECTED ••••
GO TO DECLARATIVE-EXIT.\

• CHECK ONE PARTICULAR ERROR POSSIBILITY. THEN DISPLAY BLOCK
* IN ERROR IF POSSIBLE, THEN EXIT.

*

*

IF DA-ACCESS-METHOD IS NOT EQUAL TO'BISAM',
GO TO DECLARATIVE-2.

IF NOT INVLD-REQ,
GO TO DECLARATIVE-EXIT.

* BISAM INVALID REQUEST. EXIT DECLARATIVE VIA 'GO TO'.

* CLOSE BISAM-FILE.
GO TO PROCESS-NEXT-FILE.

DECLARATIVE-2.
IF INPUT-BUFFER-ADDRESS IS EQUAL TO SPACES,

CLOSE QSAM-FILE,
GO TO PROCESS-BISAM-FILE.

DISPLAY ERROR-DATA.
DECLARATIVE-EXIT.

EXIT.
END DECLARATIVES.

OPEN INPUT QSAM-FILE.
READ QSAM-FILE,

AT END
CLOSE QSAM-FILE,
STOP RUN.

PROCESS-BISAM-FILE.
OPEN 1-0 BISAM-FILE.
MOVE 100 TO NOMINAL-KEY.
REWRITE BISAM-RECORD.
CLOSE BISAM-FILE.

PROCESS-NEXT-FILE.
STOP RUN.

Figure 54. Example of Use of GIVING option in Error Declarative (Part 3 of 3)

152

since it is the receiving field, the length
of data-name-2 is taken as the length of
the move. Therefore, when using the same
error declarative for files, ensure the
files do not have differing attributes.

SYNAD-RECORD, a 136-byte area set aside
to receive the error messaqe provided by
the system, is compatible across all access
methods. An area of some variation is
ACCESS-HETHOD-DATA, which is device
dependent. SYNAD-RECORD is shown in great
detail for the purpose of showing how each
field might be cod~d. such exhaustive
detail, however, is not necessary in many
applications, and only the fields to be
referenced need be explicitly described at
all. This detailed map of the area would
be a good skeleton for a COpy library
member, once it is standardized for an
inst alIa tion.

When data has been transferred,
INPUT-BUFFER-ADDRESS will contain the
address of such data and is the source of
data-name-2. Likewise,
NUMBER-OF-BYTES-READ contains the actual
length of the offending block. DEVICE-TYPE
is a key to the actual layout of
ACCESS-MET HOD-DATA, which is device
dependent. The possible content of
OPERATION-ATTEMPTED, ERROR-DESCRIPTION, and
ACCESS-MET HOD-DATA are shown in some detail
in Appendix G. SYSTEM-USE is an 8-byte
field which is not useful to a COBOL source
program but which in most cases reflects
the contents of registers 0 and 1 upon
entry to the SYNAD routine and are passed
as arguments (shown at line 100 in Figure
5ij) to the assembly language program
ERRANAL for further study. The user will
find add'i tional information abou t the
contents of this field in OSLYi-Dat~
~gnagement~~ro_In§1~Y£tiQn2·

!Ql~: Data-name-2, ERROR-DATA in the
example, is specified in the Linkage
Section; the generated code within the
declarative will do nothing but move the
address of INPUT-BUFFER-ADDRESS into a base
locator cell assigned to ERROR-DATA.

Immediately upon entry to the declarative,
a signal message is displayed as well as
the SYNAD-RECORD. Then if a.n unknown
operation or error is indicated in the
message, the system calls ERRANAL passiftg
SYSTE~-USE, the appropriate DeB or DECB,
and ACCESS-lt ETHOD-DA TA,ex itingfrom the
declarative upon return.

If both fields are known, the system
does further checking. For the purpose of
this example~ it is assumed that a
wrong-length record is e xpec ted and this
causes a message to be printed and an exit
from the declarative. Finally, for the
BISAft file, the coding checks the invalid

request condition. If invalid, the file is
closed and the declarative is exited via a
GO TO statement (not a normal exit). If it
is a QSAM file, the field containing the
address of the data represented by
data-name-2 is checked for blanks before
displaying it. For a QISA~ file,
data-name-2 can never be referenced.

This example of error declarative
technique points out some basic tools: the
use of fields within data-name-1 to decide
processing; the checking of the address
used for data-name-2 before referring to
it; the use of data-name-1 as a group item;
the normal and GO TO exits from the
declarative; the calling of an assembly
language subroutine to perform detailed
analysis of system information; forcing use
of a declarative for INVALID KEY conditions
by not coding an INVALID KEY clause;
closing of the offending file if the nature
of the error suggests such an action. A
course of action not described here (but
often possible) is a retry of the
input/output operation that caused the
error.

The INVALID KEY clause and/or the error
declarative may be specified for a file,
and for any given input/output error, the
error intercept SUbroutine decides which is
to be given control. Figure 55 is a
generalized summary of the means available
for recovery from an invalid key condition
or an input/output error.

It is most important that the programmer
make certain of the validity of data-name-2
before referencing it. In the event that a
complete message could not be formatted by
the system, the entry coding in the error
declarative takes steps to avoid moving the
block in error into data-name-2 if it is in
the Working-storage Section or settinq up
the base locator address if it is in the
Linkage Section.

However, it is up to the user to avoid
an invalid reference. Note also that for
certain conditions, the contents of
data-name-l will be invalid (blanks or
asterisks). The user may find inf orma tioD
on this under SYNADAF macro in OSLVS-llata
~aAS~~n1_Ha£~Q_!n2!£uctiQn§.

IQ1~: The programmer should also consider
the following when a relatiVely large
number of INVALID KEY exits or declarative
sequences (with GO TO exits) are to be
executed:

1. The distinction between error
processing via an error declarative
and the the INVALID KEY clause. When
an input/output operation is
requested, a storage area of about 40
to 100 bytes {called an input/output

User Non-YSAM File Processing 153

block or lOB) is allocated until the
request is satisfied (or, in the event
of an error, until return from the
user- provided er.ror-handling routine).
If the error declarative is used, a
normal exit from the declarative
returns control the system and frees
the lOB. When the INVALID KEY routine
is Qsed, however, the system does not
regain control and the lOB is not
freed.

1!Q.i~: If an I/O error occurs on a
WRITE or REWRITE, and a FILE STATUS
clause vas specified but an error
declarative or INVALID KEY clause was
not, then the system does not regain
control and the lOB is not freed.

2. The error declarative interface
dynamically allocates storage for a
register save area upon entry,rollghly
200 bytes. This is necessary to make
the declarative serially reusable in
the event of another input/output
error occurring within the
declarative, and for which it is
specified (for example, an I/O request
to another file may be done within the
declarative, and this second attempt
may also cause an error). If a GO TO
statement is used to exit from the
declarative, neither this save area
nor the rOB is freed.

To make maximum efficient use o.f one's
address space and to make the maximum
space a vailable to other users, the
programmer should rely on the error
declarative as much as possible,
taking a normal exit from it.
Otherwise, it is recommended that the
programmer specify a larger address
space.

VOLUME LABELING

various groups of labels may be used in
secondary storage to identify magnetic-tape
and mass storage volumes, as well as the
data sets they contain. The labels are
'used to locate the data sets and are
identified and verified by label processing
routines of the operating system.

There are two different kinds of labels,
standard and nonstandard. Magnetic tape
volumes can have standard or nonstandard
labels, or they can be unlabeled. The
type (s) of label processing for ta pe
volumes to be supported by an installation
is selected during the system generation
process. Mass storage volumes are
supported with standard labels only.

standard labels consist of volume labels
and groups of data set labels. The volume
label group precedes or follows data on the
volume; it identifies and describes the
volume. The data set label groups precede
and follow each da ta set on the volume, and
identify and describe the data set.

• The data set labels that precede the
data set are called header labels.

• The data set labels that follow the
da ta set are called trailer labels.
They are almost identical to the header
labels.

• The data set label groups can
optionally include standard user labels
except for ISAM files.

• The volume label groups can optionally
include standard user labels for QSAM
files.

--------~---~T-------------T--------------T-------------T---------------T--------------,
I specified I I I I I I
I in COBOL J I I I I I
I Pragram~ I I I I I
I I Only I Only. I I I I
I J INV~LiD-KEY I USE AFTER I I Neither an I Neither in I
I Errar 1 aptian I STANDARD ERROR I Bath I This StateIr.ent I Entire Pragrarol
~------------- --------~----+--------------+-----~-------+---------------+--------------~
IInvalid key IGa to. invalidlGa to. user's IGa to. invalidlErrar ignored; I ABEND I
I Jkey rautine I declarative Ikey ro.utine Ireturn to. sys- I J
I l I routine I Item~ next I J
I 1 I I Isequential in- J I
J ~ I I Istructian exe- I I
I ~ I I Icuted I I
~-------------T-------------+--------------+-~-----------+---------------+--------------~
IAII ather IReturn to IGa to. user's IGa to user·s IReturn to. I I
I types of. 3 system Irautine Irautine· Isysten. I ABEND I
L!L9_~EE2E2 ___ ~ _____________ ~ ______________ ~ _________ - ___ ~ _______________ ~ ______________ J

Figure 55. Recovery from an Invalid Key Condition or other Input/Output Error (Non-QSAM)

154

x I Note 1 I X I
r--·------·-------+-·-----------------t------------t--------------...:.----~

I I I
Q I I

X I X I X I
X I Note 2 I X I

r--·---------·----+-·--·--------------t------------f-------------------~
I X I X I

r--·------·--·----+-·---------·------·---t------------t-------------------~
J J I
I J I

X I Note 1 I X I
--------------t------------t-------------------~

X I] X I X I
I I I I

--------------~-----------------~------------~------------------~ I Notes:
11. Holds only for WR1TE. I
)2. Error cannot be caused by an invalid key. I L _____ ~ __ J

Figure 56. Input/Output Error processing Facilities (Non-QSAM)

Nonstandard labels can have any .forma t
and are processed by routines provided by
the programmer. Unlabeled volumes contain
only data sets and tapemarKs. In the job
control statements, a DD statement must be
provided for each data set to be processed.
The LABEL parameter of the DD statement is
used to describe the data set's labels.

specific information about the contents
and physical location of labels is
contained in the publications as/vs Data
l1!!l!..2geme~g£.!ices GuidLand ~Lll Tape
!egbels.

STANDARD LABEL FORKAT

standard labels are SO-character records
that are recorded in EBCDIC and odd parity
on 9-track tape; or in BCD and even parity
on 1-track tape. The first four characters
are always used to identify the labels.
These identifiers are:

VOL1 vol ume la bel
HDRl and HDR2 data set header

labels
EO'l and EOV2 data set trailer

labels (end-of-volume)
EOFl and EOF2 data set trailer labels

(end-of-data set)
UBLl to UHLS user header labels
UTL1 to UTLS user trailer labe.ls

The format of the mass storage volume
label group is the same as the format of
the tape volume label group, except one of
the data set labels of the initial volume
label consists of the data set control
block (DSCB). The DSCB appears in the
volume table of contents (VTOC) and
contains the equivalent of the tape data
set header and trailer information, in
addition to space allocation and other
control information.

STANDARD USER LABELS

standard user labels contain
user-specified information about the
associated data set. User labels are
optional within the standard label groups.
The format used for user header labels
(UHL1-S) and user trailer labels (UTL1-S)
consists of a label SO characters in length
recorded in EBCDIC on 9-tracK tape units,
or in BCD on 7-track tape units. The first
three bytes consist of the characters that
identify the label: UHL for a user header
label (at the beginning of a data set) or
UTL for a user trailer label {at the
end-of-volume or end-of-data set}. The
next byte contains the relative position of
this label within a set of labels of the
same type and can be any number from 1
through S. The remaining 76 bytes consist
of user-specified information.

User Non-VSAM Pile Processing 155

User labels are generally created,
examined, or updated when the beginning or
end of a data set or volume (reel) is
reached. User labels are applicable for
sequential, direct, and relative data sets.
For sequentially processed data sets, end
or beginning of volume exits are allowed
(i.e., "intermediate" trailers and headers
may be created or examined). For direct or
relative data sets, user lanel routines
will be given control only during OPEN or
CLOSE condition for a file opened as INPUT,
OUTPUT, or 1-0. Trailer labels for files
opened as INPUT or I-O are processed when a
CLOSE statement is executed for the file
that has reached an AT END condition.
Thus, for physical sequential data sets,
the user may create, examine, or update up
to eight header labels and eight trailer
labels on each volume of the data set,
whereas for direct or relative data sets
the user may create, examine, or update up
to eight header labels during OPEN and up
to eight trailer labels during CLOSE.
(QSAM EXTEND functions in a manner
identical to OUTPUT, except that the
beginning of a file label is not
processed.) Note that these labels reside
on the initial volume of a multi-volume
data set. This volume must be mounted at
CLOSE if trailer labels are to be created,
examined, or updated.

When standard user label processing is
desired, the user must specify the label
type of the standard and user labels (SUL)
on the DD statement that describes the
da taset. For mass storage volumes,
specification of a LABEL subparameter of
SUL results in a separate track being
allocated for use as a user-label track
when the data set is created. This
additional track is allocated at initial
allocation and for sequential data sets at
end-of-volume (volume switch) time. The
user-label track (one per volume of a
sequential data set) will contain both user
header and user trailer labels.

Y2~~ LaQel_121alin3
(BSAM and QSAM only)

When creating or processing a data set
with user labels on a sequential file, the
programmer may develop control totals to
obtain exact information about each volume
of the data set. This information can be
stored in his user labels. Por example, a
control total accumulated as the data set
is created, can he stored in a user label
and later compared with a total accumulated
while processing a volume. The user
totaling facility enables the programmer to
synchronize the control data that he has
created while processing a data set with
records physically written on a volume. In

156

this way, he can tell exactly what records
were wri tten. This informa tion can also he
used for accurately labeling tape reels
(i.e., assigning physical adhesive labels) •.

To request this option, specify OPTCD=T
in the DCB parameter of the DD statement.
The user's TOTALING area, where control
data is accumulated, is provided by the
user. In this area, the user can store
information on each record he writes. When
an input/output operation is scheduled, the
control program sets up a user TOTALED save
area that preserves an image of the
information in the user's TOTALING area.
When the output USE LABEL declarative is
entered, the values accumulated in the
user 1 s TOTALING area corresponding to the
last record actually written on the volume
are stored in the TOTALED area. These
values can be included in user labels.

When using this facility for an output
data set (i.e., when creating the data
set). the programmer must update his
control data in the TOTALING area pri6r to
issuing a WRITE instruction. When
subsequently using this data set for input,
the programmer can accumulate the same
information as each record is read. These
values can be compared with the ones
previously stored in the user label when
the records were created.

Variable length records with APPLY
WRITE-ONLY or records with SAliE RECORD AREA
specified require special considerations
when using the TOTALING option. Since the
control program determines whether a
variaDle-length record will fit in a buffer
after a WRITE instruction has been issued,
thevalues accumulated may inclUde one more
record than is actually written on the
volume. In this case, the programmer must
update his TOTALING area ~!1~.£ issuing a
WRITE instruction.

User label totaling is not available
with S-mode records.

NONSTANDARD LABEL FORMAT

Nonstandard labels do not conform to the
standard label formats. They are designed
by programmers and are written and
procEl..5sed by programmers. Nonstandard
labels can be any length less than 4096
bytes. There are no requirements as to the
length, format, contents, and number of
nonstandard labels, except that the first
record on the volume cannot be a standard
volume label. In other words, the first
record cannot be 80 characters in length
with the identifier VOLl as its first four
characters.

NONSTANDARD LABEL PROCESSING

To use nonstandard labels (NSL), the
system programmer must first:

• Create nonstandard label processing
routines for input header labels, input
trailer labels, output header labels,
and output trailer labels.

• Insert these routines into the
operating system.

Then the COBOL programmer must code NSL in
the .LABEL parameter of the DD statement at
execution time.

The system verifies that the tape has a
nonstandard label. Then if NSL is
specified in the LABEL param~ter, it loads
the appropriate NSL routines. These NSL
routines are entered at OPEN, CLOSE, and
END-OF-VOLUME conditions by the respective
executors.

For a data set opened as output, the NSL
routines entered include:

• At OPEN time, a header routine to check
the old header and/or create the new
header;

• At CLOSE time, a trailer-creation
routine;

• At EOV time, a trailer-creation routine
and a header routine.

For a data set opened as input essentially
the same types of routines are .reqnired.

Note: The NSt routines must observe the
following conventions:

1. Follow Type-IV SVC routine
conventions.

2. Use GErMAIN and FREEMAIN for work
areas.

3. Be reentrant load modules.

4. Use EXCP for I/O operations and ICTt
for passing control among load modules
and then returning to the I/O-support
routines.

5. Begin with the letters ~~ if t-he
system branches to them directly.
(Other user-written modules having to
do with nonstandard labels must begin
with the letters !!i~.)

6. Have as their entry points the first
byte in each load module.

In addition, the NSL routines must write
their own tapemarks, do all I/O operations
necessary (via EXCP), determine when all
labels have been processed, and take care
of data set positioning. These routines
may communicate at the LABEL source level
with USE BEFORE LABEL PROCEDURE
declaratives by means of linkage described
under "User Label Procedure."

USER LABEL PROCEDURE

The USE ••• LABEL PROCEDURE statement
provides the user with label handling
procedures at the COBOL source level to
handle nonstandard or useL labels. The
BEFORE opt ion indicates processing of
nonstandard labels. The AFTER op\ion
indicates processinq of standard user
labels. The lanels must be listed as
data-names in the LABEL RECORDS clause in
the File Description entry for the file.
When the file is opened as input, the label
is read in and control is passed to the USE
declarative if a USE ••• LABEL PROCEDURE is
specified for the OPEN option or for the
file. If the file is opened as output, a
buffer area for the label is prOVided and
control is passed to the USE declarative if
a USE ••• LABEL PROCEDURE is specified for
the OPEN option or for the file. For files
opened as INPUT or 1-0, control is passed
to the USE declarative to process trailer
labels when a CLOSE statement is executed
for the file that has reached the AT END
condition.

One of the concerns of the programmer is
linkage between the nonstandaLd label SiC
routine and the USE BEFORE LABEL PROCEDURE
section. other problems related to writing
nonstandard label SVC routines are
discussed in the publication ~L!~--1~£g,
1ah~1§·

When the nonstandard label SVC routine
has determined that a particular DCB has
nonstandard labels. the nonstandard label
routine must inspect the DCB exit list for
an active entry to ensure that there is a
USE BEFORE ••• LABEL section for this DCB and
for that type of label processing. The DCB
field EXLST contains a pointer to this exit
list. An active entry is defined as a
l-byte code other than X'OO' or X'80'
followed by ~ 3-byte address of the
appropriate label section (Figure 57).

User Non-VSAM File Processing 151

.--~----- -,
tCode J Exit .List I
i---+- ..
I 1 J{USE section for header labels) J
1 J I
1 2 I(USE section for trailer labels) J
If I
, I I
I I •
1---..1- of
• Notes: J
J '-.-code is set to X'Ol' indicating 1
I INPUT, or X'02' indicating OUTPUT. J
J 2. Code 2 is set to ·X·O.o' indicating J
J INPUT, or X'04' indicating OUTPUT. f ___ J

Figure 57. Exit List Codes

Once the nonstandard label SVC routine
test s tha t the exi t list confirms an
appropriate active entry, it must pass the
address of a parameter list in register 1.

The parameter list (Figure 58) must have
the following format.

i 1
f 1 byte J 3 bytes J

.------+ --+----------1
I Byte 0 J 0 , A (label buffe~ I
~ Byte 4 , Flag byte J AlDCB) J
~ Byte 8 1 Error flag J I
~--------~------------~ .
Figure 58. Parameter List Formats

The A(label buffer) is the address of
the label record on input and the address
where the label will be created on output.

The A (DCB) is the address of the DC B.
The DCB contains a pointer to the DEB. The
nonstandard label SVC routine must test the
EOF bit in the OFLGS field of the DEB (data
extent block) to determine whether to
return control to the EOV or CLOSE module.
Control is given to the CLOSE module only
at EOF.

The error flag byte will have bit 0 set
to 1 if an input/output error occurs when
reading or writing a label.

When the USE BEFORE LABEL PROCEDURE
section returns control to the nonstandard
label SVC routine, it will pass a return
code that will indicate whether or not more
labels are to be processed (Figure 59).
This return code is set by assigning a
value to the special register LABEL-RETURN.

The maximum size of the label record is
stored on a halfword boundary at the
EXITLIST address +46.

158

The user's nonstandard label routines
are responsible for all tape positioning.
For 1I11.11tifile volumes, the user may specify
a file sequence number in the LABEL
parameter on the DD card. The nonstandard
label routines can inspect this information
in the JPCB and position the files
accordingly. For additional information~
seethe publication QUll-li!.~~_l!i!.!H~l2.

, ,-,.- --.
I Routine Type ,Return CodelApplicable Note,
, J +-------.,
IInput header I 0 I 1 I
I and/or I 4 I 2 I
J trailer I 16 I 3 ,
.. , I I
'Output header, 4 I 1 J
j and/or • 8 1 2 I
I trailer I , J
I- I +--------1
I Update header J 8 I 1 I
land/or I 12, 2 ,
J trailer I 16 I 3i

,

I- I , ~

J l!Q.~§.: ,
I 1. For output mode, the label is J
I written or rewritten. For input I
I mode, normal processing is resumed; I
J any additional user labels are J
I ignored. I
J 2. Another label is read (for input I
J mode) and control is returned to thel
, USE BEFORE LABEL PROCEDURE section. I
, For output mode, the labels should ,
J be written and co~trol should be I
J returned to the USE BEFORE LABEL •
I PROCEDURE section. When control is I
J returned to the nondeclarative I
J portion, either normal processing I
J will continue or the label section ,
• will be re-entered, depending on t
J whether the return code is 4 or 8. I
• 3. A return code of 16 indicates that I
I the USE BEPORE LABEL PROCEDURE I
• sect ion has determined that an I
I incorrect volume was mounted. When.
I LABEL-RETURN is set to a nonzero t
I value, the return code is set to 16., , ~

Figure 59. Label Routine Retu~n Codes

ASCII files on magnetic tape may have
American National Standard labels or
American National Standard and user labels,
or they may have no label. Any labels on
an ASCII tape must be in ASCII code. Tapes
containing a combination of ASCII and
EBCDIC labels are not read. All the record
formats supported (i.l!.~i., fixed~ undefined,
and variable) are allowed on ASCII files,

regardless of whether or not the files are
labeled. Spanned records are not supported
under ASCII.

When American National Standard labels
are being processed# the label type must be
specified in the DO statement that
describes the data set. The parameter for
American National standard labels is
LABEL=AL. The parameter for American
National Standard and user labels is
LABEL=AUL. Nonstandard labels are not
permitted for ASCII files. The user may
indicate no labels as LABELS=NL.

Standard label processing for ASCII
files is identical to standard label
processing for files coded in EBCDIC.
ASCII code is translated into EBCDIC code
prior to processing.

All American National Standard user
labels (LABEL= AUL) are opt ional. ASCII

files may have user header labels (UHLn)
and user trailer labels (UTLn), which are
processed very much lik.e the standard user
labels on EBCDIC files. Hovev~r, there is
no limit to the number of user labels
possible at the beginninq and the end of a
file. No check is made on the number of
labels written. It is left to the user to
determine how many labels he wants written.

All user labels must be 80 bytes in
length, but they may contain any user
information desired.

!21~: USE BEFORE STANDARD LABEL procedures
are not alloved# because they are
nonstandar d.

To create or verify user labels, the
programmer must code for the file a USE
AFTER STANDARD LABEL procedure.

User Non-VSAM File Processing 159

Logical records may be in one of four
formats for a non-VSAM file: fixed-length
(format F), variable-length (format V),
unspecified (format U), or spanned (format
S). F-mode files must contain records of
equal lengths. Files containing records of
unequal lengths must be V-mode., U-mode., or
S-mode. Files containing logical records
that are longer than physical records must
be S-mode.

The record format is specified in the
RECORDING MODE clause in the Data Division.
If this clause is omitted, the compiler
determines the record format from the
record descriptions associated with the
file. If the file is to be blocked, the
BLOCK CONTAINS clause must be specified in
the Data Division.

The prime consideration in the selection
of a record format is the nature of the
file itself. The programmer knows the type
of input his program will receive and the
type of output it will produce. The
selection of a record format is based on
this knowledge as well as an understanding
of the type of input/output devices on
which the file is written and of the access
method used to read or write the file.

Format F records are fixed-length
records. The programmer specifies format F
records by including RECORDING MODE IS F in
the file description entry in the Data
Division. If this clause is omitted and
both of the following are true:

• All records in the file are the same
size

• BLOCK CONTAINS [integer-1 TOJ
integer-2... does not specify
inte.ger-2 less than the length of the
maximum level-01 record

the compiler determines the recording mode
to be F. All records in the file are the
same size if there is only one record
description associated with the file and it
contains no OCCURS clause with the
DEPENDING ON option; or if multiple record
descriptions are all the same length.

The number of logical records withia a
block (blocking factor) is normally
constant for every block in the file. When
fixed-length records are blocked, the
programmer specifies the BLOCK CONTAINS
clause in t.he file description (FD) en try
in the Data Division.

160

In unblocked format P, the logical
record constitutes the block. The BLOCK
CONTAINS clause is unnecessary for
unblocked records.

Format P records are shown in Figure 60.
The optional control character, represented
by the letter C in Figure 60 is used for
stacker selection and carriage control.
When carriage control or stacker selection
is desired, the WRITE statement with the
ADVANCING or POSITIONING option is used to
write records on the output file. In this
case, one character position must be
included as the first character of the
record (if NOADV is specified). This
position will be filled in with the
carriage control or stacker select
character. The type of carriage
control character to be used is
determined by the compiler. When only
AFTER is specified, ASA control
characters are used. Machine control
characters are used when only BEFORE or
both BEFORE and AFTER are specified.
The carriage control character never
appears when the file is written on
the printer or punched on the card punch.

Note: Illustrations of unblocked Format F
r;~ords do not take into account either the
key field required when direct organization
is used or ASCII block prefix
considerations. See "Processing ASCII
Files" for more information.

r·------------------- ,
~
J

• I
I
I
f

•
• f
I
J
I
f
I
I
J
J
j

J
1.

Logical Record ._--,
c Data J

Blocked Records
,---------,- -,

Logical •
Record I

I Logical J
J Record J

Logical
Record '--_____ .1....-_______ ..1.- -J

< Fixed Length----------->

Unblocked Record
r---------------------------------,
J Logical Record J
L--. _____ _

< ·-----------Fixed Length----------->

I
I
I ,
J
I
J
t
I
1
I
I
I
I
f

• I
t
I
J

Figure 60.
-.I

Fixed-length (Format F) Records

Format U is provided to permit the
processing of any blocks that do not
conform to F, V, or S formats. Format U
records are shown in Figure 61. The
optional control character C, as discussed
under "Fixed-Length {Format F) Records,"
may be used in each logical record.

The programmer specifies format u
records by including RECORDING MODE IS U in
the file description (FD) entry in the Data
Division. U-mode records may be specified
only for direct or physical sequential
fi lese

If the RECORDING MODE clause is omitted,
and BLOCK CONTAINS [integer-1 TO]
in teger-2. •• does not specify integer-2
less than the maximum level-01 record, the
compiler determines the recording mode to
be U if the file is direct and one of the
following conditions exist:

• The FD entry contains two or more
level-01 descriptions of different
lengths.

• A record description contains an OCCURS
clause with the DEPENDING ON option.

• A RECORD CONTAINS clause specifies a
range of record lengths.

Each block on the external storage media
is treated as a logical record. There are
no record-length or block-length fields.

When a READ INTO statement is used for a
U-mode file, the size of the longest record
for that file is used in the MoiE
statement. All other rules of the MOVE
sta tement apply.

!Q!.~: Illustrations of Format U records do
not take into account either the key field
required when direct organization is used
or ASCII block prefixes. See "processing
ASCII Files" for more information.

r-
t Logical Record
I r--~
I I C 1 Data I L-__ ~ _______________________ ~

I
1
I
I
I

•

Format U Record

Logical Record

L-__________________ __

--'
Unspecified (Format U) Records Figure 61.

The programmer specifies format V
records by including RECORDING MODE IS V in
the file description entry in the Data
Division. V-mode records may be specified
only for direct or physical sequential
files. If the RECORDING ~ODE clause is
omitted and BLOCK CONTAINS (integer-1 TO]
integer-2... does not specify integer-2
less than the maximum level-01 record# the
compiler determines the recording mode to
be format V if the file is physical
sequential and one of the following
conditions exist:

• The FD entry contains two or more
level-01 descriptions of different
lengths.

• A record description contains an OCCURS
clause with the D~PENDING ON option.

• The RECORD CONTAINS clause specifies a
range of record lengths.

V-mode records# unlike U-mode or F-mode
records, are preceded by fields containing
control information. These control fields
are illustrated in Figures 62 and 63.

The first four bytes of each block
contain control information (eC):

LL -- represents two bytes designating
the length of the block (including
the fCC' field).

BB -- represents two bytes reserved for
system lise.

The first four bytes of each logical
record contain control information (cc):

11 -- represents two bytes designating
the logical record length
(including the 'cc' field).

bb -- represents two bytes reserved for
system use.

For unblocked V-mode records (Figure
62). the Data portion + CC + cc constitute
the block.

For blocked V-mode records (Figure 63),
the Data portion of each record + the cc of
each record + CC constitute the block.

Non/VSAM Record Formats 161

r---,
I]
/]
I 4 4 variable J
] <--bytes-><--bytes--><------tytes------->/
I r----T----T----T----T-------------------, I
/ I LL I EE I 11 I bb I Data I) / L----i-___ i ____ ~ ____ ~ ___________________ J J

I~]
/ u CC'· • cc Q I
I I L-------_________________________________ ~J
Figure 62. Unblocked V-Mode Records

Variable-length record descriptions, for
input and output files, must not define
space for the control by tes. Control bytes
are automatically provided when a record is
written and are not communicated to the
user when a file is read. Although they do
not appear in the descriptions of logical
records, control bytes do appear in the
buffer areas of main storage. The compiler
automatically allocates input and output
buffers that are large enough to contain
the required control bytes.

When variable-length records are written
on unit record devices, control bytes are
neither printed nor punched. They do
appear, however, on other external storage
devices. V-mode records moved from an
input buffer to a working storage area will
be moved without the control bytes.

!21g: When a READ INTO statement is used
for a V-mode file# the size of the current
record for that file is used in the MOVE
statement. All other rules of the MOVE
statement apply. For considerations when
using OCCURS DEPENDING ON, see the section
"Programming Techniques."

Consider the following physical
sequential file consisting of unblocked
V-mode records:

PD VARIABLE-FILE-l
RECORDING MODE IS V

01

BLOCK CONTAINS 35 TO 80 CHARACTERS
RECORD CONTAINS 27 TO 72 CHARACTERS
DATA RECORD IS VARIABLE-RECORD-1
LABEL RECORDS ARE STANDARD.

VARIABLE-RECORD-l.
LOGICAL RECORD
05 F.IRLD-A PIC X (20) •
05 "FIELD-B PIC 99.
05 FIELD-C OCCURS 1 TO 10 TIMES

DEPENDING ON
FIELD-B PIC 9 (5) •

The LABEL RECORDS clause is always
required. The DATA RECORD(S) clause is
never required. If the RECORDING MODE
clause is omitted, the compiler determines
the mode as V since the record associated
with VARIABLE-FILE-1 varies in length
depending on the contents of FIELD-B. The
RECORD CONTAINS clause is never required.
The compiler determines record sizes from
the record description entries. The BLOCK
CONTAINS clause is also not required, since
the compiler assumes unblocked records if
the clause is omitted. Note: Record
length calculations are affected by the
following:

• When the BLOCK CONTAINS clause with the
RECORDS option is used, the compiler
adds four bytes to the logical record
length and four more bytes to the block
length.

• When the BLOCK CONTAINS clause with the
CHARACTERS option is used, the user
must include each cc • CC in the length
calculation. In the definition of
VARIABLE-FILE-1, the BLOCK CONTAINS
clause specifies eight more bytes than
does the RECORD CONTAINS clause. Four
of these bytes are the logical record
control bytes and the other four are
the block control bytes.

r---,
I 1st 2nd 3rd
I Logical Record Logical Record Logical Reccrd
I
I
I
/
I
I
I

----.._--./'..... -- ~ --- --- ~ -r----T----T----T----T-----------T----T----T----------T----T----T----------,
I LL I EE I 11 J tb J DA~A-l I 11 I bb] DATA-2 / 11 J bb I DA~A-3 I L ____ ~ ____ ~ ____ ~ ____ ~ ___________ ~ ____ ~ ____ ~ __________ ~ ____ ~ ____ i __________ J

~ ~
{block control ~{record control~

I bytes) bytes) L __ _

Figure 63. Blocked V-Mode Records

162

In Example 1, assume that FIELD-B
contains the value 02 for the first record
of a file and FIELD-B contains the value 03
for the second record of the file. The
first two records will appear on an
external storage device and in buffer areas
of main storage as shown in Figure 64.

If the file described in Example 1 had a
blocking factor of 2, the first two reco.rds
would appear on an external storage medium
as shown in Figure 65.

~xample 1:

If VARIIBLE-FILE-2 is blocked, with
space allocated for three records of
maximum size per block, the following FD
entry could be used when the file is
created:

PD VARIABLE-FILE-2
RECORDING MODE IS V
BLOCK CONTAINS 3 RECORDS
RECORD CONTAINS 20 TO 100 CHARACTERS
DATA RECORDS ARE VARIABLE-RECORD-1,

VARI ABLE-RECOR 0-2
LABEL RECORDS ARE STANDARD.

01 VARIABLE-RECORD-l.
05 FIELD-A PIC X(20).
05 FIELD-B PIC 1(80).

01 VARIABLE-RECORD-2.
05 FIELD-I PIC X(20).

As mentioned previously, the RECORDING
MODE, RECORD CONTAINS, and DATA RECORDS
clauses are unnecessary. By specifying
that each block contains three records, the
programmer allows the compiler to provide
space for three records of maximum size
plus additional space for the required
control bytes. Hence, 316 character
positions are reserved by the compiler for
each output buffer. If this size is other
than tha t .required, the BLO.CK CONT IINS
clause with the CHARACTERS option should be
specified. If the block size is to be
specified at execution time by use of the
BLKSIZE subparameter on an associated DD
card, BLOCK CONTAINS 0 CHARACTERS must be
specified.

Note: Blocked var iable-Iength records are
permitted only when the file processing
technique is physical sequential.

In Example 2, assume that the first six
records written are five 100-charact.er
records followed by one 20-character
record. The first two blocks of
VARIABLE-FILE-2 vill appear on the external
storage device as shown in Figure 66.

r---1
I 1st Block 2nd Block I
I _ _____ _ ~ I
I r----T--T----T--T-------T--T-------T-------T----T--T----T T -- -- T--T-- -T---- --T- 1 I
I I0040IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI00 45 IBB IOO41I bbIFIELD-AI 03 IFIELD-CIFIELD-CIFIELD-C I I I L ____ ~ __ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~ __ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ _______ J I

I I
I Note: Lengths appear in decimal notation for illustrative purposes. I
I I L __ ~--------------------------------------J

Figure 64. Fields in Unblocked V-Mode Records

r---,
I 1st Recerd 2nd Record I

: r-~--T--T----T--T---::::T--T-------T----~-T-=---T--T-~-----T--T::::---T---~---T--~-~-, I
I 10081IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0041IbbIFIEID-AI03)FIEID-CIFIELD-CIFIELD-CI I I l ____ ~ __ ~ ___ ~_,_~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ _______ JI

I I
I Note: Lengths a~pear in decirral notation fer illustrative rur~oses. I
I I l ___ J

Figure 65.. Fields in Blocked V-Mode Records

Non/VS AM BecordFormat-s 163

r---~---,
I 1st Block 2nd Block I
I _ ~ ~ I
I r---T--T---T--T----T---T--T----T---T--T--- -~-T--T---T--T----T---T--T----T--T--T----' I
I 13161BBI1041bbiDatal1041bbiDatal1041 bb i Da ta 2361BBII041bbiDatal1041bbiDatal241bbiDatai I I L ___ ~ __ ~ ___ ~_~~ ____ ~ ___ ~ __ ~ ____ ~ ___ ~ __ i___ __~ __ ~ ____ ~ ___ ~ __ ~ ____ i_~i __ i ____ J I

I I
I Note: Lengths appear in decimal notation for illustrative purposes. I
I I L ___ J

Figure 66. First Two Blocks of VARIABLE-FILE-2

The buffer for the second block is
truncated after the sixth WRITE statement
is executed since there is not enough space
left for a maximum size record. Hence,
even if the seventh WRITE to
VARIABLE-PILE-2 is a 20-character record,
it will appear as the first record in the
third block. This condition can be
eliminated by using the APPLY WRITE-ONLY
clause when creating files of
variable-length blocked records.

Note: Illustrations of unblocked Format V
records do not take into account either the
key field required vhen direct organization
is used or ASCII block prefixes. See the
description of format D records under
"Processing ASCII Files".

The APPLY WRITE-ONLY clause is used to
make optimum use of buffer space when
creating a physical sequential file with
blocked V- mode records.

Suppose VARIABLE-FILE-2 is being created
with the following file description entry:

FD VARIABLE-FILE-2
RECORDING ~ODE IS V
BLOCK CONTAINS 316 CHARACTERS
DATA RECORDS ARE VARIABLE-RECORD-1,

VARIABLE-RECORD-2
LABEL RECORDS ARE STANDARD.

01 VA RI ABLE-BECOH 0-1.
05 FIELD-A PIC X(20).
05 FIELD-B PIC X(80).

01 VARIABI.E-RECORD-2.
05 FIELD-X PIC X(20).

The first three WHITE statements to the
file create one 20-character record
followed by two 10Q-character records.
without the APPLY WRITE-ONLY clause, the
buffer is truncated after the third WRITE
statement is executed since the maximum
size record no longer fits. The block is
written as shown below:

164

4 • i i • ~ 't -,---,---~---,

1236Jbbl24lbblData)104lbb,DataJl04,bblDatal

Using the APPLY WRITE-ONLY clause causes
a buffer to be truncated only when the next
record does not fit in the buffer. That
is, if the next three WRITE statements to
the file specify VARIABLE-RECORD-2, the
block is created containing six logical
records, as shown below:

l!Q!'~: When using the APPLY WRITE-ONLY
clause, records must not be constructed in
buffer areas. An intermediat.e work area
must be used with a WRITE FROM statement.

A spanned record is a logical record
that may be contained in one or more
physical blocks. Format S records may be
specified for direct (BOAM, BSAM) files and
for physical sequential (QSAM) files
assigned to magnetic tape or to mass
storage devices.

When creating files with S-mode records,
if a record is larger than t.he remaining
space in a block, a segment of the record
is wri t. ten to fill the block. The
remainder of the record is stored in the
next block or blocks, as required.

When retrieving a file with S-mode
records, only complete records are made
available to the user.

Spanned records are preceded by fields
containing control information. Figure £7
illustrates the control fields.

BDF (Block Descriptor pield):

LL -- represents tvo bytes designating
the length of the physical block
(including the block descriptor
field itself).

BB -- represents two bytes reserved for
system use.

SDP (Segment Descriptor pield):

11 -- represents two bytes designating
the length of the record segment
(including the segment descriptor
field itself).

bb -- represents two bytes reserved for
system use.

NQte: There is only one block descriptor
field at the beginning of each physical
block. There is, however, one segment
descriptor field for each record segment
within the block.

Each segment of a record in a block,
even if it is the entire record, is
preceded by a segment descriptor field.
The segment descriptor field also indicates
whether the segment is the first, the last,
or an intermediate segment. Each block
includes a block descriptor field. These
fields are not described in the Data
Division; provision is automatically made
for them. These fields are not available
to the user.

A spanned blocked file may be described
as a file composed of physical blocks of
fixed length established by the programmer.
The logical records may be either fixed or
variable in length and that size may be
smaller, equal to, or larger than the
physical block size. There are no required
relationships between logical records and
physical block sizes. Records of a spanned
file may only be blocked when organization
is sequential (QSAM).

A spanned unblocked file may be
described as a file composed of physical
blocks each containing one logical record
or one segment of a logical record. The
logical records may be either fixed or
variable in length. When the physical
block contains one logical record, the
length of the block is determined by the
logical record size. When a logical record
has to be segmented, the system always
writes the largest physical block pos.sible.
The system segments the logical record when
the entire logical record cannot fit on the
track.

Figure 68 is an illustration of block.ed
spanned records of SFILE. SFILE is

described in the Data Division with the
following file description entry:

FD SFItE
RECORD CONTAINS 250 CHAHACTERS
BLOCK CONTAINS 100 CHARACTERS

Figure 68 also illustrates the concept
of record segments. Note that the third
block contains the last 50 bytes of REC-1
and the first 50 bytes of REC-2. Such
portions of logical records are called
record segments. It is therefore correct
to say that the third block contains the
last segment of REC-1 and th€ fiest segment
of REC-2. The first block contains the
first segment of REC-l and the second block
contains an intermediate segment of REC-l.

S-MODE CAPABILITIES

Formatting a file in the S-mode allows
the user to make the most efficient use of
external stoeage while organizing data
files with logical recoed lengths most
suited to his needs.

1. Physical record lengths can be
designated in such a manner as to make
the most efficient use of track
capacities on mass storage devices.

2. The user is not required to adjust
logical eecord lengths to maximum
physical record lengths and their
device-dependent variants when
designing his data files.

3. The user has greater flexibility in
transferring logical records across
DASD types.

Spanned record processing viII not be
supported on unit record devices.

SEQUENTIAL S-MODE FILES (QSAM) FOR TAPE OR
MASS STORAGE DEVICES

When the spanned format is used for QSAM
files, the logical records may be either
fixed or variable in length and are
comple tely independen t of physical record
length. A logical record may span physical
records. A physical record may contain one
or more logical records and/or segments of
logical records.

Non/VSAM Record Formats 165

r---,
I I
I <--4 bytes---> <--4 bytes--> <----------------Variable bytes------------------> I
I r------T------T------T------T---, I
I I LL I EE I 11 I bb I Data Record or Segment I I
I ~-----~------~~-----~-----~/-------------------------_______________________ J I
I I
I BDF SCF I
I I L ___ J

Figure 67. Control Fields of an S-Mode Record

,.- ,
I
I (--------100 bytes-------> (--------100 bytes-------> <-50 bytes-> <-50 bytes->

J
I
I
I
I
I
f

J r---------.--------------~ "1 ~-------------

I t REC-1 G REC-1 1 G REC-l I REC-2
1 J

L----__________________ _
J .L ----'

J 1st Block 2nd Block 3rd Block ,
L-____ _

oJ

Figure 68. One Logical Record Spanning Physical Blocks

The user specifies S-mode by describing
the file with the following clauses in the
file description (FD) entry of his COBOL
program:

• BLOCK CONTAINS integer-2 CHARACTERS

• RECORD CONTAINS [integer-l TO]
integer-2 CHARACTERS

• RECORDING MODE IS S

The size of t h~ physical record must be
specified using the BLOCK CONTAINS clause
with the CHARACTERS option. Any block size
may be specified. Block size is
independent of logical record size.

The size of the logical record may be
specified by the RECORD CONTAINS clause.
If this clause is omitted, the compiler
will determine the maximum record size from
the record descriptions under the FD.

Format S may be specified by the
RECORDING l!ODE IS S clause. If this clause
is omitted, the compiler viII set the
recording mode to S if the BLOCK CONTAINS
inteter-2 CHARACTERS clause vas specified
and either of the following conditions
exist:

• Integer-2 is less than the largest
fixed-length level-01 PD entry.

166

• Integer-2 is less than the maximum
length of a variable level-01 FD entry
(i.e., an entry containing one or more
OCCURS clauses with the DEPENDING ON
option).

Except for the APPLY WRITE-ONLY, APPLY
RECORD-OVERFLOW. WRITE BEFORE ADVANCING.
WRITE AFTER ADVANCING, or WRITE AFTER
POSITIONING clauses. all the options for a
variable file apply to a spanned file.

Suppose a file has the following file
description entry:

FD SPAN-FILE
BLOCK CONTAINS 100 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS DATAREC.

01 DATAREC.
05 FIELD-A PIC X (100).
05 FIELD-B PIC X (50).

Figure 69 illustrates the first four
blocks of SPAN-FILE as they would appear on
external storage devices (i.e •• tape or
mass storage) or in buffer areas of main
storage.

1. The RECORDING MODE clause is not
specified. The compiler determines
the recording mode to be S since the

block size is less than the record
size.

2. The length of each physical block is
100 bytes, as specified in the BLOCK
CONTAINS clause. All required control
fields, as well as data, must be
contained within these 100 bytes.

3. No provision is made for the control
fields within the level-Ol entry
DATAREC.

The preceding discussion dealt with
S-mode records which were larger than the
physical .blocks that contained them. It is
also possible to have S-mode records which
are equal to or smaller than the physical
blocks that contain them. In such cases.
the RECORDING HODE clause must specify S
(if so desired) since the compiler cannot
determine this by comparing block size and
record size.

One advangage of S-mode reco.rds over
V-mode records is illustrated by a file
with the following characteristics:

1. BECORD CONTAINS 50 TO 150 CHARACTERS

2. BLOCK CONTAINS 350 CHARACTERS

3. The first five records written are
150, 150, 150, 100, and 150 characters
in length.

For V-mode records, buffers are
truncated if the next logical record is too
large to be completely contained in the
block (Figure 70). This results in more
physical blocks and more inter-record gaps
on the external storage device.

HQ1~: For V-mode records, buffer
truncation occurs:

1. When the maximum level-01 record is
too large.

r---,
I

4 4 92 4 4 58 4 30 I
<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><---bytes---><-L)ytes-><--nytes---> I
r---T---T---T----T------------------------------, r---T---T---T----T-------------T---T----T-----------, I
ILL IBB III I bn I DATAREC (1) I ILL IBB III I bb I DATAREC (l) III I bb IDATld{EC (2) II L ___ ~ ___ ~ ___ ~ ____ ~ ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ _____________ ~ ___ ~ ____ L ___________ J I

1st Block 2nd Block
I
I
I
I
I

4 4 92 4 4 28 4 bO I
<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><--bytes---><-bytes-><---oytes---->I
r---T---T---T----T------------------------------, r---T---T---T----T-----------T---T----T-------------, I.
ILL IBB III I bb I DATAREC (2) I I LL I BB III I bb I DA'l'AREC (2) III I bb I DAT ALI:.C (3) I I L ___ ~ ___ ~ ___ ~ ____ ~ ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ ___________ ~ ___ ~ ____ ~ _____________ j I

3rd Block 4th Block
I
I
I ___ J

Figure 69. First Four Blocks of SPAN-FILE

r--T--,
I RECORDING MODE IS V] RECCRDING MODE IS S I
~--+--~
I I I
I 1 I
I r-----T-----' r-----T-----' r-----' I r-----T-----T-----' r-----T-----T-----' I
I I 150 I 150 I G J 150 I 100 I G I 150 I I I 150 J 150 I 50 J G I 100 I 100 I 150 I I I l _____ ~ _____ J l _____ ~ _____ J L _____ J] L _____ ~ _____ i _____ J L _____ i _____ i _____ J I
I '--v--' "--'v--" "-v--" '--v--' "--'v--" 1 '--v--' '-v--'" --------------- '-v-" ~ I

I Rl R2 R3 R4 R5] Rl R2 R3 R4 R5 I
I] I
I J I
~--~--~
I Note: The enclosed diagrarrs are for illustrative purposes only. Neither takes into I
laccount the space required for control fieldsu I L ___ J

Figure 70. Ad vantage of S-Mode Records Over V-Mode Records

Non/VSAM Record Formats 167

2. If APPLY WRITE-ONLY or SAME RECORD
AREA is specified and the actual
logical record is too large to fit
into the remainder of the buffer.

For S-mode records, all blocks are 350
bytes in length and records that are too
large to fit entirely into a block will be
segmented. This results in more efficient
use of external storage devices since the
number of inter-record gaps are minimized
(Figure 70).

A second advangage of S-mode proce~sing
over that of V-mode is that the user 1S no
longer limited to a record length that does
not exceed the track of the mass storage
device selected. Records may ipan tracks*
cylinders, extents, and volumes.

QSAM spanned records differ from other
QSAM record formats because of an
allocation of an area of main storage known
as the "Logical Record Area." If logical
records span physical blocks, COBOL will
use this Logical Record Area to assemble
complete logical records. If logical
records do not span blocks (i.e., they dre
contained within a single physical block)
the Logical Record Area is not used.
Regardless, only complete logical records
are made available to the user. Both READ
and WRITE statements should be thought of
as manipulating comple te log ical records
not record segments.

The allocation of a Logical Record Area
may be a disadvantage to the COBOL user.
Additional main storage, consisting of 36
bytes + the maximum record length, will
always be required. The Logical Record
Area is discussed in detail in "Finding

r-
J
I
I
I
j

I
I
I
j

J
I

sequential Pile 3

r-----r--------~~--------------,
J P,1 I R2 R3 I ••• 1st
L ____ -4 -L ____________ _

.J

r-
I R3 ••• 2nd
L .J

r-----------~--------------_,

Data Records in an Abnormal Termination
Dump."

DIRECTLY ORGANIZED S-MODE FILES (BDAM AND
BSAM)

When S-mode is used for directly
organized files. only unblocked records are
permit ted. Logical records may be either
fixed or variable in length. A logical
record will span physical records if* and
only if, it spans tracks. A physical
record will contain only one logical record
or a segment of a logical record. A track
may contain a segment of a logical record,
or seg ment s of tvo logical records and/or
whole logical records. Records may span
tracks, cylinders, and extents. but not
volumes.

The user specifies S-mode by describing
the file with the following clauses in the
file description (FD) entry of his COBOL
program:

• BLOCK CONTAINS integer-2 CHARACTERS

• RECORD CONTAINS [integer-1 TO]
integer-2 CHARACTERS

• RECORDING MODE IS S

The size of a logical record may be
specified by the RECORD CONTAINS clause.
If this clause is omitted, the compiler

Direct File

r r---- , ,------,
track ••• I R1 G t R2 , G 1 R3 I

'-------I
L ______ -..J L-____ -J

...--
track •••) R3

'---

,..------------., r------,

.,
I
I
I
I
I
I
t ,
I
I
I

I
I
I
1

J R3 I R4 J ••• 3rd track ••• I R3 f G J R4 I
I
J
I

I
J
J

• L-

L---_______ -L--_____________ --J

••• 4th track •••

.J

,------,
J R4 I
1..-___ .-4

t.-. _____ -J

I
I
I
J
I ________ .J

Figure 71. Direct and sequential Spanned Files on a Mass Storage Device

168

will determine the maximum record size from
the record descriptions under the PD.

The spanned format may be specified by
the RECORDING MODE IS S clause. If this
clause is omitted, the compiler will set
the recording mode to S if the BLOCK
CONTAINS integer-2 CHARACTERS clause was
specified and integer-2 is less than the
greatest logical record size. This is the
only use of the BLOCK CONTAINS clause. It
is otherwise treated as comments.

The physical block size is determined by
either:

1. The logical record length.

2. The track capacity of the device being
used.

If, for example, the track capacity of a
mass storage device is 7294 characters, any
record smaller than 7294 characters may be
written as a sinqle physical block. If a
logical record is greater than 7294
characters, the record is segmented. The
first segment may be contained in a
physical block of up to 7294 bytes, and the
remaining segments must be contained in
succeeding blocks. In other vords, a
logical record will span physical blocks
if, and only if, it spans tracks.

Figure 71 illustrates four
variable-length records (Rl, R2, R3, and
R4) as they would appear in direct and
sequential files on a mass storage device.
In both cases, control fields have been
omitted for illustrative purposes. For
both files, assume:

1. BLOCK CONTAINS 7294 CHARACTERS (track
capacity = 7294)

2. RECORD CONTAINS 500 TO 8000 CHARACTERS

In the sequential file, each physical
block is 7294 bytes in length and is
completely filled with logical records.
The file consists of three physical blocks,
occupies three tracks, and contains no
inter-record gaps.

In the direct file, the physical blocks
vary in length. Each block contains only
one logical record or one record segment.
Logical record R3 spans physical blocks
oaly because it spans tracks. The file
consists of seven physical blocks, occupies
more than three tracks, and contains three
inter-record gaps.

~£Q£g~sillg Di£~~1Y-Q£g~n!~~1_~=tt~Qg_fi!g2
111D AlL.an.L.fl§.AMl...

When processing directly organized
files, there are two advantages spanned
format has over the other record formats:

1. Logical record lengths may exceed the
lenqt h restriction of the track
cap~city of the mass storage device.
If, for example, the track capacity of
a mass storage device is 2000 bytes,
this does not represent the maximum
l~ngth of the logical record that can
be specified (even when the device
does not have a Track Overflow
feature) •

IQ!~: Even when the spanned format is
used, the COBOL restriction on the
length of logical records must be
adhered to (i.e., a maximum length of
32,767 characters).

2. s-mode records give the user the same
facility as the Track Overflow
feature. If neither RECORDING MODE IS
S nor APPLY RECORD-OVERFLOW is
specified, only complete logical
records can be written on any single
track. This means that when a track
has only 900 unoccupied bytes and a
record of 1000 bytes is to be added,
it viII be written on the next
available track. This is inefficient,
since a 900 byte segment could be
added to the current track by means of
either APPLY RECORD-OVERFLOW or
RECORDING MODE IS S.

IQi~: If a choice exists between
Track Overflow and S-mode records,
neither has any particular advantage
over the other with regard to the
efficient use of storage space.

The disadvantage of BSAM and EDAM
spanned records is similar to that
mentioned for QSAM. A segment work area is
always allocated which occupies additional
main storage.

Like QSAM, the processing of B5AM and
BDAM spanned records relies on an
interaction between buffers, segment work
areas, and Logical Record Areas. For QSAM,
input-output buffers are used as the
segment work area and complete logical
records are assembled in a Logical Record
Area before being made available to the
user if the record is segmented. If the
record is not segmented, the logical
recordis made a vailable to the user wi thin
the buffer unless the SAME ABEl clause is
specified. For B5AM and BDAM. input-output
buffers are used as a Logical Record Area
and a separate segment work area must be

Non/VSAM Record Formats 169

allocated. Segment work areas and Logical
Record Areas are described fully in
"Finding Data Records in an Abnormal
Termination Dump."

If a record description contains an
OCCURS clause with the DEPENDING ON
option, the record length is variable. This
is true for records described in an FD as
well as in the Working-storage section.
The previous sections discussed four
different record formats. Three of them,
V-mode, U-mode, and S-mode. may contain one
or more OCCURS clauses with the DEPENDING
ON option.

The following section discusses some
factors that affect the manipulation of
records containing OCCURS clauses with the
DEPENDING ON option. The text indicates
whether the factors apply to the File ~D)
or Working-Storage sections, or both.

The compiler calculates the length of
records containing an OCCURS clause with
the DEPENDING ON option at two different
times, as follows (the first applies to YD
entries only, the second to both FD and
Working-Storage entries) :

1. When a file is read and the object of
a DEPENDING ON option is within the
record.

2. When the object of the DEPENDING ON
option is changed as a result of a
move to it or to a group that contains
it. (The length is not calculated
when a move is done to an item which
redefines or renames it.)

consider the following example:

WORKING-STORAGE SECTION.

77 CO NTROL-1
77 WORKAREA-1

PIC 99.
PIC 9(6)V99.

01 SALARY-HISTORY.
05 SALARY OCCURS 1 TO 10 TIMES

DEPENDING
ON CONTROL-1 PIC 9(6)V99.

The Procedure Division statement MOVE 5
TO CONTROL-1 will cause a recalculation of
the length of SALARY-HISTORY. MOVE SALARY
(5) TO WORKAREA-1 will not cause the length
to be recalculated.

The compiler permits the occurrence of
more than one level-01 record, containing
the OCCURS clause with the DEPENDING ON
option, in the same FD entry (Figure 72).
If the BLOCK CONTAINS clause is omitted,

170

the buffer size is calculated from the
longest level-01 record description entry __
In Figure 72, the buffer size is determined
by the description of RECORD-1 (RECORD-1
need not be the first record description
under the FD).

During the execution of a READ
statement, the length of each level-01
record description entry in the FD will be
calculated (Figure 72). The length of the
variable portions of each record will be
the product of the numeric value contained
in the object of the DEPENDING ON option
and the length of the subject of the OCCURS
clause. In Figure 72, the length of
FIELD-1 is calculated by multiplying the
contents of CONTROL-1 by the length of
FIELD-1; the length of FIELD-2, by the
product of the contents of CONTROL-2 and
the length of FIELD-2; the length of
FIELD-3 by the contents of CONTROL-3 and
the length of FIELD-3.

Since the execution of a READ statement
makes available only one record type (i.e.,
RECORD-1 type, RECORD-2 type, or RECORD-3
type), two of the three record descriptions
in Figure 72 will be inappropriate. In
such cases, if the contents of the object
of the DEPENDING ON option does not conform
to its picture, the length of the
corresponding record will not be
calculated. For the contents of an item to
conform to its picture:

• An item described as USAGE DISPLA~ must
contain decimal data.

• An item described as USAGE
COMPUTATIONAL-3 must contain internal
decimal data.

• An item described as USAGE
COMPUTATIONAL must con~ain binary data.

• An item described as USAGE DISPLAY
or USAGE COMPUTATIONAL-3 must conform
to the rules for the numeric class
test condition:

If the PICTURE for the item does
not contain an operational s~
the item being tested conforms
only if the contents are unsigned
numeric.

If the PICTURE clause for the
item does contain an operational
sign, the identifier being
tested conforms only if the item
is elementary signed numeric.

In the EBCDIC collating sequence for
signed items, valid embedded opera
tional signs are hexadecimal C, D,
and E; for items described with the
SIGN IS SEPARATE clause, valid
operational signs are + (hexadecimal
4E) and - (hexadecimal 60).

,.-
PD INPUT-FILE

DATA BECOROS ARE BECORD-1 RECORD-2 RECORO-3.

01 RECORD-1.
02 CONTBOL-1 PIC 99.
02 FI EL 0-1 OCCU RS 1 TO 10 TIM.ES DEPENDING ON CONTROL-1 PIC 9 (5) •

01 RECORO-2.
02 CONTROL-2 PIC 99.
02 PI ELD- 2 OCCURS 1 TO 5 TIMES DEPENDING ON CONTROL-2 PIC 9 (4) •

01 BECORD-3.
02 FILLER PIC XX.
02 CONTROL-3 PIC 99.
02 FIELO-3 OCCURS 1 TO 10 TIMES OEPEN DING ON CONTROL-3 PIC X(4).

L-____ _

Figure 72. calculating Record Lengths When Using the OCCURS Clause with the DEPENDING ON
option

The following example illustrates the
length calculations made by the system when
a READ statement is executed:

FD

01 RECORD-l.
05 A PIC 99.
05 B PIC 99.
05 C PIC 99 OCCURS 1 TO 5 TIMES

DEPENDING ON A.

01 RECORD-2.
05 D PIC XX.
05 E PIC 99.
05 F PIC 99.
05 G PIC 99 OCCURS 1 TO 5 TIMES

DE,PENDING ON F.

WORKING-STORAGE $ECTION.

01 TABLE-3.
05 H OCCURS 1 TO 10 TIMES DEPENDING

ON B.

01 TABLE-4.
05 I OCCURS 1 TO 10 TIMES DEPENDING

ON E.

When a record is read. lengths are
determined as follows:

1. The length of RECORD-l is calculated
using the contents of field A.

2. The length of RECORD-2 is calculated
asing the contents of field F.

3. The length of TABLE-3 is calculated
asing the contents of field B.

4. The length of TABLE-a is calculated
using the contents of field E.

The user should be aware of several
additional factors that affect the
successful manipulation of variable-length
records. The following example illustrates
a group item {i.e •• REC-1) whose
subordinate items contain an OCCURS clause
with the DEPENDING ON option and the object
of that DEPENDING ON option.

WORKING-STORAGE SECTION.
01 REC-l.

05 FIELD-1 PIC S9.
05 FIELD-2 OCCURS 1 TO 5 TIMES

DEPENDING ON FIELD-l PIC X(S).

01 REC-2.
05 REC-2-DATA PIC X (50) •

The results of executing a MOVE to the
group item REC-1 will be affected by the
follow ing:

• The length of REC-l may have been
calculated at some time prior to tbe
execution of this MOVE statement. The
user should be sure that the current
length of REC-l is the desired one.

• The length of REC-l may never have been
calculated at all. In this case, the
result of the move will be
un peed ic ta hIe.

• After the move, since the contents of
FIELD-1 have been changed, an attempt

Non/VSAM Record Formats 171

will be made to recalculate the length
of REC-l. This recalculation, however,
will be made only if the new contents
of FIELD-l conform to its picture. In
other words, if FIELD-l does not
contain an external decimal item, the
length of REC-l will not be
recalculated.

!!Qig: According to the COBOL description,
FIELD-2 can occ~r a maximum of five times.
If, however, FIELD-l contains an external
decimal item whose value exceeds five, the
length of REC-l will still be calculated.
One possible consequence of this invalid
calculation will be encountered if the ~ser
attempts to initialize REC-l by moving
zeros or spaces to it. This initialization
would inad vertently dele te part of the
adjacent data stored in REC-2.

The following example applies to
updating a record containing an OCCURS
clause with the DEPENDING ON option and at
least one other subsequent entry. In this
case, the subsequent entry is another
OCCURS clause with the DEPENDING ON option.

WORKING-STOP AG E SECT rON.
01 VARIABLE-REC.

OS FIELD-A PIC X (10).
05 CONTROL-l PIC S99.
05 CONTROL-2 PIC S99.
05 VARY-FIELD-1 OCCURS 1 TO 10 TIMES

DEPENDING ON CONTROL-1 PIC X(5) .
05 GROUP-ITEM-1.

10 VARY-FIELD-2 OCCURS 1 TO 10
TIMES DEPENDING ON CONTROL-2
PIC X (9) .

01 STORE-VARY-FIELD-2.

172

03 GROUP-ITEM-2.
05 VARY-FLD-2 OCCURS 1 TO 10

TIMES DEPENDING ON CONTROL-2
PIC X(9) .

Assume tbat CONTROL-l contains the value
5 and VARY-FIELD-l contains 5 entries.

In order to add a sixth field to
'ARY-FIELD-l, the following steps are
required:

MOVE GROUP-ITEM-1 TO GROUP-ITEM-2.
ADD 1 TO CONTROL-1.
MOVE 'additional field' TO

VARY-FIELD-1 (CONTROL-1).
MOVE GROUP-ITEM-2 TO GROUP-ITEM-1.

Note: When an FD contains multiple
01-level entries, the following restriction
applies: The object of an OCCURS
DEPENDING ON clause must be in the
fixed portion of all the records within
that FD (not just in the fixed portion of
the record it is described in). Stated
another way, the minimum size of each
01-level record must exceed the highest
position of the object of an OCCURS
DEPENDING ON clause appearing in any
01-level record in that FD. Thus, the
following coding would be wrong, and could
cause an abend:

FD
01 RECORD-1.

02 FIELDA PIC X (200) •
02 FIELDB PIC 99.
02 FIELDC PIC XX OCCURS 1 TO 25 TIMES

DEPENDING ON FIELDB.
01 RECORD-2.

02 FIELDD PIC X(100).

For a discussion of the use of the
OCCURS DEPENDING ON clause in a sort
proqra m, see "sorting V aria.ble-Length
Records."

VSAM is a high-performance access method
of OS/VS for use with direct-access
storage. VSAM provides high-speed
retrieval and storage of data, ease of use
(including simplified Jet statements), data
protection against unauthorized access,
central control of data management
functions, cross-system compatibility, and
device independence. VSAM data sets can be
processed by the COBOL programmer after
they have been defined through use of the
VSAM multifunction utility program known as
Access Method Services. This utility
(described in the publications Q~I~l
A££~§§.J~lhoL§.g£yi£~ a nd Q~Lv SL!~2§
~~lhod~g~vi£g§) will describe data sets,
load records into them if desired, and
perform numerous other tasts--such as
converting existing ISAM and SAM data sets
to VSAM format.

COBOL allows access to the three major
types of VSAM data sets: entry-sequenced
(ESDS), key-sequenced (KSDS) and relative
record (RRDS). The primary difference
between the three is the order in which
tbeir data records are stored and
retrieved.

Records are stored in an entry-sequence
data set without respect to the contents of
the records. The sequence is determined by
the order in whicb the records are
presented for inclusion in the data se~
that is, their entry sequence. Nev records
are stored at the end of the data set.
Records can be retrieved sequentially only,
that is, in the order they were stored in
the da ta set.

Records are stored in a key sequenced
data set in key sequence: that is, in the
order defined by tbe collating sequence of
the primary key field in each record. Each
record has a unique value in the primary
key field, such as employee number or
invoice number. VSAM uses the key
associated with each record to insert or
retrieve a record in the data set. The
order can be random or sequential.

Records a re stored in a relative record
data set in rela ti ve record number
sequence. The data set may be described as
a string of fixed-length slots, each of
which is identified by a number which gives
its position relative to the first such

slot. new records are inserted either
sequentially in the next available slot,
where they assume that relative record
number, or according to a relative record
number that the programmer specifies.
Records may be retrieved either
sequentially or by specific relative record
namber.

ENTRY-SEQUENCED DATA SETS

An entry-sequenced data set has no index
associated with it. Records are added at
the end of the data set. The data set can
be accessed sequentially only; the access
is similar to QSAM except that tape s~orage
or unit record devices cannot be used with
VSAM.

KEY-SEQUENCED DATA SETS

The index and distributed free space are
the most distinctive features of a
key-sequenced data set.

The index relates key values to the data
records in the data set. A record's key
field and position are the same for every
record in the data set; its value cannot be
altered. VSAM uses the index t.o locate a
record for retrieval and to locate the
collating position for insertion.

Multiple indexing is also available.
~his means that a record may bave both a
primary key and up to 254 alternate, or
secondary, keys. An alternate key may be
any field in the data record that has a
fixed length and position. (Tn spanned
records, the al terna te key must be in the
first control interval.) Alternate keys
serve the same function in accessing data,
but allow the user additional flexibility
in bis processing. In contrast to the
primary key, values of these alternate keys
need not be unique.

When a key-sequenced data set is defined
(through Access Method Services), free
space can be distributed in two ways: by
leaving some space at the end of all the

VSAM File Processing 173

used control intervals l and by leaving some
control intervals completely empty. Space
becomes available within a control interval
when a record is shortened or deleted.
This space can then be used by VSAMwhen a
record is lengthened in place or inserted
into the control interval.

RELATIVE RECORD DATA SETS

A relative record data set has no index.
In its string of fixed-length slots, only
the rela ti ve record number--a number from
to a, where n is the maximum number of
records that can be stored in the data
set--identifies the record. Each record
occupies one slot, and is stored and
retrieved according to the relative record
number of that slot. The record's contents
and entry sequence are unimportant.

Records in a relati ve record data set
are grouped together in control intervals,
just as they are in a entry-sequenced or
key-sequenced data set. Each control
interval contains the same number of slots.
The size of each slot is the record length
specified by the user when he defined the
da ta set.

Access Method Services is a utility
program that must be used before any COBOL
program can process VSAM files. A number
of user-entered commands initiate the
Access Method Services programs. There are
two types of commands: functional and
modal. The functional commands inyoke the
desired Access Method Services function,
while the modal commands control the
sequence of execution of the functional
commands. For more information on modal
commands as well as for complete details on
the specification and uses of Access Method
Services, see the publication Q~S Access
~~thod services.

There are a number of important
functional commands: DEFINE, ALTER,
DELETE, LISTCAT, REPRO, PRINT, IMPORT,
EXPORT, BLDINDEX, and VERIFY. The commands
DEFINE, ALTER, DELET E, and LISTC!! are used
to create, modify, remove and list entries
in the VSA! catalog. The REPRO and PRINT
commands reproduce data sets either as nev
data sets or as printed output. The IMPORT

1 A control interval is the uni t of
information that VSAM transfers between
virtual and auxiliary storage.

174

and EXPORT commands provide a way to
transfer data sets from one system to
another. The BLDINDEX command builds
alternate indexes for VSAM KSDS data sets.
The VERIFY command provides a data set
recovery service for VSAM data sets by
verifying that the end of the data set
indicated in the catalog is the same as the
real data set end.

THE DEFINE COMMAND

The DEFINE command must he used to
define:

1. Master catalog: catalog in which all
VSAM data sets must be entered.

2. User catalog: optional catalog in
which VSAM data sets may be entered.

J. Data space: space which is to be used
by VSAM.

4. VSAM data set{s): data sets that are
to be processed by VSAM.

5. Any alternate indexes and alternate
paths.

In order to process a VSAM data set, the
above must be done in the order indicated.
Therefore it is necessary to fully
understand the DEFINE command, its
functions, and its specification.

Functions of the DEFIU~.!!SU!.9.

An object, in VSAM terminology, is:

• A VSAM catalog

• A VSAM data set (KSDS, RRDS, or ESDS)

• A VSAM data space

• A VSAM KSDS alternate index and path

Data sets must be introduced to the
system and defined as entries in either the
master or user catalog. Non-VSAM data sets
may also be cataloged in a VSAM catalog.
All VSAM and non-VSAft data sets are
introduced to the system with the DEFINE
command.

There are two steps in the creation of
an object: (1) defining the ob ject to the
system and (2) generating its contents.
The DEPINE command does not generate the
contents of any object except for the
entries in the master and user catalogs.

The process of defining a VSAM object
includes allocation of storage space,
initialization of catalog entry contents,
and, in the case of defining catalogs,
possible initialization of the object's
storage space.

~ecification of the-I!MINLCoDlmng

The DEFINE command has the following
format:

DEFINE object parameters

The definable objects are as follows:

• MASTERCATALOG: specifies that the
VSAM master catalog is to be defined.

• OSERCATALOG: specifies that a VSAM
user catalog is to be defined.

• SPACE: specifies that a VSAM data
space is to be defined.

• CLOSTER: specifies that a data set is
to be defined.

• ALTERNATEINDEX: specifies that an
alternate index for a KSDS is to be
defined and have space allocated.

• PATH: establishes the relationship
between an alternate index and its
data set (base cluster) •

• NONVSAM: specifies that a data set
not having the VSAM data set
organization is to be cataloged in a
VSAM ca talog.

For each data set there is an associated
valid parameter list. See the publication
Q~L!S A££g§2~~thQg_~~£yi£~§ for the
specification rules for DEFINE and its
associated objects and parameters.

.I2gfininLa-11a§teL£ataloY..i..~&!':!!i~
ll~ERCAllLOQ

The DEFINE MASTERCATALOG command is used
in YS1 to set up the master catalog. (In
YS2, this command only creates a user
catalog. The VS2 master catalog is created
at system-generation time.) It is the first
Access Method Services command ever used
since without a master catalog other
objects cannot be defined. Defining a
master catalog automatically creates the
data space necessary to contain the
catalog. Entries for both the master
catalog itself and the volume containing

the data space automatically created are
placed in the master catalog.

The following is an example of defining
a VSAM master catalog:

IIIUJOB1
I/STEP
IISYSPRINT
IIVOL

JOB
EXEC
DD
DO

PGM=IDCAMS
SYSOUT=A
DISP=OLD,UNIT=2314,
VOL=SER=MYVOL

IISYSIN DD *

1+

DEPINE MASTERCATALOG{NAME +
(M ASTCATL) FILE (VOL) t
VOLUME(myvol) RECORDS +
(300 10) +
M A STERP W (111111) +
UPDATEPW (222222) +
READPW (333333»

Note the following concerning the JCL
used.

• PGM=IDCAMS is required to invoke Access
Method Services.

• MYVOL is the volume serial number of
the volume on which the master cataloq
is to reside. I/VOL is the DD
statement identifying that volume.

In this example the following parameters
were used:

• NAME (objectname). This is a required
parameter. The objectname is cataloged
and is the name that must be used in
all future references to the master
catalog.

• FILE (dname). This is a required
parameter identifying the JeL statement
that specifies the device and volume
which are to contain the master
catalog. The associated JCL statement
should specify DISP=OLD. For dname,
the name of the JCL statement that
specifies the device and volume to
contain the master catalog is
substi tuted •

• VOLUME (volser). This is a required
parameter that specifies the volume to
contain the master catalog.

• RECORDS (primary[secondary]). This is
a required parameter that specifies the
amount of space to be allocated in
terms of the number of records the
space is to hold. The capacity of the
allocated space is device independent.
The size of the primary extent is
specified by primary. Once the primary
extent is filled, the data space can
expand to include a maximum of 15
secondary exte-nts if the size of

VSAM File Processing 175

secondary extents is specified through
secondary.

For primary and secondary, the number
of records the master catalog is to be
able to hold is substituted. Note that
every KSDS requires three catalog
entries: one each for the cluster,
data component, and index component.
Every ESDS requires two catalog
entries: one for the cluster and one
for the data component.

• MASTERPW (password). This optional
parameter specifies a master level
password for the master catalog being
defined. The master level password is
the highest level that can be
specified; it allows all operations.
If a master level password is not
supplied but other levels are, the
highest level supplied password becomes
the password for all higher levels
including the master level. The master
catalog must be password protected if
any VSAM clusters are to he protected.

• UPDATEPW (password). This optional
parameter specifies an update level
password. The password permits read
and write operations against the master
catalog. The master catalog must be
password protected if any VSAM clusters
are to be protected.

• READPW (password). This optional
parameter specifies a read level
password for the master catalog being
defined. The read level password
permits read operations against the
master catalog. The master catalog
must be password protected if any VSAM
clusters are to be protected.

The DEFINE USERCATALOG command is used
to set up user catalogs. When a user
catalog is defined, a data space to
containthe catalog is automatically
created. An entry for the volume
containing the data space is placed in the
user catalog being defined. Entries for
the user catalog being defined are placed
in the master catalog and in the user
catalog itself ..

The parameters that may be used with
DEFINE USERCATALOG are the same as those
described for DEFINE MASTERCATALOG with one
exception. There is an additional
parameter that may be used with DEPINE
USERCATALOG as follows:

176

• CATALOG (mastercatname/password). This
pa rame ter specifies the name and
password of the master catalog that
contains the entry for the user catalog
being defined. This parameter is
required only when the master catalog
is password protected.

For mastercatname, the name of the
master catalog is substituted. Por
password, the update or higher level
pa,sword is substituted.

The DEFINE SPACE command is used to
define VSAM data spaces or to reserve
volumes for future use by VSAM. A VSAM
data space is space on a direct access
volume that is owned and managed by VSAM.
Clusters cannot be de.fined without the
UNIQUE attribute unless a VSAM data space
is defined to contain them. A VSAM data
space may include several extents on the
same volume but it cannot span volumes.
The volume containing the data space is
owned by the catalog containing the entry
for the space. Data spaces on several
volumes can be defined at one time.

The following is an example of def~ning
a VSAM data space:

//ltYJOB2
//STEP
/ /SYSPRI NT·
//SPACDD

JOB
EXEC
DD
DO

//SYSIN DO
DEFINE

*

PGM=IDCAMS
SYSOUT=A
DISP=OLD~UNIT=2314,
VOL=SER=MYVOL

* SPACE{VOLUME{MYVOL)FILE+
(SPACDD) +
CYLINDERS(30 5) CATALOG+
(M ASTCATL/22222 2)

In this example the following parameters
were used:

• VOLUMEs{volser[•••]). This required
parameter specifies the volumes to
contain the data spaces. If more than
one volume is specified, each volume
will contain a data space of the same
size.

.• FILE (dname) • This required parameter
identifies the JCL statement that
specifies the devices and volumes to be
used for space allocation. [For dname,
SUbstitute the name of the JCL
statement that specifies the devices
and volumes to be used for space
allocation.] All volumes must be of the
same device type.

• CYLtNDERS(primary[secondary]). This
parameter specifies the amount of space
to be allocat.ed in t.erms of cylinders.
The capacity of the allocated space is
device dependent. Either this
parameter or the TRACKS or RECORDS
parameter must be specified. The size
of the primary extent. is specified by
primary. O'nce the primary extent. is
filled, the data space can expand to
include a maximum of 15 secondary
extents if the size of secondary
extent.s is specified through secondary.
For primary and secondary, the number
of cylinders to be allocated t.o the
data space is substituted.

• CATALOG(catname(/password][dname]).
This par aile te.r specifies the name and
password of the catalog in which the
data space is t.o be defined. (For
catname, s~bstitute the name of the
catalog that is to contain the entry
for the data space.] This parameter is
specified if the desired catalog is not
the default catalog (see Defaults
below). If the catalog is password
protected, the password must be
specified.

If the desired catalog is neither the
master catalog nor a catalog identified
by a JOBCAT or STEPCAT DD statement,
the na me of the DD sta tement
identifying the catalog must be
specified. For dname, the name of the
DD statement that identifies the
desired catalog is substituted.

Defaults: The data space is defined in
the catalog identified as STEPCAT. If
STEPCAT is not provided, the data space
is defined in the catalog identified as
JOBCAT. If JOBCAT is not provided. the
data space is defined in the master
ca talog.

Figure 73 is an example of defining an
indexed VSAM data set. DEFINE CLUSTER is
used to define the attributes of all VSAM
data sets and to catalog the data sets in a
VSAM catalog. This command does not put
any records into the VSAM data set. COBOL
permits reference only to a KSDS cluster;
in other words, the KSDS's data and index
components cannot be defined separately.

The DEFINE CLUSTER command establishes
the primary keys for the records. If only
primary keys are to be used, then only this
DEFINE CLUSTER command is needed. If
alternate keys are also to be used (as in
this example), they are established with
the DEFINE ALTERNATEINDEX and DEFINE PATH
commands. In addition (after the base
cluster is filled with records), a
follow-on job must be run to specify the
BLDINDEX command (see the Access Method
Services manual).

In this example the following parameters
were used:

• NAME(objectname}. This is a required
parameter. It must be specified at the
cluster level.

• FILE identifies the DD statement
specifying the device and volume that
are to contain the VSAM object being
defined.

• VOLUME (volser [•••]). This is a
required parameter that specifies the
volumes to contain the object. More
than one volume can be specified; the
volumes actually allocated are listed.

• RECORDS (primary (secondary]) specifies
the amount of space to be allocated in
terms of the number of records the
space is to hold.

VSAM File Processing 177

,.------ '1

I //MYJOB3
J //STEP

JOB
EXEC
DD
DD
DD

PGM=IDCAMS
t
J
I
I
I
I
I
I
I
I
I
J
t
f
I
I
I

1 //SYSPRINT
I //MYDD

SYSOUT=A
VOL=SER=MYVOL,UNIT=SYSDA,DISP=OLD

1 / /SYSIN •
I DEFINE CLUSTER (NAME (SAMPLE) FILE (MYDD) VOLUME (MIVOL) +
f RECORDS (500 50) RECORDSIZE (45 80) +
J
1 +
f
I DEFINE

PREESPACE{25 10) SUBAL'LOCATtON INDEXED +
KEYS (8 2) UPDATEPW (RD(iNDWRT) READPW (BEADONLY)
ATTEMPTS(O»,CATALOG(MASTCATL/222 22~
ALTERNATEINDEX(NAME(ALTX) RELATE (SAMPLE) +

t
I

• DEFINE

*

PI LE (MYDD 1) VOLUME (MY VOL) RECORDS (SOD
KEYS~ 15) UNIQUEKEY UPDATEPW(RDANDWRT)
ATTEMPTS (0» CATALOG(MASTCATL/222 222)
PATH (NAME (PATHX) PATH ENTRY (ALTX) UPDATE
CATALOG (MASTCATL/222 222)

50) t
READPW(READONLY)+

UPGRADE
+

~ J

Figure 73. Defining a VSAM Inde.xed Data Set (KSDS) with Both Primary and Alternate Keys

• RECORDSIZE(average maximum) specifies
the average and maximum lengths of the
records in the data component of the
cluster. This is a required parameter.
The size specified can be from 1 to
32,761.

The number substituted for average
should be the number of bytes that is
the average length of all logical
records. The number substituted for
maximum should be the maximum length of
the largest logical record.

• FREESPACE(cipercen~ capercent])
specifies the amount of space that is
to be left free after any allocation
and after any split of control
intervals and control areas. The
amount is specified as a percentage.

For cipercent, the percentage of unused
space desired in each control interval
is specified. For capercent, the
percentage of unused space desired in
each control area is specified.

• SUBALLOCATION specifies that a portion
of an already defined VSUI data space
is to be suballocated to the object.
Objects with the SUBALLOCATION
attribute do not appear in the VTOC.
Only the name of the data space that
contains the object appears there.

• INDEXED specifies that the cluster
being defined is for a KSDS.

• KEYS (length position) specifies the
length of the keys in a KSDS and their
position within the records. The
length of the keys is specified by
length; the displacement of the keys
within the record is specified by

118

position. The first character in a
record is at displacement O.

• UPDATEPW(password) specifies an update
level password for the data set being
defined. The update level password
permits input and update (READ, START,
DELETE, WRITE, REWRITE) operations
against the logical r~cords of the data
set.

• READPW(passvord) specifies a read level
password for the object being defined.
The read level password permits input
(READ, START) opecations against the
logical records of the data set.

• ATTEMPTS (number) specifies the maximum
number of times the operator can try to
enter a correct password in response to
a prompting message. This parameter
should always specify 0 as the number.

• CATALOG (catname[/password][dnam.e])
specifies the name of the catalog into
which the cluster is to be defined.
The name of the catalog is substituted
for catname. If the catalog is
password protected, the password must
also be supplied.

The name of the DD statement
identifying the catalog must be
specified if the catalog is neither the
master catalog nor a catalog identified
by a JOBCAT or STEPCAT DD statement or
if the catalog obtained through the
default is not the desired catalog~
For dname, substitute the name of the
DD statement that identifies the
catalog_

• RELATE specifies the name of the base
cluster, as given in the (NAME(name)}
field of the DEPINE CLUSTER for this

data set. This is a required
parameter.

• UNIQUEKEY/NONUNIQUEKEY specifies
whether each alterna te key points to
only one data record or to more than
one. If to more than one, then
NONUNIQUEKEY must be specified and tke
COBOL program must contain the WITH
DUPLICATES phrase in the associated
ALTERNATE RECORD KEY. A specification
of UNIQUEKEY requires that the COBOL
program not have such a WITH DUPLICATES
phrase.

• UPGRADE specifies that this alternate
index is to be kept up to date when its
base cluster is modified. This is a
required parameter.

• PATHENTHY specifies the name of the
alternate index, as given in the
(NAME(name» field for the related
DEFINE ALTERNATEINDEX. This is a
required parameter.

• UPDATE specifies that the base
cluster's upgrade set is to be
allocated when the path is opened.
This allows updating of alternate
indexes (see UPGRADE above), and is a
required parameter.

!~DIIIQ!!1-fARAMETER~: Additional
parameters are valid for DEFINE CLUSTER,
ALTERNATEINDEX, and PATH. Complete details
on the use of these parameters are in the
publication OS/YS_Ac~~ethod_seryice2.

Defining an RRDS is quite similar to
defining a KSDS. with the following

modifications, the DEFINE CLUSTER portion
of Figure 73 could be used to define an
RRDS:

1. Change INDEXED to NUMBERED.

2. Remove the KEYS parameter.

3. Remove the FREESPACE parameter.

4. Change the RECORDSIZE parameter so
that the average and maximum value
specifications are the same.

Defining an ESDS is quite similar to
defining a KSDS. with the following
modifications, the DEFINE CLUSTER portion
of Figure 73 could be used to define an
ESDS:

1. Change INDEXED to NONINDEXED.

2. Remoye the KEy'S parameter.

3. Remove the FREESPACE parameter.

If a COBOL program wishes to use a VSAM
data set for a workfile (that is, use the
data set again and again during the course
of processing), the REUSE parameter must be
included in the DEFINE CLUSTER
specification. and the data set must be
opened OUTPUT. (Its status is then
"unloaded.") ESDS and RRDS data sets and
KSDS data sets without alternate indexes
can be reused in this manner.

VSAM File Processing 179

!1iscellaneous DEFINE~stgk Considerations

The control interval is the unit of
transmission of data to and from main
storage. VSAM determines the size of the
control interval based upon the amount of
BUFFERSPACE specified and the size of the
RECORDSIZE specified. If BUFFERSPACE is
not specified and if the size of the
records permits, VSAM uses the optimum
size for the data component control
in tervals and 512 as the size of the index
component control intervals.

CQBOL nil PROCESS~~IDERAT.IONS

The f il e processing considera ti ons of
importance to the COBOL programmer are:
the file processing techniques available,
the current record pointer, the START
statement, and the error processing options
available.

180

FILE PROCESSING TECHNIQUES

The COBOL user has three different file
processing techniques available to him:
sequential, random, and dynamic fa
combination of sequential and random). The
technique to be used is specified through
the ACCESS clause of the SELECT statement.

An ESDS can only be processed
sequentially. Therefore, the ACCESS clause
need not be specified since the default is
sequen tial.

A KSDS or an RHOS can be processed
sequentially, randomly, or both
sequentially and randomly. To process
sequentially, ACCESS IS SEQUENTIAL is
specified. To process randomly, ACCESS IS
RANDOM is specified. To process both
sequentially and randomly, ACCESS IS
DYNAMIC is specified.

ACCESS IS DYNAMIC provides the greatest
flexibility since most of the capabilities
of both sequential and random processing
are available. Subsequent to an OPEN
statement processing can be switched from
sequential to random and vice-versa, as
many times as desired.

PASSWORD USAGE

The following procedures must be used
when password support is employed with the
VSAM da ta sets:

• Through Access Method Services (at
DEPINE time), the programmer must
passliord-protect the base cluster (as
opposed to the data and its index
separately). This is the password
specified with the RECORD or RELATIVE
KEY. If the data set is a KSDS with
alternate keys, then the programmer
must also password-protect either the
path to the base cluster via an
alternate index, or the alternate index
itself. This is the password specified
with the ALTERNATE RECORD KEY.

• In the COBOL program, the user must
specify the correct level of the
password: read-only, update, and so
on. Failure to do so will cause a
rejection of the action request which
violates the protection.

• In the COBOL program, the password (if
present for the data set) must be
specified for every ALTERNATE RECORD
KEY defined in the program--regardless
of whether any accessing will ever
actually be done using them. (This
requirement does not apply if the file
is opened only for OUTPUT and the user
does not request a dynamic invocation
of Access Plethod services via the
AIXBLD option.)

• All required passwords must be
correctly specified for the file before
the COBOL OPEN viII succeed.

CURRENT RECORD POINTER

The current record pointer (CRP), a
conceptual pointer. is applicable only to
sequential requests for ESDS, RRDS, and
KSDS. Basically, the current record
pointer indicates the next record to be
accessed by a sequential request; the CRP
has no meaning for random processing or
output operat.ions. The CRP is affected
only by the OPEN, START and READ
statements; it is not used or affected by
the WRITE, REWRITE, or DELETE statements.

In general, the last request on a file
that establishes the CRP (OPEN, READ, or
START) must have been successful in order
for the sequential READ to be successful.

Example 1:

If ·the sequence of 1/0 operations on a
file with ACCESS IS DYNAMIC and opened 1-0
is:

READ
WRITE
READ NEXT

(After setting record key to 10)
(After setting record key to 44)

the BEAD NEXT will get record 11 if the
previous READ was successful. If the
previous READ was not successful, the
STATUS KEY will be set to 94 (No Current
Record Pointer) when the READ NEXT is
attempted. This occurs independently of
the success of the intervening WRITE.

Generally, a READ NEXT must be preceded
by a request that establishes the CRP
(OPEN, START, READ, READ NEXT). If the
request that establishes the CRP is
unsuccessful, the READ NEXT causes the
STATUS KEY to be set to 94.

Example 2:

In this example, ACCESS IS SEQUENTIAL is
specified for a KSDS; therefore, records
are retrieved in ascending key sequence
starting at the position indicated by the
CRP.

OPEN INPUT

(Set record key to 10)
START
READ
(Set record key to 5)
START
READ

READ.

READ

(CRP at record with
lowest key in file)

(CRP at record 10)
(Read record 10)

(CRP at record 5)
(Read record 5; CRP
set to record 6)

(Read record 6; CRP
set to record 7)

(Read record 7:CRP
set to record 8)

VSAM File processing 181

Note that the CRP can be moved around
randomly through the use of the START
statement but all reading is done
sequentially from that point.

If the START request for record key 5
had failed with no record found~ the
subsequent READ requests would have failed
because there would have been no current
record pointer.

Example 3:

In this example ACCESS IS DYNAMIC is
spec ified. Theref ore~ records are accessed
randomly if a READ is specified and
sequentially if READ NEXT is specified.
The highest key is 44.

OPEN INPUT

(Set record key to 5)
READ

READ NEXT

READ NEXT

(set record key to 43)
s'r ART

BEAD NEXT

(Set record Key to 47)
START

(CRP is set to
lowest key on file)

(Read record 5; set
CRP to record 6)

(Read record 6; set
CRP to record 7)

(Read record 7; set
(CRP to record 8

(Position CRP to
record 43)

(Read record 43; set
CRP to 44)

READ NEXT (Fails - no CRP)

The last READ NEXT failed because the
preceding START vas unsuccessful; in this
data set there is no record 47.

Example 4:

In this updating example, ACCESS IS
DYNAMIC is specified: the REWRITE statement
does not affect the CRP.

OPEN 1-0 (CRP is set to

(Set record Key to 10)

first record on
file)

RE AD (Read record 10; set
CRP to record 11)

REWRITE (Updates record 10;
CRP remains at
record 11)

READ NEXT (Read record 11;

(Set record key to 74)

set CRP to record
12)

REWRITE (Fails - record not
found in this data
set

READ NEXT (Read record 12; set
CRP to record 13)

Note that although the last REWRITE failed,
the following READ NEXT was successful.

182

The REWRITE failed because record 74 was
not read before the REWRITE was attempted.

Example 5:

In this exa mple ~ ACCESS IS DYNAMIC is
specified for a KSDS with an alternate
record key, AIXKEY, defined. Assume that
the file contains eight records whose
primary and alternate key values are as
follows:

1st
2nd
3rd
4th
5th
6th
7th
8th

OPEN 1-0

5
10
15
20
25
30
35
40

100
70
80
85
75
50
95
55

(CRP is set to the
first record of file
and the key of
reference is the
primary key)

(set record key to 10)
READ (without KEY clause)

Read second record;
set CRP to third
record)

(set alternate key to 50)
READ KEY IS AIXKEY (the key of

reference is the
alternate key; read
siith record; set
CRP to eigh th
record)

READ NEXT (the key of
reference remains
the alternate key;
read eighth record;
set CRP to second
record)

(set primary key to 45
and a1 terna te key to 90)
WRITE (write ninth record;

CRP remains at
second record; the
key of reference
also remains the
alternate key)

READ NEXT (read second record;
CRP is set to fifth
record)

(set alternate key to 100)
START KEY = AlXKEY (CRP is set to first

record; the key of
reference is the
alterna te key)

READ NEXT (read first record;
CRP is set so that
the next sequential
read results in the
AT END condition)

READ NEXT (The AT END

USE OF THE START VERB

condition is raised;
CRP is undefined)

In some of the preceding examples, the
START verb vas used to position the CRP.
Then the READ (for ACCESS IS SEQUENTIAL)
and READ NEXT (for sequential pr ocessing
when ACCESS IS DYNAMIC) retrieves the
record pOinted to by the CRP as established
by the START.

Example:

05 RECORD-KEY.
10 GEN11.

15 GEN12
15 GEN13

10 GEN14

PIC 99.
PIC 99.
PIC 9.

In this example, GEN12, GEN11, or
RECORD-KEY could be used as the data-name
in the "KEY IS relational data-name" option
of the START statement. The lengths would
be 2, 4, and 5 respectively. GEN13 and
GEN14 could not be used as they are not in
the le.ftmost part of RECORD-KEY.

Assume that the value of RECORD-KEY is
01472:

• START file-name KEY=GEN11 would
position the CRP to the first record on
the file whose key has 0147 in the
first 4 bytes.

• START filename KEY > GEN12 would
position the CRP to the first record in
the file whose key has the first two
bytes greater than 01.

ERROR PROCESSING OPTIONS

The error processing options available
to the COBOL programmer are INVALID KEY,
EXCEPTION/ERBOR procedure, and STATUS KEY.
These options can be used in combination
with each other.

%he Importance of~1~2-K~Y

All errors in processing a VSAM file,
whether a logic error on the part of the
COBOL programmer or an I/O error on the
external storage media, return control to
the COBOL program. Upon return to the
COBOL program, the Status Key will indicate
the status of the last request on the file.
Figure 74 indicates the possible value of
the status Key and their associated general
meanings.

Harn,!!Hl: It is essential that all VSAM
files have a status Key associated with
them and that the proqrammer always check
the contents of the status Key after each
IIO request. If status Key is not used
(and an EXCEPTION/ERROR procedure is not
present), serious errors will go
undiscovered by the program--which does nQ!
abend. The continued processing in such a
situation may produce results that are not
only destructive but difficult to detect.

If the INVALID KEY option is specified
in the statement causing an invalid key
condition, control is transferred to the
INVALID KEY imperative-statement. Any
EXCEPTION/ERROR declarative procedure
specified for this data set is not
executed. If the FILE-STATUS clause is
specified, a value is placed into the
Status Key to indicate INVALID KEY
condition.

The EXCEPTION/ERROR procedure is invoked
only when a file is in the open status.

VSAM File Processing 183

.-- --....., ----- ------.----r- i •

J status Key 11 ,Status Key 21 I
I Value I Meaning I Value , Meaning I
, I -------.--1-, -- f f
1 0 Isuccessful Completion I 0 iNo Further Information I
I I f I ~
J I t 2 I Duplicate Key Found, And I
t I I 1 Program Specified the 1
J I "DUPLICATES Option I
I--------t-- I I .,
I 1 fAt End (no next logical record" 0 ,No Further Information I
J Jar an OPTIONAL file not avail-J' •
1 J able a t OPEN time) J J I

I
I-- -+- ----- I I .,
I (I 0 INo Further Information I
~ I III
J 2 t In valid Key J 1 I Sequence Error I

I
" l------t .,
I f I 2 JDuplicate Key Found, But I
'I I tDuplicate Keys Not Allowed I
I I l-------+ ..
I J J 3 I No Record Found I
I J .. I f
I I t 4 I Boundary Violation on WRITEJ
I I 'J to VSAM indexed or relative,
I f I I file (space not found to I
I I 1 1 add requested record) I
i-----------f- I J of
I] JPermanent Error (data check, I 0 ,No Further Information ,
J I pari ty check, transmission" J f
I lerror) • 4 ,Boundary Violation on WRITE,
I I J ,to sequential VSAM file I
I I I I (space not found to add .1
I I I! requested record) I
i-------+_ --+ i .,
,9)other Errors t 0 INO Further Information I
If,. I of

I I I 1 ,Password Failure t
II I-------t ,
t I J 2 ILogic Error I
t I 'J .,
t I J 3 ,Resource Not Available 1
I I • I ---1
1 1 t 4 INo current Record Pointer I
J J I 1 Par sequential Request t
I II--------t ---1
• J I 5 IInvalid Or Incomplete File I
I I I IInformation I
• 1 1---. ~
J I , 6 I No DD Card f
1 I ~ J .,
I I J 7 I The data set was not pro- I
I J J Iperly closed; an implicit'
I I i I VERIFY has therefore been I
J J J J issued, and the file then I
,r I I successfully opened. I
L 1- J _--1- j

Figure 74. Status Key Values And Their Meanings

Figure 75 is a table of actions taken
for all the combinations of AT END, INVALID
KEY and EXCEPTION/ERROR Procedure based on
the first character of the status Key
return. Note that the return is always to

184

the next sentence unless the request that
caused the error contained on AT END or
INVALID KEY clause. Note also that the
EXCEPTION/ERROR Procedure is executed only
if the file is in the open status.

.- ,--- j ,

I First Diqi t I No EXCEPTION/ERROR P['ocedure I wi th EXCEPTION/ERROR P['ocedu['e I
I of I -T, ------------111-- -,--------------~
I Statl1s Key J AT END INo AT END I AT END I No AT END ,
I lor INVALID KEY lor INVALID KEY lor INVALID KEY lor INVALID KEY I
r- I -+- J +- i
I 0 JReturn to next jReturn to next IReturn to next 1Return to next ,
I I sentence. ,sentence. I sentence. J sen tence. I
1-------..... -- 1 I -+ ..
I ,Return to AT IReturn to next IReturn to AT JReturn to next sen- 1
I JEND/INVALID KEYlsentence. 'END/INVALID KEY)tence after execution I
I J address.. I I add['ess. ,of EXCEPTION/ERROR I
1 t , I ,Procedure. I
I I -+- J -+- ...
t 2 ,Return to AT ,Return to next JReturn to AT JReturn to next sen- I
1 'END/INVALID KEYJsentence. lEND/INVALID KEYltence after execution I
I laddress. I Jadd['ess. lof EXCEPTION/ERROR J

I J I J IProcedure. 1
, I I I + ,
I 3 IReturn to next IReturn to next IReturn to next)return to next sen- I
I 1 sentence. I sentence. I senten ce after t tence a ft.er execution I
• I I Jexecution of lof EXCEPTION/ERROR J
I I I lEXCEPTION/ERRORIProcedure. J
I I , j Procedure. , I
a-- I , -+- , ...
I 9 IReturn to next JReturnto next IReturn to next IReturn to next. sen- 1
, Jsentence. ,sentence. Isentence after Itence after execution I
I I I lexecution of lof EXCEPTION/ERROR I
I I • J EXCEPTION/ERRORt P['ocedure. J
I J t J Procedure. I I L-______________ -4' _______________ • ___ ~,_______________ ~ _____________ ~ ____________________ J

Figure 75. Error Handling Actions Based on COBOL p['ogram Coding.

OPENING A VSAM FILE

VSAM files can be opened INPUT, OUTPUT,
EXTEND, or 1-0.

2Eening an Unloaded File

An unloaded file is a file that has
never contained records. It is normally
opened OUTPUT or EXTEND.

While certain types of unloaded files
may also be successfully opened INPUT or
I-a, the following conditions will occur if
atte~pts are then made to access it.

If unloaded file is opened INPUT and
operation is:

• READ sequential--will fail, with status
key set to 10

• READ random--will fail, with status key
set to 23

• START--will fail. with status key set
to 23

• Any other request--w ill fail, wi th
status key set to 92

If unloaded file is opened I-v ~nd first
operation is:

• WRITE--will succeed, if a valid request,
and any subsequent request will be
treated as if made to a loaded file.

• NOTE: A WRITE to a sequentially
accessed file is not a valid request
when opened I-a.

• READ sequential (if first
request)--will fail, wit.h status .key
set to 10

• READ random (if first request)--will
fail, with status key set to 23

• START {if first request)--will fail,
with status key set to 23

• REWRITE/DRLETE sequential (if first
request)--will fail, with status key
set to 92

• REWRITE/DELETE random or dynamic (if
first request)--vill fail with status
key set to 23

VSAM File Processing 185

An empty file is a previously created
file from which all records have been
deleted.' It can be opened EXTEND, INPUT or
1-0. After opening, the first READ request
viII cause an AT END condition (Status Key
= 10) or an INVALID KEY condition (Status
Key = 23), depending on the access mode of
the file. An empty file cannot be -opened
OUTPUT.

A file containing records cah be opened
INPUT, EXTEND or I-a. If a KSDS is opened
EXTEND, the first record to be added must
have its record key higher than the highest
record key on the file when it vas opened.
If the record key is not higher the statQS
key will be set to 92. For an ESDS, the
records are added after the last record on
the file. An RRDS cannot be opened EXTEND.

If any of the OPEN rules are violated
the file is not opened and the Status Key
is set to the appropriate value. See
Figure 76 for the OPEN Status Key values
and their meanings.

QIB~mic IB~Q£A1ion_Qf-!££~~§~ethog
~gU ices-.t.Q!--K~L~ d RR DS_Q a t a_~i2.

(NO~: The following feature is
provided only to assure compliance vith the
1974 ANS COBOL standard X3.23-1974. Use of
the feature will necessarily adversely
affect execution-time performance.)

186

As described earlier, the user must
employ Access Meth od Ser vices to def ine all
VSAM files and their indexes ahead of
time--outside of the COBOL program.
Normally at this time, the user specifies
the size of the filets records, and (for
KsDs) the lengths and offsets of primary
and any alternate keys. He also builds the
actual alternate indexes.

However, if he wishes, the user may
choose to omit these elements of the
definition procedure and have COBOL
automatically perform them later when the
file is opened for OUTPUT processing.
COBOL does this by obtaining the correct
record and key specifications from the
program's source statements, and then
issuing the Access ~ethod Services ALTER
and BLDINDEX commands.

If this is the user's choice, he must
make it known to COBOL by including the
object-time {GO-step) option A1XBLD. (He
must also ensure that the Access Method
Services program is available for his COBOL
program to invoke.)

For an RRDS, COBOL will then fill in the
record size information. For a KSDS, COBOL
will fill in record size, and length and
displa~ement for primary keys. If the KsDs
has alternate keys, COBOL also fills in
their length and displacement, and issues
the BLDINDEX command. (Because the
BLDINDEX command can be issued only after a
base cluster is loaded, COBOL first fills
it with dummy records, then issues the
BLDINtiEX command, and then erases them.)

Because the large Access Method services
program must be presen.t when. t.he COBOL
program is run with this feature,
substantial extra main storage is required.
Use of the AIXBLD feature also requires the
user to provide a sYSPRINT DD card for
Access Method Services messages. If this
card is missing, OPEN failure will result
(status Key = 95).

If the Status Key
given to the user
was •••

00

30

90

91

92

either COBOL itself detected one of these
conditions •••

None

None

Failure of an attempt to write a dummy
record to or delete a dummy record from the
file. Such a failure may occur in the
following cases:

-- an indexed file is opened for OUTPUT and
the access mode is either RANDOM or
DYNAMIC.

a file to be opened I-O has just been
created.

-- the object-time option AIXBLD was
specified and the file has at least one
alternate record key.

Failure of attempt to use a CBMM,macro.

Failure of attempt to ti.se a BLDL system
macro; this macro is used when the
programmer has specified the object-time
option AIXBLD.

None

The file to be opened is already open.

•.. or VSAM found
an error and returned
one of the following
VSAM error codes*

100 (if AIXBLD was
specified)

128 (if file is
optional)

160 (if file was
to be opened
for input)

132,144,164,176,
184 -

96,108,116,192,
196,200,204,208,
212,216,220,224,
236,240,244 (plus any
other VSAM codes not
appearing elsewhere in
this table)

152

4

* COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
ACBERFLG field of the Access Control Block (ACB) by issuing a SHOWCB macro,
translate it into 0ne of the status key values above (as prescribed by the
ANS standard), and move that value into the STATUS KEY field where it
becomes accessible in the user's program. An explanation of the meanings
of the VSAM return codes can be found in the VSAM Programmer's Guide.

Figure 76. (Part 1 of 2) status Key Values for OPEN Requests

VSAM File Processing 187

If the Status Key either COBOL itself detected one of these
given to the user conditions •.•
was •••

93 COBOL cannot obtain sufficient virtual
storage for:

95

96

97

-- the general work area used by the COBOL
VSAM-interface modules.

-- the Access Control Block (ACB) address
list area during the OPEN process.

-- the work area required for the
invocation of Access Method Services.

-- processing of the uspr declarative.

The ENDRBA of a file to be opened OUTPUT
is not zero.

The length and/or offset of the key of
each cluster do not match those in the
catalog.

A KSDS cluster is to be opened as a COBOL
sequential (ESDS) file.

An attempt was made to either alter the
record size and/or key information of a
cluster or build alternate indexes, and
Access Method Services returned a non-zero
return code.

No DD card is present for a path to be
opened.

OPEN is successful for a data set with
alternate keys opened I-a, EXTEND, or
OUTPUT, and an implicit VERIFY has
occurred.

i

••• or VSAM found
an error and returned
one of the following
VSAM error codes*

136
168

100 (if AIXBLD was
not specified)

104,108,148,
160 (if a file

is not to
be opened
for INPUT)

180,188,232

128 (if a file
is not
optional)

118

* COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
ACBERFLG field of the Access Control Block (ACB) by issuing a SHOWCB macro,
translate it into one of the status key values above (as prescribed by the
ANS standard), and move that value into the STATUS KEY field where it
becomes accessible in the user's program. An explanation of the meanings
of the VSAM return codes can be found in the VSAl-1 Programmer's Guide.

Figure 76. (Part 2 of 2) status Key Values for OPEN Requests

INITIAL LOADING OF RECORDS INTO A PILE

I nitial loading refers to wri ti~g
records into a file after it is opened for
the first time; this is distinctly
different than writing records into an
empty file (a previously created file from
which all records have been deleted).

When the file is unloaded and is opened
EXTEND, it is processed exactly the same as
it would be had it been opened OUTPUT.

It is recommended that initial loadinq
of records into a KSDS always be done
sequentially. This assists in optimizing
performance for the initial loading process
as well as for any subsequent processing on
the file. Loading records randomly does

188

not conserve any free space in the file
and, as a result# any future inserts
require the file to be dynamically
reorganized.

WRITING RECORDS INTO A VSAM FILE

The COBOL WRITE statement adds a record
to a file; it does not replace an existing
record on the file. The record to be
written must not be larger than the maximum
record size specified when the file was
defined.

Records are written sequentially.

The records must be written in ascending
key sequence. If the file is opened
EXTEND, the record keys of the records to
be added must be hiqher than the highest
record key on the file when the file was
opened.

For example, a file containing records
whose records keys are 2, 4, 6. 8 and 10 is
opened EXTEND; the following actions take
place for the sequence of operations shown:

WRITE
WRITE
WRITE
WRITE

{record key
{record key
{record key
(record key

8)
9)
12)
11)

SK 92
SK = 92
SK 00
SK = 21

If many records are to be added to the
end of a file, it is recommended that
sequential processing be used. It assists
in optimizing processing for both the
addition of records as well as later
retrieval of them.

Ka1!~--&Qnaderat.1.211§_=-1!££M~_IS
iA!rnQUlUNAM.Itl

When a file has alternate keys, the
records must be written using their primary
keys.

For a sequential request, the first
record written will have relative record
number one, the second two, the third
three, and so on. If a RELATIVE KEY data
item was included by the user in the file
control entry statement, the relative
record number of the record just written
will be placed in the data item.

REWRITING RECORDS ON A VSAft FILE

The COBOL REWRITE statement is used to
replace an existing record in the file.

The file must be opened I-O; if not, the
record is not rewritten and the Status Key
is set to 92. The record to be rewritten
must first be read by the COBOL program;
the record may then be rewritten. If there
was no preceding READ, or if the preceding
READ vas not successful, the record is not
rewritten and the Status Key is set to 92.
If an attempt is made to change the length
of the record to be rewritten, the status
Key is set to 92.

The file must be opened 1-0; if not, the
record is not rewritten and the Status Key
is set to 92. The length of the record can
be changed; the value of the record key
cannot be changed.

For ACCESS IS SEQUENTIAL, or files
containing spanned records, the record to
be rewritten must first be read by the
COBOL program. The REWRITE then updates
the record that was read. If the REWRITE
is not preceded by a successful READ of the
record to be rewritten, the rewrite is not
done and the status Key is set to 92.

For ACCESS IS RANDOM/DYNAMIC, and for
records that are not spanned, the record
to be rewritten need not be read by the
COBOL program. TO update a record, the key
of the record to be updated is moved to the
RECORD KEY data-name and then the REWRITE
is issued.

Reviting must always be done by the
primary key. COBOL does, however, allow a
user to change the alternate key contents
while rewriting the record.

READING RECORDS ON A VSAM FILE

The COBOL READ statement is used to
access records on a file. The file must be
opened INPUT or 1-0; if not 4 the record is
not read and the status Key is set to 92.

The records are read in the sequence in
which they were written.

VSAM File Processing 189

Records are read sequentially beginning
at the position of the Current Record
Pointer. If the Current Record Pointer is
not defined at the time the READ is issaed,
the READ fails and the Status Key is set to
94. .

The Current Record Pointer is unde£ined
if a START is unsuccessful. For example:

OPEN 1-0 filename

READ

(Set Record Ke y to 10)
START

READ

(Set Record Key to 20)
S'f ART
READ
READ

RE AD
(Set Record Key to 8)
START
READ

CRP set to first
record on file.
First record is
read.

Fails--no record
fOl1nd. SK=23.
Pails--no CRP.
SK = 94.

success ful.
Record 20 is read.
EOP encountered;
SK= 10.

Logic error;SK=92

Successful.
Record 8 is read.

Records are read in the order specified
in the COBOL program. For example, to
readthe record whose Record Key is 10, the
RECORD KEY field must be set to 10 and then
a READ is issued.

Records can be read sequentially or
randomly. The READ NEXT statement is used
for sequential accessing while the READ
statement is used for random accessing.
Within any given program, both sequential
and random processing may be performed.

~!QQENTIAL PRO£!~!]2: Records are read
sequentially beginning at the position of
the Current Record Pointer. If the Current
Record Pointer is undefined when the READ
NEXT is issued, the record is not read and
the Status Key is set to 94. The Current
Record Pointer is undefined if the previous
START or READ was unsuccessful. See the
discussion of current Record Pointer for
more details and examples of the effect of
different COBOL statements on the
positioning of the Current Record Pointer.

190

BA!QOK_£!Q~l~~!Hg: Records are read
randomly according to the value placed in
the record key field.

1105 Considerations

If a RELATIVE KEY data item was
.specified for a sequential READ, the
relative record number of the record just
read will be placed in the data item.

DELETING RECORDS ON A FILE

The COBOL DELETE statement is used to
remove an existing record on a KSDS.
DELETE cannot be used with an ESDS.

The file must be opened 1-0; if not, the
record is not deleted and the Status Key is
set to 92.

For ACCESS IS SEQUENTIAL, or files
containing spanned records, the record
to be deleted must first be read by the
COBOL program. The DELETE then removes
the record that was read. If the DELETE
is not preceded by a successful READ of
the record to be deleted, the deletion
is not done and the Status Key is set to
92.

For ACCESS IS RANDOM/DYNAMIC, and for
records that are not spanned, the record
to be deleted need not be read by the
COBOL program. To delete a record, the
key of the recdrd to be deleted is moved
to the RECORD KEY data-name and the
DELETE is issued.

STATUS KEY SETTINGS FOR ACTION REQUESTS

Figure 77 is a summary of the status Key
values that can occur for action requests.
Status Key 92 has numerous possible causes
as described below.

Status Key 92 can be caused by:

• Any request against a file that is not
open.

• Any request that is not allowed for the
option that vas specified with the OPEN
statement. For example, an attempt is
made to read a file that was opened as
OUTPUT or an attempt is made to rewrite
on a file opened as INPUT.'

• Any attempt to write or rewrite a
record longer than the maximum record
size specified when the file vas
defined.

• Any attempted action on a file after
the end-of-file conditio n has occurred.
This is applicable to ESDS. BRDS. and
KSDS; however. on an RRDS or KSDS a
START or READ can be issued to set the
Current Record Pointer to another point
in the file so that processing may
continue. For example:

1. ACCESS IS SEQUENTIAL

2.

OPEN
READ
READ
READ
START

READ

Successful
EOF encountered
Logic error
To reset Current Record

Pointer
Successful

ACCESS IS DYNAMIC

OPEN
READ
READ
READ

NEXT
NEXT
NEXT

successful
EOF encountered
Logic error

READ Random READ to reset
CRP

READ NEXT Successful

• An attempt to revrite, when access is
sequential, after an unsuccessful READ.

• An attempt to delete, when access is
sequential, after an unsuccessful READ.
This applies to KSDS and RRDS only,
since DELETE is not legal for ESDS.

CLOSING A FILE

If the user attempts to close a file
which has already been closed, COBOL
returns a status key value of 92. When
performing a CLOSE request, VSAM itself may
detect an error and return one of the
following codes to COBOL: 132, 144, 164,
176, or 184. COBOL willtrans1-ate this
VSAM code into a STATUS KEY of 30.

VSAM File Processing 191

If the Status either COBOL itself discovered one of these or VSAM found an
Key given to conditions ••. error and returned
was ••• one of the following

VSAM error codes·
-----.. --.

02 Permissible duplicate key follows for READ, or None
permissible duplicate key is created on one or
more alternate indexes for WRITE or REWRITE.
(This is the case when the feedback field of the
RPL contains 8 but the LERAD exit is not taken.)

10 READ is issued for the first time to an optional 4 (if the request
file. was not START)

Sequential READ is issued to an empty file
opened for INPUT.

-_ ... -

21 None 12,96

22 None 8

23 Random READ or START issued to an empty file 4 (if the request
opened for INPUT. was START)

16
Relational operator GREATER THAN was specified 192
in a START and the key contains HIGH-VALUE.

I Current record pointer failed for sequential
READ because key used in the previous READ
contained HIGH-VALUE.

24 Relative record key contains a value larger 28 (if the file
than allowed. is not ESDS)

148

30 SYNAD exit taken due to an I/O error. 140
-.---

34 None 28 (if the file
is ESDS)

90 Failure of attempt to use a CBMM macro. 32,64,68,72,76,
80,84,104,112,
116,132,136,144,
196,200
(plus any VSAM
codes not
appearing else-
where in this
table)

* COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
RPLFDBK field of the Request Parameter List (RPL) , translate it into one
of the status key values above (as prescribed by the ANS standard) , and
move that value into the STATUS KEY field where it becomes accessible in
the user's program. An explanation of the meanings of the VSAM return
codes can be found in the VSAM Programmer's Guide.

Figure 77. (Part 1 of 2) status Key Values for Action Requests

192

If the Status either COBOL itself discovered one of
Key given to conditions •••

these ---~r VSAM found a~ --1
I;~ror and returned I
one of the following
VSAM error codes*

was •.•

92
j
Impermissible request (action does not match
file's open mode).

I
!File is not open.

IEnd-of-file condition had been raised by the
previous operation, and a sequential READ is
issued, or a REWRITE is issued when access mode
is sequential, or a DELETE is issued and the
access mode is sequential.

Access m6de is sequential, and the last I/O
request for the file (prior to a REWRITE or
DELETE) was not a successful READ.

36,44,92,100,
108,152,204

READ issued to an optional file is not the first
!READ request.

The key value of a record to be added to an
indexed file opened EXTEND is not the highest
among record key values in the file.

93 Insufficient virtual storage for the user
declarative processing.

20,24,40

94 The current record pointer (maintained by
ILBOVIO) is undefined for this sequential READ.

88

* COBOL's VSAM-processing subroutines retrieve the VSAM return code from the
RPLFDBK field of the Request Parameter List (RPL), translate it into one of
the status key values above (as prescribed by the ANS standard), and move
that value into the STATUS KEY field where it becomes accessible in the
user's program. An explanation of the meanings of the VSAM return codes
can be found in the VSAM Programmer's Guide.

Figure 77. (Part 2 of 2) Status Key Values for Action Requests

The COBOL language statements which are
directly related to VSAM processing are in
the publication IIHLVS COBQ!::_!Q!:_Q~VS.
The following pa.ragraphs a.re intended only
to highlight and summarize the basic
language statements used in writing a
VSAM-file-processing COBOL program.

The COBOL programmer can use VSAM in
three basic ways: to write, to retrieve,
and to update records in a data set.
However, prior to processing a VSAM data
set, it is an absolute necessity that the
previously discussed Access-Method Services

functions are performed. Most significant
to the COBOL programmer is whether the data
set is defined as ESDS, KSDS or RRDS.

WRITING A VSAM DATA SET

The COBOL language statements frequently
used to fill in a VSAM data set are
summarized in Figure 78. Examples 1 and 2
illustrate the creation of an ESDS and a
KSDS respectively.

VSAM File Processing 193

ESDS KSDS
r---------,-
,Environment I SELECT SELECT
J Division J ASSIG N ASSIGN
J • FILE STATUS ORGANIZATION
t I PASSWORD IS INDEXED
I J ACCESS MODE RECORD KEY
J I ALTERNATE , J RECORD KEY
J J FILE STATUS
I I PASSWORD
I J ACCESS MODE
l- I
J Data 1 FD entry FD entry
i Division J LABEL RECORDS LABEL RECORDS
I-- I
JProcedure I OPEN OUTPUT OPEN OUTPUT
J Division t OPEN EXTEND OPEN EXTE.ND
I 1 WRITE WRITE
J I CLOSE CLOSE
L-______ --'-

Figure 78. COBOL st atements Frequently Used

Example 1:

This example shows the creation of a
COBOL ESDS. The PILE STATUS facility is
used to monitor all 1/0 operations in the
program.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FI LE-CONTROL.

SE.LECT I NREC
ASSIGN TO UR-2540R-S-INFILE.

SELECT OUTREC
ASSIGN TO AS-OUTFILE
FILE STATUS IS CHK.

DATA DIVISION.
FILE SECTION.
PO INREC LABEL RECORDS ARE OMITTED

DATA RECORD IS INMASTER.
01 INMASTER PIC X(80).
FD OUTREC LABEL RECORDS ARE STANDARD

DATA RECORD IS OUTMASTER.
01 OUTMASTER PIC X(80).
WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZEROS.
PROCEDURE DIVISION.
PARA 1.

OPEN INPUT INREC OUTPUT OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

PARA2.

194

READ INREC INTO OUTKASTER
AT END GO TO PARA4.

RRDS
-,--- ,

I SELECT J
t ASSIGN I
f ORGANIZATION f
I IS RELATIVE)
J RELATIVE KEY I
I FILE STATUS J
I I
J PASSWORD I
I ACCESS MODE I
I J

-+- 1
J FD entry]

f LABEL RECORDS J

-+- -t
J OPEN OUTPUT I
J WRITE J
I CLOSE I
I I

-'-- I

for Wri ting into a VSAM Data set

PARA3.
WRITE OUTMASTER.
IF CHK IS NOT = 00 GO TO CHKRTN.
GO TO PARA2.

PARA4.
CLOSE INREC OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

FINIT.
STOP RUN.

CHKRTN.
DI SPLAY • I/O ERROR. STATUS KEY VALUE

IS' CHK.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user
created routine can determine the exact
cause of the error by checking the status
Key. Once the cause is determined,
instructions can be issued according to the
user's desired response to each type of
error.

Example 2:

This example shows the creation of a
COBOL KSDS; this program performs the same
function as Example 1 except that now a
KSDS is being created.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IHREC
ASSIGN TO UR-2540R-S-INFILE.

SELECT OUTREC
ASSIGN TO DA-2319-0UTFILE
ORGANIZATION IS INDEXED
RECORD KEY IS ARG-1
FILE STATUS IS CHK.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE OMITTED

DATA RECORD IS INMASTER.
01 INKASTER PIC X (80) •
PO OUTREC LABEL RECORDS ARE STANDARD

DATA RECORD IS OUTMASTER.
01 OUTMASTER.

05 FILLER PIC X.
05 ABG-1 PIC XXX.
05 REM PIC X(76).

WORKING-STORAGE SECTION
77 CBK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1.

OPEN INPUT INREC OUTPUT OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

PARA2.
READ INREC INTO OUTMASTER.

AT END GO TO PARA4.
PARA3.

WRITE OUTMASTER.
IF CHK IS NOT = 00 GO TO CHKRTN.
GO TO PARA2.

PARA4.
CLOSE INREC OUTREC.
IF CllK IS NOT = 00 GO TO CHKRTN.

FINIT.
STOP RUN.

CHKRTN.
DISPLAY 'I/O EBROR. STATUS KEY VALUE

IS' CHK.
GO TO FINIT.

Note that in this example any status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user
created routine can determine the exact
cause of the I/O er~or by checking the
Status Key. Once the cause is determined r
instructions can be issued according to the
user's desired response to each type of
error.

Example 3:

This example also shows the creation of
a COBOL KSDS, but with the addition 6f an
alternate key; this program serves the same
function as Example 2.
IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT I.NREC

ASSIGN TO UR-2540R-S-INFILE.
SELECT OUTREC

ASSIGN TO DA-2319-00TFILE
ORGANIZATION IS INDEXED
RECORD KEY IS ARG-1
ALTERNATE RECORD KEY IS ARG-2
FILE S~ATUS IS CHK.

DATA DIVISION.
FILE SECT.ION.
FD INREC LABEL RECORDS ARE OMITTED

DATA RECORD IS IN~ASTER.
01 INMASTER PIC 1(80).
PO OUTREC LABEL RECORDS ARE STANDARD

DATA RECORD IS OUTMASTER.
01 OUTMASTER.

05 FILLER PIC X.
05 ARG-1 PIC XXX.
05 ARG-2 PIC XXXXX.
05 REM PIC Xn1).

WORKING-STORAGE SECTION
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA 1.

OPEN INPUT INREe OUTPUT QUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

PARA2.
READ INREC INTO OUTMASTER.

AT END GO TO PARA4.
PARA3.

WRITE OUTMASTER.
IF CHK IS NOT = 00 GO TO CHKRTN.
GO TO PARA2.

PARA4.
CLOSE INREC OOTREC.
IF CHK IS NOT = 00 GO TO CHKFTN.

PINIT.
STOP RUN.

CHKRTN.
DISPLAY 'I/O ERROR. STATUS KEY VALUE

IS' CHK.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This
user-created routine can determine the
exact cause of the error by checking the
status Key. Once the cause is determined,
instructions can he issued according to the
user's desired response to each type of
error.

RETRIEVING RECORDS PROM A VSAM DATA SET

The COBOL language statements frequently
used to retrieve records from a VSAM data
set are summarized in Fiqure 79. Examples
3 and 4 illustrate the retrieval of records
from an ESDS and KSDS, respectively.

VSAM File Processing 195

ESDS
r ~--------

I Environment SELECT I SEI,ECT
I Division ASSIGN I ASSIGN

KSDS

SELECT

RRDS ,
I
I

I I ORGANIZATION IS INDEXED IS INDEXED I
ASSIGN
ORGANIZATION
RELATIVE KEY
ALTERNATE RECORD
FILE STATUS
PASSWORD

I I RECORD KEY
I I ALTERNATE RECORD KEY KEY

I
I

I FILE STATUS I FILE STATUS
I PASSWORD I PASSWORD
I I ACCESS MODE I ACCESS MODE
l---------+--------+------
I Da ta I FD entry I FD entry
I Division I LABEL RECORDS I LABEL RECORDS
~ I --+-
I Procedure I OPEN INPUT I OPEN INPUT
I Division I READ ••• AT END I READ
I I CLOSE I CLOSE

I ACCESS riODE
+-------
I FD entry
I LABEL RECORDS
I
I OPEN INPUT
I READ
I CLOSE

I
I
I
~
I
I

--t
I
I
I L- ~ ____________ ~ ___________________ L_ J

Figure 79. COBOL Statements Frequently Used for Retrieving Records From a VSAM Data Set

Example 4.

This example shows the retrieval of
records from the ESDS created in example 1.
The records are then printed.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT I NREC
ASSIGN TO AS-OUTFILE
FILE STATUS IS CHK.
SELECT PREC
ASSIGN TO UR-1403-S-PFILE.

DllTA DIVISION.
PI LE SECTION.
FD INRBC LABEL RECORDS ARE STANDARD

DATA RECORD IS INMASTER.
01 INMASTER PIC X(80).
FD PREC LABEL RECORDS ARE OMITTED

DATA RECORD IS POUT.
a 1 POUT PIC X (80) •
WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA1.

OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT 00 GO TO CHKRTN.
PARA2.
READ INREC INTO POUT AT END GO TO PARA4.

IF CHK IS NOT = 00 GO TO CHKRTN.
PARA3.

WRITE POUT.
GO TO PAPA2.

PARA4.
CLOSE OUTREC PREC.

196

IF CHK IS NOT 00 GO TO CHKRTN.
FIN IT.

S!'OP RUN.
CHKRTN.

DISPLAY 'IIO ERROR. STATUS KEY VALUE IS'
CHK.

GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user
created routine can determine the exact
cause of the error by checking the Status
Key. Once the cause is determined,
instructions can be issued according to the
user's desired response to each type of
error.

Example 5:

This example shows the retrieval of
records from the KSDS created in example 2.
Note that in the Procedure Division there
is a switch from sequential processing to
random processing; this is permitted since
ACCESS IS DYNAMIC is specified in the
Environment Division.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INREC
ASSIGN TO OUTFILE
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS ARG-1
FILE STATUS IS CHK.

SELECT PREC
ASSIGN TO UR-1403-S-PFILE.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECOPDS ARE STANDARD

DATA RECORD IS INMASTER.
01 INMASTER.

05 FILLER PIC x.
05 ARG-1 PIC XXX.
05 ARG-2 PIC XX.
as ARG-3 PIC XX.
as FILLER PIC X(72).

FD PREC LABEL RECORDS ARE OMITTED
DATA RECORD IS POUT.

a 1 POUT PIC X (80) •
WORKING-STORAGE SECTION.
77 CHK PIC 99 VAL UE ZERO.
PROCEDURE DIVISION.
PARA1.

OPEN INPUT INREC OUTPUT PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

PARA2.
MOVE 003 TO ARG-1.
START INREC.

PARA3.
READ INREC NEXT AT END GO TO PARA4.
IF CHK IS NOT = 00 GO TO CEKRTN.
IF ARG-2 IS = 02 GO TO PARA4.
IF ARG-3 IS NOT = 73 GO TO PARA3.
WRITE POUT FROM INMASTER.
GO TO PARA3.

PARA4.
MOVE 101 TO ARG-1.
READ INREC INVALID KEY GO TO CHKRTN.
WRITE POUT FROM INMASTER.
MOVE 103 TO ARG-1.
READ INREC INVALID KEY GO TO CHKRTN.
WRITE POUT FROM INMASTER.

PARAS.
CLOSE INREC PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

FINIT.
STOP RUN.

CHKR TN.
DISPLAY 'I/O ERROR. STATUS KEY VALUE

IS ' CHK.
GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes 'transfer of
control to paragraph CHKRTN. This user
created routine can determine the exact
cause of the I/O error by checking the
Status Key. Once the cause is determined,
instructions can be issued according to the
users desired response to each type of
error.

Example 6:

This example shows the retrieval of
records from the KSDS created in example 3.
Since ACCESS IS RANDOM is specified in the
Environment Division, random processing of
the file is done in the Procedure Division.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT INREC

ASSIGN TO OUTFILE
ORGANIZATION IS INDEXED
ACCESS IS RANDOM
RECORD KEY IS ARG-1
ALTERNATE RECORD KEY IS ARG-2
FILE STATUS IS CHK.

SELECT PREC
ASSIGN TO UR-1403-S-PFILE.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE S~ANDARD

DATA RECORD IS INMASTER.
01 INMASTER.

05 FILLER PIC X.
05 ARG1 PIC XXX.
05 ARG-2 PIC xxxxx.
05 ARG-3 PIC XX.
05 ARG-4 PIC XX.
05 FILLER PIC X(67).

FD PREe LABEL RECORDS ARE OMITTED
QATA RECORD IS POUT.

01 POUT PIC X(80).
WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZERO.
PROCEDURE DIVISION.
PARA 1.
-- -OPEN INPUT INREC OUTPUT PFEC.

IF CHK IS NOT = 00 GO TO CHKP.TN.
PARA2.

MOVE 003 TO ARG-1.
PARA3.

PARA4.

PARAS.

PARA6.

FINIT.

READ INREC INVALID KEY GO TO CHKRTN.
IF CHK IS NOT = 00 GO TO CHKRTN.
IF ARG-3 IS = 02 GO TO PARAS.
IF ARG-4 IS NOT = 73 GO TO PARA4.
WRITE POUT FROM INMASTER.
ADD 010 TO ARG-1.
GO TO PARA3.

SUBTRACT 001 FROM ARG-1.
GO TO PARA3.

MOVE 101 TO ARG-2.
READ INREC KEY IS ARG-2 INVALID KEY
GO TO CHKR TN.
WRITE POUT FROM INMASTER.
MOVE 103 TO ARG-2.
READ INREC KEY IS AP.G-2 INVALID KEY
GO TO CHKRTN.
WRITE POUT FROM INMASTER.

CLOSE INREC PREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

VSAM File Processing 197

CHKRTN.
STOP RUN.

DISPLAY 'IIO ERROR. STATUS KEY VALUE
IS ' CHK.

GO TO FINIT.

Note that in this example any Status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This user
created routine can determine the exact
cause of the IIO error by checking the
Status Key. Once the cause is determined,
instructions can be issued according to the

198

user's desired response to each type of
error.

UPDATING A VSAM DATA SET

The COBOL language statements frequently
used to update a VSAM data set are
summarized in Figure 80. Examples 7 and 8
illustrate the updating of an ESDS and KSDS
respectively.

ESDS KSDS RRDS
• i, , ,
IEnvironment (SELECT ,SELECT ,SELECT I
I Division IASSIGN ,ASSIGN IASSIGN I
I IFILE STATUS ,ORGANIZATION IS INDEXED 10RGANIZATION IS RELATIVE I
• I PASSWORD I RECORD KEY I RELATIVE KEY I
I IACCESS ~ODE I ALTERNATE RECORD KEY 1FILE STATUS I
I I JFILE STATUS IPASSWORD ,
, J J PASSWORD ,ACCESS MODE I
t I IACCESS MODE I I
r----------~I~------------+I----------·------ +- ~
I Data J FD en try I PD entry I FD en try I
I Division ILABEL RECORDSJLABEL RECORDS JLABEL RECORDS t
t- ------+-1 - -+ I ~
I Procedure IOPEN EXTEND ,For ACCESS IS SEQUENTIAL: ,For ACCESS IS SEQUENTIAL: t
I Division IWRITE J OPEN EXTEND I OPEN 1-0 I
I I CLOSE J WRITE I READ •• AT END t
, I J CLOSE J REWRITE I
I I or 1 t DELETE J
I II ort CLOSE J
I ,OPEN 1-0 I t f
I J READ ••• AT END 1 OPE.N 1-0 I I
J I REWRITE I READ AT END t 1
I I I BEWRITE, ,
1 1 CLOSE I DELETE t J

I I CLOSE· I t
I' I ~

I IFor ACCESS IS RANDOM: IFor ACCESS IS RANDOM: t
I f OPEN 1-0 , OPEN 1-0 ,
t I READ I R~AD ,
I I W·RITE , WRITE I
, J REWRITE , REWRITE t
I I DELETE I DELETE 1
I J CLOSE I CLOSE I
I I , ~
I ,For ACCESS IS DYNAMIC vithlFor ACCESS IS DYNAMIC with I
I ,Sequentili-froce§§.!!!g l~gY~ntial_R..r~gssillil I
I I OPEN 1-0 t OPEN 1-0 I
1 I READ NEXT ••• AT END J READ NEXT ••• AT END ,
I I WRITE t WRITE 1
• , REWR IT E) REWRITE 1
J J START • START J
J t DELRTE , DELETE t
I 1 CLOSE t CLOSE I
J I --+--- ~
I JFor ACCESS IS DYNAMIC withlFor ACCESS IS DYNAMIC with 1
1 I Random processing I Bando.!!_.P ro9Z.§.§ing 1
I I OPEN 1-0 J OPEN 1-0 I
I J READ 1 READ I
, 1 WRITE , WRITE ,
I ,REWRITE t REWRITE ,
, J DELET.E J DELETE t
I 1 CLOSE , CLOSE J L-___________ , ___ ~,__________, ~ _____________________________ _J

Figure 80. COBOL statements .Frequently used for Updating a VSAl'1 Data set

VSAM Pile Processing 199

Example 7:

This example shows the updating of
records from the ESDS data set created in
Example 1.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT INREC
ASSIGN TO AS-OUTFILE
FILE ST ATUS IS CHK.

DATA DIVISION.
FILE SECTION.
FD INREC LABEL RECORDS ARE STANDARD

DATA RECORD IS INMASTER.
01 INMASTER.

05 FtD1 PCI X(3)
05 FLD2 PIC X(3).
05 FLD3 PIC X(74).

WORKING-STORAGE SECTION.
77 CHK PIC 99 VALUE ZERO.
PROCEDURE Dr VISION.
PARA1.

OPEN 1-0 OUTREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

PARA2.
READ TNREC AT END GO TO PARA4.
IF CHK IS NOT = 00 GO TO CHKRTN.

PAR A3.
IF FLD2 IS NOT: 373 GO TO PARA2.
MOVE 374 TO FLD2.
REWRITE INMASTER.
IF CHK IS NOT: 00 GO TO CHKRTN.
GO TO PA RA2.

PARA4.
CLOS E IN REC.
IF CHK IS NOT 00 GO TO CHKRTN.

PI NIT.
STOP RUN.

CHKRTN.
DISPLAY tI-O ERROR. STATUS KEY

VALUE .IS' CHK.
GO TO FINIT.

Note that in this example any status Key
return other than 00 causes transfer of
control to paragraph CHKRTN. This llser
created routine can determine the exact
cause of the I/O error by checking the
Status Key. Once the cause is determined,
instructions can be issued according to the
users desired response to each type of
error.

200

Example 8:

This example shows the updating of
selected records in the KSDS created in
Example 2; the records to be updated by the
contents of CARDPILE. Note the use of the
DELETE statement; this could not be used
with an ESDS.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT CAR.DFILE
ASS.IGN TO UR-2540R-S-INREC.

SELECT INREC
ASSIGN TO INlItE
ORGANIZATION IS INDEXED
ACCESS IS RANDOM
RECORD KEY IS ARG-l
FILE STATUS IS CHK

DATA DIVISION.
FILE SECTION.
PD CARDFILE LABEL

DATA RECORD IS
01 INCARD

RECORD IS OMITTED
INCARD.

05 CARDKEY
05 FILLER

PD INREC LABEL
DATA RECORD

01 IN MASTER.
05FILLEB
05 ARG-l
05 ARG-2
05 ARG-3
05 FILL.ER

WORKING-STORAGE
77 CHK PIC XX

PIC XXX.
PIC X (77) •
RECORDS ARE STANDARD
IS .INMASTER.

PIC X.
PIC XXX.
PIC XX.
PIC XX.

PIC X (72) •
SECTION.
VALUE ZEROS.

PROCEDURE DIVISION.
PARA 1.

OPEN INPUT CARDFILE 1-0 INBEC.
IF CHK IS NOT == 00 GO TO CHKRTN.

PARA2.
READ CARDFILE AT END GO TO PARA3.
MOVE CARDKEY TO ARG-l.
READ INREC.
IF CHK IS NOT = 00 GO TO CHKRTN.
IF ARG-2= 01 DELETE INREC RECORD
GO TO PARA2.
IF ARG-3 : 75 MOVE 74 TO ARG-3
REWRITE INMASTER.
GO TO PARA2

PARA3.
CLOSE CARDFILE lNREC.
IF CHK IS NOT = 00 GO TO CHKRTN.

INIT.
STOP RUN.

HKRTN.
DISPLAY ·1/0 ERROR. STATUS KEY
VALUE IS· CHK

'LAST RECORD PROCESSED IS' CARDKEY.
GO TO PI NIT.

lote that in this example any status Key
'eturn other than 00 causes transfer of
:ontrol to paragraph CHKRTN. This user
:reated routine can determine the exact
:a use of t he I/O error by checking the
;tatus Key. Once the cause is determined,
.nstr~ctions can be issued according to the
lsers desired response to each type of
~rror.

lOB CONT ROL L ANGU AGE FO!i_.!~!t1.111.~
~R.QCESSI!Hi

JCL is greatly simplified for VSAft since
ill VSAM data sets must be cataloged
through Access Method services. In most
=ases~ specification of the following DD
statement will suffice:

I/ddname DD DSNAME=dsname,DISP={OLDISHR)

The dsname must be the same as the one
specified for this data set through Access
Method Services.

If the user specifies the COBOL option
AIXBLD, then the DD statement must also
include the parameter AMP='AHORG'.

DD STATEMENTS FOR ALTERNATE INDEXES

When alternate indexes are used in
the COBOL program, the user must specify
not only a DD statement for the base
cluster, but also one DD statement for each
alternate path. The ddname for the base
cluster is the one declared in the COBOL
program. However, no language mechanism
exists to explicitly declare ddnames for
alternate paths in the program. Therefore,
the following convention has been estab
lished and must be adhered to by the user.

The ddname for each alternate path is to
be formed by concatenating its base cluster
ddname with an integer--beginning with'1 for
the path associated with the first alternate
record defined for that file in the COBOL
program, and being incremented by 1 for
each path associated with each successive
alternate record definition for that file.
For example, if a base cluster's· ddname were
ABCD, then the ddname for the alternate path

of the first alternate record key defined
would have to be ABCD1. The ddname for the
alternate path of the second alternate record
key defined would have to be ABCD2, and so on.

If the combination of base cluster ddname
and sequence number exceeds eight characters,
the base cluster portion of the ddname must be
truncated at the right to reduce the concatenated
result to eight characters. For example, if a
base cluster's ddname is ABeDEFGH, then the first
alternate path's ddname should be ABCDEFG1, the
tenth should be ABCDEF10, and so forth.

The following example shows the connection
between a program using two alternate indexes
and the required DD statements. The base
cluster is named XYZ, and the first alternate
index' pathname is PATHONE and the other's
PATHTWO.

//ABCD
//ABCD1
//ABCD2

DD DSN=XYZ,DISP=OLD
DD DSN=PATHONE,DISP=OLD
DD DSN=PATHTWO,DISP=OLD

FILE-CONTROL.
SELECT filename ASSIGN TO ABCD
RECORD KEY IS whatever
ALTERNATE RECORD KEY IS CITY
ALTERNATE RECORD KEY IS PRICE

The key CITY relates to the alternate index
whose pathname is PATHONE, and the key PRICE
relates to the alternate index whose pathname
is PATHTWO.

DO STATEMENT FOR A USER CATALOG

If a data set in a job step is defined
in a user catalog, it is also necessary to
identi£y the user catalog by means of
either a JOBCAT (Example 1) or STEPCAT
(Example 2) DO statement.

Example 1:

//EX1
/IJOBCAT

/1

Example 2:

JOB
·DD

EXEC

//EX2 JOB
1/ EXEC
//STEPCAT DD

DSNAME=usercatalogname,
OISP=SHR

DSNAME=usercatalogname,
OISP=SHR

DD PARAMETERS USED WITH VSAM

Although the operating system does not
disallow OS/VS DD parameters and
subparameters that do not apply to a VSAM
data set, the COBOL programmer should be

VSAM File Processing 201

aware that some of the DD parameters and
subparameters have certain additional
meanings when used with V5AM. For complete
information on the meanings of the OS/VS DD
parameters and subparameters, as well as
the potential problems which exist if care
is not taken, see Q.UVS-li!:lj!s.!2!.QIaiH~
AC£~~_Metho~'VSA~L_f!oqrs.m~~~_~ig~.

VSAM-ONLY JCt PARAMETERS

VSAM has one JCt parameter of its ovn:
AMP. AMP, and its associated
subparameters, is used mainly in
conjunction with specifications made
through Access Method Services. The AMP
parameter takes effect when the data set
defined by the nn statement is opened. For
details on the use and specification of
AMP, see the YllLP r OSll:gj!l!~~!..!L2.YiQg.

Both SAM and 15AM data sets can be
converted to VSAM data sets so that they
may be processed by a COBOL program using
VSAM. The conversion is done through
Access Method Services.

Essentially, the conversion process
consists of defining a VSAM data set as the
target for the data set being converted.
Then through the appropriate Jct and the
REPRO command, the conversion is
accomplished.

For a complete description of the
conversion process, see OSIIS VSAM Access
l1~.t!lod Servi£!!§..

Existing COBOL programs written to
process 1SAft files can be used to process
VSAM files by going through VSUI's ISAM
interface. To do this, the programmer need
only make some JCL changes in the COBOL
ISAM program.

The EXEC card should specify the desired
processing program, as usual: the DD card
should be changed to a VSAM DD card as
desc.ribed above under "Job Control Language
for VSAM File Processing."

Certain APlP subparameters might be used
for running an ISAa processing program with

202

the IS AM interface. For complete details
on the conversion process, see the VSAM
.EtQ9.11n~.!.2.£Y.i de.

Not all of VSAM's facilities can be used
directly through a COBOL program. These
unavailable features include:

• Alternate indexing for ESDS

• Multiple string processing

• Skip-sequential processing (key-ordered
sequential/direct)

• Addressed-direct processing

• Control-interval (low-level) processing

• Journaling support

• Alternate index as end-use object (as
base cluster instead of path)
processing

• GET-previous processing

• Asynchronous processing

It is possible to open a VSAM data
set concurrently under two separate
FDs in a COBOL program if the assign
clauses of the SELECT.statements
refer to the same DDNAME. When the
ACB is generated, COBOL takes the
GENCB default of 'DDN', which indicates
DDNAME sharing to VSAM. In such a
case, VSAM will share the same buffers
and control blocks for the two ACBs,
and data integrity is preserved.

If the user program attempts to access
records within the same control
interval by using the two separate
file definitions, lock-out may occur.
If the program contains two SELECT
statements for the file but uses
different DDNAMEs, the file can still
be opened. However, data set names
are not shared, and VSAM will use
two completely separate buffer pools
and control block structures. In
this case, the integrity of the data
set is not preserved, and updates
to the file may be lost.

Note. Even when the spanned format is
used, the COBOL restriction on the length
of logical records must be adhered to
(that is, a maximum length of 32,767
characters) .

The lister feature of the IBM OS/VS
COBOL Compiler can be used by the COBOL
programmer to produce a COBOL source
listing that is reformatted and
cross-referenced to increase
intelligibility and conserve space.
optionally, a reformatted source deck can
be produced. The lister output can be
produced either with or without compilation
occurring.

The lister accepts source programs
vritten in OS/'S COBOL, analyzes the source
statements, and produces the reformatted
and cross-reference source program. The
output is either in the form of a listing
or as a listing and a punched deck.

This reformatted source output follows
indenting conventions imposed by the lister
to increase readability, and contains
cross-references between data items and
Procedure Division statements, between
PERFORM statements and paragraph names,
etc. optionally, the lister produces a new
source deck that matches the output listing
except that cross-reference information is
ollit ted.

Thus the lister can be used to p.rocess
sourCe decks for uniformity of indenting
and for highlighting of statements such as
IF, GOTO, etc., or it can be used to obtain
a cross-referenced source listing as
permanent documentation of a production
program, or for use as an aid in program
analysis and debugging. Various options
permit printing the Procedure Division
listing in two columns to conserve space
and the inclusion of BASIS and COpy
statements.

!21~: Lister ignores the carriage
control statements SKIP and EJECT. When
LISTER is in effect, the NUM option has no
meaning.

PROGRAMMING CONSIDERATIONS

The lister is designed to operate most
efficiently on syntactically correct COBOL
source, and does not have the expanded
error handling of the full compiler. It is
therefore highly recommended that the user

programs first be compiled using the SYNTAX
option, and syntax errors corrected before
invoking the lister feature. If the lister
function is used and there are syntactical
errors, lister processing will be
terminated. The syntax check~ng in the
lister feature is different from the
checking done by the standard compiler.
Syntax checking is usually more stringent
in the lister than in the compiler. Some
syntax errors that are recognized but
corrected by the standard compiler may be
flagged as errors when using the lister.

The listing produced by LISTER will be
reformatted for that portion of the
program that was syntactically correct.
If LSTCOMP was specified, the SOURCE
option will be forced on.

lurthe~_nQ~2: Since lister reformats the
user's COBOL program, compilation of the
program, if LSTCOMP is in effect, viII be
different from a non-lister compilation of
the same program. Por example:

1. Lister sequence numbers may be
different~

2. SKIP/EJECT cards will have no
functional value with lister.

3. BASIS card will be dropped from the
lister listings.

4. FIPS messages will be based on the
reformatted lister listings.

5. Suppress option of COpy will ha ve no
effect.

6. sequence checking will not take place
for a lister sum.

7. Source statements copied from a
user-created library as a result of a
COpy statement are not reformatted.
However, statements which begin in
columns 8-11 will be indented to
column 8 in the lister output, and
those which begin in columns 12-72
will be indented to column 12.

8. Lister terminates upon detecting a
syntax error in the COBOL source
program. When such an error is
detected, lister issues an error flag
to signal that the following source
cards are to be passed on without
processing. Lister then treats the
balance of the program as comment
cards.

Lister Feature 203

In addition to the condition mentioned
above, unusual termination of lister can
occur if the source program contains:

• Too many (approximately 80 or
more) consecutive *-comments
cards.

• Too many (approximately 100 or
more) consecutive blank cards.

• Too many (approximately 100 or
more) consecutive cards for a
single data item.

If one of the above three conditions
occurs, the file written on SYSUT2 is
incomplete.

204

THE LISTING

The reformatted output listing is
divided into four parts:

1. lone-page introduction.hich
summarizes briefly lister codes,
conventions, uses.

2. The Identification and Environment
Divisions.

3. Detailed, cross-referenced,
reformatted Data and Procedure
Divisions.

4. The Summary listing.

These (except the introduction) are
described briefly below, and in grea"ter
detail in subsequent sections.

THE OUTPUT DECK

The deck produced optionall y by the
lister may be saved either in card form or
in a COPY/BASIS library. This output
reflects the reformatted source program.
The output deck is described in detail
later in this chapter.

REFORMATTING OF IDENTIFICATION AND
ENVIRONMENT DIVISIONS

The lister reformats the Identification
Division statements only by imposing
indenting conventions. Statements are
indented two positions, and continuations,
if any, are indented six additional
positions.

Environment Division statements are
reformatted by imposing indenting
conventions and by appending
cross-reference information to SELECT
statements in the FILE CONTROL section.
Thus, in reading the FILE CONTROL section,
there are direct references to the file
description statements in tbe Data
Division.

1 IDENTlf!CATION DIVISION.
2 PROGRAM-ID. TESTRUN.
3 AUTHOK. PROGRAMMER NAM~.

Figure 81 is an example of reformatted
Identification and Environment Divisions.
(The note shown is not produced by the
lister program.)

DATA DIVISION REFORMATTING

The lister reformats the Data Division
principally by imposing indenting
conventions. In addition, it aligns
PICTURE. VALUE and other clauses vertically
to improve readability and facilitate
visual checking. such clauses as REDEFINES
and OCCURS are highlighted as a result of
the alignment. All indenting is with
respect to the left margin, which con tans
the statement number.

FDs and level-77 items are indented
zero, level-01 items are indented two and
level-02 items are indented four. Level 03
and lover are each indented two from the
last higher level item, up to seven levels
of indentation. Use of this convention,
makes the overall structure of each file
and group data item immediately apparent to
the reader of the listing.

The most striking change in the
appearance for the Data Division listing is

4 INSTALLATION. NEW YORK PROGRAMMING CENTER.
5 DATE-MRITTEN. JULY 1Z, 19b8.
9 R:~iRk~~PI~~~·p:g~Ri~'~XI6BEEN WRITTEN AS A SAMPLE PROGRAM FOR

COBOL USERS. IT ~REATES"AN OUTPUT fiLE AND READS IT BACK
AS INPUT.

10 ENVIRON~~NT DIVISICN.
11 CONFIGUkATION SECTION.
1Z SOURCe-COMPUTER. 18M-3/0-168.
13 OBJECT-COMPUTER. IBM-310-168.
14 INPUT-OuTPUT SECTION. '
15 fiLE-CONTROL. }
16 SEU:CT A~!~tN1TO UT-Z ... OO-S-SAMPLE. 229

1 CD
11 SELeCT fILE-Z

ASSIGN TO UT-Z ... OO-S-SAHPLE.

Note:

CI) Refers to FD statement numbers in the Data Division.

P'iqure 81. Sa1lple Identification and En vironBlen t Division Outpu tListing

Lister Feature 204.1

the addition, at the right of each
statement, of cross-references that
identify the statement number of each Data
Division or Procedure Division statement
that redefines, changes, reads, tests, or
otherwise refers to the data item. When
the number of such refe.rences is too great
to fit on the line, the lister prints as
many as there are room for, on the line,
and prints the remainder as a footnote at
the bottom of the page.

The eight codes used in the Data
Division are:

c

E

Data item changed (such as by ADD or
MOVE)

Data i tea refe.rred to by Env ironment
Division statement (SELECT) or by some
Procedure Division input/output
operation (OPEN, CLOSE, INITIATE, etc.)

D

Q

.R

u

W

x

Data item changed by REDEFINE or RENA"E

Queried by IF, WHEN, or UNTIL

Referred to by a READ, ACCEPT, or
similar statement

Da ta i tea unchanged (used as a source
field)

Referred to by a WRITE, GENERATE,
DISPLAY, or similar statement

Used as an index, subscript, or object
of a DEPENDING ON statement

Use of these codes is depicted in Figure
82, which is an example of a reformatted
Data Division. (The notes shown in the
figure are not produced by the lister.)

Lister Feature 205

18
20

rI::
\28

2<;

DATA DIVISION.
FILE SECTION.
FD FILc-l

LABEL RECORDS ARE uMlTTED
BLOC K CONT AI NS 5 Rc:CORDS
ReCORD CONTAINS 2u CHARACTERS
R~CORDING MaCE IS r
DATA RECORD IS RECuRD-I.

01 ReCORD-I.
02 FlfLD-A

FD FILc:-2
LABEL RECORDS ARE uMITTED
S,-OCK CONTAI fl.S 5 ReCORDS
ReCORD CONTAINS 20 CHARACTERS
ReCORDING MOCE IS f

PICTURE IS X(20).

DATA RECORD IS RECuRD-2.
35 01 RcCORD-2.
36 02 FIELD-A PICTURE IS X(20).
37 WORKING-STORAGE SECTION.
38 11 KOUNT SVNE PI~TUR~ S99 COMPo 63C ,61C ,69X, llX, 17Q
~g ~r ~Y~f~~. SVN PI TUR S99 COMPo 63C,68C,12U
4l 02 ALPHABET PICTURE Xl26J VALUE "ABCDEFGHIJKLHNOPQRSTUVWXVZ". 420
42 02 ALPHA REDEFINES AL~HABET OCCURS 26 TIMES PICTURE X. 41/69U
43 02 D~PENDENTS PIC A(ZOJ VALUE "01234012340123401234012340-. 440
44 02 DePEND REDEFINES DePENDENTS OCCURS 26 TIMES PICTURE X. ~43111U
45 01 WGRK-RECORD. 5 74W,75W,86R,91W
46 05 NAME-fIELD PICTURE X. 69C
47 05 FILlER PICTURE X VALUE IS SPACE. --<D
48 05 R~CORD-NO PICTURE 9999. 72C 4
4<; 05 FlLLER PICTURE X VALUE IS SPACE.
50 05 LuCATION PICTURE AAA VALUE IS "NYC".
!1 05 FILLER PICTURE X VALUE SPACE.
!2 05 Nu-Of-DEPENDENTS PICTURE XX. 11C,~9Q,90C
~~ 0105REE~~~i~ PICTURE X(1) VALUE ~S SPACES.
55 02 A PICTURE S9(4) VALUE 1234. 560
56 02 B REDEFINES A PICTURE S9(7) CDHPUTATIONAL-3. 5517(C,10U

Notes:

CD
®
®

'PD referre0. to by SELECT statement in EnvironmAnt nivision.

Associated SELECT statement; E denotes Environment Division reference
(or OPEN/CLOSE from Procedure Division).

Procedure Division statement; R denotes that this statement reads this file.

Procedure Division statement; C denotes that this statement changes this data item.

43/ indicates that DEPENDENTS is defined in statement 43.
The 114D following statement 43 indicates the same relationship between these two statements.

Figure 82. sample Data Divi$ion Output Listing

206

PROCEDURE DIVISION REFORMATTING

The lister reformats the Procedure
Division by applying indenting conventions
to nested IFs, GOTOs, etc., and by
appending cross-references to sections and
paragraphs to indicate that the statement
is arrived at from either a GO TO or a
PERFORM. It also appends references to the
Data Division so that the data item being
acted on can be found quickl y,. The five
codes used in the Procedure Division are:

A ALTER
B (ALTER) to PROCEED TO
G GO TO
P PERFOR!!
T (PERFORM) THBU

Use of the codes G, P, and T is depicted
in Figure 83. The A and B in Figure 83 are
examples of lister's footnoting of
eleaentary 01- and 77-level data items (not
of ALTER and Pi'OCRED TO). If addi tional
such data items vere present, they would be
identified by footnotes letter~d C, D, E,
and so forth.

Lister Feature 207

51 PROCEDURE DIVISION.
58
S9

61
(:2
t3
tit

66
61
6d
(:«;
7C
11
12

BEGIN.
NOTE THAT THE FOLLOWIN~ OPENS THE OUTPUT FILE

CREATED AND IN IHALlZES COUNTERS.
STEP-I.

OPEN uUTPUT FILE-1.
MOVE ,ERO TO KCUNT NOM~Ek.
NOTE IHAT THE fOLLOWINb CREATES INTERNALLY THE

TO BE CONTAINED ,N THE fiLE, WRITES THEM
AND DISPLAYS THE~ ON THE CONSOLE.

STEP-2. 77P~.~------(!)
~~g t f8 ~g~~~~,
MOVE ALPHA (KeUNTJ TO NAME-fIELD.
COMPUTE B = B + 1.
MOVE uEPEND (KCUNTJ TU NO-OF-DEPENDENTS.
MOVE .'1 UMBER TO RECORD-NO.

STEP-3. 77T

TO BE

G\ 21
A,S

RECORDS
ON TAPE,

A
B

42,A,46
56,56

44,A,52
B,48

96
97
98
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116

13
14
15

DISPL~Y WORK-RECORD UP~N CONSOLE.
wRITE RECORD-1 FROM WOKK-RECORD. 27,4~ ---Ci) ~~ 1(:

77

78

STEP-4.
PERFOKM STEP-2 THRU STcP-3 UNTIL KOUNT IS

TO 26.
NOTE THAT THE FOLLOWINb CLOSES OUTPUT AND

INPUT.
ST EP-5.

EQ UAL 66, 73 , A
REOPENS IT AS

80
81
82
83

CLeSE fILE-I. 21
OPEN INPUT FILE-2. 29
NOTE THAT THE FOlLOWINb READS BACK THE fILE AND SINGLES

85
e6
81

ae
89
510
«;1
~2

«;3
«;4
CiS

OUT EMPlGYEES W TH NO DEPENDENTS.
STEP-c. 92G4-----" 4

READ ~ILE-2 RECORD IN u WORK-RECORD
GO TO STEP-8.

STEP-7.
IF NO-UF-DEPENDENTS I S EQUAL TO "0"

MOVe "Z" TO NO-OF--Dt;jJENOENTS.
EXHIBIT NAMED WORK-RECuRD.
GO TO STEP-6.

STEP-B. 87G
CLOSE FILE-2.
STOP KUN.

AT END

~-38 77 KOUNT
B-3«; 17 NOMBEK

PICTURE S99
PICTURE S99

~otes:

29,45
93

CaMP.
CaMP.

52
52
45
85

29

COBOL SPECIAL-REGISTERS
TALLY
PRINT-SWITCH
MORE-LABELS
RETURN-CODE
LABEL-RETURN
SORT-RETURN
SORT-CaRE-SIZE
SORT-fILE-SIZE
SORT-~ODE-S IZE
SORT-MESSAGE
CURRENT-DATE
TIME-Of-DAY
WHEN .. COMPILED
DEBUG-CONTENTS
DEBUG-ITEM
DEBUG-LINE
DEBUG-NAME
DEBUG-SUB-1
DEBUG-SUB-2
DEBUG-SUB-3

63C,67C,69X,71X,71Q
63C,68C,72U

·CD Lister footnotes all occurrences of 77-level and elementary 01-level data items.

CD Statement 66 is arrived at through PERFORM in statement 77.

CD Statement 77 contains the PERFORM of statement 66.

QD Statpment 85 is arrived at through GO TO in statement 92.

Figure 83. Sample Procedure Division Output Listing

208

SUMMARY LISTING

The summary listing provides an overall
view of the relationship among FDs, RDs,
SOs, and SECTIONS. The entry for each of
these major parts of the program consists
of a title line showing the statement
number and the name of the file, record, or
section and a se.ries of counts (by
reference type) for each of the categories
"from" and "to." Intra references are also
shown for WORKING-STORAGE and PROCEDURE;

1 IOENTIF.CATION DIVISION.

lC ENVIRONMENT OIVISICN.

11 CUNfIGUK~TION SECTION.

14 INPUT-OuTPUT SECTION.
TC ~~ t ~:lKD

18 OATA OI~ISION.

20 FilE SEI.TlON •

. 21 FllE-l
f RCM 14

57

~'i FlLE-2
FHM 14

51
E-l
E-2,R-l

37 WORKING-STORAGE SECTION.
~~l~A 51 21 g:~,Q-2,R-l,U-4,W-3,X-2

57 PROCE:OUKE: OIVISICN. {:;\3
I~T~A 4 G-L,P-l,T-l~
1C 21 3 E-2,W-l

~~ 2I ~:~:~:~,R-l'U-4'W-3,X-2
~e -- CUBOL SPECIAl-REGlSTcKS --

:>5 A
42 ALPhA
41 AlPHADE:T
50 8
58 8EGIN

107 CURREI~T-DATE:
1~0 CfBUG-CONTENTS
III OEBUG-I TEM
H2 OEtlUG-LlNE
113 Di:BUG-NAME
lJ.4 OEBUG-l>UB-l
115 CE8UG-SUB-2
110 CEBUG-SUB-3
't't OEPENu
43 OEPENuENTS
28 FIElO-A
~6 FIElO-A
21 FIlE-~
.i.9 FIlE-..
.,Il KCUNT

lui lABl:l-RETURN
50 lDCATlON
99 MORE-LABELS
40 NAME-rl ElO
j2 No-OF-uEPENOENTS
~9 ~(MeEK
'>8 PRINT-l>WITCH
48 RECORu-NO
'-7 RECOR ... -l
.j5 RECORu-2
;)4 RECORuA

luO Rf TURI~-COOt:
103 SORT-~.uRE-SIZE
lu4 SORT-rilE-SIZE
100 SOj(T-rtt:SSAGE
lu5 SOkT-MuOt-SIZE
1.12 SCRT-"I:TURN

01 STi:P-.1.
06 STEP-,
73 STEP-.;j
16 STEP-4
80 STEP-;,
05 STEP-o
&8 STEP-I
'.13 STEP-o
91 TAllY

108 T IME-uF-OAY
11.;9 WHEN-~uMPllEO

45 WORK-Kt:CORO

The INPUT-0UTPUT ~ection contains references to one data item
in F'ILF-1 a!lrl one nata item in F'II.E-::>.

these are references within the section,
file, or record, such as REDEFINES and
PERFOR" operations. "From" are the
references from other parts of the program
to this part and .. to" are the references to
other parts f.rom this part. The other
parts are identified by the numbers of
their first statements; these numbers
appear in the column just to the right of
the words INTRA, FROM, and TO.

Figure 84 is an example of a summary
listinq.

F'ILF.-1 i~ referencE'c1 once from th" INPtTT-0lJ"'PUT sectiC"ln ann three
times from the Procer'!ure Division.

The Procedure Division contains four intra rE'ferences.

Figure 84. Sample Summary Listing

Lister FeatUre 209

THE SOORCE LISTING

The source listing 'of the
Identification, Environment, and Data
Divisions ma y be considered as having three
"columns." The leftmost contains a
statement number, or is blank if the line
is either a comment or a continuation of
the preceding statement or line. The
second contains the reformatted COBOL
statements. The third (not present as an
independent column in the Procedure
Division) contains references to 9r from
other statements in the source program.
Thus, each line of the output listing
contains a numbered source statement or its
unnumbered continuation, and a reference or
series of references to all other
statements in t.he source proqrall that refer
to it. If the series of references is too
long to fit on the line, the lister prin·ts
as many as viII fit, followed by a letter
indicating a footnote. The footnote
contains the remainder of the references.

The source listing of the procedure
Division is normally printed in
double-column format, wi th each column
divided as described above. This format
approximately doubles the span of logic
that can be seen on one page or one
facing-page spread.

Regardless of whether the source code
follows indentation conventions, the lister
indents statements according to their type,
and according to hierarchy where
applicable. This feature of the lister
makes file and record structure immediately
visible and also helps to identify groups
of related statements such as IF/ELSE and
nesting of IFs.

Note: If blank lines are present in the
orIginal source, the lister eliminates
them and renumbers the statements
accordingly.

12rmat Conventions

New statements are indented from the
left margin, which contains the statement
number. The liste.r treats the followinq as
new statements:

• Division and section headers

• Paragraph names

• Level numbers or level indicators (FD,
RD, etc.)

210

• Verbs

• EL.SE/OTHERWISE

• AT END (o.nlywhen follow iog SEARCH).,

Inde1\tation of the new statement is made
according to the following rules:

1. Data Division

• FDs and level 77 items are indented
zero.

• Level 01 items are indented zero in
the Linkage and Working Storage
sections and two in the File and
Report sections

• Each subsequent lower level within
an 01 item is indented two more than
the preceding higher level, up to a
maximum of 14 character positions or
7 levels.

Procedure Division

• Section names are indented zero

• Paragraph names are indented two

• Unconditionally executed verbs are
indented four

• Verbs executed under a single
condition, such as IF or AT END, are
indented six

• The first IF in a nest is indented
four, subsequent nested IFs are
indented an additional two at each
level up to a maximum of 14 character
positions or 6 levels.

• ELSEs are indented to the same
position as the IF to which they
co.rrespond.

3. Continuation lines in all divisions
are indented six with respect to the
first line of the continued statement.

!2~£acing within a statement and on
continuation lines is usually one space.
within the Data Division, however, PICTURE
and VALUE are aligned as nearly as possible
into columns so that they may be found and
compared easily. Words are never split at
the end of a line unless the word to be
split is a nonnumeric literal that will not
fit on a single continuation line.


~~~B£~ appear to the right of the 
statement or continuation line. References 
following paragraph or section names appear 
immediately to the right of the name, 
separated by a blank. References following 
other types of statements appear as far to 
the right as possible depending on the 

number of blanks available on the line. 
Each reference consists of a statement 
number and a type indicator. 

When references are in series, they are 
separated by coamas and are in ascending 
~h~ 

Lister Feature 210.1 





if ithin the Data Division, a reference 
series may end with an alphabetic footnote 
indicator. The footnote contains the 
remaining references to that data item. 

In the Pr oced ure Di vision, the reference 
may also be a footnote indicator, b~t the 
footnote is different in appearance. In 
the Procedure Division-, the footnote is 
actually an on-page replica of the Data 
Division statement referred to bI the 
footnoted statement. This replica is 
complete ·with all other references to the 
data item from other portions of the 
program. To conserve space in the listing, 
the lister does not repeat a footnote if it 
appears at the bottom of either of the two 
preceding pages but instead reuses the same 
footnote letter in the new reference. 

As mentioned above, a reference consists 
of a statement number and a type indicator. 
The type indicator provides immediate 
information as to what is being done by the 
statement referred to. 

Tvo sets of type indicators are used by 
the lister: one for the Data Division and 
one for the Procedure Division. within the 
Data Division, the type indicators are: 

C Data item changed (such as by ADD 
or MOVE) 

D 

E 

Q 

R 

Data item REDEFINED or RENAMED 

Data item referred to by 
Environment Division statement 
(SELECT) or by some Procedure 
Division input/output operation 
(OPEN, CLOSE, INITIATE, etc.) 

Queried by IF, W HEN, or UNTIL 

Referred to by a READ, ACCEPT or 
similar statement 

U Data item unchanged (used as a 
source field) 

W Referred to by a WRITE, GENERATE, 
DISPLAY, or similar statement 

X Used as an index, subscript, or 
object of a DEPENDING ON statement 

within the Procedure Division, the type 
indicators are: 

A ALTER 
B (ALTER) TO PROCEED TO 
E INPUT or OUTPUT PROCEDURE (SORT 

Feature) 

G 
P 
T 

GO TO 
PERFORM 
(PERFORM) THBU 

THE SUMMARY LISTING 

The summary listi.ng is useful both as an 
analysis and as a troubleshooting aid. 
USing the summary listing, the user can 
ascertain quickly which data areas are most 
referred to, which procedures refer to them 
most often, and the nature of those 
references. The number of references to 
undefined symbols and the number of 
incorrectly coded COBOL statements can also 
be ascertained. 

Each division or section header, and 
each FD, RD, or SD begins a new entry in 
the summary listing. The entry consists of 
the header line, and beginning on the next 
line, the total number of each kind of 
reference to that section from within 
itself (INTRA), and from outside itself 
(FROM). These are followed by similar 
information for references the section 
makes to others outside itself (TO). The 
type indicators used for references are the 
same as those used in the source listing. 

In large programs, with either no 
sections or very large sections in the 
Procedure Division, the lister summary may 
not be very helpful. This can be remedied 
by adding SECTION statements to the source 
program at appropriate points. If SECTION 
statements are being added to a program 
that already contains some, it is very 
important to make certain that both 
implicit and explicit reference qualifiers 
are not invalidated. 

THE OUTPUT DECK 

optionally, the lister can produce a new 
COBOL source deck that reflects the 
reformatted source listing. This deck eay 
be saved in a BASIS library, used directly 
as input to the compiler, or punched into 
cards. As a result of reformatting, the 
nev deck may contain more cards than the 
original, but the difference is not great 
enough to cause any appreciable increase in 
compilation time. The output deck differs 
from the listing as follows: 

Lister Feature 211 



1. References, footnotes. and blank lines 
are omi t ted. 

2. Literals will be repositioned if 
needed to assure proper continuation. 

3. statement numbers are converted to 
card numbers. 

a. The statement n umber is mul tiplied 
by 10, and leading zeros added as 
necessary to fill columns 1 
through 6. 

b. Comment and continuation cards are 
numbered one higher than the 
preceding card. 

The lister feature is specified in the 
PARM field of the EXEC card through five 
compiler options. The combination of 
options that are selected determine both 
the format and contents of the lister 
output. Either LSTONLY or LSTCOMP must be 
specified for the other options to have 
meaning, unless BATCH is specified. In a 
batch compilation, if some or all of the 
programs are to be compiled using the 
lister feature, L120 or L132 must be 
specified in the PARM field of the EXEC 
card--even if LSTCOMP or LSTONLY are 
specified on the CSL card. 

The five lister options are described 
below. Note that the IBM-supplied defaults 
are indicated by an underscore; they can be 
changed when the compiler is installed. 
The lister options are as follows: 

LSTONLY 
LSTCOMP 
HQ.1~1 

212 

indicates whether the lister feature 
is to be used. LSTONLY specifies that 
a reformatted listing is to be 
produced but that no compilation is to 
occur. LSTCOMP specifies that both a 
reformatted listing is to be produced 
and compilation is to occur in the 
same jo b step. 

FDECK 
NOFDECK 
--indicates whether a copy of the 

reformatted source program is to be 
written on the SYSPUNCH data set. 
Since FDECK has meaning only with 
either LSTONLY or LSTCOMP. the lister 
output will be both a reformatted 
listing and a reformatted deck. COpy 
statements within the source progtam 
will be produced as COpy statements, 
or, if CDECK is in effect. the 
expansion of the COpy statement will 
be produced. 

CDECK 
1!QCDEC! 

LCOL1 
LCQL2 

L120 
L132 

indicates whether or not COpy 
statements are to be converted to 
comment statements in the output 
listing and the COpy members are to be 
expanded. CDECK may be specified with 
FDECK or NOFDECK. With FDECK, the 
source deck produced will contain the 
expansion of COpy statements; with 
NOFDECK, only the expansions of COpy 
statements are produced. 

indicates whether the Procedure 
Division part of the listing is to be 
in single-or double- column format. 

indicates whether the length of each 
line of the reformatted listing is to 
be 120 or 132 characters long. 



A programmer using the IBM OS/iS COBOL 
Compiler under the I Bf! Operating System, 
has several methods available to him for 
testing and debugging his programs. Use of 
the symbolic debugging features are 
described in detail in this chapter. 

.. Appendix A: A sample Program t' contains 
an example of a program run without the 
symbolic debugging features. The chapter 
"Program Checkout" contains information 
useful for finding the instruction that 
causes the abnormal termination and then 
correcting the problem. The chapters 
"Output" and "Using the Checkpoint/Restart 
Feature" include a discussion of compiler 
output and a description of taking 
checkpoints and restarting programs, 
respecti vely. 

liQl~: The program product IBM os COBOL 
Interactive Debug (Program Number 5734-CB4) 
enables the user to debug his COBOL 
programs from a TSO terminal. To be 
acceptable for Interactive Debug, a program 
must be compiled with the TEST compiler 
opt.ion. TEST overrides FLOW, STATE, SYMDMP 
and COUNT. Hovever, note that TEST may not 
be specified with BATCH, since BATCH 
overrides TEST. TEST will also be 
cancelled if the program con tains USE FOR 
DEBUGGING statements. Interactive Debug is 
described in greater detail in the "Program 
Checkout" part of this publication. 

USE OF THE SYl'lBOLIC DEBUGGING FEATURES 

As an aid to debugging, compiler options 
can be requested that provide additional 
diagnostic information for an abnormal 
termination other than one caused by 
"Canceled by Operator" or exceed ingthe 
system-state time slice. Three user 
options are available for object-time 
debugging -- the statement number option 
(STATE), the flow trace option (FLOW), and 
the symbolic dump option (SYMDMP). 

The STATE option causes the ~umber of 
the card for the last verb executed before 
termination to be printed out. The FLOW 
option causes a trace of the last 
user-specified number of procedures 
executed to be printed out (with a default 
of 99). Both STATE and FLOW cause the 
PROGRAM-ID, the completion code~ and the 
last problem PSi to. be printed olit. The 
SYf!DKP option enables the user to request a 
symbolic formatted dump of the data area of 

the object program for an abnormal 
termination, or to request dynamic dumps of 
data areas at strategic points during 
execution. 

Use of th'ese features requires no sou.rce 
language coding; rather the user specifies 
these options at compile time, through job 
control language. operation of the SYMDf1P 
option is dependent on execution-time 
control cards. Fig~re 86 illustrates the 
output generated for each of these 
features. 

When any of the debugging options is 
specified, the programmer must: 

• Request the option at compile time by 
specifying it in the PARM field or, if 
a cataloged procedure is used. in the 
PARM.COB field. 

• Itlclude a //SYSDBOUT DD card for the 
debug output data set at execution 
time. 

• Make the COBOL library available at 
execution time by specifying the 
following DD statement: 

//STEPLIB DD DSN=subr-libname,DISP=SHR, 
VOL=SER=volser~UNIT=unit 

(This is necessary because certain 
COBOL library subroutines are loaded 
dynamically from the subroutine library 
only as needed; they are not 
link-edited into the COBOL object 
program. ) 

• If the COBOL program being debugged 
is to be invoked from a higher-leVel 
non-COBOL program, the programmer must 
ensure that the non-COBOL program calls 
the COBOL libra.ry subroutine ILBOSTPO 
before calling any COBOL program.. For 
further information on this point. see 
the section "calling and Called 
Programs" in this manual. 

If the STATE option is in effect and an 
abnormal termination occurs, the printed 
output includes the compiler-generated card 
number or~ if NUM is in effect, the card 
sequence number for the last verb executed. 
Violation of the rule against mixing RES 
and NORES programs in a single run unit may 
result in erroneous information from STATE. 

Symbolic Debugging Features 213 



[-'.2"02t ion 

If the FLOW option is in effect, a 
formatted list containing the PROGRAM-ID 
and either the compiler-generated card 
number or the line number (if NOM is in 
effect) of the last n executed procedures 
is printed on SYSDBOUT. The number of 
procedures traced can vary from 1 to 99 and 
is specified by the programmer. 

The number of procedures to be traced may 
be specified at compile time via either the 
PARH parameter or, if a cataloged procedure 
is used, the PARK. COB field. This number 
may be overridden at execution time via the 
PARS parameter or, if a cataloged procedure 
is used, the PARM.GO parameter. If the 
number of procedures traced is specified at 
neither compile time nor execution time, 
either the default value of 99 or the value 
specified at program product installation 
viII be employed. When using FLOW or 
NOFLOW at execution time, the option JlY.2i 
be preceded by a slash t1 /ft. (See Fi gure 8 
for an exa mple. ) 

If batch compilation is used, FLOW can 
be specified at compile time and remain in 
effect for every program in the batch. To 
suppress a trace for a particular program 
within the batch, the programmer should 
specify NOFLOW a t execution time as the 
last parameter in the PARK field for that 
p~oqram, or change the CBL card. For more 
information, see the sections "Options for 
the Compiler" and ftoptions for Execu tion.n 

l!Q.!.~: The FLOW option is completely 
independent of the READY/RESET TRACE 
feature of the debugging language. 

~MDMP 012.ti.2n 

If the SYMDMP option is in effect, a 
symbolic formatted dump of the object 
program' s data area is produced when the 
program abnormally terminates. (The SYMDMP 
option cannot. be llsed if the source program 
contains USE FOR DEBUGGING and WITH 
DEBUGGING MODE.) This option also enables 
the programmer to request dynamic dumps of 
specified data-names at strategic points 
dur ing program execu tion. If two or more 
COBOL programs are link-edited together and 
one of them terminates abnormally, a 
formatted dump is produced for all programs 
in the calling sequence compiled vith the 
SIKDMP option. up to and including the main 
program in the reverse order of their 
calling sequence. (The terminating program 
itself need not have been compiled with the 
51 MDMP option.) 

214 

By specifying a //SYSDTERM DD card in 
addition to the //SISDBOUT OD card, dynamic 
dump output will he written onto SYSDTEBM 
while the abend dump output will go to 
SYSDBOUT. SYMDMP output will be 
formatted at 55 lines to ~he page. 

NO!~: The TSO programmer should assign 
slSqTERM to the terminal since dynamic dump 
outptlt is interruptable. SYSDBOUT should 
be flssigned to a direct access data set 
which could be listed at the terminal after 
the ABEND is complete. 

The abnormal termination dump consists 
of the following parts: 

1. An abnormal termination message, 
including the number of the statement 
and of the verb being executed at the 
time of an abnormal termination. 

2. selected areas in the Task Global 
Table. 

3. A formatted dump of the Data Division 
including: 

(a) For an SD -- the card number, the 
sort-file-name, the type, and the 
sort record. 

(b) For an PD -~ for VSAM: OPEN/CLOSE 
status, card number, organization, 
access mode, last IIO operation, 
file status, and the fields of the 
record. Por non-VSAM: the card 
number, the file-name, the type, 
the ddname, the URca and/or DCB 
status, the contents of the DRCB 
and/or DCB in hexadecimal, and the 
fields of the record; also, for 
QSAK, the file status. 

tc) For an RD -- the card number, the 
report-name, the type. the report 
line, and the contents of 
PAGE-COUNTER and .LINE-COUNTER if 
present. 

(d) For a CD -- the CD itself in its 
implicit format, as well as the 
area containing the message data 
currently being buffered. 

Ie) For an index name -- the name, the 
type, and the contents in decimal 
which represents an actual 
displacement from the beginning of 
the table that corresponds to an 
occurrence. Dumber in the table. 
The value is calculated as the 
occurrence number minus one, 
multiplied by the length of the 



entry that is indexed by this 
index-name. 

The symbolic dump opt ion is requested at 
compile time via the SYMDMP option, through 
the PARM parameter of the EXEC card. 
operation of the symbolic dump option is 
dependent on object-time control cards 
placed io the SYSDBG data set (see also the 
"Default SYSDBG Data Set" section that 
follows). This data set must consist of 
unblocked SO-byte records. If the 
~bject-time control cards are not present, 
SYKDMP is canceled at execution time. 
These cards are discussed below. 

The operation of the SYKDMP option is 
determined by two types of control cards: 

Program-control card -- required if 
abnormal termination and/or dynamic 
dumps are requested. 

Line-control card -- required only if 
dynamic dumps are requested. 

~yntax Rules: The fields of both the 
program-control card and the line-control 
card must conform to the fQllo1!fing rules: 

1. Control cards are essentially free 
form, i.e., parameters coded on these 
cards can start in any column. 
However, parameters may not extend 
beyond column 11. 

2. Each parameter except the last must be 
immediately followed by a comma or a 
blank. 

3. No commas are needed to acco~nt for 
optional parameters that are not 
specified. 

4. All upper-case letters in IBM 
documentation represent specifications 
that are to appear in the actual 
stateme.nt exactly as shovn. 

5. All lower-case letters represent 
generic terms that are to be replaced 
in the actual statement. 

6. Brackets are used to indicate'that a 
specification is optional and is not 
alvays required in the statement. 

7. Brackets enclosing stacked items 
indicate that a choice of one item 
may, but need not, be made by the 
programmer. 

8. Braces enclosing stacked items 
indicate that a choice of one item 
mY§! be made by the programmer. 

9. All punctuation marks and special 
characters shown in the statement 
formats other than hyphens, brackets, 
braces, and underscores, must be 
punched exactly as shown. This 
includes commas, parentheses, and the 
equal sign. 

RQ!~: Blanks may be SUbstituted for 
commas. 

.&Qnti!!~iQ.n_~g,£.2:§: To continue either the 
prog.ram-control ca.rd or the line-control 
card, the proqramme·r must code a nonblanle 
ch aracter in colu mn 72 of the contin ued 
card. Individual keywords and data-names 
cannot be sp1i t between cards. 

~nt~!~j:atement rlac~!!l~i: If a main 
program is compiled with the SYMD.MP option, 
or if at least one subprogram called by the 
main program is a COBOL pr~gram compiled 
with the SYMDMP option, the control cards 
may either follow or precede the 
programmer's data, if any, in the input 
stream: 

//GO EXEC 
IIGO.SYSDBG DD 

PGM= 

* 
(user 1 s control cards) 

1* 
I/GO.SYSIN DD * 

{user's data cards, if any} 

/* 

For an example of the control statements 
used to compile a program .with the SYMDMP 
option, see Figure 86. 

frog£~J!=~Qntrol Cards: A program-control 
card must be present at execution time for 
any program requesting a SYMDMP service. 
program-control cards have the following 
fo.rmat: 

[
,ENTRY. J r, (HEX) 1 

program-id,ddname ,NOENTRY ~ (~U [,PDS] 

whe.re: 

prograll-id 
is a 1- to S-character program-name of a 
COBOL program compiled with the SYMDftP 
option. This parameter is required 
and must appear first on the 
program-control card. 

ddnall_e 
is the execution-time ddname of the file 
that was produced at compile time on 

Symbolic Debugging Features 215 



SYSUT5. This parameter is required 
and must follow the program~id. 

ENTRY 
!!Q.EN.I!U 

ENTRY is used to provide a trace of a 
program-name when several programs are 
link-edited together. Each t.ime the 
program whose PROGRAM-ID matches the 
"program-id" parameter is entered, its 
name is displayed. 

HEX 
!Q!!EI 

PDS 

216 

is optional and Iefers to the forma~ 
of the Data Division area i~ the 
abnormal termination dump. If HEX is 
specified, level-Ol items are provided 
in hexadecimal. Items subordinat.eto 
level-01 items are print~d in EBCDIC, 
if possible. Level-77 items are 
provided both in EBCDIC and 
hexadecimal. If HEX is not specified, 
items subordinate to level-Ol items 
and level-77 items are provided in 
EBCDIC. If these items are 
unprintable, hexadecimal notation is 
provided. 

is optional and allows the user to 
specify that the debug file, which was 
produced at compile time on SYSUT5 and 
whose name is ddname, is a partitioned 
data :'set. In this case, SYMDMP 
assumes that program-id is the name of 
a member in that debug file. This 
option is intended to reduce the 
number of execution-time DD cards 
required for debug files, when many 
programs compiled with the SYMDMP 
option are executed together in a 
COBOL run-unit. Since each such 
program requires a unique debug file, 
each program-control card could 
contain a unique program-id (member), 
the same ddname, and PDS. 

Note: The user should be aware that 
the debug file produced at compile 
time contains device-dependent 
relative block addresses embedded in 
the data blocks and is, therefore, 
unmovable. The only way to alter a 
member in an existing partitioned 
debug file is through recompilation 
replacement. User attempts to 
compress the data set through IEBCOPY 
or move the data set to another data' 
set through IEHMOVE will be rejected 
by these utilities. Further, the user 
should not create a partitioned data 
set from several compiler-created 
sequential debug files. SYMDMP will 
produce message IKF164I and will cancel 
debug output for any program whose 
debug file has been moved. The only 
exception is. that a sequential debug, 

file can be moved to another sequential 
data set on a,device of the same type. 

kine-control Cards: Line-control cards 
have the following format: 

line-num[, (verb-num) ][ ,ONn[ ,m( ,k]]] 

~ [: ::~~~X)] IwALL1( 
11[:~~~~) ] ,namel ITHRU name21 ••• ! ~ 

line-num 
indicates the card number associated 
with the point in the Procedure 
Division at which the dynamic dump is 
to be taken. The card number is 
eith~r the compiler-generated number 
or, if NUMis in effect~ the user's 

'number in card columns 1 through 6. 
The number must be that of a card 
containing a section name, procedure 
name, conditional verb, or imperative 
verb. 

verb-num 
indicates the position of the verb in 
the card indicated by "line-num" 
before whose execution a dynamic dump 
is taken. When "verb-num" is not 
specified, the value 1 is assumed; 
when specified, "verb-num" must follow 
"line-num" and may not exceed 15. 

ON n[,m[ ,it]] 

HEX 
NOHEI 

is equivalent to the COBOL statement 
ON n AND EVERY m ·UNTIL it... This 
option limits the request.ed dynamic 
dumps to specifi~d times. For 
example, "ON n"would result in one 
dump, given the nth time "line-num" is 
reached during execution. "ON n,m" 
would result in a dump the first time 
at the nth execution of "line-num" and 
thereafter at every mth execution 
until end-of-job. K limits the number 
of dumps to the kth occurrence of 
"line-num". 

refers to the format of the Data 
Division areas provided in the dynamic 
dump. If HEX is specified, level-Ol 
items are provided in hexadecimal. 
Items subordinate to level-01 items 
are printed in EBCDIC, if possible. 
Level-77 items are printed in both 
EBCDIC and hexadecimal. If HEX is not 
specified, items subordinate to 
level-Ol items and level-77 items are 
provided in EBCDIC. If the items are 
unprintable, hexadecimal notation is 
provided. Note that if "namel" is 
specified and it represents a group 
item and HEX has not been specified, 



neither the group nor the elementary 
items in the group will be provided in 
hexadecimal. 

namel [TRRU name2] 
represents selected areas of the Data 
Division to be dumped. with the TURU 
option, a range of data-names 
appearing consecutively in the Data 
Divisionis dumped. "namel" and 
"name2 n may be qualified but not 
subscripted. If the programmer wishes 
to see a subscripted item. specifying 
the name of the item without the 
subscript results in a dump of every 
occurrence of that item. 

results in a dump of everything that 
would be du.ped in the event of an 
abnormal termination for the program 

specified in the "program-idA 
parameter in the preceding 
program-control card. one use of ALL 
allows the programmer to receive a 
formatted dump at normal return from 
the program. To do this, the 
programmer must ensure that the 
generated statement nuaber of the line 
00 which a STOP RUN, EXIT PROGRAH, or 
GOBACK statement appears is specified 
as the "line-num lt paramete.r. 

DEFAULT SI~RBG PATA SET 

If the programmer fails to define a 
SYSDBG data set, the SYMD~P routines 
generate a default SYSDBG data set 
equivalent to the following job control 
language: 

symbolic Debugging Features 216.1 





IISYSDBG DD * 
prog-id SYSUT5 

1* 

where: 

prog-id 
is the name of the first program 

compiled with the SYftDltP option 
encountered in the run-unit. If 
the programmer has provided a 
SY5UT5 DD statement referring to 
the file produced during the 
compilation of proq-id on SYSUT5. 
the effect of this default data 
set is to produce normal SYftD~P 
output on an abend. 

If a run-unit includes one or more 
programs that have been compiled with the 
S!"D~P option and the programmer desires to 
suppress the normal SY~DHP output on an 
abend, either of the following methods may 
be used: 

• omit the SYSUT5 DD statement from the 
execution step. This will cause the 
following message to be produced and 
SYMDMP output to be cancelled: 

IKF168I UNSUCCESSFUL OPEN OF DEBUG FILE 

• define the SYSDBG data set as 

IISYSDBG DD DUMMY 

This will cause the following message 
to be produced and SYMDMP to be 
cancelled: 

IKF174I SYMDMP CANCELLED. NO CONTROL 
CARDS FOUND. 

Execution of a COBOL program compiled with 
the options STATE, FLOW, SYMDMP, or COUNT 
under IMS. requires the COBOL programmer 
to write an explicit CALL statement to 
subroutine ILBOSPIO in his source program, 
i.e., CALL 1ILBOSPIO'. 

• There should be one CALL statement 
written at the beginning of the 
Procedure Division and following each 
ENTRY statement in the program. 

• There should be one CALL statement 
~ritten at each exit point in the 
program, i.e., preceding each GOBACK, 
EXIT PROGRAM or STOP RUN statement. 

• These CALL statements are effective 
only in a COBOL program compiled with 

debugging or COUNT, i.e., FLOW. STATE, 
SYMDMP or COUNT options. They must be 
executed as a logical pair only once 
per COBOL run unit. If COBOL program A 
calls COBOL program B, either A or B or 
both can be compiled with debugging, 
but only the highest level program 
compiled with debugging or COUNT 
options should contain CALL 'ILBOSPIO' 
statements. The first execution of 
ILBOSPIO issues a SPIE macro 
instruction to trap the old program PSi 
in the event of a program check before 
STAB gets control at abnormal 
termination. The second execution of 
ILBOSPIO resets any previous SPIE at 
task normal termination. At abnormal 
termination, ILBODBGO will reset the 
prev ious SPIE. 

• Finally, any CALL 'ILBOSPIO' statements 
written in a COBOL program compiled 
without any of the above options cause 
the subroutine to return control with 
no action (SPIE is not issued) • 

If IMS will link to a COBOL load module 
many times in a job step, the ENDJOB 
compiler option should be specified. For 
additional information, see the discussion 
of the ENDJOB option in the section 
"Options for the Compiler" in this manual. 

Figure 86 contains selected portions of 
output from a program that utilizes the 
Symbolic Debugging feature. In the 
following description of the program and 
its output, letters identifying the text 
correspond to letters in the program 
listing. (SYMDMP itself provides no page 
headings or numberings on its output.) 

® 

© 

Because the SYMDMP option is requested 
in the PARM parameter of the EXEC 
card, the logical unit SYSUT5 must be 
assigned at compile time. 

The PARM parameter specifications on 
the EXEC card indicate that an 
alphabetically ordered cross-reference 
dictionary, a flow trace of 10 
procedures, and the SYMDMP option are 
being requested along with other 
options. 

An alphabetically ordered 
cross-reference dictionary of 
data-names and procedure-names is 
produced by the compiler as a result 
of the SXREF specification in the PARM 
parameter of the EXEC card. 

Symbolic Debugging Features 217 



® 

® 

® 

@ 

® 

® 

@ 

218 

The file assigned at compile time to 
SYSUT5 to store SYMDMP information is 
assigned to SYSUTS at execution time. 

The SYMDMP control cards placed in the 
input stream at execution time are 
printed along with any diagnostics. 

CD The first card is the 
program-control card where: 

(a) TESTRUN is the PROGRAM-ID. 

(b) SYSUTS is the ddname of the 
SYSUT5 file at execution time. 

@ The second card is a line-control 
card which requests a (HEX) 
formatted dynamic dump of KOUNT, 
NAME-FIELD, NO-OF-DEPENDENTS, and 
RECORD-NO prior to the first and 
every fourth execution of 
generated card number 70. 

Q) The third card is also a 
line-control card which requests a 
(HEX) formatted dynamic dump of 
WORK-RECORD and B prior to the 
execution of generated card number 
81. 

The type code combinations used to 
identify data-names in abnormal 
termination and dynamic dumps are 
defined. Individual codes are 
illustrated in Figure 8S. 

The dynamic dumps requested by the 
first line-control ca rd. 

The dynamic dumps requested by the 
second line-control card. 

Program interrupt information is 
provided by the system when a program 
termina tes abnormally. 

The statement number information 
indicates the number of the verb and 
of the statement being executed at the 
time of the abnormal termination. The 
name of the program containing the 
statement is also provided. 

A fl08 trace of the last 10 procedures 
executed is provided because FLOW=10 
vas specified in the PARM parameter of 
the EIEC card. 

Selected areas of the Task Global 
Table are provided as part of the 
abnorma I termination dump. 

For each non-VSAM file-name, the 
generated card Dumber, the filet ype, 
the file status (if QSAM), the file 
organization, the DCB status, and the 
fields of the DCB and DECB, if 

® 

applicable, are provided in 
hexadecimal. For VSAM: the card 
number, OPEN/CLOSE status, 
organization, access mode, last I/O 
operation~ and file status. 

The fields of records associated with 
each FD are provided in the format 
requested on the program-control card. 

• Message IKF1821 appears after any 
record N that is part of a closed 
file; the status of a file is described 
in M If the record is part of a 
closed file, the contents of the record 
are not printed; instead, the message 
appears. Message IKF182I is described 
more fully in "Appendix K: Diagnostic 
Messages" in this publication .. 

® The contents of the fields of the 
Working-storage section are provided in 
the format requested on the 
program-control card. 

© The value associated with each of the 
possible subscripts is provided for 
each of the data items described with 
an OCCURS clause. 

® Asterisks appearing within the EBCDIC 
representation of the value of a given 
field indicate that the type and the 
actual content of the field conflict. 

!Ql~: When the SYMDMP option is used, 
level numbers appear "normalized" in the 
symholic d UJllP prod uced. For example, a 
group of data items described as: 

01 RECORDA. 
05 FIELD-A. 

10 PIELD-A1 PIC X. 
10 FIELD-A2 PIC X. 

viII appear as follows in SYMDMP output: 

o 1 RECORDA ••• 
02 FtELD-A ••• 
03 FIELD-A1 ••• 
03 FIELD-A2 ••• 

1. 

2. 

Reference to the statement number 
infor.ma tion 0 provided by t.h.e SYMDMP 
option shows that the abnormal 
termination occurred during the 
execution of the first verb on card 
81. 

Generated card number 81 contains the 
statement COMPUTE B = B + 1. 



3. Through verification of the contents 
of B at the time of the abnormal 
termination ® it can be seen that 
the usage of B (numeric packe~ 
conflicts with the value contained in 
the data area reserved for B(n umeric 
displav) • 

4. The abnormal termination occurred 
during an attempt to perform an 
addition on a display item. 

More complex errors may require the use 
of dynamic dumps to isolate the problem 
area. Line-control cards are included in 
TESTRUN merely to illustrate how they are 
used and what output they produce. 

, 
J Code 
.. 
J A 
I B 
I 0 
t E 
I * 
I F 
I N 
1 p 

1 'S 
I Ot 
I aT 
I SL 
I ST 
L-

Figure 85. 

Meaning 

Alphabetic 
Binary 
Display 
Edited 
Subscripted Item 
Floating Point 
Numeric 
Packed Decimal 
signed 
overpunch Sign Leading 
Overpunch Sign Trailing 
Separate Sign Leading 
Separate Sign Trailing 

.i.--

Indiv idual Type Codes Used in 
SYMDl'1P Output 

symbolic Debugging Features 219 



IIT~STRUN JOB ('A.~C~U'J,'BETHKE 1550 J&3',MSGLEVEL=(1,lJ,CLASS=A, 
II MSGCLASS=~ 
••• ScTUP TAPE SCRTCH RING=YES 

~/I EXEC VSCBLCLG, 
~ -II PARM.COB='uMAP,P~AP,SXREF,FLOWc10,SYMDMP,QUOTE,NORES', 

II GOOMP='SYSyUT=S', 
II SYSUT5c'&&SY~UT5,0ISP=(,PASS", 
II PARM.lKEOc'LISJ,lfT,XREF' 
XXCVS20CLG PROC PROG-IKfC8l00, 
XX COBOMP='SYSOUT=A', 
XX ~OOMP=DUMMY, 
XX ~ARMCOB='LOA',RGN~OBc128K,CONOCOB='(16,LT", 
XX PARMLKO='llST,XRE~,LfT',RGNlKED=128K,CONOLKO='(5,LT,COB)', 
XX PARMGO=",RGNGO=1~2K,CONOGO='((5,LT,COB,,(5,LT,LKED')', 
XX ~OSET='&GOSET',GO='GO', 
XX ~1=CBlCOMPL,V1=CBlOEV,Ul=SYSOA, 
XX ~2=CBLCOMPL,V2.C6~OEV,U2=SYSOA, 
XX ~~=C8LUPM,V3=CBlO~V,J3=SYSOA, 
XX ~~=CVS20LIB,V~=CBlOEV,U~=SYSDA, 
XX S5=CVS20lIB,V5=CB~OEV,U5=SYSOA, 
XX So=CVS20LIB,V6=CB~DfV,U6=SYSOA, 
XX ~7=CVS20LIB,V7=CB~OEV,U7·SYSOA, 
XX SB=CVS20LIB,V8=CBLOCV,U8=SYSOA, 
XX ~9=CVS20LIB,V9='S~R=CBLOEV',U9cSYSOA, 
XX SlOc'SYS1.LINKlIB',V10=,UIO= 
XXCuB EXEC PGM=&PROG,REGION=&RGNCOB,CONO=&CONOC08, 
XX PARM='LOA,NOlIB,SjZE=128K,BUF=12K,PMA,OMA,SXR,OPT,RES,&PARMCOB' 
XXSfEPLIB 00 OSN=&Sl,VOL=SER=&Vl,UNIT=&Ul,OISP=SHR 
XX 00 OSN=&S2,VOL=SER=&V2,UNIT=&U2,OISP=SHR 
XX 00 OSN=&S~,VOL=SER=&V3,UNIT=&U3,0ISP=SHR 
IICuB.SYSPRINT 00 ~Y~OUT=S 
X/SYSPRINT DO SYSOUT=A 
XXSYSUOUMP 00 &COBOMP 
XXSYSUTl 00 UNIT=SYSuA,~PACE=(TRK,(25,3»,OSN=&SYSJT1 
XXSYSUT2 00 UNIT=SYSuA,SPA:E=(TRK,(2S,3,),OSN=&SYSUT2 
XXSYSUT3 00 UNIT=SYSuA,SPACE=(TRK,(ZS,3)),OSN=&SYSUT3 
XXSYSUT~ 00 UNIT=SYSuA,SPACE.(TRK,(25,3),OSN=&SYSUT~ 

~XXSYSUTS DO UNIT=SYSuA,SPA:E=(TRK,(25,3»,OSN=&SYSUT5 
~ XXSYSUT6 DO UNIT-SYSuA,SPACE=(TRK,(25,3),OSN=&SYSUT6 

XXSYSLIN 00 OSNAME=&~dADSET,OISP=(MOO,PASS),UNIT=SYSOA, 
XX ~PACE=(80,(500,10u)J 
IICuB.SYSIN 00 • 

llMVS031 

00001000 
00002000 
00003000 
OOOO~OOO 
00005000 
00006000 
00007000 
00008000 
00009000 
00010000 
00011000 
00012000 
00013000 
00014000 
00015000 
00016000 
00017000 
00027000 
0:)028000 
00029000 
00030000 
00031000 

00032000 
00033000 
0003~000 
00035000 
00036000 
00037000 
00:)38000 
00039000 
OOO~OOOO 
000~10(\0 

Figure 86. Using the SyftDftP option to Debug the Program TESTRUN (Part 1 of 11) 

220 



00001 
00002 
00003 
00004 
00005 
00006 
00007 
000·08 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00033 
00034 
00035 
00036 
00037 
00038 
00039 
00040 
00041 
00042 
00043 
00044 
00045 
00046 
00047 
00048 
00049 
00050 
00051 
00052 
00053 
00054 
00055 
00056 
00057 

100010 
100020 
10003'0 
100040 
100050 
100060 
.100070 
100080 
100090 

100100 
100110 
100120 
100130 
100140 
100150 
100160 
100170 

100180 
100190 
100200 
100210 
100220 
100225 
100230 
100240 
100250 
100260 
100270 
100280 
100290 
100300 
100310 
100320 
100330 
100340 

100350 
100360 
100370 
100375 
100380 
100395 
100405 
100410-
100420 
100440 
100450 
100460 
100470 
100480 
100490 
100500 
100510 
100520 
100521 

Figure 86. 

IDENTIFICATION DIVISION: 
PROGRAM-ID. TESTRUN. 

AUTHOR. PROGRAMMER NAME. 
INSTALLATION. NEW YORK PROGRAMMING CENTER. 
DATE-WRITTEN. JULY 12, 1968. 

DATE-COMPILED. JUN 11,1974. 
REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR 

COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS 
INPUT. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 

SOURCE-COMPUTER. iBM-360-H50. 
OBJECT-COMPUTER. IBM-360-H50. 

INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

SELECT FILE-l ASSIGN TO UT-2400-S-SAMPLE. 
SELECT FILE-2 ASSIGN TO UT-2400-S-SAMPLE. 

DATA DIVISION. 
FILE SECTION. 
FD FILE-l 

LABEL RECORDS ARE OMITTED 
BLOCK CONTAINS 100 CHARACTERS 
RECORD CONTAINS 20 CHARACTERS 
RECORDING MODE IS F 
DATA RECORD IS RECORD-l. 

01 RECORD-i. 
02 FIELD-A PICTURE IS X(20). 

FD FILE-2 
LABEL RECORDS ARE OMITTLD 
BLOCK CONTAINS 5 RECORDS 
RECORD CONTAINS 20 CHARACTERS 
RECORDING MODE IS F 
DATA RECORD IS RECORD-2. 

01 RECORD- 2. 
02 FIELD-A PICTURE IS x(20). 

WORKING-STORAGE SECTION. 
77 KOUNT PICTURE S99 COMP SYNC. 
77 NOMBER PICTURE S99 COMP SYNC. 

01 FILLER. 
02 ALPHABET PICTURE X(26) VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ". 
02 ALPHA REDEFINES ALPHABET PICTURE X OCCURS 26 TIMES. 
02 DEPENDENTS PICTURE X(26) VALUE "0123401234012340123401234 
"0". 
02 ,DEPEND REDEFINES DEPENDENTS PICTURE X OCCURS 2b TIMES. 

01 WORK-RECORD. 
02 NAME-FIELD PICTURE X. 
02 FILLER PICTURE X VALUE IS SPACE. 
02 RECORD-NO PICTURE 9999. 
02 FILLER PICTURE X VALUE IS SPACE. 
02 LOCATION PICTURE AM VALUE 1S "NYC". 
02 FILLER PICTURE X VALUE IS SPACE. 
02 NO-OF-DEPENDENTS PICTURE XX. 
02 FILLER PICTURE X(7) VALUE IS SPACES. 
01 RECORDA. 

Using the SYMDMP option to Debug the Program TESTRUN (Part 2 of 11) 

symbolic Debugging Features 221 



00058 
00059 
00060 
00061 
00062 
00063 
00064 
00065 
00066 
00067 
00068 
00069 
00070 
00071 
00072 
00073 
00074 
00075 
00076 
00077 
00078 
00079 
00080 
00081 
00082 
00083 
00084 
00085 
00086 

100522 
100523 
100530 
100540 
100550 
100560 
100570 
100580 
100590 
100600 
100610 
100620 
100630 
100640 
100650 
100660 
100670 
100680 
100690 
100700 
100710 
100720 
100730 
100731 
100740 
100750 
100760 
100770 
100780 

DATA NAMES 

A 
ALPHA 
ALPHABET 
B 
DEPEND 
DEPENDENTS 
FIELD-A 
FIELD-A 
FILE-1 
FILE-2 
KOUNT 
LOCATION 
NAME-FIELD 

A PICTURE S9(4) VALUE 1234. 02 
02 

PROCEDURE 
BEGIN. 

B REDEFINES A PICTURE S9(7) COMPUTATIONAL-3. 
DIVISION. 

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED 
AND INITIALIZES COUNTERS. 

STEP-l. OPEN OUTPUT FILE-l. MOVE ZERO TO KOUNT NOMBER. 
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE 
CONTAINED IN THE FILE. WRITES THEM ON TAPE, AND DISPLAYS 
THEM ON THE CONSOLE. 

STEP-2. ADD 1 TO KOUNT, ADD 1 TO NOMBER, MOVE ALPHA (KOUNT) TO 
NAME-FIELD. 
MOVE DEPEND (KOUNT) TO NO-OF-DEPENDENTS. 
MOVE NOMBER TO RECORD-NO. 

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-1 FROM 
WORK-RECORD. 

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26. 
NOTE THAT THE FOLLOWING CLOSES OUTPUT AND REOPENS IT AS 
INPUT. 

STEP-5. CLOSE FILE-l. OPEN INPUT FILE-2. 
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES OUT 
EMPLOYEES WITH NO DEPENDENTS. 

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8. 
COMPUTE B = B + 1. 

STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO "0" MOVE "Z" TO 
NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO 
STEP-6. 

STEP-8. CLOSE FILE-2. 
STOP RUN. 

CD I CROSS-REFERENCE DICTIONARY 

DEFN REFERENCE 

000058 
000044 000068 
0000113 
000059 000081 
000047 000070 
0000115 
000029 
000037 
000017 000064. 0{)Q072 000077 
000018 000077 000080 000085 
000040 000064 000068 000070 OGOO'/ll 
000053 
000049 000068 

NO-OF-DEPENDENTS 000055 000070 000082 
NOMBER 00'0041 000064 0000b8 000071 
RECORD-NO 000051 000071 
RECORD-1 000028 000072 
RECORD-2 000036 000080 
RECORDA 000057 
WORK-RECORD 000048 000072 000080 000083 

Figure 86. using the SyftDMP option to Debag the Program TESTRUN (Part 3 of 11) 

222 



PROCEDURE NAMES 

BEGIN 
STEP-1 
STEP-2 
STEP-3 
STEP-4 
STEP-5 
STEP-6 
STEP-7 
STEP-8 

CARD ERROR MESSAGE 

DEFN 

000061 
000064 
000068 
000072 
000074 
000077 
000080 
000082 
000085 

REFERENCE 

000074 
000074 

000083 

000080 

14 
58 

IKF1l83I-W 
IKF2190I-W 

IBM-370 IS ONLY VALID COMPUTER-NAME. IBM-360 SPECIFICATION IGNORED. 
PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED. ASSUMED POSITIVE. 

IEC130I SYSLIB DD STATEMENT MISSING 
IEF142I - STEP WAS EXECUTED - COND CODE 0004 
IEF285I VSCBL1.LMOD KEPT 
IEF285I VOL SER NOS= DB143 • 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.R0000011 DELETED 
IEF285I VOL SER NOS= 231400. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.R0000012 DEL~TED 
IEF285I VOL SER NOS= 333001. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.R0000013 DELETED 
IEF285I VOL SER NOS= 333001. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.R0000014 DELETE':> 
IEF285I VOL SER NOS= 231400. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.SYMDBG PASSED 
IEF285I VOL SER NOS= 333001. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.R0000015 DELETED 
IEF285I VOL SER NOS= 231400. 
IEF2851 SYS74162.T203933.RVOOO.TESTRUN.LKEDINP PASSED 
IEF285I VOL SER NOS= 333001. 
IEF2851 SYS74162.T203933.SVOOO.TESTRUN.R0000016 DELETED 
IEF285I VOL SER NOS= 333001. 
IEF285I SYS74162.T203933.SVOOO.TESTRUN.R0000017 SYSOUT 
IEF2851 VOL SER NOS= 231400. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.S0000018 SYSIN 
IEF285I VOL SER NOS= 231400. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.S0000018 DELETED 
IEF285I VOL SER NOS= 231400. 
IEF3731 STEP /COB / START 74162.2054 
IEF374I STEP /COB / STOP 74162.2058 CPU OMIN 12.17SEC STOR VIRT 128K 
XXIKED EXEC PGM=lEWL,PARM="XREF,LIST,LET',COND=(S,LT,COB),REGION=128K 00800190 
XXSYSLIB DD DSN=VSCBL1.LIB,DISP=SHR,UNIT=2314,VOL=SER=DB143 00800200 
XXSYSLIN DO DSN=&LKEDINP,DISP=COLD,DELETE) 00800210 
xx DD DDNAME=SYSIN 00800220 
XXSYSUT1 DD SPACE=C1024,(SO,20»,UNIT=C2314,SEP=SYSLIN) 00800230 
XXSYSLMOD DD DSN= &LMODLIB (MBRNAME) , UNIT= (2314 ,SEP= (SYSLIN, SYSUTl», *00800240 
XX DISP=CMOD,PASS),SPACE=(1024,(50,20,l» 00800250 
//LKED.SYSPRINT DO SYSOUT=G 
X/SYSPRINT DO SYSOUT=A 00800260 
IEF236I ALLOC. FOR TESTRUN LKED 
IEF237I 233 ALLOCATED TO SYSLIB 
IEF237I 250 ALLOCATED TO SYSLIN 
IEF237I 234 ALLOCATED TO SYSUT1 
IEF237I 235 ALLOCATED TO SYSLMOD 
IEF237I 230 ALLOCATED TO 3YSPRINT 

Figure 86. Using the SYKDKP option to Debug the Program TESTRUN (Part 4 of 11) 

Symbolic Debugging Features 223 



XXSYSLIB DO OSN=&S4,vOl=SER=&V4,UNIT=&U4,DISP=SHR 
XX uD DSN=&S5,VOL=SEk=&V5,JNIT=&U5,DISP=SHR 
XX UO DSN=&S9,VOL=&V~,UNIT=&U9,DISP=SHR 
XXSiSUTI 00 UNIT=(SY~OA,SEP=(SYSLIN,SYSLMOD)),SPACE=(1024,(50,20)) 
IllKEO.SYSPRINT 00 SYSOUT=S 
X/SYSPRINT DO SYSOUT=A 
XXG~ EXEC PGM=*.LKEO.SrSlMOO,PARM='&PARMGOI~REGION=&RGNGO,COND=&:ONO~O 
XXSTEPlIB DO OSN=&S6,VOL=SER=&V6,UNIT=&U6,OISP=SHR 
XX uO OSN=&S8,VOl=SEk=&V8,UNIT=&Ua,DISP=SHR 
XX uD OSN=&S1,VOL=SEK=&V1,UNIT=&U1,DISP=SHR 
XX uO OSN=&SI0,VOL=&VIO,UNIT=&UI0,0ISP=SHR 
IIGu.SYSOUT 00 SYSuUT=S 
X/SYSOUT DO SYSOUT=A 
XXSYSUOUMP DO &GOOMP 
IIGu.SYSDBOUT DO SYSDUT=S 

~IIGu.SYSUT5 00 OSN=&&SYSUT5,DISP=(OlD,PASS) 
~-~/Gu.SAMPLE DO UNIT=2~00,LABEL=(,NL"DISP=(NEW,OELETE) 

IIGu.SYSOBG DO * 
II 

00041000 
00048000 
00049000 
00050000 

00051000 
00052000 
00053000 
00054000 
00055000 
00056000 

00051000 
00058000 

Figure 86. Using the SYMDMP option to Debug the Program TESTRUN (Part 5 of 11) 

224 



~SYMDMP CONTROL CARDS 

~TESTRUN,SYSUT5 

(!)-70,ON 1,4, (HEX) ,KOUNT ,I'4AMf-FIELD,NO-OF-DEPENOENTS,RECORD-NO 

0-S1 ,(HEX),WORK-RECORD,B 

~~ESTRUN AT CARD 000070 
LaC CARD LV NAME 

Oj5158 00004U 77 KOUNT 

Ci51S8 00004~ 02 NAME-FIELD 

~OOt 

A 
AN 
ANt: 
o 
Dt: 
F 
FO 
Nfl 
NB-S 
NO 
NO-OL 
NO-OT 
ND-SL 
ND-ST 
Nf: 
NP 
NP-S 
• 

OiS1A3 00005~ 02 No-OF-DEPENuENTS 

01579A 00005! 02 RECORD-NO 

TEST~UN AT CARD 000070 

Lee CARD LV NA,ME 

C;5i58 COO04u 77 KOUNT 

a 751Sd 00C04;,J 02 NAME-FIELD 

OSiA.;) oel)osZI 02 NO-OF-OEPENuENT S 

CiSHA 000054 02 Rf:CORt-NO 

NO ERRORS FOUND IN CONTROL CARDS 

C!)........ TYPE CODES USED IN SY'MDMP OUTPUT 

MEAN H'G 

.. ALPHABETIC 
,. ALPHANUMERIC 
.. ALPHANUMERIC EDITED 
,. DISPLAY (STERLING NONREPORT) 
.. DISPLAY EDITED (STERLING REPORT) 

FLOATING POINT (COMP-1/COMP-2) 
• FLOATING POINT DISPLAY (EXTERNAL FLOATING POINT) 
.. NUMERIC BINARY UNSIGNED (COMP) 
,. NUMERIC BINARY SIGNED 
= NUMERIC DISPLAY UNSIGNED (EXTERNAL DECIMAL) 
.. NUMERIC DISPLAY OVERPUNCH SIGN LEADING 
.. NUMERIC DISPLAY OVERPUNCH SIGN TRAILING 
= NUMERIC DISPLAY SEPARATE SIGN LEADING 
.. NUMERIC DISPLAY SEPARATE SIGN TRAILING 
,. NUMERIC EDITED 
.. NUMERIC PACKED DECIMAL UNSIGNED (COMP-3) 
.. NUMERIC PACKED DECIMAL SIGNED 
,. SUBSCRIPTED 

TYPE VALUE 

NB-S +01 
(HEX) 0001 

AN A 

AN •• 
(HEX) 0000 

NO •••• 
(HEX) 00000000 

TYPE VALUE 

NB-S +05 
(HEX) 0005 

AN E 

AN 3 

NO 0004 

figure 86. Using the SYMDMP OFtion to Debug the Program TESTRUN (Part 6 of 11) 

symbolic Debugging Features 225 



TESTRUN AT CARD 000010 
LeC C"RD LV NAME TYPE VALUE 

0;~~58 ce004u 17 KOUNT NB-S +09 
(HEX) 0009 

OB1Sd 00004'.t 02 NAME-FI ELD AN 

O!:1A~ 00005~ 02 NO-OF-DEPEN~ENTS AN 2 

C157SA 00005J. 02 RECORD-NO NO 0008 

1 ESTKUN AT CARD 000010 
LeC CARD LV NAME TYPE VALUE 

e i 5; 58 0OO04u 77 KOUNT NB-S +13 
(HEX) 0000 

C151S8 aa(,a4~ 02 NAME-fIELD AN M 

C157A3 00005;;, 02 NO-OF-DEPENuENTS AN 

C 75 79A 00005A. 02 RECORD-NO NO 0012 

T E STRUN "T CARD 000010 
Lec CARD LV NAME TYPE VALUE 

'15158 00004u 71 KOUNT NB-S +11 
(HEX) 0011 

0; 51So 00004':11 02 NAME-FIELD AN Q 

a;!: 1A3 00005;.. 02 NO-OF-DEPENuENTS AN 0 

('j 51SA 00('05J. 02 RECORD-NO NO 0016 

ldlRUN "T CARD 000010 
Lee CARD LV NAME TYPE VALUE 

015158 0OO04u 17 KOUNT NB-S +21 
(HEX) 0015 

Clj79t1 00004~ 02 NAME-F'IELD AN U 

Oi51H 00005;;1 02 NO-OF-DEPENuENTS AN 4 

CiSHA 00005J. 02 RECORD-NO NO 0020 

TESTRUN AT CARD 00001C 
LeC CARD LV NAME TYPE VALUE 

C HiSS 00004') 71 KOUNT NB-S +25 
(HEX) 0019 

C i 5178 00004:.1 02 NAME-FIELD AN Y 

C 151A3 00005:1 02 NO-OF-DEPENuENTS AN 3 

OJ 5HA 00005J. 02 RECORD-NO NO 0024 

(E)-rESTRUN AT CARD 000081 
lec CARD LV NAME TYPE VALUE 

00u04u 01 weRK-RECoRl) 
C 15 7S8 (HEX) C140FOFO FOF14005 E8C340FO 40404040 40404040 
C 157';3 .... "''"'V'7 " ... NAMf=flflO A ., A 
Oi5HS 000051.1 02 FILLER AN 
Oi57C;A 00005! 02 RECORD-NO NO 0001 
0;51SI: 00005, 02 FILLER AN 
Ci51CiF 00005..., 02 LOCATION A NYC 
C'i 51A2 OOOOS't 02 FIllER AN 
C; 51A3 00005:1 02 NO-Of-OEPENIJENT S AN 0 
a BiA5 OOOOSg 02 FILLER AN 

C151eo 00005~ 02 B NP-S *1*2*3* 
(HEX) F1F2F3C4 

Figure 86. Using the SJtlDKP Option to Debug the Program TESTRUN (Part 7 of 11) 

226 



COBOL ABEND DIAGNOSTIC AIDS 

PFCGIlAM TEST RUN 

(D----lAST PSW BEFO"E AbEND FF8500u7f:G075F46 SYSTEM COMPLETION CODE = OC7 

(D----LAST CARD NUMdt:R/VERB NUM8ER EJlECUTED -- CARD NUMBER OOOOH/VERB NUMBER 01. 

r;;'\ FLOW TRACE 
\V--TESTRUN 0000"o 000072 000068 u00072 000068 000072 000068 000072 000077 0000(10 

CD-IASI<. GLOBAL TABLE 

S ~Vt AREA 

HITCH 
TALLY 
sellT SAVE 
ENTRY-SAVE 
SORT CORE S41E 
HT COOt: 
sun RET 
kOl'I<.ING CELLS 

seRT FILE SHE 
SORT MODE S.LE 
PH-VN TBL 
IGT-VN TBL 
HSi::RVEO 
U/IGTH OF V., TBl 
tIlBR RET 
RESeRVED 
(BG R14SAVE 
COBUl I NOIC ... TOR 
A( INIT 11 
(HUG TA8LE PTR 
SLBCOM ADDR 
seRT-MESSAGe 
S ¥ SuUT DCNAf'lE 
" ESERVED 
(CBLL 10 
C(MPILED POlNTER 
COUNT TABLE ADDRESS 
HSERVED 
CBG RllSAVE 
C(UNT CHAIN ADDRESS 
PRell CELL PTR 
UNLSED 
1 A LENGTH 
HSI:RVED 
PCS LIT PTR 
(HUGGING 
CC fOR INIT.AL INPUT 
(VERFLOW CELLS 

EL CELLS 
CECIlADR CELLS 
f Ie CELLS 
C E 8UG TKANSfl:R 
(HUG CARD 
(tEUG BLL 
CEBUG VLC 
Cf8UG MAX 
HSI:RVED 
DEBUG PTR 
HI''' STORAGt 
Ell CEloLS 
~LC CELLS 
S8L CELLS 
INDEX CELLS 
(THR (SEE MI:MORY MAP) 

I.PSI=OCO('oOuo 

LOC 

0759Du 
0759fu 
075A1u 
D75A11l 
075A 1 .. 
o 75AZ ... 
01SA2- .. 
075AZo 
015AZ .. 
075AZe 
075A3u 
075A5u 
075A 70 
075A9u 
075ABu 
075ADu 
075AFu 
075Blu 
075B3u 
075850 
015800 
07580'0 
075860 
075801. 
075B 7u 
07587'0 
075B70 
075B 71 
07587u 
075B7 .. 
075B8u 
075B8't 
075B8d 
075B81. 
075B9't 
015B9~ 
075B90 
075B9u 
075B9 .. 
075 BAu 
075BAIl 
015BAI. 
075BBo 
075BB't 
075B8:.1 
0758BI. 
0758(; .. 
0758C" 
0758CI. 
(NONE. 

0756011 
(NONt:) 
075601. 
(NONEI 
(NONEI 
(NONEI 
( NONE~ 
(NONEI 
(NONEI 
(NONEI 
0758Eu 
075Bco 
(NONEJ 
(NONEI 
(NONEI 
075Bfu 
075C1u 

DATA DIVISION DUMP OF TESTRUN 

VALUE 

0030C4C2 
OOOOOOlA 
00076176 
3D02804B 
00000000 
00000000 
00075C9C 
00000000 
0000 

00074f80 00074890 50075F24 
000758C8 00075688 00075758 
00075C 18 

0000 
04400000 
000756B8 
50077EFO 
00000000 
20000000 
00000000 
00075793 
000758C8 
00075C18 
00000000 
00000000 
00000000 
00000000 
00000000 
00000000 
0000 
00 
00 
40075f3C 
6007839C 
000756B8 
00000558 
00078098 
SYSOUT 
E3 
80 

50075F24 12D474E8 
00075758 0007AA1C 
46075f36 0007AC10 
58800108 F870D210 
00000000 00000000 
01000000 00075D8C 
500760E6 00018C80 
000756B8 00075758 
00000000 00000000 
00000000 00000000 

OOOC 
00075740 
00000000 
00000000 
00075C9C 
00000000 
00075C98 
00000000 00 
000000 
00000000 
00000000 
00000000 
00000000 

00000000 

00000000 

000756B8 0007AA 70 00075758 

00000000 

00000000 00000D1C 
00000000 00000000 

0007AC10 
0007BFE8 
80075900 
C0560700 
00000000 
00076F6A 
0007795A 
0007AA1C 
00000000 
00000000 

00075779 00075793 00075DF6 00075DF6 
OA00098A 15130000 

600lFC3C 40075F3C 0007AA7() 00075900 
0007AA iC 000 7AA 70 00076082 000156B8 

00075900 00075900 OOOOOOlA 000758CII 
00076082 000756B8 00075C9C 00015C18 
000757F4 000000 1A De FOFOOO 00000000 
5820DlA 8 07F20000 000009C8 00014EOO 
00000000 00000000 00000000 00075D9E 
60075048 00075DAO 00000000 OOOOOOlA 
00075960 80075900 00075900 OOOOOOlA 
00000000 00076082 000756B(I 00075C9C 
00000000 00000000 00000000 00000000 

00000000 80075900 OOOODOO() 00000000 

Figure 86. tising the SYMDKP option to Debug th~ Program TESTRUN (Part 8 of 11) 

symbolic Debugging Features 227 



Lee CARD LV NAME 

® • 000017 FD FILE-1 

C151f4 
Ci! 814 
C15834 

00002d 01 RECORO-l 

DATA DIVISION DUMP OF TESTRUN 

TYPE VALUE 

QSAM FILE: CLOSED ORGANIZATION: PHYSICAL SEQUENTI~L 

LAST SUCCESSFUL 110 STMT: CLOSE FILE STATUS: 00 
DCB 00000000 00000000 00000000 00000006 00830000 0001AA01 00004000 000000 

46000001 000757BC E2C1D4D7 03e54040 02000048 00000001 08000001 oooooe 
00000000 00000001 00000001 00000001 00000014 00000001 00000000 000000 

IKf1821 UNINITIALllED OR INVALID BASE ADDRESS FOR DATA ITEM ABOVE. 

C!)~------~.~00002~ 02 fIELD-A AN 

IKf1821 UNINlTIALIZED OR INVALID BASE ADDRESS FOR DATA ITEM ABOVE. 

® • 0000ld 

(if 59()0 
015920 
015940 

~C1"1O 000030 
000037 

P C15158 000041.1 
C 15 i 5A 000044 

00004~ 

C 15160 00004j 
000044 

@---015160 
0151t! 
015162 
01516.::1 
015164 
C/SltS 
(15166 
C15U7 
015768 
C15169 
01576A 
01 SHS 
(/516e 
C15160 
C 1516t: 
C1516f 
015710 
C,5111 
0;5712-
ClS"11..; 
05174 

FD FILE-2 

01 RECORD-2 
02 FIELD-A 
77 KOUNT 
77 NCMBER 

01 FILLER 
02 ALPHABET 
02 ALPHA 

(SUBH 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

DCB 

QSAM FILE: OPEN ORGANIZATION: PHYSICAL SEQUENTIAL 
LAST SUCCESSFUL 1/0 STMT: READ FILE STATUS: 00 

00000000 00000000 00000000 00000005 0083C300 0501AAOO 00004000 0007A8 
46077F8C 900758C8 00ce4BOO 007DC414 12D474E~ 00BEI01B 01000001 000000 
20202020 0007A920 0007AAD4 0007AA70 00000014 00000001 00000000 00~06A 

AN A 0001 NYC 0 
NB-S +26 
NB-S +26 

AN ABCDEFGHIJKL~NOPQRSTUVWXYZ 

"'AN 

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
o 
P 
Q 

R 
S 
T 
U 

Pigure 86. Using the SYMDMP option to DebQg the Program TESTBUN (Part 9 of 11) 

228 



DATA DIVISION DUMP OF TESTRUN 

Lee CARD LV NAME TYPE VALUE 

015175 22 V 
C 15116 23 W 
C 15777 24 X 
(;; 5718 25 Y 
Ci 5719 20 Z 
01571A 00004j 02 DEPENDENTS AN 01234012340123401234012340 

000047 02 DEPEND *AN 

0571A 
(SUBU--® 

1 0 
(15116 2 1 
01571C 3 2 
Ci511D 4 3 
C; 571E 5 4 
(; 571F 6 0 
C 1 ~ lea 7 1 
Ci 51H 8 2 
C 151Si. 9 :3 
C; 51C~ 10 4 
(i 51C4 11 0 
0751S5 12 1 
Cl5H6 13 2 
0157e? 14 3 
(B7El8 15 4 
Ci51S9 16 0 
C151BA 17 1 
C; 518B 18 2 
01518C 19 3 
075780 20 4 
Ci5HE 21 0 
Oi578F 22 1 
C,ii 5790 23 2 
(ilS7H 24 3 
(1575L 25 4 
C,151S3 26 0 

000040 01 WORK-RECORD ~ 
(75158 000049 02 NAME-FIELD AN A 
(:;57«;5 OC005u 02 FILLER AN 
0157SA 000054 02 RECORD-NO NO 0001 
(ii51SE 00005,- 02 FILLER AN 
C7 57Sf 00005.;) 02 LOCATION A NYC 
C1S7A2 000054 02 fILLER AN 
015 7A3 DODOS:; 02 NO-OF-DEPENuENTS AN 0 
C151A5 000050 02 FILLER AN 

00005] 01 RECORDA 
C;51BC aC005d 02 A ND-OT +1234 
(;5180 00005~ 02 B NP-S *1*2*3*;:--0 

(HEX) FlF2F3C4 

lOC CARD LV NAME TYPE VALUE 

END OF COBOL DIAGNOSTIC AIDS 

Figure 86. Using the SYMDMP Option to Debug the Program TESTRUN (Part 10 of 11) 

Symbolic Debugging Features 229 



IEC130I SYSDTERM DO STATEMENT MISSING 
A 0001 NYC 0 
B 0002 NYC 1 
C 0003 NYC 2 
D 0004 NYC 3 
E 00·05 NYC 4 
F 0006 NYC 0 
G 0007 NYC 1 
H 0008 NYC 2 
I 0009 NYC 3 
J 0010 NYC 4 
K 0011 NYC 0 
L 0012 NYC 1 
M 0013 NYC 2 
N 0014 NYC 3 
o 0015 NYC 4 
P 0016 NYC 0 
Q 0017 NYC 1 
R 0018 NYC 2 
S 0019 NYC 3 
T 0020 NYC 4 
U 0021 NYC 0 
V 0022 NYC 1 
W 0023 NYC 2 
X 0024 NYC 3 
Y 0025 NYC 4 
Z 0026 NYC 0 
COMPLETION CODE - SYSTEM=OC7 USER=OOOO 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.LMODLIB PASSED 
IEF285I VOL SER NOS= DC151 • 
IEF285I VSCBL1.LIB KEPT 
IEF285I VOL SER NOS= DB143 • 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.SYMDBG DELETED 
IEF285I VOL SER NOS= 333001. 
IEF285I SYS74162.T203933.SVOOO.TESTRUN.R0000021 SYSOUT 
IEF2851 VOL SER NOS= 231400. 
IEF285I SYS74162.T203933.SVOOO.TESTRUN.R0000022 SYSOUT 
IEF285I VOL SER HOS= 33300l. 
IEF2851 SYS74162.T203933.SVOOO.TESTRUN.R0000023 DELETED 
IEF285I VOL SER NOS= 333001. 
IEF2851 SYS74162.T203933.SVOOO.TESTRUN.R0000024 DELETED 
IEF285I VOL SER NOS= 231400. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.R0000025 DELETED 
IEF285I VOL SER NOS= L00001. 
IEF285I SYS74162.T203933. RVOOO.TESTRUN. S0000026 SYSIN 
IEF285I VOL SER NOS= 231400. 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.S0000026 DELETED 
IEF285I VOL SER NOS= 231400. 
IEF373I STEP /GO / START 74162.2059 
IEF3741 STEP /GO / STOP 74162.2105 CPU OMIN 09.72SEC STOR VIRT 64K 
IEF285I SYS74162.T203933.RVOOO.TESTRUN.LMODLIB DELETED 
IEF285I VOL SER NOS= DC151 • 

. LEF375I JOB /TESTRUN / START 74162.2054 
IEF376I JOB /TESTRUN / STOP 74162.2105 CPU OM IN 24.96SEC 

Figure 86. Using the SyftDMP opti~n to Debug the Program TESTRUN (Part 11 of 11) 

230 



The compiler, linkage editor, COBOL load 
module, and other system components can 
produce output in the form of printed 
listings, punched card decks, diagnostic or 
informative messages, and data sets 
directed to tape or mass storage devices. 
This chapter describes the outpu t listings 
that can be used to document ana debug 
programs and the format of the output 
modules. The same COBOL program is used 
for each example. "Appendix A: Sample 
Program output" shows the output formats in 
the context of a complete listing generated 
by a sample program. 

The output of the compilation job step 
may include: 

• A printed listing of the job control 
statements 

• Device allocation and deallocation 
messages from the job scheduler 

• A printed listing of the statements 
contained in the source module 

• A glossary of compiler-generated 
information about data 

• A printed listing of the object code 

• Compiler diagnostic messages 

• System messages 

• Disposition messages from the job 
scheduler 

• An object module 

• A cross-reference listing 

• A cond ensed list ing containing source 
card numbers and the location of the 
generated instruction for each verb 

• Compiler statistics 

• Reformatted source code, either with or 
without a compilation, through the 
lister feature of the OS/VS COBOL 
Compiler. For details, see the chapter 
"Lister Feature." 

Diagnostic messages associated with the 
compilation of the source program are 
automatically generated as output. The 
other forms of out put may be requested in 
the PARM parameter in the EXEC statement. 
The level of diagnostic messages printed 
depends upon the FLAGW or FLAGE options. 

All output to be listed is written on 
the device specified by the SYSPRINT DD 
statement. Li.ne spacing of the source 
listing and the number of lines per page 
can be controlled by the SPACEn and LINECNT 
options. 

Figure 87 contains a portion of the 
compiler output listing shown in "Appendix 
A: Sample Program Output. It Each type of 
output is numbered. and each format within 
each type is lettered. The text following 
Figure 87 is an explanation of the 
illustration. 

output 231 



CD 

IIT~STRUN JOB ('A=~C~O'),'BETHKE 1550 J63',MSGlEVEl=(1,1),ClASS=A, 
II MSGClASS=~ 
***~ETUP TAPE SCRTCH RING=YES 
II EXEC CVS2'OCl G, 
II PARM.tOB='uMAP,P~AP,SXREF,FlOW~10,SV~DMP,QUGTE,NJRES', 
II GODMP='SYSuUT=S', 
II SYSUT5='&&SY~UT5,DISP=(,PASS)', 
II PARM.lKED='lISf,lET,XREF' 
XXCVS20ClG PROC PROG=I~FCBLOO, 
XX ~OBDMP='SYSOUT=A', 
XX "UDMP=DUMMY, 
XX PARMCOB='lOA',RGN~Oo=128K,CONDCOB='(16,lT)', 
XX PARMlKD='lIST,XREf,LcT',RGNlKED=128K,CONOLKD='(5,lT,COB)', 
XX PARMGO=",RGNGO=l~2K,CONOGO='(5,lT,COB),(5,lT,lKEDJJ', 
XX ~OSET='&GOSET',GO='Gu', 
XX ~1=CBLCOMPl,V1=C~LDEV,U1=SYSDA, 
XX ~~=CBLCOMPl,V2=C8lDEV,U2=SYSDA, 
XX ~3=CBlUPM,V3=CBlD~V,U3=SVSDA, 
XX S4=CVS20LIB,V4=CBLDEV,U4=SYSDA, 
XX ~5=CVS20lIB,V5=C8LDEW,U5=SVSDA, 
XX ~6=CVS20lIB,V6=CBLDEV,U6=SYSDA, 
XX ~7=CVS20lIB,V7=C8LDcV,U7=SYSDA, 
XX ~8=CVS20lIB,V8=CBLDEV,UB=SYSDA, 
XX ~9=CVS20lIB,V9='ScR=:Bl)EV',U9=SYSDA, 
XX ~10='SYS1.lINKlIB',V10=,J10= 
XXCuB EXEC PGM=&PROG,RE~ION=&R~NCOB,COND=&CONDCOB, 
XX PARM='lOA,NOLIB,SlZE=128K,BUF=12K,P~A,D~A,SXR,OPT,RES,&P~RM:OB' 
XXSTEPLIB DO DSN=&S1,VOL=SER=&V1,UNIT=&U1,DISP=SHR 
XX DO DSN=&S2,VOL=SER=&V2,UNIT=&U2,DISP=SHR 
XX DO bSN=&S3,VGL=SER=&V3,UNIT=&U3,DISP=SHR 
IICuB.SYSPRINT DO ~YSuUT=S 
X/S~SPRINT DO SYSOUT=A 
XXSYSUDUMP 00 &COBDMP 
XXSYSUT1 DO UNIT=SYSuA,SPACE=(TRK,(25,3),JSN=&SYSUT1 
XXSYSUT2 DO UNIT=SYSuA,SPA:E=(TRK,(25,3)),DSN=&SYSUT2 
XXSYSUT3 DO UNIT=SYSvA,SPACE=(TRK,(25,3)),DSN=&SYSUT3 
XXStSUT~ DO UNIT=SYSuA,SPACE=(TRK,(25,3)),)SN=&SYSUT4 
XXStSUT5 DO UNIT=SYSuA,SPACE=(TRK,(25,3)),DSN=&SYSUT5 
XXSYSUT6 DO UNIT=SYSuA,SP~:E=(TRK,(25,3»,DSN=&SYSUT6 
XXSYSlIN 00 DSNAME=&~OAuSET,OISP=(MOD,PASS) ,UNIT=SYSD~, 
XX ~PACE=(80,(500,10v)) 
IICub.SYSIN DO * 
IEf23bI ALLOC. FOR TESTRUN C08 
IEF237I 5CO ALLOCATED TO STEPl,B 
IEf2311 5CO ALLOCATED TO 
IEf237I 5CO ALLOCATED TO 
IEF237I JES ALLOCATED TO SYSPR!NT 
IEF237I JES ALLOCATED TO SYSUOJ~P 
IEF237I 272 ALLOCATED TO SYSUT~ 

IEFt37I 150 ALLOCATED TO SYSUT~ 
IEf237I 272 ALLOCATED TO SYSUi~ 
IEF237I 272 ALLOCATED TO SYSUT~ 
IEf237I 272 ALLOCATED TO SYSUT~ 

IEF2371 272 ALLOCATlD TO SYSUTc 
IEF237I 272. ALLUCATED TO SYSUN 
IEf237I JES ALLOCATED TO SYSIN 

Figure 87. Examples of Compiler Output (Part 1 of 4) 

232 

llMVS037 

00001000 
00002000 
00:)03000 
OOOOftOOO 
00005000 
00006000 
00007000 
00008000 
00009000 
00010000 
00011000 
00012000 
00013000 
0001ftOOO 
00015000 
03016000 
00017000 
03:>27000 
00028000 
00029000 
00030000 
00031000 

00032000 
00033000 
OOOHOOO 
00035000 
00036000 
00037000 
00038000 
J0039000 
00040000 
00041000 



.)(,(.01 
J(002 
Gu(03 
J(,(;~4 

J(,C';5 
oece6 

Que C2 
U..JC E3 
COC/:4 
00Cb 
Ju0co 

CD 

IOENTIFICATION uIVISION. 
PROGRAM-IO. Tt~TkUN. 

AUTHOR. PROGRAMMLR ~AME. 

10(01IJ 
WOu2" 
10003IJ 
10u04" 
1 0005.) 
10GOt,u 

INSTALLATION. PALO ALTO O~VELOPMENT CENTER. 
DATE WRITHN. AJGLlST c, 1976. 

DATe-COMPILED. ~UG l4,1976 

10074u 
lJU751J 
100701.1 
10017u 
le07tlv 

STEP-7. IF NO-Gr-JtPENOENTS IS EQUAL TO "0" MOVE 
NO-OF-OcPENIJE~T!). EXI-'IBIT NAMED 1I0RK-RECORD. 
ST=P-6. 

STEP-B. CLOSE FlLt-2. 
STOP RUIIl. o ®CD CD 

INTKNl IMr-IE LVL 
DNM=1- ... 'ttl FO 
Otl.M=I-,,('8 01 
ON1~=1-.d;j9 02 
ONM=i-c;.u6 FO 
ONM=1-",..:6 01 
DNM=1-,.;,. 7 02 
ON "1 =.i.-", ° 7 77 
DNI1= 1-.. 02 77 
ONM=1-.. ~B 01 
DNM=l-JLl (2 
ONM=l-.;.jQ 02 
01'11'1=1-.;)48 02 
DNM=1-.;;c, 8 02 
ONM=1-.d34 01 
ONM=1-"?utl 02 
ONM=1- ... 28 02 
ON'1=1-'t42 02 
ONM=1-"?61 02 
DNM=1-"?7!> 02 
ONM=l-4':13 02 
DN:~=2-",00 02 
ON'1=",-u<:6 02 
ONM=<:-IJ40 01 
01'11'1=2-.)00 02 
ONM=2- .. .t11 02 

CD TGT 

SAVe: AREA 
SWITCH 
TALLY 

SOURC", '44ME 
F IL E-L 
RECORu-i 
FIELlJ-A 
F IlE-, 
RECOR..,-Z 
FIELD-A 
KOUNT 
NOMB£n. 
F [LLE~ 
AlPHAoET 
ALPHA 
OEP':NuENTS 
DEPEN.; 
WORK-I\E~JkO 

NAME-t-Ie:lD 
FILLcl\ 
RECORu-i~u 

FIlU:K 
LOCAT!u'< 
FILlEK 
NO-OF-DEPENDENTS 
FILLtK 
RECOR.)A 
A 
B 

MEMOR¥ MAP 

SJRT SAVE 
ENTRY-SAVE 
SORT CORE SIZE 

00318 

00318 
00360 
00364 
00368 
0036C 
00370 

BAS E 
OCB=OI 

Bl= 1 
Bl=1 

OCf:\=02 
Bl=2 
BL=2 
P·L=3 
Bl=3 
E1L=3 
BL=3 
PL=3 
BL=3 
Bl=3 
BL=3 
Bl=3 
Bl =3 
BL=3 
BL=3 
Bl=3 
BL=3 
BL=3 
BL=3 
BL=3 
Bl=3 
BL=3 

lITERAL PLOl (HEX) 

"Z" TO 
GO TO 

CD CD 
DISH I NTRNl NAME 

DNM=1-148 
000 0·"1 .... = 1-168 
003 ONM=1-1B'3 

)NM=1-206 
000 ONM=1-226 
000 DNM=1-247 
000 0~11= 1-267 
002 DNM=I-282 
008 ONM=i-2Q8 
008 DNM=1-312 
008 DNM= 1-3 30 
022 )~"'=1-348 
022 DNM= 1-368 
040 JIIlM=1-384 
040 0'4"'=1-408 
041 DNM=1-428 
042 DNM=1-442 
046 DNM=1-461 
041 ONM=1-475 
04A O~"'= 1-493 
04B ONM=2-000 
040 ONM= 2-026 
058 DNM=2-040 
058 DNM=2-060 
058 GN~=2-071 

00:> t:!ll (l IT +0 J 
C C5Cl;l (LI 1+Z .. ) 

00000001 0"lAIC10 0000001C 00000008 OOOOODOO 48140000 
00044000 0IJOuuv00 COOOOOOO 

DI~PLAY LITERALS (BCl)) 

(iC5D4 (lTl+3,,) '\o/ORK-RECiJRu' 

I

REGISTER 

CD RE ... 6 
xEG 7 
REG 8 

CD PGT 

DEBUG LINKAGE A~EA 
OVEkFLOW CELLS 
VIRTUAL CEllS 
PKUCEOURE NAME ~ELLS 
GENEKATED NAME ~ELlS 
OCB AuORESS CELLS 
VNI CELLS 
LITERAL S 
iJ[ SPLAY LITERAl~ 

PROCEDURE BlOC~ CELLS 

AS~l GNMEIH 

/jl =3 
t3L =1 
til =2 

00560 

00560 
0056C 
00570 
0059C 
0059C 
005AO 
005A8 
005BO 
00504 
D05EO 

(D..lORKING-STLJRII ... E STAf<TS AT LOCUIUr-. OOOAO FOR A l.ENGTH OF 00060. 

Figure 87. Examples of Compiler output (Part 2 of 4) 

CD 
DEFI'HTlO\j 

OS O:LZO 
OS 2J( 

OS OCL20 
OS 2J( 
OS 1-i 
OS IH 
OS OCL52 
OS 26C 
OS lC 
OS 2t..~ 

OS 1C 
OS OCl20 
JS 1: 
OS IC 
OS 4: 
OS IC 
OS 3C 
OS 1: 
DS 2( 
OS 1C 
OS OCL4 
DS 4C 
OS 4P 

CD 
JSClGE 
QSb.M 
:;POUP 
DJSP 
QSAM 
GP~UP 
DIS P 
C(l!olP 
CQ"IP 
GROUP 
OISP 
[lISP 
OISP 
)JSP 
GROLJP 
JISP 
DISP 
[,ISP-~IM 

OISP 
C'ISP 
OISP 
()ISP 
DISP 
GPOUP 
DISP-NM 
COMP-3 

CD 
R J ;t M 

F 

(1 

J 

output 233 



0 ® ® ® @ 0 ® 
61 *BEGIi~ 

0005E4 PN=02 EQU * 
OC05E4 START EQU * 
0005E4 5t1 BO C 080 l 11 ,oao( 0,121 PBl=l 
0005E8 sa FCi C 02 .. L 15,024(0,12) V( IlBOFUHI 
0005EC 0.5 If bALR 1,15 
0005EE OOuO~03D DC X'OOOOO030' 

64 *STEP-l 
0005F2 PN=03 EQU * 

CD 0005F2 58 FO C 024 L 15,024( 0,12) VI IlBOflWlI 
0005F6 05 IF BALR 1,15 
0005F8 00uOO040 DC X'OOOOO040' 

6ft DPEN .J005FC 58 fO C 028 L 15,028(0,12) V( IlBOOB(4) 
000600 05 ft- BALR H,15 
000602 5d III C 040 L 1,040(0,12) DCB=l 
00000«> 50 40 1 024 L 4,024(:),1) 
00060A 0": O~ 4011 C 020 MVC 01113,4) ,020(12) V(tLBOEXTO) 
000610 511 10 D 234 ST 1,23"( 0, 13) SA3=1 
0006.14 92- Of o 234 MVI 234(13),X'OF' SA3'"'1 

*S1AT1STICS* saURCE RECORDa 86 DATA DIVISION STA1EMfNTS = 25 PROCEDURE DIVISION SrArE~ENTS = 

® 

*OPTIONS IN ErfECT* 
*OPTIUNS IN EFfECT* 
*UPTIONS IN ErfECT* 
*OPTluNS IN ErfECT* 
*OPTIDNS IN EffECT* 
*OPTIUNS IN EifECT* 
*OPTIUNS IN EffECT* 

OTA NAME,) 

A 
ALPHA 
ALPI-ABET 
B 
OcPE'~D 
DEPENDENTS 
FIELO-A 
FIELO-A 
fiLE-l 
FlLE-2 
KOl;NT 
LOCATION 
N~ME-FIELO 

ND-Of-DEPENOLNTS 
!,;CM8ER 
RECORD-NO 
RECOKD-l 
RECCRD-2 
RECGKDA 
WCRK-RECORD 

PROCeDURE "'AMeS 

BEGIN 
STEP-l 
STEP-2 
STEP-3 
STEP-4 
STEP-5 t STEP-6 
STEP-7 
STEP-8 

SIZE = 1~1072 BUF 12288 LINECNT = 57 SPACEl, FLAGW, SEQ, SOURCE 
DHAP, PMAP, NOCLIST, NOSUPMAP, NOXREF, SXREF, LOAD, NODECK, QUOTE, ~OTPJN:, FLO~= 

NOTEkM, NONUM, NOBATCH, NONA~E, COMPILE=Ol, NOSTATE, NJREStDENT, NODYNAM, NDLI8, NQSYNTAX 
OPTI~IL~, SYMDMP, NOTEST, VERB, lWB, SYST, NOE~DJOB, NJLVL 

NOLST , ~JFOfCK,NOCDECK, LeOL2, L120, DUMP, NOADV , NOPRtNT, 
~OCOUNI, NOVBSUM, NOVBREF, LANGLVL(2) 
DEBUG rlL~ SIZE = 2 tiLOCKS, 1024 BYTES 

CROSS-REFERENCE DieT IONARY 

OEFN REFERENCE 

(;00058 
000044 000068 
.;00043 
,,00059 000081 
000041 000070 
.100045 
;)00029 
()00037 
000011 0000b4 000012 000077 
000C18 000011 000080 000085 
liJOO40 000064 000068 000010 000014 
1100053 
:JOO049 000068 
000055 000010 OU0082 
UOO041 000064 000068 000071 
000051 000071 
000028 000072 
1100036 000080 
000051 
liOO048 000012 000080 000083 

!-EFN REFERENCE 

000061 
OOOCl64 
000068 000014 
000072 000074 
CiuOO74 
000077 
000080 000083 
,,00082 
000085 000080 

Figure 87. Examples of Compiler Output '(Part 3 of 4) 

234 

21 

10 



ERROR MESSAGE 

®S I
CARD 

IKFIOu71-W ' DATE • SHOULD ~OT BEGIN A-MARGIN. 
58 IKF21~01-W PICTURE CLAUSE IS SIGNED, VAL~E CLAUSE UNSIGNED. ~SSUMED POSITIVE. 

I EF1421 TESlRJN COB - STEP WAS EXECUTED - COND CODE 0004 
IEF28S1 ('tlL .. .:Jt1PL KEPT 
IEf2851 VOL SER NOS= CBLDEV. 
IEf2851 CliL(;UMPL KEPT 
IEF28.:11 VOL ~E~ NOS= CBLDEV. 
I EF285I CBLJPM KEPT 
I EFldSl VOL SER NOS= CBLDEV. 
I Ef28'!:)I JES~.JOBOOOS9.S00103 SYSOUT 
I CF2851 JES~.JOBOOO59.S00104 SYSOUT 
I EF285 I SYS70237.T091056.RAOuO.TEST~UN.SYSUTl DE LETED 
I EF285I VOL SER NOS= 222222. 
lEF285I SYS/o237.T0910S6.RAOuO.TESTRUN.SYSUT2 DELETED 

@ IEf285I VOL SER NOS= 000000. 
I Ef265I SYS7b237.T091J56.RAOuO.TESTRUN.SYSUT3 DELETED 
IEF28S1 VOL SER NOS= 222222. 
1 Ef285 I SYSlb237.T09105b.RAOuD.TESTRUN.SYSUT4 DELETED 
IEf285I VOL SER NOS= 22222~. 
I EF285 I SYSlb237.T091056.RAOvO.TESTRUN.SYSUT5 PASSED 
lEf2851 VOL SER NOS= 222222. 
I Ef28S1 SYS76237.T091056.RAOuO.TESTRUN.SYSUT6 DELETED 
I Ef285 I VOL SER NOS= 222222. 
IH2S~1 SYSlo237.T091056.RA~vO.TESTRUN.LOADSET PASSED 
IEF285I VOL SER NOS= 22.2222. 
IEF2851 JtS~.JOBOOOS9.S10101 SYSIN 
IEf37~I STEP IGOB / START 761:.:'7.0910 
IEF37<t1 STEP I COB / STOP 76237.0911 CPU OMIN 04.4SSEC VIRT 1361<. SYS 212K 

Figure 87. Examples of Compiler output (Part 4 of q) 

1. Listi~-2i-jQ~_£QB1~Ql_stat~ts 
~2Q£ia ted with thiLjQb stm!. These 
statements are listed because 
MSGLEVEL=(l,l) is specified in the JOB 
statement. JeL sta tements vith XX 
instead of 1/ represent sta tements in 
a cataloged procedure. 

2. Allocatio.n~ages-f:£Q.!!Ll!tUQ!L 
2£h~dul~. These messages provide 
information about the device 
allocation for the data sets in the 
job step. They appear after the job 
control statements in the compile, 
linkage edit, and execution job steps. 
For example: 

IEF2371 235 ALLOCATED TO SISUTl 

indicates that the data set for SYSUTl 
has been assigned to the device 235. 

3. Source module listing. The statements 
in the source module are listed 
exactly as submitted except that a 
compiler-generated card number is 
listed in the first column of each 
line. This number is referred to in 
diagnostic messages, on the XREF or 
SXBEF listing, and in the object code 
listing. If NUM is specified, the 
programmer-encoded source numbers in 
cGlumns 1 through 6 are used in each 
of these cases. (See the description 
of the NUM option under "Options for 
the Compiler.") The source module is 
not listed when the NOSOURCE option is 
specified. . 

The following notations may appear on 
the listing: 

C Denotes that the statement was 
inserted with a COpy statement. 
statements copied will not be listed 
if SUPPRESS is indicated. 

*. Denotes that the card is out of 
sequence. 

I Denotes that the card was inserted 
with an INSERT card. 

If DATE-COMPILED is specified in the 
Identification Division, any sentences in 
that paragraph are replaced in the listing 
by the date of compilation in the following 
format: 

DATE-COMPILED. month day, year 

4. ~loa2~Y: The glossary is listed when 
the DMAP option is specified. The 
glossary contains information about 
names in the COBOL source program. 

A and F. The internal name generated 
by the compiler. This name is 
used in the compiler object code 
listing to represent the name used 
in the source program. It is 
repeated for readability. 

B. A normalized level number. This 
level number is determined by the 
compiler as follows: (1) the 
first level number of any 

output 235 



236 

hierarchy is always 01, and 
increments for other levels are 
always by one; (2) only level 
numbers 03 through 49 are affected 
-- level numbers 66, 77, as well 
as 88 and FD, SD, RD, and CD 
indicators are not changed. 

C. The data name t hat is used in the 
source module. 

Note that the following Report writer 
internally generated data-names can 
appear under the SOURCE ~AKE column: 

CTL.LVL 

GRP.IND 

TER.COD 

FRS.GEN 

-nnnn 

RPT. RCD 
CTL.CHR 

RPT.LIN 

CODE-CELL 

E.nnnn 

S.nnnn 

N.nnnn 

Used to coordinate control 
break activities. 

Used by coding generated 
for GROUP INDICATE 
clause. 

Used by coding generated 
for TERMINATE statement. 

Used by coding generated 
for GENERATE statement. 

Generated report record 
associated with the file 
on which the report is to 
be printed. 

Buil d ar ea for print reco.rd 
First or second position of 

RPT.RCD. Used for 
carriage control 
character. 

Beginning of actual 
information that will be 
displayed. Second or 
third position of 
RPT. RCD. 

Used to hold code specified 
in CODE clause. 

Name generated from COLUM' 
clause in a level-02 
statement. 

Used for elementary level 
with SUM clause, but not 
with data-name. 

Used to save the total 
~umber of lines used by a 
report group when 
relative line numbering 
is speci fied. 

D and E. For data names, these 
col ullns con ta in inf orma tion about 
the address in the form of a base 
and displacement. For file names, 
the column contains information 
about the associated DCB, DECB, 
and FIB, if any. 

G. This column defines storage for 
each data item. It is represented 
in assembler-like terminology. 
Figure 89 refers to information in 
this column. 

H. Usage of the data name. For FD 
entries, the file processing 

technique is identified (e.g. 
QSAM, BDAS, etc.). For group 
items, GROUP is identified. For 
elementary items, the information 
in its USAGE clause is identified, 
or the USAGE that was specified on 
its group. . 

I. A letter under column: 

R-Indicates that the data-name 
redefines another data-name. 

O-Indicates that an OCCURS clause 
has been specified for that 
data-nalle. 

Q-Indicates that the data-name is 
the object or contains the 
object of the DEPENDING ON 
option of the OCCURS clause. 

M-Indicates that the format of the 
records of the file is: 

F = fixed 
V = variable 
U = undefined 
S spanned 

I-Indicates an input CD in a 
teleprocessing application 

O-Indicates an output CD in a 
teleprocessing application 

5. GlobaLIi!.oles_gjlLLi~~!-f.22!: The 
global table is listed when the PMAP, 
CLIS!, or DMAP option is specified 
unless SUPMAP is also specified and an 
E-level diagnostic message is 
generated. A global table contains 
easily addressable information needed 
by the object program for execution. 
For example, in the Procedure Division 
source coding (3), the address of the 
first instruction under STEP-l, 
namely: 

OPEN OUTPUT FILE-l. 

would be found in the PROCEDURE NAME 
CELLS entry of the Program Global 
Table (PGT). 

A. Task Global Table (TGT). This 
table consists of switches, 
addresses, and work areas whose 
information changes during 
execution of the program. 

B. Literal pool. The literal pool 
lists the ~ollection of the 
literals in the program, with 
duplications eliminated. These 
literals include those specified 
by the programmer (e.g., KOVE 
"ABC" TO DATA-NAME) and those 
generated by the compiler (e.g., 
to align decimal points in 
arithmetic· computation). The 
literals are divided into two 



groups: those that are referred 
to by instructions (marked 
"LITERAL POOL") and those that are 
referred to by the calling 
sequences to object time 
subroutines (marked "DISPLAY 
LIT ER ALS tt) • 

~. Program Global Table (PGT). This 
table contains the remaining 
addresses and the literals used by 
the object program. 

For further discussion, see 
"Appendix J: Fields of the Global 
Table." 

6. Register Assign.~nt: This contains 
the register assigned to each base 
locator (BL) in the object program. 

7. 

8. 

If OPT was specified, registers 6 
through 9 (and register 10 if not used 
for the additional OVERFLOW cell of 
the PGT) are permanently assigned to 
the most frequently-used BLs. These 
assignments are printed in the 
listing. Any additional BLs have 
registers 14 and 15 assigned -to them 
as and when needed. Such temporary 
assignments are A2! printed in the 
listing. 

!Qt:killil~1Q£2g~: When PMAP, CLIST, or 
DMAP is specified, both the location 
and the length (in hexadecimal) of the 
working-Storage section, if any, are 
provided. 

Objg£L!:odL~i2tiJ!9.: The object code 
listi ng is produced when the PM AP 
option is specified unless SUPMAP is 
also specified and an E-Ievel error is 
encountered. The actual object code 
listing contains: 

A. The compiler-generated card number 
or source card number, if NUM is 
specified. The number refers to 
the COBOL statement in the source 
module that contains the verb 
lis ted under co lumn B. 

B. The relative verb number for each 
card number. 

The statement within which the 
COBOL verb appears determines the 
information under columns C. D, F, 
and G. 

If VERB is specified in 
connection with PMAP or CLIST. 
procedure-names and verb-names are 
listed with the associated code. 
Names preceded by an * in colUmn B 
are procedure-names. 

55 
58 
62 

9. 

C. The relative location, in 
hexadecimal notation, of the 
object code instruction in the 
module. 

D. The actual object code instruction 
in hexadecimal notation. 

E. The procedure-name number. A 
number is assigned only to those 
procedure-names to which reference 
is made in other Procedure 
Division statements. This may be 
a PN (procedure-name) or GN 
(generated-name) number. 

F. The object code instruction in a 
form that closely resembles 
assembler language (with 
displacements in hexadecimal 
notation) • 

G. compiler-generated information 
about the operands of the 
generated instruction. This 
includes names and relative 
locations of literals. Figures 89 
and 90 refer to information in 
this column. 

!!Qte: The programmer can produce a 
condensed listing by specifying CLIST 
as an option in place of PMAP. The 
CLIST option produces only the source 
card number, the relative verb number, 
and the location of the first 
generated instruction, as follows: 

VERBl 
VERB2 
VERB2 

0004AC 
0004F2 
00051A 

58 
62 
62 

VERBl 
VERBl 
VERBl 

0004CO 
OOOSOE 
000526 

~!.2!.i:sti£2: The compiler statistics 
list the options i:!Ltl~ for this 
run and the number of Data Division 
and Procedure Division statements 
specified. Each level number is 
counted as one statement in the Data 
Division. Each verb is counted as one 
statement in the Procedure Division. 
COMPILE=nn indicates that this is the 
nth COBOL source program processed in 
this invocation of the compiler. If 
NOBATCH was in effect, this number 
will be 01. Note that COMPILE=nn is 
not a n option tha t can be specified or 
controlled by the user, but is simply 
information produced by the compiler. 

!iote: Statistics are not printed if 
SYNTAX is in effect or if CSYNTAX is 
in effect and a D- or E-level error 
occurs. 

10. ~~Q§§-R~i~£!!!£!L.Qi.ctiQ.!H!.ll: The IREl 
dictionary.. produced when either the 
IREF or the SXREF option is specified, 
consists of two parts: 

output 231 



A. The XREF dictionary for data-names 
followed by the generated number 
or source card number of the card 
on which the statement begins, if 
NUM is in effect. For condition 
names, the data-name of the 
conditional variable appears in 
the XREP dictionary. 

B. The XREF dictionary for 
procedure-names followed by the 
generated number or source card 
number of the card on which the 
statement begins. 

For XREF, all the names begin in the 
order in ,vh ich they are def ined in the 
source program. For SXREF, the names 
appear sorted in alphanumeric order. 
The number of references appearing for 
a given name is based on the number of 
times the name is referred to in the 
compiler-generated code. (Some 
data-names in USE FOR DEBUGGING, 
STRING, UNSTRING, and SEARCH 
statements are not part of the 
compiler-generated code, and are 
therefore not listed in the cross 
reference output. 

11. Qiagl!.2§.lli-I!!.!.§.§.ages: T he diagnostic 
messages associated with the 
compilation are always listed. The 
format of the diagnostic message is: 

238 

A. Compiler-genera ted line number or 
source card number. This is the 
number of a line in the source 
module related to the er~or. 

B. Message identification. The 
message identif ication for COBOL 
compiler diagnostic messages 
always begins with the symbols 
IKF. 

c. Severity level. There are four 
severity levels as follows: 

W warning -- This severity level 
indicates that an error vas 
made in the source program. 
Rnv~v~r i+ i~ nn+ ~ori~"~ 

~~~;~~-~o-~i;~e;-ih;-;;;~;tion 
of the prograll. These warning
messages are listed only if
FLAGW is specified.

C Conditional -- This severity
level indicates that an, error
was made but that the compiler
makes an assumption, which in
some cases corrects the error.
The statement containing the
error is retained. Eltecutio.D
can be attempted for its
debuggin q value.

E Error -- This severity level
indicates that a serious error
bas been detected. Usually the
compiler makes no corrective
assumption. The statement or
operand containing the error is
dropped. Execution of the
program should not be
attempted.

D Disaster -- This severity level
indicates that a serious error
was made. Compilation is not
completed. Results are
unpredictable.

There is a correlation between
severity level and the return
codes referred to by the COND
parameter. For example, a
compilation in which a W-level
error is detected generates a
return code of 4; a C-level error,
a code of 8; an E-level error, of
12; and a D-level error, of 16.

D. Message text. The text identifies
the condition that caused the
error and indicat.es the action
taken by the compiler.

Since Report Writer and
SORT/MERGE generate a number of
internal data items and procedural
statements, some error messages
may reflect internal names. In
cases where the error manifests
itself mainly in these generated
routines, the error messages may
indicate the card number of the RD
entry for the report under
consideration. Tn addition, there
are errors that may indicate the
card number of the card upon which
the statement containing the error
ends rather than the card upon
which the error occurred.
Messages for errors in the files
refer to the card number of the
associated SELECT clause.
Internal name formats for Report
writer are discussed in the
•• Glossary. ff

When a programmer codes a verb,
such as SEARCH, where the
statement may span several lines
and contain several verbs, such
as GO TO, MOVE, DISPLAY, etc.,
the dlagnostic will reference
the card number containing the
most recently encountered verb,
when that verb starts a new
line.

12. QiSPo2iti2A-m~agg§_t£om the_jQ~
schedule~: These messages contain
i:nformation about the disposition of
the data sets, including volume serial
numbers of volumes in which the data
sets reside.

The user can generate a complete listing of
compiler diagnostic messages along with

Output 238.1

r-
I ,
I ,

IIERRKSG JOB User Information
II EXEC COBUC
IICOB.SYSIN DD *

ID DIVISION.
PROGR1K-ID. ERRMSG.

•
I

REMARKS. THIS PROGRAM WILL RESULT IN A LISTING OF ALL

I
I
I
I
1
I
t
J
I
J
t ,

COltPILER DIAGNOSTICS AND THEIR EXPLANATIONS.
ENVIBONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

* THE SAKE RESULTS CAN BE ACHIEVED BY CHANGING
* THE PROGRAM-NAME OF ANY PROGRAM TO 'ERRltSG.·

STOP RUN.
1* I ________________J

igu,re 88. A Program that Produces Compiler Diagnostics and Explana tions

r- • i

t Type I Definition' , Usage 1
t- J -+ I
I Group Fixed Length I DS oeLN I GROUP I
I Alphabetic 1 DS Me , DISP t
I Alphanumeric I DS BC I DISP I
t Alphanumeric Edited I DS Ne I AN-EDIT I
I Group Variable Length J DS VLI=N 1 GROUP I
I Numeric edited , DS NC , NM-EDIT t , Sterling Report • DS NC , RPT-ST J
I External Decimal 1 DS HC t DISP-NM J
I Externa1 Floating Point 1 DS BC I DISP-FP I
1 Internal Floating Point t DS 1F2 or 4C , COMP""-1 I

• I DS 1D2 or 8C 1 COMP-2 J , Binary I DS 1H2,1p2,2F2,2C,4C,8C, COMP J
I Internal Decimal , DS NP , sterling Non-Report I DS NC
I IndeX-Name I BLANK , File (.FD) J BLANK

• Condition {8S) I BLANK
I Report Definition (RD) I .BLANK
I sort Definition (SD) J BLANK
I-
11 In this column, N = size in bytes, except
I variable-length cell number.
12If the SYNCHRONIZED clause appears, these
L-

Figure 89. Glossary nefinition and Usage

their explanations by attempting to compile
a program with a program-name of ERRMSG
specified in the PROGRAM-IO paragraph. An
example of hov to generate this listing is
shown in Figure 88.

Note: Although the user can change the
program-name of any source program to
EBRMSG, th.e follow iug compiler options !Y§£
be in effect: NOCSYNTAX, NODECK, NODMAP,
NOFLOW, NO LOAD, HOOPTI lU ZE, NOPIt AP,
NOSTATE, BOSYHTAX, NOSIREF, HOTER", NOTEST,
NOXREY; NOTERM prevents a display of the
messages at the terminal.

For a list of object-time messages, see
"Appendix K: Diagnostic Messages. tt

, COMP- 3 1
) DISP-ST 1 , INDEX-NAME ,
I FILE PROCESSING TECHNIQUR I , BLANK 1
I BLANK I
I BLANK 1

-~
in group variable length where it is a 1

1
fields are used. I

.I

OBJECT MODULE

The object module contains the external
symbol dictionary, the text oithe program,
and the relocation dictionary. It is
followed by an END statement that marks the
end of the module. For more detailed
information about the external symbol
dictionary, text, and relocation
dictionary, see the publicat.ion Q§L!~
ilukageEditor and Loader.

An object module deck is punched if the
DECK option is specified unless SUPMAP is
specified and an E-level diagnostic message
is generated, and if ~ SYSPUNCH DD .
statement is included. An object module/is
written in an output volume if the LOAD

output 239

option is specified unless SUPMAP is
specified and an E-level diagnostic message
is generated, and if a SYSLIN DD statement
is included.

r-
I Symbol
t--
IBL
t B1.L
I
fCKP
I DBGC
SDBGI
IDBGT
IDCB
t DEC
,DNM
IFIB
IGN
IINX
I LIT
,ON
JOVF
,PBL
,PFM
,PN
IPOV
fPRM
IPSV
JRSV
,SAV
J SA2
ISA3
,SBL
J SSS
,SSVE
fSWT
,TLY
tTOV
ITS
ITS2
t
ITS3 ,
ITS4
f
I V (BCDNAME)
IVIR
• VLC
IVN
t VNI
IWC
IXSA
lXSW
1--

Figure 90.

240

1 ,

I Definition I
I f
tBase Locator ,
tBase locator for linkage I
Isection J
,Checkpoint counter ,
IDebug card number ,
fDebug information pOinter ,
JDebug transfer I
I DeB address J
IDEeB address I
JSource data name I
JlIB address ,
IGenerated procedure name I
I Index cell I
1Literal J
jOn counter t
IOverflow cell J
,Procedure block (Optimizer) J
JPerform counter I
tSource procedure name I
,PGT overflow •
fParameter I
,Perform save area I
1Report save area I
ISave area cell I
JInput/Output error save cell I
IOPEN parameter I
I Secondary base locator J
fsubscript address J
J sort sa ve area J
JSwitch cell I
ITally 'cell I
,TGT overflow I
JTemporary storage cell J
JTemporary storage I
J (non-arithmetic) I
JTemporary storage J
J (synchronization) I
,Temporary storage I
J{table handling} J
,Virtual name t
IVirtual cell J
,Variable length cell I
,Variable procedure name J
,Variable name initialization •
,Working cell 1
lExhibit save area ,
I Exhibi t swi tch I
• --J
Symbols Used in the Listing and
Glossary to Define
Compiler-Generated Information

The output of the linkage editor job
step may include:

• A printed listing of the job control
statements

• A map of the load module after it has
been processed by the linkage editor

• A cross-reference list

• Informative messages

• Diagnostic messages

• Disposition messages

• A listing of the linkage-editor control
statements

• A load module that must be assigned to
a library

Any diagnostic messages or informative
messages associated with the linkage editor
are automatically generated as output. The
other forms of output may be requested by
the PARM parameter in the EXEC statement.
All output to be listed is written in the
data set specified by the SYSPRINT DD
statement.

Figure 91 is an example of linkage
editor output listing. It shows the job
control statement~, informative messages,
and module map. The different types of
output are numbered and each type to be
explained is lettered. Tbe text following
Figure 91 is an explanation of the
illustra tion.

,
.XXL4~O EXEC PG ... lfIlL.PU &PARMLKD' .RfGIO~.'RGNLKEO. :J~O. 'CO~OL<O
XXSWSLIN DO DSN4ME.~LuADSET .01 SP.t OLD.DElETEI
XX uD DDNAME·SYSIN
XXSYSLMDO DO DSNAME.~GOSETI 'GOI.OI SP·I.PASS ,.UN IT·SYSDA.

, XX ~PACE-ITRK.1l0.2 •• "
XXSY SLIB DO DSNo&S4 •• 0L.SU.&V4.UNIT·&U4.01 SP'SHR
XX lO DSN.&S5.VOL·SEK.'V5.UNIT-'U5.0ISP-SHR
XX ,,0 DSN-&S9.VDL-&V..UNIT-&U9.DISP-SHR
XXSWSUTl DO UNIT.I SY .DA. SEP-I SYSLI N. SYSLMOOII. SPACE-1l0Z4.150. ZOII
IIUED.SYSPRINT DO SYSOUT-S
X/SY SPRINT DO SYSOUT-A

l
lEf2371 Hi ALLOCUfU Til SYSlI ...
I Ef2371 ONY ALLOCATED TO
IEfZ311 150 ALLOCATED TO SYSLNuO o :m~~: :g~ :~~~:~:g ~~ SYSlI"

IEf2311 5(;0 ALLOCATED TO
IEfZ371 Z72 ALLOCATED TO SYSUT.
IEf2371 JES ALLOCAT[O T(1 SYSPRl"T

o FH-LEVEl i)~~~~~~E o~~~~s~P~~~~s _ SP~~~~!~~9~g!:~~~;~~EF

CROSS REFERENCE TA8LE

® ®
ceNTROL SECTION ENT~Y

NAME OKIGIN LENGTH NAHE LOCAT! ON NAME LOCAT ION
TESTRUN 00 A76
ILBODBG • Ala E36

ILBOD8GO AU IL800BGl AAE
IlB008G4 ABA Il~OOBG~ ABE

ILBOOSP • 1880 9fO
ILBODSPO 188Z IlBOOSSO 188Z

ILBOEXT • "ZAO 50
IlBOEXTO ZZAZ !l80EXTl 22A&

IlBOFlIl • ~2FO 536
IlBOflWO 22FZ IlBOFLWI ZZF6

CD
ILBOQIO • ,,8l8 5bE

IlBOQIOO l8ZA
ILBUSRV • ,,098 48E

IlB05kVO ZOA2 IlBOSR5 ZOA2
1l80SRVl 20A6 IlB05TPl ZOA6

IL6U8EG • 3228 12d
[lBlJBEGO :;221\

ILBUCMH • 3350 3dB
IlBOCHHO 3352 IlBOCHHI 3356

IlBOCOMO* 36EO 1,,9
IlBOCOH 3bEO

ILBIlHSG * ,\B50 F2
IlBOHSGO 3852

® ® CD

0004Z000
00043000
OODHOOO
00045000
0004&000
00047000
00048000
00049000
00050000

0110510(0

NAHE LJtATI~N

Il800BGZ A82
Il8JOBG~ ~r:7

ILBOfLW2 2ZFA

IlBOSR3 ZOA2
IUOST zou

NA~E LO:ATIJ~

ILe~08C;3 06
!lBaOeG7 At~

lIeosp ZO>Z
[UOSTPO ~OAA

lCCATlGN RefeRS TO SYMBOL ,N LuNTROl SECTION LO:ATto~
574
57C
564
5&(
5Q4
400

REFHS TO SYM30L I~ r~NTP(Ol HrTl~~'
570 [lBOSRVO [lBOSRV
578 IlBOFlWO IlBGflW
560 [lBOSR5 IlF OSRV
58a IlBu&lSG4 [lBi1IWG
590 [lBOQ[OO IlBO_II,
598 IlBOSRVl IlPOSPV

1774 IldOfL~O IL~OFl"
171C IlBOTEF3 $UNRESOl VEOtWI
17B8 IlBOTCOO .UNkESOlVf.O(WI
30EC IlBuCHMO [leOCM"
~OF4 IlBCMSGu IlPOMSG

{

t ~ TRY AOG"-CS. 00 CD
CD TOTAL lEN~TH ;'948 ®
CD :~;~~~IIAT1U~ ~g~~ ~~T EXIST "~~ "AS ~E£ hi AuOtO TO PArA SFT

lEfl't,d TESTP.JN lKt:O - STEP WA ... c.XC:CUTEl' - CONO cooe 0000
[~F~.~I ,YSloZ37. TO~1056.PAu"O.1 Eo T"U~.LOAJSET OEUTl U
ltf2H!)1 V(JL ~t:t\ NuS= 2 i..:. ",,2..
I r:fL8:.> J SY~" u:t.~ 7. Tu91u!)b. RAuIolO.llSTfI ur-.. GOSET PA5SfO
IEF2d~1 VUl SEI< M1S= VOOOOO.
I <f".~1 CVS~"Ll B KEPT
IEfl~,1 VLl Hk ~US= CHlOEV.

171f,

17"0
30CL
3uFO
30F~

IlB~O%O IUOOB:;
IlBOOBr.~ 1L H'(l'f'~
Il'OFlHl llP(OFl~
ILSJEKTO [UI'E1T
1L'005PO 1l~(1PSP
Il80COMO [UI'COMO
ILSOFL~2 Ile~Fl~
I LBOSTNO $U"PESOlVEPt H I
Il80CO' IHOtO.O
IlBOBEGO IlP(1PEG
Il80SN02 $U~~ESOlVEOI HI

CD \~:~:;~ ~~~~~~!B;'U5= CblOioV.
KEPT

1 t FLc~J C V~,-l. LIt< KEPT
I r:f"t!')1 Y(,l $E:K Nll$= (.jl.)iV.
, t:fld;d ~y~ ICJ~.J 1. T{J'JIO~t:'.KAulJv. , t:STi<Ut'.P..O"",JOvJl OFLE1t:LJ
t t:f~a!)l \jOl ~t."'. Nu.'::t= '£:21.2~~.
lif"d:)1 Jt~ ... JlIUOL\..j'-:.~;)\Jl();) SYSOJT
Icf,H,J1 .)r~v ILK~~ I ST4RT 1(..,.>7.v·nl
IfF.H"t1 STI.:P IlKEO / ~Tl1P 1t-;)7.0-l11 cpu QMJI'-l ::)1.5'J~FT Vlj.,-T

Figure 91. Linkage Editor putpu t Show ing !!Iodule ttap and Cross-Reference List

1.

2.

Ih~ob control statements. These
statements are listed because
ftSGLEVEL= (1,1) is specified on the JOB
statement for this job, shown in
Figure 87.

Allocation messages from the joh
schedul~. These messages provide
information about the device
allocation for the data - sets in the
job step. For example, the message

.IEF2311 230 ALLOCATED TO SYSUT1

indicates that the data set for SYSUT1
has been assigned to the device 230.

3.

4.

~inka~~~ilQ~_!nt~ative~~ssaq~.
This message lists the FARM options
that vere specified.

Linka~editor informative messag~.
This is a disposition message
describing the disposition of the load
module.

A. Name of the load module specified
in the DSNAME parameter of the
SYSLftOD DD statement

B. Text of message

output '241

5. ~~~~aE. The module map is listed
when either the XREF or the MAP option
is specified in linkage editor
processing. The module map shows all
control sections in the output module
and all entry names in each control
section. The control sections are
arranged in ascending order according
to their assigned origins. All entry
names are listed below the control
section in which they are defined.
Each COBOL program is a control
section, and any COBOL library
subroutine is a separate control
section (except as noted under
segmentation) •

A. ~n1!Q!_2~£tiQn. Under this
heading the name, origin, and
length of each control section is
listed.
Name. The name of the control
section. This name is the
PROGBAM-ID name in the main COBOL
program or a called program. Each
control section that is obtained
from a library by an automatic
library call is indicated by an
asterisk.
2£igin. The relative origin in
hexadecimal notation.
~~g!h. The number of bytes in
each control section in
hexadecimal notation.

B. Ent~I. The entry names within
each control section and their
relative location. A called
program may have more thaD one
entry point. For a called COBOL
program, the entry points are the
same as the names specified by the
ENTRY statements in the source
program.

C. Entry addr~§2. The relative
address of the instruction with
which processing of the module
begins. It will alvays be lNIT1
if the COBOL program is the main
program of the load module.

D. 1Qial lengill. The total number of
bytes, in hexadecimal notation, of
the load module. It is the sum of
the lengths of all control
sections.

6. Cro.2§~efeu!!£~-1J&1. T.he cross
reference list, as well as a module
map, is listed if the .XREF option is
specified. The ftlP and IREF options
should not be specified together. The
cross reference list provides the
following information:

2~2

A.

B.

c.

Location. The relative location
In the-Program where another
program is called.

~I.mbol referg!!£~. The name of the
entry point of the called program.

In control section. The control
se;;tiontbatcOntains the entry
point.

For example, 4~O is the location where
a COBOL subroutine is called.
ILBOSRV1 is the entry point of the
called program. ILBOSRVO is the
control section that contains the
entry point ILBOSTP1.

If IBEY is specified, the cross
reference list appears before the
Entry Address.

7. Q!§RQ§itiQD_~~~gg~_!~Q!_the-iQQ
~ch~!~~. These messages contain
information about the disposition of
the data sets.

COll!ll!1LQIL th~gy.l!LJ1Sl.R._9.nd CrQ,§2
~.fg~n~~_1i~1

The severity of linkaqe editor
diagnostic messages may affect the
production of the module map and the cross
reference list.

Since various processing options will
affect the structure of the load module,
the text of the module map and cross
reference list viII sometimes provide
additional information. For example, the
load module may have an overlay structure.
In this case, a module map will be listed
for each segment in the overlay structure.
The cross reference list is the same as
that previously discussed, except that
segment numbers also are listed to indicate
the segment in which each symbol appears.

1!st!Qg_!h~nkag~_lditor control
~~a~gs~!!§: If the LIST option is
specified, linkage editor control
statements, such as OVERLAY and LIBRARY,
are listed.

The linkage editor generates tvo types
of messages: module disposition messages
and error/warning messages. A description
of the messages can be found in the
publication OSL~_ki.nka~_!gitor and
~a£~~. A complete list of the

error/warning messages is included in the
publication OS/ll_Ke§sag~LibrarI': Linkll~
!~!.t.2LAn~g~_"e§gg~.

Loader output consists of a collection
of diagnostic and error messages, and, if
KAP is specified, a storage map of the
loaded program. The output data set,
SYSLOUT is sequential and blocked as
specified by the user in the-DCB. For
better performance, the user can also
specify the number of buffers to be
allocated.

Diagnostic messages include a loader
heading and a list of options requested by
the user. The error messages, identifying
the source of error, will be written when
the error is detected. After processing is
complete, an explanation of the error will
be written. A complete list of loader
error messages is found in the publication
Q~LVS Message L~ll:LL-1i!l1s~e Editor a.ug
LogdeJ;:_~2§gg§·

The map includes the name and absolute
address for each control section and entry
point defined in the program. It is
vr it ten on S ISLOUT concurren tIy vith input
processing so it appears in order of input
ESD items. The total size and storage
extent also are included. Figure 92 is an
example of a module map.

The output generated by program
execution (in addition to data written in
program output files) can include:

• Data displayed on the console, or on
the printer

• Cards

• Messages to the operator

• system informative messages

• system diagnostic messa;e

• A syst em dUllp

• Debugging information

~: If a program ends abnormally and
one of the options FLOW, STATE, or SYMDMP
is in effect and the SYSDBOUT DD card has
been included, debugg ing informa tion
appears in the program listing (see the
chapter entitled "Symbolic Debugging
Features").

A dump as well as system diagnostic
messages are generated automatically if a
program contains errors that cause abnormal
termination.

l!Q:t~: If a COBOL program abnormally
terminates, then a formatted dump is
provided for all COBOL programs compiled
with the SyftDMP option which could include
the abnormally terminating program and its
callers, up to and including the main
program. For a discussion of the SYMDMP
option as well as of other COBOL symbolic
debugging options, see the chapter entitled
"Symbolic Debugging Features."

Figure 93 shows an example of output
from the execution job step. The following
text is an explanation of the illustration.

1. Ih~_job_£Qni~Q!_§tate~gnt§. These
statements are listed because
MSGLEVEL=(1,1) is specified in the JOB
statement for this job.

2. Ihe_job~!lQ£~liQn..J!g§saggs f£Q.ID._th~
jQ~2chedy!g£. These messages indi
cate the device that is allocated for
each data set defined for the job
step.

3. ~i22Q§iiiQn_ID.g§§a~ga_t£Q~thg-iQ.h
2£h~d~le£. These messages are
contained in the as/vs message
library. .

4. R£Qg!:il_Q!!i.2y.i_Q!t_I?!::!.llig£. The
results of execution of the TRACE and
EXHIBIT NAMED statements appear on
program listing.

5. ~2!!..2Q.le outI!ui. Data is printed on
console as a result of execution of
DISPLAY UPON CONSOLE.

output 243

VS LOADER

OPTIONS USED - PRINT.MAP.LET,CALL.RES,NOTERM,SIZE=98304,NAME=**GO

NAME TYPE ADDR NAME

TESTRUN SD 60010
IEW1141 INCLUDE SYSLIB(ILBODSP)

ILBOCOMO* SD
ILBOSRS * LR
ILBOSTPO* LR
ILBOEXTO* LR
ILBODBG3* LR
ILBOFLW1* LR
ILBOBEGO* LR

TOTAL LENGTH
ENTRY ADDRESS

60940
60A3A
60A42
61SA2
615CE
621FE
6277A

2B68
60010

ILBOCOM *
ILBOSR *
ILBODSP *
ILBODBG *
ILBODBG4*
I LBOFLW2 *
ILBOCMM *

TYPE ADDR NAME

LR 60940 ILBOSRV *
LR 60A3A ILBOSRV1*
SD 60DCO ILBODSPO*
SO 615CO ILBODBGO*
LR 61502 ILBODBG5*
LR 62202 ILBOMSG *
SO 627E8 ILBOCMMO*

IEW1141 WARNING - CARD RECEIVED NOT AN OBJECT RECORD

Figure 92. Module Map Format Example

244

TYPE

SD
LR
LR
LR
LR
SD
LR

ADDR NAME TYPE ADDR NAME TYPE ADDR

60AOO ILBOSRVO* LR 60A3A ILBOSR3 * LR 60A3A
60A3E ILBOSTP1* LR 60A3E ILBOST * LR 60A42
60DC2 ILBODSSO* LR 60DC2 ILBOEXT * SD 615AO
615C2 ILBODBG1* LR 61SC6 ILBODBG2* LR 61SCA
61506 ILBOFLW * SO 621F8 ILBOFLWO* LR 621FA
62678 ILBOMSGO* LR 6267A ILBOBEG * SD 62778
627EA I LBOCMM1 * LR 627EE

IEf2361 ALLOC. FOR TESTRUN GO
IEF2371 232 ALLOCATED TO PGM= •• DD
IEF237I 235 ALLOCATED TO STEPLIB
IEP237I 250 ALLOCATED TO DD1
IEf2371 250 ALLOCATED TO SYSDBOUT
IE.2371 250 ALLOCATED TO SYSUDUMP
IEl237I 250 ALLOCATED TO SYSOUT
IEJi2371 250 ALLOCATED TO SYSPUNCH
n:f2371 582 ALLOCATED TO SAMPLE

lXGO EXEC PGM= •• LKED.SYSLMOD.COND=((5,LT.COE). (5.LT.LKED»
XXSTEPLIB DD DSN=VSCBL1. LIB, DISP=SHR. UNIT=2314. VOL=SER=DB143
XXDDl DD DSN=iSYMDBG.DISP=(QLD.DELETE)
/ ;GO. SYSDBOUT DD SYSOUT=G
x/SYSDBOUT DD SYSOUT=A
I/GO. SYSUDUMP DD SYSOUT=G
X/SYSUDUMP DD SYSOUT=A
/IGO.SYSOUT DD SYSOUT=G
X/SYSCUT DD SYSOUT=A
XXSYSPUNCH DD SYSOUT=E

-_ ,l/GO.SAMI?:t,E DD UNIT=240Q.),Al;!EL=(.I!!:t..).DISP=(NEW.DELETE)

WORK-RECORD = A 0001 NYC Z
WCRK-RECORD = B 0002 NYC 1
WORK-RECORD = C 0003 NYC 2
WORK-RECORD = D 0004 NYC 3
WORK-RECORD = E 0005 NYC 4
WCRK-RECORC = F 0006 NYC Z
WORK-RECORD = G 0007 NYC 1
WCRK-RECORD = H 0008 NYC 2
WORK-RECORD = I 0009 NYC 3
WCRK-RECORD = J 0010 NYC 4
WORK-RECORD = K 0011 NYC Z
WCRK-RECORD = L 0012 NYC 1
WORK-RECORD = M 0013 NYC 2
WOR1I:-RECORD = N 0014 NYC 3
WORK-RECORD = 0 0015 NYC 4
WORK-RECORD = P 0016 NYC
WORK-RECORD = Q 0017 NYC
WOR1I:-RECORD = R 0018 NYC
WORK-RECORD = S 0019 NYC 3
WCRK-RECORD = T 0020 NYC 4
WOR1I:-RECORD = U 0021 NYC Z
WORK-RECORD = V 0022 NYC 1
WORK-RECORD = W 0023 NYC 2
WOR1I:-RECORD = X 0024 NYC 3
WORK-RECORD = Y 0025 NYC 4
WORK-RECORD = Z 0026 NYC Z

A 0001 NYC 0
B 0002 NYC 1
C 0003 NYC 2
D 0004 NYC 3
E 0005 NYC 4
F 0006 NYC 0
G 0007 NYC 1
H 0008 NYC 2
I 0009 NYC 3
J 0010 NYC 4
11: 0011 NYC 0
L 0012 NYC 1
M 0013 NYC 2
N 0014 NYC 3
o 0015 NYC 4
P 0016 NYC 0
Q 0017 NYC 1
R 0018 NYC 2
S 0019 NYC 3
T 0020 NYC 4
U 0021 NYC 0
V 0022 NYC 1
W 0023 NYC 2
X 0024 NYC 3
Y 0025 NYC 4
Z 0026 NYC 0
IEF1421 - STEP WAS EXECUTED - COND CODE 0000
IEf2851 SYS74163. T204211. RVOOO. TESTRUN. LMODLIB PASSED
IEf285I VOL SER NOS= 231402.
IEf2851 V5CBLl. LIB KEPT
IEF2851 VOL SER NOS= DB143 •
IEf2851 SYS74163.T204211.RVOOO.TESTRUN.SYMDBG DELETED
IEf2851 VOL SER NOS= 333001.
IEf2851 SYS74163.T204211. SVOOO.TESTRUN. ROOOOOll SYSOUT
IEf2851 VOL SER NOS= 333001.
IEf2851 SYS74163. T204211. SVOOO. TESTRUN. R0000012 DELETED
IEf2851 VOL SER NOS= 333001.
IEf2851 SYS74163. T204211. SVOOO.TESTRUN. R0000013 SYSOUT
IEF2851 VOL' SER NOS= 333001.
IEF2851 SYS74163.T204211.SVOOO.TE5TRUN. R0000014 DELETED
IEf2851 VOL SER NOS= 333001.
IEf2851 SYS74163.T204211.RVOOO.TESTRUN. R0000015 DELETED
IEF2851 VOL SER NOS= L00001.
IEF2851 SYS7416 3. T204211. RVOOO. TE5TRUN. S0000016 SYSIN
IEF2851 VOL SER NOS= 333001.
IEF2851 SYS74163.T204211.RVOOO.TESTRUN.50000016 DELETED
IEF2851 VOL SER NOS= 333001.
IEF373ISTEP /GO I START 74163.2056

00800270
00800280
00800290

00800300

00800310

00800320
00800330

n.F3741 STEP ;GO / STOP 74163.2109 CPU OMIN 09.47SEC STOR VIRT 6411:
IEf2851 5YS74163. T204211. RVOOO. TESTRUN. LMODLIB DELETED
IEF2851 VOL SER NOS= 231402.
IEF3751 JOB /TESTRUN I START 74163.2046
IEF3761 JOB /TESTRUN / STOP 74163.2109 CPU OMIN 24. 47SEC

Figure 93. Execution Job step output

output 245

REQUESTS FOR OUTPUT

1. The programmer can request data to be
displayed by using the DISPLAY
statement and including the following
in the job control procedure:

//SYSOUT DD SYSOUT=A

2. Message to the operator can also be
displayed on the console when
requested in th e so urca program
(DISPLAY UPON CONSOLE').

3. The programmer can request debugging
informa tioD in case of an abnormal
termination by specifying FLOW, STATE,
or SYMDMP and including the following
in the job control procedure:

//SYSDBOUT DD SYSOUT=A

In addition, the SYSUT5 DD statement
is required for compilation and the
SYSDBG DD statement is required at
execu tion time.

The following DD statement must be
used to make the COBOL library module
ILBOBEG available at execution time.

/ /STEPLIB DD DS N=subr-libname, DISP=SHR

If an error message is printed by the
debugging modules, the COBOL library
module ILBOBEG is loaded dynamically
from the subroutine library. This
module is not link edited into the
COBOL object program.

By specifying- a //SYSDTERM DD card in
addition to the //SYSDBOUT DD card,
dynamic dump output will be written
onto SYSDTERM while the abend dump
output will go to SYSDBOUT.

l!Q.ig: The TSO programmer should assign
SYSDTERM to the terminal since dynamic dump
output is interruptable. 5YSDBOUT should
be assigned to a direct access data set
which could be listed at the terminal after
the ABEND is complete.

~. The programmer can request a full
dump, in case his program is
terminated abnormally, by including
one of the following in the job
control procedure:

246

either

/ /SYSUDUMP DD SYSOUT= A
or
/ /SY5 ABEND :DD SYSOUT=A

Both SYSUDUMP and SYSABEND viII
usually produce the following whe~ an
abnormal termination occurs: some
system control blocks~ work areas (in
addition to user modules), and system
modules, and--under VS2--GTF trace
records if that system service is
running. SYSABEND normally also
produces the system nucleus.

Dumps and debugging facilities are further
'explained in "Program Checkout. ff

OPERATOR MESSAGES

The COBO.L load module may issue opera tor
messages. A complete list of these
messages and required operator responses
can be found in "Appendix K: Diagnostic
Messages.·' MCS considerations are
discussed there also.

Informative and diagnostic messages may
appear in the listing during execution of
any job step. Further information about
system diagnostics is found in the
appropriate~LIS._!esg~_t.ib£ary
publication. COBOL messages and associated
documentation forth is compiler can be
displayed by running the.ERRMSG program
described earlier in "Output ...

Each of these messages contains an
identification code in the first three
columns of the message to indicate the
portion of the operating system that
generated the message. Figure 94 lists
these codes, along with an identification
of each.

, i
,Code I Identification
I I
,ICE I A message from the Sort program.
,lEA I A message from the supervisor.
,IEC I A message from data management.
,IEF I A message from the job scheduler.

,
I ,
I
I
I
I

IIKF I A message from the COBOL compiler.,
IIER I A message from the Sort Program. I
I lEW f A message from the linkage edt tor. ,
11GB , 1 message from the Sort prograll. • • J

Figure 94. System Message Identification
Codes

A programmer using the COBOL compiler
under OS/VS has several methods available
to him for testing and debugging his
programs or revising thea for increased
efficiency of operation.

The lister feature provides the COBOL
programmer with reformatted source code
that contains complete cross-reference
information at the source level.

The syntax-checking options can be
specified to save progra mmer and machine
time while checking the source statements
for syntax errors.

The COBOL debugging language can be used
by itself or in conjunction with other
COBOL statements. A dump can also be used
for program checkout. For a discussion of
the COBOL symbolic debugging options, see
the chapter entitle~ "Symbolic Debugging
Features."

The execution frequency statistics
option, COUNT, facilitates testing,
debugging# and optimizing by causing verb
execution counts to be generated at the end
of the execution of a compiled program.
The statistics provide the COBOL programmer
with information that aids user program
optimization by identifying heavily-used
portions of the COBOL source program. They
are also useful to the programmer in
debugging by providing verification that
all parts of a program have been executed.

121~: The program product IBM OS COBOL
Interactive Debug (Program Number S734-CB4)
enables the user to debug his COBOL
programs from a terminal under TSO, the
Time Sharing Option of thoe operating
System. with its own debugging command
language, Interactive Debug gives the user
several object-time debugging capabilities
including: starting and stopping program
execution at selected points, altering the
logical floll of prog ram execution,
manipUlating data, and displaying such
things as selected source statements, file
status and content, and various kinds of
program execution traces. How to
accomplish these operations is described
fully in IBM-2LCOBOLI!l~il,£tive Debug
%~~:!ina 1 u§g£'~ig!LaJ!~fer~1l£~.

Specifying the TEST compiler option allows
a COBOL program to be debugged by the
Interactive Debug user. A program that is
compiled without the TEST option is
unacceptab leta the Interactive Debug
command processor.

TEST has the following effects on other
compiler options: TEST overrides FLOW,
STATE, SY!DKP and COUNT. However, BATCH
overrides TEST. TEST is also overridden if
the source program contains USE FOR
DEBUGGING and WITH DEBUGGING MODE
statements.

TEST requires the debug file, SYSUT5.

When the user requests the lister
·feature, each COBOL statement is begun on a
'new line and is indented in such a way as
to make tke logie of the program readily
apparent by highlighting level numbers,
nested IF statements, etc. For complete
information, see the chapter "Lister
Feature. "

SYNTAX-CHECKING ON~CO~I1!!ION

The compiler checks the source text for
syntax errors and then generates the
appropriate error messages, but does not
botber to produce object code. With the
syntaX-Checking feature, the programmer can
request a compilation either conditionally,
with object code produced only if no
messages or just w- or C-level messages are
generated, or unconditionally, with no
object code produced regardless of message
level.

For a discussion of the syntaX-Checking
options, SYNTAX and CSYNTAX, see the
section "Options for the Compiler" under
"Job Control Procedures."

The COBOL debugging language is designed
to aid the COBOL programmer in producing an
error-free program in the sho.rtest possible
time. The sections that follow di sc uss the
use of the various types of debugging
language and other methods of program
checkout.

Program Checkout 247

DEBUGGING LINES

The user can include debugging lines
(any COBOL statement with a D in column 7)
in his program to assist in locating logic
er.rors. Through inclusion of the WITH
DEBUGGING MODE source clause (essentially a
compile-time switch), the statements are
made part of the object code and will be
executed in line vith the rest of the
program. Removal of th.e WITa DEBUGGING
MODE clause causes debugging lines to be
treated as comments only; they viII not be
executed. A program con ta ining debugging
lines must be syntactically correct in both
these modes. (The execu tion-time option
DEBUG/NODEBUG has no control over debugging
lines; it only affects USE FOR DEBUGGING
declaratives--as explained belov.)

DECLARATIVE PROCEDURES--USE FOR DEBUGGING

The USE FOB DEBUGGING featare provides
the user with the ability to create his own
procedures to examine the internal status
of his program during its execution. The
USE FOR DEBUGGING statement identifies
which program elements it wishes to
monitor. COBOL then gives the associated
procedure control vhen these e.tements are
referenced during execution. The procedure
also is given access to the DEBUG-ITEM
special register. which has been
automatically filled with the pertinent
current status information.

The USE FOR DEBUGGING procedures can be
controlled by two switches: t.he WITH
DEBUGGING MODE source clause for
compile-time, and the DEBUG/NODEBUG option
for execution-time. WITH DEBUGGING MODE
indicates that the procedures are to be
compiled as executable code; if WITH
DEBUGGING MODE is omitted, the procedures
are treated only as comments.
Specification of the DEBUG option at
execution time indicates that the
procedures compiled into the code are in
fact bo be executed; if NODEBUG is
specified. t.he procedures are bypassed.

The general rules for USE FOR DEBUGGING
declarative procedures and the DEBUG-ITE~
special register can be found in IB~-Y~
~QBOL fQ~Q~L!2. The following
considerations also apply:

1. Including USE FOR DEBUGGING
declarative procedures and a WITH
DEBUGGING MODE clause precludes the
use of the SYMDMP and TEST options.

248

If SYMDMP and/or TEST are specified in
such a case, they will be rejected.

2. The DEBUG-ITEM special register is
variable in length, and depends on the
size of the character string it is to
contain. This length cannot exceed
32K.

3. A SEARCH or SEARCH ALL statement that
refers to identifier-1 as the table to
be searched viII not result in an
invocation of the-USE FOR DEBUGGING
declarative procedure. If
identifier-1 is referred to elsewhere
in the statement (for example, as an
operand of a WHEN condition), the
associated declarative will be
invoked.

4. When identifier-l is the object of an
OCCURS DEPENDING ON clause, the
contents of the DEBUG-CONTENTS
subfield of DEBUG-ITEM viII be
unpredictable if all three of the
following conditions are true:

a) ident ifier-1 is changed in the same
statement as the data item whose
size and/or location is affected by
that change, and

b) the change occurs following the
reference to the data item, and

c) the data item is not subscripted
and/or inde xed.

5. If identifier-1 appears in a MOVE
statement and is subscripted or
indexed, and if either of the
following is also true:

a) the subscript or index is changed in
the MOVE prior to the reference to
identifier-1, or

~ an occuns DEPENDING ON object that
affects the size or address of
identifier-1 is changed in the MOVE
prior to the reference to
identifier-l,

then the DEBUG-ITEM values will
reflect identifier-l' s address and
size just prior to execution of that
MOVE.

6. Procedures performed from a USE FOR
DEBUGGING declarative will .never cause
invocation of another USE FOR
DEBUGGING declarative.

7. A USE FOR DEBUGGING filename can only
be a VSAM or QSAM file.

Figure 95 shows an elementary example of
USE FOR DEBUGGING. The program is the same
TESTRUN Ilsed several ti mes elsewhere in
this manual. Here it has been slightly
modified through the addition of the

debugging phrase (encircled 1) and a simple
declarative (encircled 2). In this
example, t he programmer wishes to
temporarily trap certain input items (ALPHA
D's and M's) and boost their index values
by one so that they become E's and N's
(encircled 3).

Notice that the DEBUG-CONTENTS special
register allows the programmer to reference
items without asing subscripting. Notice

also that the subscript value can be
modified in the declarative section without
affecting that value in the body of the
program (i.e., DEBUG-SUB-1 is only a copy).
By removing the WITH DEBUGGING MODE clause
from the CONFIGURATION SECTION and
recompiling, t he programmer can disable the
debugging declarative--even though the
declarative statements are left in the
source program.

Program Checkout 249

IDENTifiCATION UIVISION.
PROGRAM-ID. TE~TDBUG.

AUTHOR. PROGRAMMER NAME.
INSTALLATION. PALJ ALTO DEVELOPMENT CENTER.
DATE WRITTEN. AUGUST S. 1976.

DA~fM~~~~!Lf~isS~~o~~1A9~XS BEEN WRITTEN AS A SAMPLE PRO~R~M fOR
COBOL USERS. IT CREATES AN OUTPUT fiLE AND READS IT BACK AS
INPUT.

\
ENVIRONMENT DIV,SION.

~ CONfIGURATION S~CTION.
\!J 3~~~~~:~g~~~l~~: Ig~:~~8-rl~~ DEBUGGING MODE.

INPUT-OUTPUT SE~TION.
fI LE-CONTROL.

SELECT fILE-1 ASSIGN TO UT-2400-S-SAMPLE.
SELECT fILE-2 ASSIGN TO UT-2400-S-SAMPLE.

DATA DIVISION.
FILE SECTION.
fD fILE-1

LABEL kECORUS ARE OMITTED
BLOCK CONTAl NS 100 CHARACT ERS
RECORO CONTAINS 20 CHARACTERS
RECORDING MuDE IS f
DATA RECORD IS RECORD-I.

01 RECORD-l.
02 FIELD-A PICTURE IS XI20J.

fD FILE-2
LABEL RECORUS ARE OMITTED
BLOCK CONTA,NS 5 RECORDS
RECORD CONTAINS 20 CHARACTERS
RECORDING MuDE IS f
DATA RECORD IS RECORD-2.

01 RECORD-2.
02 fIELD-A PICTURE IS XI20J.

WORKING-STORAGE SECTION.
77 KOUNT PI(.. TURE S99 COMP SYNC.
77 NOMBER PICTURE S99 COMP SYNC.

01 FILLER.
02 ALPHABET PICTURE X(26J VALUE "ABCDEFGHIJKLMNOPQRSTJV~XYZ·.
02 ALPHA REuEflNES ALPHABET PICTURE X OCCURS 26 TIMES.
02 DEPENDENrS PICTURE XI26J VALUE "0123401234012340123401234
"0".
02 DEPEND R~DEFINES DEPENDENTS PICTURE X OCCURS 26 TIMES.

01 WORK-RECORu. \
02 NAME-fIELD PICTURE X.
02 FILLER P1CTJRE X VALUE IS SPACE.
02 RECORO-Nu PICTURE 9999.
02 fILLER PICTURE X VALUE IS SPACE.
02 LOCATION PICTURE AAA VALUE IS "NYC".
02 FILLER P,CTURE X VALUE IS SPACE.
02 NO-OF-Df~E~DENTS PICTURE XX.
02 FILLER P,CTuRE X(7) VALUE IS SPACES.

PROCEDURE DIVIS,ON.
DECLARATIVES.
DEBUG-SECTION S~CTION.

USE FOR DEBuGGING ON ALL REfERENCES OF ALP~A.
IF DEBUG-COI'4TENTS = "0" OR "M"

ADD 1 Tv Dt8UG-SUB-1
MOVE ALPHA(DEBUG-SUB-1J TO NAME-FIELD.

END DECLARATIVE~.
BEGIN.

NOTE THAT ThE FDLLOWING OPENS THE OUTPUT FILE TO ~E :REATED
AND INITIAL,lES COUNTERS.

STEP-I. OPEN OUTPUT FILE-I. MOVE ZERO TO KOUNT NOMBER.
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED II~ THE FILE. WRI TES THEM ON TAPE. AND DISPLAYS
THEM ON THE CONSOLE.

STEP-2. ADD 1 Tv KOUNT. ADD 1 TO NOMBER. MOVE ALPHA IKOUNTI TO
NAME-FIELD.
MOVE DEPEND IKOUNTJ TO NO-Of-DEPENDENTS.
MOVE NO~BER TO RECORD-NO.

STEP-3. DISPLAY HORK-RECORD UPON CONSJLE. WRITE RECORD-1 FROM
WORK-RECORD.

STEP-4. PERfORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26.
NOTE THAT ThE fOLLOWING CLOSES OUTPUT AND REOPENS IT AS
INPUT.

STEP-5. CLOSE F,L~-l. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES OUT
EMPLOYEES W,TH NO DEPENOENTS.

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8.
STEP-7. If ND-Of-L>EPENDENTS IS EQUAL TO "0" MOVE "Z" TO

NO-OF-'DEP EN"ENTS. EXHI BIT NAMED WORK-RECORD. GO TO
STEP-6.

STEP-So CLOSE f,LE-2.
STOP RUN.

WORK-RECORO = A 0001
hG~K-RECORD = 8 0002
hORK-RECORD = C 0003

~
~CIIK-RECORC = E 0004
hGRK-RECORD = E 0005
hORK-RECORD = F 0006
hC/OK-RECORD = G 0007

CD~:~=~:~~Eg:g ~ ~ ggg~
h(IIK-RECORD = J 0010
hGIIK-~ECORD = K 0011
h(IIK-RECORD = l 0012
HORK-RECORD = N 0013
WORK-RECORD = N 0014
"ORK-RECORD = 0 0015
WORK-KECORD = P 0016
~ORK-RECORD = W 0017
hORK-RECORD = R 0018
WCRK-RECORD = S 0019
WCliK-RECORC = T 0020
hC/OK-RECORD = U 0021
IIORK-RECORO = V 0022
I'IOIlK-RECORD = W 002~
hORK-RECORD = X 0024
haRK-RECORD = Y 0025
"CRK-RECORD = l 0026

NYC Z
NYC 1
NYC 2
NYC 3
NYC 4
NYC Z
NYC 1
NYC 2
NYC 3
NYC 4
NYC Z
NYC 1
NYC 2
NYC 3
NYC 4
NYC Z
NYC 1
NYC 2
NYC 3
NYC 4
NYC Z
NYC 1
NYC 2
NYC 3
NYC 4
NYC Z

Pigure 95. Program with USE POR DEBUGGING.

250

TRACE, EXHIBIT, AND ON

Three additional debugging language
statements are TRACE, EXHIBIT, and ON. Anf
one of these statements can be used as
often as necessary. They can be
interspersed
throughout a COBOL source program, or they
can be in a packet in the input stream to
the compiler.

Program debugging statements may not be
desired after testing is completed. A
debugging packet can be removed -after
testing. This allows elimination of the
extra object program coding generated for
the debugging statements.

The ou t pu t prod uced by th e TR ACE and
EXHIBIT statements is listed on the system
logical output device (SYSOUT). If these
statements are used, the SYSOUT DD
statement must be specified in the
execution time job step.

The following discussions describe ways
to use the debugging language.

The READY TRACE statement causes the
compiler generated card numbers for each
paragraph na me to be listed on the system
output unit when control passes to that
point. The output appears as a list of
card numbers. If the VERB option is in
effect during compilation, paragraph-names
rather than card numbers will be displayed.

To reduce e.xecution time, a trace can be
stopped with a RESET TRACE statement. The
READY TRACE/RESET TRACE combination is
helpful in examining a particular area of
the program. The READY TRACE statement can
be coded so that the trace begins before
control passes to that area. The RESET
TRACE statement can be coded so that the
trace stops when the program has passed the
area. The two trace statements can be used
together where ·the flow of control is
difficult to determine, e.g., with a series
of PERFORM statements or with nested
condi tionals.

Another way to control the amount of
tracing, so that it is done conditionally,
is to use the ON statement with the TRACE
statement. When the COBOL compiler
encounters an ON statement, it sets up a
mechanism such as a counter that is
incremented during execution whenever
control passes through the ON statement.
For example, if an error occurs when a
specific record is processed, the ON

statement can be used to isolate the
problem record. The statement should be
placed where control passes only once for
each record that is read. When the
contents of the counter equal the number of
the record (as specified in th~ ON
statement), a trace can be taken on that
record. The following example shows a way
in which the processing of the 200th record
could be selected for a TRACE statement.

Col.
1 8

RD-BEe.

DEBUG RD-REC.
PARA-NM-l. ON 200 READY TRACR.

ON 201 RESET TRACE.

If the TRACE statement were used without
the ON statement, the processing of every
record would be traced.

A common program error could be either
(1) failing to break a loop, or
(2) unintentionally creating a loop. If
many iterations of the loop are required
before it can be determined that there is a
program error, the ON statement can be used
to initiate a trace only after the expected
number of iterations has been completed.

Notes:

1. If an error occurs in an ON statement,
the diagnostic message may refer to
the previous statement number.

2. When READY TRACE encounters a
·paragraph that is repetitively
executed, it does not write out a
separate record for each individual
execution of the paragraph. Instead,
it simplifies its output by keeping
an internal count, and writing out a
single summary record only when the
paragraph iteration finally finishes.
This record identifies the number of
times the paragraph was executed.
READY TRACE output is built to contain
multiple paragraph entries on each
print line.

3. In the event the paragraph iteration
is a nonending loop, READY TRACE
output does not include the current
print line being built. Therefore,
READY TRACE output never identifies
the paragraph as having been entered
at all. In the event of an ABEND,
the last print line of READY TRACE
data may not be printed. When either
a non-ending loop or abnormal ending
of a task occurs ,- the current print

Proqram Checkout 251

line is available in the current
SYSOUT buffer.

A programmer can display the value of a
data item during program execution by using
the EXHIBIT statement. The three forms of
this statement display (1) the names and
values of the identifiers or nonnumeric

252

literals listed in the EXHIBIT statement
(EXHIBIT NAMED) whenever the statement is
encountered during execution, (2) the
values of the items listed in this
statement only if the value has changed
since the last execution (EXHIBIT CHANGED)
and (3) the names and values of the items
listed in the statement only if the values
have changed si.nce the previous execution
(EXHIBIT CHANGED NAMED). The first time
such a statement is executed, all values
are considered changed and are displayed.

l!Q.t~: The combined total le.ngth of all
items displayed vi th EXHIBIT CHANGED and
EXHIBIT CHANGED NAMED cannot exceed 32,767
bytes. The length of anyone operand must
be less than or equal to 256 bytes. The
length of a "NAME" must be less than or
equal to 120 characters.

Data can be used to check the accuracy
of the program. For example, the
programmer can display specified fields
from records, work the calculations
himself, a nd com pare his calculations vi th
the output from his program. The coding
for a payroll problem could be:

Col.
1 8

GROSS-PAY-CALC.
COMPUTE GROSS-PAY
BATE-PER-HOUR * (HRSWKD
+ 1.5 * OVERTIKEHRS).

NET-PAY-CALC ..

DEBUG NET-PAY-CALC
SAMPLE-1. ON 10 AND

EVERY 10 EXHIBIT NAMED
RATE-PEB-HOOB, HRSWKD,
OVERTIMEHRS, GROSS-PAY.

This coding will cause the values of the
four fields to be listed for every tenth
data record before net pay calculations are
made. The output could appear as:
RATE--PER-HOUR :: 4.00HRSWKD :: 40.0

OVEBTIKEHRS = 0.0 GROSS-PAY:: 160.00
RATE-PER-HOUR = 4.10 iRSWKD = 40.0

OVERTIMEHRS = 1.5 GROSS-PAY:: 113.23
RATE-PER-HOUR :: 3.35 HRSWKD = 40.0

OVERTIMEHRS : 0.0 GROSS-PAY = 134.00

l!Q!!!: Decimal points are included in this
example for clarity, but actual printouts
depend on the data description in the
program.

The preceding is an example of checking
at regular intervals (every tenth record).
A check of any unusual conditions can be
made by using various combinations of COBOL
statements in the debug packet. For
example:

IF OVERTIMEHRS GREATER THAN 2.0
EXHIBIT NAMED PAYRCDHRS

In connection with the previous example,
this statement could cause the entire pay
record to be displayed whenever an unusual
condition (overtime e~cee~ing ivo hours) is
encoun tered.

The EXHIBIT CHANGED statement also can
be used to monitor conditions that do not
occur at regular intervals. The values of
the items are listed only if the value has
changed since the last execution of the
statement. For example, suppose the
program calculates postage rates to various
cities. The flow of the program might be
as shown in Figure 96.

r---,
J
I
I
I
I
1
1
I
~
1
I
I ,
]
I
I
J
I
I
I
I
I
I
I
J
I
~
1
I
1
)
J
I
I
)
]
I
~
I

~
--------J-READ INPUT
DATA FOR. <------®

CITY
---T---

]
I
V

r-----------,
1 CALCULATE I
~ RATE FOR I
I CITY 1
l-----T-----J

]
I
V

r-----------,
I EXHIBIT J
I CHANGED I
l-----T-----J

I
]

I
I
V

I
I
I
I
I
I
I

L---__ ~-----------------------------------J

Figure 96. Example of Program Flow

Program Checkout 252.1

The EXHIBIT CHANGED statement in the
program could be:

EXHIBIT CHANGED STATE CITY RATE

The output from the EXHIBIT CHANGED
statement could appear as:

01 01 10
02 15
03
04 10

02 01
02 20
0.3 15
04

03 01 10

The first column contains the code for a
state6 the second column contains the code
for a citY6 and the third columB contains
the code for the postage rate. The value
of an item is listed only if it is changed
since the previous execution. For example,
since the postage rate to city 02 and 03 in
state 01 are the same6 the rate is not
printed for city 03.

The EXHIBIT CHANGED NAMED statement
lists the na me of the da ta item and the
value of that item if the value has
changed. For example6 the program might
calculate the cost of various methods of
shipping to different cities. After the
calculations are made, the following
statement could be in the program:

EXHIBIT CHANGED NAMED STATE CITY RAIL
BUS 'rRUCK AI R

The output from this statement could appear
as:

STATE = 01 CITY = 01 RAIL = 10
BUS = 14 TRUCK = 12 AIR = 20

CITY = 02

CITY = 03 BUS = 06 AIR = 15

CITY = 04 RAIL = 30 BUS = 25
TRUCK = 28 AIR = 34

STATE = 02 CITY = 01 TRUCK = 25

CITY = 02 TRUCK = 20 AIR = 30

Note that the name of the item and its
value are listed only if the value has
changed since the previous execution.

A debug packet allows the programmer to
select a portion of the program for
testing. The packet can include test data
and can specify operations the programmer
wants performed. When the testing is
completed, the packet can be removed. The
flow of control can be selectively altered
by.the inclusion of debug packets, as shown
in Figure 97.

r- --,
I ...---------, , J I
J I START I
I , I
J L-- ..
• 1

L--_________ ---,

1 I
f V

I r--------, r-
I 1 J • DEBUG
t t A I , PACKET
~ J J I FOR A
I

, , .J

I
I , -.J

I I
I V

• .---
I f
1 J B
I I
I 1. J

4

• '-- •
I I
I V
I r-------l r--
t J I I DEBUG
f J C I I PACKET
1 J I I FOR C , • -" .J

I

• I r- .I

I I
I V
I , , I , STOP I
f RUN I
I

Figure 91. Selective Testing of B

In this program, A creates data, B
processes it, and C prints it. The debug
packet for A simula tes test data. It is
first in the program to be executed. In
the packet, the last statement is GO TO B,

I
I
I
I
1
I
I
t
J
I
I
I
1
I
I
I

Program Checkout 253

which permits A to be bypassed. After B is
executed with the test data, control passes
to the debug packet forC, which contains a
GO TO statement that transfers control to
the end of the program, bypassing C.

If a program runs correctly but changes
or additions can make it more efficient, a
debug packet can be used to test changes
without modifying the original source
program.

If the changes to be incorporated are in
the middle of a paragraph, the entire
paragraph, v ith the changes included, must
be written in the debug packet. The last
statement in the packet should be a GO TO
statement that transfers control to the
next procedure to be executed.

There are usually several ways to
perform an operation. Alternative methods
can be tested by putting them in debug
packets.

The source program library facility can
be used for program checkout by placing a
source program in a library (see
"Libraries"). Changes or additions to the
program can be tested by using the BASIS
card and any number of INSERT and DELETE
cards. Such changes or additions remain in
effect only for the duration of the run.

If a serious error occurs during
execution of a program, the job may be
abnormally terminated; any remaining steps
are bypassed, and a dump is generated. The
programmer can use the dump for program
checkout. (However, any pending transfers
to an external device may not be completed.
For example, if a READY TRACE statement is
in effect when the job is abnormally
terminated, the last,card number may not
appear on the external device.) In cases
where the abnormal termination does not go
to completion, a dump is not produced.
This situation may cause duplicate name
definition when the next job is run, and is
discussed at the end of this section.

If a SYSUDUKP DD statement has been
included in the execution-time job step,
the system will provide the programmer with
a p.cintout. in hexadecimal and EBCDIC
format, of main storage. Those areas
occupied by the problem program and its
data at thet.ime the error occurred., viII

254

be included. This pr intou t is called an
abnormal termination dump and in VS1 is
identified by the heading

*** ABDUMP REQUESTED ***
If a SYSABEND DD statement is specified,
the contents of the nucleus is also
printed.

If neither a SYSUDUMP nor a SYSABEND DD
statement is included in the execution~time
job step, or its specification has been
destroyed, an indicative dump is produced.
This dump does not contain a printout of
main storage and is not given under OS/VS2.

All dumps include a completion code
designating the condition that caused the
termination. The completion code consists
of a system code and a user code. Only one
of the codes is nonzero. A nonzero system
code indicates that the control program
detected the error.

The COBOL programmer can request dynamic
dumps via a compile-time option. The
SYKDMP option, requested in the PARM
parameter of the EXEC statement, produces a
symbolic formatted dump of the data area of
the object program if the program
abnormally terminates •. At execution time,
the user can also request a dynamic dump at
any point in the Procedure Division.

• If a COBOL program abnormally
terminates, then a formatted dump is
produced for all COBOL programs
compiled with the SYMDMP option which
could include the abnormally
terminating program and its callers, up
to and including the main program.

• The explanation of the system-genera ted
completion codes and a complete
description of the dumps are contained
in the appropriate Deb~ggill~~uidg.
For a discussion of the COBOL sym bolie
debugging options, see the chapter
entitled "symbolic Debugging Features. It

USER-INITIATED DUMPS

The COBOL programmer can cause a dump at
any pre-specified point in his program by
coding a call to t he libra ry suhr~ utine
ILBOABNO, in the following manner:

71 COMP-CODE PIC S999 CaMP.

MOVE nnn TO COMP-CODE.

CALL • ILBOABNO t USI NG COI!P-CODE.

The three-digit number nnn vill become the
identifier in the Unnn user abend code
produced with the resultant dump.

ERRORS THAT CAN CAUSE A DUMP

Following is a discussion of some error
conditions that can cause a program to be
abnormally terminated and a dump to be
listed.

Errors can occur while a COBOL file is
being processed. For example, during data
transmission, an input/output error may
occur that cannot be corrected. In some
situations, this will result in the job
being terminated (see Figures 52 and 53).

Referring to an input area
(non-VSAM/QSAM) before both an OPEN and a
READ statement are issued can cause
unpredictable results, because base locator
(BL) cells and registers are not properly
initia 1i%ed.

Another error that can cause termination
is an attempt to read a file whose records
are of a different size than those
described in the source program. The
section "Add itional File Processing
Information" contains more information
about input/output errors.

Abnormal termination of a job occurs
when a data item with an invalid format is
processed in the Procedure Division.

Some of the program errors are:

1. A data item in the Working-storage
Section is not initialized before it
is used, causing invalid data to be
picked up.

2. An input file or received message
contains invalid da ta or data
incorrectly defined by its data
description. For example, the
contents of the sign position of an
internal or external decimal data item

in the file may be invalid. The
compiler does not generate a test to
check the sign position for a valid
configuration before the item is used
as an operand.

3. If a group item is moved to a group
item and the subordinate data
descriptions are incompatible, the nev
data in the receiving field may not
match the corresponding data
descriptions. (conv~rsion or editing
is not performed in a move involving a
group item.)

Note: A Numeric class test, "IF
Numeric", for signed data items,
allows C, D, and F as valid signs.
For external decimal items this
includes X'C1' through X'C9' and
X'D1' through X'D9' and X'F1' through
X'F9' as valid last bytes. For
internal decimal items, this includes
X'1C' through X'9C', X'1D' through
X'9D', and X'1F' through X'9F' as
valid last bytes. Certain invalid
numeric data items, such as EBCDIC A
through R in the last byte of an
external decimal numeric it~m, and
EBCDIC <, *, %, @, (,), " , I ,--
i, ?, and" in the last byte of an
internal decimal item, are considered
valid numeric items for an "IF
Numeric" test.

4. Tbe SIZE ERROR option is not specified
for tbe COMPUTE statement and the
result of the calculation is larger
than the specified resultant

COMPUTATIONAL data name. Using the
result in a subsequent calcula tion
might cause an error.

5. The SIZE ERROR option is not specified·
for a DIVIDE statement. and an attempt
is made to divide by zero.

6. The USAGE specified for a redefining
data item is different from the USAGE
specified for the redefined item. An
error results wheri the item is
referred to by the wrong name for the,
current content.

7. A record containing a data item
described by an OCCURS clause with the
DEPENDING ON Qat~~~~ option. may
cause data items in the record to be
affected by a change in the value of

Program Checkout 255

gllg=!!sl!~ during the course of program
execu tion. This may result in
incorrectly described data.
Addit lonal informa tion about how to
correct this situation is included in
"programming Techniques."

8. The data description in the Linkage
section of a called program does not
correctly describe the data defined in
the calling program.

9. Blanks read into data fields defined
as numeric generate an invalid sign.

10. Some common errors that occur when
clearing group items in storage are:

a. PJovingALL ZEROS to a group level
item to clear several counters
causes an invalid sign to be
generated in all of the elementary
fields except the lowest order
field.

b. ftoving SPACES to a group level
item will put invalid data in any
numeric field in that group.

c. Moving 0 to a group level item
moves one zero and pads the rest
of the fields with blanks.

11. Failure to initialize counters
produces incorrect results. No
initial values are generated by the
compiler unless specifically
instructed to do so with a VALUE
clause. If such fields are defined as
decimal, internal or external, invalid
signs may result in addition to
unpredictable initial values. If
defined as binary, they will cause
unpredictable results and, further, if
used in subscripting, may exceed the
range of the associated OCCURS clause
and cause data to be fetched or stored
erroneously. An addressing exception
may occur if the uninitialized
subscript generates a bad address.

12. Not testing to insure that a subscript
or index does not exceed the range of
the associated OCCURS clause may lead
to fetching and storing data from and
to some incorrect locations.

13. Failure to initialize an index
produces incorrect resl11ts. No
initial values are generated by the
compiler unless a SET statement is
executed. When indexinq is then
specified, the range of the OCCURS
clause may be exceeded and cause data
to be fetched or stored erroneously.

256

An addressing exception may occur if
the Initi alized inde.x generates an
address outside the range of the
machine, or a protection exception if
data is stored outside the partition
of this program.

14. A subscript or index set at zero will
address data outside the range of the
t.ab Ie.

15. If either HIGH-VALUE or LOW-VALUE is
moved to internal or external decimal
fields and those fields are used for
comparisons, computations, or
subscripting, a data exception will
occur. HIGH-VALUE and LOW-VALU E a.re
the hexadecimal values X'PF' and
X'OO., respectively (unless these
values have heen altered by a
user-defined collating sequence).

Addit ional 1/0 errors may occ ur tha t
viII result in an abnormal termination
(these are listed below). For QSAM files,
however, the user can employ the FILE
STATUS clause to intercept many of these
errors; bis program can then identify and
deal with them, and thus prevent the abend
from occur ing.

1. No DD statement is included for a file
described in the source program and an
attempt is made to access the file.
When an OPEN statement for the file is
executed, the system console message
is written. The programmer can elect
to direct the operator to continue
processing his program, but any READ,
WRITE, REWRITE, or START associated
with the unlocated file will fail. (A
READ for a missing optional file#
however, will follow end-of-file
processing rules.) A similar
situation exists when a file is closed
WITH LOCK and an attempt is made to
reopen it.

2. A file is not opened and execution of
a READ or WRITE statement for the file
is attempted, or a MOVE to a record
area in the file is attempted.

3. A GO TO statement, with no procedure
name following it, is not properly
initialized with an ALTER statement
before the first execution of the GO
TO sta temen t.

4. Reference is made to an item in a file
after end of data. This includes the
use of the TERMINATE statement of the

Report writer feature, if the CONTROL
FOOTING, PAGE FOOTING, or REPORT
FOOTING contain items that are in the
file (e.g., SOURCE data-name, where
data-name refers to an item in the
file) •

5. Block size for an F-format file is not
an integral multiple of the record
lengt h.

6. In a blocked and/or multiple-buffered
file, information in a record is
unavailable after a WRITE.

7. A READ is issued for a data set
referenced on a DO DUMMY statement.
The AT END condition is sensed

Program Checkout 256.1

immediately and any reference to a
record in the data set produces
unpredictable results.

8. A STOP RUN statement is executed
before all files are closed.

9. A SORT did not execute successfully.
The programmer may check SORT-RETURN.

10. An input/output statement is issued
for a file after the AT END branch is
taken, without closing and reopening
the file.

11. A SEND or RECEIVE statement is issued
when a message control program is not
running.

12. A SEND or RECEIVE statement is issued
for a QNAK! (i. e. , the "QNAKE="
parameter of the DD card) that is
unknown to the message cont rol
program.

In addition to errors that can result in
an abnormal termination, errors in the
source program can occur that cause parts
of the program to be overlaid and the
corresponding object code instructions to
become invalid. If an attempt is then made
to execute one of these instructions~ an
abnormal termination may result because the
operation code of the instruction is
invalid, the instruction results in a
branch to an area containing invalid
instructions, or the instruction results in
a branch to an area outside the program,
such as an address protected area.

Some COBOL source program errors that
can cause this overlaying are:

1. Using a subscript whose value exceeds
the maximum specified in the
associated OCCURS clause.

2. Using a data-name as a counter whose
value exceeds the maximum value valid
for tha tcoun ter.

SYSTEM COMPLETION CODES

The following cases represent some of
the errors that can occur in a COBOL
program and the interrupt or completion
code associated with them. These errors do
'not necessarily cau,se an abnormal
term~nation at the time they are recognized
and do not always hold true. (See Appendix K
for COBOL-initiated u-type completion codes.)

1. 013--Check register 2 of registers at
the entry to ABEND. This address
points to the DCB in conflict.

2. 043--Error occurred during the
attempted opening of a TCAM
application program data set, as
described below.

a. A value of 01 in reg~ster 0
indicates the attempted opening of
a TCAM application program data
set without an active message
control program (MCP) in the
system.

b. A value of 02 indicates that the
QNAME= parameter of a DD statement
associated with an input or output
DCB for a COBOL program is not the
name of a process entry defined in
the terminal table.

c. A value of 03 indicates that the
process entry named by the QNAME=
parameter of a DD statement
associated with a COBOL program is
currently being used by another
COBOL progra m.

d. A value of 04 indicates that
insufficient main storage was
available in the MCP to build
internal control blocks associa ted
with the COBOL program interface.
Specify a larger region or
partition size in the JOB
statement for the MCP.

e. A value of 05 indicates that
insufficient main storage was
available in the COBOL work area
to build internal control blocks.
specify a larger region or
partition size in the JOB
statement for the COBOL program.

3. 046--Error occurred during the
termination of the TeAM MCP
because the COBOL program data
set was still open. specify the
STOP RUN statement when COBOL
processing is complete. Ensure
that all COBOL programs have
terminated processing before
deactivating the MCP.

4. OC1--0peration Exception:

a. When the interrupt is at 000048 or
at 004800, look for a missing DD
card or an unopened file.

b. When the interrupt is at 000050,
look at register 1 of the
registers at entry to ABEND. Add
hexadecimal 28 to the address
found in register 1. This should
point to the ~D name of a missing
DD statement.

Program Checkout 257

c. When the interrupt is at 00004A,
look for a missing card, i.e.,

//SYSOUT DD SYSOUT=A

any missing JCL card, or the wrong
name of a JCL card. Add
hexadecimal 28 to the address
found in register 1 at entry to
ABEND. This should point to the
DD name of the DD statement in
error.

d. When interrupt is at 00004F, look
for inconsistent JeL or check the
system-name in the COBOL program.

5. OC4--Protection Exception:

a. Check for the block size and
record size being equal for
variable record input or output.

b. Check for missing SELECT
statement.

c. If inte.rrupt is at 004814, check
for an attempt to READ an unopened
input file or a missing DD card.

d. Check for an uninitialized index
or subscript.

e. If a QSAM file with FILE STATUS
opened OUTPUT, check for a missing
DD card.

6. OCS and OC6--Addressing and
Specification Exception:

a. Subscript or index value may have
exceeded maximum and instruction
or table area was overlaid.

b. Check for an improper exit from a
procedure being operated on by a
PERFORM statement.

c. Check for duplicate close of an
input or output file if DS
formatting discontinued.

d. A sort is being attempted with an
inc orrect ca tal og proced ure.

e. Attempting to reference an
input/output area before a READ or
OPEN statement, respectively.

f. Check for initialized subscript or
index value.

7. OC7--Data Exception:

258

a. Data field was not initialized.

b. Input record numeric field
contains blanks.

c. Subscript o.r index value exceeded
maximum and invalid data vas
refe.renced.

d. Data vas moved from the DISPL'AY
field to the COMPUTATIONAL or
COftPUTATIONAL-3 field at group
level. Therefore, no conversion
vas provided.

e. The figurative constants ZERO or
LOW-VALUE moved to a group level
numeric field.

f. Omission of USAGE clause or
erroneous USAGE clause.

g. Incorrect Linkage section data
definition, passing parameters in
wrong order~ omission or inclusion
of a parameter, failure to carry
over a USAGE clause when
necessary, or defining the length
of a parameter incorrectly.

8. 001--1/0 Error:

a. Register 1 of the SVRB points to
the DCB which caused the
input/output problem. Look for
input record and blocking errors.
That is, the input does not agree
with t·he reco.rd and blocking
descriptions in the DCB, the COBOL
file description, or the DD
statement LREeL parameter.

b. Attempted to READ after EOF has
been sensed.

c. Attempted to write to a QSAM file
that has previously encountered
end of file (taken a B37 exit),
and set the file status to X'34'
and/or entered the INVALID KEY
routine.

9. 002--Register 2 of registers at the
entry to ABEND contains the
address of the DCB for the file
causing the input/output problem.
Check the DCB list for the
specific file.

10. 013--Error during execution of an OPEN
EXTEND statement. Ensure that
the· system OPEN EXTEND facility
is available. OPEN EXTEND
requires at least OS/VS1 Release
6, or OS/VS2 Release 7 with SU8.

11. 213--Error during execution of OPEN
statement for data set on mass
storage device, as follows:

a. DISP parameter of DD statement
specified OLD for output data set.

Program Checkout 258.1

b. Input/output error cannot be
corrected when reading or writing
the DSCB. Recreate the data set
or resubmit the job.

12. 214--Error during CLOSE for data set
on tape; there is an input/output
error that cannot be corrected
either in tape positioning or
volume disposition. Resubmit the
job and inform the field engi~eer
if error persists.

13. 237--Error at EOV:

a. Incorrect volume serial number
specified in SER subparameter of
VOLUME parameter of DD statement.

b. Incorrect volume mounted.

c. Incorrect labels.

14. 400--1f this completion code is
generated during a compile step,
the member to be compiled has not
been extracted from the source
library for compilation.

15. 413--Error during execution of an OPEN
statement for a data set on tape:

a. Volume serial number was not
specified for input data set.

b. Volume could not be mounted on the
a llocated device.

c. There is an input/output error in
reading the volume label that
cannot be corrected.

16. 804--The error occurred dnring a
GETMAIN. If this error occurs
when a non-COBOL program (such as
IMS or an installation-defined
assembler progra~ links to a
COBOL load module lIany times in a
job step, the programmer should
determine if the NOENDJOB option
was used; if so, specifying the
ENDJOB option may correct the
problem.

17. 806--The error occurred during
execution of a LINK, XCTL,
ATTACH, or LOAD macro
instruction. An error was
detected by the control program
routine for the BLDL macro
instruction. The contents of
register 15 indicate the nature
of the error:

04 The requested program was not found
in the indicated private, job, or
link library.

08 An uncorrectable input/output error
occurred when the control program
attempted to search the directory
of the library indicated as
containing the requested program.

18. BOA--Insufficient contiguous main
storage for linkage to some phase
of the compiler. The programmer
should see if secondary data-set
allocation has caused an extra
DEB to be built at lower main
storage addresses within the
region. If sOv this problem can
be corrected by assigning
sufficient primary extents for
the data set in question. See
ttData set Requirements" for
further information. If this
error occurs When a non-COBOL
program (such as IMS or an
installation-defined assembler
program) links to a COBOL load
module many times in a job step.
the programmer should determine
if the NOENDJOB option was used;
if so, specifying the ENDJOB
option may correct the problem.

19. 813--Error during execution of an OPEN
statement in verification of
labels:

a. Volume serial number specified in
VOLUME parameter of DD statement
is incorrect.

b. Data set name spe"cified in DSNAME
parameter is incorrect.

c. Wrong volume is mounted.

20. 906--The system use count limit was
exceeded during the execution of
a LINK, XCTL, LOAD, or ATTACH
macro. If this error occurs when
a non-COBOL program (such as 1MS
or an installation-defined
assembler program) links to a
COBOL load module many times in a
job step, the programmer should
determine if the NOENDJOB option
was used; if so, specifying the
ENDJOB option may correct the
problem.

Finding L0£9.11.Q!!._2U!:QQrall InterruptiQ!L.in.
£Q~Q1_liQY!:£~_fIQg[a~-Y2in~_th~_Condensed
1isting

To determine the location of the
interruption, the programmer should proceed
as follows:

Program Checkout 259

1. From first page of dump:

a. Get coapletion code and prograa
interruption storage location.

b. Determine the starting address of
the program (PRB address+20).

2. Froll Ii nkage editor listing:

a. Determine storage address for each
module. Add starting -address of
the program to origin of each
module.

b. Determine module in which
interrapt storage location falls.

c. Determine relative address.
Subtract module storage address
from interrupt location.

3. From Procedure Division map:

a. Find the highest previous relative
address in the condensed listing.
That statement is in error.

b. Get line number and verb of COBOL
source statement.

4. From source listing find the line
number and verb of source statement
causing program interruption.

USING THE ABNORMAL TERMINATION DUMP

The programmer can also determine the
cause of an abnormal termination with the
following material:

1. The COBOL program object code listing.

2. A knowledge of the layout of the COBOL
object module.

3. The full abnormal termination dump in
conjunction with the linkage editor
map or cross reference list.

A description of the linkage editor
output and of the COBOL object code listing
is found in "output." Figure 91 shows the
layout of the COBOL program object module.

260

Not~: The information in this section
about the use of the abnormal termination
dump applies only when running under
OS/VS1. For information about the abnormal
termination dumps under OS/VS2, see the
publication,~2 Deb~g!lliLQ.y.ig~.

The abnormal termination dump provides
the address at which the load module has
been loaded (load address) and the address
of the instruction that caused the
interrupt. The programmer computes the
load module area by adding the load address
to the load module length* as shown in the
linkage editor output. It is now possible
to determine whether the instruction falls
within the load module. If it does not*
the interrupt could have resulted from an
improper branch to a point outside the load
module or an error occurring in another
part of the system.

If the instruction does fall within the
load module. the programmer now determines
in which part: the main program, a COBOL
library subroutine* or a called program.
The ranges of the various parts are
determined by adding their relative
origins, as showb in the linkage editor
output. to the load address.

If the instruction occurred in an object
module generated for a COBOL program.
(i.e., the main program), the programmer
can determine whether or not the
instruction vas one of the generated object
code instructions. He can determine the
address of the first instruction in the
Procedure Div~sion (as found in the object
code listing) by adding its relative
location to the location of the object
module (load address plus relative "origin).
If it was one of the object code
instructions, a similar technique can
used to locate the exact instruction.
it was not one of these instructions.
error has occurred in another part of
object module. Control possibly went
because of an improper branch.

be
If

the
the
there

If the instruction that initiated the
dump occurred in a COBOL library
SUbroutine. or if the original program
called another program and the instruction
occurred in the called program* the
instruction can be located by a similar
teChnique. The linkage editor cross
reference list indica tes the locations
where the call to th~ program or subroutine
in question was made.

The following general rules can be used
to determine the cause of the dump and the
error.

1. Determine the COBOL statement that
generated the code leading to the
program check.

a. The top of the system dump will
tell the address of the PC
(Program Chec~ instruction and
the type of PC. Locate the
instruction in the core dump.

b. Determine the relocation factor of
the program from the linkage
editor map. subtract the
relocation factor from the address
of the invalid instruction.

c. The address that results may be
located in the procedure division
map generated by the MAP option.
(The coding shown at this location
of the map should correspond to
the instruction located in step
one.)

d. Preceding the address and code
found in step three, find the
sequence number of the
corresponding COBOL statement in
the listing and the number of the
element in the sentence that
gen era ted t he cod e.

2. Be sure the COBOL statement is coded
properly.

3. If tbe statement is coded properly, go
back to the main storage dump and
determine the type of PC.

a. If it is a data exception, the
programmer will probably find tha t
the instruction is a decimal
instruction, and that one of the
fields either will not have a
valid sign or will contain digits
other than 0 to 9. To determine
tbis, it will be necessary to find
the fields in main storage.
Inspect bits 4 through 7 of the
lOlli-order byte for a valid sign
(A through F). If one is not
present, this is the cause of the
pc.

If one or both of the fields
being operated on are d,efined as
external decimal, the programmer
will find one or more pack
instructions immediately ahead of
the pc instruction. From these
determine the address of the

external decimal field that
generated the invalid sign.
several common causes of data
exceptions are given in "Errors
Caused by Invalid Data."

b. If it is a protection except~on,
one possible cause is that a base
register used in the instruction
has not been initialized. Base
registers in COBOL are initialized
at different times. For QSA~ and
VSAM input files the register is
initialized at OPEN; for other
input files, the register is not
initialized until the first
§~~§~!B! read. For output
files, the registers are
initialized ~uring the p~ocessing
of the OPEN statement. When faced
with a protection exception, the
programmer should go to the COBOL
source program to ascertain that
no data has been moved prior to
the time when base registers are
initialized.

c. If an addressing or specification
exception occurs, the programmer
may find upon inspection (but not
always) that registers have been
unexpectedly modified and the
problem becomes one of finding out
how. Two possible approaches are:

(1) Check the addresses in
registers 14 and 15 against
the address of the PC
instruction. If the address
of the PC instruction is equal
to or slightly larger than the
address in register 15, the
address probably is in a
subroutine, and the address in
register 14 should be the
return address. A BAL or BALR
instruction probably viII
precede the return address.
The programmer should look for
this particularly when the
problem is not with a COBOL
statement. If the PC
instruction has an address
equal to or a bit larger than
the address in register 14,
then the programmer probably
has just returned from a
subroutine, and register 15
should still be pointing to
the entry address of the
subroutine. The proqrammer
should check the coding to see
if this could reasonably be
so, and check the entry points
listed on the linkage editor
map. If this approach bears
further action, a listing of
the subroutine vould be needed

Program Checkout 261

or the instructions from the
dump must be interpreted.

(~ If the foregoing step does not
locate the error, the
programmer should check back
through the dump to see what
exists between the PC
instruction and the last
unconditional branch in order
to determine the possible
course of events.

The sample COBOL program ABEND and its
output, shown in Figure 98, illustrates in
detail the way in which an object code
listing, a cross-reference table, and an
abnormal termination dump can be used
together to debug a program. The circled
numerals in the figures are cited in the
associated text. Note that all values are
expressed in hexadecimal format unless
otherwise indicated.

In that example, the completion code in
the dump, CD, indicates the condition
causing the abnormal termination. If the
system part of the code is nonzero, the
explanation can be found in the appropriate
Qg!!!!ggill.LGuidg. In the program ABEND, the
completion code is OC7; invalid data is the
reason for termination.

suggested below are general procedures
for locating and correcting the source
statement responsible for abnormal
termination.

1. The INTERRUPT hhhhhb. entry, @, gives
the hexadecimal address of the
instruction following the instruction
that initiated the interrupt and
caused the dump_ This address can be
used to determine the relative
location of the instruction in the
load module (see item 4 below).

2. To determine the main storage area
occupied by the load module, add the
total length of the module, in
hexadecimal format, to its load
address. The load address can be
obtained from the EPA entry, ®, of
the CDB specification. The last six
digits of this entry are the address
of the entry point (INIT1) in the
COBOL program.

262

The total length of the load ~odule
is indicated in the TOTAL LENGTH
entry, ®, in the linkage editor
output. The highest location in the
load module is:

® +@

Thus, the range is from ® to
@ + ®. Since the address @ falls
within this range, the instruction
initiating the dump must be within the
load module.

3. TO determine the relative location
within the load module of the
instruction indicated in the INTERRUPT
entry, subtract the load address from
the address of the instruction.

4. To determine whether or not the
instruction occurred in the object
module generated for the program,
compare its relative location Q) - ®
with the total length, @, of the
object module. If the relative
location were greater than the size of
the object module, then the error
would not be part of this program. A
relative location between the size of
the object module, @ , and the total
length ® would indicate that the
abnormal termination had occurred in
one of the COBOL library subroutines.
Such an error could be located by
comparing the relative location with
the relative origin of the subroutines.
In this example, (6) - Q) is less than
the object module size (2), so the
instruction occurred in the main
program.

5. To determine whether or not the
abnormal termination occurred in one
of the object code instructions
generated as a result of a statement
in the Procedure Division of the
source program, compare its relative
location with the relative location of
the first generated instruction in the
Procedure Divisi-on, ®. In this
example, the relative location of the
instruction is greater than that of
the first generated instruction and so
it can be found by locating the
corresponding relative location. The
immediately preceding object code
instruction then is the instruction
that initiated the dump, (J). In this
example, it is an instruction
generated as a result of a COMPUTE
statement. Checking back to the
source program listing, the
corresponding statement 18, ® , is
located and tB' is seen to be the
data-name that caused the trouble.
Data item B is defined in the Data
Di vision, ®, as a COKPUTATIONAL- 3 or
internal decimal item, but the value
at B is there as a result of a VALUE
clause for A, the item that B
redefines. This value is in external
decimal format since there is no USAGE
clause specified. The configuration
of A is invalid for B and results in
an interrupt.

~~terminin~th~Q£a£iQll-2f_sn_A~~!Q When
Ry.!!!!inLlll!!2.mically: When running
dynamically, the programmer should do the
following to determine whether the abend
occurred in the main program.

1. Figure 99 is a Load List of the same
program shown in Figure 98, but
compiled with the DYNAM option. The
compiler produces a Load List that
contains the COBOL subroutine library
names and the addresses used in the
program. These are anything beginning
with ILBO. ® The programmer is
particularly interested in any ILBO
subroutine that does not end in a

zero, such as ILBORNT, ILBOREC,
ILBODSP, etc.

2. In this case, the abend has occurred
at ®. To determine whether this is
with1n the main program, go to the
Load List, and look for the subroutine
with its address closest to that of
the abend, which is at ®

3. Look below to the second part of the
Load List. This contains the length
of the subroutines that begin at the
address specified above. In this case
at ® ' under the LN column, the

program Checkout 263

IuENTIfICATION uIVlSION.
PROGRAM-ID. AdEhD.
REMARKS.

OOOul
,cee2
O("1l03
C('CC4
OOCC5
OCiCC6
00007
lloce8
O';CCS
COCIC
OOOH
0("012
CC C.L3
CO 0 14
OUC15
COC;16
00(17
OOC;ld
uOCH

00001
00002
00003
00()04
000(i5
00006
00007
0(;008
00009
00010
00011
00012
00013
00014
a001S
00016
00017
00018
00019

THIS IS A ~ROGRAM TO ILLUSTRATE THE ABNOR~AL
TERM£NATION OF A PROGRAM.

ENVIR~NHfNT DIViSION.
CONfIGURATION SeCTION.
SOURCE-~HPUTER. I&H-370-168.
OBJECT-COMPUTER. IbM-37U-168.

DATA DIVI SION.

wORKING-STORAGE SE~TIDN.
01 RECORDA.

02 A PICTU~E 59(4J VALUE 1234.
02 B KEDEf!~tS A PICTURE S9(7J COMPUTATIONAl-3. (!)

PROCEDURE DIV fS£ON. ft:'\
CGMPUTE B = B to 1. \!J
STOP RUN.

INTRNL NAMt:
DNM=J.-u32
DNM=1-u52
DNM=1-vb3

LVL SLlURCe NAME
01 RECOR&JA
02 A
02 B

TGT

SAVE AREA
SWITCH
TAllY

MEMOKr MAP

SOH.T SAVE
ENTRY-SAVE
SORT CORE SIZE
RH CODE
SORT RET
WUH.KING CEllS
SORT fILE SIZE
SORT MODE SIZE
PGT-VN TBl
TGT-VN TBL
RES':RVED

UNCIL CEllS
PfMC TL CElLS
PfMSAV CELLS
VN CEllS
SAVE AREA =2
SAVE AREA =3
XSASW CEllS
XSA CELLS
PARAM CEllS
RPTSAV AREA
CHECKPT CTR

LITE~AL PGOL ,HEXJ

OCZCU (LIT+OJ lC

PGT

OVERfLOW CElLS
VIRTUAL CEllS
PROCEDURE NAME ~ELlS
GENERATED NAME ~ELLS
DCB ADDRESS CELLS
VNI CELLS
II TERALS
DISPLAY LITERAL~

HGISTER AS')IGNMENT

REb b BL =1

000A8

OOOA8
OOOFO
OOOf4
OOOFS
OOOFC
00100
00104
0010b
00108
00238
0023C
00240
00244
00248

002CO
002CO
002CO
002CO
002CO
002eO
002CO
002CO
002eO
002eO
002eO

002eo

002eo
002CO
002Ce
002Ce
00200
00200
00200
00201

BASE
Bl=l
Bl=l
BL=l

~ORKING-STORA~~ STARTS AT LOCATIUN OJOAO fOR A LENGTH OF 00008.

OISPL
000
000
000

INTRNL N~ME
DNM=1-032
DNM=i-052
DNI1=1-063

OEF INI TION
DS OCL4
os 4C
DS 4P

US~GE

GRJUP
DISP~N"I

C OMP-3

Figure 98. COBOL Program That will Abnormally Terminate (Part 1 of 3)

264

(l Q

R

ld COMPuTE 000202 ® START EQU * 000202 F8 10 0 208 C 010 CD ZAP 206(8,13),010(1,12) TS=Ol lIT+D
000208 FA 43 0 20B 6 000 7 AP 20B(5,13),000(4,6) TS=04 DNM=1-63
00020E Fd 33 6 000 D 20C ZAP 000(4,6),20C(4,13) ONM=1-~3 TS=D4+1

l'i STOP 0002E4 GN=Ol EQU * 0002i:4 5& FU e 008 l 15,008(0,12) V(IlBOSRVU
0002E8 01 FF BCR 15,15
0002EA 51.1 00 5 008 INIT2 ST 13,008(0,5)

ooooae CL",2c.~D5e4404040 DC X'C1e2C505C4404040'
000014 E5J;209Fl DC X'E5E2D9F1'
000018 07 00 BCR 0,0
00001A 9d 9f F 024 LI4 9,15,024(15)
000011: 07 fF BCR 15,15
000020 90 02 1 034 01 034(l),X'02'
000024 01 FE BCR 15,14
000020 41 F(; 0 001 LA 15,001(0,0)
OC002A 07 FE BCR 15,14
00002e. 001JOO:i2A AOCON L4(INIT3)
0(,0030 001.100000 ADCON L4(INITl)
000034 00",00000 ADCON L4(INITU
000038 OOIJOO~CO ADCON L4(PGT)
00003C 00vOOOA8 ADCON L4 CTGT)
000040 00v00202 AOCON L4(START)
000044 OUv002 EA ADCON L4(1NIT2)
000048 OS 15F
000084 001.100000 DC X'OOOOOOOO'
000088 F If-24BF4F24BF 5F2 DC X'F1F24BF4F24BF5F2'
000090 ChAC 140F lF66B40 DC X'C1E4C140F1F66B40'
000098 FH-9F7F6 DC X'FlF9f1F6'

STAT,STICS SOURCE RECORD~ 19 DATA DIVISION STATEMENTS = 3 PROCEDURE DIVISIQ~ STATE~E~TS =
OPTIDNS IN EffECT
OPTIUNS IN EffECT
OPTluNS IN EffECT
OHlDNS IN Effl:CT
OPTIONS IN EffECT
CfTIUNS IN ErFECT

SIZE = 1~1012 BUF 12288 LINECNT = 51 SPACE1, FLAGW, SEQ, SOJRCE
DHAP, PMAP, NOCLIST, NOSUPMAP, NOXREf, SXREF, LOAD, ~ODECK, APO~T, ~OTRUNC, NOFLO~

NOTERM, NuNUM, NOBATCH, NONAME, COMPILE=Ol, NOSTATE, NORESIDENT, NDDYNA~, ~JLIB, NQSVNTAX
NOOPTIMIZ~, NOSYMOMP, NOTEST, VERB,. ZWB, SYST, NOENDJOB, NOLVL
NOLST , NuFDECK,NOCDECK, LCOL2, L120, DUMP, ~OADV , NOPRINT,
NOCOUNl, NOVBSUM, NOVBREF, LANGLVU2)

Ft4-LEVEL LIhKAGE EDITtJR OPTluNS SPECIFIED L1ST,LET,XREF
D~FAULT OPTION(S) USJ;O - SIlE=(196606,65536)

CROSS REFERENCE TABLE

CCNTROl SECTION ENTRY

I'\AME OldGIN LENGTH CD NAME LOCATION NAME LOCATION NAME LQCA fION NAME lO:ATt [w
AefND LlO 390
ILBOCOMO* 390 169

ILBOCOM 390
ILE(;SRV * 5uO 48E

I LBOSRVO 50A I L BOS R5 50A lLBDSR3 50A I UJSR. 50A
ILBOSRVl 50E ILBOSTP1 50E I LBOST 512 lLBOSTP) 512

ILBUBEG * 990 128
ILBOBEGO 992

ILtLCI'IM * ABS 38B
I LBOCMMO ABA IUlaCMM1 ABE

ILeOMSG * E4~ F2
I LBOMSGO E4A

LeCAT ION _ Rt:fERS TO SYMBOL !I\I CONTROL SEC TI ON LOCATI ON REFERS TO SYMBOL IN CC'NTIlOL SECT lC'N
2eo I LBOSRVO ILBOSRV 2C4 ILBOSR5 ILBOSRV
2e8 ILBOSRV1 I LBOSRV 2bO ILBOCO~O ILBOCO~O

850 ILBOCllM ILBOCOMO 854 ILBOCM~O ILBOCMM
858 I LBOBEGO I lBOBEG B5C ILBOMSGO IlBO'"'SG
860 ILBOSND2 $UNRE SOL VEO (W)

tl'\TRY ALORE:S~ 00

TCTAL LENGTH F40CD
~***Gu DOtS NOT E:XlST BuT HAS BEEN ADDEO TO OATA SET
Al.THOKIZATION CODE: IS u.

Figure 98. COBOL Program That will Abnormally Terminate (Part 2 of 3)

2

Program Checkout 265

JGE AdENO STEP GO TIME 124329 DATE 76229 10 000 PAGE 0001

CGMPlE:TICN COuE SYSTEM = vC7 CD
PSW AT ENTRY TO ABEND 078020Uu 0007539E ILC 6 I NTC 0007

ASCS UOFE8A2B
ASCB C 1E2C3C2 fwUP 00fE7E68 BWOP 00FE6B08 C'1SF 00000000 SVRB 00000000 SYN: 00000000
WSP 00000000 SPL OOF E8Af 8 CPUS 00000001 10SQ 001 EOOOIt lOOP E242) 07B sro~ OF 180: 00
LUA 007FF548 RSM 00FE88E8 CSCB 00FE8BI0 TS6 00000000 EJST 00000000 XJST 10731000
ewST 89737AIF XWH 02235000 JSTl 0000011 E ECB 807F0790 US ET 8973742F QSCV OOlFF630
uUMP 007Ff008 Fill FFFFOOOO TMCH 00000000 ASXa 007FF300 SilCT 02570000 SSP.l' 0)0:»)00
~SC 00000039 TCBS 00000001 LOCK 00000000 LSQH 00000000 QECB 00000000 MECB 'tJOOOOOO
"UCB 00FE89C8 ouxa 00FF2A48 FMCT 002'00000 XMPQ 00000000 IQEA 000):)00:) RTIIA OJOOOOOO
MCC 00000000 JBNI 00FE8370 J8NS 00FE8B20 LGCB 00000000 VGTT 0(0)00:)0 PCTT OOOOJJOO
.:.MCT (JOOOOOOO SWTl 00001410 SRBT 00000000 ATME 03336000

TeB 70312B xdP 007F0900 PIE 00000000 DEB 00708798 TID 007C 0020 CMP 9JOC7JJO TPN 00000000
r-lSS 007fC5A8 t'K-flG 80010000 FLG OOOOFFFF LLS 00703640 JL6 007C B~ 50 JPQ 007D3ltEO
/"SA 01074fBO TCB 00000000 TME 00000000 JST 00703128 NTC 00000000 OTC 007FCAOO
LTC 00000000 IQf: 00000000 ECB oon 81 74 TSF 20000000 O-PQE 007fF548 AQE 007C8Cl~

:. TAB 007f004C TCT 807FC960 USER 00000000 SQF 00000000 "1010 00000000 JSCB 007FBF8't
KESV 00000000 lOBRC 00000000 XCPO 00000000 EXT 00000000 BITS OOOOOJOJ OAP OOJOOOOO
eXT2 00703250 .. ECB 00000000 RESV 00000000 BAK 007FCAOO RTMWII 007DE:98 lOTI' 00000000
TMSAV 00000000 "B(R 00000000 RESV 00000000 FOE 00000000 SWA 0070C050 RESV 00000000
,,10 E3C3C240 xPtJ. 00000000 ESTA 00000000 UKY 007C8600 CPVI 0040FFFF B'fTl 480'tOO:l)
KPT 00000000} uBTB 00000000 SWAS 00709F30 SC B 00000000 GTF 00000000 SV~8 00000000
eVENT 00000000 KESV 00000000 RESV 00000000 RES 00000000 RESV 0)000) J:l ~ ES V 00000000

ACl lilt: RBS

PRB 7C9F9B xESV 00000000 RcSV 00000000 RTPSWl 07802000 0001539E RTPSW2 00060007 0007COCO
flG1 00000000 WI..-L-IC 00060007
xESV 00000000 APSW 00000000 SZ-STAB 001100B2 FL-COE 007034EO PSW 07802000 0007539E
IoI/TTR 00000000 WT-LNK 00703128
KG 0-7 00703B50 00074FF8 00000040 007F26F4 007F2600 007F:AOO 007C0018 FDOOOOOO
xG 8-15 007C8150 807FC960 00000000 007FCFEO 70DCA602 00074FBO 40DCAeFC 007:8180

SVRB 7F0900 xESV 00000000 xESV 00000000 RTPSII1 00000000 00000000 RTPSW2 00000000 JOOOJ"OO
flG1 20000000 wC-L-IC 00020033
I\I::SV OCOOOOuO "PSloI 00000000 SZ-STAB 001900;::2 Fl-COE 00000000 PS~ :HOrlOOJ 00Dlt[l59J
"/TTR 00000000 .. T-U~K 007C9F98
xG 0-7 00(,00000 50075432 00000040
xG 8-15 00075370 000753EA 000750(0
"XTSA 00000000 50075432 00018C30

0070EC98 FF000368 40000101

00:H53A4
0007531.10
007F0900

50075416
00J7516/\
00FE8A28

00075160
OJ075392
0003AA64

0007536F
5JJ753 EC
00000000

;,CB 00000000 00000000 00000000

007F25 F4
000750(0
00703128
900C 7000
00000000 00000000 RESV 00000000

LOAe LIST

NE OOuOOOOO RSP-COE uOH7660 CNT 00010001

CDE CD
7D34EO NCOE 0000000 ... RSP 007C9F98 NM GO EPA 000750CO Xl/MJ 007C3000 JS E 000100JO un 0620000

FE7660 NCDE 00FEH7.; RBP 00000000 NM IGG019DK EPA 00F2AOOO XLlMJ 00FE7680 USE 000300JJ ATTR 1')22000

SAVE AREA TRAI..E

GO MAS eNTERED VIA LINK

SA u74FBO .. 01 00000000 HSA 0;)000000 LSA 00075168 RET 00018C80 EPII 000750CO RO 007D3B50
Xl 00074FF8 R:.< 00000040 R3 007F26F4 R4 007F2600 R5 007FCAOO R6 007COO18
x7 FOOOOOOO R8 007C8150 R9 807FC960 RIO 00000000 Rll 007FCFEO R12 700CA602

SA 0751b8 wD1 00000000 HS" 0007H BO lSA 00000000 RET 00000000 EPA 00000000 RO 00000000
K1 00000000 R2 00000000 R3 00000000 R4 00000000 R5 00000000 P6 OOOOOOOJ
x7 00000000 R8 00000000 R9 00000000 R10 00000000 Rll 00000000 R12 00000000

INTERkUPT AT u7539E CD
PRCCf:I:DING 8AI..K VIA REG 13

SA 075168 .. 01 00000000 HSA 00074FBO lSA 00000000 RET 00000000 EPA 00000000 RO 00000000
1<1 00000000 R2 00000000 R3 00000000 R4 00000000 R5 00000000 P6 00000000
1\7 00000000 R8 00000000 R9 00000000 RIO 00000000 Rll 00000000 R12 00000000

GO WAS eNTERED VIA LINK

REGS AT ENTRY TO A8END

fLTR 0-6 OOOOOOOOOOOuOOOO 0000000000000000 0000000000000000 0000000000000000

REGS 0-7 00000000 :;.0075432 00000040 007F26F4 000753A4 50075416 00075160 0007536F
REGS 8-1:> 00015370 ,,00753,,11 000750(0 000750CO 00075380 0007516/\ 00075392 500753EC

LOAC MODULE GO

C"i 5(CO
C15CEO
(j~lGG

01H20
Ci5HO

90ECUOOC 185D05FO 458vFOI0 CIC2C505
9602J.034 07FE41FO 000 ... 07fE 000753EA
0007:.392 000753AA 000",0000 OOuOOOOO
OOOOuOOO 00000000 OOOuOOOO 00000000
OOOOuOOO 00000000 Flf,4Bf4 F24BF5F2

C4404040 E5 E£ D9F1 0700989 F F02407FF
000750CO 000750CO 00075380 00075168
00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000003
C1E4C740 FlF66B40 F1F9F7F6 00000000

* ••••••• O •• O. AB END VSR 1 •••• O ••• *
* ••••••. 0 •••••••••••••••••••••••• *
* ••...••....•.•.•.....•........•. *
* •••••••.••..•••••••.••••.••.•..•. +:
* •••.•••• 12.42.52AUG H,. 1976 •••• *

Figure 98. COBOL Program That Will Abnormally Terminate (Part 3 of 3)

266

LOAD 1I ST

NE 0018EbE8 RSP-CDE .. Of:3558
NE 001CA008 RSP-CDE v07l:iE918
NE 00 .. 00000 RSP-CDE .. 07CAE30

CDE

7fC860 NCDE OOOOOOOv RBP
fC3558 NCDE 00fC31~v R8P
78E6f8 NCDE 0078E93" R8P
,78E718 NCDE 0078E6fd RBP
78E918 NCDE 0078E97a RBP
78E938 NCDE 0078E91o RBP
78E958 NCDE 007CAE5u R8P
78E978 NCDE 007BE95 .. RBP

CNT 00010001
CNT 00010000
CNT 00010000

007CA5C8 NM GO
00000000 NM
007fD900 NM
00000000 NM
007FD900 NM
00000000 NM
007FD900 NM
00000000 NM ILBONTR

EPA

NE 0018E8F8
NE 001CH20

00015BE8

000755F2
000755E8
0007611A
00076118
()007b4AA

EPA 000764AA

RSP-CDE)018E6F8
RSP-COE 0078E958

XlIMJ 007Fe 240 LIS E

007BE718
007BE8E8
OHBE93B
0078E908
007BE978
007CAl BO

(NT OO(HOCOO
(NT (l00100»

00010000 ~.TTP

OO):>()())
00010000
00000000
0001(\000
0000(\000
000100JO

OB20000

l11COOO
1320000
3110000
3~20000
3710000
3320000

7CAE30 NCOE 007fC8bv R8P 007FD900 NM ,II RBEBi O
7CAE50 NCDE 007CAE3u RBP 00000000 NM e~l 8S8H1U 007CH50 0000(\000 1710000

007FCC90 00010000 13200CO

XL LN

7FC240 Sl 00000010 NO OOUOOOOI 80000418
fC3578 Sl 00000010 Nu 00000001 80000100
78E8E8 SZ 00000010 NO OUOOOO01 80000490
78E908 SZ 00000010 NU 00UOOO01 80000390
7CA180 SZ 00000010 NO 00000001

~
7FCC90 Sl 00000010 NO 00000001

CEe

102760 00702810
7D27AO C87D'tODO Of 000900 0001.10000 0070FE68 8f074030
7027CO 00240000 OlC5E2F2 OOOuOOOO 00000000 00000000
7u.21EO E2E2Li6C2 00140010 007Li278C 00000000 007027F4
702600 OC70c.798 00704000 OOOuOOOO 00000000

SAVE AREA TRA,-"

GO WAS t:NTEREO VIA LINK

SA 074F80 MIl 01 00000000 HSA OC/OOOOOO LSA 00075C90
~.1. 00014FF8 R2 00000040 R3 007F2bf4
",7 fDOOOOOO R8 007FC028 R9 807fC960

SA 075C90 IODI 00000000 HSA 00074fBO LSA 00000000
1<.1 00.0000.00 R2 00000000 R3 00000000
,,7 0000.0000 Rll 00000000 R9 00000000

INTERRUPT AT u75ED6--®

ADR LN B
00075BE8
00F2AOOO
000755E8
00076118
000764A8
00075A18

10810001 001BE528 00000000
00E7i2CC 00)02C38 E2E2C9C2
00000000 00000000 00000000
00180000 00000000 001D2934

RET 00018C80 EPA 000158E8
R4 007F26DO R5 007FCAOO
RIO 00000000 Rll 007FCfAO

RET 00000000 EPA 00000000
R4 00000000 R5 00000000
RIO 00000000 Rll 00000000

AOP. LN bOP

~ •••••••••• V ••••• * * ••••••••.••..•..•. ••• X •••••• SSIB~ * •••• JES2 •••••••••••••••••••••••• *
~SSO~ ••••••••••••••• 4 •••••••••••• ~ * ••••••• ~. •••• •••• *

PO 001FCCAO
R6 00706018
R12 700CA602

RO 00000000
R6 00000000
R12 000)0000

Figure 99. Load List of Program That will Abnormally Terminate

--<D

Program Checkout 261

length of the subroutine is at <S) •
Adding the length of the subrout~ne © to
the i starting address ®, results in a
number falling within the confines of the
main program.

4. After this is determined, the
programmer continues his debugging in
the specified manner.

~inding_Qata~£Q£~2-in-a!-AbnQ~~1
~~rmination DumE

The glossary, listed when the DMAP
option is specified, contains information
about all data-names described in the COBOt
source program. The location assigned to a
given data-name may be found by using the
BL number and displacement specified for
that entry in the glossary, and then
locating the appropriate Bt cell in the
TGT. The hexadecimal sum of the glossary
displacement and the contents of the cell
should give the relative address of the
area desired. This can be converted to an
absolute address as described in the text
associated with Figure 98.

Since the sa mple problem program shovn
in Figure 100 was interrupted because of a
data exception, the programmer should
locate the contents of field B at the time
of the interrupt. The numerals encircled
in the two techniques given below refer to
information similarly labeled in the sample
program.

!!§i.!!.~_~~ral_Regist!!£2: The general
registers usually contain information that
can be helpful to the programmer who is
trying to locate specific data.

1. Locate da ta-name B, CD , in the
glossary. It appears under the column
headed SOURCE-NAME. Source-name B bas
been assigned to base locator 3 (i. e. ,
Bt=3) with a displacement of 058. The
sum of the value of base locator 3 and
the hexadecimal displacement value 58
is the address of data-name B.

2. The Register Assign ment table, 0 ,
lists the registers assigned to each
base locator. Register 6 has been
assigned to Bt=3.

3. The contents of the 16 general
registers at the time of the interrupt
are disl.layed at the beginn ing of the
dump, Q)

4. The location of data-nalle B, ® , can
now be determined by adding the

268

contents of register 6 and the
hexadecimal displacement value 58.
The result is the address of the
leftmost byte of the 4-byte
field B. Field B contains plF2p3C4.
This is external decimal
representation and does not correspond
to the USAGE COMPUTATIONAL-3 defined
in the source listing.

.!l2i!l£LthLIQLlI!i!'!Q~I_l19.1!: If the general
registers appear not to contain meaningful
'information, it may be that errors in the
problem program have destroyed their
contents. In such a case, the alternate
method of loca ting da ta-names gi ven below
should be helpful.

1. The location assigned to a given
data-name may also be found by using
the BL CELLS relocation value given in
the TGT Memory Map, ® . To find the
loca tion of the Bt cells, add ®
(from the TGT table) to the entry
point address of the object module, @.

2. The first four bytes are the first BL
cell, the second four bytes are the
second Bt cell, etc. Note that the
third BL cell, (j), contains the same
value as that contained in register 6.

Note: Use of the FLOW and STATE
optIons eliminates the need for the
calculations described above. All
that is needed for program debugging
is the output from FLOW and STATE
printed at the end of the listing, ® '
and described below~

A. specification of either FLOW or
STATE causes the PROGRAM-ID, the
completion code, and the PSi for
the last problem program executed
before the abnormal termination to
be printed out.

B. If STATE is in effect, the printed
output includes the compiler
generated card number for the last
verb executed.

c. If PLOW is in effect, the words
PLOW TRACE are printed out,
together with the PROGRAM-ID and
the card numbers of the procedure
names executed for all COBOL
programs with the FLOW option in
effect.

For further discussion of the FLOW and
STATE compiler options, including .
their relationship to the NUM option
and to the SyftDMP option, see the
chapter entitled "Symbolic Debugging
Features."

(10001
00002
000C3
eCCC4
00005
O() oeb
00007
000C8
00CC9
00010
00011
coe 12
00013
O() a 14
00C15
OOOlo
(l00l1
000 le
000 19
e0020
00021
00022
00C23
00C24
ooelS
ece26
00027
00028
OOC29
OC030
OOCH
o"on
00033
00e34
00035
OOOJo
coe37
00038
eOC39
(0040
00041
00042
00043
00044
00045
00elt6
00e41
00048
0(,049
cae 50
OOOSl
000~2
coe~3

00054
00055
00C56
00e57
00058
COC59
00e60
00061
00062
OuOE:3
OOCH
000e5
00066
00067
000b8
CeC6e;
00e1O
OOe71
Qu072
00C73
OOC14
00015
OOOH
00C71
)0078
OCC79
00C80
OOCEl
OCeE2
00083
00CE4
OCCE5
OOOEt:

10001"
10002",
10003i,l
10004u
100051.1
10006"
10007u
10008u
10009v

10010u
10011"
1001Z"
10013v
lC014u
10015u
10016u
10011u

10018u
100191.1
100201.1
10021u
10022u
10022:;;
100231.1
10024u
10025"
10026U
100271.1
10028u
10029"
100301.1
10031u
10032.;
100331.1
100341.1

100351.1
10036"
100371.1
10037~

100381i
10039:;;
lC040~
10041u-
10042.;
100441.1
10045"
10046u
10047"
10048u
10049u
100501.1
10051.;
10052v
10052J.
1005Z,
10052.:>
10053.;
10054<1
10055.;
100561.1
10057<1
100581.1
1C059(1
l0060u
10061u
100b20
10063u
10064"
10065u
100661.1
100671.1
1006SU
1C069u
l0070u
1001lu
lOC72u
10073U
10013J.
10C74u
10075u
10076U
100770
10078u

IOENTIFICATION uIVISION.
PROGRAM-ID. TE~TkuN.

AUTHOR. PROGRAMMER NAME.
INSTALLATION. PALO ALTO DEVELOPMENT CENTER.
DATE WRITTEN. AU~UST 8, 1916.

DATE-COMPILED. AUG 23.1916.
REMARKS. THIS PROGRAM HAS BEE~ WRITTEN AS A SAMPLE PROGRAM FOR

COBOL USERS~ IT CREATES AN OUTPUT FILE AND RE~DS IT 3A:K AS
INPUT.

ENVIKONMENT DIV'SION.
CONFIGURATION SeCTION.

SOURCE-COMPUT~R. IBM-310-168.
OaJECT-COMPUT~R. IBM-310-168.

INPUT-OUTPUT SE~TION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN TO UT-2400-S-SAMPLE.
SELECT FILE-2 ASSIGN TO UT-2400-S-SAMPLE.

DATA 01 VI SIaN.
FILE SECTION.
FD FILE-1

LABEL RECORuS ARE OMITTED
BLOCK CONTA!NS 100 CHARACTERS
RECORD CONT~INS 20 CHARACTERS
RECORDING MLJDE IS F
DATA RECORu IS RECORD-l.

Ol RECORD-1.
02 FIELD-A ~ICTURE IS X(20).

FD FILE-2
LABEL RECORvS ARE OMITTEO
BLOCK CDNTA!NS 5 RECORDS
RECORD CONTAINS 20 CHARACTERS
RECORDING MuDE IS F
DATA RECORD IS RECORD-2.

01 RECORD-2.
02 fIELD-A PICTURE IS X(20J.

WORKING-STORAGE SeCTION.
77 KOUNT PI~TUkE S99 CaMP SYNC.
77 NOMBER ~ICTURE S99 COMP SYNC.

01 FILLER.
02 ALPHABET PI:TURE X(26) VALUE "A8COEFGHIJKLMNOPQRSTJV~XYZ·.

02 ALPHA REuEFINES ALPHABET PICTURE X OCCURS 26 TIMES.
02 DEPENDENTS PICTURE X(26J VALUE "l1234012~'012~40123401234
"a".
02 DEPEND ReDEFINES DEPENDENTS PICTJRE X OCCJRS 2& TI~ES.

Ol WORK-RECORv.
02 NAME-FIELD PICTURE X.
02 FILLER PICTURE X VALUE IS SPACE.
02 RECORO-Nu PICTURE 9999.
02 FILLER PiCTURE X VALUE IS SPACE.
02 LOCATION PICTURE AAA VALUE IS "NYC".
02 FILLER PiCTURE X VALUE IS SPACE.
02 NO-OF-OE~E~uENTS PICTURE XX.
02 FILLER PiCTURE X(l) VALUE IS SPACES.
01 RECORDA.

02 A PI~TJRE S9(4) VALUE 1234.
02 B R~uEFINES A PICTURE S9(7) COMPUTATIONAL-3.

PROCeDURE DIVISiON.
BEGIN.

NOTE THAT ThE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIAL~ZES COUNTERS.

STEP-1. OPEN OUTPUT FILE-1. MOVE ZERO TO KOUNT NO~BER.
NOTE THAT THE FGLLOwlNG CREATES INTERNALLY T~E RECORDS TO BE
CONTAINED IN THE FILE, WR1TES THEM ON TAPE. AND DISPL~YS
THEM ON THE CONSOLE.

STEP-2. AOD 1 Tu KJUNT, ADD 1 TO NOMBER, ~OVE AL~HA IKOUNT) TO
NAME-FIELO.
MOVE DEPEND (KUUNT) TO NO-OF-DEPENDENTS.
MOVE NOMBER TO RECORD-NO.

STEP-3. DISPLAY WO~K-~ECORD UPON CONSOLE. WRITE RECORD-1 FROM
W ORK RECORD.

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26.
NOTE THAT TnE fOLLOWING CLOSES OUTPUT AND REOPENS IT AS
INPUT.

STEP-5. CLOSE FlLE-l. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BA:K THE FILE AND SINGLES OUT
EMPLOYEES WiTH NO DEPENDENTS.

STEP-6. READ FI~E-~ RECORD INTO WORK-RECORD AT END GO TO STEP-~.
COMPUTE ti = B + 1.

STEP-7. IF NO-Qt"-DEPENDENTS I S EQUAL TO "D" MOVE HZ" TO
No-OF-DEPENuENTS. EXHIBIT NAMED WORK-RECORD. GO TO
STEP-6.

STEP-8. CLOSE F1LE-Z.
STOP RUN.

Figure 100. Program with Data Interrupt (Part 1 of 5)

Program Checkout 269

I NTRNL NAME
ONH;I-448
DNM;I-H.8
ONM;I-489
ONM;1-,06
ONM;I-,26
ONM;I-';47
ONH;I-,1>1
ONI1;I-,82
ONM;1-,98
ONM;I-.H2
ONM;1-.;>~0

DNM;I-.;I48
ONI1;I-.)68
DNM; 1-.;; 84
ONM;1-.. 08
ONM=I-'t211
ONM=I-442
ONM;l-.. ol
ONM;1- .. 75
ONM=1-~93
ONM;2-uiH)
DNM;2-1.126
DNM;2-u40
ONM=2-lJoO
0,~M;2-1J71

LVL SOURCe; NAME
fO FIlE-~

01 RECORu-l
02 fI ELIJ-A
fO fllE-.::
01 RECORu-2
02 fIElD-A
77 KOUNT
77 NOM8En
01 fill E"
02 AlPHAoET
02 ALPHA
02 OEP EN"E'lT S
02 OEPENu
01 ~ORK-KECORO

02 NAME-t- I El 0
02 fILlEn.
02 RECORu-~J

02 FIlLEl\
02 lOCAT!ON
02 flLlEn
02 NO-Of-DEPENDENTS
02 fILLE"
01 RECORuA

g~ ~-<D

MEMORY MAP

TGT

SAVE AREA
SWITCH
TALLY
SORT SAVE
ENTRY-SAVE
!)ORT CORE SIZE
RET CODE
SORT RET
WORKING CELLS
SORT fILE SIZE
SORT MODE SIZE
PGT-VN TBl
TGT-VN TBl
RESE RVEO
lENGTH Of VN TBL
lABEL RET
RESE:RVED
DBG R14SAVE
COBOL INDICATOR
A(INI HI
DEBUG TABLE PTR
SUBCOM PTR
SORT-ME SSAGE
SYSOUT DDNAME
RESERVED
COBJl ID
COMPilED POINTEn.
COUNT TABLE AOO"ESS
RESERV EO
OBG RllSAVE
COUNT CHAIN AODKESS
PRBll CELL PTR
RESERVED
TA lENGTH
RESbWED
PCS LIT PTR
DEBUGGING
CD fOR INITIAL lNPJT
OVERf lOW CELLS
Bl CELLS
DECBADR CELLS
fiB CELLS
TEMP STORAGE
TEMP STORAGE-2
TEMP STORAGE-3
TEMP STORAGE-4
Bll CELLS
VLC CELLS
SBl CELLS
INDEX CELLS
SUBADR CELLS
ONCTL CELLS
PfMCTl CEllS
PfMSAV CEllS
VN CELLS
SAVE AREA =2
SAVE AREA =3
XSASW CELL:'
XSA CELLS
PARAM CELLS
RPTSAV AREA
CHECKPT CTR
DEBUG TABLE

00318

00318
00360
00364
00368
0036C
00310
00374
00316
00378
004A8
004AC
00480
004B4
004B8
004BC
004BE
004Bf
004CO
004C4
004C8
004CC
00400
00404
0040C
00400
0040E
004EO
004E4
004E8
004FO
004F4
004f8
004FC
00501
00504
0050C
00510
00514
00518
00518-(D
0052'<
00524
00528
00530
00530
00530
00530
00538
00538
00538
00538
00540
00540
00540
00544
0054C
0054C
00554
00554
00554
00558
00558
00558

BAS E 01 SPl
OCB=Ol
Bl=l 000
Bl=l 000

OCB;02
BL=2 000
BL=2 000
Bl=3 000
Bl=3 002
Bl=3 008
Bl=3 008
Bl=3 008
Bl=3 022
Bl=3 022
Bl=3 040
Bl=3 040
Bl=3 041
Bl=3 042
Bl=3 046
BL=3 047
Bl=3 04A
BL=3 04B
BL=3 040
Bl=3 058
Bl=3 OS!!
Bl=3 058

I NTRNL NAME !)EFINITIO~!

ONM=1-l't8
ONM=1-168 OS oel20
ONM= 1-189 os 20C
ONM=1-206
0"1'1= 1-22 6 os 0:L20
ONM= 1-241 OS 20C
ONM=1-261 OS 111
ON'1= 1-282 DS 1-1
ONM=1-298 OS (lCl52
DN'1= 1-312 os 26:
ONM=1-330 OS 1e
ONM=1-348 os 2SC
0"1"= 1-368)S 1:
ONM=1-3!!4 OS (lCl2(1
DNM=1-408 OS 1C
ONM= 1-428 OS 1C
ONM=1-442 DS 4C
ON." = 1-461 DS 1:
ONM=1-415 OS 3C
ONM=I-493 OS 1e
ONM=2-000 OS 2C
ONM=2-026 OS 7C
ON'1=2-040 os 0:l4
ONM=2-3bO DS 4C
ONM=2-01l DS 4P

Figure 100. Program with Data Interrapt (Part 2 of 5)

270

lISAGE 0 Q
QSAM
GROUP
)ISP
QSAM
3PClUP
DI5P
COMP
:OMP
GRC'JP
01 SP
DISP
DIS P
01 SP
GROUP
DISP
DI SP
DISP-NM
01 SP
OISP
DIS P
015P
DIS P
:iR(lUP
D ISP-".,
COMP-3

Ll HkAL POOL (Ht:X I

oa5S0 (L IT+OI
u05Cd (LlT+Z .. 1

COOOOOOI \.I,,141C10 0000001C OOOOOOOB 00000000 ltBlIt:JOOO
000 .. 4000 OuO(J:JOOO COOOOOOO

OISPLAY LITERALS (BCD)

('C5D4 (LTL+3,,) , WORK-RECORD'

PGT

DEBJ G LINKAGE A«EA
OVERF LOW CELLS
VIRTUAL CELLS
PROCEDURE NAME LElLS
GENeRATE:D I~AME ~E:LLS
DCB ADDRESS CELLS
VNI CELLS
LI TERALS
DISPLAY LITERAL"
PRoCE:oURE BLOCK CELLS

REGISTER AS"IGNMt:NT

REG 6
REG 7
~EG 8

bL =3--{D
Bl =1
D L =Z

00560

00560
0056C
00570
0059C
0059C
005AD
005AB
005 BO
005D4
005 EO

~ORKI"G-STORAl>E STARTS AT lOCAr ION OOOAO FOR A LENGTH DF 00060.

61 *IlEGI,~
0005E4 PN=OZ EQU *
0005E4 START EQU *
(1005E4 5btlUC080 L 11,080(0,lZ)
0005E8 5d FO C 024 L 15,024((1,lZI
0005EC 05 if BAlR 1.15
0005EE 00vOu()3D DC X' 00000030'

t4 *STEP-l
0005F2 PN=03 EQU *
0005F2 58 FO C 024 L 15,024(0,12)
0005F6 05 1F BALR 1,15
0005F8 00uOO\.l40 DC X' OOOOOO~O'

64 OPEN 0005FC 5d FO C 028 L 15,028(O,1Z)
000600 05 Ef- BALR 14,15
000602 58 10 (140 L 1,040(0,12)
OOOt:Ob 58 40 024 L 4,024(0,11
00060A DL 02 4 Cll C 020 MVC 011(3,41,02D(I~)
000010 50 10 0 234 ST 1,23410,131
000614 92 OF D 234 MVI 234(13I,X'OF'
000618 90 80 D 234 01 234(13) ,X' BO'
00061C 41 lJ o 234 LA 1, 234(0,131
000620 Dol 03 o 060 C 057 MVC 06) 14,131,)57(12)
000626 58 F(' C 030 L 15,03010,121
00062A 0:> EF BALR 14,15
0006.?C 58 10 C 040 l 1, OltO (0, 1Z1
u00630 UZ 03 D 360 C 05B "'VC 060 14,13) , 056 (121
00063b sa FO C 030 L 15,O30(0.111
00063A 05 EF BAlR 14,15
00063C 5d 70 o 200 l 7,20010,131

<4 MOVE 000640 02 01 6 000 C 050 MVC 000(2,61,)5)112)
000646 02 01 6 002 C 050 "IVC 002 (2,61 ,050 (12 I

61: *STEP-2
00064C PN=04 EQU *
00064C 5~ Fu C 024 L 15, 024(0,121
000650 05 iF BAlR 1,15
000652 00vOuu .. 4 DC X' 0000004lt'

c E ADD 000656 48 3(; C 0:'2 LH 3, 052(0,121
00065A 4A 30 6 000 AH 3,000(0,61
00065E 40 3\.1 6 000 S TH 3,00010,61

oS ADO 000662 4~ ~Li C 052 LH 3,)52(0.121
000666 4A 30 6 002 AH 3,002(0.61
00066A 40 30 6 002 S TH 3,00210,61

68 MJVE 000t:6E 41 4\.1 6 008 LA 4,OJ8(0,61
0000"12 48 30 6 COO Lt-l 3,000(0,61
000670 5C 20 COSO '4 2, 050(0,121
JG067A lA 43 AR 4,3
00067C 5B 4\.1 C 050 S 4,05010,121
000680 5u 40 D 220 ST 4,220(0,131
00068 .. 58 Ul 0 220 l 14,220(0,131
000688 Do<: 00 6 040 E 000 MVC 04011,6),000(141

70 MUVE 00068E 41 40 6 0<:'2 lA 4,022(0,61
000692 4<1 3U 6 000 LH 3,000(0,6)
000690 5L 2U C 050 ", 2,05010.121
00069A lA 43 All. 4,3
00069C 58 itO C 050 S 4,050(0,121
ODObAIl 50 40 o 224 S T 4,224(0.13)
0006A4 58 fU o 224 l 15,22410,131

? BL= 1
V(Il!'OFllo'lI

V(! lBOFUH I

V(IlBOO~G41

DC6=1

SA3 =1
SA3=1
S A3=1
SA3=1
rlC= 01
V(lLBO;)IOOI

DCB.-1
WC=01
V(IL!,[)~IJOI

!H =1
DN'1=1-267
DNM=1-2B2

VIIUlGFUHI

lIT+2
DNM=1-261
DNM=1-U 7
LIT+2
DNM=1-2 ~ 2
DNM=1-Z82
DN"l=1-330
DNM=1-2 ~ 7
lIT+O

LI T+O
SBS= 1
SBS=l
DN"'=1-408
DNH=1-3E:e
DNM=1-267
L IT+O

LIT+O
SBS=2
SBS=2

Fiqure 100. Proqram with Da ta Interrupt (Part 3 of 5)

V(IL3COTOI

LIT+7

LIT+ll

LIHO
LIT+O

D~!"=1-330

Program Checkout 211

JOB TeSTRUN STEP GO TIME 202B35 DATE 76236 10 000 PAGE' 0('01

CC~PLETION COOE SYSTEM '" uC7

P Slol AT ENTRY TO ABEND 0180200 ... (i0015F46 ILC 6 INTC 0001

ASCB uOFCOCAO
ASCS C lE2C3C2 FW')P 00FE83FB BW)P DOFBCA2B CMSF 0000:>000 SVRB JJJ)JJ:> SYNC J)O(»JOO
1 OSP 00000000 SPL 00FC0070 CPUS 00000001 IOSQ 00200006 lOOP 114E0079 STOP OF35ECOO
LOA 001FF548 RSM 00FCOB60 CSCB 00FCDD88 TSB 00000000 EJST OOOOOO!)! XJ ST FFOF2000
r;WST 891CAF22 XWST 4016BOOO JSTL OOOOOllE ECB 801F0190 USET 891C998,6. QSCV O:HFF630
uUMP OC1FFOOa Fill FFFFOOOO TMCH 00000000 ASX8 001FF300 SWCT 1AOCOOOO SSR8 00000000
IISC 00000058 TebS 00000001 LOCK 00000000 lSQH OOOOJJOO QECB 0000(1000 "IECe 4)OOJJOO
... uce 00FCOC40 OJXB 00FF2CC8 FMCT 00290000 . XMPQ 00000000 IQEA 00000000 PTWA OJO()JOOO
I~I,;C 00000000 JaNI 00fE8B98 JBNS 00fCD098 lGCB 00000000 VGTT 00000000 p:rr 00(100000
:;MCT 00000000 SWTl 00001410 SRBT 00000000 ATME 33E16000

r;B 7COB60 KilP 001FD900 !'IE 00000000 DEB 00703B80 TID 00105020 CMP 900C1000 TRN 00000000
/ISS 00101690 PK-FlG 80010000 FlG OOOOFFfF llS 0010EA'€0 JlB D:>7D1fOO JPQ 001AC(l90
FSA o 1014FBO rCB 00000000 THE 00000000 JST 001:0860 NTC 00000000 OTe 001FCAOJ
LTC 00000000 ! QE 00000000 ECB 0010EFB4 lSF 20000000 D-PQE 001FF548 AQE 001:0:F8
:> TAB 001FD04C TCT a01FC010 USER 00000000 SOF 00000000 MOlD 00000»:> JSCB :>0700F6ft
Ki::SV 00000000 JObf(C 00000000 XCPD 00000000 EXT 00000000 BITS 00000000 DAR 00000000
eXT2 001COC88 AEC6 00000000 RESV 00000000 BAK 001FCAOO RTMWA 0J1C01DO lOT" 00000000
fMSAV 00000000 AbCR 00000000 RESV 00000000 FOE 00000000 SWA 00101820 RESV 00000000
dID E3C3C2't0 kTMl 00000000 ESTA 80000000 UKY (J07011AO CPVI 0040FF F F eVTl 48040000
kPT 00000000 u8Til 00000000 SWAS 00100F30 SCB OOOOOOOJ GTF OOOOOJ()O SVAB OOJ()()OOO
"VENT 00000000 KESV 00000000 RESV 00000000 RES 00000000 HSV 00000000 RESV 00000000

ACT IVt; RBS

PRB 1CF040 KESV 00000000 ReSV 00000000 RTPSWI 01802000 00015F46 R TP SII2 00060001 000160FF
f'LGl 02000000 W .. -L-IC 00060001
"ES~ 00000000 AI'SW 00000000 SZ-STAB 00110082 Fl-COE 00101 E08 PSI' :>7902JJJ 00:> 15F"'!>
... /TTR 00000000 Wl-lNK 007CDB60
k.G 0-7 007CFOIO 00074FF8 00000040 001F26F4 007F26DO 001FCAOO 0()10501B FDOOOOOO
kG d-15 0010EF90 807FCOI0 00000000 001FCCOB 10OC4602 0001ftF!l0 "'JDC~8 FC 007DEFCO

SVRB 1F0900 KESV 00000000 KES \I 00000000 RTPSWI 00000000 00000000 RTPSW2 00000000 00000000
flGl 20000000 ."C-L-I C 00020033
KESV 00000000 AP5W 00000000 SZ-S TAB 00190022 Fl-: DE 00000000 PSW 010:1000 000"'85'1J
o,//TTR 00000000 IIT-lNK 001CF040
kG 0-7 40015F3C 0001AA10 40015F3C 0000001A 000158C8 00015!>[18 1)1)01515!! 0001UlC
kG 8-15 0001AA10 00076082 000156BB 00015C9C 00015C 18 00015900 50015F24 E>OOlFC 3C
EXTSA 40015F3C 0001AA10 00018C30 001C0860 0J7F0900 OOFCOCAO 0003AA64 00000000

001C0100 FFOO0368 40000101 900C 1000
:'CB 00000000 00000000 00000000 00000000 OOJOO:lOO RES V O()OOOOOO

SVRB 1F0900 kESV 00000000 kESli 00000000 RTPSW1 00000000 00000000 RTPSW2 000:>0000 00000000
fLGl 02000000 >iC-L-IC 0002000C
KESV 00000000 APSW 00000000 SZ-STAB 00190022 Fl-COE 00000000 PS~ J7)C2JJJ :l00:>B20E
.. /TTR 00000000 .T~lNK 001F0900
KG 0-1 OOOOOO~O 007C0600 00FE4040 0080E600 001COB60 0070800 500 ... B01C 007C0100
KG 8-15 00700E68 00000000 00700F50 00100ECO 0J7C07FO 001CD91t4 50D482e:: 00000000
eXTSA 00000:l00 001C0418 000003B4 001F0964 20FOOOOO 00000000 0)00:>:>0:) 00000:)00

00000000 00000000 00000000 00000000
:'CB 00000000 00000000 00000000 00000000 00000000 RESV OOJO:>JJ:>

LOAD LI ST

NE 001DEOBO RSP-CDE IJOFE8[)[)0 CNT 00010001 NE 001ACOBO RSP-CDE)OFEBEBO CNT OOtHOOOl
NE OOlACOSO RSP-CDE .. OFECFOO CNT 00010001 NE 0010EOOO RSP-COE OOHC:)70 CNT JOnOO)J
NE 0070EOEO RSP-CDE IJOFa02AO CNT 00010001 NE 0070E120 ~ SP-COE 00FC0100 CNT 00010001
NE 00lDEB4a RSP-CDE u07DE140 CNT 00010000 NE 00101918 RSP-COE 001DEB58 CNT 000100:>:>
NE OOuuOOOO RSP-COE 1J01D1928 CNT 00010000

CDE ~
10lE08 NCOE OOOOOOOu RBI' 001CF040 NM GO EPA 000156B8 XlIMJ 001CFOOO USE JJJlJOJ:l un OB20000
H80DO NCOE 00FE9n", RBP 00000000 NM IGG019DK EPA 00F2AOOO XlI'IJ 00FE80FO USE 00010000 ATTR B022000
FE8EBO NCDE 00FE08~u RBP 00000000 NM I[;G019AA EPA 00F1 EF60 XlIHJ OOFE8 EDO ~S E 00020000 aTn 8022000
fECFOO NCDE 00FEE18u RBP 00000000 NM IGG019AQ EP~ 00BEI018 XlIMJ OOFECFFO USE 000300()0 HlP B922000
1AC010 NCOE 0010EB2o RBP 001FD9DO NM IlBOD220 EPA 0007C6FA XlIMJ 001A::090 USE 00000000 HT~ 3710000
1 AC090 NCDE 001AC07u RBP 00000000 NM IlBOD22 EPA 0001C6FS Xl/MJ 001 AC060 USE JJJlJOJJ un 3320000
FBD2AO NCOE 00FCD10 ... RBP 00000000 NH IGG019CW EPII 00806A40 Xl/HJ 00FB02CO USE 00020000 ATTI!. 1!023000
FCD100 NCDE 00FCE18" RBP 00000000 NM IGG019CU EPA 00061898 XlIHJ OJFCD120 ~SE 00020000 AlTP 8122000
IDE140 NCDE 0010EACu RBP 007FD900 NM IlB00210 EPA 00019614 XlIMJ 007DE B2S USE JJOO:lOJ() HTP 3110000
7DEB28 NC DE 0010El't ... R8P 00000000 NH IlB0021 EPA 00019678 Xl/HJ 0070E 130 USE 00010000 ATT~ 3320000
70EB58 NCOE 001CBOlu RBP 001FD900 NM I lB00200 EPA 00079C ... 2 Xl/HJ 0010EACO USE 000(10000 Arr~ 3110000
1DEACO NCOE 001DES!)" R8P 00000000 N" IlB0020 EP4 00019::40 Xl/MJ 001CBH8 USE 00010000 ATTR 3320000
701928 NCOE 001DIEO .. RBP 007F0900 NM IlBODOI0 EPA 000753B4 XlIMJ 001C8010 USE 00000000 HlR 3110000
7CB01O NCDE 0010192c! RilP 00000000 NM IlBODOl EPA 000753A8 XlIMJ 001CBOOO LISE :):l:>lJOJ() HTR 3320000

Figure 100. Program with Dat.a .Interrupt (Part 4 of 5)

272

I NTERRUPT AT 075f46

PROCEEDING BACK VIA REG 13

SA 075900 11101 0030C4C2 HSA ()()074fBO
ru 0007AA70 Rl 00075900
k7 0007AAIC RJ 0007AA70

GO WAS t:NTEREO VIA LI NK

SA 074fBO 10101 00000000 HSA 00000000
R1 00074fF8 R2 00000040
K7 fDOOOOOO R8 0070Ef90

VTAH NOT ACTlV E fOR THIS CALL

REGS AT ENTRY TO ABEND

FLTR 0:-6 000000000001,10000

REGS 0-7
kEGS 8-1!i

L£jH MODULE GO

C 156AO

40075f3C 1.1007 AA70
0007AA70 u0076082

LSA 00074B90 RET 50075f24 EPA 6001fC3C RO 40075fH
R3 ooooooIA R4 000758C8 R5 00075688 P6 00075758
R9 00076082 RIO 000756B8 Rll 00076176 R12 00375C18

LSA 00075900 RET 00018C80 EPA OJ075688 RO 007CfO 10
R3 007F26f4 R4 007f2600 R5 007FCAOO R6 00705018
R9 i07fC010 RIO 00000000 RU 007fCC08 R 12 700CA602

0000000000000000 000000"0 ""''' \000000000 0000'00

40075 F3C 0000001A 000758C8 000756B8 00075758 0007AA1C
00075OB8 00075C9C 00075C18 00)75900 5()075F24 6001FC3C

0156CO 45801-010 E3C5E2E3 09E .. 0540 E5E209fl
90ECOOOC 185005FO

0700989F f02407fF 96021034 07FE41FO
00075C18 00075900 00075: 9[; 00076042
00000000 00000000 00000000 00000000

* •••.•.• 0*
* •• 0. TESTPUN VSP 1 •••• 0 •••••••••• 0*

, j 56EO 0001u7fE 00076082 000l56b8 000750B8
(j 51" ceoouooo 00000000 0001.10000 00000000

LINE 07~720 SAME AS ABOVt;

* •••••••••••••••••••••••••••••••••
* •••••.••..••..••..••.•...••.•... *

C15140 f2FO .. 8fl f848f5f4 CIE .. C7'tO f2f36B40 flF9F7Fb 00000000 OOlAOOU 00000000
F2F3F4FO
FOFl4005
00000000
00000000
00000000
E2CI0407
00000001
00000000
00000000

*20.18.54AUG 23. 1976 •••••••••••• *
A8COEFGHIJKL MNOPQRSTUV"XYl 012340
.1234012~401234012340 •••• A 0001 N*

015760 CIC2C3C4 e5CbC7C8 C90L0203 04050007 0809E2E3 E4E5E6E7 E8E9FOFl
015780 FlF2f3F4 FOFlF2F3 F4f .. Flf2 F3f4FOfl F2F3F4FO 00000000 C140FOFO
0157AO E8C3 .. 0FO 40404040 404u4040 00000000 (D/flf2F3C4/ 00000000 00000000 *YC 0 •••• 1230 •••••••••••• *
01 SleD 00000000 00000000 0001.10000 0507795A 0007500E 00000001 00000001 * ••.....••.•...••.•..•....•.•....• *

* •.•.•..••••••.••••.••...•.•.•..• * C 151EO 00001.1000 00000000 000 .. 0000 00000000 80000000 00000000 00000000
(;15800 0000U006 00830000 OOOlUOl 00004000 00000001 46000001 00:>757Be * ••••••••••••••••••••••••••• SII"IP*

*LE •••••••••••••••••••••••••••• * 015820 03C5,*040 02000048 OOU .. O(/Ol 08000001 00000004 00000000 00000001
'15E40 OOOOuOOl 00000014 OOOuO;)Ol 00000000 00000001 05EF:>70() 00000000 * •....•••....•••.•.••.•.......•.. *

* ..•..•.............•............ * 015800 00001.1000 00000000 OOOuOOOO 00900000 00000000 02000001 00140014

075680 OOOOJ 000 00000000 ooouOOOO 00000000 00000000 00000000 00000000 00000000 * •••••••••••••••••••••••••••••••• *
LI NE 07!)8AO SAME AS ABOV t;

0758CO 00001.1000 00000000 OOOuOOOO 00000000 00000000 00000000 0507795A 0007560E * •••••••••••••••••••••••••••••••• *
C 158EO OOOOUOOI 00000001 0001.10000 00000000 00000000 00000000 00000000 80000000 * •••••••••••••••••••••••••••••••• *
0159CO eoool)OOO 00000000 OOuuOOUO 00000005 0083C300 0507AAOO 00004000 0007A8BB * •••••••••••••••••• C •••••••••••• *
015<;20 46077F8C 900758C8 00C .. 4800 00703414 12F1Ef60 00BEI018 07000001 00000064 * ••••••• H ••••••••• l •••••••••••••• *
015940 2020,020 0007A920 0007AA04 0007AA10 00000014 00000001 00000000 00B06A40 " ••••••••••• M ••••••••••••••••••• *
(15<;6(; C5EFu700 00000000 OOOuOIlOO 00000000 00000000 00000000 00900000 00000000 * •••••••••••••••••••••••••••••••• *
C 7 5980 0204 ... OO! 00140804 OOOUOOOO 00000000 0007!1F40 00000000 00000000 00000000 *.................... ••••••••••• *
(15SAO OOOOuOOO 00000000 OOOuOOOO 00000000 00000000 00000000 00000000 00000000 * •• ' •••••••••••••••••••••••••••••• *
o 159CO OOOOuOOO 00000000 OOOuOOOO 00000000 0030[;4C2 00074FBO 00074890 50075F24 * •••••••••••••••••• 01' •••••••••••• *
C759EO 6U01t-C3C 40075F3C 0001AA70 00075900 0000001A 000758C8 00075688 00075758 * •••••••••••••••••••••• H •••••••• *
015ACO 0007AAIC 0007AA70 000160b2 00075688 0007&176 00075C18 3002804B 00000000 * •••••••••••••••••••••••••••••••••
075A20 0000..,000 00075C9(; OOOuOOOO 00000000 04400000 50075F24 12F1EF60 0007AC10 * •••••••••••••••••••••••• 1 •••••• *
'15AItO 0007:>900 00075900 000u001A 000758C8 000750B8 00075758 0007AAIC 0007BFE8 * ••••••••••••••• H ••••••••••••••• y*
o 15A60 0007.,082 000756B8 00075C 9C 00075C18 50077EFO 46075F36 0007AC10 80075900 * ••••••••••••••••••• 0 •••••••••••• *
C 151180 0007:> 7F4 0000001A 08f"FUUO 00000000 00000000 58800108 F8700210 C0560700 * ••• 4 ••••• 00 ••••••••••• JQ8.K ••••• *
'HAAO 5820iJIA8 07F20000 000U09C8 00074EOO 20000000 00000000 00000000 00000000 * •• J •• 2 ••••• H •••••••••••••••••••• *
CHAeo OOOOuOOO 00000000 OOOuOOOO 0007509E 00000000 01000000 0007508C 00076F6A * •••••••••••••••••••••••••••••••• *
015AEO 6007!)D48 000750AO OOuuOOOO OOOOllOlA 00075793 500760E6 00018C80 0007795A * ••••••••••••••••••••••• \! •••••••• *
'75800 0007:>960 80C75900 000759uO 0000001A 000758C8 000756B8 00075758 0007AA1C * ••••••••••••••••••• 1-' •••••••••••• *
'75820 OOOOuOOO 00076082 00075bB8 00075C9C 00075C18 00000000 00000000 00000000 * •••••••••••••••••••••••••••••••• *
,j 581t0 OOOOuOOO 00000000 OOOuOOOO 00000000 00000000 00000000 00000000 00000000 * •••••••••••••••••••••••••••••••• *
C 75B60 0000,,000 00000000 OOuuOOOO 00000000 00000000 00000000 40075F3C 6007B39C *......................... •••••• *
C15880 000hbB8 00000558 00078096 E2EBE206 E4E34040 E380000C 00075740 00000000 * •••••••••••• SYSOUT T. ••••• • ••• *
o 158AO OOOOuOOO 00000000 00075:9[; 00000000 00075C98 00000000 00000000 000:) O()OO * •••••••••••••••••••••••••••••••• *
015 Beo 00001)000 00000000 OOOuOOOO 00000000 000756B8 0007AA70 00075758 00000000 * •••••••••••••••••••••••••••••••• *
'15BEO OOOOuuOO oa00001C 0001.10000 00000000 00075779 00075793 00()750F6 000750F6 * ••••••••••••••••••••••••••• 6 ••• 6*
C 15eoo 0000..,000 80075900 OOOUOOOO 00000000 OA00098A 16340000 50BOOI08 58BOC01C * •••••••••••••••••••••••••• JQ •••• *
C HC.!O C7FBJOOO 00076C 18 00018<t~A 00076 L62 000779AA 00076176 0007845A 000779AE * •••••••••••••••••••••••••••••••• '"
OJ 5C40 0007b172 0007795A 00077Et;2 00076F6A 0007845E 00075F36 000757F4 00015900 * ••••••••••• S ••••••••••••••• 4 •••• *
C15CoO 0007:;OFb 00000000 OOOuOJUl 001A1C10 0000001C 00000008 00000000 48140000 * ••• 6 •••••••••••••••••••••••••••• *
C j 5C 80 0004 .. 000 00000000 COOuOOOO E6060902 6009C5C3 0609C400 00075C9C 5880C080 * ••••••••••• I'O~K.RECORO ••••••••• * 0/ PHGRAM

LAH PSIol 8EfOKE ABEND Ff8500u7ElI075f46

TES~RUN COBOL ABEND DIAGNOSTIC AJOS

SYSTEM COMPLETION CODE = OC7

o LAST CARD NUM"ER/VERB NUMBER EXECUTED -- CARO NUMBER 00008l/VERB NUMB ER 01.

FLOW TRACE ® TESTRUN 0000.,8 000072 000068 1)00072 000068 000072 090068 000072 000077 000080

Figure 100. Program with Data Interrupt (Part 5 of 5)

Program Checkout 273

r---,
21 24 I

DCB
~----------T------~---T------------------------~
~ J DCBBUFCB I

-----------~----T-----~------------------------

I
I
I
I I

r---------------J

I
V 8 12

Buffer
Area

r-----------T--------T-------------------------~
I IA (Area) I Buffers I
l-----------~---T----~-------------------------J
<-----BUFCB-----+---->
r---------------J

I
V 5 6 24 32

Logical
Record
Area

r-------T---T------------T--------T--------------
I I I J I l _______ ~ ___ ~ ____________ ~ ________ ~ _____________ _

~" ~
I

control I
data I

I
J

displacement
field

variable
data record
origin

l ___ ~ _____________________________ J

Figure 101. Locating the QSAM Logical Record Area

Q~jl: QSAM (sequential) spanned records
allocate a Logical Record Area in Which
complete logical records may be assembled
(see "Record Formats"). Figure 101
illustrates the relationship between the
DCB, the Buffer Areas, and the Logical
Record Area.

1. The DCB contains the DCBBUFCB field at
a displacement of 21 bytes from the
origin of the DCB. The contents of
DCBBUFCB points to the origin of tb~
Buffer control Block (BUFCB) in the
Buffer Area.

2. The BUFeB field contains an
Area-Address (A(Area» at a
displacement of 8 bytes from the
origin of the Buffer Area. The

274

Area-Address points to the origin of
the Logical Record Area.

3. The Logical Record Area contains a
displacement field at a displacement
of 5 bytes from its origin. This
field contains a value from 0 to 8
indicating the number of bytes the
record has been displaced. The
contents of this 1-7 byte field must
be added to the value 24 (the first
byte in the variable data record
origin area) in order to locate the
beginning of the logical data record
within the Logical Record Area. Note
tha t the first 4 bytes of the Logical
Record Area are control data
indicating the length of the Logical
Record Area (including the 4 bytes of
control data).

!iQ.i£: The Logical Record Area is .not
alloca ted for QS AM records formatted in V,
u, or l' mode.

r---,
variable 4 variable

<----bytes----><-bytes-><----------bytes---------->
r--------------T----T--T--------------------------~
I REC-ID I LL 1111 Maximum 01 ~ L ______________ ~ ____ ~ __ L ____________________________ ~

Logical Record Area

J
I
I
J
I
I
I
I
I
I
I

18 variable 4 variable
<--------bytes-------> <--bytes--><-bytes-><--------bytes-------->
r----------------------T---------T----T----T----------------------~
I BUFCB I REC-ID I LL' III Data Segment ~ L ______________________ ~ _________ ~ ____ ~ ____ ~ ____________________ ~

----------~---~-----
Buffer

Control Block

-----------------~-----------------
Segment Work Area

L __ _

Figure 102. Logical Record Area and Segment Work Area for BDAM and BSAM Spanned Records

~~A~-And_]DA~: BSAM and BDAM (direct)
spanned records allocate a Segment Work
Area. This work area is used for temporary
storage of record segments before a
complete logical record is assembled in the
Logical Record Area. Figure 102
illustrates the Logical Record Area and the
Segment Work Area.

2. The DECB address plus 12 bytes points
to the beginning of the Logical Record
Area.

1. The DECB address plus 12 bytes points
to the beginning of the Segment Work

Noi~: The segment work area is not Area.
allocated for BSAM and BDAM records
formatted in v, U, or F mode.

2. The DCB address plus 100 bytes points
to the beginning of the Logical Record

The following discussion illustrates the Area.
relationship between the DCB, the Logical
Record Area, and the segment Work Area as
shown in Figure 102.

1. The DeB address plus 100 bytes points
to the b~ginning of the BUFCS (Buffer
Control Block).

2. The contents of the BL assigned to the
level-Ol entry in an FD points to the
Logical Record Area labeled "Maximum
01" in Figure 102 (see Figure 98 for
an example of the BL pointer.)

!!~Alt out~y!

1. The DeB address plus 76 bytes points
to the beginning of the BUFCB (Buffer
Control Block).

In a teleprocessing application, control
blocks, called fU!~!lSLhlQ£!'§, are created
for a given partition/region. For input
operations, the number of queue blocks
created agrees with the number of queues
accessed. For output operations r however r
only one queue block is created for each
partition/region. The numerals within the
boxes in Figures 103 and 104 refer to the
numbered paragraphs below.

1. The TGT address plus 440 bytes points
to the SUBCOM field (see Figure 184 in
Appendix J: "pields of the Global
Table"). The fullword at X'50' bytes
into SUBCOlt points to the first
RECEIVE queue block. The fullword at

Program Checkout 275

X'S4' off SUBCOM points to the SEND
queue block. In both =ases, the first
field contains the data control block
(DC B) •

2. At X'S8' bytes into either a RECEIVE
or a SEND queue block, the first byte
of the 4-byte field indicates whether
the address that follows represents a
TCAM buffer or a BSAM buffer. If the
two high-order bits are on, the
address contained in the next three
bytes is for a TeAM buffer.

!.21~: For TCAM there is only one
buffer; for BSAft there is one buffer
for each queue.

Rela ti ve
Location Field

r- -,
0 , RQBDCB ,

j I
58 I RQBUFAD 2 J

I---------~
SC I RQBUFSIZ .3 I

•
,

5E I RQBSUMGV 4 I
t--- .,

60 I RQBDECB 5 I
I ,

74 t RQBNEXT 6 J
l- f

18 I RQBAMTL 7 J
I--- I

7A I RQBDTS 9 J
I--- f

90 , BQBDDNAM 11 I
I- ~

98 I RQBRECDL 12 ,
I--- I

99 I RQBHELDC 13 I
I--- ,

9A I RQBISITP 14 I
I--- I

9B 1 Reserved I
I ,

9C I RQBNBL 15 I
I I

AO I RQBQN AlIE 16 I

Figure 103. Fields of the RECEIVE Queue
Block

216

Hela ti ve
Location Field

r ,
0 I IHADCB I

l- t
58 I SQBUFAD 2 i

l- f
5C f SQBUFSIZ 3 J

I -I
5E t SQlIORER 8 I

I f
60 I SQBENDIC 10 I

l- t
61 J SQBRECDL 12 I

l- f
62 I Reserved I

l- I
64 I SQBDNLH 17 I

I i
68 I SQBlIPLFH 18 I ,. ~
6C • SQBPBFH 19 I

l- t
70 I SQBFSTOA 20 I , ..
74 I SQBFSTOL 21 I

L--

Figure 104. Fields of the SEND Queue Block

3. In ei ther a RECEIVE Or a SEND queue
block, this field specifies the size
of the buffer, whose format is
pictured in Figure 105. (For a list
of codes used in the TCAM control
byte, see Figure 106.)

4. The BQBSOllGV field of the RECEIVE
queue block indicates the number of
bytes of data given to the user for
this request. -

5. The RQBDECB field of the RECEIVE queue
block contains the data event control
block (DECB).

6. In the RECEIVE queue block, the
RQBNEXT field provides the address of
the next queue block. If this field
is zero_ there are no additional queue
blocks.

1. The RQB1MTL field of the RECEIVE queue
block indicates the amount of data
being held from the last request.

8. For BSA! only, the SQHORER field of
the SEND queue block indicates the
number of unused bytes left in the
buffer.

9. The 22-byte RQBDTS field of the .
RECEIVE queue block contains the date
and time of the last message received
from this queue, as well as the source
of the message.

10. The SQBENDIC field of the SEND queue
block contains the end indicator (in

zoned decimal) specified in the COBOL
source statement.

11. The RQBDDNAM field contains the ddname
for the queue block specified in the
COBOL teleprocessing program.

12. The RQBRECDL field in the RECEIVE
queue block and the SQBRECDL field in
the SEND queue block contain the
record delimiter specified in the MCP.

13. The RQBHELDC field in the RECEIVE
queue contains a character that, in
some instances, is the next data
character.

14. The RQBISITP field in the RECEIVE
queue block is a switch byte.

15. The RQBNBL field contains the
enable/disable link.

16. The RQBQNAME field contains the TCAM
queue name.

11. The SQBDNLH field contains the head of
the DNL (destination name list).

18. The SQBMPLFH field contains the free
list head of the MPL {message phrase
list).

19. The SQBPBFH field contains the free
list head of the PB (phase buffer).

20. The SQBFSTOA field contains the free
storage pointer.

21. The SQBFSTOL field contains the free
storage length.

1 5 6 14

========I===I===============I===~_~=====_ ~'-v-'~ __ - ~ __

V
prefix

TCAM Source 1D
control

Byte

Data

Note: The prefix, the TCAM control byte.
and the source 1D must be user specified
for a SAM file~ However, if the user
invokes the SEND statement to create a
SAM 'file for subsequent input" then the
COBOL compiler adds bytes 1 through 13
(see Figure 148 in the chapter entitled
"Using the Teleprocessing Feature").

Figure 105. structure of a TCAM Record

If a job is abnormally terminated and
the abnormal termination process goes to
completion, the following procedures are
carried out:

• A dump (ABDUMP) is produced by the
system.

• The data sets in the job steps are
disposed of as specified in the DISP
parameter (i.e., kept, deleted, etc.).
This is indicated in the job scheduler
disposition messages produced for the
job step.

• Temporary data sets, including those
passed from previous job steps, are
deleted.

When the abrrormal termination process
does not go to completion (i.e., no end of
dump message is present), none of these
procedures will be carried out. Those
data sets in the job step that were in
existence previous to the point at which
the error condiiion occurred will remain
in effect. For data sets on direct access
volumes, the names will remain tabulated
in the Volume Table of Contents (VTOC) of
the volume (see "Additional File
processing Information" for details on the
VTOC). The result of an incomplete
abnormal termination is that space needed
by a subsequent job will be unavailable,
or, if the same job is then Dermn,
duplicate name definition will result for
those dat. sets that are newly created in
the job step. This is true for temporary
data sets for which the system has
assigned the name, as well as data sets
for which the programmer has assigned the
name.

Program Checkout 271

r- , ,
I Code IMeaning I
~ I ~
I X'Fl'tThe first block of a multiblock I
I J message ,
, I J
J X'F5'JThe first block of a multiblock I
I I message, wi th end of segment I
I I indicated I
r I ~
I X'40'JAn intermediate data block I
, I I
J X'F4 t)An intermediate data block, with I
• • end of segment indicated I
I-- I -i
I X'F2'IThe last block of a multiblock I
1 Jmessage I
1 t I
t X'F6',The last block of a multiblock I
I t message, with end of segment f
f I indica ted J
r-~ i
I X'P3'IA single block message I
1 I I
, Xt F7')A single block message, with end 1
I Jot segment indicated I
1-- •

Figure 106. Codes Used in the TeAM Control
Byte

SCRATCHING NON-VSAM DATA SETS

To avoid duplicate name definition and
to ensure that space will be a vailable for
newly created data sets, the programmer can
scratch his direct-access volume data sets
hy using the utility program IEHPROGM. To
scratch such a data set means to remove its
data set label (which includes its name)
from the VToe and to make the space
assigned to it available for reallocation.
Scratching does not uncatalog any cataloged
data sets. This is done by the UNCATLG
option of the IEHPROGM.

If a DSNAME parameter has been specified
in the DD statement for the data set, the
IEHPROGM utility program requires the name
of the data set. Fdr data sets named by
the programmer, the specified name is the
dsname. For data sets for which the
DSNAME=&&name convention has been used, an
internal name

SYSyyddd.Ttttttt.axnnn.jobname.name

is assigned by the system, where job!ig,~ is
the name of the job and M!!~ is from the
&&name. If no DSNAME parameter is
specified, an internal name is assigned by
the system. For data sets with no DSNAME
param~ter there exists an option by which
the programmer can specify that all such
data sets on the volume be scratched,
without having to specify their names.

278

If the programmer wishes to obtain a
listing of the names of all the data sets
on a volume, including system-assigned
internal names, he can use the uti.lity
program IEHLIST. This program provides a
listing of the VTOC of the volume.

Information on how to use these utility
programs is contained in the publication
OS/VS Utilities.

OBTAINING EXECUTION STATISTICS

Execution statistics are invoked via the
COUNT option at compile time and the
presence of SYSDBOUT and SYSCOUNT DD
statements at execution time. No source
language coding changes are required.
COUNT facilitates testing, debugging, and
optimizing by providing the programmer with
verb counts at the following times:

• STOP RUN
• GOBACK in the main program
• Abnormal termination of a job.
• At CANCEL time, verb counts for the

canceled program and any of its
subprograms.

When COUNT is specified, the following
items should be taken into account:

1. When COUNT is specified, the compiler
divides the program into blocks of
verbs. When the statistics are
printed, the last block o.f verbs
executed in each program u~it is
indicated. If the program abnormally
terminates, the statement causing the
abnormal termination can be determined
(by using the symbolic debugging
features, for example). The
programmer should then subtract one
from the verb count for each verb
flagged which follows the abending
verb.

2. If COUNT is requested, the user may
need to increase the REGION parameter
on his load module EXEC card. The
dynamic space required for COUNT is
approximately 512 bytes plus 80 bytes
per program unit being monitored, and
four bytes per count block (seethe
compiler output statistics). The
requirements for each program uni tare
rounded to the next 128-byte boundary.

3. The OTHERWISE verb is treated as if
the user coded the ELSE verb.

4. Both the SYSDBOUT and SYSeOUNT DD
statements must be specified at
execution time.

The execution statistics clearly
identify the following areas of the
program:

• untested and weakly tested areas of the
proqram

• The last blocks entered and executed

• Possible sources of unnecessary code

• The most heavily ~sed parts of the
program; that is, those parts most
susceptible to changes.

OPTI~IZATIONMETHODS

Based on execution frequency, the
following types of optimization can be
implemented by the user:

• Resequencing the program

• Insight into SY~DMP

• Common expression elimination

• Backward movement

• Unrolling

• Jamming

• Unsw itch ing

• Incorporatimg procedures in line

• Tabling

• Efficiency guidelines

Note, however, that each optimization
technique can result in more inefficient
code if the statistics used in optimizing
the program are not representative of the
normal program flow. In addition, it is
recommended that any optimization methods
implemented be documented in the program.

Sg2~guencing the Prog£A!

The COBOL Procedure Division should be
organized as follows:

1. 111 frequently-used paragraphs or
sections should be located near the
routines that use them.

2. All infrequently used paragraphs or
sections should be grouped together
and apart from frequently-used
routines.

3. The most frequently-referenced data
items should be placed in the
beginning of the Working-Storage
section.

Insight into SYMDMP out~!

The area where dynamic symbolic dumps
are to be used can be pointed to by the
execution statistics. Knowledge of what
area of code is executed and how often it
is executed should give the user
information on what sections should be
further investigated.

~Q~mon Expression Elimina~iQQ

This technique is designed to eliminate
unnecessary arithmetic calculations. An
arithmetic expression calculation is
considered unnecessary if it represents a
value calculated elsewhere that wi~l always
be used without modification. One such
example would be an arithmetic expression
whose operands are not .redefined or
reeval ua ted, but the expression is
recalculated.

Backward Movem~nl

This technique facilitates moving
calculations and other operations from an
area of code frequently executed to an area
less frequently executed. For example* an
expression calculated within a PERFORM
procedure (using a Format 2, 3, or 4
PERFORM statement) which always yields the
same value for that PERFORM statement could
be calculated inline or in another
procedure which would be executed just
prior to the regularly executed PERFORM
procedure. Another example might be an
expression which is calculated in many
procedures which are often executed by va y
of a·PERFORM in succession. This
expression could be removed from all the
procedures and calculated just once prior
to the procedures.

Program Checkout 279

Procedures which are frequently executed
may be expanded so that the statements
within the procedure are repeated, with
slight modification, to reduce the
procedure overhead. For example,

PERFOR M YEARLY-GROSS-CALC VARYING
WEEK-NO
FROM 1 BY 1 UNTIL WEEK-NO
GREATER THAN 52.

YEARLY-GROSS-CALC.
ADD GROSS-SALARY (WEEK-NO)
TO YEARLY-GROSS

could be replaced by

PERFORM YEARLY-GROSS-CALC VARYING
WEEK-NO
FROM 1 BY 4 UNTIL WEEK-NO
GREATER TH AN 52.

YEARLY-GROSS-CALC.
ADD GROSS-SALARY (WEEK-NO),

GROSS-SALARY (WEEK-NO.1),
GROSS-SALARY (WEEK-NO.2),
GROSS SALARY (WEEK-NO.3) TO
YEARLY-GRO SS.

In addition, indexing might be useful in
this exa mple.

In some instances, tvo procedures can be
merged into one procedure, thereby saving
some procedure overhead. An example of
this might be replacing

by

280

MOVE 0 TO WEEK-NUM.
PERFORM YEARLY-GROSS-CAL 52 TIMES.
MOVE 0 TO WEEK-NUM.
PERFORM YEARLY-NET-CAL 52 TIMES.

YEARLY-GROSS-CAL.
ADD 1 TO WEEK-NUM.
ADD GROSS-SALARY (WEEK-NUM)
TO YEARLY-GROSS.

YEARLY-NET-CAL.
ADD 1 TO WEEK-NUM.
ADD NET-SALARY (WEEK-NUM) TO
YEARLY-NET.

MOVE 0 TO WEEK-NUM.
PERFORM YEARLY-CAL 52 TIMES.

YEARLY-CAL.

ADD 1 TO WEEK-NUM.
ADD GROSS-SALARY {WEEK-NU~

TO YEARLY-G ROSS.
ADD NET-SALARY (WEEK-NUM)
TO YEARLY-NET.

Procedures may contain tests that result
in the same action for any set of
executions of that procedure. In such a
case, the test can be removed from the
procedure and the procedure duplicated.
For example, if "SWITCH" is not changed
within the loop, replace

KOUNT=O
PERFORM JOBS-TOTAL-CAL JOB-NUM TIMES.

JOB-TOTA.L-CAL ..
ADD 1 TO KOUNT
ADD JOB-COST (KOUNT) TO TOTAL-JOB-COST.
IF SWITCH = 0 ADD JOB-EXPENSE (KOUNT)

TO TOTAL-EXPENSES ELSE
ADD JOB-EXPENSE (KOUNT) OVERHEAD TO

TOTAL-EXPENSES.
ADD JOB-INCOME (KOUNT) TO TOTAL INCOME ..
IF SWITCH = 0 ADD JOB-PROFIT (KOUNT) TO

TOTAL-PROFITS ELSE
COMPUTE TOTAL-PROFITS = TOTAL-PROFITS •

JOB-INCOME (KOUNT) -
JOB-COST (KOUNT) - JOB-EXPENSE (KOUNT)

- OVERHEAD.

by

KOUNT = 0
IF SWITCH = 0
PERFORM JOB-TOTAL-CAL-O
JOB-NUft TIMES ELSE
PER FORM JOB-TOTAL-CAL-l
JOB-NUM TIMES.

JOB-TOTAL-CAL-O.
ADD 1 TO KOONT.
ADD JOB-COST. (KOUNT) TO TOTAL-JOB-COST.
ADD JOB-EXPENSE (KOUKT) TO

TOTAL/EXPENSES.
ADD JOB-INCOISE (KOUNT) TO TOTAL-INCOKE.
ADD JOB-PROFIT (KOnNT) TO

TOTAL-PROFITS.
JOB-TOTAL-CAL-1.

ADD 1 TO KOUNT
ADD JOB-COST (KOUNT) TO TOTAL-JOB-COST
ADD JOB-EXPENSE (KOUNT), OVERHEAD TO

TOTAL- EXPENSE
ADD JOB-INCOME (KOUNT) TO TOTAL-INCOliE
COMPOTE TOTAL-PROFITS = TOTAL-PROFITS •

JOB-IHCOME (KOUNT)
- JOB-COST (KOUNT) - JOB-EXPENSE

(KOUNT) ~ OVERHEAD.

Ia£Q£22r~ting Procedures I~

Based on module size, number of
repetitions, modification activities,
future expansion considerations, and
frequency statistics, small procedures can
be moved inline to minimize overhead
require.ents.

This technique is designed to replace
many IF statements by one table-look-up
statement, or by one computed GO TO
statement. For example, if the same data
item is tested in many successive IF
statements to set the value of another data
item to some constant, and the range of
tested values of the original data item is
limited, then a predetermined table of
values could be used to assign the value
of the second data item. Similarly, many
consec uti ve sta temen ts of the form "IF
data-item-1 = some-constant GO TO
some-procedure" could be replaced by one
computed GO TO statement.

Based on execution frequency statistics,
the following types of coding
inefficiencies may be removed.

1. Unaligned decimal places in arithmetic
or numer ic comparison operand s.

2. Different size operands in moves,
comparisons, or arithmetic operations.

3. Mixed usage in arithmetic or numeric
comparison operands.

4. Display usage in arithmetic operands
or one numeric operand and one display
operand in a comparison.

5. SYNC missing for COMP or COMP-1, -2,
or -4 items.

6. Inefficient COMP type picture; that
is, no sign or more than 9 digits in a
COMP item and no sign, even number of
digits, or more than 16 digits in
COMP-3 items.

7. certain calls to object-time
subrout ines.

8. Indexing instead of subscripting and
vice versa.

9. Noncomputational subscripts.

Program Checkout 281

Some techniques for increasing the
efficiency of a COBO.L program are described
in this chapter. It is divided into seven
parts. The first four parts deal in
general with coding a COBOL program. The
fifth is concerned with the Report writer
feature, the sixth with table handling, and
the seventh with queue structure
descript ion.

There are four statements that can be
coded in any or all of the four divisions
of a source program: SKIP1, SKIP2, SKIP],
and EJECT. These statements provide the
user with the ability to control the
spacing of a source listing and thereby
improve its readability.

These suggestions will aid efficiency:

• Use the RES option and place frequently
used COBOL subroutines into the Paged
Link Pack Area.

• Avoid repetitive sequences of

CALL

CANCEL

for the same subprograms.

• If a short subprogram is referenced
only once or twice (and is not an
unusual situation routine), then its
code should be incorporated in the
calling program, if convenient.

• subprograms should be loaded near the
programs which use them. This can be
done via linkage editor control cards.

• Se gman ta tion in many cases is no longer
desirable.

• Data-names of constant value should be
grouped together. Data-names whose
values vary during execution should
also be grouped together and should be
separate from those of constant value.

282

• All frequently used subroutines should
be loaded near each other. This can be
done via linkage editor control cards.

• PDs for files that will be opened at
the same time should be grouped
together.

• The most frequently referenced data
items should be placed in the beginning
of the Working Storage section.

• The COBOL Procedure Division should be
organized generally as follows:

a. All frequently used paragraphs or
sections should be located near the
routines that use them.

b. All infrequently used paragraphs or
sections should be grouped together
and apart from frequently used
routines.

To make optimum use of buffer space
allocated when creating a physical
sequential file with blocked V-mode
records, the programmer may use the APPLY
WRITE-ONLY clause for the file. Use of
this option causes a buffer to be truncat.ed
only when the next record does not fit in
the buffer. (If the APPLY WHITE-ONLY
clause is not specified, the buffer is
truncated when the maximum size record will
not fit in the space remaining in the
buffer.) When using APPLY WHITE-ONLY, all
the WRITE statements must have FROM
options. None of the subfields of the
associated records may be referred to by
procedure statements and they may not be
the object of the DEPENDING ON option in an
OCCURS clause.

Except for APPLY WRITE-ONLY, ADVANCING,
POSITIONING. and APPLY RECORD-OVERFLOW, all
the options for variable length record
files apply to spanned records.

For non-VSAM files~ the APPLY
RECORD-OVERFLOW clause makes more efficient
use of direct access storage space by using
the Track overflow feature. If APPLY
RECORD-OVERFLOW is specified, a record that
does not fit on a track vill be partially
written on that track and the remainder
vill be written on the next available
track.

The use of the APPLY RECORD-OVERFLOW
option requires that Track Overflow be
specified at system generation time.

To minimize processing time with indexed
sequential files accessed randomly, the
programmer should use the APPLY CORE-INDEX
clause. Use of this option causes the
highest level index to be brought into main
storage for input/output operations. This
speeds processing by eliminating the extra
time needed to search the index on the
volume.

The use of BDAM-W for file organization
results in less system generated coding
than for BDAK-D. When BDAM-D is used and a
WRITE statement is issued, extra code must
be generated to compare the contents of the
ACTUAL KEY of the WRITE statement with the
key of the preceding READ statement to
determine whether the system should add or
update a record. If the keys are the same
the record is updated. If the keys are
different the record is added.

BDAM-W eliminates this comparison step.
The system adds a record when a WRITE
statement is issued and updates a record
when a REWRITE statement is issued. ih2

OVERALL CONSIDERATIONS

The absolute maximum of the Data
Division (excluding Linkage Section)
is 1,044,480 bytes. (This includes
File, Working-Storage, Communication,
and Report Sections.) Other maximum
lengths (in bytes) are:

• data description entry -- 32,767

• variable length table -- 32,767

• fixed-length group item (including
fixed~length table) in Working-Storage
or Linkage section -- 131,071

Assign a prefix to each level-01 item in
a program, and use this prefix on every
subordinate item (except FILLER) to
associate a file with its records and
work-areas. For example, MASTER is the
prefix used here:

FILE SECTION.
FD MASTER-INPUT-PILE

01 MASTER-INPUT-RECORD.

WORKING-STORAGE SECTION~
01 MASTER-WORK-AREA.

05 MASTER-PAYROLL PICTURE 9(3).
05 MASTER-SSNO PICTURE 9(9).

If files or work-areas have the same
fields, use the prefix to distinguish
between them. Por example, if three files
all have a date field, instead of DATE,
DAT, and DA-TE, use MASTER-DATE,
DETAIL-DATE, and REPORT-DATE. Using a
unique prefix for each level-01 and a11
subordinate fields makes it easier for a
person unfamiliar with the program to find
fields in the program listing, and to know
which fields are logically part of the same
record or area.

When asing the MOVE statement with the
CORRESPONDING option and referring to
individual fields, redefine or rename

programming Techniques 283

«corresponding" names with the prefixed
unique names. This technique eliminates
excessive qualifying. For example:

01 MST-WORK-AREA.
05 SAME-NAMES. p**)

10 LAST-NAME PIC •••
10 FIRST-NAME PIC •••
10 PAYROLL PIC •••

05 DIFF-NArtES REDEFINES SAME-NAMES.
10 MST-LAST-NAME PIC •••
10 MST-FIRST-NAME PIC •••
10 MST-PAYROLL PIC •••

01 RPT-WORK-AREA.
05 SAME-NAMES. (***)

10 PAYROLL PIC •••
10 PILLER PIC •••
10 FIRST-NAME PIC •••
10 FILLER PIC •••
10 LAST-N AM EPIC •••

PROCEDURE DIVISION.

IF MST-PA~ROLL IS EQUAL TO HDQ-PAYROLL
AND MST-LAST-NAME
IS NOT EQUAL TO PRRV-LAST-NAME
MOVE CORRESPONDING
MST-WORK-AREA
TO RPT-WORK-AREA.

!Qte: Fields marked with a triple asterisk
(***) in the foregoing listing must have
exactly the same nalles for their
subo~dinate fields in order to be
considered corresponding. The same names
must not be the redefining ones, or they
viII not be considered to correspond.

The programmer should use videly
incremented level numbers, i.e., 01_ 05,
10, 15, etc., instead of 01, 02, 03, 04,
etc •• in order to allov rooll for future
insertions of group levels. For
readability, indent level numbers. Use
level-8S numbers for codes. Then. if the
codes must be changed, the Procedure
Division coding for tests need not be
changed.

FILE SECTION

284

The programmer should use the RECORD
CONTAINS integer CHARACTERS clause in order
to save himself as well as any future
programmer the task of counting the data
record description positions. Also, the
compiler can then diagnose errors if the
data record description conflicts with the
RECORD CONTAINS clause.

COMMUNICATION SECTION

The Communication Section of a COBOL
program must be specified if the program is
to take advantage of the Teleprocessing
Feature (TP). Through the inclusion of
communication Description (CD) entries, the
programmer establishes communication
between the COBOL object program and the
Message Control Program (KCP).

When specified, the communication
Section must contain at least one CD entry.
For example, a single CD entry vould be
sufficient for applications with either an
input or an output message but not both. A
COBOL TP. program that is both to receive
and to send messages must contain at least
two! CD entries, as below.

CD cd-name FOR INPUT.
CD cd-name FOR OUTPUT.

The CD entry may instead be pre-written
and included in the user-created library.
The prog.rallmer may then include the entry
in a COBOL program by means of a COpy
statement.

CD cd-name COpy library-name.

The input CD contains such information as
input queue and sub-queue nalles, message
date and time, the source, the Ilessage text
length_ the end key. the message status
key, and the message count. The output CD
contains the text length, the destination
count, a status key and error key (both
possibly repeating), and the name of the
output queue. For inforaa tion about t.he CD
formats possible, see the publication I.Bft
IS COBOL_t2!-2~!~.

'Multiple input and output CD entries may
be specified.

No~: The required inclusion of the
parameter DATE=YES in all input TPROCESS
entries whose destination is ~ COBOL
program results in the placing of the date
and time of message entry in the input CD
(see the section "Additional Interface
Considerations" in the chapter entitled
"Using the Teleprocessing Feature").

WORKING-STORAGE SECT ION

In a large program, the programmer
should plan ahead for breaking the programs
into separately compiled modules, as
follows:

1. When employing separate modules, an
attempt should be made to combine
entries of each Working-storage
section into a single level-01 record
(or one level-O 1 record for each 32K
bytes). Logical record areas can be
indicated by use of level-02, level-OJ
etc., entries. A CALL statement with
the USING option is more efficient
when a single item is passed than when
many level-01 and/or level-77 items
are passed. When t his method is
employed, mistakes are more easily
avoided.

2. Areas that do not have VALUE clauses
should be separated from areas that do
need VALUE clauses. VALUE clauses
(except for level-aa items) are
invalid in the Linkage section.

3. When the Working-storage section is
one level-01 item with no VALUE
clauses, the COpy statement can easily
be used ,to include the item as the
description of a Linkage section in a
separately compiled module.

4. See" Use of segmentation FeatUre" for
more in formation on how to modularize
the Procedure Division of a COBOL
program.

1£Q.£ating.-the~rkillil-ston~_~g£ti2!lJ.!l
DUll!!

When anyone or more of the options
PMAP, CLIST, and DKAP are specified, both
the location and the length (in
hexadecimal) of the Working-storage
Section, if any, are provided (see the
section "Options for the compiler" in the
chapte.r entitled IIJob control Procedures tt).

Alternatively, the programmer may locate
this section in object-time dumps by
including the following two statements in
the program, in the order given:

77 FILLER PICTURE X(44), VALUE "PROGRAM
IXXIXXXX WORKING-STORAGE BEGINS HERE".

01 FILLER PICTURE 1(42), VALUE "PROGRAM
IXXI1XXX WORKING-STORAGE ENDS HEREII.

These tvo nonnumeric literals will
appear in all dumps of the program,
delineating the Working-Storage Section.
The program-name specified in the
PROGRAM-ID clause should replace the
XXXXXIII in the literal.

DATA DESCRIPTION

The Procedure D iv ision opera tions that
most often require adjustment of data items
include the MOVE statement, the IF
statement when used in a relation test, and
arithmetic operations. Efficient use of
data description clauses, such as
REDEFINES, RENAMES PICTURE, and USAGE,
avoids the generation of extra code.

!~~IR~~IA-!R~~: The main storage area
can be used more efficiently by writing
different data descriptions for the same
data area. For example, the coding that
follows shows how the same area can be used
as a "ork area for the records of several
input files that are not processed
concurrently:

WORKING-STORAGE SECTION.
01 WORK-AREA-FILE 1.

(largest record description for FILE1)

01 WDRK-AREA-FILE2 REDEFINES
WORK-ABEA-FILE1.

(largest record description for FILE2)

!1!~!~!T!_§RQQe~~ND DE~~RIPIIQ~~:
Program data can often be described more
efficiently by providing alternate
groupings or data descriptions for the same
data. For ex~mple# a program refers to
both a field and its subfields, each of
which is more efficiently described with a

Programming Techniques 285

different usage. This can be done with the
REDEFINES clause as follows:

01 PAYROLL-RECORD.
05 EMPLOYEE-RECORD PICTURE 1(28).
05 EMPLOYEE-FIELD REDEFINES

EMPLOYEE-RECORD._
10 NAME PIC X(23).
10 NUMBERX PIC S9(5) COMP SYNC.

05 DATE-RECORD PIC X(10).

As an example of different data
descriptions specified for the same data,
the following illustrates how a table
{TABLEA) can be initialized:

05 VALUE-A.
10 A1 PICTURE S9(9) COMPUTATIONAL

VALUE IS ZEROES.
10 A2 PICTURE S9(9) COMPUTATIONAL

VALUE IS 1.

10 A100 PICTURE S9(9)
COMPUTATIONAL VALUE IS 99.

05 TABL EA REDEFINES V ALUE-A
PICTURE S9{9) COMPUTATIONAL

OCCURS 100 TIMES.

Note: Caution should be exercised when a
~;~;fining or redefined item is used as a
subscript. If the value of a redefining
item is changed in the Procedure Division
and the redefined item is used as a
subscript, or vice versa, then no new
calculation for the su bscript is performed.

By permitting a programmer to rename
various fields, the RENAMES clause enables
alternate, possibly overlapping, groupings
of elementary data. The following example
shows how three fields of a record can be
rena med:

01 OUT-REC.
05 FIELD-X.

10 SUMMARY-GROUPX.
15 FILE-l PICTURE x.
15 FILE-2 PICTURE x.
15 FILE-3 PICTURE x.

05 FIELD-Y.
10 SUMMARY-GROUPY.

15 FILE-l PICTURE X
15 FILE-2 PICTURE x.
15 FILE-3 PICTURE X.

05 FIELD-Z.
10 SUMMARY-GROUPZ.

15 FILE-1 PICTURE X.
15 FILE-2 PICTURE X.

286

15 FILE-3 PICTURE x.
66 SUM-X REHAMES FIELD-I.
66 SUM-Xt REHABES FIELD-X THRU FIELD-Y.
66 SUM-XIZ RENA8ES FIELD-X THRU FIELD-Z.

If each level-15 item contained either an A
or an I, a programmer could find out how
many files contained an A by doing a
complete tally of files in QUT-BEC:

EXAMINE SUM-IYZ TALLYING ALL "A"

or a programmer might just want to tally
the files in FIELD-X:

EXAMINE SUM~X TALLYING ALL "A"

In short, renaming fields can lead to
better utilization of coding, storage. and
time by facilitating the streamlining of
Procedure Division operations.

DECIMAL-POllL!.Ll2!l1ENI: procedure
Division operations are most efficient when
the decimal positions of the data items
involved are aligned. If they are not. the
compiler generates instructions to align
the decimal positions before any operations
involving the data ~te.s can be executed.
This is referred to as ~all~.

Assume, for example, that a program
contains the following instructions:

WORKING-STORAGE SECTION.
77 A PICTURE S999V99.
77 B PICTURE 599V9.

PROCEDURE DIVISION.

ADD ATO B.

Time and internal storage space are
saved by defining Bas:

77 B PICTURE S99V99.

If it is inefficient to define B
differently. a one-time conversion can be
done, as explained in "Data Format
Conversion •• t

FIELDS OF UNEQUAL LENGI!!: When a data ite.
is moved to another data item of a
differen t length, the following should be
considered:

• If the items are external decimal
items, the compiler generates
instructions to insert zeros in the
high-order positions of the receiving
field when it is the larger.

• If the items are nonnumeric, the
compiler generates instructions to
insert spaces in the low-order
positions of the receiving field (or
the high-order positions if the
JUSTIFIED RIGHT clause is specified.
This generation of extra instructions
can be avoided if the sending field is
described with a length equal to or
greater than the receiving field~

y§~_of S!g~: The absence or presence of a
plus or minus sign in the description of an
arithmetic field often can affect the
efficiency of a program. The following
paragraphs discuss some of the
considerations.

!!g,£imal_It~§: The sign position in an
internal or external decimal item can
contain:

1. A plus or min us sign. If S is
specified in the PICTURE clause, a
plus or minus sign is inserted when
either of the following conditions
prevails:

a. The item is in the Working-storage
section and a VALUE clause has
been specified.

b. A value for the item is assigned
as a result of an arithmetic
operation during execution of the
program.

If an external decimal item is
punched, printed, or displayed, an
overpunch vill appear in the low-order
digit. In EBCDIC, the configuration
for low-order zeros normally is a
nonprintable character. tov-order
digits of positive values will be
represented by one of the letters A
through I (digi ts 1 through 9); low
order digits of negative values will
be represented by one of the letters J
through R (digits 1 through 9).

2. A hexadecimal F. If S is not
specified in the PICTURE clause, an F
is inserted in the sign position when
either of following conditions exists:

a. The item is in the Working-storage
Section and a VALUE clause has
been specified.

b. A value for the item is developed
during the execution of the
program.

An F is treated as positive, but is
not an overpunch.

3. An invalid configuration. If an
internal or external decimal item
contains an invalid configuration in
the sign position, and if the item is
involved in a procedure Division
operation, the program will be
aDnormally terminated.

Items for which no S has been specified
t!!!!,§,ll~item§.> are treated as absolute
values. Whenever a value (signed or
unsigned) is stored in, or moved in an
elementary move to an unsigned item, a
hexadecimal P is stored in the sign
position of the unsigned item. For
example, if an arithmetic operation
in volves signed opera+lds and an unsigned
result field, compiler-generated code will
insert an F in the sign position of the
result field when the result is stored.

For internal and external decimal items
used as input, it is the user's
responsibility to ensure that the input
data is valid. The compiler does not
generate a test to ensure that the
configuration in the sign position is
valid.

When a group item is involved in a mQY~,
the data is mo ved wi thout regard to the
level structure of the group items
involved. The possibility exists that the
configuration in the sign position of a
subordinate numeric item may be destroyed.
Therefore, caution should be exercised in
moves involving group items with
subordinate numeric fields or vi th other
group operations such as READ or ACCEPT.

This clause, which specifies both the
position and the mode of the operational
sign for a numeric data description entry,
is required only when an explicit
description of the sign's properties is
necessary. The SIGN clause may be
specified for either a numeric data
description entry whose PICTURE contains
the character ~ or a group item that
contains at least one such numeric data
description entry.

The numer ic data description entries to
which the SIGN clause applies must be
described, implicitly or explicitly, as
USAGE IS DISPLAY. Only one SIGN clause may
be associated with any given numeric data
description entry.

The format of the SIGN clause is as
follows:

Programming Techniques 287

{
LEADING l

SI~~ IS [SEPARATE CHARACTER]
TRAILING

Q§~_of_iA~~~fAR!~_fHARACTE~_QptiQll: The
programmer can elect to consider the
character ~ in the PICTURE character string
as a separate character or not, as he
chooses. If the SEPARATE CHARACTER option
is specified:

• The position of the character ~ is not
taken to be a digit position.

• The character S is counted in
determining th; size of the data item.

• The characters ,+, and ,_t are used for
the positive and the negative
operational signs, respectively.

• If neither the character '.' nor the
character t_' is present in the data at
object time, an error takes place and
the program ABENDS.

Whether or not the SEPARATE CHARACTER
option is in effect, the operational sign
is assumed to be associated with either the
LEADING or the TRAILING digit position, as
spec;ified, of the elementary numeric data
item.

This clause should be written at the
highest level possible.

~Al!-fQliMAT CONV~~!Q!: Operations
involving mixed, elementary numeric data
formats require conversion to a common
format. This usually means that additional
storage is used and execution time is
increased. The code generated must often
move data to an internal work area, perfora
any necessary conversion, and then execute
the indicated operation. Often, too, the
result may have to be converted in the same
way (see Figure 101).

If it is impractical to use the same
data formats throughout a program, and if
two data items of different formats are
frequently used together, a one-time
conversion can be effected. For example,
if A is defined as a COMPUTATIONAL item and
B as a COMPUTATIONAL-3 item, A can be moved
to a work area that has been defined as
COMPUTATIONAL-3. This move causes the data
in A to be converted to COMPUTATIONAL-3.
Whenever A and B are used in a Procedure
Division operation, reference can be made
to the work area rather than to A. Using
this technique, the conversion is performed
only once, instead of each time an
operation is performed.

288

The following eight cases show how data
conversions are h~ndled on mixed elementary
items for names, data comparisons, and
arithmetic operations. Moves to and from
group items, without the CORRESPONDING
option, as well as comparisons involving
group items, are done without conversion.

I~Ll!2.!g_Q!!:!!: Converts DISPLAY data to
COMPUTATIONAL-3 data.

I.Q_&Q.!!!.P!£~-ILlla: converts DISPLAY data
to COMPUTATIONAL-3 data.

.I~~rforLAr.i!:.h!MU.i~Q'pg£ll.iQ!l§:
Converts DISPLAY data to COMPUTATIONAL-3
data.

I2-Move~~a: Converts DISPLAY data to
COMPUTATIONAL-3 data and then to
COMPUTATIONAL data.

I2-£ompa~Qata: Converts DISPLAY to
COMPUTATIONAL-3 and then to
COMPUTATIONAL or converts both DISPLAY
and COMPUTATIONA.L da ta to
COMPUTATIONAL-3 data.

~.f~rfQD!LAr i!l!H ti~per a!;.i.2n.2:
Converts DISP~AY data to COMPUTATIONAL-3
or COMPUTATIONAL data.

I2-~QYg~a: Moves COMPUTATIONAL-3
data to a work field and then converts
COMPUTATIONAL-3 data to COMPUTATIONAL
data.

l.Q_~ml?are Da ta: Converts COMPUTATIONAL
data to COMPUTATIONAL-3 or vice versa,
depending on the size of the field.

I~.f~~tQ£~-A~thn~ii~~ratio~§:
Converts COMPUTATIONAL data to
COMPUTATIONAL-3 or vice versa, depending
on the size of the field.

10 Move Data! Con verts COMPUTATION AL
data to COMPUTITIONAL-3 data in a vork
field, then moves the work field.

10 Compare Data: Converts COMPUTATIONAL
to COMPUTITIONIL-3 data or vice versa,
depending on the size of the field.

r--------~------ • ,
I I J Converted I
I I , for I
, I I Arithmetic I
• Usage J Bytes Required Typical Use loperations ,Special Characteristics t
f- I I --t --+ I
IDISPLAY 11 per digit (except IInput froll cards~1 Yes 1Kay be used for numeric I
J(externallfor V) I output to I fields up to 18 digits.
I decillal) I I cards. 1 istingsl J long. I
I I I I IFields over 15 digits I
I I J I 1 require extra in- I
I) t I I structions if used in J
I I , I I computations. I
r- I I I + -f
IDISPLAY ,1 per character (ex- JInput from cards., Yes ,Converted to I
I (externallcept for V) J output to I I COMPUTATIONAL-2 I
Ifloating I I cards~ listingsl I format via COBOL ,
Ipoint) I 1 I I library subroutine. ,
.1 ------ll~ I I ..
ICOMP-3 ,1 byte per 2 digits IInput to a reportlso.etimes ,Requires less space thanl
f(internallplus 1 byte for the I item Iwhen a I DISPLAY. I
,decimal) Ilow-order digit and J Ismall I J
t ,sign I Arithmetic fieldsl COMP-3 I convenient form for J
I I I J item is J decimal alignment. I
" J J used with I I
f J ,Work areas Ja small ICan be used in I
f I 1 JCOMP I arit.hmetic computa- I
" I I item. J tions without I
J 1 I I J converS1on. I
I f J J IFields over 15 digits 1
I t I J I require a subroutine t
I J J J I when used in I
I 1 I I J computations. t
~-----~ It' i
ICOMP 12 if 1SN~4 ,Subscripting I Sometimes IRounding and testing forI
I (binary) I I f for both J the ON SIZE ERROR con-l
, 14 if 5SN~9 IArithmetic fieldsjmixed and I dition are cumbersome I
I I I tunmixed I if calculated result J
, 18 if 10SN~18 J Jusages J is greater than 9(9). 1
• ,where N is the number 1 I ,Fields of over 9 digits t
I lof 9s in the PICTURE , I I require more handling. I
J tclause J t t ~
r- +---- I I -+ .,
lCOftP-1 ,4 (short-precisio~ IFractional expo- t No ITends to produce less I
I (internal, I nentiation I I accuracy if more than I
Ifloating J I 1 J 11 significant digits I
Ipoint) I • I J are required and if t
I J I 1 J the exponent is big. I
J J , I J Requires floating- I
J I I I I point feature. J
~ +---- I f J -f
ICOMP-2 18 (long-precision) ,Fractional expo- I No ISame as COMPUTATIONAL-1 J
I (internal, • nentiation whenl I J
If loating I I more precision I f 1
,point) I J is required I 1 1
L I ,. J

Figure 107. Data Format Conversion

Programming Techniques 289

10 P~~m Arll.h!!fll..i&-2~rati2D§:
Converts COMPUTATIONAL to
COMPUTATIONAL-3 data or vice versa,
depending on the size of the field.

~OMPUTAIIONAL to Numeric DISPL!!:

IQ_~Data: Converts COMPUTATIONAL data
to COMPUTATIONAL-3 data and then to DISPLAY
data.

IQ._£ompare ~atg: Converts DISPLAY to
COMPUTATIONAL or both COMPUTATIONAL and
DISPLAY data to COMPUTATIONAL-3 data,
depending on the size of the field.

IQ Perform Arithmetic Ol!!KgtiQ.n§:
Depending on the size of the field,
converts DISPLAY data to COMPUTATIONAL
data, or both DISPLAY and COMPUTATIONAL
data to COHPUTATIONAL-3 data in which case
the result is generated in a
COMPUTATIONAL-3 work area and then
converted and moved to the DISPLAY result
field.

I2_llQ!.!LQ.g,ta: Con verts COMPUT ATIONAL-3
data to DISPLAY data.

IQ_£Qmpar~~atg! Converts DISPLAY data to
COMPUTATIONAL-3 data. The result is
generated in a COHPUTATIONAL-3 work area
and is then converted and moved to the
DISPLAY result field.

:r.Q_EerfQll_!rithm~ti~!ll?!!1::At.iQ!!§: converts
all DISPLAY data to
COMPUTATIONAL-3 data. The result is
generated in a COMPUTATIONAL-3 work area
and is then converted to DISPLAY and moved
to the DISPLAY result field.

~~!.grnal_Floating,::Point to_A!U.-Qlher: When
an external floating-point item is to be
used in an airthmetic operation or in data
manipulation, precision errors may occur
due to required conversions.

!!!!~l_lloati!!g=fQiJ!L1Q-A!l.LQther: When
an item described as COMPUTATIONAL-lor
COMPUTATIONAL-2 (internal floating-point)
is used in an operation with another data
format, the item in the other data format
is always converted to internal
floa ting- point. If necessary, the internal
floating-point result is then converted to
the format of the other data item.

290

!Y.!I!.l!I~..R!~fL1Y FIELD.§: Zeros are not
inserted into numeric DISPLAY fields by the
instruction set. When numeric DISPLAY data
is moved, the compiler generates
instructions that insert any necessary
zeros into the DISPLAY fields. When
numeric DISPLAY data is compared, and one
field is smaller than the other, the
compiler generates instructions to move the
smaller item to a work area where zeros are
inserted.

~Q~!IIONAL-l AND COMPUT!TIOHAL-l-lIEbQ~:
If an arithmetic operation involves a
mixture of short-precision and
long-precision fields, the compiler
generates instructions to expand the
short-precision field to a long-precision
field before the operation is executed.

~Q!1f.YtllI.QNAL::.J._~I~1Q~: The compiler does
not have to generate instructions to insert
high-order zeros for ADD and SUBTRACT
statements that involve COMPUTATIONAL-)
data. The zeros are inserted by the
instruction set.

The various COBOL data formats and how
they appear in the computer in EBCDIC
(Extended Binary-Coded-Decimal Interchange
Code) format are illustrated by the
following examples. More detailed
information about these data formats
appears in the publication I!H1_~Y2!~!!Ll1Q
Principles-2f o~rati2!, order
No. GA22-1000.

Numeric_~I~fk!I_l~xi~£~~Q~imail:
Suppose the value of an item is -1234, and
the PICTURE and USAGE are:

PICTURE 9999 DISPLAY.

or

PICTURE S9999 DISPLAY.

The item appears in the computer in the
following forms respectively:

I Fi I F2 I F3 I F4 I l-___ i ____ i ____ ~ ____ J
--.--

Byte

I Fi I F2 I F3 I D4 I
l--__ i ____ i ____ L~J

Byte

Hexadecimal F is treated arithmetically as
plus in the low-order byte. The
hexadecimal character D represents a
negative sign.

COftPUT.!IIO!i!L-3_lInt~l Deci!all:
Suppose the value of an item is +1234. and
its PICTURE and USAGE are:

PICTURE 9999 COMPUTATIONAL-3.

or

PICTURE S9999 COMPUTATIONAL-3.

The item appears in the computer in the
following forDls, respectively:

I 01 I 23 I 4F I
L ____ J. ____ ..1I=.J

Byte

I 01 I 23 I 4C)
L ____ .l.-___ J.-:;.;:::::;:;:.J

Byte

Hexadecimal F is treated ari thmetically as
positive. The hexadecimal character C
represents a plus sign.

l!Q!£: since the low-order byte of an
internal decimal number always contains a
sign field. an item with an odd number of
digits can be stored more efficiently than
an item with an even number of digits.
Note that a leading zero is inserted in the
fo.regoing exam ple.

~OMPUTATIONAL jBinaJ;.Il.: suppose the value
of an item is 1234, and its PICTURE and
USAGE are:

PICTURE 59999 COMPUTATIONAL.

The item appears in the computer in the
following form:

0000

sign
position

0100 1101 0010

A O-bit in the sign position means the
number is positive. Negative numbers are
represented in two's complement fora; thus,
the sign position of a negative number viII
always contain a 1-bit.

For example -1234 would appear as
follows:

1111

sign
position

1011 0010 I 1110 I
--'---__ J

~in~~I_I~~~~ni£gl~t!Qn: A binary item is
allocated storage ranging from one halfword
to two words, depending on the number of 9s
in its PICTURE. Figure 108 is an
illustration of how-the compiler allocates
this storage. Note that it is possible for
a value larger than that implied by the
PICTURE to be stored in the item. For
example, PICTURE S9{Q) implies a maximum
value of 9,999, although it could actually
hold the number 32,767.

Because most binary items are
manipula ted according to their allotted
storage capacity, the programmer can ignore
this situation. For the following reasons,
however, there are some cases where he must
be careful of his data:

1. When the ON SIZE ERROR option is used,
the size test is made on the basis of
the maximum value allowed by the
picture of the result field. If a
size error condition exists, the value
of the result field is not altered and
control is given to the imperative
statements specified by the error
option.

2. When a binary item is displayed or
exhibited, the value used is a
function of the number of 9s specified
in the PICTURE clause.

3. When the actual value of a positive
number is significantly larger than
its picture value, a 1 could result in
the sign position of the item, causing
the item to be treated as a negative
number in subsequent operations.

Figure 109 illustrates three binary
manipulations. In each case, the result
field is an item described as PICTURE 59
CO!PUTATIONAL. One halfvord of storage has
been allocated; and no ON SIZE ERROR option
is involved. Note that if the ON SIZE
ERROR option had been specified, it would
have been executed for cases Band C.

CO"PUXA'l'IOnL-l-2~_~QROTAI.IOl'!!lt.=£
1l1oatinLf2intl.: Suppose the value of an
item is +1234. and that its USAGE is
COMPUTATIONAL-1, the item appears in the
computer in the following form:

101100 001110100 1101 0010 0000 0000 00001
~'-4' _______ --L--___ _

S 1 1 8 31

Programming Techniques 291

r- , , ,
J PICTURE J Maximum Working Value t Assigned storage I

f 1---------------+ I
J 59 through 59 (4) J
I I
159 (5) tb rough S9 (9) I
I I

32,767) one halfword
I

2,147,483,647J one fullword ,
I
I

• I
J S9 (10) through S9 (18) J 9,223,372,036,854,775,8071 two fullwords I L _________________________ ~ __

----------------------~ ------.1
Pigure 108. Relationship of PICTURE to storage Allocation

r- , ,
1 Hexadecimal Result of Decimal Ac tual Decimal Value I Display or I
f Case t Binary Calculation Equivalent in Halfword of storage I Exhi bi t Value I
t---t-
I A I 0008 8
i- I
I B I OOOA 10
i- f
J C I Cl50 50000
L-

Figure 109. Treatment of Varying ValUes in

S is the sign position of the number.

A O-hit in the sign position indicates
tha t the sign is pI us.

A l-bit in the sign position indicates
that the sign is minus.

Bits 1 through 7 are the exponent
(characteristic) of the number.

Bits 8 through 31 are the fraction
(mantissa) of the number.

This form of data is referred to as
floating-point. The example illustrates
short-precision floating-pOint data
(COl'1PUTATIONAL-1) • In long-precision
(COMPUTATION AL-2), t he fraction length is
56 bits. (For a detailed explanation of
floating-point representation, see the
publication LBM_~ste~Ll10-frin£ipl~of
Q2~tatiQn, Order No. GA22-7000.

PROCEDURE DIVISIQ!

A program can often be made more
efficient or easier to debug in the
Procedure Di vision with some of the
techniques described below.

KODULARIZING THE PROCEDURE DIVISION

When the Procedure Division is
modularized, programs ar~ easier to

292

I
+8 I 8

f
+10 I 0

-+
-15536 I 6

.&.

a Data Item of PICTURE S9

maintain and document. In addition,
modularization makes it simple to break
down a program using the segmentation
feature, thereby resulting in a more
efficient segmented program.
Modularization of the Procedure Division
involves organizing it into at least three
functional levels: a main-line routine,
processing subrolltines, and input/output
subroutines.

Main-Line RQutine

~
I

of
1
of ,
.I

This routine should be short, simple,
and contain all the major logical decisions
of the program. This routine controls
which second-level SUbroutines are executed
and in what order. All second-level
subroutines should be invoked from the
main-line routine by PERPOR8 statements.

These should be broken down into as many
functional levels as necessary, depending
on the complexity of the program. These
must be completely closed subroutines, with
one entry point and one exit pOint. The
entry point should be the first statement
of the subroutine. The exit point should
be the EXIT statement. The processing
subroutines can perform only lower level
subroutines; return to the higher level
subroutine (processing subroutine) must be
made by a GO TO statement, which references
the EXIT statement.

ln~t/Output Subroutines

These should be the lowest level
subroutines, since all higher level
subroutines should have access to them.
There should be one OPEN subroutine and one
CLOSE subroutine for the program, and only
one functional (READ or WRITE) subroutin~
for each file. One READ or WRITE
subroutine per file, which is always
performed, has several advantages:

1. Coding can be added to count records
on a file, transform blanks into
zeros, check for 9s padding, etc.

2. Input and output files can be
reformatted without changing the logic
of the prog ram.

3. DEBUG statements can be added during
testing to create input or to DISPLAY
formatted output, instead of having to
create a test file.

COLLATING SEQUENCES

The combination of the PROGRAM COLLATING
SEQUENCE clause and the SPECIAL NAMES
alphabet-name clause(s) offers the
programmer flexibility in estahlishing or
al tering the collating seq uence used in the
following operations: the various forms of
non-numeric comparisons, HIGH/LOW-VALUE,
SEARCH ALL, and SORT/MERGE. The alphabet
used may be EBCDIC (d~noted as NATIVE,
which is also the defaul~, ASCII (denoted
as STANDARD-1>, or one or more
programmer-defined alterations of the
EBCDIC sequence.

The alphabet identified through the
PROGRAM COLLATING SEQUENCE clause will be
used for all occurences of non-numeric
compares, HIGH/LOW-VALUE, and SEARCH ALL.
However, each separate SORT/MERGE operation
can override that general specification by
including its own COLLATING ~EQUENCE
clause.

For QSAM files, the CODE-SET clause of
the FD statement can be used to identify
the file as being either EBCDIC or ASCII.
When an ASCII file is identified in this
manner, the corresponding DD card need not
specify DCB=(OPTCD=Q •••) or
DeB= (RECFM=D •••).

USE OF THE UPSI SWITCHES

The flexibility of programs can be
greatly increased through use of the
execution-time svi tches UPSI-O,
UPSI-1, ••• UPSI-7 (see "Options for
Executiont' in the section "Job Control
procedtlres"). A program can be written to
deal with many potential situations, and
then directed (when it is to begin
execution) as to which particular
situations are current during that run.

For example, a program might be designed
to read File A and create File B; these two
procedures are always to be done. However,
on certain irregular occasions, a sp~cial
report is also to be written to Pile C.
These special occasions are externally
determined--the program could not normally
know of or internally determine them. But
by using an UPSI switch, this difficulty
can be overcome.

The code for the production of File C is
written predicated on an IF statement that
tests the associated condition name of an
UPSI switch: if on, the special report is
produced; if off, it is skipped. For
everyday executions of the program, the
installation supplies the UPSI object-time
parameter with that particular switch set
to zero. When occasion demands that the
special report be printed, the installation
sets the UPSI object-time parameter switch
to one, and the program's logic then writes
out the report.

Because there are eight UPS! switches,
controlled variation of a much more complex
nature can be obtained by a user.

INTERCEPTING I/O ERRORS

COBOL offers a variety of techniqUes the
programmer can employ to intercept and
handle I/O error situations. Use of these
techniques (INVALID KEY, USE AFTER
ERROR/EXCEPTION~ and FILE STATUS) gives a
programmer not only the power to prevent
abnormal termination, but also flexibility
in his response. FILE STATUS--valid for
'SAM and QSAM files--can be used separately
or in combination with one of the other two
teChniques. COBOL automatically fills in
the key field immediately after every I/O
operation, so tbat the program can be
designed to examine it and take action
accordingly. (If FILE STATUS is specified
but not interrogated by a program after an
I/O operation, results are unpredicatble.)

programming Techniques 293

If a logic error occurs because thel1ser
attempts a READ or WRITE against an
unopened file, an associated USE ERROR
declarative will not get control. If such
a.n error occurs when the file has been
closed but not reopened, the wrong USE
ERROR decla.rative may get control.
However, such a situation can be
circumvented by using FILE STATUS to test
for successful open before performing the
READ/WRITE.

INTERMEDIATE RESULTS

The compiler treats arithmetic
statements as a succession of operations
and sets up intermediate result fields to
contain the results of these operations.
Examples of such statements are the
arithmetic statements, and statements
containing arithmetic expressions. The
publication IB~_VS_~OBQt-1Q£_~L!2
describes the algorithms used by the
compiler to determine the number of places
reserved for intermediate result fields.

If an operation involving binary
operands requires an intermediate result
greater than 18 digits, the compiler
converts the operands to internal decimal
before performing the operation. If the
result field is binary, the result will be
converted from internal decimal to binary_

If an intermediate result will not be
greater than nine digits, the operation is
performed most efficiently on binary data
fields.

In t e il§uli~.:t£ Res ul1§.-and ~ 0 B QL1ib I:~.r.Y
~ub£Qy.tin.~§.

If a decimal multiplication operation
requires an intermediate result greater
than 30 digits, a COBOL library subroutine
is used to perfo.rm the multiplication. The
result of this multiplication is then
truncated to 30 digits.

A COBOL library subroutine is used to
perform division if:

1. the scaled divisor is equal to or
greater than 15 dig its.

294

2. the length of the scaled divisor plus
the length of the scaled dividend is
greater than 16 bytes. The lengths of
the operands are internal decimal.

3. the 2.ca1eg diviggng is greater than 30
digits. (A scaled dividend is a
number that has been multiplied by a
power of ten in order to obtain the
desired number of decimal places in
the quotient.)

Whenever the number of digits in a
decimal intermediate result is greater than
30, the field is truncated to 30 digits. A
warning message viII be generated at
compile time, and program flow will not be
interrupted at execution ti·me. This
truncation may cause a result to be
incorrect.

If binary or internal decimal data is in
accord with its data description, no
interrupt can occur because of an overfloW
condition in an intermediate result. This
is due to the truncation described in the
preceding paragraph.

If the possibility exists that an
intermedia te result field may exceed]0
digits, truncation can be avoided by the
specification of floating-point operands
(CORPUTATION AL- 1 or COMPUTATION AL- 2) ;
however, accuracy may not be maintained.

l~i~£!~gig~~2Qlts ang_E!Qating~fQi!!
DaY_Il£!!!2

If a floating-point operand has an
intermediate result field in which exponent
overflow occurs, the job will be ahnormally
terminated.

If the exponent is a Iloating-point
item or has a PICTURE specifying decimal
places, the subroutine ILBOFPWO is
called,and the exponentiation is executed
in floating-point arithmetic.

Note: The base is always treated as a
positive number, regardless of sign, and
the answer is always a positive number.
Caution should therefore be exercised
when using noninteger exponents.

Caution: A COMPUTE or DIVIDE statement
which-stores its intermediate results in

only a floating-point field may produce a
slightly different final answer than a
similar COMPUTE or DIVIDE statement which
stores its intermediate results in both a
floating-point and a fixed point field.
This is because of the different precisions
of the fixed- and floating-point fields.

Programming Techniques 294.1

I!li~gdiate~.2.Yl!:§-2Jlg-1he~!,!_SIZE ERRQll
Q£!:ion

The ON SIZE ERROR option applies only to
the final calculated results and not to
intermediate result fields.

VERBS

The CALL statemen t permits communication
bet. ween a COBOL object program and one or
more COBOL subprograms or other language
subprograms. A called program may be
entered either at the beginning of the
Procedure Division or later in the program.
When a subprogram is called, it may already
be main storaqe resident and be link-edited
with the main program, or it may be
specified as dynamic and link-edited into a
separate load module. Dynamic loading, via
the CALL statement, enables the user to
load a subprogram only when it is actually
needed.

The first dynamic call to a subprogram
brings in a fresh copy of that subprogram.
Any subsequent calls to the same
subprogram, by either the original caller
or another subprogram in the same
region/partition, cause a branch to the
same copy of the subprogram in its
last-used state, until the user deletes it
(see the section on the "CANCEL
Statement").

The ON OVERFLOW phrase can be included
in the CALL statement to circumvent
abnormal termination when there is
insufficient main storage available for
dynamically loading the called program.
The imperative statement associated with
the ON OVERFLOW will gain control in such a
situation, allowing the user to handle the
problem in a manner of his own choosing and
continue execution. (The conditions
handled by ON OVERFLOW are equivalent to
the following completion codes: 106C, 804,
BOA, and 878.)

For examples of both static and dynamic
CALL statements, see the section "Dynamic
subprogram considerations" in the chapter
entitled "Calling and Called Programs."

The CANCEL statement permits dynamic
deletion of COBOL subprograms from the

COBOL processing environment. That is, a
CANCEL statement issued for a subprogram
that bas been dynamically loaded causes the
storage occupied by the subprogram to be
freed. As a result, a subsequent call to
the subprogram functions as if it were the
first.

CANCEL CALLED-PROGRAM.

!Qi~: A program other than the original
caller may issue a CANCEL statement
referring to a called program.

There are two ways in which to use the
CLOSE statement when closing several files:

CLOSE DETAIL-FILE MASTER-FILE.

or

CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.

Each CLOSE statement for a file requires
the use of a storage ar~a that is directly
proportional to the number of files being
closed. Closing more than one file with
the same statement is faster than when
using a separate statement for each file.
However, separate statements require less
storage.

COMPUTE Statement

The use of the COMPUTE statement
generates more eff icient coding than does
the use of individual arithmetic statements
because the compiler can keep track of
internal work areas and does not have to
store the results of intermediate
calculations. It is the user's
responsibility, however, to insure that the
data is defined with the level of
significance required in the answer.

Nested and compound IF statements should
be avoided as the logic is difficult to
debug_

Programming Techniques 295

When a HOVE statement with the
CORRESPONDING option is executed, data
items are considered CORRESPONDING only if
their respective data names are the same,
including all implied qualification, up to,
but not including, the data-names used in
the HOVE statement itself.

For example,

01 AA 01 XX
05 BB 05 BB

10 CC 10 CC
10 DD 10 DD

05 EE 05 yy
10 FF 10 FF

The statement MOVE CORRESPONDING AATO xx
will result in moving cc and DD but not FF
because FF of EE does not correspond to FF
of IY).

Note: The other rules for MOVE
CORRESPONDING, of course, must still be
satisfied.

An asterisk (*) should be used in place
of the NOTE statement, because there is the
possibility that when NOTE is the first
sentence in a paragraph, it will
inadvertently cause the whole paragraph to
be treated as part of the NOTE.

QfEN Statement

There are two ways in which to use the
OPEN statellentwhen opening several files:

OPEN INPUT INFILE UPDATES OUTPU'l' OUTFILE

or

OPEN INPUT INFILE
OPEN INPUT UPDATES
OPEN OUTPUT OUTFILE

Each OPEN statement for a file requires
the use of a storage area that is directly
proportional to the number of files being
opened. Opening more than one file with
the same statement is faster than using a
separate statement for each file. However,
separate statements require less storage.

296

PERFORM is a useful verb if the
programmer adheres to the following rules:

1. Always execute the last statement of a
series of routines being operated on
by a PERFORM statement. When
branching out of the routine, make
sure control will eventually return to
the last statement of the routine.
This statement should be an EXIT
statement. Although no code is
generated, the EXIT statement allows a
programmer to recognize immediately
the extent of a series of routines
within the range of a PERFORM
statement.

2. Always either PERPORM routine-name
THRU routine-name-exit, or PERFORM
section-name. APERFORM
paragraph-name can cause trouble for
the programmer trying to maintain the
program. For example, if a paragraph
must be broken into two paragraphs,
the programmer must examine every
statement to determine whether or not
this paragraph is within the range of
the PERFORM statement. Then all
statements referencing the
paragraph-name must be changed to
PERFORM THiU statements.

Use READ INTO and WRITE FROM, and do all
processing in the Working-Storage Section.
This is suggested for three reasons:

1. Debugging is much simpler.
working-storage areas are easier to
locate in a dump than are buffer
areas. And, if files are blocked, it
is much easier to determine which
record in a block was being processed
when the abnormal termination
occurred.

2. Trying to access a record area after
the AT END condition has occurred (for
example, AT END MOVE HIGH-VALUE TO
INPUT-RECORD) can cause problems if
the record area is only in the Pile
Section.

3. WRITE FROM allows multiple writes of
the same record (not possible when using
the record area because of buffering
techniques) .

BQt~: The programmer should be aware that
additional time is used to execute the mOVe
operation involved in each READ INTO or
WRITE FROM instruction-.

The features LINAGE, WITH FOOTING, and
END-OF-PAGE imperative-statement give the
programmer added flexibility and control in
physical sequential (QSAM) output
operations. When these featllres are used
in combination with the BEFORE/APTER •
ADVANCING nn LINES clause of the WRITE
statement, however, care must be exercised.
In the discussion below, notice that
END-OF-PAGE imperatives are executed after
WRITEs, and theLI BAGE-COUNTER may be
p~inting to the next logical page (instead
of to the current footing area)vhen the
imperative gains control.

For ADVANCING nn LINES, COBOL first
calculates the sum of LINAGE-COUNTER and
nne (For ADVANCING PAGE, see Case 2
below.) Subsequent actions depend on the
size of this value, as follows:

£~§~--If advance would be within the
current logical page body (i.e.,
value is not greater than the
established LINAGE value):

a. The WRITE takes place (either
before or after advancing nn
lines, as specified in the
program).

b. LINAGE-COUNTER is incremented
by nne

c. If FOOTING was speciifed, and
the advance falls within the
footing area (that is, greater
than or equal to the
established FOOTING value), the
END-OP-PAGE imperative is
executed (if one vas
specified).

£~2g_~--If advance lIould go beyon4 the
current logical page body (i.e.,
value is greater t han the
established LINAGE value):

a. A new value is established for
LINES-AT-TOP.

h. The WRITE takes place before or
.after (as specified by the
prog ram) the dey ice is
positioned to the first line of
the next lO<Jical page.

c. LINAGE-COUNTER is set to 1.

d. New values are established fc
1.1 NAGE. FOOTING, and
LINES- AT-BOTTOM.

e. The END-OF-PAGE imperative is
executed (if one was
specified).

Note: Files using LINAGE are treated
as-if the ADV compile option had been specified.

When the ADVANCING option is used for
the WRITE statement, library subroutine
ILBOSPA is called to handle the spacing.
The carriage control characters are
determined as follows:

• When only AFTER is specified for the
file, ASA control characters are
used.

• When only BEFORE is specified for the
file, machine control characters are
used.

• When both BEFORE and AFTER are
specified for output operations,
machine control characters are used.

.The RECEIVE statement makes available to
the COBOL program a messaqe, a message
segment, or part of a message or message
segment, as well as information about that
message from a queue maintained by the
message control program (MCP). The
following example ·of the RECEIVE statement
is taken from the sample COBOL
communication program shown in Figure 160:

RECEIVE CDNAME-IN MESSAGE INTO IDENT-REC.

specification of the SEND statement in
the COBOL program ,causes a message, a
message segment, or part of a message or
.essage segment to be released to the
message control program (MCP). The
following example of the SEND statement is
taken from the sample COBOL communication
program shown in Figure 147:

SEND CDNAME-OUT FROM IDENT-SEND WITH EMI.

• Although the COBOL program has access
to a messaqe only when the MCP has
received it in entirety and placed it
in a queue, once several messages have
met this requi.rement the COBOL program
can process messages from different MCP
queues at the same time.

programming Techniques 291

• If one execution of a BECEIVE statement
{or a SEND statement) transmits only
part of a message, subsequent
executions of RECEIVE statements (or
SEND statements) in that run unit are
required for transmission of the rest
of the message. ..

• The MCP does not transmit data until
the COBOL program has sent it a complete
message. This complete message is
built in a buffer in the region in
which the COBOL program is executing.

g~ABkELQ~A~LE_~algm~qi2

These two verbs are used in a COBOL
communication program to allow/inhibit data
transfer. For output, this transfer is
~etween specified output queues and output
destinations; for input, transfer is
between specified sources and input queues
COBOL prov ides an interface between the
program and the TCAM message control
program (MCP), where enabling/disabling
actually occurs. Par more detail, see the
section "Using the Communication Feature."

For a sequentially-accessed ISAM file,
the START statement must be executed before
the READ statement for a given record if
either of the following is true:

• Processing begins with other than the
first record;

• Processing continues with a record
other than the next sequential record.

There are two ways to use the START
statem·ent to begin processing a segment of
a sequentially accessed ISAM file at a
specified key. The programmer may indicate
ei ther Method 1, to begin at a specific
NOMINAL KEY that matches a RECORD KEY
within the file, or Method 2, to start
within the first record in a specific
generic key class.

START file-name
[1lI.!!4.J2 KEY imperative-statement]

298

START file-name USING KEY data-name

{
EQUAL TO}

= identifier

[INVALID KEY imperative-statement]

where dat~=lH!m~ is the data-name given in
the RECORD KEY clause and i~g~lifig£
contains the generic key value for the
request and may be any da ta item whose
length is less than or equal to that of the
RECORD KEY.

IQ!~: For ISAM a problem may result with
the generic key facility with binary key if
the low-order byte of the search argument
is binary zero.

The STRING statement combines two or
more subfields into a single field. When
this statement is executed. characters from
the sending item(s) are transferred to the
receiving item in the same way that moves
from alphanumeric to alphanumeric item(s)
are effected. The example in Figure 110
illustrates the use of the STRING statement
options available to the user. For a
discussion of the formats possible with the
STRING statement, see the publication IB~
!~~Q~Q1_!QK-Q~LY~·

The TRANSFORM statement generates more
efficient code than the EXAMINE statement
with the REPLACING BY option when only one
character is being transformed. TRANSFORM,
however, uses a 256-byte table.

r-
I
I
I
I
I *
I *
t *
I
f
I
J *
I *
t
I
t
I *
I *
t *

-,
I

STRING SNDFLD5 DELIMITED BY DLMTR I
SNDFLD6 DELIMITED BY SIZE J

I
Combine data in SNDFLD5 up to the delimiter indicated by DLMTR with all the data I
in another sending field (as indicated by the SIZE option of the STRING' I
statement). I

I
INTO RCDFLD1 WITH POINTER POINTR I

I
Place the result in RCDFLDl beqinning at the relative location designated •
by POINTR. I

I
ON OVERFLOW GO TO OVERFLOW2. I

I
If RCDFLD1 is not large enough to accommodate the combined data-fields, or I
if the original contents of the pointer field were less than 1, execute a user- I
written checking routine called OVERFLOW2. I

~ J

Figure 110. Using the STRING Statement

Programming Techniques 298.1

,.- ,

l.-

UNSTRING SNDFLD I ,
* Separate the data in the sending area. J

I
DELIMITED BY DLMTR1 I

OR SPACES t
OR ALL 'E' I

INTO RCFLD I
I * When the character, or set of characters, marking the end of a section of the I

* sending area is found, move the isolated data into the data-receiving field. J
I

DELIM.ITER IN DELIM-IN I
t * Move the delimiter found into the delimiter-receiving area DELIM-IN. ,
I

COUNT IN COUNT-IN I
I * specify in COUNT-IN the number of characters placed in the RClLD 1

* data-receiving field. j ,
WITH POINTER POUNTR I

J * Indicate the relative position in the SNDFLD sending area of the first I
* character to be examined. At the end of the opera tion, POINTR contains a value J
* equal to the initial value plus the number of characters examined in the sending I
* field. ,

I
TA.LLYING IN TALLY-IN I

1 * Record the number of data-receiving areas acted upon. At the end of the I
* operation, TALLY-IN will contain a value equal to the initial value plus the J
* number of receiving areas acted upon. t

I
ON OV EB FLOW f

DISPLAY 'OVERFLOW CONDITION' I
GO TO CHECK-ROUTINE. 1

• * If the data-receiving fields cannot accommodate the data being sent, or if I
* the original value of the pointer was less than 1 or greater than the si'Ze of the I
* sending field, execute a user-written checking routine. J

.J

Figure 111. Using the UNSTRING statement

The UNSTRING statement separates
contiguous data in a sending field, placing
it in multiple racei ving fields. The
example in Figure 111 illustrates the use
of the UNSTRING sta temen t options available
to the user.

For a discussion of the formats possible
with the UNSTRING statement# see the
publication IBM VS COBOL for~~.

REPORT Clause in FD

A given £gQQ£i=nam~ may appear in a
maximum of two file description en tries.
The file description entries need not have
the same Characteristics. If the same
report-name is specified in two file
description entries. the report will be
written on both files. For example:

ENVIRONMENT DIVISION.
SELECT FILE-l ASSIGN UR-1403-S-PRTOUT.
SELECT FILE-2 ASSIGN UT-2400-S-SYSUT1.

DATA DIVISION.
FD FILE-1 RECORDING MODE F

RECORD CONTAINS 121 CHARACTERS

Programming Techniques 299

REPORT IS REPORT-A.
FD FILE-2 RECORDING MODE ,

RECORD CONTAINS 101 CHARACTERS
REPORT IS REPORT-A.

For each GENERATE statement, the records
for REPORT-A will be written on FILE-l and
FILE-2, respectively. The records on
FILE-2 viII not contain columns 102 through
121 of the corresponding records on FILE-l.

The object program can be made more
efficient with respect to execution time
bykeeping in mind the fact that Report
writer source coding is treated as though
the programmer had written the program in
COBOL without the Report Writer feature.
Therefore, a complex source statement or
series of statements will generally be
executed faster than simple statements that
perform the same function. The example
below shows tvo coding techniques for the
Report Section of the Data Division.
Method 2 uses the more complex statements.

RD ••• CONTROLS ARE yEAR MONTH WEEK DAYY

01 TYPE CONTROL FOOTING YEAR.
as SUM COST.

01 TYPE CONTROL FOOTING MONTH.
as SUf't COST.

01 TYPE CONTROL FOOTING WEEK.
05 SU M COS'f.

01 TYPE CONTROL FOOTING DAYY.
05 SUM COST.

01 TYPE CONTROL FOOTI NG YEAR.
05 SUM A.

01 TYPE CONTROL FOOTING MONTH.
05 A SUM B.

01 TYPE CONTROL FOOTING WEEK.
05 B SUM C.

01 TYPE CONTROL FOOTING DAYY.
05 C SUM COST.

Method 2 will execute faster. One addition
will be performed for each day, one more
for each week, and one for each month. In
Method 1, four additions will be performed
for each day.

300

Unless each identifier is the name of a
SUM counter in a TYPE CONTROL FOOT.ING
report group at an equal or lover position
in the control hierarchy. the identifier
must be defined i'n the File.
working-Storage or Linkage Sections, as
well as in a TYPE DETAIL report group as a
SOURCE item. A SUM counter is
algebraically incremented just before
presentation of the TYPE DETAIL report
group in which the item being summed
appears as a source item or the item being
summed appeared in a SUM clause that
contained an UPON option for this DETAIL
report group. This is known as SOQR~=~UM
£Q~ation. In the following example,
SUBTOTAL is incremented only when DETAIL-1
is generated:

FILE SECTION.

05 NO-PURCHASES P.ICTORE 99.

REPORT SECTION.
01 DETAIL-1 TYPE DETAIL.

05 COLUMN 30 PICTURE 99 SOURCE
NO-PURCH ASES.

01 DETAIL-2 TYPE DETAIL.

01 DAY TYPE CONTROL FOOTING
LINE PLUS 2.

05 SUBTOfAL COLUMN 30 PICTURE 999
SUM NO-PURCHASES.

01 MONTH TYPE CONTROL FOOTING
LINE PLUS 2 NEXT GROUP
NEXT PAGE.

SUL!Q.utines

A SUM routine is generated by the Report
Writer for each DETAIL report group of the
report. The operands included for summing
are determined as follows:

1. The SUM operand(s) also appears in a
SOURCE clause(s) for the DETAIL report
group.

2. The UPON detail-name option was
specified in the SUM clause. In this
case, all the operands are included in
the SUM routine for only that DETAIL
report group. even if the operand
appears in a SOURCE clause in other
DETAIL report groups.

When a GENERATE detail-name statement is
executed, the SUM routine for that DETAIL
report group is executed in its logical
sequence. When a GENERATE report-name
statement is executed and the report
contains more than one DETAIL report group,
the SUM routine is executed for each one.
The SUM routines are executed in the
sequence in which the DETAIL report groups
are specified.

The following examples show the SUM
routines that are generated by the Report
Writer. Example 1 illustrates how operands
are selected for inclusion in the routine
on the basis of simple SOURCE-SUM
correlation. Example 2 illustrates how
operands are selected when the UPON
detail-name option is specified.

El!!~~l: The following statements are
coded in the Report Section:

01 DETAIL-1 TYPE DE •••
05 ••• SOURCE A.

01 DETAIL-2 TYPE DE •••
05 SOURCE B.
05 ••• SOURCE C.

01 DETAIL-3 TYPE DE •••
05 ••• SOURCE B.

01 TYPE CF •••
05 SUM-CTR-l ••• SUM A. B. C.

01 TYPE CF •••
05 SUM-CTR-2 ••• SUMB.

One SUM routine is generated for each
DETAIL report group, as follows:

REPORT-SAVE
ADD A TO SUM-CTR-1.

REPORT-RETURN

R.EPORT-SAVE
ADD B TO SUM-CTR-l.
ADD C TO SUM-eTR-l.
ADD B TO SUM-CTR-2.

REPORT-RETURN

REPORT- SAVE
ADD B TO SUM-CTR-1.
ADD B TO SUM-CTR-2.

REPORT-RETURN

ll!!!f~~_~: In this example, the same
coding is used as in Example 1, with one
exception: the UPON detail-name option is
used for SUM-CTR-l, as follows:

01 TYPE CF •••
05 SUM-CTR-l ••• SUM A, B, C UPON

DETAIL-2.

The following SUM routines would then be
generated instead of those resulting from
the calculations in Example 1.

.s.Yl1_.RQJtlin!LfQ~-I!~TAI.L::.l

REPORT-SAVE
REPORT- RETURN

REPORT-SAVE
ADD A TO SUM-CTR-l.
ADD B TO SUM-CTR-l.
ADD C TO SUM-CTR-l.
ADD B TO SUM-CTR-2.

REPORT- RETURN

REPORT-SAVE
ADD B TO SUM-CTR-2.

REPORT- RETURN

The Report writer output line is put
together with an internal REDEPINES
specification, indexed by in1.eger=.l. No
check is made to prevent overlay on any
line. For example:

05 COLUMN 10 PICTURE X(23)
VALUE "MONTHLY SUPPLIES REPORT".

05 COLUMN 12 PICTURE X(9)
SOURCE CURRENT-MONTH.

the length of 23 in column 10, followed by
a specificatio'n for column 12 will ca use
field overlay.

Programming Techniques 301

The Report Writer page break routine
operates independently of the routines that
are executed after any control breaks
(except that a page break will occur as the
result of a LINE NEXT PAGE clause). Thus.
the programmer should be aware of the
following facts:

1. A Control Heading is not printed after
a Page Heading except for first
generation. If the programmer wishes
to have the equivalent of a Control
Heading at the top of each page, he
must include the information and data
to be printed as part of the Page
Heading. But since only one Page
Heading may be specified for each
report. he should be selective in
considering his Control Heading
because this "Control Heading" will be
the same for each page. and may be
printed at inopportune times (see
"Control Footings and Page Format," in
t.his chapter.)

2. GROUP INDICATE items are printed after
page and control breaks. Figure 112
contains a GROUP INDICATE clause and
shows the execution output.

when more than one report is being
writ.ten on a file and the reports are to be
selectively written, a unique 1-character
code must be given for each report. A
mnemonic-name is specified in the RD-level
entry for each report and is associa ted
with the code in the Special-Names
paragraph of the Environment Division.

Note: If a report is written with the CODE
opt! on , th e re port s h 0 ul d not be w r itt en
directly to a printer device.

This code will be written as the first
character of each record that is written on
the file. When the programmer wishes to
write a report from this file, he needs
merely to read a record, check the first
character for the desired code. and have it
printed if this code is found. The record
should be printed starting from the third
character, as illustrated in Figure 113.
should be printed starting from the second
character for ADV, third character for NOADV,
as illustrated in Figure 113.

302

f ,
I REPORT SECTION. I

f
I
I

J
t
I
101
J
I
J
I
I
J
J
t
J
J ,
I

DETAIL-LINE TYPE IS DETAIL LINE I
NUMBER IS PLUS 1. I
05 COLUMN IS 2 GROUP INDICATE J

PICTURE IS A(9) SOURCE IS I
MONTHNAME OF RECORD-AREA (MONTH).J

(Execution output)

I
J
J
I

• I
t
I

r-'---- ----I
I
t
I
J
I

I
IJANUARY
I
I

15 AOO •••
A02 •••

IPURCHASES AND COST •••
1
l-
t
IJANUARY
I
1

21 A03 •••
AO 3 •••

• .,
I
I
I
t

Figure 112. Sample Shoving GROUP INDICATE
Clause and Resultant Execution
output

I ,
Jcode

1

lcontrol i ~ ~----'I
~Character!Re~_3 ~_-f

2 3 n

Figure 113. Format of a Report Record When
the CODE Clause is Specified

The following example shows how to
create and print a report with a code of A.
A Repo'rt Writer program contains the
following statements:

ENVIRON~ENT DIVISION.

SPECIAL-NAMES. • A' IS CHR-A
'B' IS CHR-B.

DATA DIVISION.
FILE SECTIO N.
FD RPT-OUT-FILE

RECORDS CONTAIN 122 CHARACTERS
LABEL RECORDS ARE STANDARD
REPORTS ARE REP-FILE-A REP-FILE-B.

REPORT SECTION.
RD REP-FILE-A CODE CHR-A •••

RD REP-FILE-B CODE CHR-B •••

The RPT-OUT-PILE must be written on a tape
or mass storage device. A second program
could then be used to print only the report
with the code of A, as follows:

DATA DIVISION.
FD RPT-.IN-FILE

RECORD CONTAINS 122 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORn IS RPT-RCD.

01 RPT-RCD.
05 CODE-CHR PICTURE X.
05 PRINT-PART.

10 CTL-CHR PICTURE X.
10 RECORD-PART PICTURE X(120).

FD PRINT-FILE
RECORD CONTAINS 121 CHARACTERS
LABEL RECORDS ARE STANDARD

DATA RECORD IS PRINT-REC.
01 PRINT-REC.

05 FILLER PICTURE 1(121).

PROCEDURE DIVISION.

LOOP. READ RPT-IN-FILE AT END
GO TO CONTINUE.
IF CODE-CHR = "A"
WRITE PRINT-REC FROM

PRINT-PABT
AFTER POSITIONING CTL-CHR

LINES.
GO TO LOOP.

CONTINUE.

Depending on the number and size of
Control Footings (as well as the page depth
of the report), all of the specified
Control Footings may not be printed on the
same page if a control break occurs for a
high-level control. When a page condition
is detected betore all required Control
Footings are printed, the Report Writer
will print the Page Footing (if specified)r
skip to the next page, print the Page
Heading (if specified), and then continue
to print Control Footings.

If the programmer wishes all of his
Control pootings to be printed on the same
page, he must format his page in the
RD-level entry for the report (by setting
the LAST DETAIL integer to a sufficiently
low line number) to allow for the necessary
space.

Programming TecJ1'niql1es 303

RD EXPENSE-REPORT CONTROLS ARE FINAL,
MONTH, DAYY

01 TYPE CONTROL FOOTING DAYY
L1 NE PLUS 1 NEXT GROUP
NEXT PAGE.

01 TYPE CONTROL FOOTING MONTH
LINE PLUS 1 NEXT GROUP
NEXT PAGE.

(Execu ti on output)

EXPENSE REPORT

January 31 ••••••••• 29.30
(Output for CF DAYY)

January total ••••• 131.40
(Out. put for CF MONTH)

Note: The NEXT GROUP NEXT PAGE clause for
~~;-control footing DAY is not activated.

The first presentation of a body group
{CH, CF, or D~ that contains a relative
line as its first line, will have its
relative line spacing suppressed, and the
firs't line will be printed on either the
value of FIRST DETAIL or INTEGER PLUS 1 of
a NEXT GROUP clause from the preceding
page. For example:

A. If the following body group vas the
last to be printed on a page

01 TYPE CF NEXT GROUP NEXT PAGE

Then this next body group

01 TYPE DE LINE PLUS 5

would be printed on value of FIRST
DETAIL (in PAGE clause).

B. If tke following body group was the
last to be printed on a page

01 TYPE CF NEXT GROUP LINE 12

304

and after printing, line-counter = 40,
then this next BODY GROUP

01 TYPE DETAIL LINE PLUS 5

would be printed on line 12 + 1 (i.e.,
line 13).

At the end of the analysis of a report
description entry (RD), the Report Writer
routines are generated, based on the
contents of the RD. Each routine refers to
the compiler-generated card number of its
own re spec ti ve RD.

If a subscript is represented by a
constant and if the subscripted item has a
fixed length, the location of the
subscripted data item within the table or
list is resolved at compile time.

If a subscript is represented by a
data-name, the location is resolved at
execution time. The most efficient format,
in this case, is COMPUTATIONAL, with
PICTURE size less than five integers.

The value contained in a subscript is an
integer that represents an occurrence
number within a table. Every time a
subscripted data-name is referred to in a
program, the compiler generates up to 16
instructions to calculate the correct
displacement. Therefore, if a subscripted
data-name is to be processed extensively,
move the subscripted item to an
unsubscripted work area, do all necessary
processing, and then move the item back
into the table. Even when subscripts are
described as computational, subscripting
takes time and main storage.

There is, however, compiler optimization
in the computation of displacements. If a
subscripted data item is referred to more
than once in the same paragraph, the
displacement for the data item is computed
only once, then saved and used again for
the subsequent references. For example:

MOVE ITEM (A, B) TO D.
MOVE ITEM (A, B,) TO E.

If these two statements occur in the same
paragraph, and no sta tements between them

could change the values stored in A or B,
then the location of ITEM (A. B) will be
computed only once and saved,. and used
again for the second reference.

Index-names are compiler-generated
items; one fullword in length, assigned
storage in the TGT. An index-name is
defined by the INDEXED BY clause. The
value in a n index-name represents an actual
displacement from the beginning of the
table tha t corresponds to an occurrence
number in the table. Address calculation
for a direct index takes a maximum of four
instructions; address calculation for a
relative index takes a few more.
Therefore, the use of index-names in
referencing tables is more efficient than
the use of subscripts. The use of direct
indexes is faster than the use of relative
indexes.

Index-names can only be referenced in
the PERFORM, the SEARCH, and the SET
statements.

Ing~x Data Items

Index data items are compiler-generated
storage positions, one fullword in length.
that are assigned storage within the COBOL
program area. An index data item is
defined by the USAGE IS INDEX clause. The
programmer can use index data items to save
values of index-names for later reference.

Great care must be used when setting
values of index data items. Since an index
data item is not part of any table. the
compiler places the value contained in the
index-name or other index data item into
the index data item (see the example given
in "SET statement"). Index data items can
only be referenced in SEARCH and SET
statements, a relational condition. or the
USING phrase of a PROCEDURE DIVISION CALL
or ENTRY statement.

OCCURS Clause

A ta!!le_~lement is represented by' the
subject of an OCCURS clause, and is
equivalent to one level of a table. If
indexing is to be used to reference a table
element, and the Format 2 (SEARCH ALL)
statement is also to be used, the KEY
option mnsi be specified in the OCCURS

clause. The table element must then be
ordered upon the key{s) data-name(s)
specified ..

If a data item described by an OCCURS
clause with the DEPENDING ON ~.aia:.M!!!.g
option 1 is followed by nonsubordinate data
items, a change in the value of data::..!!s!!!L~
during the course of program execution will
have the following effects:

1. The size of any group described by or
containing the related OCCURS clause
will reflect the new value of
!l a t ~.!Ht!~ •

2. Whenever a MOVE to a field containing
a n OCCURS cIa use with the DEP ENDI NG ON
option is executed, the MOVE is made
on the basis of the current contents
of the object of the DEPENDING ON
opt ion.

3. The location of any nonsubordinate
items folloYing the item described
with the OCCURS clause will be
affected by the new value of
g~!~~~~~. If the user wishes to
preserve the contents of these items,
the following procedure can be used:
prior to the change in dat~namg, move
all nonsubordinate items following the
variable item to a work area; after
the change in data::.1H!.!!g, move all the
items back.

!tQi~: The value of dati!.::.!!~.m~ may change
because a move is made to it or to the
group in which it is contained; or the
value of data-name may change because the
group in which it is contained is a record
area that has been changed by execution of
a READ statement.

For example, assume that the Data
Division of a program contains the
following coding:

01 ANYRECORD.
05 A PICTURE 5999 COMPUTATIONAL-3.
05 TABLEA PICTURE S999 OCCURS 1 TO

100 TIMES DEPENDING ON A.
05 GROUPB.

(Subordinate data items.)

(End of record.)

lFor a discussion of the use of the OCCURS
DEPENDING ON clause in a sort program, see
"sorting Variable-Length Rec~rds."

Programming Techniques 305

GROUPB items are not subordinate to TABLEA,
which is described by the OCCURS clause.
Assuming that WORKB is a work area with ,the
same data structure as GROUPB, the
following procedural coding could be used:

1. MOVE GROUPB TO WORKB

2. Calculate new value of A

3. MOVE WORKB TO GROUPB

The above statements can be avoided by
putting the OCCURS clause with the
DEPENDING ON option at the end of the
record.

!Q!.g: !2.at~~!!~ can also change because of
a change in the value of an item that
redefines it. In this case, the group size
and the location of nonsubordinate items as
described in the two preceding paragraphs
cannot be determined.

The SET statement is used to assign
values to index-names and to index data
items.

When the SET statement assigns to an
index-name the value of a literal,

identifier, or an index-name from another
table element, it is set to an actual
displacement from the beqinning of the
table element that corresponds to the
occurrence number indicated by the second
operand in the SET statement. The compiler
performs all the necessary calculations.
If the SET statement is used to assign an
index-name to another index-name for the
same table element, the compiler need make
no conversion of the actual displacement
value contained in the second operand.

However ,when an index data item is set
to another index.data item or to an
index-name, or when an index-name is set to
an index data item, the compiler is unable
to change any displacement value it finds,
since an index data item is not part of any
table. Thus, no conversion of values can
take place. If the programmer forgets
this, programming errors can occur.

r---,

r--------------------T----'
(1, 1, 1) I E IF I

t--------------------+----~
C (1, 1) (1. 1, 2) I ElF I

r--------------------t----i
(1, 1, 3)] ElF I

B (1) t--------------------+----~
(1,,, 2" 1) I ElF I

~--------------------t----~
c (1. 2) (1" 2, 2) 1 ElF I

t--------------------t----~
(1." 2" 3)] E I .1? I

A t--------------------+----~
(2.. 1., 1) J 1:. I F I

r--------------------+----~
C (2. 1) (2_ 1. 2) J ElF I

t--------------------t----~
(2.. 1,,, 3)] E IF I

B (2) r--------------------+----~

Byte I
No. I

I
01

I
2 5 1

I
501

I
751

I
1001

125

150

175

200

225

j
D (2_ 2_ 1) ~-:------------------t~---~ 250

i C (2. 2) : ::: :: :: t-~------------------t;---1 275
I L ____________________ .1. ____ J 300 I
L _______________________________________ - ___________ ~ ___________________________________ J

Figure 114. Storage Layout for Table Reference Example

306

Por exaaple, suppose that a table 'has
been defined as:

01 A.
02 B OCCURS 2 INDEXED BY 11, 15.

03 C OCCURS 2 INDEXED BY 12, 16.
04 D OCCURS 3 INDEXED BY .13, 14.

05 E PIC X (2 0) •
05 F PIC 9 (5) •

Pigure 114 shows how the table is laid
out in main storage.

NOv, suppose it is necessary to
reference D (2,2,3). T~e following steps
are iDCO~!.:

SET 13 TO 2.
SET INDX-DATA-1TM TO 13.
SET 12, 11 TO 1NDX-DATA-ITM.
SET 13 UP BY 1 •
MOVE D(I1, 12, 13) TO iORKAREA.

The value contained in 13 after the first
SET statement is 25, which represents the
beginning point (in bytes) of the second
occurrence of D. When the second SET
statement is executed, the value 25 is
placed in INDI-DATA-11M, and the third SET
sta~ement moves the value 25 into 12 and
11. The fourth SET statement increases the
value in 13 to 50. The calculation for the
address D (11, 12, 13) would then be as
follows:

(address of D (1,1,1» + 25 + 25 + 50 =
(address of D(l,l,l» + 100

where D(l,l,l) represents the first
occurrence of D. This is DQi the address
of D (2,2,3).

The following steps will find the
£2~!. address:

Set to value
corresponding
to occurrence
number 1.

SET I3 TO 2.
SET 12, 11 TO 13.
SET 13 UP BY 1.

In this case, the first SET statement
places the value 25 in 13. Since the
compiler is able to calculate the lengths
of Band C, the second SET statement places
the value 75 in 12, and the value 150 in
11. The third SET statement places the
value 50 in 13. The correct address
calculation will be:

(address of D(l,l,l») + 150 + 75 + 50 =
(address of D(1,1,1» + 275.

The rules for the SET statement are
shown in Figure .;:J 15.

'.:i'

only one level of a table (a table
element) can be referenced with one SEARCH
statement. Note that SEARCH statements
cannot be nested, since an
imperative-statement must follow the WHEN
condition, and the SEARCH statement is
itself conditional.

There are two formats for the SEARCH
statement.

Format 1 SEARCH statements perform a
serial search of a table element. If the
programmer knows that the "found" condition
will come after some intermediate pOint in
the table element, to speed up execution,
he can use the SET sta teme n t. to set the
index-names at that point and search only
part of the table element. If the table
element is large, and must be searched from
the first occurrence to the last, the use
of ForlIIat 2 (SEARCH ALL) is more efficient

Set to value I
conversion corresponding I

I I to occurrence I
I I number I

~--·---·------·------·-----t---------------------+----------------------~
Move without I Move without I I
conversion 1 conversion I I

~--.---,----------------+---------------------+----------------------~
Set to occurrence J I I
number rep~esented I I I
by index-name J I I

~_. __ , ______ , ___________ ~ _____________________ i ______________________ ~

1.1f index-name refer to the same table element move without conversion I L ___ J

Figure 115. Rules for the SET statement

Programming Techniques 307

tha n For ma t 1, since it uses a binary
search technique; however, the table must
then be ordered.

In Format 1, the VARYING option allows
the programmer to:

• Vary an index-name other than the fi.rst
index-na me sta ted for this table
element. Thus, with two SEARCH
statements each using a different
index-name, reference can be made to
more than one value in the same table
element for comparisons, etc.

• Vary an index-name from another table
element. In this case, the first
index-name specified for this table
element is used for the search, and the
index-name specified in the VARYING
option is incremented at the same time.
Thus, it is possible to step throuqh
two table elements at once.

In Format 1, the WHEN condition can be
any relation condition, and can be
multiple. If multiple WHEN conditions are
stated, the implied logical connective is
OB -- that is, if anyone of the WHEN
conditions is satisfied, the
imperative-statement following the WHEN
condition is executed. If all conditions
of the SEARCH statement are-to be satisfied
before exiting from the search, a compound
WHEN condition with an AND logical
connective must be written.

In Format 2, the SEARCH ALL statement,
the table must be ordered on the KEY(S)
specified in the OCCURS clause. Any KEY
may be specified in the WHEN condition, but
all preceding data-names in the KEY option
must also be tested. The test must be an
"equal to" (=) condition, and the KEY
data-name must be either the subject of the
condition or the name of a conditional
variable with which the tested condition
name is associated. The WHEN condition can
also be a compound condition, formed from
one of the simple conditions listed above,
with AND as the only logical connective.
The KEY and its object of comparison must
be compatible, as given in the rules of
the relation test.

To write a series of statements that
will search the three-dimensional table
discussed in the section "The SET
statement," the programmer could write:

77 COMPARAND1 PIC X(5).
77 COMPARAND2 PIC 9(5).
01 A.

308

OS B OCCURS 2 I NDEXED BY 11 IS.
10 C OCCURS 2 INDEXED BY 12 16.

15 D OCCURS 3 INDEXED BY 13, 14.
20 E PIC X (5) •
20 F PIC 9 (5) •

(initialize comparandl and comparand2)

PERFORM SEARCH-TEST1 THRU SEARCH-EXITl
VARYING 11 FROM 1 BY 1 UNTIL 11 GREATER
THAN 2 AFTER 12 FROM 1 BY 1 UNTIL 12
GREATER THAN 2.

ENTBY-NOENTRY1. GO TO ERROR-RECOVERY1.

SEARCR-TEST1. SET 13 TO 1.
SEARCH D WHEN E (11, 12, 13) =

COMPABAND1 AND
F (11, 12, 13) = COMPARAND2
SET 15 TO 11
SET 16 TO 12
SET 12 TO 3
SET 11 TO 3
ALTER ENTRY-HOENTRYl TO PROCEED TO
ENTRY-PROCESSING1.

SEARCH-EXIT1. E.XIT.

ERROR-RECOVERY1.

ENTRY-PROCESSING1.
MOVE E(I5, 16, 13) TO OUT-AREAl.
MOVE F(IS, 16, 13) TO OUT-AREA2.

The PERFORM statement varies the indexed
(11 and 12) associated with table elements
Band C; the SEARCH statement varies 13,
which is associated with table element D.

The values of 11 and 12 that satisfy the
WHEN conditions of the SEARCH statement are
saved in IS and 16. 11 and 12 are then
both set to 3 using the SET statement, so
that upon return from the SEARCH statement
control viII fall through the PERFORM
statement to the GO TO statement.

subsequent references to the desired
occurrence of table elements E and F make
use of the index-names IS and 16 in which
the correct value was saved.

For example, a user-defined table may be
the followinq:

01 TABLEA.
05 ENTRY-IN-TABLEE OCCURS 90 TIMES

ASCENDING KEY-1, KEY-2
DESCENDING KEY-3
INDEXED BY INDEX-1.
10 PART-1 PICTURE 9(2).
10 KEY-l PICTURE 9(5}.
10 PART-2 PICTURE 9(6).
10 KEY-2 PICTURE 9(4).
10 PART-3 PICTURE 9(33).
10 KEY-3 PICTURE 9(5).

A search of the entire table can be
,initiated with the following instruction:

SEARCH ALL ENTRY-IN-TABLEE AT
END GO TO NOENTRY

WHEN KEY-1 (INDEX-l) = VALUE-l AND
KEY-2 (INDEX-l) = VALUE-2
AND KEY-3 (INDEX-l) = VALUE-3

MOVE PART-l (INDEX-1)" TO
OUTPUT-AREA.

The foregoing instructions will execute
a search on the given array TABLEA which
contains 90 elements of 55 bytes and 3
keys. The primary and secondary keys
(KEY-1 and KEY-2) are in ascending order
whereas the least significant key {KEY-3)
is in descending order. If an entry is
found in which three keys are equal to the
given values (i.e., VALUE-l, VALUE-2
VALUE-3) PART-l of that entry will be moved
to OUTPUT-AREA. If matching keys are not
found in any of the entries in TABLE!, the
NOENTRY routine is entered.

If a match is found between a table
entry and the given values, the index'
(INDEX-l) is set to a value corresponding
to the relative position within the table
of the matching entry. If no match is
found, the index remains at the setting it
had when execution of the SEARCH ALL
statement began.

compilation is faster if KEY(S) are
tested in the SEARCH statement in the same
order they appear in the KEY option.

Note that if KEY entries within the
table do not contain valid values, then the
results of the binary search will be
un p.redictable.

When reading in data to build an
internal table:

1. Check to make sure the data does not
exceed the space allocated for the
table.

2. If the data must be in sequence* check
the sequence.

3. If the data contains the subscript
determining its position in the table*
check the subscript for a valid range.

When testing for the end of a table, use
a named value giving the item count, rather
than using a literal. Then, if the table
must be expanded, only one value need be
changed, instead of all references to a
lite.ral.

In a COBOL teleprocessing (TP) program*
a CD FOR INPUT allows the specification of
one through three levels of sub-queues from
which data can be received; this allows the
COBOL object program, at execution time, to
make use of pre-defined queue structures,
and to access all or parts of such
structures. For TP programs, such queue
structures are analogous in function and
form to the File Description (FD) entry and
its associated 01 record description for
file processing programs. If pre-defined
queue structures are used, each lowest
level sub-queue name in the structure
corresponds to a DD name; the associated DD
card must specify a TPROCESS entry in the
message control program (MCP) terminal
table). Figure 116 shows the configuration
of one queue structure such that queue A is
made up of sub-queues Band C, sub-queue B
is made up of sub-queues D and E, and
sub-queue D is made up of sub-queues Hand
I (where sub-queue H contains messages Z1
and X2 and sub-queue I contains messages
X3, X4, and IS), and so on.

During program execution, when the user
wishes to receive a message from a queue
(or sub-queue) he need not place the names
of all sub-queues in the input CD; he need
specify only the SY"BOLIC QUEUE name, which
may be the name of a pre-defined queue
structure, or he may specify that name plus
one or more sub-queue names -- which allows
him to access only that part of the entire
structllrethat is needed. A COBOL
object-time subroutine uses the name(s)
placed in the input CD to determine which

Programming Techniques 309

lowest-level sub-queue(s) and corresponding
TCAM queue{s) can be used to fill the
request.

partitioned data set with one member for
each complete queue structure. The sample
listing shown in Figure 117 provides the
queue definition statements that correspond
to the queue structure. At the right of
each' statement, in parenthesis, is each FD
entry equivalent.

In order to do this, the user must have
previously defined his queue structures in
a formttrat is acceptable to the COBOL
object-time subroutine. A utility program
that functions as the Queue structure
Description routine (included in the OS/VS
COBOL library) makes this possible. Input
to the Queue structure Description routine
consists of a series of statements that
define queue structures. The statements
are written in a COBOL-like format, similar
to an PD entry and its associated record
description entry. The Queue structure
Description routine prod uces as output a

Each logical record in a queue structure
description may include only a queue or
sub-queue definition; it may not inelude,
for example, the usual COBOL sequence
number. (For a detailed description of the
possible formats for input to the Queue
structure Description routine, see th~
Section «Rules for Queue structure
Description" in this chapter.)

I

QUEUE

l r-------------~l---------------,
SUB-QUEUE (1) l

I I
I I

BI CI
] I
I I

SUB-QUEUE (2)

SUB-QUEUE (3)

"I r-------L
-------, r-------L

-------, I 1 , I
! 1 I 1

DJ EJ FJ GI
I J] I
J I I I

1

r---~---l f---~---l f---~---j f---~---l
HI I] JJ KI Ll Ml Nl 01

I I .] I J] I 1
I I J I] I I I
1 I I I I I I 1

MESSAGE

f

Zl X3 Xl Z6 Y7 Yl X6 Z2
X2 X4 Y3 Z7 Y8 Y2 - TI
- X5 Y5 Y6 - - II

- Z5 - Y4 - -

Figure 116. A Queue structgre with Three Levels of Sub-Queues

310

r-
JIIBLDRDS
IIIJOBLIBI
IIIstJBQS2
.1/COBTPQD3

JOB
DD
EXEC
DD

user information
DSN=SYS1.COBLIB,UNIT=231~,VOL=SER=DC160,DISP=OLD
PGM=ILBOQStJO,REGION=96K
DSN=SUBQPDS,UNIT=2314,VOL=SER=DC160,
SPACE=(4000,(50,20,1» ,DISP=(OLD,KEEP)

x

"l

I
J
t
I
I
J

III
IIISYSPBINT~
II/SYSIN5

DD
DD

SYSOUT=A
* I

I II

QUEUE STRUCTURE DEFINITIONS FOR USE IN COBOL PROGRAMS WHICH PROCESS QUEUES AND
SU B-QUEUES.

I
J
I

QUEUE IS A.

SUB-QUEUE-l IS B.

SUB-QUEUE-2 IS

SUB-QUEUE-3

SUB-QUEUE-3

SUB-QUEUE-2 IS

SUB-QUEUE-3

SUB-QUEUE-3

SUB-QUE UE-l IS C.

SUB-QUEUE-2 IS

SUB-QUEUE-3

SUB-QUEUE-3

SUB-QUE UE-2 IS

SUB-QUEUE-3

SUB-QUEUE-]

D.

IS

IS

E.

IS

IS

F.

IS

IS

G.

IS

IS

H.

I.

J.

K.

L.

M.

N.

o.

I I
I!Q!~: The parenthetical entries below are 1
,for illustrative purposes only, they may ,
t.!ll!1 appear in the program itself. t
I I
, (YD clause) I
I I
• (01 entry) I
I I
I (02 ent ry) I
I ,
I (03 en try) J
I t
I (03 entry) (
I I
I (02 entry) I
I J
I (0 3 en try) I
I I
I (03 entry))
J I
I (01 entry) ,
• I
I (02 ent ry) j

I J
I (0 3 en tr Y) I
I I
I (03 entry) I
J ,
f (02 entry) I
I I
t (03 entry) J

1 J
I 03 entry) f

I
'liQl~:

--------,--------~------------------------ ~
t
J
t ,

,
11.
I
12.
I
I
J
J ,3.
• I
14.
I
15.
I

The data-set name SYS1.COBLIB represents the OS/VS COBOL Library.

The utility program ILBOQSUO (called the Queue structure Description routine)
creates a partitioned data set with one member for each complete queue structure
defined. It has an alias name of BLDQS, which may be specified on the EXEC card
instead.

The partitioned data set must be described on a DD card with the reserved name
//COBTPQD.

The SYSPRINT DD statement defines the output message and listing data set.

The SYSIN DD statemen t defines the inpu t to the program.
consist of SO-character records.

The SYSIN data set must
L-________ . ______ __

Figure 117. A Sample Queue Structure Descripion

f
J
I ,
I
J
I
I
I ,
I
I ..

Programming Technigles 311

ACCESSING QUEUE STRUCTURES THROUGH COBOL

Once the user has defined and stored the
queue structures, COBOL TP programs can
utilize these structures. At execution
time, the partitioned data set is described
on a DD card with the, name COBTPQD. If,
for example, the user wanted to access
messages described in the queue structure
defined in Figure 117, a DO card specifying
the partitioned data set SUBQPDS, as below,
would be required.

//COBTPQD DD DSN=SUBQPDS,DISP=SHR,
ONIT=3350,VOL=SER=DC160

Additional DD cards would be required to
link the message control program terminal
table entries and the lowest-level
sub-queue names. (For a description of
terminal table entries, see the section
"Terminal and Line Control Areas" in the
chapter "Using the Teleprocessing
Feature".) The name of the DO card may be
defined either as the sub-queue name itself
(for example, as H, I, J, K, L, H, N, or 0)
or as a ddname that is equivalent to the
lowest-level sub-queue name. This
alternative approach permits the COBOL
program to reuse SYMBOLIC SUB-QUEUE names
without ambiguity. These two approaches
are illustrated below.

Mel.h.9.Q_l: The DO ca rd a ssociated wi th the
queue definition SUB-QUEUE-3 IS H would be:

//H DD QNAME=Q1

!1~l.hod_2.: The DD card associated with the
queue definition SUB-QUEUE-3 IS ,H(FIRSTMSG)
would be:

//FIRSTMSG DD QNAME=Q1

where Q1 is an entry in the terminal table.

Before a RECEIVE statement is executed,
the user places (via a MOVE statement) the
needed queue and sub-queue name(s) in the
CD entry. When the RECEIVE statement is
executed. the RECEIVE subroutine checks fo~
the presence of the partitioned data set
describing these queue structures. If the
data set is present, the RECEIVE subroutine
invokes a Queue Analyzer routine, which
searches the partitioned data set for a
member corresponding to the name in the
SYMBOLIC QUEUE field, reads that member
into main storage, and uses it to validate
the SYMBOLIC SUB-QUEUE name(s) in the COBOL
program input CD entry. The Queue Analyzer

312

routine then determines the first valid
name for the structure specified and gives
this name to the RECEIVE routine.

Names at the SUB-QUEUE-1 level take
priori ty over names a t the SUB-QUEUE-2
level. Names at the SUB-QUEUE-2 level take
priority over names at the SUB-QUEUE-3
level. At any given level, names at the
left take priority over, and are completely
evaluated before, names at the right.
(Taking advantage of this retrieval
technique, the user can improve object-time
performance by defining the most frequently
used sub-queues at the left of the
structure., Figure 118 illustrates this
process.

The RECEIVE subroutine then attempts to
access the queue specified. If there are
no messages in the associated MCP queue,
the Queue Analyzer provides the RECEIVE
routine with another valid name. The
procedure is repeated until the RECEIVE
routine accesses a message, or until there
are no more queues to access.

During a RECEIVE operation. a COBOL
program using queue structures need not
specify all levels of SUb-queues. The
highest level {QUEUE) must be specified;
that level plus a SUB-QUEUE-1 may also be
specified; or all four levels may be
specified. If a lower level is specified,
then all higher levels must also be
specified.

If the COBOL programmer wishes to access
the next message in the queue structure,
regardless of which sub-queue that message
may be in, he specifies the queue name
only, and initializes the sub-queue-names
to SPACES. The Queue Analyzer, when
supplying the message, returns to the COBOL
object program any applicable sub-queue
names via the data items in the associated
input CD. In this way, if the entire
message was not returned as a result of the
current RECEIVE. additional RECEIVE
requests may be issued using the complete
queue and subqueue names in the CD to
retrieve the balance of the message. If,
however, the programmer wish.es the next
message in a given sub-queue, he must
specify both the queue name and any
applicable sub-queue names. Figure 118
illustrates the relationship between the
informa tion con tained in the input CD at
object time and the message{s) accessed
when the RECEIVE statement is executed
(where each example refers to the queue
structure pictured in Figure 116).

r-
I Input CD
~----------.--------

t
I
I
J

CD CDNAME-IN FOR INPUT
SYMBOLIC QUEUE IS data-name-1.

(where data-name-1 contains 'AI)

CD CDNA8E-IN FOR INPUT

CD

SYMBOLIC QUEUE IS data-name-1.
SYMBOLIC SUB-QUEUE-l IS data-name-2.
(where data-name-l contains 'A' and
data-name-2 contains 'e')

CDNAME-IN FOR INPUT
SYMBOLIC-QUEUE IS data-name-l,
SYMBOLIC-QUEUE-l IS data-name-2,
SYMBOLIC-QUEUE-2 IS data-name-3.

(where data-name-l contains 'A',
data-name-2 contains 'B',
and data-name-3 contains 'E')

Message Returned by the MCP

Message Zl

Message Y7

Message Xl

...
t
f
I
J
I
I
I
I
I
I
I
1
I
I
I
I

• I
I

• I1!Qlg: Data-name-l, data-name-2, and so on, refer to the optional clauses of a queue
Istructure defined under "Rules for Queue Structure Description" in this chapter. L-__ __

Figure 118. Sample Message Retrieval Options

~2~£ifyiDg_g£Dg~§_~ith_El~~n~g~
Sub-Queyg§

Suppose that an application program is
vrittento accept TP messages as input to
an inventory control process. Each of five
different locations transmits data on four
different pa rts. The diagram in Figure 119
illustrates the relationship between the
input messages and the four different parts
for each location.

Each elementary, or lowest-level, queue
in the struc.ture must specify the name of a
DD card, which in turn names a TPROCESS
entry. While the example, as shown in
Figure 107, is not ambiguous (that is,
INVENTORY.CHICAGO.PARTA is distinct from
INVENTORY.LOS-ANGELES.PART~. the
elementary queues by themselves are Dot
(that is, the elementary name PABTA, which
corresponds to a ddname, can be anyone of
five different PARTA's). To eliminate this
ambiguity, whenever there are duplicate
names in the lowest level of a queue
struct ure. the user lIust define ddnames in
addi tion to the sub-queue names at the'

lowest level when he defines the structure
to the Queue structure Description routine.
Then the object-time Queue Analyzer routine
automatically associates the fully
qualified queue structure names with the DD
names required. Accordingly, in this
example:

NEW-YORK.PARTA could have ddname OD1.

NEW-YORK.PARTB could have ddname))D2.

NEW-YORK.PARTC could have ddname DD3.

NEW-YORK.PARTO could have ddname DD4.

CHICAGO. PART! could have ddname OD5.

CHICAGO.PARTB could have ddname DD6.

and so forth. In this way, each elementary
queue has a unique designation; yet the
COBOL program can refer to the sub-queue
names without ambiguity.

Programming Techniques 313

SU B-QU EU E- 2 SUB-QUEUE-1 QUEUE

-------------~-------- --------~ ~~~--------- -----------.-'~-----------PARTA(DD1) ---------.,
I

PART B (OD2) of
1

PARTC (UD3) ---------f
I

PARTD(DD4) -J

PARTA(DD5) -.,
f

PA RT B (006) -f
I

PARTC(DD7) -f ,
PARTD (008) I

PARTA(DD9) i

I
PABTB(DD10)---------f

J
PART C (D D 11) .f

J
PARTD(DD12)--------------J

PARTA(DD13)----
I

PARTB(DD14) of

• PARTC(DD15)----, f
I

PARTD (DD16)----------J

NEW-YORK
--------------------,

I ,
I
I
I
I
J

CHICAGO I
--1

I ,
I
)

I
J
I

ST-LOUIS ,
I
t
I
I
I
1
I
I

DENVER ,

--------------------~
I
I
I
I

• PARTA(DD17)----------,1 I
t I

PART B (DD18) --f LOS-ANGELES I
~' _____________________ ---J

PARTC(DD19) f
t

PARTO{D020) •

Figure 119. using ddnames with Queue Structures

314

INVENTORY

r--~·:-'·-------"';---, ! {~UEUE } IS data

I
I {SUB-QUEUE-l} I{{ IS data-name-2[(ddname-)]} •••
I SUBQl
I
I {SUB-QUEUE-2}
J[[IS data.name-3[(ddname)]]uo.
I SUBQ2
I
II[{SUB-QUEUE-3} IS data-name-4[(ddname-3)]) •••]}n ••

I SUBQ3 L ___ J

Figure 120. Format for Input to Queue Structure Description Routine

For each member of the partitioned data
set, the input to the Queue structure
Description Routine must take the format
shown in Figure 120.

The clauses of the queue structure may
be written free form; however, only one
clause may appear on each aD-character
record. At least one sub-queue level must
be specified; no more than 200 sub-queue
names rna y be specified in one queue
structure.

The sub-queues at each level must be
specified to the Queue Structure
Description routine in left-to-right order.
When the queue structure is referred to at
object program execution time, names at a
higher level take priority over names at a
lower level. At a given level in the queue
structure, names to the left take priority
over names to the right.

A queue structu~e need not include all
levels of sub-queues. However, if a lower
level is included in one leg of a queue

structure, then that leq must include all
higher levels.

Each clause of the structure may
optionally be followed by a period.

]at~~e-l is the name of the queue
st ruct ure, and becomes the na me of that
member of the partitioned data set.

Qat~me~~ though Qat~-name-q are
sub-queue names within the data set member.

Note: A data-name cannot contain more than
12-characters.

Each data-name at the lowest
(element-;rY)l;;el of a leg of the queue
structure may be a ~glla~; alternatively,
each such data-name may be followed by a
parenthesi zed ddname. If a parenthesiZed
ddname follows a sub-queue name, the left
parenthesis must immediately follow the
sub-queue name with no interVening spaces.
There must be no spaces between the
parentheses and the ddname.

Programming Techniques 315

A COBOL program can refer to and pass
control to other COBOL programs, or to
programs written in other languages. A
program in another language can refer to
and pass control to a COBOL program. A
program that refers to another program is a
£~11ing program. A program that is
referred to is a £allgg program. Control
is returned from a called program to the
first instruction following the calling
sequence in the calling program.

A called program can also be a calling
program; that is, a called program can, in
turn, call another program. However, a
called program cannot call the program that
called it, an earlier calling program, or
itself. In Figure 121, for instance,
program A calls program B; program B calls
program C. Therefore:

1. A is considered a calling program by B.

2. B is considered a called program by A.

3. B is considered a calling program by C.

4. C is considered a called program by B.

Control is returned in the same order of
calling; that is, a called program (program
C) returns control to its own calling
program (program ~, not to an earlier
ca 11 ing pr og ram (program A). Compiler
generated switches (e.g., ON and ALTER) are
not reinitialized upon each entrance to the
called program, that is, the program is in
the last executed state unless it has been
the object of a CANCEL statement.

,-
j A
I r , r
I I J t
f I I I Called

usually called and calling programs to
be executed as a single job step are
link-edited together; they must all be
included in the same load module. However,
with the COBOL dynamic call feature a
programmer can request that a called
program be link-edited into a separate
module and called only if it is needed (see
the section "Dynamic Subprogram Linkage",
in this chapter).

This chapte.r describes the accepted
linkage conventions for calling and called
programs in both COBOL and assembler
language and discusses how such programs
are link-edited. An example is provided to
illustrate the coding required to have
proper interface between both COBOL and
assembler language calling and called
programs. In addition, it includes a
discussion of overlay design in which
different called programs may, at different
times, occupy the same area in main
storage. Another example is provided to
illustrate one method of accomplishing
program linkage using the dynamic overlay
technique.

B

Whenever a program calls another
program, a link must be established between
the two. The calling program must state
the entry point of the called program and
must specify any identifiers to be passed.
The called program must have an entry point
and must be able to accept the identifiers.
In addition, the called program must
establish the linkage for the return of
control to the calling program. See Figure
122 for an example of the linkage
statements required in a typical
calling/called situation.

,
C J , r- J

J J I I
j I I I

I f Calling I 1 program of A J I Called J t
J I program of BI- >. 1----->1 program of BI I
I j 1 J Calling I I J I
I I I , program of ct I I I
I f I J I I f ,
I L ~ I .I ----I t
L- .J

Figure 121. Calling and Called Programs

316

LI NKAGE IN A CALLI NG COBOL PROGR AM

A calling COBOL program must contain the
following statement at the point at which
another prog ram is to be called:

{
litera1-1 }

CALL
identifier-l

(USING identifier-list]
[ON OVERFLOW imperative-statement].

Literal-1 or the contents of identifier-1
must be either the name of the program that
is being called or the name of an entry
point in the called program. The first
eight characters of literal-1 or
identifier-1 are used to make the
correspondence between the calling program
and the called program. The
identifier-list is one or more data-names,
called identifiers and separated by blanks,
that are to be passed to the called
progra m.

If the called program is an
'assembler-language program, the identifier
in the USING phrase may also he a file-name
or a procedure-name. If the identifier in
the USING phrase is a file-name, the COBOL
compiler passes the address of the DCB for
a queued file, or the address of the DECB
for a basic file, as this entry of the
identifier-list. The identifier may not be
a VSAM file name. This can be used to test
bits in the DCB or DECB or to enter some
options in the DCB. However, when changing
a field of the DCB, precautions should be
taken not to contradict the information in
other fields or the information in the
object code supplied by the compiler, job
control langUage, or other sources. When
the identifier in the USING phrase is a
procedure-name, the value passed is the
beginning address of the procedure. If no
identifiers are passed, the USING clause is
omit ted.

If a non-standard return is executed to
a procedure name in a program compiled with
OPT, RES, or DYN options, unpredictable
results may occur.

The ON OVERFLOW imperative statement
will gain control if the called program
cannot be dynamically loaded during"
execution time (situation equivalent to
completion code 106-C, 804, 80A, or 878).
This allows the user to continue
processing. ON OVERFLOW only has meaning
if a program is to be dynamically loaded
(see the "Dynamic Subprogram Linkage'·
section later in this chapter).

LINKAGE IN A CALLED COBOL PROGRAM

A called COBOL program must contain two
st.a temen ts.

One of the following statements must be
inserted to name the point where the
program is to be entered:

ENTRY literal-1
[USING identifier-list].

or

PROCEDURE DIVISION [USING
identifier-list].

The literal-1 or PROGRAM-ID is the name of
the entry point in the called program. It
is the same name that appears in the CALL
statement of the program that calls this
program that the compiler uses. The
identifier-list is one or more data-names
that correspond to the identifier-list of
the CALL statement of the calling program.
Each data name of the identifier-list must
be defined in the Linkage section of the
Data Division and must have a level number
of 01 or 77.

One of the following statements must be
inserted at the point at which control is
to be returned to the calling program:

GOBAeR.

or

EXIT PROGRAM.

The GOBAeK or EXIT PROGRAM statement
enables restoration of necessary registers
and returns control to the point in the
calling program immedia tely following the
calling sequence.

Note: The GOBACK and EX!T PROGRAM
statements may be used in a main program,
with the result that any COBOL program can
be used as either a calling or a called
program, if written with this end in mind.
If a GOBICK statement appears within the
main program, control is returned
immediately to the system; if an EXIT
PROGRAM statement appears, it is simply
regarded as a null instruction.

A called program may pass a completion
co.de to its caller by storing a value in
RETURN-CODE. The calling program may
interrogate RETURN-CODE after a return is
made from a called program to determine the
comple tion code.

Calling and Called Programs 311

!Qi~: RETURN-CODE may also be used to pass
a completion code to the system at the end
of a run uni t.

with the dynamic subprogram linkage
feature, a called program need Dot be
link-edited with the main program. It may
instead be link-edited into a separate load
module, so that at execution time it is
loaded if S!!d onIY_i! it is called.
Accordingly, the first dynamic call to a
subprogram obtains a fresh copy of the
subprogram. Subsequent calls to the same
subprogram, by either the original caller
or any other subprogram in the same
region/partition, result in a branch to the
same copy of the subprogram in its
last-used state until the subprogram is
canceled. The first call following a
CANCEL statement results in a branch to a
fresh copy of the subprogram.

Specification of the DYNAM option in the
PARM field of the EXEC statem~nt (see the
section on "Compiler Options" in the
chapter entitled "Job Control Procedures~
makes all calls dynamic. If NODYNAM is in
effect, through either user specification
at compile time or as the default option.

318

only CALL identifier statements are
dynamic; when NODYNAM is in effect, CALL
literal statements are static. (For a
discussion of the formats possible with the
CALL statement, see the publication lfiL!~
£QB01_foLQ~L!~·)

For an example of a COBOL program that
takes advantage of the dynamic CALL/CANCEL
feature, see Figure 122.

1. When th~ dynamic CALL is used, the
main program and all subprograms in
one region/partition should take
advantage of the COBOL Library
Management Facility (see the
1t Librar ies" cha pter) • Progra ms
compiled under pre-Version 4 COBOL
compilers cannot be dynamically
called. Even when the DYNAM option is
not specified a program with CALL
identifier or CANCEL identifier
state~ents requires the Library
Management Feature.

2. The USING option should be included in
the CALL statement only if there is a
USING option in the called entry
point.

3. It is recommended that calling
programs use the ON OVERFLOW facility.

r
II/CALLJOB
II/STEP1
II/COB.SYSIN

/*

JOB
EXEC

user information
COBUCL,PARM.COB=·DYNAM,RESIDENT'

DD *
IDENTIPICATION DIVISION
PROGRAM-ID. SUBPROG1.
AUTHOR. J. SMITH
REMARKS.

THIS SUBPROGRAM IS CALLED BY THE MAIN PROGRAM.
IT ISSUES A MESSAGE TO INDICATE WHETHER IT IS
IN INITIAL OR LAST-USED STATE, AND THEN RETURNS
TO THE MAIN PROGRAM.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IB8-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 SWITCH PIC 9 VALUE O.
PROCEDURE DIVISION.

IF SWITCH=O DISPLAY 'SUBPROG1 CALLED -- IN
INITIAL STATE'

GO TO RETURN-POINT.
DISPLAY 'SUPROG1 CALLED -- IN LAST-DSED STATE'.

RETDRN-POINT.
AD D 1 TO SWITCH.
EX IT PROGRAM.

I/LKED.SYSLMOD DD DSN=SUBPROGS(SUBPROG1) ,UNIT=2114.VOL=SER=XXXXXX,
II DISP= (NEW, KEEP) , SPACE= (TRK, (5,1,1»
1*

t-
IliQl~: When a subprogram is called
Ilinkage editor is used to identify
tat execution time (see the section

dynamically, the (NAME andlor ALIAS) option of the
the module that is accessed by an as/vs LOAD macro
entitled "Link-editing COBOL Programs").

-,
1
I
I
I
I
I

• I
t
I

• I
I
t
I
I
I
t
I
I
I
I
I
I
t
I
J
I
I
J .,
I
I

• •
Figure 122.

.J

Sample Calling and Called Programs Using Dynamic CALL and CANCEL statements
(Part 1 of 3)

Calling and Called Programs 319

r •
IIICALLJOB2 JOB user information I
'1ISTEP1 EXEC COBUCL,PARM.COB:'DYNAM,RESIDEN'.r' I
II/COB.SYSIN DD * . I

IDENTIFICATION DIVISION. I
PROGRAM-ID. SUBPROG2. I
AUTHOR. J. SMITH I
REMARKS. I

THIS SUBPROGRAft IS CALLED BY THE MAIN PROGRAft. I
IF IT IS IN INITIAL STATE, IT ISSUES A MESSAGE I
TO THAT EFFECT AND RETURNS TO THE MAIN PROGRAM. I
IF NOT, IT ISSUES A MESSAGE ~HAT IT IS IN THE
LAST-USED STATE, CANCELS SUBPROG1 VIA A CANCEL
IDENTIFIER, AND RETURNS TO THE MAIN PROGRAM.

ENVIRONMENT DIVISION.
CONFIGURATION DIVISION.

f SOURCE-COMPUTER. IBM-370.
• OBJECT-COMPUTER. IBM-370.
I DATA DIVISION.
I WORKING-STORAGE SECTION.
I 77 SWITCH PIC 9 VALUE O.
I 77 CANCL-ID PIC 1(8).
f PROCEDURE 01 VISION.
• IF SWITCH=O DISPLAY 'SUBPROG2 CALLED -- IN INITIAL STATE'
r GO TO RETURN-POINT.
t DISPLAY 'SUBPROG2 CALLED -- IN LAST-USED STATE'.
I DISPLAY 'SUBPROG2 CANCELLING SUBPROG1'.
I MOVE lSUBPROG1' TO CANeL-ID.
• CANCEL CANeL-ID.
, RETURN-POI NT.
I ADD 1 TO SWITCH. J
I EXIT PROGRAM. I
1/* •
1//LKED.SYSI.f10D DD DSN=SUBPROGS (SUBPROG2) ,UNIT=2314,VOL=SER=XXXXXX,DISP:OLD I
1/* I
~ ~

Figure 122. Sample calling and Called Programs Using Dynamic CALL and CANCEL Statements
(Part 2 of 3)

320

r
1//CALLJOB3
II/STEPl

-------------------,
IlcOB.SYSII

1*

JOB user information
EXEC COBUCL,PARK.COB='DYNAK,RESIDENT'
DD *
IDENTIPICATION DIVISION.
PROGRAK-ID. MAINPROG.
AUTHOR. J. SIUTB
REMARKS.

THIS IS A MAIN PROtRAK. IT CALLS SUBPROGl AND
SUBPBOG2 TWICE. ON THE FIRST CALL, EACH SUBPROGRAK
SHOULD BE A PRESH COpy (THAT IS, IN INITIAL STATE).
ON THE SECOND CALL, EACH SUBPROGRAM SHOULD BE IN ITS
LAST-USED STATE. WHEN SUBPROG2 IS CALLED THE SECOND
TIME, IT CANCELS SUBPROG1. THEN MAINPROG CALLS
SUBPROGl AGAIN, AND AGAIN AFRESH COpy OF THIS
SUBPROGRAlt SHOULD BE KADE AVAILABLE.
THE OUTPUT PROK· THIS RUH SHOULD READ AS FOLLOWS:
'BEGIN MAINPROG.
8AINPROG CALLING SUBPROG1.
SUBPROGl CALLED -- IN INITIAL STATE.
ftAINPROG CALl.ING SUBPROG2.
SUBPROG2 CALLED -- IN INITIAL STATE.
MAINPROG CALLING SUBPROG1.
SUBPROGl CALLED -- IN LAST-USED STATE.
ftAINPRQG CALLING SUBp·aOG2.
SUBPROG2 CALLED -- IN LAST-USED STATE.
SUBPROG2 CANCELLING SUBPROG1.
MAINPROG CALLING SUBPROG1.
SUBPROG1 CALLED -- IN INITIAL STATE.
ftAINPROG CANCELLING SUBPROGl AND SUBPROG2.
END MAINPROG.'

ENVIRONMENT DIVISION.
CONPIGURATION SECTION.
SOURCE-CO~PUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 SWITCH PIC 9 VALUE O.
71 CALLID PIC X(8).
PROCEDURE DIVISION.

DISFLAY 'BEGIN 8AINPROG'.
ST AR T-CAtL S.

IF SWITCH IS LESS THAN 2 PERFORM CALL1,
PERFORM CALL2,
GO TO START-CALLS.
PERF ORlt CALL 1.
DISPLAY 'MAINPROG CANCELLING SUBPROGl AND SUBPROG2'.
CANCEL 'SUBPROG1'.' SUBPROG2'.
DISPLAY 'END ftAINPROG'.
STOP RUN.

CALL 1.
MOVE 'su BPROG l' -ro CALLI D.
DISPLAY 'KAINPROG CALLING SUBPROG1'.
CALL CAL LID.

CALL2.
KOVE 'SUBPROG2' TO CAtLID.
DISPLAY 'ftAINPROG CALLING SUBPROG2'.
CALL CALLID.
ADD 1 TO SWITCH.

I/ILKED.SYSLftOD DD DSN=SUBPROGS(8AINPBOG).UNIT=2314,VOL=SER=XXXXXX,DISP=OLD
II/GO EXEC PGK=ftAIHPROG
IIISTEPLIB DD DSN=SUBPROGS,UNIT=23l4, VOL=SER=XXXXXX,DISP=OLD
IIISISOUT DD SYSOUT=A
1/*
I

Figure 122. Sample Calling and Called Programs Using Dynamic CALL and CANCEL Statements
(Part 3 of 3)

I
I
I
J
I
I
1
J
I
1 ,
I
I ,
I
J
!
I
I ,
I
I
t
1
I
I
I
I
j

I
I
t
I
I
I
I
t
I
I
I
t
I
I
I
J
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
.J

Calling and Called programs 321

~Q£r es I?Q!H!!m£!L2.Lllg.n. ti fi~2-in._~~lling:
~u~_Ca!leg-f£ogr~2

The number of data-names in the
identifier list of a calling program must
be the same as the number of data-names in
the identifier list of the called program.
There is a one-to-one correspondence; that
is, the first identifier o£ the calling
program is passed to the first identifier
of the called program, the second
identifier of the calling program is passed
to the second identifier of the called
program, and so forth.

Only the address of an identifier list
~s passed. Consequently, the data-name
that is an identifier of the calling
program and the data-name that is the
corresponding identifier of the called
program both refer to the same locations in
main storage. The pair of names, however,
need not be identical, but the data
descriptions must be equivalent. For
example, if an identifier of the calling
program is a level-77 data-name of a
character string of length 30, its
corresponding identifier of the called
program could also be a level-77 data-name
of a character string of length 30, or the
identifier of the called program could be a
level-01 name with subordinate names
representing character strings whose
combined length is 30.

Although all identifiers of the called
program in the ENTRY statement must be

,.-
I Register I Register I
1 Number I Use J
t- I I

described with level numbers of 01 or 77,
there is no such restriction made for
identifiers of the calling program in the
CALL statement. An identifier of the
calling program may be a qualified name or
a subscripted name.

FILE-NAME ARGUMENTS

A calling COBOL program tha t ca lIs an
assembler-language prog.ram can pass
file-names, in addition to data-names, as
identifiers. For a queued file, the
file-name is passed as the address of the
DeB (Data Control Block) and for a basic
file, the file-name is passed as the
address of the DECB (Data Event control
Block). A VSAM file name cannot be passed.

LINKAGE IN A CALLING OR CALLED
ASSEMBLER-LANGUAGE PROGRAM

In a COBOL program, the expansions of
the linkage statement provide the saVe and
return coding that is necessary to
establish linkage between the calling and
the called programs. Assembler-language
programs must be prepared in accordance
with the basic linkage conventions of the
oper~ting system. Figure 123 shows the
conventio.ns for use of general registers as
linkage registers.

•
I

Con tents I
---I

t Jidentifier I Address of the list that is passed to the called program. I
I I I
I 13 JSave Area f
I I •
I j t
J 14 I Return I
f J f
I I f
I I I

Address of a n area (of 18 fullwords) to be used by the called
program to save registers.

Address of the location in the calling program to which
control should be returned after execution of the called
program.

i 15 I Entry Point l I Address of the entry poi.nt in the called program to which
I I I control iS,to be transferred.
t- ____ ~I~--
• 1 Regis,ter 15 is also used as a return code register. The return code indica tes
• whether or not an y exceptional conditions occurred during execution of the called
I program. When control is returned to the COBOL program, it automatically moves the
I contents of register 15 into the special register RETURN-CODE. L-______________________ ___

Figure 121. Linkage Registers

322

,
I
I
I
f
I
I
I

• I
~
I
I
I
f

~~!U.smtiQJHL. Use g,.J..!L.L~IIiB.g
!§~Ule!:-Languagg_f[.ogr9J!

A calling assembler-language progra.
must reserve a save area of 18 vords,
beginning on a fullvord boundary. to be
used by the called program for saving
registers. It must load the address of
this area into register 13. If the program
is to pass identifiers, an identifier list
must be prepared, and the address of the
identifier list must be loaded into
register 1. The calling program must load
the address of the return point into
register 14, and it must load the address
of the entry point of the called program
into register 15.

The identifier list is a group of
contiguous fuilifords, each of which is an
address of a data item to be passed to the
called program. The identifier list must
begin on a fullvord boundary. The
high-order bit of the last identifier, by
convention, is set as a flag of one to
indicate the end of the list. Figure 125
shows a portion of an assembler-language
program that illustrates the conventions
used in a calling program.

7he-A§§~bler-1an~~_b~11er-A2_Main
f~gra.!!: In an all-COBOL environment, the
first COBOL program in the run unit that is
invoked for execution becomes the main
program. It may be invoked via an EXEC JCL
card. or by linkage from some other
program. The fact that it is the first one
invoked under the task establishes it as a
main program. The main pcogram calls a
library subroutine which (1) initializes
the subroutine communications data area
ILBOCOM, and (2) saves a pointer to the
register save area of the main program. (A
main program also executes a GOBACK
statement is if STOP RUN had been coded.
See below.)

Any COBOL program in voked after the COBOL
main program has begun to execute is
considered a subprogram. A COBOL
subprogram knows it is a subprogram rather
than a main program because when it gets
control, ILBOCOM has already been
in it ia .li zed.

Execution of the STOP RUN statement by any
COBOL program causes a library subroutine
to be called which terminates the run unit.
This subroutine closes COBOL DCBs (such as
SYSIN, SYSOUT, and SYSDBOUT), and resets
certain flags and fields in ILBOCOM. If
ENDJOB (see below) is in effect, it
performs further cleanup. Then it picks up
the main program save area (register 13)
pointer that was saved when ILBOCOM vas
initialized, follows the save area back

chain pointer from there, and executes a
RETURN to the caller of the main program.

Execution of the GOBACK statement in a
COBOL subprogram causes a return to the
routine that called it. However, execution
of this statement in a COBOL main program
causes STOP RUN processing to occur (see
above) •

The compilation option ENDJOB causes the
STOP RUN subroutine to free all main
storage acquired during the run unit, and
to delete any subprograms or subroutine
library modules that were loaded during the
run unit. The only parts of the run unit
left after a STOP RUN with ENDJOB has
executed are any load modules that were
loaded by an assembler-language program
rather than a COBOL proq.ram. and the
library subroutine ILB05TT. These must be
deleted by an assembler-language calling
program.

If the compilation option RESTDENT is used,
it must be used by all COBOL programs in a
run unit. It causes linkage to library
subroutines to he established at execution
time, rather than at link edit time, and
maintains a list of all subroutine library
modules for which it has issued a LOAD.

The compilation option DYNAH causes dynamic
LOADs and DELETEs to be done for
subprograms specified in CALL and CALL
CANCEL statements in COBOL programs in a
run unit. It maintains a list of all
subprograms it loads in the run unit.

When a COBOL program is invoked by Job
Management via an EXEC JCL card, the
situation is straightforward. The COBOL
progra m so invo.ked is the main program and
begins the run unit.· A STOP RUN statement
causes a return to the system. RESIDENT
and DINAH may be used to improve efficiency
of main storage utilization. The ENDJOB
option is not important, in this case,
because Job Management frees main storage
and deletes load modules used by the
jobstep task when it terminates.

A COBOL program may also be invoked by
use of CALL, LOAD and CALL, LINK, or
ATTACH. If this is done, then the
following cautions must be observed:

1. Use the ENDJOB option to make sure the
region or partition is cleared of
GETMAIN-acquired storage and loaded
modules when the run unit ends. Then,
after the run unit has ended, have the
calling program issue a DELETE for
module ILBOSTT. If LOAD was used in
an assembler language program to bring
in any subprograms, a DELETE should
also be issued for those modules.

Calling and Called Pcograms 323

2. COBOL does not support concurrent
running of multiple COBOL subtasks in
one reg~on or partition. If a COBOL
subtask is attached, it must terminate
before the next one is attached.
Multiple subtasks may work in very
limited circumstances. The following
would definitely prevent multiple
subtasking from working: RESIDENT or
DYNAM options, or use of the same data
set by two different subtasks.

The COBOL subroutine library provides a
means whereby an assembler-language program
rna y become a main progra m; t bis is
accomplished by a call to the library
subroutine entry point ILBOSTPO, which
causes ILBOCOM to be loaded and
initialized. If this is done first, all
COBOL programs subsequently called will
behave as subprograms. This provides
several other ad vantages for certain types
of applications: execution of a GOBACK to
the calling assembler-language routine will
not cause STOP RUN processing--COBOL DCBs
will remain open, no storage will be freed,
no subroutines deleted; the
assembler-language main program can
continue calling its sub programs and adding
to its open data sets until one of the
subprograms executes a STOP RUN. Execution
of a STOP RUN will cause return to the
caller of the assembler-language program,
rather than to the assembler-language
program itself.

If this type of processing is desired,
the assembler-language program must issue a
CALL to the library subroutine entry point
ILBOSTPO before making any call to a COBOL
program. (Please note that ILBOSTPO
destroys the contents of Registers 0 and
1.) The following considerations apply to
the use of the CALL to ILBOSTPO (within a
single run unit):

1. The subroutine ILBOSRV must be
included in the link edit of the
calling program.

2. If RESIDENT is used, ILBOCOM must not
be included in any link edit. Please
note that the link edit of ILBOSRV
to serve the ILBOSTPO interface must
~eave a weak external reference for
ILBOCOM unresolved.

3. If NORESIDENT is used, all programs
and subroutines must be link edited
together.

4. The CALL to ILBOSTPO may not be used
if the COBOL program is invoked by
LINK or ATTACH.

5. If DYNAH is used, all COBOL programs
must be link edited in separate load
modules.

The following table distinguishes the
procedures for initialization with several
representative types of program linkage.

In Cases 1, 2, and 3, the CALL to
ILBOSTPO interface is being used. In Case
4, it is not.

Case 1. Caller should have a v-type
address constant for ILBOSTPO and should
call ILBOSTPO using it. Library
subroutine ILBOSRV must be included in
the link edit, but ILBOCOM must not be.
The COBOL program may then be called
as a subroutine.

Case 2. Caller should have a V-type
address constant for ILBOSTPO and should
call ILBOSTPO using it. Library
subroutine ILBOSRV. must be included in
the link edit of the caller, but ILBOCOM
must not be. No library subroutines
should be included in the link edit of
the called COBOL program. After the call
to ILBOSTPO, caller should issue a LOAD
for the called COBOL program. The COBOL
program may then be called as a subroutine.

Case 3. Caller should have a V-type
address constant for ILBOSTPO and should

r--------------~--------------------r----- -,
J I Caller and COBOL Caller and COBOL I
f I progr am Linked prog ram Linked i
t t Together separately f
t- f f
t Called COBOL I Case 1 Case 2 J
t Program compiled J I
t wi th RES ID ENT 1 ,
, opt.ion I I
t----------t ,
I Called COBOL I Case 3 Case 4 I
J Progr.am Compiled J I
I with NORESIDENT I I
I option I I
L- --'

324

call ILBOSTP using it. The COBOL program
may then be called as a subroutine. with
the NORES option, all subroutines vill be
link edited into the load module.

Case 4. Caller must LOAD the COBOL
module, then call it. Caller may
use LINK or ATTACH instead of LOAD,
CALL, and DELETE.

Figure 124 is an example of Case 2 and
illustrates one fairly typical and useful
configuration for assembler-language
programs calling COBoL-language routines.
COBOL1 is a transaction processor of some
type. ASM1 collects transactions and
passes them to 15M2, which passes them one
at a time to COBOL1. When all transactions
are done, 15M2 calls COBOL2 to execute a
STOP RUN, perform ENDJOB cleanup, and
.return to 1SM1.

Because ASM2 has first called ILBOSTPO,
all COBOL programs in the run unit will
behave as subprograms. Thus when COBOL1
returns control to ASM2 after a call, it
remains in main storage in its last-used
state. There is no overhead ior clean~p
or for reinitialization on the succeeding
call. COBOL1 can return control by
either an EXIT PROGRAM or a GOBACK.
(Because it is behaving as a subprogram,

GOBACK is equivalent to EXIT PROGRAM.)
ENDJOB processing is not done for any of
the exits from COBOL1-.--It is only done
once, in response to the STOP RUN in
COBOL2.

Two of the several possible ways to
compile and link edit this application are:

1. Compiling with ENDJOB and NORESIDENT.
A5M2, COBOL 1, COBOL2, and all required
library subroutinesliould be link
edited together. ASM1 would issue a
LOAD,f?r, ASM2, then CALL it. Upon
rece~v1ng control again, ASM1 would
DELETE ASM2."

2. Compiling with ENDJOB and RESIDENT.
ASM2 and ILBOSRV would have to be
link edited together. COBOL 1 could
also be included. In that case,
ASM1 would issue a LOAD for ASM2,
then CALL it. ASM2 would have to
issue a LOAD for COBOL2 before
calling it. When control is returned
to ASM1, it must issue a DELETE for
ASM2, COBOL2, and ILBOSTT.

CALL CALL ILBOSTPO

ASMI ASM~ LOAD-f-.. - ---0
CALL COBOLI

EXIT PROGRAM
or GOBACK

CALL

EXIT PROGRAM
or GOBACK

CALL

EXIT PROGRAM
or GO BACK

CALL COBOL~

STOP RUl\.

Figure 124. Effect of STOP RUN Statement

A called assembler-language program must
save the registers and store other
pertinent information in the save area
passed to it by the calling program (the
layout of the save area is shown in Figure
127). A called program must also contain a
return routine that (1) loads the address
of the save area back into register 13,
(2) restores the contents of other
registers, loading the return address in
register 14, and (3) optionally, sets flags
in the high-order eight bits of word 4 of
the save area to 1's to indicate that the
return occurred. It can then branch to the
address in register 14 to complete the
return.

Figure 126 (Part 6) shows a portion of
an assembler-language program that
illustrates the conventions used in called
p~ogram$ that are also calling programs.
F~gure 133 shows the JCL suggested for
compiling, link-editing, and executing a
calling assembler-language program and a
called COBOL program.

Calling and Called Programs 325

.r- I

I LA 13,AREA LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO I
t *REGIST ER 13. I
J ,
t I
1 I
f AREA OS 18F RESERVES 18 WORDS FOR THE SAVE AREA I
l J

• I f I
f * CALLING SEQUENCE I
I LA 1,ARGLST LOADS INTO REGISTER 1 THE ADDRESS OF THE IDENTIFIER I
I * LIST TO BE PASSED. TRANSFERS CONTROL TO THE ENTRY I
I CALL COBREGN2 POINT OF TUE CALLED PROGRAM. (THE CALL MACRO J
I * INSTRUCTION GENERATES CODING THAT LOADS A V-TYPE ,
J * ADDRESS CONSTANT -- COBREGN2 -- INTO REGISTER 15 ANDI
j * PLACES INTO REGISTER 14 THE RETURN ADDRESS, THAT IS"
J * THE ADDRESS OF THE FIRST BYTE FOLLOWING THE MACRO I
I * EXPANSION. I

• I J I
f I
• * PARAMETER LIST J
I OS OF THIS PAR AMETER LIST CONTAINS ONLY ONE ARGUMENT. I
• ARGLST DC xtSO' FIRST BYTE OF LAST ARGUMENT (ONLY I
f DC AL3(ARGUMEN~ ARGUMENT IN THIS PROGRAM) SETS BIT 0 I
I ARGUMENT DC C'1' TO 1. I
l- \ -f
I JiQ.t~: Since the calling program containing this coding could previously have been I
I called by a nother program, it also could establish linkage between the save area it has I
Ireceived and the save area it passes to the called program. It vould store in word I
,three of the old save area the address of the new save area, and it would store in tlordl
t two of the new sa ve area the address of the old save area. I
L- .I

Figure 125. Sample Linkage Coding Used in a calling Assembler-Language Program

COMMUNICATION WITH OTHER LANGUAGES

An American National Standard COBOL
program may communicate at object time
with programs written in other source
program languages, such as COBOL F, PL/I,
and FORTRAN. However, such communication
must follow the same conventions discussed
above under' "Linkage in a Called or Calling
Assembler-Language Program." The
relatively few problems that may arise
in using American National Standard COBOL
with COBOL F usually have to do with
slightly different boundary alignments,
slack-byte insertion, different meanings for
the same reserved word, and so on.

There is a greater disparity between
American Nat ional standa.rd COBOL and
FORTRAN, much of it stemming from the basic
differences in the applications for which
these languages were developed. (FORTRAN
is process oriented and does comparatively
li ttle file processing; COBOL, on the other
hand, is definitely file oriented and is
not mathematically self-sufficient.) Care
must be taken, therefore, in attempting to
pass arguments between American National
Standard COBOL and FORTRAN programs.

326

The use of COBOL and PL/I together
requires a number of important
considerations. See the pUblications OSLvS
linkage Editor and Loader and either Q~
'llLLQptiJ!i;inL£oml!ileLf!:Q9.~~lIlm~~~2
GU!Q~, Order No. SC33-0006 ot: as PLII
Checkout compiler: Prollg,.!!.m.g~S GuiQ~,
Order No. SC33-0007.

Abnormal terminations in non-COBOL
programs calling COBOL programs compiled
with either the STATE or the SYMDMP option
(see the chapter entitled "symbolic
Debugging Features") cause generation of
the following .m.isinformation:

• Incorrect number for the statement
responsible for the abnormal
termination. The last COBOL statement
in the called program executed before
the return to the calling non-COBOL
program is given in the "Last Card
Number Executed" message.

• Incorrect PROGRAM-ID when sucll an
abnormal termination occurs after
return from the called COBOL program.
ThePROGRAM-ID message contains the
user-specified name for the called
COBOL program ..

The following set of programs- (Figure
126) contains a sample COBOL main-line
program. COB MAIN, which calls COBOL and
assembler-language programs using arguments
that represent a data-item and a file-name.

IDENTIFICATION DIVISION.
PROGRAR-ID. COBKAIN.
E NVIRONftENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBH-310.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

Some of the called programs (COBOL1,
COBOL1B, and ASSMPGM) are themselves
calling programs. Program COBREGNO is
called by several programs, each of which
enters at a different entry point within
the program.

SELECT FILE-X ASSIGN TO UR-2540R-S-INFILE.

I

I-O-CONT ROL.
DATA DIVISION.
FILE SECTION.
FD ll~~=.!-

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

o 1 I N -=.RE~.~
05 TYPEN PIC I.

105 HOLDER PIC X.
05 FILLER PIC 1(78).

WORKING-STORAGE SECTION.
77 SIGNAL PIC X(8).
PROCEDURE DIVISION.

I OPEN INPUT FILE-X.
I tn~-jaf FiLE-iA'l'END GO TO CLOSE-FILE.
I
I
I
I CALL 'COBOL1' USING IN-REC.
I
I
J
I CALL 'COBREGN1' USING IN-REC.
I
t
I
I CALL 'ASSMRTN' USING SIGNAL.
I
I ,
I CLOSE-FILE. CLOSE FILE-X.
I
I
I
I STOP RUN. L-______________________ . __________________ ------. ________________ . ______ _

Figure 126. Sample calling and Called Programs (Part 1 of 7)

,
I
t
I
I
1
I
I
I

• J
t
1
I
t
I
I
t
I
I
I
I ,
I
I
1 ,
I
t
I
I
J
I
t
I
f
t

• I
1
I ,
I
J
t
I
1
I
J

Calling and Called Programs 327

r------------------- --,
I
I IDENTIFICATION DIVISION.
I PROGRAft-ID. COBOL1.
I ENVIRONMENT DIVISION.
I CONFIGURATION SECTION.
I SOURCE-COMPUTER. IBM-370.
I OBJECT-COMPUTER. IBM-370.
I INPUT-OUTPUT SECTION.
I FILE-CONTROL.

I-O-CONTROL.
DATA DIVISION.
FILE SECTION.
WORKING-STORAGE SECTION.
77 TRANS-CO.BL PIC X (7).
LINKAGE SECTION.
01 PASS-REC.

05 FILLER PIC X.
05 TRANS-VALUE PIC X.
05 FILLER PIC X(78).

PROCEDURE DIVISION USING PASS-REC.

CALL 'COBOL1A' USING TRANS-COBL.

CALL 'COBOLIB' USING TRANS-COBL.

GOBACK.

Figure 126. Sample Calling and Called Programs (Part 2 of 7)

.---
I IDENTIFICATIO N DIVISION.
I PROGRAM-ID. COBOL1A.
J ENVIRONMENT DIVISION.
I CONFIGURATION SECTION.
I SOURCE-COMPUTER. IB~-370.

• OBJECT-COMPUTER. IBM-370.
J INPUT-OUTPUT SECTION.
I FI LE-CONTROL.
I I-O-CONTROL.
I DATA DIVISION.
I FILE SECTION.
1 WORKING-STORAGE SECTION.
I LINKAGE SECTION.
t 77 TRANS-COB 1 A PIC X(7).
I PROCEDURE DIVISION USING TRANS-COB1A.
I
j

I
t GOBACK.

Figure 126. Sample Calling and Called Programs (Part 3 of 7)

328

I
I
f
I
I
I
I
I
I
I

.,
I
I
t
J
I
I
t
I
I
t ,
I
I
I
I
I
I
J
I

-'

.---
IDENTIFICATION DIVISION.
PROGRAM-ID. COBOL lB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
PI LE-CONTROL.
I-O-CONTROL.
DATA DIVIS ION.
FILE SECTION.
WORKING-STORAGE SECTION.
77 TRANS-CQBREGN PIC X(7).
LINKAGE SECTION.
77 TRANS-COB1B PIC X(7).
PROCEDURE DIVISION USING TRANS-COB1B.

CALL 'COBREGNO' USING TRANS-COBREGN.

GOBACK.

Figure 126. Sample calling and Called Programs (Part 4 of 7)

r-----
IDENTIFICATION DIVISION.
PROGRAM-ID. COBREGNO.
ENVIRONftENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-370.
OBJECT-COMPUTER. IBM-370.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
I-O-CONTROL.

1-

DATA DIVIS ION.
FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.
77 TRANS-COB PIC X(7).
77 TRANS-ASSM PIC 1(4).
01 P1SS-R EC.

05 PILLER PIC x.
05 TRANS-VALUE PIC X.
05 FILLER PIC 1(18).

PROCEDURE DIVISION USI NG TRANS-COB.

GOBACK.
B. ENTRY 'COBREGN1' USING PASS-BEC.

GOBACK.
C. ENTRY 'COBREGN2' USING TRANS-ASSM.

GOBACK.

Figure 126. Sample Calling and Called Programs (Part 5 of 7)

,
I
I
1
I
t
I
I
1 ,
1
I
I
t
J
I
J
I
t
I , ,
t
1
1

.J

----''1
t
I
I ,
I
I
I ,
I ,
t
I
I
1
I
I
I
t
I
I ,
I
I ,
I
I
t

• J
I
I
I
t
I ________ ,,J

Calling and Called Programs 329

r-
j

I
J ,
J
J ,
J
f
I
t
I
I
I
J
f
I
I
I
1
I
I
J
J
I
I
f
I
f ,
j

I
I ,
J
J
f
I
J

• I
f
t ,
I
I
I
I
t
I
I
J ,
J
I
I
t
J
I

•

ASSMPGM

*

START a
PRI NT NOGEN
ENTRY ASSMRTN

USING ASSMRTN,15

* SAVE ROUTINE
ASSMRTN SAVE (14,12)

*
*
*
*
*
*
*
*

*
*

*

*

*
AREA

PROCESS

*
*
*
*
*
*
*
*
*

LR 10,15
DROP 15
USING ASSMRTN,10
LR 11,13

LA

ST

ST

B
DS

L

13,AREA

13,8(11)

11,4(13)

PROCESS
18F

2,0(1)

1

I
I

ESTABLISHES ASSMRTN AS AN EXTERNAL NAME THAT CAN BE 1
REFERRED TO I.N ANOTHER PROGRAM. f

I
I
I

STORES THE CONTENTS OF REGISTERS 14, 15, 0, AND 1 •
IN WORDS 4, 5, 6, AND 7 OF THE SAVE AREA. I
THESE ARE CONVENTIONAL LINKAGE REGISTERS. f
REGISTERS 2 THROUGH 12, WHICH ARE NOT •
ACTUALLY USED FOR LINKAGE, ARE SAVED IN SUBSEQUENT,
WORDS OF THE SAVE AREA. THE EXPANDED CODE OF THE J
SAVE MACRO INSTRUCTION USES REGISTER 13, WHICH I
CONTAINS THE ADDRESS OF THE SAVE AREA, IN f
EPFECTING THE STORAGE OF REGISTERS. I

t
I
I

LOADS THE ADDRESS OF THE SAVE AREA INTO REGISTER 11"
WHICH WILL SUBSEQUENTLY BE USED TO REFER TO THE I
SAVE AREA. J

LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
REGIST ER 13.

I
t
I
I

STORES THE ADDRESS OF THIS PROGRA~'S SAVE AREA INTO I
WORD 3 OF THE SAVE AREA OF THE CALLING PROGRAM. I

STORES THE ADDRESS OF THE PREVIOUS SAVE AREA INTO
WORD 2 OF THIS PROGRAM'S SAVE ARRA.

RESERVES 18 WORDS FOR THE SAVE AREA.

I
I
I
I

• I
LOADS INTO REGISTER 2 THE ADDRESS OF THE IDRNTIFIER-,

LIST PASSED TO THE PROGRAM. THE ADDRESS OF THE I
IDENTIFIER-LIST IS ALWAYS PASSED IN REGISTER 1, I
WHICH IS USED HERE AS THE BASE REGISTER TO GET THEI
ADDRESS. SUBSEQUENT REFERENCES TO THE IDENTIFIER I
WILL USE REGISTER 2 AS THE BASE REGISTER FOR THAT I
ADDRESS. (IF A VARIABLE-LENGT~ IDENTIFIER-LIST •
COULD BE USED IN CALLING THIS PROGRAM, EACH I
IDENTIFIER WOULD BE TESTED FOR A ONE IN THE I
HIGH-ORDER BIT.) I

{User-written program statements}
I
t
I

*

*

*
*
*
*
*
*

CALLING SEQUENCE
LA 1,ARGLS'f

CALL COBREGN2

I
LOADS INTO REGISTER 1 THE ADDRESS OF THE IDENTIFIER-I

LIST TO BE PASSED. I

TRANSFERS CONTROL TO THE ENTRY POINT OF THE CALLED
PROGRAM. [TBE CALL MACRO INSTRUCTION GENERATES
CODING THAT LOADS A V~TYPE ADDRESS CONSTANT -
COBREG N2 -- INTO REGISTER 15 AND PLACES INTO
REGISTER 14 THE RETURN ADDRESS (THAT IS, THE
ADDRESS OF THE FIRST BYTE FOLLOWING THE MACRO
EXPANS ION)].

I
'J
I ,

{User-written program statements}

I
I
I
I
I
I L-_______________________________ ~------------------
I

Figure 126. Sample Calling and Called Programs (Part 6 of 7)

330

*

*

*
*
*
*
*
*

*
*

CALLING SEQUENCE
LA 1, ARGl.ST

CALL COBREGN2

-----,

LOADS INTO REGISTER 1 THE ADDRESS OF THE
IDENTIFIE"R-

LIST TO BE PASSED.

TRANSFERS CONTROL TO THE ENTRY POINT OF THE CALLED
PROGRAM. [THE CALL MACRO INSTRUCTION GENERATES
CODING THAT LOADS A V-TYPE ADDRESS CONSTANT -
COBREGN2 -- INTO REGISTER 15 AND PLACES INTO
REGISTER 14 THE RETURN ADDRESS (THAT IS, THE
ADDRESS OF THE FIRST BYTE FOLLOWING THE MACRO
EXPAN SION)].

f ,

(User-written program statements}

I
J
I
J
I
I
I
J
I
I
I
I
I
I
1
1
I
I

RETURN ROUTI NE
L 13,4(13) LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA

BACK INTO REGISTER 13.

RETURN(14,12) ,T,RC=(15) THIS RETURN MACRO INSTRUCTION RESTORES THE SAVED I

*
*
*
*
*
*
*

REGISTERS (14, 15, AND 0 THROUGH 12). THE RETURNI
ADDRESS IS RESTORED TO REGISTER 14, AND THE I
EXPANSION INCLUDES A BRANCH TO THAT INSTRUCTION. J

THE Ir' IN THE RETURN MACRO INSTRUCTION CAOSES I
THE EIGHT HIGH-ORDER BITS OF WORD 4 OF THE SAVE 1
AREA TO BE SET TO ONES AS AN INDICATION THAT THE ,
RETURN HAS OCCURRED. THE RC=(15) PARAMETER I
INDICATES THAT THIS PROGRAM IS PASSING A RETURN 1
CODE IN REGISTER 15. t

* PARAMETER
DS

LIST
OF THIS PARAMETER LIST CONTAINS ONLY 1 ARGUMENT.

t
J
J
J
J
1
t

ARGLST X' 80' DC
DC

ARGUMENT DC
END

AL3 (ARGUMENT)
C' l'

FIRST BYTE OF LAST ARGUMENT (ONLY ARGUMENT IN
THIS PROGRAM) SETS BIT 0 '1'0 1.

Figure 126. Sample Calling and Called Programs (Part 7 of 7)

Each time an entry point is specified in
a called program, an ext~gL!!.a.!!lQ is
defined (except when a program is compiled
using the DYNAH and RESIDENT compiler
options). An external name is a name that
can be referred to by another separately
compiled or as~embled program. Each time
an entry name is speCified in a calling
program, an ~~~al_ref~~£~ is defined
except when a program" is compiled using the
DYNAM and RESIDENT compiler options. An
external reference is a symbol that is
defined as an external name in another
separately compiled or assembled program.
The linkage editor resolves external names
and references and combines calling and
called progr ams into a forma t sui table for
execution together, i.e., as a single load
module except when programs are compiled
with dynamic CALL statements and/or the
RESIDENT option (see the section entitled
"Programs Compiled with the DYNAH and/or
RESIDENT options").

Load modules of both calling and called
programs are used as input to the linkage
editor. There are two kinds of inputr
primary and additional. ~£ima£~ input
consists of a sequential data set that
contains one or more separately compiled
object modules and/or linkage editor
control statements. The primary input can
contain object modules that are either
calling or called programs or both.
,!ggiti2!lg! input consists of object modules
or load mod ules that are not part of the
primary input data set but are to be
included in the load module. The
additional input may be in the form of (1)
a sequential data set consisting of one or
more object modules with or without linkage
editor control statements, or (2) libraries
containing object modules with or without
linkage editor control statements, or (3)
libraries consisting of load modules. Note
that the secondary input (all libraries
and/or data sets) must be composed of
either all object modules or all l..Qg,g
modules, but it cannot contain both types.
The additional input is ~pecified by

Calling and Called Programs 331

r---.. -------------, I Word Area I
I No. No. Contents I
~---.--------------------------~
I 1 AREA Used by COBOL.
I
I 2
I
I
I

AREA +4 Address (passed by the calling program) of the save area used by the
calling program. This is the address of a save area that was
passed to the called program by the program that called the called
program.

I
I 3
I
I
I

AREA +8 Address (stored by the called program) of the next save area, that
is, the save area that the called program provides for a program
that it calls. The called p~ogram need not reserve a save area if
it does not, in turn, call another program.

I
4 AREA +12 Return address (contents of register 14) stored by the called

program.

5 AREA +16 Entry pOint address (contents of register 15) stored by the called
program.

6 AREA +20 Contents of register 0 (stored by the cal.1..ed program).

7 AREA +24 Contents of register 1 (stored by the called program); that is, the
address of the identifier list passed to the called program.

8 AREA

I
I

+28(

+68 ~
Contents of registers 2 through 12 (stored by the called program).

I 18 AREA l __ _

Figure 127. Save Area Layout and Contents

linkage editor control statements in the
primary input and a DD statement for each
additional input data set. Addi tional
input may contain either calling or called
programs or both.

!21~: Each additional input data set may
itself contain external references or names
and linkage editor control statements that
specify more additional input.

SPECIFYING PRIMARY INPUT

The pri rna ry input data set is specified
for linkage editor processing by the SYSLIN
DD statement. The linkage editor must
always have a primary inpu t data set
specified by a SYSLIN DD statement whether
or not there are called or calling programs
and even if the primary input data set
contains only linkage editor control
statements. The SYSLIN DD statement that
specifies the primary input is discussed in
"Linkage Editor Data Set Requirements" (see
"Example of Linkage Editor Processing" for
a discussion of how to specify a primary
in pu t data set that cont ains more than one
object module along with linkage editor
control statements).

332

SPECIFYING ADDITIONAL INPUT

Additional input data sets are specified
by linkage editor control statements and a
DD statement for each additional input data
set.

The linkage editor control statements
that specify additional input are INCLUDE
and LIBRARy.1 A primary input data set may
consist entirely of such statements. The
INCLUDE and LIBRARY statements may be
pla~ed before, bet ween, or after object
modules or other control statements in
either primary or additional input data
sets. One method of using these statements
is shown in Figure 134.

!Q1~: Additional input often contains
members of libraries (see "Specifying
Libraries as Additional Input" in
uLibraries").

1The operation field in a linkage editor
control statement must start after column
1. The operand field must be preceded by
at least one blank.

The INCLUDE statement is used to include
an additional input da·ta set. that is either
a member of a library or a sequential data
set. The format is:

r------------~-------------- ---------------,
I operation Operand
t-------+--
I INCLUDE ddname((member-name
I [,member-name] •••)]
I [,ddname[(member-name
, [, member-name •••])]] •••

I ,
I
I

• I L-___________ ~ ____ _ _ ________ J

where ddname indicates the name of the DD
statement that specifies the library or
sequential data set, and member-name is the
name of the library member t hat is to be
included. Member-name is not used w'hen the
additional input data set is not a member
of a partitioned data set.

The LIBRARY statement is used to include
additional input that may be required to
resolve external references. The format
is:

r-
t operation Operand
r-----------~----
I LIBRARY ddname(member-name
I [,member-name] •••)
I [,ddname(member-name
I C,member-name •••])] ••• ~L ______________ ~ _________________________________ J

where ddname indicates the name of the DD
statement that specifies the library, and
member-name is the name of the member of
the library.

The LIBRARY statement differs from the
INCLUDE statement in that libraries
specified in the LIBRARY statement are not
searched for additional input until all
other processing, except references
reserved for the automatic library call, 1S
co.pleted by the linkage editor. Any
additional module specified by an INCLUDE
sta teaent is incorporate d immediately,
vheneyer the INCLUDE statement is
encountered.

The ALIAS statement specifies additional
names for the output library member, and
can also display names of additional entry
points. If a load module has more than one
entry point or more than one CSECT and the
user wishes to access that alternate entry
at execution time via a dynamic CALL, he
should specify an ALIAS with the same
symbolic name as the desired entry point or
CSECT. The format is: . ~

JOperationl Operand
, I
I 'lsymbol
IALIAS I
I I external

l [,SymbOl

name\ ,external

where symbol specifies an alternate name
for the load module, and external name
specifies a name that is defined as a
control section name or entry name in the
output module.

If the linkage-editor input includes an
ALIAS statement, the symbolic name
specified is identified with the relative
location of the entry point or CSECT name
that matches the ALIAS. If there is no
matching entry point or CSECT name, the
ALIAS is identified with relative location
zero in the load module.

liQ!~: If the us~r plans to dynamically
call a subprogram at an ENTRY point, an
ALIAS card is required in the link-edit
step for that entry point.

The NAME statement specifies the name of
the load module created from the preceding
input modules and serves as a delimiter for
input to the load module. The NAME
statement may be used to assign a symbolic
name to a load module. This symbo.lic name
is entered in the directory of the
partitioned data set that contains the
module, and allows the module to be
accessed at execution time by an OS/VS
LOAD, LINK, XCTL, or ATTACH macro. The
format is:

operation Operand

NAME member-name ((R)]
L--___ ~

where member-name specifies the name to be
assigned to the load module tha t is created

Calling and Called Programs 333

from the preceding input modules, and {R)
indicates that this load module replaces an
identically named module in the input
module library. (If the module is not a
replacement, the parenthesized value (R)
has no effect.)

If the linkage-editor input includes a
NAME statement, the symbolic name specified
is always identified with relative location
zero in the load module, unless there is an
ENTRY statement specifying a different
location.

The ENTRY statement specifies the
symbolic name of the first instruction to
b~ executed when the program is called by
its module name for execution. An ENTRY
statement should be used whenever a module
is reprocessed by the linkage editor. If
more than one ENTRY statement is
encountered, the first statement specifies
the main entry point; all other ENTRY
statements are ignored. Its format is:

r-
loperation IOperand
a I
'ENTRY lexternalname

"1 , .,
J

L-
_____________ ,--J

wh.ere extern alname is defined as either a
control section name or an entry name in a
linkage editor input module.

QiDER Statemen1

The ORDER statement specifies the
sequence in which control sections or named
common areas are to appear in the output
load module.' When multiple ORDER
statements are used, their sequence further
determines the sequence of the control
sections or named common areas in the
output load module; those named on the
first statement appear first, and so forth.
Its forma tis:

r- , -,
I operation ,operand I
l- I --f
IORDER ~ommon-area-name}

[(P)] [
J

I sectname • l- I .,
• ~ ommon-a rea-name}] J

• J sectname [(P)] • l- I --'

where common-area-name is the name of the
common area to be sequenced, csectname is

334

the name of the control section to be
sequenced, and P specifies that the
starting address of the control section or
named common area is to be on a page
houndary within the load module. When P is
specified, the control sections or common
areas are aligned on 4K page boundaries
unless the ALIGN2 attribute is specified on
the EXEC statement.

The PAGE statement aligns a control
section or named common area on a 4K page
boundary in the load module. For OS/VS2,
if the ALIGN2 attribute is specified on the
EXEC statement for the linkage editor job
step, use of the PAGE statement aligns the
specified control sections or common areas
on 2K page boundaries within the load
module.' Its format is:

I i ----------,

JOperationlOperand I
• f .,
I PAGE J~common-area-name{ [f
I Ifsectname ~ I
~ I ------------~
I Ikommon-area-namelJ '
J ~sectname ~ I
~ ________ -4' __ , ______________ ~~ J

where common-area-name is the name of the
common area to be aligned on a page
boundary, and csectname is the name of the
control section to be aligned on a page
boundary.

PROGRAMS COMPILED WITH THE ~,P_!.~i~AND/OR
RESIDENT OPT.IONS

In the usual called/calling situation,
all references to any subprogram or library
subroutines generated in an object program
result in a V-type address constant ('CON)
that mast be resolved by the linkage
editor. Therefore, at link-edit time, the
modules referred to by VCONs are made a
part of a single load module containing the
object program and all required subprograms
and library routines. When the object
program is executed, all those required
routines are present in the user region for
the entire execution step, even though they
may have been used only at the beginning of
the main program and never invoked again.
with dynamic linkage, on the other hand,
the user can invoke a called program when
it is needed and retain it for only the
period needed.

Subprograms invoked through the CALL
literal statement are dynamically loaded
using the operating System LOAD macro if
DYNAK is specified. Before the CALL
subprogram is executed, linkage is effected
for all COBOL library subroutines required
by the subprogram. Simila.rly, use of the
CANCEL statement makes it possible to
dynamically delete subprograms at object
time.

Figure 122 is an exam'ple of a job
compiled with th~ ~YNaM and RESIDENT
options. Pigurei 128 through 131 in this
section illustrate for called/calling
programs the relationship betvee~ the
possible combinations of the DINAH/RESIDENT
options and the identifier, and literal
options of the CALL and CANCEL statements.
Figure 131 shows the JCt necessary for
compiling, link-editing, and executing a
calling COBOL program and a called COBOL
program when both of the prog,rams in voke
the DINAH and RESIDENT compiler options.

When a program is compiled with DIN AM
and RESIDENT, no external references are
generated. Therefore, while the program
may refer to other modules, no references
are resolved by the linkage editor. In
such a case, the only input to the linkage
editor is the program itself. Any module
the program refers to must exist in load
module form in a library that is available
to the system at execution time.

The link-editing that takes place varies
with the combinations of the DYNAM(NODYNAM)
and RESIDENT (NOR ESIDENT) options in effect.
What would seem to be the most
representative link-edit situations are
discussed in the sections that follow.

When both DYNAH and RES IDENT are
specified for the called/calling situation
pictured in Figure 128, first the main
program COBA is compiled and link-edited;
then each of the tvo subprograms COBB and
COBC is compiled and link-edited
separately,· thereby producing th.ree
separate modules. Then the main program is
executed.

In this situation, 'all external
references are dynamically resolved.
Therefore, no VCONs are generated for the
address of an external symbol that would be
used in a static situation (that is, a CALL
literal without the DYNAH option) to effect
branches to other programs.

r--, ,.----, .----,
I I CALL I I CALL I I
ICOBA~'-------->tcoBB~'-------->lcOBC.
I tliteral I Iliteral I ,
"'---_J '----.J L--J

Figure 128. CALL with DYNAM and RESIDENT

~ecif1ing NODYNAM/RES!~~liI

Wh~n NODYNAM and RESIDENT are specified
Jor the called/calling situation pictured
in Figure 129, a dynamic situation occurs
'because of the inclusion of CALL identifier
in the calling programs. That is, because
the name of the called subprogram is not
available until execution time, a CALL
identifier sta tement cannot be used in a
static situation.

In Figure 129, if NORESIDENT had been
'either s~ecified or implied by default, it
would have been overridden with RESIDENT.
The compiler automatically recognizes the
requiremen t for the library management
feature by the presence of either a CALL
identifier or CANCEL identifier in the
source program.

.t!otg: A printed indication of the compiler
options in effect appears in the statistics
section of the compiler output. (Por
examples of compiler statistics, see the
chapter entitled "out put.lJ)

r--1 ...-----, ,.---,

I J CALL t I CALL I I
jCOBAr----->ICOBB' > ICOSCI
1 lidentifierf lidentifierl

Figure 129. CALL With NODYNAM and RESIDENT

In contrast with Figure 128, the
called/calling situation pictured in Figure
130 invokes the CALL literal option. Again
the,proqrams are compiled in the order
COBA, COBB, and COBC. The CALL literal
statements included in programs COBA and
COBB result in static calls that must be
resolved by the linkage editor. Therefore,
the three program units are ,enjoined as a
single module. However, with the COBOL
Library Management Feature in effect,
linkage to the library is dynamic. That
is, the required COBOL object-time library
subroutines are not link-edited, bu~
linkage is effected dynamically at object
time.

IQ!~: When including both dynamic and
static CALL statements in the same run
unit, the programmer should not dynamically

Calling and Called Programs 335

call a ny sub programs tha t are otherwise
called statically. To do so might cause
multiple copies of the called program to be
created and, therefore, produce
unpredictable results.

The combination of RESIDENT and NODYNAM
should be used only if required library
subroutines are in fact permanently
resident, or if all calls to COBOL
subprograms are dynamic. If the library
subroutines are not permanen t1y resident,
they will be loaded into the region or
partition during program execution. This
could cause storage fragmentation if a
sta.tic call is made to a COBOL subprogram,
because the subroutines required by a
subprogram can only be removed from the
region by a CANCEL statement for the
subprogram, and a CANCEL is invalid for a
subprogram that is statically called.

CALL CALL
literal---> literal---)

COBA COBB COBC

Figu.re 130. CALL with NODYNAM and RESIDENT
With CALL Literal Option

For the called/calling situation
pictured in Figure 131, the COBOL Library

336

Management Feature is not in effect, and
all CALL statements result in static calls
that must be reso1Yed by the linkage
editor. one load module is produced for
the programs COBA, COBB, COBC, and all of
the necessary COBOL library subroutines.

The NODYNAM/NORESIDENT set of options
should be used only when the user does not
intend to use the CALL or CANCEL identifier
statement or the Library Management
Peature. If either a CALL identifier or a
CANCEL identifier statement appears in any
one program, the Library Management Feature
is in effect for tha!. program only. This
situation may result in a duplication of
subprograms and COBOL library subroutines
within the user region/partition, thereby
causing unpredictable results.

r-
I

CALL
literal-->

CALL
litera1--)

I COBA COBB COBC
1 i
ICOBOL Library Subroutinesl
'--

Pigure 131. CALL With NODYNAM and
NONRESIDENT

,-
I//JOBY
II/STEPl
t
I
I
II/SYSLIN
II/SYSIN

• I
I
I
1/*
al/STEP2
IIISYSLMOD
II/SISLIN
'I/SYSIN
I NAME
11*
IIISTEP3
II/SYSLIN
IIISYSIN
I
I
11*
IIISTEP4
IIISYSLMOD
IIISYSLIN
II/SYSIN
I NAME
41*
II/STEPS
II/STEPLIB
11*
L.

Figure 132.

JOB
EXEC

DO
DD

PGM=IKFCBLOO,PARM='LOAD,DYNAM,RESIDENT'

DSNA8E=&&LINKOS1,DISP=(MOO,PASS).UNIT=SYSSQ,SPACE=(TRK, (10,10»

*
{SiOllrce modille for COBMAIN, a calling COBOL proqram}

CALL 'COBSUB'

,
1
f
I
I
t
I
I
I
t
I ,
I

EXEC PGM=HEWL I
DD DSNAME=£&GOFILE,DISP=(ftOD,PASS),UNIT=SYSSQ,SPACE={TRK,(10,10,10» I
DO DSNAME=&&LINKDS1,OISP=(OLD,DELETE) t
DO * I
COBMAIN I

EXEC
DD
DD

PG M=IKFt:;BLOO, PARM=' LOAD, DY NAM, RESID.ENT'
OSNAME=&&LINKDS2,DISP=(MOO,PASS) ,UNIT=SYSSQ,SPACE=(TRK, (10,10»

*
{Sollrce module for COBSUB, a called COBOL program}

EXEC
DO
DD
DO
COBSUB

EXEC
DD

PGM=HEVL
DSNAME=&&GOFILE,DISP=(OLD.PASS)
OSNAMR:&&LINKDS2,DISP=(OLD,DELETE)

*

PG M=COBMAI N
OSNAME=&&GOFILE,DISP=(OLD,DELETE)

Sample JCL for Called/Calling Proqrams Compiled with the DYNAM and RESIDENT
Options

I
I
1
I
t
1
J
)

I
J
I
)

I
J ,
J

.J

Calling and Called "Programs 337

r- I

IIICALLPEOG JOB I
I IISTEP 1 EXEC PGM=IKFCBLOO¥PARft= (LOAD,NClDECK) I
f I
I I
t I
IIISYSLIN DD DSN=&&TEMPLIB1,UNIT=SYSSQ,DISP=(NEW,PASS), X I
t I I SPA C E= (TR K, (1 0, 1)) I
IIISYSIN DD * I
t {Source module for COBSUB¥ a called COBOL program) J
1/* I
IIISTEP2 EXEC PGM=ASMBLR,PARM=(LOAD,NODECK), X I
til COND=(9,LT,STEP1)1 I
fllSYSGO DD DSN=&&TEMPLIB1,DISP=(MOD,PASS) I
IIISYSIN DD * I
J (Source module for ASSMMAIN, a calling assembler- I
I language program) J
1/* J
IIISTEP3 EXEC PGM=HEWL,PARM=(LIST,XREF,LET), X I
III CO N D= { (9, LT , S T E P 1) , (5 , L T , STEP 2)) f
J t
t I
I I
IllPROGLIBl DD DSN=&&TEMPLIB1,DISP=(OLD~PASS) I
IIISISLIN DD * ,
I INCLUDE PROGLIB1~ ,
I ENTRY ASSMMAIN3 I
f/* I
IIISTEP4 EXEC PGM=*.STEP3.SYSLMOD,COND=({9,LT,STEP1), X I
III (5,LT,STEP2), (5,LT,STEP~) I
111SYSOUT DD SYSQUT=A J
~ ~
,lThis example was chosen to illustrate the testing of condition codes. ,
12See the discussion under the INCLUDE stateJlent. f
13 Because the COBOL program is compiled first and the linkage editor cannot identify the
I proper entry point, the ENTRY statement must be included. •
~ J

Figure 133. Sample JeL Used for a Calling Assembler-Language Program and a Called COBOL
Program

LINKAGE EDITOR PROCESSING

The linka ge edi tor fi rst processes the
primary input and any additional input
specified by INCLUDE statements. All
external references in the primary that
refer only to other modules in the included
input are resolved first. If there are
still unresolved references after this
inpu t is processed ,the automatic call
library, which includes libraries specified
by the SYSLIB DD statement and by the
LIBRARY statements, is searched to resolve
the references. The automatic call library
generally will contain the COBOL library

338

subroutines. (Externar references to these
subroutines are generated by the COBOL
compiler when statements in the source
module require certain functions to be
performed, such as some da ta conversions.)

If the additional input contains
external references andlor linkage editor
control statements, the references are
resolved in the same way. Data sets
specified by the INCLUDE statement are
incorpora ted when the s ta temen t is
encountered. Data sets specified by the
LIBRARY statement are used only when there
are unresolved references after all of the
other processing is completed.

r-
IIIJOBI
IllSTEPl

• I
I
I
II/SISLIN
II/SYSIN
I
I
I
11*
IIISTEP2
I
I
I ,
IIISYSLIN
IIISISIN
I
I
I
11*
IIISTEP3
I
f

• I
IIISYSLIN
Il/SYSIN
I
I
I
1/*
IIISTEP4
I ,
f
I
IIISYSLIB
IIISYSU10D
III
IIIOBLIB
IIIADDLIB
IIISYSLIN
III
I
I
1/*
L

Figure 134.

JOB
EXEC

DD
DD

PGK=IKFCBLOO,PARM=LOAD

DSNAME=&&GOFILE,DISP=(MOD,PASS), UNIT=SYSSQ,SPACE= (TRK, (10,10,)

*
(Source module for COBftAIN)

EXEC PGM=IKFCBLOO,PARM=LOAD

DD DSNAME=*.STEP1.SYSLIN,DISP=(MOD,PASS)
DD *
(Source module for COBOL1)

EXEC PGM=IKFCBLOO,PARM=LOAD

DD DSNAME=*.STEP2.SYSLIN,DISP=(MOD,PASS}
DD *
(Source module for COBOL1A)

EXEC

DD
DD

DD
DO
DD
DD
INCLUDE
LIBRARY

PGM=IEWL

DSNAME=SYS1.COBLIB,DISP=OLD
DSNAKE=PGMLIB(CALPGM),DISP=(NEW,KEEP),UNIT=3340,X
SPACE= (1024, (50,20,2» ,VOLUME=SER=LIBPAK
DSNAME=OBJLIB, DISP=OLD
DSNAME=MYLIB,DISP=OLD
DSNAME=&&GOFILE,DISP={OLD,DELETE) X

* OBLIB (CO BOL 1 B, ASSHPGK)
ADDLI B (COBREGNO)

Specifying Primary and Additional Input to the Linkage Editor

Figure 134 shows the control statements
for a job that separately compiles three
source modules (one is a calling program
and two are called programs) and places
them in one data set as primary input for
the linkage editor. The linkage editor
then links them together with additional
input {called programs that are members of
the specified librarie~ to form one load
module.

STEPl compiles a source module call ed
COBKlIN, STEP2 compiles a source module
called CDBOL1, and STEP3 compiles a source
module called COBOL1A. The object module
from each step is placed in the sequential
data set called &&GOFILE. (Since MOD and
PASS are specified for &&GOFILE in the
SYSLIN DD statement in STEP1, the object
modules COBOL1 and COBOL1A are placed in
the data set behind the ob ject mod ule
COB~AIN. When SYSSQ is not a mass storage
device, the SPACE paramete.r is ignored.)

,
I
I
I
I
I
I
I
I
f
I
1

• I
I
I
I
I
f
J

I
I
I
I
I
I
I
I
I
I
I
I
J
I
I
I
J
I
I
I
J
J
J
1
I
t
t
1
~
I
J

Calling and Called Programs 339

In STEP4, the linkage editor uses the
&&GOFILE data set as primary input, and
thecataloged libraries MILIB, OBJLIB, and
SYS1.COBLIB as additional input. (The
INCLUDE. anel LIBRARY statements become part
of the primary input through the DD *
statement following the SYSLIN DD
statement.

The object modules of the data set
&&GOFILE and the members COBOL1B and
~SSMPGM of OBJLIB are processed first. If
there are unresolved references after this
input is processed, the linkage editor
searches the automatic call library, which
includes the COBOL subroutine library and
member COBREGNO of MYLIB, to resolve these
references. OBJLIB is specified in the
OBLIB DD statement and MYLIB in the ADDLIB
DD sta tement .•

After linkage editor processing is
completed, a new library, PGMLIB, is
crea ted with CALPGM. as a member. CALPGM
contains COBMAIN, COBOL1, COBOL1A, COBOL1B,
ASSMPGM, and, possibly, COBOL subroutines
and COBREGNO.

If it is necessary to conserve main
storage, it can be accomplished by applying
the overlay technique to called and calling
programs. Called programs that do not need
to be in main storage at the same time can
be given the same relative storage address
and then loaded at di.fferent times during
execution when they are needed. In this
way, the same storage space can be used for
more than one called program.

Note: The use of execution-time
debugging aids (SYMDMP, STATE, FLOW,
COUNT, and so forth) when utilizing
overlay structures is not recommended.
Doing so may result in uppredictable
operations within the STAE and debugging
,routines, or even abends.

Assume that the six programs illustrated
in Figure 125 have the following load
mod u Ie si 'Zes:

r- ,
I program Module SiZe (in Bytes) • I-- ~
J eOBM AIN 11,000 I
J CO BO.L 1 4,000 I
I COBOL1A 6,000 J
1 COBOL 1B 5,000 J
I COBREGNO 3,000 I
f ASSMPGM 13,000 I
L- --L- .J

340

Through the linkage mechanism, CALL
COBOL1 ••• , all subprograms plus COBMAIN
must be link-edited together to form one
module 42,000 bytes in size. Therefore,
COBl1AIN would require 42 ,000 bytes of
storage in order to be executed.

If the subproqrams needed do not fit
into main storage, the following two
techniques of overlay are available to the
COBOL programmer:

• preplanned overlay using the linkage
editor

• Dynamic overlay using assembler
language macro instructions during
execution

~: The largest load module that can be
processed under OS/VS1 is 524,288 bytes.
If a load module exceeds this limit, it
should be divided. Onder OS/VS2, larger
load modules are permitted. The ON
OVERFLOW phrase should be used with the
CALL statement to handle any such size
errors.

The preplanned linkage editor facility
permits the Leuse of storage locations
already occupied. By judiciously
modulari'Zing a program and using the
linkage editor overlay facility, a program
that is too large to fit into storage at
one time can be exec~ted.

In using the preplan ned overlay
technique, the programmer specifies to the
linkage editor which subprogLams are to
overiay each other. The subprograms
specified are processed as part of the
program by the linkage editor, so they can
be automatically placed in main storage for
execution when requested by the program.
The resulting output of the linkage editor
is called an overlay structure.

It is possible, at linkage edit time, to
set up an overlay structure by using the
COBOL source language linkage statement and
the linkage editor OVERLAY statement.
These sta temen ts enable a user to call a
subprogram that is not actually in storage.
The details for setting up the linkage
editor control statements for accomplishing
this procedure can be found in the
publication Q~L!~_1inKa~Ed;itQ.Land
b.Q9.~!ll:·

In a linkage editor run, the programmer
specifies the overlay points in a program
by using OVERLAY statements. The linkage
editor treats the entire input as one
program, resolving all symbols and
inserting tables into the program. These

tables are used by the control program to
bring the overlay subprograms into storage
automatically when called.

Figure 135 is an overlay tree structure
illustrating how the six programs in Figure

Calling and Called Progrcuns 340.1

r
J
J

Segment 3
{COBOL1 Ti}

I
I
I
J
J

--L-

r-
I
I

Segment 2
(CO.BOL1}

I
I
t

Figure 135. Overlay Tree structure

126 could be positioned in main storage at
execution time using preplanned linkage
editor overlay.

Figure 136 shows the deck arrangement
required to achieve the overlay illustrated
in Figure 135. The OVERLAY statements
specify to the linkage editor that the
overlay structure to be established is one
in which the called programs of COBOL1
(COBOL1A and COBOL1B) overlay each other
when called for execution, and that ASSMPG8
and COBOL1 and its called program overlay
each other when called.

Rou tine COBREGNO is placed wi th COB8AIN
in the root segment of the overlay
structare because it is called by three of
the routines in the program, the largest of
which is ASSMPGM. Utilizing COBREGNO as an
individual overlay segment would not have
resulted in a net decrease in the amount of
main storage required for execution because
the minimum amount of main storage needed
wonld have to contain COBPJAIN" ASS8PGPl. and

-or-
I
I
I

Root Segment
COBMA! N
COBREGNO

j ,
I

,
I
I

Segment 4
{COBOL 1 B}

I
J
I

_.L-

Segment 5
{ASSMPGM}

I
I
J
I
t
I
I
I
I
I
J
i
I
I
I
1
J
t

-L-

COBREGNO at the same~ime. creating
another overlay segment for COBREGNO would
only have added to the amount of time
required for program execution.

In preparation for the dynamic overlay
techni~ue" each part of the program brought
into storage independently should be
processed separately by the linkage edi tor.
(Hence, each part must be processed as a
separate load module.) To execute the
entire program" the programmer must:

1. specify the main program in the EXEC
sta tement.

2. Bring the separately processed load
modules into storage when they are
required# by asing the appropriate
supervisor linkage macro instructions.
This is accomplished during execution.

Calling and Called Programs 341

r------------------ ----------------,
IIIOVERLAY
II/STEPl
II/SY5LIB
II/SYSPRINT
t I/SYSUT 1
"ISYSLMOD
tl/
I//SYSLIN

JOB
EXEC
DD
DD
DD
DD

NY83937800,COS!O.MSGLEVEL=1
PGM=IEWL,PARM='OYLI,LIST,XREP',LET'
DSNAftE=SYS1.COBLIB.DISP=SHR

I
I
t , SYSOUT=A

UNIT=SYSDA,SPACE=(1024, (50,20»
DSNA~E=&GODATA(~UN),DISP=(NEW,PASS),UNIT=SYSDA, X
SPACE=(1024,(50,20,1»)

I
I
I

I
f
I ,

DO

{COBMAI N
(COBREGNO

,OVERLAY ALPHA
I {COBOLl
t
IOVERLAY BET A
I {COBOL1A
J
fOVERLAY BETA
I {COBOL1B
1
IOVERLAY ALPHA
t (ASSMPGM
l/* '-__ _

*
object
object

object

object

object

object

deck}
deck}

deck}

deck}

deck}

deck}

t
I
I
I
I
I ,
I
I
I
I
I ,
I
I
I
I ,---------.1

Figure 136. Sample Deck for Linkage-Editor Overlay Structure

The dynamic overlay technique can be
used to overlay subprograms during
execution. To accomplish dynamic overlay
of subprogra ms, the programmer must write
an assembler language subprogram that
employs the LINK macro instruction to call
each COBOL subprogram. For a detailed
description of the LINK macro instruction,
see the publication QU!L~Y£~I.viso.t:
~g£~icg§~nd Ma££Q_!nstr~1!Q~2.

In using the dynamic overlay techn.l.que,
the main program communicates with the
assembler language subprogram by using the
COBOL language CA'LL statement. The CALL
statement can be used to pass the name of
the COBOL subprogram (to he linked) and the
spec ified pa rame ter list to the assembler
language subprogram. This procedure is the
same for each CALL used in the main
program. Hence, each CALL results in
linking with a subprogram through the
assembler language subprogram.

When the COBOL subprogram is finished
executing, it returns control to the
assembler language subprogram, which in
turn returns to the main program. The
process is repeated for each CALL to the
assembler-language subprogram.

Dynamic overlay requires that a
programmer have detailed knowledge of the
linkage conventions, assembler language,
and the LINK macro instruction with its
features and restrictions.

342

Figure 137 contains an example of a
COBOL main program, PROGMAST, and an
assembler language subprogram, LINKRTN.
The two programs are link-edt ted 'together
as a single load module. At execution
time, the assembler-language subprogram
dynamically fetches COBOL subprograms (OPH,
BILL, CRDT, TRNF, and LCK, none of which
are shown in the example) for the main
progra m using the LI NK macro instruction.
The COBOL subprograms are stored in a
private library, DYNLINK.

The parameter list passed to LINKRTN
contains three identifiers, TRANS-REC,
COM-WORD, and SWITCH, two of which
(TRANS-REC and SWITCH) are referenced by
LINKRTN, and two of which (TRANS-REC and
COM-WORD) are referenced by the COBOL
subprograms fetched. LINKRTN passes the
same parameter list it receives to the
COBOL subprograms fetched.

LINKRTN determines from identifier
TRANS-REC which subprograms to fetch, and
from SWITCH when to open and close the
library DYNLINK.

!!Qt~: In st ructur ing a progra m wi t.h either
the preplanned overlay techniqUe or the
dynamic overlay technique, special
consideration must be given to the presence
of the TRANSFORM table and the class test
tables, which are members of the COBOL
object-time library (see "Appendix B:
COBOL Library Subroutines"). The TRANSFORM
table is link-edited with a COBOL program
if the TRANSFORM statement is used.
Similarly, one or more of the class test

tables is present in a COBOL load module if
a class test is performed or if the OCCURS
DEPENDING ON option is used.

For these tables, which contain no
executable code and are not branched to but
are merely referenced, the compiler
designates A-type address constants

(ADCONs) and EXTRN references, rather than
v-type address constants (VCONs).
Accordingly, the overlay structure segment
containing the table(s) must be either the
root segment or a segment that is higher in
the same leg as the segment containing the
reference (s) to the table (s) •

r ,
IDENTIFICATION DIVISIOL I
PROGRAft-ID. PROGMAST. I
ENVIRONMENT DIVISION. I
CONFIGURATION SECTION. I
SOURCE-COMPUTER. IBM-370. I
OBJECT-COMPUTER. 181'1-370. t
INPUT-OUTPUT SECTION. t
FILE-CONTROL. ,

SELECT FILE-Y ASSIGN TO UR-2540R-S-INFILE.
I-O-CONTROL.
DATA DIVISION.
FILE SECTION.
PD FILE-Y

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.

01 TRANS- REC.
05 ACCOUNT- NU MBEE PIC 9 (1 0) •
05 TRANSACTION PIC 9(4).
05 NAME PIC X(20). f
05 LOCATION PIC 1(20). 1
05 METER-READING PIC 9(6). t
05 DA YTE PIC 9 (6) • I
05 FILLER PIC X (8). I
05 AMOUNT PIC 9(6). t

WORKING-STORAGE SECTION. I
77 COM-WORD PIC X(12}. I
77 SWITCH PIC 9 VALUE ZERO. I
PROCEDURE DIVISION. J

t
J
t

OPEN INPUT FILE-Y. ,
B.. READ FILE-Y AT END GO TO END-RUN. •
C. CALL 'GETUM' USING TRANS-BEC COM-WOBD SWITCH. I

t
I
J

END-RUN. CLOSE FILE-Y ~ I
MOVE 2 TO SWITCH. I
PERFORM c. 1
STOP RUN. f

~ J

Figure 137. Sample COBOL Main Program and Assembler-Language Subprogram Using Dynamic
Overlay Technique (Part 1 of 3)

Calling and Called Proqrams 343

r-
I ,
t
J , ,
2
1
I
J
I ,
t
I
I

• I
J
1
t
I
t
I
J
1
I
I
J
t
I
f
I
I
t
J
I
J
t ,
I ,
I
t
I
I
I
I ,
I
I
I
t

LINKRTN

*
*
*
*
*
*
*
*
*
*
*
GETUM

*
SAVEAREA

OPENLIB

*
*
*
*
* TABLE

I NITREG

FINDRTN

*

ERRMSG
EXIT

START 0
PRINT NOGEN
ENTRY GETUM

USING GETUM,15
SAVE (14,12)
LR 10, 15
DROP 15
USING GETUM, 10
I.R 11,13
LA 1 3, SAVE AR E A
ST 13,8(11)
ST 11,4(13)
L 5,0(1)
USING PARAMLST,5

B OPENLIB
DS 18F

L 6,8 (1)
ell 0(6),C'l'
BE IN1TREG

SH CLOSLIB

OPEN (DYNLINK)

01 O(6),C·1·

LOOK-UP ROUT IN E

LA
LA
etc

2,RTNlST
3,6
TRANS ACT, 0 (2)

BE GETRTN
LA 2,12(0,2)
BCT 3,FINDRTN
HVC ERRMSG+28(4) ,TRANSACT
WTO 'INVALID TRANSACTION'
L 13,4(13)
SR 15,15
RET UR N (1 4 ., 1 2) , T , R C= (' 5)

* DYNAMIC OVERLAY ROUTINE
GETRTN L 1,24(11)

*
*

LA 4,4(0,2)
LINK E PLOC=(4) ,DCB=DYNLINK

B EXIT

UPON ENTRY TO THIS PROGRAM, REGISTER 1 POINTS
TO A FIXED-LENGTH PARAMETER LIST OF THREE

WORDS.
THE FIRST WORD CONTAINS THE ADDRESS OF

RECORD TRANS-REC.
THE SECOND WORD CONTAINS THE ADDRESS OF

COM-WORD, TO WHICH THIS PROGRAM DOES NOT
REFER BUT WHICH IS USED BY ROUTINES THIS
PROGRAM LATER LINKS TO.

THE THIRD WORD CONTAINS THE ADDRESS OF
SWITCH USED BY THIS PROGRAM TO CHECK THE
STATUS OF THE PRIVATE LIBRARY DYNLINK

REGISTER 5 LOADED WITH ADDRESS OF TRANS-BEC
REGTER 5 IS USED AS THE BASE REGISTER TO

REFERENCE TRANS-BEC.

REGISTER 6 LOADED WITH ADDRESS OF SWITCH.
CHECK SWITCH STATUS.
IF SiITCH = 1, DYNLINK IS ALREADY OPEN;

INITIALIZE REGISTERS.
IF SWITCH> 1, DYNLINK IS NO LONGER NEEDED;

CLOSE DYNLINK.
IF SWITCH = 0 THE FIRST TIME THROUGH, OPEN

DYNLINK.

,
I
f
I
I
I
I
f ,
I
I ,
I
I
I
I
I
J
I
I
I
I
J
1
I
I
I
I
I
I
I
I
I
t
I
I
I
I

SET SWITCH
ENTRY.

SO THAT OPEN IS BYPASSED ON FUTURE •

INITIALIZE REGISTERS 2 AND 3 FOR LOOK-UP.

TRANSACT CONTAINS THE TRANSACTION CODE THAT
DETERMINES iHICH ROUTINE TO FFTCH.

PRODUCE ERROR MESSAGE IF tRANSACT CONTAINS
AN INVALID CODE.

I
I
I
I
I
I
I
I
I
I
t
t
I

SET REGISTER 15 TO ZERO. I
THE RC=(15) PARAMETER INDICATES THAT THIS I

PROGRAM IS PASSING A RETURN CODE IN REGISTERI
15. I

RESTORE REGISTER 1 TO ORIGINAL STATUS.
PASS REGISTER 4 TO NAME OF ROUTINE TO BE

FETCHED. HAVE THE CONTROL PROGRAM
FETCH THE ROUTINE POINTED TO BY
REGISTER 4 FROM PRIVATE LIBRARY DYNLINK.

I
I
I
I
I
I
I
I

L- -'

Figure 137. Sa~ple COBOL Main Program and Assembler-Language subprogram Using Dynamic
Overlay Technique (Part 2 of 3)

344

r- •
I
I
I
I
I
I
t

CLOSLIB

RTNLST

*
*
*

DYNLINK

*
*
PARAMLST

*
*
TRANSREC
ACCTNUM
TRANSACT
NAME
LOCATION
METERRD
DATE

AMOUNT

CLOSE (DYNLINK)
B EXIT

DS
EQO

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

OF

*

C'0100'
CL8'OPN'
C'0200'
CL8'BILL'
C '0300'
CLa'CRDT'
C '0400'
CLa I TRNF'
C'OSOO'
CLatLCK'

CLOSE PRIVATE LIBRARY. 1
I
I
t

AS THE TABLE SEARCHED BY THE TABLE LOOK-UP I
ROUTINE, RTNLST CONTAINS A LIST OF ALL VALIDI
TRANSACTION CODES AND THE NAMES OF THE t

ROUTINES FETCHED TO HANDLE THE TRANSACTIONS!
1

TRANSACTION CODE I
ROUTINE NAME ASSOCIATED WITH ABOVE TRANSACTIONI

I
I
t
I
1
t
t
I
I

EQU.
DeB * DDNAME=SYNLNKDD,DSORG=PO,MACRF=U)

I
I
t
I
I
I
t
1
t

DSECT

DS
DS
DS
DS
DS
DS
DS
DS
DS
END

OCL80
CL 10
CL4
CL20
CL20
CL6
CL6
CLa
CL6

DCB TO DEFINE PRIVATE LIBRARY REFERRED TO IN
LINK MACRO INSTRUCTION.

DSECT USED BY REGISTER 5 TO REFER TO TRANS
REC. THE RECORD DESCRIPTION CORRESPONDS TO
~HAT OF TRANS-REC IN PROGMAST.

,
1
1
J
t
t
I
I
t
I

IQ1~: Had a job or step library (requiring either a JOBLIB or STEPLIB DO statement in J
the job control for execution of the main program) been used instead of a private I
library (which for this example requi.res a DD statement named DYNLNKDD) , responsibility)
for the opening and closing of the library would have been with the control program andl
not with LNKRTN. I

I
The use of a private library, in conjunction with the LINK DCB parameter, reduces tol

fa minimum the amount of search time needed to retrieve member modules from a library. 1

Figure 131.

________ . ______________________________ ~ __ . ________________ .--------J

Sample COBOL Main Program and Assembler-Language subprogram Using Dynamic
Overlay Technique (Part 3 of ~

Calling and Called Programs 345

The loader resolves external names and
references and combines calling and called
programs into a format slli table for
execution as a single load module. For
information on invoking the loader, see
"Using the cataloged Procedures."

When the dynamic call is used, all
subprograms to be called dynamically must
have been processed by the linkage editor.
The loader may be used only to resolve
references to subprograms invoked by static
calls. otherwise, load modules of both
calling and called programs are used as
input to the loader. There are tvo kinds
of input, primary and additional. £.rima£!
input consists of one or more separately
compiled object modules and/or load
modules. ~llditioD~l input consists of
object modules or load modules that are not
part of primary input data sets but are to
be included in the load module. The
additional input may be in the form of
{1) libraries containing object modules, or
(2) libraries containing load modules.
Addi tional input may contain either calling
or called programs or both.

If these sabroutines reside in the Link
Pack Area, their external references are
not resolved. When the RES loader option
is specified, the loader always searches
the Link Pack Area for modules before
searching the SISLIB data set. If the RES
compiler opt. ion is specified, subroutine
ILBONTRO controls all subroutine
intercommunication SO that unresolved
external references in the Link Pack Area
present no problem. If, however, the NORES
compiler option is specified, ILBONTRO is

346

not invoked and unresolved external
references in the Link Pack Area may
prevent successful subroutine execution.

'Therefore, in order to prevent the loader
frolt searching the Link pack Area, the
NORES loader option should be specified in
conjunction with the NORES compiler option.
This viII cause the loader to search for
,required modules in the SYSLIB data set,
bypassing the Link Pack Area search. If
COBOL subroutines that have external
references which vould need to be resolved
do not reside in the Link pack Area, either
the RES or NORES loader option is
acceptable. (Subroutine external
references are listed in Pigure 174.)

SPECIPYING PRIMARY INPUT

The pri mary input data set is speci fied
for loader processing by the SISLIN DD
statement. The loader must always have a
primary input data set whether or not there
are calling or called programs. The SISLIN
DD statement that specifies primary input
is discussed in the section "Data Set
Requirements."

SPECIFYING ADDITIONAL INPUT

Additional input data sets are specified
by the SYSLIB DD statement. The SYSLIB DD
statement is discussed in the section "Data
Set Requirements."

Note: The overlay facility can not be used
with the loader.

Libraries are an integral part of the
operating system. Some libraries have
system-supplied names and system-supplied
data. Other libraries have system-supplied
names but may contain user-specified data.
Still other libraries have both
user-supplied names and user-supplied data.

Libraries, in general, are made up of
partitioned data sets. Any library with a
user-supplied name and user-supplied data
is always a single partitioned data set,
which is a collection of independent sets
of sequentially organized data, called
members. All of the members within a
partitioned da ta set ha ve the same
characteristics as that of record format.
When used to store programs, a partitioned
data set containing load modules can
contain only load modules; it cannot
contain both load modules and object
modules.

Each partitioned data set is headed by a
directory of entries pointing to the
members that make up the library. Each
member has a unique member name. A
partitioned data set must reside on a
single mass storage device, but some
libraries can consist of a concatenation of
more than one partitioned data set .•

Figure 138 shows the format of a library
that is a single partitioned data set of
four members. Space for the members of
such a library and its directory is
requested in the SPACE parameter of the DD
statement when the library is created.
Additional members can be added to a
library at a later time. Additional space
cannot be allocated for the directory,
however. Directory space is allocated for
the entire library when the library is
created. If the original allocation was
not large enough, the IEHMOVE utility
program can be used to expand the directory
size. If the directory is filled, no
addi tio.nal members can be added to the
library. Following is an example of a DD
statement that might be used to create a
lib.rary:

IIDD1
II
1/
1/
/1

DO DSNAME=FILELIB (FILE1) ,
DISP=(NEW,CATLG),
UNIT= 2314,
SPACE=(TRK, (40,10,3»,
VOLUME=SER=111111

x
X
X
X

This statement specifies that a library
nailed FILELIB is to be created and
cataloged in this job step. Its first
lIember is named FILE1. Initial space
allocated for data sets is to be 40 tracks,
with addit ional allocation to be made, as
necessary, in units of 10 tracks. In
addition, space for three 256-byte records
is to be allocated for the directory. The
volume serial number is 111111.

A member of a partitioned data set can
be replaced o.r deleted. The system
actGally accomplishes this by modifying or
deleting the directory pointer to the
member. T he space occupied by the origLnal
member is not available for reUse either
until the MOVE or COpy control statement of
the IEHMOVE utility program is used or the
compress facility of the IEBCOP! utility
program is used. The space previously
occupied by the replaced or deleted member
is thus made available. (Por further
details, see the publication Q~~
J1.:.t.ilit!~1U~·)

KINDS OF LIBRARIES

A programmer can use libraries already
provided by the system, or he can create
libraries of his own. In addition, certain
library names recognized by the system may
be assigned to partitioned data sets
provided by the system. by the programmer,
or both. These libraries and their uses
are discussed in the following paragraphs.

SISTEK LIBRARIES USED IN COBOL APPLICATIONS

The link library is a partitioned data
set. that contains load modules to be
executed. Unless non-resident control
program routines and IBM-supplied
processing progra ms specified otherwise, a
load module name in an EXEC statement is to
be fetched from the link library.
Operating system programs, such as the
COBOL compiler, are usually contained in
this libra ry.

The link library can be used by the
programmer to store executable load modules
at link-edit time. However. any attempt to

Libra.ries 347

Directory

Library
Members

r------------T-------------T-------------T-------------T--------------,
{

l Entry for 1 Entry for I Entry for) Entry for I 1

~-~=~~=~-~---l--~=~~=~-~---l--~=~~::-=---l--~:~~:~-~--_l __ ~~~=_~------~
1 ~ I
I Member C INote 21
r--T-------------T-------i------~
J) I I
~ Note 2 I Member B I Member K I
~--~-------------~--------------~
1 1
I Member K I
r--------------------------------T------------------------------------~
J] I
I Member K I Member A I
t------------T-------------------~------------------------------------~
1) I
I Member A J Note 3 I
r------------~--~
) I
I Note 3 I L _______ , __ J

Notes:
~pace available in directory.
2. Space available from deleted members. Space can be recovered

through utility programs IEHMOVE and IEBCOPY.
3. Space available in library.

Figure 138. Format of a Library

write in this library will cause a message
to be issued to the operator if the library
is write-protected or if its expiration or
retention date has not yet occurred. Under
these conditions, no data may be written
unless authorized.

The link library is identified in a job
control statement as SYS1.LINKLIB, or by
default as specified by the system link
list.

The procedure library is a partitioned
data set whose members are the cataloged
procedures at an installation. They may
include the cataloged procedures provided
by I BM. Procedures writ ten at the
installation can be added to the procedure
library with the IEBUPDTE utility program
(see "Using the Cataloged Procedures").

The system name for the procedure
library is SYS1.PROCLIB.

348

~rt Library

The sort library is a partitioned data
set that contains load modules from which
the sort program is produced.

It may be identified. by the name
SYS1.S0RTLIB (see "Using the sort/Merge
Featllre").

The COBOL subroutin'e library is a
partitioned data set that contains the
COBOL library subroutines in load module
form. These subroutines may be included in
a COBOL load module or dynamically loaded
to perform such functions as data
conversion and dOUble precision arithmetic.
The COBOL programmer does not refer
directly to these subroutines; in most
cases calling sequences to them are
generated at compile time from certain
Procedure Division statements, and they are
incorporated into the load module at
link-edit time or loaded at program
initialization time. A listing of
subroutine names, functions, entry points,
and size is given in Appendix B; also noted
are those subroutines explicitly called by
the COBOL program.

Availability at Execution-Time: Usually,
COBOL library subroutines needed in the
user's program will be automatically
link-edited into the load module, and the
user need not concern himself with their
availability. However, certain situations
will require that subroutines not normally
linked be available during program
execution. To satisfy this requirement,
the user can either make sure that the
COBOL library is available to the system
loader at execution time, or specifically
include the subroutines in his load
module--by using an INCLUDE SYSLIB
(subroutine names) in the link edit SYSLIN
data stream.

The situations, and the subroutines
required, are as follows:

1.

2.

3.

4.

5.

STATE compiler option was specified.
Subroutine ILBOSTNO will be required
if an abend occurs.

TEST compiler option was specified.
ILBOCOMO will be required.

COUNT compiler option was specified.
ILBOTC2 and ILBOTC3 will be required.

SYMDMP compiler option was specified.
ILBOD01, ILBOD10 through ILBOD14,
and ILBOD20 through ILBOD26 will be
required.

COUNT, FLOW, STATE, or SYMDMP compiler
option was specified. If an informative
message needs to be issued, ILBODBEO
will be required.

6. Execution-time options (PARM field on
EXEC statement) will be passed.
ILBOPRMO will be required.

In the event the DYNAMIC or RESIDENT
compiler option was specified, then all
subroutines will be loaded (and required
to be available) at execution time.

The system name for the COBOL subroutine
library may be SYS1.COBLIB.

LIBRARIES CREATED BY THE USER

A programmer can create members of the
link library, the procedure library, and
the job library. fie can also create
partitioned data sets for use in the copy
library, the automatic call library, and
the job library. In addition, he can
create partitioned data sets to be used as
libraries for additional input to the
linkage editor, and he can create libraries
whose members are source program entries.

The automatic call library, defined by
the SYSLIB DD statement in the link-edit
job step, contains load modules or object
modules that may be used as secondary input
to the linkage editor. If the library
contains object modules, it may also
contain control statements. External
symbols that are undefined after all
primary input has been processed cause the
automatic library call mechanism to search
the automatic call library for modules that
will resolve the references, unless the
NeAL option is specified. The COBOL
subroutine library must be specified for
the automatic call library if any of the
subroutines will be needed to resolve
ext.ernal references. Other partitioned
data sets may be concatenated as shown in
the fo11owing example:

IISYSLIB
//

DD DSNAME=SYS1.COBLIB,DISP=SffR
DD DSNAME=MYLIB,DISP=SHR

In this case, both the COBOL subroutine
library and the partitioned data set named
KILIB are available to the automatic
library ca 11.

Libraries 349

r
IIICATALOG
III
1//SYSUT2
III
III
III
III
IIISYSPRINT
IIISYSIN
•. I
'·1
I
I
t
I
'.1
11*
"-

JOB
EXEC
DD

---,
user information I
PGM=IEBUPDTE,PARK=(NEW) I
DSNAKE=COPYLIB,UNIT=J330, X ,

DISP=(NEW,KEEP), X I
VOLUME=SER=111111, X ,
SPACE~(TRK,(15,10,2), X I

DCB=(LRECL=80,BLKSIZE=80,RECFM=F) I
DO SYSOUT= A I
DO * f
ADD NAME=CFI LEA, L£VEL=OO, SOURCE=O, LIST=ALL I
NUMBER NEW1=10,INCR=5 I

BLOCK CONTAINS 13 RECORDS I
RECORD CONTAINS 120 CHARACTERS I
LABEL RECORDS ARE STANDARD I
DATA RECORD IS FILE-OUT. I

ENDUP I
I

Fiqure 139. Entering Source Statements into the COpy Library

r-- '------,
IIIU PDATE
III
IIISYSUT1

JOB
EXEC
DD

user information
PGM=IEBUPDTE,PARK=(MOD)
DSNAME=COPYLIB,UNIT=3340, x

X
X

,
I
I
I
J
I
t
I
J
I
I

III
til

DISP=(OLD,KEEP) ,
VOLUME=SER=111111,

III
t/ISYSUT2
III

DD
DCB=(RECFM=F,BLKSIZE=80)

DSNAME=COPYLIB,UNIT=3340,
DISP=(OLD,KEEP) ,

X
X
X III

II/SYSPRINT
I/ISYSIN
1./

VOLUME=SER=111111
DD SYSOUT=A
DD *
CHANGE NAME=CFILEA,LEVEL=Ol,SOURCE=O,LISf=ALL I , , BLOCK CONTAINS 20 RECORDS 00000010

I. /
11*
"-

ENDUP t
I
.J

Figure 140. Updating Source Statements in a COpy Library

!2!~: If the partitioned data set named in
the SYSLIB DD statement contains load
modules, any data set concatenated with it
must also be a load module partitioned data
set. If the first contains object modules,
the others must also contain object
modules.

The linkage editor LIBRARY control
statement has the effect of concatenating
any specified member names with the
automatic call library.

The COBOL copy library is a user-created
library consisting of statements or entire
COBOL programs frequently used by the

350

programmer. The programmer can inclUde
these statements or programs into a program
at compile time. He calls them with the
COBOL COpy statement or BASIS card.

To enter or update source statements in
the copy library, a utility program must be
used. IEBUPDTE is the IBM-supplied utility
program used to catalog procedures. A full
discussion of the sta tements used in this
program may be found in the publication
Q~L!LUti!.ilie2·

!1i!ximulLBl2.£LSiz~L

The maximum block size for the copy
library is restricted to 16K.

~ltiEl~_Lib£arie2: If more than one copy
library is being used. the COpy statement
must include the phrase INIOF library-name,
where library~name is the ddname

identifying the particular partitioned data
set to be copied from. (If this qualifying
phrase is omitted, the default ddname
becomes SYSLIB or its alternate.)

la!e&in~~~g~ate!~nts: Figure 139
illustrates the method to insert source
statements into a copy library member.

The ./ ADD statement is a utility
statement that copies CFItEA into the
library called COPYLIB. CFILEA describes
an FD entry. The NUMBER statement assigns
a sequential numbering system to the
statements in the library. The first
statement is assigned number 000010 and
each succeeding statement is incremented by
5. The entries following the utility
statements are the actual source statements
to be stored. The ENDUP statement signals
the end of the entries to be inserted.

The same procedure can be used to store
entire source programs.

!!l!dating sou££~~:t~!!ts: Figure 140
illustrates the method to update source
statements in a copy library member
inserted in the previous example.

SISUT1 and SYSUT2 describe the data
sets. Note that changes may be made on the
same data set (identified on the DSNAME
parameter). The utility statement CHANGE
indicates that the new entry of CFILEA
replaces the old entry. Alternatively, the
UPDATE IN PLACE parameter of the change
statement could have been used to avoid
moving the entire member, (CILEA, to the
1irst available area in the file. The
sequence number of the altered statement
must be supplied. This number, 00000010,
is indicated in columns 13 through 80 of
the replacement source statement. Note
that, although in the insert example (see
Figure 139 -- NU~BER statement) the number
was coded as 10 without leading zeros, the
program assigns an 8-characterfield to a
sequence number and pads with leading zeros
if necessary. When updating a sequence
number in a library, these leading zeros
must be included.

Libraries 350.1

At compile time, COPYLIB is identified
on a DD statement; for example:

IISYSLIB DD
II

DSNAME=COPYLIB,
VOLUME=SER=111111,
DISP=SHR,UNIT=2314

x
X

II

R~UievilHL~.Qll£~~tatements: Members of
the cataloged library can be retrieved
using the COpy statement or BASIS card.

The COpy statement permits the
progra mmer to include stored source
statements in any of the four divisions.
If the programmer wishes to retrieve the
member, ClILEA, stored in the previous
examples, he writes the statement:

PD FILEA COpy CFILEA

The compiler translates this instruction to
read:

FDFILE A
BLOCK CONTAINS 2 ORE CORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS FILE-OUT.

Note that CFILE! itself does not appear in
the statement. CEILEA is a name
ide tifying the entries. It acts as a
header record but is not itself retrieved.
The compiler source listing, however, will
print out the COpy statement as the
programmer wrote it.

The COpy statement permits the
programmer to include previously stored
source statements into any portion of the
program.

Assume a procedure named DOWORK vas
stored with the following statements:

• 1 ADD NAME=DOWORK,LEVEL=OO,
SOUR CE=O, LIST=ALL

,.1 NUMBER SEQ1=400,INCR=10
COMPUTE QTY-ON-HAND =

TOTAL-USED-NUftBER-ON-HAND.
MOVE-QTY-ON-HAND TO PRINT-AREA.

• 1 BNDUP

To retrieve the stored member, nOWORK, the
programmer writes:

paragraph-name. COPY nOWORK.

The statements included in the DOWORK
procedure viII immediately follow the
paragraph-name, replacing the words COpy
DOWORK.

1. The SUPPRESS option of the COpy
statement viII be ignored if LISTER or
FIPS is requested.

2. Results may be unpredictable if a
CURRENCY SIGN IS = is specified (only
alloved with LANGLVL(l) and a PICTURE
character string is part of
pseudo-text and contains a floating
currency sign.

3. In order for the text copied to have a
o inserted in column 7 (debugging line
indicator), the D must appear on the
first line of the COpy statement
itself. A copy statement itself can
never be a debugging line; if it
contains a D and WITH DEBUGGING mode
is not specified, the COpy statement
will nevertheless be processed.

4. No more than 150 COPY-REPLACING pairs
may be specified in a source program.
If this limit is exceeded, message
IKFI20I is issued by the compiler,
and COPY statements over the limit
are ignored.

Frequently used source programs, such as
a payroll program, can be inserted into the
copy library. The BASIS card brings in an
entire source program at compile time.
Calling in a program eliminates the need
for the programmer to handle a program each
time he wants to compile it. The
programmer may, however, alter any
statement in the source program by
referr ing to its COBOL sequence number vi th
an INSERT or DELETE statement. The INSERT
statement viII add new source statements
after the sequence number indicated. The
DELETE statement viII eliminate the
statements indicated by the sequence
numbers. The programmer may delete a
single statement with one sequence number •
or he may delete more than one statement,
separating by a hyphen -the first and last
sequence numbers to be deleted.

Note: The COBOL sequence number is the
6-diqit number that the programmer aSSigns
in columns 1 through 6 of the source cards •
This sequence number has nothing to do with
the sequence numbers assigned in simulated
columns 73 through 80 by the IEBUPDTE
utility program. The sequence numbers

Libraries 351

.-- ----"
I COBOL IEBUPDTEI

Sequence, I Sequence
1M y.:ID. be.£2_
,000730
J000735

IF ANNUAL-PAY GREATER THAN 15,000 GO TO PAY-WRITE.
.ID!.!!!h~£2_J
000001051

,000740 TAX-PAYR.
1000750

IF ANNUAL-PAY GREATER THAN 15,000 - BASE-PAY GO TO LAST-TAX.
COMPUTE TAX-PAY = BASE-PAY * .025

000001101
000001151
000001201
000001251
00000130,

MOVE TAX-PAY TO OUTPUT-TAX.
,000760 PAY-WRITE.
1000770

MOVE BASE-PAr TO OUTPUT-BASE.

I
I ,
,000850
L-

ADD BASE-PAY TO ANNUAL-PAY.

STOP RUN.

I
I
I

000002401

Figure 141. COBOL Statements to Deduct Old Age Tax

.--
I
I
I
IBASIS PAYROLL
ID~LETE 000730-000740

--------------------------------"
f
I
J
I

1000730 IF ANNUAL-PAY GREATER THAN 17800 GO TO PAY-WRITE.
I
I
I 1000735 IF ANNUAL-PAY GREATER THAN 17800 - BASE-PAY GO TO LAST-TAX.

1000740 TAX-PAYR. COMPUTE TAX-PAY -= BASE-PAY * .044. • ____ -J

Figure 142. Programmer Changes to Source Program

assig~ed by IEBUPDTE are used to apdate
source statements in the copy library.
Changes made using these numbers are
intended to be permanent changes. The
COBOL sequence numbers are used to update
COBOL source statements at compile time.
Such changes are in effect for the one run
only.

Assume that a company payroll program is
kept as a source program in the copy
library. The name of the progra m is
,PAYBOLL. During a particular year, old age
tax is taken out at a rate of two and a
half percent each week for all personnel
until earnings exceed $15,000. The coding
to accomplish this is sh own in Figure 141.

NoW, ho:wever, due to a change in -the old
age tax laws, tax is to be taken out until

earnings exceed $17,800 and a new
percentage is to be placed. The programme~
cab code these changes as shown in Figure
142.

The altered program viII contain the
coding shown in Figure 143.

Note that changes lIaae through use of
the INSERT and DELETE statements remain in
effect for the one run only.

Note: If both the COpy statement and the
BASIS card are used, the library containing
the member specified in the BASIS card must
be defined first. The COpy libraries
concatenated with the B'ASIS library may be
d.efined and re.ferenced in any order (see
"Appendix I: _Checklist for Job Control

~r--,
1000730 IF ANNUAL-PAY GREATER THAN 17800 GO TO PAY-WRITE. I
1000735 IF ANNUAL-PAY GREATER THAN 17800 - BASE-PAY GO TO LAST-TAX. I
1000740 TAX-PAYR .. COMPUTE TAX-PAY = BASE-PAY * .044. I
1000750 ~OVE TAX-PAY TO OUTPUT-TAX. I
1000760 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. t
1000770 ADD BASE-PAY TO ANNUAL-PAY. I
I I
I I
I I
t000850 STOP RUN. I
L- .I

Figure 143. Changed COBOL Statements to Source COpy Library Statements

352

procedures"). For a discussion of special
considerations when using BASIS with'the
BATCH option. see "Batch Compilation."

The job library consists of one or more
partitioned da ta sets that contain load
modules to be executed. It is specified by
the JOBLIB DD statement that must precede
the EXEC statement of the first step of a
job. Partitioned data sets assi9n~dto the
job library are concatenated with the link
library so that any load module is obtained
automatically when its name appears in the
PGM= parameter of the EXEC statement. The
following statements illustrate how three
cataloged partitioned data sets can be
assigned to the job library:

//l1YJOB
//JOBLIB
//
//
//STEPl

//STEP2

JOB
DD DSNAME=MYLIB1.DISP=(OLD.PASS)
DD DSNAM E=MYL IB2, DISP= (OLD. PASS)
DD DSNAME=MYLIB3,DISP=(OLD,PASS)
EXEC

EXEC

These statements specify that the job
library containing th.e data sets MYLIB1,
MYLIB2. and MYLIB3 is to be concatenated
with the link library. When a load module
is named in an EXEC statement in any step
of the job. the directories of the job
library viII be searched for the name.
When a job library is specified for a job.
the link library is searched for a named
load module only when the module is not
found in the job library.

Partitioned data sets'used in the job
library can be created by specifying the
partitioned data ,et name and the member
name in the SYSLMOD DD statement when each
member is processed by the linkage editor.

!~litio~l 11UUlLt-2_ the LinJi~Mll2!::
Libraries of object modules (with or
without linkage editor control statements)
and libraries of load modules can be used
as additional input to the linkage editor.
Members are specified by use of the INCLUDE
and LIBRARY linkage editor control
statements.

A library of obj~ct modules and control
statements can be created by use of the
IEBUPDTE utility program.

A library of load modules can be created
by use of the SYSLMOD DO statement in the
linkage editor job step, as discussed in
"Job ,Library."

Use of the COBOL Library Management
Feature makes it possible for all programs
in the 'same or different regions/partitions
to share one copy of the COBOL library
subroutines. That is. the most economical
use of main storage is made when the most
frequently used COBOL library subroutines
are placed in the OS/VS2 link pack area
(LPA), or the OS/VS1 resident reenterable
routine (RRR) area, rather than in each
region/partition. To make the most
effective use of the Library Management
Feature, and to use the IBM cataloged
procedures whether or not Library
Management is needed, the user should
concatenate the COBOL subroutine library
with the system link library, or specify it
to be used as such a library in the
appropriate system parameter library
member.

The user may request the COBOL Library
Management Feature at compile time, via the
RESIDENT option (see the section "Options
for the Compiler" in the chapter entitled
"Job Control Procedures").

CONCATENATING THE SUBROUTINE LIBRARY

TO concatenate the subroutine library
wi th the link libra ry, the user execu tes
the IEBUPDTE utility program to add a
member named LNKLSTOO to SYS1.PARML1B,
specifying the library desired (that is,
either the entire COBOL subroutine library
or a pri va te library containing
user selected COBOL library subroutines).
Note that the library containing the
subroutines must be cataloged.

An installation that is planning to use
the Library Management Feature will find it
convenient to include frequently used COBOL
library subroutines in the 05/VS2 LPA or
the OS/VS1 RRR area. Infrequently used
subroutines are then brought into the
region/partition as required. To add COBOL
subroutines to the RRR area. the user
invokes the IEBUPDTE utility program to add
a member named IEAIGGXX (see Note 2 in
Figure 143) to SYS1.PARMLIB, specifying all
names and aliases for the COBOL library
subroutines to be included. Then, at an
initial program load (1PL) time, the
operator ident ifies the link list to the

Libraries 35.3

·. system, which subsequently places the
identified COBOL subroutines in main
storage in the RRR area.

Figure 144 illustrates how an
installation can accomplish both these
functions in one operation. The encircled
letters in the figure refer to the JCL
suggested A to concatenate the COBOL
subroutine library (SYS1.COBLIB) with the
system link library (SYS1.LINKLIm, and
then B to place the user list of desired
COBOL library subroutines and their aliases
to the RRR. (For further information, see
the publication ~LX.L£QBO.L£Q!!!.£ilg: and
l£!brarY-l..nstalla ti2n~f~~!lce Materi~!.)

the region need be resident a t the
same time. In this case, however, the
user must supply a job control card at
execution time pointing to the COBOL
subroutine library or to his own
private library of COBOL subroutines.
(For a discussion of the various COBOL

•

1. If the user does not wish to place any
COBOL subroutines in the RRR area, he
need not execute the portion of the
IEBUPDTE utility program that adds
IEAIGGXX to SYS1.PARML1B shown above.
He may still make use of the Library
Management Feature. However, all
required library subroutines will be
loaded into his own region/partition
when they are needed by one or more
programs, and deleted when they are no
longer needed. Thus, not all library
subroutines needed by all programs in

f//CATLG JOB
EXEC
DD
DD
DD
DD
REPL

user information
PGM=IEBDPDTE,PARM=MOD
SYSOUT=A
DSN=SYS1.PARMLIB,DISP=SHR
DSN=SYS1.PARMLIB,DISP=SHR

'1/
,//SYSPBINT
II/SYSUT 1
II/SYSUT2
I/ISYSIN ,./ * NAME=LNKLSTOO,LIST=ALL

library subroutines available to the
programmer, see "Appendix B: COBOL
Library Subroutines. tt)

2. If one or more programs in a given
region/partition request the COBOL
Library Management Feature, then the
main program and all subprograms in
that region/partition must use it.
Otherwise, the multiple copies of
COBOL library subroutines resident at
one time may cause unpredictable
resul ts.

A programmer can create or change a
partitioned data set in one of three ways:
(1) through the use of DO statements,
(2) through the use of utility programs,
and (3) through the use of certain linkage
editor control statements.

,
1 .. /
I
J

ADD
SYS1.LINKL1B,SYS1.COBLIB

NAME=IEAIGG01,LIST=ALL
SYS1962(562Bl,NAME1,ALIAS1, •••
SYS1.L1NKLIB,NAME,ALIAS

'.1
1/*
I--

ENDUP

1.H21~
I
t 1.
J
I

The name used on the card after the REPL statement must identify the data set
(SYS1.COBLIB) to be concatenated with the system link library, and is selected by
the installation. (Note that this data set must be cataloged.)

,
I
I
J
I
I
I
J
I
I
I ,
I
I
~ ,
I
t
I
I
I • 12.

I
I
I
I
I

The last two digits of the member-name specified in the ADD statement can vary, butt
the digit.s specified here must also be specified in the RAM·: parameter used at IPL I
time. For example, if IEAIGG02 were specified, 'RAM=02' would be required at 1PL I
time. For OS/VS2 Release 1 * modify the IEA1GGOO member of SYS 1. PARMLIB as I
explained in OSL!S2-I1!itializati21L21HL1.!!ning_2.Yide, GC28-0681. For OS/VS2 Releasel
2 and later# use IEALPOO instead of 1EAIGGOO. I

I ,3.
J
I
I
1.-

The names and aliases of the COBOL library subroutine members to be made resident
must be specified by the installation in the ADD statement. The system searches
the last name first; in this case# ALIASl is searched last. The user should,
therefore, specify the most frequently used name last.

f
1
J
I
I ______ J

Figure 144. Concatenating the Subroutine Library

354

The DD statement can be used to create
libraries as is discussed at the beginning
of this chapter. In addition, DD
statements can be used to add members to
existing libraries, including the link
library, and to retrieve members of
existing libraries.

Utility programs can be used to create
libraries such as those used in the copy
library or as secondary input to the
linkage editor. In addition, utility
programs can be used to move, copy, and
replace members of an existing library; to
add, delete, and renumber the records

within an existing library; and to assign
sequence numbers to the records of a new
library.

Linkage editor control sta tements can be
used to make changes to members of a
library of load modules. The name of a
member can be changed or additional names
can be specified. Additional entry points
can be identified, existing entry points
can be deleted, and portions of a load
module can be deleted or replaced. For
further information, see the publication
Q~L1~1in~~g_~~iiQ£_~nd LQ~~g~.

Libraries 355

A cataloged procedure is a set of job
control statements placed in a partitioned
data set called the procedure library
(SYS1.PROCLIB) _ It can be retrieved from
the library by using its member name in an
EXEC sta teme nt of a job step in the input
stream. Frequently used procedures, such
as those used for compiling and linkage
editing, can be cataloged to simplify their
subsequent use.

A cataloged procedure can contain
statements for the processing of an entire
job, or it can contain statements to
process one or more steps of a job, with
the remaining steps defined by job control
statements in the input stream. A job can
use several cataloged procedures, each
processing one or more of the job steps. A
job can also call for execution of the same
cataloged procedure in more than one job
step.

This chapter describes the following:

• How to call cataloged procedures

• The types of cataloged procedures,
including those supplied by IBM for use
with COBOL source programs

• How to add procedures to the procedure
library

• How to modify existing procedures for
the current job step only

• How to override and add to cataloged
procedure~

• How to use the DDNAME parameter in
ca ta loged proced ures

A cataloged procedure is called by a job
that appears in the input stream. The job
must consist of a JOB statement and an EXEC
statement that specifies the cataloged
procedure name in the positional parameter
(either procnalle or PROC=procname). For
example:

//STEPQ EXEC cosue
//STEPQEXEC PROC=COBUC

Either of these EXEC sta tements could be
used to call the IBM-supplied cataloged

356.

proc~dure COBUC to process the job step
STEPQ.

A job step that calls for execution of a
cataloged procedure can also contain DD
statements that are applicable to the job
steps of the cataloged procedure. A job
that calls for execution of a cataloged
procedure may. in other steps, call for
execution of other cataloged procedures,
call for other executions of the same
cataloged procedure. or call directly for
execution of load modules. The following
example shows a job control procedure that
calls both cataloged procedures and load
modules.

//JOBl
//STEPA
lICOB.SYSIN

JOB
EXEC
DD

CQBUC

*
(source mod ule)

1*
I/STEPl. EXEC PG!!=IEWL

(DD statements for the linkage editor)

//STEPE EXEC PGM=*.STEPL.SYSLMOD

(DD statements for user-defined files)

The IBM-supplied cataloged procedure
COBUC for compilation is used to process
STEPA. The COB.SYSIN DD statement is
required to define the input to the
compiler. The remaining statements in the
procedure refer to execution of the linkage
editor and the subsequent load module.

Data sets produced during execution of a
ca taloged procedure can be used in
subsequent job steps. They can also be
called as follows:

//jobnaae JOB 1234,J.SltITH
/ISTEPA EXEC PROCED
//PROC1.SYSIN DD *

1*
Ilstepname

(source module)

EXEC PGM=*.STEPA.PROC2.SYSLMOD

(DD statements for user-defined files)

The cataloged procedure PROCED is
composed of tvo job steps, PRoel and PROC2,
that compile and linkage edit the source
module.

The programmer can write his own
procedures" and catalog them, o.r he can use
the five COBOL cataloged procedures
provided by IBM.

PROGRAMMER-WRITTEN CATALOGED PROCEDURES

The programmer can write cataloged
procedures, consisting of EXEC and DD
statements, vhich incorporate job control
proced ures he uses frequen tl y. For
example, the programmer may wish to catalog
an EXEC statement and the associated DD
statements for a job step that ,specifies
execution of a program. In this way, the
DO statements need not be specified each
time the program is executed.

In writing a procedur,e for cataloging,
the programmer must follow these rules:

• Another ca taloged procedure cannot be
referred to, i.e., only the ,
PGM=proqname form in an EXEC statement
can be used.

Note, however, that a cataloged
procedure may contain a DD statement
that refers to a cataloged data set.

• SYSABEND or SYSU DUMP DD statements
should not be cataloged because they
cannot be overridden.

• The .following statements cannot be used
in a cataloged procedure:

1. The JOB statement

2. A DD statement with JOBtIB in the
name field

3. A DO statement wi th an * in the
operand field

4. A DD statement with DAT.A in the
operand field

5. The delimiter statement

A procedure can be tested before it is
placed in the procedure library by
converting it into an in-stream procedure
and executing it any number of times during
a job. For further information about
in-stream procedures. refer to the section
"Testing a procedure as an In-Stream
Procedure".

The IEBUPDTE utility program is used to
add procedures to the procedure library. A
description of the use of this program is
given in the publication Q~L!~_utiliti~.

In Figure 145, two procedures are added
to the procedure library (SYS1.PROCLIB).
All control statements are in the input
stream.

The first procedure is for a COBOL
compilation. Mass storage volumes are
specified for the four utility data sets,
and 100 tracks are allocated for each
utility data set. This cataloged procedure
is named COBD!.

The second procedure is also for a COBOL
compilation. Unlabeled tape volumes are
specified for three utility data sets; for
the fourth, SISUT1, a mass storage device
must be specified. This cataloged
procedure is named COBTP.

Job control statements: the EXEC card
specifies that the IEBUPDTE program is to
be executed, and PARM=NEW is used because
all data is read from one source, i.e., the
input stream.

utility statements: the ADD statement
specifies the member name of the procedure,
the level modification ~O, first run} and
the source of the modification (0,
user-supplied) • The NUMBER statement
specif~es the sequence numbers for records
in the member. The first record of the
cataloged procedure is numbered 00000010,
and subsequent records are incremented by
tens.

Using the Cataloged Procedures 357

,.._---
I Job
,Control
• Language
I Sta tements
I
I
IUtility
IStatements ,
J
I
I
I First
JProcedure

• I
I
fUtility
1 Sta tements
t ,
I
ISecond
I Procedure
I
I
I
I
,Delimiter
,Statements
L-

IIADPROC
IISTEP1
IISYSPRINT
IIS1SUT2
IISYSIN

·1
.1

IICOB
IISYSUT1
IISYSUT2
IISYSUT3
IISYSUT4
IISYSPRINT
IISYSPUNCH

.1
·1

IICOB
IISYSUT1
IISYSUT2
IISYSUT3
IISYSUT4
IISYSPRINT
IISYSPUNCH

.1
1*

JOB
EXEC
"DD
DD
DD

ADD
NUMBER

EXEC
DD
DO
DD
DO
DO
DO

ADD
NUMBER

EXEC
DD
DO
DD
DO
DO
DD

ENDUP

1234,J.DUBOB
PGM=IEBUPDTE,PARM=NEW
SYSOUT=A
DSNAME=SYS 1. PROCLIB,DISP=OLD
DATA

N AME=COBDA, LEVEL= 00. SQURCE=O
NEW1=00000010,INCR=00000010

PG8=IKFCBLOO
UNIT=SYSDA,SPACE= (TRK, (100,10»
UNIT=SYSDA,SPACE= (TRK, (100,10)
UNIT=SYSDA,SPACE=(TRK,(100,10»
UNIT=S1SDA,SPACE= (TRK. (100,10»
SYSOUT=!
SYSQUT=B

NAME=COBTP,LEVEL=OO,SOURCE=O
NEll l= 10, I NCR= 10

PGM=IKFCBLOO
UNIT=S1SDA,SPACE=(TRK, (100,10»
UN1T=2400, LABEL= (, NL)
UNIT=2400,LABEL=(,N~
UNIT=2400,LABEL~(,N~

S1SOUT=A
SYSOUT=B

.I

Figure 145. Example of Adding Procedures to the Procedure Library

Note that leading zeros in the NUMBER
statement are not necessary, as indicated
in the example for the COBTP procedure.

IBM-SUPPLIED CATALOGED PROCEDURES

IBM distributes cataloged procedures
with the program product, which can be
incorporated when the system is generated.

Five of the procedures are for use with
co BO L prog ra ms.

1. COBUC provides for compilation.

2. COBUCL provides compilation and
linkage editing.

3. COBULG provides linkage editing and
execution.

4. COBUCLG provides for compilation,
linkage editing, and execution.

5. COBUCG provides for compilation and
loading.

358

These procedures may be used with any of
the job schedulers released as part of the
IBM operating system. When parameters
required by a particular scheduler are
encountered by another scheduler that does
not require those parameters, either they
are ignored or alternative parameters are
substi tuted automa tically.

The five cataloged procedures are shown
in Fig ures 146 through 150. (Space
allocations in these procedures are in
terms of record lengths on the 2314 disk
storage de vice.) Note tha t when DSN AM E=&&
is used in a DD statement the specified
data set is given a unique name by the
operating system. and it is assumed to be a
temporary data set that will be deleted
when the job is completed. If the data set
is to be kept, the DD statement can he
overridden with a permanent data set name,
and the appropriate parameters can be
specified.

!!.Q!&: If the compiler options are not
explicitly supplied with the procedure,
default options established at the
installation apply. The programmer can
override these default options by using an
EXEC statement that includes the desired
options (see "Overriding and Adding to

EXECStatements" and "Overriding Cataloged
Procedures Using Symbolic Parameters").

Procedure names begin with the
abbreviated name of the processor program#
which, in the case of the COBOL procedures,
is COB.

The processor's abbreviated name is
followed by the processor's level indica tor
(U) and then by C (compile), L (linkage
edit), G (go -- i.e., execute), or
combinations of them. Hence, procedure
COBUC is a single-step procedure that
compiles a program using the COBOL
processor; COBUCLG is a 3-step procedure
wherein the first step compiles a program
using COBOL, the second step link-edits the
output of the first step, and the third
step executes the output of the linkage
editor.

In a cataloged procedure, the step name
is the same as the abbreviated processor
name (LKED). The step that executes a
compiled and link-edited program is named
GO.

For example, in the procedure named
COBUCLG, the first step is named COB, the
second step is named tKED, and the third
,step is named GO.

The tvo unit names used in IBM-supplied
cataloged procedures are as follows:

SYSSQ

SYSDA

any magnetic tape or mass
storage device

any mass storage device

A pool of units must be assigned to
these unit names during the system
generation procedure. For example, only
2314 Disk storage Drives might be assigned
to the SYSSQ name. Thei again, both 2400
Magnetic Tape units and 2314 Disk storage
Drives might be assigned to the SYSSQ name.
Once a pool of devices is assigned to these
classes, device selection is done by the
Job Scheduler.

Data Set Names in Procedur~§

When DSNAME=&&name is used in a DD
statement, the specified data set is given
a unique name by the scheduler, and it is
assumed to be a temporary data set that
will be deleted when the job terminates.
If the data set is to be retained, the DD
statement must be overridden with a
permanent data set name and appropriate
DISP parameters.

The eOBUC procedure is a single-step
procedure to execute the COBOL compiler.
It produces a punched object deck. Figure
145 shows the statements that make up the
COBUC cataloged procedure.

The following DD statement must be
supplied in the input stream:

IICOB.SYSIN DD * (or appropriate
~arameters defining an
input data set)

optionally, the delimiter statement (/*)
may follow the source module.

The COBUCL procedure is a two-step
procedure to compile and link-edit using
the COBOL compiler. Figure 146 shows the
statements that make up the cataloged
procedure.

The COB job step produces an object
module that is input to the linkage editor.
Other object modules may be added as
illustrated in Example 5 under "Using the
DDNAME Parameter."

The following DD statement, indicating
the location of the source module, must be
supplied in the input stream:

IICOB.SYSIN DD * (or appropriate
parameters)

The COBULG cataloged procedure is a
tva-step procedure to link-edit and execute
the output of a COBOL compilation. Figure
148 shows the statements that make up the
procedure.

using the Cataloged Procedures 359

The following DD statement indicating
the location of the object module must be
supplied in the input stream:

IILKED.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN in
the execution step, the following 00

statement must also be supplied in the
input stream.

IIGO.SYSIN DO * (or appropriate
parameters)

If the COBOL program refers to other
data sets in the execution step such as
user-defined files, DD statements that
define these da ta sets must also be
provided.

.- ------,
IIICOB
IIISYSPRINT
JIISYSPUNCH
f /ISYSOTl
1115YSOT2
IIISYSUT3
I/ISYSUT4

EXEC PGM=IKFCBLOO,PARM='DECK,NOLOAD,SUPMAP',REGION=128K
DO SYSOOT=A
DO SYSQUT=B
DD UNIT=SYSDA,SPACE=(460,(100,100»
DD UNIT=5YSDA,SPACE=(460,{100,100»
DD UNIT=SYSDA,SPACE=(460,{700,100j)
DD UNIT=SYSDA,SPACE={460, (700,100)

Figure 146. statements in the COBUC Procedure

r
IIICOB EXEC PGM=IKFCBLOO,REGION=128K
f/ISYSPRINT DD SYSOOT=A
1/ISYSUTl DD UNIT=SYSDA,SPACE=(460,(700,100»)
1//SY5UT2 DD UNIT=SYSDA,SPACE=(460,{700,100)
'1ISYSUT3 DD UNIT=SYSDA,SPACE=(460, (100,100»
IIISYSUT4 DD UNIT=SYSDA,SPACE=(460,(700,10~)
IIISYSLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
1// SPACE= (80, (500,100»
I//LKED EXEC PGM=IEWL,PARM='LIST,XREP,LET',COND=(5,LT,COB),
1// REGION=96K
IIISYSLIN DD DSNAME=&&LOADSET, DISP= (OLD ,DELETE)
III DD DDNAME=SYSIN
I/ISYSLMOD DD DS NAME=&&G05ET, DISP= (NEW, PASS) , UN1T=SI5D A,
III ' SPACE= (1024, (50,20,1)
t 115YSLIB .DD DSNAME=S IS 1. COBLIB. D1SP=SHR
1/ ISYSUT 1 DD UN IT = (SY SD A, SEP= (SYSLIN, Syst !tOD)) ,
III SPACE=(1024,{SO,20)
1115 YS PRINT DD SYSOUT=A
'--
Figure 147 • statements in the COBUCL Procedure

.-
IIILKED EXEC PGM=IEWL,PARM='LIST,IREF,LET',REGION=128K
II/SYSLIN DD DDNAftE=S ISIN
'I/SY5LMOD DD DSNAME=&&GOSET (GO) ,DISP={NEW ,PASS) ,UNIT=SYSDA,
III SPACE={1024,{SO,20,1))
IIISYSL1B DD DSNAME=SYS1.COBLIB,DISP=SHR
'1ISYSUT1 DD UNIT=(SYSDA,SEP={SYSLIN,SYSLKOD»,
III SPACE= (1024, (50,20))
IIISYSPRINT DD SYSOUT=A
ItlGO EXEC PGM=*.LKED.SYSLBOD,COND=(S,LT,LKED)
'-
Figure 148. Statements in the COBULG Procedure

360

X

X

X

X

X

X

I
I
I
f
I
I
I

,
t
I
I
I
I
I
I
I

• f
I
I
I
I
I
I
I

• J

,
I ,
J
I
I
I
I
I
I

.J

, ,
IIICOB EXEC PGM=IKFCBLOO~ PARK=SUPftAP ~ REGION= 128K t
II/SISPRINT DD SYSOUT=A
,//SYSUT1 DD UNIT=SYSDA,SPACE=~60~(700~100»)
IIISYSUT2 DD UNIT=SYSDA~SPACE=(460,(700,100»
II/SYSUT) DD UNIT=SYSDA.SPACE=(460,(700~100»
'1ISYSUT4 DD UNIT=SYSDA~SPACE=(460,(700,100»
II/SISLIN DD DSNAME=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA, X
1// SPACE: (80, (500,100»
.IILKED EXEC PGH=IEWL,PARK='LIST,IREF ,LET' ,COND= (S,LT,COB) , X
III REGlON=96K
'/ISISLIN DD DSNAME=&&LOADSET,DlSP=(OLD,DELET~
tIl Dn DDNAKE=SISIN
IIISYSL80.o DD .oSNAHE=&&GOSET(GO) ,DISP=(NEW,PASS),UNIT=SISDA, X
tIl SPACE= (1024, (50,20,1»
II/SYSLIB DD DSNAME=SYS 1. COSL IB;.oISP=SHB
IIISISUT1 DD UNIT=(SISDA,SEP=(SYSLIN,SISL~OD» , X
III SPACE=(1024,(50,20»
IIISYSPRINT DO SISOU'1'=A
IIIGO EXEC PGM=*.LKED.SISLMOD,COND=«5,LT,COB) ,(5,LT,LKED»
• .J

Figure 149. Statements in the COBUCLG Procedure

r-
IIICOB EX EC PGM=IK FCBLOO ,PARM=' LOAD' ,R EGlON= 12 8K
I/ISYSPRINT DD SYSOUT=A
II/SISUTl DD UNIT=SYSDA,SPACE=(460, (700,100))
II/SISUT2 DD UNIT=SISDA,SPACE=(460,(700,10~}
IIISISUT3 DD UNIT=SYSDA~SPACE=(460,(700,100»
II/SISUT4 DO UNIT=SYSDA,SPACE=(460,(700,100»
IIISISLIN DD DSNAME=&&LOADSET.DISP=(MOD,PASS)~ X
III UNIT=SYSDA.SPACE=(80,(500,100»
IIIGO EXEC PGM=LOAOER,PARM=·MAP,LET'.COND:(5~LT,COB),REGION=106K
II/SYSLIN DD DSNAl'tE=* .COB. SIS LIN. DISP= (OLD, DELETE)
IIISYSLOUT DD SYSOUT=A
IIISISLIB DD DSNAME=SYS1. COBLIB,DISP=SHR
I ..
Figure 150. Statements in the COBUCG Procedure

location of the input data set must also be
supplied:

The COBUCLG procedure is a three-step
procedure to compile, link-edit~ and
execute using the COBOL compiler. Fiqure
149 shows the statements that make up the
procedure.

The COB job step produces an object
module that is input to the linkaqe editor.
Other object modules may be added as
illustrated in Example 5 under "Using the
DDNAKE Parameter."

The followinq DD statement, indicating
the location of the source module, must be
supplied in the input stream:

IICOB.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SY SIN,
the following DD statement indicating the

IIGO. SISI N DD * (or appropriate
parameters)

If the COBOL program refers to other
data sets, DO statements that define these
data sets must also be supplied.

The COBUCG procedure is a two-step
procedure to compile, load, and execute
using the COBOL compiler and as loader.
Figure 150 shows the statements that make
up the procedure.

The COB job step produces an object
module that is input to the loader.

using the Cataloged Procedures 361

The following DD statement, indicating
the location of the source module. must be
supplied in the input stream:

/ICOB.SYSIN DD * (or appropriate
parameters)

If the COBOL program refers to SYSIN.
the following DD statement indicating the
location of the input data set must also be
supplied:

//GO.SYSIN DD * (or appropriate
parameters)

If the CO BOL program refers to other
data sets, the DD statements that define
these data sets must also be supplied.

Existing cataloged procedures can be
permanently modified by using the IEBUPDTE
utility prog ram descrihed in the
publication OSLY~ Utili!ie2_

Any parameter in a cataloged procedure
except the PGM=progname parameter in the
EXEC statement can be overridden.
Parameters or statements not specified in
the procedure can also be added. When a
cataloged procedure is overridden or added
to, the changes apply only during one
execution.

OVERRIDING AND ADDING TO EXEC STATE!ENTS

An EXEC statement can be overridden or
added to in one of two ways:

1. Specify, in the operand field of the
EXEC statement calling the procedure,
the keyword, the procedure step-name
and the subparameters, for example:

362

COND.procstep=(subparameters)

If a multistep procedure is being
modified, parameters in the calling
EXEC statement must be specified step
by step; i.e., t.he parameters for one
step must be specified before those of
the next step. If the return code of

a cataloged procedure step is to be
tested, the name of the step in' the
procedure (procstep) must be qualified
by the name of the step that called
for execution of the cataloged
procedure (stepname).

2. specify in the operand field of the
EXEC statement calling the procedure
only the keyword parameters and
sub parameters, for example:

COND=(subparameters)

If a multistep procedure is being
called, the specified parameters (with
the exception of PARM) apply to all
steps in the procedure. The PARM
keyword subparameters override the
first EXEC statement and nullify any
subsequent PARM keyword subparameters.
The COND and ACCT parameters apply to
all steps in the procedure. To
override PARM parameters in job steps
other than the first, the pre vious
method can be used.

IQ!~: A parameter in an EXEC statement
cannot be partly overridden; it must be
overridden in its entirety. Any parameter
not overridden remains as originally
defined.

1~~Qt~~iding_~g_Adding_1Q_~!~£
~at~ts

This section contains examples of
overriding and adding to the EXEC
statement. The procedures overridden or
added to are the IBM procedures shown in
Figures 146 through 150.

!~~~E1~1: The following example shows the
overriding of one parameter in the EXEC
statement of the one procedure step in the
IBft-supplied COBUC procedure. The
statements appear in the input stream as
follows:

Iljobname
IISTEPA
/1
/1

JOB 1234,J.SMITH
EXEC COBUC,PARM.COB='DECK,

NOLOAD,BOP=4000,
SIZE=9600'

//COB.SYSIN DD *
(source module)

1*

x
X

!Q~~: In actual use the PARM.COB parameter
cannot be continued in this manner. In the
PARM parameter that is overridden, the DECK
and NOLOAD options were specified. They
are incl ud ed again si nee the parameter must
be overridden in its entirety. The

information is here enclosed in single
quotation marks, since subparameters that
contain equal signs must be enclosed in
this manner.

~!!!1!£lg_l.: The following example shows the
overriding of two parameters and the adding
of another in the EXEC statement of one
procedure step of the IB~-supplied COBUCLG
procedure. The statements appear in the
input stream as shown:

/Ijobname
IISTEPA
II
II
II
IICOB. SYSIN

1*

JOB 1234,J.SMITH
EXEC COBUCLG, PAR". LKED= X

(MAP,LIST) ,ACCT=(1234), X
COND.LKED=(9,LT, X
STEPA. COB)

DD *
(source module)

Note: In actual use the COND.LKED and
piii.LKED parameters cannot be continued in
this manner. For the linkage editor job
step in the above example, the COND and
PARM parameters have been overridden and
the ACCT parameter added.

E.~ampl!t_l: The following example shows the
overriding of individual parameters in more
than one procedure step of the IBM-supplied
COBUCLG procedure. The statements appear
in the input stream as shown.

Iljobname
Iistepnaroe
II
II
II
IICOB. SYSIN

1*

JOB 1234,J.SMITH
EXEC COBUCLG,PARM.LKED=OVLY, X

COND.GO=«5,EQ, X
stepname.COB), X
(5,EQ,stepname.LKED»

DD *
(source module)

!Qte: In actual use the COND.GO statement
cannot be continued in this manner. The
PARM option OiLY replaces the PARM
sub parameters of the link-edit job step.
The COHD option EQ (equal to) replaces the
option LT (less than) in the execution job
step.

Note that all overriding parameters for
one step of the procedure must be specified
before those for the next step.

Ex~~£1g_!: The following example shows the
overriding of parameters on all EXEC
statements in the IBM-supplied COBUCLG
procedure. The statements appear in the
input stream as shown:
Iljobname JOB 1234,J.SMITH
/Istepname EXEC COBUCLG, X
II PARM= (LOADrPMAP) , X
II COND=(3,LT)r X
II ACCT=(123456,DEPTQ)
/ICOB.SYSIN DO *

(source module)

1*

The PARM options are added to the procedure
step COB and nullify-t.he PARM options in
the LKED and GO steps. The COND and ACCT
parameters apply to all steps in the
proced ure.

TESTING A PROCEDURE AS AN IN-STREAM
PROCED URE

A procedure can be tested before it is
placed in the procedure library by
converting it into an in-stream procedure
and executing it any number of times during
a job. In-stream procedures are described
in detail in the publication oS/vs~£1
~rvic~.

An in-stream procedure is a series of
job control language statements enclosed
within a PROC statement and a PEND
statement. The following example shows how
to convert the eOBUC procedure (Figure 146)
into an in-stream procedure and execute it
twice. pemember that in actual use the
parameters cannot be continued in this
manner.)

Using the Cataloged Procedures .363

IICONVERT JOB 1234, YOUR NAME
IIINSTREAM PRoe
IICOB EXEC PGM=IKFCBLOO,PARM=' DECK, X

NOLOAD, SUPS Apt, X
REGION=128K

IISYSPRINT DD SYSOUT=A
IISYSPUNCH DD SYSOUT=B
IISISUTl DD DSNAME=&&SYSUT1, X
II UNIT=SY SOA, X
II SPACE={460,6700,100»
IISYSUT2 OD OSNAME=&&SYSU"T2, X
II' UNIT=SYSDA, X
II SPACE={460,6700,100»
115YSUT3 DD OSNAME=&&SYSUT3, X
II UNIT=SYSDA, X
1/ SPACE=(460,6700,100»
IISYSUT4 DD DSNAME=&&SYSUT4, X
/1 ONIT=SYSD A, X
II SPACE={460,6700,100»
IIEND.PROC PEND
II EXEC INSTREAM
IICOB. SYSIN DD ...

(input data)

1*
II EXEC INSTREAM
IICOB.SYSIN DD * (input data)
1*

OVERRIDING AND ADDING TO DO STATEMENTS

A DD statement can be overridden or
added to by using a OD statement whose name
is composed of the procedure step-name that
qualifies the ddname of the DD statement
being overridden, as follows:

Ilprocstep.ddname DD (appropriate
parameters)

Entire OD statements can also be added.

There are rules that must be followed
when overriding or adding a DD statement
within a ste p in a procedure.

• Overriding DD statements mast be in the
same order in the input stream as they
are in the cataloged procedure.

• DO statements to be added must follow
overriding DD statements.

There are some special cases that should
be kept in mind when overriding a DD
statement.

• All parameters are overridden in their
entirety, except for the DCB and AMP
parameters. Within the DCB and AMP

364

parameters, individual subparameters
may be overridden.

• To nullify a keyword parameter (except
the DeB and AMP parameters), write, in
the overriding DD statement, the
keyword and an equal sign followed by a
comma. For example, to nullify the use
of the ONIT parameter, specify UNIT:,
in the overriding DD statement.

• A parameter can be nullified by
specifying a mutually exclusive
parameter. For example, the SPACE
parameter can be nullified by
specifying the SPLIT parameter in the
overriding DD statement.

• The DUMMY parameter can be nullified by
omitting it and specifying the DSNAME
parameter in the overriding DD
sta temen t.

• To override DD statements in a
concatenation of data sets, the
programmer must provide one DD
statement for each data set in the
concatenation. only the first DD
statement in the concatenation should
be named. However, if a DD statement
to be changed follows one (or more) DD
statement(s) to be left intact, the
first overriding statement(s) should
ha ve a blank operand.

• If the DDNAME=ddname parameter is
specified in a cataloged procedure, it
cannot be overridden; rather it can
refer to a DD statement supplied at the
time of execution.

~~~21~2_Qt-Q~~££i~!ng_an~_Addi~to_Q~ 
~tatn~n1§ 

This section contains examples of 
overriding and adding to parameters in DD 
statements. The procedures overridden or 
added to are the IBM procedures shown in 
Figures 146 through 150. 

The DDNAME parameter is not used in 
these examples, although it can be useful 
with the cataloged procedures. The use of 
the DDNAKE parameter is described in detail 
later in this chapter. 

Rxample 1: The following example shows the 
overriding of DD statements in the 
IBM-supplied COBUCLG procedure. 

Iljobname 
Ilstepname 
IICOB.SISLIN 
IICOB. SYS.IN 

JOB 1234,J.SftITH 
EXEC COBUCLG 
DO DSNAME=GOFILE 
DD * 



(source 1I0dule) 

1* 
IILKED.SYSLIN DO OSNAftE=*.COB.SYSLIN, 

DISP=(OLD,CATLG) II 

1* 

1* 

(other DD statements for 
user-defined files) 

x 

The name of the data set in SYSLIN in the 
procedure step COB is changed to GOFILE. 
The name of the data set of SYSLIN in the 
proced ure step LKED is changed to a 
reference to the SYSLIN DD statement in the 
COB procedure step, and the data set name 
GOFILE is cataloged. 

~~A~~~1: The following example shows the 
adding of DO statements to the IBM-$upplied 
COBUCLG procedure. 

Iljobname 
/Istepname 
II 
IICOB.SYSPUNCH 
//COB.SYSIN 

JOB 1234,J.SMITH 
EXEC COBUCLG, 
PARM. COB= (D.ECK, LOAD, Pl'lAP) 
DD SYSOUT=B 
DD * 

(source module) 

1* 
IIGO.TRANSACT DD DSNAME=JUNE,DISP=OLD 

1* 

(other DD statements for 
user-defined files) 

x 

lfQte: In the foregoing ex am pIe TRAN SACT is 
a cataloged data set. When a data set is 
cataloged, it is sufficient to refer to it 
by DSNAl'lE and DISP=OLD. 

The PARM.COB option DECK and the SYSPUNCH 
DD sta teBlent are added to obtain a punched 
object module. The PARM option Pl'lAP is 
added to obtain a listing of the assembler 
language expansion of the source mod ule. 

~I.~~_~: The following example sho,vs 
overriding and adding to DD statements at 
the same time in the IBM-sllpplied COBUC 
proced ure. Note tha t overriding statements 
must be in the same sequence as they appear 

in the procedure and must precede those 
statements being added. 

Iljobname 
Iistepname 
IICOB.?YSUT2 
IICOB.SYSLIN 
II 
II 
IICOB. SYSIN 

JOB 
EXEC 
DD 
DD 

DD 

1234,J.SMITH 
COBUC,PARM.COB=(LOAD) 
SPACE=,UNIT=SYSSQ 
DSNAME=&&GOFILE, 

* 

DISP=(MOD.PASS), 
UNIT=SYSSQ 

x 
X 

(source module) 

1* 

(subsequent job steps) 

The device class on the COB.SYSUT2 DD 
statement is changed to SYSSQ, and the 
SPACE parameter is nullified. Therefore, 
mass storage devices cannot be allocated. 
Any tape volumes to be assigned must have 
standard labels. The COB.SYSLIN DD 
statement is changed so that it passes the 
object module to subsequent job steps. 

nampl~!:!.: The following example shows how 
to concatenate a data set with a data set 
defined in the COBULG procedure. 

Iljobname 
/Istepname 

JOB 1234,J.SMITH 
EXEC COBULG 

IILKED.SYSLIB DD 
II DD 

1* 

(blank operan d field] 
(parameters] 

Instead of the blank operand field, 
parameters could have been used to override 
the SYSLIB statement; the data set defined 
by the unnamed DD statement would then be 
concatenated to the data set that was 
redefined by overriding. 

Note that a number of libraries could be 
concatenated to the SYSLIB data set. For 
example: 

I/LKED.SYSLIB DD 
II DD 
II DD 

DSNAME=USERLIB,DISP=OLD 
DSNAME=MYLIB,DISP=OLD 

Using the cataloged Procedures 365 



The DDNAME parameter is used to define a 
dummy data set that can assume the 
characteristics of an actual data set, 
defined by a subsequent DD statement within 
the step. If a matching DD statement is 
found, its characteristics, with the 
exception of its ddname, replace those of 
the statement using the DDNAME parameter. 
If a matching DD statement is not found 
within the step, the data set defined by 
the DDNAME parameter remains a dummy. 

This section contains examples shoving 
the use of the DDNAME parameter with 
ca ta loged procedures. 

The rules for using the DDNAME parameter 
are as follows: 

• A backward reference (e.g., *.ddname) 
to a DD statement referred to by a 
DDNAME paramet.er cannot be used because 
the statement that is referred to loses 
its identity. 

• A backward reference to a statement 
containing a DDNAME parameter can be 
used, but only after the statement to 
which the DDNAME parameter refers has 
been encountered. If a backward 
reference is used before the dummy data 
set (defined by DDNAME) has been given 
real characteristics, these real char
acteristics will not be transferred to 
the DD statement that contains the 
backward reference. For example, if 
DCB=*. dd name is used (where ddna me is 
the name of a statement containing an 
unresolved DDNAME parameter), the DCB 
fields that are transferred are blank. 

• Unnamed DD statements can be placed 
after a statement containing the DDNAME 
parameter (indicating concatenation), 
but unnamed DD statements cannot be 
placed af·ter a statement referred to by 
a DDNAME parameter. 

• The DONAME parameter can be used a 
maximum of five times in a step, but 
each DDNAME parameter must .refer to a 
different statement. 

• The ODNAME parameter cannot be used in 
a JOBLIB statement. 

• The DDNAME parameter is not to be used 
to refer to a DD statement with the 
DYNAM pa rameter specified .. 

366 

When using the DDNAME parameter, the 
programmer should also keep the following 
in mind: 

• The name of the DD statement referred 
to does not replace the name of the 
referencing statement. 

• If a statement that contains the DDNAME 
pa rame ter is overridden, it is 
nullified. 

• If overriding is performed with a 
statement that contains the DDNAME 
parameter, all parameters in the 
overridden statement are nullified. 

The following OD statements: 

liS 1 
IID1 
IID2 
liD 3 

EXEC PGM=progname 
DD DDNAME=D3 
DD (parameters!. Y, Z) 
DD (parameters U, T, V) 

will result in the same data definition 
produced by the following statements: 

IIS1 
IID1 
1102 

EXEC PGM=progname 
DO (parameters U,T,V) 
DD (parameters X, Y, Z) 

EXAMPLES OF USING THE DDNAME PARAMETER 

ExamI!lLl: The following example shows how 
to override the first DD statement in a 
cataloged procedure with a DO * statement, 
and allow subsequent statements to be proc
essed. The cataloged procedure (PROC3) is 
as follows: 

IISTEP 1 
IIDD1 
IIDD2 

EXEC PGM=progname 
DD (any para meters) 
DD (any parameters) 

The job procedure in which the overriding 
takes place appears in the in~ut stream as 
follows: 

/IJOB1 JOB 1234,J.SMITH 
liS 1 EXEC PROC3 
IISTEP1.DDl DD DDNAME=Dl 
IID1 DD * 

The STEP1.DDl statement overrides the 
DDl statement; the DD2 statement is proc
essed; th en the D 1 statement is processed. 

ExamElLl: Tnefollowing example shows how 
to override the first DD statement in a 
cataloged procedure with a DD * statement 



and how to add a DD statement. The 
cataloged procedure (PROe3) is as follows: 

IISTEPl EXEC PGM=prognalle 
IIDD1 DO (any parameters except 

DATA or *) , 
IIDD2 DD (an y parameters e.xcept 

DATA or *) 

The job procedure in wbich the overriding 
takes place appears in the input stream as 
follows: 

IIJOB2 JOB 
1151 EXEC 
IISTEP1.DOl DD 
IISTEP1. D03 00 

lIDO 4 DO 

l234,J.5KITH 
PROe) 
DONAME=DD4 
(any parameters except 

DATA or *) 
* 

The DD4 statement effectively overrides 
the DDl statement, after the DD2 statement 
has been processed and the 003 statement 
has been added. 

!~uple-1: The following example sholfs how 
to concatenate a data set in the input 
stream with a data set defined by a DO 
statement in a cataloged procedure. The 
cataloged procedure (PROC3) is as follows: 

IISTEPl EXEC PGM=progname 
11001 DD (any parameters except 

DATA or *) 
IIDD2 DD (any parameters except 

DATA or *) 

The job procedure in Which the 
concatenation takes place appears in the 
input stream as follows: 

IIJOB3 
1151 
IISTEP1.DDl 
II 
IIDD3 

JOB 
EXEC 
DD 
DD 
DD 

1234,J. Sf! ITH 
PROe3 
(blank operand field) 

DDN AME=DD3 

* 

The data set in the input stream is 
concatenated with the data set defined by 
the DDl statement after the 0.02 statement 
has been processed. 

Ixample 9: Ifhe following example shows how 
to concatenate a data set in the input 
stream ~ith a data set defined by a DD 
statement in a cataloged procedure and how 
to add a DD statement. The cataloged 
procedure (PROe3) is as follows: 

//STEPl 
IIDDl 

EXEC PGft=progname 
DD (any parameters except 

IIDD2 DO 
DATA or *) 

(any parameters except 
DATA or *) 

The job procedure in which the concate
nation takes place appears in the input 

,stream as follows: 

IIJOB4 JOB 1234, J.SMITH 
IIS1 EXEC PROC3 
I/STEP1.DD2 OD (blank operand field) 
II DD DDNAME=DD4 
IISTEP1.D03 DO (any parameters except 

DATA or *) 
11004 DO * 

Example~: The following example shows how 
the statement DD DDNAME=SYSIN in the 
IBM-supplied COBUCLG procedure can be used 
to add more object modules as input to the 
linkage editor. The statements appear in 
the input stream as follows: 

Iljobname 
Iistepname 

IICOB.SYSIN 

(source 

1* 
IILKED.SYSIN 

(first 

JOB ·1234,J.SMITH 
EXEC COBUCLG 

DO * 
deck) 

DD * 
object module) 

(last object module) 

1* 

(IIGO. car ds) 

The COBUCLG procedure contains the 
following tvo statements in the linkage 
edit step: 

1/5YSL1N DD DSNAME=&&LOADSET, 
II OISP=(OLD,DELETE) 
II DD DDNAME=SYSIN 

x 

The result of concatenating SYSIN with 
SISLIN is that when SISLIN (input to 
linkage editor) is read, SYSIN is also read 
and linked with it. For example, if 
ILBODSPO is one of the object modules in 
the SYSIN stream, it will be linked with 
SISLIN. The ILBODSPO module from 
SIS1.COBLIB will not be used. 

Using the Cataloged Procedures 367 



To use the Sort/Merge feat~re of the 
OS/VS CO BOL Compiler, sort/merge fea ture 
statements are written in the COBOL source 
program. These statements are described in 
tae publication IBM_~£Q~Q~_!Q£_OSL!~. 
The Sort/Merge program itself is described 
in the appropriate ~QrtLMeilSl-Rt.Qg,t:~n~~§ 
Guig~. 

Use of the full COBOL sort/Merge feature 
requires the program product OS/VS 
sort/Merge, 5740-S111. The os Sort/Merge, 
5734-S.M1, may only be ased if COBOL sort 
alone is used--without alternate collating 
sequence and without merge. (If 5134-SM1 
is used, it may issue message IGH067I, 
"INVALID EXEC OR ATTACH PARAMETER." This 
will have no effect on operations, and may 
be safely ignored.) 

DD statements must be written in the 
execution-time job steps of the procedure 
to describe the data sets used by the 
sort/merge program. DD statements for data 
sets used during the sort/merge process are 
described below. 

~Qte: The sort/Merge Checkpoint Restart 
feature is available to the programmer 
through the use of the RERUN statement. 

Three types of data sets can be defined 
for the sort program in the execution time 
job step: input, output, and work. In 
addition~ data sets must be defined for 
the use of the system during the sorting 
'Operation. 
·For MERGE, work DD statements are required. 

The maximum number of files that can be 
merged is 8. 

SORT INPUT DD STATEMENTS 

The input data set is associated with a 
ddname that appears as the ddname portion 
of the system-name in an ASSIGN clause in 
the COBOL source program. When the USING 
option is specified, the compiler will 
generate an input procedure that will open 
the data set, read the records, release the 
records a nd close the da ta set. 

SORT OUTPUT DD STATEMENTS 

The output data set is associated with a 
ddname that appears as the ddname portion 

368 

of the system-name in an ASSIGN clause in 
the COBOL source program. When the GIVING 
option is specified, the compiler generates 
an output procedure that will open the data 
set, return the records, write the records, 
and close the data set. 

SORT WORK DD STATEMENTS 

The sort program requires at least three 
work data sets. The ddname for each DD 
statement is in the form SORTWKnn, where nn 
is a decimal number. The ddnames for the 
required data sets must be SORTWK01~ 
SORTWK02, and SORTWK03. Additional work 
data sets may be defined, but their ddnames 
must be consecutively numbered, beginning 
with 04. 

Intermediate data sets (i.e., SQRTWKnn 
data sets) for a sort/merge may be assigned 
to either magnetic tape or mass storage 
devices. All of the intermediate storage 
for one sort/merge must be assigned to the 
same device type. These may not be on both 
7-track and 9-track tape units in the same 
sort. Anyone of the following devices may 
be used for intermediate storage: 

IBM 2400-series Magnetic Tape Unit (7-
or 9-track) 

IBM 3400-series Magnetic Tape unit 
(9-track) 

IBM 2314/2319 Direct Access storage 
Facility 

IBM 3330 Direct Access storage 
Facility 

IBM 3340 Direct Access Storage 
Facility 

IBM 3350 Direct Access storage 
Facility 

The ~£!LH~£~f£Qg£~~~~2 Gui~ contains 
detailed informa tion about these devices. 

Since spanned records can be input to 
and output from the sorting operation, it 
is the user's responsibility to assign the 
sort work files to mass storage devices 
whose track sizes are larger than the 
logical record size of the records being 
sorted. An s-mode file whose logical 
record length is greater than its track 
size may be sorted by assigning the work 
files to a magnetic tape unit. 



If data sets not involved in the sorting 
or merging operation are assigned to tape 
units, t~ese tape units may be used as sort 
work files by using the UNIT=AFF parameter. 
Por exaaple, if PAYROLL is specified as the 
ddname of the ASSIGN clause in a SELECT 
statement, the tape unit assigned to 
PAYROLL could be used as a sort work file 
by using the following DD statement: 

//PAYROLL DD UNIT=2400, ••• 
//SORTWK02 DD UNIT=AFP=PAYROLL ••• 

The input data set must reside on a 
physical device, a magnetic tape unit, a 
mass storage device, or in the system input 
stream. The following example shows DD 
statement paralleters that could be used to 
define a cataloged input data set. 

//1 NSORT 
II 

DD DSNAME=INPT, 
DISP=(OLD,DELETE) 

x 

These parameters cause the system to search 
the catalog for a data set named INPT 
(DSNAME parameter) • When found, the data 
set is associatedvith the ddname INSORT 
and used by the sort program. The control 
program obtains the unit assignment and 
volume serial number from the catalog, and 
displays a mounting message to the 
operator. The DISP parameter indicates 
that the data set has already been created 
(OLD). It also indicates that the data set 
should be deleted (.DELETE) after the 
current job step. 

The output DD statement must define all 
of the characteristics of the output data 
set. The following example shows DD 
statement parameters that could be used to 
characterize an output data set: 

//OUTSORT DD 
II 

DSNAftE=OUTPT, UNIT=2400, 
DISP= (NEW, CATLG) 

The DISP parameter indicates that the data 
set is unknown to the operating system 
(NEW) and that it should be cataloged 
(CATLG) under the name OUTPT (DSHAME 
parameter). The UNIT parameter specifies 
that the data set is on a 2400-series tape 
unit. 

x 

SORXWKnn DD statement§ 

SORTWKnn data sets may be contained on 
tape or mass storage volumes. When mass 
storage space is assigned, only the primary 
allocation is used by the sort, and it must 
be con tiguous. 

Note that the SORTWKnn data sets: 

1. May nQi be spread over more than one 
device type. 

2. May R2i be on 1-track tape when the 
input data set is on 9-track tape. 

3. May be on 1-track tape when the 
output data set is on 9-track tape. 

4. Cannot use the data conversion feature 
if they are on 7-track tape. The 
TRTCH subparameter must reflect this. 

5. May be on 9-tracK tape when the input 
data set is on 7-track tape. 

~Ull!ill_~~le_!: The following DD 
statement parameters could be used to 
define a tape intermediate storage data 
set: 

IISORTWKOl DD 
II 

UNIT=2400,LABEL=(,NL), 
VOLUME=SER=DUMMY 

x 

These para meters spec ify an unlabeled data 
set on a 2400-series tape unit. Since the 
DSNAME parameter is omitted, the system 
assigns a unique name to the data set. The 
omission of the DISP parameter causes the 
system to assume that the data set is new 
and that it should be deleted at the end of 
the current job step. The 2400-series tape 
units are explicitly of the 9-track format. 

~QRTWKnn_~~g~le B: The following DO 
statement parameters could be used to 
define a mass storage intermediate storage 
data set: 

IISORTiKOl DD 
II 

UNIT=2314, X 
SPACE=(TRK, (200) "CONTIG) 

These parameters specify a mass storage 
data set with a standard label (LABEL 
parameter default value). The SPACE 
parameter specifies tha t the data set is to 
be allocated 200 contiguous tracks. The 
system assigns a unique name to the data 
set and deletes it at the end of the job 
step. 

Using the sortlMerge Feature 369 



ADDITIONAL DD STATEMENTS 

The sortlmerge program .requires two 
additional DD statements: 

IISYSOUT DD SYSOUT=A 

which defines the system output data set. 

IISORTLIB DD 
II 

DSNAME=SYS 1. SORTtIB, 
DISP=SHR 

which defines the library containing the 
SORT/MERGE modules. 

x 

!Ql~: At OS/VS sortlMerge installation 
time, t.he programmer can designate that 
SortlMerge diagnostic messages be printed 
on a specified data set. The FLAG option 
determines whether t.he messages directed to 
this data set are either 
uncorrectable-error messages or both 
informational and uncorrectablele-error 
SortlMerge messages. In either case, 
uncorrectable-error messages are displayed 
on the console. SYSOOT is the default data 
set that is modified by the FLAG option. 
If there are DISPLAY or EXHIBIT statements 
in the COBOL program, the SortlMerge 
messages cannot be routed to the same data 
set designated for the output of the 
DISPLAY andlor EXHIBIT statements. 
Therefore, one of the following courses of 
action should be considered: 

• The SortlMerge default data set should 
be changed at installa tion time by 
specifying the PRINT=parameter and 
selecting a DD name other than SYSOUT. 
At execution time, the selected DD name 
must be specified on a DD statement. 

• In the COBOL source program, a DD name 
other than SYSOur should be placed in 
the SORT-MESSAGE special register prior 
to the SORT statement. At execution 
time, the selected DD name must be 
specified in a DD statement. 

• At compile time, the SYSOUx option can 
be used to designate a file for COBOL 
DISPLAY output other than SYSOUT. 
Therefore, sort/Merge messages can go 
to the SYSOUT file. 

A single t~pe unit may be assigned to 
two sort data sets when the data sets are 
one of the following pairs: 

• The inpu t data set and the first 
intermediate storage data set 
(SORTWKO 1) • 

370 

• The input data set and the output data 
set. 

The AFF subparameter of the UNIT 
parameter can be used to associate the 
input data set with either the SORTWK01 
data set or the output data set. The 
subparameter can appear in the DD statement 
for SORTWK01 or output. 

USlNG_MOgE_IH!!-Q!~_~QEIL~~RGt-STATE~~NT_I! 

.L~Q!! 

More than one SORTIMERGE statement may 
be used in a single program or in two or 
more programs that are combined into a 
single load module. 

SORT PROGRAM EXAMPLE 

The control cards in Figure 151 could be 
used with the sample program that 
illustrates the Sort feature. A 
description of the Sort Feature can be 
found in the publication I!!lL.l~~Q!!Q!:_fQ.£ 
OS~. 

• IIISORTEST 
III 
III 
IIISORTJS3 
JIICOB.SySIN 
J 
J 
I 

JOB 

EXEC 
DD 

NY838670165, 
'J.SMITH', 
MSGLEVEL=l 
COBUCLG 

* 

, 
XI 
X I 

I 
I 
I 
I 
I 
I 

J 
I 
I 
I 

(COBOL source program) 
I 
I 
I 

I 
'1IGO.SORTWK01 DO 
III 
III 
IIIGO.SORTWK02 DD 
III 
11/ 
'1IGO.SORTWK03 DD 
III 
III 
IIIGO.OUTSORT 
III 
ill 
IIIGo.SYSOUT 
IIIGO. SORTL! B 
JI/ 
IIIGO.INFILE 
III 
III 

DD 

DD 
DO 

DD 

, 
I 

UNIT=2314, xt 
SPACE=(TRK,(200), XI 
,CONTIG) I 
UNIT=2314, X, 
SPACE=(TRK,(200), XI 
,CONTIG) I 
UNIT=2314, XI 
SPACE={TRK,(200), XI 
,CONTIG) I 
UNIT=183, XI 
LABEL=(,NL), XI 
VOLUME=SER=NONE 1 
SYSOUT=A I 
OSNAME=SYS1.S0RTLIB,Xi 
OISP=SHR I 
UNIT=182, XI 
LABEL= (, NL) , X I 
VOLUME=SER=DUMMY I 

~ J 

Figure 151. Sort Feature control Cards 



The minimum number of SORTiKnn data sets 
are used; the sort operation can be 
optimized by using additional work data 
sets (see the appropriate So£1~~ 
g~Q~~me~~~~). 

since repeated use of the sort/Merge 
feature often involves the same execution 
time DD statements. the user may wish to 
catalog them (see "Using the Cataloged 
Procedures"). 

communication between the Sort/Merge 
program and the COBOL program is maintained 
by the COBOL library subroutine ILBOSMGO. 
This routine links to the sort/Merge 
program using the load module name SORT. 
It is the user's responsibility to set up 
his LINKLIB/STEPLIB in such a way that an 
alias or load module name of SORT/MERGE 
points to the first module of the 
Sort/Merge program he wishes to use. The 
programmer must also designate via the 
appropriate SORTLIB DD statement the 
library of the sort/Merge program he wishes 
to use. 

If the INPUT PROCEDURE option of the 
SORT/MERGE statement is specified, exit E15 
of the Sort/Merge program is used. The 
return code indicating "insert records" is 
issued vhen a RELEASE statement is 
encountered, and the return code indicating 
"do not return" is issued when the end of 
the procedure is encountered. 

If the OUTPUT PROCEDURE option is 
specified, exit E35 of the Sort/Merge 
program is used. The return code 
indicating "delete records" is issued when 
a RETURN statement is encountered, and the 
return code indicating "do not return" is 
issued when the end of the procedure is 
encountered. (For additional information, 
about the Sort/Merge program, see the 
appropriate Sort/M~r~l:Q~uur' s Gull~.) 

The Sort/Merge program returns a 
comp letion code upon termina tion. This 
code may be interrogated by the COBOL 
program. The codes are: 

o 

16 

Successful completion of 
Sort/Merge 
Unsuccessful completion of 
Sort/Merge 

SUCCESSFU1_~OMPLETlQN: When a Sort/Merge 
application has been successfully executed, 
a completion code of zero is returned and 
the sort terminates. 

UN~UCCESSFUL_COMP1.ETIQli: If the 
sort/merge, during e.xecution, encounters an 
error that will not allow it to complete 
successfully, it returns a completion code 
of 16 and terminates. (Poss.ible errors 
include an out-of-sequence condition or an 
input/output error that cannot be 
corrected.) The s.Q.rtLt1.~r.9.g-f£Qg£~m.!!tg~~ 
§Yil~ contains a detailed description of 
the conditions under which this termination 
will occur. 

The returned completion code is stored 
in a special register called SORT-RETURN by 
the COBOL library subroutine; an 
unsuccessful termination of the sort may 
then be tested for and appropriate action 
specified. Note that the contents of 
SORT-RETURN will change with the execution 
of a SORT statement. The following is an 
example of the use of SORT-RETURN with the 
sort feature: 

SORT SALES-RECORDS ON ASCENDING KEY 
CUSTOMER-NUMBER, DESCENDING KEY DAYTE, 
USING FN-1, GIVING PN-2. 

IF SORT-RETURN BOT EQUAL TO ZERO, 
DISPLAY 'SORT UNSUCCESSFUL- UPON 
CONSOLE, STOP RUN. 

If no references to SORT-RETURN are made in 
a program, an unsuccessful sort will 
generate the following message: 

IKF888I- UNSUCCESSFUL SORT FOR SD 
SORT-FILE DDNAME 

See "Appendix K: Diagnostic Messages" for 
a description of action to be taken. 

A normal Sort/Merge operation will 
produce the following messages from the 
OS/iS Sort/Merge program: ICE036I, 
ICE0371, ICE038I, ICE045I, ICE049I, 
ICE052I. ICE0541, and ICE055I. Other 
messages may appear depending on the COBOL 
options specified. 

If the OS Sort/Merge program product is 
used, the same messages will appear with 
the same numbers, but the three-character 
prefix will be different. 

Using the Sort/Merge Feature 311 



TERMINATING THE SOBT PROGRAM FROM THE COBOL 
PROGRAM 

By placing the value 16 in the special 
register SORT-RETURN during the execution 
of an input or output proceaure~ the COBOL 
program can terminate the OS Sort/Merge 
program product immediately after executing 
the next RELEASE or RETURN statement. When 
control returns to the statement following 
the Sort statement~ the special register 
SORT-RETURN will contain 16 to indicate an 
unsuccessful completion. 

Records defined under a COBOL SD are 
assigned a BLL {Base Locator for Linkage 
Section) ~ or a BL (Base locator) if SAME 
RECORD AREA is specified. Location of a 
given data item in an object-time dump when 
the record in which it is contained 
references a BLL can be determined as 
follows: 

1. From the compilation listing~ 
determine: 

a. The displacement of the item (see 
Data Division Map). 

h. The relati ve address of the BLL 
CELLS (see the Memory Map Table). 

c. The BLL number. 

2. From the dump~ determine the 
relocation factor (USE/EP). 

3. Add the relative address of the BLL 
CELLS to the relocation factor to 
obtain the absolute BLL CELLS address 
in the dump. 

4. Each BLL is 4 bytes long: they are 
located in ascending sequence~ 
beginning in the dump at the address 
computed in Step 3 BLL=1 is the first 
4 bytes, BLL=2 is the second 4 bytes, 
etc. Find the appropriate 4 bytes. 

5. The 4 bytes obtained in step 4 contain 
the absolute base address of the 
desired record. Add the item's 
displacement to it to obtain the 
absolute address of the leftmost byte 
of the field in the dump. 

372 

For debugging purposes, it ~s sometimes 
useful to determine the last input record 
released to the Sort/Merge program. The 
following procedure should be used: 

1. From the Data Division map, determine 
the BLL number of the SORT/M.ERGE file 
being processed at the time of program 
termination. Assume it is BLLn. 

2. From the Task Global Table map, 
determine the location of the BLL 
cells in the COBOL object program. 

3. The ~th BLL in the main storage dump 
will point to the last record released 
to SORT/MERGE. 

Note: This BLL is initialized vhen control 
Is-first transferred to the input 
procedure. Thus, if the program terminates 
before control ever goes to the input 
procedure, the BLL will not be initialized. 
Also, with a USING clause in a SORT 
statement, the BLL viII not be initialized. 

~RT/MERGE CHECKPOINT/REST!!! 

The CHECKPOINT/RESTART feature is 
available to the programmer using the COBOL 
SORT/MERGE sta tement. In order to ini tiate 
a checkpoint, the programmer uses DO 
statements and the RERUN clause. The DD 
statement for use in taking a checkpoint is 
discussed in "Using the Checkpoint/Restart 
Feature ••• 

The RERUN clause is used to indicate 
that checkpoints are written, at logical 
intervals determined by the sort/merge 
program, during the execution of all 
SORT/MERGE statements in the program. This 
RERUN clause is fully described in the 
publication I~~Q~_Fu!! Amg~~D-!atio~l 
~ll!!dal:g_~Q]Hll! • 

The information you give the sort/Kerge 
program about the application it is to 
perform he~ps the sort and merge phases to 
produce a fast, efficient sort or merge. 
when you do not supply information such as 
data set size and record format, the 
program must make assumptions, which, if 
incorrect, lead to ineffiency. 



DATA SET SIZE 

The most important information one can 
give is an accurate data set size using the 
SORT-FILE-SIZE special register. If the 
exact number of records in the input data 
set is known, that number should be used as 
the value. If the exact number is not 
known, an estimate should be made. When 
the Sort/Merge program has accurate 
information about data set size, it can 
make the most efficient use of both main 
storage and intermediate storage. 

MAIN STORAGE REQUIREMENTS 

If the maximum amount of main storage to 
be used by the sort/Merge progra m was not 
specified at installation time, the program 
assumes a ma ximu.m of 15,500 bytes. The 
sort program requests 12,000 bytes leaving 
3500 bytes for system functions. 
Performance usually improves as the program 
is given more main storage. A minimum of 
44K bytes of main storage is normally 
needed for efficient execution of the 
sort/merge program, and performance may 
increase as more main storage is made 
a va ilable. 

If the amount of main storage was 
specified at system generation time, it is 
the programmer's responsibility to ensure 
that the Sort/Merge program has at least 
that much main storage available in 
addition to the space needed for Data 
Management and the COBOL program. If this 
amount of main storage is not available, 
the program will terminate abnormally. 

The programmer may alter, dynamically 
within the COBOL program, the main storage 
default values for the Sort/Merge program. 
The SORT-CORE-SIZE special register may be 
used to communicate changes to the 
Sort/Merge program. In general, a positive 
value placed in SORT-CORE-SIZE denotes the 
amount of storage the progra mmer is 
allocating for use by the Sort/Merge 
program. For example, the statement "MOVE 
30000 TO SORT-CORE-SIZE" means that 30000 
bytes of storage are available to the 
Sort/Merge program. Accordingly. if 30000 
is moved to SORT-CORE-SIZE, COBOL 
communicates to sort/Merge that 30000 bytes 
of storage are available to it. There are, 
in addition, two other uses for 
SORT-COR E- SI ZE. 

Special considerations apply when a 
Sort/Merge program product is used. If the 
program prod uct is installed with the 
SIZE=MAX option, the program allocates all 

reaa1n1ng available main storage in a 
region for its own use. If an input 
procedure then attempts to open a file, an 
80A abnormal termi na tion may resul t if 
buffers and necessary data management 
modules have not already been loaded, since 
no more space is available. 

If i~stead, a negative value is placed 
in the special register prior to execution 
of the sort, the program uses the default 
SIZE option specified at installation, but, 
if S!Z E=MAX was speci fied, sets aside tha t 
a.bsolu te value before obtaining the 
remainder. Also, if ALL '9' (or +999999) 
is moved to SORT-CORE-SIZE prior to a sort 
operation, the program executes with the 
SIZE=MAX option, regardless of the 
installed value, while reserving 6K bytes 
of main storage for use by the data 
management routines and buffers. 

The sort/Merge program product may also 
be installed with a default reserved main 
storage parameter that will be used if no 
negative value is passed from COBOL. For 
additional information about these options 
see the appropriate ~QI..tL!1flI.9..LIn§.iaJ..!atiQJl 
~glgI.~n£g_~anYal· 

Changing the main storage allocation can 
be useful when a sort/merge application is 
to be run in a multiprogramming 
environment. By reducing the amount of 
main storage allocated to sort/merge, so 
that other programs can have the storage 
they need to operate simultaneously, the 
performance of sort/merge is impaired. 
However, if this allocation is increased, 
so that a large sort/merge application runs 
more efficiently, the performance of other 
jobs sharing the multiprogramming 
environment is impaired, if not made 
altogether impossible. 

The messages generated by the sort/Merge 
programs Feature are listed in the 
appropriate ~QI.iL~~£g~_In§.1~1!~liQn 
igfereli£~~anY~l and ~Q£!L~gI.~g 
uogran~I.~-1iuid~. 

When the Sort/Merge program is 
installed, the user can elect to have 
messages sent to the printer, in which case 
a DD card with a ddname of SYSQUT must be 
included in the job step. The programmer 
can dynamically alter the ddname of the 
file on which Sort/Merge is to vrite its 
messages. If Sort/Merge has been installed 
with provision for routing its messages to 
the printer, then the programmec can place 
in the SORT-MESSAGE special register the 
ddname that Sort/Merge is to substitute 

Using the sort/Merge Fea ture .373 



forSYSOUT, for message routing. For 
example, when the statement MOVE "SORTDDNM" 
'1'0 SORT-MESSAGE is executed before sort is 
initiated, then the sort writes its printer 
messages to the data set SORTDDNM rather 
than to SISOUT. If SORT-MESSAGE is not 
refered to in the program, the ddname that 
was specified at sort/Merge installation 
time is the default value. 

One technique for specifying the 
sort/merge print file ddname vould be to 
include source language and job control 
language statements as follows: 

01 SORT-PARAMETERS. 
05 PARAMETER-COUNT PIC 9(4) USAGE COMP. 
05 SORT-DDNAME PIC X(8). 

• Imme!!illelY_1ll::g£edinLth~2Qtl 
oper~lio.!! 

IF PARAMETER-COUNT IS NOT EQUAL TO 0 
MOVE SORT-DDNAME TO SORT-MESSAGE. 

//GOSTEP EXEC PGM=program-name, 
PARM:' SORTDDNM t 

!Q!~: This technique of assigning a unique 
value to SORT-MESSAGE without modifying or 
recompiling the program can also be applied 
to the special registers SORT-CORE-SIZE, 
SORT-MODE-SIZE, and SORT-FILE-SIZE. 

If the input Decords used are of 
variable length, the record length that 
occurs most freguentl y in the input data 
set (modal lengt~ should be put into the 
spec ia I register SORT-MODE-SIZE. This 
value is used to help define a data set 
based on a particular length. If a value 
is not specified, the SORT/MERGE program 
assumes it is equal to the average of the 
maximum and minimum record lengths in the 
input data set. If, for example, the data 
set contains mostly small records and just 
a few long records, the SORT/MERGE program 
would assume a high modal length and would 
allocate a larger record storage area than 
necessary. Conversely, if the data set 
contains just a few short records and many 
long records, the SORT/MERGE program would 
assume a low modal length and might not 
allocate a large enough record storage area 
to sort data. For a complete discussion, 
see the appropriate SortLlag!:.ili! Programmer' 2 
Qgidg. 

374 

SORTING VARIABLE-LENGTH RECORDS 

Figure 152 illustrates one way to sort 
variable-length records described by the 
OCCURS clause with the DEPENDING ON option. 
If the FD's (file-name description) and the 
SD's (sort·file-name description) are 
defined as in this figure, where the record 
descriptions of the FDts and the SD 
correspond, possibilities for error arise. 
It is suggested, therefore, that the user 
consider the following: 

1. specification of the statement 

SORT SORT-FILE USING INPUT-FILE ••• 

vould probably lead to incorrect 
results. This statement implies a 
READ ••• INTO statement; that 
is, after INPUT-FILE has been read~ 
the record is moved to AAA. However, 
because the user must set the length 
of this recei vinq field prior to 
moving 1 to AAA but cannot do so, the 
compiler may use an incorrect length 
that results in abnormal termination. 
Instead, the user should substitute an 
input procedure for the USING option, 
as in the section of code labeled 
PARA2B in the example. 

2. Similarly, the statement 

SORT SORT-FILE... GIVING OUTPUT-FILE 

would probably yield incorrect 
results. Before OUTPUT-FILE is 
written out, the record is moved to 
AA. The correct length of this 
receiving field must be set before the 
moye~ but use of the GIVING option 
precl udes this. To a void error, the 
user should substitute an output 
procedure for the GIVING option, as in 
section PARA3B of the example. 

3. If a SORT record contains an item with 
an OCCURS DEPENDING ON clause and the 
size of the SORT record description 
with the minimum number of occurences 
of the item represent the smallest 
SORT record, the minimum SORT record 
length is not reflected in the minimum 
record length parameter passed to 
SORT. This may result in inefficient 
SORT performance. The problem can be 
avoided by specifying a dummy SORT 
record of a fixed length (no OCCURS 
DEPENDING ON) with the size of the 
smallest SORT record described with 
OCCURS DEPENDING ON clauses. 



For sorting ASCII files, the normal 
EBCDIC collating sequence is provided 
unless the user specifies otherwise. 

To specify a sort/merge using the ASCII 
collating sequence, the proqrammer may 
include and identify a program collating 
sequence of STANDARD-1 (equivalent to 
ASCII). If LANGLVL(1) is specified, the 
programmer may alternatively include the 
"C" organization entry in the ASSIGN clause 
for the file-name associated with the file 

to be sorted or merged. No buffer offset 
may be given with the sort/merge feature. 

Through use of the COLLATING SEQUENCE 
clause of the sort/merge feature, the 
programmer can ident ify other (non-EBCDIC 
and non-ASCII) collating sequences to be 
used. See "Collating Sequences" in the 
section "Programming Techniques." 

Using the sort/Merge Feature 315 



Part 1 
r- • 

I 

Part 2 
j 

IPROCEDURE DIVISION. 
IPAR1 SECTION. 

IIDENTIFICATION DIVISION. 
IPROGRAft-ID. VLSORT. 
IENVIRONBENT DIVISION. 
,INPUT-OUTPUT SECTION. 

I 
I 
J 
I 

1 SORT SORT-PILE ASCENDING KEY BBB 

I FI.LE-CONTROL. 
t SELECT •••• 
I SELECT •••• 
a SELECT •••• 

• I 

t INPUT PROCEDURE PAR2 
I OUTPUT PROCEDURE PAR3. 
• STOP RUN. 
JPlR2 SECTION. 
JPAR2A. 
I OPEN INPUT INPUT-FILE. 
,PAR2B. 

I DATA DIVISION. 
,FILE SEC'rION. 
fFD INPUT-FILE. 
I LABEL RECORDS ARE OMITTED 
I DATA RECORD IS A. 

J 
J 
I 
j 

J 
J 
I 
J 
J 
J 
J 

I READ INPUT-FILE AT END GO TO PAR2C. 
I MOVE B TO BBB. 

,01 A. 
I 02 B PIC 99. 
J 02 C OCCURS 1 TO 10 TIMES 

DEPENDING ON B. , 
J 
J 
IF'D 
I 
I 
101 
I 
J 
J 

SD 

01 

03 D PIC 99. 
03 E PIC xx. 

OUTPUT- FILE 
LABEL RECORDS ARE OMITTED 
DATA RECORD IS AA. 
AA. 
02 
02 

BB PIC 99. 
CC OCCURS 1 TO 10 
DEPENDING ON BB. 
03 DD PIC 99. 
03 EE PIC xx. 

SORT-FILE 
DATA RECORD IS AAA. 
AAA. 
02 BBB PIC 99. 
02 CCC OCCURS 1 TO 10 

DEPENDING ON BBB. 
03 DOD PIC 99. 
03 EEE PIC xx. 

TIMES 

TIMES 

~----------------, 

I RELEASE AAA FROM A.l 
I GO TO PAR2B. 
IPAR2C. 
I CLOSE INPUT-FILE. 
I PAR2-EXIT. 
I EXIT. 
,PAR3 SECTION. 
,PAR 3A. 
t OPEN OUTPUT OUTPUT-FILE. 
I PARlB. 
, RETURN SORT-FILE AT END GO TO 
J MOVE BBB TO BB. 
I WRITE AA FROM AAA. 
I GO TO PAR3B. 
,PAR3C. 
I CLOSE OUTPUT-FILE. 
IPAR3-EXIT. 
I EXIT. 
I 
I 
I 
J 
I 
I 
• 

PAR3C.2 

1 When using a sort input procedure, the RELEASE ••• 
and then a RELEASE, should always be preceded by a 
receiving' field (AAA, in this example). 

FROM clause, which implies a MOVE 
MOVE that sets the length of the 

2When using a sort output procedure, the RETURN _ •• 
the RETURN and then a MOVE, should ~!~~ be used. 
the correct length of the receiving field. 

INTO clause, which implies 
There is no way for the user to set 

Figure 152. Sorting Variable-Length Records Whose File-nalle Description and 
Sort-File-name Description correspond 

316 

, 
I 
I 
I 
I 
I , 
I 
I 
I 
I 
I 

• I 
I 
I 
I 

• I 
I 
I 
I 
I 



os/vs SORT/MEJGE DEBUG F~!IYj1 

A DEBUG control statement may be included a t execution time to assist in debuggin g 
sort/Berge problems. The ABEND operand of the DEBUG' statement can be used to override 
the HOIBERD default of the installation keyword ERRET. The format of the COBOL 
SORT-DEBUG statement is: 

bDEBUGb operands 

The operands and their meanings are as follows: 

{
ABEND } 
NOABEND 

CLOCK 

FLAG (x+ [,x< ••• ,XO]) 

CTRO=value 

EM=value 

RM=value 

CB=value 

RB=value 

EB=value 

BT=value 

overrides the generated defaul t for action to be taken when the 
program encounters an uncorrectable error. 

Instructs the program to measure elapsed and CPU times for the 
different PEER phases. 

Instructs the program to print PEER informa tion messages 
(ICE120-124). The values which may be given to x are as 
follows: 

li) Messages from all phases (ICE120-124) 
0 Phase 0 messages ICE120) 
C Phase 1 messages (ICE 121) 
P Phase 2 (partit ion) messages (ICE124) 
R Phase 2 (reduct ion) messages (ICE122) 
E Phase 3 messages (ICE123) 

The program should keep a count of work I/O operations; when 
the count reaches "value", it should ABEND. 

"Value" should be used as the maximum number of string s to be 
merged in the final merge pass. 

"Value" should be used as the maximum number of strings to be 
merged in intermediate merge passes. 

"Value·' is the number of Phase work buffers. 

"Value If is the num ber of Phase 2 work buffers. 

"Value fl is the number of Phase 3 work buffers. 

Instructs the program to calculate the blocking factor for 
intermediate storage in such a way that ttvaluettis the number of 
buffers per track. 

For more detailed information on the 
DEBUG feature and the messages generated by 
the use of the above operands, see the 
publication OS/V~~rt/l1er~~gram~2 
Q.ui9.!!-

continuing in column 16 of card 2. 
Comments may be continued on a second card 
by having a nonblank character in column 12 
of card 1 and continuing in column 16 of 
card 2. 

Operands must be separated by commas. 
Operands may be continued on a second card 
either by following the last operand on 
card 1 by a comma and continuing on card 2 
in columns 2-16, or by having a nonblank 
character in column 72 of card 1 and 

Use of the COBOL SORT-DEBUG sta tement 
requires the following DD statemen t: 

//SRTCDS DD * 
DEBUG Statement 

OS/VS Sort/Merge Debug Feature 311 



Although Release 2 of the OS/VS COBOL 
compiler will accept a source program 
containing segmentation specifications, it 
will not produce an actual overlay 
structure. Instead, it combines all 
segments into one single object program in 
segment order, and allows the paging of the 
VS operating system to perform any overlay. 
The absence of actual COBOL-performed 
overlay is usually not a problem in the 
OS/VS environment, since adequate main 
storage is available for even the largest 
programs. 

The following discussion is provided 
only for those users who--while recognizing 
that this compiler will not provide 
overlay--nevertheless wish to write or 
maintain programs that include segmentation 
statements. 

segmentation provides a means of 
dividing the Procedure Division of a source 
program into sections. Through the use of 
a system of priority numbers, certain 
sections are designated as fixed segments 
(either fixed permanent or fixed 
overlayable) and others as independent 
segments. 

suppose that the program SAVECORE is 
segmented as shown in Figure 153. Only 
those segments having priority numbers less 
than the segment limit of 15 are designated 
as fixed permanent. Sections in the fixed 
permanent segment (SECTION-1, SECTION-2, 
and SECTION-4) are those that must be 
available for reference at all times, or 
those to which reference is made 
frequently. They are distinguished here by 
the fact that they have been assigned 
priority numbers less than the program's 
segment limit. 

Fixed overlayable segments are sections 
that are less frequently used. These 
sections are sometimes made available in 
the state in which they were last used (see 
I~~_VS CQ]Q~_!Q£_Q~Ll~). They are 
distinguishable here by the fact that they 
have been assigned priority numbers greater 
than the segment limit, but less than 50. 

Independent segments are those assigned 
priority numbers greater than 49 and less 
than 100 (section-5 and section-7 in this 
example). 

378 

IDENTIFICATION DIVISION. 

PROGRAM-ID. SAVECORE. 

ENVIRONMENT DIVISION. 

OBJECT-COMPUTER. IBM-370 
SEGMENT-LIMIT IS 15. 

DA TA DIVISION. 

PROCEDURE DIVISION. 
, SECTION-1 SECTION 8. 
I , 
I 
1 SECTION-2 SECTION 8. 
I 
I 
I 
I SECTION-3 SECTION 16. , 
J 
I 
J SECTION-4 SECTION 8. 
t 
I 
I 
I SECTION-5 SECTION 50. 

• I 
I 
t SECTION-6 SECTION 16. 
J 
1 
J 
J SECTION-7 SECTION 50. 
t 
I 
f 

, 

1..-- ----' 

Figure 153. Segmentation of Program 
SAVECORE 

USING THE PERFORM STATEMENT IN A SEGMENTED 
PROGRAM 

When the PERFORM statement is used in a 
segmented program, the programmer should be 
aware of the following: 



• A PERFORM statement that appears in a 
section whose priori ty-nl1mber is less 
than the segment limit can have within 
itsra nge only (a) sectionslili th 
priority-numbers less than 50, and (b) 
sections wholly contained in a single 
segment whose priority-number is 
greater than 49. 

jQtg: As an extension to American 
National Standard COBOL, the as/vs 
COBOL Compiler allows sections with any 
priority-number to fall within the 
range of a PERFORM statement. 

• A PERFORM statement that appears in a 
section whose priority-number is equal 
to or greater than the segment limit 
can have within its range only (a) 

OS/VS Sort/Merge Debug Fe'atures 378.1 





sections with the same priority-number 
as the section containing the PERFORM 
statement, and {b) sections with 
priority-numbers that are less than the 
segment. limi t. 

liQte: As an extension to American 
National Standard COBOL, the OS/VS 
COBOL Compiler allows sections with any 
priority-number to fall within the 
range of a PERFORM statement. 

• When a procedure-name in a segment with 
a priority-number less than the segment 
limit referred to by a PERFORM 
statement in a segment with a 
priority-number greater than the 
segment limit, the independent segment 
will be reinitialized upon exit from 
the PERFORM. 

OPERATION 

Execution of the object program begins 
in the root segment; i.e., the first 
segment in the permanent segment. If the 
program contains no permanent segments, or 
if the first section to be executed in the 
program is not part of the root segment, 
the compiler generates a dummy segment 
thatwill initiate the execution of the 
first independent segment. All global 
t~bles, literals, and data areas" are part 
of the root segment. Called object-time 
subroutines are also part of the root 

segment. Called subprograms are loaded 
with the fixed portion of the main program 
and assigned a priority of zero. 
otherwise, the program executes just as if 
it were not segmented. 

LANGLVL OPTION AND RE-INITIALIZATION 

The LANGLVL compile option chosen by the 
user affects the degree and manner of 
re-initialization COBOL will perform on 
independent segments, since there is a 
difference between the 1968 and 1974 ANS 
definitions. For further details, consult 
the language manual I~~-Y~_CO~1-f~Q~L!~. 

COMPILER OUTPUT 

The output produced by the compiler is a 
group of segments organized by priority 
number. Segments whose priority is greater 
than the segment limit (or 49, if no 
SEGMENT-LIMIT clause is specified) consist 
of executable instructions only. The PMAP 
output is given in this sequence: the root 
segment first, followed by all other 
segments in ascending order by priority 
number. 

Figure 154 shows the output of a sample 
segmentation program. 

Using the Segmentation Feature 319 



OOOCl 
coe02 
C0003 
00004 
COC05 
000C6 
00007 
ccce8 
(0009 
C(;010 
00011 
000l~ 

OCC13 
00014 
GOe15 
\le016 
00C17 
00018 
00C19 
00020 
cooa 
00022 
00023 
OCC24 
00025 
OCC26 
00027 
00028 
OCC':5 
00030 
OOC~l 

00e32 
00033 
CCC34 
0(;035 
00036 
cceH 
00038 
eOC35 
oce40 
OOCH 
0()e42 
00043 
00044 
C0045 
00e46 
~OC47 
00048 
00e49 
OOC~C 
00C51 
{)OC~2 

OOO!:"; 
00e54 
00055 
00e56 
00057 

00006u 
00007u 
000081.1 
00009u 
OOOlOu 
OOOllu 
000121.1 
00013u 
000141.1 
000151.1 
00016IJ 
000171.1 
00018IJ 
u()019u 
00020u 
000211.1 
000221.1 
00023IJ 
00024u 
000251.1 
0(0261.1 
000271.1 
000281.1 
00029u 
00030u 
00031u 
00032IJ 
00033u 
00034u 
000351.1 
000381.1 
00039u 
0()040u 
000411.1 
00042<1 
000431.1 
u0044U 
00045.) 
000461.1 
000471.1 
0004eu 
00049\J 
00050u 
000511.1 
00052u 
000531.1 
00054u 
000551.1 
00056u 
00057u 
00058u 
000591.1 
000601.1 
000611.1 
000621.1 
000631.1 
000641.1 

Fiqure 154. 

380 

IDENTIFICATION uIVISION. 
PROGRAM-ID. SE~-SAMPLE. 
AUTHOR. PROGRAMMER-NAME. 
REMARKS. 

SPECIAL OPEKATUR INSTRUCTIONS - NONE. 
INPUT REQUIKED - NONE. 
PURPOSE 

TO CREATE A SINGLE FILE ON DISK USING 
QSAM/DTFSD, AND READ IT BACK. 
PROGRAM UStS SEGMENTATION 
WITH FILE PROCESSING SPREAD OVER 
THE PERMANENT, OVERLAYABLE FIXED, 
AND INDePENDENT SEGMENTS. 

EXPECTED RE~ULTS 
START TeST SEG-SAMPLE 
(EACH SeGMENT DIS~LAYS ITS SEGMENT NUM8ER 
AND FUNI.TlUN) 
END TEST SEG-SAMPLE SUCCESSFUL RUN 
SECTION~ WHILE WRITING APPEAR 
IN ORDeK BU, 20, 30, 60, 40. 
SECTION~ WHILE READING APPEAR 
IN ORD~K 80, 60, 30, 40, 20. 

ERROR INDICATIONS 
**ERROR DISK SEQ 1/0** 
**ERROR END OF EXTENT WRITING AFTER (RECORD) •• 
**ERROK UNeXPECTED EOF READING AFTER 

RECuRD (RECNO)** 
**ERROR EOf NOT FOUND** 
**RECORu IS (RECNO) 

SHOUlu BE (RECNO)** 
PROGRAM CONTAINS PERFORMS FROM 8ASE SECTION 
TO PERMANENT, OVERLAYABLE FIXED, AND INDEPENDENT 
SEGMENh. 
ALSO COnlTAINS PERFORMS FROM INDEPENDENT TO PERMANENT 
AND fROM OVERLAYABLE FIXED TO PERMANENT SEGMENTS. 
ALSO CUj~TAINS PERFORMS ENTIRELY WITHIN A SEGMENT IN 
IN EACH CATEGORY. 

ENVIRONMENT DIV4S1UN. 
CONFIGURATION S~CTION. 
SOURCE-COMPUTER. 18M-370. 
OBJECT-COMPUTER. IBM-370 

MEMORY SIZt 6~000 CHARACTERS 
SEGMENT-LIM4T IS 25. 

INPUT-OUTPUT SEI.TION. 
FILE-CONTROL. 

SELECT FILt-l ASSIGN TO DA-2314-S-DKSQ01A. 
DATA DIVISION. 
FILE SECTION. 
FD FILE-1 

RECORDING MuDE IS f 
LABEL RECORuS OMITTED 
DATA RECORD IS RECfDl. 

01 RECFDl PICTuRE X(83J. 
WORKING-STORAG~ SECTION. 
77 ERRORSW PIC A VALUE SPACE. 
77 ERC TFL PIC SS9 VALUE ZERO. 
77 MSGHDR PIC X(~2) VALUE '**ERROR DISK SEQ 1/0*.'. 

Sample segmentation Program (Part 1 of 14) 

00154790 

00154820 
00154830 
00154e40 
00154850 
00154860 
00154870 
00154880 
00154~90 
00154900 
00154910 
00154920 

00154940 
00154950 

00154970 
00154980 
00154990 
00155000 
00155010 
00155020 
00155030 
00155040 
00155050 
00155060 
00155070 
001550l'0 
00155110 
00155120 
00155130 
00155140 
00155150 
00155160 
00155170 
001551l'0 
00155190 
00155200 
00155210 
00155220 
00155230 
00155240 
00155250 
00155260 
00155270 
00155280 
00155290 
00155300 

00155310 
00155320 
00155330 
00155340 
00155350 
00155360 



OCJe58 
OC(!:S 
00060 
OOOH 
000€:2 
00e63 
eCC€:4 
00e65 
OeC6i: 
ooe67 
00e68 
COC6S 
00C70 
00071 
ooell 
Lloon 
(;OC;;4 
OCC75 
00016 
0((77 
00078 
Loe 7S 
CtC ec 
00C81 
00Cf2 
00ce3 
OOC84 
OOCSS 
00086 
aocn 
00088 
coe8Ci 
cc.C9C 
aocH 
0C.CS2 
a(JOS3 
00094 
ac.cCiS 
OOOS6 
ooeC;l 
OOOCi8 
00099 
OOlCO 
00101 
00102 
001C3 
OOl04 
00105 
00106 
00107 
001e8 
OOles 
00110 
OOHl 
OOll2 
00113 
00114 

000651i 
00006.) 
000671i 
000681i 
000691i 
D00701i 
ooe71u 
ooonu 
OOD73v 
000741.1 
00075v 
00076tJ 
000771i 
00078u 
OC079tJ 
00080u 
00081u 
00082u 
00083u 
00084tJ 
000851i 
000861i 
0008711 
00088u 
OG089u 
000901.1 
000911.1 
00092tJ 
000931.1 
00094u 
000951i 
000961i 
00097tJ 
00098u 
000991i 
001001i 
00101tJ 
00l02v 
00103v 
001041.1 
001051i 
001061i 
00107tJ 
00108v 
()0109v 
OOllOv 
OOlllv 
001121i 
001l3u 
001l4tJ 
001151.1 
(J01l6v 
0011N 
001l8v 
00lJ.9u 
001",Ov 
00121v 

Figure 154. 

77 MSGEOX PIC AC3b) 
VALUE '**ERKOR END OF EXTENT WRITING AF~ER '. 

77 MSGEOF PIC X(37) 
VALUE '**ERKOR UNEXPECTED EOF READING AFTER '. 

77 MSGNEF PIC X(,3) VALUE. '**ERROR EOF NOT FOUND •• •• 
01 REC1. 

02 REC-ID. 
03 REC-HD PI' X(4) VALUE ·RECD·. 
03 REC-NO PIC S9(4) VALUE ZERO. 
02 FILLER PIC A(75) VALUE SPACES. 
66 RECIO ReNAMES REC-ID. 

01 VER-REC. 
02 VER-ID. 
03 VER-HD PIC X(4J VALUE ·RECD·. 
03 VER-NO PIC S9(4) VALUE ZERO. 

PROCEDURE DIVIS£ON. 
BASE-SECTION SE~TION O. 

DISPLAY 'START TEST SEG-SAMPLE·. 
OPEN OUTPUT FIL E-l. 
PERFORM W-8tJ-0 THRU W-80-9. 
PERFORM W-3v-0 THRU W-30-9. 
PERFORM W-ou-O THRU W-60-9. 
PERFORM W-4u-0 THRU W-40-9. 

BASE-50. 
CLOSE FILE-L. 
OPEN INPUT ~ILc-l. 
PERFORM R-8U-O THRU R-80-9. 
GO TO R-60-v. 

BASE-60. 
PERFORM R-4u-0 THRU R-40-9. 
READ FILE-l INTO RECl AT END GO TO BASE-70. 
DISPLAY MSGriDR DISPLAY MSGNEF 
MOVE 'E' TO ERRORSW. 

BASE-70. 
CLOSE FILE-h 

BASE-90. 
IF ERRORSW LS eQUAL TO 'E' 
DISPLAY 'ENu TeST SEG-SAMPLE UNSUCCESSFUL RUN' ELSE 
DISPLAY 'ENu TtST SEG-SAMPLE SUCCESSFUL RUN'. 
STOP RUN. 

SECTION-20 SECTLON 20. 
W-20-0. 

DISPLAY 'SE~TION 20 WRITE'. 
NOTE ENTEREu BY PERFORM FROM W-80-0. 
PERFORM W-£L-O THRU W-21-9 5 TIMES. 

W-20-9. 
EX IT. 

W-21-0. 
WRITE RECFDL FROM RECl INVALID KEY 
DISPLAY MSGHDR 
DISPLAY MSGcOX RECIO 
MOVE 'E' TO ERRORSW 
GO TO BASE-;)O. 
ADD 0001 TO REC-NO. 

W-21-9. 
EXIT • 

R-20-0. 

00155370 
00155380 
00155390 
00155400 
00155410 
00155420 
00155430 
00155440 
00155450 
00155460 
00155470 
00155480 
00155490 
00155500 
00155510 
00155520 
00155530 

00155550 
00155560 
00155510 
00155580 
00155590 
00155600 
00155610 
00155620 
00155630 
00155640 
00155650 
00155660 
00155610 
00155680 
00155690 
00155700 
00155710 
00155120 
00155730 

00155760 
00155770 
00155780 
00155790 
00155800 
00155810 
00155820 
00155830 
00155840 
00155850 
00155860 
00155870 
00155880 
00155890 
00155900 
00155910 
00155920 
00155930 

Sample Segmentation Program (Part 2 of 14) 

Using the segmentation Feature 381 



ce1l5 
co lJ.6 
ce1l7 
00118 
00J.l9 
001,,0 
00121 
00122 
OC1,,3 
00124 
00125 
00126 
00127 
OC128 
00129 
00130 
00131 
00132 
00123 
00134 
COU5 
OOUe 
00137 
CCUB 
0013<; 
COHO 
CO 141 
a0142 
00143 
00144 
00145 
C(146 
00147 
0014e 
00149 
(0150 
C0151 
001!2 
a 01!3 
Cul!4 
00155 
00156 
00157 
00158 
CO l5S 
00160 
OOHI 
caHl 
001(:3 
a( It4 
CO it5 
00166 
00167 
00168 
00169 
CC 17(; 
00171 

001221J 
001231J 
001241J 
001251.1 
001260 
00l27u 
00128v 
001291.1 
001301.i 
001311.1 
001321J 
001331.1 
001341.i 
001351.1 
001361.i 
001371.1 
00138u 
001391.1 
00140;) 
001411.1 
001421.i 
0014301 
001441.1 
001451J 
00146.J 
00147;) 
001481.1 
001491.1 
001501.1 
001511.1 
001521.1 
001530 
00154v 
oe155u 
001561.1 
001571.1 
001581.1 
001591.1 
001601.1 
001611.1 
001621.1 
001631.1 
0(;1641.1 
001651.1 
001661J 
00167u 
001681.1 
001691.1 
001701.1 
001711.1 
001721.1 
001731.1 
001741.1 
001751J 
001761.i 
00n7u 
001781.1 

Figure 154. 

382 

DISPLAY 'SE~TIUN 20 READ'. 
NOTE ENTEREO BY PERFORM FROM BASE-40. 
PERFORM R-2.-0 THRU R-21-9 5 TIMES. 

R-20-9. 
EXIT. 

R-21-0. 
READ FILE-1 INTO RECl AT END 
DISPLAY MSGMDR DISPLAY MSGEOF 
ADD 4 TO ER~TFL MOVE 'E' TO ERRORSW 
GO TO R-21-:i. 
IF REC-ID I~ NuT EQUAL TO VER-ID 
DISPLAY MSGHDR DISPLAY 'EXPECTED' VER-ID ' FOUND' REC-ID 
ADD 1 TO ER~TFL MOVE 'E' TO ERRORSW 
MOVE REC-ID TO VER-ID. 
ADD 1 TO VE~-Nu. 

R-21-9. 
IF ERCTFL l~ GREATER THAN 3 
GO TO BASE-70. 

SECTION-30 SECT!ON 30. 
W-30 .... 0. 

DISPLAY 'SE~TIuN 30 WRITE'. 
NOTE ENTEREu bY PERFORM FROM BASE-SECTION. 
PERFORM W-3!-0 THRU W-31-9 11 TIMES. 

W-30-9. 
EXIT. 

W-31-0. 
WRITE RECFD~ FROM RECl INVALID KEY 
DISPLAY MSGMDR 
DISPLAY MSG~OX RECIO 
MOVE 'E' TO ERRORSW 
GO TO BASE-~O. 
ADD 0001 TO RtC-NO. 

W-31-9. 
EXIT. 

R-30-0. 
DISPLAY 'St~TIUN 30 READ'. 
NOTE ENTEREu BY GO TO FROM R-60-0. 
PERFORM R-3~-0 THRU R-31-9 11 TIMES. 
GO TO BASE-oO. 

R-31-0. 
READ FILE-l INTO RECl AT END 
DISPLAY MSGMDR DISPLAY MSGEOF 
ADD 4 TO ER~TFL MOVE 'E' TO ERRORSW 
GO TO R-31-:7. 
IF REC-ID l~ NOT EQUAL TO VER-ID 
DISPLAY MSGHDR DISPLAY 'EXPECTED' VER-ID ' FOUND ~ REC-ID 
ADD 1 TO ER~TFL MOVE IE' TO ERRORSW 
MOVE REC-IO TO VER-ID. 
ADD 1 TO VEK-NU. 

R-31-9. 
IF ERCTFL I~ GREATER THAN 3 
GO TO BASE-70. 

SECTION-40 SECT!ON 40. 
W-40-0. 

DISPLAY 'SE~TIUN 40 WRITE'. 
NOTE ENTEREu BY PERFORM FROM BASE-SECTION. 
PERFORM W-4.-0 THRU W-41-9 17 TIMES. 

Sample Segmentation Program (Part 3 of 14) 

00155940 
00155950 
00155960 
00155970 
00155980 
00155990 
00156000 
00156010 
00156020 
00156030 
00156040 
00156050 
00156060 
00156070 
00156080 
00156090 
00156100 
00156110 
00156120 
00156130 
00156140 
00156150 
00156160 
00156170 
00156180 
00156190 
00156200 
00156210 
00156220 
00156230 
00156240 
00156250 
00156260 
00156270 
00156280 
00156290 
00156300 
00156310 
00156320 
00156330 
00156340 
00156350 
00156360 
00156370 
00156380 
00156390 
00156400 
00156410 
00156420 
00156430 
00156440 
00156450 
00156460 
00156470 
00156480 
00156490 
00156500 



00172 
00173 
00174 
00175 
00176 
00177 
00178 
00179 
00180 
00181 
00182 
00183 
00184 
00185 
00186 
00187 
00188 
00189 
00190 
00191 
00192 
00193 
00194 
00195 
00196 
00197 
00198 
00199 
00200 
00201 
00202 
00203 
00204 
00205 
00206 
00207 
00208 
00209 
00210 
00211 
00212 
00213 
00214 
00215 
00216 
00217 
00218 
00219 
00220 
00221 
00222 
00223 
00224 
00225 
00226 
00227 
00228 

001790 W-40-9. 
001800 EXIT. 
001810 W-41-0. 
001820 WRITE RECFDl FROM REC1 INVALID KEY 
001830 DISPLAY MSGHDR 
001840 DISPLAY MSGEOX RECID 
001850 MOVE 'E' TO ERRORSW 
001860 GO TO BASE-50. 
001870 ADD 0001 TO REC-NO. 
001880 W-41-9. 
001890 EXIT. 
001900 R-40-0. 
001910 DISPLAY 'SECTION 40 READ'. 
001920 NOTE ENTERED BY PERFORM FROM BASE-60. 
001930 PERFORM R-41-0 THRU R-41-0 7 TIMES. 
001940 PERFORM R-20-0 THRU R-20-9. 
001950 R-40-9. 
001960 EXIT. 
001970 R-41-0. 
001980 READ FILE-1 INTO RECl AT END 
001990 DISPLAY MSGHDR DISPLAY MSGEOF 
002000 ADD 4 TO ERCTFL MOVE 'E' TO ERRORSW 
002010 GO TO R-41-9. 
002020 IF REC-ID IS NOT EQUAL TO VER-ID 
002030 DISPLAY MSGHDR DISPLAY 'EXPECTED' VER-ID • FOUND' REC-ID 
002040 ADD 1 TO ERCTFL MOVE 'Eu TO ERRORSW 
002050 MOVE REC-ID TO VER-ID. 
002060 ADD 1 TO VER-NO. 
002070 R-41-9. 
002080 IF ERCTFL IS GREATER THAN 3 
002090 GO TO BASE-70. 
002100 SECTI0N-60 SECTION 60. 
002110 W-60-0. 
002120 DISPLAY ·SECTION 60 WRITE'. 
002130 NOTE ENTERED BY PERFORM FROM BASE-SECTION. 
002140 PERFORM W-61-0 THRU W-61-9 13 TIMES. 
002150 W-60-9. 
002160 EXIT. 
002170 W-61-0. 
002180 WRITE RECFDl FROM RECl INVALID KEY 
002190 DISPLAY MSGHDR 
002200 DISPLAY MSGEOX RECID 
002210 MOVE 'E' TO ERRORSW 
002220 GO TO BASE-50. 
002230 ADD 0001 TO REC-NO. 
002240 W-61-9. 
002250 EXIT. 
002260 R-60-0. 
002270 DISPLAY 'SECTION 60 READ'. 
002280 NOTE ENTERED BY GO TO FROM BASE-50. 
·002290 PERFORM R-61-0 THRU R-61-9 13 TIMES. 
002300 GO TO R-30-0. 
002310 R-61-0. 
002320 READ FILE-1 INTO REC1 AT END 
002330 DISPLAY MSGHDR DISPLAY MSGEOF 
002340 ADD 4 TO ERCTFL MOVE 'E' TO ERRORSW 
002350 GO TO R-61-9. 

Figure 154. Sample segmentation Program (Part 4 of 14) 

00156510 
00156520 
001565:30 
00156540 
00156550 
00156560 
00156570 
00156580 
00156590 
00156600 
00156610 
00156620 
00156630 
00156640 
00156650 
00156660 
00156670 
00156680 
00156690 
00156700 
00156710 
0015'6720 
00156730 
00156740 
00156750 
00156760 
00156770 
00156780 
00156790 
00156800 
00156810 
00156820 
00156830 
00156840 
00156850 
00156860 
00156870 
00156880 
00156890 
00156900 
00156910 
00156920 
00156930 
00156940 
00156950 
00156960 
00156970 
00156980 
00156990 
00157000 
00157010 
00157020 
00157030 
00157040 
00157050 
00157060 
00157070 

Using the segmentation Feature 383 



00229 
C0230 
00231 
00232 

. CC233 
e 0234 
00235 
C0236 
00231 
(;0238 
00239 
(;(;240 
00241 
002~2 
0024': 
00244 
CC245 
C024t 
OC241 
00248 
OC249 
00250 
00251 
00252 
002!:3 
00254 
00255 
e025€: 
C0251 
(;0258 
00255 
00260 
002H 
002€:2 
002t3 
U(;264 
002(;5 
00U6 
00261 
00268 
002l:S 
cone 
00211 
CC212 
00213 
00214 

002361.1 
00237v 
0023Bu 
00239u 
00240u 
002411.1 
002421,) 
00L43u 
002441.1 
002451.1 
002461.1 
002471.1 
0024Bu 
00249IJ 
(;e250u 
00251u 
00252v 
00,,531.1 
002541,) 
002551.1 
002561,) 
002571,) 
0025Bv 
002591.1 
00260v 
002611,) 
002621.1 
002631.1 
002641.1 
002651,) 
002661.1 
00267IJ 
OC26BI,) 
002691,) 
00270u 
002711.1 
002721,) 
OC273u 
00274u 
00215U 
002761,) 
002771,) 
0027BIJ 
002791.1 
002BOl) 
OC281U 

If REC-ID I~ NuT EQUAL TO VER-ID 
DISPLAY MSGnDR DIS~LAY 'EXPECTED' VER-ID ' FOUND' REC-ID 
ADD 1 TO ER~Tfl MOVE 'E' TO ERRORSW 
MOVE REC-IO TO VER-ID. 
ADD 1 TO VEI(-Nu • 

R-61-9. 
IF ERCTFL I~ GREATER THAN 3 
GO TO BASE-/O. 

SECTION-BO SECTION BO. 
H-BO-O. 

DISPLAY 'SE~TION BO WRITE'. 
NOTE ENTEREU BY PERFORM FROM BASE-SECTION. 
PERFORM W-ol-O THRU H-Bl-9 7 TIMES. 
PERFORM W-21,)~0 THRU W-20-9. 

W-So-9. 
EXIT • 

W-BI-0. 
WRITE RECfD~ FROM RECl INVALID KEY 
01 SPLAY MSGnDR 
DISPLAY MSG~OX RECIO 
MOVE 'E' TO ERkORSW 
GO TO BASE-jO. 
ADO 0001 TO REC-NO. 

W-Bl-9. 
EXIT. 

R-SO-O. 
DISPLAY 'SE~TION 80 READ'. 
NOTE ENTEREu BY PERFORM FROM BASE-50. 
PERFORM R-S~-O THRU R-81-9 17 TIMES. 

R-SO-9. 
EXIT. 

R-81-0. 
READ fIlE-l INTO RECl AT END 
DISPLAY MSGHDR DISPLAY MSGEOF 
ADD 4 TO ER~TFl MOVE 'E' TO ERRORSW 
GO TO R-Bl-~. 
IF REC-ID l~ NuT EQUAL TO VER-ID 
DISPLAY MSGHDR DISPLAY 'EXPECTED' VER-ID ' FOUND' REC-ID 
ADD 1 TO ER~Tfl MOVE 'E' TO ERRORSW 
MOVE REC-ID TO VER-ID. 
ADD 1 TO VE~-N(). 

R-BI-B. 
IF ERCTFL I~ GREATER THAN 3 
GO TO BASE-IO. 

R-Bl-9. 
EXIT • 

00151080 
00157090 
00157100 
00157110 
00157120 
00157130 
00157140 
00157150 
00157160 
00151170 
00157180 
00151190 
00157200 
00157210 
00157220 
00157230 
00157240 
00157250 
00157260 
00157270 
00157280 
00157290 
00157300 
00157310 
00157320 
00157330 
00157340 
00157350 
00157360 
00157370 
00157380 
00157390 
00157400 
00151410 
00157420 
00157430 
00157440 
00157450 
00157460 
00157470 
00157480 

00157500 
00157510 

I NTRNL NAME lVl S()URC~ NAME 8ASE DISPL INTRNL NAME DEFINITION 
DNM=2-,,~4 FO FILE-~ OCB=OI DNM=2-234 
DNM=2-,,54 01 RECfD~ BL=1 000 DNM=2-254 OS 83C 
ONM=2-,,73 77 ERRO~~W Bl=2 000 DNM=2-273 OS lC 
DNM=2-~93 17 ERCTFI.. BL=2 001 DNM=2-293 OS 2C 
ONM=2-~09 17 MSGHDI( BL=2 003 DNM=2-309 OS 22C 
DNM=L-~25 77 MSGE01. BL=2 019 ONM=2-325 OS 36C 
ONM=2-~41 77 MSGEOf Bl=2 030 ONM=2-341 OS 37C 
ONM=2-~57 17 MSGNE~ BL=2 062 DNM=2-357 OS 23C 
ONM=2-~73 01 RECl BL=2 080 DNM=2-373 OS OCL~3 
DNM=2-~90 02 REC-Iu BL=2 080 DNM=2-390 OS OCl8 
DNM=2-'t09 03 REC-HIJ BL=2 080 ONM=2-409 OS 4C 
ONM=2-.. ~5 03 REC-Nu BL=2 084 DNM=2-425 OS 4C 
ONM=2-'t'tl 02 FILLEI( BL=2 088 DNM=2-441 OS 75C 
ONM=2-'t52 66 RECIO BL=2 080 DNM=2-4-52 OS OCL~ 
ONM=2-'t70 01 VER-R~C BL=2 OD8 DNM=2-470 OS oeLe 
DNM=2-490 02 VER-iu BL=2 008 DNM=2-ft90 OS OClS 
DNM=3-uOO 03 VER-Hu BL=2 OOB DNM=3-000 os 4: 
ONM=3-1,).L6 03 VER-Nu BL=2 OOC DNM=3-016 OS 4C 

Figure 154. Sample Segmentation Program (Part 5 of 14) 

384 

USAGE R 0 Q M 
QSAM F 
DIS P 
DISP 
DISP-NM 
DISP 
DISP 
DIS P 
DISP 
GPOUP 
GP.OUP 
DISP 
DISP-NM 
DISP 
GROUP 
GROllP 
GROUP 
DIS P 
01 SP-NM 



TGT 

SAVE AREA 
SWITCH 
TALL Y 

MEMORY' MAP 

SORT SAVE 
ENTRY-SAVE 
SORT CORE SIZE 
RET CODE 
SORT RET 
WORKING CELLS 
SORT FILE S IlE 
SORT MODE SIZE 
PGT-VN TBL 
TGT-VN TBL 
RESERVED 
LENGTH OF VN TB~ 
LABEL RET 
RESERVED 
DBG R14SAVE 
COBOL I NDICATOK 
A(INITU 
DEBUG TABLE PTR 
SUBCOM PTR 
SORT-MESSAGE 
SYSOUT DDNAME 
RESERVED 
COBOL 10 
COMPILED POINTErt 
COUNT TABLE ADUrtESS 
RESERVED 
DBG Rll SAVE 
COUNT CHAIN ADurtESS 
PRBLl CEll PTR 
RESERVED 
TA LENGTH 
RESERVED 
PCS LIT PTR 
DEBUGGING 
CD FOR INITIAL 4NPUT 
OVERFLOW CEllS 
Bl CEllS 
DECBADR CEllS 
FIB CEllS 
TEMP STORAGE 
TEMP STORAGE-2 
TEMP STORAGE-3 
TEMP STORAGE-4 
BLL CEllS 
VlC CEllS 
SBL CEllS 
INDEX CEllS 
SUBADR CEllS 
ONCTl CEllS 
PFMCTL CELLS 
PFMSAV CEllS 
VN CEllS 
SAVi AREA =2 
SAVE AREA =3 
XSAS.., CEllS 
XSA CEllS 
PARAM CEllS 
RPTSAV AREA 
CHECKPT CTR 

00290 

00290 
002D8 
002DC 
002EO 
002E4 
002E8 
002EC 
002EE 
002FO 
00420 
00424 
00428 
0042C 
00430 
00434 
00436 
00437 
00438 
0043C 
00440 
00444 
00448 
0044C 
00454 
00455 
00456 
00458 
0045C 
00460 
00468 
0046C 
00470 
00414 
00419 
0041C 
00484 
00488 
0048C 
00490 
00490 
00498 
00't98 
004AO 
004A8 
004A8 
004A8 
004A8 
004BO 
004BO 
004BO 
004BO 
004BO 
00480 
004D8 
00520 
00580 
00580 
00588 
005B8 
00588 
00588 
0,0588 

Figure 154. Sample segmentation Program (Part 6 of 14) 

Using the Segmentation Feature 385 



LITERAL POOL (HEX) 

OC6A~ (l 11+0) 
OO~CO (LIT+2<rJ 

1C4C3C10 OuOOu01C 00000000 48140000 00044000 001C0005 
08000000 OuOB0011 00070000 

DISPLAY LITERALS (BCD) 

ococe (LTL+3<>J 
OC704 (LTL+9,d 
CC 13e (L Tl+l'rd J 
CC 714 (L Tl+2&.14.J 
007AC (lTL+2"O) 

'START TEST ~EG-SAMPLEEND TEST SEG-SAMPlE UNSUCCESSFUL RU' 
'NENO TEST S~G-SAMPlE SUCCESSFUL RUNSECTION 20 WRITESECTI' 
'ON 20 READEAPECTED FOUND SECTION 30 WRITESECTIDN 30 REA' 
'DSECTION 40 WRITESECTION 40 READSECTION 60 WRITESECTION ' 
'60 READSECT~ON 80 WRITESECTION 80 READ' 

PGT 

DEBUG LINKAGE AKEA 
OVERFLOW CEllS 
VIRTUAL CelLS 
PROCEDURE NAME ~EllS 
GENERATED NAME ~ElLS 
DCB ADDRESS CEL~S 
VNI CELLS 
LITERALS 
DISPLAY LITERAL~ 
PROCEDURE BLOCK CELLS 

REGISTER AS~IGNHENT 

REG 6 
REG 7 

Bl =2 
BL =1 

005CO 

005CO 
005CO 
005C4 
005E4 
005E4 
00610 
00614 
006A8 
006CC 
00704 

WORKING-STORAuE STARTS AT LOCATION OOOAO FOR A lENGTH OF OOOEO. 

fFCCEOURE B~OCK ASSIGNMENT 

PBL = REG J.1 

peL =1 .>TARTS AT LOCATIOj'4 000708 STATEMENT 75 SEGMENT ROOT 

Figure 154. Sample Segmentation Program (Part 7 of 14) 

386 



***************ROOT ~EGMENT**************** 

000108 PN=Ol EQU * 
1'1 *BASE-S EeT ION 

000108 PN=02 EQU * 
15 DISPLAY 000108 START EQU * 

000108 58 BO C 214 L 11, 214( 0, 121 PBL=1 
()001OC 58 FO C OOC L 15,OOC(O,12) V( 1 LBOaSSO) 
0001EO 05 1F BALR 1,15 
0001E2 001.11 DC X' 0001' 
0001E4 10 DC X'10' 
0001ES OuuOl:> DC X'OOOOlS' 
0001E8 Oe~OOl. OC DC X'OCOO010C' L IT+36 
0001Ee OOuO De X'OOOO' 
0007EE FFt-F DC X'FFFF' 

7C OPEN a001FO 5ij lU e 050 L 1,050(0,12) DCB=1 

000048 58 FO C 01C L lS,01Cl 0,12) V(ILBOGD011 
000D4C 05 EF BALR 14,15 
000D4E 41 FO B 51A BC 15,57 A( 0,11) PN=016 

0·00000 90 EC D OOC 1 NITl STM 14,12,OOC(13) 
000004 18 SD LR 5,13 
00C006 05 FO BALR 15,0 
000008 4.5 80 F 010 BAL 8,010(0,15) 
oooooe E2~se7FOE2elD4D7 DC X'E2C5C7FOE2C1D4D7' 
000014 E5~2D9Fl DC X' E5 E2D9Fl' 
000018 07 00 BCR 0,0 
OOOOlA 98 9F F 024 LM 9,15,024(15) 
00001E 01 FF BCR 15,15 
000020 96 02 034 01 034( 1) ,X'OZ' 
000024 07 FE BCR 15,14 
000026 41 FO 0 001 LA 15,001(0,0) 
00002A 07 FE BCR 15,14 
00002e OOuOloEE ADCON L4( INIT3) 
000030 001.)00000 ADCON L4( I NITU 
000034 OO~OOOOO ADCON L4(1 NI Tl) 
000038 00v005CO ADCON l4( PGT) 
00003C 00uOO~90 AOCON L4 (TGTl 
000040 001.100108 ADCON L4( START! 
000044 OOUOlbAE AOCON L4(INIT2) 
000048 OS 15F 
000084 OOuOOOOO DC X'OOOOOOOO' 
000088 Flf14bF4F64BF3F6 DC X'F1F74BF4F64BF3F6' 
000090 Clc4C74040F46B40 DC X'C1E4C74040F46B40' 
00C098 FU-9F7F6 DC X ' F 1 F9 F 1 F6 ' 

Figure 154. Sample Segmentation Program (Part 8 of 14) 

Using the Segmentation Feature 381 



********* ******SEGME,d (Jf PTY 30**************** 

133 *SECT lON-30 
000052 PN=016 EQU * 

134 *W-30-0 
000052 PN=017 EQU * 

135 DISPLAY 000052 58 FO C OOC L 15,00C( 0,12) V( ILBOOSSO) 
000056 05 IF BALR 1,15 
000058 OOul DC X'OOOl' 
000D5A 10 DC X'10' 
000058 00uOl0 DC X'OOOO10' 
000D5E OCuOO196 DC X'OCOOO196' LlT+174 
000062 OOtiO DC X'OOOO' 
000064 FFfF DC X'FFFF' 

131 PERFuRM 000066 02 03 o 268 o 2B8 MVC 268(4,13),268(13) PSV=9 VN=06 

000F90 58 FO C 01C L 15,01CC 0,12) V(ILBOGOO1) 
000F94 05 EF BALR 14,15 
000F96 47 FO B 7C2 BC 15,7C2(0,llJ PN=024 

***************SEGMENT OF PTY 40**************** 

167 *SECTlON-40 
000F9A PN=024 EQU * 

161: *W-40-0 
000F9A PN=025 EQU * 

169 DISPLA Y OOOF9A 58 FO C OOC L 15, ooce 0,12) V( IlBOOSSO) 
000F9E 05 IF BALR 1,15 
OOOFAO OOul DC X'OOOl' 
000FA2 10 DC X'10' 
000FA3 00uOl0 DC X'000010' 
000FA6 OCIJ001B5 DC X'OCOO01B5' LlT+205 
OOOFAA OOuO DC X'OOOO' 
OOOFAC FFi'F DC X'FFFF' 

111 PERFwkM OOOFAE 02 03 D 210 o 200 MVC 270(4,13),200(13) PSV=l1 VN=09 

001lF6 58 FO C 01C L 15, Ole (0,12) V(ILBOGD01) 
OOllFA 05 EF BALR 14,15 
OOllFC 47 FO 8 A28 BC 15,A28( 0,11) PN=033 

Figure 154. sample segmentation Program (Part 9 of 14) 

388 



**********~****SEGHE''iT OF PTY 60************ •• ** 

203 *SECTlON-60 
001200 PN=033 EQU * 

201t *W-60-0 
001200 PN=034 EQU * 

2G5 OISPI.AY 001200 58 FO C ooe L 15,OOC(O,12) V(IlBOOSSO) 
001204 05 1F BALR 1,15 
001206 OOu1 DC X'OOOl' 
001208 10 DC X'10' 
001209 00u010 DC X'OOOO10' 
00120e 0(u00104 DC X' oeooo104' L1T+236 
001210 OOuO DC X'OOOO' 
001212 FFFF DC X' FFFF' 

2C1 PERFuRM 001214 02 03 0 21C o 2FO MVC 21C(4,13),2FO(13) PSV=14 VN=013 

00144A 58 FO C 01C L 15,01C(O,12) V(ILBOGOO1) 
00144E 05 EF BALR 14,15 
001450 41 FO B C 1C Be 15,C1C(0,11) PN=041 

***·***********SEGME,,,T OF PlY 80**************** 

231 *SECTION-BO 
001454 PN=041 EQU * 

238 *w-so-o 
0014"54 PN=042 EQU * 

23<; DISPI..AY 001454 58 FO C OOC L 15,00e(0,12) V( ILBODSSO) 
001458 05 1F BAlR 1,15 
00145A 00u1 DC X'OOOl' 
00145C 10 DC X'10' 
001450 00u010 De X'000010' 
001460 OCu001 F3 DC X' OCOO01F3' LIT+261 
001464 OOuO DC X' 0000' 
001466 FFfF DC X'FFFF' 

241 PERFuRM 001468 02 03 o 284 o 308 Mve 284(4,13),308(13) PSV=16 VN=016 

001166 05 10 BAlR 1,0 
001168 58 00 8 000 L 0,000(0,8) 
00176C 1i 00 LTR 0,0 
00116E 41 80 010 BC 8,-010( 0,11 
001712 1E OB ALR 0,11 
001114 50 00 8 000 ST 0,000(0,8) 
001118 81 86 1 000 BXlE 8,6,000 (11 
00177e 58 60 0 204 L 6,204(0.13) Bl =2 
001180 58 10 0 200 L 1,200(0,13) "Bl =1 
001184 02 8F 0 290 C 054 MVC 290(144,13),054(12) VN=Ol VNI=l 
00118A 58 EO 0 054 L 14,054(0,13) 
00118E 01 FE BCR 15,14 

Figure 154. Sample segmentation Program (Part 10 of 14) 

Using the segmentation Peature 389 



*STATlSTICS* SOURCE RECORD~ 21ft DATA DIVISION STATEMENTS = 18 PROCEDURE DIVISION STATEME~TS = 165 
*OfT IONS IN EfFECT* SIZE = 131012 BUF 12288 LI NECNT = 51 SPACEl, FLAGW, SEQ, SOURCE 
*OPT UlNS IN EFFECT* DHAP, PMAP, NOClIST, NOSUPHAP, NOXREF, SXREF, LOAD, NODECK, APOST, NOTRUNC, NOFlOW 
*OPTIONS IN EFFECT* NOTERH, NONUM, NOBATCH, NONAME, COMPILE=Ol, NOSTATE, NORESIOENT, NOOYNAM, NOlIB, NOSYNUX 
*OPTIONS IN E~FEC T* OPTIMIZE, NOSYHDMP, NOTEST, VERB, ZIIB, SYST, NOENDJOB, NOlVL 
*OPT UlNS IN EfFECT* NOlST , NuFDECK,NOCDECK, lCOl2, 1120, DUMP, NOAOV , NOPRINT, 
*OPTlONS IN EFFECT* NOCOUNT, NOVBSUM, NOVBREF, lANGLVL(2J 

CROSS-REFERENCE DICTIONARY 

[ATA NAMES DfFN REFERENCE 

ERCTFl 000056 000123 000121 000131 000151 000161 000165 000193 000191 000201 000227 
000231 000235 000263 000261 000211 

ERROKSW 000055 000090 000094 000109 000123 000121 000144 000151 000161 000118 000193 
000197 000214 000227 000231 000249 000263 000261 

F IlE-1 LJOOOft6 000076 000082 000083 000088 000092 000106 000121 000141 000155 000175 
000191 000211 000225 000246 000261 

MSGEOF 000060 000122 000156 000192 000226 000262 
MSGEOX 000058 000108 000143 000171 000213 000248 
MSGt-OR 000051 000089 000107 000122 000126 000142 000156 000160 000116 000192 000196 

000212 000226 000230 000241 000262 000266 
MSGl\iEF 000062 000089 
REC-HO 000065 
REC-ID 000064 000125 000126 000128 000159 000160 000162 000195 0001~6 000198 000229 

000230 000232 000265 000266 000268 
REC-NU 000066 000111 000146 000180 000216 000251 
RECFU1 000053 000088 000106 000121 000141 000155 000175 000191 000211 000225 0002H 

000261 
RECIO 000068 000108 000143 000117 000213 000248 
REC1 000063 000088 000106 000121 000141 000155 000115 000191 000211 000225 00024-6 

000261 
VEIl-HD 000071 
VEIl-I0 (100070 000125 000126 000128 000159 000160 000162 000195 000196 ('100198 000229 

000230 000232 000265 000266 000268 
VEFi-NO 000072 000129 000163 000199 000233 000269 
VER-kEC 000069 

Figure 154. sample seqmentation Proqram (Part 11 of 14) 

390 



PROCEDURE NAMES DEFN REFERENCE 

B~ S E-SEC T ION 000014 
BASE-50 000081 000110 000145 000119 000215 000250 
BASE-60 000086 000153 
eASE-l0 000D91 000088 000132 000166 000202 000236 000272 
e~SE-90 (JOO093 
R-20-0 000114 000181 
~-20-9 000118 000181 
R-21-0 000120 000111 
R-21-9 000130 000111 000124 
~-30-0 000149 000223 
R-31-0 000154 000152 
R-31-9 000164 000152 000158 
R-40-0 000183 000081 
R-40-9 000188 000081 
R-41-0 000190 000186 
R-H-9 000200 000194 
R-60-0 000219 000085 
R-61-0 000224 000222 
R-H-9 000234 000222 000228 
R-So-O 000254 000084 
R-80-9 000258 0000S4 
R-81-0 000260 000251 
R-81-8 000210 
R-Si-9 000213 000251 000264 
S ECTlON-20 000098 
SECTlON-30 000133 000132 
SECTlON-40 000161 000166 
SECT lON-60 000203 000202 
SECTION-80 000231 000236 
111-20·0 uOO099 0002 .. 2 
W-20-9 000103 000242 
"-21-0 000105 000102 
101-21-9 000112 000102 
101-30-0 000134 000018 
"-3(;-9 000138 000018 
W-31-0 000140 000131 
"-31-9 000141 000131 
w-40-0 000168 000080 
W-40-9 000112 000080 
k-H-O uOO114 000111 
.. -41-9 000181 000111 
101-60-0 000204 000019 
"-6C-9 000208 000019 
W-61-0 000210 000201 
k-H-9 000217 000201 
"-8C-0 000238 000071 
.. -80-9 000243 000011 
.. -81-0 (J00245 000241 
101-81-9 000252 000241 

Figure 154. Sa.pIe seqmentation Program (Part 12 of 14) 

Using the segmentation Feature 391 



F64 ... LEVEL LINKAGE EDITOR OPTIONS SPECIFI ED LIST ,~Bj:F_ 
DEfAULT OPTION(S) USED - SllE=(196608,65536) 

I EWOOOO ENTRY SEGOSAMP 
J EW0201 

CROSS REFERENCE TABLE 

COI\TROL SECTION ENTRY 

NAME ORIGIN LENGTH SEG. NO. NAME LOCATION NAME LOCATION NAME lOCATION NAME lOCATION 
SEGOSAMP 00 1790 1 
IlBOCOMO* ",190 169 1 

I LBOCOM 1790 
IleOOSS * 1900 40A 

ILBOoSSO 1902 
lLEOEXT * 1010 50 1 

IlBOEXTO 1012 ILBOEXT1 1016 
JlBOGoO * 1060 114 1 

IlBOGoOO 1062 ILBOGoOl 1066 ILBOGo02 lO6A 
Il80QIO * lE18 56E 

IlBOQIOO 1E1A 
llBDSRV * 23E8 48E 

fLBOSRVO 23F2 ILBOSR5 23F2 IL80SR3 23F2 ILBOSR 23F2 
ILBOSRV1 23F6 ILBOSTP1 23F6 fLBOST 23FA ILBOSTPO 23FA 

IlBOSYN * 2818 440 
Il80SYNO 281A IlBOSYN1 281E flBOSYN2 2882 IlBOSYN3 2~86 
ILBOSYN4 288A ILBOSYN5 288E 

ILBGBEG * 2CB8 128 1 
I L808EGO 2CBA 

IleOCHN * 20EO 1BO 
ILBOCHNO 2DE2 

IUOCHM * 2f90 388 
ILBOCMMO 2f92 IlBOCMM1 2F96 

ILBOMSG * 3320 F2 
IlBOMSGO 3322 

lOCAT ION REfeRS TO SYMBOL IN CONTROL SEC TI ON SEG. NO. LOCATION REfeRS TO SYMBOL IN CONTROL SECTION SEG. NO. 
5C4 IL8GSRVO ILBOSRV 1 5C8 ILBOSR5 Il~OSRIf 1 
sec ILBOOSSO I LBOoSS 1 500 ILBOSYN1 fLBOSYN 1 
504 ILBOEXTO ILBOEXT 1 508 ILBOQIOO ILBOQIO 1 
50C IL8CGOO1 ILBOGOO 1 5EO ILBOSRV1 ILBOSRV 1 
448 ILBOCllMO I LBOCOMO 1 2738 fLBOCOM ILBOCO'40 1 
~13C ILBOCMMO 1L80CHM 1 2140 Il808EGO ILBOBEG 1 
Li44 I lBOMSGO I LBOMSG 1 2148 ILBOSN02 SUNRESOLVEOC W) 
2C40 IlBOCHNO I LBOCHN 1 

El\lRY ADDRESS 00 

TGTAL LENGTH 3418 
** .... GO DOES NOT EXIST BUT HAS BEEN ADDED TO DATA SET 
All IHORIZATION CODE IS o. 

Figure 154. Sample segmentation Program (Part 13 of 14) 

392 



START TEST SEG-SAMPLE 
SECTION 80 WRITE 
SECTION 20 WRITE 
SECTION 30 WRITE 
SECTION 60 WRITE 
SECTION 40 WRITE 
SECTION 80 READ 
SECTION 60 READ 
SECTION 30 READ 
SECTION 40 READ 
SECTION 20 READ 
END TEST SEG-SAMPLE SUCCESSFUL RUN 

Figure 154. Sample Seg.entation Program (Part 14 of 14) 

Using the Segmentation Feature 393 



The IBM operating system Checkpoint/ 
Restart feature is designed to be used with 
programs running for an extended period of 
time when interruptions ma y halt processing 
before the end of the job. The feature may 
be used when the programmer anticipates any 
type of interruption, i.e., interruptions 
caused by machine malfunctions, 
input/output errors, or intentional 
operator intervention, etc. It allows the 
interrupted program to be restarted at the 
job step or at a point other than at the 
beginning of the job step. The feature 
consists of two routines: Checkpoint and 
Restart. 

The Check.E.QinL£2 uti!!.~ is invoked from 
the COBOL load module containing the user's 
program. It moves information stored in 
registers and in main storage into a 
checkpoint record at user-designated points 
during execution of the program. The 
programmer specifies these points using the 
COBOL RERUN clause in the Environment 
Division. 

The Restart routine restarts an 
interrupted program:--Restart can occur at 
the beginning of a job step, or at a 
checkpoint if a checkpoint record has been 
written. The checkpoint record will 
contain all information necessary to 
restart the program. Restart can be 
initiated at any time after the program was 
interrupted; that is, 1t may be run 
immediately after the interrupt has 
occurred, as an automatic restart, or at a 
later time convenient to the programmer, as 
a deferred testart. 

The COBOL RERUN clause provides linkage 
to the system checkpoint routine. Hence, 
any cautions and restrictions on the use of 
tbe system Checkpoint/Restart feature also 
apply to the use of the RERUN clause. 

The Checkpoint/Restart feature is fully 
described in the publication Q.~LVS 
Ch~£JsEgi n!LR~ ta .rt. 

In order to initiate a checkpoint, the 
programmer uses job control statements and 
the COBOL RERUN clause. The programmer 
associates each RERUN clause vit.h a 
particular COBOL file. The RERUN clause 
indicates that a checkpoint record is to be 
written onto a checkpoint data set whenever 

a specified number of records on that file 
are processed or when end of volume is 
reached while processing a file. The 
programmer decides when he wants the 
checkpoints taken as he codes the RERON 
clause. T he checkpoint records are written 
on the checkpoint data set defined by the 
DD statement and are referenced by 
system-name in the RERUN clause.. The DO 
statement describes both a checkpoint data 
set and a checkpoint method. 

Checkpoint records on ASCII-collated 
sorts can be taken, but the system-name 
indicating the checkpoint data set must not 
specify an ASCII file. 

Note: If checkpoints are to be taken 
durIng a sorting operation, a DD statement 
called SORTCKPT must be added when the 
program is executed. 

The programmer may elect to store single 
or multiple checkpoints. 

2in51le: Only one checkpoint. record exists 
at any given time. After the first 
checkpoint record is written, any 
succeeding checkpoint record overlays the 
previous one. This method is acceptable 
for most programs. It offers the advantage 
of saving space on the checkpoint data set 
and allows the programmer to restart his 
program at the latest checkpoint. 

~ltip~multiEle contigYQY§l: 
Checkpoints are recorded and numbered 
sequen tially. Each checkpoint is sa ved. 
This method is used when the programmer may 
wish to restart a program at a checkpoint 
other than the latest one taken. 

DD STATEftENT FORMATS 

The programmer records checkpoints on 
tape or direct access devices. Following 
are the DD formats to define checkpoint 
data sets. 



For Tape: 
r-----------------------------------------, 
I//ddname DD DSNAME=data-set-name. XI 
1// VOLUME=SER=volser, XI 
1// UNIT=deviceno_ XI 
1// DISP=( {NEW} wPASS>. xl 
1 MOD I 
1// DCB=(TRTCH=C>.LABEL=(.NL) I l _________________________________________ J 

Note: The DCB parameter is necessary only 
for 7-track tape conversion; for 9-track 
tape it is not used. 

For Mass Storage: 
r-----------------------------------------, 
!//ddname DD DSNAME=data-set-name. XI 
1// VOLUME=(PRIVATE,RETAIN, XI 
1// SER=volser>~ XI 
1// UNIT=deviceno, XI 
1// SPACE=(subparms>~ XI 
:// DISP={ {NEW} "PASS,KEEP) X: 
I MOD I l _________________________________________ J 

where: 

ddname 
is the same as the ddname portion of 
the system-name used in the COBOL 
RERUN clause to provide a link to the 
DD statement. 

da ta-set-name 
is the name given to each particular 
data :.et used to write checkpoint 
records. This name identifies the 
checkpoint data set to the Restart 
procedure (see "Restarting a 
Program .t). 

volser 
identifies the volume by serial 
number. 

deviceno 
identifies the device. For tape it 
indicates the device number for 
7-track or 9-track tape. For mass 
storage. it indicates the device 
number for disk or drum. 

subparms 
specifies the amount of track space 
needed for the data,.set. 

MOD 
is specified for the multiple 
contiguous checkpoint method. 

NEW 
is specified for the single checkpoint 
method. 

PASS 
is specified in order to prevent 
deletion of the data set at the 
successful completion of the job step, 
unless it is the last step in the job. 
If it is the last step, the data set 
viII be deleted with PASS. 

KEEP 
is specified in order to keep the data 
set if the job step abnormally 
terminated and may be restarted. 

The following listings are examples that 
define checkpoint data sets. 

• To write single checkpoint records 
using tape: 

IICHECKPT 
II 

DD DSNAME=CHECK', 
VOLUME=SER=ND003, 
UNIT=2400,DISP=(NEW,KEEP), 
LABEL= (. NL) 

x 
X 
X II 

II 

ENVIRONMENT DIVISION. 

RERUN ON UT-2400-S-CHECKPT EVERY 
5000 RECORDS OF ACCT-FILE. 

• To wri te single checkpoint records 
using disk (note that more than one 
data set may share the same 
external-name) : 

IICHEK DD 

II 
DSNAME=CBECK2, X 
VOLUME=(PRIVATE,RETAIN, X 

II 
II 
II 

SER=DB030, X 
UNIT=2314,DISP=(NEW,KEEP), X 
SPACE= (TRK,300) 

ENVIRONMENT DIVISION. 

BERUN ON UT-2314-S-CHEK EVERY 
20000 RECORDS OF PAICODE. 
RERUN ON UT-2314-S-CHEK EVERY 
30000 RECORD OF IN-FILE. 

Using the Checkpoint/Restart Feature 395 



• To write multiple contiguous checkpoint 
records (on tape): 

IICHEKPT 
II 
II 
II 

nD DSNAM E=CHECK 3, 
VOLUME=SER=111111, 
UNIT=2400,DISP=(MOD,PASS), 
LABEL= (, NL) 

ENV IRONlIENT DIVIS 10 N. 

RERUN ON UT-2400-S-CHEKPT EVERY 
10000 RECORDS OF PAY-FILE. 

.HQ!.~:A checkpoint data set must have 
sequential or partitioned organization. 

DESIGNING A CHECKPOINT 

The programmer should design his 
checkpoints at critical points in his 
program so that data may be easily 
reconstructed. For example, in a program 
using mass storage files, changes to 
records in these files will replace 
previous information; thus the programmer 
should be sure he can identify previously 
processed records. Assume that a mass 
storage file contains loan records that 
periodically are updated for interest due. 
If a checkpoint is taken, records are 
updated, and then the proqram is 
interrupted, the records updated after the 
last checkpoint will be updated a second 
time in error unless the programmer 
controls this condi tion. (He may set up a 
date field for each record and update the 
date each time the record is processed. 
Then, after the restart, by in vestigating 
the date field he can determine whether or 
not the record was previously processed.) 
For efficient re posi tion ing of a print 
file, the programmer should take 
checkpoints on that file only after 
printing the last line of a page. At 
system generation time, those ABEND codes 
for which the checkpoints are desired 
(DEFAULT) must be specified. 

MESSAGES GENERATED DURING CHECKPOINT 

x 
X 
X 

The system checkpoint routine advises 
the operator of the stat us of the 
checkpoints taken by displaying informative 
messages on the console. 

When a checkpoint has been successfully 
completed. the following message will be 
displayed~ 

396 

[IHJ004I jobname (ddname,unit,volser) 
CHKPT checkid] 

where checkid is the identification name of 
the checkpoint taken. Checkid is assigned 
by the control program as an 8-digit 
number. The first digit is the letter C, 
followed by a decimal number indicating the 
checkpoint. For example, checkid C0000004 
indicates the fourth checkpoint ta ken in 
the job step. 

RESTARTING A PROGRAM 

The system Restart routine retrieves the 
information recorded in a checkpoint 
record, restores the contents of main 
storage and all registers. 

The Restart routine can be initiated in 
one of two ways: 

• Automatically at the time an 
in terr uption stopped the program 

• At a later time as a deferred restart 

The type of restart is determined by the RD 
parameter of the job control language. 

The iD parameter may appear on either 
the JOB or the EXEC sta tement. If coded on 
the JOB statement, the parameter overrides 
any RD parameters on the EXEC statement. 
If the programmer wishes to have his 
program restart automatically, he codes 
RD=R or Ro=RNC. RD=R indica tes that 
restart is to occur at the latest 
checkpoint. The programmer should specify 
the RERUN clause for at least one data set 
in his program in order to record 
checkpoints. If no checkpoint is taken 
prior to interruption, restart occurs at 
the beginning of the job step. RD=RNC 
indicates that no checkpoint is to be 
written and any restart will occur at the 
beginning of the job step. In this case, 
RERUN clauses are unnecessary; if any are 
present, they are ignored. If the RD 
parameter is omitted, the CHKPT macro 
instruction remains activated, and 
checkpoints may be taken during processing. 
If an interrupt occurs after the first 
checkpoint, automatic restart will occur. 
Thus, if the user does not want automatic 
restart, he should always include the RO 
pa rame ter wi th a code of ei ther RO=NR or 
RD=NC, both of which suppress the automatic 
re s·tar t proced ure. 



If the programmer wishes his program to 
be restarted on a deferred basis, he skould 
code the BD parameter as RD=NB. This form 
of the parameter suppresses automatic 
restart but allows a checkpoint record to 
be written provided a RERUN clause has been 
specified.. At restart time, the programmer 
lIay choose to restart his program at a 
checkpoint other than at the beginning of 
the job step .. 

The programmer ma y also elect to 
suppress both restart and writing 
checkpoints. By coding RD=NC, the 
programmer, in effect, is ignoring the 
features of the CheckpointlRestart 
facil~ty. 

Automatic Restart 

Automatic Restart occurs only at the 
latest checkpoint taken. (I f no checkpoint 
was taken before interruption, Automatic 
Restart occurs at the beginning of the job 
step) • 

In order to restart automatically, a 
program must satisfy the following 
conditions. 

• A program must request restart by using 
the RD parameter or by taking a 
chec kpoi nt. 

• An ABEND that terminated the job must 
return a code eligible to cause 
restart. (For further discussion on 
this requirement, see the publication 
~I~_Checkpoint/Res1a£t.) 

• The operator authorizes the restart, 
with the following pro'cedure'! 

The system displays the following 
message to request a uthoriza tion of the 
restart: 

xxIEF225D SHOULD 
jobname.stepname.procstep 
RESTART [checkid] 

The operator must reply in the 
following form: 

REP LY xx, • {YES I NOJ HOLD} • 

where YES authorizes restart, NO 
prevents restart, and HOLD defers 
restart until the operator issues a 
RELEASE command, at which time restart 
will occ uc. 

Whe neve r au toma tic restart is to occu r, 
the system viII .reposition all devices 
except unit-record machines. 

Deferred restart may occur at any 
checkpoint, not necessarily the la test one 
taken. 

The programmer requests a deferred 
restart by means of the RESTART paraMeter 
on the JOB card aarl a SYSCHK DD statement 
to identify the checkpoint data set. The 
formats for these statements are as 
follows: 

Iljobname JOB 
II 
//SYSCHK DD 
II 
II 

where: 

, MSGLEVEL=1. 
RESTART={request,[checkid]) 
DSNAME=data-set.-name* 
DISP=OLD,UNIT-deviceno, 
VOLOME=SER=volser 

MSGLEVEL=l (or MSGLEVEL= (1. y) where y is 
either 0 or 1) 

is required. 

RESTART=(request,[checkid]) 

x 

x 
X 

identifies the particular checkpoint 
at which restart is to occur. Request 
may take one of the following forms: 

* to indicate restart at the beginning 
of the job 

stepname to indicate restart at the 
beginning of a job step 

stepname.procstep to indicate restart 
at a procedure step within the 
jobstep 

checkid 
identifies the checkpoint where 
restart is to occur. 

SYSCHK 
is the DDNAME used to identify a 
checkpoint data set to the control 
program. The SYSCHK DD statement must 
immediately precede the first. EXEC 
sta tement of the resubmi tted job, and 
must follow any JOBLIB statement. 

da ta-set-name 
must be the same name that was used 
when the checkpoint was taken. It 
identifies the checkpoint data set 

Using the CheckpointlRestart Feature 397 



deviceno and volser 
identify the device number and the 
volume serial number containing the 
checkpoint data set. 

As an example illustrating the use of 
these job control statements, a restart of 
the GO step of a COBUCLG procedure, at 
checkpoint identifier (CHECKID) CODODOD], 
might appear as follows: 

Iljobname 
II 

JO B ,I1SGLEVEL= 1, 
RESTART= 

(stepname.GO,COODODD3) 
DD DSNAME=CHEKPT, 

DISP=OLD,UNIT=2400, 
VOLUI1E=SER=111111 

x 
X 

1/ 
/ISYSCHK x 

X // 
1/ 

{DD statements similar to original deck} 

The Restart routine uses information 
from DD statements in the resubmitted job 
to reset files for use after restart; 
therefore, care should be taken with any DD 
statements that may affect the execution of 
the restarted job step. Attention should 
be paid to the following: 

• During the original execution, a data 
set meant to be deleted at the end of a 
job step should conditionally be 
defined as PASS rather than DELETE in 
order to be available if an 
interruption fo.rces a restart. If the 
restart is at the beginning of a step, 
a data set created in the original 
execution (defined as NEW on a DD 
statement) must be scratched prior to 
the restart. If the data set is not 
deleted, the DD statement must be 
changed to define it as OLD. 

• At restart time, input data sets on 
cards should be positioned as they were 
at the time of the checkpoint. Input 
data sets on tape or direct access 
devices will be automatically 
reposi tioned by the system. 

• At restart time, the EXEC statement 
parameters PG~ and COND, and the DD 
statement parameters SUBALLOC and 
YOLUME=REF Jlust not be used in steps 

following the restart step if they 
contai.n the form stepname or 
stepname.procstep referring to a step 
preceding the restart step. However, 
if these parameters are used, the 
preceding step referred to must be 
specified in the resubmitted deck. 

When a deferred restart has been 
successfully completed, the system will 
display the following message on the 
console: 

IHJ0081 johname RESTARTED 

Control is then given to the user's program 
that executes in a normal manner. 

CHECKPOINT/RESTART DATA SETS 

If the RERUN clause was executed during 
the original execution of the processing 
program, checkpoint entries were written on 
a checkpoint data set. To resubmit a job 
for restart ~ben execution is to be resumed 
at a particular checkpoint, an additional 
DD statement must be included. This DD 
statement describes the data set on which 
the checkpoint entry was written and it 
must have the ddname SYSCHK. The SYSCHK DD 
statement must immediately precede the 
first EXEC statement of the resubmitted job 
and must follow the DD statement named 
JOBLIB, if one is present. 

For both deferred and automatic 
checkpoint/restart, if Direct SYSOUT writer 
for the restarted job vas active at the 
time the checkpoint was was taken, it must 
be available for the job to restart. For 
further in format ion, see the publication 
Q~VS_~hg~kpoin1LBg§~~i· 

If the checkpoint data set is 
multivolume, the sequence number of the 
volume on which the checkpoint entry vas 
written must be included in the VOLUME 
parameter. If the checkpoint data set is 
on a 7-track magnetic tape with nonstandard 
labels or no labels, the SYSCHK DD 
statement must con tain DCB: (TRTCH=C, ••• ) • 

Figure 155 illustrates a sequence of 
control statements for restarting a job. 

r-----------------------------------------------.----------- 1 

II/PAYROLL 
IllJo.BLIB 
IIISYSCHK 
1// 
II/STEP1 

JOB 
DD 
DD 

EXEC 

MSGLEVEL=l ,REGION=80K, RESTART= (STEP1 ,CHECKPT4) 
DS NAME=PRIY. LIB3,DISP=OLD 
DSNAME=CHKPTLIB, UNIT=2314, VOL=SER=456789, 
DI.SP= (OLD, KEEP) 
PGI1=PROG4,TI!E=5 

x 
• I 
I 
t 
I 

------------------------~ Figure 155. Restarting a Job at a Specific Checkpoint step 

398 



If a SYSCHK DD statement is present in a 
job and the JOB statement does not contain 
the RESTART parameter, the SYSCHK DD 
statement is ignored. If a RESTART 
parameter without the CHECKID subparameter 
(as in Figure 157) is included in a job, a 
SYSCHK DD statement must not appear before 
the first EXEC statement for a job. 

Figure 156 illustrates the use of the RD 
parameter. Here, the RD parameter requests 
step restart for any abnormally terminated 
job step. The DO statement DDCKPNT defines 
a checkpoint data set. For this step, once 
a RERUN clause is executed, only automatic 
checkpoint restart can occur, unless a 
CHKPT cancel is issued. 

Pigure 157 illustrates those 
modifications that might be made to control 
state.ents before resubmitting the job for 
step restart. ~he job name has been 
changed to distinguish the original job 

JOB 386,SftITH, ftSGLEVEL= l,RD=R 
EXEC "YPROG 

from the restarted job. The RESTART 
parameter has been added to the JOB 
statement and indicates that restart is to 
begin with the first job step. The DD 
statement WORK originally assigned a 
conditional disposition of KEEP for this 
data set. If this step did not abnormally 
terminate during the original execution, 
the data set was deleted and no 
modifications need be made to this 
statement. If the step did abnormally 
terminate, the data set vas kept. In this 
case, define a new data set as shown in 
Figure 157, or change the data set·s status 
to OLD before resubmitting the job. A new 
data set has also been defined as the 
check.point data set. 

Figure 158 illustrates those 
modifications that might be made to control 
statements before resubmitting the job for 
checkpoint restart. 

, 
I , r

IIIJ1234 
IIIS1 
IIIINDATA 
III 
IIIBEPORT 
IIIWORK 
'II 
IIIDDCKPNT 

DD DSNAftE=INVENT,UNIT=2400,DISP=OLD,VOLUftE=SER=91468, X 
LABEL=RETPD=14 

I , 
DD SYSOUT=A 
DD DSNAME=T91468, DISP"= (,., KEEP) , UNIT=SYSDA, X 

SPACE=(3000, (5000,500» ,VOLUKE=(PBIVATE,RETAIN,,6) 
DD UNIT=2400,DISP={ftOD,PASS,CATLG),DSNAKE=C91468,LABEL=(,NL) L---______________ __ 

Figure 156. Using the RD Parameter 

r-------------------------IIIJ3412 JOB 386,SKITH,ftSGLEVEL=1,RD=R,RESTART=* 
IIIS1 EXEC MYPROG 
IIIINDATA DD DSNAPlE=INVENT,UNIT=2400,DISP=OLD,VOLUKE=SER=91468, X 
III LABEL=BETPD=14 
IIIREPORT DD SYSOUT=A 
IIIWORK DD DSNAftE=S91468,DISP=("KEEP) ,UNIT=SYSDA, X 
III SPACE=(JOOO,(5000,500»,VOLUME=(PRIVATE,RETAIN,,~ 
'IIDDCHKPHT DD UNIT=2400, DISP= (PlOD,PASS, CATLG) ,DSBAftE=R91468 ,LABEL= (, Nt) 

Figure 157. ftodifying Control Statements Before Resubmitting for step Restart 

, 
I 
I , 

---I 

, , , 
I 
I 
I 
I 
J 
J 

Using the Checkpoint/Restart Feature 399 



r- ----, 
II/J3412 
II/SYSCHK 
IIIS1 
II/INDATA 
III 
IIIREPORT 
II/WORK 
III 
IIIDDCKPNT 
III 

JOB 
DD 
EXEC 
DD 

DD 
DD 

DD 

386,SMITH,8SGLEVEL=1,RD=R,RESTART=(*,C0000002) 
DSNAltE=C91468, DISP=OL D 
ltYPROG 
DSHA~E=IBVENT,UNIT=2400,DISP=OLD, 
VOLtH!E=SER=91468, LABEL=RETPD= 14 
5YSOUT=A 
DSHAME=T91468,DISP=("KEEP),UNIT=SYSDA, 
SPACE= (3000. (5000,500» , VOLUftE= (PBIVATE, RETAIN" 6) 
U NIT=2400, DISP= (MOD ,KEEP, CATLG) ,DSNAltE=C91468, 
LABEL = (, NL) 

I 
I 
I 

x: , 
f 
t 

X I 
I 

X J , 
L .I 

Figure 158. 80difying control statements Before Resubmitting for Checkpoint Restart 

The job name has been changed to 
distinguish the original job from the 
restarted job. The RESTART parameter has 
been added to the JOB statement and 
indicates that restart is to begin with the 
first step at the checkpoint entry named 
C0000002. The DD statement DDCKPNT 
originally assigned a conditional 
disposition of CATLG for the checkpoint 
data set. If this step did not abnormally 
terminate during the original execution, 
the data set vas kept. In this case, the 
SYSCHK DD statement must contain all of the 
information necessary to retrieve the 

400 

checkpoint 
abnormally 
cataloged. 
parameters 
statement, 
DSNAl'tE and 

data set. If the job did 
terminate, the data set was 
In this case, the only 

required on the SYSCHK DD 
as shown in Figure 158, are the 
DISP parameters. 

!iQ.t~: If a checkpoint is taken in a job 
that is runnin~ when V=R is specified, the 
job cannot be restarted antil adequa te 
nonpageable dynamic storage becomes 
available. 



A communication environ.ent consists of 
a central computer. reaote or local' 
stations. and communication lines between 
such stations and the central computer. 
Use of the Communication Feature enables 
the COBOL programmer to create 
device-independent programs for 
communication applications. 

Communication applications requi~e a 
spec ia 1. user-vritte n assembler-language 
program that controls the flow of data 
between the central computer and the remote 
stations. This message control program 
(RCP) also performs such additional tasks 
required only in a communication 
environment as dial-up. polling, (or 
contacting each remote station). and 
synchronization, as veIl as such 
device-dependent tasks as character 
translation and insertion of control 
characters. 

The KCP consists of routines that 
identify the communication network to the 
operating system, establish line control 
between the computer and the various kinds 
of stations, and process messages in a vay 
tailored to meet the needs of the user. A 
"message" is the data flowing either froa a 
remote station to the central computer or 
from the central computer to a remote 
station. An KCP is required in a 
communication system operating under TCAM. 

Depending on the needs of the 
installation. one or more COBOL programs 
may be required to process the contents of 
the messages. An example of a job needing 
no application program is message 
switching, an operation consisting only of 
forwarding messages unaltered (except for 
such processing as the KCP may perform) to 
one or more other stations~ 

The MCP itself can perform limited 
processing (for example, examination of the 
first portion of a message to determine 
certain routine information and message 
code translation). Further, the RCP can 

II station whose control unit is connected 
directly to a computer data channel by a 
local cable. 

obtain the time of day a message is 
received from a station and transmit this 
information to a COBOL program. It can 
also check the input messaqes to determine 
whether an error message should be sent to 
the des~gnated station. 

This section describes the flow of a 
single-segment message through a system 
operating under TeAM, from the time it is 
entered at the remote station to its 
transmission to a destination station. 
Figure 159 outlines the flow of a message 
segment through a TCAM system. The 
encircled numerals in the flow diagram 
correspond to the steps listed in the 
description that follows. 

Because of the possible variety of both 
message types and destinations, it is often 
helpful for the user to precede the message 
"text" with a message "header" so that the 
user can transmit to the MCP information 
essential to handling the text. It is the 
user who determines which part of the 
message is the header and which part ls the 
text. 

steps 1 ang~: The input message is 
prepared at the remote station and entered 
on the line. The message may be keyed in, 
or it may be entered from a card or tape 
reader. The originating station enters the 
message via a communication line, the 
transmission control unit, and the 
multiplexor channel. 

step 3: The message enters the central 
computer and is stored, together with the 
internally generated buffer prefix, in a 
main storage buffer. As message data fills 
the buffer, TCAM inserts the necessary 
control information in the prefix. Before 
the message characters are placed in the 
first buffer, TCI~ may reserve space in the 
buffer for later insertion of the time, 
date, and sequence number for the message, 
and for control characters, if appropriate. 
Once a buffer is filled with the first 
segment of the message, the MCP controls 
the flow of tbe buffer through the 
communication network. The heart of the 
MCP consists of the message handlers (M8) 
constructed by the user to process messages 
from the various lines or line groups. 

Using the Communication Feature 401 



Figure 159. 

402 

MCP 
buffer 

Outgoing Group 
of MH specified 
for the line 

Message Flow between Remote sta tions and a COBOL Program 



~tep-!: The incoming message is routed to 
the incoming group of the ~H specified for 
the line (by the KH= operand of the DCB 
macro for the line group in which the line 
is included). The message is passed, a 
buffer at a time, through the incoming 
group, which performs sach user-selected 
functions on the message header as origin 
checking, and input sequence-number 
checking. Similarly, such functions may be 
performed for the message segment as 
translating the segment from line code to 
EBCDIC and causing an error message to be 
sent to the originating station when the 
incoming group detects any user-specified 
error in the segment. In performing its 
functions, the incoming group of the MH 
scans and processes header fields based on 
the relative order of the individual KH 
macro instructions. The incoming group 
then rOll tes the message to the destination 
queue. 

st~-2: After processing by the incoming 
group, the message is placed on a 
destination queue for either the COBOL 
program, for processing, or an accepting 
station. (If no message processing is 
necessary, the next action performed is 
that described in step 13.) All messages 
requiring text processing are routed to t.he 
destination queue for the COBOL program 
that processes that type of message. The 
user controls this routing via the message 
header by placing the name of the 
destination queue for the. COBOL program in 
a destination field of the message header 
or by MH macro instructions such as ftSGTYPE 
that ma y be used t.o direct messages of a 
particular type t.o a particular queue. 

~t~L2.a.2L-~!i: The message from a 
destination queue for a COBOL program is 
placed in a main-storaqe buffer; the 
outgoing group of an MH (the MH .is created 
especially for the application program and 
is assigned to it by the MH= operand of the 
PCB macro in the KCP) places it on the 
read-ahead queue, a special queue that 
allows overlap of KCP and application 
program processing of messages queued for a 
particular destination. 

il~: Each time the COBOL program issues 
a RECEIVE statement, TCAM passes message 
data from the read-ahead queue to a 
user-specifiedvork area in the COBOL 
program. As the message d~ta is moved to 
the work area, TCAK removes the header or 
text. prefix from the buffer. After 
receiving the message data, the COBOL 
program processes it as required and then 
genera tes a response message, if any is to 
be returned to a station. The destination 
queues act as buffers between the COBOL TP 
program and the remote stations. Thus, the 
COBOL communication program can accept 
messages from Rep destination queues and 

place these messages in MCP destination 
queues as if th.e queues were seque ntia 1 
files within a conventional COBOL program. 
(The sample COBOL program TESTTP 1, shown in 
Figure 165, reads a sequential file and 
then sends each record to a destination 
queue, creating a TCAM data set for the 
COBOL communication program TESTTP2, shown 
in Figure 169, making it possible to test a 
COBOL TP program without terminals.) 

~l~~lQ~nd 11: When the COBOL program 
issues a SEND statement, TCAM moves the 
data from the work area into an MCP buffer 
before it is handled by the incoming group 
of the MH designed for the COBOL program. 
A header or text buffer prefix is created 
when data is moved to the buffer, as for 
other incominq messages. As the message 
data fills the buffer, TCAM inserts control 
information in the prefix field. The 
response message generated by an 
application program can be any 
user-selected length. After the buffer is 
filled. the message is handled by the 
incoming group of the MH assigned to the 
application program by the I1H= operand of 
the PCB macro instruction that provides an 
interface between the MCP and the COBOL 
program. 

ll~lLl~: If further processing of the 
message is required in another application 
program, the message is queued for that 
destination (and Steps 5 through 11 are 
repeated). If however, no other 
application program processing is needed, 
the processed message is placed on the 
destination queue for an accepting station. 
The destination is that specified by the 
COBOL programmer in the file referenced by 
the SYMBOLIC DESTINATION clause of the 
output CD. It may be for an application 
program or a station. 

St.ID2-11: The destination queue for an 
accepting station, like the destination 
queue for an application program, is a part 
of the message queues data set. TCAM 
obtains message segments from the 
destination queue on a first-ended 
first-out (PEFO) basis within priority 
groups. 

~~~~ng_l~: The message segment is 
placed in a buffer, and the outgoing group
of the MH specified for the line processes
the message. The ~H performs such
user-selected functions as converting the
code of the message to the transmission
code for the station (if necessary),
inserting the time and data in ~he heaqer,
10gg1n 9 messages, and u pda t ing Ilessage
counts. These operations are performed iq
the buffers that receive the message
segments from the destination queue.

Using the Communication Fe~ture 4Q3

st~-1§': TCAM transmits the message. minus
the header and text prefixes. to the
appropriate station.

jiITIN~! MESSAGE CONTROL PROGRA~

The COBOL programmer can write a message
control program (MCP) designed specifically
for his communication needs using
telecommunications access methods (TCAM)
macro instructions. Using a group of TCAM
macro instructions, the user follows in
general the coding requirements and
restrictions of any other
assembler-language macro instruction.
Guidelines f orwri ti ng an MCP are contained
in the publication as/vs TCAM Pr09£~~~
§.uid~. The uper must tailor these general
sta t.ements to meet t he needs of the
installa tion.

The sample message control program that
appears in Figure 160 in thi~ cbapter is a
hypothetical program designed for specific
COBOL applications. The needs of the user
will undoubtedly vary from installation to
installation. Nevertheless, the sample MCP
together with the sample COBOL programs
TESTTP1 and TESTTP2 (shown in Figures 168
and 169) ca~ serve as an excellent example
of COBOL programs and an MCP written for
teleprocessing applications. Note that
references to LOG are shown as comments,
which would have to be changed to valid
statements if that feature was required.

If the MCP to be written must conform to
the 1974 ANS standard, then Figure 160 must
be modified (as explained later in this
section) •

FUNCTIONS OF THE MESSAGE CONTROL PBOGRAM

Depending on the requirements of the
installation, the user can create an Mep to
perform any of the following functions:

- Enable and disable communication lines

-Invite terminals to transmit messages

• Receive messages from terminals

• Dynamically assign buffers to incoming
messages

• Handle messages on the basis of
user-specified priorities

• Perform message-editing functions for
incoming messages

404

• Determine the appropriate destination
queue for a message and route the
message to that queue

• Queue the message in the appropriate
destination queue

• Place response messages generated by
application programs on queues for
subsequent transmission

• Retrieve messages from destination
queues and prepare them for
transmission to remote stations

• Perform message-editing functions for
outgoing messages

• Take periodic checkpoints of the system

• Provide operator-to-system
communications through system control
terminals

• Initiate corrective action when an
error or unusual condition is detected

• Cancel incoming messages containing
errors

• Reroute messages with erroneous control
information to a special queue

• Transmit error messages

However, not all of these functions are
required of an acp. ~any of the optional
TCAM macros allow the user to write an MCP
that includes functions that would
otherwise have to be executed by the COBOL
program. There are, nevertheless, some
functions the MCP must alvays provide and
in so doing follow certain conventions.
These requirements are discussed under
~·U ser Tasks."

USER TASKS

Guidelines for writing an MCP are
contained in the publication OSLY~_I~!!!
f~ogr~m~~£~~~Y!d~: The user must tailor
these general statements to meet the
specific needs of his installation. For
example, a message can be transmitted from
one terminal to another, from a terminal to
an application program, or from one
application program to another. Moreover,
the message may contain anyone of several
types of data.

Regardless of the specific requirements
of the user, the MCF writer must always be
concerned with four major tasks, as
follows:

• Defining the main storage buffers used
by the "CPfor handling, queueing, and
transferring message data between
communication lines and queueing
devices.

• Defining the data sets referred to by
the "CP, and providing for their
activation and deactivation.

• Defining the various terminal and line
control areas used by the "CP (that is,
the operating procedures and signals by
which a teleprocessing system is
controlled).

• Defining the message handlers .(the sets
of routines that examine and process

control information in message headers,
prepare message segments for forwarding
to their destination, and route
messages to their proper destination).

In carrying out each of these tasks, the
user codes a variety of assembler-language
macros in a specified order~ Some of these
macros must be included in every ltCPi
others the user specifies according to the
needs of his installation. Required as
well as optional macros' are illustrated in
the sample "CP given in Figure 160. The
encircled numerals in the discussion that
follows refer to sections of code that are
similarly labeled in the figure.

Using the Communication Feature 405

LOC OBJECT CODE

000000

Figure 160.

406

PAGE 3

ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74

1 •••
2 •
3 • MESSAGE CONTROL PROGRAM
4 •
5 MCP
6
7 •
8 • IN THE
9 •

10
11
12 •
13 •
14 •
15 •
16 •
17 •
18
19
20 •
21 •
22 •
23 •
24 •
25 •
26 •
27 •
28 •
29 •
30 •
31 •
32 •
33 •
34 •
35 •
36 •
37 •
38 •
39 •
40 •
41 •
42 •
43 •
44 •
45 •
46 •
47 •
48 •
49 •
50 •
51 •
52 •
53 •
54 •
55 •

CSECT
PRINT NOGEN

FOLLOWING MACRO--
PROGID MAY BE OMITTED--IF USED, IT IS PLACED AT THE

BEGINNING OF THE EXECUTABLE CODE IN THE MCP
DISK=YES IS THE ASSUMED OPERAND--IFNO MESSAGE QUEUES DATA

SETS ARE ON DISK,CODE DISK=NO
CPB= USED IN READING FROM AND WRITING TO DISK--NEEDED IF

DISK=YES--NO. DEPENDS ON NO. OF LINES, AMOUNT OF MESSAGE
TRAFFIC AND SIZE OF BUFFER UNITS

CIB=NO. OF COMMAND INPUT BLOCKS--BUFFER-LIKE AREAS USED TO
CONTAIN OPERATOR CONTROL MESSAGES FROM SYSTEM CONSOLE-
FREED ONCE A MESSAGE PROCESSED--2 ASSUMED AND MAX. IS 255

PRlMARY=SYSCON--THIS IS ASSUMED AND SPECIFIES THE SYSTEM
CONSOLE AS THE PRIMARY OPERATOR CONTROL TERMINAL FOR
ENTERING AND ACCEPTING OPERATOR CONTROL MESSAGES--IF A
TERMINAL IS SPECIFIED, IT MUST BE ON A NON-SWITCHED LINE
AND BE ABLE TO ACCEPT AND ENTER MESSAGES

CONTROL=--USED TO IDENTIFY OPERATOR CONTROL MESSAGES TO SYSTEM
WHEN RECEIVED FROM OTHER THAN SYSTEM CONSOLE--O IS DEFAULT
AND IS VALID ONLY IF ALL OPERATOR COMMANDS ARE TO BE
ENTERED FROM SYSTEM CONSOLE

KEYLEN=--SIZE OF BUFFER UNIT--BETWEEN 33 AND 255-
CAN ALSO SPECIFY BY UNITSZ= RATHER THAN KEYLEN=

LNUNITS=--NO. OF BUFFER UNITS TO BE USED IN BUILDING BUFFERS
FOR INCOMING AND OUTGOING MESSAGE SEGMENTS--IF TOO FEW ARE
SPECIFIED, INCOMING MESSAGE DATA MAY BE LOST--TOO MANY
WASTES STORAGE SPACE

MSUNITS=--NEEDED IF HAVE MAIN STORAGE MESSAGE QUEUES DATA SET
--NO. OF BUFFER UNITS ASSIGNED TO THIS DATA SET--IF NO DISK
BACK-UP IS SPECIFIED, MESSAGE SEGMENTS MAY'BE LOST IF NOT
ENOUGH UNITS

MSMAX=--PERCENTAGE OF UNITS IN MAIN STORAGE MESSAGE QUEUES
DATA SET WANT USED BEFORE BIT IN ERROR RECORD SET--
70 ASSUMED

MSMIN=--PERCENTAGE OF UNITS IN MAIN STORAGE MESSAGE QUEUES
DATA SET WANT UNUSED BEFORE BIT SET NOTIFYING NO LONGER
CROWDED--MUST BE LESS THAN MSMAX--
50 ASSUMED
(NOTE--THIS BIT ALWAYS SET IF SPECIFIED PERCENTAGE OF UNITS
UNUSED)

DLQ=--OPTIONAL--USED TO SPECIFY A TERMINAL TO RECEIVE MESSAGES
HAVING' INVALID DESTINATIONS AS DETERMINED BY FORWARD MACRO

INTVAL=--AN OPERATOR CONTROL MESSAGE TELLS TeAM TO ENTER THIS
DELAY TO MINIMIZE UNPRODUCTIVE POLLING--WHEN ALL MULTIPOINT
LINES ARE INACTIVE, THE INTERVAL COMMENCES--LINES TO
SWITCHED STATIONS AND NONSWITCHED CONTENTION LINES LEFT
ACTIVE--THE OPERATOR COMMAND IS A MODIFY COMMAND REFERRED
TO AS 'INTERVAL'--THE NO. SPECIFIES THE NO. OF SECONDS

STARTUP=-IF THIS OPERAND IS OMITTED, THE USER WILL BE GIVEN

A Message control Program for Communication Application (Part 1 of 20)

LOC OBJECT CODE

000512 12FF
000514 4780 D520

000532 9110 D718
000536 47EO D510

000546 9110 0744
00054A 47EO D510

Figure 160.

PAGE

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74

<D

00528

00720 CD
00518

0074C
00518

56 •
57 •
58 •
59 •
60 •
61 •
62 •
63 •
64 •
65 •
66 •
67 •
68 •
69 •
70 •
71 •
72 •
73 •
74 •
75 •
76 •
77

313 •

THE OPPORTUNITY TO SPECIFY IT AT INITIALIZATION TIME AND
HE MAY ALSO CHANGE OTHER INTRO OPERANDS--CY MEANS ALWAYS
A COLD START--W SPECIFIES A WARM START AFTER A QUICK OR
FLUSH CLOSEDOWN AND A CONTINUATION AFTER A SYSTEM FAILURE
--W INDICATES THE CONTINUATION RESTART WILL INCLUDE FULL
SCANNING OF THE QUEUES--WY IS THE SAME AS W EXCEPT NO
SCANNING OF THE QUEUES FOR ALREADY SENT MESSAGES IS DONE-
--A CHECKPOINT DATA SET IS NEEDED FOR ANYTHING BUT A COLD
START--ALSO. IF DD CARD FOR CHECKPOINT DATA SET SPECIFIES
DISP=NEW, WILL GET A COLD START REGARDLESS

OLTEST=IF DO NOT WISH ON-LINE TEST FACILITY--CODE 0
FEATURE= THE DEFAULTS ARE DIAL, 2741, AND TIMER--SINCE WE DO

NOT HAVE A 2741 TERMINAL, WE ARE CODING TO INDICATE THIS
LINETYP= STSP SPECl:FIES START-STOP LINES ONLY, BISC SPECIFIES

BSC LINES ONLY. MINI SPECIFIES ALL TERMINALS ARE IBM 1050
ON LEASED LINES, BOTH IS DEFAULT AND INDICATES ALL TYPES
OF LINES ARE SUPPORTED--IF THE LINES IN THE SYSTEM DO NOT
FALL UNDER THE 'BOTH' CATEGORY, SPACE IS SAVED BY CODING
THIS OPERAND

DTRACE -- PUT IN FOR TESTING ONLY TEST •

INTRO PROGID=MCP.DISK=YES,CPB=10,CIB=2.PRIMARY=SYSCON. X
CONTROL=TCAM,KEYLEN=100,LNUNITS=20,MSUNITS=50,MSMAX=75, X
MSMIN=50.DLQ=Tl,INTVAL=1200,STARTUP=W,OLTES~=0, X
FEATURE=(DIAL,N02741,TIMER),LINETYP=BOTH. X
DTRACE=700 .

314 • TEST IF INTRO MACRO WORKED SUCCESSFULLY
315 LTR 15,15
316 BZ OPENFILE
317 ABEND ABEND 123,DUMP
325 •

YES
INTRO OR AN OPEN FAILED

326 • THE MESSAGE ~UEUES DATA SET MUST BE OPENED FIRST IF IT RESIDES ON
327 • DISK--A MAIN STORAGE MESSAG~UEUES DATA SET IS NOT OPENED
328 OPENFILE OPEN (MSGQ.(INOUT»~
334 TM MSGQ+48.X'10· CHECK IF OPEN SUCCESSFUL
335 BNO ABEND BRANCH IF NOT
336 •
337 •
338
344
345
346 •

IF THE CHECKPOINT DATA SET IS USED, IT MUST BE OPENED NEXT
OPEN (CHKPT. UNOUT» ®
TM CHKPT+48,X'10' CHECK IF OPEN SUCCESSFUL
BNO ABEND BRANCH IF NOT

347 • OPEN LINE GROUP DATA SETS--LINES WILL BE ACTIVATED SINCE IDLE NOT
348 • SPECIFIED
349 • NOTE--WE ARE NOT CHECKING FOR OPEN ERRORS FOR THE LlNES--SINCE THERE
350 • IS PROBABLY NO NEED TO STOP THE SYSTEM IF SOME OF THE LINES ARE NOT
351 • WORKING--MESSAGES WILL BE PRINTED ON THE SYSTEM CONSOLE FOR LINES
352 • THAT ARE NOT WORKING--
353 • IF A LINE BECOMES OPERATIONAL DURING A RUN. IT CAN THEN BE STARTED
354 • BY THE VARY COMMAND USED TO START A LINE WHICH IS OPENED AS IDLE
355 OPEN (LN1050.(INOUT).LNTWX.(INOUT»~
363 •
364 • OPEN LOG DATA SET @
365 • NEXT IWD DISABLED--.

A ftessage Control Program for Communication Applications (Part 2 of 20)

using the Communication Feature 401

LOC OBJECT CODE

OOOs6A 9110 D834
OOOs6E 47EO Dsl0

OOOsEE s8DD 0004

Figure 160.

408

PAGE 5

ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74

0083C
00518

00004

366 •
367 •
368 •
369 •
370
376
377
378 •

OPEN
TM
BNO

OPEN
TM
BNO

(MSGLOG.(OUTPUT»
MSGLOG+48. X'10'
ABEND

(DUMP.(OUTPUT»@
DUMP+48. X'10'
ABEND

CHECK IF OPEN SUCCESSFUL
BRANCH IF NOT

FOR SNAPS
CHECK IF OPEN SUCCESSFUL
BRANCH IF NOT

TEST···

379 • ISSUE THE FOLLOWING BETWEEN THE OPENING AND CLOSING OF THE DATA SETS
380 READY
397 •
398
410 •

SNAP DCB=DUMP.PDATA=ALL

411 • CLOSE DATA SETS

TEST··.
•

412 CLOSE (LN1050 •• LNTWX)~ LINE GROUP DATA SETS
420 •
421 CLOSE (DUMP.DISP) ®
427 •
428 •
429 •

CLOSE (MSGLOG. DISP) (2)
SNAP DATA SET

LOG DATA SET

TEST···
•

NEXT IWD DISABLED--.

430 • ALWAYS CLOSE CHECKPOINT DATA SET NEXT TO LAST
431 CLOSE (CHKPT.DISP)~
437
438 THE MESSAGE QUEUES DATA SET MUST ALWAYS BE CLOSED LAST
439· CLOSE (MSGQ.DISP) @
445 •
446 • RETURN TO OS SUPERVISOR
447 L 13.4(13)
448 •
449 •
450
454 •

RETURN (14.12).RC=0

PICK UP ADDRESS OF SYSTEM SAVE AREA SAVED
IN IEDSAVE1--ADDRESS OF IEDSAVE1 WAS PUT
IN REG. 13 WHICH WAS MADE BASE REGISTER

A Message Control Program for Comaunication Applications (Part 3 of 20)

LOC OBJECT CODE

Figure 160.

PAGE

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74

456 ••••
457 •
458 • DATA DEFINITIONS--PRQCESS CONTROL BLOCKS AND DATA CONTROL BLOCKS
459 •
460 ••••
461 •
462 • PCB--PROCESS CONTROL BLOCK--USED TO COMMUNICATE BETWEEN THE MCP
463 • AND AN APPLICATION PROGRAM--
464 • ONE PCB IS NEEDED FOR EACH ACTIVE APPLICATION PROGRAM
465 •
466 • IN THE FOLLOWING MACRO--
467. MH= GIVES THE SYMBOLIC ADDRESS OF THE MESSAGE HANDLER FOR THIS
468 • APPLICATION PROGRAM
469. BUFSIZE= SPECIFIES SIZE OF BUFFERS TO HANDLE MESSAGES FOR
470 • APPLICATION PROGRAM
471. BUFIN= INITIAL NO. OF BUFFERS INTO WHICH USERS WRITE WORK AREA
472 • EMPTIED--OPTIMUM NO. IS ENOUGH FOR ALL OF WORK AREA--BETWEEN
473 • 2 AND 15--2 ASSUMED
474. BUFOUT= INITIAL NO. OF BUFFERS THAT MAY BE FILLED IN ANTICIPATION
475 • OF A READ--BETWEEN 2 AND 15--2 ASSUMED
476. RESERVE=NO. OF BYTES TO RESERVE FOR INSERTION OF CHARS. BY DATETIME
477 • AND SEQUENCE MACROS FOR MESSAGES COMING FROM APPLICATION PROGRAMS
478. DATE=YES--THIS IS NEEDED FOR ALL PCB ENTRIES FOR A COBOL PROGRAM.
479 • THIS WILL MAKE THE DATE AND TIME AVAILABLE SO IT MAY BE PLACED
480 • IN THE COBOL PROGRAM INPUT CD--(IT IS ALSO NEEDED ON AN INPUT
481 • TPROCESS ENTRY)
482 •
483 • PROCESS CONTROL BLOCK FOR COBOL PROGRAM RUNNING WITH TERMINALS
484 • ~

485 PCBLK PCB\V MH=MHTRMAPP.BUFSIZE=100.BUFIN=2.BUFOUT=5.RESERVE=21, x
DATE=YES

518 •
519 • PROCESS CONTROL BLOCK FOR COBOL PROGRAMS THAT SIMULATE TERMINAL
520 • INPUT DATA--USED FOR TESTING WITHOUT TERMINALS
521 • tl::\
522 PCBLK1 PCB~ MH=MHAPPAPP_BUFSIZE=100,BUFIN=2,BUFOUT=5.DATE=YES
555 *
556 • PROCESS CONTROL BLOCK FOR COBOL PROGRAMS TESTING MESSAGES SENT TO
557 • DESTINATIONS DEFINED BY A QUEUE STRUCTURE
558 •
559 • IT USES THE SAME MH THAT PCKBLK1 USES
560 •
561 PCBLK2
594 •
595 • DCBS
596 •

PCB~MH=MHAPPAPP.BUFSIZE=100.BUFIN=2.BUFOUT=5.DATE=YES

597 • DCB FOR MESSAGE QUEUES DATA SET
598. IN THE FOLLOWING MACRO--
599 • OPTCD=R SPECIFIES REUSABLE DISK--IF NON-REUSABLE, SPECIFY L
600 • THRESH= SHOULD PROBABLY BE USED IF NON-REUSABLE DISK--
601 • SPECIFIES PERCENTAGE OF RECORDS TO BE USED BEFORE A FLUSH
602 • CLOSEDOWN INITIATED--A CERTAIN PERCENTAGE ASSUMED
~~~ ~SGQ DCB~ DSORG=TQ.MACRF=(G.P).DDNAME=QFILE.OPTCD=R 

638 • DCB FOR THE CHECKPOINT DATA SET 

A Message Control Proqram for COllmunica tioR Applications (Part 4 of 20) 

Using the communication Feature 409 



LOC OBJECT CODE 

Loe OBJECT CODE 

PAGE 1 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/01/14 

639 CHKPT DC~ DSORG=TQ.MACRF=(G.P).DDNAME=CFILE.OPTCD=C 
673 • \;!,) 
674 • DCB FOR THE 1050 LINE GROUP 
675. IN THE FOLLOWING MACRo--
676 • CPRI=R INDICATES THAT RECEIVE HAS PRIORITY OVER SENDING--
617 • S INDICATES THAT SENDING HAS PRIORITY OVER RECEIVING--
678 • E INDICATES EQUAL PRIORITY--
679 • FOR SWITCHED LINES, S MUST BE SPECIFIED 
680 • BUFIN=NO. OF BUFFERS TO ASSIGN INITIALLY FOR RECEIVING FOR 
681 • EACH LINE--1 ASSUMED--15 MAXIMUM 
682 • BUFOUT=NO. OF BUFFERS TO ASSIGN INITIALLY FOR SENDING FOR 
683 • EACH LINE--2 ASSUMED--15 MAXIMUM 
684 • BUFMAX=MAX. NO. OF BUFFERS TO BE USED FOR DATA TRANSFER FOR 
685 • EACH LINE IN LINE GROUP--NO LESS THAN LARGER OF BUFIN AND 
686 • BUFOUT--15 MAXIMUM 
687 • BUFSIZE=BUFFER SIZE IN BYTES USED FOR ALL LINES IN THIS LINE 
688 • GROUP--SIZE SHOULD BE A MULTIPLE OF THE BUFFER UNIT SIZE 
689 • SPECIFIED IN KEYLEN= OPERAND OF INTRO MACRO-- (MAY BE 
690 • OVERRIDDEN ON A STATION BASIS BY BUFSIZE= OPERAND OF THE 
691 • TERMINAL MACRO) 
692 • INVLIST=NAMES OF INVITATION LISTS FOR LINES OF LINE GROUP 
693 • --INVITATION LIST NAMES ARE SPECIFIED ACCORDING TO THE 
694 • ASCENDING RELATIVE LINE NOS. OF THE LINES IN THE GROUP 
695 • MH=ADDRESS OF MESSAGE HANDLER 
696 • PCI=SPECIFIES IF AND HOW A PROGRAM-CONTROLLED INTERRUPTION 
697 • TO BE USED FOR BUFFER ALLOCATION AND DEARLOCATION--1ST 
698 • SUBOPERAND REFERS TO RECEIVING AND 2ND TO SENDING--
699 • N SPECIFIES NO PCIS--R SPECIFIES AFTER 1ST BUFFER. COMPLETED 
700 • BUFFER DEALLOCATED--A IS ASSUMED AND SPECIFIES AFTER 1ST 
101 • BUFFER, COMPLETED BUFFER DEALLOCATED AND ANOTHER BUFFER IS 
702 • ALLOCATED 
703 • RESERVE=NO. OF BYTES TO RESERVE FOR INSERTION OF CHARS. BY 
704 • DATETIME AND SEQUENCE MACROS 
705 • TRANS=TRANSLATION TABLE 
706 • SCT=SPECIAL CHARACTERS TABLE 
707 • (IF CPRI=R AND NON-SWITCHED LINE. NEED INTVL= OR NO MESSAGES 
708 • ARE SENT--INTVL=NO. OF SECONDS TO DELAY AFTER PASS THRU 
709 • INVITATION LIST--NO LARGER THAN 255--TOO SHORT A DELAY CAUSES 
710 • MESSAGES TO ACCUMULATE) 
711 • 
712 LN1050 

749 • 

DC~ DSORG=TX,MACRF=(G,P),CPRI=S.DDNAME=LN1,BUFIN=2. 
BUFOUT=4,BUFMAX=4,BUFSIZE=100.INVLIST=(LIST1050), 
MH=MH1050.PCI=(A,A).RESERVE=21,TRANS=105F.SCT=105F 

750 • DCB FOR THE TWX LINE--SEE DESCRIPTION OF OPERANDS BEFORE DCB FOR 
751 • 1050--LN1050 

x 
X 

752 • ~ 
753 LNTWX DC~ DSORG=TX,MACRF=CG.P) , CPRI=S,DDNAME=LN2,BUFIN=2, X 

BUFOUT=4«BUFMAX=4.BUFSIZE=100,INVLIST=(LISTTWX). X 
MH=MHTWX.PCI=(A,A),RESERVE=21,TRANS=TTYC,SCT=TTYC 

790 • 
791 • DCB FOR LOG DATA SET 
792. IN THE FOLLOWING MACRO-- • 
793 • BLKSIZE=--THE VALUE SHOULD BE THE SAME AS IN KEYLEN OPERAND OF 
194 • INTRO MACRO • 

ADDR1 ADDR2 STMT 

795 
796 
797 

848 
849 
850 

PAGE 8 

SOURCE STATEMENT ASM 0102 19.28 06/07/74 

• • 
MSGLOG 

• 
• DCB 
DUMP 

NCP=--MAX. NO. OF BUFFER UNITS THAT MAY APPEAR IN A BUFFER • 

DCB0DSORG=PS.MACRF=(W).,DDNAME=LOGFILE,BLKSIZE=100.RECFM=F, .X 
NCP=2 • 

(9 TEST ••• 
FOR SNAPS • 

DCB DSORG=PS.RECFM=VBA,MACRF=(W),LRECL=125.DDNAME=LRDUMP. .X 
BLKSIZE=882 • 

Figure 160. 1 Message Control Program for Communication Applications (Part 5 of 20) 

410 



LOC OBJECT CODE 

Figure 160. 

PAGE 9 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

902 •••• 
903 • 
904 • TERMINAL AND LINE CONTROL--DEFINES 
905 • INVITATION LISTS FOR EACH LINE 

TERMINAL TABLE ENTRIES AND THE 

906 • 
907 •••• 
908 • 
909 • 
910 • 
911 • 
912 • 
913 
942 • 
943 • 
944 • 
945 • 
946 • 
947 • 
948 • 
949 • 
950 • 
951 • 

·952 • 
953 • 
954 • 
955 • 
956 • 
957 • 
958 • 
959 • 
960 • 
961 • 
962 • 
963 • 
964 Tl 

994 • 

DEFINE THE TERMINAL TABLE 
LAST= NAME OF LAST ENTRY IN TABLE 
MAXLEN= NUMBER OF CHARACTERS IN LONGEST NAME 

TTABLE LAST=Dl.MAXLEN=5 
NOTE· 

IF ANY OPTION ~~CROS ARE NEEDED, THEY GO HERE--DATA GOES IN ENTRIES • 
USING THE OPDATA= OPERAND OF THE TERMINAL OR TPROCESS ENTRIES 

ENTRY FOR 1050 TERMINAL 
IN THE FOLLOWING MACRO--

QBY= T SPECIFIES THAT OUTGOING MESSAGES ARE TO BE QUEUED BY 
TERMINAL--USE L IF BY LINE 
--MUST QUEUE BY TERMINAL IF A SWITCHED STATION OR A 
BUFFERED TERMINAL 

DCB= DCBNAME FOR LINE 
RLN=RELATIVE LINE NO. WITHIN THE LINE GROUP OF THIS LINE 
TERM=SPECIFIES TYPE OF TERMINAL 
QUEUES=MR SPECIFIES MESSAGE QUEUES KEPT IN MAIN STORAGE WITH 

BACKUP ON REUSABLE DISK 
ADDR=6213 IS A9 IN 1050 CODE--USED WHEN COMPUTER HAS MESSAGE 

TO SEND--9 IS CODE FOR ANY OUTPUT DEVICE 
ALTDEST=IS NEEDED BECAUSE THIS IS REUSABLE DISK--NEEDED SO 

MESSAGE IS NOT DISCARDED AT ZONE CHANGEOVER 
NTBLKSZ= THE NO. OF CHARS. BETWEEN INSERTION OF EOB CHARS. 

IN OUTPUT HSG. WHEN MSGFORM CODED IN OUTHDR 

TERMINALG)QBY=T.DCB=LN1050,RLN=1,TERM=1050,QUEUES=MR. 
ADDR=6213.ALTDEST=Tl,NTBLKSZ=(120) 

995 • DEFINE 
996 • ORIGIN 

ENTRY FOR THE SWITCHED TWX LINE WHICH CAN BE USED BEFORE AN 
MACRO IS ISSUED TO IDENTIFY THE STATION 

997 • 
998 • 
999 • 

1000 • 
1001 • 
1002 • 
1003 • 
1004 • 
1005 • 

UTERM=YES IDENTIFIES THIS AS SUCH AN ENTRY 
THIS MACRO MUST PRECEDE ALL TERMINAL MACROS FOR STATIONS ON LINE 
IN THE FOLLOWING MACRO--

ALWAYS SPECIFY DCB NAME,RELATIVE LINE NO., TERMINAL TYPE, 
AND QUEUES 

--ADDR= MIGHT BE CODED IF STATION HAD ADDRESSING CHARS.--IF 
USED. ALL STATIONS ON LINE MUST HAVE IDENTICAL ADDRESSING 
CHARACTERS 

1006 T2A TERMINALG)UTERM=YES, DCB=LNTWX,RLN=l. TERM=3335,QUEUES=MR 
1030 • 
1031 • T~RMINAL ENTRY FOR TWX TERMINAL--SEE DESCRIPTION OF MOST OF OPERANDS 
1032 • PRECEDING TERMINAL MACRO FOR 1050 
1033 • IN ADDITION--
1034 • DIALNO= SPECIFIES TELEPHONE NO. OF STATION AND MUST BE 
1035 • SPECIFIED FOR SWITCHED STATIONS--CODE 'NONE' IF NO AUTO 

x 

A Message Control P.rogramfor communication Applications (Part 6 of 20) 

Using the Co.munication Feature 411 



LOC OBJECT CODE 

Figure 160. 

412 

PAGE 10 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

@ 

1036 • 
1037 • 
1038 • 
1039 • 
1040 • 
1041 • 
1042 T2 

1063 • 

CALL FEATURE 
ADDR= IS NOT GIVEN SINCE THIS STATION IS ON A SWITCHED LINE 
NTBLKSZ IS NOT USED FOR TWX TERMINALS 
CINTVL= NO. OF SECONDS BEFORE COMPUTER SHOULD CALL STATION 

--NOT NEEDED IF NO AUTO CALL FEATURE 

TERMINAL~QBY=T.DCB=LNTWX.RLN=1.TERM=3335,QUEUES=MR. 
DIALNO=NONE,ALTDEST=T2 

1064 • TPROCESS ENTRIES 
1065 • 
1066 • IN THE 
1067 • 
1068 • 
1069 • 
1070 • 
1071 • 
1072 • 
1073 • 
1074 • 
1075 • 
1076 • 
1077 • 
1078 • 
1079 • 
1080 • 
1081 • 
1082 • 

FOLLOWING 
PCB= NAME 

ENTRIES 
PCB 

MACROS--
OF PROCESS CONTROL BLOCK--ALL TPROCESS 
FOR THE SAME APPLICATION PROGRAM MUST HAVE THE SAME 

QUEUES= IS THE SAME AS FOR A TERMINAL MACRO--HOWEVER. BY 
OMITTING, USER SPECIFIES THAT THIS ENTRY IS USED FOR PUTS 
WRITES FROM APPLICATION PROGRAM 

ALTDEST= FOR OUTPUT. GIVES WHERE REPLIES TO OPERATOR MSGS. SENT 
IF WERE ENTERED FROM AN APPLICATION PROGRAM--NOT APPLICABLE 
TO COBOL--
ONLY NEEDED FOR INPUT QUEUES IF REUSABLE DISK QUEUEING 

RECDEL= SPECIFIES CHARACTER USED TO DENOTE END OF RECORD 
DATE=YES--THIS IS NEEDED FOR ALL INPUT TPROCESS ENTRIES 

FOR A COBOL PROGRAM. THIS WILL MAKE THE DATE AND'TIME 
AVAILABLE SO IT MAY BE PLACED IN THE COBOL PROGRAM 
INPUT CD. 

1083 • INPUT TPROCESS ENTRY FOR COBOL PROGRAM RUNNING WITH TERMINALS 
1084 • 
1085 PIN 
1114 • 

TPROCESS PCB=PCBLK.QUEUES=MR.ALTDEST=PIN,RECDEL=FF.DATE=YES 

1115 • OUTPUT TPROCESS ENTRY FOR COBOL PROGRAM RUNNING WITH TERMINALS 
1116 • 
1111 POUT 
1141 • 

TPROCESS PCB=PCBLK.RECDEL=FF QV 
1142 • THE FOLLOWING TWO INPUT TPROCESS ENTRIES ARE FOR COBOL PROGRAMS 
1143 • THAT SIMULATE TERMINAL INPUT DATA--USED FOR TESTING WITHOUT 
1144 • TERMINALS 

x 

1145 • 
1146 P1 
1170 • 
1171 P2 
1195 • 

TPROCESS PCB=PCBLK1,QUEUES=MR,ALTDEST=P1,RECDEL=FF.DATE=YES GV 
TPROCESS PCB=PCBLK1.QUEUES=MR.ALTDEST=P2,RECDEL=FF_DATE=YES GD 

1196 • OUTPUT TPROCESS ENTRY FOR THESE COBOL PROGRAMS 
1197 • 
1198 POUT1 
1222 • 

TPROCESS PCB=PCBLK1,RECDEL=FF CV 
1223 • THE FOLLOWING SIX INPUT TPROCESS ENTRIES ARE FOR COBOL QUEUE 
1224 • STRUCTURE TEST PROGRAMS 
1225 • 
1226 PQ1 
1250 • 
1251 PQ2 
1275 • 

TPROCESS 

TPROCESS 

PCB=PCBLK2.QUEUES=MR.ALTDEST=PQ1,RECDEL=FF.DATE=YES 

PCB=PCBLK2. QUEUES=MRv ALTDEST=PQ2,RECDEL=FF. DATE=YES 

A Message Control Program for Communication Applications (Part 7 of 20) 



LOC OBJECT CODE 

LOC OBJECT CODE 

000864 OC 

PAGE 11 

ADDRI ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/01/14 

® 

@ 

1216 PQ3 
1300 • 
1301 PQ4 
1325 • 
1326 PQ5 
1350 • 
1351 PQ6 
1315 • 

TPROCESS 

TPROCESS 

TPROCESS 

TPROCESS 

PCB=PCBLK2. QUEUES=MR.ALTDEST=PQ3., RECDEL=FF. DATE=YES 

PCB=PCBLK2.QUEUES=MR.ALTDEST=PQ4,RECDEL=FF.DATE=YES 

PCB=PCBLK2.QUEUES=MR.ALTDEST=PQ5.RECDEL=FF,DATE=YES 

PCB=PCBLK2.QUEUES=MR.ALTDEST=PQ6,RECDEL=FF,DATE=YES 

1316 • OUTPUT TPROCESS ENTRY FOR COBOL QUEUE STRUCTURE TEST PROGRAMS 
1311 • 
1318 PQOUT 
1402 • 
1403 • 

TPROCESS PCB=PCBLK2,RECDEL=FF 

1404 • DISTRIBUTION LIST ENTRY --
1405 • 
1406 • 
1407 • 
1408 • 
1409 • 
1410 • 
1411 • 
1412 • 
1413 • 
1414 • 
1415 • 
1416 • 
1417 • 
1418 • 
1419 • 
1420 * 

IN THE FOLLOWING MACRO --
LIST = NAMES OF TERMINAL OR TPROCESS ENTRIES IN THE 

TERMINAL TABLE 

THE LIST SHOULD NOT INCLUDE A TPROCESS ENTRY FOR A 
.COBOL APPLICATION PROGRAM 

TYPE= 0 SPECIFIES THIS IS A DISTRIBUTION LIST ENTRY 
C WOULD SPECIFY A CASCADE LIST ENTRY . 
DISTRIBUTION LISTS INDICATE A MESSAGE FORWARDED TO THEM 
WILL BE SENT TO ALL NAMES IN THE LIST 

WITH CASCADE LISTS. MESSAGES WILL BE SENT TO THE QUEUE 
SPECIFIED IN THE LIST WITH THE FEWEST NO. OF MESSAGES 

1421 • 1050 AND TWX--USED BY MESSAGE PROCESSING PROGRAM 
1422 * 
1423 01 
1451 * 
1452 * 

TLIST LIST=(T1.T2).TYPE=D 

1453 * INVITATION LISTS 
1454 • SHOULD ALWAYS BE SPECIFIED FOLLOWING THE MACROS DEFINING THE TERMINAL 
1455 * TABLE 
1456 * 
1457 * LIST 
1458 * 

FOR 1050 LINE--
ORDER= ENTRIES 

Tl SPECIFIES 
MACRO 

FOR STATIONS ON LINE IN THE ORDER TO BE POLLED 
A STATLON ON THE LINE DEFINED BY A TERMINAL 1459 * 

1460 * 
1461 * 
1462 • 
1463 • 
1464 • 
1465 * 

+ SPECIFIES THE TERMINAL IS INITIALLY ACTIVE. - WOULD 
SPECIFY IT WAS INITIALLY INACTIVE 

6215=AO IN 1050 CODE--A IS THE STATION ADDRESS--O ASKS FOR 
INPUT FROM ANY INPUT COMPONENT 

1466 LIST1050 INVLIST ORDER=(Tl+6215) ~ 
1417 * 
1418 * 
1419 * 
1480 * 
1481 * 

LIST FOR TWX LINE--
SINCE A TERMINAL MACRO WITH UTERM=YES WAS DEFINED FOR THIS LINE, 
THIS MACRO NAME IS USED RATHER THAN THE ONE FOR THE TWX STATION 

1482 * THIS IS A SWITCHED LINE WHICH DOES NOT HAVE THE AUTO-CALL FEATURE--

PAGE 12 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/01/14 

1483 * THE CONPUTER NEVER ASKS FOR THE 10 SEQUENCE FROM THE TWX TERMINAL 
1484 * UNLESS THE AUTO-CALL FEATURE IS PRESENT 
1485 * 
1486 * IF AUTO-CALL FEATURE IS NOT PRESENT OR TWX TERMINAL DOES NOT HAVE 
1487 * AN ID SEQUENCE FOR AN ANSWER-BACK, OMIT THE ID SEQUENCE CHARS. IN 
1488 * THE INVLIST MACRO 
i489 * 
1490 • IF AN 10 SEQUENCE IS USED FOR THE TWX--IT IS SUGGESTED THE 
1491 * FOLLOWING CHARACTERS BE USED -- CR LF IDCHARS CR LF XON--IN LINE 
1492 • CODE 
1493 * 
1494 * THE CPUID OPERAND IS NEEDED FOR TWX TERMINALS--IT WILL PRINT AT 
1495 • TERMINAL WHEN CONNECTION IS MADE 
1496 * 
1497 LISTTWX INVLIST ORDER=(T2A+).CPUID=TWXSEQ QV 
1508 * 
1509 * REFERENCED BY LISTTWX AS CPUID OPERAND 
1510 * -- SUGGESTED USE NULL CR LF RUBOUT IDCHARS CR LF XON 
1511 * CPUID IS -- COBOL 
1512 TWXSEQ DC X'OC' 12 CHARAC~ERS 

000865 01B151FFC3F343F3 1513 DC X'01B151FFC3F341F333B15189' 
1514 * 

Figure 160. A Message Control Program for Communication Applications (Part 8 of 20) 

Using the Communication Feature 413 



LOC OBJECT CODE 

Figure 160. 

414 

PAGE 13 

ADDRI ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

1516 **** 
1517 * 
1518 * MESSAGE HANDLERS--MH"S 
1519 * 
1520 * THE 
1521 * 
1522 * 
1523 * 
1524 * 
1525 * 
1526 * 
1527 * 
1528 * 
1529 * 
1530 * 
1531 * 
1532 * 
1533 * 
1534 * 
1535 **** 
1536 *** 

HEADER RECEIVED FROM THE TERMINAL IS-
POSSIBLE LINE FORMAT CHARS.--CR.LF.NL 
$ 
BLANK 
MSGTYPE--1 CHAR. 
BLANK 
SOURCE--2 CHARS. 
BLANK 
EOF FIELD--F IF END OF A GROUP OF MESSAGES 

--ANY OTHER CHAR. (EXCEPT BLANK) IF 
BLANK 
ACTION CODE FOR APPLICATION PROGRAM--2 CHARS. 
BLANK 
PUNCTUATION MARK--PERIOD 

NOT 

1537 * MESSAGE HANDLER FOR INPUT FROM AND OUTPUT TO 1050 TERMINAL 

FOLLOWING MACRO IS REQUIRED AND MUST BE FIRST 
LC= IS THE ONLY REQUIRED OPERAND--

OUT SAYS TO REMOVE LINE CONTROL CHARS. 
IN SAYS NOT TO REMOVE LINE CONTROL CHARS. 

STOP= SAYS WHEN EOB ERROR FOUND AND RETRY COUNT EXHAUSTED. 
ONLY TrlAT PORTION OF MESSAGE RECEIVED OR SENT CONTINUES 
THRU MH--USER MAY CHECK ERROR RECORD BITS IN INMSG OR OUTMSG 

CONT= SAYS THAT AFTER RETRY, SET BIT IN ERROR RECORD--BUT 
CONTINUE TRANSHISSION 

1538 * 
1539 * THE 
1540 * 
1541 * 
1542 * 
1543 * 
1544 * 
1545 * 
1546 * 
1547 * 
1548 * IF 
1549 * 

NEITHER STOP NOR CONT SPECIFIED,NO EOB CHECKING PERFORMED 

® 1550 MH1050 
1572 * 

STARTMH LC=OUT.CONT=YES 

1573 * THE FOLLOWING MACRO IS REQUIRED AS THE FIRST MACRO IN ANY INCOMING 
1574 * GROUP ® 1575 
1589 * 

INHDR 

1590 * THE FOLLOWING MACRO TRANSLATES FROM LINE CODE TO EBCDIC--MACROS 
1591 * FOLLOWING THIS WILL ACT UPON CHARACTERS IN EBCDIC--IT WILL CAUSE 
1592 * ENTIRE MESSAGE TO BE TRANSLATED EVEN THOUGH IN INHDR GROUP 

~ 1593 CODE 
1617 
1618 * LOG INCOMING HEADERS--USE DCBNAME AS OPERAND 
1619 * 

@ 1620 * 
1621 

LOG MSGLOG 

1622 * SET SCAN POINTER TO $ 
~ 1623 SETSCAN C'$' 

1639 * 

NEXT IWO DISABLED--* 

1640 * PROCF.SS THE REMAINDER OF THE HEADER ACCORDING TO THE MSGTYPE FIELD 
1641 * SPECI~IED NEXT IN THE HEADER--IF THE ~F-XT FIELD MATCHES THE CHARACTER 
1642 * SPECIFIED IN THE OPERAND. THE MACROS SPECIFIED BETWEEN IT AND THE 

A Message Control Program for communication Applications (Part 9 of 20) 



LOC OBJECT CODE 

Figure 160. 

PAGE 14 

ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/01/14 

NEXT MSGTYPE MACRO ARE EXECU~ED AND CONTROL IS THEN PASSED TO THE 
NEXT DELIMITER--IN THIS CASE INBUF -IF THEY DO NOT MATCH, CONTROL 
PASSES TO THE NEXT MSGTYPE MACRO WHERE THE TEST IS AGAIN MADE 

1643 • 
1644 • 
1645 • 
1646 • 

~ 1641 • IF MSGTYPE IS 1, THIS MESSAGE SHOULD BE FORWARDED TO THE 1050 
1648 MSGTYPE C'l' 
1664 • 
1665 • 
1666 • 
1661 • 

~ 
1668 • 

19 1669 
20 1682 

1100 • 

SCAN POINTER IS AT SOURCE FIELD--SINCE THIS IS A NON-SWITCHED STATION 
--ORIGIN VERIFIES THAT THE SOURCE FIELD CONTAINS THE SYMBOLIC NAME 
OF THE STATION THAT WAS INVITED TO SEND THE MESSAGE--IF NOT, ERROR 
BIT IN ERROR RECORD FOR MESSAGE IS SET TO 1 

ORIGIN 
FORWARD DEST=C'T1' 

1101 • IF MSGTYPE IS 2, THIS MESSAGE SHOULD BE FORWARDED TO TWX TERMINAL--
1102 • SEE COMMENTS UNDER MSGTYPE 1 FOR OTHER MACROS 
1103 MSGTYPE C'2' 
1121 ORIGIN 
1131 FORWARD DEST=C'T2" 
1146 • 
1141 • 
1148 • 
1149 • 
1150 
1168 
1178 
1193 • 

IF MSGTYPE IS 5, THIS MESSAGE 
APPLICATION PROGRAM--
SEE COMMENTS UNDER MSGTYPE 1 

MSGTYPE C' 5' 
ORIGIN 
FORWARD DEST=C'PIN' 

SHOULD BE FORWARDED TO THE COBOL 

FOR OTHER MACROS 

1194 • IF MSGTYPE IS 6. THE SOURCE FIELD HAS BEEN OMITTED--UNNECESSARY TO 
1195 • ISSUE AN ORIGIN FOR A NON-SWI~CHED LINE--SEND MESSAGE TO THE COBOL 
1196 • APPLICATION PROGRAM 
1191 MSGTYPE C'6" 
1815 FORWARD DEST=C'PIN' 
1830 • 
1831 • IF THE MSGTYPE IS ANYTHING ELSE. IT IS INVALID--SET THE USER ERROR 
1832 • BIT WITH THE TERRSET MACRO--LN THE INMSG GROUP, WE WILL CANCEL MSG.--
1833 • ISSUE FORWARD MACRO ANYWAY SINCE REQUIRED 
1834 MSGTYPE 
1839 FORWARD DEST=C'T1' 

<!D 1854 TERRSET 
1861 • 
1862 • 
1863 • 

@ 1864 
1869 

THE MACROS IN THE FOLLOWING SUBGROUP ARE EXECUTED FOR EVERY BUFFER 
OF THE MESSAGE 

INBUF 

1810 • SPECIFY THE MAXIMUM NO. OF CHARACTERS ALLOWED IN AN INCOMING MESSAGE 
1811 • --THIS MACRO ALSO CHECKS IF THE INPUT BUFFER IS FILLED WITH IDENTICAL 
1812 • CHARACTERS. USUALLY AN INDICATION OF STATION MALFUNCTION--SETS A 
1813 • BIT IN ERROR RECORD FOR EITHER CONDITION 

~ 1814 CUTOFF 900 
1885 
1886 • 
1881 • 
1888 • 
1889 • @ 1890 

INSERT X'FF' FOR EVERY NL AND LF CHARACTER--X'FF' IS THE RECDEL CHAR. 
SPECIFIED IN THE TPROCESS MACROS--IF A MESSAGE WERE ALWAYS BEING 
FORWARDED TO AN APPLICATION PROGRAM, WE COULD USE DELIMIT INSTEAD 
OF XL1'FF' 

'MSGEDIT «RA,XL1'FF',XL1'lS').(RA,XL1'FF',XL1'25'» 

A flJessage Control Program for Communication Applications (Part 10 of 20) 

Using the Communication Feature 415 



LOC OBJECT CODE 

Figure 160. 

416 

PAGE 15 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

® 

@ 

® 

@ 

@ 

1919 • 
1920 • THE INMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS--IT IS EXECUTED 
1921 • AFTER AN ENTIRE MESSAGE OR BLOCK HAS BEEN PROCESSED--NO EXECUTABLE 
1922 • USER-WRITTEN CODE SHOULD BE INCLUDED IN THIS SUBGROUP 
1923 INMSG 
1931 • 
1932 • CANCELMG CAUSES IMMEDIATE CANCELLATION OF MESSAGE IF ANY ERRORS 
1933 • SPECIFIED BY ITS MASK OCCUR--IF USED, IT MUST BE 1ST MACRO UNDER 
1934 • INMSG--AN ERRORMSG MACRO MAY THEN NOTIFY OF THE ERROR--
1935 • CANCELMG IF THE USER ERROR BIT IS SET INDICATING THE MSGTYPE FIELD 
1936 • WAS INVALID--BIT20 
1937 CANCELMG X'0000080000' 
1945 • 
1946 • IN THE FOLLOWING ERROR MESSAGES. THE 1ST FIELD IS THE MASK CORRE-
1947 • SPONDING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS T1 FOR THE 
1948 • 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
1949 • THE MESSAGE INCLUDES THE HEADER OF THE MESSAGE IN ERROR AND THE 
1950 • ERROR MESSAGE 
1951 • 
1952 • THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
1953 • RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
1954 ERRORMSG X'8000000000".DEST=C'T1', X 

DATA=C'E ERROR IN PROCESSING HEADER' 
1970 ERRORMSG X'4000000000'.DEST=CG T1', X 

DATA=C'E INVALID ORIGIN IN HEADER ' 
1982 ERRORMSG X'0200000000'.DEST=C'T1·, X 

DATA=C'E INSUFFICIENT BUFFERS FOR INCOMING MESSAGE' 
1994 ERRORMSG X·0100000000· .. DEST=C'T1". X 

DATA=C'E MESSAGE TOO LONG • 
2006 • 
2007 • THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
2008 • QUEUEING WITH OR WITHOUT DISK BACKUP 
2009 ERRORMSG X'0040000000·.DEST=C'T1', X 

DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN • 

2021 • 
2022 

2034 

2046 

2058 

2070 

2082 • 

ERRORMSG X'0002000000',DEST=C'T1'. 
DATA=C'E FORWARDED TO INVALID DESTINATION ' 

ERRORMSG X·0000400000·.DEST=C'T1". 
DATA=C'E INVALID STATION ID AT CONNECT TIME • 

ERRORMSG X·0000200000'.DEST=C'T1·. 
DATA=C'E TERMINAL IS IN HOLD STATUS • 

ERRORMSG X·0000080000'.DEST=C'T18
• 

DATA=C'E MSGTYPE CODE IN HEADER INVALID • 
ERRORMSG X"000000EOOOG _DEST=C'T1'. 

DATA=C'E A HARDWARE ERROR HAS OCCURRED' 

2083 • INEND IS REQUIRED AS LAST DELIMITER MACRO OF INCOMING GROUP 
2084 INEND 
2088 • 
2089 ••• 
2090 • 
2091 • OUTGOING GROUP OF MESSAGE HANDLER FOR 1050 TERMINAL 
2092 OUTHDR 
2098 • 

x 

x 

X 

X 

X 

A filessage. control Program for Communication Applications (Part 11 of 20) 



LOC OBJECT CODE 

Figure 160. 

PAGE 16 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07,74 

® 

® 

@ 

2099 • THE FOLLOWING MACRO CAUSES EOT LINE CONTROL CHARACTERS TO BE INSERTED 
2100 • IN EACH OUTGOING MESSAGE--SINCE NTBLKSZ=(BLKSIZE) CODED IN THE 
2101 • TERMINAL MACRO--IT ALSO INSERTS EOB CHARS.--THIS PARAMETER COULD 
2102 • ALSO BE PLACED AS AN OPERAND OF THIS MACRO TO OVERRIDE THE NO. 
2103 • SPECIFIED IN THE TERMINAL MACRO 
2104 MSGFORM 

SINCE ERROR MESSAGES ARE SENT TO THIS TERMINAL--AND THESE COULD 
INCLUDE THOSE FOR THE APPLICATION TO APPLICATION PROGRAM WHICH 
WILL NOT HAVE A HEADER AND CANNOT, BE PROCESSED AS A NORMAL OUTPUT 
MESSAGE TO THIS TERMINAL--CHECK 1ST CHARACTER FOR AN E--THE 1ST 

2115 • 
2116 • 
21"17 • 
2118 
2119 
2120 
2121 
2122 
2123 
2139 • 

• CHAR. OF EVERY ERRORMSG--IF NOT E WILL SKIP TO NEXT MSGTYPE MACRO--
• IF E. WILL PROCESS TO NEXT MSGTYPE MACRO AND THEN SKIP TO NEXT 
• DELIMITER--OUTBUF 

MSGTYPE C·E' 

2140 • SET SCAN POINTER BACK TO BEG~NNING OF BUFFER AND INSERT NL CHARACTER 
2141 • AT BEGINNING OF MESSAGE--IDLES WILL BE INSERTED AFTER NL IN OUTBUF 
2142 SETSCAN l,POINT=BACK 
2153 MSGEDIT «I.XL1'15-,SCAN» 
2168 • 
2169 • USE MSGTYPE WITH BLANK OPERAND TO PROCESS O'IHER MESSAGES 
2170 MSGTYPE 
2175 • 
2176 • INSERT NL CHARACTER AT BEGINNING OF MESSAGE--IDLES WILL BE INSERTED 
2177 • AFTER NL IN OUTBUF 
2178 MSGEDIT «I,XL1'15',SCAN» 
2190 • 
2191 • SET THE SCAN POINTER TO THE PERIOD IN THE HEADER AND INSERT DATE, 
2192 • TIME, AND SEQUENCE NO.--INSERTED IN EBCDIC SO DO BEFORE CODE 
2193 SETSCAN C'.-
2206 • 
2207 • 
2208 • 
2209 • 
2210 • 
2211 
2227 • 
2228 • 
2229 • 
2230 • 
2231 
2241 • 

IF NO OPERAND--BOTH DATE AND TIME ARE INSERTED--SPACE MUST BE 
RESERVED BY MEANS OF THE RESERVE= OPERAND OF DCB FOR LINE--THE DATE 
IS IN FORM--(BLANK)YY.DDD--7 CHARS.--TIME IN FORM--
(BLANK) HH.MM.SS--9 CHARACTERS 

DATETIME 

SEQUENCE IN AN OUTHDR SUBGROUP INSERTS SEQUENCE NO. IN FORM-
(BLANK)NNNN--5 CHARS.--SPACE MUST BE RESERVED BY MEANS OF RESERVE= 
OPERAND OF DCB FOR LINE 

SEQUENCE 

2242 • LOG OUTGOING HEADERS--USE DCBNAME AS OPERAND--PUT MACRO AFTER 
2243 • INSERTION OF DATE. TIME, AND SEQUENCE NOS. SO THESE WILL APPEAR 
2244 • IN LOGGED HEADER 
2245 • 
2246 • 
2247 • 

LOG MSGLOC' 
NEXT IWD DISABLED--. 

2248 • THE MACROS IN THE FOLLOWING SUBGROUP ARE EXECUTED FOR EVERY BUFFER 
2249 • OF THE MESSAGE 
2250 OUTBUF 
2255 • 
2256 • INSERT NL CHAR. FOR EVERY X'FF' CHAR. IN MESSAGE--X'FF' IS THE 
2257 • RECDEL CHAR. SPECIFIED IN THE TPROCESS MACROS 

A Message Control Program for communication Applications (Part 12 of 20) 

Using the Communication Feature 417 



LOC OBJECT CODE 

OOOCDO 

P'i qure 160. 

418 

PAGE 17 

ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

® 

® 

@ 

2258 MSGEDIT «RA.XL1'15',XL1'FF'» 
2276 * 
2277 * INSERT 13 IDLE CHARS. AFTER EVERY NL CHARACTER PLACED IN MESSAGE 
2278 MSGEDIT «I,(X'17',13),XL1'15'» 
2295 * 
2296 * TRANSLATE THE MESSAGE FROM EBCDIC TO LINE CODE--IF ISSUED IN A 
2297 * SUBGROUP AND ANY SEGMENTS OF A MESSAGE PROCESSED BY THAT SUBGROUP, 
2298 * THE ENTIRE MESSAGE IS TRANSLATED 
2299 CODE 
2308 * 
2309 * THE OUTMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS IN OUTGOING 
2310 * GROUP--IT IS EXECUTED ONLY AFTER AN ENTIRE BLOCK OR MESSAGE HAS BEEN 
2311 * SENT 
2312 OUTMSG 
2321 • 
2322 * THE HOLD MACRO SUSPENDS TRANSMISSI:ON TO A STATION EITHER FOR A TIME 
2323 • INTERVAL (IF SPECIFIED) OR UNTIL RELEASED BY AN OPERATOR CONTROL 
2324 • MESSAGE--IF NOT USED, MESSAGES THAT CANNOT BE TRANSMITTED ARE 
2325 • TREATED AS THOUGH THEY HAVE BEEN TRANSMITTED--ALSO, A HOLD OPERATOR 
2326 • CONTROL MESSAGE HAS NO EFFECT IF THERE IS NO HOLD MACRO--
2327 • BITS BEING TESTED BY MASK ARE FOR HARDWARE ERRORS 
2328 HOLD X' OOOOOOEOOO' . 
2340 • 
2341 • IN THE FOLLOWING ERROR MESSAGES. THE 1ST FIELD IS THE MASK CORRE-
2342 • SPONDING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS Tl FOR THE 
2343 * 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
2344 * THE MESSAGE INCLUDES THE HEADER OF THE MESSAGE IN ERROR AND THE 
2345 • ERROR MESSAGE 
2346 * 
2347 • THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
2348 • RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
2349 ERRORMSG X'8000000000'.DEST=C'T1', X 

DATA=C'E ERROR IN PROCESSING HEADER' 
2361 • 
2362 • THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
2363 • QUEUEING WITH OR WITHOUT DISK BACKUP 
2364 ERRORMSG X'0040000000·,DEST=C'T1', X 

DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN ' 

2376 • 
2377 

2389 

2401 

2413 * 

ERRORMSG X'0000400000·,DEST=C'T1'. 
DATA~C'E INVALID STATION ID AT CONNECT TIME' 

ERRORMSG X'0000200000',DEST=Cu T1', 
DATA=C'E TERMINAL IS IN HOLD STATUS' 

ERRORMSG X'000000EOOO',DEST=C"T1-, 
DATA=C'E A HARDWARE ERROR HAS OCCURRED' 

2414 * OUT END REQUIRED AS LAST DELIMITER MACRO OF OUTGOING GROUP 
2415 OUTEND 
2419 * 
2420 * A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH MH IF MCP HAS 
2421 * MORE THAN 1 MH 
2422 'LTORG 
2423 * 

X 

X 

x 

A Kessaqe Control Program for ComJlunica tion Applica tions (Part 13 of 20) 



LOC OBJECT CODE 

Figure 160. 

PAGE 18 

ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

2425 ••• 
2426 • 
2427 • MESSAGE HANDLER FOR INPUT FROM AND OUTPUT TO TWX TERMINAL 
2428 • 
2429 • THE FOLLOWING MACRO 1S REQUIRED AND MUST BE FIRST 
2430 • LC= IS THE ONLY REQUIRED OPERAND--
2431 • OUT SAYS TO REMOVE LINE CONTROL CHARS. 
2432 • IN SAYS NOT TO REMOVE LINE CONTROL CHARS. 
2433 • 
2434 MHTWX 
2450 • 

STARTMH LC=OUT 

2451 • THE FOLLOWING MACRO IS REQUIRED AS THE FIRST MACRO IN ANY INCOMING 
2452 • GROUP 
2453 INHDR 
2464 • 
2465 • THE FOLLOWING MACRO TRANSLATES FROM LINE CODE TO EBCDIC--MACROS 
2466 • FOLLOWING THIS WILL ACT UPON CHARACTERS IN EBCDIC--IT WILL CAUSE 
2467 • ENTIRE MESSAGE TO BE TRANSLATED EVEN THOUGH IN INHDR GROUP 
2468 CODE 
2488 • 
2489 • LOG INCOMING HEADERS--USE DCBNAME AS OPERAND 
2490 • 
2491 • 
2492 • 

LOG 
NEXT IWO DISABLED--. 

MSGLOG 

2493 • SET SCAN POINTER TO $ 
2494 SETSCAN C"$W 
2507 • 
2508 • 
2509 • 
2510 • 
2511 • 
2512 • 
2513 • 
2514 • 

PROCESS THE REMAINDER OF THE HEADER ACCORDING TO THE MSGTYPE FIELD 
SPECIFIED NEXT IN THE HEADER--IF THE NEXT FIELD MATCHES THE CHARACTER 
SPECIFIED IN THE OPERAND. THE MACROS SPECIFIED BETWEEN IT AND THE 
NEXT MSGTYPE MACRO ARE EXECU~ED AND CONTROL IS THEN PASSED TO THE 
NEXT DELIMITER--IN THIS CASE INBUF -1F THEY DO NOT MATCH~ CONTROL 
PASSES TO THE NEXT MSGTYPE MACRO WHERE THE TEST IS AGAIN MADE 

2515 • IF MSGTYPE IS 1. THIS MESSAGE SHOULD BE FORWARDED TO THE 1050 
2516 MSGTYPE C"l" 
2532 • 
2533 • 
2534 • 
2535 • 
2536 
2546 
2561 • 
2562 • 
2563 • 
2564 
2582 
2592 
2607 • 
2608 • 
2609 • 
2610 • 
2611 
2629 
2639 

SCAN POINTER IS AT SOURCE--ISSUE ORIGIN--SINCE THIS IS A SWITCHED 
LINE. ORIGIN WILL CHECK VALIDITY OF FIELD AND IDENTIFY THE CALLING 
STATION TO TCAM 

ORIGIN 
FORWARD DEST=C'Tl" 

IF MSGTYPE IS 2. THIS MESSAGE SHOULD BE FORWARDED TO TWX TERMINAL-
SEE COMMENTS UNDER MSGTYPE 1 FOR OTHER ~~CROS 

MSGTYPE C' 2' 
ORIGIN 
FORWARD DEST=C'T2' 

IF MSGTYPE IS 5. THIS MESSAGE 
APPLICATION PROGRAM--
SEE COMMENTS UNDER MSGTYPE 1 

MSGTYPE C' 5w 

ORIGIN 
FORWARD DEST=C'PINw 

SHOULD BE FORWARDED TO THE COBOL 

FOR OTHER MACROS 

A Message Control Program for Communication Applications (Part 14 of 20) 

Using the Communication Feature 419 



LOC OBJECT CODE 

Figure 160. 

420 

PAGE 19 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

2654 
2655 IF MSGTYPE IS 6, THE SOURCE FIELD HAS BEEN OMITTED (IN ORDER FOR 
2656 • THE COBOL PROGRAM TO CHECK THAT THE LINE NAME--T2A--RATHER THAN THE 
2657 • STATION NAME--T2--IS GIVEN AS SOURCE)--THE MESSAGE IS TO BE SENT TO 
2658 • THE COBOL APPLICATION PROGRAM 
2659 MSGTYPE C'6' 
2677 FORWARD DEST=C'PIN· 
2692 • 
2693 • IF THE MSGTYPE IS ANYTHING ELSE, IT IS INVALID--SET THE USER ERROR 
2694 BIT WITH THE TERRSET MACRO--IN THE INMSG GROUP, WE WILL CANCEL MSG.--
2695 ISSUE FORWARD MACRO ANYWAY SINCE REQUIRED 
2696 MSGTYPE 
2701 FORWARD DEST=C·T1· 
2716 TERRSET 
2723 • 
2724 • THE MACROS IN THE FOLLOWING SUBGROUP ARE EXECUTED FOR EVERY BUFFER 
2725 • OF THE MESSAGE 
2726 INBUF 
2731 • 
2732 • SPECIFY THE MAXIMUM NO. OF CHARACTERS ALLOWED IN AN INCOMING MESSAGE 
2733 • --THIS MACRO ALSO CHECKS IF THE INPUT BUFFER IS FILLED WITH IDENTICAL 
2734 • CHARACTERS, USUALLY AN INDICATION OF STATION MALFUNCTION--SETS A 
2735 • BIT IN ERROR RECORD FOR EITHER CONDITION 
2736 CUTOFF 900 
2744 • 
2745 • DELETE EVERY CR CHAR. AND INSERT X'FF' FOR EVERY LF CHAR.--X'FF' 
2746 • IS THE RECDEL CHARACTER SPECIFIED IN THE TPROCESS MACROS (IF MESSAGES 
2747 • WERE ALWAYS GOING TO AN APPLICATION PROGRAM, WE COULD USE DELIMIT 
2748 • INSTEAD OF XL1'FF') 
2749 MSGEDIT «RA.CONTRACT.XL1'26'),(RA.XL1'FF'.XL1'15'» 
2772 • 
2773 • THE INMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS--IT IS EXECUTED 
2774 * AFTER AN ENTIRE MESSAGE OR BLOCK HAS BEEN PROCESSED--NO EXECUTABLE 
2775 * USER-WRITTEN CODE SHOULD BE INCLUDED IN THIS SUBGROUP 
2776 INMSG 
2784 * CANCELMG CAUSES IMMEDIATE CANCELLATION OF MESSAGE IF ANY ERRORS 
2785 • 
2786 • SPECIFIED BY ITS MASK OCCUR--IF USED, IT MUST BE 1ST MACRO UNDER 
2787 * INMSG--AN ERRORMSG MACRO MAY THEN NOTIFY OF THE ERROR--
2788 * CANCELMG IF THE USER ERROR BIT IS SET INDICATING THE MSGTYPE FIELD 
2789 * WAS INVALID--BIT20 
2790 CANCELMG X'0000080000· 
2795 • 
2796 * IN THE FOLLOWING ERROR MESSAGES, THE 1ST FIELD IS THE MASK CORRE-
2797 • SPONDING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS T1 FOR THE 
2798 • 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
2799 • THE MESSAGE INCLUDES THE HEADER OF THE MESSAGE IN ERROR AND THE 
2800 * ERROR MESSAGE 
2801 * 
2802 • THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
2803 • RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
2804 ERRORMSG X'8000000000'.DEST=C'Tl', X 

DATA=C'E ERROR IN PROCESSING HEADER e 

2816 ERRORMSG X'4000000000'.DEST=CG T1 G
, X 

DATA=C'E INVALID ORIGIN IN HEADER ' 

A message Control program for Comml1nication Applications (Part 15 of 20) 



L~ OBJECT CODE 

Figure 160. 

PAGE 20 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/711 

2828 

28110 

2852 • 

ERRORMSG X'0200000000'.DEST=C'T1', 
DATA=C'E INSUFFICIENT BUFFERS FOR INCOMING MESSAGE' 

ERRORMSG X·0100000000'.DEST=C'T1', 
DATA=C'E MESSAGE TOO LONG' 

2853 • THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
28511 • QUEUEING WITH OR WITHOUT DISK BACKUP 

x 

x 

2855 ERRORMSG X· 001l0000000'.DEST=C'T1', X 
DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN' 

2867 • 
2868 

2880 

2892 

2904 

2916 

2928 • 

ERRORMSG X'0002000000·.DEST=C'Tl'. 
DATA=C'E FORWARDED TO INVALID DESTINATION • 

ERRORMSG X'0000400000'.DEST=C'Tl', 
DATA=C'E INVALID STATION ID AT CONNECT TIME' 

ERRORMSG X'0000200000'.DEST=C'Tl', 
DATA=C'E TERMINAL IS IN HOLD STATUS • 

ERRORMSG X'0000080000',DEST=C'Tl', 
DATA=C'E MSGTYPE CODE IN HEADER INVALID' 

ERRORMSG X'OOOOOOEOOO',DEST=C'Tl', 
DATA=C'E A HARDWARE ERROR HAS OCCURRED' 

2929 • INEND IS REQUIRED AS LAST DELIMITER MACRO OF INCOMING GROUP 
2930 INEND 
29311 • 
2935 ••• 
2936 • 
2937 • OUTGOING GROUP OF MESSAGE HANDLER FOR TWX TERMINAL 
2938 OUTHDR 
291111 
29115 
29116 
2958 • 
2959 • 
2960 • 
2961 
2968 
2969 
2970 • 
2971 
29811 • 
2985 • 
2986 • 
2987 • 
2988 • 
2989 
3002 • 

INSERT CR LF RUBOUT AT BEGINNING OF MESSAGE 
MSGEDIT «I,XL3'261507',SCAN» 

THE FOLLOWING MACRO CAUSES EOT LINE CONTROL CHARACTERS TO BE INSERTED 
IN EACH OUTGOING MESSAGE 

MSGFORM 

SET THE SCAN POINTER TO THE PERIOD IN THE HEADER AND INSERT DATE, 
TIME, AND SEQUENCE NO.--INSERTED IN EBCDIC SO DO BEFORE CODE 

SETSCAN C'.' 

IF NO OPERAND--BOTH DATE AND TIME ARE INSERTED--SPACE MUST BE 
RESERVED BY MEANS OF THE RESERVE= OPERAND OF DCB FOR LINE--THE DATE 
IS IN FORM--(BLANK)YY.DDD--7 CHARS.--TIME IN FORM--
(BLANK) HH.MM.SS--9 CHARACTERS 

DATETIME 

3003 • SEQUENCE IN AN OUTHDR SUBGROUP INSERTS SEQUENCE NO. IN FORM--
3004 • (BLANK)NNNN--5 CHARS.--SPACE MUST BE RESERVED BY MEANS OF RESERVE= 
3005 • OPERAND OF DCB FOR LINE 
3006 SEQUENCE 
3013 • 
30111 • LOG OUTGOING HEADERS--USE DCBNAME AS OPERAND--PUT MACRO AFTER 
3015 • INSERTION OF DATE, TIME, AND SEQUENCE NOS. SO THESE WILL APPEAR 
3016 • IN LOGGED HEADER 

x 

x 

x 

x 

x 

A Message Control Program for communication Applications (Part 16 of 20) 

using the Communication Feature 421 



LOC OBJECT CODE 

LOC OBJECT CODE 

0010CO 

Figure 160. 

422 

PAGE 21 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

3017 • NEXT IWD DISABLED--. 
3018 • LOG MSGLOG 
3019 • 
3020 • THE MACROS IN THE FOLLOWING SUBGROUP ARE EXECUTED FOR EVERY BUFFER 
3021 • OF THE MESSAGE 
3022 OUTBUF 
3026 • 
3027 • INSERT CR LF RUBOUT FOR EVERY X'FF' CHAR. IN MESSAGE--X'FF' IS 
3028 • THE RECDEL CHAR. SPECIFIED IN THE TPROCESS MACROS 
3029 MSGEDIT «RA,XL3'261507',XL1'FF'» 
3047 • 
3048 • TRANSLATE THE MESSAGE FROM EBCDIC TO LINE CODE--IF ISSUED IN A 
3049 • SUBGROUP AND ANY SEGMENTS OF A MESSAGE PROCESSED BY THAT SUBGROUP, 
3050 • THE ENTIRE MESSAGE IS TRANSLATED 
3051 CODE 
3060 • 
3061 • THE OUTMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS IN OUTGOING 
3062 • GROUP--IT IS EXECUTED ONLY AFTER AN ENTIRE BLOCK OR MESSAGE HAS BEEN 
3063 • SENT 
3064 OUTMSG 
3073 • 
3074 • THE HOLD MACRO SUSPENDS TRANSMISSION TO A STATION EITHER FOR A TIME 
3075 • INTERVAL (IF SPECIFIED) OR UNTIL RELEASED BY AN OPERATOR CONTROL 
3076 • MESSAGE--IF NOT USED. MESSAGES THAT CANNOT BE TRANSMITTED ARE 
3077 • TREATED AS THOUGH THEY HAVE BEEN TRANSMITTED--ALSO, A HOLD OPERATOR 
3078 • CONTROL MESSAGE HAS NO EFFECT IF THERE IS NO HOLD MACRO--
3079 • BITS BEING TESTED BY MASK ARE FOR HARDWARE ERRORS 
3080 HOLD X'OOOOOOEOOO' 
3086 
3087 IN THE FOLLOWING ERROR MESSAGES, THE 1ST FIELD IS THE MASK CORRE-
3088 • SPONDING TO THE BITS IN THE ERROR RECORD,DEST= IS ALWAYS Tl FOR THE 
3089 • 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
3090 • THE MESSAGE INCLUDES THE HEADER OF THE MESSAGE IN ERROR AND THE 
3091 • ERROR MESSAGE 
3092 • 
3093 • THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
3094 • RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
3095 ERRORMSG X'8000000000',DEST=C'Tl', X 

DATA=C'E ERROR IN PROCESSING HEADER • 
3107 
3108 THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
3109 • QUEUEING WITH OR WITHOUT DISK BACKUP 
3110 ERRORMSG X'0040000000',DEST=C'Tl', X 

DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN ' 

3122 • 
3123 

3135 

3147 

3159 • 

ERRORMSG X'0000400000·.DEST=C'Tl', 
DATA=C'E INVALID STATION ID AT CONNECT TIME' 

ERRORMSG X·0000200000·,DEST=C'Tl', 
DATA=C'E TERMINAL IS IN HOLD STATUS' 

ERRORMSG X'OOOOOOEOOO',DEST=C'Tl', 
DATA=C'E A HARDWARE ERROR HAS OCCURRED' 

~i~~ • OUTEND ~~~;~ED AS LAST DELIMITER MACRO OF OUTGOING GROUP 

X 

X 

x 

PAGE 22 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

3165 • 
3166 • A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH MH IF MCP HAS 
3167 • MORE THAN 1 MH 
3168 LTORG 
3169 • 

A Message control Program for Communication Applications (Part 17 of 20) 



LOC OBJECT CODE 

Figure 160. 

PAGE 23 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

@ 

® 

3171 ... 
3172 
3173 MESSAGE HANDLER FOR INPUT FROM AND OUTPUT TO APPLICATION PROGRAM 
3174 • RUNNING WITH TERMINALS 
3175 • 
3176 • THE FOLLOWING MACRO IS REQUIRED AND MUST BE FIRST 
3177 • LC= IS A REQUIRED OPERAND--PUT"IN"SINCE NO LINE CONTROL 
3178 • CHARACTERS TO REMOVE 
3179 MHTRMAPP STARTMH LC=IN 
3195 • 
3196 • THE INCOMING GROUP HANDLES MESSAGES COMING FROM AN APPLICATION 
3197 • PROGRAM--THE MESSAGES WILL SUBSEQUENTLY BE PROCESSED BY THE OUTGOING 
3198 • GROUP FOR THE DESTINATION TERMINAL 
3199 
3200 THE INHDR DELIMITER IS REQUIRED AND IS ALWAYS 1ST MACRO 
3201 INHDR 
3212 
3213 LOG INCOMING HEADERS--USE DCBNAME AS OPERAND 
3214 • NEXT IWD DISABLED~-. 
3215 • LOG MSGLOG 
3216 
3217 THE FORWARD MACRO IS REQUIRED IN EACH INHDR SUBGROUP--
3218 • THE OPERA~ DEST=PUT SAYS TO FORWARD TO THE DESTI~ATION SPECIFIED 
3219 • IN THE PREFIX TO THE APPLICATION PROGRAM WORK AREA 
3220 FORWARD DEST=PUT 
3228 • 
3229 • THE INMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS IN AN INCOMING 
3230 • GROUP--IT IS EXECUTED AFTER AN ENTIRE MESSAGE OR BLOCK HAS BEEN 
3231 • PROCESSED 
3232 INMSG 
3240 • 
3241 • IN THE FOLLOWING ERROR MESSAGES, THE 1ST FIELD IS THE MASK CORRE-
3242 • SPONDING TO THE BITS IN THE ERROR RECORD, DEST= IS ALWAYS Tl FOR THE 
3243 • 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
3244 • 
3245 • THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
3246 • RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
3247 ERRORMSG X·0200000000",DEST=C"Tl", X 

3259 • 
3260 • 
3261 • 
3262 

3274 

3286 • 

DATA=C"E INSUFFICIENT BUFFERS FOR INCOMING MESSAGE • 

THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
QUEUEING WITH OR WITHOUT DISK BACKUP 

ERRORMSG X·0040000000·,DEST=C"Tl", X 
DATA=C"E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN • 

ERRORMSG X"0002000000·.DEST=C·T1~, X 
DATA=C"E FORWARDED TO INVALID DESTINATION • 

3287 • INEND IS REQUIRED AS LAST DELIMITER OF INCOMING GROUP 
3288 INEND 
3292 • 
3293 ... 
3294 • 
3295 • OUTGOING GROUP HANDLES MESSAGES BEING SENT TO APPLICATION PROGRAM 
3296 OUTHDR 

A Message Control Program for Communication Applications (Part 18 of 20) 

Using the Communication FeatUre 423 



LOC OBJECT CODE 

001lC8 

Figure 160. 

424 

ADDR1 ADDR2 STMT 

3302 • 
3303 • 
3304 
3319 • 
3320 • 
3321 • 
3322 
3330 • 
3331 
3332 
3333 
3340 • 
3341 • 
3342 
3343 
3344 • 
3345 • 
3346 • 
3347 • 
3348 
3356 • 
3357 • 
3358 * 
3359 * 
3360 • 
3361 * 
3362 
3379 * 
3380 • 
3381 * 
3382 * 
3383 * 
3384 * 
3385 • 
3386 
3397 * 
3398 * 
3399 * 
3400 
3401 • 

PAGE 24 

SOURCE STATEMENT ASM 0102 19.28 06/07/74 

DELETE ANY CHARS. SUCH AS CR,LF WHICH APPEAR BEFORE $ IN HEADER 
MSGEDIT «R,CONTRACT.SCAN,C'$·» 

SET SCAN POINTER OVER 2 NON-BLANK CHARS.--$ AND MSGTYFE FIELD--SO 
IT POINTS TO BEFORE SOURCE FIELD 

SET SCAN 2 

INSERT SEQUENCE NO.--FORMAT IS (BLANK)NNNN--5 CHARS--SPACE MUST BE 
RESERVED BY MEANS OF RESERVE= OPERAND OF DCB FOR LINE 

SEQUENCE 

LOG OUTGOING HEADERS--USE DCBNAME AS OPERAND--PUT MACRO AFTER 
INSERTION OF SEQUENCE NO. SO THIS WILL APPEAR IN LOGGED HEADER 

NEXT IWD DISABLED--. 
LOG MSGLOG 

SET SCAN POINTER OVER 2 NON-BLANK CHARS. (SOURCE FIELD) SO IT POINTS 
TO EOF FIELD 

SETSCAN 2 

SETEOF IS USED TO IDENTIFY THE LAST MESSAGE OF A GROUP OF MESSAGES 
TO THE APPLICATION PROGRAM--IT CAUSES THE NEXT READ/CHECK AFTER 
THIS COMPLETE MESSAGE HAS BEEN RECEIVED TO PASS TO AN APPLICATION 
PROGRAM EODAD ROUTINE--(THE COBOL PROGRAM WOULD RECEIVE AN ETI 
INDICATION) 

SETEOF C·F· 

NO OUTMSG SUBGROUP WILL BE EXECUTED FOR A MESSAGE BEING TRANSFERRED 
FROM A TPROCESS QUEUE TO AN APPLICATION PROGRAM--
SO OMIT OUTMSG IN THIS MESSAGE HANDLER 

OUTEND IS REQUIRED AS LAST DELIMITER OF OUTGOING GROUP 
OUTEND 

A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH MH IF MCP HAS 
MORE THAN 1 MH 

LTORG 

A Message control Program for Communication Applications (Part 19 of 20) 



LOC OBJECT CODE 

LOC OBJECT CODE 

001258 

Figure 160. 

PAGE 25 

ADDRl ADDR2 STMT SOURCE STATEMENT ASM 0102 19.28 06/07/74 

@ 

3403 ... 
3404 • 
3405 • MESSAGE HANDLER FOR COBOL PROGRAMS THAT SIMULATE TERMINAL INPUT DATA 
3406 • --USED FOR TESTING WITHOUT TERMINALS 
3407 • 
3408 • THE FOLLOWING MACRO IS REQUIRED AND MUST BE FIRST 
3409 • LC= IS A REQUIRED OPERAND--PUT"IN"SINCE NO LINE CONTROL 
3410 • CHARACTERS TO REMOVE 
3411 MHAPPAPP STARTMH LC=IN 
3427 • THE INCOMING GROUP HANDLES MESSAGES COMING FROM AN APPLICATION 
3428 PROGRAM--THE MESSAGES WILL SUBSEQUENTLY BE PROCESSED BY THE OUTGOING 
3429 GROUP WHEN THE APPLICATION PROGRAM READS THEM BACK 
3430 • 
3431 • THE INHDR DELIMITER IS REQUIRED AND IS ALWAYS 1ST MACRO 
3432 INHDR 
3443 • 
3444 • THE l!'ORWARD MACRO IS REQUIRED IN EACH INHDR SUBGROUP--
3445 • THE OPERAND DEST=PUT SAYS TO FORWARD TO THE DESTINATION SPECIFIED 
3446 • IN THE PREFIX TO THE APPLICATION PROGRAM WORK AREA 
3447 FORWARD DEST=PUT 
3455 • 
3456 • THE INMSG SUBGROUP IS SPECIFIED AFTER OTHER SUBGROUPS IN AN INCOMING 
3457 • GROUP--IT IS EXECUTED AFTER AN ENTIRE MESSAGE OR BLOCK HAS BEEN 
3458 • PROCESSED 
3459 INMSG 
3467 • 
3468 • IN THE FOLLOWING ERROR MESSAGES, THE 1ST FIELD IS THE MASK CORRE-
3469 • SPONDING TO THE BITS IN THE ERROR RECORD, DEST= IS ALWAYS T1 FOR THE 
3470 • 1050 TERMINAL AND THE DATA= IS THE ERROR MESSAGE THAT IS SENT--
3471 • 
3472 • THE LAST CHARACTER OF THE MESSAGE IS NL--SO THE CARRIAGE WILL BE 
3473 • RETURNED WITH A LINE FEED AT THE END OF THE PRINTING OF THE MESSAGE 
3474 ERRORMSG X·0200000000·.DEST=C'T1·, X 

DATA=C'E INSUFFICIENT BUFFERS FOR INCOMING MESSAGE' 
3486 • 
3487 • THE FOLLOWING ERROR MESSAGE SHOULD ONLY OCCUR WITH MAIN STORAGE 
3488 • QUEUEING WITH OR WITHOUT DISK BACKUP 
3489 ERRORMSG X'0040000000'.DEST=C'Tl', X 

DATA=C'E PERCENTAGE OF BUFFER UNITS IN BUFMAX ARE USED-SX 
LOW DOWN ' 

3501 ERRORMSG X·0002000000·.DEST=C'T1", X 
DATA=C'E FORWARDED TO INVALID DESTINATION • 

3513 • 
3514 • INEND IS REQUIRED AS LAST DELIMITER OF INCOMING GROUP 
3515 INEND 
3519 • 
3520 ••• 
3521 • 
3522 • OUTGOING GROUP HANDLES MESSAGES BEING SENT TO APPLICATION PROGRAM 
3523 • 
3524 • NO OUTMSG SUBGROUP WILL BE EXECUTED FOR A MESSAGE BEING TRANSFERRED 
3525 • FROM A TPROCESS QUEUE TO AN APPLICATION PROGRAM--
3526 • SO OMIT OUTMSG IN THIS MESSAGE HANDLER 
3527 • 
3528 • 

PAGE 26 

ADDR1 ADDR2 STMT SOURCE STATEMENT ASM 0102 19~28 06/07/74 

3529 • OUTEND IS REQUIRED AS LAST DELIMITER OF OUTGOING ~ROUP 
3530 OUTEND 
3541 • 
3542 • A LTORG SHOULD BE CODED AFTER LAST DELIMITER OF EACH MH IF MCP HAS 
3543 • MORE THAN 1 MH 
'3544 LTORG 
3545 • 
3546 END 

A Message Control Program for Communication Applications (Part. 20 of 20) 

Using the Communication Feature 



user-defined areas of main storage 
receive any and all messages entering a 
TCAM network. Such areas, known as 
buffers, are used for handling, queueing, 
and transferring message segments between 
all lines and queueing media, and between 
queueing media and COBOL work areas. 

In order to understand how the buffers 
are defined, it is necessary to distinguish 
between buffer units and buffers. TCAM has 
one buff~~nit pool that contains buffer 
units of one size. Buffer units are the 
basic building b1oc.ks from which lly!fe£2 
are constructed (that is, buffer units are 
linked together to form buffers). 
Therefore, even though the buffers for line 
groups and for the application program may 
differ in size, each size specified should 
be a multiple of the size specified for a 
buffer unit, in order to use space 
optimally. 

Three operands of the I NT RO macro, G), 
describe the TCAM buffer unit pool. As in 
the sample program shown in Figure 160, the 
operands that define the size of buffer 
units and specify the number assigned are 
KElLEN, LNDNITS, and MSDNITS. The operands 
BUFSIZE, BUFIN, and BUYOUT, given in the 
DCB for line groups, Q9, and in the PCB, 
®, for an application program, specify 
the buffer size and the number of buffers 
to be assigned initially for a receiving or 
sending operation. The manner in which the 
p~= operand of the DCBfor a line group, 

c , is coded greatly affects the number 
co ad for LNUNITS in the INTRO macro and 
the numbers coded for the BUFIN and BUYOUT 
operands of the DeB for the line group_ 

~&ti vatilllLand Dea£1i vatinq_ill_l1!!ssag~ 
~Qntro.LF.U29.n1! 

The TeAM message control program is 
assembled, link-edited, and executed like 
any other program running under an OS/VS 
system. The macros INTRO, OPEN, and READY, 
issued as a group, make up the data-set 
initialization and activation section of 
the message control program. 

orderly deactivation of the TCAM system 
must stop incoming and outgoing message 
traffic and create a checkpoint record. 
The user must ensure that the data sets for 
any application program using TCAM as its 
access method are closed before the KCP 
enters its deactivation section, which 
closes the KCP data sets. (It is suggested 
that the headers of messages transmitted to 
the COBOL programs contain a code that 

426 

signals the COBOL program to go to the 
STOPRUN statement.) Finally, the MCP 
coding must return control to the OS/VS 
supervisor. 

INTRO Macro: As the first macro executed 
lii-th;-iii;ssage control program, INTRO, CD, 
establishes standard entry linkage, chains 
save areas, provides addressability, and 
sa ves the start pa rameter list pointer. (A 
description of the operands in the INTRO 
macro precedes the macro itself in the 
sample program.) 

I.Q!g: The message below is issued if at 
least one of the following operands is 
omitted from the INTRO macro: STARTUP=, 
KEILEN=, LNUNITS= , and (if DISK=IES is 
coded in the INTRO macr~ CPB=. 

00 IED002A SPECIFY TCAK PARAMETERS 

The user may then enter the additional 
required parameters, changing certain other 
operands as desired. 

OPEN Kacro: The OPEN macros, 0, complete 
the initIalization of the TCAM data sets 
and activate them for use. The TCAM data 
sets that must be activated in the MCP by 
OPEN macros are those for the messa~e 
queues, ®, checkpoint, optionally ®, the 
line groups @, and the message log, 
optionally @. If a snap dump is used, the 
user must ~o open the data set for snap, 
@. 

!!!..!.QL.l1S!crQ: The READY macro, ®, m list be 
the last instruction in the initialization 
and activation section of the MCP. When 
READI has executed, the system is ready to 
handle message traffic. 

!;£QS.I_!1a£[Q: An optional snap dump of the 
program begins the deactivation section. 
Then the first CLOSE macro instruction, 
® ' is executed. This deacti vation 
section is not executed until all· da ta sets 
in TCAM application programs have been 
closed. In the example, the user closes 
the line group da ta sets, ®, first; next 
the snap data set, ®; then the message 
log data set, @; the checkpoint data set 
next to last, ~; and finally the message 
queues data set, ®. 
!Qte: The data sets may be closed in any 
order provided. that the checkpOint data set 
and the message queues data set are closed 
in the order indicated. 

nDl.!tl{_~£~Q: The assembler-language Load 
instruction is issued to restore register 
13 with the address of the system save 
area, and the RETURN macro, ®, is issued 
to return control to the OS/VS supervisor. 



Q~!ining-1he-!CP nat~Se1§_~nd P~§2 
~21!t.rol Rlocks 

The user must provide information that 
serves as an interface between the message 
control program and the application 
program. This information is contained in 
process control blocks (PCB) and is 
generated by the PCB macro. 

The message control program must also 
describe the MCP data sets to be used. Two 
of the four possible types of data sets 
usually required by every message control 
program are the line group data set, if 
there are lines, and the message queues 
data set, if there a.re disk queues. 'rhe 
operation of the KCP requires that either a 
message queues data set or a line group 
data set be opened. A user employing main 
storage queueing for applica tion-to-
appl ication program processing (who, 
therefore, does not need either of these 
data sets) must, nevertheless, open a dummy 
line to meet this requirement. An error 
message viII be issued at the system 
console because no ha.rdvare is attached, 
but this message can be ignored. 

If the user does not open a line and, 
therefore, does not need either a DCB for a 
line group or a TERMINAL entry, the 
assembly of the KCP, nevertheless, 
generates an error message for the 
undefined symbol of IEDQSTCS. The user can 
either define this symbol in this program 
with a dummy label or ignore the severity 
level of ® in the link-edit step. The 
symbol IEDQSTCS need not be correctly 
defined when the user is running only 
applica tion-to-a pplicati on programs. 

Either or both of the other two types of 
data sets -- the checkpoint data set and 
the log da ta set -- may be specified if 
needed. To describe data sets to the 
system, the user (via a DCB macro) defines 
a data control block (DC B) for each data 
set cited. 

!£Ll!!.~: A process control block, 
created through specification of the PCB 
macro ® is required in the Kep for each 
active application program. The PCB macro 
is similar to the DCB for the line groups 
in that it specifies the name of the 
message handler to be used for messages 
being sent by or recei yed from an 
application program, as veIl as buffer 
requirement.s. The TPROCESS macro (see the 
discussion under "Defining Terminal and 
Line Control Areas") refers to the name of 
the PCB macro. 

In the sample program given in Figure 
160 are three process control blocks -
PCBLK, @, for a COBOL program rUB.Jling 

with terminals; PCBLK1, ®, for COBOL 
programs that simulate the sending of 
messages from a remote terminal; and 
PCBLK2, @, for testing COBO.L programs 
that take advantage of the queue structure 
feature. Having these three control blocks 
makes it possible for the COBOL program 
running with terminals to run at the same 
time as one of the other COBOL programs. 
In the example in this chapter, the TESTTPl 
program simulates a terminal sending 
messages to the TESTTP2 program. 

QCB Ma£IQ: A data control blOCK, created 
tnrough specification of the DeB macro, 
(J), is required for each data set referred 
to by the MCP. In the sample message 
control program, data control blocks are 
defined as follows: 

• The message queues DCB macro, which 
defines a data control block for a 
message queues da ta set, MSGQ ®. 

• The checkpoint DCB macro, which defines 
a checkpoint data set if the checkpoint 
facili ty is to be used, CHKPT ®. 

• The line group DCB macro, which defines 
a line group data set, must be 
specified for each line group in the 
system. In the sample HCP, two line 
group data sets are defined -- the 1050 
line group, named LN1050 @, and the 
TWX line group, named LNTWX @. 

• The log DCB marco, which defines data 
sets for messages or message segments, 
should be specified for each secondary 
storage device on which messages or 
message segments may be logged. In the 
sample program, only one log DCB 
defining the KSGLOG data set, ®, is 
specified. 

• The snap dump DCB macro, which defines 
the data set for a snap dump, should be 
specified only if the user wants a snap 
dump. In the sample~rogram, the DUMP 
data set is define~,~. 

In writing an KCP, the user must provide 
information that identifies the remote 
stations~ specifies their characteristics 
to the system, and tells how they are to be 
handled. Line control is the scheme of 
operating procedures and signals by which a 
teleprocessing system is controlled. 

Line control concerns itself wi th such 
tasks as establishing contact between a 
sending and a receiving station, directing 
a message to a specific station on a 

Using the Communica tio.D Feature 427 



multistation line, handling priorities when 
tvo stations try to send at the same time, 
and performing a user-specified action when 
a station fails to respond to a message. 

Several TCAM macros are available to the 
user for identifying stations and 
specifying how message transmission is to 
be handled. The TeAM macros used in the 
sample message control program given in 
Figure 148 -- TTABLE, TERMINAL, INVLIST. 
TLIST, and TPROCESS -- are described below. 
Two additional macros -- OPTION, which 
reserves space for an option field, and 
LOGTYPE, needed only for logging entire 
messages -- are also available to the COBOL 
user. 

TTABLE Mac.ro: The TTABLE macro, ®, 
definesthe start and the end of the 
terminal table, needed to provide 
information about each station and 
appl ication program. 

I~Rl'IIN!k-11S.££2: The TER~I NAL macro, ®, 
specified three times in the sample 
program, must be coded for each station 
that can accept messages (as well as for 
some terminals that can only enter 
messages). each groll p of non-swi tched 
terminals equipped with the hardware 
group-code feature, and each switched line 
to stations that do not uniquely identify 
themselves after calling the computer. 

specification of the TERMINAL macro 
places a station or line name and 
associated information in this terminal 
table. TERMINAL produces a single entry, a 
group entry, or a line entry. In the 
example, the T1 entry, @ , provides 
information about the 1050 terminal, the 
T2 A entry, ® , informa tion about the 
switched TWX line,. and the T2 entry, @ , 
information about the TWX terminal on this 
line. 

1. The "UTERM=YES" specification in the 
TERMINAL macro for the switched TWX 
line creates an entry for the line. 
This gi ves the program the control 
information it needs to handle 
stations that call this line. After 
the station is identified by means of 
the ORIGIN macro in the MH, the 
program then refers to the TERMINAL 
entry for the station. 

2. All TERMINAL macros for lines in a 
line group must be arranged in 
ascending relative line numbers. The 
TERMINAL macro for a particular line 
must immediately precede all TERMINAL 
macros for stations on that line. In 
the sample MCP, there is only one line 

428 

per line group and one terminal per 
line, but this need not be true. 

TPROCESS_~A££Q: By placing the name of a 
queue for an application program, as well 
as associated information, ih the terminal 
ta.ble, the TPROCESS macro, ® ' helps 
connect a COBOL program with the message 
control program. 

The user must specify one TPROCESS macro 
for each destination queue from which a 
COBOL program is to receive messages and at 
least one t hat is used when messages are 
sent by a COBOL program. (That is,. one 
output TPROCESS entry is required for each 
application program running 
simultaneously.) The output TPROCESS entry 
is not the name of a queue. 'In the sample 
program, for example, twelve TPROCESS 
entries are specified. The PIN en try f Q 
• identifies an input destination queue for 
a COBOL program running with terminals; 
POUT identifies an output process entry_ 

Similarly, the Pl, 0 ' and P2, ® ' 
entries identify input destination queues 
for COBOL programs that simulate terminal 
input data, and the POUT1, 0 ' entry 
identifies an output process entry ~or such 
COBOL programs. The PQ1, PQ2, PQ3, PQ4, 
PQS, PQ6, and PQOUT TPROCESS entries are 
used for COBOL programs that employ the 
queue structure feature. 

!Q~g: Because the PIN and POUT entries in 
the example refer to one process control 
block (PCBBLK) and the Pl, P2, and POUTl 
entries refer to another process control 
block (PCBBLK1), a program running with 
terminals can run concurrently with another 
program. This is also true of the PO 
entries, which refer to PCBLK2. 

IbIST ~££Q: An instruction that places 
the name of a list of a single, a group, or 
a process entr~in the terminal table, the 
TLIST macro, 1 , must be specified for 
each such list 0 be created. This list 
can be specified as either a distribution 
list or a cascade list. When a message is 
sent to a distribution list, the same 
message is sent to all locations on the 
list~ When a message is sent to a cascade 
list, the message is transmitted to the 
listed destination with the fewest messages 
enqueued. In the sample message control 
program, the TLIST entry D1,. (a), 
represents a distribution list entry. The 
list should not include a TPROCESS entry 
for a COBOL application program. 

!!!L!~I_~g££2: An instruction that creates 
an invitation list entry containing the 
invitation characters for the stations on 
the line (in the order in which they are io 
be inv it~ to send messages), the INVLIST 
macro, ~, must be issued for each line 



in the system. However, one INVLIST macro 
suffices for all output-only lines to 
stations that do not use invitation 
sequences. Two INVLIST entri~-
LIST10S0, fa) , and LISTTWX, ~ -- appear 
in the sam~e program. 

l!Qte: Eit her a parallete r of + in the 
INVLIST macro or an operator control 
co •• and (see the section "Using TCAr! 
Service Facilities" in this chapter) must 
initially activate a station for entering 
messages. 

In the entry LIST10S0, for example, 'T1 
+ 621S' indicates that the IB~ 10S0 
terminal identified as T1 is active for 
entering messages. (621S is the IBM 10S0 
transmission code representation of the 
polling characters AO in hexadecimal 
notation.) Accordingly, the symbol 'T2A.' 
in the LISTTWX entry indicates an initially 
active line. (!Q!~: The terminal name for 
the li~, not the sta!i2!!, must be used.) 
For a TWX station, the '+' character would 
be followed by an ID sequence instead of 
the polling character used in the LIST1050 
example. In the example, no ID sequence is 
given. The (CPUID) = operand in the 
INVLIST macro for the TWX terminal is 
required. 

The major section in a message control 
program is the group of message handlers 
(KH), made up of sets of routines that 
examine and process control information in 
message headers (see Figure 149) and 
perform the functions necessary in 
preparing message segments for forwarding 
to their destinations. There is usually a 
message handler for each line group or 
active application program. Each message 
handler usually contains both an incoming 
and an outgoing group. 

A message may consist of two parts -
the header, or control, portion and the 
text portion -- depending on the 
application. The sample message control 
program shown in Figure 160 contains four 
message handlers, as listed below. Three 
of these message handlers are based on a 
message header containing the information 
described in the comments that immediately 
precede the first sample message handler, 
@ . The fourth message handler in the 

sample KCP, ftHAPPAPP, handles messages with 
no headers. 

• A message handler (MH1050) for input 
from and output to the IBM 10S0 Data 
Communications System Terminal. 

• A message handler (MHTWX) for input 
from and output to the Teletypewriter 
Exchange (TWI). 

• A message handler (KHTRMAPP) for input 
from and output to an application 
program running with terminals. 

• A message handler (MHAPPAPP) for input 
f~om and output to an application 
program that simulates terminal input 
data. This type of message handler can 
be used for testing without terminals 
or for handling messages sent from one 
application program to another, as in 
the sample COBOL programs TESTTPl (see 
Figure 163) and TESTTP2 (see Figure 
164) • 

TWO kinds of macro instructions that may 
be included in a message handler are 
functional macros and delimiter macros. 
ly!!ctional~£Q2 perform the specific 
operations necessary for messages directed 
to the message handler. Q~limi!&!:_!.~£~§ 
classify and identify sequences of 
functional macro instructions and then 
direct control to the appropriate sequence. 
Figure 149 shows some of the functional 
macros that can be used with the delimiter 
macros in the incoming group and the 
outgoing group of the message handler. All 
of these macros are included in the sample 
message handler in Figure 160. 

To decide which macro to place in which 
group, the user must understand which group 
is executed when. This is discussed in the 
description associated with Figure 159. 
The steps executed by a message handler are 
shown at the right-hand side of this 
figure. When messages are received from 
stations, the incoming group of a message 
handler for the line is executed before the 
outgoing group_ However, when messages are 
sent to application programs, the outgoinq 
group of the message handler for the 
application program is executed first. The 
decision boxes shown in Figure 159 are 
determined by the destination specified in 
the required FORWARD macro of a message 
handler (that is, if the destination is the 
name of a TPROCESS entry, processing is 
required in an application program; if, 
however, the destination is the name of a 
TERMINAL macro, no more processing is 
required) • 

lI.2!.g: For descriptions of other mac.ros 
that can be coded in an Hep, see the 
publication Q~L~_I~!~_Prog~~~m~!~2yid~. 

Using the communication Feature 429 



r- i -,-- , , 

1 I IDelimiterlFunctionall 
f G'roups I Subgroups I Macros J Macros I 
t- • -+- J ~ 
J 1 I ST A R TN H * I I 
I J J I I 
f 1 I I CODE I 
I J J ILOG I 
I ,In header J I SETSCAN J 
JlncominglSubgroup JINHDR* IMSGTYPE I 
,Group • , ,ORIGIN I 
J J I 1 FORWARD • 
J t I JTERRSET I 
I J I t I 
J tIn bu ffer I CUTOFF t 
I ,Subgroup IINBUP MSGEDIT t 
, • J I 
I ,Inmessage fINMSG CANCELMG I 
I I Su bgroup I ERRORl'1SG I 
I I I I 
I • JINEND* I 
I- J 1 --+ .. 
I I , I MSGPORM I 
I J • IMSGTYPE I 
I 1 I I MSGEDIT I 
I J Ou theader I I SETSC AN I 
I I Subgroup ,OUTHDR J DATETIME t 
I J I I SEQUENCE J 
,Outgoing' I ,LOG , 
,Group I J I SETEOF , 
, t I I J 
, ,Outbuffer ,OUTBUF I MSGEDIT I 
t I SU bgroup J , CODE 1 
I t I , t 
I J OU tmessage IOUTl'1SG I HOLD I 
I ,Subgroup I IERRORMSG J 
I I IOUTEND* J I 
I- I I • -t 
,*The STARTMH macro is always required. l 
I If the message handler is to handle I 
I incoming messages, the INHDa. INEND. andl 
, OUTEND macros are also required. If thel 
I message handler is to handle outgoing I 
I messages. the OUTEND macro is required. I 
~ ~ 

Figure 161. Macros that can be coded in a 
Message Handler 

A discussion of sample message handlers 
for terminal line groups appears helm •• 
For discussions of the KHTRMAPP and 
KBAPPAPP message handlers, see the sections 
"A Message Handler for an Application 
Program Running with Terminals" and "1 
Message Handler for an Application Program 
that Simulates Input Dat a. I. 

!_MESSAG,LHAJiDL.l!LIQR T!!,Lt~RM!!ill_LIHE 
GRQ!l~: Because the message handlers for 
the 1050 line and the TWX line are similar 
(except for the difference in line cont.rol 
characters a nd the use of the 1050 for 
error messages), the description of the 
message handler for the 1050 (MH1050) given 
below should also suffice for the TWX line 
group (MHTiX). 

430 

ThLln£Qmi!!.5LJirOIlR: The first macro in the 
I'1H1050 message handler is STARTHH, @ , 
in which the LC=OUT operand specifies that 
line con trol characters are to be removed. 
The first macro in the INHDB, @ , 
subgroup (CODE), ~ , translates the 
incoming messages to EBCDIC. Then the LOG 
macro, @ , records the header on the log 
data set. Even though the CODE macro is 
part of the INHDR subgroup, all buffers of 
the message are translated from line code 
to EBCDIC -- not just the first (header) 
buffer. In the normal case, unless the 
line code is EBCDIC, the CODE macro should 
be placed first, as in this example. A 
CODE macro must be issued before an ORIGIN 
macro, since the name in the header is 
checked against the terminal names, which 
are in EBCDIC. The name in the header, 
therefore, cannot be located unless it has 
first been translated. The same 
translation requirements apply to such 
macros as SETSCAN. @, in the example. 
In this case, if the C'$' in the message 
were Dot first translated to EBCDIC, the 
C'$' would have to be specified in line 
code. 

The SETSCAN macro, ~, sets the scan 
pointer to "$" in the header, and the 
HSGTYPE macros, (f'ib , that follow check 
the character in the next field (with 
fields separated by at least one blank 
character) for one of the four codes that 
represent possible message destina tions. 
If the scan yields a match between a field 
in the incoming message and the code for 
one of the ftSGTYPE macros, the macros 
between this MSGTYPE macro and the next 
MSGTYPE macro are executed. Control is 
then given to the next subgroup (INBUl). 
@.When a ~TYPE match is found, the 

ORIGIN macro, 19 , is issued. The 
FORW All D macro, 0 , v hich is a lvays 
required, transmits the message to the 
destination specified. 

If there is no match with any of the 
operands specified in the l'1SGTYPE macros, 
the last ~SGTYPE macro, which has a blank 
operand field, is executed. The required 
FORWARD macro follows, and the TERRSET 
macro, @ , se·ts the user error hits in 
the error record for the message. 

In the IMBUF subgroup. @ , the CUTOFF 
lIacro, @ , limits the size of the 
incoming messages and checks for station 
malfunction. The insertion of the BECDEL 
character by the MSGEDIT macro, @ 
allows for record delimiters in tlie 
message, needed when the COBOL program 
reads in seqment mode. The INMSG subgroup, 
@ , checks the error bits in the error 

record for this message and either ca~els 
the message via the CANCELMG macro, , 
and/or sends an erl:or message to the 1 50 
terminal using the ERRORHSG macro, ~ • 



The tNEND macro, @ , a required 
delimiter macro, s1gnifies the end of the 
incoming groups. 

Ihe Outgoing GrouE: The macros discussed 
below, known as the outgoing group, are 
executed when messages are transmitted to 
the 1050 terminal. In the OUTHDR subgroup, 
~ • the MSGFORM macro. ~ , causes 

11ne control characters to De inserted in 
the outgoing message. (Unless the user 
provides line cont.rol charact.ers himself, 
this macro must be coded.) The MSGTYPE 
macro determines the type of message, so 
that a message can be processed either as 
an ordinary message or as an error message. 

For every error message, the SETSCAN 
macro returns the scan pointer to the 
beginning of the message, and the KSGEDIT 
macro inserts the "NL" character before the 
message text. Processing of error messages 
resumes in the OUTBUF subgroup, ~ , of 
the message handler. 

For the non-error messages, the HSGEDIT 
macro also inserts •• NL" at the beginning of 
the message. Then the SETSCAN macro sets 
the scan pointer to the period at the end 
of the message header so that. pertinent 
information can be inserted there. The 
DATETIME macro, QY ' records in the 
message being sent the date and time this 
macro is executed. The SEQUENCE macro, 
~ , inserts a sequence number, and the 

LOG macro records the control information 
contained in the message header. 

In the OUTBUF subgroup, Q} , of this 
message handler, the MSGEDIT macro inserts 
an "NI." character for every record 
delimiter character in the message. 
Because in the incoming group the RECDE~' 
character is inserted .for every "NL" and 
"LF" character, for a message that is 
simply transmitted from one terminal to 
another the message handler appears to send 
the same line control characters it 
receives. For a message sent by a COBOL 
program, on the other hand, wether or not 
record delimiter characters remain depends 
on the mode specified in the RECEIVE or 
SEND statement. (That is, when the 
programmer receives a message in segment 
mode, the record delimiter character is 
removed; when the programmer receives a 
message in !essag~ mode, the record 
delimiter is not removed. Accordingly, 
when the programmer sends a message in 
seg!!!tl!l mode, the record delimiter 
character is added; when the programmer 
sends a message in !§~~~ mode, the record 
delimiter is not added.) The next MSGEDIT 
macro inserts 13 idle characters after 
every tlNL" character placed in the message, 
to allow the terminal sufficient time to 
return its carriage before receiving the 
next line. Finally, the CODE macro 

translates from EBCDIC to line code when no 
more handling is required with macros that 
operate in EBCDIC. 

Like the INMSG subgroup (see "The 
Incoming Group"), the OUTMSG subgroup, 
@, checks the error bit in the erro.r 

record for the message and t.ransmi ts error 
messages, if any, to the 1050 terminal. 
The HOLD macro, ~ , is invoked only if 
there are hardware errors. Accordingly, a 
terminal placed in HOLD status is not 
released until an operator control message 
is issued. The OUTEND mac.ro, @ , 
signifies the end of the outgoing group. 

A MESSAGE HANDLER_FQR-AlLAPPLICATION 
flQGRAMBUNNING-Il!LTE!11!l!,!LS: The 
!HTRMAPP message handler handles messages 
·t.ransmitted by a te.rminal for the 
application program that is sending and 
.receiv ing messages from terminals. Like 
the message handler discussed earlier, 
MHTRMAPP includes both an incoming group 
and an outgoing gr au p. 

In this message handler, because 
messages are sent to the application 
program f. rOll a terminal,t.he ~t:.qoing group 
headed by the OUTHDR macro, ~ , is 
executed first. The first macro (MSGEDIT) 
deletes any characters (for example. "NL", 
nCR", or "LF") that have preceded "$" in 
the header. This step is necessary beca use 
of the application programfs expectation of 
receiving a fixed-length header beginning 
with "$". The next macro (SETSCAN) sets 
the scan pointer over the "$" and the 
f!SGTYPE field. Then the SEQUENCE macro 
numbers the messages sent to the 
application prog.ram, and the LOG macro 
records the information contained in the 
message header. 

The next SETSCAN macro sets the scan 
pointer over the source field in the header 
so that it points instead to the EOF field. 
The SBTEOF macro identifies the last 
message in a data file being processed by 
an application program. If the character 
speci.fied a t the loca tion pointed to by the 
scan pointer (and given as an operand in 
the SETEOF macro) is "F", the first RECEIVE 
statement issued by the COBOL program after 
receipt of the message causes the MCP to 
enter an application program EODAD routine. 
As far as the COBOL use.r is concerned, this 
sectio.n sets the "BTl" indicator in the 
field referred to by the END KEY clause in 
the input communication description (CD). 
The OUTMSG subgroup is not included in this 
message handler because it is not executed 
for messages sent to an application 
program •. Nevertheless, the OUTEND 
delimi ter macro signifies the end of the 
outgoing group_ 

Using the Communication Feature 431 



The macros in the incoming group of this 
m~sage handler, headed by the IHRDB macro, 
~ , are executed when messages are 

received from the COBOL program. The LOG 
macro records the info.rmation contained in 
the header, and the FonWARD macro, vhich is 
always required, specifies "DEST=PUT" as 
the message destination. This will cause 
the message to be forwarded to the 
destination the COBOL program bas indicated 
in the output CD. The INaSG subgroup that 
follows checks to see whether sufficient 
buffer units are available for the message 
and verifies that the destination specified 
is valid. T he IN END del imiter macro then 
specifies the end of the incoming group. 

!~AG E-1!!lHll&!Lf'.QR_!lL_!~ll~ll!'Ql! 
lRQQBAa-IHAI~KUL!I~IER~!!!1-INRY!-DAI!: 
The KHAPPAPP message handler is for 
messages having no header. As a result, 
the only macro in the out~ing group is the 
delimiter macro OUTEND, ~ , which is 
always required. 

The i~om in 9 group contains both the 
INHDR, 40 , subgroup, containing the 
required OBWARD macro, and the INftSG 
subgroup, which checks for availability of 
sufficient buffer units and verifies that 
the destination specified is valid. The 
required IHEND delimiter macro is present. 

ANS STANDARD MCP REQUIREMENTS 

If the KCP to be written is to conform 
with the 1974 ANS COBOL standard, using 
ENABLE/DISABLE, SEND ADVANCING, SEND to 
multiple destination, and automatic 
communications job scheduling, then the 
sample MCP shown in Figure 160 must be 
modified as follows. 

The ENABLE/DISABLE statements are 
implemented by COBOL by sending various 

432 

TeAM commands to the MCP, where they are 
acted upon by a combination of TCAM and 
COBOL-provided code. 

Operator command communication with TCA" 
is accomplished through two speCial 
TPROCESS entries and an associated PCB 
defined in the MCP for each COBOL 
application program that will execute 
ENABLE/DISABLE statements. These entries 
are accessed by the COBOL library via the 
special DO names, COBOPIN and COBOPOUT. 
COBOPOUT will be used to issue operator 
commands to TCAM while COBOPIN will be used 
to receive the response messages. 

The TPROCESS entry corresponding to 
COBOPOUT must be identified as a secondary 
operator control station (TPROCESS macro 
option, SECTERM=YES) and must indicate the 
TPROCESS entry associated with COBOPIN as 
the destination for operator command 
response messages (TPROCESS macro option, 
ALTDEST=tprocessname). The message handler 
for the TPROCESS entry associated with 
COBOPOUT must include a TCAM CODE macro 
followed by a TCAM FORWARD macro specifying 
the TPROCESS entry associated with COBOPIN 
in its destination list (to provide a 
response tb commands for which the operator 
control character string is invalid--i.e., 
not caught by the CODE macro). 

The operator commands used to effect 
ENIBLE/DISABLE INPUT (with or without 
terminal) require the job name of the TCAM 
MCP (i.e. ,the name specified on the JCL 
JOB card for the MCP). The COBOL object 
time library contains an eight-byte control 
section, ILBOMCPN, that provides the value 
for the MCP job name. The default value of 
the job name is "TCAM". If a different 
name must be used for the MCP, ILBOMCPN 
must be replaced with a control section 
containing the correct value. Figure 162 
illustrates a sample procedure for 
replacing the MCP job name CSECT. 



JOB FIIltCPN 
II EXEC ASMFCL,PARI1.ASM:'NODECK,OBJ', 
II 
I lAS M .. SYSIN 
ILBOftCPN 

PARM.LKED='LIST,LET,XREP,NCAL,RENT' 
DD * 

1* 

CSECT 
DC CL8'm~pname' MCP JOB NAME 
END 

//LKED.SYSUIJOD DD DSN=SYS1.COBLIB,DISP=OLD 
//LKED.SYSIN DD * 

1* 

INCLUDE SYSLMOD(ILBONBL) 
ALIAS ILBONBLO 
NAME ILBONBL (R) 

Figure 162. Replacing the KCP Jobname CSECT 

The CONTROL option of the TCAM MCP INTRO 
macro must specify a value for the operator 
control string of from one to eight 
characters in length. Optionally. the MCP 
Terminal Table may contain the following 
definition: 

COBOPTO OPTION CLn 

where n may be in the range of one to ten 
but must be at least as large as the length 
of the operator control string specified in 
the INTRO macro. 

Any Terminal Table entry corresponding 
to a symholic input queue, symbolic source, 
or symbolic destination that may be enabled 
or disabled may have a value specified for 
the COBOPTO option. The value must begin 
with the operator control string and may be 
followed by any characters valid in an 
option field. - (Note tha t the value will be 
padded with spaces on the right if less 
than n characters are specified.) 

The value of the identifier or literal 
associated with the KEY phrase (the key) 
may be from one to ten characters in 
length. The first eight characters of the 
key are used to form a TeAM operator 
control character string; however, if the 
first eight characters of the key contain a 
slash ('t/U) character, only that portion of 
the key preceding the first slash will be 
used. 

The value of the operator control string 
aust be identical to the value specified 
for the CONTROL option of the INTRO macro. 
If the values match and if the COBOPTO 
option field has been specified for the MCP 
Terminal Table entry corresponding to the 
queue, source, or destination to be enabled 
or disabled, the full value of the key is 

compared to the value of the COBOPTO 
option. 

The key is considered invalid if it does 
not constitute a valid operator control 
string or does not match the COBOPTO field, 
if specified. 

COBOL provides two levels of password 
protection: 

1. The first eight characters of any key 
translate into a TCAM operator control 
string. The control string may be 
considered a "global" password. 

2. The full key value is compared with 
the value of the COBOPTO option field. 
It may be considered a "local" 
password. 

Note that by omitting the COBOPTO option 
field from a Terminal Table entry 
definition, the entry becomes accessable to 
any key translating into a valid operator 
control string (i.e., only "global" 
protection is provided). 

Since more than one terminal table entry 
may be affected by a ~ingle ENABLE/DISABLE 
statement containing a single key value, 
all such entries must be accessable via the 
same key. 

The key is validated for all input 
queues and sources or all output 
destinations prior to any actual enabling 
or disabling .. 

If this form of ENABLE/DISABLE is to be 
executed by COBOL application programs, the 
TCAM MCP Terminal Table must contain the 
following option field definition: 

Using the Communication Peature 433 



COBOPT1 OPTION FL 1 

The Terminal Table entry corresponding to 
each symbolic source that may be enabled or 
disabled must have one of the following 
values specified for the COBOPTl option 
field: 

0: the symbolic source is initially 
enabled 

1: the symbolic source is initially 
disabled 

In addition, the following COBOL macro must 
be coded preceding the first INMSG subgroup 
of any MCP message handler that processes 
messages from a symbolic source that may be 
disabled: 

[symbol] ILBONBLT 

Expansion of the macro generates an INMSG 
subgroup that is executed only if the 
COBOPT1 option field of the Terminal Table 
entry corresponding to the symbolic source 
is equal to one. When executed, the 
subgroup cancels the message from the 
disabled source. The ILBONBLT macro may be 
followed by any TCAM macro valid in an 
IJMSG subgroup, except CANCELMG (e.g., to 
issue an error message indicating that a 
message from a disabled terminal has been 
ca ncelled) • 

If the COBOPT1 option field is not 
specified for the Terminal Table entry 
corresponding to a symbolic source that is 
to be enabled or disabled, the entry is 
considered to be improperly defined and the 
symbolic source is consequently unknown (CD 
Sf ATUS-K EY = • 20') • 

If this form of ENABLE/DISABLE is to be 
executed by COBOL application programs, the 
TCAM MCP Terminal Table must contain Ule 
following option field definition: 

COBOPT2 OPTION PLl 

The Terminal Table entry corresponding to 
each symbolic input queue that aay be 
enabled or disabled must have one of the 
folloving values specified for the COBOPT2 
option .f1eld: 

0: the symbolic input queue is 
initially enabled 

1 : the symbolic input queue is 
initially disabled 

434 

In addition, the following COBOL macro 
must be included in the initialization 
section of the TCAM MCP (i.e., between th.e 
INTRO and READY macros): 

[ symbol] ILBONBLQ [TPRFD= ~~I NO} ] 
~[TLCBD={I~~INO}] 
,[TAVTD={!E~INO}) 
,[ REGS= {YESI!Q} ] 

The parameters TPRFD, TLCBD, and TAVTD 
refers to the TeAM descriptive macros of 
the same name for the Buffer Prefix, Line 
Control Block, and Address vector Table 
DSECT's, respectively. If YES is coded for 
these parameters, the macro expansion will 
contain those portions of the corresponding 
DSECT's required by the ILBONBLQ macro. NO 
should be coded if the DSECT's are 
generated elsewhere in the :KCP. 

If REGS=YES is coded, general register 
usage within the macro expansion viII 
appear symbolically as RO through R15 (this 
viII cause all register usage to appear in 
the cross referenc~ listing at the end of 
the MCP assembly listing). Assembler 
statements equating these values to actual 
register numbers must be provided elsewhere 
in the MCP. 

Tne ILBONBLQ macro intercepts control 
during TCAM message enqueuing and 
suppresses enqueuing for disabled symbolic 
input queues. 

If the COBOPT2 option field is not 
specified for the Terminal Table entry 
corresponding to a symbolic input queue 
that is to be enabled or disabled, the 
entry is considered to be improperly 
defined and the symbolic input queue is 
consequently unknown (CD STATUS-KEY = 
'20'). 

If this form of ENABLE/DISABLE is to be 
executed by COBOL application programs, the 
TCAM MCP must contain a HOLD macro. If the 
HOLD macro is not required by the logic of 
the MCP, a HOLD macro must be coded 
specifying an impossible combination of 
errors in the mask associa ted with the 
message error record (see the description 
of the Hold/Release Facility in the Q~L!a 
~Aft programmer' s Guide). 

The Terminal Table entry corresponding 
to a symbolic destination that may be 
disabled must not specify main-storage-only 
queuing. The line corresponding to the 
symbolic destination must be open at the 
time the DISABLE OUTPUT statement is 
executed and lIay not be opened idle. If 



these conditions are not met, the symbolic 
dest ination is conside.red to be improperly 
defined for the operation and, hence, 
unknown (CD STATUS-KEY = '20'). 

~~£ifY!l!~haEA£t.~isti£§_IQL~yabolic 
n.~~t ina tions 

The following characteristics are 
associated with each symbolic destination: 

• Whether or not vertical positioning is 
supported. 

• For devices supporting vertical 
positioning, whether or not page 
psoitioning (Forms Feed) is supported. 

• Whether or not the device has a fixed 
line size. 

• For devices with a fixed line size, 
the size of the line. 

• Whether or not record delimiter 
characters are to be inserted between 
message segments (for this 
characteristic to be effective, the 
BECDEL option of the TPROCESS entry 
corresponding to the COBTPOUT DO card 
must specify a non-zero yalue). 

• Whether or not a test should be made 
for a disabled destination condition 
during the execution of each SEND 
statement (CD STATUS-KEY = '10'). 
specification of this characteristic 
will incur an execution-time 
performance degradation and should be 
used only when the knowledge that the 
destination is disabled is siqnificant 
to COBOL application programs sendinq 
messages to it. 

The default characteristics for any 
symbolic destina tion are: 

• no vertical positioning 

• no fixed line size 

• insert record delimiters between 
message segments 

• no test for disabled destination 

If characteristics are to be specified 
for symbolic destinations, the TCA! !CP 
Terminal Table must contain the folloving 
option field definition: 

COBOPT3 OPTION XL11 

Terminal Table entries corresponding to 
symbolic destinations for which 

characteristics are to be specified m~st 
contain a value for the COBOPT3 option 
according to the follolling (note that the 
values are given in hexadecimal notation to 
agree with the definition of COBOPTJ): 

Bytes 1-8 
X' C3D6C7D6D1E3F313 1 (This is the hex 
value for 'COBOPT3=' which makes this 
option self-identifying.) 

Byte 9 
Destination characteristics byte: 

BitO (X'aO') 
If on~ vertical positioninqts 
supported for this destination. 
When the ADVANCING clause is 
specified or implied, NL (new 
line), CR (arrriage return) and/or 
FF (forms feed) control characters 
will be inserted into the message 
by COBOL. If off, the ADVANCING 
clause will be ignored by COBOL. 

Bit 1 (X' 40') 
(Meaningful only if .bit 0 is on) If 
bit 1 is on, FF (forms feed) viII 
be inserted for an ADVANCING PAGE 
request. If off, Nt (new line) 
viII be inserted for an ADVANCING 
PAGE request. 

Bit 2 (X' 20') 
If on, this device has a fixed line 
size (as specified in bytes 10-11); 
COBOL vill do automatic line 
folding. If off, no automatic line 
foldinq will occur. 

Bit 3 (X'10') 
If on, a record delimiter character 
(if available) will be inserted by 
COBOL between message segments. 

Bit 4 (x'oa') 
If on, a test will be made to 
determine if this destination is 
disabled during te execution of 
each SEND statement. If off, no 
test viII be made. I 

Bits 5-1 (X'07') 
(Reserved) 

Bytes 10-11 
The line width, for fixed line size 
destinations ~.g., if the line width 
is to be 96, code (x·0060'). For 
variable line size destinations, code 
X·OOOO'. 

To conform with the requirements of ANS 
1974 COBOL, the following is required: 

• bit 0 must be on for destinations 
which support vertical positioning. 

Using the Communication Feature 435 



• bit 1 must be on for destinations 
which support forms feed. 

• bit 2 must be on,. and bytes 10-11 must 
be non-zero, for destinations which 
have fixed line sizes. 

• bit 3 must be off. 

• bit 4 must be on. 

If vertical positioning has been 
specified for a destination (COBOPT3 byte 
9,. bit 0 on),. the ADVANCING clause of the 
SEND statement causes COBOL to produce 
standard formatted messa ges containing text 
data,. record delimiters, and the three 
EBCDIC/SNA control characters NL (new 
line),. CR (carriage return), and FF (forms 
feed). Any specific device-dependent 
formatting required (e.g., insertion of 
idle characters) must be provided in the 
appropriate TCAM MCP message handlers. 

When a SEND statement is executed that 
has an associated end of message (EMI) or 
end of group (EGI) indicator, the assembled 
messages for the destinations identified in 
the CD DESTINATION-TABLE are sent to TCAM. 
The contents of the messages will be a 
composite of text data and control 
characters (NL, CR,. FF,. and record 

436 

delimiters) specified by information 
provided in the SEND statement ADVANCING 
clauses associated with the messages and 
the value of the COBOPT3 option fields for 
the destinations. Figure 163 illustrates 
the results of executing a sequence of SEND 
statements for a destination supporting 
both vertical positioning and a fixed line 
size. 

It is some"times desirab Ie to schedule a 
COBOL object communications program only 
when there is work available for it to do 
(for example, to process messages which are 
entered infrequently or at unpredictable 
times). For this reason, a utility 
Communications Job Scheduler (CJS) is 
provided. This utility will monitor each 
of a set of user-specified TCAM queues, and 
schedule a user-specified job (using the 
OS/VS START command) when a user-specified 
number of messages is reached. The utility 
is itself a COBOL program, and thus may be 
readily modified to accomodate more 
complicated scheduling requirements (e.g.,. 
based on time-of-day. or 0 verall system 
load) • 



SEND # Msg. Text End Ind. Advancing Clause Comments 

ABCDEF '0' After page Partial segmen t, advancing ignored 

GH ESI "After Advancing 1 line" implied 

UK ESI Before page No advancing between segments 

4 LMNO EMI Before 0 lines 

Segment I Segment 2 Segment 3 

@r-L--A-BC-D-'''@ EFGI~ @ @ ~K @ @ ~ 

New line character ~ 
inserted because of 
implied advancing 
clause of SEND #2. 

Inserted because of 
fixed line length. 

Record delimiter character 
inserted because of segment 
boundary after SEND #2. 

Carriage return character 
inserted because each message 
or message segment for a fixed 
line size destination must 
begin at the leftmost character 
position of the physical line. 

Forms feed character inserted 
because of advancing clause of 
SEND #3. (If forms feed was not 
supported for the destination, 
a new line character would have 
been inserted.) 

Inserted because of segment boundary after SEND #3. 

Carriage return character inserted because of advancing clause of SEND #4. 

Note: Assume COBOPT3 has specified vertical positioning, forms feed, fixed line size of 4 bytes, and insert record delimiters. 

Figure 163. Example of Message Formation for a Fixed Line Size Destination supporting 
Vertical Positioning 

fupariniLthe CJ~: The following steps lIay 
be used for installing and tailoring the 
CJS utility: 

1. The source code for CJS (module name 
ILBOCJS) is extracted from the COBOL 
installation tape by following the 
standard installation procedures. 
(See OStVS_COBOL Inst~!la.tiQ!! 
Rgferen£e Mgt-erial, Order No. 
SC28-6481) • 

2. If desired, this source code may be 
modified to meet special local 
requirements (e.g., to change the 
PROGRAM-ID, to change scheduling 
criteria, to provide error recovery, 
etc.). 

3. The source code should then be 
compiled and link-edited using normal 
local options for COBOL programs. The 

resulting load module must be placed 
in an authorized library with an 
authorization code of ODe (see the 
description of the Authorized Program 
Facility (AP?) in the relevant VS 
planning and Use Guide). 

4. The TCAM KCP must contain a Terminal 
Table TPROCESS entry for "SYSCJSft and 
an associated PCB. Starting and 
ending messages will be directed to 
this entry by COBOL when a scheduled 
job starts and ends. 

5. JCL should be coded for the CJS. 

6. A special reader procedure, COBURDR, 
must be added as a memher of 
SYS1.PROCLIB. The source for COBURDR 
is extracted from the COBOL 
installation tape by following the 
standard installation procedures (see 

Using the Communication Feature 437 



ostVS~OBOk-I!!stal!llio!L!,g~~ 
Pia te{iajJ • 

7. The partitioned data set identified by 
the COBURDR reader procedure DD card, 
IEFRDER, must contain a member for 
each job name specified on a CJS Queue 
Polling Record (see "Using the CJS" 
below). Each member contains the JCL 
required to execute the COBOL program 
that will process the queue causing 
the scheduling to occur. The PAR~ 
option of the EXEC card for the COBOL 
program must identify the complete 
queue structure name correspond Ing to 
the TCA M queue: 

PARM=( ••• /QUEUE(q-name 
[ ,sub-g-1-name{,sub-q-2-name 
[,sub-q-3-name]]]) 

The member must also contain DD cards 
allowing the COBOL program to access 
the scheduling TCAM queue and to write 
the starting and ending messages to 
the CJS. 

UsinLlhe CJ~: To execute the CJS, control 
records must be provided specifying the 
queue polling requirements and the jobs to 
be started. They have the following 
format: 

Header Record (one only; must be first 
record) 

Column 
Record identifier: must be "H". 

Columns 2-6 

Number of'seconds to wait between 
poll.lngs: this number indicates 
the number of seconds (of elapsed 
time) that CJS should walt between 
the time it polls all queues and 
the time it does so again. 

Columns 7-11 
Number of repetitions: this number 
indicates how many times the 
pollings (followed by the wait) 
should take place before CJS 
automatically completes. 

Queue Polling Record 

438 

Column 1 
Record identifier: must be "Q". 

Columns 2-9 
Queue Name: the name of a TCAM 
queue that is to be polled. 

columns 10-17 
Job name: specifies the name of a 
member in the partitioned data set 
identified by the IEPRDER DD card 
in the COBURDR reader procedure 
that contains the job to be 
scheduled when the message count 
limit is reached for the 
corresponding queue. 

Column 18 
Association code: an alphanumeric 
code which may associate two or 
more Queue polling Records. When a 
polling entry causes a job to be 
scheduled, that poll-ing entry and 
all other entries vith the same 
association code viII not be 
re-polled until an ending message 
is received from the sched uledjob. 
This facility is useful in assuring 
that two jobs are not scheduled at 
the same time to process the same 
TCAl'I queue. 

Col umns 19-23 
~essaqe count limit: vhen the 
number of completed messages on the 
polled queue reaches or exceeds 
this value, the associated job viII 
be scheduled. 

(The value specified for the OCCURS 
clause for "POLL-ENTRY" in the CJS program 
must be large enough to provide an entry 
for each queue polling record). 

If the CJS termina tes successfully, a 
return code (completion code) of zero is 
given. However if an error condition is 
detected, a return code of eight is given. 

Figure 164 illustrates the CJS 
scheduling process. 

Figure 165 provides an example of CJS 
control records and JCL for a 
communications job scheduling application. 



TCAM QUEUES 

U 
queuename-l 

U 
queuename-2 . . 

u 
queuename-n 

SYSCJS 

CJS 

• Read control cards 

• Get queue counts 

• Schedule programs 

"START COBURDR.SYSCJS, 
PROCNAM=jobname-i" 

• Receive "STARTED" and 
"ENDED" messages 

User JCL Library 

jobname - i 

Iljobname-i JOB, ••• 

II EXEC PGM= .•. , 

Read member "jobname-i" of 
partitioned data set identified 
by IEFRDER DD card into system 
job queue. 

II PARM=' ... /QUEUE(queuename-ii) 

.COBOL object-time library 
sends "STARTED" and 
"ENDED" messages. 

Figure 164. Communications Job Scheduling 

Using the Commun ication Fea ture 439 



I!_system ~~~ 
IICJS JOB 
II EXEC 
IISTEPLIB DD 
IISYSTPIN DD 
IISYSOUT DD 
IISYSIN DD 
H0001000360 

PGM=ILBOCJS 
DSN=SYS1.COBLIB,DISP=SHR 
QNAME=SYSCJS 
SYSOUT=A 

* 
QQUEUE1 JOB1 00001 
QQUEUE2 JOB2 A00004 
QQUEUE3 JOB3 AOOOOS 

1* 

I1L_~~RoeLIB 

IICOBURDR PRoe 

IIIEFRDER DD DSN=userlib ••• 
(see OS/VS COBOL Instalation Reference 

Material) 

Member: JOB 1 

JOB IIJOB1 
II 
IISUBQ1 

EXEC PGM= ••• ,PARM='/QUEUE(SUBQ1)' 
DD QNAME=QUEUE1 

Member: JOB 2 

IIJOB2 

II 
IISUBQ2 
IISUBQ3 

JOB 
EXEC 
DD 
DD 

Member: JOB3 

IIJOB3 
II 
IISUBQ2 
IISUBQ3 

JOB 
EXEC 
DD 
DD 

PGM= ••• ,PARM=' IQUEUE (SUBQ2) , 
Q N A 1'1 E =Q UE UE 2 
Q NA ME=QUEUE3 

PGM= ••• ,PARM=' IQUEUE (SUBQ3) , 
QNAME=QUEUE2 
Q N A M E =Q UF UE 3 

Figure 165. Sample CJS Application (Part 1 of 2) 

440 



Notes: 

1. ILBOCJS must be an authorized program (via the OS/VS Authorized Program Facility) 

2. SYSTPIN designates the MCP queue which will contain the messages sent by COBOL at the 
start and end of execution of a program which has been scheduled by the CJS. 

3. SYSOUT is used for error messages (via the COBOL DISPLAY statement). 

4. SYSIN holds the CJS control statements, as described in "Using the CJS" above. 

5. The control statements in this example will do the following: 

• Every 10 seconds (of elapsed time), TCAM queues QUEUE1, QUEUE2, and QUEUE3 will be 
polled for their message count. After 360 poaling intervals (approximately one 
hou~, the CJS will terminate. 

• If QUEUE1 contains one or more messages, JOB1 will be started; QUEUE1 will not be 
polled again until an ENDED- message is received specifying QUEUE1. 

• If QUEUE2 contains four or more messages, JOE2 will be started. Since both QUEUE2 
and QUEUE3 have the same association code ("A"), neither will be polled again 
until an ENDED message is received specifying either QUEUE2 or QUEUF3. 

• If QUEUE2 contains less than four messages but QUEUE3 contains five or more 
messages, JOB3 will be started. Again, since both QUEUE2 and QUEUE3 have the same 
association code (" A") , neither will be polled again until an ENDED message is 
received specifying either QUEUE2 or QUEUE3. 

6. Since both JOB2 and JOB3 reference the same TCAM queues (QUEUE2 and QUEUE3), they 
must be prevented from being scheduled at the same time. This is accomplished by 
specifying the same association code for each (when either one is scheduled, both are 
removed from the polling sequence). 

Figure 165. Sample CJS Application (Part 2 of 2) 

The MCP must contain provisions for only 
those ANS Standard features that will be 
used by COBOL application programs (e.g., 

if communications job scheduling is not to 
be used, the SYSCJS TPROCESS entry and its 
associated PCB need not be coded). An MCP 
containing provisions for all ANS Standard 
features is outlined in Figure 166. The 
following notes apply. 

Using the Communication Feature 441 



*****************.******.**********.*****************. 
* lIep IN IITIALI ZATION SECTION * 
****** •• ***************.***********~****.************* 

INTH:> CONTROL=PASSWDj ••• 

• •• (;\ CD 
ILBON BLQ \.!J 

READY 

*.*******~*.***.** •• ***************.************.***** * PROCESS CONT RO.L BLOCKS * 
**·***·******·A··*····***·****····*****~************* 

~ .~ lPPLPCB1 PCB /"i\ MH=A PPLM H, DAT E=Y ESr_ •• 
COBCKD1 PCB * MH=COBCMDMH, BUFSIZE=80 
COBCJS PCB \.V MH=COBCJSMH,BUFSIZE=51 

*****.*** •• *********************.*******.***** ••• ***** 
* TERMINAL TABLE * 
*********.****************************.*************** 

TTABLE 
COBOPTO~ OPTION 
COBOPT10 OPTION 
COBOPT20 OPTION 
COBOPT3GD_OPTION 
CMD RDEST@OPTION 

TERM1 TER~INAL ® 

QUEUE10 
QUEUE20 

TPROCESS'@ 
TPROCESS@ 

CL9 
FL1 
FL 1 • 
XL'1 
eL8 

OPDATA= (PASSW D/T 1,0" 
C3D6C2D6D7E3F37EA80008), ••• 
PCB= APPLPCB1, DATE=YES, ••• ® 
PCB=APPLPCB1 ,DATE=YES, ® 
OPDATA=(PASSWD/Q2" 1), •• _ 
PCB=APPLPCB1, ••• 

x 

x 

COBTPOU1~ TPROCESS 
COBOPIN1 ~ TPROCESS 
COBOPOU1~TPROCESS 

TPROCESS 

PCB= COBCMD1, • •• ® 
PCB=COBCMD1,ALTDEST=COBOPIN1, ~ 
S BCT ERM=Y ES, OPDATA=(, ", COBOP IN 1) ® 
PCB=COB: JS, ••• 

****************************************************** * TYPICAL LINE GROUP MESSAGE HANDLER * 
****************************************************** 
LINEMH STARTMH LC= ••• . . .; 
* IN-MESSAGE SUaGROUPS 

ILBONBLr ® 

INMSG 

INEND 

* OUT-MESSAGE SOBGIlOOPS 
OUTM SG 

H; 1.D ® 5X' FF' , RE LE A SE ,CONNECT= AND 

Figure 166. ANS Standard MCP Requirements (part 1 of 2) 

442 



OOTEN D 

****************************************************** * TYPICAL COBOL APPLICATION KESSAGE HANDLER * 
*********************************************.******** 
lPPLftH STARTKH LC= ••• 

IHHDR 

FORWARD~ 
. OUTHDR 

SE;EOF@ 

OUTEND 

DEST=PUT 

***************** •• ****.****.**.****.***************** 
* ENABLE/DISABLE OPERATOR :OMKAHD ~ESSAGE HANDLER * 
******************** •• ***************************** •• * 
COBC!!DflH STARTMH LC=OUT 

INHDR 
CODE ® 

FORWARD 

INEND 

OUTEND 

NONE 

DEST=Cl'tDRDEST@' 

*****.***.*** ••• *********************.** •••• * ••• ****.* * COMMUNICATIONS JOB SCHEDULER (CJS) MESSAGE HANDLER • 
••••• *.* •••• *****.** •••• *** •••• **.** •• *** •• **.* •• *.**. 
COBCJSMH ST ART fiB LC= OUT 

OUTBND 

Figure 166. ANS Standard MCP Requirements (Part 2 of 2) 

CD 

This parameter must be coded if ENABLE 
or DISABLE statements are to be 
executed by COBOL programs. The value 
specified constitutes the global 
portion of the enable/disable key and 
may consist of from one to eight 
characters without embedded blank comma 
or slash (" /") characters. 

This macro must be coded if DISABLE 
INPUT statements (without TERMINAL) are 
to be executed by COBOL proqrams. 

At least one PCB and its associated 
TPBOCESS entries must be defined for 
each COBOL application program that can 
be executed concurrently (a PCB can be 
associated with only one application at 
a time). These PCB's and TPROCESS 
entries must specify DATE=YES. 

A PCB and tao associated TPROCESS 
entries must be defined for each COBOL 
application program that can be 

executed concurrently and vill execute 
ENABLE or DISABLE statements. 

If the Communications Job Scheduler 
utility (ILBOCJS) is to be executed, a 
PCB and associated TPROCESS entry must 
be coged. 

This option is required if local 
password protection is desired. 

This option is required if 
ENABLE/DISABLE INPUT TERIUNAL 
statements are to be executed by COBOL 
proqrams. 

This option is required if 
ENABLE/DISABLE INPUT statements 
(withoutTERftINAL) are to be executed 
by COBOL programs. 

This option is required if 
characteristics are to be specified for 
symbolic destinations. 

Using the communication Feature 443 



444 

This option allows the same message 
handler to be used for all PCB's 
required for ENABLE/DISABLE command 
processing (see item 4). 

~he options for this entry specify: 

1. a local password value of 
"P ASSWD/Tl". 

2. 

3. 

the symholic source represented by 
this entry may be enabled and 
disabled (it is initially enabled). 

the symbolic destination 
represented by this entry has the 
folloving characteristics: 

• vertical positioning is 
supported 

• forms feed is not supported 

• the destination has a fixed line 
size of eight bytes. 

• record delimiters are not to be 
inserted between segments. 

• a test should be made during 
each SEND to see if this 
destination is disabled. 

The absence of the OPDATA option for 
this entry implies: 

1. no local password protection 

2. the symbolic input queue 
represented by this entry may not 
be disabled. 

The options for this entry specify: 

1. a local password value of 
npASSWD/Q2" 

2. the symbolic input queue 
represented by this entry may be 
enabled and disabled (it is 
initially disabled). 

DATE=YES must be coded for TPROCESS 
entries representing symbolic input 
queues and their associated PCB's. 

This identifies COBOPINl as the 
destination for TCAM reply messages to 
operator commands received through 
COBOPOU1. 

The value of COBOPINl for the CMDRDEST 
option together with the FORWARD macro 
in the operator command message handler 
will send invalid operator commands 
back to the originating COBOL program 
(the program requires a response to 
each command issued) • 

This macro must be coded if DISABLE 
INPUT TERMINAL statements are to be 
executed by COBOL programs for symbolic 
sources whose incoming messages are 
processed by this message handler. 

At least one HOLD macro must be coded 
in the MCP if DISABLE OUTPUT statements 
are to be executed by COBOL programs. 

This form of the FORWARD macro is 
requir~d in message handlers that viII 
process messages from COBOL programs. 

This macro may be used to cause an end 
of group indica tor lEGI) to be passed 
to the COBOL program for the next 
RECEIVE statement executed after 
receipt of the end of message indica tor 
(EMI) for the current message. The 
RECEIVE statement must specify the sam 
symbolic queue as that for the message 
causing the SETEOF macro to be executed 
and will have an accompanying text 
length of zero. 

This macro must be coded to allow TCAM 
to detect valid operator commands 
resulting from ENABLE/DISABLE 
statements executed by COBOL programs. 
A valid operator command will result if 
the key phrase of the ENABLE/DISABLE 
statement yields a valid global 
password. See item 16 for invalid 
operator commands. 

This section names the parts of the KCP 
described earlier. explaining hOlll to 
arrange them in relation to one another and 
how to assemble, link-edit, and execute a 
TCAM KCP. The five sections of an MCP 
include those previously discussed -- an 
activation and deactivation section, a data 
set definition section, a terminal and line 
control area section. a message handler 
section -- and an optional user routine 
section (that is, user subroutines called 
by a message handler, as well as exit 
routines referred to by the INTRO macro, by 
DCB macros, and by the STARTMH macro). The 
only stipulation about ordering these 
sections is that the activation and 
deactivation section must come first. 

ASSEMBLING, LINK-EDITING, AND EXECUTING AN 
MCP 

The assembly, link-edit. and execution 
steps of a TCAM KCP are similar to these 
steps for any other problem program running 



under OS/VS. The job control statements 
given below for these three steps are 
guidelines only. 

A typical control card sequence for 
assembling a TCAM MCP is as follows: 

IIASSEMBLY JOB MSGLEVEL=l 
IISTEPl EXEC ASMFC 
111SM.SYSIN DD * 
{KCP Source Deck} 

The following is a typical control card 
sequence for link-editing an MCP: 

IILINKEDIT JOB MSGLEVEL=1 
IISTEP1 EXEC PGM=IEWL,PARM='XBEF,LIST, 
II LET' ,REGIO N= 128K 
I/SYSPRINT DD SYSOUT=! 
IISYSUT1 OD UNIT=SYSDA, 
II SPACE= (,1024. (200,20) ) 
I/SYSLKOD DD DS NAME=SYS 1. TC AKLI B, 

D.ISP=OLD 
IISYSLIB DO DSNAKE=SYS1.TELCMLIB, X 

OISP=SHR 
/ISYSLIN DD * 
{llep Object Module} 

NAME TCAMPROG(R) 

!Q~: In this example, the MCP load module 
is to be placed in a user-created private 
library called SYS1.TCAMLIB. 

The TCAlI lICP is normally executed as the 
highest-priority task in the 
highest-priori ty partition or region in the 
system. It may have an equal priority, but 
it should never be assigned a lower 
priority. A typical control card sequence 
for executing an MCP is the following: 

I/EXECMCP JOB 'EXECUTE KCP',MSGLEVEL=l, X 
II PBTY=12 
IIGOSTEP EXEC PGM=TCAKPROG,REGION=100K 
IISTEPLIB DD DSNAME=SYS 1. TCAMLIB, X 
II DISP=SHR 
11001050 OD UNIT=025 
II OD UNIT=026 
II DO UNIT=021 
IIDD2740 DO UNIT=015 

II 00 
II DO 
I/QFILE DO 
/ILOGFILE DO 
IISYSABEND OD 

U.NIT=O 16 
UNIT=011 
OSNAME=KSGQ,DISP=OLD 
DSNAME=LOGF,OISP=OLD 
SYSOUT=A 

1. In this example, the KCP has tvo line 
group data sets, each containing three 
lines; no checkpoint facility is 
included. (For a discussion of the DD 
cards for a checkpoint data set, see 
the section "Defining the Checkpoint 
Data Set. It) 

2. The QFILE DD statement is for a 
message queues data set residing on 
disk; QlILE is the name specified in 
the ODNAME; operand of the DCB macro 
for this data set, and MSGQ is the 
name of the data set specified by the 
DSNAKE operand of the IEDQDATA DD 
statement for the IEDQXA utility used 
to preformat disk message queues data 
sets residing on disk (see the section 
"Defining the Message Queues Data 
setset ). 

3. If the data set is not cataloged, the 
UNIT= and VOLUME= operands must be 
included in the DD statement for the 
disk message queues data set. 

4. The IILOGFILE DD card must be included 
if the LOG data set is to be used. 

Defini~he Checkpoint Data S~l: one DD 
statement that mayor may not catalog the 
data set must be issued for the checkpoint 
data set. However, if it is not cataloged, 
th e user should allocate the data set by 
specifying DISP=(NEW,KEEP) as in the 
example and subsequent uses of the data set 
must contain the UNIT= and VOL:SER=keyword 
operands, given below. 

IICFILE 
II 
II 
II 

DD DSNAME=CPDS,UNIT=2314, X 
VOL=SER,DB197, X 
SPACE= (T RK ,(S) ) , X 
DISP= (NEW, KEEP) 

Using the Communication Feature 445 



After a checkpoint data set is set up 
and the MCP has terminated normally, the 
programmer should replace the DD card 
described above with one of the following 
type: 

/ICFILE DD D5NAME=CPD5,DISP=OLD, 
VOL=5ER=DB197,UNIT=2314 

Qg!ininL.Li!!~Q~!!lLQata~et2: The user 
must include in his jab control statements 
at least one DD statemen t for each line 
group data set, but he has tva options for 
handling these definitions. 

1. If a UNITNAME macro is issued for a 
line group at system generation time, 
then a single DD statement may be 
issued for this line group at MCP 
execution time. For example, a 
UNITNAME macro could be issued to 
define a group of lines as follows: 

UNITNAME UNIT=(040,041) 
N AME=GROUPLIN E 

Where the two numerals in the 
UNIT=operand parameter represent the 
hardware add.resses of two lines in a 
line group. At execution time for the 
MCP. the follolling DD statement might 
be issued for this line group: 

IlL IS DD UNIT=(GBOUPLINE,2) 

Where the line group data set would be 
made up of two lines defined by the 
UNITNAME macro. 

2. A DD statement may be issued for each 
line in a line grou p, as in the DD 
cards for line group DD1050 and line 
group DD2740 in the sample JCt 
statemen~s given in section "Executing 
an MCP. II 

3. The following DD cards were used to 
execute the sample message control 
program shown in Figure 160. 

IILN1 
IILN2 

DD UNIT=040 (for the 1050 terminal) 
DD UNIT=041 (for the TWX terminal) 

R.~!ining the Ple§sage~~L1!i!ta~~12: The 
number of message queues data sets required 
for an MCP depends on the types of queues, 
which, in turn, depend on the application. 
TCAM supports three types of data sets -- a 
main storage data set, a reusable disk set, 
and a nonreusable disk data set. {For 
checklists governing specification of the 
three types of message queues data sets, 
see the publication ~LACAM programmer.' s 
§.!!i~~· 

TCA! expects the disk message queues 
(both reusable and nonreusable) to be 
totally preformatted. The COBOL user 

446 

should engage the TCAM routine lEDQXA to 
perform this task prior to initially of a 
set of job control statements used to 
inyoke this routine. 

!2t!: The value given in the KEYLEN 
parameter must be the same as that 
specified in the KEYLEN operand of the 
INTRO macro (see the section "Defining the 
Buffers tf ) • 

IIJOBNAME 
IIFORMATQ 
IISYSPRINT 
IIIEDQDATA 
II 
II 
II 
II 
1* 

JOB 
EXEC 
DD 
DD 

user information 
PGft=.IEDQXA 
SY50UT=A 
DSN=ftSGQ,DISP=(,CATLG), X 
SPACE=(CYL,(5,5)"CONTIG) X 
UNIT=(2314,1), X 
VOL=SER=333333, X 
DCB= (, KElLEN=l 00) 

Two of the chief processing applications 
for which COBOL programs can be written are 
inquiry processing and processing collected 
data. An inquiry-processing COBOL program 
receives messages from stations, processes 
the da ta, and then sends replies to the 
originating stations. Depending on the 
inquiry, the COBOL program may transmit 
either the information requested or a 
message stating that this informa tion is 
unavailable and telling when it can be 
provided. The COBOL program that simply 
processes data collected by a message 
control program can either operate 
concurrently with the collection of data by 
the ftCP or be loaded and initiated at a 
later time. 

The sample COBOL communication program 
TESTTP2 (shown in Figure 171 ) represents 
an application of processing data. This 
program accepts messages transmitted from a 
remote station, formats the message, and 
then transmits each complete message to the 
destination specified. The COBOL program 
TBSTTP1 (shown in Figure 170) simulates 
terminal input data. The user can, 
therefore, test an installation-written 
COBOL TP program by running it with the 
sample MCP and TESTTP1. 

TESTING A COBOL TP PROGRAM 

Depending on the status of an 
in'stallation' s teleprocessing system, the 
user can code anyone of three sets of JCL 
to run a teleprocessing job. A system that 
is fully' operational has a message control 
program. with a user-designated message 



handler for each type of teleprocessi.ng 
situation expected, as veIl as remote 
terminal hook-ups. The user whose system 
is only partially developed or is still in 
the design stage may, nevertheless, wish to 
test COBOL teleprocessing programs Using 
BSAM. 

According 1" the JCL shown in Figure 161 
is for a strictly BSAM situation (that is, 
for a cOllmunica tion proqra Il that is to be 
run without TCAM); the JCL shown in Figure 
168 is for a quasi-terminal situation (that 
is, with TCA M but without terminals) ; and 
the JCL shown in Figure 169 is for a 
communications job running with a remote 
terminal. For both the non-terminal and 
the quasi-terminal situation an input data 

set must be created. To run a COBOL 
communications program with a terminal 
hook-up, only the communications program 
itself is needed. 

To avoid unresolved external references 
from link edit when testinq with BSAM and 
NORES, the programmer must point to the 
SYS1.TELCMLIB. (He may choose to override 
these unresolved references since they vill 
not effect BSAM testing.) When testing 
with BSAM and RES, the programmer need not 
take any extra steps. 

When testing TCAM the user must provide 
a LKEO.SYSLIB card for SYS1.TELCMLIB when 
NORES is specified. A GO.STEPLIB card must 
be provided for SYS1.TELCMLIB. 

~ , 
IllTESTTPl JOB user information J 
III EXEC COBUCLG , 
t IICOB. SYSIN DD * I 
I t 
I (Source deck for TESTTP1 program (Figure 163)} , 
1/* I 
IIIGO. TSTTP DDl U NIT=2400. LABEL= (, NL) , YOL=SER=NI195, DCB= (LRECL=50, BLKS.IZE=50, X J 
III RECFM:F, DEN=2) I 
II IGO. COBTPOUT DD2 UNIT=2314, VOL=SER=231400,DSN=&P1, DISP= (NEW, PASS) , X, 
III 5 PA CE = (CY L, (1, 2) ) I 
IIITESTTP2 JOB user-information I 
III EXEC COBUCLG t 
IIICOB.SYSIN DD * I 
I • 
I {Source deck for TESTTP2 program (Figure 166)} t 
1/* 1 
IIIGO.Ql DD3 DSN=&P1,VOL=SER=231400,UNIT·=2:l14,DISP=(O.LD,PASS) I 
IIIGo.COBTPOUT DD· DSN=&P2,VOL=SER=231400,UNIT=2314,DISP=(NEW,PASS), xt 
III SPACE=(CYL, (1,2» I 
IIIDUMPIT JOB Ilser-informa·tion I 
III EXECS PG8=xftASPZAP I 
IIISYSLIB DD DSNAME=data set to beprinted,UNIT=2314,VOL=SER=231400, XI 
III DISP=OLD,DCB=DSORG=PS I 
IIISYSPRINT DD SYSOUT=A • 
IIISYSIN DD * I 
I ABSDU!lP ALL I 
1/* , 
I f 
I lotes: 
I ,1. Input sequential file with records of 50 characters each (BS1M JCL). 
I 
12. Output data set that simulates sending messages to a terminal named ·Pl'. 
t 
13. Input data set that simulates reading messages from a terminal named 'pl'. 
I 
t4. output data set that simulates sending messages to a terminal named 'P2'. 
I 
15. This job prints out the records in the si.ulated data set. For further 
I inforaa tion, see the publication ~L!S Seuice li!l2.. 
I 
16. Par OS/YS1: HftASPZAP; for OS/VS2: AftlSPZAP. 
L 

Figure 167. Sa.ple JCL for Testing a cOllmunication Job without TCAM. 
J 

using the Communication Feature 447 



r-------------------
J IITESTTPl 
tl/ 
IIICOB.SYSIN 
I 
I 
11* 
II /GO.STEPLI B 
IIIGo.TSTTP 
11/ 
II/Go. COBT.POUT 
II/TESTTP2 
III 
'/ICOB.SYSIN 
J , 
11* 
II/Go. STEPLI B 
IIIGO.Ql 
JIIGo.COBTPOUT 
ll/DUMPIT 
.11 
lllDISQO 1 
fllSYSPRINT 
11* 

JOB 
EXEC 
DD 

user information 
CO BUCLG 

* 
{Source deck for TESTTPl program (Figure l65)} 

DD 
DDI 

DD2 
JOB 
EXEC 
DD 

DSN=SYS1.TELCftLIB,DISP=SHB 
UNIT=2400,LABEL=(,NL),VOL=SER=NI195,DCB=(LRECL=50,BLKSIZE=50, 
RE CF 11= F, DE N= 2) 
ON AftE=POUT 1 
user information 
CO BUCLG 

* 
{Source deck for TESTTP2 program (Figure 166)} 

DD 
DD3 
DD· 
JOB 
EXEC 
DDs 
DD 

DS N=SYS 1. TELCMLIB, DISP=SHR 
QN AME=Pl 
QNAME=POUTl 
user information 
IEDQXC 
DSN=MSGQ,VOL=SER=DB197,UNIT=2314,DISP=SHR 
SYSOUT=A 

• 
I 
J 
I 
I 
I 
I 
J 

XI 
I 
I 
I 
I 
I 
I 
I 
1 
I , 
I 
I , 
I 
I 
J 

I- --------.f 
1!.Q!ge: 
I 
11. 
I 

Input sequential file with records of 50 characters each. 
in BSAM.) 

I , 
(This is the same JCt asl 

t 
12. 
I 

Output is sent to an MCP message queue named 'Pl', which is defined for processing 
by a CO BOL program. 

I 
I 
I 
I 

I 
13. Input is received from the MCP message queue named ·Pl'. 

I 
I 

I 
14. 
I 

Output is sent to an MCP message queue named 'P2', which is defined for processing 
by a CO BOL program. 

I 
I 
I 

I 
15. 
I 

This job prints out records in the MSGQ queue. 
publication 2SLVS TCA~_E£ogrammgr's Guide. 

For further information, see the 
, 
I 
I 

L-- .. 

Figure 168. Sample JCL for Bunning a Communication Job in a Quasi-Terminal Environment. 

r-----
1/ITESTTP2 
III 
IIICOB.SYSIN 
I 
11* 
f IIGO.STEPLI B 
1/ /GO.Ql 
IIIGO. COBTPOUT 
I-
l1!.Ql~: 

JOB user information 
EXEC COBUCLG 
DD * 
{Source deck for TESTTP2 program (Figu.re 154)} 

DD 
DDt 
DD2 

DSN=SYS1.TELCMLIB,DISP=SHB 
QNAME=Pl 
QNAM E=POUT 1 

J 
11. 
I ,2. 

The input is received from the MCP message queue ·P1'. 

The output is sent to an MCP message queue defined for a terminal. 
L-

------, 
I 
I 
J 
I 
I 
I 
I 
I 

-f 
I 
f 
I 
I 
I 

Figure 169. Sample JCL for Running a Communication Job with a Remote Terminal 

448 



COl!ftUNICATING BETWEEN A COBOL PROGRAM AND 
THE l!CP 

The TCAM message control program routes 
messages between a COBOL teleprocessing 
program and remote stations. Because the 
MCP performs the input/output operations 
necessary for the COBOL teleprocessing 
program, the user must establish an 
interface between these two programs by 
doing the following: 

• Defining the interface 

• Activating the interface 

• Transferring messages between the COBOL 
program and the MCP 

• Deactivating the interface 

In each of the sections that follow. both 
COBOL statements and TCAM macros, as well 
as their relationship, are described as 
appropriate. The encircled numerals in 
this discussion refer to the sections 
similarly labeled in the sample COBOL 
teleprocessing program TESTTP2 shown in 
Figure 171. 

Q~fininY-lhe Interfac~ 

The Communication section in the COBOL 
program and the PCB and TPROCESS macros in 
the message control program set up the 
interface between the two programs. 

!22Qcialing_fQB01_2I!~Qlic~~~~~~~~~it~ 
I£!~~2.: COBOL associates the symbolic 
queue names specified in an input CD with 
TCAM queues according to the following 
algorithm: 

1. If a queue structure definition 
(created by the queue structure 
utility, ILBOQSU) exists for the 
SYMBOLIC QUEUE name in the CD, the 
SYMBOLIC SUB-QUEUE-1 through SYMBOLIC 
SUB-QUEUE-3 names are used to derive a 
VS JCL ddname value from the 
definition. 

2. If a queue structure defini tion does 
not exist for the SYMBOLIC QUEUE name 
in the CD and SYMBOLIC SUB-QUEUE-l 
through SYMBOLIC SUB-QUEUE-3 names 
contain spaces, the first eight 
characters of the SYMBOLIC QUEUE name 
are used as the ddname. 

3. If neither of the above steps yields a 
ddname, the queue is unknown (CD 
STATUS KEY = '20'). 

Any ddname produced by the algorithm 
above must have a corresponding DD card of 
the following format: 

I/ddname DD QNAME=procname 
[ , DCB=BLKSIZE=n ] 

where procname is the name of the TCAl! 
TPROC~SS Terminal Table entry with Which 
the input queue is to be associated, and n 
is the blocksize of the TCAM buffer used by 
COBOL~ The BLKSIZE parameter is only 
effective for the first input or output 
queue opened (COBOL uses a single buffer 
for all TeAM queues) and has a default 
value of 200. 

IQ~!i!Ying_!h~_Qy~g-2tru£iY£~~fi~itiQ~ 
Q..2.g_~~!: The gueue structure definitions 
created by the queue structure utility, 
ILBOQSU, are made available to COBOL by 
specifying the following DD card: 

I/COBTPQD DD data set information 

!§§Q£ig1inS-~RQL_~Y~~Qlic_~~Na~~2 
!:i.th.-1CA1L~QJ!!:£g2: The first eight 
characters of each symbolic source name 
used by COBOL must be the name of a TCAM 
TERMINAL or TPROCESS Terminal Table entry 
that can act as a source for incoming 
messages. No special DD cards are 
required. 

AS2Q£bgling COBOL Symbolic QgstiD~tiQU 
Names with TCAM Destinations: The first 
eight characters of each symbolic 
destination name used by COBOL must be the 
name of a TCAM TERMINAL or TPROCESS 
Terminal Table entry that can act as a 
destination for outgoing messages. In 
addition, the following DD card is 
required: 

IICOBTPOUT DD QNAME=procname 
[,DCB-BLKSIZE=N] 

WHERE PROCNAME IS THE NAME OF A TCAM 
TPROCESS Terminal Table entry that can act 
as a source for incoming messages and n is 
the blocksize of the TCAM buffer used by 
COBOL. The BLKSIZE parameter is only 
effective for the first input or output 
queue opened (COBOL use s a single buffer 
for all TCAM queues); it has a default 
value of 200. 

This DD card is also required if a CD 
FOR INITIAL INPUT is defined in the COBOL 
program and the program is scheduled by the 
CJS. 

~~£if~ing_the_~BAnk~LR12A~k~~~~~ 
Int~rfa£~: If ENABLE or DISABLE statements 
are to be executed by the COBOL program, 
the following DD cards are required: 

Using the Communication Feature 449 



//COBOPOUT DD 
//COBOPIN DD 

QNAME=procname-1 
QNAME=procname-2 

where procname-1 is the name of a TCAM 
TPROCESS Terminal Table entry defined as a 
secondary operator control station, and 

450 

procname-2 is the name of a TeAM TPROCESS 
Terminal Table entry to which operator 
command reply messages are to be sent (see 
"ENABLE/DISABLE: operator Command 
Interface") • 



IDENTIFICATION DIVISION. 
PROGRAM-ID. 

. T.ESTTP1. 
DATE-COMPILED. MAY 1, 1974 

001010 
001020 
001030 
001080 
001100 REMARKS. THE SAMPLE COBOL TELEPROCESSING PROGRAM THAT 

FOLLOWS SERVES AS A SIMPLE ILLUSTRATION OF THE COBOL TELE
PROCESSING FEATURE. THIS PROGRAM READS IN A FILE OF 50-
CHARACTER MESSAGES, TRANSMITTING THEM ONE BY ONE TO THE 
SPECIFIED DESTINATION. 

ENVIRONMENT DIVISION. 
INPUT-OUTPUT SECTION. 
FILE-CONTROL. 

001160 
001170 
001180 
001190 
001200 
001210 
002010 
002020 
002030 
002040 
002050 
002060 
002070 
003010 
003110 
003120 01 
003130 

* 003150 

SELECT MASTER-FILE 
ASSIGN TO UT-2400-S-TSTTP. 

DATA DIVISION. 
FILE SECTION. 
FD PIASTER-FILE 

RECORDING MODE IS F 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS RECORD1. 

01 RECORD1 PIC X(50). 
WORKING-STORAGE SECTION. 

IDE NT-S END. 
02 I-SEND PIC X(50). 

SET UP A WORK AREA OF 50 CHARACTERS 

* THE COMMUNICATION SECTION MUST BE SPECIFIED IN A COBOL PROGRAM 
* THAT IS TO UTILIZE THE COBOL TELEPROCESSING FEATURE. THE 
* COMMUNICATION DESCRIPTION (C~ ENTRIES THAT APPEAR IN THIS 
* GROUP OF SOURCE STATEMENTS ESTABLISH THE INTERFACE BETWEEN THE 
* COBOL OBJECT PROGRAM AND THE MESS AGE CONTROL PROGRAM (MCP). 

004010 COM!UNICATION SECTION. 
004120 CD CDNAME-OUT FOR OUTPUT 
004130 TEXT LENGTH IS TEXTLNTH-OUT 

* SPECIFY LENGTH OF OUTPUT MESSAGE. 
004140 STATUS KEY IS STATKY-OUT 

* PROVIDE INFORKATION ON PlESSAGE S?ATUS. 
004150 ERROR KEY IS ERRKY 

* PROVIDE ERROR INFORMATION. 
004160 SYMBOLIC DESTINATION IS SYKDES. 

* SPECIFY OUTPUT QUEUE. 
004170 
005010 PROCEDURE DIVISION. 
005020 START-JOB. 
005030 DISPLAY 'BEGIN TESTTP1'. 

* START THE COBOL TELEPROCESSING PROGRAM. 
005040 OPEN INPUT MASTER-FILE. 

* OPEN THE INPUT FILE. 
005045 READ-ROUTINE. 
005050 READ "ASTER-PILE INTO IDENT-SEND 
005060 AT END GO TO END-ROUTINE. 

* PLACE INPUT RECORDS IN A WORK AREA UNTIL END OF FILE IS 
* REACHED. 

006010 SEND-ROUTINE1. 
006020 MOVE 'Pl' TO SYMDES. 

* SET UP OUTPUT DESTINATION. 
006040 MOVE 50 TO TEITLNTH-OUT. 

* IDENTIFY MESSAGE LENGTH AS 50. 
006060 SEND CDNAME-OUT FROft IDENT-SEND WITH EM!. 

* TRINSMIT A COMPLETE MESSAGE. 
006070 PERPOIUI CHECK-SEND THRU CHECK-EXIT. 
006080 GO TO READ-ROUTINE. 

Figure 170. Creating a TCAM Data Set .for Testing without Terminals (Part 1 of 2) 

Using the Communication Feature 451 



* EXECUTE USER-WRITTEN CODE FOR CHECKING ON THE SUCCESSFUL 
* COMPLETION OF MESSAGE TRANSMISSION. IF END OF FILE IS 
* REACHED, GO TO END-OF-JOB BOUTINE. OTHERWISE, GET THE NEXT 
* RECORD. 

008010 CHECK-SEND. 
008020* 
008021* 
008022* 
008030* USER CHECKING ROUTINE FOR DETERMINING THE 
008040* SUCCESSFUL COMPLETIOH OF THE SEND. 
008050* 
008160 
008170 CHECK-EXIT. 
008180 EXIT. 

**008180* 
008190 
011110 END-ROUTINE. 
011111 CLOSE MASTER-FILE. 

* CLOSE THE INPUT FILE. 
011150 DISPLAY 'SUCCESSFUL END OF TES!TP1·. 

* TERMINATE THE PROGRAM. 
011160 STOP RUN. 

Figure 170. Creating a TCAM Data Set for Testing without Terminals (Part 2 of 2) 

452 



001010 
001020 
001030 
001080 
001100 

001120 
001130 
00 1170 
001180 
001190 
001200 
002010 

003110 

IDENTIFICATION DIVISION. 
PROGR A!!- I D. 

TESTTP2. 
DATE-COftPILED. MAY 1, 1974 
RE !!ARKS. THE S A!!PLE COBOL TELEPROCESSING PROGRAM THAT 

FOLLOWS SERVES AS A SIftPLE ILLUSTRATION OF THE COBOL TELE
PROCESSING FEATURE. TRIS PROG RAM SETS UP A DESTINATION 
FOR INCOMING MESSAGES, AND THEN READS THEM, ONE BY ONE, 
INTO A WORK AREA. THE PROGRAM BUILDS 50-CHARACTER MESSAGES 
AND SENDS THEM TO THE ftCP WITH THE END-OY-MESSAGE (EMI) 
INDICATOR. WHEN ALL THE INCOMING MESSAGES HAVE BEEN PRO
CESSED, THE MESSAGE 'SUCCESSFUL END OF TESTTP2' IS PRINTED 
ON THE CONSOLE, AND THE PROGRAM IS TERMINATED. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
INPUT-OUTPUT SECTION. 

DATA DIVISION. 
WORKING-STORAGE SECTION. 

{

003120 01 CD 003130 
003160 01 
003170 
003190 

IDENT-SEND. 
02 I-SEND PIC X(50). 
IDEN1'- REC. 
02 I-REC PIC X(50). 

* THE COMMUNICATION SECTION MUST BE SPECIFIED IN A COBOL PROGRAM 
* THAT IS TO UTILIZE THE COBOL TELEPROCESSING FEATURE. THE 
* COMMUNICATION DESCRIPTION (CD) ENTRIES THAT APPEA.R IN THIS 
* GROUP OF SOURCE STATEMENTS ESTABLISH THE INTERFACE BETWEEN THE 
* COBOL OBJECT PROGRAM AND THE MESSAGE CONTROL PROGRAM (MCP) • 

COMMUNICATION SECTION. 
004120 CD CDNAME-OUT FOR OUTPUT 
004130 TEXT LENGTH IS TEXTLNTH-OUT 

* SPECIFY LENGTH OF OUTPUT MESSAGE. 
004140 STATUS KEY IS STATKY-OUT 

* PROVIDE INFORMATION ON OUTPUT MESSAGE STATUS. 
004150 ERROR KEY IS ERRKY 

* PROVIDE ERROR INFORMATION. 
004160 SYflBOLIC DESTINATION IS SIMOES. 

* SPECIFY OUTPUT QUEUE. 
004110 

**004020 CD 
004030 

* 
004040 
004050 

* 004060 

* 004070 
* 

004080 

* 

CDNAHE-IN FOR INPUT 
SYMBOLIC QUEUE IS SYMQ 

IDENTIFY INPUT MESSAGE QUEUE. 
MESSAGE DATE IS MSGDATE 
MESSAGE TIME IS MSGTIME 

PROVIDE DATE AND TIME OF RECEIPT OF MESSAGE. 
SYMBOLIC SOURCE IS SY~SOURCE 

IDENTIFY THE MESSAGE SOURCE. 
TEXT LENGTH IS TEXTLNTH-IN 

SPECIFY THE EXPECTED LENGTH OF INPUT ftESSAGE. 
END KEY IS ENDKY 

PROVIDE CODE FOR ACTIVATING END-OF-JOB ROUTINE. 
** FOR A RECEIVE MESSAGE: 

* 
* 
* 

A CODE OF 3 INDICATES END OF GROUP (EGI). 
A CODE OF 2 INDICATES END OF MESSAGE (EMI). 
A CODE OF 0 INDICATES RECEIPT OF LESS THAN A MESSAGE. 

** FOR A RECEIVE SEGMENT: 

* 
* 
* 
* 

A CODE OF 3 INDICAT.ES END OF GROUP (EGI). 
A CODE OF 2 INDICATES END OF MESSAGE (EMI). 
A CODE OF 1 INDICATES END OF SEGMENT (ES!) 
A CODE OF 0 INDICATES RECEIPT OF LESS THAN A SEGMENT. 

Figure 111. A COBOL Program That Processes TCAM Messages (Part 1 of 2) 

Using the Communication Feature 453 



** HIERARCHY -- 0, ESI, EMI, ETI-WHEN MORE THAN ONE CONCURRENTLY-
* HIGH LEVEL APPEARS. 

004090 STATUS KEY IS STATKY-IN 
• PROVIDE INFORMATION ON INPUT MESSAGE STATUS. 

004100 MESSAGE COUNT IS MCOUNT. 
* SPECIFY MESSAGE COUNT FOR INPUT QUEUE. 

004110 
**002100 

PROCEDURE DIVISION. 
DISPLAY 'BEGIN TESTTP2'. 

RECV-DATA. 
009040 MOVE 'Q1' TO SYMQ. 

* SET UP INPUT DESTINATION. 
~ 009050 RECEIVE CDNAME-IN MESSAGE INTO IDENT-REC 

009055 NO DATA GO TO END-ROUTINE. 
* ACCEPT INPUT MESSAGES, ONE BY ONE, AS ON A SEQUENTIAL FILE. 
* WHEN ALL MESSAGES HAVE BEEN PROCESSED, INVOKE END-OF-JOB 
* ROUTINE. 

009060 CHECK-RECEIVE. 
009070* 
00~080* USER CHECKING ROUTINE FOR DETERMINING THE 
009090* SUCCESSFUL COMPLETION OF THE RECEIVE. 
009100* 
009110 PROCESS-DATA. 
009120* 
009130* USER ROUTINE TO BUILD MESSAGE TO BE SENT. 
009140* 

**006010 SEND-ROUTINE1. 
006020 MOVE 'P2' TO SYMDES. 

* SET UP OUTPUT DESTINATION. 
* NOTE: FOR THE NON-TEFMINAL AND PARTIAL TERMINAL SITUATIONS, 
* 'P2' SHOULD BE SPECIFIED AS THE SYMBOLIC DESTINATION. FOR 
* A COBOL PROGRAM RUNNING WITH TERMINALS, 'T1' SHOULD BE 
* SPECIFIED. 

006040 MOVE 50 TO TEXTLNTH-OUT. 
* SPECIFY LENGTH OF OUTPUT MESSAGES. 

~ 006060 SEND CDNAME-OUT FROM IDENT-SEND WITH EMI. 
* TRANSMIT FORMATTED MESSAGE, WITH THE CODE FOR A COMPLETE 
* MESSAGE. 

006070 

* 
* 006090 

007120 

PERFORM CHECK-SEND THRU CHECK-EXIT. 
INVOKE USER-WRITTEN ROUTINE FOR CHECKING MESSAGE TRANSMISSION. 
ACCEPT THE NEXT MESSAGE FROM THE INPUT QUEUE. 

GO TO RECV -DAT A. 

008010 CHECK-SEND. 
008020* 
008030* USER CHECKING ROUTINE FOF DETERMINING THE 
008040* SUCCESSFUL COMPLETION OF THE SEND. 
008050* 
008170 CHFCK-EXIT. 
008180 EXIT. 
008190 
011110 END-ROUTINE. 
011150 DISPLAY 'SUCCESSFUL END OF TESTTP2'. 
011160 STOP RUN. 

Figure 171. A COBOL Program That Processes TCAM Messages (Part~2 of 2) 

454 



J2~fini.ng:~~.£2!lttQ!~lQ£'!§: In the 
KCP the user must also code a process 
control block (PCB) for each active 
application program running with the KCP. 
The PCB macro specifies the name of the PCB 
process control block generated by the 
macro. The process control block is 
referred to in the TPROCESS macro (see 
"Defining the Kep Data sets and Process 
cont rol Blocks"). 

The COBOL programmer coding a program 
for a teleprocessing application 
initializes work,areas, CD ' and activates 
the COBOL program as for any other QS/VS 
application. In this application, the job 
begins with the use of the DISPLAY 
statement "BEGIN TESTTP2," 0.. The COBOL 
programmer need not be concerned with how 
the interface is activated. The interface 
is activated when the first RECEIVE or SEND 
sta temen t is issued. 

l[sBsfer£ing Messages betveen_lh~£QBO~ 
U2.9.a!!L9.Jl d the MC E. 

TCAK enables the applicat ion programmer 
to obtain messages from the KCP and to 
return response messages to the Mep. 
Specifically. the COBOL programmer can use 
either the RECEIVE statement or the SEND 
sta tellentto transfer data between the MCP 
and the COBOL program, depending on the 
direction of the flow of data. 

Ike RECEIVE ~tatemen!: This COBOL source 
statement causes transmission of message 
data from an input queue to a 
user-specified work area in the COBOL 
program. In the sample COBOL 
teleprocessing program shown in Figure 166, 
the RECEIVE statement, ® ' transfers data 
from the input queue referred to by SIMQ to 
a work area. The COBOL sentence before the 
RECEIVE statement is "MOVE '01' TO SIMQ," 
so the data is received froll Q1. 

Ihe S~ND ~tatement: The COBOL source 
statement causes data from the COBOL 
prograll to be placed in an output queue for 
subsequent transmission. Accordingly, when 
the outgoing message has b~ formatted, 
the sample SEND statement, ~ , transmits 
it to the output destination referred to by 
SYftDES. ~he end-of-message indicator (EMI) 
signals a complete message. The first 
sentence in the paragraph labeled 
"SEBn-ROU'rINE1" is "MOVE 'P2' TO SI!DES." 
so the data is sent to P2. 

• For an additional example of the format 
of the RECEIVE statement and the SEND 
statement, see the section "Procedure 
Division" in the chapter on 
"programming Techniq~es". 

• The amount of data transferred from the 
Kep to a COBOL pr6gram by a single 
RECEIVE statement, or transferred from 
an application program to the MCP by a 
single SEND statement, is called a 
"work unit". Each work unit is 
processed in a user-desianated work 
area in the COBOL program. 

Deactivati~he I~te£!~~ 

As in all American National Standard 
COBOL programs, the teleprocessing 
application user returns control to the 
s~tem by issuing a STOP RUN statement, 
®. 
!Qt~: So that the COBOL program can give 
control to the STOP RUN statement, the MCP 
writer should include in the message header 
a special code for the COBOL program. 
Although the sample MCP (Figure 160) has an 
action code field which includes such a 
code lnthe section of comments immediately 
preceding the MH1050 message handler, 13 
Figure 166 gives control to the STOP RUN 
statement only when there is no more data. 
This technique is acceptable for a COBOL 
program that receives a fixed amount of 
data, i.e., a program that is not 
continually looping waiting for data. 
Alternatively, the MCP macro SETEOF can be 
used to cause an EGI, which could be used 
as an indication that STOP RUN processing 
should be initiated. 

The information that follows is a 
summary of miscellaneous recommendations 
and/or restrictions that apply to the 
communication between the message control 
program and the COBOL a pplication program. 

1. The parameter DATE=YES must be coded 
in all input TPROCESS entries whose 
destination is a COBOL program and the 
parameter is also required in the PCB 
macro referenced by the TPROCESS 
macro. Inclusion of this parameter 
causes the date and time of message 
entry to be placed in the MESSAGE DATE 
and ftESSAGE TIftE clauses of the input 
CD (see "Communication section" in the 

Using the Communication Feature 455 



chapter entitled "Programming 
Techniq ues") • 

2. The RECDEL= parameter must be coded in 
the TPROCESS macro of the MCP if the 
COBOL programmer is to accept (via the 
RECEIVE statement) or transmit (via 
the SEND statement) data in SEGMENT 
mode. The user may either include in 
the incoming message the delimiter 
specified in this parameter or insert 
it via a PlSGEDIT macro (see the 
section "Designing the Message 
Handler" in this chapter). 

3. The INITIATE macro cannot be used in a 
message handler for messages whose 
destination is a COBOL program. This 
macro would cause the MCP to transmit 
segments of a message to a destinat.ion 
queue'· before receiving the complete 
message. American National standard 
COBOL, on the other hand, assumes that 
a complete message has been enqueued. 

4. American National standard COBOL 
removes the last character of a 
message if it is X'37' (which is the 
EBCDIC representation for the EOT 
character). This is the last 
character of a message from a terminal 
that has been translated in the MH of 
the MCP via the CODE macro, or that is 
not processed in conversational mode 
(which would have been specified by 
coding CONV=YES in the STARTMH macro). 

5. An execution of the RECEIVE statement 
with the SEGMENT option results in the 

456 

setting of the ESI (end of segment) 
indicator if end of segment is 
reached. When end of segment is also 
end of message, an end key of 2 
indicating EMI is given. If the last 
two characters in the message are an 
end segment indicator and the end of 
messaqe cha.racte.r, the user will 
receive the ESI indication first. 
Another RECEIVE will be necessary to 
receive the EMI indication. The 
RECEIVE from the EMI indication will 
set the TEXT LENGTH field of the input 
CD to zeros. 

6. For a message transmitted from a COBOL 
program to the location specified in 
the SYMBOLIC DESTINATION clause of an 
output CD, the FORWARD macro in the 
inheader subgroup of the MH for the 
COBOL program must specify DEST=PUT'as 
its operand. 

TeAM allows for a variety of services in 
support of a COBOL communication system. 
Some of these services are provided 
automatically; others the user must 
specify. Some of the TCAM services are the 
following: operator control, error 
recovery, checkpoint/restart, message 
logging, debugging aids, and an on-line 
test feature. All of these TCAM aids are 
discussed in the publication OS/iS TCA!!. 
~Q~~'s GYi~~. 



This chapter contains information 
concerning system requirements for the 
COBOL compiler, execution time, and the 
sort/merge fea ture. Additional information 
for use in estimating the main and 
auxiliary storage requirements is contained 
in the publication Q~~-&2~Q1~QmE!ler Ang 
1iR!:a,y Instlllation_Ref~!rn.£~-11aterlll. 

MINIMUM MACHINE REQUIREMENTS 

The basic system requirements for use of 
the COBOL compiler are: 

• A system/370 model, with the standard 
and decimal instruction sets. The 
floa ting-point instr uction set is 
required if floating-point data items 
and fractional exponents are used in 
the program. 

• Compiler Work Files -- Six utility data 
sets named SYSUT1, SYSUT2, SUSYT3, 
SYSUT4, SYSUT5 (if the SIMDMP option is 
specified) and SYSUT6 (if LYL option is 
specified). At least one mass storage 
device, such as an ISM 3340 Direct 
Access Storage Facility storage Drive, 
for residence of the operating system 
and SISUT1. Both the operating system 
and SUSYT1 may reside on the same 
volume. The data sets SYSUT2, SISUT3, 
SYSUT4, SYSUT5 and SYSUT6 can reside on 
tape or on mass storage. If they 
reside on tape, there must be a tape 
volume for each data set. If they 
reside on mass storage, there must be 
enough space on the volume to 
accommodate the data sets. 

• A device, such as the 3215 
Printer-Keyboard,fo'r direct operator 
communica tion. 

• A device, such as a card reader or a 
tape unit, for the job input stream. 

• A printer or tape unit for the system 
output file. 

COMPILER SIZE REQUIREMENTS 

At least 128K (131,012) bytes should be 
allocated in the SIZE option of the EIEC 
job control card that requests execution of 
the compiler. If less than this is 
specified, the system assumes the default 
value of 128K. 

In most instances, the compiler will 
perform adequately with a 1.28K SIZE. 
Hovev~r, compiler efficiency usually 
increases with a larger SIZE allocation. 
This is because of the availability of 
larger buffers for compiler files, and/or 
the reduction or elimination of dictionary 
spills. Also, certain situations may make 
a larger SIZE specification not only 
preferable but necessary; for example: 

• A large or complex source program. 
compiling such a program requires more 
space for compiler internal tables. 

• User-specified compiler SYSUT data set 
blocking factors that require large 
buffers (see Appendix D). 

On the other hand, while a generous SIZE 
allocation is usually advantageous, it must 
not exceed the amount of contiguous problem 
program storage available to the compiler 
in the region or partition. The following 
calculation can be used to obtain a rough 
approximation of the maximum SIZE 
allocation possible: 

SIZE = REGION - X - N 

where 

x = total sizes of any other programs 
in the region (zero if the 
compiler is alone) 

N 6K for VS2 
6K + (SiA if used) + (any job-step 
overhead) for VS1 

The variable N accounts for storage used or 
fragmentation caused by the operating 
system. Under VS1, if the compiler is not 
the first job step, earlier job steps may 
have caused additional storage to be used 
or fragmented by the system, and this 
storage may not be freed until job 
termination. (This indefinite loss is 
noted in the above calculation as 'job-step 
overhead.') 

C01tPILAT!Q!!: If the compiler is being 
executed under 05/VS2, the REGION 
parameter, specified as 128K bytes in the 
COBUC anc. COBUCLG cataloged procedures, 
becomes Hignificant (see the section nUsing 

Machine Considerations 451 



the cataloged Procedures"). If the 
programmer wishes to override this value, 
he can specify a region size in either the 
JOB statement or in the EXEC statement of 
the compiler. The size specified should 
not be less than the value of SIZE in the 
PARM field of the EXEC statement. 

The following examples illustrate both 
the default and the ove.rride cases: 

//JOBl JOB 1234,J .SMITH 
/ISTEP1 EXEC COBUC 

In this example, the programmer 
accepts the REGION default value of 
128K specified in the eOBUC cataloged 
procedu re. 

I/JOB2 
IISTEPl 
II 

JOB 1234,J.SMITH 
EXEC COBUCLG,REGION=196K, 

PARM.COB:'SIZE=196K' 

In this example, the REGION default 
value is overridden. 

~!ECUTI01i: Priority schedulers reqllire 
tha t the REGION parameter be specified for 
execution of object programs, unless the 
programmer is willing to accept default 
reg ion size •. The defa ul t value is 
established in the input reader procedure. 
The region size needed for the execution of 
the object program is the sum of the 
following values: 

1. The size of the object module after it 
has been link-edited with all of the 
necessary object time subroutines. 

2. The size of the input/output buffers 
being used, multiplied by the blocking 
factor {physical se qu en tial files are 
double buffered if no blocking factor 
is spec ified) • 

3. The size of the data management 
routines and control blocks that are 
used (see the publication 05/V52 
stora~~imat~). 

4. Any GETftAIN macro inst.ruction executed 
for USE LABELS, etc. 

5. An additional 6K bytes. 

6. If the Sort/Merge feature is used, 
15.360 bytes plus any additional main 

458 

storage assigned via the 
SORT-CORE-SIZ E special register. 

Intermediate Data 5ets Under OS/VS~ 
ReleMU 

SYSIN and SYSOUT data resides in 
intermediate direct-access data sets. 
These data sets are used by the system to 
temporarily hold all of the job's input and 
output data. For SYSOUT, the programmer 
must use override statements as described 
in "Using the cataloged Procedures." 

output is placed in the SYSOUT 
intermediate data set. Since nothing is 
written out until the completion of the 
job, the programmer must make sure that the 
SYSOUT data set is large enough to hold all 
of the possible output data of his program. 
The SPACE parameter of the DD statement is 
specified for SYSOUTvith a specified 
default value. If the programmer 
determines that his output will exceed the 
deta ul t value, he can do ei ther or both of 
two things: 

1. S peci fy blocking of his da ta set wi th 
the DCB parameter of an override DD 
statement 

2. override the compilation step of a 
compiled procedure by specifying the 
SPACE parameter. An example of a 
statement that can be used is: 

/ICOB.SYSPRINT DD SPACE=(121,(500,50»,. 
/ / UNIT=SYS5Q 

!Qte: I.f the TRK or CYL subparalleters of 
the SPACE parameter are used, the 
programmer should be aware that requests 
viII differ depending upon the mass storage 
device used (2314, 3330 ••• , etc.). To 
avoid this consideration, the average 
record-length subparameter can be used. 

EXECUTION TIfiE CONSIDERATIONS 

The amount of main storage must be 
sufficient to accommodate at least: 

• The control program 

• Data management support 

• The load module to be executed 

When the OPTlflIZE option is specified, 
the number of procedure blocks in the 
program cannot exceed 255. A procedure 
block is approximately 4096 bytes of 
Procedure Division code. 



COBOL programs compiled with any of the 
symbolic debuggi~g options (STATE, FLOW, 
51ltDMP) have execution time requirements 
that differ from those of similar programs 
compiled without these options. If the 
Slf!DMP option is in effect, the data se-t it 
required at compile time (5Y5UT5) must be 
present at execution time. 

The total space required for object-time 
debugging should be calculated as follows: 

5 
T5 

5 
DBG 

+ 

5 
FLW 

5 
5TN 

+ [: SYMDMP] 
- 5TN 

S + [5 ] 
- 5YMDMP FLW 

,.- 1 

I where: I 
I 

5 

S 

S 

S 

5 

I 
I 

T5 = the total space I 
J 

• DBG = the space allocated once and I 
only once for a run containing I 
a ny object-time debugging I 
options f 

J 
I 

FL1I = the space required for the PLOW, 
option 

STH = the space required 
5TATE option 

SYMDMP = the space required 
SYMDMP option 

• 5 = 3700 bytes 
DBG 

for the 

for the 

• S =(1208 + 4*nn + 10*P) bytes 
lLV 

where 

, 
I 
I 
I 
J 
t 
I 
I 
I 

nn = the number specified in the 
FLOW=nn paralleter of the EXEC 
job control statement 

P = the total number of 
paragraph- names in a COBOL 
program 

• 5 =(812 + 5*V) bytes 
5TH 

, 

where 

" = the number of verbs in the 
COBOL program (a number that 
is approximately equal to the 
number of statements in the 
program) 

• 5 =(11250 + 5 
5YMDMP TABLES 

+5 ) bytes 
DM 

-, 
I where 
I 

I 
J 

IS • I TABLES = the size of tables for SYMDMP 1 
I 
IS 

I 
I 

I DM = 
I 

the size of data management t 
required for SYMDMP t 

-----' 

5 =(12*PC+[19*LC+[8*ON]+7*id]+{S Dbytes 
TABLES ODOTAB 

where 

PC = the number of program control 
cards 

LC = the number of line control cards 

ON the number of line control cards 
with ON options 

id = the number of identifiers 
requested on line-control cards 

5 
ODOTAB = the size of ODOTAB on the 

debug file (approximately 27 
times the number of unique 
objects of OCCURS DEPENDING ON 
statements). 

S =(818+5 + [5 ])bytes 
DK BSAK QSA! 

where 

S 

5 

BSAM = 800 bytes = the space required 
for BSAM modules (when not in the 
LPA) 

QSAM = 1424 bytes = the space 
required for QSAM modules (when 
not on the LPA) and no QSAM files 
are used in the prog.ram 

The input/output device requirements for 
execution of the problem program are 
determin~d froll specifications made in the 
Environment Division of the source program. 

Machine Considerations 459 



SORT/HERGE FEATURE CONSIDERATIONS 

The basic requirements for use of the 
Sort/Berge feature are: 

• A System/370 with sufficient main 
storage to accommodate the load module 
to be executed, plus a minimum of 
32,000 bytes for execution of the 
sort/merge program, and any additional 
main storage assigned to the sort/merge 
program via the SORT-CORE-SIZE special 
register. 

460 

• At least one mass storage device (which 
may be the system residence device) for 
residence of SYS 1. SORTLI B. 

• At leastth.ree tape units or one .ass 
storage device for intermediate 
storage. 

• The OS/VS sort/lterge program product, 
S740-SM1. (If only the Sort feature is 
to be used--without alternate collating 
sequence and without Merge--then the OS 
sort/Merge program product, 5734-SM1, 
would suffice as well.) 



The following is a sample COBOL program 
and the output listing resulting from its 
compilation, linkage editing, and 
execution. The program creates a blocked, 
unlabeled, physical sequential file, writes 
it out on ta pe, and then reads it back in. 
It also does a check on the field ca.lled 
NO-OF-DEPENDENTS. All data records in the 
file are displayed. Those with a zero in 
the lfO-OF-DEPENDElfTS field are displayed 
with the special character Z. The records 
of the file are not altered from the tise 
of creation, despite the fact that the 
NO-OF-DEPEIDENTS field is changed for 
display purposes. The individual records 
of the file are created using the 

IDENTIFICATION uiVISION. 
PROGRAM-ID. TE~TRUN. 

AUTHOR. PROGRAMMER NAME. 
INSTALLATION. NE~ YORK PROGRAMMING CENTER. 
DATE-WRITTEN. JULY 12, 1968. 

DATE-COMPILED. AUG 6,1976. 

subscripting technique. TRACE is used as a 
debu9ging aid during program execution. 

The output formats illustrated in the 
listiog are described in "output." 
Indi~idual parts of the listing are 
numbered in accordance with the numbers 
used in the chapter "Output." 

Note: This program contains a logic error 
that causes abnormal termination at 
execution time so that the use of program 
checkout facili ties can be illustrated. 
See the chapter "symbolic Debugging 
Features." 

"eeel 
00C02 
0(,003 
000e4 
000e5 
OOCCb 
00v07 
ooeee 
(;(;OC9 
eOCIO 
00011 
00012 
00013 
eOC14 
O()OlS 
0(;C16 
ooeH 
00e18 
oec 19 
C0020 
00021 
COC2~ 
0002.3 
00024 
00025 
00C20 
o()cn 
..1(.1028 
00029 
C('C30 
il{;031 
OOC~2 
(;OC33 
00034 
C0035 
li0036 
00037 
;;('C~8 

00C39 
00040 
OOCH 
00042 
00C43 
0(.lC44 
J0045 
CC(46 
ooe41 
oeC48 
'CC49 
C0050 
OOOH 
00C!2 
J(;O!3 
eOC!4 

10001", 
10002", 
10003v 
10004v 
10005", 
10006u 
10007v 
10008v 
10009", 

REMARKS. THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR 
COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS 
INPUT. 

10010v 
10011", 
10012", 
10013v 
10014v 
10015", 
10016u 
10017", 

l()018v 
10019" 
10020", 
10021u 
10022", 
10022;:) 
10023'" 
10024" 
HJO~5" 
10026'" 
10027", 
10028u 
10029", 
10030u 
10031u 
1(;032", 
10033" 
10034.; 

10035.; 
10036'" 
!(l037", 
10037;:) 
10038u 
10039j 
lO040') 
10041",-
10042", 
10044v 
10045", 
10046", 
100471.1 
10048u 
10049", 
10050", 

ENVIRONMENT DIVlSIuN. 
CONFIGURATION S~CTION. 

SDURCE-COMPUT~R. IBM-360-H50. 
OBJEC T-COMPUTt:R. IBM-360-H50. 

INPUT-OUTPUT SE~TION. 

F I LE-C ONT ROL. 
SELECT FILE-l ASSIGN TO UT-2400-S-SAMPLE. 
SELECT FILE-2 ASSIGN TO UT-2400-S-SAMPLE. 

DATA DIVI SlONe 
fIlE SECTION. 
FD FILE-l 

LA8EL RECORuS ARE OMITTED 
BLOCK CONTAlNS 100 CHARACTERS 
RECORD CONTAINS 20 CHARACTERS 
RECORDING MuDE IS F 
DATA RECORD IS RECORD-l. 

01 RECORD-l. 
02 FIELD-A PICTURE IS X(201. 

FD, F ILE-2 
LABEL RECORuS ARE OMITTED 
BLOCK CONTAlNS 5 RECORDS 
RECORD CONTAINS 20 CHARACTERS 
RECORDING MUDE IS F 
DATA RECORD IS RECORD-2. 

01 RECORD-2. . 
02 FIELD-A PICTURE IS X(201. 

WORKING-STORAGE SECTION. 
77 KOUNT PI~TURE S99 COMP SYNC. 
77 NOMBER PICTURE S99 COMP SYNC. 

01 FILLER. 
02 ALPHABET PICTURE X(26) VALUE "ABCDEFGHIJKLMN[)PQRSTUVWXYZ". 
02 ALPHA REuEFINES ALPHABET PICTURE X OCCURS 26 TIMES. 
02 DEPENDENrS PICTURE X(261 VALUE "0123401234012340123401234 
"0". 
02 DEPEND R~DtFINES DEPENDENTS PICTURE X OCCURS 26 TIMES. 

01 WORK-RECORu. 
02 NAME-FIELD PICTURE X. 
02 FILLER P!CTURE X VALUE IS SPACE. 
02 RECORD-Nu PICTURE 9999. 
02 FILLER P!CTURE X VALUE IS SPACE. 
02 LOCATION PICTURE AAA VALUE IS "NYC". 
02 FILLER P,CTURE X VALUE IS SPACE. 

o 

Appendix A: Sample Program Output 461 



00055 
00C56 
ace 57 
00058 
OCOS9 
oeceo 
00C61 
000e2 
cect..; 
00064 
('CCt5 
uuCH 
00C67 
0':;C68 
00e(:9 
00C70 
OCe 71 
0('072 
OCCB 
0{)C74 
CCC75 
(;OC76 
00077 
oce HI 
OCC 79 
C0080 
00081 
00C82 
00CI:3 
OOCH 
00((5 
OOCH 

462 

100S1~ 02 NO-OF-DEPENDENTS PICTURE xx. 
10052u 02 FILLER PlCTURE X(7) VALUE IS SPACES. 
100521 01 RECORDA. 
10052, 02 A PI~TUKE S9(4) VALUE 1234. 
100S2~ 02 B R~uEFINES A PICTURE S9(7) COMPUTATIONAL-3. 
l0053v PROCEDURE DIVISlON. 
10054v BEGIN. 
l0055u* TnE FOLLOWING OPENS THE OUTPUT FILE TO BE :REATED 
lOOS6u * AND INlTIAUZES COUNTERS. 
10057v STEP-l. OPEN OUTPUT FILE-1. MOVE ZERO TO KOUNT NOMBER. 
100S8v* THE fOLLOWING CREATES INTERNALLY THE RECORDS TO BE 
l0059v* CONTAINED ll~ THE FILE, WRITES THEM ON TAPE, ANO DISPLAYS 
10060u* THEM ON THE CONSOLE. 
!006lu STEP-2. ADD 1 Tu KuUNT, ADD 1 TO NOMBER, MOVE ALPHA (KOUNT) TO 
l0062~ NAME-fIELD. 
lC063u MOVE DEPEND (KuUNT) TO NO-OF-DEPENDENTS. 
10004v MOVE NOMBER TO RECORD-NO. 
1006Sv STEP-3. DISPLAY WORK-RECORD UPON CONSULE. WRITE RECORD-1 fROM 
10066u WORK-RECORD. 
10067v STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL KOUNT IS EQUAL TO 26. 
10008v* THE fOLLOWING CLOSES OUTPUT AND REOPENS IT AS 
10C69V* INPUT. 
10070u STEP-So CLOSE f~lE-1. OPEN INPUT FILE-2. 
10071u* THE FOLLOWING READS BACK THE FILE AND SI~GLES OUT 
10072U· EMPLOYEES WlTH NO DEPENDENTS. 
10073v STEP-6. READ FI~E-2 RECORD INTO WORK-RECORD AT END GO TO STEP-8. 
l0073~ COMPUTE 0 = B + 1. 
10074v STEP-7. IF NO-~f-D~PENDENTS IS EQUAL TO "0" MOVE HZ" TO 
lCC7Sv NO-OF-DEPENuENTS. EXHIBIT NAMED WORK-RECORD. GO TO 
10070u STEP-b. 
10077v STEP-8. CLOSE fAlE-2. 
10078u STOP RUN. 

I NTKNL NAME 
DNM=1-J.48, 
DNM=1- ... 68 
DNM=1-J.89 
DNM=.L-~06 
DNM=1-,26 
DNM=1-,,47 
DNM=1-,b7 
DNM=l-d>2 
DNM=1-~98 
DNM=1-.;.L2 
ON/II=1-.:>30 
DNM=1-.;48 
DNM=1-.:>68 
ONM=l-.;84 
DNM=1-.. 08 
DNM=1--.28 
DNM=1-'t42 
DNM=1-'t01 
DNM=1-.. 75 
DNM=1-.. 93 
DNM=2-uOO 
DNM=2-U26 
DNM=2-u40 
DNM=2-u60 
DNM=~-v71 

LVL SOURCe: NAME 
fD FIlE-~ 

01 RECORLl-1 
02 fIELD-A 
fD FILE-~ 
01 RECORIJ-2 
02 fIELD-A 
77 KOUNT 
77 NOMBEK 
01 FlLLEK 
()2 ALPHAoET 
02 ALPHA 
02 DEPEN~ENTS 
02 DEPENLl 
01 WORK-KECURD 
02 NAME-dElD 
02 FILLEn. 
02 RECORu-NU 
02 fIlLEo{ 
02 LOCAT lON 
02 FlllEri. 
02 NO-Of-D~PENDENTS 
02 FILLEK 
01 RECORJA 
02 A 
02 B 

BASE 
OCB=01 

BL=1 
BL=l 

DCB=02 
BL=2 
Bl=2 
BL=3 
BL='3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
Bl=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
6L=3 

OISPl 

000 
000 

000 
000 
000 
002 
008 
008 
008 
022 
022 
040 
040 
041 
042 
046 
047 
04A 
04B 
040 
058 
058 
058 

I NTRNL NAME 
DNM=1-148 
DNM=1-168 
DNM=I-189 
DNM=l-206 
ONM=1-226 
DNM=1-247 
DNM=1-267 
DNM=1.,..282 
DN!o1=1-298 
DNM=I-312 
DNM=1-330 
DNM= 1-348 
ONM=I-368 
DN!o1= 1-384 
DNM=1-ftOS 
ONM=1-42B 
ONM=1-442 
ONM=1-461 
DNM=1-47S 
ONM=lt493 
DNM=2-000 
ONM=2-026 
ONM=2-0ftO 
ONM=2-060 
DNM=2-01l 

DEFINITION 

OS OCL20 
OS 20C 

OS OCL20 
OS 20C 
OS 1H 
OS IH 
OS OCL52 
OS 2bC 
OS IC 
OS 26e 
OS 1C 
OS OCL20 
OS 1C 
OS IC 
OS 4C 
OS 1C 
OS 3C 
OS 1C 
OS 2C 
OS 7C 
OS OCLft 
OS 4C 
OS 4P 

L1SAGE 
QSAM 
GROUP 
DISP 
QSAM 
GP.OUP 
OISP 
COMP 
COMP 
GROUP 
OISP 
OISP 
OISP 
DISP 
GROUP 
OISP 
DtSP 
DISP-NM 
DISP 
DISP 
OISP 
OISP 
DISP 
GROUP 
DISP-NM 
COMP-3 

R 0 Q 1Il 

R 0 

P. 0 

F 

F 



MEMORV MAP 

TGT 00318 

SAVE AREA 00318 
SWITCH 00360 
TAllY 00364 
SORT SAVE 00368 0 
ENTRY-SAVE 0036C 
SORT CORE SIZE 00370 
RET CODE 00374 
SORT RET 00376 
WORK ING CELLS 00378 
SORT FILE SIZE 004A8 
SORT MODE SIZE 004AC 
PGT-VN T8l 004BO 
TGT"VN TBl 004B4 
RESERVED 004B8 
LENGTH OF VN TBL 004BC 
LABEl RET 004BE 
RESERVED 004BF 
08G R14SAVE 004CO 
COBOL INDICATOR 004C4 
AUNITlJ 004C8 
DEBUG TABLE PTR 004CC 
SUBCOM PTR 00400 
SORT-MESSAGE 00404 
SYSOUT DDNAME 004DC 
RESERVED 00400 
COBOL 10 004DE 
COMPILED POINTEK 004EO 
COUNT TABLE ADDKESS 004E4 
RESERVED 004Ea 
OBG RllSAVE 004FO 
COUNT CHAIN ADD~ESS 004F4 
PRBll CELL PTR 004F8 
RESERVED 004FC 
TA LENGTH 00501 
RESERVED 00504 
PCS LIT PTR 0050C 
DEBUGGING 00510 
CO FOR IN IT IAL INPUT 00514 
OVERFLOW CELLS 00518 
Bl CEllS 00518 
DECBADR CELLS 00524 
FIB CELLS 00524 
TEMP STORAGE 00528 
TEMP STORAGE-2 00530 
TEMP STOAAGE-3 00530 
TEMP STORAGE-4 00530 
BLL CELLS 00530 
VLC CELLS 00538 
SBL CELLS 00538 
INDEX CEllS 00538 
SUBADR CEllS 00538 
ONCTL ceLLS 00540 
PFMCTL CELLS 00540 
PFMSAV CELLS 00540 
VN CELLS 00544 
SAVE AREA .. 2 0054C 
SAVE AREA "3 0054C 
XSASW ceLLS 00554 
XSA CELLS 00554 
PARAM CELLS 00554 
RPTSAV AREA 00558 
CHECKPT CTR 00558 
DEBUG TABLE 00558 

Appendix A: Sample Program output 463 



61 *BEGII'4 
0005E4 PN=02 o EQU * 
0005E4 START EQU • 
0005E4 58 BO ( 080 l 11,080(0,12) PBl=l 
0005E8 58 FO ( 024 l 15,024(0,12) V(IlBOFlWU 
0005E( 05 IF BAlR 1,15 
0005EE 00uOO030 DC X'00000030' 

64 *STEP-l 
0005F2 PN=03 EQU * 
O,005F2 58 FO e 024 l 15,024(0,12) V( IlBOFlWU 
0005Fb 05 IF BAlR 1,15 
0005F8 00uOO040 DC X'OOOOO040' 

64 OPEN 0005FC 5d FO C 028 l 15,028(0,12) V (Il BOOBG4) 
000600 05 EF BAlR 14,15 
000602 58 10 C 040 l 1,040(0,121 OCB=l 
000606 58 40 1 024 l 4,024(0,1) 
00060A 0.2 02 4 011 C 020 Mve 01U 3,41 ,020( 121 V( IlBOEXTOI 
000610 50 10 o 234 Sf 1,234(0,13) SA3=1 
000614 92 OF o 234 MVI 234( 131 ,X' OF' SA3=1 
000618 96 80 o 234 01 234( 131 ,X'80' SA3=1 
00061( 41 10 o 234 lA 1,234(0,13) SA3=1 
000620 02 03 o 060 C 057 Mve 060(4,131,051(121 WC=Ol LIT+7 
000626 58 FO C 030 l 15,030(0,121 V( IlBOQIOOI 
OD062A 05 EF BAlR 14,15 
00062( 58 10 C 040 L I, 040 ( 0, 12 I DCB=l 
000630 02 03 0 060 C 058 MVC 060(4,131,05B(121 WC=Ol LIT+ll 
000636 58 Fa C 030 l 15,030(0,121 V( IlBOQIOOI 
00063A 05 EF BM..R 14,15 
D0063C 58 10 0 200 l 1,200(0,131 Bl =1 

64 MOVE 000640 02 01 6 000 C 050 Mve 000(2,61,050(121 DNM=1-267 lIT+O 
000646 02 01 6 002 e 050 Mve 002(2,61,050(121 DNM=1-282 LI HO 

68 *STEP-2 
00064e PN=04 EQU * 00064C 51:! FO C 024 l 15,024(0,121 V( IlBOFUHI 
000650 05 IF BAlR 1,15 
000652 00~00044 DC X'OOOOO044' 

68 AOO 000656 48 30 C 052 LH 3,052(0,121 lIT+2 
00065A 4A 30 6 000 AH 3,000(0,61 DNM=1-267 
00D65E 40 30 6 000 STH 3,000(0,61 DNM=1-267 

68 ADD 000662 48 30 C 052 LH 3,052(0,121 LlT+2 
000666 4A 30 6 002 AH 3,002(0,61 DNM=1-282 
00066A 40 30 6 002 STH 3,002(0,61 ONM=1-282 

68 MOVE 00066E 41 40 6 008 lA 4,008(0,61 DNM=1-330 
000612 48 30 6 000 lH 3,000(0,61 DN,I4=1-267 
000616 5e 20 C 050 M 2,050(0,121 LlT+O 
00067A lA 43 AR 4,3 
D0061C 58 40 e 050 s 4,050(0,121 l IT +0 
000680 50 40 o 220 ST 4, 220( 0,131 SBS=l 
000684 58 EO o 220 L 14,220(0,131 SBS=l 
000688 0.2 00 6 040 E 000 Mve 040(1,61,000(141 ONM=1-408 ONM=1-330 

1C HOVE 00068E 41 40 6 022 LA 4,022(0,61 ONM=1-368 
000692 48 30 6 000 LH 3,000(0,61 DNM=1-267 
000696 5.e 20 e 050 M 2,050(0,121 lIT+O 
00C69A lA 43 AR 4,3 
00069C 5B 40 C 050 S 4,050(0,121 LIT+O 
0006AO 50 40 0 224 ST 4, 224( 0, 131 SBS=2 
0006AIt 58 FO 0 224 l 15,224(0,131 SBS=2 

464 



0006A8 OL 00 6 048 F 000 'MVC 04BI1,6)'000C15) DN"I=2-0 DNM=1-368 
0006AE 92 40 6 04e 0 MVI 04C(6),X'40' DNM=2-J+l 

11 MUVE (;006B2 4d 30 6 002 LH 3,002(0,6) DN14=1-282 
0006B6 4E 3() D 210 CVD 3,210(0,13) TS=Ol 
0006BA FJ 31 6 042 D 21b UNPK 04214,61,21612,131 DNM=1-442 TS=07 
0006CO 90' FO 6 045 01 04S(6),X'FO' DNM=I-442+3 

72 *STEP-3 
0006C4 PN=05 EQU * 
0006C4 58 FO C 024 L 15,02410,12) VIILBOFLWl) 
0006C8 05 If BALR 1,15 
0006CA OO~00048 DC X'0000004S' 

72 DISPLAV 0006CE S8 f() C 028 l 15 , 02 S ( 0 f 12 ) V(llSODPG41 
000602 05 Ef SALR 14,15 
000604 511 FO C 034 L 15,034(0,12) VCllBODSPO) 
000608 05 If BAlR 1,15 
00060A Ouu2 DC X'0002' 
0006DC 00 DC X'OO' 
00060D 001.1014 DC X'000014' 
0006EO 00~0020S DC X' 00000208' Bl =3 
0006E4 00 .. 0 DC X'0040' 
0006E6 FffF DC X'FFFF' 

72 WRIT!;; 0006ES 58 FO C 028 l 15 , 02 IH 0 , 1 2 ) V (I lBOOBG4) 
0006EC 05 Ef BALR 14.15 
0006EE OL 13 7 000 6 040 MVC 000120,7),040(6) DN'1=1-168 [)NM=1-384 
0006F4 58 10 C 040 l 1,04010,12) DCB=l 
0006F8 18 21 LR 2,1 
0006FA 92 00 2 07A MVI 0'1A(2),X'00' 
0006FE 58 40 2- 024 L 4,024( 0,2) 
000702 92 DO 4 014 MVI 014(4),X'OO' 
000706 96 01 4 01B 01 01B(41,X'Ol' 
00070A 58 10 C 040 L 1, 040( ° ,12) DC3=1 
00070E 58 FO C 030 l 15,03010,12) VIIlBO;)I:JOl 
000712 02 03 o 060 C 05F MVC 06014,13),OSFI12) \O/C=01 LIT+1S 
000718 58 00 1 04C L 0,04C(O,1l 
00071C 44 00 1 060 EX 0,06010,l) 
000720 58 20 C 040 L 2,040(0,12) Dca=1 
00072't 91 40 2 07A TM 07A(2),X'40' 
000728 92 00 2 07A MVI 07A(2),X'OO' 
00072C 47 10 B 154 BC 1,15410,111 GN=07 
000730 50 10 o 200 S1 1,20010,13) BL =1 
000734 58 70 o 200 L 7,20010,13) BL =1 
000738 GN=07 EQU * 
000738 GN=OI EQU * 
000738 58 10 D 22C l 1,22CIO,13) VN=Ol 
00073C 07 Fl BCR 15,1 

14 *S1EP-4 
00073E PN=06 EQU * 
00073E 5d FO C024 L 15,02410,12) V(ILBOFUIU 
000742 05 IF BALR 1,15 
000744 001.l0004A DC X'0000004A' 

74 PERFuRM 000748 02 03 D 228 o 22C Mve 22814,13),22C(13) PSV=l VN=)l 
00074E 41 00 b 172 tA 0,17210,lll GN=C2 
000752 50 vO D 22C ST 0,22CIO.13) VN=Ol 
000756 GN=02 EQU * 
000756 48 30 6 000 LH 3,000(0,6) DN··~=1-2f7 

00075A 49 30 C 054 CH 3,05410,12) LIT+4 
00075E 47 80 B 182 Be 8rI821 0,111 GN=03 

Appendix A: Sample Program output 465 



000762 47 FO B 068 BC 15,068( 0,111 PN=04 
000766 GN=03 EQU * 000766 O~ 03 0 22C D 228 MVC 22C(4,13),228113) VN=Ol PSV= 1 

77 * STEP-5 
00076C PN=07 EQU * 00076C 58 Fu C 024 L 15,024(0,12) VI ILBOFLWl) 
000770 05 IF BALR 1015 
000772 00uO(J04D DC X' 00000040' 

77 CLOSe 000776 58 FO C 028 L 15,028(0,12) VIILBODBG4) 
00077A 05 Ef- BALR 14,15 
00077C 58 10 C 040 L 1,040(0,121 DCB=l 
000780 91 10 1 030 TM 0301l),X'10' 
000784 05 5v 8ALR 5,0 
000786 47 80 5 01A BC 8,01A(O,5) 
00078A 05 01 1 02A C 063 CLC 02AI2,lJ,063(12) LlH19 
000790 47 70 5 01A BC 7,OIAIO,5) 
000794 58 20 1 04C L 2,04C (0,1) 
000798 48 20 1 052 SH 2,052(0,1) 
00079C 50 20 1 04C ST 2 ,04C( O,ll 
0007AO 58 10 C 040 L 1,04010,12) DCB=l 
0007A4 50 10 0 234 ST 1,234(0,13) SA3=1 
0007A8 92 40 D 234 MVI 2341 131 ,X' 40' SA3=1 
0007AC 90 80 o 234 01 234(13),X'80' SA3=1 
000780 41 10 D 234 LA 1,23410,13) SA3=1 
000784 O~ 03 o 060 C 065 MVC 060(4,13),065(12) WC=Ol LIH21 
0007BA 58 FO C 030 L 15,03010,12) VIILBO;)IOO) 
0007BE 05 EF 8ALR 14,15 
0007CO 51;) 10 C 040 L 1,04010,12) DCB= 1 
0007C4 02 03 0 060 C 058 MVC 06014,13),05BI12) I-IC=Ol LlHll 
0007CA 58 FO C 030 L 15,030(0,12) VIIlBOQIOOI 
0007CE 05 Ef BALR 14,15 
000700 58 50 o 180 L 5,1 BOlO ,13) 
000704 50 50 o 200 ST 5,200(0,13) BL =1 
000708 58 20 C 040 L 2,04010,12) DCB=l 
00070C 91 01 2 017 TM 017(2),X'01' 
0007EO 47 10 B 21C BC 1,21C(D,1U GN=08 
0007E4 58 10 2 014 L 1,01410,2) 
0007E8 96 01 2 017 01 017(2),X'01' 
OC07EC IB 44 SR 4,4 
0007EE 43 40 1 005 Ie 4,00510,l) 
0007F2 4C 40 1 006 MH 4,00610,U 
0007F6 41. 00 4 008 LA 0,008(0,4) 
0007FA 41 10 1 000 LA 1,00010,ll 
0007FE OA OA SVC 10 
000800 GN=08 EQU * 77 OPEN 000800 58 FO C 028 L 15,028(0,12) VIILBODBG41 
000804 05 Ef BALR 14,15 
000806 58 10 C 044 L 1,04410,12) DCB=2 
00080A 51;) 40 1 024 L 4,024' 0, II 
00080E 02 02 4 011 C 02D MVC 0110,4),02D'12) VIILBOEXTO) 
000814 50 10 0 234 ST 1,234(0,13) SA3=1 
000818 92 00 0 234 MVI 234(13),X'00' SA3=1 
00081C 96 80 D 234 OI 234(13),X'80' SA3=1 
000820 41 10 D 234 LA 1,23410,13) SA3=1 
000824 D2 03 D 060 C 057 MVC 060(4,13),057112) WC=Ol LIT+7 
00082A 58 FO C 030 L 15,030(0,12) VI ILBOQI 00 I 
00082E 05 Ef BAlR 14,15 

466 



00C830 58 10 C 044 l 1, 044( 0,12) DCB=2 
000834 02 03 0 060 C 05B MVC 060(4~13),05B(12) I'IC=01 lIT+l1 
00083A 5d fO C 030 l 15,030(0,121 V(IlBOQIOO) 
00083E 05 Ef BAlR 14,15 
000840 58 8u 0 204 l 8,204(0,131 Bl =2 

8e *STEP-g 
000844 PN=08 EQU * 000844 !)8 fO C 024 l 15,024( 0,12) V(IlBOFlWU 
000848 05 IF BAlR 1,15 
00084A OOuOOO 50 DC X'00000050' 

80 READ 00084E 5C1 FO C 028 l 15,028(0,12) V( I UOOP(4) 
000852 O!) EF BAlR 14,15 
000854 58 10 C 044 l 1,044(0,121 DCB=2 
000858 18 21 lR 2,1 
OC085A D2 0.::. 2 021 C 030 MVC 021(3,2),030(1.2) GM=('4+1 
000860 0, 03 0 060 C 069 MVC 060(4,131,069(12) WC=01 11 T+? ~ 
000866 5d fO C 030 l 15,030(0,12) V( I leO;) I (10) 
00086A 05 Ef BAlR 14,15 
00086C 50 10 0 204 ST 1, 204( 0, 13) ~l =2 
C00870 58 80 0 204 l 8,204(0,13) Bl =2 
000874 02 1::' 6 040 8 000 MVC 040(20,6),000(8) DNM=1-384 DNM=1-2?6 
00087A 41 fLi 8 29 E BC 15,29£:(0,1U :;!IJ=05 
00087E GN=04 EQU * 80 GO 00081E 41 FO 8 306 BC 15,300(0,111 PN=010 
000882 GN=05 EQU * 81 COMPuTE 000882 FCI 10 0 210 C 05b ZAP 210(8,131,056(1,12) T5=01 l IT+6 
000888 FA 43 0 213 6 058 AP 213(5,13),05814,bl T5=04 r'N~=2 -71 
00088E Fd 33 c 058 ° 214 ZAP 058(4,61,214(4,131 DIIJM=2-71 TS=(14+1 

E2 *STEP-1 
00C894 PN=09 EQU * 000894 SCI FO C 024 l 15,024(0,12) V (I l60HW 1) 
000898 05 IF BAlR 1,15 
00C89A 0.,)1100052 IX x'ooauOOS2' 

82 IF 000S9E 95 FO 6 046 Cll 04fH61,X'FO' DIIJM=2-J 
0008A2 41 7u 8 202 BC 7,202(O,1U GN= 06 
C008A6 95 40 6 04C CLI 04C (fd ,X' 40' DNM=2-J+1 
0008AA 47 70 8 202 BC 7,202(0,1U GN=06 

82 MOVE 0006AE 9':: E9 6 048 MVI 04B(61,X'E9' DNM=2-0 
0008B2 9.:: 40 6 04C MVI 04C(61,X'40' DNM=2-0+1 
00C8B6 GN=06 EQU * S3 EXHlolT 000866 50 10 ~ 070 L 1,010(0,12) lIT +32 
0008BA 50 10 0 23C ST 1, 23C( 0, 13) PRM=l 
0008BE 41 20 0 23C lA 2,23C(0,13) PRIoI= 1 
000BC2 58 fO C 028 l 15,02810,12) VIIl60DPG4) 
0006C6 05 Ef 6AlR 14,15 
oe08C8 58 FO C 034 l 15,034(0,12) V(IlBOOSPO) 
0008CC 05 IF BAlR 1,15 
G008CE 80111 DC X'S001' 
000800 10 DC X'10' 
000801 OOuOOB DC X'OOOOCB' 
000804 OCIIOOO14 DC X'OCOOOO74' l JT+36 
000808 OOuO DC X'OOOO' 
00080A 00 DC X'OO' 
000808 00u014 DC X'OOOO14' 
000801: 001100208 DC X'00000208' Bl =3 
0008E2 00't-0 DC X'0040' 
0008E4 fffF DC X' FfFF' 

Appendix A: Sample Program output 467 



8.3 GO 0008E6 47 fO 8 260 BC 15,260(0,11) PN=OS 
1:5 *STCP-6 () 

0008EA PN=010 EQU * 0008EA 58 FO C 024 L 15,024(0.12) V(I LBOFUn) 
OOOBEE OS IF 8ALk. 1,15 
0008fO 00vOOv55 DC X'OOOOO055' 

85 CLOSe 0008f4 58 FO C 028 L 15,028(0,121 V(ILBODPG4) 
OC08f8 05 Ef BALR 14,15 
0008FA 58 10 C 044 l 1,044(0,12) OC8=2 
0008fE 91 Hi 1 030 TM 030( 11 ,X'10' 
000902 05 50 BALR 5,0 
000904 47 80 5 01A 8C S,01A(O,5) 
000906 05 01 1 02A C 063 CLC 02AI2,1I,00311?.) LIT+!9 
00090E 47 70 5 01A BC 7,0IAIO,5) 
000912 58 20 1 04C L 2,04CIO,11 
000916 48 20 1 052 SH 2,05210,11 
00091A 50 21) 1 04C ST 2,04CIO,1I 
00091E 58 10 C 044 L 1,04410,121 OCB=2 
000922 50 10 0 234 ST 1,23410,131 SA3= 1 
000926 92 40 0 234 MVI 234( 13) ,X' 4O' SA3=1 
aOO92A 96 au 0 234 01 2341131 ,X' 80' SA3=1 
00092E 41 10 0 234 LA 1,23410,13) 5 A3= 1 
000932 02 03 0 060 C 065 MVC 060(4,131,065(121 WC=Ol LIT+21 
C00938 51) FO C 030 L 15,030(0,12) V( ILBO'lI 001 
00093C 05 Ef 8ALR 14,15 
00093E 50 10 C 044 L 1,04410,121 DCB=2 
000942 02 03 [} 060 C 058 MVC 060(4,13),0581121 WC=OI LlT+ll 
000948 58 FO C 030 l 15,03010,12) V(I LeO'll 00) 
00094C 05 Ef BALR 14,15 
00094E 58 50 0 180 L 5,18010,131 
000952 50 50 0 204 ST 5,204(0,131 BL =2 
OC0956 58 20 C 044 L 2,04410,12) DCB=2 
00095A 91 01 2 017 TM 017(21,X'Ol' 
00095E 47 10 B 39A 8C 1, 39A(0, 111 GN= 09 
000962 58 10 2 014 L 1,01410,2) 
000966 96 01 2 017 01 017121,X'Ol' 
a0096A 18 44 SR 4,4 
00096C 43 40 005 IC 4,005(0,lJ 
000970 4C 40 1 006 MH 4,006( 0, U 
000974 41 00 4 008 LA 0,008(0,4) 
000978 41 10 1 000 LA 1,000(0,11 
00097C OA OA SVC 10 
OC097E GN=09 EQU * 86 STOP 00097E 5d fO C 028 L 15,028(0,121 VII lBOOBG41 
OC0982 05 EF BALR 14,15 
000984 GN=010 EQU * (;00984 5d FO C 038 L 15, 038( 0,121 VIILBOSRVU' 
000988 07 ff BCR 15,15 
00098A 50 DO 5 008 INIT2 ST 13,008( 0,51 
aa098E 50 50 0 004 ST 5,004(0,131 
000992 50 EO 0 054 ST 14,054(0,13) 
000996 91 2u 0 048 TM 048(131,X'20' SWT+O 
0OO99A 47 EO F 02E Be 14,02E(o,15) 
0OO99E 58 20 o 1B8 L 2,188(0,131 
0009A2 91 40 o 049 TM 049( 131 ,X'40' SWT+l 
0009A6 47 EO f 02E BC 14,02E(0,151 
0009AA 96 04 2 000 01 000(21,X'04' 

468 



0009AE 58 fO 2 038 L 15,03810,2) 
0009B2 4! fO f 004 '0 LA 15,00410,15) 
0009B6 07 ff BCR 15,15' 
000988 94 Ef o 048 NI 048(13) ,X'Ef' SWT+O 
0009BC 58 FO COLO L 15,01010,12) VIR=l 
0009CO 05 Ef BALR 14,15 
0009C2 12 00 L TR 0,0 
0009C4 07 89 BCR 8,9 
0009C6 96 10 0 048 01 048(13) ,X'10' SWT+O 
0009CA 58 fO C 014 INIT3 L 15,01410,12) VI~=2 
0009CE OS EF BALR 14,15 
0009DO 05 fO BALR 15,0 
000902 9.1 20 0 048 TM 048(13),X'ZO' SWT+O 
000906 47 EO f 016 Be 14,01610,15) 
00090A 58 00 B 048 L 0,04810,lU 
C0090E 98 20 B 050 LM 2,13,050(1U 
0009E2 58 EO o 054 L 14,05410,13) 
O{}09E6 07 FE BCR 15,14 
0009E8 96 20 0 048 01 048( 13) ,X' 2O' SWT+O 
0009EC 41 60 0 004 LA 6,00410,0) 
0009fO 41 10 e OOC LA 1,00CIO,12) 
0009f4 41 70 C OOF LA 7,OOF(0,12) VIR=I-1 
0009F8 05 50 BAlR 5, ° 
0009fA 5Cl 40 000 l 4,000(0,U 
0009fE 11: 4B ALR 4,11 
OOOAOO 51) 40 1 000 ST 4,00010,1) 
000A04 87 16 5 000 BXLE 1,6,000(5) 
000A08 41 10 e 03C LA 1,03CIO,12) PN= 01 
OOOAOe 41 70 C 047 LA 7,047(0,12) VNI=1-1 
DOOA10 05 50 BALR 5,0 
OOCA12 58 40 000 l 4, OOO( 0, U 
OOOA16 IE 48 ALR 4,11 
000A18 50 40 1 000 ST 4,000(0,U 
000A1C 87 16 5 000 aXLE 1,6,000(5) 
OOOA20 41 60 o 008 LA 6,00810,0) 
OOOA24 41 10 C 048 LA 1,04810,12) VNI=1 
000A28 41 70 C 04f LA 7,04fIO,12) L IT+0-1 
000A2C 05 50 BALR 5,0 
ODOA2E 58 40 000 L 4,000(0, U 
000A32 IE 48 AlR 4,11 
OOOA34 50 40 1 000 ST 4,00010,1) 
000A38 87 16 5 000 BXLE 1,(',00015) 
000A3e 41 80 0 200 LA 8,20010,13) OVF=l 
00OA40 41 60 0 004 LA 6,00410,0) 
OOOA44 41 70 0 2Of LA 7,20FI0,13) TS= 01-1 
OOOA48 05 10 BALR 1,0 
OOOA4A 58 00 8 000 L 0,00010,8) 
000A4E 1.: 00 LTR 0,0 
OOOA50 47 80 010 BC 8,01010,U 
000A54 IE OB ALR 0.11 
000A56 50 00 8 000 ST 0,00010,8) 
OOOA5A 87 86 1 000 BXLE 8,6,0001 U 
OOOA5f 58 60 o 2G8 L 6,20810,13) BL =3 
OOOA62 58 70 o 200 L 7,200(0,13) BL =1 
OOOAc6 58 80 o 204 L 8,20410,13) BL =2 
OOOA6A OL 07 o 22C C 048 MVC 22CI8,13),048112) VN=OI VN 1= 1 
OOOA70 58 EO o 054 L 14,05410,13) 

Appendix A: Sample Program Output 469 



OOOA74 07 FE BCR 15,14 
OOCOOO 90 EC 0 OOC INITl () STM 14,12,00C(13) 
000004 18 50 lfl. 5,13 
000006 05 FO BAlR 15,0 
OOOOOd 45 80 F 010 BAl 8,010(0,15) 
OOOOOC E3~5ElE3D9E40540 DC X't3C5E2E309E~05~O' 
000014 E5c209F1 DC X' E5 E2D9F1' 
000018 07 00 BCR 0,0 
00001A 9d 9f f 024 lM 9,15,024(15) 
DODO IE 07 Ff BCR 15,15 
000020 96 02 034 01 034(1) ,X'OZ' 
000024 07 FE BCR 15,14 
000026 41 FO 0 001 lA 15,001(0,0) 
00002A 07 H BCR 15,14 
00002C 00v009CA AoCON l4( INIT3) 
000030 OOvOLuOO AoCGN l41INITll 
000034 OOuOOOOO AoCON l4( INITll 
000038 00,,00560 AOCON l4(PGT) 
00003C OOuOO318 AoCON l4(TGT) 
000040 OuuOO!lE4 AOCON l~(START) 
000044 OOvOC98A AOCON L4(INIT2) 
000048 OS 15F 
oe0084 OOuOOOOO DC X'OOOOOOOO' 
000088 Hf54bF5F84BFOF5 DC X 'F IF 54BF5F 84Bf'OF 5' 
000090 Clc4C 7't040F66B40 DC X'C1E4C74040F66B40' 
000098 Flr9F7F6 DC X' FlF9F7F6' 

470 



*STATISTICS* SOURCE RECORD;;, 86 DATA DIVISION STATEMENTS = 25 PROCEDURE OIVISIQN ST~TEMENrS = 
.OPTIUNS IN EFfECT* 
*OPTIuNS IN EffECT* 
*OPTWNS IN El'fECT* 
*OPTIuNS IN E.-fECT* 
*CPT WNS IN EffECT. 
*OPTIONS IN EffECT. 
.OPT WNS IN EffECT* 

[ATA NAMES 

A 
ALPHA 
ALPHABET 
B 
DEPEND 
DEPENDENTS 
flElD-A 
flELu-A 
F lLE-l 
fILE-2 
KGl;NT 
L(CAT ION 
"'~ME-FIHD 
NO-Of- DEP ENDcN T S 
NCMBER 
RECGRD-NO 
RECORD-l 
IlECGRD-2 
RECOxDA 
I'ICRK-RECORD 

PIlCCEDURE NAMES 

BEGIN 
STEP-l 
STEP-2 
STEP-3 
STEP-4 
STEP-5 
S TEP-6 
STEP-7 
SlEP-8 

CARC ERROR MESSAGE 

J.It 
58 

IKfl1() .. H-W 
IKfZbOI-W 

SIZE = bl072 BUf 12288 L1NECNT = 57 SPACEl, fLAGW, SE~. SOUPCE 
DMAP, PMAP. NOClIST, NOSUPMAP, NOXREf, SXREF. LOAD. NODECK. QLIOTE. NOTPJNC. FL:'W= 

NOTERM, NDNUM, N08ATCH, IIIONAME, COMPIL E=01, IIIOSTlTE, NORESIDENT, NOQYNAM. NOLI fl. N£'5 HI TIl )( 
OPTIliILE, SYMDMP, NOTEST, VERB, ZWB, SYST, NOENDJ08, NOlVL 

NOLST , NOFDECK,NOCDECK, LCOL2, 1120. DUMP , NuADV , NOPRI NT, 
NOCOUj~J , NOV8SUM, NOVBREf, LANGL VLC 2) 
DEBUG ~IL~ SIZE = 2 BLOC KS, 1024 BYTES 

CROSS-REFER ENC E DICT IDNARY 

DEfN REfeRENCE 

000058 
000044 000068 
uOO043 
000059 000081 
,,00047 000070 
LJOO045 
liOO029 
000037 
000017 000064 000072 000077 
000018 000077 000080 000085 
000040 000064 000068 000070 000074 
000053 
("00049 000068 
000055 000070 000082 
000041 000064 000068 000071 
vOO051 000071 
uOO028 000072 
000036 000080 
1.100057 
000048 000072 000080 000083 

uEfN REfeRENCE 

000061 
vOO06~ 
000068 000074 
LlOOO72 000074 
000074 
1.100071 
1.100080 000083 
000082 
1.100085 000080 

IBM-310 IS ONLY VALID COMPUTER-NAME. IBM-360 SPEC IF ICATI (j~ IGNORED. 
PICTURE CLAUSE IS SIGNED, VALUE [LAUSE UNSIGNED. ASS~MEO POSITIVE. 

Appendix A: Sample Program output 

?l 

10 

471 



COBOL library subroutines perform 
operations that require such extensive 
coding that it would be inefficient to 
place the coding in the object module each 
time it is needed. 

COBOL library sUbroutines are stored in 
the COBOL library (SYS1.COBLIB). The 
required subroutines are inserted in load 
modules by the linkage editor. 

There are several major categories of 
COBOL library subroutines, namely: 
subprogram linkage, object-time program 
operations (i.e., data conversions, 
arithmetic operations, test conditions, 
data manipulation, data management, and 
special features), and object-time 
debugging. The categories are described in 
this order. 

Figure 174 later in this chapter 
includes a list of COBOL library 
subroutines, their storage requirements, 
and the associated calling information. 

In addition, Q routines, which are not 
classified as COBO.L library subroutines, 
are used to calculate the length of 
variable-length fields and the location of 
variably located fields resulting from an 
OCCURS clause with a DEPENDING ON option. 

The subroutines that control the loading 
of library subroutines or subprograms and 
the exiting from programs or subprograms 
are described here. 

The ILBONTRO subroutine is used (1) when 
the RESIDENT option is an effect, to load 
one copy of each subroutine called by the 
main program or any of its subprograms into 
any region/partition; and (2) when the 
DYNAM option is in effect, to call any 
subprogram specified in a CALL literal or 
CALL identifier statement, first loading it 
if it has not already been loaded into that 
region/partition. (If insufficient storage 
is available for loading, the user's ON 
OVERFLOW imperative statement is called, if 
one vas specified.) 

472 

When a program finishes execution, this 
routine deletes all the subroutines called 
by the program except those subroutines 
that are being used by another program in 
the region/partition. It also deletes any 
subprogram in the CANCEL literal or CANCEL 
identifier statement. 

The ILBOBEGO subroutine performs 
initialization functions when the NORES 
option is in effect. If the Subroutine 
Communications Area (SUBCOM) has not been 
link edited, it loads the area and checks 
whether its calling program is the main 
program or a subprogram. 

Object::,1ime optio.ns Subroutine_llltBOPRMOl 

This subroutine is invoked dynamically 
(by either ILBONTRO or ILBOBEGO) to scan 
the user's object-time options and set 
internal switches and options accordingly. 

The ILBOSRV subroutine is called by all 
programs compiled by the OS/VS COBOL 
compiler • {For pr e-aS/VS campa tibili ty an 
ILBOSTPO entry point is also provided.) 
This routine returns control to the system, 
if the calling program is the main program, 
or to the caller, if it is not. 

The ILBOMSGO subroutine determines 
whether or not a message is to be issued. 
If a message is to be issued this 
subroutine formats and issues it. 

ll.Q£ RUN Termination SubroutiniL.1!IJH1~nQl 

The ILBOSTTO subroutine performs 
termination functions at the end of 
execution of the COBOL program if the 
ENDJOB option is in effect. 



QDlICT-TI~~PROGRAM OPERATION~ 

COBOL LIBRARY CONVERSION SUBROUTINES 

Eight numer ic data formats are permitted 
in COBOL -- five external (for input and 
output) and three internal (for internal 
processing) • 

The five external formats are these: 
(1) external or ~oned decimal, (2) external 
floating-point, (3) sterling display, 
(4) numeric edited, and (5) sterling 
report. The three internal formats are 
these: (1) internal or packed decimal, 
(2) binary, and (3) internal 
floating-point. 

The conversions from internal decimal to 
external decimal, from external decimal to 

internal decimal, and from internal decimal 
to n,ulleric edited are done in-line. The 
other conversions are performed by the 
COBOL library subroutines shown in Figure 
112, and by the separate sign subroutine. 

The ILBOSSNO subroutine converts 
separately signed data-names to internal 
decimal format and then checks for a valid 
sign. If the sign is valid, this 
subroutine generates the corresponding 
overpunch in the receiving field. If not, 
it causes an object time message to be 
issued and the job to be terminated. 

Appendix B: COBOL Library Subroutines 413 



r- ~ "1 

I i Conversion I 
I Subroutine Name ...-- -,-- ... 
I and I • , 
I Entry Poin ts J From I To I 
l---------------_+_ +-- ., 
I ILBOEFL2 I External Floating-point I Internal Decimal I 
J I I , 
I ILBOEFL1 ,External Floatinq-point I Binary J 
I I I I 
,ILBOEFLO I External Floating-point I Internal Float.ing-point I 
i-------------_t_ , .. 
I 1LBOBIDOl J Binary I Internal Decimal I 
I ., , I 
,ILBOBID1 1 I I I 
J J I f 
,ILBOBID2 1 t I , 
I-------.-----+_ +- -f 
I ILBOBIEOI I Binary I External Decimal I 
J I , I 
1 ILBOBIEl l J 1 I 
• , I I 
J ILBOB1E2 1 J I I 
I- +- +--- f 
I ILBOB110 2 I Binary I Internal Floating-point I 
J I • I 
,ILBOBII12 1 I I 
l- I+-., 
I ILBOTEF02 J Binary • External Floating-point , 
I J I I 
I ILBOTEF1 2 I • I 
I J I I 
, ILBOTEF 2 I Internal t)ecimal I External Floating- point , 
J 1 J I 
I IFBOTEY3 I Internal Floating-point I External Floating-point I 
t-- +-- I ., 
J ILBOIDBO I Internal Decimal I ainary 1 
J J J I 
I ILBOIDB1 J External Decimal I Binary I 
l-- I +- -f 
J ILBODCll I Internal Decimal I Internal Floating-point I 
I J I I 
J ILBODCIO I External Decimal I Internal Floating-point I 
l-- f +- ... 
I ILBOIFDO' I Internal Floating-point I Internal Decimal f 
t I J I 
t ILBOIFD 1 1 Internal Floating-point I External Decimal I 
I- I _..I.- f 
J1The entry points used depend on whether the double-precision number is in registers 0 I 
I and 1. or 2 and 3. or 4 and 5, respectively. I 
12The entry points are for single-precision binary and double-precision binary. J 
I respectively. I 
J3This entry point is used for calls from other COBOL library subroutines. I 
~ ~ 

Figure 112. Functions of COBOL Library Conversion Subroutines (Part 1 of 2) 

474 



1'- ------'1 
J I Con version t 
I Subroutine Name I ~ ~ 
I and I I I 
I Entry Points I From J To 1 
t-------------t- +1------- f 
1 ILBOI1"B1 I Internal Floating-point I Binary integer and a pover t 
J ) I of 10 exponent I 
I ILBOIFB2 3 I J I 
I ILBOIFB03 I Internal Floating-point J Binary • 
t- -t- , -4 
1 ILBOIDRO 1 Internal Decimal I Sterling Report • 
t- +- I ~ 
I ILBOIDTO i Internal Decimal I Sterling Non-Report , 
t- +-- I ~ 
I ILBOSTIO J Sterling Non-Report I Internal Decimal I 
t- I +- f 
I ILBOCVBO J External decimal I Binary J 
t- +-- + --t 
I ILBOCVB1 I External decimal I Binary I 
I-- ..L.....- I 1 
liThe entry points used depend on whether the double-precision number is in registers 0 f 
I and 1, or 2 and 3, or 4 and 5, respectively_ , 
IZThe entry points are for single-precision binary and double-precision binary, I 
I respectively. J 
,3This entry point is Ilsed for calls from other COBOL library subroutines. I 
L- .. 
Figure 172. Functions of COBOL Library Conversion Subroutines (Part 2 of 2) 

r-------- , -----------------------------------------.-----------, 
ISubroutine Namel Function 
I- I 
IILBOXMUO • Internal Decimal Multiplication (30 digits * 30 digits = 60 digits) 
I- I 
IILBOXDIO I Internal Decimal Division (60 digits/30 digits = 60 digits) 
t----------------1f-------------------------------------------------------
JILBOXPRO I Exponentiation of an Internal Decimal Base by a Binary Exponent 
I- I 
IILBOFPWO I Floating-point Exponentiation 
~---------------~I---------------------------------------------------------------
IILBOGPWOl I Floating-point Exponentiation 

• ., 
I .. 
I , 
J 

--i 
1 ., 
J 

I----------------~-------------------------------- ---------------------~ 
liThe ILBOGPWO entry point is used if the exponent has a picture specifying an integer. I 
I The ILBOPB WO entry point is used in all other cases. 1 L-___ _ . _________ . .J 

Figure 173. Function of COBOL Library Arithmetic Subroutines 

Appendix B: COBOL Library Subroutines 415 



COBOL LIBRARY ARITHMETIC SUBROUTINES 

Most arithmetic operations are performed 
in-line. However, involved calculations, 
such as exponentiation. and calculations 
with very large numbers, such as decimal 
multiplica tion of tvo 30-digit numbers. are 
performed by COBOL libra ry subroutines. 
These subroutine names and their functions 
are given in Figure 173. 

COBOL,LIBRARY SUBROUTINES FOR TESTING 
CONDITIONS AT OBJECT TIME 

several subroutines are used to test 
conditions that determine the path of 
control the object program selects. Such 
subroutines are described below. 

The ILBOCLSO subroutine is used to 
perform class tests for variable-length 
items and those fixed-length items over 256 
bytes long, to determine whether a field is 
alphanumeric. 

MQ!~: The following tables are placed in 
the library for use by the in-line coding 
generated and the subroutines called for by 
both class test and TRANSFORM: 

ILBOATBO 
1LBOETBO 

ILBOITBO 

ILBOTRNO 
ILBOUTBO 

ILBOWTBO 

alphabetic class test 
external decimal class 
test 
internal decimal class 
test 
transformation 
unsigned internal decimal 
class test 
unsigned external decimal 
class test 

The ILBOVCOO subroutine compares two 
operands, one or both of which are of 
variable lengths. They may exceed 256 
bytes. 

£Q~£g£~with-fig~tiy~_Con2tant Sub£2Y1iD~ 
lI!d!OIVLOl 

The ILB01VLO subroutine compares the 
identifier to a figurative constant. The 

416 

figurative constant must alvays be the 
second operand. If it is first in the 
source program, the operands are reversed 
and the condition code to be passed on is 
inverted before this subroutine is called. 

COBOL LIBRARY DATA MANIPULATION SU.BROUTINES 

Subrout ines are used to manipulate da ta 
in main storage in response to the MOVE. 
TRANSFORM, STRING, and UNSTRING statements. 
(Data manipulation in response to the 
EXAMINE statement is performed in-line by 
the object program.) 

This subroutine is used to handle some 
MOVE statements. The subroutine is also 
used for READ and WRITE statements 
processed in conjunction with the SAME 
RECORD AREA clause. The subroutine has 
two entry points, depending on the type 
of move: ILBOVMOO (left-justified) and 
I LBOVMO 1 (right-justified). 

This special MOVE subroutine is used 
when the length of the receiving field is 
either greater than 512 bytes or variable. 
The subroutine transfers characters to a 
righ t- justified recei ving field. 

HQVE to AlphaBY~~'i£=~gi1~g_li~ld 
~brQY!iag-111~Q!M~Qt 

The 1LBOANEO subroutine moves a 
data~name, literal, or figurative constant 
into a right- or left-justified 
alphanumer ic edited field. 

The 1LBONEDO subroutine is called by the 
UNSTRING subroutine to move characters from 
a packed decimal field into a 
numeric-edited receiving field. 



The ILBLOANF subroutine moves a 
figurative constant of more than one 
character into a right- or left-justified 
nonnu~eric receiving field. 

The ILBOVTRO subroutine translates 
variable-length items. 

~IRING Subroutine 1!1BO~~gQl 

The ILBOSTGO routine combines the 
partial or complete contents of two or more 
subfield(s) into a single field. This 
routine transfers characters from the 
sending item(s) to the receiving item in 
the same way that moves from alphanumeric 
item (s) to a lphanumeric item (s) are 
effected. 

The ILBOUSTO routine separates 
continuous data in a sending field, placing 
it in multiple receiving fields. 

INSPECT Subroutine lILliQI!~QL 

This subroutine performs operations for 
the INSPECT statement, doing specified 
tallying and replacing. 

COBOL LIBRARY DATA MANAGEMENT SUBROUTINES 

COBOL library subroutines are called to 
process the following verbs: DISPLAY, 
TRACE, EXHIBIT, ACCEPT, START (when generic 
.k.ey is specified), READ (QSAM or BSAM), 
WRITE WSAft or B5AM), CLOSE (QSAM or BSA~, 
OPEN (Q5AM or BSAM), REWRITE (QSAM), 
RECEIVE (TCAM), and SEND (TCAM); library 
subroutines are also called for I/O errors, 
printer spacing, alternate collating 
sequence, and printer overflow. 

The ILBODSPO subroutine is used to 
print, punch, or type data, usually in 
limited amounts, on an output unit. TRACE 
and EXHIBIT are kinds of DISPLAY. 

The acceptable forms of data for this 
subroutine are: 

1. Display 

2. External decimal 

3. Internal decimal (converted by the 
subroutine to external decimal) 

4. Binary (converted by the subroutine to 
external decimal) 

5. External floating-point 

Internal floating-point numbers must be 
converted to external floating-point 
numbers before the subroutine is called. 

Note: If the contents of a data-name are 
such that when converted they will exceed 
18 decimal digits. the ILBODSPO subroutine 
cannot process them and the results are 
un pred icta ble. 

The ILBODSSO subroutine prints or types 
data of a certain kind on SYSPRINT or at 
the console. This subroutine is used 
instead of ILBODSPO when there are no 
requests by the program for TRACE or 
EXHIBIT, and no variable-length or 
floating-point items; when there are no 
requests for display upon SYSPUNCH; and 
when neither the RESIDENT nor the DYNAM 
option is in effect. 

The ILBOACPO subroutine is called to 
read from SYSIN or from the operator's 
console at execution time. For 5YSIN, a 
logical record size of 80 is assumed. If 
the size of the data item being accepted is 
less than 80 characters, the data must 
appear as the first set of characters 
within the input record. If the size of 
the data item is greater than 80 
characters, as many records as necessa ry 
are .read until the storage area allocated 
to the data item is filled. If the data 
item is greater than 80 characters, but is 

Appendix B: COBOL Library Subroutines 471 



not an exact multiple of 80, the remainder 
of the last logical record is not 
accessible. For the console, a ma.ximum of 
114 characters are accepted and either 114 
characters or the length of the item, 
whichever is smaller, is moved to the 
operand named in the ACCEPT statement. 

The ILBOSTBO subroutine is called when a 
USING KEY clause is coded with the START 
verb for ISAM files. The subroutine 
formats the search argument so that data 
management can get co.ntro.I to search for 
the generic key. 

The ILBOCKPO subroutine generates a 
checkpo.int reco.rd, co.ntinuing the status of 
a pro.gram vhen a checkpo.int is taken. This 
record is written on a checkpoint data set. 

This subro.utine allo.ws its caller to. 
wait a specified amount of time. 

The ILBOERRO subro.utine is used to test 
for various error conditions, and passes 
control to t.he interpretive-statement 
specified in the INVALID KEY option phrase 
o.r to the USE FOR ERROR declarative section 
depending on the type of error and error 
handling o.ptions specified. The entry 
points used for error processing by 
ILBOERRO are: 

418 

lLBOERR1 Physical sequential Files 

ILBOERR2 Direct and Relative Files 
Accessed sequentially 

lLBOERB3 Indexed Files Accessed 
sequentially 

ILBOEER4 Direct and Relative Files 
Accessed Randomly 

IL.BOERR5 Indexed Files Accessed 
Randomly 

The ILBOSYNO subroutine performs, for 
version 4 and OS/VS, the same operations as 
the ILBO£RRO subroutine described above. 
The following list shows the entry point 
that is used for the various access 
methods: 

!ntry Point 
ILBOSYN1 
ILBOSYN2 
ILBOSYN3 
ILBOSYN4 
ILBOSYN5 

l£.£€sS "etho~ 
QS AM 
BSAM 
BDAM 
QISAM 
BISAM 

The ILBOLBLO subro.utine is called tor 
beginning-at-volume and beginning-at-file 
label pro.cessing or at end-of-file and 
end-ot-volume. 

Printer Qverflow subroutin~_(ILBQPTVO) 

The ILBOPTVO subro.utine is used to 
control printer overflow testing and page 
ejection. 

printer ~S£ing Subroutine lIt,BOSPAOl 

The ILBOSPAO subroutine is used to 
co.ntrol printer spacing. 

BSAM WRITEL£L05E and_BDAM OPE! subrouli!!~ 
llLBOSAI1Ql. 

The ILBOSAMO routine processes 
input/output statements for direct o.r 
relative files accessed sequentially. It 
also handles OPEN statements and CLOSE 
statements with the REEL option for 
directly organized output files accessed 
randomly. 

The BS1M read routine reads segments of 
a logical record and assembles them into a 
complete logical record. The routine is 
called by a compiler-generated READ code 
tor a spanned record direct B5AM file. 



This subroutine handles the various I/O 
requests for COBOL QSAM files. 

-
Q~~_Exit~YRroutine lILnQ!XI~t 

The ILBOEXTO subroutine is called as a 
DCB exit routine during an OPEN for a QSAM 
file to add the record format {RECFM) 
parameter options to the standard DCB. 

The ILBOINTO subroutine is used to 
obtain virtual storage for the VSAM File 
Control Block (FCB) associated with each 
VSAM File Information Block (FIB). 

The ILBOVOCO subroutine is used for all 
VSAM open and close requests. 

!~Aft Action Request ~2.!!tine_1ILBOVIQQ.l 

The ILBOVIOO subroutine is used for all 
START, READ, REWRITE, WRITE, and DELETE 
verbs that refer to VSAM files. 

B~~EIVE Subrout~ILBOBE~21 

For RECEI VE requests. the ILBORECO 
subroutine transfe.rs a message, a message 
segment, or part of a message or message 
segment from the message control program to 
the COBOL application program. For ACCEPT 
MESSAGE COUNT requests, the subroutine 
returns the number of completed messages in 
the queue structure. This routine always 
updates the input communication description 
(CD) entry .. 

!~lllLlJliti!lization subrqutiD~ 
LILBORHTO) 

The ILBORNTO subroutine is included for 
pre-OS/VS compatibility purposes only. It 
builds the control block that communicates 

with the input queue associated with the 
edna me specified in the RECEIVE statement. 

The ILBOSQAO subroutine is included for 
pre-OS/VS compatibility purposes only. It 
is called by the ILBORECO routine if the 
COBTPQD data set is present. This routine 
searches the COBTPQD data set for a member 
that corresponds to the name in the 
SYMBOLIC QUEUE field (defined in the COBOL 
source statements). If a match is found, 
the analyzer reads the member into main 
storage, using it to validate the SYMBOLIC 
SUB-QUEUE name(s) .in the input CD of the 
COBOL source program. The analyzer also 
identifies the first valid DD name for the 
queue structure and gives this name to the 
ILBORECO routine. 

The ILBOQSUO subroutine creates a 
partitioned data set with one member for 
each queue structure defined in the 
COBOL-like source statements. This routine 
also generates a printed listing of the 
structure element, as well as of error 
messages, if any_ 

This subroutine provides the caller with 
a count of the complete messages on a 
specified queue. 

Q!l~s.trllcture Scan Kommunications) 
Subroutine-1lLBOQS~t 

Tilis subroutine traverses the queue 
structure identified by the input CD and 
returns successive ddnames representing 
elementary subqueue names. 

This subroutine schedules a specified 
job by issuing the operator START command. 

Appeadix B: COBOL Library Subroutines 419 



JH!A!!llLl! IS IBt!:! S ub ro u t in L1!L B21!1llJ.. 

This subroutine modifies the message 
control tables in response to ENABLE and 
DISABLE statements. 

~~m~unications Job Schedul~r UtilitY 
1lLBOCJSl 

This utility schedules jobs when there 
are messages on TCAM queues for them to 
process. 

The ILBOCHNO subroutine acquires a 
dynamic save area for a Declarative entry 
condition; chains together the save areas 
created for the Error and Label 
Declaratives routines; releases save areas 
from the chain when the Declarative routine 
processing is complete. 

The ILBOCMMO subroutine issues the 
GETMAIN and FREEMAIN macro instructions for 
the COBOL program or for any COBOL library 
subroutine requiring storage additions or 
deletions. The subroutine chains together 
the information about the storage areas 
acquired through the GET MAIN ~acro 
instruction and releases this information 
from the chain when the FREEMAIN macro 
instruction is issued for that area of 
storage. 

The ILBOSNDO subroutine transfers a 
message, a message segment, or part of a 
message or message segment from the COBOL 
application program to the message control 
program. This routine always updates the 
output CD entry. 

~lH!Q Initialization Subroutine-1I1!!QSNTOl 

The ILBOSNTO subroutine (ILBOSNTO) 
subroutine is included for pre-OS/'S 
compatibility purposes only. It builds the 

480 

control block that communicates with the 
output queue associated with the cdname 
specified in the SEND statement. 

COBOL LIBRARY SUBROUTINES FOR SPECIAL 
FEATURES 

Subroutines are used fo.r some of the 
special features of COBOL: 

• Sort/Merge feature 

• Table handling feature (SEARCH 
statement) 

- segmentation feature (GO TO statement) 

-3886 optical Character Reader 

- ABEND request 

• Alternate collating sequence 

Also, a subroutine is called in response to 
the use of the following special registers: 
CURRENT-DATE, DATE, DAY, TIME, and 
TIME-OF-DAY. 

The ILBOSRTO subroutine acts as an 
interface between the COBOL calling program 
and the Sort/Merge program via the entry 
point name SORT. 

The ILBOMRGO subroutine acts as an 
interface between the COBOL calling program 
and the sort/Merge program for merge 
operations. 

The ILBOSMGO subroutine is used by the 
Merge subroutine for sorting required by 
merge operations. 

The ILBOSDBO subroutine is used for 
sorting a debug data set. 



!l~rnat~llatin~Segugn~~ Compare 
~ybroutine (ILBOACS) 

This sUbroutine handles the various 
forms of non-nulleric comparisons, using an 
alternate program collating sequence (if 
specified). It also handles "native" 
collating sequences. 

~EARCH~hroutine (ILBOSCHQl 

The ILBOSCHO subroutine performs a 
binary search on a specified level of a 
table. It is used for the SEARCR ALL 
statement. 

The ILBOSGMO subroutine is included for 
pre-cS/VS compatibility purposes only. It 
is used to load segments of a program that 
are not in main storage and to pass control 
froll one segment to the ~ther. 

The ILBOGDOO subroutine uses the value 
of a particular d,ata-name as an index into 
a list of constants for each PN specified 
and then transfers control to the proper 
PN. If the value of the data-name is 
greater than the number of PN's specified, 
control returns to the next instruction 
after the calling sequence. ILBODGOO also 
handles transfer of cont ro I between 
segments, and any necessary segment 
reinitialization. 

This group of subroutines performs fi ve 
functions in response to the use of the 
special registers CURRENT-DATE, DATE, DAY, 
TIME, and TIME-OF-DAY. The list below 
indica tes the function of each of the entry 
points, and the format of each result in 
the receiving field of the specified MOVE 
or ACCEPT statement. 

ILBODTEO month/day/year 

ILBODTE1 hour minute second 

ILBODTE2 year month day 

ILBODTE3 

ILBODTE4 

year day 

hour minute second 
hundredth of a second 

l§J!LQl!!i~ al ~hu:~~1~L~a9.~-I~rf~~ 
~~broutine-1I~BOO~SQl 

The ILBDOCRO subroutine handles all 
input/output operations with the 3886 
Optical Character Reader and builds the OCR 
File Control Block required for this 
purpose. 

The ILBOABNO subroutine is used to 
process all ABEND requests. 

Q~~~=IIaE DEBUGGING 

The options available for object-time 
debugging include: the statement number 
option (STATE), the flow trace option 
(FLOW), the count option (COUNT), the 
symbolic debugging option (SYMDMP), and the 
USE FOR DEBUGGING declarative. The 
subroutines for the first two options 
provide debugging information at abnormal 
termination of a program; the subroutines 
for the other options provide debugging 
information either at abnormal termination 
or dynamically during the execution of a 
program. All of these subroutLnes are 
under the control of and are supervised by 
the debug control subroutine ILBODBGO. The 
debug control subroutine is described 
first, followed by the subroutines that are 
called in response to the specification of 
the STATE, FLOW, SYMDMP, and COUNT options. 

The ILBODBGO subroutine is called once 
at entry point ILBODBGO for each COBOL 
prograll for which any of the debugging 
options have been specified. This 
subroutine handles linkage and input/output 
for the STATE, PLOW, and SYMDMP options. 
It also produces the program name, the 
completion code, and the last psw message 
at the time of the abnormal termination. 

Appendix B: COBOL Library Subroutines 481 



This subroutine handles invocation of 
USE FOR DEBUGGING declaratives, including 
filling in of the DEBUG-ITEM special 
register. 

The ILBOFLWO subroutine produces a 
formatted trace of the last "n" of COBOL 
procedures executed prior to an ABEND. It 
initializes, builds, and writes out the 
flow trace table. 

The ILBOSTNO subroutine processes the 
STATE option and determines both the card 
numbe.r and the verb number for the last 
statement executed before the ABEND, and 
then generates a message containing this 
informa tio·n. 

The ILBOD10 subroutine is called when 
the SYMDMP option is in effect; this 
routine calls other modules as necessary 
for SYMDMP initialization. The ILBOD20 
subroutine services SYMDMP output requests 
from DBGO. SYMDMP generates the fo1loving 
information as output on the SYSDBOUT data 
set: a copy of all SYMDMP control 
statements; diagnostic messages; dynamic 
dumps of user-selected data areas at 
strategic points dur ing program execu tion; 
an abnormal termination statement number 
message; and the complete abnormal 
termination dump. In addition, 
modifications are made to the COBOL program 
in main storage if dynamic dumping is 
requested for the progra m. 

MQ!~: When SYMDMP services are requested 
for a job step, the sequence of events is, 
in general, as follows: (1) initialization 
-- for the first COBOL program in a job 
step, then for all other COBOL programs in 
that job step, and finally for independent 
program segments; (2) processing -- first 
for dyna mic dump requests, and then for 
abnormal termination dumps. 

482 

The ILBODBEO subrout ine is call(ed by the 
PRINT routine of the debug control 
subroutine to format the appropriate error 
message in the SYSDBOUT output buffer. 

For additional information on the FLOW, 
STATE, and SYMDMP options and their 
relationshi p to other COBOL option s, see 
the chapter entitled "Symbolic Debugging 
Features" and the section "options for the 
Compiler" in the chapter entitled "Job 
Control Procedures." 

The ILBOTCOO subroutine initializes the 
count common area, gets space for and 
initializes the count chain, and 
initializes the count chain pointer in the 
object module TGT. 

COUNT Frequency subrouting_1ILB~1QL 

The ILBOCT10 subroutine updates the 
appropriate node counter by one and saves 
the callerls count-block number in the 
count chain. 

The ILBOTC20 subroutine is called at 
termination of object module execution to 
determine if there are programs being 
monitored. If so, it calls subroutine 
ILBDTC30 to write execution statistics, and 
if the termination is normal, calls 
ILBDDBG8 to close the debug print file. If 
the termination is not normal, the deb ug 
print file is left open for debugging 
information. 

The ILBOTC30 SUbroutine computes and 
writes execution statistics on the debug 
print file upon termination of the program 
being monitored. 



Q!El.E£I::.Il!1.LM!!Y.~~-ill!!!!!L.!!il.QR M AT 10 1! 
MANAGEMENT SYSTEM (PP5734-XX6, 5740-XX2) 

In order to ensure correct debug on 
SYSDBOUT, the ILBOSPIO subroutine is called 
by an explicit CALL statement written by 
the COBOL programmer in his source pro
gram to be compiled with the FLOW, STATE, 
SYMDMP, and/or COUNT options. 

There should be one CALL statement 
written at the beginning of the Procedure 
Division and following each ENTRY statement 
in the program. 

There should be one CALL statement 
written at each exit point in the program. 
i.e., preceding each GOBACK, EXIT PROGRAM, 
or STOP RUN statement. 

These CALL statements are effective only 
in a COBOL program compiled with FLOW, 
STATE, SYMDMP, or COUNT options. They must 
be executed as a logical pair only once per 
COBOL run unit. If COBOL program A calls 
COBOL program B, either A or B or both can 
be compiled with debugging options, but 
only the highest level program compiled 
wi th debugging options should contain CALL 
'ILBOSPIO' statements. The first execution 
of ILBOSPIO issues a SPIE macro instruction 
to trap the old program PSi in the event of 
a program check before STAE gets control at 
abnormal termination. The second execution 
of ILBOSPIO resets any previous SPIE at 
task normal termination. At abnormal 
termination, ILBODBGO will reset the 
previous SPIE. 

Finally, any CALL 'ILBOSPIO' statements 
written in a COBOL program compiled with 
none of the above options cause the 

subroutine to return control with no action 
(SPIE is not issued). 

Note. When this facility is used, the 
PSW in a SYSUDUMP will point to the 
SVC 13 in ILBOSPI. 

Figure 114 includes a list of COBOL 
library subroutines, their storage 
requirements, and the associated calling 
information. The subroutines are arranged 
alphabetically by the characters following 
'ILBO'. The list includes subroutines that 
are called directly by the object program 
-- pri.!!~n subroutines--and the 
subroutines they call--§g£ondaa 
subroutines. Some subroutines (for 
example, ILBOANE) function as both primary 
and secondary subroutines. 

The superscripts that accompany several 
of the entries refer to footnotes at the 
end of the table. Footnotes that appear 
with the names of SUbroutines indicate 
routines that are conditionally obtained, 
that are secondary SUbroutines only, or 
that may never reside in the OS/'S2 link 
pack area (LPA) or the OS/'S1 resident 
reenterable routine area (RRR). The 
footnotes that appear with some of the 
numeric values indicate whether the 
information represents a maximum value, a 
minim~m value, or an estimated value. In 
all cases, the numeric values represent 
decimal bytes rounded off to the nearest 
50. 

For descriptions of the primary 
subroutines and of the major secondary 
subroutines, see the sections of this 
appendix entitled "Subroutines for 
Subprogram Linkage," "Object-Time program 
Operations," and "Object-Time Debugging. It 

Appendix B: COBOL Library Subroutines 483 



r--- i i i i i i i -, 
IPrimary ICalling Isize* I Dynamic I Secondary ISize IDynamic IRe- I 
I Subroutine rInf orma tion I IWork ArealSubroutinesl I Work Area lentrantl 
l- I 1 f I t- I I of 

IL"BOABN ICal+ed by compiled 150 I None 1 Ie's 
(ABEND) I code , , 

I I , 
ILBOACP ICalled by compiled 582 100 ILBOCMM 1100P Yes 
(ACCEPT) , code 1 

I 
ILBOACS ICalled by compiled 260 Yes 
(Alternate compare) Icode and ILBOUNS, 

,ILBOSTG, ILBOSCH, 
land ILBOSMG 
I 

IL BOANE Called by compiled 328 0 None Yes 
(MOVE alphanumeric- code and by 
edited field) ILBOUST 

ILBOANF Called by compiled 120 0 None Yes 
(MOVE fi gurati ve code 
constant) 

ILBOATB Used for ILBOCLS 272 0 None Yes 
(Alphabetic table 
for class tes t) 

ILBOBEG Called by compiled 296 None Yes 
(NaRES code and ILBOSRV 
initializa tion) 

ILBOBID i Called bycOlIIpiled 136 0 None Yes 
(Binary to internal 1 code 
decimal) 1 

I 
ILBOBIE ,Called by compiled 136 0 None Yes 
(Binary to external , code 
decimal) I 

1 
ILBOBII I Called by compiled 488 0 None Yes 
(Binary to internal , code and by 
floating-point) I ILBODCI, ILBOEFL 

I 
ILBOBUG ICalled by compiled 2060 5602 ILBOCHN 450 Yes 
(USE FOR DEBUGGING) ,code ILBOCMM 1000 

I 
ILBOCHN ,Called by ILBOSYN 432 ILBOCMM 1000 Yes 
(Save area chaining) , and ILBOLBL , 
ILBOCJS ,Called by operating ILBOMSC 300 7220 No 
(Job Scheduler) ,system ILBOSCD 200 (also , ILBOWAT 150 Inon-re-

I 1 usable 
J , 

ILBOCKP ICalled bV compiled 74 0 None 1 Yes 
(Checkpoint) , code I , 1 
IL BOCLS ,Called by compiled 168 0 1 Yes 
(Class test) , code , 

L- I 

*Size given is an estimate. 

Figure 174. Calling and storage Information for COBOL Library Subroutines (Part 1 of 7) 

484 



.---- ------·------,'--------------------~i-----~' " ,--, 
1 primary 
,subroutine ..-

ILBOCIH! 
(GETCORE) 

ILBOCOM. 9 

(S ubroutine 
communica tions) 

ILBOCT1 
(COUNT frequency) 

ILBOCV B 
(Decimal to 
bin ary /binary 
to decimal) 

,ILBODBG , , , , , 
I 

'. I 
ILBOD01 789 

ILBODCI 
(Decimal to internal 
floating-point) 

ILBODCRO 

ILBODSP 
(DISPLAY, TRACE, 
EXHIBIT) 

'--

ICalling ISize IDynamic I Secondary 1Size IDynamic IRe- , 
IInformation 1 IWork ArealSubroutinesl ,Work Area lentrantl 

-------+1---+-----+ +---+-----+----~ 
Called by compiled 

code, ILBOCHN, 
ILBOSRT, ILBOSNT, 
ILBORNT,· ILBONTR, 
ILBOCVB, ILBOUST, 
ILBODBG, ILBODSP, 
ILBOACP, ILBOFLW, 
ILBOSTN, ILBOD10, 
ILBOD12, ILBOD21, 
ILBOREC, ILBOSND, 
ILBONBL, 1LBOQSS, 
ILBOBUG, 1LB01NS, 
and ILBOQIO 

956 None 1 1 Yes 

Link-edited or loaded 
by compiled code 
and by I1BOSRV; 
used by most COBOL 
library subroutines 

Called by compiled 
code 

Called by compiled 
code and by 
ILBOUST and ILBOSTG 

Called by compiled 
code if FLOW, 
STATE, or SYMDMP 
is specified 

410 

224 

1042 

13638 , 
I 
I 
I 
I 
I , , 

Called by ILBODBG if ,728 
SYSMDP is specifiedl , 

Called by compiled 
code 

Called by explicit 
call 

Called by compiled 
code 

I 
I , 
I 
I 
I 
I 
1 
I 
1 
1240 
I 
I 
I 
I 560 
I , 
13520 
I 
I 

o 

300 5 

952 7 

o 

o 

104 

None 

None 

ILBOCMM 

ILBOCMM 
ILBOOBE789 
ILBOSTN789 
ILBOFlW7 
ILB0001 789 

ILBOD10 789 
IL130D11 789 
I1BOD12 789 
ILB0013 789 
I1B0014 789 
ILB0020789 
ILB0021 789 
ILBOD22 789 
ILBOD23 789 
ILB0024789 
ILB0025789 
1LB0026 789 

ILB01DB 

None 

ILBOCMM 

L-----~ ________ ~ 

1000 , 

950 
1312 

776 
1096 

650 

2648 
775 
1810 
1576 
1480 
1122 
1680 
2265 
3882 
2783 
1222 

)2278 
1 
, 150 , 
1 , , 
I , 
I 950 
I 
I 

1 1 
I , 
1 1 

1 
I , 
I 
1 
I 
1800 , 
I 
I 

o 
96 
60037 

o 

40007 
o 
o 
o 
o 
o 

25/000 7 

o 
o 
o 
o 
o 

o 

1 
1 
1 , 
1 
1 
1 , 
1 
1 
I No 
I , , , 
I 
I Yes , 
I 
1 Yes , 
I 
I 
I 
1 Yes , 
I 
I , , , , , 
I Yes 
1 , 
I 
I 
1 
1 
1 , 
I 
I 
I 
I 
I Yes , 
I 
I 
I Yes 
1 
1 
, Yes 
I , 

-'--___ -'---___ --'--____ J 

Figure 174. calling and Storage Information for COBOL Library Subroutines (Part 2 of 7) 

Appendix B: COBOL Library Subroutines 485 



r- I I -,------,- I - I -,----, 
,Primary ,Calling ISize , Dynamic , Secondary ,Size !Dynamic ,Re- I 
I Subrol1.tine !Information I IWork ArealSubroutinesl I Work Area lentrant, 
l- I , , , I I -+-----f 

ILBOD55· I Called by compiled 1034 , 0 None , , No , 
(DISPLAY) I I , I I , J I , I 
ILBODTE Called by compiled 504 0 None I I Yes I 
(Date# day, and code , I I 
time) f I I 

I , 
1LBOEFL Called by compil~d 600 0 ILBOIOB 150 0 I , 
(Conversion code ILBOBI1 500 0 I Yes I 
from external I 
floating-point) I 

I 
I1LBOERR Called by the system 674 0 None Yes 

(Error intercept) 

1LBOETB Used by ILBOCLS 268 0 None Yes 
(External decimal 
table for class 
test) 

ILBOEXT Called by the system 80 None Yes 
(DCB exit) 

ILBOFLW7 Calle~ by ILBODBG and 1340 60037 ILBOCMM 1000 Yes 
compiled code if 
FLOW is specified 

1LBOFPW Called by compiled 816 0 None Yes 
(Floating-point code 
exponentia tion) 

ILBOGDO Called by compiled 280 0 None Yes 
(GO TO DEPENDING ON) code 

1LBOGPW Called by compiled 96 0 None Yes 
(Floating-point code 
exponentiation to a 
binary exponent) 

ILB01DB ICalled by compiled 128 0 None Yes 
(Dec imal to bina ry) I code or by ILBODC1 

I 
ILBOIDR I Called by compiled 1680 0 , None Yes 
(Internal decimal , code ! 

I to sterling report) I I , I I I 
,1LBOIDT ,Called by compiled , 696 0 None Yes I 
I (Internal decimal to code , I , sterling non- I I 
f report) , , 
I , I 
I ILBOIFB , , 
I (I nterna 1 Called by compiled I 350 0 None Yes I 
I floating-point to code or by 1LBOIFD I I 
I decimal or binary) or 1LBOTEF I I 
I , I 
I1LBOIFD , I 
, (Internal floating Called by compiled I 224 0 1LB01FB Yes I 
I to decimal or code , I 
I bin ary) I I 
'---

..L---_________ --L-__ --L-- .L.... __ --'--
J 

Figure 174. Calling and storage Information for COBOL Library Subroutines (Part 3 of ·7) 

486 



r-----------,.-
,Primary ICalling 
ISubroutine IInformation 
..------------f---------

ILBOINS ICalled by compiled 
(INSPECT) Icode , 

I 
ILBOINT ICalled by compiled 
(VSAM initializa
tion) 

1 code 

ILBOITB 
(Internal decimal 
table for class 
test) 

I 
1 
Called by compiled 

code 

IILBorVL Called by compiled 
I (Comparison with code 
I figurative 
I constant) 
1 
IILBOLBL called by the system 
I (Label handling) 
1 
IILBO~RG Called by ILBOSRT 
I (Merge) 
1 
IILBOMSC ICalled by ILBOCJS 
I (Message count) 1 
, 1 
1 ILBOMSG I Called by ILBOS RV 
I (STOP RUN message) I 
I I 
IILBONBL ,Called by compiled 
1 (ENABLE/DISABLE) Icode , , 
'ILBONTR 'called by compiled l (RES initialization) : code 

I I 
IILBOOCR11 ICalled by compiled 
1 (Optical character 1 code 
, reader) , 
1 , 
IILBOPRM ICalled by ILBONTR 
I (Object-time lor ILBOBEG 
,parameters) I , , 
IILBOPTV ,Called by compiled 
,(Printer overflow) , code 
1 I 
,ILBOQIO ICalled by compiled 
I (QSAM I/O) Icode 

:' 1 
1 1 
1 1 
IILBOQSS ICalled by ILBOREC, 
1 (Queue scan) IILBONBL 
1 1 
IILBOQSU. 10 ICalled by JCL 
1 (Queue structure , 
I utility program) 1 
1 1 
L-- ' 

i 

ISize 
I 
+--
11730 , 

250 

280 

80 

1 
1 480 
I 
I 
1 830 
I 
1 
I 260 
I 
1 
I 250 
1 , 
12720 
1 
1 

: 3064 

I 
I 
1 1402 
1 , 
1130 

152 

1390 

820 

16290 
1 
1 , 
I 

iii ~ 
IDynamic I Secondary Isize IDynamic 
IWork Areal Subroutines I IWork Area 
1 ~-----~--~ 
820 ILBOACS I 300 

ILBOCMM 11000 
ILBOCVB 11050 

1 
None 

o None 

o 

7220 

550 

o 

o 
, 

168 2 

4800 3 

4000 

None 

ILBOCHN 
/ 1 

I 
, None 
I 
1 
INone 
I 
I 
1 ILBODBG 7 
1 
I 
IILBOCMM 
IILBOQSS 
IILBOREC 

'ILBOPRM7 

None 

ILBONSND 

None 

ILBOCMM 
ILBOSYN 
ILBOSRV7 

,ILBOSPA7 
1 
1 None 
1 
1 
1 None 
t' 
1 
1 , 

, , 
I , 
I , , 
t 

450 

2850 

1000 
820 

3250 

1130 

3300 

100 
1050 
1000 
1800 

, 
1 , , , , , , 
1 , , , , 
148003 

, -, 
1 Re- , 
lentrant, 
I 1 

Yes 

Yes 

Yes 

Yes 
I 
I , , 

Yes I 
I 
I 

Yes I 
I 
I 

Yes I 
I 
I 

Yes I 
I 
1 

Yes I 
I 
I 

Yes t 
I , , 

No , 
I 
1 
I 

Yes I 
I 
1 
I 

Yes I 
I , 

Yes , 
I 
I 
I 
I 

Yes I , 
I 

No I 
I (also , 
Inon-re-I 
,usable) , 
, .J 

Figure 174. Calling and storage Information for COBOL Library Subroutines (Part 4 of 7) 

Appendix B: COBOL Library Subroutines 487 



.--- i i ~ i , , , , 
I Primary ICalling ISize I Dynamic I Secondary ISize I Dynamic IRe- I 
I Subroutine IInformation I IWork Areal Subroutines I I Work Area lentrantl .. I I I I --+- I I --of 
ILBORECI0 ICalled by compiled 13200 1160 per ILBOCMM 950 IPDS member Yes 
(RECEIVE) 1 code, ILBOSND, I Iqueue ILBOQSS7 830 SIZE 

land ILBONBL I block, , I 200 per 
I I buffer 
I 

ILBOSAM ICalled by compiled 1230 0 None Yes 
(BSAM WRITE and I code 
CLOSE/BDAM OPEN) , , 

ILBOSCD ICalled by compiled 190 None Yes 
(Scheduler starter) ,code 

I 
ILBOSCH ICalled by compiled 1022 0 None Yes 
(SEARCH) I code 

I 
ILBOSDB ICalled by ILBOSMG 1048 None Yes 
(Sort debug) I I 

I , 
ILBOSGM tCalled by compiled I 510 0 ILBODBG 2000 1 600 2 Yes 

1 (Segmentation) , code 1 
I , I 
IILBOSMG ICalled by compiled 13270 ILBOMRG 7 858 Yes 
I (Sort) I code , ILBOACS 300 
1 I I 1 
ILBOSMV I Called by compiled I 64 0 INone I Yes 
(MOVE to right- I code I I I 
justified field fori I 1 I 
System/370) I 1 , 1 

I 1 I I 
ILBOSNDI0 ICalled by compiled 3230 11402 IILBOREC7 13200 Yes 
(5 END) 1 code, ILBOPRM, AND and 200 ILBOCMM 11000 

IILBOSRV per , , buffer , 
ILBOSPA I called by compiled 1770 , 0 None , Yes 
(printer spacing) I code , , , 
ILBOSPIO 11 ICalled by explicit 280 0 None , Yes , call , 
ILBOSRT I Called by compiled 1230 200 ILBOCMM 1000 Yes 
(Sort) I code ILBOMRG 850 

I 
ILBOSRV ,Called by a program 990 0 ILBOBEG 300 No 
(STOP RUN) , compiled by the ILBOMSG. 250 , COBOL or other ILBOSTT7 400 

1 compiler ILBOSND7 3300 
I 

ILBOSSN ,Called by compiled ,232 1 0 ILBOSRV 1000 0 Yes 
(Separately 1 code 1 ILBODBG 2000 6002 
signed numeric , , 

I , 
ILBOSTG ICalled by compiled , 680 0 ILBOCVB f 1050 300 Yes 
(STRING) 1 code , ILBOACS 1300 , , , 

, ILBOSTI ,Called by compiled , 600 0 None , Yes 
, (Sterlin g non-report, code , 1 

to internal 1 1 I 
dec imal) I 1 I 

I ---1---_--L-
--'-___ ...L..---__ --L-___ 

Figure 174. Calling and storage Information for COBOL Library Subroutines (Part 5 of 7) 

488 



.-- , i -r-----,- i -,------,-------, 
, Primary ,Calling I~ize IDynamic , Secondary ISize IDynamic IRe- I 
,Subroutine I Informa tion I IWork Areal Subroutines I IWOrk Area lentrantl , I , -+----..:..--t , --+ 
IILBOSTN789 ICalled by ILBODBG if 790 96 IILBOCMM 11000 Yes 
I (statement number I STATE is specified , I 
I option) I I , 
I I , I 
I IL BOSTR I Called by compiled 96 0 INone I Yes 
I (STA RT with I code I 
I generic key) , , 
I I I 
ILBOSTT ICalled by ILBOSRV 380 IILBONTR 2900 Yes 
(STOP RUN I , 
termination) , , , 

ILBOSYN ,Called by the system 1010 ILBOCHN 450 Yes 
(Error i~tercept) I , 
IL BOTCO ,Called by ILBODBG 800 ILBODBG1 2850 Yes 
(COUNT initializa- I 
tion I 

I 
ILBOTC2 'Called by compiled 950 ILBOTC3 4600 Yes 
(COUNT termination) I code, I LBODBG, ILBODBG 2850 

I I LBOABX , and ILBOSRV , 
ILBOTC3 ICalled by ILBOTC2 4600 ILBODBG1 2850 Yes 
(COUNT print) , ILBOD13G8 2850 

I 
ILBOTEF I Called by compiled 688 0 ILBOBIE 150 0 Yes 
(Con version to , code or by 1LBOD23 
external , 
floa ting-point) I , 

ILBOTRN I 
(TRANSFORM table) Used by ILBOVTR 272 0 None Yes 

ILBOUST Called by compiled 2100 250 5 ILBONED7 B 1400 Yes 
(UNSTRING) code ILBOCMM 1000 

ILBOANE7 8 350 0 
ILBOCVB7 1050 

ILBOUTB Called by compiled 144 0 None Yes 
(Unsigned internal code 
decimal table 
for class test) 

ILBOVCO Calleod by compiled 520 0 None Yes 
(V ar ia bl e-Iength code 
comparison) I , 

ILBOVIO ICalled by compiled POOO ILBOCKP 500 Yes 
(VSAM action , code , ILBOCHN 100 
request) , I 

i I ~ .L-

Figure 174. Calling and storage Information for COBOL Library Subroutines (Part 6 of 7) 

Appendix B: COBOL Library Subroutines 489 



ILBOXDI 
(Decimal division) 

ILBOXMU 
(Decimal 
multiplication) 

Called by compiled 280 
code and by ILBOXPR 

called by compiled 192 
code and by ILBOXPR 

o None 

None 

o None 

ILBOXPR Called by compiled 680 0 ILBOXDI 300 0 
(Decimal fixed-point code 
exponentiation) 

.-- --L --1-

Notes: 
1. The size given is an estimate. 
2. The size given is a minimum. 
3. The size given is a maximum. 
4. The sUbroutine indicated may never reside in the OS/VS2 link pack area (LPA) or the 

OS/VS1 resident reusable routine area (RRR). 
5. The 256-byte storage area obtained by subroutine ILBOCVB is used by sUbroutine 

ILBOUST. 
6. Because the ILBDODBG; subroutine dynamically loads and deletes subroutines as they 

are needed, depending on the options specified, it is possible only to estimate a 
minimum and/or a maximum amount of storage used by anyone of the debugging 
optio~s. For each storage estimate given below, the effect of possible core 
fragmentation is not consig§red. __ 
a. Basic debug package -- 3768 bytes 
b. Debug with the STATE option -- 4640 bytes 
c. Debug with the FLOW option -- 5464 bytes 
d. Debug with SYMDMP option -- 14,000 bytes minimum and 20,000 bytes maximum. 

7. The subroutine or dynamic work area indicated as obtained conditionally. 
8. The subroutine indicated is never called as a primary subroutine. 
9. The subroutine indicated must be on-line at execution time. 

10. The subroutine indicated may require SYS1.TELCMLIB to be in-line at execution 
time. 

11. The subroutine indicated is called explicitly by CALL statement. in the COBOL 
program. 

'---

Yes 

Yes 

Yes 

, 
I Yes 
I 
I 
..L------f 

____ --.J 

Figure 174. Calling and Storage Informati~n for COBOL Library Subroutines (Part 7 of 7) 

Appendix B: COBOL Library Subroutine 489.1 





In this appendix, each field of the data 
control block is listed by the name of the 
operand of the assembler-language macro 
instruction that can specify a value for 
that field. Figures 115 through 179 
illustrate the data control blocks for 
sequential~ direct* relative, and indexed 
files. Some of the data control block 
fields can be referred to with the DCB 
parameter of the DD statement. However, 
any field filled in by the COBOL compiler 
cannot be overridden except for the indexed 
file OPTCD field in which the 
L-subparameter is set by the compiler using 
DeB exit. 

490 

values for fields for which no entry 
appears in the column headed "COBOL Source" 
may be supplied by the DD statement or by 
the data set label. 

For information concerning the 
speCification of values for data control 
block fields, see the DCB macro instruction 
for the different file processing 
techniques in the publication QS/VL!!Sl!.g, 
Hg,nag~~gn1_~£rQ-In2!.ructiQn2. 

1i.Qlg: The DeB subparameters are discussed 
under "User Defined Files" in the chapter 
"User File Processing." 



r • 
I I 
IData Control, I 
I Block Field I Explana tion of Field I 
r- I I 

BPALH I Alignment I 
I I 
I • 

BP'TEK ,Buffering technique j 
I (S or ~ I 
I I 

BLKSIZE t lIa xim ua length of block I 

BUFeB 

BOFL 

BUFNO 

BUFOFF 

I DDNA1'1E 
I 
• DSORG 
I , 
I EODAD , 
I 
I 
tEROPT 
I note) 
t 
IEXLST 
I 
I 
ILRECL 
I 
I II ACRF 
I 
I 
t 
I 
IO·PTCD 
I 
I 
tRECPM 
I 
I 
I 
I 
I 
I 
aSTNAD 
I 
I 

• I 

I I 
I I 
IAddress of buffer pool I 
J I 
,Length of each buffer ) 
• t 
INumber of buffers I 
I assigned to DCB I 
J I 
I t 
I I 
,Name of DD statement J 
1 • 
tAccess method I 
I J 
I ) 
IAddress of user's end-of-I 
• data-set exit routine I 
I for input data set I 
1 I 

(see tError option I 
J J 
I J 
JAddress of exit list I 
J J 
I I 
JLogical record length I , . 
IType of macro instruction) 
J t 
I • 
I I 
I • 
,Optional service provided) 
J by control program J 
J I 
ICharacteristics of I 
I records in data set • 
I I 
I I 
I I 
I I 
I • 
,Address of erro.t:' exit I 
J routine I 
I I 

----------------~i------ , 
I Applicable I 
J DD statement I 

COBOL Source t DCB sub parameters , 
I • 

(COBOL specifies double-I I 
word boundary). I 

1 • 
(COBOL sp~cifies m I I 

I I 
J I 

BLOCK CONTAINS J BLKSIZE J 
Data record description I , 

SAME AREA 

RESERVE 

ASSIGN clause 

ASSIGN clause 
ACCESS clause 

READ ••• AT END 

I I 
J I 
I , 
I I 
I I 
I BUFNO=N(default=2) f 
t J 
I J 
! (BUFOFF=[ nil ]) I 
t I 
I t 
1 I 
J 1 
J t 
I I 
I f 
, I 
I I 
I I 
I (EROPT=[ ACC J SKPI ABE]) t 
j t 
I I 

used by the compiler for1 J 
USE ••• LABEL, etc. J I 

I'D entry 

OPEN INPUT, READ 
OPEN OUTPUT, WRITE 
OPEN I-a, READ, WRITE 
REWRITE 

CODE-SET 

RECORDING MODE 
Record descript ion 
ADVANCING 
POSITIONING 
BLOCK CONTAINS 
APPLY RECORD-OVERFLOW 

Used·by compiler for 
INVALID KEY and 
USE AFTER ERROR 

I 1 
ILRECL j 

f J 
II 

I J 
1 I 
J I 
I I 
I (OPTCD=[WIClwCtTIQD • 
1 I 
t I 
, (RECFM=D) I 
I I 
1 • 
J I 
I t 
I j 

I I 
IRECFM={SIT} I 
I J 
I I .. 

INot~: If the COBOL proqram contains FILE STATUS or USE AFTER ERROR/EXCEPTION clauses 
I for the QS11'1 file, EROPT=ACC should be specified; other wise, the COBOL program will 
tnever receive control when certain abend situations arise. 

I 
I 
1 
t '-____ _ 

.J 

Figure 115. Data Control Block Pields for Physical sequential Files (QSAM) 

Appendix C: Fields of the Data Control Block 491 



r-- ------------Tt------------------------T.----------------------, 
• J I Applicable I 
IData Control, I I DD Stateaent f 
.Block Field I Explanation of Field f COBOL Source I DCB Subparaaeters I 
l- I I I .. 
IBLKSIZE Iftaximull length of block I Data record description, I 
I I I I I 
JDDNAftE ,Name of DD statement I ASSIGN clause I I 
I. I I I 
tDSORG ,Access aethod I ASSIGN clause I I 
1 I • ACCESS clause I I 
I. I I I 
,EODAD IAddress of end-of-data-set, READ ••• AT END I t 
I I exit (input) 1 I I 
J I f I I 
,EXLST ,Address of exit list I USE ••• LABEL PROCEDURE • I 
1 I J I 
,K EYLEN I Length of key I ACTUAL KEY I I 
II f (length of I 
• J I ACTO AL KEY - 4) • 
I I. I 
ILRECL JLoqical record length I FD entry LRECL I 
I I I I 
UtiCRF J Type of macro instruction J OPEN INPUT, READ I 
J I I OPEN OUTPUT, I 
I I • WRITE (DIRECT ONLY) I 
I J I I 
IOPTCD IOptional service to be I [OPTCD=WfT] I 
I I provided by control f I 
• I program J I 
I f J J 
JRECFM ICharacteristics of I RECORDING MODE • 
t 1 records in data set t Reco.rd descr iption 1 
I t I APPLY RECORD-OVERFLOW I 

I " I ISYNAD JAddress of error exit I USE AFTER ERROR I 
11 routine J IN VALID KEY J 
r-------~. ~ 
,lDirect files only; for relative files, the field is O. I 
~ ~ 

Figure 116. Data control Block Fields for Direct and Relative Files Accessed 
Sequentiall y (B5AM) 

492 



r ------. , 
I I I Applicable I 
IData Control I I I DD statement J 
,Block Field I Explanation of Field I COBOL source f DCB Subparameters I 
t I ----------~J~--------------------~Ir--- t 
IBLKSIZE IMaximum length of block IData record description I I 
I t J I J 
,DDNAME I Name of DD statement ,ASSIGN clause I I 
I f I I I 
I DSORG J Access method I ASS.IGN clause I I 
I I I ACCESS cIa use 1 , 
I' J I f 
JEXLST JAddress of exit list IUSE ••• LABEL, etc. I , 

KEYLEN 

LIMeT 

MACRF 

OPTCD 

RECFM 

I 
ISYNAD 
I 

• I 
11 Direct 

I I I I 
J Length of key for each I ACTUAL KEY 1 J I 
I physical record • (length of I I 
• I ACTUAL KEY - 4) I I 
J j I J 
ISearch limits I ILIMCT=n (OPTCD=E 1 
I t I must be specified) I 
J I I 1 
IType of macro instruction JOPEN INPUT, READ I I 
f IOPEN OUTPUT, I t 
I I WRITE (DIRECT ONLY) I J 
I IOPEN 1-0, READ,. I 
• I WRITE (DIRECT ONLY), I 1 
, I REWRITE t I 
J I I j 
IOption service to be I ,OPTCD=E/W I 
I provided by the control I I J 
I program I I I 
I I I t 
,Characteristics of JRECORDING MODE J J 
I records of data set I APPLY RECORD-OVERFLOW I I 
I 1 Record description I I 
I 1 , I 
IAddress of error exit ,Used by compiler for I t 
I routine I INVALID KEY and J I 
I I USE AlTER ERROR I I 
, , L--- f 

files only, for relative files this field is O. I __________________________________ J 

Figure 177. Data Control Block Fields for Direct and Relative Files Accessed Randomly 
(BDAM) 

Appendix C: Fields of the Data Control Block 493 



r-, , , , t. I f Applicable I 
,Data Controll I I DD statement • 
JBlock Field i Explanation of Field I COBOL source I DCB Subparameters I 
I------f I I f 
t BPALN t Buf.fer alignment (F or D) I (COBOL specifies D), I 
I f 1 I I 
fBKLSIZE ,Maximum length of block ,BLOCK CONTAINS fBLKSIZE I 
J I 1 I I 
,BOFCB JAddress of buffer pool 'SAME AREA I I 
I I I , 
IBUFNO JNumber of buffers assigned IRESERVE I BUPNO=N(default=2) 
f J to DCB I I 
J I I I 
JCYLOFL INumber of overflow tracks I ICYLOFL=XX 
11 for each cylinder f t 
1 J I I 
JDDNAME IName of DD statement ,ASSIGN clause I 
I J I I 
fDSORG IAccess method IACCESS clause I 
I I IASSIGN clause I 
J f 1 J 
jEODAD JAddress of user's end-of- IREAD ••• AT END f 
J J data-set exit routine I t 
1 I for input da ta set I I 
J I • I 
IEXLST tAddress of exit list IUsed by the compiler I , 
I I J I I 
JKEYLEN ILength of key for each ,RECORD KEY I I 
f I logical record. I I 
I f J I I 
I LREel I Logical record length J PD entry I LRECL I 
1 J tit 
IMACRF JType of macro instruction IOPEN INPUT, READ, START I I 
I I tOPEN OUTPUT, WRITE I I 
I I IOPEN 1-0, READ, START, I I 
I J • REWRITE I I 
j I I I I 
I NTM • Maximu m nu mber: of I I NTH=XX , 
I I cylinder: index tracts I I I 
J J I I I 
t OPTCD J optional ser vices I OPTCD=I I R I W I Y I M I U. L I 
I I i (must also have I 
J I I NT M=M) I 
J Itt 
JRECFM ICharacteristics of IRECORDING MODE I 
I I records in data set IRECORD DESCRIPTION I 
I J IBLOCK CONTAINS I 
I I J I 
IRKP JRelative position of iRECORD KEY I 
I • record key in logical I I 
I I record I I 
f I I J I 
ISYNAD IAddress of error exit ,Used by the compiler for I I 
I I routine , INVALID KEY, I I 
I J I USE AFTER ERROR I I 
I I • I .I 

Figure 178. Data Control Block Fields for Indexed Sequential Piles Accessed sequentially 
(QISAM) 

494 



~ i , 

I I I Applicable I 
IData Control I • , DD statement I 
IBlock Field I Explanation of Field J COBOL Source IDCB Subparameters I 
'~--------~Ir-- I I , 

BF ALK ,Buffer alignment (F or D). I (COBOL speci fies D) J I 

DDNAftE 

DSORG 

EXLST 

KEYLEN 

LRECI. 

!!lCRF 

I 
I flSHI , 
I , 

HSWA 

SMSI 

SMSW 

I tit 
,Name of DD statement. ,ASSIGN clause I t 
J I I I 
,Access method. ,ACCESS clause I I 
J IASSIGN clause t I 
I I J I 
,Address of exit list. ,Used by the compiler I J 
I • I J 
I Key I engt h. I NOf!lIN AL KEY I I 
I • I I 
ILogical record length. IFD entry I I 
I I I J 
IType of macro instruction. ,OPEN INPOT, READ I I 
I IOPEN 1-0, READ, J J 
t IWRITE. REWRITE, J t 
I f J I 
,Address of area for IAPPLY CORE-INDEX I J 
t highest level index ~ I , 
I of data set. I I 1 
t I J J 
IAddress of area reserved ITRACK-AREA I I 
• for control program. I J J 
I Required for variable I f I 
I length records. I I J 
I I I J 
,size for area provided for ,APPLY CORE-INDEX, I 
• highest level index of J I I 
I the data set. I I I 
I t J I 
INumber of bytes reserved ITRACK-AREA I J 
I for main storage I I J 

I work area. I , 1 
L _____ ..... '___ f .L-.J 

Figure 179. Data Control Block Fields for Indexed Sequential Files Accessed Randomly 
(BISAM) 

Appendix C: Fields of the Data Control Block 495 



In general, compilation is faster when: 

1. options in the EXEC statement are 
specified to: 

a. Make more main storage available 
(the SIZE option and the JCL 
REGION parameter) 

b. optimize the space available for 
buffers (the BUF option) 

c. Suppress output (the NOSOURCE, 
NODECK, NOLOAD, and the SUPMAP 
options, among others) 

d. Suppress object code if one or 
more E-level messages are 
generated (CSYNTAX option). 

2. The maximum block size for a compiler 
data set is specified. 

3. A disk configuration and separate 
channels for utility data sets are 
used. 

4. Separate devices (i.e., not the same 
mass storage unit) on the same channel 
are used. 

Compilation time is also affected by the 
speed of the devices allocated to the data 
sets. For example, a tape device is faster 
than a printer for printed output. The 
blocking information that follows applies 
to OS/VS1 or OS/VS2. 

The as/vs COBOL Compiler, provides 
additional opportunities for saving either 
main storage or time. For example, 
specification of the Optimized Code 
Feature, the COBOL Library Management 
Feature, the Dynamic subprogram Feature, or 
all three of these fea tures, can result in 
a considerable saving in main storage. The 
notes qiven below provide additional 
perfor~ance information on programs run 
with these and other new features. 

• When the optimized Code Feature is 
requested, via the OPTIMIZE compiler 
option, execution time is reduced for 
non-I/O bound programs; however, 
compilation time is increased. 

496 

• specification of the COBOL Library 
Management Facility, via the RESIDENT 
compiler option, results in a saving of 
both main storage and secondary 
storage, as well as of time at the 
link-edit step and the initial program 
load for the program. 

• Dynamic invocation and release of COBOL 
subprograms, specified by the DYNAM 
compiler option, also results in 
savings in main storage. 

• A syntax checking compilation, 
specified by the SYNTAX or CSYNTAX 
compiler option, saves machine time. 
Depending on which compiler options are 
chosen, as well as the various soarce 
program statements, compile time can be 
reduced greatly. 

The symbolic dump feature, specified by 
the SYMDMP option, and source-level 
debugging through USE FOR DEBUGGING 
declaratives, can save much debugging time. 
However, use of either of these features 
can decrease performance expectations for 
programs run with it. That is, such 
programs require additional time for the 
compile, link-edit, and execute job steps. 
They also require more main storage than 
programs run without this feature. 

For information about requesting any of 
these options, see the section "Options for 
the Compiler" in the chapter on "Job 
Control Procedures". For information about 
USE FOR DEBUGGING, see the chapter "program 
Checkout. II 

The blocking factor specified for 
compiler data sets other than utility data 
sets must be permissible for the device the 
data set is on. In addition, for the 
SYSLIN data set, it must be permissible for 
the linkage editor used. (Any block size 
specified for a utility data set in a DD 
statement is overridden by the compiler.) 
If a block size other than the default 
option is needed, it can be requested by 
specifying the BLKSIZE sub parameter of the 
DCB parameter in the DD statement for the 
data sets. The format of the subparamete 
is: 

DCB=(BLKSIZE=nnn) 



where nnn is equal to N times the logical 
record size in bytes, and 1 S N S M. M is 
equal to the blocking factor permissible 
for the device, and, in the case of SYSLIN, 
to the blocking factor permissible for the 
linkage editor used. 

If blocking is desired, the record 
format for SYSPRINT [DCB=(RECFM=nn~ ] 
should be specified as FBA. The record 
format for SYSIN, SISLIN, SISPUNCH, and 
S1SL1B should be specified as FB. 

IQi~: For queued sequential data sets, the 
REeF! subparameter of the DD statement may 
optionally be specified at object time, 
permitting the programmer to specify the 
standard block option (for data sets with 
recording mode F) or the track overflow 
option for the data set. (The track 
overflow option is equivalent to writing an 
APPLY RECORD-OV ERFLOW cl au se in the source 
program.) Use of the standard block option 
(particularly for direct-access devices 
having the Rotational positional sensing 
feature) results in the significant I/O 
performance improvement. 

Fixed-block single volume data sets as 
created by COBOL are standard (except 
possibly when extended using the DISP=MOD 
pa ra meter of the DD statemen t) • 
Multivolume data sets as created by COBOL 
are standard if the volume switching occurs 
through automatic end-of-volume procedures. 
If, however, the programmer issues a CLOSE 
REEL/UNIT statement, then he must ensure 
that the number of logical records in the 
volume is an integral multiple of !l, whe·re 
a BLOCK CONTAINS ]!RECORDS clause (or an 
equivalent BLOCK CONTAINS CHARACTERS 
clause) has been specified in the source 
program. The standard block option and the 
track overflow option are mutually 
exclusive. 

The logical record size for SYSPRINT and 
SYSUT6 is 121 bytes. The logical record 
size for SYSIN, SYSLIN, SYSPUNCH, and 
SYSLIB is 80 bytes. 

!Q~: For compile, link-edit, and execute 
cases when labeled volumes are used,RECFfII 
and BLKSIZE must be given for SISLIN in the 
compile step only. If BLKSIZE is specified 
for SYSPUNCH, LRBeL must also be specified. 

Once the amount of space available for a 
compilation is determined, the compiler 
subtracts the amount required for itself. 
From the space remaining, it then computes 
the space available for utility and 
input/output data set buffers. If space 

still remains, the compiler makes use of it 
for internal processing. 

once the amount of space available for 
buffers is determined, the compiler 
calculates how this space is to be di vided. 
First, it computes the amount of space 
required for the buffers of the 
input/output data sets. From the space 
remaining, it determines the maximum buffer 
size, and hence block size, possi ble for a 
utility data set. The four required 
utility da ta sets SYSUT 1 through SYSUT4 all 
have the same block size. Thus, the block 
size of a utility data set is dependent on 
the amount of space available for buffers. 
If a block size has been specified in a DD 
statement for a utility data set, it is 
ove.rridden. 

A larger buffer size for a utility data 
set allows for faster processing. However, 
if ·the program being compiled takes up a 
large amount of the available storage, a 
smaller space for buffers enables the 
compiler to use more main storage for 
internal processing~ 

The following describes how the space 
available for buffers is determined and how 
it is allocated to buffers. 

Let A represent the total space that can 
be allocated to these buffers. It is 
determined as follows: 

1. If neither the BUF nor the SIZE option 
of the PARM parameter of the EXEC 
statement is specified, A equals the 
default value for buffer space. This 
value is specified at system 
generation time. The minimum value is 
4096 bytes. 

2. If the SIZE option is specified, but 
BUF is not, A equals (SIZE - 96K) / 4 
plus the default value fo~ buffer 
space. 

3. If BUF is specified (whether or not 
SIZE is specified), A equals the value 
s peci fied for au F. 

Note: The minimum difference between 
iiii and BUF must always be equal to 
or greater than the difference between 
the minimum SIZE value and the minimum 
BUF value (131,072 bytes - 12,288 
bytes). 

4. If BUF is smaller than 4096 a warning 
message is printed and the minimum 
value is assumed. If BUP is too large 
to allow minimum table space for 
compilation, a warning message is 
printed and the default value (or the 

Appendix D: Compiler Optimization 497 



minimum value, if the default value is 
~lso too large) is assumed. 

The programmer must make sure that the 
amount of buffer space allocated by the 
system is sufficient, taking into consid
eration the block sizes specified for the 
compiler data sets. The allocated buffer 
space is divided as follows: 

1. Let B represent the amount of buffer 
space to be allocated for input/output 
data sets. B is computed as either 
equal to: 

498 

2 times the block size of SYSPRINT + 
SYSIN + SYSLIB 

or 

2 times the block size of SYSPRINT + 
SYSPUNCH + SYSLIN 

whichever is larger. The maximum 
allowable value of B is A - 1280 bytes 
(1280 bytes less than the total buffer 
size). If the computed value is 
greater than the maximum allowable 
value, a diagnostic message is printed 
and compilation is abandoned. 

Note: When the BATCH option is in 
effect, an additional SYSIN buffer 
is required. The first formula above 
then becomes: 

2 times the block size of 
SYSPRINT + SYSIN + SYSIN + 
SYSLIB 

If the block sizes are not 
specified in the DO statements, the 
following default values are assumed: 

!l~ta ~1 
SYSIN 
SYSLIN 
SYSPUNCH 
SYSLIB 
SYSPR.INT/SYSUT6 
SYSTERM 
SYSUT5 

Default 
Ig,lug--1!!ytesL 

80 
80 
80 
80 

121 or 133 
121 
512 

E21~: The default for SYSPBINT/SYSUT6 is 
133 if the L132 option is in effect. The 
512-byte block size for SYSUT5 cannot be 
overridden. 

2. Let C represent the amount of buffer 
space to be allocated for each utility 
data set. Therefore, C equals the 
block size of data sets, SYSUT1, 
SYSUT2, SYSUT3, and SYSUT4, 
respectively. 

A - B 
If A ~ 6B, then C -

5 

A 
If A > 6B, then C 

6 

If C > maximum block size permitted 
for any device a utility data set is 
on, then the maximum block size is the 
value chosen for C. The minimum block 
size for SYSUT1, SYSUT2, SYSUT3, and 
SYSUT4 is 256 bytes. 



The COBOL compiler can be invoked by a 
problem program at execution time through 
the use of the ATTACH or the LINK macro 
instruction, i.e., dynamic invocation. 
Dynamic invocation of COBOL compiled 
programs can be accomplished through the 
use of the LINK, ATTACH, or LOAD macro 
instruction. 

INVOKING THE COBOL COMPILER 

The problem program must supply the 
following information to the COBOL 
compiler: 

• The options to be specified for the 
compilation 

• The ddnames of t'he data sets to be used 
during processing by the COBOL compile.r 

• The header to appear on each page of 
the listing 

r
'Name 

I -,- --, 

J Operationl Operand I 
• J I of 
.[symbol]1 LINK IEP=IKFCBLOO, I 
I I ATTACH I PARAM= (optionlist • 
I J I (,ddnamelist], • 
I I I [, headerlist ]) , VL= 1 , 

L- • • 

where: 

EP 

PARAM 

specifies the symbolic name Qf the 
COBOL compiler. The entry point at 
which execution is to begin is 
determined by the control program 
(from the library -directory entry). 

specifies, as a sublist, address 
parameters to be passed from the 
problem program to the COBOL compiler. 
The first fullwordin the address 
parameter list contains the address of 
the COBOL option list. The second 
fullvord contains the address of 
ddname list. If standard ddnames are 
to be used and no header list is 
specified, this list may be omitted. 
If standard ddnames are to be used and 
a header list is specified, this entry 
should contain the address of a 
halfword of binary zeros, aligned on a 
halfword. The last fullword contains 
the address of the header list. This 
list may be omitted. 

option list. 
specifies the address of a variable 
length list containing the COBOL 
options specified for compilation. 
For additional details, see the 
description of the EXEC statement in 
the chapter "Job Control Procedures." 
This address m~st be written even 
though no list is provided. 

The option list must begin on a 
halfword boundary. The two high-order 
bytes contain a count of the number of 
bytes in the remainder of the list. 
If no options are specified, the count 
must be zero. The option list is free 
form with each field separated from 
the next by a comma. No blanks or 
zeros should appear in the list. 

ddname list 
specifies the address of a variable 
length list containing alternative 
ddnames for the data sets used during 
COBOL compiler processing. If 
standard ddnames are used, this 
operand may be omitted. 

The ddname list must begin on a 
halfword boundary. The two high-order 
bytes contain a count of the number of 
bytes in the remainder of the list. 
Each name of less than eight bytes 
must be left justified and padded with 
blanks. If an alternate ddname is 
omitted from the list, the standard 
name will be assumed. If the name is 
omitted within the list, the 8-byte 
entry must contain binary zeros. 
Names can be omitted from the end 
merely by shortening the list. 

All utility data sets passed to the 
compiler must be physical sequential 
(for example, DSORG=PS must be their 
type of organization) • 

The sequence of the 8-byte entries in 
the ddname list is as follows: 

ddname 
8-bn~tr:t 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

Name for 
ihi£h~ubsti1Ylgg 

SYSLIN 
not applicable 
not applicable 
51SL1B 
SYSIN 
SYSPRINT 
SYSPUNCH 
SYSUT1 
SYSOT2 
SYSUT3 

Appendix E: Invocation of the CO BOL Compiler and COBOL compiled Programs 499 



11 
12 
13 
14 

S YSUT4 
SYSTERK 
SYSUT5 
SYSUT6 

header list 

VL 

500 

specifies the address of a 
variable-length list containing 
information to be included in the 
heading on each page of the listing. 
The list must begin on a halfvord 
boundary. The two high-order bytes 
should contain a 4 (the count of the 
number of bytes int.he new heading 
information). The next four bytes of 
the list should contain the page 
number at which the heading is to 
start~ in EBCDIC format. 

specifies that the sign bit is to be 
set to 1 in the last full·word of the 
address parameter list. 

When the COBOL compiler completes 
processing, a return code is placed in 
register 15. For additional details~ see 
the discussion of the COND parameter in the 
chapter "Job control Procedures." 

INVOKING COBOL COMPILED PROGRAMS 

Linkage editor control cards should be 
specified as follows: 

1. For the PROGRAM-ID program-name, a 
NAME card. 

2. Por each ENTRY literal-1, an ALIAS 
card should be specified in a COBOL 
program that is to be dyna mically 
invoked. 



This appendix contains information to 
aid the programmer in determining how his 
source program affects usage of space at 
compilation time and linkage editing time. 

CO~PILER CAPACITY 

The capacity of the COBOL compiler is 
limited by two <Jeneral conditions: {1) the 
total space available must be sufficient 
for compilation and (2) an individual table 
may not have a length greater than 32,767 
bytes, with the Bxception of the ADCON and 
cross-reference tables. If either of these 
conditions is not met during compilation, 
one of the following error messages will be 
issued: 

IKP0001I-D SIZE PARAMETER TOO SMALL FOR 
THIS PROGRAM. 

IKP0010I-D A TABLE HAS EXCEEDED THE MAXIMU~ 
PERMISSIBLE SIZE. 

In either case, compilation is terminated. 
However, in the first case, the program may 
be recompiled with a lar<Jer SIZE parameter. 
The size of the ADCON and cross-reference 
tables is not limited to 32,767 bytes. 

If a table overflows, the following error 
message will be generated, and the user 
will need to rerun the program in a larger 
region. 

IKP6007I-D TABLE OVERFLOW. PftAP LOAD 
MODULE OR DECK WILL BE 
INCOMPLETE. INCREASE SIZE 
PARAKETER. 

The compiler will accept and compile a 
2000 card program in its minimum main 
storage allocation (128K). Of course, the 
various reader procedures may affect the 
value required for SIZE and BUF parameters. 
The compiler will alloca tethe minimum 
required amounts that are 256 bytes ·for 
each o.f the 4 intermediate files, 80 bytes 
for each system file with the exception of 
SYSPRINT for which 121 or 133 bytes are 
allocated. Double buffering will be 
assumed. 

.H.lFE£T I'yJL~IQSAGE CONSIDERATION~ 

The amount of main storage within the 
compiler's partition and the limita~ion on 
the size of an individual internal table 
are two factors that limit the capacity of 
the compiler. The limitation on the size 
of Lnternal tables can" in some instances, 
be overcome by the spilling over of some 
tables onto external devices. However, 
spilling over may cause a severe 
degradation of performance. The main 
storage limitation should not be reached by 
any reasonable use of the language. 
However, within a limited storage capacity 
excessive use of certain features and 
combination of features in the language 
could make compilation impossible. Some of 
the features that significantly affect 
storage usage are the following: 

1. 

2. 

~Punch Table 

Each entry occupies 8 bytes. This 
table is not limited to the maximum 
size of 32,767 bytes. Entries are 
based on the: 

• Number of 4096-byte segments in the 
Working-Storage Section 

• Number of 4096-byte segments in a 
file buffer area 

• Num ber of referenced proced ure- names 

• Number of implicit procedure-name 
references such as those generated 
byIP, SEARCH, and GENERATE 
statements, ON SIZE ERROR, ON 
OVERFLOW, INVALID KEY, and AT END 
options, the OCCURS clause with the 
DEPENDING ON option, USE sentences, 
and the segmentation feature. 

• Number of files 

This table contains the number of 
definitions written in a section and 
unresolved procedure references. 
procedure references are resolved at 
the end of a section if the definition 
of the procedure-name is·in that 
section or a preceding section. 
Therefore, forward references beyond a 
section impact space. Approximately 
900· unqualified entries are possible. 
A maximum number of 16,255 entries may 
be specified. 

Appendix P: Source Program Size Considerations 501 



This table contains an entry for 
each unique object of an OCCURS clause 
with the DEPENDING ON option. The 
size of an entry is 2 .. length of name 
+ length of each qualifier bytes. 

4. !.ndex Tabl~ 

An entry is made for each INDEXED 
BY clause consisting of 11 .bytes for 
each index .. 

An entry is made for each file 
specified in the program. Each entry 
occupies 60 bytes of storage. 

A considerable amount of 
informa tion is m,aintained for each RD 
such as controls, sums, headings, 
footings, routines to be generated, 
and so on. The contents of the table 
are increased by qualification and 
subscripting in the Report Section. 
Approximately 30 reports can be 
processed without exceeding the limit 
of the ta ble. 

An entry is made for each 
procedure-name and each data-name in 
the program. A procedure entry 
consists of (7 or 9 + length of name) 
bytes. A data entry consists of 
(length of name + n) bytes, where n is 
determined by the attributes of the 
data item. Some of the features that 
contribute to the value n are: 

• One byte for each character in a 
numeric edited or alphanumeric 
edited item picture 

• Five bytes for an elementary item 
with a Sterling Report picture 
clause 

• Three bytes for an item subordinate 
to an OCCURS clause 

8. Lileral Tables 

The total length of all literals 
may not exceed 32511 bytes. No more 
than 16255 literals may be specified. 

9. Miscell~~ous Table~ 

502 

The presence Of the following items 
causes ent.ries to be made into tables 
that affect the tot al space required 
f or compilation. 

• SAME (RECORD] AREA clause 
• Subscripting 
• Intermediate Arithmetic Results 
• Complex Arithmetic Expressions 
• Complex Logical Expressions 
• APPLY clauses 
• Special-Names 
• RERUN clauses 
• Error messages 
• XREF 
• segmentation feature 
• USE FOR DEBUGGING 

LiNKAGE EDITOR CAPACITY 

Some COBOL program and linkage editor 
considerations are listed below as a 
further guide in preparing a source 
program. Consult the publication Q2L!~ 
Li!!.!MLEdiiQ.r and Loader, for additional 
information on linkage editor capacities 
and processing. 

1. All COBOL object programs consist of a 
single CSECT (control section). The 
size of the object module may be 
determined by looking at the location 
of the last instruction in INIT3 in 
the object code listing (see the 
section entitled ttoutputft) or from the 
END card. 

2. The size of the object module is 
greatly increased by any of the 
following: 

a. The blocking factor and alte,rnate 
area reservation of randomly 
accessed files 

b. The specification of the SAME AREA 
clause for sequentially accessed 
files 

3. RLD (Relocation List Dictionary) cards 
are part of the load module, and are 
used by the linkage editor to compute 
the address constants for the load 
module. The number of RLDs produced 
by the compiler can be determined by 
the following formula: 

number of RLDs = number of unique 
subprograms called + namber of COBOL 
library routines called 

4. The output text of the compiler is 
written out in a sequence that differs 
from the order indicat.ed by the 
location counters contained in each 
output item. This sequence difference 
may result in a strain on the 
facilities of the linkage editor. 



5. VALUE clauses in the Working-Storage 
Section may result in many 
discontinuous text records. 

6. The object module produced by the 
COBOL compiler will not be in 
ascending address by card order prior 
to the linkage editor step. 

Appendix F: Source Program Size Considerations 503 



This appendix consists of two sections, 
each describing deta iled informa tion 
available to the programmer after an 
input/output error: 

~ection_l is a sample listing of the 
possible contents of certain fields within 
data-name-1 of the error declaratives 
GIVING clause. This listing is presented 
as a guide for the programmer in analyzing 
his own program at the COBOL source level. 

~ecti~UL~ describes pertinent 
input/output error conditions according to 
access method, including guidance in the 
use of the INVALID KEY and error 
declarative features. 

Note: More detailed information for use in 
~ri~nosing error conditions may be found in 
Q~L~Q~!~_~AD~gem~n~_~9~[g_!n§!~£1ions 
and in either Q~!~l~~§~m_Qata Areas, 
Order No. SY28-0605 or Q~!~~~%~~~ 
Areas, Order No. ST68-0606 (Release 1) or 
SYBR-0606 (Release 2 or later). 

Figure 180 is a sample listing of a 
constant area within one of the modules 
used in SYNADAF processing to formulate the 
descriptive error message ultimately 
reported to the programmer in data-name-1 
of the error declarative GIVING option. 
Part 1 of the table is used to fill in 
the 6-byte field referred to as 
OPERATION-ATTEMPTED, bytes 85-90 of 
data-name-1. Part 2 is the source 
6-byte field known as ACCESS-METHOD. 
108-128 contain this field, the exact 
bytes depending on the device type -
record, magnetic tape, mass storage. 

of the 
Bytes 
six 
unit 

!Q.te: COBOL 'supports only QSAM,BSAM, 
BDAM, BISAM, QISA11 and VSAM at the source 
level .. 

Part 3 of the table provides the 
contents of the most important field, the 
15-byte ERROR-DESCRIPTION, bytes 92-106. 
Parts 1 and 3 are arranged by access 
method, in general, and a number of entries 
in one part. are repeated in the other. 

504 

The programmer may use this listing as a 
guide to determining the nature of his 
error within the declarative by examining 
the appropriate fields. By analyzing these 
fields vith the aid of Section 2 of this 
appendix, the programmer can determine what 
are the consequences of the error and what 
can be done about it. 

!mEQ!1~n!: First, if either the 
OPERATION-ATTEftPTED or ERROR-DESCRIPTION 
field specifies "unknown" in some way, the 
contents of data-name-2 are probably 
invalid, as described in "Error processing 
for COBOL Files" earlier in this 
publication. Referencing data-name-2 in 
this situation should not be done since it 
may cause an abend .. 

Second, the module which contains data 
similar to Figure 180 is part. of the 
operating system and, as such, is subject 
to possible modification with each new 
release -- including insertion or deletion 
of fields, modification of descriptions, 
and so forth. In order to ascertain the 
contents of this constant area in use at a 
particular installation, the programmer may 
consult the microfiche listing of the 
modules. 

The following modules issue SYNADAF 
messages in bytes 92 to 106 of the message 
buffer: 

IGc0106H 
IGC0206H 
IGC0306H 
IGC0406H 
IGC0606H 
IGC0706H 
IGC0806H 
IGC0906H 

The contents of actual messages issued can 
be found by consulting the microfiche for 
these modu lese 

If microf iche listings a re not 
available, the sample job in Figure 181 may 
be executed to get a dump of the 
appropriate module; the fields described 
above· may then be extracted from this dump. 



* ll!A~_AN!.illli-A!l! FORMAT ~~ * 
* INITIAL LOAD * 
D!tLISTl DC 

DC 
DC 
DC 
DC 

DMLIST2 DC 
DC 
DC 
DC 
DC 

* ACCESS 
QSAMS DC 
BSAMS DC 
BPAMS DC 
BDAMS DC 
BISAI1S DC 
QISAMS DC 
BTAMS DC 
QTAMS DC 
GAl1S DC 

C· READ 
C' WRITE ' 
C'CNT-OP' 
C'POINT ' 
C'UNKN' 
C'GET 
C'PUT 
C'UNKN' 
C'UNK!' 
C'SETL' 
HETHOD TYPES 
C'QSAM ' 
C'BSAM • 
C' BPAH ' 
C'BDAM ' 
C' BISA8' 
C'QISAM' 
C' BT AM ' 
C'QTAM ' 
C' GAM 

FILL IN FOB TYPE OF OPERATION 

POINT OI?ERATION 
UNKNOWN OPERATION 

* ERRORS 
FOR EXCP, BPAK. BSAM, QSAM, AND BDAM 

UNKNOWN 

PCBLST 
. EXTENT 

PURGED 

* ERRLIST 

ERRORl 

ERROR2 

DC CL1S' CHAN CTt CK' ERROR MESSAGES 
DC CL1S'INTF CTt CK' 
DC CL1S'PROG CHECK' 
DC CL1S'PROT CHECK' 
DC CL1S'CHAIN CHECK' 
DC CL1S'UNKNOWN COND.' 
DC CL1S'END OF FILE' 
DC CL1S'WRNG.LEN.RECORD' 
DC CL1S'UNKNOWN COND.' 
SPACE 1 
DC eL1S'NO ERROR STATUS' 
DC CL1S'OUT OF EXTENT' 
DC CL1S'PREV D.~. ERROR' 
DC CL1S'PURGED REQUEST' 
DC CtlS'R.HA.RO - ERROR' 

FOR BDAM AND BISAH 
DC CL1S'RECORD NOTFND ' 
DC CL1S'RECD LGTH CHECK' 
DC CL1S'NO SPACE AVAILB' 
DC CL1S'INVALID REQUEST' 
DC CL1S'UNCOR I/O EBROR' 
DC CL lS'UNREACHBLEBLCK' 
DC CL1S'OVERFLOW RECORD' 
DC CL1S'DUPLICATE RECRD' 
DC CL1S'NOT IN SRCH.LHT' 
DC CL 15' WRNG. LE N.RECORD' 
DC CL1S'SPACE NOT FOUND' 
DC CL15'INVALID REQUEST' 
DC CL1S' I/O ERROR 
DC CL15' END OF DATA • 
SC CL1S' ERROR NOT I/O ' 
DC CL1S'EXCLUSIVE CNTRL' 
DC CL1S' INPUT DCB 
DC CL1S'LIMCT=0-EX.SRCH' 
DC CL1S' OUT OF EXTENT' 
DC CL15'CAPACITYRECORD' 

0140001 
0180001 
6720001 
6740001 
6760001 
6780001 
6800001 
6820001 
6840001 
6860001 
6880001 
6900001 
6920001 
6940001 
6960001 
6980001 
7000001 
7020001 
7040001 
7060001 
7080001 
7100001 
0330001 
7320001 
7350001 
7380001 
7410001 
7440001 
7470001 
1500001 
7530001 
7S60001 
8130001 
8160001 
8190001 
8220001 
8250001 
8280001 
0330001 
5490001 
5520001 
5550001 
5580001 
S610001 
5640001 
S610001 
5100001 
6300001 
6330001 
6360001 
6390001 
6420001 
6450001 
6480001 
6510001 
6570001 
6600001 
6630001 
6660001 

Figure 180. Sample Constant Area Used in SYRADAF processing (Part 1 of 3) 

Appendix G: Input/Output Error Conditions 505 



* 
* NOTAPI 
UNKNOWN 
CONDl 
EXTENTS 

* 
* 

DC CL1S' INCORRECT KEY • 
DC CL1S'INVALID OPTIONS' 
DC CL lS ' FIX. L EN ~ KEY • , F' , , 
DC CL1S' UNKNOWN ERROR ' 

SECONDARY LOAD 
FOR QISAM 

DC CL14'NOT APPLICABLE' 
DC CL1S' UNKNOWN COND. ' 
DC CL1S'KEY NOT FOUND • 
DC eL1S' OUT OF EXTENT ' 
DC CL1S'SPACE NOT FOUND' 
DC CL1S'INVALID REQUEST' 
DC CL1S'SEQUENCE CHECK • 
DC CL1S'DUPLICATE RECRD' 

SYNAD ANALYZE AND FORMAT SVC 
UNIT CHECK ANALYSIS 

* FOR EXCP, BPAM, BSAM, QSAM, AND BDAM 
UNKNOWN DC CL1S'UNKNOWN COND. ' 
UCKERS DC CL1S'FQP CHECK' 

DC CL1S'BUS OUT CK' 
DC CL1S' CMD REJECT' 
DC CL1S' tNT REQ f 

DC CL1S'DATA CHECK' 
DC CL1S'OVER RUN' 

MtCR 

* DUMMY IT EM INSERTED TO INSURE PROPER MSG FIELD 
DC CL1S'UNKNOWN DUMMY 
DC CL1S' LATE STKR SEL' 
DC CL1S'TRACK COND CK' 
DC CL1S'WORD COUNT ZERO' 
DC CL1S'INV CMD SEQ' 
DC CL1S' POSITION CK' 
DC CL 15' SEEK CHECK' 
DC CL lS ' D AT! C. CHECK I 
DC CL1S' OPERATOR ATTN' 
DC CL1S'TRACK OVERRUN' 
DC CL 15' CYL END 
DC CL1S'INVALID SEQ' 
DC CL1S'NO REC FOUND' 
DC CL1S'FILE PROT' 
DC CL1S'MISSING A.M.' 
DC CL1S'OVRF INCP' 
DC CL1S'UNKNOWN COND. ' 

MICR 1419/1275 SCU 

TCR 

MIca 

6690001 
6720001 
67 SOOO 1 
6780001 

* 0360001 
0440001 
7280001 
7320001 
7680001 
7120001 
7760001 
7800001 
7840001 
1880001 

* 0210001 
0210001 
03.30001 
7S60001 
7S90001 
7620001 
7650001 

519033 7660001 
1680001 
7710001 
7717001 

S19033 7724001 
S19033 7731001 

7740001 
7770001 
7800001 

S19033 1810001 
7830001 
7860001 

519033 7870001 
7890001 
7920001 
1950001 
7980001 
8010001 
8040001 
8070001 
8100001 

************************************************************* * SYNAD ANALYZE AND FORMAT SVC 
* ADDITIONAL SECONDARY LOAD 
* FOR QISAa, BTA!, AND GAft 
************************************************************* 

DC CL 15' CHAN CTL CK' 
DC CL1S'INTF CTL CKt 
DC CL1S'PROG CHECK' 
DC eL1S'PROT CHECK' 
DC CL1S'CHAIN CHECK' 
DC CL15'UNKNOWN COND. • 
DC CL1S'END OF FILE' 
DC CL1S'WRNG.LEN.RECORD' 
DC CL1S'UNKNOWN COND.' 
DC CL1S'EQP CHECK' 
DC CL1S'BUS OUT CK' 
DC CL1S' CMD REJECT' 
DC CL1S'DATA CHECK' 

Figure 180. Sample Constant Area Used in SYNADAF Processing (Part 2 of 3) 

S06 



DC CL1S'DATA CHECK' 
DC eL1S'OVER RUN' 
DC CL1S'TRACK COND CK' 
DC eL1S'WORD COUNT ZERO' 
DC CL 15' INV CMD 5EQ' 
DC CL1S'SEEK CHECK' 
DC eL1S'DATA C.CHECK' 
DC CL1S'TRACK OVFL' 
DC CL 15' CYL END 
DC CL1S'INVALID SEQ' 
De CL1S'NO REC FOUND' 
DC CL1S'FILE PROT' 
DC CL1S'MISSING A.M.' 
DC CL1S'OVERFL INep' 
DC CL1S'UNKNOWN COND. ' 

Figure 180. Sample Constant Area Used in SYN1DAFProcessing (Part 3 of 3) 

//IGC0106H 
IIZAPSTEPl 
//515LIB 
/ISYSPRINT 
1/5Y51N 

DUl'1PT 

1* 

JOB 
EXEC 
DD 
DO 
DO 

IGC0106H 

ACCTI NG-I NFO 
PGM=Il'1A5PZAP 
DSN=SY51.SVCLIB,DISP=OLD 
SYSOUT=A 

* ALL 

Note: The DSN shown is for VS1; for VS2 
t.he D5N would be S1S1.LPALIB 

Figure 181. A Sample Job to get a Dump of a Constant Area 

Appendix G: Input/Output Error Conditions 507 



An INVALID KEY condition can usually be 
remedied by merely changing the key and 
trying the operation again. This technique 
of altering the key can be used, on a READ, 
to determine if a record with a particular 
key already exists in a file; this may be 
regarded as a test to determine the flow of 
logic for a particular update operation. 

An input/output error condition is 
usually not easily remedied, and quite 
often the only operation possible is to 
close the file. 

The following corrective actions are 
presented according to access method and 
furt her bro.Ken down accordin 9 to error 
condition. If VSAM (Virtual storage Access 
Method) is being used, see "Error 
Processing options" and "status Key 
settings for Action Requests" in the 
chapter "VSAM File Processing". 

r-----------------------------.-------------------, 
, QdA1L_l~hysical seguentiill I 
L-

r 
I 
L-

• SPACE NOT FOUND. For a file opened as 
OUTPUT, no more space exists to contain 
another record. processing is limited 
to a CLOSE, but the file may be further 
processed as I NPUT or 1-0. 

• INPUT ERROR. 

• OUTPUT ERROR. 

For these two conditions, the user may 
return to the system from the 
declarative, thus executing the 
processing option (EROPT) specified on 
his DD card: 

1. ABE (default) -- terminate the step 
with an abend. 

2. SKP skip to the next block. 

3. ACC accept the block in error 
and continue prricessing. 

------------------------------, 
QISAM {inQgXg~§ggy~~ii~!l I 

• LOWER KEY LIMIT NOT FOUND. The value 
specified for NOMINAL KEY before a 
START statement does not have a match 

I 

508 

in the file. processing may be 
continued. 

• SEQUENCE CHECK. For a file opened 
OUTPUT, an attempt was made to add a 
record whose RECORD KEY was not greater 
than tha t of the last record added. 
Processing may be continued. 

• DUPLICATE RECORD. An attempt was made 
to add a record to a file whose RECORD 
KEY was already present in the file. 
processing may be continued. 

• SPACE NOT FOUND. No space was 
available in the currently accessible 
prime area to add the record. Current 
OUTPUT processing is limited to a 
CLOSE. 

• UNREACHABLE BLOCK (INPUT OR 1-0). 

• UNCORRECTABLE OUTPUT ERROR. 

Por these last two conditions# the user 
can attempt the operation again; 
possibly the problem is transient. If 
the error persists, processing is 
Ii mited to a CLOSE. 

• UNCORRECTABLE INPUT ERROR. The user 
can attempt to bypass the block in 
error by executing sufficient READ 
operations to force the next block into 
main storage. If the error does not 
persist on the next block, processing 
may be continued; otherwise it is 
limited to a CLOSE. 

~ , 
I ~SA~-1indgK§d rgndomt I L-___________________________________________________________ ~ 

IN1!LI~K~I_£QndiliQn2: 

• RECORD NOT FOUND. The record 
corresponding to the value of NOMINAL 
KEY or READ was not found in the file. 
processing may be continued. 

• DUPt IeATE RECORD. An attempt vas made 
to add a record with a key which 
already exists in the file. Processing 
may be continued. 

• SPACE NOT FOUND. No space was 
available in the currently accessible 
prime or overflow area to add the 
record. Depending on the physical 
makeup of the file, adds for other keys 
may be possible. processing may be 
con tinued. 



• INVALID REQUEST. A loqic error in the 
source program exists: for example, an 
attempt to REWRITE a record for which 
no valid READ vas done. Processing is 
limited to a CLOSE. 

• UNCORRECTABLE INPUT/OUTPUT EBROR. 

• UNREACHABLE BLOCK (INDEX CANNOT BE 
READ). 

For these last two conditions, the user 
can attempt the operation againj 
possibly the problem is transient. If 
the error persists, processing is 
limited to a CLOSE. 

r- ----'--. 
I lH!!1Ljgir~.LA.!Hl_rela tiEtA-ll~L I L-_____________________________________________ ~ 

• RECORD NOT FOUND. A record 
corresponding to the value of the key 
vas not found in the file. processing 
may be continued. 

• END-OF-DATA RECORD READ. The 
end-of-data set indicator has been read 
as a result of the value of the ACTUAL 
or NOMINAL KEY. This is really a,n 
indication that the value of the key is 
outside the limits of the data set. 
processing may be contin ued. It must 
be emphasized that this is an ext,remely 
rare occ urrence. 

• INVALID REQUEST. This may be caused by 
two separate conditions: 

1. BLOCK OUTSIDE LIMITS OF DATA SET. 
The value o,f the ACTU AL or NOMINAL 
KEY was found to ref erence a disk 
address outside the space occupied 
by the data set. Processing may be 
continued. 

2. FIXED LENGTH KEY WITH X' PP'. An 
attempt was made to add a fixed 

.-

length record wbose ACTUAL kEY has 
HIGH-VALUE in the first byte of its 
symbolic portion. processing may 
be cont inued. 

• SPACE NOT FOUND. An attempt has been 
made to add a record to the data set, 
and all space allocated to the data set 
has been filled. No further WRITE to 
the data set can be executed, but 
processing may be continued. 

• UNCORRECTABLE ERROR, 1-0 OR NON-I-O. 
Processing is limited to a CLOSE. 

J BSAt'l ldirect and rela tile, segu~.Rii~ll L-______________________________________ _ 

• SPACE NOT FOUND. For a file opened as 
OUTPUT, no more space exists to add a 
record. Processing is limited to a 
CLOSE, but the file may be further 
processed as INPUT or 1-0. 

.I 

• INVALID REQUEST. A logic error in the 
source program exists: for example, an 
at tempt to REWRITE a record for which 
no valid READ was done. processing is 
limited to a CLOSE. 

• INPUT ERROR. 

• OUTPUT ERROR. 

For these last tvo conditions, the user 
can attempt the operation again; 
possibly the error is transien t. If 
the error persists, processing is 
limited to a CLOSE. 

Appendix G: Input/Output Erro.r Conditions 509 



Indexed data sets (15AM) are created and 
retrieved using special subsets of DD 
statement pa rameters and subparameters. 
They can occupy up to three different areas 
of space: 

• Prime Area -- This area contains data 
records and related track indexes. It 
exists for all indexed data sets. 

• Overflow Area -- This area contains 
overflow from the prime area when new 
data ~ecords are added. It is 
optional. 

• Index Area -- This area contains master 
and cylinder indexes associa tedwit.h 
the data set. It exists for any 
indexed data set that has a prime area 
occupying more than one cylinder. 

Indexed data sets must reside on mass 
storage volumes. Because an Indexed data 
set ca n be a ssociated wi th more than one 
type of unit, it is not usually cataloged. 

Indexed data sets are created with from 
one to three DD statements. One of the 
statements must define the prime area. If 
additional areas are to be defined, the DD 
statements must appear in the following 
sequence: 

1. Index area 

2. Prime area 

3. Overflow area 

This order must be maintained eyen 11: one 
of the statements is absent. only the 
fi.rs t DD sta tement defining the data set 
can contain a name field. Other 
statements, if any, must have a blank name 
field. 

The subs~t of DD statement parameters 
used to create an indexed data set excludes 
the asterisk, DATA, DUMMY, DDNAM!, SYSOUT, 
SUBALLOC, and SPLIT parameters. The 
remaining DD statement parameters -
DSNAME, UNIT, VOLUME, LABEL, DCB, DISP, 
SPACE, SEP, and AFF -- are all valid. 
However, certain restrictions must be 
followed in using these parameters. 

510 

!l~l!A~E: Required. In addi tion to g1. vl.ng 
the data set name, the DSNAME parameter 
identifies the area being defined, i.e., 
DSN AME;name (.INDEX), DSN A ME=name (PRI ME) , 
and DSNAME=name(OVERFLOW). 

• If the data set is temporary, name 
is replaced with &&name • 

• If only one DD statement is used to 
define the entire data set, 
DSNAME=name{PRIME) or DSNAME=name 
should be used • 

QH!1: Required, unless VOLUME=REF is used. 
The first subparameter identifies a mass 
storage unit. If separate statements 
for the prime and index areas are 
included, request the same number of 
units for the prime area as there are 
volumes. The DEFER subparameter cannot 
be specified on any of the statements. 
Another way of requesting units is by 
using the unit affinity subpara.eter, 
AFP. 

• DD statements for prime and overflow 
areas must indicate the same type of 
unit. 

• The DD statement for the index area 
can indicate a unit type different 
than the others. 

VOLU~: optional. Can be used to request 
pri¥ate volumes (PRIVATE), to retain 
private volumes (RETAIN), or to make 
specific volume references (SER or REF). 

LAlll!: Optional. Can be used to specif.y a 
retention period (EXPDT or RETPD) and/or 
password protection (PASSWORD). 

DCB: Required. Can be used to complete 
the data control block if it has not 
been completed by the processing 
program. Either DSORG=I5 or DSORG=ISU 
must be included in the list of 
attributes, even though this attribute 
vas provided in the processing prograll. 
If more than one DD sta temen tis used to 
define the data set, the DCB parameters 
in the statements must not contain 
conflicting attributes. 



~!~f: Optional. Must be coded to keep the 
data set (KEEP), to catalog it (CATALG), 
or to pass it to a later job step 
(PASS). An indexed data set can be 
cataloged using CATLG only if all three 
areas are defined by the same DD 
statement. 

• Indexed data sets def ined by more 
than one DD statement can be 
cataloged by using the system 
utility program IEHPROGM, provided 
all volumes reside on the same type 
of unit. The utility program 
IEHPROGM is described in the 
publication Q~L!~-Ytiliti~. 

§,£!£!: Required. Space must be requested 
using either the recommended nonspecific 
allocation technique or the more 
restricted absolute track. (ABSTR) 
technique. All DD statements used to 
define the data set must request space 
using the same technique. 

If the D.Qnsl2g£ific.-2EA£!Lallocgtion 
technique is used, space must be 
requested in units of cylinders (CYL). 
The quantity of space requested is 
assigned to the area identified in the 
DSNAME parameter. If more than one unit 
is requested, this quanti ty of space is 
allocated to each volume used by the 
data set. Incremental space cannot be 
requested for indexed data sets. If one 
DD statement is used to define both the 
index and prime areas, the si~e of the 
index must be indicated in the SPACE 
parameter of the DD statement defining 
the prime area. The subparameters RLSE, 
MXIG, ALX, and ROUND cannot be used. 
Contiguous space can be requested on 
each of the volumes oc~upied by the data 
set with the subparameter CONTIG. If 
CONTIG is coded on one of the 

r-----

statements, it must be coded on all of 
them. 

If the absoly.:te tra£~ technique of 
allocating space is used, the number of 
tracks must be equivalent to an integral 
number of cylinders. The address of the 
beginning track must correspond with the 
first track of a cylinder other than the 
first cylinder on a volume. If more 
than one unit is requested, spa~e is 
a~located beginning at the specified 
address and continuing tbrough the 
vol ume and onto the next vol ume un til 
the request has been satisfied. If one 
DO statement is used to define both the 
index and prime areas, indicate the size 
of the index (in tracks) in the SPACE 
parameter of the DD statement defining 
the prime area. This number must also 
be equivalent to an integral number of 
cylinders. 

• The first volume to be allocated for 
the prime area of an indexed data 
set cannot be the volume from which 
the system is loaded (the IFL 
vol uOle) • 

• Space can be requested on more than 
one volume only on the DD statement 
tha t defines the prime area. 

SEP AND AFI: optional. Channel separation 
from earlier data sets can be requested 
on any of the DD statements in the 
group_ In order to have areas of an 
indexed data set written using separate 
channels, units should be requested by 
their actual address (e.g., UNIT=190). 

Figure 182 illustrates a valid set of DD 
statements for creating an indexed data 
set. Note that each area is defined by a 
separate DD statement. 

-, 
IIIOUTPUT4 DD 

III 
DSNAME=MHB (INDEX) , UNIT=2305, DCB=DSORG=IS, 
SPACE=(CYL,10"CONTIG),DISP=(,KEEP) 

X 1 , 
• III DD 
III 
III 
I 
til DD 
III 

DSNAHE=MHB (PRIME), DCB=DSORG=IS, UNIT= (2305,2) , 
VOLUME=SER=(334,33~ ,DISP=(,KEEP), 
SPACE=(CYL,25"CONTIG) 

DSNAME=MHB (OVFLOW) ,DCB=DSORG=IS, UNIT=2305, 
VOLUME=SER=336,SPACE=(CYL,25"CONTIG),DISP=(,KEEP) L-________________ _ 

Figure 182. Creating an Indexed Data Set 

t 
X t 
X , 

• I 
X I 

J 
.J 

Appendix H: Creating and Retrieving Indexed sequential Data Sets 511 



r-'------------------- , 
• CRITERIA I .. i ' I Number of Types of jIndex Size1 
J DD Statements DD Statements I Coded? I 
.. • I 

Restrictions on 
Unit Types a'nd 
Number of Units 

Requested 

i i 

1 t 
I Resulting I 
J Arrangement I 
I of Areas I 
I , 

I 3 INDEX I IPRIME and OVPLOW I separate i.ndex. I 
,prime, and overflow I I PRIME I ,must specify the same 

I oynOil f I uni t type. ,areas. I 
I I. , , 
I 2 INDEX I I None ISeparate prime and I 

,overflow areas, with I 
Ian index at the end I 
,of the prime area. , 
I , 

I PRIME I f 
J • I 
I I I 
.. • I 
I 2 PRIME J No I Both statements must IPrime area and over- I 

Iflow area with an I 
.index at its end. I 

t OVFLOW I ,specify the same type 
I I lof uni t. 
.. I I 
I 2 PRIME I Yes ,Both statements must 

I ----f 
JPrime area with em- J 
Ibedded index and I t OVlLOW I ,specify the same unit 

• I I type. The sta tement loverflow area. I 
I I ,defining the prime • I 
I • Jarea cannot request I I 
I I I ,more than one unit. , I 
1----------+--- I I --f----- i 
J 2 J PRIME ,NO • NO.ne IPrime area with indexl 

,at its end. Unused I 
.index areas, if any, I 
,used for overflow. I 

• J • I 
• J I I I I I f 
l- --.. , ---------1-1 -----t----- t i 
I I PRIME I Yes I Cannot request IPrime area with J 
I I I I more than one unit. lembedded index area. , 

I J 
L-- • 

Figure 183. Area Arrangement for Indexed Data sets 

The manner in which the areas of an 
indexed data set are arranged is based 
primarily on two criteria: 

• The number of DD statements used to 
define the data set. 

• The types of DD statements used (as 
reflected' in the DSNAME parameter). 

An additional criterion arises when a DD 
statement is not included for the index 
area: 

• The index size and whether or not it 
has been coded in the SPACE parameter 
of the DD statement defining the prime 
area. 

Figure 183 illustrates the arrangements 
resulting from various permutations of the 
foregoing criteria. In addition, it points 
out restrictions on the number and type of 
units that can be requested for each 
permutation. 

512 

Indexed data sets are retrieved with the 
DD statement parameters DSNAME# UNIT. 
VOLU~E, DCB, and DISP. Channel separation 
requests can be made using the SEP and AFF 
parame terse If all a reas of the data set 
reside on the same type of unit, the entire 
data set can be retrieved with one DD 
statement. If the index resides on a 
different type of unit, two DD statements 
must be used. 

~NAHg: Required. Identify the data set 
by its name. If it was passed from a 
previous step, identify it by a backward 
reference or its temporary name. Do not 
include the terms INDEX, PRIME, or 
OVFLOW. 

Y.,RII: Required, unless the data set vas 
passed on one volume. Identify the unit 
type. If the data set resides on more 
than one volume and all units are the 
same type, request the total number of 
units required by all areas. If the 
index area r~sides on a different type 
of unit, use two DD statements, each 



indicating the number of units of the 
specified type required. 

!Q~~: Required, unless the data set was 
passed on one volume. Identify the 
volumes by their serial numbers (SER) , 
listed in the same sequence as they were 
when the data set vas created. 

DCB: Required, unless the data set was 
passed. This parameter is used to 
complete the da ta control block if it 

was not completed in the program. 
Include either DSORG=IS or DSORG:ISU. 

Q!~f: Required. Identify the data set as 
OLD or ~OD and give its new disposition, 
to change its disposition. 

Figure 184 shows how to retrieve the 
indexed data set created by the 
illustration in Figure 182. 

r----------------------------------------------------------- --------------------, 
I 
I I/I NPUT 
III 
III 
I , 

DD DSNA!E=KHB,DCB=DSORG=IS,UNIT=2305,DISP=OLD 
DD DSMAKE=MHB,DCB=DSORG=IS, UNIT= (2305, 3) ,DISP=OLD, 

VOLUME=SER:(334,335,33~ 

Figure 184. Retrieving an Indexed Data Set 

x 

I 
I 
I 
t 
I , 

Appendix H: creating and Retrieving Indexed Sequential Data Sets 513 



This checklist illustrates general job 
control procedures for compiler. linkage 
editor, and execution processing. More 
than one example may be used for a job 
step. The checklist is intended as an aid 
to preparing procedures, not as an 
inclusive list of the options and 
parameters • 

. Figure 185 shows a general job control 
procedure for a compilation job step. The 
following cases demonstrate how to add to 
or modify the general procedure to obtain 
various processing options. 

~a2g-1L-_~pilati2n_Onl~==-liQ_Qbje£1 
~QQyle Is !Q~PrQg~£ed 

The general procedure should be used. A 
listing is prod uced. It will include the 
default or specified options of the PARM 
parameter that affect output. Any 
diagnostic messages are listed, unless 
listing of warning messages is suppressed 
by the FLAGE option of the PARM parameter 
and only warning messages are produced. 

Modify th~ end of the procedure as 
follows: 

IISISIN DD lie 

(source module) 
1* 

r-.-----------------
t 

acctno, name, ~SGL.EVEL= 1 
PGM=IKFCBLOO,PARM=(options) 
UNIT=SY SD A, SPACE: (subparms) 
UNIT=SYSD A, SPACE: (subpa.rlls) 
UNIT=SYSDA, SPACE: (subparms) 
ONIT=SYSD A, SPACE= (subparlls) 

If the DD lie convention is used, the 
source module must follow. If another job 
step follows the compilation. the EXEC 
statement for that step follows the 1* 
statement, or the last source statement. 

Add the statement: 

IISYSPUNCH DO SYSOUT=B 

.liQ1g: If DECK is not the installation 
default condition, it must be specified in 
the PARM parameter of the EXEC statement. 

Ca§g_~L __ QQjg£l_~Q~~lg_IS_iQ-Rg~ssed-1~ 
1;!lla9'.~_M.i1.Q!: 

Add the statement: 

IISYSLIN 
II 
1/ 
II 

DD DSNAP'lE= (subparms) , 
UNIT=SYSDA, 
SPACE=(subparms), 
DISP=(MOD,PASS) 

Note: If LOAD is not the installation 
default condition. it must be specified in 
the PARM parameter of the EXEC statement. 

J Iljobname 
Illstepname 
I/ISYSUT 1 
,.IISYSUT2 
J//SYSUT3 
'1ISYSUT4 
IIISYSPRINT 
IIISYSIN 
11/ 

JOB 
EXEC 
DD 
DD 
DD 
DD 
DD 
DO 

SYSOUT=A 
DSNAME=dsname,UNIT=SYSSQ,VOLUME=(subparms), 
nISP= (OLD, KEEP) 

x 

I 

x 
X 
X 

, 
t 
I 
I 
I 
t 
I 
t 
f 
I 
I 
I L-. __________________________________________ ---_______ _ 

.-----------------~ 
Figure 185. General Job Control Procedure for Compilation 

514 



The object module can be saved by 
cataloging it, by keeping it, or by adding 
it as a member of a library. Add the 
SYSLIN statement as sho»n in examples A, B, 
or C. 

• A. cataloging 

IISYSLIN DD DSNAME=dsname, 
NEW 

II 

II 
II 

II 

II 

• B. Keeping 

DISP= ( , CATLG) , 
MOD 

VOLUME=(subparms), 
LABEL= (subparlls) , 

SYSDA 
UNIT: 

SYSSQ 

SPACE 
SPLIT = (subparlls) 
SUBALLOC 

IISYSLIN DD DSNAME=dsname, 
NEW 

II 

II 
II 

II 

II 

DISP= ( , KEEPj , 
MOD 

VOLUME=(subparms), 
LABEL=(subparms), 

SYSDA 
UNIT= , 

SYSSQ 

SPACE 
SPLIT =(subparms) 
SUBALLOC 

• C. Adding a Member to an Existing 
Cataloged Library 

IISISLIN DD DSNAME=dsname(member), 
II DISP=OLD 

~a§!L_2.L-COP~latement in COBOL Source 
~Q.~Q.LLllA 51 S C a.rd -ilL.til!Lln pu t_~!&§!~!! 

Add the SYSLIB (or equivalent) DD 
card(s), as shown in examples A, B, or C. 

A. COPY 

IISYSLIB DO DSNAME=copylibname,DISP=SHR 

B. BASIS Card 

IISYSLIB DD DSNAME=basisli bname, 01 SP=SHB 

x 

x 

x 
X 

x 

I 

x 

x 
X 

x 

X 

C. Both BASIS and COpy 

IIS1SL1B DD DSNAME=basislibname,DISP=SHR 

II DD DSNAMR=copylibname,DISP=SHR 

(DO statements for additional copylihs may 
follow. ) 

Figure 186 shows a qeneral job control 
procedure for a linkage editor job step. 
The following cases show how to add to or 
modify the procedure to obtain various 
p.rocessing options. 

~~§g_1~_lllEY1_f£Q~_g£gviQ~§_~Q~Eil~tiQll_i~ 
Same_~QQ 

Change the SISLIN statement to 

IISYSLIN 
II 

DD DSNAMR=*.stepnameeSYSLIN, 
DISP=(OLD,DELFTE) 

where stepname is the name of the previous 
compilation job step and ddname is SYSLIN. 
If the input is to be saved, specify KEEP 
rather than DELETE. 

Change SYSLIN statement and the end of 
the procedure as follows: 

/ISYSLIN DD * 
(object module(s}) 

1* 

x 

If another job step follows the 
link-edit step, the EXEC statement for that 
job step follows the I. statement or the 
end of the object module. 

Specify in the SYSLIN DD statement where 
the object modules to be used as input are 
stored. (Only one member of a library can 
be specified in the SYSLIN DD stateme&t.) 

Appendix I: Checklist for Job Control Procedures 515 



f , 
Jlljobname JOB acctno,name.ftSGLEVEL=1 I 
J I 
I I 

• I 
Illstepname EXEC PGM=lEWL,PARM=(options) , 
IIISYSPBINT DD SYSOUT=A I 
IIISYSLMOD DD DSNAME=&&name(member),UIIT=SYSDA,DISP=(NEW,PASS), X I 
fll SPACE= (sub parlls) I 
JIISYSLIB DD DSNAME=SYS1.COBLIB,DISP=OLD I 
IIISISUT1 DD UNIT=SYSDA"SPACE= (subparms) I 
JIISYSLIN DO DSNAM.E=dsname,DISP=OLD J 
'- .I 

Figure 186. General Job Control Procedure for a Linkage Editor Job step 

£~~~~~_Qut£~! to_~e P1S£~g-1n_~in! 
Librar.! 

Change the SYSLMOD statement as follows: 

IISYSLMOD DD DSNAME=SYS1.LINKLIB(member),X 
II DISP=OLD 

where member is the name of the load module 
that is to be added to the link library. 
No other inf orma tion is needed in the 
statement. 

f~§!L.2L __ Q!!l12.!!.L!:Q_1!~_glA£,gg in Private 
1.ihI.ary 

Change the SYSLMOD statement as follows: 

/ISYSLMOD DD DSNAME=dsname(member), X 
II DISP=OLD 

where member is the name of the load module 
to be added, and dsname is the name of an 
existing library. If the library is not 
cataloged, UNIT and VOLUME parameters must 
be specified. 

Note: See "Using the DD Statement" in 
the Chapter "User Non-VSAM File 
Processing" for an example of creating 
a new library and storing the load 
module as its first member. 

The general procedure should be used. 
The load module is stoied in a temporary 
library. 

Figure 187 shows a general job control 
procedure for an execution-time job step. 

516 

The following cases show how to add to or 
modify the general procedure to obtain 
various processing options. 

~~4--k~~aQdule_tQ~g_~I~£ut~~-I~-1n 
Lin..L1i.12r.~I.y. 

Use the general procedure, where 
progname in the EXEC statement is the 
member name of the load module. 

£a~-24-_~Q~~aQ~~le_!:Q~~_!K~~d 12_~ 
~!tQ~_Qt_.ui!il~_1i..QI.~il 

If a STEPLIB DO statement is not in the 
Jet for the step where the program is 
required, then the JOBLlB DD statement must 
follow the JOB statement, as in the 
following statements: 

IIJOB1 
IIJOBLIB 
II 
IISTEP 1 

I/STEP2 

JOB 
DD DSNAME=MILIB, 

OISP= (OLD, PASS) 
EXEC PGM:PAYROLL 

EXEC PGM=ACCOUNT 

x 

The JOBLIB statement defines the private 
library MILIB. No volume or unit 
parameters are given since the library is 
cataloged. Since JOBLIB has the 
disposition PASS, both steps can execute 
members of the library named in the JOBLI~ 
statement. 



,-- ... 
Illstepname EXEC 
Illddname DD 
I 
I 
t 

PGM=progname 
(parameters for user-specified data sets) 

, 
I 
I , 
1 L-______________________ _ 

J 

Figure 187. General Job Control Procedure for an Execution-Time Job step 

~a§g 3; Load Module to Be Exe£~te~!§ 
~~~g~in freviQY§_Lin~~~_Edi!g£_2~in 
~~J!g_Job

Change the EXEC statement as follows:

Ilstepname EXEC PGM=*.stepname.SYSLMOO

where stepname following PGM is the name of

£g§~~ ACCEPT Is Inc!ud~g_ill~££g
l1Qdule~£!l1ll._tQLLQilat_l_Qr ACCEPI
~E§.§.AG~l...

If the data is in the input stream, add
the statement:

IISYSIN DO *
(data)

the linkage editor job step that created 1*
the load module.

Add the statement:

//SYSABEND OD SYSOUT=A
or

/ISYSUDUMP DD SYSOUT=A

This statement requests a full dump if
abnormal termination occurs du~ing
execution.

Add the statement:

//SYSOUT DD SYSOUT=A

~ase-i.;._l!llPLAY UPON llSPUNCH Is Included
in Source !odule

ldd the statement:

//SYSPUNCH DD SYSOUT=B

(See Case 2 under "General Job control
Procedures for a Compilation Job Step" for
a description of the 00 * convention.)

Case 8: Debug_Sl~1gmgn12-~AHI~II_Q£_IR!£~
A£~In£ludgg_in_§.Q~£~~_Mo~~!~

Use the statement (unless it is already
included) :

//SYSOUT DD SYSOUT=A

!Qte: If the job step already includes a
SYSOUT DD statement for some other use,
another need not be inserted.

£a~_~~_~Rj~1_Ii~_~mbQli£-2ebugging
o EtiQ!l.§

Add the statements:

//SYSDBOUT DD SYSOUT=A required for all
options

IISYSDBG DD * required for SYMDMP
option

(control cards)
1*

debug DDname card also needed

Add the statements:

Appendix I: Checklist for Job Control Procedures 517

//SYSCOONT DD SYSOOT=A
//SYSDBOUT DD SYSOOT=A required for all

options

518

In this appendix. each field of the Task
Global Table (Figure 188) and of the
Program Global Table (Figure 189) is listed
by its relative location in main storage.
Each field is further described in the
discussion associated with Figures 188 and
189.

The Task Glohal Table (TGT) is used to
record and save information needed during
execution of the object program. It begins
with a series of fixed-length fields
followed by a series of variable-length
fields. These fields are illustrated in
Figure 188 and are described in this
section.

Appendix J: Fields of the Global Table 519

Rela ti ve
Location Field

f I

0 ISAVE AREA ,
• I

72 ,SWITCH , , ,
76 ,TALLY I

I ,
80 ,SORT SAVE I

I of
84 IENTRY SAVE J

I ,
88 ,SORT CORE SIZE I

I ,
92 ,RET CODE ,

I ,
94 ISORT RET I

• I
96 I WORKING CELLS I

r-- I
400 I SORT FILE SIZE I

I ..
404 ISORT MODE SIZE I

r--- I
408 IPGT-VN TABLE I , ..
412 ITGT-VN TABLE I , I
416 I VCON PTR I , ..
420 ILENGTH OF VN TBL I

I I
422 ILABEL RET ,

• --f
423 ,CURRENT PRIORITY I

l--- ,
424 ,DBG R14SAVE t

• ..
428 I COBOL INDIC ATOR I

•
,

432 , A(INIT1) I
r--- of

'436 ,DEBUG TABLE PTR I
I--- --f

440 I SUBCOM PTR I
~ ,

444 J SORT-MESS AG E I
l- t

452 ISYSOUT DDNAPlE I
J of

453 ,Reserved I
I • 454 ICOBOL 10 I
I ,

456 IA (WHEN -COM PILE D) INFO I
I of

460 ,COUNT TABLE ADDRESS I
I of

472 JDBG R11SAVE I

•
,

476 ,COUNT CHAIN ADDRESS I
I I

480 IPRB1 CELL PTR I
1--- .

Figure 188. Fields of the Task Global Table (part 1 of 3)

520

Relative
Location Field , • 484 ,Unused I

•
,

489 ITA LENGTH I
I f

492 IUnllsed I
I f

500 IPCS LIT PTR I
I--- --i

504 I DEBUGGING I
I ~

508 ICD FOR INITIAL INPUT I

• ..
512 IOVERPLOW I
beginning I ..
of IBL I
variable- I I
length IDECBADR I
portion I f

,FIB I
I ,
I DEBUG TRANS PER I
I ,
IDEBUG CARD I
I ,
I DEBUG BLL I

• of
I DEBUG VLC I

• I
I DEBUG MAX I
I ,
,DEBUG PTR I
I I
ITEMP STORAGE I
I I
ITEMP STORAGE- 2 I

• I
ITEMP STORAGE-) I
I I
ITEMP STORAGE~4 J
I ,
I BLL I
I ..
IVLC I
I--- --i
ISBL I
I f
lIND I
I ---4
fSUBADR I
I of
IONCTL I
I t
I PPMCTL J , I
I PFMSAV I
I ,
I VN I
I of
ISAVE AREA-2 I

"

Figure 188. Fields of the Task Global Table (part 2 of 3)

Appendix J: Fields of the Global Table 521

Relative
Locatio.n Field

r
"SAVE ABEA-3 ,

I

I
--f

I ,XSASW
I-
IXSA

------·--------------i
r---
IPABAM
I
IBPTSAV AREA ..
ICHECKPT CTR
I---
,VCON TBL
I
I DEBUG TABLE
I

I
---------t

I
-i

I
f
I
I
I

------t
I . ______________ --J

Figure 188. Fields of the Task Global Table (Part 3 of 3)

522

The lengths of the variable-Iengt h
fields are determined by the requirements
of the program (if not required, a
particular field may not exist in the
object program).

SAVE AREA
the program's save area; used to
provide standard subroutine linkage
when this program is called (by the
Operating System or by another
program) and when this program calls
other programs.

SWI'rCH
a fullvord switch. only the'following
bits are used:

Bii
o

2

!1nni.n.g
Indicates a size error in

series addition or
subtraction. If a SIZE
ERROR clause was included in
the source statement, and a
si~e error occurs before all
data items in the series
have been added or
subtracted, this bit is set
to 1. It is tested after
the entire addition or
subtraction is complete. If
the value is 1, the
instructions generated for
the OH SIZE ERROR clause are
executed.

Used for TRACE. It is set to
1 by the execution of a
READY statement, and reset
to 0 by a RESET statement.
If the program uses a TRACE
statement, there are
instructions to test this
bit at the point of
definition for every source
program procedure-name (PH).
If it is· on, the DISPLAY
subroutine (ILBODSPO) is
called to print the card
number of the procedure
name. (See "Appendix B:
COBOL Library Subroutines"
for a description of the
DISPLAY subroutine.)

Indicates program initiali
zation. Set to 1 by routine
INITJ to show that
initialization has been
performed. Tested by INIT3
so that if the module is
re-en tared, I NIT3 can per
form re-entry functions
instead of initialization
functions.

3

4

5

6

7

9

10

12

13

14

15

Main or subprogram switch.
Set by INIT2 if this is a
main program.

Used for SYMDMP. Ii is set
to 1 if the symbolic debug
option is in effect for the
program. This bit is tested
by the object-time COBOL
library debugging control
subroutine ILBODBGO.

Used for FLOW. It is set to 1
if the flow trace option is
in effect for the program.
This bit is tested by the
object-time COBOL library
debugging control subroutine
ILBODBGO.

Used for STATE at program
initialization time. If on.
bit 10 is set on and this
bit turned off. Thereafter
in the object program, this
bit is used to indicate that
an ON OVERFLOW or ON SIZE
ERROR condition has occurred
for a statement.

Used for OPT. It is set to
if optimization has been
requested for the program or
if the SYMDMP or STATE and
OPT, or FLOW and OPT options
have been specified.

Used for CALL, CANCEL, or a
recursive CALL. It is set
to 1 by the generated code
for the CALL or CANCEL verb.
It is tested by INIT2 to
determine whether a
recursive CALL condition
exists.

set on in program
initialization if STATE is
requested.

Used for QUOTE IS APOST. It
is set to 1 if the
apostrophe is to be used to
delineate literals and to be
used in the generation of
figurative constants.

Used for SYMDMP. It is set to
1 if SYMDMP is requested and
the program contains a
floating-point item.

Always set to 1.

Indicates maximum length for a
variable-length field.
Before the execution of a
Q-Routine. this bit is set

Appendix J: Fields of the Global Table 523

TALLY

16

to 1 if the VLC and SSL for
the field are to be set to
their maximum possible
values, rather than a value
depending on the current
value of a da ta item. The
maximum value is the value
of X in the clause "OCCURS ,I
TIMES DEPENDING ON ••• ft.

SRVBIT set on if ILBOLOM is
link-edited ~ith program.
Set to 1 if COUNT is
specified

24-31 DECIMAL-POINT IS COMMA clause
byte. If this clause was
specified, the byte contains
a comma in EBCDIC. If not,
it contains a decimal point.

a fullword used for source program
references to the special register
TAI.t Y.

SORT SAVE
a fullword used during the execution
of a SORT/MERGE RETURN statement to
contain the GN for the next sequential
instruction following the RETURN.

ENTRY SAVE
a fullword used to save the entry
point of the program during INIT2 and
INIT3 execution.

SORT CORE SIZE
a fullword for the SORT-CORE-SIZE
special register as used in the source
program.

RET CODE
a ba IEword for the .RETURN-CODE special
register, which is used in the source
program to provide a completion code
on a STOP RUN, EXIT PROGRAM, or GOBACK
statement, or to store the return code
from a called program. It is the
user's responsibility to set this
code.

SORT RET
ahalfword used to contain the return
code from a SORT/MERGE operation.

WORKING CELLS
variable-length cells used by COBOL
library subroutines called by the
program. The total length of the
field is 304 bytes.

SORT PILE SIZE

524

a fullword for the SORT-FILE-SIZE
special register as used in the source
program.

SORT MODE SIZE
a fullword for the SORT-~ODE-SIZE
special registe.r as used in the source
program.

PGT-VN TBL
a fullword pointer to that part of the
VN field of the PGT containing iN's
for independent segments.

TGT-VN TBt
a full word pointer to that part of the
VN field of the TGT containing VN's
for independent segments.

YCON PTR
pointer to the VCON TBL field of the
TGT. This is required because the
VCON TBL field is variably loca ted~
and the VCON PTR is fixed within the
TGT.

LENGTH OF IND VN TBL
a halfword containing the length of
that part of the VN field (the length
is the same for both the TGT and PGT)
containing VN's for the independent
segments.

LABEL RET
the LABEL-RETURN special register for
nonstandard labels. If an error
occurs in such a label, it is the
user's responsibility to place a
nonzero value into this 1-byte cell.

CURRENT PRIORITY
for a segmented program. the
segmentation subroutine ILBOSGMO
inserts the p.riority of the segment
currently in the transient area. This
field is initialized to O. The
current priority cell is used in all
segmented programs to store the
priority of the segment currently
loaded. Subroutine ILBOSGMO uses it
to determine whether to load and/or
initialize the segment of destination
in a branch.

DBG R14SAVE
indica tes the contents of register 14.
A routine of the debug control
subroutine ILBODBGO is called to save
this information before the execution
of any instruction that passes control
outside the COBOL program.

COBOL INDICATOR
ident ifies the ob ject program as an
OS/VS COBOL program.

INITl ADeON
address of INITl used for GOBACK, STOP
RUN, and EXIT PROGRAM instructions,
and for segmentation coding.

TGTTAB .PTR
if the FLOW SYKDKP or STATE compiler
options are specified, this field
points to the TGTTAB.

SUBCOM PTR
a pointer to the subroutine
comllu'nications (SUBCOM) area in the
COBOL subroutine library.

SORT-MESS AGE
an a-byte area for the SORT-MESSAGE
special register, which is used in the
source program to allow the user to
specify to the Sort/Merge program
where to place the messages it issues.

SISOUT DDN AM E
a 1-byte area with the SISx character.

COBOL ID
contains the identifying number of the
compiler.

WHEN-COMPILED ADDRESS
Address of WHEN-COMPILED information
in INIT1.

COUNT TABLE ADDRESS
Relative address of the COUNT table
from the beginning of the TGT. The
COUNT table is located between the
Q-routines, if any, and the INIT2
routine. The count tahle is used only
when the program terminates.

DBG R11SAVE
indicates the c'ontents of register 11.
When the dynamic dumping routine of
the debug control subroutine ILBODBGO
recei ves control, it places the ret u.rn
address to the in-line code of the
calling program in register 11.
Therefore, the contents of register 11
must be saved.

COUNT CHAIN ADDRESS
Address of the COUNT CHAIN for this
program. The address is initialized
to zero if count is specified; the
address is filled in at execution
time.

PRBLl CELL PTR
a fullword cell containing the address
of the first PROCEDURE BLOCK cell in
the PGT.

TA LENGTH
a halfword initialized to the length
of the largest segmentvith a nonzero
priority.

PCS LIT PTR
a fullvord cell containing the address
of the PCS (Program Collating
Sequence) alphabet.

DEBUGGING
a fullvord cell containing the address
of the beginning of the debugging
cells in the variable portion of this
table.

CD FOR INITIAL INPUT
a full word cell containing the address
of the CD area with INITIAL INPUT
clause.

OVERFLOW

BL

if the TGT is longer than 4096 bytes.
this field contains one fullvord cell
point ing to each 4096-byte area after
the first. The cell is loaded into a
register when a base is required for
the overflow area.

base locators. Each Bt cell is a
fullword containing an address in the
data area. There is one BL pointing
to the beginning of the Working
Storage Section and one for each file
in the File Section. More than one BL
is assigned if an area is larger than
4096 bytes.

DECBADR

FIB

DRCB addresses. There is one fullword
cell pointing to the address of the
oRCB for each basic file.

File Information Block addresses.
There is one fullword cell pointing to
the address of the FIB for each VSAM
file.

DEBUG TRANSFER
a 1-byte cell that indicates the type
of invocation for a PN.

DEBUG CARD
a 2-byte cell containing the card
number.

DEBUG BLL
a 2-byte cell containing the
displacement to the BLL cell.

DEBUG VLC
a 2-byte cell containing the
displacement to the VLC cell.

DEBUG 8A.X
a 2-byte cell containing the maximum
size of DEBUG-ITEM.

DEBUG PTR
a fullword cell containing a pointer
used by ILBOBUG to reference the debug
subscript table.

TEMP STORAGE
temporary storage for arithmetic

Appendix J: Fields of the Global Table 525

operations. TS space is allocated in
doubleword blocks.

TEMP STORAGE-2
temporary storage for nonarithmetic
instructions. These cells are
variable in length.

TEMP STORAGE-3
temporary storage used to align fields
of data described by the SYNCHRONIZED
option. The field begins on a
doubleword boundary.

TEMP STORAGE-4

BLL

VLC

SBL

IND

temporary storage cells used for the
SEARCH ALL table-handling verb. The
field starts on a doubleword boundary.

base locators for the Linkage Section.
Each BLL cell is a fullvord containing
the address of an area passed as a
result of an ENTRY statement, a label
record, a totaled area, a sort
description entry, or a GIVING option
in a USE ••• ERROR statement.

variable-length cells. Each VLC is a
halfword whose value is set by the
executio~ of a Q-Routine. It contains
the current length of a variable
length field. There is one VLC for
each OCCURS ••• DEPENDING ON clause and
all items to which it is subordinate.

secondary base locators. Each SBL
cell is a fullvord set by the
execution of a Q-Routine. It contains
the current address of a field which
is variably located because it follovs
a variable-length field.

fullword cells, each containing the
current value of an INDEX-NAME. There
is one IND cell for each implicitly
defined INDEX-NAME. (Explicitly
defined INDEX-NAMEs are not listed
in these cells.)

SUBADR

ONeTL

subscript addresses. Each SUBADR cell
is a fullword containing the address
for a subscripted reference.

control counters for ON statements.
Each is a fullword initialized to o.

PFMCTL

526

PERFORM control counters and DEBUG
saved location. Each PFMCTL cell is a
fullword used for a PERFORM n TIMES
statement to count the number of times
the procedure has been performed. For

DEBUG, a PFMCTL c~ll is used to save
the contents of reqister 14 when the
DEBUG packet is entered. DEBUG
packets are called by BALR 14,15.

PFMSAV

VN

PERFORM saved locations. Each is a
fullvord used to contain an address.
For PERFOR~, the cell is used to store
the address of the next sequential
instruction after the performed
procedure, when that procedure is
being executed because of a PERFORM.
This is to enable the procedure to be
executed in-line.

variable procedure-names. Each VN
cell is a doubleword containing the
current address of a branch point
which may change during program
execution because of an ALTER or
PERFORM statement.

SAVE AREA-2
pointer to the save area for label
and error-processing declaratives.

SAVE .AREA-3

XSASW

XSA

PARAM

variable number of fullwords used for
OPEN parameters.

1-byte EXHIBIT switches. These are
used as first-time switches for the
coding generated for the EXHIBIT
CHANGED statement. They are also used
in certain types of SORT statements
and ON statements.

EXHIBIT saved area cells. These are
variable in length and are referred to
in the coding generated for an EXHIBIT
CHANGED statement. There is one XSA
for each operand to be exhibited with
a CHANGED option. These cells are
also used for SORT and RELEASE verbs.

parameter area of fullvords,
containing parameter lists for macro
instruction expansions of certain
source statements. The size of the
parameter area equals the largest
number of vords required for anyone
expansion.

RPTSAV
six vords used to save branch
addresses during the execution of
Report writer routines, if the Report
if ri te r is used.

CHECKPT CTR
fullvord cells used to count the
number of file records processed for a
file for which checkpoints are to be
taken.

VCON TBL
8-byte v-type address constants for
nonresident segments. The format of
each entry is:

§.yte
o
1-3
4-7

DEBUG TABLE

content§
priority number
o
VCON to independent segment

table used by the flow trace and
statement number and symbolic debug
COBOL library subroutines. The format
depends on the options specified.

• If the FLOW compiler option is
specified:

Byt~l21 Contellt.§
o Number of traces requested
1-3 Unused

• If the STATE option is specLfied:

~Yt.~§l Contents
0-3 Start-of Q-Routines, or if

none, start of INIT2.
4-1 Size of Declaratives (not

including Report Writer)
section.

8-11 Starting address of PROeTAB
in object module.

12-15 starting address of SEGINDX
in object module.

16-19 Ending address of SEGINDX
in object module.

• If both the PLOW and STATE compiler
options are specified:

~te1§l Contents
o NUmber-of traces requested
1-19 The same as shown above for

the STATE option.

• If the SYMD~P option is specified:

JUt:!&1§l. contents
0-3 Start-of Q-Routines, or if

none, start of INIT2.
4-5 Hashed compilation indicator.

• If both the SYMDMP and FLOW options
are specified:

llYte.1§l. Contents
o NUib€r-of traces requested.
1-5 The same as shown above for

the SYMDMP option.

, -,
• DEBUG LINKAGE AREA I
I
I SYMDMP LINKAGE AREA

• I COUNT LINKAGE AREA
......

~
I
-f
1 ,

I TEST LINKAGE AREA
I

I
-4

I OVERFLOW
j
I V'lRTH AL

I
~
J

• --.
J VIRTUAL EBCDIC NAMES

• I PN
......
I GN
l-
I DCBADR
a---
I VNl

• J LITERAL
I
J DISPLAY LITERAL

I
f
J ,
J
~
J
I
I
~
1 .,
1

l-
t PROCEDURE BLOCK

--t
f

--J

Figure 189. Fields of the Program Global
Tanle

The Program Global Table (PGT) contains
data referenced by procedure instructions.
All the fields in the PGT are variable in
length. PGT data is never modified by
procedure instructions; rather, it remains
constant throughout program execution.

The fields in the PGT are illustrated in
Figure 189 and described in the text below.

DEBUG LINKAGE AREA
a 12-byte area that contains the
linkage for dynamic dumps. If the
SYMD~P option is not specified, this
area does not exist.

SYMDMP LINKAGE AREA
a 12-byte area that contains the
linkage to the SYMDMP routine for
dynamic dump requests.

COUNT LINKAGE ABEA
8-byte area that contains the linkage
to the COUNT routine. If the COUNT
option is not specified, this 8-byte
area does not exist.

Appendix J: Fields of the Global Table 527

TEST LINKAGE AREA
16-byte field that contains the
linkaqe to the IBM OS COBOL
Interactive Debug Program Product
(Program No. 5734-CB4) when TEST was
specified for compilation.

OVERFLOW
if the entire PGT exceeds 4096 bytes
in length, there is one fullvord
OVERFLOW cell pointing to each
4096-byte section after the first.
The cell is loaded into a register
when a base is needed to refer to the
section of the PGT.

VIRTUAL
each virtual is a fullword containing
the address of an external procedure
(the result of an ESD and RLD in the
object module) unless either the DYNAH
or the RESIDENT option is in effect.
If either of these options is in
effect, the virtuals corresponding to
library subroutines are written as
EBCDIC'/ 00 00 OO'i/ in addition, if
the DYNAM option is in effect, the
virtuals corresponding to user
subprograms contain the relative
displacement of the subprogram name
from the beginning of the PGT. It is
required because of a CALL statement
in the source program or a branch to a
COBOL library object-time subroutine.

VIRTUAL EBCDIC NAMES

PN

528

indicates the EBCDIC names of library
subroutines and user subprograms. If
either the DYNAM or the RESIDENT
option is in effect, the EBCDIC names
of all library subrout.ines that are to
be dynamically loaded are listed; in
addition, if DYNAM is in effect, the
EBCDIC names of all user subprograms
that are to be dynamically called are
listed. Each VIRTUAL EBCDIC NAME cell
is a dou~leword containing the name of
the subroutine or subprogram, left
justified and padded with blanks if
necessary. If neither DYNAM nor
RESIDENT is in effect, this field does
not exist.

source program pr6ced ure-names. When
the OPT option is in effect, only
those PN's associated with ALTER and
declaratives references receive PN
cells. Each PN cell is a fullword
containing the address of the first

GN

instru.ction in a block of coding. The
addresses of the PN's are in the same
order as their def ini tion in the
source program. The program branches
by loading an address from the PGT and
then branching to it.

compiler-generated procedure-names.
When the OPT is in effect, only those
GN's associated with AT END and
INVALID KEY references receive GN
cells. Each GN is afullword
containing the address of the first
instruction in a block of coding.
GN's are used in the same way as PN's.
They were generated to provide
addresses for branches implied but not
stated in the source program. They
are stored in the PGT in the orde'c in
which they vere generated.

DCBADR

VNI

DCB addresses. Each DCBADR cell is a
fullword containing the address of a
data control block in t.he data area of
the program. There is one DCBADR cell
for each DCB generated.

variable procedure-name initialization
cells. There is one doubleword VN
cell for each variable procedure-name
in the program. It contains the
initial value of the VN, and is used
to initialize the VN values in the
TGT. VN's are generated to contain
branch addresses which vary because of
PERFORM or ALTER statements.

LITERAL
Ii terals referred to by procedure
instructions. The literals are
variable in length. There is no
duplication in storage, since
duplicate literals were eliminated.

DISPLAY LITERAL
literals used by calling sequences
rather than instructions. They are
variable in length; duplication was
eliminated. each cell is a fullword
containing the address of a procedure
block. The compiler assigns these
cells only when the OPT option is in
effect.

PROCEDURE BLOCK
each cell is a full.ord containing the
address of a procedure block. The
compiler assigns these cells only when
the OPTIMIZE option is in effect.

This appendix contains the COBOL
object-time messages (including those
messages issued by the queue-analyzer
subroutine) and briefly describes how to
generate a listing of COBOL compile-time
messages.

The user can request a complete li~ting
of the diagnostic messages issued by this
compiler by compiling a program with a
program-name of ERRKSG specified in the
PROGRAK-ID paragraph. For a description of
tae formats of compiler diagnostics and
information about generating this listing,
see "Compiler output" in the "Output" part
of this publication.

If the compiler encounters aD-level
("disaster") er.ror situation, and the user
program being processed had specified the
DUMP compile option, then the associated
error message for that situation is in most
cases n21 produced. (The additional
processing needed to produce the message
vould alter the contents of internal
storage and thus reduce the dump's value.)
In place of the message, the compiler
issues a four-digit u-type completion code
along with the resultant abend dump. A
list of these codes and an indication of
their origin within the compiler phases can
be found in the manual !BM_Q~!~~OBOL
~Q.Hiler Program_L2gic, order No.
LY28-6486.

OBJECT-TIftE MESSAGE~

The COBOL library subroutines issue both
informative messages and·an occasional
O-typeabend completion code.

00187 An incorrect compiler-generated verb
table has been discovered. The
abend (initia·ted by ILBOTC3) follows
messaqe IKF187I.

U02Q3 An attempt to divide by zero
(normally causing an ABEND OCB)
was detected by ILBOXDI, and ON
SIZE ERROR was not specified.
Register 14 points to the location
in the program that caused the
error.

'U0295 The Return Code (HC12) has been
changed from positive to negative.

The abend (initiated by ILBOSRV) may
follow a terminal message.

U03u3 The time stamp of the volume
on which a VSAM data set is
stored does not match the system
time stamp in the data set's
catalog record. ILBOVOC
initiates the abend.

U0304 The time stamps of a VSAM data
component and an index component
do not match, indicating that
either the data or the index has
been updated separately from the
other. ILBOVOC initiates the abend.

U0519 Execution has reached the. bottom of
the Procedure Division, but does not
find a STOP RUN, GO BACK, or EXIT
PROGRAM statement. An error exists
in the program's logic flow. The
abend is initiated by the compiler
generated object code. A warning
about the situation may have been
issued at compile ti~e.

U1301 I/O error for a non-QSAM/VSAM file
for which no error declarative was
coded. ILBOSYN initiates the abend.

UJJ61 The PCCNTROL name 15 not the same as
the current COBOL program name and
SYMDMP was not cancelled. ILBOD21
initiates the abend.

D3440 Insufficient main storage is
available. or an invalid
GETMAIN/FREEMAIN request has
occurred. The abend (initiated by
ILBOCMM) follows ~~ssage IKF993I or
IKF994I.

U3505 A flow-ot-control error has been
discovered. The abend (initiated by
ILBODBG 1) follows messageIKF19JI.

The following messages are preceded by a
f;ystell-generated 2-character numeric field,
'hich is used to identify the program
issuing the message and may be required in
the operator response.

Appendix K: Diagnostic Messages 529

IKFOOOA-

;IKF111I

530

xxx:

Explanat!2n! This message is
generated by the STOP statement
with the 'lite~al' option. The
message text is supplied by the
object program and may indicate
alternative action to be taken.

~y§te!L!£1iQ!l: The object
prog~am ente~s wait state.

g£Qgra~£_R~§~~: Check
message text supplied by the
object program on alternative
action to be taken.

If the p~oblem ~ecurs~ have
the following available before
calling IBM for programming
support: sou~ce deck~ control
card~~ and compiler outp~t.

Q£erat2£-~§QQll§g: Follow
instructions given by the
programmer when program was
submitted for execution. If
the job step is to be resumed,
enter

REPLY XX~ • y'

where y is any single
character. Processing
continues.

Text as supplied by system
SYNADAF routine.

ExplaaaiiQ~: This information
is provided when a permanent
input/output error or some
other exceptional input/output
condition has occurred and no
provisions we~e made to handle
it within the COBOL program.
The data set is not closed and
control is returned to the next
higher level program.

~Qgra~m~-ResP~ll§~: Probable
user error. Include an
input/output error declarative
for the approp~iate file to
process the error condition.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler ou tpu t.

Ope!A1Q~~2QQ~g: Probable
user error. Supply the
programmer with the console
message.

1KF1151

IKF1201

IKF129I

QSAM ERROR AT DISPLACEMENT nnnn
IN PROGRAM xxxx--FILE
STATUS IS yy

Ex12!2.!lation: An error which
would result in a FILE STATUS
value of 90 or higher
(identified by yy in the
message) has been encountered
at the relative displacement
identified by nnnn in the
COBOL program whose PROGRAM-ID
is XXXX; however, a FILE
STATUS clause was not specified
and no error declarative was
active for the QSAM file.

System Action: COBOL terminates
execution of the program and
returns to its caller with a
return code of 12.

~£Qg~illmg~gg§R2n§~: Correct
the indicated error. Consider
adding a FILE STATUS clause to
intercept such errors for
in-program handling.

TABLE OVERFLOW. TOO MANY
DYNAftIC CALLS.

Explanation! This message is
issued when the number of
dynamic calls exceeds that
which the compiler can process.

~~_!£tion: The run is
terminated.

grog~g~!~~Rg§QQ~: Probable
user error. Reduce the number
of dynamic calls and rerun the
job.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards. and compiler output.

UNEXPECTED DATA FOLLOWING
LAST SLASH IN PARM FIELD,
LAST SLASH AND UNEXPECTED
DATA TRUNCATED.

Explanation: A slash is
required to separate user
defined parameters from
COBOL-08fined parameters in
the PARM field of the EXEC
statement at execution time.

System Action: The last slash
and all data following it in
the PARM field are truncated
and not passed to the object
program.

IKF1QOI

IKF141I-

Progr~mmer Response: Correct
the data follow1ng the last
slash to contain only those
items expected by COBOL for
execution time (see the
section "Options for Executi6n"
in the chapter "Job Control
Procedures").

NO STORAGE AVAILABLE FOR STAE.
ALL DEBUGGING OPTIONS
CANCELLED.

~§l~m_!£l!Qn: All debugging
options are canceled.

f£ogra~~Re2EQ~: Probable
user error. Increase REGION
SIZE and re-execute the
program.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

INSUFFICIENT INFORMATION PASSED
BY STAE ON ABEND. RRRUN JOB.

~~stem ActiQll: All debugging
options are canceled.

froqra.!!!!~L~2EQ!!§~: Probable
user error. Increase REGION
SIZE and re-execute the
program.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF143I-* INSUFFICIEN~ FLOW TRACE TABLE
SPACE.

Explanat!2n: The operating
System GETftAIN macro
instruction returned a nonzero
~ode, indicating that
sufficient space in the region
is not available for the Flow
Trace table.

llste!!!._Acl!.2!l: Flow output is
canceled for the program.

f~~g~~gL~2EQn2~: Probable
user error. Increase REGION
SIZE and re-execute the
program.

If the problem recurs, have
the following available before
calling IBM for programming

Appendix K: Diagnostic Messages 530.1

IKF155I-

support: source deck, control
cards, and compiler output.

STATEMENT NIJMBF.R ERROR.

EXE1~!iQ~: A compiler or
logic error has occurred during
STATE option processing. Under
certain conditions, this error
may result from other user
errors. For example, a loop
might destroy some of the
information required by the
STATE subroutines; an invalid
branch might cause a
non-existent priority-number to
be stored in the TGT, etc.

~stem Action: STATE option
canceled.

Pro9.nng£_li~.EQ!l2~: If the
problem recurs, have the
following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF158I-* TOO MANY PROGRAMS TRACED.

E.xpl~..nit1iQ.!!': The FLOW option
is effective in a subprogram
structu.re of more than 10
programs compiled with the FLOW
option.

~y§tem_!ctiQn: Programs 11 and
higher are identified by
asterisks in the PROGRAM-ID
print field. Tracing, however,
continues.

IKF159I-* NO PROCEDURES TRACED.

]~£1.anatiQ.!t! Abnormal
termination has taken place
before any COBOL statement with
a procedure-name could be
traced.

~ystID!-.!ctio!!.: No tracing is
done.

Pro9'.g!!!!g£-1!g§,l2Qng: Probable
user error. If a trace is
desired, recompile the program
after inserting additional
procedure-names.

*Only the message number, and not the text
of the message, is printed on the system
output listing.

IKF160I-

IKF161I-

lKF162I-

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IDENTIFIER NOT FOUND - ****.

~~la!lat1Q.!l: The ****
identifier specified on a
line-control card was not
defined in the Data Division of
the COBOL program.

system AC!!Qll: The dump
request on the line-control
card for this identifier is
ignored.

f~Qg~~mm~£_~~£n§g: Probable
user error. Rewrite the
line-control card indicated to
include the required
identifier.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

CARD NUMBER NOT FOUND.

Explan~tiQn: The line-num
parameter of the line-control
card must correspond to the
generated card number directly
preceding that for the data
card at which the formatted
dump is to begin.

~§!g~_!£liQ.ll: The
line-control card with
non-existent card number is
skipped.

g~Q£U:~~!!gLRe§P'Q!l.2g: Probable
user error. Substitute the
correct card number for the
incorrect specification
indicated.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

VERB NUMBER NOT FOUND.

EXEla!!.i!11Q.!!.: The verb-num
parameter of the line-control
card specifies a verb number
that does not exist in the li1).e
specified by the corresponding
line-num parameter.

Appendix K: Diagnostic Messages 531

IKF163I-

IKF164I-

IKF165I-

532

~.!§teJ!L!£.!;j.Qn: The
line-control card with the
non-existent verb number is
skipped.

Prograng!:_Rg§£Q!l§~: Probable
user error. Substitute the
verb number desired.

If the problem recurs, have
the following available befo.re
calling IBM for programming
support: source deck, control
cards, and compiler output.

NO ROOM TO DUMP.

Expl~!H!liQ!!: There is
insufficient space for a
symbolic dump to be generated.

System_!£!iQ!!: A Data Division
dump (and sometimes COBOL
statement number message) is
not gi vena

pro9..Iall~R~£Q!!§g: P r ob ab Ie
user error. Include an
additional 22K in the REGION
parameter of the EXEC statement
when the SYMDMP option is
specified.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, ~ontrol
cards, and compiler output.

I/O ERROR ON DEBUG FILE.

Explanat!2n: The SYSUT5 file
must be specified when symbolic
dumping is requested.

System_Action: The SYMDMP
output is canceled for the
program.

fI.Q.£I.rAuer R ~2Q!!.§g: Pr obab 1 e
user error. Include an
additional DD card for the
SYSUT5 file.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

WRONG DEBUG PILE FOR PROGRAM.

ExEianalion: An additional
data set, SYSUT5, is required
when symbolic dumping is
requested.

IKF166I-

IKF 1671-

IKF168I-

~g2_!£!ifm: SYMDMP output
is canceled for the program.

g£ogr~!!t!!l.~LRe§J2Qn.§g: Probable
user error. Include an
additional DD card for the
SYSUTS file.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

NO ROOM FOR DYNAMIC DUMPS.

E~£l~n~liQR: There is
insufficient space for a
symbolic dump to be generated.

~§.t.tl-A£tiQ!l: Dy n ami c
dumping, but not abnormal
termination dumping, is
canceled for the program.

R.!:Q.9:!:~!!.!!!g!:_.Rg§£Q!!§g: Probable
user error. Include an
additional 22K in the REGION
parameter of the EXEC statement
when the SYMDMP option is
requested.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

INVALID FILE-NAME.

IKJ21AnAtiQ!: An additional
data set, SYSUT5, is required
when symbolic dumping is
requested.

syst~m ActiQ!!! SYMDMP output
is canceled for the program.

f£Q.9:I.g!!.!!!g!:_!lg§.Pilllg: Probable
user error. Include an
additional DD card for the
SYSUT5 file.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

UNSUCCESSFUL OPEN OF DEBUG
FILE.

Explanai!Q.!!: A GO. SYS DBG DD
card is required when SYMDMP is
specified.

~2ig.!!!_!£!iQn: SYMDMP output
is canceled for the program.

IKF169I-

IKF170I-

IKF171I-

g~gu!!H!tl-..Rg§,1&ll§~: Pr ohab Ie
user error. Check for a
missing or incorrectly punched
DO sta tement.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler ou tput.

MISSING PARAMETERS.

~Ela!!gti.Q!!: A prog.ram
requesting symbolic dumping
must include both
program-control cards and
line-control cards with their
several parameters.

Syste!!L!ctio!!.: The option with
the missing parameter is
ignored.

~Qg£a~~~R~£QA§~: Probable
user error. Include the
parameter(s) missing from the
program-control/line-control
cards.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

INV ALID OPTION.

EXl!lanatio!!.! The program
control card can include only
the IB~-designated options.

~gy_!£1.io!!.: Execution
continues.

PrognU!ll:-li~£Q.!lli~: Probable
user error. Check for
misspelled option names on the
program control card before
rerunning the job.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards,' and compiler output.

SUBSCRIPTING ILLEGAL

Exp!~iio!!.: The line-control
card contains subscripted
naaesin the tNAME1[THRU NAME2]'
option. Subscripting is not'
permitted.

System_Action: subscripting is
ignored. Every occurrence of
the name is printed.

IKF1? 21-

f!:Qg£g.!!!mg£_Rg§£Q!!2g: Probable
user error. Remove subscript
from 'NAME1[THRU NAME2]'
option.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

ON PARAMETER TOO BIG.

EXQ1~ftatiQrr: None of the
parameters specified in the ON
option of a line-control card
can exceed 32767.

~§te!!L!£.lion! The number is
reduced to 32167.

Proqra~£_Re§~Qn..2g: Probable
user er.ror. Respecify the
parameter indicated.

If the problem reCUrS~ have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

lQ1~: Messages IKF1601 through IKP112I
(except IKP110I) may appear interspersed
among the SYMDftP control cards at the point
at which the error is recognized.
PROGRAM-ID is specified for messages
IKF1631 through IKF1721 (except IKF170I) •
For messages IKF1601 through IKF162I~ the
PROGRAM-ID is that of the nearest preceding
program-control card, and the card/verb
number of the corresponding line-c ontrol
card is given instead. Messages IKF1631
through IKF165I may also appear in the
midst of the dump output if the error
condition is not recognized until dumping
begins.

IKF17 31- SYMDMP/STATE/FLOW INTERNAL
ERROR. EXECUTION CANCELLED.

Ex£!an~tiQ.!!': This message is
issued when an exceptional
input/output condition has
occurred and no provisions were
made to handle it within the
COBOL program.

s..Iel§m_A£.l!.Q!!.: Th ej 0 b is
canceled.

Progra'!'~_~§£Qng: Probable
user error. Rereun the job.
If the problem recurs, have the
following available before
calling IBM for programming
support: source deck, control

Appendix K: Diagnostic Messages 533

IKF174I-

IKF175I-

IKF116I-

534

cards~ and execution-time
output.

SYMDMP CANCELLED. NO CONTROL
CARDS FOUN D.

k!!lanation: Programs run with
the SYMDKP option must include
both object-time control cards
and program control cards.

~ystem_!ctio~: The SYMDMP
option is canceled.

fI:ogr~'!!!'!!g£_R~.2Q.n.§~: Probable
user error. Provide the
necessary control cards be'fore
rerunning the job.

If the problem recurs~ have
the following available before
calling IBM for programming
support: source deck~ control
cards~ and compiler output.

COBOL PROGRAM WITH DEBUGGING
NOT FOUND.

IDLEl!!!l~lio!!:Either standard
linkage conventions were not
followed or the program in
which the abnormal termination
took place was a COBOL program
with no debugging options or a
non-COBOL program.

~st~.!!_!£liQ!!: No debugging
information is generated.

Program!!gLRg§,RQ!!'§~: Probable
user error. Verify that
standard linkage conventions
are followed and then check for
the possibility that the
abnormal termination is in a
COBOL program with no debugging
options or a non-COBOL program.

If the problem recurs~ have
the following available before
calling IBM for programming
support: source deck~ control
cards~ and execution-time
output.

NO SAVE AREA CHAIN. SYMDMP
CANCELLED.

Explanf!!!Q!!: Standard linkage
conventions must be followed in
a calling-called sequence.

Syste!L!£!i2!!: SYMDMP output
is canceled.

Progran~r R~.E.Q.!!.2~: Probable
user error. Provide the

IKF171I-

IKF180I-

IKF181 I-

necessary linkage code before
rerunning.

If the problem recurs~ ha ve
the following available before
calling IBM for programming
support: source deck. control
cards~ and execution-time
output.

USER ERROR FOUND. DEBUG OUTPUT
FOLLOWS •

.flK£lanall.Q.!l: This message is
issued when an exceptional
input/output condition has
occurred and no provisions vere
made to handle it within the
COBOL program.

~2i2m_!~tiQ!l: Debugging
information is generated and
the job step is canceled.

froqram~~~spo~: Probable
user error. Rerun the job. If'
the problem recurs~ have the
following available before
calling IBM for programming
support: source deck~ control
cards, and execution-time
output.

DEBUG CANCELLED. UNABLE TO
OPEN OUTPUT DATA SET.

~ula!!atiQl!: When the SYMDMP
option is in effect~ the
SYSDBOUT DD data set must be
requested.

~stem Action: All debugging
options are canceled. The
following message is issued at
the console: DEBUG CANCELLED.
UNABLE TO OPEN OUTPUT DATA SET.

~.oqram~r Re§.P2!t§g: Probable
user error. Provide a SYSDBOUT
DD card before rerunning the
job.

If the problem recurs~ have
the following available before
calling IBM for programming
support: source deck, control
cards~ and execution-time
output.

NO PCONTROL ENTRY FOUND FOR
PROGRAM-ID NAMED. SYMDMP
CANCELLED.

Ex.plg!~liQ!: PROGRAM-ID has
not been found on the PCONTROL
card. possibly mispelled.

IKF182I-

IKF183I-

IKF184I-

IKF18.5I-

System-Action: SyftDftP output
is canceled for the program.

Programmer R~§.QQ!!§~: Probable
user error. Correct the
spelling of the PROGRAM-ID on
the PCONTROL card.

UNINITIALIZED OR INVALID BASE
ADDRESS FOR DATA ITEM ABOVE

Explang:tiQ!!! Base locator for
identifier has not been
initialized (for example, an
identifier in a record
associated with an unopened
FD).

system A£!ion: Value of
identifier is not printed.

SPACE NOT FOUND FOR THE COUNT
CHAIN. CONTINUING.

Expl~!Q!!: There is not
enough space for the count
chain.

syste!L!ctio,!!: The count
output for the program is
canceled for this entry into
the program unit.

~~~m~~RQ~: Increase 
the size of the region and 
re-execute the program. 

SPACE NOT FOUND FOR THE VERBSUK 
TABLE. CONTINUING. 

Ex.E1~tion: There is not 
enough space for the VERBSUM 
table. 

system_Actio!!: Verb statistics 
are not printed. 

Progrg~~~-R~§~QD§~: Increase 
the size of the region and 
re-execute the program. 

COUNT OPTION 'CANCELED. NO 
CORE. 

Exp!~gtion: There is not 
enough storage for the COUNT 
option. 

ll§tem-A£.ti2'!!! The COUNT 
option is canceled. 

Prog~!!!!~r R~I!Qn§~: Increase 
the size of the region and 
re-execute the program. 

IKF186I-

IKF187I-

IKF191I-

IKF192I-

COUNT OPTION CANCELED. UNABLE 
TO OPEN SYSCOUNT DATA SET. 

EX2Ianati~~: When the COUNT 
option is in effect, the 
SYSCOUNT data set must be 
available. 

~tem_!£tirul: The COUNT 
option is canceled. 

Programmer Res~Q~: Provide a 
SYSCOUNT DD card before 
rerunning the job. 

INVALID COUNT TABLE ENTRY. NO 
STATISTICS. 

ExplanaU2U: An entry in the 
count table is invalid. 

~2!~~_A£!iQ!: User ABEND 187 
will occur. 

~£Qg~g~.~£_Re§pon§~: This 
message should not occur. Have 
the following available before 
calling IBK for programming 
support: source deck, control 
cards# and compiler- and 
execution-time output. 

MAXIMUft CARD NUMBER EXCEEDED. 
NUM OPTION CANCELLED. 

EXR,lanlllQ!!: The NOM option is 
in effect and the maximum card 
number (999999) is given for a 
card that is not the last in 
the program. 

Sys~!.-k.tion: The NUM option 
is canceled. 

R,r 0 9 r a~L!liHi.QQD..2~: P r ob a b I e 
user error. Reassign card 
numbers so that only the last 
card in the program is given 
the number 999999. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and execution-time 
output. 

SYMDMP OR TEST OPTION CANCELLED 
DUE TO NUM SEQUENCE ERROR. 

!xElanati~: Either SYMDMP or 
TEST is in effect and the NUM 
option has been canceled 
because of other error 
condi tions. 

Appendix K: Diagnostic Messages 535 
/ 



IKF193I-

IK.F400 
through 
IKF411 

££oqrsm~~I_Rg§~Qn§g: Probable 
user error. correct the errors 
indicated and rerun the job. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and execQtion-time 
output. 

ERROR IN FLOW OF CONTROL--JOB 
CANCELLED 

E~Els!@.iio!!.: In a 
multi-language environment in 
which COBOL is not the 
highest-level program in the 
run-unit, ILBOSTPO was not 
called prior to calling the 
first COBOL subprogram. 

Sysigm_J£tion! Abend U3505 
will occur {issued by 
ILBODBG1) • 

££oqr~mm~li~§~Q!l2~: Probable 
user error. Ensure that 
ILBOSTPO is called prior to 
calling the first COBOL 
subprogram. 

These messages are produced 
by the Communication Job 
Scheduler (CJS) utility. Since 
this utility (written in COBOL) 
is subject to user 
modification, the text and 
meanings of these messages are 
also subject to change. 
Consult the current CJS program 
listing. 

IKF430I-E nric ENABLE TO WRITE STARTED 
MESSAGE TO CJS. RUN 
TERMI NATED. 

536 

H.Qlansi.lQ!!! The job-started 
messages required by the 
communication Job Scheduler 
(CJS) from the job it has 
scheduled cannot be sent. The 
value nn is the CD status key 
associated with the error. The 
value c is the CD type: I for 
input, 0 for output. 

Sysl~'-!£iio!!: The run unit is 
te rminated. 

frogra!L!~.R~£Q!l2g: If nne = 
201: the queue structure 
specified in the PARM field for 
the scheduled program cannot be 
accessed; ensure that the 
COBTPQD DD card is present (if 
required), and that a DD card 

for the queue responsible for 
the scheduling is also present. 

If nne = 220: ensure that the 
required DD card COBTPOUT is 
presen t. 

If nne = other: an I/O error 
has occurred. 

Reschedule the job by 
reinitializing the CJS. 

IKF431I-E nne UNABLE TO WRITE ENDED 
MESSAGE TO CJS. RUN 
TERMINATED. 

~~£lanatiQn: Same as for 
IKF430. 

~Y2!~J!L.!~!!Q!!.: The run unit is 
terminated. 

,f£Qg!:S!!.t!!!.gLlli!2£Q!!.2~: Th e 
Communication Job Scheduler 
(CJS) ~ust be reinitialized in 
order to resume polling for the 
queues associated with the 
ended job. 

IKF440I-E RECEIVE ISSUED WITHOUT NO DATA 
CLAUSE AFTER EGlON BS1M-MODE 
INPUT QUEUE 

1KF555I-

liU?1.qj!atiQ!l: An implicit 
request for RECEIVE to wait for 
the next message to enter the 
input queue cannot be satisfied 
for an empty 8SAM-mode input 
queue (no additional messages 
can be placed in the queue). 

~stem AcliQu: The run unit is 
terminated. 

f~qra!!!.!!!.~!:_Re2£Qll§g: Provide a 
no data clause for the RECEIVE 
statement, or do not attempt to 
read beyond EGI FOR BSAM-mode 
input queues. 

INVALID SEPARATE SIGN 
CON.FIGUR ATION 

EXEla!!~!Ql!: The SEPARATE SIGN 
configuration is invalid o.n the 
data item. 

Progra!!!.~-Rg2~Qn§g: Probable 
user error. Correct the 
indicated statement and rerun 
the job. 

If the problem recurs, have the 
following items available 
before calling IBM programming 
support: source deck, control 
cards, and compiler output. 



IKF888I-

1I(F990D-

1KF991I-

UNSUCCESSFUL SORT FOR 
SORT-FILE-DDNAME. 

~&E~~iion: The Operating 
System Sort/Merge program has 
returned a nonzero code to the 
COBOL program and the user has 
not specified the special 
register SORT-RETURN. 

~~Qg£~~-Rg§llQll§g! Probable 
user error. Specify the 
special regist er SOR T- RETURN 
and rerun the job; do not 
assume that any portion of the 
sort (input or output 
procedure) has been perfo.rmed. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

operaiQ~~EQn§g: Probable 
user error. User should have 
indicated whether or not the 
job should be canceled. The 
user should not assume t hat any 
portion of the sort (e.g., 
Input or output procedure) has 
been performed. 

AWAITING REPLY 

Expl~~ii~n: This message is 
generated by an ACCEPT 
statement with the FROM CONSOLE 
option. 

Prog~u~J!~.eQ!l'§~: Not 
applicable. 

QperatQ~-l~pon2~: If message 
is unexpected, then pronable 
user error. Issue a REPLY 
command. The contents of the 
text 'field should be supplied 
by the programmer. 
NO STORAGE AVAILABLE FOR 
WORKING STORAGE FOR **** 

~a~!io!l: The **** library 
subroutine has insufficient 
vork space. 

~stem_!£!iQ!l: The job is 
canceled. 

~ogra.~_R~22~§2: Probable 
user error. Increase the 
region size and re-execute the 
program. 

IKF992I-

IKF993I 

IK1994I 

RECURSIVE CALL TO MODULE FROM 
MODULE ****. 

ExplanatiQn: The module whose 
name is substituted for the 
asteriSKS in the message text 
has been called recursively. 

System Action: COBOL does 
STOP RUN processing, returning tc 
the original caller of its main 
program. 

g£Qg£am!!~£_~2£Q!l2~: probable 
user error. Correct the 
recursive call situation and 
rerun the job. 

If the problem recurs, hav~ 
the following available before 
calling IBM for programming 
support: source deck8 control 
cards, and compiler output. 

NO STORAGE AVILABLE FOR 
GETMAIN. INCREASE REGION SIZE 
AND RE-EXECUTE PROGRAM. 

~!.~!.!!llatiQ.!l: A library 
subroutine has insufficient 
work space. 

~Y§i~~_!£liQn: User ABEND 3440 
will occur. 

Programmer RespQ!l§g: Probable 
user error. Increase the 
region size and re-execute the 
program. 

GETMAIN/FREEMAIN REQUEST 
INVALID. PROGRAM EXECUTION 
TERlUNATED. 

ExplanaliQ!l: Library 
subroutine ILBOCMMO has 
received a GETMAIN/FREEMAIN 
request from another library 
subroutine that it cannot 
recognize. 

~Istg.m_!£l!.Q!!: User ABEND 3440 
will occur. 
Programmer Resl!Q~: This 
message should not occur. Have 
the following available before 
calling IBM for programming 
support: source deck8 control 
cards, and compiler and 
execution-time output. 

Appendix K: Diagnostic Messages 531 



IKF999I UNSUCCESSFUL OPEN FOR 
ddname. PROGRAM EXECUTION 
TERMINATED. 

Explanation: The data set 
identified by ddname could 
not be opened to implement 
an ACCEPT statement. 

System Action: The run unit 
is terminated. 

Programmer Response: Probable 
user error. Check for a 
missing or incorrectly-specified 
DO statement. 

All console messages issued by this 
compiler or its object code include 
parameters for multiple console support. A 
description of these parameters follows: 

1. DISPLAY statement with the ON CONSOLE 
option (unnumbered) and all object 
time write-to-operator (IKP111I, 
IKF888I, IKF999I) messages are 
assigned: 

• a £2Ylin~_£odg of 2,11 (chief 
operator information/vrite
to- programmer) 

• a g~cr iEtQL£Qgg of 7 (job status 
message) • 

2. STOP 'literal' (IKFOOOA) and ACCEPT 
statement with the PROM CONSOLE option 
(IKF990D) messages are assigned: 

" \ 

538 

• a £QYtin~~Q~g of 2,11 (chief 
operator information/write
to-programmer) 

• a descripto£_£Qde of 2 (immediate 
action iequired). 

3. Compiler console messages (IKF0003I) 
are assigned: 

• a ,"outing codg of 2,11 (chief 
operator information/write
to- programmer) 

• a gescripto£_~ of 7 (job stat.us 
message). 

Each message includes the 
wti.te-to-progra~mer. paI;'amete}: .. and uses a 
system message block which then becomes 
unavailable until after the message is 
printed. Since a maximum number of these 
system message blocks must be specified by 
the installation's system programmer at the 
time of system generation, it is possible 
for the number of messages requiring system 
message blocks to exceed the number of 
blocks a vailable. If this occurs, the 
programmer is warned of the condition, but 
all succeeding messages are ignored. 

xxx ••• 

~xplanation: This message is 
written on the console and is 
recognizable because it is not 
preceded by a message code and 
action indicator. It is 
generated by a DISPLAY statement 
with the ON CONSOLE option. The 
message text is supplied by the 
object program and may indicate 
alternative action to ~e taken. 

~t~m Act!.Q!!: The job 
continues. 

QE~~glQ~_R~§EQn§~: operator 
response, if any is needed, is 
determined by the message text. 



The COBOL queue-analyzer subroutine 
generates the messages that follow for the 
error conditions it diagnoses. Like the 
COBOL compiler, the queue analyzer 
sometimes issues varning messages and takes 
corrective action. other conditions that 
indicate more serious errors result in 
termination of the queue structure 
description program. 

For descriptions of the queue-analyzer 
subroutine and the queue structure. 
description program, see the "programming 
Techniques" part of this publication. 

IKF700I-E MEMBER NOT WRITTEN FOR 
PRECEDING QUEUE STRUCTURE DUE 
TO ONE OR MORE ERRORS NOTED 
ABOVE. 

Explanation: This message is 
alvays accompanied by other 
diagnostics. A partitioned 
data set cannot be created for 
the quel1e structure described 
because of serious errors. 

System !£!ion= The member is 
not written. 

ttQgiln~-1i~2Q!!.2g: Probable 
user error. correct the syntax 
and other errors in the program 
before recompiling. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF701I-E PDS ALREADY CONTAINS MEMBER 
WITH SAME NAME AS THE 
PREVIOUS QUEUE STRUCTURE. 
QUEUE NOT "ADDED. 

Explanation: Each member of a 
partitioned da ta set must have 
a unique name. 

System_Action: The queue is 
not added. 

grogrgm!gI_g~EQ~~: Probable 
user error. Either assign a 
nev name to the member being 
added or run the IEHPROGM 
utility program to scratch the 
dd member from the PDS; then 
rerun ILBOQSUO. 

If the problem recurs, have 
the following available before 
calling IBM for programming 

support: source deck, control 
cards, and compiler output. 

IKF702I-E RAN OUT OF SPACE IN PDS 
DIRECTORY WHILE ATTEMPTING TO 
ADD PRECEDING QUEUE 
STRUCTURE. 

~21an~tiQn: There is not 
sufficient space in the 
partitioned data set to add the 
queue structure. 

sy§te!!..l!£1i.2!l! Compilation is 
continuing. 

f£Q~g~g~_Re§EQn~g: Probable 
user error. Specify a larqer 
value in the SPACE parameter. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF703I-W WARNING: QUEUE OR SUB-QURUE 
NAME EXCEEDS 12 CHARACTERS IN 
LENGTH. PIRST 12 CHARACTERS 
USED AS NAME. 

ExplanatiQU: The name of a 
queue or sub-queue name may 
contain a maximum of 12 
characte.rs. 

syste~_ActiQ!l: The name is 
truncated to 12 characters. 

Programmer Re§.EQ1!.~: Probable 
user error. Substitute for the 
name indicated a queue name or 
sub-queue name that does not 
exceed 12 characters. Then 
recompile the program. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF704I-E UNRECOGNIZABLE KEYWORD IN ABOVE 
STATEMENT. STATEMENT 
DISREG ARDED. 

EXEla!la!i2U: The source 
statement immediately 
preceeding this error message 
contains at least one 
unrecognizable word. 

~stem_!£1i~n: The statement 
is discarded. 

~g£g.!!~~_Respo~: probable 
user error. Recode the 

Appendix K: Diagnostic Messages 539 



statement indicated and rerun 
the job. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF705I-E ONE OR MORE KEYWORDS OMITTED IN 
ABOVE STATEMENT. STATEMENT 
DISCARDED. 

~lanation: Each sub-queue 
level must contain a reference 
to the sub-queue to be defined, 
the verb "IS ft, and the name to 
be assigned to the sub-queue. 

~gm_A£liQ~: The statement 
is discarded. 

g!:.Qgil!!l..!!,g~g2.E.Qn§~: Probable 
user error. Correct the source 
statement indicated before 
recompiling. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF706I-W WARNING: QUEUE OR SUB-QUEUE 
NAME IS LESS THAN 12 
CHARACTERS IN LENGTH AND ENDS 
IN COLUMN 80. ACCEPTED AS 
WRITTE N. 

Explg,n.ation: The queue or 
sub-queue name ends in the 80th 
position in the record. 

~2tem_!ction: The statement 
is accepted as written. 

~oqr~.!!!er-EesPQ!!'§~: Verify 
tha t the queue name or 
suh-queue name is complete 
before recompiling. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF707I-E SUB-QUEUE LEVEL NUMBER IN ABOVE 
STATEMENT IS NOT 1, 2, OR 3. 
STATEMENT DISCARDED. 

540 

Ex.E!~!!UiQ!l: A queue structure 
must contain one, two, or three 
levels of sub-queues, written 
SUB-QUEUE-l, -2, or -3. 

sys1.!~!L!£1iQ!l: The statement 
is discarded. 

f£Qg£il~£_Rg,22Q!l§~: Probabl e 
user error. Substitute for the 
sub-queue level number 
indicated the numeral '1', '2', 
or '3', as appropriate. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF708I-E MORE THAN 200 STATEMENTS IN 
PRECEDING QUEUE STRUCTURE. 
SKIPPING TO NEXT QUEUE 
STRUCTURE OR END OF INPUT. 

Explanation: A queue structure 
may not contain more than 200 
sta tements. 

~§tem A£1.iQll: The queue 
structure was not created. 

f~oqrammer Res.E.Q~: Probable 
user error. Recode the queue 
and sub-queue definition 
statements not to exceed a 
maximum of 200. 

If the problem recurs, have 
the following available before 
calling IBM for programming 
support: source deck, control 
cards, and compiler output. 

IKF109I-E ONE OR MORE LEVELS MISSING 
BETWEEN LEVEL IN ABOVE 
STATEMENT AND LEVEL DEFINED 
IN PRECEDING STATEMENT. 

Explang,1.!Qft: When a lower 
level of the sub-queue 
hierarchy is described,'all 
higher levels in that leg of 
the structure must be 
specified. For example, a 
SUB-QUEUE-3 statement cannot 
immediately follow a 
SUB-QUEUE-1 statement. 

system Action: The statement 
is discarded. 

~~~m~£_~2~Qn§~: Probable 
user error. Supply the
additional required sub-queues
before recompiling.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF110I-E FIRST CONTROL STATEMENT DOES
NOT DEFINE A QUEUE-LEVEL
NAME. SKIPPING TO FIRST
"QUEUE IS" STATEMENT.

~lllang,tiQ!!: The first
statement in the queue
structure description must
specify a queue definition.

~§te!!LA£.tiQll:The compiler is
skipping to the first queue
defini tion.

Pr.Qgra!!!!!~esQ.Qll.§~: Probable
user error. Rewrite the source
statement(s) indicated so that
the first control statement
defines a queue-level name.
Then recompile the program.

If the problem recurs, have
the following available before
calling IBM for programming
sapport: source deck, control
cards, and compiler output.

IKF111I-E DDNAME IN ABOVE STATEMENT NOT
COMPLETED AT END OF 80
CHARACTERS. STATEMENT
DISCARDED.

Expl~natiQ~: A ddname in the
statement indicated cannot
contain more than 80
characters.

system_!~!iQ!!: The statement
is discarded.

PrQqra:m.!!t~IT._~~EQ!!~: Probable
user error. Replace the ddnaae
indica ted wi th one of the
required length. Then
recompile the program.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF712I-E DDNAME IN ABOVE STATEMENT
EXCEEDS 8 CHARACTERS IN
LENGTH. STATEMENT DISCARDED.

~!21~!!io!!: A ddname cannot
exceed 8 characters in length.

SIstem A£!io.n: The statement
is discarded.

~£Qg~~er R~£Qll§~: Probable
user error. Substitute for the
ddname indicated one that does
not exceed 8 characters.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF713I-E A DDNAME IS SPECIFIED IN THE
SECOND STATEMENT ABOVR, BUT
THIS IS NOT A LOWEST-LEVEL
SUB-QUEUE IN THE STRUCTURE.

~KR1~llg,iiQ~: At execution
time, the partitioned data set
is described on a DD card, and
the messag~ control program
table entries and the
lowest-level sub-queue names
are linked by DD cards.

s.yste.!L.Aclion: The statement
is discarded.

Progr1!1!!.~f._Re'§RQns~: Probable
user error. Substitute for the
invalid ddname indicated a name
that matches a lowest-level
sub-queue.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF714I-E DDNAME IN ABOVE STATEMENT
BEGINS WITH A NUMBER.
INVALID IN as.

R~El~ng,liQn: In OS a ddname
must begin with an alphabetic
character.

~Y§l~~_A~!iQll: The statement
is discarded.

g£Qg£a~~£_~~£Qli§~: Probable
user error. substitute for the
invalid ddname one whose first
character is alphabetic.

If the problem recurs, have
the following available before
calling IBM fO£ progra mming
support: source deck, control
cards, and compiler output.

IKF115I-D UN.ABLE TO RUN COBOL QUEUE
UTILITY DUE TO LACK OF
SUFFICIENT CORE AVAILABLE.
RERUN WITH LARGER REGION
SIZE.

Ex£lanation: There is not
sufficient space to run the
queue utility program.

~2!!UL!ctiQ!!: The run is
terminated.

Appendix K: Diagnostic Messages 541

Program~~~2ons~: Probable
user error. Specify a larger
size in the REGION parameter.

If the problem recurs, have
the follow ing available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF716I-D ERROR OCCURRED DURING OPENING
QUEUE-STRUCTURE DATA SET.
RUN TERMIN ATED.

~xplan~!ion: The DD card for
the COBTPQD data set is either
missing or incorrect.

System-Actio!!,: The run is
terminated.

Programmer ~~22Qn2£: Probable
user error. Check for a valid
COBTPQD DD card before
recompiling.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF717I-D ERROR OCCURRED OPENING SYSIN
DATA SET. RUN TERMINATED.

542

]xplan,g,tion= Because the DD
card for the SYSIN data set is
either missing or incorrect,
the SYSIN data set cannot be
opened. The program cannot be
compiled.

~Y2tem-A£l!Qn: The run is
terminated.

Progrg~~R~2Qn2~: Probable
user error. check for a valid
SYSIN DD card before
recompiling.

If the problem recurs, have
the following available before

calling IBM for programming
support: source deck, control
cards, and compiler output.

IKF718I-E THE NAME ***** APPEARS MORE
THAN ONCE AT THE SAKE LEVEL
IN A SINGLE LEG OF THE
CURRENT STRUCTURE.

Explanation: Each queue or
sub-queue defined for a queue
structure must be unique.

~§~£l!Q!!': The statement
is discarded.

f~Qg~~~~~~_ResEQn§~: Probable
user error. Rewrite the queue
or sub-queue name indicated so
that it is unique.

If the problem recurs, have
the following available before
calling ISK for programming
support: source deck, control
cards, and compiler output.

IKF119I-E THE NAKE **** AT SUB-QUEUE
LEVEL **** IS SUPERFLUOUS
SINCE THIS IS THE ONLY NAME
AT THIS LEVEL.

~xplan~t!Q~: The sub-queue
name at level .*** is the only
name at this level.

sY~tem_~tion: The statement
is discarded.

~Qg~~m~~~2Qn~~: Probable
user error. Check the queue
structure for a one-legged path
before recompiling.

If the problem recurs, have
the following available before
calling IBM for programming
support: source deck, control
cards, and compiler output.

When a user encounters problems with the
COBOL compiler or LCP. he should gather as
lIuch as possible of the following
information before presenting the problem
to the FE to qet the problem resolved in
the fastest possible way.

• Source deck--it is imperative that a
source deck (or tape containing the
source program) be supplied with any
reported problem.

• COpy and BASIS libraries (if needed)

• Compilation listing (PKAP, DMAP, SIREF
preferably)

• Abend listing (if necessary)

• Compiler options

• SIZE. BUF

• Compiler work file allocations

• Block si%es for compiler files

• Region/p~rtition size

• system level and environment

• Type of hardware used

• PTFs applied to system

• PTFs applied to product

• ZAPs applied to product

• Aay local fixes/changes made to prod uct

• Any bypasses

• Does problem always occur or is it
intermittent?

• If compiler failure--number of phase in
which failure occurred (this can be
obtained from first page of SYSUDUMP
listing)

• If execution problem - any files used
by the object program that would be
needed to re-create the problem should
be supplied when the problem is
reported.

Appendix L: Resol ving COBOL Compiler Problems 543

The 3886 Optical Character Beader, Model
1* (herein referred to as "OCR"), is a
general purpose online device that
satisfies a broad range of data entry
requirements. The OCR accepts documents
from 3x3 inches to 9x12 inches in size. It
can read machine-printed alphabetic,
numeric and certain special characters in a
wide variety of fonts, as well as
hand-printed numeric characters.

The OCR reads documents one line at a
time, under program control. Additional
facilities, all under program control,
include: document marking, line marking,
document eject (with stacker selection, and
line reread (for the current line, and with
a different format description, if
desired) • (It is important in designing
documents to remember that the OCR cannot
reread previous lines; reading can only
proceed from top to bottom on the
document.)

The use of this appendix requires
familiarity with the publications:

• ~~_l~~~_QQticg!-f~g£g£!~£_R~gde£
~llLlnf.Q£!ation]!g,!!yal, Order
No. GA21-9146.

• IBM_l~86_QBlicgl_£~g£g£1~eade£-Ill~!
Jl2£y.!!gnl-12es ig!L G uid~~UHi
~g£if!£ati~_1!~~!, Order
No. GA21-9148.

In addition, the relevant portions of
the following manuals should be referenced:

• OSL!~~Y§1~_~g~£g,ti2a Ref~n£g,
Order No. GC26-3791.

• OS/Y~1~Y21~~~~~£21iQn_R~i~g,
order No. GC26-3792.

*This device should not be confused with
the 3336, Model 2, which is an offline
optical Character Reader, with output to
tape. Information is included in this
appendix, however, to help in processing
tapes produced by the Model 2

544

The COBOL user can request nine
different I/O operations with the OCR as
f01lo·lIs:

• OPEN - Open a 3886 data set.

• CLOSE - Close a 3886 data set.

• READ - Read a line on a 3886 document.

• READO - Read a line on a 3886 document.
READO must be followed by a WAIT.

• WAIT - wait for completion of READO.

• SETDEV - Load the format record.

• ~ARKL - Mark a line.

• MARKD - Mark the current document.

• EJECT - Eject the current document.

OCR I/O RE QUESTS

The I/O requests listed above cannot be
issued directly; instead, the COBOL
programmer must place the desired request
in a COBOL data area of a specified format
and then pass this information to a
subroutine by a CALL statement with the
OSING option. The called subroutine
handles the request and returns any
requested information as well as certain
additional information in case of an error.
The CALL can have only the one parameter
just described following the USING; if more
than one is specified, the subroutine will
return control immediately to the user with
a value of 8 in the RETURN-CODE special
register.

Figure 190 describes the necessary
format of the COBOL data area that is
passed to the subroutine. The data-name
symbols used in Figure 190 are used for
illustrative purposes only; any valid COBOL
data-name symbols may be used. The
data-name symbols used in Figure 186
describe the use of the fields in the
parameter. To assist the user, an
IBM-supplied source member, ILBOOCRD, can
be included in the Data Division of the
user program via a COpy statement. The
contents of ILBOOCRD are listed in Figure
191. Another IBM-supplied source member,

ILBOOCRP, can be included in the Procedure
Division via a COPY statement. ILBOOCRP,
the contents of which are listed in Figure
192, can be used for doing OCR operations.

OCR STATUS KEY

After each operation, a status indicator
is passed back to the COBOL program to

indicate whether or not the operat.ion was
successful. This indicator is placed in
bytes 22-23 of the data area passed to the
subroutine. The possible cause, meanings,
and programmer response to each value are
listed in Figure 193.

r
aDATA

-,

101 ,
I
I
I
I
I

• I
I
I
I
I
J
I
I
I

DIVISION Entry I ,Comments
I ----~

OCR-FILE. I
02 OCR-FILE-ID PIC X (8) VALUE 'ddname'.t
02 OCR-FORMAT-RECORD-ID PIC X(8) VALUE,Format record name used for OPEN or SETDEV.
'DFR phase name'. ,Phase name is PRLGxxxx p where only the last

lcharacters are used; if blank during OPEN p
,FRIO on dd statement is used.

I
J
I

41
I
I

02 OCR-OPERATION PIC X (5) • JCan be set to OPEN, CLOSE, READ, READO,
ISETDV, MARKL, MARKO, or EJECT.

WAIT, •

02 OCR-STATUS-KEY PIC 99.
02 OCR-LINE-NUMBER PIC 99.

02 OCR-LINE-FORMAT PIC 99.
02 OCR-MARK PIC 99.
02 OCR-STACK ER PIC 9.
02 OCR-HEADER-RECORD PIC X(20)

02 OCR-DATA-RECORD PIC X(130).

IAlso referred to as exception code.
aLine no. (0-33) passed to MAHKL, READp or
IEJECT.
t Line forma t no. (0-63) passed to READ.
JMark option (1-15) passed to MARKL or MARKD.
IPocket no. (1-2) passed to EJECT.
IHeader information returned from READ or
plAIT.
lData record returned from READ or WAIT.

1
I
t
I
I
I ,
I
t
I

t- 1

Figure 190. Format of COBOL Parameter Data Area

Appendix M: 3886 optical Character Reader Processing 545

r- ---,
t************************* ILBOOCRD - OCR DATA DESCRIPTION *****************************1
1***1
************************ 0 C R 3886 P I L E FOR PI A T ************************ I
***.
01 OCR-FILE. I

05 OCR-FILE-CONTROL-AREA. I
10 OCR-FILE-ID PIC 1(8) VALUE 'DDNN3886'. I
10 OCR-FOBMAT-RECORD-ID PIC .X (8) VALUE 'PRLGDFR 1'.
10 OCR-OPERATION PIC X{S) VALUE 'OPEN '.

88 OCRO-OPEN VALUE 'OPEN '.

88 OCRo-CLOSE VALUE 'CLOSE'.
88 OCRO-READ VALUE 'READ ' .
88 OCRO-RE AD-OVERL APPED VALUE 'READO'.

f 88 OCRO-WAIT VALUE ·WAIT'.
I 88 OCRO-MARK-LINE VALUE 'MARKL'.
I 88 CCRO-MARK-DOCUMENT VALUE 'MARKD'.
I 88 OCRO-EJECT VALUE 'EJECT , .
I 88 OCRO-SETDEV VALUE 'SETDV'.
I 10 OCR-STATUS-KEY PIC 99 VALUE o.
1* (STATUS KEY CODES AND NAMES TO BE CHANGED)
I 88 OCRS-SUCCESSFUL VALUE 00.
I 88 OCR S- EN D-OF- FIL E VALUE 10.
t 88 OCRS-IO-ERRORS VALUE 30 THRU 39.
I 88 OCRS-fnSC-ERROR VALUE 30.
t
I 88 ocnS-MARK-CHECK VALUE 31.
I 88 OCRS-NONRECOVERY-ERROR VALUE 32.
I 88 OCR S- INCOMPLETE-SCAN VALUE 33.
f 88 OCRS-MARK-AND-EQUIP-CHECK VALUE 34.

• 88 OCRS-PERMANENT-ERROR VALUE 39.
1 88 OCRS-SPECIAL-ERBORS VALUE 90 THRU 99.
I 88 OCRS-LOGIC-ERROR VALUE 92.
I 88 OCR S- RESOURCE-U NAVA'ILABLE VALUE 93.
I 88 OCRS-INVALID-PARA~E~ER VALUE 95.
I 88 OCRS-INVALID-OPERATION VALUE 99. 'I
I 10 OCR-LINE •. I
I 15 OCR-lINE-NUMBER PIC 99 VALUE 1. I
J 15 OCR-LIN E- FORM AT PIC 99 VALUE 1. I
I 10 OCR-MARK PIC 99 VALUE o. I
J 10 OCR-STACKER PIC 9 VALUE 1. I
L--

Figure 191. IBM-supplied Da ta Division COpy Member (Part 1 of 2)

546

r------------------------------------
'* 1*
1*
1*
1*

05

******* HEA~ER AND DATA RECORD AREAS*******
FILLED IN BY SUCCESSFUL 'READ' AND/OR ·WAIT'.
(NOfJ'E - 'READO' DOES NOT ALTER THESE AREAS)

OCR-HEADER-RECORD
10 aRCH-LINE-NUMBER
10 ORCH-LINE-FORMAT
10 ORCH-LINE-SCAN-COUNT
10 ORCH-LINE-STATUS

88 ORCH-LINE-GOOD
88 ORCH-LINE-BLANK
88 ORCH-LINE-GROUP-F.RASE
88 ORCH-LINE-CRITICAL-ERR
88 ORCH-LINE-NON-CRITICAL-ERR
88 ORCH-LINE-COMBINED-ERR
88 ORCH-LINE-INVALID
88 ORCH-END-OF-PAGE

10 ORCH-FIELD-INFO.
15 ORCH- FILED- ST ATUS

88 ORCH-FIELD-GOOD

PIC 99.
PIC 99.
PIC 9.
PIC 9.

PIC 9.

88 ORCH- FI EL D- REJECT-CHARS
88 ORCH-FIELD-WRONG-LENGTH
88 ORCH-FIELD-COMBINED-ERR
88 ORCH-FIELD-BLANK
88 ORCH-FIELD-BLANK-SUP

05 OCR-DATA-RECORD.
10 OCR-STANDARD-MODE-RECORD.

15 OCR-STANDARD-FIELD-CHAR PIC X
10 OCR-IMAGE-MODE-RECORD

REDEFINES OCR-STANDARD-MODE-RECORD.

VALUE ZEROS.

VALUE O.
VALUE 1.
VALUE 3.
VALUE 2.
VALUE 4.
VALUE 6.
VALUE 7.
V,ALUE 5.

OCCURS 14.
VALUE O.
VALUE 2.
VALUE 4.
VALUE 6.
VALUE 8.
VALUE 4.

OCCURS 130.

15 OCR-IMAGE-FIELD-LENGTH PIC 99 OCCURS 14.
15 OCB-IMAGE-FIELD-CHAR PIC X OCCURS 102.

************END OF 3886 DATA DIVISION COpy MEMBER************ L-___ _

Figure 191. IBM-supplied Data Division COpy Member (Part 2 of2)

I
I
I
I
I
f
I
t
J
I
I ,
I ,
J
I
1
J
J
I
t
I
I
J
I
I
J
I
I ,
I
I ,
I _____ ,-..1

Appendix M: 3886 optical Character Reader processinq 547

.----------------_._-- ,

.******* ILBOOCRP - OCR 3886 PROCEDURES I
J***1
t******* 0 C R 3 8 8 6 PRO CEO U RES ******* I
1***1
t* THE 3886 OCR SUBROUTINE USES OCR-FILE FIELDS AS FOLLOWS I
1* ,
1* ALL OPERATIONS REQUIRE I
'* OCR-FILE-ID ::: THE UNIQUE NAME USED TO IDENTIFY THE FILE I
1* TO THE SUBROUTINE AND TO THE SYSTEM I
1* OCR-OPERATION = THE CODE FOR THE REQUESTED OPERATION I
I * ALL OPERATIONS RETURN I
t * OCR-STATUS-KEY ::: RETURN CODE FOR VARIOUS OCCURRENCES I
I * I
I * OCR-OPEN ('OPEN ') ALSO REQUIRES I
1* OCR-FORMAT-RECORD-ID ::: LIBRARY NAME OF OFR TO .LOAD I
J * OCR- RE AD (. READ ') ALSO REQUIR ES I
t* OCR-LINE-NUMBER (1-33) = LINE TO READ (ON DOCUMENT) ,
J* OCR-LINE-FORMAT (1-63) = OLINT NUMBER (IN CURRENT OFR) I
1* AND RETURNS (IF OCRS-SUCCESSFUL) J
I OCR-HEADER-RECORD = HE ADER RECORD, AS RETURNED BY THE 3886 I
'* OCR-RECOGNITION-RECORD = DATA FROM DOCUMENT, FROM 3886
t * OCR- READ-OVERLAPPE 0 (. READO') HAS SAME REQUIRE MENTS AS OCR-READ
J* OCR-WAIT('WAIT ') RETURNS SAME PARAMETERS AS OCR-READ
1* OCR-MARK-LINE (tMARKLt) ALSO REQUIRES
1* OCR-LINE-NUMBER (1-33) = LINE TO MARK (ON DOCUMENT)
t* OCR-MARK (1-15) = SUM OF DESIRED MARK CODES (8421)
f *
1*
1*
1*
1*

.* t*
1*
1*
1*

OCR-MARK-DOCUMENT {t MARKO') ALSO REQUIRES
OCR-MARK (1-15) = SUM OF DESIRED MARK CODES (8421)

OCR-EJECT ('EJECT') ALSO REQUIRES
OCR-POCKET (1-2) = STACKER TO SELECT (1 OR B)
OCB-LINE-NUMBER (0-33) = NUMBER OF LINES ON DOCUMENT

FOR VALIDATION (IF O. NO VALIDATION WILL OCCU~
OCR-SET- DEVICE (' S ETDV') ALSO REQUIRES

OCR-FORMAT-RECORD-ID ::: LIBRARY NAME OF OFa TO LOAD

I *NOTES
J* 1. THE TERMS DFR AND DLINT ARE USED TO REPER TO THE EXPANDED
I * CODE, IN LOADA BLE FORM, OF' THE R ESPECTI VE SYSTEM MACROS.
1* 2. OCR-WAIT ~AY BE REQUESTED AFTER, AND ONLY AFTER, A
j* SUCCESSFUL OCR-READ-OVERLAPPED REQUEST. NO INTERVENING
1* I/O COMMANDS WILL BE ALLOWED ON THAT SAME FILE.
1* 3. THE "PROCEDURES PROVIDED BELOW AUTOMATICALLY FILL IN
1* THE OCR-OPERATION FIELD, CALi THE SUBROUTINE, AND TEST
I * THE OCR-STATUS-KEY AFTERRETU.RN. IF ANY EXCEPTIONAL
f* CONDITIONS OCCUR, THEY PASS CONTROL TO THE ROUTINE
.* OCR-EXCEPTION-ROUTINE, WHICH THE PROGRAMMER MUST PROVIDE.
I * THE PROGRAMMER PlAY AVOID EXCEPTION ROUTINE INVOCATION BY
1* ADDING THE FOLLOWING PHRASE TO THE COpy STATEMENT:
I * REPLACING OCR-EXCEPTION-ROUTINE BY OCR-CALL-EXIT
1* 4. ALTHOUGH OCR-STATUS-KEY MAY INDICATE THAT THE DESIRED OPERATION
1* WAS UNSUCCESSFUL, THE VALIDITY OF THE DATA OBTAINED SHOULD
1* BE DETERMINED BY TESTING OCRH-LINE-STATUS I
1***1
L-

Figure 192. IBM-supplied Procedure Division COpy Kember (Part 1 of 2)

548

,.-------
OCR-3886-PROCEDURES.
OCR-OPEN.

MOVE 'OPEN • TO OCR-OPERATION OF OCB-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-CLOSE.
MOVE 'CLOSE' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-READ.
MOVE 'READ t TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-READ-OVERLAPPED.
MOVE • READO' TO OCR-OPERATION OF OCR-F ILE.
PERFORM OCR-CALL THBU OCR-CALL-EXIT.

OCR-WAIT.
MOVE 'WAIT' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EIIT.

OCR-MARK-LINE.
MOVE • MAHRL' TO OCR-OPERATION OF OCR-FILE.
PERFORM OCR-CALL THRU OCR-CALL-EXIT.

OCR-MAR K- DOCUMENT.
MOVE 'MARKD' TO OCR-OPERATION OF OCB-FILE.
PERFOR 1'1 OCR-CALL THRU OCR-CALL-EXIT.

IOCR-EJECT.
a MOVE • EJECT' TO OCR-OPERATION OF OCR-FILE.
I PERFORM OCR-CALL THRU OCR-CALL-EXIT.
IOCH-SET-DEVICE.
I MOVE 'SETDV' TO OCR-OPERATION OF OCR-FILE.
I PERFORM OCR-CALL THRU OCR-CALL-EXIT.
JOCR-CALL.
I CALL 'ILBDOCRO' USING OCR-FILE.
1 IF NOT OCRS-SUCCESSFUL OF OCR-FILE.
I GO TO OCR-EXCEPTION-ROUTINE.
IOCR-CALL-EXIT. EXIT •
• **********END OF 3886 PROCEDURE DIVISION COpy MEl1BER**********

Figure 192. IBM-supplied Procedure Division COpy Member (Part 2 of 2)

IMPLEMENTI NG AN OCR APPLICATION DOCUMENT DESIGN

J

Design and coding of the OCR aspects of
an application may be accomplished in COBOL
as follows:

1. Document design - prepare the OCR form
that will be used for input,
independently of the COBOL program.

Document design criteria are given in
detail in the lllL388.§._QEi!cal~ll£lg£
Re~L-.lnID!..LJ22£~l_Des!gn Guide and
~~ificati2!l.2.. The most important aspects
of document design are:

2. Document description - code the DFR
and DLINT macros to be used in reading
the document(s), independently of the
COBOL program.

3. COBOL file and record descriptions -
code the COBOL data structures that
correspond to the DLINT macros defined
earlier. They should be defined as
subordinate to the OCR-FILE area,
which the programmer may COpy into the
source program~

4. COBOL procedural code - code the COBOL
source statements required to control
the file, read lines, and recover from
errors. COBOL provides a COpy member
to simplify this file handling.

1. The location of lines which can be
read. These are identified by "timing
marks"; lines not associated with
timing marks are always ignored by the
OCR. Note that lines may be almost
anywhere on the document, and need not
b~ at regular intervals.

2. The location of· fields to be read.
"Fields," strings of related
characters, should be identified in
document design. They will eventually
required description, using the DFR
and DLINT macros (see "Document
Description") •

3. The form identifier. This field
should be a pre-printed code, useful
for identifying one of many different
forms. It should be at a common

Appendix M: 3886 optical Character Reader Processing 549

location on the first (readable) line
of each form. (This field can, of
course, be ignored by programming or
DL'INT specification if desired; it
should, ho~ever, be included in the
form design, so as to allow for later
form changes or additional batched
forms without disruption of

The DPR macro identifies, by name, a
collection of DLINT macros, and establishes
various default field scanning options for
them. As such, it is intended that each
different DFR grou ping will identify a
different document, or a largely different
way of scanning the same document (e.g.,
when typed entirely in a different font).

opera tions.)

DOCU MENT DES CRIPTION
DFR and DLINT macros, after assembly and

linkage editing, are preserved in loadable
form until called .for by the application
program.

Documents are described in the system
with the DFR (Define Format Records) and
DLINT (Define Line Type) macros.

r- ~ --~'------------'------'1--------------------
JStatus Key,Operations Causing I •

Val ue I Val ue J Meaning J Programmer Response
r---------~I~------ +-----------------~I-
I 00 J Any OCR I/O JSuccessflll J ContinUe processing normally.
1-------+ t -r' ---------
I 10 IREAD, WAIT, MARKL, IEnd-of-file , Do end of file processing.
J I MARKD, EJECT, SETDEV,Close file. I See Note 1.
I-- -+ I ,
I 30 ,OPEN ,Miscellaneous I See Note 1.
i J I error I
I-- -+ I I
I 31 I EJECT ,Mark Check I Attempt to re-read the line, or
J J I I eject document and prepare to
• I J , process t he next document.
t- of t --f-
I 32 J Any OCR I/O except ,Non-recovery I Eject the document and prepare to
t IOPEN and CLOSE Jerror J process the next document.
t------+----------+--·--------+I-------------·
I 33 IREAD, WAIT ,Incomplete scan 1 Be-read the line using either a
1 I I I different DLINT or an image-mode
J J J I DFR.

,
I
I
I

I
J ..
I
I
f
I
t
J .,
J
I .,
I
I
I

i- t , - , ----- ----------------.,
I 34 !EJECT ,Mark Check and I See Note 2. I
I I IEquipment Check I I ~_ f __ ~ ________________ ~,~ ___________________ • __________ _

·---of
, 1iQ~§' J
I ,1.
I
J
J
J
t ,
12.
t
I
I
J 3.

• ,
j

End-of-file occurs on the listed I/O commands when the operator has pressed the
END-OF-FILE button, no documents remain in the read station, and no errors are
outstanding. (EOF might also occur on OPEN but only following some unusual
operator actions.) If the file is DD DUft~Y, EOF is given only on READ and WAIT
commands. Commands are checked for validity but no physical I/O requests are
issued.

The noted errors represent serious I/O error conditions. No more I/O should be
performed on the de vice after any of these errors are encountered. The program
should, in general, indicate the error, do clean-up, and issue a STOP RUN.

The noted errors represent a seriolls programming error or a problem in the program
environment. The program should indica te the error, do clean-up, and issue a STOP
RUN.

f
I
I
J
J

fAdditional Note: WAIT and READ commands return data and header records only for the
following codes: 00 (successful), 10 (EOF - if not a dummy file),
(mark check), and 33 (incomplete scan). Por any other copies, the
contents of the header and data record areas are unpredictable.

I
I

311 I

• t
t.

Figure 193. OCR STATUS KEY Values (Part 1 of 2)

550

I
I

--.J

t i ~'------------'------'i------------- ,
IStatus KeYIOperations Causing I J I
I Value I Value I eeaning I Programmer Response f
~1----------;I-------------~--~I~----------------4-1 ~
I 39 I Any OCR I/O except I Permanent error I See Note 2. This code indicates one,
I ,OPEN and CLOSE I I of the following errors: Command I
I I I • Reject, Bu.s out check, Equipment ,
I I I I Check, 'Non-initialized, RCP error, I
t I J , or Invalid Format. I
~ I I --------+1-'--- ~
I 92 I Any OCR I/O I Logic error t See Note 3. This code represents an I
I I J I error in ope,ration order: I
f I I I .• OPEN issued on file already open.1
I J I I • File not open (all operations I
I I I I except OPEN). I
I I I I • WAIT issued but no READO in I
I J I • progress. I
I I I • • READO followed by an operation I
I J I I other than WAIT. I
I -t--------, I I ---1
I 93 IOPEN ,Insufficient I See Note 3. This code indicates I
I I Istorage ,that a GETMAIN issued by the COBOL I
I I I I subroutine failed. The programmer J
I I .Ishould make certain that the REGION I
I I I ,parameter specifies enough storage. t
~ I I -+ ---t
I 95 tREAD, READD, MARKL, ,Invalid Parameterl See Note 3. A parameter (except I
I J MARKO, EJECT I IOCR-OPERATION) required by the last t
I J I loperation was invalid: too large or I
• I I ISllall, or contained invalid I
I I I Icharacters. I
I I I I ,
• 99 I No OCR I/O I unrecognizable I See Note 3. The OCR-OPERATION I
I I Joperation Iparamete,r contained an illegal I
I. I I opera tion code. •
1-' • --L- ..

Ib~: I

1.

2.

3.

I

End-of-file occurs on the listed I/O commands when the operator has pressed the
END-OF-FILE bu-tton, no documents remain in the read station, and no errors are
outstanding. (EOP might also occur on OPEN but only following some unusual
operator actions.) If the file is DO DUMMY, Eor is given only on READ and WAIT
commands. COllmands are checked for validity but no physical I/O requests are
issued.

The noted errors repre~ent serious 1/0 error conditions. No more I/O should be
performed on the device after any of these errors are encountered. The program
should, in general, indicate the error , do clean-up, and issue a S1:'OP RON.

The noted errors represent a serious programming error or a problem in the program
environ mente The program should indica te the error, do clean- u p, a nd issue a STOP
RUN.

• ,Additional Note:

I
I ,
J
t
I
I
I

• I
t
1
1
I
f
J
I

I
WAIT and READ commands return data and header records only for the
following codes: 00 (successful), 10 (EOF - if not a dummy file),
(mark check), and 33 (incomplete scan). For any other copies .. the
contents of the header and,data record areas are unpredictable.

31,
I I
I • __________________ J

Figure 193. OCR STATUS KEY Values (Part 2 of 2)

Each DLINT macro describes the scanning
of a line, by field, in terms of: the
sta rting a nd ending points of fields on a
line (in tenths of an incb); the field
lengths (in characters); the font code to
be used (OCR-A, OCR-B, Gothic, or
hand-printed numerics, all with various add

special character suppression); field
character delimiters (a character to end a
field scan); and various additional
options.

Note that the DLINT macro may specify
either "standard mode" or "image mode."

Appendix M: 3886 Optical Character Reader processing 551

Instandard mode, all DLINT options are
valid, and the data record is of a fixed
format.· according to the field lengths in
characters. In image mode. the field
length and all EDIT" keywords are invalid;
the data record begins with 14 2-byte
length parameters, indicating the length of
tbe fields that follow. Because of this
variable format in the data record. image
mode should be used only in applications
for which standard mode is unsuitable.

COBOL FILE AND RECORD DESCRIPTIONS

The file to be processed must be
described in the Data Division according to
the format in Figure 190 or the programmer
may conveniently use the IBM-supplied Data
Division COpy member (see Figure 191). In
the IBM-supplied COpy member, all fields
and codes are included, along with
descriptive names and default values. The
programmer need modify only those fields
that are not appropriate for the particular
ap plication.

The file description ("OCB-FILE" in the
COpy member) includes all fields that the
programmer must provide to the subprogram,
the OCR-STAT US-KEY returned by tbe
subprogram, and fields that describe the
header and data records returned directly
by the device. (Note that the header and
data records are not constructed under
program control; they are not altered after
reading. and thus their contents are fully
described in the General Information
manual.)

The COBOL_record descriptions are based
on the DLINT fo~mats. either in image mode
or standard mode. If the macro specifies
standard mode scanning. the data record is
returned in a fixed format according to the
DLINT: fields contiguous, from left to
right in the same order, each with a
specified length in bytes. If the macro
specifies image mode scanning, however, the
field lengths are returned at the beginning
of the data record, and fields vary in
Ioca tionwi thin the data record. Because
of this, image mode should be used only in

552

cases for which standard mode is
unsuitable.

The programmer may describe the data
records to be read by the application
program by following the Data Division COpy
request with the statement: "05 dataname
REDEPINES OCR-DATA-RECORD." and starting
the structure of each record description
with a level number greater than 5 (see
Figure 198 for an example).

PROCEDURAL CODE

The 3886 file is processed by using CALL
statements to the IBM-supplied routine
ILBOOCRO or by including the IBM-supplied
Procedure Division COpy member ILBOOCRP·.

ILBOOCRP (see Figure 192 for contents)
provides paragraphs to perform, which set
the appropriate operation code, CALL the
subroutine ILBOOCRO, and passes control to
a programmer supplied OCR-EXCEPTION routine
if an exception occurs.

In general. the programmer must move
Parameter information to the file area
(OCR-FILE), and then issue a PERFORM for
the appropriate procedure. Figure 194
lists the permissible I/O requests and the
fields that must be set before issuing the
CALL; also included are the fields that
receive information back from the
subroll tine upon complet ion of the request.

If an exception occurs, the COpy member
passes control to the procedure-name
OCR-EXCEPTION-ROUTINE. If operations are
to be retained in this routine, the
programmer should do so by using the CALL
statement directly, and testing the
OCR-STATUS-KEY value afterwards. Return
from the OCR-EXCEPTION-ROUTINE would
normally be to OCR-CALL-EXIT (after a
successful retry or recovery). This will
return control to the invoking PERFORM.

r- ~,------ ~-------- --,
I Function I Using Identifier I set By User Subroutine Returns J
r I --rl----,------- ~
I OPEN J OCR-FILE IOCR-FILE OCR-STATUS-KEY I
I. IOCR-OPERATION 1
I I I OCR-FORI1AT-RECORD-IDI I
I- I -+--------- f--------------·f
I tLOSE t OCR-FILE I OCR-FILE-ID I OCR-STATUS-KEY I
I' t OCR-OPERATION I t r' --t- , ~
I BEAD IOCR-FILE I OCR-FILE-ID t OCR-STATUS-KEY I
I I J OCR-OPERATION I OCR-HEADER-RECORD I
I I , OCR-LINE-NUMBER I OCR-DATA-RECORD t
I f J OCR-LINE-FOR MAT I J
r-- I ----t-I------------------il--- --~
I READO 1 OCR-FILE I OCR-FILE-ID t OCR-STATUS-KEY I
1 I I OCR-OPER ATIO N t t
I I IOCR-LINE-NUMBER I I
I 'IOCR-LINE-FORMAT I t
I J I +.f
I iAIT I OCB-FILE J OCR-FILE-ID 1 OCR-STATOS-KEY I
• I IOCR-OPERATION I OCR-HEADER-RECORD I
I I I I OCR-DATA-RECORD I
1-. I + f
I I1ARKL IOCR-FILE I OCR-FILE-ID f OCR-STATUS-KEY J
I MARKD I t OCR-OPERATION , t
1 REJECT • IOCR-LINE-NUMBER (MARKL or EJECT) I t
I I J OCR-KARK (MARKL or MARKD) 1 f
f I IOCR-STACKER (EJECT) I I
.. ---f I i---------------f
t SETDEV IOCR-FILE t OCR-FILE-ID t OCR-STATUS-KEY ,
I I I OCB-FORHAT-RECORD I I
I 1 I OCR-FORltAT-RECORD-ID I J
1-" -J.---f
11. READ combines the functions of READO and WAIT. I/O overlap is not permitted withinl
I the issuing task. I
12. A successful READO must be followed by a WAIT request for that same OCR-FILE area. I
• Intervening I/O operations for that file are not permitted. ,
13. The WAIT function causes the active task to be placed in the wait condition, if I
I necessary, until the preceding READO request is completed. The WAIT must be issued)
I immedia tely following READO. t
'--------- J

Figure 194. Requesting OCR Functions and Information Be·turned

SAPIPLE PROGRAM

The sample program that follows consists
of the document to be processed, the Jet to
process the DFR and DLINT macro code, the
COBOL source program, and the JCL to
execute the program. Note that the
IBH-supplied COpy members are used in the
program.

A typical application for an optical
character reader is processing insurance
premiums. Figure 195 shows an insurance
premium notice for the Standard Acme Life
Insurance Company. The document has three
lines of data to be read. The first line
contains one field, the name of the policy
holder. The second line contains four
fields: the second line of the
policyholder's add.ress, the policy number,
the premium amount due, and a code to be

hand printed if the amount paid is
different from the amount due. The third
line contains one field that contains the
amount paid if different from the amount
due.

TO process documents like that in Figure
195, one format record is used. The format
record must be created in a separate
assembly. The coding necessary to create
the format record is shown in Figure 196.
The numbers at the left of the coding form
correspond to those in text. Figure 197
shows the d~ta, from the document shown in
Figure 195, as it is received by the
program.

Appendix M: 3886 optical Character Reader Processing 553

1. The job control language (JCL)
statements indicate that the job is an
assembly. The output from the
assembly is linkage-edited into
SYS1.IMAGELIB with a member name of
FRLGIPN. The format record is
identified by IPN.

2. The DFR macro instruction specified
the characteristics common to all
lines on the document. The following
information is provided:

FONT=AN.!.1: The alphameric OCR-A font
is used for reading any fields that do
not have another font specified in the
DLINT macro instruction field entries.

REJE£T=!: The commercial at sign (~)
is substituted for any reject
characters encountered.

~]l£HAR=.1!.,L~t: The comma and period
are removed from one or more fields as
indicated in DLINT entries (line 2,
field 3).

3. The DLINT macro instruction describes
one line type in a format record
described by the DFR macro
instruction. The following
informa tion is provided about the
first line:

LFR=1.c.1INBEG=4: The first line on the
document has a line format record
number of 1. The first field to read
from the line begins fo ur tenths of an
inch from the left edge of the
document. The data record is in the
standard mode; editing is performed on
both fields on the line.

[1Q1=J1~1~!£~I%LLEDIT1=H~~tQf: The
first and only field on the line ends
3.2 inches from the left edge of the
document, the edited data is placed in
a 20-character field; the field is not
considered critical. All leading and
trailing blanks are removed, the data
is left-justified, and the field is
padded to the right with blanks.

The second line on the document is
described as follows:

554

1FR=2£~IN]~G=!: The second line on the
document has a line format record number
of 2. The first field read begins four
tenths of an inch from the left edge of
the document. The data record is in
standard mode; editing is performed on
all fields on the line.

FLO 1= (30 ,20,LNCR!.Il&DII 1=HLBLOP: The
first field on the line ends 3.0 inches
from the left edge of the document, the
edited data is placed in a 20 byte
field; the field is not considered
cri tical. All leading and trailing
blanks are removed, the data is left
justified, and the field is padded to
the right with blanks.

~~2=(42,5.NUHA1~DIT2=ALBNOr: The
second field ends 4.2 inches from the
left edge of the document, the edited
data is placed in an eight-byte field,
the field is cr itical. All leading and
trailing blanks are removed from the
field. The resulting field must be
eight digits in length or a wrong length
field indicator is set.

lLO 1=12!L.hlHH1!) , ~!!I T 3=!!~!!!!IL.~DC HAIl:
The third field ends 5.4 inches from the
left edge of the document, the edited
data is placed in six-byte field, the
field is critical. All leading and
trailing blanks are removed, the data is
right-justified, and the field is padded
to the left with zeros. A comma, if
present, and the decimal pOint are
removed from the edited field.

FLD4= 12~.LJiI!f.l1L~J2IT4::.!LBHIl: The
fourth field ends 6.2 inches from the
left edge of the document, the edited
data is placed in a one-byte field, the
field is critical and is read using the
numeric handprinting normal mode. All
blanks are removed, the data is
right-justified, and the field is padded
to the left with zeros.

The third line on the document is
described as follows:

bn=3,LINBEG=45: The third line on the
document has a line format record number
of 3. The field to read begins 4.5
inches froll the left edge of the
document. The data record is in
standard mode; editing is performed.

FL01=12JLILE[fllL~DIT1=!~!!HIl: The
field on this line ends 6.3 inches from
the left edge of the document, the
edited data is placed in a seven-byte
field, the field is critical, and is
read using the numeric hand printing
normal mode. All blanks are removed,
the data is right-justified, and the
field is padded to the left with zeros.

r.R~ND=I~~: This is the format record
end. No DLINT macros follow this
statement ..

ST ANDARDACME LIFE
INSURANCE COMPANY

NOTICE OF PAYMENT DUE

DUE DATE
MO DAY YR

06 07 72

DALE E. STUEMKE

1363 SE 10TH AVE.

ANN IV
MONTH

09

ROCHESTER, MINNESOTA

INSURED DAWN STUEMKE

DI5T
NO

478

26940386

POLICY NUMBER

II your address is other than shown. please notily the L..--------------]
Company. Please make check or money order payable to
StandlldlCme Lite and present with notice to your
Company Representative or to •

PLEASE RETURN WITH YOUR PAYMENT

Figure 195. Sample Document

PREMIUM

249. 75

1

249.75

$ AMOUNT DUE

FOR COMPANY USE ONL ':

Appendix M: 3886 Optical Character Reader processing 555

IBM IBM Sy,'.m/360 mbl.r Coding Form ,,\ ...

{PRO ",A",
PUNCHING G'''H,e I PAG' 0>

IPROG " IDA"
INSTRUC'IC!'-IS 1"'0 HI"'" NUM,,,

"""M"N' , ""<01 -

" "
0";,;"'

10 ~ '" -" '"
"C;;:;::;;- 60

......... "".

D {
!j

~-~ I- f-
V~ P 1-+-
i) ... [CiIY D~ ~ ,~ ~

I ~ Icrr

11 ill [5 ~ ~ ILIL IDII" 1111: IIlII [AI~
~~

I" 111);1'00 11&1_

la

~ ~ R IU II II 1~1t: 1"111: Ill::. 1111 III, 1.1) 1-1-

I~ III liMn- Ie II I, f~ f--
II I Ii 11 lell l I"~ lIlT III)
III ITII lull III Inlf:

~~.~ ~- f--

I·~ - ~~.~

~ ~ IIIMIT IF 1=12 I-
II II I" In 10 I",,", 1"11. Ill}

'X I~f - I- - ~

to h'I.lI= Ii IO~
1--1-- ~-

18 NIU ~IA 1)11 I)
lit I .. Iii 1111 I-~ ~- f~ -

II r.lil I)
II

~ ITll Illilll ITlc I", I" ,.-
I.: 14 IZ INllJlCI 1\

to IT IA I. till! ~II:

~ IIlHtr II II: IDlsl:. II
I-I-~

1&:1, ~II I~I"I!: I"I~ [)

IBM IBM Sylllm/360 mblor Coding Form
....... '. 1I.\.~.

PItOGIIAM
~UNCHING

0.APHI(T I PAGI 0'

"'ltOGlAWMI OATE
INSTRUCTIONS

PUN(H I T:AI:D (unl:O NUMatli

--
STMEM(NT 1.,.",,1,(0'100'1

No_ 0,.. ~~"d C"'_"'. "". oo ,
" " " ,. 30 " " " 10 " .. " " "

{ EDIIT.1. ::IALII "IFI, H-~- - ~ X
FR ,,10= ~S

EMID - - -I-I-~

1*
jV Lk ED
7i

~S 'fS L~ OD D ID tlA E=S .1. I~ Ala EL lIB i(F RL ~a PM 1)1)]) Is =0 LJ

Figure 196. Format Record Assembly Coding Example

556

Line 1

Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

Line 2

Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

Line 3

Header Record:
(20 Bytes)
Data Record:
(130 Bytes)

01011000000000000000

DALEoE.oSTUEMKEoooooo ... 0

--------~----------~
Pol icyholder

Field

02021000000000000000

Pad to
130 Bytes

ROCHESTER,oMINNESOTA269403860249750o ... 0

Address
Field

03031000000000000000

OOOOOOOb ... 0 -
Amount

Paid
Pad to
130 Bytes

Policy
Number

Am7u~P;d to 130 Bytes

Due I
Code

~igure 197. Sample Data

Figure 198 shows the COBOL source statements used to process the data in Figure 191.
~he JCt to run the program is also included in Figure 198.

Appendix M: 3886 optical Character Reader processing 551

,.------_ .
•• **
1********* S A ft P LEO C R PRO G RAM *********
1***
lID DIVISION.
I PROGRA!-I D. DOCLIST.
,ENVIRON8ENT DIVISION.
IINPUT-OUTPUT SECTION.
• FILE-CONTROL.
J SELECT PRINTER. ASSIGN TO SYS009-UR-1403-S.
,DATA DIVISION.
I FILE SECTION.
JFD PRINTER LABEL RECORDS ARE OMITTED.
101 PRINT-RECORD.
• 05 FILLER
I 05 PRINT-LINE
IWORKING-STORAGE SECTION.
177 PRINT-CONTROL
177 MSG-PERftANENT-ERROB
t 'PERMANENT ERROR
177 MSG-MARK-CHECK

PIC X.
PIC X (130).

PIC 9
PIC X (24)

OCCURREDt.
PIC 1(19)

I t MARK CHECK OCCURRED'.

VALUE 1.
VALUE

VALUE

177 MSG-MARK-AND-EQUIP-CHECK PIC X(39) VALUE
i 'MARK CHECK AND EQUIPftENT CHECK OCCURRED'.
177 MSG-INCOMPLETE-SCAN PIC 1(24) VALUE
I 'INCOMPLETE SCAN OCCURRED'.
177 MSG- NONRECOVERY-ERR OR PIC X (26) VALUE
J 'NONRECOVERY ERROR OCCURRED'.
177 MSG-BAD-DATA PIC X(50) VALUE
I 'THE FOLLOWING LINE WAS MISREAD. THE LINE HEADER :'.
101 MSG-TER8INATION.
I 05 FILLER PIC X (44) VALUE
I 'TERMINAL ERROR OCCURRED - OCR-STATUS-KEY = ,
• 05 MSG-TERM-STATUS-KEY PIC XX. L-__ _

Figure 198. Sample COBOL OCR Processing Program (Part 1 of 3)

558

r--- --,
01 OCR-PILE COpy ILBDOCRD.

05 NOTICE-OF-P AYKERT-DUE REDEFINES OCR-DATA-RECORD.
10 LINE-l.

15 Ll-.POLICYHOLDER-lfA!.E
10 LINE-2 REDEFINES LINE-l.

15 L2-CITY-AND-STATE
15 L2-POLICY-NUftBER
15 L2-AMOUNT-DUE
15 L2-PAY!ENT-VERIFY-CODE

PIC 1(20).

PIC 1(20).
PIC 1(8).
PIC 9 (4) V99.
PIC 9.

10 LINE-3 REDEFINES LINE-l.
15 L3-AMOUNT-PAID

PROCEDURE DIVISION.
PIC 9 (5) '99.'

STOP RUN.
PIO-START.

MOVE 'SYS010' TO OCR-FILE-ID.
"OVE 'FORMAT' TO OCR-FORMAT-RECORD-ID.
PERFOR" OCR-OPEN.
OPEN OUTPUT PRINTER.

PIa-HEAD.
"OVE ALL '*' TO PRINT-LINE.
PERFOR! PRINT-ROUTINE.
ftOVE 1 TO OCR-STACKER.

PIO-READ.
PERFORM OCR-READ.
IF OCRS-NONRECOVERY-ERROR, GO TO PIO-EOP-ERR.
IF ORCH-LINE-GOOD, GO '1'0 PIO-GOOD.
IF OCRH-LINE-BLANK, GO TO PIa-GOOD.
IF OCBH-LINE-NON-CRITICAL-ERR, GO TO PIO-GOOD.
IF ORCH-END-O.F-PAGE,GO TO PIO-EOP.

****IF ORCH HAS A NY OTHER CODE, CONSIDER THE DATA AS BAD ****
PIO-BAD.

MOVE MSG-BAD-DATA TO PRINT-LINE.
PERFORM PRINT-ROUTINE.
MOVE 2 TO OCR-STACKER.

PIO-GOOD.
MOVE OCR-DATA-RECORD TO PRINT-LINE.
PERFORM PRINT-ROUTINE.
MOVE 1 TO PRI NT-CONTROL.
IDD 1 TO OCR-LINE-NUMBER, OCR-LINE-FORMAT.
IF ORCH-LINE-NUMBER IS LESS THAN 3, GO TO .PIO-READ.

PIO-EOP.
MOVE 3 TO OCR-LINE-NUMBER.
PERFORM OCR-EJ.ECT.

,PIO-EOP-ERR.
I MOVE 1 TO OCR-LINE-NUMBER, OCR-LINE-FORMAT.
a MOVE 3 TO PRI NT-CONTROt..
I GO TO PIO-HEAD.

I
I
I
I
I
I
I
I
I
I
J
J
I
J
I
I
I
I
I
I
I
I
I ,
I
I
I
I
I
I
t
I
I

• J
J
I
I
I
I
J
I
J

• I
I
I ________________________________ J

Figure 198. Sample COBOL OCR Processing Program (Part 2 of 3)

Appendix M: 3886 Optical Charact er Reader Processing 559

r------------------- ..
I***~** EXCEPTION PROCESSING ROUTINE **************
IOCR-EXCEPTION-ROUTINE.
I I"F OCRS-END-OF-PILE. GO TO P20-EOP.
J IF oenS-MARK-CHECK,
j MOVE MSG-MARK-CHECK TO PRINT-LINE.
I GO TO P20-RETURN.
I IF OCRS-NONRECOVERY-ERROR,
I MOVE MSG-NONRECOVERY-ERROR TO PRINT-LINE,
t GO TO P20-RETUB N.
I IF OCRS-INCOMPLETE-SCAN,
t MOVE MSG-I NCOMPLETE-SCA N TO PRINT-L INE,
I GO TO P20-RETURN. ,
• IF OCRS-MARK-AND-EQUIPKENT-CHECK,
I MOVE MSG-MARK-AND-EQUIP-CHECK TO OCR-LINE.
I GO TO P20-PRINT-EOF.
• IF ocaS-PERMANENT-ERROR,
I MOV E MSG- PERMANENT-ERROR TO PRINT-LINE,
1 GO TO P20-PRINT-EOP.
I ****** IF NONE OF THE ABOVE ERRORS, GIVE TE.RMI NATION KESSAG.E ******
t MOVE OCR-STATUS-KEY TO MSG-TERM-STATUS-KEY.
I MOVE MSG-TERMINATION TO PRINT-LINE.
I GO TO P20-PRINT-EOP.
I P20-RETURN.
I PERFORM PRINT-ROUTINE.
• GO TO OCR-CALL-EXIT.
I P20-PRINT-EOF.
I PERFORM PRINT-ROUTINE.
I P20-EOF.
I PERFORM OCR-CLOSE.
t CLOSE PRINTER.
I STOP RUN.
I PRINT-ROUTINE.
I WRITE PRINT-RECORD AFTER ADVANCING PRINT-CONTROL.
IOCR-COPIED-PROCEDURES. COpy ILBDOCRP.
1/*
IIILKED.SYSIN DD*
I ENTRY DOCLIST
1/*
IIIGO.SYSPRINT DD SYSOUT=A
IIIGO.SYSUDUMP DD SYSOUT=A
II/GO.SYS010 DD DUrtMY L---________ . ____________ ,

Figure 198. Sample COBOL OCB .processing Program (Part 3 of 3)

PROCESSING TAPES FROM THE 3886 OCR, KODEL 2

Tape records produced from the IBM 3886,
Model 2, are almost identical in format to
the header and data records returned by the
!odel 1. The main differences between the
records are:

Becaase of the similarity, however, the
nata Division COpy member defined for the
Model 1 may be tailored to describe the
Model 2 tape records. To do so, the
programmer should puncb out tbe COpy
member, modify it according to the
installation requirements, and recatalog
it.

I
I
I ,
J
I
I
I
I
I
I
I
I
I
I
t

1. The Kodel 2 tape contains a document
trailer record after the line output
records for each document. The
content of this trailer record differs
from that of line output records.

Specific information on the formats and
contents of the Model 2 tape records is
contained in the !~!-~86 Optical Cha£~1~£
~~~~~~l-Info£.ation Manual 

2. The codes used in certain fields of 
the header record differ between the 
two models. 

560 

(G A 2 1- 9146) • 



INDEX 

As an aid to readers, this index contains not only the conventional references to 
material in this Programmer's Guide, but also references to material that can be found 
in the COBOL language manual. Entries having page numbers refer to pages in this manual. 
Entries having only asterisks point to IBM VS COBOL for OS/VS (GC26-3857). For example: 

Able 347 
Baker· 
Charlie 89,. 
Dog 23, 106 
Easy 

additional information. 
sub-one 33 
sub-two 400 

These entries would indicate that information on the subject "Able" is available on page 
347 of this manual, and information on "Dog" is available in this manual on pages 23 
and 106. Information on "Baker" does not exist in this manual; it can nevertheless be 
found in the language manual (by looking up "Baker" in that manual's index). The entry 
for "Charlie" indicates that some information is available in this Programmer's Guide 
(on page 89), and additional information can be found in the language manual (again, by 
looking up "Charlie" in its index). The entries for "Easy" indicate that its "sub-one" 
and "sub-two" aspects can be found in this manual (on pages 33 and. 400, respectively); 
additional information on "Easy" is also available in the language manual. 

(period)* 
< (less than character) * 
o (parentheses) * 
+ (see plus symbol) 
$ (currency sign)* 
* (see asterisk) 
** (exponentiation)* 

(semicolon) * 
(see either hyphen, or minus symbol) 

/ (slash) 48,* 
, (comma) * 
> (greater than character)* 
= (equal sign) * 

(apostrophe, single quote) * 
" (quotation mar~* 
&&name subparameter 58 
*. ddname subparameter 57 
*. procstep subparameter 57 
*. stepname subparameter 57 
1* delimiter statement 21, 70 
11* comment statement 23 

A, as a device class 21 
A, used in PICTURE and CURRENCY SIGN clauses* 
abbreviations 

for compiler options 38 
for source statements* 

ABDUMP (see dumps) 
ABEND (see abnormal termination) 
ABEND request subroutine 254, 481 
abnormal termination 

avoided by 

*Consult VS COBOL for OS/VS (GC26-3857) 

FILE STATUS 293 
ON OVERFLOW 295 

causes 254-259 
completion codes 257-259, 529 
COND parameter 35-37 
dump 

causes 254-259, 529 
DD statement required for 81 
definition 254 
example 262-268 
finding records in 268-273 
how to use 260-262 
including problem program storage 
area 69 

including system nucleus 69 
of data sets 69 
requesting 80-81, 254 
required DD statement 81 
using 254 

errors causing 254-259 
EVEN subparameter 37-38 
failure to occur 183 
for COBOL files 143-154 
incomplete 277 
INVALID KEY clause 148, 153-154 
ONLY subparameter 

restarting a job 36 
restarting a job step 47 
resubmitting a job 36 
USE AFTER ERROR declarative 148-154 

sort/merge considerations* 
U-type code~ 529 

absolute LINE and NEXT GBOUP* 

Index 561 



ABSTR subparameter alphanumeric item* 
description 61 ALSO option* 
in QISAM 124 ALTER statement* 

ACCEPT statement altered GO TO* 
additional information* alternate collating sequence subroutine 48 
relationship to SYSIN DD statement 80 (see also collating sequence) 
subroutine for 477 alternate indexes (VSAM KSDS) 

ACCESS IS phrases* " .. ---, . .."...---1'-.'-_ .. ~ ddnames for 201 
access method services (VSAM) 173-180, 186, -4'8~ defining 177 
access methods for \'-----. ____ ---.---. ..c....-.---.-~-c~ described 173, 174 

direct file examples 182, 195, 197 
randomly 97-98 processing 181, 190 
sequentially 98 writing 189 

indexed file alternate keys (see alternate indexes) 
randomly 129-131 alternate paths 174 
sequentially 127-129 alternate record key* 

queue structures 312 (see also alternate indexes) 
relative file ALTERNATE reserved word* 

randomly 112-113 ALTERNATEINDEX command 175, 178 
sequentially 111-112 ALX subparameter 61 

standard sequential file 85-88 American National Standard (see ANS 
ACCESS MODE clause* standard) 
accounting information American National Standard Code for 

EXEC statement 34, 20 Information Interchange (see ASCII) 
JOB statement 26, 20 AMP parameter 201, 69, 56 

accuracy of results 294, * ~ND logical connective* 
action requests, status key settings ~NS standard 

(VSAM) 190-193 additional information* 
actual decimal point * requirements for MCP 432 
actual key 83, 92-94 selecting 38 

(see also ACTUAL KEY clause) APOST compiler option 40 
ACTUAL KEY clause APPLY clause 

(see also actual key) CORE-INDEX option 283 
in BDAM 92-94. 83· RECORD-OVERFLOW option 283 
in BSAM 92-94, 83 WRITE-ONLY option 282 
in file processing techniques 492, 493 arabic numerial* 
randomizing techniques Area A and Area B* 

division/remainder method 102 arguments 
relative addressing 101 data-name passed as 317, 322 
synonym overflow 108 file-name passed as 317, 322 

ADCON table (see Text Punch Table) procedure-name passed as 317, 322 
ADD statement * arithmetic expression* 
addition operator* arithmetic operator* 
address constant table (see Text Punch Table) arithmetic statements* 
ADDRSPC parame~€r arithmetic subroutines 475-476 

and REGION parameter 31, 51 ASCENDING/DESCENDING Key* 
description 31, 51 ASCII 

ADV compiler option 44 addit ional informa tion* 
ADVANCING 297, * block prefix 90 
AFF parameter 58, 59 collating sequence 293 
AIXBLD option 186, 48, 201 creating 89 
AL subparameter 66 description 89-90 
algebraic sign* label processing 90, 158-159 
ALIGN subparameter 69 numeric data items 90 
alignment rules* opened 90 
ALL literal figurative constant* processing 90 
ALL options* requesting for QSAM 90 
allocating mass storage space sort for 375 

SPACE parameter 61 assembler language 
SPLIT parameter 62 programs, linkage to 322-325 
SUBALLOC parameter 164 using EXEC statement 32-37 

allocation messages 235, 241, 243 ASSIGN clause 
alphabet-name* additional information* 
alphabetic characters* for ASCII file 89-90 
alphabetic class test* in BDAM 82 
alphabetic item* in BSAM 82 
alphanumeric class* in QSAM 85 
alphanumeric edited item* rela~ionship to DD statement 82-83 

562 *Consult VS COBOL for OS/VS (GC26-3857) 



assigning index values 306-307, * 
assignment name 82, 100, * 
assumed decimal point* 
assumed values in PAGE clause* 
asterisk 56, * 
AT END 56, * 
ATTACH macro-to invoke compiler 499 
AUL subparameter 66 
automatic call library 349 
automatic restart (see Checkpoint/Restart) 
~utomatic page overflow* 
automatic volume recognition option 

(AVR) 58 
automatic volume switching 99 
availability of records* 
average record-length sub parameter 

for SPACE 61 
for SPLIT 62 

AVR (automatic volume recognition 
option) 58 

AWAITING REPLY* 

B, as a device class 21 
B, used in PICTURE and CURRENCY SIGN 
clauses* 

b- a-c-k-w-a-r-d-- --m-o-v--e-m-en-t (-op t-i m i z a t ion) 2 79 
base and displacement 246 
BASIS card 

additional information* 
and batch compilation 71-73 
in a debug packet 254 
use of 351-352 

BASIS library 76 
batch compilation 71-73 
BATCH compiler option 42 
BDAM 

data sets 134 
DD statement parameters 1C9 
defining a data set in 82-83 
definition 83 
direct organization 91 
error processing for 143-154, 509 
locating data areas in 275 
relative organization 110-112 
permissible COBOL clauses 118, 108 
programming techniques 283 
with spanned records 261 

BEFORE ADVANCING* 
BEFORE/AFTER option of INSPECT* 
beginning address of a file 62 
binary (see also computational fields)* 
BISAM 

(see also QISAM, indexed files) 
considerations when using 129-131, 119 
data sets 134 
defining a data set in 82-83 
definition 83 
error processing for 143-154, 509 
processing with 129-131, 119 

blank line* 
BLANK WHEN ZERO clause* 
blanks 

additional information* 
in job control notation 25 

BLDINDEX command 174, 186 

*Consult VS COBOL for OS/VS (GC26-3857) 

BLKSIZE 
for compiler data sets 496-498 
in DCB 491-495 
in file processing techniques 87 
in QSAM 125 
with data sets 79-80 

BLOCK ctiNTAINS clause 
additional information* 
and UNIT subparameter 59 
description 59 

block length (see BLKSIZE) 
block prefix 90 
block size 

causing errors 256 
description 59 
for utility data sets 496-498 

blocked records 
fixed-length 160 
spanned 164-166 
variable ~ength 161-164 

blocking, automatic* 
BLP subparameter 66 
body group* 
bottom page margin* 
boundary alignment* 
boundary violation* 
braces in job control notation 25 
Ibrackets in job control notation 25 
BSAM 

data sets 133 
DD statement parameters 109 
defining a data set in 82-8~ 
definition 83 
error processi~ for 143-154, 509 
locating data areas in 275 
permissible COBOL clauses 108, 118 
subroutines 478 
user label totaling 156 
with direct file 91 
with relative file 110-112 
with spanned records 261 

BUF compiler option 38 
buffer offset 89 
buffer unit 426 
bu ffers 

additional information* 
for TCAM 426 
optimizing with APPLY clause 164 
size of compiler's 497 
specifying number 

for indexed files 124 
for standard sequential files 87 

BUFNO subparameter 124 
BUFOFF subparameter 90 
byte, definition* 

c 
as compiler message level 238, 35 
as COpy indicator 235 
as FIPS level 40 
in source* 

CALL loader option - 48 
CALL macro 323, 326 
CALL statement 

additional information* 
and CANCEL statement 295, 323-326 
and subprograms 295 
definition 295 

Index 563 



dynamic loading 335-336 
~amples 327-331 

calling/called programs and s~bprograms 
additional information* . 
additional input 332, 346 
identifiers 322 
input 

additional 332, 346 
primary 332, 346 

linkage 316-326 
loading 346 
primary input 332, 346 
sample 327-331 

'CANCEL statement 
additional information* 
and static CALL statement 295 
and subprograms 323-326 
description 295 
format 295 

capacity records 93 
card files* 
card image* 
carriage control character 44, * 
catalog, system 18 
cataloged data sets 

creating 136 
description 141 
on a volume 155 
retrieving 138 

cataloged procedures 
adding to the procedure library 357-358 
adding to DD statements 364 
bypassing steps within 35-37 
calling 356 
COBUC 359, 360 
COBUCG 361, 360 
COBUCL 359, 360 
COBUCLG 361, 360 
COBULG 359-360 
data sets produced by 356-357 
DD statements 51 
ddname parameter 366-367 
definition 21 
dispatching priority 50 
IBM-supplied 358-359 
in-stream testing 363 
limiting execution time of 51 
modifying 362 
naming 359 
overriding 362 
PEND statement 70 
PROC statement 70 
programmer-written 357 
required device class names for 58, 59 
restarting programs with 28-29 
return code 34-36 
using the DD statement 364-368 
using the EXEC statement 34, 362 
with COND parameter 35-37 

categories* 
CATLG subparameter 67, 141 

564 

CBL card 
and batch compilation 71-73, 42-43 
and lister options 44 

CD entries 284, * 
cd-name* 
CDECK option of lister 44, 212 
CF* 
CH* 
changing values* 
channel, definition* 
character codes* 
character delimiters 24 
character positions* 
character set 

additional information* 
UCS parameter 60 

character-string* 
characters allowed* 
CHARACTERS option* 
checkid 29, 396-397 
checklist for job control 
p~ocedures 514-518 

Checkpoint 
(see also Checkpoint/Restart) 
additional information* 
CHKPT macro instruction 28-29, 396 
considerations 396-397 
data set 28-29 
how taken 49-50 
initiating 394 
in a job 28-29 
in a job step 49-50 
messages 396 
multiple 394 
RERUN clause 49-50, 394 
restart 49, 397-398 

(see also Restart) 
single 394 

Checkpoint/Restart 
chetkpoint 394-396 

(see also Checkpoint) 
data sets 398-400 
DD statements 394-396 
deferred 69 
designing 396 
in a job 28-29 
in a job step 49 
messages 396 
methods 394 
RD parameter 

with checkpoint 396-397 
for a job 28 
in a job step 49 

restart 397-398 
(see also Restart) 

subroutine 478 
SYSCHK DD statement 397-400, 69 
with Sort/Merge 372 

CHKPT macro instruction 28-29, 49 
CJS (see Communications Job Scheduler) 

.class condition* 
CLASS parameter 30 

*Consult VS COBOL for OS/VS (GC26-3857) 



class test subroutine 476 
classes of data* 
clause sequence* 
CLIST compiler option 39 
CLOSE REEL statement 85 
CLOSE statement 

additional information* 
BSAM subroutines 478 
creating multivolume files 

with direct organization 98 
with relative organization 112 

efficient use 295 
VSAM files 191 

CLOSE UNIT statement 98, 112 
closed subroutine* 
cluster considerations (VSAM) 180 
CMS (Conversational Monitor System) 

operating system 19 
VM/370 19 

COBOL copy libraries 73, 76 
COBOL sequence numbers 351 
entering source statements 349 
IEBUPDTE sequence numbers 351 
retrieving source statements 351 

BASIS card 351, 35 
COPY statement 35, 351 

updating source statements 350 
COBOL file processing (see file, processing 

techniques) 
COBOL Interactive Debug (see Interactive 

Debug) 
COBOL language usage with VSAM 193-201 
COBOL library management* 
COBOL library subroutines 472-489, 348 

(see also library) 
concatenating 353 
sharing 353 

COBOL program structure* 
COBOL RERUN clause 49-50, 394 
COBOL reserved word list* 
COBOL sample program 461-471 
COBOL sequence numbers 351, 39 
COBOL subroutine library 348, 472 

(see also library) 
need to concatenate 81 

COBOL subroutines in link pack area 346 
COBOPIN 432 
COBOPOUT 432 
COBOPT 433-434 
COBTPOUT 449 
COBTPQD 449 
COBUC 359, 360 
COBUCG 361 
COBUCL 359, 360 
COBUCLG 361 
COBULG 351, 360 
COBURDR -procedure 437 
CODE clause* 
CODE-SET phrase 90, 293, * 
codes, completion 257-259 

for Sort/Merge program 371 
collating sequence 

additional information* 
and ACTUAL KEY 94 
effect on QISAM 129 
for QS1M 90 
for Sort/Merge 375 
qeneral 293 

*Consult VS COBOL for OS/VS (GC26-3857) 

COLUMN clause* 
combined condition and function* 
combining arithmetic operations* 
comma* 
command statement 70 
comment-entry* 
comment line* 
comment statement 71 
comments 

continuing 24 
field 24 
statement 71, 20 

common end point* 
common expression elimination 279 
Communication Description (CD) entries 

additional information* 
and Communications Section 284 
and Teleprocessing (TP) 284 
format 284 . 

Communication Feature (see also 
Communications Job Scheduler) * 

Communication Section 284, * 
communication with other languages 326 
Communications Job Scheduler 

general 436 
illustrations 439-441 
preparing 438 
using 438 

compare subroutine 476 
comparison rules* 
compatibility (LANGLVL) 38 
compilation 

(see also compiler) 
additional information* 
batch 71-73 
cataloged procedure 356-360 
checklist for job control 

procedures 514 
data set requirements 73-76 
definition of 18 
example of job control 
statements 514 

invoking compiler at execution 
time 499-500 

sample program 461-471 
source program size assuming minimum 
configuration 501 

syntax checking 247 
using REGION ~arameter 457 
COMPILE= indicator 237 

compiler -
(see also compilation) 
additional information* 
blocking factor for data sets 496 
buffer space 497 
calling 499 
capacity 501 
data set requirements 73~76 

block size 496 
internal name 236 
invoking 499 
machine requirements 457 
optimization 496-498 
options 38-46 

significant characters 38 
output 

allocation messages 235 
cross-reference dictionary 237-238 

Index 565 



diagnostic m~~sages 238 
global table 236-237 
glossary 235-236 
job control statements 235 
object code 237 
object module 239-240 
sample output 232-236 
source module 235 

PARM options 38-46 
problems, resolving 543 
return code 500 
segmentation output 379 
specifying in EXEC statement 32 

compiler-directing statement* 
completion codes 

description 257-259, 529 
in Sort program 371 

complex conditions* 
composite of operands* 
compound condition* 
computational fields 

conversion subroutines 473-475 
conversions involving 288-290 
description 288 

COMPUTATIONAL* 
COMPUTE statement* 
computer-name* 
concatenating 

. data i tems* 
libraries 69 

COND paramet.er 
EVEN, ONLY subparameter 36 
in cataloged procedures 372-373 
in EXEC statement 35-37 
in JOB statement 27 

condensed listing, used to find program 
interruption 259 

condensed listing, using CLIST 38 
condition* ' 
condition-code* 
condition-name* 
conditional, as a severity level 

(C) 38, 35 
conditional expressions and statements* 
conditional syntax-checking compilation 41 
conditional variable* 
conditions terminating execution 27, 35-37 
conditions valid in serial search* 
Configuratio~ Section 282-283, * 
connective words* 
console message* 
CONSOLE typewriter* 
CONTIG subparameter 

description 61 
with direct files 100 
with indexed files 124 

contiguous items* 
continuation 

additional information* 
of .job control statements 24 

control breaks* 
(see also CONTROL clause) 

control cards 
for CJS 438 
for SYMDMP 215-216 

control characters 436, * 

566 

CONTROL clause* 
control flow* 
CONTROL FOOTING* 
CONTROL HEADING* 

control hierarchy* 
control program 18 
control statements 

character delimiters 24 
command statement 70, 20 
comment statement 71, 20 
continuing 24 
DD statement 51-70 
delimiter statement 70, 20 
EXEC statement 32-51, 20 
fields 23-24 
formats 23 
functions 22 
JOB statement 25-32, 20 
notation used for 25 
null statement 70, 20 
PEND statement 70 
preparing 23-24 
PROC statement 70, 20 
processing 22 
use 20 

control transfer (see also calling 
programs and called programs)* 

Conversational Monitor System (see CMS) 
conversion of data 473, * 
conversion subroutines 473-475 
COPIES parameter 60 
copy library (see COBOL copy library) 
COpy statement 

additional information* 
DD statement requirements 515 
effect of CDECK option 44 
use 349-351, 35 

core fragmentation, preventing 43 
core storage (see main storage) 
core storage availability to sort* 
CORRESPONDING option* 
COUNT compiler option 44 

DD statement 81 
program checkout 247, 278 
count field in INSPECT* 
COUNT IN, UNSTRING* 

COUNT subroutines 482 
counter rolling* 
counting characters* 
CR r used in a PICTURE clause* 
creating files, DD statement 
considerations 131-137 

direct 134 
in the output stream 134 
indexed 134 
on magnetic tape 133 
relative 111-112 
sequential, on mass storage device 133 

credit (CR)* 
unit record 133 

cross-footing* 
cross- reference 

dictionary 237-238 
list 

description 242 
of verbs (VBREF) 44 
used in dumps 262-263 

*Consult VS COBOL for OSjVS (GC26-3857) 



CRP (current record pointer) 181 
CSP-function-name* 
CSYNTAX compiler option 41 
CURRENCY-SIGN clause* 
CURRENT-DATE special register 481, * 
current record pointer (CRP) 181, * 
CYL subparameter 

for SPACE 
considerations for indexed files 124 
description 61 

for SPLIT 62 
cylinder overflow area 122-123 
,CO 1 through C12 function name* 

D 
as message level 35, 228, 529 
in source* 
indicating debugging lines 248 

data alignment 288-292 
data areas, locating in a TCAM 

program 275-277 
data attribute* 
data classes* 
data control block 

(see also DeB parameter) 
description 142 
fields 490-495 
identifying 143 
overriding fields 142-143 

data conversion 288-292, * 
data-count fields* 
data definition 51-69, 20 

(see also DD statement) 
data description* . 
data delimiter for input 56 
Data Division additional information* 

maximum size 283 
Data Division dump (with SYMDMP) 

and FD 214 
and index-name 214 
and RD 214 
and SD 214 

Data Division programming techniques 283-292 
Data Division reformatting 204-205 
data extent block 73 
data formats 285-289 
data group, generation 141-142 
data hierarchies* 
data item* 
data manipulation statements* 
data-names* 

additional information* 
missing from listings 42, 238 

data-name clause* 
data organization* 
DATA parameter 

in DD statement 56 
restriction with UNIT parameter 59 

data receiving fields* 
DATA RECORDS clause* 
data reference* 
data representation* 
data set control block 155, 56-68 
data set labels 

description 154-159 
relati~nship to DD statement 154 

*Consult VS COBOL for OS/VS (GC26-3857) 

specification of 82 
data set member 83 
data sets 

adding records to 67 
(see also MOD subparameter) 

allocating space for 61-64 
blocked' 79-80 
~ataloging 

description 67 
indexed files 141 

checkpoint 398-400 
c~ncatenating 364 
copies of 60 
creating 131-137, 174-180 
definition 18 
deletion of 67 
delimiting in input stream 70 
describing attributes of 51-56 
direct 83, 91-97 
disposition of, in general 131 

after abnormal termination 277-278 
description 67-68 

errors involving 255-259 
ESDS 173 
execution time 79-81 
extending 142 
for symbolic debugging 246, 215, 216 
for VSAM 201-202 
generation data groups 141-142 
identifying 

description 57 
for compilation or linkage 
editing 57 

in the input stream 56 
in the output stream 68-69 
indexed 119-131 
ISAM 202 
KSDS 173 
labels, relationship to SELECT and DD 
statements 144 \ 

magnetic tape 133 
multivolume, processing 98 
names 

description 142 
relationship to file names 82 

nontemporary 63 
number of copies 60 
organization 83 
partitioned 347-355 
physical sequential 85-89 
postponing definitio~ of 57 
produced by cataloged 

procedures 356-357 
relati ve 83. 
retaining 67 
requirements 

for compilation 73-76 
for execution 79-81 
for linkage editing 76-78 
for loading 78-79 

retrieving 138-140, 1951 
(see also retrieving data sets) 

RRDS 174 
scratching 277-278 
sharing 67 
standard (physical) sequential 85-89 
system catalog of 18 
temporary 63 

Index 567 



unit record 133 
updating (VSAM) 198-199 
used by Checkpoint/Restart 380-382 
used by Sort 349-351 
VSAM 173-202 

data transfer* 
data truncation* 
data values REDEFINES* 
Date-and-Time subroutine 481 
DATE~COMPILEDparagraph 2~5, * 
DATE special register 481, * 
DATE-WRITTEN paragraph* 
DAY special register 481, * 
DB, used in a PICTURE clause* 
DCB exit subroutine 479 
DCB macro instruction 490 
DCB parameter 58 

(see also data control block) 
for defining checkpoint data 
sets 398-400 

description 143 
error processing with 143-146 
identifying information'in 143 
retrieving previously created data 
sets 138-140 

subparameters 
for direct files 

accessed randomly 493 
accessed sequentially 492 

for indexed files 
accessed randomly 139, 495 
accessed sequentially 128, 494 

for physical sequential files 86-89 
for relative files 

accessed randomly 493 
accessed sequentially 120, 492 

DD statement 51-69 
adding to a cataloged procedure, 
description 21 

additional information* 
error recovery option, for physical 
sequential files 143-146 

facilities, additional 69 
format 52-56 
name field 56 
overriding in cataloged 

procedures 364-365 
parameters 52-68 

AFF 58 

568 

AMP 69 
asterisk 56 
COPIES 60 
DATA 56 
DCB 58 
DDNAME 57 
DISP 66-68 
DLM 56 
DSNAtiE 57 
DUMMY 56 
DYNAM 57 
FCB 68 
LABEL 62 
OUTLIM 60 
QNAME 58 
5EP 58 
SPACE 61 
5PLIT 62 
SUBALLOC 62 

SY50UT 68 
TERM 60 
UCS 60 
UNIT 58-59 
VOLUME 63-66 

relationship to ACCEPT statement 80 
relationship to DISPLAY statement 79-80 
relationship to SELECT statement 144 
requirements for 

ASCII files 90, 159 
changing a library 357 
compilation, job step 514, 515 
compiler data sets 73-76 
creating files (see creating files, 

DD statement considerations) 
direct files 109 
execution job step 515, 516 
execution time data sets 141 
extending data sets 139 
indexed files 123-129, 510-513 
linkage editing 

data sets 76-78 
job step 515, 516 

loader data sets 78-79 
physical sequential files 85-89 
relative files 110, 138-140 
retrieving data sets 138-140 
sort/merge 368-371 
specifying unit record devices 141 
standard (physical) sequential 
files 85-89 

unit record devices 141 
using cataloged procedures 357-361 
using COBOL copy library 349-350 
using the sort/merge feature 368-371 
VSAM files 201 

sort/merge~ used in 368-371 
subparameters 

DISP 67 
DSNAME 57 
FCB 68 
LABEL 66 
SPACE 61 
SPLIT 62 
5UBALLOC 62 
5Y50UT 68 
TERM 60 
UNIT 59 
UCS 60 
VOLUME 65 

used to complete the DCB 142-143 
user catalog (VSAM( 201 

DDNAME parameter 57 
ddname subparameter (see ddname 

subparameter) 
description 57 
in cataloged procedures 366 

ddname sub parameter 57 
and calling and called programs 34 
and cataloged procedures 364-365 
and creating files 133-134 
and indexed files 123-127 
and retrieving files 138-140 
and subprogram linkage 337-339 
and VSAM 201 
as DDNAME subparameter 57 

(see also DDNAME parameter) 
as DSNAME subparameter 57 

*Consult VS COBOL for OS/VS (GC26-3857) 



as INCLUDE oper'and 338 
as LIBRARY operand 338 
as PGM subparameter 34 
as stepname qualifier 364-365 
as SUBALLOC parameter 62-63 
checklist of use in JeL 

procedures 515, 516 
in DD statement format 53 
in EXEC statement format 34 
in name field of DD statement 56 
used to allocate space 62-63 
using with queue structures 313 
with Checkpoint/Restart 394, 396 

DEBUG card 236, * 
debug control statement, sort/merge 377 
debug control subroutine 482 
DEBUG-CONTENTS field 249, * 
DEBUG-ITEM special register 248, * 
DEBUG fields in PGT 525 
DEBUG option 48, 248 
DEBUG-LINE* 
DEBUG-NAME* 
DEBUG-SUB* 
debug, interactive (see Interactive Debug) 
debugging features 213-230, 247-254, * 
debugging language 247-254 

(see also TRACE statement and EXHIBIT 
statement) 

debugging lines 248, * 
debugging packet 251, * 
debugging a program (see program debugging) 
debugging, symbolic 213-230 

example 217-230 
FLOW 214 
STATE 213 
SYMDMP 214-215 
TEST 213 
under IMS 217 

DECB, linking with 317 
decimal point 

additional information* 
alignment in PICTURE clause 286 

DECIMAL-POINT IS COMMA clause* 
DECK compiler option 39 

'declarative save area chaining 
subroutine 480 

declaratives 
additional information* 
USE AFTER ERROR 143-154 
USE FOR DEBUGGING 248 

decrementing* 
defaults 

additional information* 
for data sets 498, 216 
f or options 46 

DEFER subparameter 59 
deferred restart 397-398 

SYSCHK statement 69 
DEFINE command 

cluster considerations 177 
ESDS 179 
functions '174 
KSDS 177 
MASTERCATALOG 175 
RRDS 179 
specification of 174 
USERCATALOG 176 
VSAM data space 176 

*Consult VS COBOL for OS/VS (GC26-3857) 

DELETE statement 137, 352, * 
in VSAM 190 

DELETE subparameter 
, and cataloged data sets 141 
definition 67 

deleting modules 43 
DELIMITED BY* 
delimiter 

additional information* 
in job control statement 24, 70 

DEN subparameter 86 
DEN values 86 
DEPENDING ON option 305, * 
depth of a report page* 
descending key* 
destination* 
DETA IL* 
detail reporting* 
determining file space 101 
device allocation 235 
device class 

and compiler data sets 73-76 
and execution time data sets 79 
and linkage editing data sets 76-78 
and UNIT parameter 59 
blocking restrictions 59 
definition 18 
examples of names 21 
names required for cataloged 

procedures 59 
diagnostic messages 

compilation 238-239, 529 
linkage editing 240-241 
object-time 529 
sort/merge 3JO 
with ON statement 214 

DIAGNS subparameter 88 
dictionary, cross-reference 237-238 
dictipnary table 502 
digit position* 
direct access (see mass storage) 
direct data sets 

creating 94-97 
description 91-94 

direct file 
ACTUAL KEY clause 91 
creating 94-99 

randomly 96-97, 99 
sequentially 94-95 

description 91-94 
error processing 143 
multivolume 98 
processing 91-109 
randomizing technique 100 
reading 

randomly 97 
sequentially 97 

sample program 106-107 
space allocation 94 
TRACK LIMIT clause 94 
writing 99-100 

direct indexing* 
Direct SYSOUT Writer 134 
directory-quantity JCL subparameter 62 
DISABLE statement - . 

additional information* 
general 297, 432-434 
subroutine for 4BO 

Index 569 



disaster, as a severity level (D) 35, 228, 529 
disk (see mass storage) 
DISP parameter 66-70 

data set uses 
cataloging 141 
creating 133-134 
retrieving 138-140 

default values of 67 
description 66 
in JOBLIB DD statement 67 
in sort/merge feature 369-370 
subparameters 67-68 

displacement* 
displacement and base 236 
DISPLAY option of USAGE clause 

additional information* 
and comparisons and moves 288, 290 
and data format conversion 289 
external decimal format 290-292 

DISPLAY statement 
additional information* 
and COBOL output files 79-80 
conversions involving 288-290 
relationship to DD statement 79-80 

DISPLAY subroutine 477 
DISPLAY usage* 
displaying data values during 
execution 251-253 

disposition messages from job 
scheduler 241, 239 

disposition of a file, in general 131 
DIVIDE statement* 
division header, description* 
division operator* 
division/remainder method for 

randomizing 102 
DMAP compiler option 39 
document description (OCR) 550 
document design (OCR) 549 
dollar sign* 
DPRTY parameter 51 
DSNAME parameter 57 

and single-volume files 125-126 
and file creation 131 
and file processing techniques 

direct 109 
indexed 123 
relative 119 
standard sequential 88 

definition 57 
forma t of 53 
subparameters 57 

DSNAME subparameters 57 
DSORG 

direct files 109 
indexed files 128 
relative files 120 

dummy data set, defining 366 
DUMMY parameter 

definition 56 
format 53 
restriction 74 

dummy records 93, 186 
DUMP compiler option 44 
dumps 

570 

and symbolic debugging 213 
completion codes 251-259, 529 
DD statements to request 81 

definition 69, 254 
determining location of error 259-260 
DUMP option 44 
dynamic 251-254 

and compile-time option 251 
SYHDMP 254 

locating records in 268-273 
locating working-storage in 237 
requesting 

using ILBOABNO subroutine 254-255 
using SYSABEND DD statement 81 
using SYSUDUMP DD statement 81 

types of 
abnormal termination 260, 254 
DUMP option 44 
indicative 254 

use of 254 
user-initiated 254 

duplicates, alternate keys 173, * 
duplicates, names* 
DYNAH option 334-336 
DYNAM parameter for TSO 57 
dynamic access* 
dynamic CALL 334-336, * 
dynamic dump, symbolic debugging 213 
dynamic invocation of Access Method 
Services 186 

dynamic subprogram linkage 317-321 
and static CALL statement 295 
CALL 318 
CANCEL statement 295 
DYNAM option 334-336 
example 319-321 
NODYNAM 336 

dynamic values in table* 

E (error severity level) 238, 35 
EBCDIC 

additional information* 
as program collating sequence 293 
as label format 155 
for MODE= specification 87 

editing* 
efficiency guidelines (optimization) 281 
efficient programming (see programming 

techniques) 
EGI (end-of-group indicator)* 
elementary entries* 
elementary item* 
ellipsis ( ••• ) in formats 25 
ELSE NEXT* 
embedded PERFORM* 
EMI (end-of-message indicator) * 
ENABLE statement 

additional information* 
general 297, 432-434 
subroutine for 480 

END DECLARATIVES* 
end indicators* 
end key* 
end of execution 43, 323, * 
end-of-file 56,* 
end-of-group indicator (EGI)* 
end-of-message indicator (EMI) * 
end-of-page condition 297, * 
end-of-procedure* 

*Consult VS COBOL for OS/VS (GC26-3857) 



end- of- program* 
END OF REEL* 
end-of-segment* 
end of sort/merge* 
end of table* 
end of transmission* 
ENDJOB compiler option 43, 323 
ENTER statement* 
entry name 334, 317 
entry-point 

of called programs 334 
of loaded programs 48 

entry-sequenced VSAM data sets 173 
ENTRY statement 334, * 
Environment Division 

additional information* 
programming techniques 282-283 
reformatting 204 

EOP* 
EP loader option 48 
equal sign* 
equal size operands. 
EQUAL TO* 
EROPT subparameter 87, 146 
error 

additional information* 
as a severity level (El 238, 35 
completion codes with 35, 257-259, 529 
conditions 

input/output 504-509 
invalid data 257-259 

escaping detection 294 
messages 

condition code 35, 529 
compile time 238-239, 529 
linkage editor 240, 242 
loader 243 
numbered 77 
object time 529-542 
system 246, 243 
severity codes 35, 238 
U-type 529 

processing for COBOL files 144-154 
recovery 142-154 

error intercept subroutine~ 478 
error processing, RECEIVE* 
error processing for COBOL files 

COBOL language features for 143 
error declarative 148-154 
EXCEPTION/ERROR procedure (VSAM) 183 
flow of logic and control 147 
GIVING option example 150-152 
INVALID KEY option 148, 183, 508-509 
VSAM 183-185 
outline of error recovery 143-146 
status key (VSAM) 183 
summary of error recovery 154 

error records* 
ESD (see external symbol dictionary) 
ESDS data sets (VSAM) 

defining 179 
general 173 
opening 189 
processing 180, 189, 196 
writing 193-194 

ESI (end-of-segment indicator)* 

*Consult VS COBOL for OS/VS (GC26-3857) 

establishing a priority 
f or a job (PRTY) 30 
for a job step (OPRTY) 50 

evaluation rules* 
EVEN subparameter 36 
EXAMINE statement* 
EXCEPTION/ERROR 

a~ditional information* 
for non-VSAM 148 
for VSAM 183-185 

EXEC statement 32-52 
accounting informa tion (ACCT) 34 
bypass/execution conditions 

(CONO) 35- 37 
compiler options of PARM 

parameters 37-47 
definition 20 
dispatching priority (DPRTY) 50 
identifying 

procedure (PROe) 34 
program (PGM) 32-34 
step (stepname) 34 

keyword parameters 34-51 
linkage editing options of PARM 

parameter 47 
loader options of PARM parameter 47, 48 
PARM parameter 37-48 
passing information between programs 37 
requesting restart (RO) 49 
setting time limit (TIME) 50 
specifying region size (REGION) 51 

execution, flow and rules* 
execution, steps in 18 
execution statistics 278 
executio n time 

data sets 79-81 
definition 19 
job control checklist 514-518 
options 48-51 
output example 245, 461-471 
storage allocation 458-459 
with REGION parameter 457 

EXHIBIT statement 
additional information* 
and program debugging 251-253 
and required DD statement 80 

EXHIBIT subroutine 477 
exit from Declarative procedure* 
exit list codes 158 
exit point for procedures* 
EXIT PROGRAM statement* 
EXIT statement* 
EXPOT subparameter 66 
explicit information* 
exponent* 
exponentiation operator* 
EXTEND 142, * 
extended source program library* 
extending data sets 142 
external data concepts* 
external decimal items* 
external decimal subroutines 473-476 
external floating-point* 
external floating-point subroutine 474 
external references, COBOL subroutines 346 
external symbol dictionary (ESO) 240 

Index 571 



F recording mode* 
fall through* 
false evaluation of IF* 
FCB parameter 68 
FD 

additional information* 
programming techniques 283 
relationship to DCB 491-495 
with WRITE ADVANCING 85 

FDECK option of lister 44, 212 
Federal Information Processing standard 
level 40 

field count* 
figurative constant* 
file 

additional information* 
and COBOL clauses 84, 283-284 
and DD statement 82-83 
and SELECT sentence 82 
beginning address 62 
converting to VSAM 201-202 
definition 82 
initial loading (VSA 1'1) 188 
member 83 
name 82 
processing techniques 83-131 

ASCII 
direct 83, 91-109 
indexed 83, 119-131 
partitioned 83 . 
physical (standard) sequential 83, 
relative 83, 110-118 
VSAM 180-184 

space allocation for 61, 59 
specifying information about a 83 
user defined 82-83 
VSAM (see VSAM files) 

FILE-CONTROL paragraph 
additional information* 
SELECT clause 82 

file description (OCR) 552 
File Description entry* 
file-name 

additional information* 
argument in calling program 322 
definition 82 
prefixes used with 283 
relationship with DD statement 82 

file positioning* 
file-processing 

additional information* 
non-V SAM 83-129 
VSAM 173-202 

File Section 
additional information* 
non-VSAM 283-284 
VSAM 185-186 

file space, determining 101 
FILE specification in VSAM 177 
FILE STATUS 

additional information* 
and lOB 154 
description 293 
for QSAM 146-148, 255-256 
for VSAM 

lists of keys 187-188, 192-193 
use urged 183 

FILLER* 

572 

FINAL control* 
final results* 
FIPS level 40, * 
FIRST* 
fixed insertion editing* 
fixed-length item* 
fixed-length record format 160, * 
fixed-length table* 
fixed line size* 
fixed overlayable segments 378, * 
fixed permanent segment 378, * 
fixed portion* 
FLAGE/FLAGW compiler option 40 
floating insertion editing* 
floating-point items 

(see also computational fields) 
additional information* 
intermediate results 294 

floating-point subroutines 472, 475 
FLOW compiler option 41, 214 
f low of control* 
flow trace subroutine 482 
FOLD subparameter 60 
FOOTING 297, * 
FOR REMOVAL* 
format 

additional information* 
changing (see lister feature) 
record (see record formats) 

format of lister listing 210-211 
85-89 forms control image 68 

fragmentation of core, preventing 43 
FREESPACE parameter in VSAM 179 
fullword alignment* 
FUNC subparameter 88 
function-name* 

general registers, using to locate 
data 268 

GENERATE statement* 
generation data set (group) 141-142 
generic key* 
GETCORE subroutine 480 
GETMAIN usage and ENDJOB 43 
GIVING option 150-152, 368, .* 
global table 

description 236 
DMAP, PMAP options 39 
program 526-528 
task 519-526 

glossary (DMAP) 
definitions 239 
description 235-236 
requesting through EXEC statement 39 
symbols used 240 

GO TO statement 481, * 
GOBACK statement 

additional information* 
and assembler language 323 
and ENDJOB option 43 
greater than symbol* 

group entry* 
GROUP INDICATE clause* 
group item* 
group mo ves* 
group report*. 

*Consult VS COBOL for OS/VS (GC26-3857) 



halfword alignment* 
header labels 154-159, * 
HEADING* 
hierarchy 283, * 
HIGH-VALUE (HIGH-VALUES) figurative 
constant* 

HOLD macro for TCAM 434 
holding a job for later execution 31 
horizontal spacing* 
hyphen 25, * 

(see also minus symbol) 

I-O CONTROL paragraph* 
1-0 files* 
I-O options* 
I/O (see input/output) 
IBM-supplied cataloged procedures 356-363 
Identification Division 

additional information* 
reformatting 203-204 

identifier* 
identifiers in linkage argument 
list 316-326 

IEBUPDTE subroutine 348, 349 
IEFRDER DD card 438 
IF statement 295, * 
ILBO ••• subroutines 412-489 
'ILBOABNO, user call to 254-255 
ILBOMCPN replacement 433 
ILBONBLQ macro 434 
.IL:I3Q~RM.. _~IlgI?arameters ,48 
ILBOSPIO and IMS calls 483 
ILBOSTPO, assembler-language call to 324 
ILBOSTTO 

calling from assembler language 323 
with ENDJOB option 43 

imperative statement* 
implicit items* 
IMS (see Information Management System) 
IN qualifier connective* 
IN subparameter 66 
INCLUDE statement 333, 338-339 
incomplete abnormal termination 277 
incrementing* 
indentation* 
independent overflow area 122 
independent segment 378, * 
index 

additional information* 
area 122 
cylinder 122, 121 
data item 305 

assigning values to 306-307 
master 128 
names 305, 306 

assigning values to 306 
overflow area 122 

prime area 122, 123 
quantity SPACE parameter 62 
track 121, 120 

index data item* 
index-name* 
INDEX usag e* 
indexed access methods (see BISA!, QISAM) 
INDEXED BY option* 
indexed data sets (see indexed files) 
indexed files 

(see also BISA!, QISAM, ESDS, KSDS) 
~~C~!3~~ecbniq~~s .127-131, 173 

.*Consult VS COBOL for OS(VS (GC26-3857) 

adding to 127-128 
additional information* 
APPLY clause 131 
calculating space requirements for 127 
cataloging 126 
creation and retrieving, in 

general 510-513 
creating of 123-126 
DD statements required 123-126, 201 
description 119-131, 173 
index area 122 
invalid key condition 148, 183 
master index 127 
overflow area 122-123 
prime area 122 
processing 119-131,180-192 
random access 129-131 
READ statement 129 
RECORD KEY clause 119 
reorganizing 128 
REWRITE statement 129 
sequential access 127-129 
START statement 128 
updating 127-128 
VSAM 173-202 
WRITE statement 129 

indexed sequential access method 
processing VSAM files 202 ' 

indexed sequential data sets (see indexed 
files) 

indexes* 
indexing a table 305-306 
indexing* 
~nd~cative dump, description 254 
~nd~rect addressing 101 
~nformation Management System 

object-time debugging 483 
symbolic debugging 217 

informative messages (see messages) 
initial clause and state* 
initialization* 
INITIATE statement* 
~nline procedures (optimization) 280 
~nput CD* 
input file* 
IlfPUT option* 
input phase of sort* 
input/output 

additional information* 
bypassing of 56 
error conditions 

completion codes for 257-259 
INVALID KEY 148 
standard error 143-141 
summary of 504-509 
USE AFTER ERROR declarative 148-154 
VSAM 184-188, 192-193 

facilities described in DD 
statement 51-69 

OCR 544-560 
subroutines 477-480 
VSAM 173-202 

input/output statements (see ACCEPT, CLOSE, 
DISPLAY, OPEN, READ, REWRITE START 
WRITE *) " 

input phase of sort* 
INPUT PROCEDURE* 
input queue* 

Index 573 



input stream 
control statements for 21, 56 
defining data in 56 
delimiter in 56 

INSERT statement* 
insertion editing* 
insertion symbol* 
INSPECT statement 477, * 
INSTALLATION paragraph* 
in-stream procedures 70 
instruction addressing causing 
interrupt 257-259 
integer* 
Interactive Debug 247, 213 
interface between COBOL and MCP 401, * 
intermediate control* 
intermediate results 294, 295, * 
internal data* 
internal decimal items* 
internal decimal subroutines 473-476 
internal floating-point* 
internal floating-point 
subroutines 473-476 

internal representation* 
inter-occurrence slack bytes* 
INTER-PROGRAM COMMUNICATION* 
interrupt address, examples 257-259 
INTO option* 
intra-record slack bytes* 
INTRa macro 433, 426 
invalid data 140, * 
INVALID KEY 

additional information* 
general 148, 508, 509 
in VSAM 183 

ISAM used to process VSAM files 202 

jamming (optimization) 270 
job 

accounting information 26, 20 
address space 32 
class assignment 31 
control statement display 27 
definition 18 
holding for later execution 31 
ident ifyinq 25 
library 353-354 
priority assignment 
request for restart 
setting time limits 
storage specification 
terminating 27 

30 
28-29 
30 

31 

Job Control Language 
character delimiters 24 
coding 22-25 

574 

examples of 
compilation 514-515, 231-235 
linkage editing 240-241 

fields of 23-~ 
notation 25 
parameter for VSAM only 201 
statement continuation 24 
types of statements 

command statement 70, 20 
comment statem~nt 71, 20 

DD statement 51-69, 20 
delimiter statement 70, 20 
EXEC statement 32-52 
JOB statement 25-32, 20 
null statement 70, 20 
PROC statement 70, 20 

VSAM file processing 201 
job control procedures 20-81 

cataloged procedures 356-367 
checklist for 514-517 
Checkpoint/Restart 397-400 
definition 20 
libraries 347-349 
sort/merge 368-371 
for user files (see file, processing 
techniques) 

job management routines 22 
job schedulers 

description 22 
disposition messages from 241, 239 
in communications 436 
subroutine 479 
utili ty (CJS) 436, 480 

JOB statement 25-32, 20 
accounting information 26 
definition 25 
forma t 26 
parameters 

ADDRSPC 32 
CLASS 30 
COND 27 
MSGCLASS 31 
MSGLEVEL 27 
PRTY 30 
RD 28 
REGION 31 
RESTART 29 
TIME 30 
TYPRUN 31 

programmer identification 27 
job step 

bypassing 
using JOB statement 27 
using EXEC statement 35-37 

definition 18 
dispatching priority 50 
restarting 48-49 

JOBCAT DD statement 70 
JOBLIB DD statement 

description 69 
example of use 516-517 
restriction with cataloged 

procedures 357 
restriction with DDNAME 

parameter 366 
jobname 25 
jo!nirig data items* 
JUST* 
JUSTIFIED clause* 

KEEP subparameter 67 
KEY for a table* 
Key of reference* 
KEY option* 

(see also ACTUAL KEY clause and RECORD 
KEY clause) 

*Consult VS COBOL for OS/VS (GC26-3857) 



key-sequenced VSAM data sets 
additional information* 
AIXBLD usage with 186 
defining 177-179 
examples 181-183, 194-198 
general 173 
reading 190 
writing 189 

key words* 
KEYS parameter in VSAM 179 
keyword parameter of control 
statements 23-24 

KSDS data sets (see key-sequenced VSAM 
data sets) 

L, invalid in CURRENCY SIGN* 
,label handling subroutine 478 
LABEL parameter 65-67 
LABEL RECORDS clause* 
label specification* 
LABEL subparameter 66 
labels 

data set, rel~tionship to SELECT and DO 
statements 144 

nonstandard 156-157 
routine return codes 159 
standard 155 
standard user 155 
user 155-158 
user totaling 156 
volume 154-156 

nonstandard 156 
standard 155 

LANGLVL option 
and ASCII 91 
and 'F IPS 40 
and segment re-initialization 379 
general 38 

language concepts and considerations* 
language name* 
language structure* 
LAST DETAIL* 
last printable line* 
last-used state* 
LCOL1 option of lister 44, 212 
LCOL2 option of lister 44, 212 
left padding, justification, and truncation* 
length of figurative constant* 
less than «) character* 
LET loader option 48 
level indicator* 
level number 

additional information* 
normalized in glossary 236 

level- 01 i tems* 
level 02-49 items* 
level- 66 i tems* 
level-77 items* 
level-88 items* 
LIB compiler option 42 
library 

and BASIS card 351-352 
automatic call 78, 349 
changing 355 
COBOL copy 349-351 

*Consult VS COBOL for OS/VS (GC26-3857) 

COBOL subroutine 348, 472-489 
compilation, use of 73 
concatenating 79 
copy 349-351 
creating 354-355 
definition ,83 
directory 347 
for PGM parameter 32, 34 
job 353 
JOBLIB statement 69 
link 347-348, 76-78 
partitioned data set 83 
pri vate 34, 69 
procedure 32, 35 
for program checkout 239 
relationship to JOBLIB DD 
statement 69, 78 

relationship to SYSLIB DD statement 76 
sharing 353 
sort 348 
source program 349-353 
STEPLIB statement 70 
subroutines 

arithmetic 476, 475 
COBOL 348, 472-489 
conversion 473-475 
input/output 477-480 
intermediate results 294-295 
sharing 353 

SYSLIB statement 76 
system 34, 76 
temporary 34 
user 349-353 

library management facility 353 
LIBRARY module* 
library-name* 
LIBRARY statement 333 
LINAGE 297, * 
line advancing* 
LINE clause* 
line continuation* 
line-control 216, * 
LINE-COUNTER special register* 
line-number* 
LINECNT compiler option 39 
LINES AT BOTTOM/TOP 297, * 
link library 347-348, 76-78 
LINK macro to invoke compiler 499 
linkage conventions 316-326 
linkage, dynamic subprogram (see dynamic 

subprogram linkage) 
linkage editor 

additional input 332 
calling compiled programs 500 
capacity 502-503 
checklist 515 
data set requirements 16-78 
definition 19 
external names 331 
input 

additional 332 
primary 332 

LIBRARY control statement 333 
messages 240, 242 
options 47 
output 240-242 
PARM options 47 
primary input 332 

Index 575 



proces.sing 338- 34 0 
user-specified data sets 16-18 
with libraries 353-355 
with preplanned overlay 340-341 

linkage registers 322 
Linkage section* 
LINKlIB 16-18, 341-348 
LIST linkage editor option 47 
lister feature 203-212 

additional information* 
Data Division reformatting 204 
description 44 
Environment Division 

reformatting 204 
format conventions 210-211 
Identification Division 

reformatting 204 
operation of 203 
options 44-45, 212 
output deck 204, 211 . 
procedure Division reformatt1ng 207 
reformatting 204-207 
restrictions 203 
source listing 210 
specifying 212, 44 
summary listing 211 
type indicators 211 

literal* 
literal pool 231 
literal table 502 
literals, size considerations 502 
LOAD compiler option 39 
load list, example 267 
LOAD macro to invoke compiler 499 
load module 

additional information* 
as input to linkage editor 332 
definition 19 
length of 262 
output 243-245 
specificatio~ in EXEC statement 32 

loader 
cataloged procedure 360 
data set ~equirements 78, 346 
definition 19, 346 
input 

additional 346 
primary 78 
requirements 18 

invoking 360 
module map 244, 243 
output 243, 244 
PARM options 47-48 
RES restriction 346 

loading programs 
additional input 346 
cataloged procedure 360 
primary output 346 

locations in records* 
LOCK option* 
logical connectives* 
logical operators* 
logical page* 
logical record 

additional information* 
length 13, 496-491 
OUTLIM parameter 60 

576 

logical record area 168, 169 
logical record length 13, 496-491 
logical record size 

for SYSIN 491 
for SYSLIB 491 
for SYSPRINT 491 
for SYSPUNCH 497 

LOW-VALUE (lOW-VALUES) figurative constant* 
lower-case letters in notation 25, * 
LRECl 13, 496-491 
LSTCOMP option of lister 44, 212 
LSTONlY option of lister 44, 212 
LTM subparameter 66 
LVL option of compiler 40 
L120 option of lister 45, 212 
L132 option of lister 45, 212 

machine considerations 451-460 
macro instructions 

ATTACH 499 
CALL 323-325 
CHKPT 395, 396 
DCB 490 
GETMAIN 43 
LINK 499 
LOAD 499 

magnetic tape 
additional information* 
data sets 

sharing devices, sort/merge 310 
using DEN and TRTCH 
subparameters 86-81 

devices 
compiler optimization using 496 
labels 154-159 
in ~ort/merge feature 368, 370 

volume 
private 63-64 
removable 64 
reserved 64 
scratch 64 

main line routines 292 
main program, definition 323, * 
main storage 

(see also storage allocation and storage 
considera tions) 

REGION parameter 51, 31 
requirements for Sort/Merge 373, * 

major control* 
map 

loader storage 243, 244 
memory 234 
module 244 

MAP option 
for linkage editor 47 
for loader 41 

mass storage 
device 99, 100 
space allocation 

SPACE parameter 61 
SPLIT parameter 62 
SUBALLOC parameter 62 

volume labels 154-156 
volume status 63-65 
vol umes 63-65 

*ConsultVS COBOL for OS(VS (GC26-3857) 



mass storage files* 
master catalog (VSAM) 175-176 
maximum length 

additional information* 
in Data Division 283 
of blocks in COpy library 349 

maximum number 
additional information* 
of logical records (SYSOUT) 60 

maximum size (see maximum length) 
maximum value* 
MCP (see Message Control Program) 
member, definition 83 
MEMORY SIZE clause* 
merge (see sort/merge feature) 
merge subroutine 481 
message access* 
message code* 
message concepts* 
message control information* 
Message Control program (MCP) 

activating 426, 455 
ANS requirements 432-443 
building 

assembling 445 
executing 445 
link-editing 445 

communication with COBOL program 449-456 
data sets 427 

checkpoint data sets 445 
group data sets 446 
message queue 446 

defining buffers 426 
defining interface 449 
defining process control blocks 455 
defining terminal area 427-429 
functions of 404 
interface with COBOL program 449-456 
JCL for 444 
macros 

CLOSE 426 
DCB 427 
INTRO 426 
INVLIST 428 
OPEN 426 
PCP 427 
READY 426 
RETURN 426 
TERMINAL 428 
TLIST 428 
TPROCESS 428 

. TTABLE 428 
message flow 401-404 
message 537 
RECEIVE statement 297 
SEND statement 297 
user tasks 404-405 
writing a 404 

Message Control System* 
MESSAGE COUNT 479, * 
MESSAGE DATE* 
message delimiters* 
message indicators* 
message handler (MC~). 426-432 

delimiter macros 429-430 
for application programs 431-432 
for terminal line groups 430 
functional macros 429-43..0 

*Consult VS COBOL for OS/VS (GC26-3857) 

message queues* 
message reception* 
message release and return* 
MESSAGE TIME* 
message transfer* 
message transmission* 
message unavailable* 
messages 

additional information* 
allocation 

compiler 235 
linkage editor 241 

checkpoint 396 
compile-time 569 
compiler, summary of 238-239 
disposition 

compiler 238 
linkage editor 241 

error 35 
ERRMSG 238-239 
execution-time (see object-time) 
identification codes 246 
linkage editor 240,242 
MCS considerations 537 
numbered on SYSTERM 37 
object-time 529-542 
operator 246,538 
queue analyzer 539-542 
severity level of 

compiler 35 
linkage editor 35 

sort/merge 371 
unnum bered 538 
U-type 529 

Method B, to randomize 103 
method of data reference* 
minimun size* 
minimum value* 
minor control in a report* 
minus sign and symbol* 
mnemonic-name* 
MOD subparameter 67 

in Checkpoint/Restart 395 
in compilation 75 
definition 67 

MODE subparameter 87 
modular levels 292-293 
module map 244 
monitoring queues 436 
MOVE statement 296,* 
MOVE subroutines 476 
MSGCLASS parameter 31 
MSGLEVEL parameter 

description 27 
with restart 397 

multidimensional table search* 
multiple checkpoints 394 
multiple file* 
MULTIPLE FILE TAPE clause* 
multiple indexing (VSAM) 173 
multiple libraries for COpy 349 
multiple redefinitions* 
multiple results* 
multiplication operator* 
MULTIPLY statement* 
multistep job 35-37 

Index 577 



multivolume files 
additional information* 
direct. 99-100 
volume switching 99 

MXIG subparameter 61 

name, definition* 
NAME compiler option 43 
name field 

of DD statement 56 
of job statement 23 

NAME statement 333 
name subparameter of DD statement 58 
names 

cataloged procedures 57 
data set, conventions used in 142 
generation 57 
procedure 502 
qualification of 57 
RENAMES clause 286 
temporary 58 

NATIVE collating sequence 293,* 
negated condition* 
negative data and sign* 
nested statements* 
"new" language (LANGLVL) 38,* 
NEW subparameter 67 
next executable statement* 
NEXT GROUP clause* 
NEXT options* 
NL subparameter 66 
NOADV option of compiler 44,160 
NOAIXBLD option 48 
NOBATCH option of compiler 42 
NOCALL option of loader 48 
NOCDECK option of lister 44,212 
NOCLIST option of compiler 39 
NOCOUNT option of compiler 44 
NOCSYNTAX option of compiler 41 
NO DATA option* 
NODEBUG option 48 
NO DECK option of compiler 39 
NODMAP option of compiler 39 
NODUMP option of compiler 44 
NODYNAM option of compiter 43 
no end indicator* 
NOENDJOB option of compiler 43 
NOFDECK option of lister 44,212 
NOFLOW option of compiler 41,48 
NOLET option of loader 48 
NOLIB option of compiler 42 
NOLOAD option of compiler 39 
NOLVL option of compiler 40 
NOLST option of lister 44,212 
NOMAP option of loader 47 
NOMINAL KEY clause 129-130 
NONAME option of compiler 43 
noncontiguous items* 
nondeclarative reference* 
nonfooting body group* 
noninteger* 
nonnumeric comparisons* 
nonn urn er ic it em* 
nonnumeric literals* 
nonnumeric operands* 
nonreentrant subroutines 484-489 

578 

nonreusable subroutines 484-489 
nonstandard labels 157 
nonswitched line* 
NONUM option of compiler 42 
non unique keys* 
non-VSAM file, converting to VSAM 202 
non-VSAM file processing (see user file 

processing) 
nonzero data* 
NOOPTIMIZE option of compiler 41 
NOPMAP option of compiler 39 
NOPRINT option 

of compiler 47 
of loader 48 

NOPWREAD subparameter 66 
NORES option of loader 48 
NORESIDENT option of compiler 43 
NO REWIND option* 
normalized level numbers in glossary 236 
NOSEO option of compiler 39 
NOSOURCE option of compiler 
NOSTATE option of compiler 
NOSUPMAP option of compiler 
NOSXREF option of compiler 
NOSYMDMP option of compiler 
NOSYNTAX option of compiler 
NOT* 
NOTE statement 296 

39 
40 

40 
42 

41 
41 

NOTERM option of compiler 
NOTEST option of compiler 
NOTRUNC option of compiler 
NOVBREF option of compiler 
NOVBSUM option of compiler 
NOVERB option of compiler 
NOXREF option of compiler 
NOZWB option of compiler 
NSL subparameter 66 
NUCLEUS module* 

47 
47 

40 
44 
44 

null group* 
null statement 72 

39 
42 

40 

NULLFILE DD parameter 58,74 
NUM compiler option 42 
NUMBERED specification in VSAM 179 
numerals* 
numeric category* 
numeric characters* 
numeric class* 
numeric comparisons 255, * 
numeric edited* 
numeric first character* 
numeric item* 
numeric literal* 
numeric operands* 

object code listing 237 
OBJECT-COMPUTER paragraph* 
object module 

contents 239-240 
deck 239 
definition 18 
dumps using 258-268 
listing 237 
size considerations 501-502 

object of OCCURS DEPENDING ON* 
object of REDEFINES * 
object of relatioI) condi tion* 

*Consult VS COBOL for OS/VS (GC26-3857) 



object program* 
object-time control cards~YMDM~ 

continuation cards 215 
control statement placement 215 
example of 220-230 
line-control cards 216 
program-control cards 215 
syntax rules 215 

object-time options 
list of 48-49 
subroutine for 472 

object-time overlay 340-343 
object-time subroutine library 384,472-489 
occurrence number* 
OCCURS clause 

additional information* 
. causing errors 255 

DEPENDING ON option 304-305 
OCCURS DEPENDING ON clause 

additional information* 
relationship to record formats 170-172 
table 502 

OCR (optical character reader) 
"old" language (LANGLVL) 38 
OLD subparameter 67 
OMITTED option* 
ON SIZE ERROR option 

binary items 291 
intermediate results 291 

ON statement 251, * 
ON OVERFLOW 295,317, * 
one* 
online printing* 
ONLY subparameter 36,37 
OPEN statement 

additional information* 
EXTEND 142,258 
for several files 296 
multiple use of 459 
VSAM files 185-188 

operand field 
bypassing I/O 56 
data definition 56 
on control statement 23 

operands* 
operating system environment 

Conversational Monitor System 19 
OS/VS 1 19 
OS/VS2 19 

operation field 23 
operation order* 
operational sign* 
operator 

commands 70 
intervention* 
messages 246,529,538 

OPTCD subparameter 87 
optical character reader (OCR) 

additional information* 
COBOL capabilities 544 
COpy member 546-549 
document design 549 
exception handling 552 
file description 552 
format record assembly 553-554, 556 
I/O requests 544 
implementing an application 549 
parameter data area 545 

*Consult VS COBOL for OS/VS (GC26-3857) 

procedural code 552 
processing tapes from Model 2 560 
record description 552 
sample data 557 
sample document 555 
sample processing program 558-560 
sample program 553 
status key 545 
status key values 550-551 

optical character reader interface 
subroutine 481 

optimization, compiler 496-498 
optimization methods 279-281 

backward movement 279 
common expression elimination 279 
efficiency guidelines 281 
inline procedures 280 
jamming 280 
resequencing program 279 
SYMDMP output 279 
tabling 280 
unrolling 279 
unswitching 280 

OPTIMIZE compiler option 41, 237 
optimizing sort performance* 
optional clauses* 
optional entries* 
optional phrase* 
optional services (see OPTCD subparamet 
optional word * 
options 

OR* 

error processing (VSAM) 163 
for compilation 38-47 
for execution 48 
for linkage editing 47 
for lister 44,212 
for loader 47-48 
PARM summary 46 

order of* 
ORDER statement 334 
ordering records using sort/merge* 
ORGANIZATION clause* 
OS/VS COBOL* 
OS/VS1 

ADDRSPC parameter 32 
control program 19 
OUTLIM parameter 60 
SCAN action 31 
TERM parameter 60 

OS/VS2. 
ADDRSPC parameter 32 
control program 19 
DYNAM parameter 57 
intermediate data sets 458 
REGION parameter 458,21 
SCAN error 31 
TERM parameter 6C 
with TSO 57 

OUT subparameter 66 
OUTLIM parameter 60 
output 231-246 

compiler 231-239 
(see also compiler, output) 

copies of data set 60 
display of all compiler 

messages 238-239 
displaying control statements 27 

Index 579 



ERRMSG program to display 
~essages 238-239 

execution of load module 243-245 
linkage editor 240-242 
lister deck 204,211 
load module execution 243-245 
loader 243 
messages 

compiler 238-239 
linkage editor 242 
load module execution 243 

reformatted listing 44 
requesting various kinds 246 
return codes 35-37 
sample program 461-471 
stream data sets 134 
suppressing 496-497 
SYSOUT parameters 68 
system 246 

output CD* 
output deck, lister 204,211 
output device* 
output file* 
output listing format 

FCB parameter 68 
lister feature 44 
of compiler 231-239 

output mode* 
output option* 
output procedure* 
output record limit (SYSOUT) 60 
overflow area (see QISAM) 
overflow condition 

additional information* 
index 122 
synonym 108 

overlapping delimiters and operands* 
overlay 

dynamic 341-343 
preplanned 340-341 
statement 340-342 
structures 340 

overlayable segments* 
overriding DD statements 364-366 
OVFLOW 125 
OVLY linkage editor 47 

P in PICTURE and CURRENCY SIGN* 
packed decimal item* 
padding* 
page advancing* 
page areas* 
page body* 
page breaks 301-302, * 
page change in a'report* 
PAGE clause* 
PAGE-COUNTER special register* 
page end* 
page fit test* 
PAGE-FOOTING* 
page format control* 
PAGE HEADING* 
page margins* 
PAGE option* 
page overflow* 
page placement* 

580 

pagp positioning* 
Eage size* 
PAGE statement 334 
paging 51 
paragraph* 
parameter data area (OCR) 545 
parameters 

compared to arguments 322,323 
key-word 23-24 
positional 23 
subparameters 23 

. VSAM only (JCL) 201 
parentheses* 
PARM 48 
PARM option 

compiler options 38-47 
job card 48-49 
linkage editor options 47 
restrictions 37 
significant characters 37 
summary 46 
with equal sign 37 

partial key* 
partial list of prime numbers 105 
partial message* 
partitioned data sets 

description 83 
directory 333,61 
member 83 
primary quantity for 61,62 
secondary quantity for 61 
system library 34 
temporary libraries 34 

PASS subparameter 67 
PASSWORD clause* 
PASSWORD subparameter 66 
passwords in VSAM 181 
PATH command 175,178 
PATHENTRY specification in VSAM 179 
pathname as data set name 201 
PSS (see partitioned data set) 
PERFORM statement 296,378,* 
performed procedures* 
period* 
permanent segment 378,* 
permanently resident volumes· 63-64 
permissible comparisons and options* 
PGM in EXEC statement 32,34 
PGT (see program global table) 
phrase, definition* 
physical page* 
physical record 61-62,* 
physical sequential file 

accessing 85-89 
additional information* 
data control block for 491 
data set 133 
DD statement parameters 123-126 
description 85-89 
error processing 143-154,508,87 
EXTEND 142 
locating data ares 268 
sort feature, uses 6 368 
subroutone for 479 
user label totaling 155 
with spanned reco~ds 274 

*Consult VS COBOL for OS/VS (GC26-3857) 



PICTURE CLAUSE 
additional information* 
efficient use of 285-287 
storage allocation 287 

plural figurative constant* 
plus sign 287,* 
PMAP compiler option 39 
POINTER* 
position in record* 
positive data* 
POSITIVE sign* 
prefixes 283 
preplanned linkage editor 340-341 
presentation rules, TYPE* 
PRESRES, member of SYS1.PROCLIB 64 
preventing core fragmentation 43 
primary input, for called and calling 
. programs 332,346 
primary keys, (VSAM) 173,189 
PRIME, in QISAM 122 
prime area (QISAM) 122 
prime number list 105 
prime record key* 
print files* 
print line size in repor~* 
PRINT option 

for compiler 47 
for loader 48 

print suppression* 
printer, determining line spacing 85 
printer channel control* 
printer character set 60 
printer device, SEND* 
printer spacing* 
priority, assinging 

for a job 30 
for a job step 50 

priority numbers 378,* 
priority schedulers 22 
priority scheduling system 

EXEC statement parameters 50 
JOB statement parameters 30 
sharing data sets 67 
SYSOUT parameter for 68 

PRIVATE subparameter 65 
private volume 64 
problems with compiler, resolving 543 
PROC statement 70 
procedure* 
procedure branching statement* 
Procedure Division 

additional information* 
intermediate results 293,294 
modular levels 292 
programming techniques 292-299 
reformatting 207-208 
report writer considerations 299-304 
state,emts (see compiler directing 
statements, conditional statements, 
imperative statements) 

process definition* 
processing of files* 
processing program 18 
processing rules* 
processing subroutines 292 
procstep.ddname 56 
procstep subparameter 63 
program 

(see also programming techni~ues) 
called 317-318,325 
calling 317-325 
checkout 247-278 
collating sequences 293 
COUNT option 247,278 
debugging 247 

(see also symbolic debugging; 
lister feature) 

completion code 257-259 
dumps 254-257,260-263 
errors 

I/O 258 
invalid data 255-256 
other 256-257 

examples 262-273 
execution statistics 278 
I/O errors 258 
incomplete abnormal termination 277 
interruption, finding location 
of 259 

invalid data errors 255-256 
language 247 
other errors 256-257 

execution 
from private library 34 
from system library 34 
from temporary library 34 
multistep job 35-37 

interrupt 259 
linkage editor 338-340 
resequencing 279 
sample 461-471 
selective testing of 217-219,253-254 
techniques (see programming techniques) 

PROGRAM COLLATING SEQUENCE (see collating 
sequence) 

program-control cards 215 
program global table (PGT) 237,527-528 
PROGRAM-ID 213,* 
program-name* 
program relationships* 
program segments* 
program structure* 
program switch* 
program syntax* 
program termination* 
programmer identification 27 
programming nptes* 
programming techiques 282-315 

(see also program) 

string manipulation considerations 298-299 
table handling considerations 304-309 
teleprocessing condiderations 309-315 
verbs 295-298 

Data Division 282-315 
Environment Division 282-283 
general 282 
optimization methods 278-281 
Procedure Division 292-299 

procedure library 34,348 
procedure-name,* 
procedure-name table 502 
procedures, in-stream 70 

*Consult VS COBOL for OSLVS (GC26-3857) 

queue structure considerations 309-315 
rep~rt writer 299-304 
sort feature 372-373 

Index 581 



table handling 304-309 
VSAM 180-193 

PRTSP suboarameter 87 
PRTY parameter 30 
pseudo data set 56 
pseudo-text* 
public volume 64 
punch device* 
punch files* 
punctuation character* 
punctuation rules 

Q routines 472 
QISAM 

(see slao BISAM, indexed files) 
considerations when using 128-131 
data control block 128 
data sets 134 

creating 123-125 
definition 82 
deleting records in 129 
reorganizing 129-130 

DD statement parameters 128-129 
error processing for 143-147, 508 
indexes, description 122-123 
master index 127 
overflow area, description 122, 123 
prime area, description 122 
single volume file 125-126 

QNAME parameter 58 
QSAM 

data control block 491 
data set 133 
DD statement parameters 123-126 
description 85-89 
error processing for 143-154,508,87 
extending 142 
locating data areas 268 
sort feature, uses of 368 
subroutine for 479 
user label totaling 155 
with spanned records 274 

qualification* 
qualified data name* 
qualifiers* 
queue access* 
Queue Analyzer Routine 309-315 
queue blocks 

and locating TCAM data areas 275-276 
sample program 275 

queue concepts* 
QUEUE DEPTH field and IF statement 280 
queue messages* 
queue name 449, * 
QUEUE object-time option 49,438 
queue relationships* 
queue structure 

accessing with COBOL 312-315 
additional information* 
example 310,311 
Queue Structure Description routine 315 
SCAN subroutine 479 
SYMBOLIC QUEUE name 309 

quotation mark 40,* 
QUOTE compiler option 40 
QUOTE (QUOTES) figurative constant 40,* 
quotient* 

582 

R, in currency sign* 
random access* 
randomizing techniques 101-103 
range of procedures, PERFORM* 
ranges of value* 
RD Entry* 
RD parameter 

for a job 28 
for a job step 49 
with checkpoint 396-397 
with deferred checkpoint 69 

READ INTO option 296 
READ statement 

additional information* 
in BISAM 130 
in QISAM 127-130 
in VSAM 189-190 

READY TRACE statement 251,39,* 
RECEIVE statement 297,* 
receiving device* 
receiving item* 
receiving field* 
RECFM subparameter 

in compilation 497 
in DISPLAY statement 79-80 

record 
additional information* 
addressing 83 
blocked 80 
capacity 93 
dummy 93 
duplicate 504 
formats 84 

fixed-length 160 
spanned 164-165 
unspecified 161 
variable-length 161-164 

segments 165-166 

497 
size, logical 

for SYSIN 
for SYSLIB 
for SYSPRIWT 
for SYSPUNCH 

497 

size restriction, 
sort/merge fields 

record area* 
record availability* 

497 
497 
physical 
372 

RECORD CONTAINS clause 284,* 
record discription (OCR) 552 
record discription entry 

in BISAM 129-130 
in QISAM 129 

record formats 160-172 

61 

effect of OCCURS clause 170-172 
fixed length 160 
spanned 164-170 
unspecified 161 
variable length 161-164 

RECORD KEY* 
re cord level:« 

·record-name* 
record seguencing* 
record size* 
recording mode* 
records in error* 
RECORDS option* 
REDEFINES clause 285-286,* 
REEL options* 

*Consult VS COBOL for OS/VS (GC26-3857) 



ceentrant subrotiti,nes, list of 484-489 
~EF subparameter 65 
ceference frequency* 
ceference summary* 
ceferencing tables 304 
~EGION parameter 

ADDRSPC parameter 51,31 
for OS/VS2 21,458 
in EXEC statement 51 
in JOB statement 31 
main storage 31 
used in compilation 458 
used in execution 458 

register assignment, location in 
output 237 
~einitialization* 
~ELATE specification for VSAM 178 
~elation character* 
~elation condition* 
~elational-operator* 
~elative files 

accessing 112 
additional information* 
allocating space for 112 
COBOL clause for 118 
creating 111-112 
error processing 143-154 
Job Control Language for 120 
NOMINAL KEY, use of 110,111 
processing 110-117 
random access 112-113 
sample program 114-117 
sequential access 112 
VSAM 174 

~elative indexing* 
~elative indexing* 
tELATIVE key* 
~ela ti ve line* 
~elative NEXT GRoup* 
~elative organization* 
~elative record data sets (VSAM) 

defining 179 
described 174 
reading 181,190 
writing 189 

~elative record number* 
tELEASE statement in sort* 
~eleasing a job (RELEASE) 31 
~elocation list dictionar.y (RLD) 503 
~eminder* 
tEMARK papagraph* 
~emote station* 
~emovable volumes 63,64 
tEMOVAL option* 
~emoving file records* 
tENAMES clause 286,* 
~epeti tion of i tem* 
~epetitive execution* 
:eplacement editing* 
:eplacement of file records* 
~eplacement rules for library-text* 
tEPLACING option* 
~eport c alcula tions* 
tEPORT clause* 
~port description (RD)* 
~eport file* 
tEPORT FOOTING* 
teport Group 299-300, * 

~Consult VS COBOL for OS/VS (GC26-3857) 

REPORT HEADING* 
report-line* 
report-name* 
report page depth* 
report printing online* 
report processing* 
Report section* 
report, writer 

additional information* 
CODE clause 302 
Data Division considerations 

floating first detail 303-304 
output footings 303 
output line overlay 301 

Procedure Division considerations 299-304 
size considerations 303,304 
SUM 300-301 
tables 502 

reports, decribing* 
requesting a message class 31 
requesting a unit 58-59 
required clauses, entries, items, words* 
RERUN clause 

additional information* 
and JCL 49-50 
and RD parameter 394,396 

RES loader option 48 
resequencing program (optimization) 279 
RESERVE clause 85,* 
reserved volumes 64 
reserved words* 
RESET option of sum* 
RESET TRACE statement 251 
RESIDENT 

'example 337 
linkage 335 
specifying 335,336 

RESIDENT compiler option 43 
resolving compiler problems 543 
Restart 

(see also Checkpoint/Restart) 
automatic 397 
checkpoint 394 

(see also Checkpoint) 
deferred 397-398 
for cataloged procedure 48-49 
in a job 28-29 
in a job step 48-49 
initiating 394 
RD parameter 396-397 
system routine 396 

RESTART parameter (see RD parameter) 
restarting a program* 
restrictions* 
result field* 
RETAIN subpa~ameter 65 
RETPD subparameter 66 
retrieving data sets 

cataloged 138 
example of 140 
noncatloged 139 
passed 139 
through an input stream 139-140 
VSAM 195-198 
with additional output 139 

return code 35,158,* 
RETURN-CODE special register 317,322,* 
return mechanism (sort/merael* 

Index 583 



return of control* 
returij register 322 
RETURN statement for sort/merge* 
reusable subroutines, list of 484-489 
reusable VSAM data sets 179 
REUSE parameter in VSAM 179 
rewinding of tape files* 
REWRITE statement 

additional information* 
in BISAM 130 
in QIS.AM 128 
in VSAM 189 

rightmost sign specification* 
right- pa dding* 
right parenthesis* 
RLD (see relocation list dictionary) 
RLSE subparameter 61 
ROUND subparameter 61 
ROUNDED option* 
routine-name* 
RRDS (see relative record data sets) 
RT subparameter 60 
rules* 
r un un it 32 3 , * 

S, PICTURE clause symbol* 
S-mode records 164-165,* 
SAME clause* 
sample program output 461-471 
save area layout 332 
scaling 286,* 
SCAN with HOLD 31 
schedulers 

job 22 
!:laster 22 
priority 22 

SD entry* 
SEARCH statement 

additional information* 
subroutine for 481 
use of 307-309 

searching a table 307-308 
secondary quantity subparameter 

for SPACE 61 
for SPLIT 62 

section* 
section header* 
section-name* 
SECURITY paragraph* 
SEGMENT-LIMIT clause* 
segment of a message* 
SEGMENT option* 
segment work area 165,169-170 
segmentation 

additional inf6rmation* 
and PERFORM statement 378 
effect of LANGLVL 379 
output 379-393 
program organization 378 
subroutine 481 

SELECT clause 
additional information* 
relationship to DD statement 144 
with user files 82 

SELECT OPTION clause* 
SELECT OPTIONAL statement 56 

584 

selective summation* 
SEND statement 297,* 
sending field* 
sentence* 
SEP parameter 58 
SEPARATE option of SIGN 
clause 288,* 

separate programs* 
separate sign* 
separator* 
SEQ compiler option 39 
sequence* 
sequencing records using sort/merge* 
sequential access* 
sequential data sets 

DUMMY parameter 56 
for VSAM 173,180 
on 'mass storage devices 133 

sequential files* 
sequential single volume files* 
SER subparameter 65 
serial search of a table 308,* 
series connectives* 
SET statement 305-306,* 
SETEOF macro 455 
setting time limi~s 

on a job 30 
on a job step 50 

severity levels 35, 238 
sharing 

data sets 67 
COBOL library subroutines 353 

sharing storage* 
SHR subparameter 67 
sign, efficient use of 287-288 
sign character* 
SIGN clause 287-288,* 
sign condi·tion* 
sign control* 
sign in numeric literal* 
SIGN IS SEPARATE* 
signed numeric* 
significance order* 
simple condition* 
simple insertion editing* 
single checkpoint 384 
single entry report group* 
single IF* 
single message* 
single quotation mark* 
single-segment message 297 
single-statement paragraph* 
single values* 
singular figurative constant* 
SIZE ERROR option 255,* 
size of operands* 
SIZE option 

for compiler 38 
for loader 48 

SIZE, STRING delimiter* 
SL subparameter 89, 90 
~sl ack by 1:es* 
slash (/) 48,* 
SORT-CORE-SIZE special register 373,* 
sort debug subroutine 481 
sort file* 
SORT-FILE-SIZE special registei373,* 
sort library 311~ 3~8 

*Consult VS COBOL for OS/yS (GC26-3857) 



sort/merge debug feature 377 
Sort/Merge Feature 368-376 

additional information* 
alternate collating sequence 293,375 
and Checkpoint/Restart feature 372 
ASCII considerations 375 
cataloging 371 
collating sequence 375 
completion codes 371 
considerations 460 
Data Division considerations 374 
data set size 373 
DD statements 368-371 
for ASCII files 375 
linkage with SORT/MERGE 373 
main storage registers 373 
main storage requirements 373 
messages 373-374 
program example 370 
record fields 372 
sample program 370 
sharing devices 370 
SPACE parameter 369 
storage allocation 373 
subrouting~SQ 
terminating 371 
variable length records 374,376 
with Checkpoint/Restart 372 
with spanned records 368 

Sort-Merge File Description (SD)* 
SORT MESSAGE special register* 
SORT-MODE-SIZE special registe.r* 
SORT-RETURN special register 371-372,* 
SORT statement* 
sort subroutine 348,480 
sort work-file 368,* 
SORT CDS DD card 377 
sorted recol;ds* 
sorting variable-length records 374, 376 
SORTLIB DD statement 370 
SORTWKnn DO statement 368-369 
SOURCE clause* 
SOURCE compiler option 39 
SOURCE-COMPUTER paragraph* 
source/destination and MCS* 
source item* 
source listing by lister 210-211 
source module 215,18 
source program 501-503,* 
source program library 349-350 

(see also COBOL copy library) 
source program library feature* 
SOURCE-SUM correlation 300 
space* 
SPACE (SpACES) figurative constant* 
SPACE parameter 61-62 

in BSAM 88,89 
in creating data sets 132-134 
in QISAM 124 
in sort feature 369 
SPACEn option 40 
subparameters 61-62 

SPACE subparameter 61-62 
SPACEn compiler option 40 
spaces* 
spacing* 

*Consult VS COBOL for OS/VS (GC26-3857) 

spanned records 164-170 
blocked 164-165 
description 164-165 
direct processing 169-170 
formatting 164-165 
locating in dumps 274-275 
logical record area 166 
segment work area 164 
sequential processing 164-165 
specification 164,168-169 
wit.h sort 368 

special character* 
special characters in job control 
language 25 

special collating sequences* 
special features* 
special insertion editing* 
special level-number concepts* 
SPECIAL-NAMES paragraph* 
special registe~s 

additional* 
DEBUG-ITEM 248 
for date and time 481 
RETURN-CODE 317, 322 
SOFT-CORE-SIZE 373 
SORT-RETURN 371-372 
time and date 481 

special situations, STOP useful for* 
specification order* 
specifying address space parameter 

description 32 
with REGION parameter 31 

specifying data set status and 
disposition 67-68 

specifying loader input 78 
SPIE subroutine 483 
SPLIT parameter 

description 62 
in creating data sets 132-134 
in QISAM 124 

SPLIT subparameters 62 
square brackets in formats 25, * 
STACK subparameter 87 
stacked items, in job control notation 25 
standard ali~nment rules* 
standard COBOL format* 
standard data format* 
standard labels 155-156;* 
STANDARD option* 
standard selection (LANGLVL) 38 
standard sequential file (see physical 
sequential file) 

standard system I/O error routine* 
standard user labels 155-156 
STANDARD-1 collating sequence 293,* 
STAiT statement 298,* 
START verb (VSAM) 183 
STATE compiler option 4C 

subroutines 482 
statement* 
statement number subroutine 482 
static CALL statement 318,* 
static values of a table* 
statistics in output 237 
Status Key (OCR) 545,550-551 

Index 585 



status Key (QSAM and VSAM) 
additional information* 
QSAM 255-256,87,148 
VSAM 183,184-188,192-193 

step restart 
in a job 29 
in a job step 48-49 

STEPCAT DD statement 70 
STEPLIB DD statement 69 
stepname 34,63 
steps to resolve compiler problems 543 
STOP RUN initialization subroutine 472 
STOP RUN messages subroutine 472 
STOP RUN statement 

additional information* 
and assembler language program 323-325 
and ENDJOB option 43 

STOP RUN t~rmination subroutine 472 
STOP statement* 
storage allocation 

(see also main storage and storage 
considera tions) 

additional information* 
for compilation 73,501 
for execution, job step 51 
for linkage editing 502-503 
for overlay processing 340-345 
for sort feature 373 
for source program 501-502 

storage considerations 501-502 
(see also main storage and storage 
allocation) 

storage format, USAGE* 
storage layout of table* 
storage map, for loader 244,243 
storage, mass (see mass storage) 
storage of records* 
storage sharing* 
storage volume 63-65 
STRING statement 297,* 
structure of COBOL* 
sub-queue structures 309-315,* 
SUBALLOC parameter 62 
SUBALLOC subparameter 

description 62-63 
in creating data sets 132 

subdivisions of page* 
subfield contents of DEBUG-ITEM 249,* 
subject* 
subordinate entries* 
subordinate report group* 
subparameters 23 
subprogram 

additional information* 
and CANCEL statement 335 
and dynamic CALL 317,318 
and static CALL 318 

subprogram linkage feature* 
subroutine library (see library.~ 
subroutines 

586 

(see also library) 
arithmetic 475-476 
conversion 473-475 
data management 477-480 
data manipulation 476-477 
external references 346 
for linkage 472 
for special features 483 
input/output 477-480 

subscript* 
subscript redefinition 286 
subscriped data name* 
subscriping* 
substitution field* 
SUBTRACT statement* 
subtraction operator* 
SUL subparameter 66 
SUM clause* 
SUM counter* 
SUM statement 300-301 
summary listing by lister 209,211 
summary reporting* 
summation* 
superscript in job control notation 25 
SUPMAP compiler option 40 
SUPPRESS option* 
suppression of report groups* 
suppression of sequence checking* 
suspension of execution* 
switches (see UPSI switches) 
switch-status condition* 
switched line* 
SXREF compiler option 42 
symbol orer, PICTURE* 
symbolic debugging 213-230 

flow trace option 213-214 
(see also FLOW compiler option) 

interactive debug option 213 
(see also TEST compiler option) 

run unit considerations 216 
statement nember option 213 

(see also STATE compiler option) 
symbolic debug option 214-216 

(see also SYMDMP co mpiler option) 
object-time control cards 215-216 
sample program 217-230 
TSO considerations 214 
type codes 218 

under Information Management System 
(IMS) 217 

symbolic destinations 435,* 
symbolic dump subroutine 482 
SYMBOLIC QUEUE 

accessing queue structures 312-313 
additional information* 
Q Analyzer routine 309-315 

SYMBOLIC SOURCE* 
SYMBOLIC SUB-QUEUE 309,311-312,* 
symbols used in PICTURE clause* 
SYMDMP compiler option 41 

(see also symbolic debugging) 
abnormal termination dump 214 
abnormal termination message 214 
and data-names 214 
Data Division dump 214 
general considerations 216 
object-time control cards 215-216 
operation of 214 
sample program 217-230 
specifying through PARM 

parameter 214-215 
subroutines 482 
type codes 218 

SYMDMP error message subroutine ~~1 
SYNCHRONIZED clause* 
synonym overflow 108 
syntax-checking compilation 247 

*Consult VS COBOL for OS/VS (GC26-3857) 



SYNTAX compiler option 41 
syntax of program* 
SYSABEND DD statement 69,80-81,246 
SYSCHK DD statement 69,398 
SYSCJS DD statement 437 
SYSCOUNT DD statement 81 
SYSCP 21 
SYSDA 21 
SYSDBG data set 

default for 216 
requirement for 246 
use of 215 

SYSDBOUT DD card 213,246 
for COUNT option 81 
system logical input unit* 

SYSDTERM DD card 214,246 
SYSIN DD statement 

concatenating with SYSLIN 367 
for compilation 74 
in cataloged procedures 359-363 
logical record size for 497 
relationship to ACCEPT statement 80 

SYSIN-SYSOUT 458 
SYSLIB DD statement 

for compilation 76 
for copy 349 
for linkage editing 78 
for loading 78 
logical record size for 497 

SYSLIN DD statement 
concatenating with SYSIN 367 
for compilation 75 
for linkage editing 76 
for loading 78 
logical record size for 497 

SYSLMOD DD statement 
for linkage editing 77-78 
with job library 353 

SYSLOUT DD statement for loading 79 
SYSOUT system logical output unit* 
SYSOUT parameter 68 

and COPIES parameter 60 
effect of SYST option 43 
in sort feature 370 
relationship to DISPLAY statement 79-80 
subparameters 68 
use of 68 

SYSOUT subparameters 68 
SYSPRINT DD statement 

for compiler 74 
for linkage editor 76 
for VSAM 186 
loqical record size for 497 

SYSPUNCH definition* 
SYSPUNCH DD statement 

for compiler 74 
logical record size for 497 
relationship to DISPLAY statement 79-80 

SYSSQ 21,59 
SYST compiler option 43 
system catalog, creating 18 
system considerations, subprogram linking* 
system console* 
system dependencies* 
system diagnostic messages 246 
system error recovery 143-149,* 
system-generated code* 
system independent binary items* 

*Consult VS COBOL for OS/VS (GC26-3857) 

system informa tion transfer,. ACCEPT* 
system input device* 
system logical output device* 
system-name (assignment-name) 90,100,"* 
system output messages 246 
system parameter library 64 
system restart routine 396 
System/370 unit record processing* 
SYSTERM DD statement 74,77 
SYSUDUMP DD statement 69,246 
SYSUT1 

block size 496 
for compilation 73 
for linkage editing 78 

SYSUT2 73,496 
SYSUT3 73,496 
SYSUT4 73,496 
SYSUT5 

block size 498 
for compilatiion 73 
required by SYMDMP and TEST 41,217 

SYSUT6 
blocksize 498 
for compilation 73 
required by LVL 40 

SYS1.COBLIB 348 
SYS1.LINKLIB 348 
SYS1.PROCLIB 

adding procedures to 356-357 
description 348 

SYS1.S0RTLIB 
description 348,370 
storage allocation for 373 

SYS1.TELCMLIB 447 
S01 and S02 function-names* 

table elements 304-309,* 
table handling 304-309,* 
table layout* 
table of moves* 
table references* 
table values* 
tables 

building 309 
handling considerations 304-308 
storage limitations 501-502 
subscripts 304 

tabling (optimization) 280 
TALLY special register* 
TALLYING option* 
tape (see magnetic tape) 
tape fi1e* 
tape volume state 64 
tapes from 3886 OCR 560 
task global table 236-237 

fields of 527 
use to locate data-names 268 
using SYMDMP to examine 214 

TeAM (telecommunications access method) 
data areas 275-276 
locating 275-276 
queue blocks 276 
RECEIVE statement 276 
SEND statement 276 
service facilities 456 
writing compatible programs 446 

Index 587 



TCLOSE facility 74 
telep~ocessing (communications feature) 

(see also MCP, message control program) 
and CD entries 284 
and Communication Section 284 
and MCP 401,404 
ANS standard requirements 432 
environment 401 
sample MCP 406-425 

temporary data set 
creating 135 
description 63 

temporary library 34 
temporary names 58 
TERM compiler option 47 

effect of LVL option 40 
TERM parameter 60 
terminal device, SEND* 
terminal error messages 35-36 
TERMINAL option* 
terminal table 433-436 
TERMINATE statement* 
terminating file processing* 
termination of execution* 
termination of job 27 
TEST compiler option 47,213 

requires SYSUT5 73 
TESTRUN sample program 461-471 
TEXT LENGTH* 
text name* 
text punch table 501 
text word* 
TGT (see task global ta~le) 
three-dimensional table* 
three operands, varying* 
TIME-OF-DAY special register 481,* 
TIME parameter 

for a job 30 
for a job step 50 

TIME special register 481,* 
TIMES option of PERFORM* 
TO options* 
top page margin* 
totaling, user label 155 
TPROCESS entries 432 
trace option 88 
TRACE statement 

description 251-252 
relationship to SYSOUT DD statement 80 

TRACE subroutine 482 
track 

addressing 83,91 
capacity 101,102,103 
identifier 91 
index 120-122 
space for 94,95 

TRACK-LIMIT clause 94,95 
trailer labels 159,* 
TRAILING option* 
transfer of control* 
transfer of data* 
TRANSFORM statement 298,* 
TRANSFORM subroutine 477 
transformation rules* 
transmission to messages by SEND* 
TRK subparameter 61 
TRTCH subparameter 87 
true condition* 

588 

TRUNC compiler option 40 
truncation of data* 
truth value* 
TS sub parameter 60 
two-dimensional table* 
two operands, varying* 
twos complement form* 
TYPE clause* 
type indicators for lister 211 
TYPRUN parameter 31 

U-type abend 529,254 
UCS parameter 60 
unary operator* 
unblocked files* 
unblocked records 

fixed-length 160-161 
permissible file techniques 84 
spanned 164-165 
variable-length 161-163 

unblocking, automatic* 
UNCATLG subparameter 68 
unconditional GO TO* 
unconditional syntax-checking compilation 
undefined length records (see unspecified 
length records) 

unequal fields 286-287 
unequal size operands in nonnumeric 
comparisons* 

unique table references* 
UNIQUEKEY specification (VSAM) 179 
unit, requesting 58 
UNIT option* 
UNIT parameter 

creating data sets with 131 
description 58 
multivolume data sets using 99-100 
retrieving data sets with 139 
sort programs using 369 
subparameters 59 

unit record data set 133 
unit record device,DD statement for 141 
unit record file* 
UNIT sub parameters 59 
unloaded files (VSAM) 185 
unrolling (optimization) 279 
unsigned data, USAGE* 
unsigned integer, stop* 
unsigned numeric literal* 
unsigned operand* 

unspecified length records, fo:··mat 161 
unspec~fied record format (see U-mode 

records) 
UNSTRING statement 299,* 
unswitching (optimization) 280 
UNTIL option* 
UPDATE Specification in VSAM ~79 
updating files* 
UPGRADE specification in VSAM 179 
upon options* 
upper-case letters. in job control 

notation 25 
UPSI.switches 293,48.* 

41 

*Consult VS COBOL for OS/VS (GC26-3857 



USAGE clause 
additional information* 
causing errors 255 
efficient use of 288-290 
example 236 

USE AFTER ERROR option 
description 148-149,183-184 
in file processing techniques 491-494 

USE BEFORE REPORTING* 
USE FOR DEBUGGING 

additional information* 
controlled by DEBUG option 48 
effect on SYMDMP option 41 
effect on TEST option 47 
example 250 
general 248-249 
subroutine for 482 

USE PROCEDURES* 
USE statement (see declaratives) 
user abends 529,254,44 
user catalog (VSAM) 176 
user completion code 529,254, 44 
user-defined files 82 
user-defined word* 
user file processing 

non-VSAM files 82-159 
ASCII files 89-90 
data set organization 83 
direct file processing 91 
error processing 143-154 
indexed sequential 119-130 
label processing 154-159 
names 82 
physical sequential 85-89 
processing techniques 83-130 
relative file processing 110-118 
standard (physical) sequential 85-89 

VSAM files 173-202 
access method services 174-180,186 
COBOL language usage 193-201 
converting non-VSAM files 201-202 
current record pointer 181 
error handling 183-184 
features unavailable 202 
initial loading of records 188 
ISAM programs with 201-202 
JCL for 201 
password usage 181 
programming consideration 180-191 
status key values 183 

for action requests 192-193 
for OPEN requests 184-188 

types of data sets 173-174 
warning 183 

user-initiated dumps 254 
user label procedure 156-157 
user labels 155-159 

(see also labels) 
and ASCII files 158-159 
exit list codes 158 
exits 158 
return codes 158 
totaling 156 

• user libraries 349-354,69 
'< user parameters for execution 48 

User Program Status Indicator 
(see UPSI switches) 

.Consult VS COBOL for OS/VS (GC26-3857) 

user-specified collating sequences 
(see collating sequence) 

user-specified data sets 78-79 
USING option 

for execution parameters 48,* 
in sort/merge 368,* 

utility da~s sets 
and job control procedures 21 
for compilation 73,75 
for linkage editing 78,77 

utility programs 
IEBUPDTE 348,349 
IEHLIST 278 
IEHMOVE 347 
IEHPROGM 277 

utility subroutines for communications 
ILBDCJS 436-438,480 
ILBOQSU 479,487 

V, in CURRENCY sign and PICTURE clause* 
V recording mode* 
valid and invalid elementary moves* 
valid execution sequence, PERFORM* 
validity checking* 
VALUE clause* 
VALUE OF clause* 
value of numers literal* 
value range of conditional GO TO* 
variable-length item* 
variable-length record size specification* 
variable-length records 

additional information* 
and OCCURS DEPENDING ON 170-172 
description 161 
format 161-164 

variable-length table* 
variable line lengths* 
variable page spacing* 
variable record sizes* 
varying operands and options* 
VB REF compiler option 44 
VBSUM compiler option 44 
verb* 
VERB compiler option 39,237 
verb cross-reference 44 
verb summary 44 
verb usage (count) 44 
verbs, techniques with 295-299 
VERIFY . 

FCB 59 
implicit in VSAM 184 
UCS 60 

vertical page positioning* 
vertical spacing* 
virtual storage access method (see VSAM 

and user file processing) 
volume 

definition 18 
labels 154-159 

ASCII 159 
nonstandard 151. 
standard 155-156 

magnetic tape 64 
mass.storage 63,64 
nonspecific 63 

Index 589 



prameter (see VOLUME parameter) 
permanently resident 63 
pri vate 64 

64 
64 

64 
63 

public 64 
reference 
removable 
reserved 
specific 
state 64 
storage 64 

volume, switching 99 
volume-count subparameter 65 
volume lables* 
VOLUME parameter 63-65 

creating data sets with 133 
description 63-64 
retrieving data sets with 139 
subparameters 65 
with UNIT parameter 59 

volume removal* 
volume-sequence-number subparameter 65 
volume swi tch* 
VSAM (virtual storage access method) files 

additional information* 
AFF subparameter 59 
AMP parameter 69 
DEFER subparameter 59 
DUMMY parameter 56 
features not available 202 
file processing (see user file 

proc ess in g) 
JOBCAT statement 
SEP subparameter 
SHR subparameter 
STEPCAT statement 
user catalog 70 
warning about 183 

70 
£;9 
68 

70 

VSAM subroutines 479 

W (warning severity level 238,35 
wait state time limit 21 
wait status* 
wait subroutine 478 
warning 

used as a severity level 
(W) 35,238 
using status key with VSAM 183 

WHEN-COMPILED special. register* 
WHEN option of SEARCH ALL* 
W1TB D~aUGGING MOP~ 

additional information* 
controlled by DEBUG option 48 
effect on SYMDMP 41 
effect on TEST 47 
general 248-249 

with footing* 
with NO REWIND* 
with phrase of SEND* 
word 62,* 
workfile under VSAM 179 
Working-Storage section 

590 

additional information* 
finding in dump 285 
location and length, determining 237 
REA~ INTO option 296 

separate modules 285 
WRITE FROM option 296 

WRITE ADVANCING 297,* 
WRITE AFTER ADVANCING option 

"additional information* 
ADV option 44 
restriction with PRTSP parameter 87 
use of 85 

WRITE AFTER POSITIONING option 
restriction with PRTSP parameter 87 
use of 85 

WRITE FROM option 296 
WRITE statement 

additional information* 
causing errors with 257 
in VSAM 193-195 

x, in CURRENCY SIGN and PICTURE clause* 
XREF option 

for compilation 42 
for linkage editing 47 

Z, in CURRENCY SIGN and PICTURE clauses* 
'zero* 
ZERO (ZEROES, ZEROS) figurative constant* 
zero filling* 
ZERO sign test rules* 
zero suppression* 
zero value* 
zoned decimal item* 
ZWB compiler option 40 

*Consult VS COBOL for OS/VS (GC26-3857) 




