
IRRCI,J) = 1
IRICI,J) = ~
CONTINUE

_-----l

PRINT 20, (.
l I = I, 3)

FORMAT (3(1)
STOP

~-

END
Program Numbers: Release 4.0

5748-F03 Compiler and Library
5748-LM3 Library Only

--...- ------ ----- ---- - ---- - - ----------_.-

VSFORTRAN
Programming Guide

Program Numbers
5748-F03 (Compiler and Library)
5748-LM3 (Library Only)
Release 4.0

SC26-4118-O

First Edition (October 1984)

This edition applies to Release 4.0 of VS FORTRAN, Program Products 5748-F03
(Compiler and Library) and 5748-LM3 (Library only), and to any subsequent releases
until otherwise indicated in new editions or technical newsletters. This edition merges VS
FORTRAN Application Programming: Guide, SC26-3985-4, and relevant parts of VS
FORTRAN Application Programming: System Services Reference Supplement,
SC26-3988-2. Both of these manuals are now obsolete.

The changes for this edition are summarized under "Summary of Amendments" following
the preface. Changes specific to Release 4.0 are indicated by a vertical bar to the left of
the change. These bars will be deleted at any subsequent republication of the page
affected. Editorial changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of mM systems, consult the latest IBM System/3 70 and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to mM products, programs, or services do not imply that
mM intends to make these available in all countries in which mM operates. Any
reference to an mM program product in this publication is not intended to state or imply
that only mM's program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below; requests for mMpublications
should be made to your mM representative or to the mM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to mM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. mM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1984

Preface

Organization

The VS FORTRAN (Virtual Storage FORmula TRANslator) Compiler and
Library, Version 1, Release 4.0, program product is sometimes referred to as Level
1.4.0. It is referred to as Release 4 (or 4.0) in this manual. The changes for this
edition are summarized under "Summary of Amendments" following this section.

This manual describes how to design, develop, test, and run programs using VS
FORTRAN at the 1978 language level. It is designed for two types of users:

• Engineers and scientists who use FORTRAN as a tool in mathematical
problem solving

• Application programmers who use the FORTRAN features to code
FORTRAN programs

This manual is not tntended as a tutorial on the FORTRAN language. It is
designed, rather, for the user who has basic knowledge of FORTRAN and now
wants to apply that knowledge to coding VS FORTRAN programs.

The manual is organized in the following manner. Part 1 describes how to write,
compile, and execute VS FORTRAN programs; Part 2 tells about specific task
implementation when operating in and under certain environments; and the
Appendixes contain information that supplements both parts.

Part 1. Using VS FORTRAN in Source Programs
Describes how to develop and run mathematical problem-solving FORTRAN
programs. In this part, the steps necessary for the development of
FORTRAN application programs are presented in the following order:

• Chapter 1. Introducing VS FORTRAN

• Chapter 2. Referencing Data as Variables, Arrays, and Constants

• Chapter 3. Using Expressions and Assignment Statements

• Chapter 4. Controlling Program Flow

• Chapter 5. Programming Input and Output

• Chapter 6. Subprograms and Shared Data

Preface iii

• Chapter 7. Optimizing Your Program

• Chapter 8. Compiling Your Program and Identifying User Errors

• Chapter 9. Executing Your Program and Fixing Execution-Time Errors

• Chapter 10. Sample Programs and Subroutines

Part 2. Using VS FORTRAN-Environmental Considerations
Describes how to code and/or run with or under various other programs.
(You may remove any sections that do not apply to your installation.)

• Chapter 11. Using VS FORTRAN under VM

• Chapter 12. Using VS FORTRAN under MVS

• Chapter 13. Using VS FORTRAN under TSO

• Chapter 14. Using VS FORTRAN under VSE

• Chapter 15. Using VSAM with VS FORTRAN

• Chapter 16. Using VS FORTRAN Interactive Debug with VS
FORTRAN

• Chapter 17. Using VS FORTRAN under VM/PC

Appendixes
Contain the following supplementary information:

• Assembler Language Considerations

• Object Module Records

• Differences Between VS FORTRAN and Other ffiM FORTRANs

Internal Limits in VS FORTRAN

Glossary
See VS FORTRAN Language and Library Reference for terms specific to VS
FORTRAN as well as some general programming definitions.

iv VS FORTRAN Programming Guide

Industry Standards

The VS FORTRAN Compiler and Library program product is designed according
to the specifications of the following industry standards, as understood and
interpreted by IBM as of May, 1982. The following two standards are technically
equivalent:

• American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77)

• International Organization for Standardization ISO 1539-1980 Programming
Languages-FORTRAN

In addition, ~he bit string manipulation functions are defined in ANSI/ISA-S61.1.

In this manual, the following two standards are also technically equivalent:

• American Standard FORTRAN, X3.9-1966 (also known as FORTRAN 66)

• International Organization for Standardization ISO R 1539-1972 Programming
Languages-FORTRAN

Both the FORTRAN 77 and the FORTRAN 66 standard languages include mM
extensions.

Related Publications

VSFORTRAN

This manual is designed as a guide to VS FORTRAN. It is not intended as a
reference manual. Related information is in the following publications.

• VS FORTRAN Language and Library Reference, GC26-4119

Describes each syntactic element available in FORTRAN 77 and the types of
subprograms in the VS FORTRAN library. Also contains library,
execution-time, and operator messages. Has information about the method
used in the library to compute a mathematical function and the effect of an
argument error upon the accuracy of the answer returned.

• VS FORTRAN Compiler and Library Installation and Customization,
SC26-3988

Contains information on installation planning, on the compiler and library
installation macros, storage requirements, and administrative information about
controlling input/output, and how to create and alter the option table.

• VS FORTRAN Compiler and Library Diagnosis Guide, SC26-3990

Describes how to diagnose failures in the VS FORTRAN compiler and library.

Preface V

I

FORTRAN IV

• VS FORTRAN Compiler and Library Reference Summary, SX26-3731

A pocket-size booklet containing the syntax of each VS FORTRAN statement,
compiler options, and additional information condensed from VS FORTRAN
Language and Library Reference.

In addition, a binder for VS FORTRAN publications and a combination of binder
and publications are available.

• Binder only, SX26-3747

• Binder and the following publications, SBOF-1192

•

•

- VS FORTRAN Programming Guide

- VS FORTRAN Language and Library Reference

- VS FORTRAN Compiler and Library Reference Summary

IBM System/360 and System/370 FORTRAN IV Language, GC28-6515

Describes the source language available in the FORTRAN IV language (VS
FORTRAN at the 1966 language level).

FORTRAN Coding Form, GX28-7327

Aids in coding fixed-form FORTRAN programs.

VS FORTRAN Interactive Debug (lAD)

• VS FORTRAN Interactive Debug Guide and Reference, SC26-4116

• VS FORTRAN Interactive Debug Installation, SC26-4117

• VS FORTRAN Interactive Debug Diagnosis, SY26-3944

• VS FORTRAN Interactive Debug Reference Summary, SX26-3742

Time Sharing Option (TSO)

See "MVS" below for TSO publications.

Virtual Storage Access Method (VSAM)

See "MVS" and "VSE" below for VSAM publications.

vi VS FORTRAN Programming Guide

System and Device Publications

Specific system information and details about block size, track capacity, and so on,
of the various input/output devices are not included in this manual. See the
following publications for this information:

mM 3800 Printing Subsystem

IBM Assembler

IBMDASD

MVS

IBM 3800 Printing Subsystem Programmer's Guide, GC26-3846

Assembler H Version 2 Application Programming: Language Reference, GC26-4037

Assembler H Version 2 Application Programming: Guide, SC26-4036

OS/VS-DOS/VSE-VM/ 370 Assembler Language, GC33-4010

OS/VS-VM/370 Assembler Programmer's Guide, GC33-4021

Guide to the DOS lYSE Assembler, GC33-4024

Introduction to IBM Direct Access Storage Devices and Organization Methods,
GC20-1649

Contains algorithms for direct files.

OS/VS Linkage Editor and Loader, GC26-3813

OS /VS Virtual Storage Access Method (VSAM) Programmer's Guide, GC26-3838

OS/VS Tape Labels, GC26-3795

OS/VS2 MVS Data Management Services Guide, GC26-3875

OS/VS2 MVS Supervisor Services and Macro Instructions, GC28-1114

OS/VS2 MVS Access Method Services, GC26-3841

OS /VS2 MVS JCL, GC28-0692

OS/VS2 MVS Debugging Guide, GT28-0632

OS/VS2 MVS TSO Terminal User's Guide, GC28-0645

OS/VS2 MVS TSO Command Language Reference, GC28-0646

TSO-3270 Structured Programming Facility (SPF) Program Reference Manual,
SH20-1730

Preface vii

VM/SP and eMS

VSE

MVS/Extended Architecture Integrated Catalog Administration: Access Method
Services Reference, GC26-4019

MVS/Extended Architecture VSAM Catalog Administration: Access Method Services
Reference, GC26-4075

MVS / Extended Architecture JCL, GC28-1148

MVS / Extended Architecture Debugging Handbook Vols. 1-5, GC28-1164 through
GC28-1168

MVS / Extended Architecture Data Administration Guide, GC26-4013

MVS/Extended Architecture Supervisor Services and Macro Instructions,
GC28-1154

MVS / Extended Architecture Linkage Editor and Loader, GC26-4011

MVS / Extended Architecture VSAM Administration Guide, GC26-4015

MVS/ Extended Architecture Magnetic Tape Labels and File Structure
Administration, GC26-4003

MVS/Extended Architecture TSO Command Language Reference, GC28-0646, as
updated by Supplement SD23-0259

MVS / Extended Architecture TSO Extensions TSO Command Language Reference,
SC28-1134

VM/SP CP Command Reference for General Users, SC19-6211

VM/SP CMS User's Guide, SC19-6210

VM/SP CMS Command and Macro Reference, SC19-6209

VM/SP Terminal Reference, GC19-6206

VSE/ Advanced Functions System Management Guide, SC33-6094

VSE System Data Management Concepts, GC24-5209

VSE/ Advanced Functions Serviceability Aids and Debugging Procedures, GC33-6099

VSE/Advanced Functions Tape Labels, SC24-5212

VSE/Advanced Functions DASD Labels, SC24-5213

VSE/ Advanced Functions System Control Statements, SC33-6095

VSE/ Advanced Functions System Utilities, SC33-6100

viii VS FORTRAN Programming Guide

VSE/Advanced Functions Macro Reference, SC24-5211

VSE/VSAM Programmer's Reference, SC24-5145

Using VSE/VSAM Commands and Macros, SC24-5144

Using the VSE/VSAM Space Management for SAM Feature, SC24-5192

VM/PC

IBM Virtual Machine/Personal Computer User's Guide, SC24-5254

IBM Extension Documentation

This manual describes how to use the VS FORTRAN source language, which is
comprised of standard language and IBM language extensions to the standard. The
mM extensions are indicated in the following ways:

IBM Extension

In text, the IBM source language extensions are documented as this paragraph is
shown.

'--_________ End of IBM Extension _________ ----'

In examples and figures, IBM extensions are boxed:

DATA TYPE VALID STORAGE LENGTHS DEFAULT LENGTH

Integer D or4 4

Syntax Used in This Manual

The following paragraphs define how to interpret the syntax used in this manual.

Uppercase letters, words, and numbers must be coded in the statement exactly
as shown. For example, the word JOB in a format is to be coded as JOB.

• Lowercase letters and words represent variables, for which user-supplied
information is substituted. For example, the word "option" in a format can be
coded as NODECK.

• Symbols in the following list must be coded exactly as shown:

Preface ix

apostrophe
asterisk *
colon
comma
equal sign =
parentheses 0
period
slash /

• Hyphens (-) join lowercase letters and words and symbols to form a single
variable name. For example, the word "program-name" in a format could be
coded as MYPROGI.

• Square brackets ([]) group optional items from which none, one, or more
choices can be made. For example, the sequence "option[,option]" in a format
could be coded as NODECK or as NODECK,XREF as needed.

• Ellipses (...) specify that the preceding syntactical unit can, optionally, be
repeated. A syntactical unit is a single syntactical item, or a group of
syntactical items enclosed in braces or brackets. For example, the sequence
"option[,option] ... " in a format could be coded as NODECK or as
NODECK,XREF or as NODECK,XREF,MAP as needed.

• OR signs (I) specify that only one of the list of units they separate can be
coded.

• Blanks are used to improve readability. In FORTRAN statements, they are
not significant. In non-FORTRAN statements, they may be significant. Any
non-FORTRAN statement should be coded exactly as shown.

x VS FORTRAN Programming Guide

)

Summary of Amendments

October 1984

Merger of Programming Guide and System Services Manual

The VS FORTRAN Application Programming: Guide, SC26-3985, and selected
parts of VS FORTRAN Application Programming: System Services Reference
Supplement, SC26-3988, have been merged into this manual.

Release 4.0 Enhancements

VSAM Key-Sequenced Data Sets

VS FORTRAN programs can now load and access VSAM KSDS files:

• Records can be retrieved, added, replaced, and deleted, using key values
(designated fields within the records).

• Both direct and sequential processing (by key value) are allowed.

• Multiple alternate keys, as well as a primary key, can be used.

REWRITE and DELETE statements have been added to the language to process
these files, and some existing 110 statements have been expanded.

Reentrant Object Code (MVS and VM)

The compiler can create a reentrant version of the object-code portion of a
program. When object code is reentrant (and placed in a reentrant area), multiple
end-users can share a single copy, thereby saving execution-time storage.

Execution-Time Loading of Library Routines

The library has been restructured to allow more execution-time loading of library
routines. This has multiple benefits:

• Reduces auxiliary storage requirements for load modules

• Speeds execution for users in compile-link-go mode

Summary of Amendments xi

• In an MVS/XA environment, allows many library routines to reside above 16
megabytes, thus providing virtual-storage constraint relief.

(This new library design will not impact users who have Release 2 or Release 3
load modules that access the old reentrant 110 library (via IFYVRENT), and who
do not want to relink. Maintenance is automatically provided, and relinking is only
necessary if Release 4 function is desired.)

Automatic Precision Increase

Faster Character Handling

This feature allows a user to selectively boost the precision of floating-point items
in an existing program without recoding it. Single precision items can be made
double, double can be made extended. Users merely recompile the program with a
specified option (AUTODBL).

Character assignment and comparison operations are now handled by in-line code,
rather than by calls to the library. This speeds execution time. Error messages
previously issued from the library, for conditions such as overlap detection and
invalid character length, will no longer appear.

Improved Diagnostic Support

Improved I/O Support

The following enhancements will allow easier program maintenance and debugging.

• MAP and XREF output can be formatted to fit a terminal screen.

• LIST output now gives ISNs, and XREF output now identifies variables
referenced but not initialized.

• An explicit SDUMP compiler option is now available (previously, this was
available only as an installation-wide default).

• SDUMP tables have been condensed and simplified, decreasing object module
size. The symbol table size, however, remains the same.

• Execution-time error messages have been expanded to supply line numbers,
ISNs, and offsets.

The following improvements have been made to VS FORTRAN I/O statements:

• For sequential unformatted I/O, you can now use all record formats. Fixed,
fixed blocked, undefined, variable, and variable spanned formats are
supported.

• You can now use data initialization values in the character and double
precision explicit-type statements.

• You can specify a character type unit designator for list-directed READ and
WRITE statements. This allows you to do list-directed reads and writes to an
internal file.

xii VS FORTRAN Programming Guide

• The NUM parameter is now a valid control list parameter for the unformatted
READ I/O statements for LANGL VL(77). The NUM parameter returns the
number of bytes transferred.

• Several extensions have been made to the namelist READ and WRITE
statements. You can now use the keywords UNIT and FMT. The unit
designator for namelist I/O can be character type, so you cando namelist
reads and writes to an internal file. The unit designator can also be an asterisk
to represent an installation-dependent unit. You can now use a shortened form
for reading and printing at LANGL VL(77).

Release 3.1, March 1984

VS FORTRAN Interactive Debug Support

When a VS FORTRAN program is executed, the user has a choice of two different
execution options:

• DEBUG, which activates VS FORTRAN Interactive Debug immediately; and

• NODEBUG, the mM default, which does not invoke VS FORTRAN
Interactive Debug.

Note: The TEST compiler option is not necessary for VS FORTRAN Interactive
Debug.

Release 3.0, March 1983

Character Data Type Handling

VS FORTRAN Release 3.0 provides for passing character length arguments in a
manner that is not apparent to the user.

In addition:

• Character and noncharacter data types are allowed in the same common block.

• Character and noncharacter data types are allowed in an EQUIV ALANCE
relationship.

The CHARLEN compiler option may be specified to set the maximum length
of the character data type to a range of 1 through 32767. The default
maximum length remains 500 characters, or whatever was set at installation
time.

• The SC option has been removed because the character length is now passed in
a manner that is not apparent to the user.

Summary of Amendments xiii

Debugging and Diagnostic Aids

• The TRMFLG compiler option may be specified to display a source statement
in error on the SYSTERM data set, along with the diagnostic message.

• A symbolic dump of variables at abnormal termination can be obtained for
modules not compiled with the NOSDUMP compiler option.

• A symbolic dump of variables in a module not compiled with the NOSDUMP
option can be obtained on request by calling the SDUMP library routine.

• The SYM compiler option may be specified to produce SYM cards along with
the object deck.

• The SRCFLG compiler option may be specified to insert diagnostic messages
in the printed source listing.

INCLUDE Statement Improvement

Miscellaneous Changes

• INCLUDE statements can be selectively activated during compilation.

• Blocked file support has been added to the INCLUDE facility.

• OPEN, CLOSE, and INQUIRE parameters that are constants are checked at
compile time.

• VS FORTRAN continues executing after transmission input/output errors
have occurred.

• Formatting for a new direct-access data set has been provided for the OPEN
statement.

• For direct-access I/O, the records of a file must be either all formatted or all
unformatted, not mixed.

• Various service changes have been made.

Warning: Every program that has been compiled with versions of VS FORTRAN
previous to Release 3.0, and that either references or defines a user subprogram
that has character-type arguments or is itself of character type, must be recompiled
with VS FORTRAN Release 3.0.

xiv VS FORTRAN Programming Guide

Contents

Part 1. Using VS FORTRAN in Source Programs 1

Chapter 1. Introducing VS FORTRAN 3
VS FORTRAN-A Quick Overview 4

VS FORTRAN Features 4
FORTRAN Language Level 77 6
FORTRAN Language Level 66 7
Using Fixed- and Free-Form Input 7

Chapter 2. Referencing Data as Variables, Arrays, and Constants 9
Kinds of Data and Data Entities 9
Declaring Data Types and Lengths 10

Implied Default Data Type Declaration 12
Explicit Data Type Declaration 12
Constants 15
Variables 19
Arrays and Subscripts 20
Substrings of Character Data 23

Using Data Efficiently 23
Initializing Data-DATA Statement 24
Managing Data Storage-EQUIVALENCE Statement 26

Using the Automatic Precision Increase Facility-AUTODBL Option 29
Precision Conversion Process 29
Format of the AUTODBL Option 31
Programming Considerations with AUTODBL 34
Promotion of Single and Double Precision Intrinsic Functions 39

Chapter 3. Using Expressions and Assignment Statements 45
Defining and Using Expressions 45

Arithmetic Expressions 45
Character Expressions 47
Relational Expressions 47
Logical Expressions 49

Assigning Values to Variables, Array Elements, and Character Substrings 50
Arithmetic Assignments 51
Character Assignments 51
Logical Assignments 52
Saving Coding Effort with Statement Functions 53

Bit String Functions 53
Logical Intrinsic Functions 53
Shift Intrinsic Function 54
Bit Testing and Setting Intrinsic Functions 55

Contents XV

Chapter 4. Controlling Program Flow 57
Arithmetic IF Statement 57
Logical IF Statement 57
Block IF Statement 58
Executing Procedures Repetitively-DO Statement 62

Processing One-Dimensional Arrays-DO Statement 62
Processing Multidimensional Arrays-Nested DO Statement 63
Programming Loops-DO Statement 64

Using Program Switches-Assigned GO TO Statement 66
Using Conditional Transfers-Computed GO TO Statement 67
Suspending Execution Temporarily-PAUSE Statement 67
Stopping Programs Permanently-STOP Statement 68
Ending Your Program-END Statement 68

Chapter S. Programming Input and Output 69
Access Mode and File Organization 69

Sequential Access 70
Direct Access 71
Keyed Access 72
Record Format and Length 74
Block Sizes 80

UsingVS FORTRAN Input/Output Statements 80
Specifying the Input/Output UNIT Parameter 81
Monitoring Input/Output Errors-IOSTAT and ERR Parameters 82
Connecting to an External File-OPEN Statement 82
Formatting New, Direct, Non-VSAM Data Sets-OPEN Statement 86
Creating File Records-WRITE Statement 86
Retrieving File Records-READ Statement 87
Obtaining File Information-INQUIRE Statement 87
Disconnecting a File-CLOSE Statement 88

Types of I/O 89
Using Unformatted and Formatted I/O 89
Formatting FORTRAN Records-FORMAT Statement 91
Internal I/O 95
NAMELIST I/O 96
Using List-Directed Input/Output 97
Asynchronous I/O for MVS Only 99

Sequential Access I/O Statements 100
Using the OPEN Statement-Sequential Access 100
Using the WRITE Statement-Sequential Access 100
Using the READ Statement-Sequential Access 101
Using the ENDFILE Statement-Sequential Access 102
Using the REWIND Statement-Sequential Access 102
Using the BACKSPACE Statement-Sequential Access 102
Using the CLOSE Statement-Sequential Access 103

Direct Access I/O statements 103
Using the OPEN Statement-Direct Access 103
Using the WRITE Statement-Direct Access 104
Using the READ Statement-Direct Access 104
Using the CLOSE Statement-Direct Access 105

Keyed Access I/O Statements 106
Using the OPEN Statement-Keyed Access 106
Using the READ Statement-Keyed Access 107

xvi VS FORTRAN Programming Guide

Using the WRITE Statement-Keyed Access 109
Using the REWRITE Statement-Keyed Access 110
Using the DELETE Statement-Keyed Access 110
Using the INQUIRE Statement-Keyed Access 110
Using the REWIND Statement-Keyed Access 110
Using the BACKSPACE Statement-Keyed Access 111

Chapter 6. Subprograms and Shared Data 113
Program Hierarchy 114
Invoking Subprograms 116

Invoking Function Subprograms 116
Invoking Subroutine Subprograms-CALL Statement 117
Invoking FORTRAN-Supplied Functions 117

Coding Subprograms 118
Coding Function Subprograms 119
Coding Subroutine Subprograms 120
Specifying Alternative Entry Points-ENTRY Statement 120
Specifying Alternative and Variable Return Points-RETURN

Statement 121
Retaining Subprogram Values-SA VB Statement 122

Sharing Data as Arguments or in Common Areas 123
Passing Arguments to Subprograms 123

Passing Arguments to a Function Subprogram 123
Passing Arguments to a Subroutine Subprogram 124
General Rules for Arguments 124

Using Common Areas-COMMON Statement 125
Passing Arguments in Common 126
Referencing Shared Data in Common 127

128
130

133
135

Efficient Arrangement of Variables-COMMON Statement
EQUIVALENCE Considerations-COMMON Statement
Using Blank and Named Common (Static and Dynamic)
Initializing Named Common-Block Data Subprograms

Using the Execution-Time Library 136
Mathematical and Character Functions 136
Alternative Mathematical Library Subroutines 137
Error Handling Subroutines 137
Service and Utility Subroutines 137

Chapter 7. Optimizing Your Program 139
OPTIMIZE Compiler Option 139
Optimization Techniques 140

Programming Considerations When Using Optimization 141
Debugging Optimized Programs 143
Selecting the Higher Optimization Levels 144
Writing Programs of Efficient Size 144
Using Unformatted I/O 145
Implied-DO I/O Statements 145
Writing Efficient Character Manipulations 146
Using Logical Variables of Length 4 146
Using Integer Variables of Length 4 146
Eliminating EQUIVALENCE Statements 147
Initializing Large Arrays during Execution 147
Using Common Blocks Efficiently 147
Passing Subroutine Arguments in Common Blocks 148
Avoiding Adjustable Dimensioned Arrays 148

Contents xvii

Writing Critical Loops Inline 149
Ensuring Recognition of Duplicate Computations 149
Ensuring Recognition of Constant Computations 149
Ensuring Recognition of Constant Operands 150
Eliminating Scaling Computations 150
Defining Arrays with Identical Dimensions 150
Defining Arrays with Identical Element Specifications 151
Using Critical Variables Carefully 151
Avoiding Unneeded Fixed/Float Conversions 151
Minimizing Conversions between Single and Double Precision 151
Using Scalar·Variables as Accumulators 152
Using Efficient Arithmetic Constructions 152
Using IF Statements Efficiently 152
Using the Object Program Listing 153

Source Considerations with OPTIMIZE(3) 153
Common Expression Elimination 153
Computational Reordering 154
Instruction Elimination 154

Chapter 8. Compiling Your Program and Identifying User Errors 155
Compiling Your Program 155

Requesting Compilation 155
Automatic Cross-Compilation 155
Compiling Programs for Interactive Debug Under CMS and TSO 155
Printing on the IBM 3800 Printing Subsystem 156
Using the VS FORTRAN INCLUDE and Conditional INCLUDE

Statements 157
Using the Compiler Options 157
Conflicting Compiler Options 163
Modifying Compilation Options-@PROCESS Statement 164
Using VS FORTRAN Interactive Debug with VS FORTRAN 164
Compiler Output 164

Identifying User Errors 167
Using the Compiler Output Listing 169

Compilation Identification 169
Source Program Listing-SOURCE Option 170
Source Program Listing-SRCFLG Option 172
Diagnostic Message Listing-FLAG Option 172
Using the SXM Option 174
Using the MAP and XREF Options 174
Source Program Map--MAP Option 175
Source Program Cross-Reference Dictionary-XREF Option 178
End of Compilation Message 181

Using the Terminal Output Display 181
Using the Standard Language Flagger-FIPS Option 182
Object Module as Link-Edit Data Set 183

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 185
Executing Your Program 185

Reentrant vs. Nonreentrant Programs 185
Scenarios for using the RENT Compiler Option 187
VS FORTRAN Separation Tool (for Both VM and MVS) 189

Fixing Execution-Time Errors 189
Execution-Time Messages 190

xviii VS FORTRAN Programming Guide

Extended Error Handling 197
Using the Execution-Time Options 200
Static Debug Statements 201
Object Module Listing-LIST Option 204
Formatted Dumps 209

Chapter 10. Sample Programs and Subroutines 213

Part 2. Using VS FORTRAN-Environmental Considerations 225

Chapter 11. Using VS FORTRAN under VM 227
CP and CMS Commands 227
Creating Your Source Program-CMS System Product Editor 228
Using the VS FORTRAN Compiler Options 229

Specifying CMS Line Numbers When Debugging 230
Using the FORTRAN INCLUDE Statement 230
Printing on the IBM 3800 Printing Subsystem under CMS 231

Compiling Your Program 232
Compiler Output 233
Automatic Cross-System Support 235
Using the VS FORTRAN Separation Tool 235

CMS EXEC Files to Execute the Separation Tool 239
Selection of Load Mode or Link Mode 246
Creating an Executable Program and Running It 246

Using the LOAD, INCLUDE, and START Commands 247
Using the LOAD, INCLUDE, and GENMOD Commands 248
Using the LKED Command 249

Specifying Execution-Time Options under CMS 250
Execution-Time Files 251

Predefined Files 251
User-Defined Files 252
Using the FILEDEF (File Definition) Command 253

Execution-Time Output 255
Execution without Error 255
Execution with Errors 256

Chapter 12. Using VS FORTRAN under MVS 257
Executing Your Program with Job Control Statements or Cataloged

Procedures 257
Job Processing 257
Identifying a Job-JOB Statement 258
Assigning Default Values-PROC Statement 259
Requesting Execution-EXEC Statement 260
Defining Files-DD Statement 262
Using and Modifying Cataloged Procedures 264

Requesting Compilation 270
Printing on the IBM 3800 Printing Subsystem under MVS 271
Using the FORTRAN INCLUDE Statement 273
Compilation Data Sets 273
Compiler Output 274
Compiler Data Sets 274

Execution-Time Loading of Library Modules 276
Selection of Link Mode or Load Mode 276

Link-Editing Your Program 278

Contents xix

Automatic Cross-System Support 278
Linkage Editor Input 279
Cataloging Your Object Module 279
Cataloging Your Load Module 280
Executing a Link-Edit 280

Using the Loader 283
Loader Options 283
Loader Data Sets 284
Load Module Execution Data Sets 285
Using Load Module Data Sets 287
Making the VS FORTRAN Library Available at Execution 287
Specifying Execution-Time Options 288
Executing the Load Module 288
Load Module Execution-Time Output 289
Requesting an Abnormal Termination Dump 290

Using the VS FORTRAN Separation Tool 290
Using Partitioned Data Sets 299

Using Asynchronous Input/Output 301
Sequential Files-System Considerations 303
Direct Files-System Considerations 303
Input/Output-System Considerations 304
Defining FORTRAN Records-System Considerations 305

Record Formats 305
Defining Records 307

Cataloging and Overlaying Programs-System Considerations 307
Overlaying Programs in Storage 307

Invoking the VS FORTRAN Compiler 309
MVS/XA Considerations 311

MVS/XA Linkage Editor Attributes 312
FORTRAN and MVS/XA Linkage Editor and Loader Interaction 313
Overriding AMODE/RMODE Attributes 314
Using Dynamic Common above the 16-Megabyte Line 314
Extended Architecture Hints for FORTRAN Users 315

Chapter 13. Using VS FORTRAN under TSO 317
Using the TSO Commands 317
User-Defined Files 317
File Identification-TSO ALLOCATE Command 319
Creating Your Source Program-TSO EDIT Command 320
Compiling Your PrograDl-TSO ALLOCATE and CALL Commands 321

Specifying TSO Line Numbers When Debugging 322
Compiler Output 322

Link-Editing and Executing Your Program under TSO 323
Link-Editing Your Program-TSO LINK Command 323

Executing Your Program 324
Specifying Execution-Time Options 327
Using the CALL Command-TSO Load Module Execution 327

Fixing Execution Errors under TSO 328
Requesting a Command Procedure under TSO 329

Command Procedures for Foreground Processing 329
Command Procedures for Background Execution 329

System Considerations under TSO 329

Chapter 14. Using VS FORTRAN under VSE 331

xx VS FORTRAN Programming Guide

Executing Your Program with Job Control Statements or Cataloged
Procedures 331

Job Processing 331
Writing and Modifying Cataloged Procedures 332

Requesting Compilation 333
Compiling a Single Source Program 334
Batch Compilation of More Than One Source Program 334
Requesting Compilation Only 334
Cataloging Your Source 335
Compiler Files 335
Printing on the mM 3800 Printing Subsystem under VSE 335
Using the FORTRAN INCLUDE Statement 336

Compiler Output 337
Cataloging Your Object Module 338

Execution-Time Loading of Library Modules 338
Selection of Link Mode or Load Mode 338

Link-Editing Your Program 340
Automatic Cross-System Support 340
Link-Editing for Immediate Execution 341
Cataloging Your Load Module 341
Executing a Link-Edit 342
Linkage Editor Output 343

Executing Your Program 344
Specifying Execution-Time Options 344
Load Module Logical Units 344
Executing the Load Module 345

Load Module Execution-Time Output 347
Execution without Error 347
Execution with Errors 347
Requesting an Abnormal Termination Dump 348

Sequential Files-System Considerations 349
Direct Files-System Considerations 349
Input/Output-System Considerations 349
Defining FORTRAN Records-System Considerations 350
Cataloging and Overlaying Programs-System Considerations 352

Overlaying Programs in Storage 352

Chapter 15. Using VSAM with VS FORTRAN 355
Organizing Your VSAM File 355

VSAM Sequential File Organization 355
VSAM Direct File Organization 355
VSAM Keyed File Organization 356

Processing VSAM Files 356
VSAM Terminology 357
Defining VSAM Files 357

Defining VSAM Files-General Considerations 358
Examples of Defining a VSAM File 359

Defining Alternate Indexes 361
Alternate Index Terminology 362
How to Build and Use Alternate Index Paths 363
Planning to Use Alternate Indexes 363
Cataloging and Loading Alternate Indexes 363

Loading Your VSAM KSDS 364
Using Operating System Data Definition Statements 365
Processing DEFINE Commands 367

Contents xxi

Source Language Considerations-VSAM Files 369
Processing VSAM Sequential Files 370
Processing VSAM Direct Files 371
Processing VSAM Keyed Files 374

Obtaining the VSAM Return Code-lOST AT Option 375

Chapter 16. Using VS FORTRAN Interactive Debug with VS FORTRAN 377
Compiling a VS FORTRAN Program 377
Executing with the DEBUG Option 378
Using the Split Screen (ISPF /PDF) 380

Chapter 17. Using VS FORTRAN under VM/PC 381
Using NUCXLOAD with VS FORTRAN 381
Downloading VS FORTRAN into VM/PC 382

VS FORTRAN Programming Tips 386
VS FORTRAN Restrictions 386

Appendixes 387

Appendix A. Assembler Language Considerations 389
Subprogram References in FORTRAN 389

Argument List 389
Save Area 390
Calling Sequence 390

Linkage in Assembler Subprograms 390
Called Assembler Subprograms 391
Called and Calling Assembler Subprograms 391
Character Argument Linkage Convention 391

Main Programs 393
Using FORTRAN Data in Assembler Subprograms 394

Using Common Data in Assembler Subprograms 394
Retrieving Arguments in an Assembler Program 394
Internal Representation of VS FORTRAN Data 398

Appendix B. Object Module Records 403

Appendix C. Differences between VS FORTRAN and Other mM
FORTRANs 411

Passing Character Arguments 413

Appendix D. Internal Limits in VS FORTRAN 415
Nested DO Loops 415
Expression Evaluation 415
Nested Statement Function References 415
Nested INCLUDE Statements 415
Nested Block IF Statements 415
Character Constants 416
Hollerith Constants 416
Referenced Variables 416
Parentheses Groups 416
Statement Labels 416
DISPLAY Statements 417
Repeat Count 417

xxii VS FORTRAN Programming Guide

Index 419

Contents xxiii

Figures

1. Available Data Types and Lengths for Variables and Arrays 11
2. Three-Dimensional Array-Implicit and Explicit Lower Bounds 21
3. Arrays-Effect of Negative Lower Bounds 22
4. Sharing Storage between Arrays-EQUIVALENCE Statement 27
5. An EQUIVALENCE Storage Layout That Promotes Efficiency 28
6. An EQUIVALENCE Storage Layout That Reduces Execution

Efficiency 28
7. Promotion of Single and Double Precision Intrinsic Functions for

LANGL VL(77) 39
8. Promotion of Single and Double Precision Intrinsic Functions for

LANGLVL(66) 41
9. Arithmetic Operators and Operations 46

10. Relational Operators and Their Meanings 47
11. Logical Operators and Their Meanings 49
12. Block IF Statement-Valid Forms 60
13. Nesting Block IF Statements 61
14. Summary of File Organization and FORTRAN Access 70
15. Summary of Non-VSAM File Organization and Record Formats 74
16. Fixed-Length Records-Unblocked 75
17. Fixed-Length Records-Blocked 75
18. Variable-Length Records-Unblocked 76
19. Variable-Length Records-Blocked 76
20. Spanned Variable-Length Records 77
21. EBCDIC Sequential Data Sets-Structure of Variable-Spanned Blocked

Unformatted Records 78
22. EBCDIC Sequential Data Sets-Structure of Variable-Spanned Unblocked

Unformatted Records 78
23. Undefined-Length Records 79
24. Some Codes Used with the FORMAT Statement 92
25. Display for FORMAT E14.5E2 94
26. Calling and Called Program Hierarchy 115
27. CALL Statement Execution 117
28. Transmitting Assignment Values between Common Areas 126
29. VS FORTRAN Compiler Options 157
30. Compiler Output Using Explicit Options 166
31. Source Program Listing Example-SOURCE and SRCFLG Options 171
32. Examples of Compiler Messages-FLAG Option 172
33. Example of a Storage Map-MAP Option 176
34. Example of a Cross-Reference Dictionary-XREF Option 179
35. Example of Compile-Time Messages-TRMFLG Option 182
36. Sample Traceback Map 192
37. Using Static Debug Statements 202
38. Object Module Listing Example-LIST Compiler Option 206
39. CMS Commands Often Used with VS FORTRAN 229

Figures XXV

40.
41.
42.
43.
44.
45.

46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.

FOVSRCS, Compile Reentrant Program and Separate CSECTs 240
FOVSRSEP, Separate Reentrant and Nonreentrant CSECTs 243
Predefined Files 252
Cataloged Procedure FORTVC-Compile Only 265
Cataloged Procedure FORTVCL-Compile and Link-Edit 266
Cataloged Procedure FORTVCLG-Compile, Link-Edit, and
Execute 267
Cataloged Procedure FORTVLG-Link-Edit and Execute 268
Cataloged Procedure FORTVG-Execute Only 268
Cataloged Procedure FORTVCG-Compile and Load 269
Cataloged Procedure FORTVL-Load Only 270
Compiler Data Sets 275
Compiler Data Set DCB Default Values 276
Linkage Editor Data Sets 283
Loader Data Sets 285
Load Module Execution Data Sets 286
Load Module Execution Sequential Data Set DCB Default Values 287
Load·Module Execution Direct Access Data Set DCB Default Values 287
JCL Procedure to Compile, Separate, and Link 294
JCL Procedure to Compile, Separate, Link-Edit, and Go 296
JCL Procedure to Separate, Link-Edit, and Go 298
TSO Commands Often Used with VS FORTRAN 318
Allocating TSO Compilation Data Sets 321
Load Module Logical Units 345
Library Names for Error Handling and Service Routines 348
VSE Logical Units and Devices Allowed 351
VSAM Terminology· 357
FORTRAN Statements Valid with VSAM Files 369
VS FORTRAN Modules Needed for Downloading 382
CMS Commands to Download VS FORTRAN from a Local Session 384
Object Module Structure 410

xxvi VS FORTRAN Programming Guide

Part 1. Using VS FORTRAN in Source Programs

Part 1 discusses the following topics:

Chapter 1, "Introducing VS FORTRAN" on page 3

Chapter 2, "Referencing Data as Variables, Arrays, and Constants" on
page 9

Chapter 3, "Using Expressions and Assignment Statements" on page 45

Chapter 4, "Controlling Program Flow" on page 57

Chapter 5, "Programming Input and Output" on page 69

Chapter 6, "Subprograms and Shared Data" on page 113

Chapter 7, "Optimizing Your Program" on page 139

Chapter 8, "Compiling Your Program and Identifying User Errors" on
page 155

Chapter 9, "Executing Your Program and Fixing Execution-Time Errors" on
page 185

Chapter 10, "Sample Programs and Subroutines" on page 213

The sample programs and subroutines at the end of this part illustrate how to use
VS FORTRAN to obtain solutions to problems.

Part 1. Using VS FORTRAN in Source Programs 1

~
/J

Chapter 1. Introducing VS FORTRAN

FORTRAN (FORmula TRANslator) is a programming language especially useful
for applications involving mathematical computations and other manipulations of
numeric data. It is particularly suited to scientific and engineering applications.

FORTRAN looks and reads much like mathematical equations, so that you can use
conventional mathematical constructions to control computer operations.
FORTRAN is problem oriented and relatively machine independent; this frees you
from machine restrictions and lets you concentrate on the logical aspects of your
data processing problems.

Compared with machine-oriented languages, FORTRAN provides easy program
development, decreased debugging effort, and overall greater data processing
efficiency.

VS FORTRAN is designed to make use of IBM's virtual storage architecture.

Source programs written in VS FORTRAN consist of statements you write to solve
your problem; these statements must conform to the VS FORTRAN programming
rules.

The VS FORTRAN compiler analyzes your source program statements and
translates them into machine language, which is suitable for execution on a
computer system. The VS FORTRAN compiler also produces other output to help
debug source and object programs.

The VS FORTRAN compiler generates object programs that use the services of the
VS FORTRAN execution-time library, and of the supporting operating systems. It
depends upon them for the programming services it must use.

The VS FORTRAN compiler operates under control of one of the following
operating systems:

• VM/ SP (all releases)

• MVS/SP (all releases, including MVS/XA)

• VSE/ Advanced Functions (Release 3 or later)

• VM/PC (Release 1 or later)

In this manual, the VM/SP system is referred to as "VM"; the MVS systems are
collectively referred to as "MVS" (although special MVS/XA considerations are
discussed in Chapter 12, "Using VS FORTRAN under MVS" on page 257); and

Chapter 1. Introducing VS FORTRAN 3

VSE/ Advanced Functions is referred to as "VSE." VM/PC is discussed in
Chapter 17, "Using VS FORTRAN under VM/PC" on page 381.

You can compile your program under anyone of these systems and then link-edit
the program and its subroutines to execute under any of the others.

The examples given in the following chapters are included in the sample programs
in Chapter 10, "Sample Programs and Subroutines" on page 213.

Note: The VSE/ Advanced Functions version of the VS FORTRAN compiler and
library is not supported under CMS/DOS.

VS FORTRAN-A Quick Overview

The VS FORTRAN Compiler and Library is an IBM program product that runs
under the systems listed above. The Compiler and Library are packaged together
as a single program product; the Library is also available separately.

VS FORTRAN implements the most recent FORTRAN standards and maintains
older capabilities. The compiler accepts two language levels:

FORTRAN 77-that is, 1978 American National Standard FORTRAN
(technically equivalent to ISO FORTRAN 1980) plus IBM extensions

FORTRAN 66-that is, 1966 American National Standard FORTRAN
(technically equivalent to ISO FORTRAN 1972) plus mM extensions

VS FORTRAN has facilities that can make system management easy, reduce
programming development effort, and increase programmer productivity.

In addition, the following sections list features that give VSFORTRAN efficient
execution-time performance plus ease of use.

VS FORTRAN Features

1978 ANSI
Complies with standards.

1966 ANSI
Complies with standards.

Optimized Object Code
Enables faster execution because four levels of optimization are available.

Reentrant Compiler and I/O Library
Offers virtual storage savings because the compiler and many library
modules can be shared concurrently by many problem programs.

Cross-Compilation
Enables flexible system use because you can compile on one of the
supported operating systems, link-edit, and execute on another supported
system.

4 VS FORTRAN Programming Guide

Upward Compatibility
Enables valid source programs written in the old language to be link-edited
to execute with programs written in current language; old programs can
make use of the VS FORTRAN library routines.

Warning: Programs compiled with versions of VS FORTRAN prior to
Release 3.0 that reference a subprogram with character-type arguments,
must be recompiled with VS FORTRAN Release 3.0 and later. Character
subprograms compiled with versions of VS FORTRAN prior to Release 3.0
must be recompiled. Any program compiled with versions of VS FORTRAN
prior to Release 3.0 that references the intrinsic character manipulation
functions CHAR, LEN, INDEX, LGE, LGT, LLE, or LLT, must be
recompiled.

VSAM Capabilities
Let you access key sequenced (KSDS), entry sequenced (ESDS), and
relative record (RRDS) files directly from the VS FORTRAN program.

INCLUDE Statements
Let you place prewritten sequences of code inline in your programs.
INCLUDE statements can be selectively activated during compilation.

Bit String Manipulation Functions
Provide for interrogation and manipulation of integer data on a bit-by-bit
basis.

DC CompHer Option
Defines the names of common blocks to be allocated at execution time. This
allows specification of very large common blocks that can reside in the
additional storage space available through MVS/XA.

Formatted Traceback
Provides debugging information in sentence form.

DEBUG Execution-Time Option
Allows compiled programs to execute under the control of VS FORTRAN
Interactive Debug.

Free-Form Source Option
In VS FORTRAN, both free format and fixed format are available. You can
use whichever you prefer when coding new programs, and existing programs
can always be recompiled without change to their source format. For more
details, see "Using Fixed- and Free-Form Input" on page 7.

Language Flagger
Helps you ensure that VS FORTRAN programs conform to the selected
level of the current FORTRAN standard.

Symbolic Dump at Abend
Provides a symbolic dump of variables at abnormal termination; a symbolic
dump of variables can also be requested on the object time error unit.

Chapter 1. Introducing VS FORTRAN 5

Asynchronous Input/Output Statements and Options
Enable you to transfer unformatted data between external sequential files
and arrays in your FORTRAN program and, while the data transfer is taking
place, continue other processing (MVS only).

Alternate Mathematical Library
Gives more precision for some mathematical functions.

NAMELIST Statement
Specifies I/O list of data names.

Character and N oncharacter Data Types
Allowed in the same common block and in an equivalence relationship. In
addition, you may increase (by compiler option) character data type length
from 500 bytes to·a maximum of 32767 bytes.

Extended Error Handling
Gives you control over program execution after an error.

FORTRAN Language Level 77

OPEN, CLOSE, and INQUIRE Statements
Let you define and control FORTRAN files.

Internal Files
Let you format records in virtual storage.

IF Statements
Specify alternate paths of execution, through arithmetic, logical, and block IF
(including ELSE, ELSE IF, END IF) statements.

Character Data Type
Provides flexible and direct control of string data by means of:

• Concatenation
• Substring
• Internal file

PARAMETER Statement
Defines named constants.

Intrinsic Functions
Include generic functions, arithmetic functions, and character functions.

IMPLICIT Statement
Provides user-specified default data type declaration.

Expressions
Allow valid combinations of arithmetic, character, and logical variables, and
other expressions.

DO Statement
Gives a convenient way to program loops; integer, real, and double precision
DO variables are allowed; negative incrementation parameter is allowed.

6 vs IFORTRAN Programming Guide

PROGRAM Statement
Names a main program.

GENERIC Statement
Specifies generic function names.

INTRINSIC Statement
Explicitly defines intrinsic functions.

SAVE Statement
Saves values in named common blocks, variables, or arrays after a called
program completes executing.

Edit Descriptors
Provide an extensive set of edit descriptors.

List-Directed Formatting
Provides default formatting.

Variable Formats
Let you construct 110 formats at execution time.

FORTRAN Language Level 66

GENERIC Statement
Specifies generic function names.

Ampersand (&)
Provided for use as special character.

DEFINE FILE Statement
Specifies a direct access file.

FIND Statement
Efficiently locates next input record in a direct access file.

PUNCH Statement
Provides installation-dependent WRITE statement.

Using Fixed- and Free-Form Input

Fixed-form input is the traditional way to code FORTRAN programs; the
FORTRAN Coding Form is designed to help guide you in fixed-form program
preparation ..

Chapter 1. Introducing VS FORTRAN 7

mM Extension

If you're using free-form input, you can enter your source program into the file,
line by line, according to the rules for free-form source programs.

The maximum line length you can enter is 80 characters; however, your source
statements (excluding statement numbers and statement break characters) can be
up to 1320 characters long.

You must ensure that sequence numbers do not appear in your free-form source
(columns 73 through 80).

'___ __________ End of IBM Extension __________

For reference documentation about VS FORTRAN fixed- and free-form input, see
VS FORTRAN Language and Library Reference.

8 VS FORTRAN Programming Guide

Chapter 2. Referencing Data as Variables, Arrays, and Constants

Kinds of Data and Data Entities

The basic kinds of data available to the programmer in VS FORTRAN are
arithmetic, character, and logical data:

Arithmetic data is decimal numbers, with either integer or real value (including
complex numbers).

Character data is alphameric strings.

Logical data is truth values.

This data is made available to a VS FORTRAN program by way of program data
entities called variables, arrays, and constants, that you can declare:

Variables and arrays are program areas in which the working data of the
program resides while being used.

Constants are fixed data values known to the program, provided as necessary in
the program context.

Variables, arrays, and constants all have associated data types and lengths
corresponding to the associated data values. Variables and arrays are named so
that program statements may refer to them; constants may be named if desired.

A variable contains a single value, or datum; an array contains multiple values, or
data, of the same type and length. A single value of an array is called an element
of the array, and is referred to by its relative position in the array and the name of
the array.

Variables or arrays may be declared, for example, to internally store for program
use the contents of a record of an external data file as the file is read by the
program. The data in successive records referred to by the variable or array would
most likely vary in value; hence the name "variable."

An example of a constant is the number 3.1416 appearing in a source statement.
This number is an unvarying arithmetic constant that is stated in the program for
use in calculations involving pi.

In VS FORTRAN, you may default and/or explicitly declare the data types and
lengths of the program variables, arrays, and constants.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 9

VS FORTRAN statements useful for declaring data types and lengths are
summarized below:

Statement Name Statement Function

IMPLICIT Explicitly specifies the data types and lengths of all variables,
arrays, and user-supplied functions whose names begin with
particular letters.

Explicit Type Declares the data type for specific variables, arrays, and
functions.

PARAMETER Names a value and allows programs to subsequently refer to
that value by the name.

DIMENSION Defines an array of up to seven dimensions.

DATA Initializes variables and arrays to the stated values.

EQUIVALENCE Controls storage allocation within a program.

The examples in Chapters 2 and 3 are summarized in Chapter 10, "Sample
Programs and Subroutines" on page 213.

Declaring Data Types and Lengths

When you write a VS FORTRAN program, you declare the data types and lengths
associated with your variable and array names either implicitly or explicitly.

The available data types and their possible and default lengths are shown in
Figure 1 on page 11.

10 VS FORTRAN Programming Guide

~i
I'

f POSSIBLE DEFAULT
STORAGE LENGTHS LENGTH

DATA TYPE IN BYTES IN BYTES

INTEGER 2 ~ 4

REAL 4 1 ' 8 or 16 1 4

DOUBLE

PRECISION 8 8

COMPLEX 8 1 ' 16 or 32 1
8

LOGICAL 8 4 4

CHARACTER 1 through 32767

Figure 1. Available Data Types and Lengths for Variables and Arrays

The data types integer, real, double precision, and complex describe arithmetic
data:

• The integer data type refers to whole numbers for which fixed-point arithmetic
operations are used.

• The real data type refers to decimal numbers for which floating-point
arithmetic operations are used.

• The double precision data type refers to the use of two computer words to
represent a number in accordance with the required precision.

• The complex data type refers to paired decimal numbers-first the real part
and then the imaginary part, both regarded as real numbers.

The logical data type describes truth-value data, which may have only the value
true or false. Logical variables are used in logical operations.

The character data type describes alphameric data, that is, the characters in the
character code known to the computer system. For VS FORTRAN, these are
EBCDIC coded characters that are handled as byte strings.

You define the data type of a variable or array name either through implicit naming
conventions or through explicit definitions.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 11

Implied Default Data Type Declaration

In VS FORTRAN, if you don't otherwise declare a name, it is given a data type of
real or integer, and a length of 4 bytes, depending onthe initial letter:

Names that begin with I through N are given type integer 4 bytes long.

Names that begin with any other letter are given type real 4 bytes long.

mM Extension

Names that begin with the currency symbol ($) are given type real 4 bytes
long.

"--__________ End of IBM Extension __________ ...,j

No other data types have an implied default declaration.

Explicit Data Type Declaration

There are two ways you can declare data type explicitly-using the IMPLICIT
statement or using explicit type statements.

• Implicitly

In the IMPLICIT statement, the first letter of a name is associated with a
particular type. Thus, if you want to declare all names beginning with a certain
letter or $ (or range of letters) as a particular type and, optionally, length, use
the IMPLICIT statement. For example,

IMPLICIT CHARACTER*15 (C)

would cause a name, CAT, to be given type character, 15 characters long.

The IMPLICIT statement declaration takes precedence over the implied
default typing.

• Explicitly

To identify a specific name as a particular type, use an explicit type statement
(integer, real, complex, logical, or character). The way to explicitly accomplish
the same thing shown in the above example for the variable CAT is as follows:

CHARACTER*15 CAT

An explicit specification takes precedence over an IMPLICIT declaration.

12 VS FORTRAN Programming Guide

Typing Groups of Names-IMPLICIT Statement

Using the IMPLICIT statement, you can explicitly specify the data types for names
beginning with specific letters. For example, if you specify:

IMPLICIT DOUBLE PRECISION (A-C, F)
IMPLICIT LOGICAL (E,L),CHARACTER(D,G,H)

your program will treat data items as shown below.

NAMES BEGINNING WITH HAVE DATA TYPE

A through C, and F DOUBLE PRECISION

E and L LOGICAL

D, G, and H CHARACTER

through K, M, N INTEGER

0 through z~ REAL

mM Extension

HAVE LENGTH

8

4

4 (default)

4 (default)

If you specify an IMPLICIT statement with the following initial letters:

(Y - B)

the compiler performs a "wraparound" scan to find the beginning initial (Y), and
the ending initial (B)-which is lower in the FORTRAN collating sequence than Y.
That is, you are implicitly typing all names beginning with Y, Z, $, A, and B. You'll
get a warning message when this situation occurs; however, your program will
compile and execute.

'--___________ End of mM Extension __________ -.11

Typing Specific Names-Explicit Type Statements

Explicit type statements declare the data type for specific names in your program.
For such names, you can specify the data type and, optionally, the length. You
may optionally specify dimension information for array names. You may also
optionally assign initial values for names of every data type.

For example, you can specify:

DOUBLE PRECISION MEDNUM
CHARACTER * 80 INREC /'ABCD'/

Chapter 2. Referencing Data as Variables, Arrays, and Constants 13

INTEGER * 2
REAL*16

IBM Extension

COUNTR
BIGNUM, ARRA Y2*4(5,5)

As an alternative for MEDNUM, you could specify:

REAL * 8 MEDNUM

~ _________ End of IBM Extension __________ -'

These statements declare that:

MEDNUM is a real variable 8 bytes long.

INREC is a character variable 80 bytes long and contains ABCD followed by
76 blanks.

COUNTR is an integer variable 2 bytes long.

BIGNUM is a real variable 16 bytes long.

ARRA Y2 is a two-dimensional array, with elements 4 bytes long (specified by
*4). There are five elements in each dimension (specified by (5,5» for a total
of 25 elements. Arrays are explained in "Arrays and Subscripts" on page 20.

If you specify an IMPLICIT statement in the same program as these explicit type
statements-such as one of the following:

IMPLICIT DOUBLE PRECISION (A-C, F)
IMPLICIT LOGICAL (E,L) ,CHARACTER (D,G,H)

the explicit type statements override the IMPLICIT statement specifications, and in
your program:

INREC is a character variable 80 bytes long, not an integer variable 4 bytes
long.

MEDNUM is a real variable 8 bytes long, not an integer variable 4 bytes long.

But all other names beginning with I or M represent integers that are each 4 bytes
long.

BIGNUM is a real variable 16 bytes long.

ARRA Y2 is a two-dimensional array, with elements that are 4 bytes long
(specified by *4). There are five elements in each dimension (specified by
(5,5».

COUNTR is an integer variable 2 bytes long.

But all other names beginning with A, B, or C represent real variables 8 bytes long.

14 VS FORTRAN Programming Guide

Constants

Defining Constants by Value

A constant is a datum in a program that has a fixed, unvarying value. You can
refer to a constant by its value, or you can name the constant and use the name in
all program references.

The constants you can use are:

• Arithmetic (integer, real, complex or double precision)-use arithmetic
constants for arithmetic operations, and to initialize integer, real, complex, or
double precision variables, and as arguments for subroutines, and so forth.

• Logical-use logical constants in logical expressions, and to initialize logical
variables, and as arguments for subroutines, and so forth.

• Character-use character constants in character and relational expressions, and
to initialize character variables, and as arguments for subroutines, and so forth.

IBM Extension

• Hollerith-use Hollerith constants as data only in FORMAT statements and in
initialization other than character initialization.

• Hexadecimal-use hexadecimal constants to initialize items.

• Literal (FORTRAN66 only)-similar in usage to character constants.

'--__________ End of mM Extension __________

You can use constants in your program by merely specifying their values. For
example:

eIRe =2*PI*RAD

or

eIRe =2.0*PI*RAD

where the value 2 represents an integer constant of that value, and where the value
2.0 represents a real constant of that value.

You can specify all types of constants in this way:

• Arithmetic Constants--integer, real, complex, or double precision

Integer Constant-written as an optional sign followed by a string of digits.
For example:

-12345
12345

Chapter 2. Referencing Data as Variables, Arrays, and Constants 15

Real Constant-can take two forms:

1. Basic Real Constant-written as an optional sign, followed by an
integer part (made up of digits), followed by a decimal point, followed
by a fraction part (made up of digits). Either the integer or fraction
part can be omitted. In the latter case, a decimal point is not
necessary. For example:

+123.45
0.12345

2. Basic Real Constant with Real Exponent-written as a basic real
constant followed by a real exponent; the real exponent is written as
one of the letters D, E, or Q, followed by a 1- or 2-digit integer
constant. Optionally, the exponent can be signed. (See D exponent
below for example of double precision constant.) For example:

0.12345E+2 E exponent (which occupies four storage positions and has
the value + 12.345; the precision is approximately 6
decimal digits)

0.12345D-03 D exponent (which occupies eight storage positions and has
the value +0.00012345; the precision is approximately 15
decimal digits)

IBM Extension

-1234.5Q03 Q exponent (which occupies 16 storage positions and has
the value -1,234,500; the precision is approximately 32
decimal digits)

'--_________ End of IBM Extension __________

Complex Constant-written as a left parenthesis, followed by a pair of
integer constants or real constants separated by a comma, followed by a
right parenthesis.

The first integer or real constant represents the real part of the complex
number; the second integer or real constant represents the imaginary part
of the complex number. The real and imaginary parts need not be of the
same precision; the smaller part is made the same precision as the larger
part. For example:

(123.45,-123.45E2)

16 VS FORTRAN Programming Guide

(has the value + 123.45-12345i; both the real
and imaginary parts have lengths of 4)

(123.45,-123.45D2)

12345,-123.45Q2)

IBM Extension

(has the value + 123.45-12345i; the real part is 4
bytes long, the imaginary part is 8 bytes long)

(The real part (a real constant) is converted from
4 bytes long to a real constant that is 8 bytes
long.)

(has the value + 12345-12345i; the real part is 4
bytes long, the imaginary part is 16 bytes long)

(The real part (an integer constant) is converted
from 4 bytes long to a real constant that is 16
bytes long.)

""'""-_________ End of IBM Extension __________

•

Note: In these examples, the character i has the value of the square root
of -1.

Logical Constant-written as .TRUE. or .FALSE. in expressions. (In
input/output statements, you can use T or F as abbreviations.)

IBM Extension

(You can also use T and F as abbreviations in the DATA initialization
statement.)

'--__________ End of IBM Extension __________

For a logical item named COMP, you can specify, for example:

LOGICAL CaMP
COMP=.FALSE.

This sets the logical item COMP to the value "false."

• Character Constant-a string of characters, enclosed in apostrophes. The
character string can contain any characters in the computer's character set.
For example:

'PARAMETER = '

'THE ANSWER IS:'

"'TWAS BRILLIG AND THE SLITHY TaVES'

Note: If you want to include an apostrophe within the character constant, you
code two adjacent apostrophes, as shown in the last example, which is
displayed as:

'TWAS BRILLIG AND THE SLITHY TaVES

Chapter 2. Referencing Data as Variables, Arrays, and Constants 17

IBM Extension

• Hollerith Constant-valid only in a FORMAT statement. It is written as an
integer constant followed by the letter H, followed by a string of characters.
The character string can contain any characters in the computer's character set.
For example:

100 FORMAT(I3,11H = THE NORM)

200 FORMAT (2D8.6, 18H ARE THE 2 ANSWERS)

VS FORTRAN now implements Hollerith constants for the FORMAT and
DATA statements, for noncharacter data type, and for subroutine and function
calls. For example:

DATA INT2/2HEF/, REAL4/4HABCD/
RESLT = FUNCT1 (A,B, 4H1234)

However, Hollerith constants in a DATA statement are not recommended.

• Hexadecimal Constant-written as the character Z, followed by a hexadecimal
number, made up of the digits 0 through 9 and the letters A through F. You
write a hexadecimal constant as 2 hexadecimal digits for each byte.

You can use hexadecimal constants only in a DATA statement to initialize data
items of all types and in explicit type statements that allow initialization.

REAL *4 TEMP
DATA TEMP/ZCIC2C3C4/

• Literal Constant-in FORTRAN 66, performs functions similar to the
FORTRAN 77 character constant, and the Hollerith constant. (Reference
documentation is contained in IBM System/360 and System/370 FORTRAN
IV Language.)

1.-__________ End of IBM Extension __________

Defining Constants by Name-PARAMETER Statement

If your program uses one constant frequently, you can use the PARAMETER
statement to name the constant and assign it a value. You can do this once, before
your program first uses the constant, and then refer to the constant, wherever it's
used, by its name.

There are two advantages in handling constants this way:

• The name for the constant can be a meaningful name-which makes the logic
of the program easier to understand by someone doing maintenance updates.

• If the value of the constant must be changed, you can change it once, in the
PARAMETER statement, and all references throughout the program are
updated.

18 VS FORTRAN Programming Guide

Variables

Use the PARAMETER statement to assign names and values to constants. For
example:

CHARACTER *5 C1,C2
PARAMETER (C1='DATE ',C2='TIME ',RATE=2*1.414)

The character explicit type statement defines items C 1 and C2 as character· items
of length 5. The PARAMETER statement then defines these items as named
program constants:

Cl has the value "DATE ." The constant is five characters long; the blank
following the word DATE is part of the constant.

C2 has the value "TIME ." The constant is five characters long; the blank
following the word TIME is part of the constant.

RATE is defined implicitly as a REAL*4 item. Therefore, it's a real constant,
four storage positions long, with a value of 2 times 1.414 or 2.828.

You'll note that RATE is defined through the expression 2*1.414; when you
define a constant using an expression in this way, the expression you specify
must be a constant expression, and can contain no implicit or explicit function
references.

In the PARAMETER statement, the value you assign to the constant must be
consistent with its data type; that is, Cl and C2 must contain character data, and
RATE must contain real data. If any data conversions must be performed, they are
made according to the rules for the assignment statement. (To find out what the
"assignment statement" is, see" Assigning Values to Variables, Array Elements,
-and Character Substrings" on page 50.)

The value you assign through a PARAMETER statement to a character constant
must contain no more than 255 characters.

A variable is a named data location occupying a storage area. The value of a
variable can change during program execution.

The first occurrence of a variable name defines the variable; no specific definition
statement is needed.

The first letter of the name of a variable determines its data type, as described in
"Implied Default Data Type Declaration" on page 12, or you can define its data
type explicitly, as described in "Explicit Data Type Declaration" on page 12.

The value contained in a variable is always the current value stored there. Before
you've assigned a value to a variable, its contents are undefined. You can set an
initial value into a variable using the DATA statement; alternatively, your first
executable statement referring to it (for example, a READ statement or an
assignment statement) can assign a value to it.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 19

Arrays and Subscripts

One-Dimensional Arrays

An array is a named set of consecutive data locations that have the same data type
and length.

In FORTRAN, you assign a name to the entire array and then refer to each of the
individual locations, called array elements, by specifying its position within the
array through one or more subscripts, depending upon the number of dimensions in
the array.

You can define an array by using the DIMENSION statement, the explicit type
statement, or the COMMON statement.

To define a one-dimensional array, you specify only one dimension declarator. For
example, you want to define a one-dimensional array, named ARRAY 1 , that
contains five array elements. You can do so through the following DIMENSION
declaration:

DIMENSION ARRAY1 (5)

In this case, you've defined ARRA Yl as an array containing five elements, each
implicitly defined a,s a real item 4 bytes long.

Subscript Re/eI'eIICI!S: Program references to ARRA Yl take the form of subscripts:

• As integer constants:

ARRAY1 (2)

In this example, the subscript specifies a refet:ence to the second array element.

• As integer variables:

ARRAY1 (NUM)

where (NUM) represents the integer variable subscript, which can be assigned
values from 1 through 5. (For ARRA Yl, any other values produce invalid
array references.)

mM Extension

You can also specify subscript references as real constants, variables, or
expressions; the compiler converts the real value to an integer value.

L..-__________ End of mM Extension __________ _

20 VS FORTRAN Programming Guide

Multidimensional Arrays

In VS FORTRAN, arrays can have up to seven dimensions; that is, you can specify
up to seven dimension declarators to define the array, and up to seven subscripts to
identify a specific array element. (The number of subscripts you specify must
always equal the number of dimensions in the array.)

Multidimensional arrays are stored in column-major order; that is, the first
subscript always varies most rapidly, and the last subscript always varies least
rapidly.

For example, if you define the 3-dimensional array

REAL*4 ARR3(2,2,2)

it's placed in storage in the order shown in Figure 2. In this example, the lower
bounds of the subscripts are 1; therefore, the first array element is (1,1,1); you'd
refer to the second array element as ARR3(2,1,1), and you'd refer to the seventh
array element as ARR3 (1,2,2).

Arrays-Implicit Lower Bounds

In the preceding examples, the subscripts are shown as having a range from 1
through the upper bound for each dimension of the array; that is, in ARR3, the
implicit lower bound for each dimension is 1, and the explicit upper bound for each
dimension is 2.

Arrays-Explicit Lower Bounds

In VS FORTRAN, you can also explicitly state both the lower and upper bounds
for any array. For example, for ARR3A you could specify:

DIMENSION ARR3A(4:5,2:3,1:2)

The layout in storage (as shown in Figure 2) is exactly the same as for ARR3;
however, valid array references would range from ARR3A(4,2,1) through
ARR3A(5,3,2).

ARR3-Implicit Lower Bounds

ARR3A-Explicit Lower Bounds

Figure 2. Three-Dimensional Array-1mp6cit and Exp6cit Lower Bounds

Chapter 2. Referencing Data as Variables, Arrays, and Constants 21

Arrays-Signed -Subscripts

In VS FORTRAN, your array declaration can specify positive or negative signed
declarators for either the lower or the upper bounds. This can make a difference in
the number of array elements the array contains.

For example, if you define ARR2 and ARR2S as follows:

DIMENSION ARR2(4,2), ARR2S (-2:2,2)

the two arrays are laid out in storage as shown in Figure 3:

• Valid array references for ARR2 range from ARR2(1,1) through ARR2(4,2),
and there are eight array elements.

• Valid array references for ARR2S range from ARR2S(-2,1) through
ARR2S(2,2) (with ARR2S(O,1) and ARR2S(O,2) included), and there are ten
array elements.

Because a zero subscript is valid for ARR2S, there are two more array elements in
ARR2S than in ARR2.

ARR2(4,2)-is arranged in storage like this:

I 1, 1 I 2, 1 I 3, 1 I 4, 1 I 1,2 I 2,2 3,2 4,2

ARR2S(-2:2,2)-is arranged in storage like this:

I -2, 1 I -1 , 1 I 0, 1 I 1, 1 I 2, 1 I -2, 2 I -1 , 2 0 , 2 1,2 2,2

Figure 3. Arrays--Effect of Negative Lower Bounds

Arrays--Execution-Time Considerations

When performance is critical, as in inner loops, specify arrays as one-dimensional
rather than multidimensional. The fewer the dimensions in an array, the faster
your array references execute. Always be sure that subscript values refer to
elements within the bounds of the array; if they don't, you may destroy data or
instructions.

For large arrays of more thtHi a few thousand elements, the program should
endeavor to vary the first subscript ttlost tapidly in order to localize the reference
pattern and prevent excessive "pagirtg." See the example under "Processing
Multidirh.ensional Arrays-Nested bo Statement" on page 63.

22 VS FORTRAN Progratfuning Guide

Substrings of Character Data

For character arrays and character variables, you can make substring references
(that is, references to only a portion of the item) using substring notation.

You reference substrings by naming the array element or variable and then adding
a left parenthesis, the lower bound, a colon, the upper bound, and a right
parenthesis, in that order.

For example:

• V ARl(2:4) means that the substring consists of the second through fourth
characters in the character variable V ARl;

To declare character V ARl, do the following:

CHARACTER*10 VAR1

• ARRl(2)(1:4) specifies that the substring consists of the first through fourth
characters in the second array element of the character array ARRl.

To declare character ARRl, do the following:

CHARACTER*10 ARR1(2)

You can omit the lower bound of the substring reference if it is equal to l; that is,
ARRl(2)(:4) is exactly equivalent to ARR1(2)(1:4).

You can use character substrings in program references and in assignment
statements. For example, if you define a variable and an array as follows:

CHARACTER*10 SUVAR,SUARR(3)
SUVAR='ABCDEFGHIJ'

and you specify the following assignment:

SUARR(2) (:5)=SUVAR(6:10)

then, when the assignment statement is executed, the last five characters of
SUV AR (that is, FGHIJ) are placed in the first five characters of the second array
element of SUARR; the last five characters of that array element are unchanged.

To omit the upper bound of the substring reference to SUV AR in the example
above, you would specify:

SUARR(2) (:5)=SUVAR(6:)

Using Data Efficiently

The efficiency of your program depends, in part, on how you define and use the
data in your program. The choices you make also depend upon the results you
want to achieve.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 23

This section discusses how to initialize data and how to reuse storage for different
data items in the same program.

Initializing Data-DATA Statement

You can use the DATA statement to initialize variables and arrays. You must
place it after any specification statement or IMPLICIT statement that refers to the
items you're initializing. For example, your program could contain the following
statements:

CHARACTER *4 CARL,C~LS*2
DATA DEG,CELS,CARL/10.2,'DG' ,'SURD'/,AVCH/.1515/

and the data items would be initialized to the following values:

DEG
CELS
CARL
AVCH

(REAL constant)
(CHARACTER constant)
(CHARACTER constant)
(REAL constant)

initialized to
initialized to
initialized to
initialized to

You can also use named constants to initialize data items:

PARAMETER (DEGI=10.2)
DATA DEG/DEGI/

which initializes the real variable DEG to the value 10.2.

Initializing Arrays-DATA Statement

10.2
DG
SURD

.1515

There are special considerations when you initialize arrays with the DATA
statement, as follows:

Initializing Array Elements: You can initialize any element of an array by
subscripting the array name. Only one element is initialized. The following
example shows how to initialize individual array elements:

DIMENSION A (10)
DATA A(1) ,A(2) ,A(4) ,A(5)/1.0,2.0,4.0,5.0/

The array elements are initialized as follows:

A(1) initialized to 1.0
A(2) initialized to 2.0
A(3) is not initialized
A(4) initialized to 4.0
A(5) initialized to 5.0
A(6) through A(10) are not initialized.

Initializing Character Array Elements: In a character array, it isn't necessary to
specify the constant as the same length as the character array element:

• If the character constant is shorter than the character array element, the array
element is padded at the right with blanks.

• If the character constant is longer than the character array element, the
constant is truncated at the right.

24 VS FORTRAN Programming Guide

For example, if you specify the following statements:

CHARACTER *4 CARRAY(4)
DATA CARRAY(1),CARRAY(4)/'ABC','EFGHI'/

the CARRA Y array is initialized as follows:

CARRAY(1) initialized to ABC (fourth character is blank)
CARRAY(2) and CARRAY(3) are not initialized
CARRAY(4) initialized to EFGH (I is truncated)

Initiali:.i. AI7wys--Implied DO Lists: You can use implied DO lists to initialize
parts or all of an array. You use the implied DO list to specify the values the
subscripts should assume.

Initializing fin Entire A",,~/mplied DO List: You can initialize an entire array to
the value 0.0, as follows:

DIMENSION ARRAYE(10,10)
DATA «ARRAYE (1 ,.J) ,1=1,10) ,J=l ,10) /1 00*0.0/

This DATA statement tells the compiler to:

1. Vary the subscript I from 1 to 10 each time the subscript J is increased, and
vary the subscript J from 1 to 10; the implied increment for both I and J is 1.

2. Place 100 repetitions of the value 0.0 in the 100 array elements; the repetition
factor is specified by the 100*.

Initializing IlII Identity Matrix-Implied DO Lists: You're allowed to nest implied
DO lists in a DATA statement. In this way you can initialize an identity matrix,
using one DATA statement:

DIMENSION ARRAY1(10,10)
DATA «ARRAYI(I,J),1=1,J-1),J=2,10)/45*0.0/,

«ARRAYI(I,J),J=1,I-1),I=2,10)/45*0.0/,
(ARRAYI(I,I),I=1,10)/10*1.0/

This DATA statement tells the compiler to:

1. Vary the subscript I from 1 to 1 less than the value of J, each time the subscript
J is increased; subscript J is incremented from 2 to 10. This fills the upper
right 45 array elements with 0.0.

2. Vary the subscript J from 1 to one less than the value of I each time the
subscript I is incremented; subscript I is incremented from 2 to 10. This fills
the lower left 45 array elements with 0.0.

3. Use the value of I for both subscripts (1,1), and vary I from 1 to 10. This fills
the principal diagonal with the value 1.0.

You can also use the DATA statement to initialize the entire array to zeros, and
then specify a DO statement and an assignment statement to initialize the principal
diagonal.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 25

Example:

DIMENSION ARRAYD(10,10)
DATA «ARRAYD(I,J) ,I=1,10),J=1,10) /100*0.0/
DO 30 I = 1 , 1 0 , 1
ARRAYD(I,I)=1.0

30 CONTINUE

Invalid Example:

If more than one implied-DO list shares a list of constants or names of constants
(see example below), then no implied-DO variable may be shared by any two of
these implied-DO lists:

DIMENSION K(3),L(3),M(2)
DATA (K(I) ,I=1 ,3), (L(I) ,I=1 ,3), (M(J) ,J=1 ,2)/8*1/

where the DO-variable (I) is shared by the first two DO-lists that also share the list
of constants in the above DATA statement. VS FORTRAN interprets this DATA
statement as a three-level, nested DO-loop:

DO 20 I=1,3
K(I)=1
DO 20 I=1,3
L(I)=1
DO 20 J=1,2
M(J)=1

20 CONTINUE

This will cause a compile-time error because DO-variable (I) cannot be redefined
within a DO-loop. The following is valid:

DATA (K(I) ,I=1 ,3), (M(J) ,J=1 ,2)/5*1/, (L(I) ,I=1 ,3)/3*1/

For more information on DO loops, see "Programming Loops-DO Statement" on
page 64.

Managing Data Storage-EQUIVALENCE Statement

You can control storage allocation within your program by using the
EQUIVALENCE statement.

When your program's logic permits it, you can use this statement to specify that
one storage area is to be shared by two or more variables and/or arrays of the
same or differing data types.

mM Extension

Character data can be equivalenced with noncharacter data.

~ __________ End of mM Extension __________

Note that only the storage itself is equivalent (shared); mathematical equivalence is
implied only when the sharing items are of the same type, when they share exactly
the same storage, and when the value assigned to the shared area is of the same
type.

26 VS FORTRAN Programming Guide

The EQUIVALENCE statement is particularly useful with the COMMON
statement; this kind of usage is described in "EQUIVALENCE
Considerations-COMMON Statement" on page 130.

When you use the EQUIVALENCE statement with array elements, you can
implicitly specify the storage sharing of other array elements within the same array;
this is because arrays are stored in a predetermined order. For example, if you
write an EQUIV ALENCE statement referring to ARR3 (illustrated in Figure 2 on
page 21), as follows:

mM Extension

DIMENSION ARR3(2,2,2)
CHARACTER *4 CHAR3(4)
EQUIVALENCE (ARR3(2,2,1),CHAR3(1»

then the array elements of ARR3 and CHAR3 share storage as shown in Figure 4,
with the displacement for the array elements shown in the right-hand column.

ARR3 Storage CHAR3 Storage Displacement
(in bytes)

ARR3(1,I,l) 0-3

ARR3(2,1,l) 4-7

ARR3 (1,2,1) 8-11

ARR3(2,2,1) CHAR3(1) 12-15

ARR3(1,1,2) CHAR3(2) 16-19

ARR3(2,1,2) CHAR3(3) 20-23

ARR3 (1,2,2) CHAR3(4) 24-27

ARR3(2,2,2) 28-31

Figure 4. Sharing Storage betWeen Arrays--EQUIV ALENCE Statement

____________ End of ffiM Extension _________ ---'

When you use the EQUIVALENCE statement with array elements, no checking is
done to verify that the array elements specified are within the range of the array
declaration.

Execution-Time Efficiency Using EQUIVALENCE

For efficiency in execution, it is important to ensure that arithmetic and logical
items start on word boundaries appropriate to their length. Since an equivalence
group is started on a doubleword boundary, it is possible to insure correct
boundary alignment of these items by positioning them at a displacement from the
beginning of the group that is a multiple of the item's length or, if the item is
complex, half its length.

The following EQUIVALENCE statement (where A is REAL*4, I is
INTEGER *4, and A2 is DOUBLE PRECISION) causes the items to be laid out in
storage in a manner which promotes execution efficiency:

Chapter 2. Referencing Data as Variables, Arrays, and Constants 27

DIMENSION A(10),I(16),A2(5)
EQUIVALENCE (A(1),I(7),A2(1»

As shown in Figure 5, A and A2 begin at a displacement of 24 storage positions
from the beginning of the equivalence group.

Displacement in bytes:

o 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
I I I I I I I I I I I I I I I I I

I array I (7)
I I I I I

A (1)
A array I I

A2(1)
A2 array I

Figure 5. An EQUIVALENCE Storage Layout That Promotes Efficiency

The following EQUIVALENCE statement (using the same items as in Figure 5)
causes the items to be laid out in storage so as to reduce execution efficiency.

DIMENSION A(10),I(16),A2(5)
EQUIVALENCE (A(1),I(6),A2(1»

As shown in Figure 6, A2 begins ata displacement of 20-not divisible by
8-from the beginning of the equivalence group.

Displacement in bytes:

o 4 8 12 16 22 24 28 32 36 40 44 48 52 56 60 64
I I I I I I I I I I I I I I I I I

I array I(6)
I I I I I

A (1)
A array I I

A2(1)
A2 array I

Figure 6. An EQUIVALENCE Storage Layout That Reduces Execution Efficiency

28 VS FORTRAN Programming Guide

~ Using the Automatic Precision Increase Facllity-AUTODBL Option

The AUTODBL compiler option provides an automatic means of converting
single-precision, floating-point calculations to double precision and/or double
precision calculations to extended precision. It is designed to be used to convert
programs where this extra precision may be of critical importance.

No recoding of source programs is necessary to take advantage of the facility.
Conversion is requested by means of the AUTODBL compiler option at
compilation time. The automatic precision increase facility should be considered as
a tool for automatic precision conversion, but not as a substitute for specifying the
desired precision in the source program.

Precision Conversion Process

Promotion

The conversion process comprises two functions: promotion and padding.
Promotion is the process of converting items from one precision to a higher
precision; for example, from single precision to double precision. Padding is the
process of doubling the storage size of nonpromoted items. Padding helps you to
preserve the relationships between promoted and nonpromoted items sharing
storage.

You may request either or both of the following promotion conversions:

• Single-precision items to be promoted to double-precision items, that is,
REAL*4 to REAL*8 and COMPLEX*8 to COMPLEX*16.

• Double-precision items to be promoted to extended-precision items, that is,
REAL*8 to REAL * 16 and COMPLEX*16 to COMPLEX*32.

Note that single-precision items cannot be increased directly to extended-precision
items, and only real and complex items can be promoted.

Constants, variables and arrays, and intrinsic functions are promoted as follows:

Constants: Single-precision real and complex constants are promoted to double
precIsion. Double-precision real and complex constants are promoted to extended
precision. Logical and integer constants are not affected.

Examples of promoted constants are:

Constant

3.7
3.5E2
4.5D2
(3.2,3.14EO)
(3,4)
(3.2Dl,4.2DO)

Promoted Form
of Constant

3.7DO
3.5D2
4.502
(3.2DO,3.14DO)
(3.DO,4.DO)
(3.201,4.200)

Chapter 2. Referencing Data as Variables, Arrays, and Constants 29

Variables and Arrays: REAL *4 and COMPLEX*8 variables and arrays are
promoted to REAL*8 and COMPLEX*16, respectively. REAL*8 and
COMPLEX*16 variables and arrays are promoted to REAL*16 and
COMPLEX*32, respectively.

Examples of promoted variables are:

Variable

REALA,B,C
IMPLICIT REAL*8 (S-U)
COMPLEX*16 0(10)

Promoted Form
of Variable

REAL*8 A,B,C .
IMPLICIT REAL * 16 (S-U)
COMPLEX*32 Q(10)

Intrinsic Functions: The correct higher-precision, FORTRAN-supplied function is
substituted when a program is converted; that is, if an argument to a
FORTRAN-supplied function is promoted, the higher-precision FORTRAN
function will be substituted. For example, a reference to SIN causes the DSIN
function to be used if promotion from REAL *4 to REAL *8 is invoked; similarly, a
reference to DINT causes the OINT function to be used if the promotion from
REAL *8 to REAL * 16 is invoked.

If a valid intrinsic function name is being passed as an argument, and if the
AUTODBL option is specified, then:

• If promotion is requested for the result mode of the specific intrinsic function
name being passed, then the promoted function name (if it exists) will be
passed. If there is no function name of higher precision corresponding to the
original intrinsic function name, the original intrinsic function name will be
used and an informational message will be issued.

• If the AUTODBL option specifies padding only (for a given mode), then the
intrinsic function name used as argument will not be changed.

Note that, when a substitution of an intrinsic function is made in order to honor a
promotion option, the actual name substituted is an alias; that is, in the example
above, D#SIN is the name actually substituted. This ensures that, if the source
program contains an actual reference to a variable name such as DSIN, no conflict
will arise as a result of the substitution of the promoted name.

See Figure 7 on page 39 and Figure 8 on page 41 for promotion of single and
double-precision intrinsic functions with LANGLVL(77) and LANGLVL(66),
respectively.

User Subprograms: Previously compiled subprograms must be recompiled to be
converted to the correct precision. If a calling program is compiled with the option
to promote REAL*4 to REAL*8 (and COMPLEX*8 to COMPLEX*16), and this
calling program also references a user-defined function, say FCT, whose precision
is also to be increased, then the function FCT must also be compiled with the
promote option.

30 VS FORTRAN Programming Guide

Padding

Integer and logical items (and non-promoted real or complex items) are padded if
they share storage space with promoted items in order to ensure that the
storage-sharing relationship that existed prior to conversion is maintained.

Note: No promotion or padding is performed on character data type.

The major use of the padding option is for programs whose precision does not have
to be increased, but which call or reference subprograms with increased precision.
The communication between these programs is by argument lists and/or the
common area. Therefore, you can pad all argument references and all common
variables in the nonpromoted program, and be assured that the proper
storage-sharing relationships will be maintained in the promoted program.

Format of the AUTODBL Option

The AUTODBL compiler option indicates the form that the conversion will take.
VS FORTRAN ensures that, when a single-precision argument is converted to
double precision, storage boundaries are changed from word to doubleword
alignment.

If AUTODBL is specified, and an error in coding the parameter is detected, the
compiler ignores the AUTODBL option.

The AUTODBL option has the following format:

AUTODBL(value)

where value can be:

NONE

DBL

DBL4

DBL8

Indicates no conversion is to be performed. This is the default condition.

Indicates that promotion of both single and double-precision items is to take
place. Items of REAL*4 and COMPLEX*8 types are converted to REAL*8
and COMPLEX*16. Items ofREAL*8 and COMPLEX*16 types are
converted to REAL * 16 and COMPLEX*32.

Indicates that only promotion of single-precision items is to take place.

Indicates that only promotion of double-precision items is to take place.

DBLPAD
Indicates that both promotion and padding are to take place for single and
double-precision items. REAL*4, REAL*8, COMPLEX*8, and
COMPLEX*16 types are promoted. Items of other types are padded if they
share storage space with promoted items. The DBLP AD option thus ensures
that the storage-sharing relationship that existed prior to conversion is
maintained.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 31

Note: No promotion or padding is performed on character data type.

DBLPAD4
Indicates that promotion of single-precision items is to take place; that is,
REAL*4 and COMPLEX*8 items are promoted. Items of other types are
padded if they share storage space with promoted items.

DBLPAD8

nnnnn

Indicates that promotion of double-precision items is to take place; that is,
REAL*8 and COMPLEX16 items are promoted. Items of other types are
padded if they share storage space with promoted items.

Indicates that the program is to be converted according to the value of
nnnnn, a five-position field. All five positions must be coded; if a function is
not required, the corresponding position must be coded with a O.

Each position is coded with a numeric value that specifies how a particular
conversion function is to be performed. The leftmost position describes the
promotion function; that is, whether promotion is to occur and, if so, which
items are to be promoted. The second position describes the padding
function; that is, whether padding is to occur and, if so, where within the
program (such as in the common area or in argument lists) padding is to take
place. The third, fourth, and fifth positions describe whether padding is to
occur for particular types (logical, integer, and real/complex, respectively)
within the program areas specified in the second position. The values for
each position are as follows:

Position 1, the promotion function:

Value Meaning

o No promotion

1 Promote REAL*4 and COMPLEX*8 items only.

2 Promote REAL*8 and COMPLEX*16 items only.

3 Promote all real and complex items.

Position 2, the padding function:

Value Meaning

o No padding

1 Pad all COMMON statement variables and all argument list
variables.

2 Pad EQUIVALENCE statement variables equivalenced to
promoted variables.

32 VS FORTRAN Programming Guide

3 Pad all COMMON statement variables, pad EQUIVALENCE
statement variables equivalenced to promoted variables, and pad all
argument list variables.

4 Pad EQUIVALENCE statement variables that do not relate to
variables in COMMON statements.

5 Pad all variables.

Position 3, padding logical variables:

Value Meaning

o Pad no logical variables.

1 Pad LOGICAL*1 variables only.

2 Pad LOGICAL*4 variables only.

3 Pad all logical variables.

Position 4, padding integer variables:

Value Meaning

o Pad no integer variables.

1 Pad INTEGER*2 variables only.

2 Pad INTEGER*4 variables only.

3 Pad all integer variables.

Position 5, padding real and complex variables:

Value Meaning

o Pad no real or complex variables.

1 Pad REAL *4 and COMPLEX*8 variables.

2 Pad REAL*8 and COMPLEX*16 variables.

3 Pad REAL*4, REAL*8, COMPLEX*8, and COMPLEX*16
variables.

4 Pad all REAL * 16 and COMPLEX*32 variables.

5 Pad REAL*4, COMPLEX*8, REAL*16, and COMPLEX*32
variables.

6 Pad REAL*8, REAL*16, COMPLEX*16, and COMPLEX*32
variables.

7 Pad all real and complex variables.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 33

Note that promotion overrides padding; if the first position specifies that promotion
is to occur for single-precision items, REAL*4 and COMPLEX*8 items are
promoted regardless of the padding function specified in position 5.

The AUTODBL(nnnnn) settings that correspond to the mnemonic options are:

AUTODBL(NONE) is equivalent to AUTODBL(OOOOO)
AUTODBL(DBL) is equivalent to AUTODBL (30000)
AUTODBL(DBL4) is equivalent to AUTODBL (10000)
AUTODBL(DBL8) is equivalent to AUTODBL(20000)
AUTODBL(DBLPAO) is equivalent to AUTODBL(33334)
AUTODBL(DBLPAD4) is equivalent to ATJTODBL (13336)
AUTODBL(DBLPAD8) is equivalent to AUTODBL(23335)

Examples:

AUTODBL(12330)

All REAL *4 variables and arrays are promoted to REAL *8 and all COMPLEX*8
variables and arrays are promoted to COMPLEX * 16. Padding is performed for all
logical and integer type entities that are equivalenced to promoted variables.

AUTODBL(01001)

No promotion is performed, but padding is performed for all REAL *4 and
COMPLEX* 8 variables in common blocks and argument lists. This code setting
permits a program not requiring double-precision accuracy to link with a
subprogram compiled with the option AUTODBL(DBL4).

AUTODBL(01337)

No promotion is performed, but padding is performed for all logical, integer, real,
and complex variables that are in the common area or are used as subprogram
arguments. This code setting permits a non-converted program to link with a
program converted with the option AUTODBL(DBLPAD).

Programming Considerations with AUTODBL

This section describes how use of the AUTODBL facility affects program
processing.

Effect on Common or Equivalence Data Values

Promotion and padding operations preserve the storage sharing relationships that
existed before conversion. However, in storage-sharing items, data values are
preserved only for variables having the same length, and for real and complex
variables having the same precision.

For example, the following items retain value-sharing relationships:

LOGICAL*4 and INTEGER*4 (same lengths)
REAL*4 and COMPLEX*8 (same precisian)

The following items do not retain value-sharing relationships:

INTEGER*2 and INTEGER*4 (different lengths)
REAL*8 and COMPLEX*8 (different precision)

34 VS- FORTRAN Programming Guide

Note that the character data type is not affected by the AUTODBL option; it is
neither promoted or padded, but promoted or padded entities of other data types
may be equivalenced to character type variables and the inherent value sharing is,
therefore, not maintained.

Effect on Initialization with Literal Constants

Care should be exercised when specifying literal constants as data initialization
values for promoted or padded variables, as subprogram arguments, or in
NAMELIST input. For example, literals should be entered into arrays on an
element-by-element basis rather than as one continuous string.

Consider the following statements (compiled with LANGLVL(66»:

DIMENSION A(2), B(2)
DATA A/'ABCDEFGH'/, B(1)/'IJKL'/,B(2)/'MNOP'/

Array B will be initialized correctly, but array A will not because padding takes
place at the end of each element; therefore, no spill will occur if array A is padded
or promoted. 'ABCDEFGH' will initialize A(l) only.

Effect on Initialization with Hexadecimal Constants

Care should be exercised when using hexadecimal constants for initialization of
promoted or padded entities.

Consider the following example:

DIMENSION RAR5(4)
DATA RAR5 /Z4DF1E76B,ZC6F1F04B,ZF46BF2E7,Z6BC9F55D/
A = 1.2345
I = 25

3 PRINT RAR5,A,I

This example initializes the array RAR5 with hexadecimal constants so that the
contents of the array contain a valid format specification. In this case, the format
is (lX,FIO.4,2X,I5) and the array RAR5 is used in statement 3 to print the
variables A and I.

However, if an AUTODBL option (such as AUTODBL(DBL» were to be used for
this program, the array RAR5 would be promoted to a REAL *8 array and the
initialization performed by the DATA statement would affect only the low-order
portion of each element of the array. The high-order portions would, in fact, be
initialized with hexadecimal zeros, which are not valid for a format specification.

Therefore, you should not use an AUTODBL option in such a case and expect
results similar to those obtained without the AUTODBL option.

If the DATA statement were changed to:

DATA RAR5 /Z4DF1E76B40404040,ZC6F1F04B40404040,
X ZF46BF2E740404040,Z6BC9F55D40404040/

the program would compile and execute correctly for the AUTODBL option given.
In this case, the format specification would be:

(1 X, F10. 4,2X ,15)

Chapter 2. Referencing Data as Variables, Arrays, and Constants 35

Effect on Programs Calling Subprograms

FORTRAN main programs and subprograms must be converted so that variables in
the common area retain the same relationship, to guarantee correct linkage during
execution. The recommended procedure is to compile all such program units with
AUTODBL(DBLPAD). If an option other than DBLPAD is selected, care must
be taken if the common area variables in one program unit differ from those in
another; common area variables that are not to be promoted should be padded.

Any non-FORTRAN external subprogram called by a converted program unit
should be recoded to accept padded and promoted arguments.

Effect on FORTRAN Subprograms

If a call to a FORTRAN library subprogram contains promoted arguments, the
next higher precision subprograms are substituted. for ~e original ones.

If you supply your own function in place of a FORTRAN-supplied function but
neglect to specify this function name in an EXTERNAL statement (that is, neglect
to identify this name as user-supplied), the wrong function may be executed.

For example: AUTODBL(DBL4)

REAL * 4 x, Y
3 Y = SIN(X)

STOP
END

FUNCTION SIN(X)

RETURN
END

In this example, because the compiler cannot recognize SIN as a user-supplied
function, it substitutes the (alias) name of the FORTRAN-supplied function DSIN
in statement 3. However, the compiler does not change ~e FUNCTION
statement; that name remains SIN. At execution time, the user-supplied function
SIN is ignored and the FORTRAN-supplied function DSIN is executed in its place.

You can avoid this confusion by making sure that you indicate that the nam~ SIN is
a user-supplied function by placing the name SIN in an EXTERNAL statement (or,
for LANGLVL(66), in an EXTERNAL &SIN statement).

Effect of Mode-Changing Intrinsic Functions

Care should be exercised when using intrinsic functions whose functional types are
different from their argument types; for example, the SNGL function expects a
REAL*8 argument and returns aREAL*4 result. If the argument to SNGL was a
promoted REAL *8 item, the function SNGLQ would be used, but the functional
result would still be a REAL*4.

The following example calls for the promotion of all REAL *4 items to REAL *8,
and all COMPLEX*8 items to COMPLEX*16. REAL*8 items are not promoted.

36 VS FORTRAN Programming Guide

@PROCESS AUTODBL(DBL4)
REAL*8 D
COMPLEX*8 C

1 A SNGL(D)
2 C = CMPLX(B,SNGL(D))

At statement 1, the function SNGL returns the high-order portion of its REAL*8
argument; that is, returns a REAL *4 result. This functional value is then expanded
with zeros and set into the promoted variable A.

At statement 2, the CMPLX intrinsic function is used. This function requires that
the modes of its two arguments must be the same (if two arguments are given).
But, in the above example, the first argument, B, is promoted to a REAL *8, but the
second argument is a REAL *4, because SNGL always returns a REAL *4 result.

Therefore, although this program would compile correctly if the AUTODBL option
were not used, a compilation error would result if AUTODBL(DBL4) were
specified.

If statement 2 were changed to:

2 C = CMPLX(B,A)

the program would compile correctly for the AUTODBL option given in the
example.

Effect of Argument Padding on Arrays

When padding is requested with the second position of the AUTODBL option set
as either 1 or 3, then all non-promoted arguments of the type indicated by positions
3,4, and 5 are padded. Note that this must include all nonpromoted arrays of the
types indicated, because the compiler is not aware of the use of an array name or
an array element as an argument until it encounters such a use. That is, in case
such an array may be used as an argument, all references to that array are
calculated on the basis that the array is padded.

Consider the following example:

@PROCESS AUTODBL(11030)
INTEGER 1(20), N/3/, L/10j

1 K 1(5)
2 C = FCT(I(N) ,L)

In this case, when statement 1 is encountered and the displacement to the fifth
element of the array, I, is calculated, it is not known whether or not the array will
be used as an argument. The AUTODBL option calls for the promotion of all
REAL *4 andCOMPLEX*8 and the padding of all arguments of the integer type.
Therefore, the array, I, is padded and the calculation of the displacement for the
reference at statement 1 is made in terms of the padded array. Note that the array
would be padded even if it did not appear as an argument reference as it does here
in statement 2.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 37

Effect on CALL DUMP or CALL PDUMP

The AUTODBL option has no effect on the parameter specifying the requested
format for the DUMP/PDUMP subroutine. For example, if a CALL DUMP or
CALL PDUMP statement requests a dump format of variables of types REAL*4
or COMPLEX*8, output from a converted program is shown in single-precision
format. Each item is displayed as two single-precision numbers rather than as one
double-precision number.

For variables that are promoted, the first number is approximately the value of the
stored variable; the second number is meaningless ..

For variables that are padded, the first number is exactly the value of the variable;
the second number is meaningless.

Effect on Direct Access Input/Output Processing

When an OPEN statement has been specified (or a DEFINE FILE statement for
LANGLVL(66», any record exceeding the maximum specified record length
causes record overflow to occur.

For converted programs, you should check the record size coded in the defining
statement to determine if it can handle the increased record lengths. If not
sufficient, the size should be increased appropriately.

Effect on Asynchronous Input/Output Processing

Extreme care should be exercised in using AUTODBL for programs containing
asynchronous input/output statements.

The asynchronous input/output operation transmits the number of bytes as
specified by the transmitting or receiving areas. These areas for any given data set
must have the same characteristics regarding both promotion and padding; that is,
both must be padded or both must be promoted.

Effect on Formatted Input/Output Data Sets

The AUTODBL option has no effect on the FORMAT statement. Formatted
input/ output is controlled by the specifications in the FORMAT statement, and
will not reflect the increased size and precision of any promoted variable.

Effect on Unformatted Input/Output Data Sets

Unformatted input/output data sets which have not been converted are not directly
acceptable to converted programs if the I/O list contains promoted variables.

To make an unconverted data set accessible to the converted program, you should
code BF ALN =F in the DCB parameter at execution time. (This can only be used
with MVS systems.)

The effect of writing promoted or padded items to a data set with the BF ALN =F
parameter is to write the items as if they were not promoted or padded; that is,
only the most significant portion of the promoted item is written and only the
unpadded portion of the padded item is written.

38 VS FORTRAN Programming Guide

The effect of reading into promoted or padded items from such a data set is the
reverse; that is, the unformatted data is read into the most significant portion of the
promoted item, and the least significant portion is skipped. For padded items, the
unformatted data is read into the non-padded portion and the padded portion is
skipped.

TheBFALN parameter should not be used for:

• Programs and data sets having the same conversion characteristics.

• Formatted data sets regardless of the conversion characteristics; the FORMAT
statement controls the transmission of data.

Promotion of Single and Double Precision Intrinsic Functions

Generic
Name

LOG

LOG10

EXP

SQRT

SIN

COS

TAN

ATAN2

COTAN

SINH

COSH

TANH

ASIN

The following tables show the promotion of single and double precision intrinsic
functions for LANGL VL(77) and LANGL VL(66).

Single Precision Corresponding Double Corresponding Extended
Function Precision Function Precision Function

ALOG (REAL*4) DLOG (REAL*8) QLOG (REAL * 16)
CLOG (COMPLEX*8) CDLOG CQLOG (COMPLEX*32)

(COMPLEX*16)

ALOG10 (REAL*4) DLOG10 (REAL*8) QLOG 10 (REAL * 16)

EXP (REAL *4) DExp (REAL*8) QEXP (REAL*16)
CEXP (COMPLEX*8) CDEXP CQEXP (COMPLEX*32)

(COMPLEX*16)

SQRT (REAL*4) DSQRT (REAL *8) QSQRT (REAL*16)
CSQRT (COMPLEX*8) CDSQRT CQSQRT

(COMPLEX*16) (COMPLEX*32)

SIN (REAL *4) DSIN (REAL *8) QSIN (REAL*16)
CSIN (COMPLEX*8) CD SIN CQSIN (COMPLEX*32)

(COMPLEX* 16)

COS (REAL *4) DCOS (REAL *8) QCOS (REAL*16)
CCOS (COMPLEX*8) CDCOS CQCOS (COMPLEX*32)

(COMPLEX*16)

TAN (REAL*4) DTAN (REAL*8) QTAN (REAL*16)

ATAN2 (REAL *4) DATAN2 (REAL*8) QATAN2 (REAL*16)

COTAN (REAL*4) DCOTAN (REAL*8) QCOTAN (REAL*16)

SINH (REAL *4) DSINH (REAL*8) QSINH (REAL*16)

COSH (REAL*4) DCOSH (REAL *8) QCOSH (REAL * 16)

TANH (REAL*4) DTANH (REAL*8) QTANH (REAL*16)

ASIN (REAL *4) DASIN (REAL *8) QARSIN (REAL * 16)

Figure 7 (Part 1 of 3). Promotion of Single and Double Precision Intrinsic Functions for LANGLVL(77)

Chapter 2. Referencing Data as Variables, Arrays, and Constants 39

Generic Single Precision Corresponding Double Corresponding Extended
Name Function Precision Function Precision Function

ACOS ACOS (REAL*4) DACOS (REAL*8) QARCOS (REAL*16)

ATAN ATAN (REAL*4) DATAN (REAL*8) QATAN (REAL*16)

ABS ABS (REAL *4) DABS (REAL*8) QABS (REAL * 16)
CABS (COMPLEX*8) CDABS CQABS (COMPLEX*32)

(COMPLEX*16)

ERF ERF (REAL *4) DERF (REAL*8) QERF (REAL*16)

ERFC ERFC (REAL*4) DERFC (REAL *8) QERFC (REAL*16)

GAMMA GAMMA (REAL*4) DGAMMA (REAL*8) Note 1

LGAMMA ALGAMA (REAL*4) DLGAMA (REAL*8) Note 1

INT INT (REAL *4) IDINT (REAL *8) IQINT (REAL * 16)
Note 2 (COMPLEX*8) Note 3 (COMPLEX*16)
IFIX (REAL *4) IDINT (REAL*8) IQINT (REAL*16)
HFIX (REAL *4) Note 4 (REAL*8)

Note 5 FLOAT (REAL*4) DFLOAT (REAL*8) QFLOAT (REAL * 16)

REAL Note 2 (REAL*4) SNGL (REAL*8) SNGLQ (REAL * 16)
Note 2 (COMPLEX*8) DREAL QREAL (COMPLEX*32)

(COMPLEX*16)

DBLE DBLE (REAL*4) Note 2 (REAL*8) DBLEQ (REAL*16)
Note 2 (COMPLEX*8) Note 3 (COMPLEX*16)

QEXT QEXT (REAL*4) QEXTD (REAL*8) Note 6 (REAL*16)

CMPLX CMPLX (REAL*4) DCMPLX (REAL*8) QCMPLX (REAL*16)
Note 2 (COMPLEX*8) Note 3 (COMPLEX*16)

!MAG AIMAG DIMAG QIMAG (COMPLEX*32)
(COMPLEX*8) (COMPLEX*16)

CONJG CONJG (COMPLEX*8) DCONJG QCONJG
(COMPLEX*16) (COMPLEX*32)

AINT AINT (REAL *4) DINT (REAL*8) QINT (REAL * 16)

ANINT ANINT (REAL *4) DNINT (REAL *8) Note 1

NINT NINT (REAL *4) IDNINT (REAL *8) Note 1

MOD AMOD (REAL*4) < DMOD (REAL*8) QMOD (REAL*16)

SIGN SIGN (REAL*4) DSIGN (REAL*8) QSIGN (REAL*16)

DIM DIM (REAL*4) DDIM (REAL*8) QDIM (REAL*16)

DPROD (REAL*4) Note 7 (REAL*8)

MAX AMAXI (REAL*4) DMAXI (REAL*8) QMAXI (REAL*16)
Note 8 AMAXO (REAL*4) Note 8 (REAL*8)

MAXI (REAL *4) Note 9 (REAL*8)

Figure 7 (Part 2 of 3). Promotion of Single and Double Precision Intrinsic Functions for LANGLVL(77)

40 VS FORTRAN Programming Guide

)

Generic Single Precision Corresponding Double Corresponding Extended
Name Function Precision Function Precision Function

MIN AMINI (REAL *4) DMINI (REAL*8) QMINI (REAL*16)
Note 10 AMINO (REAL *4) Note 10 (REAL*8)

MINI (REAL*4) Note 11 (REAL *8)

Figure 7 (Part 3 of 3). Promotion of Single and Double Precision Intrinsic Functions for LANGLVL(77)

Generic
Name

LOG
Note 12

LOGI0
Note 13

EXP

SQRT

SIN

COS

TAN

COTAN

SINH

COSH

TANH

ASIN
Note 14

ACOS
Note 15

ATAN

ATAN2

ABS

Notes for the above table follow the table below because some notes apply to both
tables.

Single Precision Corresponding Double Corresponding Extended
Function Precision Function Precision Function

ALOG (REAL*4) DLOG (REAL*8) QLOG (REAL*16)
CLOG (COMPLEX*8) CDLOG CQLOG (COMPLEX*32)

(COMPLEX*16)

ALOGI0 (REAL*4) DLOGI0 (REAL*8) QLOGI0 (REAL*16)

EXP (REAL *4) DEXP (REAL*8) QEXP (REAL * 16)
CEXP (COMPLEX*8) CDEXP CQEXP (COMPLEX*32)

(C OMPLEX * 16)

SQRT (REAL*4) DSQRT (REAL *8) QSQRT (REAL*16)
CSQRT (COMPLEX*8) CDSQRT CQSQRT

(COMPLEX*16) (COMPLEX*32)

SIN (REAL *4) DSIN (REAL *8) QSIN (REAL*16)
CSIN (COMPLEX*8) CDSIN CQSIN (COMPLEX*32)

(COMPLEX*16)

COS (REAL*4) DCOS (REAL *8) QCOS (REAL*16)
CCOS (COMPLEX*8) CDCOS CQCOS (COMPLEX*32)

(COMPLEX*16)

TAN (REAL*4) DTAN (REAL*8) QTAN (REAL*16)

COTAN (REAL*4) DCOTAN (REAL*8) QCOTAN (REAL*16)

SINH (REAL*4) DSINH (REAL *8) QSINH (REAL * 16)

COSH (REAL *4) DCOSH (REAL *8) QCOSH (REAL *16)

TANH (REAL*4) DTANH (REAL*8) QTANH (REAL*16)

ARSIN (REAL *4) DARSIN (REAL *8) QARSIN (REAL*16)

ARCOS (REAL*4) DARCOS (REAL*8) QARCOS (REAL * 16)

ATAN (REAL*4) DATAN (REAL*8) QATAN (REAL*16)

ATAN2 (REAL*4) DATAN2 (REAL*8) QATAN2 (REAL*16)

ABS (REAL *4) DABS (REAL*8) QABS (REAL*16)
CABS (COMPLEX*8) CDABS CQABS (COMPLEX*32)

(COMPLEX*16)

Figure 8 (Part 1 of 2). Promotion of Single and Double Precision Intrinsic Functions for LANGLVL(66)

Chapter 2. Referencing Data as Variables, Arrays, and Constants 41

Generic Single Precision Corresponding Double Corresponding Extended
Name Function Precision FUnction Precision Function

ERF ERF (REAL *4) DERF (REAL*8) QERF (REAL*16)

ERFC ERFC (REAL*4) DERFC (REAL*8) QERFC (REAL * 16)

GAMMA GAMMA (REAL*4) DGAMMA (REAL*8) Note 1

LGAMMA ALGAMA (REAL*4) DLGAMA (REAL*8) Note 1
Note 16

INT INT (REAL *4) IDINT (REAL *8) IQINT (REAL*16)
IFIX (REAL *4) IDINT (REAL * 8)
HFIX (REAL*4) Note 4 (REAL*8)

Note 5 FLOAT (REAL*4) DFLOAT (REAL*8) QFLOAT (REAL*16)

REAL REAL (COMPLEX*8) DREAL QREAL (COMPLEX*32)
(C OMPLEX * 16)

SNGL Note 18 SNGL (REAL*8) SNGLQ (REAL*16)

DBLE DBLE (REAL *4) Note 2 (REAL *8) DBLEQ (REAL*16)

QEXT QEXT (REAL*4) QEXTD (REAL*8) Note 6 (REAL*16)

CMPLX CMPLX (REAL*4) DCMPLX (REAL*8) QCMPLX (REAL*16)

IMAG AIMAG DIMAG QIMAG (COMPLEX*32)
Note 17 (COMPLEX*8) (COMPLEX*16)

CONJG CONJG (COMPLEX*8) DCONJG QCONJG
(COMPLEX*16) (COMPLEX*32)

AINT AINT (REAL *4) DINT (REAL*8) QINT (REAL*16)

MOD AMOD (REAL*4) DMOD (REAL*8) QMOD (REAL*16)

SIGN SIGN (REAL *4) DSIGN (REAL*8) QSIGN (REAL*16)

DIM DIM (REAL*4) DDIM (REAL *8) QDIM (REAL*16)

MAX AMAXI (REAL*4) DMAXI (REAL*8) QMAXI (REAL*16)
Note 8 AMAXO (REAL*4) Note 8 (REAL*8)

MAXI (REAL *4) Note 9 (REAL*8

MIN AMINI (REAL *4) DMINI (REAL *8) QMINI (REAL*16)
Note 10 AMINO (REAL*4) Note 10 (REAL*8)

MINI (REAL *4) Note 11 (REAL*8)

Figure 8 (Part 2 of 2). Promotion of Single and Double Precision Intrinsic Functions for LANGLVL(66)

Notes to Figure 7 and Figure 8 :

1. The extended-precision equivalent of this function does not exist. In
promoting REAL * 8 to REAL * 16, the double-precision function will be used.
A warning message will be issued.

2. There is no specific function name corresponding to this ar~ent value .
.I

3. The corresponding double-precision function does not exist by name. In
promoting COMPLEX*8 to COMPLEX*16, the single-precision function is
expanded as though the double-precision function existed.

42 VS FORTRAN Programming Guide

4. The double-precision equivalent of this function does not exist. In promoting
REAL*4 to REAL*8, the single-precision function will be used. A warning
message will be issued.

5. The argument mode for this function is integer, which is not promotable. The
alternate function names are chosen depending upon the mode of the function
result (listed in this table).

6. The extended-precision equivalent of this function does not exist. In
promoting REAL*8 to REAL * 16, the double-precision function is expanded as
though the extended-precision function existed.

7. The double-precision equivalent of this function does not exist. In promoting
REAL*4 to REAL*8, the single-precision function is expanded as though the
double-precision function existed.

8. The argument mode for this function is integer, which is not promotable. In
promoting REAL*4 to REAL*8, the functional result is promoted; that is,
DFLOAT is used to float the maximum of the integer arguments.

9. The double-precision equivalent of this function does not exist. In promoting
REAL*4 to REAL*8, the double-precision function IDINT is used to fix the
maximum of the REAL * 8 arguments.

10. The argument mode for this function is integer, which is not promotable. In
promoting REAL*4 to REAL*8, the functional result is promoted; that is,
DFLOAT is used to float the minimum of the integer arguments.

11. The double-precision equivalent of this function does not exist. In promoting
REAL*4 to REAL*8, the double-precision function IDINT is used to fix the
minimum of the REAL *8 arguments.

12. LOG is also the specific name of the single-precision function (corresponding
to ALOG).

13. LOGI0 is also the specific name of the single-precision function
(corresponding to ALOG 1 0).

14. ASIN is also the specific name of the single-precision function (corresponding
to ARSIN).

15. ACOS is also the specific name of the single-precision function (corresponding
to ARCOS).

16. LGAMMA is also the specific name of the single-precision function
(corresponding to ALGAMA).

17. IMAG is also the specific name of the single-precision function (corresponding
toAIMAG).

18. There is no intrinsic function for LANGLVL(66) for a REAL*4 argument.

Chapter 2. Referencing Data as Variables, Arrays, and Constants 43

)

Chapter 3. Using Expressions and Assignment Statements

Defining and Using Expressions

Arithmetic Expressions

Expressions are combinations of data items and operators that represent values.
You can use them for arithmetic operations, character operations, logical
operations, or relational operations.

The simplest form of an expression is merely the name of a data item, or the value
or named value of a constant. You can specify more complicated expressions by
using operators to combine data items. The kind of operators you can use depends
upon the type of expression you're specifying:

Arithmetic operators-for arithmetic expressions

Character operators-for character expressions

Relational operators-for relational expressions

Logical operators-for logical expressions

The precedence of one type of operator over another is in the order given above.

For additional information about any of the topics discussed in this chapter, see VS
FORTRAN Language and Library Reference.

You can use arithmetic expressions to specify mathematical relationships of various
kinds. The valid arithmetic expressions, and how you can combine them, are
shown in Figure 9 on page 46.

You must specify all desired computations explicitly, and make certain that no two
arithmetic operators appear consecutively.

In addition, be aware that the compiler evaluates arithmetic expressions as follows:

• Operands are evaluated in their order of precedence from highest to lowest.

• Parentheses are evaluated as they are in mathematics; they specify the order in
which operations are to be performed. That is, expressions within parentheses

Chapter 3. Using Expressions and Assignment Statements 45

are evaluated before the result is used. For example, the expression
«A-B)+C)*E is evaluated as follows:

1. A-B is evaluated, giving x.

2. x+C is evaluated, givingy.

3. y*E is evaluated, giving the final result.

• Within the exponentiation precedence level, operations are performed right to
left. For example, A**B**C is evaluated as (A**(B**C».

• Within aU other precedence levels, operations are performed left to right. For
example, A+B+C is evaluated as «A+B)+C).

• You can use the + and - operators as signs for an item; when you use them this
way, they're evaluated as if they were addition or subtraction operators. That
is, A=-B+C is evaluated as though written A=-(B)+C.

OPERATION

Function Evaluation

Exponentiation

Multiplication

Division

Addition

Subtraction

ARITHMETIC
OPERATOR

(none)

**

*
/

+

Figure 9. Arithmetic Operators and Operations

PRECEDENCE

First

Second

Third]

Fourth]

In arithmetic expressions, you can specify the operands as any mix of integer, real,
or complex items.

However, you should be careful, when you're specifying arithmetic expressions, to
define the operands so that you get the precision you want in the result. For
example, if you specify:

DOUBLE PRECISION RESULT
RESULT = AR3*AR1

AR3 and ARt (both REAL *4 numbers) are multiplied together, and the REAL *4
result is padded with zeros and placed in RESULT. Thus, while RESULT is the
length of a double precision item, it has only the precision obtainable using
REAL*4 operands (approximately 6 decimal digits).

If you're dividing one operand by another, you should define the operands and the
result as real items.

46 VS FORTRAN Programming Guide

Character Expressions

Relational Expressions

If you divide one integer by another, any remainder is ignored, and you get an
integer quotient:

DATA I1/10/,I2/15/
RESULT=I2/I1

In this case, the expression on the right of the equal sign is evaluated to the integer
1; then the result is converted to a floating point number and stored in RESULT.

You can also perform more complex mathematical operations by using the intrinsic
functions that VS FORTRAN provides; see "Invoking Function Subprograms" on
page 116 for details.

You specify character expressions by combinations of character items, the
character concatenation operator, and optional parentheses.

The simplest form of character expression is merely a character item itself.

You can combine character operands by using the concatenation operator (/ /) to
join one operand to the next. For example:

CHARACTER *12 CHAR
CHARACTER *6 CHAR1,CHAR2
DATA CHAR1/'ABCDEF'/,CHAR2/'GHIJKL'/
CHAR = CHAR1//CHAR2

The concatenation operator (/ /) specifies that the contents of CHAR2 are to be
joined to those of CHARI to form the character string:

ABCDEFGHIJKL

which is then assigned to the character variable CHAR.

You can form relational expressions by combining two arithmetic expressions with
a relational operator, or by combining two character expressions with a relational
operator. A relational expression can be used in the same places as a logical
expression.

The relational operators you can use are listed in Figure 10.

Relational
Operator Meaning

.GT. greater than

.LT. less than

Figure 10 (Part 1 of 2). Relational Operators and Their Meanings

Chapter 3. Using Expressions and Assignment Statements 47

Relational
Operator Meaning

.GE. greater than or equal to

.LE. less than or equal to

.EO. equal to

.NE. not equal to

Figure 10 (Part 2 of 2). Relational Operators and Their Meanings

You can combine expressions as shown in the following examples:

A.GE.B

If A is greater than or equal to B, this relational expression is evaluated as "true";
otherwise, it is evaluated as "false."

(A+B) .LT. (C-B)

If the result of A + B is less than the result of C-B, this relational expression is
evaluated as "true"; otherwise, it is evaluated as "false."

COMPLEX CMPLX1,CMPLX2
(CMPLXl-2) .EQ. (CMPLX2+2)

If the result of CMPLXl-l is equal to the result of CMPLX2+2, this relational
expression is evaluated as "true"; otherwise, it is evaluated as "false." (The only
relational operators you can use with complex arithmetic operands are .EO. and
.NE.)

CHARACTER *S CHAR4, CHARS, CHAR6*8
(CHAR4//CHARS) .GT.CHAR6

In this expression, CHAR6 is extended 2 characters to the right with blank
characters; CHAR6 is then compared with the concatenation of CHAR4 and
CHAR5, according to the EBCDIC collating sequence. If the concatenation of
CHAR4 and CHAR5 evaluates as greater than CHAR6, this relational expression
is evaluated as "true"; otherwise, it is evaluated as "false."

Relational Expressions--Character Operands

When you use a relational operator to compare character operands, the comparison
is made using the EBCDIC collating sequence.

For example, if character items Cl (containing '3AB') and C2 (containing 'XYZ')
are compared, as follows:

L = Cl.GT.C2

C1.GT.C2 evaluates as "true."

However, if you use the intrinsic functions (LLT, LGT, LLE, and LGE) to
compare character operands, the comparison is made using the ISCn/ ASCn
collating sequence.

48 VS FORTRAN Programming Guide

Logical Expressions

The expression

LGT(C1,C2)

evaluates as "false."

You use a logical operator to combine logical operands-a logical constant, logical
variable or array element, logical function references, and logical or relational
expressions-optionally enclosed in parentheses.

The logical operators you can use are shown in Figure 11.

Logical Operator

.NOT.

.AND.

.OR.

.EQV.

.NEQV.

Meaning

Logical negation

H both operands are "true", the
expression is "true"; otherwise,
the expression is "false".

H either operand is "true", the
expression is "true"; otherwise,
the expression is "false".

H both operands are "true", or if
both operands are "false", the
expression is "true"; otherwise,
the expression is "false".

H both operands are "true" or if
both operands are "false", the
expression is "false"; otherwise,
the expression is "true"

FIgUre t t. Logical Operators and Their Meanings

Precedence

Highest

Lowest

The following examples show some of the ways you can use logical expressions:

1. A.GT.B.OR.A.EQ.C

This logical expression is "true" if one of the following is "true":

A is greater than B, or

A is equal to C

Otherwise, it is "false."

2. A.GT.B.AND.A.EQ.C

This logical expression is "true" only if both the following are "true":

Ch~pter 3. Using Expressions and Assignment Statements 49

A is greater than B, and also

A is equal to C

otherwise, it is "false."

3. A.GT.B.AND .. NOT.A.EQ.C

This logical expression is "true" only if both the following are "true":

A is greater than B, and also

A is not equal to C

otherwise, it is "false."

4. A.GT.B.OR.A.EQ.C.AND.B.LT.D

This logical expression is evaluated in the following order:

a. A.GT.B is evaluated, giving a truth value v.

b. A.EQ.C is evaluated, giving a truth value w.

c. B.LT.D is evaluated, giving a truth value x.

d. w.AND.x is evaluated, giving a truth value y.

The expression is "true" if either v or y evaluates as "true."

Assigning Values to Variables, Array Elements, and Character
Substrings

In a VS FORTRAN program, the assignment statement lets you assign values to
variables, array elements, and character substrings. It is distinguished from other
FORTRAN statements by use of the equal sign.

The assignment statement closely resembles a conventional algebraic equation,
except that the value to the right of the equal sign replaces (is assigned to) the
value of the item to the left of the· equal sign.

You can use the assignment statement to assign a value to a variable, an array
element, or a character substring.

You can specify arithmetic, character, and logical operands and expressions to the
right of the equal sign.

50 VS FORTRAN Programming Guide

Arithmetic Assignments

Character Assignments

You can assign the value of arithmetic operands and expressions to variables and
array elements; the item(s) to the right of the equal sign don't have to be the same
type or length as the item to the left of the equal sign.

For example, assuming default naming conventions (see "Implied Default Data
Type Declaration" on page 12), if you make the following assignments, you'll get
the indicated results:

PI = 3.14159
Assigns the real constant 3.14159 to the 4-byte real variable named PI.

ARRAY3(NUM) = DIFF
Assigns the value currently contained in the 4-byte real variable DIFF to the
4-byte real array element ARRA Y3 (NUM)

INTR = DIFF
The value of DIFF is converted to an integer value 4 bytes long (that is, the
largest integer in the real item is used, without rounding) and placed in
INTR.

DIFF = INTR
The value of INTR is converted to a 4-byte real value and placed in the
variable DIFF.

DIFF = INTR+DIFF
The value of INTR is converted to a 4-byte real value and added to the
current value of DIFF; the result is the new value of DIFF.

You can use and combine all the arithmetic operators, as shown in Figure 9 on
page 46.

Character assignments are only allowed when you are initializing character items.
For example:

CHARACTER*10 SUVAR
SUVAR = 'ABCDEFGHIJ'

which assigns the value ABCDEFGHIJ to the character variable SUV AR.

The items in the assignment statement need not be the same length. When you
execute the assignment, the item to the left is either padded at the right with blanks
or the data is truncated to fit into the item at the left:

CHARACTER *5 A,B,C,E *13
DATA A/'WHICH'/,B/' DOG '/,C/'BITES'/
E = A//B//C

Chapter 3. Using Expressions and Assignment Statements 51

Logical Assignments

In the assignment statement above, the concatenation symbols (/ /) place the
contents of A, B, and C one after another into E.

After the assignment statement is executed, the character variable E contains:

WHICH DOG BIT (The word "BITES" is truncated to "BIT.")

You can also define character items on either side of the equal sign as substrings, in
which.case only the substring portion of the item is acted upon:

A(4:5) = C(3:4)

After this assignment statement is executed, A in the previous example contains the
characters "WHITE".

There's one restriction upon character assignment statements: The items to the left
of the equal sign, and those to the right must not overlap in any way; that is, they
must not refer to the same character positions, completely or in part. If they do,
you will get unpredictable results.

If you compiled your program with Release 4, library messages IFY193I through
IFY197I will not be generated. This is because of the faster character handling
now being done in-line, which is described in "Writing Efficient Character
Manipulations" on page 146.

When the operand to the left of the equal sign is a logical item, the operands or
expressions to the right must evaluate to a logical value of either "true" or "false."

In a logical assignment, the items to the right may be either logical or relational
expressions. Within the relational expressions, you can use arithmetic or character
operands.

For example, using arithmetic operands:

LOGICAL *4 LOGOP
REAL *8 AR1,AR2,AR3,AR4
LOGOP = (AR4.GT.AR1) .OR. (AR2.EQ.AR3)

"true" is placed in LOGOP when AR4 is greater than ARl; otherwise, AR2 and
AR3 must be compared. Then if AR2 is equal to AR3, "true" is placed in
LOGOP; otherwise, LOGOP is evaluated as "false."

For example, using character operands:

LOGICAL *4 LOGOP
CHARACTER *6 CHAR1, CHAR2, CHAR3
LOGOP = (CHAR2.EQ.CHAR3).AND. (CHAR1.LT.CHAR2)

"true" is placed in LOGOP when CHAR2 and CHAR3 are equal and CHARI is
less than CHAR2; otherwise, LOGOP is evaluated as "false."

52 VS FORTRAN Programming Guide

~ Saving Coding Effort with Statement Functions

If your program makes the same complex calculation a number of times, you can
simplify your program by defining a statement function that refers to the
calculation by name. F or example,

WORK(A,B,C,O,E) = 3.274*A + 7.477*B - c/o + (X+Y+Z)/E

defines the statement function WORK, where WORK is the function name, and A,
B, C, D, and E are the dummy arguments.

The expression to the right of the equal sign defines the operations to be performed
when the function reference appears in an arithmetic statement. For example:

W = WORK (GAS, OIL, TIRES,BRAKES, PLUGS) - v

is equivalent to:

W = 3.274*GAS + 7.477*OIL - TIRES/BRAKES + ,(X+Y+Z)/PLUGS - V

Note the correspondence between the dummy arguments A, B, C, D, and E in the
function definition and the actual arguments GAS, OIL, TIRES, BRAKES, and
PLUGS in the function reference.

All statement function definitions must precede the first executable statement of
the program.

Bit String Functions

The bit string intrinsic functions allow your program to interrogate and manipulate
integer data of length 4 on a bit-by-bit basis. You can use the bit string functions
to perform logical AND or OR operations, shift operations, and bit test or set
operations, as described below.

Logical Intrinsic Functions

In the following functions, j and m are integer expressions of length 4. Operations
are performed on all bits which represent the integer values bit-by-bit on
corresponding bits to generate the integer result.

Function

lAND (j ,m)

IOR(j,m)

IEOR(j,m)

NOT(j)

Action

Produces the value of the logical AND of the two arguments j and
m.

Produces the value of the logical OR of the two arguments j and m.

Produces the value of the logical exclusive OR of the two arguments
j and m.

Produces the value of the logical complement of the argument j.

Chapter 3. Using Expressions and Assignment Statements 53

Shift Intrinsic Function

Examples:

I = IAND(K+3,-1)
J = IOR(J,K)
L = IEOR(S,-1)
M = NOT(J)

Explanations:

The variable K and the constant 3 are added; a logical AND is performed of their
sum and the constant -1; the result is stored in variable I.

A logical OR is performed of variables I and K; the result is stored in variable I
(replacing its previous value).

A logical exclusive OR is performed of constants 5 and -1; the result is stored in
variable L.

A logical NOT is performed of variable I; the result is stored is variable M.

In the following function, j and m are integer expressions of length 4. Operations
are performed on all bits that represent the integer value to generate the integer
result.

Function Action

ISHFT(j,m) Logically shifts j by the count and direction designated by m as
follows:

Example:

K2 = -5

If m is less than 0, the shift is right.
If m is greater than 0, the shift is left.
If m is equal to 0, there is no shift.

The value of m may be in the range -32 through 32. Bits shifted in
are zero and bits shifted out are lost, and the final sign bit is not
propagated.

I = ISHFT(J+K,K2)

Explanation:

The variables I and K are added; a right shift of 5 bits is performed on their sum;
the result is stored in variable I. (Five existing bits were shifted off at the
low-order (right) end, and 5 zero bits were shifted in at the high-order (left) end.)

54 VS FORTRAN Programming Guide

Bit Testing and Setting Intrinsic Functions

In the following functions, j and k are integer expressions of length 4. The value of
k indicates the position of bit k relative to the low-order (rightmost) bit of j. Note
that the low-order (rightmost) bit is bit 0 (not bit 1) and the count progresses to
the left, having a maximum value of 31.

Function

BTEST(j,k)

mSET(j,k)

mCLR(j,k)

Example:

Action

Tests bit k of integer argument j. If bit k is 1, the result is true.

Sets bit k of the integer argument j to 1.

Sets bit k of the integer argument j to O. For example:

o <= k <= 31

DIMENSION J(5),IAR(10)
J(KL)=IBSET(IBCLR(IAR(10),4) ,5)

Explanation:

The value of the 10th element of array IAR is obtained; the 4th bit of this value is
set to 0; then the 5th bit of this value is set to 1; this value is then stored in the
element of array J that is identified by the value of variable KL.

Chapter 3. Using Expressions and Assignment Statements 55

)

Chapter 4. Controlling Program Flow

The statements that enable you to control program flow in a VS FORTRAN
program are the DO, GO TO, and IF statements.

For additional information about any of the topics discussed in this chapter, see VS
FORTRAN Language and Library Reference.

Arithmetic IF Statement

You may want a program to execute some statements and skip around others,
depending on the results of some previous evaluation. The arithmetic IF statement
provides this function, as shown in the following example:

IF (J - 2) 20,21,22

which tells VS FORTRAN to:

1. Evaluate the expression (J - 2) (could be any arithmetic expression).

2. If the result is less than zero, transfer control to statement number 20.

3. If the result is equal to zero, transfer control to statement number 21.

4. If the result is greater than zero, transfer control to statement number 22.

Logical IF Statement

The logical IF statement provides similar control, depending on whether some
condition is "true" or "false." For example:

IF (TZ.EQ.5.0) GO TO 25

tells VS FORTRAN to:

1. Evaluate the relational expression

(TZ.EQ.5.0)

as to whether or not the value in variable TZ is equal to 5.0. If TZ is equal to
5.0, the expression is "true"; if TZ is not equal to 5.0, the expression is "false."

(The expression can be any relational or logical expression.)

Chapter 4. Controlling Program Flow 57

2. If the result of the evaluation is "true," transfer control to statement 25.

3. If the result of the evaluation is "false," transfer control to the next executable
statement following this IF statement.

Block IF Statement

In VS FORTRAN, the block IF statement and its associated ELSE IF, ELSE, ·and
END IF statements help you create programs that conform to structured
programming rules:

1. Write all code in control structures.

2. Construct each control structure so that it has only one entrance and only one
exit.

3. Design control structures so that they can be nested.

4. Control program flow along paths that define the structure itself.

5. Indent the source code to reflect the level of nesting.

These rules make programs simpler and easier to understand; each control structure
is self -contained, and the overall structure of the program reflects its logic.

An IF-THEN-ELSE structure contains one or more blocks of code at the same
level. Each of these blocks may contain other structures, and these nested
structures have a higher level. However, when the IF-THEN-ELSE structure is
executed, one and only one of its blocks may execute. For example:

10 IF (J.LT.2) THEN
11 A(J)=1
12 ELSE IF(J.GT.2) THEN
13 A(J)=3
14 ELSE
15 A(J)=2
16 ENDIF
17

Here, depending on the value of J, exactly one of statements 11, 13, or 15 is
executed, and control passes to statement 17.

An IF-THEN-ELSE structure begins with an IF-THEN statement and ends with
an ENDIF statement. It optionally includes ELSE IF and ELSE statements.

An IF -block begins with the first statement after the first IF THEN statement, and
ends with the statement preceding the first ELSE IF, ELSE, or END IF statement
at the same level. The IF-block includes all the executable statements in between.

There are three forms of blocks in an IF-THEN-ELSE structure:

IF block
ELSE-IF block
ELSE block

58 VS FORTRAN Programming Guide

Each of these blocks begins with the statement following the IF, ELSE IF, or
ELSE statement, and ends with the statement preceding the first ELSE IF, ELSE,
or ENDIF at the same level of nesting.

Thus, in the preceding example, the IF blocks are:

• Statements 10-16 form an IF-THEN-ELSE structure.

• Statement 11 is an IF-block.

• Statement 13 is an ELSE-IF-block.

• Statement 15 is an ELSE-block.

You can code an empty IF-block; that is, you can code an IF-block that has no
executable statements in it.

You must not transfer control into an IF-THEN-ELSE structure from outside the
structure; nor may you transfer control between blocks of a structure. However,
you may transfer control within a block as you would in any valid program.

An IF-THEN-ELSE structure can contain any number of ELSE IF blocks. This is
handy when you want to consider several exclusive cases. Even the ELSE block is
optional.

This leads to the forms shown in Figure 12 on page 60.

Chapter 4. Controlling Program Flow 59

Form l:
IF (expression) THEN

(code executed if eXl2ression is "true")

END IF

Form 2:
IF (expression) THEN

(code executed if eXl2ression is "true")

ELSE

(code executed if eXl2ression is "false")

END IF

Form 3:
IF (expression1) THEN

(code executed if eX12ression1 is "true")

ELSE IF (expression2) THEN

(code executed if eX12ression1 is "false" and
eX12ression2 is "true")

ELSE

(code executed if both eX12ression1
and eX12ression2 are "false")

END IF

Form 4:

IF (expression1) THEN

(code executed if eX12ression1 is "true")

ELSE IF (expression2) THEN

(code executed if eX12ression2 is "true" and
eX12ression1 is "false")

ELSE IF (expression3) THEN

(code executed if eX12ression3 is "true" and
eX12ression1 and eX12ression2 are "false"

ELSE IF (expression4) THEN

(code executed if eX12ression4 is "true" and
eXl2ression1, eXl2ression2, and
eX12ression3 are "false")

END IF

Figure 12. Block IF Statement-VaHd Forms

60 VS FORTRAN Programming Guide

Anyone of these forms can be nested to any depth within any of the others, as
shown in Figure 13 on page 61.

90

IF (A.EQ.B) THEN

(code executed if A.EQ.B)

ELSE IF (A.GT.B) THEN

(code executed if A.GT.B)

ELSE

{code executed if A.LT.B, including:

IF (C.LT.D) THEN

(code executed if C.LT.D)

ELSE

(code executed if C.GE.D, including:)

DO

CONTINUE
END IF

END IF

Figure 13. Nesting Block IF Statements

The following list shows the sequence of execution:

1. The first block IF statement has an IF block that includes the range of
statements to the ELSE IF statement.

2. The ELSE-IF-THEN statement has as its block the range to the ELSE
statement.

If your program executes one of these blocks, control is transferred to the
statement following the last END IF statement. Otherwise:

3. The first ELSE statement is the alternative condition for the first IF and
ELSE-IF-THEN statement.

4. The second IF THEN statement is subordinate to the first ELSE statement.
This IF block continues to the second ELSE statement.

5. The second ELSE statement is the alternative condition for the second IF
THEN statement. '

6. The DO loop is contained in the second ELSE block. (All nested DO loops
must be completely contained within one block.)

7. The first END IF statement corresponds to the nested block IF statement.

Chapter 4. Controlling Program Flow 61

8. The second END IF statement corresponds to the first IF statement (the one
that begins the entire code sequence).

Executing Procedures Repetitively-DO Statement

Another powerful control structure-the DO loop-lets you repetitively execute a
whole series of statements for a given number of times and then continue normal
sequential processing.

The DO statement is particularly useful when you want to assign values to the
elements in an array.

Processing One-Dimensional Arrays-DO Statement

For example, you may want to assign a specific set of values to the odd elements of
ARRA YO. The DO statement in the following example sets up the loop to select
the specified array elements:

DOUBLE PRECISION ARRAYO
DIMENSION ARRAYO(8), ARRAY1 (8)

DO 40 INT=1,8,2

ARRAY 0 (INT)=ARRAY1 (INT)+ARRAY1(INT+1)

40 CONTINUE

Notes:

1. The program is to set [NT to the value 1.

2. The program is to execute the code sequence while [NT is less than or equal to 8.

3. Each time the code sequence is executed, the value of INT is to be increased by 2.

Thus, the code sequence will be executed four times, and then the next statement
after statement number 40 will be executed.

62 VS FORTRAN Programming Guide

Processing Multidimensional Arrays-Nested DO Statement

You can also include other DO loops completely within the range of a DO
loop-for example, to initialize multidimensional arrays. The DO statements in the
following example show how it could be done:

DIMENSION ARRAY2 (4,5)
VALU = 0.0

DO 40 ISUB2=1,5
DO 40 ISUB1=1,4
ARRAY2(ISUB1,ISUB2)=VALU
VALU=VALU + 1. 0

40 CONTINUE

The first DO statement varies the second subscript from its minimum to its
maximum value. The second DO statement varies the first subscript from its
minimum to its maximum value. When you specify these two DO statements in this
order, your program places ascending values in each array element in the sequence
in which they are stored.

To initialize a four-dimensional table in storage sequence, you could specify

1. A DO loop controlling references to the fourth subscript.

2. Contained in that DO loop would be a second DO loop controlling references
to the third subscript.

3. Contained in that DO loop would be a third DO loop controlling references to
the second subscript.

4. Contained in that DO statement's range would be a last DO statement
controlling references to the first subscript.

For more efficient execution, programs with large arrays should vary the first
subscript most rapidly. That is,

DIMENSION ARRAY2 (1000,1000)
DO 10 J= 1, 1000

DO 10 1= 1,1000
ARRAY 2 (I,J) = 0

10 CONTINUE

Using the CONTINUE Statement

In the previous example, there's a CONTINUE statement that provides a
convenient ending point for procedures within the current ELSE block. You'll find
the CONTINUE statement particularly useful in this way within DO loop",.

Chapter 4. Controlling Program Flow 63

Branching into Block IF Statements and DO Loops

When you use the CONTINUE statement within a block IF statement sequence or
a DO loop, you must use the CONTINUE only for control transfers within the
local code block. If you branch into the·block (with GO TO statements, for
example), the results are unpredictable, even though you won't get an error
message.

Programming Loops-DO Statement

VS FORTRAN provides several ways to execute a range of statements a specific
number of times using the DO statement.

• You can nest DO loops; if you nest one DO loop within another, you must
include the range of the inner DO loop entirely within the range of the outer
DO loop.

You can use the same terminal statement for both the inner and the outer DO
statement ranges.

• If you code a DO loop within a block IF, ELSE IF, or ELSE block, make sure
that the range of the DO loop is completely contained within that block.

• If you code an IF-THEN-ELSE structure within a DO loop, ensure that the
entire structure, including END IF, is within the range of the DO loop. (You
can't use the END IF as the terminal statement for the DO loop.)

• You may not use any of the following as terminal statements:

A GO TO statement

An IF, IF-THEN, ELSE IF, ELSE, or END IF statement

Another DO statement

A RETURN, STOP, or END statement

An INCLUDE statement

• When you execute a DO statement, the DO loop becomes active. It remains
active until one of the following occurs:

The loop executes completely.

The program executes a RETURN statement within its range.

A transfer is made out of its range.

Any STOP statement is executed anywhere in the loop.

Program execution is terminated because of an error condition.

64 VS FORTRAN Programming Guide

Warning: A DO loop and an IF block must not overlap. If you branch into a DO
block (with GO TO statements, for example), the results are unpredictable, and the
condition is not diagnosed by VS FORTRAN.

In VS FORTRAN, you can specify the DO variable as an integer or real variable,
and you can specify the initial value, the test value, and the increment as integer or
real expressions, positive or negative.

For example, if you code the following DO statement:

DO 20 VAR = START,END,INC

20 CONTINUE

how the loop executes depends upon the values you place in START, END, and
INC.

You can specify them all as

START = 1.0
END 11 .0
INC = 2

The starting value (START) for V AR is 1.0, and the ending value (END) is 11.0.
Each time the loop is executed, V AR is incremented by 2.0 (INC). (Note that,
because V AR is a real item, the integer value in INC is converted to a real value.)
After the loop has been executed six times, V AR contains the value 13.0, and DO
statement processing is completed.

You can specify a decreasing INC value, with a START value higher than the END
value:

START = 11.0
END 1.0
INC = -2

Again, the loop is executed six times, after which V AR contains the value -1.0.

You can specify values that cause the statements inside the DO loop not to be
executed:

or

START = 10.0
END 1.0
INC = 2

START = 1.0
END 10.0
INC = -1

The START value is higher
than the END value and INC;
the increment is positive.
Control passes to the statement
following the label 20, and VAR
contains the value 10.0.

The START value is lower
than the END value and INC;
the increment is negative.
Control passes to the statement
following the label 20, and VAR
contains the value 1.0.

In either case the loop is not executed at all.

Chapter 4. Controlling Program Flow 65

Note: Be careful when you're processing DO loops using real values for the
starting or ending values, or for the increment; because floating point numbers are
an approximation of actual values, there can be times when the loop is not executed
exactly as you expect. In general, numbers that cannot be represented exactly in
the computer may give unexpected results. (The numbers in the above examples
have exact representations.)

The number of iterations of a loop can always be determined even though the loop
variable is approximated. The iteration count is

INT((END-START)/INC)+1

Using Program Switches-Assigned GO TO Statement

You can make one GO TO statement transfer control to different statements in the
same program unit, depending upon a control variable. You set the control
variable by means of an ASSIGN statement:

ASSIGN 20 TO LVAR
GO TO LVAR

30 (next executable statement)

20

When the GO TO statement is executed, control is transferred to statement label
20.

You can optionally include a list of statement labels in the assigned GO TO
statement:

ASSIGN 20 TO LVAR
GO TO LVAR(10, 20, 50, 100)

30 (next executable statement)

When this GO TO statement is executed, control is transferred to statement label
20.

When your program executes either of these assigned GO TO statements, LV AR
must have been assigned a valid label for an executable statement by an ASSIGN
statement. Observe that LV AR may be assigned integer values in the same
program unit, as long as the ASSIGN statement is executed before the assigned GO
TO. For example, the following is invalid since LV AR is assigned an integer value
after the ASSIGN statement:

ASSIGN 20 TO LVAR
LVAR=LVAR+10
GO TO LVAR

No error message is generated if LV AR does not have a valid value. Therefore,
mixing the two types of assignment for LV AR is not recommended.

66 VS FORTRAN Programming Guide

Using Conditional Transfers-Computed GO TO Statement

You can transfer control conditionally to one of a number of statements, depending
on the value contained in a control item:

INT1 = 2
GO TO (10,20,30,50,100) INT1

When this statement is executed, the integer value in INTI (2) specifies that the
second statement label is to be used for the transfer, and control is transferred to
statement label 20.

You can use an integer expression as the control item:

INT1 = 20
INT2 = 16
GO TO (10,20,30,50,100) INT1-INT2

When this statement is executed, the expression INTI-INT2 is evaluated, and the
resulting value (4) specifies that the fourth statement label in the list is to be used
for the transfer. Control is transferred to statement label 50.

If the value in the control item is either less than one or greater than the number of
labels listed, then control passes to the next executable statement. Thus, in the
previous examples, if the value in INTI or of INTI-INT2 is greater than five,
control is transferred to the next executable statement.

Suspending Execution Temporarily-PAUSE Statement

You can use the PAUSE statement to temporarily suspend program execution
pending console operator response:

PAUSE

You can also include a message. The message can be a numeric string of 5 digits or
less:

PAUSE 20200

where 20200 can have any meaning you want to assign it.

The message can also be a character constant:

PAUSE 'MOUNT TEMPORARY TAPE. TO RESUME PRESS ENTER'

The character constant you specify must contain no more than 72 characters.

When the program executes either of these PAUSE statements, a message is
displayed at the console:

IFY001A PAUSE 20200

or

IFY001A PAUSE MOUNT TEMPORARY TAPE. TO RESUME PRESS ENTER

Chapter 4. Controlling Program Flow 67

Program execution continues when the console operator presses the ENTER key.

Note: Under CMS or TSO, these messages are displayed at the terminal.

Stopping Programs Permanently-STOP Statement

You use the STOP statement to stop the program permanently:

STOP

You can also send a message to the console when the program stops through the
STOP statement. The message can be a numeric string of 5 digits or less:

STOP 21212

where 21212 can have any meaning you want to assign it.

If you are running on MVS, the value of the STOP statement is returned to the job
as the condition code for the job step being processed. For example,

STOP 8

sets a condition code of 8.

If you are using CMS in an EXEC, the value of the STOP statement is returned to
your EXEC as the contents of variable &RETCODE, for which your EXEC may
then test.

The message can also be a character constant:

STOP 'PROGRAM BACGAM EXECUTION COMPLETED'

(The character constant you specify must contain no more than 72 characters.)

When the program executes either of these STOP statements, the message is
displayed at the console. If the message is in the form of a numeric string, the
program return code will be set to this number. This can be used by the EXEC or
PROC that caused the program to be executed.

Ending Your Program-END Statement

In VS FORTRAN, the last statement in your program must be an END statement,
and (unless your program executes a RETURN or STOP statement first) it must be
the last statement executed.

You can label the END statement. This lets you ensure that it is executed (if that's
what you want), no matter which branch of the program is executed last:

110 END

68 VS FORTRAN Programming Guide

Chapter 5. Programming .Input and Output

This chapter describes VS FORTRAN I/O system, including access modes, tile
organization, record formats, and basic usage of I/O statements.

Access Mode and File Organization

Three types of access methods are available to FORTRAN users:

• Sequential

• Direct

• Keyed

These access modes may be employed to process five types of files:

• Non-VSAM physical sequential

• Non-VSAM direct

• VSAM entry sequenced data set (ESDS)

• VSAM key sequenced data set (KSDS)

• VSAM relative record data set (RRDS)

The various file processing possibilities are shown in Figure 14, which is a matrix
of access modes and file organization. For example, Figure 14 shows that a
VSAM RRDS file can be accessed by VS FORTRAN either sequentially or
directly. You specify the access mode in an OPEN statement for the file with the
ACCESS parameter, which causes the file to be connected to a FORTRAN I/O
unit for the access mode named, when it is executed.

Chapter 5. Programming Input and Output 69

Sequential Access

File Sequential Direct Keyed
Organization Access Access Access

Physical YES YESl NO
Sequential
Non-VSAM

Direct N02 YES NO
Non-VSAM

VSAMESDS YES NO NO

VSAMKSDS NO NO YES

VSAMRRDS YES YES NO

Figure 14. Summary of File Organization and FORTRAN Access

Can be used for direct access only if the records are fixed length and
unblocked.

2 Can be used for sequential access only if the file were created using a VS
FORTRAN program.

The following sections first describe generally the basic characteristics of the
various file organizations, as known to VS FORTRAN, and then enumerate the
properties of a file when connected under VS FORTRAN for a given access mode.
This brief presentation is VS FORTRAN-oriented, and does not address aspects
not relevant to FORTRAN. You should refer to other publications if you want
details not given here. More specific information on VSAM file processing for the
VS FORTRAN user is available in Chapter 15, "Using VSAM with VS
FORTRAN" on page 355.

The types of files for sequential access are:

• Non-VSAM physical sequential files

• VSAMESDS

• VSAMRRDS

• Non-VSAM direct files (only if created by VS FORTRAN)

Sequential File Organization

Sequential files are those ih which the records are arranged and/or can be accessed
serially, one after the other froni fitst to last.

Tape files are always sequential fUes, as are files for terminals, printers, and card
readers and punches (also called unit record devices). Your program must work
sequentially with each record for such files as it is presented or as it is sent out.

Files on disk devices can be otga~ed sequentially, and, if they are then under VS
FORTRAN, they can be accessed sequentially (or directly if the records are fixed
length and unblocked). The sequential nature of a disk file can be a result of

70 VS FORTRAN Progt"animing Guide

Sequential Flle Properties

Direct Access

Direct Flle Organization

entry-order sequencing, as for non-VSAM physical sequential files and VSAM
ESDS files; or it can be due to relative ordering by keys, as for VSAM RRDS files
and FORTRAN direct files.

When a file is connected for sequential access, it has the following properties:

• The order of the records, as accessed, is the serial order in which they appear
relative to the beginning of the file. Only records that were written after the
file was created can be read.

• The records of the file must be either all formatted or all unformatted, except
that the last record of the file may be an endfile record.

• Reading and writing of records is accomplished only by sequential access
input/ output statements.

• All records of the file have the same length.

The types of files for direct access are:

Non-VSAM physical sequential (only if records are fixed length and unblocked
on disk)

• Non-VSAM direct

• VSAMRRDS

You can store direct files only upon direct access devices. Direct access storage
devices hold many records at a time. The arrangement of the records in the file is
significant; it determines the ways your program can process the data. Because of
this, your program's use of direct access storage can be more varied than its use of
the sequential-only devices.

Direct files are those in which all the records are arranged in the file according to
the relative addresses of their keys. Each record is the same size, and each
occupies a predefined position in the file, depending upon its relative record
number.

In a direct file, the first record has relative record number 1, the tenth record has
relative record number 10, the fiftieth record has relative record number 50. You
can think of the file as a series of slots, each of which mayor may not actually
contain a record. That is, record 50 may hold an actual record, and be identified as
record number 50, even though records 24, 38, and 42 are vacant slots.

You can process the records by supplying the relative record number or key of the
record you want with each READ or WRITE statement.

Chapter 5. Programming Input and Output 71

I Direct File Properties

Keyed Access

Keyed File Organization

When a file is connected for direct access, it has the following properties:

• The order of the records is the order of their record numbers or keys. The
records can be read or written in any order.

• The records of the file are either all formatted or all unformatted. If sequential
access is also allowed for the file, its endfile record, if any, is not considered to
be part of the file while it is connected for direct access. If sequential access is
not allowed for the file, the file must not contain an endfile record.

• Reading and writing records is accomplished only by direct access input/output
statements.

• All records of the file have the same length.

• Each record of the file is uniquely identified by a positive integer called the
record number. The record number of a record·is specified when the record is
written. After it is established, the record number of a record can never be
changed. Note that a record may not be deleted; however, a record may be
rewritten.

• Records need not be read or written in the order of their record numbers. Any
record can be written into the file while it is connected to a unit. For example,
it is permissible to write record 3, even though records 1 and 2 have not been
written. Any record may be read from the file while it is connected to a unit,
provided that the record was written since the file was created.

IBM Extension

The only possible type of file for keyed access is VSAM KSDS.

Each record in a keyed file contains a field whose contents form its key. The
position of this key field is the same in each· record.

The index component of the file provides the logical arrangement of the main file
ordered by the key. The actual physical arrangement of the records in the main file
is not significant to your VS FORTRAN program.

A keyed file can also make use of alternate indexes-keys that let you access the
file using a different logical arrangement of the records~

The existence of the index as an entity separate from the file itself, incorporating
reference by primary key and by optional alternate keys, gives the VSAM KSDS
file considerable flexibility of use not available in sequential and direct files.

72 VS FORTRAN Programming Guide

Keyed FOe Properties

When a file is connected for keyed access, it has the following properties:

• Each record contains a primary key whose value uniquely identifies the record.
In every record, the primary key consists of the same number of contiguous
characters and is at the same position relative to the beginning of the record.

• Each record can contain one or more alternate index keys whose values identify
the record. In every record, a given alternate index key consists of the same
number of contiguous characters or processor-dependent units, and is at the
same position relative to the beginning of the record. Unlike the primary key,
the same value of an alternate index key may be duplicated in more than one
record.

• Records may vary in length, but no record can be so short that it does not
include the primary and all of the alternate index keys that are defined for it.

• The key of reference for any input/output statement is the single key (that is,
either the primary key or one of the alternate index keys) that is used for the
particular I/O statement. The key of reference may be changed during the
time that the file is connected.

• The records of the file are either all formatted or all unformatted.

• The records Diust not be read or written using list-directed formatting.

• For formatted records, the order of the values of a key is the order defined by
the EBCDIC collating sequence for the string of characters that forms the key.

For unformatted records, the order of the values of a key is the order defined
by the EBCDIC collating sequence for the data that forms the key on the
external medium. For the purpose of comparing key values, that data,
regardless of whether it was transferred from character or noncharacter data
items, is used in its internal representation (with no editing or conversion) and
is interpreted as a string of characters. The value of that string of characters is
dependent upon the internal representation of any noncharacter data.
Therefore, when noncharacter data is used to form a key in a record, two key
values may not have the same relationship to each other when compared as
keys as they do when their numeric values are compared.

• The order of the records is the order of the values of their key of reference. If
the key of reference changes, the order of the records changes accordingly. In
the event that the key of reference is an alternate index key that has duplicate
values, then the order of the records having the same key value is the order in
which the records were entered into the alternate index.

• Reading and writing of records is accomplished only by keyed access
input/ output statements.

• During the execution of a single keyed access input/output statement, no more
than one record may be read or written.

• The records in the file may be read or written either sequentially or directly,
depending on whether a keyed sequential input/output statement or a keyed

Chapter 5. Programming Input and Output 73

direct input/output statement is used. In sequential processing, records are
read or written in increasing sequence of the value of the key of reference. In
direct processing, any record may be read or written regardless of the previous
value of the key of reference. While a file is connected, the type of processing
can be changed depending upon the statement used to access the file.

• The processing intent specified when the file is connected for keyed access
defines the types of input/output statements that can be used with the file.
There are three possible processing intents: WRITE, READ ONLY, and
READ/WRITE.

'__ _________ End of mM Extension __________ _

Record Format and Length

Fixed-Length Records

The format and size of your records are determined by two things: the
requirements of your application and whatever limitations the input/output devices
have. If your program will be using preexisting files, the record formats will, of
course, already have been decided, and you will fit your program to them.

Figure 15 shows the possible file organizations and record formats for non-VSAM
files.

Note: The following discussion applies primarily to non-VSAM files. For similar
information on VSAM files, refer to Chapter 15, "Using VSAM with VS
FORTRAN" on page 355.

File Fixed Variable Variable
Organization Length Length Spanned Undef"med

Physical YES YES YESl YES
Sequential
Non-VSAM

Direct YES2 NO NO NO
Non-VSAM

Figure 15. Summary of Non-VSAM File Organization and Record Formats

Notes to Figure 15:

Unformatted only

2 Unblocked only

Fixed-length records are Format F. In an unblocked format-F file, the logical
record is the same as the block. In a blocked format-F file, the numbet of logical
records within a block (the blocking factor) is constant for every block in the file,
except the last block, which may be shorter.

74 VS FORTRAN Programming Guide

Figure 16 shows an unblocked record:

ForMVS:

DCB=(RECFM=F,BLKSIZE=80)

ForVM:

RECFM F BLOCK 80 specified as options in FILEDEF command

ForVSE:

For sequential formatted 110 the RECFM is always set to F, so there is no need to
specify anything. The default BLKSIZE is 260 bytes; you could use CALL OPSYS
to change it.

FORTRAN Record 1
o 80

Figure 16. Fixed-Length Records-Unblocked

Figure 17 shows a blocked record (VS FORTRAN does not support fixed-length
blocked records in VSE):

ForMVS:

DCB=(RECFM=FB,LRECL=80,BLKSIZE=400)

ForVM:

FILEDEF ..• (RECFM FB "LRECL 80 BLOCK 400

FORTRAN Record 1 FORTRAN Record 2 ... FORTRAN Record 5
0 80 160 320 400

Figure 17. Fixed-Length Records-Blocked

Variable-Length Records (Format V or D)

Variable-length records can be format V or format D. Format-D records are
variable-length records on ISCIII ASCn tape files. Format-D records are
processed the same as format-V records.

Format-V records have control fields preceding your data. The control fields are
shown in Figure 18 on page 76 and Figure 19 on page 76.

Chapter 5. Programming Input and Output 75

4 bytes 4 bytes Variable bytes
LL BB 11 bb Data

BOW ROW

Figure 18. Variable-Length Records-Unblocked

4 bytes 4 bytes Variable bytes 4 bytes Variable bytes
LL BB 11 bb Data 11 bb Data

BOW ROW

Figure 19. Variable-Length Records-Blocked

where

BDW-block descriptor word
The first four bytes of each block contain control information.

LL

BB

Represents two bytes designating the length of the block (including
the BDW field)

Represents two bytes reserved for system use

ROW-record descriptor word
The first four bytes of each logical record contain control information.

n

bb

Represents two bytes designating the logical record length (including
the RDW field)

Represents two bytes reserved for system use

For unblocked format-V records, the block is composed of:

BOW + ROW + the data portion of one record

For blocked format-V records, the block is composed of:

BOW + the ROW of each record + the data portion of each record

The operating system provides the control bytes when the file is written. Although
they don't appear in the description of the logical record you provide, FORTRAN
allocates input and output buffers large enough to accommodate them. When
variable-length records are written on unit record devices, control bytes are neither

76 VS FORTRAN Programming Guide

Variable Spanned Records

printed nor punched. They appear, however, on other external storage devices as
well as in buffer areas of storage.

Variable-length record format can be specified for non-VSAM physical sequential
files only. VS FORTRAN does not support Format V in VSE.

Spanned records are subclassification S of format V. A spanned record is a logical
record that can be contained in one or more physical blocks. When you are
creating files containing spanned records, if a logical record is larger than the
remaining space in a block, a segment of the record is written to fill the block, and
the rest of the record is written in the next block or blocks, depending on its length.

When you are retrieving files with spanned records, your program can only retrieve
complete logical records.

Spanned records are preceded by control fields, as shown in Figure 20.

4 bytes 4 bytes Variable bytes
LL BB 11 bb Data Record or Segment

BOW SOW

Figure 20. Spanned Variable-Length Records

Each block is preceded by a block descriptor word (BDW). There is only one
block descriptor word at the beginning of each physical block.

Each segment of a record in a block, even if the segment is the entire record, is
preceded by a segment descriptor word (SDW). There is one segment descriptor
word for each record segment within the block. The segment descriptor word also
indicates whether the segment is the first, the last, or an intermediate segment.
These words are not available for you to use in your program.

Spanned Blocked File: A spanned blocked file is a file composed of physical blocks
that you define. The logical records can all be the same size or they can vary in
length; their size may be smaller, equal to, or larger than the physical block size.
There are no required relationships between logical records and physical block
sizes. See Figure 21 on page 78.

Chapter 5. Programming Input and Output 77

Blocked Records. DCB=(RECFM= VBS,LRECL= 130,BLKSIZE=200);
assume three FORTRAN records, the first 130 characters in length, the
second and third 100 characters in length:

<-----------block 1---------------> <------------block2---------------->

I B I S I I S I FORTRAN I B I S I FORTRAN I S I I
IDIDIFORTRAN Record 1 IDIRecord 2 IDIDIRecord 2 IDIFORTRAN Record 3 I
IWIWI (130 chars) IWISegment 1 I IWIWISegment 2 IWI (100 chars) I
I I I I I (58 chars) I I I I (42 chars) I i I
o 4 8 138 142 200 0 4 8 50 54 154

Figure 21. EBCDIC Sequential Data Sets--Structure of Variable-Spanned Blocked Unformatted Records

Note: In VSE, VS FORTRAN pads the last block to the length specified by the
block size for variable-spanned format.

Spanned Unblocked File: A spanned unblocked file is a file made up of physical
blocks, each containing one logical record or one segment of a logical record. The
logical records can all be the same size or they can vary in length. When the
physical block contains one logical record, the length of the block is determined by
the logical record size. The block size is controlled by the DCB BLKSIZE
parameter for unformatted I/O. See Figure 22.

If record format hasn't been specified by means of JCL (the DCB parameter on a
DD statement in MVS) or the RECFM option in a FILEDEF (in VM), format VS
is the default for non-VSAM, physical, sequential, unformatted files. Under VSE,
sequential unformatted records are always written in variable spanned format.

Unblocked Records. DCB=(RECFM= VS,BLKSIZE=68);
assume two FORTRAN records, one 50 characters in length, the other
130 characters:

<--block 1--> <---block 2---> <---block 3---> <---block 4---->

IBISI I IBISIFORTRAN IBISIFORTRAN IBISIFORTRAN
IDIDIFORTRAN I IDIDIRecord 2 IDIDIRecord 2 IDIDIRecord 2
I WIWI Record 1 I IWIWI Segment 1 I IWI WI Segment 2 I I WIWI Segment 3 I
I I I I I I I (60 chars) I I I I (60 chars) I I I I (10 chars) I
I 0 8 58 0 4 8 68 0 4 8 68 0 4 8 18

Figure 22. EBCDIC Sequential Data Sets--Structure of Variable-Spanned Unblocked Unformatted Records

Note: In VSE, VS FORTRAN pads the last block to the length specified by the
block size for variable-spanned format.

When you define files with spanned records, you can make the most efficient use of
external storage and still organize your files with logical record lengths that best
suit your needs:

18 VS FORTRAN Programming Guide

Undef"med Records

• You can specify block lengths to make most efficient use of track capacities on
direct access devices.

• You are 110t required to adjust the logical record lengths to device-dependent
physical block lengths. One logical record can span across two or more
physical blocks.

• You have greater flexibility when you want to transfer logical records between
direct access storage types.

• You will, however, have additional overhead in processing spanned files.

You can specify only one type of variable spanned file: Non-VSAM physical
sequential unformatted. You can only read or write variable spanned records with
unformatted READ or WRITE statements.

Undefined records are format U. Format-U records have undefined or unspecified
characteristics. With format-U, you can process blocks that don't meet format-F or
format-V specifications.

Each block on external storage is treated as a logical record; there are no
record-length or block-length fields.

Format-U records are shown in Figure 23. Format-U records can be unblocked
only:

DCB=(RECFM=U,BLKSIZE=80)

In this example, a record may be any size up to 80 bytes.

FILEDEF ... (RECFM U BLOCK 80

FORTRAN Record 1
o 80

Figure 23. Undef"med-Leugth Records

Only two types of file organization are possible with undefined records:
Non-VSAM physical sequential unformatted and formatted.

If the record format hasn't been specified, format U is the default for non-VSAM,
physical, sequential, formatted files.

Note: VS FORTRAN does not support format U in VSE.

Chapter 5. Programming Input and Output 79

Block Sizes

You establish the size of a physical block with the externally defined block size. H
the record format hasn't been specified by means of JCL (the DCB parameter on a
DD statement in MVS) or the RECFM option in a FILEDEF (in VM), the library
assumes the records are not blocked. Blocking FORTRAN files on disk can
enhance processing speed and decrease storage requirements.

Note: To specify the block size in VSE, use CALL OPSYS.

H the block size has already been specified, it must not be greater than the
maximum block size for the device.

The block size specified for a format-F file must be an integral multiple of the
record length.

H your program uses files on tape, use a physical·block size of at least 12 to 18
bytes. Otherwise, the block will be treated as noise and skipped over when a parity
check occurs while:

• Reading a block of records of less than 12 bytes

• Writing a block of records of less than 18 bytes

Block Size for ISCII / ASCII Files: H you specify the block size for an
Iscn/ ASCn sequential file that has a block prefix, be sure to include the length of
the block prefix in the block size you specify.

B lock Size and the DCB RECFM Sub parameter: You can specify the S or T
option in the DCB RECFM subparameter:

• You can use the S (standard) option in the DCB RECFM subparameter for a
format-F record with only standard blocks. (A standard block has no
truncated blocks or unfilled tracks within the file, except for the last block of
the last track.) Use of the standard block option results in significant
input/ output performance improvements for direct access devices.

• You can use the T (track overflow) option only with MVS non-VSAM files.

Using VS FORTRAN Input/Output Statements

A list of the VS FORTRAN input/output source statements follows:

OPEN statement-connects a file to an I/O unit in a FORTRAN program.

WRITE statement-transmits a record to an external or internal unit (see
"Specifying the Input/Output UNIT Parameter" on page 81 for meaning of
"external or internal unit").

PRINT statement-formats and transmits a record to an external unit.

READ statement-retrieves a record from an external or internal unit.

80 VS FORTRAN Programming Guide

ENDFILE statement-writes an end-of-file record on an external sequential
file.

BACKSPACE statement-backspaces a sequential file by one record, or a
keyed file to the first record with a specific key.

REWIND statement-positions a sequential file so that the next READ or
WRITE statement processes the first record in the file, and positions a keyed
file to the beginning of the first record with the lowest key in the file.

CLOSE statement-disconnects a file from a FORTRAN I/O unit.

INQUIRE statement-requests information about a file; can be used to return
the record number to user for direct access I/O, or the key of the record just
retrieved with keyed access I/O.

mM Extension

REWRITE statement-for a keyed file, replaces a record just read.

DELETE statement-for a keyed file, erases a record just read.

WAIT statement-completes an asynchronous input/output transmission.

L..-__________ End of mM Extension __________

For reference information about VS FORTRAN input/output statements, see VS
FORTRAN Language and Library Reference.

Specifying the Input/Output UNIT Parameter

The UNIT parameter is required in most I/O statements. It has three forms:

• Character expression - for internal file identifier

• Integer expression - any valid unit number

• Asterisk - for the systelllldefault

The UNIT parameter is specified as follows:

[UNIT =] y

where u identifies an internal or an external file.

An internal file identifier is the name of a character variable, character array,
character array element, or character substring.

An external unit identifier is one of the following:

• An integer expression whose value must be zero or positive (and that must
represent a valid unit number).

Chapter 5. Programming Input and Output 81

• An asterisk, identifying a particular processor-determined external unit that is
preconnected for formatted sequential access.

When you want to use one input/output statement to process more than one file,
you can specify an expression. Between one execution of the statement and the
next, you can change the value of the expression in the UNIT parameter and thus
change the file to which the statement refers.

Monitoring Input/Output Errors-IOSTAT and ERR Parameters

Two parameters available with most I/O statements that allow for error checking
are:

IOSTAT-I/O Status
which, after the input/output operation is completed, gives you the result:

Zero, if no transmission error was detected

Positive, if an error was detected

Negative, at sequential end-of-file

VSAM return and reason codes, for a VSAM file

ERR-Error Label
which you can use to specify special processing after an error occurs during
execution of the I/O statement.

This lets you branch to a special procedure in the same programming unit
that's executed when an error occurs. The procedure can obtain information
about the last record processed. For example, the procedure could close any
other open files, and display information useful in debugging, such as
accumulated totals or current values in selected data items.

Not all VS FORTRAN errors will set the 10STAT field, nor will they all branch to
the ERR label. See the figure entitled "lOST AT and ERR Parameters Honored for
I/O Errors" in VS FORTRAN Language and Library Reference for a complete list.

Extended error handling is also available. See "Extended Error Handling" on
page 197 for a description of this aid.

Connecting to an External FOe-OPEN Statement

An OPEN statement connects a FORTRAN 1/0 unit number with an external file
and may state other file characteristics. Direct files and VSAM files must be
opened with an OPEN statement. For other types of files, the OPEN statement is
optional.

The parameters in the OPEN statement are:

.82 VS FORTRAN Programming Guide

UNIT

FILE

which is an integer expression that specifies the I/O unit to be connected.
For more information, see "Specifying the Input/Output UNIT Parameter"
on page 81.

which specifies the name of the data definition statement (ddname in MVS
and CMS; filename on the DLBL statement in VSE) to be represented
internally by the unit number.

Note: On all systems, the name of the file must be specified if the default
name is not desired. The name can contain up to seven alphameric
characters, the first of which must be alphabetic.

If a file status of SCRATCH is specified, the name must not be specified.
The FILE parameter cannot be specified if the default name is desired.

Example (VM):

OPEN (UNIT=15, FILE='myfile1' , ...)

FILEDEF MYFILE1 DISK SAMPLE DATA A

If you do not use a FILEDEF command, the filename is always FILE, and
the file type is taken from the OPEN statement-in this case, myfile 1.

If, on the other hand, you do not use a FILEDEF command and FILE is not
specified in the OPEN statement, the default filename, filetype, and filemode
are:

FILE FTxxF001 A1

where:

xx is the unit number to which you are putting out the data.

For VSAM keyed files, the default is FTxxKnn, where:

xx is the unit number (00 through 99), and
nn is the key sequence number (01 through 09).

For VM, the filename specified in the OPEN statement is the ddname.

Example (MVS):

//MYFILE1 DD DSN=SAMPLE, ...

OPEN (UNIT=15, FILE='myfile1', ...)

The default name of the file is FTxxFOOl, where xx is the unit number to
which you are putting out the data.

Chapter 5. Programming Input and Output 83

For VSAM keyed files, the default is FTxxKnn, where:

xx is the unit number (00 through 99), and
nn is the key sequence number (01 through 09).

For MVS, the filename specified in the OPEN statement is the ddname.

Example (VSE):

//DLBL myfile1, ...

OPEN (UNIT=15, FILE='rnyfile1', •..)

For VSE, the filename specified in the OPEN statement is the filename
specified in the DLBL statement. Your installation may have set up default
DLBLs specifying default filenames. If OPEN is specified without a
filename, a filename must have been supplied on a DLBL statement; for
example, with default filenames such as USYSOO through USYS04.

For VSAM sequential and direct files, the default is USYSxx; for VSAM
keyed files, the default is FTxxKnn:

where

xx is the unit number (00 through 99), and
nn is the key sequence number (01 through 09)

STATUS
which lets you specify the file status of this file, as follows:

NEW for a file that you're creating for the first time

OLD for a file that already exists

SCRATCH for a temporary file to be used during this job and then erased
at the end of the job

UNKNOWN for a file whose status is not currently known to the program; it
mayor may not currently exist. If it does not exist, it will be
created.

ACCESS
which lets you specify the access method for this file: SEQUENTIAL or
DIRECT.

mM Extension

Or KEYED.

'"-_________ End of mM Extension _________ ~

84 VS FORTRAN Programming Guide

Sequential files are always assumed; therefore, for this type of file, specifying
the ACCESS parameter is not required. However, specifying it is useful for
documentation.

For direct and keyed files, you must specify the access method.

BLANK
which lets you specify how blanks in numeric fields of a formatted input
record are to be treated:

NULL blanks are ignored

ZERO any blanks that aren't leading blanks are treated as zeros

FORM

RECL

which lets you specify whether this file is connected for formatted or
unformatted input/output. For sequential files, the default is
FORMATTED; for direct or keyed files, the default is UNFORMATTED.

which lets you specify the logical record length of a direct file. Must not be
used for sequential or keyed files.

IBM Extension

ACTION

KEYS

which indicates the type of file processing to be done.

WRITE to open a VSAM file for loading of records

READ to open a non-empty VSAM file for retrieval operations

READWRITE to open a VSAM file to allow possible update as well as
retrieval operations.

The following parameters can only be used if ACCESS=KEYED.

which is a list of one or more different primary or alternate index keys which
may be used to access the KSDS.

PASSWORD
which is the password that is required to access the VSAM KSDS.

""'-__________ End of mM Extension __________

To see the formats of the above parameters, see VS FORTRAN Language and
Library Reference.

Chapter 5. Programming Input and Output 85

Handling Multiple Files

In MVS and VM, you can refer to multiple files using the same unit number-but
to do so, you must use the default name for the file:

FTxxFyyy

where

xx is the unit number (00 through 99), and
yyy is the file sequence number (001 through 999).

In MVS and VM, the file sequence number identifies the data set sequence
number.

The file sequence number for a given unit number is incremented when an END=
branch is taken for a READ statement, or when an ENDFILE statement is
executed. Execution of a REWIND or CLOSE resets the sequence number to 001.

In MVS and VM, each file sequence number refers to a separate physical
sequential file. Each of these files must be described by a separate DD statement
(MVS) or a CMS FILEDEF command (VM). Refer to Chapter 12, "Using VS
FORTRAN under MVS" on page 257, or Chapter 11, "Using VS FORTRAN
under VM" on page 227, for a discussion of ddname requirements.

Formatting New, Direct, Non-VSAM Data Sets-OPEN Statement

Under MVS and VM, you can cause the primary allocation of a direct access data
set to be formatted. (Under VSE, you should still use the CLEAR DISK system
utility to preformat the data set because it proviqes device independence and
performance in that environment.) . ,

Under MVS, in order to format the data set, you specify DIS:P=NEW in the DD
statement for the file. Under VM, the file must not exist. In addition, you specify
the STATUS= parameter in the FORTRAN OPEN statenjent as NEW,
UNKNOWN, or SCRATCH; and the ACCESS= parameter as DiRECT.

This causes the primary allocation of the data set to be filled with dummy records
during the formatting operation. A dlllllffiyrecord is identified by the constant
X'FF' in the first byte of the record. Although such dumniy records are
automatically inserted into the data set when it is created, they are not ignored
when the data is read. They are replaced with valid data by a FORTRAN direct
access WRITE statement.

Creating FOe Records-WRITE Statement

You can use the WRITE statement for two different purposes:

• To transfer data items from internal storage to a record in an external file

• For internal files, to transfer a number of data items (each of which may have
a different data type) into one character item

86 VS FORTRAN Programming Guide

The form of WRITE statement you specify depends upon the access you're using.
See the descriptions, later in this chapter, of each type of access.

With the WRITE statement, you can specify any of the common processing options
previously described.

Retrieving File Records-READ Statement

You can use the READ statement for two different purposes:

• To transfer a record from an external file to data items in internal storage

• For internal files, to transfer one character item into a number of data items,
each of which may have a different data type

The form of READ statement you specify depends upon the access you're using.
See the descriptions, later in this chapter, of each type of access.

For terminal files, a null entry in response to a READ is taken to be an end-of-file.

Obtaining FUe Information-INQUIRE Statement

You can use the INQUIRE statement to gather information about an external
sequential, direct, or keyed file, or about a particular external unit. Your program
can then take alternative actions, depending upon the information provided.

The INQUIRE statement is never required in a program, and you can execute it
whether or not the file or unit is currently connected with your program.

You can ask for information about either a file or a unit number; and you can
specify the I/O Status and Error Routine options, described under "Monitoring
Input/Output Errors-IOSTAT and ERR Parameters" on page 82.

In addition, you can request the following information:

• Whether the file or unit exists

• Whether the file or unit is connected

• The unit number of the file or unit

• Whether the file has a name

• The access to this file-sequential, direct, or keyed

• Wheth~r the file can be connected for sequential I/O

• Whether the file can be connected for direct I/O

• Whether the file is connected for formatted or for unformatted I/O

• Whether you can connect the file for formatted I/O

Chapter 5. Programming Input and Output 87

• Whether you can connect the file for unformatted I/O

• The record length, if this is a direct access file

• The number of the next record in the file, if this is a direct access file

• Whether input blanks are treated as zeros or as nulls

ffiM Extension

• What type of access is desired: sequential, direct, or keyed

• The various properties of a keyed file as follows:

The value of the key of the last record read or written.

Whether you can connect the file for keyed access input/output

What type of action is desired: write, read, or readwrite

Whether the keyed file is to be opened for loading of records into a file,
retrieval of records only, or update as well as retrieval.

Where file positioning is to take place for loading, retrieval, or update
operations

____________ End of ffiM Extension __________

For more details about these properties, see VS FORTRAN Language and Library
Reference.

Disconnecting a File-CLOSE Statement

You can use the CLOSE statement to disconnect an external file and a FORTRAN
I/O unit.

The CLOSE statement is never required, but it lets you specify special processing
when the connection is ended.

In addition to the common processing options previously described, you can also
specify whether or not the file still exists (internally to the FORTRAN program)
after the CLOSE statement is executed.

If you don't explicitly specify that the file is to be deleted, the file still exists after
you've closed it. In this case, you can subsequently open the file for updating or
retrieval.

Note: For MVS and VSE, the CLOSE statement does not override what you
specify in the job control statements for the file.

88 VS FORTRAN Programming Guide

~ Types of I/O

The following section discusses the various types of I/O:

• Unformatted I/O for sequential, direct, and keyed access

• Formatted I/O for sequential, direct, and keyed access

• Internal I/O for data conversions to and from the character type

mM Extension

• NAMELIST I/O for sequentially accessed files

• List-directed I/O for sequentially accessed files

• Asynchronous I/O for high-speed sequential input/output

'--__________ End of mM Extension __________ ~

Using Unformatted and Formatted I/O

For sequential, direct, and keyed files, you can specify one of two forms of READ
and WRITE statements: unformatted or formatted.

Labels and record formats are of importance for every file your program uses. See
Chapter 12, "Using VS FORTRAN under MVS" on page 257, and Chapter
14, "Using VS FORTRAN under VSE" on page 331, for specific system
requirements for labels and record formats.

For further details of DCB considerations, see "Defining Records" on page 307 or
the appropriate Data Management Services Guide.

Formatted and Unformatted Records

A formatted record consists of a sequence of characters that are capable of
representation in the processor. The length of a formatted record is measured in
characters, and depends primarily on the number of characters put into the record
when it is written. However, it may depend on the processor and the external
medium. The length may be zero.

Formatted records may be read or written only by formatted input/output
statements.

An unformatted record consists of a sequence of values in a processor-dependent
form and may contain both character and noncharacter data--or may contain no
data. The length of an unformatted record is measured in processor-dependent
units and depends on the output list used when it is written, as well as on the
processor and the external medium.

Unformatted records may be read or written only by unformatted input/output
statements.

Chapter 5. Programming Input and Output 89

Unformatted I/O

Formatted I/O

Unformatted I/O lets you use a list of FORTRAN data items to control the
transfer of data; the length of the FORTRAN items in storage controls the amount
of data transferred.

You can specify unformatted I/O using a READ, WRITE, or REWRITE
statement. Each unformatted READ, WRITE, or REWRITE statement processes
a record at a time, transferring the data items without conversion. (This means the
transfer is quicker than when the program must convert each item as it is
processed.)

Unformatted I/O allows only one logical record for each READ, WRITE, or
REWRITE statement. The records of a file must be either all unformatted or
formatted, not mixed. You can specify the NUM= parameter on any unformatted
I/O statement to get the exact number of bytes read or written.

Following is an example of unformatted I/O:

CHARACTER*3 CH
CH = 'ABC'
I = 5
A = 2.0
WRITE (10) I , CH , A

where

CH is a character variable of length 3, and has the internal hexadecimal
representation of CIC2C3.

I is an integer variable of length 4 and has the internal hexadecimal
representation of 00000005.

A . is a real variable of length 4 and has the internal hexadecimal representation
of 41200000.

After the WRITE statement has been executed, the record contains 11 bytes of
data as shown here in hexadecimal representation:

100000005 C1C2C3 41200000 I
I CH A

Formatted I/O lets you control input/output by specifying the format of the
FORTRAN records and the form of data fields within the records.

This form of I/O also lets you convert items from internal representation to a
character format that is readable on a listing. (The conversions cause data transfer
to be considerably slower than with unformatted input/output.) The records of a
file must be either all formatted or unformatted, not mixed.

In this form of input/ output, you specify a FORMAT statement to be used in
conjunction with the READ and WRITE statements. The FORMAT statement

90 VS FORTRAN Programming Guide

specifies the format of the FORTRAN records-the receiving field in a WRITE
statement and the sending field in a READ statement.

Assume variables CH, I, and A have the same initial values, as defined in the
preceding example:

WRITE (10,15) I, CH, A
15 FORMAT (I2,1X,A3,2X,F5.1)

After the above statements are executed, the record contains 13 characters of data
as shown here in EBCDIC representation:

1 5 ABC 2.01

Formatting FORTRAN Records-FORMAT Statement

When you're using formatted I/O, the FORMAT statement lets you specify the
format of the FORTRAN records in READ, WRITE, or REWRITE statements.
You can place FORMAT statements anywhere between the first and last
statements in your program unit; you must specify a statement label.

You can use the FORMAT statement with both external and internal files.

When you use it for external files, be sure that the size of the FORMAT record
doesn't exceed the size of the input/output medium; for example, if you're sending
the record to a printer, it must not be longer than the printer line length. See
"Preface" on page iii for a list of publications containing device information.

When you use formatted output, be sure that the representation of the number
does not exceed the width of the output field. If the width is exceeded, asterisks
are written instead of data. For example, F7.3 cannot be used for any number that
is less than -99.999 or greater than 999.999.

Each field in the FORTRAN record is described with a FORMAT code specifying
the data type for the field. The order in which you specify the codes is their order
in the record. Some of the codes available with VS FORTRAN are shown in
Figure 24 on page 92 (for a comprehensive list, see VS FORTRAN Language and
Library Reference).

Chapter 5. Programming Input and Output 91

FORMAT Code Meoning

Aw

aAw

pP,aEw.dEe

alw.m

aGw.dEe

/

HN

HZ

s

Data Field Codes:

Character data field (optional length
specification)

Character data field (optional repeat
count)

Real data field (optional exponent (Ee»

Integer data field (with minimum number
of digits to be displayed (.m»

mM Extension

Integer, real, or logical data field
(optional exponent (Ee»

L End of IBM Extension ____________ --'

Edit Codes:

End of format control, but only if I/O
list is completely processed

End of record

N onleading blanks in a numeric field are
ignored on input

Blanks treated as zeros on input

Specifies display of an optional plus
sign

Figure 24 (Part 1 of 2). Some Codes Used with the FORMAT Statement

92 VS FORTRAN Programming Guide

SP

ss

TLr

TRr

Specifies plus sign must be produced
on output

Specifies plus sign is not to be
produced on output

Data transfer starts r characters
to left

Data transfer starts r characters
to right

The lowercase letters have the following meanings:

a An optional repeat count, less than 256

d The number of decimal places to be carried

e The number of digits in the exponent field

m The minimum number of digits to be displayed

p The number of digits for the scale factor

r A character displacement in a record

w The total number of characters in a field

Figure 24 (Part 2 of 2). Some Codes Used with the FORMAT Statement

Example:

If you want to define the format of an output record, you could specify your
FORMAT statement as follows:

200 FORMAT (SP,2A10,I6.4,2E14.5E2)

which specifies that the output line is to be formatted as follows:

SP specifies that if the value of any of the. numeric fields is positive, a plus
sign is to be displayed. (If the value is negative, a minus sign is always
displayed.)

2AIO specifies that the first and second items are character items of length
10.

16.4 specifies that the third item is an integer item of total length 6, and
that when the line is produced the display is:

(blank) (+ or -) (4 digits)

2E14.SE2 specifies that the fourth and fifth items are real items of total length
14; the display for each is shown in Figure 25 on page 94.

Chapter 5. Programming Input and Output 93

(2 blanks) (sign) (0) (decimal point) (5 digits) (E) (sign) (2 digits)
I II I

Numeric Field Exponent

(The sign is displayed as a + or a -.)

Figure 25. Display for FORMAT E14.5E2

Notes to Figure 2S :

1. The total width you can specify for this field is 14: 2 characters for leading
blanks, 7 characters for the numeric field (including the leading sign and the
decimal point), and 4 characters for the exponent (including the E and the
sign).

2. The length of the record you've defined is 54 characters (bytes).

A formatted WRITE statement uses the statement label for this FORMAT
statement and writes a record in this format.

Group FORMAT Specifications

VS FORTRAN lets you specify group specifications nested within the overall
FORMAT specification, by specifying the group within parentheses. The group
can contain a combination of format codes and groups, each separated by commas,
slashes, or colons.

For example, you could specify an input record as follows:

100 FORMAT (BZ,A4,(A8,(I4,E8.4,(E4.0,E8.2»»

which specifies that the input receiving fields are structured as follows:

• BZ specifies that blanks in the input are treated as zeros.

• The first field in the record, A4, is a character field of length 4.

• It is followed by a group field, (A8,(I4,E8.4,(E4.0,E8.2»), consisting of the
following:

An 8-character field, A8, followed by

A nested group field, (I4,E8.4,(E4.0,E8.2».

• This nested group field contains yet another nested group field, (E4.0,E8.2).

Note: Up to 50 levels for nesting group fields can be specified in the VS
FORTRAN FORMAT statement.

94 VS FORTRAN Programming Guide

Using Specifications Repeatedly-FORMAT Control

Your FORMAT statements need not contain a format specification for each field
in the READ or WRITE I/O list. If the end of the FORMAT specification list is
reached before the last item in the I/O list is processed, control is returned to the
rightmost left parenthesis in the format list; if there aren't any embedded
parentheses, then control is returned to the first item in the format list:

10 FORMAT (A4,2(I2,I4),3(I4,I4),E8.2)

In this example, control returns to the repeat count in 3(14,14). A new record is
processed each time control returns to the repeat count.

You can take advantage of this to reduce your coding effort, but be sure that the
items repeated are the items you want repeated.

Using One FORMAT Statement with Variable Formats

Internal I/O

You can specify variable FORMAT statements by placing a format specification
into a character variable or an array during execution. You could read the
specification in from external storage, or you could initialize the area using a
DATA statement or an explicit assignment statement. You can then use the array
as the format specification in READ or WRITE statements.

Using this feature, you can refer to a different array element each time you execute
the READ or WRITE statement, and thus change the format.

Internal I/O statements let you move data from one internal storage area to
another while converting it from one format to another. This gives you a
convenient and standard method of making such conversions.

If your external file is coded in EBCDIC character data, you can execute an
unformatted READ statement to·bring it into a character item in storage:

You can then execute a formatted internal READ statement to convert individual
items in the record from EBCDIC to their internal formats.

For internal READ and WRITE statements, you specify the UNIT identifier as an
internal data item-a character variable or a substring, or as a character array or an
array element.

Chapter 5. Programming Input and Output 95

Using the READ Statement-Internal Files

A READ statement referring to an internal unit converts the data from character
format to the internal format(s) of the receiving item(s):

CHARACTER*13 BUF
CHARACTER*3 CH
BUF = '5ABC 2.0'
READ (UNIT= BUF, FMT=40) I , CH, A

40 FORMAT (12, lX, A3, 2X, F5.0)

Execution of the READ statement in this case is equivalent to executing the
following assignment statements:

1=5
CH = 'ABC'

and A = 2.0

Using the WRITE Statement-Internal Files

NAMELIST I/O

A WRITE statement referring to an internal unit converts the data transferred from
internal format to character format:

CHARACTER *13 BUF
CHARACTER * 3 CH
1=5
A = 2.0
CH = 'ABC'
WRITE (UNIT=BUF, FMT=40) I, CH, A

40 FORMAT (12, lX, A3, 2X, F5.1)

Execution of the WRITE statement in this case is equivalent to executing the
following assignment statement:

BUF = ' 5 ABC 2.0'

The NAMELIST statement specifies one or more lists of names of variables or
arrays for use in READ and WRITE statements.

You can also use a READ statement to transfer data from an external 110 device
into storage, or from one area of internal storage to one or more other areas of
internal storage. In both cases, you must specify the NAMELIST statement to
associate the name given to the data in the FORTRAN program with the data
itself.

For more details and examples, see VS FORTRAN Language and Library
Reference.

96 VS FORTRAN Programming Guide

mM Extension

Using List-Directed Input/Output

List-directed inputloutput statements-READ and WRITE-simplify your data
entry for sequential files. They let you use formatted input/output-that is,
inputloutput statements that perform data conversions as the data is transferred
between internal and external storage-without the restrictions of a FORMAT
statement. You can enter the data to be transferred without regard for column,
line, or card boundaries.

You can specify list-directed 110 by specifying FMT _. on READ and WRITE
statements. You can also specify a character type as the unit on 110 statements.
This allows you to do list-directed 110 to an internal file.

For default format specifications for each data type, see VS FORTRAN Language
and Library Reference.

This makes list-directed READ and WRITE statements particularly useful for
terminal input and output, and for developing program test data.

For TSO considerations, see Chapter 13, "Using VS FORTRAN under TSO" on
page 317.

Input Data-List-Directed I/O

You enter list-directed input data as a series of FORTRAN constants and
separators:

• Each constant can be any valid FORTRAN constant. (Enter character
constants within apostrophes.)

Each constant you specify must agree in type with its corresponding item in the
I/O list.

The numeric part(s) of a noncharacter constant, including the optional sign,
may not contain embedded blanks.

• You can specify a repetition factor for any constant or null item. For example:

3·2.6

specifies that the real constant 2.6 is to appear three times in the data input
stream.

• Each separator can be:

one or more blanks
a comma
a line advance (for terminal input)
an end of card (on card devices)
a slash (I)

Chapter 5. Programming Input and Output 97

A combination of more than one separator, except for the comma, represents
one separator.

A slash (/) separator indicates that no more data is to be transferred during the
current READ operation:

Any items following the slash are not retrieved during the current READ
operation.

If all the items in the list have been filled, the slash is not needed.

If there are fewer items in the record than in the data list, and you haven't
ended the list with a slash separator, an error is detected.

If there are more items in the record than in the data list, the excess items
are ignored.

• A null item is represented by two successive commas.

List-Directed READ Statement

The list-directed READ statement retrieves a record from an input file, with
conversions to internal forms of data:

READ (FMT=*,UNIT=5,IOSTAT=INT1) A,E,I,O,U

This READ statement specifies:

FMT=*
specifies that this is a list-directed READ statement.

UNIT=S
specifies that 5 is the unit from which the data is to be retrieved.

IOSTAT=INTI
defines INTI as the FORTRAN integer variable into which information
about the last operation is placed; by testing INTI you can specify special
programming actions for special conditions.

!NT I contains a positive value when an error occurs.

INTI contains a negative value at end-of-file.

INT I contains a zero value when neither condition occurs.

A,E,I,O,U
are the data items in which you want the data placed.

When the READ statement is executed, the data placed in A, E, 0, and U is
converted to real data of length 4; the data placed in I is converted to integer
data of length 4.

Note: This is true only if there have been no explicit-type statements to the
contrary.

98; VS FORTRAN Programming Guide

List-Directed WRITE Statement

The list-directed WRITE statement writes a record on an output file, with
conversions from internal forms of data:

WRITE (UNIT=6,IOSTAT=INT1,FMT=*) A,E,I,O,U

This WRITE statement specifies:

UNIT = 6
specifies that 6 is the unit on which the data is to be written.

IOSTAT = INTl
defines INTI as the FORTRAN integer variable into which information
about the last operation is placed; by testing INTI you can specify special
programming actions for special conditions.

INTI contains a positive value when an error occurs.

INTI contains a negative value at end-of-file.

INTI contains a zero value when neither condition occurs.

FMT=*
specifies that this is a list-directed WRITE statement

A,E,I,O,U
are the source data items for the data transfer.

When the WRITE statement is executed, the data is converted from the internal
formats to external EBCDIC format.

Asynchronous I/O for MVS Only

Asynchronous input/output statements let you transfer unformatted data quickly
between external sequential files and arrays in your FORTRAN program, and,
while the data transfer is taking place, continue other processing within your
FORTRAN program.

Always specify variable-spanned record format for asynchronous I/O.

For more information concerning asynchronous input/output, which is only
available on MVS, see "Using Asynchronous Input/Output" on page 301.

'--__________ End of mM Extension __________

Chapter 5. Programming Input and Output 99

Sequential Access I/O . Statements

The FORTRAN statements you can use with sequential file processing are the
OPEN, INQUIRE, WRITE, READ, ENDFILE, BACKSPACE, REWIND, and
CLOSE statements. The following sections tell how to use these statements with
sequential access~

For system considerations, see "Sequential Files-System Considerations" on
page 303 (MVS), and "Sequential Files-System Considerations" on page 349
(VSE).

Using the OPEN Statement-Sequential Access

It's never necessary to specify an OPEN statement with sequential files unless the
file is a VSAM sequential file. However, the OPEN statement lets you take
advantage of the special processing it makes available. You can, for example,
specify the status of the file-NEW, OLD, SCRATCH, or UNKNOWN- as well
as any special processing to be performed if the OPEN statement fails.

If your OPEN statement doesn't specify the formatting, formatted is assumed.

If you don't specify an OPEN statement, the first READ or WRITE statement for
the file establishes the file connection.

For descriptions of the options you can use, see "Specifying the Input/Output
UNIT Parameter" on page 81, "Monitoring Input/Output Errors-IOSTAT and
ERR Parameters" on page 82, and "Connecting to an External File-OPEN
Statement" on page 82.

Using the WRITE Statement-Sequential Access

You can use either an unformatted or formatted WRITE statement with a
sequential file;. for example:

WRITE (UNIT=1 ° ,FMT=40,ERR=300 , IOSTAT=INT) A,E,I,O,U

where, in this example:

lOis the unit number of the external file.

40 is the statement label of the FORMAT statement (used only with the
formatted WRITE statement).

300 is the statement label of the FORTRAN statement to which control
is to be transferred if an error occurs.

INT is the name of an integer variable or an array element into which is
placed a positive or a zero value indicating failure or success of the
WRITE operation.

100, VS FORTRAN Programming Guide

~

A,E,I,O,U are the names of variables, arrays, array elements, character
substrings, or implied DO lists to be included in the output record.

Within main storage, these items need not be contiguous.

See "Specifying the Input/Output UNIT Parameter" and "Monitoring
Input/Output Errors-IOSTAT and ERR Parameters" on page 82 for a
description of the options you can use.

Using the READ Statement-Sequential Access

You can use either an unformatted or a formatted READ statement with a
sequential file; an example of an unformatted READ is:

READ (UNIT=11,ERR=300,IOSTAT=INT,END=200) A,E,I,O,U

where, in this example:

11

300

INT

200

A,E,I,O,U

is the unit number of the external file.

is the statement label of the FORTRAN statement to which control
is to be transferred if an error occurs

is the name of an integer variable or array element into which is
placed a positive or a zero value, indicating failure or success of the
READ operation

is the statement label of the FORTRAN statement to which control
is transferred when end-of-file is reached.

are the names of variables, arrays, array elements, character
substrings, or implied DO lists into which the input record is
transferred.

Within main storage, these items need not be contiguous.

For a description of the options you can use, see "Specifying the Input/Output
UNIT Parameter" and "Monitoring Input/Output Errors-IOSTAT and ERR
Parameters" on page 82.

For an unformatted READ statement:

• If an external record contains more data than the items in the list, the excess
external data is skipped.

• If an external record contains less data than the items in the list, an error
occurs and processing continues. However, the NUM parameter in an
unformatted I/O statement overrides this. NUM allows the data to be
transferred without any indication of an error. The integer variable or array
element specified by the NUM parameter is set to the number of bytes
transferred.

Chapter 5. Programming Input and Output 101

Using the ENDFILE Statement-Sequential Access

You can use the ENDFILE statement to write an end-of -file record on an external
file. You could also read a file as input and issue an ENDFILE. The file must be
connected when you issue the statement.

You can use the ENDFILE statement when you need to write an end-of-file record
for an output file. For example, the following ENDFILE statement:

ENDFILE (UNIT= 10,IOSTAT=INT,ERR=300)

performs the following actions:

• Writes an end-of-file record on unit number 10.

• Returns a positive or zero value in INT to indicate failure or success.

• Transfers control to statement label 300 if an error occurs.

Using the REWIND Statement-Sequential Access

Yon use the REWIND statement to reposition a sequentially accessed file to its
beginning point. The file must be connected when you execute the statement.

For example, the following REWIND statement:

REWIND (UNIT=II,IOSTAT=INT,ERR=300)

performs the following actions:

Positions the file on unit number 11 to its beginning point.

• Returns a positive or a zero value in INT to indicate failure or success.

• Transfers control to statement label 300 if an error occurs.

Using the BACKSPACE Statement-Sequential Access

You use the BACKSPACE statement to reposition a sequentially accessed file to
the beginning of the record last processed. The file must be connected when you
execute the statement.

Before your program issues a BACKSPACE statement, it must issue a READ,
WRITE, or REWIND statement, or the BACKSPACE statement is ignored. A
BACKSPACE statement for a SYSIN file (for VSE) is also ignored.

The following example shows how to use the BACKSPACE statement to reprocess
a record that was just written.

WRITE ••• (writes the record to the file)

102 VSFORTRANProgramming Guide

BACKSPACE •••

READ •••

(positions the file at the beginning of the record just
written)

(retrieves the record for reprocessing)

You can use the BACKSPACE statement to replace a record in a magnetic tape
file or a sequential direct access file:

READ •••

BACKSPACE •••

WRITE •••

(retrieves the record to be replaced)

(positions the file at the beginning of the record just
retrieved)

(writes the new record)

After execution of this WRITE, no records exist in the file following this record.
Any records that did exist are lost.

Using the CLOSE Statement-Sequential Access

You use the CLOSE statement to terminate the connection between the external
file and the unit.

For sequential files, the CLOSE statement is optional; however, you can use it to
specify specific processing actions when you disconnect from the external file.

For a description of options you can specify, see "Specifying the Input/Outp.l,lt
UNIT Parameter" and "Monitoring Input/Output Errors-lOST AT and ERR
Parameters" on page 82.

Direct Access 110 statements

The FORTRAN statements you can use to process direct files are the OPEN,
INQUIRE, WRITE, READ, and CLOSE statements.

For system considerations for direct files, see "Direct Files-System
Considerations" on page 303 (MVS), and, "Direct Files-System Considerations"
on page 349 (VSE).

Using the OPEN Statement-Direct Access

You must specify an OPEN statement with a direct file; you must specify the
following options:

ACCESS-to specify the file as direct

RECL-to specify record length

The record length you specify when you create the file is the record length you
must specify when you retrieve records from the file.

Chapter S. Programming Input and Output 103

If you don't specify the formatting, unformatted is assumed.

For descriptions of other options you can use, see "Specifying the Input/Output
UNIT Parameter," "Monitoring Input/Output Errors-IOSTAT and ERR
Parameters," and "Connecting to an External File-OPEN Statement" on
page 82.

Using the WRITE Statement-Direct Access

You can use either an unformatted or formatted WRITE statement with a direct
file; an example of an unformatted WRITE is:

WRITE (UNIT=15,REC=KEY,ERR=300,IOSTAT=INT)A,E,I,O,U

where, in this example:

15 is the unit number of the external file. It must identify a direct file.

KEY is an integer variable into which you place the relative record number
for the record you're writing.

You can specify the variable as an integer item of length 4.

mM Extension

You can also specify the variable as an integer item of length 2.

'--__________ End of IBM Extension __________ -"

300 is the statement label of the FORTRAN statement to which control
is to be transferred if an error occurs.

INT is the name of an integer variable or array element into which is
placed a positive or a zero value indicating failure or success of the
WRITE operation.

A,E,I,O,U are the names of variables, arrays, array elements, character
substrings, or implied DO lists to be included in the output record.

Within main storage, these items need not be contiguous.

Using the READ Statement-Direct Access

You can use either an unformatted or a formatted READ statement with a direct
file; an example of a formatted READ is:

READ (UNIT=11,FMT=40,REC=KEY,ERR=300,IOSTAT=INT) A,E,I,O,U

where, in this example:

11 is the unit number of the external file. It must identify a direct file.

104 VS FORTRAN Programming Guide

40 is the statement label of the FORMAT statement (used only with the
formatted READ statement).

KEY is an integer variable into which you place the relative record number
of the record you want to retrieve.

You can specify the variable as an integer item of length 4.

mM Extension

You can also specify the variable as an integer item of length 2.

'--__________ End of mM Extension __________

300 is the statement label of the FORTRAN statement to which control
is to be transferred if an error occurs.

INT is the name of an integer variable or array element into which is
placed a positive or a zero value, indicating failure or success of the
READ operation.

A,E,i,O,U are the names of variables, arrays, array elements, character
substrings, or implied DO lists into which the input record is
transferred.

Within main storage, these items need not be contiguous.

For an unformatted READ statement:

• If an external record contains more data than the items in the list, the excess
external data is skipped.

• If an external record contains less data than the items in the list, an error
occurs and processing continues. However, the NUM parameter in an
unformatted I/O statement overrides this. NUM allows the data to be
transferred without any indication of an error. The integer variable or array
element specified by the NUM parameter is set to the number of bytes
transferred.

Using the CLOSE Statement-Direct Access

You use the CLOSE statement to terminate the connection between the external
file and the unit. The CLOSE statement is never required for direct files; however,
you can use it to specify special processing to occur when you disconnect from the
external file.

For other options you can specify, see "Specifying the Input/Output UNIT
Parameter" and "Monitoring Input/Output Errors-IOSTAT and ERR
Parameters" on page 82.

Chapter 5. Programming Input and Output 105

mM Extension

Keyed Access 110 Statements

The FORTRAN statements you can use with keyed file processing are the OPEN,
READ, WRITE, REWRITE, CLOSE, DELETE, INQUIRE, REWIND, and
BACKSPACE statements. Keyed access is available only with VSAM. Both
formatted and unformatted I/O can be performed.

Using the OPEN Statement-Keyed Access

When your program processes a keyed file, you must open that file with the OPEN
statement. The OPEN statement option to use is

ACCESS='KEYED'

A keyed file can be opened with an ACTION of:

'READ' which allows the retrieval (READ) and positioning
(BACKSPACE and REWIND) operations to be performed on
non-empty keyed files. In order to minimize the contention for
the file between different users, ACTION should always be
specified or allowed to default to READ when only retrieval
and positioning operations are to be done.

'READWRITE' which allows the update operations (REWRITE, DELETE, and
WRITE) to be performed in addition to the retrieval and
positioning operations. For this value of the ACTION
parameter, records may be added to the file in any order.

'WRITE' which allows new records to be loaded into an empty keyed file
or at the end of a nonempty keyed file using the WRITE
statement. The records must be written in increasing sequence
of their primary key values.

When a previously loaded file is opened for retrieval and update
(ACTION='READWRITE'), one or more of the primary or alternate index keys
may be specified in the KEYS parameter of the OPEN statement. (Only those
keys by which access to the file is desired need to be listed.) If more than one key
is specified, then the READ statements which retrieve a record by key may indicate
which one of these keys is to be used in the search. The specific key that is used
for a given I/O statement is called the key of reference. The key of reference
remains the same for all subsequent I/O operations on the file until it is explicitly
changed.

The operations that may be performed for a file opened with
ACTION='READWRITE' allow for updating the file by:

• Replacing an existing record, using a READ statement followed by a
REWRITE statement.

106 VS FORTRAN Programming Guide

• Deleting an existing record, using a READ statement followed by a DELETE
statement.

• Adding a new record, using a WRITE statement.

An example of an OPEN statement, using all the parameters discussed, is:

OPEN (UNIT=8,ACCESS='KEYED',ACTION='READWRITE' ,KEYS=(16:19,1:3)

This OPEN connects an existing VSAM KSDS to FORTRAN I/O unit 8, in an
access mode of keyed (the only mode allowed for a KSDS), for retrieval and
update of records, using a primary key located in positions 16 through 19 of a
record (key 1), and an alternate key located in positions 1 through 3 of a record
(key 2).

Using the READ Statement-Keyed Access

Direct Retrieval

The READ statement can be used for direct or sequential retrieval from a keyed
file. (To use keyed retrieval, you must have opened the file with
ACTION='READ' to perform retrievel operations, or ACTION='READWRITE'
to perform both update and retrieval operations, and ACCESS='KEYED'.

In the event that the key of reference is an alternate index key rather than the
primary key, then there could be more than one record in the file with the same
key. When duplicate keys exist, a direct READ retrieves the first record, and
sequential READ operations may be used to obtain the additional records. (The
records with the same key are retrieved in the sequence that they were placed into
the alternate index.)

A direct retrieval statement is defined to be a READ statement with a KEY,
KEYGE, or KEYGT parameter, which provides the value of the key that is to be
used as the search argument for locating the desired record in the file. Only one of
the three key argument parameters may be used in a single READ statement.

• KEY =key specifies that the record having the identical key be retrieved.

• KEYGE=key specifies that the record having a key either equal to the key or
greater than and closest to the key be retrieved. .

• KEYGT=key'specifies that the record having a key greater than and closest to
the key be retrieved.

The optional KEYID parameter of the direct retrieval statement indicates which
key (first, second, and so on, from the KEYS parameter of the OPEN statement) is
to be used as the key of reference for a direct retrieval and for all subsequent
operations, until the key of reference is changed with another KEYID parameter.

Any of the key arguments (KEY, KEYGE, or KEYGT) used in a direct retrieval
may specify a key which is shorter than the keys defined for the file. Such a search
argument is called a generic key. This type of search argument causes a file search
in which only the partial key supplied is compared with the leading portion of the
keys in the file records. When KEY is used, for example, the record retrieved from

Chapter 5. Programming Input and Output 107

Sequential Retrieval

the file is the first one in which the beginning of the key is identical to the partial
key specified. The first record in key sequence that meets this criterion is returned
to the caller; if there is no such record, the NOTFOUND condition occurs. When
a generic key is provided with the KEYGE parameter, then the record retrieved is
the first one in which the leading portion of its key is either equal to or -greater than
the partial key given. Similarly, the use of a generic key with the KEYGT
parameter indicates that the desired record is the first one having the leading
portion of its key greater than the partial key supplied. Note that a single READ
statement retrieves only a single record even though there may be additional
records in which the leading portions of the keys are identical.

A sequential retrieval statement is defined to be a READ statement without a KEY,
KEYGE, or KEYGT parameter. The key of the record previously read or updated
is used as the starting point and the next record in increasing key sequence is
obtained. The key of reference from the previous direct retrieval statement
remains the key of reference for a sequential retrieval. (In order to initiate
sequential retrieval using a different key of reference, a direct retrieval statement
must be issued first with a KEYID parameter to change the key of reference.) In
the event that the file was just opened, sequential retrieval begins with the record
with the lowest key value, using as the key of reference the first of the keys
indicated by the OPEN statement.

A common scenario involving the use of both direct and sequential operations is to
retrieve a single record directly (for example, with a KEY parameter specifying a
generic key) and then continue reading with a series of sequential retrievals, until
there are no more records in which the leading portion of the key matches the
generic key specified in the first retrieval. The NOTFOUND parameter coded on
the sequential READ statement causes control to pass to the specified statement
when there are no additional records in which the leading portion of the key is
identical to the generic key. If the NOTFOUND parameter is not used, the logic of
the program must determine when to stop reading more records; otherwise,
successive sequential retrieval operations would continue to the end of the file (that
is, to the record with the highest key). Control would then pass to the statement
indicated by the END parameter.

An example of this scenario is:

I=1
READ (UN1T=8,FMT=99,KEY='D5' ,KEY1D=2,NOTFOUND=100) DEPTNO{I),

NAME(1),EMPNO(1)
30 READ (UN1T=8,FMT=99,NOTFOUND=300) DEPTNO{I),NAME(I),EMPNO(I)

I=1+1
GOTO 30

The initial READ statement directly retrieves the first record having a generic key
2 of D5. Then the loop READ sequentially retrieves all following records having
the- saine generic key. Fields in the records are placed in successive elements of the
arrays DEPTNO, NAME, and EMPNO. The NOTFOUND exits allow for the
possibility that no records meeting the key qualifications exist in the file.

108 VS FORTRAN Programming Guide

Using the WRITE Statement-Keyed Access

The WRITE statement is used to add one record with a new primary key to the file.

Files are opened with ACTION = WRITE for initial loading of records into an
empty file, or for adding additional records at the end of the file.

An example of the loading is:

10 READ (UNIT=5,FMT=20,END=50) DEPTN,NAM,EMPN
WRITE (UNIT=8,FMT=30) DEPTN,NAM,EMPN
GO TO 10

20 FORMAT (A3,2X,A12,2X,I4)
30 FORMAT (A3,A12,A4)

The keyed WRITE statement places records sequentially into the file connected to
FORTRAN I/O unit 8, opened for action WRITE (not shown); after reading the
records sequentially, from FORTRAN I/O unit 5 (physical sequential file
assumed); until end-of-file on unit 5 is reached, when the END= branch is taken.

Notice that the field represented by the variable EMPN is read in using format 14
which converts it to fixed-point internal format, but is written out to the keyed file
using format A4 in order to retain the fixed-point representation, because this is
desired in the use of this field as a key.

When records are being written to or loaded into a file that was opened with an
ACTION of WRITE, the records must be presented in increasing primary key
sequence. (If they are not, an error condition exists.)

If the file was opened with an ACTION of READ WRITE for updating, records
may be added to the file in any order. For_this write operation to complete
successfully, the primary key of the record being written must be unique. And, if
an alternate index key exists for the file (and is defined to have unique key values),
the alternate key of the record being written must also be unique.

If the primary key of the record being written, or possibly the alternate key, is not
unique, a duplicate key condition exists: the new record is not written, the record in
the file is not modified, and control passes to the statement indicated by the
DUPKEY parameter in the WRITE statement. If no DUPKEY parameter exists,
control passes to the statement indicated by the ERR parameter, and the variable
specified by the 10STAT parameter, if any, is given the "duplicate key" value. If
the ERR parameter isn't given either, execution terminates with an appropriate
error message unless the option table entry for the message specifies a user exit
which takes corrective action. Note that the "duplicate key" condition can arise
even if the key value being duplicated is not for one of the keys being used in the
program (as specified in the KEYS parameter of the OPEN statement).

An example of an update WRITE statement is:

WRITE (UNIT=8,FMT=98,DUPKEY=40) DPTN,NAM,EMPN,'NEW EMPLOYEE'

This statement adds a record to the file referenced by FORTRAN I/O unit 8, using
FORMAT statement 98. The data placed in the record is taken from variables
DPTN,NAM,EMPN, and, literally, the constant 'NEW EMPLOYEE'. For this
update to complete successfully, DPTN and EMPN, which contain key values, must
be unique; if they are not, the DUPKEY statement 40 is exited to and the write

Chapter 5. Programming Input and Output 109

operation does not occur. Also, the file must have been opened for update with
ACTION='READWRITE' .

Using the REWRITE Statement-Keyed Access

For keyed files, you can use the REWRITE statement to replace a record that was
successfully retrieved.by the immediately preceding sequential or direct READ
operation. No other I/O operations, such as BACKSPACE or WRITE, may be
issued for the same file between the READ and REWRITE statements. Any data
in the record just read may be changed except for the value of the key of reference.
(If the key of reference is an alternate index key, then neither the value of that
alternate index key nor the value of the primary key may be changed.) The I/O
list in the REWRITE statement contains each item, changed or unchanged, which
is to appear in the record.

For instance, the following statements demonstrate updating several records by
means of a READ, REWRITE sequence.

READ (UNIT=8,FMT=99,KEY='F10' ,KEYID=2) DEPTN,NAM,EMPN
40 REWRITE (UNIT=8,FMT=98) DEPTN,NAM,EMPN, 'MOVING TO BLDG. 10'

READ (8,99,NOTFOUND=120) DEPTN,NAM,EMPN
GOTO 40

The first direct retrieval READ processes the initial record for the key 2 value FlO,
and this record is then rewritten with the added comment. The second sequential
retrieval READ then processes the next record for the key, and loops back to
replace it, continuing until no more records of that key 2 value are found, at which
point the NOTFOUND exit is taken.

Using the DELETE Statement-Keyed Access

For keyed files, you can use the DELETE statement to erase a record that was
successfully retrieved by the immediately preceding direct or sequential READ
operation. No other I/O operations, such as BACKSPACE or WRITE, may be
issued for the same file between the READ and DELETE statements.

Using the INQUIRE Statement-Keyed Access

The INQUIRE statement may be used to determine various properties of a keyed
file. See "Obtaining File Information-INQUIRE Statement" on page 87 for a
list of the properties related to keyed files.

Using the REWIND Statement-Keyed Access

The position in the keyed file for a subsequent sequential retrieval operation may
be controlled by the REWIND statement. The REWIND statement positions the
file to the record having the lowest value for the key of reference; a sequential
READ statement then retrieves that record. Another way of putting this: The
REWIND positions the file to the first record in the file for the file arrangement
associated with the current key of reference.

110 VSFORTRAN Programming Guide

Using the BACKSPACE Statement-Keyed Access

You can use one or more BACKSPACE statements to reestablish the position of a
keyed file to a point prior to the current file position. You can then use a
sequential retrieval statement to read the record to which the file was just
positioned.

If the key of reference has unique key values, the first BACKSPACE statement
following a READ, WRITE, or REWRITE statement positions the file to the
beginning of the same record that was just read or written. A BACKSPACE
statement following a DELETE statement positions the file to the beginning of the
record with the next lower key value. Subsequent BACKSPACE statements
position the file to the beginning of the records with successively lower key values.

If the key of reference has nonunique key values, the first BACKSPACE statement
following a READ, WRITE, or REWRITE statement positions the file to the first
record with the same key value that appeared in the record that was just read or
written. A BACKSPACE statement following a DELETE statement that deleted a
record which was not the first record with that same key value, also positions the
file to the first record with that key value. However, if the DELETE statement
deleted the first record with a given key value, then the BACKSPACE statement
determines the next lower key value and positions the file to the first record with
that lower key value. Each subsequent BACKSPACE statement finds successively
lower key values and positions the file to the beginning of the first record with
those different key values. Therefore, when the key of reference has nonunique
key values, a series of BACKSPACE statements does not position the file to all of
the records that would be read with a series of sequential retrieval statements.

For example, if a sequence of records in file 8 were:

Record Key 2 Value

n D47

n+l D47

n+2 FlO

n+3 FlO

n+4 FlO

Assume you have just read record n+4 with key 2 as the key of reference. Then,
two consecutive backspaces would position the file as follows:

Record Key 2 Value

n + 2 FlO (first backspace)

n D47 (second backspace)

Because key 2 is nonunique, backspacing causes movement through a group of
records to the first record of the group having a specific nonunique key value, and
not to the next previous record, as it would if the key were unique.

Chapter 5. Programming Input and Output 111

You may use BACKSPACE to locate the last record, that is, the record with the
highest key value in the file. First, you must position the file beyond the last
record. You can do this in one of two ways:

• By issuing a sequential retrieval statement with the END=sln parameter after
having already read the last record in the file. Control will pass to sIn in this
case.

• By issuing a direct retrieval statement with a KEYGE or KEYGT parameter
which specifies a search argument so large that no record in the file satisfies
the search criterion. Control passes to the statement indicated by the
NOTFOUND=sln parameter in this case.

A BACKSPACE statement issued when the file is positioned beyond the last
record repositions the file to the beginning of the record with the highest key value.
(If there is more than one record with this key value, the file is positioned to the
first such record.) A sequential retrieval may then be used to read the record with
the highest key value.

Issuing the BACKSPACE statement has no effect if the file is positioned at the
beginning of the first record in the file (such as after an OPEN or REWIND). It is
not permitted if the previous retrieval or update operation failed for any reason
other than reaching the end of the file.

~ __-_______ End of mM Extension __________ -'

112 VS FORTRAN Programming Guide

Chapter 6. Subprograms and Shared Data

You may need to write programs that require a specific operation to be performed
again and again, with different data for each repetition; for example, a complex
mathematical operation.

You can simplify the writing of such programs if you write the statements that
perform a repetitiv~_operation as a separate subprogram. You can then simply
refer to the subprogram throughout the program at the points where you need the
operation done.

The program that requires the services of the subprogram is the calling program.
The subprogram itself is the called program.

Two kinds of subprograms that VS FORTRAN supplies are:

• Subroutine Subprograms--which are invoked in the calling program through the
CALL statement. For example:

CALL CROOT (RNBR)

This CALL statement makes the value in RNBR available to subprogram
CROOT and transfers control to the first executable statement in subprogram
CROOT. When CROOT has completed execution, control is transferred back
to the calling program.

• Function Subprograms--which are invoked in the calling program through
function references. For example:

ANS = LNGTH * CROOT1 (RNBR)

When this statement is executed, the main program makes the value in RNBR
available to function subprogram CROOT! and transfers control to the first
executable statement in it. As soon as CROOT! finishes processing, control is
returned to the main program together with a value that is multiplied by
LNGTH to give ANS.

Calling and called programs can share data by means of common data areas
and passed data items.

Chapter 6. Subprograms and Shared Data 113

Program Hierarchy

The FORTRAN language statements that comprise the functions needed for
calling and called programs and shared data are summarized below:

Statement
Name

PROGRAM

CALL

INTRINSIC

FUNCTION

SUBROUTINE

ENTRY

RETURN

END

SAVE

Statement Function

Names a main program.

Invokes a subroutine subprogram and passes actual
arguments.

Specifies FORTRAN instrinsic function names that are
passed as arguments.

Designates. a subprogram as a function subprogram and
names its dummy arguments.

Designates a subprogram as a subroutine subprogram and
names its dummy arguments.

Specifies an alternative entry point in a subprogram.

Specifies alternative return points in a subprogram; may
also specify variable return points in the calling program.

Terminates a subprogram and has the effect of a
RETURN statement.

Retains values that would otherwise become undefined
after a RETURN or END is executed; is accepted but has
no effect in VS FORTRAN because the values remain
available.

COMMON Specifies a shared data storage area and the names of the
variables and arrays it contains.

EQUIVALENCE Specifies program data names that share storage with
common data names.

BLOCK DATA Names a block of data that initializes items in a named
common area.

Calling and called programs make up a hierarchy of programs:

• The first program unit to invoke others is the main program; one and only one
main program is required in every program hierarchy. The main program
invokes subprograms; however, subprograms cannot invoke the main program.

114 VS FORTRAN Programming Guide

• Subprograms can invoke other subprograms to any depth. However, a
subprogram cannot invoke itself, and it cannot invoke any subprogram in the
hierarchy that invoked it.

An example of a program hierarchy is shown in Figure 26. In the example,

A, the main program, invokes subprograms Band E.

B invokes C and F.

C invokes D.

Notes:

1. Subprogram D could not invoke subprogram B or C; it could, however, invoke'
subprogram E or F.

2. Subprogram C could invoke For E but not B.

3. Subprogram B could invoke E.

4. Main program A could invoke C, D, or F.

5. None of the invoked subprograms can invoke the main program A.

E

A
Main

Figure 26. Calling and Called Program Hierarchy

If you do not designate a program as a subprogram, it is by default' a main program.
A main program is always named MAIN when compiled unless you use the
PROGRAM statement to give it another name, probably a description name to
document it.

Chapter 6. Subprograms and Shared Data 115

Invoking Subprograms

Invoking Function Subprograms

When the name of a function, followed by a list of its arguments, appears in any
FORTRAN expression, it refers to the function and causes the computations to be
performed as indicated by the function definition. The resulting quantity (the'
function value) replaces the function reference in the expression and assumes the
type of the function. The type of the name used for the reference must agree with
the type of the name used in the definition.

For instance, you can invoke a function subprogram you've named BCALC, with
the following statement in your invoking program:

R = BCALC(A+B) * 3.1

Your program calculates the sum of A and B and passes that value to the function
subprogram BCALC; when BCALC completes executing, it returns the value to
the invoking program, which then multiplies it by 3.1 to give the value of R.

FIIIIdiM SlIbprogt'tllllt and the EXTERNAL Statement: You use the EXTERNAL
statement with your function subprograms in two different ways:

• If you name the program with an mM-supplied function name, you must list
the name in an EXTERNAL statement.

For example, if you write your own square root routine, and you name it
SQRT, you must specify it in an EXTERNAL statement:

EXTERNAL SQRT

which tells the compiler that you want any SQRT references in your program
t() invoke your own SQRT routine rather than the mM-supplied SQRT routine.

• If you want to pass a function subprogram as an argument, you must specify
the name of the subprogram in an EX'!ERNAL statement.

When you specify an EXTERNAL statement, it must precede all the statement
function definitions and executable statements in your program. The names you
specify in an EXTERNAL statement can be names of external procedures, dummy
procedures, or block data subprograms.

You can't use the same name in both an EXTERNAL statement and an
INTRINSIC statement.

116 VS FORTRAN Programming Guide

Invoking Subroutine Subprograms-CALL Statement

To execute a subroutine subprogram at a certain point in a program, issue a CALL
statement at that point in the invoking program. The CALL statement can,
optionally, pass actual arguments to replace the dummy arguments in the called
subroutine subprogram:

CALL OUT (0 actual arguments passed)
CALL SUB1 (X+Y*5,ABDF(IND) ,SINE) (3 actual arguments passed)

When it's executed, the CALL statement transfers control to the subroutine
subprogram, and associates the dummy variables in the subroutine subprogram
with the actual arguments that appear in the CALL statement, as shown in
Figure 27.

Calling Program

DIMENSION X(90) ,Y(90)

CALL COpy (X,Y,90)

Subroutine Subprogram

SUBROUTINE COPY(A,B,N)
DIMENSION A(N),B(N)
DO 10 I = 1,N

10 B(I) = A(I)
RETURN
END

Figure 27. CALL Statement Execution

When the CALL COpy statement is executed:

The addresses of the actual arguments, array X and array Y, become the
addresses of the dummy arguments, array A and array B, in the subprogram.

The variable N in the subprogram is associated with the value 90.

Thus a call to subprogram COPY, in this instance, results in the 90 elements of
array X being copied into the 90 elements of array Y.

Invoking FORTRAN-Supplied Functions

There are a number of FORTRAN-supplied functions (intrinsic functions) you'll
find useful, including mathematic functions to derive trigonometric values,
logarithms, exponential values, maximum and minimum values, sign conversions,
absolute values, error functions, and functions to manipulate character operands.

Invoke a FORTRAN-supplied function by referring to the function name within an
arithmetic statement; the function name is replaced by the value returned from the
invoked function, after the invoked function has completed its calculations.

For instance, you can invoke the FORTRAN-supplied function subprogram that
returns the square root of a number, with statements in your program such as:

Y = SQRT(X+Z) * 3.1

Chapter 6. Subprograms and Shared Data 111

If the sum of X and Z is 9.0, then the square root of X+ Y is 3.0, and the value
assigned to Y would be 3.0 times 3.1, or 9.3.

In VS FORTRAN, you can use the generic function name, and the compiler will
select the function your program actually should use,

DOUBLE PRECISION X, Z, Y
Y = SQRT(X+Z) * 3.1

In this case, you've specified SQRT, the generic function name; however, during
compilation the compiler selects the DSQRT function, which gives a double
precision result.

When you are using the current language level and specify an intrinsic function
name in an explicit type statement, the intrinsic function is not removed from its
status as an intrinsic function; this is. true whether you specify the predefined
function type or whether you respecify it as another type. When the intrinsic
function is executed, the mode used is the mode predefined to the compiler.

However, when you are using the old language level and specify an intrinsic
function name in an explicit but conflicting type statement, you remove it from its
intrinsic status and it becomes the name of a user-supplied external function.

The names ARSIN, ARCOS, DARSIN, and DARCOS are intrinsic function names
when using the option LANGLVL(66). The corresponding names for
LANGL VL(77) are ASIN, ACOS, DASIN, and DACOS. The extended precision
names for LANGL VL(66) and LANGL VL(77) are QARSIN and QARCOS.

If you use the names ARSIN, ARCOS, DARSIN, or DARCOS under
LANGLVL(77), the corresponding functions are considered to be external; that is,
it is assumed you are supplying these functions in your library or as one of your
subprograms. However, if you fail to supply your own and are using the MVS or
VM system, the corresponding FORTRAN functions supplied for the
LANGL VL(66) names will be obtained from the library and used. In this case, no
indication is given to the non-DOS user that the resolution was made to the
FORTRAN library routine instead of to your own routine.

However, if you are using VSE, this resolution is not made and you must supply
your own function.

Coding Subprograms

This section describes:

• How to code function subprograms

• How to code subroutine subprograms

• How to establish alternative entry points

• How to specify alternative and variable return points

• How to retain subprogram values

118 VS FORTRAN Programming Guide

Coding Function Subprograms

The first statement in a function subprogram (excluding debugging statements) is a
FUNCTION statement, identifying the program. For example:

FUNCTION TRIG (DELTA, THETA, ABSVAL)

This statement identifies the subprogram named TRIG as a function subprogram,
with dummy arguments DELTA, THETA, and ABSV AL.

The data type of the function is real of length 4--derived from the predefined
naming conventions. (The data type of the function determines the data type of
the value it returns to the invoking program.)

You can also explicitly specify the data type of the function:

DOUBLE PRECISION FUNCTION TRIG (DELTA,THETA,ABSVAL)

which specifies that the data type of TRIG is real of length 8.

mM Extension

If you want TRIG to be a real function of length 8, you can alternatively specify:

REAL FUNCTION TRIG*8(DELTA,THETA,ABSV AL)

'--__________ End of mM Extension __________

You can also specify a function subprogram as being of character type:

CHARACTER*10 FUNCTION TEXT1 (WORD1,WORD2)

which defines TEXT 1 as a character function which returns a character value of
length 10, using dummy arguments WORD1 and WORD2.

In a function subprogram, you can use any FORTRAN statements, except
PROGRAM (which would define it as a main program), SUBROUTINE (which
would define it as a subroutine subprogram), or BLOCK DATA (which would
define it as a block data subprogram).

The last statement in a function subprogram must be an END statement.

You can also specify any number of RETURN statements.

Both the END and RETURN statements return control to the statement making
the function reference in the calling program.

Chapter 6. Subprograms and Shared Data 119

Coding'Subroutine Subprograms

The first statement in a subroutine subprogram (excluding debugging statements) is
a SUBROUTINE statement, identifying the program:

SUBROUTINE TRIG (DELTA, THETA, ABSVAL)

This statement identifies the subprogram named TRIG as a subroutine subprogram,
with dummy arguments DELTA, THETA, and ABSV AL.

In a subroutine subprogram you can use any FORTRAN statements, except
PROGRAM (which would define it as a main program), FUNCTION (which
would define it as a function subprogram), or BLOCK DATA (which would define
it as a block data subprogram).

The last statement in a subroutine subprogram must be an END statement. You
can also specify any number of RETURN statements. Both of these statements
return control to the statement following the CALL statement in the calling
program, except when you specify an alternate return.

Specifying Alternative Entry Points-ENTRY Statement

When you're developing either function or subroutine subprograms, you can
specify alternative entry points within the program, using the ENTRY statement.

For example, subprogram TRIG could have an alternative entry point, depending
on the data type of the values you wanted returned.

Alternative Entry Points in Function Subprograms

If function TRIG had an alternative entry point, the sequence of statements would
look something like this:

FUNCTION TRIG (DELTA,THETA,ABSVAL)
DOUBLE PRECISION BETA,ZETA,ABVAL1,TRIG8

RETURN
ENTRY TRIG8 (BETA,ZETA,ABVAL1)

END

This function subprogram can be executed in either of two ways:

1. When the calling program uses TRIG in a function reference, the function
subprogram is entered at the first executable statement, and the value returned
is a real value of length 4.

The RETURN statement returns control to the calling program.

120 VS FORTRAN Programming Guide

2. When the calling program uses TRIG8 in a function reference, the function
subprogram is entered at the first executable statement following TRIG8,
which is defined as a double precision function; therefore, the value returned is
a real value of length 8.

The END statement returns control to the calling program.

Alternative Entry Points in Subroutine Subprograms

If subroutine TRIG had an alternative entry point, the sequence of statements
would look something like this:

SUBROUTINE TRIG (DELTA,THETA,ABSVAL)
DOUBLE PRECISION BETA,ZETA,ABVAL1

RETURN
ENTRY TRIG8 (BETA,ZETA,ABVAL1)

END

This subroutine subprogram can be executed in either of two ways:

1. When the calling program uses TRIG·in a CALL statement, the subroutine
subprogram is entered at the first executable statement, and the subprogram
uses the arguments DELTA, THETA, and ABSV AL, which are real items of
length 4.

The RETURN statement returns control to the calling program..

2. When the calling program uses TRIG8 in a CALL statement, the subroutine
subprogram is entered at the first executable statement following TRIG8, and
the subprogram uses the arguments BETA, ZETA, and ABV ALl, which are
real items of length 8.

The END statement returns control to the calling program.

Specifying Alternative and Variable Return Points-RETURN Statement

When you're developing subroutine subprograms, you can specify alternative return
points within the calling program, using the RETURN statement.

The RETURN statement, with no operands, can serve as one alternative return
point, as the previous examples illustrate.

You can also code the RETURN statement with an integer variable operand; this
allows you to specify variable return points. That is, you can return control to any
labeled statement in the calling program.

For example, subroutine subprogram TRIG could have a variable return point,
depending on the data values it develops:

Chapter 6. Subprograms and Shared Data 121

Calling Program

10 CALL TRIG (A,B,C,*30,*40)
20Y=A+B

30Y = A + C

40Y=B-C

Called Program
SUBROUTINE TRIG (X,Y,Z,*,*)

100 IF (M) 200,300,400
200 RETURN
300 RETURN 1
400 RETURN 2
END

When statement 10 of the calling program is executed, control is transferred to the
first executable statement in TRIG. In TRIG, when statement 100 is executed, the
value of M in the arithmetic IF statement determines which RETURN statement is
executed:

If M is less than zero, control is transferred to statement 200, and the
RETURN statement returns control to statement 20 in the calling program.
(This is the statement following the CALL statement.)

If M is equal to zero, control is transferred to statement 300, and the
RETURN 1 statement returns control to the first statement number in the
calling program's actual argument list (*30). (Thus, control is returned to
statement 30 in the calling program.)

If M is greater than zero, control is transferred to statement 400, and the
RETURN 2 statement returns control to the second statement number in the
calling program's actual argument list (*40). (Thus, control is returned to
statement 40 in the calling program.)

Execution then continues in the calling program.

Retaining Subprogram VaIues-SA VE Statement

The current FORTRAN standard states that, when a RETURN or an END
statement in a subprogram is executed, all variables become undefined except for
those in blank common, those in the argument list, and those specified in a SAVE
statement. Thus, you would use the SA VE statement to retain such undefined
values.

For program portability, you can use the SAVE statement to ensure, if the program
is recompiled on some other FORTRAN compiler, that values in specific named
common blocks, variables, or arrays are saved when a RETURN or an END
statement is executed.

In VS FORTRAN, these values are still available after a RETURN or an END
statement is executed; however, the compiler accepts the SAVE statement and
treats it as documentation. If a name other than a common block name is enclosed
in slashes, no error message is generated.

122 VS FORTRAN Programming Guide

Sharing Data as Arguments or in Common Areas

Calling and called programs can share data between them, as we have seen in the
previous examples.

In FORTRAN, there are two ways to share data: by passing arguments (data
names identifying data items) between the programs, or by using common data
areas (areas that can be shared by more than one program).

• Passing Arguments - You can pass data values between a calling program and
a called program through the use of paired lists of actual and dummy
arguments. The paired lists must contain the same number of items, and be in
the same order; in addition, items paired with each other must be of the same
type and length. You can use such paired lists in both subroutine and function
subprograms.

• Using Common Storage - You can use the COMMON statement to specify
shared data storage areas for two or more program units, and to name the
variables and arrays occupying the shared area.

Passing Arguments to Subprograms

Passing Arguments to a Function Subprogram

You can use actual and dummy arguments when you're invoking a function
subprogram. If your calling program contains the following function reference:

G = B * ZCALC(INUM,X,Y)

the actual arguments in function ZCALC are INUM, X, and Y; they contain the
actual values you want to make available to the function subprogram.

In the ZCALC function subprogram, you define the dummy arguments:

FUNCTION ZCALC(M,X,ZZ)

The dummy arguments of function subprogram ZCALC are M, X, and ZZ.

When the calling program executes the statement containing the function reference,
the values in the actual arguments are made available to the dummy arguments:

The Value of:

INUM
X
Y

Is Made Available in:

M
X
ZZ

again, according to their positions in the argument lists.

M, X, and ZZ can then be used in operations within the function subprogram.

Chapter 6. Subprograms and Shared Data 123

When control returns to the calling program, a value is returned to the calling
program; then the assignment statement is executed, using the value returned.

Passing Arguments to a Subroutine Subprogram

You can use actual and dummy arguments to pass data between a calling program
and a subroutine subprogram. For example, if the calling program contains the
statement:

CALL MAXNUM(PI,FOURV,XYZ,BIGM,HH)

PI, FOURV, XYZ, BIGM, and HH are actual arguments; they contain values you
want to make available to the subroutine subprogram.

The MAXNUM subprogram, in order to make the values available, must contain a
matching list of dummy arguments:

SUBROUTINE MAXNUM(A,B,C,D,E)

The dummy arguments of subroutine subprogram MAXNUM are A, B, C, D, and
E.

When the CALL statement is executed, the addresses of the actual arguments are
used as the addresses of the matching dummy arguments:

The Address of:

PI
FOURV
XYZ
BIGM
HH

Becomes the Address of:

A
B
C
D
E

When MAXNUM is executed, the newly assigned values of A, B, C, D, and E can
be used in operations.

When control returns to the calling program, the current values in A, B, C, D, and
E are also the current values of PI, FOURV, XYZ, BIGM, and HH in the calling
program.

General Rules for Arguments

You must define dummy arguments to correspond in number, order, and type with
the actual arguments. For example, if you define an actual argument as an integer
constant of length 4, you must define the corresponding dummy argument as an
integer of length 4.

Actual arguments are passed by name; if you alter the value of an argument in the
subroutine or function subprogram, you're altering the value in the calling program
as well.

If you define an actual argument as an array, then the size of your paired dummy
array must not exceed the size of the actual array.

124 VS FORTRAN Programming Guide

If you define a dummy argument as an array, you must define the corresponding
actual argument as ail array or an array element.

If you define the actual argument as an array element, your paired dummy array
must not be larger than the part of the actual array which follows and includes the
actual array element you specify.

If your subprogram assigns a value to a dummy argument, you must ensure that its
paired actual argument is a variable, an array element, or an array. Never specify a
constant or expression as an actual argument, unless you are certain that the
corresponding dummy argument is not assigned a value in the subprogram.

Your subprograms should not assign new values to dummy arguments that are
associated with other dummy arguments in the subprogram, or with variables in the
common area. You may get unexpected results, but the compiler cannot give you a
warning message.

For example, if you define the subprogram DERIV as:

SUBROUTINE DERIV (X,Y,Z)
COMMON W

and if you include the following elements in the calling program:

COMMON B

CALL DERIV (A, B, A)

the DERIV subprogram should not assign new values to X, Y, Z, and W:

X and Z because they are both associated with the same argument, A.

Y because it is associated with argument B, which is in the common area.

W because it is also associated with B.

Using Common Areas-COMMON Statement

Some kinds of usages for common data storage are:

• To implicitly transfer arguments among program units

• To contain data that form a logical whole, that is, referenced by multiple
program units; for example, a logical record of a data file

• To conserve storage by establishing only one area used by several program
units

A COMMON statement for a particular shared area must appear in every program
unit that shows the area. The names, types, and lengths of the variables and arrays
contained in a common area can be either the same or different in each sharing
program unit.

Chapter 6. Subprograms and Shared Data 125

If the programs merely use a common area independently as a work area, then each
program can describe variables and arrays in the area to meet only its requirements,
because no data sharing occurs in the area.

When data stored in the common area is shared, however, the referencing programs
must take into account the types, lengths, and order of the data to assure
appropriate usage. Often, in this case, the common area variables and arrays are
specified identically in all programs that share the area, in order to prevent usage
errors.

Passing Arguments in Common

Main
Program

A <--->

B <--->

C <--->

In order to pass arguments using the COMMON statement, you should define the
items that are to share common storage with the same type and length, and in the
same order.

Arguments passed in a common area are subject to the same rules as arguments
passed in a subroutine subprogram argument list (see "General Rules for
Arguments" on page 124).

For example, you define a common area in a main program and in three
subprograms, as follows:

Main Program: COMMON A,B,C (A and Bare 8 storage locations,
C is 4 storage locations)

Subprogram 1: COMMON O,E,F (0 and E are 8 storage locations,
F is 4 storage locations)

Subprogram 2: COMMON Q,R,S,T,U (4 storage locations each)

Subprogram 3: COMMON V,W,X,Y,Z (4 storage locations each)

How these variables are arranged within common storage is shown in Figure 28.
Each column of variables starts at the beginning of the common area. Variables on
the same line share the same storage locations.

. Displac~ment
Subprogram 1 Subprogram 2 Subprogram 3 '(Bytes)

0
Q <---> V

D 4
R <---> W

8
S <---> X

E 12
T <---> Y

16
F <---> U <---> Z

20

Figure 28. Transmitting Assignment Values between Common Areas

126 VS FORTRAN Programming Guide

The main program can safely transmit values for A, B, and C to subprogram 1,
provided that

• A is of the same type as D.

• B is of the same type as E.

• C is of the same type as F.

However, the main program and subprogram 1 should not, by assigning values to
the variables A and B, or D and E, respectively, transmit values to the variables Q,
R, S, and T in subprogram 2, or V, W, X, and Y in subprogram 3, because the
lengths of these common variables differ.

In the same way, subprogram 2 and subprogram 3 should not transmit values to
variables A and B, or to D and E.

Values can be transmitted between variables C, F, U, and Z if each is the same
data type as the others.

Also, if each is the same data type, values can be transmitted between A and D,
between Band E, and between Q and V, Rand W, S and X, and T and Y.

However, any assignment of values to A or D destroys any values assigned to Q, R,
V, and W (and vice versa); and any assignment to B or E destroys the values of S,
T, X, and Y (and vice versa).

Referencing Shared Data in Common

In general, shared data in the common area should be referenced with the same
descriptions in different sharing program units. The specific names of the common
area can be unique to each program, or they can be the same.

The examples shown previously for passing arguments in common also illustrate
sharing data in the common area. The same rules for preserving data values also
apply; see especially "General Rules for Arguments" on page 124.

Shared data in the common area can be referenced with different descriptions,
provided the different descriptions are not contradictory. Describing the data
differently for different uses may be advantageous in the application you are
programmiilg. But you must be careful to maintain the identity of the data itseH
within the differing descriptions.

Character-type data, for instance, can be referenced as strings of differing lengths.
For example, in subprogram 1, you could write

COMMON CHV2
CHARACTER CHV2 * 20

and in subprogram 2, you could write

COMMON CHA2
CHARACTER CHA2 * 5(4)

Chapter 6. Subprograms and Shared Data 127

Subprogram 1 references the 20 bytes of character data as a single character
variable, CHV2. Subprogram 2 references the same 20 bytes as a character array,
CHA2, having four elements of five bytes each.

You can ascertain whether different descriptions of the same data are contradictory
by considering the format of the data itself, as represented in the executing
program. For example, a complex number is represented as two adjacent real
numbers. Thus, you can correctly write in subprogram 1:

COMMON CV
COMPLEX*8 CV

and in subprogram 2:

COMMON RV1 RV2

This allows subprogram 2 to reference the two real parts of the complex variable
CV as two separate real numbers, RVI and RV2.

For detailed information on the formats of the various types of data in the
executing program, see "Internal Representation of VS FORTRAN Data" on
page 398.

Efficient Arrangement of Variables-COMMON Statement

Your programs lose some object-time efficiency unless you ensure that all of the
common variables have proper boundary alignment. (However, it isn't necessary
for you to align complex, integer, logical, or real variables; your programs will still
execute correctly.)

You can ensure proper alignment either by arranging the noncharacter type
variables in a fixed descending order according to length, or by defining the block
so that dummy variables force proper alignment.

Fixed Order of Variables--COMMON Statement

If you use the fixed order, noncharacter type variables must appear in the following
order:

Length Type

IBM Extension

32 COMPLEX
16 COMPLEX or REAL
8 REAL

"'""-__________ End of mM Extension __________

8 COMPLEX or DOUBLE PRECISION
4 REAL, INTEGER, or LOGICAL

128 VS FORTRAN Programming Guide

~

2
1

INTEGER
LOGICAL

mM Extension

'--__________ End of mM Extension __________ ~

Using Dummy Variables--COMMON Statement

If you don't use the fixed order, you can ensure proper alignment by constructing
the block so that the displacement of each variable can be evenly divided by the
reference length associated with the variable. (Displacement is the number of
storage locations, or bytes, from the beginning of the block to the first storage
location of the variable.) The reference length in bytes for each type of variable is
as follows:

Type Length Reference
Specification Specification Length (Bytes)

LOGICAL 4 4
INTEGER 4 4
REAL 4 4
DOUBLE PRECISION 8 8
COMPLEX 8 8

mM Extension

LOGICAL 1 1
INTEGER 2 2
REAL 8 8
REAL 16 8
COMPLEX 16 8
COMPLEX 32 8

End of mM Extension

The first variable in every common block is positioned as though its length
specification were 8. Therefore, you can assign a variable of any length as the first
in a common block.

To obtain the proper alignment for the other variables in the same block, you may
find it necessary to add a dummy variable to the block.

For example, your program uses the variables A, K, and CMPLX (defined as
REAL*4, INTEGER*4, and COMPLEX*8, respectively) in a common block
defined as:

COMMON A, K, CMPLX

Chapter 6. Subprograms and Shared Data 129

The displacement of these variables within the block is:

Variable

A

K

CMPLX

Displacement (Bytes)
in the Common Area

a

4

8

16

The displacements of K and CMPLX are evenly diVisible by their reference
numbers.

mM Extension

However, if you define K as an integer of length 2, then CMPLX is no longer
properly aligned (its displacement of 6 is not evenly divisible by its reference length
of 8). In this case, you can ensure proper alignment by inserting a dummy variable
(DV) of length 2 either between A and K or between K and CMPLX.

Variable

A

DV

K

CMPLX

Displacement (Bytes)
in the Common Area

a

2

4

8

16

~ _________ End of mM Extension _________ -...11

EQUIVALENCE Considerations-COMMON Statement

mM Extension

VS FORTRAN allows you to equivalence character and noncharacter data.

'-_________ End of mM Extension _________

When you use the EQUIVALENCE statement together with the COMMON
statement, there are additional complications resulting from storage allocations.
The following examples illustrate programming considerations you must take into
account.

130 VS FORTRAN Programming Guide

Your program contains the following items:

REAL R4A, R4B, R4M(3,5), R4N(7)
DOUBLE PRECISION R8A, R8B, R8M(2)

mM Extension

LOGICAL·1 L1A

1...-_________ End of mM Extension _________ ---'

LOGICALL4A

which are defined in the common area as follows:

COMMON R4A, R8M, ~, R8A, L4A, R4M

and which results in the following inefficient displacements:

Name Displacement Boundary

R4A 0 Doubleword
R8M 4 Word (should be doubleword)

mM Extension

L1A 20 Word

'--_________ End of mM Extension _________ ---'

R8A
L4A
R4M

21
29
33

Byte (should be doubleword)
Byte (should be word)
Byte (should be word)

Now add an EQUIVALENCE statement to this inefficient COMMON statement:

1. First Example (valid but inefficient):

EQUIVALENCE (R4M(1,1), R4B)
EQUIVALENCE (R4B, R8B)

This results in the following additional inefficiencies:

Name Displacement Boundary

R4B 33 Byte (same as R4M(1,1»
R8B 33 Byte (same as R4M(1,1) and R4B)

which means that both R4B and R8B are now also inefficiently aligned.

2. Second Example (illegal):

EQUIVALENCE (R8A, R4N(7»

Chapter 6. Subprograms and Shared Data 131

This is illegal because the seventh element of R4N has the same displacement
as R8A, or 21.

This means that the first element of R4N is located 24 bytes (4*6) before this,
at displacement -3. It is illegal to extend a common area to the left in this way.

3. Third Example (valid but inefficient):

EQUIVALENCE (R8A, R4N(2»
EQUIVALENCE (R4M, R4N(5»

This has the following results:

Name

R4N(2).
R4N(3)
R4N(4)
R4N(5)
R4M

Displacement Boundary

21 Byte
25 Byte
29 Byte
33 Byte
33 Byte (same position as R4N(5)

This is valid because the EQUIVALENCE statement places R4M at
displacement 33, the same displacement as that specified in the COMMON
statement. However, it is inefficient because both R4N and R4M begin at byte
boundaries.

4. Fourth Example (illegal):

EQUIVALENCE (R8A, R4N(2»
EQUIVALENCE (R4M, R4N(4»

This has the following illegal results:

Name

R4N(2).
R4N(3)
R4N(4)
R4N(5)
R4M

Displacement Boundary

21 Byte
25 Byte
29 Byte
33 Byte
29 Byte (same position as R4N(4)

This is valid because the EQUIVALENCE statement

This is illegal, because the EQUIVALENCE statement (which places R4M at
displacement 29) contradicts the COMMON statement (which places R4M at
displacement 33). The COMMON statement controls the displacement of
R4M, not the EQUIVALENCE statement.

132 VS FORTRAN Programming Guide

~ Using Blank and Named Common (Static and Dynamic)

There are two forms of common storage you can specify: blank common and
named common.

• Blank Common - An unnamed common storage area (common block) is a
blank common area, when no name is specified for the storage area.

• Named Common - You can name common storage areas (or blocks of
storage)-known as named common. Blocks given the same name occupy the
same space.

mM Extension

• Dynamic Common - A named common with the DC compiler option
specifying the named common area to be allocated at execution time. Note that
this type of common cannot be initialized at compile time.

Note: VS FORTRAN allows you to place character and noncharacter variables
and/ or arrays in the same common area.

For more information, see "Using Dynamic Common above the 16-Megabyte
Line" on page 314.

L...-. __________ End of IBM Extension __________ _

There are different FORTRAN rules for blank and named common areas, which
may cause you to choose one type over the' other, depending on what you want
your program to do.

The differences are:

• You can define only one blank common block in an executable program,
although you can specify more than one COMMON statement defining items
in blank common; you cannot assign blank common a name. You can define
many named common blocks, each with its own name.

• You can define blank common as having different lengths in different program
units. You must define a given named common block with the same length in
every program unit that uses it.

• You can't assign initial values to variables and array elements in blank
common.

• In named common, you can assign initial values to variables and array
elements, through a block data subprogram that contains DATA statements or
explicit specification statements.

In a COMMON statement, you specify a common block name by enclosing it in
slashes. The following example defines a named common block, PAYROL, that
contains the variables FICA, MANHRS, SICKDA: .

COMMON/PAYROL/FICA,MANHRS,SICKDA

Chapter 6. Subprograms and Shared Data 133

If the common name is omitted, a blank common is assumed. Or you can define
blank common and named common in ·a single COMMON statement by omitting a
name, and defining the blank common area first:

COMMON A,C,G/PAYROL/FICA,MANHRS,SICKDA

and the variables A, C, and G are placed in blank common.

You can also specify blank common items after named common items, by placing
two consecutive slashes before the list of blank common variables:

For example, in the following statement:

COMMON A, C, G IPAYROL/FICA,MANHRS,SICKDAII JJ, VMN, LP7

you've defined the variables A, C, G, JJ, VMN, and LP7 in blank common, and in
that order. You've defined PAYROL as named common, containing FICA,
MANHRS, and SICKDA, in that order.

If you specify more than one COMMON statement in a program, the definitions
are cumulative through the program. For example, if you specify the following two
COMMON statements:

COMMON A, B, C IRI D, E lSI F
COMMON G, H lSI I, J IR/P II W

they have the same effect as if you specified the single statement:

COMMON A,B,C,G,H,W IRI D, E, P lSI F, I, J

The name of a named common cannot be used in PROGRAM, SUBROUTINE,
FUNCTION, ENTRY, or BLOCK DATA statements. It cannot be an intrinsic
function name that is referenced in the same program unit. In particular, you
cannot use a name that is an entry name in an intrinsic function library module that
is referenced. For example, if you use the ICHAR intrinsic function, you cannot
use 'CHAR' or 'LEN' as the name of your common block because botp of these
names are entry point names in the same library routine which also has ICHAR as
an entry point. (For details, see "Module Names" in VS FORTRAN Language and
Library Reference.)

You can, however, use the generic name of a function as the name of a common
block if the intrinsic function use will reference a specific name different from the
generic name. For example, you can call the name of your comIilon block SIN, and
use SIN as a non-REAL*4 intrinsic function.

A named common can be specified as a dynamic common by use of the dynamic
common (DC) option, described under "Using the Compiler Options" on
page 157. A dynamic common is allocated just before the program containing it is
executed.

Dynamic common is useful in the MVS/XA environment for utilizing the expanded
address capability. Also, the size of a load module is reduced when dynamic
common is used, since no space is allocated for the dynamic common in the object
modules that make up the load module.

134 YS FORTRAN Programming Guide

If a named common is declared as dynamic common, all program units sharing that
common must declare it as dynamic in order for correct program references to the
common to be established when the program is executed.

Initializing Named Common-Block Data Subprograms

Block data subprograms let you initialize data items in named common. (You can't
initialize data items in blank common or in dynamic named common.)

The first statement you specify in a block data subprogram must be the BLOCK
DATA statement. For example:

BLOCK DATA

or

BLOCK DATA COMDAT

where COMDAT is the name (optional) you've given the block data subprogram.
If you specify a name, it must not be the same as the name of any other program,
of an alternate entry point, of a common block, or of any data item within this
block data subprogram.

The only statements you can specify in a block data subprogram are:

• BLOCK DATA (first statement in program)

• IMPLICIT (if used, must immediately follow BLOCK DATA statement)

• PARAMETER

• SAVE

• DIMENSION

• COMMON (must specify named common areas, each defined once)

• EQUIVALENCE

• Type statements

• DATA (must follow data item definitions in named COMMON statements,
and must specify only data items in named common)

• END (must be last statement in subprogram)

The presence of a block data subprogram initializes named common data values in
main programs or subprograms that refer to the named common blocks. Therefore,
your programs must not contain CALL statements or function references to block
data subprograms.

Chapter 6. Subprograms and Shared Data 135

The following example shows how a block data subprogram might be coded:

BLOCK DATA
COMMON /ELJ/JC,A,B/DAL/Z,Y
REAL B(4)/1.0,O.9,2*1.3/,Z*8(3)/3*5.42311849DO/
INTEGER*2 JC(2)/74,77/
END

This program initializes items in two named common areas, Ell and DAL:

• The REAL type statement assigns the type of and initializes array B in EU
and array Z in DAL.

• The INTEGER type statement initializes array IC in ELI.

• Because they're not included in either type statement or in a DATA statement,
item A in ELI and item Y in DAL are assigned default types and are not
initialized.

Using the Execution-Time library

The VS FORTRAN execution library include four categories of subroutines that
you may access directly by coding subprogram call statements or function
references. These are discussed briefly below, with references provided to the
publications that contain more detailed information.

1. Mathematical and Character Functions

2. Alternative Mathematical Library Subroutines

3. Error Handling Subroutines

4. Service and Utility Subroutines

Mathematical and Character Functions

These routines provide standard intrinsic functions you can use in mathematical
and character operations. The several categories of mathematical and character
functions are:

• Logarithmic and exponential routines

• Trigonometric routines

• Hyperbolic function routines

• Miscellaneous mathematical routines

• Character manipulation routines

See VS FORTRAN Language and Library Reference for descriptive information on
the mathematical and character functions.

136 VS FORTRAN Programming Guide

Alternative Mathematical Library Subroutines

For very large absolute values, these routines provide slightly more accurate results
than the corresponding VS FORTRAN library routines. They are:

• Exponential routines for single and double precision values

• Trigonometric routines for double precision, sine, cosin, tangent, and cotangent
values .

• Notational routines for single and double precision powers

These routines may be available to you as a separate library (V ALTLm), or they
may have been put permanently into the standard library as replacements. Check
with your system administrator to find out how these routines are installed. H they
are in the standard library, you need not take any special action to access them. H
they are in a separate library, you need to make that library known to the system
ahead of the standard library when loading or link-editing your program.

For descriptive information about the alternative mathematical library subroutines,
see VS FORTRAN Language and Library Reference.

Error Handling Subroutines

These routines enable you to provide user error exits for library errors and to
modify the conditions associated with an error that control how the library handles
the error. These changes are dynamic changes that are put into effect while your
program executes.

For reference and usage information on the error handling routines, see VS
FORTRAN Language and Library Reference and "Extended Error Handling" on
page 197.

Service and Utility Subroutines

These routines provide four types of function:

• Control over certain mathematical exceptions

• Selective formatted or symbolic displays of program variables and arrays

• Immediate exit from execution

• In VSE only, multiphase job execution and block size and buffer changes.

For more information about the service and utility subroutines, see VS FORTRAN
Language and Library Reference.

Chapter 6. Subprograms and Shared Data 137

Chapter 7. Optimizing Your Program

When you use the OPTIMIZE(1/2/3) options, you can get faster program
execution. However, when you use these options, you should be aware of
programming practices that can help or hinder optimization.

Some of the suggestions are obvious, some are not. However, it's easy to forget
even the obvious ones when you're developing or revising programs over a period
of time.

The following paragraphs suggest ways you can make your programs execute faster
and use the OPTIMIZE features to best advantage.

OPTIMIZE Compiler Option

The OPTIMIZE compiler option allows for the selection of no optimization or one
of three optimization levels. Optimization is done at the cost of compile time but
results in greatly reduced execution time. The VS FORTRAN optimizer is an
efficient optimizer and can produce object code that is very close to that produced
by an efficient assembler language programmer. The optimization techniques
refined in the development of earlier mM FORTRAN compilers have been used
with VS FORTRAN.

The decision as to which optimization level should be used can usually be made
based on the number of times that the compiled program will be executed. H a
program is to be executed more than a few times, then the highest optimization
level practical with this program should be selected. Generally, you should choose
either OPTIMIZE(2) or OPTIMIZE(3) for most programs.

The optimization feature is particularly helpful within loops that contain subscripts.
The address calculations implicit in an array subscript are not under the control of
the FORTRAN programmer. Even a simple assignment statement with array
subscripts can result in addressing expressions that have common expressions that
can be eliminated by optimization or loop invariant expressions that can be moved
out of the loop by optimization.

Four optimization levels are available:

OPTIMIZE(O): This level, with no optimization at all, provides the fastest
compile time but with the least efficient execution time. No optimization is
valuable when a program is being debugged or for compiles that are intended
only to check for correct syntax.

Chapter 7. Optimizing Your Program 139

OPTIMIZE(1): This is register optimization and improved branch
optimization. Local register assignment is improved by retaining variables in
registers where possible. Time is saved because the number of loads and stores
is reduced. Branching is improved by the use of RX format branch
instructions. This provides a moderate level of optimization for programs that
do not have nested loops. Loop structure is not considered.

OPTIMIZE(2): This is full text and register assignment. It is identical to
OPTIMIZE(3) but with safe code analysis. The basic rule in safe code
optimization is that it is not permissible to cause an error to occur if it might
not occur. An example of such an error would be a possible divide by zero
within a loop. If the divide were to be moved out of the loop by the optimizer,
it could possibly be moved before an IF that checks for the zero condition. As
a practical matter, this condition occurs very infrequently and most programs
can safely be compiled at OPTIMIZE(3).

OPTIMIZE(3): This is the highest level of optimization. Control flow and
data flow analysis are done for the entire program. This analysis allows
optimizations such as common expression elimination, strength reduction, code
motion, and global register assignment to be done. Particular attention is paid
to innermost loops.

Optimization Techniques

A number of different techniques are used by the optimizer. Some are special
cases and will not be discussed here. The more general techniques used by
OPTIMIZE(2) and OPTIMIZE(3) are:

Subscript coDecting. Subscript collection merely arranges the sequence of
calculations in a subscript expression into an order that results in more
candidates for common expression elimination.

Common expression elimination. A common expression is one in which the
same value is calculated as was done in a previous expression. The duplicate
expression can be eliminated by using the value previously calculated. This is
an important optimization feature because the use of subscripts for arrays
frequently results in common expressions.

Constant propagation and constant folding. This is done by combining constants
used in an expression and generating new ones. In adcUtion, some ~ode
conversions are done as well as evaluation of some intrinsic functions.

Strength reduction. This is done by replacing less efficient instructions such as
a multiply, implicit in an array addressing expressioll, with an additioQ.. The
primary value is in a loop containing array subscript expressions.

Code motion. If both of the variables used in a computation withip. a loop are
not altered within the loop, then it may be possible to move the calculation
outside of the loop and simply use the result of the calculation within the loop.
The other optimization techniques frequently result in code sequences that can
be moved out of the loop.

140 VS FORTRAN Programming Guide

Global register assignment. The variables and constants most frequently used
within a loop can frequently be assigned to registers. The registers are
initialized prior to the loop, and if necessary, stored on exit from the loop.

Section oriented branching. The number of program address registers required
is reduced by dividing the executable code in a very large program into
sections. There are a limited number of registers available and this technique
frees more of them for other uses.

Programming Considerations When Using Optimization

In the majority of cases, it is sufficient to allow the compiler to handle
optimization. FORTRAN programmers can concentrate on writing and debugging
their programs.

It is generally true that most of program execution time is isolated in less than 10°A>
of the code. Changes to the algorithms in the critical 100/0 frequently have
dramatic results. The optimizer will generate efficient code but cannot fully
compensate for an inefficient algorithm.

It is seldom useful to look for improvements such as elimination of redundant
expressions or movement of expressions out of loops. The compiler is already very
effective in doing this. More is to be gained by considering the attributes of
variables which may limit optimization. Variables that are in common or used as
arguments are difficult to optimize. For example, the optimizer must assume that
any variable in a COMMON statement can be altered by a called subroutine.
Frequently, better object code will result if global variables are temporarily
assigned to variables that are used only locally.

An area that is frequently overlooked is I/O programming. Merely blocking a file
can result in significant improvements. Use of unformatted I/O in place of
formatted I/O is much faster. Avoid the use of implied DO loops in I/O
statements and transfer the entire array (or equivalenced section). Passing variable
dimension arrays to a subroutine that will write the entire array can be used to
avoid an implied DO.

If an optimized program calls a subprogram, any variables that will be referenced in
the subprogram must be in the common area or in the parameter list. If, for
example, a program calls a subprogram to initialize a variable's address and then
tries to reference that variable after a subsequent call, the value in that location
may, or may not, be the value of the variable. See "Debugging Optimized
Programs" below for more details.

Example 1:

The following example, using OPT(O), shows a subroutine called, has all addresses
resolved, and upon substrquent invocation references the values expected.

Chapter 7. Optimizing Y our Program 141

@PROCESS OPT(O)
C234567

A=1.0
B=2.0
C=3.0
CALL SUB 1 (A, B, C)
WRITE(6,*) 'SHOULD PRINT 1.0'
CALL PRTX
WRITE(6,*) 'SHOULD PRINT 2.0'
CALL PRTY
WRITE(6,*) 'SHOULD PRINT 3.0'
CALL PRTZ
STOP 'VALID VALUES'
END

@PROCESS
SUBROUTINE SUB1 (X,Y,Z)
RETURN
ENTRY PRTX
WRITE(6,*) X
RETURN
ENTRY PRTY
WRITE(6,*) Y
RETURN
ENTRY PRTZ
WRITE(6,*) Z
RETURN
END

Output for Example 1:

SHOULD PRINT 1.0
1.00000000

SHOULD PRINT 2.0
2.00000000

SHOULD PRINT 3.0
3.00000000

IFY0021 STOP VALID VALUES

Example· 2:

The following example demonstrates the pitfall of assuming that correct values will
be available when OPT(2) is specified. Variable A is assigned the value of 4.0, but
when OPT(2) is specified, the value of 4.0 is placed in a register and not in storage.
When the call to PRTX occurs, A is printed and a value of 4.0 is expected but the
value printed is 1.0.

142 VS FORTRAN Programming Guide

@PROCESS OPT(2)
C234567

C

A=1.0
B=2.0
C=3.0
CALL SUB1 (A,B,C)

C BECAUSE OF OPT(2), THE FOLLOWING ASSIGNMENT
C IS NOT REFLECTED IN STORAGE
C

A=4.0
WRITE(6,*)

1 'SHOULD PRINT 4.0 BUT WILL PRINT STORAGE VALUE OF 1.0'
CALL PRTX
WRITE(6,*) 'SHOULD PRINT 2.0'
CALL PRTY
WRITE(6,*) 'SHOULD PRINT 3.0'
CALL PRTZ
STOP 'INVALID VALUES RETURNED'
END

@PROCESS
SUBROUTINE SUB1 (X,Y,Z)
RETURN
ENTRY PRTX
WRITE(6,*) X
RETURN
ENTRY PRTY
WRITE(6,*) Y
RETURN
ENTRY PRTZ
WRITE(6,*) Z
RETURN
END

Output for Example 2:

EXECUTION BEGINS ...
SHOULD PRINT 4.0 BUT WILL PRINT STORAGE VALUE OF 1.0

1.00000000
SHOULD PRINT 2.0

2.00000000
SHOULD PRINT 3.0

3.00000000
IFY002I STOP INVALID VALUES RETURNED

Debugging Optimized Programs

..

Debugging a program that has been optimized can be more difficult than debugging
one that has not been optimized. Variables that have been temporarily assigned to
registers may not have been saved in a storage location at the time that an abend
dump occurs. A common expression evaluation may have been deleted or moved.
This is not to say that the program has not been compiled correctly, but the very
fact that optimization has made changes can add confusion. Understanding a bit
about the optimizer can help to reduce the confusion.

Debugging techniques that rely on examining values in storage should be used with
caution if the program has been optimized. The variable may be in a register, not
yet stored, when storage is examined or the abend dump occurs.

A FORTRAN program that appears to work properly when compiled with OPT(O)
may fail when compiled at OPT(3). This is generally caused by program variables

Chapter 7. Optimizing Your Program 143

that have not been initialized prior to being used. The OPT(O) option stores all
variables. An uninitialized variable in storage generally contains zero. When
assigned to a register by the optimizer, it llsUally contains a large number. If a
program that worked at OPT(O) fails when compiled at OPT(l) or OPT(2), it is a
good idea to look at the cross-reference listing for variables that are fetched but
never set, and for program logic that can allow a variable to be used prior to being
set.

If VS FORTRAN Interactive Debug (5668-903) is installed on your system, see
VS FORTRAN Interactive Debug Guide and Reference for more information on
debugging optimized code.

Selecting the Higher Optimization Levels

In general, you should select the highest level of optimization. The higher the
optimization level you select, the longer the compilation time and the more storage
required; however, both object program storage and execution time are reduced.

Very few iterations through most subroutines can cause optimization savings to
exceed optimized compilation cost.

You should use NOOPTIMIZE or OPTIMIZE(I) only for testing purposes. For
example, they're useful if you want to check the syntax of the program without
executing it, or to debug a subroutine that doesn't iterate correctly.

Whenever you can, you should choose either OPTIMIZE(2) or OPTIMIZE(3) for
most programs. However, in order to compile some very large programs, you may
have to use OPTIMIZE (1) because very large program may fail to compile at other
optimization levels. '

Writing Programs of Efficient Size

For efficient optimization, programs can be either too large or too small.

Keep programs smaller than 8192 bytes in size. Programs larger than this cause
the compiler to use a register as a program address register that would otherwise be
used for optimization.

You should exercise caution when designing a program in a top-down (modular)
fashion. It is possible that the implicit cost of the subroutine or function call
overhead may exceed the value of coding in this manner. However, you shouldn't
be too hasty in sacrificing clarity for speed. After identifying the "most-called"
subroutines and functions, you should consider moving the code into the main
program. This allows the compiler to optimize the combined code and thereby
execute faster.

144 VS FORTRAN Programming Guide

Using Unformatted I/O

Unformatted I/O takes less processing time and uses less storage than formatted
I/O. Unformatted I/O also exactly maintains the precision of the data items being
processed.

With formatted I/O, each data element is converted between internal and external
format. This takes time and storage. In addition, rounding errors can accumulate
during conversion.

Implied-DO I/O Statements

When processing I/O statements, the compiler is able to recognize certain
combinations of implied-DOs and combine them in what is known as a partial
short-list. The effect of this may be seen in the generated code, where instead of
the usual call to the I/O library surrounded by a conventional DO-loop, there is
just the call to the I/O entry point. This call represents those "nests" in the
implied-DO that qualify as partial short-lists. These calls may, in turn, be
surrounded by DO-loops representing those levels not qualifying as partial
short-lists. Some examples of I/O statements recognized as partial short-lists are:

DIMENSION A(10), B(10,20)
READ(5,10) (A(I), I=1, 10, N)
WRI TE (4) « B (I , J), I = 1 , 1 0), J = 1 , 20)
READ(3) (A(K), K=L, M, N)
WRI TE (6 , 20) (A (J), (B (I , J) , I = 1, 1 0), J = 1, 1 0)

In the last example, the implied-DO level containing B is a partial short-list, while
the outer level containing A will generate conventional DO-loop code.

In certain cases, a simple implied-DO may be recognized as an array name and
code will be generated as such. Examples of this are:

DIMENSION A (100)
WRI TE (3) (A (I), I = 1, 1 00)

This has the effect of writing 100 elements of array A, starting with element A(I).

The following example:

READ(5,10) (A(J), J=N, M)

would have the effect of reading (M-N+l) elements into array A, starting with
element A(N).

When coding a block of I/O statements, you should try to place as many list items
on one READ or WRITE statement as is practical. The compiler will "bundle"
together up to 20 such items, and make just one call to the I/O library, instead of
making one call per item as was previously done.

Chapter 7. Optimizing Your Program 145

Writing Efficient Character Manipulations

An efficient code sequence is generated for character move and comparison under
the following conditions:

• The character length for both operands is constant, is less than·or equal to 256,
and is greater than O.

• For character move, the character length of target operand is less than or equal
to that of the source operand. For character comparison, the character length
for both operands is the same.

In the following example, an efficient code sequence (including MVC or CLC) will
be generated for the first three statements (1 through 3), while a less efficient code
sequence (including MVCL or CLCL) will be generated for the last three
statements (4 through 6):

CHARACTER*400 C1,C2
CHARACTER*100 C3(5),C4,C5(10)

1 C4 = C5(I)
2 C3(J) = C2
3 IF(C2(300:305) .EQ~C3(J) (50:55))PRINT*, 'MATCH'

4 C1 = C2
5 C2 = C3(J)
6 IF(C2(I:I+5) .NE.C3(J) (J:J+5»PRINT*,'NOT MATCH'

Using Logical Variables of Length 4

Logical variables of length 4 can be accessed directly without clearing a register.

mM Extension

Every reference to a LOGICAL * 1 variable causes a register to be cleared before
the variable is accessed. In some situations, the compiler allocates a register
throughout an entire loop for this purpose; if not, it must at least generate an extra
instruction.

"""-__________ End of mM Extension __________

Using Integer Variables of Length 4

Integer variables of length 4 are optimized by strength reduction; they're also
generated into branch-on-index instructions. You should always use integer
variables of length 4 for DO loop indexes.

mM Extension

INTEGER *2 variables are not optimized by strength reduction, and they aren't
generated into branch-on-index instructions. Therefore, they're less efficient than
INTEGER*4 variables.

'---__________ End of mM Extension __________

146 VS FORTRAN Programming Guide

EUminating EQUIVALENCE Statements

Equivalenced variables cannot be optimized.

Initializing Large Arrays during Execution

H you initialize large arrays using a DO loop, you get faster overall execution and
use less storage than if you initialize using a DATA statement.

For example, the following statements:

DOUBLE PRECISION A(5000)
DATA A(5000)/5000*O.O/

generate 40000 bytes of object module information-more than 500 TXT cards.
The 40000 zeros must be placed in the object module by the compiler, placed in
the load module by the linkage editor, and fetched into storage when you execute
the program.

Using Common Blocks Efficiently

Each reference to a variable in common requires that the address of the common
block be in a register. The following recommendations are based on this fact.

1. The number of common blocks should be minimized. The following example
shows why:

Three Registers
Required:

COMMON /x/ A
COMMON/Y/ B
COMMON /z/ C
A=B+C

One Register
Required:

COMMON /Q/ A,B,C
A=B+C

As the example shows, you should group concurrently referenced variables into
the same common block.

2. Place scalar variables before arrays in a given common block. The following
example shows why:

Two Registers Required:

COMMON /Z/ X(5000),Y
X (1) =Y

One Register Required:

COMMON /Z/ Y, X(5000)
X (1) =Y

In the same way, you should place small arrays before large ones. All the
scalar variables and the first few arrays can then be addressed through one
address constant. The subsequent larger arrays will probably each need a
separate address constant.

3. H a scalar variable in a common block is referred to frequently, assign it from
the common block into a local variable. References to the local variable will
not then require that the common block address be in a register.

Chapter 7. Optimizing Your Program 147

If you do this, always remember that· changing the local variable does not
change the common variable.

Passing Subroutine Arguments in Common Blocks

If you pass subroutine arguments in a common block rather than as parameters,
you'll avoid the overhead of processing parameter lists.

You must evaluate the effect of placing parameters into common for both the
calling and the called routine.

Avoiding Adjustable Dimensioned Arrays

Subscripting of adjustable dimensioned arrays requires additional indexing
computations. In addition, if you use an adjustable dimensioned array as a
subroutine parameter, there are additional calculations that must be performed on
each entrance into the subroutine.

You can lessen the amount of extra processing, however, in the following ways:

1. If the location and size of the array do not change during repeated calls to the
subroutine, you can insert an initialization call to the subroutine to define the
array; subsequent execution calls need not then refer to the array, as the
following example shows:

Dimensions Calculated
Once:

Main Program
CALL INIT(A,I,J)
DO 1 N=1,10
CALL EXEC

Subprogram

SUBROUTINE INIT(A,I,J)
REAL*8 A(I,J)
RETURN
ENTRY EXEC

148 VS FORTRAN Programming Guide

Dimensions Calculated
At Each Entrance:

Main Program

DO 1 N=1,10
CALL EXEC(A,I,J)

Subprogram

SUBROUTINE EXEC(A,I,J)
REAL *8 A (I iJ)

2. If the indexing can be varied in the low-order dimensions, make the adjustable
dimensions of an array the high-order dimensions. This reduces the number of
computations needed for indexing the array, as the following example shows:

Computation not
Required:

SUBROUTINE EXEC(Z,N)
REAL *8 Z(9,N)
Z(I,5)=A

Writing Critical Loops Inline

Computation (I*N)
Required:

SUBROUTINE EXEC(Z,N)
REAL *8 Z(N,9)
Z(5,I)=A

If your program has a short heavily-referenced DO loop, it's probably worth the
effort to remove the loop and expand the code inline in the program. Each loop
iteration will execute faster.

Ensuring Recognition of Duplicate Computations

If components of a computation are duplicates, make sure you code the duplicate
elements in one of the following ways:

• At the left end of the computation

• Within parentheses

The compiler must follow the left-to-right FORTRAN rules, and this order of
computations follows those rules.

The following examples illustrate this concept:

Duplicates Recognized:

A=B*(X*Y*Z)
C=X*Y*Z*D

E=F+(X+Y)
G=X+Y+H

No Duplicates Recognized:

A=B*X*Y*Z
C=X*Y*Z*D

E=F+X+Y
G=X+Y+H

In the pair of examples at the left, the compiler can recognize X·y*Z and X+ Y as
duplicates because they're either coded in parentheses or coded at the left end of
the computation. In the pair of examples at the right, these rules are not followed,
and the compiler cannot, therefore, recognize these duplicates.

Ensuring Recognition of Constant Computations

In a loop, when several components of a computation are constant, ensure that
they can be recognized by following one of these coding rules:

1. Move all the constant computations to the left end of the computation.

2. Group constant computations within parentheses.

Chapter 7. Optimizing Your Program 149

The compiler follows the left-to,;.right FORTRAN rules, and this order of
computations allows the compiler to recognize the constant portions of the
computations.

If C, D, and E are constant and V, W, and X are variable, the following examples
show the difference in evaluation:

Constant Computations
Recognized

V*W*X*(C*D*E)
C+D+E+V+W+X

Ensuring Recognition of Constant Operands

Constant Computations
Not Recognized

V*W*X*C*D*E
V+W+X+C+D+E

The compiler can recognize only local variables as having a constant value. (It
must always assume that operands in common or in a parameter list can change,
and therefore cannot optimize'them.)

Therefore, for such items you should define constant operands as local variables.

Eliminating Scaling Computations

If your program performs calculations representing physical values of some kind,
you can save computation time by using factoring, as the following simple example
shows:

Not Using Factoring

SUM=O.O
DO 1 1=1,9
SUM=SUM+FAC*ARR(1)

Using Factoring

SUM=O.O
DO 1 1=1,9
SUM=SUM+ARR(1)
SUM=SUM*FAC

In many programs, you can use factoring much more extensively than this simple
example shows.

Denning Arrays with Identical Dimensions

If all your arrays have the same shape, then the compiler can use a subscript
calculated for one array to subscript the others.

In some cases, therefore, you should consider expanding some smaller arrays to
match the dimensions of the other arrays with which they're involved~ The
compiler can then maintain only one index for all the arrays defined as having the
same dimensions.

150 VS FORTRAN Programming Guide,

Defining Arrays with Identical Element Specifications

If you define arrays as having the same dimensions and the same element
specifications, the compiler can compute a subscript for one array and then use it
without change for the others.

In some cases, therefore, you should consider expanding smaller arrays to match
the elements in the others. You should always do this for arrays with integer or
logical operands.

Using Critical Variables Carefully

Certain variables cannot be optimized in certain circumstances:

• Control variables for direct access input/output data sets cannot be optimized
at all.

• Variables in input/output statements and in argument lists cannot be optimized
by register optimization in the loops that contain the statements.

• Variables in COMMON blocks cannot be optimized across subroutine calls.

You shouldn't use DO loop indexes for any of these purposes.

Avoiding Unneeded Fixed/Float Conversions

Avoid forcing the compiler to convert numbers between the integer and the
floating-point internal representations; each such conversion requires several
instructions, including some double-precision floating-point arithmetic.

The following example shows one method of avoiding such unnecessary
conversions:

One Conversion Needed:

X=1.0
DO 1 1=1,9
A(1)=A(1)*X
X=X+1 .0

Multiple Conversions Needed:

DO 1 1=1,9
A(1)=A(1)*1

When you can't avoid using mixed-mode arithmetic, then code the fixed-point and
floating-point arithmetic as much as possible in separate computations.

Minimizing Conversions between Single and Double Precision

Two, or even three, instructions are required to convert data between single and
double precision.

Chapter 7. Optimizing Your Program 151

Using Scalar Variables as Accumulators

When you're accumulating intermediate summations, keep the result in a scalar
variable rather than in an array. Array accumulators require load and store
instructions; scalar variable accumulators can be maintained in a register.

Using Efficient Arithmetic Constructions

In subtraction operations, if only the negative is required, change the subtraction
operations into additions, as follows:

Efficient: Inefficient:

Z=-2.0
DO 1 1=1,9
A(1)=A(1)+Z*B(I}

In division operations, do the following:

DO 1 1=1,9
A(1)=A(1)-2.0*B(1)

• For constants, use one of the following constructions:

X*(1.0/2.0)
O.5*X

rather than the construction X/2.0.

• For a variable used as a denominator in several places, use the same technique.

Using IF Statements Efficiently

In general, use a block or logical IF statement rather than the arithmetic IF
statement.

If you must use an arithmetic IF statement, try to make the next succeeding
statement one of the branch destinations.

For multiple branches, either use the computed GO TO statement, or, if the branch
can be initialized so that it remains invariant, use an assigned GO TO statement.

In logical IF statements, if your tests involve a series of AND and/or OR
operators, try to do the following:

• Put the simplest conditions tested in the leftmost positions.

• Also, put the tests most likely to be decisive in the leftmost positions.

• Put the more complex conditions (such as tests involving function references)
in the rightmost positions.

If the first part of the expression causes the logical condition to test as true, then
the rest of the expression need not be evaluated, saving execution time.

152 VS FORTRAN Programming Guide,

~ Using the Object Program Listing

Use the object program listing, which you obtain through the LIST compiler option,
to find out what machine instructions the compiler has generated for your program.
You can often tell whether the program has been well or poorly optimized.

The essential work for most FORTRAN programs is to compute floating-point
numbers (rather than subscripts or DO loop indexes). Take a quick look at the
inner loops for such programs; if they contain essentially no fixed-point
instructions, the program is efficiently optimized.

Similarly, you can tell from a FORTRAN source program which additions and
multiplications and other operations are necessary and which ought to disappear
under optimization. You can examine the object program to discover whether
there's a reasonable correlation between the generated program and your
expectation.

Using the object code listing in this way, is the best way you can study the
efficiency of source program optimization.

Neither of these examinations requires detailed knowledge of assembler language.

Source Considerations with OPTIMIZE(3)

When you're using the OPTIMIZE(3) compiler option, there are additional coding
considerations you should be aware of.

Common Expression Elimination

OPTIMIZE(3) evaluates expressions and eliminates those that are common to
more than one statement. That is, if an expression occurs more than once and the
path of execution always executes the first expression and then the second, with no
change in the expression value, the first value is saved and used instead of the
second expression. OPTIMIZE(3) does this even for intermediate expressions
within expressions. For example, if your program contains the following
statements:

10 A=C+D

20 F=C+D+E

the common expression C + D is saved from its first evaluation at 10, and is used at
20 in determining the value of F.

Chapter 7. Optimizing Your Program 153

Computational Reordering

Instruction Elimination

OPTIMIZE (3) may move an expression outside of a loop when the operands of the
expression are not defined as part of the loop. This can cause executioll
differences from nonoptimized code.

For eJ[ample, when an IF statement controls the execution of a computation within
a loop, and the computation is moved outside the loop, program execution results
may change:

DO 11I=1, 10
DO 12 J=1,10

9 IF (B(I) .LT.O) GO TO 11
12 C(J)=SQRT(B(I»
11 CONTINUE

OPTIMIZE(3) moves the library function call to precede statement 9, which causes
the square root computation to be made before the test for zero.

To avoid this unwanted code movement, use the OPTIMIZE(2) option.

You can also get unexpected results when you use CALL OVRFL or CALL
DVCHK, because the computations causing overflow, underflow, or divide check
conditions could be moved out of the loop in which tbe test occurs.

If your program defines nonsubscripted· variables, and their values ar~ not used
between two definitions within one block, or have not been used before the exit
from the block, the compiler may eliminate any intermediate storing of the
variables.

154 VS FORTRAN Programming Guide

Chapter 8 •. Compiling Your Program and Identifying User Errors

The next step is to request the VS FORTRAN compiler program to translate your
FORTRAN source statements into an "object module"-a machine code
translation of your source program.

Compiling Your Program

Requesting Compilation

Using whatever method your installation requires, you must enter the source
program as a file with 80-character records; each record must follow VS
FORTRAN formatting rules. Your output from the compiler depends upon the job
control options and compiler options you specify.

When you request compilation, the VS FORTRAN compiler reads and analyzes
your source program and translates it into machine code.

You can compile, link-edit, and execute all at once, or invoke each step separately.
For early debugging, however, it's usually better to request a compile-only run.
That way, the compiler can find syntax errors in your program that would prevent a
successful execution, and waste machine time.

For information on how to compile your program, see the appropriate chapter (11
through 14).

Automatic Cross-CompHation

Cross-compilation of VS FORTRAN programs is automatic. That is, you can
compile your source program under any supported operating system; you can then
link-edit the resulting object module to execute under any of the other supported
systems.

Compiling Programs for Interactive Debug UnderCMS and TSO

If you are using CMS or TSO with the VS FORTRAN Interactive Debug product,
see Chapter 16, "Using VS FORTRAN Interactive Debug with VS FORTRAN"
on page 377, for general information; and "Specifying CMS Line Numbers When
Debugging" on page 230, or "Specifying TSO Line Numbers When Debugging"
on page 322, for examples of how to specify line numbers for debugging.

Chapter 8. Compiling Your Program and Identifying User Errors 155

Printing on the mM 3800 Printing Subsystem

The EBCDIC assignment for the characters in a specific Character Arrangement
Table can be found in IBM 3800 Printing Subsystem Programmer's Guide.

You may select the type style to be used by including the TRC as the second
character to be output by the FORMAT statement for the line. For example:

100 FORMAT (' ',' n ' , ...

The TRC, n, must be 0, 1,2, or 3.

It is possible to combine more than one type style on a single line by use of the
print-without-spacing control character, '+'. For example:

100 FORMAT (' ',' n ' , ..•
200 FORMAT ('+','m', ...

If you issue a WRITE to the 3800 with FORMAT statement 100, using TRC n,
followed by a WRITE with FORMAT statement 200, using TRC m, the output
from the two WRITE statements will be combined into one line.

The 3800 will not overprint characters (with the exception of the underscore), so
care must be used when setting up the lines to insure that blanks are provided
where additional characters are to be placed.

If you want to mix lines of different pitch, note the following:

• When blanks of different pitches are merged, the resulting blank has the pitch
of the first one.

• When a printable graphic character is merged with a blank, the resulting
character has the pitch of the printable character.

It is possible to underscore characters by either of two methods:

• Five underscored character sets are provided.

• The 3800 has a built-in underscore capability. When it detects that an
underscore and another printable character are to be printed in the same
character position in a line, it generates an underscored character.

Certain parameters are required to support the mM 3800 Printing Subsystem.
These parameters and sample FORTRAN programs using the 3800 are shown in
"Printing on the mM 3800 Printing Subsystem under MVS" on
page 271, "Printing on the mM 3800 Printing Subsystem under CMS" on
page 231, and "Printing on the mM 3800 Printing Subsystem under YSE" on
page 335.

156 VS FORTRAN Programming Guide

IBM Extension

Using the VS FORTRAN INCLUDE and Conditional INCLUDE Statements

Conditional INCLUDE

If your source program uses the INCLUDE statement or the conditional
INCLUDE statement and CI option, you must create a library member(s)
containing the source code to be included. This library must be identified to the
system during your compile.

For more information, see the correct section for your operating system: "Using
the FORTRAN INCLUDE Statement" on page 230 (VM), "Using the
FORTRAN INCLUDE Statement" on page 273 (MVS), and "Using the
FORTRAN INCLUDE Statement" on page 336 (VSE).

You may selectively activate INCLUDE statements within the FORTRAN source
during compilation by using a conditional INCLUDE with the following format:

INCLUDE (name) [n]

where name is the name of a file to be included, and n, the identifying number of
this INCLUDE, can be any number from 1 through 255. To activate this
INCLUDE, it is necessary to use the CI (conditional include) compiler option. See
"Using the Compiler Options" for more information on the CIoption .

...... _________ End of ffiM Extension _________ ---'

Using the CompHer Options

Option

AUTODBL(value)

CHARLEN(number)

VS FORTRAN compiler options let you specify details about the input source
program and request specific forms of compilation output. See Chapter
11, "Using VS FORTRAN under VM" on page 227, Chapter 12, "Using VS
FORTRAN under MVS" on page 257, Chapter 13, "Using VS FORTRAN under
TSO" on page 317, or Chapter 14, "Using VS FORTRAN under VSE" on
page 331, for system considerations in specifying the options.

Figure 29 lists the compiler options and their abbreviations and ffiM-supplied
defaults. Your system administrator may have changed these defaults for your
installation; you may want to note any change in the figure.

mM-Supplied Installation
Abbreviation Default Default

AD AUTODBL(NONE)

CL 500

Figure 29 (Part 1 of 2). VS FORTRAN CompHer Options

Chapter 8. Compiling Your Program and Identifying User Errors 157

IBM-Supplied Installation
Option Abbreviation Default Default

CI(numberl,number2, ...) None None

DC(namel,name2, ...) None None

DECK I NODECK DINOD NODECK

FIPS(S I F) I NOFIPS None NOFIPS

FLAG(I I WI E I S) None FLAG(I)

FREE I FIXED None FIXED

GOSTMT I NOGOSTMT GSINOGS NOGOSTMT

LANGL VL (66 I 77) LVL LANGL VL(77)

LINECOUNT (number) LC 60

LIST I NOLIST LINOL NOLIST

MAPINOMAP None NOMAP

NAME (name) None MAIN

OBJECT I NOOBJECT OBJI NOOBJ OBJECT

OPTIMIZE(O 111213) I OPT I NOOPT NOOPTIMIZE
NOOPTIMIZE

RENT I NORENT None NORENT

SDUMP I NOSDUMP SDINOSD SDUMP

SOURCE I NOSOURCE SINOS SOURCE

SRCFLGI NOSRCFLG SF I NOSF SRCFLG

SXMINOSXM None NOSXM

SYMINOSYM None NOSYM

TERMINAL I NOTERMINAL TERM I NOTERM TERMINAL

TEST I NOTEST None NOTEST

TRMFLGI NOTRMFLG TFINOTF TRMFLG

XREFINOXREF XINOX NOXREF

Figure 29 (Part 2 of 2). VS FORTRAN CompHer Options

AUTODBL(value)
Provides an automatic means of converting single-precision, floating-point
calculations to double precision, and double-precision calculations to
extended precision. For more information concerning (value), see "Using
the Automatic Precision Increase Facility-AUTODBL Option" on
page 29.

The mM-supplied default is AUTODBL(NONE).

CHARLEN(number)
Specifies the maximum length permitted for any character variable, character
array element, or character function, (where nqm})er is any number up ~o
and including 32767). Within a program unit, you cannot specify a length
for a character variable, array element, or function greater than the
CHARLEN specified. .

158 VS FORTRAN Programming Guide

The mM-supplied default is a value of 500.

CI(numberl,number2, ••• ,numbern)
Specifies the identification numbers of the INCLUDEs to be processed
(where number is any number less than 256).

mM does not supply any default CI values.

DC (name 1 ,name2, •••)
Defines the names of common blocks that are to be allocated at execution
time. This option allows the specification of very large common blocks that
can reside in the additional storage space available through MVS/XA. This
option can be repeated; the lists of names are combined. No blanks are
allowed in the list.

On an @PROCESS statement, multiple names can be supplied as
parameters to the DC option or on invocation of the compiler (EXECUTE
options). In VM, if you specify DC on the FORTVS command, only the 8
characters following the left parenthesis are passed to VS FORTRAN. No
error message is generated if any truncation occurs.

No checking is done to see if the names specified are valid names of common
blocks.

mM does not supply any default DC values.

DECK I NODECK
Specifies whether or not the object module in card image format is to be
produced.

The mM-supplied default is NODECK.

FIPS (S I F) I NOFIPS
Specifies whether or not standard language flagging is to be performed, and,
if it is, the standard language flagging level: subset or full.

Items not defined in the current American National Standard are flagged.
Flagging is valuable only if you want to write a program that conforms to the
American National Standard for FORTRAN implemented in
LANGLVL(77). If you specify LANGLVL(66) and FIPS flagging at either
level, the FIPS option is ignored.

The mM-supplied default is NOFIPS.

FLAG (IIWIEI S)
Specifies the level of diagnostic messages to be written: I (information) or
higher, W (warning) or higher, E (error) or higher, or S (severe) or higher.
FLAG allows you to suppress messages that are below the level desired.
Thus, if you want to suppress all messages that are warning or informational,
specify FLAG(E).

The mM-supplied default is FLAG(I).

Chapter 8. Compiling Your Program and Identifying User Errors 159

FREEl FIXED
Indicates whether the input source program is to be in free format or in fixed
format. These formats are described in more details under "Using Fixed
and Free-Form Input" on page 7.

The ffiM-supplied default is FIXED.

GOSTMTI NOGOSTMT
Specifies whether or not internal sequence numbers (for run-time error
debugging information) are to be generated for a calling sequence to a
subprogram or to the run-time library from the compiler-generated code.
GOSTMT is useful if you have an error condition in a subprogram and want
to know the source of the call. Specification of this option costs only 4 bytes
of overhead per call to a subprogram or to a run-time library routine.
Specifying GOSTMT for subprograms is recommended.

The ffiM-supplied default is NOGOSTMT.

LANGLVL (66 177)
Specifies the language level in which the input source program is written: the
FORTRAN66 language level, or the FORTRAN77 language level. The VS
FORTRAN manuals only describe the LANGL VL(77) processing.

The ffiM-supplied default is LANGL VL(77).

LINECOUNT (number)
Specifies the maximum number of lines on each page of the printed source
listing. The number may be in the range 5 to 32765. The advantage of
using a large LINECOUNT number is that there are fewer page headings to
look through if you are using only a terminal. Your output, if printed, will
run together from page to page without a break.

The ffiM-supplied default is 60 lines per page.

LIST 1 NOLIST
Specifies whether or not the object module listing is to be written. The LIST
option allows you to see the pseudo-assembly language code that is similar to
what is actually generated. A full description of this output is given under
"Object Module Listing-LIST Option" on page 204.

The ffiM-supplied default is NOLIST.

MAPINOMAP
Specifies whether or not a table of source program variable names and
statement labels is to be written. MAP output is helpful in debugging your
program. A complete description of the output is given under "Source
Program Map-MAP Option" on page 175.

The ffiM-supplied default is NOMAP.

NAME(name)
Can only be specified when LANGL VL(66) is specified. It specifies the
name that is generated on the output and the name of the CSECT generated
in the object module. It only applies to main programs.

160 VS FORTRAN Programming Guide

When NAME is omitted, the name is MAIN.

OBJECT I NO OBJECT
Specifies whether or not the object module is to be produced. An object
module is required to execute your program.

The ffiM-supplied default is OBJECT.

OPfIMIZE (0 11 12 13) I NOOPfIMIZE
Specifies the optimizing level to be used during compilation:

OPTIMIZE (0) OR NOOPTIMIZE specifies no optimization.

OPTIMIZE (1) specifies register and branch optimization.

OPTIMIZE (2) specifies partial code-movement optimization.
OPTIMIZE(2) will not relocate any code when it has been determined
that relocating the code under consideration would cause unplanned or
unexpected interrupts.

OPTIMIZE (3) specifies full code-movement optimization.

If you are debugging your program, it is advisable to use NOOPTIMIZE. To
create more efficient code and, therefore, a shorter execution time with
(usually) a longer compile time, use OPTIMIZE(2) or (3). The different
levels of optimization are described under Chapter 7, "Optimizing Your
Program" on page 139.

The ffiM-supplied default is NOOPTIMIZE.

RENT I NORENT
Allows a program compiled as RENT to be generated as a reentrant object
module that can be invoked as a main program or subprogram. If you are
not planning on running your program in a reentrant area, specify NORENT.
Otherwise, see "VS FORTRAN Separation Tool (for Both VM and MVS)"
on page 189.

If the DEBUG statement (see "Static Debug Statements" on page 201) is
specified on the same compilation as RENT, a warning message will be
issued and RENT ignored.

The ffiM-supplied default is NORENT.

SDUMPI NOSDUMP
Specifies that symbolic dump information is to be generated. This
information is used to produce symbolic listings of your program data at
abnormal termination or in response to a program call to the SDUMP service
subroutine. For details on calling SDUMP, see "Requesting Symbolic
Dumps-CALL Statement" on page 211. SDUMP listings are shown in VS
FORTRAN Language and Library Reference.

The NOSDUMP option makes the object module smaller. Execution time is
the same, whether or not NOSDUMP is specified.

Chapter 8. Compiling Your Program and Identifying User Errors 161

Note: If you want to use CMS or TSO line numbers during your interactive
debug sessions, both NOSDUMP and TEST must be specified.

For more information, see Chapter 16, "Using VS FORTRAN Interactive
Debug with VS FORTRAN" on page 377.

The ffiM-supplied default is SDUMP.

SOURCE I NOSOURCE
Specifies whether or not the source listing is to be produced. By using the
NOSOURCE option, you can decrease the size of your listing. If SRCFLG
is specified, NOSOURCE is overridden.

The ffiM-supplied default is SOURCE.

SRCFLG I NOSRCFLG
Controls the inserting of error messages in the source listing. The SRCFLG
option allows you to view the error message after the line which created the
error instead of at the end of the listing. If SRCFLG is specified,
NOSOURCE is overridden.

The ffiM-supplied default is SRCFLG.

SXMINOSXM
Formats XREF or MAP listing output for a 72-character-wide terminal
screen. The NOSXM option formats listing output for a printer. For more
details, see "Using the SXM Option" on page 174.

The ffiM-supplied default is NOSXM.

SYMINOSYM
Invokes the production of SYM cards in the object text file. The SYM cards
contain location information for variables within a FORTRAN program.
SYM cards are useful to MVS users. For more information about SYM
cards, see "SYM Record" on page 404.

The ffiM-supplied default is NOSYM.

TERMINAL I NOTERMINAL
Specifies whether or not error messages and compiler diagnostics are to be
written on the SYSTERM output data set and whether or not a summary of
error messages is to be printed.

Specify the NOTERMINAL option if you are running batch jobs on MVS or
VSE and do not want output to a SYSTERM data set.

The ffiM-supplied default is TERMINAL.

TEST I NOTEST
TEST overrides any optimization level above OPTIMIZE(O), and adds
execution-time overhead.

VS FORTRAN Interactive Debug (5668-903) does not require programs to
be compiled with this option. See the table under "Compiling a VS

162 VS FORTRAN Programming Guide

FORTRAN Program" on page 377 for information about programs
compiled with TEST, with or without SDUMP. See also the appropriate VS
FORTRAN Interactive Debug manual listed in "Related Publications" on
page v.

The IBM-supplied default is NOTEST.

TRMFLGINOTRMFLG
Causes the FORTRAN source statement in error, if applicable, and its
associated error messages (formatted for the terminal being used) to be
displayed at the terminal; all other information will be suppressed. Specify
the NOTRMFLG option if you are running batch jobs on MVS or VSE and
do not want output to a SYSTERM data set.

The IBM-supplied default is TRMFLG.

XREF I NOXREF

Conflicting Compiler Options

Specifies whether or not a source cross-reference listing is to be produced.
For a description of cross-reference output, see "Source Program
Cross-Reference Dictionary-XREF Option" on page 178.

The ffiM-supplied default is NOXREF.

The following table lists conflicting compiler options that will create an error
message if both are used. The table also reflects those options that will be assumed
when conflicting compiler options are specified.

Conflicting Compiler Options Options Assumed

FIPS FLAG, =1 FIPS FLAG=I

FIPS LANGLVL(66) NOFIPS LANGLVL(66}

LANGLVL(77) NAME LANGLVL(77) Ignore NAME

NOSOURCE SRCFLG SOURCE SRCFLG

SYM NODECK and NOSYM NODECK and
NOOBJ NOOBJ

TEST NAME, =MAIN TEST NAME=MAIN

TEST NOOBJ TEST OBJ

TEST OPT>O TEST OPT=O

Chapter 8. Compiling Your Program and Identifying User Errors 163

Modifying Compilation Options-@PROCESS Statement

The options specified when the compiler is invoked remain in force for all source
programs you're compiling, unless you override them with the @PROCESS
statement.

To change the compiler options, place the @PROCESS statement just before the
first statement in the source program. The following rules apply:

• @PROCESS must appear in columns 1 through 8 of the statement.

• The @PROCESS statement can be followed by compiler options in columns 9
through 72 of the statement. The options must be separated by commas or
blanks.

• Multiple process statements can be supplied for a program unit. Columns 9
through 72 of a following @PROCESS statement are appended to the previous
@PROCESS statement. There may be up to 20 PROCESS statements.

All compiler options except OBJECT, DECK, DISK, PRINT, and NOPRINT
are permissible (the latter three are available only to CMS users; for details,
see "Using the VS FORTRAN Compiler Options" on page 229).

• If NODECK or OBJ has been specified on the EXEC statement, you cannot
specify DECK or NOOBJ, respectively, on the @PROCESS statement.

• If both TEST and OPT(O) have been specified and NAME is not MAIN, the
name becomes MAIN.

• TERMINAL and TRMFLG cannot be specified on the @PROCESS
statement if TERMINAL was not specified on the EXEC statement or in the
system defaults.

Using VS FORTRAN Interactive Debug with VS FORTRAN

Compiler Output

If you want to use VS FORTRAN Interactive Debug (5668-903) with VS
FORTRAN, you should not specify the combination of TEST and NOSDUMP
options unless you also want to use TSO or CMS line numbers during your
debugging session. If you want to use TSO or CMS line numbers, both TEST and
NOSDUMP must be specified.

For more information, see Chapter 16, "Using VS FORTRAN Interactive Debug
with VS FORTRAN" on page 377.

The output the compiler gives you depends upon whether you've accepted the
default compiler options in force for your organization, or whether you've modified
the defaults using explicit compiler options.

164 VS FORTRAN Programming Guide

CompHer Output with Default Options

If you use the default compiler options, you should get output printed in the
following order (unless your installation has changed the defaults):

• The date of the compilation-plus information about the compiler and this
compilation; for example, the release level of the compiler

• A listing of your source program

• Diagnostic messages telling you of errors in the source program

• Informative messages telling you the status of the compilation

All messages can also be displayed on your terminal output device.

Output with Explicit CompHer Options

In addition to that listed above, you can cause each compilation to produce the
following output:

• A listing of the object module (LIST option) in pseudo-assembler language
(that is, the assembler instructions that would have been generated for the
object module if the compiler had translated it into assembler before producing
the machine code)

• A copy of the object module (OBJECT option) in card image format

• A table of names and statement labels (MAP option) defined in the source
program, and their location in the module

• A cross-reference listing (XREF option) of variables and labels used in the
source program, and informational flags for each

• Messages flagging statements that do not conform to the language standard
level you've chosen (FIPS option)

Depending on the options you've chosen, the output you'll get is shown in
Figure 30 on page 166. (Options that produce output at compile time are shown
in the order in which they are printed in the output listing.)

For information on how to use the SOURCE, FLAG, MAP, XREF, SRCFLG,
TRMFLG, and FIPS options, see "Identifying User Errors" on page 167.

For information on how to use the DECK and OBJECT options, see "Object
Module as Link-Edit Data Set" on page 183.

For information on how to use the LIST option, see Chapter 9, "Executing Your
Program and Fixing Execution-Time Errors" on page 185.

Chapter 8. Compiling Your Program and Identifying User Errors 165

Compiler Option

SOURCE

SRCFLG

SXM

FIPS

XREF

LIST

MAP

Produces the Following Output

Compilation Headings: Compiler Name and Release Level,
Source Program Name, Compilation Date, Listing Page Number

A listing of the source program

Error messages displayed in the source listing
immediately following the source statement in error during the
syntax scan of the statement

Error messages occurring after the syntax scan
displayed at the end of the listing

XREF and MAP listing output formatted to a 72-character-wide
terminal screen

Error messages resulting from non-ANS standard usages

Cross-reference information, showing each symbol and its
type and usage, as well as where each symbol and label
is defined and used in the program, including variables
referenced but not initialized

A listing of the object module, containing the ISN, if available,
the relative location of each generated constant or statement,
the name of the source item· used in the instruction, plus section
headings for: constants and data addresses, common areas, equivalenced
variables, address constants, external references, parameter
lists, the save area, and generated instructions;
the program information block, the entry table,
and the compiler properties table

A map of the source program, showing the program name and size,
name usage and type, common block information, and statement
label usage and location

Figure 30 (Part 1 of 2). Compiler Output Using Explicit Options

166 VS FORTRAN Programming Guide

FLAG

OBJECT

TERMINAL

TRMFLG

DECK

A listing of error messages at the FLAG level you've chosen:

I requests a listing of all messages produced

W requests a listing of warning, error, severe error, and abnormal
termination messages (return code 4 or higher)

E requests a listing of error, severe error, and abnormal
termination messages (return code 8 or higher)

S requests a listing of severe error and abnormal
termination messages (return code 12 or higher)

For an explanation of these message codes, see
"Diagnostic Message Listing-FLAG Option" on page 172.

The object module in machine language form

Statistics and messages directed to the SYSTERM
data set; also produces an indexed summary of statistics and messages
for each compilation at the end of all compilations

Error messages displayed on your SYSTERM data set

The object module in machine language form to be produced as
an output data set for punching

Compilation statistics: source program name, number of
statements compiled, generated object module size (in bytes),
the number and severity of error messages produced

Figure 30 (Part 2 of 2). CompHer Output Using Explicit Options

Identifying User Errors

Many common coding errors can cause problems in your compilation; for example:

1. Misspelling a VS FORTRAN language element.

2. Omitting required punctuation, or inserting unneeded punctuation.

3. Ignoring VS FORTRAN formatting rules.

4. Forgetting to assign values to variables and arrays before you use them.

5. Moving data into an item that's too small for it. (This causes truncation.)

In particular, beware of assigning data to more array elements than the array
contains; you can inadvertently destroy subsequent data and instructions.

Chapter 8. Compiling Your Program and Identifying User Errors 167

6. Specifying subscript values that are not within the bounds of an array.

7. Inadvertently changing types defined in an IMPLICIT statement by explicit
. type statements.

8. Making invalid data references to equivalenced items of differing types (for
example, integer and real).

9. Transferring control from outside a DO loop into an intermediate point in a
DO loop.

Note: The extended range of a DO-loop is not part of the current American
National Standard for FORTRAN. It is a valid construction under the
LANGL VL(66) compiler option, but under the default option

. LANGL VL(77), its use is not diagnosed and no diagnostic message is
generated.

10. Using arithmetic items for intermediate calculations that are too small to give
t~e precision you need in the result. For example, if you want to show more
than six decimal digits, you should perform the intermediate calculations in
qouble precision.

11. Failing to inspect code movements in programs compiled with the
OPTIMIZE(3) option. For example, if an IF statement controls execution of a
computation within a loop, the computation may be moved outside the loop
and give you results you don't expect. See Chapter 7, "Optimizing Your
Program" on page 139.

12. Attempting to process input records after a file has been used for output. See
Chapter 5, "Programming Input and Output" on page 69.

13. Writing main programs or subprograms that directly or indirectly invoke
themselves. See Chapter 6, "Subprograms and Shared Data" on page 113 ...

14. Writing a series of subprograms without a required main program.

15. Defining dummy arguments and actual arguments that do not agree in type
and/ or length; for example, arrays that do not have the same dimensions,
integer actual argwnents with real dummy arguments or vice versa.

16. In a subprogram, assigning new values to arguments associated with variables
in common.

17. Failing to initialize VFEIN# when your main program is not a FORTRAN
program. See Appendix A, "Assembler Language Considerations" on
page 389.

18. Referring to a statement function with other than the defined number of
arguments.

19. Supplying a printer carriage control character as. the first character of a line to
be printed, but not specifying in a data definition statement that carriage
control characters are present.

168 VS FORTRAN Programming Guide

20. The VS FORTRAN compiler uses the OS FORTRAN H Extended architecture
for rounding infinite binary expansions. The OS FORTRAN 01 compiler also
rounds, but the DOS FORTRAN F compiler truncates. H you recompile
programs originally written for the DOS FORTRAN F compiler, you may see
different results from execution.

21. H you compile a program under OPT(O) that has too many branch addresses,
you will receive the message:

IFX4001I--YOU HAVE EXCEEDED THE COMPILER LIMIT ON
ADDRESS CONSTANTS.

To avoid this problem, compile the program at OPT(1), OPT(2) or OPT(3). H
OPT(2) or OPT(3) do not compile the program properly, use OPT(1). H the
problem persists, divide the program into smaller subprograms.

22. Concatenating character strings in such a way that overlap can occur.

23. Failing to DIMENSION an array before use. When this happens, the array
name is assumed to be a function call, and a severe program failure occurs.

24. Not using the lowest value of CHARLEN possible, and causing routines to be
larger than necessary.

Using the Compiler Output Listing

The compiler output listing is designed to help you pinpoint any errors you've made
in your source program. The listing is described in the following sections, together
with hints on how to use it effectively.

CompDation Identification

This portion of the listing helps you identify each compilation, even among several
done on the saine day.

The heading on each page of the output listing gives the name of .the compiler and
its release level, the name of the source program, and the date and time of the run
in the format:

DATE: month day, year TIME: hour.minute.second

For example:

DATE: MAY 1, 1981 TIME: 1 4 . 3 1 • 0 1

The TIME given is the time the job was started. The TIME is shown on a 24-hour
clock; that is, 14.31.01 is the equivale1l;t of 2:31:01 PM.

The first page of the listing also shows the compiler options (default and explicit) in
effect for this compilation.

Chapter 8. Compiling Your Program and Identifying USer Errors 169

Note: Your installation may print the date as:

year month day

instead of the format shown above.

Source Program Listing-SOURCE Option

The statements printed in the source program listing are identical to the
FORTRAN statements you submitted in the source program, except for the
addition of internal sequence numbers (ISN) as a prefix. Figure 31 on page 171 is
an example of the source program listing.

Use the source listing for desk checking to make sure that your source statements
conform to VS FORTRAN syntax. The internal sequence numbers help you
identify the statements causing diagnostic messages.

170 VS FORTRAN Programming Guide

REQUESTED OPTIONS (EXECUTE): NOTERM NOTRMFLG SXM
REQUESTED OPTIONS (PROCESS): LIST XREF MAP
OPTIONS IN EFFECT: LIST MAP XREF NOGOSTMT NODECK SOURCE NOTERM OBJECT FIXED

NOTEST NOTRMFLG SRCFLG NOSYM NORENT SDUMP AUTODBL(NONE)
SXM OPT(O) LANGLVL(77) NOFIPS FLAG(I) NAME (MAIN)
LINECOUNT(60) CHARLEN(500)

ISN
ISN

ISN
ISN
ISN
ISN
ISN

ISN
ISN

ISN

ISN
ISN

ISN

ISN
ISN

ISN

ISN

ISN

ISN

ISN
ISN

ISN

ISN

ISN

* * ... 1 2 3 4 5 6 7.* 8

1
2

3
4
5
6
7

8
9

10

11
12

13

14
15

16

17

18

19

20
21

23

24

25

C SAMPLE PROGRAM TO DEMONSTRATE VS FORTRAN
REAL*8 PI
PARAMETER (PI = .31415926501)

COMPLEX * 8 C8V, C8A, C8B
COMPLEX * 32 C32
LOGICAL*1 L1
REAL*8 R8A, R8V, R8VNU
CHARACTER*15 CHAR15

EQUIVALENCE (R4A(4), R8A(2), C32(1,1»
EQUIVALENCE (12(3), L1)

DIMENSION R8A(7), C32(4,5), R4A(11), 12(3)

COMMON /COM1/ R4A, C8A
COMMON /COM2/ L1, C8B

111 FORMAT('10UTPUT FOR', A14, 14F10.7, E15.7, 2(F20.16»

DATA A2/3.14159/
DATA CHAR15/'SAMPLE PROGRAM 1/

ASSIGN 111 TO J

A1 = (A3 + R8A(2»*3

IF (A1 .EQ. 0) GOTO 200

IF (A2 .EQ. 0) GOTO 200

DO 100 I = 1,7
IF (L 1)

R8V = R8V + R8A(I) + (.0007, .0021) + FLOAT(I)
100 CONTINUE

CALL CXSUB(*300,R8V,A1,PI)

R8A = 1.0002 + R8A(1)

ERROR 1027(S) NON-SUBSCRIPTED ARRAY NAME APPEARS AS LEFT-OF-EQUAL
SIGN VARIABLE. SPECIFY A SUBSCRIPTED ARRAY NAME
OR A VARIABLE NAME.

ISN

ISN

ISN
ISN

26

27

28
29

200 WRITE(6,J) CHAR15, R8A, A1, C32

DATA C8V/(2.540005, 2.781828)/

300 PAUSE ITHE END'
END

Figure 31. Source Program Listing Example-SOURCE and SRCFLG Options

Chapter 8. Compiling Your Program and Identifying User Errors 1 71

Note: When this program is executed, the diagnostic messages shown in Figure 32
on page 172 are produced.

Source Program Listing-8RCFLG Option

The SRCFLG option enables you to obtain error messages immediately following
the statement in error. Figure 31 on page 171 shows an example of an error that
occurred at ISN 25.

Note: If SRCFLG is specified, the statement in error will be printed even if
NOSOURCE is specified.

Diagnostic Message Listing-FLAG Option

If tile severity level of the message is greater than or equal to that you've specified
in the FLAG option, and there are syntax errors in your VS FORTRAN source
program, the compiler detects them and gives you a message. The messages are
self-explanatory, making it easy to correct your syntax errors before recompiling
your program. Examples of VS FORTRAN messages are shown in Figure 32.

*** VS FORTRAN ERROR MESSAGES ***

IFX1027I RPLC 12 (S)

IFX2323I COMN 4 (W)

IFX2323I COMN 4 (W)

IFX2332I COMN 12 (S)

IFX2323I COMN 4 (W)

25 NON-SUBSCRIPTED ARRAY NAME APPEARS AS LEFT-OF
EQUAL SIGN VARIABLE. SPECIFY A SUBSCRIPTED
ARRAY NAME OR A VARIABLE NAME.

VARIABLE "R8A" IN COMMON "COM1" IS INEFFICIENTLY
ALIGNED. VARIABLES SHOULD BE ALIGNED ON
APPROPRIATE BYTE BOUNDARIES.

VARIABLE "C32" IN COMMON "COM1" IS INEFFICIENTLY
ALIGNED. VARIABLES SHOULD BE ALIGNED ON
APPROPRIATE BYTE BOUNDARIES.

THE VARIABLE "12" WILL CAUSE COMMON "COM2" TO
EXTEND TO THE LEFT BECAUSE OF ITS POSITION IN
EQUIVALENCE STATEMENT AT ISN "9". CHECK VARIABLE
PLACEMENT.

VARIABLE "C8B" IN COMMON "COM2" IS INEFFICIENTLY
ALIGNED. VARIABLES SHOULD BE ALIGNED ON
APPROPRIATE BYTE BOUNDARIES.

STATISTICS SOURCE STATEMENTS = 28, PROGRAM SIZE = 1544 BYTES, PROGRAM
NAME = MAIN PAGE: 1.

STATISTICS 5 DIAGNOSTICS GENERATED. HIGHEST SEVERITY CODE IS 12.

MAIN END OF COMPILATION 1 ******

******* SUMMARY STATISTICS ******* 5 DIAGNOSTICS GENERATED. HIGHEST
SEVERITY CODE IS. 12.

Figure 32. Examples of CompHer Messages--FLAG Option

172 VS FORTRAN Programming Guide

All VS FORTRAN compiler messages are in the following format:

IFXnnnnI mmmm level [isn] 'message text'

where the areas have the following meanings:

IFX is the message prefix identifying all VS FORTRAN compiler messages

nnnnI is the unique number identifying this message

mmmm identifies the compiler module issuing the message

level is the severity level of the condition flagged by the cOlllpiler. Compiler
messages are assigned severity levels as follows:

0(1) Indicates an informational message; it merely gives you
information about the source program and how it was
compiled.

The severity level is 0 (zero).

4(W) Is a warning message; it usually tells you that a minor error,
which does not violate VS FORTRAN syntax, was detected.

8(E)

The severity level is 4.

If no messages are produced that exceed this level, you can
safely link-edit and execute the compiled object module.

Is an error message; usually, a VS FORTRAN syntax error
was detected, but the compiler makes a corrective assumption
and completes the compilation.

The severity level is 8.

It is still possible that the program will execute correctly.

12(S) Is a serious error message; an error was detected which
violates VS FORTRAN syntax, and for which the compiler
could make no corrective assumption.

The severity level is 12.

You should not attempt execution, except possibly for
debugging purposes. During compilation, if the compiler
detects an S-level error, it inserts a call for a library function
instead of generating the code for the statement. During
execution, if and when this statement in the program is
reached, an error message that includes the internal sequence
number of the statement in error is produced, and the program
is terminated.

Chapter 8. Compiling Your Program and Identifying User Errors 173

Using the SXM Option

16(U) Is an abnormal termination message; an error was detected
which stopped the compilation before it could be completed;

The severity level is 16.

lisn) gives the internal sequence number of the statement in which the error
occurred, if the internal sequence number can be determined.

'message-text' explains the condition that was detected.

You can use the SXM compiler option to improve the readability of the MAP and
XREF listing output at a terminal. If SXM is specified, the MAP and XREF
output is formatted to 72-character width.

Using the MAP and XREF Options

The MAP and XREF compiler options are useful in fixing compile-time and
execution-time errors.

A storage map and a cross-reference dictionary show the use made of each
variable, statement function, subprogram, or intrinsic function within a program;
this can help you figure out obscure syntax or logic errors that aren't immediately
apparent from the source listing.

A cross-reference dictionary shows the names and statement labels in the source
program, together with the internal statement numbers in which they appear. The
cross-reference dictionary can also be of great assistance during the debugging of
execution errors.

If SXM is also in effect, MAP and XREF listing output at a terminal will be
formatted to 72-character width.

You can use the storage map and cross-reference dictionary to cross-check for
these common source program problems:

• Are all variables defined as you expected?

• Are variables misspelled?

If you've declared all variables, then check the following:

1. Unreferenced variables

2. Variables referenced in only one place

• Are all referenced variables set? (Except for variables in common, parameters,
initialized variables, etc.)

• Are one or more variables unexpectedly equivalenced?

174 VSFORTRAN Programming Guide

• Are there unreferenced labels? (If there are, you may have entered an
incorrect label number.)

• Have you accidentally redefined one of the standard library functions? (For
example, through a statement function definition.)

• Are the types and lengths of arguments correct across subroutine calls? (You'll
need both listings for this.)

• Have you inadvertently altered a variable passed to the main entry of a
subroutine? (For example, at a subordinate entry point?)

Source Program Map--MAP Option

The following paragraphs describe each area of a storage map, such as that shown
in Figure 33 on page 176.

The first line of a storage map gives the name and size of the source program; the
size is given in hexadecimal format.

Chapter 8. Compiling Your Program and Identifying User Errors 175

STORAGE .MAP

TAG: SET(S)
ASSIGNED (G)
IN COMMON(C)

REFERENCED (F)
INITIAL VALUE (I)
SUBPROGRAM (X)

USED AS ARGUMENT(A) EQUIVALENCED (E)
NAMED CONSTANT (K)
STATEMENT FUNCTION (T)

PROGRAM NAME: MAIN. SIZE OF PROGRAM: 608 HEX BYTES.

NAME MODE TAG ADDR. NAME MODE TAG ADDR.

A1 R*4 SFA 000260 A2 R*4 FI 000264
A3 R*4 F 000268 CHAR15 CHAR FAI 0002D4
CXSUB FX 0002FO C32 C*32 FCEA OOOOOC
C8A C*8 FCE 00002C C8B C*8 FCE 000001
C8V C*8 I UNREFD FLOAT R*4 X UNREFD
I 1*4 SF 000258 12 1*4 CE UNREFD
J 1*4 SFAG 00025C LI L*1 FCE 000000
PI R*8 FK 0001D8 R4A R*4 FCE 000000
R8A R*8 FCEA 000004 R8V R*8 SFA 000250
R8VNU R*8 UNREFD VFEE# FX 0002F4
VFEIM# FX 0002FC VFEP# FX 0002F8
VFFXF# FX 000300 VFIXF# FX 000304
VFWSF# FX 000308 VSERH# FX 00030C

COMMON INFORMATION

NAME: COM1. SIZE: 28C HEX BYTES. (E) - EQUIVALENCED

NAME MODE DISPL. NAME MODE DISPL.

R8A(E) R*8 000004 C32(E) C*32 OOOOOC
R4A(E) R*4 000000 C8A(E) C*8 00002C

NAME: COM2. SIZE: 9 HEX BYTES. (E) - EQUIVALENCED

NAME MODE DISPL. NAME MODE DISPL.

I2(E) 1*4 FFFFF8 L 1 (E) L*1 000000
C8B(E) C*8 000001

LABEL INFORMATION

LABEL DEFINED ADDR. LABEL DEFINED ADDR.

100 23 00045A 111 13 0000C8
200 26 000496 300 28 0004B2

Figure 33. Example of a Storage Map-MAP Option

176 VS FORTRAN Programming Guide

NAME Column

MODE Column

TAG Column

The first column is headed NAME-it shows the name of each variable, statement
function, subprogram, or iIriplicit function in the program.

The second column is headed MODE-it gives the type and (except for character
items) length of each name, in the format:

type*length

where the type can be:

C for complex

CHAR for character (length not displayed)

I for integer

L for logical

R for real or double precision

The third column is headed TAG-it displays use codes for each name and
variable. The use codes are:

A for a variable used as an actual argtunent in a parameter list, including
variables used as arguments to calls that do not appear explicitly in the
source but· are generated by the compiler; for example, character
manipulation functions and 110 statements.

C for a variable in a common block.

E for a variable in an equivalenced block.

F for a variable whose value was referred to during some operation.

G for a variable referenced in an ASSIGN statement.

I for a variable specified with an initial value.

K for a named constant.

S for a variable whose value was set during some operation.

T for a statement function.

X for an external function.

Chapter 8. Compiling Your Program and Identifying User Errors 177

Address Column

The fourth column is headed ADDR-it gives the relative address assigned to a
name.

Note that, for unreferenced variables, or for intrinsic functions that are expanded
inline, this column contains the letters UNREFD instead of a relative address.

Common Block Maps-MAP Option

If your source program contains COMMON statements, you'll also get a storage
map for each common block.

The map for a common block contains much the same kind of inforniation as fOr
the main program. The DISPL column shows the displacement from the beginning
of the common block.

Any equivalenced common variable is listed with its name followed by (E); its
displacement (offset) from the beginning of the block is also given.

Statement Label Map--MAP Option

The MAP option also gives you a statement label map which is a table of statement
numbers used in the program. The label map shows the following forms of
statement numbers:

• Source statement labels-as entered

• FORMAT statement labels-as entered

It also gives you the internal sequence number (ISN) for the statement in which the
label is defined and the address assigned to the label.

Source Program Cross-Reference Dictionary-XREF Option

Figure 34 on page 179 shows a cross-reference listing of the XREF option.

Data Item Dictionary-XREF Option

The symbols used in the TAG column are defined at the top of the cross-reference
dictionary.

From left to right, the subsequent columns give you the following information:

NAME Column: Names are listed in alphabetic order.

MODE Column: Each name is listed in the same format as for the MAP option
described above.

178 VS FORTRAN Programming Guide

SYMBOL CROSS-REFERENCE DICTIONARY

PROGRAM NAME: MAIN.

TAG: ARRAY (A)
COMMON (C)
PROMOTED(P)
PADDED(Q)
ASSIGNED(S)

DUMMY ARGUMENT(D)
EQUIVALENCED (E)
GENERIC NAME (G)
INITIAL VALUE(V)
DYNAMIC COMMON(Y)

STATEMENT FUNCTION (F)
INTRINSIC FUNCTION(I)
NAMED CONSTANT(K)
EXPLICITLY TYPED(T)
EXTERNAL SUBPROGRAM (X)

NAME MODE TAG DECLARED REFERENCES

A1 R*4 17 1S 24 26
A2 R*4 V 14 17 19
CHAR14 CHAR VT 7 15 26
CXSUB X 24
C32 C*32 ACET 4 S 26
CSA c*s CT 3 11
CSB c*s CT 3 12
CSV c*s VT 3 27
FLOAT R*4 I 22
I 1*4 20 22 22
12 1*4 ACE 9 UNREFERENCED
J 1*4 S 16 26
L1 L*1 CET 5 9 12 21
PI R*S KT 1 2 24
R4A R*4 ACE S 11
RSA R*S ACET 6 S 17 22 25 26
RSV R*S T 6 22 22 24
RSVNU R*S T 6 UNREFERENCED

VARIABLES REFERENCED BUT NOT SET (*possibly set as argument)

C32 RSA

LABEL CROSS-REFERENCE DICTIONARY

ENTRY(N)

TAG: FORMAT (F) OBJECT OF BRANCH(B) USED AS ARGUMENT(A)
NON-EXECUTABLE(N) USED IN ASSIGN STATEMENT(S)

LABEL

100
111
200
300

TAG DEmNED REFERENCES

NFS
B
AB

23
13
26
2S

20
16
1S
24

19

Figure 34. Example of a Cross-Reference Dictionary-XREF Option

Chapter 8. Compiling Your Program and Identifying User Errors 179

TAG Columll: The type for each name shows its usage, which can be:

A an array

C an item in common

D a dummy argument

E an equivalenced item

F a statement function

G a generic name

I an intrinsic function

K a named constant

N an entry name

P a promoted item

Q a padded item

S a variable referenced in an ASSIGN statement

T an item defined in an explicit type statement

V an initial value specified

X an external subprogram

Y an item in a dyn~mic common

DEC~ CollUIIII: The DECLARED colurim gives the internal sequence
number wh~re the data item is defined.

REFER8NCEY Column: The REFERENCES column gives the internal sequence
numl>er(s) of each st~tement in the source prQgram where the data item is
referenced.

If there are no references within the program, this column contains the word
UNREFERENCED.

A listing of variables referenced but not initialized follows the normal variable
cross-reference listing.

180 VS FORTRAN Programming Guide

Statement Label Dictionary-XREF Option

In the statement label dictionary, the following columns are defined:

LABEL Column: Statement labels are listed in ascending order.

TA G Column: Each LABEL is listed by its status, which can be:

A used as an argument

B an object of a branch

F label for a FORMAT statement

N label for a nonexecutable statement

S label used in an ASSIGN statement

If a label is used in more than one way, all tags that apply are printed.

DEFINED Column: This column displays the internal sequence number (ISN) of
the statement in which the label is defined.

REFERENCES Column: This column displays the internal sequence number (ISN)
of all statements in which there are references to the label.

If there are no program references to the label, the word UNREFERENCED is
printed.

End of Compllation Message

The last entry of the compiler output listing is the informative message:

MAINEND OF COMPILATION n ******

where MAIN is the program name and n is the number identifying this program's
sequence in a batch compilation.

Using the Terminal Output Display

Through the TRMFLG option, you can present a source statement and its
diagnostic together on your terminal. Figure 35 on page 182 shows output
generated by the TRMFLG option.

Chapter 8. Compiling Your Program and Identifying User Errors 181

VS FORTRAN COMPILER ENTERED. 09:04:07

ISN 25: RSA = 1.0002 + R8A(1)
NON-SUBSCRIPTED ARRAY NAME APPEARS AS LEFT-OF-EQUAL SIGN
VARIABLE. SPECIFY A SUBSCRIPTED ARRAY NAME OR A VARIABLE
NAME.

VARIABLE "R8A" IN COMMON "COM1" IS INEFFICIENTLY ALIGNED.
VARIABLES SHOULD BE ALIGNED ON APPROPRIATE BYT~ BOUNDARIES.

VARIABLE "C32" IN COMMON "COM1" IS INEFFICIENTLY ALIGNED.
VARIABLES SHOULD BE ALIGNED ON AP~ROPRIATE BYTE BOUNDARIES.

THE VARIABLE "12" WILL CAUSE COMMON. "COM2" TO EXTEND TO THE
LEFT BECAUSE OF ITS POSITION IN EQUIVALENCE STATEMENT AT
ISN "9". CHECK VARIABLE PLACEMENT.

VARIABLE "C8B" IN COMMON "COM2" IS INEFfICIENTLY ALIGNED.
VARIABLES SHOULD BE ALIGNED ON APPROPRIATE BYTE BOUNDARIES.

MAIN END OF COMPILATION 1 ******
VS FORTRAN COMPILER EXITED. 09:04:09

SEVERE ERROR MESSAGES ISSUED.
R(00012);

Figure 35. Example of Compile-rune Messages-TRMFLG Option

Note: See TERMINAL and TRMFLG options under "Using the Compiler
Options" on page 157 for descriptions of output each prese~.ts. If both are
specified, you get all the output described for both.

Using the Standard Language F1agger-FIPS Option

Through the FIPS option, you can help ensure that your program conforms to the
current FORTRAN standard-American National Standard Programming
Language fORTRAN, ANSI X3.9-1978.

182 VS FORTRAN Programming Guide

You can specify standard language flagging at either the full language level or the
subset language level:

FIPS(F)

FIPS(S)

NOFIPS

Requests the compiler to issue a message for any language element
not included in full American National Standard FORTRAN.

Requests the compiler to issue a message for any language element
not included in subset American National Standard FORTRAN.

Requests no flagging for nonstandard language elements.

FIPS messages are all in the same format as other diagnostic messages described
under "Diagnostic Message Listing-FLAG Option" on page 172, and are all at
the 4(W) (warning) level.

Object Module as Link-Edit Data Set

Your input to the linkage editor can be the object module in machine-language
format (which you request through the OBJECT compiler option), or as a
machine-language input data set (which you request through the DECK compiler
option).

You request the OBJECT option when you want either to load and execute your
program immediately, or to load the program and keep the load module for
execution at some later time. This enables you to combine the link-edit task with
the compilation task. You can then catalog and/or execute the load module
produced.

You use the DECK option when you want to catalog the object module and save it
for future link-edit runs. The deck produced is an 80-characte~, fixed-format card
deck. The deck is a copy of the object module, which consists of dictionaries, text,
and an end-of-module indicator.

Chapter 8. Compiling Your Program and Identifying User Errors 183

Chapter 9. Executing Your Program and Fixing Execution-Time Errors

Executing Your Program

When you execute the load module (or phase), you can either execute it directly as
output from the link-edit (or loader) step, or specify that it be called from a library
of load modules.

When you execute a load module, you may need many different files. For
information about these files, see the appropriate chapter (11 through 14) that tells
about considerations for the operating system at your installation. In particular, see
"MVS/XA Considerations" on page 311 for information about execution under
MVS/XA.

Reentrant vs. Nonreentrant Programs

Reentrant Programs

Nonreentrant Programs

With Release 4, you have the option of compiling your program in a reentrant or
nonreentrant fashion. This decision has many implications on compiler
performance, the code generated, the link-editing, and the actual running of your
program.

A reentrant program has several characteristics:

• It must not store any data within its range, but can use a remote work area.

• It cannot be linked with a nonreentrant program and the combination
considered reentrant.

• It is sharable among two or more users.

• It is not location sensitive.

A nonreentrant program has the following characteristics:

• It may store within its range, and may also use a remote work area.

• It may be linked with another nonreentrant program.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 185

• It is not sharable (each user must have a copy).

• It may be location sensitive.

Considerations for Using Reentrant Programs

You can use reentrant code to get the advantages of sharing code, storage relief,
and performance improvement. You need not have a personal copy to run a
program, but may share a program with other users. The more users sharing a
program, the less storage is used. This is because with one shared copy, the same
storage is used by multiple users, so less paging to auxiliary storage takes place.
This reduces the amount of time needed to access a program.

There are some disadvantages to using reentrant code. They are:

• Space to store a reentrant program may not be available.

• The link pack area (LP A) or discontiguous shared segment (DCSS) space may
not be available.

• Small programs get no observable advantage.

• To install a module in a link pack area or a DCSS, you must reload (IPL) your
operating system.

The general procedure for implementing a program that runs reentrant code
generated by the VS FORTRAN compiler is as follows:

ForVM:

Note: The first four steps in the list below are generally done by a system
programmer; the remaining steps can be done by an application programmer, but
steps 7 and 8 may require a privileged class E user.

1. Update and reassemble the System Name Table.

2. Reserve storage for the shared segment.

3. Generate and load an updated nucleus.

4. ReIPL VM/SP.

5. Compile your program successfully with the RENT compiler option.

6. Use IFYVSFST to separate your compiler object file into a reentrant part and
a nonreentrant part.

7. Load reentrant part.

8. Issue a "SA VESYS reentrant-part-name" command.

9. Run your program, which involves adding any other needed routines, the
desired library routines, and file definition statements, and starting up.

186 VS FORTRAN Programming Guide

ForMVS:

Note: The first and fourth steps in the list below are generally done by a system
programmer; the remaining steps can be done by an application programmer.

1. Add entries to a SYS1.PARMLm member (IEALPA09, for example) to
indicate the library and program name(s) to load at IPL time.

2. Compile your program successfully with the RENT compiler option.

3. Use IFYVSFST to separate your compiler object file into a reentrant part and
a nonreentrant part.

4. Add the reentrant part(s) to the operating system. This involves adding the
modules to the previously indicated load module library. MVS requires a reIPL
operation to make the modules load into the shared LP A.

5. Run your program, which involves adding any other needed routines and the
desired'library routines, job control statements, and starting up.

Scenarios for using the RENT Compiler Option

OnCMS

The following scenario assumes that the shared segment space, RENTFT, is
allocated and available.

1. Compile your program with the RENT option:

FORTVS IFYSMPFT (RENT

2. Use the separation program to process the TEXT compiler output:

FI SYSIN DISK IFYSMPFT TEXT
FI SYSPRINT DISK IFYSMPFT TOOLLIST
FI SYSUT1 DISK SMPFT TEXT
FI SYSUT2 DISK RENTFT TEXT
FI SYSUT3 DISK IFYSMPFT TEMP
GLOBAL TXTLIB VFORTLIB CMSLIB
LOAD IFYVSFST IFYVSFIO (CLEAR
START * RENTFT
ERASE IFYSMPFT TEMP

3. Install the reentrant part in a sharable area:

LOAD RENTFT (CLEAR ORIGIN 400000
SAVESYS RENTFT

4. Run the program:

GLOBAL TXTLIB VLNKMLIB VFORTLIB CMSLIB
LOAD SMPFT (CLEAR NOAUTO
START

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 187

OnMVS

1. Compile your program with the RENT option:

II EXEC PGM=FORTVS, PARM= , RENT'

IISYSLIN DD DSN=&TEMP,DISP=(NEW,PASS), •..

2. Use the separation program to process the object output:

II EXEC PGM=IFYVSFST,PARM='RENTFT'
IISTEPLIB DD DSN=SYS1.VFORTLIB,DISP=SHR
IISYSPRINT DD SYSOUT=A
IISYSUT1 DD DSN=&NRENT,DISP=(NEW,PASS), ...
IISYSUT2 DD DSN=&RENTP,DISP=(NEW,PASS), ..•
IISYSUT3 DD DSN=&VTEMP~DISP=(NEW,DELETE), ...

3. Install the reentrant part in a sharable area:

IILKEDR EXEC PGM=IEWL,PARM= 'RENT,PRUS,XREF,LET ,

IISYSLMOD DD DSN=SYS1.TESTLIB,DISP=OLD
IISYSLIN DD DSN=&RENTP,DISP=(OLD,PASS)

4. Create SYS1.P ARMLm member IEALP AFT with entry:

SYS1.TESTLIB RENTFT

5. ReIPL MVS to make RENTFT available:

r OO,CLPA,MLPA=FT

6. Install the nonreentrant part in a "permanent" library:

IILKEDN EXEC PGM=IEWL,PARM='XREF,LET,LIST'

IISYSLIB DD DSN=SYS1.VFORTLIB,DISP=SHR (if load mode)

or

IISYSLIB
II

DD DSN=SYS1.VLNKMLIB,DISP=SHR
DD DSN=SYS1.VFORTLIB,DISP=SHR

(if link mode)

/ISYSLMOD DD DSN=mylib(myprog),DISP=OLD, ...
/ISYSLIN DD DSN=&NRENT,DISP=(OLD,PASS)

7. Run the program (any numper of users running concurrently):

188 VS FORTRAN Programming Guide

IIGO EXEC PGM=myprog
IlsTEPLIB DD DSN=mylib,DISP=SHR
II DD DSN=SYS1.VFORTLIB,DISP=SHR (if load mode used)
IIFT06F001 DD SYSOUT=A
IIFT05F001 DD *

data
1*
IIFT07F001 DD SYSOUT=B

VS FORTRAN Separation Tool (for Both VM and MVS)

The separation tool is a VS FORTRAN library utility to aid in separating the
nonreentrant portion of the compiler object output from the reentrant portion if
you have compiled with the RENT compiler option.

If you are running on VM, see "Using the VS FORTRAN Separation Tool" on
page 235 or, if you are running on MVS, see "Using the VS FORTRAN
Separation Tool" on page 290 for more information.

Fixing Execution-Time Errors

Some errors are detected by the compiler and an error message is issued following
compilation. Others, however, will not be apparent until you actually run your
program. As you test your program, there are several ways in which you might
become aware of a possible problem; for example:

Prolonged execution time (loops·and waits)
If your program appears to be taking an unusually long time to complete its
execution, it may be caught in a loop or wait. Sometimes repetitious output
(or the absence of expected output) will provide an early clue. A loop in this
sense is a series of instructions continuously repeated because erroneous
circular program logic allows for no exit.

Incorrect execution results
Your program may run to its conclusion without interruption, but
examination of its output may show that something is wrong. Even though
you didn't get any error messages, the program is not producing the expected
results.

Premature termination of your program
Either the VS FORTRAN run-time library or the operating system may
detect an error condition while your program is running. In either case, you
will always get an error message from the VS FORTRAN library, identified
by the prefix IFY, and you may get messages from the operating system also.

VS FORTRAN has a number of features that help you find errors. One feature,
VS FORTRAN Interactive Debug, is described in Chapter 16, "Using VS
FORTRAN Interactive Debug with VS FORTRAN" on page 377 ,and in VS
FORTRAN Interactive Debug Guide and Reference. Other debugging aids described
in the following sections are:

• Execution-time messages

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 189

• Extended error handling

• Using the execution-time options

• Static debug statements

• Object module listing

• Formatted dumps

Execution-Time Messages

Execution-time messages are issued by the execution-time library. There are three
types of messages issued:

Library Diagnostic Messages

Library Diagnostic Messages--contain information about errors occurring when
the library subroutines are executed-for example, input/output or
mathematical subroutine errors.

Program Interrupt Messages--contain information about errors that occur
when system rules are violated.

Operator Messages--communicate with the operator when program execution
makes it necessary (for example, when a PAUSE statement is executed).

All VS FORTRAN library diagnostic messages are documented in VS FORTRAN
Language and Library Reference, and are in the following format:

IFYnnnI mmmmm 'message text'

where:

IFY

non

I

mmmmm

'message-text'

is the message prefix identifying all VS FORTRAN library
messages.

is the unique number identifying this message.

is the character that represents an informational message.

are the five rightmost characters of the library module name
that originated the message.

explains the execution-time condition that was detected.

Except for operator and informational messages, all VS FORTRAN Library
messages are followed by additional information that identifies the name of the
last-executed FORTRAN program and the location of the last-executed statement
in that program unit. The additional information is indicated in one of three
formats based on how the FORTRAN program unit was compiled:

190 VS FORTRAN Programming Guide

• Program unit compiled with NOSDUMP and NOTEST:

LAST EXECUTED FORTRAN STATEMENT IN PROGRAM name
(OFFSET 00000000) .

• Program unit compiled with TEST and NOSDUMP:

LAST EXECUTED FORTRAN STATEMENT IN PROGRAM name AT
SEQ. NO. SSSSSS (OFFSET 00000000).

• Program unit compiled with SDUMP or, for some errors, GOSTMT:

LAST EXECUTED FORTRAN STATEMENT IN PROGRAM name AT
ISN iiiiii (OFFSEST 00000000).

where:

name

00000000

ssssss

iiiiii

is the name of the failing program unit (reentrant CSECT name if
compiled with RENT)

is the hexadecimal offset from the beginning of the program to the
last-executed statement.

is the sequence number of source statement in failing program unit.

is the compiler-generated internal sequence number (ISN).

This additional information is invaluable in determining the source of the error. It
should be noted, however, that if the last executed FORTRAN program unit called
an assembler routine which invoked the VS FORTRAN Library routine that caused
the error, the source of the error may be the user-coded assembler routine.

The additional information identifying the source of the error is not produced if no
VS FORTRAN program units are encountered in the active chain of program units
that caused issuance of the error message. For further information, see "Extended
Error Handling" on page 197.

Using the Optional Traceback Map

Whenever you get a library diagnostic message, you can, optionally, get a traceback
map. Your organization may have set this as the default whenever a library
message is generated. If not, you can request a traceback map for any message,
using the CALL ERRSET subroutine.

You can also get a traceback map at any point in your source program by using the
CALL ERRTRA subroutine.

For more information on these subroutines, see "Controlled Extended Error
Handling-CALL Statements" on page 198.

To cause ISNs to appear in a traceback map, you must have compiled with the
GOSTMT or the SDUMP compiler option (see "Using the Compiler Options" on
page 157).

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 191

The traceback map is a tool to help you find where an error occurred in your
program. The information in the map starts from the most recent instruction
executed, and ends with the origin of the program.

The sample traceback map in Figure 36 lists the names of called routines, internal
sequence numbers (ISNs) within routines, and the arguments received by each
subroutine.

TRACEBACK OF CALLING ROUTINES; MODULE ENTRY ADDRESS = 020000

SUBB (020830) CALLED BY SUBA (0205C8) AT ISN 4 AT OFFSET 0001C2.
ARGUMENT LIST AT 020760.

ARG. NO. ADDRESS INTEGER REAL
1 00020330: 0 O.OOOOOOE+OO
2 80020330: 0 O.OOOOOOE+OO

CHAR HEXADECIMAL
00000000
00000000

SUBA (0205C8) CALLED BY MAIN (020000) AT ISN 10 AT OFFSET 000442.
ARGUMENT LIST AT 0201E4.

ARG. NO. ADDRESS INTEGER REAL
1 00020330: 0 O.OOOOOOE+OO
2 80020330: 0 O.OOOOOOE+OO

CHAR HEXADECIMAL
00000000
00000000

MAIN (020000) CALLED BY OPERATING SYSTEM.

Figure 36. Sample Traceback Map

MODULE ENTRY ADDRESS = address
shows the entry point of the earliest routine entered.

routine (address)
lists the names of all routines entered in the current calling sequence with the
routine entry address. In Figure 36, the final routine that executed is SUBB,
which begins at hexadecimal address 00020830.

Names are shown with the last routine c~lled at the top and the first routine
called at the bottom of the listing.

CALLED BY routine (address)
CALLED BY OPERATING SYSTEM

lists the routine or program that called this routine. The starting address of
the calling routine follows the routine name. In Figure 36, SUBA, which
began at address 000205C8, called routine SUBB, which began at address
00020830. Calls to the main program from the operating system are
indicated by the CALLED BY OfERATING SYSTEM format.

AT ISNnnnn
lists the FORTRAN internal sequence number (ISN) of the calling statement
in the CALLED BY routine. ISN information is only available if a program
unit was compiled as explained under "Library Diagnostic Messages" on
page 190.

OFFSET (address)
lists the hexadecimal offset within the routine that made the call.

192 VS FORTRAN Programming Guide

ARGUMENT LIST AT (address)
shows the address of the argument list passed to the called routine or the
message, NO ARGUMENT PASSED TO SUBROUTINE.

ARG. NO. ADDRESS INTEGER REAL CHAR HEXADECIMAL
lists the arguments by number, address, and content. A maximum of 99
arguments can be displayed in a traceback map. The contents of the first
four bytes of each argument is displayed in four types of notation.

• integer

0

• real

O.OOOOOOE+OO

• character

'ecce'

• hexadecimal

00000000

The control program executes its own routine to recover from the error, and
displays the following message:

STANDARD CORRECTIVE ACTION TAKEN, EXECUTION CONTINUING

If your program uses its own error recovery routine, the word USER replaces
STANDARD in this message.

After the error recovery, execution continues.

The summary of errors printed at the end of the listing can help you determine how
many tin;les an error was encountered. If your source program contains many
input/ output statements, locating an error can become a formidable task. By
pinpointing the exact FORTRAN statement involved, the traceback map makes it
much easier for you to locate execution errors.

Traceback Map Procedlll'e: To use the traceback map for error detection:

1. Look at the message text in the first line of the IFY message. This text will
give you a clue to the type of error that caused the problem.

2. Find the last routine called by the program. It should be the first item under
the traceback heading.

3. Use the ISN, SEQ. NO. or OFFSET on the same line to locate the statement
within the CALLED BY routine in your source code.

4. Investigate the statement for proper use, and continue by analyzing the
arguments within the routine.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 193

Program Interrupt Messages

If the statement is still not found, go through this procedure again, using the next
oldest routine and so on, until the error is found.

The traceback map lists the internal sequence number (ISN) calling each routine.
For an example using ISNs, see Figure 31 on page 171. Using the ISN, you can
locate the source statement within the calling module.

During program execution, messages are generated whenever the program is
interrupted because of the following:

• Operation exception

• Privileged operation exception

• Execute exception

• Protection exception

• Addressing exception

• Specification exception

• Data exception

• Fixed-point-overflow exception

• Fixed-point-divide exception

• Decimal-overflow exception

• Decimal-divide exception

Exponent-overflow exception

• Exponent-underflow exception

• Significance exception

• Floating-point-divide exception

Program interrupt messages are written in the output data set. They guide you in
determining the cause of the error, indicating what system rule was violated.

The standard corrective action for each type of interrupt is described in VS
FORTRAN Language and Library Reference.

The program interrupt message from the VS FORTRAN library indicates the true
exception that caused the termination; however, the completion code from the
system always indicates that job termination is due to a specification or operation
exception.

194 VS FORTRAN Programming Guide

When a program interrupt occurs in a program unit that was compiled with the
SDUMP or TEST option, symbolic dumps of program data are automatically
provided for your use in determining the cause of the interrupt. F\or more
information on symbolic dumps, see "Requesting Symbolic Dumps-CALL
Statement" on page 211.

Exception codes themselves appear in the eighth digit of the PSW and indicate the
reason for the interruption. Their meanings are as follows:

Code Meaning

1 Operation exception, that is, the operation is not one that is defined to the
operating system.

2 Privileged-operation exception, that is, the processor encounters a privileged
instruction in the problem state.

3 Execute exception, that is, the subject instruction of EXECUTE is another
EXECUTE.

4 Protection exception, that is, an illegal reference is made to an area of
storage protected by a key.

5 Addressing exception, that is, a reference is made to a storage location
outside the range of storage available to the job.

6 Specification exception, for example, a unit of information does not begin
on its proper boundary.

7 Data exception, that is, the arithmetic sign or the digits in a number are
incorrect for the operation being performed.

8 Fixed-point-overflow exception, that is, a carry occurs out of the high-order
bit position in fixed-point arithmetic operations, or high-order significant
bits are lost during the algebraic left-shift operations.

9 Fixed-point-divide exception, that is, an attempt is made to divide by zero.

A Decimal-overflow exception, that is, one or more significant high-order
di jts are lost because the destination field in a decimal operation is too
small to contain the result.

B DecHnal-divide exception, that is, when in decimal division the divisor is
zero or the quotient exceeds the specified data field size.

C Expon~nt-ovedllJlw exception, that is, a floating-point arithmetic operation
produ~~es ~. positive :mmber matJ"!ematically too large to be contained in a
regist-.'!' (th.e mathematically large~t ~,~~_~nber that can be contained is 1663 or
appn:oximately 7.2 x 1()7S). Exponent-overflow generates the additional
message:

REGISTER CONTAlNED number

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 195

where number is the floating-point number in hexadecimal format. (When
extended-precision is involved, the message prints out the contents of two
registers.) A standard corrective action is taken and execution continues.

D Exponent-underflow exception, that is, a floating-point arithmetic operation
generates a number with a negative exponent mathematically too small to
be contained in a register (mathematically smaller than 16-65 or
approximately 5.4 x 10-79). Exponent-underflow also generates the
message:

REGISTER CONTAINED number

where number is the number generated. (When extended-precision is
involved, the message prints out the contents of two registers.) A standard
corrective action is taken and execution continues.

E Significance exception, that is, the result fraction in floating-point addition
or subtraction is zero.

F F1oating-point-divide exception, that is, an attempt is being made to divide
by zero in a floating-point operation. Floating-point divide also generates
the message:

Notes:

REGISTER CONTAINED number

(When extended-precision is in use, the message prints out the contents of
two registers.) A standard corrective action is taken and execution
continues.

1. Operation, protection, addressing, and data exceptions (codes 1, 4, 5, and 7)
ordinarily cause abnormal termination without any corresponding message.

2. Protection and addressing exceptions (codes 4 and 5) generate a message only if a
specification exception (code 6), or an operation exception (code 1), has also been
detected.

3. A data exception (code 7) generates a message only if a specification exception has
also been detected. When a message is generated for code 4, 5, or 7, the job will
terminate.

Requesting an Abnormal Termination Dump

How you request an abnormal termination dump depends on the system you're
using.

For system considerations when requesting a dump, see "Requesting an Abnormal
Termination Dump" on page 290 (MVS), or "Requesting an Abnormal
Termination Dump" on page 348 (VSE).

Information on interpreting dumps is found in the appropriate debugging guide, as
listed under "Preface" on page iii.

196 VS FORTRAN Programming Guide

Operator Messages

Operator messages are generated when your program executes a PAUSE or STOP
n statement. Operator messages are written on the system device specified for
operator communication, usually the console. The message can guide you in
determining how far your FORTRAN program has executed.

The operator message may take the following form:

yy n I 'message'

Character

yy

n

'message'

o

Meaning

message identification number assigned by the system.

string of 1 through 5 decimal digits you specified in the PAUSE or
STOP statement. For the STOP statement, this number is placed
in register 15.

character constant you specified in the PAUSE or STOP
statement.

printed when a PAUSE statement containing no characters is
executed. (Nothing is printed for a similar STOP statement.)

A PAUSE message causes program execution to halt pending operator response.
The format of the operator's response to the message depends on the system being
used.

A STOP message causes program termination.

Extended Error Handling

Extended error handling can be either by default or you can control it, using
predefined CALL statements.

Extended Error Handling By Default

Your installation has a default value preset in the error option table for the
following execution-time conditions associated with each error:

• The number of times an error can occur before the program is terminated.

• The maximum number of times an execution-time message is printed.

• Whether or not a traceback map is to be printed with the message.

• Whether or not a user (or installation) error exit·routine is to be called.

The actions of error handling are controlled by these settings in the error option
table. mM provides a standard set of option table entries; your system
administrator may have provided additional entries for your organization.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 197

Notes:

1. VS FORTRAN Interactive Debug causes the run-time library to ignore the above
settings, to specify its own error exit routine, to allow unlimited occurre.nces of
errors and messages, and to specify that no traceback map is to accompany any of
the messages.

2. If a program is being debugged with VS FORTRAN Interactive Debug and it
calls ERRSET to set a user exit routine, the program's user exit routine overrides
the Interactive Debug error exit routine.

The following actions take place when an error occurs:

1. The FORTRAN error monitor (ERRMON) receives control.

2. The error monitor prints the necessary diagnostic and informative messages:

A short message, along with an error identification number.

The data in error (or some other associated information) is printed as part
of the message text. For more information on execution-time messages,
see "Execution-Time Messages" on page 190.

The error count, telling you how many times each error occurred.

A traceback map (optional), tracing the subroutine flow back to the main
program, after each error occurrence.

3. Then the error monitor takes one of the following actions:

Terminates the job.

Returns control to the calling routine, which takes a standard corrective
action and then continues execution.

Calls a user-written closed subroutine, possibly to correct the data in error,
and then returns to the routine that detected the error, which then
continues execution.

ControHed Extended Error Handling-CALL Statements

To make changes to the option table dynamically at load module execution time,
you can use the predefined CALL subroutines, summarized here.

For each error condition detected, you have dynamic control over:

• The number of times the error is allowed to occur before program termination

• The maximum number of times each message may be printed

• Whether or not the traceback map is to be printed with the message

• Whether or not a user-written, error exit routine is called

198 VS FORTRAN Programming Guide,

The action that takes place is governed by information stored in your copy of the
error option table, which is present with your program as it executes. (The
permanent copy of the default option table resides in the VS FORTRAN library.)

The predefined CALL routines let you change the extended error handling
information in your copy of the option table, so that you get control that you
specify over load module errors during execution of your program:

• CALL ERRMON-executes the error monitor.

• CALL ERRTRA-executes the traceback routines. (See "Using the Optional
Traceback Map" on page 191.)

• CALL ERRSA V --copies an option table entry into an area accessible to your
program.

• CALL ERRSTR-stores an entry into the option table from your program.

• CALL ERRSET --changes up to 5 values associated with an entry in the option
table, including a user-exit address.

For detailed reference documentation about the error option table and the
predefined CALL routines, see VS FORTRAN Language and Library Reference.

Usage Notes for User-Controlled Error Handling:

1. The default settings of the error option table may be changed in the VS
FORTRAN library permanently by reassembling a macro and replacing the
table in the library. Also, entries may be added to the table for
installation-designated errors. If this has been done for your installation, your
system administrator has information about it.

2. When you set option table entries, allow no more than 255 occurrences of any
error; otherwise, infinite program looping can result.

3. If an error entry is set to allow no corrective action (neither standard nor
user-exit-provided), the entry must also allow only one occurrence of the error
before program termination.

4. Caution should be used when changing the values of any variables in the
common area while in a closed user error handling routine under optimization
levels of 1, 2, or 3. Certain control flow and variable usage information will
not be known to the optimizer, since the user error handling routine will be
called indirectly, not directly, when an error is encountered.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 199

For example:

COMMON /A/ RETCDE
EXTERNAL ERRSUB
INTEGER RETCDE
CALL ERRSET(215,0,-1,1,ERRSUB)
READ(5,*,END=100)I
IF (RETCDE) GO TO 100
WRITE(6,*)I
GOTO 1

100 STOP
END

In the above example, RETCDE may be changed in ERRSUB when ail invalid
data error is encountered in the READ statement; however, this fact is hidden
from the optimizer in the context of the program. Therefore, the optimizer
assumes that RETCDE will not be changed between the READ and the
GOTO 1 in the above example. It is kept in a register which causes an
incorrect result. If you specify IOSTAT in the READ statement, as follows:

READ (5, *,END=100,IOSTAT=RETCDE) I

the optimizer will be ableto optimize it correctly.

5. Under VSE at link-edit time, you must INCLUDE the library modules for the
predefined user error handling routines, if your program calls them.

Effects of VS FORTRAN Interactive Debug on Error Handling

If you are executing with VS FORTRAN Interactive Debug, error handling is
modified as follows:

• Unlimited error occurrences are allowed for all errors and error counts are not
maintained.

• Traceback maps are not produced for any error.

• The interactive debug error routine operates instead of the library error
monitor (ERRMON).

• If your program calls ERRSET to provide a user exit routine, that user exit
routine operates instead of the interactive debug error routine.

Using the Execution-Time Options

The following execution-time options are available: DEBUG, NODEBUG,
XUFLOW, and NOXUFLOW.

DEBUG and NODEBUG Execution-Time Options

If you want to use VS FORTRAN Interactive Debug (5668-903), you do so by
means of the execution-time option DEBUG. This option can be specified by CMS
and TSO users at execution time.

200 VS FORTRAN Programming Guide,

The options are:

DEBUG makes VS FORTRAN Interactive Debug available.

NODEBUG does not access VS FORTRAN Interactive Debug. This is the default.

For more information, see Chapter 16, "Using VS FORTRAN Interactive Debug
with VS FORTRAN" on page 377.

XUFLOW and NOXUFLOW Execution-Time Options

If you want to specify to VS FORTRAN that an exponent underflow is not to
cause a program interrupt, you can do so with the execution-time option
NOXUFLOW. There are two options which control this:

XUFLOW

NOXUFLOW

allows an exponent underflow to cause a program interrupt,
followed by a message from VS FORTRAN, followed by
standard fixup. This is the default.

suppresses the program interrupt caused by an exponent
underflow. The hardware provides the fixup.

For more information, see "Specifying Execution-Time Options under CMS" on
page 250, "Specifying Execution-Time Options" on page 288, "Specifying
Execution-Time Options" on page 327, or "Specifying Execution-Time Options"
onpage 344.

mM Extension

Static Debug Statements

The debug statements help you locate errors in your source program that are not
diagnosed by the library. The debug statements, when used, must be the first
statements in your program. If debug statements are used, the RENT compiler
option is ignored.

If you use a debug packet in your source program and compile it using
OPTIMIZE(1), OPTIMIZE(2), or OPTIMIZE(3), the compiler changes the
optimization parameter to NOOPTIMIZE.

Figure 37 on page 202 shows how you can use VS FORTRAN debug statements
to obtain the information you specify for your use in determining the cause of an
error.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 201

Program Code with Debug Statements:

DEBUG SUBCHK(ARRAYl), TRACE, INIT(ARRAYl)
AT 10
TRACE ON
(procedural code for debugging)

AT 40
TRACE OFF
DISPLAY I, J, K, L, M, N, ARRAYI
END DEBUG

10 DO... (program tracing begins here; procedural
debugging code executed)

30 CONTINUE
40 WRITE ... (program tracing ends here; values

of I, J, K, L, M, N, and ARRAYI
are displayed)

How Each Debqg Statement Is Used:

The DEBUG statement precedes the first debug packet and specifies the
following:

• SUBCHK(ARRA Yl) requests validity checking for the values of
ARRA Yl subscripts.

• TRACE specifies that tracing is to be allowed within debug packets.

• INIT(ARRA Yl) specifies that ARRA Yl is to be displayed when values
within it change.

AT 10 begins the first debug packet.

TRACE ON turns on program tracing at statement number 10.

(Procedural debugging code contains valid FORTRAN statements to aid in
debugging; for example, to initialize variables.)

AT 40 ends the first debug packet and begins the second.

TRACE OFF turns off program tracing at statement number 40.

The DISPLAY statement writes the values of I, J, K, L, M, N, and ARRAYI.

END DEBUG ends the second (and last) debug packet.

Figure 37. Using Static Debug Statements

202 VS FORTRAN Programming Guide

In debug packets you can use the following statements:

DEBUG

AT

specifies the debug options you want performed, which can be:

• Check the validity of array subscripts.

• Trace the order of execution of all or part of the program.

• Display array or variable values each time they change during program
execution.

specifies the statement number before which the debug packet is to be
executed.

The AT statement begins each new debug packet in the program and ends
the previous one.

An IF block must be contained within a single AT packet. If it is not
contained within a single AT packet, it is not diagnosed, and unpredictable
results can occur.

TRACE ON I TRACE OFF
begin or end program execution tracing.

DISPLAY
writes a list of variable or array values that you specify.

The output from the DISPLAY statement is as follows:

The first line written is the name of the NAMELIST created by the compiler
for the DISPLAY statement preceded by the ampersand (&) character.

&NM.Lnn

where nn is the 2-digit decimal value assigned to the DISPLAY statement.
This value begins at 00 for the first DISPLAY statement in the source
program and increases by 1 for each subsequent DISPLAY statement in the
order found in the DISPLAY statements. As many as 100 displays are valid
for any toutirte. If there are more than 1 00 DISPLAY statements, only the
last 100 valid displays are processed.

The name is followed by the DISPLAY list, in NAMELIST format. The
output is terminated with the line:

&END

END DEBUG
ends the last debug packet specified.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 203

In addition to these specific debug statements (valid only in a debug packet), you
can also use most FORTRAN procedural statements to gather information about
what's happening during execution .

....... __________ End of mM Extension __________ _

Object Module Listing-LIST Option

You request an object module listing by specifying the LIST option. The object
module listing shows you (in pseudo-assembler format) the machine code the
compiler generated from your source statements. A careful examination of this can
often give you an idea of what's wrong with your program soUrce.

The object module listing i~ especially useful when you're compiling and executing
using one of the OPTIMIZE compiler options. Further details are contained in
Chapter 7, "Optimizing Your Program" on page 139.

A sample object module listing is shown in Figure 38 on page 206. (Some of the
information in the listing has been realigned in order to fit the dimensions of the
page.)

If the SDUMP or TEST option has been specified, in addition to the LIST option,
ISN numbers are printed on the left-hand side of the pseudo-assembler listing.

Each line of the listing is formatted (from left to right) as follows:

• The letters ISN followed by the internal sequepce number. This shows the
relationship between the FORTRAN statement and the machine code which is
generated.

• A 6- or 8-hexadecimal digit shows the relative address of the instruction or
data item.

• The next area shows the storage representation of the instruction or initialized
data item, in hexadecimal format.

• The next area (not always present) shows names and statement labels, which
may be either those appearing in the source program or those generated by the
compiler (compiler-generated labels are in the form nn nnn nnnnnnn).

• The next area shows the pseudo-assembler language format for each statement.

• The last area shows the source program items referred to by the instruction,
such as entry points of subprograms, variable names, or other statement labels.

The ()bject module listing, when the reentrant feature has not been invoked,
contains the following sections:

1. Entry code

2. Entry table

3. Program information block

204 VS FORTRAN Programming Guide

4. Compiler properties table

5. Format statements

6. lAD work area

7. Save area

8. Register 12 address constant

9. Temporary storage for FIX/FLOAT or NOT

10. Variables in common areas

11. Constants

12. Arithmetic and logical variables

13. Character variables

14. Address constants for assigned FORMAT statements, common areas, and
external references

15. Program code

16. Prologue code

17. Address constants for the prologue, the save area, branch tables, and parameter
lists

18. Temporary storage areas and generated constants

19. Address constants for block labels

20. Program code table

21. Symbol dictionary

22. Program information block

23. Entry table list

24. Compiler properties table

Figure 38 on page 206 shows each of the numbered items above.

The object module listing with the reentrant feature contains the same sections as
those shown in Figure 38 on page 206; in addition, however, one table can appear
in the reentrant listing that does not for nonreentrant: ADCONS (address
constants) FOR REENTRANT RELOCATION.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 205

ENTRY CODE
000000 47FO F020 MAIN BC 15,32(0,15)
000004 17 DC XL1 '17'
000005 D4C1C9D54040404040 DC CL9'MAIN
OOOOOE FBF44BF1FOF9 DC CL6'B4.109'
000014 FOFB4BF2F94BF3F6 DC CLB'OB.29.36'
00001C DS A(PIB)
000020 90EC DOOe STM 14,12,12 (13)
000024 9B23 F034 LM 2,3,52(15)
00002B 5030 DOOB ST 3,B(,13)
00002C 50DO 3004 ST 13,4(,3)
000030 07F2 BR 2
000034 DS A (PROLOG).
00003B DS A (SAVEAREA)

ENTRY TABLE
00003C DS 9F

PROGRAM INFORMATION BLOCK
000060 DS 22F

COMPILER PROPERTIES TABLE
OOOOCO DS 2F

FORMAT STATEMENTS
OOOOCB 021AOCF1D6E4E3D7 111 DC CLB' 10UTP'
OOOODO E4E340C6D6D94030 DC CLB'UT FOR
OOOODB 000E060EOAOA070C DC CLB'
OOOOEO OF0704020A14101C DC CLB'
OOOOEB 22 DC CL1 '

,

lAD WORK AREA
OOOOEC DS 4F

SAVE AREA
OOOOFC DS 1BF

REGISTER 12 ADCON
000144 DS A(REG12)

lAD WORK AREA
00014B DS 25F

TEMPORARY FOR FIX/FLOAT OR NOT
0001BO 0000000000000000 DC XLB'OOOOOOOOOOOOOOOO'
0001BB 4EOOOOOOOOOOOOOO DC XLB'4EOOOOOOOOOOOOOO'

VARIABLES IN 'COM1 ' COMMON.
000000 NO INITIAL DATA R4A DS 11F (ARRAY)
000004 NO INITIAL DATA RBA DS 7D (ARRAY)
OOOOOC NO INITIAL DATA C32 PS BOD (ARRAY)
00002C NO INITIAL DATA CBA DS F (REAL)
000030 NO INITIAL DATA DS F (IMAG)

Figure 38 (Part 1 of 4). Object Module Listing Example-LIST Compiler Option

206 VS FORTRAN Programming Guide

VARIABLES IN 'COM2 ' COMMON.
FFFFF8 NO INITIAL DATA 12 DS 3F (ARRAY)
000000 NO INITIAL DATA L1 DS X
000001 NO INITIAL DATA C8B DS F (REAL)
000005 NO INITIAL DATA DS F (IMAG)

CONSTANTS
0001C8 4F08000000000000 DC XL8'4F08000000000000'
0001DO 4EOOOOO080000000 DC XL8'4EOOOOO080000000'
0001D8 413243F6A791A9E1 PI DC XL8'413243F6A791A9E1'
0001EO 4130000000000000 DC XL8'4130000000000000'

ARITHMETIC AND LOGICAL VARIABLES
000250 NO INITIAL DATA R8V DS D
000258 NO INITIAL DATA I DS F
00025C NO INITIAL DATA J DS F
000260 NO INITIAL DATA A1 DS F
000264 413243F4 A2 DC XL4'413243F4'
000268 NO INITIAL DATA A3 DS F

CHARACTER VARIABLES
0002D4 E2C1D4D7D3C540D7 CHAR15 DC CL8'SAMPLE P'
0002DC D9D6C7D9C1D440 DC CL7'ROGRAM '

ADCONS FOR ASSIGNED FORMAT STATEMENTS
0002E4 000000C8 DC AL4(X'000000C8')

ADCONS FOR COMMONS
0002E8 FFFFFF6C DC AL4(X'FFFFFF6C') COM1
0002EC FFFFFFF4 DC AL4(X'FFFFFFF4') COM2

ADCONS FOR EXTERNAL REFERENCES
0002FO 00000000 DC AL4(00000000) CXSUB (SUBR)
0002F4 00000000 DC AL4(00000000) VFEE# (SUBR)
0002F8 00000000 DC AL4(00000000) VFEP# (SUBR)
0002FC 00000000 DC AL4(00000000) VFEIM# (SUBR)
000300 00000000 DC AL4(00000000) VFFXF,# (SUBR)
000304 00000000 DC AL4(00000000) VFIXF# (SUBR)
000308 00000000 DC AL4(00000000) VFWSF# (SUBR)
00030C 00000000 DC AL4(00000000) VSERH# (SUBR)

Figure 38 (Part 2 of 4). Object Module Listing Example-LIST Compiler Option

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 207

PROGRAM CODE
ISN 16 000358 5800 D1E8 01 000 00001 L 0,488(0,13) 111

00035C 5000 D160 ST 0,352(0,13) J
ISN 17 000360 5870 D1EC L 7,492(0,13)

000364 6800 70AO LD 0,160(0,7) R8A
000368 6000 D214 STD 0,532(0,13) .SOO
00036C 6800 DOCC LD 0,204(0,13)
000370 7800 D16C LE 0,364(0,13) A3
000374 6000 D21C STD 0,540(0,13) .S02

PROLOGUE CODE
0004C4 1 B 11 SR 1 , 1
0004C6 18D3 LR 13,3
0004C8 58FO 3200 L 15,512(0,3) VFEIM#
0004CC 05EF BALR 14,15
0004CE 58FO D234 L 15,564(0,13)
0004D2 07FF BCR 15,15

ADCON FOR PROLOGUE
000034 000004C4 DC XL4'000004C4'

ADCON FOR SAVE AREA
000038 OOOOOOFC DC XL4'000000FC'

ADCONS FOR BRANCH TABLES
0001CO 0000048C DC XL4'0000048C'
0001C4 000004B2 DC XL4'000004B2'

ADCONS FOR PARAMETER LISTS
00026C 00000250 DC AL4(X'00000250') R8V
000270 00000260 DC AL4(X'00000260') A1
000274 800001D8 DC AL4(X'800001D8') 413243F6A791A9E1
000278 80000228 DC

TEMPORARIES AND GENERATED CONSTANTS
000310 00000000 DC
000314 00000000 DC
000318 00000000 DC

AL4(X'80000228')

XL4'00000000'
XL4'00000000'
XL4'00000000'

Figure 38 (Part 3 of 4). Object Module Listing Example-LIST Compiler Option

208 VS FORTRAN Programming Guide

25

ADCONS FOR B BLOCK LABELS
000330 00000358
000334 0000039E
000338 000003AC

PROGRAM CODE TABLE
0004D4 OF
0004D5 B4
0004D6 C018
0004D8 B7
0004D9 B7

SYMBOL DICTIONARY
0004FO 40407BE2ESD4E5E2
0004FS 40404040404040C9
000500 00000258
000504 S0050004

PROGRAM INFORMATION BLOCK
000060 7BD7C9C2E5FOF17B
000068 0060
00006A 8000

ENTRY TABLE LIST
00003C 00000000
000040 D4C1C9D540404040
000048 000004C4

COMPILER PROPERTIES TABLE
OOOOCO 1000000000000000

DC
DC
DC

DC
DC
DC
DC
DC

DC
DC
DC
DC

DC
DC
DC

DC
DC
DC

DC

XL4'00000358'
XL4'0000039E'
XL4'000003AC'

XL1 'OF'
XL1 'B4'
XL2'C018'
XL1 'B7'
XL1 'B7'

CLS' #SYMVS'
CLS' I'
XL4'0000025S'
XL4'80050004'

CL8'#PIBTAB#'
XL2'0060'
XL2'8000'

XL4'00000000'
CLS'MAIN
XL4'000004C4'

XLS'1000000000000000'

Figure 38 (Part 4 of 4). Object Module Listing Example-LIST Compiler Option

Formatted Dumps

You can request various dumps during program execution using the VS FORTRAN
dump subprograms: PDUMP, DUMP, CPDUMP, CDUMP, and SDUMP.

Under VSE only, when you're requesting one of these dumps, you must also
specify its library name with a linkage editor INCLUDE statement. Figure 63 on
page 348 contains the names to specify.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 209

Requesting Selective Dumps-CALL Statement

Four VS FORTRAN predefined CALL routines let you request a selective dump
of storage during program execution:

• CALL PDUMP-dumps the requested areas and allows processing to continue

• CALL DUMP-dumps the requested areas and terminates processing

• CALL CPDUMP-dumps the requested character storage areas and allows
processing to continue

• CALL CDUMP-dumps the requested character storage areas and terminates
processing

When you use the DUMP and PDUMP subprograms, you specify as parameters:

• The variables delimiting the area to be dumped

• A code specifying the format in which the items are to be dumped

For example, if you wanted to dump one item and continue processing, you could
specify:

CALL PDUMP (A,A,S)

which would dump the variable A in real format (the code 5 specifies real format).

You can also dump an entire range of items in storage:

CALL DUMP (A,M,O)

which would dump every item in storage, beginning with variable A and continuing
through variable M, in hexadecimal format (the code 0 specifies hexadecimal
format). Execution would then be terminated.

When you're using CDUMP and CPDUMP, the output is always in character
format. Therefore, you specify only the delimiting variables in the CALL
statement. For example, to dump a range of character variables from character
variable Cl to character variable C19, specify:

CALL CDUMP (C1,C19) (and execution terminates)

or

CALL CPDUMP (C1,C19) (and execution continues)

For reference documentation about these routines, see VS FORTRAN Language
and Library Reference.

210 VS FORTRAN Programming Guide

Requesting Symbolic Dumps-CALL Statement

A VS FORTRAN predefined CALL routine provides you with a symbolic dump
that is displayed in a format dictated by variable type. Variable and array values
are dumped on the error message unit. Variable and array values are dumped
automatically upon abnormal termination, or are dumped by program request, on a
program unit basis, using CALL SDUMP. Items displayed are:

• All referenced, local, named variables and arrays in their FORTRAN-defined
data representation

• All variable and array values contained in a blank common, named common, or
a dynamic common area in their FORTRAN-defined data representation

• Nonzero or nonblank character array elements only

• Array elements with their correct indexes

Symbolic Dumps at Abend Time: If a task ends with a nonrecoverable failure
(storage access, for example) in a FORTRAN program unit, all variable and array
values in that program unit are automatically dumped if it was compiled with either
SDUMP or TEST. Additionally, all variable and array values in any FORTRAN
program unit in the save area traceback chain compiled with either SDUMP or
TEST are also dumped. Variable and array values occurring in common areas are
dumped at each occurrence because the variable and array definitions in each
program unit may be different.

If the program unit was not compiled with either SDUMP or TEST, it is bypassed
and processing continues with the next program unit.

The dump output follows the IFY240I messages and the called program's traceback
chain messages.

Note: If the object error unit is directed to a terminal, the post-abend dump is
skipped. The object error unit must be directed to a file.

Symbolic Dump Upon Request: Except for user fix-up routines, which are for I/O
failures, program-requested dumping of variable and array values can be done by
calling the SDUMP utility program from any program unit.

Note: User fix-up routines cannot be dumped because you cannot initiate a new
I/O operation while one is in progress.

• A call to the SDUMP utility program from within a FORTRAN program
(either a main program, a subroutine subprogram, or a function subprogram)
compiled with either SDUMP or TEST will only dump variable and array
values from within that program by specifying the call without parameters as
follows:

CALL SDUMP

• Variable and array values can be dumped from one or more FORTRAN
programs, that have had either SDUMP or TEST specified at compile time, by
means of a call to SDUMP and specifying the entry name of the routines in a
parameter list.

Chapter 9. Executing Your Program and Fixing Execution-Time Errors 211

The syntax for the call is as follows:

CALL SDUMP [(subroutine1,subroutine2, ...)

where subroutine1,subroutine2, ... are names of other FORTRAN program units
and may be omitted when the default is exercised-that is, if only dumping variable
and array values from the calling routine. The names must also be specified in a
FORTRAN EXTERNAL statement in the calling program (excluding the calling
program name).

The following invocation requests symbolic dumps of variables in subroutine1 and
subroutine2:

EXTERNAL subroutine1,subroutine2

CALL SDUMP(subroutine1,subroutine2)

This invocation requests a symbolic dump of variable and array values in the calling
program only:

CALL SDUMP

For reference documentation about this routine, see VS FORTRAN Language and
Library Reference.

Programming Comidel'atiom for SDUMP

• Compilation must be done with eitherSDUMP or TEST in order to gain
symbolic dump information and location of error information.

• SDUMP for routines not entered has unpredictable results.

• SDUMP for the routine in which the CALL statement is located is done
without parameters:

CALL SDUMP

• An EXTERNAL statement must be used to identify the names being passed to
SDUMP as external routine names and not local variables.

• The user must not have a routine with the name SDUMP.

• At higher levels of optimization (1-3), some variables may not have their true
value because of compiler optimization techniques.

212 VS FORTRAN Programming Guide

Chapter 10. Sample Programs and Subroutines

Sample Program 1

The following sample program illustrates many of the programming capabilities
discussed in the previous chapters.

Chapter 10. Sample Programs and Subroutines 213

PROGRAM SAMPLE
C GENERALIZED TEST CASE
C TESTS NESTED DO, GO TO AND IF WITHIN DO, VARIABLE SUBSCRIPTS,
C MULTIPLE IFS IN SUCCESSION, PARAMETER AND IMPLICIT STATEMENTS.
C THE ROUTINE ITSELF GENERATES VARIOUS SLOPES. THE TEST
C CASE IS SELF CHECKING. SLOPE IS CALCULATED AT THE 5 POINTS
C ON THE CURVE, 1.,2.,3.,4., AND 5.

IMPLICIT CHARACTER*14 (C)
REAL*8 S(50),T(50),W(50),CM2
PARAMETER(CM2=0.0001DO)
CHARIO='0.1 '
CHAR1 = ' TC11 FAILED
CHAR2 = ' TC11 COMPLETED'
READ (UNIT=CHARIO,FMT=, (F3.1) ') DELTBS

1 DO 25 I=1,6
2 TZ = I - 1
3 P = (TZ + 1.0) * (TZ *TZ)
4 DELT = DELTBS
5 T (1) = TZ + DELT
6 S (1) = (T(1) + 1.0)*(T(1)*T(1»
7 DELS = S(1) - P
8 W(1) = DELS/DELT
9 DO 16 J =2,50

10 DELT= 0.1 * DELT
11 T(J) TZ + DELT
12 S(J) = (T(J) +1.0)*(T(J)*T(J»
13 DELS = S(J) - P
14 W(J) = DELS/DELT
19 IF (J - 2) 20,21,20
20 A = W(J-1) - W(J)

B = W(J-2) - W(J-1)
IF (A - B) 21,22,22

21 IF (W(J-1) - W(J) - CM2) 23,16,16
16 CONTINUE
22 V = W(J-1)

GO TO 24
23 V = W(J)
24 IF (TZ.EQ.0.0.AND.V-0.0.GT.0.1) GO TO 26

IF (TZ.EQ.O.O) GO TO 25
IF (TZ.EQ.1.0.AND.V-5.0.GT.0.1) GO TO 26
IF (TZ.EQ.1.0) GO TO 25
IF (TZ.EQ.2.0.AND.V-16.0.GT.0.1) GO TO 26
IF (TZ.EQ.2.0) GO TO 25
IF (TZ.EQ.3.0.AND.V-33.0.GT.0.1) GO TO 26
IF (TZ.EQ.3.0) GO TO 25
IF (TZ.EQ.4.0.AND.V-56.0.GT.0.2) GO TO 26
IF (TZ.EQ.4.0) GO TO 25
IF (TZ.EQ.5.0.AND.V-85 .. GT .. 2) GO TO 26
IF (TZ.EQ.5.0) GO TO 25
GO TO 25

26 WRITE (FMT=100,UNIT=6) CHAR1,TZ,V
C WRITE DATA TO DISK FILE, UNFORMATTED

WRITE (UNIT=8) TZ,V
25 CONTINUE

WRITE (6,101) CHAR2
100 FORMAT (A15,' WITH TZ AND V RESPECTIVELY,',F4.1,F12.4)
101 FORMAT (A15)

STOP
27 END

214 VS FORTRAN Programming Guide

Sample Program 2

The following sample program demonstrates use of various I/O statements.

@PROCESS LIST
PROGRAM VSF046

C
C DECLARATIONS OF VARIABLES
C

IMPLICIT COMPLEX (C), COMPLEX*16 (Y), COMPLEX*32 (Z),
1 REAL (R), REAL*8 (D), REAL*16 (X),
2 INTEGER (I), INTEGER*2 (H),
3 LOGICAL (L), LOGICAL*1 (B)

CHARACTER*32 EXPECT (9) ,ACTUAL (9)
CHARACTER*29 SEVEN7
CHARACTER*27 EIGHT8
CHARACTER*25 FIFTY5
CHARACTER * 5 KNOWN
CHARACTER*2 UN
CHARACTER * 9 FORMAT
CHARACTER*10 SEQUEN
CHARACTER*12 DDNAME,NEW,DIRECT,ZERO,DELETE
CHARACTER*12 FN,SEQ,DIR,FMT,UNF,ACC,FM,BLNK
DIMENSION CACT(9),YACT(9),ZACT(9) ,LACT(9) ,BACT(9) ,

1 RACT(9) ,DACT(9),XACT(9) ,IACT(9),HACT(9)
DIMENSION CEXP(9) ,YEXP(9),ZEXP(9) ,LEXP(9) ,BEXP(9) ,

1 REXP(9) ,DEXP(9) ,XEXP(9) ,IEXP(9) ,HEXP(9)
NAMELIST /NAMEIO/CACTL,RACTL,ACTUAL,IACTL,LSAME

55 FORMAT (' ERROR EXIT FROM SEGMENT' ,IS)
66 FORMAT (' TEST CASE FAILED IN SEGMENT' ,IS,

1 :,/,' EXPECTED VALUE: ',Z64,
2 : ,/,' COMPUTED VALUE: ',Z64)

77 FORMAT (' TEST CASE VSFOR046 COMPLETED')
88 FORMAT (' TEST CASE VSFOR046 STARTED')

IN = 5
10 = 6
FIFTY5
SEVEN7
EIGHT8
PRINT *,
110 = 10

, ERROR EXIT FROM SEGMENT '
, TEST CASE VSFOR046 COMPLETED'
, TEST CASE VSFOR046 STARTED'
EIGHT8

DDNAME = 'DDNAME'
NEW = 'NEW
KNOWN = 'KNOWN'
UN = 'UN'
FORMAT 'FORMATTED'
SEQUEN = 'SEQUENTIAL'
DIRECT = 'DIRECT'
ZERO = 'ZERO'
DELETE = 'DELETE'

Chapter 10. Sample Programs and Subroutines 215

c
C WRITE STATEMNT.
C

C

99 N = 0
3000 N = 30

ISEG = 30
ASSIGN 3200 TO ILAB
WRITE (IOSTAT=IOS,ERR=99999,FMT=' (A9) ',UNIT=2*IN-10) '1 2 3
IF(IOS .NE. 0) WRITE (IO,66) 31,0,IOS

C ENDFILE STATEMENT.
C

C

3200 ISEG = 32
ASSIGN 3400 TO ILAB
ENDFILE (IOSTAT=IOS,ERR=99999,UNIT=2*IN-10)
IF(IOS .NE. 0) WRITE (IO,66) 33,0,IOS

C REWIND STATEMENT.
C

C

3400 ISEG = 34
ASSIGN 4000 TO ILAB
REWIND (IOSTAT=IOS,ERR=99999,UNIT=2*IN-10)
IF(IOS .NE. 0) WRITE (IO,66) 35,0,IOS

C READ STATEMENT.
C

IACT(8) = 99
READ (IOSTAT=IOS,UNIT=2*IN-10,FMT=' (I9) ',END=3600) (IACT(J),J=7,8)

3600 IF(IOS .GE. 0) WRITE (IO,66) 36,0,IOS
IEXP(7) = 102003000
IEXP(8) = 99

3700 DO 3890 ISEG=37,38
IF(IACT(ISEG-N) .NE. IEXP(ISEG-N))

1 WRITE (IO,66) ISEG,IEXP(ISEG-N),IACT(ISEG-N)
3890 CONTINUE

C
C BACKSPACE, ENDFILE AND SEQUENTIAL OPEN STATEMENTS.
C

4000 ISEG = 40
BACKSPACE (IOSTAT=IOS,ERR=99999,UNIT=2*IN-10)
IF(IOS .NE. 0) WRITE (IO,66) 41,0,IOS
WRITE (IN+IN-10,' (A9)',IOSTAT=IACT(1) '4 5 6
IF(IACT(1) .NE. 0) WRITE (IO,66) 43,0,IACT(1)
ENDFILE (IN+IN-10,IOSTAT=IACT(1»

216 VS FORTRAN Programming Guide

C

IF(IACT(1) .NE. a) WRITE (10,66) 45,0,IACT(1)
OPEN (UNIT=2*IN-10,FILE='DDNAMX',STATUS=NEW,

1 ACCESS='SEQU'//'ENTIAL ',FORM=FORMAT,BLANK=ZERO)
WRITE (0,' (A8) ') UN//SEQUEN(IN:2*IN)

C OPEN, REWIND AND CLOSE STATEMENTS.
C

C

4600 ISEG = 46
ENDFILE (0,ERR=99999)
OPEN (UNIT~2*IN-10,FILE=DDNAME,STATUS='OLD',

1 ACCESS='SEQU'//'ENTIAL ',FORM=FORMAT,BLANK=ZERO)
REWIND (IN+IN-10,IOSTAT=IACT(1»
IF (IACT (1) . NE. a) WRITE (10,66) 47, 0, IACT (1)

4900 N = 50
ISEG = 49
CLOSE (IOSTAT=IACT(1),ERR=99999,STATUS='KE'//'EP ',UNIT=O)

C INQUIRE STATEMENT.
C

5000 IF(IACT(1) .NE. a) WRITE (10,66) 50,0,IACT(1)
INQUIRE (FILE='DD'//'NAME ',IOSTAT=IACT(1),

1 EXIST=LACT(9),OPENED=LACT(8),NAMED=LACT(7),
2 NAME=ACTUAL(1),SEQUENTIAL=ACTUAL(2),DIRECT=ACTUAL(3),
3 FORMATTED=ACTUAL(4),UNFORMATTED=ACTUAL(5),
4 ACCESS=ACTUAL(6),FORM=ACTUAL(7),NUMBER=IACT(2),
5 RECL=IACT(3) ,NEXTREC=IACT(4),BLANK=ACTUAL(8»

5600 IF (IACT (1) . NE. a) WRITE (10,66) 56, 0, IACT (1)
EXPECT(1) 'DDNAME'
EXPECT (2) 'YES'
EXPECT(3) 'NO'
EXPECT (4) 'YES'
EXPECT (5) 'NO'
LEXP(7) .TRUE.
LEXP(8) = .FALSE.
LEXP(9) = .TRUE.

5100 DO 5590 ISEG=51,55
IF(ACTUAL (ISEG-N) .NE. EXPECT (ISEG-N))

1 WRITE (10,66) ISEG,EXPECT(ISEG-N),ACTUAL(ISEG-N)
5590 CONTINUE
5700 DO 5990 ISEG=57,59

IF(LACT(ISEG-N) .NEQV. LEXP(ISEG-N))
1 WRITE (10,66) ISEG,LEXP(ISEG-N),LACT(ISEG-N)

5990 CONTINUE
88888 WRITE (*,*) SEVEN7

STOP
99999 WRITE (FMT=*,UNIT=*) FIFTY5,ISEG

GOTO ILAB
END

Chapter 10. Sample Programs and Subroutines 217

Sample Subroutines

The following sample subroutines demonstrate coding schemes for various VS
FORTRAN functions discussed in previous chapters.

@PROCESS CI(10)
SUBROUTINE INCLUD

C
C THIS SUBROUTINE DEMONSTRATES CONDITIONAL INCLUDE.
C

C

INCLUDE (J) 10
INCLUDE (J) 11
RETURN
END

SUBROUTINE DECL

C THIS SUBROUTINE DEMONSTRATES DECLARING DATA.
C

C

C

C

C

IMPLICIT DOUBLE PRECISION(A-C, F),
1 LOGICAL (E,L),CHARACTER(D,G,H)

DOUBLE PRECISION MEDNUM
CHARACTER*80 INREC
INTEGER*2 COUNTR
REAL*16 BIGNUM,ARRAY2*4(5,5)

CHARACTER*15 CAT

RETURN
END

SUBROUTINE DEFVAL

C THIS SUBROUTINE DEMONSTRATES DEFINING CONSTANTS BY VALUE.
C

C

C

LOGICAL COMP

CHARACTER*15 CHAR15 I'PARAMETER = 'I
CHARACTER*18 CHAR18 I'THE ANSWER IS:'I
CHARACTER*40 CHAR40 I" 'TWAS BRILLIG AND THE SLITHY TOVES'I

100 FORMAT(I3,11H = THE NORM)
200 FORMAT (2D8.6, 18H ARE THE 2 ANSWERS)
C

C

C

REAL* 4 TEMP
DATA TEMP/ZC1C2C3C41

RAD=10.
PI=3.1415
CIRC = 2*PI*RAD

COMP = .FALSE.
RETURN
END

218 VS FORTRAN Programming Guide

SUBROUTINE DEFNAM
C
C THIS SUBROUTINE DEMONSTRATES DEFINING CONSTANTS
C BY NAME.
C
C

C

CHARACTER*5 C1,C2
PARAMETER (C1='DATE ',C2='TIME ',RATE=2*1.414)
RETURN
END
SUBROUTINE ONEDIM

C THIS SUBROUTINE DEMONSTRATES ONE-DIMENSIONAL ARRAYS.
C
C

C

DIMENSION ARRAY1 (5)
ARRAY1 (2) = 3.
NUM = 1
R = ARRAY1 (NUM)
RETURN
END

SUBROUTINE MULDIM

C THIS SUBROUTINE DEMONSTRATES MULTIDIMENSIONAL ARRAYS.
C

C

C

REAL*4 ARR3(2,2,2)

REAL*4 ARRAY 2 (1000, 1000)
DO 10 J=1,1000

DO 10 I = 1,1000
ARRAY2 (I,J) = 0

10 CONTINUE

RETURN
END

Chapter 10. Sample Programs and Subroutines 219

SUBROUTINE ARREXP
C
C THIS SUBROUTINE DEMONSTRATES ARRAYS -- EXPLICIT LOWER BOUNDS.
C

C

DIMENSION ARR3A(4:5,2:3,1:2)
RETURN
END

SUBROUTINE ARRSUB

C THIS SUBROUTINE DEMONSTRATES ARRAYS -- SIGNED SUBSCRIPTS
C

C

DIMENSION ARR2(4,2),ARR2S(-2:2,2)
RETURN
END

SUBROUTINE ARRCHR

C THIS SUBROUTINE DEMONSTRATES SUBSTRINGS OF CHARACTER ITEMS
C

C

CHARACTER*10 SUVAR,SUARR(3)
SUVAR='ABCDEFGHIJ'
SUARR(2) (:5)=SUVAR(6:10)
RETURN
END

SUBROUTINE INITD1

C THIS SUBROUTINE DEMONSTRATES INTIALIZING DATA (FIRST)
C

C

CHARACTER*4 CARL,CELS*2
DATA DEG,CELS,CARL/10.2,'DG','SURD'/,AVCH/.1515/
RETURN
END
SUBROUTINE INITD2

C THIS SUBROUTINE DEMONSTRATES INTIALIZING DATA (SECOND)
C

PARAMETER (DEGI=10.2)
DATA DEG/DEGI/
RETURN
END

220 VS FORTRAN Programming Guide

SUBROUTINE INITAR
C
C THIS SUBROUTINE DEMONSTRATES INITIALIZING ARRAYS
C

C

DIMENSION A (10)
CHARACTER*4 CARRAY(4)
DIMENSION ARRAYE(10,10)
DIMENSION ARRAY I (10,10)
DIMENSION ARRAYD(10,10)

DATA A(1) ,A(2) ,A(4) ,A(5)/1.0,2.0,4.0,5.0/
DATA CARRAY(1),CARRAY(4)/'ABC','EFGH'1
DATA «ARRAYE(I,J),I=1,10),J=1,10)/100*0.0/
DATA «ARRAYI(I,J) ,1=1 ,J-1) ,J=2,10)/45*0.0/,

1 «ARRAYI(I,J) ,J=1,I-1) ,1=2,10)/45*0.0/,
2 (ARRAYI(I,I),I=1,10)/10*1.0/

DATA «ARRAYD(I,J),I=1,10),J=1,10) /100*0.0/
DO 3 0 1= 1 , 1 0 , 1
ARRAYD(I,I)=1.0

30 CONTINUE

RETURN
END

SUBROUTINE MANDAT

C THIS SUBROUTINE DEMONSTRATES MANAGING DATA STORAGE -- EQUIVALENCE
C STATEMENT
C

C

DIMENSION ARR3(2,2,2)
CHARACTER*4 CHAR3(4)
EQUIVALENCE (ARR3(2,2,1),CHAR3(1»
RETURN
END

SUBROUTINE EXECEF

C THIS SUBROUTINE DEMONSTRATES EXECUTION-TIME EFFICIENCY USING
C EQUIVALENCE
C

DIMENSION A(10) ,I(16),A2(5)
EQUIVALENCE (A(1),I(6) ,A2(1»
RETURN
END

Chapter 10. Sample Programs and Subroutines 221

SUBROUTINE ARTHEX
C
C THIS SUBROUTINE DEMONSTRATES ARITHMETIC EXPRESSIONS
C

C

DOUBLE PRECISION RESULT
DATA I1/10/,I2/1S/

RESULT AR3*AR1
RESULT = I2/I1
RETURN
END
SUBROUTINE CHARX1

C THIS SUBROUTINE DEMONSTRATES CHARACTER EXPRESSIONS (FIRST)
C

C

CHARACTER*12 CHAR
CHARACTER*6 CHAR1,CHAR2
DATA CHAR1/'ABCDEF'/,CHAR2/'GHIJKL'/
CHAR = CHAR1//CHAR2
RETURN
END

SUBROUTINE CHARX2

C THIS SUBROUTINE DEMONSTRATES CHARACTER EXPRESSIONS (SECOND)
C

C

CHARACTER*10 CHAR10
CHARACTER*S CHARS,CHAR2*2
EQUIVALENCE (CHAR5(2:S),CHAR10)
CHAR10 = 'ABCDEFGHIJ'
CHARS = 'MNOPQ'
CHAR2 = 'XY'
CHAR10 = (CHARS//CHAR2)
PRINT *, ' CHAR10 =', CHAR10, 'CHARS

1 CHARS, 'CHAR2= ',CHAR2
RETURN
END

SUBROUTINE RELEX1

C THIS SUBROUTINE DEMONSTRATES RELATIONAL EXPRESSIONS (FIRST)
C

LOGICAL L
L = A.GE.B
L = (A+B) .LT. (C-B)
RETURN
END

222 VS FORTRAN Programming Guide

SUBROUTINE RELEX2
C
C THIS SUBROUTINE DEMONSTRATES RELATIONAL EXPRESSIONS (SECOND)
C

C

COMPLEX CMPLX1,CMPLX2
LOGICAL L
L = (CMPLX1-2) .EQ. (CMPLX2+2)
RETURN
END

SUBROUTINE RELEX3

C THIS SUBROUTINE DEMONSTRATES RELATIONAL EXPRESSIONS (THIRD)
C

C

CHARACTER*5 CHAR4,CHAR5,CHAR6*8
LOGICAL L
L = (CHAR4//CHAR5) .GT.CHAR6
RETURN
END
SUBROUTINE RELCHR

C THIS SUBROUTINE DEMONSTRATES RELATIONAL EXPRESSIONS -- CHARACTER
C OPERANDS
C

C

CHARACTER*3 C1/'3AB'/,C2/'XYZ'/
LOGICAL L
L = C1.GT.C2
RETURN
END

SUBROUTINE LOGEXP

C THIS SUBROUTINE DEMONSTRATES LOGICAL EXPRESSIONS
C

C

LOGICAL L1,L2,L3,L4
L1 A.GT.B.OR.A.EQ.C
L2 = A.GT.B.AND.A.EQ.C
L3 = A.GT.B.AND .. NOT.A.EQ.C
L4 = A.GT.B.OR.A.EQ.C.AND.B.LT.D
RETURN
END

SUBROUTINE ARTHAS

C THIS SUBROUTINE DEMONSTRATES ARITHMETIC ASSIGNMENTS
C

DIMENSION ARRAY 3 (10)
PI = 3.14159
ARRAY 3 (NUM) = DIFF
INTR DIFF
DIFF = INTR

Chapter 10. Sample Programs and Subroutines 223

C

DIFF = INTR+DIFF
RETURN
END

SUBROUTINE CHARA1

C THIS SUBROUTINE DEMONSTRATES CHARACTER ASSIGNMENTS (FIRST)
C

C

CHARACTER*10 SUVAR
SUVAR = 'ABCDEFGHIJ'
RETURN
END

SUBROUTINE CHARA2

C THIS SUBROUTINE DEMONSTRATES CHARACTER ASSIGNMENTS (SECOND)
C

C

CHARACTER*5 A,B,C,E *13
DATA A/'WHICH'/,B/' DOG '/,C/'BITES'/
E = A//B//C
A(4:5) = C(3:4)
RETURN
END

SUBROUTINE LOGL1

C THIS SUBROUTINE DEMONSTRATES LOGICAL ASSIGNMENTS (FIRST)
C

C

LOGICAL*4 LOGOP
REAL * 8 AR1/1.1/,AR2/2.2/,AR3/3.3/,AR4
LOGOP = (AR4.GT.AR1) .OR. (AR2.EQ.AR3)
RETURN
END
SUBROUTINE LOGL2

C THIS SUBROUTINE DEMONSTRATES LOGICAL ASSIGNMENTS (SECOND)
C

C

LOGICAL*4 LOGOP
CHARACTER*6 CHAR 1 , CHAR2, CHAR3
DATA CHAR1/'ABCDEF'/ CHAR2/'GHIJKL'/
LOGOP = (CHAR2.EQ.CHAR3) .AND. (CHAR1.LT.CHAR2)
RETURN
END

SUBROUTINE STMTF

C THIS SUBROUTINE DEMONSTRATES STATEMENT FUNCTIONS
C

WORK(A,B,C,D,E) = 3.274*A + 7.477*B - C/D + (X+Y+Z)/E
W = WORK(GAS,OIL,TIRES,BRAKES,PLUGS) - V
RETURN
END

224 VS FORTRAN Programming Guide

Part 2. Using VS FORTRAN-Environmental Considerations

Part 2 discusses the following topics:

Chapter 11, "Using VS FORTRAN under VM" on page 227

Chapter 12, "Using VS FORTRAN under MVS" on page 257

Chapter 13, "Using VS FORTRAN under TSO" on page 317

Chapter 14, "Using VS FORTRAN under VSE" on page 331

Chapter 15, "Using VSAM with VS FORTRAN" on page 355

Chapter 16, "Using VS FORTRAN Interactive Debug with VS FORTRAN"
on page 377

Chapter 17, "Using VS FORTRAN under VM/PC" on page 381

Part 2. Using VS FORTRAN-Environmental Considerations 225

Chapter 11. Using VS FORTRAN under VM

You can compile and execute your programs in a CMS virtual machine running
under VM/SP. You can also compile your programs in this environment and run
them in either MVS or VSE.

Execution of your program in a CMS virtual machine is done in CMS's OS
simulation mode; that is, the VS FORTRAN execution-time library routines use the
MVS services that are simulated by CMS. Because of this, you must observe the
following restrictions:

1. You cannot compile your programs nor can you execute them in the
CMS/DOS environment. If you have been running other programs in this
mode, you must issue the command

SET DOS OFF

before attempting to compile or execute your VS FORTRAN programs.

2. VS FORTRAN programs that use asynchronous I/O cannot run in a CMS
virtual machine.

3. The VSE version of the VS FORTRAN compiler and library does not run in a
CMS virtual machine, even in the CMS/DOS environment.

CP and CMS Commands

The CP and CMS commands help you create and edit your source programs, create
executable programs, and execute your programs.

The CMS commands you'll use most frequently are shown in Figure 39 on
page 229. For a description of all the options that can be specified and for
additional information on the use of all the CMS commands, see VM/SP CMS
Command and Macro Reference.

You can use all the CP and CMS commands to develop, test, and run your VS
FORTRAN programs during terminal sessions. See VM/SP Terminal Reference
for documentation on terminal usage.

Chapter 11. Using VS FORTRAN under VM 227

Creating Your Source Program-CMS System Product Editor

Your first step is to enter your source program into the system. For the method
your organization uses, see your system administrator.

To create a source program file, you can use an editor. You may use the XEDIT
command (or the appropriate command for whatever editor you want to use) to
create a new file and also to change an existing one.

To create a FORTRAN source program file, you must specify the filetype of your
source program file as FORTRAN. You can now enter your source program into
the file, line by line, according to the rules for fixed- or free-form source programs.

See VS FORTRAN Language and Library Reference for formatting considerations.

228 VS FORTRAN Programming Guide

CMS Command Usage

ACCESS

EXEC

FILEDEF

FORTVS

GLOBAL

INCLUDE

LISTFILE

LOAD

PRINT

PUNCH

RENAME

START

TYPE

XEDIT

Activates a virtual disk for your use.

Executes a file that consists of one or more
CMS commands.

Defines a file and its input/output devices.

Invokes the VS FORTRAN compiler.

Specifies text libraries to be searched
to resolve external references in a program
being loaded. Specifies load libraries from
which routines are loaded during execution.

Specifies additional TEXT files for use
during program execution.

Displays a list of your files.

Places a TEXT file in storage and
establishes the linkages for execution.

Prints a file on the spooled virtual printer.

Punches a card file on the virtual card punch.

Changes the filetype, filename, and/or filemode
of a file.

Begins execution of a previously loaded file.

Types all or part of a file.

Puts you in XEDIT mode to create and edit source
program and data files.

Figure 39. CMS Commands Often Used with VS FORTRAN

Using the VS FORTRAN Compiler Options

The VS FORTRAN compiler options let you specify details about the input source
program and request specific forms of compilation output. You specify the
compiler options as options of the FORTVS command or the @PROCESS
command (see "Modifying Compilation Options-@PROCESS Statement" on
page 164).

Chapter 11. Using VS FORTRAN under VM 229

The VS FORTRAN compiler options are. shown under "Using the Compiler
Options" on page 157.

Note: Under VM, if you specify DC on the FORTVS command, only the 8
characters following the left parenthesis are passed to VS FORTRAN. No error
message is generated if any truncation occurs. Check requested options on listing
output.

Additionally, an option for the disposition of the listing file is available to VM
users. This may only be specified on the FORTVS command. If a value for this
option is not specified, the default is DISK. The option values are:

DISK
The compiler places a copy of your LISTING file on a disk.

Abbreviation: DI

NOPRINT
No LISTING file is produced.

Abbreviation: NOPRJ

PRINT
The compiler prints your LISTING file on the spooled virtual printer.

Abbreviation: PRJ

Specifying CMS Line Numbers When Debugging

If you want to use CMS line numbers as breakpoints when using VS FORTRAN
Interactive Debug, you must specify the NOSDUMP and TEST compiler options.

For more details, see Chapter 16, "Using VSFORTRAN Interactive Debug with
VS FORTRAN" on page 377.

mM Extension

Using the FORTRAN INCLUDE Statement

If your source program uses the INCLUDE statement, you must create a library
containing the INCLUDE source code.

1. Create one or more members with a filetype of COPY.

XEDIT member1 COpy A
INPUT

COMMON/COM1/A1,A2,A3,A4
COMMON/COM2/B1,B2,B3,B4

FILE

230 VS FORTRAN Programming Guide

Note: The included files may be fixed blocked or fixed unblocked by
specifying RECFM FB or RECFM F when you create the members (memberl
in this example).

2. Create a FORTRAN source program.

XEDIT myprog FORTRAN A
INPUT

FILE

INCLUDE (member1)
Z = A 1 * B1

END

You can selectively activate INCLUDE statements within the FORTRAN
source program by specifying the identification numbers of the INCLUDEs to
be processed. For example:

INCLUDE (name) [n]

where n is a number that appears in the CI list, and ranges from 1 through 255.

See "Using the Compiler Options" on page 157 for a description of the CI
compiler option.

3. Create a CMS macro library.

MAC GEN libname member1

'--__________ End of WM Extension __________

Printing on the mM 3800 Printing Subsystem under eMS

Additional run-time parameters are required to support the WM 3800 printing
subsystem. For example, the SETPRT command is used to specify the names of
the character arrangement tables.

SETPRT CHARS(catO(catl •••]), •••
specifies the names of from one to four character arrangement tables to be
loaded into the virtual 3800. These names must be from one to four
alphameric characters. The character arrangement tables must exist as
'XTB lcatn TEXT' files on an accessed CMS disk.

PRINT fo ft ••• (TRC
specifies that the record contains a Table Reference Character byte.

Chapter 11. Using VS FORTRAN under VM 231

Sample FORTRAN Program Using the 3800

C SAMPLE PROGRAM FOR THE IBM 3800 PRINTING SUBSYSTEM
C

100 FORMAT (' 12' , , W6666666666666666666666666666X'
7 7'

TABULATION OF THE FUNCTION
1 /' 2','
2 / '+1','
3 /' 2','
4 /' 2','

7
7

7'
7 '

5 /' +0' , ,
6 /' 2','
7 /' 2','

sin' , A 1 , , (x)
Z6666666666666666666666666666Y'
W6666666666661666666666666666X'

8 /' 2',' 7 7 7'
9 /' +0' , , x sin' ,A 1 , '(x) ,
A /' 2',' 366666666666656666666666666664')

200 FORMAT (' 2',' 7 7 7'
1 /' +0' , , ',I3,Al ,I2,"" ,I2, "" ,5X,F9.6)

CHARACTER * 1 DEG, U3
DATA DEG/ZA1/, U3/ZB3/

WRITE (6,100) U3, U3

WRITE (6,200) 0, DEG, 0, 0, O.

END

SETPRT CHARS(TN GS10 FM10),
PRINT fn ft (TRC ..•

The sample program above produces the following 3800 output:

TABULATION OF THE FUNCTION

sin 3 (x)

K

0 0 0' 0" 0.000000

Compiling Your Program

If you want to compile myprog with the defaults your installation uses, you specify:

FORTVS myprog

If, however, you want to compile myprog using nondefault compiler options,
specify, for example:

FORTVS myprog (FREE FLAG(E) DECK MAP)

232 VS FORTRAN Programming Guide

Compiler Output

which tells the compiler that your source program is in free form, and which gives
you a compilation with only E level messages or higher flagged (FLAG (E)), a copy
of the object deck sent to your virtual punch (DECK), and a map of names and
labels (MAP); all the options you don't specify retain the default values.

You may have FORTRAN source files on tape or punched cards. To make these
files known to the system, you must issue a FILEDEF command whose ddname is
FORTRAN and which specifies the appropriate device type.

Examples:

To use a source file on tape, issue the following FILEDEF:

FILEDEF FORTRAN TAPn (options

where n is a number from 1 through 4 that corresponds to virtual tape units 181
through 184, and options are the record format, the logical record length, and the
block size.

To use a source file from your virtual reader, issue the following FILEDEF:

FILEDEF FORTRAN READER

To invoke the compiler using the READER or TAPn as input, issue:

FORTVS dummy (options

where dummy is the filename for listing or object output (a filename is required),
and options are the desired options.

If you have used an INCLUDE statement in your source program, you need to take
one of the following steps (if both steps are taken, unpredictable results will occur).

• Define SYSLffi for use by the compiler:

FILEDEF SYSLIB DISK filename MACLIB A (PERM

• Specify the macro library in a GLOBAL statement:

GLOBAL MACLIB filename ...

The VS FORTRAN compiler provides some or all of the following output,
depending on the options in effect for this compilation:·

• The source program listing-as you entered it, but with compiler-generated
internal sequence numbers prefixed at the left; the sequence numbers identify
the line numbers referred to in compile-time messages.

• An object module-a translation of your program in machine code.

• Messages about the results of the compilation.

Chapter 11. Using VS FORTRAN under VM 233

LISTING File

TEXT File

• Other listings helpful in debugging.

Depending on your organization's compile-time defaults and/or the options you
select in your FORTVS command, you may get a LISTING file and/or a TEXT
file as output, placed in your mini-disk storage for easy reference.

These listings are described in "Identifying User Errors" on page 167 and Chapter
9, "Executing Your Program and Fixing Execution-Time Errors" on page 185;
examples of output for each feature are also given there.

If your compilation caused error messages, you may have to correct your source, as
described in "Identifying User Errors" on page 167.

The LISTING file contains the compiler output listing; see "Identifying User
Errors" on page 167 for an explanation of what the compiler output listing
contains and how to use it. It has the filename of your source program, and the
filetype LISTING. For example, the file for myprog is myprog LISTING.

You can display the LISTING file at your terminal, using an editor.

You can print a copy of the LISTING file by means of your virtual printer, using
the PRINT command:

PRINT myprog LISTING

You may want to direct the compiler output listing to a file other than myprog
LISTING. If so, you can use a FILEDEF command with a ddname of LISTING
that specifies where you want the listing to be placed. To put a listing into my file
a, for example, issue the following FILEDEF:

FILEDEF LISTING DISK my file a

The TEXT file contains the object code the compiler created from your source
program. The contents of the TEXT file are explained in "Object Module as
Link-Edit Data Set" on page 183.

If the OBJECT compiler option is specified, the file is placed in your storage with
the filename of your source program and a filetype of TEXT. For example, the file
for myprog is myprog TEXT.

You can link-edit the TEXT file under any of the systems that VS FORTRAN
supports to get a load module (or phase). '

You may want to direct the compiler object code to a file other than myprog TEXT.
If so, you can use a FILEDEF command with a ddname of TEXT that specifies
where you want the object code to be placed. To put an object file into my file2 a,
for example, issue the following FILEDEF:

FILEDEF TEXT DISK my file2 a

234 VS FORTRAN Programming Guide

If the DECK compiler option is specified, the object code goes to the virtual punch.
If you want to direct the object code to a different file, use a FILEDEF command
with a ddname of SYSPUNCH that specifies where you want the object code to be
placed. To put an object file into my file3 Q, for example, issue the following
FILEDEF:

FILEDEF SYSPUNCH DISK my file3 a

For information on how to fix errors that occur during compilation, see
"Identifying User Errors" on page 167.

Automatic Cross-System Support

In VS FORTRAN, you can compile your source program under any supported
operating system. You can then link-edit the resulting object module under the
same system, or under any other supported system.

For example, you could request compilation under CMS and then link-edit the
resulting object module for execution under VSE.

You don't have to request anything special during compilation to do this; VS
FORTRAN uses the execution-time library for all system interfaces, so the
operating system under which you link -edit determines the system under which you
execute.

Using the VS FORTRAN Separation Tool

The VS FORTRAN separation tool divides a program compiled with the RENT
option into reentrant and nonreentrant CSECTS. For general information on the
tool, see "VS FORTRAN Separation Tool (for Both VM and MVS)" on
page 189. The following information is specific for CMS.

The separation tool is located in VFORTLm TXTLIB, and consists of two
CSECTS, IFYVSFST and IFYVSFIO. The following command sequence invokes
the separation tool:

GLOBAL TXTLIB VFORTLIB CMSLIB
LOAD IFYVSFST IFYVSFIO (CLEAR
START * thisname

The following file setup must be in effect when the separation tool is invoked:

FILEDEF * CLEAR
RENAME myprog TEXT A myprog TEXT IN A
FILEDEF SYSIN DISK myprog TEXT IN A
FILEDEF SYSPRINT DISK myprog TOOLLIST A
FILEDEF SYSUT1 DISK myprog TEXT A
FILEDEF SYSUT2 DISK thisname TEXT A
FILEDEF SYSUT3 DISK myprog TEMP A

The input file is SYSIN and the output files are SYSUT1 and SYSUT2,
nonreentrant and reentrant files, respectively. After the separation tool has
completed, the work file, SYSUT3, may be erased.

Chapter 11. Using VS FORTRAN under VM 235

To use the text files created in the above example, issue the following commands:

GLOBAL TXTLIB VFORTLIB CMSLIB
GLOBAL LOADLIB VFLODLIB
LOAD myprog (NOAUTO CLEAR
START

When needed, the VS FORTRAN library will load the text file, thisname TEXT,
and provide the reentrant modules to the program.

A Simple Scenario That Might Occur

The tool expects the text file to contain entries in a certain order: the reentrant
CSECT followed by the corresponding nonreentrant CSECT. If this does not
occur because of a routine's not being compiled for reentrancy, the tool will
accommodate the difference.

A simple scenario that might occur is: Given a simple FORTRAN program with a
single program named MAIN, the VS FORTRAN compiler would generate the
following:

• A reentrant CSECT with the name @MAIN

• A nonreentrant CSECT with the name MAIN

All of this output is in the same text file and, when loaded, all address constants
will be properly resolved and the program will run as it has been coded. If,
however, the text file is passed to the separation tool, the following is output:

• A file containing the nonreentrant CSECT, MAIN

• A file containing two CSECTs: IFYZRENT and the reentrant CSECT,
@MAIN

There are two ways of invoking the separation tool (IFYVSFST). The first is
without any module name parameter, and the second is with a module name
parameter.

With the module name parameter, RENTPART, the following is output:

• A file containing the nonreentrant CSECT, MAIN, but with an extra record
with the module name (RENTP AR T) in it

• A file containing the reentrant CSECTs, IFYZRENT and @MAIN, and a
record with "NAME RENTPART(R)" on it

Without the module name parameter, the following is output:

• A file containing the nonreentrant CSECT, MAIN

• A file containing the reentrant CSECTs, IFYZRENT AND @MAIN, and a
record with "NAME @MAIN(R)" on it

There are several ways to load the modules; in each case, several things must be
done to ensure access to the modules.

236 VS FORTRAN Programming Guide

1. The first.possibility is as follows:

a. A module name was specified.

b. The reentrant output file has a filename the same as the module name and
a filetype of TEXT.

c. The appropriate GLOBAL TXTLm and GLOBAL LOADLm commands
are issued.

d. The nonreentrant text output went into a file with a filetype of TEXT.

e. You issue:

1) LOAD nrname (NOAUTO START

or

2) LOAD nrname (NOAUTO CLEAR
GENMOD nrname
nrname

where nmame is the nonreentrant filename.

f. When execution begins, the file with the reentrant CSECTs will be loaded
by the VS FORTRAN library and the program will execute.

g. If you want to keep a record of where the reentrant portion is located,
keep a copy of the LOAD MAP created by the LOAD command.

2. The second possibility is as follows:

a. A module name was specified when invoking the separation tool.

b. The reentrant output file has a filename the same as the module name and
a filetype of TEXT.

c. The reentrant output file is link-edited with the LKED command.

d. The appropriate GLOBAL TXTLm and GLOBAL LOADLm commands
are issued with the LOADLm list containing the name of the new file.

e. The nonreentrant text output went into a file with a filetype of TEXT.

f. You issue:

1) LOAD nrname (NOAUTO START

or

2) LOAD nrname (NO AUTO CLEAR
GENMOD nrname
nrname

where nmame is the nonreentrant filename.

Chapter 11. Using VS FORTRAN under VM 237

g. When execution begins, reentrant module(s) will be loaded from the
LOADLm by the VS FORTRAN library and the program will execute.

h. If you want to keep a record of where the reentrant portion is located,
keep a copy of the LOAD MAP created by the LOAD command.

3. The third possibility is as follows:

a. No module name was specified.

b. The reentrant output file has a filename the same as the module name and
a filetype of TEXT.

c. The reentrant output file is link -edited with the LKED command.

d. The appropriate GLOBAL TXTLm and GLOBAL LOADLm commands
are issued with the LOADLIB list containing the name of the new file.

e. The nonreentrant text output went into a file with a file type of TEXT.

f. You issue:

1) LOAD nrname (NOAUTO START

or

2) LOAD nrname (NOAUTO CLEAR
GENMOD nrname
nrname

where nrname is the nonreentrant filename.

g. When execution begins, reentrant module(s) will be loaded from the
LOADLIB by the VS FORTRAN library and the program will execute.

h. If you want to keep a record of where the reentrant portion is located,
keep a copy of the LOAD MAP created by the LOAD command.

In the scenario example of one MAIN CSECT without subprograms, the second
and third possibilities are practically the same. The only difference is that in the
second, a module name was specified when RENTPART was invoked; in the third,
because no module name was specified, the separation tool uses the name
generated by the compiler.

If the input text file contained many routines with reentrant portions, the difference
between the second and third possibilities becomes noticeable. In the second
possibility, one large load module with the locator CSECT (IFYZRENT) and all of
the reentrant CSECTs would be created. In the third possibility, a large number of
load modules, each with its own locator CSECT and its own name, would be
created. In either case, the VS FORTRAN library handles the conditions
properly-with a trade-off of disk space versus main storage space.

In the module name case, one large locator CSECT along with all of the reentrant
CSECTs would be created. In the no module name case, many small modules,

238 VS FORTRAN Programming Guide

each with its own locator CSECT, would be created. At first, the difference in file
size would be small, but a number of CSECTs the size of the locator CSECTs
could accumulate and cause disk storage size problems.

If the reentrant portion is to be entered into a shared segment, you must decide the
best size of the segment and choose whether to provide one name for a large
segment or a lot of names for a large number of small segments.

There is a limit of 255 ESDIDs per loaded module. If you choose the module name
possibility, you must have 254 or fewer reentrant CSECTs in the text file. If the
text file is to be used to generate a LOADLIB member, there~s no 255 ESDm
count limit. Note that this 255 ESDID limit would affect a user who intends to put
the module into a shared segment (DCSS). The only solution would be to compile
fewer than 255 routines with reentrant parts with the VS FORTRAN compiler; or
to compile as usual, but partition the compiler output text file into two or more
parts.

CMS EXEC Files to Execute the Separation Tool

Two sample EXECs are shown, in Figure 40 on page 240 and Figure 41 on
page 243. They are:

FOVSRCS which compiles a FORTRAN program with the RENT compiler
option and then separates the reentrant and nonreentrant CSECTs.

FOVSRSEP which separates the reentrant and nonreentrant CSECTs from a
TEXT file that was created previously from a compilation with the
RENT compiler option.

You can execute the FOVSRCS EXEC for compilation of a reentrant program,
followed by separation, as follows:

FOVSRCS ftnname renttext (options ...

where:

ftnname

renttext

options

is the filename of the FORTRAN source program. This file must have
a filetype of FORTRAN.

is the filename of the TEXT file into which the reentrant object code
is to be placed. This name must be different from ftnname above.

may be any VS FORTRAN compiler options. RENT need not be
given because the EXEC already provides it. In addition, either of the
following may be coded to specify the structure of the reentrant
output file. This controls the result when the file is subsequently used
as input to the LKED or to the TXTLIB ADD command.

ONEMEMB Only one LOADLIB or TXTLIB member (of name
renttext) is desired. This is the default.

MUL TMEMB A separate LOADLIB or TXTLIB member is
desired for each reentrant CSECT (that is, for each
main program or subprogram that is compiled).

Chapter 11. Using VS FORTRAN under VM 239

&CONTROL OFF NOMSG
&GOTO -START

* * COMPILE A REENTRANT FORTRAN PROGRAM AND SEPARATE THE REENTRANT
* AND NON-REENTRANT CSECTs

*
-RULES
&BEGTYPE
This EXEC performs the following functions:

1. Compile~a VS FORTRAN program using the RENT option.
2. Separates the object deck from the compilation into its

non-reentrant and its reentrant parts.
Execute it as follows:

&END
&TYPE &EXEC ftnname rent text (options, ...
&BEGTYPE

ftnname is the file name of the FORTRAN source program. This file
must have a file type of FORTRAN.

renttext is the file name of the TEXT file into which the reentrant
object code is to be placed. This name must be different
from "ftnname", above.

options may be any VS FORTRAN compiler options. RENT need not be
given. In addition, either of the following may be coded
to specify the structure of the reentrant output file.
This controls the result when that file is subsequently
used as input to the LKED or to the TXTLIB ADD command.

ONEMEMB

MULTMEMB

&END
&EXIT &RCVALUE
-START

Only one LOADLIB or TXTLIB member (of name
"renttext") is desired. This is the default.

A separate LOADLIB or TXTLIB member is desired
for each reentrant CSECT (that is, for each
main program or subprogram that is compiled).

Figure 40 (Part 1 of 2). FOVSRCS, Compile Reentrant Program and Separate CSECTs

240 VS FORTRAN Programming Guide

*
* CHECK FOR VALID OR OMITTED PARAMETERS

*
&IF . & 1 EQ • ? &GOTO -RULES
&IF . & 1 EQ &GOTO -RULES
&IF &INDEX LT 2 &GOTO -BADINP
&IF &INDEX EQ 2 &GOTO -ENDOPT
&IF &3 NE (&GOTO -BADINP
&IF &INDEX EQ 3 &GOTO -ENDOPT

*
* LOOK FOR THE OPTIONS ONEMEMB OR MULTMEMB

*
&P 4
-NEXTOPT
&IF &P GT
&IF &&P EQ
&IF &&P NE
-SETPARM

&INDEX
ONEMEMB
MULTMEMB

&SEPPARM
&&P

&&P

-INCRPAR
&P &P + 1
&GOTO -NEXTOPT
-ENDOPT

*

&GOTO -ENDOPT
&GOTO -SETPARM
&GOTO -INCRPAR

* ASSURE THAT THE INPUT SOURCE FILE NAME DIFFERS FROM REENTRANT NAME

*
&IF &1 NE &2 &GOTO -INOUT
&BEGTYPE
The input FORTRAN file name must differ from the output reentrant
TEXT file name.
&END
&EXIT 12
-INOUT

* * COMPILE THE PROGRAM

*
&F FORTVS
&R RENT
&F &1 (&R &4 &5 &6 &7 &8 &9 &10 &11 &12 &13 &14 &15 &16 &17 &18 &19 &20 &21 &22
&IF &RETCODE GT 4 &EXIT &RETCODE

* * SEPARATE THE REENTRANT AND NON-REENTRANT CSECTS

*
EXEC FOVSRSEP &1 &2 (&SEPPARM
&EXIT &RETCODE

* * INCORRECT INPUT PARAMETERS

*
-BADINP
&BEGTYPE
Invalid input parameter format.

&END
&RCVALUE 8
&GOTO -RULES

I Figure 40 (Part 2 of 2). FOVSRCS, CompHe Reentrant Program and Separate CSECTs

Chapter 11. Using VS FORTRAN under VM 241

You execute the FOVSRSEP EXEC for separation using an existing TEXT file as
input as follows:

FOVSRSEP inptext renttest (option

inptext

renttext

option

242 VS FORTRAN· Programming Guide

is the filename of the input TEXT file which is to be· separated. This
file is updated to contain only the nonreentrant CSECTs.

is the filename of the TEXT file into which the reentrant object code
is to be placed. This name must.be different from inptext above.

may be either of the following to specify the structure of the reentrant
output file. This controls the result when that file is subsequently used
as input to the LKED or to the TXTLffi ADD command.

ONEMEMB Only one LOADLffi or TXTLIB member (of name
renttext) is desired. This is the default.

MUL TMEMB A separate LOADLIB or TXTLIB member is
desired for each reentrant CSECT that is found in
the input TEXT file.

&CONTROL OFF NOMSG
&GOTO -START

* * SEPARATE THE REENTRANT AND NON-REENTRANT CSECTs IN A TEXT FILE
* CREATED BY A COMPILATION DONE WITH THE "RENT" OPTION

*
-RULES
&BEGTYPE
This EXEC separates an input TEXT file into two parts: one with the
non-reentrant CSECTs and the other with the reentrant CSECTs.
Execute it as follows:

&END
&TYPE &EXEC inptext renttext (option
&BEGTYPE

inptext is the file name of the input TEXT file which is tOo be
separated. This file is updated to contain only the
non-reentrant CSECTs.

renttext is the file name of the TEXT file into which the reentrant
object code is to be placed. This name must be different
from "inptext", above.

option may be either of the following to specify the structure
of the reentrant output file. This controls the result
when that file is subsequently used as input to the LKED
or to the TXTLIB ADD command.

ONEMEMB

MULTMEMB

&END
&EXIT &RCVALUE
-START

Only one LOADLIB or TXTLIB member (of name
"renttext") is desired. This is the default.

A separate LOADLIB or TXTLIB member is desired
for each reentrant CSECT that is found in the
input TEXT file.

Figure 41 (Part 1 of 4). FOVSRSEP, Separate Reentrant and Nonreentrant CSECTs

Chapter 11. Using VS FORTRAN under VM 243

*
* CHECK FOR VALID OR OMITTED PARAMETERS

* &SEPPARM ONEMEMB
&IF . & 1 EQ • ? &GOTO -RULES
&IF . & 1 EQ &GOTO -RULES
&IF &INDEX LT 2 &GOTO -BADINP
&IF &INDEX EQ 2 &GOTO -ENDOPT
&IF &3 NE (&GOTO -BADINP
&IF &INDEX EQ 3 &GOTO -ENDOPT

*
* LOOK FOR THE OPTIONS ONEMEMB OR MULTMEMB

*
&P 4
-NEXTOPT
&IF &P GT &INDEX
&IF &&P EQ ONEMEMB
&IF &&P EQ MULTMEMB
&GOTO -BADINP
-SETPARM
&SEPPARM &&P
-INCRPAR
&P &P +
&GOTO -NEXTOPT
-ENDOPT

*

&GOTO -ENDOPT
&GOTO -SETPARM
&GOTO -INCRPAR

* ASSURE THAT THE INPUT TEXT FILE EXISTS

*
STATE &1 TEXT
&IF &RETCODE
&TYPE The file
&EXIT 12
-ITEXTOK

*

A
EQ 0 &GOTO -ITEXTOK
&1 TEXT A does not exist.

* ASSURE THAT THE INPUT TEXT FILE NAME DIFFERS FROM REENTRANT NAME

*
&IF &1 NE &2 &GOTO -INOUT
&BEGTYPE
The input TEXT file name must differ from the output (reentrant) name.
&END
&EXIT 12
-INOUT

Figure 41 (Part 2 of 4). FOVSRSEP, Separate Reentrant and Nonreentrant CSECTs

244 VS FORTRAN Programming Guide

* * DETERMINE WHETHER TO SUPPLY LOAD MODULE NAME

* &IF &SEPPARM NE ONEMEMB &GOTO -ENDRPAR
&LMNAME &2
-ENDRPAR

*
* FILES NEEDED BY THE SEPARATION TOOL PROGRAM

*
FILEDEF SYSIN DISK &1 TEXT A
FILEDEF SYSPRINT DISK &1 SEPLIST A
FILEDEF SYSUT1 DISK &1 NRENTEXT A
FILEDEF SYSUT2 DISK &2 TEXT A
FILEDEF SYSUT3 DISK &1 TEMP A

* * EXECUTE THE SEPARATION TOOL PROGRAM

*
LOAD IFYVSFST IFYVSFIO (CLEAR
START * &LMNAME

* * ASSURE THAT SEPARATION WAS SUCCESSFUL

*
&IF &RETCODE EQ 0
&BEGTYPE

&GOTO -SEPOK

Errors occurred during execution of the separation tool.
&END
&RCVALUE &RETCODE
ERASE &1 NRENTEXT A
ERASE &2 TEXT A
ERASE &1 TEMP A
&GOTO -FINAL
-SEPOK

* * LEAVE REQUIRED OUTPUT FILES IF SEPARATION WAS SUCCESSFUL

*
ERASE &1 TEMP A
ERASE &1 TEXT A
RENAME &1 NRENTEXT A &1 TEXT A

Figure 41 (Part 3 of 4). FOVSRSEP, Separate Reentrant and Nonreentrant CSECTs

Chapter 11. Using VS FORTRAN under VM 245

* * CLEAR FILEDEFs THAT WERE SET AND THEN STOP

*
-FINAL
FILEDEF SYSIN
FILEDEF SYSPRINT
FILEDEF SYSUT1
FILEDEF SYSUT2
FILEDEF SYSUT3
&EXIT &RCVALUE

*

CLEAR
CLEAR
CLEAR
CLEAR
CLEAR

* INCORRECT INPUT PARAMETERS

*
-BADINP
&BEGTYPE
Invalid input parameter format.

&END
&RCVALUE 12
&GOTO -RULES

Figure 41 (Part 4 of 4). FOVSRSEP, Separate Reentrant and Nonreentrant CSECTs

Selection of Load Mode or Link Mode

All library modules, other than the mathematical routines, can be either included as
part of your executable program along with the compiler-generated code, or loaded
dynamically when your program is executed. Execution-time loading has the
advantages of reducing the time required to create an executable program, and of
reducing the auxiliary storage space required for your executable program.

If you choose to have the necessary library routines included within your
executable program, you are operating in fink mode. If, on the other hand, you
choose to have the library routines loaded during execution of your program, you
are operating in load mode. You make the choice of link mode or load mode by
making the appropriate combination of libraries available when you create your
executable program from your TEXT files.

Creating an Executable Program and Running It

You can use one of the following three methods to create an executable program:

1. By using the LOAD, and possibly INCLUDE, commands to produce an
executable program within virtual storage. You execute the program using the
START command. No permanent copy of the·executable program is made.
Execution can be in link mode or load mode.

2. By using the LOAD, possibly the INCLUDE, and the GENMOD commands to
build an executable program which is stored as a nonrelocatable (MODULE)
file on a CMS disk. You may execute the program later by issuing a CMS

246 VS FORTRAN Programming Guide

command with the same name as the MODULE file. Execution can be in link
mode or load mode.

3. By using the LKED command to create-that is, to link-edit-an executable
program which is stored as a load module in a member of a CMS LOADLffi.
You may execute the program later by using the OSRUN command. Execution
can only be done in load mode.

The following paragraphs show how to use each of these three methods for
creating executable programs and running them. In order for you to do this, your
system programmer must have made the following libraries available to you:

• VLNKMLIB, a text library (TXTLffi), which contains library modules used
for creating a program that is to operate in link mode.

• VFORTLIB, a text library (TXTLIB), which contains library modules used for
creating a program that is to operate in link mode, and for creating a program
that is to operate in load mode.

• VFLODLffi, a CMS LOAD LIB , which contains the library modules that may
be loaded into virtual storage during execution of your program.

Your system programmer must tell you which CMS minidisk contains these
libraries so that you may gain access to this minidisk. In addition, your system
programmer may have given these libraries names that are different from the
standard names listed above; the examples below assume that the standard names
are used.

Using the LOAD, INCLUDE, and START Commands

Use the LOAD and INCLUDE commands to create a temporary copy of your
executable program in virtual storage. Your object code from which the executable
program is built may be either in a TEXT file or in a member of a text library. You
must first make the appropriate VS FORTRAN Library text libraries, as well as
your own text libraries, available by means of a GLOBAL command. If you want
your program to execute in link mode, use the following:

GLOBAL TXTLIB VLNKMLIB VFORTLIB CMSLIB userlib

If you want your program to execute in load mode, use the following command:

GLOBAL TXTLIB VFORTLIB CMSLIB userlib ...

The text library CMSLIB is part of the VM/ SP product; you need to specify it only
if the simulation of extended precision (REAL * 16 or COMPLEX*32)
floating-point instructions is required on a machine that does not have these
instructions. You need to specify userlib only if any of your object code (that is,
your main program or any of the subprograms that you call) is stored as a member
of a text library rather than as a TEXT file.

In order to create the temporary copy of your executable program in virtual
storage, issue one LOAD command, followed optionally by one or more
INCLUDE commands as follows:

Chapter 11. Using VS FORTRAN under VM 247

LOAD myprog ...
INCLUDE subprog

The LOAD command and each INCLUDE command may specify the names of
TEXT files or of members of your text libraries which are to comprise your
executable program in virtual storage. You must specify a name that refers to a
main program. You should not list subprograms if the filenames of any TEXT files
or the member names in the text libraries are identical to the names of the
subprograms; in this case, these subprograms are included automatically.

Before executing the temporary copy of your executable program, you must issue
the following GLOBAL command if execution is to be in load mode:

GLOBAL LOADLIB VFLODLIB

For your convenience, you may issue this GLOBAL command prior to issuing the
LOAD command.

To execute the temporary copy of your program that has been built in virtual
storage, issue the following START command:

START *

Using the LOAD, INCLUDE, and GENMOD Commands

Use a series of LOAD, INCLUDE, and GENMOD commands to create an
executable program that is stored as a nonrelocatable (MODULE) file on your
CMS disk. Your object code from which the executable program is built may be
either in a TEXT file or in a member of a text library. First, however, you must
make the appropriate VS FORTRAN Library text libraries, as well as your own
text libraries, available by means of a GLOBAL command. If you want your
program to execute in link mode, use the following command:

GLOBAL TXTLIB VLNKMLIB VFORTLIB userlib ...

If you want your program to execute in load mode, use the following command:

GLOBAL TXTLIB VFORTLIB userlib ...

You need to specify userlib only if ~ny of your object code (that is, your main
program or any of the subprograms that you call) is stored as a member of a text
library rather than as a TEXT file.

Next, you must create a temporary copy of your executable program in virtual
storage. To do this, issue one LOAD command followed optionally by one or more
INCLUDE commands as follows:

LOAD myprog ...
INCLUDE subprog

The LOAD command and each INCLUDE command may specify the names of
TEXT files or of members of your text libraries which are to comprise your
executable program in virtual storage. You must specify a name that refers to a
main program. You should not list subprograms if the filenames of any TEXT files
or the member names in the text libraries are identical to the names of the
subprograms; in this case, these subprograms are included automatically.

248 VS FORTRAN Programming Guide,

To create the nonrelocatable (MODULE) file on your CMS disk, issue the
following GENMOD command:

GENMOD modname

This command builds a file with a filename of modname and a filetype of
MODULE. This program may be executed at any time.

You may be required to issue one or more GLOBAL commands prior to executing
your program. You must issue the following command if the simulation of
extended precision (REAL * 16 or COMPLEX*32) floating-point instructions is
required on a machine which does not have these instructions:

GLOBAL TXTLIB CMSLIB

If your program executes in load mode, issue the following command:

GLOBAL LOAD LIB VFLODLIB

To execute your program that is stored as a nonrelocatable (MODULE) file, issue
the following command:

modname

where modname is the filename of your MODULE file as specified in the
GENMOD command.

Using the LKED Command

Use the LKED command to create-that is, to link-edit-an executable program
that is stored as a load module in a member of a CMS LOADLffi. Such a program
can execute only in load mode. Prior to issuing the LKED command, you must
issue the following FILEDEF command:

FILEDEF SYSLIB DISK VFORTLIB TXTLIB fm

where 1m is the filemode of the CMS disk that contains the library VFORTLffi.
Then issue the LKED command:

LKED myprog (LIBE libname NAME membname

In this command,

myprog

libname

is the filename of the TEXT file that contains your object code.

is the filename of the LOADLIB file into which the resulting load
module is to be placed as a member.

membname is the name of the member in the LOAD LIB file designated by
libname, above, into which the resulting load module is to be placed.

If your program calls subprograms whose object code is stored as a separate TEXT
file or as a member of a text library, your TEXT file which is the input to the
LKED command must contain linkage editor INCLUDE or LffiRARY statements
that specify the locations of the object code for these subprograms. The
INCLUDE statement has two forms:

Chapter 11. Using VS FORTRAN under VM 249

INCLUDE tlibdef(mname, ...)
INCLUDE textdef

The first form causes the members listed as mname to be included in the load
module from the text library referred to by the ddname tlibdef The second form
causes the TEXT file referred to by the ddnatne textde! to be included in the load
module.

The LIBRARY statement has the following form:

LIBRARY tlibdef(ename, ...)

This causes the library referred to by the ddname tlibde! to be searched for the
members listed as ename if the subprograms of those names are not already
included into the load module either from the TEXT file input to the LKED
command, or by having been specifically included with INCLUDE statements.

Prior to issuing the LKED command, you must have issued FILEDEF commands
as follows to correspond to the forms of the INCLUDE or LIBRARY statement
shown above:

FILEDEF tlibdef DISK tlibname TXTLIB fm
FILEDEF textdef DISK textname TEXT fm

Before you can execute the program that was created with the LKED command,
you must issue the following GLOBAL command:

GLOBAL LOADLIB VFLODLIB libname

where libname is the filename of the CMS LOADLm into which your load module
was placed as a member by the LKED command. You must also issue the
following GLOBAL command if the simulation of extended precision (REAL*16
or COMPLEX*32) floating-point instructions is required on a machine that does
not have these instructions:

GLOBAL TXTLIB CMSLIB

Issue the following OSRUN command to execute your program:

OSRUN membname

where membname is the name of the member that contains the load module which
was created with the LKED command.

Specifying Execution-Time Options under eMS

You can specify an execution-time option (XUFLOW, NOXUFLOW, DEBUG, or
NODEBUG), as follows:

• When executing your program using a START command:

START * option

• When executing a program that was created with a GENMOD command:

250 VS FORTRAN Programming Guide .

modname option

where modname is the name of your VS FORTRAN program, and option is
XUFLOW, NOFLOW, DEBUG, or NODEBUG.

• When executing a program that is stored as a member of a eMS LOADLm:

OSRUN membname PARM=option

For more information, see "Using the Execution-Time Options" on page 200.

Execution-Time Files

Predefined FOes

When you execute your program using the techniques described above, you may
need many different files, as outlined in the following sections.

The following describes how files are defined through the use of the eMS file
definition command, and how they are identified to the system through the use of
file identifiers and VS FORTRAN input/output statements.

All execution-time files that you want to use must be defined to the operating
system. Three files are predefined:

Sequential

• Terminal input

• Terminal output

• Punched card output

The three predefined files are provided for you by the VS FORTRAN initialization
routine, which also supplies the system definition command for these files. These
files are recognized by eMS when you refer to them in VS FORTRAN input or
output statements with the VS FORTRAN data set reference number that has been
assigned to them. Since they are predefined, you do not have to supply a system
definition command for them, unless you want to change their definition or create
new files to replace them (see Figure 42)~

Chapter n. Using VS FORTRAN under VM 251

User-Defined Files

Data Set Required Record
Reference Input and Output Format and
Number Statements Identifies Maximum Length

5 READ (5,b)list Terminal input Fixed-length,
READ (5,*)list unblocked (F), 80

characters long.

6 WRITE (6,b)list Terminal Fixed-length,
WRITE (6,*)list output unblocked (FA), 133

characters long.

7 WRITE (7,b)list Punched card Fixed-length,
output unblocked (F), 80

characters long.

Figure 42. Predefined FDes

Notes to Figure 42:

1. The numbers shown in this table under Data Set Reference Number are default
numbers, but can be different for your installation.

2. The forms of the READ or WRITE statements that have * for the unit number
refer to these predefined files-but bear in mind that the defaults may have
been changed for your installation.

User-defined files containing data that you will want your program to process may
already exist in your system. Conversely, you may want your program to create a
file to hold data that was generated during its execution.

All such files must be defined with a system definition command; since they are not
predefined, they cannot be identified by CMS and associated with your program.
System definition is used in conjunction with.the data set reference numbers in
your VS FORTRAN input and output statements and the identifier of the file that
you want to use or create.

You can, in addition, define the following files to be used in place of the system's
predefined files or change them to suit your own needs:

Sequential

• Terminal input

• Terminal output

• Punched card output

Whether a file is sequential or direct access will, to a great extent, determine how a
record is defined, the way it is identified, and how it is referred to in a VS
FORTRAN program.

252 VS FORTRAN Programming Guide

Specifying a Flle Identifier

Regardless of the type of file you are using, there are several general guidelines that
must be followed in defining and using files.

• Define each file used in your program to the system (either through
system-supplied definition or one that you supply).

• Do not use the same file on more than one type of device in the same program.

• You may refer to the same file from more than one program using sequential
and direct access if you refer to it with different unit numbers and with
separate data definition statements.

Each file that you use is referred to by a file identifier in the following format:

filename filetype [filemode]

where filename is the name that identifies the file to the system; filetype defines the
kind of file this is.

The filetypes you'll most often use are:

DATA for your data files

FORTRAN for all your FORTRAN source programs

The filemode is optional and can be any valid eMS filemode. You need to specify
the filemode when the same filename (filetype) is located on more than one disk
and the first access file is not the desired file.

Using the FILEDEF (File Definition) Command

The form of the FILEDEF command you use varies, depending on the type of file
you're processing: sequential or direct, tape, terminal, or unit record.

The FILEDEF command can be shortened to FI.

If you do not use a system definition command, the default filename, filetype, and
filemode for unit number xx are:

FILE FTxxF001 A1

where xx is the unit number to which you are putting out the data.

Note: If FILE=fn is specified in the OPEN statement and no FILEDEF has been
issued, the default filetype isfn instead of FTxxFOOl.

To define sequential and direct files on disk, specify the FILEDEF command as
follows:

FILEDEF FTxxFyyy DISK filename filetype [filemode] [(options]
or

FILEDEF xx DISK filename filetype [filemode] [(options]
if yyy = 001

Chapter 11. Using VS FORTRAN under VM 253

Defining Tape Files

DefIning Terminal Files

You specify the FTxxFyyy field to agree with the FORTRAN reference numbers in
the source program.

• For the xx field, see Figure 54 on page 286.

• For the yyy field, specify 001 if you're not using multiple files. If you are using
multiple files, you can specify 001 through 999.

If you have specified the FILE parameter in the OPEN statement, specify the
FILEDEF command as follows:

FILEDEF fn DISK filename filetype [filemode] [(options]

where In is the name specified in the FILE parameter.

For sequential disk files defined with a record format other than undefined or fixed
unblocked, the file mode number must be specified as 4; for example, A4.

The options are any FILEDEF options valid for disk files. In particular, the
maximum LRECL and BLKSIZE that can be specified is 32760.

To define tape files, you specify the FILEDEF command as follows:

FILEDEF FTxxFyyy TAPn [(options]
or

FILEDEF xx TAPn [(options] if yyy = 001

You specify the FTxxFyyy field to agree with the FORTRAN reference numbers in
the source program:

• For the xx field, see Figure 54 on page 286.

• For the yyy field, specify 001 if you are not using multiple files. If you are
using multiple files, you can specify 001 through 999.

For the n field, you specify any valid tape unit (1 through 4).

The options are any FILEDEF options valid for tape files.

To define terminal files, you specify the FILEDEF command as follows:

FILEDEF FTxxF001 TERMINAL [(options]
or

FILEDEF xx TERMINAL [(options]

You specify the FTxxFOOl field to agree with the FORTRAN reference numbers
in the source program.

For the xx field, see Figure 54 on page 286.

The options are any FILEDEF options valid for terminal files.

254 VS FORTRAN Programming Guide

DerIDing Unit Record FOes

For input terminal files, your program should always notify you when to enter data;
if it doesn't, you may inadvertently cause long system waits.

For terminal files, a null entry in response to a prompt is taken to be an end-of-file.
If you want to continue processing, a FILEDEF or an explicit OPEN is required.

To define unit record files, you specify the FILEDEF command as follows:

For Card Reader Files:

FILEDEF FTxxF001 READER [(options]
or

FILEDEF xx READER [(options]

For Card Punch Files:

FILEDEF FTxxF001 PUNCH [(options]
or

FILEDEF xx PUNCH [(options]

For Printer Files:

FILEDEF FTxxF001 PRINTER [(options]
or

FILEDEF xx PRINTER [(options]

You specify the FTxxFOOl field to agree with the FORTRAN reference numbers
in the source program:

For the xx field, see Figure 54 on page 286.

The options are any FILEDEF options valid for the type of unit record file you're
processing.

Execution-Time Output

The output that execution of your program gives you depends upon whether or not
there are errors in your program.

Execution without Error

If your program executes without error, and gives the results you expect, your task
of program development is completed.

Chapter 11. Using VS FORTRAN under VM 255

Execution with Errors

When your program has errors in it, your execution-time output may be incorrect,
or nonexistent.

You may or may not get error messages as well. Any VS FORTRAN
execution-time error messages you get come from the VS FORTRAN Library.

If you get output from the program itself, it may be exactly what you expected, or
(if there are logic errors in the program) it may be output you didn't expect at all.
When this happens, you must proceed to the next step in program development,
described in Chapter 9, "Executing Your Program and Fixing Execution-Time
Errors" on page 185.

256 VS FORTRAN Programming Guide

Chapter 12. Using VS FORTRAN under MVS

You can compile your programs under MVS and run them under VM or VSE; or
you can compile and execute them under MVS. For special MVS/XA
considerations, see "MVS/XA Considerations" on page 311.

Executing Y our Program with Job Control Statements or Cataloged
Procedures

Job Processing

The simplest way to execute your program is to use one of the cataloged
procedures described in "Using and Modifying Cataloged Procedures" on
page 264.

However, the cataloged procedures may not give you the programming flexibility
you need for your more complex data processing jobs, and you may need to specify
your own job control statements, or write your own cataloged procedures.

Three basic steps are taken to process a FORTRAN program:

1. Compiling

2. Linkage editing

3. Load module execution (go step)

The input to the compile step is called the source. The output from the compile
step is called an object module, which is the input to the link-edit step. The output
of the link-edit step, is the load module, which is one or more object modules with
all external references resolved. The load module is the program that is executed in
the go step. If the loader is used in place of the linkage editor, the last two steps
(link-edit and load module execution) are combined into one step.

Each step is called a job step-the execution of one program. Each job step may be
executed alone or in combination with other job steps as a job-an application
involving one or more job steps. Hence, a job may consist of one step, such as
FORTRAN compiler execution, or of many steps, such as compiler execution
followed by linkage editor execution and load module execution.

The programmer defines the requirements of each job to the operating system
through job control statements.

Chapter 12. UsingVS FORTRAN under MVS 257

Job control statements provide a communication link between the FORTRAN
programmer and the operating system. The FORTRAN programmer uses these
statements to define a job, a job step within a job, and data sets required by the
job.

Some of the job control statements most often used' are:

JOB
EXEC
DD
PROC
Comment
Delimiter (End-of-Data)
Null (End-of-Job)

For a complete description of the JOB, EXEC, DD, and PROC job control
statements, see one of the following system publications:

OS/VS2 MVS JCL
MVS / Extended Architecture JCL

Identifying a Job-JOB Statement

The JOB statement begins each MVS job you enter into the system:

//jobname JOB [parameters]

The jobname identifies this job to the system. The jobname must conform to the
standards defined in the appropriate JCL publication.

The parameters let you request the following:

• Accounting information for this job

• Your name

• . The type of system messages to be written

• Conditions for terminating job execution

• Assignment of input and output classes

• Job priority

• Main storage requirements

• Time limit for the job

258 VS FORTRAN Programming Guide

Assigning Default Values-PR,OC Statement

You use the PROC job control statement to assign default values to symbolic
parameters.

II [name] PROC symbolic-parameter=value[, ...]

The name identifies a cataloged procedure; name is optional.
symbolic-parameter=value identifies the value(s) assigned to a symbolic parameter.
You assign a name to the procedure when adding it to the procedure library, for
example, SYS 1.PROCLIB.

Modifying PROC Statements

You can modify a PROC statement parameter by specifying a change in the EXEC
statement that calls the procedure. When you change a PROC statement
parameter, you're assigning an overriding value to a symbolic parameter; when the
cataloged procedure is executed, this value is transferred to the appropriate
parameter in the EXEC or DD statement.

For example, to change the region size of the compiler to 200K bytes and the card
punch output in the load module from output class B to output class C, you can use
the following statement:

II EXEC FORTVCLG,FVREGN=200K,
II GOF7DD='SYSOUT=C'

Note that you don't code the ampersand preceding a symbolic parameter, and that
you use apostrophes to enclose a value containing a special character, as in
SYSOUT=C.

Before you execute the call, the appropriate statements in FORTVCLG appear as
follows:

IIFORT EXEC PGM=&FVPGM,REGION=&FVREGN, ...

IIFT07F001 DD &GOF7DD

When the cataloged procedure is called, the statements appear as though they were
coded:

IIFORT EXEC PGM=FORTVS,REGION=200K, ...

IIFT07F001 DD SYSOUT=C

Note that a symbolic parameter not changed (PGM=&FVPGM) retains its default
value.

Another method you can use to change a parameter value is to assign the new value
directly to the parameter itself, not the symbolic parameter associated with it. For
example, you can change the region size by specifying REGION=200K in place of
FVREGN=200K. (In this example, you'd be changing the region size for all job
steps; to change the region size for the compile job step only, you must code the

Chapter 12. Using VS FORTRAN under MVS 259

appropriate job step name, FORT, in the parameter; for example,
REGION.FORT=200K.)

Requesting Execution~EXEC Statement

You use the EXEC job control statement to request that compilation of a program
or procedure is to begin.

//[stepname] EXEC [PROC=]procname
[, PARM=' (option [, option] ...)']
[,other parameters]

The stepname identifies this job step.

The procname is the name of a cataloged procedure you want executed.

To request a FORTRAN compilation, you specify one of the procedures listed in
table under '~Using and Modifying Cataloged Procedures" on page 264.

The P ARM parameter lets you specify any compiler options that differ from the
defaults.

(See "Using the Compiler Options" on page 157 and "Link-Editing Your
Program" on page 278.)

The other parameters let you request other information:

• A job step name (when it's necessary for a later job step to refer to
information from this job step)

• Conditions for bypassing execution of this job step

• Accounting information for this job step

• Time limit for this step

• Main storage requirements

Modifying EXEC Statements

To modify EXEC statement parameters, you must change the EXEC statement
that calls the procedure.

The following rules apply to EXEC statement modifications:

• Parameters are overridden in their entirety. If you want to retain some options
while changing others, you must specify those options to be retained.
(However, if you don't override them, default options remain in effect.)

• To specify parameters for individual job steps, use the form:

keyword.stepname=value

260 VS FORTRAN Programming Guide'

where:

keyword
indicates the parameter name

stepname
indicates the procedure stepname, for example,

REGION. FORT=value

Parameters not specifying stepname are assumed to apply to all steps in the
procedure; for example, REGION = value applies to the entire cataloged procedure.

• To make changes to more than one step, you must specify all changes for an
earlier step before those for later steps.

• You can combine changes to symbolic parameters and EXEC statement
parameters on the same card.

You're allowed to make the following modifications:

1. Override existing parameters: For example, to modify the LKED step by
raising the condition code from 4 to 8, use the statement:

IlsOMENAME EXEC FORTVCLG,
II COND.LKED=(8,LT)

2. Add new parameters: For example, to modify FORT by specifying the TIME
parameter, use the statement:

IIANYNAME EXEC FORTVCLG,TIME.FORT=5

3. Change more than one parameter: For example, to modify FORT by changing
the region to 200K bytes and the P ARM option NOLIST to LIST, use the
statement:

IISOME EXEC FORTVCLG,
II FVREGN=200K,
II FVPOLST=LIST

4. Change more than one step: For example, to modify FORT by specifying
TIME and to modify LKED by raising the condition code from 4 to 8, use the
statement:

IIANY
II

EXEC FORTVCLG,TIME.FORT=5,
COND.LKED=(8,LT)

Note that you can add a parameter while revising an existing one.

5. Combine changes to symbolic parameters and EXEC statement parameters: For
example, to modify the symbolic parameter FVREGN, and to add the TIME
parameter to the FORT EXEC statement, use the statement:

IIANY EXEC FORTVCLG,FVREGN=200K,
II TIME. FORT=5

Chapter 12. Using VS FORTRAN under MVS 261

6. Change execution-time options: For example, to modify GO by specifying the
P ARM parameter, use the statement:

jjANY EXEC FORTVCLG,GO.PARM='NOXUFLOW'

Defining Files-DD Statement

Modifying DD Statements

To define files you may need, you specify the DD statement:

jj[ddnamelprocstep.ddname] DD [data-set-name] [other-parameters]

The ddname identifies the data sets defined by this DD statement to the compiler,
linkage editor, loader, or to your program. The ddnames you can use for VS
FORTRAN are shown in Figure 50 on page 274, Figure 51 on page 275, and
Figure 52 on page 282.

The procstep identifies the procedure step.

The data;.set-name is the qualified name you've given the data set that contains
your data files; for example, the name of the library containing the files you use in
your INCLUDE statements.

The other parameters let you request additional information:

• The location of this data set in the system configuration

• The status of this data set at the beginning and end of the job step

• Label information for this data set's volume

• Optimization of input/output channel usage

• Device type

• Space allocation (for data sets on direct access devices)

• Characteristics of the data set records

Job control statements are described under "Job Processing" on page 257.

You modify the DD statement by submitting new DD statements after the EXEC
statement that calls the procedure. As with modifications to EXEC statements,
you can override or add parameters to DD statements in one or many steps. In
addition, you can add entirely new DD statements to any step (whenever you
supply a SYSIN DD statement, you're adding a new DD statement.)

The following rules apply to DD statement modifications:

• Parameters are overridden in their entirety, except for the DCB parameter, in
which individual subparameters can be overridden.

262 VS FORTRAN Programming Guide

• Parameters are nullified by specifying a comma after the equal sign in the
parameter; for example, UNIT=,.

• Parameters are overridden when mutually exclusive parameters are specified in
their place; for example, SPLIT overrides SPACE.

• DD statements must indicate the related procedure step, using the form
/ /procstep.ddname; for example, / /FORT.SYSIN.

• To make changes in more than one step, you must specify all changes for an
earlier step before those for later steps.

• To modify more than one DD statement in a job step, you must specify the
applicable DD statements in the same sequence as they appear in the cataloged
procedure.

You can make the following modifications:

1. Override existing parameters. For example, to modify SYSLMOD so that the
load module is stored in a private library rather than in the system library, you
can specify the statement:

IILKED.SYSLMOD DD DSNAME=PRIV(PROG),
II DISP=(MOD,PASS)

In this example, the library PRIV is assumed to be an old library and is
cataloged (that is, VOLUME and UNIT parameters need not be specified).
Note that, in subsequent uses of the library you must submit a JOBLm DD
statement defining the private library, to make the library available to the
system.

2. Add new parameters. For example, to store the load module in a new,
uncataloged library, you must specify the VOLUME, UNIT, and SPACE
parameters. For example:

IILKED.SYSLMOD DD
II

DSNAME=MYLIB(FIRST),
DISP=(NEW,PASS),
VOLUME=SER=11234,
UNIT=SYSDA,
SPACE=(TRK, (50,10,2»

II
II
II

3. Add new DD statements. For example, to add new data sets having data set
reference numbers 10 and 15 for processing in the GO step, you can specify
the statements:

IIGO.FT10F001
II
II
II
IIGO.FT15F001
II
II
II
II

DD DSNAME=DSET1,
DISP=(NEW,DELETE) ,
VOLUME=SER=T1132,
UNIT=TAPE

DD DSNAME=DSET2,
DISP= (,DELETE) ,
VOLUME=SER=DA45,
UNIT=3350,
SPACE=(TRK, (10,10»

Note that you can explicitly define a data set as new (DISP parameter for
FTI0FOOl), or, alternatively, permit the system to assume a new data set by
default (DISP in FTI5FOOl).

Chapter 12. Using VS FORTRAN under MVS 263

Using and Modifying Cataloged Procedures

The table below is an index to a number of cataloged procedures that you can use
to compile, link-edit or load, and execute your VS FORTRAN programs.
Figure 43 on page 265 through Figure 49 on page 270 contain these procedures
in load mode.

Action Procedure Figure

Compile only FORTVC Figure 43

Compile and link-edit FORTVCL Figure 44

Compile, link-edit, and execute FORTVCLG Figure 45

Link-edit and execute FORTVLG Figure 46

Execute only FORTVG Figure 47

Compile and load FORTVCG Figure 48

Load only FORTVL Figure 49

As the figures show, many of the JCL parameters in these procedures are coded as
symbolic parameters (the parameter name is preceded by an ampersand). The
IBM-supplied default value for each symbolic parameter is defined in the PROC
statement that begins each procedure.

This means that you can execute the procedures without making any changes to
them, or you can modify them for any particular run. (The use of symbolic
parameters is explained in the job control language publications for the system
you're operating under.)

If you want to change the procedures to operate in link mode, you have to
concatenate SYS1.VLNKMLIB ahead of SYS1.VFORTLIB in the SYSLffi DD
statement for the link-edit steps. In this case, SYS1.VFORTLIB is not needed in
the GO steps.

The procedures are coded to reference the standard mathematical subroutines in
SYS1.VFORTLIB, by means of the SYSLIB data set in the link step when the
linkage editor is used, or in the GO step when the loader is used. If you want to
use the alternative mathematical library subroutines in SYS 1. VAL TLffi (instead of
the standard routines), concatenate SYS1.VALTLffi as SYSLffi ahead of
SYS1.VFORTLm.

Before making either of these changes, you should be aware of how your system
administrator installed VS FORTRAN, as that will determine what libraries are
available. The procedures may have been changed already to match the needs of
your VS FORTRAN installation.

Note: Unless you increase the permissible condition code in the COND parameter
of the compilation EXEC statement, severity levels higher than level 4 prevent
link -edit processing.

For more information about job processing statements, see "Job Processing" on
page 257.

264 VS FORTRAN Programming Guide

IIFORTVC
II
II
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

PROC FVPGM=FORTVS,FVREGN=1200K,FVPDECK=NODECK,
FVPOLST=NOLIST,FVPOPT=O,FVTERM='SYSOUT=A' ,
FVLNSPC='3200, (25,6)'

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
FVLNSPC

DEFAULT-VALUE

FORTVS
1200K
NODECK
NOLIST
o
SYSOUT=A
3200, (25,6)

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAND
FORT.SYSLIN SPACE

11*
IIFORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT) ,

PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT) ,
DD SYSOUT=A,DCB=BLKSIZE=3429

II
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIN
II

DD &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440
DD DSN=&&LOADSET,DISP=(MOD,PASS) ,UNIT=SYSDA,
SPACE=(&FVLNSPC) ,DCB=BLKSIZE=3200

Figure 43. Cataloged Procedure FORTVC-Compile Only

Chapter 12. Using VS FORTRAN under MVS 265

IIFORTVCL
II
II
11*

. 11*

PROC FVPGM=FORTVS,FVREGN=1200K,FVPDECK=NODECK,
FVPOLST=NOLIST,FVPOPT=O,FVTERM='SYSOUT=A',
PGMNAME=MAIN,PGMLIB='&&GOSET',FVLNSPC='3200, (25,6)'

PARAMETER DEFAULT-VALUE USAGE

FVPGM FORTVS COMPILER NAME
FVREGN 1200K FORT-STEP REGION
FVPDECK NODECK COMPILER DECK OPTION
FVPOLST NOLIST COMPILER LIST OPTION

11*
11*
11*
11*
11*
11*
11*
11*
/1*
11*

FVPOPT 0 COMPILER OPTIMIZATION

11*
IIFORT EXEC
II
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIN
II
IILKED EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
II

FVTERM SYSOUT=A FORT.SYSTERM OPERAND
FVLNSPC 3200, (25,6) FORT.SYSLIN SPACE
PGMLIB &&GOSET LKED.SYSLMOD DSNAME
PGMNAME MAIN LKED.SYSLMOD MEMBER

PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT),
PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT) ,
DD SYSOUT=A,DCB=BLKSIZE=3429
DD &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440
DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
PGM=IEWL,REGION=200K,COND=(4,LT),
PARM='LET,LIST,MAP,XREF'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(1024, (200,20))

NAME

DD DSN=&PGMLIB. (&PGMNAME),DISP=(,PASS),UNIT=SYSDA,
SPACE=(TRK,(10,10,1),RLSE)
DD DSN=&&LOADSET,DISP=(OLD,DELETE)
DD DDNAME=SYSIN

Figure 44. Cataloged Procedure FORTVCL-Complle and Link-Edit

266 VS FORTRAN Programming Guide

IIFORTVCLG
II
II
II
II
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

PROC FVPGM=FORTVS,FVREGN=1200K,FVPDECK=NODECK,
FVPOLST=NOLIST,FVPOPT=0,FVTERM='SYSOUT=A',GOREGN=100K,
FVLNSPC='3200, (25,6)',
GOF5DD='DDNAME=SYSIN',GOF6DD='SYSOUT=A',
GOF7DD='SYSOUT=B'

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
FVLNSPC
GOREGN
GOF5DD
GOF6DD
GOF7DD

DEFAULT-VALUE

FORTVS
1200K
NOOECK
NOLIST
o
SYSOUT=A
3200, (25,6)
100K
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAND
FORT.SYSLIN SPACE
GO-STEP REGION
GO.FT05F001 OPERAND
GO.FT06F001 OPERAND
GO.FT07F001 OPERAND

11*
IIFORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT),

PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT) ,
DD SYSOUT=A,DCB=BLKSIZE=3429

II
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIN
II

DD &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440

IILKED EXEC

DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
PGM=IEWL,REGION=200K,COND=(4,LT) ,
PARM='LET,LIST,MAP,XREF' II

IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
II
IIGO EXEC
IISTEPLIB
IIFT05F001
IIFT06F001
IIFT07F001

DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(1024,(200,20»
DO DSN=&&GOSET(MAIN) ,DISP=(,PASS),UNIT=SYSDA,
SPACE=(TRK,(10,10,1),RLSE)
DO DONAME=SYSIN
PGM=*.LKED.SYSLMOD,REGION=&GOREGN,COND=(4,LT)
DO DSN=SYS1.VFORTLIB,DISP=SHR
DO &GOF5DO
DO &GOF6DD
DD &GOF7DO

Figure 45. Cataloged Procedure FORTVCLG-CompUe, Link-Edit, and Execute

Chapter 12. Using VS FORTRAN under MVS 267

IIFORTVLG
II

PROC LKLNDD='DDNAME=SYSIN',GOPGM=MAIN,GOREGN=100K,
GOF5DD='DDNAME=SYSIN',

II
II
11*
11*
11*
11*
11*
11*
11*
11*
11*
/1*
11*
11*
IILKED EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
IIGO EXEC
II
IISTEPLIB
IIFT05F001
IIFT06F001
IIFT07F001

GOF6DD='SYSOUT=A' ,
GOF7DD='SYSOUT=B'

PARAMETER
LKLNDD
GOPGM
GOREGN
GOF5DD
GOF6DD
GOF7DD

DEFAULT-VALUE
DDNAME=SYSIN
MAIN
100K
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

USAGE
LKED.SYSLIN OPERAND
OBJECT PROGRAM NAME
GO-STEP REGION
GO.FT05F001 OPERAND
GO.FT06F001 OPERAND
GO.FT07F001 OPERAND

PGM=IEWL,REGION=200K,COND=(4,LT) ,
PARM='LET,LIST,MAP,XREF'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(CYL,(1,1))
DD DSN=&&GOSET(&GOPGM) ,DISP=(,PASS) ,UNIT=SYSDA,
SPACE=(TRK,(10,10,1) ,RLSE)
DD &LKLNDD
PGM=*.LKED.SYSLMOD,REGION=&GOREGN,
COND=(4,LT,LKED)
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure 46. Cataloged Procedure FORTVLG-Link-Edit and Execute

IIFORTVG PROC
II
II
II
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
IIGO EXEC
IISTEPLIB
IIFT05F001
IIFT06F001
IIFT07F001

GOPGM=MAIN,GOREGN=100K,
GOF5DD='DDNAME=SYSIN' ,
GOF6DD='SYSOUT=A' ,
GOF7DD='SYSOUT=B'

PARAMETER

GOPGM
GOREGN
GOF5DD
GOF6DD
GOF7DD

DEFAULT-VALUE

MAIN
100K
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B

USAGE

PROGRAM NAME
GO-STEP REGION
GO.FT05F001 DD OPERAND
GO.FT06F001 DD OPERAND
GO.FT07F001 DD OPERAND

PGM=&GOPGM,REGION=&GOREGN,COND=(4,LT)
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure 47. Cataloged Procedure FORTVG-Execute Only

268 VS FORTRAN Programming Guide

IIFORTVCG
II
II
II
II
II
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

PROC FVPGM=FORTVS,FVREGN=1200,FVPDECK=NODECK,
FVPOLST=NOLIST,FVPOPT=O,FVTERM='SYSOUT=A',
FVLNSPC=' 3200, (25,6) "
GOF5DD='DDNAME=SYSIN' ,
GOF6DD='SYSOUT=A' ,
GOF7DD='SYSOUT=B' ,GOREGN=100K

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
FVLNSPC
GOF5DD
GOF6DD
GOF7DD
GOREGN

DEFAULT-VALUE

FORTVS
1200
NODECK
NOLIST
o
SYSOUT=A
3200, (25,6)
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B
100K

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAND
FORT.SYSLIN SPACE
GO.FT05F001 OPERAND
GO.FT06F001 OPERAND
GO.FT07F001 OPERAND
GO-STEP REGION

11*
IIFORT EXEC PGM=&FVPGM,REGION=&FVREGN,COND=(4,LT),

PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT) ,
DD SYSOUT=A,DCB=BLKSIZE=3429

II
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIN
II
IIGO EXEC
II
IISTEPLIB
IISYSLIN
IISYSLOUT
IISYSLIB
IIFT05F001
IIFT06F001
IIFT07F001

DD &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440
DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC) ,DCB=BLKSIZE=3200
PGM=LOADER,REGION=&GOREGN,COND=(4,LT),
PARM='LET,NORES,EP=MAIN'
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD DSN=&&LOADSET,DISP=(OLD,DELETE)
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure 48. Cataloged Procedure FORTVCG-CompHe and Load

Chapter 12. Using VS FORTRAN under MVS 269

IIFORTVL
II
II
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*

PROC GOF5DD='DDNAME=SYSIN',
GOF6DD= 'SYSOUT=A' ,
GOF7DD='SYSOUT=B' ,GOREGN=100K

PARAMETER

GOF5DD
GOF6DD
GOF7DD.
GOREGN

DEFAULT-VALUE

DDNAME=SYSIN
SYSOUT=A
SYSOUT=B
100K

USAGE

GO.FT05F001 OPERAND
GO.FT06F001 OPERAND
GO.FT07F001 OPERAND
GO-STEP REGION

IIGO EXEC PGM=LOADER,REGION=&GOREGN,
PARM='LET,NORES,EP=MAIN' II

IISTEPLIB
IISYSLOUT
IISYSLIB
IIFT05F001
IIFT06F001
IIFT07F001

DD DSN=SYS1.VFORTLIB,DISP=SHR
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure 49. Cataloged Procedure FORTVL--Load Only

Cataloging Your Source

You can create partitioned data sets for use in your SYSLffi data set. You can
then catalog your source program, and source statement sequences you'll use in
FORTRAN INCLUDE statements, as members in that library.

The library in which you catalog the source programs or statement sequences is
SYSLffi. Then, when you compile a program using the FORTRAN INCLUDE
statement, you must specify SYSLffi in a DD statement.

Requesting Compilation

In one job step, you can request compilation for a single source program or for a
series of source programs.

Compiling a Single Source Program

For compiling a single source program, the sequence of job control statements is:

IIJOB Statement
IIEXEC Statement (to execute the VS FORTRAN compiler)
IIDD Statements for Compilation (as required)

(Source program to be compiled)

I*Data Delimiter Statement (only if source program is on cards)
IIEnd-of-Job Statement

Job control statements are described under "Job Processing" on page 257.

270 VS FORTRAN Programming Guide

Batch Compilation of More Than One Source Program

You can compile more than one source program during the execution of one job.
The sequence of job control statements you use is:

IIJOB Statement
IIEXEC statement (to execute the VS FORTRAN compiler)
IIDD Statements (as required)
@PROCESS Statement (if needed to modify compiler options)

(First source program to be compiled)

@PROCESS Statement (if needed to modify compiler options)

(Second source program to be compiled)

@PROCESS Statement (if needed to modify compiler options)

(Third source program to be compiled)

I*Data Delimiter Statement (only if source program is on cards)
IIEnd-of-Job Statement

These job control statements are decribed under "Job Processing" on page 257.

The @PROCESS statement is described in "Modifying Compilation
Options-@PROCESS Statement" on page 164.

Requesting CompBation Only-MVS

The easiest way to request compilation under MVS is to use the VS FORTRAN
cataloged procedure for compilation only.

Use the following job control statements to execute the compile-only procedure:

Iljobname JOB
II EXEC FORTVC
IIFORT.SYSIN DD *
(source program)
1*
II

where jobname is the name you're giving this compilation-only job.

Printing on the mM 3800 Printing Subsystem under MVS

Additional run-time parameters are required to support the mM 3800 Printing
Subsystem under MVS. These parameters are the DCB and CHARS parameters
on the GO statement.

I I ddname DD ...
II , DCB= (OPTCD=J)
II ,CHARS=(catO[,cat1, ...])

DCB=(OPTCD=J)
tells JES to interpret the second byte of each record as a table reference
character, TRC, rather than as the first printable character. The existence of
a TRC must be accounted for in the record length specified for the record.
For a variable spanned record, only the first segment can contain a TRC.

Chapter 12. Using VS FORTRAN under MVS 271

CHARS=(catO[,catl, ...])
identifies the character arrangement table to be used to print each line. The
tables are described in IBM 3800 Printing Subsystem Programmer's Guide.
Up to four names can be specified. A TRC is an index (0 to 3) into this list
of names.

A sample FORTRAN program using the 3800 follows:

C
C

100

200

SAMPLE PROGRAM FOR THE IBM 3800 PRINTING SUBSYSTEM

FORMAT (, 12' , , W6666666666666666666666666666X'
1
2
3
4
5
6
7
8
9
A

1

/
, 2' , 7 7' ,

/ '+1 ' , , TABULATION OF THE FUNCTION
/

, 2' , , 7 7'
/

, 2' , 7 7' ,
/ '+0' , , sin' , A 1 , , (x)
/

, 2' , Z6666666666666666666666666666Y' ,
/

, 2' , W6666666666661666666666666666X' ,
/

, 2' , 7 7 7' ,
/ '+0' , , x sin' , A 1 , , (x) ,
/

, 2' , 366666666666656666666666666664') ,

FORMAT (, 2' , , 7 7 7'
/ '+0' , , ,

,I3,A1,I2, '" , ,I2, '" , ,5X,F9.6)

CHARACTER * 1 DEG, U3
DATA DEG/ZA1/, U3/ZB3/

WRITE (6,100) U3, U3

WRITE (6,200) 0, DEG, 0, 0, O.

END

//GO.FT06F001 DD DCB=(OPTCD=J),CHARS=(TN,GS10,FM10), .•.

The sample program above produces the following 3800 output:

TABULATION OF THE FUNCTION

sin 3 Cx)

x

0°0' 0" 0.000000

272 VS FORTRAN Programming Guide

IBM Extension

Using the FORTRAN INCLUDE Statement

Blocked INCLUDE

CompHation Data Sets

If your source program uses the INCLUDE statement, you must create a library
containing the INCLUDE source code.

1. Create one or more members of a partitioned data set. This can be done in a
similar fashion to that used for creating your source program.

2. Create a FORTRAN source program.

INCLUDE (member1)
Z=A 1 * B 1

END

3. Define the library to the system (in this case, MVS batch) by means of the
SYSLm ddname:

//FORT.SYSLIB DD DSN=user.lib.fort,DISP=SHR

In this case, member 1 of user.lib.fort is brought into your inline source program.

The included files may be fixed blocked or fixed unblocked by specifying RECFM
FB or RECFM F when you create the members.

'--__________ End of IBM Extension __________

For compilation under MVS, there are two required data sets and several optional
ones.

Required CompHer Data Sets

You must ensure that the following ddnames are available during compilation.
They may be available through the cataloged procedure you're using for
compilation (check with your system administrator). If they aren't, you must
specify them through a DD statement:

• SYSIN-to define the source input data set

• SYSPRINT -to define the printed output data set

Chapter 12. Using VS FORTRAN under MVS 273

Optional CompHer Data Sets

Compiler Output

Compiler Data Sets

You specify the following data sets, through a DD statement; only if you're
requesting specific compilation features:

• SYSLIN-if you're requesting that an object module be produced (through the
OBJECT compiler option); it defines the object module data set.

• SYSPUNCH-if you're requesting an object module punched on cards
(through the DECK compiler option); it defines the card image data set on
which the object module is punched.

• SYSTERM-when the TERMINAL compiler option is in effect, you specify
SYSTERM as the data set that will contain printed compiler output (that is,
error messages and compiler statistics).

• SYSLIB-if your source program uses the INCLUDE statement, this ddname
defines the library input data set.

The VS FORTRAN compiler provides some or all of the following output,
depending on the options in effect for your compilation:

• The source program listing-as you entered it, but with compiler-generated
internal sequence numbers prefixed at the left; the sequence numbers identify
the line-numbers referred to in compiler messages.

• An object module-a translation of your program in machine code.

• Messages about the results of the compilation.

• Other listings helpful in debugging.

These listings are described in "Identifying User Errors" on page 167, and
Chapter 10, "Sample Programs and Subroutines" on page 213; examples of
output for each feature are also given.

If your compilation was completed without error messages, see your appropriate
operating system chapter for information on link-editing.

If your compilation caused error messages to appear online, you may have to fix up
your errors, as described in "Identifying User Errors" on page 167.

The compiler uses up to eight system data sets. Many of these data sets are
defined in cataloged procedures. Figure 50 lists the function, device types, and
allowable device classes for each data set.

274 VS FORTRAN Programming Guide

ddname Function Device Types Device Class Dermed

SYSIN Reading input source data Card reader Input stream No
set Magnetic tape (defined as

Direct access DD *, or
DDDATA)

SYSLm Reading INCLUDE data Direct access SYSDA No
sets (Required if
INCLUDE is specified)

SYSLIN2 Creating an object module Direct access SYSDA Yes
data set as compiler output Magnetic tape SYSSQ
and linkage editor input Card punch SYSCP
(Required if OBJECT is
specified)

SYSPRINT Writing source, object, and Printer A Yes
cross reference listings, Magnetic tape SYSSQ
storage maps, messages Direct access SYSDA

SYSPUNCH2 Punching the object module Card punch B Yes
deck (Required if DECK is Magnetic tape SYSCP
specified) Direct access SYSSQ

SYSDA

SYSUDUMP Writing dump in event of Printer A No
or abnormal termination Magnetic tape SYSSQ

SYSABEND (Required if DUMP is Direct access SYSDA
specified)

SYSTERM Writing error message and Printer A Yes
compiler statistics Magnetic tape SYSSQ
(Required if TERM or Direct access SYSDA
TRMFLG is specified)

Figure 50. CompHer Data Sets

DCB Default Values

Notes to Figure SO:

The Defined column indicates whether or not the ddname is defined in
cataloged procedures calling the compiler.

2 SYSLIN and SYSPUNCH may not be directed to the same card punch.

The DCB subparameters define record characteristics of a data set. Figure 51 lists
the DCB default values for compiler data set characteristics.

Chapter 12. Using VS FORTRAN under MVS 275

ddname LRECL RECFM BLKSIZE

SYSIN 80 - -
SYSPRINT 137 VBA 34291

SYSLIN 80 FB 32001

SYSPUNCH 80 FB 34401

SYSTERM 240 VS -

Figure 51. Compiler Data Set DCB Default Values

Note to Figure 51 :

These default block size values correspond to the BLKSIZE values specified
on the DD statements in the distributed cataloged procedures. The compiler
defaults to:

BLKSIZE = LRECL

Execution-Time Loading of Library Modules

In Release 4.0, all library modules (other than the mathematical routines) can be
either link-edited into the load module with compiler-generated code, or loaded
dynamically at execution time. Execution-time loading has several advantages. It
reduces auxiliary storage requirements for load modules, speeds execution in
compile-link-go mode, and, in an MVS/XA environment, allows some library
routines to be placed in the extended link pack area.

This new feature replaces the previous technique used to load the reentrant library.
In order to maintain compatibility with the Release 2 and 3 load modules that use
IFYVRENT, the Release 4.0 library includes an IFYVRENT module with all
necessary maintenance functions, but no new Release 4.0 functions. After your
load module contains any code compiled with Release 4.0 or any Release 4.0 library
modules, then all library modules linked into that load module must be at the
Release 4.0 level. The former IFYVRENT mechanism will then no longer be used
for that load module.

Selection of Link Mode or Load Mode

During installation of the VS FORTRAN library, your system programmer may
have specified the libraries needed for use in link mode. (All procedures provided
with the product are set up for load mode.) A single environment may have been
established for all users, or the selection of load mode or link mode left up to the
individual user. The procedures for specifying libraries in link mode or load mode
are described below.

276 VS FORTRAN Programming Guide

Specifying Libraries in Load Mode

• For operation in load mode, provide VFORTLIB but not VLNKMLIB to the
linkage editor to use when including VS FORTRAN library modules. Specify
only SYSl.VFORTLm in the DD statement for SYSLIB in the linkage editor
step:

//SYSLIB DD DSN=SYS1.VFORTLIB,DISP=SHR

• To execute a program link-edited in load mode, make VFORTLIB available for
the execution step by performing one of the following steps.

1. Concatenate SYS1.VFORTLIB to SYS1.LINKLm in the system link list
so that SYS1.VFORTLm will be searched as part of the link library
without JOBLm or STEPLm DD statements. The reentrant composite
modules IFYVRENA (MVS/XA only), IFYVRENB (MVS/XA only),
and IFYVRENC (non-XA), as well as selected individual reentrant
modules, may be placed in the link pack area (SYS1.LPALIB). The copy
of the modules in the link pack area will be used without searching
SYS 1. VFORTLm. (If maintenance affects any modules in the link pack
area, the updated copies of the modules must be copied into the link pack
area from SYS1.VFORTLIB.)

2. Place the following JOBLm DD statement in the JCL for the job which
executes the VS FORTRAN program:

//JOBLIB DD DSN=SYS1.VFORTLIB,DISP=SHR

or place the following STEPLIB DD statement in the JCL for the step
which executes the VS FORTRAN program:

//STEPLIB DD DSN=SYS1.VFORTLIB,DISP=SHR

This technique does not let you use reentrant modules that are in the link
pack area, because step libraries and job libraries are searched before the
link pack area. (Refer to OS/VS2 MVS Supervisor Services and Macro
Instructions or MVS/Extended Architecture Supervisor Services and Macro
Instructions in the discussion of program management.)

3. If you want to use a step library or job library in addition to loading
reentrant modules from the link pack area, you must do the following:

a. After tailoring the composite modules, place the reentrant composite
modules IFYVRENA (MVS/XA only), IFYVRENB (MVS/XA
only), and IFYVRENC (non-XA) in the link pack area (library
SYSl.LPALIB).

b. Optionally, place any reentrant modules that are not in a composite
module into the link pack area.

c. Create a new library that contains all modules from SYS1.VFORTLm
less the modules (either composite modules or individual modules) that
have been placed in the link pack area. Make this library available as
a step library or as a job library for the execution of the VS
FORTRAN program.

Chapter 12. Using VS FORTRAN under MVS 277

If maintenance affects any of the modules in the link pack area or y;our .
new library, then the updated modules must be copied from
SYS1.VFORTLm.

For examples of link-edit JCL, see Figure 43 on page 265 through Figure 49 on
page 270.

Specifying Libraries in Link Mode

• For operation in link mode, concatenate VLNKMLIB ahead of VFORTLm
for use by the linkage editor when it includes VS FORTRAN library modules.
Specify both VLNKMLm and VFORTLm in theDD statement for SYSLm in
the linkage editor step:

IISYSLIB DD DSN=SYS1.VLNKMLIB,DISP=SHR
II DD DSN=SYS1.VFORTLIB,DISP=SHR

• A program link-edited in link mode does not require any VS FORTRAN
libraries at execution time.

Link-Editing Your Program

You must link-edit any object module before you can execute your program,
combining this object module with others to construct an executable load module.

Note: FORTRAN 66 object programs are link-edited exactly the same as
FORTRAN 77 object programs.

The following sections also show how to catalog your object module or load
module, and how to use the linkage editor or loader.

Note: For TSO considerations on loading and executing your program, see
Chapter 13, "Using VS FORTRAN under TSO" on page 317.

Automatic Cross-System Support

In VS FORTRAN, you can compile your source program ul1der any supported
operating system. You can then link-edit the resulting object module under the
same system, or under any other supported system.

For example, you could request compilation under VM and then link-edit the
resulting object module for execution under VSE.

You don't have to request anything special during compilation to do this; VS
FORTRAN uses the execution-time library for all system interfaces, so the
operating system under which you link-edit determines the system under which you
execute.

278 VS FORTRAN Programming Guide

Linkage Editor Input

Your input to the linkage editor can be the object module in machine-language
format (which you request through the OBJECT compiler option), or as a
machine-language input data set (which you request through the DECK compiler
option).

You request the DECK option when you want to catalog the object module and
save it for future link-edit runs.

You request the OBJECT option when you want to combine the link-edit task with
the compilation task. You can then catalog and/or execute the load module
produced.

The data set is a copy of the object module, in card image format, which consists of
dictionaries, text, and an end-of-module indicator. (See Appendix B, "Object
Module Records" on page 403, for additional detail.)

You can create partitioned data sets for use in your SYSLffi data set. You can
then catalog your object module as a member in that library.

The library in which you ca~alog your object module is SYSLffi. Then, when you
link-edit and execute, you must specify SYSLffi in a DD statement.

Cataloging Your Object Module

You request an object module data set by specifying the DECK or OBJECT
compiler option.

You can use the object data set as input to the linkage editor or loader in a later job
step, or you can catalog it for later reference.

The data set is a copy of the object module, in card image format, which consists of
dictionaries, text, and an end-of-module indicator. (See "Object Module as
Link-Edit Data Set" on page 183 for additional details.)

After you've created the object module data set, you can catalog it in a system or
private library for future reference.

You can create partitioned data sets for use in your SYSLffi data set. You can
then catalog your object module as a member in that library. The library in which
you catalog your object module is SYSLffi. Then, when you link-edit and execute,
you must specify SYSLffi in a DD statement.

For TSO considerations, see Chapter 13, "Using VS FORTRAN under TSO" on
page 317.

Chapter 12. Using VS FORTRAN under MVS 279

Cataloging Your Load Module

Executing a Link-Edit

Using the Linkage Editor

You can catalog the data set containing the load module by defining it in a
SYSLMOO 00 statement during link-edit processing.

You can use two different programs to perform the link-edit: the linkage editor or
the loader. Which you use depends upon the output you want produced.

Linkoge Editor: Use the linkage editor when you want to reduce storage
requirements through overlays, or to use additional libraries as input, or to define
the structural segments of the program.

Loader: Use the loader when your input is a small object module that doesn't
require overlay, that doesn't require additional linkage editor control statements,
and that you'll be executing immediately.

VS FORTRAN supplies you with cataloged procedures that let you link-edit or
load your programs easily. See "Using and Modifying Cataloged Procedures" on
page 264 for details.

When you use the linkage editor rather than the loader, you have many processing
options and optional data sets you can use, depending on the link-edit processing
you want done.

Linkage Editor Pl'OCeSSing Options: Through the P ARM option of the EXEC
statement, you can request additional optional output and processing capabilities:

MAP-specifies that a map of the load module is to be produced on
SYSPRINT, giving the length and location of the main program and all
subprograms.

XREF-specifies that a cross-reference listing of the load module is to be
produced on SYSPRINT, for the main program and all subprograms.

LET-specifies that the linkage editor is to allow load module execution, even
when abnormal conditions have been detected that could cause execution to
fail.

NeAL-specifies that the linkage editor is not to attempt to resolve external
references.

If your program attempts to call external routines, you'll get an abnormal
termination.

LIST-specifies that the linkage editor control statements are to be listed in
the SYSPRINT data set.

OVL Y -specifies that the load module is to be in overlay format. That is, that
segments of the program will share the same storage at different times during

280 VS FORTRAN Programming Guide

processing. (For more details, see Chapter 6, "Subprograms and Shared
Data" on page 113.)

SIZE--specifies the amount of virtual storage to be used for this link-edit job.

Required Linkage Editor Data Sets: For any link-edit job, you must make certain
that at least the following data sets are available:

SYSLIB--d.irect access data set (in partitioned data set format) that makes the
automatic call library (SYSl.VFORTLm or V ALTLm or both libraries, and
perhaps others) available.

SYSLIN-used for compiler output and linkage editor input.

SYSLMOD-used for linkage editor output.

SYSPRINT -makes the system print data set available, used for wn"ting
listings and messages. This data set can be a direct access, magnetic tape, or
printer data set.

SYSUT1--d.irect access work data set needed by the link-edit process.

Optional Linkage Editor Data Sets: In addition, depending on what you want the
linkage editor to do for you, you can, optionally, specify the following data set:

SYSTERM-used for writing error messages and the compiler statistics listing.
This data set can be on a direct access, magnetic tape, or printer device.

Using Linkage Editor Control Statements: You can use the INCLUDE and
LmRARY linkage editor control statements as follows:

INCLUDE--used to specify additional object modules you want included in
the output load module.

LIBRARY-used to specify additional libraries to be searched for object
modules to be included in the load module.

Linkage Editor Control Statements

Linkage editor control statements specify an operation and one or more operands.

The first column of a control statement must be left blank. The operation field
begins in column 2 and specifies the name of the operation to be performed. The
operand field must be separated from the operation field by at least one blank.
The operand field specifies one or more operands separated by commas. No
embedded blanks may appear in the field. Linkage editor control statements may
be placed before, between, or after either modules or secondary input data sets.

The INCLUDE and LIBRARY control statements specify secondary input.

INCLUDE Linkage Editor Control Statement: The INCLUDE statement specifies
additional programs to be included as part of the load module.

Chapter 12. Using VS FORTRAN under MVS 281

Linkage Editor Data Sets

Operation Operand

INCLUDE ddname[(member-name
[,member-name],)]
[,ddname[(member-name
[,member-name], ...)]]

ddname
Indicates the name of a DD statement specifying a library or a sequential
data set.

member-name
Indicates the name of the member to be included. When sequential data sets
are specified, member-name is omitted.

UBRARY Linkage Editor Control Statement: The LmRAR Y statement specifies
additional libraries to be searched for object modules to be included in the load
module.

The LmRARY statement differs from the INCLUDE statement in that libraries
specified in the LmRARY statement are not searched until all other references
(except those reserved for the automatic call library) are completed by the linkage
editor. A module specified in the INCLUDE statement is included immediately.

Operation Operand

LffiRARY ddname [(member-name
[,member-name], ...)]
[,ddname[(member-name
[,member-name], ...)]]

ddname
Indicates the name of a DD statement specifying a library.

member-name
The name of a member of the library.

The linkage editor generally uses five system data sets; others may be necessary if
secondary input is specified. Secondary input is defined by the programmer;
cataloged procedures do not supply the secondary input DD statements.

Figure 52 lists the function, device types, and allowable device classes for each
linkage editor data set.

282 VS FORTRAN Programming Guide

ddname Function Device Types Device Class Dermed.

SYSLIN Primary input Direct access SYSDA SYSSQ Yes
data, generally Magnetic tape input stream
output of the Card reader (defined as DD * or
compiler DDDATA)

SYSLIB Automatic call Direct access SYSDA Yes
library
(SYS1.FORTLIB)

SYSLMOD Link-edit output Direct access SYSDA Yes
(load module)

SYSPRINT Writing listings, Printer A Yes
messages Magnetic tape SYSSQ

Direct access SYSDA

User-defined Additional Direct access SYSDA No
libraries and Magnetic tape SYSSQ
object modules

Figure 52. Linkage Editor Data Sets

Linkage Editor Output

Using the Loader

Loader Options

Note to Figure 52:

The Defined column indicates whether or not the ddname is defined in
cataloged procedures calling the compiler.

Output from the linkage editor is in the form of load modules in executable form.
The exact form of the output depends upon the options in effect when you
requested the link-edit, as described in the previous sections.

You choose the loader when you want to combine link-editing into one job step
with load module execution. The loader combines your object module with other
modules into one load module, and then places the load module into main storage
and executes it.

The loader options you can use, and the loader data sets, are described in the
following paragraphs.

When you execute the loader, you can specify the following options through the
P ARM parameter of the EXEC statement:

MAP I NOMAP-specifies whether a map of the load module is to be
produced on SYSPRINT, giving the length and location of the main program
and all subprograms.

Chapter 12. Using VSFORTRAN under MVS 283

Loader Data Sets

LET I NOLET-specifies whether the linkage editor is to allow load module
execution, even when abnormal conditions that could cause execution to fail
have been detected.

CALL I NCAL-specifies whether or not the loader is to attempt to resolve
external references. If you specify NeAL and your program attempts to call
external routines, you'll get an abnormal termination.

SIZE-lets you specify the amount of storage to be allocated for loader
processing.

EP-Iets you specify the name of the entry point of the program being loaded.

PRINT I NOPRINT -specifies whether or not loader messages are to be listed
in the data set defined by the SYSLOUT DD statement.

RES I NORES-specifies whether or not the link pack area is to be searched to
resolve external references.

SIZE-specifies the amount of storage to be allocated for loader processing;
this size includes the size of your load module.

The loader normally uses six system data sets; other data sets may be defined to
describe libraries and load module data sets.

For any loader job, you must make certain that at least the SYSLIN data set (used
for compiler output) and the SYSPRINT data set (used for printed output) are
available.

In addition, depending on what you want the loader to do for you, you can,
optionally, specify the data sets in Figure 53 on page 285. This figure lists the
function, device types, and allowable device classes for each data set.

284 VS FORTRAN Programming Guide

ddname Function Device Types Device Class Defined

SYSLIN Input data to linkage Direct access SYSDA Yes
function, normally Magnetic tape SYSSQ
output of the compiler Card reader Input stream

(defined as
DD *)

SYSLIB Automatic call library Direct access SYSDA Yes
(SYSl.FORTLIB)

SYSLOUT Writing listings Printer A Yes
Magnetic tape SYSSQ
Direct access

SYSPRINT Writing messages Printer A No
Magnetic tape SYSSQ
Direct access

SYSIN Input data to load Card reader Input stream No
module function (defined as

DD *)
Magnetic tape SYSSQ
Direct access SYSDA

FT07Fyyy Punched output data Card punch B Yes

FTxxFyyy2 User-defined data set Unit record SYSSQ A,B No
Magnetic tape
Direct access SYSDA

Figure 53. Loader Data Sets

Notes to Figure S3:

The Defined column indicates whether or not the ddname is defined in
cataloged procedures calling the compiler.

2 xx is the unit number (00 through 99), and
yyy is the file sequence number (001 through 999).

Load Module Execution Data Sets

The load module execution job step executes a load module. The load module may
be passed directly from a preceding link-edit job step, or it may be called from a
library of programs, or it may form part of the loader job step.

The load module execution job step may use many data sets. Figure 54 on
page 286 lists the function, device types, and usage for each data set.

Chapter 12. Using VS FORTRAN under MVS 285

FORTRAN
Reference
Number ddname Function Device Type Usage

5 SYSIN Input data set to Card reader Load module
load module Magnetic tape input data

Direct access

5 FT05Fyyy Input data set to Card reader Load module
load module Magnetic tape input data

Direct access

6 FT06FOOl Printed output data Printer Load module
Magnetic tape output data
Direct access

7 FT07FOOl Punched output Card punch Load module
data Magnetic tape output data

Direct access

0-4 FTxxFyyy Sequential data set Unit record Program data
8-99 Magnetic tape

Direct access

0-4 FTxxFyyy Direct access data Direct access Program data
8-99 set

0-4 FTxxFyyy Partitioned data set Direct access Load module
8-99 member using input data

sequential access

Figure 54. Load Module Execution Data Sets

User-Defined Data Sets

DCB Default Values

You must define the SYSIN DD statements to complete the description of the input
data set begun by the DD statement FT05FOOl. If no input data set is to be
submitted, omit the SYSIN DD statement, and the operating system will treat the
FT05FOOl DD statement as though DD DUMMY had been specified.

You must also ensure that the JCL for the load module execution step includes a
DD statement for error code diagnostic output. This DD statement must be
present when the data set is opened for each execution of a FORTRAN load
module. Usually, the FT06FOOl DD statement defines this data set; however, this
assignment can be modified when VS FORTRAN is installed. Check with your
system administrator.

Figure 55 lists the DCB default values for load module execution sequential data
sets.

286 VS FORTRAN Programming Guide

ddname RECFMl LRECL2 BLKSIZE DEN BVFNO

FT05Fyyy F 80 80 - 2

FT06Fyyy VA 133 133 - 2

FT07Fyyy F 80 80 - 2

all others U -- 800 2 2

Figure 55. Load Module Execution Sequential Data Set DCB Default Values

Notes to Figure 55:

For records not under FORMAT control, the default is VS.

2 For records not under FORMAT control, the default is 4 less than shown.

Figure 56 lists the DCB default values for load module execution direct access data
sets.

ddname RECFM LRECL or BLKSIZE BUFNO

FT05Fyyy F The value specified as 2
the maximum size

FT06Fyyy F of a record in the 2
OPEN statement.

FT07Fyyy F 2

all others F 2

Figure 56. Load Module Execution Direct Access Data Set DCB Default Values

The following sections describe the data sets you may need, and outline the job
control language you must use to execute your programs.

Using Load Module Data Sets

If you're using cataloged procedures, or if you're using the device assignments as
shipped by IBM, you must use the DD names shown in Figure 54 on page 286.

Making the VS FORTRAN Library Available at Execution

The load module requires the VS FORTRAN library during execution in MVS
under the following circumstances:

1. Specify the following in job control language if you're operating in load mode:

//STEPLIB DD DSN=SYS1.VFORTLIB,DISP=SHR

2. If you have a load module created from a version of the VS FORTRAN library
prior to Release 4.0 that used the reentrant I/O library facility, specify routines
in SYS1.VFORTLm rather than in SYS1.VRENTLIB as in past releases.

Chapter 12. Using VS FORTRAN under MVS 287

Using Cataloged Load Modules

You can execute cataloged load modules using either a STEPLIB DD or a JOBLm
DD statement.

Using JOBUB DD: If you specify a JOBLIB DD statement for the load module,
the JOBLm library is available through all job steps of the job.

To ensure that the library remains available, you must specify the JOBLm DD
statement immediately after the JOB statement.

Using STEPLIB DD: If you specify a STEPLIB DD statement for the load module,
the STEPLIB library is available for only this one step of the job.

You can place the STEPLIB DD statement anywhere among the DD statements for
this job step.

Specifying Execution-Time Options

To specify an execution-time option (XUFLOW, NOXUFLOW, DEBUG, or
NODEBUG), use the following method:

//ANY EXEC PGM=MAIN,PARM='NOXUFLOW'

For more information, see "Using the Execution-Time Options" on page 200.

Executing the Load Module

Execute Only

How you execute the load module depends on the kind of job you're running:
execute only, link-edit and execute, or compile link-edit and execute.

VS FORTRAN supplies you with cataloged procedures that let you compile,
link-edit or load, and/or execute easily. See "Using and Modifying Cataloged
Procedures" on page 264 for details.

The job control statements you use are:

//JOB statement
//EXEC Statement
//DD Statements

(load module)
(as required for execution)

(Input data to be processed)

/*End-of-Data Statement (if input data is on cards)
//End-of-Job statement

288 VS FORTRAN Programming Guide

Link-Edit and Execute

The job control statements you use are:

//JOB statement
//EXEC Statement
//DD Statements

(linkage editor)
(as required for linkage editing)

(Link-edit is performed)

//EXEC Statement
//DD Statements

(load module)
(as required for execution)

(Input data to be processed)

/*Statement (if input data is on cards)
//End-of-Job Statement

CompDe, Link-Edit, and Execute

The job control statements you use are:

//JOB Statement
//EXEC Statement
//DD Statements

(VS FORTRAN Compiler)
(as required for compilation)

(Source program to be compiled)

/*End-of-Data Statement (if source program is on cards)
//EXEC Statement (linkage editor)
//DD Statements (as required for link-editing)

(Link-edit is performed)

//EXEC Statement
//DD Statements

(load module)
(as required for load module execution)

(Input data to be processed)

/*End-of-Data Statement (if input data is on cards)
//End-of-Job Statement

Load Module Execution-Time Output

Execution without Errors

Execution with Errors

The output that execution of your load module gives you depends upon whether or
not there are errors in your program.

If your program executes without any errors and gives the results you expect, your
task of program development is completed.

When your program has errors in it, your execution-time output may be incorrect,
or nonexistent.

You mayor may not get error messages as well. Any VS FORTRAN
execution-time error messages you get come from the VS FORTRAN Library.

Chapter 12. Using VS FORTRAN under MVS 289

If you get output from the program itself, it may be exactly what you expected, or
(if there are logic errors in the program) it may be output you didn't expect at all.
When this happens, you must proceed to the next step in program development,
described in "Identifying User Errors" on page 167.

Requesting an Abnormal Termination Dump

Program interrupts causing abnormal termination produce a dump, called an
indicative dump, which displays the completion code and the contents of registers
and system control fields.

To display the contents of main storage as well, you must request an abnormal
termination (ABEND) dump by including a SYSUDUMP DD statement in the
appropriate job step. The following example shows how the statement may be
specified for IBM-supplied cataloged procedures:

IIGO.SYSUDUMP DD SYSOUT=A

Information on interpreting dumps is found in the appropriate debugging guide, as
listed under "Preface" on page iii.

Using the VS FORTRAN Separation Tool

If you have compiled your program with the RENT compiler option, and wish to
run it in a reentrant fashion, the separation tool is located in SYS1.VFORTLffi.
The separation tool consists of two modules, IFYVSFST and IFYVSFIO.

For more general information about the separation tool, see "VS FORTRAN
Separation Tool (for Both VM and MVS)" on page 189.

To invoke the separation tool in batch mode, the following Job Control Language
(JCL) is needed.

IISEPARATE
IISEP
IISTEPLIB
IISYSPRINT
IISYSUT1
II
IISYSUT2
II
IISYSUT3
II
IISYSIN

JOB (l,l),'MYJOB'
EXEC PGM=IFYVSFST
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD SYSOUT=A
DD DSN=&NRENT,DISP=(NEW,PASS),UNIT=SYSDA,

SPACE=(3200, (25,1)) ,DCB=BLKSIZE=3200
DD DSN=&RENT,DISP=(NEW,PASS),UNIT=SYSDA,

SPACE=(3200, (25,1)),DCB=BLKSIZE=3200
DD DSN=&TEMP,DISP=(NEW,DELETE),UNIT=SYSDA,

SPACE=(3200, (25,1)),DCB=BLKSIZE=3200
DD DSN=userid.pgmname.OBJ,DISP=SHR

This JCL only separates the input file identified by ddname SYSIN, and puts the
results into files &RENT and &NRENT. To add these object files to a load library,
the following step must be run to link-edit the reentrant portion of the program.
To retain a record of the location of the reentrant modules, keep the SYSPRINT
output from this step.

290 VS FORTRAN Programming Guide

Advanced Topics

IILKEDR
IISYSPRINT
IISYSUT1
IISYSLIN
IISYSLIB
IISYSLMOD
II

EXEC
DD
DD
DD
DD
DD

PGM=IEWL, PARM= , XREF,LET, LIST, RENT, REUS ,
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK, (10,1))
DSN=&RENT,DISP=(OLD,PASS)
DSN=SYS1.VFORTLIB,DISP=SHR
DSN=&GOFILE,DISP=(NEW,PASS) ,UNIT=SYSDA,
SPACE=(TRK,(10,10,5))

The following JCL describes the procedure to link-edit the nonreentrant portion.

IILKEDN
IISYSPRINT
IISYSUT1
IISYSLIN
IISYSLIB
IISYSLMOD

EXEC
DD
DD
DD
DD
DD

PGM=IEWL,PARM='XREF,LET,LIST'
SYSOUT=A
UNIT=SYSDA,SPACE=(TRK, (10,1))
DSN=&NRENT,DISP=(OLD,PASS)
DSN=SYS1.VFORTLIB,DISP=SHR
DSN=&GOFILE(MAIN),DISP=(MOD,PASS)

To execute your program, use the following JCL:

IIGO
IlsTEPLIB
II

EXEC
DD
DD

IIFT05F001 DD
IIFT06F001 DD

PGM=MAIN
DSN=&GOFILE,DISP=(OLD,PASS)
DSN=SYS1.VFORTLIB,DISP=SHR
DDNAME=SYSIN
DDNAME=SYSPRINT

You must supply GO.SYSIN and GO.SYSPRINT DD statements for the conditions
of your system and your program. Note that this is not the only way to process
your compiler text file. Further information can be found in the section below.

This section tells more about the separation tool, its implementation, and its usage,
and gives some information about using the reentrant portion of the compiler
output text file.

The separation tool is composed of two independent but related CSECTs. Both
IFYVSFST and IFYVSFIO are reentrant and thus may be installed in an MVS link
pack area (LP A) or in an MVS/XA LPA (IFYVSFIO) and in the MVS/XA
extended LP A (IFYVSFST). The separation tool is invoked by calling IFYVSFST.

The calling program may supply up to two parameters. The parameters are in the
standard MVS format of a pointer pointing to a halfword length, followed by the
string of data. The first parameter is the module name to associate with the
reentrant CSECTs in the input text file; this may be from 1 to 8 characters in
length. All characters after the first 8 characters are ignored. The second
parameter is the list of alternate ddnames for the program in the standard format.

Examples are as follows:

Chapter 12. Using VS FORTRAN under MVS 291

Register 1 points to

Parameter 1 pointer, which points to

length/data string

0008RENTPART

Parameter 2 pointer, which points to

length/data string

0050ddname list (hex 0050 is decimal 80)

The high-order bit of the last parameter in the list must be on. If it isn't and you do
not have a ddname list, the separation tool will fail.

Register 1 should be zero if no parameters are specified.

The order of the ddnames for substitution is as follows:

Displacement Original ddname

0 Not used
8 Not used
16 Not used
24 Not used
32 SYSIN
40 SYSPRINT
48 Not used
56 SYSUT1
64 SYSUT2
72 SYSUT3

Positions for the "not used" entries must be replaced by 8 bytes of binary zeros. If
you do not wish to change ddname SYSIN, for example, just put binary zeros in the
8 bytes that the replacement would occupy. Replacement ddnames must be 1 to 8
characters in length, left-justified in the field, and padded on the right with blanks.
The maximum list length is 80 characters (decimal) for all the entries. If you want
to change fewer entries, you may enter a shorter list with a smaller length and
fewer entries. For example, if you wish only to change the SYSIN and SYSPRINT
ddnames, a length of 48 characters would be the minimum number needed. You
may always pass a length of 80 characters, but the unchanged ddnames must then
be zeros.

Messages issued by the separation tool are documented in the VS FORTRAN
Language and Library Reference.

A Simple Scenario That Might Occur

The tool expects the text file to contain entries in a certain order: the reentrant
CSECT followed by the corresponding nonreentrant CSECT. If this does not
occur because of a routine's not being compiled for reentrancy, the tool will
accommodate the difference.

292 VS FORTRAN Programming Guide

A simple scenario that might occur is: Given a simple FORTRAN program with a
single program named MAIN, the VS FORTRAN compiler would generate the
following:

• A reentrant CSECT with the name @MAIN

A nonreentrant CSECT with the name MAIN

All this output is in the same text file and, when loaded, all address constants will
be properly resolved and the program will run as it has been coded. If, however,
the text file is passed to the separation tool, the following is output:

• A file containing the nonreentrant CSECT, MAIN

• A file containing two CSECTs: IFYZRENT and the reentrant CSECT,
@MAIN

There are two ways of invoking the separation tool (IFYVSFST). The first is
without any module name parameter; the second is with a module name parameter.

With the module name parameter, RENTPART, for example, the following is
output:

• A file containing the nonreentrant CSECT, MAIN, but with an extra record
with the module name (RENTP ART) in it

A file containing the reentrant CSECTs, IFYZRENT and @MAIN, and a
record with "NAME RENTPART(R)" on it

Without the module name parameter, the following is output:

• A file containing the nonreentrant CSECT, MAIN

• A file containing the reentrant CSECTs, IFYZRENT AND @MAIN, and a
record with "NAME @MAIN(R)" on it

Both text files must be passed separately to the linkage editor with the correct
parameters for the linkage editor. After the files are link-edited successfully, the
modules can be passed to the operating system for invocation and running. The
GO step must point to the correct libraries to ensure the modules are found.

The table below provides an index to a number of cataloged procedures that you
can use to compile, separate, link-edit, and execute your VS FORTRAN programs.
Figure 57 on page 294 through Figure 59 on page 298 contain these procedures
in load mode.

Action Procedure Figure

Compile, separate, and link VFTNRCL Figure 57

Compile, separate, link, and go VFTNRCLG Figure 58

Separate, link, and go VFTNRLG Figure 59

Chapter 12. Using VS FORTRAN under MVS 293

IIVFTNRCL
II
II
11*
11*

PROC FVPGM=FORTVS,FVREGN=1200K,FVPDECK=NODECK,
FVPOLST=NOLIST,FVPOPT=O,FVTERM='SYSOUT=A' , FVNAME= , RENT PART , ,
FVLNSPC=' 3200, (25,6) ',FVRENT='RENT' , GONAME= 'MAIN'

11***
11* PROC DESCRIPTION: FORTRAN COMPILE, SEPARATE AND LINK *
11***
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
IIFORT EXEC
II
IISTEPLIB
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIN
II

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
FVLNSPC
FVNAME
FVRENT
GONAME

DEFAULT-VALUE

FORTVS
1200K
NODECK
NOLIST
o
SYSOUT=A
3200, (26,6)
RENTPART
RENT
MAIN

COMPILATION STEP

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAND
SPACE ALLOCATION
REENTRANT MODULE NAME
RENT COMPILER OPTION
EXECUTION MODULE NAME

PGM=&FVPGM,REGION=&FVREGN,
PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT),&FVRENT'
DD DSN=SYS1.FORTVS,DISP=SHR
DD SYSOUT=A,DCB=BLKSIZE=3429
DD &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440
DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200

Figure 57 (Part 1 of 2). JCL Procedure to Compile, Separate, and Link

294 VS FORTRAN Programming Guide

11*
11*
11*
IISEPARATE
IISTEPLIB
IISYSPRINT
IISYSIN
IISYSUT1
II
IISYSUT2
II
IISYSUT3
II
11*
11*
11*
IILKEDN EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
II
11*
11*
11*
IILKEDR EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
II

SEPARATION STEP

EXEC PGM=IFYVSFST,PARM='&FVNAME' ,COND=(4,LT)
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD SYSOUT=A
DD DSN=&&LOADSET,DISP=(OLD,PASS)
DD DSN=&NRENT,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC) ,DCB=BLKSIZE=3200
DD DSN=&RENT,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
DD DSN=&TEMP,DISP=(MOD,PASS) ,UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200

NON-REENTRANT PART LINKEDIT

PGM=IEWL,REGION=200K,COND=(4,LT) ,
PARM='LET,LIST,MAP,XREF'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(1024,(200,20»
DD DSN=&&GOSET(&GONAME),DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(TRK, (10,10,1) ,RLSE)
DD DSN=&NRENT,DISP=(OLD,DELETE)
DD DDNAME=SYSIN

REENTRANT PART LINKEDIT

PGM=IEWL,REGION=200K,COND=(4,LT),
PARM= 'LET,LIST,MAP, XREF, RENT, NCAL ,
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(1024,(200,20»
DD DSN=&&GOSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(TRK, (10,10,1),RLSE)
DD DSN=&RENT,DISP=(OLD,DELETE)
DD DDNAME=SYSIN

Figure 57 (Part 2 of 2). JCL Procedure to CompHe, Separate, and Link

Chapter 12. Using VS FORTRAN under MVS 295

IlvFTNRCLG
II
II
II
II
11*

PROC FVPGM=FORTVS,FVREGN=1400K,FVPDECK=NODECK,
FVPOLST=NOLIST,FVPOPT=0,FVTERM='SYSOUT=A',GOREGN=500K,
FVLNSPC='3200, (25,6)' , FVRENT=RENT,GONAME=MAIN
GOF5DD='DDNAME=SYSIN' ,GOF6DD='SYSOUT=A',
GOF7DD='SYSOUT=B' ,FVNAME='RENTPART'

II************************~**
11* PROC DESCRIPTION: REENTRANT COMPILATION,SEPARATE,LKED AND GO *
11***
11*
11*
11*
11*
11*
11*
II*'
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
IIFORT EXEC
II
IISTEPLIB
IISYSPRINT
IISYSTERM
IISYSPUNCH
IISYSLIN
II

PARAMETER

FVPGM
FVREGN
FVPDECK
FVPOLST
FVPOPT
FVTERM
FVLNSPC
FVNAME
FVRENT
GOREGN
GOF5DD
GOF6DD
GOF7DD
GONAME

DEFAULT-VALUE

FORTVS
880K
NODECK
NOLIST
o
SYSOUT=A
3200, (25,6)
RENT PART
RENT
100K
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B
MAIN

COMPILATION STEP

USAGE

COMPILER NAME
FORT-STEP REGION
COMPILER DECK OPTION
COMPILER LIST OPTION
COMPILER OPTIMIZATION
FORT.SYSTERM OPERAND
FoRT.SYSLIN SPACE
~EENTRANT MODULE NAME
REENTRANT OPTION
GO:"'STEP REGION
GO.FT05F001 OPERAND
GO.FT06F001 OPERAND
GO.FT07F001 OPERAND
EXECUTION TIME NAME

PGM=&FVPGM,REGION=&FVREGN,
PARM='&FVPDECK,&FVPOLST,OPT(&FVPOPT),&FVRENT'
DD DSN=SYS1.FORTVS,DISP=SHR
DD SYSOUT=A,DCB=BLKSIZE=3429
DD &FVTERM
DD SYSOUT=B,DCB=BLKSIZE=3440
DD DSN=&&LOADSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC) ,DCB=BLKSIZE=3200

Figure 58 (Part 1 of 2). JCL Procedure to Compile, Separate, ~ink-Edit, and Go

296 VS FORTRAN Prograniming Guide·

11*
11*
11*
IISEPARATE
IISTEPLIB
IISYSPRINT
IISYSIN
IISYSUT1
II
IISYSUT2
II
IISYSUT3
II
11*
11*
11*
IILKEDN EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
II
11*
11*
11*
IILKEDR EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
II
11*
11*
11*
IIGO EXEC
IISTEPLIB
II
IIFT05F001
IIFT06F001
IIFT07F001

SEPARATION STEP

EXEC PGM=IFYVSFST,PARM=' & FVNAME , ,COND=(4,LT)
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD SYSOUT=A
DD DSN=&&LOADSET,DISP=(OLD,PASS)
DD DSN=&NRENT,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
DD DSN=&RENT,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
DD DSN=&TEMP,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200

NON-REENTRANT PART LINKEDIT

PGM=IEWL,REGION=200K,COND=(4,LT),
PARM='LET,LIST,MAP,XREF'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(1024, (200,20»
DD DSN=&&GOSET(&GONAME) ,DISP=(MOD,PASS) ,UNIT=SYSDA,
SPACE= (TRK, (10, 10, 1) ,RLSE)
DD DSN=&NRENT,DISP=(OLD,DELETE)
DD DDNAME=SYSIN

REENTRANT PART LINKEDIT

PGM=IEWL,REGION=200K,COND=(4,LT) ,
PARM='LET,LIST,MAP,XREF,RENT,NCAL'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(1024, (200,20»
DD DSN=&&GOSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(TRK, (10,10,1),RLSE)
DD DSN=&RENT,DISP=(OLD,DELETE)
DD DDNAME=SYSIN

EXECUTION STEP

PGM=&GONAME,REGION=&GOREGN,COND=(4,LT)
DD DSN=&&GOSET,DISP=(OLD,PASS)
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure S8 (Part 2 of 2). JCL Procedure to CompDe, Separate, Link-Edit, and Go

Chapter 12. Using VS FORTRAN under MVS 297

IIVFTNRLG
II
II
II
11*

PROC LKLNDD='DDNAME=SYSIN',GOPGM=MAIN,GOREGN=500K,
GOF5DD='DDNAME=SYSIN' ,FVLNSPC='3200, (25,6)',
GOF6DD='SYSOUT=A',FVNAME='RENTPART' ,
GOF7DD='SYSOUT=B'

11** *****************
11* PROC DESCRIPTION: SEPARATE, LINK AND GO *
11** *****************
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
11*
IISEPARATE
IISTEPLIB
IISYSPRINT
II*SYSIN
IISYSUT1
II
IISYSUT2
II
IISYSUT3
II
11*
11*
11*
IILKEDN EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN

PARAMETER
LKLNDD
GOPGM
GOREGN
GOF5DD
GOF6DD
GOF7DD
FVNAME
FVLNSPC

DEFAULT-VALUE
DDNAME=SYSIN
MAIN
100K
DDNAME=SYSIN
SYSOUT=A
SYSOUT=B
RENT PART
3200, (25,6)

SEPARATION STEP

USAGE
LKED.SYSLIN OPERAND
OBJECT PROGRAM NAME
GO-STEP REGION
GO.FT05F001 OPERAND
GO.FT06F001 OPERAND
GO.FT07F001 OPERAND
REENTRANT MODULE NAME
SPACE ALLOCATION

EXEC PGM=IFYVSFST,PARM='&FVNAME'
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD SYSOUT=A
DD DSN=&INPUT,DISP=SHR
DD DSN=&NRENT,DISP=(MOD,PASS) ,UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
DD DSN=&RENT,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200
DD DSN=&TEMP,DISP=(MOD,PASS) ,UNIT=SYSDA,
SPACE=(&FVLNSPC),DCB=BLKSIZE=3200

NON-REENTRANT PART LINKEDIT

PGM=IEWL,REGION=200K,COND=(4,LT),
PARM='LET,LIST,MAP,XREF'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(CYL,(l,1»
DD DSN=&&GOSET(&GOPGM),DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(TRK, (10,10,1) ,RLSE)
DD DSN=&NRENT,DISP=(OLD,PASS)

Figure 59 (Part 1 of 2). JCL Procedure to Separate, Link-Edit, and Go

298 VS FORTRAN Programming Guide

11*
11*
11*
IILKEDR EXEC
II
IISYSPRINT
IISYSLIB
IISYSUT1
IISYSLMOD
II
IISYSLIN
11*

REENTRANT PART LINKEDIT

PGM=IEWL,REGION=200K,COND=(4,LT) ,
PARM='LET,LIST,MAP,XREF,RENT,NCAL'
DD SYSOUT=A
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD UNIT=SYSDA,SPACE=(CYL, (1,1»
DD DSN=&&GOSET,DISP=(MOD,PASS),UNIT=SYSDA,
SPACE=(TRK, (10,10,1),RLSE)
DD DSN=&RENT,DISP=(OLD,PASS)

11* EXECUTION STEP
11*
IIGO
II
IISTEPLIB
II

EXEC

IIFT05F001
IIFT06FOOl
IIFT07F001

PGM=&GOPGM,REGION=&GOREGN,
COND=(4,LT)
DD DSN=&&GOSET,DISP=(OLD,PASS)
DD DSN=SYS1.VFORTLIB,DISP=SHR
DD &GOF5DD
DD &GOF6DD
DD &GOF7DD

Figure 59 (Part 2 of 2). JCL Procedure to Separate, Link-Edit, and Go

Using Partitioned Data Sets

A partitioned data set (PDS) consists of groups of sequential data called members
of the data set. Partitioned data sets are used to contain libraries of related data.
For example, the results obtained from executing a FORTRAN program might be
written to a PDS in which each member would contain the output data
corresponding to one set of input data.

Partitioned data set members can be created, retrieved, and rewritten with VS
FORTRAN, using I/O statements for formatted sequential access files. The
applicable statements are: READ, WRITE, CLOSE, and REWIND. Using I/O
statements other than these may produce invalid results.

Creating Members of a New PDS

For formatted sequential access files, the WRITE statement and the REWIND or
CLOSE statements create PDS members. The FORTRAN program must handle
each member written as if it were a separate sequential file. After a member is
written, a CLOSE or REWIND statement must be specified for the unit
representing the member before another member is written. This closes the PDS
after each member is created so that the end-of-file (EOF) record is supplied
correctly for that member. A different DD statement with a different unit
(FORTRAN reference number) is required for each member created in the same
execution.

Chapter 12. Using VS FORTRAN under MVS 299

Retrieving Members from an Existing PDS

For formatted sequential access files, the READ statement with the END=
parameter retrieves multiple members of a POS under one unit number, when the
POS is referenced only for input. The end-of-data transfer specified by the END=
statement number increases the file sequence number. Thus,Diembers ca;n be read,
one-by-one, as if they were sequential tape files. A separate DD statement is
required for each member being read with the appropriate file sequence number.
Also, specify the LABEL parameter and its subparameter IN in the DD statement
when reading members as described above.

Rewriting Members of an Existing PDS

Existing members of a PDS can be rewritten, or new members can be written in an
existing PDS, by using the method described in "Creating Members of a New
PDS" on page 299. Members can be read, written, and/or rewritten in the saIne
FORTRAN program unit, if:

• The POS is closed between references to different members by either a
CLOSE or a REWIND statement.

• Each PDS member is represented by a different unit and OD statement.

Processing Mode and PDS Input/Output

The JCL parameter· LABEL and its subparameters IN and OUT may be used to
preset the processing mode to INPUT or OUTPUT in the OD statements for a
PDS. This usage is recommended because it enforces correct PDS member
handling. As described in "Creating Members of a New POS" on page 299,
correct handling occurs when each POS member is fully processed and its unit
closed before another member is opened and processed.

When the JCL does not preset the processing mode, VS FORTRAN assumes:

• INOUT, if the statement that opened the data set is a READ

• OUTIN, if the statement that opened~hedata set is a WRITE

Note: An OPEN statement-Dot recommended for PDS I/O-results in:

• INOUT, if the opened data set exists

• OUTIN, if it does not

300 VS FORTRAN Programming Guide

IBM Extension

Using Asynchronous Input/Output

Asynchronous input/output statements let you transfer unformatted data quickly
between external sequential files and arrays in yoUr FORTRAN program, and,
while the data transfer is taking place, continue other processing within your
FORTRAN program.

Because the processing overlaps, you must have a method to ensure that your
program doesn't make references to the data until the data transfer is complete.

The asynchronous input/output statements have special features to achieve this:

• The WAIT statement-to ensure that data transmission is complete before
your program begins processing the data

• A unique identifier to identify a particular READ, WRITE, or WAIT
statement-and to connect it with other related asynchronous statements

When you code asynchronous input/output statements, you must have the VS
FORTRAN library available at execution time. To make this library available (and
you are using load mode), use the following job control statement:

//STEPLIB 00 OSN=SYS1.VFORTLIB,OISP=SHR

If you are using link mode, the STEPLIB statement is unnecessary.

Using the Asynchronous WRITE Statement

To create an asynchronous input/output file, you use a special form of the WRITE
statement:

To Transfer an Entire Array:

WRITE (10,IO=6) ARAY1

To Transfer Part of an Array:

WRITE (10,IO=6) ARAY1(2,2) ... ARAY1(5,6)

WRITE (10,IO=6) ARAY1(2,2) .. .

where, in this example:

10

ID=6

is the unit number for the asynchronous file.

is a unique identifier for this WRITE statement, used in the WAIT
statement.

Chapter 12. Using VS FORTRAN under MVS 301

ARAYI is an array whose contents are to be transferred.

In the first WRITE statement, the contents of the entire array are
transferred.

in the second WRITE statement, the contents of ARAYl(2,2)
through ARA Yl(5,6) are transferred.

In the third WRITE statement, the contents of ARAYl(2,2) through
the elld of ARA Yl a,re transferred.

Using the Asynchronous READ Statement

To retrieve an asynchronous mput/ output file, you use a special form of the READ
statement:

To Transfer an Entire Array:

READ (10,ID=6) ARAY1

To Transfer Part of an Array:

READ (10,ID=6) ARAY1 (2,2) ... ARAY1(5,6)
READ (10,ID=6) ARAY1 (2,2) .. .

where, in this example:

10

ID=6

ARAYI

302 VS FORTRAN Programming Guide

is the unit number for the asynchronous file.

is a unique identifier for this READ statement, used in the WAIT
statement.

is an array whose contents are to be transferred.

In the first READ statement, the contents of the entire array are
transferred.

In the second READ statement, the contents of ARAYl(2,2) through
ARA Yl(5,6) are transferred.

In the third READ statement, the contents of ARA Yl (2,2) through
the end of ARAYI are transferred.

Using the Asynchronous WAIT Statement

After you've executed an asynchronous WRITE or READ statement, you must
ensure that the I/O operation is complete before you make any further program
references to the array being processed. The WAIT statement tells the program to
suspend operations until the data transfer is complete; that is, it synchronizes the
WRITE or-READ statement with the rest of the program.

For example, you can use the following WAIT statement with the previously
described READ or WRITE statements:

WAIT (10,ID=6) ARAY1

or

WAIT (10,ID=6) ARAY1 (2,2) ... ARAY1 (5,6)

where, in this example:

10

ARAY1

is the unit number for the asynchronous file.

is a unique identifier for this WAIT statement; it ties this WAIT
statement to the READ or WRITE statement with the same identifier
(the operation the program is waiting for).

is an array.

In the first WAIT statement, the data transfer for the entire array is
being synchronized.

In the second WAIT statement, the data transfer for array elements
ARAY1(2,2) through ARAY1(5,6) is being synchronized.

'---__________ End of mM Extension __________ -'

Sequential Files-System Considerations

Each sequential file you use must be defined to the system through job control
statements._ .To define each file to the system, you specify a DD-statement; see
"Defining Files-DD Statement" on page 262 for details. The data sets you can
specify and the ddnames you can use for them are shown in Figure 54 on
page 286.

Direct Files-System Considerations

You must define each direct file to the system through job control statements. For
information about job control statements, see "Job Processing" on page 257.

For TSO considerations, see Chapter 13, "UsingVS FORTRAN under TSO" on
page 317.

Chapter 12. Using VS FORTRAN under MVS 303

Before you can write records into the file, it must be initialized with empty records.
The first extent of a data set will be formatted. The data set must be specified as
DISP=NEW in the job control information provided by the system, and the
FORTRAN OPEN statement must have STATUS='NEW' or
STATUS = 'UNKNOWN'.

To define each file to the system, you specify a DD statement; in the DCB
parameter, for a direct file, you must specify:

RECFM=F which specifies a fixed record size.

BLKSIZE=rl where rl is the record length.

For example, if the record length is 80, you must specify
BLKSIZE=80.

The OPEN statement provides the default block size for the file, unless you
override it through the BLKSIZE parameter.

For other DD statement options you can specify, see "Defining Files-DD
Statement" on page 262.

The data sets you can specify and the ddnames you can use for them are shown in
Figure 54 on page 286.

Input/ OUtput-System Considerations

Tape Label Considerations

For every file your program uses, you may need labels. System considerations are
given in the following sections for tape labels and for direct access labels.

You specify magnetic tape labels through the LABEL parameter of the DD
statement; through this parameter, you can specify the position of the file on the
tape, the type of label, if the data set is password protected, and the type of file
processing allowed.

For more information about job control statements, see "Job Processing" on
page 257.

For additional detail on magnetic tape label processing, see OS/VS Tape Labels.

Direct Access Label Considerations

You specify direct access labels through the LABEL parameter of the DD
statement; through this parameter, you can specify the position of the file on the
volume, the type of label, if the data set is password protected, and the type of file
processing allowed.

For additional details on direct access label processing, see the appropriate Data
Management Services Guide.

304 VS FORTRAN Programming Guide

~ Defining FORTRAN Records-System Considerations

Record Formats

Your FORTRAN programs must define the characteristics of the data records it
will process: their formats, their record length, their blocking, and the type of
device upon which they reside.

Under VS FORTRAN, you can specify the format of the data records as:

Fixed-Length Records
All the records in the file are the same size and each is wholly contained
within one block. Blocks can contain more than one record, and there is
usually a fixed number of records in each block. The maximum LRECL and
the maximum BLKSIZE is 32760.

V ariable-Length Records
The records can be either fixed or variable in length. Each record must be
wholly contained within one block. Blocks can contain more than one
record.

Each record contains a record-descriptor word, and each block contains a
block-descriptor word. These descriptor fields are used by the system; they
are not available to FORTRAN programs. The maximum BLKSIZE is
32760, the the maximum LRECL is 32756, and, assuming one record per
block, the maximum amount of data is 32752.

When variable-length records are blocked, the blocks may not be filled to the
maximum block size specified, even though it appears that another record
can be contained in the block. The block-descriptor word (BDW) occupies
the first 4 bytes (word) of a block. A record-descriptor word (RDW)
occupies the first word of each variable-length record. Both must be
considered when defining BLKSIZE and LRECL parameters. If the
remainder of the block is not large enough to contain another complete
record, as defined by the record size (LRECL), the current buffer is written
and a new block is started for the next record.

Example (all numbers are given in decimal):

RECFM=VB LRECL=50 BLKSIZE=100

In the above example, if you write three records, each of length 30, you
might expect all three records to be written in one block. However,
FORTRAN writes records 1 and 2 in block 1, after the BDW, for a length of
64 bytes. Record 3 is written in block 2. Although the third record of length
30 will fit in the first block, it is not included because the test for record
length is done using LRECL (length 50). VS FORTRAN does not know the
actual length of the record until after the data is transferred. The following
diagram shows how the records are stored in the blocks:

Chapter 12. Using VS FORTRAN under MVS 305

<------------------------100 bytes------------------------------>

<-------------------------block 1------------------------------->
1 I<-----record 1----->I<-----record 2----->1 1
IBDWIRDWI (26 bytes) IRDWI (26 bytes) 1 (36 unused bytes) 1

<-------------------------block 2------------------------------->
1 I<-----record 3----->1 1
IBDWIRDWI (26 bytes) 1 (66 unused bytes) 1

Spanned Records
The records can be either fixed or variable in length and each record can be
larger than a block. If a record is larger than the remaining space in a block,
a segment of the record is written to fill the block. The remainder of the
record is stored in the next block (or blocks, if required). Only complete
records are made available to FORTRAN programs.

Each segment in a block, even if it is the entire record, includes a
segment-descriptor word, and each block includes a block-descriptor word.
These descriptor fields are used by the system; they are not available to
FORTRAN programs.

Undefined-Length Records
The records may be fixed or variable in length. There is only one record per
block. There are no record-descriptor, block-descriptor, or
segment-descriptor words.

Sequential EBCDIC Data Sets: You can define FORTRAN records in an EBCDIC
data set as formatted or unformatted, that is, they mayor may not be defined in a
FORMAT statement. List-directed I/O statements are considered formatted.

Formatted Records: You can specify formatted records as fixed (blocked or
unblocked) length, variable (blocked or unblocked) length, or undefined length.

Unformatted Records: Unformatted records are those not described by a
FORMAT statement. The size of each record is determined by the input/output
list of READ and WRITE statements.

Unformatted records can be specified as fixed, fixed block, undefined, variable,
and spanned.

If you're processing records using asynchronous input/output, the records must be
variable spanned and unblocked.

Use blocked records wherever possible; blocked records reduce processing time
substantially.

SequentiaiISCII/ ASCII Data Sets: ISCII/ ASCII data sets may have sequential
organization only. For system considerations, see the documentation for the
system you're using.

FORTRAN records in an ISCII/ ASCII data set must be formatted and unspanned
and may be fixed-length, undefined-length, or variable-length records.

306 VS FORTRAN Programming Guide

Defining Records

Direct-Access Data Sets: FORTRAN records may be formatted or unformatted, but
must be fixed in length and unblocked only.

The OPEN statement specifies the record length and buffer length for a direct
access file. This provides the default value for the block size.

You define data record characteristics through the DCB parameter of the DD
statement.

Through the DCB parameter, you can specify:

• Record format-fixed length, variable length, or undefined

• Record length-either the exact length (fixed or undefined), or the length of
the longest record (variable)

• Blocking information-such as the block size

• Buffer information-the number of buffers to be assigned

• Whether the data set is encoded in the EBCDIC or the ISCn/ ASCn character
set

• Special information for tape files

• Special information for direct access files

• Information to be used from another data set

For information about the DCB parameter, see "Job Processing" on page 257.

Cataloging and Overlaying Programs-System Considerations

In order to use the subprograms you write, you must catalog them in a library-so
they're available to calling programs. For information on how to do this, see
"Cataloging Your Object Module" on page 279.

Overlaying Programs in Storage

When you use the overlay features of the linkage editor, you can reduce the main
storage requirements of your program by breaking the program up into two or
more segments that don't need to be in main storage at the same time. These
segments can then be assigned the same storage addresses and can be loaded at
different times during execution of the program.

You must specify linkage editor control statements to indicate the relationship of
segments within the overlay structure.

Chapter 12. Using VS FORTRAN under MVS 307

Specifying Overlays

Keep in mind that, although overlays reduce storage, they also can drastically
increase program execution time. In other words, you probably shouldn't use
overlays unless they're absolutely necessary. In addition, modules compiled with
the RENT compiler option are not executable in MVS as overlays.

The SA VE statement has no effect on overlaid programs. That is, when a program
is overlaid by another, variable values in the overlaid program become
undetermined.

Overlay is initiated at execution time when a subprogram not already in main
storage is referred to. The reference to the subprogram may be either a
FUNCTION name or a CALL statement to a SUBROUTINE subprogram name.
When the subprogram reference is found, the overlay segment containing the
required subprogram is loaded-as well as any segments in its path not currently in
main storage.

When a segment is loaded, it overlays any segment in storage with the same relative
origin. It also overlays any segments that are lower (farther from the root segment)
in the path of the overlaid segment.

Whenever a segment is loaded it contains a fresh copy of the program units that it
comprises; any data values that may have been established or altered during
previous processing are returned to their initial values each time the segment is
loaded.

For this reason, you should place subprograms whose data values must be retained
for longer than a single load phase into the root segment.

The linkage-editor control statements you use to process an overlay load module in
OS are:

• 0 VERLA Y linkage-editor control statement-which indicates the beginning of
an overlay segment and gives the symbolic name of the relative origin.

OVERLA Y control statements are followed by object decks, INSERT control
statements, or INCLUDE control statements.

• INSERT linkage-editor control statement-which positions previously
compiled routines, when the object decks are not available, within the overlay
structure.

The INSERT control statement gives the names of one or more control
sections (CSECTs) that are to be inserted.

To place the control section in the root segment, position the INSERT control
statement before the first OVERLAY control statement.

• INCLUDE linkage-editor control statement-which includes control sections
from libraries, if the control sections reside in partitioned data sets or
sequential data sets.

308 VS FORTRAN Programming Guide

When you use an INCLUDE control statement in an overlay program, you
should position it in the input stream at the point where the control section to
be included is required.

The control sections added by an INCLUDE control statement can be
manipulated through use of the INSERT control statement.

• ENTRY linkage-editor control statement-which specifies the first instruction
of the program to be executed, giving the name of an instruction in the root
segment. Usually, that name will be either MAIN or the name you've given in
the PROGRAM statement (if specified).

These control statements appear in the input stream after the / /SYSLIN DD
statement (or after the / /LKED.SYSLIN DD statement if you use a cataloged
procedure) .

Invoking the VS FORTRAN Compiler

VS FORTRAN can be invoked through the use of the CALL, ATTACH, or LINK
MVS macro instruction. These instructions are used as part of an assembler
language program that can then be assembled, link -edited, and executed by MVS
or TSO.

The program must supply to the FORTRAN compiler:

• The information usually specified in the P ARM parameter of the EXEC
statement.

• The ddnames of the data sets to be used during processing by the FORTRAN
compiler. These can be any valid ddnames.

Name Operation Operand

[name] EP=compiler-name,

rINK } PARAM=(optionaddr[,ddnameaddr]),
VL=1

ATTACH

[name] CALL FORTVS, (optionaddr[,ddnameaddr]),
VL

compHer-name
specifies the program name of the compiler to be invoked. FORTVS is
specified for VS FORTRAN.

optionaddr
specifies the address of a variable-length list containing information usually
specified in the P ARM parameter of the EXEC statement.

The option list must begin on a halfword boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the list. If

Chapter 12. Using VS FORTRAN under MVS 309

there are no parameters, the count must be zero. The option list is free form,
with each field separated by a comma. No blanks should appear in the list.

ddnameaddr
specifies the address of a variable-length list containing alternate names of
the data sets used during FORTRAN compiler processing. This address is
supplied by the invoking program. If standard ddnames are used, this
operand may be omitted.

The ddname list must begin on a halfword boundary. The two high-order
bytes contain a count of the number of bytes in the remainder of the list.
Each name of fewer than eight bytes must be left-justified and padded with
blanks. If an alternate ddname is omitted from the list, the standard name is
assumed. If the name is omitted from within the list, the 8-byte entry must
contain binary zeros. Names can be completely omitted only from the end
of the list.

The sequence of the 8-byte entries in the ddname list is as follows:

Entry Alternate Name

1 SYSLIN

2 00000000

3 00000000

4 00000000

5 SYSIN

6 SYSPRINT

7 SYSPUNCH

8 00000000

9 00000000

10 SYSTERM

11 SYSLIB

VL=lorVL
specifies that the sign bit of the last fullword of the address parameter list is
to be set to 1.

310 VS FORTRAN Programming Guide

LINK

*

CSECT
USING
STM
LR
ST
LA
ST
LR

Link Macro lnstrudion Example:

*,12
15,12,12(13)
12,15
13,SAVE+4
15,SAVE
15,8(,13)
13, 15

* INVOKE THE COMPILER

*

*

OPEN
LINK
CLOSE
L
LM
SR
BR

(COMPILER)
EP=FORTVS,PARAM=(OPTIONS,DDNAMES),VL=1,DCB=COMPILER
(COMPILER)
13,4(,13)
14,12,12(13)
15, 15
14

* CONSTANTS AND SAVE AREA

*
SAVE DC
OPTIONS DC
DDNAMES DC

DC
DC
DC
DC

COMPILER DCB
END

18F'O'
H'24',C'XREF,LIST,GOSTMT,MAP,OBJ'
H'88',CL8'MYSYSL',3X18'OOOOOOOOOOOOOOOO'
CL8'MYSYSI' ,CL8'MYSYSPRT' ,CL8'MYSYSPU'
2XL8'OOOOOOOOOOOOOOOO'
CL8'MYSYST'
CL8'MYSYSLIB'
DDNAME=VSFORT,DSORG=PO,MACRF=R

MVS/XA Considerations

Every program that executes under MVS/XA is assigned two new attributes:
AMODE (addressing mode) and RMODE (residency mode).

• AMODE is a program attribute that indicates which addressing mode can be
supported at a particular entry into a program. Addressing mode refers to the
length of an address, either 24 bits or 31 bits, used by the processor.
Generally, the program is also designed to execute only in that mode, although
an assembler language program can switch the addressing mode. There are
three possible values for AMODE: 24,31, and ANY.

• RMODE is a program attribute that indicates which residence mode can be
supported at a particular entry into a program. Residence mode refers to
where a program is expected to reside in virtual storage: above or below 16
megabytes. The boundary line is called the 16-megabyte line, which pertains
to the range addressable by a 24-bit address. There are two possible values for
RMODE: 24 and ANY.

Program units compiled by VS FORTRAN Release 2.0 and later can execute in 24-
or 31-bit addressing mode in the MVS/XA operating system. These program units

Chapter 12. Using VS FORTRAN under MVS 311

can reside either above the 16-megabyte line. or below the 16-megabyte line. . With
31-bit addressing, there is more freedom to define or reference larger data areas,
files, tables, and to create a larger overall program. The program unit and its data
are no longer constrained to fit in a 16-megabyte address space, but can refer to
addresses anywhere in virtual storage, up to the 2-gigabyte maximum address.

Program units compiled by FORTRAN Gl, Hx, Hx(Enhanced), F, or VS
FORTRAN Releases 1.0 and 1.1, have addressing and residence dependencies
which allow only 24-bit addressing mode (AMODE=24), and can reside only
below the 16-megabyte line (RMODE=24) when running under MVS/XA. These
program units can still be used bythe,nselves or. link-edited with VS FORTRAN
subprograms for execution under MVS/XA. The resulting load module can run
only with an addressing mode of 24-bit (AMODE=24), and must reside below the
16-megabyte line (RMODE:::;:24)."

MVS/XA Linkage Editor Attributes

To take advantage of 31-bit addressing, a program must be link-edited by the
MVS/XA linkage editor and have no 24-bit addressing dependencies. The
MVS/XA linkage editor provides the means for changing the addressing mode
(AMODE) and residence mode (RMODE) specification. The valid linkage editor
AMODE and RMODE specifications are listed below.

Attribute Meaning

AMODE=24 24-bit data addressing mode

AMODE=31 31-bit data addressing mode

AMODE = ANY Either 24-bit or 31-bit addressing
mode

RMODE=24 The module must reside in virtual
storage below 16 megabytes. Use
RMODE=24 for 31-bit programs
that have 24-bit dependencies.

RMODE = ANY Indicates that the module can reside
anywhere in virtual storage.

The linkage editor validates the combination of the ,AMODE value and the
RMODE value when specified in either the P ARM field of the EXEC statement, or
the linkage editor MODE control statement, according to the following table:

RMODE=24 RMODE = ANY

AMODE=24 Valid Invalid

AMODE=31 Valid Valid

AMODE = ANY Valid Invalid

312 VS FORTRAN Programming Guide

FORTRAN and MVS/XA Linkage Editor and Loader Interaction

VS FORTRAN Compiler Release 2.0 or later creates object code that is given the
attributes AMODE=ANY and RMODE=ANY in each CSECT produced. By
default, all previous FORTRAN object code CSECTs are given the attributes
AMODE=24 and RMODE=24. These attributes are then modified at link-edit
time by default values, or by values set in the P ARM field of the EXEC statement
or the linkage editor MODE control statement, as discussed under "MVS/XA
Linkage Editor Attributes" on page 312.

The default action of the linkage editor is to check each CSECT of the entire load
module, and set the RMODE to the lowest mode encountered. It then checks the
AMODE of the entry point, and sets the AMODE for the entire load module to the
AMODE of the entry point CSECT. This means that:

• All FORTRAN main programs compiled prior to VS FORTRAN Release 2.0
have the default AMODE and RMODE of 24. The linkage editor will set the
AMODE and RMODE of the load module to 24 by default. The created load
module will reside below the 16-megabyte line, and will be invoked in 24-bit
addressing mode.

• All VS FORTRAN main programs compiled with VS FORTRAN Release 2.0
and later have the AMODE set to ANY. The linkage editor will set the
AMODE of the load module to ANY by default ..

The load module may be entered with 31-bit or 24-bit addressing mode,
depending on the release of MVS/XA being used and the parameters used in
TSO. The addressing mode upon entry is set to 31-bit if MVS/SP Version 2,
Release 1.1, is used to load the program, and set to 24-bit if MVS/SP Version
2, Release 1.0, is used. If a FORTRAN program is called from a TSO session,
the addressing mode is set to 24-bit, but if a FORTRAN program compiled
with the TEST option is called from a TSO session, the addressing mode is set
to 31-bit.

If the main routine is entered in 31-bit addressing mode and calls a VS
FORTRAN subroutine compiled by VS FORTRAN prior to Release 2.0, or a
FORTRAN subroutine compiled by any other FORTRAN compiler or an
Assembler routine with 24-bit addressing dependencies, the program may
abnormally terminate during execution. The default AMODE attribute must
be overriden in the link-edit step to set AMODE=24.

• The RMODE of the load module is based upon whether the load module is
created for execution in link mode or load mode. For complete details
concerning link mode and load mode of the VS FORTRAN Library, see
"Execution-Time Loading of Library Modules" on page 276.

A program that is link-edited to operate in link mode will always be given an
RMODE of 24. Overriding this value to ANY is not permissible because there
are some library routines in the created load module that must reside below the
16-megabyte line.

A program that is link-edited to operate in load mode can, except for the cases
noted above, have any valid combination of AMODE and RMODE values.
The library routines that are loaded during execution are loaded either above

Chapter 12. Using VS FORTRAN under MVS 313

or below the 16-megabyte line, based upon their individual residence mode
requirements. Because of the scattered loading of individual VS FORTRAN
Library modules, the execution-time library always switches to 31-bit
addressing mode· while in the library routines, and to the addressing mode of
the caller of the library routine upon return.

The control program invokes the load module created by the linkage editor
according to its AMODE, and places the module above or below the 16-megabtye
line according to its RMODE. For more information about AMODE and
RMODE, see MVS / Extended Architecture Supervisor Services and Macro
Instructions .

Overriding AMODE/RMODE Attributes

To override the default link-edit attributes, specify AMODE and/or RMODE as
follows:

• The linkage editor or loader EXEC statement

IILKED EXEC PGM=programname,
II PARM='AMODE(xxx),RMODE(yyy)'

See MVS / Extended Architecture Linkage Editor and Loader for additional
detail.

• The linkage editor MODE control statement

MODE AMODE(xxx),RMODE(yyy)

See MVS / Extended Architecture Linkage Editor and Loader for additional
detail.

• The TSO commands LINK or LOAD GO

LINK (dsn-list) AMODE(xxx) RMODE(yyy)

or

LOADGO (dsn-list) AMODE(xxx) RMODE(yyy)

Using Dynamic Common above the 16-Megabyte Line

The linkage editor limits the size of a load module to 16 megabytes. To overcome
this limit, VS FORTRAN-named common areas can be declared so that they will
occupy storage outside of the load module. The storage is dynamically obtained
and made available to the object code by the VS FORTRAN Library at execution
time. For details concerning dynamic common areas, see "Using Blank and Named
Common (Static and Dynamic)" on page 133.

314 VS FORTRAN Programming Guide

In order to use the extra storage available with MVS/XA, the load module must
execute in 31-bit addressing mode. In particular, the module cannot contain
subroutines compiled under FORTRAN 01, Hx or prior to VS FORTRAN Release
2.0. The storage for dynamic common areas will be obtained above the
16-megabyte line only when the program is executing in 31-bit addressing mode
(regardless of the residence mode) and storage is available; storage will be obtained
below the 16-megabyte line when the program is executing in 24-bit addressing
mode.

Example:

@PROCESS DC(CMN1,
@PROCESS CMN2)

COMMON /CMN1/XARRAY(1000,1000,1000)
COMMON /CMN2/YARRAY(5000000)
COMMON /CMN3/ZARRAY(100,100,100)

Storage for common areas CMNI and CMN2 is dynamically obtained at execution
time. The storage for COMMON CMN3 is part of the load module, and takes up
part of the 16-megabyte maximum module size. Note the continuation of the DC
option across two @PROCESS statements.

Extended Architecture Hints for FORTRAN Users

The following list contains helpful information for VS FORTRAN users.

• All modules that perform input and output and all input/output buffers and
control blocks must reside below the 16-megabyte line, because Data
Management does not support callers in 31-bit addressing mode.

• The VS FORTRAN Library execution-time I/O routines switch addressing
mode when system services are needed. The addressing mode can be switched
only in a program residing below the 16-megabyte line.

• The maximum size of a load module is 16 megabytes.

• During installation, specify ARCH=XA in the VSFORTL macro.

• Unless you specifically force an AMODE value of 24, do not mix object
modules compiled with VS FORTRAN Release 2.0 and later with

Object modules compiled with compilers prior to VS FORTRAN Release
2.0

Assembler code with 24-bit dependencies

Chapter 12. Using VS FORTRAN under MVS 315

316 VS FORTRAN Programming Guide

Chapter 13. Using VS FORTRAN under TSO

You can use the facilities of TSO, taking advantage of quick terminal turnaround
time, to develop VS FORTRAN programs. You can compile your programs under
TSO and link-edit them to run under MVS or any other supported system, or you
can compile, link-edit, and execute them under TSO.

When your VS FORTRAN source programs are compiled under TSO, the compiler
creates files that contain its listing and the executable code the program produces.
Some of the programs, during execution, may process or create files containing
data.

This section describes files in a FORTRAN context. For additional information on
TSO, see:

OS/VS2 MVS TSO Command Language Reference
OS/VS2 MVS TSO Terminal User's Guide

Using the TSO Commands

The TSO commands help you create and edit your source programs, link-edit your
object modules, and execute your load modules. The TSO commands you'll use
most frequently are shown in Figure 60 on page 318.

User-Defined Files

Before invoking the VS FORTRAN compiler, a VS FORTRAN source program
must be available in a TSO file. The source program is usually created using the
TSO EDIT command, and may be written in either fixed or free format. The files
may be created at the terminal just prior to compiling them, or they may be old files
that need recompilation. In either case, all VSFORTRAN source files must have a
TSO identifier and file characteristics that conform to VS FORTRAN compiler
requirements.

User-defined files containing data that you will want your program to process, may
already exist in your system. Conversely, you may want your program to create a
file to hold data that was generated during its execution. You must define all such
files with an ALLOCATE command; because they are not predefined, they cannot
be identified by TSO and associated with your program. ALLOCATE is used in
conjunction with the data set reference numbers in your FORTRAN input and
output statements and the identifier of the file that you want to use or create.

Chapter 13. Using VS FORTRAN under TSO 317

TSO Command Usage

ALLOCATE Allocates data sets needed for compilation,
link-editing, or execution.

A TIRIB Builds a list of data sets (DCB parameters)
for dynamic allocation.

CALL Invokes compiler, linkage-editor, or load
module for execution.

DELETE Deletes one or more data set entries or one
or more members of a partitioned data set.

EDIT Puts you in EDIT mode to create and edit
source program and data files, and lets you
use EDIT subcommands.

FREE Frees files allocated for a job (same as
UNALLOCATED). .

HELP Provides information about commands other
than EDIT subcommands.

LINK Converts one or more object modules into
a load module.

LOADGO Loads one or more object modules into
storage and executes them.

STATUS Checks execution status of a submitted
batch job.

SUBMIT Submits a JCL file to MVS to run as a
batch (background) job (requires SUBMIT
logon capabilities).

TEST Tests an object program for proper
execution and locates programming errors.

Figure 60. TSO Commands Often Used with VS FORTRAN

Whether a file is sequential, direct access, or random access will, to a great extent,
determine how a record is defined, the way it is identified, and how it is referred to
in a VS FORTRAN program.

Regardless of the type of file you are using, there are several guidelines that must
be followed in defining and using files.

• Define each file used in your program to the system (either through
system-supplied definition or one that you supply).

318 VS FORTRAN Programming Guide

• Do not use the same definition for more than one file.

• You may refer to the same file from more than one program through different
devices and access methods, if you change the file and its definition
appropriately before using it.

File Identification-TSO ALLOCATE Command

Before compiling, link-editing, or executing your program, you must allocate the
files you'll need, using the ALLOCATE command. For example, you could
allocate the following files when processing a source program named MYPROG:

For the Source Program as CompHer Input:

ALLOCATE DATASET(myprog.fort) FILE (SYSIN) OLD

This ALLOCATE command tells TSO that the file named myprog.fort is an existing
file (OLD), available on the SYSIN data set.

If you are using the INCLUDE statement, you need to allocate that data set as
SYSLIB:

ALLOCATE FILE(SYSLIB) DATASET('user.lib.fort') SHR

For information on how to create a library containing the INCLUDE source code,
see "Using the FORTRAN INCLUDE Statement" on page 336.

For CompHer Output Listings:

ALLOCATE DATASET(myprog.list) FILE (SYSPRINT) NEW
BLOCK(120) SPACE (60, 10)

This ALLOCATE command tells TSO that the file named myprog.list is a new file
(NEW), to be produced on the SYSPRINT data set. The line length is 120
characters; the primary space allocation is 60 lines.

To print the listing, use the PRINT command.

For an Object Deck:

ALLOCATE DATASET(myprog.obj) FILE (SYSPUNCH) NEW
BLOCK(80) SPACE (120,20)

This ALLOCATE command tells TSO that the file named myprog.obj is a new file
(NEW), to be produced on the SYSPUNCH data set. The record length is 80
characters.

For the Object Module:

ALLOCATE DATASET(myprog.obj) FILE (SYSLIN)
NEW BLOCK(80) SPACE(100,10)

This ALLOCATE command tells TSO that the file named myprog.objis a new file
(NEW), to be produced on the SYSLIN data set. The record size (and block size)
must be 80 characters. The space you can specify as any size you need.

Chapter 13. Using VS FORTRAN under TSO 319

For Terminal Input/Output:

ALLOCATE DATASET(*) FILE (SYSTERM)

This ALLOCATE command tells TSO that the file identified by the asterisk (*) is
available on the SYSTERM data set. You can then use the terminal to receive
error message output. (The listing output is on the SYSPRINT data set.)

For terminal files, a null entry in response to a prompt is taken to be an end-of-file.
Another ALLOCATE command or an explicit OPEN is required to continue
processing.

For Program Data Sets:

ALLOCATE DATASET(identifier.narne.data) FILE (FTxxFyyy)

This ALLOCATE command tells TSO that the file identified by the qualified name
is available on the FTxxFyyy data set. Valid values for xx and yyy are documented
in Figure 54 on page 286.

Before you can load a direct data set, you must preformat it. "Direct
Files-System Considerations" on page 303 tells how to do this.

Creating Your Source Program-TSO EDIT Command

To create a source program data set, you use the EDIT command. Use the EDIT
command whenever you want to create a new data set and also whenever you want
to edit an existing one.

(You can also use the Interactive System Productivity Facility (ISPF) editor to
create source program data sets. You can use SPF to allocate sequential data sets
or partitioned data sets, although this isn't necessary, because the ALLOCATE and
ATTRIB commands are also available.)

The EDIT subcommands (such as COPY, INPUT, INSERT, etc.) help you enter
and edit the lines of source code.

To create a source program file, you can specify the qualifier of your source
program file as fort. Alternatively, you can specify the qualifier as data.

For example, to create a source program data set named myprog, you specify:

EDIT rnyprog.fort

or

EDIT rnyprog.data

This creates an empty data set for you, with the name myprog, and the descriptive
qualifier fort or data. (If myprog.fort already exists, the EDIT command retrieves it
for you and makes it available for editing.)

You can now enter your source program into the data set, line by line, according to
the rules for fixed or free form source programs.

320 VS FORTRAN Programming Guide

Fixed format FORTRAN files contain 80-character records; you use the first 72
characters for FORTRAN statements and continuation lines.

Compiling Your Program-TSO ALLOCATE and CALL Commands

To compile your program, use the ALLOCATE and CALL commands. For other
possibilities, see "Invoking the VS FORTRAN Compiler" on page 309.

Allocating CompHation Data Sets--TSO ALLOCATE Command

First, you allocate the data sets you'll need for compilation as shown in Figure 61
and discussed under "File Identification-TSO ALLOCATE Command" on
page 319.

ALLOCATE DATASET(myprog.fort) FILE (SYSIN) OLD
ALLOCATE DATASET(myprog.list) FILE (SYSPRINT) NEW BLOCK(120) SPACE(60,10)
ALLOCATE DATASET(myprog.obj) FILE (SYSLIN) NEW BLOCK(80) SPACE(100,10)
ALLOCATE DATASET(*) FILE (SYSTERM)
ALLOCATE DATASET('user.lib.fort') FILE (SYSLIB) SHR

Figure 61. Allocating TSO Compilation Data Sets

For any compilation, you must allocate the SYSIN AND SYSPRINT data sets.

Allocate the SYSLIN data set only if you want to produce an object module
(you've specified the OBJECT compiler option).

Allocate the SYSTERM data set only if you wish to receive diagnostics at the
terminal (you've specified the TERMINAL option).

Allocate the SYSLm data set only if your compilation uses the INCLUDE
statement.

You can enter these ALLOCATE commands in any order. However, you must
enter all of them before you invoke the FORTRAN compiler.

Requesting CompHation-CALL Command

After you've allocated the data sets you'll need, you can issue a CALL command,
requesting compilation.

Note: VS FORTRAN compiler options can be specified as options of the CALL
command.

You can request compilation, using the default compiler options:

CALL 'SYS1.FORTVS(FORTVS)'

or you can request one or more compiler options explicitly:

CALL 'SYS1.FORTVS(FORTVS)' 'FREE, TERM, SOURCE, MAP, LIST, OBJECT ,

Chapter 13. Using VS FORTRAN under TSO 321

which tells the compiler that:

• FREE-your source program is in free form.

• TERM--diagnostic messages are to be directed to your terminal.

• SOURCE-the source program is to be printed in the output listing.

• MAP-a storage map is to be printed in the output listing.

• LIST-the object program is to be printed in the output listing ..

• OBJECT-an object module is to be produced.

Specifying TSO Line Numbers When Debugging

Compiler Output

LIST Data Set

OBJData Set

If you want to use TSO line numbers as breakpoints interactively when debugging
your compiled program, you must specify the NOSDUMP compiler option in
addition to the TEST option.

If you are using VS FORTRAN Interactive Debug (5668-903), see Chapter
16, "Using VS FORTRAN Interactive Debug with VS FORTRAN" on page 377.

Depending on your organization's compile-time defaults and/or the options you
select in your CALL command, you may get a LIST data set and/or an OBJ data
set as output, placed in your disk storage for easy reference, under the name(s) you
specified in the ALLOCATE command.

The LIST data set contains the compiler output listing; see "Identifying User
Errors" on page 167 for an explanation of what the compiler output listing
contains and how to use it.

It has the name of your source program, and the qualifier LIST. For example, the
qualified name for MYPROG is MYPROG.LIST.

The OBJ data set contains the object code the compiler created fro~ your source
program. The OBJ data set contents are explained in "Link-Editing Your
Program" on page 278.

It is placed in your storage with the name of your source program and the qualifier
OBJ. For example, the qualified name for myprog is myprog.obj.

This data set remains in your disk storage until you erase it, using the DELETE
command.

You can link-edit the OBJ data set under any of the systems that VS FORTRAN
supports to get a load module.

322 VS FORTRAN Programming Guide

Link-Editing and Executing Your Program under TSO

To link-edit and execute your program under TSO, use the LINK command to
create a load module from one or more object modules (plus any needed VS
FORTRAN library modules), and then use the CALL command to execute the
load module.

The input object module must be OBJ data sets; for example:

userid.name.oBJ

For information on how to invoke the VS FORTRAN compiler, see Appendix
B, "Object Module Records" on page 403.

Link-Editing Your Program-TSO LINK Command

You use the LINK command to create and execute a load module. Input you use
consists of your object module, VS FORTRAN library routines, and any other
secondary input (such as OBJ data sets of called subprograms).

For example, if you want to load and execute the OBJ data sets for myprog and its
subprogram subprog, you specify:

For load mode:

LINK (myprog,subprog) LOAD (myprog) LIB('SYS1.VFoRTLIB')

or

LINK (myprog,subprog) LoAD(myprog)+
LIB('SYS1.VALTLIB' ,'SYS1.VFoRTLIB')

For link mode:

LINK (myprog,subprog) LoAD(myprog)+
LIB('SYS1.VLNKMLIB','SYS1.VFoRTLIB')

or

LINK (myprog,subprog) LoAD(myprog)+
LIB('STS1.VLNKMLIB', 'SYS1.VALTLIB','SYS1.VFoRTLIB')

When the commands are executed, the OBJ data sets for myprog and subprog are
link-edited together into a load module.

You must request the linkage editor to search the library to resolve external
references. In the last example, you are, therefore, requesting a search of
SYS1.V ALTLm and SYS1.VFORTLm.

For information about link and load mode, see "Executing Your Program" on
page 324.

Chapter 13. Using VS FORTRAN under TSO 323

Linkage Editor Listings-TSO LINK Command

You can also use the LINK command to specify linkage editor options. In the
above example, you can request the listings to be printed, either on the system
printer or at your terminal:

On the System Printer:

LINK (myprog,subprog) LIB('SYS1.VFORTLIB') LOAD (myprog) PRINT

The qualified name of the data set to be sent to the system printer is
userid.myprog.linklist. To print the data set, you must use a print command, or the
ISPF HARDCOPY command.

At Your Terminal:

LINK (myprog,subprog) LIB('SYS1.VFORTLIB') LOAD (myprog) PRINT(*)

When you specify PRINT(*), the linkage editor listings are displayed at your
terminal.

Executing Your Program

To execute your VS FORTRAN program on TSO or TSO-E, there are certain
prerequisites.

• If you are using a Release 2 or Release 3 or 3.1 load module with the VS
FORTRAN Release 4 library (that is, you have not link-edited your object files
with the Release 4 library), then

If you are not using the IFYVRENT routines, only IFYV ASUB and
IFYVPOST must be installed in a library on the system link list (see
SYS1.PARMLIB member LNKLSTOO for the libraries on the list).

If you are using the IFYVRENT routines, IFYVRENT must also be in a
library on the system link list.

If you are using the IFYVRENT routines and IFYVRENT is in the link
pack area (LPA), then IFYVPOST and IFYV ASUB (IFYV ASUB may go
into the LP A) must be in a library on the system link list.

All the above statements assume that you are running a program in a load
module link-edited with the VS FORTRAN Release 2 or Release 3 or 3.1
library.

• If you link-edit your nonreentrant object modules with the Release 4 libraries,
you must follow these rules when you link-edit your program:

Link mode allows you to build a complete load module with no
execution-time library module dependency.

324 VS FORTRAN Programming Guide

)

Example 1: Link mode and standard mathematical routines

LINK myprog LOAD(myprog(T» PRINT (myprog) LET LIST MAP+
LIB('SYS1.VLNKMLIB' ,'SYS1.VFORTLIB')

CALL myprog(T)

Example 2: Link mode and alternative mathematical routines

LINK myprog LOAD(myprog(A» PRINT (myprog) LET LIST MAP+
LIB('SYS1.VALTLIB' ,'SYS1.VLNKMLIB' ,'SYS1.VFORTLIB')

CALL myprog(A)

Load mode allows you to build smaller load modules than link mode, but at
a cost of an execution-time module dependency. This means that
SYSl.VFORTLm must be added to your system link list or concatenated
to STEPLm in the logon procedure, so that required routines at execution
time may be found.

Example 1: Load mode and standard mathematical routines

LINK myprog LOAD(myprog(T» PRINT (myprog) LET LIST MAP+
LIB('SYS1.VFORTLIB')

CALL myprog(T)

Example 2: Load mode and alternative mathematical routines

LINK myprog LOAD(myprog(A» PRINT (myprog) LET LIST MAP+
LIB('SYS1.VALTLIB' ,'SYS1.VFORTLIB')

CALL myprog(A)

• If you want to run a program that has been compiled with the RENT compiler
option, there are several things that you may do:

You may use your compiler object as if it were a nonreentrant object file
and link, as described previously.

You may process your reentrant compilation object file with the separation
program. Only the nonreentrant object output needs the Release 4 library,
as described previously. The reentrant object output is link-edited without
VS FORTRAN libraries present.

You may want to use the following CLIST to do the separation. This
CLIST assumes you will be creating just one load module. If you want to
create multiple load modules, then the invocation should not include
passing the parameter list ('&RENTPART.'), but must include the
allocation using &RENTP ART.

Chapter 13. Using VS FORTRAN under TSO 325

PROC 2 INPUT RENT PART
FREE F(SYSIN SYSPRINT SYSUT1 SYSUT2 SYSUT3)
FREE ATTR(DCBPARMS)
ATTR DCBPARMS BLKSIZE(3120) LRECL(80) RECFM(F,B)
RENAME &INPUT .. OBJ &INPUT .. OBJ2
ALLOC F(SYSIN) DA(&INPUT .. OBJ2) SHR
ALLOC F(SYSPRINT) DA(*)
ALLOC F(SYSUT1) DA(&INPUT .. OBJ) NEW SP(10,2) +

TRACK USING(DCBPARMS)
ALLOC F(SYSUT2) DA(&RENTPART .. OBJ) NEW SP(10,2) +

TRACK REUSE USING(DCBPARMS)
ALLOC F(SYSUT3) SP(10,2) TRACK NEW USING(DCBPARMS)
CALL 'SYS1.VFORTLIB(IFYVSFST)' '&RENTPART.'
FREE F(SYSIN SYSPRINT SYSUT1 SYSUT2 SYSUT3)
FREE ATTR(DCBPARMS)

Note: This CLIST does not link either the reentrant or nonreentrant parts,
and assumes the input object file does not have an OBJ2 file associated
with it.

You may put the reentrant modules into a library that is in the STEPLm
specification of your logon procedure. This same file may be shared with
two or more users.

Example:

LINK myprog LOAD(SHRLIB) PRINT(M1) XREF LET LIST RENT

would insert the contents of the myprog object file into the SHRLm
library. Note the name(s) of the module(s) actually entered into SHRLm
have been generated by the separation program on NAME control records.

To insert the module(s) in myprog into the LPA requires authority to insert
them into the correct library and restarting MVS to load those modules
into the LP A. The procedure used varies· from installation to installation,
so see your system administrator for the procedure.

When the above has been done, a CALL to the user link-edited program

CALL mylib(myprog)

will result in the user's program being properly executed and, if a failure occurs, the
post-abend processor will be called to identify what happened.

326 VS FORTRAN Programming Guide

Specifying Execution-Time Options

To specify an execution-time option (XUFLOW, NOXUFLOW, DEBUG, or
NODEBUG), use the following method:

CALL pgmname 'option'

where pgmname is the name of your VS FORTRAN program, and option is
XUFLOW, NOXUFLOW, DEBUG, or NODEBUG.

For more information, see "Using the Execution-Time Options" on page 200.

Using the CALL Command-TSO Load Module Execution

For example, to execute MYPROG.LOAD, you specify the ALLOCATE
commands needed to allocate the input and output data sets it uses, as well as any
work data sets. Then you issue the CALL command, as follows:

ALLOCATE DATASET(myprog.indata)
ALLOCATE DATASET(myprog.outdata)
ALLOCATE DATASET(myprog.workfil)
CALL myprog

FILE(FT05F001)
FILE(FT06F001)
FILE(FT10F001)

and program tempname from file myprog.load is executed.

(as needed)
(as needed)
(as needed)

After program execution is complete, and if you no longer need them, you should
issue the DELETE command to free the disk space used by the data sets you've
named in the ALLOCATE commands and in the CALL command:

DELETE (myprog.indata myprog.outdata myprog.workfil)

If you do need them, don't issue the DELETE command; you can then reuse the
data sets as necessary.

Using the Loader-TSO LOAD GO Command

Using the LOADGO command, you can invoke the loader program to link-edit and
execute your program all in one step. This is efficient when you have several
object modules you want combined into one load module for a quick test. When
you use the LOADGO command, the load module created is automatically deleted
when program execution ends. Link and load mode apply to the LOAD command.

First, you must allocate any needed data sets, as outlined under "Allocating
Compilation Data Sets-TSO ALLOCATE Command" on page 321. You must
then add SYSl.VFORTLm to your system link list, or concatenate
SYSl.VFORTLm to STEPLIB in your logon procedure.

Then you issue the LOADGO command. In this example, you're linking and
executing the myprog object module:

Load mode:

LOADGO (myprog) LIB('SYS1.VFORTLIB'}

or

Chapter 13. Using VS FORTRAN under TSO 327

LOADGO (myprog) LIB ('SYS 1 . VALTLIB' , 'SYS 1 . VFORTLIB')

Link mode:

LOADGO (myprog) LIB('SYS1.VLNKMLIB','SYS1.VFORTLIB')

or

LOADGO (myprog) LIB('SYS1.VALTLIB' ,'SYS1.VLNKMLIB', 'SYS1.VFORTLIB')

The LIB operand makes the appropriate data sets available to the loader program.
The loader program can then resolve any external references in myprog and load
the needed object modules.

You can· also use the LOADGO command to execute a link-edited load module; for
example, one named myprog:

LOADGO myprog(tempname)

You can also use the LOADGO command to specify loader options. In the last
example, you can request a load module map and the listings to be printed, either
on the system printer or at your terminal:

On the System Printer:

LOADGO (myprog) MAP PRINT

The qualified name of the data set sent to the system printer is
MYPROG.LOADLIST.

At Your Terminal:

LOADGO (myprog) MAP PRINT(*)

When you specify PRINT(*), the loader listings are displayed at your terminal.

Fixing Execution Errors under TSO

When you're developing programs using TSO, you can make use of all the
FORTRAN debugging aids described in Chapter 9, "Executing Your Program and
Fixing Execution-Time Errors" on page 185.

You can use the TSO TEST command, together with its associated subcommands,
to debug your object program.

The easiest way to use TEST is to establish the point in your program at which an
abnormal termination occurred.

For best results, you should be familiar with the assembler language and addressing
conventions.

328 VS FORTRAN Programming Guide

Requesting a Command Procedure under TSO

You can create a command procedure (CLIST) for a number of different
processing options under TSO. This is useful, because you can preallocate all the
options you need once, when you create the command procedure. Then, every
time you execute the command procedure, there's no need to respecify the options.

You can create command procedures to process your jobs either in the foreground
or in the background.

Command Procedures for Foreground Processing

To create a command procedure to link-edit and run a FORTRAN program in the
foreground, use one of these forms of CLIST:

Example 1:

PROC 1 NAME
ALLOCATE FILE {FT06f 001) DA{*)
LOAD GO &NAME LIB{'SYS1.VFORTLIB')

Example 2:

PROC 1 NAME
LINK &NAME LOAD{temp{MAIN» LIB('SYS1.VFORTLIB'} LET MAP
ALLOCATE FILE {FT06f 001) DA(*)
CALL &NAME(MAIN)
DELETE temp

Command Procedures for Background Execution

If your source programs are small, foreground execution can be quite convenient.
However, if your programs will take some time to compile and/or to execute, you
may prefer to batch process them in the background. This frees your terminal for
other work while the batch job is running. For information about procedures, see
"Using and Modifying Cataloged Procedures" on page 264.

System Considerations under TSO

When you're developing programs using the TSO facilities, your FORTRAN
programs must not require system actions for which you are not authorized (for
example, protected data set access or volume mounting).

In addition, if your FORTRAN programs make use of assembler subroutines, there
are a few system considerations you must take into account, when coding the
assembler routines, as follows:

• Your assembler subprograms must execute as nonauthorized problem
programs.

• Your assembler subprograms must use standard MVS system service interfaces.

Chapter 13. Using VS FORTRAN under TSO 329

• Your assembler subprogram must not use TSO-specific storage subpools.

• The address spaces your assembler subprograms use must not be sensitive to
MVS control block structures.

• Your assembler subprogram must use only the data set characteristics available
through the ALLOCATE command.

If your FORTRAN programs are compiled with the SYM compiler option, then use
the TEST option when link-editing to form a load module. This enables you to
reference most of the FORTRAN variables when using TSO TEST. All the other
requirements still apply;

If your FORTRAN programs are compiled with the RENT compiler option, you
can run in either foreground or background.

For information about overriding the AMODE or RMODE attribute in MVS/XA,
see "Overriding AMODE/RMODE Attributes" on page 314.

330 VS FORTRAN Programming Guide

Chapter 14. Using VS FORTRAN under VSE

You can compile your programs under VSE and then run them under VM or MVS
and vice versa; or you can compile and execute them under VSE. The term VSE,
used in this context, means VSE/ Advanced Functions.

Executing Your Program with Job Control Statements or Cataloged
Procedures

Job Processing

The simplest way to execute your program is to use one of the cataloged
procedures described in "Writing and Modifying Cataloged Procedures" on
page 332. However, the cataloged procedures may not give you the programming
flexibility you need for your more complex data processing jobs, and you may need
to specify your own job control statements, or write your own cataloged
procedures.

Job control statements provide a communication link between the FORTRAN
programmer and the operating system. The programmer uses these statements to
define a job, a job step within a job, and data sets required by the job. The job
control statements needed to compile, link, and execute a VS FORTRAN program
are:

CompllatioD

JOB
EXEC VFORTRAN
ASSGN
CLOSE
DLBL
EXTENT
OPTION
TLBL
LIBDEF

Linkage Editor

JOB
EXECLNKEDT
ACTION
ENTRY
INCLUDE
PHASE

Execution

JOB
EXEC program-name,SIZE=nK

For a complete description of job control statements, see VSE/ Advanced Functions
System Control Statements.

Note: You specify the VS FORTRAN compiler options as options in the PARM
parameter of the EXEC job control statement for VSE/ Advanced Functions
Release 3.0.

Chapter 14. Using VS FORTRAN under VSE 331

Writing and Modifying Cataloged Procedures

To catalog a procedure in the procedure library, you submit a CATALP statement
specifying the procedure name. Rules for naming the procedures are given in
VSE/Advanced Functions System Control Statements.

The control statements to be cataloged follow the CAT ALP statement; they can be
job control or linkage editor control statements or both. The end of the control
statements to be cataloged must be indicated by an end-of-procedure delimiter,
usually a / + delimiter.

Each control statement cataloged in the procedure library should have a unique
identity. This identity is required if you want to be able to modify the job stream at
execution time. Therefore, when cataloging, identify each control statement in
columns 73 through 79 (blanks may be embedded).

Retrieving Cataloged Procedures

To retrieve a cataloged procedure from the procedure library, you use the PROC
parameter in the EXEC job control statement, specifying the name of the
cataloged procedure.

When the job control program starts reading the job control statements in the input
stream on SYSRDR and finds the EXEC statement, it knows by the operand
PROC that a cataloged procedure is to be inserted. It takes the name of the
procedure to be used and retrieves the procedure with that name from the
procedure library. At this point, SYSRDR is temporarily assigned to the procedure
library. Job control reads and processes the job control statements as usual. The
statement,

II EXEC MYPROGM

causes the program MYPROGM to be loaded and given control. When execution
of MYPROGM is complete, the job control program reads the next statement or
statements from the procedure library and then finds the end-of-procedure
indicator (/ +). The end-of-procedure indicator returns the SYSRDR assignment
to its permanent device, where the job control program finds the / & statement and
performs end-of-job processing as usual.

Temporarily Modifying Cataloged Procedures

You can request temporary modification of statements in a cataloged procedure by
supplying the corresponding modifier statements· in the input stream.

Normally not all statements need to be modified; therefore, you must establish an
exact correspondence between the statement to be modified and the modifier
statement by giving them the same symbplic name. This symbolic name may have
from one to seven characters, and must be specified in columns 73 through 79 of
both statements. .

A single character in column 80 of the modifier statement specifies which function
is to be performed.

332 VS FORTRAN Programming Guide

A Indicates that the statement is to be inserted after the statement in the
cataloged procedure that has the same name.

B Indicates that the statement is to be inserted before the statement in the
cataloged procedure that has the same name.

D Indicates that the statement in the cataloged procedure that has the same
name is to be deleted.

Any other character or a blank in column 80 of the modifier statement indicates
that the statement is to replace (override) the statement in the cataloged procedure
that has the same name.

In addition to naming the statements and indicating the function to be performed,
you must inform the job control program that it has to carry out a procedure
modification. This is done as follows:

1. By specifying an additional parameter (OV for overriding) in the EXEC
statem.ent that calls the procedure, and

2. By using the statement // OVEND to indicate the end of the modifier
statements.

Placement of the // OVEND statement is as follows:

• Directly behind the last modifier statement or,

• If the last modifier statement overwrites a // EXEC statement and is followed
by data input, between the /* and /& delimiters.

Requesting Compilation

In one job you can request compilation for a single source program or for a series
of source programs.

Note: When you're requesting a VS FORTRAN compilation, you should use
SIZE=AUTO. This will give the most space in the partition for the dynamic
storage (GETVIS) requests from the compiler. Then, if a compilation receives
message number IFX0094I for insufficient storage, increase the partition size to
increase the GETVIS area available for the compilation. The major determinants
of the amount of dynamic storage or GETVIS required by the compiler are
program size, complexity, and optimization level.

Chapter 14. Using VS FORTRAN under VSE 333

Compiling a Single Source Program

For a single source program, the sequence of job control statements you use is:

II JOB statement
II OPTION statement (as required)
II ASSGN Statements for Compilation (as required)
II DLBL statements for Compilation (as required)
II EXTENT Statements for Compilation (as required)
II EXEC Statement (to execute the VS FORTRAN compiler)

(Source program to be compiled)

1* Data Delimiter statement (only if source program is on cards)
1& End-Of-Job statement

Batch Compilation of More Than One Source Program

For a series of programs, the sequence of job control statements you use is:

II JOB Statement
II OPTION Statement (as required)
II ASSGN statements for Compilation (as required)
II DLBL statements for Compilation (as required)
II EXTENT Statements for Compilation (as required)
II EXEC Statement (to execute the VS FORTRAN compiler)

(First source program to be compiled)

@PROCESS statement (if needed to modify compiler options)

(Second source program to be compiled)

@PROCESS statement (if needed to modify compiler options)

(Third source program to be compiled)

1* Data Delimiter statement (only if source program is on cards)
1& End-Of-Job statement

The @PROCESS statement is described in "Modifying Compilation
Options-@PROCESS Statement" on page 164.

Requesting Compilation Only

The easiest way to request compilation under VSE is to use the following job
control statements:

II JOB jobname
II EXEC VFORTRAN

1*
1&

(source program)

where the source program is on SYSIPT, and jobname is the name you're giving to
this compilation-only job.

334 VS FORTRAN Programming Guide

Cataloging Your Source

Compiler Files

You can catalog source programs and source statement sequences you'll use in
FORTRAN INCLUDE statements as books in the source statement library, using
the CAT ALS function.

When you're compiling, most of the the system files the compiler uses-SYSIPT,
SYSLST, SYSPCH, SYSLNK, and SYSLOG-are predefined and always
available; therefore, you never have to specify them .

.
However, if your source program uses the INCLUDE statement, you must specify
SYSSLB (for the system or a private source statement library) in an ASSGN
statement. The file records representing the source statements to be included must
be unblocked, fixed-length, 80-character records. The file to be included must be
cataloged in the G sublibrary of the library defined in the LIBDEF statement.

Printing on the IBM 3800 Printing Subsystem under VSE

Additional run-time parameters are required to support the IBM 3800 Printing
Subsystem under VSE. The SETPRT job control statement is used to specify the
names of the character arrangement tables.

SETPRT TRC= Y, CHARS(catO[,catl, .••)), ...
specifies that each record contains a Table Reference Character byte, and
supplies the names of the character arrangement tables to be used.

A sample FORTRAN program using the 3800 follows:

Chapter 14. Using VS FORTRAN under VSE 335

C
C

100

200

SAMPLE PROGRAM FOR THE IBM 3800 PRINTING SUBSYSTEM

FORMAT (, 12' , , W6666666666666666666666666666X'
1 /

, 2' , , 7 7'
2 / '+1 ' , , TABULATION OF THE FUNCTION
3 /

, 2' , , 7 7'
4 /

, 2' , , 7 7'
5 / '+0' , , sin',A1,'(x)
6 /

, 2' , , Z6666666666666666666666666666Y'
7 /

, 2' , , W6666666666661666666666666666X'
8 /

, 2' , , 7 7 7'
9 / '+0' , , x sin' , A 1 , , (x) ,
A /

, 2' , , 366666666666656666666666666664')

1
FORMAT (, 2' , , 7

/ '+0' , , , ,I3,A1,I2,

CHARACTER * 1 DEG, U3
DATA DEG/ZA1/, U3/ZB3/

WRITE (6,100) U3, U3

7
'" ,

WRITE (6,200) 0, DEG, 0, 0, O.

END

7'
,12, '" , ,5X,F9.6)

//SETPRT TRC=Y,CHARS=(TN,GS10,FM10), ...

The sample program above produces the following 3800 output:

TABULATION OF THE FUNCTION

sin 3 (x)

x

0° O· 0" 0.000000

IBM Extension

Using the FORTRAN INCLUDE Statement

When you compile a program using the FORTRAN INCLUDE statement, you
must specify SYSSLB in an ASSGN statement or use a LffiDEF statement. See
"Compiler Files" above for a more detailed description.

If your source program uses the INCLUDE statement, you must put the code to be
included into the source library.

336 VS FORTRAN Programming Guide

Compiler Output

1. Catalog the member or members you want to INCLUDE.

II ASSGN SYSSLB,X'yyy'
II LIBDEF
II EXEC MAINT

CATALS G.V00001
BKEND

- to be included -

BKEND

2. Compile your source program.

II ASSGN SYSSLB,X'yyy'
II LIBDEF
II EXEC VFORTRAN, ...

Z = A1 * B1
INCLUDE(V00001)

END

"-__________ End of mM Extension __________ --'

The VS FORTRAN compiler provides some or all of the following output,
depending on the options in effect for your organization:

• The Source Program Listing-as you entered it, but with compiler-generated
internal sequence numbers prefixed at the left; the sequence numbers identify
the line-numbers referred to in compiler messages.

• An object module-a translation of your program in machine code.

• Messages about the results of the compilation.

• Other listings helpful in debugging.

These listings are described in "Identifying User Errors" on page 167 and Chapter
9, "Executing Your Program and Fixing Execution-Time Errors" on page 185;
examples of output for each feature are also given there.

If your compilation was completed without error messages and you have specified
/ / OPTION LINK, you can proceed to "Link-Editing Your Program" on
page 340.

Chapter 14. Using VS FORTRAN under VSE 337

If your compilation caused error messages, you may have to correct your source, as
described in Chapter 9, "Executing Your Program and Fixing Execution-Time
Errors" on page 185.

Cataloging Your Object Module

You request an object module data set by specifying the DECK or OBJECT
compiler option.

The data set is a copy of the object module, in card image format, which consists of
dictionaries, text, and an end-of-module indicator. (See "Object Module as
Link-Edit Data Set" on page 183 for additional details.)

You can catalog your object module in the private·relocatable library using the
CATALR function and LIBDEF statement.

Then, when you link-edit and execute, you must specify SYSRLB in an ASSGN
statement.

Execution-Time Loading of Library Modules

In Release 4.0, all library modules (other than the mathematical routines) can be
either link-edited into your load module with the compiler-generated code, or
loaded dynamically at execution time. Execution-time loading has several
advantages. It reduces auxiliary storage requirements for load modules, and speeds
execution in compile-link-go mode.

Selection of Link Mode or Load Mode

After installation of the VS FORTRAN library, your system programmer specified
the libraries needed for use in load mode or link mode. A single environment may
have been established for all users, or the selection of load mode or link mode left
up to individual users. If you need to specify the libraries, do the following:

Specifying Libraries in Load Mode

• For operation in load mode, provide VFORTLIB but not VLNKMLm to the
linkage editor for its use when it includes VS FORTRAN library modules.
Make only the relocatable library VFORTLm available for the linkage editor
step.

II DLBL VFORTLI,'A5748F03.SYSRLB.VFORTLIB'
II EXTENT SYSmrnm,volser
II ASSGN SYSmmm,cuu
II LIBDEF RL,SEARCH=(VFORTLI) ,TEMP

• To make the relocatable library available to all linkage editor steps, put the
DLBL and EXTENT statements in the standard label job, make permanent
assignments, and specify PERM on the LIBDEF command instead of TEMP.

To execute a program which has been link edited in load mode, make VFLODLm
available for the execution step.

338 VS FORTRAN.ProgramntingGuide

1. Use the following statements in the step which executes the VS FORTRAN
program:

II DLBL VFLODLI,'A5748F03.SYSCLB.VFLODLIB'
II EXTENT SYSnnn,volser
II ASSGN SYSnnn,cuu
II LIBDEF CL,SEARCH=(VFLODLI) ,TEMP

2. To make VFLODLm available to all jobs, put the DLBL and EXTENT
statements in the standard label area, make the SYSnnn assignment permanent,
and specify PERM on the LIBDEF command.

3. In the execution step, specify SIZE=AUTO.

Example

II JOB FORTRAN ***COMPILE, LINK-EDIT AND EXECUTE IN LOAD MODE****
II DLBL VFORTLI,'A5748F03.SYSRLB.VFORTLIB' ,99/365
II EXTENT SYS001,DOSRES,1,1,8018,570
II ASSGN SYS001,140
II LIBDEF RL,SEARCH=(VFORTLI) ,TEMP
II DLBL VFLODLI,'A5748F03.SYSCLB.VFLODLIB' ,99/365
II EXTENT SYS002,DOSRES,1,1,6555,228
II ASSGN SYS002,140
II LIBDEF CL,SEARCH=(VFLODLI) ,TEMP

* II OPTION LINK,PARTDUMP
ACTION MAP, CANCEL

II EXEC VFORTRAN,SIZE=AUTO
(source program)

1*
II EXEC LNKEDT
II EXEC ,SIZE=AUTO
1&

Specifying Libraries in LiDk Mode

• For operation in link mode, concatenate VLNKMLm ahead of VFORTLm
for use by the linkage editor when it includes VS FORTRAN library modules.
Make the relocatable libraries VLNKMLm and VFORTLm available for the
linkage editor step:

II DLBL VFLKMLI,'A5748F03.SYSRLB.VLNKMLIB'
II EXTENT SYSnnn,volser
II ASSGN SYSnnn,cuu
II DLBL VFORTLI,'A5748F03.SYSRLB.VFORTLIB'
II EXTENT SYSmmm,volser
II ASSGN SYSmmm,cuu
II LIBDEF RL,SEARCH=(VFLKMLI,VFORTLI),TEMP

• Alternatively, put the DLBL and EXTENT statements in the standard label
area, make permanent assignments, and specify PERM on the LmDEF
command. This will make the relocatable libraries available to all linkage
editor steps.

• A program which was link edited in link mode does not require any VS
FORTRAN libraries at execution time.

• In the execution step, specify SIZE=AUTO.

Chapter 14. Using VS FORTRAN under VSE 339

Example

II JOB FORTRAN ***COMPILE, LINK-EDIT AND EXECUTE IN LINK MODE***

* II DLBL VFLKMLI,'A5748F03.SYSRLB.VFLKMLIB' ,99/365
II EXTENT SYS001,DOSRES,1,1,11267,19
II ASSGN SYS001,140
II DLBL VFORTLI,'A5748F03.SYSRLB.VFORTLIB' ,99/365
II EXTENT SYS002,DOSRES,1,1,8018,570
II ASSGN SYS002,140
II LIBDEF RL,SEARCH=(VFLKMLI,VFORTLI),TEMP

* II OPTION LINK,PARTDUMP
ACTION MAP, CANCEL

II EXEC VFORTRAN,SIZE=AUTO
(source program)

1*
II EXEC LNKEDT
II EXEC ,SIZE=AUTO
1&

Link-Editing Your Program

You must link-edit any object module before you can execute your program,
combining this object module with others to construct an executable load module.

Note: FORTRAN66 object programs are link-edited in exactly the same way as
FORTRAN77 object programs.

The following sections show how to catalog your object module or load module
underVSE, and how to use the VSE linkage editor.

Note: Severity levels higher than level 4 prevent link-edit processing.

You specify the FORTRAN compiler options as options in the P ARM parameter of
the EXEC job control statement for VSE/ Advanced Functions Release 3.0.

Automatic Cross-System Support

In VS FORTRAN, you can compile your source program under any supported
operating system. You can then link-edit the resulting object module under the
same system, or under any other supported system.

For example, you could request compilation under VM and then link-edit the
resulting object module for execution under VSE.

You don't have to request anything special during compilation to do this; VS
FORTRAN uses the execution-time library for all system interfaces, so the
operating system under which you link -edit determines the system under which you
execute.

340 VS FORTRAN Programming Guide

Link-Editing for Immediate Execution

The simplest way to link-edit for immediate execution is to use a link-edit-execute
cataloged procedure.

You can also execute the program immediately after link-editing by including the
execution step immediately after the link-edit step.

A third alternative is to execute the program using the GO parameter of the EXEC
control statement for VSE/ Advanced Functions Release 3.0. See "Executing Your
Program" on page 344 for details on the execution step.

Cataloging Your Load Module

The librarian is a group of programs used for maintaining VSE libraries and for
providing printed and punched output from the libraries.

• The core image library (system and private) contains the system control
components and program phases.

To catalog a load module (phase) in this library, specify the following
statement before your link-edit step and before the PHASE statement for the
program you want to catalog:

II OPTION CATAL

which places the phase output into a core image library.

To invoke the linkage editor, specify the following statements in your link-edit
step:

II OPTION CATAL
PHASE ...

II EXEC LNKEDT

which opens the SYSLNK file and all of the linkage-editor statements are
written out to SYSLNK.

• The relocatable library (system and private) contains the system control
components and compiler logical input/output control system (LIOCS) object
modules.

To catalog your object module to this library, using the MAINT program,
specify:

CATALR

• The source statement library (system and private) contains sequences of source
statements, and macro definitions.

To catalog your source programs to this library, using the MAINT program,
specify:

CATALS

Chapter 14. Using VS FORTRAN under VSE 341

Executing a Link-Edit

• The procedures library (system only) contains cataloged procedures.

To catalog a procedure to this library, using the MAINT program, specify:

CATALP

Maintenance and service are the major functions performed for both the private
and the system libraries by the librarian programs. Maintenance includes the
addition, deletion, or copying of the items in the library. Service includes the
translation of information in a library to printed or punched form. Information in a
library directory and in header records can also be displayed.

For a more detailed description of these libraries and how to catalog in them, see
VSE/Advanced Functions System Management Guide.

Under VSE, if you specify / / OPTION LINK or / / OPTION CATALprior to
compile time, the only control statement you need to .link-edit your program is the
EXEC LNKEDT statement. VSE has the autolink feature which, unless you
suppress it, always resolves all object module references to external-names, after all
the input modules have been read from SYSLNK, SYSIPT, and/or the relocatable
library. Ordinarily, you shouldn't suppress it. However, if you use service routines
or extended error handling routines, you will need INCLUDE statements, as shown
in Figure 63 on page 348.

In addition to the EXEC LNKEDT statement and the autolink feature, there are
other linkage editor statements you can use to control linkage editor functions:

ACTION

CANCEL

CLEAR

BG/Fl-Fn

MAP

NOMAP

NOAUTO

specifies linkage editor options, as follows:

requests immediate cancellation if errors occur.

initializes the temporary portion of the core image library to
binary zeros.

ACTION CLEAR should be used only under supervision of
someone who understands the possible consequences.

specifies where program is to be executed:

BG background execution

Fl-Fn Execution in one of the foreground partitions, FI
through Fn

specifies that a storage map and messages are to be printed.

suppresses the MAP option; messages are to be printed.

suppresses the autolink feature for this run.

342 VS FORTRAN Programming Guide

INCLUDE

INCLUDE

PHASE

(followed by module name) specifies that a module from the
relocatable library or from SYSIPT (if the compiler DECK option
was specified on an INCLUDE statement before the deck) and is
to be included; an INCLUDE statement with a module name will
include modules from the relocatable library.

(followed by blanks) specifies that a deck is following and that
the modules should be put on SYSLNK for the linkage editor.

specifies a name for the phase (load module) to be produced; the
starting address and a relocation factor can also be specified.

You can also specify control statements to control overlay requirements; for
details, see Chapter 6, "Subprograms and Shared Data" on page 113.

Logical Units Used for Link-Editing

Linkage Editor Output

The following logical units are used during link-editing:

SYSLNK used for linkage editor input

SYSRES used for input in form of relocatable object modules

SYSRLB used for linkage editor input from the private relocatable library; this
is the library used for FORTRAN library subroutines.

If the alternative mathematical library subroutines are preferred over
the comparable VS FORTRAN library routines, the standard routines
should be replaced at installation time. If you want both libraries on
the system, one must be placed in a separate private library at
installation time, and a LIBDEF statement must be used to select
subroutines desired at execution time.

SYSLST used for system and compiler printed output

SYSCLB used for output placed in a private core image library

SYSOOl used as a linkage editor work file

Output from the linkage editor is in the form of load modules (or phases) in
executable form. The exact form of the output depends upon the options in effect
when you requested the link -edit, as described in the previous sections.

After link-editing, one or more of the following external references may remain
unresolved and may be ignored: mCOM#, IFYV ASYN, IFYVCMSE, LDFIO#,
and VLDIO#.

Chapter 14. Using VS FORTRAN under VSE 343

Executing Your Program

The following sections describe the logical units you may need, and outline the job
control statements you must use to execute your programs.

Specifying Execution-Time Options

To specify an execution-time option (XUFLOW or NOXUFLOW), use the
following method:

II EXEC ,SIZE=AUTO,PARM='NOXUFLOW'

For more information, see "Using the Execution-Time Options" on page 200.

Load Module Logical Units

In a FORTRAN source program, input and output devices are referred to by data
set reference numbers. With this form of reference, an object program compiled
from a VS FORTRAN source program is not dependent upon the availability of
any specific device at execution time.

A programmer can temporarily assign a logical unit name to a specific input/output
device using an ASSGN job control statement. Programmers need not make
assignments unless their requirements differ from the standard assignments.

There is a direct correlation between the logical unit names, such as SYSIPT,
SYSPCH, and SYSOOl, and the data set reference numbers used by a VS
FORTRAN programmer. The first two columns of Figure 62 show the logical unit
name and its associated data set reference number. This figure also illustrates the
relationships of logical unit names and data set reference numbers that are under
systems other than VSE.

The operator may assign available input/output devices. These are assigned to
meet the logical unit requirements of the operating system. One device, for
example, must be assigned as SYSIPT to serve as the system's main input unit.

Notes:

1. VSE does not support extended precision.

2. FORTRAN object programs with asynchronous I/O cannot run on VSE.

344 VS FORTRAN Programming Guide,

FORTRAN VSE
Reference Logical File Function Device
Number Unit Name (Primary) Type

0 SYSOOO IJSYSOO Program data Unit record
set Magnetic tape

Direct access

1 SYSOOI IJSYSOI Program data Unit record
set Magnetic tape

Direct access

2 SYSOO2 IJSYS02 Program data Unit record
set Magnetic tape

Direct access

3 SYSOO3 IJSYS03 Program data Unit record
set Magnetic tape

Direct access

4 SYSOO4 IJSYS04 Program data Unit record
set Magnetic tape

Direct access

5 SYSIPT IJSYSIP Input data set Card reader
or to load Magnetic tape

SYSIN module Direct access

6 SYSLST IJSYSLS Printed Printer
output data Magnetic tape

Direct access

7 SYSPCH IJSYSPC Punched Card punch
output data Magnetic tape

Direct access

8 SYSOO5 IJSYS05 Program data Unit record
thru thru thru set Magnetic tape
99 SYS096 IJSYS96 Direct access

Figure 62. Load Module Logical Units

Note: Units 9 through 99 may be added by reassembling the VSFORTL macro
and replacing the unit assignment table module (IFYUATBL). For more
information, see "Compiler and Library Defaults" in VS FORTRAN Compiler and
Library Installation and Customization.

Executing the Load Module

How you execute the load module (or phase) depends on the kind of job you're
running: execute only; link-edit and execute; or compile, link-edit, and execute.

Chapter 14. Using VS FORTRAN under VSE 345

Execute Only

Link-Edit and Execute

The job control statements you use are:

JOB Statement
LIBDEF
ASSGN Statements
DLBL/TLBL Statements
EXTENT Statements
EXEC Statement

(as required for execution)
(as required for execution)
(as required for execution)
(load module (or phase»

(Input data to be processed)

End-of-Data Statement (if input data is on cards)
End-of-Job Statement

The job control statements you use are:

JOB Statement
LIBDEF
OPTION LINK

or
OPTION CATAL
PHASE

INCLUDE Statements
ASSGN Statements
DLBL/TLBL Statements
EXTENT
EXEC LNKEDT

(sets link option>"

(sets link option and catalogs phase)
(required for II OPTION CATAL)
(as required for linkage editing)
(as required for linkage editing)
(as required for linkage editing)

(linkage editor)

(Linkage editor execution)

ASSGN Statements
DLBL/TLBL Statements
EXTENT Statements
EXEC Statement

(as required for execution)
(as required for execution)
(as required for execution)
(load module)

(Input data to be processed)

1* End-of-Data Statement (if input data is on cards)
1& End-of-Job Statement

Note: Unless you specify OPTION CAT AL, the phase is deleted from the core
image library after execution is completed.

346 VS FORTRAN Programming Guide

Complle, Link-Edit, and Execute

The job control statements you use are:

JOB statement
LIBDEF
OPTION LINK

or
OPTION CATAL
PHASE
EXEC VFORTRAN

(sets link option)

(sets link option and catalogs phase)
(required with II OPTION CATAL)
(VS FORTRAN Compiler)

(VS FORTRAN source program)

statement (if source program is on cards)
ASSGN statements (as required for linkage editing)
DLBL/TLBL Statements (as required for linkage editing)
EXTENT (as required for linkage editing)
EXEC LNKEDT (linkage editor)

(linkage editor execution)

ASSGN Statements
DLBL/TLBL Statements
EXTENT Statements
EXEC Statement

(as required for execution)
(as required for execution)
(as required for execution)
(load module)

(input data to be processed)

End-of-Data Statement (if input data is on cards)
End-of-Job Statement

Note: Unless you specify OPTION CATAL, the phase is deleted from the core
image library after execution is completed.

For a complete description of job control statements, see VSE/Advanced Functions
System Control Statements.

Load Module Execution-Time Output

The output that execution of your load module gives you depends upon whether or
not there are errors in your program.

Execution without Error

Execution with Errors

If your program executes without error, and gives the results you expect, your task
of program development is completed.

When your program has errors in it, your execution-time output may be incorrect,
or nonexistent.

You mayor may not get error messages as well. Any VS FORTRAN
execution-time error messages you get come from the VS FORTRAN Library.

chapter 14. Using VS FORTRAN under VSE 347

If you get output from the program itself, it may be exactly what you expected, or
(if there are logic errors in the program) it may be output you didn't expect at all.

When this happens, you must proceed to the next step in program development,
described in Chapter 9, "Executing Your Program and Fixing Execution-Time
Errors" on page 185.

Extended Error Handling-VSE Considerations

When you're calling any of the extended error handling routines, or any of the
service routines, you must identify the routine by its library module name through a
linkage editor INCLUDE statement. Names you can use are shown in Figure 63.

VSFORTRAN
Source Name

CDUMP/CPDUMP
DUMP/PDUMP
DVCHK
ERRMON
ERRSAV
ERRSET
ERRSTR
ERRTRA
EXIT
OPSYS
OVERFL
SDUMP
XUFLOW

VSFORTRAN
Library Name l

IFYVDUMP
IFYVDUMP
IFYVDVCH
IFYVMOPT
IFYVMOPT
IFYVMOPT
IFYVMOPT
IFYVMOPT
IFYVEXIT
IFYOPSYS
IFYVOVER
IFYSDUMP
IFYVXMSK

IThese names should be used in an INCLUDE statement when
linkediting.

Figure 63. Library Names for Error Handling and Service Routines

Requesting an Abnormal Termination Dump

To request a dump, you can specify:

II OPTION PARTDUMP

Whenever abnormal termination occurs, this provides a dump of the partition
storage, the registers, and the areas ()f the supervisor control blocks that relate to
this partition. Information on interpreting dumps is found in the appropriate
debugging guide, as listed under "Preface" on page iii.

348 VS FORTRAN Programnring Guide

Sequential Files---System Considerations

Each sequential file you use must be defined to the system through job control
statements. To define each file to the system, you, optionally, specify an ASSGN
statement.

You must specify a DLBL statement; however, BLKSIZE is only required if block
size is different from that stated in the DTF for your program. For example, if the
program asks for 1000 bytes and the file requires 3000 bytes, your DLBL
statement should specify:

BLKSIZE 3000

You must also specify an EXTENT statement, which defines each area the file
occupies on the direct access device.

The logical units you can specify and the names you can use for them are shown in
Figure 62 on page 344.

Direct Files-System Considerations

Before you can write records into the file, you must preformat it, using the CLEAR
disk utility. For documentation, see VSE/Advanced Functions System Utilities.

You must define each direct file to the system through job control statements. For
information about job control statements, see "Job Processing" on page 257.

Note: You cannot use direct files on fixed block architecture (FBA) devices.

To define each file to the system, you optionally specify an ASSGN statement.
You must also specify a DLBL statement (using the DA parameter only for DAM
(direct access method) files) and an EXTENT statement to define each area the
file occupies on the direct access device. In DAM files, records are accessed by
cylinder head and/or record.

The logical units you can specify and the names you can use for them are shown in
Figure 62 on page 344.

Input/ OUtput-System Considerations

For every file your program uses, you may need labels. The system processes the
volume and standard file labels when you open and close the file. System
considerations for tape labels and for direct access labels are described in the

. following sections.

Chapter 14. Using VS FORTRAN under VSE 349

Tape Label Considerations

DASD Label Considerations

You specify magnetic tape labels through the TLBL statement; through this
statement, you can specify the position of the file on the tape, the generation and
version number for this file, and the expiration date.

Note: If the tape has no label, TLBL need not be specified. For more information
about the TLBL statement, see VSE/ Advanced Functions System Control
Statements.

For additional details on magnetic tape label processing, see VSE/Advanced
Functions Tape Labels.

You specify DASD file label information through the DLBL statement; through
this statement, you can specify the identification of the file on the volume, the type
of data set label to be used (sequential, direct, or VSAM), and the expiration date.
For more information, see "Direct Files-System Considerations" on page 349.
For additional detail on DASD label processing, see VSE/Advanced Functions
DASD Labels.

For a complete description of job control statements, see VSE/Advanced Functions
System Control Statements.

Defining FORTRAN Records-System Considerations

Record Formats

Your FORTRAN programs must define the characteristics of the data records it
will process: their formats, their record length, their blocking, and the type of
device upon which they reside.

VSE keeps control information about your data files in an internal DTF table.
There is a DTF table for each logical unit, including the system logical units, that
your program uses-except for SYSLOG.

The system builds the DTF tables dynamically as each logical unit is opened for the
first time, using information it obtains from your program. Guidance information
on the DTF tables is included in VSE System Data Management Concepts and
VSE/ Advanced Functions Macro User's Guide; reference information on the DTF
tables is included in VSE/ Advanced Functions Macro Reference.

DOS FORTRAN produces and accepts records that have a particular format
depending on logical unit class, device type, and the type of FORTRAN
input/ output operations applying to that record.

The default maximum length of a formatted record depends on the logical unit or
device, as shown in Figure 64.

350 VSFORTRAN Programming Guide

VSE Logical Type of
Unit Name Device Permitted Operation Default Maximum Record Length

SYSIPT Card reader, tape unit, Input 80 bytes
SYSIN or disk storage unit

SYSPCH Punch card device, Output 80 bytes
tape unit, or disk
storage unit

SYSLST Printer, tape, or disk Output 133 bytes for tape, printer, and disk
storage unit

Figure 64. VSE Logical Units and Devices ADowed

By device, the default maximum size for each record follows:

Device Default Maximum Bytes

Card reader 80

Card punch 80

Printer Number of print position, plus one byte
for carriage control

Tape 2601

Disk (sequential access) 2601

Direct access As specified in an OPEN statement

This default can be changed by using the OPSYS subroutine as described in
VS FORTRAN Language and Library Reference.

For unformatted input/output, a single WRITE or READ may cause the transfer
of more bytes than are contained in a single record. VS FORTRAN organizes such
data into two or more records.

VS FORTRAN provides 8 bytes of control information at the beginning of each
record block. This information indicates the size of the record and whether it is
part of a record that is continued in one or more other blocks. There is never more
than one record for each block.

When this control information is needed, it is provided and maintained by VS
FORTRAN. There's no need to consider it in writing your input/output
instructions.

The first 4 bytes of control information for unformatted records constitute a block
descriptor word; the next 4 bytes constitute a segment-descriptor word.

The maximum record size is 32767 for EBCDIC files, and 2048 for ISCII/ ASCII
files.

Chapter 14. Using VS FORTRAN under VSE 351

Cataloging and Overlaying Programs-System Considerations

In order to use the subprograms you write, you must catalog them in a library-so
they're available to calling programs. For information on how to do this, see
"Cataloging Your Object Module" on page 338.

Overlaying Programs in Storage

Specifying Overlays

When you use the overlay features of the linkage editor, you can reduce the main
storage requirements of your program by breaking the program up into two or
more segments that don't need to be in main storage at the same time. These
segments can then be assigned the same storage addresses and can be loaded at
different times during execution of the program.

You must specify linkage editor control statements to indicate the relationship of
segments within the overlay structure.

Keep in mind that, although overlays reduce storage, they also can drastically
increase program execution time. In other words, you probably shouldn't use
overlays unless they're absolutely necessary.

The SA VB statement has no effect on overlaid programs. That is, when a program
is overlaid by another, variable values in the overlaid program become
undetermined.

The linkage-editor control statements you need to create an overlay phase in VSE
are:

• PHASE linkage-editor control statement-which lets you divide your program
into a number of phases.

INCLUDE linkage-editor control statement-which lets you specify that a
module from the relocatable library is to be included in the present phase.

Overlay Procedure: To keep from running into difficulty when you're using multiple
phases, you should develop your overlay programs using the following procedures:

1. Select a program name for the root phase of the program, the first four
characters of which are unique in the core image library.

2. Determine the phase structure of the program and assign phase names, the first
four characters of which are the same as the root phase name.

3. Write the root phase to serve as a monitor, loading each of the other phases as
needed.

4. Determine the subroutine requirements for each phase.

5. If any modules used are not in the root phase but in the relocatable library,
specify NOAUTO in the PHASE statement for each phase that refers to a

352 VS FORTRAN Programming Guide

module appearing in a later phase; when the PHASE statement is executed, the
relocatable library is not searched and the later phases are not loaded.

You must explicitly specify each subsequent phase in an INCLUDE control
statement for the root phase.

Using the CALL OPSYS Statement: Within the FORTRAN program, when you
want to have a phase loaded, issue a CALL to the library routine OPSYS. Your
program must do this before you invoke the SUBROUTINE or FUNCTION that
you want to execute.

For example, to load and execute subprograms PHASE4 and PHASE6, you
specify:

CALL OPSYS('LOAD' ,'PHASE4 ')

CALL PHASE4(A,B)
CALL OPSYS('LOAD', 'PHASE6 ')

CALL PHASE6(D)

These CALL OPSYS statements result in the phases named PHASE4 and
PHASE6 being loaded. (The phase name in the CALL OPSYS statement is always
eight alphameric characters, with the name left-adjusted within the field and
padded on the right with blanks.)

The CALL PHASE4 and CALL PHASE6 statements cause the subprograms
PHASE4 and PHASE6 to be executed.

For reference documentation about the CALL OPSYS statement, see VS
FORTRAN Language and Library Reference.

Note: You must explicitly identify the OPSYS service routine by its library module
name (IFYOPSYS) and supply a linkage editor INCLUDE statement using this
name to get the OPSYS module included into the root phase.

Chapter 14. Using VS FORTRAN under VSE 353

Chapter 15. Using VSAM with VS FORTRAN

VS FORTRAN lets you use VSAM to process the following kinds of files:

• VSAM Entry Sequenced Data Sets (ESDS), which can be processed only
sequentially

• VSAM Relative Record Data Sets (RRDS), which can be processed either
sequentially or directly by relative record number

• VSAM Key Sequenced Data Sets (KSDS), which can be processed sequentially
or directly by keys

For VSE only, VSE/VSAM-managed sequential files (using the VSE/VSAM
Space Management for SAM feature); such files can be processed only
sequentially

Organizing Your VSAM File

The physical organization of VSAM data sets differs considerably from those used
by other access methods. Except for relative record data sets, records need never
be of a fixed length. VSAM data sets are held in control intervals and control
areas; the size of these is normally determined by the access method and the way in
which they are used is not visible to you. VSAM files can only exist on direct
access devices.

VSAM Sequential File Organization

In a VSAM sequential file (ESDS), records are stored in the order they were
entered. The order of the records is fixed.

Records in sequential files can only be accessed (read or written) sequentially.

VSAM Direct File Organization

A VSAM direct file (RRDS) is a series of fixed-length slots in storage into which
you place records. The relative key identifies the record-the relative key being
the relative record number of the slot the record occupies.

Each record in the file occupies one slot, and you store and retrieve records
according to the relative record number of that slot. When you load the file, you
have the option of skipping over slots and leaving them empty.

Chapter 15. Using VSAM with VS FORTRAN 355

VSAM Keyed File Organization

In a VSAM keyed file (KSDS), the records are ordered according to the collating
sequence of an embedded prime key field, which you define. The prime key is one
or more consecutive characters taken from the records. The prime key uniquely
identifies the record and determines the sequence in which it is accessed with
respect to other records. A prime key for a record might be, for example, an
employee number or an invoice number.

You can also specify one or more alternate keys to use to retrieve records. Using
alternate keys, you can access the file to read records in some other sequence than
the prime key sequence. For example, you could access the file through employee
department rather than through employee number. Alternate keys need not be
unique. More than one record will be accessed given a department number as a
key. This is permitted if alternate keys are specified as allowing duplicates.

To use an alternate index, you need to define a data set called the alternate index
(AIX). This data set contains one record for each value of a given alternate key;
the records are in sequential order by alternate-key value. Each record contains
the corresponding primary keys of all records in the associated KSDS that contain
the alternate key value. See the appropriate Access Methods Services manual for
instructions on how to define an alternate index.

Processing VSAM Files

VSAM is an access method for files on direct access storage devices. Like
non-VSAM files, VSAM can be used in three basic ways:

• To load a data set

• To retrieve a data set

• To update a data set

VSAM processing has these advantages:

• Data protection against unauthorized access, including password protection for
VSAMfiles

• Cross-system compatibility

• Device independence, because there is no need to be concerned with block size
and other control information

VSAM processing is the only way for your FORTRAN program to use keyed
access.

If you have complex requirements or are going to be a frequent user of VSAM, you
should review the VSAM publications for your operating system. (VS FORTRAN
does not support all VSAM functions.)

356 VS FORTRAN Programming Guide

I VSAM Terminology
I ,
i

VSAM terminology is different from the terminology used for MVS files, for
example, as shown in Figure 65.

VSAM Term Similar Non-VSAM Term

ESDS QSAM data set

KSDS ISAM data set

RRDS BDAM data set

Control Interval Size (CISZ) Block size

Buffers (BUFNI/BUFND) BUFNO

Access Method Control Block Data Control Block (DCB)
(ACB)

Cluster (CL) Data set

Cluster Definition Data set allocation

AMP parameter of JCL DD DeB parameter of JCL DD
statement statement

Record size Record length

Figure 65. VSAM Terminology

Defining VSAM Files

VSAM entry-sequenced, key-sequenced, and relative-record data sets can be
processed by VS FORTRAN only after you define them by means of Access
Method Services.

A VSAM cluster is a logical definition for a VSAM data set and has one or two
components:

• The data component of a VSAM cluster contains the data records.

• The index component of a VSAM key-sequenced cluster consists of the index
records.

You use the Access Method Services DEFINE CLUSTER command to define your
VSAM data sets (clusters). This process includes creating an entry in a VSAM or
ICF catalog without any data transfer. Specify the following information about the
cluster:

• Name of the entry

• Name of the catalog to contain this definition and its password (may use
default name)

• 'File organization-ESDS (NONINDEXED), RRDS (NUMBERED), and
KSDS (INDEXED)

Chapter 15. Using VSAM with VS FORTRAN 357

• Volumes the file will occupy

• Space required for the data set

• Record size and Control Interval Size (CISZ)

• Passwords (if any) required for future access

• For KSDS, length and position of the prime key within the records

• For KSDS, how index records are to be stored

See your Access Method Services manual for further information.

Defining VSAM Files-General Considerations

Generally speaking, VSAM files are best used as permanent files, that is, as files
that are processed again and again by one or more application programs. You
shouldn't try to use VSAM files as "scratch" files, because VSAM files are more
difficult to allocate and erase than other files.

The following general programming considerations apply to VSAM files:

• Use VSAM KSDSs for applications in which you want to access data in a
number of ways, and want to update or insert records at any point.

• Use VSAM ESDSs for applications in which you create a complete file, one in
which you'll never update any records or insert new ones but to which you may
add records at the end.

• Use VSAM RRDSs for work files, or for files in which records must be created
and later updated in place.

• Use VSE/VSAM-Managed SAM files to reduce the amount of manual control
needed to organize and maintain your non-VSAM sequential files under VSE
only.

A VSAM file may be suballocated or unique. A suballocated file shares a data
space with other files; a unique file has a data space to itself.

VSAM treats all files as clusters. For key-sequenced files, a cluster consists of a
data component and an index component. For entry-sequenced or relative-record
files, a cluster consists of a data component only. Besides setting up a catalog
entry for each component of a cluster, VSAM sets up a catalog entry for the cluster
as a whole. This entry is the cluster name specified in the DEFINE command.

To define a suballocated VSAM file, first define a data space; then use the
DEFINE command with the CLUSTER parameter. VSAM suballocates space for
the file in the data space set up and enters information about the file in a VSAM
catalog. A file can be stored in more than one data space on the same volume or
on different volumes.

A unique VSAM file is defined by specifying the parameter UNIQUE and
assigning space to the file with a space allocation parameter and the job control

358 VS FORTRAN Programming Guide

statements. The data space is acquired and assigned to the file concurrent with the
file definition. However, no other file can occupy its data space(s).

Examples of Defining a VSAM FOe

To define and use a VSAM file, you must first define a catalog entry for the file,
using Access Method Services commands. When you execute the commands, you
create a VSAM catalog entry for the file. The form of the entry depends upon the
kind of file you'll be creating: a VSAM KSDS, a VSAM ESDS, a VSAM RRDS, or
a VSAM-managed sequential file.

For VSAM keyed, sequential, and direct files, the following examples assume that
the data space your file is using has already been defined as VSAM space by the
system administrator.

For more information about the DEFINE commands, see the appropriate 4cce.v.v
Method Services manual.

Defining a VSAM Keyed File

To define a VSAM keyed file (KSDS), you can specify:

DEFINE CLUSTER -
(NAME(myfilel) -
FILE (ddname) -
VOLUMES (666666) -
KEYS(10,5) -
INDEXED -
RECORDS(180) -
RECORDSIZE(80 200» -
DATA(NAME(myfilel.data» -
INDEX(NAME(myfilel.index» -
CATALOG (USERCAT)

which defines a file named myfile 1 as a VSAM KSDS.

INDEXED
specifies that the file is a VSAM keyed file (KSDS).

VOLUMES(666666)
specifies that the file is contained on volume 666666.

RECORDS(180)
specifies that there can be a maximum of 180 records in the space.

RECORDSIZE(80 200)
specifies that the average length of the records in the file is 80 bytes, and the
maximum length of any record is 200 bytes.

DATA(NAME(myfilel.data»
specifies the data component name.

Chapter 15. Using VSAM with VS FORTRAN 359

INDEX(NAME(myf"del.index»
specifies the index component name.

CAT ALOG(USERCAT)
specifies the catalog in which this file is entered.

Denning a VSAM Direct Flle

To define a VSAM direct file (RRDS), you can specify:

DEFINE CLUSTER -
(NAME(myfile2) -
FILE (ddname) -
VOLUMES (666666) -
NUMBERED
RECORDS(200) -
RECORDSIZE(80 80»
CATALOG(USERCAT)

which defines a file named myfile2 as a VSAM RRDS.

NUMBERED
specifies that the file is a VSAM direct file (RRDS).

VOLUMES(666666)
specifies that the file is contained on volume 666666.

RECORDS(200)
specifies that there can be a maximum of 200 records allowed in the space.

RECORDSIZE(80 80)
specifies that all the records in the file are 80 bytes long.

CATALOG(USERCAT)
specifies the catalog in which this file is entered.

Denning a VSAM Sequential Flle

To define a VSAM sequential file (ESDS), you can specify:

DEFINE CLUSTER -
(NAME(myfile3) -
FILE (ddname) -
VOLUMES (666666) -
NONINDEXED -
RECORDS(180) -
RECORDSIZE(80 200» -
CAT ALOG(USERCAT)

which defines a file named myfile3 as a VSAM ESDS.

NONINDEXED
specifies that this is a VSAM sequential file (ESDS).

360 VS FORTRAN Programming Guide

VOLUMES(666666)
specifies that the file is contained on volume 666666.

RECORDS(180)
specifies that there can be a maximum of 180 records in the space.

RECORDSIZE(80 200)
specifies that the average length of the records in the file is 80 bytes, and the
maximum length of any record is 200 bytes.

CATALOG(USERCAT)
specifies the catalog in which this file is entered.

Denning a VSE/VSAM-Managed Sequential File

To define a VSE/VSAM-managed sequential file (using the VSE/VSAM Space
Management for SAM Feature), you can specify:

DEFINE CLUSTER -
(NAME (myfile4) -
NONINDEXED -
RECORDFORMAT(VBI20) -
RECORDSIZE(500) -
RECORDS(200) -
VOLUMES(666666))

which defines a sequential file named myfile4, suballocated in VSAM space.

RECORDFORMAT(VB120)
specifies that the file has variable blocked format with average logical
records 120 bytes long.

RECORDSIZE(500)
specifies that th0re are four logical records in each block; 120 bytes for each
logical record, plus 4 bytes for each record descriptor, plus 4 bytes for the
block descriptor.

RECORDS(200)
specifies that there can be a maximum of 200 records in the space.

VOLUMES(666666)
specifies that the file is contained on volume 666666.

Defining Alternate Indexes

By means of alternate indexes, keyed VSAM files can be arranged for access in as
many different ways as desired. VS FORTRAN can access a KSDS file through
either its prime index or through any alternate index. (However, an ESDS file
alternate index cannot be accessed by VS FORTRAN, although VSAM allows such
indexing.)

For example, an employee file might be indexed by personnel number, by name,
and also by department number.

Chapter 15. Using VSAM with VS FORTRAN 361

When an alternate index has been built, you access the data set through an object
known as an alternate index path that acts as a connection between an alternate
index and the data set.

Two types of alternate indexes are allowed: unique key and nonunique key.

• For a unique key alternate index, each record must have a different key.

• For a nonunique key alternate index, within limits of index record size defined,
any number of records can have the same key.

In the example suggested above, the alternate index using the names could be a
unique key alternate index (provided each person had a different name), and the
alternate index using the department number would be a nonunique key alternate
index because more than one person could be in each department. A data set
accessed through a unique key alternate index path can be treated, in most
respects, like a KSDS accessed through its prime index. The records may be
accessed by key or sequentially, records may be updated, and new records may be
added. If the data set is a KSDS, records may be deleted and the length of updated
records altered. When records are added or deleted, all indexes associated with the
data set are by default altered to reflect the new situation if it's an "upgrade" set
(see" Alternate Index Terminology").

In data sets accessed through a nonunique key alternate index path, the record
accessed is determined by the key and the sequence. The key can be used to
establish positioning so that sequential access may follow. The use of the key
accesses the first record with that key.

The alternate index may be password protected, as for a normal VSAM data set.

Alternate Index Terminology

An alternate index is, in practice, a VSAM data set that contains a series of
pointers to the keys of a VSAM data set. When you use an alternate index to
access a data path, you use an entity known as an alternate index path, or simply a
path, that establishes the relationship between the index and the data set.

The data set to which the alternate index gives you access is known as the base
data set, and is usually referred to in VSAM manuals as the base cluster.

If the indexes are defined "upgrade," alternate indexes are automatically updated.
All indexes so connected are known as the index upgrade set of the base cluster.

Base cluster
A data component of KSDS and primary (prime) index.

Prime index
The index used in creating the data set and used when access is made
through the base cluster.

Alternate indexes
Other indexes to the same base data.

362 VS FORTRAN Programming Guide

Paths
Establish a path through the base data other than that implied by the prime
index in a KSDS and the sequence in an ESDS. Paths connect the alternate
index with the base data.

Index upgrade set
That set of indexes (always including the prime index) that will be
automatically updated when the data is changed. Indexes can exist outside
this set.

How to BuDd and Use Alternate Index Paths

If you are using alternate indexes, knowledge of how to use them is required at four
stages of the programming process, as it is with normal data sets. These stages are:

1. When planning and coding the program

2. When creating the alternate indexes

3. When executing the program that accesses the data set through the alternate
indexes

4. When deleting the alternate index, if you wish to delete it at a different time
from the associated data set

Discussions of what to do at these stages follow.

Planning to Use Alternate Indexes

When planning to use an alternate index, you must know:

• The type of base data set with which the index will be associated

• Whether the keys will be unique or nonunique

• Whether the index is to be password protected

• Some of the performance aspects of using alternate indexes

The type of base cluster and the use of unique or nonunique keys determine the
type of processing that you can perform with the alternate index, and so determine
the FORTRAN statements you may use.

You use an alternate index path as if it were a separate data set.

Cataloging and Loading Alternate Indexes

If your VSAM keyed file will have one or more alternate indexes, specify a
DEFINE AL TERNATEINDEX and DEFINE PATH for each one. These are
VSAM commands.

DEFINE AL TERNATEINDEX identifies and builds a catalog entry for the
alternate index. In it, you specify:

Chapter 15. Using VSAM with VS FORTRAN 363

• The name of the catalog entry

• The name of the alternate index and whether it is unique or can be duplicated

• Whether or not alternate indexes are to be updated when the file is modified

• The name of the VSAM base cluster it relates to

• The name of the catalog (may use default name) to contain this definition and
its password

• The maximum number of times you can try entering a password in response to
a prompting message

DEFINE PATH relates an alternate index with its base cluster.

After you have defined the alternate index and the path, and you have loaded the
base cluster, you can specify a BLDINDEX command to load the alternate index
with index records.

Loading Your VSAM KSDS

Before a VSAM KSDS can be accessed by any retrieval or update operations, it
must have been successfully defined and loaded. A file that has been defined but
which has never had records loaded into it is called an empty file.

An empty file may be loaded in one of the following ways:

1. With an Access Method Services command (such as REPRO).

IBM Extension

2. By a VS FORTRAN program which opens the file with an ACTION of
WRITE, writes one or more records that are in ascending key sequence by the
primary key, and then closes the file.

3. For KSDS only, by an implicit load in a VS FORTRAN program. This occurs
when an empty keyed file is opened with an ACTION of READWRITE. In
this case, the file is automatically opened for loading, a single dummy record is
loaded into it, and the file is closed. The file is then reopened and the dummy
record is deleted.

a...-__________ End of IBM Extension __________

4. By a program written in some other language that has the capability of loading
records into an empty VSAM file.

After a VSAM file has been defined and loaded, it is called a nonempty file. (In
VSAM terminology, it is still called a nonempty file even if all the records loaded
into it have been deleted.)

364 VS FORTRAN Programming Guide

Using Operating System Data Definition Statements

Opening a VSAM KSDS requires that one or more operating system data definition
statements be supplied to relate the FORTRAN unit number to the actual file.
These data definition statements are the DD statement in an MVS system and the
DLBL statement in VSE and VM systems. The name that identifies a particular
data definition statement is called a ddname in MVS and VM, and a filename in
VSE.

mM Extension

This section discusses the names that are required to access a VSAM KSDS. These
names depend upon the operating system, whether or not the FILE parameter was
specified on the OPEN statement, and the number of KEYS listed in the KEYS
parameter of the OPEN statement.

If a file has no KEYS parameter given on its OPEN statement or if only one key is
listed in the KEYS parameter, then only a single data definition statement is
required. However, if the KEYS parameter lists more than one key, then the
FORTRAN VSAM KSDS support routines actually open more than one VSAM
file and a separate data definition statement (and, therefore, a different name) is
required for each one. The table below indicates the required names.

There must be a data definition statement corresponding to each key, either the
primary key or an alternate index key, listed in the KEYS parameter of the OPEN
statement. If the primary key is listed in the KEYS parameter, then there must be a
data definition statement which refers to the base cluster. If an alternate index key
is listed in the KEYS parameter, then there must be a data definition statement
which refers to that alternate index path. It is important to note that the data
definition statement corresponding to an alternate index key must refer to the
alternate index path and not to the alternate index itself. All the data definition
statements which are used to open one FORTRAN keyed file must refer to the
same base cluster.

In the event that there is no KEYS parameter on the OPEN statement, whichever
primary or alternate index key is referred to by the data definition statement
becomes the only possible key of reference for access to the file.

Separate FORTRAN keyed files (that is, those that are opened with different unit
numbers) must not involve the same base cluster, either through the primary key or
through one of its alternate index keys, if any of the files which are to remain open
at the same time were opened with an ACTION parameter having a value other
than READ. Violation of this restriction may cause unexpected or undesirable
results when file updates are made.

The following table lists the names required to open a single FORTRAN keyed file.

Chapter 15. Using VSAM with VS FORTRAN 365

VMorVSE MVS'
DDNAME

No.
FILE=fn No FILE = FILE=fn No FILE =

1 fn FTnnKOl fn FTnnKOl

i fn suffixed FTnnKOi fn suffixed FTnnKOi
(i> 1) withm withm

Note 1. Note 2.

In the table:

nn is the unit number specified in the OPEN statement.

fn is the file name, if any, specified in the OPEN statement.

m isi-l

Notes:

1. The ddname or filename numbers do not have to correspond to the positions of the
associated keys in the key list (KEYS parameter of the OPEN statement). For
example, the last key listed in the KEYS parameter need not correspond to the
highest numbered name.

2. In a VM or VSE system, if the filename (fn) given in the FILE parameter is seven
characters long, it is not possible to suffix the name as indicated above for other
than the first ddname. In this case, the last character of the name is overlaid
instead.

~ __________ End of mM Extension __________

366 VS .. PORTRAN Programming Guide

Processing DEFINE Commands

After you've created your DEFINE command, you must execute it, using Access
Method Services, to create an entry in a VSAM catalog.

For MVS: You specify the following job control statements to catalog your VSAM
DEFINE commands:

IIVSAMJOB
IISTEP
IlsYSPRINT
Iiddname
IlsYSIN

JOB
EXEC
DD
DD
DD

PGM=IDCAMS
SYSOUT=A
VOL=SER=myvol,UNIT=SYSDA,DISP=OLD

*
(The DEFINE command as data)

1*
II

When you execute a FORTRAN program to create or process a VSAM file, you
define the file in a DD statement.

For example, to process the file myfilel in a FORTRAN load module called
myprog, you specify:

IIvSAM1
II
Iiddname
II

JOB
EXEC PGM=myprog
DD DSN=myfile1,DISP=SHR

When myprog is executed, the DD statement makes myfilel (and the information in
its catalog entry) available to the program. In the FORTRAN OPEN statement,
ddname is the name specified in the FILE parameter.

For TSO considerations, see Chapter 13, "Using VS FORTRAN under TSO" on
page 317. For information about job control statements, see "Job Processing" on
page 257.

For VSE: You specify the following job control statements to execute your
DEFINE commands:

II JOB
II EXEC

DEFINE
IDCAMS,SIZE=AUTO

(The DEFINE command as data)

1*
1&

To create or retrieve records in a VSAM file under VSE, you identify the file in
DLBL and EXTENT statements. If myfilel is the name of the file defined by the
DEFINE command, then this is the file ID that you specify in the DLBL control
statement.

For example, to process myfilel in a FORTRAN program called myprog, you
specify:

Chapter 15. Using VSAM with VS FORTRAN 367

II JOB VSAM1
II DLBL filename,'myfile1'"VSAM
II EXTENT SYS015,vsamvol
II EXEC myprog,SIZE=AUTO
II

When myprog is executed, the DLBL and EXTENT statements make myfilel (and
the information in its catalog entry) available to the program. In the FORTRAN
OPEN statement, filename is the name specified in the FILE parameter.

In the EXTENT statement, you need specify only the logical unit (SYS015) and
the volume ID (vsamvol), which is the volume containing the vsAM catalog.

In the FORTRAN OPEN statement, the unit you specify must be equivalent to that
specified in the EXTENT statement. Your system administrator can tell you the
units valid for your organization.

For VSAM files, you must specify the SIZE parameter in the EXEC statement. Do
not specify a size larger than the size of the partition the program will run in.

When a VSAM cluster is specified with the REUSE option, care must be taken
when using the file for the first time. When the VSAM file is opened and the
DLBL control statement describing the file has a DISP=NEW specification, the file
is in Initial Load Status and can only have records written to it. To read this
VSAM file, you must finish this job step and in the next job step have a DLBL
control statement that has a DISP=OLD specification for the VSAM file. If you
try to read the VSAM file in the same job step, you must have. two DLBL control
statements describing the same VSAM file. The WRITE DLBL control statement
is specified with DISP=NEW, and the READ DLBL control statement is specified
with DISP=OLD. You cart read the file after all records have been written, and
the file is closed and reopened with another DLBL control statement specifying
DISP=OLD. The file will be empty when you CLOSE the file with the DLBL
control statement specifying DISP=DELETE.

For information about job control statements, see "Job Processing" on page 331.

For VM: To define a VSAM file to VM, you specify the following commands:

• The XEDIT command (or the edit command of your choice), to create a file
with a filetype of AMSERV containing the DEFINE CLUSTER command.

• The AMSERV command, to execute the DEFINE CLUSTER command in the
file you've created; this creates the VSAM catalog entry. For example:

AMSERV defname

This command sends the DEFINE CLUSTER command to Access Method
Services for processing.

368 VS FORTRAN Programming Guide

Source Language Considerations-V SAM Files

Access Mode
and FORTRAN
I/O Statements

OPEN

WRITE

REWRITE

DELETE

READ

BACKSPACE

REWIND

CLOSE

VSAM

While a VSAM sequential file (ESDS) is similar to other sequential files and a
VSAM direct file (RRDS) is similar to other direct files, their organizations are
actually different from other sequential and direct files, and the same source
language can give different results. You must take these differences into account
to get the results you expect.

In addition, a VSAM keyed file (KSDS) has special language keywords and
constructs that affect the OPEN, READ, and WRITE statements. When you're
processing VSAM files, you can use all the VS FORTRAN input/output
statements, but REWRITE and DELETE can be used only with KSDS.

For VSAM files, the STATUS specifier of an OPEN statement may not be NEW
or SCRATCH, and the STATUS specifier of a CLOSE statement may not be
DELETE.

Note: H your program contains an ENDFILE statement and processes a VSAM
file, you'll get a warning message to inform you that ENDFILE has no meaning for
a VSAM file and is treated as documentation.

Figure 66 summarizes the FORTRAN input/output statements you can use with
each form of access.

VSE/VSAM-
Sequential VSAMDirect VSAMDirect VSAMKeyed Managed
(ESDS) (RRDS) (RRDS) (KSDS) Sequential

Sequential Sequential Direct Keyed Sequential
Access Access Access Access Access

YESl YESl YES YES NO

YES6 YES YES4 YES7 YES

NO NO NO YES NO

NO NO NO YES NO

YES N02YES3 YES YES YES

YES YES5 YES3 NO YES YES

YES YES5 YES3 NO YES YES

YES YES YES YES YES

Figure 66. FORTRAN Statements VaIid with VSAM Files

Notes to Figure 66:

Sequential OPEN
2 Empty file
3 Nonempty file
4 Update or replace
5 For a file that was empty when opened, has the effect of CLOSE
6 Add a new record to the end of the file
7 Add or insert a new record

Chapter 15. Using VSAM with VS FORTRAN 369

In some instances, the VSAM input/output statements have a different effect than
they have for other file processing techniques. The differences are documented in
the following sections.

Processing VSAM Sequential Files

VSAM sequential files use VSAM entry sequenced data sets (ESDS); processing of
such files by VS FORTRAN can only be sequential.

When you're processing VSAM sequential files, there are special considerations for
the OPEN, CLOSE, READ, WRITE, BACKSPACE, and REWIND statements, as
described in the following paragraphs. For general information, see "Sequential
Access I/O Statements" on page 100.

Using OPEN Statement-VSAM Sequential Files

When your program processes a VSAM sequential file, you must specify the OPEN
statement. For VSAM sequential files, specify:

ACCESS='SEQUENTIAL'

Note: You cannot use an OPEN statement with a VSE/VSAM-managed
sequential file. For VSE/VSAM-managed sequential files, you can use all other
input/output statements valid for other non-VSAM sequential files. However, the
ENDFILE statement has no meaning for a VSE/VSAM-managed sequential file
and is treated as documentation. If your program contains an ENDFILE statement
and processes a VSE/VSAM-managed sequential file, you will get a warning
message.

Using READ Statement-VSAM Sequential Files

The READ statement for a VSAM sequential file has the same effect it has for
other sequential files; records are retrieved in the order they are placed in the file.
Therefore, you must use the sequential forms of the READ statement.

Using WRITE statement-VSAM Sequential Files

For VSAM sequential files, the WRITE statement places the records into the file in
the order that the program writes them. If a VSAM sequential file is nonempty
when your program opens it, a WRITE statement always adds a record at the end
of the existing records in the file; thus you can extend the file without first reading
all the existing records in the file.

After you've written a record into a VSAM sequential file, you can only retrieve it;
you cannot update it. Thus, when processing a VSAM sequential file, you can't
update records in place. That is, if you code the following statements:

READ •••
BACKSPACE
WRITE •••

370 VS FORTRAN Programming Guide

the WRITE statement does not update the record you have just retrieved. Instead,
it places the updated record at the end of the file. (If you want to update records,
you should define the VSAM file as direct or keyed.

Using BACKSPACE Statement-VSAM Sequential Files

For VSAM sequential files, you can use the BACKSPACE statement to make the
last record processed the current record:

• For a READ statement followed by a BACKSPACE statement, the current
record is the record you've just retrieved. You can then retrieve the same
record again.

• For a WRITE statement followed by a BACKSPACE statement, the current
record is the record you've just written, that is, the last record in the file. You
can then retrieve the record at this position.

Using REWIND Statement-VSAM Sequential Files

The REWIND statement for VSAM sequentially accessed files has the same effect
it has for other sequential files: the first record in the file becomes the current
record.

For VSAM sequential files, this means that you can rewind the file and then
process records for retrieval only. If you attempt to update the records, you'll
simply add records at the end of the file.

After a BACKSPACE or REWIND statement is executed, you cannot update the
current record. If you attempt it, you'll simply add another record at the end of the
file.

Processing VSAM Direct Files

VSAM direct files use VSAM relative record data sets (RRDS). You can process
VSAM direct files using either direct or sequential access.

Using direct access, you supply the relative record number. You should use direct
access for RRDS when there are gaps in the relative record sequence for the file, or
when you want to update records in place.

Using sequential access, you access each record in tum, one after another, and you
have no control over the relative record number. For this reason, if you use
sequential access to load the file, there should be no gaps in the relative record
number sequence.

When you're processing VSAM direct files, there are special considerations for the
OPEN statement as well as for sequential, direct, and keyed access, as described in
the following paragraphs. For general information, see "Direct Access I/O
statements" on page 103.

Chapter 15. Using VSAM with VS FORTRAN 371

Using OPEN Statement-VSAM Direct Files

When your program processes a VSAM direct file, you must specify the OPEN
statement. The options you can use are:

• ACCESS='DIRECT' for direct access

• ACCESS='SEQUENTIAL' for sequential access

Using Sequential Access--VSAM Direct Files

You can use sequential access to load (place records into) an empty VSAM direct
file using the WRITE statement, or to retrieve records from a VSAM direct file
using the READ statement. The records are processed sequentially, one after the
other, exactly as a sequential file is processed, and the relative record numbers of
the records are ignored. In other words, when you're loading the file, there should
not be any gaps in the relative record number sequence, because space for any
missing records will not be reserved in the file. The OPEN statement option to use
is

ACCESS='SEQUENTIAL'

For a direct file opened in the sequential access mode, you can use the WRITE
statement only to load (place records into) a file that is empty when the file is
opened. During loading, if you specify a BACKSPACE or REWIND statement,
you cannot specify any more WRITE statements.

If the sequentially accessed VSAM direct file already contains one or more records
when it is opened and you issue a WRITE statement, your program is terminated.
In other words, for a VSAM direct file opened in the sequential access mode, once
the file is loaded, you can't add or update records with FORTRAN programs. (For
updating and adding records, you must use direct access.)

The READ statement for a sequentially accessed VSAM direct file retrieves the
records in the order they are placed in the file. The VS FORTRAN program gives
you no way of determining the relative record number of any particular record you
retrieve. (If you need to use the relative record number, you must use direct
access.)

Except during file loading, the REWIND statement for a sequentially accessed
VSAM direct file has the same effect it has for VSAM sequential files: the first
record in the file becomes the current record, which is then available for retrieval.
During file loading, the REWIND statement has the same effect as a CLOSE
statement followed by an OPEN statement; the first record in the file is then
availaple for retrieval.

Except during file loading, the BACKSPACE statement for a sequentially accessed
VSAM file has the same effect it has for VSAM sequential files; the last record
processed becomes the current record, which is then available for retrieval. During
file loading, the BACKSPACE statement has.the same effect as a CLOSE
statement, followed.by an OPEN statement, followed by file positioning to the last
record written; the last record in the file is then available for retrieval.

372 VS FORTRAN Programming Guide

Using Direct Access--VSAM Direct FOes

You can place records into a VSAM direct file using the WRITE statement, or
retrieve records from a VSAM direct file using the READ statement. The OPEN
statement option to use is

ACCESS='DIRECT'

For VSAM direct files, if the relative record numbers for the file are not strictly
sequential-for example, if there are gaps in the key sequence:

1, 2, 3, 10,12, 15, 16, 17, 20

-you must load (create records in) the file, using direct access WRITE statements
to provide the relative record number for each record you write.

Otherwise (if the relative record numbers for the file are strictly sequential-no
gaps), you should sort the records according to the ascending order of their record
numbers and then load them into the file using sequential access. This is because
sequential access is faster than direct access.

For a VSAM direct file opened in the direct access mode, a WRITE statement uses
the relative record number you supply to place a new record into the file, or to
update an existing record.

The method you follow, either for record insertion or record update, is as follows:

1. In the OPEN statement, specify ACCESS='DIRECT' for the file.

2. Set the REC variable to the relative record number of the record to be inserted
or updated.

3. Then code the WRITE statement, using the preset REC variable.

4. Repeat steps 2 and 3 until you've processed all the records you need to
process.

The following example illustrates the first three steps above:

OPEN (ACCESS='DIRECT' ,UNIT=10,RECL=80)
IREC = 45
WRITE (10,REC= IREC)

When you are loading (initially placing records into) a file, you must not use
duplicate record numbers during processing. In other words, you are not allowed
to update records while you are loading the file. If you use direct access WRITE
statements to load a file initially and you want to change from initial load
:processing to update processing, issue a direct access form of the READ statement.

To retrieve records from a directly accessed VSAM direct file, use the direct access
forms of the READ statement. You cannot open the same file in the same
progr3m.t¢ng unit for both sequential and direct access processing.

Don't execute the BACKSPACE or REWIND statements with a directly accessed
VSAM direct file; if you do, your program is terminated.

Chapter 15. Using VSAM with VS FORTRAN 373

mM Extension

Processing VSAM Keyed FOes

VSAM keyed files use VSAM key sequenced data sets (KSDS). The access mode
is keyed, and record retrieval is accomplished by means of either direct or
sequential READ statements, while record output is by direct WRITE or
REWRITE statements.

For VS FORTRAN users, probably the most significant property of a VSAM
keyed file is the ability to process the file in more than one ord~r within the same
program. This is accomplished in VS FORTRAN by means of the KEYS
parameter in the OPEN statement, and the KEYIDparameter in the READ
statement.

The KEYS parameter in the OPEN statement names the established VSAM keys
for the KSDS file that you will use in your program. The KEYID parameter names
the key applicable to the READ statement containing it, and sets up that key as the
current key of reference. Provided the key or keys you want to use is identified in
the most recent OPEN statement for the file, the KEYID parameter in a later
READ statement can identify any of those keys as the key of reference at any
point in the program. Or, after the file is closed, another OPEN can establish
another group of keys.

In working with a key, you will have to associate it with some FORTRAN data
type when a record is retrieved, for example, if the key is put into a FORTRAN
variable or array element by a READ. Regardless of the FORTRAN data types by
which you may recognize or manipulate a key, VSAM considers the key to be a
single string of one or more characters. VSAM always compares the keys using the
EBCDIC collating sequence. If the key is seen by VS FORTRAN as some data
type other than character (as integer or real, for instance), the VSAM key
comparisons may not be equivalent to the FORTRAN internal values. This does
not mean that the key must be character data type, but it does mean that the key
data type must be consistent with what VSAM expects when a record is written.

Another aspect of key processing important to VS FORTRAN users is that a key
may logically consist of more than one data item, with the same or different
FORTRAN data types. But to VSAM, the key must form a·contiguous character
string in its file record. Therefore, the key used as an argument in a direct retrieval
(READ with KEY =) must refer to a single data item. If you do divide the key into
more than one item, an EQUIVALENCE statement can be used to define a
variable that provides a single name for the composite items, and then that name
can be used for the key value in the retrieval.

For specific information about VS FORTRAN statement usage in processing
VSAM KSDS files, see "Keyed Access I/O Statements" on page 106.

'--__________ End of mM Extension __________ _

374 VS FORTRAN Programming Guide

Obtaining the VSAM Return Code-IOSTAT Option

If you specify the IOSTAT option for VSAM input/output statements, and an
error occurs while VSAM is processing it, you'll get the VSAM error information
for the operation attempted in the IOSTAT data item.

(If the error occurs while FORTRAN is processing it, you'll get an IOSTAT value
that is the same as the VS FORTRAN error code.)

The VSAM error information is formatted in the IOSTAT data item as follows:

1. The VSAM return code is placed in the first two bytes.

2. The VSAM reason code is placed in the second two bytes.

IBM Extension

To inspect the codes, you can equivalence the IOSTAT variable with two integer
items, each of length 2. After a VSAM input/output operation, you can then write
out the two integer items, which contain the pair of VSAM codes. For example:

INTEGER*2 I2(2)
INTEGER*4 I
EQUIVALENCE (I2,I)
OPEN (10,ACCESS='DIRECT',RECL=100)
WRITE (10,REC=99,IOSTAT=I,ERR=1000)

1000 WRITE (6,*) 'VSAM ERROR: RETURN CODE=', I2(1),
2 'REASON CODE=', I2(2)

'--_________ End of IBM Extension _________ ---'

The VSAM documentation for the system you're operating under gives the
meaning of these return and reason codes. See the list of "Related Publications" at
the beginning of this manual for VSAM publications titles.

Chapter 15. Using VSAM with VS FORTRAN 375

Chapter 16. Using VS FORTRAN Interactive Debug with VS
FORTRAN

You can use VS FORTRAN Interactive Debug (5668-903) to debug any VS
FORTRAN program that executes in a CMS or TSO environment that was

• Compiled with Release 2.0 with the TEST option, or

• Compiled with Release 3.0 or 3.1 without the NOSDUMP option.

In either case, the program must be executed with the Release 3.1 VS FORTRAN
library.

The operating environment may also include the Interactive System Productivity
Facility (ISPF), product number 5668-960, and the Program Development Facility
(PDF), product number 5665-268 for TSO and 5664-172 for CMS.

When the execution environment does include ISPF and PDF, you can do
full-screen debugging, and split-screen editing or browsing of source or listing files
while debugging.

The following sections describe what must be done before you can begin
debugging:

• Compile the VS FORTRAN program with the appropriate options (see table
below).

• Execute the program with the DEBUG option.

Complete reference information can be found in VS FORTRAN Interactive Debug
Guide and Reference.

Compiling a VS FORTRAN Program

To use VS FORTRAN Interactive Debug with a VS FORTRAN program, you
must compile the program with the SDUMP or TEST compiler option. This is the
only consideration for debugging that is necessary at compile time. Any of the
other VS FORTRAN compiler options may still be used. The only exception to
this is: If you want to use TSO or CMS line numbers to debug your code, instead
of FORTRAN internal sequence numbers (ISNs), you must specify the
NOSDUMP and TEST compiler options. The following matrix illustrates the use
of TEST, NOTEST, and NOSDUMP.

Chapter 16. Using VS FORTRAN Interactive Debug with VS FORTRAN 377

SDUMP NOSDUMP

TEST Debug using ISNs. Allows Debug using CMS or
you to run VS FORTRAN TSO line numbers.
Interactive Debug. Allows you to run VS

FORTRAN Interactive
Debug.

NOTEST Debug using ISNs. Allows No debugging is allowed
(default) you to run VS FORTRAN using VS FORTRAN

Interactive Debug. Interactive Debug.

Note: For more efficient VS FORTRAN execution, use the NOTEST option.

The process of compiling a VS FORTRAN program depends on the operating
environment used. Examples of compilation commands for the various
environments supported by VS FORTRAN Interactive Debug are shown below. In
these examples, "progname" is the VS FORTRAN program name, and "option" is
a VS FORTRAN compiler option.

ISPF / PDF: If the environment (either CMS or TSO) that is used includes ISPF
and PDF, a panel is provided for compiling the VS FORTRAN program.

eMS: When you are executing under CMS without ISPF, the FORTVS command
is used to compile a VS FORTRAN program. For example:

FORTVS progname (option1 option2 ...)

TSO: When you are executing under TSO without ISPF, the TSO CALL
command is used to compile a VS FORTRAN program. For example:

CALL 'SYS1.FORTVS(FORTVS)' 'option1,option2, ... '

Before using CALL, be sure to use the ALLOCATE command to define the
compiler data sets; see "Requesting Compilation-CALL Command" on
page 321.

Executing with the DEBUG Option

VS FORTRAN Interactive Debug is invoked by specifying DEBUG as an
execution-time option when executing a VS FORTRAN program. Examples of
possible execution commands are shown below. In these examples, "progname" is
the program name and "testparm" may be either DEBUG or NODEBUG or it may
be omitted. DEBUG invokes VS FORTRAN Interactive Debug; NODEBUG,
which is the IBM default, does not.

TSO (without ISPF): When you are executing under TSO without ISPF, VS
FORTRAN Interactive Debug is invoked with the CALL command:

CALL pgmname 'option'

where pgmname is the name of your VS FORTRAN program, and option is
DEBUG or NODEBUG.

378 VS FORTRAN Programming Guide

eMS (without ISPF): When you are executing under CMS without ISPF, VS
FORTRAN Interactive Debug can be invoked in one of several ways. In any
event, however, you must issue a GLOBAL TXTLffi command and a GLOBAL
LOADLIB DDBALL command specifying allllbraries required for normal
execution and two additionaillbraries, CMSLffi and TSOLffi.

• Use the LOAD command to load your VS FORTRAN program.

LOAD pgmname
START * option

where pgmname is the name of your VS FORTRAN program, and option is
DEBUG or NODEBUG.

• Use the GENMOD command to generate a module, and then invoke the
module.

LOAD pgmname
GENMOD pgmname
pgmname option

• Use the LKED command to link-edit your VS FORTRAN program into a load
library; issue a GLOBAL LOADLm command, specifying the name of the
load library, and then invoke the module.

OSRUN pgmname PARM=option

ISPF/PDF: If the environment (either CMS or TSO) includes ISPF, a panel is
provided for executing a VS FORTRAN program. The CMS ISPF panel is shown
below.

------- FOREGROUND VS/FORTRAN INTERACTIVE DEBUG------

COMMAND ===>

ISPF LIBRARY:
PROJECT ===>
LIBRARY ===>
TYPE ===>
MEMBER ===> (Blank for member selection list)

CMS FILE:
FILE ID ===>
IF NOT LINKED, SPECIFY:
OWNER'S ID ===> DEVICE ADDR. ===> LINK ACCESS MODE ===>

READ PASSWORD ===>

DEBUG OPTIONS: (DEBUG or NODEBUG)
===>

SYSLIB TXTLIB: (VFORTLIB is already specified)
===> ===> ===> ===>

Chapter 16. Using VS FORTRAN Interactive Debug with VS FORTRAN 379

Using the Split Screen (ISPF/PDF)

If your TSO/CMS environment with VS FORTRAN Interactive Debug includes
ISPF with PDF, the screen can be split, and browsing or editing of source or listing
files can be done during the debugging session. (The screen can be split using ISPF
only, enabling you to perform some other task under ISPF; however, it is PDF that
enables you to browse and edit.) The debug session may occupy one section of the
screen. The other section may contain the file that you want to edit or browse.

To split the screen, type "SPLIT" on the command line. Before pressing the
ENTER key, move the cursor to the position at which you want the screen to be
split. The screen can also be split by moving the cursor to the po~ition at which
you want the screen to be split and pressing the PF key assigned to the split
function (usually the PF2 key). After the screen is split, ISPF/PDF panels will
guide you.

380 VS FORTRAN Programming Guide

Chapter 17. UsingVS FORTRAN under VM/PC

There are three different methods you follow to use VS FORTRAN under
VM/PC. (You may want to ask your system administrator to do these tasks for
you.)

1. Create the VS FORTRAN module on VM/PC. Then load the module into a
nucleus extension with the NUCXLOAD command. (Creating the module is
necessary only when you first access VS FORTRAN, or after a new release
has been installed on the host system; however, you must issue the
NUCXLOAD command after every Initial Program Load (IPL) of CMS.)

2. Copy (download) the VS FORTRAN modules onto local disk files and then
invoke VS FORTRAN in local sessions. (You need to download only when
you first access VS FORTRAN, or after a new release has been installed on
the host system.)

3. Link to the host-system minidisk containing VS FORTRAN and then access it
from the local session as a remote minidisk. Depending on your link with the
system and on the system load, this often is not an efficient way to operate.

Using NUCXLOAD with VS FORTRAN

You can decrease the processing time needed to access VS FORTRAN repeatedly
by installing VS FORTRAN as an extension of your nucleus.

You must first create the VS FORTRAN compiler module on your VM/PC
system. After you have created the module, you can upload it into the host system;
it can then be downloaded to other VM/PC stations. To create the module in your
local VM/PC session, follow these steps. (You may be able to have your system
administrator do this for you.)

1. Link and access the host system disk (cannot be your "A" disk) that contains
the compiler text files. (You may need to read them from the installation tape
and copy them onto a CMS minidisk.)

2. Issue the following commands:

GLOBAL TXTLIB CMSLIB
COPY LOAnORO MACRO file-mode LOADORD TEXT A (REPLACE
LOAD IEAXPALL (CLEAR RLDSAVE
INCLUDE IFXOCMS IFXOCNTL LOADORD (CLEAR RESET IFXOCMS
GENMOD FORTVS (STR MAP FROM IFXOCMS RLDSAVE
RENAME LOAD MAP A FORTVS MAP A

These steps create a module named FORTVS that you can load into a nucleus
extension of your virtual machine. For more information, see documentation on

Chapter 17. Using VS FORTRAN under VM/PC 381

the LOAD, INCLUDE, NUCXDROP, and NUCXMAP commands in the VM/PC
User's Guide.

After you have created the FOR TVS module, you can upload it into the host
system; it can then be down1,oaded to other VM/PC stations.

To load the FORTVS module into a nucleus extension, issue the following
command:

NUCXLOAD FORTVS

You must issue this command each time you IPL CMS. (You can put the
NUCXLOAD command into your PROFILE EXEC, which will issue it for you.)

Downloading VS FORTRAN into VM/PC

To use VS FORTRAN under VM/PC in local sessions, you can copy (download)
certain VS FORTRAN modules into your local files. The modules you must copy
are listed in Figure 67.

IFXOTRCE
FORTVS
VLNKMLIB
VFLODLIB
VALTLIB
VFORTLIB
IEAXPALL
IEAXPDXR
IEAXPSIM

TXTLIB
MODULE
TXTLIB
LOADLIB
TXTLIB
TXTLIB
TEXT (1) extended precision module (2)
TEXT (1)extended preC1Slon module (2)
TEXT (1)extended precision module (2)

Figure 67. VS FORTRAN Modules Needed for Downloading

Notes to Figure 67:

1. See your system adminstrator; these modules should be in CMSLIB TXTLIB.

2. If you cannot find these modules, check with your system administrator.

Downloading is necessary only when you first access VS FORTRAN, or after a
new release has been installed on the host system.

Note: If COpy commands fail during downloading, check with your system
administrator.

382 VS FORTRAN Programming Guide

See Figure 68 on page 384 for the commands you should issue. The procedure is
as follows:

1. Link (if necessary) and access the local minidisk that is the target minidisk for
the copy operation. If the target minidisk is your own minidisk, the link is not
required.

2. Link and access the host minidisk that contains the VS FORTRAN modules'
and TXTLIBs.

3. Copy the VS FORTRAN modules and TXTLms from the host minidisk to the
local minidisk. (This is known as downloading.)

4. Release the host VS FORTRAN minidisk; it is no longer required.

5. If you are compiling and executing, link and access the host minidisk that
contains the file CMSLm TXTLIB.

6. Copy CMSLIB TXTLm to the local minidisk.

7. Release the host CMS minidisk; it is no longer required.

Virtual Storage Requirements: Approximately 2.0 megabytes

Minidis/c Storage Requirements: Approximately 1.5 megabytes

Note: These storage requirements are for the VS FORTRAN compiler and library
only; additional storage is needed for the source and/or object program files.

Chapter 17. Using VS FORTRAN under VM/PC 383

(1) Link and access the target minidisk.

CP LINK vm/pc-id ttt aaa W write-password
ACCESS aaa filemode1

(2) Link and access the host minidisk that contains the VS FORTRAN modules.

CP LINK host-id hhh bbb RR read-password REMOTE
ACCESS bbb filemode2

(3) Copy the files you need.

COPYFILE filename filetype filemode2 filemode1

(4) Release the VS FORTRAN host minidisk.

RELEASE filemode2 (DET

(5) Link and access the host minidisk that contains CMSLIB TXTLffi.

CP LINK host-id ccc bbb RR read-password REMOTE
ACCESS bbb filemode3

(6) Copy CMSLffi TXTLIB to the local VM/SP target minidisk.

COPYFILE CMSLIB TXTLIB filemode3 = = filemode1

(7) Release the CMS host minidisk.

RELEASE filemode3 (DET

Figure 68. CMS Commands to Download VS FORTRAN from a Local Session

384 VS FORTRAN Programming Guide

Notes to Figure 68:

ttt

aaa
bhb

bbb
ccc

filemodel
nlemode2

rdemode3

is the virtual address of the local target minidisk that will store the
VS FORTRAN modules.
is an unused virtual address on the local VM/ SP machine.
is the virtual address of the host minidisk that contains the VS
FORTRAN modules.
is the virtual disk address you use to refer to the host disk.
is the virtual address of the host minidisk that contains CMSLffi
TXTLffi.
is the filemode of the local VM/PC machine.
is the filemode of the host minidisk that contains the VS
FORTRAN modules.
is the filemode of the host CMS TXTLffi minidisk.

You must first make VS FORTRAN available on a minidisk you can access. For
example:

CP LINK vrn/pc-id ttt aaa RR read-password
ACCESS aaa filemode3
GLOBAL TXTLIB VFORTLIB CMSLIB

If VS FORTRAN is stored on your A disk, you can omit the LINK and ACCESS
commands. (If you must issue these commands each time you log on to VM/PC,
you can put them into your PROFILE EXEC, which issues them for you.)

Next, you can invoke VS FORTRAN through the following command:

FORTVS fortest

where fortest is the name of your source program (its filetype is FORTRAN).

In link mode, specify:

GLOBAL TXTLIB VLNKMLIB VFORTLIB CMSLIB
GLOBAL LOADLIB

and run your program.

You can also specify compiler options. For example:

FORTVS fortest (options

allows you to modify the default compiler options in force for your organization.

Chapter 17. Using VS FORTRAN under VM/PC 385

I VS FORTRAN Programming Tips
I

You can improve compile time if you specify VS FORTRAN compiler options that
do not request printed listings: NOSDUMP, NOLIST, NOMAP, NOSOURCE,
and NOXREF.

You can also improve compile time if you specify the OPT(O) compiler option;
however, this might slow down execution time.

VS FORTRAN Restrictions

Any VS FORTRAN restrictions on VM processing apply for VM/PC as well.

In addition, the following processing capabilities are not available when you are
executing an object program in a local session:

• VSAM file processing is not available.

• Magnetic tape processing is not available.

• The IBM Graphical Data Display Manager (GDDM) is not available.

386 VS FORTRAN Programming Guide

Appendixes

This section contains appendixes documenting the following auxiliary VS
FORTRAN material:

• Appendix A, "Assembler Language Considerations" on page 389

• Appendix B, "Object Module Records" on page 403

• Appendix C, "Differences between VS FORTRAN and Other IBM
FORTRANs" on page 411

• Appendix D, "Internal Limits in VS FORTRAN" on page 415

Appendixes 387

Appendix A. Assembler Language Considerations

You can use assembler language subprograms with your FORTRAN main
programs. In your FORTRAN programs, you can invoke the assembler
subprogram in either of two ways: through CALL statements or through function
references in arithmetic expressions.

This appendix describes the linkage conventions you must use in such assembler
language subprograms to communicate with the FORTRAN program.

For documentation about assembler language programs, see "Preface" on page iii.

Subprogram References in FORTRAN

Argument List

For each subprogram reference, the compiler generates:

• A contiguous argument list containing the addresses of the arguments; this
makes the arguments accessible to the subprogram.

If the calling program was compiled under Release 3.0 or later with
LANGLVL(77), and if any arguments in the call to the assembler language
subprogram are of character type, there will be a second argument list with
pointers to the length of each character argument.

If the length of the character arguments is not important to your assembler
language program, you can write an assembler language program to reference
the parameter list in the same way as for older releases of FORTRAN: G, HX,
and DOS FORTRAN F, or for LANGLVL(66).

• A save area in which the subprogram can place information about the calling
program.

• A calling sequence to pass control to the subprogram, using standard linkage
conventions.

The argument list contains addresses of variables, arrays, and subprogram names
used as arguments. If the list contains character arguments, there is a second list
that immediately follows the first containing addresses of the lengths of arguments.
See the example under "Retrieving Arguments in an Assembler Program" on
page 394. Each entry contains the address of an argument. The leftmost bit is set
to binary 1 in the last entry.

Appendix A. Assembler Language Considerations 389

Save Area

Calling Sequence

The calling program places the address of the argument list in general register ·1.·

The calling program contains a save area in which the subprogram places
information: the entry point for this program, the address to which the subprogram
returns, general register contents, and addresses of save areas used by programs
other than this subprogram.

The calling program reserves 18 words of storage for this area.

The calling program places the address of the save area in general register 13.

The FORTRAN compiler generates a calling sequence to transfer control to the
subprogram, placing the following addresses in the following registers:

• Register 13-the address of the save area.

• Register I-the address of the argument list. (If there is no argument list, 0
(zero) is placed in general register 1.)

• Register IS-the entry address.

Register 14-the return address.

The program then branches to the address in general register 15.

You can also use register 15 as a condition code register, and as a RETURN code
register. The values you should use for these codes are:

o when a RETURN statement is executed in the subprogram.

4 *i when a RETURN i statement is executed in the subprogram.

Linkage in Assembler Subprograms

You can use two types of assembler subprograms:

Called Subprograms--that is, assembler language subprograms that don't call
another subprogram.

Called and Calling Subprograms--that is, assembler language subprograms that
do call another subprogram.

The rules for coding such subprograms are somewhat different, so they are
documented in separate sections following.

390 VS FORTRAN Programming Guide

Called Assembler Subprograms

For assembler subprograms that don't call other subprograms, you must include the
following linkage instructions:

1. An instruction naming the entry point for this subprogram.

2. Instructions to save (in the save area reserved by the calling program) any
general registers this subprogram uses. (You don't need to save the contents of
general registers 0 and 1.)

3. Before returning control to the calling program, instructions to restore the
saved registers.

4. For a FUNCTION subprogram, instructions to return the function's value.

5. An instruction setting the first byte of the fourth word in the save area to one
bits, to indicate return of control to the calling program.

6. An instruction returning control to the calling program.

In addition to these instructions, if arguments are passed, the assembler
subprogram may need to transfer the arguments from the calling program and
return the arguments to the calling program, using the address passed in general
register 1.

Called and Calling Assembler Subprograms

An assembler language subprogram that calls another subprogram must contain the
same linkage instructions as a called subprogram; it must also simulate the
FORTRAN linkage conventions for calling subprograms. Therefore, it must also
include:

• A save area and instructions to place entries into its save area

• A calling sequence and parameter list for the subprogram it is calling

• An instruction indicating an external reference to the subprogram it is calling

• Additional instructions in the return routine to retrieve entries from the save
area

Character Argument Linkage Convention

The linkage convention for passing character arguments between subprograms is
different from the linkage convention for passing arguments that are not character.
FORTRAN 77 standards specify two attributes for each character argument:

The first attribute, required of all arguments, is address.

The second attribute, required of character arguments, is length.

Appendix A. Assembler Language Considerations 391

The convention for supplying argument address is the same for character and .:
noncharacter arguments. That is, in the calling subprogram, a sequence of
addresses is entered in the order of the called subprogram's argument list: One
word with an address for each argument in the list. A high-order bit is added to the
last address to signify the end of the address list.

The convention for supplying argument length is to enter a sequence of one-word
addresses pointing to the length attributes of each argument in the list. There is a
one-to-one correspondence of addresses and lengths. A high-order bit is added to
the last address to signify the end of the length list.

Note: For the case with both character and noncharacter arguments, address and
length attributes must be supplied for each argument.

Address and length lists are arranged contiguously in storage. Two words precede
these lists. The first, a character word 'BZOO', identifies this list as one with
character arguments. The second word contains the length, in bytes, of the
argument address list. The value is used as an offset from each entry in the address
list to point to its corresponding entry in the length list.

The following example illustrates the linkage convention of a call to a subprogram
with three character arguments. The compiled object code is shown to the left, and
the corresponding assembler instructions to the right.

LOC OBJECT CODE
02 4110 C038
06 58FO COSO
OA 05EF

OC
11
1C
28
2C
30
30 C2E90000
34 OOOOOOOC
38 OOOOOOOC
3C 00000011
40 8000001C
44 00000028
48 0000002C
4C 80QOO02C

50 00000000

392 VS FORTRAN Programming Guide·

ADDR2
00038
00050

SOURCE STATEMENT
LA 1,PL (1ST ARG. ADDR.)
L 15,=V(SUB) (ADDR. OF SUB)
BALR 14,15 (CALL SUB (A,B,C)

A DS CL5 (DEFINE A CHARACTER*6)
B DS CL 11 (DEFINE B CHARACTER*11)
C DS CL 11 (DEFINE C CHARACTER*11)
FIVE DS F ' 5 1 (DEFINE LENGTH OF A)
ELEVEN DS F 111 I (DEFINE LENGTHS B,C)

DS OF
DC X' C2E90000 ' (BUFFWORD I BZ I)

DC A (PLL-PL) (OFFSET TO PLL)
PL DC A(A) (ADDR OF A)

DC A(B) (ADDR OF B)
DC X' 80 ' ,AL3(C) (ADDR OF C)

PLL DC A(FIVE) (ADDR OF A LEN)
DC A (ELEVEN) (ADDR OF B LEN)
DC X' 80 ' ,AL3(ELEVEN) (A. C LEN)
END

=V(SUB) (ADDRESS OF SU.B)

Main Programs

If the main program is not a FORTRAN main program, you must establish certain
FORTRAN linkages after you've established the save area and before you call the
FORTRAN subroutine.

The linkages you establish cause initialization of return coding and interrupt
exceptions, as well as opening of the error message data set.

If you don't do this and the FORTRAN subprogram terminates in error or with a
STOP statement, any open FORTRAN data sets are not closed, and the results of
the program termination are unpredictable.

An example of the "program code" might be a call to a FORTRAN subroutine
SUB2:

FINIT CSECT
**
* THIS FIRST SECTION:
* SAVES THE CALLER'S REGISTERS IN THEIR SAVE AREA
* ESTABLISHES ADDRESSABILITY
* SAVES THE ADDRESS OF PREVIOUS SAVE AREA IN OUR SAVE AREA
* SAVES THE ADDRESS OF OUR SAVE AREA IN THE PREVIOUS SAVE AREA
* SETS REGISTER 13 TO THE ADDRESS OF THE PREVIOUS SAVE AREA
**

STM 14,12,12(13) SAVE CALLERS REGISTERS
BALR 12,0 ESTABLISH A BASE REG
USING *,12 LET ASSEMBLER KNOW ABOUT IT
ST 13,SAVEAREA+4 STORE BACKWARD POINTER
LR 11,13 PREVIOUS SAVE AREA TO REG 11
LA 13,SAVEAREA PICK UP OUR SAVE AREA
ST 13,8(0,11) STORE FORWARD POINTER
LR 13,11 SAVE REG 13 ACROSS CALL TO FORTRAN

**
* THIS SECOND SECTION FOLLOWS THE FIRST:
* LOADS ROUTINE ADDRESS
* CALLS VFEIN# TO INITIALIZE
**

SR 1,1 INDICATES NO PARAMETER LIST
L 15,=V(VFEIN#) LOADS INITIALIZATION ROUTINE ADDR
BALR 1 4, 1 5 CALL VFEIN

**
* CALL THE VS FORTRAN SUBROUTINE
**

L 15,=V(SUB2)
BALR 14,15

**
* RETURN TO THE CALLER
**

L
BALR

SAVEAREA DC

15,=V(EXIT)
14,15
18F'0'

CALL EXIT SERVICE RTN TO FINISH

**
END

Appendix A. Assembler Language Considerations 393

Using FORTRAN Data in Assembler Subprograms

Your assembler language subprograms can use data defined in FORTRAN
subprograms, data contained either in common areas or in argument lists.

Using Common Data in Assembler Subprograms

Assembler language subprograms can access data in both blank and named
common areas.

Using Blank Common Data in Assembler Programs

To refer to the blank common area, the assembler language program must also
define a blank common area, using the COM assembler instruction. Only one
blank common area is generated; the data it contains is available both to the
FORTRAN program containing the blank COMMON statement and to the
assembler language program containing the COM statement.

In the assembler language program, you can specify the following linkage:

L 11,=A(name)
USING name,11

COM
name DS OF

Using Named Common Data in Assembler Programs

To refer to named common areas, your assembler program should use an external
A-type address constant:

EXTRN name-of-common-area
name DC V(name-of-common-area)

Retrieving Arguments in an Assembler Program

The argument list contains addresses of variables and arrays.

Each entry in the argument list is four bytes long and is aligned on a fullword
boundary. The first bit of every entry except the last contains zero; in the first
byte of the last entry, the leftmost bit is set to binary 1.

The calling program places the address of the argument list in general register 1.

394 VS FORTRAN Programming Guide

The following is an example showing the form of the VS FORTRAN code:

ADCONS FOR PARAMETER LISTS

Reg. 1 0001BO C2E90000 DC AL4'C2E90000'
points 0001B4 0000001C DC AL4'0000001C'
here-> 0001BS 00000120 DC AL4'00000120' RS

0001BC 0000015S DC AL4'0000015S' R16
0001CO 0000012S DC AL4'0000012S' C16
0001C4 0000013S DC AL4'0000013S' C32
0001CS 000005DS DC AL4'000005DS' CHAR7
0001CC 000005DF DC AL4'000005DF' CHAR17
0001DO SOOO01FO DC AL4'SOOO01FO' CHAR 1
0001D4 OOOOOOEO DC AL4'000000EO' S
0001DS OOOOOOCS DC AL4'000000CS' 16
0001DC OOOOOOCS DC AL4'000000CS' 16
0001EO 000000E4 DC AL4'000000E4' 32
0001E4 OOOOOODS DC AL4'000000DS' 7
0001ES 000000D4 DC AL4'000000D4' 17
0001EC SOOOOODC DC AL4'SOOOOODC' 1000

Note: Displacements to actual values are given.

Retrieving Variables from the Argument List

The argument list contains the address of a variable. The assembler program can
retrieve the variable using the following instructions:

L Q,x(O,1)
MVC LOC(y) ,z(Q)

where:

Q is any general register except 0, 1, 13, or the program's base register.

LOC is the location that will contain the variable.

x is the displacement of the address of the variable from the start of the
argument list.

y is the length of the variable itself.

z is either ° or the correct displacement for an array element. (Note that
z must lie in the range [0,4095]; if the displacement of the desired
array element lies outside this range, you must take additional steps to
calculate the displacement at execution time.)

Appendix A. Assembler Language Considerations 395

For example, if a REAL * 8 variable is the second item in the argument list, you
could code the following assembler instructions to retrieve it:

L 5,4(O,1}
Mve LOe(8},O(5}

Retrieving Arrays and Array Elements from the Argument List

The address of the first element of an array is placed in the argument list. If you
must retrieve any other elements in the array, you may need to specify the
displacement for that element from the beginning of the array in a separate
instruction:

L Q,x(1}
L R,disp
L S,O(Q,R}
ST S,Loe

where:

Q,R,S Any general registers except 0, 1, 13, or the program's base register

x

disp

LOC

The displacement of the address of the variable from the start of the
argument list

The displacement of the element within the array

The location that will contain the array element

Retrieving Character Variables from an Argument List

The argument list contains the address of the character variable and the address of
the length of the character variable. The assembler program can retrieve the
variable using the following instructions:

L Q,x(O,1}
LR S,1
S S,=F'4'
L S,O(O,S}
AR S,1
L R,x(O,S}
L R,O(O,R}

where:

(Get data address)

(Get character length pointer)
(Get charact~r length)

Q,R,S Any general registers except 0, 1, 13, or the program's base register

x The displacement of the address of the variable from the start of the
argument list

After execution of the above instructions, Q will contain the address of the
character variable and R will contain the length of the character variable.

396 VS FORTRAN Programming Guide

Returning a Function Value from an Assembler Program

The FUNCTION name must be declared with a type that corresponds to the type
of the value returned (for example, INTEGER TIMER). The method of returning
the value depends on whether the function is a CHARACTER function or a
noncharacter function.

For noncharacter functions, the value to be returned must be placed in a register in
its internal storage representation. The register to be used is one of the following:

General Register 0
INTEGER or LOGICAL value

Floating-point Register 0
REAL (REAL*4) or DOUBLE PRECISION (REAL*8) value

Floating-point Registers 0,2
Extended-precision REAL (REAL * 16), COMPLEX*8, or COMPLEX*16.
For COMPLEX values, the real part goes in Register 0 and the imaginary
part in Register 2.

Floating-point Registers 0,2,4,6
COMPLEX*32; the real part goes in Registers 0 and 2; the imaginary part
goes in Registers 4 and 6.

For a character function, the last entry that points to the data and the last entry
that points to the length in the argument list supply information needed to store the
function's result.

The assembler program can return the character variable using the following
instructions (assuming it is at most 256 characters long):

L
LR
S
L
AR
L
L
BCTR
EX

Q,x(0,1)
S, 1
S,=F'4'
S,O(O,S)
S, 1
R,x(O,S)
R,O(O,R)
R,O
R,MOVE

MOVE MVC O(O,Q),LOC

where:

(Get data address)

(Get character length pointer)
(Get character length)

Q, R, S Any general registers except 0 or 1

x The displacement of the last entry in the argument list

LOC The address of the character string to be returned

Appendix A. Assembler Language Considerations 397

Following is an alternative solution to moving the character string (especially when
it is greater than 256 bytes):

L
LR
S
L
AR
L
L
LA
LR
MVCL

where:

14,x(0,1)
15, 1
15,=F'4'
15,0(0,15)
15, 1
15,x(0,15)
15,0(0,15)
2,LOC
3,15
14,2

(Receiving field)
(Receiving length)

(Character string to move
(Length same as receiving--see Note)

x The displacement of the last entry in the argument list

LOC The address of the character string to be returned

Note: If the length of the character string in the subprogram is less than the
receiving length, then, in place of the load register (LR 3,15) entry, use:

L
ICM

BLANK DC

where:

3,LCLLEN (Length of local character string)
3,X'8' ,BLANK (Inserts pad character)
C" or X'40'

LCLLEN A fullword containing the length of the local character string.

Returning to Alternative Return Points

To simulate the VS FORTRAN subprogram RETURN n statement, the assembler
program can place the value:

4*n

in general register 15, where n is the nth asterisk argument in the dummy argument
list.

For example, to return to the second statement number in the actual argument list,
the assembler language program must contain:

LA 15,8

Internal Representation of VS FORTRAN Data

If you're using VS FORTRAN data in your assembler language programs, you
should be aware of the formats VS FORTRAN uses within the computer.

The following examples show how VS FORTRAN data items appear in internal
storage.

398 VS FORTRAN Programming Guide

Character Items in Internal Storage

Character items are treated internally as one EBCDIC character for each character
in the item.

LogicalJtems in Internal Storage

Logical items are treated internally as items either 1 byte or 4 bytes in length.
Their value can be "true" or "false."

Their internal representation in hexadecimal notation is:

IBM Extension

G "true"

8 "false"

1 byte

'--__________ End of mM Extension __________

00 00 00 01

00 00 00 00 "falsell

.4---4 bytes--.... ~

Appendix A. Assembler Language Considerations 399

Integer Items in Internal Storage

Integer items are treated internally as two's complement binary fixed-point signed
operands, either 2 bytes or 4 bytes in length.

Their internal representation is:

IBM Extension

INTEGER *2

.,,--2 bytes---"111

~ _________ End of IBM Extension __________1

INTEGER *4

... -------4 bytes-------+111

5 = the sign bit

Real Items in Internal Storage

The compiler converts real items into 4-byte, 8-byte, or 16-byte floating-point
numbers.

Their internal representation is:

REAL *4

... --4 bytes----III.

DOUBLE PRECISION (REAL *8)

lSi C F

..... ------8 bytes :-----.111

400 VS FORTRAN Programming Guide

For REAL *4 and DOUBLE PRECISION items, the codes shown are:

S = sign bit (bit 0)
C = characteristic, in bit positions 1 through 7
F = fraction, which occupies bit positions. as follows:

REAL *4 positions 8 through 31
DOUBLE PRECISION positions 8 through 63

IBM Extension

REAL *16 (Extended Precision)

o 8 64 72
44-------16 bytes-------. ..

For Extended Precision Items, the codes are:

S = sign bit (sign for the item in bits 0 and 64)
C = characteristic, in bit positions 1 through 7

and 65 through 71 (the value in bit positions 63 through 71
is 14 less than that in bit positions 1 through 7)

F = fraction, in bit positions 8 through 63, and 72 through 127

'--__________ End of IBM Extension __________

Complex Items in Internal Storage

The compiler converts complex items into a pair of real numbers. The first number
in the pair represents the real part; the second number in the pair represents the
imaginary part.

The internal representations of complex numbers are:

COMPLEX *8

44--4 bytes--......

(real)

(imag.)

For COMPLEX *8 items, the codes shown are:

S = sign bit (bit 0)
C = characteristic, in bit positions 1 through 7
F = fraction, which occupies bit positions 8 through 31

Appendix A. Assembler Language Considerations 401

ffiM Extension

COMPLEX *16

1:1 ~ 1 : 1 1 1 1 1 1 1
4~------8 bytes :-----+.
COMPLEX *32

o 8 64 72

(real)

(imag.)

•• -------16 bytes------~.

For COMPLEX *16 items, the codes shown are:

S = sign bit (bit 0)
C = characteristic, in bit positions 1 through 7
F = fraction, which occupies bit positions 8 through 63

For COMPLEX *32 Items, the codes are:

S = sign bit (sign for the item in bits 0 and 64)
C = characteristic, in bit positions 1 through 7

and 65 through 71 (the value in bit positions 63 through 71
is 14 less than that in bit positions 1 through 7)

F = fraction, in bit positions 8 through 63, and 72 through 127

"'"'-_________ End of ffiM Extension _________ ---1

402 VS FORTRAN Programming Guide

Appendix B. Object Module Records

ESDRecord

The object deck consists of five types of records, identified by the characters ESD,
TXT, RLD, SYM, or END in columns 2 through 4. The first position of each
record contains X'02', which if punched on a card would produce a 12-2-9 punch.
Positions 73 through 80 contain the first four characters of the program name
followed by a 4-digit sequence number. The remainder of the record contains
program information.

ESD records describe the entries of the external symbol dictionary, which contains
one entry for each external symbol defined or referred to within a module. For
example, if program MAIN calls subprogram SUB A, the symbol SUBA will appear
as an entry in the external symbol dictionaries. of both the program MAIN and the
subprogram SUBA.

The linkage editor matches the entries in the dictionaries of other included
subprograms and, when necessary, to the automatic call library .

ESD records are divided into four types, identified by the digits 0, 1, 2, or 5 in
column 25 of the first entry, and column 57 of a third entry (there can be 1,2, or 3
external-symbol entries in a record).

The contents of each type of ESD record are:

ESD Type Contents

o N arne of the program or subprogram and indicates the beginning of
the module.

1 Entry point name appearing in an ENTRY statement of a subprogram.

2 Name of a subprogram referred to by the source module through
CALL statements, EXTERNAL statements, and explicit and implicit
function references. (Some VS FORTRAN intrinsic functions are so
complex that a function subprogram is called in place of in-line coding.
Such calls are defined as impliCit function references).

5 Information about a common block.

Appendix B. Object Module Records 403

TXT Record

RLDRecord

SYMRecord

TXT records contain the constants and variables your source program uses, any
constants and variables generated by the compiler, coded information for
FORMAT statements, and the machine instructions generated by the compiler
from the source module.

RLD records describe entries in the relocation dictionary, which contains one entry
for each address that the linkage editor or loader must resolve before the module
can be executed.

The relocation dictionary contains information that enables absolute storage
addresses to be established when the module is loaded into main storage for
execution. These addresses cannot be determined earlier, because the absolute
starting address of a module cannot be known until the module is loaded.

The linkage editor or loader consolidates RLD entries in the input modules into a
single relocation dictionary when it creates a load module.

RLD records contain a displacement to an area where an address is to be stored
called through ESD type 2 records.

If you request it with the SYM compiler option, VS FORTRAN produces SYM
records containing symbolic information for products like TSO TEST. SYM
records are similar in form and content to those described in Assembler H Version 2
Application Programming: Guide.

SYM records are built for variables and arrays only. The locations of the variables
or arrays are either in a LOCAL area (to the module) or in a common area. Note
that if the common area is redefined from program unit to program unit, then the
SYM records for the common area will vary to match the definition in the program
unit.

The format of the SYM records is as follows:

Columns Contents

1 X'02'

2-4 SYM

5-10 Blank

11-12 Number of bytes of text in variable or array field (columns 17 through
72)

13-16 Blank

17-72 Variable field (see below)

404 VS FORTRAN Programming Guide

73-80 Deck ID and/or sequence number. The deck ID is the program name.
The name can be 1 to 8 characters long. If the name is fewer than 8
characters long or if there is no name, the remaining columns contain a
card sequence number.

The variable field (columns 17 through 72) contains up to 20 bytes of text. The
contents of the fields within an individual entry are as follows:

1. Nondata-type SYM card

Type Displacement Name

xx 000000 yyyyyy

byte 3 bytes 1-6 bytes

• Type can identify a CSECT or a common area, and type codes used
include the length of the name.

• xx values for CSECTS are:

X' 1 0' indicates CSECT and a name 1 byte long
X' 11' indicates CSECT and a name 2 bytes long
X'12' indicates CSECT and a name 3 bytes long
X' 13' indicates CSECT and a name 4 bytes long
X'14' indicates CSECT and a name 5 bytes long
X'15' indicates CSECT and a name 6 bytes long

• yyyyyy is the name of the program (for example, MAIN, A, SUMM,
FLEX, etc.).

• xx values for COMMON are:

X'30' indicates COMMON and a name 1 byte long
X'31' indicates COMMON and a name 2 bytes long
X'32' indicates COMMON and a name 3 bytes long
X'33' indicates COMMON and a name 4 bytes long
X'34' indicates COMMON and a name 5 bytes long
X'35' indicates COMMON and a name 6 bytes long
X'38' indicates COMMON and no name (blank COMMON)

• yyyyyy is the name of the COMMON (for example, X, AAAA, YYYY,
FFFF, etc.).

2. Data-type SYM card

Type Displacement Name Variable Portion

xx wwwwww yyyyyy zzzzzzzzzzzz

byte 3 bytes 1-6 bytes 5-6 bytes

• Type can be for a SCALAR or an ARRAY variable.

• Type codes used include the length of the name and multiplicity.

Appendix B. Object Module Records 405

xx values for SCALARs are:

X'80' indicates data, no multiplicity and a name
1 byte long

X'81' indicates data, no multiplicity and a name
2 bytes long

X'82' indicates data, no multiplicity and a name
3 bytes long

X'83' indicates data, no multiplicity and a name
4 bytes long

X'84' indicates data, no multiplicity and a name
5 bytes long

X'85' indicates data, no multiplicity and a name
6 bytes long

• xx values for ARRAY variables are:

X'CO' indicates data, multiplicity, and a name
1 byte long

X'Cl' indicates data, multiplicity, and a name
2 bytes long

X'C2' indicates data, multiplicity, and a name
3 bytes long

X'C3' indicates data, multiplicity, and a name
4 bytes long

X'C4' indicates data, multiplicity, and a name
5 bytes long

X'C5' indicates data, multiplicity, and a name
6 bytes long

• wwwwww is the displacement of the variable or array into the module.

• yyyyyy is the name of the variable or array (for example, X, Y, Z, SUMM,
FLEX, etc.).

zzzzzzzzzzzz is the variable portion, which contains the length of the data
and the multiplicity (1 for a scalar).

zzzzzzzzzzzz is the variable portion, which contains the length of the data
array element and the multiplicity (number of elements in the array). There
is no information concerning dimensionality.

zzzzzzzzzzzz is further divided as follows:

Data Type Length Multiplicity

bb cccc dddddd

1 byte 1 or 2 3 bytes
bytes

406 VS FORTRAN Programming Guide

The data type field may contain the following values:

bb = X'OO' which means CHARACTER
X'04' which means LOGICAL * 1 (hexadecimal)
X'04' which means LOGICAL *4 (hexadecimal)
X'14' which means INTEGER *2 (halfword)
X'10' which means INTEGER *4 (word)
X'18' which means REAL *4 (E-type)
X'IC' which means REAL *8 (D-type)
X'38' which means REAL *16 (L-type) (extended

precision)
X'18' which means COMPLEX *8 (E-type) (2 E-types)
X'IC' which means COMPLEX *16 (D-type) (2 D-types)
X'38' which means COMPLEX *32 (L-type) (2 L-types)

The length value is actually the length code or the actual length minus one.
Character and logical items have lengths of 2 bytes. The length field may
contain the following values:

cccc = X'llll' which means CHARACTER with a length of
llll + 1, where 'llll' is the hexadecimal
length

X'OOOO' which means LOGICAL * 1 (hexadecimal)
X'0003' which means LOGICAL *4 (hexadecimal)
X'OI' which means INTEGER *2 (halfword)
X'03' which means INTEGER *4 (word)
X'03' which means REAL *4 (E-type)
X'O?, which means REAL *8 (D-type)
X'OF' which means REAL * 16 (L-type)

(extended precision)
X'03' which means COMPLEX * 8 (E-type)

(2 E-types)
X'O?, which means COMPLEX *16 (D-type)

(2 D-types)
X'OF' which means COMPLEX *32 (L-type)

(2 L-types)

dddddd = the number of elements of an array (only valid
for an array).

3. Punched output format

The SYM record output is part of the text/object file. Each SYM record
contains the information for one item. There is one segment of information
per record. For example, the information concerning the CSECT is on one
record. The information for one variable (scalar or array) is on a record. All
the information is tightly packed on each record. The format of the punched
record is similar to that provided by the Assembler (F or H) (see general SYM
record format above).

A sample hexadecimal representation of a nondata CSECT record is as
follows:
02E2E8D4404040404040000A40404040 15000000C 1 C2C3C4C5C6

Appendix B. Object Module Records 407

END Record

where:
02 = X'02'
E2E9D4 = SYM
404040404040 = blanks
OOOA = 10
40404040 = blanks
15 = CSECT (or FORTRAN program) with a 6-character name
000000 = displacement from beginning of the CSECT /FORTRAN

program
C1C2C3C4C5C6 = CSECT/program name 'ABCDEF'

Note: The normal record is 80 characters long. The rest is not shown because
it is blank, or sequence numbers.

A sample hexadecimal representation of a data variable record is as follows:
02E2E8D4404040404040000A40404040850001 COD 1D2D3D4D5D61 003000001

where:
02 = X'02'
E2E8D4 = SYM
404040404040 = blanks
OOOA = 10
40404040 = blanks
85 = scalar with a 6-character name
0001CO = displacement from beginning of the CSECT/FORTRAN

program
D1D2D3D4D5D6 = JKLMNO, scalar variable name
10 = INTEGER *4
03 = length of 3 bytes
000001 = multiplicity of 1

The END record indicates:

• The end of the object module to the LOAD command

• The relative location of the main entry point

• The length (in bytes) of the object module

The format of the END record is as follows:

Columns Contents

t X'02'

2-4 END

5-28 Blank

29-32 Length of the CSECT

408 VS FORTRAN Programming Guide

33 Character 1

34-71

73-80

where

yyddd
hhmmss
cccccccc

S748-F03 0400yyddd hhmmss cccccccc

Sequence number

year and day of year
hour, minute, and second
8 characters reserved for a main program CSECT name such as MAIN
(subprogram names are never present)

The structural order of a typical VS FORTRAN object module is shown in
Figure 69 on page 410.

Appendix B. Object Module Records 409

Record Type

ESD (Type 0)

ESD (Type 1)

TXT

TXT

ESD (Type 5)

ESD (Type 2)

RLD

SYM

TXT

ESD (Type 2)

RLD

TXT

TXT

RLD

END

Figure 69. Object Module Structure

410 VS FORTRAN Programming Guide

Usage

Names object module

Names entry points (from ENTRY
statements)

For FORMAT statements

For compiler-generated constants

For COMMON areas

For external references in CALL
and EXTERNAL statements, and
statements using subprograms

For external references in CALL
and EXTERNAL statements, and
statements using subprograms

For SYM information

For source program constants

For compiler-generated external
references

For compiler-generated external
references

For object module instructions

For the branch list

For the branch list

End of object module

Appendix C. Differences between VS FORTRAN and Other IBM
FORTRANs

In VS FORTRAN, logical variables may contain only logical values and should
appear only in logical expressions. Logical variables may not contain numeric or
character values and may not appear in arithmetic expressions (and an error or
serious error message is issued). This is true for both LANGLVL (66) and
LANGLVL (77). Under LANGLVL (66) only, logical variables may appear in
relational expressions (and a warning message is issued). This nonstandard usage
of logical variables was permitted in FORTRAN H Extended and FORTRAN H.

Some of the Extended Language features permitted with the use of the XL option
from FORTRAN H and FORTRAN H Extended are similar to functions in VS
FORTRAN. See VS FORTRAN Language and Library Reference for a description
of the bit functions.

In VS FORTRAN, the DEBUG statement and the debug packets precede the
program source statements. The new END DEBUG statement delimits the
debug-related source from the program source. For FORTRAN G 1, the DEBUG
statement and the debug packets are placed at the end of the source program.

In VS FORTRAN, evaluation of arithmetic expressions involving constants is
performed at compile time (including those containing mixed-mode constants).

In VS FORTRAN, the number of arguments is checked in statement function
references. The mode of arguments is checked for statement function references
under LANGL VL(77) option only.

In VS FORTRAN, the form of the compiler option to name a program is
NAME(nam) under LANGLVL(66).

Arguments are received only by location (or name) in LANGLVL(77). The
default in LANGLVL(66) and for FORTRAN H and FORTRAN H Extended is
receipt by value with the facility, to allow receipt by name by the use of slashes
around the dummy argument in the SUBROUTINE, FUNCTION, or ENTRY
statements.

The appearance of an intrinsic function name in a conflicting type statement has no
effect in LANGLVL(77), but is considered user-supplied under LANGLVL(66)
and FORTRAN H and FORTRAN H Extended.

Under VSE, direct access files must be preformatted when using LANGL VL(77).
This is done by the DEFINE FILE statement under LANGLVL(66).

Appendix C. Differences between VS FORTRAN and Other IBM FORTRANs 411

The extended range of a DO-loop is not part of the VS FORTRAN language. It is
a valid construction under LANGLVL(66). The use of the extended range of the
DO-loop under LANGL VL(77) is not diagnosed.

In VS FORTRAN, when a variable has been initialized with a DATA statement,
that variable cannot appear in a subsequent explicit type statement and a severity
level diagnostic is issued. FORTRAN H and FORTRAN H Extended allow typing
following the data initialization. This is nonstandard usage. FORTRAN G 1 issues
a level 8 error diagnostic.

The record designator for direct-access 110 is required to be an integer expression
for both LANGL VL(66) and LANGL VL(77). If it is not, VS FORTRAN
diagnoses with a level 12 error message. FORTRAN H and FORTRAN H
Extended permit this designator to be of real type. FORTRAN G 1 diagnoses with
a level 8 error message.

In VS FORTRAN, all calculations for arrays with adjustable dimensions are
performed by a library routine called at all entry points that specify such arrays.
This method was required for LANGL VL(77) because it permits redefinition of
the parameters with adjustable dimensions in the subprogram but requires that the
array properties do not change from those existing at the entry point.

The DOS FORTRAN IV logical unit SYSLOG is not supported by VS FORTRAN.
This logical unit was used as a console log for output only. In the VSE
environment, messages can now be displayed on the console by means of the
PAUSE statement.

In previous implementations, the output form for a real datum whose value was
exactly zero was shown as 0.0 (or .0 if the field width specified was not wide
enough to contain the leading zero). The VS FORTRAN library follows the ANS
standard exactly and, for a format edit descriptor of kPEw.d or kPGw.d (which is,
for this data value, equivalent to kPEw.d), produces the form required for this edit
descriptor. For example, for either kPG13.6 or kPE13.6 edit descriptors, VS
FORTRAN produces the form:

O.OOOOOOE+OO

(The scale factor has no effect for this data value.)

In previous implementations, the interpretation of the effect of a positive scale
factor did not follow the ANS standard. For a scale factor, k, where 0 < k < d+2
(d is the number of digits specified in the E, D, or Q edit formats), the output field
contains exactly k significant digits to the left of the decimal point and d-k+ 1
significant digits to the right of the decimal point. In previous implementations, for
k>O, only d-k significant digits appeared to the right of the decimal point. For
example, for a datum value of .0000137 and a format descriptor of 2PEI3.6, VS
FORTRAN produces:

13.70000E-06

The previous implementation produces:

13.7000E-06

412 VS FORTRAN Programming Guide

FORTRAN Gl, FORTRAN H Extended, and VS FORTRAN use slightly different
techniques to raise integer and real variables to integer constant powers:

• FORTRAN Gl generates inline code for integer constant powers up through 6
and calls the library routine for all values greater than 6.

• FORTRAN H Extended generates inline code for all integer constant powers
except when the base is an INTEGER *2 variable, in which case the library
routine is used.

• VS FORTRAN generates code inline for all cases.

These differences in implementation yield the same results provided the values
produced are valid. For example, the result of raising an INTEGER *2 variable to a
constant power must not exceed the value that can be contained in an
INTEGER*2 entity.

Passing Character Arguments

In releases prior to Release 3 of VS FORTRAN for LANGLVL(77), character
arguments are passed to a subprogram with both a pointer to the character string
and a pointer to the length of the character string. This is required because the
receiving program may have declared the dummy character arguments to have
inherited length (that is, the length of the dummy argument is the length of the
actual argument). The parameter list is therefore longer than for LANGLVL(66),
because every character argument generates two items in the parameter list. For
LANGL VL(66):

• Literal constants passed as arguments generate only one item in the parameter
list.

• Hollerith constants may be passed as subroutine or function arguments.

In LANGLVL(77), a level 8 message is received if Hollerith constants are passed
as arguments.

In both languages, only one item is generated in the parameter list for Hollerith
arguments.

Every program that had been compiled with versions of VS FORTRAN prior to
Release 3, and that either references or defines a user subprogram which has
character-type arguments or is itself of character type, must be recompiled with VS
FORTRAN Release 3 or later.

The reason for this is a change in the construction of parameter lists. The new
construction provides a means of passing arguments to functions and subroutines in
such a manner that the information needed for character-type arguments is
"transparent"; that is, the parameter list can be referenced without any regard to
the character-type argument information.

The method is to provide a double parameter list for all argument lists that contain
any character-type argument, or for any reference to a character-type function.
The primary list consists of pointers to the actual arguments; the secondary list

Appendix C. Differences between VS FORTRAN and Other mM FORTRANs 413

consists of pointers to the lengths of the actual arguments. The high-order bit in
the last argument position of each part of the parameter list will be set on. If there
are no character-type arguments, or if the function being referenced is not
character-type, only a primary list is passed.

The doubling of all parameter lists, except for intrinsic functions that do not involve
character arguments, and for implicitly invoked function references, not only
implies that the parameter lists themselves are different, but that the prologs of
FORTRAN subprograms are different in order to process these changed parameter
lists. Therefore, if any FORTRAN program compiled prior to Release 3, and that
references subprograms with character-type arguments (or is a character-type
function itself), is to be used with a FORTRAN program that is compiled with
Release 3 or later, then the old program must also be recompiled with Release 3 or
later of VS FORTRAN.

414 VS FORTRAN Programming Guide

Appendix D. Internal Limits in VS FORTRAN

Nested DO Loops

Nested DO loops and nested implied DO loops are limited to 25 levels.

Expression Evaluation

The maximum depth of the push-down stack for expression evaluation is 150. This
means that, Jor any given expression, the maximum number of operator tokens that
can be considered before any intermediate text can be put out is 150. For example,
if an expression starts with 150 left parentheses before any right parentheses, this
expression will exceed the push-down stack limit.

Nested Statement Function References

The total number of statement function arguments in any nested reference is
limited to 50.

The total number of nested statement function references is limited to 50.

The total number of arguments in any statement function definition is limited to 20.

Nested INCLUDE Statements

The maximum number of nested INCLUDE statements is 16.

Nested Block IF Statements

Block IF statements may be nested to a depth of 25. That is, the number of IF ...
THEN, ELSE, and ELSEIF ... THEN statements occurring before the occurrence
of an ENDIF statement must be no greater than 25.

Appendix D. Internal Limits in VS FORTRAN 415

Character Constants

Character constants used in defining character symbolic names in PARAMETER
statements and character constants in FORMAT statements are limited to a
maximum of 255. Character constants used in PAUSE or STOP statements are
limited to 72 characters. Character constants used as initialization values in DATA
statements are limited to the number of characters that can be contained in ·19
continuation cards.

Character constants used elsewhere in the program are limited to either the number
of characters specified in the CHARLEN option (if it was used) or to the default
value of 500.

Hollerith Constants

Hollerith constants are limited to a maximum of 255 in FORMAT statements.

Referenced Variables

The maximum number of referenced variables in a program unit is 2000.

Parentheses Groups

Statement Labels

The maximum number of parentheses groups in a format is 50.

Allowance has been made for up to 2000 user source labels and
compiler-generated labels. However, if table overflow occurs at optimization level
2 or 3, the problem may be alleviated by removing all unreferenced user labels.

416 VS FORTRAN Programming Guide

DISPLAY Statements

The maximum number of DISPLAY statements in a program unit is 100.

Repeat Count

The maximum number of times a given format code can be repeated is 255.

Appendix D. Internal Limits in VS FORTRAN 417

Index

I Special Characters I
+ as addition symbol 46
* (asterisk)

multiplication symbol 46
two as exponentiation symbol 46

- as subtraction symbol 46
/ (slash)

division symbol 46
format code 93

/ + (end-of-procedure delimiter, VSE 332
/ / (concatenation operator), in character expressions 47
: (colon)

format code 93
in array declarators 21
in substring notation 23

o (parentheses)
in array declarators 21
in substring notation 23

@PROCESS statement 164, 271
, (apostrophe or single quote)

delimits character constants 17
within character constant 17

= (equal sign)
assignment statement 50

A format code 93
abnormal termination

dump, requesting an 196,290
exceptions causing 196
not initializing, common error 167
requesting an 348

ACCESS command, CMS 229
Access Method Services, catalogs DEFINE

commands 367
ACCESS parameter, OPEN statement 84
ACTION parameter, OPEN statement 85
ACTION, VSE linkage editor control statement 342
actual argument

common coding errors 168
description 123
rules for use 124
statement function references 53

addition, evaluation order 46
address column, in storage map 178
addressing exception interrupt message 194
algebraic equation, similar to assignment statement 50
ALLOCATE command, TSO 318,319,321
alternative entry points, specifying 120
alternative mathematical library subroutines 137
American National Standard FORTRAN

flagging for 182
industry standards v

AMODE attribute 311
apostrophe

delimits character constants 17
within character constant 17

appendixes
assembler language considerations 389
differences between VS FORTRAN and current

implementations 411
internal limits in VS FORTRAN 415
invoking the FORTRAN compiler under MVS 309

ARCOS 118
argument

array, and assembler subprograms 396
assembler programs and 394,398
assigning values to 125
COMMON statement and 126
cross reference dictionary lists 181
function subprograms and 123
general rules 124
passing between programs 123
passing character 413
subroutine subprograms and 124
transparent, passing 413
variable, and assembler subprograms 395

arithmetic
data 11
efficiency, for optimization 152
errors, common 168
operators and their meanings 46
results, ensuring needed precision 46

arithmetic expression
description 45
evaluation of 45
in assignment statement 51

arithmetic IF statement
arithmetic operators in 45
FORTRAN programming 57

array element, internal file unit 95
arrays

adjustable dimensioned, recommendation
against 148

and subscripts 20
as actual arguments 125
assembler subprograms and 396
character, substrings of elements 23
cross reference dictionary lists 180
description 20
DO statement processes 62
efficient common arrangement 128
elements, in assignment statement 50
EQUIVALENCE statement and 26
execution-time considerations 22
explicit lower bounds 21
expressions and 45
implicit and explicit lower bounds, illustration of 21

Index 419

implicit lower bounds 21
implicit sharing through EQUIVALENCE 27
initializing 24
initializing an entire 25
initializing character elements 24
initializing efficiently 147
initializing elements 24
initializing, common error 168
internal file unit 95
multidimensional 21
multidimensional, processing 63
negative lower bounds, illustration of 22
one-dimensional 20
one-dimensional, processing 62
optimizing identically dimensioned 150
optimizing with identical elements 151
signed subscripts and 22
storage sharing between, illustration 27
stored in column-major order 21
subscript references invalid, common error 168

ARSIN 118
ASCII/ISCII

collating sequence 49
encoded files, record formats 306

assembler language considerations
common data in 394
FORTRAN data 394
FORTRAN subprogram references 389
linkage considerations 390
LIST option listing and 204
main programs 393
retrieving arguments 394, 398
subprograms 394

ASSGN control statement, VSE
sequential files 349
when required for VSE compilation 335

ASSIGN statement
cross reference dictionary lists 181
sets GO TO variable 66

assigned GO TO
invalid as DO loop terminal statement 64
using conditional transfers-computed 67
using program switchesfile 66

assignment statement
arithmetic 51
character 51
description 50
initializing principal diagonal using 25
logical 52
statement functions in 53
substring references valid in 23

asterisk in output field from formatted WRITE 91
asynchronous input/output statements 301
AT statement, description 203
ATTRIB command, TSO 318
audience iii
AUTODBL compiler option

definition of 158
format of 31
programming considerations with 34

420 VS FORTRAN Programming Guide

using automatic precision increase facility with 29
autolink feature, VSE 342
automatic cross system support for link-editing 235,

278,340
automatic cross-compilation 155
automatic precision increase facility

by means of AUTODBL 29
effect of AUTODBL and storage alignment on 31
precision conversion process

padding 31
promotion 29

programming considerations with
effect of argument padding on arrays 37
effect on asynchronous input/output

processing 38
effect on CALL DUMP or CALL PDUMP 38
effect on common or equivalence data values 34
effect on direct access input/output

processing 38
effect on formatted input/output data sets 38
effect on FORTRAN subprograms 36
effect on initialization with hexadecimal

constants 35
effect on initialization with literal constants 35
effect on mode-changing intrinsic functions 36
effect on programs calling subprograms 36
effect on unformatted input/output data sets 38

avoiding coding errors 167

background command procedures, TSO 329
BACKSPACE statement

invalid for directly accessed VSAM direct files 373
keyed access considerations 111
replace a record 103
reprocessing a record that was just written 102
sequential access 102
sequentially accessed VSAM direct files 372
VSAM sequential file considerations 371

basic real constant
description of 16
with real exponent, description of 16

BG, VSE linkage editor control option 342
bit string functions

bit testing and setting intrinsic functions 55
logical intrinsic functions 53
shift intrinsic functions 54
viewing integer data as ordered sets of bits 53

bit testing and setting intrinsic functions 55
blank common

description 133
must be unnamed 133
only one allowed 133
rules for use 133

BLANK parameter, OPEN statement 85
BLOCK DATA statement

block data subprogram and 135

description of use 135
initializes named common 135

block data subprograms
coding example 136
initializing 135
statements valid 135

block IF statement
branching into 64
description 58
execution rules 61
invalid as DO loop terminal statement 64
nested DO statements and 64
nesting 61
valid forms 61

blocked INCLUDE 273
BN format code 93
BZ format code 93

CALL command, TSO 318,321,327
CALL loader option, MVS 284
CALL statement

extended error handling using the 200
general description 113
OPSYS, VSE 353
requesting selective dumps 210
requesting symbolic dumps 211

calling and called programs
assembler considerations 389
called program, definition 113
calling program, definition 113
common coding errors 168
detailed description 113
differences between VS FORTRAN and current

implementations 411
internal limits in VS FORTRAN 415
invocation example 115
invoking the FORTRAN compiler under MVS 309
main program, definition 114
subprogram definition 115
system considerations 307, 352

CANCEL, VSE linkage editor control option 342
card deck, for source input 228
card punch files, CMS 255
card reader files, CMS 255
cataloged procedure

compile-only, MVS 270
modifying, MVS 264
modifying, VSE 332
MVS compilation data sets and 273
retrieving, VSE 332
unique identifier, VSE 332
using for program output 255, 289, 347
using, MVS 264
writing and using VSE 332

cataloging
and loading alternate indexes 363
entries in a VSAM catalog 367

object module (VSE) 338
source (VSE) 335
subprograms 307, 352
VSE record size 335

CATALP, and VSE cataloged procedures 332
character

arguments, passing 413
array element, internal file unit 95
items, substrings of 23
library functions 136
substring, internal file unit 95

character data type
constant 15
constant, defining by value 17
definition of 11
description 11
internal representation 399
overview 6
substrings of data 23
valid lengths 11
variables, hexadecimal constants initialize 18

character expression
character operators in 45
description 47
in assignment statement 51

CHARLEN compiler option 159
CI compiler option 159
CLEAR, VSE linkage editor control option 342
CLOSE statement

description 88
direct access 105
sequential access 103

CMS considerations
commands to download (VM/PC) 384
commands, CP and CMS 227
compilation 232
compiler options and 229
creating source programs 228
execution-time files 251
execution-time output 255
file identifier 253
filemode 253
filename 253
filetype 253
free form source and 233
line numbers when debugging, specifying 230
specifying execution-time options 250
using the VS FORTRAN INCLUDE statement 235

codes
abnormal termination 174
error 173
I format 93
informational 173
severe error 173
umecoverable error 174
used with FORMAT statement 93
warning error 173

coding form, FORTRAN 7
coding your program

coding errors to avoid 167
OPTIMIZE(3) considerations 153

Index 421

sharing data 123
colon (:)

format code 93
in array declarators 21
in substring notation 23

command procedures, TSO 329
commands, CMS, to download VS FORTRAN 384
common

blocks, storage maps and 178
coding errors in source 167
expression elimination, OPTIMIZE(3) 153
items, in cross reference dictionary 180, 181

COMMON statement
argument usage 126
assembler programs and 394
blank common 133
block data subprogram and 135
defines arrays 20
description of use 123
dummy variables for alignment 129
dynamic common 133
efficient data arrangement 128
EQUIVALENCE considerations 130
fixed order variable alignment 128
length considerations 126
named common 133
passing subroutine arguments using 148
rules for use 133
storage maps and 178
transmitting values using 126
type considerations 126
using efficiently 147

compilation
automatic cross-compilation 155
batch, MVS 271
batch, VSE 334
entering source program 228
identification 169
link-edit and execute, MVS 289
link-edit and execute, VSE 347
modification of defaults 165
output, illustration of 167
requesting, CMS 232
requesting, MVS 270
requesting, TSO 321
requesting, VSE 333, 334
statistics in object listing 205
VSE files for 335

compiler consideratins 139
compiler data sets, MVS 274
compiler invocation 309
compiler messages 174

See also diagnostic messages
(compiler messages are online-they are not

documented)
compiler options

CHARLEN 159
CI 159
conflicting 163
DC 159

422 VS FORTRAN Programming Guide

DECK 159
defaults for 157
DISK 230
EXEC statement specifies in MVS 260
FIPS 159
FIXED 160
FLAG 159
FORTVS command 229
FREE 160
GOSTMT 160
LANGL VL(66 1 77) 160
LINECOUNT 160
LIST 160
MAP 160
NAME 160
NODECK 159
NOFIPS 159
NOGOSTMT 160
NOLIST 160
NOMAP 160
NOOBJECT 161
NOOPTIMIZE 161
NOPRINT 230
NORENT 161
NOSDUMP 161
NOSOURCE 162
NOSRCFLG 162
NOSXM 162
NOSYM 162
NOTERMINAL 162
NOTEST 162
NOXREF 163
OBJECT 161
OPTIMIZE(O 111213) 161
OPTION statement, in TSO 321
OPTION statement, in VSE 340
PRINT 230
RENT 161
SDUMP 161
SOURCE 162
SRCFLG 162
SXM 162
SYM 162
TERMINAL 162
TEST 162
TRMFLG 163
XREF 163

compiler output
cross reference listing, XREF option 174
default options and 165
dependent on options in effect 274
description 164
end of compilation message 181
explicit options and 165
illustration of 167
LIST data set, TSO 322
listing 169
LISTING file, CMS 234
listing, header 169
message listing, FLAG option 172

OBI data set, TSO 322
source program listing 170
standard language flagging 182
storage map listing, MAP option 174
TEXT file, CMS 234
under CMS 235
under TSO 322

compiling your program 155
completion code in dumps 194
complex constant, definition 16
complex data type

constant 15
constant, defining by value 16
description 10
internal representation 401
reference length in common 129
valid in arithmetic expressions 46
valid lengths 11

computational reordering, OPTIMIZE(3) 154
computations, how compiler recognizes duplicate 149
computed GO TO statement 67
concatenation operator (/ I), in character expressions 47
conditional control transfers, GO TO statement 67
conflicting compiler options 163
constant

arithmetic, description 15
assignment statement 50
character, description 15
complex, description 15
computations, how compiler recognizes 149
cross reference dictionary lists 180
defining by name 18
defining by value 15
description 18
expressions and 45
hexadecimal 15
Hollerith 15
integer, description 15
literal, old FORTRAN 15, 18
logical, description 15
operands, recognition of 150
real, description 15
restrictions as actual arguments 125
subscripts 20

CONTINUE statement 63
control variable for GO TO, set by ASSIGN

statement 66
controlling program flow 57
CP commands, using 227.
critical variables, limitations on optimizing 151
cross reference dictionary

compiler output 165
description 178
using the 174
XREF option requests 163

cross system support for link-editing, automatic 235,
278,340

cross-compilation 4
CSECTS, separate reentrant and nonreentrant 240,243
current standard, flagging for 182, 183

DARCOS 118
DARSIN 118
data

arithmetic 9
assignment statement assigns values to 50
character 9
constants 15
declaring 10
definition 9
dictionary, compiler output 178
efficient arrangement, common areas 128
entities, arrays 9
entities, constants 9
entities, variables 9
EQUIVALENCE statement, reuses storage for 26
explicit type statement and 13
IMPLICIT statement and 13
initializing 24
length considerations, common areas 126
logical 9
sets, partitioned 299
sharing between programs 123
sharing storage for 123
storage, managing 26
truncation, common coding error 167
type considerations, common areas 126
types and lengths 11
typing groups of 13
using efficiently 23
variables 19

data exception interrupt message 194
DATA statement

block data subprogram and 135
initializes arrays 24
initializes data 24

data type
character 11
COMMON statement considerations 126
cross reference dictionary and 178
descriptions 10
explicit type statement and 13
implicit data type declaration 12
IMPLICIT statement and 13
specifying for groups of items 13
specifying for single items 13
valid lengths 11

DATA, eMS filetype 253
date

in output listing header 169
of compilation, compiler default 165

DC compiler option 159
DCB parameter

default values 275
default values for load module execution data

sets 286

Index 423

default values for load module execution direct access
data sets 287

defines MVS records 307
DD control statement, MVS

DASD file labels 350
defining direct files using 304
description 262
direct access labels and 304
modifying in cataloged procedures 262
sequential files 303
tape labels 350
tape labels and 304
VSAM file processing 367

DEBUG execution-time option
description of 200
executing with the 378
invoking VS FORTRAN Interactive Debug with

the 378
specifying, under CMS 250
specifying, using MVS 288

debug packets 202
DEBUG statement, description 203
debug statements, static 201
Debug, Interactive

See Interactive Debug 162
debugging

dumps, formatted 209
extended error handling and 197
GOSTMT option and 194
information in messages 190
static debug example 202
static debug statements for 201

decimal-divide exception interrupt message 194
decimal-overflow exception interrupt messages 194
DECK compiler option

brief description 159
compiler output 165
output, description 183

DECLARED column in cross reference dictionary 180
defaults

extended error handling 197
modification of 165

DEFINE command, VSAM
creates catalog entry 359
execution of 367
tape labels 350
VSAM direct files 360
VSAM keyed files 359
VSAM sequential files 360
VSAM-managed sequential files 361

DEFINED column in cross-reference dictionary 18.1
defining records 305,350
DELETE command, TSO 318
DELETE statement, keyed access considerations 110
devices valid for VSE execution 344
diagnostic messages

compiler default 165
compiler module identifier in 173
compiler output and 233,274,337
compiler, example 172

424 VS FORTRAN Programming Guide

execution-time 190
GOSTMT option and 194
IFX compiler message prefix 173
IFY, execution error message prefix 190
language standard flagging 165
library 190
library message number 190
library message, origin 190
library messages, determining the source of error

via 191
listing, FLAG option 172
message number identifies i 73
operator 197
program interrupt 194
self-explanatory 172
severity level in 173
traceback map and 191
VSE considerations 340

differences between VS FORTRAN and other
FORTRAN 411

DIMENSION statement
block data subprogram and 135
defines arrays 20

direct access
label processing 349
VSAM direct files 373

direct file processing
CMS FILEDEF command and 253
direct access devices valid 103
formatted, description 89
MVS considerations 303
record formats 307
unformatted, description 89
using the CLOSE statement 105
using the OPEN statement 103
using the READ statement 104
using the WRITE statement 104
valid VSAM source statements, summary 369
VSAM considerations 355
VSAM direct access for 373
VSAM sequential access for 372
VSAM source language 371
VSE considerations 349

DISK compiler option 230
diskette, as source input device 228
displacement, definition 129
DISPLA Y statement, description 203
division, evaluation order 46
DLBL control statement, VSE

DASD file labels 350
direct files 349
sequential files 349
tape labels 350
VSAM file processing 367

DO list, implied, in DATA statement 25
DO statement

batch compilation 334
block IF statement and 64
branches into block IF statements, warning 65
branches into loops, warning 65

branching into DO loops 64
control transfers into, common coding error 168
description 64
DO loop, active upon execution 64
flexibility of proces~ing with 65
implied, partial short-lists in 145
incrementing loop controls 65
invalid as DO loop terminal statement 64
multidimensional arrays 63
nested 63, 64
one-dimensional arrays 62
preventing loop execution 65
simplified FORTRAN programming 62
when execution completed 64
writing loops inline 149

DO-loop, extended range of a 412
double precision data type

conversions of 151
reference length in common 129

downloading VS FORTRAN into VM/PC 382
dummy argument

common coding errors 168
cross reference dictionary lists 180
description 123
restrictions on assigning values 125
rules for use 124
statement function definitions and 53

dummy variables, alignment using 129
DUMP, requests dynamic dump 210
dumps

completion code in 194
printing on the 3800 335
requesting 209
specifying execution-time options 344

duplicate computations, how compiler recognizes 149
dynamic common considerations 133, 314

see also DC compiler option
dynamic dumps, requesting 210

E
error code 173
format code 93

EBCDIC
collating sequence, used in relational expressions 48
data sets, record formats 306
data, and internal files 95
items, hexadecimal constants initialize 18

EDIT command, TSO 318
efficient source code 139
elimination of instructions, OPTIMIZE(3) 154
ELSE

CONTINUE statement and 63
invalid as DO loop terminal statement 64
statement description 58

ELSE IF
invalid as DO loop terminal statement 64
statement description 58

END DEBUG statement, description 203
END IF

invalid as DO loop terminal statement 64
statement description 58

end of compilation message 181
END record, in object module 408
END statement

block data subprogram and 135
ending your program 68
invalid as DO loop terminal statement 64

end-of-procedure delimiter, VSE 332
ENDFILE statement

sequential files 102
VSAM files treat as documentation 369

ending a program 68
entering your source program 155
ENTRY control statement, MVS 309
entry point, traceback map lists 192
entry sequenced data set (ESDS), source language

considerations 369
ENTRY statement

description 13
in subprograms 120

EP loader option, MVS 284
equal sign (=) assignment statement 50
EQUIVALENCE statement

arrays and, illustration 27
block data subprogram and 135
COMMON statement and 130
description 26
errors using 131, 132
execution-time efficiency and 27
execution-time efficiency, illustration with

EQUIVALENCE 28
invalid references, common error 168
optimization and 147

equivalenced items, in cross reference dictionary 180
ERR (errorlabel) 82
ERRMON, extended error control 199
error

handling subroutines 137
handling, controlling extended 198
handling, effects of VS FORTRAN Interactive Debug

on 200
handling, extended 197
handling, VSE extended 348
label, input/output 82
occurrences, warning on number of 199
summary, in traceback map 193

error messages
See diagnostic messages

errors
fixing execution-time 189
fixing user 167
to avoid 167

ERRSA V, alters entry in option table 199
ERRSET

changes entry in option table 199
requests traceback maps 191

ERRSTR, stores entry in option table 199
ERRTRA

Index 425

executes the traceback routines 199
requests traceback maps 191

ESD record, in object module 403
ESDS

defining an 360
VSAM sequential files 355

exception codes, program interrupt messages 195
EXEC command, CMS 229
EXEC control statement, MVS

description 260
linkage editor options, MVS 280
loader data sets 284
loader processing options 283
modifying in cataloged procedures 260

EXEC control statement, VSE
cataloged procedures and 332
cataloged procedures use PROC parameter 332
LNKEDT, for link-editing 342
OV (override) parameter 333
SIZE parameter required for VSAM files 368

execute exception interrupt message 194
executing a program, TSO 324

refid=deb.specifying, using TSO 327
refid=nodebug.specifying, using TSO 327

execution-time
efficiency and EQUIVALENCE 27
files 251
loading of library modules under MVS 276
loading of library modules under VM 246
loading of library modules under VSE 338
output 255
output, VSE load module 347
predefined files, CMS 251

execution-time error messages
description 190
interrupt 194
library 190
operator 197
program interrupt 194
traceback map with 191

execution-time library
description 136
making available at execution 287
VSE SYSRLB used for 343

execution, compiler
See compilation

EXIT in VSE 348
explicit data type declaration 12
explicit type statement

block data subprogram and 135
cross reference dictionary and 180
defines arrays 20
type changes using, common coding error 168

exponent
overflow exception interrupt message 194
underflow exception interrupt message 194

exponent underflow mask control 200
exponential routines 137
exponentiation, evaluation order 46
expression

426 VS FORTRAN Programming Guide

arithmetic 45
character 47
common, OPTIMIZE(3) eliminates 153
defining and using. 45
definition 9
integer or real, in DO statement 65
integer, in computed GO TO 67
logical 49
PARAMETER statement and 19
relational 47, 48
restrictions as actual arguments 125
scaling elimination 150

extended error handling, using 197
extended range of a DO-loop 412
extensions, how documented ix
EXTENT control statement, VSE

parameters required for VSAM 368
required for direct files 349
required for sequential files 349
sequential files 349
VSAM file processing 367

EXTERNAL statement, description 116

factoring expressions 150
file

identifier, CMS 253
INQUIRE statement and 87
parameter, OPEN statement 83

FILEDEF command, CMS 229,253
filemode, CMS 253
filename, CMS 253
files

direct 103
multiple 86
predefined 251
user-defined 252

filetype, CMS 253
FIPS compiler option

description of 159
output for 182

fixed
form input 7
length records, description 305
order variable alignment 128
point divide exception interrupt message 194
point items, conversions of 151
point overflow exception interrupt message 194

FIXED compiler option 160
fixed-point-divide exception interrupt messages 194
fixed-point-overflow exception interrupt messages 194
fixing

execution-time errors 185
user errors 167

FLAG compiler option
description of 159
diagnostic message listing 172

examples of compiler messages 172
floating-point

divide exception interrupt message 194
items, conversions of 151

foreground command procedures, TSO 329
FORM parameter, OPEN statement 85
FORMAT statement

asterisks in output from a formatted WRITE 91
codes, examples of 93
cross reference dictionary lists 181
description 91
display example 94
group specifications 94
nested specifications 94
repeated specifications 95
variable specifications 95

formatted I/O
external 90
internal READ statement 96
internal WRITE statement 96

formatted WRITE, asterisks in output 91
formatting

direct access data set 86
rules, common errors 167

FORTRAN
See also VS FORTRAN
coding form 7
features 4
66 4
77 v,4

FORTRAN 66, definition v
FORTRAN 77, definition v
FORTRAN-supplied functions

See intrinsic functions
FORTVC cataloged procedure 265
FORTVCG cataloged procedure, MVS 269
FORTVCL cataloged procedure 266
FORTVCLG cataloged procedure, MVS 267
FORTVG cataloged procedure, MVS 268
FORTVL cataloged procedure, MVS 270
FORTVLG cataloged procedure, MVS 268
FORTVS command, CMS 229, 232
FOVSRCS 240
FOVSRSEP 243
FREE command, TSO 318
FREE compiler option

CMS considerations 233
description 160
TSO considerations 322

free-form input 7
FTxxFyyy, optional MVS loader data set 284
full FIPS flagging 183
function reference

agreement between types of names 116
evaluation order 46
explicit type statement and 118
general description 113

FUNCTION statement, in subprogram 119
function subprograms

alternative entry points in 120
arguments in 123

CALL OPSYS loads, VSE 353
coding 119
ENTRY statement in 120
general description 113
invoking 116
mathematical and character 136
paired arguments in 123
passing arguments to 123
RETURN statement in 121
SA VB statement as documentation 122

functions
bit string 53
bit testing and setting intrinsic 55
logical intrinsic 53
shift intrinsic 54

FI-Fn, VSE linkage editor control options 342

G format code 93
GENMOD command, CMS 248
GLOBAL command, CMS

definition of 229
VS FORTRAN access requires (VM/PC) 385

GO TO statement
assigned, description 66
computed, description 67
control transfer to next executable statement 67
warning on branches into block IF statements 65
warning on branches into loops 65
when invalid as DO loop terminal statement 64

GOSTMT compiler option 160
description 160

group format specifications 94

HELP command, TSO 318
hexadecimal constant

description 15, 18
Hollerith constant, description 15

I
format code 93
informational code 173

I/O status parameter 82
identity matrix, initializing 25
IF statement

block, repeated ELSE IF statements in 61
block, valid forms 61
common errors using OPTIMIZE(3) 168
logical, optimization of 152

Index 427

optimization and 152
OPTIMIZE(3) and 154
programming 57

IFX, compiler message prefix 173
IFY, execution error message prefix 190
imaginary part of a complex constant, defining 16
implicit data type declaration 12
IMPLICIT statement

block data subprogram and 135
data initialization and 24
description 13
type changes using, common coding error 168
wraparound scan of 13

implied DO list, in DATA statement 25
implied-DO I/O statements 145
INCLUDE command, CMS 229,247,248
INCLUDE statement, FORTRAN

blocked 273
conditional 157
SYSLIB required for CMS 230
SYSLIB required under MVS 274
SYSSLB required under VSE 335
usage under CMS 235
usage under MVS and TSO 273
usage under VSE 336

INCLUDE, MVS linkage editor control statement 281,
308

INCLUDE, VSE linkage editor control statement 343
industry standards v
information messages, compiler default 165
initialization errors, common 168
input/ output

common errors 168
detailed description 69
formatted, description 89
internal 95
MVS considerations 304
optimization and 145
partial short-list 145
statement list 80
statements, implied-DO 145
statements, writing efficient 145
unformatted, description 89
UNIT parameter 81
using list-directed 97
VSE considerations 349
VSE logical units 344

INQUIRE statement
description 87
keyed access considerations 110

INSERT control statement, MVS 308
instruction elimination, OPTIMIZE(3) 154
integer data type

constant 15
constant, defining by value 15
description 10
division gives integer results 47
internal representation 400

428 VS FORTRAN Programming Guide

optimization efficiency and 146
reference length in common 129
valid in arithmetic expressions 46
valid lengths 11
variable in DO statement 65
variable, array subscripts and 20

integer expression in computed GO TO 67
Interactive Debug

compiling programs for, under eMS 230
compiling programs for, under TSO and CMS 377
effects on error handling 200
executing with the DEBUG option 378
options, specifying 200
relationship of TEST and NOSDUMP compiler

options to 162,377
using ISPF and PDF with 380
using with VS FORTRAN 377
VSFORTRAN 164

Interactive System Productivity Facility (ISPF), use
of 377

Interactive System Productivity Facility (ISPF), using
under TSO 320

internal I/O
READ statement 96
using 95
WRITE statement 96

internal limits in VS FORTRAN 415
internal sequence number (ISN)

compile-time messages optionally contain 174
source program listing 233,274,337
source program listing prints 170
traceback map uses 192

International Organization for Standardization (ISO) v
intrinsic functions

bit testing and setting 55
cross reference dictionary lists 180
explicit type statement and 118
in mathematical and character operations 136
invoking 117
logical 53
shift 54
storage map lists 174
TSO usage of 323

introduction, VS FORTRAN 3
invoking VS FORTRAN (VM/PC) 385
10STAT

option, VSAM return code placed in 375
parameter (I/O status) 82

ISCII/ ASCII
collating sequence 49
encoded files, record formats 306

ISN
See internal sequence number (ISN)

ISO FORTRAN v
ISPF (Interactive System Productivity Facility), use

of 377
ISPF (Interactive System Productivity Facility), using

under TSO 320

job control
considerations for MVS 257
how to specify for MVS 258
how to specify for VSE 331

JOB control statement
for MVS 258
forVSE 331

job libraries and execution-time loading of library 277
job processing

MVS 257
VSE 331

JOBLIB DD, using 288
jobname

MVS compile-only procedure 271
VSE compile-only procedure 335

keyed access
used with 110 statements 106
using direct retrieval 107
using sequential retrieval 108

KSDS
defining a 359
VSAM keyed files 355

LABEL
column in cross reference dictionary 181
parameter, DD statement 304
parameter, tape files 304

LANGLVL(66 I 77) compiler option 160
language extensions, how documented ix
LET

linkage editor option, MVS 280
loader option, MVS 284

level codes
description of 173
E (error) 173
I (information) 173
S (serious error) 173
U (abnormal termination) 174
W (warning) 173
o (information) 173
12 (serious error) 173
16 (abnormal termination) 174
4 (warning) 173
8 (error) 173

library
See execution-time library

library messages 190
See also diagnostic messages

library module, identified in messages 190
library modules, execution-time loading of 246, 276, 338
library subroutines, mathematical 137
LIBRARY, MVS linkage editor control statement 281
limits in VS FORTRAN 415
line numbers

CMS specification of when debugging 230
TSO specification of when debugging 322

LINECOUNT compiler option 160
LINK command, TSO 318,323
link mode, selection of 246, 276, 338
link-editing

cross system support, automatic 235,278,340
DECK option and 183
execution with load module, MVS 289
execution with phase, VSE 346
MVS linkage editor control statements 281
optional MVS linkage editor data sets 281
output 283
required MVS linkage editor data sets 281
TSO listings 324
under MVS 280
under TSO 323
under VSE 342
VSE logical units 343

linkage editor
control statement, VSE 352
control statements, MVS 281
output from VSE 343
program, MVS 280

LIST compiler option
compiler output 165
example of output 209
format of listing 204
object module listing 204
TSO considerations 322

LIST data set, TSO 322
list directed inputloutput

description 97
input data 97
READ statement 98
WRITE statement 99

LIST linkage editor option, MVS 280
LISTFILE command, CMS 229
LISTING file, CMS 234
literal constant

description 15
old FORTRAN 18
see also character data type, constant

LKED command, CMS 249
LOAD command, CMS 229,247,248
load mode, selection of 246,276,338
load module

cataloging, VSE 341
execution data sets, MVS 285
execution of 185,287
execution output 289,347
execution-time output 255
logical units, VSE 344
MVS execution 288
producing 183

Index 429

using cataloged 288
VSE execution 345
VSE logical units 344

loader program
under MVS 283
under TSO 327

LOAD GO command, TSO 318
loading

of library modules under MVS, execution-time 276
of library modules under VM, execution-time 246
of library modules under VSE, execution-time 338

loading your VSAM KSDS 364
logic errors, MAP option helps find 174
logical data type

constant 15
constant, defining by value 17
data items used in logical expressions 49
description 11
internal representation 399
optimization efficiency and 146
reference length in common 129
valid lengths 11

logical expression
description 49
in assignment statement 52
logical IF statement and 57
logical operators in 45

logical intrinsic functions 53
logical operators and their meanings 49
logical units for VSE linkage editing 343
loops,programming

block IF statement and 64
branches into, warning 65
branching into DO loops 64
description 64
for multidimensional arrays 63
for one-dimensional arrays 62
nested 63,64
OPTIMIZE(3) and 154
simplified FORTRAN programming 62
writing inline 149

lower bounds
in arrays 21
in substring notation 23

main program
common coding errors 168
general description 114
invocation example 115

manual organization iii
MAP compiler option

compiler output 165
description 160, 174
example 176
printing on the 3800 271
specifying execution-time options 288

430 VS FORTRAN Programming Guide

TSO considerations 322
using the 174

MAP linkage editor option
forMVS 280
for VSE 342

MAP loader option, MVS 283
map, traceback 191
mathematical

equivalence, when implied 26
library functions 136
library subroutines 137

maximum
efficiency 139
LRECL and BLKSIZE 254
record length, VSE 351

message
compiler messages (these messages are online) 174
debugging information in 190
format, operator 197
number, compiler 173
prefix, compiler 173
programmer-specified text in PAUSE statement 197
programmer-specified text in STOP statement 197

messages
See diagnostic messages

minidisk storage requirements 383
misspelling language elements, common error 167
MODE

column in cross reference dictionary 178
column, in storage map 177

modification of compiler defaults 165
modifier statements, VSE cataloged procedures 332
module identifier, compiler messages 173
modules needed for downloading (VM/PC) 382
multidimensional arrays 21
multiplication, evaluation order 46
MVS considerations

automatic cross-compilation 155
batch compilation 271
cataloged load modules, using 288
cataloged procedures 264
cataloging load modules ·280
compilation data sets 273
compile-only cataloged procedure 270
compile, link-edit and execute job 289
compiler data sets 274
compiler options and 260
DASD file labels 350
defining records 307
direct access labels 304
direct files 303,349
execution-only job 288
input/ output 304
invoking the VS FORTRAN compiler 309
job control statements 257
link-edit and execute job 289
link-edit execution 280
linkage editor control statements 281
linkage editor data sets 282
linkage editor, using 280

load module execution 288
load module execution data sets 285
load modules 282
loader data sets 284
loader program under TSO 327
loader, using 283
object module, cataloging 279
object modules 274
overlays 308
publications vii
requesting an abnormal termination dump 290
requesting compilation 270
sequential files 303
tape labels 304,350
user-defined data sets 286
using asynchronous input/output 301
using partitioned data sets' 299
VSAM DEFINE command 367
VSAM file creation 367
VSAM file processing 367

MVS/XA

n

considerations 311
31-bit addressing 312

programmer-specified in PAUSE statement 197
programmer-specified in STOP statement 197

name
column in cross reference dictionary 178
cross reference dictionary and 178
data type determined on initial letter of 12
PARAMETER statement uses 18
table of, compiler output 165

NAME compiler option
column, in storage map 177
description of 160

named common
block data programs initialize data items in 135
description 133
dynamic common 133
length restriction 133
rules for use 133

NCAL
linkage editor option, MVS 280
loader option, MVS 284

nested
DO loops 63
format specifications 94

NOAUTO, VSE linkage editor control option 342
NODEBUG execution-time option

description of 200
specifying, under CMS 250
specifying, using MVS 288

NODECK compiler option 159
NOFIPS compiler option 159
NOGOSTMT compiler option 160
NOLET loader option, MVS 284

NOLIST compiler option 160
NOMAP compiler option

description of 160
loader option, MVS 283
VSE linkage editor control option 342

nonreentrant CSECTS, separate reentrant and 240, 243
NOOBJECT compiler option 161
NOOPTIMIZE compiler option 161
NOPRINT

compiler option 230
loader option, MVS 284

NORENT compiler option 161
NORES loader option, MVS 284
NOSDUMP compiler option '161
NOSOURCE compiler option 162
NOSRCFLG compiler option 162
NOSXM compiler option 162
NOSYM compiler option 162
notation, substring 23
notational routines 137
NOTERMINAL compiler option 162
NOTEST compiler option 162
NOXREF compiler option 163
NOXUFLOW execution-time option

description of 200
specifying, under CMS 250
specifying, under VSE 344
specifying, using MVS 288
specifying, using TSO 327

number, library message 190

OBJ data set, TSO 322
OBJECT compiler option

description 161
produces load module 183
TSO considerations 322

object module
card image listing, compiler output 165
compiler default 165
compiler output 233,274,337
DECK option and 183
END record in 408
ESD record in 403
example of listing 209
example of structure 410
keeping your VSE 338
link-editing 278, 340
listing, compiler output 165
listing, optimization usage 153
MVS 274
obtaining listing of 204
RLD record in 404
SYM record in 404
TXT record in 404

object of a branch, cross reference dictionary lists 181
object-time efficiency, illustration with

EQUIVALENCE 28

Index 431

OPEN statement
description 82
direct access 103
EXTENT statement and, VSE VSAM files 368
formatting new data sets 86
invalid for VSE/VSAM-managed sequential

files 370
sequential access 100
VSAM direct file considerations 372
VSAM keyed access considerations 106
VSAM sequential file considerations 370

operands, recognition of constant 150
operating systems 4

see CMS (VM/SP), MVS, MVS/XA, VM/PC, and
VSE

operation exception interrupt message 194
operator

message format 197
message identification 197
messages 197

operator precedence in expressions
arithmetic 46
logical 49
order of 45

operator responses
END statement 68
PAUSE statement 68
STOP statement 68

OPSYS
in VSE 348
using in VSE 353

OPTIMIZE compiler option
arithmetic conversions, avoiding 151
array initialization 147
arrays, adjustable dimensioned not

reconunended 148
arrays, optimizing identically dimensioned 150
arrays, optimizing with identical elements 151
common blocks, using efficiently 147
conunon expressions, OPTIMIZE(3) eliminates 153
constant operand recognition 150
description 161
double precision conversions and 151
duplicate computation recognition 149
efficient accumulator usage 152
efficient arithmetic constructions and 152
efficient program size 144
EQUIVALENCE statement not recommended 147
higher levels best 144
IF statement and 152
instruction elimination, OPTIMIZE(3) 154
integer variables and 146
logical variables and 146
loops and OPTIMIZE(3) 154
object listing and 153
object module useful with 204
OPTIMIZE(3) considerations 153
passing subroutine arguments in common 148
scaling elimination 150
single precision conversions and 151

432 VS FORTRAN Programming Guide

source program considerations 139
unformatted input/output and 145
variables, optimization limitations 151
writing loops inline 149

OPTIMIZE(O) 161
OPTIMIZE(1) 161
OPTIMIZE (2) 161
OPTIMIZE(3)

common errors using 168
definition of 161

option table, warning on error occurrences 199
options, compiler

See compiler options
organization of this manual ill

origin of library messages 190
output

error free 255,289,347
link-editing 283
with errors 256,289,347

output listing
general description 164
header 169
illustration of 167
using 169
using the object module listing 204

output, common formatting errors 91
OVEND (end of modifiers) statement, VSE 333
overlay 307,352
OVERLA Y control statement, MVS 308
overview 4
OVL Y linkage editor option, MVS 280

PARAMETER statement
advantages in using 18
block data subprogram and 135
data initialization and 24
names constants 18

parameter, symbolic 264
parentheses 0

in array declarators 21
in substring notation 23

partial short-list I/O 145
partitioned data sets, MVS 299
passing arguments between programs 123
PAUSE statement

operator message and 197
suspending execution temporarily 67

PDF (Program Development Facility), use of 380
PDUMP, requests dynamic dump 210
PHASE control statement, VSE

linkage editor 343
overlay and 352

phase, VSE
execution of 185,287,345
logical units needed for execution 344

precision

errors, common 168
in arithmetic results, ensuring needed 46

predefined files 251
preface iii
principal diagonal, initializing 25
PRINT

command,C~S 229
compiler option 230
loader option, ~VS 284

printer files, C~S 255
privileged operation exception interrupt message 194
PROC statement, modifying in cataloged

procedures 259, 260
PROCESS, @, statement 164,271
processing options, MVS linkage editor 280
profile EXEC procedure 382
program

coding 9
determining the source of error 191
flow, controlling 57
interrupt messages 194
references, substring references valid in 23
sample 213
switches, assigned GO TO statement 66
termination, ends DO loop execution 64
units, sharing storage between 123

program constants
See constant

Program Development Facility (PDF), use of 380
program output

error free 255,289,347
with errors 256,289,347

program, coding
See coding your program

programs, sample 213
protection exception interrupt message 194
publications

C~S publications viii
~VS publications vii
~VS/XA publications vii
related systems publications vii, viii
usage of vi
~/PC publication ix
~/SP publications viii
VSE publications viii

PUNCH command, C~S 229
punctuation, common errors in 167

range of a DO-loop, extended 412
READ statement

asynchronous 302
description 87
direct access 104
directly accessed VSAM direct files 373
FO:ru.AAT statement and 91
internal files 95, 96
list-directed 98

sequential access 101
sequentially accessed VSAM direct files 372
unformatted record size and 306
VSAM keyed access considerations 107
VSAM sequential file considerations 370

real constant with real exponent, defining 16
real data type

constant 15
constant, defining by value 16
description 10
internal representation 400
reference length in common 129
subscripts 20
valid in arithmetic expressions 46
valid lengths 11
variable in DO statement 65

real part of a complex constant, defining 16
RECF~=F required for direct files 304
RECL parameter, OPEN statement 85
record

formats, direct access files 307
formats, MVS 305
formatting, OPEN statement and 86
size, source program 228

records, defining 305, 350
recursive calls, common coding errors 168
reentrant and nonreentrant

CSECTS, separate 240, 243
programs, description of 185

reentrant compiler and library 4
reference numbers, for VSE execution 344
REFERENCES column in cross-reference

dictionary 180, 181
references to substrings 23
relational expression

character operands in 48
description 47
in subprograms 121
relational operators in 45

relational operators and their meanings 48
relative record

data set (RRDS), source language
considerations 369

number, in direct files 71
remainder, integer division truncates 47
RENAME command, C~S 229
RENT compiler option

description of 161
running under TSO 330
to take advantage of separation tool 189

repeated format specifications 95
reply to PAUSE statement, operator 68
RES loader option, MVS 284
RETURN statement

ends DO loop execution 64
invalid as DO loop terminal statement 64
specifying alternative and variable return points 121

REWIND statement
invalid for directly accessed VSAM direct files 373
keyed access considerations 110
sequential access 102

Index 433

sequentially accessed VSAM direct files 372
VSAM sequential file considerations 371

REWRITE statement~ keyed access considerations 110
RLD record, in object module 404
RMODE attribute 311
routines, listed in traceback map 192
RRDS

defining a 360
VSAM direct files 355

S severe error code 173
SAM data sets~ VSE/VSAM-managed sequential

files 355
file organization

keyed 356
relative 355
sequential 355

sample programs 213
SA VB statement

block data subprogram and 135
retaining subprogram values 122

SDUMP compiler option
description of 161
requests symbolic dump 211

separate reentrant and nonreentrant CSECTS 240, 243
separation tool (VM and MVS)

description of 189
using under CMS 235
using under MVS 290

sequential access, VSAM direct files 372
sequential file processing

CMS FILEDEF command and 253
EBCDIC encoded records 306
formatted, description 89
ISCII/ ASCII considerations 306
list-directed 97
MVS considerations 303
unformatted, description 89
using asynchronous input/output statements 301
using the BACKSPACE statement 102
using the CLOSE statement 103
using the END FILE statement 102
using the OPEN statement 100
using the READ statement 101
using the REWIND statement 102
using the WRITE statement 100
valid VSAM source statements, summary 369
VSAM considerations 355
VSAM source language 369
VSE considerations 349

service
and utility subroutines 137
subroutines 348

severity level, compiler messages 173
sharing data between programs 123
shift intrinsic functions 54

434 VS FORTRAN Programming Guide

short-list I/O, partial 145
significance exception interrupt message 194
single precision, conversions of 151
SIZE

linkage editor option~ MVS 281
loader option, MVS 284
parameter, VSAM file processing 368

slash(/), format code 93
source code efficiency 139
SOURCE compiler option

description of 162
source program listing 170
source program listing example 172
TSO considerations 322

source program
direct file processing 103
efficient size 144
input/ output 69
internal I/O 95
map, using the 174
optimization, detailed description 139
reordering,OPTIMIZE(3) 154
sequential access considerations 100
using CMS 228
using TSO 320

source program listing
compiler default 165
description 170
using MAP and XREF 174

SP format code 93
spanned records, description 306
specification exception interrupt message 194
SRCFLG compiler option

description of 162
source program listing 172
source program listing example 172

SS format code 93
standards

FORTRAN 66, definition v
FORTRAN 77, definition v

START command~ CMS 229,247
statement

definition 9
labels 416
specification, and data initialization 24

statement function
common coding error 168
cross reference dictionary lists 180
definition of 53
definition, placement of in program 53
description 53
references to in program 53
storage map lists 174

statement label
ASSIGN statement sets 66
assigned GO TO statement list 66
cross reference dictionary lists 181
dictionary, compiler output 181
END statement, valid in 68
storage maps and 178

static debug example 202
static debug statements 201
STATUS command, TSO 318
step libraries and execution-time loading of library 277
STEPLffi DD, using 288
STOP statement

causes program termination 197
ends DO loop execution 64
invalid as DO loop terminal statement 64
operator message and 197
stopping programs permanently 68

stopping programs permanently 68
storage

minidisk requirements 383
requirements, virtual (VM/PC) 383

storage map description and example 175
storage sharing

See EQUIVALENCE statement
SUBMIT command, TSO 318
subprogram

arguments in, general rules 124
block data 135
common coding errors 168
cross reference dictionary names 180
definition 115
function 119
function, general description 113
general description 115
intrinsic functions, using 117
invocation example 115
paired arguments in 123
storage map lists 174
subroutine 120
subroutine, general description 113

SUBROUTINE statement, in subprogram 120
subroutine subprograms

alternative entry points in 121
arguments in 124
CALL OPSYS loads, VSE 353
coding 120
ENTRY statement in 120
general description 113
invoking 117
paired arguments in 123
passing arguments to 124
RETURN statement in 121
SA VB statement as documentation 122

subscript
description 20
execution-time considerations 22
explicit lower bounds and 21
implicit lower bounds and 21
initializing array elements and 24
initializing character array elements and 24
invalid values for, common coding error 168
multidimensional arrays and 21
one-dimensional arrays and 20
order of processing 21
signed 22

subset FIPS flagging 183
substring

internal file unit 95
notation 23

substrings of character data 23
substrings of character items 52
subtraction, evaluation order 46
summary of errors, in traceback map 193
suspending execution temporarily 67
SXM compiler option

description of 162
using the 174

SYM compiler option
description of 162
record in object module 404

symbolic dump, requesting 211
See also SDUMP

syntax errors, MAP option helps find 174
SYSCLB, VSE link-edit logical unit 343
SYSIN

input data set to load module 286
logical unit for VSE execution 344
required MVS compilation data set 273

SYSIPT, logical unit for VSE execution 344
SYSLffi

catalogs MVS object module 279
catalogs source program 270
eMS record size 230
optional for MVS linkage editor 281
optional MVS compilation data set 274
optional MVS loader data set 284
required for CMS 230

SYSLIN
MVS loader required data set 284
optional MVS compilation data set 274
required for MVS linkage editor 281

SYSLMOD
cataloging load modules and 280
required for MVS linkage editor 281

SYSLNK, VSE link-edit logical unit 343
SYSLOUT, optional MVS loader data set 284
SYSLST, VSE link-edit logical unit 343
SYSPRINT

required for MVS linkage editor 281
required MVS compilation data set 273
required MVS loader data set 284

SYSPUNCH, optional MVS compilation data set 274
SYSRES, VSE link-edit logical unit 343
SYSRLB, VSE link-edit logical unit 343
system considerations

for direct files (MVS) 303
for direct files (VSE) 349
under TSO 329

SYSTERM
optional for MVS linkage editor 281
optional MVS compilation data set 274

SYSUT1, required for MVS linkage editor 281
SYS001, VSE link-edit logical unit 343

Index 435

TAG column
in cross reference dictionary 180, 181
in storage map 177

tape files
CMS FILEDEF command and 254
ISCII/ ASCII considerations 306

TERM compiler option, TSO considerations 322
terminal

files, CMS FILEDEF command and 254
source input device 228

TERMINAL compiler option 162
TEST

compiler option 162
TSO command 318

TEXT file, CMS 234
Time Sharing Option

See TSO (Time Sharing Option)
time, in output listing header 169
TL format code 93
TR format code 93
TRACE ON I OFF statements, description 203
traceback map 191
transfer of control, ends DO loop execution 64
transparent argument passing 413
trigonometric routines 137
TRMFLG compiler option

description of 163
output for 181

truncation, common coding error 167
TSO (Time Sharing Option)

ALLOCATE command 319
background command procedures 329
CALL command 321
command procedures 329
command procedures under 329
commands, using 317
compilation 321
compiling with the SYM compiler option 330
description of use 317
EDIT command 320
executing 323
foreground command procedures 329
free form source and 322
linkage editor listings 324
LIST compiler option and 322
loader program and 327
loading 323
MAP compiler option and 322
OBJECT compiler option and 322
OPTION statement and 321
SOURCE compiler option and 322
specifying TSO line numbers when debugging 322
specifying, using TSO 327
system considerations 329
TERM compiler option and 322
TEST command 328

TXT record, in object module 404

436 VS FORTRAN Programming Guide

TYPE command, CMS 229
type statement

See explicit type statement

U unrecoverable error code 174
unconditional GO TO, invalid as DO loop terminal

statement 64
undefined length records, description 306
underflow mask control, exponent 200
unformatted

unit

input/output 90
records, EBCDIC encoded files 306

file, changing unit identifier for 81
identifier, input/output 81
INQUIRE statement and 87
internal, in READ and WRITE 95
record files, CMS FILEDEF command and 255

UNIT parameter, input/output 81
upper bounds

in arrays 21
in substring notation 23

user errors, fixing 167
user-defined data sets, MVS 286
user-defined files 252
using VS FORTRAN

underVM 227
utility and service subroutines 137

variable
accumulator usage 152
and assembler subprograms 395
as actual arguments 125
assignment statement 50
character, hexadecimal constants initialize 18
character, substrings of 23
description 15
dummy, for alignment in common 129
efficient common arrangement 128
EQUIVALENCE statement and 26
expressions and 45
fixed order alignment in common 128
format specifications 95
integer or real, in DO statement 65
internal file unit 95
internal representation 398
length records, description 305
optimization limitations 151
recognition when constant 150
storage map lists 174
subscripts 20

VFEIN#, common errors using 168

virtual storage requirements (VM/PC) 383
VM

See CMS considerations
VM/PC

creating FORTVS module for nucleus extension 381
downloading VS FORTRAN into 382
initial program load 382
minidisk storage requirements 383
nucleus extension, using 381
NUCXLOAD, using for processing 381
programming tips 386
publication ix
uploading module for sharing 381
using VS FORTRAN under 381
virtual storage requirements 383
VS FORTRAN restrictions 386

VSFORTRAN
CMS commands to download (VM/PC) 384
commands for profile EXEC 385
common coding errors 167
compiler invocation 309
compiling your program 155
controlling program flow 57
data types and lengths 10
differences 411
downloading into VM/PC 382
executing your program 185
extensions, how documented ix
fixing execution-time errors 189
fixing user errors 167
input/ output features 69
internal1imits in 415
introduction 3
invoking (VM/PC) 385
minidisk storage requirements (VM/PC) 383
modules needed for downloading 382
optimizing your program 139
programming input and output 69
publications v
reference numbers for VSE execution 344
restrictions (VM/PC) 386
separation tool (VM and MVS) 189
source input format rules 228
subprograms and shared data 113
under MVS, using 257
under VM/PC, using 381
under VM, using 227
under VSE, using 331
uploading module for sharing 381
using NUCXLOAD for processing 381
using the separation tool under CMS 235
using the separation tool under MVS 290
using VS FORTRAN Interactive Debug with 377
virtual storage requirements (VM/PC) 383

VS FORTRAN Interactive Debug
see Interactive Debug

VSAM file processing
alternate index paths 361

alternate index terminology 362
catalog entry creation 359
cataloging and loading alternate indexes 363
defining files 357
examples of defining a VSAM file 359
file organization 355
IOSTAT option obtains return code 375
operating system data definition statements 365
source language considerations 369

obtaining the VSAM return code-lOST AT
option 375

processing VSAM direct files 371
processing VSAM sequential files 370
processing VSE/VSAM-managed sequential

files 370
valid source statements, summary 369
VSAM terminology 357
VSE/VSAM-managed sequential files 370

VSE considerations
automatic cross-compilation 155
automatic cross-system support 340
cataloged procedures, writing and using 332
cataloging load modules 341
cataloging source program 270
cataloging your source 335
common input/output error 168
compilation files 335
compile, link-edit, and execute job 347
compiler options 340
DASD file labels 350
DEFINE command 367
direct files 349
execute-only job 346
extended error handling 348
input/ output 349
job control statement descriptions 331
keeping your object module 338
link-edit and execute job 346
link-edit, executing 342
linkage editor output 343
linkage editor, using 340
linkage-editor control statement 352
load module execution-time output 347
load module logical units 344
logical units needed for execution 344
maximum record length 351
message codes 340
overlay procedure 352
overlays 352
phase execution 345
publications vii, viii
record formats 350
requesting compilation 333
sequential files 349
tape labels 350
VSAM file creation 367
VSAM file processing 367
VSAM-managed sequential files 361

Index 437

W warning error code 173
WAIT statement, asynchronous input/output 303
WRITE statement

asterisks in output from a formatted 91
asynchronous 301
description 86
direct access 104
directly accessed VSAM direct files 373
FORMAT statement and 91
internal files 95, 96
list-directed 99
sequential access 100
sequentially accessed VSAM direct files 372
unformatted record size and 306
VSAM keyed access considerations 109
VSAM sequential file considerations 370

XEDIT command, CMS
function 229
source program creation 228

XREF
compiler option 163
cross reference listing 174
linkage editor option, MVS 280

438 VS FORTRAN Programming Guide

output 165
source program cross-reference dictionary 175

XUFLOW execution-time option
description of 200
specifying, under CMS 250
specifying, under VSE 344
specifying, using MVS 288
specifying, using TSO 327

yy, operator message identifier 197

I Numerics I
o informational code 173
0, in operator message 197
12 severe error code 173
16 abnormal termination code 174
31-bit addressing 312
3800 Printing Subsystem, IBM

printing on the 156
under eMS 231
under MVS 271
under VSE 335

4 warning error code 173
8 error code 173

.: E c ~
Q) 0 E
Co en .:; :c
C" ...
Q)a;
elQ)
C en

.';; 0
~ ...
o Q)
en Co
:=co
co'"
E't:I

Q)
"OE
~ E
E :J
oel ... ~
:J Q)
co£

.s::. 0

.~ ~
en Q) IE .~
~ .;n
.t:J c o Q)
~ en
CoQ)
Q) ~
en :J
:J en

rl ~
c c
co Q)
CJ en
en :J
Q) Q)

o.~
f!~
tl)D..

a;
o z

VSFORTRAN
Programming Guide
SC26-4118-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please dir!!ct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office servi1lg your locality .

list TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

~stTNL __________________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC26-4118-0

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

IIII
Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

<
u ,
C
:J

:J
):
:2
"'t
(3

<.0 ,
Q)

3
3
::l

<.0

Co
C
Q.
(!)

"'tJ
::!.
::l
r-+

•• (!)

Fold and tape

--------- - ------- - ---- - - -----------,-
®

Please do not staple Fold and tape

Q.

::l

C
en
~

00
6

E
'.E
, en
i:t:
r
'iii
~ ~
;0
IQ)
'0.
:cu ,
:~ :E
jE
:::l
• CI

!~
l£
·0

~ 0
; ~
~ .;;
~ ·iii
) c
) Q) _ en

l. Q)

~ :;
, en

~ ~
a.

o Q)
J en
~ ::l
~ Q)

i ~ o Q)

50::

VSFORTRAN
Programming Guide
SC26-4118-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please dir(!ct any
requests for copies ofpublications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

list TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

ustTNL __________________ _

Previous TNL ________ _

Previous TNL ________ __

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC26-4118-0

Reader's Comment Form

Fold and tape Please do not staple Fold and tape

..

Fold and tape

--..- ------ -------- - ---- ------------_.-
®

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

Please do not staple

IIIIII NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

Fold and tape

.
~
c c
(

~
~

Ci
c

(j
(

" o
l

o
C

SC26-4118-0

