
Systems

GC26-3793-4
File No. 8370-30

OSI VS Data Management
Macro Instructions

VS1 Release 4
VS2 Release 3

, ,----

\>· --~-~

Fifth Edition (February 1975)

This edition replaces the previous edition (numbered GC26-3793-3) and makes that edition obsolete.

This edition applies both to Release 4 of OS/VS 1 and to Release 3 of OS/VS2, and to all subsequent
releases of either system unless otherwise indicated in new editions or technical newsletters.
(Information on the Mass Storage System is only for planning purposes until the availability of that
product..)

Significant system changes are summarized under "OS/VSl Summary of Amendments" or "OS/VS2
Summary of Amendments" following the list of figures. In addition, miscellaneous editorial and
technical changes applicable to either or both of OS/VS 1 and OS/VS2 have been made throughout the
publication. Each technical change is marked by a vertical line to the left of the change.

Information in this publication is subject to significant change. Any such changes will be published in

'

new editions or technical newsletters. Before using the publication, consult the latest Virtual Storage
Supplement (to IBM. System/360 and System/370 Bibliography), GC20-0001, and the technical
newsletters that amend the bibliography, to learn which editions and technical newsletters are
applicable and current.

Requests for copies of IBM publications should be made to the IBM branch office that serves you.

Forms for readers' comments are provided at the back of the publication. If the forms have been
removed, comments may be addressed to IBM Corporation, System Development Division, LDF
Publishing-Department J04, 1501 California Avenue, Palo Alto, California 94304. All comments and
suggestions become the property of IBM.

© Copyright International Business Machines Corporation 1972, 1973, 1975

PREFACE

This publication contains descriptions and definitions for the data management macro
instructions, other than those of VSAM (virtual storage access method), available in the
assembler language. It provides application and system programmers with the necessary
information to code the macro instructions.

Most of the information in this book applies to both OS/VSl and OS/VS2. Information
that applies only to OS/VSl or OS/VS2 is explicitly identified in the text.

This publication is divided into these parts:

• "Introduction," which contains a general description of macro instructions, the rules
to be followed when macro instructions are coded, and a description of the notational
conventions used throughout the publication.

• "Macro Instruction Descriptions," which describes the function of each macro
instruction and defines how each macro instruction is to be coded. The macro
instructions are presented in alphabetic order with each macro instruction beginning
on a right-hand page. The standard form of each macro instruction is described first,
followed by the description of the list and execute form instructions; the list and
execute forms are available only for those macro instructions that pass parameters in a
list.

• "Appendix A: Status Information Following an Input/Output Operation," which
includes information about error indications available following an input/ output
operation.

• "Appendix B: Data Management Macro Instructions Available by Access Method,"
which lists the macro instructions available for each of the data management access
methods.

• "Appendix C: Device Capacities," which lists device capacities that can be used as a
guide when coding the block size and logical record length operands in the DCB
macro instruction.

• "Appendix D: DCB Exit List Format and Contents," which describes the format and
content of the data control block exit list.

• "Appendix E: Control Characters," which contains information about the control
characters used to control spacing and skipping (printers) and stacker selection (card
read punch or card punch).

• "Appendix F: Data Control Block Symbolic Field Names," which lists the location,
alignment, and description of the data control block symbolic field names.

• "Appendix G: Event Control Block," which lists the location, alignment, and
description of the event control block symbolic field names.

• "Appendix H: PDABD Symbolic Field Names," which lists the location, alignment
and description of the PDABD dummy control section.

• "Index," which provides topic references to information in this book.

Preface 3

Prerequisite Publications
Before coding data management macro instructions, you should be familiar with the
information in the following publications:

• OS/VS-DOS/VS-VM/370 Assembler Language, GC33-4010

• OS/VS Data Management Services Guide, GC26-3783

• OS I VS 1 Supervisor Services and Macro Instructions, GC24-5103

• OS/VS2 Supervisor Services and Macro Instructions, GC28-0683

Related Macro Instruction Publications
The following publications contain descriptions of macro instructions for VSAM and for
specialized applications such as teleprocessing, graphics, and magnetic/ optical character
recognition devices:

• OS Data Management Services and Macro Instructions for IBM
1285/1287/1288, GC21-5004

• OS Data Management Services and Macro Instructions for IBM 1419/ 1275,
GC21-5006

• OS and OS/VS Programming Support for the IBM 3505 Card Reader and
IBM 3525 Card Punch, GC21-5097

• OS/VS BTAM, GC27-6980

• OS/VS Graphic Programming Services (GPS) for IBM 2250 Display Unit,
GC27-6971

• OS/VS Graphic Programming Services (GPS) for IBM 2260 Display Station
(Local Attachment), GC27-6972

• OS/VS IBM 3886 Optical Character Reader Model 1 Reference, GC24-5101

• IBM 3890 Document Processor Machine and Programming Description,
GA24-3612

• OS/VS Virtual Storage Access Method (VSAM) Options for Advanced
Applications, GC26-3 819

• OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide, GC26-3838

4 OS/VS Data Management Macro Instructions

Related System Publications
This book refers to other publications that contain additional information about the
operating system. Depending on the requirements of the individual installation, an
application or system programmer may need these publications to code programs for the
data management access methods.

In the list that follows, books designated OS/VS apply to both VSl and VS2; books
designated OS/VSl apply only to VSl; and books designated OS/VS2 apply only to
VS2.

• OS/VS Checkpoint/Restart, GC26-3784

• OS/VS Linkage Editor and Loader, GC26-3813

• OS/VS Utilities, GC35-0005

• OS/VSJ Data Management for System Programmers, GC26-3837

• OS/VSJ Debugging Guide, GC24-5093

• OS/VSJ JCL Reference, GC24-5099

• OS/VSJ JCL Services, GC24-5100

• OS/VSJ Supervisor Services and Macro Instructions, GC24-5103

• OS/VSJ System Data Areas, SY28-0605

• OS/VSJ System Generation Reference, GC26-3791

• OS /VS2 JCL, GC28-0692

• OS/VS2 Supervisor Services and Macro Instructions, GC28-0683

• OS /VS2 System Programming Library: Data Management, GC26-3830

• OS/VS2 System Programming Library: Debugging Handbook, GC28-0632

• OS/VS2 System Programming Library: System Generation Reference_, GC26-3792

Preface 5

CONTENTS

,
Preface .. 3
Prerequisite Publications .. 4
Related Macro Instruction Publications ... 4
Related System Publications ... 4

Figures .. 11

OS/VSI Summary of Amendments ... 13
Release 4 .. 13
Release 3 13
Release 2 ... ; 14

OS/VS2 Summary of Amendments ... 15
Release 3 .. 15
Release 2 . 15

Introduction . 17
Data Management Macro Instructions ... 17
Coding Aids .. 1 7

Bold Type 17
Italic Type .. 18
Brackets . 18
OR Sign .. 18
Braces ... 18
Ellipses . 19
Underscoring .. 19
Blank Symbol ... 19
Comprehensive Example 19

Macro Instruction Format ... 20
Rules for Register Usage .. 22
Rules for Continuation Lines ... 23

Macro Instruction Descriptions .. 25
BLDL-Build a Directory Entry List (BP AM) ... 27

Completion Codes ... 28
BSP-Backspace a Physical Record (BSAM-Magnetic Tape and

Direct Access Only) .. 29
Completion Codes ... 29

BUILD-Build a Buffer Pool (BDAM, BISAM, BP AM, BSAM,
QISAM, and QSAM) .. 31

BUILDRCD-Build a Buffer Pool and a Record Area (QSAM) 33
BUILDRCD-List Form ... 35
BUILDRCD-Execute Form ... 37
CHECK-Wait for and Test Completion of a Read or Write Operation (BDAM,

BISAM, BPAM, and BSAM) .. 39
CHKPT-Take a Checkpoint for Restart Within a Job Step (BDAM, BISAM,

BP AM, BSAM, QISAM, and QSAM) .. 41
CHKPT-List Form ... 45
CHKPT-Execute Form .. 47
CLOSE-Logically Disconnect a Data Set (BDAM, BISAM, BP AM, BSAM,

QISAM, and QSAM) .. 49
CLOSE-List Form ... 53
CLOSE-Execute Form .. 55
CNTRL-Control Online Input/Output Device (BSAM and QSAM) 57
DCB-Construct a Data Control Block (BDAM) ... 61

Contents 7

DCB-Construct a Data Control Block (BISAM) .. 69
DCB-Construct a Data Control Block (BP AM) ... 7 5
DCB-Construct a Data Control Block (BSAM) .. 83
DCB-Construct a Data Control Block (QISAM) .. 101
DCB-Construct a Data Control Block (QSAM) ... 111
DCBD-Provide Symbolic Reference to Data Control Blocks (BDAM, BISAM,

BPAM, BSAM, QISAM, and QSAM) .. 129
ESETL-End Sequential Retrieval (QISAM) ... 131
FEOV-Force End of Volume (BSAM and QSAM) .. 133
FIND-Establish the Beginning of a Data Set Member (BP AM) 135

Completion Codes ... 135
FREEBUF-Return a Buffer to a Pool (BDAM, BISAM, BP AM, and BSAM) 137
FREEDBUF-Return a Dynamically Obtained Buffer (BDAM and BISAM) 139
FREEPOOL-Release a Buffer Pool (BDAM, BISAM, BPAM, BSAM, QISAM,

and QSAM) ... 141
GET-Obtain Next Logical Record (QISAM) .. 143
GET-Obtain Next Logical Record (QSAM) ... 145

GET Routine Exits .. 147
GETBUF-Obtain a Buffer (BDAM, BISAM, BP AM, and BSAM) 149
GETPOOL-Build a Buffer Pool (BDAM, BISAM, BP AM, BSAM, QISAM, and

QSAM) .. 151
NOTE-Provide Relative Position (BP AM and BSAM-Tape and

Direct Access Only) .. 153
OPEN-Logically Connect a Data Set (BDAM, BISAM, BP AM, BSAM,

QISAM, and QSAM) .. 155
OPEN-List Form ... 159
OPEN-Execute Form .. 161
PDAB-Construct a Parallel Data Access Block (QSAM) ... 163
PDABD-Provide Symbolic Reference to a Parallel Data Access Block (QSAM) 165
POINT-Position to a Relative Block (BP AM and BSAM-Tape and

Direct Access Only) .. 167
PRTOV-Test for Printer Carriage Overflow (BSAM and QSAM-Online

Printer and 3525 Card Punch, Print Feature) ... 169
PUT-Write Next Logical Record (QISAM) ... 171

PUT Routine Exit .. 172
PUT-Write Next Logical Record (QSAM) .. 173

PUT Routine Exit .. 17 4
PUfX-Write a Record from an Existing Data Set (QISAM and QSAM) 175

PlJ'IX Exit Routine ... 17 5
READ-Read a Block (BDAM) .. 177
READ-Read a Block of Records (BISAM) ... 181
READ-Read a Block (BP AM and BSAM) ... 183
READ-Read a Block (Offset Read of Keyed BDAM Data Set Using BSAM) 185
READ-List Form ... 187
READ-Execute Form .. 189
RELEX-Release Exclusive Control (BDAM) ... 191

Completion Codes ... 191
RELSE-Release an Input Buffer (QISAM and QSAM Input) 193
SETL-Set Lower Limit of Sequential Retrieval (QISAM Input) 195

SETL Exit .. 196
SETPRT-Load UCS and FCB Images (BSAM, QSAM, and EXCP) 197

Completion Codes ... 199
SETPRT-List Form ... 201
SETPRT-Execute Form ... 203

8 OS/VS Data Management Macro Instructions

STOW-Update Partitioned Data Set Directory (BP AM) .. 205
Completion Codes ·····+························· .. 207

SYN~~.p~~~': ~it~ ~al~~~~~.~~~~'..~~~~:.~~~'. 209
Completion Codes j ... 211

s~~~~~;1:~~~Af)Af;·:S~rr~~-~~<l-~i~~~-~~~~-(enAM·:sisAM:············ 212

BPAM, BSAM, EXCP, QISAM, and QSAM) .. 213
TRUNC-Truncate an Output Buffer (QSAM Output-Fixed- or

Variable-Length Blocked Records) ... 215
WAIT-Wait for One or More Events (BDAM, BISAM, BPAM, and BSAM) 217
WRITE-Write a Block (BDAM) ... 219
WRITE-Write a Logical Record or Block of Records (BISAM) 221
WRITE-Write a Block (BP AM and BSAM) ... 223
WRITE-Write a Block (Create a BDAM Data Set with BSAM) 225

Completion Codes ... 227
WRITE-List Form ... 229
WRITE-Execute Form .. 231
XLA TE-Translate to and from ASCil (BSAM and QSAM) 233

Appendix A: Status Information Following an Input/Output Operation 235
Data Event Control Block .. 235

Appendix B: Data Management Macro Instructions Available by Acee~ Method 243

Appendix C: Device Capacities .. 245
Card Readers and Card Punches .. 245
Printers ... 245
Paper-Tape Reader ... 245
Magnetic-Tape Units .. 245
Direct-Access Devices .. 246

Appendix D: DCB Exit List Format and Contents ... 247

Appendix E: Control Characters .. 249
Machine Code .. 249
American National Standards Institute Control Characters ... 250

Appendix F: Data Control Block Symbolic Field Names ... 251
Data Control Block-Common Fields ... 251
Data Control Block-BP AM, BSAM, QSAM ... 252

Direct-Access Storage Devices Interface ... 254
Magnetic Tape Interface .. 254
Paper Tape Interface .. 255
Card Reader, Card Punch Interface ... 255
Printer Interface ... 256
Access Method Interface ... 256

BSAM, BP AM Interface .. 256
QSAM Interface ... 257

Data Control Block-ISAM ... 259
Data Control Block-BDAM ... 262

Appendix G: Event Control Block ... 265

Appendix H: PDABD Symbolic Field Names ... 267

Index ... 269

Contents 9

FIGURES

Figure 1. Exception Code Bits-BISAM .. 236
Figure 2. Exception Code Bits--QISAM .. 237
Figure 3. Exception Code Bits-BDAM .. 239
Figure 4. Register Contents on Entry to SYNAD Routine--QISAM 240
Figure 5. Register Contents on Entry to SYNAD Routine-BISAM 240
Figure 6. Register Contents on Entry to SYNAD Routine-BDAM, BP AM,

BSAM, and QSAM .. 241
Figure 7. Status Indicators for the SYN AD Routine-BDAM, BP AM,

BSAM, and QSAM .. 242

Figures 11

OS/VSl SUMMARY OF AMENDMENTS

Release 4

New Programming Support

Release 3

New Devices

The IBM 3850 Mass Storage System (MSS) is supported with this release. The MSS
virtual volumes are functionally equivalent to the 3330/3333 Disk Storage, Model 1. For
information on MSS, see OS/VS Mass Storage System (MSS) Planning Guide,
GC35-0011. MSS information is provided for planning purposes only until the system is
available.

A new completion code for the BLDL macro has been added.

• The IBM 3330 Disk Storage (Model 11), IBM 3333 Disk Storage and Control
(Model 11), and the IBM 3340 Disk Storage are now supported with this release.

• The system also supports the 3420 for Models 4, 6, and 8.

• The IBM 3890 Document Processor and IBM 3886 Optical Character Reader are
supported with this release. For information on changes to macro instructions for
these devices, see IBM 3890 Document Processor Machine and Programming
Description, GA24-3612, or OS/VS IBM 3886 Optical Character Reader Model
1 Reference, GC24-5101.

OthE~r Technical Changes

Editorial Changes

• Reason and return codes are now returned in registers 0 and 15, respectively, for
BLDL, BSP, FIND, and the STOW macro instructions.

• The PDAB and PDABD macro instructions have been added for QSAM parallel input
processing. The GET macro instruction for QSAM has also been changed to handle
parallel input processing.

• The WAIT macro instruction has been added.

• The device capacity tables in Appendix C have been revised.

• Two charts of machine code control characters for printers and card punches have
been added to Appendix E.

• A new appendix has been added which describes the symbolic field names in the
PDABD macro instruction (Appendix H).

OS/VS 1 Summary of Amendments 13

Release 2

New Devices

New Function

• The 3505 Card Reader and the 3525 Card Punch are now supported by VSl; the
macro instructions affected by this change are CLOSE, CNTRL, DCB (BSAM and
QSAM), OPEN, and PRTOV.

• The 2305-1 Drum Storage and the new 3333 Disk Storage are also now supported by
VSl; capacity data for these devices has been added to the tables in Appendix C.

• DEB validity checking, a data protection feature formerly supported only by VS2, is
now supported by VS 1; this change affects the OPEN macro instruction.

Miscellaneous Changes

• Describe register contents upon entry to an EODAD routine (DCB macro instruction
for BPAM, BSAM, QISAM, and QSAM).

• Restrict use of the temporary close (TYPE=T) option in a SYNAD routine (CLOSE
macro instruction).

• Expand the description of the LEA VE option (FEOV macro instruction for BSAM
and QSAM).

• Define a new return code for the CHKPT macro instruction.

• Delete tape labels as a source of buff er alignment (BF ALN) data (DCB macro
instruction for all access methods).

14 OS/VS Data Management Macro Instructions

OS/VS2 SUMMARY OF AMENDMENTS

Release 3

New Programming Support

Release 2

New Devices

The IBM 3850 Mass Storage System (MSS) is supported with this release. The MSS
virtual volumes are functionally equivalent to the 3330/3333 Disk Storage, Model 1. For
information on MSS, see OS/VS Mass Storage System (MSS) Planning Guide,
GC35-001 l. MSS information is provided for planning purposes only until the system is
available.

Exchange buffering support was removed for VS2 because it can badly affect
performance in a virtual system. If exchange buffering is specified, it will be ignored by
the system. If exchange buffering is denied by the system for any reason, move mode will
be used instead. Move mode is compatible with exchange buffering.

Chained scheduling will now be supported by VS2 whether it is requested or not (except
for printers and format-U input records). This support was changed to improve
performance in a virtual system. Chained scheduling will not be used where it previously
was not allowed.

For QSAM, BUFNO will now default to 5 buffers instead of 2.

Information for Release 2 is provided for planning purposes only until this system is
released.

• The IBM 3330 Disk Storage (Model 11), IBM 3333 Disk Storage and Control
(Model 11), and the IBM 3340 Disk Storage are supported with this release.

• The system also supports the 3420 for Models 4, 6, and 8.

• The IBM 3890 Document Processor and IBM 3886 Optical Character Reader are
supported with this release. For information on changes to macro instructions for
these devices, see IBM 3890 Document Processor Machine and Programming
Description, GA24-3612, or OS/VS IBM 3886 Optical Character Reader Model
1 Reference, GC24-5101.

Other Technical Changes

• Reason and return codes are now returned in registers 0 and 15, respectively, for
BLDL, BSP, FIND, and STOW macro instructions.

• The PDAB and PDABD macro instructions have been added for QSAM parallel input
processing. The GET macro instruction for QSAM has also been changed to handle
parallel input processing.

• The FREE option for the CLOSE macro instruction has been added.

• Any task sharing a DCB (which it did not open) can now issue the RELEX macro
instruction to release exclusive control of a data block.

• Chained scheduling is supported in a virtual address space.

OS/VS2 Summary of Amendments 15

Editorial Changes

• The WAIT macro instruction has been added.

• The direct-access device capacity tables in Appendix C have been revised.

• Two charts of machine code control characters for printers and card punches have
been added to Appendix E.

• A new appendix has been added which describes the symbolic field names in the
PDABD macro instruction (Appendix H).

16 OS/VS Data Management Macro Instructions

INTRODUCTION

Data Management Macro Instructions

Coding Aids

Bold Type

A set of macro instructions is provided by IBM for communicating service requests to the
data management access method routines.- These macro instructions are available only
when the assembler language is being used, and they are processed by the assembler
program using macro definitions supplied by IBM and placed in the macro library when
the operating system is generated.

The processing of the macro instruction by the assembler program results in a macro
expansion, generally consisting of executable instructions and data in the form of
assembler-language statements. The data fields a:re the parameters to be passed to the
access method routine; the executable instructions generally consist of a branch around
the data fields, instructions to load registers, and either a branch instruction or supervisor
call (SVC) to give control to the proper program. The exact macro expansion appears as
a part of the assembler listing.

A listing of a macro definition from SYS 1.MACLIB (the library in which macro
definitions are stored) can be obtained by using the utility program IEBPTPCH, which is
described in OS/VS Utilities.

Before macro instructions are coded using this publication, the user should be familiar
with the information contained in OS I VS Data Management Services Guide.

When programs that request supervisor services are being coded, the user should be
familiar with the information contained in OS/VSJ Supervisor Services and Macro
Instructions or OS/VS2 Supervisor Services and Macro Instructions.

When programs are being coded for more specialized applications such as teleprocessing,
graphics, character recognition, or to use VSAM (virtual storage access method), the
publication that describes the specific access method and/ or device type should be used.
Publications containing descriptions of the macro instructions for teleprocessing,
graphics, character recognition devices, and VSAM are listed in the preface of this
publication.

The operation of some macro instructions depends on the options selected when the
macro instruction is coded. For these macro instructions, either separate descriptions are
provided or the differences are listed within a single description. If no differences are
explicitly listed, none exist. The description of each macro instruction starts on a
right-hand page; the descriptions that do not apply to the access methods being used can
be removed. Appendix B provides a list of the macro instructions available for each
access method.

Bold type is used for elements that you must code exactly as they are shown. These
elements consist of macro names, keywords, and these punctuation symbols: commas,
parentheses, and equal signs. Examples:

• DCB

• CLOSE ,,,, TYPE= T

• MACRF=(PL,PTC)

• SK,5

Introduction 17

Italic Type

Brackets

OR Sign

Braces

Italic type is used for elements for which you code values that you choose, usually
according to specifications and limits described for each parameter. Examples:

• number

• image-id

• count

Brackets, [],are used to enclose optional elements, which you may code or not code as
you choose. Examples:

• [length]

• [MF=E]

The OR sign, I, is used to separate alternative elements. Examples:

• [,REREAD I ,LEA VE]

• [length I 'S']

Braces, { } , are used to enclose alternative elements for which you must choose exactly
one element, but never more than one element and never no element. Alternative items
are usually separated by OR signs. Examples:

• BFfEK={S IE I A}

• {KID}

• { address IS IO}

Sometimes, alternative elements--especially complicated alternatives-are grouped in a
vertical stack of braces. Examples:

• MACRF= {(R[C IP])}

{(W[C Ip IL])}

{ (R[C], W[C])}

• DEVD= {DA
[,KEYLEN = absexp]}

{TA
[,DEN={O 1112 I 3 I 4}]
[,TRTCH={C IE I ET IT}]}

{PT
[,CODE= {A I B I c I F I I I N I T}]}

•) DA[F]

DI[F IX]

DK[F IX]

18 OS/VS Data Management Macro Instructions

Ellipses

Underscoring

Blank Symbol

In these examples, you must choose exactly one element--one line-from the stack of
alternative elements.

Ellipses, ... , indicate that elements may be repeated. Example:

• (dcbaddr,[(options)], ...)

Underscored elements indicate those alternative choices that are assumed if you don't
make an explicit choice. Examples:

8 HIARCHY={!! 11}

• BFALN={FID}

The blank symbol, b, is used to indicate the absence of operands. Example:

IPDABD

Comprehensive Example

• MF=(E,{ address 1(1)})

In this example, MF=(E, must be coded exactly as shown. Then, either address or (1)
must be coded; the parentheses around the 1 are required. Finally, the closing
parenthesis must be coded. Thus, MF=(E,(1)) might be coded.

• RECFM= {U[T][A I M]}

{V[B I S I T I BS I BT][A I M]}

{D[B][A]}

{F[B I S I T I BS I BT][A I M]}

In this example, the first choice is among the four alternative elements (on four
separate lines). Then, choices must be made within the major element chosen.
Assuming that the major element beginning with F were chosen, you would code F;
then you would choose one of B, S, T, BS, or BT if you liked; and, finally, you would
choose one of A or M if you liked. Thus, FBTM or FA might be coded.

Introduction 19

Macro Instruction Format
Data management macro instructions are written in the assembler language and, as such,
are subject to the rules contained in OS/VS-DOS/VS-VM/370 Assembler Language.
Data management macro instructions, like all assembler language instructions, are
written in the following format:

Name Operation Operands Comme

Symbol Macro name None, one or more operands separated
or by commas
blank

The operands are used to specify services and options to be used and are written
according to the following general rules:

• If the selected operand is shown in bold capital letters (for example, MACRF=WL),
code the operand exactly as shown.

• If the selected operand is a character string in bold type (for example, if the type
operand of a READ macro instruction is SF), code the operand exactly as shown.

• If the operand is shown in italic lowercase letters (for example, deb address),
substitute the indicated address, name, or value.

• If the operand is a combination of bold capital letters and italic lowercase letters (for
example, LRECL=absexp), code the capital letters and equal sign exactly as shown
and substitute the appropriate address, name, or value for the italic lowercase letters.

• Commas and parentheses are coded exactly as shown, except that the comma
following the last operand coded should be omitted. The use of commas and
parentheses is indicated by brackets and braces in the same manner as brackets and
braces indicate the use of operands.

• Several macro instructions contain the designation 'S'. This operand, when used, must
have the apostrophe on both sides of the S.

When substitution of a name, value, or address is required, the notation used to specify
the operand depends on the operand being coded. The following shows two examples of
the notations used to indicate how an operand can be coded:

DDNAME=Symbol
In the above example, the only type of operand that can be coded is a valid
assembler-language symbol.

deb address-RX-Type Address, (2-12), or (1)
In the above example, the operand that can be substituted can be an RX-type address,
any of the general registers 2 through 12, or general register 1.

The following describes the meaning of each notation used to show how an operand can
be coded:

symbol
When this notation is shown, the operand can be any valid assembler-language
symbol.

decimal digit
When this notation is shown, the operand can be any decimal digit up to the maximum
value allowed for the specific operand being described.

20 OS/VS Data Management Macro Instructions

(2:.12)
When this notation is shown, the operand specified can be any of the general registers
2 through 12. All registers as operands must be coded in parentheses; for example, if
register 3 is coded, it is coded as (3). When one of the registers 2 through 12 is used,
it can be coded as a decimal digit, symbol (equated to a decimal digit), or an
expression that results in a value of 2 through 12.

(1)
When this notation is shown, general register 1 can be used as an operand. When used
as an operand in a macro instruction, the register must be specified as the decimal
digit 1 enclosed in parentheses as shown above.

(0)
When this notation is shown, general register 0 can be used as an operand. When used
as an operand in a macro instruction, the register must be specified as the decimal
digit 0 enclosed in parentheses as shown above.

RX-Type Address
When this notation is shown, the operand can be specified as any valid
assembler-language RX-type address. The following shows examples of each valid
RX-type address:

Name Operation Operand

ALPHAl L 1,39(4,10)
ALPHA2 L REGl,39(4,TEN)
BET Al L 2,ZETA(4)
BETA2 L REG2,ZET A(REG4)
GAMMAl L 2,ZETA
GAMMA2 L REG2,ZETA
GAMMA3 L 2,=F'lOOO'
LAMBDAl L 3,20(,5)

Both ALPHA instructions specify explicit addresses; REG 1 and TEN are absolute
symbols. Both BET A instructions specify implied addresses, and both use index
registers. Indexing is omitted from the GAMMA instructions. GAMMAl and
GAMMA2 specify implied addresses. The second operand of GAMMA3 is a literal.
LAMBDAl specifies an explicit address with no indexing.

A-Type Address
When this notation is shown, the operand can be specified as any address that can be
written as a valid assembler-language A-type address constant. An A-type address
constant can be written as an absolute value, a relocatable symbol, or relocatable
expression. Operands that require an A-type address are inserted into an A-type
address constant during the macro expansion process. For more details about A-type
address constants, refer to OS/VS-DOS/VS-VM/370 Assembler Language.

absexp
When this notation is shown, the operand can be an absolute value or expression. An
absolute expression can be an absolute term or an arithmetic combination of absolute
terms. An absolute term can be a nonrelocatable symbol, a self-defining term, or the
length attribute reference. For more details about absolute expressions, refer to
OS/VS-DOS/VS-VM/370 Assembler Language.

relexp
When this notation is shown, the operand can be a relocatable symbol or expression.
A relocatable symbol or expression is one whose value changes by n if the program in
which it appears is relocated n bytes away from its originally assigned area of storage.
For more details about relocatable symbols and expressions, refer to
OS/VS-DOS/VS-VM/370 Assembler Language.

Introduction 21

Rules /or Register Usage

Many macro instruction expansions include instructions that use a base register
previously defined by a USING statement. The USING statement must establish
addressability so that macro expansion can include a branch around the in line parameter
list, if present, and refer to data fields and addresses specified in the macro instruction
operands.

Macro instructions that use a BAL or BALR instruction to pass control to an access
method routine, normally require that register 13 contain the address of an 18-word
register-save area. The READ, WRITE, CHECK, GET, and PUT macro instructions are
of this type.

Macro instructions that use a supervisor call (SVC) instruction to pass control to an
access method routine may modify general registers 0, 1, 14, and 15 without restoring
them. Unless otherwise specified in the macro instruction description, the contents of
these registers are undefined when the system returns control to the problem program.

When an operand is specified as a register, the problem program must have inserted the
value or address to be used into the register as follows:

• If the register is to contain a value, it must be placed in the low-order portion of the
register unless the macro instruction description states otherwise. Any unused bits in
the register should be set to zero.

• If the register is to contain an address, the address must be placed in the low-order
three bytes of the register, and the high-order byte of the register should be set to
zero.

Note that if the macro instruction accepts the RX-type address, the high-order byte of a
register can be efficiently cleared by coding the parameter as 0 (reg) rather than just
(reg). Then the macro instruction expands as:

LA parmreg,O(reg)

rather than:

LA reg,O(reg)

and

LR parmreg,reg

22 OS/VS Data Management Macro Instructions

by macro

by user

by macro

Rules for Continuation Lines

The operand field of a macro instruction can be continued on one or more additional
lines as follows:

1. Enter a continuation character (not blank, and not part of the operand coding) in
column 72 of the line.

2. Continue the operand field on the next line, starting in column 16. All columns to the
left of column 16 must be blank.

The operand field being continued can be coded in one of two ways. The operand field
can be coded through column 71, with no blanks, and continued in column 16 of the next
line, or the operand field can be truncated by a comma, where a comma normally falls,
with at least one blank before column 71, and then continued in column 16 of the next
line. An example of each method is shown in the following illustration:

Name Operation Operand Comments

NAME1 OP1

NAME2 OP2

OPERAND1,0PERAND2,0PERAND3,0PERAND4,0PERAND5,0PERAND6,0PERAND7,0PEX
RANDS THIS IS ONE WAY

OPERAND1,0PERAND2,
OPERAND3,
OPERAND4

THIS IS ANOTHER WAY x
x

Introduction 23

MACRO INSTRUCTION DESCRIPTIONS

Macro Instruction Descriptions 25

BLDL-Build a Directory Entry List (BP AM)

The BLDL macro instruction is used to complete a list of information from the directory
of a partitioned data set. The problem program must supply a storage area; the area must
include information about the number of entries in the list, the length of each entry, and
the name of each data set member. (or alias) before the BLDL macro instruction is
issued. Data set member names in the list must be in alphameric order. All read and write
operations using the same data control block must have been tested for completion
before the BLDL macro instruction is issued.

The BLDL macro instruction is written as follows:

[symbol] BLDL deb address =1
, list address ,___________._____...__ ____ _

deb address-RX-type Address, (2-12), (1), or the decimal digit 0
The deb address operand specifies the address of the data control block for an open
partitioned data set, or zero can be specified to indicate that the data set is in a job
library, step library, or link library.

list address-RX-Type Address, (2-12), or (0)
The list address operand specifies the address of the list to be completed when the
BLDL macro instruction is issued. The list address must be on a halfword boundary.
The following illustration shows the format of the list:

List
List Description List

Address r~-------E-nt.,..._ .. ry_(L_L_b_ytes)

0 or
More
Entries (FF total)

Ungth I FF H NAME I I TTR l+H USER D~T~__I NAM~ D
(bytes) 2 2 8 3 1 1 1 0 to 62

FF: This field must contain a binary value indicating the total number of entries in the
list.

LL: This field must contain a binary value indicating the length, in bytes, of each entry
in the list (must be an even number of bytes). If the exact length of the entry is
known, specify the exact length. Otherwise, specify at least 5 8 bytes (decimal) if the
list is to be used with an ATTACH, LINK, LOAD, or XCTL macro instruction. The
minimum length for a list is 12 bytes.

NAME: This field must contain the member name or alias to be located. The name
must start in the first byte of the name field and be padded to the right with blanks
(if necessary) to fill the 8-byte field.

When the BLDL macro instruction is executed, five fields of the directory entry list
are filled in by the system. The specified length (LL) must be at least 14 to fill in the Z
and C fields. If the LL field is 12, only the NAME, TI, R, and K fields are returned.
The five fields are:

TI: Indicates the relative track number where the beginning of the data set member is
located.

R: Indicates the relative block (record) number on the track indicated by TI.

K: Indicates the concatenation number of the data set. For the first or only data set,
this value is zero.

Macro Instruction Descriptions: BLDL 27

Completion Codes

Z: Indicates where the system found the directory entry:

Code Meaning

0 Private library
I Link library
2 Job, task, or step library
3-255 Job, task, or step library of parent task n, where n = Z-2

C: Indicates the type (member or alias) for the name, the number of note list fields
(TTRNs), and the length of the user data field (indicated in halfwords). The following
describes the meaning of the eight bits:

Bit Meaning

0=0 Indicates a member name.
0= I Indicates an alias.
1-2 Indicate the number of TTRN fields (maximum of three) in the user data field.
3-7 Indicate the total number of halfwords in the user data field. If the list entry is to be used

with an ATTACH, LINK, LOAD, or XCTL macro instruction, the value in bits 3
through 7 is 22 (decimal).

USER DATA: The user data field contains the user data from the directory entry. If
the length of the user data field in the BLDL list is equal to or greater than the user
data field of the directory entry, the entire user data field is entered into the list.
Otherwise, the list contains only the user data for which there is space.

When the system returns control to the problem program, the low-order byte of register
15 contains a return code; the low-order byte of register 0 contains a reason code, as
follows:

Hexadecimal Codes
Return (lS) Reason (0) Meaning

00
04

08

08
oc

00
00

00

04
00

Successful completion.
One or more entries in the list could not be filled; the list supplied may be
invalid. If a search is attempted but the entry is not found, the R field (byte
11) for that entry is set to zero.
A permanent I/O error was detected when the system attempted to search
the directory.
Insufficient virtual storage was available.
The DCB for the JOBLIB or STEPLIB DD statement or the DCB specified
in the T ASKLIB parameter of the ATTACH macro was not open (VS 1
only). (If the DCB for the JOBLIB or STEPLIB DD statement was not open,
this is a system error.)

28 OS/VS Data Management Macro Instructions

BSP-Backspace a Physical Record (BSAM-Magnetic
Tape and Direct Access Only)

Completion Codes

The BSP macro instruction causes the current volume to be backspaced one data block
(physical record). All input and output operations must be tested for completion before
the BSP macro instruction is issued. The BSP macro instruction should not be used if the
CNTRL, NOTE, or POINT macro instructions are being used.

Any attempt to backspace across a file mark will result in a return code of X'04' and
your tape or direct-access volume will not be repositioned. This means you cannot issue a
successful BSP macro instruction once your EODAD routine is entered unless you first
reposition the tape or direct-access volume into your data set. (CLOSE TYPE=T would
get you repositioned at the end of your data set.)

Magnetic Tape: A backspace is always made toward the load point.

Direct-Acee~ Device: A BSP macro instruction must not be issued for a data set created
by using track overflow.

SYSIN or SYSOUT Data Sets: A BSP macro instruction is ignored, but a completion
code is returned.

The BSP macro instruction is written as follows:

I [symbol] I BSP I deb address

deb address-RX-Type Address, (2-12), or (1)
The deb address operand specifies the address of the data control block for the
volume to be backspaced. The data set on the volume to be backspaced must be
opened before issuing the BSP macro instruction.

When the system returns control to the problem program, the low-order byte of register
15 contains a return code; the lower-order byte of register 0 contains a reason code, as
follows:

Hexadecimal Codes
Return (15) Reason (0) Meaning

00 00 Successful completion.
04 01 A backspacing request was ignored on a SYSIN or SYSOUT data set for VS2

only. For VSl, this condition results in a return code of 08.
04 02 Backspace not supported for this device type.
04 03 Backspace not successful; insufficient virtual storage was available.
04 04 Backspace not successful; permanent 1/0 error.
04 05 Backspace into load point or beyond start of data set on the current volume.
08 A backspacing request was ignored on a SYSIN or SYSOUT data set for VS 1

only. For VS2, this condition results in a return code of 04.

Macro Instruction Descriptions: BSP 29

BUILD-Build a Buffer Pool (BDAM, BISAM, BPAM,
BSAM, QISAM, and QSAM)

The BUILD macro instruction is used to construct a buff er pool in an area provided by
the problem program. The buff er pool may be used by more than one data set through
separate data control blocks. Individual buffers are obtained from the buff er pool using
the GETBUF macro instruction, and buffers are returned to the buffer pool using a
FREEBUF macro instruction. Refer to OS I VS Data Management Services Guide for
an explanation of the interaction of the DCB, BUILD, and GETBUF macro instructions
in each access method, as well as the buff er size requirements.

The BUILD macro instruction is written as follows:

[symbol] BUILD area address
,{number of buffers,buffer length I (O)}

area address-RX-Type Address, (2-12), or (1)
The area address operand specifies the address of the area to be used as a buffer
pool. The area must start on a fullword boundary. The following illustration shows the
format of the buff er pool:

Area
Address

Buffer Pool
Control
Block

~ 8 bytes

Buffer

Buffer
Length

J
Area Length

l
Area Length=(Buffer Length) x (Number of Buffers) +8

number of buffers-symbol, decimal digit, absexp, or (2-12)
The number-of-bu[fers operand specifies the number of buffers in the buff er pool up
to a maximum of 255.

buffer length-symbol, decimal digit, absexp, or (2-12)
The buff er length operand specifies the length, in bytes, of each buff er in the buff er
pool. The value specified for the buff er length must be a fullword multiple; otherwise
the system rounds the value specified to the next higher fullword multiple. The
maximum length that can be specified is 32,760 bytes. For QSAM, the buffer length
must be at least as large as the value specified in the block size (DCBBLKSI) field of
the data control block.

Macro Instruction Descriptions: BUILD 31

(0)-Coded as shown
The number of buffers and buffer length can be specified in general register 0. If (0)
is coded, register 0 must contain the binary values for the number of buffers and
buffer length as shown in the following illustration.

Register 0

Bits:

~"--N-t_m_1b_e_r_of_B_u_f_fe-rs ____

1

_

5

-+-

1

_

6

_____ su_r_re_r_L_en_g-th-~

32 OS/VS Data Management Macro Instructions

BUILDRCD-Build a Buff er Pool and a Record Area
(QSAM)

The BUILDRCD macro instruction causes a buffer pool and a record area to be
constructed in a user-provided storage area. This macro is used only for variable-length,
spanned records processed in QSAM locate mode. Use of this macro before the data set
is opened, or before the end of the DCBEXIT routine, will automatically invoke a
logical-record interface rather than a segment interface for variable-length, spanned
records.

The standard form of the BUILDRCD macro instruction is written as follows (the list
and execute forms are shown following the description of the standard form):

[symbol] BUILDRCD area address
, number of buffers
, buff er length
, record area address
[,record area length]

area address-A-Type Address or (2-12)
The area address operand specifies the address of the area to be used as a buff er
pool. The area must start on a fullword boundary.

number of buffers-symbol, decimal digit, absexp, or (2-12)
The number of buffers operand specifies the number of buffers, up to a maximum of
255, to be in the buffer pool.

buffer length-symbol, decimal digit, absexp, or (2-12)
The buff er length operand specifies the length, in bytes, of each buffer in the buff er
pool. The value specified for the buffer length must be a fullword multiple; otherwise,
the system rounds the value specified to the next higher fullword multiple. The
maximum length that can be specified is 32,760.

record area address-A-Type Address or (2-12)
The record area address operand specifies the address of the storage area to be used
as a record area. The area must start on a doubleword boundary and have a length of
the maximum logical record (LRECL) plus 32 bytes.

record area length-symbol, decimal digit, absexp, or (2-12)
The record area length operand specifies the length of the record area to be used.
The area must be as long as the maximum length logical record plus 3 2 bytes for
control information. If the record area length operand is omitted, the problem
program must store the record area length in the first four bytes of the record area.

Macro Instruction Descriptions: BUILDRCD 33

The following illustration shows the format of the buff er pool:

Area
Address

BUFAD

Address of First
Available Buffer

BUFLG
!--·

Flags

BUFNO

No. of
Buffers
Req'd

BUFLTH BUFRECAD

Length of Address
Each of Record
Buffer Area J;][g

r:
i---4-by_t_es ___ , ____ I _b_y_te_I_b_yi; byte~-b-y_tc_s _____ 4_b_y_te_s ____ ,_,.,..,1i....~f-u-ff~e~..,1

Buffer Pool Control Block Length
14--------·--------------- Area Length-------------

Area Length= (Buffer Length) x (Number of Buffers) +12

BUFLG Flags:
Bit Meaning

0= 1 Record area present
1=1 Buff er control block extended
2-7 Reserved

Notes:

• The buffer control block contains the address of the record area and a flag that
indicates logical-record interlace processing of variable-length, spanned records.

• It is the user's responsibility to release the buffer pool and the record area after a
CLOSE macro instruction has been issued for all the data control blocks using the
buff er pool and the record area.

34 OS/VS Data Management Macro Instructions

BUILDRCD-List Fonn

The list form of the BUILDRCD macro instruction is used to construct a program
parameter list. The description of the standard form of the BUILDRCD macro
instruction provides the explanation of the function of each operand. The description of
the standard form also indicates which operands are totally optional and those required
in at least one of the pair of list and execute forms. The format description below
indicates the optional and required operands in the list form only.

The list form of the BUILDRCD macro instruction is written as follows:
~

[symbol] BUILDRCD area address
, number of buffers
, buff er length
, record area address
[,record area length]
,MF=L

area address -A-Type Address

number of buffers-symbol, decimal digit, or absexp

buff er length -symbol, decimal digit, or absexp

record area address-A-Type Address

record area length -symbol, decimal digit, or absexp

MF=L--Coded as shown
The MF=L operand specifies that the BUILDRCD macro instruction is used to create
a control program parameter list that will be referenced by an execute form
instruction.

Note: A control program parameter list can be constructed by coding only the MF=L
operand (without the preceding comma); in this case, the list is constructed for the area
address, number of buffers, buffer length, and record area address operands. If the
record area length operand is also required, the operands can be coded as follows:

[symbol] BUILDRCD ,,,,O,MF=L

The preceding example shows the coding to construct a list containing address constants
with a value of 0 in each constant. The actual values can then be supplied by the execute
form of the BUILDRCD macro instruction.

Macro Instruction Descriptions: BUILDRCD-List Form 35

BUILDRCD--Execute Form

A remote control program parameter list is referred to, and can be modified by, the
execute form of the BUILDRCD macro instruction. The description of the standard form
of the BUILDRCD macro instruction provides the explanation of the function of each
operand. The description of the standard form also indicates which operands are totally
optional and those required in at least one of the pair of list and execute forms. The
format description below indicates the optional and required operands for the execute
form only.

The execute form of the BUILDRCD macro instruction is written as follows:

[symQol] BUILDRCD [area address]
,[number of buffers]
,[buffer length]
,[record area address]
,[record area length]
,MF=(E,{ control program list address I (1)})

area address-RX-Type Address or (2-12)

number of buffers-absexp

buff er length-absexp

record area address-RX-Type Address or (2-12)

record area length -absexp

MF=(E,{ control program list address I (1)})
This operand specifies that the execute form of the BUILDRCD macro instruction is
used, and an existing control program parameter list (created by a list-form
instruction) will be used. The MF= operand is coded as described in the following:

E-Coded as shown

control program list address-RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions: BUILDRCD-Execute Form 37

CHECK-Wait for and Test Completion of a Read or
Write Operation (BDAM, BISAM, BP AM, and BSAM)

The CHECK macro instruction causes the active task to be placed in the wait condition,
if necessary, until the associated input or output operation is completed. The input or
output operation is then tested for errors and exceptional conditions. If the operation is
completed successfully, control is returned to the instruction following the CHECK
macro instruction. If the operation is not completed successfully, the error analysis
(SYNAD) routine is given cpntrol or, if no error analysis routine is provided, the task is
abnormally terminated. The error analysis routine is discussed in the SYNAD operand of
the DCB macro instruction.

The following conditions are also handled for BP AM and BSAM only:

When Reading: The end-of-data (EODAD) routine is given control if an input request is
made after all the records have been retrieved. Volume switching is automatic for a
BSAM data set that is not opened for UPDAT. For a BSAM data set that is opened for
update, the end-of-data routine is entered at the end of each volume.

When Writing: Additional space on the device is obtained when the current space is filled
and more WRITE macro instructions have been issued.

For BP AM and BSAM, a CHECK macro instruction must be issued for each input and
output operation, and must be issued in the same order as the READ or WRITE macro
instructions were issued for the data set. For BDAM or BISAM, either a CHECK or
WAIT macro instruction can be used.

If the ASCII translation routines are included when the operating system is generated,
translation can be requested by coding LABEL=(,AL) or (,AUL) in the DD statement,
or it can be requested by coding OPTCD=Q in the DCB macro instruction or DCB
subparameter of the DD statement. If translation is requested, the Check routine
automatically translates BSAM records, as they are read, from ASCII code to EBCDIC
code, provided that the record format is F, FB, D, DB, or U. Translation occurs as soon
as the Check routine determines that the input buff er is full. For translation to occur
correctly, all input data must be in ASCII code.

The CHECK macro instruction is written as follows:

[symbol] CHECK decb address
[,DSORG={IS I ALL}]

decb address-RX-Type Address, (2-12), or (1)
The decb address operand specifies the address of the data event control block
created by the associated READ or WRITE macro instruction or used by the
associated input or output operation.

DSORG={IS I ALL}
The DSORG operand specifies the type of data set organization. The following
describes the characters that can be coded:

IS
Specifies that the program generated is for BISAM use only.

ALL
Specifies that the program generated is for BDAM, BISAM, BP AM, or BSAM use.

If the DSORG operand is omitted, the program generated is for BDAM, BP AM, or
BSAM use only.

Macro Instruction Descriptions: CHECK 39

CHKPT-Take a Checkpoint for Restart Within a Job
Step (BDAM, BISAM, BP AM, BSAM, QISAM, and
QSAM)

The CHK.PT macro instruction establishes a checkpoint for the job step. If the step
terminates abnormally, it is automatically restarted from the checkpoint. On restart,
execution resumes with the instruction that follows the CHK.PT instruction. If the step
again terminates abnormally (before taking another checkpoint), it is again restarted
from the checkpoint. When several checkpoints are taken, the step is automatically
restarted from the most recent checkpoint.

Automatic restart from a checkpoint is suppressed if:

1. The job step completion code is not one of a set of codes specified at system
generation.

2. The operator does not authorize the restart.

3. The restart definition parameter of the JOB or EXEC statement specifies no restart
(RD=NR) or no checkpoint (RD=NC or RD=RNC).

4. The CANCEL operand appears in the last CHKPT macro instruction issued before
abnormal termination.

Under any of these conditions, automatic checkpoint restart does not occur. Automatic
step restart (restart from the beginning of the job step) can occur, except under
condition 1 or 2, or when the job step was restarted from a checkpoint prior to abnormal
termination. Automatic step restart is requested through the restart definition parameter
of the JOB or EXEC statement (RD=R or RD=RNC).

When automatic restart is suppressed or unsuccessful, a deferred restart can be requested
by submitting a new job. The new job can specify restart from the beginning of the job
step or from any checkpoint for which there is an entry in the checkpoint data set.

The checkpoint data set contains the information necessary to restart the job step from a
checkpoint. The control program records this information when the CHK.PT macro
instruction is issued. The macro refers to the data control block for the data set, which
must be on a magnetic tape or direct-access volume. A tape can have standard labels,
nonstandard labels, or no labels.

If the checkpoint data set is not open when CHK.PT is issued, the control program opens
the data set and then closes it after writing the checkpoint entry. If the data set is
physically sequential and is opened by the control program, the checkpoint entry is
written over the previous entry in the data set, unless the DD statement specifies
DISP=MOD. By writing entries alternately into two checkpoint data sets, it is possible to
~eep the entries for the two most recent checkpoints while deleting those for earlier
checkpoints.

The data control block for the che.ckpoint data set must specify:

DSORG=PS or PO, RECFM= U or UT, MACRF=(W), BLKSIZE= nnn, and
DDNAME= any name

where nnn is at least 600 bytes, but not more than 32,760 bytes for magnetic tape and
not more than the track length for direct access. (If the data set is opened by the control
program, block size need not be specified; the device-determined maximum block size is
assumed if no block size is specified.) For seven-track tape, the data control block must
specify TRTCH=C; for direct access, it must specify or imply KEYLEN=O. To request
chained scheduling, OPTCD=C and NCP=2 must be specified. With direct access,

Macro Instruction Descriptions: CHKPT 41

OPTCD= W can be specified to request validity checking for write operations, and
OPTCD= WC can be specified to combine validity checking and chained scheduling.

The standard form of the CHKPT macro instruction is written as follows (information
about the list and execute forms follows this description):

[symbol] CHKPT { dcbaddr[, checkid addr [, checkid length I ,'S']] }

CANCEL

dcbaddr
The deb address operand specifies the address of the data control block for the
checkpoint data set.

checkid address
The checkid address operand specifies the address of the checkpoint identification
field. The contents of the field are used when the job step is to be restarted from the
checkpoint. They are used by the control program in requesting operator authorization
for automatic restart. You can use it for requesting deferred restart ..

If the next operand specifies the length of the field (checkid length), or if it is omitted
to imply a length of eight bytes, the field must contain the checkpoint identification
when the CHKPT macro instruction is issued. If the next operand is written as 'S', the
identification is generated and placed in the field by the control program. If both
operands are omitted, the control program generates the identification, but does not
make it available to the problem program. In each case, the identification is written in
a message to the operator.

The control program writes the checkpoint identification as part of the entry in the
checkpoint data set. For a sequential data set, the identification can be any
combination of up to 16 letters, digits, printable special characters, and blanks. For a
partitioned data set, it must be a valid member name of up to 8 letters and digits,
starting with a letter. The identification for each checkpoint should be unique.

If the control program generates the identification, the identification is 8 bytes in
length. It consists of the letter C followed by a 7-digit decimal number. The number is
the total number of checkpoints taken by the job, including the current checkpoint,
checkpoints taken earlier in the job step, and checkpoints taken by any previous job
steps.

checkid length
The checkid length operand specifies the length in bytes of the checkpoint
identification field. The maximum length is 16 bytes if the checkpoint data set is
physically sequential, 8 bytes if it is partitioned. For a partitioned data set, the field
can be longer than the actual identification, if the unused portion is blank. If the
operand is omitted, the implied length is 8 bytes.

If you code 'S' the control program supplies the checkpoint identification. The implied
field length is 8 bytes.

CANCEL
The CANCEL operand cancels the request for automatic restart from the most recent
checkpoint. If another checkpoint is taken before abnormal termination, the job step
can be restarted at that checkpoint.

42 OS/VS Data Management Macro Instructions

When control is returned, register 15 contains one of the following return codes:

Hexadecimal Meaning
Code

00 Success/ ul completion. Code 00 is also returned if the RD parameter was coded as
RD=NC or RD=RNC to totally suppress the function of CHKPT.

04 Restart has occu"ed at the checkpoint taken by the CHKPT macro instruction during the
original execution of the job. A request for another restart of the same checkpoint is
normally in effect. If a deferred restart was performed and RD=NC, NR, or RNC was
specified in the resubmitted deck, a request for another restart is not in effect.

08 Unsuccessful completion. A checkpoint entry was not written, and a restart from this
checkpoint was not requested. A request for an automatic restart from a previous
checkpoint remains in effect.

One of the following conditions exists:

• The parameters passed by the CHKPT macro instruction are invalid.

• The CHKPT macro instruction was executed in an exit routine other than the
end-of-volume exit routine.

• A STIMER macro instruction has been issued, and the time interval has not been
completed.

• A WTOR macro instruction has been issued, and the reply has not been received.

• The checkpoint data set is on a direct-access volume and is full. Secondary space
allocation was requested and performed. (Secondary space allocation is performed for
a checkpoint data set, but the allocated space is not used. However, had secondary
allocation not been requested, the job step would have been abnormally terminated.)

• A graphics-type DSORG has been found in an open DCB. Graphic devices are not
supported in checkpoint/restart.

• The job step contains more than one task.

OC Unsuccessful completion. An uncorrectable error occurred in writing the checkpoint entry
or in completing queued access method input/ output operations that were begun before
the CHKPT macro instruction was issued. A partial, invalid checkpoint entry may have
been written. If the entry has a programmer-specified checkid, and the checkpoint data
set is sequential, a different checkid should be specified the next time CHKPT is executed.
If the data set is partitioned, a different checkid need not be specified. This code is also
returned if the checkpoint routine tries to open the checkpoint data set and the DD
statement for the data set is missing.

10 Success/ ul completion with possible e"or condition. The task has control, by means of an
explicit or implied use of the ENQ macro instruction, of a serially reusable resource; if the
task terminates abnormally, it will not have control of the resource when the job step is
restarted. The user's program must, therefore, reissue the ENQ macro instruction.

14 Checkpoint not taken. End of volume occurred while writing the checkpoint entry on a
tape data set. The checkpoint was canceled, but processing of the user's program
continues.

When one of the errors indicated by code 08, OC, 10, or 14 occurs, the system prints an
error message on the operator's console. The message indicating code 08 or OC contains
a code that further identifies the error. The operator should report the message contents
to the programmer.

Note: Successful use of the CHKPT macro instruction requires some care in the selection
of checkpoints. For a detailed discussion of checkpoint requirements, refer to OS/VS
Checkpoint/ Restart.

Macro Instruction Descriptions: CHKPT 43

CHKPT-List Form

The list form of the CHKPT instruction is used to construct a control program parameter
list.

The description of the standard form of the CHKPT macro provides the explanation of
the function of each operand. The description of the standard form also indicates which
operands are optional and which are required in at least one of the list and execute
forms. The format description below indicates the optional and required operands in the
list form only. Note that the CANCEL operand, which can be coded in the standard
form, cannot be coded in the list form.

The list form of the CHKPT macro instruction is written as follows:

[symbol] CHKPT [deb address] J
,[check id address]
,[checkid length I 'S']

'--~~---'-~~~__.__,M_F_=_L~~~~~~-~-~-~~~~~~~

address
The address operand specifies any address that may be written in an A-type address
constant.

length
The length operand specifies any absolute expression that is valid in the assembler
language.

MF=L
The MF=L operand indicates the list form of the CHKPT macro instruction.

Macro Instruction Descriptions: CHKPT-List Form 45

j

CHKPT-Execute Form

A control program parameter list is referred to, and can be modified by, the execute form
of the CHKPT macro.

The description of the standard form of the CHKPT macro provides the explanation of
the function of each operand. The description of the standard form also indicates which
operands are optional and which are required in at least one of the list and execute
forms. The format description below indicates the optional and required operands for the
execute form only. Note that the CANCEL operand, which can be coded in the standard
form, cannot be coded in the execute form.

The execute form of the CHKPT macro instruction is written as follows:

[symbol] CHKPT [deb address]
,[checkid address]
,[checkid length I 'S']
,MF=(E,{control program list address I (1)})

address
The address operand specifies any address that is valid in an RX-type instruction, or
one of the general registers 2 through 12, previously loaded with the indicated
address. You may designate the register symbolically or with an absolute expression;
always code it in parentheses.

length
The length operand specifies any absolute expression that is valid in assembler
language, or one of the general registers 2 through 12, previously loaded with the
indicated value. You may designate the register symbolically or with an absolute
expression; always code it in parentheses.

MF=(E,{ control program list address I (1)})
This operand specifies the execute form of the macro instruction using a control
program parameter list. The address of the control program parameter list can be
coded as described under address, or can be loaded into register 1, in which case code
MF=(E,(1)).

Macro Instruction Descriptions: CHKPT-Execute Form 47

CLOSE-Logically Disconnect a Data Set (BDAM,
BISAM, BP AM, BSAM, QISAM, and QSAM)

The CLOSE macro instruction causes output data set labels to be created, and volumes
to be positioned as specified by the user. The fields of the data control block are restored
to the condition that existed before the OPEN macro instruction was issued, and the data
set is disconnected from the processing program. Final volume positioning for the current
volume can be specified to override the positioning implied by the DD control statement
DISP parameter. Any number of deb address operands and associated options may be
;specified in the CLOSE macro instruction.

Associated data sets for a 3525 card punch can be closed in any sequence, but if one
data set is closed, I/ 0 operations cannot be initiated for any of its associated data sets.
Additional information about closing associated data sets is contained in OS/VS Data
Management Services Guide.

A FREEPOOL macro instruction should normally follow a CLOSE macro instruction
(without TYPE=T) to regain the buffer pool storage space and to allow a new buffer
pool to be built if the DCB is reopened with different record size attributes.

A special operand, TYPE=T, is provided for processing with BSAM.

The standard form of the CLOSE macro instruction is written as follows (the list and
execute forms are shown following the description of the standard form):

[symbol] CLOSE (deb address,[option], ...)
[,TYPE=T]

deb address-A-Type Address or (2-12)
The deb address operand specifies the address of the data control block for the
opened data set that is to be closed.

option
One of these options indicate the volume positioning that is to occur when the data set
is closed. The option operand is ignored for ISAM, BDAM, SYSIN, and SYSOUT
data sets and also for data sets on other than magnetic tape or direct-access devices. If
the option specified is FREE, this operand is not ignored for BDAM, SYSIN, and
SYSOUT data sets. The options are:

REREAD
Specifies that the current volume is to be positioned to reprocess the data set. If
processing was forward, the volume is positioned to the beginning of the data set; if
processing was b_ackwards (RDBACK), the volume is positioned to the end of the
data set.

LEAVE
Specifies that the current volume is to be positioned to the logical end of the data
set. If processing was forward, the volume is positioned to the end of the data set;
if processing was backwards (RDBACK), the volume is positioned to the beginning
of the data set.

REWIND
Specifies that the current magnetic tape volume is to be positioned at the load
point, regardless of the direction of processing. REWIND cannot be specified when
TYPE=T is specified. In VS2 systems, if FREE=CLOSE has been coded on the
DD statement associated with the data set being closed, coding the REWIND
option will result in the data set being freed at the time it is closed rather than at
the termination of the job step.

Macro Instruction Descriptions: CLOSE 49

FREE
For VS2 systems only, specifies that the current data set is to be freed at the time
the data set is closed, rather than at the time the task is terminated!. For tape data
sets, this means that the volume is eligible for use by other tasks or to be
demounted. Direct-access volumes may also be freed for use by other tasks. They
may be freed for demounting if (1) no other data sets on the volume are open and
(2) the volume is otherwise demountable. Do not use this option with CLOSE
TYPE=T.

DISP
Specifies that a tape volume is to be disposed of in the manner implied by the DD
statement associated with the data set. Direct-access volume positioning and
disposition are not affected by this parameter of the CLOSE macro instruction.
There are several dispositions that can be specified in the DISP parameter of the
DD statement; DISP can be PASS, DELETE, KEEf, CATLG, or UNCATLG.

VS1 Systems: Depending on how the DISP option is coded in the DD statement,
the current magnetic tape volume will be positioned as follows:

DISP Parameter

PASS

DELETE

KEEP,CATLG,orUNCATLG

Action

Forward space to the end of data set on the current
volume.

Rewind the current volume.

Rewind and unload the current volume.

VS2 Systems: Depending on how the DISP option is coded in the DD statement,
the current magnetic tape volume will be positioned as follows:

DISP Parameter

PASS

DELETE

KEEP,CATLG,orUNCATLG

Action

Forward space to the end of the data set on the current
volume.

Rewind the current volume.

The volume is positioned the same as for CLOSE
REREAD. Note that the volume is not rewound and
unloaded.

In VS2 systems, if FREE=CLOSE has been coded in the DD statement associated
with this data set, coding the DISP option in the CLOSE macro will result in the
data set being freed when the data set is closed, rather than at the time the job step
is terminated.

Note: When the option operand is omitted, DISP is assumed. For TYPE=T, this is
processed as LEA VE during execution.

The LEA VE and REREAD options are meaningless except for magnetic tape and
CLOSE TYPE=T.

TYPE=T-Coded as shown
You can code CLOSE TYPE= T and temporarily close sequential data sets on
magnetic tape and direct-access volumes processed with BSAM. When you use
TYPE=T, the DCB used to process the data set maintains its open status, and you
don't have to issue another OPEN macro instruction to continue processing t:Qe same
data set. This option cannot be used in a SYNAD routine nor can it be used in
conjunction with the FREE option.

A request to temporarily close a data set causes the system control program to process
labels, modify some of the fields in the system control blocks for that data set, and
reposition the volume (or cu"ent volume in the case of multivolume data sets) in
much the same way that the normal CLOSE macro does. When you code TYPE=T,
you can specify that the volume either be positioned at the end of data (the LEA VE

50 OS/VS Data Management Macro Instructions

option) or be repositioned at the beginning of data (the REREAD option).
Magnetic-tape volumes are repositioned either immediately before the first data
record or immediately after the last data record; the presence of tape labels has no
effect on repositioning.

I If you code the release (RLSE) operand on the DD statement for an output data set,
it is ignored by temporary close (CLOSE TYPE= T), but any unused space will be
released when you finally issue the normal CLOSE (without TYPE= T) macro
instruction.

Refer to OS/VS Data Management Services Guide for additional information and
coding restrictions.

Macro Instruction Descriptions: CLOSE 51

CLOSE-List Form

The list form of the CLOSE macro instruction is used to construct a data management
parameter list. Any number of operands (data control block addresses and associated
options) can be specified.

The list consists of a one-word entry for each DCB in the parameter list; the high-order
byte is used for the options and the three low-order bytes are used for the DCB address.
The end of the list is indicated by a one in the high-order bit of the last entry's option
byte. The length of a list generated by a list-form instruction must be equal to the
maximum length required by an execute-form instruction that refers to the same list. A
maximum length list can be constructed by one of two methods:

• Code a list-form instruction with the maximum nµmber of parameters that are
required by an execute-form instruction that refers to the list.

• Code a maximum length list by using commas in a list-form instruction to acquire a list
of the appropriate size. For example, coding CLOSE (,,,,,,,,,),MF=L would provide a
list of five fullwords (five deb addresses and five options).

Entries at the end of the list that are not referenced by the execute-form instruction are
assumed to have been filled in when the list was constructed or by a previous
execute-form instruction. Before using the execute-form instruction, you may shorten the
list by placing a one in the high-order bit of the last DCB entry to be processed.

A zeroed work area on a word boundary is equivalent to CLOSE (,DISP, ...),MF=L and
can be used in place of a list-form instruction. The high-order bit of the last DCB entry
must contain a one before this list can be used with the execute-form instruction.

A parameter list constructed by a CLOSE macro instruction, list form, can be ref erred to
by either an OPEN or CLOSE execute-form instruction.

The description of the standard form of the CLOSE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are completely optional and those required in at least one of
the pair of list and execute forms. The format description below indicates the optional
and required opeqmds in the list form only.

The list form of the CLOSE macro instruction is written as follows:

[symbol] CLOSE ([deb address],[option], ...)
[,TYPE=T]
,MF=L

deb address-A-Type Address

option -Same as standard form

TYPE=T-Coded as shown
The TYPE=T operand can be coded in the list-form instruction to allow the specified
option to be checked for validity when the program is assembled.

MF=L--Coded as shown
The MF=L operand specifies that the CLOSE macro instruction is used to create a
data management parameter list that will be referred to by an execute-form
instruction.

Macro Instruction Descriptions: CLOSE-List Form 53

CLOSE-Execute Form

A remote data management parameter list is used in and can be modified by the execute
form of the CLOSE macro instruction. The parameter list can be generated by the list
form of either an OPEN macro instruction or a CLOSE macro instruction.

The description of the standard form of the CLOSE macro instruction provides the
explanation of the function of each operand. The description of the standard form also
indicates which operands are totally optional and those required in at least one of the
pair of list and execute forms. The format description below indicates the optional and
required operands in the execute form only.

The execute form of the CLOSE macro instruction is written as follows:

[symbol] CLOSE [([deb address],[option], ...)]
[,TYPE=T]
,MF= (E, { data management list address I (1)})

deb address-RX-Type Address or (2-12)

option -Same as standard form

TYPE=T-Same as standard form

MF=(E,{ data management list address I (1)})
This operand specifies that the execute form of the CLOSE macro instruction is being
used, and an existing data management parameter list (created by a list-form
instruction) will be used. The MF= operand is coded as described in the following:

E-Coded as shown

data management list address-RX-Type Address, (2-12), or (1)

Macro Instruction Descriptions: CLOSE-Execute Form 55

CNTRL-Control Online Input/Output Device (BSAM
and QSAM)

The CNTRL macro instruction is used to control magnetic tape drives (BSAM only for a
data set that is not open for output), online card readers, 3525 card punches (read and
print features, VS2 only), printers (BSAM and QSAM), the 3886 Optical Character
Reader (BSAM only), and the 3890 Document Processor (QSAM only). For information
on additional operands for the CNTRL macro instruction for the 3886 and 3890, see
OS/VS IBM 3886 Optical Character Reader Model 1 Reference and IBM 3890
Document Processor Machine and Programming Description.

For information on additional operands for the CNTRL macro for the 1275 or 1419, see
OS Data Management Services and Macro Instructions for IBM 1419/ 1275.

The MACRF operand of the DCB macro instruction must specify a C. The CNTRL
macro instruction is ignored for SYSIN or SYSOUT data sets. For BSAM, all input and
output operations must be tested for completion before the CNTRL macro instruction is
issued. The control facilities available are as follows:

Card Reader: Provides stacker selection, as follows:

QSAM-The CNTRL macro instruction is issued whenever it is necessary to read a new
card. For unblocked records, a CNTRL macro instruction should be issued after every
input request. For blocked records, a CNTRL macro instruction is issued after the last
logical record on each card that is retrieved. The move mode of the GET macro
instruction must be used, and the number of buffers (BUFNO field of the DCB) must be
one.

BSAM-The CNTRL macro instruction should be issued after every input request.

Printer: Provides line spacing or a skip to a specific carriage control channel. A CNTRL
macro instruction cannot be used if carriage control characters are provided in the
record. If the printer contains the universal character set feature, data checks should be
blocked (OPTCD=U should not appear in the data control block).

Magnetic Tape: Provides method of forward spacing and backspacing (BSAM only for a
data set that is not open for output). If OPTCD=H is indicated in the data control block,
the CNTRL macro instruction can be used to perform record positioning on DOS tapes
that contain embedded checkpoint records. Embedded checkpoint records encountered
during the record positioning are bypassed and are not counted as blocks spaced over.
OPTCD=H must be specified in a job control language DD statement. The CNTRL
macro instruction cannot be used to backspace DOS 7-track tapes that are written in
data convert mode that contain embedded checkpoint records (BSAM).

Note: The CNTRL macro should not be used with output operations on BSAM tape data
sets.

3525 Printing: Provides line spacing or a skip to a specific printing line on the card. The
card contains 25 printing lines; the odd numbered lines 1 through 23 correspond to the
printer skip channels 1 through 12 (see the SK operand). For additional information
about 3525 printing operations, refer to OS and OS/VS Programming Support for
the IBM 3505 Card Reader and IBM 3525 Card Punch.

Macro Instruction Descriptions: CNTRL 57

I

lrhe CNTRL macro instruction is written as follows:

[symbol] CNTRL deb address

I ,SS,{112} I

,SP,{112 I 3}

) ,SK, { t I 2 I ... I 11 112}
I

,BSM

I ,FSM

,BSR[, number of blocks]

\ ,FSR[, number of blocks]

deb address
The deb address operand specifies the address of the data control block for the data
set opened for the online device.

SS,{112}
The SS operand is coded as shown to indicate that the control function requested is
stacker selection on a card reader; either 1 or 2 must be coded to indicate which
stacker is to be selected.

SP,{112 I 3}
The SP operand is coded as shown to indicate that the control function requested is
printer line spacing or 3525 card punch line spacing; either 1, 2, or 3 must be coded to
indicate the number of spaces for each print line.

SK, { t I 2 I ... I 11 112}
The SK operand is coded as shown to indicate that the control function requested is a
skip operation on the printer or 3525 card punch, print feature; a number (1 through
12) must be coded to indicate the channel or print line to which the skip is to be
taken.

DSM-Coded as shown
The BSM operand indicates that the control function requested is to backspace the
magnetic tape past a tapemark, then forward space over the tapemark. When this
operand is specified, the DCBBLKCT field in the data control block is set to zero.

FSM-Coded as shown
The FSM operand indicates that the control function requested is to forward space the
magnetic tape over a tapemark, then backspace past the tapemark. When this operand
is specified, the DCBBLKCT field in the data control block is set to zero.

BSR-Coded as shown
The BSR operand indicates that the control function requested is to backspace the
magnetic tape the number of blocks indicated in the number-of-blocks operand.

FSR-Coded as shown
The FSR operand indicates that the control function requested is to forward space the
magnetic tape the number of blocks indicated in the number-of-blocks operand.

58 OS/VS Data Management Macro Instructions

,r

number of blocks-symbol, decimal digit, absexp, or (2-12)
The number-of-blocks operand specifies the number of blocks to backspace (see
BSR operand) or forward space (see FSR operand) the magnetic tape. The
maximum value that can be specified is 32,767. If the number-of-blocks operand is
omitted, one is assumed.

If the forward space or backspace operation is not completed successfully, control is
passed to the error analysis (SYNAD) routine; if no SYNAD routine is designated, the
task is abnormally terminated. Register contents, when control is passed to the error
analysis routine, are shown in Appendix A. If a tapemark is encountered for BSR or
FSR, control is returned to the processing program, and register 15 contains a count of
the uncompleted forward spaces or backspaces. If the operation is completed normally,
register 15 contains the value zero.

Macro Instruction Descriptions: CNTRL 59

DCB-Construct a Data Control Block (BDAM)

The data control block for a basic direct access method (BDAM) data set is constructed
during assembly of the problem program. The DCB macro instruction must not be coded
within the first 16 bytes of addressability for the control section (CSECT). The DSORG
and MACRF operands must be coded in the DCB macro instruction, but the other
operands can be supplied from other sources. Each of the BDAM DCB operand
descriptions contains a heading, "Source." The information under this heading describes
the sources from which an operand can be supplied to the data control block.

Before a DCB macro instruction for a BDAM data set is coded, the following
characteristics of direct data sets should be considered:

• The problem program must synchronize I/ 0 operations by issuing a CHECK or
WAIT macro instruction to test for completion of read and write operations.

• A BDAM data set is created using the basic sequential access method (BSAM). A
special operand (MACRF= WL) specifies that BSAM is being used to create a BDAM
data set. Operand descriptions for the BDAM DCB macro instruction include
information about both creating and processing a BDAM data set.

• Although a BDAM data set can contain blocked records, the problem program must
perform all blocking and deblocking of records. BDAM provides only the capability to
read or write a data block, but the data block can contain multiple logical records
assembled by the problem program.

• When a BDAM data set is being created, buffers can be acquired automatically, but
buffer control must be provided by the problem program. The problem program must
place data in the output buffer before issuing a WRITE macro instruction to write the
data block.

• When a BDAM data set is being processed, the problem program can control all
buffering, or dynamic buffering can be specified in the DCB macro instruction and
subsequently requested in a READ macro instruction.

• The actual organization of a direct data set is determined by the programmer to meet
the needs of the application. The data set can be processed by using one of the
following addressing methods:

• Actual device addresses (in the form MBBCCHHR).

• Relative track addresses (in the form TTR). These addresses specify a track (and a
record on the track) of the direct-access device relative to the beginning of the data
set.

• Relative block addresses can be used with fixed-length records. These addresses
specify a data block relative to the beginning of the data set.

For additional information about the characteristics of BDAM data sets, refer to OS/VS
Data Management Services Guide.

Macro Instruction Descriptions: DCB-BDAM 61

The DCB macro for BDAM is written as follows:

[symbol] DCB [BFALN={F ID}]
[BFfEK=R]
[BLKSIZE= absexp]
[BUFCB= re/exp]
[BUFL= absexp]
[BUFNO= absexp]
[DD NAME= symbol]t
DSORG={DA I DAU}
[EXLST =re/exp]
[KEYLEN = absexp]
[LIMCT= absexp]

MACRF= {(R{K[I] I I}[X][S][C])}

{(W{A[K][I] I K[I]I I}[C])}

{(R{K[I] I I}[X][S][C],W{A[K][l] I K[I] I I}[C])}

[OPTCD=[R I A][E][F][W]]
[RECFM= {U I V[S I BS] I F[T]}]
[SYNAD= re/exp]

1This parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

The following describes the DCB operands that can be specified for creating and
processing a BDAM data set:

BFALN={F ID}
The BFALN operand specifies the boundary alignment for each buffer in the buffer
pool. The BF ALN operand can be specified when (1) BSAM is being used to create a
BDAM data set and buffers are acquired automatically, (2) when an existing BDAM
data set is being processed and dynamic buffering is requested, or (3) when the
GETPOOL macro instruction is used to construct the buffer pool. If the BF ALN
operand is omitted, the system provides doubleword alignment for each buffer. The
following describes the characters that can be specified:

F

D

Specifies that each buff er is aligned on a fullword boundary that is not also a
doubleword boundary.

Specifies that each buffer is aligned on a doubleword boundary.

If the BUILD macro instruction is used to construct the buff er pool or if the problem
program controls all buffering, the problem program must provide the area for the
buffers and control buff er alignment.

Source: The BF ALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BF ALN and BFTE,K operands are
specified, they must be supplied from the same source.

BFfEK=R
The BFfEK operand specifies that the data set is being created for or contains
variable-length spanned records. The BFfEK operand can be coded only when the
record format is specified as RECFM= VS.

When variable-length spanned records are written, the data length can exceed the
total capacity of a single track on the direct-access device being used, or it can exceed

62 OS/VS Data Management Macro Instructions

the remaining capacity on a given track. The system divides the data block into
segments (if necessary), writes the first segment on a track, and writes the remaining
segment(s) on the following track(s).

When a variable-length spanned record is read, the system reads each segment and
assembles a complete data block in the buffer designated in the area address operand
of a READ macro instruction.

Note: Variable-length spanned records can also be read using BSAM. When BSAM is
used to read a BDAM variable-length spanned record, the record is read one segment
at a time, and the problem program must assemble the segments into a complete data
block. This operation is described in the section for the BSAM DCB macro
instruction.

Source: The BFfEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFTEK and BF ALN operands are
specified, they must be supplied from the same source.

BLKSIZE=absexp (maximum value is 32,760)
The BLKSIZE operand specifies the length, in bytes, of each data block for
fixed-length records, or it specifies the maximum length, in bytes, of each data block
for variable-length or undefined-length records. If keys are used, the length of the key
is not included in the value specified for the BLKSIZE operand.

The actual value that can be specified in the BLKSIZE operand depends on the record
format and the type of direct-access device being used. If the track-overflow feature is
being used or if variable-length spanned records are being used, the value specified in
the BLKSIZE operand can be up to the maximum. For all other record formats (F, V,
VBS, and U), the maximum value that can be specified in the BLKSIZE operand is
determined by the track capacity of a single track on the direct-access device being
used. Device capacity for direct-access devices is described in Appendix C of this
publication. For additional information about device capacity and space allocation,
refer to OS/VS Data Management Services Guide.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB=relexp
The BUFCB operand specifies the address of the buffer pool control block when the
buffer pool is constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically, dynamically, or by a GETPOOL macro
instruction, the system places the address of the buffer pool control block into the
data control block, and the BUFCB operand is not required. The BUFCB operand is
not required if the problem program controls all buffering.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buff er in the buffer pool
when the buffers are acquired automatically (create BDAM) or dynamically (existing
BDAM).

When buffers are acquired automatically (create BDAM), the BUFL operand is
optional; if specified, the value must be at least as large as the sum of the values
specified for the KEYLEN and BLKSIZE operands. If the BUFL operand is
omitted,the system constructs buffers with a length equal to the sum of the values
specified in the KEYLEN and BLKSIZE operands.

Macro Instruction Descriptions: DCB-BDAM 63

The BUFL operand must be specified when an existing BDAM data set is being
processed and dynamic buffering is requested. Its value must be at least as large as the
value specified for the BLKSIZE operand when the READ or WRITE macro
instruction specifies a key address, or the value specified in the BUFL operand must
be at least as large as the sum of the values specified in the KEYLEN and BLKSIZE
operands if the READ and WRITE macro instructions specify 'S' for the key address.

The BUFL operand can be omitted if the buff er pool is constructed by a BUILD or
GETPOOL macro instruction or if the problem program controls all buffering.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BVFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers to be constructed by a BUILD
macro instruction, or it specifies the number of buffers and/ or segment work areas to
be acquired by the system.

If the buffer pool is constructed by a BUILD macro instruction or if buffers are
acquired automatically when BSAM is used to create a BDAM data set, the number of
buffers must be specified in the BUFNO operand.

If dynamic buffering is requested when an existing BDAM data set is being processed,
the BUFNO operand is optional; if omitted, the system acquires two buffers.

If variable-length spanned records are being processed and dynamic buffering is
requested, the system also acquires a segment work area for each buffer. If dynamic
buffering is not requested, the system acquires the number of segment work areas
specified in the BUFNO operand. If the BUFNO operand is omitted when
variable-length spanned records are being processed and dynamic buffering is not
requested, the system acquires two segment work areas.

If the buffer pool is constructed by a GETPOOL macro instruction or if the problem
program controls all buffering, the BUFNO operand can be omitted, unless it is
required to acquire additional segment work areas for variable-length spanned records.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

DDNAME=symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DSORG={DA I DAU}
The DSORG operand specifies the data set organization and if the data set contains
any location-dependent information that would make it unmovable. For example, if
actual device addresses are used to process a BDAM data set, the data set may be
unmovable. The following describes the characters that can be specified:

DA
Specifies a direct organization data set.

64 OS/VS Data Management Macro Instructions

DAU
Specifies a direct organization data set that contains location-dependent
information.

When a BDAM data set is created, the basic sequential access method (BSAM) is
used. The DSORG operand inthe DCB macro instruction must be coded as
DSORG=PS or PSU when the data set is created, and the DCB subparameter in the
corresponding DD statement must be coded as DSORG=DA or DAU. This creates a
data set with a data set label identifying it as a BDAM data set.

Source: The DSORG operand must be specified in the DCB macro instruction. See
the above comment about creating a BDAM data set.

EXLST=relexp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand must be specified if the problem program processes user labels during
the Open or Close routine, if the data control block exit routine is used for additional
processing, or if the DCB ABEND exit is used for ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements of exit list
processing. For additional information about exit list processing, refer to OS/VS
Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the exit is needed.

KEYLEN=absexp (maximum value is 255)
The KEYLEN operand specifies the length, in bytes, of all keys used in the data set.
When keys are used, a key is associated with each data block in the data set. If the key
length is not supplied by any source, no input or output requests that require a key can
be specified in a READ or WRITE macro instruction.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the
completion of the data control block exit routine, or by an existing data set label. If
KEYLEN=O is specified in the DCB macro instruction, a special indicator is set in
RECFM so that KEYLEN cannot be supplied from the DCB subparameter of a DD
statement or data set label of an existing data set. KEYLEN =0 can be coded only in
the DCB macro instruction and will be ignored if specified in the DD statement.

LIMCT=absexp ,
The LIMCT operand specifies the number of blocks or tracks to be searched when the
extended search option (OPTCD=E) is requested.)

When the extended search option is requested and relative block addressing is used,
the records must be fixed-length record format. The system converts the number of
blocks specified in the LIMCT operand into the number of tracks required to contain
the blocks, then proceeds in the manner described below for relative track addressing.

When the extended search option is requested and relative track addressing is used (or
the number of blocks has been converted to the number of tracks), the system
searches for the block specified in a READ or WRITE macro instruction (type DK),
or it searches for available space in which to add a block (WRITE macro instruction,
type DA). The search is as follows:

• The search begins at the track specified by the block address operand of a READ
or WRITE macro instruction.

• The search continues until the search is satisfied, the number of tracks specified in
the LIMCT operand have been searched, or the entire data set has been searched.

Macro Instruction Descriptions: DCB-BDAM 65

If the search has not been satisfied when the last track of the data set is reached,
the system continues the search by starting at the first track of the data set if the
EOF marker is on the last track that was allocated to the data set. (This operation
allows the number specified in the LIMCT operand to exceed the size of the data
set, causing the entire data set to be searched.) You can insure that the EOF
marker is on the last allocated track by determining the size of the data set and
allocating space in blocks, or by allocating space in tracks and including the RLSE
parameter on the SP ACE operand of the DD statement (RLSE specifies that all
unused tracks be returned to the system).

The problem program can change the DCBLIMCT field in the data control block at
any time, but if the extended search option is used, the DCBLIMCT field must not be
zero when a READ or WRITE macro instruction is issued.

If the extended search option is not requested, the system ignores the LIMCT
operand, and the search for a data block is limited to a single track.

Source: The LIMCT operand can be supplied in the DCB macro instruction, the DCB
subparameter of a DD statement, or by the problem program before the count is
required by a READ or WRITE macro instruction.

MACRF= {(R{K[I] I I}[X][S][C])}

{(W{A[K][I] I K[I] I I}[C])}

{(R{K[I] I I}[X][S][C],W{A[K][I] I K[I] I I}[C])}
The MACRF operand specifies the type of macro instructions (READ, WRITE,
CHECK, and WAIT) used when the data set is processed. The MACRF operand also
specifies the type of search argument and BDAM functions used with the data set.
When BSAM is used to create a BDAM data set, the BSAM operand MACRF=WL is
specified. This special operand invokes the BSAM routine that can create a BDAM
data set. The following describes the characters that can be specified for BDAM:

A

c

I

K

R

s

w

Specifies that data blocks are to be added to the data set.

Specifies that CHECK macro instructions are used to test for completion of read
and write operations. If C is not specified, WAIT macro instructions must be used
to test for completion of read and write operations.

Specifies that the search argument is to be the block identification portion of the
data block. If relative addressing is used, the system converts the relative address to
a full device address (MBBCCHHR) before the search.

Specifies that the search argument is to be the key portion of the data block. The
location of the key to be used as a search argument is specified in a READ or
WRITE macro instruction.

Specifies that READ macro instructions are used. READ macro instructions can be
issued when the data set is opened for INPUT, OUTPUT, or UPDAT.

Specifies that dynamic buffering is requested by specifying 'S' in the area address
operand of a READ or WRITE macro instruction.

Specifies that WRITE macro instructions are used. WRITE macro instructions can
be issued only when the data set is opened for OUTPUT or UPDAT.

66 OS/VS Data Management Macro Instructions

x
Specifies that READ macro instructions request exclusive control of a data block.
When exclusive control is requested, the data block must be released by a
subsequent WRITE or RELEX macro instruction.

Source: The MACRF operand must be supplied in the DCB macro instruction.

OPTCD=[R I A][E][F][W]
The OPTCD operand specifies the optional services that are to be used with the
BDAM data set. These options are related to the type of addressing used, the
extended search option, block position feedback, and write-validity checking. The
following describes the characters that can be specified (the characters can be
specified in any order and no commas are allowed between characters):

A

E

F

R

w

Specifies that actual device addresses (MBBCCHHR) are provided to the system
when READ or WRITE macro instructions are issued.

Specifies that the extended search option is used to locate data blocks or available
space into which a data block can be added. When the extended search option is
specified, the number of blocks or tracks to be searched must be specified in the
LIMCT operand. The extended search option is ignored if actual addressing
(OPTCD=A) is also specified. The extended search option requires that the data
set have keys and that the search be made by key (by specifying DK in the READ
or WRITE macro or DA in the WRITE macro).

Specifies that block position feedback requested by a READ or WRITE macro
instruction is to be in the same form that was originally presented to the system in
the READ or WRITE macro instruction. If the F operand is omitted, the system
provides feedback, when requested, in the form of an 8-byte actual device address.
(Feedback is always provided if exclusive control is requested.)

Specifies that relative block addresses (in the form of a 3-byte binary number) are
provided to the system when a READ or WRITE macro instruction is issued.

Specifies that the system performs a validity check for each record written.

Note: Relative track addressing can only be specified by omitting both A and R from
the OPTCD operand. If you want to specify relative track addressing after your data
set has been accessed using another addressing scheme (OPTCD=A or R), you should
either specify a valid OPTCD operand (E, F, or W) in the DCB macro or DD card
when you reopen your data set, or zero out the OPTCD=A or R bits in the data
control block exit routine. Note that the first method will prevent the open routines
from merging any of the other OPTCD bits from the format-1 DSCB in the DCB.
Both methods will update the OPTCD in the DSCB if the open is for OUTPUT,
OUTIN, or UPDAT.

Source: The OPTCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set.

Macro Instruction Descriptions: DCB-BDAM 67

RECFM= {U I V[S I BS] I F[T]}
The RECFM operand specifies the format and characteristics of the records in the
data set. The following describes the characters that can be coded (if the optional
characters are coded, they must be coded in the order shown above):

B

F

s

T

u

v

Specifies that the data set contains blocked records. The record format
RECFM= VBS is the only combination in which B can be specified. RECFM= VBS
does not cause the system to process spanned records; the problem program must
block and segment the records. RECFM= VBS is treated as a variable-length record
byBDAM.

Specifies that the data set contains fixed-length records.

Specifies that the data set contains variable-length spanned records when it is
coded as RECFM= VS. When RECFM= VBS is coded, the records are treated as
variable-length records, and the problem program must block and segment the
records.

Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be partially written on one track and the
remainder is written on the following track (if required).

Specifies that the data set contains undefined-length records.

Specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, the problem program before completion of the
data control block exit routine, or by the data set label of an existing data set.

SYNAD=relexp
The SYNAD operand specifies the address of the error analysis routine to be given
control when an uncorrectable input/ output error occurs. The contents of the
registers when the error analysis routine is given control are described in Appendix A
of this publication.

The error analysis routine must not use the save area pointed to by register 13 because
this area is used by the system. The system does not restore registers when it regains
control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction which uses the address in register 14 to return control to
the system. When control is returned in this manner, the system returns control to the
problem program and proceeds as though no error had been encountered. When a
BDAM data set is being created, a return from the error analysis routine to the system
causes abnormal termination of the task.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/ output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

68 OS/VS Data Management Macro Instructions

DCB-Construct a Data Control Block (BISAM)

The data control block for the basic indexed sequential access method (BISAM) is
constructed during assembly of the problem program. The DCB macro instruction must
not be coded within the first 16 bytes of addressability for the control section (CSECT).
The DSORG and MACRF operands must be coded in the DCB macro instruction, but
the other DCB operands can be supplied from other sources. Each BISAM DCB operand
description contains a heading, "Source." The information under this heading describes
the sources from which the operand can be supplied to the data control block.

Before a DCB macro instruction for a BISAM data set is coded, the following
characteristics of BISAM data sets should be considered:

• BISAM cannot be used to create an indexed sequential data set.

• BISAM performs the functions of direct retrieval of a logical record by key, direct
update-in-place for a block of records, direct insertion of a new record in its correct
key sequence.

• Buffering can be controlled by the problem program, or dynamic buffering can be
specified in the DCB macro instruction and subsequently requested in a READ macro
instruction.

• The problem program must synchronize I/ 0 operations by issuing a CHECK or
WAIT macro instruction to test for completion of Read and Write operations.

• Additional DCB operands provide the capability of reducing input/ output operations
by defining work areas to contain the highest level master index and the records being
processed.

For additional information about the characteristics of BISAM processing, refer to
OS/VS Data Management Services Guide.

The DCB macro for BISAM is written as follows:

[symbol] DCB [BFALN={F ID}]
[BUFCB= re/exp]
[BUFL= absexp]
[BUFNO= absexp]
[DD NAME= symbol]t
DSORG=IS
[EXLST= re/exp]

MACRF= {(R[S][C])}

{(W {U[A] I A}[C])}

{(R[U[S] I S][C],W{U[A] I A}[C])}

[MSIIl= re/exp]
[MSW A= re/exp]
[NCP= absexp]
[SMSI= absexp]
[SMSW = absexp]
[SYNAD= re/exp]

1This parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

Macro Instruction Descriptions: DCB-BISAM 69

The following describes the DCB operands that can be supplied when the basic indexed
sequential access method is used:

BFALN={F I~}
The BF ALN operand specifies the boundary alignment for each buff er in the buff er
pool when the buffer pool is acquired for use with dynamic buffering or when the
buffer pool is constructed by a GETPOOL macro instruction. If the BFALN operand
is omitted, the system provides doubleword alignment for each buff er. The following
describes the characters that can be specified:

F

D

Specifies that each buff er is on a fullword boundary that is not also a doubleword
boundary.

Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buff er pool or the problem
program controls all buffering, the problem program must provide an area for the
buffers and control buff er alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFCB =re/exp
The BUFCB operand specifies the address of the buff er pool control block when the
buffer pool is constructed by a BUILD macro instruction.

If dynamic buffering is requested or the buffer pool is constructed by a GETPOOL
macro instruction, the system places the address of the buffer pool control block into
the data control block, and the BUFCB operand must be omitted. The BUFCB
operand must be omitted if the problem program controls all buffering.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length of each buff er to be constructed by a BUILD
or GETPOOL macro instruction. When the data set is opened, the system computes
the minimum length required and verifies that the length in the buffer pool control
block is equal to or greater than the minimum required. The system then inserts the
computed length into the BUFL field of the data control block.

If dynamic buffering is requested, the system computes the buffer length required, and
the BUFL operand is not required.

If the problem program controls all buffering, the BUFL operand is not required.
However, an ISAM data set requires additional buffer space for system use. For a
description of the buff er length required for various ISAM operations, refer to
OS/VS Data Management Services Guide.

Source: The BUFL operand can be supplied in the DCB macro inst.ruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers requested for use with dynamic
buffering, or it specifies the number of buffers to be constructed by a BUILD macro
instruction. If dynamic buffering is requested but the BUFNO operand is omitted, the
system automatically acquires two buffers for use with dynamic bu:ff ering.

70 OS/VS Data Management Macro Instructions

If the GETPOOL macro instruction is used to construct the buff er pool, the BUFNO
operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

DDNAME=:symbol
The DDNAME operand specifies the name used to identify the job control language
data definition statement that defines the ISAM data set to be processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DSORG=IS
The DSORG operand specifies the indexed sequential organization of the data set. IS
is the only combination of characters that can be coded for BISAM.

Source: The DSORG operand must be coded in the DCB macro instruction as well as
in the DCB subparameter of a DD statement unless it is for a data set passed from a
previous job step. In this case, DSORG may be omitted from the DD statement.

EXLST=relexp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program uses the data control block exit
routine for additional processing or if the DCB ABEND exit is used for ABEND
condition analysis.

Ref er to Appendix D of this publication for the format and requirements for exit list
processing. For additional information about exit list processing, refer to OS/VS
Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the associated exit is required.

MACRF= {(R[S][C])}

{(W{U[A] I A}[C])}

{(R[U[S] I S][C],W{U[A] I A}[C])}
The MACRF operand specifies the type of macro instructions (READ, WRITE,
CHECK, WAIT, and FREEDBUF) and type of processing (add records, dynamic
buffering, and update records) to be used with the data set being processed. The
operand can be coded·in any of the combinations shown above; the following
describes the characters that can be coded:

A

c

R

s

Specifies that new records are to be added to the data set. This character must be
coded if WRITE KN macro instructions are used with the data set.

Specifies that the CHECK macro instruction is used to test I/0 operations for
completion. If C is not coded, WAIT macro instructions must be used.

Specifies that READ macro instructions are used.

Specifies that dynamic buffering is requested in READ macro instructions. S should
not be specified if the problem program provides the buffer pool.

Macro Instruction Descriptions: DCB-BISAM 71

u

w

Specifies that records in the data set will be updated in place. If U is coded in
combination with R, it must also be coded in combination with W. For example,
MACRF=(RU,WU).

Specifies that WRITE macro instructions are used.

Source: The MACRF operand must be coded in the DCB macro instrnction.

MSHl=relexp
The MSHI operand specifies the address of the storage area used to contain the
highest level master index for the data set. The system uses this area to reduce the
search time required to find a given record in the data set. The MSHI operand is
coded only when the SMSI operand is coded.

Source: The MSHI operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

MSW A=relexp
The MSW A operand specifies the address of the storage work area to be used by the
system when new records are being added to the data set. This operand is optional,
but the system acquires a minimum-size work area if the operand is omitted. The
MSW A operand is coded only when the SMSW operand is coded.

Processing efficiency can be increased if more than a minimum-size work area is
provided. For more detailed information about work area size, refer to OS/VS Data
Management Services Guide.

Note: QISAM uses the DCBMSW A, DCBSMSI, and DCBSMSW fields in the data
control block as a work area; these fields contain meaningful information only when
the data set is opened for BISAM.

Source: The MSW A operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

NCP=absexp (maximum value is 99)
The NCP operand specifies the maximum number of READ/WRITE macro
instructions that are issued before the first CHECK (or WAIT) macro instruction is
issued to test for completion of the I/ 0 operation. The maximum number that can be
specified may be less than 99 depending on the amount of virtual storage available in
the region or partition. If the NCP operand is omitted, one is assumed. If dynamic
buffering is used, the value specified for the NCP operand must not exceed the
number of buffers specified in the BUFNO operand.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block open exit routine.

SMSl=absexp (maximum value is 65,535)
The SMSI operand specifies the length, in bytes, required to contain the highest level
master index for the data set being processed. The size required can be determined
from the DCBNCRHI field of the data control block. When an ISAM data set is
created (with QISAM), the size of the highest level index is inserted into the
DCBNCRHI field. If the value specified in the SMSI operand is less than the value in
the DCBNCRHI field, the task is abnormally terminated.

Note: QISAM uses the DCBMSW A, DCBSMSI, and DCBSMSW fields as a work
area; these fields contain meaningful information only when the data set is opened for
BIS AM.

72 OS/VS Data Management Macro Instructions

Source: The SMSI operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

SMSW=absexp (maximum value is 65,535)
The SMSW operand specifies the length, in bytes, of a work area that is used by
BISAM. This operand is optional, but the system acquires a minimum-size work area
if the operand is omitted. The SMSW operand is coded only when the MSW A
operand is also coded. If the SMSW operand is coded but the size specified is less
than the minimum required, the task is abnormally terminated. OS I VS Data
Management Services Guide describes the methods of calculating the size of the
work area.

If unblocked records are used, the work area must be large enough to contain all the
count fields (eight bytes each), key fields, and data fields contained on one
direct-access device track.

If blocked records are used, the work area must be large enough to contain all the
count fields (eight bytes each) and data fields contained on one direct-access device
track plus additional space for one logical record (LRECL value).

Note: QISAM uses the DCBMSW A, DCBSMSI, and DCBSMSW fields in the data
control block as a work area; these fields contain meaningful information only when
the data set is opened for BISAM.

Source: The SMSW operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

SYNAD=relexp
The SYNAD operand specifies the address of the error anlaysis routine given control
when an uncorrectable input/ output error occurs. The contents of the registers when
the error analysis routine is given control are described in Appendix A of this
publication.

The error anlaysis routine must not use the save area pointed to by register 13 because
this area is used by the system. The system does not restore registers when it regains
control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction which uses the address in register 14 to return control to
the system. When control is returned in this manner, the system returns control to the
problem program and proceeds as though no error had been encountered. If the error
analysis routine continues processing, the results are unpredictable.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/ output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error analysis routine
address at any time.

Macro Instruction Descriptions: DCB-BISAM 73

DCB-Construct a Data Control Block (BP AM)

The data control block for the basic partitioned access method (BP AM) is constructed
during assembly of the problem program. The DCB macro instruction can be coded at
any point in a control section (CSECT). The DSORG and MACRF operands must be
specified in the DCB macro instruction, but the other DCB operands can be supplied
from other sources. Each of the BP AM DCB operand descriptions contains a heading,
"Source." The information under this heading describes the sources which can supply the
operand to the data control block.

Before a DCB macro instruction for a BP AM data set is coded, the following
characteristics of partitioned data sets should be considered:

• The entire partitioned data set must reside on one direct-access volume, but several
such data sets, on the same or different volumes, can be concatenated for input.

• When a partitioned data set is being created, the first (or only) DD statement for the
data set must contain a SPACE parameter defining the size of the entire data set and
its directory. From this information, the system allocates space for the data set and
pre-formats the data set directory. As subsequent data set members are added, they
are added in the space originally allocated.

• A single member of a partitioned data set can be added or retrieved using BSAM or
QSAM without using the BLDL, FIND, or STOW macro instructions. In this case, the
data set member is being processed as a sequential data set (DSORG=PS). Processing
a member in this manner does not provide the full capability of the basic partitioned
access method. For more information about processing a member using BSAM or
QSAM, refer to OS/VS Data Management Services Guide.

• A single member or multiple members can be added, retrieved, or updated using
BPAM (many of the routines used by BPAM are actually BSAM routines).

• Buffers for a BPAM data set can be acquired automatically, but buffer control must
be provided by the problem program. The problem program must issue a READ
macro instruction that provides a buffer address to fill an input buffer, and it must
place the data in an output buff er before issuing a WRITE macro instruction to write
a data block.

• Although a BP AM data set can contain blocked records, the problem program must
perform all blocking and de blocking of records. BP AM provides only the capability to
read or write a data block, but the data block can contain multiple logical records
assembled by the problem program.

• The STOW macro instruction can be used to add, delete, change, or replace a member
name or alias in the directory.

• Multiple members of the data set can be processed by building a list of member
locations (with a BLDL macro instruction) and using the FIND macro instruction (in
conjunction with the list) to locate the beginning of each member.

• The problem program must synchronize I/ 0 operations by issuing a CHECK macro
instruction for each READ or WRITE macro instruction issued.

These characteristics of partitioned data sets and the basic partitioned access method are
described in more detail in OS/VS Data Management Services Guide.

Macro Instruction Descriptions: DCB-BPAM 75

The DCB macro for BP AM is written as follows:

[symbol] DCB [BFALN={F I!!}]
[BLKSIZE= absexp]
[BUFCB= re/exp]
[BUFL= absexp]
[BUFNO= absexp]
[DD NAME= symbol] t
DSORG={PO I POU}
[EODAD= re/exp]
[EXLST = re/exp]
[KEYLEN = absexp]
[LRECL= absexp]
MACRF={(R I WI R,W)}l
[NCP= absexp]
[OPTCD={C I W[C]}]

[RECFM={U[T][A IM]}

{V[B[T] I T][A I M]}

{F[B[T] I T][A I M]}]

[SYNAD= re/exp]

lThis parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

The following describes the DCB operands that can be specified when a BP AM data set
is being created or processed:

BFALN={F I!!}
The BFALN operand specifies the boundary alignment for each buffer in the buffer
pool when the buff er pool is constructed automatically or by a GETPOOL macro
instruction. If the BFALN operand is omitted, the system provides doubleword
alignment for each buffer. The following describes the characters that can be specified
in the BF ALN operand:

F'

D

Specifies that each buff er is aligned on a fullword boundary that is not also a
doubleword boundary.

Specifies that each buffer is aligned on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the problem
program controls all buffering, the problem program must provide an area for the
buffers and control buff er alignment.

Source: The BF ALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BLKSIZE=absexp (maximum value is 32,760)
The BLKSIZE operand specifies the length, in bytes, of each data block for
fixed-length records, or it specifies the maximum length, in bytes, for variable-length
or undefined-length records. If keys are used, the length of the key is not included in
the value specified for the BLKSIZE operand.

The actual block size that can be specified depends on the record format and the type
of direct-access device being used. If the track-overflow feature is used, the block size
can be up to the maximum. If the track-overflow feature is not used, the maximum

76 OS/VS Data Management Macro Instructions

block size is determined by the track capacity of a single track on the direct-access
device being used. Device capacity for direct-access devices is described in Appendix
C of this publication. For additional information about device capacity and space
allocation, refer to OS/VS Data Management Services Guide.

For variable-length records, the value specified in the BLKSIZE operand must include
the maximum logical record length (up to 32,756 bytes) plus four bytes for the block
descriptor word (BDW).

For undefined-length records, the value specified for the BLKSIZE operand can be
altered by the problem program when the actual length becomes known to the
problem program. The value can be inserted into the DCBBLKSI field of the data
control block or specified in the length operand of a READ /WRITE macro
instruction.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB =re/exp
The BUFCB operand specifies the address of the buff er pool control block when the
buff er pool is constructed by a BUILD macro instruction.

If the buff er pool is constructed automatically or by a GETPOOL macro instruction,
the system places the address of the buff er pool control block into the data control
block and the BUFCB operand can be omitted. Also, if the problem program controls
all buffering, the BUFCB operand should be omitted.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buff er in the buff er pool
when the buffer pool is acquired automatically. If the BUFL operand is omitted and
the buff er pool is acquired automatically, the system acquires buffers with a length
that is equal to the sum of the values specified in the KEYLEN and BLKSIZE
operands. If the problem program requires longer buffers, the BUFL operand should
be specified.

If the problem program controls all buffering, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BVFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers to be constructed by a BUILD
macro instruction, or it specifies the number of buffers to be acquired automatically
by the system.

If the problem program controls all buffering or if the buff er pool is constructed by a
GETPOOL macro instruction, the BUFNO operand should be omitted.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

DDNAME=.symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Macro Instruction Descriptions: DCB-BP AM 77

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DSORG={PO I POU}
The DSORG operand specifies the data set organization and if the data set contains
any location-dependent information that would make it unmovable. The following
describes the characters that can be specified:

PO
Specifies a partitioned data set organization.

POU
Specifies a partitioned data set organization and that the data set contains
location-dependent information.

Note: If BSAM or QSAM is used to add or retrieve a single member of a partitioned
data set, a sequential access method is being used, and the DSORG operand is
specified as PS or PSU. The name of the member being processed in this manner is
supplied in a DD statement.

Source: The DSORG operand must be specified in the DCB macro instruction.

EODAD=relexp
The EODAD operand specifies the address of the routine given control when the end
of the input data set is reached. Control is given to this routine when an input request
is made (READ macro instruction) and there are no additional input records to
retrieve. The routine is entered when a CHECK macro instruction is issued and the
end of the data set is reached. If the end of the data set is reached and no EODAD
address has been supplied, the task is abnormally terminated. For additional
information on the EODAD routine, see OS/VS Data Management Services Guide.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST =re/exp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program uses the data control block exit
routine for additional processing or if the DCB ABEND exit is used for ABEND
condition analysis.

Refer to Appendix D of this publication for the format and requirements of the exit
list processing. For additional information about exit list processing, refer to OS /VS
Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the OPEN macro instruction is issued to open the data set.

KEYLEN=absexp (maximum value is 255)
The KEYLEN operand specifies the length, in bytes, of the key associated with each
data block in the direct-access device data set. If the key length is not supplied from
any source by the end of the data control block exit routine, a key length of zero (no
keys) is assumed.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the
completion of the data control block exit routine, or by the data set label of an
existing data set. If KEYLEN=O is specified in the DCB macro instruction, a special
indicator is set in RECFM so that KEYLEN cannot be supplied from the DCB
subparameter of a DD statement or data set label of an existing data set. KEYLEN=O

78 OS/VS Data Management Macro Instructions

can be coded only in the DCB macro instruction and will be ignored if specified in the
DD statement.

LRECL=absexp (maximum value is 32,760)
The LRECL operand specifies the length, in bytes, of each fixed-length logical record
in the data set; It is required only for fixed-length records. The value specified in the
LRECL operand cannot exceed the value specified in the BLKSIZE operand.

If the records are unblocked, the value specified in the LRECL operand must equal
the value specified in the BLKSIZE operand. If the records are blocked, the value
specified in the LRECL operand must be evenly divisible into the value specified in
the BLKSIZE operand.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF={(R I WI R,W)}
The MACRF operand specifies the type of macro instructions (READ, WRITE, and
NOTE/POINT) that are used to process the data set. The following describes the
characters that can be specified:

R

w

Specifies that READ macro instructions are used. This operand automatically
provides the capability to use both the NOTE and POINT macro instructions with
the data set.

Specifies that WRITE macro instructions are used. This operand automatically
provides the capability to use both the NOTE and POINT macro instructions with
the data set.

All BP AM READ and WRITE macro instructions issued must be tested for
completion using a CHECK macro instruction. The MACRF operand does not require
any coding to specify that a CHECK macro instruction will be used.

Source: The MACRF operand must be specified in the DCB macro instruction.

NCP=absexp (maximum value is 99)
The NCP operand specifies the maximum number of READ and WRITE macro
instructions that will be issued before the first CHECK macro instruction is issued.
The maximum number may be less than 99 depending on the amount of virtual
storage available in the region or partition. If chained scheduling is specified, the value
of NCP determines the maximum number of channel program segments that can be
chained and must be specified as more than one. If the NCP operand is omitted, one is
assumed.

Source: The NCP operand can be supplied in the DCB macro instruction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block open exit routine.

Macro Instruction Descriptions: DCB-BPAM 79

OPfCD={C I W[C]}
The OPfCD operand specifies the optional services performed by the system. The
following describes the characters that can be specified; they can be specified in any
order and no commas are allowed between characters:

c

w

Specifies that chained scheduling is used. OS/VS 1 supports chained scheduling in
nonpageable storage only. If chained scheduling is requested in pageable storage,
the request is ignored and normal scheduling is substituted.

For OS/VS2, chained scheduling is supported for pageable and nonpageable
storage.

Specifies that the system performs a validity check for each record written.

Source: The OPfCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. However, all optional services must be
requested from the same source.

RECFM= {U[T][A IM]}

{V[B[T] I T][A I M]}

{F[B[T] I T][A IM]}
The RECFM operand specifies the record format and characteristics of the data set
being created or processed. All the record formats shown above can be specified, but
in those formats that show blocked records, the problem program must perform the
blocking and de blocking of logical records; BP AM recognizes only data blocks. The
following describes the characters that can be specified:

A

B

F

M

T

u

v

Specifies that the records in the data set contain American National Standards
Institute (ANSI) control characters. Refer to Appendix E for a description of
control characters.

Specifies that the data set contains blocked records.

Specifies that the data set contains fixed-length records.

Specifies that the records in the data set contain machine code control characters.
Refer to Appendix E for a description of control characters.

Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one track of a
direct-access device and the remainder of the record written on the following track
(if required). Chained scheduling (OPfCD=C) cannot be used if the
track-overflow feature is used.

SpecifieS that the data set contains undefined-length records.

Specifies that the data set contains variable-length records.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

80 OS/VS Data Management Macro Instructions

SYNAD=relexp
The SYNAD operand specifies the address of the error analysis (SYNAD) routine to
be given control when an uncorrectable input/ output error occurs. The contents of
the registers when the error analysis routine is given control are described in
Appendix A.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers when it
regains control from the error analysis routine. The error analysis routine can return
control to the system by issuing a RETURN macro instruction. If control is returned
to the system, the system returns control to the problem program and proceeds as
though no error had been encountered.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/ output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

Macro Instruction Descriptions: DCB-BPAM 81

DCB-Construct a Data Control Block (BSAM)

The data control block for the basic sequential access method (BSAM) is constructed
during assembly of the problem program. The DSORG and MACRF operands must be
coded in the DCB macro instruction, but the other DCB operands can be supplied, to the
data control block, from other sources. Each DCB operand description contains a
heading, "Source." The information under this heading describes the sources from which
an operand can be supplied.

Before a DCB macro instruction for creating or processing a BSAM data set is coded, the
following characteristics of BSAM data sets should be considered:

• Although several record formats with blocked records can be specified for BSAM, the
problem program must perform all blocking and deblocking of records. BSAM
provides only the capability to read or write a data block, but the block can contain
one or more logical records assembled by the problem program.

• Buffers for a BSAM data set can be acquired automatically, but buff er control must
be provided by the problem program. The problem program must issue a READ
macro instruction that provides a buffer address to fill an input buff er, and it must
place the data in an output buff er before issuing the WRITE macro instruction to
write a data block.

• The problem program must synchronize I/ 0 operations by issuing a CHECK macro
instruction for each READ and WRITE macro instruction issued.

• BSAM provides capability for nonsequential processing by using the NOTE and
POINT macro instructions.

• Keys for direct-access device records can be read or written using BSAM.

• Specifying the DEVD operand in the DCB macro instruction can make the program
device dependent.

These characteristics of basic sequential access method data sets are described in more
detail in OS/VS Data Management Services Guide.

For information on additional operands for the DCB macro for the 1275 or 1419, see
OS Data Management Services and Macro Instructions for IBM 1419/ 1275.

For information on additional operands for the DCB macro for the 3886, see OS/VS
IBM 3886 Optical Character Reader Model 1 Reference.

Macro Instruction Descriptions: DCB-BSAM 83

The DCB macro for BSAM is written as follows:

[symbol] DCB [BFALN={F ID}]
[BFTEK=R]
[BLKSIZE= absexp]
[BUFCB= re/exp]
[BUFL= absexp]
[BUFNO= absexp]
[BUFOFF= { absexp I L}]
[DD NAME= symbol]t

[DEVD= {DA
[,KEYLEN = absexp]}

{TA
[,DEN={O 1112 I 3 I 4}]
[,TRTCH={C IE I ET IT}]}

{PT
[,CODE= {A I B I c I F I I I N I T}]}

{PR
[,PRTSP={O 1112 I 3}]}

{PC
[,MODE= [c I ~][R]]
[,STACK={t 12}]
[,FUNC={If PI PW[XT] IR I RP[D] I RW[T] I

RWP[XT][D] I W[T]}]}

{RD
[,MODE= [c I ~][0 I R]]
[,STACK={t 12}]
[,FUNC={If PI PW[XT] IR I RP[D] I RW[T] I

RWP[XT][D] I W[T]}]}]

DSORG={PS I PSU}
[EODAD= re/exp]
[EXLST =re/exp]
[KEYLEN = absexp]
[LRECL={absexp IX}]

MACRF= {(R[C IP])}

{(W[C Ip IL])}

{ (R[C], W[C])} t

[NCP= absexp]

lThis parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

Continued on next page.

84 OS/VS Data Management Macro Instructions

[OPTCD= {B}

{T}

{U[C]}

{C[T][B]}

{H[Z][B]}

{W[C][T][B]}

{Z[C][T][B]}

{Q[C][B][T I Z]}]

[RECFM= {!![T][A I M]}

{V[B I s I T I BS I BT][A I M]}

{D[B][A]}

{F[B I s I T I BS I BT][A I M]}]

[SYNAD= re/exp]

The following describes the operands that can be specified in the DCB macro instruction
for a BSAM data set:

BFALN={F I!!}
The BFALN operand specifies the boundary alignment for each buffer in the buffer
pool when the buff er pool is constructed automatically or by a GETPOOL macro
instruction. If the BF ALN operand is omitted, the system provides doubleword
alignment for each buffer.

If the data set being created or processed contains ASCII tape records with a block
prefix, the block prefix is entered at the beginning of the buffer, and data alignment
depends on the length of the block prefix. For a description of how to specify the
block prefix length, refer to the DCB BUFOFF operand.

The following describes the characters that can be specified:

F

D

Specifies that each buffer is on a fullword boundary that is not also a doubleword
boundary.

Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool or if the problem
program controls all buffering, the problem program must provide an area for the
buffers and control buff er alignment.

Source: The BF ALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BF ALN and BFfEK operands are
specified, they must be supplied by the same source.

BFfEK=R
The BFfEK=R operand specifies that BSAM is used to read unblocked
variable-length spanned records with keys from a BDAM data set. Each read
operation reads one segment of the record and places it in the area designated in the
READ macro instruction. The first segment enters at the beginning of the area, but all

Macro Instruction Descriptions: DCB-BSAM 85

subsequent segments are off set by the length of the key (only the first segment has a
key). The problem program must provide an area in which to assemble a record,
identify each segment, and assemble the segments into a complete record.

Source: The BFfEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFfEK and BF ALN operands are
specified, they must be supplied from the same source.

BLKSIZE==absexp (maximum value is 32,760)
The BLKSIZE operand specifies the maximum block length in bytes. For fixed-length,
unblocked records, this operand specifies the record length. The BLKSIZE operand
includes only the data block length; if keys are used, the length of the key is not
included in the value specified for the BLKSIZE operand.

The actual value that can be specified in the BLKSIZE operand depends on the device
type and the record format being used. Device capacity is shown in Appendix C of
this publication. For additional information about device capacity, refer to OS/VS
Data Management Services Guide. For direct-access devices when the
track-overflow feature is used or variable-length spanned records are being processed,
the value specified in the BLKSIZE operand can be up to the maximum value. For
other record formats used with direct-access devices, the value specified for BLKSIZE
cannot exceed the capacity of a single track.

If fixed-length records are used for a SYSOUT data set, the value specified in the
BLKSIZE operand must be an integral multiple of the value specified for the logical
record length (LRECL); otherwise the system will adjust the block size downward to
the nearest multiple.

If variable-length records are used, the value specified in the BLKSIZE operand must
include the maximum logical record length (up to 32,756 bytes) plus the four bytes
required for the block descriptor word (BDW). For format-D variable-length records
(ASCII data sets), the minimum value for BLKSIZE is 18 bytes and the maximum
value is 2,048 bytes.

If ASCII tape records with a block prefix are processed, the value specified in the
BLKSIZE operand must also include the length of the block prefix.

If BSAM is used to read variable-length spanned records from a BDAM data set, the
value specified for the BLKSIZE operand must be as large as the longest possible
record segment in the BDAM data set, including four bytes for the segment descriptor
word (SDW) and four bytes for the block descriptor word (BDW).

If undefined-length records are used, the value specified for the BLKSIZE operand
can be altered by the problem program when the actual length becomes known to the
problem program. The value can be inserted directly into the DCBBLKSI field of the
data control block or specified in the length operand of a READ /WRITE macro
instruction.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB=relexp
The BUFCB operand specifies the address of the buff er pool control block in a buff er
pool constructed by a BUILD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro instruction,
the system places the address of the buff er pool control block into the data control
block, and the BUFCB operand should be omitted. If the problem program controls all
buffering, the BUFCB operand is not required.

86 OS/VS Data Management Macro Instructions

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BVFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, for each buffer in the buffer pool
when the buffer pool is acquired automatically. The system acquires buffers with a
length equal to the sum of the values specified in the KEYLEN and BLKSIZE
operands if the BUFL operand is omitted; if the problem program requires larger
buffers, the BUFL operand must be specified. If the BUFL operand is specified, it
must be at least as large as the value specified in the BLKSIZE operand. If the data set
is for card image mode, the BUFL operand should be specified as 160. The description
of the DEVD operand contains a description of card image mode.

If the data set contains ASCII tape records with a block prefix, the value specified in
the BUFL operand must include the block length plus the length of the block prefix.

If the problem program controls all buffering or if the buffer pool is constructed by a
GETPOOL or BUILD macro instruction, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BVFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers constructed by a BUILD macro
instruction or the number of buffers to be acquired automatically by the system.

If the problem program controls all buffering or if the buffer pool is constructed by a
GETPOOL macro instruction, the BUFNO operand should be omitted.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFOFF={ absexp IL}
The BUFOFF operand specifies the length, in bytes, of the block prefix used with an
ASCII tape data set. When BSAM is used to read an ASCII tape data set, the problem
program must use the block prefix length to determine the location of the data in the
buffer. When BSAM is used to write an output ASCII tape data set, the problem
program must insert the block prefix into the buff er followed by the data (BSAM
considers the block prefix as data). The block prefix and data can consist of any
characters that can be translated into ASCII code; any character that cannot be
translated is replaced with a substitute character. For format-D records, the RDW
must be binary; if RECFM=D and BUFOFF=L, then the RDW and BDW must be
binary. On output, the control program translates the BDW and RDW to zoned
decimal and on input, the control program converts them to binary. The following can
be specified in the BUFOFF operand:

absexp

L

Specifies the length, in bytes, of the block prefix. This value can be from 0 to 99
for an input data set. The value must be 0 for writing an output data set with
fixed-length or undefined-length records (BSAM considers the block prefix part of
the data record).

Specifies that the block prefix is 4 bytes long and contains the block length.
BUFOFF=L is used when format-D records (ASCII) are processed. When
BUFOFF=L is specified, the BSAM problem program can process the data records
(using READ and WRITE macro instructions) in the same manner as if the data
were in format-V variable-length records. For further information on this operand,

Macro Instruction Descriptions: DCB-BSAM 87

see "Variable-Length Records-Format D" in OS/VS Data Management
Services Guide.

If the BUFOFF operand is omitted for an input data set with format-D records, the
system inserts the record length into the DCBLRECL field of the data control block;
the problem program must obtain the length from this field to process the record.

If the BUFOFF operand is omitted from an output data set with format-D records, the
problem program must insert the actual record length into the DCBBLKSI field of the
data control block or specify the record length in the length operand of a WRITE
macro instruction.

Source: The BUFOFF operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. BUFOFF =absexp can also be
supplied by the label of an existing data set; BUFOFF =L cannot be supplied by the
label of an existing data set.

DDNAME=Symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DEVD={DA I TA I PT I PR I PC I RD}[, options]
The DEVD operand specifies the device type on which the data set can or does reside.
The device types above are shown with the optional operand{s) that can be coded
when a particular device is used. The devices are listed in order of
device-independence. For example, if DEVD=DA is coded in a DCB macro
instruction (or the DEVD operand is omitted, which causes a default to DA), the data
control block constructed during assembly could later be used for any of the other
devices, but if DEVD=RD is coded, the data control block can be used only with a
card reader or card reader punch. Unless you are certain that device interchangeability
is not required, you should either code DEVD=DA or omit the operand and allow it to
default to DA.

If system input is directed to an intermediate storage device, the DEVD operand is
omitted, and the job control language for the problem program designates the system
input device to be used. Likewise, if system output is directed to an intermediate
storage device, the DEVD operand is omitted, and the job control language for the
problem program designates the system output device to be used.

If DEVD=PT is coded, the DCB macro should not be coded within the first 8 bytes
of addressability for the control section (CSECT). If DEVD=PR, PC, or RD is
coded, the DCB macro should not be coded within the first 16 bytes of addressability
for the control section.

The DEVD operand is discussed below according to individual device type:

DEVD=DA
[,KEYLEN = absexp]
Specifies that the data control block can be used for a direct-access device (or any
of the other device types described following DA).

KEYLEN =absexp
The KEYLEN operand can be specified only for data sets that reside on
direct-access devices. Since the KEYLEN is usually coded without a DEVD
operand (default taken), the description of the KEYLEN operand is in
alphabetic sequence with the other operands.

88 OS/VS Data Management Macro Instructions

DEVD=TA
[,DEN={O I 112 I 3 I 4}]
[,TRTCH={C IE I ET IT}]
Specifies that the data control block can be used for a magnetic tape data set (or
any of the other device types described following TA). If TA is coded, the following
optional operands can be coded:

DEN={O 1112 I 3 I 4}
The DEN operand specifies the recording density in the number of bits-per-inch
per track as shown in the following chart:

Recording Density

DEN

0
1
2
3
4

7-Track Tape

200
556
800

9-Track Tape

800 (NRZl)l
1600 (PE)2
6250 (GCR)3

1 NRZI is for non-return-to-zero inverted mode
2 PE is for phase encoded mode
3 OCR is for group coded recording mode

Note: Specifying DEN=O for a 7-track 3420 tape attached to a 3803-1 will
result in 556 bits-per-inch recording, but corresponding messages and tape labels
will indicate 200 bits-per-inch recording density.

If the DEN operand is not supplied by any source, the highest applicable density
is assumed.

TRTCH={C IE I ET IT}
The TRTCH operand specifies the recording technique for 7-track tape. One of
the above four character combinations can be coded. If the TRTCH operand is
omitted, odd parity with no translation or conversion is assumed. The following
describes the characters that can be specified:

c

E

Specifies that the data-conversion feature is used with odd parity and no
translation.

Specifies even parity with no translation or conversion.

ET

T

Specifies even parity with BCDIC to EBCDIC translation required and no
data-conversion feature.

Specifies that BCDIC to EBCDIC translation is required with odd parity and
no data-conversion feature.

Macro Instruction Descriptions: DCB-BSAM 89

DEVD=PT
[,CODE={A I BI c IF I I IN IT}]
Specifies that the data control block is used for a paper tape device (or any of the
other devices following PT). If PT is coded, the following optional operand can be
coded:

CODE= {A I B I C I F I I I N I T}
The CODE operand specifies the code in which the data was punched. The
system converts these codes to EBCDIC code. If the CODE operand is not
supplied by any source, CODE=I is assumed. The following describes the
characters that can be specified:

A
Specifies 8-track tape in ASCII code.

B
Specifies Burroughs 7-track tape.

c
Specifies National Cash Register 8-track tape.

F
Specifies Friden 8-track tape.

I
Specifies IBM BCD perforated tape and transmission code with 8 tracks.

N
Specifies that no conversion is required.

T
Specifies Teletypet 5-track tape.

DEVD=PR
[,PRTSP={O I 112 I 3}]
Specifies that the data control block is used for an on-line printer (or any of the
other device types following PR). If PR is coded, the following optional operand
can be coded:

PRTSP={O 1112 I 3}
The PRTSP operand specifies the line spacing on the printer. This operand is not
valid if the RECFM operand specifies either machine (RECFM=M) or ANSI
(RECFM=A) control characters. If the PRTSP operand is not specified from
any source, one is assumed. The following describes the characters that can be
specified:

0
Specifies that spacing is suppressed (no space).

1
Specifies single-spacing.

2
Specifies double-spacing (one blank line between printed lines).

3
Specifies triple-spacing (two blank lines between printed lines).

!Trademark of Teletype Corporation.

90 OS/VS Data Management Macro Instructions

DEVD=PC
[,MODE=[C I ~][R]]
[,STACK={l I 2}]
[,FUNC={If p I PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}]
Specifies that the data control block is used for a card punch (or any of the other
device types following PC). If PC is coded, the following optional operands can be
specified:

MODE=[C I ~][R]
The MODE operand specifies the mode of operation for the card punch. The
following describes the characters that can be specified (if the MODE operand is
omitted, Eis assumed):

c

E

R

Specifies that the cards are to be punched in card image mode. In card image
mode, the 12 rows in each card column are punched from two consecutive
bytes in virtual storage. Rows 12 through 3 are punched from the low-order 6
bits of one byte and rows 4 through 9 are punched from the low-order 6 bits
of the following byte.

Specifies that cards are to be punched in EBCDIC code.

Specifies that the program runs in read-column-eliminate mode (3505 card
reader or 3525 card punch, read feature).

Note: If the MODE operand is specified in the DCB subparameter of a DD
statement, either C or E must be specified if R is specified.

STACK={! 12}
The STACK operand specifies the stacker bin into which the card is placed after
punching is completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
Specifies stacker number 1.

2
Specifies stacker number 2.

FUNC={I IP I PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}
The FUNC operand defines the type of 3525 card punch data sets that are used.
If the FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch only.
The following describes the characters that can be specified in the FUNC
operand:

D

I

Specifies that the data protection option is to be used. The data protection
option prevents punching information into card columns that already contain
data. When the data protection option is used, an 80-byte data protection
image (DPI) must have been previously stored in SYS 1.IMAGELIB. Data
protection applies only to the output/ punch portion of a read and punch or
read punch and print operation.

Specifies that the data in the data set is to be punched into cards and printed
on the cards; the first 64 characters are printed on line 1 of the card and the
remaining 16 characters are printed on line 3.

Macro Instruction Descriptions: DCB-BSAM 91

p

R

T

w

x

Specifies that the data set is for punching cards. See the description of the
character X for associated punch and print data sets.

Specifies that the data set is for reading cards.

Specifies that the two-line print option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If T is not
specified, the multiline print option is used; this allows printing on all 25
possible print lines. In either case, the data printed may be the same as the
data punched in the card, or it may be entirely different data.

Specifies that the data set is for printing. See the description of the character
X for associated punch and print data sets.

Specifies that an associated data set is opened for output for both punching
and printing. Coding the character X is used to distinguish the 3 5 25 printer
output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI) must be
specified in the FCB parameter of the DD statement for the data set.

DEVD=RD
[,MODE=[C I ~][O IR]]
[,STACK={l I 2}]
[,FUNC={If PI PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}]
Specifies that the data control block is used with a card reader or card read punch.
If RD is specified, the data control block cannot be used with any other device
type. When RD is coded, the following optional operands can be specified:

MODE=[C I ~][O IR]
The MODE operand specifies the mode of operation for the card reader. The
following describes the characters that can be specified:

c

E

0

R

Specifies that the cards to be read are in card image mode. In card image
mode, the 12 rows in each card column are read into two consecutive bytes of
virtual storage. Rows 12 through 3 are read into one byte and rows 4 through
9 are read into the following byte.

Specifies that the cards to be read contain data in EBCDIC code.

Specifies that the program runs in optical-mark-read mode (3505 card
reader).

Specifies that the program runs in read-column-eliminate mode (3505 card
reader or 3525 card punch, read feature).

Note: If the MODE operand for a 3505 or 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be specified if R or 0 is
specified.

92 OS/VS Data Management Macro Instructions

STACK={! 12}
The ST ACK operand specifies the stacker bin into which the card is placed after
reading is completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
Specifies stacker number 1.

2
Specifies stacker number 2.

FUNC={I IP I PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}
The FUNC operand defines the type of 3525 card punch data sets that are used.
If the FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch only.
The following describes the characters that can be specified in the FUN C
operand:

D

I

p

R

T

w

x

Specifies that the data protection option is to be used. The data protection
option prevents punching information into card columns that already contain
data. When the data protection option is used, an 80-byte data protection
image (DPI) must have been previously stored in SYS 1.IMAGELIB. Data
protection applies only to the output/ punch portion of a read and punch or
read punch and print operation.

Specifies that the data in the data set is to be punched into cards and printed
on the cards; the first 64 characters are printed on line 1 of the card and the
remaining 16 characters are printed on line 3.

Specifies that the data set is for punching cards. See the description of the
character X for associated punch and print data sets.

Specifies that the data set is for reading cards.

Specifies that the two-line print option is used. The two-line print option
allows two lines of data to be printed on the card (lines 1 and 3). If T is not
specified, the multiline print option is used; this allows printing on all 25
possible print lines. In either case, the data printed may be the same as the
data punched in the card, or it may be entirely different data.

Specifies that the data set is for printing. See the description of the character
X for associated punch and print data sets.

Specifies that an associated data set is opened for output for both punching
and printing. Coding the character X is used to distinguish the 3 5 25 printer
output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI) must be
specified in the FCB subparameter of the DD statement for the data set.

Source: The DEVD operand can be supplied only in the DCB macro instruction.
However, the optional operands can be supplied in the DCB macro instruction, the
DCB subparameter of a DD statement, or by the problem program before
completion of the data control block exit routine.

Macro Instruction Descriptions: DCB-BSAM 93

DSORG={PS I PSU}
The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following can be specified:

PS
Specifies a physical sequential data set.

PSU
Specifies a physical sequential data set that contains location-dependent
information that would make it unmovable.

Source: The DSORG operand must be coded in the DCB macro instruction.

EODAD=relexp
The EODAD operand specifies the address of the routine given control when the end
of an input data set is reached. If the record format is RECFM=FS or FBS, the
end-of-data condition is sensed when a file mark is read or when more data is
requested after reading a truncated block. The end of data routine is entered when the
CHECK macro instruction determines that the READ macro instruction reached the
end of the data. If the end of the data set is reached but no EODAD address has been
supplied, the task is abnormally terminated. See OS/VS Data Management Services
Guide for additional information on the EODAD routine.

When the data set has been opened for UPDAT and volumes are to be switched, the
problem program should issue a FEOV macro instruction after the EODAD routine
has been entered.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST =re/exp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program requires additional processing for
user labels, user totaling, data control block exit routine, end-of-volume, block count
exits, to define a forms control buffer (FCB) image, or to use the DCB ABEND exit
for ABEND condition analysis.

Refer to Appendix D of this publication for the format and requirements of exit list
processing. For additional information about exit list processing, refer to OS/VS
Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program any time before the exit is required by the problem program.

KEYLEN=absexp (maximum value is 255)
The KEYLEN operand specifies the length, in bytes, for the key associated with each
data block in a direct-access device data set. If the key length is not supplied from any
source before completion of the data control block exit routine, a key length of zero
(no keys) is assumed.

Source: The KEYLEN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before the
completion of the data control block exit routine, or by the data set label of an
existing data set. If KEYLEN=O is specified in the DCB macro instruction, a special
indicator is set in RECFM so that KEYLEN cannot be supplied from the DCB
subparameter of a DD statement or data set label of an existing data set. KEYLEN=O
can be coded only in the DCB macro instruction and will be ignored if specified in the
DD statement.

94 OS/VS Data Management Macro Instructions

LRECL={ absexp IX}
The LRECL operand specifies the length, in bytes, for fixed-length records, or it
specifies the maximum length, in bytes, for variable-length records. LRECL=X is used
for variable-length spanned records that exceed 32,756 bytes. Except when
variable-length spanned records are used, the value specified for the LRECL operand
cannot exceed the value specified for the BLKSIZE operand.

Except when variable-length spanned records are used, the LRECL operand can be
omitted for BSAM; the system uses the value specified in the BLKSIZE operand. If
the LRECL value is coded, it is coded as described in the following.

For fixed-length records that are unblocked, the value specified in the LRECL
operand should be equal to the value specified in the BLKSIZE operand. For blocked
fixed-length records, the value specified in the LRECL operand should be evenly
divisible into the value specified in the BLKSIZE operand.

For variable-length records, the value specified in LRECL must include the maximum
data length (up to 32,752 bytes) plus 4 bytes for the RDW.

For undefined-length records, the LRECL operand should be omitted; the actual
length can be supplied dynamically in a READ /WRITE macro instruction. When an
undefined-length record is read, the actual length of the record is returned by the
system in the DCBLRECL field of the data control block.

When BSAM is used to create a BDAM data set with variable-length spanned records,
the LRECL value should be the maximum data length (up to 32,752) plus four bytes
for the record descriptor word (RDW), or if the logical record length is greater than
32,756 bytes, LRECL=X is specified.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF= {(R[C IP])}

{(W[C Ip IL])}

{ (R[C], W[C])}
The MACRF operand specifies the type of macro instructions (READ, WRITE,
CNTRL, and NOTE/POINT) that are used with the data set being created or
processed. The BSAM MACRF operand also provides the special form
(MACRF= WL) for creating a BDAM data set. The MACRF operand can be coded in
any of the forms shown above. The following characters can be coded:

c

L

p

R

Specifies that the CNTRL macro instruction is used with the data set. If C is
specified to be used with a card reader, a CNTRL macro instruction must follow
every input request.

Specifies that BSAM is used to create a BDAM data set. This character can be
specified only in the combination MACRF= WL.

Specifies that POINT macro instructions are used with the data set being created or
processed. Specifying P in the MACRF operand also automatically provides the
capability of using NOTE macro instructions with the data set. For VS2, P must
not be coded for SYSIN or SYSOUT data sets.

Specifies that READ macro instructions are used.

Macro Instruction Descriptions: DCB-BSAM 95

w
Specifies that WRITE macro instructions are used.

Note: Each READ and WRITE macro instruction issued in the problem program must
be checked for completion by a CHECK macro instruction.

Source: The MACRF operand must be specified in the DCB macro instruction.

NCP=absexp (maximum value is 99)
The NCP operand specifies the maximum number of READ /WRITE macro
instructions that will be issued before the first CHECK macro instruction is issued to
test for completion of the I/ 0 operation. The maximum number may be less than 99
depending on the amount of virtual storage available in the region or partition. If
chained scheduling is specified (OPTCD=C), the value of NCP determines the
maximum number of channel program segments that can be chained and must be
specified as more than one. If the NCP operand is omitted, one is assumed.

Source: The NCP operand can be supplied in the DCB macro instrnction, in the DCB
subparameter of a DD statement, or by the problem program before completion of the
data control block open exit routine.

OPTCD= {B}

{T}

{U[C]}

{C[T][B]}

{H[Z][B]}

{W[C][T][B]}

{Z[C][T][B]}

{Q[C][B][T I Z]}

The OPTCD operand specifies the optional services that are used with the BSAM data
set. Two of the optional services, OPTCD=B and OPTCD=H, cannot be specified in
the DCB macro instruction. They are requested in the DCB subparameter of a DD
statement. Since all optional services requests must be supplied by the same source,
the OPTCD operand must be omitted from the DCB macro instruction if either of
these options is requested in a DD statement. The following describes the characters
that can be specified-these characters can be specified in any order (in one of the
combinations shown above), and no commas are allowed between characters:

c

Q

Requests that chained scheduling be used. OPTCD=C cannot be specified if
BFfEK=R is specified for the same data control block. Also, chained scheduling
cannot be specified for associated data s~ts or printing on a 3525. OS/VSl
supports chained scheduling in nonpageable storage only. If chained scheduling is
requested in pageable storage, the request is ignored and normal scheduling is
substituted.

For OS/VS2, chained scheduling is supported for pageable and nonpageable
storage.

Requests that ASCII tape records in an input data set be converted to EBCDIC
code after the input record has been read. Translation is done at CHECK time for
input. It also requests that an output record in EBCDIC code be converted to
ASCII code before the record is written. For further information on this
conversion, see "Variable-Length Records-Format D" in OS/VS Data
Management Services Guide.

96 OS/VS Data Management Macro Instructions

f

T

u

w

z

Requests the user totaling facility. If this facility is requested, the EXLST operand
should specify the address of an exit list to be used. T cannot be specified for
SYSIN and SYSOUT data sets.

Specified only for a printer with the universal character set (UCS) feature. This
option unblocks data checks (permits them to be recognized as errors) and allows
analysis by the appropriate error analysis routine (SYNAD routine). If the U option
is omitted, data checks are not recognized as errors.

Specifies that the system performs a validity check on each record written on a
direct-access device.

For magnetic tape, input only, the Z option requests the system to shorten its
normal error recovery procedure to consider a data check as a permanent I/ 0 error
after five unsuccessful attempts to read a record. This option is available only if it is
selected when the operating system is generated. OPTCD=Z is used when a tape is
known to contain errors and there is no need to process every record. The error
analysis routine (SYNAD) should keep a count of permanent errors and terminate
processing if the number becomes excessive.

For direct-access devices only, the Z option requests the system to use the search
direct option to accelerate the input operations for a data set. OPTCD=Z cannot
be specified when RECFM=UT, FS, FBT, VS, or VBS.

Note: The following describes the optional services that can be requested in the DCB
subparameter of a DD statement. If either of these options is requested, the complete
OPTCD operand must be supplied in the DD statement.

B

H

If OPTCD=B is specified in the DCB subparameter of a DD statement, it forces
the end-of-volume (EOV) routine to disregard the end-of-file recognition for
magnetic tape. When this occurs, the EOV routine uses the number of volume
serial numbers to determine end of file.

If OPTCD=H is specified in the DCB subparameter of a DD statement, it specifies
that the DOS/OS interchange feature is being used with the data set.

Source: The OPTCD operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, in the data set label for direct-access devices,
or by the problem program before an OPEN macro instruction is issued to open the
data set. However, all optional services must be requested from the same source.

Macro Instruction Descriptions: DCB-BSAM 97

RECFM= {!![T][A IM]}

{V[B I S I T I BS I BT][A I M]}

{D[B][A]}

{F[B I S I T I BS I BT][A I M]}
The RECFM operand specifies the record format and characteristics of the data set
being created or processed. All the record formats shown above can be specified, but
in those record formats that specify blocked records, the problem program must
perform the blocking and deblocking of logical records; BSAM recognizes only data
blocks. The following describes the characters that can be specified:

A

B

D

F

M

s

T

u

v

Specifies that the records in the data set contain American National Standards
Institute (ANSI) control characters. Refer to Appendix E for a description of
control characters.

Specifies that the data set contains blocked records.

Specifies that the data set contains variable-length ASCII tape records. See
OPTCD=Q and the BUFOFF operand for a description of how to specify ASCII
data sets.

Specifies that the data set contains fixed-length records.

Specifies that the records in the data set contain machine code control characters.
Refer to Appendix E for a description of control characters. RECFM=M cannot be
used with ASCII data sets.

For fixed-length records, S specifies that the records are written as standard blocks;
the data set does not contain any truncated blocks or unfilled tracks, with the
exception of the last block or track in the data set.

For variable-length records, S specifies that a record can span more than one block.
Spanned records can be read (re~ding a BDAM data set) or writtien (creating a
BDAM data set) using BSAM.

Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one track of a
direct-access device and the remainder of the record written on the following track
(if required). Chained scheduling cannot be used if the track-overflow feature is
used.

Specifies that the data set contains undefined-length records.

Specifies that the data set contains variable-length records.

Notes:

• RECFM= V cannot be specified for a card reader data set or an ASCII tape data
set.

• RECFM= VBS does not provide the spanned record function; if this format is used,
the problem program must block and segment the records.

98 OS/VS Data Management Macro Instructions

,i

• RECFM= VS or VBS cannot be specified for a SYSIN data set.

• RECFM=V cannot be used for a 7-track tape unless the data conversion feature
(TRTCH=C) is used.

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

SYNAD=relexp
The SYNAD operand specifies the address of the error analysis (SYNAD) routine to
be given control when an uncorrectable input/ output error occurs. The contents of
the registers when the error analysis routine is given control are described in Appendix
A of this publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers when it
regains control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction which uses the address in register 14 to return control to
the system. If control is returned to the system, the system returns control to the
problem program and proceeds as though no error had been encountered.

If the SYNAD operand is omitted, the task is abnormally terminated when an
uncorrectable input/ output error occurs.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

Macro Instruction Descriptions: DCB-BSAM 99

DCB-Construct a Data Control Block (QISAM)

The data control block for a queued indexed sequential access method (QISAM) data set
is constructed during assembly of the problem program. The DCB macro instruction
must not be coded within the first 16 bytes of addressability for the control section
(CSECT). The DSORG and MACRF operands must be coded in the DCB macro
instruction, but the other DCB operands can be supplied from other sources. Each
QISAM DCB operand description contains a heading, "Source." The information under
this heading describes the sources which can supply the operand to the data control
block.

Before a DCB macro instruction for a QISAM data set is coded, the following
characteristics of QISAM should be considered:

• The characteristics of a QISAM data set are established when the data set is created;
these characteristics cannot be changed without reorganizing the data set. The
following DCB operands establish the characteristics of the data set and can be coded
only when creating the data set: BLKSIZE, CYLOFL, KEYLEN, LRECL, NTM,
OPTCD, RECFM, and RKP.

• The data set can contain the following record formats: Unblocked fixed-length
records (F), blocked fixed-length records (FB), unblocked variable-length records
(V), or blocked variable-length records (VB).

• QISAM can create an indexed sequential data set (QISAM, load mode), add
additional data records at the end of the existing data set (QISAM, resume load
mode), update a record in place, or retrieve records sequentially (QISAM, scan
mode).

• The track-overflow feature cannot be used to create an ISAM data set.

• Wnen an indexed sequential data set is being created, space for the prime area of the
data set, the overflow area of the data set, and the cylinder/master index(es) for the
data set can be allocated on the same or separate volumes. For information about
space allocation, refer to OS/VSJ JCL Reference or OS/VS2 JCL.

• The system automatically creates one track index for each cylinder in the data set and
one cylinder index for the entire data set. The DCB NTM and OPTCD operands can
be specified to indicate that the data set requires a master index(es); the system
creates and maintains up to three levels of master indexes. OS I VS Data
Management Services Guide contains additional information about indexes for
indexed sequential data sets.

• A record deletion option can be specified (OPTCD=L) when the ISAM data set is
created. This option allows a record to be flagged for deletion by placing a
hexadecimal value of 'FF' in the first data byte of the record (first byte of a
fixed-length record or fifth byte of a variable-length record). Records marked for
deletion are ignored during sequential retrieval by QISAM.

• Reorganization statistics can be obtained by specifying OPTCD==R when the ISAM
data set is created. These statistics can be used by the problem program to determine
the status of the overflow areas allocated to the data set. Reorganization of ISAM
data sets is described in OS/VS Data Management Services Guide.

• When an ISAM data set is created, the records must be written with the keys in
ascending order.

These characteristics of queued indexed sequential access method data sets are described
in more detail in OS I VS Data Management Services Guide.

Macro Instruction Descriptions: DCB-QISAM 101

The DCB macro for QISAM is written as follows:

[symbol] DCB [BFALN={F ID}]
[BLKSIZE= absexp]
[BUFCB= re/exp]
[BUFL= absexp]
[BUFNO= absexp]
[CYLOFL= absexp]
[DDNAME= symbol]t
DSORG= {IS I ISU}
[EODAD= re/exp]
[EXLST= re/exp]
[KEYLEN = absexp]
[LRECL= absexp]

MACRF= {(PM)}

{(PL)}

{(GM[,S{K I I}])}

{(GL[,S{K I I}][,PU])}

[NTM= absexp]
[OPTCD=[l][L][M][R][U][W][Y]]
[RECFM= {V[B] I F[B]}]
[RKP= absexp]
[SYNAD= re/exp]

1This parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

The following describes the DCB operands that can be specified when a QISAM data set
is being created or processed:

BFALN={F I!;!}
The BFALN operand specifies the alignment of each buffer in the buffer pool when
the buffer pool is constructed automatically or by a GETPOOL macro instruction. If
the BFALN operand is omitted, the system provides doubleword alignment for each
buffer. The following describes the characters that can be specified:.

F

D

Specifies that each buff er is on a fullword boundary that is not also a doubleword
boundary.

Specifies that each buffer is on a doubleword boundary.

If the BUILD macro instruction is used to construct the buffer pool, the problem
program must provide a storage area for the buffers and control buffer alignment.

Source: The BFALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BLKSIZE=absexp (maximum value is device-dependent)
The BLKSIZE operand specifies the length, in bytes, for each data block when
fixed-length records are used, or it specifies the maximum length in bytes, for each
data block when variable-length records are used. The BLKSIZE operand must be
specified when an ISAM data set is created. When an existing ISAM data set is
processed, the BLKSIZE operand must be omitted (it is supplied by the data set
label).

102 OS/VS Data Management Macro Instructions

Track capacity of the direct-access device being used must be considered when the
BLKSIZE for an ISAM data set is specified. For fixed-length records, the sum of the
key length, data length, and device overhead plus 10 bytes (for ISAM use) must not
exceed the capacity of a single track on the direct-access device being used. For
variable-length records the sum of the key length, block-descriptor word length,
record-descriptor word length, data length, and device overhead plus 10 bytes (for
ISAM use) must not exceed the capacity of a single track on the direct-access device
being used. Device capacity and device overhead are described in Appendix C of this
publication. For additional information about device capacity and space allocation,
refer to OS/VS Data Management Services Guide.

If fixed-length records are used, the value specified in the BLKSIZE operand must be
an integral multiple of the value specified in the LRECL operand.

Source: When an ISAM data set is created, the BLKSIZE operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the BLKSIZE operand must be omitted from the
other sources, allowing the data set label to supply the value.

BVFCB=relexp
The BUFCB operand specifies the address of the buff er pool control block
constructed by a BUILD macro instruction.

If the system constructs the buff er pool automatically or if the buff er pool is
constructed by a GETPOOL macro instruction, the system places the address of the
buff er pool control block into the data control block, and the BUFCB operand should
be omitted.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BVFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buff er in the buff er pool
when the buffer pool is constructed by a BUILD or GETPOOL macro instruction.
When the data set is opened, the system computes the minimum buffer length required
and verifies that the length in the buff er pool control block is equal to or greater than
the minimum length required. The system then inserts the computed length into the
data control block.

The BUFL operand is not required for QISAM if the system acquires buffers
automatically; the system computes the minimum buff er length required and inserts
the value into the data control block.

If the buff er pool is constructed with a BUILD or GETPOOL macro instruction,
additional space is required in each buffer for system use. For a description of the
buffer length required for various ISAM operations, refer to OS/VS Data
Management Services Guide.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BVFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers to be constructed by a BUILD
macro instruction, or it specifies the number of buffers to be acquired automatically
by the system. If the BUFNO operand is omitted, the system automatically acquires
two buffers.

If the GETPOOL macro instruction is used to construct the buffer pool, the BUFNO
operand is not required.

Macro Instruction Descriptions: DCB-QISAM 103

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

CYLOFL=absexp (maximum value is 99)
The CYLOFL operand specifies the number of tracks on each cylinder that is reserved
as an overflow area. The overflow area is used to contain records that are forced off
prime area tracks when additional records are added to the prime area track in
ascending key sequence. ISAM maintains pointers to records in the overflow area so
that the entire data set is logically in ascending key sequence. Tracks in the cylinder
overflow area are used by the system only if OPTCD=Y is specified. For a more
complete description of cylinder overflow area, refer to the space allocation section of
OS I VS Data Management Services Guide.

Source: When an ISAM data set is created, the CYLOFL operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the CYLOFL operand should be omitted,
allowing the data set label to supply the operand.

DDNAME=Symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DSORG= {IS I ISU}
The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following characters can be specified:

IS
Specifies an indexed sequential data set organization.

ISU
Specifies an indexed sequential data set that contains location-dependent
information. ISU can be specified only when an ISAM data set is created.

Source: The DSORG operand must be specified in the DCB macro instruction. When
an ISAM data set is created, DSORG=IS or ISU must also be specified in the DCB
subparameter of the corresponding DD statement.

EODAD=relexp
The EODAD operand specifies the address of the routine to be given control when the
end of an input data set is reached. For ISAM, this operand would apply only to scan
mode when a data set is open for an input operation. Control is given to this routine
when a GET macro instruction is issued and there are no more input records to
retrieve. For additional information on the EODAD routine, see OS/VS Data
Management Services Guide.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set is reached.

EXLST =re/exp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required only if the problem program uses the data control block
exit routine for additional processing or if the DCB ABEND exit is used for ABEND
condition analysis.

104 OS/VS Data Management Macro Instructions

Refer to Appendix D of this publication for the format and requirements for exit list
processing. For additional information about exit list processing, refer to OS/VS
Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program before the associated exit is required.

KEYLEN=absexp (maximum value is 255)
The KEYLEN operand specifies the length, in bytes, of the key associated with each
record in an indexed sequential data set. When blocked records are used, the key of
the last record in the block (highest key) is used to identify the block. However, each
logical record within the block has its own identifying key which ISAM uses to access
a given logical record,.

Source: When an -ISAM data set is created the KEYLEN operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the KEYLEN operand must be omitted, allowing
the data set level to supply the key length value. KEYLEN =0 is not valid for an ISAM
data set.

LRECL=absexp (maximum value is device-dependent)
The LRECL operand specifies the length, in bytes, for fixed-length records, or it
specifies the maximum length, in bytes, for variable-length records. The value
specified in the -LRECL operand cannot exceed the value specified in the BLKSIZE
operand. When fixed, unblocked records are used and the relative key position (as
specified in the RKP operand) is zero, the value specified in the LRECL operand
should include only the data length (the key is not written as part of the fixed,
unblocked record when RKP=O).

The track capacity of the direct-access device being used must be considered if
maximum length logical records are being used. For fixed-length records, the sum of
the key length, data length, and device overhead plus 10 bytes (for ISAM use) must
not exceed the capacity of a single track on the direct-access device being used. For
variable-length records, the sum of the key length, data length, device overhead,
block-descriptor-word length, and record-descriptor-word length plus 10 bytes (for
ISAM use) must not exceed the capacity of a single track on the direct-access device
being used. Device capacity and device overhead are described in Appendix C of this
publication. For additional information about device capacity and space allocation,
refer to OS/VS Data Management Services Guide.

Source: When an ISAM data set is created, the LRECL operand can be supplied in the
DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the LRECL operand must be omitted, allowing
the data set label to supply the value.

Macro Instruction Descriptions: DCB-QISAM 105

MACRF= {(PM)}

{(PL)}

{(GM[,S{K I I}])}

{ (GL[,S{K I I}][,PU])}

The MACRF operand specifies the type of macro instructions, the transmittal mode,
and type of search to be used with the data set being processed. The operand can be
coded in any of the combinations shown above; the following describes the characters
that can be coded.

The following characters can be specified only when the data set is being created
(load mode) or additional records are being added to the end of the data set (resume
load):

PL
Specifies that PUT macro instructions are used in the locate transmittal mode; the
system provides the problem program with the address of a buff er containing the
data to be written into the data set.

PM
Specifies that PUT macro instructions are used in the move transmittal mode; the
system moves the data to be written from the problem program work area to the
buffer being used.

The following characters can be specified only when the data set is being processed
(scan mode) or when records in an ISAM data set are being updated in place:

GL
Specifies that GET macro instructions are used in the locate transmittal mode; the
system provides the problem program with the address of a buff er containing the
logical record read.

GM

I

K

Specifies that GET macro instructions are used in the move mode; the system
moves the logical record from the buff er to the problem program. work area.

Specifies that actual device addresses (MBBCCHHR) are used to search for a
record (or the first record) to be read.

Specifies that a key or key class is used to_search for a record (or the first record)
to be read.

PU

s

Specifies that PUTX macro instructions are used to return updated records to the
data set.

Specifies that SETL macro instructions are used to set the beginning location for
processing the data set.

Source: The MACRF operand must be coded in the DCB macro instruction.

NTM=absexp (maximum value is 99)
The NTM operand specifies the number of tracks to be created in a cylinder index
before a higher-level index is created. If the cylinder index exceeds this number, a
master index is created by the system; if a master index exceeds this number, the next
level of master index is created. The system creates up to three levels·of master

106 OS/VS Data Management Macro Instructions

indexes. The NTM operand is ignored unless the master index option (OPfCD=M) is
selected.

Source: When an ISAM data set is being created, the NTM operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
ISAM data set is being processed, master index information is supplied to the data
control block from the data set label, and the NTM operand must be omitted.

OPfCD= [I][L][M][R][U][W][Y]
The OPfCD operand specifies the optional services performed by the system when an
ISAM data set is being created. The following describes the characters that can be
specified (these characters can be specified in any order, and no commas are allowed
between characters):

I

L

M

R

u

w

Specifies that the system uses the independent overflow areas to contain overflow
records. Note that it is only the use of the allocated independent overflow area that
is optional. Under certain conditions, the system designates an overflow area that
was not allocated for independent overflow by the problem program. See
"Allocating Space for an Indexed Sequential Data Set" in OS I VS Data
Management Services Guide.

Specifies that the data set will contain records flagged for deletion. A record is
flagged for deletion by placing a hexadecimal value of 'FF' in the first data byte.
Records flagged for deletion remain in the data set until the space is required for
another record to be added to the track. Records flagged for deletion are ignored
during sequential retrieval of the ISAM data set (QISAM, scan mode). This option
cannot be specified for blocked fixed-length records if the relative key position is
zero (RKP=O), or it cannot be specified for variable-length records if the relative
key position is four (RKP=4).

When an ISAM data set is being processed with BISAM, a record with a duplicate
key can be added to the data set (WRITE KN macro instruction, only when
OPfCD=L has been specified and the original record (the one whose key is being
duplicated) has been flagged for deletion.

Specifies that the system creates and maintains a master index(es) according to the
number of tracks specified in the NTM operand.

Specifies that the system places reorganization statistics in the DCBRORG l,
DCBRORG2, and DCBRORG3 fields of the data control block. The problem
program can analyze these statistics to determine when to reorganize the data set.
If the OPfCD operand is omitted completely, the reorganization statistics are
automatically provided. However, if the OPfCD operand is supplied, OPfCD=R
must be specified to obtain the reorganization statistics.

Specifies that the system accumulates track index entries in storage and writes them
as a group for each track of the track index. OPfCD== U can be specified only for
fixed-length records. The entries are written in fixed-length unblocked format.

Specifies that the system performs a validity check on each record written.

Macro Instruction Descriptions: DCB-QISAM 107

y
Specifies that the system uses the cylinder overflow area(s) to contain overflow
records. If OPTCD=Y is specified, the CYLOFL operand specifies the number of
tracks to be used for the cylinder overflow area. The reserved cylinder overflow
area is not used unless OPTCD=Y is specified.

Source: When an ISAM data set is created, the OPTCD operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before an OPEN macro instruction is issued to open the data set.
However, all optional services must be requested from the same source. When an
existing ISAM data set is processed, the optional service information is supplied to the
data control block from the data set label, and the OPTCD operand should be
omitted.

RECFM={V[B] I F[B]}
The RECFM operand specifies the format and characteristics of the records in the
data set. If the RECFM operand is omitted, variable-length records (unblocked) are
assumed. The following describes the characters that can be specified:

B
Specifies that the data set contains blocked records.

F
Specifies that the data set contains fixed-length records.

v
Specifies that the data set contains variable-length records.

Source: When an ISAM data set is created, the RECFM operand can be supplied in
the DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before an OPEN macro instruction is issued to open the data set.
When an existing ISAM data set is processed, the record format information is
supplied by the data set label, and the RECFM operand should be omitted.

RKP=absexp
The RKP operand specifies the relative position of the first byte of the key within
each logical record. For example, if RKP=9 is specified, the key sta1ts in the tenth
byte of the record. The delete option (OPTCD=L) cannot be specified if the relative
key position is the first byte of a blocked fixed-length record or the fifth byte of a
variable-length record. If the RKP operand is omitted, RKP=O is assumed.

If unblocked fixed-length records with RKP=O are used, the key is not written as a
part of the data record, and the delete option can be specified. If blocked fixed-length
records are used, the key is written as part of each data record; either RKP must be
greater than zero or the delete option must not be used.

If variable-length records (blocked or unblocked) are used, RKP must be four or
greater if the delete option is not specified; if the delete option is specified, RKP must
be specified as five or greater. The four additional bytes allow for the block descriptor
word in variable-length records.

Source: When an ISAM data set is created, the RKP operand can be supplied in the
DCB macro instruction, in the DCB subparameter of a DD statement, or by the
problem program before completion of the data control block exit routine. When an
existing ISAM data set is processed, the RKP information is supplied by the data set
label and the RKP operand should be omitted.

108 OS/VS Data Management Macro Instructions

SYNAD=relexp
The SYNAD operand specifies the address of the error analysis routine given control
when an uncorrectable input/ output error occurs. The contents of the registers when
the error analysis routine is given control are described in Appendix A of this
publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers when it
regains control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction which uses the address in register 14 to return control to
the system. When control is returned in this manner, the system returns control to the
problem program and proceeds as though no error had been encountered; if the error
analysis routine continues processing, the results may be unpredictable.

For additional information on error analysis routine processing for indexed sequential
data sets, see OS/VS Data Management Services Guide.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error analysis routine
address at any time.

Macro Instruction Descriptions: DCB-QISAM 109

DCB-Construct a Data Control Block (QSAM)

The data control block for the queued sequential access method (QSAM) is constructed
during assembly of the problem program. The DSORG and MACRF operands must be
coded in the DCB macro instruction, but the other DCB operands can be supplied, to the
data control block, from other sources. Each DCB operand description contains a
heading, "Source. "The information under this heading describes the sources from which
the operand can be supplied.

Before a DCB macro instruction for creating or processing a QSAM data set is coded,
the following characteristics of QSAM data sets should be considered.

• All record formats can be processed.

• Automatic blocking and deblocking of records is provided.

• Automatic buffer control is provided; this function fills input buffers when they are
empty and writes output buffers when they are full.

• A logical record interface is provided; a GET macro instruction retrieves the next
sequential logical record from the input buffer, and a PUT macro instruction places
the next sequential logical record in the output buffer.

• 1/0 operations are synchronized automatically.

• Four transmittal modes (move, locate, data, and substitute) are provided. These
transmittal modes provide flexibility in buffer management and data movement
between buffers.

• Keys for direct-access device records cannot be read or written using QSAM.

• Specifying the DEVD operand in the DCB macro instruction can cause the program to
be device-dependent.

These characteristics of queued sequential access method data sets are described in more
detail in OS/VS Data Management Services Guide.

For information on additional operands for the DCB macro for the 3890, see IBM
3890 Document Processor Machine and Programming Description.

Macro Instruction Descriptions: DCB-QSAM 111

The DCB macro for QSAM is written as follows:

[symbol] DCB [BFALN={F ID}]
[BFfEK= {~ I E I A}]
[BLKSIZE= absexp]
[BUFCB = re/exp]
[BUFL= absexp]
[BUFNO= absexp]
[BUFOFF={absexp IL}]
[DD NAME= symbol]t

[DEVD= {DA}

{TA
[,DEN={O 11 I 2 I 3 I 4}]
[,TRTCH={C IE I ET IT}]}

{PT
[,CODE={A I BI c IF I! IN IT}]}

{PR
[,PRTSP={O I! 12 I 3}]}

{PC
[,MODE= [c I ~][R]]
[,STACK={! I 2}]
[,FUNC={I Ip I PW[XT] IR I RP[D] I RW[T] I

RWP[XT][D] I W[T]}]}

{RD
[,MODE=[C I E][O IR]]
[,STACK={l ll}]
[,FUNC={If p I PW[XT] IR I RP[D] I RW[T] I

RWP[XT][D] I W[T]}]}]

DSORG={PS I PSU}
[EODAD= re/exp]
[EROPT={ACC I SKP I ABE}]
[EXLST= re/exp]
[LRECL={absexp IX}]

MACRF= {(G{M IL IT I D}[C])}

{(P{M I L I T I D }[C])}

{(G{M IL IT I D}[C],P{M IL IT I D}[C])}

1This parameter must be supplied before an OPEN macro is issued for this DCB;
it cannot be supplied in the open exit routine.

Continued on next page.

112 OS/VS Data Management Macro Instructions

[OPTCD= {B}

{T}

{U[C]}

{C[T][B]}

{H[Z][B]}

{W[C](T](B]}

{Z[C][T][B]}

{Q[C][B][T I Z]}]

[RECFM= {,!I[T][A I M]}

{V[B[S](T] I S(T] I T](A I M]}

{D(B][A]}

{F[B I S I T I BS I BT][A I M]}]

[SYNAD= re/exp]

The following describes the operands that can be specified in the DCB macro instruction
for a QSAM data set:

BFALN={F ID},
The BFALN operand specifies the boundary alignment of each buffer in the buffer
pool when the buff er pool is constructed automatically or by a GETPOOL macro
instruction. If the BF ALN operand is omitted, the system provides doubleword
alignment for each buffer.

If the data set being created or processed contains ASCII tape records with a block
prefix, the block prefix is entered at the beginning of the buffer, and data alignment
depends on the length of the block prefix. For a description of how to specify the
block prefix length, refer to the BUFOFF operand.

The following describes the characters that can be specified:

F

D

Specifies that each buff er is on a fullword boundary that is not also a doubleword
boundary.

Specifies that each buffer is on a doubleword boundary.

When exchange buffering (BFTEK=E) is specified and the records are in blocked
fixed-length format, each buffer segment is aligned as specified in the BFALN
operand (VS 1 systems only).

If the BUILD macro instruction is used to construct the buffer pool, the problem
program must control buff er alignment.

Source: The BF ALN operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BF ALN and BFTEK operands are
specified, they must be supplied from the same source.

Macro Instruction Descriptions: DCB-QSAM 113

BFfEK= {~ I E I A}
The BFfEK operand specifies the buffering technique that is used when the QSAM
data set is created or processed. If the BFfEK operand is omitted, simple buffering is
assumed. The following describes the characters that can be specified:

s

E

A

Specifies that simple buffering is used.

Specifies that exchange buffering is used. Exchange buffering can be used only with
record formats (RECFM operand) F, FB, FBS, or FS; the track-overflow feature
cannot be used with exchange buffering. If exchange buffering is used with ASCII
tape records, the BUFOFF operand must be zero (no block prefix). BFTEK=E is
ignored by VS2 systems.

Specifies that a logical record interface is used for variable-length spanned records.
When BFfEK=A is specified, the Open routine acquires a record area equal to the
length specified in the LRECL field plus 32 additional bytes for control
information. When a logical record interface is requested, the system uses the
simple buffering technique.

To use the simple or exchange buffering technique efficiently, the user should be
familiar with the four transmittal modes for QSAM and the buffering techniques as
described in OS/VS Data Management Services Guide.

Source: The BFfEK operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine. If both the BFfEK and BF ALN operands are
specified, they must be supplied from the same source.

BLKSIZE=absexp (maximum value is 32,760)
The BLKSIZE operand specifies the length, in bytes, of a data block for fixed-length
records, or it specifies the maximum length, in bytes, of a data block :for
variable-length or undefined-length records.

The actual value that can be specified in the BLKSIZE operand depends on the device
type and record format being used. Device capacity is shown in Appendix C of this
publication. For additional information about device capacity, refer to OS/VS Data
Management Services Guide. For direct-access devices when the track-overflow
feature is used or variable-length spanned records are being processed, the BLKSIZE
operand can be up to the maximum value. For other record :formats used with
direct-access devices, the value specified in the BLKSIZE operand cannot exceed the
capacity of a single track.

Since QSAM provides a logical record interface, the device capacities shown in
Appendix C also apply to a maximum length logical record. One exception to the
device capacity for a logical record is the size of variable.;.length spanned records.
Their length can exceed the value specified in the BLKSIZE operand (see the
description of the LRECL operand).

If fixed-length records are used for a SYSOUT data set, the value specified in the
BLKSIZE operand must be an integral multiple of the value specified in the LRECL
operand; otherwise, the system will adjust the block size downward to the nearest
multiple. If the records are unblocked fixed-length records, the value specified in the
BLKSIZE operand must equal the value specified in the LRECL operand if the
LRECL operand is specified.

114 OS/VS Data Management Macro Instructions

If variable-length records are used, the value specified in the BLKSIZE operand must
include the data length (up to 32,756 bytes) plus four bytes required for the block
descriptor word (BDW). For format-D variable-length records, the minimum
BLKSIZE is 18 bytes and the maximum is 2,048 bytes.

If ASCII tape records with a block prefix are processed, the value specified in the
BLKSIZE operand must also include the length of the block prefix.

If variable-length spanned records are used, the value specified in the BLKSIZE
operand can be the best one for the device being used or the processing being done.
When unit record .devices (card or printer) are used, the system assumes records are
unblocked; the value specified for the BLKSIZE operand is equivalent to one print
line or one card. A logical record that spans several blocks is written one segment at a
time.

If undefined-length records are used, the problem program can insert the actual record
length into the DCBLRECL field. See the description of the LRECL operand.

Source: The BLKSIZE operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

BUFCB=relexp
The BUFCB operand specifies the address of the buff er pool control block
constructed by a BUILD or BUILDRCD macro instruction.

If the buffer pool is constructed automatically or by a GETPOOL macro instruction,
the system places the address of the buffer pool control block into the data control
block, and the BUFCB operand should be omitted.

Source: The BUFCB operand can be supplied in the DCB macro instruction or by the
problem program before completion of the data control block exit routine.

BUFL=absexp (maximum value is 32,760)
The BUFL operand specifies the length, in bytes, of each buff er in the buff er pool
when the buffer pool is acquired automatically. The system acquires buffers with a
length equal to the value specified in the BLKSIZE operand if the BUFL operand is
omitted; if the problem program requires larger buffers, the BUFL operand is
required. If the data set is for card image mode, the BUFL operand is specified as 160
bytes. The description of the DEVD operand contains a description of card image
mode.

If the data set contains ASCII tape records with a block prefix, the value specified in
the BUFL operand must also include the length of the block prefix.

If the buffer pool is constructed by a BUILD, BUILDRCD, or GETPOOL macro
instruction, the BUFL operand is not required.

Source: The BUFL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFNO=absexp (maximum value is 255)
The BUFNO operand specifies the number of buffers in the buffer pool constructed
by a BUILD or BUILDRCD macro instruction, or it specifies the number of buffers
to be acquired automatically. If chained scheduling is specified, the value of BUFNO
determines the maximum number of channel program segments that can be chained
and must be specified as more than one. If the BUFNO operand is omitted and the
buffers are acquired automatically, the system acquires three buffers if the device is a
2540 card read punch or two buffers for any other device type. For VS2, the system
acquires five buffers.

Macro Instruction Descriptions: DCB-QSAM 115

If the buffer pool is constructed by a GETPOOL macro instruction, the BUFNO
operand is not required.

Source: The BUFNO operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before completion
of the data control block exit routine.

BUFOFF= { absexp I L}
The BUFOFF operand specifies the length, in bytes, of the block prefix used with
ASCII tape data sets. When QSAM is used to read ASCII tape records, only the data
portion (or its address) is passed to the problem program; the block prefix is not
available to the problem program. Block prefixes (except BUFOFF==L) cannot be
included in QSAM output records. The following can be specified in the BUFOFF
operand:

absexp

L

Specifies the length, in bytes, of the block prefix. This value can be from 0 to 99-
for an input data set. The value must be 0 for writing an output data set with
fixed-length or undefined-length records.

Specifies that the block prefix is 4 bytes long and contains the block length.
BUFOFF=L is used when format-D records (ASCII) are processed. QSAM uses
the four bytes as a block-descriptor word (BDW). For further information on this
operand, see "Variable-Length Records-Format D" in OS/VS Data
Management Services Guide.

Source: The BUFOFF operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program before an OPEN
macro instruction is issued to open the data set. BlJFOFF=absexp can also be
supplied by the label of an existing data set; BUFOFF=L cannot be supplied by the
label of an existing data set.

DDNAME::symbol
The DDNAME operand specifies the name used to identify the job control language
data definition (DD) statement that defines the data set being created or processed.

Source: The DDNAME operand can be supplied in the DCB macro instruction or by
the problem program before an OPEN macro instruction is issued to open the data
set.

DEVD={DA I TA I PT I PR I PC I RD}[, options]
The DEVD operand specifies the device type on which the data set can or does reside.
The device types above are shown with the optional operand(s) that can be coded
when a particular device is used. The devices are listed in order of
device-independence. For example, if DEVD=DA is coded in a DCB macro
instruction (or the DEVD operand is omitted, which causes a default to DA), the data
control block constructed during assembly could later be used for any of the other
devices,. but if DEVD=RD is coded, the data control block can be used only with a
card reader or card reader punch. Unless you are certain that device interchangeability
is not required, you should either code DEVD=DA or omit the operand and allow it to
default to DA.

If system input is directed to an intermediate storage device, the DEVD operand is
omitted, and the job control language for the problem program must designate the
system input to be used. Similarly, if system output is directed to an intermediate
storage device, the DEVD operand is omitted, and the job control language for the
problem program must designate the system output to be used.

116 OS/VS Data Management Macro Instructions

i

If DEVD=PT is coded, the DCB macro should not be ~oded within the first 8 bytes
of addr~ssability for the control section (CSECT). If DEVD=PR, PC, or. RD is
coded, the DCB macro should not be coded within the first 16 bytes of addressability
for the control section.

The DEVD operand is discussed below according to individual device type:

DEVD=DA
Specifies that the data control block can be used for a direct-access device (or any
of the other device types described following DA).

DEVD=TA
[,DEN={O I 112 I 3 I 4}]
[,TRTCH={C IE I ET IT}]
Specifies that the data control block can be used for a magnetic tape data set (or
any of the other device types described following TA). If TA is coded, the following
optional operands can be coded:

DEN={Ol 1121314}
The DEN operand specifies the recording density in the number of bits-per-inch
per track as shown in the following chart:

Recording Density

DEN

0
1
2
3
4

7-Track Tape

200
556
800

9-Track Tape

800 (NRZl)l
1600 (PE)2
6250 (GCR)3

1 NRZI is for non-return-to-zero inverted mode
2 PE is for phase encoded mode
3 OCR is for group coded recording mode

Note: Specifying DEN=O for a 7-track 3420 tape attached to a 3803-1 will
result in 556 bits-per-inch recording, but corresponding messages and tape labels
will indicate 200 bits-per-inch recording density.

If the DEN operand is not supplied by any source, the highest applicable density
is assumed.

TRTCH={C IE I ET IT}
The TRTCH operand specifies the recording technique for 7-track tape. One of
the above character combinations can be coded. If the TRTCH operand is
omitted, odd parity with no translation or conversion is assumed. The following
describes the characters that can be specified:

c

E

Specifies that the data-conversion feature is used with odd parity and no
translation.

Specifies even parity with no translation or conversion.

ET

T

Specifies even parity with BCDIC to EBCDIC translation required, but no
data-conversion feature.

Specifies that BCDIC to EBCDIC translation is required with odd parity and
no data-conversion feature.

Macro Instruction Descriptions: DCB-QSAM 117

DEVD=PT
[,CODE= {A I B I c I F I ! I N I T}]
Specifies that the data control block is used for a paper tape device (or any of the
other devices following PT). If PT is coded, the following optional operand can be
coded:

CODE= {A I B I C I F I I I N I T}
The CODE operand specifies the code in which the data was punched. The
system converts these codes to EBCDIC code. If the CODE operand is not
supplied by any source, CODE=I is assumed. The following describes the
characters that can be specified:

A
Specifies 8-track tape in ASCII code.

B
Specifies Burroughs 7-track tape.

c
Specifies National Cash Register 8-track tape.

F
Specifies Friden 8-track tape.

I
Specifies IBM BCD perforated tape and transmission code with 8-tracks.

N
Specifies that no conversion is required.

T
Specifies Teletypet 5-track tape.

DEVD=PR
[,PRTSP={O I! 12 I 3}]
Specifies that the data control block is used for an on-line printer (or any of the
other device types following PR). If PR is coded, the following optional operand
can be coded:

PRTSP={O 1112 I 3}
The PRTSP operand specifies the line spacing on the printer. This operand is not
valid if the RECFM operand specifies either machine (RECFM=M) or ANSI
(RECFM=A) control characters. If the PRTSP operand is not specified from
any source, one is assumed. The following describes the characters that can be
specified:

0
Specifies that spacing is suppressed (no space).

1
Specifies single-spacing.

2
Specifies double-spacing (one blank line between printed lines).

3
Specifies triple-spacing (two blank lines between printed lines).

lTrademark of Teletype Corporation.

118 OS/VS Data Management Macro Instructions

DEVD=PC
[,MODE=[C I E][R]]
[,STACK={l ll}]
[,FUNC={If p I PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}]
Specifies that the data control block is used for a card punch (or any of the other
device types following PC). If PC is coded, the following optional operands can be
specified:

MODE=[C I ~][R]
The MODE operand specifies the mode of operation for the card punch. If the
MODE operand is omitted, E is assumed. The following describes the characters
that can be specified:

c

E

R

Specifies that the cards are punched in card image mode. In card image mode,
the 12 rows in each card column are punched from two consecutive bytes of
virtual storage. Rows 12 through 3 are punched from the low-order 6 bits of
one byte, and row 4-9 are punched from the 6 low-order bits of the following
byte.

Specifies that cards are punched in EBCDIC code.

Specifies that the program runs in read-column-eliminate mode (3505 card
reader or 3525 card punch, read feature).

Note: If the MODE operand is specified in the DCB subparameter of a DD
statement, either C or E must be specified if R is specified.

STACK={! 12}
The ST ACK operand specifies the stacker bin into which the card is placed after
punching is completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
Specifies stacker number 1.

2
Specifies stacker number 2.

FUNC={I IP I PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}
The FUNC operand defines the type of 3525 card punch data sets that are used.
If the FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch only.
The following describes the characters that can be specified in the FUNC
operand:

D

I

Specifies that the data protection option is to be used. The data protection
option prevents punching information into card columns that already contain
data. When the data protection option is used, an 80-byte data protection
image (DPI) must have been previously stored in SYS 1.IMAGELIB. Data
protection applies only to the output punch portion of a read and punch or
read, punch, and print operation.

Specifies that the data in the data set is to be punched into cards and printed
on the cards; the first 64 characters are printed on line 1 of the card and the
remaining 16 characters are printed on line 3.

Macro Instruction Descriptions: DCB-QSAM 119

p

R

T

w

x

Specifies that the data set is for punching cards. See the description of the
character X for associated punch and print data sets.

Specifies that the data set is for reading cards.

Specifies that the two-line option is used. The two-line print option allows
two lines of data to be printed on the card (lines 1 and 3). If T is not
specified, the multiline print option is used; this allows printing on all 25
possible print lines. In either case, the data printed may be the same as the
data punched in the card, or it may be entirely different data.

Specifies that the data set is for printing. See the description of the character
X for associated punch and print data sets.

Specifies that an associated data set is opened for output for both punching
and printing. Coding the character Xis used to distinguish the 3525 printer
output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI) must be
specified in the FCB subparameter of the DD statement for the data set.

DEVD=RD
[,MODE=[C I ~][O IR]]
[,STACK={l 12}]
[,FUNC={If p I PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}]

RD
Specifies that the data control block is used with a card reader or card read punch.
If RD is specified, the data control block cannot be used with any other device
type. When RD is coded, the following optional operands can be specified:

MODE=[C I E][O IR]
The MODE operand specifies the mode of operation for the card reader. The
following describes the characters that can be specified:

c

E

0

R

Specifies that the cards to be read are in card image mode. In card image
mode, the 12 rows of each card column are read into two consecutive bytes of
virtual storage. Rows 12 through 3 are read into the low-order 6 bits of one
byte, and rows 4 through 9 are read into the low-order 6 bits of the following
byte.

Specifies that the cards to be read contain data in EBCDIC code.

Specifies that the program runs in optical mark read mode (3505 card reader).

Specifies that the program runs in read-column-eliminate mode (3505 card
reader and 3525 card punch, read feature).

Note: If the MODE operand for a 3505 or 3525 is specified in the DCB
subparameter of a DD statement, either C or E must be specified if R or 0 is
specified.

120 OS/VS Data Management Macro Instructions

STACK={! 12}
The STACK operand specifies the stacker bin into which the card is placed after
reading is completed. If this operand is omitted, stacker number 1 is used. The
following describes the characters that can be specified:

1
Specifies stacker number 1.

2
Specifies stacker number 2.

FUNC={I IP I PW[XT] IR I RP[D] I RW[T] I RWP[XT][D] I W[T]}
The FUNC operand defines the type of 3525 card punch data sets that are used.
If the FUNC operand is omitted from all sources, a data set opened for input
defaults to read only, and a data set opened for output defaults to punch only.
The following describes the characters that can be specified in the FUNC
operand:

D

I

p

R

T

w

x

Specifies that the data protection option is to be used. The data protection
option prevents punching information into card columns that already contain
data. When the data protection option is used, an 80-byte data protection
image (DPI) must have been previously stored in SYSl.IMAGELIB. Data
protection applies only to the output punch portion of a read and punch or
read, punch, and print operation.

Specifies that the data in the data set is to be punched into cards and printed
on the cards; the first 64 characters are printed on line 1 of the card and the
remaining 16 characters are printed on line 3.

Specifies that the data set is for punching cards. See the description of the
character X for associated punch and print data sets.

Specifies that the data set is for reading cards.

Specifies that the two-line option is used. The two-line print option allows
two lines of data to be printed on the card (lines 1 and 3). If T is not
specified, the multiline print option is used; this allows printing on all 25
possible print lines. In either case, the data printed may be the same as the
data punched in the card, or it may be entirely differnt data.

Specifies that the data set is for printing. See the description of the character
X for associated punch and print data sets.

Specifies that an associated data set is opened for output for both punching
and printing. Coding the character Xis used to distinguish the 3525 printer
output data set from the 3525 punch output data set.

Note: If data protection is specified, the data protection image (DPI) must be
specified in the FCB subparameter of the DD statement for the data set.

Source: The DEVD operand can be supplied only in the DCB macro instruction.
However, the optional operands can be supplied in the DCB macro instruction, the
DCB subparameter of a DD statement, or by the problem program before
completion of the data control block exit routine.

Macro Instruction Descriptions: DCB-QSAM 121

DSORG={PS I PSU}
The DSORG operand specifies the organization of the data set and if the data set
contains any location-dependent information that would make it unmovable. The
following can be specified in the DSORG operand:

PS
Specifies a physical sequential data set.

PSU
Specifies a physical sequential data set that contains location-dependent
information.

Source: The DSORG operand must be coded in the DCB macro instruction.

EODAD=relexp
The EODAD operand specifies the address of the routine given control when the end
of an input data set is reached. Control is given to this routine when a GET macro
instruction is issued and there are no additional records to be retrieved. If the record
format is RECFM=FS or FBS the end-of-data condition is sensed when file mark is
read or if more data is requested after reading a truncated block. If the end of the data
set has been reached but no EODAD address has been supplied to the data control
block, or if a GET macro instruction is issued after an end-of-data exit is taken, the
task is abnormally terminated. For additional information on the EODAD routine, see
OS/VS Data Management Services Guide.

Source: The EODAD operand can be supplied in the DCB macro instruction or by the
problem program before the end of the data set has been reached.

EROPT= {ACC I SKP I ABE}
The EROPT operand specifies the action taken by the system when an uncorrectable
input/output data validity error occurs and no error analysis (SYNAD) routine
address has been provided, or it specifies the action taken by the system after the
error analysis routine has returned control to the system with a RETURN macro
instruction. The specified action is taken for input operations or for output operations
to a printer.

Uncorrectable input/ output errors resulting from channel operations or direct-access
operations that make the next record inaccessible cause the task to be abnormally
terminated regardless of the action specified in the EROPT operand.

ACC
Specifies that the problem program accepts the block causing the error. This action
can be specified when a data set is opened for INPUT, RDBACK, UPDAT, or
OUTPUT (OUTPUT applies to printer data sets only).

SKP
Specifies that the block that caused the error is skipped. Specifying SKP also causes
the buff er associated with the data block to be released. This action can be
specified when a data set is opened for INPUT, RDBACK, or UPDAT.

ABE
Specifies that the error results in the abnormal termination of the task. This action
can be specified when the data set is opened for INPUT, OUTPUT, RDBACK, or
UPDAT.

If the EROPT operand is omitted, the ABE action is assumed.

Source: The EROPT operand can be specified in the DCB macro instruction, in the
DCB subparameter of a DD statement, or by the problem program at any time. The
problem program can also change the action specified at any time.

122 OS/VS Data Management Macro Instructions

EXLST =re/exp
The EXLST operand specifies the address of the problem program exit list. The
EXLST operand is required if the problem program requires additional processing for
user labels, user totaling, data control block exit routine, end-of-volume, block count
exits, to define a forms control buffer (FCB) image, or to use the DCB ABEND exit
for ABEND condition analysis.

Refer to Appendix D o! this publication for the format and requirements of exit list
processing. For additional information about exit routine processing, refer to OS/VS
Data Management Services Guide.

Source: The EXLST operand can be supplied in the DCB macro instruction or by the
problem program any time before the exit is required by the problem program.

LRECL={ absexp IX}
The LRECL operand specifies the length, in bytes, for fixed-length logical records, or
it specifies the maximum length, in bytes for variable-length or undefined-length
(output only) logical records. The value specified in the LRECL operand cannot
exceed the value specified in the BLKSIZE operand except when variable-length
spanned records are used.

For fixed-length records that are unblocked, the value specified in the LRECL
operand must be equal to the value specified in the BLKSIZE operand. For blocked
fixed-length records, the value specified in the LRECL operand must be evenly
divisible into the value specified in the BLKSIZE operand.

For variable-length logical records, the value specified in the LRECL operand must
include the maximum data length (up to 32,752) plus four bytes for the
record-descriptor word (RDW).

For undefined-length records, the problem program must insert the actual logical
record length into the DCBLRECL field before writing the record, or the maximum
length record will be written.

For variable-length spanned records, the logical record length (LRECL) can exceed
the value specified in the BLKSIZE operand, and a variable-length spanned record
can exceed the maximum block size (32,760 bytes). When the logical record length
exceeds the maximum block size, LRECL=X must be specified and GET or PUT
locate mode must be used.

Source: The LRECL operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

MACRF= {(G{M IL IT I D}[C])}

{(P{M IL IT I D}[C])}

{(G{M IL I Tl D}[C],P{M IL IT I D}[C])}

The MACRF operand specifies the type of macro instructions (GET, PUT or PUTX,
CNTRL, RELSE, and TRUNC) and the transmittal modes (move, locate, data, and
substitute) that are used with the data set being created or processed. The operand
can be coded in any of the combinations shown above; the following describes the
characters that can be coded:

c
Specifies that the CNTRL macro instruction is used with the data set. If the
CNTRL macro instruction is specified, the data set should be for a card reader
(stacker selection) or printer (carriage and spacing control). The CNTRL option
can be specified with GET in the move mode only.

Macro Instruction Descriptions: DCB-QSAM 123

D

G

L

M

p

T

Specifies that the data transmittal mode is used (only the data portion of a record is
moved to or from the work area). Data mode is used only with variable-length
spanned records.

Specifies that GET macro instructions are used. Specifying G also provides the
routines that allow the problem program to issue RELSE macro instructions.

Specifies that the locate transmittal mode is used; the system provides the address
of the buffer containing the data.

Specifies that the move transmittal mode is used; the system moves the data from
the buff er to the work area in the problem program.

Specifies that PUT or PUTX macro instructions are used. Specifying P also
provides the routines that allow the problem program to issue TRUNC macro
instructions.

Specifies that the substitute transmittal mode is used; the system substitutes a
buff er for a work area contained in the problem program.

Note: For data sets on paper tape that are processed by QSAM, only MACRF=(GM)
can be specified.

Source: The MACRF operand can be supplied only in the DCB macro instruction.

OPTCD= {B}

{T}

{U[C]}

{C[T][B]}

{H[Z][B]}

{W[C][T][B]}

{Z[C][T][B]}

{Q[C][B][T I Z]}

The OPTCD operand specifies the optional services used with the QSAM data set.
Two of the optional services, OPTCD=B and OPTCD=H, cannot be specified in the
DCB macro instruction. They are requested in the DCB subparameter of a DD
statement. Since all optional services codes must be supplied by the same source, the
OPTCD operand must be omitted from the DCB macro instruction if either of these
options is requested in a DD statement. The following describes the characters that
can be specified:

c
Requests that chained scheduling be used. OPTCD=C cannot be specified when
either BFTEK=A or BFfEK=R is specified for the same data control block. Also,
chained scheduling cannot be specified for associated data sets or printing on a
3 5 25. OS /VS 1 supports chained scheduling in nonpageable storage only. If chained
scheduling is requested in pageable storage, the request is ignored and normal
scheduling is substituted.

124 OS/VS Data Management Macro Instructions

Q

T

u

w

z

For OS/VS2, chained scheduling is supported for pageable and nonpageable
storage.

Requests that ASCII tape records in an input data set be converted to EBCDIC
code when the input record has been read, or an output record in EBCDIC code be
converted to ASCII code before the record is written. For further information on
this conversion, see "Variable-Length Records-Format D" in OS/VS Data
Management Services Guide.

Requests the user totaling facility. If this facility is requested, the EXLST operand
should specify the address of an exit list to be used. T cannot be specified for a
SYSIN or SYSOUT data set.

Specified only for a printer with the universal-character-set feature. This option
unblocks data checks (permits them to be recognized as errors) and allows analysis
by the appropriate error analysis routine (SYNAD routine). If the U option is
omitted, data checks are not recognized as errors.

Specifies that the system performs a validity check for each record written on the
direct-access device being used.

For magnetic tape, input only, the Z option requests the system to shorten its
normal error recovery procedure to consider a data check as a permanent I/ 0 error
after five unsuccessful attempts to read a record. This option is available only if it is
selected when the operating system is generated. OPTCD=Z is used when a tape is
known to contain errors and there is no need to process everi record. The error
analysis routine (SYNAD) should keep a count of permanen('errors and terminate
processing if the number becomes excessive.

For direct-access devices only, the Z option requests the system to use the search
direct option to accelerate the input operations for a data set. OPTCD=Z cannot
be specified when RECFM=UT, FS, FBT, VS, or VBS.

Note: The following describes the optional services that can be specified in the DCB
subparameter of a DD statement. If either of these options is requested, the complete
OPTCD operand must be supplied in the DD statement.

B

H

If OPTCD=B is specified in the DCB subparameter of a DD statement, it forces
the end-of-volume (EOV) routine to disregard the end-of-file recognition for
magnetic tape. When this occurs, the EOV routine uses the number of volume
serial numbers to determine end of file. For an input data set on a standard labeled
(SL or AL) tape, the EOV routine will treat EOF labels as EOV labels until the
volume serial list is exhausted. When all the volumes have been read, control is
passed to the user's end-of-data routine. This option allows SL or AL tapes to be
read out of volume sequence or to be concatenated to another tape using one DD
statement.

If OPTCD=H is specified in the DCB subparameter of a DD statement, it specifies
that the DOS/OS interchange feature is being used with the data set.

Macro Instruction Descriptions: DCB-QSAM 125

RECFM= {!![T][A I M]}

{V[B[S][T] I S[T] I T][A I M]}

{D[B][A]}

{F[B IS IT I BS I BT][A IM]}

The RECFM operand specifies the record format and characteristics of the data set
being created or processed. All record formats can be used in QSAM. The following
describes the characters that can be specified:

A

B

D

F

M

s

T

u

v

Specifies that the records in the data set contain American National Standards
Institute (ANSI) control characters. Refer to Appendix E for a description of
control characters.

Specifies that the data set contains blocked records.

Specifies that the data set contains variable-length ASCII tape records. See
OPTCD=Q and the BUFOFF operand for a description of how to specify ASCII
data sets.

Specifies that the data set contains fixed-length records.

Specifies that the records in the data set contain machine code control characters.
Refer to Appendix E for a description of control characters. REC:FM=M cannot be
used with ASCII data sets.

For fixed-length records, S specifies that the records are written as standard blocks;
the data set does not contain any truncated blocks or unfilled tracks, with the
exception of the last block or track in the data set.

For variable-length records, S specifies that a record can span more than one block.
If spanned records are used, exchange buffering (BFfEK=E) cannot be specified.

Do not code S to retrieve records from a data set that was created using a RECFM
other than standard.

Specifies that the track-overflow feature is used with the data set. The
track-overflow feature allows a record to be written partially on one track and the
remainder of the record on the following track (if required). Chained scheduling
(OPTCD=C) and exchange buffering (BFfEK=E) cannot be used if the
track-overflow feature is used.

Specifies that the data set contains undefined-length records.

Specifies that the data set contains variable-length records.

Notes:

• RECFM= V cannot be specified for a card reader data set or an ASCII tape data
set.

• RECFM= VS or VBS cannot be specified for a SYSIN data set.

126 OS/VS Data Management Macro Instructions

Source: The RECFM operand can be supplied in the DCB macro instruction, in the
DCB subparameter of a DD statement, by the problem program before completion of
the data control block exit routine, or by the data set label of an existing data set.

SYNAD=relexp
The SYNAD operand specifies the address of the error analysis routine given control
when an uncorrectable input/ output error occurs. The contents of the registers when
the error analysis routine is given control are described in Appendix A of this
publication.

The error analysis routine must not use the save area pointed to by register 13,
because this area is used by the system. The system does not restore registers when it
regains control from the error analysis routine. The error analysis routine can issue a
RETURN macro instruction that uses the address in register 14 to return control to
the system.

If the error condition was the result of a data-validity error, the control program takes
the action specified in the EROPT operand; otherwise, the task is abnormally
terminated. The control program takes these actions when the SYNAD operand is
omitted or when the error analysis routine returns control.

Source: The SYNAD operand can be supplied in the DCB macro instruction or by the
problem program. The problem program can also change the error routine address at
any time.

Macro Instruction Descriptions: DCB-QSAM 127

DCBD-Provide Symbolic Reference to Data Control
Blocks (BDAM, BISAM, BP AM, BSAM, QISAM, and
QSAM)

The DCBD macro instruction is used to generate a dummy control section that provides
symbolic names for the fields in one or more data control blocks. The names and
attributes of the fields appear as part of the description of each data control block in
Appendix F of this publication. Attributes of the symbolically named fields in the dummy
section are the same as the fields in the data control blocks, with the exception of fields
containing 3-byte addresses. The symbolically named fields containing 3-byte addresses
have length attributes of four and are aligned on fullword boundaries.

The labels generated by the DCBD macro should not be defined within a user program.
The macro labels are structured as DCBxxxxx where DCB are the first three characters
and xxxxx are 1-5 alphameric characters.

The name of the dummy control section generated by a DCBD macro instruction is
IHADCB. The use of any of the symbolic names provided by the dummy section must be
preceded by a USING instruction specifying IHADCB and a dummy section base
register (which contains the address of the actual data control block). The DCBD macro
instruction can only be issued once within any assembled module; however, the resulting
symbolic names can be used for any number of data control blocks by changing the
address in the dummy section base register. The DCBD macro instruction can be coded
at any point in a control section; if coded at any point other than at the end of a control
section; however, the control section must be resumed by coding a CSECT instruction.

The DCBD macro instruction is written as follows:

b DCBD [DSORG=({GS I
[BS][,DA][,IS][,LR][,PO][,PS][,QS]})]

[,DEVD= ([DA][,PC][,PR][,PT][,RD][,TA]
[,MR][,OR])]

DSORG=({GS I [BS][,DA][,ISJ[,LR][,PO][,PS][,QS]})
The DSORG operand specifies the types of data control blocks for which symbolic
names are provided. If the DSORG operand is omitted, the DEVD operand is ignored,
and symbolic names are provided only for the "foundation block" portion that is
common to all data control blocks .. One or more of the following pairs of characters
can be specified (each pair of characters must be separated by a comma):

BS
Specifies a data control block for a sequential data set and basic access method.

DA
Specifies a data control block for a direct data set.

IS
Specifies a data control block for an indexed sequential data set.

LR
Specifies a dummy section for the logical record length field (DCBLRECL) only.

PO
Specifies a data control block for a partitioned data set.

Macro Instruction Descriptions: DCBD 129

PS
Specifies a data control block for a sequential data set. PS includes both BS and
QS.

QS
Specifies a data control block for a sequential data set and queued access method.

GS
Specifies a data control block for graphics; this operand cannot be used in
combination with any of the above.

DEVD= [DA][,PC][,PR][,PT][,RD][, T A][,MR][,OR]
The DEVD operand specifies the types of devices on which the data set can reside. If
the DEVD operand is omitted and a sequential data set is specified in the DSORG
operand, symbolic names are provided for all of the device types listed below. One or
more of the following pairs of characters can be specified; each pair of characters
must be separated by a comma:

DA
Direct-access device

PC
Online punch

PR
Online printer

PT
Paper tape

RD
Online card reader or read punch feed

TA
Magnetic tape

MR
Magnetic character reader

OR
Optical character reader

130 OS/VS Data Management Macro Instmctions

ESETL-End Sequential Retrieval (QISAM)

The ESETL macro instruction ends the sequential retrieval of data from an indexed
sequential data set and causes the buffers associated with the specified data control block
to be released. An ESETL macro instruction must separate SETL macro instructions
issued for the same data control block.

The ESETL macro instruction is written as follows:

I [symbol] I ESETL I deb address J
deb address-RX-Type Address, (2-12), or (1)

The deb address operand specifies the address of the data control block opened for
the indexed sequential data set being processed.

Macro Instruction Descriptions: ESETL 131

f

FEOV-Force End of Volume (BSAM and QSAM)

The FEOV macro instruction causes the system to assume an end-of-volume condition,
and causes automatic volume switching. Volume positioning for magnetic tape can be
specified by the option operand. If no option is coded, the positioning specified in the
OPEN macro instruction is used. Output labels are created as required and new input
labels are verified. The standard exit routines are given control as specified in the data
control block exit list. For BSAM, all input and output operations must be tested for
completion before the FEOV macro instruction is issued. The end-of-data-set (EODAD)
routine is given control if an input FEOV macro instruction is issued for the last volume
of an input data set. FEOV is ignored if issued for a SYSIN or SYSOUT data set.

The FEOV macro instruction is written as follows:

[symbol] FEOV deb address
[,REWIND I ,LEA VE]

deb address-RX-Type Address, (2-12), or (1)
The deb address operand specifies the address of the data control block for an
opened sequential data set.

The following operands request optional services:

REWIND
Requests that the system position the tape at the load point regardless of the direction
of processing.

LEAVE
Requests that the system position the tape at the logical end of the data set on that
volume; this option causes the tape to be positioned at a point after the tapemark that
follows the trailer labels. Note that multiple tape units must be available to achieve
this positioning. If only one tape unit is available, its volume is rewound and unloaded.

Note: If an FEOV macro is issued for a multivolume data set with spanned records that
is being read using QSAM, errors may occur when the next GET macro is issued
following an FEOV macro if the first segment on the new volume is not the first segment
of a record. The errors include duplicate records, program checks in the user program,
and invalid input from the variable spanned data set.

Macro Instruction Descriptions: FEOV 133

i

FIND-Establish the Beginning of a Data Set Member
(BPAM)

Completion Codes

The FIND macro instruction causes the system to use the address of the first block of a
specified partitioned data set member as the starting point for the next READ macro
instruction for the same set. All previous input and output operations that specified the
same data control block must have been tested for completion before the FIND macro
instruction is issued.

The FIND macro instruction is written as follows:

[symbol] FIND deb address
,{name address ,DI relative address list ,C}

~~~~~~~~--' 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened partitioned data set being processed . 

. .. 
name address-RX-Type Address, (2-12), or (0) 

D 

The name address operand specifies the address of an 8-byte field that contains the 
data set member name. The name must start in the first byte and be padded on the 
right (if necessary) to complete the eight bytes. 

Specifies that only a member name has been supplied, and the access method must 
search the directory of the data set indicated in the data control block to find the 
location of the member. 

relative address list-RX-Type Address, (2-12), or (0) 

c 

The relative address list operand specifies the address of the area that contains the 
relative address (TTRK) for the beginning of a data set member. The relative address 
can be a list entry completed by using a BLDL macro instruction for the data set 
being processed, or the relative address can be supplied by the problem program. 

Specifies that a relative address has been supplied, and no directory search is required. 
The relative address supplied is used directly by the access method for the next input 
operation. 

For relative address list, C, when the system returns control to the problem program, 
the low-order byte of register 15 contains the following return code; the three high-order 
bytes of register 15 are set to zero. 

relative address list, C 

00 - At all times. If the relative address is in error, execution of the next CHECK macro 
instruction causes control to be passed to the error analysis (SYNAD) routine. 

Macro Instruction Descriptions: FIND l35 



For name address, D, when the system returns control to the problem program, the 
low-order byte of register 15 contains a return code and the low-order byte of register 0 
contains a reason code. The three high-order bytes of both registers are set to zero. 

name address, D 

Hexatlecilllal Cecles 
lletunt (UJ) lleason (0) 

00 00 
04 00 
08 00 
08 04 

136 OS/VS Data Management Macro Instructions 

Meaning 

Successful execution. 
Name not found. 
Permanent 1/0 error found during directory search. 
Insufficient virtual storage available. 



FREEBUF-Retum a Buff er to a Pool (BDAM, 
BISAM, BP AM, and BSAM) 

The FREEBUF macro instruction causes the system to return a buffer to the buff er pool 
assigned to the specified data control block. The buff er must have been acquired using a 
GETBUF macro instruction. 

The FREEBUF macro instruction is written as follows: 

I 
[symbol] I FREEBUF I deb _address J 

,register ...._____._______.___ ___ _ 
deb address-RX-Type Address, (2-12), or (1) 

The deb address operand specifies the address of the data control block for an 
opened data set to which the buff er pool has been assigned. 

register-(2-12) 
The register operand specifies one of registers 2 through 12 that contains the address 
of the buff er being returned to the buff er pool. 

Macro Instruction Descriptions: FREEBUF 137 





FREEDBUF-Return a Dynamically Obtained Buffer 
(BDAM and BISAM) 

The FREEDBUF macro instruction causes the system to return a buffer to the buffer 
pool assigned to the specified data control block. The buffer must have been acquired 
through dynamic buffering; that is, by coding 'S' for the area address operand in the 
associated READ macro instruction. 

Note: A buffer acquired dynamically can also be released by a WRITE macro 
instruction; refer to the description of the WRITE macro instruction for BDAM or 
BIS AM. 

The FREEDBUF macro instruction is written as follows: 

[symbol] FREEDBUF deeb address 
,{KID} 
, deb address 

deeb address-RX-Type Address, (2-12), or (0) 

K 

D 

The deeb address operand specifies the address of the data event control block 
(DECB) used or created by the READ macro instruction that acquired the buffer 
dynamically. 

Specifies that BISAM is being used. 

Specifies that BDAM is being used. 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened data set being processed. 

Macro Instruction Descriptions: FREEDBUF 139 





FREEPOOL-Release a Buffer Pool (BDAM, BISAM, 
BP AM, BSAM, QISAM, and QSAM) 

The FREEPOOL macro instruction causes an area of storage, previously acquired for a 
buffer pool for a specified data control block, to be released. The area must have been 

j acquired either automatically (except when dynamic buffer control is used) or by the 
execution of a GETPOOL macro instruction. For queued access methods, the 
FREEPOOL macro instruction must not be issued until after a CLOSE macro 
instruction has been issued for all the data control blocks using the buff er pool. For basic 
access methods, the FREEPOOL macro instruction can be issued as soon as the buffers 
are no longer required. A buff er pool should be released only once, regardless of the 
number of data control blocks sharing the buff er pool. 

The FREEPOOL macro instruction is written as follows: 

I [symbol] I FREEPOOL 1 ·deb address 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of a data control block to which the 
buffer pool has been assigned. · 

Macro Instruction Descriptions: FREEPOOL 141 





GET~Obtain Next Logical Record (QISAM) 

The GET macro instruction causes the system to retrieve the next record. Control is not 
returned to the problem program until the record is available. 

The GET macro instruction is written as follows: 

[symbol] GET deb address 
[,area address ] 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened input data set being retrieved. 

area address-RX-Type Address, (2-12), or (0) 
The area address operand specifies the storage address into which the system is to 
move the record (move mode only). Either the move or locate mode can be used with 
QISAM, but they must not be mixed within the specified data control block. The 
following describes operations for move and locate modes: 

Locate Mode: If the locate mode has been specified in the data control block, the area 
address operand must be omitted. The system returns the address of the buff er 
segment containing the record in register 1. 

Move Mode: If the move mode has been specified in the data control block, the area 
address operand must specify the address in the problem program into which the 
system will move the record. If the area address operand is omitted, the system 
assumes that register 0 contains the area address. When control is returned to the 
problem program, register 0 contains the area address, and register 1 contains the 
address of the data control block. 

Notes: 

1. The end-of-data-set (EODAD) routine is given control if the end of the data set is 

I 
reached; the data set may be closed if processing is completed, or an ESETL macro 
must be issued before a SETL macro to continue further input processing. 

2. The error analysis (SYNAD) routine is given control if the input operation could not 
be completed successfully. The contents of the general registers when control is given 
to the SYNAD routine are described in Appendix A. 

3. When the key of an unblocked fixed-length record is retrieved with the data, the 
address of the key is returned as follows (see the SETL macro instruction): 

Locate Mode: The address of the key is returned in register 0. 

Move Mode: The key appears in front of the record in your buffer area. 

4. If a GET macro instruction is issued for a data set and the previous request issued for 
the same data set was an OPEN, ESETL, or unsuccessful SETL (no record found), a 
SETL B (key and data) is invoked automatically, and the first record in the data set is 
returned. 

Macro Instruction Descriptions: GET-QISAM 143 





,,. 

GET-Obtain Next Logical Record (QSAM) 

The GET macro instruction causes the system to retrieve the next record. Various modes 
are available and are specified in the DCB macro instruction. In the locate mode, the 
GET macro instruction locates the next sequential record or record segment to be 
processed. The system returns the address of the record in register 1 and places the 
length of the record or segment in the logical-record-length (DCBLRECL) field of the 
data control block. The user can process the record within the input buff er or move the 
record to a work area. 

In the move mode, the GET macro instruction moves the next sequential record to the 
user's work area. This work area must be big enough to contain the largest logical record 
of the data set and its record-descriptor word (variable-length records). The system 
returns the address of the work area in register 1. (This feature provides compatibility 
with the substitute mode GET.) The record length is placed in the DCBLRECL field. 
The move mode can be used only with simple buffering. 

In the data mode, which is available only for variable-length spanned records, the GET 
macro instruction moves only the data portion of the next sequential record to the user's 
work area. The TYPE=P operand cannot be used with data mode. 

In the substitute mode, the GET macro instruction transfers ownership of the next 
sequential record in a data set from the system to the user. In return, the ownership of a 
work area is transferred from the user to the system for future use as an input buffer. 
There is no movement of data. The address of an input buff er containing the record is 
returned to the user in register 1 after the instruction is executed. The system returns the 
record length in the DCBLRECL field. For undefined-length records, the DCBLRECL 
field is equal to the BLKSIZE field for chained scheduling. The substitute mode can be 
used only with exchange buffering and cannot be used with variable-length records. The 
TYPE=P operand cannot be used with substitute mode. 

If the ASCII translation routines are included when the operating system is generated, 
translation can be requested by coding LABEL=(,AL) or (,AUL) in the DD statement, 
or it can be requested by coding OPTCD=Q in the DCB macro instruction or DCB 
subparameter of the DD statement. When translation is requested, all QSAM records 
whose record format (RECFM operand) is F, PB, D, DB, or U are automatically 
translated from ASCII code to EBCDIC code as soon as the input buff er is full. For 
translation to occur correctly, all input data must be in ASCII code. 

The GET macro instruction is written as follows: 

[symbol] GET deb address I pdab address 
[,area address ] 
[,TYPE=P] 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened input data set being retrieved. 

pdab address-RX-Type Address, (2-12), or (1) 
The pdab address operand specifies the address of the parallel data access block for 
the opened input data sets from which a record is to be retrieved. When pdab address 
is used, TYPE=P must be coded. 

Macro Instruction Descriptions: GET-QSAM 145 



area address-RX-Type Address, (2-12), or (O) 
The area address operand specifies the address of an area into which the system is to 
move the record (move or data mode), or it specifies the address of an area to be 
exchanged for the buffer containing the record (substitute mode). The move, locate, 
data, or substitute mode can be used with QSAM, but they must not be mixed within 
the specified data control block. If the area address operand is omitted in the move, 
data, or substitute mode, the system assumes that register 0 contains the area address. 
The following describes the operation of the four modes: 

Locate Mode: If the locate mode has been specified in the data control block, the area 
address operand must be omitted. The system returns the address of the beginning 
buff er segment containing the record in register 1. If the data set is open for 
ROBACK, register 1 will point to the end of the buffer segment rather than the 
beginning. 

When retrieving variable-length spanned records, the records are obtained one 
segment at a time. The problem program must retrieve additional segments by issuing 
subsequent GET macro instructions, except when a logical record interlace is 
requested (by specifying BFTEK=A in the DCB macro instruction or by issuing a 
BUILDRCD macro instruction.) In this case, the control program retrieves all record 
segments and assembles the segments into a complete logical record. The system 
returns the address of this record area in register 1. To process a record when the 
logical record length is greater than 32,756 bytes, LRECL=X must be specified in the 
data control block, and the problem program must assemble the segments into a 
complete logical record. 

Move Mode: If the move mode has been specified in the data control block, the area 
address operand specifies the beginning address of an area in the problem program 
into which the system will move the record. If the data set is open for ROBACK, the 
area address operand specifies the ending address of an area in the problem program. 

For variable-length spanned records, the system constructs the record-descriptor word 
in the first four bytes of the area and assembles one or more segments into the data 
portion. of the logical record; the segment descriptor words are removed. 

Data Mode: If the data mode has been specified in the data control block (data mode 
can be specified for variable-length spanned records only), the area address operand 
specifies the address of the area in the problem program into which the system will 
move the data portion of the logical record; a record-descriptor word is not 
constructed when data mode is used. The TYPE=P operand cannot be used with data 
mode. 

Substitute Mode: If the substitute mode is specified in the data control block, the area 
address operand specifies the address of an area in the problem program that will be 
exchanged for the buff er containing the record. The system returns the address of the 
buffer containing the record in register 1. The TYPE=P operand cannot be used with 
substitute mode. 

Note: If spanned records extend across volumes, errors may occur when using the 
GET macro if a volume which begins with a middle or last record segment is mounted 
first, or if an FEOV macro is issued followed by a GET macro. QSAM cannot begin 
reading from the middle of the record. (This applies to move mode, data mode, and 
locate mode if logical record interface is specified.) 

146 OS/VS Data Management Macro Instructions 



GET Routine Exits 

TYPE=P-Coded as shown 
The TYPE=P and pdab address operands are used to retrieve a record from a queue 
of input data sets that have been opened. The open and close routines add and delete 
DCB addresses in the queue. The DCB from which a record is retrieved can be 
located from information in the PDAB. For this,purpose, the formatting macro, 
PDABD, should be used. 

The end-of-data-set (EODAD) routine is given control if the end of the data set is 
reached; the data set must be closed. Issuing a GET macro instruction in the EODAD 

I routine results in abnormal termination of the task. 

The error analysis (SYNAD) routine is given control if the input operation could not be 
completed successfully. The contents of the general registers when control is given to the 
SYNAD routine are described in Appendix A. 

Macro Instruction Descriptions: GET-QSAM 147 





GETBUF-Obtain a Buffer (BDAM, BISAM, BPAM, 
and BSAM) . 

The GETBUF macro instruction causes the control program to obtain a buff er from the 
buffer pool assigned to the specified data control block and to return the address of the 
buffer in a designated register. The BUFCB field of the data control block must contain 
the address of the buff er pool control block when the GETBUF macro instruction is 
issued. The system returns control to the instruction following the GETBUF macro 
instruction. The buffer obtained must be returned to the buffer pool using a FREEBUF 
macro instruction. 

The GETBUF macro instruction is written as follows: 

[symbol] GETBUF deb address 
,register 

deb address-RX-Type Address, (2-12), or (1) 

-~=] 
The deb address operand specifies the address of the data control block that contains 
the buff er pool control block address. 

register-(2-12) 
The register operand specifies one of the registers 2 through 12 in which the system is 
to place the address of the buffer obtained from the buffer pool. If no buffer is 
available, the contents of the designated register are set to zero. 

Macro Instruction Descriptions: GETBUF 149 





GETPOOL-Build a Buff er Pool (BDAM, BISAM, 
BP AM, BSAM, QISAM, and QSAM) 

The GETPOOL macro instruction causes a buffer pool to be constructed in a storage 
area acquired by the system. The system places the address of the buffer pool control 
block in the BUFCB field of the data control block. The GETPOOL macro instruction 
must be issued either before an OPEN macro instruction is issued or during the data 
control block exit routine for the specified data control block. 

The GETPOOL macro instruction is written as follows: 

[symbol] GETPOOL deb address 
,{number of buffers,buffer length I (O)} 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block to which the 
buff er pool is assigned. Only one buff er pool can be assigned to a data control block. 

number of buffers-symbol, decimal digit, absexp, or (2-12) 
The number-of-bu[ fers operand specifies the number of buffers in the buff er pool up 
to a maximum of 255. 

buffer length-symbol, decimal digit, absexp, or (2-12) 
The buff er length operand specifies the length, in bytes, or each buff er in the buff er 
pool. The value specified for the buff er length must be a doubleword multiple; 
otherwise the system rounds the value specified to the next higher doubleword 
multiple. The maximum length that can be specified is 32,760 bytes. For QSAM, the 
buff er length must be at least as large as the value specified in the block size 
(DCBBLKSI) field in the data control block. 

(0)-Coded as shown 
The number of buffers and buffer length can be specified in general register 0. If (0) 
is coded, register 0 must contain the binary values for the number of buffers and 
buff er length as shown in the following illustration: 

Register 0 

Number of Buffers Buffer Length 

Bits: 0 15 16 31 

Macro Instruction Descriptions: GETPOOL 151 



The following illustration shows the format of the buff er pool. The buffer pool and the 
associated storage area are released by issuing a FREEPOOL macro instruction after 
issuing a CLOSE macro instruction for the data set indicated in the specified data control 
block. 

Area 
Address 

t 
BUFAD BUFNO BUFL 

Address of First Number Length 
Available of of Each Buffer 
Buffer Buffers Buffer 

.-...-----Buffer Pool Control Block------•lfll~--Buffer Lengthj 
(8 bytes) 

-----------------Area Length 
Area Length= (Buffer Length) x (Number of Buffers) +8 

152 OS/VS Data Management Macro Instructions 

\ 
[ 

Buffer 

........___ 

Leuff« Length~ 



NOTE-Provide Relative Position (BPAM and 
BSAM-Tape and Direct Access Only) 

The NOTE macro instruction causes the system to return the relative position of the last 
block read from or written into a data set. All input and output operations using the same 
data control block must be tested for completion before the NOTE macro instruction is 
issued. 

The capability of using the NOTE macro instruction is automatically provided when a 
partitioned data set is used (DSORG=PO or POU), but when a sequential data set 
(BSAM) is used, the use of NOTE/POINT macro instructions must be indicated in the 
MACRF operand of the DCB macro instruction. The relative position, in terms of the 
current volume, is returned in register 1 as follows: 

Magnetic Tape: The block number is in binary, right-adjusted in register 1 with 
high-order bits set to zero. Do not use a NOTE macro instruction for tapes without 
standard labels when: 

• The data set is opened for RDBACK (specified in the OPEN macro instruction) or 

• The DISP parameter of the DD statement for the data set specifies DISP=MOD. 

Direct-Access Device: TTRz format, where: 

TT is a 2-byte relative track number. 

R is a 1-byte block (record) number on the track indicated by TT. 

z is a byte set to zero. 

For VS 1 SYSIN data sets, register 1 returns a 4-byte relative block address for the last 
record read. The NOTE macro instruction cannot be used for VS2 SYSIN data sets, or 
for VS 1 or VS2 SYSOUT data sets. 

Note: When a direct-access device is being used, the amount of remaining space on the 
track is returned in register 0 if a NOTE macro instruction follows a WRITE macro 

/ instruction; if a NOTE macro instruction follows a READ or POINT macro instruction, 
the track capacity of the direct-access device is returned in register 0. 

The NOTE macro instruction is written as follows: 

I [symbol] I NOTE I deb address 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block opened for 
the partitioned or sequential data set being processed. 

Macro Instruction Descriptions: NOTE 153 





I 

OPEN-Logically Connect a Data Set (BDAM, 
BISAM, BP AM, BSAM, QISAM, and QSAM) 

The OPEN macro instruction causes the specified data control block(s) to be completed 
and the data set(s) identified in the data control block(s) to be prepared for processing. 
Input labels are analyzed and output labels are created. Control is given to exit routines 
as specified in the data control block exit list. The processing method (option 1) is 
designated to provide correct volume positioning for the data set and define the 
processing mode (INPUT, OUTPUT, etc.) for the data set(s). Final volume positioning 
(when volume switching occurs) can be specified (option 2) to override the positioning 
implied by the DD statement DISP parameter. Option 2 applies only to volumes in a 
multivolume data set other than the last volume. Any number of data control block 
addresses and associated options may be specified in the OPEN macro instruction. 

If associated data sets for a 3525 card punch are being opened, all associated data sets 
must be open before an 1/0 operation is initiated for any of the data sets. For a 
description of associated data sets, refer to OS/VS Data Management Services Guide. 

To support DEB validity checking in OS/VS, an OPEN macro instruction must be issued 
for every data extent block (DEB) created. 

The standard form of the OPEN macro instruction is written as follows (the list and 
execute forms are shown following the description of the standard form): 

[symbol] OPEN (deb address,[(options)], ... ) 

deb address-A-Type Address or (2-12) 
The deb address operand(s) specifies the address of the data control block(s) for the 
data set(s) to be prepared for processing. 

options 
The options operands shown in the following illustration indicate the volume 
positioning available based on the device type and access method being used. If option 
1 is omitted, INPUT is assumed. If option 2 is omitted, DISP is assumed. Option 1 
must be coded if option 2 is coded. Option 2 is ignored for SYSIN and SYSOUT data 
sets. Options 1 and 2 are ignored for BISAM and QISAM (in the scan mode), and the 
data control block indicates the operation. OUTPUT or OUTIN must be specified 
when creating a data set. 

Macro Instruction Descriptions: OPEN 155 



ACCESS 
METHOD 

QSAM 

BSAM 

QISAM 
(Load Mode) 

BPAM, 
BDAM 

DEVICE TYPE 

Magnetic tape Direct access Other Types 
Option 1 Option 2 Option 1 Option 2 Option 1 Option 2 

[INPUT ] [,REREAD] [INPUT ] [,REREAD] [INPUT ] 
[OUTPUT] [,LEAVE 1 [OUTPUT] [,LEAVE ] [OUTPUT] 
[RDBACK] [,DISP ] [UPDAT ] [,DISP ] 

[INPUT ] [,REREAD] [INPUT ] [,REREAD] [INPUT ] 
[OUTPUT] [,LEAVE ] [OUTPUT] [,LEAVE ] [OUTPUT] 
[INOUT ] [,DISP ] [INOUT ] [,DISP ] 
[OUTIN ] [OUTIN ] 
[RD BACK] [UPDAT ] 

[OUTPUT] 

[INPUT ] 
[OUTPUT] 
[UPDAT ] 

The following describes the options shown in the preceding illustration. All option 
operands are coded as shown. 

Option 1 

INPUT 

INOUT 

OUTPUT 

OUTIN 

RD BACK 

I UPDAT 

Option 2 

LEAVE 

REREAD 

DISP 

Meaning 

Input data set. 

The data set is first used for input and, without reopening, it is used as 
an output data set. The data set is processed as INPUT for a SYSIN 
data set or if LABEL= (,,,IN) is specified in the DD statement. 

Output data set (for BDAM, OUTPUT is equivalent to UPDAT). 

The data set is first used for output and, without reopening, it is used as 
an input data set. The data set is processed as OUTPUT for a SYSOUT 
data set or if LABEL=(,,,OUT) is specified in the DD statement. 

Input data set, positioned to read backward. 

Data set to be updated in place or, for BDAM, blocks are to be updated 
or added. 

Meaning 

Positions the current tape volume to the logical end of the data set when 
volume switching occurs. If processing was forward, the volume is 
positioned to the end of the data set; if processing was backwards 
(RDBACK), the volume is positioned to the beginning of the data set. 

Positions the current tape volume to reprocess the data set when volume 
switching occurs. If processing was forward, the volume is positioned to 
the beginning of the data set; if processing was backwards (RDBACK), 
the volume is positioned to the end of the data set. 

Specifies that a tape volume is to be disposed of in the manner implied 
by the DD statement associated with the data set. Direct-access volume 
positioning and disposition are not affected by this parameter of the 
OPEN macro instruction. There are several dispositions that can be 
specified in the DISP parameter of the DD statement; DISP can be 
PASS, DELETE, KEEP, CATLG, or UNCATLG. This option has 
significance at the time an end-of-volume condition is encountered only 
when DISP is PASS. The end-of-volume condition may result from the 
issuance of an FEOV macro instruction or may be the result of reaching 
the end of a volume. 

156 OS/VS Data Management Macro Instructions 



If DISP is PASS in the DD statement, the tape will be spaced forward to 
the end of the data set on the current volume. 

VSl Systems: If any DISP option is coded in the DD statement the 
current volume will be positioned as follows: 

DISP Parameter 

PASS 

DELETE 

Action 

Forward space to the end of the data set on the 
current volume 

Rewind the current volume 

KEEP,CATLG,orUNCATLG Rewind and unload the current volume 

VS2 Systems: If any DISP option is coded in the DD statement (except 
when DISP is PASS), the resultant action at the time an end-of-volume 
condition arises depends on ( 1) how many tape units are allocated to 
the data set and (2) how many volumes are specified for the data set in 
the DD statement. This is determined by the UNIT and VOLUME 
parameters of the DD statement associated with the data set. If the 
number of volumes is greater than the number of units allocated, the 
current volume will be rewound and unloaded. If the number of volumes 
is less than or equal to the number of units, the current volume is merely 
rewound. 

Note: When the DELETE option is specified, the system waits for the completion of the 
rewind operation before it continues processing subsequent reels of tape. 

The LEA VE and REREAD options are meaningless except for magnetic tape and 
CLOSE TYPE=T. Any other options specified for CLOSE TYPE=T besides LEAVE 
and REREAD will be treated as LEA VE during execution. 

After the OPEN macro instruction has been executed, bit 3 of the DCBOFLGS field in 
the data control block is set to 1 if the data control block has been opened successfully, 
but is set to 0 if the data control block has not been opened successfully. 

The following errors cause the results indicated: 

Error 

Attempting to open a data control 
block that is already open. 

Attempting to open a data control 
block when the deb address 
operand does not specify the 
address of a data control block. 

Attempting to open a DCB for a 
printer with the UCS feature and 
an error occurred when attempting 
to block or unblock data checks 
(specified by the presence or absence 
of OPTCD=U in the DCB macro). 

Attempting to open a data control 
block when a corresponding DD 
statement has not been provided. 

Result 

No action. 

Unpredictable. 

Unpredictable (VSl only). 

Task abnormally terminated 
(VS2 only). 

A "DD STATEMENT MISSING" message 
is issued. An attempt to use the data 
set causes unpredictable results. 

Macro Instruction Descriptions: OPEN 157 



The last of these errors can be detected by testing bit 3 of the DCBOFLGS field in the 
data control block. Bit 3 is set to 0 in the case of an error and can be tested by the 
sequence: 

TM DCBOFLGS,X' 10' 

BZERRORRTN (Branch to user's error routine) 

158 OS/VS Data Management Macro Instructions 



OPEN-List Fonn 

The list form of the OPEN macro instruction is used to construct a data management 
parameter list. Any number of operands (data control block addresses and associated 
options) can be specified. 

The list consists of a one-word entry for each DCB in the parameter list; the high-order 
byte is used for the options and the three low-order bytes are used for the DCB address. 
The end of the list is indicated by a one in the high-order bit of the last entry's option 
byte. The length of a list generated by a list form instruction must be equal to the 
maximum length list required by any execute form instruction that refers to the same list. 
A maximum length list can be constructed by one of two methods: 

• Code a list-form instruction with the maximum number of parameters that are 
required by an execute form instruction that refers to the list. 

• Code a maximum length list by using commas in a list-form instruction to acquire a list 
of the appropriate size. For example, coding OPEN (,,,,,,,,,),MF=L would provide a 
list of five fullwords (five deb addresses and five options). 

Entries at the end of the list that are not referenced by the execute-form instruction are 
assumed to have been filled in when the list was constructed or by a previous 
execute-form instruction. Before using the execute-form instruction, you may shorten the 
list by placing a one in the high-order bit of the last DCB entry to be processed. 

A zeroed work area on a fullword boundary is equivalent to OPEN 
(,(INPUT,DISP), ... ),MF=L and can be used in place of a list-form instruction. The 
high-order bit of the last DCB entry must contain a one before this list can be used with 
the execute-form instruction. 

A parameter list constructed by an OPEN, list form, macro instruction can be referred to 
by either an OPEN or CLOSE execute form instruction. 

The description of the standard form of the OPEN macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indicates which operands are completely optional and those required in at least one of 
the pair of list and execute forms. The format description below indicates the optional 
and required operands in the list form only. 

The list form of the OPEN macro instruction is written as follows: 

[symbol] OPEN ([deb address ],[(options)], ... ) 
,MF=L 

deb address-A-Type Address 

MF=L-Coded as shown 
The MF=L operand specifies that the OPEN macro instruction is used to create a 
data management parameter list that is referenced by an execute form instruction. 

Macro Instruction Descriptions: OPEN-List Form 159 





OPEN-Execute Fonn 

A remote data management parameter list is used in, and can be modified by, the execute 
form of .the OPEN macro instruction. The parameter list can be generated by the list 
form of either an OPEN or CLOSE macro instruction. 

The description of the standard form of the OPEN macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indicates which operands are totally optional and those required in at least one of the 
pair of list and execute forms. The format description below indicates the optional and 
required operands in the execute form only. 

The execute form of the OPEN macro instruction is written as follows: 

[symbol] OPEN [([deb address ],[(options)], ... )] 
,MF= (E, { data management list address I (1)}) 

deb address-RX-Type Address or (2-12) 

MF=(E,{ data management list address I (1)} 
This operand specifies that the execute form of the OPEN macro instruction is used, 
and an existing data management parameter list (created by a list-form instruction) is 
used. The MF= operand is coded as follows: 

E-Coded as shown 

data management list address-RX-Type, (2-12), (1) 

Macro Instruction Descriptions: OPEN-Execute Form 161 





PDAB-Construct a Parallel Data Access Block 
(QSAM) 

The PDAB macro instruction is used in conjunction with the GET (TYPE=P) macro 
instruction. It defines an area in the problem program where the Open and Close 
routines build and maintain a queue of DCB address for use by the Get routine. 

The parallel data access block is constructed during the assembly of the problem 
program. The MAXDCB operand must be coded in the PDAB macro instruction because 
it cannot be supplied from any other source. 

Certain data set characteristics prevent a DCB address from being available on the 
queue-see the description of QSAM parallel input processing in OS I VS Data 
Management Services Guide. 

The PDAB macro instruction is written as follows: 

I [symbol] I PDAB I MAXDCB=dcb number 

MAXDCB=absexp (maximum value is 32,767) 
Specifies the maximum number of DCBs that you require in the queue for a GET 
request. 

Note: The number of bytes required for PDAB is equal to 24+8 n where n is the 
value of the keyword, MAXDCB. 

Macro Instruction Descriptions: PDAB 163 





PDABD-Provide Symbolic Reference to a Parallel Data 
Access Block ( QSAM) 

The PDABD macro instruction is used to generate a dummy control section that provides 
symbolic names for the fields in one or more parallel data access blocks. The names, 
attributes, and descriptions of the fields appear in Appendix H. 

The name of the dummy control section generated by a PDABD macro instruction is 
IHAPDAB. The use of any of the symbolic names provided by the dummy section 
should be preceded by a USING instruction specifying IHAPDAB and a dummy section 
base register containing the address of the actual parallel data access block. The PDABD 
macro instruction should only be used once within any assembled module; however, the 
resulting symbolic names can be used for any number of parallel data access blocks by 
changing the address in the dummy section base register. The PDABD macro instruction 
can be coded at any point in a control section. If coded at any point other than at the end 
of a control section, the control section must be resumed by coding a CSECT instruction. 

The PDABD macro instruction is written as follows: 

IPDABD 

Macro Instruction Descriptions: PDABD 165 





POINT-Position to a Relative Block (BPAM and 
BSAM-Tape and Direct Access Only) 

The POINT macro instruction causes the system to start processing the next READ or 
WRITE operation at the specified bl~ck in the data set on the current volume. All input 
and output operations using the same data control block must have been tested for 
completion before the POINT macro instruction is issued. When processing a data set 
that has been opened for UPDAT, the POINT macro instruction must be followed by a 
READ macro instruction. When processing an output data set, the POINT macro 
instruction must be followed by a WRITE macro instruction prior to closing the data set, 
unless a CLOSE macro instruction (with TYPE=T specified) was issued prior to the 
POINT macro instruction. Issuing a POINT macro instruction for a system output data 
set on magnetic tape results in an effective NOP instruction (VSl only). 

The POINT macro instruction is written as follows: 

[symbol] POINT deb address 
, block address 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened data set that is to be positioned. 

block address-RX-Type Address, (2-12), or (O) 
The block address operand specifies the address of a fullword on a fullword boundary 
containing the relative address of the block in the data set that is to be processed next. 
The relative address is specified as follows: 

Magnetic Tape: The block number is in binary and is right-adjusted in the fullword 
with the high-order bits set to zero; add one if reading tape backward. Do not use the 
POINT macro instruction for tapes without standard labels when: 

• The data set is opened for RDBACK or 

• The DD statement for the data set specifies DISP=MOD. 

If OPTCD=H is indicated in the data control block, the POINT macro instruction can 
be used to perform record positioning on DOS tapes that contain embedded 
checkpoint records. Any embedded checkpoint records that are encountered during 
the record positioning are bypassed and are not counted as blocks spaced over. 
OPTCD=H must be specified in a job control language DD statement. Do not use the 
POINT macro instruction to backspace DOS 7-track tapes that are written in data 
convert mode and that contain embedded checkpoint records. 

Note: When an end-of-data condition is encountered on magnetic tape, you must not 
issue the POINT macro instruction unless you have first repositioned the tape for 
processing within your data set; otherwise, the POINT operation will be unsuccessful. 
(Issuing CLOSE TYPE=T is an easy method to accomplish repositioning in your 
EODAD routine.) 

Direct-Access Device: The fullword specified in the block address operand contains 
the relative track address (in the form TTRz), where: 

TT is a 2-byte relative track number. 

R is a 1-byte block (record) number on the track indicated by TT. 

z is a byte set to zero; it may also be set to 1 to retrieve the block following the 
TTR block. 

Macro Instruction Descriptions: POINT 167 



Note: The first block of a magnetic tape data set is always specified by the 
hexadecimal value 00000001. The first block of a direct-access device data set can be 
specified by either hexadecimal 00000001 or 00000100 (see the previous description 
of TTRz). 

The fullword specified in the block address operand contains the relative block address 
for a VSl SYSIN data set. The 4-byte relative block address must have been returned in 
register 1 from a previous NOTE macro instruction and it cannot be altered. POINT 
cannot be used for VS2 SYSIN data sets or for VS 1 or VS2 SYSOUT data sets. 

If the volume cannot be positioned correctly or if the block identification is not of the 
correct format, the error analysis (SYNAD) routine is given control when the next 

I CHECK macro instruction is executed. 

168 OS/VS Data Management Macro Instructions 



PRTOV-Test for Printer Carriage Overflow (BSAM 
and QSAM-Online Printer and 3525 Card Punch, 
Print Feature) 

The PRTOV macro instruction is used to control the page format for an online printer 
when carriage control characters are not being used or to supplement the carriage control 
characters that are being used. 

The PRTOV macro instruction causes the system to test for an overflow condition on the 
specified channel (either channel 9 or channel 12) of the printer carriage control, and 
either skip the printer carriage to the line corresponding to channel 1, or transfer control 
to the exit address, if one is specified. Overflow is detected after printing the line that 

I
. follows the line corresponding to channel 9 or channel 12. The PRTOV macro should be 

issued each time you want the system to test for an overflow condition. 

When the PRTOV macro instruction is used with a 3525 card punch, print feature, 
channel 9 or 12 can be tested. If an overflow condition occurs, control is passed to the 
overflow exit routine if the overflow exit address is coded, or a skip to channel 1 (first 
print-line of the next card) occurs. 

When requesting overprinting (for example, to underscore a line), the PRTOV macro 
instruction is issued before the first PUT or WRITE macro instruction only. The PRTOV 
macro instruction should be issued only when the device type is an online printer. 
PRTOV cannot be used to request overprinting on the 3525. 

The PRTOV macro instruction is written as follows: 

[symbol] PRTOV deb address 
,{9 I 12} 
[,overflow exit address ] 

deb address-RX-Type Address or (2-12) 
The deb address operand specifies the address of the data control block opened for 
output to an online printer or 3525 card punch with a print feature. 

9-Coded as shown 
12-Coded as shown 

These operands specify which channel is to be tested by the PRTOV macro 
instruction. For an online printer, 9 and 12 correspond to carriage control channels 9 
and 12. For the 3525 card punch, 9 corresponds to print line number 17, and 12 
corresponds to print line number 23. More detail about the card print-line format is 
included in OS and OS/VS Programming Support for the IBM 3505 Card 
Reader and IBM 3525 Card Punch. 

overflow exit address-RX-Type Address or (2-12) 
The overflow exit address operand specifies the address of the user-supplied routine 
to be given control when an overflow condition is detected on the specified channel. If 
this operand is omitted, the printer carriage skips to the first line of the next page or 
the 3525 skips to the first line of the next card before executing the next PUT or 
WRITE macro instruction. 

Macro Instruction Descriptions: PRTOV 169 



When the overflow exit routine is given control, the contents of the registers are as 
follows: 

Register 

0 and 1 
2- 13 

14 
15 

Contents 

The contents are destroyed. 
The same contents as before the macro instruction was 
executed. 
Return address. 
Overflow exit routine address. 

170 OS/VS Data Management Macro Instructions 



PUT-Write Next Logical Record (QISAM) 

The PUT macro instruction causes the system to write a record into an indexed 
sequential data set. If the move mode is used, the PUT macro instruction moves a logical 
record into an output buffer from which it is written. If the locate mode is specified, the 
address of the next available output buff er segment is available in register 1 after the 
PUT macro instruction is executed. The logical record can then be constructed in the 
buff er for output as the next record. The records are blocked by the system (if specified 
in the data control block) before being placed in the data set. The system uses the length 
specified in the record length (DCBLRECL) field of the data control block as the length 
of the record currently being written. When constructing blocked variable-length records 
in the locate mode, the problem program may either specify the maximum record length 
once in the DCBLRECL field of the data control block or provide the actual record 
length in the DCBLRECL field before issuing each PUT macro instruction. Use of the 
maximum record length may result in more but shorter blocks, since the system uses this 
length when it tests to see if the next record can be contained in the current block. 

The PUT macro instruction is used to create or extend an indexed sequential data set. To 
extend the data set, the key of any added record must be higher than the highest key 
existing in the data set, and the disposition parameter of the DD card must be specified 
as DISP=MOD. The new records are placed in the prime data space, starting in the first 
available space, until the original space allocation is exhausted. 

To create a data set using previously allocated space, the disposition parameter of the 
DD card must specify DISP=OLD. 

The PUT macro instruction is written as follows: 

[symbol] PUT deb address 
[,area address] 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened ISAM data set. 

area address-RX-Type Address, (2-12), or (0) 
The area address operand specifies the address of the area that contains the record to 
be written (move mode only). Either move or locate mode can be used with QISAM, 
but they must not be mixed within the specified data control block. The following 
describes operations for locate and move modes: 

Locate Mode: If the locate mode is specified in the data control block, the area 
address operand must be omitted. The system returns the address of the next available 
buff er in register 1; this is the buff er into which the next record is placed. The record 
is not written until another PUT macro instruction is issued for the same data control 
block. The last record is written when a CLOSE macro instruction is issued to close 
the data set. 

Move Mode: If the move mode has been specified in the data control block, the area 
address operand must specify the address in the problem program that contains the 
record to be written. The system moves the record from the area to an output buffer 
before control is returned. If the area address operand is omitted, the system assumes 
that register zero contains the area address. 

Macro Instruction Descriptions: PUT-QISAM 171 



PUT Routine Exit 

The error analysis (SYNAD) routine is given control if the output operation could not be 
completed satisfactorily. The contents of the registers when the error analysis routine is 
given control are described in Appendix A. 

172 OS/VS Data Management Macro Instructions 



PUT-Write Next Logical Record (QSAM) 

The PUT macro instruction causes the system to write a record in a sequential data set. 
Various modes are available and are specified in the DCB macro instruction. In the 
locate mode, the address of an area within an output buffer is returned in register 1 after 
the macro instruction is executed. The user should subsequently construct, at this 
address, the next sequential record or record segment. The move mode of the PUT 
macro instruction causes a logical record to be moved into an output buffer. In the data 
mode, which is available only for variable-length spanned records, the PUT macro 
instruction moves only the data portion of the record into one or more output buffers. 
When the substitute mode is specified, the macro transfers ownership of a work area 
containing a record to the control program. In return, the ownership of a buff er segment 
is transferred to the user, for use as a work area. There is no movement of data in 
storage. 

The records are blocked by the control program (as specified in the data control block) 
before being placed in the data set. For undefined-length records, the DCBLRECL field 
determines the length of the record that is subsequently written. For variable-length 
records, the DCBLRECL field is used to locate a buffer segment of sufficient size 
(locate mode), but the length of the record actually constructed is verified before the 
record is written (the output block can be filled to the maximum if, before issuing the 
PUT macro, DCBLRECL is set equal to the record length). For variable-length spanned 
records, the system segments the record according to the record length, buff er length, 
and amount of unused space remaining in the output buffer. The smallest segment 
created will be 5 bytes, 4 for the segment descriptor word plus one byte of data. 

If the ASCII translation routines are included when the operating system is generated, 
translation can be requested by coding LABEL=(,AL) or (,AUL) in the DD statement, 
or it can be requested by coding OPTCD=Q in the DCB macro instruction or DCB 
subparameter of the DD statement. When translation is requested, all QSAM records 
whose record format (RECFM operand) is F, FB, D, DB, or U are automatically 
translated from EBCDIC code to ASCII code. For translation to occur correctly, all 
output data must be in EBCDIC code; any EBCDIC character that cannot be translated 
into an ASCII character is replaced by a substitute character. 

The PUT macro instruction is written as follows: 

[symbol] PUT deb address 
[,area address] 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the data 
set opened for output. 

area address-RX-Type Address, (2-12), or (0) 
The area address operand specifies the address of an area that contains the record to 
be written (move or data mode), or it specifies the address of an area to be exchanged 
for a buff er (substitute mode). The move, locate, data, or substitute mode can be used 
with QSAM, but they must not be mixed within the specified data control block. If the 
area address operand is omitted in the move, data, or substitute mode, the system 
assumes that register zero contains the area address. The following describes the 
operation of the four modes: 

Locate Mode: If the locate mode is specified, the area address operand must be 
omitted. The system returns the address of the next available buff er in register 1; this 
is the buff er into which the next record is placed. 

Macro Instruction Descriptions: PUT-QSAM 173 



PUT Routine Exit 

When variable-length spanned records are used and a record area has been provided 
for a logical record interface (BFTEK=A has been specified in the data control block 
or a BUILDRCD macro instruction has been issued), the address returned in register 
1 points to an area large enough to contain the maximum record size (up to 32,756 
bytes). The system segments the record and writes all segments, providing proper 
control codes for each segment. If, for variable-length spanned records, an area has 
not been provided, the actual length remaining in the buffer will be returned in 
register 0. In this case, it is the user's responsibility to segment the records and process 
them in terms of record segments. The record or segment is not written until another 
PUT macro instruction is issued for the same data control block. The last record is 
written when the CLOSE macro instruction is issued. 

When a PUT macro instruction is used in the locate mode, the address of the buffer 
for the first record or segment is obtained by issuing a PUT macro instruction; QSAM 
returns the address of the buffer, but the record is not written until the next PUT 
macro instruction is issued. 

Move Mode: If the move mode has been specified in the data control block, the area 
address operand specifies the address of the area that contains the record to be 
written. The system moves the record to an output buff er before control is returned. 

I The address of the output buff er is returned in register 1 (this action provides 
compatibility with substitute mode operations, and makes it possible for the problem 
program to be used in instances where substitute mode is requested but cannot be 
supported by the system). 

Data Mode: If the data mode is specified in the data control block (data mode can be 
specified for variable-length spanned records only), the area address operand 
specifies the address of an area in the problem program that contains the data portion 
of the record to be written. The system moves the data portion of the record to an 
output buffer before control is returned. The user must place the total data length in 
the DCBPRECL (not DCBLRECL) field of the data control block before the PUT 
macro instruction is issued. 

Substitute Mode: If the substitute mode is specified in the data control block, the area 
address operand specifies the address of an area in the problem program that contains 
the next record to be written. The area is exchanged for an empty buffer. The address 
of the empty buffer is returned in register 1. 

The error analysis (SYNAD) routine is given control if an output operation could not be 
completed satisfactorily. If the output operation could not be completed satisfactorily, 
the error analysis (SYN AD) routine is given control after the next PUT instruction is 
issued. The contents of the registers when the error analysis routine is given control are 
described in Appendix A. 

174 OS/VS Data Management Macro Instructions 



PUTX-Write a Record from an Existing Data Set 
(QISAM and QSAM) 

The PUTX macro instruction causes the control program to return an updated record to 
a data set ( QISAM and QSAM) or to write a record from an input data set into an 
output data set ( QSAM only). There are two modes of the PUTX macro instruction. The 
output mode (QSAM only) allows writing a record from an input data set on a different 
output data set. The output data set may specify the spanning of variable-length records, 
but the input data set must not contain spanned records. 

The update mode returns an updated record to the data set from which it was read. The 
logical records are blocked by the control program, as specified in the data control block, 
before they are placed in the output data set. The control program uses the length 
specified in the DCBLRECL field as the length of the record currently being stored. 
Control is not returned to the user's program until the control program has processed the 
record. 

The PUTX macro instruction can be used only in the output mode for SYSIN or 
SYSOUT data sets. 

The PUTX macro instruction is written as follows: 

[symbol] PUTX deb address 
[, input deb address ] 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for a data set 
opened for output. 

input deb address-RX-Type Address, (2-12), or (O) 

PUTX Routine Exit 

The input deb address operand specifies the address of a data control block opened 
for input. The PUTX macro instruction can be used for the following modes: 

Output Mode: This mode is used with QSAM only. The input deb address operand 
specifies the address of the data control block opened for input. If this operand is 
omitted, the system assumes that register 0 contains the input deb address. 

Update Mode: The input deb address operand is omitted for update mode. 

The error analysis (SYN AD) routine is given control if the operation is not completed 
satisfactorily. The contents of the registers when the error analysis routine is given 
control are described in Appendix A. 

Macro Instruction Descriptions: PUTX 175 





READ-Read a Block (BDAM) 

The READ macro instruction causes a block to be retrieved from a data set and placed in 
a designated area of storage. Control may be returned to the problem program before the 
block is retrieved. The input operation must be tested for completion using a CHECK or 
WAIT macro instruction. A data event control block, shown .in Appendix A, is 
constructed as part of the macro expansion. 

The standard form of the READ macro instruction is written as follows (the list and 
execute forms are shown following the descriptions of the standard form): 

[symbol] READ decb name 
,type 
, deb address 
, { area address I 'S'} 
, { length I 'S'} 
, { key address I 'S' I 0} 
, block address 
[,next address ] 

decb name -symbol 
The decb name operand specifies the name assigned to the data event control block 
created as part of the macro expansion. 

type-{DI[F I X][R I RU]} 

{DK[F I X][R I RU]} 
The type operand is coded in one of the combinations shown above to specify the 
type of read operation and the optional services performed by the system: 

DI 

DK 

F 

x 

Specifies that the data and key, if any, are to be read from a specific device 
address. The device address, which can be designated by any of the three 
addressing methods, is supplied by the block address operand. 

Specifies that the data (only) is to be read from a device address identified by a 
specific key. The key to be used as a search argument must be supplied in the area 
specified by the key address operand; the search for the key starts at the device 
address supplied in the area specified by the block address operand. The 
description of the DCB macro instruction, LIMCT operand, contains a 
description of the search. 

Requests that the system provide block position feedback into the area specified 
by the block address operand. This character can be coded as a suffix to DI or 
DK as shown above. 

Requests exclusive control of the data block being read, and it requests that the 
system provide block position feedback into the area specified by the block 
address operand. The descriptions of the WRITE and RELEX macro instructions 
contain a description of releasing a data block that is under exclusive control. This 
character can be coded as a suffix to DI or DK as shown above. 

Macro Instruction Descriptions: READ-BDAM 177 



R 

RU 

Requests that the system provide next address feedback into the area specified by 
the next address operand. When R is coded, the feedback is the relative track 
address of the next data record. This character can be coded as a suffix to DI or 
DK, DIF, DIX, DKF, or DKX as shown above, but it can be coded only for use 
with variable-length spanned records. 

Requests that the system provide next address feedback into the area specified by 
the next address operand. When RU is coded, the feedback is the relative track 
address of the next capacity record (RO) or data record whichever occurs first. 
These characters can be coded as a suffix to DI, DK, DIF, DIX, DKF, or DKX, 
but it can be coded only for use with variable-length spanned records. 

deb address-A-Type Address or (2-12) 
The deb address operand specifies the address of the data control block opened for 
the data set to be read. 

area address-A-Type Address, (2-12), or 'S' 
The area address operand specifies the address of the area into which the data block 
is to be placed. If 'S' is coded instead of an address, dynamic buffering is requested 
(dynamic buffering must also be specified in the MACRF operand of the DCB macro 
instruction). When dynamic buffering is used, the system acquires a buffer and places 
its address in the data event control block. 

length-symbol, decimal digit, absexp, (2-12), or 'S' 
The length operand specifies the number of data bytes to be read up to a maximum of 
3 2, 7 60. If 'S' is coded instead of a length, the number of bytes to be read is taken 
from the data control block. 

key address-A-Type Address, (2-12), 'S', or 0 
The key address operand specifies the address of the area for the key of the desired 
data block. If the search operation is made using a key, the area must contain the key. 
Otherwise, the key is read into the designated area. If the key is read and 'S' was 
coded for the area address, 'S' can also be coded for the key address; the key and data 
are read sequentially into the buffer acquired by the system. If the key is not to be 
read, specify 0 instead of an address or 'S'. 

block address-A-Type Address or (2-12) 
The block address operand specifies the address of the area containing the relative 
block address, relative track address, or actual device address of the data block to be 
retrieved. The device address of the data block retrieved is placed in this area if block 
position feedback is requested. The length of the area that contains the address 
depends on whether the feedback option (OPTCD=F) has been specified in the data 
control block and if the READ macro instruction requested feedback. 

If OPTCD=F has been specified, feedback (if requested) is in the same form as was 
originally presented by the READ macro instruction, and the field can be either three 
or eight bytes long depending on the type of addressing. 

If OPTCD=F has not been specified, feedback (if requested) is in the form of an 
actual device address, and the field must be eight bytes long. 

178 OS/VS Data Management Macro Instructions 



next address-A-Type Address or (2-12) 
The next address operand specifies the address of the storage area where the system 
places the relative address of the next record. The length operand must be specified as 
'S'. When the next address operand is specified, an R or RU must be added to the 
type operand (for example, DIR or DIRU). The R indicates that the next address 
returned is the next data record. RU indicates that the next address returned is for the 
next data or capacity record, whichever occurs first. The next address operand can be 
coded only for use with variable-length spanned records. 

Macro Instruction Descriptions: READ-BISAM 179 





READ-Read a Block of Records (BISAM) 

The READ macro instruction causes an unblocked record, or a block containing a 
specified logical record, to be retrieved from a data set. The block is placed in a 
designated area of storage, and the address of the logical record is placed in the data 
event control block. The data event control block is constructed as part of the macro 
expansion and is described in Appendix A. 

Control may be returned to the problem program before the block is retrieved. The input 
operation must be tested for completion using a WAIT or CHECK macro instruction. 

The standard form of the READ macro instruction is written as follows for BISAM (the 
list and execute forms are shown following the descriptions of the standard form): 

[symbol] READ decb name 
,type 
, deb address 
, {area address I 'S'} 
,{length I'S'} 
, key address 

decb name-symbol 
The decb name operand specifies the name assigned to the data event control block 
(DECB) created as part of the macro expansion. 

type-{K I KU} 
The type operand is coded as shown to specify the type of read operation: 

K 
Specifies normal retrieval. 

KU 
Specifies that the record retrieved is to be updated and returned to the data set; the 
system saves the device address to be returned. 

When an ISAM data set is being updated with a READ KU macro instruction and 
a WRITE K macro instruction, both the READ and WRITE macro instructions 
must ref er to the same data event control block. This update operation can be 
performed by using a list-form instruction to create the list (data event control 
block) and by using the execute form of the READ and WRITE macro instructions 
to ref er to the same list. 

deb address-A-Type Address or (2-12) 
The deb address operand specifies the address of the data control block for the 
opened data set to be read. 

area address-A-Type Address, (2-12), or 'S' 
The area address operand specifies the address of the area into which the data block 
is placed. The first sixteen bytes of this area are used by the system and do not 
contain information from the data block. The area address must specify a different 
area than the key address. Dynamic buffering is specified by coding 'S' instead of an 
address; the address of the acquired storage area is returned in the data event control 
block. Indexed sequential buffer and work area requirements are described in OS/VS 
Data Management Services Guide. 

length-symbol, decimal digit, absexp, (2-12), or 'S' 
The length operand specifies the number of bytes to be read up to a maximum of 
32,760. If 'S' is coded instead of a length, the number of bytes to be read is taken 
from the count field of the record; for blocked records, 'S' must be coded. 

Macro Instruction Descriptions: READ-BISAM 181 



key address-A-Type Address or (2-12) 
The key address operand specifies the address of the area in the problem program 
containing the key of a logical record in the block that is to be retrieved. When the 
input operation is completed, the storage address of the logical record is placed in the 
data event control block. The key address must specify a different area than the area 
address. 

182 OS/VS Data Management Macro Instructions 



,, 

R.l:AD-Read a Block (BP AM and BSAM) 

The READ macro instruction causes a block to be retrieved from a data set and placed in 
a designated area of storage. Control may be returned to the problem program before the 
block is retrieved. The input operation must be tested for completion using a CHECK 
macro instruction. A data event control block, shown in Appendix A, is constructed as 
part of the macro expansion. 

If the OPEN macro instruction specifies UPDAT, both the READ and WRITE macro 
instruction must refer to the same data event control block. Refer to the list form of the 
READ or WRITE macro instruction for a description of how to construct a data event 
control block; refer to the execute form of the READ or WRITE macro instruction for a 
description of how to modify an existing data event control block. 

For information on additional operands for the READ macro for the 1275 or 1419, see 
OS Data Management Services and Macro Instructions for IBM 1419/ 1275. 

For information on additional operands for the READ macro instruction for the 3886, 
see OS/VS IBM 3886 Optical Character Reader Model 1 Reference. 

The standard form of the READ macro instruction is written as follows (the list and 
execute forms are shown following the descriptions of the standard form instructions): 

[symbol] READ decb name 
,type 
, deb address 
, area address 
,[{length I 'S'}] 

decb name-symbol 
The decb name operand specifies the name assigned to the data event control block 
(DECB) created as part of the macro expansion. 

type-{SF I SB} 
The type operand is coded as shown to specify the type of read operation: 

SF 
Specifies normal, sequential, forward retrieval. 

SB 
Specifies a read backward operation; this operand can be specified only for 
magnetic tape with format-For format-CT records. 

deb address-A-Type Address or (2-12) 
The deb address operand specifies the address of the data control block for the 
opened data set to be read. 

area address-A-Type Address or (2-12) 
The area address operand specifies the address of the problem program area into 
which the record is placed. When a READ SB macro instruction is issued, the area 
address must be the address of the last byte of the area into which the record is read. 
If the data set contains keys, the key is read into the buffer followed by the data. 

length-symbol, decimal digit, absexp, (2-12), or 'S' 
The length operand specifies the number of data bytes to be read, to a maximum of 
32,760. (If the data is translated from ASCII code to EBCDIC code, the maximum 
number of bytes that can be read is 2048. A number can be coded only for format-CT 
records. The number of bytes to be read is taken from the data control block if 'S' is 
coded instead of a number. (This operand is ignored for format-For format-V 

Macro Instruction Descriptions: READ-BPAM and BSAM 183 



records.) For format-D records only, the length of the record just read is automatically 
inserted into the DCBLRECL field if BUFOFF=(L) is not specified in the data 
control block. 

184 OS/VS Data Management Macro Instructions 



READ-Read a Block (Offset Read of Keyed BDAM 
Data Set Using BSAM) 

The READ macro instruction causes a block to be retrieved from a data set and placed in 
a designated area of storage. The data set is a BDAM data set and its record format is 
unblocked variable-length spanned records. BFTEK=R must be specified in the data 
control block. Control may be returned to the problem program before the block is 
retrieved. The input operation must be tested for completion using a CHECK macro 
instruction. A data event control block, shown in Appendix A, is constructed as part of 
the macro expansion. 

The standard form of the READ macro instruction is written as follows (the list and 
execute forms are shown following the descriptions of the standard form): 

[symbol] READ deeb name 
,SF 
, deb address 
, area address 

deeb name-symbol 

SF 

The deeb name operand specifies the name assigned to the data event control block 
(DECB) created as part of the macro expansion. 

Specifies normal, sequential, forward retrieval. 

deb address-A-Type Address or (2-12) 
The deb address operand specifies the address of the data control block for the 
opened BDAM data set to be read. 

area address-A-Type Address or (2-12) 
The area address operand specifies the address of the area into which the record is 
placed. 

When a spanned BDAM data set is created with keys, only the first segment of a record 
has a key; successive segments do not. When a spanned record is retrieved by the READ 
macro instruction, the system places a segment in a designated area addressed by the 
area address operand. The problem program must assemble all the segments into a 
logical record. Since only the first segment has a key, the successive segments are read 
into the designated area offset by key length to ensure that the block-descriptor word 
and the segment-descriptor word are always in the same relative position. 

Macro Instruction Descriptions: READ-BSAM 185 





READ-List Form 

The list form of the READ macro instruction is used to construct a data management 
parameter list in the form of a data event control block (DECB). Refer to Appendix A 
for a description of the various fields of the DECB for each access method. 

The description of the standard form of the READ macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indicates the operands used for each access method, as well as the meaning of 'S' when 
coded for the area address, length, and key address operands. For each access method, 
'S' can be coded only for those operands for which it can be coded in the standard form 
of the macro instruction. The format description below indicates the optional and 
required operands in the list form only. 

The list form of the READ macro instruction is written as follows: 

[symbol] READ decb name 
,type 
,[deb address] 
,[area address I 'S'] 
,[length I 'S'] 
,[key address I 'S'] 
,[block address] 
, [next address ] 
,MF=L 

decb name-symbol 

type-Code one of the types shown in the standard form 

deb address-A-Type Address or 'S' 

area address -A-Type Address or 'S' 

length -symbol, decimal digit, absexp, or 'S' 

key address-A-Type Address or 'S' 

block address-A-Type Address 

next address -A-Type Address 

MF=L-Coded as shown 
The MF=L operand specifies that the READ macro instruction is used to create a 
data event control block that can be referenced by an execute-form instruction. 

Macro Instruction Descriptions: READ-List Form 187 





READ-Execute Fmm 

A remote data management parameter list (data event control block) is used in, and can 
be modified by, the execute form of the READ macro instruction. The data event control 
block iean be generated by the list form of either a READ or WRITE macro instruction. 

The description of the standard form of the READ macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indicates the operands used for each access method, as well as the meaning of 'S' when 
coded for the area address, length, and key address operands. For each access method, 
'S' can be coded only for those operands for which it can be coded in the standard form 
of the macro instruction. The format description below indicates the optional and 
required operands in the execute form only. 

The execute form of the READ macro instruction is written as follows: 

[symbol] READ decb address 
,type 
,[deb address] 
,[area address I 'S'] 
,[length I 'S'] 
,[key address I'S'] 
,[block address] 
,[next address ] 
,MF=E 

decb address-RX-Type Address or (2-12) 

type-·Code one of the types shown in the standard form 

deb address-RX-Type Address or (2-12) 

area address-RX-Type Address, (2-12), or 'S' 

length--symbol, decimal digit, absexp, (2-12), or 'S' 

key address-RX-Type Address, (2-12), or 'S' 

block address-RX-Type Address, or (2-12) 

next address-RX-Type Address or (2-12) 

MF=E-Coded as shown 
The MF=E operand specifies that the execute form of the READ macro instruction is 
usedl, and that an existing data event control block (specified in the decb address 
operand) is used by the access method. 

Macro Instruction Descriptions: READ-Execute Form 189 





RELEX-Release Exclusive Control (BDAM) 

Completion Codes 

The RELEX macro instruction causes release of a data block from exclusive control. The 
block must have been requested in an earlier READ macro instruction which specified 
either DIX and DKX. 

Note: A WRITE macro instruction that specifies either DIX or DKX can also be used to 
releaS{l exclusive control. 

The RELEX macro instruction is written as follows: 

I [symbol] RELEX 

D 
Specifies direct access. 

D 
, deb address 
, block address 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for a BDAM 
data set opened for processing. The deb address operand must specify the same data 
control block as designated in the associated READ macro instruction. 

block address-RX-Type Address, (2-12), or (0) 
The block address operand specifies the address of the area containing the relative 
bloc:k address, relative track address, or actual device address of the data block being 
released. The block address operand must specify the same area as designated in the 
block address operand of the associated READ macro instruction. 

When the system returns control to the problem program, the low-order byte of register 
15 contains one of the following return codes; the three high-order bytes of register 15 
are set to zero. 

Hexadedmal 
Code Meaning 

00 Operation completed successfully. 
04 The specified data block was not in the exclusive control list. 
08 The relative track address, relative block address, or actual device address was not within 

the data set. 

Macro Instruction Descriptions: RELEX 191 





RELSE-Release an Input Buffer (QISAM and QSAM 
ln1>ut) 

The RELSE macro instruction causes immediate release of the current input buffer. The 
next GET macro instruction retrieves the first record from the next input buffer. For 
variable-length spanned records ( QSAM), the input data set is spaced to the next 
segment which starts a logical record in a subsequent block. Thus, one or more blocks of 
data or records may be skipped. The RELSE macro instruction is ignored if a buffer has 
just been completed or released, if the records ~re unblocked, or if issued for a SYSIN 
data set. 

The RELSE macro instruction is written as follows: 

I [symbol] I RELSE I deb address 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened input data set. 

Macro Instruction Descriptions: RELSE 193 





SETL-Set Lower Limit of Sequential Retrieval 
(QISAM Input) 

The SETL macro instruction causes the control program to start processing the next 
input request at the specified record or device address. Sequential retrieval of records 
using the GET macro instruction continues from that point until the end of the data set is 
encountered or a CLOSE or ESETL macro instruction is issued. An ESETL macro 
instruction must be issued between SETL macro instructions that specify the same data 
set. 

The SETL macro instruction can specify that retrieval is to start at the beginning of the 
data set, at a specific address on the device, at a specific record, or at the first record of a 
specific class of records. For additional information on SETL functions, see OS /VS 
Data Management Services Guide. 

The SETL macro instruction is written as follows: 

[symbol] SETL deb address 

,K[H], lower limit address 
\ 

,KC, lower limit address 

,KD[H], lower limit address 
( 

l ,KCD, lower limit address 

I ,I, lower limit address 

\ ,ID, lower limit address 

,B 

\ ,BD 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block opened for 
th1e indexed sequential data set being processed. 

The following operands are coded as shown, and they specify the starting point and type 
of retrieval: 

K 
Specifies that the next input operation begins at the record containing the key 
spiecified in the lower-limit address operand. 

KC 

H 

Specifies that the next input operation begins at the first record of the key class 
specified in the lower-limit address operand. If the first record of the specified key 
class has been deleted, retrieval begins at the next nondeleted record regardless of key 
class. 

This option, used with either Kor KD, specifies that, if the key in the lower-limit 
address operand is not in the data set, retrieval begins at the next higher key. The 
character H cannot be coded with the key class operands (KC and KCD). 

Macro Instruction Descriptions: SETL 195 



SETLExit 

KD 
Specifies that the next input operation begins at the record containing the key 
specified in the lower-limit address operand, but only the data portion of the record is 
retrieved. This operand is valid only for unblocked records. 

KCD 

I 

ID 

B 

Specifies that the next input operation begins at the first record of the key class 
specified in the lower-limit address operand, but only the data portion of the record is 
retrieved. This operand is valid only for unblocked records. 

Specifies that the next input operation begins with the record at the actual device 
address specified in the lower-limit address operand. 

Specifies that the next input operation begins with the record at the actual device 
address specified in the lower-limit address operand, but only the data portion of the 
record is retrieved. This operand is valid only for unblocked records. 

Specifies that the next input operation begins with the first record in the data set. 

BD 
Specifies that the next input operation begins with the first record in the data set, but 
only the data portion is retrieved. This operand is valid only for unblocked records. 

lower limit address-RX-Type Address, (2-12), or (0) 
The lower-limit address operand specifies the address of the area containing the key, 
key class, or actual device address that designates the starting point for the next input 
operation. If I or ID has been specified, this area must contain the actual device 
address (in the form MBBCCHHR) of a prime data record; the other types require 
that the key or key class be contained in this area. 

The error analysis (SYNAD) routine is given control if the operation could not be 
completed successfully. The exceptional condition code and general registers are set as 
shown in Appendix A. If the SETL macro instruction is not reissued, retrieval starts at 
the beginning of the data set. 

196 OS/VS Data Management Macro Instructions 



SETPRT-Load UCS and FCB Images (BSAM, 
QSAM, and EXCP) 

The SETPRT macro instruction is used with printers that have a universal character set 
(UCS) buffer or a forms control buffer (PCB). When a SETPRT macro instruction is 
issued, UCS and PCB images are fetched from the image library and loaded from storage 
into their respective buffers. The SETPRT macro instruction is also used to block or 
unblock printer data checks. 

IBM character sets and forms control images are included in the image library at system 
generation; user-defined character sets and forms control images can be added to the 
image library as described in OS/VSJ Data Management for System Programmers 
and OS/VS2 System Programming Library: Data Management. The PCB (EXLST) 
parameter of the DCB macro instruction can be used to specify the address of an PCB 
image. 

When BSAM is being used, all write operations must be checked for completion before 
the SETPRT macro instruction is issued; any incomplete write operations are purged. 
Issuing the SETPRT macro instruction for a device other than an on-line UCS printer 
results in a NOP instruction. 

Note: SETPRT with EXCP programming is valid only for VS2 systems. 

The standard form of the SETPRT macro instruction is written as follows (the list and 
execute forms are shown following the standard form): 

[symbol] SETPRT dcbaddr 

,UCS=( csc [,FI ,F,V I ,,V]) 
I 

' 
[,FCB=(imageid[,V I ,A])] ) 
[,OPTCD= {B I U}] ( 
,FCB=(imageid[,V I ,A]) 

) 

( 

t 
[,OPTCD=({B I U}[,F I ,U])] 

) 
I ,OPTCD=({B I U}[,F I ,U]) I 

dcbaddr-A-Type Address or (2-12) 
The dcbaddr operand specifies the address of the data control block for the data set to 
be ]printed; the data set must be opened for output before the SETPRT macro 
instruction is issued. 

UCS=: A character code with options 
The UCS operand specifies that the UCS buffer is to be loaded from the image 
library. When the UCS operand is specified, the FCB and OPTCD operands can also 
be specified. The possible specifications are: 

csc (character set code) 
The csc operand specifies the character set to be loaded. A character set is 
identified by a 1-4 character code. Codes for standard IBM character sets are as 
follows: 

1403 Printer: AN, HN, PCAN, PCHN, PN, QN, QNC, RN, SN, TN, XN, and YN 

3211 Printer: All, Hll, Gll,Pll, and Tll 

Macro Instruction Descriptions: SETPRT 197 



For descriptions of the standard IBM character sets, refer to OS/VSJ System 
Generation Reference or OS/VS2 System Programming Library: System 
Generation Reference; codes for user-designed character sets are defined by the 
installation. 

For FOLD 
Specifies that the character set image is to be loaded in the fold mode. The fold 
mode is most often used when the EBCDIC code for lowercase alphabetic 
characters is printed as uppercase characters by a print train with lowercase type. 

VorVERIFY 
Requests that the character set image be displayed on the printer :for visual 
verification. 

FCB = A character code with options 
The FCB operand specifies that the forms control buffer (FCB) is to be loaded from 
the image library. When the FCB operand is specified, the OPTCD operand can also 
be specified. The possible specifications are: 

imageid 
The imageid operand specifies the forms control image to be loaded. A forms 
control image is identified by a 1-4 character code. IBM-supplied images are 
identified by imageid value of STDl and STD2; user-designed forms control 
images are defined by the installation. For descriptions of the standard forms 
control images, refer to OS I VS 1 Data Management for System Programmers or 
OS/VS2 System Programming Library: Data Management. 

VorVERIFY 
Requests that the forms control image be displayed on the printer for visual 
verification. This operand allows forms alignment using the WTOR macro 
instruction. 

Aor ALIGN 
Allows forms alignment using the WTOR macro instruction. 

OPTCD= A printer option code 
The OPTCD operand specifies whether UCS printer data checks are blocked or 
unblocked and if the printer is to operate in fold or normal mode. The possible 
specifications are: 

B 

u 

Specifies that UCS printer data checks are blocked; this option updates the 
DCBOPTCD field of the data control block. 

Specifies that UCS printer data checks are unblocked; this option updates the 
DCBOPTCD field of the data control block. 

For FOLD 
Specifies that printing is in fold mode. 

UorUNFOLD 
Specifies that printing is in normal mode; this operand causes fold mode to revert 
to normal mode. 

198 OS/VS Data Management Macro Instructions 



Completion Codes 

Af te1r the SETPR T macro instruction is executed, a return code is placed in register 15, 
and control is returned to the instruction following the SETPR T macro instruction. Bits 
16-23 indicate the result of the attempt to load the forms control buffer (PCB). Bits 
24-31 indicate the result of the attempt to load a universal-character-set (UCS) buffer. 
For completion codes 18, 1 C, 20, and 24, bits 24-31 apply to both PCB and UCS 
loading. The codes in the following table are in hexadecimal. 

Bits 16-23 
FCBCode 

()() 

04 

08 

oc 
10 

14 

Bits 24-31 
UCS Code Meaning 

00 Successful completion. 

04 The operator canceled the load for one of the following reasons: 

08 

oc 
10 

14 

Bits 24-31 
FCBand 
UCSCode 

• The image could not be found in the image library. 
• For a UCS image, the requested chain or train was 

not available. 
• For FCB, forms could not be aligned to match the 

buffer. 

A permanent 1/0 error was detected when the BLDL macro instruction was 
issued to locate the image in the image library. 

A permanent 1/0 error was detected while loading the FCB/UCS buffer. 

A permanent I/ 0 error was detected when an attempt was made to display 
the character set image or forms control image on the printer for visual 
verification. 

The operator canceled the load because the wrong image was displayed for 
visual verification. 

18 No operation was performed for one of the following reasons: 

• The data control block was not open. 
• The data control block was not valid for a sequential 

data set. 
• The SETPRT parameter list was not valid. 
• The output device was not a UCS printer. 
• SETPRT was used with EXCP programming (VSl only). 

1 C No operation was performed because an uncorrectable error occurred in a 
previously initiated output operation. The error analysis (SYNAD) routine is 
entered when the next PUT or CHECK macro instruction is issued. 

No operation was performed because an uncorrectable error occurred when 
the Block Data Check or Reset Block Data Check command was issued by 
SETPRT. 

20 Not enough space has been provided for the IMAGELIB control blocks. 
Increase the amount of space allocated for the job step. 

24 SYSl.IMAGELIB cannot be opened to load the specified UCS/FCB image. 

Macro Instruction Descriptions: SETPRT 199 





SETPRT-List Form 

The list form of the SETPR T macro instruction is used to construct a data management 
parameter list. 

The d1escription of the standard form of the SETPRT macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indicates which operands are totally optional and those required in at least one of the 
pair of list and execute forms. The format description below indicates the optional and 
required operands for the list form only. 

The li:st form of the SETPRT macro instruction is written as follows: 

[symbol] SETPRT [dcbaddr] 

,UCS=(csc [,FI ,F,V I ,,V]) 
[,FCB=(imageid[,V I ,A])] 
[,OPTCD= {B I U}] 

,FCB=(imageid[,V I ,A]) 
[,OPTCD=({B I U}[,F I ,U])] 

,OPTCD=( {B I U}[,F I ,U]) 

,MF=L 
-------------------------------------~ 

dcbaddr-A-Type Address 

UCS== A character code with options 
It i:s coded as described in the standard form of the macro instruction. 

FCB == A character code with options 
It is coded as described in the standard form of the macro instruction. 

OPTCD= A printer option code 
It is coded as described in the standard form of the macro instruction. 

MF=:L 
The MF=L operand specifies that the list form of the macro instruction is used to 
create a parameter list that can be referenced by an execute form of the SETPRT 
macro instruction. 

Macro Instruction Descriptions: SETPRT-List Form 201 





SE:TPRT-Execute Form 

A remote data management parameter list is referred to, and can be modified by, the 
execute form of the SETPR T macro instruction. 

The description of the standard form of the SETPRT macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indic:ates which operands are totally optional and those required in at least one of the 
pair of list and execute forms. The format description below indicates the optional and 
required operands for the execute form only. 

The execute form of the SETPRT macro instruction is written as follows: 

[symbol] SETPRT [dcbaddr] 

,VCS=(csc [,F j ,F,V I ,,VJ) 
[,FCB=(imageid[,V I ,A])] 
[,OPTCD= {B I U}] 

,FCB=(imageid[,V I ,A]) 
[,OPTCD=({B I U}[,F I ,U])] 

,OPTCD=({B I U}[,F I ,U]) 

,MF=(E,{data management list address I (1)}) 

dcbaddr-RX-Type Address or (2-12) 

UCS== A character code with options 
It its coded as shown in the standard form of the macro instruction. 

FCB == A character code with options 
It is coded as shown in the standard form of the macro instruction. 

OPTCD= A printer option code 
It ii.s coded as shown in the standard form of the macro instruction. 

MF=(E,{ data management list address I (1)} 
This operand specifies that the execute form of the SETPR T macro instruction is 
used, and an existing data management parameter list is used. 

E--Coded as shown 

data management list address-RX-Type Address, (2-12), or (1) 

Macro Instruction Descriptions: SETPRT-Execute Form 203 





STOW-Update Partitioned Data Set Directory 
(BPAM) 

The STOW macro instruction causes the system to update a partitioned data set directory 
by adding, changing, replacing, or deleting an entry in the directory. Only one entry can 
be updated at a time using the STOW macro instruction. If the entry to be added or 
replaced is a member name, the system writes an end-of-data indication following the 
member. All input/ output operations using the same data control block must have 
previously been tested for completion. 

The STOW macro instruction is written as follows: 

[symbol] STOW deb address 
, list address 
[,directory action ] 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
opened partitioned data set. The STOW macro instruction can be used only when the 
data set is opened for OUTPUT; UPDAT or OUTIN (BSAM). 

list address-RX-Type Address, (2-12), or (0) 
The list address operand specifies the address of the area containing the information 
required by the system to maintain the partitioned data set directory. The size and 
format of the area depend on the directory action requested as follows: 

Adding or Replacing a Directory Entry: The list address operand must specify an area 
at least 12 bytes long and beginning on a halfword boundary. The following 
illustration shows the format of the area: 

List Address 

UnJ NAME TTR I c I USER DATA 
-~i 

Bytes 8 3 0 to 62 

NAME: Specifies the member name or alias being added or.replaced. The name must 
begin in the first byte of the field and be padded on the right with blanks, if necessary, 
to complete the 8-byte field. 

Tt: Specifies the relative track number on which the beginning of the data set is 
located. 

R: Specifies the relative block (record) number on the track identified by TT. 

Note: The TTR field shown above must be supplied by the problem program if an 
alias (alias bit is 1) is being added or replaced. The system supplies the TIR field 
when a member name is being added or replaced. 

Macro Instruction Descriptions: STOW 205 



C: Specifies the type of entry (member or alias) for the name, the number of note list 
fields (TTRNs), and the length in halfwords, of the user data field. The following 
describes the meaning of the eight bits: 

Bit l\f eaning 

0==0 Indicates a member name. 
0== 1 Indicates an alias. 
1 and 2 Indicate the number of TTRN fields (maximum of three) in the user data field. 
3-7 Indicate the total number of halfwords in the user data field. 

Deleting a Directory Entry: The list address operand must specify an 8-byte area that 
contains the member name or alias to be deleted. The name must begin in the first 
byte of the area and be padded on the right with blanks, if necessary, to complete the 
eight bytes. 

Changing the Name of a Member: The list address operand must spe:cify the address 
of a 16-byte area; the first 8 bytes contain the old member name or alias, and the 
second 8 bytes contain the new member name or alias. Both names must begin in the 
first byte of their 8-byte area and be padded on the right with blanks, if necessary, to 
complete the 8-byte field. 

directory action-[A IC ID IR] 
If the directory action operand is not coded, A (add an entry) is assumed. The 
operand is coded as shown to specify the type of directory action: 

A 

c 

D 

R 

Specifies that an entry is to be added to the directory. 

Specifies that the name of an existing member or alias is to be changed. 

Specifies that an existing directory entry is to be deleted. 

Specifies that an existing directory entry is to be replaced by a new directory entry. 
If R is coded but the old entry is not found, the new entry is added to the directory 
and a completion code of X'08' is returned in register 15. 

206 OS/VS Data Management Macro Instructions 



Completion Codes 

When the system returns control to the problem program, registers 15 and 0 contain one 
of the following return codes in the low-order byte; the three high-order bytes of both 
registers are set to zero. 

Hexadecbnal 
Return Code 

(Reg. 15) 

()() 

04 

08 

oc 

10 

14 

18 

Hexadecbnal 
Reason Code 

(Reg. 0) 

()() 

01 

02 

Directory Action 

A R D c 
The update of the The update of the The update of the The update of the 
directory was directory was directory was directory was 
completed completed completed completed 
successfully. successfully. successfully. successfully. 

The directory The directory 
already contains already contains 
the specified the specified 
name. new name. 

The specified The specified The specified old 
name could not name could not name could not 
be found. be found. be found. 

No space left in No space left in No space left in 
the directory. the directory. the directory. 
The entry could The entry could The entry could 
not be added, not be added, not be added, 
replaced, or replaced, or replaced, or 
changed. changed. changed. 

A permanent input A permanent input A permanent input A permanent input 
or output error or output error or output error or output error 
was detected. was detected. was detected. was detected. 
Control is not Control is not Control is not Control is not 
given to the given to the given to the given to the 
error analysis error analysis error analysis error analysis 
(SYNAD) routine. (SYNAD) routine. (SYNAD) routine. (SYNAD) routine. 

The specified The specified The specified The specified 
data control data control data control data control 
block is not block is not block is not block is not 
open or is opened open or is opened open or is opened open or is opened 
for input. for input. for input. for input. 

Insufficient Insufficient Insufficient Insufficient 
virtual storage virtual storage virtual storage virtual storage 
was available was available was available was available 
to perform the to perform the to perform the to perform the 
STOW function. STOW function. STOW function. STOW function. 

Meaning 

Reason code is not applicable. (Returned with all return codes except 10.) 
All functions; the permanent I/0 error occurred while reading or writing directory 
blocks. 
Add and replace functions; the permanent I/0 error occurred while writing an EOF mark 
after the member. 

Macro Instruction Descriptions: STOW 207 





SYNADAF-Perform SYNAD Analysis Function 
(BDAM, BISAM, BP AM, BSAM, EXCP, QISAM, and 
QSAM) 

The SYN AD AF macro instruction is ·used in an error analysis routine to analyze 
permanent input/ output errors. The routine can be a SYN AD routine specified in a data 
control block for BDAM, BISAM, BP AM, BSAM, QISAM, QSAM, or a routine that is 
entered directly from a program that uses the EXCP macro instruction. (The EXCP 
macro instruction is described in OS/VSJ Data Management for System Programmers 
and OS/VS2 System Programming Library: Data Management.) 

The SYNADAF macro instruction uses register 1 to return the address of a buffer 
containing a message. The message describes the error, and can be printed by a 
subsequent PUT or WRITE macro instruction. The message consists of EBCDIC 
information and is in the form of a variable-length record. The format of the message is 
shown following the descriptions of the SYNADAF operands. 

The system does not use the save area whose address is in register 13. Instead, it provides 
a save area for its own use, and then makes this area available to the error analysis 
routine. The system returns the address of the new save area in register 13 and in the 
appropriate location (word 3) of the previous save area; it also stores the address of the 
previous save area in the appropriate location (word 2) of the new save area. 

The SYNADAF macro instruction passes parameters to the system in registers 0 and 1. 
When used in a SYNAD routine, the SYNADAF macro should be coded at the 
beginning of the routine (refer to Appendix A, Figures 4 through 6). For BISAM and 
QISAM, the SYNAD routine has to set up these parameters as explained under PARMl 
and P ARM2. To save these parameters for use by the SYN AD routine, the system stores 
them in a parameter save area that follows the message buffer as shown in the message 
buffer format. The system does not alter the return,address in register 14 or the entry 
point address in register 15. 

When a SYNADAF macro instruction is used, a SYNADRLS macro instruction must be 
used to release the message buffer and save areas, and to restore the original contents of 
register 13. 

Macro Instruction Descriptions: SYNADAF 209 



The SYNADAF macro instruction is written as follows: 

[symbol] SYN AD AF ACSMETH= {BDAM 
[,P ARMt = parm register ] 
[,P ARM2 = parm register ] } 

{BPAM 
[,P ARMt = parm register ] 
[,P ARM2 = parm register ] } 

{BSAM 
[,P ARMt = parm register ] 
[,P ARM2 = parm register ] } 

{QSAM 
[,P ARMt = parm register ] 
[,P ARM2 = parm register ] } 

{BISAM 
[,P ARMt = dcbaddr ] 
[,P ARM2 = decb address ] } 

{EXCP 
[,P ARMt = iob address ] } 

{QISAM 
[,P ARMt = dcbaddr ] 
[,P ARM2 = parm register ] } 

ACSMETH=BDAM, BPAM, BSAM, QSAM, BISAM, EXCP, or QISAM 
The ACSMETH operand specifies the access method used to perform the 
input/ output operation for which error analysis is performed. 

PARMl=parm register, iobaddr, or dcbaddr-(2-12) or (1) 
The P ARMt operand specifies the address of information that is dependent on the 
access method being used. For BDAM, BP AM, BSAM, or QSAM, the operand 
specifies a register that contains the information that was in register 1 on entry to the 
SYNAD routine. For BISAM or QISAM, the operand specifies the address of the data 
control block; for EXCP, it specifies the address of the input/output block. If the 
operand is omitted, PARM1=(1) is assumed. 

PARM2=parm register-(2-12), (0), or RX-Type Address (only if ACSMETH=QISAM) 
The PARM2 operand specifies the address of additional information that is dependent 
on the access method being used. For BDAM, BP AM, BSAM, QISAM, and QSAM, 
the operand specifies a register that contains the information that was in register 0 on 
entry to the SYNAD routine. For BISAM, the operand specifies a register that 
contains the information that was in register 1 on entry to the SYNAD routine (the 
address of the DECB). For EXCP, the operand is meaningless and should be omitted. 
If the operand is omitted, except in the case of EXCP, PARM2=(0) is assumed. 

Note: For correctly loading the registers for SYNADAF for BISAM, you may code these 
two instructions before issuing the SYNADAF macro: 

LR 

L 

0,1 

1,8(1) 

210 OS/VS Data Management Macro Instmctions 

GET DECB ADDRESS 

GET DCB ADDRESS 



Completion Codes 

When the system returns control to the problem program, the low-order byte of register 
0 contains one of the following return codes; the three high-order bytes of register 0 are 
set to zero. 

Hexadecimal 
Code l\t:eaning 

00 Successful completion. Bytes 8-13 of the message buff er contain blanks. 
04 Successful completion. Bytes 8-13 of the message buff er contain binary data. 
08 Unsuccessful completion. The message can be printed, but some information is missing in 

bytes 50-127 and is represented by asterisks. If byte 8 is a blank (X'40'), then bytes 9-13 
are either blanks or are uninitialized. If byte 8 is not a blank, then data was read and bytes 
8-13 of the message buff er contain binary data. 

Macro Instruction Descriptions: SYNADAF 211 



Message Buff er Format 

_Message Buffer 

The following illustration shows the format of the message buff er; the address of the 
buff er is returned in register 1. 

8 12 14 
Input No. of 
Buffer Bytes 

BykO r Address Read 
Input: 

!"- -__.__j1

4 

__ <B-lan-ks)-~-----1 T ILLbb llbb 
8 114 

Output:-J...l~~~-(B_la_n_k_s)~~-'---Doubleword 
Boundary 

LL= 128; II= 124; bb = 000 

50 

Jobname 

84 

Operation 
Attempted 

I 

Unit Record: 

107 

Magnetic Tape: 

107 

Direct Access: 

59 68 

Unit 
I Address 

Stepname 

91 

Error Description 

115 

Relative Block Access 
Number (decimal) 

I 
Method 

Actual Track Address and Block Number 
(BBCCHllR in hexadecimal format) 

72 75 

Device 

I 
Type 

I 

120 

122 

I 

107 

(Blanks) 

Access 
Method 

--n4 
::_u 

(Encl of Buffer -
- Beginning of 

Parameter Save Area 

Parameter Save Area 
128 132 136 

l Parameter Parameter 
Register 0 Register 1 
(P ARM2) (PARM 1) 

Notes: 

• The device type field (bytes 72-73) contains UR for a unit record device, TA for a 
magnetic tape device, or DA for a direct-access device. 

• If a message field (bytes 91-105) is not applicable to the type of error that occurred, it 
contains N/ A or NOT APPLICABLE. 

• If no data was transmitted, or if the access method is QISAM, bytes 8-13 contain 
blanks or binary zeros. 

• If the access method is BISAM, bytes 68-70, 84-89, and 107-120 contain asterisks. 

• If the access method is BD AM, and if the error was an invalid request, bytes 107-120 
contain EBCDIC zeros. 

212 OS/VS Data Management Macro Instructions 



SYNADRLS-Release SYN AD AF Buff er and Save 
Areas (BDAM, BISAM, BP AM, BSAM, EXCP, 
QISAM, and QSAM) 

The SYNADRLS macro instruction releases the message buffer, parameter save area, 
and register save area provided by a SYNADAF macro instruction. It must be used to 
perform this function whenever a SYNADAF macro instruction is used. 

When the SYNADRLS macro instruction is issued, register 13 must contain the address 
of the register save area provided by the SYNADAF macro instruction. The control 
program loads register 13 with the address of the previous save area, and sets word 3 of 
that save area to zero. Thus, when control is returned, the save area pointers are the 
same as before the SYNADAF macro instruction was issued. 

The SYNADRLS macro instruction is written as follows: 

I [symbol] I SYNADRLS I b ---~ 
When the system returns control to the problem program, the low-order byte of register 
0 contains one of the following return codes; the three high-order bytes of register 0 are 
set to zero. 

Hexadecimal 
Code Meaning 

00 Successful completion. 
08 Unsuccessful completion. The buffer and save areas were not released; the contents of 

register 13 remain unchanged. Register 13 does not point to the save area provided by the 
SYNADAF macro instruction, or this save area is not properly chained to the previous 
save area. 

Macro Instruction Descriptions: SYNADRLS 213 





TRUNC-Truncate an Output Buffer (QSAM 
Output-Fixed- or Variable-Length Blocked Records) 

The TRUNC macro instruction causes the current output buffer to be regarded as full. 
The next PUT or PUTX macro instruction specifying the same data control block uses 
the next buff er to hold the logical record. 

When a variable-length spanned record is being truncated and logical record interface is 
specified (that is, if BFTEK=A is specified in the DCB macro instruction, or if a 
BUILDRCD macro instruction is issued), the system segments and writes the record 
before truncating the buffer. Therefore, the block being truncated is the one that 
contains the last segment of the spanned record. 

The TRUNC macro instruction is ignored if it is used for unblocked records; if it is used 
when a buff er is full, or if it is used without an intervening PUT or PUTX macro 
instruction. 

The TRUNC macro instruction is written as follows: 

I [symbol] I TRUNC I deb address 

deb address-RX-Type Address, (2-12), or (1) 
The deb address operand specifies the address of the data control block for the 
sequential data set opened for output. The record format in the data control block 

1 must not indicate standard blocked records (RECFM=FBS). 

Macro Instruction Descriptions: TRUNC 215 





WAIT-Wait for One or More Events (BDAM, 
BISAM, BP AM, and BSAM) 

The WAIT macro instruction is used to inform the control program that performance of 
the active task cannot continue until one or more specific events, each represented by a 
different ECB (event control block), have occurred. In the context of this manual, the 
ECBs represent completion of I/ 0 processing associated with a READ or WRITE 
macro. ECBs are located at the beginning of access method DECBs (data event control 
blocks), so that the DECB name provided in READ and WRITE macros is also used for 
WAIT. A description of the ECB is found in "Appendix A" and in OS/VSJ System 
Data Areas and OS/VS2 System Programming Library: Debugging Handbook. For 
information on when to use the WAIT macro, see OS /VS Data Management Services 
Guide. 

The control program takes the following action: 

• For each event that has already occurred (each ECB is already posted), the count of 
the number of events is decreased by 1. 

• If the number of events is 0 by the time the last event control block is checked, 
control is returned to the instruction following the WAIT macro instruction. 

• If the number of events is not 0 by the time the last ECB is checked, control is not 
returned to the issuing program until sufficient ECBs are posted to bring the number 
to 0. Control is then returned to the instruction following the WAIT macro 
instruction. 

• The events will be posted complete by the system when all I/ 0 has been completed, 
temporary errors have been corrected, and length checking has been performed. The 
DECB is not checked for errors or exceptional conditions, nor are end-of-volume 
procedures initiated. Your program must perform these operations. 

The WAIT macro instruction is written as follows: 

[symbol] WAIT [number of events] 
{,ECB=addr I ECBLIST=addr} 
[,LONG={YES I NO}] 

number of events 
Specifies a decimal integer from 0 to 255. Zero is an effective NOP instruction; one is 
assumed if the operand is omitted. The number of events must not exceed the 
number of event control blocks. 

ECB=addr 
Specifies the address of the event control block (or DECB) representing the single 
event that must occur before processing can continue. The operand is valid only if the 
number of events is specified as one or is omitted. 

ECBLIST =addr 
Specifies the address of a virtual storage area containing one or more consecutive 
fullwords on a fullword boundary. Each fullword contains the address of an event 
control block (or DECB); the high-order bit in the last word (address) must be set to 
1 to indicate the end of the list. The number of event control blocks must be equal to 
or greater than the specified number of events. 

Macro Instruction Descriptions: WAIT 217 



LONG={YES I NO} 
Specifies whether the task is entering a long wait or a regular wait. Normally 1/0 
events should not be considered "long" unless it is anticipated that operator 
intervention will be required. This operand is valid only for VS2. 

Caution: A job step with all of its tasks in a WAIT condition is terminated upon 
expiration of the time limits that apply to it. 

Access method ECBs are maintained entirely by the access methods and supporting 
control program facilities. The user may inspect access method ECBs, but should never 
modify them. 

218 OS/VS Data Management Macro Instructions 



,/ 

WRITE-Write a Block (BDAM) 

The WRITE macro instruction causes the system to add or replace a block in an existing 
direct data set. (This version of the WRITE macro instruction cannot be used to create a 
direct data set because no capacity record facilities are provided.) Control may be 
returned before the block is written. The output operation must be tested for completion 
using a CHECK or WAIT macro instruction. A data event control block, shown in 
Appendix A is constructed as part of the macro expansion. 

The standard form of the WRITE macro instruction is written as follows (the list and 
execute forms are shown following the descriptions of the standard form): 

[symbol] WRITE decb name 
,type 
, deb address 
, { area address I 'S'} 
,{length I 'S'} 
, { key address I 'S' I 0} 
, block address 

decb name-symbol 
The decb name operand specifies the name assigned to the data event control block 
created as part of the macro expansion. 

type-{DA[F]} 

{DI[F IX]} 

{DK[F IX]} 

The type operand is coded in one of the combinations shown to specify the type of 
write operation and optional services performed by the system: 

DA 

DI 

DK 

Specifies that a new data block is to be added to the data set in the first available 
space; the search for available space starts at the device address indicated in the 
area specified in the block address operand. Fixed-length records are added to a 
data set by replacing dummy records. Variable-length records are added to a data 
set by using available space on a track. For more information on adding records 
to a direct data set, see OS/VS Data Management Services Guide. The 
description of the DCB macro instruction, LIMCT operand, contains a 
description of the search. 

Specifies that a data block and key, if any, are to be written at the device address 
indicated in the area specified in the block address operand. Any attempt to write 
a capacity record (RO) is an invalid request when relative track addressing or 
actual device addressing are used, but when relative block addressing is used, 
relative block 0 is the first data block in the data set.· 

Specifies that a data block (only) is to be written using the key in the area 
specified by the key address operand as a search argument; the search for the 
block starts at the device address indicated in the area specified in the block 
address operand. The description of the DCB macro instruction, LIMCT 
operand, contains a description of the search. 

Macro Instruction Descriptions: WRITE-BDAM 219 



F 

x 

Requests that the system provide block position feedback into the area specified 
in the block address operand. This character can be coded as a suffix to DA, DI, 
or DK as shown above. 

Requests that the system release the exclusive control requested by a previous 
READ macro instruction and provide block position feedback into the area 
specified in the block address operand. This character can be coded as a suffix to 
DI or DK as shown above. 

deb address-A-Type Address or (2-12) 
The deb address operand specifies the address of the data control block for the 
opened BDAM data set. 

area address-A-Type Address, (2-12), or 'S' 
The area address operand specifies the address of the area that contains the data 
block to be written. 'S' can be coded instead of an area address only if the data block 
(or key and data) are contained in a buffer provided by dynamic buffering; that is, 'S' 
was coded in the area address operand of the associated READ macro instruction. If 
'S' is coded in the WRITE macro instruction, the area address from the READ macro 
instruction data event control block must be moved into the WRITE macro instruction 
data event control block; the buff er area acquired by dynamic buffering is released 
after the WRITE macro instruction is executed. See Appendix A for a description of 
the data event control block. 

length-symbol, decimal digit, absexp, (2-12) or 'S' 
The length operand specifies the number of data bytes to be written up to a maximum 
of 32,760. If 'S' is coded, it specifies that the system uses the value in the block size 
(DCBBLKSI) field as the length. When undefined-length records are used, if the 
WRITE macro instruction is for update and the length specified differs from the 
original block, the new block will be truncated or padded with binary zeros 
accordingly. The problem program can check for this situation in the SYNAD routine. 

If the length operand is omitted for format-U records, no error indication is given 
when the program is assembled, but the problem program must insett a length into the 
data event control block before the WRITE macro instruction is executed. 

key address-A-Type Address, (2-12), 'S', or 0 
The key address operand specifies the address of the area that contains the key to be 
used. 'S' is specified instead of an address only if the key is contained in an area 
acquired by dynamic buffering. If the key is not written or used as a search argument, 
zero is specified instead of a key address. 

block address-A-Type Address or (2-12) 
The block address operand specifies the address of the area that contains the relative 
block address, relative track address, or actual device address used in the output 
operation. The length of the area depends on the type of addressing used and if the 
feedback option (OPTCD=F) is specified in the data control block. 

If OPTCD=F has been specified in the DCB macro and For Xis specified in the 
WRITE macro, then you must provide a relative block address in the form specified 
by OPTCD in the DCB macro. For example, if OPTCD=R is specified, you must 
provide a 3-byte relative block address; if OPTCD=A is specified, you must provide 
an 8-byte actual device address (MBBCCIIllR); if neither is specified, you must 
provide a 3-byte relative block address (TTR). 

If OPTCD=F has not been specified in the DCB macro and F or X is specified in the 
WRITE macro, then you must provide an 8-byte actual device address 
(MBBCCIIllR) even if relative block or relative track addressing is being used. 

220 OS/VS Data Management Macro Instructions 



WRITE-Write a Logical Record or Block of Records 
(BISAM) 

The WRITE macro instruction causes the system to add or replace a record or replace an 
updated block in an existing indexed sequential data set. Control may be returned to the 
problem program before the block or record is written. The output operation must be 
tested for completion using a WAIT or CHECK macro instruction. A data event control 
block, shown in Appendix A, is constructed as part of the macro expansion. 

The standard form of the WRITE macro instruction is written as follows (the list and 
execute forms are shown following the descriptions of the standard form): 

[symbol] WRITE deeb name 
,type 
, deb address 
, {area address I 'S'} 
, { length I 'S'} 
, key address 

deeb name-symbol 
The deeb name operand specifies the name assigned to the data event control block 
created as part of the macro expansion. 

type-{K I KN} 
The type operand is coded as shown to specify the type of write operation: 

K 
Specifies that either an updated unblocked record or a block containing an updated 
record is to be written. If the record has been read using a READ KU macro 
instruction, the data event control block for the READ macro instruction must .be 
used as the data event control block for the WRITE macro instruction, using the 
execute form of the WRITE macro instruction. 

KN 
Specifies that a new record is to be written, or a variable-length record is to be 
rewritten with a different length. All records or blocks of records read using READ 
KU macro instructions for the same data control block must be written back before 
a new record can be added except when the READ KU and WRITE KN ref er to 
the same DECB. 

deb address-A-Type Address or (2-12) 
The deb address operand specifies the address of the data control block for the 
opened existing indexed sequential data set. If a block is written, the data control 
block address must be the same as the deb address operand in the corresponding 
READ macro instruction. 

area address-A-Type Address, (2-12), or 'S' 
The area address operand specifies the address of the area containing the logical 
record or block of records to be written. The first sixteen bytes of this area are used 
by the system and should not contain your data. The area address must specify a 
different area than the key address. When new records are written (or when 
variable-length records are rewritten with a different length), the area address of the 
new record must always be supplied by the problem program. This area may be 
altered by the system. 'S' may be coded instead of an address only if the block of 
records is contained in an area provided by dynamic buffering; that is, 'S' was coded 

Macro Instruction Descriptions: WRITE-BISAM 221 



for the area address operand in the associated READ KU macro instruction. This 
area is released after execution of a WRITE macro instruction using the same DECB. 
The area can also be released by a FREEDBUF macro instruction. 

The following illustration shows the format of the area: 

Area_ 
Address 

Control 
Program 
Use Logical Record (WRITE KN) or Block of Records (WRITE:=] 

Indexed sequential buffer and work area requirements are discussed in OS/VS Data 
Management Services Guide. 

length -symbol, decimal digit, absexp, (2-12) or 'S' 
The length operand specifies the number of data bytes to be written, up to a 
maximum of 32,760. Specify 'S' unless a variable-length record will be rewritten with 
a different length. 

key address-A-Type Address or (2-12) 
The key address operand specifies the address of the area containing the key of the 
new or updated record. The key address must specify a different area than the area 
address. For blocked records, this is not necessarily the high key in the block. For 
unblocked records, this field should not overlap with the work area specified in the 
MSW A parameter of the DCB macro instruction. 

Note: When new records are written, the key area may be altered by the system. 

222 OS/VS Data Management Macro Instructions 



WRITE-Write a Block (BPAM and BSAM) 

The WRITE macro instruction causes the system to add or replace a block in a sequential 
or partitioned data set being created or updated. Control may be returned to the problem 
program before the block is written. The output operation must be tested for completion 
using the CHECK macro instruction. A data event control block, shown in Appendix A, 
is constructed as part of the macro expansion. 

If translation from EBCDIC code to ASCII code is requested, issuing multiple WRITE 
macro instructions for the same record causes an error because the first WRITE macro 
instruction issued causes the output data in the output buffer to be translated into ASCII 
code. 

If the OPEN macro instruction specifies UPDAT, both the READ and WRITE macro 
instructions must ref er to the same data event control block. Refer to the list form of the 
READ or WRITE macro instruction for a description of how to construct a data event 
control block; refer to the execute form of the READ or WRITE macro instruction for a 
description of modifying an existing data event control block. 

The standard form of the WRITE macro instruction is written as follows (the list and 
execute forms are shown following the descriptions of the standard form): 

[symbol] WRITE deeb name 
,SF 
, deb address 
, area address 
[,length I , 'S'] 

deeb name-symbol 
The deeb name operand specifies the name assigned to the data event control block 
created as part of the macro expansion. 

SF 
Specifies normal, sequential, forward operation . 

. deb address-A-Type Address, or (2-12) 
The deb address operand specifies the address of the data control block for the 
opened data set being created or processed. If the data set is being updated, the data 
control block address must be the same as the deb address- operand in the 
corresponding READ macro instruction. 

area address-A-Type Address or (2-12) 
The area address operand specifies the address of the area that contains the data 
block to be written; if a key is written, the key must precede the data in the same area. 

length-symbol, decimal digit, absexp, (2-12) or 'S' 
The length operand specifies the number of bytes to be written; this operand is 
specified for only undefined-length records (RECFM= U) or ASCII records 
(RECFM=D) when the DCB BUFOFF operand is zero. If the data is to be translated 
from EBCDIC code to ASCII code, the maximum length is 2,048; otherwise, the 
maximum length is 32,760 bytes. 'S' can be coded to indicate that the value specified 
in the block size (DCBBLKSI) field of the data control block is used as the length to 
be written. The length operand should be omitted for all record formats except 
format-U and format-D (when BUFOFF=O). 

Macro Instruction Descriptions: WRITE-BP AM and BSAM 223 



If the length operand is omitted for format-U or format-D (with BUFOFF=O) 
records, no error indication is given when the program is assembled~, but the problem 
program must insert a length into the data event control block before the WRITE 
macro is issued. 

224 OS/VS Data Management Macro Instructions 



WRITE-Write a Block (Create a BDAM Data Set with BSAM) 

The WRITE macro instruction causes the system to add a block to the direct data set 
being created. For fixed-length blocks, the system writes the capacity record 
automatically when the current track is filled; for variable and undefined-length blocks, a 
WRITE macro instruction must be issued for the capacity record. Control may be 
returned before the block is written. The output operations must be tested for completion 
using a CHECK macro instruction. A data event control block, shown in Appendix A, is 
constructed as part of the macro expansion. 

The standard form of the WRITE macro instruction is written as follows (the list and 
execute forms are shown following the descriptions of the standard form): 

[symbol] WRITE deeb name 
,type 
, deb address 
, area address 
[, length I , 'S'] 
[,next address ] 

deeb name-symbol 
The deeb name operand specifies the name assigned to the data event control block 
created as part of the macro expansion. 

type-{SF I SFR I SD I SZ} 
The type operand is coded as shown, to specify the type of write operation performed 
by the system: 

SF 
Specifies that a new data block is to be written in the data set. 

SFR 
Specifies that a new variable-length spanned record is to be written in the data set, 
and next address feedback is requested. This operand can be specified only for 
variable-length spanned records (BFTEK=R and RECFM= VS are specified in the 
data set control block). 

SD 
Specifies that a dummy data block is to be written in the data set; dummy data 
blocks can be written only when fixed-length records with keys are used. 

sz 
Specifies that a capacity record (RO) is to be written in the data set; capacity 
records can be written only when variable-length or undefined-length records are 
used. 

deb address-A-Type Address or (2-12) 
The deb address operand specifies the address of the data control block opened for 
the data set being created. DSORG=PS (or PSU) and MACRF=WL must be 
specified in the DCB macro instruction to create a BDAM data set. 

area address-A-Type Address or (2-12) 
The area address operand specifies the address of the area that contains the data 
block to be added to the data set. If keys are us~d, the key must precede the data in 
the same area. For writing capacity records (SZ), the area address is ignored and can 
be omitted (the system supplies the information for the capacity record). For writing 
dummy data blocks (SD), the area need be only large enough to hold the key plus one 

Macro Instruction Descriptions: WRITE-BSAM 225 



data byte. The system constructs a dummy key with the first byte set to all one bits 
(hexadecimal FF) and adds the block number in the first byte following the key. 
When a dummy block is written, a complete block is written from the area 
immediately following the area address; therefore, the area address plus the value 
specified in the BLKSIZE operand must be within the area allocated to the program 
writing the dummy blocks. 

length-symbol, decimal digit, absexp, (2-12), or 'S' 
The length operand is used only when undefined-length (RECFM= U) blocks are 
being written. The operand specifies the length of the block, in bytes, up to a 
maximum of 32,760. If 'S' is coded, it specifies that the system is to use the length in 
the block size (DCBBLKSI) field of the data control block as the length of the block 
to be written. 

If the length operand is omitted for format-U records, no error indication is given 
when the program is assembled, but the problem program must insert a length into the 
data event control block before the WRITE is issued. 

next address-A-Type Address or (2-12) 
The next address operand specifies the address of the area where the system places 
the relative track address of the next record to be written. Next address feedback can 
be requested only when variable-length spanned records are used. 

Note: When variable-length spanned records are used (RECFM= VS and BFTEK=R are 
specified in the data control block), the system writes capacity records (RO) 
automatically in the following cases: 

• When a record spans a track. 

• When the record cannot be written completely on the current volume. In this case, all 
capacity records of remaining tracks on the current volume are written; tracks not 
written for this reason are still counted in the search limit specified in the LIMCT 
operand of the data control block. 

• When the record written is the last record on the track, the remaining space on the 
track cannot hold more than eight bytes of data. 

226 OS/VS Data Management Macro Instructions 



Completion Codes 
After the write has been scheduled and control has been returned to the user's program, 
the three high-order bytes of register 15 are set to zero; the low-order byte contains one 
of the following return codes: 

Return 
Code 

00 

04 

08 

oc 

Meaning 

Fixed-Length 

(SF or SD) 

Block will be written. 
(If the previous return 
code was 08, a block 
is written only if the 
DD statement specifies 
secondary space 
allocation and 
sufficient space is 
available. 

Block will be written, 
followed by a capacity 
record. 

Block will be written, 
followed by capacity 
record. The next block 
requires secondary 
space allocation. 

Block will not be 
written; issue a 
CHECK macro 
instruction for the 
previous WRITE macro 
instruction, then 
reissue the WRITE 
macro instruction. 

Variable or Undefined-Length 

(SF or SFR) 

Block will be written. 
(If the previous return 
code was 08, a block 
is written only if the 
DD statement specifies 
secondary space 
allocation and 
sufficient space is 
available. 

Block \Vas not written; 
write a capacity record 
(SZ) to describe the 
current track, then 
reissue. 

Block will not be 
written; issue a 
CHECK macro 
instruction for the 
previous WRITE macro 
instruction, then 
reissue the WRITE 
macro instruction. 

(SZ) 

Capacity record was 
written; another track 
is available. 

Capacity record was 
written. The next 
block requires secondary 
space allocation. This 
code is not issued if 
the WRITE SZ is the 
only WRITE macro 
instruction issued on 
a one-track secondary 
extent. 

Block will not be 
written; issue a 
CHECK macro 
instruction for the 
previous WRITE macro 
instruction, then 
reissue the WRITE 
macro instruction. 

Macro Instruction Descriptions: WRITE-BSAM 227 





WRITE-List Form 

The list form of the WRITE macro instruction is used to construct a data management 
parameter list in the form of a data event control block (DECB). Refer to Appendix A 
for a description of the various fields in the DECB for each access method. 

The description of the standard form of the WRITE macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indicates the operands used for each access method as well as the meaning of 'S' when 
coded for the area address, length, and key address operands. For each access method, 
'S' can be coded only for those operands for which it can be coded in the standard form 
of the macro instruction. The format description below indicates the optional and 
required operands in the list form only. 

The list form of the WRITE macro instruction is written as follows: 

[symbol] WRITE deeb name 
,type 
,[deb address] 
,[area address I'S'] 
,[length I 'S'] 
,[key address I 'S'] 
,[block address ] 
,[next address ] 
,MF=L 

deeb name-symbol 

type-Code one of the types shown in the standard form 

deb address-A-Type Address 

area address-A-Type Address or 'S' 

length --symbol, decimal digit, absexp, or 'S' 

key address-A-Type Address or 'S' 

block address-A-Type Address 

next address-A-Type Address 

MF=L-Coded as shown 
The MF=L operand specifies that the WRITE macro instruction is used to create a 
data event control block that will be referenced by an execute-form instruction. 

Macro Instruction Descriptions: WRITE-List Form 229 





WRITE-Execute Form 

A remote data management parameter list (data event control block) is used in, and can 
be modified by, the execute form of the WRITE macro instruction. The data event 
control block can be generated by the list form of either a READ or WRITE macro 
instruction. 

The description of the standard form of the WRITE macro instruction provides the 
explanation of the function of each operand. The description of the standard form also 
indicates the operands used for each access method, as well as the meaning of 'S' when 
coded for the area address, length, and key address operands. For each access method, 
'S' can be coded only for those operands for which it can be coded in the standard form 
of the macro instruction. The format description below indicates the optional and 
required operands in the execute form only. 

The execute form of the WRITE macro instruction is written as follows: 

[symbol] WRITE decb address 
,type 
,[deb address] 
,[area address I 'S'] 
,[length I 'S'] 
,[key address I 'S'] 
,[block address ] 
,[next address] 
,MF=E 

decb address-RX-Type Address or (2-12) 

type-Code one of the types shown in the standard form 

deb address-RX-Type Address or (2-12) 

area address-RX-Type Address, (2-12), or 'S' 

length-symbol, decimal digit, absexp, (2-12), or 'S' 

key address-RX-Type Address, (2-12), or 'S' 

block address-RX-Type Address or (2-12) 

next address-RX-Type Address or (2-12) 

MF=E--Coded as shown 
The MF=E operand specifies that the execute form of the WRITE macro instruction 
is used, and an existing data event control block (specified in the decb address 
operand) is to be used by the access method. 

Macro Instruction Descriptions: WRITE-Execute Form 231 





XLATE-Translate to and from ASCH (BSAM and 
QSAM) 

The XLA TE macro instruction is used to translate the data in an area in virtual storage 
from ASCil code to EBCDIC code or from EBCDIC code to ASCil code. 

The XLATE macro instruction is written as follows: 

[symbol] XLATE al'ea address 
,length 
[,TO= {A I ~}] 

area addl'ess-RX-Type Address, symbol, decimal digit, absexp, (2-12), or (1) 
The area address operand specifies the address of the area that is to be translated. 

length-symbol, decimal digit, absexp, (2-12), or (0) 
The length operand specifies the number of bytes to be translated. 

TO={AI~} 
The TO operand specifies the type of translation that is requested. If this operand is 
omitted, E is assumed. The following describes the characters that can be specified: 

A 
Specifies that translation from EBCDIC code to ASCil code is requested. 

E 
Specifies that translation from ASCil code to EBCDIC code is requested. 

Macro Instruction Descriptions: XLA TE 233 





APPENDIX A: STATUS INFORMATION 
FOLLOWING AN INPUT/OUTPUT OPERATION 

Following an input/ output operation, the control program makes certain status 
information available to the problem program. This information is a 2-byte exception 
code, or a 16-byte field of standard status indicators, or both. 

Exception codes are provided in the data control block ( QISAM), or in the data event 
control block (BISAM and BDAM). The data event control block is described below, 
and the exception code lies within the block as shown in the illustration for the data 
event control block. H a DCBD macro instruction is coded, the exception code in a data 
control block can be addressed as two 1-byte fields, DCBEXCDl and DCBEXCD2. The 
exception codes can be interpreted by referring to Figures 1-3. 

Status indicators are available only to the error analysis routine designated by the 
SYNAD entry in the data control block. A pointer to the status indicators is provided 
either in the data event control block (BSAM, BPAM, and BDAM), or in register 0 
(QISAM and QSAM). The contents of registers on entry to the SYNAD routine are 
shown in Figures 4-6; the status indicators are shown in Figure 7. 

Data Event Control Block 
A data event control block is constructed as part of the expansion of READ and WRITE 
macro instructions and is used to pass parameters to the control program, help control 
the read or write operation, and receive indications of the success or failure of the 
operation. The data event control block is named by the READ or WRITE macro 
instruction, begins on a fullword boundary, and contains the information shown in the 
following illustration: 

Fleld Contents 
Offset From DECB 
Address (Bytes) BSAM and BPAM BISAM BDAM 

0 ECB ECB ECB1 

+4 Type Type Type 

+6 Length Length Length 

+8 DCB address DCB address DCB address 

+12 Area address Area address Area address 

+16 IOB address Logical record IOB address 
address 

+20 Key address Key address 

+24 Exception code Block address 
(2 bytes) 

+28 Next address 

1 Exception codes are returned in bytes 2 and 3 of the ECB by the control program. 

The event control block (ECB) is used by the control program to test for completion of 
I the read or write operation. The ECB is located in the first word of the DECB. 

The type, length, data control block address, area address, key address, block address, 
and next address information is taken from the operands of the macro instruction and 

I placed in the DECB for use by the control program. For BISAM, exception codes are 
returned by the control program after the corresponding WAIT or CHECK macro 

I instruction is issued, as indicated in Figure 1. For BDAM, BSAM, BP AM, and QSAM, 
the control program provides a pointer to the IOB containing the status indicators shown 
in Figure 7. 

Appendix A: Status Information Following an Input/Output Operation 235 



Exception 
Code Bit 
inDECB READ 

0 x 

2 

3 

4 

5 

6 

7 

8-15 

x 

x 

x 
x 

WRITE 

TypeK 

x 
Type KN 

TypeK 

x 

x 

Type KN 

8-15 

Condition if On 

Record not found 

Record length check 

Space not found 

Invalid request 

Uncorrectable 1/0 
error 

Unreachable block 

Overflow record 1 

Duplicate record 

Reserved for 
control program use 

1The SYNAD routine is entered only if the CHECK macro is issued after the READ macro, 
and bit 0, 4, 5, or 7 is also on. 

Figure 1. Exception Code Bits-BISAM 

Notes for Figure 1: 

Record Not Found: This condition is reported if the logical record with the specified key 
is not found in the data set, if the specified key is higher than the highe:st key in the 
highest level index, or if the record is not in either the prime area or the overflow area of 
the data set. 

Record Length Check: This condition is reported, for READ and update WRITE macro 
instructions, if an overriding length is specified and (1) the record fomiat is blocked, (2) 
the record format is unblocked but the overriding length is greater than the length known 
to the control program, or (3) the record is fixed length and the overriding length does 
not agree with the length known to the control program. This condition is reported for 
the add WRITE macro instruction if an overriding length is specified. 

When blocked records are being updated, the control program must find the high key in 
the block in order to write the block. (The high key is not necessarily the same as the key 
supplied by the problem program.) The high key is needed for writing because the 
control unit for direct-access devices permits writing only if a search on equal is satisfied; 
this search can be satisfied only with the high key in the block. If the user were permitted 
to specify an overriding length shorter than the block length, the high key might not be 
read; then, a subsequent write request could not be satisfied. In addition, failure to write 
a high key during update would make a subsequent update impossible. 

Space Not Found in Which to Add a Record: This condition is reported if no room exists 
in either the appropriate cylinder overflow area or the independent ovc~rflow area when a 
new record is to be added to the data set. The data set is not changed in any way in this 
situation. 

Invalid Request: This condition is reported for either of two reasons. First, if byte 25 of 
the data event control block indicates that this request is an update WRITE macro 
instruction corresponding to a READ (for update) macro instruction, lbut the 
input/ output block (IOB) for the READ is not found in the update queue. This 
condition could be caused by the problem program altering the contents of byte 25 of the 
data event control block. Second, if a READ or WRITE macro instruction specifies 
dynamic buffering (that is, 'S' in the area address operand) but the DCBMACRF field 
of the data control block does not specify dynamic buffering. 

Uncorrectable Input/ Output Error: This condition is reported if the control program's 
error recovery procedures encounter an uncorrectable error in transferring data. 

236 OS/VS Data Management Macro Instructions 



Exception Code 

Fleld Bit 

DCBEXCDl 0 

2 

3 

4 

5 

6 

7 

DCBEXCD2 0 

2 

3 

4 

5-7 

Unreachable Block: This condition is reported if an uncorrectable input/ output error 
occurs while searching the indexes or following an overflow chain. It is also posted if the 
data field of an index record contains an improper address (that is, points to the wrong 
cylinder or track or is an invalid address). 

Overflow Record: This condition is reported if the record just read is an overflow record. 
(See the section on direct retrieval and update of an indexed sequential data set in 
OS/VS Data Management Services Guide for considerat7on during BISAM updating.) 

Duplicate Record Presented for Inclusion in the Data Set: This condition is reported if the 
new record to be added has the same key as a record in the data set. However, if the 
delete option was specified and the record in the data set is marked for deletion, this 
condition is not reported. Instead the new record replaces the existing record. 

If the record format is blocked and the relative key position is zero, the new record 
cannot replace an existing record that is of equal key and is marked for deletion. 

Notes for Figure 2: 

Record Not Found: This condition is reported if the logical record with the specified key 
is not found in the data set, if the specified key is higher than the highest key in the 
highest level index, or if the record is not in either the prime area or the overflow area of 
the data set. 

Invalid Actual Addre~ for Lower Limit: This condition is reported if the specified lower 
limit address is outside the space allocated to the data set. 

Space Not Found in Which to Add a Record: This condition is reported if the space 
allocated to the data set is already filled. In the locate mode, a buff er segment address is 
not provided. In the move mode, data is not moved. 

Invalid Request: This condition is reported if (1) the data set is already being referred to 
sequentially by the problem program, (2) the buffer cannot contain the key and the data, 
or (3) the specified type is not also specified in the DCBMACRF field of the data 
control block. 

Code Set by 

CLOSE GET PUT PUTX SETL Condition if On 

TypeK Record Not Found 

Type I Invalid actual address for lower limit 

x Space not found in which to add a record 

x Invalid request 

x Uncorrectable input error 

x x x Uncorrectable output error 

x x Block could not be reached (input) 

x x Block could not be reached (update) 

x Sequence check 

x Duplicate record 

x Data control block closed when error routine 
entered 

x Overflow recordl 

x Incorrect record length 

Reserved for future use 

lThe SYNAD routine is entered only if bit 4, 5, 6, or 7 of DCBEXCDl is also on. 

Figure 2. Exception Code Bits-QISAM 

Appendix A: Status Information Following an Input/Output Operation 237 



Uncorrectable Input Error: This condition is reported if the control program's error 
recovery procedures encounter an uncorrectable error when transferring a The block 
from secondary storage to an input buffer. The buffer address is placed in register 1, and 
the SYNAD routine is given control when a GET macro instruction is issued for the first 
logical record. 

Uncorrectable Output Error: This condition is reported if the control program's error 
recovery procedures encounter an uncorrectable error when transferring a block from an 
output buffer to secondary storage. If the error is encountered during closing of the data 
control block, bit 2 of DCBEXCD2 is set to 1 and the SYNAD routine is given control 
immediately. Otherwise, control program action depends on whether load mode or scan 
mode is being used. 

If a data set is being created (load mode), the SYNAD routine is given control when the 
next PUT or CLOSE macro instruction is issued. In the case of a failure to write a data 
block, register 1 contains the address of the output buffer, and register 0 contains the 
address of a work area containing the first 16 bytes of the IOB; for other errors, the 
contents of register 1 are meaningless. After appropriate analysis, the SYNAD routine 
should close the data set or end the job step. If records are to be subsequently added to 
the data set using the queued indexed sequential access method ( QISAM), the job step 
should be terminated by issuing an ABEND macro instruction. (ABEND closes all open 
data sets. However, an ISAM data set is only partially closed, and it can be reopened in a 
later job to add additional records by using QISAM). Subsequent execution of a PUT 
macro instruction would cause reentry to the SYNAD routine, since an attempt to 
continue loading the data set would produce unpredictable results. 

If a data set is being processed (scan mode), the address of the output buff er in error is 
placed in register 1, the address of a work area containing the first 16 bytes of the IOB is 
placed in register 0, and the SYNAD routine is given control when the next GET macro 
instruction is issued. Buffer scheduling is suspended until the next GET macro instruction 
is reissued. 

Block Could Not be Reached (Input): This condition is reported if the control program's 
error recovery procedures encounter an uncorrectable error in searching an index or 
overflow chain. The SYNAD routine is given control when a GET macro instruction is 
issued for the first logical record of the unreachable block. 

Block Could Not be Reached (Output): This condition is reported if the control program's 
error recovery procedures encounter an uncorrectable error in searching an index or 
overflow chain. 

If the error is encountered during closing of the data control block, bit 2 of DCBEXCD2 
is set to 1 and the SYNAD routine is given control immediately. Otherwise, the SYNAD 
routine is given control when the next GET macro instruction is issued. 

Sequence Check: This condition is reported if a PUT macro instruction refers to a record 
whose key has a smaller numerical value than the key of the record previously referred to 
by a PUT macro instruction. The SYNAD routine is given control immediately; the 
record is not transferred to secondary storage. 

Duplicate Record: This condition is reported if a PUT macro instruction refers to a record 
whose key duplicates that of the record previously referred to by a PUT macro 
instruction. The SYNAD routine is given control immediately; the record is not 
transferred to secondary storage. 

Data Control Block Closed When Error Routine Entered: This condition is reported if the 
control program's error recovery procedures encounter an uncorrectable output error 
during closing of the data control block. Bit 5 or 7 of DCBEXCD 1 is set to 1, and the 
SYNAD routine is immediately given control. After appropriate analysis, the SYNAD 

238 OS/VS Data Management Macro Instructions 



i 

routine must branch to the address in return register 14 so that the control program can 
finish closing the data control block. 

Overflow Record: This condition is reported if the input record is an overflow record. 

Incorrect Record Length: This condition is reported if the length of the record as 
specified in the record-descriptor word (RDW) is larger than the value in the 
DCBLRECL field of the data control block. 

Exception 
Code Bit READ WRITE Condition if On 

0 X X Record not found 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

x 

x 
x 
x 
x 

x 
x 

x 

x 

x 
x 

Record length check 

Space not found 

X Invalid request-see bits 9-15 

X Uncorrectable 1/0 error 

X End of data 

X Uncorrectable error 

Type X Not read with exclusive control 

Not used 

x 
x 
x 
x 
x 

x 
x 

WRITE to input data set 

Extended search with DCBLIMCT-0 

Block or track requested was outside data set 

Tried to write capacity record 

Specified key as search argument when K.EYLEN-0 or no 
key address supplied 

Request for options not in data control block 

Attempt to add fixed-length record with key beginning 
with hexadecimal FF 

Figure 3. Exception Code Bits-BDAM 

Notes for Figure 3: 

Record Not Found: This condition is reported if the search argument is not found in the 
data set. 

Record Length Check: This condition occurs for READ and WRITE (update) and 
WRITE (add). For WRITE (update) variable-length records only, the length in the BDW 
does not match the length of the record to be updated. For all remaining READ and 
WRITE (update) 'Conditions the BLKSIZE, when 'S' is specified in the READ or 
WRITE macro, or the length given with these macros does not agree with the actual 
length of the record. For WRITE (add), fixed-length records, the BLKSIZE, when 'S' is 
specified in the WRITE macro, or the length given with this macro does not agree with 
the actual length of the record. For WRITE (add), all other conditions, no error can 
occur. 

Space Not Found in Which to Add a Record: This condition occurs if either, there is no 
dummy record when adding an F-format record, or there is no space available when 
adding a V or U-format record. 

Appendix A: Status Information Following an Input/Output Operation 239 



Invalid Request: Occurs whenever one of the following bits are set to one: 

Bit Meaning 

9 A WRITE was attempted for an input data set. 
10 An extended search was requested, but LIMCT was zero. 
11 The relative block or relative track requested was not in the data set. 
12 Writing a capacity record (RO) was attempted. 
13 A READ or WRITE with key was attempted, but either KEYLEN equaled zero or the key 

address was not supplied. 
14 The READ or WRITE macro options conflict with the OPTCD or MACRF parameters. 
15 A WRITE (add) with fixed-length was attempted with the key beginning with X'FF'. 

Uncorrectable Input/Output Error: This condition is reported if the control program's 
error recovery procedures encounter an uncorrectable error in transf errfu.g data between 
real and secondary storage. 

End of Data: This only occurs as a result of a READ (type DI, DIF, or DIX) when the 
record requested is an end-of-data record. 

Uncorrectable error: Same conditions as for bit 4. 

Not Read With Exclusive Control: A WRITE, type DIX or DKX, has occurred for which 
there is no previous corresponding READ with exclusive control. 

Register Bits 

0 0-7 
8-31 

Meaning 

Not used. 
Address of a work area containing the first 16 bytes of the IOJB (after an 
uncorrectable input/ output error caused by a GET, PUT, or PUTX macro 
instruction; original contents destroyed in other cases). If the error condition was 
detected before 1/0 was started, register 0 contains all zeros. 

0-7 Not used. 
8-31 Address of the buff er containing the error record (after an uncorrectable 

input/output error caused by a GET, PUT, or PUTX macro instruction while 
attempting to read or write a data record; in other cases this register contains 0). 

2-13 0-31 Contents that existed before the macro instruction was issued. 

14 0-7 Not used. 
8-31 Return address. This address is either an address in the control program's Close 

routine (bit 2 of DCBEXCD2 is on), or the address of the instruction following the 
expansion of the macro instruction that caused the SYNAD routine to be given 
control (bit 2 of DCBEXCD2 is off). 

15 0-7 Not used. 
8-31 Address of the SYNAD routine. 

Figure 4. Register Contents on Entry to SYNAD Routine-QISAM 

Register Bits 

0 0-7 
8-31 

Meaning 

Not used. 
Address of the first IOB sense byte. (Sense information is valid only when associated 
with a unit check condition.) 

0-7 Not used. 
8-31 Address of the DECB. 

2-13 0-31 Contents that existed before the macro instruction was issued. 

14 0-7 Not used. 
8-31 Return address. 

15 0-7 Not used. 
8-31 Address of the SYNAD routine. 

Figure 5. Register Contents on Entry to SYNAD Routine-BISAM 

240 OS/VS Data Management Macro Instructions 



Register 

0 

2-13 

14 

15 

Bits 

0-7 

8-31 

0 
1 
2 

3 

Meaning 

Value to be added to the status indicators address to provide the address of the first 
CCW (QSAM only). 
Address of the associated data event control block for BDAM, BP AM, and BSAM; 
address of the status indicators shown in Figure 7 for QSAM. 

Bit is on for error caused by input operation. 
Bit is on for error caused by output operation. 
Bit is on for error caused by BSP, CNTRL, or POINT macro instruction (BPAM 
AND BSAM only). 
Bit is on if error occurred during update of existing record or if error did not prevent 
reading of the record. Bit is off if error occurred during creation of a new record or 
if error prevented reading of the record. 

4 Bit is on if the request was invalid. The status indicators pointed to in the data event 
control block are not present (BDAM, BP AM, and BSAM only). 

5 Bit is on if an invalid character was found in paper tape conversion (BSAM and 
QSAM only). 

6 Bit is on for a hardware error (BDAM only). 
7 Bit is on if no space was found for the record (BDAM only). 
8-31 Address of the associated data conirol block. 

0-31 

0-7 
8-31 

0-7 
8-31 

Contents that existed before the macro instruction was issued. 

Not used. 
Return address. 

Not used. 
Address of the error analysis routine. 

Figure 6. Register Contents on Entry to SYNAD Routine-BDAM, BP AM, BSAM, and QSAM 

Appendix A: Status Information Following an Input/Output Operation 241 



Offset From 
JOB Address 

Byte 

+2 

+3 

Bit 

0 
1 
2 
3 
4 
5 
6,7 

0-7 

Meaning 

Command reject 
Intervention required 
Bus-out check 
Equipment check 
Data check 
Overrun 
Device-dependent information; 
ref er to the appropriate device 
manual 
Device-dependent information; 
ref er to the appropriate device 
manual 

Name 

Sense byte 1 

Sense byte 2 

The following bytes make up the low-order seven bytes of 
the channel status word: 

+9 Command address 

+12 0 Attention Status byte 1 
1 Status modifier (Unit) 
2 Control unit end 
3 Busy 
4 Channel end 
5 Device end 
6 Unit check-must be on for 

sense bytes to be meaningful 
7 Unit exception 

+13 0 Program-controlled interrupt Status byte 2 
1 Incorrect length (Channel) 
2 Program check 
3 Protection check 
4 Channel data check 
5 Channel control check 
6 Interface control check 
7 Chaining check 

+14 Count field (2 bytes) 

Figure 7. Status Indicators for the SYNAD Routine-BDAM, BP AM, BSAM, and QSAM 

Note: H the sense bytes are X'lOFE', the control program has set them to this invalid 
combination because sense bytes could not be obtained from the device due to 
reoccurrence of unit checks. 

242 OS/VS Data Management Macro Instructions 



APPENDIX B: DATA MANAGEMENT MACRO 
INSTRUCTIONS AVAILABLE BY ACCESS 
METHOD 

Macro Instruction BDAM BISAM BPAM BSAM QISAM QSAM 

BLDL x 
BSP x 
BUILD x x x x x x 
BUILDRCD x 
CHECK x x x x 
CHKPT x x x x x x 
CLOSE x x x x x x 
CNTRL x x 
DCB x x x x x x 
DCBD x x x x x x 
ESE TL x 
FEOV x x 
FIND x 
FREEBUF x x x x 
FREEDBUF x x 
FREEPOOL x x x x x x 
GET x x 
GETBUF x x x x 
GETPOOL x x x x x x 
NOTE x x 
OPEN x x x x x x 
PDAB x 
PDABD x 
POINT x x 
PRTOV x x 
PUT x x 
PUTX x x 
READ x x x x 
RELEX x 
RELSE x x 
SETL x 
SETPRT x x 
STOW x 
SYN AD AF x x x x x x 
SYNADRLS x x x x x x 
TRUNC x 
WAIT x x x x 
WRITE x x x x 
XLATE x x 

Appendix B: Data Management Macro Instructions Available by Access Method 243 





APPENDIX C: DEVICE CAPACITIES 

The following information provides a guide to coding the block size (BLKSIZE) and 
logical record length (LRECL) operands in the DCB macro instruction. These values can 
be used to determine the maximum block size and logical record length for a given 
device, and they can be used to determine the optimum blocking factor when records are 
to be blocked. 

Card Readers and Card Punches 

Printers 

Format F, V, or U records are accepted by readers and punches but the logical record 
length for a card reader or card punch is fixed at 80 bytes. The logical record length for 
an IBM 2596 Card Reader is 96 bytes. If the optional control character is specified, the 
logical record length is 81 (the control character is not part of the data record). If card 
image mode is used, the buff er required to contain the data must be 160 bytes. 

The following shows the record length that can be specified for the various printers. In 
some cases, two values are shown; the larger of the two values requires that an optional 
feature be installed on the printer being used. If the optional control character is 
specified to control spacing and skipping, the record length is specified as one greater 
than the actual data length (the control character is not part of the data record). 

1403 printer 
1443 printer 
3211 printer 
1052 printer keyboard 
3210 printer keyboard 
3215 printer keyboard 
3525 card punch, 

print feature 

120 or 132 bytes 
120 or 144 bytes 
132 or 150 bytes 
130 bytes (supported only by the EXCP access method) 
130 bytes (supported only by the EXCP access method) 
130 bytes (supported only by the EXCP access method) 

64 bytes 

Paper-Tape Reader 
2671 paper tape-32,760 bytes 

Magnetic-Tape Units 
2400/3400 magnetic-tape units-32,760 

(7 tracks and 9 tracks) 

Appendix C: Device Capacities 245 



Direct-Access Devices 
The following table shows the capacity of direct-access devices by track, cylinder, and 
total capacity in bytes. 

Device Volume Maximmn Block- Tracks/ Number of Total 
Type size/frack.1 Cylinder CyUnders2 Capacity1;2 

2305-1 Drum 14136 8 48 5,428,224 
2305-2 Drum 14660 8 96 11,258,880 
2314/2319 Disk 7294 20 200 29,176,000 

I 3330/3333 
(Model 1)3 Disk 13030 19 404 100,018,280 
3330/3333 
(Model 11) Disk 13030 19 808 200,036,560 
3340 Disk 8368 12 696 

(70-megabytes) 69,889,536 
348 
(3 5-megabytes) 34,944,768 

1 Capacity indicated in bytes (when RO is used by the IBM programming system). 
2 Excluding alternate cylinders. I 3The Mass Storage System (MSS) virtual volumes assume the 
characteristics of the 3330/3333, Model 1. 

Each record written on a direct-access device requires some "device overhead." The 
term device overhead means the space required by the device for addrc~ss markers, count 
areas, gaps between the count, key, and data areas, and gaps between blocks. The 
following formulas can be used to compute the number of bytes required for each data 
block including the space required for device overhead. Note that any fraction of a byte 
must be ignored. For example, if the formula computation results in 15.644 bytes, 15 
bytes must be used to determine track capacity. 

Bytes Required by Each Data BICJck 
Device 

2305-1 
2305-2 
2314/2319 
3330/3333 
(Model 1)4 

3330/3333 
(Model 11) 

3340 

Bi is any block on the track. 
DL is data length. 
KL is key length. 

Track Blocks With Keys 
Capacity Bl 

145681 634+KL+DL 
148581 289+KL+DL 
7294 146+((KL+DL)*534)/5122 

131651 191+KL+DL 

131651 191+KL+DL 
85351 242+KL+DL 

1 This value is different from the maximum block size per track because the 
formula for the last block on the track includes an overhead for this device. 

2The formula for the last block on the track is 4S+KL+DL. 
3The formula for the last block on the track is DL. 
4The Mass Storage System (MSS) virtual volumes assume the characteristics 
of the 3330/3333, Model 1. 

Bloc=ks Without Keys 
Bl 

432+DL 
198+DL 
101 +(DL)534/5123 

135+DL 

135+DL 
167+DL 

When the track-overflow feature is being used or variable-length spanned records are 
written, the size of a data block or logical record can exceed the capacity of a single track 
on the direct-access device used. 

246 OS/VS Data Management Macro Instructions 



I 

' 

APPENDIX D: DCB EXIT LIST FORMAT AND 
CONTENTS 

The following shows the format and contents that must be supplied by the problem 
program when the EXLST operand is specified in a DCB macro instruction. The exit list 
must begin on a fullword boundary and each entry in the list requires one fullword. 

Routine Type 

Inactive entry 
Input header label 
Output header label 
Input trailer label 
Output trailer label 
Data control block exit 
End-of-volume 
User totaling 
Block count exit 
Def er input trailer 
label 

Def er nonstandard 
input trailer label 

PCB Image 
DCB ABEND exit 

QSAM parallel input 

Last entry 

Hexadecimal 
Code 3-Byte Routine Address-Purpose 

00 Ignored; the entry is not active. 
01 Process a user input header label. 
02 Create a user output header label. 
03 Process a user input trailer label. 
04 Create a user output trailer label. 
05 Data control block exit routine. 
06 End-of-volume exit routine. 
OA Pointer to user's totaling area. 
OB Block count unequal exit routine. 
OC Defer processing of a user input trailer label 

from the end-of-data until the CLOSE macro 
instruction is issued. 

OD Defer processing a nonstandard input trailer 
label on magnetic tape unit from the 
end-of-data until the CLOSE macro instruction 
is issued (no exit routine address). 

10 Define an PCB image. 
11 Allow analysis of ABEND condition and select 

one of several options. 
12 Address of the PDAB for which this DCB 

is a member 
80 Last entry in list. A high-order bit can be 

specified with any of the above codes but must 
always be specified with the last entry. 

The list can be dynamically shortened during execution by setting the high-order bit of a 
word to a value of 1. An entry in the list can be made inactive dynamically by setting the 
high-order byte of the word to a value of hexadecimal 00 or 80. 

When control is passed to an exit routine, the general registers contain the following 
information: 

Register 

0 
1 

2-13 
14 
15 

Contents 

Variable; the contents depend on the exit routine used. 
The three low-order bytes contain either the address of the DCB 
currently being processed or, when certain exits are taken, the 
address of the exit parameter list. These exits are: user-label 
exits (X'Ol '-'04'), deferred nonstandard input trailer exit 
(X'OD'), and DCB ABEND exit (X' 11 '). 
Contents prior to execution of the macro instruction. 
Return address (must not be altered by the exit routine). 
Address of the exit routine entry point. 

The conventions for saving and restoring registers are as follows: 

• The exit routine must preserve the contents of register 14. It need not preserve the 
contents of other registers. The control program restores registers 2-13 before 
returning control to the problem program. 

• The exit routine must not use the save area whose address is in register 13, because 
this area is used by the control program. H the exit routine calls another routine or 
issues supervisor or data management macro instructions, it must provide the address 
of a new save area in register 13. 

Appendix D: DCB Exit List Format and Contents 247 



For a detailed description of each exit list processing option, refer to OS/VS Data 
Management Services Guide. 

248 OS/VS Data Management Macro Instructions 



APPENDIX E: CONTROL CHARACTERS 

Machine Code 

Each logical record, in all record formats, can contain an optional control character. This 
control character is used to control stacker selection on a card punch or card read punch, 
or it is used to control printer spacing and skipping. If a record containing an optional 
control character is directed to any other device, it is considered to be the first data byte, 
and it does not cause a control function to occur. 

In format-F and format-U records, the optional control character must be in the first 
byte of the logical record. 

In format-V records, the optional control character must be in the fifth byte of the 
logical record, immediately following th~ record descriptor word of the record. 

Two control character options are available. A control character option is selected by 
coding the appropriate character in the RECFM operand of the DCB macro instruction. 
If either option is specified in the data control block, a control character must be 
included in each record, and other spacing or stacker selection options also specified in 
the data control block are ignored. 

The record format field in the data control block indicates that the machine code control 
character has been placed in each logical record. If the record is written, the appropriate 
byte must contain the command code bit configuration specifying both the write and the 
desired carriage or stacker select operation. 

The machine code control characters for a printer are as follows: 

Print and Then Act Act Immediately-No Printing 
(Code in Hexadecimal) Action (Code in Hexadecimal) 

01 Print only (no space) 

09 Space l line OB 

11 Space 2 lines 13 

19 Space 3 lines 1B 

89 Skip to channel 1 SB 

91 Skip to channel 2 93 

99 Skip to channel 3 9B 

Al Skip to channel 4 A3 

A9 Skip to channel 5 AB 

Bl Skip to channel 6 B3 

B9 Skip to channel 7 BB 

Cl Skip to channel 8 C3 

C9 Skip to channel 9 CB 

,Dl Skip to channel 10 03 

09 Skip to channel 11 DB 

El Skip to channel 12 E3 

Appendix E: Control Characters 249 



The machine code control characters for a card read punch device are as follows: 

Code in Hexadecimal Action 

01 Select stacker 1 

41 Select stacker 2 

81 Select stacker 3 

Other command codes for specific devices are contained in IBM System. Reference 
Library publications describing the control units or devices. 

American National Standards Institute Control Characters 
In place of machine code, control characters defined by the American National Standards 
Institute (ANSI) can be specified. These characters must be represented in EBCDIC 
code. 

American National Standards Institute (ANSI) control characters are as follows: 

Code Action Before Printing a Uoe 

t> Space one line (blank code) 
0 Space two lines 

Space three lines 
+ Suppress space 
1 Skip to channel 1 
2 Skip to channel 2 
3 Skip to channel 3 
4 Skip to channel 4 
5 Skip to channel 5 
6 Skip to channel 6 
7 Skip to channel 7 
8 Skip to channel 8 
9 Skip to channel 9 
A Skip to channel 10 
B Skip to channel 11 
C Skip to channel 12 

Code Action After Punddng a Card 

V Select punch pocket 1 
W Select punch pocket 2 

These control characters include those defined by ANSI FORTRAN. If any other 
character is specified, it is interpreted as 'b' or V, depending on the device being used; no 
error indication is returned. 

250 OS/VS Data Management Macro lnstmctions 



APPENDIX F: DATA CONTROL BLOCK 
SYMBOLIC FIELD NAMES 

The following describes data control block fields that contain information which defines 
the data characteristics and device requirements for a data set. Each of the fields 
described shows the values that result from specifying various options in the DCB macro 
instruction. These fields can be ref erred to by the problem program through the use of a 
DCBD macro instruction which creates a dummy control section (DSECT) for the data 
control block. Fields that contain addresses are 4 bytes long and are aligned on a 
fullword boundary. H the problem program inserts an address into a field, the address 
must be inserted into the low-order 3 bytes of the field without changing the high-order 
byte. 

The contents of some fields in the data control block depend on the device and access 
method being used. A separate description is provided when the contents of the field are 
not common to all device types and access methods. 

Data Control Block-Common Fields 

Offset 

26(1A) 

Bytes and 
Alignment 

40(28) 8 

40(28) 2 

42(2A) 2 

45(2D) .3 

48(30) 

Fleld 
Name 

DCBDSORG 

1 ... 
.1 .. 
.. 1. 
... x xx .. 

.. 1. 

... 1 

DCBDDNAM 

DCBTIOT 

DCBMACRF 

DCBDEBA 

DCBOFLGS 
... 1 

1 ... 

.. 0. 

.. I. 

Description 

Data set organization. 

Code 
IS 
PS 
DA 

PO 
u 

Indexed sequential. 
Physical sequential. 
Direct organization. 
Reserved bits. 
Partitioned organization. 
Unmovable-the data set contains 
location-dependent information. 

Eight byte name of the data definition 
statement that defines the data set associated 
with this DCB. (Before DCB is opened.) 

(After DCB is opened.) Offset from the TIOT 
origin to the TIOELNGH field in the TIOT 
entry for the DD statement associated with 
this DCB. 

This field may only be referenced after OPEN. 
It is common to all uses of the DCB and is 
created by moving the DCBMACR field into this 
area. 

(After DCB is opened.) Address of the associated 
DEB. 

Flags used by Open routine. 
OPEN has completed successfully . 
Set to 1 by problem program to indicate 
concatenation of unlike attributes. 
Set to 0 by an 1/0 support function when that 
function takes a user exit. It is set to 0 to 
inhibit other 1/0 support functions from 
processing this DCB. 
Set to 1 on return from the user exit to the 
1/0 support function that took the exit. 

Appendix F: Data Control Block Symbolic Field Names 251 



Bytes and 
Offset Alignment 

50(32) .. 2 

Field 
Name 

DCB MA CR 
(Before 
OPEN) 

Description 

Macro instruction reference before OPEN. 
Major macro instructions and various options 
associated with them. Used by the Open 
routine to determine access method. Used by 
the access method executors in conjunction 
with other parameters to determine which load 
modules are required. This field is moved to 
overlay part of DCBDDNAM at Open time and 
becomes the DCBMACRF field. 

This field is common to all uses of the DCB, 
but each access method must be referenced for 
its meaning. 

Data Control Block-BP AM, BSAM, QSAM 

Offset 

20(14) 

21(15) 

24(18) 

32(20) 

32(20) 

33(21) 

Bytes and 
Alignment 

.3 

2 

.3 

252 OS/VS Data Management Macro Instructions 

Field 
Name 

DCBBUFNO 

DCBBUFCB 

DCBBUFL 

DCBBFALN 
.. xx 
.. 10 
.. 01 

DCBBFrEK 
.xxx 
.1.0 
.0.1 
.110 

.010 .... 

x ... 

DCBEODAD 

Description 

Number of buffers required for this data set. 
May range from 0 to a maximum of 255. 

Address of buff er pool control block. 

Length of buffer. May range from 0 to a 
maximum of 32,760. 

D 
F 

s 
E 
A 

R 

Buff er alignment: 
Doubleword boundary . 
Fullword not a doubleword boundary, 
coded in the DCB macro instruction. 

Buffering technique: 
Simple buffering. 
Exchange buffering. 
QSAM locate mode processing of spanned 
records: OPEN is to construct a record 
area if it automatically constructs buffers. 

BSAM create BDAM processing of un
blocked spanned records: Software track 
overflow. OPEN forms a segment work 
area pool and stores the address of the 
segment work area control bl9Ck in 
DCBECBW. However, WRITE uses a 
segment work area to write a record as 
one or more segments. 

BSAM input processing of unblocked 
spanned records with keys: Record offset 
processing. REAQ reads one record 
segment into the record area. The first 
segment of a record is preceded in the 
record area by the key. Subse1quent 
segments are at an offset equal to the key 
length. 
Reserved bit. 

End-of-data address. Address of a user
provided routine to handle end-of-data 
conditions. 



Bytes and Field 
Offset Alignment Name Desaiption 

36(24) DCBRECFM Record format. ,, 
Code 

00 .. .. 1. D Format-D record . 
10 .. F Fixed record length. 
01.. v Variable record length. 
11.. u Undefined record length. 
.. 1. T Track overllow . 
... 1 B Blocked records. May not occur with 

undefined (U). 
1 ... s Fixed length record format: Standard 

blocks. (No truncated blocks or unfilled 
tracks are embedded in the data set.) 
Variable length record format: Spanned 
records. 

.10. A ANSI control character. 

.01. M Machine control character. 

. 00. No control character . 

... 1 Key length (KEYLEN) was specified ih the 
DCB macro instruction. This bit is inspected 
by the Open routine to prevent overriding a 
specification of KEYLEN-0 by a nonzero 
specification in the JFCB or data set label. 

37(25) .3 DCBEXLST Exit list. Address of a user-provided exit 
list control block. 

42(2A) 2 DCBMACRF Macro instruction reference after OPEN. 

Contents and meaning are the same as those of 
the DCBMACR field in the foundation segment 
before OPEN. 

50(32) .. 2 DCB MA CR Major macro instructions and various options 
(Before associated with them. Used by the Open 
OPEN) routine to determine access method. Used by 

the access method executors in conjunction 
with other parameters to determine which load 
modules are required. 

Code 
Byte 1 BSAM-lnput 
00 .. Always zero for BSAM. 
.. 1. R READ 
... x x .. x Reserved bits. 

.1 .. p POINT (which implies NOTE). 

.. 1. c CNTRL 

Byte2 BSAM-Output 
51(33) 00 .. Always zero for BSAM. 

.. 1. w WRITE 
1 ... L Load mode BSAM (create BDAM data 

set). 
.1 .. p POINT (which implies NOTE). 
.. 1. c CNTRL 
... 1 BSAM create BDAM processing of 

unblocked spanned records, with 
BFfEK-R specified: The user's program 
has provided a segment work area pool 
and stored the address of the segment 
work area control'block in DCBEOBW. 

Appendix F: Data Control Block Symbolic Field Names 253 



Bytes and Fleld 
Offset Alignment Name 

Byte 1 
50(32) 0 ... 

.1 .. 

.. 0. 

... 1 
1 ... 
.1.. 
.. 1. 
... 1 

Byte2 
51(33) 0 ... 

.1 .. 

.. 0. 

... 1 
1 ... 
. 1.. 
.. 1. 
... 1 

50(32) Byte 1 
00 .. 
.. 1. 

.1 .. 
... x x.xx 

51(33) Byte2 
00 .. 
.. 1. 

. 1 .. 
... x x.xx 

Direct-Access Storage Devices Interface 
Bytes and Field 

Offset Alignment Name 

16(10) 1 DCBKEYLE 

17(11) .1 DCBDEVT 

0010 OllO 
0010 Olll 
0010 1000 
0010 1001 

0010 1101 
0010 1010 

Magnetic Tape lnterf ace 
Bytes and Fleld 

Offset Alignment Name 

16(10) 1 DCBTRTCH 

0010 0011 
0011 1011 
0001 0011 
0010 1011 

254 OS/VS Data Management Macro Instructions 

Description 

QSAM-Input 
Always zero for QSAM. 

G GET 
Always zero for QSAM . 

M Move mode. 
L Locate mode. 
T Substitute mode. 
c CNTRL 
D Data mode . 

QSAM-Output 
Always zero for QSAM. 

p PUT 
Always zero for QSAM . 

M Move mode. 
L Locate mode. 
T Substitute mode . 
c CNTRL 
D Data mode. 

BPAM-lnput 
Always zero for BP AM. 

R READ 
p POINT (which implies NOTE). 

Reserved bits. 

BP AM-Output 
A Always zero for BP AM. 
w WRITE 
p POINT (which implies NOTE) . 

Reserved bits. 

Description 

Key length of the data set. 

Device type. 

2305 Disk Storage Facility, Model 1. 
2305 Disk Storage Facility, Model 2. 
2314 Disk Storage Facility. 
3 3 30 Disk Storage, Model 1, or 
Mass Storage System (MSS) 
virtual volume. 
3330 Disk Storage, Model 11. 
3340 Disk Storage. 

Description 

Tape recording technique for 7-track tape. 

Code 
E Even parity. 
T BCD/EBCDIC translation. 
C Data conversion. 
ET Even parity and translation. 



Bytes and Fleld 
Offset Alignment Name Description 

17(11) .1 DCBDEVT Device type. 
_,, 

1000 0001 2400 series magnetic tape unit (7-track or 
9-track). 

18(12) .. 1 DCB DEN Tape density-2400 series magnetic tape units. 

Code 7-tracks 9-tracks 
()()()() 0011 0 200 BPI 
0100 0011 1 556 BPI 
1000 0011 2 800 BPI 800BPI 
1100 0011 3 1600 BPI 

4 6250 BPI 

Paper Tape Inter/ace 
Bytes and Fleld 

Offset Alignment Name Description 

16(10) DCBCODE Paper tape code being used. The appropriate 
translate table is made available. 

Code 
1000 ()()()() N No conversion 
0100 ()()()() I IBM BCD 
0010 ()()()() F Friden 
0001 ()()()() B Burroughs 
()()()() 1000 c National Cash Register 
()()()() 0100 A ASCII (8-track) 
()()()() 0010 T Teletypel 

17(11) . 1 DCBDEVT Device type . 

0101 ()()()() 2671 Paper Tape Reader. 

Card Reader, Card Punch lnterf ace 
Bytes and Fleld 

Offset Alignment Name Description 

16(10) 1 DCBMODE,DCBSTACK 

Code 
xxxx Mode of operation for 1442 Card Read 

Punch. 
1000 c Column binary mode. 
0100 E EBCDIC mode. 

xxxx Stacker selection. 
0001 1 Stacker 1. 
0010 2 Stacker 2. 

17(11) .1 DCBDEVT Device type. 

0100 0011 1442 Card Read Punch 
0100 0001 2540 Card Reader 
0100 0010 2540 Card Punch 
0100 0100 2501 Card Reader 
0100 0101 2520 Card Read Punch 
0100 0110 3505 Card Reader 
0100 1100 3525 Card Punch 

1Trademark of Teletype Corporation. 

Appendix F: Data Control Block Symbolic Field Names 255 



Printer Inter/ ace 

Offset 

16(10) 

17(11) 

Access Method Interface 

BSAM, BPAM Interface 

Offset 

52(34) 

57(39) 

62(3E) 

Bytes and 
Alignment 

.2 

Bytes and 
Alignment 

.3 

.. 2 

256 OS/VS Data Management Macro Instructions 

Field 
Name 

DCBPRTSP 

0000 0001 
0000 1001 
0001 0001 
0001 1001 

DCBDEVT 

Byte 1 
0100 1000 
0100 1001 
0100 1010 

Byte 2 
0010 0000 
0001 0000 

Field 
Name 

DCBOPTCD 

1... 
.1 .. 

.. 1. 

... 1 

.1.. 

.. 1. 
1... 
... x 

DCB SYN AD 

DCBBLKSI 

Description 

Number indicating normal printer spacing. 

Code 
0 
1 
2 
3 

No spacing. 
Space one line. 
Space two lines. 
Space three lines. 

Device type. 

1403 Printer 
3211 Printer 
1443 Printer 

Test-for-printer-overflow mask (PRTOV 
mask). If printer overflow is to be 
tested for, the PRTOV macro instruction 
sets the mask as follows: 

Code 
9 Test for channel 9 overflow. 
12 Test for channel 12 overflow. 

Description 

Option codes. 

Code 
w 
u 

B 

c 
H 

z 

T 
Q 

Write-validity check (DASD). 
Allow a data check caused by an invalid 
character. (1403 printer with UCS 
feature.) 
Treat EOF and EOV labels as EOV labels 
which allows SL or AL tapes to be read 
out of order. (Magnetic tape.) 
Chained scheduling. 
Optical Reader: Hopper empty exit . 
Input Tape Files: Requests the 
testing for and bypassing of any 
embedded DOS checkpoint records 
encountered. (This code can only 
be specified in a JCL statement.) 
Magnetic tape devices: Use re:duced 
error recovery procedure. 
BSAM only: user totaling . 
An ASCII data set is to be processed. 
Reserved bit. 

Address of user's synchronous error routine to 
be entered when a permanent error rn;curs. 

Maximum block size. Maximum valut!: 32,760. 
For fixed-length blocked record format, it 
must be a multiple of the length given in 
DCBLRECL. For variable-length records, this 
must include the 4 byte block length field. 



Bytes and Field 
Offset Alignment Name Description 

72(48) DCBNCP Number of chained programs. Number of 
READ or WRITE requests which may 
be issued prior to a CHECK. Maximum 
number: 99. 

80(50) DCBUSASI/ ASCII tape. 
DCBLBP Block prefix. 

.1 .. Block prefix is a four-byte field containing 
the block length. 

81(51) .1 DCBBUFOF Block prefix length. 

82(52) .. 2 DCBLRECL Logical record length. For fixed-length blocked 
record format, the presence of DCBLRECL 
allows BSAM to read truncated records. For 
undefined records, this field contains block size. 

QSA.M lnterf ace 
Bytes and Field 

Offset Alignment Name Description 

52(34) 1 DCBOPTCD Option codes. 

Code 
1 ... Q An ASCII data set is to be processed. 

Same as DCBOPTQ. BSAM only. 
1 ... w Write-validity check (DASO). 
.1 .. u Allow a data check for an invalid 

character (1403 with UCS). 
B Treat EOF and EOV labels as EOV 

labels which allows SL or AL tapes 
to be read out of order (magnetic 
tape). 

.. 1. c Chained scheduling using the Program 
Controlled Interruption. 

... 1 0 Online correction. 
Input Tape Files: Requests the 
testing for and bypassing of any 
embedded DOS checkpoint records 
encountered. (This code can only 
be specified in a JCL statement.) 

.1 .. z Magnetic tape devices. Use reduced 
error recovery procedure. 

.. 1. T User totaling . 

57(39) .3 DCB SYN AD Address of the user's synchronous error routine 
to be entered when a permanent error occurs. 

62(3E) .. 2 DCBBLKSI Maximum block size. Maximum value: 32,760. 
For fixed-len8th blocked record format, it must 
be a multiple of DCBRECL. For variable-
length records this must include the 4-byte 
block length field provided by the access method. 

80(50) DCBUSASI/ ASCII tape. 
DCBLBP Block prefix. 

.1 .. Block prefix is a four-byte field containing 
the block length. 

81(51) .1 DCBBUFOF Block prefix length. 

Appendix F: Data Control Block Symbolic Field Names 257 



Bytes and Fleld 
Offset Alignment Name Description 

82(52) .. 2 DCBLRECL Format-F records: Record length . 
Format-U records: Block size. 
Format-V records -

Unspanned record format --
GET: PUTX; record length. 
PUT: Actual or maximum record length. 
Spanned record format -
Locate mode -
- GET: Segment length. 
- PUT: Actual or minimum :segment 

length. 
Logical record interface -
- Before OPEN: Maximum logical record 

length. 
- After GET: Record length .. 
- Before PUT: Actual or maximum record 

length. 
Move mode-
- GET: Record length. 
- PUT: Actual or maximum record length. 
Data mode, GET -
Data records up to 32,752 bytes: Data 
length. 
Data records exceeding 32,752 bytes: 
- Before OPEN: X'8000' 
- After OPEN: Data length. 
Output mode, PUTX (output data set): 
Segment length. 

84(54) DCBEROPT Error option. Disposition of permanent errors 
if the user returns from a synchronous error 
exit (DCBSYNAD), or if the user has no 
synchronous error exit. 

100. ACC: Accept. 
010. SKP: Skip. 
001. ABE: Abnormal end of task. 
... x xxxx Reserved bits. 

85(55) 3 DCBCNTRA Address of CNTRL module. 

88(58) 2 Reserved. 

90(5A) 2 DCBPRECL Block length, maximum block length or 
data length. 

92(5C) 4 DCBEOB Address of end of block module. 

258 OS/VS Data Management Macro Instructions 



Dat:a Control Block-ISAM 

Offset 

16(10) 

17(11) 

20(14) 

21(15) 

24(18) 

32(20) 

33(21) 

36(24) 

37(25) 

42(2A) 

Bytes and 
Alignment 

.1 

.3 

2 

.3 

. 3 

•• 2 

Field 
Name 

DCBKEYLE 

DCBDEVT 

0000 0110 
0000 0111 
0000 1000 
0000 1001 

0000 1101 
0000 1010 

DCBBUFNO 

DCBBUFCB 

DCBBUFL 

DCBBFALN 

.. xx 

.. 10 

.. 01 

.. 11 

DCBEODAD 

DCBRECFM 

10 .. 
10 .. 
11.. 
.. 1. 
... 1 

1 ... 

. 10. 

. 01. 

.00. 

... 1 

DCBEXLST 

DCBMACRF 

Description 

Key length. 

Device type. 

2305 Disk Storage Facility, Model 1. 
2305 Disk Storage Facility, Model 2. 
2314 Disk Storage Facility. 
3330 Disk Storage, Model l, or 
Mass Storage System (MSS) 
virtual volume. 
3330 Disk Storage, Model 11. 
3340 Disk Storage. 

Number of buffers required for this data set: 
0-255. 

Address of buff er pool control block. 

Length of buffer: 0- 32,760. 

Code 

D 
F 

F 

Buff er alignment: 
Doubleword boundary . 
Fullword not a doubleword boundary, 
coded in the DCB macro instruction. 

Fullword not a doubleword boundary, 
coded in the DD statement. 

Address of a user-provided routine to handle 
end-of-data conditions. 

Record format. 

Code 
F 
v 
u 
T 
B 

s 

A 
M 

Fixed length records. 
Variable length records. 
Undefined length records. 
Track overflow. 
Blocked records. May not occur with 
undefined (U). 
Standard records. No truncated blocks or 
unfilled tracks are embedded in the 
data set. 
ANSI control character . 
Machine control character . 
No control character. 
Key length (KEYLEN) was specified in 
the DCB macro instruction; this bit is 
inspected by the Open routine to prevent 
overriding a specification of KEYLEN-0 by 
a nonzero specification in the JFCB or 
data set label. 

Exit list. Address of a user-provided list . 

Macro instruction reference after OPEN: 

Contents and meaning are the same as those 
of the DCBMACR field before OPEN. 

Appendix F: Data Control Block Symbolic Field Names 259 



Bytes and Field 
Offset Alignment Name Description 

50(32) .. 2 DCB MA CR Macro instruction reference before OPEN: 
specifies the major macro instructions and 
various options associated with them. Used 
by the Open routine to determine access method. 
Used by the access method executors in 
conjunction with other parameters to determine 
which load modules are required. 

Code 
Byte 1 BI SAM 

50(32) 00.0 0 ... Always zero for BISAM. 
.. 1. R READ 

.1.. s Dynamic buffering. 

.. 1. c CHECK 

... x Reserved bit. 

Byte2 BI SAM 
51(33) 00.0 ()()()() Always zero for BISAM. 

.. 1. w WRITE 

Byte 1 QI SAM 
50(32) 0.0. .0 .. Always zero for QISAM. 

.1.. G GET 

... 1 M Move mode of GET . 
1. .. L Locate mode for GET. 
.. xx Reserved bits . 

Byte 2 QI SAM 
51(33) 1 ... s SETL 

. 1.. p PUTorPUTX . 

.. 0. Always zero for QISAM . 

... 1 M Move mode of PUT . 
1. .. L Locate mode of PUT. 
. 1 .. u Update in place (PUTX) . 
.. 1. K SETL by key . 
... 1 I SETL by ID . 

52(34) DCBOPTCD Option codes: 

Code 
1. .. w Write-validity check. 
. 1.. u Full-track index write . 
.. 1. M Master indexes . 
... 1 I Independent overflow area . 

1. .. y Cylinder overflow area. 
.. 1. L Delete option. 
... 1 R Reorganization criteria . 
. x .. Reserved bit . 

53(35) . 1 DCB MAC Extension of the DCBMACRF field for ISAM . 

Code 
xxxx ... x Reserved bits. 

1. .. u Update for read. 
. 1.. u Update type of write . 
.. 1. A Add type of write . 

54(36) .. 1 DCBNTM Number of tracks that determines the 
development of a master index. 
Maximum permissible value: 99. 

55(37) ... 1 DCBCYLOF The number of tracks to be reserved on each 
prime data cylinder for records that overflow 
from other tracks on that cylinder. Refer to 
the section on allocating space for an ISAM 
data set in OS/VS Data Management Services 
Guide. to determine how to calculate the 
maximum number. 

260 OS/VS Data Management Macro Instructions 



Bytes and Field 
Offset Alignment Name Description 

56(38) 4 DCB SYN AD Address of user's synchronous error routine 

f to be entered when uncorrectable errors are 
detected in processing data records. 

60(3C) 2 DCBRKP Relative position of the first byte of the key 
within each logical record. Maximum permissible 
value: logical record length minus key length. 

62(3E) .. 2 DCBBLKSI Block size. 

64(40) 4 DCBMSWA Address of the storage work area reserved for 
use by the control program when new records 
are being added to an existing data set. 

68(44) 2 DCBSMSI Number of bytes in area reserved to hold the 
highest level index. 

70(46) 2 DCBSMSW Number of bytes in work area used by control 
program when new records are being added to 
the data set. 

72(48) DCBNCP Number of copies of the READ-WRITE (type K) 
channel programs that are to be established 
for this data control block (99 maximum). 

73(49) .3 DCBMSHI Address of the storage area holding the 
highest level index. 

80(50) DCBEXCDl First byte in which exceptional conditions 
detected in processing data records are 
reported to the user. 

1... Lower key limit not found. 
.1.. Invalid device address for lower limit. 
.. 1. Space not found . 
.•. 1 Invalid request . 

1. .. Uncorrectable input error. 
.1.. Uncorrectable output error. 
.. 1. Block could not be reached (input) . 
... 1 Block could not be reached (update) . 

81(51) .1 DCBEXCD2 Sec.ond byte in which exceptional conditions 
detected in processing data records are 
reported to the user. 

1. .. Sequence check. 
. 1.. Duplicate record . 
.. 1. DCB closed when error was detected . 
... 1 Overflow record . 

1. .. PUT: length field of record larger than 
length indicated in DCBLRECL. 

. xxx Reserved bits . 

82(52) .. 2 DCBLRECL Logical record length for fixed-length record 
formats. Variable-length record formats: 
maximum logical record length or an actual 
logical record length changed dynamically 
by the user when creating the data set. 

197(C5) .1 DCBOVDEV Device type for independent overflow. 

0010 0110 2305 Disk Storage Facility, Model 1. 
0010 0111 2305 Disk Storage Facility, Model 2. 
0010 1000 2314 Disk Storage Facility. 
0010 1001 3330 Disk Storage, Model 1, or 

Mass Storage System (MSS) 
virtual volume. 

0010 1101 3330 Disk Storage, Model 11. 
0010 1010 3340 Disk Storage. 

Appendix F: Data Control Block Symbolic Field Names 261 



Data Control Block-BDAM 

Offset 

16(10) 

17(11) 

20(14) 

21(15) 

24(18) 

32(20) 

32(20) 

36(24) 

Bytes and 
Alignment 

.3 

.3 

2 

262 OS/VS Data Management Macro Instructions 

Field 
Name 

DCBKEYLE 

DCB REL 

DCBBUFNO 

DCBBUFCB 

DCBBUFL 

DCBBFALN 

Description 

Key length. 

Number of relative tracks or blocks in this 
data set. 

Number of buffers required for this data set. 
May range from 0 to 255. 

Address of buff er pool control block or of 
dynamic buff er pool control block. 

Length of buffer. May range from 0 to 32,760. 

.. xx Buff er alignment: 

.. 10 Doubleword boundary . 

.. 01 Fullword not a doubleword boundary, coded in 
the DCB macro instruction . 

.. 11 Fullword not a doubleword boundary, coded in 
the DD statement. 

. x.x x ... Reserved bits . 

DCBBFfEK 

.. x. 

.. 1. 

DCBRECFM 

10 .. 
01.. 
11.. 
.. 1. 

... 1 
1. .. 
. 00. 
... 1 

R 
Buffering technique . 
Unblocked spanned records: 
Software track overflow. OPEN forms a 
segment work area pool. The number of 
segment work areas is determined by 
DCBBUFNO (OPEN stores the address of 
the segment work area control block 
in DCBDYNB) if dynamic buffering is not 
used or in the dynamic buffer pool 
control block (see DCBBUFCB) if 
dynamic buffering is used. WRITE uses 
a segment work area to write a record 
as one or more segments. READ uses a 
segment work area to read a record that 
was written as one or more segments. 

Record format. 

Code 
F 
v 
u 
T 

B 
s 

Fixed record length. 
Variable record length. 
Undefined record length. 
Track overflow. 

Blocked (allowed only with V). 
Spanned (allowed only with V). 
Always zeros . 
Key length (KEYLEN) was specified in 
the DCB macro instruction. This bit 
is inspected by the Open routine to 
prevent overriding a specification of 
KEYLEN =0 by a nonzero specification 
in the JFCB or data set label. 



Bytes and F1eld 
Offset Alignment Name Description 

37(25) .3 DCBEXLST Exit list. Address of a user-provided exit 
list control block. 

42(2A) .. 2 DCBMACRF Macro instruction reference after OPEN . 

Contents and meaning are the same as 
DCBMACR before OPEN. 

50(32) .. 2 DCB MA CR Macro instruction reference before OPEN: 
major macro instructions and various options 
associated with them that will be used. 

Byte 1 Code 
50(32) 00 .. Always zero for BDAM. 

.. 1. R READ 

... 1 K Key segment with READ. 
1 ... I ID argument with READ. 
.1 .. s System provides area for READ (dynamic 

buffering). 
.. 1. x Read exclusive. 
... 1 c CHECK macro instruction. 

Byte2 Code 
51(33) 00 .. Always zero for BDAM. 

.. 1. w WRITE 

... 1 K Key segment with WRITE. 
1 ... I ID argument with WRITE. 
. x .. Reserved bit . 
.. 1. A Add type of WRITE. 
... 1 Unblocked spanned records, with 

BFfEK-R specified and no dynamic 
buffering: The user's program 
has provided a segment work area 
pool and stored the address of 
the segment work area control 
block in DCBDYNB. 

52(34) DCBOPTCD Option codes: 

Code 
1 ••• w Write-validity check. 
. 1 .. Track overflow . 
.. 1. E Extended search . 
... 1 F Feedback. 

1 ... A Actual addressing. 
. 1 .. Dynamic buffering . 
.. 1. Read exclusive . 
... 1 R Relative block addressing . 

56(38) 4 DCB SYN AD Address of SYNAD (synchronous error) 
routine. 

62(3E) .. 2 DCBBLKSI Maximum block size. 

81(51) .3 DCB LIM CT Number of tracks or number of relative blocks 
to be searched (extended search option). 

Appendix F: Data Control Block Symbolic Field Names 263 





APPENDIX G: EVENT CONTROL BLOCK 

The event control block is used for communications between the various components of 
the system and between problem programs and the system. An event control block is the 
subject of WAIT and POST macro instructions. The following illustration shows the 
format of the event control block; a description of its fields follows the illustration. 

+O 

Offset 

0 

Bytes and 
Alignment Code 

lOxx 

Olxx 

0111 

0100 

0100 

0100 

0100 

0100 

0100 

0100 

0101 

+I 

Bit 

xx xx 

xxxx 

1111 

0001 

0010 

0011 

0100 

1000 

1011 

1111 

()()()() 

Hex. 
Dig. Description 

80 

40 

7F 

41 

42 

43 

44 

48 

4B 

4F 

50 

W-Waiting for completion of an event. 

C--The event has completed. 

One of the following completion codes 
will appear at the completion of a 
channel program: 

Access Methods Other Than BT AM 

Channel program has terminated without 
error. (CSW contents useful.) 

Channel program has terminated with 
permanent error. ( CSW contents useful.) 

Channel program has terminated because 
a direct access extent address has been 
violated. (CSW contents do not apply.) 

I/0 ABEND condition occurred 
while loading the error recovery 
routine. ( CSW contents do 
not apply.) 

Channel program has been intercepted 
because of permanent error associated 
with device end for previous request. 
You may reissue the intercepted 
request. (CSW contents do not apply.) 

Request element for channel program 
has been made available after it has 
been purged. (CSW contents do no apply.) 

One of the following errors occurred 
during tape error recovery processing. 

• The CSW command address in 
the IOB was zeros. 

• An unexpected load point was 
encountered. 
( CSW contents do not apply in 
either case.) 

Error recovery routines have been 
entered because of direct access error 
but are unable to read home addresses 
or record 0. (CSW contents do not apply.) 

Channel program terminated with error. 
Input block was a DOS-embedded checkpoint 
record. (CSW contents do not apply.) 

Appendix G: Event Control Block 265 





APPENDIX H: PDABD SYMBOLIC FIELD NAMES 

The following describes PDABD fields of the dummy control section generated by the 
PDABD macro instruction. Included are the names, attributes, and descriptions of the 
dummy control section. The use of any of the symbolic names provided by the dummy 
section should be preceded by a USING instruction specifying IHAPDAB and a dummy 
section base register containing the address of the actual parallel data access block. 

IHAPDAB 
PDANODCB 
PD AMAX CB 
PDAGRTNA 
PDADCBAI 
PDADCBLA 
PDADCBEP 
PDAECBIX 
PDADCBAL 

PDABD 
DSECT 
DS 
DS 
DS 
DS 
DS 
DS 
DS 
EQU 

H 
H 
A 
F 
A 
A 
F 

* 

number of DCB addresses in list 
maximum number of addresses allowed 
address of parallel GET routine 
DCB address increment 
address of last DCB entry 
address of DCB entry last processed 
index to ECB list 
start of DCB list 

Appendix H: PDABD Symbolic Field Names 267 





INDEX 

For additional information about any subject listed in this 
index, refer to the publications that are listed under the same 
subject in either OS/VSJ Master Index, GC24-5104, or 
OS/VS2 Master Index, GC28-0693. 

A 
A-type address constant defined 21 
ABEND exit, DCB macro 

BDAM 65 
BISAM 71 
BPAM 78 
BSAM 94 
list format 247-248 
QISAM 104-105 
QSAM 123 

absexp defined 21 
absolute expression defined 21 
access methods 

general description 
BDAM 61 
BISAM 69 
BPAM 75 
BSAM 83 
QISAM 101 
QSAM 111 

macro instructions used with 243 
ACSMETH operand, SYNADAF macro 210 
actual device addressing (BDAM) 61,67 
adding data to a data set 

BDAM 66,219-220,225 
BISAM 71,221-222 
BP AM 223-224 
BSAM 223-224,225-226 
QISAM 171 
QSAM 173-174 

address constant, A-type 
defined 21 

address feedback 
current block position 177 ,220 
next block position 177 ,220 

address of buffers 
obtained from a pool 149 
returned to a pool 137 

addressing, types of (BDAM) 61,67 
aids, coding 17-19 
alias names in a directory 205-206 
alignment of buffers 

BDAM 62 
BISAM 70 
BPAM 76 
BSAM 85 
QISAM 102 
QSAM 113 

American National Standards Institute 
(ANSI) control characters 

BPAM 80 
BSAM 98 
defined 250 
QSAM 126 

ANSI 
<.Yee American National Standards Institute) 

argument, search 
BDAM 66 
QISAM 106 

ASCII data sets 
block prefix 

BSAM 87 
QSAM 116 
restriction 87, 116 

block size 
BSAM 86 
QSAM 115 

buff er length 
BSAM 87 
QSAM 115 

on paper tape 
BSAM 90 
QSAM 118 

restriction on record format 
BSAM 98 
QSAM 126 

ASCII translation routines 
Check routine 39 
DCB option 

BSAM 96 
QSAM 125 

Get routine 145 
Put routine 173 
Write routine 223 
XLA TE macro instruction 23 3 

associated data sets 
closing 49 
opening 155 
types of 

BSAM 92-93 
QSAM 120-121 . 

ATTACH macro, relationship with BLDL macro 27 
automatic buffer pool construction 

BDAM 61 
BISAM 69 
BPAM 75 
BSAM 83 
QISAM 101 
QSAM 111 

automatic checkpoint restart 4 l 
automatic volume switching (FEOV macro) 133 

B 
backspacing 

BSP macro 29 
CNTRL macro 57,58 

backward read 
open option 156 
read operation 183 

base registers for 
dummy sections 129 
macro instructions 22 

BCD 8-track paper tape code 
BSAM 90 
QSAM 118 

Index 269 



BDAM (basic direct access method) 
general description 61 
macro instructions used with 243 
symbolic field names in DCB 262-263 

BFALN operand (DCB macro) 
BDAM 62 
BISAM 70 
BPAM 76 
BSAM 85 
QISAM 102 
QSAM 113 

BFTEK operand (DCB macro) 
BDAM 62-63 
BSAM 85-86 
QSAM 114 

BISAM (basic indexed sequential access method) 
general description 69 
macro instructions used with 243 
symbolic field names in DCB 259-261 

BLDL macro instruction 
description 27-28 
reason codes 28 
return codes 28 
used with FIND 135 

BLKSIZE operand (DCB macro) 
BDAM 63 
BPAM 76-77 
BSAM 86 
QISAM 102-103 
QSAM 114-115 

block 
backspacing by 29 
count exit 

BSAM 94 
list format 247 
QSAM 123 

data control 61-127 
data event control 23 5 
descriptor word, relationship with 

BLKSIZE operand 77,86,103 
BUFOFF operand 87,116 
LRECL operand 95,105 

event control 236,265 
position feedback 177-179,219-220 
positioning with POINT 167-168 
prefix 

(Jee also BUFOFF operand) 
effect on buff er length 87, 115 
effect on data alignment 85, 113 

reading 177-185 
size 

(see BLKSIZE operand) 
writing 219-226 

block size for SYSOUT data sets 
<see also BLKSIZE operand) 
BSAM 86 
QSAM 114 

blocking 
data checks (UCS printer) 198 
records 

BDAM 61,68 
BPAM 75,80 
BSAM 83,98 
QISAM 101, 108 
QSAM 111,126 

270 OS/VS Data Management Macro Instructions 

boundary alignment 
(see BF ALN operand) 

BP AM (basic partitioned access method) 
general description 75 
macro instructions used with 243 
symbolic field names for DCB 252-257 

BSAM (basic sequential access method) 
general description 83 
macro instructions used with 243 
symbolic field names for DCB 252-257 

BSP macro instruction 
description 29 
reason codes 29 
return codes 29 

BUFCB operand (DCB macro) 
BDAM 63 
BISAM 70 
BPAM 77 
BSAM 86-87 
QISAM 103 
QSAM 115 
relationship to 

GETBUF macro 149 
GETPOOL macro 151 

buffer 
alignment 

(see BF ALN operand) 
control 

automatic 143-147, 171-174 
dynamic 139 
using FREEBUF macro 137 
using FREEDBUF macro 139 
using GETBUF macro 149 
using RELSE macro 193 

forms control 
using SETPRT macro 197 

length 
(see also BUFL operand) 
BUILD macro 31-32 
BUILDRCD macro 33-34 
for card image mode 87, 115 
for ASCII data sets 87, 115 
GETPOOL macro 151-152 

message format (SYNADAF macro) 212 
pool construction 

(Jee also BUFCB operand) 
automatic 

(see BUFNO operand) 
using BUILD macro 31 
using BUILDRCD macro 33 
using GETPOOL macro 151 

releasing of 
using FREEBUF macro 137 
using FREEDBUF macro 139 
using FREEPOOL macro 141 
using RELSE macro 193 
using SYNADRLS macro 213 

specifying number (see BUFNO operand) 
buffering, types of 

automatic 143-147,171-174 
dynamic 139 
exchange 114 



buffering, types of (continued) 
problem program controlled 

BDAM 64 
BISAM 70-71 
BPAM 77 
BSAM 87 

simple 114 
variable-length spanned record 

BDAM 64 
QSAM 114 
using BUILDRCD macro 33 

BUFL operand (DCB macro) 
BDAM 63-64 
BISAM 70 
BPAM 77 
BSAM 87 
QISAM 103 
QSAM 115 

BUFNO operand (DCB macro) 
BDAM 64 
BISAM 70-71 
BPAM 77 
BSAM 87 
QISAM 103-104 
QSAM 115-116 
relationship to NCP operand 72 

BUFOFF operand (DCB macro) 
BSAM 87-88 
QSAM 116 

BUILD macro instruction 
description 31-32 
relationship to 

BF ALN operand 62 
.BUFCB operand 63 
BUFL operand 64 
BUFNO operand 64 

BUILDRCD macro instruction 
description 

execute form 37 
list form 35 
standard form 33-34 

relationship to 
buff er length 

(see BUFL operand) 
GET macro 146 
number of buffers 

(see BUFNO operand) 
PUT macro 17 4 
TRUNC macro 215 

Burroughs 7-track paper tape code 
BSAM 90 
QSAM 118 

c 
CANCEL operand, CHKPT macro 42 
capacity record (RO) 

relationship with 

card 

READ macro 178,179 
WRITE macro 219,225,226 

code 
BSAM 91 
QSAM 119 

image mode 
buff er length required 87, 115 
defined 91, 119 

punch 91,119 
reader 91,119 

carriage 
control channel 

CNTRL macro 57-59 
PRTOV macro 169-170 

control characters 
ANSI 250 
CNTRL macro 57-59 
machine 249-250 
PRTOV macro 169-170 

chained scheduling option 
BPAM 80 
BSAM 96 
QSAM 124 

changing partitioned data set member name 205-207 
channel 

carriage control 
(.ree carriage control channel) 

overflow 169-170 
programs, number of 

BISAM 72 
BPAM 79 
BSAM 96 

CHECK macro instruction 
description 39 
relationship to 

end of data (EODAD) 78,94 
MACRF operand 66 
number of read and write 
operations (NCP) 72,79,96 
POINT macro 168 
READ macro 177,181,183,185 
WRITE macro 219,221,223,225 

return of exception codes 236 
checking, write-validity 

BDAM 67 
BPAM 80 
BSAM 97 
QISAM 107 
QSAM 125 

checkpoint data set 41 
checkpoint records,. embedded (DOS) 

CNTRL macro 57 
POINT macro 167 

CHKPT macro instruction 
execute form 47 
list form 45 
return codes 43 
standard form 41-43 

CLOSE macro instruction 
execute form 55 
list form 53 
relationship to 

BUILDRCD macro 34 
FREEPOOL macro 141 
POINT macro 167 
PUT macro 171,174 
SETL macro 195 

standard form 49-51 
TYPE=T (BSAM) 50-51 

Index 271 



CNTRL macro instruction 
description 57-59 
restriction on use 29,57 
specified in MACRF operand (DCB macro) 

BSAM 95 
QSAM 123 

code 
card 

BSAM 91 
QSAM 119 

completion 
(see code, return) 

control character 
(see control characters) 

conversion 
ASCII to EBCDIC 39, 145,233 
EBCDIC to ASCII 223,233 
paper tape 90, 118 
XLATE macro 233 

exception 235-239 
return 

BLDL macro 28 
BSP macro 29 
CHKPT macro 43 
FIND macro 136 
RELEX macro 191 
SETPRT macro 199 
STOW macro 207 
SYNADAF macro 211 
SYNADRLS macro 213 
WRITE macro 227 

CODE operand (DCB macro) 
BSAM 90 
QSAM 118 

coding 
aids 17-19 
macro instructions 20-22 
registers as operands 21 

column, binary 
(see card image mode) 
eliminate mode, read 

BSAM 91,92 
QSAM 119,120 

completion codes 
BLDL macro 28 
BSP macro 29 
CHKPT macro 43 
FIND macro 136 
RELEX macro 191 
SETPRT macro 199 
STOW macro 207 
SYNADAF macro 211 
SYNADRLS macro 213 
WRITE macro 227 

completion testing of 1/0 operations 39,217-218 
concatenation 

input data sets (BPAM) 75 
condition, exception 235-239 
construct 

a buff er pool 
(see buffer pool construction) 

a data control block 
(see DCB macro instruction) 

a DECB (data event control block) 235 

272 OS/VS Data Management Macro Instructions 

contents of registers on entry to 
exit list 247 
SYNAD 240-241 

control 
characters 249-250 
1/0 device 57-59,169-170 
page format 169-170 
releasing 

buffer (FREEBUF macro) 137 
buffer pool (FREEPOOL macro) 141 
data block 191 
dynamically acquired buffer 139,220 
QSAM buffer (RELSE macro) 193 

requesting 
buffer (GETBUF macro) 149 
buffer pool (GETPOOL macro) l51-152 
data block 177,181,183,185 

control block 
buffer pool 

(see BUFCB operand) 
data 

<see DCB macro instruction) 
data event 235 
event 265 

control characters 
ANSI 250 
CNTRL macro 57-59 
machine 249-250 
PRTOV macro 169-170 
specifying for 

BPAM 80 
BSAM 98 
QSAM 126 

control section ( CSECT) 
(see DCB macro instruction) 

count exit, block 
BSAM 94 
format list 247 
QSAM 123 

cylinder 
index 106 
overflow area 104 

CYLOFL operand 104 

D 
D-format records 

BSAM 98 
QSAM 126 

data, end of 
(see EODAD operand) 

data block 
exclusive control of 177 
locating with POINT macro 167-168 
release of exclusive control 191 
retrieval 143-147,177-185 
writing 171-175,219-227 

data checks 
blocking and unblocking 97, 125, 198 
restriction with CNTRL macro 57-59 

data control block 
completing 15 5 
construction 

(see DCB macro instruction) 
DCBBLKCT field 58 
DCBEXCDl field 235 



data control block (continued) 
DCBEXCD2 field 235 
DCBLRECL field 173 
DCBNCRHI field 72 
DCBOFLGS field 157,158 
description 

(see DCB macro instruction) 
dummy section for 129-130 
exit list 

(see EXLST operand) 
special options with BLDL macro 27-28 
symbolic references to 251-263 

data definition statement 
(see DD statement) 

data event control block 
construction 187 ,229 
description 235 
exception code 235-239 
modifying with execute form 189,231 
requirement with CHECK macro 39 
requirement with FREEDBUF macro 139 

data management parameter list 53, 159 
data mode 

GET macro 124, 146 
PUT macro 124, 17 4 

data protection image (DPI) 
BSAM 91,93 
QSAM 119,121 

data set 
block size for SYSOUT 86, 114 
closing 49-51 
connecting to 155-158 
disconnecting from 49-51 
disposition at close 50 
opening 155-158 
organization 

<st~e DSORG operand) 
temporary closing 50-51 
types 

(see access methods) 
data translation 

(see code conversion) 
data transmittal modes 

data 146, 174 
locate;! 143, 146, 171, 173-174 
move: 143, 146, 171, 174 
specified in DCB 106,124 
substitute 146, 174 

DCB ABEND exit 
BDAM 65 
BISAM 71 
BPAM 78 
BSAM 94 
list format 247 
QISAM 104-105 
QSAM 123 

DCB macro instruction 
BDAM 61-68 
BISAM 69-73 
BPAM 75-81 
BSAM 83-99 
QISAM 101-109 
QSAM 111-127 

DCB operands 
description 

(see DCB macro instruction) 
symbolic names for 251-263 

DCBD macro instruction 
description 129-130 

DD statement, relationship to 
data control block 

(see DDNAME operand) 
NOTE macro 153 
OPEN macro 155-158 
POINT macro 167-168 

DDNAME operand (DCB macro) 
BDAM 64 
BISAM 71 
BPAM 77-78 
BSAM 88 
QISAM 104 
QSAM 116 

DEB validity checking 155 
deblocldng records 

BDAM 61,68 
BPAM 75,80 
BSAM 83,98 
QISAM 101,108 
QSAM 111,126 

DECB 
(see data event control block) 

deferred checkpoint restart 41 
delete option 

description 107 
DEN operand (DCB macro) 

BSAM 89 
QSAM 117 

density, recording 
(see DEN operand) 

descriptor word 
block 

BPAM 77 
BSAM 86,87 ,95 
QISAM 103,105 
QSAM 116 

record 
BSAM 87,95 
QISAM 103, 105 
QSAM 123 

segment 86, 185 
DEVD operand (DCB macro) 

BSAM 88-93 
DCBD macro 130 
QSAM 116-121 

device addressing, types of (BDAM) 67 
device capacities 245-246 
device types in a dummy section 130 
direct-access storage device 

capacity 245-246 
considerations with 

BSP macro 29 
CHKPT macro 41 
CLOSE macro 49,50 
POINT macro 167-168 

interface in DCB 254 
direct data set 

(see BDAM) 
direct search option 

BSAM 97 
QSAM 125 

Index 273 



directory, partitioned data set 
creation 75 
obtaining contents with BLDL 27-28 
operations performed by STOW macro 205-207 
search by FIND macro 135-136 

DISP option 
~ee disposition option) 

disposition option 
CLOSE macro 50 
OPEN macro 156-157 
requirement for extending an 
ISAM data set 171 

DOS embedded checkpoint records, relationship with 
CNTRL macro 57 
POINT macro 167 
DOS/OS interchange feature, specifying 97, 125 

doubleword alignment 
~ee BFALN operand) 

DPI (data protection image), specifying 
for BSAM 91,93 
for QSAM 119,121 

DSECTfor 
DCB symbolic names 251 

DSORG operand 
CHECK macro 39 
DCB macro 

BDAM 64-65 
BISAM 71 
BPAM 78 
BSAM 94 

DCBD macro 129-130 
QlSAM 104 
QSAM 122 

dummy control section 
DCBD macro 129-130 
how used 251 

dummy data block (BDAM) 225-226 
dummy key 226 
dynamic buffering 

E 

effect on buffer length 63,70 
effect on number of channel programs 72 
requesting in READ macro 178, 181 
requesting in WRITE macro 220,221 
returning buffer to the pool 139,220 
specified in BDAM DCB 66 
specified in BISAM DCB 71 

EBCDIC 
(see extended binary coded decimal 
interchange code) 

ECB 
(see also event control block) 
operand, WAIT macro 217 

ECBLIST operand, WAIT macro 217 
eliminate mode, read column 

BSAM 91,92 
QSAM 119,120 

embedded checkpoint records (DOS) 
CNTRL macro 57 
POINT macro 167 

end of data 
(see EODAD operand) 

end of file on magnetic tape, ignoring 
BSAM 97 

274 OS/VS Data Management Macro Instructions 

QSAM 125 
end of sequential retrieval 131 
end of volume 

exit 
BSAM 94 
QSAM 123 

forced 133 
entry to 

exit routine 247 
SYNAD routine 240-241 

EODAD operand (DCB macro) 
BPAM 78 
BSAM 94 
QISAM 104 
QSAM 122 

EODAD routine 
BSP macro 29 
CHECK macro 39 
FEOV macro 133 
GET macro 143,147 
POINT macro 167 

EROPT operand (DCB macro) 122 
ERP (error recovery procedure for tape) 

BSAM 97 
QSAM 125 

error analysis, 1/0 
exception codes 

BDAM 239 
BISAM 236 
QISAM 237 

register contents 
BDAM 241 
BISAM 240 
BPAM 241 
BSAM 241 
QISAM 240 
QSAM 241 

relationship with 
CHECK macro 39 
CNTRL macro 59 
DCB macro 97, 125 
GET macro 143,147 
POINT macro 168 
PUT macro 172, 17 4 
PUTX macro 17 5 
SETL macro 196 
SYNADAF macro 209 

specifying in DCB macro 
BDAM 68 
BISAM 73 
BPAM 81 
BSAM 99 
QISAM 109 
QSAM 127 

status indicators 
BDAM 235,242 
BISAM 235 
BPAM 235,242 
BSAM 235,242 
QISAM 235 
QSAM 235,242 

error codes 
(see return codes) 

error conditions while opening a data set 157-158 



error exits 
CHECK macro 39 
CNTRL macro 59 
DCB macro 97,125 
GET macro 147 
POINT macro 168 
PUT macro 172, 17 4 
PUTX macro 17 5 
SETL macro 196 
SYNADAF macro 209 

error option operand (QSAM) 122 
error re:covery procedure for tape 97, 125 
error tape, reading 97, 125 
ESETL macro instruction 

description 131 
relationship to 

GET macro 143 
SETL macro 195 

event control block 235,265 
exception code 235-239 
exchange buffering 

buff er alignment for 113 
restrictions 

for VS2 systems 114 
record format 114 
track-overflow feature 114, 126 

specified in DCB 114 
exclusive control of data block (BDAM) 

releasing of 191 
requesting of 177 
specified in DCB 67 

EXCP macro, relationship with SYNADAF macro 209 
EXCP programming, restriction 197, 199 
execute form instructions 

BUILDRCD macro 37 
CHKPT macro 47 
CLOSE macro 5 5 
OPEN macro 161 
READ macro 189 
SETPRT macro 203 
WRITE macro 231 

exit 
(Jee also EXLST operand) 
block count 94, 123 
data control block 

(Jee EXLST operand) 
end of data 

(,ree EODAD operand) 
end of volume 94, 123 
error analysis 

~:ee error analysis, I/O) 
PCB image 94, 123 
list format 247 
user labeling 94, 123 
user totaling 94, 123 

EXLST operand (DCB macro) 
BDAM 65 
BISAM 71 
BPAM 78 
BSAM 94 
list format 247 
QISAM 104-105 
QSAM 123 

expression 
absolute (absexp) 21 
relocatable (rel exp) 21 

extended binary coded decimal interchange code (EBCDIC) 
ASCII translation 

Check routine 39 
DCB option 96, 125 
GET routine 145 
Put routine 173 
Write routine 223 
XLATE macro 233 

paper tape translation 
BSAM 90 
QSAM 118 

extended search option 
LIMCT operand 65 
OPTCD operand 67 

F 
F-format records 

<see RECFM operand) 
PCB 

image, defining 94, 123 
operand (SETPRT macro) 198 

feedback 
block position 177-179 ,219-220 
next address 178,226 

FEOV macro instruction 133 
file, end of 

<see end of file) 
FIND macro instruction 

description 135-136 
reason codes 136 
return codes 136 

fixed-length records 
(Jee BLKSIZE operand; RECFM operand) 

format 
exit list 247 
page 169-170 
record 

BDAM 68 
BPAM 80 
BSAM 98-99 
QISAM 108 
QSAM 126-127 

forms alignment 198 
forms control buff er (PCB) 

image, defining 94,123 
operand (SETPRT macro) 198 

forward space 5 8 
FREE option with CLOSE macro 50 
FREEBUF macro instruction 

description 137 
relationship to 

BUILD macro 31 
GETBUF macro 149 

FREEDBUF macro instruction 
description 139 
used with BISAM 71,221 

FREEPOOL macro instruction 
description 141 
relationship to 

CLOSE macro 49, 141 
GETPOOL macro 141,152 

Friden 8-track paper tape code 
BSAM 90 
QSAM 118 

full-track-index write operation 107 

Index 275 



fullword boundary alignment 
(see BF ALN operand) 

FUNC operand (DCB macro) 
BSAM 9'-92,93 
QSAM 119-120,121 

G 
GET macro instruction 

ASCII translation 145 
data mode ( QSAM) 124, 146 
for 

QISAM 143 
QSAM 145-146 

locate mode 
QISAM 106, 143 
QSAM 124, 146 

move mode 
QISAM 106, 143 
QSAM 124, 146 
restriction when using CNTRL macro 57 
restriction when using paper tape 124 

relationship to 
CNTRL macro 57 
EODAD 

(see EODAD operand) 
PDAB macro 163 
RELSE macro 193 
SETL macro 195 

specified in DCB macro 
QISAM 106 
QSAM 124 

substitute mode (QSAM) 124, 146 
TYPE=P 145,146 

Get routine exits 143, 147 
GETB UF macro instruction 

description 149 
relationship to 

BUILD macro 31 
FREEBUF macro 137 

GETPOOL macro instruction 

I 

description 151-152 
relationship to 

BFALN operand 62 
BUFCB operand 63 
BUFL operand 64 
BUFNO operand 64 
FREEPOOL macro 141,152 

IBM BCD pcrf orated tape 
BSAM 90 
QSAM 118 

IHADCB dummy section 129 
IHAPDAB dummy section 165 
image 

PCB (forms control buffer) 94,123,197 
UCS (universal character set) 197-198 

image, data protection 
BSAM 91,93 
QSAM 119,121 

image mode, card 
BSAM 91 
QSAM 119 

independent overflow area, specifying 107 

276 OS/VS Data Management Macro Instructions 

index 
cylinder 106 
highest level 

address of 72 
size of 72 

master 
number of tracks per level 106 
specified in OPTCD operand (DCB macro) 107 

space allocation for 101 
indicators, status 23 5-240 
INOUT open option 156 
input data sets 

closing 49-51 
opening 155-158 
READ or GET specified in DCB 

BDAM 66-67 
BISAM 71-72 
BPAM 79 
BSAM 95-96 
QISAM 106 
QSAM 123-124 

reading 
BDAM 177-179 
BISAM 181-182 
BPAM 183-184 
BSAM (read a direct data set) 185 
BSAM (read a sequential data set) 183-184 
QISAM 143 
QSAM 145-147 

testing completion of I/O operations 
CHECK 39 
WAIT 217-218 

INPUT open option 156 
input/ output devices 

card reader and card punch 57 
control of 57-59 
magnetic tape 57 
printer 

CNTRL macro 57-59 
PRTOV macro 169-270 

2540 card punch 115 
3525 card punch 49,57,58, 115 

input/ output error analysis 
(see SYNAD routine) 

input/ output operation 
completion of 39,217-218 
status indicators 235-242 
synchronizing I/0 39,217-218 

interface, DCB 
for BP AM 256-257 
for BSAM 256-257 
for card reader, card punch 255 
for direct-access devices 254 
for magnetic tape 254-255 
for paper tape 255 
for printer 256 
for QSAM 257-258 

interface, logical record 
invoked by BUILDRCD macro 33-34 
provided by QSAM 111,114 
specifying in DCB macro (BFTEK) 114 
used with GET macro 146 
used with PUT macro 17 4 



ISAM 

J 

general description 69, 101 
macro instructions used with 243 
symbolic field names in DCB 259-261 

job control language 
DD statement, relationship to 

CHKPT macro 41 
CLOSE macro 49 
data control block 

~ee DDNAME operand) 
GET macro 145 
NOTE macro 153 
OPEN macro 155 
POINT macro 167 
PUT macro 171,173 

LABEL parameter to request ASCII 
translation 39,145,173 

job step c:heckpoint restart 41 

K 
key, (BDAM) 

dummy 226 
specified in DCB macro 65 
writing 219,225 

key length 
(see KEYLEN operand) 

key position, relative (RKP) 108 
key, record 

PUT macro 171 
READ macro 181-182 
RKP operand (DCB macro) 108 
SETL macro 195-196 
WRITE macro 221-222 

KEYLEN operand (DCB macro) 
BDAM 65 
BPAM 78-79 
BSAM 94 
QISAM 105 

L 
label 

(See also EXLST operand) 
exit list format 247 
input data set 125,133,155 
output data set 

CLOSE macro 49 
FEOV macro 133 
OPEN macro 155 

user, processing 94, 123 
LABEL parameter in DD statement 39,145,173 
LEA VE option 

CLOSE macro 49 
FEOV macro 133 
OPEN macro 156 

length 
buffer 

~ee BUFL operand) 
record 

(see LRECL operand) 
levels of master index (ISAM) 106 
LIMCT operand (DCB macro) 65-66 

line spacing, printer 
CNTRL macro 57-59 
PRTSP operand (DCB macro) 

BSAM 90 
QSAM 118 

LINK macro, relationship with BLDL macro 27 
list address, data management 55,161 
list form instructions 

BUILDRCD macro 35 
CHKPT macro 45 
CLOSE macro 53 
OPEN macro 159 
READ macro 187 
SETPR T macro 201 
WRITE macro 229 

list format, exit 247 
LOAD macro, relationship with BLDL macro 27 
load mode (QISAM) 101 
loading 

forms control buff er (FCB) 198 
universal character set buffer (UCS) 197 

locate mode 
GET macro 

QISAM 143 
QSAM 146 

PUT macro 
QISAM 171 
QSAM 173-174 

specified in DCB macro 
QISAM 106 
QSAM 124 

logical record length for 
~ee also LRECL operand) 
GET macro 145 
PUT macro 171,173 
PUTX macro 17 5 

LONG operand, WAIT macro 218 
lower limit of sequential retrieval 
(SETL macro) 195-196 

LRECL operand (DCB macro) 
BPAM 79 
BSAM 95 
QISAM 105 
QSAM 123 

M 
machine control characters 

BPAM 80 
BSAM 98 
description 249-250 
QSAM 126 

MACRF operand (DCB macro) 
BDAM 66-67 
BISAM 71-72 
BPAM 79 
BSAM 95-96 
QISAM 106 
QSAM 123-124 

Index 277 



macros, data management 
BLDL 27-28 
BSP 29 
BUILD 31-32 
BUILDRCD 

execute form 37 
list form 35 
standard form 33-34 

CHECK 39 
CHKPT 

execute form 47 
list form 45 
standard form 41-43 

CLOSE 
execute form 5 5 
list form 53 
standard form 49-51 

CNTRL 57-59 
DCB for 

BDAM 61-68 
BISAM 69-73 
BPAM 75-81 
BSAM 83-99 
QISAM 101-109 
QSAM 111-127 

DCBD 129-130 
ESETL 131 
FEOV 133 
FIND 135-136 
FREEBUF 137 
FREEDBUF 139 
FREEPOOL 141 
GET for 

QISAM 143 
QSAM 145-147 

GETBUF 149 
GETPOOL 151-152 
NOTE 153 
OPEN 

execute form 161 
list form 159 
standard form 155-158 

PDAB 163 
PDABD 165 
POINT 167-168 
PRTOV 169-170 
PUT for 

QISAM 171-172 
QSAM 173-174 

PUTX 175 
READfor 

BDAM 177-179,185 
BISAM 181-182 
BPAM 183-184 
BSAM 183-184, 185 
execute form 189 
list form 187 

RELEX 191 
RELSE 193 
SETL 195-196 
SETPRT 

execute form 203 
list form 201 
standard form 197-199 

STOW 205-207 
SYNADAF 209-212 

278 OS/VS Data Management Macro Instructions 

SYNADRLS 213 
TRUNC 215 
WAIT 217-218 
WRITE for 

BDAM 219-220,225-227 
BISAM 221-222 
BP AM 223-224 
BSAM 223-224,225-227 
execute form 231 
list form 229 

XLATE 233 
macro instruction coding 17-19 
magnetic tape 

backspace 
BSP macro 29 
CNTRL macro 57 

considerations with 
BSP macro 29 
CHKPT macro 41 
CLOSE macro 49,50 
CNTRL macro 57 
POINT macro 167, 168 

density . 89, 117 
end-of-file, ignored 97, 125 
final volume positioning (FEOV macro) 133 
forward space 58 
interface in DCB 254-255 
read backward 183 
recording technique 89, 117 
restriction when using NOTE macro 153 
restriction when using POINT macro 167 
short error recovery procedure 97, 125 

Mass Storage System <.see MSS) 
master index 

highest level in storage 
address of storage area 72 
size of storage area 72 

number of tracks per level 106 
option specified in DCB 107 

MAXDCB operand, PDAB macro 163 
member, partitioned data set 

complete a list with BLDL macro 27-28 
locate beginning with FIND macro 135-136 
update directory with STOW macro 205-207 

mode 
<.see also MACRF operand) 
card image 

BSAM 91 
QSAM 119 

data (QSAM) 124,146,174 
load (QISAM) 101 
locate 

QISAM 106,143,171 
QSAM 146,173 

move 
QISAM 106,143,171 
QSAM 124,146,174 

optical mark read 
BSAM 92 
QSAM 120 

read column eliminate 
BSAM 91,92 
QSAM 119, 120 

resume load mode 101 
scan (QISAM) 101,106 
substitute (QSAM) 124, 146, 174 



MODE operand (DCB macro) 
BSAM 91,92 
QSAM 119,120 

modifying a parameter list 
BUILDRCD macro 37 
CHKPT macro 47 
CLOSE macro 55 
OPEN macro 161 
READ macro 189 
SETPR T macro 203 
WRITE macro 231 

move mode 
QISAM 143,171 

specified in DCB 106 
QSAM 146,174 

specified in DCB 124 
MSHI opc~rand (DCB macro) 72 
MSS (Mass Storage System) 

device capacity 246 
in DCB 254,259,261 

MSWA operand (DCB macro) 72 
multiline print option 

BSAM 93 
QSAM 120 

N 
National Cash Register 8-track paper tape code 

BSAM 90 
QSAM 118 

NCP operand (DCB macro) 
BISAM 72 
BPAM 79 
BSAM 96 

next address feedback 
BDAM (creating) 226 
BDAM (existing) 178 

nonsequential processing of sequential data 83 
NOTE macro instruction 

description 153 
relationship with POINT macro 168 
restriction when using BSP macro 29 
specified in DCB for BSAM 95 
used with BP AM 79 

NTM operand (DCB macro) 106-107 
number of channel programs 

(see NCP operand) 
number of tracks per index level 

~ee NTM operand) 

0 
online printer 

control 57-59 
skipping 169,249-250 
spacing 169,249-250 

OPEN macro instruction 
execute form 161 
list form 159 
relationship to 

CLOSE macro 49 
DDNAME operand 64 
FEOV macro 133 
GETPOOL macro 151 
NOTE macro 153 
POINT macro 167 

READ macro 183 
WRITE macro 223 

standard form 155-158 
open operation, testing 157-15 8 
open options 156-157 
operand, substitution for 20-21 
OPTCD operand (DCB macro) 

BDAM 67 
BPAM 80 
BSAM 96-97 
QISAM 107-108 
QSAM 124-125 
SETPRT macro 198 

optical mark read mode 
BSAM 92 
QSAM 120 

option codes 
(see OPTCD operand) 

organization, data set 
<see access methods) 

OUTIN open option 156 
output data sets 

closing 49-51 
opening 155-158 
WRITE or PUT specified in DCB macro 

BDAM 66 
BISAM 71-72 
BPAM 79 
BSAM 95-96 
QISAM 106 
QSAM 123-124 

writing 
BDAM 219-220 
BISAM 221-222 
BP AM 223-224 
BSAM 223-224 
BSAM (write to a direct data set) 225-226 
QISAM 171-172 
QSAM 173-174 

writing an input record in an output data set 
using PUTX 17 5 

OUTPUT open option 156 
overflow 

area,independent 107 
channel 169 
exit address (PRTOV macro) 169-170 
printer carriage 169-170 
records 

<see overflow area) 
overflow feature, track 

BDAM 68 
BPAM 80 
BSAM 98 
QSAM 126 

overprinting 169-170 

p 
paper tape codes 

BSAM 90 
QSAM 118 

parallel data access block (PDAB) 
constructing 163 
generating a DSECT 165 
symbolic field names 267 

Index 279 



parameter list construction 
BUILDRCD macro 35 
CHKPT macro 45 
CLOSE macro 53 
OPEN macro 159 
READ macro 187 
SET PR T macro 201 
WRITE macro 229 

parameter list, modification 
BUILDRCD macro 37 
CHKPT macro 47 
CLOSE macro 55 
OPEN macro 161 
READ macro 189 
SETPRT macro 203 
WRITE macro 231 

partitioned data set 
general description 7 5 
macro instructions used with 243 
relationship to 

BLDL macro 27 
FIND macro 135 
STOW macro 205 

PDAB macro instruction 163 
PDABD 

macro instruction 165 
symbolic field names 267 

POINT macro instruction 
description 167-168 
relationship to 

BSAM 83 
NOTE macro 153 

restriction 
with BSP macro 29 

specified in MACRF operand 
BPAM 79 
BSAM 95 

position, relative key (RKP) 108 
position feedback 

current block 177-179,219-220 
next block 178,226 

positioning volumes 
using CLOSE macro 49-51 
using FEOV macro 133 
using OPEN macro 155-158 

prefix, block 
BSAM 87 
QSAM 116 
relationship to 

buff er length 87, 115 
data alignment 85, 113 

print options (3747) 
BSAM 91,93 
QSAM 119, 121 

printer 
carriage control 57-59,169-170 
character set buffer loading 197-198 
control characters 249-250 
control tape 169-170 
forms control buff er loading 198 
skipping 57-59,249-250 
spacing 57-59,249-250 

program, channel 
BISAM 72 
BPAM 79 
BSAM 96 

280 OS/VS Data Management Macro Instructions 

protection option, data 
BSAM 91,93 
QSAM 119, 121 

PR TOY macro instruction 169-170 
PRTSP operand (DCB macro) 

BSAM 90 
QSAM 118 

punch, card 91, 119 
PUT macro instruction 

data mode ( QSAM) 124, 17 4 
for 

QISAM 171-172 
QSAM 173-174 

locate mode 
QISAM 171 
QSAM 173-174 

move mode 
QISAM 171 
QSAM 174 

relationship with 
PRTOV macro 169 
SYNADAF macro 209 
TRUNC macro 215 

specified in DCB macro 
QISAM 106 
QSAM 124 

substitute mode ( QSAM) 17 4 
PUTX macro instruction 17 5 

output mode 175 

Q 

relationship with TRUNC macro 215 
specified in DCB macro 

QISAM 106 
QSAM 124 

update mode 175 

QISAM (queued indexed sequential access method) 
general description 101 
macro instructions used with 243 
symbolic field names in DCB 259-261 

QSAM (queued sequential access method) 
general description 111 
macro instructions used with 243 
symbolic field names in DCB 252-258 

queued access technique 
(see QISAM and QSAM) 

R 
RDBACK open option 156 
read backward, magnetic tape 156, 183 
read column eliminate mode 

BSAM 91,92 
QSAM 119,120 

READ macro instruction 
execute form 189 
for 

BDAM 177-179,185 
BISAM 181-182 
BPAM 183-184 
BSAM 183-184, 185 

list form 187 



READ macro instruction (continued) 
relationship to 

BFfEK operand 63 
BUFL operand 64 
CHECK macro 39 
EODAD operand 78,94 
FIND macro 13 5 
FREEDBUF macro 139 
KEYLEN operand 65 
LIMCT operand 65-66 
MACRF operand 66-67 
NCPoperand 

BISAM 72 
BPAM 79 
BSAM 96 

OPTCD operand 67 
POINT macro 167 
RELEX macro 191 
WAIT macro 217 
WRITE macro 220,221,223 

specified in DCB macro 
BDAM 66-67 
BISAM 71-72 
BPAM 79 
BSAM 95-96 

standard form 
BDAM 177-179 
BISAM 181-182 
BPAM 183-184 
BSAM (read direct data set) 185 
BSAM (read sequential data set) 183-184 

reason codes 
BLDL macro 28 
BSP macro 29 
FIND macro 136 
STOW macro 207 

REC FM operand (DCB macro) 
BDAM 68 
BPAM 80 
BSAM 98-99 
QISAM 108 
QSAM 126-127 

record 
area 

construction 33-34 
deletion option (ISAM) 107 
format 

(Jee RECFM operand) 
length 

(see LRECL operand) 
logical 

GET 143,145 
PUT 171,173 

descriptor word, relationship with 
BLKSIZE operand 103 
BUFOFF operand 87 
LRECL operand 95, 105, 123 

physical 
(see BLKSIZE operand) 

retrieval 143,145,177-185 
segm«!nt 173 
variable-length, spanned 33, 114 
writing 171-17 4,219-227 

recording density, magnetic tape 
BSAM 89 
QSAM 117 

recording technique, magnetic tape 
BSAM 89 
QSAM 117 

register 
contents on entry to 

DCB exit routine 247 
overflow exit routine 169-170 
SYNAD routine 240-241 

DCBD base 129.-130 
usage rules 22 

relative addressing 
BDAM 61,67 
BLDL macro 27-28 
FIND macro 135-136 
POINT macro 167-168 

relative key position 108 
release 

buffer 137 
buffer pool 141 
dynamically acquired buffer 139 
exclusive control 191 
QSAM buff er 193 
QSAM buff er 193 

RELEX macro instruction 
description 191 
relationship to MACRF operand 67 
return codes 191 

relexp defined 21 
relocatable expression defined 21 
RELSE macro instruction 193 
reorganization statistics (ISAM) 10l,107 
REREAD option 

CLOSE macro 49 
FEOV macro 133 
OPEN macro 156 

restart job from a checkpoint 
automatic 41 
deferred 41 

restore data control block 49 
resume load mode 101 
return codes 

BLDL macro 28 
BSP macro 29 
CHKPT macro 43 
FIND macro 136 
RELEX macro 191 
SETPRT macro 199 
STOW macro 207 
SYNADAF macro 211 
SYNADRLS macro 213 
WRITE macro 227 

RETURN macro, relationship with SYNAD operand 
BDAM 68 
BISAM 73 
BPAM 81 
BSAM 99 
QISAM 109 
QSAM 127 

REWIND option 
CLOSE macro 49 
FEOV macro 133 

RKP operand (DCB macro) 108 
relationship with LRECL operand 105 

RO (Jee capacity record) 

Index 281 



s 
save area 

general register requirements 22 
SYNADAF requirement 209 
SYNADRLS macro 213 

scan mode 101, 106 
search 

partitioned data set directory 
BLDL macro 27 
FIND macro 13 5 

type of 
BDAM 219-220 
QISAM 106 

search argument 
BDAM 66 
QISAM 106 

search direct option 97, 125 
search option, extended 67 
segment 

buffer 171 
descriptor word 86, 185 
work area 64 

sequential access methods 
(see access methods) 

services, optional 
BDAM 67 
BPAM 80 
BSAM 96-97 
QISAM 107-108 
QSAM 124-125 
SETPRT macro 198 

SETL macro instruction 
description 195-196 
relationship to 

ESETL macro 131 
GET macro 143 

SETPRT macro instruction 
execute form 203 
list form -201 
return codes 198 
standard form 197-199 

simple buffering 114 
skipping, printer 

(see also spacing, printer) 
CNTRL macro 57-58 
control characters 249-250 

SMSI operand (DCB macro) 72-73 
SMSW operand (DCB macro) 73 
space, magnetic tape 

backward 27 ,57 
forward 57 

space allocation, data set 
BPAM 75 
QISAM 101 

spacing, printer 
(see also skipping, printer) 
CNTRL macro 57-59 
control characters 249-250 
specified in DCB macro 

BSAM 90 
QSAM 118 

STACK operand (DCB macro) 
BSAM 91,93 
QSAM 119,121 

282 OS/VS Data Management Macro Instructions 

stacker selection 
CNTRL macro 57-58 
control characters 249-250 
specified in DCB macro 

BSAM 91,93 
QSAM 119,121 

statistics reorganization (ISAM) 101, 107 
status 

following an I/0 operation 235-242 
indicators 242 

STOW macro instruction 
description 205-207 
directory action 206 
reason codes 207 
return codes 207 

substitute mode 
GET macro 146 
PUT macro 17 4 
specified in DCB macro 124 

switching volumes 
CHECK macro 39 
CLOSE macro 49 
FEOV macro 133 

symbol defined 20 
SYNAD operand (DCB macro) 

BDAM 68 
BISAM 73 
BPAM 81 
BSAM 99 
QISAM 109 
QSAM 127 

SYNAD routine 
exception codes 

BDAM 239 
BISAM 236 
QISAM 237 

register contents 
BDAM 241 
BISAM 240 
BPAM 241 
BSAM 241 
QISAM 240 
QSAM 241 

relationship with 
CHECK macro 39 
CNTRL macro 59 
DCB macro 97, 125 
GET macro 143,147 
POINT macro 168 
PUT macro 172, 17 4 
PUTX macro 17 5 
SETL macro 196 
SYNADAF macro 209 

specifying in DCB macro 
BDAM 68 
BISAM 73 
BPAM 81 
BSAM 99 
QISAM 109 
QSAM 127 



SYNAD routine (continued) 
status indicators 

BDAM 235,242 
BISAM 235 
BPAM 235,242 
BSAM 235,242 
QISAM 235 
QSAM 235,242 

SYNADAF macro instruction 
description 209-212 
relationship with SYNADRLS macro 213 
return codes 211 

SYNADRLS macro instruction 213 
relationship with SYNADAF macro 209 

synchronizing 1/0 operations 39,217-218 
synchronous error exit 

(;ee SYNAD operand) 
SYSIN restrictions 

BSP macro 29 
CLOSE macro 49 
CNTRL macro 57 
DEVD operand (DCB macro) 

BSAM 88 
QSAM 116 

FEOV macro 133 
MACRF operand 95 
NOTE macro 153 
OPEN macro 155 
OPTCD operand 97,125 
POINT macro 168 
PUTX macro 17 5 
REC FM operand 99, 126 
RELSE macro 193 

SYSOUT restrictions 

T 

BSP macro 29 
CLOSE macro 49 
CNTRL macro 57 
FEOV macro 133 
MACRF operand 95 
NOTE macro 153 
OJPEN macro 155 
OPTCD operand 97,125 
POINT macro 168 
PUTX macro 17 5 

tape 1;odes, paper 
BSAM 90 
QSAM 118 

tape density, magnetic 
BSAM 89 
QSAM 117 

tape error recovery procedure 
BSAM 97 
QSAM 125 

tape recording technique 
BSAM 89 
QSAM 117 

Teletype 5-track paper tape code 
BSAM 90 
QSAM 118 

temporary close of data set 49-51 

termination, abnormal 
Check routine 39 
end of data 

(see EODAD operand) 
uncorrectable I/0 error 

<see SYNAD operand) 
testing completion of I/ 0 39 ,217 
testing for open data set 157-158 
totaling exit, user 

BSAM 94 
list format 247 
QSAM 123 

track addressing, relative 
BDAM 61,67 
BLDL macro 27-28 
FIND macro 135-136 
POINT macro 167-168 

track index write, full 107 
track-overflow feature 

BDAM 68 
BPAM 80 
BSAM 98 
QSAM 126 
restrictions 

chained scheduling 80, 126 
exchange buffering 114, 126 
ISAM 101 

translation 
ASCII to EBCDIC 

CHECK macro 39 
GET macro 145 
XLATE macro 233 

EBCDIC to ASCII 
PUT macro 173 
WRITE macro 223 
XLATE macro 233 

paper tape code 90, 118 
transmittal modes 

(see also MACRF operand) 
data 124, 146 
locate 143,146,171,174 
move 143,146,171,174 
specifying 106, 124 
substitute 146,174 

TRTCH operand (DCB macro) 
BSAM 89 
QSAM 117 

TRUNC macro instruction 215 
specified in QSAM DCB 124 

truncating a block 215 
TYPE=P (GET macro) 147 
TYPE=T (CLOSE macro) 49-51 

u 
U-format records 

BDAM 68 
BPAM 80 
BSAM 98 
QSAM 126 

UCS feature 
unblocking data checks 97, 125 

UCS operand (SETPRT macro) 197-198 

Index 283 



unblocking data checks 
BSAM 97 
QSAM 125 
SETPRT macro 197 

uncorrectable I/ 0 errors 
(see SYNAD operand) 

undefined length records 
(Jee U-format records) 

universal character set 
(see VCS operand) 

unmovable data sets 
(Jee DSORG operand) 

UPDAT open option 156 
updating partitioned data set directory 205-207 
user 

data in partitioned data set directory 
BLDL macro 27-28 
STOW macro 205-207 

label exit 
BSAM 94 
list format 247 
QSAM 123 

totaling exit 
BSAM 94 
list format 247 
QSAM 123 

USING statement requirement 
DCBD macro 129 
PDABD macro 165 

v 
V-format records 

BDAM 68 
BPAM 80 
BSAM 98 
QISAM 108 
QSAM 126 

validity checking, write 
BDAM 67 
BPAM 80 
BSAM 97 
QISAM 107 
QSAM 125 

variable-length, spanned records 
<Jee also V-format records) 
BDAM 62-63,225 
BSAM 86,225 
QSAM 114,173 
restriction with FEOV 133 
restriction with GET 145 

variable-length records 
(see V-format records) 

volume, forcing end of 133 
volume positioning 

CHECK macro 39 
CLOSE macro 49-51 
FEOV macro 133 
OPEN macro 155-158 
POINT macro 167-168 

volume switching 39 

284 OS/VS Data Management Macro Instructions 

w 
WAIT macro instruction 

description 217-218 
relationship to 

MACRF operand 66 
READ macro 177,181 
WRITE macro 219 ,221 

work area for BISAM 
address of 72 
size of 72 

WRITE macro instruction 
execute form 231 
list form 229 
relationship to 

BUFL operand 64 
CHECK macro 39 
KEYLEN operand 65 
LIMCT operand 65-66 
MACRF operand 66,67 
NCP operand 

BISAM 72 
BPAM 79 
BSAM 96 

OPTCD operand 67 
POINT macro 167 
PRTOV macro 169 
READ macro 181 
RELEX macro 191 
SYNADAF macro 209 
WAIT macro 217 

specified in DCB macro 
BDAM 66 
BISAM 72 
BPAM 79 
BSAM 96 

standard form 
BDAM (create with BSAM) 225-227 
BDAM (existing) 219-220 
BISAM 221-222 
BP AM 223-224 
BSAM 223-224 

testing for completion 39,217-218 

WTOR macro, relationship with SETPRT macro 198 

x 
XCTL macro, relationship with BLDL macro 27 

XLATE macro instruction 233 





GC26-3793-4 

International Buslneu Machines Corporation 
Data Processing Division 
1133 Westchester Avenue, White Plains, New York 10604 
(U.S.A. only) 

I BM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
(International) 

0 
CJ) 

< 
CJ) 

CJ 
Q.l 
...+ 
Q.l 

s: 
Q.l 
::::l 
Q.l 
lC 
('!) 

3 
('!) 
::::l 
...+ 

s: 
Q.l 
(') ..., 
0 

::::l 
~ ..., 
c 
(') 
...+ a· 
::::l 
(/) 

'Tl 

ro
z 
0 

CJ) 
w 
-....J 
0 w 
8 



OS/VS Data Management Macro Instructions 
GC26-3793-4 

Your comments about this publication will help us to improve it for you. 
Comment in the space below, giving specific page and paragraph references 
whenever possible. All comments become the property of IBM. 

Please do not use this form to ask technical questions about IBM systems and 
programs or to request copies of publications. Rather, direct such questions or 
requests to your local IBM representative. 

If you would like a reply, please provide your name, job title, and business 
address (including ZIP code). 

Fold on two lines, staple, and mail. No postage necessary if mailed in the U.S.A. (Elsewhere, 
any IBM representative will be happy to forward your comments.) Thank you for your 
cooperation. 

Reader's 
Comment 
Form 



GC26-3793-4 

® 

Fold and Staple 

Business Reply Mail 
No postage necessary if mailed in the U.S.A. 

Postage will be paid by: 

I BM Corporation 
System Development Division 
LDF Publishing-Department J04 
1501 California Avenue 
Palo Alto, California 94304 

Fold and Staple 

International Business Machines Corporation 

Data Processing Division 

1133 Westchester Avenue, White Plains, New York 10604 

(U.S.A. only) 

IBM World Trade Corporation 

821 United Nations Plaza, New York, New York 10017 

(International) 

·---First Class Permit 

Number 439 
Palo Alto, California 

·---

0 
CJ) 

< CJ) 

CJ 
DJ 
...+ 
DJ 

s: 
DJ 
::I 
DJ 

l.C 
C'O 
3 
C'O 
::I 
...+ 

s: 
DJ 
(") ..., 
0 

::I 
~ ..., 
c 
(") 
....+ 
5· 
::I 
(/) 

'TI 

co 
2 
0 

CJ) 
w 
-..J 
0 w 
0 


