
..
I

•

Systems

GC26-3986-1
File No. 5370-25

VS FORTRAN
Application Programming:
Language Reference

Program Numbers 5748·F03 (Complier

Release 1.1

--..- -'----\ = =-===
\ - -. ---
\ - -- -----_ .. -

... -~-.-

and Library)
5748·LM3 (Library Only)

This publication was produced using the
IBM Document Composition Facility

(program number 5748-XX9) and
the master was printed on the IBM 3800 Printing Subsystem.

Second Edition (January 1982)

This is a major revision of, and makes obsolete, GC26-3986-0, and
its technical.newsletter, GN26-0830.

This edition applies to Release 1.1 of VS FORTRAN, Program
Products 5748-F03 (Compiler and Library) and 5748-LM3 (Library
Only), and to any subsequent releases until otherwise indicated
in new editions or technical newsletters.

The changes for this edition are summarized under "Summary of
Amendments" following the ~reface. Specific changes are indicated
by a vertical bar to the left of the change. These bars will be
deleted at any subsequent republication of the page affected.
Editorial changes that have no technical significance are not
noted.

Changes are periodically made to the information herein; before
using this pUblication in connection with the operation of IBM
systems, consult the latest IBM System/370 and 4300 Processors
Bibilography, GC20-0001, for the editions that are applicable and
current.

It is possible that this material may contain reference to, or
information about, IBM products (machines and programs),
programming, or services that are not announced in your country.
Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or
services in your country.

Publications are not stocked at the address given below; requests
for IBM publications should be made to your IBM representative or
to the IBM branch office serving your locality.

A form for reader's comments is provided at the back of this
publication. If the form has been removed, comments may be
addressed to IBM Corporation, P.O. Box 50020, Programming
Publishing, San Jose, California, ·U.S.A. 95150. IBM may use or
distribute any of the information you supply in any way it
believes appropriate without incurring any obligation whatever.
You may, of course, continue to use the information you supply.

~ Copyright International Business Machines Corporation 1981,
1982

. \

A
":Vf

PREFACE

C,,"
"

•

o

INDUSTRY STANDARDS

C,,' , "

This manual outlines the programming rules for VS FORTRAN
1978-level source language. It includes Full American National
Standard FORTRAN (X3.9-1978) plus IBM extensions.

After a brief introduction, tha following subjects are discussed:

1. The VS FORTRAN language

2. Data

Constants
Variables
Array elements
Character substrings

3. Expressions

4.

5.

Arithmetic
Character
Relational
Logical

Statements (in alphabetic order)

Appendix

Source language Flagger (Includes execution-time
cauti~ns)
VS FORTRAN-Supplied Procedures
IBM and ANS FORTRAN Features
Extended Error Handling Subroutines
EBCDIC and ASCII Codes

If this book is revised, a summary of amendments will be included
with the technical newsletter or new edition. Changes will be
highlighted.

The VS FORTRAN Compiler and library program product is designed
according to the specifications of the following industry
standards, as understood and interpreted by IBM as of June, 1980:

1. American National Standard Programming language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77).

Portions of this manual are copied from American National
Standard Programming language FORTRAN, ANSI X3.9-1978. This
material is reproduced, with permission, from American
National Standards Institute, Incorporated, 1430 Broadway,
New York, New York 10018.

2. International Organization for Standardization ISO 1539-1980
Programming languages--FORTRAN.

3. American Standard FORTRAN, X3.9-1966.

4. International Organization for Standardization ISO R
1539-1972 Programming languages-FORTRAN.

Standards 1 and 2 above are technically equivalent. When this
manual refers to the current standard, it is referring to
standards 1 and 2.

Preface iii

Standards 3 and 4 above are technically equivalent. When this
manual refers to the old st.ndard, it is referring to standards 3
and 4.

Both the FORTRAN 77 and the FORTRAN 66 standard languages include
IBM extensions. When this manual refers to current FORTRAN, it is
referring to the FORTRAN 77 standard plus the IBM extensions that
are valid with it. When this manual refers to old FORTRAN, it is
referring to the FORTRAN 66 standard plus the IBM extensions valid
wi th it.

IBM VS FORTRAN PUBLICATIONS

The VS FORTRAN publications are designed to help develop programs
with a minimum of wasted effort. This book, VS FORTRAN Application
Programming: language Reference, describes the rules for coding
VS FORTRAN programs when using the current FORTRAN.

A series of related publications contain detailed documentation
on writing programs using these rules:

• VS FORTRAN Application Programming: Guide, SC26-3985,
contains guidance information on designing, coding,
debugging, testing, and executing VS FORTRAN programs written
at the current FORTRAN language level. .

• VS FORTRAN Application Programming: library Reference,
SC26-3989, contains detailed information about the
execution-time library subroutines.

• VS FORTRAN Application Programming: System Services
Reference Supplement, SC26-3988, contains FORTRAN-specific
reference documentation.

• VS FORTRAN Application Programming: Source-Time Reference
Summary, SX26-3731, is a pocket-sized reference card
containing current FORTRAN syntax and brief descriptions of
the compiler options.

• System/360 and System/370 FORTRAN IV language, GC28-6515,
contains the rules for writing VS FORTRAN programs using
FORTRAN 66.

• IBM Svstem/370 Reference Data, GX20-1850.

Figure 1 shows how these manuals can be used together.

iv VS FORTRAN language Reference

o

o

Application P~oqramming and operation Publications

I

Design
Code

Debug

FORTRAN IV
Language
Reference

VS FORTRAN
Application Programming:

VS FORTRAN
Language
Reference

Guide

I

I
VS FORTRAN

system services
Reference
Supplement

VS FORTRAN
Reference

summary

Figure 1. IBM VS FORTRAN Application Programming Publications

compile
Link
Execute
Debug

I
VS FORTRAN

Library
Reference

Preface v

SUMMARY OF AMENDMENTS

RELEASE 1.1, JANUARY 1982

MISCELLANEOUS CHANGES

RELEASE 1, JUNE 1981

• Function subroutine charts have been added to Appendix B.

• The IBM extension abbreviations for .TRUE. and .FAlSE. have
been clarified.

• Several examples have been corrected.

• The syntax designations in the GO TO and logical IF statements
have been corrected.

• Adjustments have been made to the ERRTRA subroutine
description, including the Option Table Default Values.

• The index has been expanded.

MISCELLANEOUS CHANGES

• Unsigned arithmetic constants are explained.

• The IBM extension to the DATA statement is rewritten.

• The EJECT statement should not be continued.

• A logical IF statement containing stn may be labeled.

• The INCLUDE statement may not be continued.

• A parenthesis has been added to the PARAMETER statement
syntax.

• MAINI has been changed to MAIN in the PROGRAM statement.

• ID=ld is a required parameter in the WAIT statement.

vi VS FORTRAN Language Reference

o

.~,

I \
~;

CONTENTS

c
Introduct t on •••••
Language .•••..•
Compiler .•••••.••
Execution-Time Library
Methods of Presentation

Format Notation •••.••
Documentation of IBM Extensions ••

Valid and Invalid VS FORTRAN Programs

VS FORTRAN Language
Language Definitions
Language Syntax ..

Source Language Statements
Fixed-Form Source Statements
Free-Form Source Statements

Source Statement Characters
Names•
Statement Numbers
Keywords

VS FORTRAN Data ••••
Constants . • • .

. . .

Arithmetic Constants .•••.••.
Integer Constants
Real Constants
Complex Constants

Logical Constants
Character Constants
Hollerith Constants
Hexadecimal Constants

Variables•.•. • ••••
Variable Names . • . •••
Vari able Types and Lengths .•••...••..

Type Declaration by the Predefined Specification
Type Declaration by the IMPLICIT Statement ••
Type Declaration by Explicit Specification Statements

Array Elements .••.••••.•••••••••••••••
Subscri pts .•.•.•.•••••••
Size and Type Declarat i on of an Array

Object-Time Dimensions .•••••••.•.•
Character Substrings

VS FORTRAN Express ions. • • • • • • • •
Evaluation of Expressions . . • • .. . •...•..
Arithmetic Expressions ..•• . ••..

Ari thmeti c Operators •••••••••••..
Rules for Constructing Arithmetic Expressions
Use of Parentheses in Arithmetic Expressions ..•.•••
Type and length of the Result of Arithmetic Expressions
Examples of Arithmetic Expressions .•.•

Character Expressi ons ...••.•.....••••
Use of Parentheses in Character Expressions

Relat i ona 1 Express ion s •..•••••••••
Logical Expressions .••.•.••••.•.

Logical Operators .••.••.•.•••.
Order of Computations in Logical Expressions
Use of Parentheses in Logical Expressions

VS FORTRAN statements •••••••••
VS FORTRAN Statement Categories

Assignment Statements
Control Statements
Data Statement •.•.
Debug Statements
Input/Output Statements
Main Program Statement
Specification Statements ••••
Subprogram Statements ..••.•••••
VS FORTRAN Compiler Directing Statements

1
1
1
1
2
2
3
3

4
4
5
5
5
6
7
8

10
10

11
11
11
12
13
15
16
16
17
17
18
18
18
20
20
20
20
21
22
23
24

2S
25
25
26
26
28
28
32
33
33
34
35
36
37
38

41
41
41
41
42
42
42
42
43
43
44

Contents vii

Order of Statements in a Program Unit
VS FORTRAN Statement Descriptions

Arithmetic IF Statemen~
ASS I GN Statement ••••••••
Assigned GO TO Statement •••••.••••••.
Assi gnment Statements ••••••••••

Ari thmeti c Assi gnment Statement ••••
Character Assignment Statement
Logical Assignment Statement

AT Statement •• ' •
BACKSPACE Statement
BLOCK DATA Statement
Block IF Statement
CALL Statement ••
CHARACTER Type Statement
CLOSE Stat'ement .•••••. •••
Comments . , ••. 0 • 0 0 0 0 0 •••••• 0

Fixed-Form Input •• 0 ••

Free-Form Input
COMMON Statement •••

Blank and Named Common
COMPLEX Type Statement
Computed GO TO Statement • • • • • • 0 • • • 0 •

CONTINUE Statement 0 0 0 • 0 0 • 0 0 0 0 • 0 •

DATA Statement 0., 0 0 0 0 •• 0 •

DEBUG Statement 0 0 0 • 0 •

Considerations when Using DEBUG
DIMENSION Statement 0 0 0 0 0 0 • 0 • • • • • 0 0 0 • •

DISPLAY Statement • 0 • 0 • 0 • • • • • •

DO Statement 0 0 • 0 0 0 0 • • • 0 • • 0 0 0 0 •

Impl i ed DO ina DATA Statement 0 0 0 • • • •

Implied DO in an Input/Output Statement
DOUBLE PRECISION Type Statement 0 0 •• 0

E,J ECT Statement • • • • .
ELSE Statement 0........ 0
ELSE IF Statement 0 0 • 0 ••

END Statement 0...... 0 • • • • 0 •

END Statement in a Function Subprogram
END Statement in a Subroutine Subprogram

END DEBUG Statement • 0 • 0

ENDFILE Statement ••. 0 • 0 •••

END IF Statement • • • . 0 • 0 • • 0

ENTRY Statement 0 0 0 0 0 0 0 0 0 0 0

Actual Arguments in an ENTRY Statement
Dummy Arguments in an ENTRY Statement

EQUIVALENCE Statement 0 •••

Expl i cit Type Statement 0... 0
EXTERNAL Statement •••••
FORMAT Statement •• 0 0 0 0

.' . .

General Rules for Data Conversi on ••• 0 • 0 • 0 0

Forms of a FORMAT Statement
I Format Code . 0 0 0

F Format Code 0 0 0 0

0, E, andQ Format Codes
G Format Code 0 0 0 0 0 0

P Format Code •••.
Z Format Code 0 0 • 0 0 • 0 ••••

Numeric Format Code Examples
L Format Code .. 0 0 0 • • • • 0 0

A Format Code 0 0 0 • 0 0 0 • • • •

H Format Code and Character Constants
X Format Code ••.•••
T Format Code o. 0 • • 0 • • • • • • •

Group Format Specification
S, SP, and SS Fo rmat Codes • • • .
BN Format Code • • • •
BZ Fo rmat Code .. 0 • • •

Slash Format Code
Colon Format Code 0 0 • 0 • • • • 0 • • 0 • •

Reading Format Specifications at Objact Time
L i st-Directed Fo rmatt i ng .•••.••••

FUNCTION Statement •••. 0 .0 • 0 ••••••

Actual Arguments in ~ Function Subprogra~ ••••
Dummy Arguments in a Function Subprogram

GO TO Statements ••••.•• 0 • • • • • • •

vi;; VS FORTRAN Language Reference

44
45
45
46
46
47
47
47
47
53
54
-;6
57
58
58
59
61
61
61
62
17
g.,)

64
64
65
66
68
69
71
72
73
74
74
75
76
76
76
77
77
77
78
79
80
81
82
82
84
85
89
90
92
94
95
95
96
97
97
99
99

102
102
103
103
104
104
105
105
106
106
107
107
108
111
113
113
115

•

,~

~-j)

/1(--",\

<,-~

o
Ass; gned GO TO Statement •• ••••
Computed GO TO Statement. • • • •
Unconditional GO TO Statement

IF Statements ..•••.
Arithmetic IF Statement
Block IF Statement
Logi cal IF Statement ..••.••••

IMPLICIT Type Statement
INCLUDE Statement
INQUIRE Statement

INQUIRE by File Name
INQUIRE by Unit Number .••.•••••••••

INTEGER Type Statement ••.•••
INTRINSIC Statement . . • •

Spec if i c Names and Gener i c Names ..••
Logical IF Statement ..•.•••••••••..•••
LOGICAL Type Statement ..••. . • • • • . • • •
NAMEL 1ST Statement • • • •

NAMELIST Input Data •..
NAMELIST Output Data ••••

OPEN Statement • • • • • . • • • . . . • • • .
The I/O Unit is Not Connected to the External File
The I/O Unit is Connected to the External File

PARAMET ER Statement .••• • • • • • • • • • • • •
PAUSE Statement .••.
PRINT Statement .••.
PROGRAM Statement • • • • • • • • • • • . • • • •
READ Statements ..•.....•••.

READ Statement-Asynchronous .••.••••
READ Statement-Formatted with Direct Access
READ Statement-Formatted with Sequential Access
READ Statement--Unformatted with Direct Access .•••
READ Statement-Unformatted with Sequential Access
READ Statement wi th Internal Fi les •••••
READ Statement wi th L i st-Di rected I/O •••.
READ Statement with NAMELIST •••.

REAL Type Statement ••...••••••
RETURN Statement ..•..••.•••. .•••

RETURN Statement in a Function Subprogram
RETURN Statement in a Subroutine Subprogram

REWIND Statement••
SAVE Statement •...••..
Statement Function Statement
Statement Numbers .•..••

Fixed Form Statement Numbers
Free Form Statement Numbers

STOP Statement•••••
SUBROUTINE Statement ..•..••...••

Actual Arguments in a Subroutine Subprogram
Dummy Arguments in a Subroutine Subprogram

TRACE OFF Statement . . • • •
TRACE ON Statement .••••
Unconditional GO TO
WAIT Statement .•••
WRITE Statements •.•.••.

WRITE Statement-Asynchronous ..•••.•••••••
WRITE Statement--Formatted with Direct Access •••••
WRITE Statement--Formatted with Sequential Access
WRITE Statement--Unformatted with Direct Access ••
WRITE Statement-Unformatted with Sequential Access
WRITE Statement wi th Internal Fi les •.•
WRITE Statement with List-Directed I/O
WRITE Statement with NAMELIST

Appendix A. Source Language Flagger
Items Flagged for Full ANS Language

Global Items Flagged
Statements Flagged

Execution-Time Cautions

APpendix B. FORTRAN-supplied Procedures
Mathematical and Character Functions

Logarithmic and Exponential Routines
Trigonometric Routines ••••
Hyperbolic Function Routines

.

. . .

115
116
116
117
117
117
120
122
124
125
125
127
129
130
131
131
131
132
132
133
134
135
135
138
139
140
141
142
143
146
150
153
155
157
160
162
163
164
164
164
166
168
169
171
171
171
172
173
173
174
175
175
175
176
178
179
181
185
188
190
192
195
198

200
200
200
200
202

204
204
205
205
205

Contents ix

Miscellaneous Mathematical Routines •••••••••
Character Man i pu lat i on Rout i nes • • • • • • . • • .
Internal Data Conversion Generic Function Descriptions

APpendix C. IBM and ANS FORTRAN Features
New ANS FORTRAN 1977 Features ••••..

General Features •••.••.••
New Statement s ..••••••••
New Features in Old statements •

Old IBM Extensions Now in ANS FORTRAN 1977
IBM Extensions Not in ANS FORTRAN 1977
LANGLVL(66) Features Not in VS FORTRAN

APpendix D. Extended Error Handling subroutines
ERRMON Subroutine
ERRSAV Subroutine
ERRSET Subroutine •••.••• • •.•
Examples of CALL ERRSET ••••
ERRSTR Subroutine •.•.
ERRTRA Subrout i ne .••• . • • .

Message Option Tables •.•.•..•••.•••
Message Corrective Action Cross Reference Tables
Service Subroutines

DVCHK Subroutine •.•.
OUMP/POUMP Subroutine
COUMP/PCOUMP Subroutine ..••
EX ITS u b r 0 uti n e . • • .
OPSYS Subroutine (DOS Only)
OVERFLW Subrouti ne ..••.

APpendix E. EBCDIC and ASCII codes

Glossary

Index

x VS FORTRAN Language Reference

. . . .

206
207
207

208
208
208
209
210
212
213
214

215
215
216
217
218
219
219
220
223
233
233 !

233
234
234
234
234

236

241

247

1\,
~'

fIGURES

o

c

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.
22.
23.
24.
25.
26.
27.

IBM VS FORTRAN Application Programming Publications
Example of Fixed-Form Source Statements
Example of Free-Form Source Statements
Source Statement Characters
Data Type and Storage Length
Examples of Arithmetic Expressions
Arithmetic Operators ••••..•
Hi erarchy of Ari thmeti c Operati ons •••••••
Type and Length where the First Operand is Integer
Type and Length where the First Operand is Real .
Type and Length where the First Operand is Complex
Cha racter Operato r •••••••••••••••••
Relational Operators •••••••••••••••
Logi cal Operators •.••••.•••••••••••••
Hierarchy of Operations Involving Arithmetic Operators
HierarchY of Operations Involving Character Operators
Type and Length of the Result of Logical Operations
Order of Statements and Comment L i nas '.........
Conversion Rules for the Arithmetic Assignment
Statement a=b Where Type of b is Integer or Real
Conversion Rules for the Arithmetic Assignment
Statement a=b Where Type of b is Complex .• ••
Function Routine Prefix Meanings •••••
Opti on Table Preface ••••
Option Table Entry .•••••••
Option Table Default Values
Correct i ve Act i on after Error ••••••.••••
Corrective Action after Mathematical Subroutine Error
Correct i ve Act; on after Program Interrupt •••••••

v
6
7
8

19
'26
26
27
29
30
31
33
34
36
37
37
40
45

48

49
204
219
220
222
223
226
231

Figures xi

o

I ' L
r --,,\

- _/

o

INTRODUCTION

LANGUAGE

COMPILER

IBM VS FORTRAN consists of a language, a compiler, and an
execution-time library of subprograms.

The VS FORTRAN language consists of a set of characters,
conventions, and. rules that are used to convey information to the
compiler. The basis of the VS FORTRAN language is a statement
containing combinations of element names, operators, cBnstants,
and words (keywords) whose meaning is predefined to the compiler.

The VS FORTRAN language is best suited to applications that
involve mathematical computations and other manipulation of
arithmetic data.

In a process called compilation, a program called the VS FORTRAN
compiler analyzes the source program statements and translates
them into a machine language program called the object program
that can be combined with library routines to form a program
suitable for execution. In addition, when the VS FORTRAN compiler
detects errors in the source program, it produces appropriate
diagnostic messages.

The VS FORTRAN compiler operates under control of an operating
system that provides it with input, output, and other services.
Object programs generated by the VS FORTRAN compiler also operate
under operating system control and depend on it for similar
services.

EXECUTION-TIME LIBRARY

The VS FORTRAN execution-time library consists of subroutines and
functions supplied as part of the product. For complete
information on the library, see VS FORTRAN Application
Programming: library Reference. For a brief description of the
intrinsic functions and source subroutines to which the user may
refer directly in VS FORTRAN statements, see "Appendix B.
FORTRAN-Supplied Procedures" on page 204. For a discussion of
extended error handling subroutines, see "Appendix D. Extended
Error Handling Subroutines" on page 215.

Subroutines and functions to furnish any commonly used code
sequences can be compiled and added to an execution-time library
by the user. When written in VS FORTRAN, these can be structured
as function, subroutine, or block data subprograms. Other source
languages can be used if the subroutines are accessible by VS
FORTRAN calls. User subroutines may reside directly in the
supplied library data set or in a private data set called at load
or link-edit time.

Introduction 1

METHODS OF PRESENTATION

FORMAT NOTATION

Because meth~ds of presentation vary from book to book, the format
notation and method of indicating IBM extensions are outlined
here.

In this manual, "must" is to be interpreted as a requirement;
conversely, "must not" is to be interpreted as a prohibition.

In describing the form of VS FORTRAN statements or constructs, the
following conventions and symbols are used:

• Special characters from the VS FORTRAN character set,
uppercase letters, and uppercase words are to be written as
shown, except where otherwise noted.

• Lowercase letters and lowercase words indicate general
entities for which specific entities must be substituted in
actual statements. Once a given lowercase letter or word is
used in a syntactic specification to represent an entity, all
subsequent occurrences of that letter or word represent the
same entity until that letter or word is used in a subsequent
syntactic specification to represent a different entity.

• Square brackets ([]) are used to indicate optional items.

• An underl i ned word (such as name, ~, .l..in) i ndi cates a
variable, such as an entry point, name of a function, data
type, or Ii st of variables or array names.

• An ellipsis (.••) indicates that the preceding optional items
may appear one or more times in succession.

• Blanks are used to improve readability; however, unless
otherwise noted, they have no significance.

The general form of each statement is enclosed in a box. For
example:

syntax
CALL nsmg [([argl [,arg2] [,arg3] •••])]

The fo 110wi ng examples are among those allowed:

CALL D.§.!!!j!
CALL !l.2.!!l.!i! ()
CALL !l.2.!!l.!i! (s.,r,g)
CALL name (s.,r,g, s.r.a)
CALL !lS.!!!j! (ru:.g, arg, erg)
CALL !l.2.!!l.!i! (£U:.Sl, su:.g, arg, arg)

When an actual statement is written, specific entities are
substituted for name and each argo For example:

CALL ABCD (X,l.O)

2 VS FORTRAN Language Reference

o

o

DOCUMENTATION OF IBM EXTENSIONS

In addition to the statements available in FORTRAN 77, IBM
provides "extensions" to the language. These e~tensions are shown
in the following ways.

IBM EXTENSION

This paragraph shows how IBM language extensions in text are
documented.

'---------- END OF IBM EXTENSION -----------'

The following example shows how boxes indicate IBM extensions.

Name Type Length

I, J, K Integer variables 4 I ' 2, 2 I
C Real variable 4

D Complex variable 0

The example below shows how IBM extensions are documented within a
table. The boxes around certain types and lengths of the result of
logical operations indicate IBM extensions.

First
Operand logical logical

Second (1) (4)
Operand

logical logical logical
(1) (4) (4)

logical logical logical
(4) (4) (4)

VALID AND INVALID VS FORTRAN PROGRAMS

This manual defines the rules (that is, the syntax, semantics, and
restrictions) applicable for writing valid VS FORTRAN programs
either for the 1978 Standard or for the 1978 Standard plus IBM
extensions. Most violations of the VS FORTRAN language rules are
diagnosed by the compiler; however, some syntactic and semantic
combinations are not diagnosed, some because they are detectable
only at execution time, others for performance reasons. VS
FORTRAN programs that contain these undiagnosed combinations are
invalid VS FORTRAN programs, whether or not they execute as
expected.

Introduction 3

VS FORTRAN LANGUAGE

LANGUAGE DEFINITIONS

A VS FORTRAN program is made up of three basic elements:

Data Consi sts of constants, vari able.s, and arrays. See
"VS FORTRAN Data" on page 11.

Expressions Executable sets of arithmetic, character, logical,
or relational data. See "VS FORTRAN Expressions" on
page 25.

Statements Combin~tions of data and expressions. Sea "VS
FORTRAN Statement Descriptions" on page 45.

Some of the terms used in the discussion of the VS FORTRAN
programming language are defined as follows:

Ma;n program. A program unit, required for execution, that can
call other program units but cannot be called by them. A main
program does !l.2.i have a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement. The main program is the first to
receive control at execution time.

Subprogram. A program unit that ;s invoked by another program
unit in the same program. In FORTRAN, a subprogram has a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement.

Procedure. A sequenced set of statements that may be used at one
or more points in one or more computer programs, and that usually
is gi ven one or more input parameters and returns one or more
output parameters. A procedure consists of subroutines, function
subprograms, and intrinsic functions.

Intrinsic function. A function, supplied by VS FORTRAN, that
performs mathematical or character operations. (See "INTRINSIC
Statement" on page 130.)

External procedure. A subroutine or function subprogram written
in FORTRAN.

Executable program. A program that can be executed as a
self-contained procedure. It consists of a main program and,
optionally, one or more subprograms or non-FORTRAN-defined
external procedures, or both.

Executable statement. A statement that calCUlates, tests, or
al ters the flow of control.

Nonexecutable statement. A statement that describes the
characteristics of the program unit, of data, of editing
information, or of statement functions, but does not causa an
action to be taken by the program.

Preconnected file. A unit or file that was defined at
installation time. However, a preconnected file does not exist
for a program if the file is not defined by a FILEDEF command or
by job control statements.

Program unit. A sequence of statements constituting a main
program or subprogram.

Additional definitions can be found in the "Glossary" on page 241.

4 VS FORTRAN Language Reference

o·

o

c

LANGUAGE S VHT AX

For the compiler to understand instructions, certain syntax rules
must be carefully adhered to when entering the following items.
Each of these items is discussed more fully following the list.

Source language statements
Source statement characters
Names
Statement numbers
Keywords

SOURCE LANGUAGE STATEMENTS

VS FORTRAN accepts source input in either of two formats:

• Fixed-form input format: Fixed-length 80-byte records.

IBM EXTENSION

• Free-form input format: Fixed-length records (with a
maximum length of 1320 bytes). This frees the programmer
from card column restrictions and is useful for terminal
input.

'----------- END OF IBM EXTENSION -----------'

A program unit must be written in either fixed form or free
form-not both.

Fixed-Form Source statements

The statements of a VS FORTRAN source program can be written on a
standard FORTRAN Coding Form, GX28-7327. Each line on the coding
form is 80 characters long and is equivalent to one 80-column card
(or input line on a terminal).

• statement number

The statement number consists of from 1 to 5 decimal digits.
It must not be zero. Blanks and leading zeros in a statement
number are ignored. The values of the statement numbers do not
affect the order in which the statements are executed. The
same statement number must not be given to more than one
statement in a program unit.

• Initial line

VS FORTRAN statements are written within columns 7 through
72. The first line of a statement may have a number in columns
1 through 5 and must have a blank or zero in column 6.

• Comments

•

Comments to explain the program may be written in columns 2
through 72 if the letter C or an asterisk (*) is placed in
column 1. The VS FORTRAN compiler does not process comments
other than to print them as part of the source program
listing. Comments may appear anywhere in the program before
the END statement. Blank lines can appear anywhere in the
program and are processed as comments.

Continuation line

A VS FORTRAN statement that cannot be completed on one line
may be continued onto as many as 19 additional lines. A
continuation line has any character other than a blank or zero
in column 6. The statement is then continued within columns 7
through 72.

Comments can appear between continuation lines.

VS FORTRAN language 5

IBM EXTENSION

VS FORTRAN allows columns 1 through 5 in a continuation line
to contain any characters, but they are ignored.

--------- END OF IBM EXTENSION ---------~

• Identification

Columns 73 through 80 of any VS FORTRAN line are not
significant to the compiler and may, therefore, be used for
identification, sequencing, or any other purpose.

As many blanks as desi red may be wri tten ina statement or comment
to improve its readability. They ara ignored by the compiler.
However, blanks that are inserted in literal or character data are
reta i ned and treated as blanks wi thi n the data.

Figure 2 illustrates fixed-form source statements.

Column: 1 67

C SAMPLE TEXT

.
10 D=010.5

GO TO 56
150 A=B+C*(D+E**F+

IG+H-2.*(G+P»
C=3.

Figure 2. Example of Fixed-Form Source Statements

IBM EXTENSION

Free-Form Source Statements

The following rules govern free-form input format (free-form
source):

• Statement number

The initial line may contain, as the first nonblank
character of that line, a statement number consisting of
from one to five decimal digits. Blanks and leading zeros in
a statement number are ignored. A blank need not separate a
statement number from the first nonblank character that
follows the statement number.

• Initial line

An initial line is the first line of the statement and may
start in any position on a new line.

• Comments

A comment line is a line that does not follow a continued
line and that has a quotation mark (") in the first
character position (column 1). Blank lines are not allowed
as comment lines. A comment line cannot be continued.

6 VS FORTRAN language Reference

o

{)

o

o
\,

• Continued line

A line of a statement to be continued is indicated by
terminating the line with a hyphen or minus sign (-). A
comment line cannot be continued.

• Preserving a minus sign

If the last character in the line is a hyphen (minus sign),
it is assumed to indicate continuation and is discarded. If
the last two characters in a line are hyphens, only the last
one is taken as a continuation character; the preceding one
is preserved as a mi nus S1 gn.

• Continuation line

A continuation line is a line following a continued line. It
may start in any position. Up to 19 continuation lines are
permitted in a single statement.

• Maximum statement length

The maximum length of a free-form source statement is 1320
characters, excluding the statement continuation character
and the statement number. Blank characters are counted in
the total number of characters.

Figure 3 illustrates free-form source statements.

Column: 1 7

"SAMPLE TEXT

100=010.5
GO TO 56
150 A=B+C*(O+E**F+
G+H-2.*(G+P»
C=3.

Figure 3. Example of Free-Form Source Statements

END OF IBM EXTENSION ---------......

SOURCE STATEMENT CHARACTERS

The characters listed in Figure 4 on page 8 constitute the set of
characters acceptable in a VS FORTRAN program.

A special character may be an operator (or part of an operator),
part of a constant, or have some other special meaning. The
interpretation is implied by the context.

The special characters shown in Figure 4 on page 8 are listed in
their correct collating sequence. (The complete collating
sequence can be found in "Appendix E. EBCDIC and ASCII Codes" on
page 236.)

VS FORTRAN Language 7

NAMES

Special Characters Letters Digits

blank A 0 0 . period B P 1
(left parenthesis C Q 2
+ plus sign D R 3
$ currency sign E S 4

* asterisk F T 5
) right parenthesis G U 6
- minus sign H V 7
/ slash I W 8
, comma J X 9
: colon K y , apostrophe L Z
= equal sign M r:I ..

quotation mark
I I

N

Figure 4. Source Statement Characters

Names (referred to as "symbolic names" in old FORTRAN
publications) can be assigned to the elements of a program unit.

r---- Definition

Name--A string of 1 through 6 letters (A,B, •.. ,Z) or digits
(0,1, ... ,9), the first of which must be a letter.

IBM EXTENSION

With this compiler, the currency symbol ($) is treated as
a letter when used in a name. Therefore, the currency
symbol ($) can be used as the first character in a name.

END OF IBM EXTENSION

Names can be used to identify the following items in a program
unit:

• An array and the elements of that array (see "Array Elements"
on page 20)

• A variable (see "Variables" on page 18)

• A constant (See "PARAMETER Statement" on page 138)

• A main program (see "PROGRAM Statement" on page 141)

• A statement function (see "Statement Function Statement" on
page 169)

• An intrinsic function (see "Appendix B. FORTRAN-Supplied
Procedures" on page 204)

• A function subprogram (see "FUNCTION Statement" on page 111)

•

•

A subroutine subprogram (see "SUBROUTINE Statement" on page
173)

A block data subprogram (see "BLOCK DATA statement" on page
56)

8 VS FORTRAN Language Reference

q

c·

o

•
•

A common~block (see "COMMON statement" on page 62)

An external user-supplied subprogram that cannot be
classified by its usage in that program unit as either a
subroutine or function subprogram name (see "EXTERNAL
Statement" on page 89)

• A NAMELIST (see "READ Statement with NAMELIST" on page 162 and
"WRITE Statement with NAMELIST" on page 198)

A name that identifies a constant, variable, array, external
function, or statement function also identifies its data type.
The name may be specified in a specification statement (see
"Specification Statements" on page 43). If the name does not
appear in such a statement, the type is implied by the first
letter of the name. A first letter of I through N implies integer
type, and any other letter (or the currency symbol) implies real
type, unless an IMPLICIT statement is used to change the default
type.

Names are either global or local.

• Classes of global names:

•

Common block

External function

Subroutine

Main program

Block data subprogram

Classes of local names~

Array

Variable

Constant

Statement function

Intrinsic function

Dummy procedure

Names must be unique within a class in a program unit and can
identify elements of only one class except in the following
situations:

• A common-block name can also be an array, variable, or
statement function name in a program unit.

• A function subprogram name must also be a variable name in the
function subprogram.

The name of a main program, subroutine, common-block, NAMELIST,
or block data subprogram has no type. A generic function name has
no predetermined type; it assumes a type dependent upon the type
of its argument(s).

Once a name i s u sed a s a rna in program name, a funct i on subprogram
name, a subroutine subprogram name, a block data subprogram name,
a common-block name, or an external procedure name in any unit of
an executable program, no other program unit of that executable
program can use that name to identify an entity of these classes
in any other way.

VS FORTRAN Language 9

STATEMENT NUMBERS

KEYWORDS

Statement numbers identify statements in a VS FORTRAN program.

A statement number is a sequence of from one to five digits, one
of which must be nonzero. It can be written in either fixed form
or free form. See "Statement Numbers" on page 171.

Keywords identify VS FORTRAN-supplied procedures (intrinsic
functions) that can be used as part of any program. These
procedures are mathematical functions and service subroutines
that are supplied to save programmers the time it would take to
write them every time that particular sequence of statements is
need~d in a program. See "Appendix B. FORTRAN-Supplied
Procedures" on page 204.

A keyword is a specified sequence of characters. Whether a
particular sequence of characters identifies a keyword or a name
is implied by context. There is no sequence of characters that is
reserved in all contexts.

10 VS FORTRAN language Reference

~
-\~J

o ('

o
l

VS FORTRAN DATA

CONSTANTS

ARITHMETIC CONSTANTS

Data is a formal representation of facts, concepts, or
instructions. VS FORTRAN manipulates three general kinds of data:

• Constants

• Variables

• Arrays

Note: These are not to be confused with data types. Data types
correspond to the the five types of variables, as discussed under
"Variable Types and Lengths" on page 18.

A constant is a fixed, unvarying quantity. There are several
classes of constants:

• Arithmetic constants specify decimal values:

•

•

•

Integer
Real
Complex

Logical constants specify a logical value as "true" or
"false." There are two logical constants:

.TRUE.

.FALSE.

Character constants are a string of alphameric and/or special
characters enclosed in apostrophes.

Hollerith constants are used only in FORMAT statements.

IBM EXTENSION

• Hexadecimal constants are used only as data initialization
values of arithmetic or logical variables.

1..-_________ END OF IBM EXTENSION ----------'

The PARAMETER statement allows a constant to be given a name. (See
"PARAMETER Statement" on page 138.)

Arithmetic constants fall into three categories: integer, real,
and complex.

An unsigned constant is a constant with no leading sign. A signed
constant is a constant with a leading plus or minus sign. An
optionally signed constant is a constant that may be either signed
or unsigned. Only integer and real constants may be optionally
signed.

VS FORTRAN Data 11

Integer constants

Definition

Integer Constant--A string of decimal digits containing no
decimal point and expressing a whole number. It occupies 4
bytes of storage.

Maximum Magnitude: 2 147 483 647 (that is, 2 31 _1).

An integer constant may be positive, zero, or negative. If
unsigned and nonzero, it is assumed to be positive. (A zero may be
written with a preceding sign with no effect on the value.) Its
magnitude must not be greater than the maximum and it must not
contain embedded commas.

Valid Integer constants:

o

91

173

-214 748 3647

Invalid Integer Constants:

27. Contains a

3145903612 Exceeds the

5,396 Contains an

-2147483648 Exceeds the
even though

decimal point.

maximum magnitude.

embedded comma.

maximum magnitude,
it fits into 4 bytes.

12 VS FORTRAN Language Reference

o

Real constants

o

o

o

Real Constant--A string of decimal digits that expresses a
real number. It can have one of three forms: a basic real
constant, a basic real constant followed by a real exponent,
or an integer constant followed by a real exponent.

A basic real constant is a string of digits with a decimal
point. It is used to approximate the value of the constant.

The storage requirement (length) of a real constant can also
be explicitly specified by appending an exponent to a basic
real constant or an integer constant. The standard exponents
consist of the letters E and D.

IBM EXTENSION

This compiler also allows the letter Q as an exponent.

END OF IBM EXTENSION

An exponent ;s followed by a signed or unsigned 1- or
2-digit integer constant. The letter E specifies a constant
of length 4; the letter 0 specifies a constant of length 8.

IBM EXTENSION

The letter Q specifies a constant of length 16.

Magnitude:

Precision:

END OF IBM EXTENSION

o or 16-65 (approximately 10- 78)
through 16 63 (approximately 10 75)

(Four bytes) 6 hexadecimal digits
(approximately 6 decimal digits)

(Eight bytes) 14 hexadecimal digits
(approximately 15 decimal digits)

IBM EXTENSION

(Sixteen bytes) 28 hexadecimal digits
(approximately 32 decimal digits)

END OF IBM EXTENSION

A real constant may be positive, zero, or negative (if unsigned
and nonzero, it is assumed to be positive) and must be within the
allowable range. It may not contain embedded commas. A zero may be
written with a preceding sign with no effect on the value. The
decimal exponent permits the expression of a real constant as the
product of a basic real constant or integer constant and 10 raised
to a desired power.

VS FORTRAN Data 13

Valid Real Constants (Four Bytes):

+0.

-999.9999

7 • 0 E+O

9761.25E+l

7.E3

7.0E3

7.0E+03

That is, 7.0 x 10° = 7.0

That is, 9761.25 x 10 1 = 97612.5

That is, 7.0 x 10 3 = 7000.0

7E-03 That is, 7.0 x 10- 3 = 0.007

21.98153829~51168 Hote: This is a valid real constant, but
it cannot be accommodated in four bytes.
It will be accepted and truncated.

Valid Real Constants (Eight Bytes):

1234567890123456.D-73 Equivalent to .1234567890123456xl0- 57

7.9003

7.90+03

7.90+3

7.900

7003

That is, 7.9 x 10 3 = 7900.0

That is, 7.9 x 10° = 7.9

That is, 7.0 x 10 3 = 7000.0

IBM EXTENSION

Valid Real constants (sixteen Bytes):

.234523453456456734565678Q+43

5.001Q08

1.....-________ END OF IBM EXTENSION ---------.....

Invalid Real Constants:

1

3,471.1

1.E

1.2E+113

23.50+97

21.30-99

14 VS FORTRAN language Reference

Missing a decimal point or a
decimal exponent.

Embedded comma.

Missing a 1- or 2-digit integer constant
following the E. It-is not intepreted
as 1.0 x 10°.

Too many digits in the exponent.

Magnitude outside the allowable range,
that is, 23.5 x 10 97 >16 63 •

Magnitude outside the allowable range,
that is, 21.3 x 10-99 <16- 65 •

o

o

o
Complex constants

o

o

IBM EXTENSION

88.63215748Q123 Too many digits in the exponent

END OF IBM EXTENSION

Complex Constant--An ordered pair of signed or unsigned
integer or real constants separated by a comma and enclosed
in parentheses. The first constant in a complex constant
represents the real part of the complex number; the second
represents the imaginary part of the complex number.

The real or integer constants in a complex constant may be
positive, zero, or negative and must be within the allowable
range. (If unsigned and nonzero, they are assumed to be positive.)
A zero may be written with a preceding sign, with no effect on the
value. If both constants are of type integer, however, then both
are converted to type real of length 4 bytes.

IBM EXTENSION

If the constants of the ordered pair representing the complex
constant differ in precision, the constant of lower precision
is converted to a constant of the higher precision.

For example, if one constant is real and the other is double
precision, real is converted to double precision.

If the constants differ in type, the integer constant is
converted to a real constant of the same precision as the
original real constant.

For example, if one constant is integer and the other is
double precision, then the integer constant is converted to
a double precision constant.

END OF IBM EXTENSION _________1

Valid Complex Constants (i = square root of -1):

(3,-1.86) Has the value 3.- 1.86i;
both parts are real
(4 bytes long).

IBM EXTENSION

(-5.0E+03,.16D+02)

(4.70+2,1.97361404)

(470+2,380+3)

(1234.345456567678Q59,-1.0Q-5)

(45Q6,6E45)

Has the value -5000.+16.01;
both parts are double
precision.

Has the value 470.+19736.14i.

Has the value 4700.+38000.i.

Both parts are real (16 bytes
long.)

ENO OF IBM EXTENSION

VS FORTRAN Data 15

LOGICAL CONSTANTS

CHARACTER CONSTANTS

Invalid Complex Constanta:

(A, 3.7) Real part is not a constant.

IBM EXTENSION

(.0009Q-l,7643.Q+1199) Too many digits in the exponent
of the imaginary part.

(49.76, .015D+92)

Definition

Magnitude of imaginary part is
outside of allowable range.

END OF IBM EXTENSION

logical Constant--A constant that can have a logical value
of either true or false.

There are two logical constants:

.TRUE .
• FALSE.

The words TRUE and FALSE must be preceded and followed by
periods. Each occupies 4 bytes.

IBM EXTENSION

The abbreviations T and F (without the periods) may be used for
.TRUE. and .FALSE., respectively, (in a source program only)
for the initialization of logical variables or logical arrays
in the DATA statement and in the explicit type statement. For
use as input/output data, see "l Format Code" under "FORMAT
Statement."

END OF IBM EXTENSION ----------

The logical constant .TRUE. or .FAlSE., when assigned to a logical
variable, specifies that the value of the logical variable is true
or false, respectively. (See "Logical Expressions" on page 35.)

Definition

Character Constant--A string of any characters capable of
representation in the processor. The string must be enclosed
in apostrophes.

The delimiting apostrophes are not part of the data represented by
the constant. An apostrophe within the character data is
represented by two consecutive apostrophes with no intervening
blanks. In a character constant, blanks embedded between the
delimiting apostrophes are significant. The length of a character
constant must be greater than zero.

Each character requires one byte of storage.

Character constants can be used in character expressions, in an
assignment statement, in the argument list of a CAll statement or
function reference, as data initialization values, in input or
output statements, in FORMAT statements, in PARAMETER st.tements,
or in PAUSE and STOP statements.

16 VS fORTRAN language Reference

,«"""
\~

if'\,

.~'

o·

o

o

HOLLERITH CONSTANTS

Valid Character Constants:

'DATA'

'X-COORDINATE Y-COORDINATE

'3.14'

'DOH"T'

Definition

Z-COORDINATE'

Length:

4

44

4

5

Hollerith Constant--A string of any characters capable of
representation in the processor and preceded by ~H, where ~
is the number of characters in the string.

Each character requires one byte of storage.

Hollerith constants can be used only in FORMAT statements.

Valid Hollerith Constants:

24H INPUT/OUTPUT AREA NO.2

6H DON'T

IBM EXTENSION

HEXADECIMAL CONSTANTS

Definition

Hexadecimal Constant--The character Z followed by two or
more hexadecimal numbers formed from the set of characters 0
through 9 and A through F.

Hexadecimal constants may be used as data initialization values
for any type of variable or array except those of character
type.

One byte contains 2 hexadecimal digits. If a constant is
specified as an odd number of digits, a leading hexadecimal zero
is added on the left to fill the byte. The internal binary form
of each hexadecimal digit is as follows:

0-0000
1-0001
2-0010
3-0011

4-0100
5-0101
6-0110
7-0111

Valid Hexadecimal Constants:

8-1000
9-1001
A-IOIO
B-IOI1

Z1C49A2Fl represents the bit string:

00011100010010011010001011110001

ZBADFADE represents the bit string:

00001011101011011111101011011110

C-1100
D-1101
E-1110
F--1111

where the first 4 zero bits are implied because an odd number of
hexadecimal digits is written.

VS FORTRAN Data 17

VARIABLES

VARIABLE HAMES

The maximum number of digits allowed in a hexadecimal constant
depends upon the length specification of the variable baing
initialized (see "Variable Types and lengths"). The following
list shows the maximum number of digits for each length
specification:

Length
of variable

Maximum Humber of
Hexadecimal Digits

16
8
4
2
1

32
16

8
4
2

If the number of digits is greater than the maximum, the excess
leftmost hexadecimal digits are truncated; if the number of
digits is less than the maximum, hexadecimal zeros are supplied
on the left.

'---....;.-.------ END OF IBM EXTENSION ----------

A VS FORTRAN variable is a data item, identified by a name, that
occupies a storage area, except possibly in situations involving
error or interruption handling where normal program flow is
asynchronously interrupted. The value represented by the name is
always the current value stored in the area.

Before a vari able has been assi gned a value, its content are
undefined, and the variable should not be referred to except to
assi gn ita value. If a vari able has not been assi gned a value, it
does not have a predictable value.

VS FORTRAN variable names must follow the rules governing element
names. (See "Names" on page 8.) The use of mean i ngful vari able
names can serve a s an a; din document i ng a program.

Valid variable Names:

B292S

RATE

$VAR

IBM EXTENSION

END OF IBM EXTENSION ---------~

Invalid Variable Names:

B292704

4ARRAY

SI.X

Contains more than six characters.

First character is not alphabetic.

Contains a special character.

VARIABLE TYPES AND LENGTHS

The type of a vari able corresponds to the type of data the
variable represents. (See Figure 5 on page 19.) Thus, an integer
variable must represent integer data, a real variable must

o

represent real data, and so on. There is no variable type .. 0' .\.
associated with hexadecimal data; this type of data is identified
by a name of one of the other types. There is no variable type
associated with statement numbers; integer variables that contain

18 VS FORTRAN language Reference

o

o

o

the statement number of an executable statement or a FORMAT
statement are not considered to contain an integer variable. (See
"ASSIGN Statement" on page 46.)

For every type of variable data, there is a corresponding length
specification that determines the number of bytes that are
reserved.

IBM EXTENSION

Optional length specification is an IBM extension.

END OF IBM EXTENSION ---------......

Figure 5 shows each data type with its associated storage length
and standard length.

Data Type storage Length Standard Length (Default)

Integer ~ 4 4

Real 4 I ' 8, 16
1

4

Double 8 8
Precision

Complex 8 I ' 16, 32
1

8

Logical G4 4

Character 1 - 500 1

Figure 5. Data Type and Storage Length

A programmer may declare the type of variable by using the
following:

• Explicit specification statements

• IMPLICIT statement

• Predefined specification contained in the VS FORTRAN language

An explicit specifi~ation statement overrides an IMPLICIT
statement, which, in turn, overrides the predefined
specification. The optional length specification of a variable
may be declared only by the IMPLICIT or explicit specification
statements. If, in these statements, no length specification is
stated, the default length is assumed. INTEGER, REAL, DOUBLE
PRECISION, COMPLEX, and CHARACTER are used to specify the length
and type in these statements.

IBM EXTENSION

VS FORTRAN accepts INTEGER*2 to indicate 2 bytes and INTEGER*4
as an al ternat; ve to INTEGER to i ndi cate 4 bytes; REAL*4 as an
alternative to REAL to indicate 4 bytes; REAL*8 as an

VS FORTRAN Data 19

alternative to DOUBLE PRECISION to indicate 8 bytes; REAL*16 to
indicate 16 bytes~ LOGICAl*1 to indicate 1 byte, and lOGICAl*4
as an alternative to LOGICAL to indicate 4 bytes.

'----------- END OF IBM EXTENSION -----------

Type Declaration by the predefined Specification

The predefined specification is a convention used to specify
variables as integer or real as follows:

• If the first character of the variable name is I, J, K, l, M,
or N, the variable is integer of length 4.

• If the fi rst character of the vari able name is any other
alphabetic character, the variable is real of length 4.

IBM EXTEHSIOH

• If the first character of the variable name is a currency
symbol ($), the variable is real of length 4.

'----------- END OF IBM EXTENSION ------------'

This convention is the traditional FORTRAN method of specifying
the type of a variable as either integer or real. Unless otherwise
noted, it is presumed in the examples in this publication that
this specification applies. Variables defined with this
convention are of standard (default)'length.

Type Declaration by the IMPLICIT statement

The IMPLICIT statement allows a programmer to specify the type of
variables in much the same way as was specified by the predefined
convention. That is, the type is determined by the first character
of the variable name. However, by using the IMPLICIT statement,
the programmer has the option of specifying which initial
characters designate a particular variable type. The IMPLICIT
statement can be used to specify all types of variables--integer,
real, complex, logical, and character--and to indicate storage
length.

The IMPLICIT statement overrides the variable type as determined
by the predefined convention.

The IMPLICIT statement is presented in greater detail in
"IMPLICIT Type Statement" on page 122.

Type Declaration by Explicit Specification statements

ARRAY ELEMENTS

Explicit specification statements differ from the first two ways
of specifying the type of a variable in that an explicit
specification statement declares the type of a particular
vari able by its .!ll!.!!l.!! rather than a group of vari able names
beginning with a particular letter, as specified in Figure 4 on
page 8. Explicit type statements override IMPLICIT statements and
the predefined specifications.

The explicit specification statements are discussed in greater
detail in "Explicit Type Statement" on page 85.

An array is an ordered and structured sequence of data items,
stored as multidimensional vectors of from one to seven

o

dimensions. The data items that make up the array are called array 0
elements. A part i cular element in the array is i dent i fi ed .by the .' . > •

array name and its position in the array (for example, first
element, third element, seventh element, and so on). (See "Names"

20 VS FORTRAN Language Reference

o

SUBSCRIPTS

on page 8.) All elements of an array have the same type and
length.

To refer to any element in an array, the array name plus a
parenthesized subscript must be used. In particular, the array
name alone does not represent the first element except in an
EQUIVALENCE statement.

Before an array element has been assi gned a value, its contents is
undefined, and the array element should not be referred to before
assigning it a value.

A subscript is a quantity (or a set of subscript expressions
separated by commas) that is associated with an array name to
identify a particular element of the array. The number of
subscript quantities in any subscript must be the same as the
number of dt mensi ons of the array wi th whose name the subscri pt is
associated. A subscript is enclosed in parentheses and is written
immediatelY after the array name. A maximum of seven subscript
exp~essions can appear in a subscript.

The following rules apply to the construction of subscripts. (See
"VS FORTRAN Expressions" on page 25 for additional information
and restrictions.)

1. Subscript expressions may contain arithmetic expressions that
use any of the arithmetic operators: +, -, M, I, MM.

2. Subscript expressions may contain function references that do
not change any other value in the same statement.

3. Subscript expressions may contain array elements.

4:) IBM EXTENSION

o

4. Mixed-mode expressions (integer and real only) within a
subscript are evaluated according to normal FORTRAN rules.
If the evaluated expression is real, it is converted to
integer by truncation.

'----------- END OF IBM EXTENSION ------------'

5. The evaluated result of a subscript expression must always be
greater than or equal to the corresponding lower dimension
bound and must not exceed the corresponding upper dimension
bound (see "Size and Type Declaration of an Array" on page 22
for information about dimension bounds).

Valid Array Elements:

ARRAY (IHOLD)

NEXT (19)

MATRIX (1-5)

IBM EXTENSION

BAK (I,J(K+2*L,.3*ACM,N») J is an array.

ARRAY (I,J/4*KM*2)

ARRAY (-5)

LOT (0)

END OF IBM EXTENSION

VS FORTRAN Data 21

Invalid Array Elements:

All (. TRUE.)

NXT (1+(1.3,2.0»

A subscript expression may not be a
logical expression.

A subscript expression may not be a
complex expression.

Note: The elements of an array are stored in column-major order.
To step through the elements of the array in the linearized order
defined as "column-major order," each subscript varies (in steps
of 1) from its lowest valid value to its highest valid value, such
that each subscript expression completes a full cycle before the
next subscript expression to the right is incremented. Thus, the
leftmost subscript expression varies most rapidly, and the
rightmost sUbexpression varies least rapidly.

The following list is the order of an array named C defined with
three dimensions;

DIMENSION C(I:3,1:2,1:4)

C(I,1,1) C(2,1,1) C(3,1,1) C(I,2,1) C(2,2,1) C(3,2,1)
C(1,1,2) C(2,1,2) C(3,1,2) C(1,2,2) C(2,2,2) C(3,2,2)
C(1,1,3) C(2,I,3) C(3,1,3) C(1,2,3) C(2,2,3) C(3,2,3)
C(1,1,4) C(2,1,4) C(3,I,4) C(1,2,4) C(2,2,4) C(3,2,4)

SIZE AND TYPE DECLARATION OF AN ARRAY

The size (number of elements) of an array is declared by
specifying, in a subscript, the number of dimensions in the array
and the size of each dimension. Each dimension is represented by
an optional lower bound (gI) and a required upper bound (g2) in
the form:

syntax

([gl:] g2)

is an array name.

where:

gl
is the lower dimension bound. It is optional. If gl
(with its following colon) is not specified, its value
is assumed to be 1.

is the upper di mensi on bound and must always be
specified.

The colon represents the range of values for an array's subscript.
For example,

DIMENSION A(0:9),B(3,-2:S)

DIMENSION ARAY(-3:-1),DARY(-3:ID3**IDl)

DIMENSION IARY(3)

The upper and lower bounds (gl and g2) are arithmetic expressions
in whi ch all constants and vari abIes are of type integer.

•

•

If the array name is an actual argument, the expressions can
contain only constants or names of constants of type integer.

The value of the lower bound may be positive, negative, or
zero. It is assumed to be 1 if it is not specified.

22 VS FORTRAN language Reference

o

C I

o

0"
, ,

•

•

•

A maximum of seven dimensions is permitted. The size of each
dimension is equal to the difference between the upper and
lower bounds +1. If the value of the lower dimension bound is
1, the size of the dimension is equal to the value of its
upper bound.

Function or array element references are not allowed in
dimension bound expressions.

The value of the upper bound must be greater than or equal to
the value of the lower bound. An upper dimension bound of an
asterisk is always greater than or equal to the lower
dimension bound.

• If the array name is a dummy argument and is in a subprogram,
the expressions can also contain:

Integer variables that are also dummy arguments

Expressions that contain:

Signed or unsigned integer constants

Names of integer constants

Variables that are dummy arguments or appear in a
common-block in that subprogram

• The upper dimension bound of the last dimension of a dummy
array name can be an asterisk.

Size information must be given for all arrays in a VS FORTRAN
program so that an appropriate amount of storage may be reserved.
Declaration of this information is made by a DIMENSION statement,
a COMMON statement, or by one of the explicit type specification
statements. These statements are discussed in detail in
alphabetic sequence in "VS FORTRAN Statement Descriptions."

The type of an array name is determined by the conventions for
specifying the type of a variable name. Each element of an array
is of the type and length specified for the array name.

Object-Time Dimensions

If a dummy argument array is used in a function or subroutine
subprogram, the absolute dimensions of the array do not have to be
explicitly declared in the subprogram by constants. Instead, the
array declarators appearing in an explicit specification
statement or DIMENSION statement in the subprogram may contain
dummy arguments or variables in common that are integer variables
of length 4 to specify the size of the array. When the subprogram
is called, these integer variables receive their values from the
actual arguments in the calling program reference or from common.
Thus, the dimensions of a dummy array appearing in a subprogram
may change each time the subprogram is called. This is called an
"adjustable array" or an "object-time dimension array."

The absolute dimensions of an array must be declared in the
calling program or in a higher level calling program, and the
array name must be passed to the subprogram in the argument list
of the calling program. The dimensions passed to the subprogram
must be less than or equal to the absolute dimensions of the array
declared in the calling program. The variable dimension size can
be passed through more than one level of subprogram (that is, to a
subprogram that calls another subprogram, passing it dimension
information).

Integer variables in the explicit specification or DIMENSION
statement that provide dimension information may be redefined
within the subprogram but the redefinitions have no effect on the
size of the array. The size of the array is determined at the
entry point at which the array information is passed.

VS FORTRAN Data 23

CHARACTER SUBSTRINGS

Character arrays are speci fi ed in the same manner as for the other
data types. (See "DIMENSION Statement" on page 71 and "Explicit
Type Statement" on page 85.) The length of each array element is
ei ther the standard length of 1 or may be declared larger wi th a
type or IMPLICIT statement. Each character array element ;s
treated as a single entity. Portions of an array element can be
accessed through substring notation.

A character substring 1S a contiguous portion of a character
variable or character array element. A character substring is
identified by a substring reference. It may be assigned values and
may be referred to. A substring reference 1S local to a program
uni t.o

ihe form of a substring reference iSi r:: syntax
~1:~2)

is a character vari able name or a subscri pted character
array name (see "Array Elements~ on page 20) •

.11 and e2
are substring expressions.

Substring expressions are optional, but the colon (:) is always
required inside the parentheses. The colon represents a range of
values. If ill is omitted, a value of one is implied for ~1. If il2 (-~
is omi tted, a value equal to the length of the character vari able '~,)
or array element is i mpl i ed for il2. Both ill and il2 may be omi tted; J
for example, the form ~(:) is equivalent to~.

The value of ~I specifies the leftmost character position and the
value of il2 specifies the rightmost character position of the
substring. The substring information (if any) must be specified
after the subscript information (if any).

• The values of ill and g2 must be integer, posi ti ve, and
nonzero.

• The value of gl must be less than or equal to the value of Jl2.

• The values of gl and g2 must be less than or equal to the
number of characters contained in the corresponding variable
name or array element.

Examples:

Example I:

Given the following statements:

CHARACTER*S CH(lO)
CH(2)='ABCDE'

then

CH(2)(1:2) has the value AB.
CH(2)(:3) has the value ABC.
CH(2)(3:) has the value CDE.

Example 2:

SUBSTG(:) = SYMNAM
SUBST3(3:15) = SYMB3
SUBST5(5:9) = SUBARI(2)(I:)

24 VS FORTRAN Language Reference

o

o

ys FORTRAN EXPR£SSIONS

VS FORTRAN provides four kinds of expressions: arithmetic,
character, relational, and logical.

• The value of an ari thmet i c expressi on is always a number whose
type is integer, real, or complex.

• The value of a character expression is a character string.

• The value of a relational or logical expression is always a
logical value: . TRUE. or .FALSE •.

EVALUATION OF EXPRESSIONS

VS FORTRAN expressions are evaluated according to the following
rules:

• Any variable, array element, function, or character substring
referred to as an operand in an expression must be defined
(that is, must have been assigned a value> at the time the
reference is executed.

•

In an expression, an integer operand must be defined with an
integer value, rather than a statement number. (See "ASSIGN
Statement" on page 46.) If a character string or a substring
is referred to, all of the characters referred to must be
defined at the time the reference is executed.

The execution of a function reference in a statement must not
alter the value of any other entity within the statement in
which the function reference appears. The execution of a
function reference in a statement must not alter the value of
any entity in COMMON that affects the value of any other
function reference in that statement.

If a function reference in a statement alters the value of an
actual argument of the function, that argument or any
associated entities must not appear elsewhere in the
statement. For example, the following statements are
prohibited if the reference to the function F defines I or if
the reference to the function G defines X:

A(I) = F(I)

Y = G(X) + X

The data type of an expression in which a function reference
appears does not affect the evaluation of the actual
arguments of the function.

• Any array element reference requires the evaluation of its
subscript. The data type of an expression in which an array
reference appears does not affect, nor is it affected by, the
evaluation of the subscript.

• Any execution of a substring reference requires the
evaluation of its substring expressions. The data type of an
expression in which a substring name appears does not affect,
nor is it affected by, the evaluation of the substring
expressions.

ARITHMETIC EXPRESSIONS

The simplest arithmetic expression consists of a primary, which
may be a single constant, name of a constant, variable, array

VS FORTRAN Data 25

ARITHMETIC OPERATORS

element, function referencQ, or another expression enclosed in
parentheses. The primary may be either integer, real, or complex.

In an expression consisting of a single primary, the type of the
primary is the type of the expression. Examples of arithmetic
expressions are shown in Figure 6.

Primary Type of primary Type Length

3 Integer constant Integer 4

A Real variable Real 4

3.1403 Real constant Real 8

3.1403 Double precision constant Double 8
precision

(2.0,5.7) Complex constant Complex 8

SIN(X) Real function reference Real 4

(A*B+C) Parenthesized real Real 4
expression

Figure 6. Examples of Arithmetic Expressions

More complicated arithmetic expressions containing two or more
primaries may be formed by using arithmetic operators that
express the computationCs) to be performed.

The arithmetic operators are shown in Figure 7.

Arithmetic
Operator Definition

** Exponentiation

* Multiplication

/ Division

+ Addition (or unary plus)

- Subtraction (or unary minus)

Figure 7. Arithmetic Operators

RULES FOR CONSTRUCTING ARITHMETIC EXPRESSIONS

The following are the rules for constructing arithmetic
expressions that contain arithmetic operators:

• All desired computations must be specified explicitly. That
is, if more than one primary appears in an arithmetic
expression, they must be separated from one another by an
arithmetic operator. For example, the two variables A and B
are not multiplied if written: .

AB

In fact, AB is regarded as a single variable with a two-letter
name.

26 VS FORTRAN language Reference

o

c·

o

o

•

If multiplication is desired, the expression must be written
as follows:

A*B or B*A

No two arithmetic operators may appear consecutively in the
same expression. For example, the following expressions are
invalid:

The expression A*-B could be written correctly as

A*(-B)

Two asterisks (**) designate exponentiation, not two
multiplication operations.

• Order of Computation

In the evaluation of expressions, priority of the operations
is shown in Figure 8.

Operation Hierarchy

Evaluation of functions 1st

Exponentiation (**) 2nd

Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th

Figure 8. Hierarchy of Arithmetic Operations

Note: A unary plus or mi nus has the same hi erarchy as a plus or
minus in addition or subtraction.

If two or more operators of the same priority appear successively
in the expressi on, the order of pri ori ty of those operators is
from left to right, except for successive exponentiation
operat6rs, where the evaluation is from right to left.

Consider the evaluation of the expression in the assignment
statement:

RESULT= A*B+C*D**I

1. A*B

2. D**I

3. C*Y

4. X+Z

Call the result X (multiplication)

Call the result Y (exponentiation)

Call the result Z (multiplication)

Final operation (addition)

The expression:

is evaluated as follows:

1. B**C Call the result Z.

2. A**Z Fi nal operat ion.

(X+C*D**I)

(X+C*Y)

(X+Z)

VS FORTRAN Expressions 27

Expressi ons wi th a unary mi nus are treated as follows:

A=-B is treated as A=O-B

A=-B*C is treated as A=-(B*C)

A=-B+C is treated as A=(-B)+C

USE OF PARENTHESES IN ARITHMETIC EXPRESSIONS

Because * has higher precedence
than -

Because - has equal precedence
to +

Because the order of evaluation (and, consequently, the result)
of an expressi on can be changed through the use of parentheses,
refer to Figure 9, Figure 10, and Figure 11 to determine the type
and length of intermediate results. Where parentheses are used,
the expression contain~d within tha most deeply nasted
parentheses (that is, the innermost pair of parentheses) is
evaluated first. A parenthesized expression is considered a
primary.

For example, the exprassion,

B/(CA-B)*C)+A**2

is effectively evaluated in the following order:

1. A-B Call the result W !V(W*C)+A**2

2. W*C Call the result X B/X+A**2

3. B/X Call the result Y Y+A**2

4. A**2 Call the result Z Y+Z

5. Y+Z Final operation

TYPE AND LENGTH OF THE RESULT OF ARITHMETIC EXPRESSIONS

The type and length of the result of an operation depend upon the
type and length of the two operands (primaries) involved in the
operation.

Figure 9 shows the type and length of the result of adding,
subtracting, multiplying, or dividing when the first operand is
an integer.

Figure 10 shows the type and length of the result of adding,
subtracting, multiplying, or dividing when the first operand is
real.

Figure 11 shows the type and length of the result of adding,
subtracting, multiplying, or dividing when the first operand is
complex.

Note: Except for a value raised to an intege~ power, if two
operands are of different type and length, the operand that
differs from the type and/or length of the result ;s converted to
the type and/or length of the result. Thus the operator operates
on a pair of operands of matching type and length.

When an operand of real or complex type is raised to an integer
power, the integer operand is not converted. The resulting type
and length match the type and length of the base.

28 VS FORTRAN language Reference

~
Operand

I I Integer Integer
(2) (4)

Second
Operand

I II Integer Integer I I Integer I (2) (2) (4)

Integer I Integer I Integer
(4) (4) (4)

I I Real Real Real
(4) (4) (4)

I I Real Real Real
(8) (8) (8)

I II II I Real Real Real
(16) (16) (16)

Complex I Complex I Complex
(8) (8) (8)

I II Complex Complex I I Complex I (16) (16) (16)

I II Complex Complex I I Complex I (32) (32) (32)

Figure 9. Type and length where the First Operand is Integer

o
VS FORTRAN Expressions 29

~
Operand

Real Real ~ (4) (8) (16)
Second
Operand

I II II II I Integer Real Real Real
(2) (4) (8) (16)

I Integer Real Real I Real
(4) (4) (8) (16)

I I Real Real Real Real
(4) (4) (8) (16)

I I Real Real Real Real
(8) (8) (8) (16)

I II II II I Real Real Real Real
(16) (16) (16) (16)

Complex Complex I Complex I I Complex I (8) (8) (16) (32)

I II Complex Complex II Complex I I Complex I (16) (16) (16) (32)

I II Complex Complex II Complex I I Complex I (32) (32) (32) (32)

Figure 10. Type and length where the First Operand is Real

30 VS FORTRAN language Reference

o

o

o

Second
Operand

First
Operand

Integer
(2)

Integer
(4)

Real
(4)

Real
(8)

Real
(16)

Complex
(8)

Complex
(16)

Complex
(32)

Complex
(8)

Complex
(8)

Complex
(8)

Complex
(8)

Complex
(16)

Complex
(32)

Complex
(8)

Complex
(16)

Complex
(32)

Complex
(16)

Complex
(16)

Complex
(16)

Complex
(16)

Complex
(16)

Complex
(32)

Complex
(16)

Complex
(16)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Figure 11. Type and length where the First Operand is Complex

VS FORTRAN Expressions 31

EXAMPLES'OF ARITHMETIC EXPRESSIONS

Assume that the type of the followi ng variables has been speci fi ed 0
as indicated below:

Nama Type Length

I, J, K Integer variables 4 I ' 2, 2

C Real variable 4

D CQrnplgx var;ablg I 16 I

Then the expression I*J/C**K+D is evaluated as follows:

subexpression

(Call the result X)
(Call the result Y)
(Call the result z)

Type and Length

Integer of length 4
, Real of length 4

Real of length 4

I

(X is converted to real of length 4 before division is performed.)

IBM EXTENSION

z+o Complex of length 16

(Z is expanded to real of length 8 and a complex quantity of
length 16 (call it W) is formed in w~ich the real part is the
expansion of Z and the imaginary part is zero. Then the real
part of W is added to the real part of D and the imaginary part
of W ;s added to the imaginary part of D.>

Thus, the final type of the entire expression 15 complex of
length 16, but the types of the intermediate expressions change
at different stages in the evaluation.

END OF IBM EXTENSION ----------'

Depending on the values of the variables involved, the result of
the expression I*J*C might be different from I*C*J. This may occur
because of the number of conversions performed during the
evaluation of the expression.

Because the operators are the same, the order of the evaluation ;s
from left to right. With I*J*C, a multiplication of the two
integers I*J yields an intermediate result of type integer and
length 4. This intermediate result is converted to a type real of
length 4 and multiplied with C of type real of length 4 to yield a
type real of length 4 result.

With I*C*J, the integer I is converted to a type real of length 4
and the result is multiplied with C of type real of length 4 to
yield an intermediate result of type real of length 4. The integer
J is converted to a type real of length 4 and the result is
multiplied with the intermediate result to yield a type real of
length 4 result.

Evaluation of I*J*C requires one conversion and I*C*J requires
two conversions. The expressions require that the computation be
performed with different types of arithmetic. This may yield
different results.

32 VS FORTRAN language Reference

o

o

o

When division is performed using two integers, any remainder is
truncated (without rounding) and an integer quotient is given. If
the mathematical quotient is less than 1, the answer is o. The
sign is determined according to the rules of algebra. For example:

CHARACTER EXPRESSIONS

I

9

-5

1

J

2

2

-4

I/J

4

-2

o

The simplest form of a character expression is a character
constant, character array element reference, character substring
reference, or character function reference. More complicated
character expressions may be formed by using one or more character
operands together with character operators and parentheses.

The character operator is shown in Figure 12.

Character
operator Definition

// Concatenation

Figure 12. Character Operator

The concatenation operation joins the operands in such a way that
the last character of the operand to the left immediately precedes
the first character of the operand to the right. For example:

'AB'//'CD' yields the value of 'ABCD'

The result of a concatenation operation is a character string
consisting of the values of the operands concatenated left to
right and its length is equal to the sum of the lengths of the
operands.

Note: Except in a CHARACTER assignment statement, the operands
of a concatenation operation must not have inherited length. That
is, their length specification must not be an asterisk (*) unless
the operand is the name of a constant. See "Explicit Type
Statement" on page 85.

USE OF PARENTHESES IN CHARACTER EXPRESSIONS

Parentheses have no effect on the value of a character expression.
For example:

If X has the value 'AB',

Y has the value 'CD'

and

Z has the value 'EF'

then the two expressions:

X//Y//Z

X//(Y//Z)

both yield the same result, the value 'ABCDEF'

VS FORTRAN Expressions 33

Valid Character Expressions:

Substring:

STI311(I) = CVAR1(:I)

Function Reference:

STI314CIVAR1) = CHARCIVAR1)

RELATIONAL EXPRESSIONS

Relational expressions are formed by combining two arithmetic
expressions with a relational operator or two character
expressions with a relational operator.

The six relational operators are shown in Figure 13.

Relational
operator Definition

.GT. Greater than

.GE. Greater than or equal to

. LT. Less than

.LE. Less than or equal to

.EQ. Equal to

.HE. Not equal to

Figure 13. Relational Operators

Relational operators:

• Express a condition that can be either true or false.

• Operators may be used to compare two arithmetic expressions
(except complex) or two character expressions. Only the .EQ.
and .NE. operators may be used to compare' an arithmetic
expression with a complex expression. If the two arithmetic
expressions being compared are not of the same type or length,
they are converted following the rules indicated in Figura 9,
Figure 10, and Figure 11.

• Comparison of an arithmetic expression to a character
expression or vice versa is not allowed.

In the case of character expressions, the shorter operand is
considered as being extended temporarily on the right with blanks
to the length of the longer operand. The comparison is made from
left to right, character by character, according to the collating
sequence as shown in Figure 4 and in "Appendix E. EBCDIC and ASCII
Codes."

34 VS FORTRAN Language Reference

o

(\.
.'~

C· "'"'.' . :
. 7

LOGICAL EXPRESSIONS

Examples:

Assume that the type of the following variables has been specified
as indicated:

Variable Names

ROOT, E
A, I, F
l
C
CHAR

Type

Real
Integer
logical
Complex
Character of length 10

Then the following examples illustrate valid and invalid
relational expressions.

Valid Relattonal Expressions:

E .IT. I

E**2.7 .lE. (S*ROOT+4)

.S .GE. (.9*ROOT)

E .EQ. 27.3E+OS

CHAR .EQ. 'ABCDEFGH'

C.NE. CMPlX(ROOT,E)

Invalid Relational Expressions:

C.GE.(2.7,S.9E3)

l.EQ.(A+F)

E**2 .IT 97.1El

. GT.9

E*2 .EQ. 'ABC'

Complex quantities can only be compared
for equal or not equal in relational"
expressions.

logical quantities may never be compared by
relational operators.

There is a missing period immediatelY
after the relational operator .

There is a missing arithmetic expression
before the relational operator.

A character expression may not be compared
to an arithmetic expression.

IBM EXTENSION

Length of a Relational Expression: A relational expression is
always evaluated to a lOGICAl*4 result, but the result can be
converted in an assignment statement to lOGICAl*l.

END OF IBM EXTENSION ------------'

The simplest form of logical expression consists of a single
logical primary. A logical primary can be a logical constant, a
name of a logical constant, a logical variable, a logical array
element, a logical function reference, a relational expression
(which may be an arithmetic relational expression or a character
relational expression), or a logical expression enclosed in
parentheses. A logical primary, when evaluated, always has a
value of true or false.

More complicated logical expressions may be formed by using
logical operators to combine logical primaries.

VS FORTRAN Expressions 3S

LOGICAL OPERATORS

The logical operators are shown in Figure 14. (A and B represent
logical constants or variables, or expressions containing
relational operators.)

Logical
Meaning Operator Use

.NOT. .. NOT. A If A is true, then .NOT.A is false; if A
is false, then .NOT.A is true.

.AND. A.AND.B If A and B are both true, then A~AND.B is
true; if either A or B or both are false,
then A.AND.B is false.

.OR. A.OR.B If either A or B or both are true, then
A.OR.s is true; if both A and B are fai5s,
then A.OR.B is false.

.EQV. A.EQV.B If A and B are both true or both false,
then A.EQV.B is true; otherwise it is
false .

. NEQV. A.NEQV.B If A and B are both true or both false,
then A.NEQV.B is false; otherwise
true.

Figure 14. logical Operators

The only valid sequences of two logical operators are:

. AND .. NOT .

• OR .• NOT .

• EQV .. NOT .

. NEQV .. NOT.

The sequence .NOT .. NOT. is invalid.

it is

Only those expressions which have a value of true or false when
evaluated, may be combined with the logical operators to form
logical expressions.

Examples:

Assume that the types of the following variables have been
specified as indicated:

Variable Names

ROOT, E
A, I, F
L, W
CHAR, SYMBOL

Type

Real
Integer
Logical
Character of lengths 3 and 6, respectively

Then the following examples illustrate valid and invalid logical
expressions using both logical and relational operators.

Valid Logical Expressions:

(ROOT*A .GT. A) .AND. W
L . AND. . NOT. (I . GT. F)
(E+5.9E2 .GT. 2*E) .OR. l
. NOT. W • AHD. • NOT. L
l .AND .. HOT. W .OR. CHAR//'123'.LT.SYMBOL
(A**F .GT. ROOT .AND .. NOT. I .EQ. E)

36 VS FORTRAN Language Reference

()

o
\,

o

o

Invalid Logical Expressions:

A.AND.L

.OR.W

A is not 8 logical expression.

.OR. must be preceded by 8 logical
expression.

NOT.(A.GT.F) Missing period before the logical operator
. NOT .•

L.AND .. OR.W The logical operators .AND. and .OR. must
always be separated by a logical expression .

.AND.L • AND. must be preceded by a logical
expression.

ORDER OF COMPUTATIONS IN LOGICAL EXPRESSIONS

In the evaluation of logical expressions, priority of operations
involving arithmetic operators is as shown in Figure 15. Within a
hierarchic level, computation is performed from left to right.

Operation Involving Arithmetic Operators Hierarchy

Evaluation of functions 1st (highest)

Exponentiation OBE) 2nd

Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th

Relationals (• GT • , . GE. , . LT. , • L E. , • EQ . , • N E.) 5th

.NOT. 6th

.AND. 7th

.OR • 8th

. EQV. or .NEQV. 9th

Figure 15. Hierarchy of Operations lnvolving Arithmetic Operators

In the evaluation of logital expressions, priority of operations
involving character operators is as shown in Figure 16. Within a
hierarchic level, computation is performed from left to right.

Operation Involving Character ,Operators Hierarchy

Evaluation of functions 1st (highest)

Concatenation (//) 2nd

Relationals (. GT . , . GE. , • LT. , • L E. , . EQ. , . NE.) 3th

.NOT. 4th

.AND. 5th

.OR . 6th

. EQV. or .NEQV. 7th

Figure 16. Hierarchy of Operations Involving Character Operators

VS FORTRAN Expressions 37

1

Example:

. Assume the type of the followi ng vari abIes has been speci fi ed as
follows:

Variable Names

B,D
A
L,N

Type

REAL
REAL
LOGICAL

Length

4
8
4

The expression

A.GT.D**B.AND .. NOT~l.OR.H

is effectively evaluated in the following order (and from left to
right):

Call the result w.
Exponentiation is performed because arithmetic operators have
a higher priority than relational operators, yielding a real
result W of length 4.

2. A. GT . W Call the result X.

The real variable A of length 8 is compared to the real
variable W which was extended to a length of 8, yielding a
logical result X whose value is t~ue or false.

3. .NOT.L Call the result Y.

4.

The logical negation is performed because .NOT. has a higher
priority than .AND., yielding a logical result Y whose value
is true if L is false and false if L is true.

X.AND.Y Call the result Z.

The logical operator .AND. is applied because .AND. has a
higher priority than .OR. to yield a logical result Z whose
value is true if both X and Yare true and false, if both X and
Yare false, or if either X or Y is false.

5. Z.OR.N

The logical operator .OR. is applied to yield a logical result
of true if ei ther Z or N is true or if both Z and N are true.
If both Z and N are false, the logical re~ult is false.

Note: Calculating the value of logical expressions may not always
require that all parts be evaluated. Functions within logical
expressions mayor may not be invoked. For example, assume a
logical function called LGF. In the expression A.OR.LGF(.TRUE.),
it should not be assumed that the LGF function is always invoked,
since it is not always necessary to do so to evaluate the
expression when A is true.

USE OF PARENTHESES IN LOGICAL EXPRESSIONS

Parentheses may be used in logical expressions to specify the
order in which the operations are to be performed. Where
parentheses are used, the expression contained within the most
deeply nested parentheses (that is, the innermost pair of
parentheses) is evaluated first.

38 VS FORTRAN language Reference

o
\,

o

,

o

Example:

Assume the type of the following variables specified as follows:

Variable Names

B

Type

REAL
REAL
LOGICAL

Length

4
C 8
K,L 4

The expression

.NOT.CCB.GT.C.OR.K).AND.L)

is evaluated in the following order:

1. B. GT • C Call the result X.

B 15 extended to a real of length 8 and compared with C of
length 8 yielding a logical result X of length 4 whose value
15 true if B 1S greater than C or false if B is less than or
equal to C.

2. X.OR.K Call the result Y.

The logical operator .OR. is applied to yield a logical result
of Y whose value is true if either X or K is true or if both X
and K are true. If both X and K are false, the logical result
Y is false.

3. Y.AND.l Call the result Z.

The logical operator .AND. 1S applied to yield a logical
resul t Z whose value is true if both Y and L are true and
false if both Y and L are false or if either Y or!- is false.

4. . NOT. Z

The logical negation -is performed to yield a logical result
whose value is true if Z is false and false if Z is true.

A logical expression to which the logical operator .NOT. applies
must be enclosed in parentheses if it contains two or more
quantities. Otherwise, because of the higher precedence of the
.NOT. operator, it will apply to the first operand of the
relation. For example, assume that the values of the logical
vari ables, A and B, are fal se and true, respect i vely. Then the
following two expressions are not equivalent:

.NOT.(A.OR.B)

.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is
true; but .NOT.C.TRUE.) is the equivalent of .FALSE .. Therefore,
the value of the first expression is false.

In the second expression, .NOT.A is evaluated first. The result is
true; but .TRUE •. OR.B is the equivalent of .TRUE .. Therefore, the
value of the second expression is true.

VS FORTRAN Expressions 39

The lengths of the resul ts . of the vari ous logi cal operat ions are 0
shown in Figure 17. (The result of logical operations is always .. r

logi cal of length 4.)-. \

logical logical
(1) (4)

logical logical logical
(1) (4) (4)

I I logical logical logical
(4i II (cD

'I
(4j

Figure 17. Type and length of the Result of logical Operations

o

o
)

40 VS FORTRAN language Reference

("I~:
. /'

o

ys FORTRAN STATEMENTS

Source programs consist of a set of statements from which the
compiler generates machine instructions and allocates storage for
data areas. A given VS FORTRAN statement performs one of three
functions:

• It performs certain executable operations (for example,
addition, multiplication, branching).

• It specifies the nature of the data being handled.

• It specifies the characteristics of the source program.

VS FORTRAN statements are either executable or nonexecutable.

VS FORTRAN STATEMENT CATEGORIES

statements are divided into the following categories according to
what they do:

• Assignment statements

• Control statements

• Data statement

IBM EXTENSION

• Debug statements

a..-_________ END OF IBM EXTENSION -----------'

•
•
•
•

Input/output statements

Main program statement

Specification statements

Subprogram statements

IBM EXTENSION

• VS FORTRAN compiler directives

END OF IBM EXTENSION ---------~

ASSIGNMENT STATEMENTS

CONTROL STATEMENTS

There are four types of assi gnment statements: the ar i thmet i c,
character, and logical assignment statements and the ASSIGN
statement. Execution of an assignment statement assigns a value
to a variable. Assignment statements are executable.

In the absence of control statements, VS FORTRAN statements are
executed sequentially. That is, after one statement has been
executed, the statement immediately following it is executed.
Control statements alter this normal sequence of execution of
statements in the program. They are executable.

VS FORTRAN Statements 41

DATA STATEMENT

DEBUG STATEMENTS

CALL
CONTINUE
DO
END
GO TO

IF (ELSE, ELSE IF, END IF)
PAUSE
RETURN
STOP

The DATA statement assigns initial values to variables, array
elements, arrays, and substrings. It is nonexecutable.

IBM EXTENSION

The debug facility is a programming aid that helps locate errors
in a VS FORTRAN source program. The debug facility traces the
flow of execution within a program, traces the flow of execution
between programs, di splays the values of var i abies and arrays,
and checks the validity of subscripts. DISPLAY, TRACE OFF, and
TRACE ON are executable; AT, DEBUG, and END DEBUG are
nonexecutable.

AT
DEBUG
DISPLAY

END DEBUG
TRACE OFF
TRACE ON

'---------- END OF IBM EXTENSION ---------......

INPUT/OUTPUT STATEMENTS

Input/output (I/O) statements transfer data between two areas of
internal storage or between internal storage and an input/output
device. Examples of input/output devices are card readers,
printers, punches, magnetic tapes, disk storage units, or
terminals.

The I/O statements allow the programmer to specify how to process
the VS FORTRAN f i 1 es at different times dur i ng the execut i on of a
program. Except for the FORMAT statements, these statements are
executable.

BACKSPACE
CLOSE
ENDFILE
FORMAT
INQUIRE

WAIT

OPEN
PRINT
READ
REWIND
WRITE

IBM EXTENSION

END OF IBM EXTENSION

Note: The description of the VS FORTRAN input and output
statements is made from the point of view of a VS FORTRAN program.
Therefore words such as .f.i.!.g, record, or OPEN must not be confused
with the same words used when discussing an operating system. See
the descriptions of each I/O statement.

MAIN PROGRAM STATEMENT

The PROGRAM statement names the main program. It can only be used
in a main program. It is not required. The PROGRAM statement is
nonexecutable.

42 VS FORTRAN Language Reference

0-

o

o

SPECIFICATION STATEMENTS

The specification statements provide the compiler with
information about the nature of the data in the source program. In
addition, they supply the information required to allocate
storage for this data.

The specification statements must follow the PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statements. They may be preceded by FORMAT
or ENTRY statements. Specification statements are nonexecutable.

SUBPROGRAM STATEMENTS

COMMON
DIMENSION
EQUIVALENCE
Explicit type:

COMPLEX, INTEGER,
LOGICAL, REAL,
CHARACTER, and
DOUBLE PRECISION

NAMELIST

EXTERNAL
IMPLICIT
INTRINSIC
PARAMETER
SAVE

IBM EXTENSION

END OF IBM EXTENSION

There are three subprogram statements: FUNCTION, SUBROUTINE, and
BLOCKDATA. There are also intrinsic function procedures and
statement function procedures. The list of intrinsic functions
supplied with VS FORTRAN is contained in "Appendix B.
FORTRAN-Supplied Procedures" on page 204.

Function subprograms differ from subroutine subprograms in the
way they are invoked and in that function subprograms return a
value to the calling program, whereas subroutine subprograms need
not return any.

The function subprogram is a VS FORTRAN subprogram that begins
with a FUNCTION statement. It is independently written and is
executed whenever its name is appropriately referred to in
another program. It is called by coding its name with any
necessary parameters. At least one executable statement in the
function subprogram must assign a result to the function name;
this value is returned to the calling program as the result of the
function.

The subroutine subprogram is similar to the function subprogram
except that it begins with a SUBROUTINE statement and does not
return an explicit result to the calling program. The rules for
naming function and subroutine subprograms are similar. They both
require an END statement and they both may contain dummy
arguments. Like the function subprogram, the subroutine
subprogram can be a set of commonly used computations, but it need
not return any results to the calling program. The subroutine
subprogram is executed whenever its name is referred to by the
CALL statement.
~

Subprogram statements are nonexecutable.

BLOCK DATA
ENTRY
FUNCTION

Statement function
SUBROUTINE

VS FORTRAN Statements 43

IBM EXTENSION

VS FORTRAN COMPILER DIRECTING STATEMENTS

The EJECT and INCLUDE statements are IBM extensions that direct
the compiler to start a new page or to insert one or more source
statements into the program. They are not considered part of the
VS FORTRAN language.

~-------- END OF IBM EXTENSION ---------.....

ORDER OF STATEMENTS IN A PROGRAM UNIT

The order of statements ;n a VS FORTRAN program unit (other than a
BLOCK DATA subprogram) is as follows:

1. PROGRAM or subprogram statement, if any.

2. PARAMETER statements and/or IMPLICIT statements, if any.

3. Other specification statements, if any. (Explicit
specification statements that initialize variables or arrays
must follow other specification statements that contain the
same variable or array names.)

4. Statement function definitions, if any.

5. Executable statements.

6. END statement.

Within the specification statements of a program unit, IMPLICIT
statements must precede all other specification statements except

o

PARAMETER statements. Any speci ficat i on statement that spaci fi es (~
the typa of a name of a constant must precede the PARAMETER . ~y'
statement that defines that particular name of a constant; the
PARAMETER statement must precede all other statements containing
the names of constants that are defi ned in the PARAMETER
statement.

FORMAT and ENTRY statements may appear anywhere after the PROGRAM
or subprogram statement and before the END statament~ The ENTRY
statement, however, may not appear between a block IF statement
and its corresponding END IF statement or within the range of a
DO. DATA statements must follow the IMPLICIT statements and any
specification statements that contain the same variable or array
names.

IBM EXTENSION

A NAMELIST statement declaring a NAMELIST nama must pracede the
usa of that nama in any input/output statamant. Its placement ;s
as indicated for othar specification statemants.

'----------- END OF IBM EXTENSION -----------'

Tha order of statamants in BLOCK DATA subprograms is discussed in
"BLOCK DATA Statement" on page 56. Figure 18 shows a diagram of
the order of statements.

• The vertical lines in the figure delineate varieties of
statements that may be interspersed. For example, FORMAT
statements may be interspersed with statement function
statements and executable statements.

• Horizontal lines delineate varieties of statements that must
not be interspersed. For example, statement function
statements must not be interspersed with executable
statements.

44 VS FORTRAN Language Reference

o

o

PROGRAM, FUNCTION, SUBROUTINE, or BLOCK DATA
statement

IMPLICIT
PARAMETER Statements

FORMAT Statements
Comment Other
Lines and Specification

Statements
ENTRY

Statement
Statements Function

DATA Statements
Statements

Executable
Statements

END Statement

Figure 18. Order of Statements and Comment Lines

VS FORTRAN STATEMENT DESCRIPTIONS

The rules for coding each VS FORTRAN statement are described in
this section in alphabetic sequence. Brief examples are included.
For additional examples and explanations, see VS FORTRAN
Application Programming: Guide.

Notes:

1. Comments and statement numbers are included because, although
they are not actual statements, they are integral parts of VS
FORTRAN programs.

2. Each described statement begins at the top of a page.

ARITHMETIC IF STATEMENT

See "IF Statements" on page 117.

VS FORTRAN Statements 45

ASSIGN

ASSIGN STATEMENT

The ASSIGN statement assigns a number (statement number) to an
integer variable. See also "Statement Numbers" on page 171.

r.-=- Syntax

I illIGN stn TO i

!

is the number of an executable statement or a FORMAT
statement in the program unit containing the ASSIGN
statement.

is the name of an integer variable (not an array element) of
, '" , ,,"" ... ; 1M ftP-_. ".,. ~ ... &... ~ ... 4JIOII. ~ " 1ft
"IIIICII~"'II ,. ""'QI-" ,., g""'~I'''='''' 'C iiiII,-g~CItI'c:"'" • I w.u'""''C I ~.

The statement number must be the number of a statement that
appears in the same program unit as the ASSIGN statement. The
statement number must be the number of an executable statement or
a FORMAT statement.

Execution of ASSIGN is the only way that a variable can be defined
with a statement number.

A variable must have been defined with a statement number when it
is referred to in an assigned GO TO statement or as a format
identifier in an input or output statement. An integer variable
defined with a statement number may be redefined with the same or
a different statement number or an integer value.

If stn is the statement number of an executable statement, i can
be used in an assigned GOTO statement.

If stn is the statement number of a FORMAT statement, i can be
used as the format identifier in a READ, WRITE, or PRINT statement
with FORMAT control.

The value of i is not the integer constant represented by stn and
cannot be used as such. To use i as an integer, it must be
assigned an integer value by an assignment or input statement.
This assignment can be done directly or through EQUIVALENCE,
COMMON, or argument passing.

ASSIGNED GO TO STATEMENT

See "GO TO Statements" on page 115.

46 VS FORTRAN Language Reference

·0

c

o

c

Assignment

ASSIGNMENT STATEMENTS

This VS FORTRAN statement closely resembles a conventional
algebraic equation; however, the equal sign specifies a
replacement operation rather than equality. That is, the
expression to the right of the equal sign is evaluated, and the
resulting value replaces the current value of the variable, array
element, character substring, or character variable to the left
of the equal sign.

is a variable, array element, character substring, or
character variable.

is an arithmetic, logical, or character expression.

An assignment statement is used for the results of calculations.
The result of evaluating the expression replaces the current
value of a designated variable, array element, or character
substring. There are three assignment statements: arithmetic,
logical, and character.

Arithmetic Assignment statement

If h 15 an arithmetic expression, § must be an integer, real;" or
complex variable or an array element.

Figure 19 shows the rules for conversion in arithmetic assignment
statements, §=~, where the type of h is integer or real.

Figure 20 shows the rules for conversion in arithmetic assignment
statements, A=g, where the type of g is complex.

Character Assignment statement

If g is a character expression, § must be a character variable,
character array element, or character substring.

None of the character positions being defined in A must be
referenced in 2 directly or through associations of variables
(that is, using COMMON, EQUIVALENCE, or argument passing).

The lengths of a and b may be different. The characters of bare
moved from left-to right into the corresponding character -
positions of~. If ~ has more positions than there are characters
in g, the rightmost positions of ~ are filled with blanks. If §
has fewer positions than there are characters in g, only the
leftmost characters of g are moved to fill the positions of ~.

Logical Assignment statement

If g is a logical expression, § must be a logical variable or
logical array element. The value of g must be either true or
false.

VS FORTRAN Statements 47

Assignment

Type

I I I I I I I of b INTEGER*2 I REAl*4 REAl*8 REAl*16

I INTEGER*4 I REAL DOUBLE
Type PRECISION
of a INTEGER

IINTEGER*2 I Assign Fix and Fix and Fix and

IINTEGER*4 I assign assign assign

INTEGER

I I
I I REAL*4 Float and Assign Real Real

assign assign assign

REAL

I I REAL*8 DP float DP extend Assign DP assign
and assign and assign

DOUBLE «

PRECISION

I I QP float QP extend QP extend Assign
REAL*16 and assign and assign and assign

'COMPLEX*8 I Float and Assign to Real assign Real assign
assign to real part; real part; real part;
real part; imaginary imaginary imaginary
imaginary part set part set part set

COMPLEX part set to 0 to 0 to 0 to 0

DP float and DP extend Assign to DP assign

ICOMPLEX* 16 1
assign to and assign real part; real part;
real part; to real part; imaginary imaginary
imaginary imaginary part set part set
part set to 0 part set to 0 to 0 to 0

QP float and QP extend QP extend Assign real

ICOMPlEX*321
assign to and assign and assign part;
real part; to real part; real part; imaginary
imaginary imaginary imaginary part set
part set to 0 part set to 0 part set to 0 to 0

Figure 19. Conversion Rules for the Arithmetic Assignment Statement a=b Where Type of
b is Integer or Real

48 VS FORTRAN Language Reference

o
'"

o

Assignment

~ I I I I of b COMPLEXM8 I I COMPLEX*16 COMPLEX*32

Type COMPLEX
of a

IINTEGERM2 I Fix and Fix and Fix and
assign real assign real assign real

IINTEGERM4 !
part; part; part;
imaginary imaginary imaginary
part not used part not used part not used

INTEGER

I I Assign real Real assign, -Real assign,
REALM4 part; real part; real part;

imaginary imaginary imaginary
part not part not part not

REAL used used used

I I DP extend and Assign real DP assign
REALM8 assi gn real part; real part;

part; imaginary imaginary
DOUBLE imaginary part not part not
PRECISION part not used used used

QP extend QP extend Assign real

I I and assign and assign part;
REAL*16 real part; real part; imaginary

imaginary imaginary part not
part not used part not used used

ICOMPLEXM8 I Real assign Real assign
Assign real and real and

imaginary imaginary
parts parts

COMPLEX

DP extend DP assign

ICOMPLEXM16!
and assign Assign real and
real and imaginary
imaginary parts
parts

QP extend QP extend

'COMPLEXM321
and assign and assign Assign
real and real and
imaginary imaginary
parts parts

Figure 20. Conversion Rules for the Arithmetic Assignment Statement a=b Where Type of
b is Complex

VS FORTRAN Statements 49

Assignment

Notes to Figures: IBM extensions are shown with inner boxes in
the figures. For clarity of presentation, the extensions are not
marked in the following definitions. Terms in the figures are
defined as follows:

Assign Transmit the expression value without change. If the
expression value contains more significant digits
than the vari able A can hold, the value assi gned to A
is unpredictable.

Real assign Transmi t to II. as much preci S1 on of the most
significant part of the expression value as REAL*4
data can contain.

DP assign Transmi t as much preci si on of the most si gni fi cant
part of the expression value as double precision
(REAL*8) data can contain.

Fix Truncate the fractional portion of the expression
value and transform the result to an integer of
length 4 bytes. If the expression value contains
more significant digits than an integer of length 4
bytes can hold, the value assigned to the integer
variable is unpredictable.

Float Transform the integer expression value to a REAL*4
number, retaining in the process as much precision
of the value as a REAL*4 number can contain.

DP float Transform the integer express; on value to a double
precision (REAL*8) number.

DP extend Extend the real value to a double precision (REAL*8)
number.

QP float

QP extend

Examples:

Transform the integer expression value to a REAL*16
number.

Extend the real value to a REAL*16 number.

Assume the type of the following data items has been specified:

Name Type Length

I, J, K Integer variables 4, 4 ~
A, B, C, D Real variables 4, 4, 8, 8

E Complex variable 8

F(l), .. .,F(5) Real array elements 4

G, H Logical variables 4, 4

50 VS FORTRAN Language Reference

~
/

c

Assignment

The following examples illustrate valid assignment statements
using constants, variables, and array elements as defined above.

statement Description

A = B The value of A is replaced by the current
value of B.

K = B The value of B is converted to an integer
value, and the value of K is replaced by as
much as can be held in 2 bytes.

A = I The value of I is converted to a real value,
and replaces the valu~ of A.

I = I + 1 The value of I is replaced by the value of I
1.

E = HOEJ+D I is ra i sed to the power J and the result is
converted to a real value to which the value
of D is added. This result replaces the real
part of the complex variable E. The imaginary
part of the complex variable is set to zero.

A = C*D The most significant part of the product of C
and D replaces the 'lalue of A.

A = E The real part of th{~ complex variable E
replaces the value of A.

E = A The value of A replaces the value of the real
part of the complex variable E; the imaginary
part is set equal to .;cero .

G = . TRUE. The value of G is replaced by the logical
value true.

H = .NOT.G If G is true, the value of H is replaced by
the logical value false. If G is false, the
value of H is replaced by the logical value
true.

G = 3 .. GT • I The value of I is converted to a real value;
if the real constant 3. is greater than this
result, the logical value true replaces the
value of G. If 3. is not 9reater than the
converted I, the logical 'lalue fal se replaces
the value of G.

E = (1.0,2.0) The value of the complex variable E is
replaced by the value of the complex constant
(1.0,2.0), The statement E ... (A,B), where A
and B are real variables, is invalid. The
mathematical function subprogram CMPlX can be
used for this purpose. See "Appendix B.
FORTRAN-Supplied Procedures" on page 204.

F(l) = A The value of element 1 of array F is replaced
by the value of A.

E = F(5) The real part of the complex constant E is
replaced by the value of array element F(5).
The imaginary part is set equal to zero.

VS FORTRAN Stai:ents 51

+

Assignment

statement Description

C = 99999999.0 Even though C is of length 8, the constant
having no exponent is considered to be of
length 4. Thus the number will not have the
accuracy that may be intended. If the basic
real constant were entered as 99999999.0DO,
the converted value placed in the variable C
would be a closer approximation to the entered
basic real decimal constant because 15 decimal
digits can be represented in 8 bytes.

STI306(1:20) = CHAR! must be declared CHARACTER with a type
'TEST' //'CHARI statement.

52 VS FORTRAN language Reference

o
AT STATEMENT

o

o

IBM EXTENSION

The AT statement identifies the beginning of a debug packet and
indicates the point in the program at which debugging is to
begin.

~ syntax
AT stn

is the number of an executable statement in the program or
function or subroutine subprogram to be debugged.

The debugging operations specified within the debug packet are
performed prior to the execution of the statement indicated by
the statement number (~) in the AT statement.

The statement number cannot be specified in another debug
packet.

There must be one AT statement for each debug packet; there may
be many debug packets for one program or subprogram.

AT

The AT statement identifies the beginning of a debug packet and
the end of the preceding packet (if any) unless this is the last
packet, in which case it is ended by the END DEBUG statement.

For a more complete discussion of debug packets and for examples
of the AT statement, see "DEBUG Statement" on page 68.

END OF IBM EXTENSION -----------'

VS FORTRAN Statements 53

BACKSPACE

BACKSPACE STATEMENT

The BACKSPACE statement positions a sequentially accessed
external file at the beginning of the VS FORTRAN record last
written or read. (See "OPEN Statement" on page 134.)

Syntax

BACKSPACE .Y!l

BACKSPACE ([UNIT=].Y!l (,IOSTAT=ios] [,ERR=stnl)

UNIT=un
un is the reference to the number of an I/O unit. It can
optionally be preceded by UNIT= if the second form of the
~tatpmpnt i§ u§Pd. un ~an bQ an into~or nr rOAl Arithmoti~
;~p~~~si ~n -. - Its -valu~ (~-fter -con'v~-r-;(on -to . i-n-t-eg~~ ~f'l~'ngth
4, if necessary) must be zero or positive; otherwise, an
error is detected.

If UNIT= is not specified, .Y!l must appear first in the
statement. The other parameters may appear in any order. If
UNIT= is specified, all the parameters can appear in any
order.

IOSTAT=ios
is optional. ios is an integer variable or an integer array
element of length 4. ios is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

ERR=stn
stn is the number of a statement in the same program unit as
the BACKSPACE statement. Transfer is made to stn if an error
is detected. ---

Valid BACKSPACE Statements:

BACKSPACE .Y!l

BACKSPACE (.Y!l,ERR=stn)

BACKSPACE (UNIT=gn,IOSTAT=ios,ERR=stn)

BACKSPACE (ERR=stn,UNIT=.Y!l)

BACKSPACE(UNIT=2*IN+2)

BACKSPACE(IOSTAT=IOS,ERR=99999,UNIT=2*IN-I0)

Invalid BACKSPACE Statements:

BACKSPACE UNIT=.Y!l

BACKSPACE gn,ERR=stn

BACKSPACE (ERR=stn,gn)

UNIT= is not allowed without the
parentheses.

Parentheses must be specified.

UNIT= must be specified.

When the BACKSPACE statement is encountered, the unit specified
by gn must be connected to an external file for SEQUENTIAL access.
(See VS FORTRAN Application ProQramming: Guide.) If the unit is
not connected, an error is detected.

The external file connected to the unit un must exist; otherwise,
an error is detected. (The existence of a-file can be determined
with the INQUIRE statement. exs must have the value true. see
"INQUIRE Statement" on page 125.)

A BACKSPACE statement positions an external. file to the beginning
of the preceding record. If there is no preceding record, the

54 VS FORTRAN languag~ R~ference

o

o

o

BACKSPACE

BACKSPACE statement has no effect. The BACKSPACE statement must
not be used with external files using list-directed formatting.

IBM EXTENSION

The BACKSPACE statement must not be used with external files
written using NAMELIST. If it is used, the result is
unpredictable.

An external file can be extended if the execution of an ENDFILE
statement or the detection of an end-of-file is immediately
followed by the execution of a BACKSPACE and a WRITE statement
on thi s fi Ie. (See "READ Statement-Formatted wi th Sequenti al
Access" on page 150.)

The BACKSPACE statement may be used with asynchronous READ and
WRITE statements provided that any input or output operation on
the file has been completed by the execution of a WAIT
statement. A WAIT statement is not required to complete the
BACKSPACE operation.

'---------- END OF IBM EXTENSION -----------'

Transfer is made to the statement number specified by the ERR
parameter if an error is detected. If IOSTAT=ios is specified, a
positive integer value is assigned to lOS when an error is
detected. Execution continues with the statement number specified
by the ERR parameter (if present) or with the next statement if
the ERR parameter is not specified. If the ERR parameter and the
IOSTAT parameter are both omitted, program execution is
terminated when an error is detected.

VS FORTRAN Statements 55

BLOCK DATA

BLOCK DATA STATEMENT

The BLOCK DATA statement names a block of data.

C syntax

LCK DATA [name]

is the name of the block data subprogram. This name is
opti onal. It must not be the same as the name of another
subprogram, a main program, or common block name in the
executable program. There can only be one unnamed block data
subprogram in an executable program.

!! ._ ! .L ! _ • !! _ _ a a __ ! _ L' _ _ ! _ _ _____ ... _ _ _ __ _ _ L. __ 1_ _ ______ L. _

I g ,n 1 l; 1 cU. I.::a vClr I ClUJ. a~ In CI nctmau ~ummun gJ.g~l'\, CJ :n~pClrcn;1iiI

subprogram must be written. This separate subprogram contains
only the BLOCK DATA, IMPLICIT, PARAMETER, DATA, COMMON,
DIMENSION, SAVE, EQUIVALENCE, and END statements, comment lines,
and explicit type specification statements associated with the
data being defined. This subprogram is not called; itspresenca
provides initial data values for named common blocks. Data may not
be initialized in unnamed common blocks.

The BLOCK DATA statement must appear only as the first statement
in the subprogram. Statements that provide initial values for
data items cannot precede the COMMON'statements that define thoSQ
data items.

Any main program or subprogram using a named common block must
contain a COMMON statement defining that block. If initial valu.s
are to be assigned, a block data subprogram is necessary.

A particular common block may not be initialized in more than one
block data subprogram.

Entities not in a named common block must not be initialized and
must not appear in a DIMENSION, EQUIVALENCE, or type statement in
a block data subprogram.

All elements of a named common block must be listed in the COMMON
statement, even though they are not all initialized. For example,
the variable A in the COMMON statement in the following block data
subprogram does not appear in the DATA statement.

Example 1:

BLOCK DATA
COMMON /ELN/C,A,B
COMPLEX C
DATA C/(2.4,3.'69)/,B/1.2/
END

Data may be entered into more than one common block in a single
block data subprogram.

Example 2:

BLOCK DATA VALUE1
COMMON/ELN/C.A,B/RMG/Z,Y
COMPLEX C
DOU8LE PRECISION Z
DATA C/(2.4,3."')/,8/1.2/,Z/7.6498082SDO/
END

As a result of thi s example, in 8LOCK DATA named VALUE1,

COMMON/ELN/C,A,8

56 VS FORTRAN Language Reference

/~'\

~Ji
i

9

o

BLOCK IF STATEMENT

o

BLOCK DATA

will have the complex variable C real part initialized to 2.4 and
the imaginary part initialized to 3.769. The variable A will not
be initialized and 8 will be initialized to 1.2.

COMMON/RMG/Z,Y

will have the double precision variable Z initialized with the
double prec;sion constant 7.64980825 and Y will not be
initialized.

See "IF Statements" on page 117.

VS FORTRAN Statements 57

CALL

CALL STATEMENT

The CAll statement:

• Transfers control to a subroutine subprogram

• Evaluates actual arguments that are expressions

• Associ ates actual arguments wi th dummy arguments

syntax

CALL nA!!l.f! [C [!l...t.91 [,arg21 [,§.t.931 ...])]

is ~ne name of a subroutine 5ubpr-ogram or an entry point.
This name may be a dummy argument in a FUNCTION, SUBROUTINE,
or ENTRY statement.

is an actual argument that is b&ing supplied to the
subroutine subprogram. The argument may be a variable, array
element or array name, a constant, an arithmetic, logical,
or character expression, a function or subroutine name, or
an asterisk (*) followed by the statement number of an
executable statement that appears in the same program unit
as the CALL statement.

If no actual argument is specified, the parentheses may be
omitted.

The CALL statement transfers control to the subroutine subprogram

o

and replaces the dummy vari abies wi th the values of the actual 0
arguments that appear in the CAL l ~atement. .. _ ...

The CALL statement can be used in a main program, a function
subprogram, or a subroutine subprogram, but a subprogram must not
refer to itself directly or indirectly and must not refer to the
main program. A main program cannot call itself.

If ~ is a dummy argument in a subprogram containing CALL ~,
this CALL statement can be executed only if the subprogram is
given control at one of its entry points where ~ appears in the
list of dummy arguments. (See "EXTERNAL Statement" on page 89.)

Valid CALL statements:

CALL SZOOOI

CAll SZOOOl()

CALL S19001(CVAR40)

CALL TEST2(TFl,KF2,JIF3)

CALL SUB1(COM2+3*COM3-7,VAl2*VAl3/.6,.TRUE.)

CALL SUB2(A,B,*lO,*20,*30)

CALL BC'A',O,l,R)

CHARACTER TYPE STATEMENT

See "Explicit Type Statement" on page 85.

58 VS rORTRAN language Reference

o

· .
CLOSE STATEMENT

c

o

o

CLOSE

A CLOSE statement disconnects an external file from an input or
output un it.

r- Syntax

CLOSE ([UNIT=lYn [,ERR=stnl [,STATUS=stal [,IOSTAT=ios])

Ut·HT=un
Yn is the reference to the number of an I/O unit. It can
optionally be preceded by UNIT=. It can be an integer or real
arithmetic expression. Its value (after conversion to
integer of length 4, if necessary) must be zero or positive;
otherwise, an error is detected.

If UNIT= is not specified, Yn must appear first in the
statement. The other parameters may appear in any order. If
UNIT= is specified, all the parameters can appear in any
tJrder.

ERR=st!1
-r; opti onal. ~ is a statement number. If an error occurs in

the execution of the CLOSE statement, control is transferred
to the statement labeled stn. That statement must be
executable and must be in the same program unit as the CLOSE
stcd:emc:mt. If ERR=stn is omitted, execution halts when an
errQr is detected.

STATUS:st~
is o~tional. sta is a character expression whose value (when
any tt'ai ling blanks are removed) must be KEEP or DELETE. sta
determines the disposition of the file that is connected to
the specified unit.

IOSTAT::ios
;s optitJnal. ios is an integer variable or an integer array
element of length 4. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in IOSTAT.

Each of the pat~ameters of the CLOSE statement may appear only
once. The unit specifier (Yn) must appear. All value assignments
are made according to the rules for assignment statements.

Execution of a CLOSE statement that refers to a unit may occur in
any program unit of an executable program and need not occur in
the same program unit as the execution of an OPEN statement
referring to that unit. When the CLOSE statement is encountered,
the un it speci: fi ed by Yn may 0 r may not be connected to a f i 1 e. If
the unit is connected, the file mayor may not exist.

If KEEP is spec;fi~d for a file that exists, the file continues to
exist after the execution of the CLOSE statement.' If KEEP is
specified for a filQ that does not exist, the file will not exist
after the execution of the CLOSE statement. If DELETE is
specified, the file is deleted.

If STATUS is omitted, the assumed value is KEEP, unless the fil~
status prior to execution of the CLOSE statement is SCRATCH, in
which case the assumed value is DELETE. (The STATUS parameter
affects only the internal VS FORTRAN status. The external status
is set by the JCL or other system environment and will not be
overridden.)

After a unit has been disconnected by execution of a CLOSE
statement, it may be connected again within the same executable
program to the same file or a different file.

After a file has been disconnected by execution of a CLOSE
statement, it may be connected again within the same executable

VS FORTRAN Statements 59

CLOSE

•

program to the same unit or a different unit provided that the
file still exists. (See "OPEN Statement" on page 134.)

When execution ends normally, all units that ~re connected are
closed. Each uni tis closed wi th status KEEP lmless the fi Ie
status prior to termination of execution was ~CRATCH, in which
case the unit is closed with status DELETE.

Example 1:

Assume that the type of the following varia~IQs has been specified
as follows:

Variable Names

IN,IACT,Z

DEL ETE

and that

DELETE = 'DELETE'

Type

IHTEGER

CHARACTER

The following statements are valid:

CLOSE(6+IH)

CLOSE(Z*IH+2)

Length

4

6

CLOSE(Z*IH+3,STATUS=DELETE)

CLOSE(IOSTAT=IACT,ERR=99999,STATUS='KE'//'EP ',UHIT=O)

Example 2:

STATUS='KEEP'

DELETE=STATUS

CLOSE(UHIT=6,STATUS=DELETE)

CLOSE(UNIT=6,STATUS=STATUS)

CLOSE(UNIT=6,STATUS='KEEP')

Each of these CLOSE statements should execute the same way and
give a status of KEEP.

60 VS FORTRAH Language Reference

o

COMMENTS

Fixed-Form Input

Free-Form Input

o

o

comments

Comments provide documentation for a program. They can be entered
in either fixed form or free form.

Fixed-form comments have the following attributes:

• A "C" or an aster i sk 00 may appear in column 1 or all blanks
may appear in columns 1 to 72.

• A comment may appear anywhere before the END statement.

IBM EXTENSION

Free-form comments have the following attributes:

• Any line that does not follow a continued line and that has
the quotation mark e") character as its first character is
considered a comment.

• A comment line cannot be continued.

END OF IBM EXTENSION ---------~

VS FORTRAH Statements 61

COMMON

COMMON STATEMENT

The COMMON statement makes it possible for two or more program
uni ts to share storage and to speci fy the names of vari abIes and
arrays that are to occupy the area.

syntax

COMMON [/[~1]/] ~1[[,] /[nsmgn]/ ~n] •••

is an optional common block name. Thesa names must always be
enclosed in slashes. They cannot be the same as names used in
PROGRAM, SUBROUTINE, FUNCTION, ENTRY, or BLOCK DATA
statements.

The form // (with no characters except possibly blanks
between the slashes) denotes blank common. If ~1 denotes
blank common, the first two slashes are optional.

The comma preceding the common block name designator /name/
is optional.

is ali st of vari able names or array names that are not dummy
arguments. If a variable name is also a functi on name,
subroutine name, or entry name, it must not appear in the
list. If the list contains an array name, dimensions may also
be declared for that array. (See "DIMENSION Statement" on
page 71.)

A given common block name may appear more than once ;n a COMMON
statement, or in more than one COMMON statement in a program unit.

Blank and named common entries appearing in COMMON statements are
cumulative throughout the program unit. Consider the following
two COMMON statements:

COMMON A, B, C /R/ D, E /S/ F

COMMON G, H /S/ I, J /R/R//W

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H, W /R/ D, E, R /S/ F, I, J

If a character variable or character array is in a common block,
all the other variables and arrays in that common block must be of
type character.

Although the entries in a COMMON statement can contain dimension
information, object-time dimensions may never be used.

The length of a blank common can be extended by using an
EQUIVALENCE statement, but only by adding beyond the last entry.

A common block resides in a fixed location in storage during the
execution of a program. Because of this, all program units of this
program refer to data at that location as defined in the COMMON
statements in each program unit.

In the following example, the complex variable, CV, and the real
array, RV, refer to the same storage locations.

The statement: RV(2) = 1.2 will assign the value of 1.2 to the
imaginary part of CV.

62 VS FORTRAN Language Reference

(10

.,,\

o ';:PI!

o

o

Blank and Named Common

tlain Program

COMMON CV
COMPLEX*8 CV

CALL SUB

STOP
END

Subroutine

SUBROUTINE SUB
COMMON RV(2)

.
RV(2) = 1.2

RETURN
END

COMMON

Variables and arrays may be placed in separate common blocks by
giving distinct common block names (~). Those blocks that have
the same name occupy the same storage area. The name cannot be the
same as the main program name, subprogram name, or entry name. The
variables and arrays of a common block must all be of type
character or all noncharacter in all the program units that refer
to the common block.

Naming these separate blocks permits a calling program to share
one common block with one subprogram and another common block with
another subprogram. It also makes it easier to document the
program.

The differences between blank and named common are:

• There is only one blank common in an executable program, and
it has no name.

•
There may be many named commons, each wi th its own name.

Blank common may have different lengths in different program
units.

Each program unit that uses a named common must define it to
be of the same length.

• Variables and array elements in blank common cannot be
assigned initial values.

Variables and array elements in named common may be assigned
initial values by DATA statement~a block data subprogram.

IBM EXTENSION

Variables and array elements in named common may be
assigned initial values by explicit type specification
statements in a block data subprogram.

END OF IBM EXTENSION ----------'

Variables that are to be placed in named common are preceded by
the common block name enclosed in slashes. For example, the
variables A, B, and C are placed in the named common, HOLD, by the
following statement:

COMMON /HOLD/ A,B,C

In a COMMON statement, blank common is distinguished from named
common by placing two consecutive slashes before the variables
(or, if the variables appear at the beginning of the COMMON
statement, by omitting any common block name). For example,

COMMON A, B, C /ITEMS/ X, Y, Z / / D, E, F

VS FORTRAN Statements 63

COMMON

The variables A, 8, C, D,.E, and F are placed in ~ common in
that order; the variables X, Y, and Z are placed in the named
common ITEMS.

COMPLEX TYPE STATEMENT

See "Explicit Type Statement" on page 85.

COMPUTED GO TO STATEMENT

See "GO TO Statements" on page 115.

64 VS FORTRAN language Reference

o

·0

CONTINUE STATEMENT o

o

0;
, I','

CONTINUE

The CONTINUE statement is an executable control statement that
takes no action. It can be used to designate the end of a DO loop,
or to label a position in a program.

~ Syntax

I CO:TINUE

CONTINUE
is a statement that may be placed anywhere in the source
program (where an executable statement may appear) without
affecting the sequence of execution. It may be used as the
last statement in the range of a DO loop in order to avoid
ending the DO loop with an unconditional or assigned GO TO,
block IF, ELSE IF, ELSE, ENDIF, STOP, RETURN, END,
arithmetic IF, another DO statement, or a logical IF
statement containing an unconditional or assigned GO TO, or
a STOP, RETURN, or arithmetic IF statement.

VS FORTRAN Statements 65

DATA

DATA STATEMENT

The DATA statement defines initial values of variables, array
elements, arrays, and substrings.

~ syntax
I DATA listl /clistl/ [[,l ~2 /~2/ 1 •••

clist

is a list of vari abIes,. array elements, arrays or
substrings, and implied DO lists. The comma preceding
lill2 ••. 1 i stn i s opt i ona I. o.

Subscript and substring expressions used in each ~ can
contain only integer constants or names of integer
constants. (An exception is described under "Implied DO in a
DATA Statement" on page 74.>

is a list of constants or the names of constants. Integer and
real constants may optionally be signed. Any of these
constants may be preceded by r*, where r is a nonzero
unsi gned integer constant or the name of such a constant.
When the form ~* appears before a constant, it indicates that
the constant is to be repeated ~ times.

A DATA initialization statement is not executable. The DATA
statement cannot precede a PROGRAM, FUNCTION, SUBROUTINE, BLOCK
DATA, IMPLICIT, PARAMETER, or an ex~licit type statement.
Otherwise, a DATA statement can appear anywhere in the program.

There must be a one-to-one correspondence between the total
number of elements specified or implied by the list list and the
total number of constants specified by the corresponding list
clist after application of any replication factors, ~.

Integer, real, and complex variables or array elements must be
initialized with integer, real, or complex constants; conversions
take place according to the arithmetic assignment rules, if
necessary.

IBM EXTENSION

A hexadecimal constant can be used to initialize any arithmetic
or logical type of variable or array element.

If a hexadecimal constant initializes a complex data type, one
constant is used that initializes both the real and the
imaginary parts and the constant is not enclosed in
parentheses. lf the constant is smaller than the length (in
bytes) of the entire complex entity, zeros are added on the
left. If the constant is larger, the leftmost hexadecimal
di gi ts are trt4ilcated.

A logical variable or logical array may be initialized with T
instead of .TRUE. and F instead of .FALSE .•

END OF IBM EXTENSION -----------

Character items can be initialized by character data only. Each
character constant initializes exactly one variable, one array
element, or one substring. If a character constant contains more
characters than the item it initializes, the additional rightmost
characters in the constant are ignored. If a character constant
contains fewer characters than the item it initializes, the
additional rightmost characters in the item are initialized with

0:.', , "I

"

blank characters. (Each character represents one byte of 0,
storage.)

66 VS FORTRAN Language Reference

o

o

DATA

A variable or array element defined with an initial value may not
be in blank common and may not be assigned an initial value more
than once. If the variable or array element is in a named common
block, it may be initially defined only in a block data
subprogram. For purposes of this constraint, entities that are
associated with each other through COMMON or EQUIVALENCE
statements are considered as the same entity.

Valid DATA statements:

DATA A, B, C/S.O,6.1,7.3/,D/2S*1.O,25*2.0/,E/S.l/

DATA F/S*l.O/, G/9*2.0/, l/4*.TRUE./, C/'FOUR'/

DATA CC(1)(1:2)/'AB'/,CC(1)(3:4)/'CD'/

VS FORTRAN statements 67

DEBUG

DEBUG STATEMENT

IBM EXTENSION

The DEBUG statement sets the conditions for operation of the
debug facility and designates debugging operations that apply
to the entire program unit (such as subscript checking).

r= syntax
~UG option, •.• , option

An option may be any of the following:

UNIT (un)
Yn is an integer constant that represents a unit number.
All debugging output is placed in this file called the
debug output file. If this option is not specified, any
debugging output is placed in the installation-defined
output file. All unit definitions within an executable
program must refer to the same unit.

SUBCHK (aI, a2, ••• , an)
9 is an-array name. The validity of the subscripts used
with the named arrays is checked by comparing the
subscript combination with the size of the array. If the
subscript value exceeds the size of the array, a message is
placed in the debug file. Program execution continues,
using the incorrect subscript. If the list of array names
is omi tted, all arrays in the program are checked for val i d
subscript usage. If the entire option is omitted, no
arrays are checked for valid subscripts.

TRACE
This option must be in the DEBUG specification statement
of each program or subprogram for which tracing is
desired. If this option is omitted, there can be no display
of program flow by statement number within this program.
Even when this option is used, a TRACE ON statement must
appear ih the first debug packet in which tracing is
desired.

INIT (iI, i2, ••• , in)
i is the name of a variable or an array that is to be
displayed in the debug output file only when the variable
or the array elements are assi gned a value. If i is a
variable name, the name and value are displayed whenever
the variable is assigned a new value in either an
assignment, a READ or an ASSIGN statement. If i is an array
name, the array element is displayed. If the lTst of names
is omi tted, a di splay occurs whenever the value of a
vari able or an array element is assi gned a value. If tt-;e
entire option is omitted, no display occurs when values
are assi gned.

SUB TRACE
Thi s opt i on spec i fi es that the name of thi s subprogrum is
to be displayed whenever it is entered. The message RETURN
is to be displayed whenever execution of the subprouram is
completed.

The options in a DEBUG statement may be given in any order and
they must be separated by commas.

All debugging statements must precede the first statemant of
the program being debugged. The required statement se~uence is:

1. DEBUG statement

2. Debug packets

68 VS FORTRAN Language Reference

4
i

"

~-)

(-----' ,;.)

o

o

o

DEBUG

3. END DEBUG statement

4. First of the source program statements of a program unit to
be debugged

A debug packet begins with an AT statement and ends when either
another AT statement or an END DEBUG statement is encountered.

Debug statements are written in either fixed form or free form
and follow the same rules as other VS FORTRAN statements.

In addition to the VS FORTRAN language statements, the
following debug statements are allowed:

TRACE ON
TRACE OFF
DISPLAY

All VS FORTRAN statements are allowed in a debug packet except
as listed in "Considerations when Using DEBUG."

considerations when ustng DEBUG

The following precautions must be taken when setting up a debug
packet:

• Any DO loops, block IF, ELSE IF, or ELSE statements
initiated within a debug packet must be wholly contained
within that packet.

• Statement numbers within a debug packet must be unique.

•

They must be di fferent from statement numbers wi thi n other
debug packets and within the program being debugged.

An error in a program should not be corrected with a debug
packet; when the debug packet is removed, the error remains
in the program.

• No specification statements can appear in a debug packet;
nor can any of the following statements:

BLOCK DATA
ENTRY
FUNCTION
PROGRAM
statement function
SUBROUTINE

• The program being debugged must not transfer control to any
statement number defined in a debug packet; however,
control may be returned to any point in the program being
debugged from a packet. In addition, no debug packet may
refer to a label defined in another debug packet. A debug
packet may contain a RETURN, STOP, or CALL statement.

END OF IBM EXTENSION _________1

VS FORTRAN Statements 69

DEBUG

DEBUG Examples:

. Example 1:

DEBUG UNIT(6)
AT 11
WRITEC6,21)A,B,C

21 FORMATCIX,'A=',II0,'B=',II0,'C=',IIO)
END DEBUG

INTEGER A,B,C

.
10 B=A* SQRTCFLOATCC»
t, TCID, ft c::.ft "ft
oA.oA. '\."",-rV,JV,VV

The values of A, B, and C era to be examined as they were at the
completion of the arithmetic operation in statement 10.
Therefore, the statement number specified in the AT statement is
11. The values of A, B, and Care wri tten to the fi Ie connected to
un it 6.

Example 2:

DeBUG TRACE, UNIT(6)
AT 10
TRACE ON
AT 25
TRACE OFF
AT 35
DISPLAY C
TRACE ON
END DEBUG

10 A=2.0
15 l=1
20 B=A+l.5
25 DO 30 1=1,5

.
30 CONTINUE
35 C=B+3.415
40 D=C**2
45 CALL SUBl(D,l,R)

When statement 10 is encountered, tracing begins, as specified by
the TRACE ON statement in the first debug packet. When statement
25 is encountered, tracing stops, as specified by the TRACE OFF
statement in the second debug packet. When statement 35 is
encountered, tracing begins again and the value of C is written to
the debug output file, as specified in the third debug packet.

70 VS FORTRAN Language Reference

o
I

9

o DIMENSION STATEMENT

o

o

DIMENSION

The DIMENSION statement specifies the name and dimensions of an
array.

'-= syntax
I DIMENSION Al(diml) [, A2(dim2)] •..

is an array name.

is composed of one through seven dimension bounds, separated
by commas, that represent the limits for each subscript of
the array in the form:

or
Jll : g2

g2

where:

is the lower dimension bound. It is optional. If el
(wi th its followi ng colon) ; s not speci fi ed, its value
is assumed to be 1.

; 5 the upper di mensi on bound and must always be
specified.

(See "Size and Type Declaration of an Array" on page 22
for rules about dimension bounds.)

Each A in a DIMENSION statement declares that A is an array in
that program un it. Array names and thei r bounds maya 1 so be
declared in COMMON statements and in type statements. Only one
declaration of the array name (2) as an array is permitted in a
program un it.

Valid DIMENSION Statements:

DIMENSION A(10), ARRAY(5,5,5), lIST(10,100)

DIMENSION A(I:10), ARRAY(1:5,1:5,1:5), lIST(I:10,1:100)

DIMENSION B(0:24), C(-4:2), DATACO:9,-5:4,10)

DIMENSION G(I:J,M:N)

DIMENSION ARRAY (M*N:I*J)

DIMENSION ARRAY (M*H:I*J,*)

VS FORTRAN Statements 71

DISPLAY

DISPLAY STATEMENT

IBM EXTENSION

The DISPLAY statement displays data in NAMELIST output format~
It may appear anywhere within a debug packet.

is a list of variable or array names separated by commas.

The DISPLAY statement eliminates the need for FORMAT or
NAMELIST and WRITE statements to display the results of a
debugging operation. The data is placed in the debug output
file. .

The effect of a DISPLAY list statement is the same as the
following source language statements:

NAMELIST /n£m2/list

WRITE (YJl, n.run.g)

where name is the same in both statements.

Array elements, dummy arguments, and substring references may
not appear in the list.

For examples and explanations of the DISPLAY statement, see
"DEBUG Statement" on page 68.

END OF IBM EXTENSION

72 VS FORTRAN Language Reference

Q
i

DO STATEMENT

o

C')
J

o

The DO statement indicates that the statements that physically
follow it, up to and including a specified statement, are to be
executed. These statements are called the "range of the DO" or a
"DO-loop."

DO

Syntax

End 01
Range

[,]

DO
variable

i =

Initial
Value

Test
Value

m2

Increment

[J!!l3]

DO

is the number of an executable statement appeari n9 after the
DO statement in the program unit containing the DO. The comma
after stn is opt i ona 1.

1
is an integer, real, or double precision variable (not an
array element) called the DO variable.

m2. and m3,
-are integer, real, or double preC1S10n arithmetic

expressi ons. The values of the expressi ons m1, m2 and m3 are
converted to the type of the DO vari able i, if necessary. m3
is optional and cannot have a value of zero; if it is
omitted, its value is assumed to be 1, and the preceding
comma must be omitted.

The statements in the range of the DO are executed only if:

ml is less than or equal to m2, and m3 is greater than 0
or

m1 is greater than or equal to m2, and m3 is less than 0

If one of the above relationships between ml, m2, and m3 is true,
the first time the statements in the range of the DO are executed,
i is initialized to the value of m1; on each succeeding iteration,
i is increased by the value of m3. The number of iterations that
can be executed, also called iteration count, is the value of:

MAX (INTCCm2 - m1 + m3) / m3), 0).
f

The first time i exceeds m2 at the end of the iteration, control
passes to the statement following the statement numbered ~tn.
Upon completion of the DO, the DO variable i contains the last
value that exceeded m2.

If one of the above relationship is not true, execution continues
wi th the statement follow; ng the last statement of the range of
the DO or the outer DO if the statement numbered stn is shared by
more than one DO. (See "IF Statements" on page 117:1

Valid DO statements:

DO 40, INT=1,4,1

DO 20, VAR=START,END,INC

For examples (with explanations) of DO statements (including
nesting), see VS FORTRAN Application Programming: Guide.

VS FORTRAN Statements 73

DO

Implied DO in a DATA statement

The form of an implied DO list in a DATA statement is:

~ Syntax

I ~ist, i = ml, m2 [, m3J

where:

dlist

1

is ali st of array element names and i mpl i ed DO 'I i sts.

is the name of an integer variable called the implied DO
variable.

ml, m2, and m3
are each an integer constant or name of an integer constant,
or an expression containing only integer constants or names
of integer constants. The expression may contain implied DO
variables of other surrounding implied DO lists that have
this implied DO list within their ranges (dlist). m3 is
optional and, if omitted, it is assumed to be 1, and the
preceding comma must be omitted.

The range of an implied DO list is~. An iteration count is
established from m1, m2, and m3 exactly as for a DO-loop except
that the iteration count must be positive.

Upon completion of the implied DO, the implied DO variable is
undefined and may not be used until assigned a value in a DATA
statement, assignment statement, or READ statement.

Each subscript expression in dlist must be an integer constant or
an expression containing only integer constants or names of
integer constants. The expression may contain implied DO
variables of implied DO lists that have the subscript expression
within their ranges.

Valid Implied DO Statement:

DATA «X(J,I),I=I,J),J=1,S)/IS*O./

Implied DO in an Input/output Statement

If an implied DO appears in the ~ parameter of an input/output
statement, the items specified by the implied DO are transmitted
to or from the file. The implied DO list in an input/output
statement is of the form:

(dlist, i = m1, m2 [, m31)

where:

dlist

1

is an input/output 1 i st.

is the name of an integer, real, or double precision variable
(not an array element) called the DO variable.

m2, and ml
-are intiger, real, or double precision arithmetic

expressions. The values of the expressions ml, m2, and m3
are converted to the type of the DO variable i, if necessary.
m3 is optional and cannot have a value of zero; if it is
omitted, its value is assumed to be 1, and the preceding
comma must be omitted.

74 VS FORTRAN Language Reference

Q
,/

:,rC·'''i

\",yJ

o

c

DO

In an input statement, the DO-variable i, or an associated entity,
must not appear as an input list item in dlist. When an implied-DO
list appears in an input/output list, the list items in dlist are
specified once for each iteration of the implied DO list with
appropriate substitution of values for any occurrence of the
DO-variable i.
For example, assume that A is a variable and that B, C, and Dare
one-dimensional arrays, each containing 20 elements. Then the
statement:

READ (UHIT=5)A,B,(C(I),I=1,4),DC4)

reads one value into A, the next 20 values into B, and the next 4
values into the first four elements of the array C, and the next
value into the fourth element of D.

Or the statement:

WRITE (UHIT=6)A,B,CC(I),I=1,4),DC4)

writes one value from A, the next 20 values from B, and the next 4
values from the first four elements of the array C, and the next
value from the fourth element of D.

If the subscript (I) were not included with the array C, the
entire array would be transferred four times.

Implied DO's can be nested, if required. For example, to read an
element into array B after values are read into each row of a
10x20 array A, the following input statement would be written:

READ (UHIT=5)«(ACI,J),J=1,20),BCI),I=1,10)

Or to write an element from array B after values are written into
each row of a lOx20 array A, the following output statement would
be written:

WRITE (UHIT=6)«(A(I,J),J=1,20),BCI),I=1,10)

The order of the names in the list specifies the order in which
the data is transferred.

DOUBLE PRECISION TYPE STATEMENT

See "Explicit Type Statement" on page 85.

VS FORTRAN Statements 75

EJECT

EJECT STATEMENT

ELS EST AT E!1ENT

ELSE IF STATEMENT

IBM EXTENSION --------------------~

EJECT is a compiler directive. It starts a new full page of the
source listing. The EJECT statement should not be continued.

r= syntax

LeT
'---------- END OF IBM EXTENSION ---------~

See "IF Statements" on page 117.

See "IF Statements" on page 117.

76 VS FORTRAN language Reference

o
J

q
/'

0-

o

o

END STATEMENT

END

The END statement defines a program unit. That is, it terminates a
main program, or a function, subroutine, or block data
subprogram.

syntax

The END statement may be numbered. It may not be continued and no
other statement in the program unit may have an initial line that
appears to be an END statement. The END statement terminates
program execution if it is executed in the main program. If
executed in a subprogram, it has the effect of a RETURN statement.

Execution of an END statement terminates the association between
the dummy arguments of the subprogram and the current actual
arguments. All entities within the subprogram become undefined
except:

• Entities specified in SAVE statements (see "SAVE Statement"
on page 168)

• Entities in blank common.

• Initially defined entities that have neither been redefined
nor become undefined.

• Entities in named common blocks that appear in the subprogram
and appear in at least one other program unit that is
referring, either directly or indirectly, to that subprogram.
The entities in a named common block may become undefined by
execution of a RETURN or END statement in another program
unit.

All variables that are assigned a statement number with the ASSIGN
statement become undefined regardless of whether the variable is
in common or specified in a SAVE statement.

END Statement in a Function Subprogram

All function subprograms must end with an END statement. They may
also contain RETURN statements. The END statement specifies the
physical end of the subprogram.

A subprogram must not be referred to twice during the execution of
an executable program without the intervening execution of a
RETURN or END statement in that subprogram.

END Statement in a Subroutine Subprogram

All subroutine subprograms must end with an END statement. They
may also contain RETURN statements. The END statement specifies
the physical end of the subprogram. If the END statement is
reached during execution of the subroutine subprogram, it is
executed as a RETURN statement.

VS FORTRAN Statements 77

END DEBUG

END DEBUG STATEMENT

IBM EXTENSION

The END DEBUG statement terminates the last debug packet for the
program.

~ Syntax

EHD DEBUG

END DEBUG is placed after the other debug statements and just
before the first statement of the program being debugged. Only
one END DEBUG statement is allowed in a program unit.

For examples of debug packets and the END DEBUG statement, see
"DEBUG Statement" on page 68.

'---------- END OF IBM EXTENSION ----------'

78 VS FORTRAN language Reference

o
/

Q

ENDFILE STATEMENT

o

o

o

Tha ENDFIlE statement writes an end-of-file record on a
sequentially accessed external file.

Syntax

ENDFIlE YO

ENDFIlE ([UNIT=]yn [, ERR=stn] [, IOSTAT=ios])

UNIT=Yn

ENDFILE

is the reference to the number of an I/O unit. un can
optionally be preceded by UNIT= if the second form of the
statement is used. It can be an integer or real arithmetic
expression. Its value (after conversion to integer of length
4, if necessary) must be ze~o or positive; otherwise, an
error is detected.

ERR=stn -rs optional. stn is a statement number. If an error occurs in
the execution of the ENDFILE statement, control is
transferred to the statement labeled stn. That statement
must be executable and must be in the~e program unit as
the ENDFILE statement. If ERR=stn is omitted, execution
halts when an error is detecte~

IOSTAT=ios
is optional. ios is an integer variable or an integer array
element of length 4. Its value is set positive if an error is
detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

If UNIT= is specified, UNIT, ERR, and IOSTAT can appear in any
order; otherwise, YO must appear first.

Valid ENDFILE statements:

ENDFIlE YO

ENDFIlE (yn,ERR=stn)

ENDFILE (UNIT=yo,ERR=stn)

ENDFILE (ERR=stn,UNIT=yn)

Invalid ENDFILE statements:

ENDFILE UNIT=yo

ENDFIlE Yn,ERR=a1n

ENDFIlE (ERR=stn,yn)

UNIT= is not allowed outside
parentheses.

Parentheses must be specified.

UNIT= must be specified
or YO must be first in the list.

When the ENDFIlE statement is encountered, the unit specified by
YO must be connected to an external file with SEQUENTIAL access.
(See VS FORTRAN Application Programming: Guide for an example.)
If the unit is not connected, an error is detected.

After successful execution of the ENDFIlE statement, the external
file connected to the unit specified by un is created if it does
not already exist. --

VS FORTRAN Statements 79

Et~DFILE

END IF STATEMENT

IBM ·EXTENSION

Use of ENDFll E wi th asynchronous READ and WRITE statements is
allowed provided that any input or output operation on the file
ha~ been allowed to complete by the execution of a WAIT
statement. A WAIT statement is not required to complete the
ENDFIlE operation.

Transfer is made to the statement specified by the ERR= if an
error is detected. If IOSTAT=ios is specified, a positive
integer value is assigned to lOS when an error is detected. Then
execution continues with the statement specified with the ERR
parameter, if present, or with the next statement if ERR is not
specified. If the ERR parameter and the IOSTAT parameter are
both omitted, program execution is terminated when an error is
detected.

Multiple file data sets are permitted in VS FORTRAN. Therefora;
after execution of an ENDFllE, additional data may be
transferred to the subsequent files.

'----------- END OF IBM EXT ENSION ---------......

See "IF Statements" on page 117.

80 VS FORTRAN language Reference

Q
).

l

ENTRY STATEMENT

o

ENTRY

The ENTRY statement names the place in a subroutine or function
subprogram that can be used in a CAll statement or as a function
reference.

The normal entry into a subroutine subprogram from the calling
program is made by a CAll statement that refers to the subprogram
name. The normal entry into a function subprdgram is made by a
function reference in an arithmetic, character, or logical
expression. Entry is made at the first executable statement
following the SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram by a CALL statement (for
a subroutine subprogram) or a function reference (for a function
subprogram) that refers to an ENTRY statement in the subprogram.
Entry is made at the first executable statement following the
ENTRY statement.

r= Syntax

L:RY lli!!!!Jil [([ru:..gl [, !l!..Sl2] ...])]

is the name of an entry point in a subroutine or function
subprogram. If ENTRY appears in a subroutine subprogram,
name is a subroutine name. If ENTRY appears in a function
subprogram, name is a function name.

is an optional dummy argument corresponding to an actual
argument in a CALL statement or in a function reference. See
"Subprogram Statements" on page 43. If no £!:9 is specified,
the parentheses are optional.

arg may be a variable name, array name, or dummy procedure
name or an asterisk. An asterisk is permitted only in an
ENTRY statement in a subroutine subprogram.

The ENTRY statement cannot appear in a main program.

A function subprogram must not refer to itself or any of its entry
points either directly or indirectly.

ENTRY statements are nonexecutable and do not affect control
sequencing during execution of a subprogram. They can appear
anywhere after a FUNCTION or SUBROUTINE statement except that an
ENTRY statement must not appear between a block IF statement and
its matching END IF statement or between a DO statement and the
terminal statement of its range.

Note: ENTRY statements can appear before the IMPLICIT or
PARAMETER statements. The appearance of an ENTRY statement does
not alter the rule that statement functions must precede the first
executable statement.

Within a function or subroutine subprogram, an entry name must not
appear as a dummy argument of a FUNCTION, SUBROUTINE, or ENTRY
statement and it must not appear in an EXTERNAL statement.

If information for an object-time dimension array is passed in a
reference to an ENTRY statement, the array name and all its
dimension parameters (except any that are in a common area) must
appear in the argument list of the ENTRY statement. See "Size and
Type Declaration of an Array" on page 22.

In a function subprogram, the type of the function name and entry
name are determined (in order of decreasing priority) by:

VS FORTRAN Statements 81

ENTRY

1. An explicit type statement

2. An IMPLICIT statement

3. Predefined convention

In function subprograms, an entry name must not appear preceding
the entry statement except in a type statement.

If any entry name ina funct i on subprogram or. the name of the
function subprogram is of type character, all entry names of the
function subprogram must be of type character with the same
length. The CHARACTER type statement or IMPLICIT statement can be
used to specify the type and length of the entry point name. The
length specification is restricted to the forms permitted in the
FUNCTION statement.

The types oT these variablQs (that 15, th~ function nam~ and entry
names) can be different ,only if the type is not character; the
variables are treated as if they were equivalenced. After one of
these variables is assigned a value in the subprogram, any others
of different type become indeterminate in value.

In a function subprogram, either the function name or one of the
entry names must be assigned a value.

Upon exit from a function subprogram, the value returned is the
value last assigned to the function name or any entry name. It is
returned as though it were assigned to the name in the current
function reference. If the last value is assigned to a different
entry name, and that entry name differs in type from the name in
the current function reference, the value of the function is
undefined.

Entry names in a subroutine subprogram do not have a type;
explicit typing is not allowed.

Valid ENTRY statements:

ENTRY ENTCT)

ENTRY SUB2 CT,*,*)

ENTRY SUB3 C*,*)

Actual Arguments in an ENTRY statement

Entry into a function subprogram associates actual arguments with
the dummy arguments of the referenced ENTRY statement. Thus, all
appearances of these arguments in the whole subprogram become
associated with actu~l arguments.

See "Actual Arguments in a Subroutine Subprogram" on page 173 and
"Actual Arguments in a Function Subprogram" on page 113.

Dummy Arguments in an ENTRY statement

The dummy arguments in the ENTRY statement need not agree in
order, type, or number with the dummy arguments in the SUBROUTINE
or FUNCTION statement or any other ENTRY statement in the same
subprogram. However, the actual arguments for each CALL or
function reference must agree in order, type, and number with the
dummy arguments in the SUBROUTINE, FUNCTION, or ENTRY statement
to which it refers.

Any dummy argument of an ENTRY statement must not be in an
executable statement preceding the ENTRY statement unless it has ('
already appeared as a dummy argument in an ENTRY, SUBROUTINE, or \' . ,,;J.,)
FUNCTION statement prior to the executable statement. 1

82 VS FORTRAN Language Reference

o

o

0·;: "

ENTRY

.If an ENTRY dummy argument is used as an adjustable array name,
the array name and all its dimensions (except those in COMMON)
must be in the same dummy argument list.

Dummy arguments can be variables, arrays, dummy procedure names,
or asterisks. The asterisk is allowed only in an ENTRY statement
in a subroutine subprogram and indicates an alternate return
specifier.

A dummy argument must not appear in the expression of a statement
function definition unless the name is also a dummy argument to
the statement function, or is in a FUNCTION or SUBROUTINE
statement, or is in an ENTRY prior to the statement function
definition.

A dummy argument used in an executable statement is allowed only
if that dummy argument appears in the argument list of the
FUNCTION, SUBROUTINE, or ENTRY statement by which the subprogram
was entered.

See "Dummy Arguments in a Subroutine Subprogram" on page 174 and
"Dummy Arguments in a Function Subprogram" on page 113.

VS FORTRAN Statements 83

EQUIVALENCE

EQUIVALENCE STATEMENT

The EQUIVALENCE statement permits the sharing of data storage
within a single program unit.

~ Syntax

I EQUIVALENCE (listl) [, (list2)] ...

is a list of variable, array, array element, or character
substring names. Names of dummy arguments of an external
procedure in a subprogram must not appear in the list. Each
pair of parentheses must contain at least two names.

The number of subscript quantities of array elements mU5t be
equal to the number of dimensions of the array. If an array
name is used without a subscript in the EQUIVALENCE
statement, it is interpreted as a reference to the first
element of the array.

An array element refers to a position in the array in the
same manner as it does in an assignment statement (that is,
the array subscript specifies a position relative to the
first element of each dimension of the array).

The subscripts and substring information may be integer
expressions containing only integer constants, or names of
integer constants. They must not contain variables, array
elements, or function references.

All the named data within a single set of parentheses share the
same storage location. When the logic of the pro'gram permits it, 1"\
the EQUIVALENCE statement can reduce the number of bytes used by '~Ji?
sharing two or more variables of the same type or different ,
noncharacter types. Character type variables and character type
array elements can only be equivalenced with other character type
variables, character type array elements, or portions of them.
The length of the equivalenced entities can be different.
Equivalence between variables implies storage sharing.

Mathematical equivalence of variables or array elements is
implied only when they are of the same noncharacter type, when
they share exactly the same storage, and when the value assigned
to the storage is of that type.

Because arrays are stored in a predetermined order, equivalencing
two elements of two different arrays implicitly equivalences
other elements of the two arrays. The EQUIVALENCE statement must
not contradict itself or any previously established equivalences.

Two variables in one common block or in two different common
blocks cannot be made equivalent. However, a variable in a program
unit can be made equivalent to a variable in a common block. If
the variable that is equivalenced to a variable in the common
block is an element of an array, the implicit equivalencing of the
rest of the elements of the array can extend the size of the
common block. The size of the common block cannot be extended so
that elements are added ahead of the begi nn i ng of the establ i shed
common block.

Valid EQUIVALENCE Statements:

EQUIVALENCE (C(l), A(I», (C(50,50), B(l»

EQUIVALENCE (A, B(l), C(5,3», (D(5,10,2), E)

EQUIVALENCE (B,D(1»

84 VS FORTRAN Language Reference

o

Expl i cit Type

EXPLICIT TYPE STATEMEHT

The explicit type statement:

• Specifies the type and length of variables, arrays, and
user-supplied functions.

• Specifies the dimensions of an array.

IBM EXTENSION

• Assigns initial data values for variables and arrays.

END OF IBM EXTENSION -----------"

The explicit type statement overrides the IMPLICIT statement,
which, in turn, overrides the predefined convention for
spec 1 fy i ng type.

Syntax

~1 [, ~2] •..

is COMPLEX, INTEGER, LOGICAL, REAL, DOUBLE PRECISION, or
CHARACTER[*len[,)]

L>Jhere:

specifies the length (number of characters between 1
and 500). It is opti onal. It can be expressed as:

• An unsigned, nonzero, integer constant .

• An expression with a positive value that contains
integer constants, names of integer constants
enclosed in parentheses, or an asterisk enclosed in
parentheses.

The length *len immediately following the word
CHARACTER is used as the length specification of any
name in the st~tement that has no length specification
attached to it. To override a length for a particular
name, see the alternative forms of name below. If *len
is not speci fi ed, it; s assumed to be 1. --

The comma in CHARACTER[*len[,]] must not appear if *len is
not specified. It is option~l if *len is specified.

If the length specification (*len) is a constant, it must be an
unsigned, nonzero, integer constant. If the length specification
is an arithmetic expression enclosed in parentheses, it can
contain only integer constants or names of integer constants.
Function and array element references must not appear in the
expression. The value of the expression must be a positive,
nonzero, integer const~nt.

If the length specification is an asterisk (*), name must be the
name of a character constant. The character constant assumes the
length of its corresponding expression in a PARAMETER statement.

If the CHARACTER statement is in a subprogram, the asterisk (*)
must be ~ssoc i ated wi th a name that is a dummy argument. The dummy
argument "sSlImes the length of the associated actual argument for
each reference of the subroutine.

The length specified (or assigned by default) with an array name
is the ler,gth of each element of the array.

VS FORTRAN Statements 85

Expl i ci t Type

If a character function has the length specified as an asteri sk
(*) in a program unit, the function name must appear as the name
of a function in a FUNCTION or ENTRY statement in the same program
unit. When a reference to such a function is executed, the
function assumes the length specified in the calling program
unit. The length of a CHARACTER statement function cannot be
specified by an asterisk (*) but can be an integer constant
expression.

The length specified for a character function in the program unit
that refers to the function must be an expression involving only
integer constants or names of integer constants. Thi s length must
agree with the length specified in the subprogram that specifies
the function if the length is not specified as an asterisk.

.&. •• --
~

,.

IBM EXTENSION

is COMPLEX[*lenl], INTEGER[*lenlJ, LOGICAL[*lenlJ, or
REAL[*lenlJ -

where:

*lenl
is opt i onal and represents one of the permi ss i ble
length specifications for its associated type as
described in Figure 5.

END OF IBM EXTENSION

is a variable, array, function name, dummy procedure name or
the name of a constant. It can have the form:

or
Sl[(dim)]

f\.[(dim)][*len2J

where:

is a variable, array, function name, or dummy procedure
name.

is optional. dim ma~' only be specified for arrays. It is
composed of one through seven dimension bounds,
separated by commas, that represent the limits for each
subscript of the array in the form:

gl :g2

,. ...

where:

gl
is the lower dimensi on bound. It is opti onal. If
el (with its following colon) is not specified,
its value is assumed to be 1.

is the upper di mens; on bound and must always be
specified.

(See "Size and Type Declaration of an Array" on page 22 for
rules about dimension bounds.>

If a specific intrinsic function name appears in an explicit
specification statement that causes a conflict with the type
specified for this function in "Appendix B. FORTRAN-Supplied

86 VS FORTRAN Language Reference

(\
. .dIi

}

.Q

o

o

*len2

Expl iei t Type

Procedures" on page 204, the name loses its intrinsic
function property in the program unit. A type statement that
confirms the type of an intrinsic function is perm;tted. If a
generic function name appears in an explicit specification
statement, it does not lose its generic property in the
program unit.

--- overrides the length as specified in the statement by
CHARACTER[*len[,l].

IBM EXTENSION

is a variable, array, function name, dummy procedure name
or the name of a constant. It can have the form:

or

where:

*len3

is a variable, array, function name, or dummy
procedure name.

--- overrides the length as specified in the initial
keyword of the statement as COMPLEX, INTEGER,
LOGICAL, REAL, COMPLEX[*lenl], INTEGER[*lenl1,
LOGICAL[*lenl], or REAL[*lenl1 ---

is optional. dim may only be specified for arrays. It
is composed of one through seven dimension bounds,
separated by commas, that represent the limits for
each subscript of the array. See the description of
dim above.

11,12,13, ... ,in
are optional and represent initial data values.

Dummy arguments and names of constants, functions, and
statement functions, may not be assigned initial values.
Initial data values may not be assigned for any items of type
DOUBLE PRECISION or CHARACTER.

Initial data values may be assigned to variables or arrays that
are not dummy arguments or in blank common, by use of in, where
in is a constant or list of constants separated by commas. Each
in provides initialization only for the immediately preceding
variable or array. Lists of constants are used only to assign
initial values to array elements. The data must be of the same
type as the variable or array, except that hexadecimal data may
al so be used.

Note: If hexadecimal data is used, the hexadecimal constant
form must be followed (see "Hexadecimal Constants" on page 17).

VS FORTRAN Statements 87

Expl i ci t Type

Successive occurrences of the same constant can be represented
by the form i*constant, as in the DATA statement. If initial
data values are assigned to an array in an explicit
specification statement, the dimension information for the
array must be in the explicit specification statement or in a
preceding DIMENSION or COMMON statement.

'---------- END OF IBM EXTENS ION ----------'"

Valid Explicit Type statements:

CHARACTER*8APPlES
DATA APPlES/'APPLES '/

IBM EXTENSION

COMPLEX C,D/C2.1,4.7)/,E*16

INTEGER*2 ITEM/76/, VALUE

REAL ACS,S)/20*6.9E2,4*1.0/,B(lOO)/lOO*0.O/,TEST*8CS)/S*O.O00/

REAL*8 BAKER, HOLD, VALUE*4, ITEM(S,S)

'----------- END OF IBM EXTENS ION ----------

88 VS FORTRAN Language Reference

0,
t

EXTERNAL STATEMENT

o

o

EXTERNAL

The EXTERNAL statement identifies a user-supplied subprogram name
and permi ts such a name to be used as an actual argument.

r-= syntax

I EXTERNAL nsmgl [, ~2] ...

;s a name of a user-supplied subprogram (function or
subrouti ne) that is passed as an argument to another
subprogram.

EXTERNAL ;s a specification statement and must precede statement
function definitions and all executable statements.

Statement function names cannot appear in an EXTERNAL statement.
If the name of a VS FORTRAN-supplied function (that is, intrinsic
function) is used in an EXTERNAL statement, the function is no
longer recognized as being an intrinsic function when it appears
as a function reference. Instead, it is assumed that the function
is supplied by the user.

The same name may not appear in both an EXTERNAL and an INTRINSIC
statement.

The name of any subprogram that is passed as an argument to
another subprogram must appear in an EXTERNAL or INTRINSIC
statement in the calling program.

Valid EXTERNAL statement:

EXTERNAL TREES

VS FORTRAN Statements 89

FORMAT

FORMAT STATEMENT

The FORMAT statement is used with the input/output list in the
READ and WRITE statements to specify the structure of FORTRAN
records and the form of the data fi elds wi thi n the records.

r--=-= Syntax

I FORMAT (fl [, f2 [...]])

11, 12, .•• , 1n are format codes.

Format Codes Description

itI~ Integer data fields

2I~·m Integer data fields

itD~.g Double precision data fields

s.E~.g Real data fields

itE~.gEg Real data fields

2F~.g Real data fields

SlG!!!.g Real data fields

itG~.gE.@ Real data fields

uP Scale factor

2l~ logical data fields

itA Character data fields

itA~ Character data fields

'literal' Literal data (character constant)

~H Literal data (Hollerith constant)

~X Skip a field ('j nput), f1l1 wi th bl~nks (output)

Tr: Transfer of data starts in current position

TLr: Transfer of data stCllrts r: characters to the
left of current position

TRr: Transfer of data starts r: characters to the
r-i ght of current position

it (.••) Group format specification

S Display of optional plus sign is restored

SP Plus sign is produced in output ..
SS Plus sign is not produced in output

BN Blanks are ignored in input

BZ Blanks are treated as zeros in input

/ Data transfer on the current record is ended
. Format control is terminated if there are no .

more items in the input/output list

90 VS FORTRAN language Reference

Q

0 -... .)1>;.-

o

0-

IBM EXTENSION

Format Codes Description

§.EI:::!.,dDg Real data fields

ilG~ • .s;I Integer or logical data fields

AG!:! • .s;IEJ! Integer or logical data fields

aQI:::!.g Extended precision data fields

AZI:::! Hexadecimal data fields

�__ ________ END OF IBM EXTENSION _________ -.J

m

n

(...)

is optional and is a repeat count, an unsigned, nonzero,
integer constant used to denote the number of times the
format code or group is to be used. If 2 is omitted, the code
or group is used only once.

is an unsigned, nonzero, integer constant that specifies the
width of the field.

is an unsigned integer constant that specifies the number of
digits to be printed.

is an unsigned integer constant that specifies the number of
digits to the right of the decimal point.

is an unsigned, nonzero, integer constant that specifies the
number of digits in the exponent field.

is an (optionally) signed integer constant that specifies a
scale factor to be applied.

is an unsigned, nonzero, integer constant that specifies a
character position in a record.

is a group format specification. Within the parentheses are
format codes or additional levels of groups, separated by
commas, slashes, or colons. Commas are optional before or
after a slash and before or after a colon, if the slash or
colon is not part of a character constant.

The FORMAT statement is used with READ and WRITE statements for
internal and external files. The external files must be connected
for SEQUENTIAL or DIRECT access. In the FORMAT statement, the data
fields are described with format codes, and the order in which
these format codes are specified determines the structure of the
FORTRAN records. The I/O list gives the names of the data items
that make up the record. The length of the list, in conjunction

VS FORTRAN Statements 91

FORMAT

with the FORMAT statement, specifies the length of the record (see
"Fo rms of a FORMAT Statement" on page 94).

The format codes delimited by left and right parentheses may
appear as a character constant in the format specification of the
READ or WRITE statement, instead of in a separate FORMAT
statement. For example,

READ (UNIT=5,FMT='(I3,F5.2,EIO.3,GIO.3)')N,A,B,C

READ (S,'(I3,FS.2,EIO.3,GIO.3)')N,A,B,C

Throughout this section, the examples show punched card input and
printed line output. However, the concepts apply to all
input/output media. In the examples, the character b represents a
blank.

General Rules for Data Conversion

The following is a list of general rules for using the FORMAT
statement or a format in a READ or WRITE statement.

• FORMAT statements are not executed; their function is to
supply information to the object program. They may be placed
anywhere in a program unit other than in a block data
subprogram, subject to the rules for the placement of the
PROGRAM, FUNCTION, SUBROUTINE, and END statements.

• Complex data in records require two successive D, E, G, or F
format codes.

IBM EXTENSION

VS FORTRAN also accepts the Q format code for complex data.

END OF IBM EXTENSION ----------'

The two codes may be different and the format codes T, Tl, TR,
X, /, :, S, SP, SS, P, BN, BZ, H, or a literal enclosed in
apostrophes may appear between the two codes.

• When defining a FORTRAN record by a FORMAT, it is important to
consider the maximum size record allowed on the input/output
medium. For example, if a FORTRAN record is to be punched for
output, the record should not be longer than 80 characters. If
it is to be printed, it should not be longer than the
printer's line length. For input, the FORMAT should not
define a FORTRAN record longer than the actual input record.

• When formatted records are prepared for printing at a printer
or termi nal, the fi rst character of the record is not

•

pri nted or di splayed. It is treated as a carri er control
character. It can be specified in a FORMAT statement with
either of two forms of literal data:

'~' or IH~

where ~ is one of the following:

blank
o
1
+

Meaning

Advance one line before printing.
Advance two lines before printing.
Advance to first line of next page.
Do not advance before printing.
(Overstrike the current line.)

For media other than a printer or terminal, the first
character of the record is treated as data.

If the I/O list is omitted from the READ or WRITE statament,
the following general rules apply:

92 VS FORTRAN language Reference

(~ iV' (.....

o

o
1

FORMAT

Input: A record is skipped.

outp~t: A blank record is written unless the FORMAT
statement contains an H format code or a character
constant (see "H Format Code and Character Constants" on
page 103).

To produce a blank record on output, an empty format
specification of the form FORMAT () may be used.

• To illustrate the nesting of group format specifications, the
following statements are both valid:

FORMAT (•• ~,g(.•. ,g(.••), ••• ,g(.•.), ••. »
or

FORMAT (••. ,g(••• ,2(..• ,2(•••), •••), •••), .••)

• Names of constants must not be a part of a format
specification (see "PARAMETER Statement" on page 138).

• With numeric data format codes I, F, E, G, and D, the
following general rules apply:

Input: Leading blanks are not significant. The
interpretation of blanks, other than leading blanks, is
determined by a combination of the value of the BLANK=
specifier given when the fil~ was connected (see "OPEN
Statement" on page 134) and any BN or BZ blank control
that is currently in effect. Plus signs may be omitted. A
fi eld of all blanks is consi dered to be zero.

With F, E, G, and D format codes, a decimal point
appearing in the input field overrides the portion of a
format code that specifies the decimal point location.
The input field may have more digits than VS FORTRAN uses
to approximate the value.

output: The representation of a positive or zero
internal value in the field may be prefixed with a plus,
as controlled by the S, SP, and SS format codes. The
representation of a negative internal value in the field
is prefixed with a minus. A negative zero is not produced.

The representation is right-justified in the field. If
the number of characters produced by the editing is
smaller than the field width, leading blanks are inserted
in the field.

If the number of characters produced exceeds the field
width or if an exponent exceeds its specified length
using the E~.gEg or G~.sEg format codes, the entire field
of width w is filled with asterisks. However, if the field
width is not exceeded when optional characters are
omitted, asterisks are not produced. When an SP format
code is in effect, a plus is not optional.

IBM EXTENSION

With VS FORTRAN, format code Q makes the following
additional rules apply:

Input: With Q editing, a decimal point appearing in the
input field overrides the portion of a format code that
specifies the decimal point location. The input field
may have more digits than VS FORTRAN uses to approximate
the value.

output: If"the number of characters produced exceeds
the field width or if an exponent exceeds its specified
length using the E~.gDg or Q~.~ format codes, the entire

VS FORTRAN Statements 93

FOR HAT

field of width w is filled with asterisks. However, if
the field width-is not exceeded when optional characters (~
are omitted, asterisks are not produced. When an SP .~
format code is in effect, a plus is not optional.

1....-. ________ END OF IBM EXTENSION ---------....

Forms of a FORHAT statement

All of the format codes in a FORMAT statement are enclosed in
parentheses. Within these parentheses, the format codes are
delimited by commas. The comma may be omitted between a P format
code and an immediately following F, E, D, or G format code, and
before or after a colon or slash format code.

Execution of a formatted READ or formatted WRITE statement
initiates format control. Each action of format control deDends
on information provided jointly by the I/O list, if one exists,
and the format specification. If there is an I/O list, there must
be at least one I, D, E, F, A, G, or L format code in the format
specification.

IBM EXTENSION

The Q and Z format codes may also appear in the format
specification.

END OF IBM EXTENSION ---------

There is no I/O list item corresponding to the format codes: T,
Tl, TR, X, H, literals enclosed in apostrophes, S, SP, SS, BN, BZ,
p, the slash (/), or the colon (:). These communicate information
directly to the record.

Whenever an I, D, E, F, A, G, or L format code is encountered,
format control determines whether there is a corresponding
element in the I/O list.

IBM EXTENSION

With VS FORTRAN, the list of format codes includes Q and Z.

Whenever a Q or Z code is encountered, format control determines
whether there is a corresponding element in the I/O list.

The comma may be omitted between a P format code and an
immediately following Q format code.

END OF IBM EXTENSION ----------

If there is a corresponding element, appropriately converted
information is transmitted. If there is no corresponding element,
the format control terminates, even if there is an unsatisfied

. repeat count.

When format control reaches the last (outer) right parenthesis of
the format specification, a test is made to determine whether
another element is specified in the I/O list. If not, contr~l
terminates. If another list element is specified, the format
control starts a new record. Control then reverts to that group
specification terminated by the last preceding right parenthesis.
i ncludi ng its group repeat count, if any, or, if no group
specification exists, then to the first left parenthesis of the
format specification. Such a group specification must include a
closing right parenthesis. If no group specification exists,
control reverts to the first left parenthesis of the format
specification.

For example, assume the following FORMAT statements:

70 FORMAT (I5,2(I3,F5.2),I4,F3.1)

94 VS FORTRAN Language Reference

;1'\
~,~,

l

p

I Format Code

o

F Forma t Code

o

80 FORMAT (I3,F5.2,2(I3,2F3.1»

90 FORMAT (I3,F5.2,2I4,5F3.1)

FORMAT

With additional elements in the I/O list after control has reached
the last right parenthesis of each, control would revert to the
2(13,F5.2) specification in the case of statement 70; to
2(I3,2F3.1) in the case of statement 80; and to the beginning of
the format specification, I3,FS.2, ..• in the case of statement
90.

The question of whether there are further elements in the I/O list
is asked only when an I, 0, E, F, A, G, or L format code or the
final right parenthesis of the format specification is
encountered.

IBM EXTENSION

The question is also asked when a Q or Z format code is
encountered.

END OF IBM EXTENSION _________ --1

Before this is done, T, TL, TR, X, and H codes, literals enclosed
in apostrophes, colons, and slashes are processed. If there are
fewer elements in the I/O list than there are format codes, the
remaining format codes are ignored.

The I format code edits integer data. For example, if a READ
statement refers to a FORMAT statement containing I format codes,
the input data is stored in internal storage in integer format.
The magnitude of the data to be transmitted must not exceed the
maximum magnitude of an integer constant.

INPUT: Leading blanks in a field of the input line are interpreted
as zeros. Embedded and trailing blanks are treated as indicated in
the general rules for numeric fields described under "General
Rules for Data Conversion" on page 92. If the form Iw.m is used,
the value of In has no effect. - -

OUTPUT: If the number of significant digits and sign required to
represent the quantity i~ the byte is less than H, the leftmost
print positions are filled with blanks. If it is greater than ~,
asterisks are printed instead of the number. If the form lw.m is
used, the output i s the same as the I~ form, ~xcept that the
unsigned integer constant consists of at least m digits and, if
necessary, has leading zeros. The value of m must not exceed the
value of~. If m is zero and the value of the internal datum is
zero, the output field consists of only blank characters,
regardless of the sign control in effect.

The FH.~ format code edits real data. It indicates that the field
occupies H positions, the fractional part of which consists of g
digits.

INPUT: The input field consists of an optional sign, followed by a
string of digits optionally containing a decimal point. If the
decimal point is omitted, the rightmost g digits of the string,
with leading zeros assumed if necessary, are interpreted as the
fractional part of the value represented.

The input field may have more digits than VS FORTRAN uses to
approximate the value of the datum. The basic form may be followed
by an exponent of one of the followi ng forms:

• Signed integer constant.

VS FORTRAN Statements 95

FORMAT

•

•

E followed by zero or more blanks, followed by an optionally
signed integer constant.

o followed by zero or more blanks, followed by an optionally
signed integer constant.

IBM EXTENSION

• Q followed by zero or more blanks, followed by an optionally
signed integer constant.

'---------- END OF IBM EXTENSION ~--------~

An exponent containing a D is processed identically to an exponent
containing an E.

OUTPUT: The output field consists of blanks, if necessary,
followed by a minus sign if the internal value Is negative, or an
optional plus otherwise, followed by a string of digits that
contains a decimal point and represents the magnitude of the
internal value, as modified by the established scale factor and
rounded to ~ fractional digits. Leading zeros are not provided
except for an optional zero immediately to the left of the decimal
point if the magnitude of the value in the output field is less
than one. The optional zero appears if there would otherwise be no
digits in the output field.

o

D, E, and Q Format Codes

The Ow.d, Ew.d, Ew.dEg format codes edit real, complex, or double
preciSlon data.

IBM EXTENSION

The E~.gOg and Qw.d format codes edit extended precision data in
addition to real, complex, and double precision data.

END OF IBM EXTENSION ---------~

The external field occupies ~ positions, the fractional part of
which consists of ~ digits (unless a scale factor greater than one
is in effect). The exponent part consists of g digits. (The g has
no effect on input.)

INPUT: The input field may have more digits than VS FORTRAN uses
to approximate the value of the datum.

Input datum must be a number, which, optionally, may have a D or E
exponent, or may be omitted from the exponent if the exponent is
signed.

IBM EXTENSION

It may also have a Q exponent.

'----------- END OF IBM EXTENSION ------------'

All exponents must be preceded by a constant; that is, an
optional sign followed by at least one decimal digit with or
without decimal point. If the decimal point is present, its
position overrides the position indicated by the ~ portion of the
format code, and the number of positions specified by ~ must
include a place for it. If the data has an exponent and a P format
code is in effect, the scale factor is ignored.

The interpretation of blanks is explained in "General Rules for
Data Conversion" on page 92.

The input datum may have an exponent of any form. The input datum 0
is converted to the length of the variable as specified in the I/O .
list. The g of the exponent in the format code has no effect on . ,
input.

96 VS FORTRAN Language Reference

0 '1,
",

G Forma t Code

o

P Forma t Code

o

FORMAT

OUTPUT: For data written under a D or E format code, unless a
P-scale factor is in effect, output consists of an optional sign
(required for negative values), a decimal point, the number of
significant digits specified by~, and a D or E exponent requiring
four positions.

IBM EXTENSION

For data written under a Q format code, unless a P-scale factor
is in effect, output consists of an optional sign (required for
negative values), a decimal point, the number of significant
digits specified by ~, and a Q exponent requiring four
positions.

END OF IBM EXTENSION _________J

On output, ~ must provide sufficient space for an integer segment
if it is other than zero, a fractional segment containing 9
digits, a decimal point, and, if the output value is negative, a
sign. If insufficient space is provided for the integer portion,
including the decimal point and sign (if any), asterisks are
written instead of data. If excess space is provided, the number
is preceded by blanks.

The fractional segment is rounded to ~ digits. A zero is placed to
the left of the decimal point If the output field consists only of
a fractional segment, and if additional space is available. If the
entire value is zero, a zero is printed before the decimal point.

The G format code is a generalized code used to transmit real data
according to the type specification of the corresponding variable
in the I/O list.

INPUT: The form of the input field is the same as for the F format
code.

OUTPUT: For real data, the g determines the number of digits to be
printed and whether the number should be printed with the letter E
or D followed by the exponent, depending on the length
specification of the variable in the I/O list. The ~ specification
for real data must include a position for a decimal point and,
four positions for a decimal exponent, which includes the sign. A
zero exponent has a plus sign. All other rules for output are the
same as those for the individual format codes.

IBM EXTENSION

The letter Q is used for the exponent of real data.

The G format code may be used to transmit integer or logical
data according to the type specification of the corresponding
variable in the I/O list.

If the variable in the I/O list is integer or logical, the ~
portion of the format code, specifying the number of
significant digits, can be omitted; if it is given, it is
ignored.

END OF IBM EXTENSION ----------'"

A P format code specifies a scale factor D..l.. where .n is an
optionally signed integer constant. The value of the scale factor
is zero at the beginning of execution of each input/output
statement. It applies to all subsequently interpreted F, E, D, and
G format codes until another scale factor is encountered, then
that scale factor is established.

VS FORTRAN Statements 97

FORMAT

IBM EXTENSION

It also applies to all subsequently interpreted Q format codes.

'---------- END OF IBM EXTENSION ----------

Reversion of format control does not affect the established scala
factor. A repetition code can precede these format codes. For
example~ 2P3F7.4 is valid. A comma can be placed after the P
format code, for example~ 2P,3F7.4. A scale factor of zero may be
specified.

INPUT: If an exponent is in the data field, the scale factor has
no effect. If no exponent is in the field, the externally
represented number equals the internally represented number
multiplied by 10**n for the external representation.

xX.xxxx

and is to be used internally in the form

.xxxxxx

then the format code used to effect this change is

2PF7.4

which may also be written 2P,F7.4.

Similarly, if the input data is in the form

xx.xxxx

and is to be used internally in the form

xxxx.xx

then the format code used to effect this change is

-2PF7.4

which also may be written -2P,F7.4.

OUTPUT: With an F format code, the internally represented number
reduced by 10**n is produced.

For example, if the number has the internal form

.xxxxxx

and is to be written in the form

xX.xxxx

the format code used to effect this change is

2PF7.4

which also may be written 2P,F7.4.

On output with E and D format codes, the value of the internally
represented number is not changed. When the decimal point is moved
according to the 9 of the format code~ the exponent is adjusted so
that the value of the externally represented number is not
multiplied by 10**n.

98 VS FORTRAN language Reference

o

Z Format Code

IBM EXTENSION

On output with Q format code, the value of the internally
represented number is not changed.

FORHAT

'---------- END OF IBM EXTENSION ---------....

For example, if the internal number

238.47

were printed according to the format EIO.3, it would appear as

0.238Eb03

If it were printed according to the format 1PE10.3 or 1P,E10.3 it
would appear as

2.385Eb02

On output with a G format code, the effect of the scale factor is
suspended unless the magnitude of the internally represented
number (m) is outside the range that permits the use of F format
code editing. This range for use of the F format code is

.1 > m > 10 ** g

where d is the number of digits as specified in the G format code
Gw.d. -

IBM EXTENSION

The Z format code transmits hexadecimal data.

INPUT: Scanning of the input field proceeds from right to left.
leading, embedded, and trailing blanks in the field are treated
as zeros. One byte in internal storage contains two hexadecimal
digits; thus, if an input field contains an odd number of
digits, the number is padded on the left with a hexadecimal zero
when it is stored. If the storage area is too small for the
input data, th~ data is truncated and high-order digits are
lost.

OUTPUT: If the number of digits in the byte is less than ~, the
leftmost print positions are filled with blanks. If the number
of digits in the byte is greater than ~, the leftmost digits are
truncated and the rest of the number is printed.

'----------- END OF IBM EXTENSION ---------~

Numeric Format Code Examples

Example 1:

The following example illustrates the use of format codes I, F, D,
E, and G.

75 FORMAT (I3,F5.2,E10.3,G10.3)

READ (5,75) N,A,B,C

VS FORTRAN Statements 99

FORMAT

Explanation:

• Four input fields are described in the FORMAT statement and
four variables are in the I/O list. Therefore, each time the
READ statement is executed, one input line is read from the
file connected to unit number 5.

• When an input line is read, the number in the first field of
the line (three columns) is stored in integer format in
location N. The number in the second field of the input line
(five columns) is stored in real format in location A, and so
on.

• If there were one more variable in the I/O Ii st, say M,
another line would be read and the information in the first
three columns of that line would be stored in integer format
in location M. The rest of the line would be ignored.

• If there were one fewer variable in the list (say C is
omitted), format code G10.3 would be ignored.

• This FORMAT statement defines only one record format. "Forms
of a FORMAT Statement" on page 94 explains how to define more
than one record format in a FORMAT statement.

IBM EXTENSION

Example 2:

This example illustrates the use of the Z, D, and G format
codes.

Assume that the following statements are given:

75 FORMAT (Z4,DI0.3,2GI0.3)

READ (5,75) A,B,C,O

where A, C, and 0 are REAl*4 and B is REAl*8 and that on
successive executions of the READ statement, the following
input lines are read:

Column:

Input

lines

Format:

1 5 15 25 35

v v v v v
b3FI1564320+02276.38E+15bbbbbbbbbb

2AF3155381+02b382506E+28276.38E+15

3ACb346.18D-03485.322836276.38E+15

Z4 010.3 GI0.3 GI0.3

Then the var; abIes A, B, C and 0 recei ve values as if the
following data fields had been supplied:

A B C D

03F1 156.432002 276.38E+15 000000.000

2AF3 155.381+20 382.506E28 276.38E+15

3ACO 346.18D-03 485.322836 276.38E+15

100 VS FORTRAN language Reference

o

\ C

o

FORMAT

Explanation:

• leadi ng blanks in an input fi eld are treated as zeros. If
all other blanks are assumed to be treated as zero, because
the value for B on the second input line was not right
justified in the field, the exponent is 20 not 2.

• Values read into the variables C and D with a G format code
are converted according to the type of the corresponding
variable in the I/O list.

~-------- END OF IBM EXTENSION ----------'

Example 3:

This example illustrates the use of the literal enclosed in
apostrophes and the F, E, G, and I format codes.

Assume that the following statements are given:

76 FORMAT

WRITE

('0',F6.2,E12.3,G14.6,I5)

(6,76)A,B,C,N

and that the vari abIes A, B, C and N have the followi ng values on
successive executions of the WRITE statement:

A B C N

034.40 123.380E+02 123.380E+02 031

031.1 1156.1E+02 123456789. 130

-354.32 834.621E-03 1234.56789 428

01.132 83.121E+06 123380.D+02 000

Then, the following lines are printed by successive executions of
the WRITE statement:

Print
Column: 1 9 21 35

v v v v

34.40 0.123E 05 12338.0 31

31.10 0.116E 06 0.123457E 09 130

****** 0.835E 00 1234.57 428

1.13 0.831E 08 0.123380E 08 0

Explanation:

• The integer porti on of the thi rd value of A exceeds the format
code specification, so asteri sks are printed instead of a
value. The fractional portion of the fourth value of A exceeds
the format code specification, so the fractional portion is
rounded.

• For the variable B the decimal point is printed to the left of
the first significant digit and only three significant digits
are printed because of the format code E12.3. Excess digits
are rounded off from the right.

• The values of the variable C are printed according to the
format specification G14.6. The a specification, which in
this case is 6, determines the number of digits to be printed
and whether the number should be printed with a decimal
exponent. Values greater than or equal to 0.1 and less than
1000000 are printed without a decimal exponent in this
example. Thus, the fj rst and thi rd values have no exponent.

VS FORTRAN Statements 101

FORMAT

L Format Code

A Format Code

The second and fourth values are greater than 1000000, so they
are printed with an exponent.

The L format code transmits logical variables.

INPUT: The input fi eld must consi st of ei ther zeros or blanks wi th
an optional decimal point, followed by a Tor. F, followed by
optional characters, for true and false, respectively. The T or F
assigns a value of true or false to the logical variable in the
input list. The logical constants .TRUE. and .FALSE. are
acceptable input forms.

OUTPUT: A T or F is inserted in the output record depending upon
whether the value of the logical variable in the I/O list was true
or false, respectively. The single character is right justified
in the output field and preceded by ~-1 blanks.

The A format code transmits character data. Each alphabetic or
special character is given a unique internal code. Numeric
characters are transmitted without alteration; they are not
converted into a form suitable for computation. Thus, the A format
code can be used for numeric fields, but not for numeric fields
requiring arithmetic.

If ~ is specified, the field consists of ~ characters.

If the number of characters ~ is not specified with the format
code A, the number of characters in the field is the length of the
character item in input/output list.

INPUT: The maximum number of characters stored in internal
storage depends on the length of the variable in the I/O list. If
~ is greater than the variable length, say~, then the leftmost
w-v characters in the field of the input line are skipped and
remaining ~ characters are read and stored in the variable. If H
is less than ~, then ~ characters from the field in the input line
are read and remaining rightmost characters in the variable are
filled with blanks.

OUTPUT: If ~ is greater than the length ~ of the variable in the
I/O list, then the printed field contains ~ characters
right-justified in the field, preceded by le~ding blanks. If ~ is
less than v, the leftmost w characters from the variable are
printed and the rest of the data is truncated.

Example 1:

Assume that ~ has been specified as CHARACTER*8, that Nand Mare
CHARACTER*4, and that the following statements are given:

25 FORMAT (3A7)

READ (5,25) B, H, M

When the READ statement is executed, one input line is read from
the data set associated with data set reference number 5 into the
variables B, H, and M in the format specified by FORMAT statement
number 25. The following list shows the values stored for the
given input lines (b represents a blank).

Input Line

ABCDEFG46bATb11234567

HIJKLMN76543213334445

B

ABCDEFGb

HIJKLMNb

N

ATbl

4321

11

4567

4445

102 VS FORTRAN Language Reference

,.0
\.

o

o

FORMAT

Example 2:

Assume that A and B are character variables of length 4, that C 1S
a character variable of length 8, and that the following
statements are given:

26 FORMAT

WRITE

(A6,A5,A6)

(6,26) A,B,C

When the WRITE statement is executed, one line is written on the
data set associated with data set reference number 6 from the
variables A, B, and C in the format specified by FORMAT statement
26. The printed output for values of A, Band C 1S as follows (b
represents a blank):

A

A1B2

B

C3D4

C

E5F6G7H8

Printed Line

bbAIB2bC3D4E5F6G7

H Format Code and Character Constants

X Format Code

Character constants can appear in a FORMAT statement in one of two
ways: following the H format code or enclosed in apostrophes. For
example, the following FORMAT statements are equivalent.

25 FORMAT (22H 1981 INVENTORY REPORT)

25 FORMAT (' 1981 INVENTORY REPORT')

No 1tem in the output list corresponds to the character constant.
The constant is written directly from the FORMAT statement. (The
FORMAT statement can contain other types of format code with
corresponding variables in the I/O list.)

INPUT: Character constants cannot appear 1n a format used for
input.

OUTPUT: The character constant from the FORMAT statement is
written on the output file. (If the H format code is used, the w
characters following the H are written. If apostrophes are used,
the characters enclosed in apostrophes are written.) For example,
the following statements:

8 FORMAT (14HOMEAN AVERAGE:, F8.4)

WRITE (6,8) AVRGE

would wri te the followi ng record if the value of AVRGE were
12.3456:

MEAN AVERAGE: 12.3456

The first character of the output data record in this example is
the carrier control character for printed output. One line is.
skipped before printing, and the carrier control character does
not appear in the printed line.

Note: If the character constant is enclosed in apostrophes, an
apostrophe character in the data is represented by two successive
apostrophes. For example, DON'T would be represented as 'DON"T'.

The X format code specifies a field of H characters to be skipped
on input or filled with blanks on output if the field was not
previously filled. On output, an X format code does not affect the
length of a record.- For example, the following statements:

• Read the first ten characters of the input l1ne into variable
I.

VS FORTRAN Stat~ments 103

FORMAT

T Format Code

•
•

Skip over the next ten characters without transmission •

Read the next four fields of ten characters each into the
variables J, K, L, and M.

5 FORMAT (I10,10X,4II0)

READ (5,5) I,J,K,L,M

The T format code specifies the position in the FORTRAN record at
which the transfer of data is to begin.

To illustrate the use of the T code, the following statements:

5 FORMAT (T40,'1981 STATISTICAL REPORT', T80,

X 'DECEMBER',Tl,'OPART NO. 10095')

WRITE (6,5)

print the following:

Print
Position: 1

v
PART NO. 10095

39 79

v v
1981 STATISTICAL REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type
of format code, as, for example, with FORMAT ('0',T40,15) . .

q

INPUT: The T format code allows porti ons of a record to be (\i
processed more than once, possibly with different format codes. ~I

OUTPUT: The record is assumed to be initially filled with blank
characters, and the T format code can replace or skip characters.
On output, a T format code does not affect the length of a record.

(For printed output, the first character of the output data record
is a carri er control character and is not pri nted. Thus, for
example, if T50,'Z' is' specified in a FORMAT statement, a Z will
be the 50th character of the output record, but it will appear in
the 49th print position.)

TL AND TR FORMAT CODES: The TL and TR format codes specify how
many characters left (TL) or right (TR) from the current character
position the transfer of data is to begin. With TL format code, if
the current position ;s less than or equal to the position
specified with TL, the next character transmitted will be placed
in position 1 (that is, the carrier control position).

The TL and TR format codes can be used in a FORMAT statement with
any type of format code. On output, these format codes do not
affect the length of a record.

Group Format Specification

The group format specification repeats a set of format codes and
controls the order in which the format codes are used.

The group repeat count 2 is the same as the repeat indicator 2
that can be placed in front of other format codes. For example,
the following statements are equivalent:

10

10

FORMAT (13,2(14,15),16)

FORMAT (13,(14,15,14,15),16)

104 VS FORTRAN Language Reference

}

o

o
\

FORMAT

Group repeat specifications control the order in which format
codes are used, since control returns to the last group repeat
specification when there are more items in the I/O list than there
are format codes in the FORMAT statement (see "Forms of a FORMAT
statement" on page 94). Thus in the previous example, if there
were more than six items in the I/O list, control would return to
the group repeat count 2 that precedes the specification (14,15).

If the group repeat count is omitted, a count of 1 is assumed. For
example, the statements:

15 FORMAT (I3,(F6.2,D10.3»

READ (5,15) N,A,B,C,D,E

read values from the first record for N, A, and B, according to
the format codes 13,F6.2, and D10.3, respectively. Then, because
the I/O list is not exhausted, control returns to the last group
repeat specification, the next record is read, and values are
transmitted to C and D according to the format codes F6.2 and
D10.3, respectively. Since the I/O list is still not exhausted,
another record is read and value is transmitted to E according to
the format code F6.2--the format code D10.3 is not used.

All format codes can appear within the group repeat
specification. For example, the following statement is valid:

40 FORMAT (2I3/(3F6.2,F6.3/D10.3,3D10.2»
•

The first physical record, containing two data items, is
transmitted according to the specification 213; the second,
fourth, and so on, records, each containing four data items, are
transmitted according to the specification 3F6.2,F6.3; and the
third, fifth, and so on, records, each also containing four data
items, are transmitted according to the specification
D10.3,3D10.2, until the I/O list is exhausted.

S, SP, and 55 Format Codes

BN Format Code

The 5, SP, and 55 format codes control optional plus characters in
numeric output fields. At the beginning of execution of each
formatted output statement, a plus is produced in numeric output
fields. If an SP format code is encountered in a format
specification, a plus is produced in any subsequent position that
normally contains an optional plus. If SS is encountered, a plus
is not produced in any subsequent position that normally contains
an optional plus. If an 5 is encountered, the option of producing
the plus is restored.

The 5, SP, and SS format codes affect only I, F, E, G, and D
editing during the execution of an output statement.

IBM EXTENSION

The S, SP, and 55 format codes also affect Q editing.

END OF IBM EXTENSION -----------'

The 5, SP, and 55 format codes have no effect during the execution
of an input statement.

The BN format code specifies the interpretation of blanks, other
than leading blanks, in numeric input fields. At the beginning of
each formatted input statement, such blank characters are
interpreted as zeros or are ignored depending on the value of the
BLANK= specifier given when the unit was connected (see "OPEN
Statement" on page ~34).

VS FORTRAN Statements 105

FOR HAT

BZ Fg!'m~t Code

Slash Format Code

If BN is encountered in a format specification, all such blank
characters in succeeding numeric input fields are ignored.
However, a field of all blanks has the value zero.

The BN format code affects only I, F, E, G, and D editing during
execution of an input statement.

IBM EXTENSION

The BN format code also affects Q editing during execution of an
input statement.

'---------- END OF IBM EXTENSION -----------'

The BN format code has no effect during execution of an output
statement.

The BZ format code specifies the interpretation of blanks, other
than leading blanks, in numeric input fields.

If BZ is encountered in a format specification, all nonleading
blank characters in succeeding numeric fields are treated as
zeros. If no OPEN statement is given and the file is preconnected,
all nonleading blanks in numeric fields are interpreted as zeros.

The BZ format code affects only I, F, E, G, and 0 editing during
execution of an input statement.

IBM EXTENSION

The BZ format code also affects Q editing during execution of an
input statement.

'----------- END OF IBM EXTENSION ------------'

The BZ format code has no effect during execution of an output
statement.

A slash indicates the end of a FORTRAN record.

On input from a file connected for sequential access, the
remaining portion of the current record is skipped and the file is
positioned at the beginning of the next record.

On output to a file connected for sequential access, a new record
is created. For example, on output, the statement:

25 FORMAT CI3,F6.2/010.3,F6.2)

describes two FORTRAN record formats. The first, third, etc.,
records are transmitted according to the format 13, F6.2 and the
second, fourth, etc., records are transmitted according to the
format 010.3, F6.2.

J>'
Consecutive slashes can be used to introduce blank output records
or to skip input records. If there are 0 cQnsecutive slashes at
the beginning or end of a FORMAT statement, n input records are
skipped or 0 blank records are inserted between output records. If
n consecutive slashes appear anywhere else in a FORMAT statement,
the number of records skipped or blank records inserted is 0-1.
For example, the statement:

25 FORMAT CIX,10I5//1X,8E14.5)

o

describes three FORTRAN record formats. On output, it places a 0
blank line between the line wri tten wi th format lX,10I5 and the .y
line written with the format lX,SE14.5.

106 VS FORTRAN language Reference

(.'.~ V
i

o

o

Colon Format code

FORMAT

For a file connected for direct access, when a slash is
encountered, the record number is increased by one and the file is
positioned at the beginning of the record that has that record
number.

A colon terminates format control if there are no more items in
the input/output list. The colon has no effect if there are more
items in the input/output list.

Example:

Assume the following statements:

ITABLE=10
IELEM=O

10 WRITE(6,1000)ITABLE,IELEM

ITABLE=11
IELEM=25

XMIN=.37El
XMAX=.2495E3

.
20 WRITE(6,1000)ITABLE,IELEM,XMIN,XMAX

1000 FORMAT('O TABLE NUMBER',I5,:,'CONTAINS',I5,'ELEMENTS',:,
1 /'MINIMUM VALUE:',E15.7,
2 /'MAXIMUM VALUE:',E15.7)

The WRITE statement at statement number 10 generates the
following:

TABLE NUMBER 10 CONTAINS 0 ELEMENTS

The WRITE statement at statement number 20 generates the
following:

TABLE NUMBER 11 CONTAINS 25 ELEMENTS
MINIMUM VALUE: -.3700000E+Ol
MAXIMUM VALUE: .2495000E+03

Reading Format specifications at Object Time

FORTRAN provides for variable FORMAT statements by allowing a
format specification to be read into a character array element or
a character variable in storage. The data in the character array
or variable may then be used as the format specification for
subsequent input/output operations. The format specification may
also be placed into the character array or variable by a DATA
statement or an explicit specification statement in the source
program. The following rules are applicable:

• The format specification must be a character array or
character variable, even if the array size is only 1.

• The format codes entered into the array or character variable
must have the same form as a source program FORMAT statement,
except that the word FORMAT and the statement number are
omitted. The parentheses surrounding the format codes are
required.

VS FORTRAN Statements 107

FORMAT

•

•

I f a format code read at obj ect time conta i n5 two consecut iva
apostrophes within a character field that is defined by
apostrophes, it should be used for output only.

Blank characters may precede the format specification, and
character data may follow the right parenthesis that ends the
format specification.

Example: Assume the following statements:

DIMENSION CCS)
CHARACTER*16 FMT
READ(S,l)FMT

1 FORMAT CA)
READ(S,FMT)A,B,CC(I),I=l,S)

Assume, also, that the first input lina assoicated with unit 5
contains C2E10.3, SFIO.S).

The data on the next input line is read, converted, and stored in
A,B, and the array C, according to the format codes 2EIO.3,
SF10.S.

IBM EXTENSION

READING A FORMAT INTO A NONCHARACTER ARRAY

Assume the following statements:

DIMENSION FMTCI6),CCS)
READCS,l) FMT

1 FORMAT(16A1)
READCS,FMT)A,B,CCCI),I=l,S)

Assume also that the first input line associ·ated with unit S
contains C2E10.3, SF10.S).

The data on the next input record is read, converted, and stored
in A, B, and the array C, according to the format codes 2E10.3,
SF10.8.

'----------- END OF IBM EXTENSION -----------'

List-Directed Formatting

The characters in one or more list-directed records constitute a
sequence of values and value separators. The end of a record has
the same effect as a blank character, unless it is within a
character constant. Any sequence of two or more consecutive
blanks is treated as a single blank, unless it is within a
character constant.

Each value is either a constant, a null value, or one of tha
forms:

or

1:*

where ~ is an unsigned, nonzero, integer constant. The ~*f form is
equivalent to ~ successive appearances of the constant f, and the
.r:~ form is equivalent to ~ successive null values. Neither of
these forms may contain embedded blanks except where permitted
within the constant f.

A value separator is one of the following:

• A comma, optionally preceded by one or more blanks and
optionally followed by one or more blanks

lOS VS FORTRAN Language Reference

o {

o

o
\

•

•

A slash, optionally preceded by one or more blanks and
optionally followed by one or more blanks

FORMAT

One or more blanks between two constants or following the last
constant

INPUT: Input forms acceptable to format specifications for a
given type are acceptable for list-directed formatting, except as
noted below. The form of the input value must be acceptable for
the type of the input list item. Blanks are never treated as
zeros, and embedded blanks are not permitted in constants, except
within character constants and complex constants as specified
below. The end of a record has the effect of a blank, except when
it appears within a character constant.

When the corresponding input list item is of type real or double
precision, the input form is that of a numeric input field. A
numeric input field is a field suitable for the F format code that
is assumed to have no fractional digits unless a decimal point
appears within the field.

When the corresponding list item is of type complex, the input
form consists of a left parenthesis, an ordered pair of numeric
input fields separated by a comma, and a right parenthesis. The
first numeric input field is the real part of the complex constant
and the second is the imaginary part. Each of the numeric input
fields may be preceded or followed by blanks. The end of a record
may occur between the real part and the comma or between the comma
and the imaginary part.

When the corresponding list item is of type logical, the input
form must not include either slashes or commas among the optional
characters permitted for the L format code.

When the corresponding list item is of type character, the input
form consists of a nonempty string of characters enclosed in
apostrophes. Each apostrophe within a character constant must be
represented by two consecutive apostrophes without an intervening
blank or end of record. Character constants may be continued from
the end of one record to the beginning of the next record. The end
of the record does not cause a blank or any other character ~o
become part of the constant. The constant may be continued on as
many records as needed. The characters blank, comma, and slash may
appear in character constants.

For example, let len be the length of the list item, and let ~ be
the length of the character constant. If len is less than or equal
to w, the leftmost len characters of the cons.tant are transmi tted
to the list item. If len is greater than ~, the constant is
transmitted to the leftmost ~ characters of the list item and the
remaining len-~ characters of the list item are filled with
blanks. The effect is that the constant is assigned to the list
item in a character assignment statement.

A null value is specified by having no characters between
successive separators, by having no characters preceding the
first value separator in the first record read by each execution
of a list-directed input statement, or the ~* form. A null value
has no effect on the definition status by the corresponding input
list item. If the input list item is defined, it retains its
previous value; if it is undefined, it remains undefined. A null
value may not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire
complex constant. The end of a record following any other
separator, with or without separating blanks, does not specify a
null value.

A slash encountered as a value separator during execution of a
list-directed input statement causes termination of execution of
that input statement after the assignment of the previous value.
If there are additional items in the input list, the effect is as
if null values had been supplied for them.

VS FORTRAN Statements 109

FORMAT

All blanks in a list-directed input record are considered part of
some value separator, except for the following:

• Blanks embedded in a character constant

• Embedded blanks surrounding the real or imaginary part of a
complex constant

• Leading blanks in the first record read by each execution of a
list-directed' input statement~ unless immediately followed by
a slash or comma

OUTPUT: The form of the values produced is the same as that
required for input, except as noted. With the exception of
character constants, the values are separated by one of the
following:

• One or more blanks

• A comma, opt i onally preceded by one or more blanks and
optionally followed by one or more blanks

VS FORTRAN may begin new records as necessary but, except for
complex constants and character constants, the end of a record
must not occur within a constant, and blanks must not appear
within a constant.

Logi cal output constants are T for the value. TRUE. and F for the
value .FALSE •.

Integer output constants are produced with the effect of an Iw
edi t descri ptor for some reasonable value of 1:1. -

Real and double precision constants are produced with the effect
of either an F format code or an E format code, depending on the
magn i tude 2i of the va I ue and a range:

10~BEg1 ~ 10**9.2

where £11 and £12 are processor-dependent integer values. If the
magnitude 2i is within this range, the constant is produced using
OPFH.g; otherwise, 1PEI:!.gEg is used. Reasonable processor
dependent values are used for each of the cases involved.

Complex constants are enclosed in parentheses, with a comma
separating the real and imaginary parts. The end of a record may
occur between the comma and the imaginary part only if the entire
constant is as long as, or longer than, an entire record. The only
embedded blanks permitted within a complex constant are between
the comma and the end of a record and one blank at the beginning
of the next record.

Character constants produced:

• Are not delimited by apostrophes

• Are not preceded or followed by a value separator

• Have each internal apostrophe represented externally by one
apostrophe'

• Have a blank character inserted at the begi nni ng of any record
that begins with the continuation of a character constant
from the preceding record

If two or more successive values in an output record produced have
identical values, the sequence of identical values are written.

Slashes, as value separators, and null values are not produced by
list-directed formatting.

Each output record begins with a blank character to provide
carrier control if the record is printed.

110 VS FORTRAN Language Reference

UNCTION STATEMENT

c

o

o

FORMAT

The FUNCTION statement identifies a function subprogram. A
function subprogram consists of a FUNCTION statement followed by
other statements including at least one RETURN statement. It is an
independently written program that is executed wherever its name
is referred to in another program.

~ Syntax
I ~] FUNCTION name (targl [, arg2] ..•])

is INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, or
CHARACTER[*lenl]

where:

Mlenl
is the length specification. It is optional; if
omitted, it is assumed to be 1. It may be an unsigned,
nonzero, integer constant, an integer constant
expression enclosed in parentheses, or an asterisk
enclosed in parentheses. The expression can only
contain integer constants; it must not include names of
integer constants.

If the name is of type CHARACTER, all entry names must
be of type CHARACTER, and lengths must be the same. If
one length is specified as an asterisk, all lengths
must be specified as an asterisk.

is the name of the funct ion.

IBM EXTENSION

name*1en2
-- TSthe name of the funct ion.

where:

M1en2
is a positive, nonzero, unsigned integer constant. It
represents one of the permissible length
specifications for its associated type. (See "Variable
Types and Lengths" on page 18.) It may be included
optionally only when ~ is specified. It must not be
used when DOUBLE PRECISION or CHARACTER ~ is
specified.

'---------- END OF IBM EXTENSION -----------'

is a dummy argument. It must be a vari able or array name that
may appear only once within the FUNCTION statement or dummy
procedure name. If there is no argument, the parentheses
must be present. (See "Dummy Arguments in a Function
Subprogram" on page 113.)

A type declaration for a function name may be made by the
predefined convention, by an IMPLICIT statement, by an explicit
specification in the FUNCTION statement, or by an explicit type
specification statement within the function subprogram. If the
type of a function is specified in a FUNCTION statement, the
function name must not appear in an explicit type specification
statement.

VS FORTRAN Statements 111

FUNCTION

The name of a funct i on must not be in any other nonexecutable
statement except a type statement.

Because the FUNCTION statement is a separate program unit, there
is no conflict if the variable names and statement numbers within
it are the same as those in other program units.

The FUNCTION statement must be the first statement in the
subprogram. The function subprogram may contain any FORTRAN
statement except a SUBROUTINE statement, another FUNCTION
statement, a BLOCK DATA statement, or a PROGRAM statement. If an
IMPLICIT statement is used in a function subprogram, it must
follow the FUNCTION statement and may only be preceded by another
IMPLICIT statement, a PARAMETER, FORMAT, or ENTRY statement.

The name of the functi on (or one of the ENTRY names) must appear
as a variable name in the function subprogram and must be assigned
a value at least once during the execution of the subprogram in
one of the followi ng ways:

• As the variable name to the left of the equal sign in an
arithmetic, logical, or character assignment statement

• As an argument of a CAL L statement that wi 11 cause a value to
be assigned in the subroutine referred to

• In the list of a READ statement within the subprogram

• As one of the parameters in an INQUIRE statement that is
assigned a value within the subprogram

The value of the function is the last value assigned to the name
of the function when a RETURN or END statement is executed in the
subprogram. For additional information on RETURN and END
statements in a function subprogram, see "RETURN Statement" on
page 164 and "END Statement" on page 77.

The funct i on subprogram may al so use one or more of its arguments
to return values to the calling program. An argument so used must
appear:

• On the left side of an arithmetic, logical, or character
assignment statement

• In the list of a READ statement within the subprogram

• As an argument ina functi on reference that is assi gned a
value by the function referred to

• As an argument ina CALL statement that is assi gned a value in
the subroutine referred to

• As one of the parameters in an INQUIRE statement

The dummy arguments of the function subprogram (for example,
argl, ~2, arg3, .•• , argn) are replaced at the time of invocation
by the actual arguments supplied in the function reference in the
calling program.

If a functi on dummy argument is used as an adjustable array name,
the array name and all the variables in the array declarators
(except those in COMMON) must be in the dummy argument list. See
"s i ze and Type Declarat i on of an Array" on page 22.

I f the predef i ned convent ion is not correct, the funct i on name
must be typed in the program units that refer to it. The type and
length specifications of the function name in the function
reference must be the same as those of the function name in the
FUNCTION statement.

Except in a character assignment statement, the name of a
character function whose length specification is an asterisk must
not be the operand of a concatenation operation.

112 VS FORTRAN Language Reference

'0"",' " ,
I

C\
, ~

o

FUNCTION

The length specified for a character function in the program unit
that refers to the function must agree with the length specified
in the subprogram that specifies the function. There is always
agreement of length if the asterisk is used in the referenced
subprogram to specify the length of the function.

Actual Arguments in a Function Subprogram

The actual arguments in a function reference must agree in order,
number, and type with the corresponding dummy arguments in the
dummy argument list of the referenced function. The use of a
subroutine name as an actual argument is an exception to the rule
requiring agreement of type.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual
argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a function reference must be one of the
following:

• An array name

• An intrinsic function name

• An external procedure name

• A dummy argument name

• Anexpress;on, except a character expression involving
concatenation of an operand whose length specification is an
asterisk in parentheses, unless the operand is the name of a
constant.

For an entry point in a function subprogram, see "ENTRY Statement"
on page 81.

Dummy Arguments in a Function Subprogram

The dummy arguments of a function subprogram appear after the
function name and are enclosed in parentheses. They are replaced
at the time of invocation by the actual arguments supplied in the
function reference.

Dummy arguments must adhere to the following rules:

• None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST
statement, except as NAMELIST or common block names, in which
case the names are not associated with the dummy argument
names.

• A dummy argument name must not be the same as the procedure
name appearing in a FUNCTION, SUBROUTINE, ENTRY or statement
function definition in the same program unit.

• The dummy arguments must correspond in number, order, and
type to the actual arguments.

• If a dummy argument is assigned a value in the subprogram, the
corresponding actual argument must be a variable, an array
element, a substring, or an array. A constant, name of
constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is
certain that the corresponding dummy argument is not assigned
a value in the" subprogram.

VS FORTRAN Statements 113

FUNCTION

• A referenced subprogram cannot assign new values to dummy
arguments that are associated with other dummy arguments
within the subprogram or with variables in COMMON.

114 VS FORTRAN language Reference

o

o
GO TO STATEMENTS

GO TO

GO TO statements transfer control to an executable statement in
the program unit. There are three GO TO statements:

• Assigned GO TO statement

• Computed GO TO statement

• Unconditional GO TO statement

Assigned GO TO Statement

The assigned GO TO statement transfers contr61 to the statement
numbered stn1, stn2, stn3 ... , depend i ng on whether the current
assignment of i is stnl, stn2, stn3 •.. , respectively. (See
"ASSIGN Statement" on page 46.)

~ Syntax
LTO i [[,l (stn1 [,stn2J [,stn31 ...)]

i
is an integer variable (not an array element) of length 4
that has been assigned a statement number by an ASSIGN
statement.

is the number of an executable statement in the program unit
containing the assigned GO TO statement.

The list of statement numbers, that is, (stnl, stn2 ...), is
optional. If omitted, the preceding comma must be omitted. If the
list of statement numbers is specified, the preceding comma is
optional. The statement number assigned to i must be one of the
statement numbers in the list. The statement number may appear
more than once in the list.

The ASSIGN statement that assigns the statement number to i must
appear in the same program unit as the assigned GO TO statement
that is using this statement number.

For example, in the statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement
number 8, then the statement numbered 8 is executed next. If the
current assignment of N is statement number 10, the statement
numbered 10 is executed next. If N is assigned statement number
25, statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the
current value of i must have been assigned the statement number of
an executable statement (not a FORMAT statement) by the previous
execution of an ASSIGN statement.

If at the time of the execut i on of an ass; gned GO TO statement,
the current value of i contains an integer value, assigned
directly or through EQUIVALENCE, COMMON, or argument passing, the
result of the GO TO is unpredictable. Also, the integer variable i
may not be a dummy argument in a subprogram. An integer variable
may not be used as an actual argument in a subprogram reference at
the time it is assigned a number.

Any executable statement immediately following the assigned GO TO
statement should have a statement number; otherwise, it can never
be referred to or executed.

VS FORTRAN Statements 115

GO TO

Example:

ASSIGN 150 TO IASIGN
IVAR=150.
GO TO IASIGN

computed GO TO statement

The computed GO TO statement transfers control to the statement
numbered stnl, stn2, or stn3, ... depending on whether the current
value of m is 1,2, or 3, ... respectively.

~ Syntax

~TO (stnl [, stn2l [, stn3l •.•) [,l m

In

is the number of an executable statement in the program unit
containing the computed GO TO statement. The same number may
appear more than once within the parentheses.

is an integer expression. The comma before m is optional. If
the value of m ; s outsi de the range 1 ~ m ~ n, the next
statement ; s executed.

Example:

171 GO TO(172,173,174,173) INT(A)
172 A = A + 1.0

GO TO 174
173 A = A + 1.0
174 CONTINUE

Unconditional GO TO statement

The unconditional GO TO statement transfers control to the
statement specified by the statement number. Every subsequent
execution of this GO TO statement results in a transfer to that
same statement.

~ Syntax

~TO stn

is the number of an executable statement in the program unit
containing the unconditional GO TO statement.

Any executable statement immediately following this statement
must have a statement number; otherwise, it can never be referred
to or executed.

Example:

GO TO 5
999 I = I + 200

5 I = 1+1

116 VS FORTRAN Language Reference

o

(c

o

o

IF STATEMENTS
IF

The IF statements specify alternative paths of execution
depending on the condition given. There are three forms of the IF
statement:

• Arithmetic IF

• Block IF

END IF
ELSE
ELSE IF

• Logi cal IF

Arithmetic IF statement

Block IF statement

The arithmetic IF statement transfers control to the statement
numbered stnl, stn2, or stn3 when the value of the ari thmeti c
expression (m) is less than, equal to, or greater thar zero,
respectively. The same statement number may appear more than once
within the same IF statement.

~ Syntax
~(m) stnl, stn2, stn3

m
is an arithmetic expression of any type except complex.

; s the number of an executable statement in the program un it
containing the IF statement.

Any executable statement immediately following this statement
must have a statement number; otherwise, it can never be referred
to or executed.

The block IF statement is used with the END IF statement and,
optionally, the ELSE IF and ELSE statements to control the
execution sequence.

~ syntax
~(m) THEN

m
is any logical expression.

Two terms are used in connection with the block IF statement,
IF-level and IF-block.

IF-level The number of IF-levels in a program unit is determined
by the number of sets of block-IF statements (IF (m)
THEN and END IF statements).

The IF-level of a particular statement (~) is
determined with the formula:

nl - .02 .

VS FORTRAN Statements 117

IF

where:

01

02

is the number of block IF statements from the
beginning of the program unit up to and including
the statement Cstn).

is the number of EHD IF stataments in the program
unit up to, but not including, the statement
Cstn).

IF-block An IF-block,begins wi~h ~he first statement after the
block IF statement (IF em) THEN), ends with the
statement preceding the next ELSE IF, ELSE, or END IF
statement that has the same IF-lavel as the block IF
statement, ~nd includes ~JI the executable statements
in between. An IF-block is Qm~ty if there are no
executable statements in it.

Transfer of control into an IF-block from outsida the
IF-block is prohibited.

Execution of a block IF statement evaluates the expression m. If
the value of m is true, normal execution sequence continues-with
the first statement of the IF-block, which is immediately
following the IF (m) THEN. If the value of m is true, and the
IF-block is empty, control is transferred to the next END IF
statement that has the same IF-level as the block IF statement. If
the value of m is false, control is transferred to the next ELSE
IF, ELSE, or END IF statement that has the same IF-level as the
block IF statement.

If the execution of the last statement in the IF-block does not
resul tin a transfer of control, control is transferred to the ;1\
next END IF statement that has the same IF-level as the block IF V
statement that precedes the IF-block. 7

A block IF statement cannot terminate the range of a DO.

END IF statement

The END IF statement concludes an IF-block. Normal execution
sequence continues. [ill Syntax

END IF

For each block IF statement, there must be a matching END IF
statement in the same program unit. A matching END IF statement is
the next END IF statement that has the same IF-level as the block
IF statement.

An END IF statement cannot terminate the range of a DO. Execution
of an END IF statement has no effect.

Example:

IF (m) THEN

.
END IF

o
'j

118 VS FORTRAN Language Reference

o

o ,

ELSE Statement

The ELSE statement ;s executed if the preceding biock IF or ELSE
IF condition ts evaluated as FALSE. Normal execution sequence
continues.

~ syntax
ELSE

IF

An ELSE-block consists of all the executable statements after the
ELSE statement up to, but not including, the next END IF statement
that has the same IF-level as the ELSE statem~nt. An ELSE-block
may be empty.

Within an IF block, you can have only one ELSE.

Transfer of control into an ~LSE~block from ou,tside the
ELSE-block ;s prohibited. The statement number, if any, of an ELSE
statement must not be referred to by any statement (except an AT
statement of a DEBUG packet). An ELSE statement cannot terminate
the range of a DO.

Example:

IF em) THEN

.
ELSE

.
END IF

ELSE IF Statement

The ELSE IF statement is executed if the preceding block IF
condition is evaluated as false.

~ syntax

I ELSE IF (m) THEN

m
is any logical expression.

An ELSE IF-block consists of all of the executable statements
after the ELSE IF statement up to, but not including, the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the ELSE IF statement. An ELSE IF-block may be empty.

If the value of the logical expression m is true, normal execution
sequence continues with the first statement of the ELSE IF-block.

If the value of m is true and the ELSE IF-block is empty, control
is transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement.

If the value of m is false, control is transferred to the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the ELSE IF statement.

Transfer of control into an ELSE IF-block from outside the ELSE
IF-block ;s prohibited. The statement number Cstn), if any, of the

VS FORTRAN Statements 119

IF

Logical IF statement

ELSE IF statement must not b_ referred to by any statement (excQPt
an AT statement of a DEBUG packet).

If exe~ution of the last statement in the ELSE IF-~lock does not
result in a transfer ~f contral, control is transferred to the
next END IF statement that has the sam~ IF-level as the ELSE IF
~tatement that precedes the ELSE IF-block.

An END IF statement cannot terminate the range of a DO.

Example 1:

IF (m) THEN

EL~E IF (m) THEN

END IF

Example 2:

IF em) THEN

ELSE IF (m) THEN

ELSE
END IF

The logical IF statement evaluat~5 a logical expression and
executes or skips a statement, depending on whether the value of
the expression is true or false, respectively.

~ Syntax
~ (m) .21

is any logical expression.

is any executable statement except a DO statement, another
logical IF statement, an END statement, a block IF, ELSE IF,
ELSE, or END IF statement.

IBM EXTENSION

st may not be a TRACE ON, TRACE OFF, INCLUDE, or DISPLAY
statement.

END OF IBM EXTENSION ---------....

The statement st must not have a statement number.

The execution of a function reference in m is permitted to
affect entities in the statement st. -

The logical IF statement containing ~ may have a statement
number.

120 VS FORTRAN language Reference

,<11""

~~
;I

,c;
.I

(0
Examples:

IF(A.lE.O.O) GO TO 25
C = D + E
IF (A.EQ.B) ANSWER = 2.0*A/C
F = G/H

25 W = x**z

IF

VS FORTRAN statements 121

IMPLICIT Type

IMPLICIT TYPE STATEMENT

The IMPLICIT type statement specifies the type and length of all ~)
variables, arrays, and user-supplied functions whose names begin
with a particular letter. It may be used to change or confirm
implicit typing.

r= Syntax

I U::LICIT ~ (A [, A l •..) [, ~ (A [, Al •.•)] •..

~
is CHARACTER[*lenll, COMPLEX, DOUBLE PRECISION, INTEGER,
LOGICAL, or REAL

where:

-lenl
can be an unsigned, nonzero, integer constant or a
positive integer constant expression enclosed in
parentheses. It is optional.

If len1 is not specified, the length is one.

IBM EXTENSION

where:

-.ilm2 ~
can be a positive, nonzero, unsigned, integer ~,J
constant. It represents one of the permi ssi ble length ·l

specifications for its associated type. It is
optional.

END OF IBM EXTENSION ----------

is a single alphabetic character or a range of characters
drawn from the set A, B, .•. , Z. The range is denoted by the
first and last characters of the range separated by a minus
sign (for example, A-D).

IBM EXTENSION

The alphabetic character A can also be the currency symbol
($). The currency symbol ($) follows the letter Z. Thus,
the range Y-$ is the same as Y,Z,$.

END OF IBM EXTENSION ---------~

The IMPLICIT specification statement can only be preceded by a
PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA, PARAMETER, ENTRY, or
FORMAT statement, or another IMPLICIT statement. The IMPLICIT
specification statement declares the type of the variables and .
user-supplied functions appearing in this program (that ls,
integer, real, complex, logical, or character) by specifying that
names beginning with certain designated letters are of a certain
type. Furthermore, the IMPLICIT statement allows the programmer
to declare the number of bytes to be allocated for each in the
group of specified variables.

When ~ is CHARACTER, the length specification 15 between 1 and
500. The standard (default) length is 1.

The type and length associated with a letter or a range of letters
must not conflict with the type or length given previously to the

122 VS FORTRAN Language Reference

Q
/

c (
'.

C~, I

IMPLICIT Type

same letters in the same IMPLICIT statement, in a different
IMPLICIT statement or in a PARAMETER statoment. Type
specification by an IMPLICIT statement may be overridden or
confirmed for any particular variable, array, name of a co.stant,
e~ternal function, or statement function name by the appearance
of that name in an explicit type specification statement.

(See "Type Declaration by the Predefined Specification" on page
20.)

Note: An IMPLICIT statement has no effect on names of
fORTRAN-supplied (intrinsic) functions.

Valid IMPLICIt statement.:

IMPLICIT IHTEGER(A-H), REAL(I-K), LOGICAL(L,M,N)

IMPLICIT COMPLEX(C-F)

IBM EXTENSIOH

IMPLICIT IHTEGER(W-$)

All names beginning with W, X, V, Z, and $ ara
considered integers of length 4 bytes.

END OF IBM EXTENSION

VS FORTRAN Statement~ 123

INCLUDE

INCLUDE STATEMENT

IBM EXTENSION

The INCLUDE statement is a compiler directive. It inserts a
spncified statement or a group of statements into a program
un 'j t.

[

- syntax

. INCLUDE (name)

is the name of a group of one or more FORTRAN source
statements to be inserted into the source program being
compiled.

The group must reside in a library known to the VS FORTRAN
compiler.

The following rules apply to the INCLUDE statement:

• INCLUDE is a compile-time control statement only.

• The INCLUDE statement may not be continued.

• No replacement or editing is done.

• The inserted group may contain any complete VS FORTRAN
source statement, including another INCLUDE statement.

• An INCLUDE of a group may not contain an INCLUDE statement
that refers to a currently open INCLUDE.group (that is,
recursion is not permitted).

• Multiple INCLUDE statements may appear in the original
source program.

• INCLUDE statements may appear anywhere in a source program
before the END statement, except as the trailer of a logical
IF statement. An END statement may be part of the included
group.

• The FORTRAN statements in the group being included must be
in the same form as the source program being compiled; that
is, fixed form or free form.

• The resulting FORTRAN program after the inclusion of all
groups must follow all FORTRAN rules as to sequence of
statements.

END OF IBM EXTENSION ---------~

124 VS FORTRAN Language Reference

.~,
~I

INQUIRE STATEMENT

(.~

(~)
\

INQUIRE by File Name

o

INQUIRE

An INQUIRE statement supplies information about properties of a
particular named external file or of the connection to a
particular external unit.

There are two forms of the INQUIRE statement:

• Inquire by file name

• Inquire by unit number

A sequential file or a direct-access file can be queried about its
exi stence, its connecti on to a uni t, its uni t number, its name,
its access method, whether it is formatted or unformatted, and how
blanks are to be interpreted. In addition, a direct-access file is
queried about its record length or its next record number.

The INQUIRE statement may be executed before, while, or after a
file is connected to a unit. All values assigned by the INQUIRE
statement are those that are current at the time the statement is
executed. All value assi gnments are done accord; ng to the rules
for assignment statements. No error is given if the value is
truncated because the receiving field is too small to contain it
all.

This INQUIRE statement supplies information about a file. When
this statement is executed, the file specified by fn mayor may
not be connected to a unit. If the file is connected to a unit,
the file mayor may not exist. (For example, an output unit may be
connected to a file but no output has been written.)

syntax

INQUIRE (FIlE=fn [, ERR=stnl [, IOSTAT=iosl [,EXIST=~]

[, OPENED=opn 1 [, NA"MED=nmdl [, NAME=.!l2!!!l

[, SEQUENTIAl=segl [, DIRECT=dirl

[, FORMATTED=fmtl [, UNFORMATTED=unfl

[, NUMBER=ngml [, ACCESS=acc] [, FORM=frml

[, RECl=rcll [, NEXTREC=~l [, BlANK=blkl)

All parameters except FIlE=fn are optional.

FIlE=fn
FllE=fn is required. fn is the reference to a file and must
be preceded by FIlE=. It is a character expression. Its
value, when any trailing blanks are removed, must be 1 to 7
alphameric characters, the first one being alphabetic. It
spec; f i es the name of the fi Ie bei ng i nqu i red about and must
be known to the program.

ERR=stn
-stn is the number of a statement in the same program unit as

the INQUIRE statement to which control is given when the
value of fn (as described under FIlE=fn) is not a valid file
name.

IOSTAT=iDS
ios is an integer variable or an integer array element. The
value of ios is set positive if an error is detected; it is
set to zero-if no error is detected. VSAM return and reason
codes are placed in ios.

VS FORTRAN Statements 125

INQUIRE

EXIST=exs
~xs is a logical variable or logical array element. It is
assigned the value true if the file by the specified name
exists; otherwise, it is assigned the value false.

THE FILE EXISTS: The following parameters have a value only if the
file being inquired about exists; that is, ~ has the value true.
They are all optional.

OPENED=apn
~ is a logical variable or a logical array element. It is
assigned the value true if the file specified is connected to
a unit, otherwise, it is assigned the value false.

NAMED=nmd
nmd is a logical variable or a logical array element. If the
fi Ie has a name Cm), nmd is assi gned the value true;
otherwise, it is assigned the value Tals~.

NAME=nam
nam is a character vAriable or character array element. If
the file has a name (fn), nam is assigned the value of name.
name is not necessari ly the same as the name in the FILE
parameter (fn).

SEQUENTIAL=seq
~ is a character variable or a character array element. It
is assigned the value YES if the file can be connected for
sequential access input/output; NO if it cannot; and UNKNOWN
if it is not possible to determine whether the file can be
connected for sequential access.

DIRECT=dtr
dir is a character variable or a character array element. It
is assigned the VAlue YES if the file can be connected for
direct access input/output; NO if it cannot; and UNKNOWN if
it is not possible to determine whether the file can be
connected for direct access.

FORMATTED=fmt
fmt is a character variable or character array element. It is
assi gned the value YES if the fi Ie can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

UNFORMATTED=unf .
unf is a character variable or character array element. It is
assigned the value YES if the file can be connected for
unformatted input/output; NO if it cannot; and UNKNOWN if it
is not possible to determine whether the file can be
connected for unformatted input/output.

THE FILE IS CONNECTED TO AN EXISTING UNIT: The following
parameters have a value only if the fi Ie ex; sts (exs has the value
true) and if the file is connected to a unit (opn has the value
true). They are all opt i onal.

NUI1BER=num
num is an integer variable or integer array element. It is
assigned the value of the external unit connected to the
file.

ACCESS=acc
~ is a character variable or character array elem~nt. If
there is a name fn,. ace is assi gned a value (SEQUENTIAL or
DIRECT) associated with the connection of the external file.

FORM=frm
frm is a character variable or character array element. It is
assigned the value FORMATTED if the file is connect~d for
formatted input/output; UHFORMATTED if the file is connected
for unformatted input/output.

126 VS FORTRAN Language Reference

10 \~..J)

(~I
I ... _ J/

. I

o

o

INQUIRE

THE FILE IS CONNECTED FOR DIRECT ACCESS I/O: The following
parameters have a value only if the file exists (~has the value
true) and if the file is connected for direct access (scc=DIRECT).
They are all optional. The file must have been explicitly opened.

RECL=rcl
£S1 is an integer variable or integer array element. It is
assigned the value of the record length of the file connected
for direct access. The length is measured in characters for
files consisting of formatted records and in bytes for files
consisting of unformatted records.

NEXTREC=nxr
nxr is an integer variable or integer array element. It is
assigned the value n+1, where n is the record number of the
last record read or written on the direct access file. If the
file is connected, but no records have been read or written
since the connection, ~ is assigned the value 1.

THE FILE IS CONNECTED FOR FORMATTED I/O: The following parameter
has a value only if the file exists (exs has the value true) and
if the file is connected for formatted input/output (frm has the
value FORMATTED). It is optional.

BLANK=blk
blk is a character variable or character array element. It ;s
assigned the value NULL if blanks in arithmetic input fields
are treated as blanks; ZERO if they are treated as zeros.

The parameters can be entered in any order. Each parameter cannot
appear more than once in an INQUIRE statement. The same variable
or array el~ment may not be specified for more than one parameter
in the same INQUIRE statement.

Valid INQUIRE statement:

INQUIRE by unit Number

INQUIRE (FILE=DDNAME, IOSTAT=IOS, EXIST=LEX, OPEHED=LOD,
HAMED=LNMD, NAME=FN, SEQUENTIAL=SEQ, DIRECT=DIR,
FORMATTED=FMT, UNFORMATTED=UHF, ACCESS=ACC, FORM=FRM,
HUMBER=INUM, RECL=IRCL, NEXTREC=INR, BLAHK=BLNK)

This INQUIRE statement supplies information about an input/output
unit.

A unit can be queried as to its existence and its connection to a
file. If it is connected to a file, the inquiry is being made
about the connection and the file connected. When this statement
is executed, the unit specified by Yn mayor may not be connected
to • file. If the unit is connected to a file, the file mayor may
not exist. For example, an output unit may be connected to a file
but no output has been written.

syntax

INQUIRE ([UHIT=lYQ [, ERR;stnl [, IOSTAT=~] [, EXIST=~]

[, OPENED=opn] [, NAMED=nmdl [, HAME=nsm1

[, SEQUENTIAL=~l [, DIRECT=dirl

[, FORMATTED=fm!] [, UNFORMATTED=unfl

[, NUMBER=num] [, ACCESS=acc] [, FORM=frml

[, RECL=~l [, NEXTREC=~] [, BlANK=blkl

All parameters except UHIT=Yn are optional.

VS FORTRAN Statements 127

INQUIRE

UNIT=YD
YO is required. It is the reference to an I/O unit. Yn can be
preceded optionally by UNIT=. It is an integer expression
whose value represents the unit number that is being
queried.

ERR=stn
stn is the number of a statement in the same program unit as
the INQUIRE statement to which control is given when the
value of Y.!l (as descri bed under UNIT=Y.!l) is not a val i d uni t
number.

IOSTAT=ios
~ is an integer var i able or an integer array element. Its
value is set positive if an error is detected; it is set to
zero if no error is detected. VSAM return and reason codes
are placed in ios.

EXIST;exs
exs is a logical variable or logical array element. It is
assigned to value true if the specified unit exists and is
known to the program unit. If neither of these conditions is
met, exs is assigned the value false.

OPENED=opn
opn is a logical variable or logical array element. It is
assigned the value true if the file specified is connected to
a unit; otherwise, it is assigned the value false.

THE UNIT IS CONNECTED TO AN EXTERNAL'FILE: The following
parameters have a value only if the unit exists (exs has the value
true) and the uni tis connected to an external fi Ie (opn has the
value true). They are all opti onal.

NAMED=nmd
nmd is a logical variable or a logical array element. It is
assigned the value true if the file connected to the unit has
a name; otherw i se, it is ass i gned the value fal se.

NAME=nam
nam is a character variable or character array element. If
the file connected to the unit has a name, it is assigned the
value of the name of that file. If the file is unnamed, a
default name is assigned.

SEQUENTIAL=seq
~ is a character variable or a character array element. It
is assigned the value YES if the file can be connected for
sequential access input/output; NO if it cannot; and UNKNOWN
if it is not possible to determine whether the file can be
connected for sequential access.

DIRECT:dir
dlrTs a character variable or a character array element. It
rs-assigned the value YES if the file can be connected for
direct access input/output; NO if it cannot; and UNKNOWN if
it is not possible to determine whether the file can be
connected for direct access.

FORMATTED=fmt
fmt i sa character vari able or character array element. It is
assigned the value YES if the file can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is
not possible to determine whether the file can be connected
for formatted input/output.

UNFORMATTED=unf

0·.
.J

a
.;

unf is a character variable or character array element. It is
assigned the value YES if the file can be connected for
formatted input/output; NO if it cannot; and UNKNOWN if it is q'~."
not possible to determine whether the file can be connected
for formatted input/output.

128 VS FORTRAN language Reference

p

INQUIRE

NUMBER=nYm
num is an integer variable or integer array element. Its
value is the value of QU.

ACCESS=~
acc is a character variable or character array element. It ;s
assigned the value (SEQUENTIAL or DIRECT) associated with
the connection of the external file.

FORH=frm
frm is a character variable or character array element. frm
is assigned the value FORMATTED if the file is connected for
formatted input/output; UNFORMATTED if the file is connected
for unformatted output.

THE UNIT IS CONNECTED TO AN EXTERNAL FILE FOR DIRECT ACCESS I/O:
The following parameters have a value only if the unit exists (exs
has the value true) and is connected to an external file for --
direct access input/output (~has the value DIRECT). They are
all optional.

RECL=rcl
rcl is an integer variable or integer array element. It ;s
assigned the value of the record length of the direct access
file. The length is measured in characters for files
consisting of formatted records and in bytes for files
consisting of unformatted records.

NEXTREC=nKC
~ ;s an integer variable or integer array element. It is
assigned the value n+1 where n is the record number of the
last record read or written on the direct access file. If the
file is connected, but no records have been read or written
since the connection, nxr is assigned the value 1.

BLANK=blk
blk is a character variable or character array element. It is
assigned the value NULL if blanks in arithmetic input fields
are treated as blanks; ZERO if they are treated as zeros.

The parameters can be entered in any order unless UHIT=Yn is
omitted. If omitted, QU, as described under UHIT=gn, must be
first.

Valid INQUIRE statement:

INTEGER TYPE STATEMENT

INQUIRE (0, IOSTAT=IACT(l), ERR=99999 t EXIST=LACT(9),
OPEHED=LACT(8), HAMED=LACT(7), HAME=ACTUAL(l),
SEQUENTIAL=ACTUAL(2), DIRECT=ACTUAL(3),
FORMATTED=ACTUAL(4), UHFORMATTED=ACTUAL(S),
ACCESS=ACTUAL(6), FORM=ACTUAl(7), HUMBER=IACT(2),
RECL=IACT(3), HEXTREC=IACT(4), BLAHK=ACTUAl(8»

See "Explicit Type Statement" on page 85.

VS FORTRAH Statements 129

INTRINSIC

INTRINSIC STATEMENT

The INTRINSIC statement identifies a nama as representing a
FORTRAN-supplied procedure (intrinsic function) (see "Appendix 8.
FORTRAN-Supplied Proeedures" on page 204). This name can be a
generi c name or a speci fi c nama. See "Speci fi c Hames and Generi c
Names" on pace 131. It also permits a specific intrinsic function
name to be used as an actual argument.

r-== Syntax

I INTRINSIC .rut!!!.!!1 [, name2] •••

name
is the nama of a VS FORT~AN intrinsic function.

The INTRINSIC statement is a specification statement and must
precede statement function definitions and all executable
statements.

Intrinsic functions are those functions known to the compiler.
Intrinsic function names are either generic or specific. A
generic name does not have a type unless it is also a s~ecific
name. When a generic name is used with any of the argument types
available for that generic name, the specific named function
corresponding to the argument typa is chosen. This makes it
unnecessary for the User to know which intrinsic function name
goes with which argument type.

Appearance of a name in an INTRINSIC statement declares that nama
to be an intrinsic function name. If a specific name of an
i ntr i nsi c funct ion is used as an actual argument ina program \
unit, it must appear in an INTRINSIC statement in that program
unit.

The following names of specific intrinsic functions must not be
passed as actual arguments:

AMAXO
AMAXI
AMINO
AMINI
CHAR
DMAXI
OMINI
FLOAT
ICHAR
IOINT
IFIX

CMPlX
DBlE
OBLEQ
DC~1PlX
OFlOAT
OREAL
HFIX
IQINT

INT
LGE
lGT
LLE
LlT
MAXO
MAXI
MINO
MINI
REAL
SNGL

IBM EXTENSION

QCMPLX
QEXT
QEXTD
QFLOAT
QMAXI
QMINI
QREAl
SNGLQ

END OF IBM EXTENSION ----------'

The appearance of a generic function name in an INTRINSIC
statement does not cause the name to lose its generic property.
Only one appearance of name in all of the INTRINSIC statements of
a program unit is permitted. The same name must not appear in both
an EXTERNAL and an INTRINSIC statement in a p~ogram unit.

130 VS FORTRAN language Reference

Cil· l

.)

irlL _J,,, I

!

o
. J

c

0.;'
I.!

INTRINSIC

If tha name of a VS FORTRAN intrinsic function appears in an
explicit specification statement, the type must confirm its
assoc1ated type.

If thp. name of a FORTRAN intrinsic function appears in the dummy
argum(:'(l,t list of a subprogram, that name is not consi dered as the
name of & FORTRAN intrinsic function in that program unit.

Spectfic Names and Generic N3mes

LOGICAL IF STATEMENT

Generic names SiMplify referring to intrinsic functions because
the same function name may be used with more than one type of
argument (Sea "Appendix B. FORTRAN-Supplied Procedures" on page
204). Only a specific intrinsic function name may bQ used as an
actual argument when the argument is an intrinsic function. For
those intrinsic functions that require more than one argument,
all argumehts must be of the same type.

See "IF StatEments" on page 117.

LOGICAL TYPE STATEMENT

See "Explicit Type Statement" on page 85.

VS FORTRAN Statements 131

NAMELIST

NAMELIST STATEMENT

NAHELIST.lnput Data

~--------------------. IBM EXTENSION

The NAMElIST statement specifies one or more lists of names for
use in READ and WRITE statements.

Syntax

HAMEL 1ST /namel/ list 1 /.QAI!lj!2/ .l.lit2 ...

is a HAMElIST name. It is a name enclosed in slashes that
must not be the same as a vi-Jriable or array name.

is of the form 21, Sl,2, ••• , 2n

where:

is a variable name or an array name.

The list of variables or arrsy names belonging to a NAMELIST
name ends with a new NAMELIST name enclosed in slashes or with
the end of the NAMELIST sta::ement. A vari able name or an array
name may belong to one or m Jre NAMELIST 1 i sts.

Neither a dummy variable n~r a dummy array name may appear in a
HAMElIST list.

The NAMElIST statement must precede any statement function
defi ni ti ons and all exec'Jtable statements. A HAMELIST name must
be declared in a NAMELIST statement and may be declared only
once. The name may appe~r only in input/output statements.

The NAMELIST statement declares a name name to refer to a
particular list of var,ables or array names. Thereafter, the
forms READCY.!1,.QS.!!!j!) ard WRITE(.Y..!ld.ls..m.g) are used to transmit
data between the file associated with the unit un and the
vari abIes spec; fi ed bl the NAMELIST name ~. -

The rules for i nput/(Iutput conversi on of HAMElIST data are the
same as the rules fo" data conversi on descri bed in "General
Rules for Data Conv~rsion" on page 92 under "FORMAT Statement"
on page 90. The NAM~LIST data must be in a special form,
described in "NAMElIST Input Data."

Input data must b~ in a special form in order to be read using a
NAMElIST list. T~e first character in each record to be r~~d
must be blank. The second character in the fi rst record of a
group of data records must be an ampersand (&) immediately
followed by the NAMELIST name. The NAMELIST name must be
followed by a blank and must not contain any embedded blanks.
This name is followed by data items separated by commas. (A
comma after th~ last item is optional.) The end of a data group
is signaled by &END.

The form of the data items in an input record is:

• Name = Constant

The name may be an array element name or a variable
name.

Th9 constant may be integer, real, complex, logical, or
c~aracter. (If the constants are logical, they may be

132 VS FORTRAN Language RefQ -ence

o

0,
, '

NAHELIST output Data

o

NAHELIST

;n the form T or .TRUE. and F or .FALSE., if the
constants are characters, they must be included between
apostrophes.)

Subscripts must be integer constants.

• Array Name = Set of Constants (separated by commas)

The set of constants consi sts of constants of the type
integer, real, complex, logical, or character.

The number of constants must be less than or equal to
the number of elements in the array.

Successive occurrences of the same constant can be
represented in the form c*constant, where £ ;s a
nonzero integer constant specifying the number of times
the constant is to occur.

The var i able names and array names spec i fi ed in the input fi Ie
must appear in the NAMELIST list, but the order is not
significant. A name that has been made equivalent to a name in
the input data cannot be substituted for that name in the
HAMELIST list. The list can contain names of items in COMMON but
must not contain dummy argument names.

Each data record must begin with a blank followed by a complete
variable or array name or constant. Embedded blanks are not
permitted in names or constants. Trailing blanks after integers
and exponents are treated as zeros.

Examples:

All records have a blank in column 1.

Column 2
v

first card &NAMI I(2,3)=5,J=4,B=3.2

.
last card A(3)=4.0,L=2,3,7*4,&END

where HAMl is defined in a NAMELIST statement as:

NAMELIST /NAMl/A,B,I,J,L

and assumi ng that A is a 3-element array and I and L are 3X3
element arrays.

When output data is written using a HAMELIST list, it is written
in a form that can be read using a NAMELIST list. All variable
and array names specified in the NAMELIST list and their values
are written out, each according to its type. Character data is
included between apostrophes. The fields fo~ the data are made
large enough to contain all the significant digits. The values
of a complete array are written out in columns.

Example:

NAMELIST /NAMl/A,B,I,J,L/HAM2/C,J,I,L
READ (CARD,NAMl)
WRITE (ITAPE,NAMl)

END OF IBM EXTENSION -----------'

VS FORTRAN statements 133

OPEN

OPEN STATEMENT

An OPEN statement may be used to:

• Connect an existing file to a unit.

• Create a file that is preconnected.

• Create a fi Ie and connect it to a uni t.

• Change certain identifiers of a connection between a file and
a uni t.

I syntax

I OPEN ([UNIT=]YD [, ERR=~] [, STATUS=~] [, FILE=fnl

[, ACCESS=accl [, BLANK=hlkl [, FORM=frm]

[, IOSTAT=ios] [, RECL=~l)

All parameters are optional except YD.

UNIT=un
TS required. It is the reference to an I/O unit. YO can be
preceded optionally by UN)T=. It is an integer expression
whose value represents the unit number.

ERR=stn
stn is the number of a statement in the same program unit as
the OPEN statement to which control is given when an error is
detected during execution of the OPEN statement.

STATUS=sta
sta is a character expression. Its value when any trailing
blanks are removed must be NEW, OLD, SCRATCH, or UNKNOWN. If
STATUS is omitted, it is assumed to be UNKNOWN.

If the status of the external file is specified as:

• NEW, FILE=fn may be specified and the file fn must not
exist. -

• OLD, FILE=fn may be specified and the file fn must exist.

• SCRATCH, FILE=fn must not be specified and the file fa
mayor may not exist.

• UNKNOWN, FILE=fn is optional.

FILE=fn
fn is a character expression. Its value when any trailing
blanks are removed is the name of the file to be connected to
the unit specified by YD. This file name must be a string of
1 to 7 alphameric characters, the first one being
alphabetic.

ACCESS=acc
acc-fs a character expression whose value (when any trailing
blanks are removed) must be SEQUENTIAL or DIRECT. It
specifies the file as being accessed as a sequential or
direct file. If ACCESS=acc is not specified, it is assumed to
be SEQUENTIAL. -

BLANK=!11k

C'
II ;'

_.'

blk is a character expression whose value (when any trailing
blanks are removed) must be NULL or ZERO. This specifier C·' .
affects the processi ng of the ari thmet i c fi elds accessed by .r
READ statements with format specificatibn or with
list-directed only. It is ignored for nonarithmetic fields,

134 VS FORTRAN Language Reference

:C:
\, II,

o

OPEN

for READ statements without format specification or with
NAMELIST, and for all output statements. If NULL is
specified, all blank characters in arithmetic formatted
input fields on the sPQcifiQd unit are ignored, except that a
~i eld of all blanks has a value of zero. If ZERO is
specified, all blanks, other than leading blanks, are
treated as zeros. If thi s sPQci fi er is omi tted and
FORM=FORMATTED, a value of NULL is assumed.

FORI1=frm
frm is a character expression whose value (when any trailing
blanks are removed) must be FORMATTED or UNFORMATTED. This
specifier indicates that the external file is connected for
formatted or unformatted input/output. If this specifier is
omitted for a file connected with direct access, a value of
UNFORMATTED is assumed. If this specifier is omitted for a
file connected with sequential access, a value of FORMATTED
is assumed.

IOSTAT=ios
ios is an integer variable or an integer array element. Its
value is set positive if an error is detected; it is set to
zero if no error is detected. VSAM return and reason codes
are placed in ios.

DIRECT ACCESS FILES: The following specifier is used with direct
access f; les.

RECL=rcl
.t£l is an integer express; on. It is assi gned the value o.f the
record length of the file connected for direct access. The
length is measured in characters for files consisting of
formatted records and in bytes for files consisting of
unformatted records. '

Each of the parameters of the OPEN statement may appear only once.
The unit specifier (un) must appear. All value assignments are
made according to the-rules for assignment statements.

If UNIT= is not specified, Yn must appear first in the statement.
The other parameters may appear in any order. If UNIT= is
specified, the parameters may appear in any order.

Before the OPEN statement is executed, the I/O unit specified by
Yn may be either connected or not connected to an external file.

OPEN is required for direct-access and VSAM files. It is optional
for sequential files.

It is invalid for internal files.

The I/O Unit Is Not Connected to the External File

Successful execution of the OPEN statement connects the I/O unit
specified by Yn to the external file specified by fn with the
parameters specified (or assumed) in the OPEN statement. (See VS
FORTRAN Application Programming: Guide for the parameters allowed
with the different definitions of data sets.)

The I/O Unit Is connected to the External File

A unit connected in any program unit of an executable program is
available in any other program unit of the executable program.

The un it reference and the fi Ie name are Y.!l and fn in the OP EN
statement.

VS FORTRAN statements 135

OPEN

BEFORE EXECUTION OF OPEN

• If some parameters are specified on the OPEN statement, they
must match the attributes of the connection of file fn (except
that BLANK may be different). --

• The external file fn must not be connected to an I/O unit.

• The OPEN is executed as a CLOSE (UNIT=un, STATUS=UNKNOWN)
followed by an OPEN with unit Yn and external file fn1.

• If any error is detected, the unit Yn stays connected to file
fn.

AFTER SUCCESSFUL OPEN

•
•
•
•
•
•

The new value of the BLANK specifier comes into effect.

File fn exists (~ has the value true).

If it had the NEW attribute, it is changed to OLD.

The other attributes stay unchanged.

The file is not repositioned at the beginning.

The unit un is connected to th~ external file fn1. The
at t rib utes 0 f the con n e c t ion are des c rib e din VS FOR T RAN
Application Programming: Guide.

• The un it reference and the f i 1 e name are un 1 and fn in the
OPEN statement (Y!11 di fferent from Y..D.). An error is detected
and the unit Yn stays connected to file fn.

CONDITIONS THAT PREVENT EXECUTION OF OPEN: Any of the following
conditions prevent execution of the OPEN statement:

• Invalid unit number specified, that is, Yn.

• Invalid file name specified, that is, fn.

• Invalid values of the specifiers in the OPEN statement.

OLD specified for a file that does not exist.

ACCESS, FORM, REC do not match the actual attributes of an
existing file.

RECL=rcl value is not positive integer.

OPEN statement specifies a different unit than the one
the file is connected to.

Control transfers to the statement specified in ERR=stn or, if
ERR=stn is not specified, execution of the program is terminated.

136 VS FORTRAN language Reference

(-j
\~'\

,1

o
OPEN

Examples:

Open a New External File: The following statement would open a new
e)(ternal file.

DDNAME = 'DDNAME'
OPEN (UNIT=2*IN-IO, IOSTAT=IOS, ERR=99999, FILE=DDNAME,

STATUS=NEW, ACCESS='SEQU'//'ENTIAl " FORM=FORMAT,
BlANK=ZERO)

Open an Old External File: The following statement would open an
old external file.

OPEN (0, IOSTAT=IACT(1), FIlE='DDNAME',STATUS='OlD',
ACCESS='SEQUENTIAl', FORM='FORMATTED',
BlANK='NUll')

Open a Preconnected, Nonexistent File: The following statement
would open a preconnected, nonexisting file unknown for direct.

OPEN (IOSTAT=IACT(l), ERR=99999, STATUS=UNKNOWN,
ACCESS='DIRECT', RECl=32, UNIT=IN+6)

VS FORTRAN Statements 137

PARAMETER

PARAMETER STATEMENT

The parameter statement assigns a nama to a constant. r= Syntax

I ~AMETER (~1 = ~1 [, name2 = ~2] •••)

is the name of a specific constant in this program unit (even
if it looks like a hexadecimal constant, for example,
ZOABC). The name must be defined only once in a PARAMETER
statement of a program unit.

is a constant or a constant expression of type integar, real,
compiex, logical, or character.

Before using the PARAMETER statement, name must have been
specified by the IMPLICIT statement or an explicit type
statement. (Otherwise the predefined conventions are used.>

The type and length of a name of a constant must not be changed by
subsequent specification statements, including IMPLICIT
statements. The following is invalid:

PARAMETER

IMPLICIT

(INT=10)

CHARACTER*SCI)

If the length of a character constant represented by a name has
been explicitly specified previously or has been been specified
as an asterisk, the length is considered to be the length of the
value of the character expression (~).

If the name (nsmg) is of type integer, real, or complex, the
corresponding expression (c) must be a constant, the nama of a
constant, or another expression enclosed in parentheses. The
exponentiation operator is not permitted unless the exponent is
of type integer.

If the name (~) is of type character, the corresponding
expression (£) must be a character expression containing only
character constants or names of character constants. The .
expression result cannot exceed 255 characters in length.

If the name (~) is of type logical, the corresponding
expression (£) must be a logical expression containing only
logical constants or names of logical constants.

Each (name) is the name of a constant that becomes defined with
the value of the expression (£) that appears to the right of the
equal sign. The value assigned is determined by the rules used,for
assignment statements (see Figure 19 and Figure 20).

Any name of a constant that appears in an expression (~) must be
defined by appearing previously on the left of an equal sign in
the same or a preceding PARAMETER statement in the same program
unit. If it is in the same PARAMETER statement, it must appear to
the left of its usage.

Once defined, the name can be used in a subsequent expression or a
DATA statement instead of the constant it represents. It must not
be part of a FORMAT statement or a format specification.

The name of a constant must not be used to form part of another
constant; for example, any part of a complex constant.

138 VS FORTRAN Language Reference

PAUSE STATEMENT

o

o

o

PAUSE

The PAUSE statement temporarily halts the execution of the object
program and may display a message.

@
syntax

PAUSE en]
PAUSE ['message']

n
a string of 1 through 5 decimal d;gits.

'message'
a character constant enclosed in apostrophes and conta;ning
alphameric and/or special characters. Within the literal, an
apostrophe is indicated by two successive apostrophes.

If either n or 'messaae' is specified, PAUSE displays the
requested information. The program waits until operator
intervention causes it to resume execution, starting with the
next statement after the PAUSE statement or the next iteration of
the DO loop, if it is the last statement of a DO range. For
further information, see VS FORTRAN Application Programming:
Guide.

, .j

VS FORTRAN Statements 139

PRINT

PRINT STATEMENT

The PRINT statement transfers data from internal storage to an
external device.

r=. Synt;oax
~NT fmt [,list]

can be one of the following:

• A statement number
• An integer variable
• A character constant
: A chaiactar array element
• A character array name
• A character expression

IBM EXTENSION

• An array name
END OF IBM EXTENSION _________ ,--J

• An asterisk that indicates that printing is to be
performed according to the, data transmission rules of
list-directed WRITE.

See "WRITE Statement-Formatted wi th Di rect Access" on r-,age
181 for explanations of these format identifiers.

is a list of output items and implied DO lists. An output
list item can be:

• A variable name
• An array element
• A character substring
• An array name
• Any expression (except a character expression i~volving

concatenation of operands whose length specifitation is
an aster; sk)

For a discussion of Implied DO lists, see "Implied DO in an
Input/Output Statement" on page 74.

A function must not be referenced within an expression if
such a reference causes an input or output statement to be
executed.

If 11 st ; s omi tted, a blank record is transmi ttnd to the
output device unless the FORMAT statement referred to
contains, as its first specification, a charac~er constant
or slashes. In thi s case, the record (or records) i ndi cated
by these speci fi cati ons are transmi tted to thfl output
device.

PRINT fmt has the same effect as a WRITE (.Y.!l,fmt) }.ist where fmt
and list are defi ned as above, and the value of Y.D is i nstallati on
dependent. See "WRI T E Statement-Formatted wi th ~equent i a1
Access" on page 185.

Valid PRINT statement:

PRIHT*,EIGHT8

140 VS FORTRAN language Reference

C,)
.)

PROGRAM STATEMENT

o

!o·'·· "

PROGRAM

The PROGRAM statement assigns 8 name to a main program. It must be
the first statement in the main program. r-: syntax

m G RAM !1.5ll!!.!!

is the name of the main program in which this statement
appears.

A main program cannot contain any BLOCK DATA, SUBROUTINE,
FUNCTION, or ENTRY statements.

IBM EXTENSION

A RETURN statement may appear; it has the same effect as a STOP
statement.

'---------- END OF IBM EXTENSION _________J

The PROGRAM statement can only be used in a main program but is
not required. If it is used, it must be the first statement of the
main program. If it is not used, the name of the main program is
assumed by thi s compi ler to be MAIN.

The name must not be the same as any other name in the main
program or as the name of a subprogram or common block in the same
executable program. The name of a program does not have any type
and the other specification statements have no effect on this
~.

Execution of a program begins with the execution of the first
executable statement of the main program. A main program may not
be referred to from a subprogram or from itself.

VS FORTRAN Statements 141

READ

READ STATEMENTS

The READ statements transfer data from an external davice.to
storage or from one internal file to another.

Forms of the READ statement:

IBM EXTENSION

1. READ Statement--Asynchronous

END OF IBM EXTENSION

2. READ Statement--Formatted with Direct Access

3. READ Statement--Formatted with Sequential Access

4. READ Statement--Unformatted with Direct Access

5. READ Statement--Unformatted with Sequential Access

6. READ Statement with Internal Files

7 • READ Statement with List-Directed I/O

IBM EXTENSION

8. READ Statement with NAMELIST

END OF IBM EXTENSION

142 VS FORTRAN Language Reference

C
-~

'-j

o

READ (Asynchronous)

IBM EXTENSION

READ statement--Asynchronous

The asynchronous READ statement transmits unformatted
sequential data between direct access or sequential storage
devices. The asynchronous READ statement provides high-speed
input. The statements are asynchronous in that while data
transfer is taking place, other program statements may be
executed. An OPEN statement is not permitted for asynchronous
I/O. The unit and statement identifier are the only items
allowed within the parentheses.

r-= Syntax
I READ ([UNIT=]yo, ID=id) [list]

UNIT=un

ID=;d

¥n is required. It can optionally be preceded by UNIT=. un
IS an unsigned integer expression of length 4. It is the-
reference to an I/O unit.

~ is an integer constant or integer expression of length
4. It is the identifier for the READ statement.

is an asynchronous I/O list and may have any of four forms:

.!l

.ill ••• .il2
e1 ...
-:- •• .il2

where:

i s the name of an array.

Jll and ~2
are the names of elements in the same array. The
ellipsis (•..) is an integral part of the syntax of
the list and must appear in the positions indicated.

The unit specified by YO must be connected to a file that
resides on a sequential or direct-access device. The array (.il)
or array elements (.ill through .il2) constitute the receiving area
for the data to be read.

The asynchronous READ statement initiates a transmission. The
WAIT statement, that must be executed for each asynchronous
READ, terminates the transmission cycle. When executed after an
asynchronous READ, the WAIT statement enables the program to
refer to the transmitted data. This process ensures that a
program will not refer to a data field while transmission to it
is still in progress.

The asynchronous READ statement differs from other READ
statements in that a special parameter, lD=id, is specified
within the parentheses of the statement. ID=id establishes a
unique identification for the READ statement-.-

Synchronous READ statements may be executed for the file only
after all asynchronous READ and WRITE operations have been
completed and a REWIND has been executed for the file.
Conversely, asynchronous READ statements may be executed for a
file previously read synchronously after a REWIND or CLOSE has
been executed.

VS FORTRAN Statements 143

READ (Asynchronous)

Execution of an asynchronous READ statement initiates reading
of the next record on the specified file. The record may contain
more or less data than there are bytes in the receiving area. If
there is more data, the excess is not transmitted to the
receiving area; if there is less, the values of the excess array
elements remain unaltered. The extent of the receiving area is
determined as follows:

• If g is specified, the entire array is the receiving area.

• If gl .•. g2 is specified, the receiving area begins at array
element e1 and includes every element up to and including
g2. The subscript value of gl must not exceed that of g2.

• If ,i,l .•. is specified, the receiving area begins at element
gl and includes every element up to and including the last
element of the array.

• If ... e2 is specified, the recelvlng area begins at the
first element of the array and includes every element up to
and including g2.

If list is not specified, there is no receiving area, no data is
transmitted, and a record is skipped.

Subscripts in the list of the asynchronous READ must not be
defined as array elements in the receiving area. If a function
reference is used in a subscript, the function reference may not
perform I/O on any file.

Given an array with elements of length len, transmission begins
with the first len bytes of the record being placed in the first
specified (or implied) array element. Each successive len bytes
of the record are placed in the array element with the next
highest subscript value. Transmission ceases after all elements
of the receiving area have been filled, or the entire record has
been transmitted--whichever occurs first. If the record length
is less than the receiving area size, the last array element to
receive data may receive fewer than len bytes.

The specified array may be multidimensional. Array elements are
filled sequentially. Thus, during transmission, the leftmost
subscript quantity increases most rapidly, and the rightmost
least rapi dly.

Any number of program statements may be executed between an
asynchronous READ and its corresponding WAIT, subject to the
following rules:

• No array element in the receiving area may appear in any
such statement. This and the following rules apply also to
indirect references to such array elements; that is,
reference to or redefinition of any variable or array
element associated by COMMON or EQUIVALENCE statements, or
argument association with an array element in the receiving
area.

• No executable statement may appear that redefines or
undefines a variable or array element appearing in the
subscri pt of gl or g2. See "Val i d and Inval i d VS FORTRAN
Programs" on page 3.

• If a function reference appears in the subscript expression
of gl or g2, the function may not be referred to by any
statements executed between the asynchronous READ and the
corresponding WAIT. Also, no subroutines or functions may
be referred to that directly or indirectly refer to the
function in the subscript reference, or to which the
subscript function directly or indirectly refers.

• Ho function or subroutine may be executed that performs
input or output on the file being manipUlated, or that

144 VS FORTRAN Language Reference

C)

0,'"
"

o

READ (Asynchronous)

contains object-time dimensions that are in the receiving
area (whether they be dummy arguments or in a common block).

Valid READ statement:

READ (10=10, UNIT=3*IN-3) ACTUAL(3) ... ACTUAL(7)
L..-________ END OF IBM EXTENS ION ---______ ...J

VS FORTRAN Stat~ments 145

READ (Formatted, Direct Access)

READ statement--Formatted with Direct Access .

This READ statem~nt transfers data from an external direct-access
device into internal storage. The user specifies in a FORMAT
statement (or in a reference to a FORMAT statement) the
conversions to be performed during the transfer. The data must
reside on an external file that is connected for direct access to
a unit (see "OPEN Statement" on page 134).

syntax

READ ([UNIT=]ya, [FMT=lfmt, REC=rec [, ERR=~]

[, IOSTAT=ios]) [list]

UNIT=un
Yn is required. It can optionally be preceded by UNIT=. YO is
an unsigned integer expression of length 4. Itis the
reference to an I/O unit.

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference number must appear first.

Ftn=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

The format identifier (fmt) can be:

A statement number
An integer variable
A character constant
A character array element
A character array name
A character expression

IBM EXTENSION

An array name

'---------- END OF IBM EXTENSION ---------....

The statement number must be the statement number of a FORMAT
statement in tha same program unit as the READ statement.

The integer variable must have been initialized by an ASSIGN
statement with the number of a FORMAT statement. The FORMAT
statement must be in the same program unit as the READ
statement.

The character constant must constitute a valid format. The
constant must be delimited by apostrophes, must begin with a
left parenthesis, and end with a right parenthesis. Only the
format codes described in the FORMAT statement can be used
between the parentheses. An apostrophe in a constant
enclosed in apostrophes is represented by two consecutive
apostrophes.

The character array element must contain character data
whose leftmost character positions constitute a valid
format. A valid format begins with a left parenthesis and
ends with a right parenthesis. Only the format codes
described in the FORMAT statement can be used between the
parentheses. Blank characters may precede the left
parenthesis and character data may follow the right

146 VS FORTRAN language Reference

q

q

o

o

READ (Formatted, Direct Access)

parenthesis. The length of the format identifier must not
exceed the length of the array element.

The character array name must contain character data whose
leftmost characters constitute a valid format identifier.
The length of the format identifier may exceed the length of
the first element of the array; it is considered the
concatenati on of all the array elements of the array in the
order given by array element ordering.

IBM EXTENSION

The array name may be of type integer, real, double
precision, logical, or complex.

The data must be a valid format identifier as described
under character array name above.

--------- END OF IBM EXTENSION -----------'

The character expression may contain concatenations of
character constants, character array elements and character
array names. Its value must be a valid format identifier. The
operands of the expression must have length specifications
that contain only integer constants or names of integer
constants. (See "VS FORTRAN Expressions" on page 25.)

REC=rec
rec is a relative record number. It is an integer expression
whose value must be greater than zero. It represents the
relative position of a record within the external file
associated with yo. The relative record number of the first
record is 1.

ERR=stn
stn is the number of a statement in the same program unit as
the READ statement. Transfer is made to stn if an error is
detected.

IOSTAT=fos
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is detected; and zero if no error is detected. VSAM
return and reason codes are placed in ios.

is an I/O list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output Statement" on
page 74.

An item in the list, or an item associated with it through
EQUIVALENCE, COMMON, or argument passing, must not contain
any port i on of the format i dent i fi er fmt.

Valfd READ statements:

READ (yo,fmt,REC=~) list

READ CYn,FMT=fmt,REC=£g£) list

READ (UNIT=Yn,FMT=fmt,REC=~) list

READ CREC=£g£,FMT=fmt,UNIT=un)

VS FORTRAN Statements 147

READ (Formatted, Direct Access)

Invalid READ statements: .

READ (fmt,yo,REC=rec)

READ (FMT=fmt,yo,REC=~) list

READ (b,UNIT=yo,REC=~) ~

YO must appear before fmt.

YO must appear first because
UNIT= is not included.

FMT must be used because
UNIT= ;s included.

REC=rec must be specified
for direct-access.

If this READ statement is encountered, the unit specified must
exist and the file must be connected for direct access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job contrel languagQ and an implicit OPEN i~
performed to a default file name. If the file is not preconnected,
an error is detected.

This statement permits a programmer to read records randomly from
any location within an external file. It contrasts with the
sequential input statements that process records, one after the
other, from the beginning of an external file to its end. With the
direct-access statements, a programmer can go directly to any
record in the external file, process a record and go directly to
any other record without having to process all the records in
betweQn.

Each record in a direct-access file has a unique number associated
with it. This number is the same as specified when the record is
writtQn. The programmer must specify in the READ statement not
only the unit reference number, but also the number of the record
to be read. Specifying the record number permits operations to be
performed on selected records of the file instead of on records in
their sequential order.

The OPEN statement specifies the size and the type of the records
in the direct-access file. All the records of a file connected for
direct access have the same length.

DATA TRANSMISSION: A READ statement with FORMAT starts data
transmission at the beginning of the record specified by REC=~.
The format codes in the format identifier fmt are taken one by one
and associated with every item of the list in the order they are
specified. The number of character data specified by the format
code is taken from the record, converted according to the format
code and transmitted into the storage associated with the
corresponding item in the list. Data transmission stops when data
has bQen transmitted to every item of the list or when the end of
the record specified by ~ is reached.

If thQ list is not specified and the format identifier starts with
an I, E, F, D, G, or l format code, or is empty (that is,
FORMATe», the internal record number is increased·~y one but no
data is transferred.

IBM EXTENSION

VS FORTRAN adds that, if the format identifier starts with a Q
or Z format code, the internal record number is increased by ona
but no data is transferred.

\

END OF IBM EXTENSION ----------

o
I

(~\

\~,,--,)I/

"

DATA AND I/O LIST: The length of every FORTRAN record is specified
in REel of the OPEN statement. If the record ~ contains more
data than is necessary to satisfy all the items of the list and
the associated format identifier, the remaining data is ignored. 0
If the record ~ contai ns less data than is necessary to s~ti sfy ,'. l
all the items of the list and the associated format identifier, an
error is detected. If the format identifier indicates (for

148 VS FORTRAN language Reference

~.
\

o

READ (Formatted, Direct Access)

example, slash format code) that data be taken from the next
record, then the internal record number £gQ is increased by one
and data transmission continues with the next record. The INQUIRE
statement can be used to determine the record number.

Transfer is made to the statement specified by ERR if an error ;s
detected. No indication ;s given of which record or records could
not be read, only that an error occurred during transmission of
data. If IOSTAT is specified, a positive integer value is assigned
to lOS when an error is detected. If ERR is specified, then
execution continues with the statement specified with the ERR, if
present, or with the next statement if ERR is not specified. If
ERR and IOSTAT are both omitted, program execution is terminated
when an error is detected.

Valid READ statement:

READ (UNIT=2*IN-10, FMT='(I9)', REC=3)

VS FORTRAN Statements 149

READ (Formatted, Sequential Access)

READ statement--Formatted with sequential Access ~

This READ statement transfers data from an external I/O device to !
storage. The user specifies in a FORMAT statement (or in a
reference to a FORMAT statement) the conversions to be performed
during the transfer. The data must reside in an external file that
is connected for sequential access to a unit. (See "OPEN
Statement" on page 134.)

The sequential I/O statements with format identifiers process
records one after the other from the beginning of an external file
to its end.

r-::- syntax
I READ ([UNIT=]YQ, [FMT=lfmt [, ERR=~l [, END=stnl

[, IOSiAi=josj) [listj

READ fmt [, list]

UNIT=Y!l
YO is required. It can optionally be preceded by UNIT=. YQ is
an unsigned integer expression or an asterisk (*). It is the
reference to an I/O unit.

If UNIT= is included, FMT= must be used and all the
parameters can appear in any order.

If UNIT= is not included, YO must appear first in the
statement. The other parameters may appear in any order.

In the form of the READ where .Y.!l is not speci fi ed, .Y.!l is
installation dependent.

FMT=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT = ..

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

The format identifier (fmt) can be:

A statement number
An integer variable
A character constant
A character array element
A character array name
A character expression

IBM EXTENSION

An array name

END OF IBM EXTENSION ---------....

See "READ Statement-Formatted wi th Di rect Access" on page
146 for explanations of these format identifiers.

ERR=stn
stn is the number of an executable statement in the program
un;t containing the READ statement. Transfer is made to stn
if an error is detected.

END=stn
;s the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when

150 VS FORTRAN language Reference

o
}

READ (Formatted, Sequential Access)

the end of the external file is encountered.

IOSTAT=jos
ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is detected; and zero if no error is detected. VSAM
return and reason codes are placed in ios.

is an I/O list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output Statement" on
page 74. In the form of the READ where Yn is not specified,
if the list is not present, the comma must be omitted. An
item in the list, or an item associated with it through
EQUIVALENCE, COMMON or argument passing, must not contain
any portion of the format identifier fmt.

Valid READ statements:

READ (Yn,fmt) list

READ (gn, FMT=fmt) list

READ (UNIT=gn, FMT=fmt) list FMT=fmt can appear first.

READ fmt, list

READ (5,98) A,B,(C(I,K),I=l,lO)

READ (IOSTAT=IOS, UNIT=2*IN-IO, FMT='(I9)', END=3600)

Invalid READ statements:

READ (fmt,.Y.!l)

READ (FMT=fmt, Yn) list

READ (fmt, UNIT=Yn) list

.Y.!l must appear before fmt.

Yn must appear first because
UNIT= is not included.

FMT must be used because
UNIT= is included.

FMT must not be used in this
form of READ.

If this READ statement is encountered, the unit specified must
exist and the file must be connected for sequential access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN ;s
performed to a default file name. If the file is not preconnected,
an error is detected.

DATA TRANSMISSION: A READ statement with FORMAT starts data
transmission at the beginning of a record. The format codes in the
format i dent i fi er fmt are taken one by one and associ ated wi th
every item of the list in the order they are specified. The number
of character data specified by the format code is taken from the
record, converted according to the format code, and transmitted
into the storage associated with the corresponding item in the
list. Data transmission stops when data has been transmitted to
every item of the list or when the end of file is reached.

DATA AND I/O LIST: If the record contains more data than is
necessary to satisfy all the items of the list and the associated
format specification, the extra data is skipped over. The next
READ statement with FORMAT will start with the next record if no
other I/O statement is executed on that file. If the record
contains less data than is necessary to satisfy all the items of
the list and the associated format identifier, an error is
detected.

VS FORTRAN Statements 151

READ (Formatted. Sequenttal Access)

If the list is not specified and the format identifier starts with
an I, E, F, D, G, or l format code or is empty (that is, FORMAT(»,
a record is skipped over.

IBM EXTENSION

VS FORTRAN adds the Q and Z format codes to the list.

~"--------- END OF IBM EXTENSION ------------'

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If IOSTAT is specified, a p6sitive integer value is assigned
to ios when an error is detected. Then execution continues with
the statement specified with the ERR, if present, or with the next
statement if ERR is not specified. If ERR and IOSTAT are both
omltted, object program execution is terminated when an error is
detected.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
alreadY been read. No indication is given of the number of list
items read into before the end of the file was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to
lOS. Then execution continues with the statement specified with
END, if present, or with the next statement if END is not
specified. If END and IOSTAT are bofh omitted, object program
execution is terminated when the end of the file is encountered.

152 VS FORTRAN language Reference

,'.f~,

"l~;~)

-0' (,

READ (Unformatted, Direct Access)

READ Statement--Unformatted with Direct Access

This statement transfers data without conversion from an external
direct-access I/O device into internal storage. The data must
reside on an external file that is connected with direct access to
a unit (see "OPEN Statement" on page 134).

syntax

READ ([UNIT=]yn, REC=~ [, ERR=stn] [, IOSTAT=;os])

[list]

UNIT=Y.Q
yn is required. It can optionally be preceded by UNIT=. yn is
an unsigned integer expression of length 4. It is the
reference to an I/O unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters can appear in any
order.

REC=rec
~ is a relative record number. It is an integer expression
whose value must be greater than zero. It represents the
relative position of a record within the external file
associated with yn. The relative record number of the first
record is 1.

ERR=stn
stn is the number of a statement in the same program unit as
the READ statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios

list

ios is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error is detected.
VSAM return and reason codes are placed in lOS.

is an I/O list and can contain variable names, array
elements, character substring names, array names, and
implied DO lists. See "Implied DO in an Input/Output
Statement" on page 74.

Valid READ statements:

READ (yn,REC=£g£) list

READ (REC=rec, UNIT=yn)

READ (IOSTAT=IOS, UNIT=11, REC=3) ACTUAl(3)(1:)

READ (IOSTAT=IACT(1),UNIT=3*IN-2,FMT=*) ACTUAl(l)

Invalid READ statements:

READ (UNIT=yn) list

UNIT must be used because Qn
is after REC=rec.

REC=~ must be specified for
direct files.

If this READ statement is encountered, the unit must exist and the
file must be connected for direct access. If the unit is not
connected to a file, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to

VS FORTRAN Statements 153

READ (Unformatted, Direct Access)

a default file name. If the file is not preconnected, an error is
detected. ~!
DATA TRANSMISSION: A READ statement without format starts data
transmission at the beginning of the record specified by REC=~.
The number of character data specified by the type of each item in
the list is taken from the record and transmitted into the storage
associated with the corresponding item in the list. Data
transmission stops when data has been transmitted to every item of
the list.

If the list is not specified, the internal record number is
increased by one but no data is transferred. The INQUIRE statement
can be used to determine the record number.

DATA AND I/O LIST: The length of the FORTRAN records in the file
are specified by RECl in the OPEN statement. If the record ~
contains more data than is necessary to satisfy all the items of
the list, the extra data is ignored. If the record ~ contains
less data than is necessary to satisfy all the items of the list,
an error is detected.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If IOSTAT=~ is specified, a positive integer value is
assigned to i05 when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, program execution is terminated when an error is
detected.

154 VS FORTRAN language Reference

a

o

o
(

o

READ (Unformatted, Sequential Access)

READ statement--unformatted with sequential Access

This READ statement transfers data without conversion from an
external I/O device into internal storage. The data resides on an
external file that is connected for sequential access to a unit
(see "OPEN Statement" on page 134).

The sequential I/O statements without format control process
records one after the other from the beginning of an external file
to its end.

The ENDFILE, REWIND, and BACKSPACE statements may be used to
manipUlate the file.

syntax

READ [UNIT=lYn [, ERR=stnl [, END=stnl [, IOSTAT=ios])

[listl

UNIT=Yn
Yn is required. It can optionally be preceded by UNIT=. Yn is
an unsigned integer expression of length 4 (or an asterisk
00). It is the reference to an I/O uni t. An asteri sk 00
represents an installation-dependent unit.

If UNIT= is not included, Yn must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters can appear in any
order.

ERR=stn
stn is the number of a statement in the same program unit as
the READ statement. Transfer is made to stn if an error is
detected.

END=stn
-rs the number of an executable statement in the program unit

containing the READ statement. Transfer is made to stn when
the end of the external file is encountered.

IOSTAT=ios
i os is an integer vari able or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in los.

is an I/O list. It can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output Statement" on
page 74.

Valid READ statements:

READ (Y.!l) !.iA!

READ (UNIT=Y.!l) list

READ (Y.!l)

READ (IOSTAT=IOS, UNIT=11)

Invalid READ statements:

REA 0 Y.!l, .liA:t

READ, l.i.at

Y.!l must be in parentheses.

(YQ) must be included.

VS FORTRAN Statements 155

READ (Unformatted, Sequential Access)

If this READ statement is encountered, the unit specified by Yn 0
must be connected to a fi Ie for sequenti al access. If the' uni tis '", .y
not connected to a fi Ie, it is assumed to have been preconnected)
through job control language and an implicit OPEN is performed to
a default file name. If the file is not preconnected, an error is
detected.

DATA TRANSMISSION: A READ statement without conversion starts
data transmission at the beginning of a record. The data specified
by the item in the list is taken from the record and transmitted
into the storage associated with the corresponding item in the
list. Data transmission stops when data has been transmitted to
every item of the list or when the end of file is reached.

If the list is not specified, a record is passed over without
transmitting any data.

DATA AND I/O LIST: If the record contains more data than is
necessary to satisfy all the items of the list, the extra data is
skipped over. The next READ statement without format will start
with the next record if no other I/O statement is executed on that
file. If the record contains less data than is necessary to
satisfy the list, an error is detected.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
data. If IOSTAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, program execution is terminated when an error is
detected.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
i terns read into before the end of the f1 Ie was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to
ios when-an end of file is detected. Then execution continues with
the statement specified with END if present, or with the next
statement if END is not specified. If END and IOSTAT are both
omitted, program execution is terminated when the end of the file
is encountered.

156 VS. FORTRAN Language Reference

i"---'\

'AJ

J

C·\
i I

o t

READ (Internal)

READ statement with Internal Files

This READ statement transfers data from one area of internal
storage into another area of internal storage. The user specifies
in a FORMAT statement (or in a reference to a FORMAT statement)
the conversions to be performed during the transfer. The area in
internal storage that is read from is called an internal file.

An internal file is always

• Connected to a unit

• Positioned before data transmission at the beginning of the
storage area represented by the unit identifier

• Accessed sequentiallY with a FORMAT statement (see "FORMAT
Statement" on page 90)

syntax

READ ([UNIT=lun, [FMT=lfmt [, ERR=~l [, END=stnl

[, IOSTAT=ios]) [list]

UNIT=Yn
Yn is the reference to an area of internal storage called an
internal file. It can optionally be preceded by UNIT=. It can
be the name of:

A character variable
A character array
A character array element
A character substring

If UNIT= is included, FMT = must be used. If UNIT= is not
included, the unit reference must appear first.

FI1T=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

The format identifier can be:

A statement number
An integer variable
A character constant
A character array element
A character expression

IBM EXTENSION

An array name

--------- END OF IBM EXTENSION -----------'

See "READ Statement-Formatted wi th Di rect Access" on page
146 for explanations of these format identifiers.

The format specification must ng! be:

• I n the area YD.

• Associated with YO through EQUIVALENCE, COMMON or
argument passing.

If FMT= is not included, the format specification must
appear second.

VS FORTRAN Statements 157

READ (Internal)

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

ERR=stn
stn is the number of a statement in the same program unit as
the READ statement. Transfer is made to ~ if an error is
detected.

END=stn -rs the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when
the end of the storage area (Yn) is encountered. ---

IOSTAT=ios
io;-[s an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM f'etUr"n and reaSOn codes are placed in i 05.

is an I/O list and can contain variable names, array
elements, character substring names, array names, and
implied DO lists. See "Implied DO in an Input/Output
Statement" on page 74.

An item in the list must not be:

• Contained in the area represented by Yn

• Associated with any part of Yn through EQUIVALENCE, COMMON,
or argument passing

Valid READ statements:

READ (Yn,fmt) !ia1

READ (gn,FMT=fmt) list

READ (UNIT=gn,FMT=fmt) list

Invalid READ statements:

READ (fmt,YQ) list

READ (FMT=fmt,YQ) list

READ (fmt,UNIT=yo) list

YO must appear before fmt.

YO must appear first because
UNIT= is not included.

FMT must be used because
UNIT= is included.

DATA TRANSMISSION: An internal READ statement starts data
transmission at the beginning of the storage area specified by un.
The format codes in the format specification fmt are taken one by
one and associated with every item of the list in the order they
are specified. The number of character data specified by a format
code is taken from the storage area yo, converted according to the
format code, and moved into the storage associated with the
corresponding item in the list. Data transmission stops when data
has been moved to every item of the list or when the end of the
storage area a is reached.

If gn is a character variable, a character array element name, or
a character substring name, it is treated as one record only in
relation to the format identifier.

If yo is a character array name, each array element is treated as
one record in relation to the format identifier.

DATA AND I/O LIST: The length of a record is the length of the
character variable, character substring name, character array
element specifified by YQ when the READ statement is executed.

158 VS FORTRAN Language Reference

~-/\
i . ~

READ (Internal)

If a record contains more data than is necessary to satisfy all
the items in the list and the associated format identifier, the
remaining data is ignored.

If a record contains less data than is necessary to satisfy all
the items in the list and the associated format identifier, an
error is detected.

If the format identifier indicates (for example, slash format
code) that data be moved from after the character variable,
character substring, or the last array element of a character
array, an end of file is detected. If it is not the last array
element in the character array, data is taken from the next array
element.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be read, only that an error occurred during transmission of
datYn. If IOSTAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR if present or with
the next statement if ERR is not specified. If ERR and IOSTAT are
both omitted, program execution is terminated when an error is
detected.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read into before the end of the fi Ie was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to
ios when an end of file is detected. Then execution continues with
the statement specified with END if present or with the next
statement if END is not specified. If END and IOSTAT are both
omitted, program execution is terminated when the end of the file
i s encountered.

Example:

1 CHARACTER* 120 CHARVR

2 READ (UNIT=5, FMT=lOO) CHARVR

100 FORMAT (A120)

3 ASSIGN 200 TO J

4 IF (CHARVR (3:4).EQ. 'AB') ASSIGN 300 TO J

5 READCUNIT = CHARVR, FMT=J) Al, A2, A3

200 FORMATC4X,F5.1, FlO.3, 3X, F12.8)

300 FORMAT C4X, F3.1, F6.3, 20X, F8.4)

Statement 1 defines a character variable, CHARVR, of fixed length
120. Statement 2 reads into CHARVR 120 characters of input.
Statement 3 assigns the format number 200 to the integer variable
J. Statement 4 tests the third and fourth characters of CHARVR to
determine which type of input is to be processed. If these two
characters are AB, then the format numbered 300 replaces the
format numbered 200 and is used for processing the data. This is
done by assigning 300 to the integer variable J. Statement 5 reads
the file and performs the conversion using the appropriate FORMAT
statement and ass i gn i ng values to Al, A2, and A3.

VS FORTRAN Statements 159

READ (List-Directed)

READ statement with List-Directed I/O

This statement transfers data from an external device into
internal storage. The type of the items specified in this
statement determines the conversion to be performed. The data
resides on an external file that is connected for sequential
access to a unit (see "OPEN Statement" on page 134).

syntax

READ ([UNIT=lyo, [FMT=l* [, ERR=stn] [, END=stn]

[, IOSTAT=ios]) [list]

READ * [, list]

UNIT=Y.n

FMT=.

YO is required in the first form of the READ statement. It
can optionally be preceded by UNIT=. YO is an unsigned
integer expression (or an asterisk (*». It is the reference
to an I/O unit. An asterisk (*) represents an
installation-dependent unit.

If UNIT= 1S not included, YO must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the ,parameters can appear in any
order.

In the form of the READ where YO is not specified, YO is
installation dependent.

-specifies that a list-directed READ is to be executed. It can
optionally be preceded by FMT=.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all the parameters,
except list, can appear in any order.

ERR=stn
-sfn is the number of a statement in the same program unit as

the READ statement. Transfer is made to stn if an error is
detected.

END=stn -rs the number of an executable statement in the program unit
containing the READ statement. Transfer is made to stn when
the end of the external file is encountered.

IOSTAT=ios

list

i os is an integer vari able or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an I/O list and can contain variable names, array element
names, character substring names, array names, and implied
DO lists. See "Implied DO in an Input/Output statement" on
page 74.

160 VS FORTRAN Language Reference

o
"

Valid READ statements:

READ (Yn,*> list
READ (un,FMT=*) list
READ (FMT=*,UHIT=un) list
READ (*,*) list --
READ *, list

READ (List-Directed)

READ (IOSTAT=IACT(I), UHIT=3*IH-2, FMT=*) ACTUAl(l)

Invalid READ statements:

READ (*,Yn) list

READ (FMT=*,Qn) list

YO must appear before *.

YO must appear first because
UNIT= is not included.

FMT must be used because
UNIT= is included.

FMT must not be specified.

If this READ statement is encountered, the unit specified by un
must be connected to a file for sequential access. If the unit,s
not connected to a file, it is assumed to have been preconnected
through job control language and an implicit OPEN is performed to
a default file name. If the file is not preconnected, an error is
detected.

DATA TRANSMISSION: A READ statement with list-directed I/O
accessing an external file starts data transmission at the
beginning of a record. One value on the external file is
transferred to each item of the list in the order they are
specified. The conversion to be performed depends on the type and
length of the name of the item in the list. Data transmission
stops when data has been transmitted to every item in the list,
when a slash separator is encountered in the file or when the end
of file is reached.

DATA AND I/O LIST: If the record contains more data than is
necessary to satisfy all the items of the list, the extra data is
skipped over. The next READ statement with list-directed I/O will
,start with the next record if no other I/O statement is executed
on that file. If the record contains less data than is necessary
to satisfy the list and the record does not have a slash after the
last element, an error is detected. If the list has not been
satisfied when a slash separator is found, the remaining items in
the list remain unaltered and execution of the READ is terminated.

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be read, only that an error occurred during transmission
of data. If IOSTAT=ios ;s specifled, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, object program execution is terminated when an
input error occurs.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
i terns read before the end of the fi Ie was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to
lOS whe~n end of file is detected. Then execution continues with
the statement specified with END, if present, or with the next
statement if END is not specified. If END and IOSTAT are both
omitted, object program execution is terminated when the end of
the file is encountered.

VS FORTRAN Statements 161

READ (NAMElIST)

..-----------IBM EXTENSION

READ statement with NAMElIST

This statement transfers data from an external 1/0 device into
storage. The type of the items specified in the NAMElIST
determines the conversions to be performed. The data resides on
an external file that is connected for sequential access to a
unit (see "OPEN Statement" on page 134).

Syntax

READ (Yn, name [, ERR=A!nl [, END=stnl [, IOSTAT=ios])

......
l:!!.!

is required. un is an unsigned integer expression of
length 4. It ;s the reference to an 1/0 unit.

is a NAMElIST name. Thi 5 name must appear as the second
parameter ;n the list and must be the same as the name in a
NAMELIST statement that precedes the READ statement (see
"NAMELIST Statement" on page 132).

ERR=stn
stn ;s the number of a statement in the same program unit
as the READ statement. Transfer 1S made to stn if an error
is detected.

END=stn -rs the number of an executable statement in the program
unit containing the READ statement. Transfer is made to
stn when the end of the external file is encountered.

IOSTAT=ios
i os is an integer vari able or an integer array element. Its
value is positive if an error is detected; negative if an
end of file is encountered; and zero if no error condition
is detected. VSAM return and reason codes are placed in
i os.

Valid READ statements:

REA D (.Y.D. dli!.!!U!)

READ (IN+IN+3, NAMEIN, IOSTAT=IOS)

Invalid READ statements:

READ (~d.!.!l) Yn must appear before ~.

READ (Yn,~) list ~ must not be specified.

If this READ statement is encountered, the unit specified by Y.!l
must exist and it must be connected to a file for sequential
access. If the unit is not connected to a file, it is assumed to
have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file
is not preconnected, an error is detected.

The NAMElIST 1/0 statements associate the name given to the data
in the FORTRAN program with the data itself. There is no format
identifier but the data is converted according to the type of
data in the FORTRAN program. The data on the external file must
be in a specific format. See "NAMElIST Input Data" on page 132.

The READ statement specifies the list of data to be transferred
by referring to a NAMELIST statement. This form of data
transmission is useful for debugging purposes.

162 VS FORTRAN language Reference

,0
- l

C,," .;;

REAL TYPE STATEMENT

READ (NAMELIST)

BACKSPACE and REWIND should not be used with NAMElIST I/O. If
they are, the results are unpredictable (see "BACKSPACE
Statement" on page 54 and "REWIND Statement" on page 166).

DATA TRANSMISSION: A READ statement with NAMElIST starts data
transmission from the beginning of the NAMElIST with name name
on the external file. The names associated with the NAMElIST
name name in the NAMElIST statement are matched with the names
of the NAMElIST ~ on the external file. When a match is
found, the value associated with the name on the external file
is converted to the type of the name and transferred into
storage. If a match is not found, an error is detected.

DATA AND NAMELIST: The NAMElIST name name must appear on the
external file. The variable names or array names associated
with the NAMElIST name name in the NAMElIST statement must
appear on the external file. They are read in the order they are
specified in the NAMElIST statement, but they can appear in any
order on the external file (see "NAMElIST Input Data" on page
132 for the format of the input data).

Transfer is made to the statement specified 'by ERR if an input
error occurs. No indication is given of which record or records
could not be read, only that an error occurred during
transmission of data. If ERR is omitted, program execution is
terminated when an error occurs.

END OF FILE: Transfer is made to the statement specified by END
when the end of the file is encountered; that is, when a READ
statement is executed after the last record on the file has
already been read. No indication is given of the number of list
items read before the end of the fi Ie was encountered. If END is
omitted, object program execution is terminated when the end of
the file is encountered.

'----------- END OF IBM EXTENSION ------------'

See "Explicit Type Statement" on page 85.

VS FORTRAN Statements 163

RETURN

RETURN STATEMENT

The RETURN statement returns control to a calling program.

IBM EXTENSION

In a main program, a RETURN statement performs the same function
as a STOP statement.

END OF IBM EXTENSION ---------.....

The RETURN statement can be used in either a function or a
subroutine subprogram.

RETURN statement in a Function Subprogram

Fuftction ~ubprograms may con~aln RETURN s~a~ements. Ihe RETURN
statement signifies a logical conclusion of the computation and
returns the computed function value and control to the calling
program. See also "FUNCTION Statement" on page 111.

~ Syntax

L.:URN

Execution of a RETURN statement terminates the association
between the dummy arguments of the subprogram and the current
actual arguments. All entities (that is, common blocks,
variables, or arrays) within the subprogram become undefined
except:

• Entities specified in SAVE statements (s~e "SAVE Statement"
on page 168)

• Entities given an initial value in a DATA or explicit
specification statement and whose initial values were not
changed

• Entities in blank common

• Entities in named common that appear in the subprogram and
appear in at least one other program unit that is referring
either directly or indirectly to the subprogram

All variables that are defined with a statement number become
undefined regardless of whether the variable is in common or
specified in a SAVE statement.

A function subprogram must not be referred to twice during the
execution of an executable program without the execution of a
RETURN statement in that subprogram. (Sea also "END Statement" on
page 77.)

RETURN statement in a Subroutine Subprogram

Subroutine subprograms may contain RETURN statements. The RETURN
statement signifies a logical conclusion of the computation and
returns control to the calling program. See also "SUBROUTINE
Statement" on page 173. r-: syntax

RETURN [m]

164 VS FORTRAN language Reference

(1
/

o ,

In

RETURN

is an integer expression. m must be within the range of the
argument list. If it is not or if it is less than or equal to
zero, the RETURN is executed, as if there were no m
spec i -f; ed .

The normal sequence of execution following the RETURN statement
of a subroutine subprogram is to the next statement following the
CAll statement in the calling program. It is also possible to
return to any numbered statement; n the call ;'ng program by usi ng a
return of the type RETURN m.
Execution of a RETURN statement terminates the association
between the dummy arguments of the subprogram and the current
actual arguments. All entities within the subprogram become
undefined except:

• Entities specified in SAVE statements. (See "SAVE Statement"
on page 168.)

• Entities given an initial value in a DATA or explicit
specification statement and where initial values were not
changed.

• Entities in blank common.

• Entities in named common that appear in the subprogram and
appear in at least one other program unit that is referring
either directly or indirectly to the subprogram.

All variables that are defined with a statement number become
undefined regardless of whether the variable is in common or
specified in a SAVE statement.

A subprogram must not be referred to twice during the execution of
an executable program without the execution of a RETURN statement
in that subprogram.

A CAll statement that is used with a RETURN m form may be best
understood by comparing it to a CAll and computed GO TO statement
in sequence. For example, the following CAll statement:

i s equ i val en t to:

CAll SUB (P,Q,R,I)
GO TO {20,35,22',I

where the index I is assigned a value of 1,2, or 3 in the called
subprogram.

VS FORTRAN Statements 165

REWIND

REWIND STATEMENT

The REWIND statement positions an external file at the beginning
of the first record of the file. The external file must be
connected with sequential access to a unit. (See "OPEN Statement"
on page 134.)

Syntax

REWIND Y.!l

REWIND ([UNIT=]Y.!l [, ERR=~] [, IOSTAT=~])

UNIT=un
TS the reference to the number of an I/O unit. Yn can
optionally b~ pr~c~ded by UNIT= if th~ 5~cond form of the
statement is used. It can be an integer or real arithmetic
expression. Its value (after conversion to integer of length
4, if necessary) must be zero or positive; otherwise, an
error is detected.

ERR=err -rs optional. ~ is a statement number. If an error occurs in
the execution of the REWIND statement, control is
transferred to the statement labeled~. That statement
must be executable and must be in the same program unit as
the REWIND statement. If ERR=err is omitted, execution halts
when an error is detected. ---

IOSTAT:ios
is opt i onal. i os is an integer vari able or an integer array
element of length 4. Its value is set positive if an error is

o

detected; it is set to zero if no error is detected. VSAM ~
return and reason codes are placed in i os. ~/

}
If UNIT= is specified, all the parameters can appear in any order;
otherwise Y.!l must appear first.

If the unit specified by un is connected, it must be connected for
sequent; al access. If it 15 not connected to a fi Ie, ; tis assumed
to have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file is
not preconnected, an error is detected.

The external file connected to the unit specified by Y.!l mayor may
not exist when the statement is executed. If the external file
does not exist, the REWIND statement has no effect. If the
external file does exist, an end-of-file is created, if
necessary, and the file is positioned at the beginning of the
first record.

The REWIND statement causes a subsequent READ or WRITE statement
referring to Yn to read data from or write data into the first
record of the external file associated with yo.

IBM EXTENSION

The REWIND statement may be used wi th asynchronous READ and
WRITE statements provided that any input/output operation on
the file has been completed by the execution of a WAIT
statement. A WAIT statement is not required to complete the
REWIND operation.

END OF IBM EXTENSION -----------....

Transfer is made to the statement specified by the ERR parameter
if an error is detected. If the IOSTAT=i05 is specified, a
positive integer value is assigned t~ ios when

t
an errtor is 'f' d C· ,fI»

detected. Then execution continues wlth the s atemen speC1 1e '
with the ERR parameter, if present, or with the next statement if
ERR is not specified. If the ERR parameter and the IOSTAT

166 VS FORTRAN language Reference

o
(

o
1
\

o
(

REWIND

parameter are both omitted, program execution is terminated when
an error is detected.

Valid REWIND statements:

REWIND (5)

REWIND (3*IN-2,ERR=99999)

REWIND (UNIT=2*IN+2)

REWIND (IOSTAT=IOS,ERR=99999,UNIT=2*IN-IO)

VS FORTRAN statements 167

SAVE

SAVE STATEMENT

The SAVE statement retains the definition status of the name of a
named common block, variable, or array after the execution of a
RETURN or END statement in a subprogram.

Because VS FORTRAN saves these names without user action, the SAVE
statement serves only as a documentation aid.

~ Syntax

I SAVE [~1 [, ~2] •.•]

i s a named common b! ock name preceded and -f!n 1 1 nlalo,", h\l a
slash, a variable name, or an array name. R;d~~d;~t-'
appearances of an item are not permitted.

Dummy argument names, procedure names, and names of entities in a
common block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained
the names of all allowable items in that program unit.

The appearance of a named common block in a SAVE statement has the
effect of specifying all entities in,that named common block.

The execution of a RETURN statement or an END statement within a
subprogram causes all entities within the subprogram to become
undefined except for the following:

• Entities specified by SAVE statements.

• Entities in blank common.

• Initially defined entities that have neither been redefined
nor become undefined.

• Entities in named common blocks that appear in the subprogram
and appear in at least one other program unit that is
referring, either directly or indirectly, to that subprogram.
The entities in a named common block may become undefined by
execution of a RETURN or END statement in another program
unit.

Within a function or subroutine subprogram, an entity (that is, a
common block, variable, or array) specified by a SAVE statement
does not become undefi ned as a resul t of the execut i on of a RETURN
or END statement in the subprogram.

If a local entity that is specified by a SAVE statement and is not
in a common block is in a defined state at the time a RETURN or END
statement is executed in a subprogram, that entity is defined with
the same value at the next reference of that subprogram. An entity
in a common block never becomes undefined as a result of the
execution of a RETURN or END statement in a program unit that does
not reference that common block. The entities in a named common
block may become undefined or redefined by some other program
unit.

168 VS FORTRAN language Reference

Q

o

o
\

statement Function

STATEMENT FUNCTION STATEMENT

A statement function definition specifies operations to be
performed whenever that statement function name appears as a
function reference in another statement in the same program unit.

name

In

syntax

([arg1 [, arg2] •..]) = m

is the statement funct i on name (see "Names" on page 8).

is a statement function dummy argument. It must be a distinct
variable, that is, it may appear only once within the list of
arguments. Parentheses must be specified even if no dummy
argument is specified.

is any arithmeticr logicalr or character expression. Any
statement function appearing in this expression must have
been defined previously. In a function or subroutine
subprogram, this expression can contain dummy arguments that
appear in the FUNCTION, SUBROUTINE, or ENTRY statements of
the same program unit. (See "VS FORTRAN Expressions" on page
25 for evaluation and restrictions of this expression.)

All statement function definitions to be used in a program must
follow the specification statements and precede the first
executable statement of the program.

The length of a character statement function must be an expression
containing only integer constants or names of integer constants.

The expression to the right of the equal sign defines the
operations to be performed when a reference to this function
appears in a statement elsewhere in the program unit. The
expression defining the function must not contain (directly or
indirectly) a reference to the function it is defining or a
reference to any of the entry point names (PROGRAM, FUNCTION,
SUBROUTINE, ENTRY) of the program unit where it is defined.

If the expression is an arithmetic expression, its type may be
different from the type of the name of the function. Conversions
are made as described for the assignment statement.

The dummy arguments enclosed in parentheses following the
function name are dummy variables for which the arguments given in
the function reference are substituted when the function
reference is encountered. The same dummy arguments may be used in
more than one statement function definition, and may be used as
variables of the same type outside the statement function
definitions, including dummy arguments of subprograms. The length
specification of a dummy argument of type character must be an
arithmetic expression containing only integer constants or names
of integer constants.

An actual argument in a statement function reference may be any
expressi on of the same type as the correspondi ng dummy argument.
It cannot be a character expression involving concatenation of
one or more operands whose length specification is an asterisk.

If an actual argument is of type character, the associated dummy
argument must be of type character and the length of the actual
argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argu~ent are associated with t~e dummy argument.

VS FORTRAN Statements 169

st~tement Function

The name of a statement function must not appear in an EXTERNAL
statement and must not be used as an actual argument.

For example, The statement:

FUNC(A,B) = 3.*A+B**2.+X+Y+Z

defines the statement function FUNC, where FUNC is the function
name and A and B are the dummy arguments. The expressi on to the
right of the equal sign defines the operations to be performed
when the function reference appears in an arithmetic statement.

The function reference might appear in a statement as follows:

C = FUNC(D,E)

This is equivalent to:

Notice the correspondence between the dummy arguments A and B in
the function definition and the actual arguments D and E in the
function reference.

valid statement Function Definitions and References:

Definition

SUMCA,B,C,D) = A+B+C+D

Reference

NET = GROS-SUM(TAX,COVER,HOSP,
STOC)

FUNCCZ) = A+X*Y*Z ANS = FUNCCRESULT)

VALIDCA,B) = .NOT. A .OR. B VAL = TEST .OR. VALIDCD,E)

BIGSUM = SUMCA,B,SUMCC,D,E,F),G(I»

Invalid statement Function Definitions:

SUBPRG(3,J,K)=3*I+J**3

SOMEFCA(I),B)=A(I)/B+3.

SUBPROGRAMCA,B)=A**2+B**2

3FUNC(D)=3.14*E

BADCA,B)=A+B+BAD(C,D)

NOGOOD(A,A)=A*A

Arguments must be variables.

Arguments must not be array
elements.

Function name exceeds limit
of six characters.

Function name must begin with
an alphabetic character.

Recursive definition not
permitted.

Arguments are not distinct
variable names.

Invalid statement Function References:

(The functions are defined as above.)

WRONG = SUM(TAX,COVER)

MIX = FUNC(I)

Number of arguments does not
agree with above definition.

Type of argument does not agree
with above definition.

170 VS FORTRAN Language Reference

/~--'\

'~:j

STATEMENT NUMBERS

statement Numbers

Statement numbers identify statements in a VS FORTRAN program.
Any statement can have a number. A statement can be written in
either fixed form or free form. See "Source Language Statements"
on page 5.

Fixed Form Statement Numbers

Fixed form statement numbers have the following attributes:

• They contain one to five decimal digits (not zero) and are on
a noncontinued line.

• Blanks and lead; ng zeros are ignored.

• They are in columns 1 through 5.

IBM EXTENSION

Free Form Statement Numbers

Free form statement numbers have the following attributes:

•

•
•

They must be the first non blank characters (digits) on an
initial line.

Blanks and leading zeros are ignored.

No blanks are needed between the statement number and the
first nonblank character following.

END OF IBM EXTENSION ---------~

See "ASSIGN Statement" on page 46 for information on assignment of
statement numbers.

VS FORTRAN Statements 171

STOP

STOP STATEMENT

The STOP statement terminates the execution of the object program
and may display a message.

n

Syntax

[n.]

['message']

a string of 1 through 5 decimal digits.

'message'
~ charact~r constant enclosed in apostrophes and containing
alphameric and/or special characters. Within the literal, an
apostrophe is indicated by two successive apostrophes.

If either n. or 'message' is specified, STOP displays the requested
information. For further information, see VS FORTRAN Application
Programming: Guide.

172 VS FORTRAN language Reference

c·
.. }

o (
'-,

SUBROUTINE STATEHENT

SUBROUTINE

The SUBROUTINE statement identifies a subroutine subprogram.

'-= Syntax
I suaROUTINE ~ [([argl] [,arg2] •••])]

is the subrout i ne name (see "Names" on page 8).

is a distinct dummy argument (that is, it may appear only
once within the statement). There need not be any arguments,
in which case the parentheses may be omitted. Each argument
used must be a variable or array name, the dummy name of
another subroutine or function subprogram, or an asterisk,
where the character * denotes a return point specified by a
statement number in the calling program.

Bec~use the subroutine is a separate program unit, there is no
conflict if the variable names and statement numbers within it are
the same as those in other program units.

The SUBROUTINE statement must be the first statement in the
subprogram. The subroutine subprogram may contain any FORTRAN
statement except a FUNCTION statement, another SUBROUTINE
statement, a BLOCK DATA statement, or a PROGRAM statement. If an
IMPLICIT statement is used in a subroutine subprogram, it must
follow the SUBROUTINE statement and may only be preceded by
another IMPLICIT statement, a PARAMETER, FORMAT, or ENTRY
statement.

The subroutine name must not appear in any other statement in the
subroutine subprogram. It must not be the same as any name in the
program unit oras the PROGRAM name, a subroutine name, or a
common block name in any other program unit of the executable
program. The subroutine subprogram may use one or more of its
arguments to return values to the calling program. An argument so
used will appear on the left side of an arithmetic, logical, or
character assignment statement, in the list of a READ statement
within the subprogram, or as an argument in a CALL statement or
function reference that is assigned a value by the subroutine or
function referred to.

The dummy arguments (~l, arg2, arg3, •.. , argn) may be
considered dummy names that are replaced at the time of execution
by the actual arguments supplied in the CALL statement.

If a subrouti ne dummy argument is used as an adjustable array
name, the a rray name and a 11 the var i abl es in the array
declarators (except those in common) must be in the dummy argument
list. See "Size and Type Declaration of an Array" on page 22.

The subroutine subprogram can be a set of commonly used
computations, but it need not return any results to the calling
program. For information about using RETURN and END statements in
a subroutine subprogram, see "END Statement" on page 77 and
"RETURN Statement" on page 164.

Actual Arguments in a Subroutine Subprogram

The actual arguments in a subroutine reference must agree in
order, number, and type with the corresponding dummy arguments in
the dummy argument list of the referenced subroutine. The use of a
subroutine name or an alternate return specifier as an actual
argument is an exc~ption to the rule requiring agreement of type.

I f an actua 1 argument i s of type character, the a ssoc i ated dummy
argument must be of type character and the length of the actual

VS FORTRAN Statements 173

SUBROUTINE

argument must be greater than or equal to the length of the dummy
argument. If the length of the actual argument is greater than the
length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a subroutine reference must be one of the
following:

• An expression, except for a character expression involving
concatenation of an operand whose length specification is an
asterisk in parentheses (unless the operand is the name of a
constant)

• An array name

• An intrinsic function name

• An external procedure name

• A dummy procedure name

• An alternate return specifier (statement number preceded by
an asteri sk)

An actual argument in a subroutine reference may be a dummy
argument name that appears in a dummy argument list within the
subprogram containing the reference. An asterisk dummy argument
cannot be used as an actual argument in a subprogram reference.

Dummy Arguments in a Subroutine subprogram

The dummy arguments of a subprogram appear after the subroutine
name and are enclosed in parentheses. They are replaced at the
time of execution of the CAll statement by the actual arguments
supplied in the CALL statement in the calling program.

Dummy arguments must follow certain rules:

• None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST
statement except as common block names.

• A dummy argument name must not be the same as the entry point
name appearing in a PROGRAM, FUNCTION, SUBROUTINE, ENTRY, or
statement function definition in the same program unit.

• The dummy arguments must correspond in number, order, and
type to the actual arguments.

• If a dummy argument is assigned a value in the subprogram, the
corresponding actual argument must be a variable, an array
element, a substring, or an array. A constant, name of
constant, subprogram name, or expression should not be
written as an actual argument unless the programmer ;s
certain that the corresponding dummy argument is not assigned
a value in the subprogram.

• A referenced subprogram cannot assign new values to dummy
arguments that are associated with other dummy arguments
within the subprogram or with variables in COMMON.

• The subprogram reserves no storage for the dummy argument,
using the corresponding actual argument in the calling
program for its calculations. Thus the value of the actual
argument changes as soon as the dummy argument changes.

174 VS FORTRAN Language Reference

TRACE OFF STATEMENT

TRACE ON STATEMENT

UNCONDITIONAL GO TO

o

TRACE OFF and TRACE ON

IBM EXTENSION

The TRACE OFF statement stops the display of program flow by
statement number.

~ Syntax
LCE OFF

TRACE OFF may appear anywhere wi thi n a debug packet. After a
TRACE ON statement, tracing continues until a TRACE OFF
statement is encountered.

The TRACE ON statement initiates the display of program flow by
statement number.

~ syntax

LCE ON

TRACE ON is executed only when the TRACE option appears in a
DEBUG packet. (See "DEBUG Statement" on page 68.> Tracing
continues until a TRACE OFF statement is encountered. TRACE ON
stays in effect through any level of subprogram CAll or RETURN
statement. However, if a TRACE ON statement is in effect and
control is given to a program in which the TRACE option is not
specified, the statement numbers in that program are not
traced.

Each time a statement with an external statement number is
executed, a record of the statement number is made on the debug
output fi Ie.

For a given debug packet, the TRACE ON statement takes effect
immediately before the execution of the statement specified in
the AT statement.

----------- END OF IBM EXTENSION ---------~

See "GO TO Statements" on page 115.

VS FORTRAN Statements 175

WAIT

WAIT STATEMENT

IBM EXTENSION

The WAIT statement completes the data transmission begun by the
corresponding asynchronous READ or WRITE statement.

C syntax

I WAlT ([UNIT=]gn, eli31) [list]

UNIT=Y1l

plist

list

~n is required. It can optionally be preceded by UNIT=. It
1S the reference to an I/O unit. gn is an unsigned integer
expression of length 4.

is a parameter list that conta ins (1'n any order) one or
more of the following forms:

ID=id
--where id is an integer constant or integer

expression of length 4. This parameter is required.

If the WAIT is completing an asynchronous READ, the
expression id is subject to the following rules:

• No array element in the receiving area of the
read may appear in the expression. This also
includes indirect references to such elements;
that is, reference to or redefinition of any
variable or array element associated by COMMON or
EQUIVALENCE statement, or argument association
with an array element in the receiving area.

• If a function reference appears in the subscript
expression of ~l or ~2, the function may not be
referred to in the expression ide Also, no
functions or subroutines may be referred to by
the expression that directly or indirectly refers
to the subscript function, or to which the
subscript function directly or indirectly refers.

COND=il
where il is an integer variable name of length 4. This
parameter is optional.

If COND=il is specified, the variable il is assigned
a value of 1 if the input or output operation was
completed successfully; 2 if an error condition was
encountered; and 3 if an end-of-file condition was
encountered while reading. In case of an error or
end-of-file condition, the data in the receiving area
may be meaningless.

NUM=i2
where i2 is an integer variable name of length 4. This
parameter is optional.

If NUM=i2 is specified, the variable i2 is assigned a
value representing the number of bytes of data
transmitted to the elements specified by the list. If
the list requires more data from the record than the
record contains, this parameter must be specified. If
the WAIT is completing an asynchronous WRITE, i2
remains unaltered.

is opt i onal. It ; s an asynchronous I/O list as spec; f1 ed
for the asynchronous READ and WRITE statements.

176 VS FORTRAN Language Reference

·4-··'~\

\,/~

o

WAIT

If a list is included, it must specify the same recelvlng or
transmitting area as the corresponding asynchronous READ
or WRITE statement. It must not be specified if the
asynchronous READ did not specify a list.

WAIT redefines a receiving area and makes it available for
reference, or makes a transmitting area available for
redefinition.

The corresponding asynchronous READ or WRITE, which need not
appear in the same program unit as the WAIT, is the statement
that:

• Was not completed by the execut i on of another WAIT

• Refers to the same fi Ie as the WAIT

• Contai ns the same value for i din the IO=i d form as di d the
asynchronous READ or WRITE when it was executed

The correspondence between WAIT and an asynchronous READ or
WRITE holds for a particular execution of the statements.
Different executions may establish different correspondences.

When the WAIT is completing an asynchronous READ, the
subscripts in the list may not refer to array elements in the
receiving area. If a function reference is used in a subscript,
the function reference may not perform I/O on any file.

Valid WAIT statements:

WAIT (S,ID=1) ARRAY(101) ..• ARRAY(SOO)

WAIT (9,IO=1,COND=ITEST)

WAIT (S,ID=1,NUM=N)

WAIT (9,10=2)

END OF IBM EXTENSION _________1

VS FORTRAN Statements 177

WRITE

WRITE STATEMENTS

The WRITE statements transfer data from storage to an external
device or from one internal file to another internal file.

FORMS OF THE WRITE STATEMENT:

IBM EXTENSION

1. WRITE Statement--Asynchronous

'---------- END OF IBM EXTENSION ---------....1
2. WRITE Statement--Formatted wi th Oi rect Access

3. WRITE Statement--Formatted with Sequential Access

4. WRITE Statement--Unformatted with Direct Access

5. WRITE Statement--Unformatted with Sequential Access

6. WRITE Statement with Internal Files

7. WRITE Statement with List-Directed I/O

IBM EXTENSION --------------------~

8. WRITE Statement with NAMELIST

'------------ END OF IBM EXTENSION ------------'

178 VS FORTRAN Language R9ference

o

0',,,,'
.1\1,

o

o

WRITE (Asynchronous)

IBM EXTENSION

WRITE statement--Asynchronous

The asynchronous WRITE statement transmits data from an array
in main storage to an external file.

~ Syntax
~TE ([UNIT=]gn, ID=iQ) list

UNIT=Yn

ID=.!.Q

~n is required. It can optionally be preceded by UNIT=. gn
1S an unsigned integer expression of length 4. It is the
reference to an I/O unit.

iQ is an integer constant or integer expression of length
4. It is the identifier for the WRITE statement.

is an asynchronous I/O list that may have any of four
forms:

e
it ... !t2
,i!1 .••
• • • ,i!2

where:

is the name of an array.

11 and e2
are the names of elements in the same'array. The
ellipsis (...) is an integral part of the syntax of
the list and must appear in the positions indicated.

The unit specified by gn must be connected to a file that
resides on a sequential or direct access device. The array or
array elements specified by g (or g1 and g2) constitute the
transmitting area for the data to be written. The extent of the
transmitting area is determined as follows:

• If g is specified, the entire array is the transmitting
area.

• If g1 .•• g2 is specified, the transmitting area begins at
array element g1 and includes every element up to and
including g2. The subscript value of g1 must not exceed that
of g2.

• If g1 .•. is specified, the transmitting area begins at
element g1 and includes every element up to and including
the last element of the array.

• If •.. e2 is specified, the transmitting area begins at the
first element of the array and includes every element up to
and including g2.

• If a function reference is used in a subscript of the list,
the function reference may not perform I/O on any file.

Execution of an asynchronous WRITE statement initiates writing
of the next record on the specified file. The size of the record
is equal to the size of the transmitting area. All the data in
the area is wri tten ..

VS, FORTRAN Statements 179

WRITE (Asynchronous)

Given an array with elements of length 19n, the number of bytes
transmitted will be len times thQ number of elements in the
array. Elements are transmitted sequentially from the smallest
subscript element to the highest. If the array is
multi-dimensional, the leftmost subscript quantity increases
most rapidly, and the rightmost least rapidly.

Because the asynchronous WRITE statement can only refer to
files with sequential access, REC may not be specified even
though the file may be resident on a direct-access device.

There is no FORMAT statement assoeiated with the output data and
no conversion takes place.

Any number of program statements may be executed between an
asynchronous WRITE and its corresponding WAIT, subject to the
following rules:

• t~u such statement may in any way a!3s1 gn a new valuQ to any
array element in the transmitting field. This and the
following rules apply also to indirect references to such
array elements; that is, assigning a new value to a variable
or array elements associated by COMMON or EQUIVALENCE
statements, or argument association with an array element
in the transmitting area.

• No executable statement may appear that redefines or
undefines a'variable or array element appearing in the
subscript of gl or g2.

• If a function reference appears in the subscript expression
of gl or ~2, the function may not be referred to by any
statements executed between the asynchronous WRITE and the
corresponding WAIT. Also, no subroutines or function may be
referred to that directly or indirectly refer to the
subscript function, or to which the subscript function
directly or indirectly refers.

• No function or subroutine may be executed that performs
input or output on the file being manipulated.

Valid WRITE statement:

WRITE (10=10, UNIT=2*IH+2) .•. EXPECT(9)

'----------- END OF IBM EXTENSION -----------'

180 VS FORTRAN Language Reference

,0

" ~ C"·

c'''''' .. ·.· ,,'I
I

,

WRITE (Formatted, Direct Access)

WRITE statement--Formatted with Direct Access

This statement transfers data from internal storage onto an
external device. The user specifies in a FORMAT statement (or in a
reference to a FORMAT statement) the conversions to be performed
during the transfer. The data must be sent to an external file
that is connected with direct access to a unit (see "OPEN
Statement" on page 134).

Syntax

WRITE ([UNIT=]go, [FMT=]fmt, REC=rec [,ERR=stn]

[, IOSTAT=ios]) [list]

UNIT=un
go is required. It can optionally be preceded by UNIT=. go is
an unsigned integer expression of length 4. It is the
reference to an I/O unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters can appear in any
order.

FMT=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
list, can appeari n any order.

The format identifier (fmt) can be:

A statement number
An integer variable
A character constant
A character array element
A character array name
A character expression

IBM EXTENSION

An array name

END OF IBM EXTENSION -----------"

The statement number must be the statement number of a FORMAT
statement in the same program unit as the WRITE statement.

The integer variable must have been initialized by an ASSIGN
statement with the number of a FORMAT statement. The FORMAT
statement must be in the same program unit as the WRITE
statement.

The character constant must constitute a valid format. The
constant must be delimited by apostrophes, must begin with a
left parenthesis and end with a right parenthesis. Only the
format codes described in the FORMAT statement can be used
between the parentheses. An apostrophe in a constant
enclosed in apostrophes is be represented by two consecutive
apostrophes.

The character array element must contain character data
whose leftmo~t character positions constitute a valid
format. A valid format begins with a left parenthesis and
ends with a right parenthesis. Only the format codes

VS FORTRAN Statements 181

WRITE (Formatted, Direct Access)

described in the FORMAT statement can be used between the
parentheses. Blank characters may precede the left
parenthesis and character data may follow the right
parenthesis. The length of the format specification must not
exceed the length of the chara~ter array element.

The character array name must contain character data whose
leftmost characters constitute a valid format specification.
The length of the format specification may exceed the length
of the first element of the array; it is considered the
concatenation of all the elements of the array in the order
given by array element ordering.

IBM EXTENSION

The array name may be of type integer, real, double
precision, logical, or complex.

The data must be a valid format identifier as described
under character array name above.

END OF IBM EXTENSION ----------

The character expression may contain concatenations of
character constants, character array elements and character
array names. Its value must be a valid format specification.
The operands of the expression must have length
specifications that contain only integer constants or names
of integer constants.

REC=rec
rec is an integer expression. It represents the relative
position of a record within the file associated with yo. Its
value after conversion to integer, if.necessary, must be
greater than zero. The internal record number of the first
record is 1. The INQUIRE statement can be used to determine
the record number.

If list is omitted, a blank record is transmitted to the
output device unless the FORMAT statement referred to
contains, as its first specification, a character constant
or slashes. In this case the record (or records) indicated by
these specifications are transmitted to the output device.

ERR=stn
stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios
lOS is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an I/O list and can contain variable names, array element
names, character substring names, array.names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

182 VS FORTRAN Language Reference

/.'\

.", .. /,1

o I
~ ..

o
{

WRITE (Formatted, Direct Access)

Valid WRITE statements:

WRITE (Qn,fmt,REC=rec) list

WRITE (yo,FMT=fmt,REC=rec) list

WRITE (FMT=fmt,REC=rec,UNIT=Yn) 1iA1

WRITE (REC=1, UNIT=11, FMT='CI9)')

WRITE (O,'CA8)', REC=3)

Invalid WRITE statements:

WRITE (fmt ,yo) 1 i st

WRITE (fmt, UNIT=yo) list

WRITE FMT=fmt, list

YO must appear before fmt.
REC= is required for direct access.

YO must appear first because UNIT=
is not included. REC= is required
for direct access.

FMT must be used because UNIT=
is included. REC= is required
for direct access.

FMT must not be specified.
REC= is required for direct access.

If this WRITE statement is encountered, the unit specified must
exist and the file must be connected for sequential access. If the
unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN is
performed to a default file name. If the file is not preconnected,
an error is detected.

DATA TRANSMISSION: A WRITE statement with FORMAT starts data
transmission at the beginning of a record specified by REC=rec.
The format codes in the format speci fi cat ion fmt are taken one by
one and associated with every item of the list in the order they
are specified. The data is taken from the item of the list,
converted according to the corresponding format code, and the
number of character data specified by the format code is
transmitted onto the record of the external file. Data
transmission stops when data has been taken from every item of the
list or when the end of the record specified by ~ is reached.

If the list is not specified and the format specification starts
with an I, E, F, 0, G, or L, or is empty (that is, FORMATe », the
record is filled with blank characters and the relative record
number rec is increased by one.

IBM EXTENSION

This is also true when the format specification starts with a G,
Q, or Z format code.

"'---------- END OF IBM EXTENSION -----------"

DATA AND I/O LIST: The length of every FORTRAN record is specified
in the RECL parameter of the OPEN statement. If the length of the
record rec is greater than the total amount of data specified by
the format codes used during transmission of data, an error is
detected, but as much data as can fit into the record is
transmitted. If the format specification indicates (for example,
slash format code) that data be transmitted to the next record,
then the relative record number ~ is increased by one and data
transmission continues •

.
After successful execution of the WRITE statement, the value of
the NEXTREC variable specified in the INQUIRE statement is set to
the relative record number of the last record written,

VS FORTRAN Statements 183

WRITE (Formatted, Direct Access)

incremented by one. If an error 15 detected, the NEXTREC vari able 0
contains the relative record number of the record being written. \

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If IOSTAT=ios is specified, a positive integer value is
assigned to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement, if ERR is not specified. If ERR and
IOSTAT are both omitted, program execution is terminated when an
error is detected.

184 V~ FORTRAN Language Reference

(----\
\.,,_£J

J
... f

o
J

~. ",
~/

o

WRITE (Formatted, sequential Access)

WRITE statement--Formatted with Sequential Access

This statement transfers data from internal storage onto an
external I/O device. The user specifies in a FORMAT statement (or
in a reference to a FORMAT statement) the conversions to be
performed during the transfer. The data must ~e sent to an
external file that is connected with sequential access to a unit
(see "OPEN statement" on page 134).

syntax

WRITE ([UNIT=]YQ, [FMT=]fm! [, ERR=~] [, IOSTAT=ios])

[list]

PRINT fmt [, list]

UNIT=YD
YO is required. It can eptionally be preceded by UNIT=. YO is
an unsigned integer expression or an asterisk (*). It is the
reference to an I/O unit.

If UNIT= is included, FMT= must be used and all the
parameters can appear in any order.

If UNIT= is not included, YO must appear first in the
statement. The other parameters may appear in any order.

In the form of the PRINT statement where un is not specified,
or in the form of a WRITE statement where YO is an asterisk,
YO is installation dependent.

FI1T=fmt
fmt is a required format identifier. It can optionally be
preceded by FMT=.

If FMT is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
list, can appear in any arder.

The format identifier (fmt) can be:

A statement number
An integer variable
A character constant
A character array element
A character array name
A character expression

IBM EXTENSION

An array name

'---------- END OF IBM EXJENSION ---------.....

See "WRITE Statement-Formatted wi th Di rect Access" on page
181 for explanations of these format identifiers.

ERR=stn
stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected. ---

IOSTAT=ios
jos is an integer variable or an integer array element. Its
value is positiv. if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

VS FORTRAN Statements 185

WRITE (Formatted, Sequential Access)

list
is an I/O list. It can contain variable names, array 0
elements, character substring names, array names, implied DO
Ii sts, and expressions. In the PRINT statement, if the Ii st ~J:)
is not present, the comma must be omitted. See "Implied DO in
an Input/Output Statement" on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statemen~ to be executed.

Valid WRITE and PRINT statements:

WRITE CY.!l,fmt) .l.ill

WRITE CY.!l, FMT=fmt) liA1

WRITE (*,fmt) lia!

WRITE (UN!T=gn; FMT=fmt)

WRITECIOSTAT=IOS,ERR=99999,FMT=M,UNIT=2MIN+3)

WRITE(IN+8,NAMEOT,IOSTAT=IACT(1),ERR=99999)

PRINT *, list

PRINT fmt, list

PRINT fmt

Invalid WRITE and PRINT statements:

WRITE (fmt,.Y.D,)

WRITE (FMT=fmt,.Y.D,> li31

WRITE (fmt,UNIT=Y.!l) liA1

PRINT FMT=fmt, list

YO must appear first before fmi.
YO must appear first because
UNIT= is not included.

FMT must be used because
UNIT= is included.

FMT must not be used with
PRINT.

If the unit specified by.Y.D, is connected, it must be connected for
sequential access. If it is not connected to a file, it is assumed
to have been preconnected through job control language and an
implicit OPEN is performed to a default file 'name. If the file is
not preconnected, an error is detected.

DATA TRANSMISSION: A WRITE statement with FORMAT starts data
transmission at the beginning of a record. The format codes in the
format specification fmt are taken one by one and associated with
every item of the list in the order they are specified. The data
is taken from the item of the list, converted according to the
corresponding format code and the number of character data
specified by the format code is transmitted onto the record of the
external file. Data transmission stops when data has been taken
from every item of the list.

If the list is not specified and the format specification starts
with an I, E, F, D, G, or l, or is empty (that is, FORMATe », a
blank record is written out. '

186 VS FORTRAN Language Reference

·0 .7

o ;

WRITE (Formatted, Sequential Access)

IBM EXTENSION

Thi sis al so true when the format speci fi cati on starts wi th a Q
or Z format code.

The WRITE statement can be used to write over an end of file and
extend the external file. An ENDFILE, BACKSPACE, CLOSE, or
REWIND statement will then reinstate the end of file.

1...-_________ END OF IBM EXTENSION _________ ---J

After execution of a sequential WRITE or PRINT, no record exists
in the file following the last record transferred by that
statement.

DATA AND I/O LIST: The amount of character data specified by all
the format codes used during the transmission of the data defines
the length of the FORTRAN record (also called a logical record). A
single WRITE statement may create several FORTRAN records. This
occurs when a slash format code is encountered in the format
specification or when the I/O list exceeds the format
specification which causes the FORMAT statement to be used in full
or part again. (See "FORMAT Statement" on page 90.)

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/O device.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If IOSTAT=ios is specified, a positive integer value is
assi gned to stn when an error is detected. Then execut ion
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error is
detected.

VS FORTRAN statpments 187

WRITE (Unformatted, Direct Access)

WRITE statement--unformatted with Direct Access r\
The statement transfers data wi thout conversi on from i nternal l'lt .. ",~
storage onto an external I/O device. The data must be sent to an)
external file that is connected with direct access to a unit (see
"OPEN Statement" on page 134).

Syntax

WRITE ([UNIT=]Yn, REC=rec [, ERR=stn] [, IOSTAT=~])

[list]

UNIT=Y.D
Yn is required. It can optionally be preceded by UNIT=. YO is
an unsigned integer expression of length 4. It is the
reference to an I/O unit.

If UNIT= is not included, un must appear .first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters may appear in any
order.

REC=~
cg£ is a relative record number. It is an integer expression
that must be greater than zero. It represents the relative
position of a record within the external file associated
with yo. The relative record number of the first record is 1.

ERR=stn
stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to ain if an error is
detected. ('" "'\

,,~/
IOSTAT=ios j

i os is an integer vari able or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ~.

is an I/O list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

Valid WRITE Statements:

WRITE (Yn,REC=~) lia1

WRITE (REC=~,UNIT=Yn) list

WRITE (IOSTAT=IOS, ERR=99999, REC=IN-3, UNIT=IN+6)

WRITE (IOSTAT=IACT(I), REC=2*IN-7, UNIT=2*IN+l) EXPECT(3)

WRITE (REC=l, UNIT=!!) EXPECT(!)

Invalid WRITE Statements:

WRITE (REC=~,Yn) list

WRITE (yo) list

UNIT must be used.

REC=~ must be specified.

If the uni t speci fi ed by .Y.!l is encountered, it must exi st and the
file must be connected for direct access. If the unit is not
connected to a file, it is assumed to have been preconnected

188 VS FORTRAN Language Reference

(0

·c.! {

o

WRITE (Unformatted, Direct Access)

through job control language and an implicit OPEN is performed to
a default file name. If the file is not preconnected, an error is
detected.

DATA TRANSMISSION: A WRITE statement without conversion starts
data transmission at the record specified by rec. The data is
taken from the items of the list in the order in which they are
specified and transmitted onto the record ~ of the external
file. Data transmission stops when data has been transferred from
every item of the list.

DATA AND I/O LIST: The length of every FORTRAN record is specified
in the REel parameter of the OPEN statement. If the length of the
record ~ is greater than the total amount of data transmitted
from the items of the list, the remainder of the record is filled
with zeros. If the length of the record ~ is smaller than the
total amount of data transmitted from the items of the list, as
much data as can fit in the record is written, the internal record
number is increased by one. The INQUIRE statement can be used to
determine the record number.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If IOSTAT=ios is specified, a positive integer value is
assigned to ios when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if' ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error is
detected.

VS FORTRAN Statements 189

WRITE (Unformatted, sequential Access)

WRITE statement--Unformatted with Sequential Access

This statement transfers data without conversion from internal ~,.,l
storage onto an external I/O device. The data must be sent to an '
external file that is connected with sequential access to a unit
(see "OPEN statement" on page 134).

Syntax

WRITE ([UNIT=]YQ [, ERR=stnl [, IOSTAT=~]) [list]

UNIT=un
YO is required. It can optionally be preceded by UNIT=. Yn is
an unsigned integer expression of length 4. It is the
reference to an I/O unit.

If UNIT= is not included, Yn must appear first in ~ne
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters may appear in any
order.

ERR=stn
stn is the number of a statement i~ the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios
i os is an integer vari able or an integer array element. Its
value is positive if an error is detected; negative lfan end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in lOS.

is an I/O list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

Valid WRITE Statements:

WRITE (YQ) list

WRITE (UNIT=YQ) list

WRITE(S) EXPECT(4)

Invalid WRITE Statement:

WRITE YQ,list YO must be in parentheses.

DATA TRANSMISSION: A WRITE statement without conversion starts
data transmission at the beginning of a record. The data is taken
from the items of the list in the order in which they are
specified and transmitted onto the record of the external file.
Data transmission stops when data has been transferred from every
item of the list.

After execution of a sequential WRITE statement, no record exists
in the file following the last record transferred by that
statement.

190 VS FORTRAN language Reference

o

o

URITE (Unformatted, Sequential Access)

IBM EXTENSION

The WRITE statement wri tes over an end of fi Ie and extends the
external file. An END FILE, BACKSPACE, CLOSE, or REWIND
statement will then reinstate the end of file.

END OF IBM EXTENSION _________ ...J

DATA AND I/O LIST: The amount of character data specified by the
items of the list defi nes the length of the FORTRAN record (a1 so
called a logical record). A single WRITE statement creates only
one FORTRAN record.

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/O device.

Transfer is made to the statement specified by ERR if an error is
detected. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If IOSTAT=ios is specified, a positive .integer value is
assi gned to i os when an error is detected. Then execut ion
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error is
detected.

VS FORTRAN statements 191

WRITE (Internal)

WRITE statement wi th Internal Fi las

This statement transfers data from one or more areas in inte~nal
storage to another area in internal storage. The user specifies in
a FORMAT statement (or in a reference to a FORMAT statement) the
conversions to be performed during the transfer. The receiving
area in internal storage is called an internal file.

Syntax

WRITE ([UNIT=]gn, [FMT=]fmt [, ERR=~] [, IOSTAT=~])

[list]

UNIT=YD
yu is the reference to an area of storage called an internal
file. It can optionally bQ prQcacad by UNIT~. It can be the
name of a character variable, character array, character
array element, or character substring.

If UNIT= is included, FMT= must be used. If UNIT= is not
included, the unit reference must appear first.

FttT=fmt -rs the format specification. It may optionally be preceded
by FMT=.

If FMT= is not included, the format specification must
appear second.

If both UNIT= and FMT= are included, all parameters, except
list, may appear in any order.

The format specification can be:

A statement number
An integer variable
A character constant
A character array element
A character expression

IBM EXTENSION

An array name

'------------ END OF IBM EXTENSION ----------'

See "WRITE Statement-Formatted wi th Di rect Access" on page
181 for explanations of these format specifications.

ERR=stn
stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios
lOS is an integer variable or an integer array element. Its
value is positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in lOS.

is an I/O list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 74.

A function must not be referenced within an expression if such a
reference causes an ; nput or output statement to be execut'i!d oQ

192 VS FORTRAN language Reference

C' (. J

o , .

o
\

WRITE (Internal)

Neither the format specification (fmt) nor an item in the list
(list) can be: ---

• Contained in the area represented by YO

• Associated with any part of YO through EQUIVALENCE, COMMON,
or argument passing

valid WRITE statements:

WRITE (yo,fmt) list

WRITE (yo,FMT=fmt) list

WRITE (FMT=fmt,UNIT=yo) list

WRITE (IOSTAT=IOS, ERR=99999, FMT='(A9)', UNIT=CHAR(1:S» '1 2 3'

WRITE (CHAR(1:S), '(A9)', IOSTAT=IACT(1» '4 5 6'

Invalid WRITE statements:

WRITE (fmt,yo) list

WRITE (FMT=fmt,yo) list

WRITE (fmt,UNIT=gn) list

YO must appear first before fmt.

YO must appear first because
UNIT= is not included.

FMT must be used because UNIT=
is included.

DATA TRANSMISSION: A WRITE statement starts data transmission at
the beginning of the area specified by yo. The format codes in the
format specification fmt are taken one by one and associated with
every item of the list in the order they are specified. Data is
taken from the item of the list, converted according to the format
code, and the number of character data specified by the format
code is moved into the storage area Yn. Data transmission stops
when data has been moved from every item of the list.

If un ;s a character variable, a character array element, or a
character substring name, it is treated as one record only in
relation to the format specification.

If un is a character array name, each array element is treated as
one-record in relation to the format specification.

DATA AND I/O LIST: The length of a record is the length of the
character variable, character substring name, or character array
element specified by Yn when the WRITE statement is executed.

If the length of the record is greater than the amount of data
specified by the items of the list and the associated format
specification, the remainder of the record is filled with blank
characters.

If the length of the record is less than the amount of data
specified by the items of the list and the associated format
specification, as much data as can fit in the record is
transmitted and an error is detected.

The format specification may indicate (for example, slash format
code) that data be moved to the next record of storage area yo. If
un specifies a character variable, a character array element, or a
character substring name, an error is detected. If YO specifies a
character array name, data is moved into the next array element
unless the last array element has been reached. In this latter
case, an error is detected.

Transfer is made to-the statement specified by ERR if an error is
detected. No indic~tion is given of which record or records could
not be written, only that an error occurred during transmission of
data. If IOSTAT=ios is specified, a positive integer value is

VS FORTRAN statements 193

WRITE (Internal)

assigned to ioswhen an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error is
detected.

194 VS FORTRAN language Reference

r',
~ ~ ,~j t

'"'"

./~'"

''''.JII)
. }

o

o

WRITE (Ltst-Directed)

WRITE statement with List-Directed I/O

This statement transfers data from internal storage onto an
external 1/0 device. The data must be sent to an external file
that is connected with sequential access to a unit. (See "OPEN
Statement" on page 134.) The type of the items specified in the
statement determines the conversion to be performed.

syntax

WRITE ([UNIT=]yo, [FMT=]* [, ERR=stn] [, IOSTAT=ios])

[list]

PRINT M [, li.n]

UNIT=Y!l

FIiT=.

YO is required. It can optionally be preceded by UNIT=. YO is
an unsigned integer expression or an asterisk (M). It is the
reference to an 1/0 unit.

If UNIT= is not included, un must appear first in the
statement. The other parameters may appear in any order.

If UNIT= is included, all the parameters may appear in any
order.

In the form of the PRINT statement where Yn is not specified
or in the form of a WRITE statement where un is an asterisk,
Yn is installation dependent. --

An asterisk (M) specifies that a list-directed WRITE has to
be executed. It can optionally be preceded by FMT= if Yn ;s
specified.

If FMT= is not included, the format identifier must appear
second.

If both UNIT= and FMT= are included, all parameters, except
liA1, may appear in any order.

ERR=stn
stn is the number of a statement in the same program unit as
the WRITE statement. Transfer is made to stn if an error is
detected.

IOSTAT=ios
lOS is an integer variable or an integer array element. Its
value ;s positive if an error is detected; negative if an end
of file is encountered; and zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an 1/0 list and can contain variable names, array
elements, character substring names, array names, implied DO
lists, and expressions. See "Implied DO in an InputlOutput
Statement" on page 74.

A function must not be referenced within an expression if such a
reference causes an input or output statement to be executed.

VS FORTRAN Statements 195

WRITE (List-Directed)

Val id WRITE statements: .

WRITE (yo,*) ~

WRITE (yo,FMT=*) !iA!

WRITE (FMT=*,UNIT=yo) ~

WRITE (S,*)

WRITE (FMT=*,UNIT=*) FIFTYS,ISEG

WRITE (IOSTAT=IOS, ERR=99999, FMT=*, UNIT=2*IN+3)
""//EXPECT(I)//""

PRINT *, ~

WRITE (*,yo) ~

WRITE (FMT=*,yo) li3!

YO must appear before *.

YO must appear first because
UNIT= is not included.

FMT must be used because
UNIT= is included.

FMT must not be used.

If the unit specified by YO is encountered, it must be connected
to a file for sequential access. If the unit is not connected to a
file, it is assumed to have been preconnected through job control
language and an implicit OPEN is performed to a default file name.
If the file is not preconnected, an error is detected.

DATA TRANSMISSION: A WRITE or PRINT statement with list-directed
I/O accessing an external file starts data transmission at the
beginning of a record. The data is taken from each item in the
list in the order they are specified and transmitted onto the
record of the external file. Data transmission stops when data has
been transferred from every item in the list.

After execution of a sequential WRITE or PRINT statement, no
record exists in the file following the last record transferred by
that statement.

The WRITE or PRINT statement can wri te over an end of fi Ie and
extend the external file. An ENDFILE, CLOSE, or REWIND statement
will reinstate the end of fila.

An external fila with sequential access written with
list-directed I/O is suitable for printing, because a blank
character is always inserted at the begi nn i ng of each record as a
carrier control character.

DATA AND I/O LIST: The amount of character data specified by the
items in the list and the necessary data separators define the
length of the FORTRAN record (also called a logical record). A
single WRITE or PRINT statement creates only one FORTRAN record.

The VS FORTRAN Application Programming: Guide describes how to
associate FORTRAN records (that is, logical records) and physical
records on an external I/O device. In particular, a logical record
may span over many physical records. A character constant or a
complex constant can be split over the next physical record if
there is not enough space on the current physical record to
contain it all.

Character constants produced:

• Are not delimited by apostrophes

• Are not preceded or followed by a value separator

196 VS FORTRAN language Reference

q

c
I

\

o
1

o

•

WRITE (List-Directed)

Have each internal apostrophe represented externally by one
apostrophe

• Have a blank character inserted by the processor for carrier
control at the beginning of any record that begins with the
continuation of a character constant from the preceding
record

Transfer is made to the statement specified by ERR if an error
occurs. No indication is given of which record or records could
not be written, only that an error occurred during transmission of
data. If IOSTAT=stn is specified, a positive integer value is
assigned to stn when an error is detected. Then execution
continues with the statement specified with ERR, if present, or
with the next statement if ERR is not specified. If ERR and IOSTAT
are both omitted, execution is terminated when an error occurs.

VS FORTRAN statements 197

WRITE (NAMELIST)

IBM EXTENSION

WRITE statement with NAHELIST

This statement transfers data from internal storage onto an
external I/O device. The type of the items specified in the
NAMELIST statement determines the conversions to be performed.

syntax

WRITE (yo, n£mg [, ERR=~] [, IOSTAT=ios])

YO is required. It is an un$;gn~d integer expression of
length 4. It is the reference to an I/O unit.

is a NAMElIST name. Thi 5 name must appear as the second
parameter in the list and must be the same as the name in a
NAMElIST statement that precedes the WRITE statement (see
"NAMElIST Statement" on page 132).

ERR=stn
stn is the number of a statement in the same program unit
as the WRITE statement. Transfer is made to stn if an error
is detected.

IOSTAT=ios
i os is an integer vari able or an integer array element. Its
value is positive if an error is detected; negative if an
end of file is encountered; and zero if no error condition
1S detected. VSAM return and reason codes are placed in
i os.

Valid WRITE statements:

WRITE (IN+8, NAMEOUT, IOSTAT=IACT(I), ERR=99999)

Invalid WRITE statements:

W R I T E (!lS!!!,g d!!l)

WRITE (Y!lt!ls.m.g) 1 i st

Y!l must appear before name.

list must not be specified.

If the unit specified by Y!l is encountered, it must exist and
must be connected to a file for sequential access. If the unit
is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN
is performed to a default file name. If the file is not
preconnected, an error is detected.

A BACKSPACE or REWIND statement should not be used for a file
that is written using NAMElIST. If it is, the results are
unpredictable (see "BACKSPACE Statement" on page 54).

DATA TRANSMISSION: A WRITE statement with NAMElIST starts data
transmission from the beginning of a record. The data is taken
from each item in the NAMElIST with nsmg in the order in which
they are specified and transmitted onto the record of the
external file. Data transmission stops when data has been
transferred from every item in the NAMELIST name.

After execution of a WRITE statement with NAMElIST, no record
exists in the file following the end of the NAMElIST just
transmitted.

198 VS FORTRAN Language Reference

o
)

.<'

(;
WRITE (NAMELIST)

DATA AND NA"ELIST: The NAMELIST name name must appear on the
external file.

The number of characters specifled by the items in the NAMELIST
~ and the necessary data separators and identifiers are
placed on the external file.

Transfer is made to the statement specified by ERR if an input
error occurs. No indication is given of which record or records
could not be written, only that an error occurred during
transmission of data. If ERR is omitted, execution is
terminated when an error occurs.

END OF IBM EXTENSION ----------'

VS FORTRAN Statements 199

o

•

TRACE statement

WAIT statement

WRITE statement with NAMELIST

CALL statement

The ampersand CI) character is used in front of a statement
number.

• DATA statement

The statement appears before the end of the spec;fication
statements.

A, Q, Z, or nH constant is used.

Character constants must correspond to character variables.

• ENTRY statement

An argument ;s embedded between slashes.

• EQUIVALENCE statement

One subscript is specifi.d for a multidimensional array.

• EXTERNAL statement

A name is preceded by an ampersand C&) character.

• FORMAT statement

•
The Q or Z format codes ere used.

FUNCTION statement

An argument is embedded between slashes.

A length is specified for a real, logical, integer, or complex
function.

• IMPLICIT statement

A length is specified for a real, logical, integer, or complex
range.

The currency symbol ($) is used as an alphabetic character.

• INTEGER, REAL, COMPLEX, LOGICAL type statements

Data initialization is specified.

• OPEN statement

RECl is used with SEQUENTIAL.

• PARAMETER statement

This statement is preceded by an executable statement, a DATA
statement, or a statement function definition.

• SUBROUTINE statement

An argument is embedded between slashes.

Appendix A. Source Language Flagger 201

EXECUTION-TIME CAUTIONS

The following items are not flagged. However, they are items that
are open to misinterpretation and may cause confusion.

• Array declarators in DIMENSION, INTEGER, REAL, COMPLEX,
DOUBLE PRECISION, CHARACTER, and COMMON statements.

The value of the lower dimension can exceed the value of the
upper dimension when it is an expression.

• ASSIGN statement

A variable containing a statement number can be used as
containing an integer value with unpredictable results.

• Assigned GOTO statement

The index variable may not contain a statement number which is
specified in the list of statement numbers.

• Assignment statement

A character assignment can be made with unpredictable results
into a string which is also used on the right-hand side of the
equal sign.

• COMMON statement

•

The same COMMON block can contain character variables
corresponding to noncharacter variables across subroutines.

The length of the sama COMMON block may not be the same across
subroutines.

The same COMMON block may be initialized in more than one
BLOCK DATA.

DO statement

The value of the m3 expression can be zero.

Transfer into an inactivQ DO loop with unpredictable results.

• EHDFILE statement

Multifiles can be written.

• FUNCTION, SUBROUTINE, ENTRY statements

The subroutines must be available.

The subroutines can be called recursively with unpredictable
results.

The number, type, and length of the actual and dummy arguments
may not match.

More than one subroutine may have the same name.

• IMPLICIT statement

The sama letter is redefined with different type or length.

• OPEN statement

The file is repositioned at the beginning.

• READ statement on an internal file

•

Read records unti 1 the end of an array even if the fi Ie is one
record.

READ statement with FORMAT

202 VS FORTRAN Language Reference

t7'''''
\)
~i

, J

Data can be read into the nH field of a FORMAT statement.

o • Subscript

Subscript value may be outside the dimension bounds.

• WRITE statement without format on a DIRECT file.

Spanned records can be written.

o

Appendix A. Source language Flagger 203

APPENDIX B. FORTRAN-SUPPLIED PROCEDURES

The procedures supplied by VS FORTRAN are called intrinsic
functions.

MATHEMATICAL AND CHARACTER FUNCTIONS

These routines provide intrinsic functions for mathematical and
character operations. When a VS FORTRAN program requests an
intrinsic function, the routine is handled as a called subroutine
during link-editing and is either: .

• Inserted into the program (inline).

• Included in the load module.

The generic name can be used for a function; VS FORTRAN will
select the particular function named, depending upon the
precision of the data.

Alternatively, the name of the specific alternative entry point
can be used. A prefix to the generic name specifies the
alternative entry point and indicates the data type of the result,
as shown in Figure 21.

Prefix Result Data T~ee

A REAL (included only for compatibility)

D REAL *8

Q REAL *16

C COMPLEX *8

CD COMPLEX *16

CQ COMPLEX *32

Figure 21. Function Routine Prefix Meanings

VS FORTRAN includes mathematical and character subroutines in
several categories:

1. Logarithmic and exponential routines

2. Trigonometric foutines

3. Hyperbolic Function routines

4. Miscellaneous Mathematical routines

5. Internal Data Conversion routines

6. Character Manipulation routines

204 VS FORTRAN Language Reference

q

r---'\
\ I

~/
~~

C~
(' . ,j

\

c.~
{ .,
f

o ,

LOGARITHMIC AND EXPONENTIAL ROUTINES

• EXP--Obtain an exponent.

Alternative entry points: CDEXP, CEXP, CQEXP, DEXP, EXP,
QEXP.

• LOG--Obtain a natural logarithm.

Alternative entry points: ALOG, CDLOG, CLOG, CQLOG, DLOG,
LOG, QLOG.

• LOGIO--Obtain a common logarithm.

Alternative entry points: ALOGIO, DLOGIO, LOGIO, QLOGIO.

• SQRT--Obtain a square root.

TRIGONOMETRIC ROUTINES

Alternative entry points: CDSQRT, CQSQRT, CSQRT, DSQRT,
QSQRT, SQRT.

• ACOS--Obtain an arccosine.

Alternative entry points: ACOS, ARCOS, DACOS, DARCOS, QARCOS.

• ASIN--Obtain an arcsine.

Alternative entry points: ARSIN, ASIN, DARSIN, DASIN, QARSIN.

• ATAN/ATAN2--0btain an arctangent.

•

Alternative entry points: ATAN, ATAN2, DATAN, DATAN2, QATAN,
QATAN2.

COS--Obtain a cosine.

Alternative entry points: CCOS, cncos, COS, CQCOS, DCOS,
QCOS.

• COTAN--Obtain a cotangent.

Alternative entry points: COTAN, DCOTAN, QCOTAH.

• SIH--Obtain a sine.

Alternative entry points: CDSIN, CQSIN, CSIN, DSIN, QSIN,
SIN.

• TAN--Obtain a tangent.

Alternative entry points: DTAN, QTAN, TAN.

HYPERBOLIC FUNCTION ROUTINES

• COSH--Obtain a hyperbolic cosine.

Alternative entry points: COSH, DCOSH, QCOSH.

• SINH--Obtain a hyperbolic sine.

Alternative entry points: DSIHH, QSINH, SINH.

• TANH--Obtain a hyperbolic tangent.

Alternative entry points: DTAHH, QTANH, TANH.

Appendix B. FORTRAN-Supplied Procedures 205

MISCELLANEOUS MATHEMATICAL ROUTINES

• ABS--Obtain an absolute value.

Alternative entry points: ABS, CABS, CDABS, CQABS, DABS,
lABS, QABS.

• AINT--Truncation of a real number.

Alternative entry points: AINT, DINT, QIHT.

• ANINT--Obtain nearest whole number.

Alternative entry points: AHINT, DHIHT.

• CONJG--Obtain conjugate of a complex argument.

Alternative entry points: COHJG, DCOHJG, QCONJG.

• DIM--Obtain a positive difference.

Alternative entry points: DIM, DDIM, IDIM, QDIM.

• DPROD--Obtain a double precision product.

• ERF--Error function for normal curve.

Alternative Entry points: DERF, ERF, QERF.

• ERFC--Error function complement for normal curve.

Alternative Entry points: DERFC, ERFC, QERFC.

• GAMMA--Gamma function.

Alternative Entry points: DGAMMA, GAMMA.,

• IMAG--Obtain imaginary part of complex argument .

Alternative Entry points: AIMAG, DIMAG, IMAG, QIMAG.

• LGAMMA--Log-gamma function.

Alternative Entry points: AlGAMA, DlGAMA, lGAMMA.

• MAX--Obtain the largest value.

Alternative Entry points: AMAXI, DMAXI, MAX, MAXO, MAXI,
QMAXI.

• MIN--Obtain the smallest value.

Alternative Entry points: AMINI, AMINO, DMINI, MIN, MINO,
MIN!, QMIN!.

• MOD--Obtain a remainder.

Alternative Entry points: AMOD, DMOD, MOD, QMOD.

• NINT--Obtain nearest integer.

Alternative Entry points: IDNINT, NINT.

• SIGN--Transfer of sign.

Alternative Entry points: DSIGN, ISIGN, QSIGH, SIGN.

206 VS FORTRAN language Reference

~d
CHARACTER HANIPULATION ROUTINES

•

•

•
•
•
•
•
•

CHAR--Return the character corresponding to the position in
the collating sequence of the input argument.

ICHAR--Return the position in the collating sequence of the
input argument.

IHDEX--Obtain location of character substring.

LEH--Obtain length of character item.

LGE--Alphamerically greater than or equal.

LGT--Alphamerically greater than.

LLE--Alphamerically less than or equal.

LLT--Alphamerically less than.

INTERNAL DATA CONVERSION GENERIC FUNCTION DESCRIPTIONS

The following are the generic function names of the internal data
conversion routines.

• CMPLX--Convert to complex.

Alternative entry points: CMPLX, DCMPLX, QCMPLX.

• DBLE--Convert to double precision.

Alternative entry points: DBLE, DBLEQ, DFLOAT.

• IHT--Convert to integer.

Alternative entry points: HFIX, IDIHT, IFIX, IHT, IQIHT.

• QEXT--Convert to real extended precision.

Alternative entry points: QEXT, QEXTD, QFLOAT.

• REAL--Convert to real.

Alternative entry points: DFLOAT, DREAL, FLOAT, QFLOAT,
QREAL, REAL, SNGL, SNGLQ.

• SNGL--Convert to single pracision.

Alternative entry points: SNGL, SNGLQ.

Appendix B. FORTRAN-Supplied Procedures 207

APPENDIX c. IBH AND ANS FORTRAN FEATURES

• New ANS FORTRAN 1977 features

General features
Net ... statements
New features in old statements

• Old IBM extensions now in ANS FORTRAN 1977

• IBM extensions UQ! in ANS FORTRAN 1977

• LANGLVL(66) features not in VS FORTRAN

NEW ANS FORTRAN 1977 FEATURES

GENERAL FEATURES

The following new features of the 1977 American National Stantard
(ANS) FORTRAN (not supported by the old IBM OS and DOS FORTRAN
compilers) are supported in VS FORTRAN.

• May use asterisk comment indicator in column one.

• Comment before cont i nuat ion is allowed anywhere in the
program unit. Blank card is treated as a comment.

• External unit identifier may be an integer expression.

• Direct-access input/output (syntax different from IBM's).

• Storage-to-storage input/output (Internal File).

• Specified ignoring of input blanks.

• Expressi ons are allowed in output lists.

• Character data type is allowed.

May include character substrings.

The collating sequence may be altered.

• Subroutines without RETURN.

END in subroutine is the same as RETURN.

• Functions (and their entry points) may exist without
arguments.

• Dummy argument may be defined if actual argument is in common.

• Array elements are allowed in statement function definitions.

• Array names without subscripts are allowed in the EQUIVALENCE
statement.

• Complex data may be defined through real components.

•

•

Variables used in adjustable dimensions and lengths may be
redefined without any effect on size of array.

Integer expressions are allowed in array declarators.

208 VS FORTRAN Language Reference

Q
l

NEW STATEMENTS

o
(

• Honunity lower bounds for arrays are allowed.

•
•

Honpositive subscript values are allowed.

Named BLOCK DATA subroutines are allowed.

• Executable statements that cannot be reached are allowed.

• ANINT, CHAR, DNINT, DPROD, ICHAR, IDNINT, INDEX, LEN, and
NINT are recognized as FORTRAN-supplied function names.

• DARCOS and DARSIN functions have different names: DACOS and
DASIN.

• Logical operators .EQV. and .NEQV., are allowed.

• A number is permitted on nonexecutable statements.

• Comparison of complex operands with equal and not equal
re1ationals is allowed.

• Exponentiation of complex with complex is allowed.

• All specification statements must precede all DATA
statements.

• Negative values for input or output unit identifiers is
prohibited.

• Literal format cannot be used for input.

• H format cannot be used for input.

• Use of a slash as a value separator in list-directed input is
allowed.

• Character function is allowed.

• Unspecified width is allowed in A format.

• Block 'IF, ELSE IF, ELSE, END IF statements

• CHARACTER type statement

• CLOSE statement

• DOUBLE PRECISION type statement

• INQUIRE statement

• INTRINSIC statement

• OPEN statement

• PARAMETER statement

• PROGRAM statement

• SAVE statement

Appendix C. IBM and ANS FORTRA~ Features 209

.NEW FEATURES IN OLD STATEMENTS

• BACKSPACE statement:

UNIT, ERR, and IOSTAT may be used.

• COMMON statement:

Commas are optional.

• DATA statement:

Implied DO statement is allowed.

Type conversion is allowed.

Commas after nonterminal slashes are optional.

• DIMENSION statement:

Specification can be negative or zero.

Both lower and upper bound can be names of constants or
expressions.

• DO statement:

loops may be indexed by nonpositive values.

loops may be indexed by integer, real, or double
precision values.

Backward loops may be used.

Zero tri p loops may be used.

Control variable is defined on completion.

Control variable may be real or double precision.

Terminal statements are allowed with computed GO TO,
PAUSE, LOGICAL IF, STOP, or RETURN. They are not allowed
wi th block IF.

Comma is optional following terminal statement number.

Subscript values can be negative or zero.

Parameters may be any arithmetic expression except
complex.

Parameters may be redefined in loop with no effect on loop
control.

A block IF statement in the DO range must be entirely
within the range of the DO.

The range of a DO within a block IF must be entirely
contained within the block.

Transfer may be made into an~ active loop.

DO may be ended by any fall-through statement.

Comma may be used before control variable.

• END statement:

May be numbered.

Implies STOP or RETURN.

Is executabl e.
l)

• ENDFILE statement:

210 VS FORTRAN Language Reference

o
.I

C~
t I I

o
\

•
UNIT, ERR, and IOSTAT may be used.

EXTERNAL statement:

An ampersand CI) character as the first character of a name is
not permitted for compiler option LANGLVL(77). Any name that
appears in an EXTERNAL statement is considered as the name of
a user-supplied subroutine.

• FORMAT statemen~:

BN and BZ specify ignoring of input blanks.

Unlimited parentheses may be used.

The label ASSIGNED may be the number of a FORMAT
statement.

Field width is optional in A~.

Explicit nP scale factor may be used.

Ew.dEe, Gw.dEe, Iw.d, SP, SS, S, TLc, and TRc field
descriptors may be used.

Colon may be used as scan terminator.

Optional commas may be used with slashes and colons.

• GO TO statement, Assigned:

•

List of statement numbers is optional.

Comma outside parentheses is optional.

GO TO statement, Computed:

Index may be an integer expression.

Comma may be outside parentheses.

• IMPLICIT statement:

More than one may be used in a program unit.

IMPLICIT may be preceded by ENTRY, FORMAT, or PARAMETER
statements and must precede all other specification
statements except PARAMETER statements.

DOUBLE PRECISION and CHARACTER type statements are
included.

• PRINT statement:

FORMAT designator may be a character constant.

• READ statements:

FORMAl designator may be a character constant.

UNIT, ERR, and IOSTAT may be used.

• RETURN statement:

Index may be an integer expression.

• REWIND statement:

UNIT, ERR, and IOSTAT may be used.

• STOP statement:

Quoted literal is allowed.

A character constant is permitted.

Appendix C. IBM and ANS FORTRAN Features 211

• Auxiliary input and output statements:

UNIT and ERR may be used.

• WRITE statement:

May not be used after ENDFILE in sequential input or
output.

FORMAT designator may be a character constant.

UNIT, FMT, REC, and IOSTAT may be used.

OLD IBH EXTENSIONS NOW IN ANS FORTRAN 1977

The following items supported as IBM extensions in old IBM as and
DOS FORTRAN compilers are now part of the 1977 ANS FORTRAN
language. These items are also supported in VS FORTRAN.

• Literals are enclosed in apostrophes.

• STOP and PAUSE statements:

Decimal digits are supported.

STOP statement string is accessible.

Quoted literal in PAUSE statement is supported.

• T format is accepted as a fi eld descri ptor.

• Computed GO TO index out of range.

• All combinations of arithmetics across equal sign.

•
•

Mixed-mode arithmetic.

Mixed-mode relationals.

• Successive exponentiations.

• Generalized subscripts.

• Seven-dimensional arrays.

• END in READ.

• ERR in READ and WRITE.

• Short form of READ and PRINT.

• Sequential list-directed input/output.

• Asterisks for undersized output fields.

• IMPLICIT statement.

• Array names in DATA statement.

• ENTRY statement.

• Alternative returns from subroutines.

• Function and entry names in type statements.

• Generic facility.

• Additional processor-supplied functions.

212 Vs. FORTRAN Language Reference

/"'\
\"",,z

)

q

0 , '

o

IBM EXTENSIONS NOT IN ANS FORTRAN 1977

The following IBM extensions are supported by old IBM OS and DOS
FORTRAN compilers but are not part of the 1977 ANS FORTRAN. They
will continue to be supported in VS FORTRAN as IBM extensions.

Some of the following features are avai lable only under the
compiler option described in the next section, "lANGlVl(66)
Features Not in VS FORTRAN."

• NAMElIST statement.

• Hexadecimal.

• Double Precision Complex.

• Z and Q format descr i ptor.

• G format for integer and log; cal.

• AlGAMA, ARCOS, ARSIN, ecos, CDABS, CDCOS, CDEXP, CDlOG,
CDSIN, CDSQRT, COTAN, CQABS, CQCOS, CQEXP, CQlOG, CQSIN,
CQSQRT, DARCOS, DARSIN, DBlEQ, DCMPlX, DCONJG, DCOTAN, DERFC,
DERF, DFlOAT, DGAMMA, DIMAG, DlGAMA, DREAl, ERF, ERFC, GAMMA,
HFIX, IMAG, IQINT, lGAMMA, QABS, QARCOS, QARSIN, QATAN,
QATAN2, QCMPlX, QCONJG, QCOSH, QCOS, QCOTAN, QDIM, QERFC,
QERF, QEXP, QEXTD, QEXT, QFlOAT; QIMAG, QINT, QlOG, QlOG10,
QMAX1, QMIN1, QMOD, QREAl, QSIGN, QSINH, QSIN, QSQRT, QTANH,
QTAN, SNGlQ.

•
•
•
•
•
•
•
•
•

•

•

•

•
•
•
•

CAll DVCHK, CAll DUMP/PDUMP, CALL EXIT, CALL OVERFL.

Asynchronous READ, WRITE, and WAIT.

Extended Precision for REAL and COMPLEX.

Extended debug facility.

Hexadecimal constants in Z format are allowed.

Free form source statements.

The currency symbol ($) used as alphabetic character.

Data initialization in type specification statements.

Optional length specification in specification statements
(INTEGER, REAL, COMPLEX, lOGICAL) and in FUNCTION statements.

Mixed mode expressions involving complex and double
precision.

FORMAT identifier may be an array name (other than character
type) .

Continuation line may have anything in columns 1 through 5
other than "C" in column 1.

RETURN statement is the same as STOP in a main program.

Partitioned data sets.

Closing of data set on ABEND.

STOPn is allowed, where n equals a return code.

Appendix C. IBM and ANS FORTRAN Features 213

LANGLVL(661 FEATURES NOT IN VS FORTRAN

LANGLVL(66) instructs the compiler to compile a program according 0
to the 1966 FORTRAN language. Listed here are some of the features I ~
of LANGLVL(66) that are not in LANGLVL(77). These items are not L",.

compatible with VS FORTRAN.

• Character constants may be assigned to integer, real,
complex, or logical in a DATA statement.

• The ampersand (I) is included in the char,acter set.

• The ampersand Cl) must be used instead of the asterisk (*) for
an alternate return.

• A program name can only be specified as a compiler option.

• Arguments are received by value.

Dummy arguments can be enclosed in
_' __ L __
:J"'CI:JI'~:J.

• DARCOS and DARSIN used as function names are recognized as
FORTRAN-supplied functions; DACOS and DASIN are recognized as
user-supplied function names.

• DEFINE FILE statement.

• DO statement and implied DO in I/O:

Loops are always executed at least once.

• EQUIVALENCE statement. (Accept a multidimensional array with
one subscript.)

• EXTERNAL statement:

If a FORTRAN-supplied function name appears in an EXTERNAL
statement preceded by an ampersand CI) it is considered a
user-supplied function name. If it is not preceded by an
ampersand (I), it is considered a FORTRAN-supplied function
name except as described below. The following names are
always considered user-supplied function names if they appear
in an EXTERNAL statement preceded or not by an ampersand Cl):

ABS, AIMAG, AIHT, AMAXO, AMAXI, AMINO, AMINI, AMOD, CMPLX,
CONJG, DABS, DBlE, DBLEQ, DCMPLX, DCONJG, DDIM, DFLOAT, DIM,
DIMAG, DINT, DMAX1, OMINl, DMOD, OREAL, DSIGN, FLOAT, HFIX,
lABS, IDIM, IOINT, IFIX, IMAG, INT, IQINT, ISIGN, MAX, MAXO,
MAXI, MIN, MINO, MIN!, MOD, QABS, QCMPLX, QCONJG. QDIM, QEXT,
QEXTD, QFlOAT, QIMAG, QINT, QMAX1, QMINl~ QMOD, QREAL, QSIGN,
REAL, SIGN, SNGL, SNGLQ.

• FIND statement.

• Function names: ANINT, CHAR, DPROD, DNINT, ICHAR, IONINT,
INDEX, LEN, and HINT are recognized as user-supplied function
names.

• GENERIC statement.

GENERIC means that generic names of FORTRAN-supplied
functions will be recognized as generic; if GENERIC is not
specified, the automatic function selection facility will not
be in effect.

• IBM direct-access READ and WRITE.

• INTRINSIC statement is not recognized as a VS FORTRAN
statement.

• PUNCH 12, list.

214 VS FORTRAN Language Reference

o

o

o
{
~

APPENDIX D. EXTENDED ERROR HANDLING SUBROUTINES

ERRMON SUBROUTINE

IBM provides five subroutines for use in extended error handling:
ERRSAV, ERRSET, ERRSTR, and ERRTRA. These subroutines allow
access to the option table to alter it dynamically.

Certain option table entries may be protected against alteration
when the option table is set up. If a request is made by means of
CALL ERRSTR or CALL ERRSET to alter such an entry, the request is
ignored. Sea Figure 24 on page 222 for those IBM-supplied option
table entries that cannot be altered.

Changes made dynamically are in effect for the duration of the
program that made the change. Only the current copy of the option
table in main storage is affected; the copy in the FORTRAN library
remains unchanged.

The user has the ability to call, from his own program, the
FORTRAN error monitor (ERRMON) routine, the same routine used by
FORTRAN itself when it detects an error. ERRMON examines the
option table for the appropriate error number and its associated
entry and takes the actions specified. If a user-exit address has
been specified, ERRMON transfers control to the user-written
routine indicated by that address. Thus, the user has the option
of handling errors in one of two ways: (1) by calling ERRMON
without supplying a user-written exit routine; or (2) by calling
ERRMON and providing a user-written exit routine.

The error numbers chosen for user subprograms are restricted in
range. IBM-designated error conditions have reserved error codes
from 000 to 301. Error codes for installation-designated error
situations must be assigned in the range 302 to 899. Before you
use these subroutines, check with your system administrator about
codes and options you can use. The error code is used by FORTRAN
to find the proper entry in the option table.

Error Monitor Routines Figure

Option table preface Figure 22.

Option table entries Figure 23.

Option table default values Figure 24.

Corrective action after error Figure 25.

Corrective action after Figure 26.
mathematical subroutine error

Corrective action after program Figure 27.
interrupt

To call the ERRMON routine, the following statement is used:

syntax

CALL ERRMON (imes,iretcd,ierno [,datal,data2, ...])

tmes
is the name of an array aligned on a fullword boundary, that
contains, in EBCDIC characters, the text of the message. The
number of the error condition should be included as part of
the text, because the error monitor prints only the text
passed to it. The first item of the array contains an integer

Appendix D. Extended Error Handling Subroutines 215

ERRSAV SUBROUTINE

whose value is the length of the message. Thus, the fi rst
four bytes of the array are not pr i nted. If the message
length is greater than the length of the buffer, it 15
printed on two or more lines of printed output.

iretcd

ierno

is an integer vari able made avai lable to the error moni tor
for the setting of a return code. The following codes can be
set:

O-The opt i on table or user-exi t routi ne i ndi cates that
standard correction is required.

I--The option table indicates that a user exit to a
corrective routine has been executed. The function is to
be reevaluated using arguments supplied in the
parameters datal,data2 .••. For input/output type
errors, the value 1 indicates that standard correction
is not !'&Janted.

is the error condition number in the option table. Should any
number not within range of the option table be specified, an
error message is printed.

datal,data2 •••
are variable names in an error-detecting routine for the
passing of arguments found to be in error. One variable must
be specified for each argument. Upon return to the
error-detecting routine, results obtained from corrective
action are in these variables. Because the content of the
variables can be altered, the locations in which they are
placed should be only in the CAll statement to the error
monitor; otherwise, the user of the function may have
literals or variables destroyed.

Because datal and data2 are the parameters that the error
monitor passes to a user-written routine to correct the
detected error, care must be taken to make sure that these
parameters agree in type and number in a call to ERRMON
and/or in a call to a user-written corrective routine, if ona
exists.

An example of CAll ERRMOH is:

CAll ERRMON (MYMSG,ICODE,315,Dl,D2)

The example states that the message to be printed is contained in
an array named MYMSG, the field named ICODE is to contain the
return code, the error condition number to be investigated is 315,
and arguments to be passed to the user-written routine are
contained in fields named Dl and D2.

The CAll ERRSAV statement copies an option table entry into an
8-byte storage area accessible to the FORTRAN programmer. CAll
ERRSAV has the format:

~ Syntax

I ~l ERRSAV (ierno, tabent)

ierna
1S the error number in the option table. Should any number
not wi thi n the range of the opt i on table be used, an error
message is printed.

tabent
1 s the name of an 8-byte storage area in whi ch the opti on
table entry is to be stored.

216. VS FORTRAN language Reference

o
,1

/of'''_,
I.,,~

)

~c'! '.

~,
~

ERRSET SUBROUTINE

An example of CALL ERRSAV is:

CALL ERRSAV (213,ALTERX)

The example states that error number 213 is to be stored in the
area named ALTERX.

The CALL ERRSET statement permits the user to change up to five
different options. It consists of six parameters. The last four
parameters are optional, but each omitted parameter must have its
place noted by a comma or a zero if succeeding parameters are
specified. (Omitted parameters at the end of the list require no
place notation.) CALL ERRSET has the format:

syntax

CALL ERRSET (;erno,inoal,inomes,itrac.,iusadr,irange)

ierna

inaal

is the errer number in the opticn table. Should any number
not within the range of the option table be used, an error
message is printed. (If ierno is specified as 212, there is a
special relationship between the ierne and irange
parameters. See the explanation of iran,e.)

is an integer specifying the number of errors permitted
before each execution is terminated. If inoal ;sspecified
as ei ther zero or a negat i ve number, the spec i fi cat ion is
ignored, and the number-ot-errors option is not altered. If
a value of more than 255 is specified, an unlimited number of
errors is permitted.

The value of inoal should be set at 2 er greater if transfer
of control to~er-supplied error routine is desired after
an erro·r. If this parameter is specified with a value of 1,
execution is terminated atter enly ene error.

inames
is an ,i nteger i ndi cat i ng the number af messages to be
printed. A negative value specified for inomes suppresses
all messages; a specification of zero indicates that the
number-of-messages option is not to ~e altered. If a value
greater than 255 is specified, an unlimited number of error
messages is permitted.

itrace
is an integer whose value may be 0, I, or 2. A specification
of 0 indicates the option is not to be changed; a
specification of 1 requests that no traceback be printed
after an error. (If a value other 1 or 2 is specified, the
option remains unchanged.)

iusadr
specifies one of the fellowing:

1. The value I, indicating that the e~ti.n table is to be
set to show no user-exit routiA@ (that is, standard
corrective action is to be used when continuing
execution).

2. The name of a closed subroutine that is to be executed
after the occurrence of the error identified by ierno.
The name must appear in an EXTERNAL statement in the
source program, and the routine to which control is to be
passed must be available at link editing time.

3. The value 0, indicating that the table entry is not to be
altered.

Appendix D. Extended Error Handling Subroutines 217

irange
serves a double function. It specifies one of the following:

1. An error number higher than that specified in lerno.
Thi s number i ndi catestthbat theloPdt ions speci fi ed for the 0 ';
other pa rameters are 0 e app i e to the ent ire range of ~I
error conditions encompassed by ierno and irange. (If
;range specifies a number lower than~, the
parameter is ignored, unless ;erno specifies the number
as 212.)

2. A print control character if ierno specified 212. The
value 1 is specified to provide single spacing for an
overflow line. If a value other than 1 is specified, no
print control is provided.

The default value 0 is assumed if the parameter is omitted (that
is, no print control is provided, and the values specified for all
parameters apply only to the error condition number in ~).

EXAMPLES OF CALL ERRSET

Example 1:

CALL ERRSET (310,20,5,0,MYERR,320)

This example specifies the following:

1. Error condition 310 (ierno).

2. The error condition may occur up to 20 times (inoal).

3. The corresponding error message may be printed up to 5 times
(inomes).

4. The default for traceback information is to remain in force
(itrace).

5. The user-written routine MYERR is to be executed after each
error (i usadr) .

6. The same opti ons are to apply to all error condi ti ons from 310
to 320 (irange).

Example 2:

CALL ERRSET (212,10,5,2,1,1)

This example specifies:

1. Error condition 212.

2. The condition may occur up to 10 times.

3. The corresponding message may be displayed up to 5 times.

4. Traceback information is to be displayed after each error.

5. Standard corrective action is to be executed after an error.

6. Print control is to be employed.

For illustration purposes, this example explicitly specifies all
default options except that used in requesting print control.

Example 3:

CALL ERRSET (212,0,0,0,0,1)

This example illustrates an alternative method of specifying
exactly the same options as the second example. It states that no
changes are to be made to default settings in· requesting print O. ~.')
control. .

218 VS FORTRAN language Reference

o

0",
l

ERRSTR SUBROUTINE

To store an Qntry in the option table, the following statement is
used:

~ Syntax

I :L ERRSTR (ierno,tabent)

ierno
is the error number for which the entry is to be stored in
the option table. Should any number not within the range of
the option table be used, an error is printed.

tabent
is the name of an 8-byte storage area contai ni ng the table
entry data.

An example of CALL ERRSTR is:

CALL ERRSTR C213,AlTREX)

The example states that error number 213, stored in AlTREX, is to
be restored to the option table.

ERRTRA SUBROUTINE

Field
contents

Number of
entries

Boundary
Alignment

The CAll ERRTRA statement permits the user to dynamically request
a traceback and continued execution. It has the format: 1= Syntax

:L ERRTRA

The CALL ERRTRA statement has no parameters.

Field Default Field
Length Value Description

4 bytes 152 Humber of entries in the option table.

4 bytes 150 Message number of the first table entry.

Figure 22. Option Table Preface

Appendix D. Extended Error Handling Subroutines 219

MESSAGE OPTION TABLES

Field
contents

Humber
of error
occur-

rences

Humber
messages
to print

Error
count

Option
bits

User
exit

Field
Length Defaultl

1 byte

1 byte

i byte

1 byte

4 bytes

o

42
(hex)

1

Figure 23. Option Table Entry

Field Description

Humber of times this error condition
should be allowed to occur. When the
value of the error count field (below)
equals this value, job processing is
terminated. Humber may range from 0 to
to 255. A value of 0 means an unlimited
number of occurrences. 3

Number of times the corresponding
message is to be printed before message
printing is suppressed. A value of 0
means no message is to be printed.

The number of times this error has
occurred. A value of 0 indicates that no
occurrences have been encountered.

Eight option bits defined as follows
(the default setting is underscored):

Bit Setting Explanation:

o

1

2

4

5

7

.0.
1

o

1

.0.

1

.0.

1

.0.

1

o
1

Ho control character
supplied for overflow lines.
Control character supplied
to provide single spacing
for overflow lines.

Table entry cannot be
modified. s
Table entry can be
modified.

Fewer than 256 errors hav
occurred.
More than 256 errors have
occurred. (Add 256 to error
count field above to
determine the number.

Do not print buffer
with error message.
Print buffer contents.

Reserved.

Print messages default
number of times only.
Unlimited printing
requested; print for every
occurrence of error.

Do not print traceback map.
Print traceback map.

Reserved.

Indicates where a user corrective
routine is available. A value other than
1 specifies the address of the user
written routine.

220 VS FORTRAN Language Reference

Q

~\
I I

"--~I

t. -"''''.'.; 'y

Notes to Figure 23:

1. The default values shown apply to all error numbers
(including additional user entries> unless excepted by a
footnote.

2. Errors 207,208,209, and 215 are set as unlimited, and errors
162, 163, 164, 165, 167, 168, 205, 217, 230, and 240 are set
to 1.

3. An unlimited number of errors may cause the FORTRAN job to
loop.

4. Errors 162, 163, 164, 165, 167, 168, 230, and 240 are set to
1.

5. The entry for errors 162, 163, 164, 165, 167, 168, 205, 230,
and 240 cannot be modified.

6. The entry is set to 0 except for errors 212, 215, 218, 221,
222, 223, 224, 225, 227, 229, and 238.

7. The entry is set to 1 except for error 205.

Appendix D. Extended Error Handling Subroutines 221

Option Bits

No. of No. of Modi- Print Trace- standard
Error Errors Messages Print fiable Buffer back Corrective User
Code Allowed Allowed Control Entry content Allowed Action Exit

150- 10 5 HA Yes No Yes Yes Hone
161

162- 1 1 HA Ho Ho Yes Yes None
165

166 10 5 HA Yes No Yes Yes Hone
167 1 1 NA No No Yes Yes Hone
168 1 1 HA Ho No Yes Yes None
169- 10 5 NA Yes No Yes Yes None

204
205 1 1 HA No No No No Hone
206 10 5 HA Yes Ho Yes Yes Hone
207 Unlimited 5 HA Yes Ho Yes Yes None
""t\G 11_1 :_:.L_..J I: I., A

v __
u_

v __
I YQS Hone (;.uo UII.&. I III I \,'=!U J 11" t 'I:~ t1V t .. ~

209 Unlimited 5 HA Yes No Yes Yes Hone l

210 10 5 NA Yes No Yes Yes l Hone
211 10 5 HA Yes No Yes Yes Hone
212 10 5 Noz Yes Yes Yes Yes Hone
213 10 5 HA I Yes No Yes Yes INone
214 10 5 NA Yes I No Yes Yes INone
215 Unlimited 5 NA , Yes Yes Yes Yes None
216 10 5 NA Yes No Yes Yes None
217 1 3 1 NA Yes No Yes Yes None
218 10 4 4 NA Yes Yes 4 Yes Yes None
219 10 5 5 NA Yes No Yes Yes None
22() 10 5 NA Yes No Yes Yes None
221- 10 5 NA Yes Yes Yes Yes None

225
226 10 5 HA Yes No Yes Yes None
227 10 5 NA Yes Yes Yes Yes None
228 10 5 NA Yes No Yes Yes None
229 10 5 HA Yes Yes Yes Yes Hone
230 1 1 NA Yes No Yes No None
231- 10 5 NA Yes No Yes Yes None

237
238 10 5 NA Yes Yes Yes Yes None
239 10 5 NA Yes No Yes Yes None
240 1 1 NA Ho No Yes Ho Hone
241- 10 5 NA Yes No Yes Yes NonQ

301

Figure 24. Option Table Default Values

Notes to Figure 24:

1. Ho corrective action is taken except to continue execution.
For boundary alignment, the corrective action ~s part of the
support for misalign- ment. For error 209, no user corrective
action can be specified.

2. If a print control character is not supplied, the overflow
line is not shifted to incorporate the print control
character. Thus, if the device is tap~, the data is intact,
but if the device is a printer, the first character of the
overflow line is not printed but is treated instead as the
print control. Unless the user has planned the overflow, the
first character would be random and thus the overflow print
line control can be any of the posible ones. It is suggested
that when the device is a printer, the opt;on be changed to
provide single spacing.

3. It is not considered an error if the END parameter is present
in a READ statement. No message or traceback is printed and
the error count is not altered.

4. For an input/output error, the buffer may have been partially
filled or not filled at all when the error was detected. Thus,

222 VS FORTRAN language Reference

o

·0",) \ "

the buffer contents could be blank when printed. When an ERR
parameter is specified in a READ statement, it is honored even
though the error occurrence is greater than the amount
allowed.

5. The count field does not necessarily mean that up to 10
missing DD cards will be detected in a single debugging run,
since a single WRITE performed in a loop could cause 10
occurrences of the message for the same mi ssi ng DD card.

HESSAGE CORRECTIVE ACTION CROSS REFERENCE TABLES

Parameters
Error Passed Standard user-supplied
Code To User Corrective Action corrective Action

205 A,B,D Program termination. See Note 1.

206 A,B,I I=low order part of number for User may alter I (see
input too large. Hote 2).

211 A,B,C Treat format field containing C If compiled FORMAT
as end of FORMAT 'statement. statement, put

hexadecimal equivalent
of character in C. If
variable format, move
EBCDIC character into C.
(See Hote 3).

212 "A, B, D In.e..Y.1 : Ignore remainder of I/O See Note 1.
list.

outeu:t: Continue by starting
new output record. Supply
carriage control character if
required by Option Table.

213 A,B,D Ignore remainder of I/O list. See Note 1.

214 A,B,D Ineut: Ignore remainder of I/O If user correction is
list. Ignore input/output requested, the remainder
request if for ASCII tape. of the I/O list is

ignored.
Qyteu:t: If unformatted write
initially requested, change
record format to VS. If
formatted write initially
requested, ignore input/output
request.

215 A,B,E Substitute zero for the invalid The character placed in
character. E will be substituted

for the invalid
character; input/output
operations may not be
performed (see Note 3).

217 A,B,D Increment FORTRAN sequence See Note 1.
number and read next file.

218 A,B,D,F Ignore remainder of I/O list. See Note 1.

219- A,B,D Ignore remainder of I/O list. See Note 1.
224

~ Figure 25 (Part 1 of 2). Corrective Action after Error

Appendix D. Extended Error Handling Subroutines 223

Parameters
Error Passed standard User-Supplied
Code To User corrective Action corrective Action

225 A,B,E Substitute zero for the invalid The character placed in
character. E will be substituted

for the invalid
character (see Hote 3).

226 A,B,R R=O for input number too small. User may alter R.

R = 16~B~63 - 1 for input number
too large.

227 A,B,O Ignore remainder of I/O list. See Hote 1.

229 A,B,O Ignore remainder of I/O list. See Hote 1.

231 A,B,O Ignore remainder of I/O list. Sea Hote 1.

232 A,B,O,G Ignore remainder of I/O list. See Hote 1.

233 A,B,O Change record number to list See Hote 1.
maximum allowed (32000).

234 A,B,O Ignore remainder of I/O list. See Hote 1.
236

237 A,B,O,F Ignore remainder of I/O list. See Hote 1.

238 A,B,O Ignore remainder of I/O list. See Hote 1.

240 See Hote 4 Program termination Hone

286 A,B,O Ignore request See Hote 1.

281 A,B,O Ignore request see Note 1.

288 A,B,O Implied wait See Hote 1.

Figure 25 (Part 2 of 2). Corrective Action after Error

Notes to Figure 25:

Parameter

A
B
C
o
E
F
G
I
R

Meaning

Address of return code field (IHTEGER*4)
Address of error number (INTEGER*4)
Address of invalid format character CLOGICAL*l)
Address of data set reference number (IHTEGER*4)
Address of invalid character (LOGICAL*I)
Address of OECB
Address of record number requested (IHTEGER*4)
Result after conversion (INTEGER*4)
Result after conversion CREAL*4)

If error condition 218 (input/output error detected) occurs while
error messages are being written to the object error data set, the
message is wri tten to the console and the job is termi nated. If no
00 card-has been supplied for the object error data set, error
message IFY219I is written out at the console and the job is
terminated.

Hotel: If the error was not caused duri ng asynchronous
input/output processing, the user exit-routine cannot perform any
asynchronous I/O operation and, in addition, may not perform any
REWIND, BACKSPACE, or EHOFILE operation. If the error was caused
during asynchronous input/output processing, the user cannot

Q
./

perform any input/output operat ion. On return to the Ii bra.ry, the 0
remainder of the input/ootput request will be ignored. '1

.il'-

224 VS FORTRAN L~nguage Reference

p

Note 2: The user exit routine may supply an alternative answer
for the setting of the result register. The routine should always
set an INTEGER*4 variable and the FORTRAN library will load
fullword or halfword depending on the length of the argument
causing the error.

Note 3: Alternatively, the user can set the return code to 0,
thus requesting a standard corrective action.

Note 4: Code 240 generates a message showing the system or
program code causing program termination, the address of the STAE
Control Block, and the contents of the last PSW when abnormal
termination occurred. Further information appears under message
code IFY240 in VS FORTRAN System Service Reference Supplement.

Appendix D. Extended Error Handling Subroutines 225

Options

User-supplied Q
FORTRAN Invalid Standard Corrective

Error Reference Argument Corrective Action Action
Code (See Note 1) Range (See Notes 2 and 3) (See Hote 4)

241 K=I~nEJ 1=0, J~O K=O I,J

242 Y=X~oEl X=O, ISO If 1=0, Y=1 X,I
If 1<0, Y=-

243 DA=D~E}El D=O, ISO If 1=0, Y=1 D,I
If 1<0, Y=-

244 XA=x~nEY X=O, YSO XA=O X,Y

245 ""a_","'-Iv""'ft ,,_ft "" "ft nA-ft n no 1JA-1J~~lJD lJ-U, lJD~U ""'-U "'"''
246 CA=C~OEl C=O+Oi, ISO If 1=0, C=I+0i C,I

If 1<0, C=-+Oi

247 CDA=CD*I C=O+Oi, ISO If 1=0, C=I+0i CD,I
If 1<0, C=-+Oi

248 Q=QA**J QA=O, JSO J<O, Q=- QA,J
J=O, Q=1

249 Q=QA**QB QA=O, QBSO QB<O, Q=- QA,QB
QB=O, Q=l

QA<O, QB~.O Q=IQAI**QB

250 Q=QA**QB logs(QA HEQB~252 Q=. QA,QB

251 Y=SQRT (X) X<O Y=IXI1/Z X

252 Y=EXP (X) X>174.673 Y- X

253 Y=AlOG (X) x=o Y=-· X
X<o Y=!ogIXI X

Y=AlOGIO (X) X=O Y=-- X
X<O Y=!Og10 IXI X

254 Y=COS (X) IXI~(218)*Tr Y=V2/2
Y=SIH (X)

255 Y=ATAN2 (X,XA) X=O. XA=O Y=O X,XA

256 Y=SINH (X) IHI~175.366 Y=(SIGN of X)- X
Y=COSH(X) Y=·

257 Y=ARSIN (X) IXI>1 If X>1.0,ARSIH(X)=J

If X<-1.0,ARSIH(X)=-f

Y=ARCOS (X) If X>l.O,ARCOS=O
If X<-l. 0, ARCOS= 'If

258 Y=TAN (X) IXI~(218)*Tr Y=l
Y=COTAH (X)

Figure 26 (Part 1 of 4). Corrective Action after Mathematical Subroutine Error

226 VS- FORTRAN language Reference

lO

·C~.'~ (,

o

Error
Code

259

260

261

262

263

264

265

266

267

268

269

270

FORTRAN
Reference

(See Note 1)

Y=TAN (X)

Y=COTAN (X)

Q=2~OEQA

DA=DSQRT (D)

DA=DEXP (D)

DA=DLOG (D)

DA=DLOGI0 CD)

DA=DSIN (D)
DA=DCOS (D)

Invalid
Argument
Range

Options

Standard
Standard

Corrective Action
(See Notes 2 and 3)

X is too close Y=.
to an odd
multiple of~

X 15 too close Y=.
to a multiple
of 11'

QA>252

0<0

0>174.673

0=0
0<0

0=0
0<0

1 01 ~(250 HE 11'

Q=

OA=10Il/2

0=·

OA=-·
OA=loglXI

DA=-·
DA=log10 IXI

DA~2

DA=DATAN2(D,DB) O=O,DB=O OA=O

DA=DSINH (D) IDI~175.366 DA=(SIGN of X).
DA=· DA=OCOSH (D)

DA=DARSIN (D)

DA=DARCOS CD)

DA=DTAN (D)
DA=DCOTAN (D)

DA=DTAN (D)

OA=OCOTAN (0)

CQ=CQA~OEJ

IDI>1 If 0>1.0 DARSIN =f 1

If D<-1.0 OARSIN=-~

If 0>1.0 DARCOS (0)=0
If D<-1.0 OARCOS(D)=1l'

IXI~(250)*11' DA=1

D is too close DA=.
to an odd
multiple of 1!

2

o is too close DA=
to a multiple
of 11'

CQA=O+Oi
JSO

J=O, CQ=I+0.i
J<O, CQ=-+O.i

For errors 271 through 275, C=X1+iX z
271

272

273

Z=CEXP (C)

Z=CEXP (C)

Z=CLOG (C)

Xl>174.673

IXzl~(218)* 11'

C=O+Oi Z=--+Oi

User-supplied
Corrective
Action
(See Note 4)

X

QA

D

D

D

D

D

O,DB

D

o

D

D

CQA,J

C

C

C

Figure 26 (Part 2 of 4). Corrective Action after Mathematical Subroutine Error

Appendix D. Extended Error Handling Subroutines 227

Options

User-Supplied
FORTRAN Invalid Standard Corrective

Error Reference Argument Corrective Action Action
Code (See Hote 1) Range (See Notes 2 and 3) (See Note 4)

274 Z=CSIN (C) IXi I ~(218 HE 'It Z=O+SIHH(X~ HEi C
Z=CCOS (C) Z=COSH(X)+O~q C 2

275 Z=SCIN (C) X2>174.673 Z=!.(SIN X1 +iCOS Xl) C
2

Z=CCOS (C) Z=!.(COS XI-iSIN Xl)

Z=CSIH (C) X2<-174.673 Z=!.-CSIN XI-iCOS Xl C
2

Z=CCOS CC) z=!.(COS X1 +iSIH Xl) C
2

For errors 276 through 280, CQ=xi+;Xi

276 Z=CQEXP (CQ) XI >174.673 Z=*(COS X2+iSIN X2) CQ
)(

277 Z=CQEXP (CQ) IX 2 1>2 100 Z=e 1 +O*i CQ

278 Z=CQLOG (CQ) CQ=O+Oi Z=-e+Oi , CQ

279 Z=CQSIH CCQ) IX11~2100 Z=0+DSIHH(X2)*i CQ
Z=CQCOS (CQ) Z=DCOSH(X2)+0*i

280 Z=CQSIH (CQ) X2 >174.673 Z=!.(SIH XI+iCOS Xl) CQ
2

Z=CQCOS (CQ) Z=.,!.(COS XI=iSIH Xl) CQ
2

Z=CQSIH (CQ) X2 <-174.673 Z=!.(SIH XI-iCOS Xl) CQ

Z=CQCOS (CQ) Z=!,(COS XI=iSIH Xl)
2

For errors 281 through 285, CD=Xi+iXi

281 Z=COEXP (CD) X1 >174.673 Z=*(COS X2+iSIH X2) CD
x

282 Z=COEXP CCO) IX21~(250)* 1r Z=e I +O*i CD

283 Z=COLOG (CO) CO=O+Oi Z=-e+Oi CD

284 Z=COSIH (CO) IXII ~(250)* 'It Z= 0+SIHH(X2)*i CD

Z=COCOS (CD) Z= COSH(X2)+0*i

285 Z=COSIH (CD) X2>174.673 Z=.,!.(SIH XI+iCOS Xl) CD
2

Z=COCOS (CD) Z=!.(COS XI-iSIH Xl) CD
2

Z=COSIN (CD) X2<-174.673 Z=.,!.(SIH XI-iCOS Xl) CD
2

Z=COCOS (CD) Z=·(COS XI+iSIN Xl) CD
2"

Figure 26 (Part 3 of 4). Corrective Action after Mathematical Subroutine Error

228 VS FORTRAN Language Reference

C\
)

Options

User-Supplied
FORTRAN Invalid Standard Corrective

Error Reference Argument Corrective Action Action
Code (See Note 1) Range (See Notes 2 and 3) (See Note 4)

289 QA=QSQRT (Q) Q<O QA=IQI1/2 Q

290 Y=GAMMA (X) X~2_2S2 or Y=· X
X~57.5744

291 Y=AlGAMA (X) X~O or Y=· X
X~4.2937*1073

292 QA=QEXP (Q) Q>174.673 QA=· Q

293 QA=QlOG (Q) Q=O QA=-. Q
Q<O QA=loglXI

QA=QlOGI0 (Q) Q=O QA=· Q
Q<O QA=loglOIXI Q

294 QA=QSIN (Q) IQI~2100 QA=v2/2 Q
QA=QCOS (Q)

295 QA=QATAN2(Q,QB) Q=O, QB=O QA=O Q,QB

296 QA=QSIHH (Q) IQI~175.366 QA=·(SIGN Q). Q
QA=QCOSH (Q) QA=·

297 QA=QARSIN (Q) IQI>l If Q>1.0 QARSIN=f Q

If Q<-1.0 QARSIN=- ~ Q

QA=QARCOS (Q) If Q>I.0 QARCOS(Q)=O Q
If Q<-1.0 QARCOS(Q)= 'tr

298 QA=QTAN (Q) IQI>2 100 QA=1 Q
QA=QCOTAH (Q)

299 QA=QTAN (Q) Q is too close QA=· Q
to an odd
multiple off

QA=QCOTAN (Q) Q ;s too close QA=· Q
to a multiple
of 1r

300 DA=DGAMMA (D) D~2-2S2 or DA=· D
D~57.5774

301 DA-DlGAMA (D) D~O or DA=·
D~4.2937*1073

I

Figure 26 (Part 4 of 4). Corrective Action after Mathematical Subroutine Error

o
Appendix D. Extended Error Handling Subroutines 229

Notes to Figure 26:

1. The var i abl e types are as follows:

Variable

I,J,K
X,XA,y
D,DA,DB
C,CA
Q,QA,QB
CQ,CQA
X,X ,X

CD,CDA

~

IHTEGERM4
REAl*4
REAUE8
COMPLEXM8
REAlM16
COMPLEXM32
Complex variables to be given the
length of the functioned argument
when they appear.
COMPLEX*16

2. The largest number that can be represented in floating point
in indicated by the symbol ••

3. The value e=2.7183 (approximately).

4. The user-supplied answer is obtained by recomputation of the
function using the value set by the user routine for the
parameters listed.

230 VS FORTRAN Language Reference

~) C".""'·

o ,
;

o
\

Error
Code

207

208

209

210

Program Interrupt Messages

Paramaters
Passad to
Usar Exit
(Note 1)

D,I

D,I

Hone

None

Raason for Intarrupt
(Nota 2)

Exponent overflow
(Interrupt Code 12)

Exponent underflow
(Interrupt Code 13)

Divide check, integer
divide (interrupt
code 9), decimal divide
(Interrupt Coda 11),
floating point Coda 11),
floating point divide
(interrupt code 15).
See Nota 4.

Specification interrupt
(interrupt Code 6)
occurs for boundary
misalignmant. Operation
exception (interrupt
code 1) occurs for oper
ation interrupt. Othar
interrupts occur during
boundary alignment
adjustment or extended
precision floating point
simulation. They will be
shown with this error
code and the PSW portion
of the message will
identify the interrupt.

Options

Standard Corractiva
Action

Result register set to
the largest possible
floating point number.
The sign of the result
register is not
altered.

User
Supplied
Corrective
Action

User may
alter D.
(Note 3)

The result register is User may
set to zero. alter D.

(Note 3)

For floating point
divide, where n/O and
n=O, result register
is set to 0; where
n*O, result register
set to largest
possible floating
point number. No
standard fixup for
other interrupts.

No special corrective
action other than
correcting boundary
misalignments.

See Note 5.

See Note 5.

Figure 27. Corrective Action after Program Interrupt

Notes to F;gure 27:

1. The variable types and meaning are as follows:

Variable

D

I

~

REAL*8

INTEGER*4

Meaning

This variable contains the contents

The variable contains the "exponent"
as an integer value for the number
in D. It may be used to determine the
amount of the underflow or overflow.
The value in I is not the true
exponent, but what was left in the
exponent field of a floating point
number after the interrupt.

2. Asynchronous Program interrupts are described in the
appropriate principles of operation publiction, as listed in
the Preface.

3. The user exit routine may supply an alternate answer for the
setting of the result register. This is accomplished by

Appendix D. Extended Error Handling Subroutines 231

placing a value for 0 in the user-exit routine. Although the
interrupt may be caused by a long or short floating-point
operation, the user-exit routine need not be concerned with
this. The user-exit routine should always set a REAl*16
variable and the FORTRAN library will load the correct length
data item depending upon the floating-point operation that
caused the interrupt.

4. For floating-~oint divide check, the contents of the result
register is shown in the message.

5. The user-exit routine does not have the ability to change
result re~istQrs after a fixed-point divide check. The
beundary ~lignment adjustments are informative messages, and
there is nothing to alter before execution continues.

232 VS FORTRAN language Reference

o

SERVICE SUBROUTINES

(0 DVCHK SUBROUTINE
~

The CALL DVCHK statement tests for a divide-check exception and
returns a value indicating the existing eendition.

~ syntax

I CAlL DVCHK (i)

j
is an integer or real variable in the ~rogram unit.

The values of i returned have the fGllowing meanings:

Value

1
2

Meaning

The divide-check indicat~r is on.
The divide-check indicator is off.

DUMP/PDUMP SUBROUTINE

to

. '0· ("

The CAll DUMP/PDUMP statement dynamically dumps a specified area
of storage.

Syntax

CAll [DUMPlpDUMf] (~l,ml,il, ... ~n,Qn,in)

i. and II

j

are each a variable in the program unit. They indicate areas
of storage to be dumped.

Either a or b can represent the upper or lower limits of the
storage-area-:

specifies the dump format te be used.

The values that can be specified fer i end their meanings are:

Value

1
2
3
4
5
6
7
8
9

10
11

Farmat Re~uest.~

Hexadecimal
lOGICAl*4
IHTEGER*2
INTEGER*4
REAl*4
REAl*8
COMPLEX*8
COMPLEX*l'
CHARACTER
REAl*16
COMPLEX*32

When a CALL DUMP statement 1S executed, the area requested is
dumped onto the system output data set and execution is
terminated.

When a CAll PDUMP statement is executed, the area requested is
dumped onto the system output data set and execution continues .

Appendix D. Extended Err&r Handling Subroutines 233

CDUHP/PCDUHP SUBROUTINE

EXIT SUBROUTINE

The CAll CDUMP/PCDUMP statement dynamically dumps a specified
area of storage.

I. and 11
are each a variable in the program unit. They indicate areas
of storage to be dumped.

Either A or h can represent the upper or lower limits of the
storage area.

The dump is always produced in character format.

The CAll EXIT statement terminates execution of the load module or
phase and returns control to the operating system. F syntax

CAlL EXIT

CALL EXIT performs a function similar to that of the STOP
statement, except that no operator message is produced.

OPSYS SUBROUTINE (DOS ONLY)

OVERFLW SUBROUTINE

The CAll OPSYS statement loads the overlay feature, allowing the
user to divide a program into a number of phases.

~ syntax

I ~L OPSYS('lOAD','phasename')

LOAD
is required to be entered as shown.

'phasename'
specifies the name of the phase to be loaded. The phase must
be in the core image library.

the 'phasename' must be specified in eight alphameric characters.
If fewer than eight characters are specified, the name should be
left-adjusted within the field and padded on the right with
blanks. Alternatively, the name of the phase may be specified as a
variable or in an array.

The CAll OVERFlW statement tests for exponent overflow or
underflow, and returns a value indicating the existing condition.

~ Syntax

I ~l OVERFLW (i)

j
is an integer or real variable defined within this program
unit.

234 VS FORTRAN language Reference

o

0"
\

The values of i returned have the following meanings:

value

1
2
3

Meaning

Floating-point overflow occurred last.
Ho overflow or underflow condition is current.
Floating-point underflow occurred last.

Note: The values for 1 and 3 indicate the last one to occur; if
the same statement causes an overflow followed by an underflow the
value returned is 3 (underflow occurred last).

Appendix D. Extended Error Handling Subroutines 235

APPENDIX E. EBCDIC AND ASCII CODES

EBCDIC refers to iBM EBCDIC code point ordering for the 256 character set.

ISO 8 bit refers to ISO 2022 code point ordering for the 256 character set.

ASCII 7 bit refers to ANSI X3.4-1977 code point ordering for the 128 character set.

ASCII 6 bit refers to ANSI X3.32-1973 code point ordering for the 64 character set.

The column used for the lexical intrinsic functions is ASCII 7 bit.

The blank character to be used to extend character stri ngs for the i ntri ns; c funct; ons
lGE, LGT, LLE, and LL T ; s the ASCII blank (HEX 20).

Note 1: This position does not exist in ANSI X3.4-1977 for 7-bit code.

Note 2: This position does not exist in ANSI X3.32-1973 for 6-bit code.

Ordinal EBCDIC ISO ASCII
HEX Position Graphic Description 8 bit 7 bit
Code for or for for

ICHAR Control ICHAR ICHAR

00 0 NUL Null 0 0
01 1 SOH Start of heading , 1 1
02 2 STX Start of text 2 2
03 3 ETX End of text 3 3
04 4 SEL Select 156 Note 1
05 5 HT Horizontal Tab 9 9
06 6 RNL Reguired new line 134 Note I
07 7 DEL Delete 127 127
08 8 GE Graphic Escape 151 Note 1
09 9 SPS Superscript 141 Note 1

OA 10 RPT Repeat 142 Note 1
OB 11 VT Vertical Tab 11 11
OC 12 FF Form Feed 12 12
00 13 CR Carriage Return 13 13
OE 14 SO Shift out 14 14
OF 15 SI Shift in 15 15
10 16 DLE Data link escape 16 16
11 17 DCI Device control 1 17 17
12 18 DC2 Device control 2 18 18
13 19 DC3 Device control 3 19 19

14 20 RES Restore 157 Note 1
ENP Enable presentation

15 21 Nl New line 133 Note 1
acknowledgement

16 22 BS Backspace 8 8
17 23 pac Program-operator 135 Note 1

communication
18 24 CAN Cancel 24 24
19 25 EM End of Medium 25 25
1A 26 UBS Unit backspace 146 Note I
IB 27 CUI Customer use 1 143 Note 1
lC 28 IFS Interchange file 28 28

separator
ID 29 IGS Interchange group 29 29

separator

236 VS FORTRAN Language Reference

ASCII
6 bit
for
ICHAR

Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2
Note 2

Note 2

Note 2

Note 2
Note 2

Note 2
Note 2
Note 2
Note 2
Note 2

Note 2

1), \l.,~,

o . .~
• .r'

Ordinal EBCDIC ISO ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for

ICHAR Control ICHAR ICHAR ICHAR

IE 30 IRS Interchange record 30 30 Note 2
separator

IF 31 IUS Interchange unit 31 31 Note 2
separator

ITB Intermediate trans.
block

20 32 OS Digit select 128 Note 1 Note 2
21 33 SOS Start of 129 Note 1 Note 2

significance
22 34 FS Field separator 130 Note 1 Note 2
23 35 WUS Word underscore 131 Note 1 Note 2
24 36 BYP Bypass 132 Note 1 Note 2

INP Inhibit presentation
25 37 LF Line feed 10 10 Note 2
26 38 ETB End of trans. block 23 23 Note 2
27 39 ESC Escape 27 27 Note 2

28 40 Reserved 136 Note 1 Note 2
29 41 Reserved 137 Note 1 Note 2
2A 42 SM, SW Set mode, Switch 138 Note 1 Note 2
2B 43 FMT Format 139 Note 1 Note 2
2C 44 Reserved 140 Note 1 Note 2
20 45 ENQ Enquiry 5 5 Note 2
2E 46 ACK Acknowledge 6 6 Note 2
2F 47 BEL Bell 7 7 Note 2
30 48 Reserved 144 Note 1 Note 2
31 49 Reserved 145 Note 1 Note 2

32 50 SYN Synchronous 22 22 Note 2
33 51 IR Index 147 Note 1 Note 2
34 52 PP Presentation position 148 Note 1 Note 2

c! 35 53 TRN Transparent 149 Note 1 Note 2
36 54 NBS Numeric backspace 150 Note 1 Note 2
37 55 EOT End of transmission 4 4 Note 2
38 56 SBS Subscript 152 Note 1 Note 2
39 57 IT Indent 153 Note 1 Note 2
3A 58 RFF Required 154 Note 1 Note 2
3B 59 CU3 Customer use 3 155 Note 1 Note 2

3C 60 DC4 'Dev ice code 4 20 20 Note 2
30 61 NAK Negative acknowledge 21 21 Note 2
3E 62 Reserved 158 Note 1 Note 2
3F 63 SUB Substitute 26 26 Note 2
40 64 SP Space 32 32 0
41 65 RSP Required space 160 Note 1 Note 2
42 66 161 Note 1 Note 2
43 67 162 Note 1 Note 2
44 68 163 Note 1 Note 2
45 69 164 Note 1 Note 2

46 70 165 Note 1 Note 2
47 71 166 Note 1 Note 2
48 72 167 Note 1 Note 2
49 73 168 Note 1 Note 2
4A 74 ~ Cent sign 91 91 59
48 75 . Period, decimal point 46 46 14
4C 76 < Less-than sign 60 60 28
40 77 (Left parenthesis 40 40 8
4E 78 + Plus sign 43 43 11
4F 79 I Logical OR 33 33 1

o
Appendix E. EBCDIC and ASCII Codes 237

Ordinal EBCDIC ISO ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for

ICHAR Control ICHAR ICHAR ICHAR

50 80 & Ampersand 38 38 6
51 81 169 Note 1 Note 2
52 82 170 Note 1 Note 2
53 83 171 Note 1 Note 2
54 84 172 Nota 1 Note 2
55 85 173 Note 1 Note 2
56 86 174 Note 1 Note 2
57 87 175 Note 1 Note 2
58 88 176 Note 1 Note 2
59 89 177 Note 1 Note 2

5A 90 ! Exclamation point 93 93 61
5B 91 $ Currency symbol 36 36 4
5C 92 * Asterisk 42 42 10
5D 93) p;~~~ "~~ft"~~ft.;. 41 41 9 .'t::."~ r ' ~ •• "' ~, ...

5E 94 ; Semicolon 59 59 27
5F 95 .. Logical NOT 94 94 62
60 96 - Minus sign, Hyphen 45 45 13
61 97 / Slash 47 47 15
62 98 178 Note 1 Note 2
63 99 179 Note 1 Note 2

64 100 180 Note 1 Note 2
65 101 181 Note 1 Note 2
66 102 182 Note 1 Note 2
67 103 183 Note 1 Note 2
68 104 184 Note 1 Note 2
69 105 185 Note 1 Note 2
6A 106 I Vertical line 124 124 Note 2
68 107 , Comma 44 44 12
6C 108 X Percent sign 37 37 5
60 109 - Underscore 95 95 63

6E 110 > Greater-than sign 62 62 30
6F 111 ? Question mark 63 63 31
70 112 186 Note 1 Note 2
71 113 187 Note 1 Note 2
72 114 188 Note 1 Note 2
73 115 189 Note 1 Note 2
74 116 190 Note 1 Note'2
75 117 191 Note 1 Note 2
76 118 192 Note 1 Note 2
77 119 193 Note 1 Note 2

78 120 194 Note 1 Note 2
79 121 GRA Grave accent 96 96 Note 2
7A 122 : Colon 58 58 26
78 123 I Number sign 35 35 3
7C 124 G) At sign 64 64 32
7D 125 , Prime, Apostrophe 39 39 7
7E 126 = Equal sign 61 61 29
7F 127 " Quotation marks 34 34 2
80 128 195 Note 1 Note 2
81 129 a Lower case a 97 97 Note 2

82 130 b Lower case b 98 98 Note 2
83 131 c Lower case c 99 99 Note 2
84 132 d Lower case d 100 100 Note 2
85 133 e Lower case e 101 101 Note 2
86 134 f LOl-Jer case f 102 102 Note 2
87 135 9 Lower case 9 103 103 Note 2
88 136 h Lower case h 104 104 Note 2
89 137 i Lower case i 105 105 Note 2
8A 138 196 Note 1 Note 2
88 139 197 Note 1 Note 2

238 VS FORTRAN Language Reference

Ordinal EBCDIC ISO ASCII ASCII
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or - for for for

ICHAR Control ICHAR ICHAR ICHAR

8C 140 198 Note 1 Note 2
8D 141 199 Note 1 Note 2
8E 142 200 Note 1 Note 2
8F 143 201 Note 1 Note 2
90 144 202 Note 1 Note 2
91 145 j lower case j 106 106 Hote 2
92 146 k lower case k 107 107 Hate 2
93 147 1 lower case 1 108 108 Hote 2
94 148 m lower case m 109 109 Hote 2
95 149 n lower case n 110 110 Hote 2

96 150 a lower case 0 111 111 Hote 2
97 151 p lower case p 112 112 Note 2
98 152 q lower case q 113 113 Hote 2
99 153 I" lower case I" 114 114 Hote 2
9A 154 203 Hote 1 Hote 2
9B 155 204 Hote 1 Hote 2
9C 156 205 Hote 1 Hote 2
9D 157 206 Hote 1 Hote 2
9E 158 207 Hote 1 Hote 2
9F 159 208 Note 1 Note 2

AO 160 209 Hote 1 Hote 2
Al 161 TIL Tilde 126 126 Hote 2
A2 162 s lower case s 115 115 Hote 2
A3 163 t lower case t 116 116 Note 2
A4 164 u lower case u 117 117 Note 2
AS 165 v lower case v 118 118 Hote 2
A6 166 w lower case w 119 119 Note 2
A7 16-7 x lower case)(120 120 Hote 2
A8 168 y lower case y 121 121 Note 2
A9 169 z lower case z 122 122 Note 2

AA 170 210 Note 1 Hote 2
AB 171 211 Note 1 Note 2
AC 172 212 Note 1 Note 2
AD 173 213 Note 1 Hote 2
AE 174 214 Note 1 Note 2
AF 175 215 Note 1 Note 2
BO 176 216 Hote 1 Note 2
B1 177 217 Note 1 Note 2
B2 178 218 Note 1 Note 2
B3 179 219 Note 1 Note 2

B4 180 220 Note 1 Note 2
B5 181 221 Note 1 Note 2
B6 182 222 Note 1 Note 2
B7 183 223 Note 1 Note 2
B8 184 224 Note 1 Note 2
B9 185 225 Note 1 Note 2
BA 186 226 Note 1 Note 2
BB 187 227 Note 1 Note 2
BC 188 228 Note 1 Note 2
BO 189 229 Note 1 Note 2

BE 190 230 Note 1 Note 2
BF 191 231 Note 1 Hote 2
CO 192 { Opening brace 123 123 Note 2
Cl 193 A Upper case A 65 65 33
C2 194 B Upper case B 66 66 34
C3 195 C Upper case C 67 67 35
C4 196 D Upper case D 68 68 36
C5 197 E Upper case E 69 69 37
C6 198 F Upper case F 70 70 38
C7 199 G Upper case G 71 71 39

Appendix E. EBCDIC and ASCII Codes 239

Ordinal EBCDIC
HEX Position Graphic Description
Code for or

ICHAR Control

C8 200 H Upper case H
C9 201 I Upper case I
CA 202
CB 203
CC 204
CO 205
CE 206
CF 207
DO 208 } Closing brace
01 209 J Upper case J

02 210 K Upper case K
03 211 L Upper case L
04 212 M Upper case M
D5 213 N Upper case N
06 214 0 Upper case 0
07 215 P Upper case P
D8 216 Q Upper case Q
09 217 R Upper case R
DA 218
DB 219

DC 220
DO 221
DE 222
DF 223
EO 224 , Reverse slant
El 225
E2 226 S Upper case S
E3 227 T Upper case T
E4 228 U Upper case U
E5 229 V Upper case V

E6 230 W Upper case W
E7 231 X Upper case X
E8 232 y Upper case Y
E9 233 Z Upper case Z
EA 234
EB 235
EC 236
ED 237
EE 238
EF 239

FO 240 0 Zero
F1 241 1 One
F2 242 2 Two
F3 243 3 Three
F4 244 4 Four
F5 245 5 Five
F6 246 6 Six
F7 247 7 Seven
F8 248 8 Eight
F9 249 9 Nine

FA 250 I Long vertical mark
FB 251
FC 252
FO 253
FE 254
FF 255 EO Eight ones

240 VS FORTRAN Language Reference

ISO ASCII
8 bit 7 bit
for for
ICHAR ICHAR

72 72
73 73

232 Note
233 Note
234 Note
235 Note
236 Note
237 Note
125 125

74 74

75 75
76 76
77 77
78 78
79 79
80 80
81 81
82 82

238 Note
239 Hate

240 Hote
241 Note
242 Hate

<243 Hate
92 92

159 Note
83 83
84 84
85 85
86 86

87 87
88 88
89 89
90 90

244 Note
245 Hate
246 Hate
247 Hate
248 Note
249 Note

48 48
49 49
50 50
51 51
52 52
53 53
54 54
55 55
56 56
57 57

250 Note
251 Note
252 Note
253 Note
254 Note
255 Note

ASCII
6 bit
for
ICHAR

40
41

1 Note
1 Note
1 Note
1 Note
1 Note
1 Note

Note
42

43
44
45
46
47
48
49
50

1 Note
1 Hote

1 Note
1 Note
1 Note
1 Hote

60
1 Note

51
52
53
54

55
56
57
58

1 Note
1 Note
1 Note
1 Note
1 Note
1 Note

16
17
18
19
20
21
22
23
24
25

1 Note
1 Note
1 Note
1 Note
1 Note
1 Note

2
2
2
2
2
2
2

2
2

2
2
2
2

2

2
2
2
2
2
2

2
2
2
2
2
2

0:1,\
I ... \

j

~
'1~.,ll

·F

o ~,

GLOSSARY

This glossary includes definitions
developed by the American National
Standards Institute (ANSI) and the
International Organization for
Standarization (ISO).

An asterisk (*> to the left of a term
indicates that the entire entry is
reproduced from the American National
Dictionary for Information Processing,
copyright 1977 by the Computer and
Business Equipment Manufacturers
Association, copies of which may be
purchased from the American National
Standards Institute, 1430 Broadway, New
York, New York 10018.

An asterisk (*) to the right of an item
number indicates an ANSI definition in an
entry that also includes other
definitions.

The symbol "(ISO)" at the beginning of a
definition indicates that it has been
discussed and agreed upon at meetings of
the International Organization for
Standardization Technical Committee
97/Subcommittee 1 (Data Processing
Vocabulary), and has also been approved
by ANSI and included in the American
Hational Dictionary for Information
Processing.

alphabetic character. A character of the
set A, B, C, •.• ,Z. See also "letter."

IBM EXTENSION

In VS FORTRAN, the currency symbol ($)
is considered an alphabetic character.

END OF IBM EXTENSION

alphameric. Pertaining to a character
set that contains letters, digits, and
other characters, such as punctuation
marks.

alphameric character set. A character
set that contains both letters and digits
and also contains control characters,
special characters, and the space
character.

ar9um~nt. A parameter passed between a
calling program and a SUBROUTINE
subprogram, a FUNCTION subprogram, or a
statement function.

arithmetic constant. A constant of type
integer, real, double precision, or
complex.

arithmetic expression. One or more
arithmetic operators and/or arithmetic
primaries, the evaluation of which
produces a numeric value. An arithmetic
expression can be an unsigned arithmetic

constant, the name of an arithmetic
constant, or a reference to an arithmetic
variable, array element, or function
reference, or a combination of such
primaries formed by using arithmetic
operators and parentheses.

arithmetic operator. A symbol that
directs VS FORTRAN to perform an
arithmetic operation. The arithmetic
operators are:

+ addition
subtraction * multiplication

/ division
** exponentiation.

array_ An ordered set of data items
identified by a single name.

array declarator. The part of a
statement that describes an array used in
a program unit. It indicates the name of
the array, the number of dimensions it
contains, and the size of each dimension.
An array declarator may appear in a
DIMENSION, COMMON, or explicit type
statement.

array element. A data item in an array,
identified by the array name followed by
a subscript indicating its position in
the array.

array name. The name of an ordered set of
data items that make up an array.

assignment statement. A statement that
assigns a value to a variable or array
element. It is made up of a variable or
array element, followed by an equal sign
(=), followed by an expression. The
variable, array element, or expression
can be character, logical, or arithmetic.
When the assignment statement is
executed, the expression to the right of
the equal sign replaces the value of the
variable or array element to the left.

basic real constant. A string of decimal
digits containing a decimal point, and
expressing a real value.

blank common. An unnamed common block.

character constant. A string of one or
more alphameric characters enclosed in
apostrophes. The delimiting apostrophes
are not part of the constant.

character expression. An expression in
the form of a single character constant,
variable, array element, substring,
function reference, or another
expression enclosed in parentheses. A
character expression is always of type
character.

Glossary 241

character type. A data type that can
consist of any alphameric characters; in
storage,' one byte is used for each
character.

common block. A storage area that may be
referred to by a calling program and one
or more subprograms.

complex constant. An ordered pair of real
or integer constants separated by a comma
and enclosed in parentheses. The first
real constant of the pair is the real
part of the complex number; the second is
the imaginary part.

co~plex type. An approximation of the
value of a complex number, consisting of
an ordered pair of real data items
separated by a comma and enclosed in
parentheses. The first item represents
the real part of the complex number; the
second represents the imaginary part.

connected file. A file that has been
connected to a unit and defined by a
FllEDEF command or by job control
statements.

constant. An unvarying quantity. The
four classes of constants specify numbers
(arithmetic), truth values (logical),
character data <character), and
hexadecimal data.

control statement. Any of the statements
used to alter the normal sequential
execution of FORTRAN statements, or to
terminate the execution of a FORTRAN
program. FORTRAN control statements are
any of the forms of the GO TO, IF, and DO
statements, or the PAUSE, CONTINUE, and
STOP statements.

data. (1)* (ISO) A representation of
facts or instructions in a form suitable
for communication, interpretation, or
processing by human or automatic means.
(2) In FORTRAN, data includes constants,
variables, arrays, and character
substrings.

data item. A constant, variable, array
element, or character substring.

data set. The major unit of data storage
and retrieval consisting of data
collected in one of several prescribed
arrangements and described by control
information to which the system has
access.

data set reference number. A constant or
variable in an input or output statement
that identifies a data set to be
processed.

data type. The properties and internal
representation that characterize data
and functions. The basic types are
integer, real, complex, logical, double
precision, and character.

242 VS FORTRAN language Reference

* digit. (ISO) A graphic character that
represents an integer. For example, one
of the characters 0 to 9.

DO loop. A range of statements executed
repetitively by a DO statement. See also
"range of a DO."

double precision. The standard name for
real data of storage length 8.

DO variable. A variable, specified in a
DO statement, that is initialized or
incremented prior to each execution of
the statement or statements within a DO
range. It is used to control the number
of times the statements within the range
are executed. See also "range of a DO."

dummy argument. A variable within a
subprogram or statement function
definition with which actual arguments
from the calling program or function
reference are positionally associated.
Dummy arguments are defined in a
SUBROUTINE or FUNCTION statement, or in a
statement function definition.

executable program. A program that can be
executed as a self-contained procedure.
It consists of a main program and,
optionally, one or more subprograms or
non-FORTRAN-defined external procedures,
or both.

executable statement. A statement that
causes an action to be taken by the
program; for example, to calculate, to
test conditions, or to alter the flow of
control.

existing fi Ie. A fi Ie that has been
defined by a FIlEDEF command or by job
control statements.

expression. A notation that represents a
value: a constant or a reference
appearing alone, or combinations of
constants and/or references with
operators. An expression can be
arithmetic, character, logical, or
relational.

external file. A set of related external
records treated as a unit; for example,
in stock control, an external file would
consist of a set of invoices.

external function. A function defined
outside the program unit that refers to
it.

external procedure. A SUBROUTINE or
FUNCTION subprogram written in FORTRAN.

fi Ie. A set of records. If the fi Ie is
located in internal storage, it is an
internal file; if it is on an
input/output device, it is an external
file.

file definition statement. A statement
that describes the characteristics of a
file to a user program. For example, the
OS/VS DO statement or DOS/VSE ASSGN

(0

o

statement for batch processing, or the
FILEDEF command for CMS processing.

file reference. A reference within a
program to a file. It is specified by a
unit identifier.

formatted record. (1) A record,
described in a FORMAT statement, that is
transmitted, when necessary with data
conversion, between internal storage and
internal storage or to an external
record. (2) A record transmitted with
list-directed READ or WRITE statements
and an EXTERNAL statement.

FORTRAN-supplied procedure. See
"intrinsic function."

function reference. A source program
reference to an intrinsic function, to an
external function, or to a statement
function.

function subprogram. A subprogram
invoked through a function reference, and
headed by a FUNCTION statement. It
returns a value to the calling program
unit at the point of reference.

IBM EXTENSION

hexadecimal constant. A constant that
is made up of the character Z followed
by two or more hexadecimal digits.

END- OF IBM EXTENSION ----....

hierarchy of operations. The relative
order used to evaluate expressions
containing arithmetic, logical, or
character operations.

implied DO. An indexing specification
(similar to a DO statement, but without
specifying the word DO) with a list of
data elements, rather than a set of
statements, as its range. In a DATA
statement the list can contain integer
constants or expressions containing
integer constants. In input/output
statements the list can contain integer,
real, or double precision arithmetic
expressi·ons.

integer constant. A string of decimal
digits containing no decimal point and
expressing a whole number.

integer expression. An arithmetic
expression whose values are of integer
type.

integer type. An arithmetic data type
capable of expressing the value of an
integer. It can have a positive,
negative, or zero value. It must not
include a decimal point.

internal file. A set of related internal
records treated as a un it.

intrinsic function. A function, supplied
by VS FORTRAN, that performs mathematical
or character operations.

• I/O. Pertaining to either input or
output, or both.

I/O list. A list of variables in an input
or output statement specifying which data
is to be read or which data is to be
written. An output list may also contain
a constant, an expression involving
operators or function references, or an
expression enclosed in parentheses.

labeled common. See "named common."

length specification. A source language
specification of, the number of bytes to
be occupi ed by a vari able or an array
element.

letter. A symbol representing a unit of
the alphabet.

list-directed. An input/output
specification that uses a data list
instead of a FORMAT specification.

logical constant. A constant that can
have one of two values: true or fal se.

logical expression. A combination of
logical primaries and logical operators.
A logical expression can have one of two
values: true or false.

logical operator. Any of the set of
operators .NOT. (negation), .AND.
(connection: both), or .OR. (inclusion:
either or both), .EQ'v. (equal), .NEQV.
(not equal).

logical primary. A primary that can have
the value true or false. See also
"primary."

logical type. A data type that can have
the value true or false for VS FORTRAN.
See also "data type."

looping. Repetitive execution of the
same statement or statements. Usually
controlled by a DO statement.

main program. A program unit, required
for execution, that can call other
program units but cannot be called by
them.

name. A string of from one through six
alphameric characters, the first of which
must be alphabetic. Used to identify a
constant, a variable, an array, a
function, a subroutine, or a common
block.

named common. A separate common block
consisting of variables, arrays, and
array declarators, and given a name.

nested DO. A DO statement whose range is
entirely contained within the range of
another DO statement.

nonexecutable statement. A statement
that describes the characteristics of the
program unit, of data, of editing

Glossary 243

information, or of statement functions,
but does not cause an action to be taken
by the program.

nonexisting file. A f;le that has not
been defined by a FILEDEF command or by
job control statements.

* numeric character. (ISO) Synonym for
digit.

numeric constant. A constant that
expresses an integer, real, or complex
number.

preconnected file. A unit or file that
was defined at installation time.
However, a preconnected file does not
exist for a program if the file is not
...J 4=; _ CTI cncc ______ ... __:_ ...
YO::' '"0::'" OJ)! Q , ... &.. v , vU"""QII~ u, uy .Juu

control statements.

predefined specification. The implied
type and length specification of a data
item, based on the initial character of
its name in the absence of any
specification to the contrary. The
initial characters I-N type data items as
integer; the initial characters A-H, O-Z,
and $ type data ; tems as real. No other
data types are predefined. For VS
FORTRAN, the length for both types is 4
bytes.

primary. An irreducible unit of data; a
single constant, variable, array
element, function reference, or
express10n enclosed in parentheses.

procedure. A sequenced set of statements
that may be used at one or more points in
one or more computer programs, and that
usually is given one or more input
parameters and returns one or more output
parameters. A procedure consists of
·subroutines, function subprograms, and
intrinsic functions.

procedure subprogram. A function or
subroutine subprogram.

program unit. A sequence of statements
constituting a main program or
subprogram.

range of a DO. Those statements that
physically follow a DO statement, up to
and including the statement specified by
the DO statement as being the last to be
executed; also called a "DO loop."

real constant. A string of decimal digits
that expresses a real number. A real
constant must contain either a decimal
point or a decimal exponent and may
contain both.

real type. An arithmeti~ data type,
capabl e of approx i mat i ng the value of a
real number. It can have a positive,
negative, or zero value.

record. A collection of related items of
data treated as a unit.

244 VS FORTRAN Language Reference

relatIonal expressIon. An expression
that ~onsists of an arithmetic
expression, followed by a relational
operator, followed by another arithmetic
expression or a character expression,
followed by a relational operator,
followed by another character
expression. The result is a value that is
true or false.

relational operator. Any of the set of
operators:

.GT. greater than

.GE. greater than or equal to

.LT. less than

.LE. less than or equal to

.EQ. equal to

. NE. not equal to

scale factor. A specification in a FORMAT
statement that changes the location of
the decimal point in a real number (and,
on input, if there is no exponent, the
magn i tude of the number).

specification statement. One of the set
of statements that provides the compiler
with information about the data used in
the source program. In addition, the
statement supplies the information
required to allocate data storage.

specIfication subprogram. A subprogram
headed by a BLOCK DATA statement and used
to initialize variables in named common
blocks.

statement. The basic unit of a FORTRAN
program, that specifies an action to be
performed, or the nature and
characteristics of the data to be
processed, or information about the
program itself. Statements fall into two
broad classes: executable and
nonexecutable.

statement function. A name, followed by a
list of dummy arguments, that is equated
to an arithmetic, logical, or character
expression. In the remainder of the
program the name can be used as a
substitute for the expression.

statement function definition. A
statement that defines a statement
function. Its form is a name, followed by
a list of dummy arguments, followed by an
equal sign (=)i followed by an
arithmetic, logical, or character
expression.

statement function reference. A
reference in an arithmetic, logical, or
character expression to the name of a
previously defined statement function.

statement label. See "statement
number."

statement number. A number of from one
through five decimal digits that is used
to identify a statement. Statement
numbers can be used to transfer control~

(\:,
~,

',/'"

Q

o

to define the range of a DO, or to refer
to 'a FORMAT statement.

subprogram. A program unit that is
invoked by another program unit in the
same program. In FORTRAN, a subprogram
has a FUNCTION, SUBROUTINE, or BLOCK DATA
statement as its first statement.

subroutine subprogram. A subprogram
whose first statement is a SUBROUTINE
statement. It optionally returns one or
more parameters to the calling program
unit.

• subscript. (1) (ISO) A symbol that is
associated with the name of a set to
identify a particular subset or element.

(2) A subscript quantity or set of
subscript quantities, enclosed in
parentheses and used wi th an array name
to identify a particular array element.

subscript quantity. A component of a
subscript: an integer constant, an
integer variable, or an expression
evaluated as an integer constant.

IBM EXTENSION

In VS FORTRAN, a subscript quantity may
also be a real constant, variable, or
expression.

END OF IBM EXTENSION -----'

type declaration. The explicit
specification of the type of a constant,
variable, array, or function by use of an
explicit type specification statement.

unformatted record. A record that is
transmitted unchanged between internal
storage and an external record.

unit. A means of referring to a file in
order to use input/output statements. A
unit can be connected or not connected to
a file. If connected, it refers to a
file. The connection is symmetric: that
is, if a uni tis connected to a fi Ie, the
file is connected to the unit.

unit identifier. The number that
specifies an external unit •

1. An integer expression whose value
mu~t be zero or positive. For VS
FORTRAN, this integer value of length
4 must correspond to a DD name, a
FILEDEF name, or an ASSGN name.

2. An asterisk (*) that corresponds on
input to FT05FOOl and on output to
FT06F001.

3. The name of a character array,
character array element, or
character substring for an internal
file.

variable. (1) * A quantity that can
assume any of a given set of values.

(2) A data item, identified by a name,
that is not a named constant, array, or
array element, and that can assume
different values at different times
during program execution.

Glossary 245

o

/0;,\
I '
I,

C
~\

J ,I

~,

o
\

special Characters

(period) 8
(ellipsis) 2

+ (plus sign) 8
$ (currency symbol) 8

* (asterisk) 8
WRITE statement 195
(minus sign or hyphen)

I (slash) 8 , (comma) 8
() (parentheses) 8

(colon) 8
[1 (bracket s) 2 , (apostrophe) 8
= (equal sign) 8
" (quotation mark) 6, 8

A format code 102
ACCESS=

7, 8

INQUIRE by fi Ie name 125
INQUIRE by unit number 127
OPEN statement 134

actual argument 22
in a function subprogram 113
in a subroutine subprogram 113
in an ENTRY statement 82

alphabetic character 1
See also letter
definition 241

alphabetic primary
See pr i mary

alphameric character set 1
definition 241

alphameric, definition 241
alternate return specifier 83
alternative paths of execution 111
ANS FORTRAN features 208-214
ANSI definitions 241
apostrophe 8
argument

actual 82, 113
definition 241
dummy 82, 114

arithmetic assignment statement 41
conversion rules (complex) 49
conversion rules (integer or
real) 48

valid statements 51-52
arithmetic constant

See also digit
complex 15
definition 241
integer 12
primary 26
real 13

arithmetic expression 25
defi'nition 241
rules for constructing 26
type and length of (complex) 31
type and length of (integer) 29
type and length of (real) 30

use of parentheses in 28
arithmetic IF statement 117
arithmetic operation 27

addition 26, 27
division 26, 27
evaluation of functions 27
exponentiation 26, 27
first operand is complex 28
first operand is integer 28
first operand is real 28
multiplication 26, 27
subtraction 26, 27
unary mi nus 26
unary plus 26

arithmetic operator 26
definition 241
operations involving 37

array
actual argument 22
definition 241
dimension bounds 22
DIMENSION statement 71
dimensions of 71
dummy argument 23
size and type declaration 22, 23
subscripts 21

array declarator
definition 22, 241

array element 20
definition 241
invalid 22
valid 21

array name
definition 241
DIMENSION statement 71
READ statement 147
WRITE statement 182

ASCII codes 236-240
assign a name to a constant 138
assign a name to a main program 141
assign a number to a variable 46 .
ASSIGN statement 46
assigned GO, TO statement 115
assignment statement 47

arithmetic 47
ASSIGN statement 46
character 47
definition 241
logical 47

associate actual with dummy argument 58
asterisk 8

READ statement 150
WRITE statement 195

asynchronous READ statement 143
asynchronous WRITE statement 179
AT statement 53

in debug packet 68, 69

BACKSPACE statement 54
invalid statements 54
valid statements 54

basic real constant 13
defi'nition 241

begin debug packet 53

Index 247

blank 8
format coda 106
FORMAT statement 105
INQUIRE by file nama 125
INQUIRE by unit number 127

blank common 63
and named common 63
definition 63, 241

BLANK=
INQUIRE by file name 125
INQUIRE by unit number 127
OPEN statement 134

BLOCK DATA statement 56
block data subprogram 43
block IF statement 117

ELSE 119
ELSE IF 119
END IF 118

BN format code 105
bypass statements 65
BZ format code 106

CALL CDUMP/PCDUMP statement 234
CALL DUMP/PDUMP statement 233
CALL DVCHK statement 233
CALL ERRMON statement 215
CALL ERRSAV statement 216
CALL ERRSET statement 217
CALL ERRSTR statement 219
CALL ERRTRA statement 219
CALL EXIT statement 234
CALL OPSYS statement 234
CALL OVERFLW statement 234
CALL statement 58
carrier control 92

H format code 103
T format code 104

CDUMP/PCDUMP subroutine 234
character array element

READ statement 146
WRITE statement 181

character array name
READ statement 147
WRITE statement 182

character assignment statement 47
character constant 16

definition 16, 241
READ statement 146
valid 17
WRITE statement 181

.character constant transmission 103
character data transmission 102
character expression 33

definition 241
READ statement 147
use of parentheses in 33
WRITE statement 182

character functions 204
character manipulation routines 207
character operator 33

operations involving 37
character skipping 103
character substring 24

reference 24
variable 24

character type 82, 122
definition 242

CHARACTER type statement 85
character variable

storage length 19

248 VS FORTRAN Language Reference·

substring 24
CLOSE statement 59

examples 60
colon 8
colon format code 106, 107
comma 8
comments

fixed-form 5, 61
free-form 6, 61

common block 56
definition 242

COMMON statement 62
compiler-directed statement 44

EJECT 76
INCLUDE 124

compiler, executing on 1
complex constant 15

definition 15, 242
invalid 16
valid 15

complex data requirements 92
complex type 85, 122

definition 242
COMPLEX type statement 85
complex variable

storage length 19
computed GO TO statement 116
COND=

WAIT statement 176
connect a file to unit 134
connected'file 126

definition 242
formatted READ--direct access 148
formatted READ--sequential
access 151

formatted WRITE--sequential
access 186

READ with list-directed I/O 161
READ with NAMELIST 162
unformatted READ--direct access 154
unformatted READ--sequential
access 156

unformatted WRITE--direct access 189
WRITE with list-directed I/O 196
WRITE with NAMElIST 198

constant 11
arithmetic 11
assign a name to 138
character 16
complex 15
definition 242
hexadecimal 17
Hollerith 17
integer 12
logical 16
real 13

continuation line
fixed-form 5
free-form 7

continue a DO loop 65
CONTINUE statement 65
continued line 7

free-form 7
control statement 41

assigned GO TO 115
CALL 58
computed GO TO 116
CONTINUE 65
definition 242
DO 73
END statement 77
GO TO 115
IF 117
PAUSE 139
RETURN 164

I

\'II"J;~
. 1

STOP 172
unconditional GO TO 116

conversion rules 48
corrective action

after error .223
after mathematical subroutine
error 226-230

after program interrupt 232
create a file 134
create a preconnected file 134
currency symbol 8

IMPLICIT statement 122

D format code 96
data 11

definition 242
data item, definition 242
data set

reference number, definition 242
data set, definition 242
DATA statement 42, 66

character data in 66
implied DO in 74

data transfer 104
data type, definition 242
debug a program 68
debug packet 69
DEBUG statement 42, 68

AT statement 53, 69
DISPLAY statement 69, 72
END DEBUG statement 69, 78
examples 70
TRACE OFF statement 69, 175
TRACE ON statement 69, 175

decimal point in format codes 93
declaration of type 20
default options 223
defi ne values of

array elements 66, 85
arrays 66, 85
substrings 66
variables 66, 85

definitions 241, 245
digit 8

definition 242
dimension bound, lower 22

DIMENSION statement 71
explicit statement 86

dimension bound, upper 22
DIMENSION statement 71
explicit statement 86

DIMENSION statement 71
direct access files 135
direct access input/output 129

INQUIRE statement 126, 128
direct access READ statement

formatted 146
unformatted 153

direct access WRITE statement
formatted 181
unformatted 188

DIRECT=
INQUIRE by file name 126
INQUIRE by unit number 128

disconnect an external file 59
display data in NAMELIST format 72
DISPLAY statement 72

in debug packet 69
DO list 66
DO loop 69, 73

See a I so range of a DO
definition 242

DO statement 73
DO variable

definition 242
implied in DATA statement 74
implied in input/output statement 74

double precision 19
constant 15
data edi t i ng 96
definition 242
storage length 19
type 85, 122

DOUBLE PRECISION type statement 85
DP assi gn 50
DP extend 50
DP float 50
dummy argument 23, 113

definition 242
in a function subprogram 113
in a subroutine subprogram 174
in an ENTRY statement 82

dummy procedure name 111
DUMP/PDUMP subroutine 233
DVCHK subroutine 233

E format code 96
EBCDIC codes 236, 240
editing double precision data 96
editing integer data 95
editing real data 96, 97
EJECT statement 76
ELSE IF statement 119
ELSE statement 119
end a program 77
END DEBUG statement 78

in debug packet 69
END IF statement 118
END statement 77

in a function subprogram 77
in a subroutine subprogram 77

END=
READ statement 150

ENDFILE statement 19
invalid 79
val i d 79

ENTRY statement 81
actual arguments in 82
valid 82

equal si gn 8
EQUIVALENCE statement 84

vall d 84
ERR=

BACKSPACE statement 54
CLOSE statement 59
ENDFILE statement 79
INQUIRE by file name 125
INQUIRE by unit number 128
OPEN statement 134
READ statemeAt 147
REWIND statement 166
WRITE statement 1&2

ERRMOH subroutine 215
error detected 128
error handling subroutines 215-235
error, corrective action after 223
ERRSAV subroutine 216
ERRSET subroutine 217
ERRSTR subroutine 219
ERRTRA subroutine 219

Index 249

evaluate actual argument 58
examples of numeric format codes 99
executable program 9

definition 4, 242
executable statement 19

definition 4, 242
execute a set of statements 73
execution-time cautions 202
execution-time library 1
EXIST=

INQUIRE by file name 126
INQUIRE by unit number 128

existence of unit 128
existing file

definition 242
INQUIRE statement 125
OPEN statement 134

EXIT subroutine 234
explicit type statement 85

CHARACTER type 85
t"nM~1 r:v ~,,, ,,, AI;
"we II " ... ,....... 'W"..,

DOUBLE PRECISION type 85
INTEGER type 85
LOGICAL type 85
REAL type 85
valid 88

exponential routines 205
expression 25

arithmetic 25
character 33
definition 242
evaluation of 25
examples 26
logical 35, 37, 38
relational 34
type of primary in 26

extended error handling
subroutines 215, 235

extensions, IBM, documentation of 3
external 135

function name 81
function, definition 242
1/0 unit connected to 135
1/0 unit not connected to 135
procedure, definition 4, 242

external file 79, 135
defi ni ti on 24.2
sequential 79

EXTERNAL statement 89
actual argument 89
valid 89

external unit 126

F format code 95
file

definition 242
definition statement, definition 242
reference, definition 243

file connected to a unit 126
FILE=

INQUIRE by file name 125
OPEN statement 134

first character of record 92
fix 50
fixed-form source statement

comments 5, 61
continuation line 5
example of 6
identification 6
initial line 5

250 VS FORTRAN Language Reference

statement number 5, 171
flagger, source language 200-201
float 50
FMT=

READ statement 146
WRITE statement 181

FORM=
INQUIRE by file name 126
INQUIRE by unit number 129
OPEN statement 135

format codes
begin data transmission (T) 104
blanks, interpretation of (BN) 105
blanks, interpretation of CBZ) 106
character constant transmission

(H) 103
character data transmission (A) 102
character skipping (X) 103
colon 106, 107
double precision data editing (Q) 96
format specification reading 107
general rules 92
group format specification 104
hexadecimal data transmission (Z) 99
integer data editing (I) 95
list-directed 108
logical variable transmission
(L) 102

numeric 99
plus character control (S, SP,

SS) 105
real data editing (D, E) 96
real data editing (F) 95
real data editing (G) 97
scale factor specification (P) 97
slash 106

format identifier 181
READ statement 146
WRITE statement 181

format notation 2
blanks 2
ellipsis 2
example 2
general form 2
lowercase letters and words 2
special characters 2
square brackets 2
underlined words 2

FORMAT statement 90
A code 102
BN code 105
BZ code 106
colon code 106, 107
D code 96
E code 96
examples 99
F code 95
format specification reading 107
forms of 94
Geode 97
general rules for conversion 92
group format specification 104
H code 103
I code 95
L code 102
list-directed formatting 108
numer i c code 99
P code 97
Q code 96
S code 105
slash code 106
SP code 105
SS code 105
T code 104
X code 103

C""
(I

\

Z code 99
formatted input/output

INQUIRE statement 126, 128
formatted PRINT 140
formatted READ statement

with direct access 146
with sequential access 150

formatted record 92
definition 243
INQUIRE statement 126
OPEN statement 135

formatted WRITE statement
with direct access 181
with sequential access 185

FORMATTED=
INQUIRE by file name 126
INQUIRE by unit number 128

forms of a FORMAT statement 94
FORTRAN-supplied procedure 10, 204-207

See also intrinsic function
keywords 10

free-form source statement
comments 6, 61
continuation line 7
continued line 7
example of 7
initial line 6
maximum length 7
minus sign 7
statement number 6, 171

function
reference, definition 243
subprogram, definition 243

function reference 25
statement function statement 169

FUNCTION statement 111
function subprogram 43

actual arguments 113
definition 243
dummy arguments 113
END statement 77
ENTRY statement 81
naming 43
RETURN statement 164

G format code 97
generic function name 204
generic names 131
glossary 241-245
GO TO statement 115

assigned 115
computed 116
unconditional 116

group format nesting 93
group format specification 104

H format code 103
hexadecimal constant 17

definition 17, 243
valid 17

hexadecimal data transmission 99
hierarchy of operations

arithmetic 27
arithmetic operators 37
character operators 37

definition 243
Hollerith constant 17

definition 17
valid 17

hyperbolic function routines 205

I format code 95
I/O

definition 243
list-directed READ statement 160
list-directed WRITE 195
list, definition 243

I/O list omitted from READ or WRITE 92
IBM extensions, documentation of 3
IBM FORTRAN features 208-214
ID=

READ statement 143
WAIT statement 176
WRITE statement 179

identification 6
fixed-form 6

identify a function subprogram 111
identify statements 171
identify user-supplied subprogram 89
IF block 118
IF statement 117

arithmetic 117
block 117
logical 120

IF-level 117
IMPLICIT type statement 122
impl i ed DO

definition 243
in DATA statement 74
in PRINT statement 74
in READ statement 74
in WRITE statement 74

INCLUDE statement 124
information about file 125
INIT

DEBUG statement 68
initial line 5, 6

fixed-form 5
free-form 6

input data, NAMELIST statement 132
input/output statement 42

BACKSPACE 54
CLOSE 59
ENDFILE 79
FORMAT 90
implied DO 74
INQUIRE 125
OPEN 134
PRINT 140
READ 142
REWIND 166
WAIT 176
WRITE 178

input/output unit 135
connected to external file 135
not connected to external file 135
PRINT statement 74
READ statement 74
WRITE statement 74

INQUIRE statement 125
by file name 125
by unit number 127

insert statements 124
integer constant 12

definition 12, 243

Index 251

invalid 12
sUbscripts and substrings 84
valid 12

integer data editing 95
integer expression 26

definition 243
sUbscripts and substrings 84

integer type 85, 122
definition 243

INTEGER type statement 85
integer variable

READ statement 146
storage length 19
WRITE statement 181

internal data conversion routines 207
internal file 192

definition 243
READ statement 157
WRITE statement 192

intrinsic function 130, 204-207
definition 4, 243

INTRINSIC statement 130
invalid VS FORTRAN programs 3
IOSTAT=

BACKSPACE statement 54
CLOSE statement 59
ENDFILE statement 79
INQUIRE by file nama 125
INQUIRE by unit number 128
OPEN statement 135
READ statement 147
REWIND statement 166
WRITE statement 182

ISO definitions 241

keywords 10

L format code 102
labeled common

See named common
LANGLVL(66) features 214
LANGLVL(77) features 208
language syntax 5
leading blanks 93
length specification 122

definition 243
letter 8

definition 243
library 1
list-directed 108

definition 243
list-directed formatting 108
list-directed I/O

READ statement with 160
WRITE statement with 195

list-directed PRINT 140
logarithmic routines 205
logical assignment statement 47
logical constant 16

definition 16, 243
logical expression

definition 243
invalid 37
order of computations in 37
use of parentheses in 38

252 VS FORTRAN Language Reference

valid 36
logical IF statement 120
logical operation 40

< type and length of the result 40
logical operator 35

AND 36
definition 243
EQV 36
examples 36
invalid 36
NEQV 36
NOT 36
OR 36
valid 36

logical primary
See primary

logical type 85, 122
LOGICAL type statement 85

primary, definition 243
type, definition 243

logical variable
storage length 19
transmission 102

logical variable transmission 102
looping 69

definition 243
lower dimension bound 22

DIMENSION statement 71
explicit statement 86

main program
assign a name to 141
definition 4, 243
PROGRAM statement 141

main program statement (PROGRAM) 42
mathematical functions 204
mathematical subroutine errors 226-230
maximum size records 92
maximum statement length

free-form 7
mi nus si gn 8

name 8
a block of data 56
a variable 62
an array 62, 71
definition 8, 243
elements of a program 8
generic 131
in a CALL statement 81
in a function reference 81
specific 131

name of fi Ie 125,. 126
name of un it 128
NAME=

INQUIRE by file name 126
INQUIRE by unit number 128

named common 63
and blank common 63
definition 63, 243

NAMED=
INQUIRE by file name 126
INQUIRE by unit number 128

NAMELIST
READ statement with 162

//",\.

\~)

to

o t

WRITE statement with 198
NAMELIST statement 132

input data 132
output data 133

names in READ and WRITE statements 132
names of constants 93
nested DO 73

definition 243
nesting nf group formats 93
new fi Ie 134
NEXTREC=

INQUIRE by file name 127
INQUIRE by unit number 129

nonexecutable statement
definition 4, 243

nonexisting file
definition 244
OPEN statement 137

null 127, 129
HUM=

WAIT statement 176
number of last record 127, 129
number of statement 125, 171
NUMBER=

INQUIRE by file name 126
INQUIRE by unit number 129

numeric character
See arithmetic constant

numeric constant 11
definition 244

numeric data format codes 93
numeric format code 99

examples 99

old fi Ie 134
OPEN statement 134
OPENED=

INQUIRE by file name 126
INQUIRE by unit number 128

OPSYS subroutine 234
option

default 218, 223
in DEBUG statement 68

option table default values 223
option table entry 221
order of computation 37

in logical expressions 37
order of statements 44
output data, NAMELIST statement 133
OVERFLW subroutine 234

P format code 97
PARAMETER statement 138
PAUSE statement 139
period 8
plus character control 105
plus si gn 8
position an external file 166
preconnected file

definition 4, 244
formatted READ--direct access 148
formatted READ--sequential
access 151

formatted WRITE--sequential
access 186

READ with list-directed I/O 161
READ with HAMELIST 162
unformatted READ--direct access 154
unformatted READ--sequential
access 156

unformatted WRITE--diract access 189
WRITE with list-directed I/O 196
WRITE with HAMELIST 198

predefined specification 20
definition 244

preserving a minus sign
free-form 7

primary 26
definition 244
logical 35

PRINT statement 140
implied DO in 74

procedure
BLOCK DATA 43
definition 4, 244
dummy 81, 83, 111

procedure subprogram 43
definition 244

program interrupt 232
PROGRAM statement 42, 141
program unit

definition 4, 244
order of statements in 44

Q format code 96
QP extend 50
QP float 50
quotation mark 8

range of a DO
definition 244

range of an i mpl i ed DO 74
READ statement 142

asynchronous 143
formatted with direct access 146
formatted with sequential access 150
forms of 142
implied DO in 74
unformatted with direct access 153
unformatted with sequential
access 155

with internal files 157
with list-directed I/O 160
with HAMELIST 162

READ statement with internal files 157
READ statement with list-directed

I/O 160
READ statement with NAMELIST 162
READ statement--asynchronous 143
READ statament--formattad with direct
access 146

READ statement--formatted with
sequential ac~ess 150

READ statement--unformatted with direct
access 153

READ statement--unformattad with
sequential access 155

reading format specifications 107
real assi gn 50
real constant 13

Index 253

definition 13, 244
invalid 14
valid 14

real data editing· 96, 97
real data of length 8

See double precision
real data transmission 95
real type 85, 122

definition 244
REAL type statement 85
real variable, storage length 19
REAL*8

See double precision
REC:

READ statement 147
WRITE statement 182

RECl:
INQUIRE by file name 127
INQUIRE by unit number 129
OPEN statement 135

record 90
definition 244

record length 127, 129, 135
record, number of last 127, 129
relational expression 34

definition 244
invalid 35
length of 34
valid 35

relational operator 34
definition 244
equal to 34
greater than 34
greater than or equal to 34
less than 34
less than or equal to 34
not equal to 34

replace value of expression 47
reposition a file 54
required order of statements 44
retain definition status 168
return control to calling program 164
RETURN statement 164

in a function subprogram 164
in a subroutine subprogram 164

REWIND statement 166
rules for data conversion 92

S format code 105
SAVE statement 168
scale factor

definition 244
specification 97

scratch a file 134
sequential access input/output 129

INQUIRE statement 126, 128
sequential access READ statement

formatted 150
unformatted 155

sequential access WRITE statement
formatted 185
unformatted 190

SEQUENTIAL:
INQUIRE by file name 126
INQUIRE by unit number 128

service ~ubroutines 233
share storage 62, 84
skipping characters 103
slash 8
slash format code 106

254 VS FORTRAN Language Reference

source language flagger 200, 201
source language statement

fixed-form 5
free-form 6, 7

source statement characters 7
digit 8
letter 8
special characters 8

SP format code 105
special characters

parentheses 8
specific names 131
specification statement 43

CHARACTER type 85
COMMON 62
COMPLEX type 85
definition 244
DIMENSION 71
DOUBLE PRECISION type 85
EQUIVALENCE 84
~xplic;t typ~ 85
EXTERNAL 89
IMPLICIT type 122
INTEGER type 85
INTRINSIC 130
lOGICAL type 85
NAMELIST 132
PARAMETER 138
REAL type 85
SAVE 168

specification subprogram
definition 244

SS format code 105
start a new page 76
start display 175
statement

definition 244
descriptions 41-199
function definition, definition 244
function reference, definition 244
function, definition 244
number, definition 244
number, fixed-form 5, 171
number, free-form 6, 171
READ statement 146
WRITE statement 181

statement function
statement 169

statement label
See statement number

statement number 10
ASSIGN statement 46
fixed-form 5, 171
free-form 6, 171

STATUS:
CLOSE statement 59
OPEN statement 134

stop a program 77
stop display 175
STOP statement 172
SUBCHK

DEBUG statement 68
subprogram

definition 4, 245
RETURN statement 164
SAVE statement 168
statement function statement 169

subprogram statement
BLOCK DATA 43, 56
ENTRY 81
FUNCTION 43, 111
statement function 169
SUBROUTINE 43, 173

SUBROUTINE statement 173
subroutine subprogram 43

~.\ ~!

o

C"
(,

0"": ' "

{

o

actual arguments 173
definition 245
dummy arguments 174
END statement 77
ENTRY statement 81
naming 43
RETURN statement 164

subscript 21
definition 245
in DATA statement 66
quantity, definition 245

substring 24
expression 24
in DATA statement 66

SUBTRACE
DEBUG statement 68

symbolic name
See name

syntax 5

T format code 104
terminate a program 77
terminate execution 172
terminate the last debug packet 78
test values 73
TRACE

DEBUG statement 68
TRACE OFF statement 175

in debug packet 69
TRACE ON statement 175

in debug packet 69
transfer control

to statement number 115
to subroutine subprogram 58

transmission
character constants 103
character data 102
hexadecimal data 99
logical variables 102

trigonometric routines 205
type declaration

by explicit type statement 20
by IMPLICIT statement 20
definition 245
of an array 22
predefined 20

type specification 122

unary minus 26, 27
unary plus 26, 27
unconditional GO TO statement 116
unformatted input/output

INQUIRE statement 126, 128
unformatted READ statement

with direct access 153
with sequential access 155

unformatted record
definition 245
INQUIRE statement 126
OPEN statement 135

unformatted WRITE statement
with direct access 188
with sequential access 190

UNFORMATTED=

INQUIRE by file name 126
INQUIRE by unit number 128

unit
connected 128
connected to external file 135
DEBUG statement 68
definition 245
identifier, definition 245
INQUIRE statement 128
not connected to external file 135
number 128, 134
OPEN statement 134

UNIT=
BACKSPACE statement 54
CLOSE statement 59
ENDFILE statement 79
INQUIRE by unit number 128
OPEN statement 134
READ statement 143
REWIND statement 166
WAIT statement 176
WRITE statement 179

unknown file 134
upper dimension bound 22

DIMENSION statement 71
explicit statement 86

valid VS FORTRAN programs 3
variable 18

character 24
definition 245
types and lengths of 18

vari able names
invalid 18
valid 18

VS FORTRAN statements 41-199

WAIT statement 176
write an end-of-file record 79
WRITE statement 178

asynchronous 179
formatted with direct access 181
forms of 178
implied DO in 74
unformatted with direct access 188
unformatted with sequential
access 190

with internal files 192
with list-directed I/O 195
with NAMELIST 198

WRITE statement with internal files 192
WRITE statement with list-directed

I/O 195
WRITE statement with NAMELIST 198
WRITE statement--asynchronous 179
WRITE statement--formatted with direct
access 181

WRITE statement--formatted with
sequential access 185

WRITE statement--unformatted with direct
access 188

WRITE statement--unformatted with
sequential access 190

Index 255

X format code 103

256 VS FORTRAN language Reference

Z format coda 99
zero 127, 129

o

GC26-3986-1

\

< en
."
0
:tI
-i
:tI
l> z
l>
"0
"2-
&r ... o·
::J

"'0 ..,
0

(Q ..,
Q)

3
3
:r
(Q

r-
Q)

::J
(Q
C
Q)

(Q
CD

:tI (-\,
CD ~J' CD ..,
CD
::J
C')
CD

."

CD
z
?
en
eN
""'-I
0
"->
01

"'0 ..,
:i'
r+
CD 'I a.
:i'
c
en
~

.A

G1
f3
c:p
eN c.o -- - - 00 --- - c:p - - - - -- - -- -- - ---- - ------- ---- - . -

Q

(0 ,

,

"

.4.

:0
\.

Gj

o z

VS FORTRAN Application Programming:
Language Reference
GC26-3986-1

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate. Comments may be written in your own language; English is not required.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies ofpublications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

ustTNL __________________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

GC26-3986-1

Reader's Comment Form

Id and tape Please do not staple FOld and tape

· ... :

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMON K, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

IIIIII NO POSTAGE
NECESSARY
IF MAILED

INTHE
UNITED STATES

· ...•.•........•............•....•.•..•..........•.......••.•.
Id and tape

--- ------ ----- -------- - - ----------_.-
®

Please do not staple Fold and tape
· · ·

<
CJ)

-n
0
:0
-I ,
:0 » z
»
'0
'E..
~r ...
c)"
::::I

~
8
Q)

3
3
5'

'!=!
r-
Q)

::::I
CQ c:
Q)
cc
CD

:0
(,--",

a. '~~
CD
~
::::I
n
CD

;;
ti'
Z
?
CJ)

~
0
~ en

"'tJ
a'
CD
0. ,
5'
c en
~
G')

Q
~
~
q> -

