
I R-R (I , J) = 1
IRICI,J) = ~
CONTINUE

~~--------l

PRINT 20, (
l I = I, 3)

FORMAT (3(1)
STOP
-~~-~

END
Program Numbers: Release 4.0

5748-F03 Compiler and Library
5748-LM3 Library Only

...... ---.. - .-,tIl ------ -- - - ... ----- -~-o - - - -----_.-.. --- - '

o

o

VSFORTRAN
Language and
Library Reference

Program Numbers
5748-F03 (Compiler and Library)
5748-LM3 (Library Only)
Release 4.0

SC26-4119-0

First Edition (October 1984)

This edition applies to Release 4.0 of VS FORTRAN, Program Products 5748-F03
(Compiler and Library) and 5748-LM3 (Library only), and to any subsequent releases
until otherwise indicated in new editions or technical newsletters.

New features for this release are summarized under "Summary of Amendments" following
the preface. Specific changes are indicated by a vertical bar to the left of the change.
These bars will be deleted at any subsequent republication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes are made periodically to this publication~ before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/3 70 and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM's program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below~ requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers' comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1981, 1982, 1983, 1984

o

o

o

Preface

o

o

The VS FORTRAN Compiler and Library, Version 1, Release 4.0, program
product is commonly referred to as Level 1.4.0. It is known as Release 4.0 in this
manual.

This manual outlines the programming rules for VS FORTRAN 1978-level source
language. It includes Full American National Standard FORTRAN (X3.9-1978),
plus IBM extensions.

After an introduction, Part 1, "Language Reference," discusses:

• VS FORTRAN Language

• VS FORTRAN Data

• VS FORTRAN Expressions

• VS FORTRAN Statements (in alphabetic order)

• VS FORTRAN Intrinsic Functions

After an introduction, Part 2, "Library Reference," discusses:

• Mathematical, Character, and Bit Subprograms

• Service Subroutine Subprograms

Extended Error Handling Subroutines and Error Option Table

The appendixes contain the following additional information:

A. Source Language (FIPS) Flagger (including execution-time cautions)
B. IBM and ANS FORTRAN Features
C. EBCDIC and ASCII Codes
D. Algorithms for Library Mathematical Functions
E. Storage Estimates
F. Accuracy Statistics
G. Assembler Language Information
H. Sample Storage Printouts
I. Library Procedures and Messages
J. Module Names

Preface iii

Industry Standards

The VS FORTRAN Compiler and Library program product is designed according
to the specifications of the following industry standards, as understood and
interpreted by IBM as of May, 1982.

The following two standards are technically equivalent. In this manual, references
to FORTRAN 77 are references to these two standards:

• American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77)

International Organization for Standardization ISO 1539-1980 Programming
Languages-FORTRAN

The bit string manipulation functions are defined in ANSI/ISA -S61.1.

The following two standards are technically equivalent. In this manual, references
to FORTRAN 66 are references to these two standards:

American Standard FORTRAN, X3.9-1966

• International Organization for Standardization ISO R 1539-1972 Programming
Languages-FORTRAN

Both the FORTRAN 77 and the FORTRAN 66 standard languages include IBM
extensions. In this book, references to current FORTRAN are references to the ()
FORTRAN 77 standard, plus the IBM extensions valid with it. References to old ' ...
FORTRAN are references to the FORTRAN 66 standard, plus the IBM extensions
valid with it.

Related Publications

VS FORTRAN publications are designed to help develop programs with a
minimum of wasted effort. This book, VS FORTRAN Language and Library
Reference, describes the rules for coding VS FORTRAN programs when using the
current FORTRAN. It also contains detailed information about the execution-time
library subroutines.

VS FORTRAN Publications

Other VS FORTRAN publications contain related information.

• VS FORTRAN Compiler, Library, and Interactive Debug General Information,
GC26-4114, contains information that is intended as an aid to evaluating and
planning for the use of the VS FORTRAN Compiler and Library program
products.

VS FORTRAN Compiler and Library Installation and Customization,
SC26-3987, contains material for installing the VS FORTRAN Compiler and

iv VS FORTRAN Language and Library Reference

o

o

o

o

Library and is to be used in conjunction with the VS FORTRAN Program
Directory that applies to your system.

VS FORTRAN Programming Guide, SC26-4118, contains guidance
information on designing, coding, debugging, testing, and executing VS
FORTRAN programs written at the current FORTRAN language level. In
addition, separate chapters discuss executing your FORTRAN program under
VM/SP, under MVS/SP, including MVS/XA, under VSE/ Advanced
Functions, and under VM/PC.

• VS FORTRAN Compiler and Library Reference Summary, SX26-3731, is a
pocket-sized reference booklet containing current FORTRAN syntax and brief
descriptions of the compiler options.

• VS FORTRAN Compiler and Library Diagnosis, SC26-3990, tells you how to
diagnose failures in the VS FORTRAN Compiler and Library.

In addition, a binder for VS FORTRAN publications and a combination of binder
and publications are available.

• Binder only, SX26-3747

Binder and the following publications, SBOF-1192

VS FORTRAN Programming Guide

VS FORTRAN Language and Library Reference

VS FORTRAN Compiler and Library Reference Summary

FORTRAN IV Publications

• IBM System/360 and System/370 FORTRAN IV Language, GC28-6S1S,
describes the source language available in the FORTRAN IV language, and
contains the rules for writing VS FORTRAN programs using FORTRAN 66.

FORTRAN Coding Form, GX28-7327, aids in coding fixed-form FORTRAN
programs.

VS FORTRAN Interactive Debug Publications

VS FORTRAN Compiler, Library, and Interactive Debug General Information,
GC26-4114 (see description above under "VS FORTRAN.")

• VS FORTRAN Interactive Debug Guide and Reference, SC26-4116

• VS FORTRAN Interactive Debug Installation, SC26-4117

VS FORTRAN Interactive Debug Reference Summary, SX26-3742

VS FORTRAN Interactive Debug Diagnosis, SY26-3944

Preface V

System and Device Information

IBM DASD Publication

Specific system information and details about block size, track capacity, and so on,
of the various input/output devices are not included in this book. See the following
system publications for this information:

Introduction to IBM Direct Access Storage Devices and Organization Methods,
GC20-1649, contains algorithms for direct files.

IBM-Supplied Utility Programs

OS/VS2 MVS Utilities, GC26-3902

MVS / Extended Architecture Utilities, GC26-40 18

VSE/Advanced Functions System Utilities, SC33-6100

Assembler Language Programming

OS/VS-DOS/VSE- VM/3 70 Assembler Language, GC33-4010

OS/VS-VM/370 Assembler Programmer's Guide, GC33-4021

Guide to DOS/VSE Assembler, GC33-4024

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

Assembler H Version 2 Application Programming: Guide, GC26-4036

System/370 Machine Characteristics

OS/VS Systems Publications

MVS Publications

IBM System/3 70 Principles of Operation, GA22-7085. It describes the various
types of interruptions.

OS/VS Linkage Editor and Loader, GC26-3813

OS/VS Virtual Storage Access Method (VSAM) Programmer's Guide,
GC26-3838

OS/VS Tape Labels, GC26-3795

OS/VS2 MVS Data Management Services Guide, GC26-3875

OS/VS2 Supervisor Services and Macro Instructions, GC28-0683

OS/VS2 Access Method Services, GC26-3841

vi VS FORTRAN Language and Library Reference

o

.
10' __ -'J

o

o

o

OS/VS2 MVS JCL, GC28-0692

OS/VS2 Debugging Guide, GT28-0632

OS/VS2 TSO Terminal User's Guide, GC28-0645

OS/VS2 TSO Command Language Reference, GC28-0646

TSO-3270 Structured Programming Facility (SPF) Program Reference Manual,
SH20-1730

MVS/Extended Architecture (MVS/XA) Publications

VM/ eMS Systems Publications

VSE Publications

MVS/Extended Architecture Access Method Services Reference, GC26-4019

MVS/Extended Architecture Supervisor Services and Macro Instructions,
GC28-1154

MVS/Extended Architecture JCL, GC28-1148

MVS/Extended Architecture Debugging Handbook, Vols. 1-5,
GC28-1164-1168

MVS / Extended Architecture Data Management Services, GC26-4013

MVS / Extended Architecture Linkage Editor and Loader, GC26-4011

MVS / Extended Architecture VSAM Programmer's Guide, GC26-40 15

MVS/Extended Architecture Tape Labels, GC26-4003

MVS / Extended Architecture TSO Command Language Reference, GC28-0646,
as updated by Supplement SD23-0259

MVS / Extended Architecture TSO Extensions TSO Command Language
Reference, SC28-1134

VM/SP CP Command Reference for General Users, SC19-6211

VM/SP CMS User's Guide, SC19-6210

VM/SP CMS Command and Macro Reference, SC19-6209

VM/SP Terminal User's Guide, GC19-6206

VSE/Advanced Functions System Management Guide, SC33-6094

VSE System Data Management Concepts, GC24-S209

VSE/Advanced Functions Tape Labels, SC24-5212

Preface vii

VSE/Advanced Functions DASD Labels, SC24-5213

VSE/Advanced Functions Macro User's Guide, SC24-5210

VSE/ Advanced Functions Serviceability Aids and Debugging Procedures,
GC33-6099

VSE/VSAM Programmer's Reference, SC24-5145

Using VSE/VSAM Commands and Macros, SC24-5144

Using the VSE/VSAM Space Management for SAM Feature, SC24-5192

Alternative Mathematical Library Subroutines

The Evaluation of Periodic Functions with Large Input Arguments, by Jesse Y.
Wang, ACM/SIGNUM, December 1978

Argonne National Laboratory, Applied Mathematics Division, System/360
Library Subroutine:

ANL B357S-1 DEXP
ANL B457S-3 A **B (single-precision)
ANL B458S-1 A**B (double-precision)
ANL B356S-1 EXP
ANL B159S-3 DTAN/DCOTAN
ANL B158S-2 DSIN/DCOS

Methods of Presentation

Format Notation

Because methods of presentation vary from book to book, the format notation and
method of indicating IBM extensions are outlined here.

In this manual, "must" is to be interpreted as a requirement; conversely, "must
not" is to be interpreted as a prohibition.

In describing the form of VS FORTRAN statements or constructs, the following
conventions and symbols are used:

Special characters from the VS FORTRAN character set, uppercase letters,
and uppercase words are to be written as shown, except where otherwise
noted.

Lowercase letters and lowercase words indicate general entities for which
specific entities must be substituted in actual statements. After a given
lowercase letter or word is used in a syntactic specification to represent an
entity, all subsequent occurrences of that letter or word represent the same
entity until that letter or word is used in a subsequent syntactic specification to
represent a different entity.

viii VS FORTRAN Language and Library Reference

o

o

o

o

o

0."· I~
"

Square brackets ([]) are used to indicate optional items.

• An italicized word (or underlined in the examples) indicates a variable, such as
an entry point, name of a function, data type, or list of variables or array
names.

An ellipsis (. ..) indicates that the preceding optional items may appear one or
more times in succession.

• Blanks are used to improve readability; however, unless otherwise noted, they
have no significance.

• For clarity of presentation, continuation designators have been omitted from
continuation lines in example.

The general form of each statement is enclosed in a box. For example:

r-: Syntax
~ALL name [([argl [,arg2j ... j) j

The following examples are among those allowed:

CALL name
CALL name 0
CALL name (arg)
CALL name (arg, arg)
CALL name (arg, arg, arg)
CALL name (arg, arg, arg, arg)

When an actual statement is written, specific entities are substituted for name and
each argo For example:

CALL ABCD (X,i.D)

Documentation of IBM Extensions

In addition to the statements available in FORTRAN 77, IBM provides
"extensions" to the language. These extensions are shown in the following ways.

IBM Extension

This sentence shows how IBM language extensions in text are documented.

&....-__________ End of IBM Extension __________ --1

The following example shows how boxes indicate IBM extensions.

Preface ix

NAME TYPE LENGTH

I, J, K Integer variables 4 I ' 2, 2 I
C Real variable 4

D Complex variable G

The example below shows how IBM extensions are documented within a table.
Boxes around certain types, and lengths of the result of logical operations indicate
IBM extensions.

Second
Operand

First
Operand

Logical
(1)

Logical
(4)

x VS FORTRAN Language and Library Reference

Logical
(1)

Logical
(4)

Logical
(4)

Logical
(4)

Logical
(4)

Logical
(4)

G

o

c

o

o

o

Summary of Amendments

October 1984

Merger of VS FORTRAN Reference Manuals

VS FORTRAN Application Programming: Language Reference and VS FORTRAN
Application Programming: Library Reference have been merged into this manual.
The original manuals have become independent parts of this new one, and, with
few exceptions, the kinds of information that were in them before can be found in
the corresponding parts of this manual. However, common parts of the original
manuals (tables of contents, indexes, and so on) have been consolidated.

Release 4.0 Enhancements

VSAM Key-Sequenced Data Sets

VS FORTRAN programs can now load and access VSAM key-sequenced data sets
(KSDS):

Records can be retrieved, added, replaced, and deleted, using key values
(designated fields within the records).

Both direct and sequential processing (by key value) are allowed.

• Multiple alternate keys, as well as a primary key, can be used.

The following language statements have been expanded:

• OPEN, so that you can open a file for keyed access. The length and location
of the keys to be used are specified on this statement.

READ, so that you can specify a key value for the retrieval of records. The
key to be used in a multiple-key file is specified on this statement.

WRITE, so that you can identify a statement as the one to be given control, if
a duplicate key value is written.

INQUIRE, so that you can find out the value of the last key used in an
input/ output operation, and which of multiple keys is in use.

Summary of Amendments xi

Two new statements have been added to support KSDS:

• DELETE, enables you to delete a record from a VSAM file after a READ
operation.

• REWRITE, enables you to replace a record in a VSAM file after a READ
operation.

Reentrant Object Code (MVS and VM)

The compiler can create a reentrant version of the object-code portion of a
program. When object code is reentrant (and placed in a reentrant area), multiple
end-users can share a single copy, thereby saving execution-time storage.

Execution-Time Loading of Library Routines

The library has been restructured to allow more execution-time loading of library
routines. This has mUltiple benefits:

Reduces auxiliary storage requirements for load modules

• Speeds execution for users in compile-link-go mode

• In an MVS/XA environment, allows many library routines to reside above 16
megabytes, thus providing virtual-storage constraint relief.

(This new library design will not impact users who have Release 2 or Release 3
load modules that access the old reentrant I/O library (via IFYVRENT), and who
do not want to relink. Maintenance is automatically provided, and relinking is
necessary only if Release 4 function is desired.)

Automatic Precision Increase

Faster Character Handling

This feature allows a user to selectively boost the precision of floating-point items
in an existing program without recoding it. Single precision items can be made
double, double can be made extended. Users merely recompile the program with a
specified option (AUTODBL).

Character assignment and comparison operations are now handled by in-line code,
rather than by calls to the library. This speeds execution time. Error messages
previously issued from the library, for conditions such as overlap detection and
invalid character length, will no longer appear.

Improved Diagnostic Support

The following enhancements will allow easier program maintenance and debugging.

MAP and XREF output can be formatted to fit a terminal screen.

LIST output now gives ISN s, and XREF output now identifies variables
referenced but not initialized.

xii VS FORTRAN Language and Library Reference

o

c

o

o

o

Improved I/O Support

An explicit SDUMP compiler option is now available (previously, this was
available only as an installation-wide default).

SDUMP tables have been condensed and simplified, decreasing object module
size. The symbol table size, however, remains the same.

Execution-time error messages have been expanded to supply line numbers,
ISNs, and offsets.

The following improvements have been made to VS FORTRAN I/O statements:

• For sequential unformatted I/O, you can now use all record formats. Fixed,
fixed blocked, undefined, variable, and variable spanned formats are
supported.

You can now use data initialization values in the character and double
precision explicit-type statements.

You can specify a character type unit designator for list-directed READ and
WRITE statements. This allows you to do list-directed reads and writes to an
internal file.

The NUM parameter is now a valid control list parameter for the unformatted
READ I/O statements for LANGLVL(77). The NUM parameter returns the
number of bytes transferred.

Several extensions have been made to the namelist READ and WRITE
statements. You can now use the keywords UNIT and FMT. The unit
designator for namelist I/O can be character type, so you can do namelist
reads and writes to an internal file. The unit designator can also be an asterisk
to represent an installation-dependent unit. You can now use a shortened form
for reading and printing at LANGLVL(77).

Release 3.1, March 1984

VS FORTRAN Interactive Debug Support

When a VS FORTRAN program is executed, the user has a choice of two different
execution options:

• DEBUG, which activates VS FORTRAN Interactive Debug immediately; and

• NODEBUG, the IBM default, which does not invoke VS FORTRAN
Interactive Debug.

Note: The TEST compiler option is not necessary for VS FORTRAN Interactive
Debug.

Summary of Amendments xiii

Release 3.0, March 1983

Character Data Type Handling

VS FORTRAN Release 3.0 provides for passing character length arguments in a
manner that is not apparent to the user.

In addition:

• Character and noncharacter data types are allowed in the same common block.

• Character and noncharacter data types are allowed in an EQUIV ALANCE
relationship.

• The CHARLEN compiler option may be specified to set the maximum length
of the character data type to a range of 1 through 32767. The default
maximum length remains 500 characters, or whatever was set at installation
time.

• The SC option has been removed because the character length is now passed in
a manner that is not apparent to the user.

Debugging and Diagnostic Aids

• The TRMFLG compiler option may be specified to display a source statement
in error on the SYSTERM data set, along with the diagnostic message.

A symbolic dump of variables at abnormal termination can be obtained for
modules not compiled with the NOSDUMP compiler option.

A symbolic dump of variables in a module not compiled with the NOSDUMP
option can be obtained on request by calling the SDUMP library routine.

The SYM compiler option may be specified to produce SYM cards along with
the object deck.

The SRCFLG compiler option may be specified to insert diagnostic messages
in the printed source listing.

INCLUDE Statement Improvement

Miscellaneous Changes

INCLUDE statements can be selectively activated during compilation.

Blocked file support has been added to the INCLUDE facility.

• OPEN, CLOSE, and INQUIRE parameters that are constants are checked at
compile time.

• VS FORTRAN continues executing after transmission input/output errors
have occurred.

xiv VS FORTRAN Language and Library Reference

o

o

o

o

c

o

•

Formatting for a new direct-access data set has been provided for the OPEN
statement.

For direct-access I/O, the records of a file must be either all formatted or all
unformatted, not mixed.

Various service changes have been made.

Warning: Every program that has been compiled with versions of VS FORTRAN
previous to Release 3.0, and that either references or defines a user subprogram
that has character-type arguments or is itself of character type, must be recompiled
with VS FORTRAN Release 3.0.

Summary of Amendments XV

o

o

o

o

Contents

Part 1. Language Reference 1

Chapter 1. Introduction 3
Language 3
Compiler 3
Execution-Time Library 3
Valid and Invalid VS FORTRAN Programs 4

Chapter 2. VS FORTRAN Language 5
Language Definitions 5
Language Syntax 6

Input Records 6
Source Language Statements 7
Source Statement Characters 10
Names 11
Statement Labels 13

o Keywords 13

Chapter 3. VS FORTRAN Data 15
Constants 15

Arithmetic Constants 16
Logical Constants 21
Character Constants 21
Hollerith Constants 22
Hexadecimal Constants 23

Variables 24
Variable Names 24
Variable Types and Lengths 25

Array 28
Subscripts 28
Size and Type Declaration of an Array 30

Character Substrings 32

Chapter 4. VS FORTRAN Expressions 35
Evaluation of Expressions 35
Arithmetic Expressions 36

Arithmetic Operators 36
Rules for Constructing Arithmetic Expressions 37
Use of Parentheses in Arithmetic Expressions 39
Type and Length of the Result of Arithmetic Expressions 39
Examples of Arithmetic Expressions 43

o Character Expressions 44
Use of Parentheses in Character Expressions 45

Contents xvii

Relational Expressions 45
Logical Expressions 47

Logical Operators 48 0 ,
'J

Order of Computations in Logical Expressions 49
Use of Parentheses in Logical Expressions 51

Chapter 5. VS FORTRAN Statements 53
VS FORTRAN Statement Categories 53

Assignment Statements 54
Control Statements 54
DATA Statement 54
Debug Statements 54
Input/Output Statements 55
PROGRAM Statement 55
Specification Statements 55
Subprogram Statements 56
VS FORTRAN Compiler Directive Statements 57
Order of Statements in a Program Unit 57

VS FORTRAN Statement Descriptions 58
Arithmetic IF Statement 59
ASSIGN Statement 59
Assigned GO TO Statement 60
Assignment Statements 60
AT Statement 66
BACKSPACE Statement 67.
BLOCK DATA Statement 69
Block IF Statement 70
CALL Statement 70
Character Type Statement 73 o
CLOSE Statement 74
Comments 76
COMMON Statement 77
Complex Type Statement 79
Computed GO TO Statement 79
CONTINUE Statement 79
DATA Statement 80
DEBUG Statement 82
DELETE Statement 87
DIMENSION Statement 87
DISPLAY Statement 88
DO Statement 89
Double Precision Type Statement 93
EJECT Statement 94
ELSE Statement 94
ELSE IF Statement 94
END Statement 94
END DEBUG Statement 95
END FILE Statement 96
END IF Statement 97
ENTRY Statement 97
EQUIVALENCE Statement 101
Explicit Type Statement 103
EXTERNAL Statement 108
FORMAT Statement 108 c

xviii VS FORTRAN Language and Library Reference

o

o

o

FUNCTION Statement 137
GO TO Statements 142
IF Statements 145
IMPLICIT Type Statement 151
INCLUDE Statement 153
INQUIRE Statement 154
INTRINSIC Statement 164
Logical IF Statement 165
Logical Type Statement 165
NAMELIST Statement 166
OPEN Statement 168
PARAMETER Statement 173
PAUSE Statement 175
PRINT Statement 175
PROGRAM Statement 177
READ Statements 178
REAL Type Statement 221
RETURN Statement 222
REWIND Statement 225
REWRITE Statement-Formatted with Keyed Access
REWRITE Statement-Unformatted with Keyed Access
SAVE Statement 232
Statement Function Statement 233
Statement Numbers 236
STOP Statement 237
SUBROUTINE Statement 238
TRACE OFF Statement 243
TRACE ON Statement 243
Unconditional GO TO 243
WAIT Statement 244
WRITE Statements 246

Chapter 6. VS FORTRAN Intrinsic Functions 285

Part 2. Library Reference 303

Chapter 7. Introduction 305

227
230

Chapter 8. Mathematical, Character, and Bit Subprograms 307
Explicitly Called Subprograms 307
Implicitly Called Subprograms 308

Chapter 9. Service and Utility Subroutines
Mathematical Exception Test Subprograms
DVCHK Subroutine 313
OVERFL Subroutine 313
Utility Subprograms 314
DUMP /PDUMP Subroutine 315
CDUMP / CPDUMP Subroutine 317
EXIT Subroutine 317
OPSYS Subroutine (VSE Only) 318
SDUMP SUBROUTINE 319
XUFLOW SUBROUTINE 322

313
313

Contents xix

Chapter 10. Extended Error Handling Subroutines and Error Option Table 323
Extended Error Handling 323
Error Handling Subroutines 324

ERRMON Subroutine 324
ERRSA V Subroutine 325
ERRSET Subroutine 325
ERRSTR Subroutine 329
ERRTRA Subroutine 329

Error Option Table 330

Appendix A. Source Language (FIPS) F1agger 347
Items Flagged for Full ANS Language 347

Global Items Flagged 347
Statements Flagged 347

Execution-Time Cautions 349

Appendix B. IBM and ANS FORTRAN Features 351
New ANS FORTRAN 1977 Features 351

General Features 351
New Statements 353
New Features in Old Statements 353

Old IBM Extensions Now in ANS FORTRAN 1977 356
IBM Extensions Not in ANS FORTRAN 1977 357
LANGLVL(66) Features Not in LANGLVL(77) 358

Appendix C. EBCDIC and ISCII/ ASCII Codes 361

Appendix D. Algorithms for Library Mathematical Functions
Control of Program Exceptions in Mathematical Functions
Explicitly Called Subprograms 372

Absolute Value Subprograms 372
Arcsine and Arccosine Subprograms 373
Arctangent Subprograms 376
Error Functions Subprograms 379
Exponential Subprograms 384
Gamma and Log Gamma Subprograms 387
Hyperbolic Sine and Cosine Subprograms 390
Hyperbolic Tangent Subprograms 392
Logarithmic Subprograms (Common and Natural) 393
Sine and Cosine Subprograms 398
Square Root Subprograms 401
Tangent and Cotangent Subprograms 405

Implicitly Called Subprograms 409
Complex Multiply and Divide Subprograms 409
Complex Exponentiation 411

412

369
370

Exponentiation of a Real Base to a Real Power
Exponentiation of a Real Base to an Integer Power
Exponentiation of an Integer Base to an Integer Power
Exponentiation of a Base 2 Argument to a Real Power

414

Appendix E. Storage Estimates 417

Appendix F. Accuracy Statistics 425

xx VS FORTRAN Language and Library Reference

416
416

o

o

o

Appendix G. Assembler Language Information 433

o Library Availability 433
Calling Sequences 434

Assembler Language Calling Sequence 435
Supplying Correct Parameters 435

Mathematical Subprogram Results 436
Space Considerations 436
Initializing the Execution Environment 436

Appendix H. Sample Storage Printouts 445
Output from Symbolic Dumps 447
Output Format 447

Scalar N oncharacter 448
Scalar Character 448
Array 449
Control Flow Information 450
I/O Unit Information 451
I/O Unit Status Information 452

Examples of Sample Programs and Symbolic Dump Output 452

Appendix I. Library Procedures and Messages 463
Library Interruption Procedures 463
Library Error Procedures 463
Library Messages 464

Program-Interrupt Messages 465
Execution Error Messages 468

o Operator Messages 531

Appendix J. Library Module Names 533

Glossary 545

Index 551

o
Contents xxi

o

o

o

o

Figures

1. Example of Fixed-Form Source Statements 8
2. Example of Free-Form Source Statements 10
3. Source Statement Characters (VS FORTRAN Character Set) 11
4. Data Types and Valid Lengths 26
5. Examples of Arithmetic Expressions 36
6. Arithmetic Operators 37
7. Hierarchy of Arithmetic Operations 38
8. Type and Length of Result Where the First Operand Is Integer 40
9. Type and Length of Result Where the First Operand Is Real 41

10. Type and Length of Result Where the First Operand Is Complex 42
11. Character Operator 44
12. Relational Operators 45
13. Logical Operators 48
14. Hierarchy of Operations Involving Arithmetic Operators 49
15. Hierarchy of Operations Involving Character Operators 50

o 16. Type and Length of the Result of Logical Operations 52
17. Order of Statements and Comment Lines 58
18. Conversion Rules for the Arithmetic Assignment Statement a=b, Where

Type of b Is Integer or Real 62
19. Conversion Rules for the Arithmetic Assignment Statement a=b, Where

Type of b Is Complex 63
20. Field Widths Needed for Data Types of Various Lengths 276
21. Logarithmic and Exponential Functions 288
22. Trigonometric Functions 289
23. Hyperbolic Functions 291
24. Miscellaneous Mathematical Functions 292
25. Conversion and Maximum/Minimum Functions 296
26. Character Manipulation Functions 299
27. Bit Manipulation Functions 300
28. Generic Names for Intrinsic Functions 301
29. Implicitly Called Mathematical Subprograms 309
30. Implicitly Called Character Subprograms 310
31. Implicitly Called Service Subprograms 311
32. Exponentiation with Integer Base and Exponent 311
33. Exponentiation with Real Base and Integer Exponent 311
34. Exponentiation with Real Base and Exponent 312
35. Exponentiation with Complex Base and Integer Exponent 312
36. Option Table Preface Entry 330
37. Error Option Table Entry 331
38. Option Table Default Values 333
39. IOSTAT and ERR Parameters Honored for I/O Errors 334

o 40. Corrective Action after Error 336
41. Corrective Action after Program Interrupt 340
42. Corrective Action after Mathematical Subroutine Error 342

Figures xxiii

43. Mathematical Subprogram Storage Estimates 417
44. Service Subprogram Storage Estimates 421 0
45. Character Subprogram Storage Estimates 421 \ .. __i ..

46. Bit Subprogram Storage Estimates 422
47. Table of Storage Estimates for Library Execution-Time Routines 424
48. Accuracy Figures 427
49. Explicitly Called Mathematical Subprogram Assembler Information 438
50. Implicitly Called Mathematical Subprogram Assembler Information 440
51. Implicitly Called Character Subprogram Assembler Information 440
52. Service Subprogram Assembler Information 441
53. Explicitly Called Bit Function Assembler Information 441
54. General Assembler Language Calling Sequence 442
55. Examples of Assembler Language Calling Sequences 443
56. Sample Storage Printout for DUMP /PDUMP and

CDUMP/CPDUMP 446
57. Sample Storage Printout for SDUMP 447
58. Entry Names for Library Modules 533
59. Reentrant Library Module Names 543

o
xxiv VS FORTRAN Language and Library Reference

o

o

o

Part 1. Language Reference

The following topics are discussed in Part 1:

Introduction

VS FORTRAN Language

VS FORTRAN Data

VS FORTRAN Expressions

VS FORTRAN Statements

Part 1. Language Reference 1

o

o

o

0 ·'·' L"

o

o

Chapter 1. Introduction

Language

Compiler

IBM VS FORTRAN consists of a language, a compiler, and an execution-time
library of subprograms.

The VS FORTRAN language consists of a set of characters, conventions, and rules
that are used to convey information to the compiler. The basis of the VS
FORTRAN language is a statement containing combinations of element names,
operators, constants, and words (keywords) whose meaning is predefined to the
compiler.

The VS FORTRAN language is best suited to applications that involve
mathematical computations and other manipulation of arithmetic data.

In the process of compilation, a program called the VS FORTRAN compiler
analyzes the source program statements and translates them into a machine
language program called the object program, which can be combined with library
routines to form a program suitable for execution. When the VS FORTRAN
compiler detects errors in the source program, it produces appropriate diagnostic
messages.

The VS FORTRAN compiler operates under the control of an operating system
that provides it with input, output, and other services. Object programs generated
by the VS FORTRAN compiler also operate under operating system control and
depend on it for similar services.

Execution-Time Library

The VS FORTRAN execution-time library consists of subroutines and functions
supplied as part of the product. For complete information on the library, see "Part
2. Library Reference" on page 303 For a description of the intrinsic functions and
source subroutines to which the user may refer directly in VS FORTRAN
statements, see "Explicitly Called Subprograms" on page 307. For a discussion of
extended error handling subroutines, see Chapter 10, "Extended Error Handling
Subroutines and Error Option Table" on page 323.

Chapter 1. Introduction 3

Subroutines and functions to furnish any commonly used code sequences can be
compiled and added to an execution-time library by the user. When written in VS
FORTRAN, these can be structured as function, subroutine, or block data
subprograms. Other source languages can be used if the subroutines are accessible
by VS FORTRAN calls. User subroutines may reside in the supplied library data
set or in a private data set called at load or link-edit time.

Valid and Invalid VS FORTRAN Programs

This manual defines the rules (that is, the syntax, semantics, and restrictions)
applicable for writing valid VS FORTRAN programs, either for the 1978 Standard
or for the 1978 Standard plus IBM extensions. Most violations of the VS
FORTRAN language rules are diagnosed by the compiler; however, some syntactic
and semantic combinations are not diagnosed, some because they are detectable
only at execution time, others for performance reasons. VS FORTRAN programs
that contain these undiagnosed combinations are invalid VS FORTRAN programs,
whether or not they execute as expected.

4 VS FORTRAN Language and Library Reference

.n 'V

o

c

o

o

0""",1', I~ ~
,I

Chapter 2. VS FORTRAN Language

A VS FORTRAN program is made up of three basic elements:

Data

Expressions

Statements

Language Definitions

Consists of constants, variables, and arrays. See Chapter 3, "VS
FORTRAN Data" on page 15.

Executable sets of arithmetic, character, logical, or relational data.
See Chapter 4, "VS FORTRAN Expressions" on page 35.

Combinations of data and expressions. See "VS FORTRAN
Statement Descriptions" on page 58.

Some of the terms used in the discussion of the VS FORTRAN programming
language are defined as follows:

Main program. A program unit, required for execution, that can call other program
units but cannot be called by them. A main program does not have a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement. The main
program is the first program unit to receive control at execution time.

Subprogram. A program unit that is invoked by another program unit in the same
program. In FORTRAN, a subprogram has a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement.

Procedure. A sequenced set of statements that may be used at one or more points
in one or more computer programs, and that usually is given one or more input
parameters and returns one or more output parameters. A procedure consists of
subroutines, function subprograms, and intrinsic functions.

Intrinsic function. A function, supplied by VS FORTRAN, that performs
mathematical or character operations. (See "INTRINSIC Statement" on
page 164.)

External procedure. A subroutine or function subprogram written in FORTRAN
or in a language accessible by VS FORTRAN calls.

Executable program. A program that can be executed as a self -contained
procedure. It consists of a main program and, optionally, one or more subprograms
or non-FORTRAN-defined external procedures, or both.

Chapter 2. VS FORTRAN Language 5

Language Syntax

Input Records

Executable statement. A statement that moves data, performs an arithmetic,
character, logical, or relational operation, or alters the sequential execution of
statements.

Nonexecutable statement. A statement that describes the characteristics of the
program unit, of data, of editing information, or of statement functions, but does
not cause an action to be taken by the program.

Preconnected file. A unit or file that was defined at installation time. However, a
preconnected file does not exist for a program if the file is not defined by a
FILEDEF command or by job control statements.

Program unit. A sequence of statements constituting a main program or
subprogram.

Additional definitions can be found in the "Glossary" on page 545.

The meaning of an input program is determined from keywords, special characters,
and rules that group these keywords and characters together to form source
language statements. For the compiler to understand its input, certain syntax rules
must be carefully adhered to when entering the following items:

Source language statements
Source statement characters
Names
Statement labels
Keywords

VS FORTRAN accepts source input in either of two formats:

Fixed-form input format

IBM Extension

• Free-form input format

'--__________ End of IBM Extension

A program unit must be written in either fixed form or free form, not both. For a
detailed description of the use and implementation of the two formats, see the
FIXED I FREE compiler option in the VS FORTRAN Programming Guide.

The VS FORTRAN compiler receives its input in fixed-length, 80-byte records.
Each record is equivalent to one 80-column card or one 80-character input line on
a terminal.

6 VS FORTRAN Language and Library Reference

()

o

o

o

o

o

Source Language Statements

Fixed-Form Input Format

The rules for forming each type of source language statement are defined in
Chapter 5, along with a description of that statement's purpose and function. The
following discussion of source language statements is limited to the rules by which
input lines are classified as comments or other source language statements, and to
the correct format of input lines.

There are two major kinds of input lines: statements and comments.

• Statements, which may occupy one or more input lines, provide the information
needed by the VS FORTRAN Compiler to create the object program.

Comments are descriptive remarks about the program unit in which they
reside. Comments are copied onto the source program listing; otherwise, they
are not processed by the compiler. Comments are not present in the object
program and have no effect on program execution. Comment lines can be used
to separate blocks of source language statements on the source program listing
to make the program more readable.

The statements and comments of a VS FORTRAN source program in fixed form
must conform to the following rules:

•

Comments

A comment line must begin with a C or an asterisk (*) in column 1.
Comments may appear anywhere in columns 2 through 72. Comment lines
may appear anywhere in a program unit before the END statement.
(Comment lines may precede a continuation line.) Blank lines may appear
anywhere in a program unit and are processed as comment lines.

Statement Text

The text of a fixed-form statement is written in columns 7 through 72 on 1 to
20 lines. The statement text may continue on as many as 19 continuation lines.
Multiple statements per line are not allowed. Every statement in a program
unit may have a label in columns 1 to 5. Column 6 is used to distinguish
between initial and continuation lines. Columns 73 through 80 are not part of
the statement and may be used for identification. A statement is terminated by
another statement or by the end of the input.

• Statement Labels

The statement label consists of from 1 to 5 decimal digits anywhere in columns
1 to 5 in the initial line of a statement. The value must not be zero. Values of
labels do not affect the order in which statements are compiled or executed.
Each label must be unique; that is, the same label must not be given to more
than one statement within a program unit.

Chapter 2. VS FORTRAN Language 7

• Initial Line

Column 6 of the initial line of a statement must be a blank or a zero. The
initial line of every statement may be labeled. If a statement does not have a
label, then the statement text must begin on the initial line. The initial line
cannot be blank.

• Continuation Lines

A statement that is not complete on the initial line may continue in columns 7
through 72 on as many as 19 continuation lines. A continuation line must have
a character that is not blank or zero in column 6.

IBM Extension

VS FORTRAN allows columns 1 through 5 on a continuation line to contain
characters, but they are ignored. (Note that a C or an asterisk (*) in column 1
will cause the line to be treated as a comment.)

'--__________ End of IBM Extension __________ ---'

Identification

Columns 73 through 80 of any input line are not significant to the compiler
and may, therefore, be used for identification, sequencing, or any other
purpose.

As many blanks as desired may be written on a statement or comment to improve
readability. They are ignored by the compiler. However, blanks inserted in literal
or character data are retained and treated as blanks within the data.

Figure 1 illustrates fixed-form source statements.

Column:

C

6

SAMPLE TEXT

10 D=010.5
GO TO 56

150 A=B+C*(D+E**F+
1G+H-2.*(G+P»

C=3.

Figure 1. Example of Fixed-Form Source Statements

8 VS FORTRAN Language and Library Reference

73 80

SAMP0010

SAMP0210
SAMP0220
SAMP0230
SAMP0240
SAMP0250

o

o

o

o
Free-Form Input Format

o

o

IBM Extension

Free-form input permits greater freedom in arranging the input text of a program
than does fixed-form input. The following rules govern free-form input:

Comments

A comment line begins with a quotation mark (II) in column 1. A comment
line must not follow a continued line, and cannot itself be continued. Blank
lines are not allowed with free-form input.

• Statement Text

The text of free-form statements is entered in 80 columns on 1 to 20 lines.
The first character of a statement (after a label, if any) must be alphabetic.
Multiple statements per line are not allowed. The statement text may continue
on as many as 19 succeeding continuation lines. A continued line has a minus
sign (-) as the final (rightmost) character on the line. The line following a
continued line is a continuation line. A statement is terminated by an initial or
continuation line that does not end with a minus sign. Columns 73 through 80,
which may be used for identification in fixed-form statements, are considered
part of the statement text in free form.

• Statement Labels

The initial line of a statement may contain a label as the first (leftmost) entry
on the line. A label may contain 1 to 5 decimal digits. Blanks and leading
zeros are ignored. The value must not be zero. The values of labels do not
affect the order in which statements are compiled or executed. Each label must
be unique; that is, the same label must not be given to more than one statement
in a program unit.

• Initial Line

The initial line of a statement may have a label. The first character of the
statement text must be alphabetic. If a statement does not have a label, then
the statement text must begin on the initial line. (Blank lines are not allowed.)

• Continued Lines

The text of any statement, except the END statement, may continue on the
following line. A line to be continued is indicated by terminating the line with
a minus sign (-). A comment line cannot be continued.

Preserving a Minus Sign

If the last character in a line is a minus sign, the VS FORTRAN compiler
assumes it indicates continuation and discards it. If the last two characters in a
line are minus signs, only the last one is taken as a continuation character, and
the preceding one is preserved as a minus sign.

Chapter 2. VS FORTRAN Language 9

• Continuation Lines

A continuation line is a line following a continued line. The statement text may
start in any position. Up to 19 continuation lines are permitted in a single
statement.

• Maximum Statement Length

The maximum length of a free-form source statement is 1320 characters,
excluding the continuation characters and the statement label. Blank
characters are counted in the total number of characters. Any blank characters
after the continuation characters are not counted.

Figure 2 illustrates free-form source statements.

Column:

"SAMPLE TEXT

10D=010.5
GO TO 56
150 A=B+C*(D+E**F+­
G+H-2.*(G+P))
C=3.

Figure 2. Example of Free-Form Source Statements

1--__________ End of IBM Extension __________ ---1

Source Statement Characters

The characters listed in Figure 3 on page 11 constitute the set of characters
acceptable in a VS FORTRAN program. The set is commonly referred to as the
VS FORTRAN character set.

A special character may be an operator (or part of an operator), part of a constant,
or have some other special meaning. The interpretation is implied by the context.

10 VS FORTRAN Language and Library Reference

C,'l ____ ~\
I ,,)

o

o

o

o Names

o

The special characters shown in Figure 3 are listed in their correct collating
sequence. (The complete collating sequence can be found in Appendix
C, "EBCDIC and ISCII/ ASCII Codes" on page 361.)

SPECIAL CHARACTERS LETTERS DIGITS

blank A 0 0
period B P 1

(left parenthesis C Q 2
+ plus sign D R 3
~ currency sign E S 4

asterisk F T 5
) right parenthesis G U 6
- minus sign H V 7
/ slash I W 8
, comma J X 9

colon K Y
I apostrophe L Z
= equal sign M

QJ I I
N

II quotation mark

Figure 3. Source Statement Characters (VS FORTRAN Character Set)

Names (referred to as "symbolic names" in old FORTRAN publications) can be
assigned to the elements of a program unit.

Definition

Name-A string of 1 through 6 letters (A,B, ... ,Z) or digits (0,1, ... ,9), the first
of which must be a letter.

IBM Extension

With this compiler, the currency symbol ($) is treated as a letter when
used in a name. Therefore, the currency symbol ($) can be used as the first
character in a name.

"__ ________ End of IBM Extension __________

Names can be used to identify the following items in a program unit:

An array and the elements of that array (see "Array" on page 28)

• A variable (see "Variables" on page 24)

• A constant (See "PARAMETER Statement" on page 173)

Chapter 2. VS FORTRAN Language 11

A main program (see "PROGRAM Statement" on page 177)

A statement function (see "Statement Function Statement" on page 233)

• An intrinsic function (see "INTRINSIC Statement" on page 164)

• A function subprogram (see "FUNCTION Statement" on page 137)

• A subroutine subprogram (see "SUBROUTINE Statement" on page 238)

• A block data subprogram (see "BLOCK DATA Statement" on page 69)

• A common block (see "COMMON Statement" on page 77)

• An external user-supplied subprogram that cannot be classified by its usage in
that program unit as either a subroutine or function subprogram name (see
"EXTERNAL Statement" on page 108)

• A NAMELIST (see "READ Statement-NAMELIST with External Devices"
on page 216 and "WRITE Statement-NAMELIST with External Devices"
on page 280)

A name that identifies a constant, variable, array, external function, or statement
function also identifies its data type. The name may be specified in a specification
statement (see "Specification Statements" on page 55). If the name does not
appear in such a statement, the type is implied by the first letter of the name. A
first letter of I through N implies integer type, and any other letter (or the currency
symbol) implies real type, unless an IMPLICIT statement is used to change the
default type.

Names are either global or local. Global names are recognized both internal to and
external to a program unit. Local names are recognized internal to the program
unit where they are referenced.

• Classes of global names are:

Common block

External function

Subroutine

Main program

Block data subprogram

• Classes of local names are:

Array

Variable

Constant

12 VS FORTRAN Language and Library Reference

o

0

o

o Statement Labels

Keywords

o

Statement function

Intrinsic function

Dummy procedure

Names must be unique within a class in a program unit and can identify elements of
only one class, except in the following situations:

A common-block name can also be an array, variable, or statement function
name in a program unit.

A function subprogram name must also be a variable name in the function
subprogram.

The name of a main program, subroutine, common block, NAMELIST, or block
data subprogram has no type. A generic function name has no predetermined type;
it assumes a type dependent upon the type of its argument(s).

Once a name is used as a main program name, a function subprogram name, a
subroutine subprogram name, a block data subprogram name, a common-block
name, or an external procedure name in any unit of an executable program, no
other program unit of that executable program can use that name to identify an
entity of these classes in any other way.

Statement labels uniquely identify statements within a VS FORTRAN program
unit. Labels may be given to every statement; however, a label is significant to the
VS FORTRAN compiler only when it identifies:

A statement to which control is passed

The end of a sequence of statements which are to be executed repeatedly

A formatting statement

A statement label is a sequence of from 1 to 5 decimal digits, one of which must be
nonzero. It can be written in either fixed form or free form. See "Statement
Numbers" on page 236.

Keywords identify VS FORTRAN-supplied procedures (intrinsic functions) that
can be used as part of any program. These procedures are mathematical functions
and service subroutines, which are supplied to save programmers time. See
Appendix B, "IBM and ANS FORTRAN Features" on page 351.

A keyword is a specified sequence of characters. Whether a particular sequence of
characters identifies a keyword or a name is implied by the context. There is no
sequence of characters that is reserved in all contexts.

Chapter 2. VS FORTRAN Language 13

o

o

o

o

o

o

Chapter 3. VS FORTRAN Data

Constants

Data is a formal representation of facts, concepts, or instructions. VS FORTRAN
manipulates three general kinds of data:

• Constants

• Variables

• Arrays

Note: These are not to be confused with data types. Data types correspond to the
the five types of variables, as discussed under "Variable Types and Lengths" on
page 25.

A constant is a fixed, unvarying quantity. There are several classes of constants:

• Arithmetic constants specify decimal values. There are three arithmetic
constants:

Integer
Real
Complex

• Logical constants specify a logical value as "true" or "false." There are two
logical constants:

. TRUE .

. FALSE.

• Character constants are a string of alphameric and/or special characters
enclosed in apostrophes.

IBM Extension

• HoUerith constants are used only in FORMAT statements.

Hexadecimal constants are used only as data initialization values of any type of
variable.

'--__________ End of IBM Extension __________

Chapter 3. VS FORTRAN Data 15

Arithmetic Constants

Integer Constants

The PARAMETER statement allows a constant to be given a name. (See
"PARAMETER Statement" on page 173.)

Arithmetic constants fall into three categories: integer, real, and complex.

An unsigned constant is a constant with no leading sign. A signed constant is a
constant with a leading plus or minus sign. An optionally signed constant is a
constant that may be either signed or unsigned. Only integer and real constants
may be optionally signed.

Definition

Integer Constant-A string of decimal digits containing no decimal point and
expressing a whole number. It occupies 4 bytes of storage.

Maximum Magnitude: 2147483647 (that is, 23L1).

An integer constant may be positive, zero, or negative. If unsigned and nonzero, it
is assumed to be positive. (A zero may be written with a preceding sign with no
effect on the value.) Its magnitude must not be greater than the maximum, and it
must not contain embedded- commas.

Valid Integer Constants:

o

91

173

-2147483647

Invalid Integer Constants:

27.

3145903612

5,396

-2147483648

contains a decimal point.

Exceeds the maximum magnitude.

contains an embedded comma.

Exceeds the maximum magnitude,
even though it fits into 4 bytes.

16 VS FORTRAN Language and Library Reference

o

c

Real Constants

o

o

o

Definition

Real Constant-A string of decimal digits that expresses a real number. It
can have one of three forms: a basic real constant, a basic real constant
followed by a real exponent, or an integer constant followed by a real
exponent.

A basic real constant is a string of digits with a decimal point. It is used to
approximate the value of the constant in 4 bytes of storage.

The storage requirement (length) of a real constant can also be explicitly
specified by appending an exponent to a basic real constant or an integer
constant. The standard exponents consist of the letters E and D.

IBM Extension

This compiler also allows the letter Q as an exponent.

0....-__________ End of IBM Extension __________ ---A

An exponent is followed by a signed or unsigned 1- or 2-digit integer constant.
The letter E specifies a constant of length 4 and occupies 4 bytes of storage; the
letter D specifies a constant of length 8 and occupies 8 bytes of storage.

IBM Extension

The letter Q specifies a constant of length 16 and occupies 16 bytes of storage.

_____________ End of IBM Extension __________ ---A

Magnitude:

Precision:

o or 16-65 (approximately 10-78)

through 1663 (approximately 1075)

(F our bytes) 6 hexadecimal digits
(approximately 6 decimal digits)

(Eight bytes) 14 hexadecimal digits
(approximately 15 decimal digits)

IBM Extension

(Sixteen bytes) 28 hexadecimal digits
(approximately 32 decimal digits)

0....-__________ End of IBM Extension __________ ---A

A real constant may be positive, zero, or negative (if unsigned and nonzero, it is
assumed to be positive) and must be within the allowable range. It may not contain
embedded commas. A zero may be written with a preceding sign with no effect on
the value. The decimal exponent permits the expression of a real constant as the

Chapter 3. VS FORTRAN Data 17

product of a basic real constant or integer constant and 10 raised to a desired
power.

Valid Real Constants (Four Bytes):

+0.

-999.9999

7.0E+0 That is, 7.0 x 100 = 7.0

9761.25E+1 That is, 9761.25 x 101 = 97612.5

7.E3

7.0E3 That is, 7.0 x 103 = 7000.0

7.0E+03

7E-03 That is, 7.0 x 10-3 = 0.007

21.98753829457168 Note: This is a valid real constant, but
it cannot be accommodated in four bytes.
It will be accepted and truncated.

Valid Real Constants (Eight Bytes):

1234567890123456.D-73 Equivalent to .1234567890123456x10-57

7.9D03

7.9D+03 That is, 7.9 x

7.9D+3

7.9DO That is, 7.9 x

7D03 That is, 7.0 x

IBM Extension

Valid Real Constants (Sixteen Bytes):

.234523453456456734565678Q+43

5.001Q08

103 7900.0

100 7.9

103 7000.0

a...-__________ End of IBM Extension __________ --'

18 VS FORTRAN Language and Library Reference

0,
~ - -_.

0

o

Complex Constants

o

o

Invalid Real Constants:

3,471.1

1.E

1 . 2E+ 113

23.5D+97

21.3D-99

88.63215748Q123

Missing a decimal point or a
decimal exponent.

Embedded comma.

Missing a 1- or 2-digit integer constant
following the E. It is not interpreted
as 1.0 x 100.

Too many digits in the exponent.

Magnitude outside the allowable range,
that is, 23.5 x 1097.>1663.

Magnitude outside the allowable range,
that is, 21.3 x 10-99<16-65.

IBM Extension

Too many digits in the exponent

'--__________ End of IBM Extension __________ ---'

Definition

Complex Constant-An ordered pair of signed or unsigned integer or real
constants separated by a comma and enclosed in parentheses. The first
constant in a complex constant represents the real part of the complex
number; the second represents the imaginary part of the complex number.

The real or integer constants in a complex constant may be positive, zero, or
negative and must be within the allowable range. (If unsigned and nonzero, they
are assumed to be positive.) A zero may be written with a preceding sign, with no
effect on the value. If both constants are of integer type, however, then both are
converted to real type, of 4-byte length.

IBM Extension

If the constants of the ordered pair representing the complex constant differ in
precision, the constant of lower precision is converted to a constant of the higher
precision.

For example, if one constant is real and the other is double precision, real is
converted to double precision.

Chapter 3. VS FORTRAN Data 19

If the constants differ in type, the integer constant is converted to a real constant
of the same precision as the original real constant.

For example, if one constant is integer and the other is double precision, the
integer constant is converted to a double precision constant.

a....-__________ End of IBM Extension __________

vand Complex Constants (i = square root of -1):

(3,-1.86)

(-S.OE+03,.16D+02)

(4.7D+2,1.973614D4)

(47D+2,38D+3)

Has the value 3.- 1.86i;
both parts are real
(4 bytes long).

IBM Extension

Has the value -5000.+16.0i;
both parts are double
precision.

Has the value 470.+19736.14i.

Has the value 4700.+38000.i.

(1234.345456567678Q59,-1.0Q-5)

(45Q6,6E45) Both parts are real (16 bytes
long) .

L..-__________ End of IBM Extension __________

Invalid Complex Constants:

(A, 3.7)

(.0009Q-1,7643.Q+1199)

(49.76, .015D+92)

Real part is not a constant.

IBM Extension

Too many digits in the exponent
of the imaginary part.

Magnitude of imaginary part is
outside of allowable range.

"--__________ End of IBM Extension __________

20 VS FORTRAN Language and Library Reference

o

o

o

Logical Constants

o

o
Character Constants

o

Definition

Logical Constant-A constant that can have a logical value of either true or
false.

There are two logical constants:

. TRUE .

. FALSE.

The words TRUE and FALSE must be preceded and followed by periods.
Each occupies 4 bytes.

IBM Extension

The abbreviations T and F (without the periods) may be used for .TRUE. and
.FALSE., respectively, only for the initialization of logical variables or logical
arrays in the DATA statement or in the explicit type statement. For use as
input/output data, see "L Format Code" under "FORMAT Statement."

"--__________ End of IBM Extension __________

The logical constant .TRUE. or .FALSE., when assigned to a logical variable,
specifies that the value of the logical variable is true or false, respectively. (See
"Logical Expressions" on page 47.)

Definition

Character Constant-A string of any characters capable of representation in
the processor. The string must be enclosed in apostrophes.

The delimiting apostrophes are not part of the data represented by the constant.
An apostrophe within the character data is represented by two consecutive
apostrophes, with no intervening blanks. In a character constant, blanks embedded
between the delimiting apostrophes are significant. The length of a character
constant must be greater than zero. Each character requires one byte of storage.

The maximum length of a character constant depends upon the circumstance of use
and, where significant, the number of continuation cards. The number of
continuation cards are as follows:

Data initialization (maximum of 1310)

Assignment statement (maximum of 1316)

• Argument of a call (maximum of 1311)

Chapter 3. VS FORTRAN Data 21

Hollerith Constants

• Input or output statement (maximum of 1309)

• FORMAT statement (maximum of 1310)

• PARAMETER statement (maximum of 255)

• PAUSE or STOP statement (maximum of 72)

A character constant may be used as a data initialization value, or in any of the
following:

• A character expression

• An assignment statement

• The argument list of a CALL statement or function reference

An input or output statement

• A FORMAT statement

• A PARAMETER statement

• A PAUSE or STOP statement

Valid Character Constants:

'DATA'
'X-COORDINATE
13. 14'

Y-COORDINATE Z-COORDINATE'

'DON"T'

IBM Extension

Definition

Length:

4
44

4
5

Hollerith Constant-A string of any characters capable of representation in
the processor and preceded by wH, where w is the number of characters in
the string. The value of w (the number of characters in the string), including
blanks, may not be less than 1 or greater than 255.

Each character requires one byte of storage.

Hollerith constants can be used in FORMAT statements as well as in initialization
statements, other than in CHARACTER initialization.

22 VS FORTRAN Language and Library Reference

o

o

o

o
Hexadecimal Constants

o

o

Valid Hollerith Constants:

24H INPUT/OUTPUT AREA NO. 2

6H DON'T

Definition

Hexadecimal Constant-The character Z, followed by two or more
hexadecimal numbers formed from the set of characters 0 through 9 and A
through F.

A hexadecimal constant may be used as a data initialization value for any type of
variable or array.

One byte contains 2 hexadecimal digits. If a constant is specified as an odd
number of digits, a leading hexadecimal zero is added on the left to fill the byte.
The internal binary form of each hexadecimal digit is as follows:

0-0000
1-0001
2-0010
3-0011

4-0100
5-0101
6-0110
7-0111

Valid Hexadecimal Constants:

8-1000
9-1001
A-1010
B-1011

Z 1 C4 9 A2 F 1 represents the bit string:

00011100010010011010001011110001

ZBADFADE represents the bit string:

00001011101011011111101011011110

C-1100
D-1101
E-1110
F-1111

where the first 4 zero bits are implied because an odd number of hexadecimal digits
is written.

The maximum number of digits allowed in a hexadecimal constant depends upon
the length specification of the variable being initialized (see "Variable Types and
Lengths" on page 25). The following list shows the maximum number of digits for
each length specification:

Chapter 3. VS FORTRAN Data 23

Variables

Variable Names

Length
of Variable

32
16
8
4
2
1

Maximum Number of
Hexadecimal Digits

64
32
16
8
4
2

If the number of digits is greater than the maximum, the excess leftmost
hexadecimal digits are truncated; if the number of digits is less than the maximum,
hexadecimal zeros are supplied on the left.

If the variable being initialized is of complex type, the specification should indicate
a single value, rather than a real value and an imaginary value.

L...-__________ End of IBM Extension __________ -J

A VS FORTRAN variable is a data item, identified by a name, that occupies a
storage area, except possibly in situations involving error or interruption handling,
where normal program flow is asynchronously interrupted. The value represented
by the name is always the current value stored in the area.

Before a variable has been assigned a value, its content is undefined, and the
variable should not be referred to except to assign it a value.

VS FORTRAN variable names must follow the rules governing element names.
(See "Names" on page 11.) The use of meaningful variable names can aid in
documenting a program.

Valid Variable Names:

B292S

RATE

IBM Extension

$VAR

1--__________ End of IBM Extension __________ ---1

24 VS FORTRAN Language and Library Reference

o

o

o

o

c

o

Invalid Variable Names:

B292704 Contains more than six characters.

4 ARRAY First character is not alphabetic.

SI.X Contains a special character.

Variable Types and Lengths

The type of a variable corresponds to the type of data the variable represents. (See
Figure 4 on page 26.) Thus, an integer variable must represent integer data, a
real variable must represent real data, and so on. There is no variable type
associated with hexadecimal data; this type of data is identified by a name of one
of the other types. There is no variable type associated with statement numbers;
integer variables that contain the statement number of an executable statement or a
FORMAT statement are not considered to contain an integer variable. (See
"ASSIGN Statement" on page 59.)

For every type of variable data, there is a corresponding length specification that
determines the number of bytes that are reserved.

IBM Extension

Optional length specification is an IBM extension.

"'---__________ End of IBM Extension __________ --1

Figure 4 shows each data type with its associated storage length and standard
length.

Chapter 3. VS FORTRAN Data 25

VALID STORAGE DEFAULT
DATA TYPE LENGTHS LENGTH

Integer B 4 4

Real 4 I ' 8 or 16
1

4

Double

Precision 8 8

Complex 8
1 '

16 or 32 1
8

Character through 32767

Logical 8 4 4

Figure 4. Data Types and Valid Lengths

A programmer may declare the type of variable by using the following:

• Explicit specification statements

• IMPLICIT statement

• Predefined specification contained in the VS FORTRAN language

An explicit specification statement overrides an IMPLICIT statement, which, in
turn, overrides a predefined specification. The optional length specification of a
variable may be declared only by the explicit or IMPLICIT specification
statements. If, in these statements, no length specification is stated, the default
length is assumed. INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, and CHARACTER are used to specify the length and type in these
statements.

IBM Extension

VS FORTRAN accepts:

• INTEGER *2 to indicate 2 bytes and INTEGER*4 as an alternative to
INTEGER, to indicate 4 bytes;

REAL *4 as an alternative to REAL, to indicate 4 bytes;

• REAL*8 as an alternative to DOUBLE PRECISION, to indicate 8 bytes;

26 VS FORTRAN Language and Library Reference

0

c

o

c

o

REAL * 16 to indicate 16 bytes;

• LOGICAL*1 to indicate 1 byte;

• LOGICAL *4 as an alternative to LOGICAL, to indicate 4 bytes;

• COMPLEX*8 as an alternative to COMPLEX, to indicate 8 bytes (the
first 4 bytes represent a real number and the second 4 bytes represent an
imaginary number);

• COMPLEX*16 to indicate 16 bytes (the first 8 bytes represent a real
number and the second 8 bytes represent an imaginary number);

• COMPLEX*32 to indicate 32 bytes (the first 16 bytes represent a real
number and the second 16 bytes represent an imaginary number).

'--__________ End of IBM Extension __________

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify variables as integer or
real as follows:

If the first character of the variable name is I, J, K, L, M, or N, the variable is
integer of length 4.

• If the first character of the variable name is any other alphabetic character, the
variable is real of length 4.

IBM Extension

• If the first character of the variable name is a currency symbol ($), the
variable is real of length 4.

'--__________ End of IBM Extension __________ --'

This convention is the traditional FORTRAN method of specifying the type of a
variable as either integer or real. Unless otherwise noted, it is assumed in the
examples in this publication that this specification applies. Variables defined with
this convention are of standard (default) length.

Type Declaration by the IMPLICIT Statement

The IMPLICIT statement allows you to specify the type of variables, in much the
same way as the type was specified by the predefined convention. That is, the type
is determined by the first character of the variable name. However, by using the
IMPLICIT statement, you have the option of specifying which initial characters
designate a particular variable type. The IMPLICIT statement can be used to
specify all types of variables, integer, real, complex, logical, and character, and to
indicate storage length.

The IMPLICIT statement overrides the variable type as determined by the
predefined convention.

Chapter 3. VS FORTRAN Data 27

The IMPLICIT statement is discussed in "IMPLICIT Type Statement" on
page 151.

Type Declaration by Explicit Specification Statements

Array

Subscripts

Explicit specification statements differ from the first two ways of specifying the
type of a variable, in that an explicit specification statement declares the type of a
particular variable by its name rather than by a group of variable names beginning
with a particular letter, as specified in Figure 3 on page 11. Explicit type
statements override IMPLICIT statements and predefined specifications.

Explicit specification statements are discussed in "Explicit Type Statement" on
page 103.

An array is an ordered and structured sequence of data items. The data items that
make up the array are called array elements. The number and arrangement of
elements in an array are specified by the array declarator. The array declarator
indicates the number of dimensions and the size of each dimension. A particular
~lement in the array is identified by the array name and its position in the array.
All elements of an array have the same type and length.

To refer to any element in an array, the array name plus a parenthesized subscript
must be used. In particular, the array name alone does not represent the first
element except in an EQUIVALENCE statement.

Before an array element has been assigned a value, its content is undefined, and the
array element should not be referred to before assigning it a value.

A subscript is a quantity (or a set of subscript expressions separated by commas)
that is associated with an array name to identify a particular element of the array.
The number of subscript quantities in any subscript must be the same as the
number of dimensions of the array with whose name the subscript is associated. A
subscript is enclosed in parentheses and is written immediately after the array
name. A maximum of seven subscript expressions can appear in a subscript.

The following rules apply to the construction of subscripts. (See Chapter 4, "VS
FORTRAN Expressions" on page 35 for additional information and restrictions.)

1. Subscript expressions may contain arithmetic expressions that use any of the
arithmetic operators: +, -, *, /, **.

2. Subscript expressions may contain function references that do not change any
other value in the same statement.

3. Subscript expressions may contain array elements.

28 VS FORTRAN Language and Library Reference

o

c

o

c

o

IBM Extension

4. Mixed-mode expressions (integer and real only) within a subscript are
evaluated according to normal FORTRAN rules. If the evaluated
expression is real, it is converted to integer by truncation.

'--__________ End of IBM Extension __________ --'

5. The evaluated result of a subscript expression must always be greater than or
equal to the corresponding lower dimension bound and must not exceed the
corresponding upper dimension bound (See "Size and Type Declaration of an
Array" on page 30.)

Valid Array Elements:

ARRAY (IHOLD)

NEXT (19)

MATRIX (1-5)

IBM Extension

BAK (I,J(K+2*L,.3*A(M,N))) J is an array.

'--__________ End of IBM Extension __________ --'

ARRAY (I,J/4*K**2)

ARRAY (-5)

LOT (0)

Invalid Array Elements:

ALL (.TRUE.)

NXT (1 + (1 . 3 , 2 . 0))

A subscript expression may not be a
logical expression.

A subscript expression may not be a
complex expression.

Note: The elements of an array are stored in column-major order. To step
through the elements of the array in the linearized order defined as "column-major
order," each subscript varies (in steps of 1) from its lowest valid value to its highest
valid value, such that each subscript expression completes a full cycle before the
next subscript expression to the right is increased. Thus, the leftmost subscript
expression varies most rapidly, and the rightmost subscript expression varies least
rapidly.

The following list is the order of an array named C defined with three dimensions:

DIMENSION C(1:3,1:2,1:4)

C(1,1,1) C(2,1,1) C(3,1,1) C(1,2,1) C(2,2,1) C(3,2,1)
C(1,1,2) C(2,1,2) C(3,1,2) C(1,2,2) C(2,2,2) C(3,2,2)
C(1,1,3) C(2,1,3) C(3,1,3) C(1,2,3) C(2,2,3) C(3,2,3)
C(1,1,4) C(2,1,4) C(3,1,4) C(1,2,4) C(2,2,4) C(3,2,4)

Chapter 3. VS FORTRAN Data 29

Size and Type Declaration of an Array

The size (number of elements) of an array is declared by specifying, in a subscript,
the number of dimensions in the array and the size of each dimension. This type of
specification is called an "array declarator." Each dimension is represented by an
optional lower bound (e1) and a required upper bound (e2) in the form:

i= S~mx
:me ([eI:] e2)

nome
is an array name.

where:

el

e2

is the lower dimension bound. It is optional. If e1 (with its following
colon) is not specified, its value is assumed to be 1.

is the upper dimension bound and must always be specified.

The colon represents the range of values for an array's subscript. For example,

DIMENSION A(O:9) ,B(3,-2:5)

DIMENSION ARAY(-3:-1) ,DARY(-3:ID3**ID1)

DIMENSION IARY(3)

The upper and lower bounds (e1 and e2) are arithmetic expressions in which all
constants and variables are of integer type.

• If the array name is an actual argument, the expressions can contain only
constants or names of constants of integer type.

• The value of the lower bound may be positive, negative, or zero. It is assumed
to be 1, if it is not specified.

• A maximum of seven dimensions is permitted. The size of each dimension is
equal to the difference between the upper and lower bounds plus 1. If the
value of the lower dimension bound is 1, the size of the dimension is equal to
the value of its upper bound.

Function or array element references are not allowed in dimension bound
expressions.

• The value of the upper bound must be greater than or equal to the value of the
lower bound. An upper dimension bound of an asterisk is always greater than
or equal to the lower dimension bound.

30 VS FORTRAN Language and Library Reference

o

o

o

o

o Object-Time Dimensions

o

• If the array name is a dummy argument and is in a subprogram, the expressions
can also contain:

Integer variables that are also dummy arguments

Expressions that contain:

Signed or unsigned integer constants

Names of integer constants

Variables that are dummy arguments or appear in a common block in
that subprogram

• The upper dimension bound of the last dimension of a dummy array name can
be an asterisk. In this case, the dummy array is called an assumed-size array.

Size information must be given for all arrays in a VS FORTRAN program, so that
an appropriate amount of storage may be reserved. Declaration of this information
is made by a DIMENSION statement, by a COMMON statement, or by one of the
explicit type specification statements. These statements are discussed in detail, in
alphabetic sequence, in "VS FORTRAN Statement Descriptions."

The type of an array name is determined by the conventions for specifying the type
of a variable name. Each element of an array is of the type and length specified for
the array name.

If a dummy argument array is used in a function or subroutine subprogram, the
absolute dimensions of the array do not have to be explicitly declared in the
subprogram by constants. Instead, the array declarators appearing in an explicit
specification statement or DIMENSION statement in the subprogram may contain
dummy arguments or variables in the common block that are integer variables of
length 4, to specify the size of the array. When the subprogram is called, these
integer variables receive their values from the actual arguments in the calling
program reference or from the common block. Thus, the dimensions of a dummy
array appearing in a subprogram may change each time the subprogram is called.
This is called an "adjustable array" or an "object-time dimension array."

The absolute dimensions of an array must be declared in the calling program or in a
higher level calling program, and the array name must be passed to the subprogram
in the argument list of the calling program. The dimensions passed to the
subprogram must be less than or equal to the absolute dimensions of the array
declared in the calling program. The variable dimension size can be passed through
more than one level of subprogram (that is, to a subprogram that calls another
subprogram, passing it dimension information).

Integer variables in the explicit specification or DIMENSION statement that
provide dimension information may be redefined within the subprogram, but the
redefinitions have no effect on the size of the array. The size of the array is
determined at the entry point at which the array information is passed.

Chapter 3. VS FORTRAN Data ·31

Character arrays are specified in the same manner as other data types. (See
"DIMENSION Statement" on page 87 and "Explicit Type Statement" on
page 103.) The length of each array element is either the standard length of 1 or
may be declared larger with a type or IMPLICIT statement. Each character array
element is treated as a single entity. Portions of an array element can be accessed
through substring notation.

Character Substrings

A character substring is a contiguous portion of a character variable or character
array element. A character substring is identified by a substring reference. It may
be assigned values and may be referred to. A substring reference is local to a
program unit.

The form of a substring reference is:

!= Syntax
a(el :e2)

a
is a character variable name or a subscripted character array name (see
"Array" on page 28).

el and e2
are substring expressions.

Substring expressions are optional, but the colon (:) is always required inside the
parentheses. The colon represents a range of values. If e 1 is omitted, a value of
one is implied for e1. If e2 is omitted, a value equal to the length of the character
variable or array element is implied for e2. Both e1 and e2 may be omitted; for
example, the form v(:) is equivalent to v.

The value of e 1 specifies the leftmost character position and the value of e2
specifies the rightmost character position of the substring. The substring
information (if any) must be specified after the subscript information (if any).

• The values of eland e2 must be integer, positive, and nonzero.

• The value of e 1 must be less than or equal to the value of e2.

• The values of eland e2 must be less than or equal to the number of characters
contained in the corresponding variable name or array element.

32 VS FORTRAN Language and Library Reference

0"'" ,-

o

o

0·" , .

o

o

Example 1:

Given the following statements:

CHARACTER*5 CH(10)
CH(2)='ABCDE'

then

CH(2) (1:2) has the value AB.
CH(2) (:3) has the value ABC.
CH(2) (3:) has the value CDE.

Example 2:

Given the following statements:

CHARACTER * 5 SUBSTG, SYMNAM
SYMNAM= 'VWXYZ'
1=3
J = 4
SUBSTG(1:2) = SYMNAM(I:J)
SUBSTG(I:J) = SYMNAM(1:2)
SUBSTG(J+1:) = SYMNAM(5:)

then SUBSTG has the value XYVWZ.

Chapter 3. VS FORTRAN Data 33

o

o

o

o

o

o

Chapter 4. VS FORTRAN Expressions

VS FORTRAN provides four kinds of expressions: arithmetic, character,
relational, and logical.

The value of an arithmetic expression is always a number whose type is integer,
real, or complex.

The value of a character expression is a character string.

The value of a relational or logical expression is always a .TRUE. or .FALSE.
logical value.

Evaluation of Expressions

VS FORTRAN expressions are evaluated according to the following rules:

• Any variable, array element, function, or character substring referred to as an
operand in an expression must be defined (that is, must have been assigned a
value) at the time the reference is executed.

In an expression, an integer operand must be defined with an integer value,
rather than a statement number. (See "ASSIGN Statement" on page 59.) If a
character string or a substring is referred to, all of the characters referred to
must be defined at the time the reference is executed.

• The execution of a function reference in a statement must not alter the value of
any other entity within the statement in which the function reference appears.
The execution of a function reference in a statement must not alter the value of
any entity in the common block that affects the value of any other function
reference in that statement.

If a function reference in a statement alters the value of an actual argument of
the function, that argument or any associated entities must not appear
elsewhere in the statement. For example, the following statements are
prohibited if the reference to the function F defines I or if the reference to the
function G defines X:

A(I) = F(I)

Y = G(X) + x

The data type of an expression in which a function reference appears does not
affect the evaluation of the actual arguments of the function.

Chapter 4. VS FORTRAN Expressions 35

• Any array element reference requires the evaluation of its subscript. The data
type of an expression in which an array reference appears does not affect, nor
is it affected by, the evaluation of the subscript.

• Any execution of a substring reference requires the evaluation of its substring
expressions. The data type of an expression in which a substring name appears
does not affect, nor is it affected by, the evaluation of the substring
expressions.

Arithmetic Expressions

Arithmetic Operators

The simplest arithmetic expression consists of a primary, which may be a single
constant, name of a constant, variable, array element, function reference, or
another expression enclosed in parentheses. The primary may be either integer,
real, or complex.

In an expression consisting of a single primary, the type of the primary is the type
of the expression. Examples of arithmetic expressions are shown in Figure 5.

Primary Type of Primary Type Length

3 Integer constant Integer 4

A Real variable Real 4

3.14D3 Real constant Real 8

3.14D3 Double precision constant Double 8
precision

(2.0,5.7) Complex constant Complex 8

SIN (X) Real function reference Real 4

(A*B+C) Parenthesized real expression Real 4

Figure S. Examples of Arithmetic Expressions

More complicated arithmetic expressions containing two or more primaries may be
formed by using arithmetic operators that express the computation(s) to be
performed.

The arithmetic operators are shown in Figure 6.

36 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

Arithmetic
Operator Definition

** Exponentiation

* Multiplication

/ Division

+ Addition (or unary plus)

- Subtraction (or unary minus)

Figure 6. Arithmetic Operators

Rules for Constructing Arithmetic Expressions

The following are the rules for constructing arithmetic expressions that contain
arithmetic operators:

All desired computations must be specified explicitly. That is, if more than one
primary appears in an arithmetic expression, they must be separated from one
another by an arithmetic operator. For example, the two variables A and Bare
not multiplied if written:

AB

In fact, AB is regarded as a single variable with a two-letter name.

If multiplication is desired, the expression must be written as follows:

A*B or B*A

No two arithmetic operators may appear consecutively in the same expression.
For example, the following expressions are invalid:

A*/B and A*-B

The expression A *-B could be written correctly as

A*(-B)

Two asterisks (**) designate exponentiation, not two multiplication operations.

Order of Computation

In the evaluation of expressions, priority of the operations is shown in
Figure 7.

Chapter 4. VS FORTRAN Expressions 37

Operation Hierarchy

Evaluation of functions 1st

Exponentiation (**) 2nd

Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th

Figure 7. Hierarchy of Arithmetic Operations

Note: A unary plus or minus has the same hierarchy as a plus or minus in addition
or subtraction.

If two or more operators of the same priority appear successively in the expression,
the order of priority of those operators is from left to right, except for successive
exponentiation operators, where the evaluation is from right to left.

Consider the evaluation of the expression in the assignment statement:

RESULT= A*B+C*D**I

1. A*B Call the result X (mu~tiplication) (X+C*D**I)

2. D**I Call the result Y (exponentiation) (X+C*y)

3. C*Y Call the result Z (multiplication) (X+Z)

4. X+Z Final operation (addition)

The expression:

A**B**C

is evaluated as follows:

1. B * * C Call the result Z.

2. A**Z Final operation.

Expressions with a unary minus are treated as follows:

A=-B is treated as A=O-B

A=-B*C is treated as A=-(B*C)

A=-B+C is treated as A=(-B)+C

38 VS FORTRAN Language and Library Reference

Because * has higher precedence
than -

Because - has equal precedence
to +

o

o

o

o

o

Use of Parentheses in Arithmetic Expressions

Because the order of evaluation (and, consequently, the result) of an expression
can be changed through the use of parentheses, refer to Figure 8, Figure 9, and
Figure 10 to determine the type and length of intermediate results. Where
parentheses are used, the expression contained within the most deeply nested
parentheses (that is, the innermost pair of parentheses) is evaluated first. A
parenthesized expression is considered a primary.

For example, the expression,

B/((A-B)*C)+A**2

is effectively evaluated in the following order:

1. A-B Call the result W B/(W*C)+A**2

2. W*C Call the result X B/X+A**2

3. B/X Call the result Y Y+A**2

4. A**2 Call the result Z Y+Z

5. Y+Z Final operation

Type and Length of the Result of Arithmetic Expressions

The type and length of the result of an operation depend upon the type and length
of the two operands (primaries) involved in the operation.

Figure 8 shows the type and length of the result of adding, subtracting,
multiplying, or dividing when the first operand is an integer.

Figure 9 shows the type and length of the result of adding, subtracting,
multiplying, or dividing when the first operand is real.

Figure 10 shows the type and length of the result of adding, subtracting,
multiplying, or dividing when the first operand is complex.

Note: Except for a value raised to an integer power, if two operands are of
different type and length, the operand that differs from the type and/or length of
the result is converted to the type and/or length of the result. Thus the operator
operates on a pair of operands of matching type and length.

A negative operand (either real or integer) may not have a real exponent.

When an operand of real or complex type is raised to an integer power, the integer
operand is not converted. The resulting type and length match the type and length
of the base.

Chapter 4. VS FORTRAN Expressions 39

FIRST
OPERAND

InteJer InteJer
(2 (4

o
SECOND
OPERAND

I
InteJer

(2 I
InteJer

(2
InteJer

(4

InteJer
(4

InteJer
(4

InteJer
(4

Real 00 Real
(4) (4) (4)

Real D!rJ Real
(8) (8) (8)

I II I
Real Real [J![J (16) (16) (16)

Complex
(8)

Complex
(8)

Complex
(8)

Complex
(16)

Complex
(16)

Complex
(16)

Complex
(32)

Complex
(32)

Complex
(32)

Figure 8. Type and Length of Result Where the First Operand Is Integer

o
40 VS FORTRAN Language and Library Reference

o FIRST
OPERAND

Real Real ~ (4) (8) (16)
SECOND
OPERAND

I II InteJer Real

I []U I Real

I (2 (4) (8) (16)

I I InteJer Real Real Real
(4 (4) (8) (16)

I I
Real Real Real Real
(4) (4) (8) (16)

Real Real Real [Jill] (8) (8) (8) (16)

I I
Real [Jill] [][] I Real

I (16) (16) (16) (16)

o Complex
(8)

Complex
(8)

Complex
(16)

Complex
(32)

Complex
(16)

Complex
(16)

Complex
(16)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Figure 9. Type and Length of Result Where the First Operand Is Real

o
Chapter 4. VS FORTRAN Expressions 41

FIRST
OPERAND

Complex Complex Complex
(8) (16) (32) o

SECOND
OPERAND

I
InteJer

(2 I
Complex

(8)
Complex

(16)
Complex

(32)

InteJer
(4

Complex
(8)

Complex
(16)

Complex
(32)

Real Complex Complex Complex
(4) (8) (16) (32)

Real Complex Complex Complex
(8) (16) (16) (32)

I I
Real Complex Complex Complex
(16) (32) (32) (32)

Complex
(8) .

Complex
(8)

Complex
(16)

Complex
(32) o

Complex
(16)

Complex
(16)

Complex
(16)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Complex
(32)

Figure 10. Type and Length of Result Where the First Operand Is Complex

o
42 VS FORTRAN Language and Library Reference

o

o

o

Examples of Arithmetic Expressions

Assume that the type of the following variables has been specified as indicated
below:

NAME TYPE LENGTH

I, J, K Integer variables 4 I ' 2, 2 I
C Real variable 4

D Complex variable G

Then the expression I*J/C**K+D is evaluated as follows:

Subexpression Type and Length

I*J (Call the result X)
C**K (Call the result Y)
X/Y (Call the result Z)

Integer of length 4
Real of length 4
Real of length 4

(X is converted to real of length 4 before division is performed.)

IBM Extension

Z+D Complex of length 16

(Z is expanded to the real variable of length 8, and a complex quantity of length
16 (call it W) is formed, in which the real part is the expansion of Z and the
imaginary part is zero. Then the real part of W is added to the real part of D, and
the imaginary part of W is added to the imaginary part of D.)

Thus, the final type of the entire expression is complex of length 16, but the
types of the intermediate expressions change at different stages in the evaluation.

1...-__________ End of IBM Extension __________

Depending on the values of the variables involved, the result of the expression
I*J*C might be different from I*C*J. This may occur because of the number of
conversions performed during the evaluation of the expression.

Because the operators are the same, the order of the evaluation is from left to right.
With I*J*C, a multiplication of the two integers I*J yields an intermediate result of
integer type and length 4. This intermediate result is converted to a real type of
length 4, and multiplied with C of real type of length 4, to yield a real type of
length 4 result.

With I*C*J, the integer I is converted to a real type of length 4, and the result is
multiplied with C of real type of length 4, to yield an intermediate result of real

Chapter 4. VS FORTRAN Expressions 43

type of length 4. The integer J is converted to a real type of length 4, and the
result is multiplied with the intermediate result to yield a real type of length 4
result.

Evaluation of I*J*C requires one conversion and I*C*J requires two conversions.
The expressions require that the computation be performed with different types of
arithmetic. This may yield different results.

When division is performed using two integers, any remainder is truncated (without
rounding) and an integer quotient is given. If the mathematical quotient is less than
1, the answer is O. The sign is determined according to the rules of algebra. For
example:

I J I/J

9 2 4
-5 2 -2
1 -4 0

Character Expressions

The simplest form of a character expression is a character constant, a character
variable reference, a character array element reference, a character substring
reference, or a character function reference. More complicated character
expressions may be formed by using one or more character operands, together with
character operators and parentheses.

The character operator is shown in Figure 11.

Character
Operator Definition

II Concatenation

Figure 11. Character Operator

The concatenation operation joins the operands in such a way that the last
character of the operand to the left immediately precedes the first character of the
operand to the right. For example:

'AB'//'CD' yields the value of 'ABCD'

The result of a concatenation operation is a character string consisting of the values
of the operands concatenated left to right, and its length is equal to the sum of the
lengths of the operands.

Note: Except in a CHARACTER assignment statement, the operands of a
concatenation operation must not have inherited length. That is, their length
specification must not be an asterisk (*) unless the operand is the name of a
constant. See "Explicit Type Statement" on page 103.

44 VS FORTRAN Language and Library Reference

0",,,·
,I

o

o

o

o

Use of Parentheses in Character Expressions

Parentheses have no effect on the value of a character expression. For example, X
has the value' AB', Y has the value 'CD', and Z has the value 'EF',

then the two ~xpressions:

x//y//z

x//(y//Z)

both yield the same result, the value 'ABCDEF.'

Valid Character Expressions:

Substring:

ST 1 311 (I) = CVAR 1 (: I)

Function Reference:

ST1314(IVAR1) = CHAR(IVAR1)

Relational Expressions

Relational expressions are formed by combining two arithmetic expressions with a
relational operator, or two character expressions with a relational operator.

The six relational operators are shown in Figure 12.

Relational
Operator Definition

.GT . Greater than

. GE. Greater than or equal to

.LT . Less than

. LE. Less than or equal to

.EQ. Equal to

.NE. Not equal to

Figure 12. Relational Operators

Relational operators:

• Express a condition that can be either true or false.

• May be used to compare two arithmetic expressions (except complex) or two
character expressions. Only the .EQ. and .NE. operators may be used to
compare an arithmetic expression with a complex expression. If the two
arithmetic expressions being compared are not of the same type or length, they
are converted following the rules indicated in Figure 8, Figure 9, and
Figure 10.

Chapter 4. VS FORTRAN Expressions 45

• In comparisons of arithmetic expressions to character expressions or vice versa
are not allowed.

In the case of character expressions, the shorter operand is considered as being
extended temporarily on the right with blanks to the length of the longer operand.
The comparison is made from left to right, character by character, according to the
collating sequence, as shown in Figure 3 and in Appendix C, "EBCDIC and
ISCII/ ASCII Codes."

Examples:

Assume that the type of the following variables has been specified as indicated:

Variable Names

ROOT, E
A, I, F
L
C
CHAR

Type

Real
Integer
Logical
Complex
Character of length 10

Then the following examples illustrate valid and invalid relational expressions.

Valid Relational Expressions:

E .LT. I

E**2.7 .LE. (5*ROOT+4)

.5 .GE. (.9*ROOT)

E .EQ. 27.3E+05

CHAR .EQ. 'ABCDEFGH'

C.NE. CMPLX(ROOT,E)

46 VS FORTRAN Language and Library Reference

o

o

o

o

o

O·~~··'
, ,

Invalid Relational Expressions:

C. GE. (2. 7 ,5. 9E3)

L.EQ. (A+F)

E**2 .LT 97.1E1

.GT.9

E*2 .EQ. 'ABC'

Complex quantities can only be compared
for equal or not equal in relational
expressions.

Logical quantities may never be compared by
relational operators.

There is a missing period immediately
after the relational operator.

There is a missing arithmetic expression
before the relational operator.

A character expression may not be compared
to an arithmetic expression.

IBM Extension

Length of a Relational Expression: A relational expression is always
evaluated to a LOGICAL *4 result, but the result can be converted in an
assignment statement to LOGICAL * 1.

End of IBM Extension __________ --J

Logical Expressions

The simplest form of logical expression consists of a single logical primary. A
logical primary can be a logical constant, a name of a logical constant, a logical
variable, a logical array element, a logical function reference, a relational
expression (which may be an arithmetic relational expression or a character
relational expression), or a logical expression enclosed in parentheses. A logical
primary, when evaluated, always has a value of true or false.

More complicated logical expressions may be formed by using logical operators to
combine logical primaries.

Chapter 4. VS FORTRAN Expressions 47

Logical Operators

The logical operators are shown in Figure 13. (A and B represent logical
constants or variables, or expressions containing relational operators.)

Logical
Operator Use Meaning

.NOT. .NOT.A If A is true, then .NOT.A is false; if A is false, then
.NOT.A is true.

.AND. A.AND.B If A and B are both true, then A.AND.B is true; if
either A or B or both are false, then A.AND.B is
false.

.OR. A.OR.B If either A or B or both are true, then A.OR.B is
true; if both A and B are false, then A.OR.B is
false.

.EQV. A.EQV.B If A and B are both true or both false, then
A.EQV.B is true; otherwise it is false.

.NEQV. A.NEQV.B If A and B are both true or both false, then
A.NEQV.B is false; otherwise it is true.

Figure 13. Logical Operators

The only valid sequences of two logical operators are:

.AND .. NOT .

. OR .. NOT .

. EQV .. NOT .

. NEQV .. NOT.

The sequence .NOT .. NOT. is invalid.

Only those expressions that have a value of true or false when evaluated, may be
combined with the logical operators to form logical expressions.

Examples:

Assume that the types of the following variables have been specified as indicated:

Variable Names

ROOT, E
A, I, F
L, W
CHAR, SYMBOL

Type

Real
Integer
Logical
Character of lengths 3 and 6, respectively

Then the following examples illustrate valid and invalid logical expressions using
both logical and relational operators.

48 VS FORTRAN Language and Library Reference

o

o

o

o

o

Valid Logical Expressions:

(ROOT*A .GT. A) .AND. W
L .AND .. NOT. (1 .GT. F)
(E+5.9E2 .GT. 2*E) .OR. L
.NOT. W .AND .. NOT. L
L .AND .. NOT. W .OR. CHAR//'123'.LT.SYMBOL
(A**F .GT. ROOT .AND .. NOT. 1 .EQ. E)

Invalid Logical Expressions:

A.AND.L A is not a logical expression.

.OR.W .OR. must be preceded by a logical
expression.

NOT. (A.GT.F)

L.AND .. OR.W

.AND.L

There is a missing period before the logical
operator .NOT ..

The logical operators .AND. and .OR. must
always be separated by a logical expression .

. AND. must be preceded by a logical
expression.

Order of Computations in Logical Expressions

In the evaluation of logical expressions, priority of operations involving arithmetic
operators is as shown in Figure 14. Within a hierarchic level, computation is
performed from left to right.

Operation Involving Arithmetic Operators Hierarchy

Evaluation of functions 1 st (highest)

Exponentiation (**) 2nd

Multiplication and division (* and /) 3rd

Addition and subtraction (+ and -) 4th

Relationals ('GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 5th

.NOT. 6th

.AND . 7th

. OR. 8th

.EQV. or .NEQV. 9th

Figure 14. Hierarchy of Operations Involving Arithmetic Operators

In the evaluation of logical expressions, priority of operations involving character
operators is as shown in Figure 15. Within a hierarchic level, computation is
performed from left to right.

Chapter 4. VS FORTRAN Expressions 49

Operation Involving Character Operators Hierarchy

Evaluation of functions 1st (highest)

Concatenation (/ /) 2nd

Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 3th

.NOT. 4th

.AND. 5th

.OR. 6th

.EQV. or .NEQV. 7th

Figure 15. Hierarchy of Operations Involving Character Operators

Example:

Assume the type of the following variables has been specified as follows:

Variable Names Type Length

B,D
A
L,N

REAL
REAL
LOGICAL

4
8
4

The expression

A.GT.D**B.AND .. NOT.L.OR.N

is effectively evaluated in the following order (and from left to right):

1. D**B Call the result W.

Exponentiation is performed because arithmetic operators have a higher
priority than relational operators, yielding a real result W of length 4.

2. A.GT.W Call the result X.

The real variable A of length 8 is compared to the real variable W, which was
extended to a length of 8, yielding a logical result X, whose value is true or
false.

3 .. NOT.L Call the result Y.

The logical negation is performed because .NOT. has a higher priority than
.AND., yielding a logical result Y, whose value is true if L is false and false if L
is true.

4. X.AND.Y Call the result z.

The logical operator .AND. is applied because .AND. has a higher priority
than .OR., to yield a logical result Z, whose value is true if both X and Yare
true and false, if both X and Yare false, or if either X or Y is false.

50 VS FORTRAN Language and Library Reference

o

()

c

o

o

o

5. Z.OR.N

The logical operator .OR. is applied to yield a logical result of true if either Z
or N is true or if both Z and N are true. If both Z and N are false, the logical
result is false.

Note: Calculating the value of logical expressions may not always require that all
parts be evaluated. Functions within logical expressions mayor may not be
invoked. For example, assume a logical function called LGF. In the expression
A.OR.LGF(.TRUE.), it should not be assumed that the LGF function is always
invoked, since it is not always necessary to do so to evaluate the expression when A
is true.

Use of Parentheses in Logical Expressions

Parentheses may be used in logical expressions to specify the order in which the
operations are to be performed. Where parentheses are used, the expression
contained within the most deeply nested parentheses (that is, the innermost pair of
parentheses) is evaluated first.

Example:

Assume the type of the following variables specified as follows:

Variable Names Type Length

B
C
K,L

REAL
REAL
LOGICAL

4
8
4

The expression

.NOT. ((B.GT.C.OR.K) .AND.L)

is evaluated in the following order:

1. B.GT.C Call the result X.

B is extended to a real variable of length 8 and compared with C of length 8
yielding a logical result X of length 4 whose value is true if B is greater than C
or false if B is less than or equal to C.

2. X.OR.K Call the result Y.

The logical operator .OR. is applied to yield a logical result of Y, whose value
is true if either X or K is true or if both X and K are true. If both X and K are
false, the logical result Y is false.

3. Y.AND.L Call the result Z.

The logical operator .AND. is applied to yield a logical result Z, whose value is
true if both Y and L are true and false if both Y and L are false or if either Y
or L is false.

Chapter 4. VS FORTRAN Expressions 51

4 .. NOT.Z

The logical negation is performed to yield a logical result, whose value is true if
Z is false and false if Z is true.

A logical expression to which the logical operator .NOT. applies must be enclosed
in parentheses, if it contains two or more quantities. Otherwise, because of the
higher precedence of the .NOT. operator, it will apply to the first operand of the
relation. For example, assume that the values of the logical variables, A and B, are
false and true, respectively. Then the following two expressions are not equivalent:

.NOT.(A.OR.B)

.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is true; but
.NOT.(.TRDE.) is the equivalent of .FALSE .. Therefore, the value of the first
expression is false.

In the second expression, .NOT.A is evaluated first. The result is true; but
.TRDE .. OR.B is the equivalent of .TRUE .. Therefore, the value of the second
expression is true.

The lengths of the results of the various logical operations are shown in Figure 16.
(The result of logical operations is always logical of length 4.)

Second
Operand

First
Operand

Logical
(1)

Logical
(4)

Logical
(1)

Logical
(4)

Logical
(4)

Logical
, (4)

Logical
(4)

Logical
(4)

Figure 16. Type and Length of the Result of Logical Operations

52 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

Chapter 5. VS FORTRAN Statements

Source programs consist of a set of statements from which the compiler generates
machine instructions and allocates storage for data areas. A VS FORTRAN
statement performs one of three functions:

• It performs certain executable operations (for example, addition,
multiplication, branching).

• It specifies the nature of the data being handled.

• It specifies the characteristics of the source program.

VS FORTRAN statements are either executable or nonexecutable.

VS FORTRAN Statement Categories

Statements are divided into the following categories according to what they do:

Assignment statements

• Control statements

• DATA statement

IBM Extension

• Debug statements

1.....-_________ End of IBM Extension __________

Input/ output statements

PROGRAM statement

Specification statements

Subprogram statements

Chapter 5. VS FORTRAN Statements 53

Assignment Statements

Control Statements

DATA Statement

Debug Statements

IBM Extension

• VS FORTRAN compiler directive statements

"--__________ End of IBM Extension __________ ---11

There are four types of assignment statements: the arithmetic, character, and
logical assignment statements and the ASSIGN statement. Execution of an
assignment statement assigns a value to a variable. Assignment statements are
executable.

In the absence of control statements, VS FORTRAN statements are executed
sequentially. That is, after one statement has been executed, the statement
immediately following it is executed. Control statements alter this normal sequence
of execution of statements in the program. They are executable. The following are
control statements:

CALL
CONTINUE
DO
END
GO TO

IF (ELSE, ELSE IF, END IF)
PAUSE
RETURN
STOP

The DATA statement assigns initial values to variables, array elements, arrays, and
substrings. It is nonexecutable.

IBM Extension

The debug facility is a programming aid that helps locate errors in a VS
FORTRAN source program. The debug facility traces the flow of execution within
a program, traces the flow of execution between programs, displays the values of
variables and arrays, and checks the validity of subscripts. DISPLAY, TRACE
OFF, and TRACE ON are executable; AT, DEBUG, and END DEBUG are
nonexecutable.

AT
DEBUG
DISPLAY

END DEBUG
TRACE OFF
TRACE ON

"--__________ End of IBM Extension __________ ---11

54 VS FORTRAN Language and Library Reference

c

o

o

o

0''','·', 'I

Input/ Output Statements

PROGRAM Statement

Input/ output (I/O) statements transfer data between two areas of internal storage
or between internal storage and an input/output device. Examples of input/output
devices are card readers, printers, punches, magnetic tapes, disk storage units, and
terminals.

The I/O statements allow the programmer to specify how to process the VS
FORTRAN files at different times during the execution of a program. Except for
the FORMAT statements, these statements are executable.

BACKSPACE
CLOSE
ENDFILE
FORMAT
INQUIRE

DELETE
REWRITE
WAIT

OPEN
PRINT
READ
REWIND
WRITE

IBM Extension

L..-__________ End of IBM Extension __________ ~

Note: The description of the VS FORTRAN input and output statements is made
from the point of view of a VS FORTRAN program. Therefore, words such as
file, record, or OPEN must not be confused with the same words used when
discussing an operating system. (See the description of each I/O statement.)

The PROGRAM statement names the main program. It can only be used in a main
program. It is not required. The PROGRAM statement is nonexecutable.

Specification Statements

The specification statements provide the compiler with information about the
nature of the data in the source program. In addition, they supply the information
required to allocate storage for this data.

The specification statements must follow the PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statement. They may be preceded by a
FORMAT or an ENTRY statement. Specification statements are nonexecutable.

COMMON
DIMENSION
EQUIVALENCE
Explicit type:

COMPLEX, INTEGER,
LOGICAL, REAL,
CHARACTER, and
DOUBLE PRECISION

EXTERNAL
IMPLICIT
INTRINSIC
PARAMETER
SAVE

Chapter 5. VS FORTRAN Statements 55

IBM Extension

NAMELIST

'--__________ End of IBM Extension __________ --"

Subprogram Statements

There are three subprogram statements: FUNCTION, SUBROUTINE, and
BLOCK DATA. There are also intrinsic function procedures and statement
function procedures. The list of intrinsic functions supplied with VS FORTRAN is
in Appendix B, "IBM and ANS FORTRAN Features" on page 351.

Function subprograms differ from subroutine subprograms in the way they are
invoked and in that function subprograms return a value to the calling program,
whereas subroutine subprograms need not return a value.

The function subprogram is a VS FORTRAN subprogram that begins with a
FUNCTION statement. It is independently written and is executed whenever its
name is appropriately referred to in another program. It is called by coding its
name with any necessary parameters. At least one executable statement in the
function subprogram must assign a result to the function name; this value is
returned to the calling program as the result of the function.

The subroutine subprogram is similar to the function subprogram, except that it
begins with a SUBROUTINE statement and does not return an explicit result to
the calling program. The rules for naming function and subroutine subprograms
are similar. They both require an END statement and they both may contain
dummy arguments. Like the function subprogram, the subroutine subprogram can
be a set of commonly used computations, but it need not return any results to the
calling program. The subroutine subprogram is executed whenever its name is
referred to by the CALL statement.

Subprogram statements are nonexecutable.

BLOCK DATA
ENTRY
FUNCTION

Statement function
SUBROUTINE

56 VS FORTRAN Language and Library Reference

o

o

o

o

o

IBM Extension

VS FORTRAN CompHer Directive Statements

The EJECT and INCLUDE statements are IBM extensions that direct the compiler
to start a new page or to insert one or more source statements into the program.
They are not considered part of the VS FORTRAN language.

1.....-__________ End of IBM Extension __________

Order of Statements in a Program Unit

The order of statements in a VS FORTRAN program unit (other than a BLOCK
DATA subprogram) is as follows:

1. PROGRAM or subprogram statement, if any.

2. PARAMETER statements and/or IMPLICIT statements, if any.

3. Other specification statements, if any. (Explicit specification statements that
initialize variables or arrays must follow other specification statements that
contain the same variable or array names.)

4. For the order of data statements, see Figure 17 on page 58.

5. Statement function definitions, if any.

6. Executable statements.

7. END statement.

For the order of DEBUG statements, see "DEBUG Statement" on page 82.

Within the specification statements of a program unit, IMPLICIT statements must
precede all other specification statements except PARAMETER statements. Any
specification statement that specifies the type of a name of a constant must precede
the PARAMETER statement that defines that particular name of a constant; the
PARAMETER statement must precede all other statements containing the names
of constants that are defined in the PARAMETER statement.

FORMAT and ENTRY statements may appear anywhere after the PROGRAM or
subprogram statement and before the END statement. The ENTRY statement,
however, may not appear between a block IF statement and its corresponding END
IF statement or within the range of a DO. DATA statements must follow the
IMPLICIT statements and specification statements.

Chapter 5. VS FORTRAN Statements 57

IBM Extension

A NAMELIST statement declaring a NAMELIST name must precede the use of
that name in any input/output statement. Its placement is as indicated for other
specification statements.

a..._ __________ End of IBM Extension __________ -'

The order of statements in BLOCK DATA subprograms is discussed in "BLOCK
DATA Statement" on page 69. Figure 17 shows a diagram of the order of
statements.

• The vertical lines in the figure delineate varieties of statements that may be
interspersed. For example, FORMAT statements may be interspersed with
statement function statements and executable statements.

Horizontal lines delineate varieties of statements that must not be interspersed.
For example, statement function statements must not be interspersed with
executable statements.

PROGRAM, FUNCTION, SUBROUTINE, OR BLOCK DATA
STATEMENT

IMPLICIT
PARAMETER Statements

FORMAT Statements
COMMENT Other
LINES and Specification

Statements
ENTRY

Statement
Statements Function

DATA Statements
Statements

Executable
Statements

END Statement

Figure 17. Order of Statements and Comment Lines

VS FORTRAN Statement Descriptions

The rules for coding each VS FORTRAN statement are described in this section, in
alphabetic sequence. Examples are included. For additional examples and
explanations, see VS FORTRAN Programming Guide.

Notes:

2

Comments and statement numbers are included because, although they are
not actual statements, they are integral parts of VS FORTRAN programs.

Most described statements begin at the top of a page.

58 VS FORTRAN Language and Library Reference

o

c

o

o

o

Arithmetic IF Statement

ASSIGN Statement

See "IF Statements" on page 145.

The ASSIGN statement assigns a number (a statement number) to an integer
variable. See also "Statement Numbers" on page 236.

~ S~mx
~SIGN sin TO ;

sin

;

is the number of an executable statement or a FORMAT statement in the
same program unit as the ASSIGN statement.

is the name of an integer variable (not an array element) of length 4 that is
assigned the statement number stn.

The statement number must be the number of a statement that appears in the same
program unit as the ASSIGN statement. The statement number must be the
number of an executable statement or a FORMAT statement.

Execution of ASSIGN is the only way that a variable can be defined with a
statement number.

A variable must have been defined with a statement number when it is referred to
in an assigned GO TO statement or as a format identifier in an input or output
statement. An integer variable defined with a statement number may be redefined
with the same or a different statement number or an integer value.

If stn is the statement number of an executable statement, i can be used in an
assigned GOTO statement.

If stn is the statement number of a FORMAT statement, i can be used as the
format identifier in a READ, WRITE, or PRINT statement with FORMAT control.

The value of i is not the integer constant represented by stn and cannot be used as
such. To use i as an integer, it must be assigned an integer value by an assignment
or input statement. This assignment can be done directly or through
EQUIVALENCE, COMMON, or argument passing.

Valid Example:

These program fragments illustrate the use of the ASSIGN statement to assign the
statement numbers of both an executable statement and a FORMAT statement to
variables.

10 FORMAT (1X, I4)

Chapter 5. VS FORTRAN Statements 59

ASSIGN

1. Assign statement 30 to integer variable LABEL.

ASSIGN 30 TO LABEL

2. Assign format statement number 10 to integer variable IFMT.

ASSIGN 10 TO IFMT
NUM = 50

3. Transfer to statement 30.

GOTO LABEL

4. Write using the format at statement 10.

20 WRITE(5, IFMT) NUM
30 PRINT *, NUM

END

Invalid Example:

This program fragment illustrates an invalid use of the ASSIGN statement. The
variable set by an ASSIGN statement does not have the integer value
representation of the statement number.

ASSIGN 10 TO LABEL
10 NUM = 10

The following expression is invalid. The results are unpredictable.

IF (NUM .EQ. LABEL) GOTO 20
NUM = 20

20 CONTINUE
END

Assigned GO TO Statement

Assignment Statements

See "GO TO Statements" on page 142.

This VS FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies a replacement operation rather than
equality. That is, the expression to the right of the equal sign is evaluated, and the
resulting value replaces the current value of the variable, array element, character
substring, or character variable to the left of the equal sign.

60 VS FORTRAN Language and Library Reference

o

o

o

o

o

Assignment

a
is a variable, array element, character substring, or character variable.

b
is an arithmetic, logical, or character expression.

An assignment statement is used for the results of calculations. The result of
evaluating the expression replaces the current value of a designated variable, array
element, or character substring. There are three assignment statements:
arithmetic, logical, and character.

Arithmetic Assignment Statement

If b is an arithmetic expression, a must be an integer, real, or complex variable or
an array element.

Figure 18 shows the rules for conversion in arithmetic assignment statements, a=b,
where the type of b is integer or real.

Figure 19 shows the rules for conversion in arithmetic assignment statements, a=b,
where the type of b is complex.

~he correspondence between type declarations and data item lengths in bytes is
described in Figure 20 on page 107.

Character Assignment Statement

If b is a character expression, a must be a character variable, character array
element, or character substring.

N one of the character positions being defined in a must be referenced in b directly
or through associations of variables (that is, using COMMON, EQUIVALENCE,
or argument passing).

The lengths of a and b may be different. The characters of b are moved from left
to right into the corresponding character positions of a. If a has more positions
than there are characters in b, the rightmost positions of a are filled with blanks. If
a has fewer positions than there are characters in b, only the leftmost characters of
b are moved to fill the positions of a.

A character variable, character array element, or character substring (a) may also
be assigned a value by a WRITE statement to an internal file with unit=a.

Logical Assignment Statement

If b is a logical expression, a must be a logical variable or a logical array element.
The value of b must be either true or false.

Chapter s. VS FORTRAN Statements 61

Assignment

Type

I I I I I of b I INTEGER*2 I REAL*4 I REAL*8 REAL*16 o
I INTEGER*4 I REAL DOUBLE

Type PRECISION
of a INTEGER

IINTEGER*2
I Assign Fix and Fix and Fix and

IINTEGER*4 I
assign assign assign

INTEGER

I I REAL*4 Float and Assign Real Real
assign assign assign

REAL

I
REAL*8

I
DP float DP extend Assign DP assign
and assign and assign

DOUBLE
PRECISION

I I
QP float QP extend QP extend Assign

REAL*16 and assign and assign and assign

ICOMPLEX*8
I

Float and Assign to Real assign Real assign
assign to real part; real part; real part;
real part; imaginary imaginary imaginary
imaginary part set part set part set

COMPLEX part set to 0 to 0 to 0 to 0

DP float and DP extend Assign to DP assign

ICOMPLEX* 16 1
assign to and assign real part; real part;
real part; to real part; imaginary imaginary
imaginary imaginary part set part set
part set to 0 part set to 0 to 0 to 0

QP float and QP extend QP extend Assign real

ICOMPLEX* 32 1
assign to and assign and assign part;
real part; to real part; real part; imaginary
imaginary imaginary imaginary part set
part set to 0 part set to 0 part set to 0 to 0

Figure 18. Conversion Rules for the Arithmetic Assignment Statement a=b, Where Type of b Is Integer or Real o
62 VS FORTRAN Language and Library Reference

Assignment

o Type

I I I I I I of b COMPLEX*8 COMPLEX*16 COMPLEX*32

Type COMPLEX
of a

! INTEGER*2 I Fix and Fix and Fix and
assign real assign real assign real

! INTEGER*4 I
part; part; part;
imaginary imaginary imaginary
part not used part not used part not used

INTEGER

I I
Assign real Real assign, Real assign,

REAL*4 part; real part; real part;
imaginary imaginary imaginary
part not part not part not

REAL used used used

! I
DP extend and Assign real DP assign

REAL*8 assign real part; real part;
part; imaginary imaginary

DOUBLE imaginary part not part not
PRECISION part not used used used

o QP extend QP extend Assign real

! REAL*16 I
and assign and assign part;
real part; real part; imaginary
imaginary imaginary part not
part not used part not used used

!COMPLEX*8 I
Real assign Real assign

Assign real and real and
imaginary imaginary
parts parts

COMPLEX

DP extend DP assign

!COMPLEX* 16 1
and assign Assign real and
real and imaginary
imaginary parts
parts

QP extend QP extend

'COMPLEX* 32 1
and assign and assign Assign
real and real and
imaginary imaginary
parts parts

o Figure 19. Conversion Rules for the Arithmetic Assignment Statement a=b, Where Type of b Is Complex

Chapter 5. VS FORTRAN Statements 63

Assignment

Notes to Figures: IBM extensions are shown with inner boxes in the figures. For
clarity of presentation, the extensions are not marked in the following definitions.
Terms in the figures are defined as follows:

Assign

Real assign

DP assign

Fix

Float

DP float

DPextend

QP float

QP extend

Examples:

Transmit the expression value without change. If the expression
value contains more significant digits than the variable a can hold,
the value assigned to a is unpredictable.

Transmit to a as much precision of the most significant part of the
expression value as REAL *4 data can contain.

Transmit as much precision of the most significant part of the
expression value as double precision (REAL * 8) data can contain.

Truncate the fractional portion of the expression value and
transform the result to an integer of 4 bytes in length. If the
expression value contains more significant digits than an integer 4
bytes in length can hold, the value assigned to the integer variable
is unpredictable.

Transform the integer expression value to a REAL*4 number,
retaining in the process as much precision of the value as a
REAL *4 number can contain.

Transform the integer expression value to a double precision
(REAL *8) number.

Extend the real value to a double precision (REAL*8) number.

Transform the integer expression value to a REAL * 16 number.

Extend the real value to a REAL * 16 number.

Assume the type of the following data items has been specified:

NAME TYPE LENGTH

I , J, K Integer variables 4, 40

A, B, C, D Real variables 4, 4, 8, 8

E Complex variable 8

F(l), ... ,F(S) Real array elements 4

G, H Logical variables 4, 4

CHAR1 Character variable 10

The following examples illustrate valid assignment statements using constants,
variables, and array elements as defined above.

64 VS FORTRAN Language and Library Reference

o

o

o

Assignment

Statement Description

A=B The value of A is replaced by the current value of o
B.

K=B The value of B is converted to an integer value,
and the value of K is replaced by as much as can
be held in 2 bytes.

A= I The value of I is converted to a real value, and
replaces the value of A.

1=1+1 The value of I is replaced by the value of I + 1.

E = I**J+D I is raised to the power J and the result is
converted to a real value to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the
complex variable is set to zero.

A= C*D The most significant part of the product of C and
D replaces the value of A.

A=E The real part of the complex variable E replaces
the value of A.

E=A The value of A replaces the value of the real part
of the complex variable E; the imaginary part is set
equal to zero.

G= .TRUE. The value of G is replaced by the logical value

o true.

H= .NOT.G If G is true, the value of H is replaced by the
logical value false. If G is false, the value of H is
replaced by the logical value true.

G = 3 .. GT.I The value of I is converted to a real value; if the
real constant 3. is greater than this result, the
logical value true replaces the value of G. If 3. is
not greater than the converted I, the logical value
false replaces the value of G.

E = (1.0,2.0) The value of the complex variable E is replaced by
the value of the complex constant (1.0,2.0). The
statement E = (A,B), where A and B are real
variables, is invalid; The mathematical function
subprogram CMPLX can be used for this purpose.
See Appendix B, "IBM and ANS FORTRAN
Features" on page 351.

F(l) = A The value of element 1 of array F is replaced by
the value of A.

E = F(5) The real part of the complex constant E is replaced
by the value of array element F(5). The imaginary
part is set equal to zero.

o
Chapter 5. VS FORTRAN Statements 65

Assignment

AT Statement

Statement Description

C = 99999999.0 Even though C is of length 8, the constant having
no exponent is considered to be of length 4. Thus
the number will not have the accuracy that may be
intended. If the basic real constant were entered
as 99999999.0DO, the converted value placed in
the variable C would be a closer approximation to
the entered basic real decimal constant, because
15 decimal digits can be represented in 8 bytes.

CHARI = CHARI contains the value' ABCDEFGHIJ' since
'ABCDEFGHIJ' CHARI is of length 10, and the constant is of

length 10.

CHARI = 'ABC' CHARI contains the value 'ABCbbbbbbb' since
CHAR 1 is of length 10 and the constant is only of
length 3; thus CHARI is padded with blanks.

CHARI = CHARI contains the value' ABCDEFGHIJ' since
, ABCDEFGHIJKL' CHARI is of length 10. and the constant is of

length 12; the constant is truncated.

CHARI = CHARI contains the value 'FGHIJABCDE', the
'FGHIJ' I I' ABCDE' result of the concatenation operation.

IBM Extension

The AT statement identifies the beginning of a debug packet and indicates the
point in the program at which debugging is to begin.

stn
is the number of an executable statement in the program unit or function or
subroutine subprogram to be debugged.

The debugging operations specified within the debug packet are performed prior to
the execution of the statement indicated by the statement number (stn) in the AT
statement.

The statement number cannot be specified in another debug packet.

There must be one AT statement for each debug packet; there may be many debug
packets for one program or subprogram.

The AT statement identifies the beginning of a debug packet and the end of the

'OV' .. '" ._-

o

preceding packet (if any) unless this is the last packet, in which case it is ended by 0, .
the END DEBUG statement.

66 VS FORTRAN Language and Library Reference

o

o

o

AT

For more on debug packets and for examples of the AT statement, see "DEBUG
Statement" on page 82.

"---__________ End of IBM Extension __________ --'

BACKSPACE Statement

The BACKSPACE statement, when first issued, positions a sequentially accessed
file to the beginning of the VS FORTRAN record last written or read. A
subsequent BACKSPACE statement will reposition the file to the beginning of the
preceding record.

The BACKSPACE statement reestablishes the position of a keyed file to a point
prior to the current file position. Following the BACKSPACE statement, you can
use a sequential retrieval statement to read the record to which the file was
positioned.

Syntax

BACKSPACE un

BACKSPACE ([UNIT =]un [,IOSTAT=ios] [,ERR=stn])

UNIT=un
un is the reference number of an I/O unit. It is an integer expression of
length 4, whose value must be zero or positive. un is required.

If the second form of the statement is used, un can optionally be preceded by
UNIT =. If UNIT = is not specified, un must appear first in the statement.
The other parameters may appear in any order. If UNIT = is specified, all
the parameters can appear in any order.

IOSTAT=;os
is optional. ios is an integer variable or an integer array element of length 4.
ios is set positive if an error is detected; it is set to zero if no error is
detected. VSAM return and reason codes are placed in ios.

ERR=sfn
stn is the number of an executable statement in the same program unit as the
BACKSPACE statement. If an error is detected, control is transferred to
stn.

Valid BACKSPACE Statements:

BACKSPACE un

BACKSPACE (un,ERR=stn)

BACKSPACE (UNIT=un,IOSTAT=ios,ERR=stn)

BACKSPACE (ERR=stn,UNIT=un)

BACKSPACE (UNIT=2*IN+2)

BACKSPACE (IOSTAT=IOS,ERR=99999,UNIT=2*IN-10)

Chapter 5. VS FORTRAN Statements 67

BACKSPACE

Invalid BACKSPACE Statements:

BACKSPACE UNIT=un

BACKSPACE un,ERR=stn

BACKSPACE (ERR=stn,un)

UNIT= is not allowed without the
parentheses.

Parentheses must be specified.

UNIT= must be specified.

When the BACKSPACE statement is encountered, the unit specified by un must
be connected to an external file for sequential or keyed access. (See VS
FORTRAN Programming Guide.) If the unit is not connected, an error is detected.

The external file connected to the unit un must exist; otherwise, an error is
detected. (The existence of a file can be determined with the INQUIRE statement.
exs must have the value true. See "INQUIRE Statement" on page 154.)

A BACKSPACE statement positions an external file connected for sequential
access to the beginning of the preceding record. If there is no preceding record, the
BACKSP ACE statement has no effect. The BACKSPACE statement must not be
used with external files using list-directed formatting.

A BACKSPACE statement for a SYSIN file has no effect.

An external file connected for sequential access can be extended if the execution of
an END FILE statement or the detection of an end-of-file is immediately followed
by the execution of a BACKSPACE and a WRITE statement on this file. (See
"READ Statement-Formatted with Sequential Access" on page 192.)

If the external file connected for sequential access is at the end-of-file, either after
an END FILE operation or after a READ that resulted in end-of-file, two
BACKSPACE statements are necessary to position the data set to the beginning of
its last logical record. One BACKSPACE may be followed by a WRITE to extend
the data set.

IBM Extension

A BACKSPACE issued to a file connected for keyed access positions the file to the
beginning of the first record whose key value is the same as that in the record
which precedes the current file position. If there is no preceding record, the file
position remains at the beginning of the file.

The BACKSPACE statement must not be used with external files written using
NAMELIST. If it is used, the result is unpredictable.

The BACKSPACE statement may be used with asynchronous READ and WRITE
statements provided that any input or output operation on the file has been
completed by the execution of a WAIT statement. A WAIT statement is not
required to complete the BACKSPACE operation.

"-__________ End of IBM Extension __________ --'

Transfer is made to the statement number specified by the ERR parameter if an
error is detected. If IOSTAT=ios is specified, a positive integer value is assigned to
ios when an error is detected. Execution continues with the statement number

68 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

BLOCK DATA

specified by the ERR parameter (if present) or with the next statement if the ERR
parameter is not specified. If the ERR parameter and the lOST AT parameter are
both omitted, program execution is terminated when an error is detected.

BLOCK DATA Statement

The BLOCK DATA statement names a block of data.

~ S~w
BLOCK DATA [name]

name
is the name of the block data subprogram. This name is optional. It must
not be the same as the name of another subprogram, a main program, or the
common block name in the executable program. There can only be one
unnamed block data subprogram in an

To initialize variables in a named common block, a separate subprogram must be
written. This separate subprogram contains only the BLOCK DATA, IMPLICIT,
PARAMETER, DATA, COMMON, DIMENSION, SAVE, EQUIVALENCE, and
END statements, comment lines, and explicit type specification statements
associated with the data being defined. This subprogram is not called; its presence
provides initial data values for named common blocks. Data may not be initialized
in unnamed common blocks.

The BLOCK DATA statement must appear only as the first statement in the
subprogram. Statements that provide initial values for data items cannot precede
the COMMON statements that define those data items.

Any main program or subprogram using a named common block must contain a
COMMON statement defining that block. If initial values are to be assigned, a
block data subprogram is necessary.

A particular common block may not be initialized in more than one block data
subprogram.

Entities not in a named common block must not be initialized and must not appear
in a DIMENSION, EQUIVALENCE, or type statement in a block data
subprogram.

All elements of a named common block must be listed in the COMMON statement,
even though they are not all initialized. For example, the variable A in the
COMMON statement in the following block data subprogram does not appear in
the DATA statement.

Example 1:

BLOCK DATA
COMMON /ELN/C,A,B
COMPLEX C
DATA C/(2.4,3.769)/,B/1.2/
END

Chapter 5. VS FORTRAN Statements 69

BLOCK DATA

Block IF Statement

CALL Statement

Data may be entered into more than one common block in a single block data
subprogram.

Example 2:

BLOCK DATA VALUE1
COMMON /ELN/ C,A,B
COMMON /RMG/ Z,Y
COMPLEX C
DOUBLE PRECISION Z
DATA C /(2.4, 3.769)/
DATA B /1.2/
DATA Z /7.64980825DO/
END

As a result of the operation in this example, in BLOCK DATA named V ALVEI,

COMMON/ELN/C,A,B

will have the complex variable C real part initialized to 2.4 and the imaginary part
initialized to 3.769. The variable A will not be initialized and B will be initialized
to 1.2.

COMMON/RMG/Z,Y

will have the double precision variable Z initialized with the double precision
constant 7.64980825 and Y will not be initialized.

See "IF Statements" on page 145.

The CALL statement:

• Transfers control to a subroutine subprogram

• Evaluates actual arguments that are expressions

• Associates actual arguments with dummy arguments

j: S~mx
~ALL name[([arg 1 [,arg2J ...])]

name
is the name of a subroutine subprogram or an entry point. This name may
be a dummy argument in a FUNCTION,SUBROUTINE, or ENTRY
statement.

70 VS FORTRAN Language and Library Reference

o

o

o

o

arg

CALL

is an actual argument that is being supplied to the subroutine subprogram.
The argument may be a variable, array element or array name, a constant, an
arithmetic, logical, or character expression, a function or subroutine name, or
an asterisk (*) followed by the statement number of an executable statement
that appears in the same program unit as the CALL statement.

If no actual argument is specified, the parentheses may be omitted.

The CALL statement transfers control to the subroutine subprogram and replaces
the dummy variables with the values of the actual arguments that appear in the
CALL statement.

The CALL statement can be used in a main program, a function subprogram, or a
subroutine subprogram, but a subprogram must not refer to itself directly or
indirectly and must not refer to the main program. A main program cannot call
itself.

If name is a dummy argument in a subprogram containing CALL name, this CALL
statement can be executed only if the subprogram is given control at one of its
entry points where name appears in the list of dummy arguments. (See
"EXTERNAL Statement" on page 108.)

Valid Examples:

For the following examples, assume that the subroutine definitions below have
been defined:

SUBROUTINE SUB1

END

SUBROUTINE SUB2 ()

END

SUBROUTINE SUB3(A, B, C)
REAL A
REAL B(*)
REAL C(2, 5)

END

SUBROUTINE SUB4(LOGL)
LOGICAL LOGL

END

SUBROUTINE SUB5(CHAR)
CHARACTER *(*) CHAR

END

Chapter 5. VS FORTRAN Statements 71

CALL

SUBROUTINE SUB6(SUBX, X, Y, FUNCX)
EXTERNAL SUBX, FUNCX
Z = FUNCX(X, Y)
CALL SUB7(SUBX)

END

SUBROUTINE SUB7(SUBY)
EXTERNAL SUBY

CALL SUBY
END

SUBROUTINE SUB8 (A, B, *, *, *)

IF(A .LT. 0.0) RETURN 1
IF(A .EQ. 0.0) RETURN 2
RETURN 3
END

In the following CALL statement examples that follow, assume that the variable
declarations below have been made:

DIMENSION W(10), X(10), Z(5)
REAL Y
LOGICAL L
CHARACTER*5 C1, C2
EXTERNAL SUBZ, FUNCA

The following CALL statement examples reference the SUBROUTINE
declarations above. Some of the examples reference subroutines with an array
dimensioned differently than in the calling program, a practice that can cause
errors. Variable X in Example 2 below is a case in point. Care must be taken in
referencing elements of array X and array C. See "Subscripts" on page 28 for
information on array layouts.

The next four statements are all valid ways to call a subroutine with no arguments.

CALL SUB1
CALL SUB 1 ()
CALL SUB2
CALL SUB2 ()

Example with a variable and two array names.

CALL SUB3(Y, W, X)

Example with an array element and two array names.

CALL SUB3(Z(3), X, W)

Example with a constant and two array names.

CALL SUB3(2.5, W, X)

Example with an expression and two array names.

CALL SUB3(5*Y, X, W)

72 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

CALL

Example using a logical variable.

CALL SUB4(L)

Example using a logical constant.

CALL SUB4(.FALSE.)

Example using a logical expression.

CALL SUB4(X(5) .EQ. Y)

Example using a character variable.

CALL SUB5 (C1)

Example using a character expression.

CALL SUB5(C1 II C2)

Example of passing a subroutine name and a function name.

CALL SUB6(SUBZ, 1.0, 2.0, FUNCA)

Example of passing statement numbers. Execution will continue at statement
number 100, 200, or 300 if the return code is 1, 2, or 3 respectively. Otherwise,
execution will continue at the statement after the call.

CALL SUB8(X(3), LOG(Z(2)), *100, *200, *300)

Invalid Examples:

The following example results indirectly in a call by one subroutine to itself. This is
invalid, but cannot be checked by the VS FORTRAN compiler.

CALL SUB6(SUB7, X(5), Y, COS)

The following example results in the use of a character variable with implicitly (*)
defined length being used in a concatenation operation. This usage is invalid.

Character Type Statement

SUBROUTINE SUBA(CHAR)
CHARACTER*(*) CHAR
CHARACTER*4 C1
CALL SUBB(CHAR II C1)

RETURN
END

See "Explicit Type Statement" on page 103.

Chapter 5. VS FORTRAN Statements 73

CLOSE

CLOSE Statement

A CLOSE statement disconnects an external file from an input or output unit.

Syntax

CLOSE ([UNIT=]un [,ERR=stn] [,STATUS=sta] [,IOSTAT=ios])

UNIT=un
un is the reference to the number of an 110 unit. It is an integer expression
of length 4, whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR = sin
is optional. stn is the number of an executable statement in the same
program unit as the CLOSE statement. If an error is detected, control is
transferred to stn. If ERR=stn is omitted, execution halts when an error is
detected.

STATUS=sla
is optional. sta is a character expression whose value (when any trailing

. blanks are removed) must be KEEP or DELETE. sta determines the
disposition of the file that is connected to the specified unit.

IOSTAT=;os
is optional. ios is an integer variable or an integer array element of length 4.
ios is set positive if an error is detected; it is set to zero if no error is
detected. VSAM return and reason codes are placed in ios.

Each of the parameters of the CLOSE statement may appear only once. The unit
specifier (un) must appear. All value assignments are made according to the rules
for assignment statements.

Execution of a CLOSE statement that refers to a unit may occur in any program
unit of an executable program and need not occur in the same program unit as the
execution of an OPEN statement referring to that unit. When the CLOSE
statement is encountered, the unit specified by un mayor may not be connected to
a file. If the unit is connected, the file mayor may not exist.

If KEEP is specified for a file that exists, the file continues to exist after the
execution of the CLOSE statement. If KEEP is specified for a file that does not
exist, the file will not exist after the execution of the CLOSE statement. If
DELETE is specified, the file is deleted.

If ST A TUS is omitted, the assumed value is KEEP, unless the file status prior to
execution of the CLOSE statement is SCRATCH, in which case the assumed value
is DELETE. (The STATUS parameter affects only the internal VS FORTRAN
status. The external status is set by the JCL or other system environment and will
not be overridden.)

74 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

CLOSE

After a unit has been disconnected by execution of a CLOSE statement, it may be
connected again within the same executable program to the same file or a different
file.

After a file has been disconnected by execution of a CLOSE statement, it may be
connected again within the same executable program to the same unit or a different
unit provided that the file still exists. (See "OPEN Statement" on page 168.)

When execution ends normally, all units that are connected are closed. Each unit is
closed with the status KEEP, unless the file status prior to termination of execution
was SCRATCH, in which case the unit is closed with the status DELETE.

Assume that the type of the following variables has been specified as follows:

Variable Names Type Length

IN,IACT,Z INTEGER 4

DELETE,ST ATUS CHARACTER 6

and that

DELETE = 'DELETE'

The following statements are valid:

Example 1:

CLOSE (6+IN)

CLOSE(Z*IN+2)

CLOSE (Z*IN+3,STATUS=DELETE)

CLOSE(IOSTAT=IACT,ERR=99999,STATUS='KE'//'EP ',UNIT=O)

Example 2:

STATUS='KEEP'

DELETE=STATUS

CLOSE (UNIT=9,STATUS=DELETE)

CLOSE (UNIT=9,STATUS=STATUS)

CLOSE(UNIT=9,STATUS='KEEP')

Each of these CLOSE statements should execute the same way and give a status of
KEEP.

Chapter 5. VS FORTRAN Statements 75

Comments

Comments

Fixed-Form Input

Free-Form Input

Comments provide documentation for a program. They can be entered in either
fixed form or free form.

Fixed-form comments have the following attributes:

A "C" or an asterisk (*) may appear in column 1, or all blanks may appear in
columns 1 to 72.

• A comment may appear anywhere before the END statement.

IBM Extension

Free-form comments have the following attributes:

• Any line that does not follow a continued line and that has the quotation mark
(") character as its first character is considered a comment.

• A comment line cannot be continued.

Valid Example:

Column: 7

"THIS IS A COMMENT

10D=010.5
GOTO 56
150 A=B+C*(D+E**F-­
G+H-2.*(G+P»
"THIS IS ANOTHER COMMENT

END

Invalid Example:

The following example illustrates that a comment cannot follow a line that needs a
continuation.

Column: 7

"THIS IS A COMMENT

10D=010.5
GOTO 56
150 A=B+C*(D+E**F--
"THIS IS NOT A COMMENT IT IS PART OF THE LAST LINE
G+H-2.*(G+P»
"THIS IS ANOTHER COMMENT

END

End of IBM Extension __________ -'

76 VS FORTRAN Language and Library Reference

o

o

o

COMMON Statement

o

o

o

Comments

The COMMON statement makes it possible for two or more program units to
share storage and to specify the names of variables and arrays that are to occupy
the area.

Syntax

COMMON [/[namel]/] listl[[,] /[namen]/ listn] ...

name

list

is an optional common block name. These names must always be enclosed
in slashes. They cannot be the same as names used in PROGRAM,
SUBROUTINE, FUNCTION, ENTRY, or BLOCK DATA statements.
They cannot be intrinsic function names that are referenced in the same
program unit.

The form / / (with no characters except, possibly, blanks between the
slashes) denotes blank common. If name 1 denotes blank common, the first
two slashes are optional.

The comma preceding the common block name designator / name/is
optional.

is a list of variable names or array names that are not dummy arguments. If
a variable name is also a function name, subroutine name, or entry name, it
must not appear in the list. If the list contains an array name, dimensions
may also be declared for that array. (See "DIMENSION Statement" on
page 87.)

A given common block name may appear more than once in a COMMON
statement, or in more than one COMMON statement in a program unit.

Blank and named common entries appearing in COMMON statements are
cumulative throughout the program unit. Consider the following two COMMON
statements:

COMMON A, B, C /R/ D, E /S/ F

COMMON G, H /S/ I, J /R/R//W

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H, W /R/ D, E, R /S/ F, I, J

IBM Extension

Character and noncharacter data types can be mixed in a common block.

~ __________ End of IBM Extension __________ --"

Chapter 5. VS FORTRAN Statements 77

COMMON

Although the entries in a COMMON statement can contain dimension information,
object-time dimensions may never be used.

The length of a blank common can be extended by using an EQUIVALENCE
statement, but only by adding beyond the last entry.

A common block resides in a fixed location in storage during the execution of a
program. Because of this, all program units of this program refer to data at that
location as defined in the COMMON statements in each program unit.

In the following example, the complex variable, CV, and the real array, RV, refer
to the· same storage locations.

The statement: RV(2) = 1.2 will assign the value of 1.2 to the imaginary part of
CV.

Main Program

COMMON CV
COMPLEX*8 CV

CALL SUB

STOP
END

Subroutine

SUBROUTINE SUB
COMMON RV(2)

RV(2)

RETURN
END

1.2

Blank and Named Common Blocks

Variables and arrays may be placed in separate common blocks by giving distinct
common block names (name). Those blocks that have the same name occupy the
same storage area. The name cannot be the same as the main program name,
subprogram name, or entry name.

IBM Extension

The variables and arrays of a common block may be mixed character and
noncharacter data types.

"--__________ End of IBM Extension __________ ---1

Naming these separate blocks permits a calling program to share one common
block with one subprogram and another common block with another subprogram.
It also makes it easier to document the program.

The differences between blank and named common blocks are:

There is only one blank common block in an executable program, and it has no
name.

There may be many named common blocks, each with its own name.

Blank common blocks may have different lengths in different program units.

78 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

•

•

COMMON

Each program unit that uses a named common block must define it to be of the
same length.

Variables and array elements in a blank common block cannot be assigned
initial values.

Variables and array elements in a named common block may be assigned initial
values by DATA statements in a block data subprogram.

IBM Extension

Variables and array elements in a named common block may be assigned initial
values by explicit type specification statements in a block data subprogram.

1...-__________ End of IBM Extension __________ --'

Variables that are to be placed in a named common block are preceded by the
common block name enclosed in slashes. For example, the variables A, B, and C
are placed in the named common block, HOLD, by the following statement:

COMMON /HOLD/ A,B,C

In a COMMON statement, a blank common block is distinguished from a named
common block by placing two consecutive slashes before the variables (or, if the
variables appear at the beginning of the COMMON statement, by omitting any
common block name). For example,

COMMON A, B, C /ITEMS/ x, Y, Z / / D, E, F

The variables A, B, C, D, E, and F are placed in a blank common block in that
order; the variables X, Y, and Z are placed in the named common block, ITEMS.

Complex Type Statement

See "Explicit Type Statement" on page 103.

Computed GO TO Statement

See "GO TO Statements" on page 142.

CONTINUE Statement

The CONTINUE statement is an executable control statement that takes no action.
It can be used to designate the end of a DO loop, or to label a position in a
program.

Chapter 5. VS FORTRAN Statements 79

CONTINUE

CONTINUE
is a statement that may be placed anywhere in the source program (where an O.·!,
executable statement may appear) without affecting the sequence of

DATA Statement

execution. It may be used as the last statement in the range of a DO loop in
order to avoid ending the DO loop with an unconditional or assigned GO
TO, block IF, ELSE IF, ELSE, END IF, STOP, RETURN, END, arithmetic
IF, another DO statement, or a logical IF statement containing an
unconditional or assigned GO TO, or a STOP, RETURN, or arithmetic IF
statement.

The DATA statement defines initial values of variables, array elements, arrays, and
substrings.

Syntax

DATA listl lelistll [[,] list2 lelist2l] ...

list

elist

is a list of variables, array elements, arrays or substrings, and implied DO
lists. (See "Implied DO in a DATA Statement" on page 91.) The comma
preceding list2 ... listn is optional.

Subscript and substring expressions used in each list can contain only integer
constants or names of integer constants.

is a list of constants or the names of constants. Integer and real constants
may optionally be signed. Any of these constants may be preceded by r*,
where r is a nonzero unsigned integer constant or the name of such a
constant. When the form r* appears before a constant, it indicates that the
constant is to be repeated r times.

A DATA initialization statement is not executable. The DATA statement cannot
precede a PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA,
IMPLICIT, PARAMETER, or an explicit type statement. Otherwise, a DATA
statement can appear anywhere in the program.

There must be a one-to-one correspondence between the total number of elements
specified or implied by the list list and the total number of constants specified by
the corresponding list elist after application of any replication factors, r.

Integer, real, and complex variables or array elements must be initialized with
integer, real, or complex constants; conversions take place according to the
arithmetic assignment rules, if necessary.

IBM Extension

A hexadecimal constant can be used to initialize any type of variable or array
element.

80 VS FORTRAN Language and Library Reference

~\
V

c

o

o

o

DATA

If a hexadecimal constant initializes a complex data type, one constant is used that
initializes both the real and the imaginary parts, and the constant is not enclosed in
parentheses. If the constant is smaller than the length (in bytes) of the entire
complex entity, zeros are added on the left. If the constant is larger, the leftmost
hexadecimal digits are truncated.

A Hollerith constant can be used to initialize a noncharacter variable or array
element.

A logical variable or logical array can be initialized with T instead of .TRUE. and F
instead of .F ALSE ..

1--__________ End of IBM Extension __________

Character items can be initialized by character data. Each character constant
initializes exactly one variable, one array element, or one substring. If a character
constant contains more characters than the item it initializes, the additional
rightmost characters in the constant are ignored. If a character constant contains
fewer characters than the item it initializes, the additional rightmost characters in
the item are initialized with blank characters. (Each character represents one byte
of storage.)

A variable or array element defined with an initial value may not be in blank
common and may not be assigned an initial value more than once. If the variable
or array element is in a named common block, it may be initially defined only in a
block data subprogram. Because of this constraint, entities that are associated with
each other through COMMON or EQUIVALENCE statements are considered to
be the same entity.

Valid DATA Statements:

LOGICAL L(4)

DIMENSION D(SO) ,F(S) ,G(9)

CHARACTER*4 C,CC(S)

DATA A, B, S/S.O,6.1,7.3/,D/2S*1.0,2S*2.0/,E/S.1/

DATA F/S*1.0/, G/9*2.0/, L/4*.TRUE./, C/'FOUR'/

DATA CC(1) (1:2)/'AB'/,CC(1) (3:4)/'CD'/

IBM Extension

DATA CC(2)/ZCSC6C7C8/,I/ZF8/,R/ZOO/

'---__________ End of IBM Extension __________

Chapter 5. VS FORTRAN Statements 81

DEBUG

DEBUG Statement

IBM Extension

The DEBUG statement sets the conditions for operation of the debug facility and
designates debugging operations that apply to the entire program unit (such as
subscript checking).

~ Synbx
DEBUG optionl[,option2 ... j

An option may be any of the following:

UNIT (un)
un is an integer constant that represents a unit number. All debugging
output is placed in this file, which is called the debug output file. If this
option is not specified, any debugging output is placed in the
installation-defined output file. All unit definitions within an executable
program must refer to the same unit.

SUBCHK (at, a2, •.• , QIl)
a is an array name. The validity of the subscripts used with the named arrays
is checked by comparing the subscript combination with the size of the array.
If the subscript value exceeds the size of the array, a message is placed in the
debug file. Program execution continues, using the incorrect subscript. If
the list of array names is omitted, all arrays in the program are checked for
valid subscript usage. If the entire option is omitted, no arrays are checked
for valid subscripts.

TRACE
This option must be in the DEBUG specification statement of each program
or subprogram for which tracing is desired. If this option is omitted, there
can be no display of program flow by statement number within this program.
Even when this option is used, a TRACE ON statement must appear in the
first debug packet in which tracing is desired.

INIT (it, i2, ... , in)
i is the name of a variable or an array that is to be displayed in the debug
output file only when the variable or the array elements are assigned a value.
If i is a variable name, the name and value are displayed whenever the
variable is assigned a new value in either an assignment, a READ, or an
ASSIGN statement. If i is an array name, the array element is displayed. If
the list of names is omitted, a display occurs whenever the value of a variable
or an array element is assigned a value. If the entire option is omitted, no
display occurs when values are assigned.

82 VS FORTRAN Language and Library Reference

o

o

o

o

o

0"·"" , '

DEBUG

SUB TRACE
This option specifies that the name of this subprogram is to be displayed
whenever it is entered. The message RETURN is to be displayed whenever
execution of the subprogram is completed.

The options in a DEBUG statement may be given in any order and they must be
separated by commas.

All debugging statements must precede the first statement of the program being
debugged.

In the case of a subroutine, the debug statements must appear immediately before
the SUBROUTINE statement. In the case of a function subprogram, the debug
statements must appear immediately before the FUNCTION statement. The
required statement sequence is:

1. DEBUG statement

2. Debug packets

3. END DEBUG statement

4. First of the source program statements of a program unit to be debugged

A debug packet begins with an AT statement and ends when either another AT
statement or an END DEBUG statement is encountered.

Debug statements are written in either fixed form or free form and follow the same
rules as other VS FORTRAN statements.

In addition to the VS FORTRAN language statements, the following debug
statements are allowed:

TRACE ON
TRACE OFF
DISPLAY

All VS FORTRAN statements are allowed in a debug packet except as listed in
"Considerations When Using DEBUG," below.

Considerations When Using DEBUG

The following precautions must be taken when setting up a debug packet:

• Any DO loops or block IF, ELSE IF, or ELSE statements initiated within a
debug packet must be wholly contained within that packet.

• Statement numbers within a debug packet must be unique. They must be
different from statement numbers within other debug packets and within the
program being debugged.

• An error in a program should not be corrected with a debug packet; when the
debug packet is removed, the error remains in the program.

Chapter 5. VS FORTRAN Statements 83

DEBUG

• No specification statements can appear in a debug packet; nor can any of the
following statements:

BLOCK DATA
ENTRY
FUNCTION
PROGRAM
statement function
SUBROUTINE

• The program being debugged must not transfer control to any statement
number defined in a debug packet; however, control may be returned to any
point in the program being debugged from a packet. In addition, no debug
packet may refer to a label defined in another debug packet. A debug packet
may contain a RETURN, STOP, or CALL statement.

• The SUBCHK function of DEBUG does proper subscript checking of an array
if, and only if, that array is a single-dimensioned array with a lower bound of 1.
If the lower bound is not 1 and an error is detected, the message will give the
index to the element as if it had a lower bound of 1. If multidimensional arrays
are being checked for valid subscripts, the array is perceived to be a
single-dimensioned array of the appropriate number of array elements. The
subscripts are evaluated and the check indicates whether you are referencing
an array element within the range of the array, but not whether one of the
subscripts is invalid. Individual subscripts are not checked for their valid range.

Thus, if array A is dimensioned as A(5,6) and a reference is made to A(K,2),

o

where K is 7, the SUBCHK function will not flag this because the subscript ~
value yields an element within array A. The values of the first and second V
subscripts are not checked for having values of 1 through 5 or 1 through 6,
respectively.

DEBUG Examples:

Example 1:

DEBUG UNIT(6),SUBCHK
END DEBUG
PROGRAM TEST

END

This example checks all arrays for valid subscripts.

c
84 VS FORTRAN Language and Library Reference

o

0

o

Example 2:

DEBUG UNIT(6)
AT 11
WRITE(6,21)A,B,C

21 FORMAT (1 X, , A=' , 110, 'B= I , I 1 0, 'C=' , 110)
END DEBUG

INTEGER A,B,C

10 B=A* SQRT(FLOAT(C))
11 IF(B)40,50,60

DEBUG

The values of A, B, and C are to be examined as they were at the completion of the
arithmetic operation in statement 10. Therefore, the statement number specified in
the AT statement is 11. The values of A, B, and C are written to the file connected
to unit 6.

Example 3:

DEBUG TRACE, UNIT(6)
AT 10
TRACE ON
AT 25
TRACE OFF
AT 35
DISPLAY C
TRACE ON
END DEBUG

10 A=2.0
15 L= 1
20 B = A + 1.5
25 DO 30 1=1,5

30 CONTINUE
35 C = B + 3.415
40 D=C**2
45 CALL SUB1 (D,L,R)

STOP
END

Chapter 5. VS FORTRAN Statements 85

DEBUG

DEBUG SUBTRACE,TRACE
AT 4
TRACE ON
END DEBUG
SUBROUTINE SUB1 (X,I,Y)

4 Y=FUNC1 (X-INT(X))
WRITE (6,*) Y

100

RETURN
END

DEBUG SUBTRACE,TRACE
AT 100
TRACE ON
END DEBUG
FUNCTION FUNC1 (Z)

FUNC1

RETURN
END

COS(Z) + SIN(Z)

o

When statement 10 is encountered, tracing begins, as specified by the TRACE ON I~'
~,'l,l_ A,:) statement in the first debug packet. When statement 25 is encountered, tracing ,-,,_,

stops, as specified by the TRACE OFF statement in the second debug packet.
When statement 35 is encountered, tracing begins again and the value of C is
written to the debug output file, as specified in the third debug packet.

When SUB 1 is entered, the words "SUBTRACE SUB 1" appear in the output
because of the SUBTRACE option on the DEBUG statement in subroutine SUB 1.
When statement 4 is encountered, tracing begins. When FUNC1 is entered, the
words "SUBTRACE FUNC1" appear in the output. When FUNC1 is exited, the
words "SUBTRACE RETURN FROM FUNC 1" appear in the output, and,
similarly, at exit from SUB1, the words "SUBTRACE RETURN FROM SUB1"
appear. Note that the output from the WRITE statement in SUB1 will go to the
same unit (6) as the DEBUG output.

'---_________ End of IBM Extension __________

o
86 VS FORTRAN Language and Library Reference

o

o

o

DELETE Statement

DEBUG

IBM Extension

The DELETE statement removes a record from a file connected for keyed access.
It removes the record retrieved by an immediately preceding READ operation. No
other operation, such as BACKSPACE or WRITE, can be issued for the same file
between the READ and DELETE statements.

Syntax

DELETE un

DELETE ([UNIT=]un [,IOSTAT=ios] [,ERR=stn])

UNIT=un
un is the reference number of an 1/0 unit. It is an integer expression of
length 4 whose value must be zero or positive. un is required.

If the second form of the statement is used, un can optionally be preceded by
UNIT = . If UNIT = is not specified,. un must appear first in the statement.
The other parameters can appear in any order. If UNIT = is specified, all the
parameters can appear in any order.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. It is set
positive if an error is detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

ERR=stn
stn is the number of an executable statement in the same program unit as the
DELETE statement. If an error is detected, control is transferred to stn.

Valid DELETE Statement:

DELETE (15)

L...-__________ End of IBM Extension __________ --'

DIMENSION Statement

The DIMENSION statement specifies the name and dimensions of an array.

1m Synw
illMENSION al(diml) [, a2(dim2) l ...

Chapter 5. VS FORTRAN Statements 87

DIMENSION

DISPLAY Statement

a

dim

is an array name.

is composed of one through seven dimension bounds, separated by commas,
that represent the limits for each subscript of the array in the form:

g1 :g2
or

g2

where:

el

e2

is the lower dimension bound. It is optional. If el (with its following
colon) is not specified, its value is assumed to be 1.

is the upper dimension bound and must always be specified.

(See "Size and Type Declaration of an Array" on page 30 for rules
about dimension bounds.)

Each a in a DIMENSION statement declares that a is an array in that program unit.
Array names and their bounds may also be declared in COMMON statements and
in type statements. Only one declaration of the array name (a) as an array is
permitted in a program unit.

Valid DIMENSION Statements:

DIMENSION A(10), ARRAY(5,5,5), LIST(10,100)

DIMENSION A(1: 10), ARRAY (1 :5,1 :5,1 :5), LIST(1: 10,1: 100)

DIMENSION B(0:24), C(-4:2), DATA(0:9,-5:4,10)

DIMENSION G(I:J,M:N)

DIMENSION ARRAY (M*N:I*J)

DIMENSION ARRAY (M*N:I*J,*)

IBM Extension

The DISPLAY statement displays data in NAMELIST output format. It may
appear anywhere within a debug packet.

j: S~mx
DlSPLA Y list

88 VS FORTRAN Language and Library Reference

o

o

c

o

DO Statement

o

o

DISPLAY

list
is a list of variable or array names separated by commas.

The DISPLAY statement eliminates the need for FORMAT or NAMELIST and
WRITE statements to display the results of a debugging operation. The data is
placed in the debug output file.

The effect of a DISPLAY list statement is the same as the following source
language statements:

NAMELIST / name / list

WRITE (un, name)

where name is the same in both statements.

Array elements, dummy arguments, and substring references may not appear in the
list.

For examples and explanations of the DISPLAY statement, see "DEBUG
Statement" on page 82.

'--__________ End of IBM Extension __________ ---'

The DO statement controls the execution of the statements that follow it, up to and
including an end-of -range statement. These statements are called the "range of the
DO" or a "DO loop."

stn

;

Syntax

End of DO Initial Test
Range Variable Value Value Increment

DO stn [,] = el, e2 [,e3]

is the number of an executable statement, in the same program unit as the
DO statement, that denotes the end of the DO loop. The statement at stn
cannot be an unconditional or assigned GOTO, block IF, ELSEIF, ENDIF,
STOP, RETURN, END, arithmetic IF, another DO statement, or a logical IF
statement containing an unconditional or assigned GOTO, STOP, RETURN,
or arithmetic IF statement.

is an integer, real, or double precision variable (not an array element) called
the DO variable.

el, e2, and e3
are integer, real, or double precision arithmetic expressions that define the
DO-loop iteration. e3 is optional and cannot have a value of zero; if it is

Chapter 5. VS FORTRAN Statements 89

DO

omitted, its value is assumed to be 1, and the preceding comma must be
omitted. The expressions el, e2, and e3 are evaluated, and the control
parameters ml, m2, and m3, respectively, are determined from them. The
expressions m 1, m2, and m3 are converted to the type of the DO variable,
where the data types are not consistent.

The statements in the range of the DO are executed only if:

m 1 is less than or equal to m2, and m3 is greater than zero
or

m 1 is greater than or equal to m2, and m3 is less than zero.

If one of the above relationships is true, the first time the statements in the range of
the DO are executed, i is initialized to the value of m 1; on each succeeding
iteration, i is increased by the value of m3. The number of iterations that can be
executed, called the iteration count, is the value of:

MAX (INT«m2 - ml + m3) / m3), 0).

When the iteration count is zero, execution continues with the statement following
the last statement of the range of the DO, or the next outer DO if the statement
numbered stn is shared by more than one DO.

If one of the above relationships is not true, execution continues with the statement
following the last statement of the range of the DO, or the next outer DO if the
statement numbered stn is shared by more than one DO.

The DO variable may not be redefined within the range of the DO loop. However,
any of the variables in the expressions el, e2, and e3 may be modified by the
statements in the DO loop without changing the iteration count as established for
the DO statement. To exit the DO loop before all iterations are completed, a
transfer instruction (GOTO, computed GOTO, assigned GOTO, CALL with
return values, arithmetic IF) must be executed, which transfers out of the range of
the DO.

No transfers may be made to any of the executable statements within the range of
the DO by statements outside the range of the DO.

Valid Examples:

The following program fragment illustrates the use of real expressions when
defining the DO control parameters and the DO variable.

XEND = 10.5
XINCR .5
J = 0
DO 10 X 1.0, XEND, XINCR

10 J = J +

The iteration count for the above example is 20; that is,

Iteration Count = MAX(INT«(10.5 - 1.0 + .5)/.5),0) = 20

90 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

The next program fragment illustrates the use of a negative increment.

DIMENSION IA (20)
lEND = 20
INCR = 1
DO 10, I = IEND/2, 1, -INCR

1 0 IA (I) = IA (I) + IA (I + 1)

The iteration count for the above example is 10; that is,

Iteration Count = MAX(INT((1 - 10 - 1)/ -1), 0) = 10

DO

The following program is an example of DO loop nesting. Two inner DO loops are
nested within one outer DO loop.

DO 30 I = 1, 2
PRINT *, 'OUTER', I
DO 10 J = 1, 4, 2
PRINT *, 'INNER J', I, J

10 CONTINUE
DO 20 K = 2, 4, 2
PRINT *, 'INNER K' , I, K

20 CONTINUE
30 CONTINUE

Results from the nested DO example:

OUTER 1
INNERJ 1 1
INNERJ 1 3
INNERK 1 2
INNERK 1 4
OUTER 2
INNERJ 2 1
INNERJ 2 3
INNERK 2 2
INNERK 2 4

Implied DO in a DATA Statement

The form of an implied DO list in a DATA statement is:

~ Syntax
(4/isl, i = ml, m2 [. m3])

where:

dlist
is a list of array element names and implied DO lists.

;
is the name of an integer variable called the implied DO variable.

ml, m2, and m3
are each integer constants or names of integer constants, or expressions
containing only integer constants or names of integer constants. An
expression may contain implied DO variables of other surrounding implied

Chapter 5. VS FORTRAN Statements 91

DO

DO lists that have this implied DO list within their ranges (dlist). m3 is
optional; if omitted, it is assumed to be 1, and the preceding comma must
also be omitted.

The range of an implied DO list is dlist. An iteration count is established from m 1,
m2,and m3 exactly as for a DO-loop, except that the iteration count must be
positive.

Upon completion of the implied DO, the implied DO variable is undefined and may
not be used until assigned a value in a DATA statement, assignment statement, or
READ statement.

Each subscript expression in dlist must be an integer constant or an expression
containing only integer constants or names of integer constants. The expression
may contain implied DO variables of implied DO lists that have the subscript
expression within their ranges.

Valid Implied DO Statement:

The following example uses the implied DO to initialize a two-dimensional
character array.

CHARACTER CHAR1 (3,4)
DATA «CHAR1 (I,J), J=1,4), 1=1,3)

/'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L'/

The resultant array would be initialized as follows:

Row 1:
Row 2:
Row 3:

A B
E F
I J

C D
G H
K L

Invalid Implied DO Statement:

DATA (K(I) ,1=1,3), (L(I) ,1=1,3), (M(I) ,1=1,2)/8*1/

The two DO lists, (K(I),I=1,3) and (L(I),I=1,3), cannot share the same DO
variable (I) if they also use the same list of constants (/8* 1/).

Implied DO in an Input/Output Statement

If an implied DO appears in the list parameter of an input/output statement, the
items specified by the implied DO are transmitted to or from the file. The implied
DO list in an input/output statement is of the form:

(dlist, i = m1, m2 [, m3])

where:

dlist

;

is an input/output list.

is the name of an integer, real, or double precision variable (not an array
element) called the DO variable.

92 VS FORTRAN Language and Library Reference

c

o

o

o

c

o

DO

mt, m2, and m3
are integer, real, or double precision arithmetic expressions. The values of
the expressions m 1, m2, and m3 are converted to the type of the DO
variable i, if necessary. m3 is optional and cannot have a value of zero; if it
is omitted, its value is assumed to be 1, and the preceding comma must be
omitted.

In an input statement, the DO-variable i, or an associated entity, must not appear
as an input list item in dUst. When an implied-DO list appears in an input/output
list, the list items in dUst are specified once for each iteration of the implied DO list
with appropriate substitution of values for any occurrence of the DO-variable i.

For example, assume that A is a variable and that B, C, and D are one-dimensional
arrays, each containing 20 elements. Then the statement:

READ (UNIT=5)A,B, (C(I) ,I=1,4) ,D(4)

reads one value into A, the next 20 values into B, and the next 4 values into the
first four elements of the array C, and the next value into the fourth element of D.

Or the statement:

WRITE (UNIT=6)A,B, (C(I) ,I=1,4),D(4)

writes one value from A, the next 20 values from B, and the next 4 values from the
first four elements of the array C, and the next value from the fourth element of D.

If the subscript (I) were not included with the array C, the entire array would be
transferred four times.

Implied DOs can be nested, if required. For example, to read an element into array
B after values are read into each row of a 10x20 array A, the following input
statement would be written:

READ (UNIT=5) ((A(I,J) ,J=1 ,20) ,B(I) ,I=1, 10)

Or, to write an element from array B after values are written into each row of a
10x20 array A, the following output statement would be written:

WRITE (UNIT=6) ((A(I,J) ,J=1 ,20) ,B(I) ,I=1, 10)

The order of the names in the list specifies the order in which the data is to be
transferred.

Double Precision Type Statement

See "Explicit Type Statement" on page 103.

Chapter 5. VS FORTRAN Statements 93

DO

EJECT Statement

ELSE Statement

ELSE IF Statement

END Statement

IBM Extension

EJECT is a compiler directive. It starts a new full page of the source listing. The
EJECT statement should not be continued.

j: Synw
EJECT

1....-__________ End of IBM Extension __________ ---'

See "IF Statements" on page 145.

See "IF Statements" on page 145.

The END statement defines a program unit. That is, it terminates a main program,
or a function, subroutine, or block data subprogram.

r: SYDW

END

The END statement may be numbered. It may not be continued, and no other
statement in the program unit may have an initial line that appears to be an END
statement. The END statement terminates program execution if it is executed in
the main program. If executed in a subprogram, it has the effect of a RETURN
statement.

Execution of an END statement terminates the association between the dummy
arguments of the subprogram and the current actual arguments. All entities within
the subprogram become undefined except:

• Entities specified in SA VE statements. (See "SAVE Statement" on
page 232.)

• Entities in a blank common block.

• Initially defined entities that have neither been redefined nor become
undefined.

94 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

END

• Entities in named common blocks that appear in the subprogram and appear in
at least one other program unit that is referring, either directly or indirectly, to
that subprogram. The entities in a named common block may become
undefined by execution of a RETURN or END statement in another program
unit.

All variables that are assigned a statement number with the ASSIGN statement
become undefined regardless of whether the variable is in a common block or
specified in a SAVE statement.

An END statement cannot terminate the range of a DO-loop.

END Statement in a Function Subprogram

All function subprograms must end with END statements. They may also contain
RETURN statements. An END statement specifies the physical end of the
subprogram.

A subprogram must not be referred to twice during the execution of an executable
program without the intervening execution of a RETURN or END statement in
that subprogram.

END Statement in a Subroutine Subprogram

All subroutine subprograms must end with END statements. They may also
contain RETURN statements. An END statement specifies the physical end of the
subprogram. If the END statement is reached during execution of the subroutine
subprogram, it is executed as a RETURN statement.

IBM Extension

END DEBUG Statement

The END DEBUG statement terminates the last debug packet for the program.

j: Synmx

END DEBUG

END DEBUG is placed after the other debug statements and just before the first
statement of the program being debugged. Only one END DEBUG statement is
allowed in a program unit.

See "DEBUG Statement" on page 82.

'--__________ End of IBM Extension __________

Chapter 5. VS FORTRAN Statements 95

END FILE

END FILE Statement

The ENDFILE statement writes an end-of-file record on a sequentially accessed
external file.

Syntax

ENDFILE un

ENDFILE ([UNIT=]un [, ERR=stn] [, 10STAT=ios])

UNIT = un
un is the reference to the number of an I/O unit. It is an integer expression
of length 4, whose value must be zero or positive. un is required.

If the second form of the statement is used, un can optionally be preceded by
UNIT =. If UNIT = is not specified, un must appear first in the statement.
The other parameters may appear in any order. If UNIT= is specified, all
the p;uameters can appear in any order.

ERR=sln
is optional. sIn is the number of an executable statement in the same
program unit as the END FILE statement. If ERR=sln is omitted, execution
halts when an error is detected.

IOSTAT=;os
is optional. ios is an integer variable or an integer array element of length 4.
ios value is set positive if an error is detected; it is set to zero if no error is
detected. VSAM return and reason codes are placed in ios.

Valid ENDFILE Statements:

ENDFILE un

ENDFILE (un,ERR=stn)

ENDFILE (UNIT=un,ERR=stn)

ENDFILE (ERR=stn,UNIT=un)

96 VS FORTRAN Language and Library Reference

C'· i' ;

o

c

o

o

END IF Statement

ENTRY Statement

o

Invalid ENDFILE Statements:

ENDFILE UNIT=un

ENDFILE un,ERR=stn

ENDFILE (ERR=stn,un)

END FILE

UNIT= is not allowed outside
parentheses.

Parentheses must be specified.

UNIT= must be specified
or un must be first in the list.

When the END FILE statement is encountered, the unit specified by un must be
connected to an external file with SEQUENTIAL access. (See VS FORTRAN
Programming Guide for an example.) If the unit is not connected, an error is
detected.

After successful execution of the END FILE statement, the external file connected
to the unit specified by un is created, if it does not already exist.

IBM Extension

Use of ENDFILE with asynchronous READ and WRITE statements is allowed,
provided that any input or output operation on the file has been allowed to
complete by the execution of a WAIT statement. A WAIT statement is not
required to complete the END FILE operation.

Multiple file data sets are permitted in VS FORTRAN. Therefore, after execution
of an ENDFILE, additional data may be transferred to the subsequent files.

'--__________ End of IBM Extension __________ ~

Transfer is made to the statement specified by the ERR= if an error is detected. If
IOSTAT=ios is specified, a positive integer value is assigned to ios when an error is
detected. Then execution continues with the statement specified with the ERR
parameter, if present, or with the next statement if ERR is not specified. If the
ERR parameter and the lOST AT parameter are both omitted, program execution is
terminated when an error is detected.

See "IF Statements" on page 145.

The ENTRY statement names the place in a subroutine or function subprogram
that can be used in a CALL statement or as a function reference.

The normal entry into a subroutine subprogram from the calling program is made by
a CALL statement that refers to the subprogram name. The normal entry into a
function subprogram is made by a function reference in an arithmetic, character, or
logical expression. Entry is made at the first executable statement following the
SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram by a CALL statement (for a subroutine
subprogram) or a function reference (for a function subprogram) that refers to an

Chapter 5. VS FORTRAN Statements 97

ENTRY

ENTRY statement in the subprogram. Entry is made at the first executable
statement following the ENTRY statement. r: S~hx
~NTRY name [([a'81 [, arg2J ... J) J

Mnte

arg

is the name of an entry point in a subroutine or function subprogram. If
ENTRY appears in a subroutine subprogram, name is a subroutine name. If
ENTRY appears in a function subprogram, name is a function name.

is an optional dummy argument corresponding to an actual argument in a
CALL statement or in a function reference. See "Subprogram Statements"
on page 56. If no arg is specified, the parentheses are optional.

arg may be a variable name, array name, or dummy procedure name or an
asterisk. An asterisk is permitted only in an ENTRY statement in a
subroutine subprogram.

The ENTRY statement cannot appear in a main program.

A function subprogram must not refer to itself or any of its entry points either
directly or indirectly.

ENTRY statements are nonexecutable and do not affect control sequencing during
execution of a subprogram. They can appear anywhere after a FUNCTION or
SUBROUTINE statement, except that an ENTRY statement must not appear
between a block IF statement and its matching END IF statement or between a
DO statement and the terminal statement of its range.

Note: ENTRY statements can appear before the IMPLICIT or PARAMETER
statements. The appearance of an ENTRY statement does not alter the rule that
statement functions must precede the first executable statement.

Within a function or subroutine subprogram, an entry name must not appear as a
dummy argument of a FUNCTION, SUBROUTINE, or ENTRY statement and it
must not appear in an EXTERNAL statement.

If information for an object-time dimension array is passed in a reference to an
ENTRY statement, the array name and all its dimension parameters (except any
that are in a CQmmon area) must appear in the argument list of the ENTRY
statement. See "Size and Type Declaration of an Array" on page 30.

98 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

ENTRY

In a function subprogram, the type of the function name and entry name are
determined (in order of decreasing priority) by:

1. An explicit type statement

2. An IMPLICIT statement

3. Predefined convention

In function subprograms, an entry name must not appear preceding the entry
statement except in a type statement.

If any entry name in a function subprogram or the name of the function
subprogram is of type character, all entry names of the function subprogram must
be of type character with the same length. The CHARACTER type statement or
IMPLICIT statement can be used to specify the type and length of the entry point
name. The length specification is restricted to the forms permitted in the
FUNCTION statement.

The types of these variables (that is, the function name and entry names) can be
different only if the type is not character; the variables are treated as if they were
equivalenced. After one of these variables is assigned a value in the subprogram,
any others of different type become indeterminate in value.

In a function subprogram, either the function name or one of the entry names must
be assigned a value.

Upon exit from a function subprogram, the value returned is the value last assigned
to the function name or any entry name. It is returned as though it were assigned
to the name in the current function reference. If the last value is assigned to a
different entry name, and that entry name differs in type from the name in the
current function reference, the value of the function is undefined.

Note: Entry names in a subroutine subprogram do not have a type; explicit typing
is not allowed.

Valid ENTRY Statement Examples:

To illustrate the use of the ENTRY within a subroutine subprogram, the following
subprogram is defined:

SUBROUTINE SAMPLE(A,I,C)
X = A**I
GO TO 10
ENTRY ALIAS (B,C)
X = B

10 C = SQRT(X)
RETURN
END

Chapter 5. VS FORTRAN Statements 99

ENTRY

The subprogram invocation

CALL SAMPLE(X,J,Z)

evaluates the expression SQRT(X**J) and returns the value in Z.

The subprogram invocation

CALL ALIAS (Y,W)

evaluates the expression SQRT(Y) and returns the value in W.

Actual Arguments in an ENTRY Statement

Entry into a function subprogram associates actual arguments with the dummy
arguments of the referenced ENTRY statement. Thus, all appearances of these
arguments in the subprogram become associated with actual arguments.

See "Actual Arguments in a Subroutine Subprogram" on page 239 and "Actual
Arguments in a Function Subprogram" on page 140.

Dummy Arguments in an ENTRY Statement

The dummy arguments in the ENTRY statement need not agree in order, type, or
number with the dummy arguments in the SUBROUTINE or FUNCTION
statement or any other ENTRY statement in the same subprogram. However, the
actual arguments for each CALL or function reference must agree in order, type,
and number with the dummy arguments in the SUBROUTINE, FUNCTION, or
ENTRY statement to which it refers.

Any dummy argument of an ENTRY statement must not be in an executable
statement preceding the ENTRY statement unless it has already appeared as a
dummy argument in an ENTRY, SUBROUTINE, or FUNCTION statement prior
to the executable statement.

If an ENTRY dummy argument is used as an adjustable array name, the array
name and all its dimensions (except those in a common block) must be in the same
dummy argument list.

Dummy arguments can be variables, arrays, dummy procedure names, or asterisks.
The asterisk is allowed only in an ENTRY statement in a subroutine subprogram
and indicates an alternate return specifier.

A dummy argument must not appear in the expression of a statement function
definition unless the name is also a dummy argument to the statement function, or
is in a FUNCTION or SUBROUTINE statement, or is in an ENTRY statement
prior to the statement function definition.

A dummy argument used in an executable statement is allowed only if that dummy
argument appears in the argument list of the FUNCTION, SUBROUTINE, or
ENTRY statement by which the subprogram was entered.

See "Dummy Arguments in a Subroutine Subprogram" on page 239 and "Dummy
Arguments in a Function Subprogram" on page 140.

100 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

EQUIV ALENCE

EQUIVALENCE Statement

The EQUIVALENCE statement permits the sharing of data storage within a single
program unit.

r-: Synmx
EQUIVALENCE (lisll) [, (lisI2) 1 ...

list
is a list of variable, array, array element, or character substring names.
N ames of dummy arguments of an external procedure in a subprogram must
not appear in the list. Each pair of parentheses must contain at least two
names.

The number of subscript quantities of array elements must be equal to the
number of dimensions of the array. If an array name is used without a
subscript in the EQUIVALENCE statement, it is interpreted as a reference
to the first element of the array.

An array element refers to a position in the array in the same manner as it
does in an assignment statement (that is, the array subscript specifies a
position relative to the first element of each dimension of the array).

The subscripts and substring information may be integer expressions
containing only integer constants, or names of integer constants. They must
not contain variables, array elements, or function references.

All the named data within a single set of parentheses shares the same storage
location. When the logic of the program permits it, the EQUIVALENCE
statement can reduce the number of bytes used by sharing two or more variables of
the same type or different noncharacter types.

IBM Extension

Both character and noncharacter data types are allowed in an EQUIV ALENCE
relationship.

L....-__________ End of IBM Extension __________ ---'

The length of the equivalenced entities can be different. Equivalence between
variables implies storage sharing.

Mathematical equivalence of variables or array elements is implied only when they
are of the same noncharacter type, when they share exactly the same storage, and
when the value assigned to the storage is of that type.

Because arrays are stored in a predetermined order, equivalencing two elements of
two different arrays implicitly equivalences other elements of the two arrays. The
EQUIVALENCE statement must not contradict itself or any previously established
equivalences.

Chapter 5. VS FORTRAN Statements 101

EQUIV ALENCE

Two variables in one common block or in two different common blocks cannot be
made equivalent. However, a variable in a program unit can be made equivalent to
a variable in a common block. If the variable that is equivalenced to a variable in
the common block is an element of an array, the implicit equivalencing of the rest
of the elements of the array can extend the size of the common block. The size of
the common block cannot be extended so that elements are added ahead of the
beginning of the established common block.

For the following examples of the EQUIVALENCE statement, assume these
explicit type declarations:

COMMON /COM1/ B(50,50), E(50,50)
INTEGER*4 A(10)
REAL*8 C(50), D(10,10,2), F
CHARACTER*4 C1 (10), C2(10)
CHARACTER C3

Valid Examples

1. A locally defined variable sharing named common storage.

EQUIVALENCE (A(1), E(1,1»

2. Equivalence a portion of a multidimensioned array to a
single-dimensioned array.

EQUIVALENCE (C(1), B(1,10»

3. Equivalence a single element of an array to a variable.

EQUIVALENCE (D(10,10,2), F)

4. The first half of a character array is equivalenced to
the second half of another character array.
20 characters (or 5 array elements) are equivalenced.

EQUIVALENCE (C1 (6), C2(1»

5. The last character in a character array is equivalenced
to a single character.

EQUIVALENCE (C3, C1 (10) (4: »

IBM Extension

Character variables may be equivalenced to noncharacter items.

A character array is equivalenced to the second half of an integer array.

102 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

EQUIV ALENCE

EQUIVALENCE (C1 (1), A(6))

End of IBM Extension

Invalid Example

Two variables may not be equivalenced when both are in common.

EQUIVALENCE (B(1,1), E(1))

Explicit Type Statement

The explicit type statement:

• Specifies the type and length of variables, arrays, and user-supplied functions.

• Specifies the dimensions of an array.

IBM Extension

• Assigns initial data values for variables and arrays.

1....-__________ End of IBM Extension __________

The explicit type statement overrides the IMPLICIT statement, which, in turn,
overrides the predefined convention for specifying type.

type

Syntax

name 1 [, name2] ...

is complex, integer, logical, real,double precision, or character[*len[,]]

where:

len
specifies the length (number of characters between 1 and 32767). It
is optional.

Note: The CHARLEN compiler option may be specified to set the
maximum length of the character data type to a range of 1 through
32767. The default maximum length remains 500 characters, or
whatever length was set at installation time.

The length len can be expressed as:

An unsigned, nonzero, integer constant.

Chapter 5. VS FORTRAN Statements 103

Explicit Type

type

• An expression with a positive value that contains integer
constants, names of integer constants enclosed in parentheses, or
an asterisk enclosed in parentheses.

The length * len immediately following the word character is used as
the length specification of any name in the statement that has no
length specification attached to it. To override a length for a
particular name, see the alternative forms of name below. If *len is
not specified, it is assumed to be 1.

The comma in character[*len[,]] must not appear if * len is not specified. It is
optional if * len is specified.

IBM Extension

is complex[*lenl], integer[*lenl], logical[*lenl], or real[*lenl]

where:

*Ienl
is optional and len 1 represents one of the permissible length
specifications for its associated type as described in Figure 4 on
page 26.

'---__________ End of IBM Extension __________

name
is a variable, array, function name, or dummy procedure name, or the name
of a constant. It can have the form:

~d (dim)]

or

where:

a

dim

is a variable, array, function name, or dummy procedure name.

is optional. dim may only be specified for arrays. It is composed of
one through seven dimension bounds, separated by commas, that
represent the limits for each subscript of the array in the form:

g1 :g2

or

g2

104 VS FORTRAN Language and Library Reference

c

o

o

o

o

o

*len2

Explicit Type

where:

el

e2

is the lower dimension bound. It is optional. If e 1 (with its
following colon) is not specified, its value is assumed to be 1.

is the upper dimension bound and must always be specified.

(See "Size and Type Declaration of an Array" on page 30 for rules about
dimension bounds.)

If a specific intrinsic function name appears in an explicit specification
statement that causes a conflict with the type specified for this function in
Appendix B, "IBM and ANS FORTRAN Features" on page 351, the name
loses its intrinsic function property in the program unit. A type statement
that confirms the type of an intrinsic function is permitted. If a generic
function name appears in an explicit specification statement, it does not lose
its generic property in the program unit.

overrides the length as specified in the statement by character[* len[,]].

Any length assigned must be an allowable value for the associated variable or array
type. The length specified (or assigned by default) with an array name is the length
of each element of the array.

If the length specification (len) is a constant, it must be an unsigned, nonzero,
integer constant. If the length specification is an arithmetic expression enclosed in
parentheses, it can contain only integer constants or names of integer constants.
Function and array element references must not appear in the expression. The
value of the expression must be a positive, nonzero, integer constant.

If the CHARACTER statement is in a main program, and the length of name is
specified as an asterisk enclosed in parentheses (*)-also known as inherited
length-then name must be the name of a character constant. The character
constant assumes the length of its corresponding expression in a PARAMETER
statement.

If the CHARACTER statement is in a subroutine subprogram, and the length of
name is specified as an asterisk enclosed in parentheses (*), name must be the name
of a dummy argument or the name of a character constant defined in a
PARAMETER statement. The dummy argument assumes the length of the
associated actual argument for each reference to the subroutine. The character
constant assumes the length of its corresponding expression in a PARAMETER
statement.

If the CHARACTER statement is in a function subprogram and the length of name
is specified as an asterisk enclosed in parentheses (*), name must be either the
name of a dummy argument, the name of the function in a FUNCTION or ENTRY
statement in the same program, or the name of a character constant defined in a
PARAMETER statement. If name is the name of. a dummy argument, then the
dummy argument assumes the length of the associated actual argument for each
reference to the function. If name is the function or entry name, when a reference
to such a function is executed, the function assumes the length specified in the

Chapter 5. VS FORTRAN Statements 105

Explicit Type

calling program unit. The character constant assumes the length of its
corresponding expression in a PARAMETER statement.

An alternative method of specifying both the length and the type of a function
name is by using the FUNCTION statement itself with the optional type
declaration (see "FUNCTION Statement" on page 137).

The length of a statement function of character type cannot be specified in the
calling program by an asterisk enclosed with parentheses (*), but can be an integer
constant expression.

The length specified for a character function in a main program unit that refers to
the function must be an expression involving only integer constants or names of
integer constants. This length must agree with the length specified in the
subprogram that specifies the function, if the length is not specified as an asterisk
enclosed with parentheses (*).

name

IBM Extension

is a variable, array, function name or dummy procedure name, or the name
of a constant. It can have the form:

a[*len3][(dim)]

or

a[* len 3][(dim)] [/ i 1 ,i2,i3 , ... ,in/]

where:

a

*len3

dim

is a variable, array, function name, or dummy procedure name.

overrides the length as specified in the initial keyword of the statement
as complex, integer, logical, reaL, complex[*lenl], character[*len],
integer[*lenl], logical[*lenl], or real[*lenl]

is optional. dim may only be specified for arrays. It is composed of
one through seven dimension bounds, separated by commas, that
represent the limits for each subscript of the array. See the description
of dim above.

il,i2,i3, ••• ,in
are optional and represent initial data values.

Dummy arguments and names of constants, functions and statement functions may
not be assigned initial values.

Initial data values may be assigned for any items of type double precision.

106 VS FORTRAN Language and Library Reference

o

o

o

0

o

Explicit Type

Initial data values may be assigned to variables or arrays that are not dummy
arguments or in blank common, by use of in, where in is a constant or list of
constants separated by commas. Each in provides initialization only for the
immediately preceding variable or array. Lists of constants are used only to assign
initial values to array elements. The data must be of the same type as the variable
or array, except that hexadecimal data may also be used.

Note: If hexadecimal data is used, the hexadecimal constant form must be
followed. (See "Hexadecimal Constants" on page 23.)

Successive occurrences of the same constant can be represented by the form
i*constant, as in the DATA statement. If initial data values are assigned to an
array in an explicit specification statement, the dimension information for the array
must be in the explicit specification statement or in a preceding DIMENSION or
COMMON statement.

L-__________ End of IBM Extension __________

The following table lists all the possible explicit type statements, and the resulting
type and length of the data item.

Type Resulting Length
Statement Type (Bytes)

CHARACTER CHARACTER 1
CHARACTER *n CHARACTER n (where 1 ~ n ~ X)I

COMPLEX COMPLEX 8
COMPLEX*8 COMPLEX 8
COMPLEX*16 COMPLEX 16
COMPLEX*32 COMPLEX 32
DOUBLE PRECISION REAL 8
INTEGER INTEGER 4
INTEGER*2 INTEGER 2
INTEGER*4 INTEGER 4
LOGICAL LOGICAL 4
LOGICAL*l LOGICAL 1
LOGICAL*4 LOGICAL 4
REAL REAL 4
REAL*4 REAL 4
REAL * 8 REAL 8
REAL*16 REAL 16

Ilf the CHARLEN compiler option is not specified, x=500. If CHARLEN is
specified, x=CHARLEN, where x is less than 32,768. For more information about
the CHARLEN option, see VS FORTRAN Programming Guide.

Valid Explicit Type Statements:

CHARACTER*80RANGES

DATA ORANGES/'ORANGES 'I

CHARACTER*80RANGES/ ' ORANGES 'I

SUBROUTINE SUB (DUM)
CHARACTER *(*) DUM

Chapter s. VS FORTRAN Statements 107

Explicit Type

IBM Extension

COMPLEX C,D/(2.1,4.7)/,E*16

INTEGER*2 ITEM/76/, VALUE

REAL A(5,5)/20*6.9E2,4*1.0/,B(100)/100*O.O/,TEST*8(5)/5*O.ODO/

REAL*8 BAKER, HOLD, VALUE*4, ITEM(5,5)

'--__________ End of IBM Extension __________ -'

EXTERNAL Statement

FORMAT Statement

The EXTERNAL statement identifies a user-supplied subprogram name and
permits such a name to be used as an actual argument.

1m S~w
~TERNAL name! [, name2] ...

name
is a name of a user-supplied subprogram (function or subroutine) that is
passed as an argument to another subprogram.

EXTERNAL is a specification statement and must precede DATA statement,
statement function definitions, and all executable statements.

Statement function names cannot appear in EXTERNAL statements. If the name
of a VS FORTRAN-supplied function (that is, intrinsic function) is used in an
EXTERNAL statement, the function is no longer recognized as being an intrinsic
function when it appears as a function reference. Instead, it is assumed that the
function is supplied by the user.

The same name may not appear in both an EXTERNAL and an INTRINSIC
statement.

The name of any subprogram that is passed as an argument to another subprogram
must appear in an EXTERNAL or INTRINSIC statement in the calling program.

Valid EXTERNAL Statement:

EXTERNAL TREES

The FORMAT statement is used with the input/output list in the READ and
WRITE statements to specify the structure of FORTRAN records and the form of
the data fields within the records.

108 VS FORTRAN Language and Library Reference

,~, ., C' 'I'l

o

o

FORMAT

o ~ S~mx
FORMAT (f1 [,12 [, ... ,fn II)

fl, /2, ... , In are format codes.

Code Format Description

I alw Integer data fields

I alw.m Integer data fields

D aDw.d Double precision data fields

E aEw.d Real data fields

E aEw.dEe Real data fields

F aFw.d Real data fields

G aGw.d Real data fields

G aGw.dEe Real data fields

P nP Scale factor

L aLw Logical data fields

A aA Character data fields

A aAw Character data fields

'character Literal data (character constant)

o constant'

H wH Literal data (Hollerith constant)

X wX Input: Skip a field
Output: Fill with blanks

T Tr Transfer of data starts in current position

TL TLr Transfer of data starts r characters to the left of
current position

TR TRr Transfer of data starts r characters to the right of
current position

group a(. ..) Group format specification

S S Display of optional plus sign is restored

SP SP Plus sign is produced in output

SS SS Plus sign is not produced in output

BN BN Blanks are ignored in input

BZ BZ Blanks are treated as zeros in input

slash / Data transfer on the current record is ended

colon : Format control is terminated if there are no more
items in the input/output list

o
Chapter 5. VS FORTRAN Statements 109

FORMAT

IBM Extension

Code Format Description

E aEw.dDe Real data fields

G aGw.d Integer or logical data fields

G aGw.dEe Integer or logical data fields

Q aQw.d Extended precision data fields

Z aZw Hexadecimal data fields

........ __________ End of IBM Extension __________

Q

w

m

d

e

n

r

(...)

is an optional repeat count-an unsigned, nonzero, integer constant used to
denote the number of times the format code or group is to be used. The
range of a is 1 to 255. If a is omitted, the code or group is used only once.

is an unsigned, nonzero, integer constant that specifies the width of the field.

is an unsigned integer constant that specifies the number of digits to be
printed.

is an unsigned integer constant that specifies the number of digits to the right
of the decimal point.

is an uns~gned, nonzero, integer constant that specifies the number of digits
in the exponent field.

is an (optionally) signed integer constant that specifies a scale factor to be
applied.

is an unsigned, nonzero, integer constant that specifies a character position
in a record.

is a group format specification. Within the parentheses are format codes or
additional levels of groups, separated by commas, slashes, or colons.
Commas are optional before or after a slash and before or after a colon, if
the slash or colon is not part of a character constant.

The FORMAT statement is used with READ and WRITE statements for internal
and external files. The external files must be connected for SEQUENTIAL or
DIRECT access. In the FORMAT statement, the data fields are described with
format codes, and the order in which these format codes are specified determines

110 VS FORTRAN Language and Library Reference

C' .. ~~.'.: --- ~I

o

o

o

o

0 '
. ,\'1'1,

FORMAT

the structure of the FORTRAN records. The I/O list gives the names of the data
items that make up the record. The length of the list, in conjunction with the
FORMAT statement, specifies the length of the record. (See "Forms of a
FORMAT Statement" on page 114.)

The format codes delimited by left and right parentheses may appear as a character
constant in the format specification of the READ or WRITE statement, instead of
in a separate FORMAT statement. For example,

READ (UNIT=5,FMT=' (I3,F5.2,E10.3,G10.3) ')N,A,B,C

READ (5,' (I3,F5.2,E10.3,G10.3) ')N,A,B,C

Throughout this section, the examples show punched card input and printed line
output. However, the concepts apply to all input/output media. the examples, the
character b represents a blank.

General Rules for Data Conversion

The following is a list of general rules for using the FORMAT statement or a
format in a READ or WRITE statement.

• FORMAT statements are not executed; their function is to supply information
to the object program. They may be placed anywhere in a program unit other
than in a block data subprogram, subject to the rules for the placement of the
PROGRAM, FUNCTION, SUBROUTINE, and END statements.

Complex data in records requires two successive D, E, G, or F format codes.

IBM Extension

VS FORTRAN also accepts the Q format code for complex data.

"'"'-__________ End of IBM Extension __________ --'

The two codes may be different and the format codes T, TL, TR, X, /, :, S, SP,
SS, P, BN, BZ, H, or a character constant may appear between the two codes.

• When defining a VS FORTRAN record by a FORMAT, it is important to
consider the maximum size record allowed on the input/output medium. For
example, if a VS FORTRAN record is to be punched for output, the record
should not be longer than 80 characters. If it is to be printed, it should not be
longer than the printer's line length. For input, the FORMAT should not
define a VS FORTRAN record longer than the actual input record.

• When records are to be printed, the first character of each record functions as
a carrier control character. The control character determines the vertical
spacing of the printed record and is not considered as part of a data item, as
follows:

Chapter 5. VS FORTRAN Statements 111

FORMAT

Control
Character

Vertical Spacing
Be/ore Printing

blank
o

Advance one line.
Advance two lines.

1

+
Advance to first print position on next page.
No advance (overstrike).

The control character is commonly specified in a FORMAT statement, using
either of two forms of character constant data, 'x' or 1Hx, where x is one of
the characters shown above. The characters and spacing shown are those
defined for VS FORTRAN print records, and the result of using other
characters in the control position is indeterminate (except that the control
position is always discarded). If the print record contains no characters, then
spacing is advanced by one, and a blank line is printed.

IBM Extension

If records are to be displayed at a terminal, control characters are also
employed, and characters blank and zero (only) produce the spacing shown
above when used in the control position.

'--__________ End of IBM Extension __________ ~

Note: In records that are not to be printed or displayed, the first character of
the record is treated as data.

• If the I/O list is omitted from the READ or WRITE statement, the following
general rules apply:

Input: A record is skipped.

Output: A blank record is written unless the FORMAT statement contains
an H format code or a character constant (see "H Format Code and
Character Constants" on page 127).

To produce a bhmk record on output, an empty format specification of the
form FORMAT () may be used.

• To illustrate the nesting of group format specifications, the following
statements are both valid:

FORMAT (••• , ~ (••• ,~(•••) , ••• ,~(•••) , •••))

or

FORMAT (..., ~ (• • • ,~(• • • ,.9" (• • •) , • • •) , • • •) , • • •)

where a is 1 ~ a < 256.

112 VS FORTRAN Language and Library Reference

o

c

o

o

o

FORMAT

• To illustrate the use of nesting in an implied DO and the corresponding
FORMAT specifications:

•

•

PROGRAM FMT1
DIMENSION IRR(3,4), IRI(3,4)
DO 10 I = 1, 3
DO 10 J = 1, 4
IRR(I,J) = 1000 + (I * 100) + J
IRI(I,J) = 2000 + (I * 100) + J

10 CONTINUE
PRINT 20, (I, (IRR(I,J), IRI (I,J), J = 1, 4),

1 I = 1, 3)
2 0 FORMAT (3 (1 X , , ROW', 13, 4 (15, 1 X , 14, 3 X) /))

STOP
END

Results of program FMT1:

ROW 1 1101 2101
ROW 2 1201 2201
ROW 3 1301 2301

11022102
12022202
13022302

1103 2103
12032203
13032303

11042104
12042204
13042304

Names of constants must not be a part of a format specification (see
"PARAMETER Statement" on page 173).

With numeric data format codes I, F, E, G, and D, the following general rules
apply:

Input: Leading blanks are not significant. The interpretation of blanks,
other than leading blanks, is determined by a combination of the value of
the BLANK= specifier given when the file was connected (see "OPEN
Statement" on page 168) and any BN or BZ blank control that is
currently in effect. Plus signs may be omitted. A field of all blanks is
considered to be zero.

With F, E, G, and D format codes, a decimal point appearing in the input
field overrides the portion of a format code that specifies the decimal point
location. The input field may have more digits than VS FORTRAN uses
to approximate the value.

Output: The representation of a positive or zero internal value in the field
may be prefixed with a plus, as controlled by the S, SP, and SS format
codes. The representation of a negative internal value in the field is
prefixed with a minus. A negative zero is not produced.

The representation is right-justified in the field. If the number of
characters produced by the editing is smaller than the field width, leading
blanks are inserted in the field.

If the number of characters produced exceeds the field width or if an
exponent exceeds its specified length using the Ew.dEe or Gw.aBe format
codes, the entire field of width w is filled with asterisks. However, if the
field width is not exceeded when optional characters are omitted, asterisks
are not produced. When an SP format code is in effect, a plus is not
optional.

Chapter 5. VS FORTRAN Statements 113

FORMAT

IBM Extension

With VS FORTRAN, the following additional rules apply:

Input: With Q editing, a decimal point appearing in the input field
overrides the portion of a format code that specifies the decimal point
location. The input field may have more digits than VS FORTRAN uses
to approximate the value.

Output: If the number of characters produced exceeds the field width or if
an exponent exceeds its specified length using the Ew.dDe or Qw.d format
codes, the entire field of width w is filled with asterisks. However, if the
field width is not exceeded when optional characters are omitted, asterisks
are not produced. When an SP format code is in effect, a plus is not
optional.

L...-__________ End of IBM Extension __________ --'

Forms of a FORMAT Statement

All the format codes in a FORMAT statement are enclosed in parentheses. Within
these parentheses, the format codes are delimited by commas. The comma used to
separate list items may be omitted as follows:

• Between a P edit descriptor and an immediately following F, E, D, or G format
code

• Before or after a slash format code

• Before or after a colon format code

Execution of a formatted READ or formatted WRITE statement initiates format
control. Each action of format control depends on information provided jointly by
the I/O list, if one exists, and the format specification. If there is an I/O list, there
must be at least one I, D, E, F, A, G, or L format code in the format specification.

IBM Extension

The Q and Z format codes may also appear in the format specification.

L...-__________ End of IBM Extension __________ --'

There is no I/O list item corresponding to the format codes: T, TL, TR, X, H,
character constants enclosed in apostrophes, S, SP, SS, BN, BZ, P, the slash (/), or
the colon (:). These communicate information directly to the record.

Whenever an I, D, E, F, A, G, or L format code is encountered, format control
determines whether there is a corresponding element in the I/O list.

114 VS FORTRAN Language and Library Reference

0".'···· .. '··
" ,'.

o

c

o

FORMAT

IBM Extension

With VS FORTRAN, the list of format codes includes Q and Z.

Whenever a Q or Z code is encountered, format control determines whether there
is a corresponding element in the I/O list.

The comma may be omitted between a P format code and an immediately following
Q format code.

1....-__________ End of IBM Extension __________ -"

If there is a corresponding element, appropriately converted information is
transmitted. If there is no corresponding element, the format control terminates,
even if there is an unsatisfied repeat count.

When format control reaches the last (outer) right parenthesis of the format
specification, a test is made to determine whether another element is specified in
the I/O list. If not, control terminates. If another list element is specified, the
format control starts a new record. Control then reverts to that group specification
terminated by the last preceding right parenthesis, including its group repeat count,
if any, or, if no group specification exists, then to the first left parenthesis of the
format specification. Such a group specification must include a closing right
parenthesis. If no group specification exists, control reverts to the first left
parenthesis of the format specification.

For example, assume the following FORMAT statements:

70 FORMAT (I5,2(I3,F5.2) ,I4,F3.1)

80 FORMAT (I3,F5.2,2(I3,2F3.1))

90 FORMAT (I3,F5.2,214,5F3.1)

With additional elements in the I/O list after control has reached the last right
parenthesis of each, control would revert to the 2(I3,F5.2) specification in the case
of statement 70; to 2(I3,2F3.1) in the case of statement 80; and to the beginning
of the format specification, I3,F5.2, ... in the case of statement 90.

The question of whether there are further elements in the I/O list is asked only
when an I, D, E, F, A, G, or L format code or the final right parenthesis of the
format specification is encountered.

IBM Extension

The question is also asked when a Q or Z format code is encountered.

1....-__________ End of IBM Extension __________ -"

Before this is done, T, TL, TR, X, and H codes, character constants enclosed in
apostrophes, colons, and slashes are processed. If there are fewer elements in the
I/O list than there are format codes, the remaining format codes are ignored.

Chapter 5. VS FORTRAN Statements 115

FORMAT

I Format Code

F Format Code

The I format code edits integer data. For example, if a READ statement refers to a
FORMAT statement containing I format codes, the input data is stored in internal
storage in integer format. The magnitude of the data to be transmitted must not
exceed the maximum magnitude of an integer constant.

Input: Leading blanks in a field of the input line are interpreted as zeros.
Embedded and trailing blanks are treated as indicated in the general rules for
numeric fields described under "General Rules for Data Conversion" on page 111.
If the form Iw.m is used, the value of m has no effect.

Output: The output field consists of blanks, if necessary, followed by a minus sign
if the internal value is negative, or an optional plus sign otherwise. If the number
of significant digits and sign required to represent the quantity in the datum is less
than w, the unused leftmost print positions are filled with blanks. If it is greater
than w, asterisks are printed instead of the number. If the form Iw.m is used, the
output is the same as the Iw form, except that the unsigned integer constant
consists of at least m digits and, if necessary, has leading zeros. The value of m
must not exceed the value of w. If m is zero and the value of the internal datum is
zero, the output field consists of only blank characters, regardless of the sign
control in effect.

The Fw.d format code edits real data. It indicates that the field occupies w
positions, the fractional part of which consists of d digits.

Input: The input field consists of an optional sign, followed by a string of digits
optionally containing a decimal point. If the decimal point is omitted, the rightmost
d digits of the string, with leading zeros assumed if necessary, are interpreted as the
fractional part of the value represented.

The input field may have more digits than VS FORTRAN uses to approximate the
value of the datum. The basic form may be followed by an exponent of one of the
following forms:

• Signed integer constant.

• E followed by zero or more blanks, followed by an optionally signed integer
constant.

• D followed by zero or more blanks, followed by an optionally signed integer
constant.

IBM Extension

• Q followed by zero or more blanks, followed by an optionally signed integer
constant.

L-.. __________ End of IBM Extension __________ ~

116 VS FORTRAN Language and Library Reference

o

o

o

D, E, and Q Format Codes

o

o

FORMAT

An exponent containing a D is processed identically to an exponent containing an
E.

IBM Extension

An exponent containing a Q is processed identically to an exponent containing an
E.

1.....-__________ End of IBM Extension __________ ~

Output: The output field consists of blanks, if necessary, followed by a minus sign
if the internal value is negative, or an optional plus sign otherwise. This is followed
by a string of digits that contains a decimal point, representing the magnitude of
the internal value, as modified by the established scale factor and rounded to d
fractional digits. Leading zeros are not provided, except for an optional zero
immediately to the left of the decimal point if the magnitude of the value in the
output field is less than one. The optional zero also appears if there would
otherwise be no digits in the output field.

The Dw.d, Ew.d, Ew.dEe format codes edit real, complex, or double precision data.

IBM Extension

The Ew.dDe and Qw.d format codes edit extended precision data in addition to real,
complex, and double precision data.

1.....-__________ End of IBM Extension __________ ~

The external field occupies w positions, the fractional part of which consists of d
digits (unless a scale factor greater than 1 is in effect). The exponent part con~ists
of e digits. (The e has no effect on input.)

Input: The input field may have more digits than VS FORTRAN uses to
approximate the value of the datum.

Input datum must be a number, which, optionally, may have a D or E exponent, or
which may be omitted from the exponent if the exponent is signed.

IBM Extension

It may also have a Q exponent.

L--__________ End of IBM Extension __________ ~

All exponents must be preceded by a constant; that is, an optional sign followed
by at least one decimal digit with or without decimal point. If the decimal point is
present, its position overrides the position indicated by the d portion of the format
code, and the number of positions specified by w must include a place for it. If the
data has an exponent, and a P format code is in effect, the scale factor is ignored.

Chapter 5. VS FORTRAN Statements 117

FORMAT

G Format Code

The interpretation of blanks is explained in "General Rules for Data Conversion"
on page 111.

The input datum may have an exponent of any form. The input datum is converted
to the length of the variable as specified in the 110 list. The e of the exponent in
the format code has no effect on input.

Output: For data written under a D or E format code, unless a P-scale factor is in
effect, output consists of an optional sign (required for negative values), an
optional zero digit, a decimal point, the number of significant digits specified by d,
and a D or E exponent requiring four positions.

If the P-scale factor is negative, output consists of an optional sign (required for
negative values), an optional zero digit, a decimal point, I P I leading zeros,
I d+P I significant digits, and a D or E exponent requiring four positions. (P is the
value of the P-scale factor.)

If the P-scale factor is positive, output consists of an optional sign (required for
negative values), P decimal digits, a decimal point, d-P+l fractional digits, and aD
or E exponent requiring four positions. (P is the value of the P-scale factor.)

IBM Extension

For data written under a Q format code, unless a P-scale factor is in effect, output
consists of an optional sign (required for negative values), a decimal point, the
number of significant digits specified by d, and a Q exponent requiring four
positions.

'--__________ End of IBM Extension __________

On output, w must provide sufficient space for an integer segment if it is other than
zero, a fractional segment containing d digits, a decimal point, and, if the output
value is negative, a sign. If insufficient space is provided for the integer portion,
including the decimal point and sign (if any), asterisks are written instead of data.
If excess space is provided, the number is preceded by blanks.

The fractional segment is rounded to d digits. A zero is placed to the left of the
decimal point, if the output field consists only of a fractional segment, and if
additional space is available. If the entire value is zero, a zero is printed before the
decimal point.

The G format code is a generalized code used to transmit real data according to the
type specification of the corresponding variable in the 110 list. The Gw.d and
Gw.dEe edit descriptors indicate that the external field occupies w positions.
Unless a scale factor greater than one is in effect, the fractional part of w consists
of d digits. The exponent part consists of e digits.

Input: The form of the input field is the same as for the F format code.

118 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

FORMAT

Output: The method of representation in the output field depends on the
magnitude of the data being edited.

For example, letting N be the magnitude of the internal data,

if N < 0.1 or N ~ 10**g

(where k is the scale factor currently in effect), then:

• Gw.d output editing is the same as kPEw.d output editing.

• Gw.dEe output editing is the same as kPEw.dEe output editing.

If N is greater than or equal to 0.1 and less than 10**d, the scale factor has no
effect, and the value of N determines the editing as follows:

Magnitude of Data Equivalent Conversion

0.1 ~ N < 1 F(w-n).d, nCb')

1 ~ N < 10 F(w-n).(d-l), nCb')

10**(d-2) ~ N < 10**(d-1) F(w-n).l, nCb')

10**(d-l) ~ N < 10**d F(w-n).O, nCb')

b means blank.

n means:

• 4 for Gw.d

e+ 2 for Gw.dEe

The scale factor has no effect unless the magnitude of the data to be edited is
outside the range that permits effective use of F editing.

IBM Extension

The letter Q is used for the exponent of extended precision data.

The G format code may be used to transmit integer or logical data according to the
type specification of the corresponding variable in the 110 list.

If the variable in the 110 list is integer or logical, the d portion of the format code,
specifying the number of significant digits, can be omitted; if it is given, it is
ignored.

'--__________ End of IBM Extension __________

Chapter 5. VS FORTRAN Statements 119

FORMAT

P Format Code

A P format code specifies a scale factor n, where n is an optionally signed integer
constant. The value of the scale factor is zero at the beginning of execution of
each input/output statement. It applies to all subsequently interpreted F, E, D, and
G format codes until another scale factor is encountered; then that scale factor is
established.

IBM Extension

It also applies to all subsequently interpreted Q format codes.

1.....-__________ End of IBM Extension __________ -'

Reversion of format control does not affect the established scale factor. A
repetition code can precede these format codes. For example, 2P ,3F7.4 is valid.
(A comma must be placed after the P format code-for example, 2P,3F7.4-when
a repeat count is specified.) A scale factor of zero may be specified.

Input: If an exponent is in the data field, the scale factor has no effect. If no
exponent is in the field, the externally represented number equals the internally
represented number multiplied by lO**n for the external representation.

For example, if the input data is in the form

xx.xxxx

and is to be used internally in the form

.xxxxxx

then the format code used to effect this change is

2PF7.4

which may also be written 2P ,F7.4.

Similarly, if the input data is in the form

xx.xxxx

and is to be used internally in the form

xxxx.xx

then the format code used to effect this change is

-2PF7.4

which also may be written -2P,F7.4.

Output: With an F format code, the internally represented number reduced by
lO**n is produced.

120 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

FORMAT

For example, if the number has the internal form

.xxxxxx

and is to be written in the form

xx.xxxx

the format code used to effect this change is

2PF7.4

which also may be written 2P ,F7.4.

On output with E and D format codes, the value of the internally represented
number is not changed. When the decimal point is moved according to the d of the
format code, the exponent is adjusted so that the value of the externally
represented number is not multiplied by lO**n.

IBM Extension

On output with Q format code, the value of the internally represented number is
not changed.

~ __________ End of IBM Extension __________ ~

For example, if the internal number

238.47

were printed according to the format EIO.3, it would appear as

O.238E+03

If it were printed according to the format IPEIO.3 or IP,EIO.3 it would appear as

2.385E+02

Chapter 5. VS FORTRAN Statements 121

FORMAT

Z Format Code

On output with a G format code, the effect of the scale factor is suspended unless
the magnitude of the internally represented number (m) is outside the range that
permits the use of F format code editing. This range for use of the F format code
is

.1 ~ m < 10 ** d

where d is the number of digits as specified in the G format code Gw.d.

If .1 ~ m < 10**d and the F format code is used, there is no difference between G
format code with a scale factor and G format code without a scale factor.

However,.if m ~ 10**d or < 0.1, the scale factor moves the decimal point to the
right or left.

The following example illustrates the difference between G format code with and
without a scale factor:

If A is initially set to 100 and multiplied by 10 each time, and:

76 FORMAT (' ',G13.5,1PG13.5,2PG13.5)
WRITE (6,76) A,A,A

the result is:

No Scale Factor

100.00
1000.0
10000.

0.10000E+06
0.10000E+07

Scale Factor = 1

100.00
1000.0
10000.

1.00000E+05
1.00000E+06

IBM Extension

The Z format code transmits hexadecimal data.

Scale Factor = 2

100.00
1000.0
10000.

10.0000E+04
10.0000E+05

Input: Scanning of the input field proceeds from right to left. Leading, embedded,
and trailing blanks in the field are treated as zeros. One byte in internal storage
contains two hexadecimal digits; thus, if an input field contains an odd number of
digits, the number is padded on the left with a hexadecimal zero when it is stored.
If the storage area is too small for the input data, the data is truncated and
high-order digits are lost.

Output: If the number of digits in the datum is less than w, the leftmost print
positions are filled with blanks. If the number of digits in the byte is greater than
w, the leftmost digits are truncated and the rest of the number is printed.

~ __________ End of IBM Extension __________J

122 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

FORMAT

Numeric Format Code Examples

Example 1:

The following example illustrates the use of format codes I, F, D, E, and G.

75 FORMAT (I3,F5.2,E10.3,G10.3)

READ (5,75) N,A,B,C

Explanation:

• Four input fields are described in the FORMAT statement and four variables
are in the I/O list. Therefore, each time the READ statement is executed, one
input line is read from the file connected to unit number 5.

• When an input line is read, the number in the first field of the line (three.
columns) is stored in integer format in location N. The number in the second
field of the input line (five columns) is stored in real format in location A, and
so on.

• If there were one more variable in the I/O list, for example, M, another line
would be read and the information in the first three columns of that line would
be stored in integer format in location M. The rest of the line would be
ignored.

• If there were one fewer variable in the list (for example, if C were omitted),
format code G10.3 would be ignored.

• This FORMAT statement defines only one record format. "Forms of a
FORMAT Statement" on page 114 explains how to define more than one
record format in a FORMAT statement.

IBM Extension

Example 2:

This example illustrates the use of the Z, D, and G format codes.

Assume that the following statements are given:

75 FORMAT (Z4,D10.3,2G10.3)

READ (5,75) A,B,C,D

where A, C, and Dare REAL*4 and B is REAL*8 and that, on successive
executions of the READ statement, the following input lines are read:

Column: 5 15 25 35

v v v v v
b3F1156432D+02276.38E+15bbbbbbbbbb

Input
2AF3155381+02b382506E+28276.38E+15

Lines
3ACb346.18D-03485.322836276.38E+15

Format: Z4 D10.3 G10.3 G10.3

Chapter 5. VS FORTRAN Statements 123

FORMAT

Then b represents a blank and the variables A, B, C, and D receive values as if the
following data fields had been supplied:

A B C D

03F1 156.432D02 276.38E+15 000000.000

2AF3 155.381+20 382.506E+28 276.38E+15

3ACO 346.18D-03 485.322836 276.38E+15

Explanation:

• Leading blanks in an input field are treated as zeros. If it is assumed that all
other blanks are to be treated as zeros, because the value for B on the second
input line was not right justified in the field, the exponent is 20, not 2.

• Values read into the variables C and D with a G format code are converted
according to the type of the corresponding variable in the 110 list.

'-__________ End of IBM Extension __________ --'

Example 3:

This example illustrates the use of the character constant enclosed in apostrophes
and the F, E, G, and I format codes.

Assume that the following statements are given:

76 FORMAT ('0' ,F6.2,E12.3,G14.6,I5)

WRITE (6,76)A,B,C,N

and that the variables A, B, C, and N have the following values on successive
executions of the WRITE statement:

A B C N

034.40 123.380E+02 123.380E+02 031

031.1 1156. 1 E+02 123456789. 130

-354.32 834.621E-03 1234.56789 428

01.132 83.121E+06 123380.D+02 000

124 VS FORTRAN Language and Library Reference

o

o

o

0

o
L Format Code

A Format Code

o

FORMAT

Then, the following lines are printed by successive executions of the WRITE
statement:

Print
Column: 9 21 35

v v v v

34.40 0.123E+05 12338.0 31

31 .10 0.116E+06 0.123457E 09 130

****** 0.835E+00 1234.57 428

1 . 13 0.831E+08 0.123380E 08 0

Explanation:

• The integer portion of the third value of A exceeds the format code
specification, so asterisks are printed instead of a value. The fractional portion
of the fourth value of A exceeds the format code specification, so the fractional
portion is rounded.

• For the variable B, the decimal point is printed to the left of the first significant
digit and only three significant digits are printed because of the format code
E12.3. Excess digits are rounded off from the right.

• The values of the variable C are printed according to the format specification
014.6. The d specification, which in this case is 6, determines the number of
digits to be printed and whether the number should be printed with a decimal
exponent. Values greater than or equal to 0.1 and less than 1000000 are
printed without a decimal exponent in this example. Thus, the first and third
values have no exponent. The second and fourth values are greater than
1000000, so they are printed with an exponent.

The L format code transmits logical variables.

Input: The input field must consist of either zeros or blanks with an optional
decimal point, followed by a T or F, followed by optional characters, for true and
false, respectively. The T or F assigns a value of true or false to the logical variable
in the input list. The logical constants . TRUE. and .FALSE. are acceptable input
forms.

Output: A T or F is inserted in the output record depending upon whether the
value of the logical variable in the I/O list was true or false, respectively. The
single character is right justified in the output field and preceded by w-1 blanks.

The A format code transmits character data. Each alphabetic or special character is
given a unique internal code. Numeric characters are transmitted without
alteration; they are not converted into a form suitable for computation. Thus, the
A format code can be used for numeric fields, but not for numeric fields requiring
arithmetic.

Chapter 5. VS FORTRAN Statements 125

FORMAT

If w is specified, the field consists of w characters.

If the number of characters w is not specified with the format code A, the number
of characters in the field is the length of the character item in inputloutput list.

Input: The maximum number of characters stored in internal storage depends on
the length of the variable in the 110 list. If w is greater than the variable length,
for example, v, then the leftmost w-v characters in the field of the input line are
skipped, and remaining v characters are read and stored in the variable. If w is less
than v, then w characters from the field in the input line are read, and remaining
rightmost characters in the variable are filled with blanks.

Output: If w is greater than the length v of the variable in the 110 list, then the
printed field contains v characters, right-justified in the field, preceded by leading
blanks. If w is less than v, the leftmost w characters from the variable are printed,
and ·the rest of the data is truncated.

Example 1:

Assume that B has been specified as CHARACTER*8, that Nand Mare
CHARACTER *4, and that the following statements are given:

25 FORMAT (3A7)

READ (5,25) B, N, M

When the READ statement is executed, one input line is read from the data set
associated with data set reference number 5 into the variables B, N, and M, in the
format specified by FORMAT statement number 25. The following list shows the
values stored for the given input lines (b represents a blank).

Input Line B N M

ABCDEFG46bATb11234567 ABCDEFGb ATb1 4567

HIJKLMN76543213334445 HIJKLMNb 4321 4445

126 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

FORMAT

Example 2:

Assume that A and B are character variables of length 4, that C is a character
variable of length 8, and that the following statements are given:

26 FORMAT (A6,A5,A6)

WRITE (6,26) A,B,C

When the WRITE statement is executed, one line is written on the data set
associated with data set reference number 6 from the variables A, B, and C in the
format specified by FORMAT statement 26. The printed output for values of A,
B, and C is as follows (b represents a blank):

A B C Printed Line

A1B2 C3D4 E5F6G7H8 bbA1B2bC3D4E5F6G7

H Format Code and Character Constants

Character constants can appear in a FORMAT statement in one of two ways:
following the H format code or enclosed in apostrophes. For example, the
following FORMAT statements are equivalent.

25 FORMAT (22H 1982 INVENTORY REPORT)

25 FORMAT (' 1982 INVENTORY REPORT')

No item in the output list corresponds to the character constant. The constant is
written directly from the FORMAT statement. (The FORMAT statement can
contain other types of format code with corresponding variables in the I/O list.)

Input: Character constants cannot appear in a format used for input.

Output: The character constant from the FORMAT statement is written on the
output file. (If the H format code is used, the w characters following the Hare
written. If apostrophes are used, the characters enclosed in apostrophes are
written.) For example, the following statements:

8 FORMAT (14HOMEAN AVERAGE:, F8.4)

WRITE (6,8) AVRGE

would write the following record if the value of A VRGE were 12.3456:

MEAN AVERAGE: 12.3456

The first character of the output data record in this example is the carrier control
character for printed output. One line is skipped before printing, and the carrier
control character does not appear in the printed line.

Note: If the character constant is enclosed in apostrophes, an apostrophe character
in the data is represented by two successive apostrophes. For example, DON'T
would be represented as 'DON"T'. The two successive apostrophes are counted as
one character. A maximum of 255 characters can be specified in a character or a
Hollerith constant.

Chapter 5. VS FORTRAN Statements 127

FORMAT

X Format Code

T Format Code

The X format code specifies a field of w characters to be skipped on input or filled
with blanks on output if the field was not previously filled. On output, an X format
code does not affect the length of a record. For example, the following statements:

• Read the first ten characters of the input line into variable I.

• Skip over the next ten characters without transmission.

• Read the next four fields of ten characters each into the variables J, K, L, and
M.

5 FORMAT (I10,10X,4I10)

READ (5,5) I,J,K,L,M

The T format code specifies the position in the FORTRAN record at which the
transfer of data is to begin.

To illustrate the use of the T code, the following statements:

5 FORMAT (T40, '1981 STATISTICAL REPORT', T80,

X 'DECEMBER' ,T1,'OPART NO. 10095')

WRITE (6,5)

print the following:

Print
Position:

v
PART NO. 10095

39 79

v v
1981 STATISTICAL REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type of format
code, as, for example, with FORMAT ('O',T40,I5).

Input: The T format code allows portions of a record to be processed more than
once, possibly with different format codes.

Output: The record is assumed to be initially filled with blank characters, and the
T format code can replace or skip characters. On output, a T format code does not
affect the length of a record.

(For printed output, the first character of the output data record is a carrier control
character and is not printed. Thus, for example, if T50,'Z' is specified in a
FORMAT statement, a Z will be the 50th character of the output record, but it will
appear in the 49th print position.)

128 VS FORTRAN Language and Library Reference

o

o

o

o

Group Format Specification

o

o

FORMAT

TL and TR Format Codes: The TL and TR format codes specify how many
characters left (TL) or right (TR) from the current character position the transfer
of data is to begin. With TL format code, if the current position is less than or
equal to the position specified with TL, the next character transmitted will be
placed in position 1 (that is, the carrier control position).

The TL and TR format codes can be used in a FORMAT statement with any type
of format code. On output, these format codes do not affect the length of a record.

The group format specification repeats a set of format codes and controls the order
in which the format codes are used.

The group repeat count a is the same as the repeat indicator a that can be placed in
front of other format codes. For example, the following statements are equivalent:

10 FORMAT (13,2(14,15) ,16)

10 FORMAT (13,(14,15,14,15),16)

Group repeat specifications control the order in which format codes are used, since
control returns to the last group repeat specification when there are more items in
the I/O list than there are format codes in the FORMAT statement. (See "Forms
of a FORMAT Statement" on page 114.) Thus, in the previous example, if there
were more than six items in the I/O list, control would return to the group repeat
count 2, which precedes the specification (14,15).

If the group repeat count is omitted, a count of 1 is assumed. For example, the
statements:

15 FORMAT (13, (F6.2,D10.3))

READ (5,15) N,A,B,C,D,E

read values from the first record for N, A, and B, according to the format codes 13,
F6.2, and DI0.3, respectively. Then, because the I/O list is not exhausted, control
returns to the last group repeat specification, the next record is read, and values are
transmitted to C and D according to the format codes F6.2 and DI0.3,
respectively. Since the I/O list is still not exhausted, another record is read and
value is transmitted to E according to the format code F6.2-the format code
D 1 O. 3 is not used.

All format codes can appear within the group repeat specification. For example,
the following statement is valid:

40 FORMAT (213/(3F6.2,F6.3/D10.3,3D10.2))

The first physical record, containing two data items, is transmitted according to the
specification 213; the second, fourth, and so on, records, each containing four data
items, are transmitted according to the specification 3F6.2,F6.3; and the third,
fifth, and so on, records, each also containing four data items, are transmitted
according to the specification DI0.3,3DI0.2, until the I/O list is exhausted.

Chapter 5. VS FORTRAN Statements 129

FORMAT

S, SP, and SS Format Codes

BN Format Code

The S, SP, and SS format codes control optional plus sign characters in numeric
output fields. At the beginning of execution of each formatted output statement, a
plus sign is produced in numeric output fields. If an SP format code is encountered
in a format specification, a plus sign is produced in any subsequent position that
normally contains an optional plus sign. If SS is encountered, a plus sign is not
produced in any subsequent position that normally contains an optional plus sign. If
an S is encountered, the option of producing the plus sign is set off.

Example:

The following program:

DOUBLE PRECISION A
REAL*16 S
R=3.
S=4.
1=5
A=l.
T=7.
U=8.
WRITE (6,100) R,S,I,A,T,U

100 FORMAT (Fl0.2,SP,Q15.3,SS,I7,SP,Dl0.2,S,El0.3,SP,Gl0.l)
STOP
END

produces the following output:

3.00 +O.400Q+Ol 5 +O.10D+Ol O.700E+Ol +8.

The S, SP, and SS format codes affect only I, F, E, G, and D editing during the
execution of an output statement.

IBM Extension

The S, SP, and SS format codes also affect Q editing.

'--__________ End of IBM Extension __________

The S, SP, and SS format codes have no effect during the execution of an input
statement.

The BN format code specifies the interpretation of blanks, other than leading
blanks, in numeric input fields. At the beginning of each formatted input
statement, such blank characters are interpreted as zeros or are ignored depending
on the value of the BLANK= specifier given when the unit was connected. (See
"OPEN Statement" on page 168.)

If BN is encountered in a format specification, all such blank characters in
succeeding numeric input fields are ignored. However, a field of all blanks has the
value zero.

130 VS FORTRAN Language and Library Reference

o

o

o

o

o
HZ Format Code

o

FORMAT

The BN format code affects only I, F, E, G, and D editing during execution of an
input statement.

IBM Extension

The BN format code also affects Q editing during execution of an input statement.

1....-__________ End of IBM Extension __________ ---'

The BN format code has no effect during execution of an output statement.

Example:

The following program (containing both BN and BZ format code):

READ
READ

100 FORMAT
101 FORMAT

WRITE
STOP
END

(9,100) R,S,I,J
(9,101) A,B,K,L
(BZ,Q15.3,F7.2,I3,I7)
(BN,Q15.3,F7.2,I3,I7)
(*,*) R,S,I,J,A,B,K,L

with the following input:

1.2
1.2

3. 1 3
3 .. 1 3

5
5

creates the following output:

1.19999980
1.19999980

3.10000038
3.10000038

300
3

5
5

The BZ format code specifies the interpretation of blanks, other than leading blanks,
in numeric input fields.

If BZ is encountered in a format specification, all nonleading blank characters in
succeeding numeric fields are treated as zeros. If no OPEN statement is given and
the file is preconnected, all nonleading blanks in numeric fields are interpreted as
zeros.

The BZ format code affects only I, F, E, G, and D editing during execution of an
input statement.

IBM Extension

The BZ format code also affects Q editing during execution of an input statement.

'---__________ End of IBM Extension __________ --'

The BZ format code has no effect during execution of an output statement.

Chapter 5. VS FORTRAN Statements 131

FORMAT

Slash Format Code

Colon Format Code

A slash indicates the end of a VS FORTRAN record.

On input from a file connected for sequential access, the remaining portion of the
current record is skipped, and the file is positioned at the beginning of the next
record.

On output to a file connected for sequential access, a new record is created. For
example, on output, the statement:

25 FORMAT (I3,F6.2/D10.3,F6.2)

describes two FORTRAN record formats. The first, third, etc., records are
transmitted according to the format 13, F6.2 and the second, fourth, etc., records
are transmitted according to the format DlO.3, F6.2.

Consecutive slashes can be used to introduce blank output records or to skip input
records. If there are n consecutive slashes at the beginning or end of a FORMAT
statement, n input records are skipped or n blank records are inserted between
output records. If n consecutive slashes appear anywhere else in a FORMAT
statement, the number of records skipped or blank records inserted is n-l. For
example, the statement:

25 FORMAT (1X,10I5//1X,8E14.5)

describes three FORTRAN record formats. On output, it places a blank line
between the line written with format lX,lOIS and the line written with the format
lX,SEl4.S.

For a file connected for direct access, when a slash is encountered, the record
number is increased by one and the file is positioned at the beginning of the record
that has that record number.

A colon terminates format control if there are no more items in the input/output
list. The colon has no effect if there are more items in the input/output list.

132 VS FORTRAN Language and Library Reference

o

o

o

o

o

Example:

Assume the following statements:

ITABLE=10
IELEM=O

10 WRITE(6,1000)ITABLE,IELEM

ITABLE=11
IELEM=25

XMIN=-.37E1
XMAX=.249,5E3

20 WRITE(6,1000)ITABLE,IELEM,XMIN,XMAX

FORMAT

1000 FORMAT('O TABLE NUMBER',I5,:, 'CONTAINS',I5, 'ELEMENTS',:,
1 /'MINIMUM VALUE:',E15.7,
2 /'MAXIMUM VALUE:',E15.7)

The WRITE statement at statement number 10 generates the following:

TABLE NUMBER 10 CONTAINS 0 ELEMENTS

The WRITE statement at statement number 20 generates the following:

TABLE NUMBER 11 CONTAINS 25 ELEMENTS
MINIMUM VALUE: -.3700000E+01
MAXIMUM VALUE: .2495000E+03

Reading Format Specifications at Object Time

VS FORTRAN provides for variable FORMAT statements by allowing a format
specification to be read into a character array element or a character variable in
storage. The data in the character array or variable may then be used as the format
specification for subsequent input/output operations. The format specification
may also be placed into the character array or variable by a DATA statement or an
explicit specification statement in the source program. The following rules are
applicable:

• The format specification must be a character array or character variable, even
if the array size is only 1.

• The format codes entered into the array or character variable must have the
same form as a source program FORMAT statement, except that the word
FORMAT and the statement number are omitted. The parentheses
surrounding the format codes are required.

• If a format code read at object time contains two consecutive apostrophes
within a character field that is defined by apostrophes, it should be used for
output only.

Chapter 5. VS FORTRAN Statements 133

FORMAT

List-Directed Formatting

• Blank characters may precede the format specification, and character data may
follow the right parenthesis that ends the format specification.

Example: Assume the following statements:

DIMENSION C(5)
CHARACTER*16 FMT
READ(5,1)FMT
FORMAT (A)
READ(5,FMT)A,B, (C(I),I=1,5)

Assume also that the first input line associated with unit 5 contains (2EIO.3,
5FIO.8).

The data on the next input line is read, converted, and stored in A,B, and the array
C, according to the format codes 2EIO.3, 5FIO.8.

IBM Extension

Reoding a FORMAT into a noncharacter array: Assume the following statements:

DIMENSION FMT(16),C(5)
READ(5,1) FMT
FORMAT (16A 1)
READ(5,FMT)A,B, (C(I) ,1=1,5)

Assume also that the first input line associated with unit 5 contains (2EI0.3,
5FIO.8).

The data on the next input record is read, converted, and stored in A, B, and the
array C, according to the format codes 2EI0.3, 5FIO.8.

L...-__________ End of IBM Extension __________

The characters in one or more list-directed records constitute a sequence of values
and value separators. The end of a record has the same effect as a blank character,
unless it is within a character constant. Any sequence of two or more consecutive
blanks is treated as a single blank, unless it is within a character constant.

Each value is either a constant, a null value, or one of the forms:

.r.*f

or

£*

where r is an unsigned, nonzero, integer constant. The r*Jform is equivalent to r
successive appearances of the constant [, and the r* form is equivalent to r
successive null values. Neither of these forms may contain embedded blanks,
except where permitted within the constant f.

134 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

FORMAT

A value separator is one of the following:

• A comma, optionally preceded by one or more blanks and optionally followed
by one or more blanks

• A slash, optionally preceded by one or more blanks and optionally followed by
one or more blanks

• One or more blanks between two constants or following the last constant

Input: Input forms acceptable to format specifications for a given type are
acceptable for list-directed formatting, except as noted below. The form of the
input value must be acceptable for the type of the input list item. Blanks are never
treated as zeros, and embedded blanks are not permitted in constants, except
within character constants and complex constants as specified below. The end of a
record has the effect of a blank, except when it appears within a character
constant.

When the corresponding input list item is of real or double precision type, the input
form is that of a numeric input field. A numeric input field is a field suitable for the
F format code that is assumed to have no fractional digits, unless a decimal point
appears within the field.

When the corresponding list item is of complex type, the input form consists of a
left parenthesis, an ordered pair of numeric input fields separated by a comma, and
a right parenthesis. The first numeric input field is the real part of the complex
constant and the second is the imaginary part. Each of the numeric input fields
may be preceded or followed by blanks. The end of a record may occur between
the real part and the comma or between the comma and the imaginary part.

When the corresponding list item is of logical type, the input form must not include
either slashes or commas among the optional characters permitted for the L format
code.

When the corresponding list item is of character type, the input form consists of a
nonempty string of characters enclosed in apostrophes. Each apostrophe within a
character constant must be represented by two consecutive apostrophes without an
intervening blank or the end of the record. Character constants may be continued
from the end of one record to the beginning of the next record. The end of the
record does not cause a blank or any other character to become part of the
constant. The constant may be continued on as many records as needed. The
characters blank, comma, and slash may appear in character constants.

For example, let len be the length of the list item, and let w be the length of the
character constant. If len is less than or equal to w, the leftmost len characters of
the constant are transmitted to the list item. If len is greater than w, the constant is
transmitted to the leftmost w characters of the list item and the remaining len-w
characters of the list item are filled with blanks. The effect is that the constant is
assigned to the list item in a character assignment statement.

A null value is specified by having no characters between successive separators, by
having no characters preceding the first value separator in the first record read by
each execution of a list-directed input statement, or by the r* form. A null value
has no effect on the definition status by the corresponding input list item. If the
input list item is defined, it retains its previous value; if it is undefined, it remains

Chapter 5. VS FORTRAN Statements 135

FORMAT

undefined. A null value may not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire complex constant.
The end of a record following any other separator, with or without separating
blanks, does not specify a null value.

A slash encountered as a value separator during execution of a list-directed input
statement causes termination of execution of that input statement after the
assignment of the previous value. If there are additional items in the input list, the
effect is as if null values had been supplied for them.

All blanks in a list-directed input record are considered part of some value
separator, except for the following:

• Blanks embedded in a character constant

• Embedded blanks surrounding the real or imaginary part of a complex constant

Leading blanks in the first record read by each execution of a list-directed
input statement, unless immediately followed by a slash or comma

Output: Except as noted, the form of the values produced is the same as that
required for input. With the exception of character constants, the values are
separated by one of the following:

• One or more blanks

• A comma, optionally preceded by one or more blanks and optionally followed
by one or more blanks

VS FORTRAN may begin new records as necessary but, except for complex
constants and character constants, the end of a record must not occur within a
constant, and blanks must not appear within a constant.

Logical output constants are T for the value . TRUE. and F for the value .FALSE ..

Integer output constants are produced with the effect of an Iw edit descriptor for
some reasonable value of w.

Real and double precision constants are produced with the effect of either an F
format code or an E format code, depending on the magnitude x of the value and a
range:

where dl and d2 are processor-dependent integer values. If the magnitude x is
within this range, the constant is produced using OPFw.d; otherwise, IPEw.dEe is
used. Reasonable processor-dependent values are used for each of the cases
involved.

Complex constants are enclosed in parentheses, with a comma separating the real
and imaginary parts. The end of a record may occur between the comma and the
imaginary part only if the entire constant is as long as, or longer than, an entire
record. The only embedded blanks permitted within a complex constant are
between the comma and the end of a record and one blank at the beginning of the
next record.

136 VS FORTRAN Language and Library Reference

0·"· , ..

o

o

o

FUNCTION Statement

o

o

FORMAT

Character constants produced:

• Are not delimited by apostrophes

• Are not preceded or followed by a value separator

• Have each internal apostrophe represented externally by one apostrophe

• Have a blank character inserted at the beginning of any record that begins with
the continuation of a character constant from the preceding record

If two or more successive values in an output record produced have identical
values, the sequence of identical values is written.

Slashes, as value separators, and null values are not produced by list-directed
formatting.

Each output record begins with a blank character to provide carrier control if the
record is printed.

The FUNCTION statement identifies a function subprogram consisting of a
FUNCTION statement followed by other statements that may include one or more
RETURN statements. It is an independently written program that is executed
wherever its name is referred to in another program.

Syntax

[type] FUNCTION name ([argl [, arg2] ...])

type

nome

is integer, real, double precision, complex, logical, or character[*lenl]

where:

* len 1
is the length specification. It is optional; if omitted, it is assumed to be
1. It may be an unsigned, nonzero, integer constant, an integer
constant expression enclosed in parentheses, or an asterisk enclosed in
parentheses. The expression can only contain integer constants; it
must not include names of integer constants.

If the name is of character type, all entry names must be of character
type, and lengths must be the same. If one length is specified as an
asterisk, all lengths must be specified as an asterisk.

is the name of the function.

Chapter 5. VS FORTRAN Statements 137

FUNCTION

IBM Extension

IIIl1tIe*Ien2
is the name of the function.

where:

*len2
is a positive, nonzero, unsigned integer constant. It represents one of
the permissible length specifications for its associated type. (See
"Variable Types and Lengths" on page 25.) */en2 is optional. It may
be included only when type is specified. It must not be used when
DOUBLE PRECISION or CHARACTER is specified.

'--__________ End of IBM Extension __________

arg
is a dummy argument. It must be a variable or array name that may appear
only once within the FUNCTION statement or dummy procedure name. If
there is no argument, the parentheses must be present. (See "Dummy
Arguments in a Function Subprogram" on page 140.)

A type declaration for a function name may be made by the predefined convention,
by an IMPLICIT statement, by an explicit specification in the FUNCTION
statement, or by an explicit type specification statement within the function
subprogram. If the type of a function is specified in a FUNCTION statement, the
function name must not appear in an explicit type specification statement.

The name of a function must not be in any other nonexecutable statement except a
type statement.

Because the FUNCTION statement is a separate program unit, there is no conflict
if the variable names and statement numbers within it are the same as those in
other program units.

The FUNCTION statement must be the first statement in the subprogram. The
function subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, a BLOCK DATA
statement, or a PROGRAM statement. If an IMPLICIT statement is used in a
function subprogram, it must follow the FUNCTION statement and may only be
preceded by another IMPLICIT statement, a PARAMETER, FORMAT, or
ENTRY statement.

The name of the function (or one of the ENTRY names) must appear as a variable
name in the function subprogram and must be assigned a value at least once during
the execution of the subprogram in one of the following ways:

• As the variable name to the left of the equal sign in an arithmetic, logical, or
character assignment statement

• As an argument of a CALL statement that will cause a value to be assigned in
the subroutine referred to

• In the list of a READ statement within the subprogram

138 VS FORTRAN Language and Library Reference

c

o

o

o

o

o

FUNCTION

• As one of the parameters in an INQUIRE statement that is assigned a value
within the subprogram

As a DO- or implied DO-variable

• As the result of the 10STAT specification in an I/O statement

The value of the function is the last value assigned to the name of the function
when a RETURN or END statement is executed in the subprogram. For additional
information on RETURN and END statements in a function subprogram, see
"RETURN Statement" on page 222 and "END Statement" on page 94.

The function subprogram may also use one or more of its arguments to return
values to the calling program. An argument so used must appear:

• On the left side of an arithmetic, logical, or character assignment statement

• In the list of a READ statement within the subprogram

• As an argument in a function reference that is assigned a value by the function
referred to

As an argument in a CALL statement that is assigned a value in the subroutine
referred to

• As one of the parameters in an INQUIRE statement

The dummy arguments of the function subprogram (for example, argl, arg2,
arg3, ... , argn) are replaced at the time of invocation by the actual arguments
supplied in the function reference in the calling program.

If a function dummy argument is used as an adjustable array name, the array name
and all the variables in the array declarators (except those in the common block)
must be in the dummy argument list. See "Size and Type Declaration of an Array"
on page 30.

If the predefined convention is not correct, the function name must be typed in the
program units that refer to it. The type and length specifications of the function
name in the function reference must be the same as those of the function name in
the FUNCTION statement.

Except in a character assignment statement, the name of a character function
whose length specification is an asterisk must not be the operand of a
concatenation operation.

The length specified for a character function in the program unit that refers to the
function must agree with the length specified in the subprogram that specifies the
function. There is always agreement of length if the asterisk is used in the
referenced subprogram to specify the length of the function.

Chapter 5. VS FORTRAN Statements 139

FUNCTION

Actual Arguments in a Function Subprogram

The actual arguments in a function reference must agree in order, number, and type
with the corresponding dummy arguments in the dummy argument list of the
referenced function. The use of a subroutine name as an actual argument is an
exception to the rule requiring agreement of type.

If an actual argument is of type character, the associated dummy argument must be
of type character and the length of the actual argument must be greater than or
equal to the length of the dummy argument. If the length of the actual argument is
greater than the length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a function reference must be one of the following:

• An array name

• An intrinsic function name

• An external procedure name

• A dummy argument name

• An expression, except a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses (unless the
operand is the name of a constant).

For an entry point in a function subprogram, see "ENTRY Statement" on
page 97.

Dummy Arguments in a Function Subprogram

The dummy arguments of a function subprogram appear after the function name
and are enclosed in parentheses. They are replaced at the time of invocation by the
actual arguments supplied in the function reference.

Dummy arguments must adhere to the following rules:

• None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SA VB, INTRINSIC, or NAMELIST
statement, except as NAMELIST or common block names, in which case the
names are not associated with the dummy argument names.

• A dummy argument name must not be the same as the procedure name
appearing in a FUNCTION, SUBROUTINE, ENTRY or statement function
definition in the same program unit.

• The dummy arguments must correspond in number, order, and type to the
actual arguments.

140 VS FORTRAN Language and Library Reference

c

o

, , O
·~.··'·\

o

o

FUNCTION

If a dummy argument is assigned a value in the subprogram, the corresponding
actual argument must be a variable, an array element, a substring, or an array.
A constant, name of constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is certain that the
corresponding dummy argument has not been assigned a value in the
subprogram.

A referenced subprogram cannot assign new values to dummy arguments that
are associated with other dummy arguments within the subprogram or with
variables in the common block.

Valid Examples

1. Definition of function subprogram SUFFIX:

CHARACTER*10 FUNCTION SUFFIX(STR)
CHARACTER*7 STR
SUFFIX = STR II 'SUFI
END

Use of function subprogram SUFFIX:

CHARACTER*10 NAME, SUFFIX

NAME = SUFFIX(NAME(1:7))

2. Definition of function subprogram CUBE. This illustrates a function defined
without any dummy arguments:

REAL FUNCTION CUBE*16()
COMMON ICOM11 A
CUBE = A * A * A
END

Use of function subprogram CUBE. Functions defined without any dummy
arguments must be invoked with the null parentheses.

REAL*16 A,X
COMMON ICOM11 A
A 1.6

X CUBE ()

3. Function IADD illustrates assigning a value to the function name (in this case,
IADD) by means of an argument of a CALL statement.

FUNCTION IADD(M

CALL SUBA (IADD, M)
RETURN
END

Definition of subroutine SUBA:

SUBROUTINE SUBA (J,K)
J = 10 + K
RETURN
END

Chapter 5. VS FORTRAN Statements 141

FUNCTION

GO TO Statements

4. Function IREAD illustrates assigning a value to the name of a function (in this
case, IREAD) by means of an 110 list of a READ statement within the
function definition.

FUNCTION IREAD ()
READ *, IREAD
RETURN
END

5. Function SUM illustrates the use of adjustable dimensions.

INTEGER FUNCTION SUM(ARRY, M, N)
INTEGER M, N, ARRY(M, N)

SUM = 0
DO 10 I = 1, M
DO 10 J = 1, N

10 SUM = SUM + ARRY(I,J)
RETURN
END

Use of function subprogram SUM:

DIMENSION I ARRAY (20,30)
INTEGER SUM

IVAR = SUM (IARRAY, 20, 30)

Invalid Examples

Assume the following function definition:

REAL FUNCTION BAD(ARG)

IF (ARG .EQ. 0.0) ARG
BAD = 123.4/ARG

RETURN
END

1.0

The following use of BAD is illegal, because the actual argument is an expression,
and BAD may assign a value to its dummy argument.

x = BAD(6.0 * X)

The following use of BAD is also illegal, because the actual argument is a constant.

X = BAD (1 2 . 3)

GO TO statements transfer control to an executable statement in the program unit.
There are three GO TO statements:

• Assigned GO TO statement

• Computed GO TO statement

• Unconditional GO TO statement

142 VS FORTRAN Language and Library Reference

c

~
AI \,

V

Assigned GO TO Statement o

o

o

GO TO

The assigned GO TO statement transfers control to the statement numbered stn 1,
stn2, stn3 ... , depending on whether the current assignment of i is stnl, stn2, stn3 ... ,
respectively. (See "ASSIGN Statement" on page 59.)

r-: Synmx
~ TO i [[.) (stnt [,stn2) [,sln3) ...) I

;

sin

is an integer variable (not an array element) of length 4 that has been
assigned a statement number by an ASSIGN statement.

is the number of an executable statement in the same program unit as the
assigned GO TO statement.

The list of statement numbers, that is, (stnl, stn2, stn3 ...), is optional. If omitted,
the preceding comma must be omitted. If the list of statement numbers is specified,
the preceding comma is optional. The statement number assigned to i must be one
of the statement numbers in the list. The statement number may appear more than
once in the list.

The ASSIGN statement that assigns the statement number to i must appear in the
same program unit as the assigned GO TO statement that is using this statement
number.

For example, in the statement:

GO TO N, (1 0, 25, 8)

If the current assignment of the integer variable N is statement number 8, then the
statement numbered 8 is executed next. If the current assignment of N is statement
number 10, the statement numbered 10 is executed next. If N is assigned
statement number 25, statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the current value of i
must have been assigned the statement number of an executable statement (not a
FORMAT statement) by the previous execution of an ASSIGN statement.

If, at the time of the execution of an assigned GO TO statement, the current value
of i contains an integer value, assigned directly or through EQUIVALENCE,
COMMON, or argument passing, the result of the GO TO is unpredictable. If the
integer variable i is a dummy argument in a subprogram, then it must be assigned a
statement number in the subprogram, and also used in an assigned GO TO in that
subprogram. An integer variable used as an actual argument in a subprogram
reference may not be used in an assigned GO TO in the invoked subprogram unless
it is redefined in the subprogram.

Chapter 5. VS FORTRAN Statements 143

GO TO

Any executable statement immediately following the assigned GO TO statement
should have a statement number; otherwise, it can never be referred to or executed.
An assigned GO TO statement cannot terminate the range of a DO.

Example:

ASSIGN 150 TO IASIGN
IVAR=150.
GO TO IASIGN

Computed GO TO Statement

The computed GO TO statement transfers control to the statement numbered sIn 1,
stn2, or stn3, ... depending on whether the current value of m is 1,2, or 3, ...
respectively. r: S~mx
:0 TO (slnt [, sm2] [, sm3] ...) [,] m

sin

m

is the number of an executable statement in the same program unit as the
computed GO TO statement. The same number may appear more than once
within the parentheses.

is an integer expression. The comma before m is optional. If the value of m
is outside the range 1 ~ m ~ n, where n is the number of statement
numbers, the next statement is executed.

A computed GO TO statement may terminate the range of a DO.

Example:

171 GO TO(172,173,174,173) INT(A)
172 A = A + 1. 0

GO TO 174
173 A = A + 1. 0
174 CONTINUE

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the statement specified by
the statement number. Every subsequent execution of this GO TO statement
results in a transfer to that same statement.

sin
is the number of an executable statement in the same program unit as the
unconditional GO TO statement.

144 VS FORTRAN Language·and Library Reference

o

o

o

IF Statements

c
Arithmetic IF Statement

0"':1
, .

GO TO

Any executable statement immediately following this statement must have a
statement number; otherwise, it can never be referred to or executed.

An unconditional GO TO cannot terminate the range of a DO-loop.

Example:

GO TO 5
999 I I + 200

5 I I + 1

The IF statements specify alternative paths of execution depending on the
condition given. There are three forms of the IF statement:

Arithmetic IF

• Block IF

END IF
ELSE
ELSE IF

• Logical IF

The arithmetic IF statement transfers control to the statement numbered stnl, stn2,
or stn3 when the value of the arithmetic expression (m) is less than, equal to, or
greater than zero, respectively. The same statement number may appear more than
once within the same IF statement.

~ S~w
W (m) stnt, stn2, stn3

m

sin

is an arithmetic expression of any type except complex.

is the number of an executable statement in the same program unit as the IF
statement.

An arithmetic IF statement cannot terminate the range of a DO-loop.

Any executable statement immediately following this statement must have a
statement number; otherwise, it can never be referred to or executed.

Chapter 5. VS FORTRAN Statements 145

IF

Block IF Statement

The block IF statement is used with the END IF statement and, optionally, the
ELSE IF and ELSE statements to control the execution sequence.

~ Synmx
I¥ (m) TIffiN

m
is any logical expression.

Two terms are used in connection with the block IF statement: IF -level and
IF-block.

IF-level

IF-block

The number of IF-levels in a program unit is determined by the
number of sets of block IF statements (IF (m) THEN and END IF
statements) .

The IF-level of a particular statement (stn) is determined with the
formula:

n1 - n2.

where:

nl

n2

is the number of block IF statements from the beginning of the
program unit up to and including the statement (stn).

is the number of END IF statements in the program unit up to,
but not including, the statement (stn).

An IF-block begins with the first statement after the block IF
statement (IF (m) THEN), ends with the statement preceding the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the block IF statement, and includes all the executable statements in
between. An IF-block is empty if there are no executable statements
in it.

Transfer of control into an IF-block from outside the IF-block is
prohibited.

Execution of a block IF statement evaluates the expression m. If the value of m is
true, normal execution sequence continues with the first statement of the IF-block,
which is immediately following the IF (m) THEN. If the value of m is true, and the
IF-block is empty, control is transferred to the next END IF statement that has the
same IF-level as the block IF statement. If the value of m is false, control is
transferred to the next ELSE IF, ELSE, or END IF statement that has the same
IF -level as the block IF statement.

146 VS FORTRAN Language and Library Reference

o

o
END IF Statement

o

0 ··' ,"";

IF

If the execution of the last statement in the IF-block does not result in a transfer of
control, control is transferred to the next END IF statement that has the same
IF-level as the block IF statement that precedes the IF-block.

A block IF statement cannot terminate the range of a DO.

The END IF statement concludes an IF-block. Normal execution sequence
continues.

For each block IF statement, there must be a matching END IF statement in the
same program unit. A matching END IF statement is the next END IF statement
that has the same IF-level as the block IF statement.

An ELSE IF statement cannot terminate the range of a DO. Execution of an END
IF statement has no effect.

Valid Examples:

The following is the general form of a single alternative block IF statement (in
other words, no ELSE or ELSE IF statements are in the IF-block).

IF (ill) THEN
C
C EXECUTION SEQUENCE WHEN THE VALUE OF ill IS TRUE
C

ENDIF
C
C IF ill IS FALSE, EXECUTION CONTINUES HERE
C

The following is an example of a single alternative IF.

IF (INDEX .EQ. 0) THEN
PRINT *, 'KEY NOT FOUND'
INDEX = - 1

ENDIF

Chapter 5. VS FORTRAN Statements 147

IF

ELSE Statement

ELSE IF Statement

The ELSE statement is executed if the preceding block IF or ELSE IF condition is
evaluated as FALSE. Normal execution sequence continues. r: S~w

ELSE

An ELSE-block consists of all the executable statements after the ELSE statement
up to, but not including, the next END IF statement that has the same IF-level as
the ELSE statement. An ELSE-block may be empty.

Within an IF-block, you can have only one ELSE.

Transfer of control into an ELSE-block from outside the ELSE-block is prohibited.
The statement number, if any, of an ELSE statement must not be referred to by
any statement (except an AT statement of a DEBUG packet). An ELSE statement
cannot terminate the range of a DO.

Valid Examples

The following is the general form of the double alternative block IF statement (in
other words, IF-block contains an ELSE statement but no ELSE IF statements).

IF (ill) THEN
C
C EXECUTION SEQUENCE WHEN THE VALUE OF ill
C

ELSE
C
C EXECUTION SEQUENCE WHEN THE VALUE OF ill
C

ENDIF

The following is an example of a double alternative block IF.

IF(X .GE. Y) THEN
LARGE X

ELSE
LARGE Y

ENDIF

IS TRUE

IS FALSE

The ELSE IF statement is executed if the preceding block IF condition is evaluated
as false.

148 VS FORTRAN Language and Library Reference

o

0

o

o

o

IF

m
is any logical expression.

An ELSE IF block consists of all the executable statements after the ELSE IF
statement up to, but not including, the next ELSE IF, ELSE, or END IF statement
that has the same IF-level as the ELSE IF statement. An ELSE IF block may be
empty.

If the value of the logical expression m is true, normal execution sequence
continues with the first statement of the ELSE IF block.

If the value of m is true and the ELSE IF block is empty, control is transferred to
the next END IF statement that has the same IF-level as the ELSE IF statement.

If the value of m is false, control is transferred to the next ELSE IF, ELSE, or
END IF statement that has the same IF-level as the ELSE IF statement.

Transfer of control into an ELSE IF block from outside the ELSE IF block is
prohibited. The statement number (stn), if any, of the ELSE IF statement must not
be referred to by any statement (except an AT statement of a DEBUG packet).

If execution of the last statement in the ELSE IF block does not result in a transfer
of control, control is transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement that precedes the ELSE IF block.

An ELSE IF statement cannot terminate the range of a DO.

Valid Examples:

The following are the general forms of the multiple alternative block-IF statement.

IF (ill) THEN

1. Execution sequence when the value of m is true.

ELSE IF (m1) THEN

2. Execution sequence when the value of m is false
and the value of ml is true.

ELSE

3. Execution sequence when the values of both m and
ml are false.

ENDIF

The following is the second form of the multiple alternative block-IF.

IF (ill) THEN

Chapter 5. VS FORTRAN Statements 149

IF

Logical IF Statement

1. Execution sequence when the value of m is true.

ELSE IF (rn1) THEN

2. Execution sequence when the value of m is false
and the value ml is true.

ENDIF

3. Execution continues here if both m and ml are false.

The following is an example of multiple alternative block-IF.

CHARACTER*5 C

IF (C .EQ. 'RED ') THEN
PRINT *, , COLOR IS RED'

ELSEIF (C .EQ. 'BLUE ') THEN
PRINT *, , COLOR IS BLUE'

ELSEIF (C .EQ. 'WHITE') THEN
PRINT *, , COLOR IS WHITE'

ELSE
PRINT *, , COLOR IS NOT SET'
C = 'GREEN'

ENDIF

The logical IF statement evaluates a logical expression and executes or skips a
statement, depending on whether the value of the expression is true or false,
respectively.

j: S~w
IF" (m)st

m

sf

is any logical expression.

is any executable statement except a DO statement, another logical IF
statement, an END statement or a block IF, ELSE IF, ELSE, or END IF
statement.

IBM Extension

st may not be a TRACE ON, TRACE OFF, INCLUDE, or DISPLAY
statement.

'""--__________ End of IBM Extension __________ ~

The statement st must not have a statement number.

150 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

IF

The execution of a function reference in m is permitted to affect entities in
the statement st.

The logical IF statement containing st may have a statement number. If a
logical IF statement terminates the end of a DO loop, it may not contain a
DO, block IF, ELSE IF, ELSE, END IF, END, or another logical IF
statement.

Example:

IF(A.LE.O.O) GO TO 25
C = D + E
IF (A.EQ.B) ANSWER = 2.0*A/C
F G/H

25 W x**z

IMPLICIT Type Statement

The IMPLICIT type statement specifies the type and length of all variables, arrays,
and user-supplied functions whose names begin with a particular letter. It may be
used to change or confirm implicit typing.

Syntax

IMPLICIT type (a [, a] ...) [, type (a [, a] ...)] ...

type

type

is character[*lenl], complex, double precision, integer, logical, or real

where:

lent
can be an unsigned, nonzero, integer constant or a positive integer
constant expression enclosed in parentheses. It is optional.

If len 1 is not specified, the length is one.

IBM Extension

is complex[* len2] , integer[* len 2] , logical[* len 2] , or real[* len2]

where:

len2
can be a positive, nonzero, unsigned, integer constant. It represents
one of the permissible length specifications for its associated type. It
is optional.

1--__________ End of IBM Extension __________

Chapter s. VS FORTRAN Statements 151

IMPLICIT Type

a
is a single alphabetic character or a range of characters drawn from the set
A, B, ... , Z. The range is denoted by the first and last characters of the range
separated by a minus sign (for example, A-D).

IBM Extension

The alphabetic character a can also be the currency symbol ($). The
currency symbol ($) follows the letter Z. Thus, the range Y -$ is the same as
Y,Z,$.

1.-__________ End of IBM Extension __________

The IMPLICIT specification statement can only be preceded by a PROGRAM,
SUBROUTINE, FUNCTION, BLOCK DATA, PARAMETER, ENTRY, or
FORMAT statement, or another IMPLICIT statement. The IMPLICIT
specification statement declares the type of the variables and user-supplied
functions appearing in this program (that is, integer, real, complex, logical, or
character) by specifying that names beginning with certain designated letters are of
a certain type. Furthermore, the IMPLICIT statement allows the programmer to
declare the number of bytes to be allocated for each in the group of specified
variables.

o

The CHARLEN compiler option may be specified to set the maximum length of
the CHARACTER data type to a range of 1 through 32767. The default
maximum length remains 500 characters, or whatever length was set at installation

~. 0
The type and length associated with a letter or a range of letters must not conflict
with the type or length given previously to the same letters in the same IMPLICIT
statement, in a different IMPLICIT statement or in a PARAMETER statement.
Type specification by an IMPLICIT statement may be overridden or confirmed for
any particular variable, array, name of a constant, external function, or statement
function name by the appearance of that name in an explicit type specification
statement.

(See "Type Declaration by the Predefined Specification" on page 27.)

Note: An IMPLICIT statement has no effect on names of VS
FORTRAN -supplied (intrinsic) functions.

Valid IMPLICIT Statements:

IMPLICIT INTEGER (A-H) , REAL (I-K) , LOGICAL(L,M,N)

IMPLICIT COMPLEX(C-F)

152 VS FORTRAN Language and Library Reference

o

o

INCLUDE Statement

o

1

o

IMPLICIT Type

mM Extension

IMPLICIT INTEGER (W-$)

All names beginning with W, X, Y, Z, and $ are considered integers of length 4
bytes .

....... __________ End of IBM Extension __________

IBM Extension

The INCLUDE statement is a compiler directive. It inserts a specified statement or
a group of statements into a program unit.

A function called conditional INCLUDE provides a means for selectively activating
INCLUDE statements within the VS FORTRAN source during compilation. The
included files are specified by means of the CI compiler option. For more
information about the CI compiler option and how to use the INCLUDE
statement, see VS FORTRAN Programming Guide.

~ S~w
INCLUDE (name) [nl

""me

"

is the name of a group of one or more VS FORTRAN source statements to
be inserted into the source program being compiled. The group must reside
in a library known to the VS FORTRAN compiler.

is the value used to decide whether to include the file during compilation.
When n is not specified, the file is always included. When n is specified, the
file is included only if the number appears in the CI list. The range of n is 1
to 255.

The following rules apply to the INCLUDE statement:

• INCLUDE is a compiler directive statement only.

• The INCLUDE statement may not be continued.

• No replacement or editing is done.

• The inserted group may contain any VS FORTRAN source statements,
including other INCLUDE statements.

• An INCLUDE of a group may not contain an INCLUDE statement that refers
to a currently open INCLUDE group (that is, recursion is not permitted).

Chapter 5. VS FORTRAN Statements 153

INCLUDE

~~lJllUE Statemnent

• Multiple INCLUDE statements may appear in the original source program.

• INCLUDE statements may appear anywhere in a source program before the
END statement, except as the trailer of a logical IF statement. An END
statement may be part of the included group.

• The VS FORTRAN statements in the group being included must be in the
same form as the source program being compiled; that is, fixed form or free
form.

• After the inclusion of all groups, the resulting VS FORTRAN program must
follow all VS FORTRAN rules for sequencing of statements.

~ __________ End of IBM Extension __________

An INQUIRE statement supplies information about properties of a particular
named external file or of the connection to a particular external unit. This
information is determined by the VS FORTRAN I/O statements that have been
processed, not by testing for operating system information. In other words,
specification of INQUIRE is limited to currently or previously opened files.

There are two forms of the INQUIRE statement:

• Inquire by iiie name

• Inquire by unit number

A file can be queried about its existence, its unit number, its name, the kind of
processing it can be opened for, whether it has in·fact been opened, whether it is
formatted or unformatted, and how blanks are to be interpreted.

In addition, a file opened for direct access can be queried about its record length or
its next record number. A file opened for keyed access can be queried about:

• The way it was opened (for reading, writing, or both)

• Which of multiple keys is in use, and its length and position

• The value of the last key used in a READ, WRITE, REWRITE, or
BACKSPACE operation

• The length of the last record processed by a READ, WRITE, REWRITE, or
BACKSPACE operation

The INQUIRE statement can be executed before, while, or after a file is connected
to a unit. All values assigned by the INQUIRE statement are those that are current
at the time the statement is executed. All value assignments are done according to
the rules for assignment statements. No error is given if the value is truncated
because the receiving field is too small to contain it all.

154 VS FORTRAN Language and Library Reference

o

o

o
INQUIRE by File Name

o

o

INQUIRE

This INQUIRE statement supplies information about a file. When this statement is
executed, the file specified by In mayor may not be connected to a unit. If the file
is connected to a unit, the file mayor may not exist. (For example, an output unit
may be connected to a file, but no output has been written.)

Syntax

INQUIRE (FILE=ln [, ERR=stn] [, IOSTAT=ios] [, EXIST=exs]

[, OPENED=opn] [, NAMED=nmd]

[, NAME=nam] [, SEQUENTIAL = seq]

[, DIRECT=dir] [, KEYED=kyd]

[, FORMATTED=lmt] [, UNFORMATTED=unj]

[, NUMBER=num] [, ACCESS=acc] [, FORM=lrm]

[, RECL=rcl] [, NEXTREC=nxr] [, BLANK=blk]

[, ACTION=acc] [, WRITE=wri]

[, READ=ron] [, READWRITE=rwr]

[, KEYID=kid] [, KEYLENGTH=kle]

[, KEYSTART=kst] [, KEYEND=ken]

[, LASTKEY=lky] [, LASTRECL=lrl])

All parameters except FILE= In are optional.

FILE=/n
is required. In is the reference to a file and must be preceded by FILE=. It
is a character expression. Its value, when any trailing blanks are removed,
must be 1 to 7 characters, the first one being one of the 26 alphabetic
characters, and the other six being of the 26 alphabetic or the 10 numeric
characters. It must be the name of the file being inquired about and must be
known to the program.

ERR=sln
stn is the number of an executable statement in the same program unit as the
INQUIRE statement. If an error occurs, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

Chapter 5. VS FORTRAN Statements 155

INQUIRE

EXIST=as
exs is a logical variable or logical array element of length 4. It is assigned the
value true if the file by the specified name exists; otherwise, it is assigned the
value false. No value is assigned if an error has occurred.

OPENED=opn
opn is a logical variable or a logical array element of length 4. It is assigned
the value true if the file specified is connected to a unit; otherwise, it is
assigned the value false. No value is assigned if an error has occurred.

The File Exists: The following parameters have a value only if the file being
inquired about exists; that is, exs has the value true. These parameters are all
optional.

NAMED=nmd
nmd is a logical variable or a logical array element of length 4. If the file has
a name (fn), nmd is assigned the value true; otherwise, it is assigned the
value false.

NAME=nam
nam is a character variable or character array element. If the file has a name
(fn), nam is assigned the value of name. name is not necessarily the same as
the name in the FILE parameter (fn).

SEQUENTIAL=seq
seq is a character variable or a character array element. It is assigned the
value YES if the file can be connected for sequential access input/output;
NO if it cannot; and UNKNOWN if it is not possible to determine whether
the file can be connected for sequential access.

DIRECT=dir
dir is a character variable or a character array element. It is assigned the
value YES if the file can be connected for direct access input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for direct access.

IBM Extension

KEYED=kyd
kyd is a character variable or a character array element. It is assigned the
value YES if the file can be connected for keyed access input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for keyed access.

L-__________ End of IBM Extension __________ ---'

FORMATTED=/mt
Imt is a character variable or character array element. It is assigned the
value YES if the file can be connected for formatted input/output; NO if it
cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for formatted input/output.

156 VS FORTRAN Language and Library Reference

0, ' i':, __ 0 •• ' ,I"

o

o

o

o

INQUIRE

UNFORMATTED=unf
unl is a character variable or character array element. It is assigned the
value YES if the file can be connected for unformatted input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for unformatted input/output.

The file is Connected to an Existing Unit: The following parameters have a value
only if the file exists (exs has the value true), and if the file is connected to a unit
(opn has the value true). These parameters are all optional.

NUMBER = num
num is an integer variable or integer array element of length 4. It is assigned
the value of the external unit connected to the file.

ACCESS=acc
ace is a character variable or character array element. If there is a name In,
ace is assigned a value (SEQUENTIAL, DIRECT, or KEYED) associated
with the connection of the external file.

FORM=frm
Irm is a character variable or character array element. It is assigned the
value FORMATTED if the file is connected for formatted input/output;
UNFORMATTED if the file is connected for unformatted input/output.

The File is Connected for Direct Access I/O: The following parameters have a value
only if the file exists (exs has the value true), and if the file is connected for direct
access (acc=DIRECT). These files are all optional. The file must have been
explicitly opened.

RECL=rcl
rcl is an integer expression of length 4. Its value is the record length of the
file connected for direct access. The length is measured in characters for
files consisting of formatted records, and in bytes for files consisting of
unformatted records.

NEXTREC=nxr
nxr is an integer variable or integer array element of length 4. It is assigned
the value n + 1, where n is the record number of the last record read or
written on the direct access file. If the file is connected, but no records have
been read or written since the connection, nxr is assigned the value 1.

The File is Connected for Formatted I/O: The following parameter has a value only
if the file exists (exs has the value true) and if the file is connected for formatted
input/output (frm has the value FORMATTED). The parameter is optional.

BLANK=blk
blk is a character variable or character array element. It is assigned the value
NULL if blanks in arithmetic input fields are treated as blanks; ZERO if
they are treated as zeros.

Chapter 5. VS FORTRAN Statements 157

INQUIRE

The File is Connected for Keyed Acce&f I/O: The following parameters have a value
only if the file exists (exs has the value true) and if the file is connected for keyed
access (acc has the value KEYED). These parameters are all optional. The file
must have been explicitly opened.

IBM Extension

ACTION=1ld
act is a character variable or character array element that is assigned one of
the following values:

WRITE

READ

READWRITE

WRITE=wri

If the file was opened to load records into an empty
keyed file

If the file was opened only to retrieve records

If the file was opened to allow retrieval and update
operations

wri is a character variable or character array element that is assigned the
value YES if the keyed file was opened to load records into the file;
otherwise, it is assigned the value NO.

REAn=!'Ol!
ron is a character variable or character array element that is assigned the
value YES if the keyed file was opened only for retrieval; otherwise, it is
assigned the value NO.

READWRITE=rwr
rwr is a character variable or character array element that is assigned the
value YES if the keyed file was opened to allow retrieval and update
operations; otherwise, it is assigned the value NO.

KEYID=kid
kid is an integer variable or integer array element of length 4. It is assigned
the relative position of a start -end pair in the list of such pairs in the KEYS
parameter of the OPEN statement. If the OPEN statement has no KEYS
parameter, a value of 1 is assigned.

KEYLENGTH=kle
kle is an integer variable or integer array element of length 4. It is assigned
the length of the key currently in use.

KEYST ART=kst
kst is an integer variable or integer array element of length 4. It is assigned
the position of the leftmost character in the record of the key currently in
use.

KEYEND=ken
ken is an integer variable or integer array element of length 4. It is assigned
the position of the rightmost character in the record of the key currently in
use.

158 VS FORTRAN Language and Library Reference

c

o

o

INQUIRE by Unit Number

O.'·'Ci .,

INQUIRE

LASTKEY =Iky
lky is a variable array element of any data type. It is assigned the value of
the key of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. To receive the full key, lky must be at least as long as the key. If
it is shorter, the value of the key is truncated on the right to make it the same
length. If lky is longer, binary zeros are added to the right of the value to
make it the same length. The assigned value is not meaningful if the last
input/ output operation was unsuccessful or was a REWIND, OPEN, or
CLOSE operation.

LASTRECL=lrl
lrl is an integer variable or integer array element of length 4. It is assigned
the length of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. The assigned value is not meaningful if the last input/output
operation was unsuccessful or was a REWIND, OPEN, or CLOSE
operation.

"---__________ End of IBM Extension __________ -'

The parameters can be entered in any order. Each parameter cannot appear more
than once in an INQUIRE statement. The same variable or array element cannot
be specified for more than one parameter in the same INQUIRE statement.

Valid INQUIRE Statements:

INQUIRE (FILE=DDNAME, IOSTAT=IOS, EXIST=LEX, OPENED=LOD,
NAMED=LNMD, NAME=FN, SEQUENTIAL=SEQ, DIRECT=DIR,
FORMATTED=FMT, UNFORMATTED=UNF, ACCESS=ACC, FORM=FRM,
NUMBER=INUM, RECL=IRCL, NEXTREC=INR, BLANK=BLNK)

INQUIRE (FILE='FT16K01' ,LASTRECL=RECL)

This INQUIRE statement supplies information about an input/output unit.

A unit can be queried about its existence and its connection to a file. If it is
connected to a file, the inquiry is being made about the connection and the file
connected. When this statement is executed, the unit specified by un mayor may
not be connected to a file. If the unit is connected to a file, the file mayor may not
exist. For example, an output unit may be connected to a file but no output has
been written.

Chapter 5. VS FORTRAN Statements 159

INQUIRE

Syntax

INQUIRE ([UNIT=]un[, ERR=stn] [, IOSTAT=ios] [, EXIST=exs]

. [, OPENED=opn] [, NAMED=nmd]

[, NAME=nam] [, SEQUENTIAL = seq]

[, DIRECT=dir] [, KEYED=kyd]

[, FORMATTED=!mt] [, UNFORMATTED=unj]

[, NUMBER=num] [, ACCESS=acc] [, FORM=!rm]

[, RECL=rcl] [, NEXTREC=nxr] [, BLANK=blk]

[, ACTION=acc] [, WRITE=wri]

[, READ=ron] [, READWRITE=rwr]

[, KEYID=kid] [, KEYLENGTH=kle]

[, KEYSTART=kst] [, KEYEND=ken]

L LASTKEY=lky] [; LASTRECL=lrl])

All parameters except UNIT = un are optional.

UNIT=un
un is the reference number of an 110 unit. It is an integer expression of
length 4 whose value (zero or positive) represents the unit number that is
being queried.

It is required and can optionally be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
INQUIRE statement. If an error occurs during the writing of an error
message, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

EXIST=exs
exs is a logical variable or logical array element of length 4. It is assigned to
value true if the specified unit exists and is known to the program unit. If
neither of these conditions is met, exs is assigned the value false.

160 VS FORTRAN Language and Library Reference

o

o

o

o

o

INQUIRE

OPENED=opn
opn is a logical variable or logical array element of length 4. It is assigned
the value true if the file specified is connected to a unit; otherwise, it is
assigned the value false.

The Unit is Connected to an Extemal File: The following parameters have a value
only if the unit exists (exs has the value true) and the unit is connected to an
external file (opn has the value true). These parameters are all optional.

NAMED=nmd
nmd is a logical variable or a logical array element of length 4. It is assigned
the value true if the file connected to the unit has a name; otherwise, it is
assigned the value false.

NAME = nam
nam is a character variable or character array element. If the file connected
to the unit has a name, it is assigned the value of the name of that file. If the
file is unnamed, a default name is assigned.

SEQUENTIAL=seq
seq is a character variable or a character array element. It is assigned the
value YES if the file can be connected for sequential access input/output;
NO if it cannot; and UNKNOWN if it is not possible to determine whether
the file can be connected for sequential access.

DlRECT=dir
dir is a character variable or a character array element. It is assigned the
value YES if the file can be connected for direct access input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for direct access.

IBM Extension

KEYED=kJd
kyd is a character variable or a character array element. It is assigned the
value YES if the file can be connected for keyed access input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for keyed access.

~ __________ End of IBM Extension __________ --'

FORMATTED=/mt
Imt is a character variable or character array element. It is assigned the
value YES if the file can be connected for formatted input/output; NO if it
cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for formatted input/output.

UNFORMATTED = un/
un! is a character variable or character array element. It is assigned the
value YES if the file can be connected for formatted input/output; NO if it
cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for formatted input/output.

Chapter 5. VS FORTRAN Statements 161

INQUIRE

NUMBER=num
num is an integer variable or integer array element of length 4. Its value is
the value of un.

ACCESS=acc
acc is a character variable or character array element. If there is a name In,
acc is assigned a value (SEQUENTIAL, DIRECT, or KEYED) associated
with the connection of the external file.

FORM=frm
Irm is a character variable or character array element. Irm is assigned the
value FORMATTED if the file is connected for formatted input/output;
UNFORMATTED if the file is connected for unformatted output.

The Unit is COlUleCted to an Extel7Ull File for Direct Acceu I/O: The following
parameters have a value only if the unit exists (exs has the value true) and is
connected to an external file for direct access input/output (acc has the value
DIRECT). These parameters are all optional.

RECL=rcl
rel is an integer variable or integer array element of length 4. It is assigned
the value of the record length of the direct access file. The length is
measured in characters for files consisting of formatted records and in bytes
for files consisting of unformatted records.

NEXTREC=nxr
nxr is an integer variable or integer array element of length 4. It is assigned
the value n + 1 where n is the record number of the last record read or
written on the direct access file. If the file is connected, but no records have
been read or written since the connection, nxr is assigned the value 1.

BLANK=blk
blk is a character variable or character array element. It is assigned the value
NULL if blanks in arithmetic input fields are treated as blanks; ZERO if
they are treated as zeros.

The Unit Is Connected to an Extemal File for Keyed AccClSS' I/O: The following
parameters have a value only if the unit exists (exs has the value true) and is
connected to an external file for keyed access (acc=KEYED). These parameters
are all optional. The file must have been explicitly opened.

IBM Extension

ACTION=ad
act is a character variable or character array element that is assigned one of
the following values:

WRITE

READ

READWRITE

If the file was opened to load records into an empty
keyed file.

If the file was opened only to retrieve records.

If the file was opened to allow retrieval and update
operations.

162 VS FORTRAN Language and Library Reference

o

o

o

c

o

INQUIRE

WRITE=wri
wri is a character variable or character array element that is assigned the
value YES if the keyed file was opened to load records into the file;
otherwise, it is assigned the value NO.

READ=ron
ron is a character variable or character array element that is assigned the
value YES if the keyed file was opened only for retrieval; otherwise, it is
assigned the value NO.

READWRITE=rwr
rwr is a character variable or character array element that is assigned the
value YES if the keyed file was opened to allow retrieval and update
operations; otherwise, it is assigned the value NO.

KEYID=kid
kid is an integer variable or integer array element of length 4. It is assigned
the relative position of a start-end pair in the list of such pairs in the KEYS
parameter of the OPEN statement. If the OPEN statement has no KEYS
parameter, a value of 1 is assigned.

KEYLENGTH=kle
kle is an integer variable or integer array element of length 4. It is assigned
the length of the key currently in use.

KEYST ART =kst
kst is an integer variable or integer array element of length 4. It is assigned
the position of the leftmost character in the record of the key currently in
use.

KEYEND=ken
ken is an integer variable or integer array element of length 4. It is assigned
the position of the rightmost character in the record of the key currently in
use.

LASTKEY =Iky
Iky is a variable array element of any data type. It is assigned the value of
the key of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. To receive the full key, Iky must be at least as long as the key. If
it is shorter, the value of the key is truncated on the right and to make it the
same length. If Iky is longer, binary zeros are added to the right of the value
to make it the same length. The assigned value is not meaningful if the last
input/ output operation was unsuccessful or was a REWIND, OPEN, or
CLOSE operation.

LASTRECL = 1,1
Irl is an integer variable or integer array element of length 4. It is assigned
the length of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. The assigned value is not meaningful if the last input/output

Chapter 5. VS FORTRAN Statements 163

INQUIRE

INTRINSIC Statement

operation was unsuccessful or was a REWIND, OPEN, or CLOSE
operation.
I End of IBM Extension _________ ~

The parameters can be entered in any order unless UNIT=un is omitted. If
omitted, un, as described under UNIT=un, must be first.

Valid INQUIRE Statements:

INQUIRE (0, IOSTAT=IACT(1), ERR=99999, EXIST=LACT(9),
OPENED=LACT(8), NAMED=LACT(7), NAME=ACTUAL(1),
SEQUENTIAL=ACTUAL(2), DIRECT=ACTUAL(3),
FORMATTED=ACTUAL(4), UNFORMATTED=ACTUAL(5),
ACCESS=ACTUAL(6), FORM=ACTUAL(7), NUMBER=IACT(2),
RECL=IACT(3), NEXTREC=IACT(4), BLANK=ACTUAL(8»

INQUIRE (16,LASTKEY=LKEY,KEYSTART=START,KEYEND=END,
KEYLENGTH=LENG)

INQUIRE (12,ACTION=ACT,KEYID=ID)

The INTRINSIC statement identifies a name as representing a
FORTRAN-supplied procedure (function or subprogram) and permits a specific
intrinsic function name to be used as an actual argument.

r- Syntax

I INTRI~SIC name! [, name21 ...

name
is the generic or specific name of a VS FORTRAN intrinsic function.

The INTRINSIC statement is a specification statement and must precede statement
function definitions and all executable statements.

Intrinsic functions are those functions known to the compiler. Intrinsic function
names are either generic or specific. A generic name does not have a type, unless it
is also a specific name.

Generic names simplify referring to intrinsic functions because the same function
name may be used with more than one type of argument. Only a specific intrinsic
function name may be used as an actual argument when the argument is an intrinsic
function.

See Chapter 8, "Mathematical, Character, and Bit Subprograms" on page 307,
for the complete list of intrinsic function names and usage information for each
function.

Appearance of a name in an INTRINSIC statement declares that name to be an
intrinsic function name. If a specific name of an intrinsic function is used as an
actual argument in a program unit, it must appear in an INTRINSIC statement in
that program unit.

164 VS FORTRAN Language and Library Reference

()

o

o

o

o

Logical IF Statement

INTRINSIC

The following names of specific intrinsic functions must not be passed as actual
arguments:

AMAXO
AMAX1
AMINO
AMIN1
CHAR
DMAX1
DMIN1
FLOAT
I CHAR
IDINT
IFIX

CMPLX
DBLE
DBLEQ
DCMPLX
DFLOAT
DREAL
HFIX
IQINT

INT
LGE
LGT
LLE
LLT
MAXO
MAX 1
MINO
MIN1
REAL
SNGL

IBM Extension

QCMPLX
QEXT
QEXTD
QFLOAT
QMAX1
QMIN1
QREAL
SNGLQ

~ __________ End of IBM Extension __________

The appearance of a generic function name in an INTRINSIC statement does not
cause the name to lose its generic property. Only one appearance of a name in all
the INTRINSIC statements of a program unit is permitted. The same name must
not appear in both an EXTERNAL and an INTRINSIC statement in a program
unit.

If the name of a VS FORTRAN intrinsic function appears in an explicit
specification statement, the type must confirm its associated type.

If the name of a VS FORTRAN intrinsic function appears in the dummy argument
list of a subprogram, that name is not considered as the name of a VS FORTRAN
intrinsic function in that program unit.

See "IF Statements" on page 145.

Logical Type Statement

See "Explicit Type Statement" on page 103.

Chapter 5. VS FORTRAN Statements 165

NAMELIST

NAMELIST Statement

IBM Extension

The NAMELIST statement specifies one or more lists of names for use in READ
and WRITE statements.

Syntax

NAMELIST /name1/ list1 /name2/ list2 ...

name

list

is a NAMELIST name. It is a name, enclosed in slashes, that must not be
the same as a variable or array name.

is of the form a1, a2, ... , an

where:

a
is a variable name or an array name.

The list of variables or array names belonging to a NAMELIST name ends with a
new NAMELIST name enclosed in slashes or with the end of the NAMELIST
statement. A variable name or an array name may belong to one or more
NAMELIST lists.

Neither a dummy variable nor a dummy array name may appear in a NAMELIST
list.

The NAMELIST statement must precede any statement function definitions and all
executable statements. A NAMELIST name must be declared in a NAMELIST
statement and may be declared only once. The name may appear only in
input/ output statements.

The NAMELIST statement declares a name name to refer to a particular list of
variables or array names. Thereafter, the forms READ(un,name) and
WRITE(un,name) are used to transmit data between the file associated with the
unit un and the variables specified by the NAMELIST name name.

The rules for input/output conversion of NAMELIST data are the same as the
rules for data conversion described in "General Rules for Data Conversion" on
page 111. The NAMELIST data must be in a special form, described in
"NAMELIST Input Data" on page 167.

166 VS FORTRAN Language and Library Reference

o

o

NAMELIST Input Data

o

o

o

NAMELIST

Input data must be in a special form in order to be read using a NAMELIST list.
The first character in each record to be read must be blank. The second character
in the first record of a group of data records must be an ampersand (&)
immediately followed by the NAMELIST name. The NAMELIST name must be
followed by a blank and must not contain any embedded blanks. This name is
followed by data items separated by commas. (A comma after the last item is
optional.) The end of a data group is signaled by &END.

The form of the data items in an input record is:

• Name = Constant

•

The name may be an array element name or a variable name.

The constant may be integer, real, complex, logical, or character. (If the
constants are logical, they may be in the form T or .TRUE. and F or
.F ALSE.; if the constants are characters, they must be included between
apostrophes.)

Subscripts must be integer constants.

Array Name = Set of Constants (separated by commas)

The set of constants consists of constants of the type integer, real, complex,
logical, or character.

The number of constants must be less than or equal to the number of
elements in the array.

Successive occurrences of the same constant can be represented in the
form c*constant, where c is a nonzero integer constant specifying the
number of times the constant is to occur.

The variable names and array names specified in the input file must appear in the
NAMELIST list, but the order is not significant. A name that has been made
equivalent to a name in the input data cannot be substituted for that name in the
NAMELIST list. The list can contain names of items in COMMON but must not
contain dummy argument names.

Each data record must begin with a blank followed by a complete variable or array
name or constant. Embedded blanks are not permitted in names or constants.
Trailing blanks after integers and exponents are treated as zeros.

Chapter 5. VS FORTRAN Statements 167

NAMELIST

NAMELIST Output Data

OPEN Statement

Examples:

All records have a blank in column 1, and begin in column 2.

GNAM1 I(2,3)=5,J=4,B=3.2

A(3)=4.0,L=2,3,7*4,GEND

where NAMI is defined in a NAMELIST statement as:

NAMELIST /NAM1/A,B,I,J,L

and assuming that A is a 3-element array and I and L are 3X3 element arrays.

When output data is written using a NAMELIST list, it is written in a form that can
be read using a NAMELIST list. All variable and array names specified in the
NAMELIST list and their values are written out, each according to its type.
Character data is included between apostrophes. The fields for the data are made
large enough to contain all the significant digits. The values of a complete array
are written out in columns.

L--__________ End of IBM Extension __________ --'

An OPEN statement may be used to:

• Connect an existing file to a unit.

• Create a file that is preconnected.

Create a file and connect it to a unit.

Change certain identifiers of a connection between a file and a unit.

For more information on how to use the OPEN statement with your operating
system, see VS FORTRAN Programming Guide.

Syntax

OPEN ([UNIT=]un [, ERR=stn] [, STATUS=sta] [, FILE=fn]

[, ACCESS=acc] [, BLANK=blk] [, FORM=frm]

[, IOSTAT=ios] [, RECL=rcl]

[, ACTION =act] [, PASSWORD=pwd]

[, KEYS = (start:end [, start:end] ...)])

168 VS FORTRAN Language and Library Reference

o

o

o

o

o

OPEN

Each of the parameters of the OPEN statement can appear only once. The unit
specifier (un) must appear. All value assignments are made according to the rules
for assignment statements.

Before the OPEN statement is executed, the I/O unit specified by un may be either
connected or not connected to an external file.

OPEN is required for direct-access and VSAM files. It is optional for sequential
files and invalid for internal files.

UNIT=un
un is the reference number of an I/O unit. un is an integer expression of
length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
OPEN statement. If an error is detected, control is transferred to stn.

STATUS=sta
is optional. sta is a character expression whose value (when any trailing
blanks are removed) must be NEW, OLD, SCRATCH, or UNKNOWN. If
STATUS is omitted, it is assumed to be UNKNOWN.

If the status of the external file is specified as:

NEW, FILE=fn may be specified.

• OLD, FILE=fn may be specified.

• SCRATCH, FILE= fn must not be specified.

UNKNOWN, FILE=fn is optional.

FILE=/n
is optional. fn is the reference to a file and must be preceded by FILE=. It
is a character expression. Its value, when any trailing blanks are removed,
must be 1 to 7 characters, the first one being one of the 26 alphabetic
characters, and the other six being of the 26 alphabetic or the 10 numeric
characters. It is the name of the file to be connected to the unit specified by
un.

If the FILE parameter is omitted, the file name of files connected for direct
or sequential access defaults to FTunFOOl on MVS and VM systems. For
keyed access files, the name defaults to FTnnKOl. The un is the integer
specified in the UNIT parameter. It must have a leading 0 if un is only one
digit.

On VSE systems, the default file name is IJSYSun. To take this default, a
DLBL statement with the file name must exist.

Chapter 5. VS FORTRAN Statements 169

OPEN

ACCESS=acc
acc is a character expression whose value (when any trailing blanks are
removed) must be SEQUENTIAL, DIRECT, or KEYED. The values mean,
respectively, that access to the file will be sequential, direct, or with keys (in
which case, the file must be a keyed file). If ACCESS=acc is not specified,
it is assumed to be SEQUENTIAL.

BLANK = blk
blk is a character expression whose value (when any trailing blanks are
removed) must be NULL or ZERO. This specifier affects the processing of
the arithmetic fields accessed by READ statements with format specification
or with list-directed only. It is ignored for nonarithmetic fields, for READ
statements without format specification or with NAMELIST, and for all
output statements. If NULL is specified, all blank characters in arithmetic
formatted input fields on the specified unit are ignored, except that a field of
all blanks has a value of zero. If ZERO is specified, all blanks, other than
leading blanks, are treated as zeros. If the OPEN statement is specified, the
default is NULL. If the OPEN statement is not specified, the default is
ZERO. For information on how to control the treatment of blanks on a
particular FORMAT statement, see the discussions of BN and BZ format
codes under "BN Format Code" on page 130 and "BZ Format Code" on
page 131, respectively. This specifier is only allowed for formatted I/O.

FORM=/nn
frm is a character expression whose value (when any trailing blanks are
removed) must be FORMATTED or UNFORMATTED. This specifier
indicates that the external file is connected for formatted or unformatted
input/output. If this parameter is omitted and ACCESS=SEQUENTIAL, a
value of FORMATTED is assumed; otherwise, a value of UNFORMATTED
is assumed.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. Its value is
set positive if an error is detected; it is set to zero if no error is detected.
VSAM return and reason codes are placed in ios.

Parameter Used with ACCESS=DIRECT: The following parameter is used only if
ACCESS=DlRECT and must be specified for such access.

RECL=rcl
rcl is an integer expression of length 4. Its value is the record length of the
file connected for direct access. The length is measured in characters for
files consisting of formatted records and in bytes for files consisting of
unformatted records.

Parameters Used with ACCESS=KEYED

IBM Extension

ACTION = act
act indicates the kind of processing to be done to a VSAM file. It can be
used with any files connected for sequential, direct, or keyed access. It is
any character expression whose value can be specified as:

170 VS FORTRAN Language and Library Reference

c

o

~,

V

o

c

o

. WRITE

READ

READWRITE

OPEN

To open an empty keyed file for the loading of records.
The records must be written in ascending key sequence.

To open for retrieval a VSAM file that is not empty.
Update operations cannot be performed on the file.

To open a VSAM file and make retrieval and update
operations possible. An update operation is a REWRITE,
DELETE, or WRITE statement that causes the
replacement, deletion, or addition of a record to a file.
Using READWRITE, you can write to an empty keyed
file, and you need not write the records in ascending key
sequence. READ WRITE also enables you to open a
VSAM file and then read from it to find out whether or
not it is empty.

For sequential or direct access, specify READ or READWRITE.

If the ACTION parameter is omitted, the default for keyed access is READ.
The default for sequential or direct access is READWRITE.

The following parameters can be used only if ACCESS=KEYED.

PASSWORD=pw
specifies the password required to access a VSAM file, if the file was
password-protected when it was defined with the access method services
program. If ACTION = READ, the file's read password is required;
otherwise, its update password is required. pwd can be any character
expression; however, if the character expression exceeds eight characters in
length, only the first eight are used.

KEYS=(start:end [, start:end] •••)
gives the starting and ending positions, within keyed file records, of the
primary and alternate-index keys to be used when accessing the keyed file.

start is an integer expression of length 4 whose value (which must be
positive) represents the position in each record of a key's leftmost
character.

end is an integer expression of length 4 whose value (which must be
positive) represents the position in each record of the key's
rightmost character. This value must not be less than the value of
start.

The length of the key specified by a start-end pair is end - start + 1, and
cannot exceed 255. Up to nine start-end pairs can be specified, each of
which must have been defined with the access method services program as
the location of a key. If you have only one start-end pair to specify, you can
omit the KEYS parameter; the missing information for the file is taken from
the VSAM catalog. If you will use multiple keys when accessing a keyed file,
the KEYS parameter is necessary.

Chapter 5. VS FORTRAN Statements 171

OPEN

If the file is being loaded (ACTION=WRITE), only the primary key can be
specified.

1....-__________ End of IBM Extension __________

Valid OPEN Statements:

OPEN (UNIT=2, IOSTAT=IOS, FILE='DDNAME', STATUS='NEW',
ACCESS='SEQU'//'ENTIAL " FORMAT='FORMATTED',
BLANK= ' ZERO')

OPEN (0, IOSTAT=IACT(1), FILE='DDNAME' , STATUS='OLD',
ACCESS='SEQUENTIAL', FORM= 'FORMATTED , ,
BLANK= ' NULL')

OPEN (IOSTAT=IACT(1), STATUS='UNKNOWN', ACCESS='DIRECT',
RECL=32, UNIT=IN+6)

OPEN (10,ACCESS='KEYED',ACTION='READWRITE')

OPEN (8,ACCESS='KEYED' ,KEYS=(2:7,15:22»

I/O Unit Is Not Connected to the External File

Successful execution of the OPEN statement connects the I/O unit specified by un
to the external file specified by fn with the parameters specified (or assumed) in the
OPEN statement. (See VS FORTRAN Programming Guide for the parameters
allowed with the various definjtions of data sets,)

I/O Unit Is Connected to the External File

A unit connected in any program unit of an executable program is available in any
other program unit of the executable program.

The unit reference and the file name are un andfn in the OPEN statement.

Opening an Already-Open File: If you issue an OPEN statement for a file that is
already open and connected to the unit identified in the UNIT parameter, the
following occurs:

The file still exists (exs has the value true).

The unit stays connected to the file.

The new value of the BLANK specifier comes into effect.

If the file had the NEW attribute, it is changed to OLD.

• The other attributes remain unchanged.

• The file is not repositioned at the beginning.

If some parameters are specified on the OPEN statement, they must match the
attributes of the connection of file (except that BLANK may be different).

172 VS FORTRAN Language and Library Reference

o

o

~,

V

o

o

o

OPEN

Opening a Different File on an Already-Connected Unit: If a unit is already
connected to a file and you issue an OPEN statement for the same unit but a
different file, the OPEN statement is executed as a CLOSE (UNIT=un,
STATUS = UNKNOWN) followed by an OPEN.

Conditiom That Prevent the Execution of OPEN: Any of the following conditions
prevent execution of the OPEN statement:

• You specified an invalid unit number, that is, un.

• You specified an invalid file name, that is, In.

You specified invalid values; for example:

OLD was specified for a file that does not exist.

ACCESS, FORM, REC do not match the actual attributes of an existing
file.

The RECL=rcl value is not positive integer.

The OPEN statement specifies a different unit than the one the file is
connected to.

The KEYS parameter specifies a start:end pair that does not represent a
key available for use with the keyed file.

Control transfers to the statement specified in ERR=stn or, if ERR=stn is not
specified, execution of the program is terminated.

PARAMETER Statement

The parameter statement assigns a name to a constant.

i= Synmx
PARAMElER (name 1 = c1 [, name2 = c2 1 ...)

name

c

is the name of a specific constant in this program unit (even if it looks like a
hexadecimal constant, for example, ZOABC). The name must be defined
only once in a PARAMETER statement of a program unit.

is a constant or a constant expression of integer, real, complex, logical, or
character type.

Before using the PARAMETER statement, name must have been specified by the
IMPLICIT statement or an explicit type statement. (Otherwise the predefined
conventions are used.)

Chapter 5. VS FORTRAN Statements 173

PARAMETER

The type and length of a name of a constant must not be changed by subsequent
specification statements, including IMPLICIT statements. The following is invalid: 0
PARAMETER (INT=10)

IMPLICIT CHARACTER*S(I)

If the length of a character constant represented by a name has been explicitly
specified previously or has been been specified as an asterisk, the length is
considered to be the length of the value of the character expression (C).

If the name (name) is of integer, real, or complex type, the corresponding
expression (c) must be a constant, the name of a constant, or another expression
enclosed in parentheses. The exponentiation operator is not permitted unless the
exponent is of integer type.

If the name (name) is of character type, the corresponding expression (c) must be a
character expression containing only character constants or names of character
constants. The expression result cannot exceed 255 characters in length.

If the name (name) is of logical type, the corresponding expression (c) must be a
logical expression containing only logical constants or names of logical constants.

Each (name) is the name of a constant that becomes defined with the value of the
expression (c) that appears to the right of the equal sign. The value assigned is
determined by the rules used for assignment statements (see Figure 18 and
"):;';nn~o 10\
.I. .1.5".1."" .1../).

Any name of a constant that appears in an expression (c) must be defined by
appearing previously on the left of an equal sign in the same or a preceding
PARAMETER statement in the same program unit. If it is in the same
PARAMETER statement, it must appear to the left of its usage.

Once defined, the name can be used in a subsequent expression or a DATA
statement instead of the constant it represents. It must not be part of a FORMAT
statement or a format specification.

The name of a constant must not be used to form part of another constant; for
example, any part of a complex constant.

174 VS FORTRAN Language and Library Reference

~

U

o

PAUSE Statement

c

PRINT Statement

o

PARAMETER

IBM Extension

If the name is of integer type of length 2, then the constant value is an integer
constant that occupies 2 bytes of storage. Reference to this symbolic name is
treated exactly as any reference to an integer variable of length 2 and therefore, in
this case, the reference is to an integer constant of length 2. This is the only way
an integer constant of this length may be introduced into a source program.

If the name is of logical type of length 1, then the constant value is a logical
constant that occupies 1 byte of storage. Reference to this symbolic name is
treated exactly as any reference to a logical variable of length 1 and therefore, in
this case, the reference is to a logical constant of length 1. This is the only way a
logical constant of this length may be introduced into a source program.

1...-__________ End of IBM Extension __________ --'

The PAUSE statement temporarily halts the execution of the object program and
may display a message.

n

Syntax

PAUSE [n]

PAUSE [<message']

a string of 1 through 5 decimal digits.

'message'
a character constant enclosed in apostrophes and containing alphameric
and/ or special characters. Within the literal, an apostrophe is indicated by
two successive apostrophes.

If either n or <message' is specified, PAUSE displays the requested information.
The program waits until operator intervention causes it to resume execution,
starting with the next statement after the PAUSE statement or the next iteration of
the DO loop, if it is the last statement of a DO range. For further information, see
VS FORTRAN Programming Guide.

The PRINT statement transfers data from internal storage to an external device.

r-: S~w
PRINT fmt [,/irt 1

Chapter 5. VS FORTRAN Statements 175

PRINT

Imt
can be one of the following:

• A statement number
• An integer variable
• A character constant
• A character array element
• A character array name
• A character expression

IBM Extension

• An array name

1...-__________ End of IBM Extension __________ ~

list

• An asterisk that indicates that printing is to be performed according to
the data transmission rules of list-directed WRITE

See "WRITE Statement-Formatted with Direct Access" on page 250, for
explanations of these format identifiers.

is a list of output items and implied DO lists. An output list item can be:

• A variable name
• An array element
• A character substring
• An array name (except the name of an assumed-size array)
• Any expression (except a character expression involving concatenation

of operands whose length specification is an asterisk)

See "Implied DO in an Input/Output Statement" on page 92.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

If list is omitted, a blank record is transmitted to the output device unless the
FORMAT statement referred to contains, as its first specification, a
character constant or slashes. In this case, the record (or records) indicated
by these specifications are transmitted to the output device.

PRINT Imt has the same effect as a WRITE (un/mt) list, where Imt and list are
defined as above, and the value of un is installation dependent.

Valid PRINT Statement:

PRINT*,EIGHT8

176 VS FORTRAN Language and Library Reference

c

~I
V

,~, (i ._-j

'-'

o PROGRAM Statement

o

0'···'
\1

PROGRAM

The PROGRAM statement assigns a name to a main program. It must be the first
statement in the main program.

~ Synmx

PROGRAM name

name
is the name of the main program in which this statement appears.

A main program cannot contain any BLOCK DATA, SUBROUTINE,
FUNCTION, or ENTRY statements.

IBM Extension

A RETURN statement may appear; it has the same effect as a STOP statement.

End of IBM Extension __________ ---'

The PROGRAM statement can only be used in a main program but is not required.
If it is used, it must be the first statement of the main program. If it is not used, the
name of the main program is assumed by this compiler to be MAIN.

The name must not be the same as any other name in the main program or as the
name of a subprogram or common block in the same executable program. The
name of a program does not have any type and the other specification statements
have no effect on this name.

Execution of a program begins with the execution of the first executable statement
of the main program. A main program may not be referred to from a subprogram
or from itself.

Chapter 5. VS FORTRAN Statements 177

READ

READ Statements

The READ statements transfer data from an external device to storage or from an
internal file to storage.

Forms of the READ Statement:

ffiM Extension

1. "READ Statement-Asynchronous" on page 179

L...-__________ End of IBM Extension __________ -'

2. "READ Statement-Formatted with Direct Access" on page 182

IBM Extension

3. "READ Statement-Formatted with Keyed Access" on page 186

'--_________ End of IBM Extension __________

4. "READ Statement-Formatted with Sequential Access" on page 192

5. "READ Statement-Unformatted with Direct Access" on page 196

IBM Extension

6. "READ Statement-Unformatted with Keyed Access" on page 198

'--_________ End of IBM Extension __________

7. "READ Statement-Unformatted with Sequential Access" on page 203

8. "READ Statement-Formatted with Sequential Access to Internal Files" on
page 206

9. "READ Statement-List-Directed I/O from External Devices" on page 210

IBM Extension

10. "READ Statement-List-Directed I/O with Internal Files" on page 213

11. "READ Statement-NAMELIST with External Devices" on page 216

12. "READ Statement-NAMELIST with Internal Files" on page 219

'--_________ End of IBM Extension __________

178 VS FORTRAN Language and Library Reference

o

o

o

o

o

READ (Asynchronous)

IBM Extension

READ Statement-Asynchronous

The asynchronous READ statement transmits unformatted sequential data between
direct access or sequential storage devices. The asynchronous READ statement
provides high-speed input. The statements are asynchronous because, while data
transfer is taking place, other program statements may be executed. An OPEN
statement is not permitted for asynchronous I/O. The unit and statement identifier
are the only items allowed within the parentheses.

~ Synmx
READ ([UNIT =]un, ID=id) [list]

UNIT=un
un is the reference to the number of an I/O unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ID=id

list

id is an integer constant or integer expression of length 4. It is the identifier
for the READ statement.

is an asynchronous I/O list and may have any of four forms:

e
el. .. e2
el. ..
... e2

where:

e
is the name of an array.

el and e2
are the names of elements in the same array. The ellipsis (...) is an
integral part of the syntax of the list and must appear in the positions
indicated.

The unit specified by un must be connected to a file that resides on a sequential or
direct-access device. The array (e) or array elements (el through e2) constitute the
receiving area for the data to be read.

Chapter 5. VS FORTRAN Statements 179

READ (Asynchronous)

The asynchronous READ statement initiates a transmission. The WAIT statement,
that must be executed for each asynchronous READ, terminates the transmission
cycle. When executed after an asynchronous READ, the WAIT statement enables
the program to refer to the transmitted data. This process ensures that a program
will not refer to a data field while transmission to it is still in progress.

The asynchronous READ statement differs from other READ statements in that a
special parameter, ID=id, is specified within the parentheses of the statement.
ID=id establishes a unique identification for the READ statement.

Synchronous READ statements may be executed for the file only after all
asynchronous READ and WRITE operations have been completed and a REWIND
has been executed for the file. Conversely, asynchronous READ statements may
be executed for a file previously read synchronously after a REWIND or CLOSE
has been executed.

Execution of an asynchronous READ statement initiates reading of the next record
on the specified file. The record may contain more or less data than there are bytes
in the receiving area. If there is more data, the excess is not transmitted to the
receiving area; if there is less, the values of the excess array elements remain
unaltered. The extent of the receiving area is determined as follows:

• If e is specified, the entire array is the receiving area. In this case, e may not be
the name of an assumed-size array.

• If e 1 .. . e2 is specified, the receiving area begins at array element eland includes
every element up to and including e2. The subscript value of e 1 must not
exceed that of e2.

• If e 1 ... is specified, the receiving area begins at element eland includes every
element up to and including the last element of the array. In this case, e may
not be the name of an assumed-size array.

• If .. . e2 is specified, the receiving area begins at the first element of the array
and includes every element up to and including e2.

If list is not specified, there is no receiving area, no data is transmitted, and a
record is skipped.

Subscripts in the list of the asynchronous READ must not be defined as array
elements in the receiving area. If a function reference is used in a subscript, the
function reference may not perform I/O on any file.

Given an array with elements of length len, transmission begins with the first len
bytes of the record being placed in the first specified (or implied) array element.
Each successive len byte of the record is placed in the array element with the next
highest subscript value. Transmission ceases after all elements of the receiving area
have been filled, or the entire record has been transmitted-whichever occurs first.
If the record length is less than the receiving area size, the last array element to
receive data may receive fewer than len bytes.

The specified array may be multidimensional. Array elements are filled
sequentially. Thus, during transmission, the leftmost subscript quantity increases
most rapidly, and the rightmost least rapidly.

180 VS FORTRAN Language and Library Reference

o

o

o

o

o

READ (Asynchronous)

Any number of program statements may be executed between an asynchronous
READ and its corresponding WAIT, subject to the following rules:

• No array element in the receiving area may appear in any such statement. This
and the following rules apply also to indirect references to such array elements;
that is, reference to or redefinition of any variable or array element associated
by COMMON or EQlliV ALENCE statements, or argument association with
an array element in the receiving area.

• No executable statement may appear that redefines or undefines a variable or
array element appearing in the subscript of e 1 or e2. See "Valid and Invalid
VS FORTRAN Programs" on page 4.

• If a function reference appears in the subscript expression of el or e2, the
function may not be referred to by any statements executed between the
asynchronous READ and the corresponding WAIT. Also, no subroutines or
functions may be referred to that directly or indirectly refer to the function in
the subscript reference, or to which the subscript function directly or indirectly
refers.

• No function or subroutine may be executed that performs input or output on
the file being manipulated, or that contains object-time dimensions that are in
the receiving area (whether they be dummy arguments or in a common block).

Valid READ Statement:

READ (ID=10, UNIT=3*IN-3) ACTUAL (3) ... ACTUAL(7)

1.....-__________ End of IBM Extension __________ ---'

Chapter 5. VS FORTRAN Statements 181

READ (Formatted, Direct Access)

READ Statement-Formatted with Direct Access

This READ statement transfers data from an external direct-access device into
internal storage. The user specifies in a FORMAT statement (or in a reference to a
FORMAT statement) the conversions to be performed during the transfer. The
data must reside on an external file that has been opened for direct access (see
"OPEN Statement" on page 168).

Syntax

READ ([UNIT=]un, [FMT=}fmt, REC=rec [, ERR=stn]

[, IOSTAT=ios]) [list]

UNIT=un
un is the reference to the number of an 110 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, FMT= must be used and all the
parameters can appear in any order.

FMT=/mt
Imt is a required format identifier and can; optionally; be preceded by
FMT=.

If FMT= is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all the parameters, except list, can appear
in any order.

The format identifier (fmt) can be:

A statement number
• An integer variable
• A character constant
• A character variable
• A character array element
• A character array name

A character expression

An array name

IBM Extension

L-__________ End of IBM Extension __________ -'

The statement number must be the statement number of a FORMAT
statement in the same program unit as the READ statement.

182 VS FORTRAN Language and Library Reference

o

o

o

o

o

READ (Formatted, Direct Access)

The integer variable must have been initialized by an ASSIGN statement with
the number of a FORMAT statement. The FORMAT statement must be in
the same program unit as the READ statement.

The character constant must constitute a valid format. The constant must be
delimited by apostrophes, must begin with a left parenthesis, and end with a
right parenthesis. Only the format codes described in the FORMAT
statement can be used between the parentheses. An apostrophe in a
constant enclosed in apostrophes is represented by two consecutive
apostrophes.

The character variable and character array element must contain character
data whose leftmost character positions constitute a valid format. A valid
format begins with a left parenthesis and ends with a right parenthesis. Only
the format codes described in the FORMAT statement can be used between
the parentheses. Blank characters may precede the left parenthesis and
character data may follow the right parenthesis. The length of the format
identifier must not exceed the length of the array element.

The character array name must contain character data whose leftmost
characters constitute a valid format identifier. The length of the format
identifier may exceed the length of the first element of the array; it is
considered the concatenation of all the array elements of the array in the
order given by array element ordering.

IBM Extension

The array name may be of type integer, real, double precision, logical, or
complex.

The data must be a valid format identifier as described under character array
name above.

""'--__________ End of IBM Extension __________ ~

The character expression may contain concatenations of character constants,
character array elements and character array names. Its value must be a
valid format identifier. The operands of the expression must have length
specifications that contain only integer constants or names of integer
constants. (See Chapter 4, "VS FORTRAN Expressions" on page 35.)

REC=rec
rec is a relative record number. It is an integer expression whose value must
be greater than zero. It represents the relative position of a record within the
external file associated with un. The relative record number of the first
record is 1.

ERR=stn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

Chapter 5. VS FORTRAN Statements 183

READ (Formatted, Direct Access)

IOSTAT=im

list

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; negative if an end of file is detected; it is set
to zero if no error is detected. VSAM return and reason codes are placed in
ios.

is an 110 list. It can contain variable names, array element names, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an InputlOutput Statement" on
page 92.

An item in the list, or an item associated with it through EQUIVALENCE,
COMMON, or argument passing, must not contain any portion of the format
identifier [mI.

Valid READ Statements:

READ (un,FMT=fmt,REC=rec) list

READ (UNIT=un, FMT=fmt ,REC=rec) list

READ (REC=rec,FMT=fmt,UNIT=un)

READ (UNIT=2*IN-10, FMT=' (I9) " REC=3)

If this READ statement is encountered, the unit specified must exist and the file
must be connected for direct access. If the unit is not connected to a file, it is
assumed to have been preconnected through job control language and an implicit
OPEN is performed to a default file name. If the file is not preconnected, an error
is detected.

This statement permits a programmer to read records randomly from any location
within an external file. It contrasts with the sequential input statements that
process records, one after the other, from the beginning of an external file to its
end. With the direct access statements, a programmer can go directly to any record
in the external file, process a record and go directly to any other record without
having to process all the records in between.

Each record in a direct access file has a unique number associated with it. This
number is the same as specified when the record is written. The programmer must
specify in the READ statement not only the unit reference number, but also the
number of the record to be read. Specifying the record number permits operations
to be performed on selected records of the file instead of on records in their
sequential order.

The OPEN statement specifies the size and the type of the records in the direct
access file. All the records of a file connected for direct access have the same
length.

184 VS FORTRAN Language and Library Reference

o

o

~,

V

o

o

o

READ (Formatted, Direct Access)

Data Trammission: A READ statement with FORMAT starts data transmission at
the beginning of the record specified by REC=ree. The format codes in the format
identifier 1m! are taken one by one and associated with every item of the list in the
order they are specified. The number of character data specified by the format
code is taken from the record, converted according to the format code and
transmitted into the storage associated with the corresponding item in the list. Data
transmission stops when data has been transmitted to every item of the list or when
the end of the record specified by ree is reached.

If the list is not specified and the format identifier starts with an I, E, F, D, G, or L
format code, or is empty (that is, FORMATO), the internal record number is
increased by one but no data is transferred.

IBM Extension

VS FORTRAN adds that, if the format identifier starts with a Q or Z format code,
the internal record number is increased by one but no data is transferred.

'---__________ End of IBM Extension __________ --'

Data and I/O List: The length of every FORTRAN record is specified in the
RECL of the OPEN statement. If the record ree contains more data than is
necessary to satisfy all the items of the list and the associated format identifier, the
remaining data is ignored. If the record Tee contains less data than is necessary to
satisfy all the items of the list and the associated format identifier, an error is
detected. If the format identifier indicates (for example, slash format code) that
data be taken from the next record, then the internal record number ree is increased
by one and data transmission continues with the next record. The INQUIRE
statement can be used to determine the record number.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

Chapter 5. VS FORTRAN Statements 185

READ (Formatted, Keyed Access)

IBM Extension

READ Statement-Formatted with Keyed Access

This READ statement transfers data from an external direct access device into
internal storage. You specify in a FORMAT statement (or in a reference to a
FORMAT statement) the conversions to be performed during the transfer. The
data must reside on an external file that has been opened for keyed access. (See
"OPEN Statement" on page 168.)

There are two forms of this READ statement: the direct retrieval keyed request and
the sequential retrieval keyed request. In a direct retrieval keyed request, you specify
a full or partial key to be used in searching for the record to be retrieved.

In a sequential retrieval keyed request, you do not specify a key; the key of the
record previously read or updated is used as the starting point and the next record
in increasing key sequence is obtained. The key of reference from the previous
I/O statement remains the key of reference for a sequential retrieval. If the file
was just opened, the key of reference is the first key listed in the KEYS parameter
of the OPEN statement, and the file is positioned before the first record with the
lowest value for this key. A sequential retrieval keyed request reads this record.

I Syn~x for a ~ire~t Retri~VaI Keyed Request

READ (L UNIT= Jun, LFMT= lfmt

[, ERR=stn] [, 10STAT=ios]

[, KEY = key I , KEYGE=kge I , KEYGT=kgt]

[, KEYID=kid] [, NOTFOUND=stn]) [list]

Syntax for a Sequential Retrieval Keyed Request

READ ([UNIT=]un, [FMT=}fmt, [, ERR=stn] [, 10STAT=ios]

[, NOTFOUND=stn I , END=stn]) [list]

UNIT=un
un is the reference to the number of an I/O unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, FMT= must be used and all the
parameters can appear in any order.

FMT=/mt
Imt is a required format identifier and can, optionally, be preceded by
FMT=.

186 VS FORTRAN Language and Library Reference

o

G

o

o

o

READ (Formatted, Keyed Access)

If FMT= is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all the parameters, except list, can appear
in any order.

The format identifier (fmt) can be:

• A statement number
• An integer variable
• A character constant

A character variable
• A character array element

A character array name
• A character expression

An array name

The statement number must be the statement number of a FORMAT
statement in the same program unit as the READ statement.

The integer variable must have been initialized by an ASSIGN statement with
the number of a FORMAT statement. The FORMAT statement must be in
the same program unit as the READ statement.

The character constant must constitute a valid format. The constant must be
delimited by apostrophes, and must begin with a left parenthesis and must
end with a right parenthesis. Only the format codes described in the
FORMAT statement can be used between the parentheses. An apostrophe
in a constant enclosed in apostrophes is represented by two consecutive
apostrophes.

The character variable and character array element must contain character
data whose leftmost character positions constitute a valid format. A valid
format begins with a left parenthesis and ends with a right parenthesis. Only
the format codes described in the FORMAT statement can be used between
the parentheses. Blank characters may precede the left parenthesis and
character data may follow the right parenthesis. The length of the format
identifier must not exceed the length of the array element.

The character array name must contain character data whose leftmost
characters constitute a valid format identifier. The length of the format
identifier may exceed the length of the first el6ment of the array; it is
considered the concatenation of all the array elements of the array in the
order given by array element ordering.

The array name may be of integer, real, double precision, logical, or complex
type.

The data must be a valid format identifier as described under character array
name above.

The character expression may contain concatenations of character constants,
character array elements and character array names. Its value must be a
valid format identifier. The operands of the expression must have length
specifications that contain only integer constants or names of integer
constants. (See Chapter 4, "VS FORTRAN Expressions" on page 35.)

Chapter 5. VS FORTRAN Statements 187

READ (Formatted, Keyed Access)

ERR=sfn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; negative if an end of file is detected; it is set
to zero if no error is detected. VSAM return and reason codes are placed in
ios.

KEY=~IKEYGE=kgeIKEYGT=k~
These parameters cause a record to be retrieved by its key, and the file to be
positioned at the end of the record. They supply a full or partial key value
which is used as a search argument.

KEY=key

KEYGE= kge

KEYGT= kgt

Specifies that the record to be retrieved is the first
record whose key value is identical to the search
argument. If the search argument is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key whose leading part is identical to
the partial key.

Specifies the following search criterion for the record to
be retrieved: If the file contains a record whose key
value is identical to kge, the first such record is
retrieved. If not, the first record with the next greater
key value is retrieved. If kge is a partial key (shorter
than the keys in the file), the record retrieved is the first
one with a key value whose leading part is equal to or
greater than the partial key.

Specifies that the record to be retrieved is the first one
with a key value greater than kgt. If kgt is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key value whose leading part is
greater than the partial key.

key, kge, and kgt can be a character expression or a data item (a constant,
variable, array element, or character substring) of an integer or character
type whose length does not exceed the length of the key that is the target of
the search. A shorter or partial key is called a generic key.

KEYID=kid
kid is an integer expression of length 4. Its value is the relative position of a
start-end pair in the list of such pairs in the KEYS parameter of the OPEN
statement. For example, KEYID=3 would designate the third start-end pair,
and hence the third key, in the KEYS parameter. In this way, kid indicates
which of mUltiple keys will be used to retrieve a record. The selected key,
known as the "key of reference," remains in effect for all subsequent keyed
access I/O statements until a different one is specified in another READ
statement with a KEYID parameter.

If the KEYID parameter is omitted on the first READ statement for a file
opened for keyed access, the first start-end pair on the KEYS parameter is

188 VS FORTRAN Language and Library Reference

0','" , .

o

o

o

o

READ (Formatted, Keyed Access)

used. If no KEYS parameter was given on the OPEN statement, KEYID
must have a value of 1 or be omitted.

The KEYID parameter can be used only if the KEY, KEYGE, or KEYGT
parameter is also used.

NOTFOUND=stn
stn is the number of an executable statement that is given control when a
record-not-found condition occurs. See "Record Not Found" below for an
explanation of this condition.

END=sfn

list

stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to stn.

This parameter can be used only in a sequential retrieval keyed request.

is an I/O list. It can contain variable names, array element names, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an Input/Output Statement" on
page 92.

An item in the list, or an item associated with it through EQUIVALENCE,
COMMON, or argument passing, must not contain any portion of the format
identifier [mt.

Valid READ Statements:

READ (10,22,KEY='AC' ,NOTFOUND=97) AA,BB,CC
READ (UNIT=10,FMT=29,KEY='A01',

NOTFOUND=32) AA, BB, CC
READ (10,29,KEYGE=CVAR,ERR=00) AA, BB, CC
READ (10,FMT=29,END=37) AA, BB, CC
READ (10,29) AA, BB, CC
READ (10,29,END=37) AA, BB, CC
READ (UNIT=10,FMT=29,NOTFOUND=87) AA, BB, CC

If the formatted keyed READ statement is encountered, the unit specified must
exist and the file must have been connected for keyed access by means of an
OPEN statement. The ACTION parameter on that OPEN statement must not
have specified the value 'WRITE'. If the file is not so connected, an error is
detected.

Data Transmission: For a direct retrieval keyed request, data transmission begins at
the beginning of the record that satisfies the search criterion defined by the KEY,
KEYGE, or KEYGT parameter. For a sequential retrieval keyed request, data
transmission begins at the beginning of the record at which the file is currently
positioned. The format codes in the format identifier [mt are taken one by one and
associated with every item in the list in the order they are specified. The number
and character data specified by the format code is taken from the record, converted
according to the format code, and transmitted into the storage associated with the
corresponding item in the list. Data transmissi~n stops when data has been
transmitted to every item in the list or when the end of the record has been
reached.

Chapter 5. VS FORTRAN Statements 189

READ (Formatted, Keyed Access)

. Data and I/O List: If the record contains more data than is necessary to satisfy all
the items of the list and the associated format specification, the extra data is
skipped over. The next sequential retrieval READ statement will start with the
next sequential record. (This is the record with the next higher key value if the key
value is unique or the next record with the same key if the key value is not unique.)
If the record contains less data than is necessary to satisfy all the items of the list
and the associated format identifier, an error is detected.

If the list is not specified and the format identifier starts with an I, E, F, D, G, or L
format code or is empty (that is, FORMATO), a record is skipped over.

VS FORTRAN adds the Q and Z format codes to the list.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, then execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when the file is already positioned at the end
of the last record with the highest key value in the file and a sequential retrieval
keyed request is issued. If IOSTAT=ios was specified, a negative integer value is
assigned to ios when an end of file is detected. If ERR was specified but END was
not, control passes to the statement specified by ERR when an end of file is
detected. If neither END nor ERR was given, an error is detected.

Record Not Found: Control is transferred to the statement specified by
NOTFOUND under one of these conditions:

You made a direct retrieval keyed request, and no record in the file satisfied the
search criterion defined by KEY, KEYGE, or KEYGT.

• You made a sequential retrieval keyed request, and there are no more records in
which the leading portion of the key value is identical to the leading portion of
the key value in the record retrieved by the last direct retrieval operation. The
length of what is called the "leading portion of the key value" is equal to the
length of the search argument (KEY=key, KEYGE=kge, or KEYGT=kgt) on
the direct retrieval statement. This length may represent a full or partial key
value.

The NOTFOUND parameter on the sequential retrieval keyed request is treated as
an END parameter under any of these conditions:

• No direct retrieval keyed request has been made since the file was opened.

• The previous direct retrieval keyed request was unsuccessful.

190 VS FORTRAN Language and Library Reference

o

c

o

o

0'·""
II

READ (Formatted, Keyed Access)

• An operation that followed the previous direct retrieval keyed request did not
successfully retrieve a record.

• A REWIND was issued after the previous direct retrieval keyed request.

• After the last direct retrieval request, a WRITE statement added a record
whose key value differed in its leading positions from the key value being used
in the comparison.

A record-not-found condition is not detected for a sequential retrieval keyed
request that lacks a NOTFOUND parameter. In the absence of the NOTFOUND
parameter, successive sequential retrieval requests may read records until the end
of the file is reached.

If lOST AT = ios was specified, a positive integer value is assigned to ios when a
record-not-found condition is detected. If ERR is specified but NOTFOUND is
not, control passes to the statement specified by ERR when a record-not-found
condition is detected. If neither NOTFOUND nor ERR was given, an error is
detected.

1...-__________ End of IBM Extension __________

Chapter S. VS FORTRAN Statements 191

READ (Formatted, Sequential Access)

READ Statement-Formatted with Sequential Access

This READ statement transfers data from an external I/O device to storage. The
user specifies in a FORMAT statement (or in a reference to a FORMAT
statement) the conversions to be performed during the transfer: The data must
reside in an external file that is connected for sequential access to a unit. (See
"OPEN Statement" on page 168.)

The sequential I/O statements with format identifiers process records one after the
other from the beginning of an external file to its end.

Syntax

READ ([UNIT=]un, [FMT=lfmt [, ERR=stn] [, END=stn]

[, IOSTAT=ios]) [list]

READ Imt [, list]

UNIT = un
un is the reference to the number of an I/O unit. un is one of the following:

• An integer expression of length 4 whose value must be zero or positive

An asterisk (*) representing an installation-dependent unit

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, FMT= must be used and all the
parameters can appear in any order.

In the form of the READ in which un is not specified, un is installation
dependent.

FMT=/mt
Imt is a required format identifier. It can optionally be preceded by FMT=.

If FMT= is not specified, the format identifier must appear second. If both
UNIT = and FMT = are specified, all the parameters, except list, can appear
in any order.

The format identifier (fmt) can be:

• A statement number
An integer variable

• A character constant
• A character variable
• A character array element
• A character array name
• A character expression

192 VS FORTRAN Language and Library Reference

o

o

f"',

\.j/

o

o

o

READ (Formatted, Sequential Access)

IBM Extension

An array name

'--__________ End of IBM Extension __________ ---'

See "READ Statement-Formatted with Direct Access" on page 182 for
explanations of these format identifiers.

ERR=stn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

END=stn
stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to stn.

IOSTAT=;os

I;st

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is detected, and zero
if no error is detected. VSAM return and reason codes are placed in ios.

is an I/O list. It can contain variable names, array element names, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an Input/Output Statement" on
page 92. In the form of the READ where un is not specified, if the list is
not present the comma must be omitted. An item in the list, or an item
associated with it through EQUIVALENCE, COMMON or argument
passing, must not contain any portion of the format identifier Imt.

Valid READ Statements:

READ (un,fmt) list

READ (un, FMT=fmt) list

READ (UNIT=un, FMT=fmt) list FMT=fmt can appear first.

READ fmt, list

READ (5 , 98) A , B, (C (I , K) ,I = 1 , 1 0)

READ (IOSTAT=IOS, UNIT=2*IN-10, FMT=' (I9) " END=3600)

READ (10,22) AA,BB,CC

Chapter 5. VS FORTRAN Statements 193

READ (Formatted, Sequential Access)

Invalid READ Statements:

READ (fmt, un)

READ (FMT=fmt, un) list

READ (fmt, UNIT=un) list

READ FMT=fmt, list

un must appear before fmt.

un must appear first because
UNIT= is not specified.

FMT= must be used because
UNIT= is specified.

FMT= must not be used in this
form of READ.

If this READ statement is encountered, the unit specified must exist and the file
must be connected for sequential access. If the unit is not connected to a file, it is
assumed to have been preconnected through job control language, and an implicit
OPEN is performed to a default file name. If the file is not preconnected, an error
is detected.

Data Transmission: A READ statement with FORMAT starts data transmission at
the beginning of a record. The format codes in the format identifier 1m! are taken
one by one and associated with every item of the list in the order they are specified.
The number of character data specified by the format code is taken from the
record, converted according to the format code, and transmitted into the storage
associated with the corresponding item in the list. Data transmission stops when
data has been transmitted to every item of the list, or when the end of file is
reached.

Data and 110 List: If the record contains more data than is necessary to satisfy all
the items of the list and the associated format specification, the extra data is
skipped over. The next READ statement with FORMAT will start with the next
record if no other 110 statement is executed on that file. If the record contains less
data than is necessary to satisfy all the items of the list and the associated format
identifier, see "End of File" below.

If the list is not specified and the format identifier starts with an I, E, F, D, G, or L
format code or is empty (that is, FORMATO), a record is skipped over.

IBM Extension

VS FORTRAN adds the Q and Z format codes to the list.

1..-__________ End of IBM Extension __________

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST A T is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause IOSTAT to be set
positive nor transfer to be made to the statement specified by ERR. The extended
error handling subroutines may be used to detect and handle these errors. (See
Figure 39 on page 334.)

194 VS FORTRAN Language and Library Reference

o

o

o

o

o

READ (Unformatted, Direct Access)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read into before the end of the file was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to ios. Execution
continues with the statement specified with END, if present, or with the next
statement if END is not specified. If END and lOST AT are both omitted, object
program execution is terminated when the end of the file is encountered.

Chapter 5. VS FORTRAN Statements 195

READ (Unformatted, Direct Access)

READ Statement-Unformatted with Direct Access

This READ statement transfers data without conversion from an external
direct-access 110 device into internal storage. The data must reside on an external
file that has been opened for direct access. (See "OPEN Statement" on
page 168.)

Syntax

READ ([UNIT =]un, REC=ree [, ERR=stn] [,IOSTAT=ios]

[, NUM=n]) [list]

UNIT=un
un is the reference to the number of an 110 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

REC=rec
ree is a relative record number. It is an integer expression whose value must
be greatei than zeiO. It iepresents the relative position of a record within the
external file associated with un. The relative record number of the first
record is 1.

ERR = sin
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error is detected. VSAM return and reason codes are placed in
ios.

IBM Extension

NUM=n
n is an integer variable or an integer array element of length 4.

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the 110 list.

196 VS FORTRAN Language and Library Reference

o

o

o

o

o

READ (Unformatted, Direct Access)

Coding the NUM parameter suppresses the indication of an error that would
occur if the number of data bytes represented by the 110 list is greater than
the number of bytes in the record. In this case, n is. set to a value which is
the number of bytes in the record. Data from subsequent records is not read
into the remaining 110 list items.

L...-__________ End of IBM Extension __________ ---'

list
is an 110 list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an InputlOutput Statement" on
page 92.

Valid READ Statements:

READ (REC=rec, UNIT=un)

READ (IOSTAT=IOS, UNIT=11, REC=3) ACTUAL (3) (1:)

If this READ statement is encountered, the unit must exist and the file must be
connected for direct access. If the unit is not connected to a file, it is assumed to
have been pre connected through job control language, and an implicit OPEN is
performed to a default file name. If the file is not preconnected, an error is
detected.

Data Transmission: A READ statement without format starts data transmission at
the beginning of the record specified by REC=rec. The number of character data
specified by the type of each item in the list is taken from the record and
transmitted into the storage associated with the corresponding item in the list. Data
transmission stops when data has been transmitted to every item of the list.

If the list is not specified, the internal record number is increased by one but no
data is transferred. The INQUIRE statement can be used to determine the record
number.

Data and 110 List: The length of the FORTRAN records in the file is specified by
RECL in the OPEN statement. If the record rec contains more data than is
necessary to satisfy all the items of the list, the extra data is ignored. If the length
of the record rec is smaller than the total amount of data needed to satisfy the items
in the list, as much data as can be read from the record is read, and an error is
detected unless the NUM parameter is given.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

Chapter 5. VS FORTRAN Statements 197

READ (Unformatted, Keyed Access)

IBM Extension

READ Statement-Unformatted with Keyed Access

This READ statement transfers data without conversion from an external
direct-access I/O device into internal storage. The data must reside on an external
file that has been opened for keyed access. (See "OPEN Statement" on
page 168.)

There are two forms of this READ statement: the direct retrieval keyed request and
the sequential retrieval keyed request. In a direct retrieval keyed request, you specify
a full or partial key to be used in searching for the record to be retrieved.

In a sequential retrieval keyed request, you do not specify a key; the key of the
record previously read or updated is used as the starting point and the next record
in increasing key sequence is obtained. The key of reference from the previous
I/O statement remains the key of reference for a sequential retrieval. If the file
was just opened, the key of reference is the first key listed in the KEYS parameter
of the OPEN statement, and the file is positioned before the first record with the
lowest value for this key. A sequential retrieval keyed request reads this record.

I Syntax for a Direct Retrieval Keyed Request

I READ ([UNIT=]un, [, ERR=stn] [,IOSTAT=ios]

{, KEY = key I , KEYGE=kge I , KEYGT=kgt }[, KEYID=kid]

[, NOTFOUND=stn] [, NUM=n]) [list]

Syntax for a Sequenpal Retrieval Keyed Request

READ ([UNIT=]un, [, ERR=stn] [,IOSTAT=ios]

[, NOTFOUND=stn I, END=stn] [, NUM=n]) [list]

UNIT=un
un is the reference to the number of an I/O unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

198 VS FORTRAN Language and Library Reference

c

o

o

o

o

READ (Unformatted, Keyed Access)

10 STAT = ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error is detected. VSAM return and reason codes are placed in
ios.

KEY=k~IKEYGE=kgeIKEYGT=k~
These parameters cause a record to be retrieved by its key, and the file to be
positioned at the end of the record. They supply a full or partial key value
which is used as a search argument.

KEY=k~

KEYGE=kge

KEYGT=k~

Specifies that the record to be retrieved is the first
record whose key value is identical to the search
argument. If the search argument is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key whose leading part is identical to
the partial key.

Specifies the following search criterion for the record to
be retrieved: If the file contains a record whose key
value is identical to kge, the first such record is
retrieved. If not, the first record with the next greater
key value is retrieved. If kge is a partial key (shorter
than the keys in the file), the record retrieved is the first
one with a key value whose leading part is equal to or
greater than the partial key.

Specifies that the record to be retrieved is the first one
with a key value greater than kgt. If kgt is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key value whose leading part is
greater than the partial key.

key, kge, or kgt can be a character expression or a data item (a constant,
variable, array element, or character substring) of integer or character type
whose length does not exceed the length of the key that is the target of the
search. A shorter or partial key is called a generic key.

KEYID=kid
kid is an integer expression of length 4. Its value is the relative position of a
start-end pair in the list of such pairs in the KEYS parameter of the OPEN
statement. For example, KEYID=3 would designate the third start-end pair,
and hence the third key, in the KEYS parameter. In this way, kid indicates
which of mUltiple keys will be used to retrieve a record. The selected key,
known as the "key of reference," remains in effect for all subsequent keyed
access 110 statements until a different one is specified in another READ
statement with a KEYID parameter.

If the KEYID parameter is omitted on the first READ statement for a file
opened for keyed access, the first start-end pair on the KEYS parameter is
used. If no KEYS parameter was given on the OPEN statement, KEYID
must have a value of 1 or be omitted.

The KEYID parameter can be used only if the KEY, KEYGE, or KEYGT
parameter is also used.

Chapter 5. VS FORTRAN Statements 199

READ (Unformatted, Keyed Access)

NOTFOUND=sln
sin is the number of an executable statement that is given control when a
record-not-found condition occurs. See "Record Not Found" below for an
explanation of this condition.

END = sin
stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to stn.

This parameter can be used only on a sequential retrieval keyed request.

NUM=n

list

n is an integer variable or an integer array element of length 4.

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the I/O list.

Coding the NUM parameter suppresses the indication of an error that would
occur if the number of data bytes represented by the I/O list is greater than
the number of bytes in the record. In this case, n is set to a value which is
the number of bytes in the record. Data from subsequent records is not read
into the remaining I/O list items.

is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an Input/Output Statement" on
page 92.

Valid READ Statements:

READ (IOSTAT=IACT(1) ,UNIT=3*IN-2) ACTUAL(1)
READ (12,KEYGE=DEPTNO,NOTFOUND=86) DD,EE,FF
READ (UNIT=10,KEY='A01' ,NOTFOUND=32) AA, BB, CC
READ (10,KEYGT=CVAR,NUM=LENG) AA, (B(I) ,1=1, 100)
READ (10,END=37) AA, BB, CC
READ (10,NUM=LENG,NOTFOUND=87) AA, (B(I), 1=1, 100)

If an unformatted keyed READ statement is encountered, the unit specified must
exist and the file must have been connected for keyed access by means of an
OPEN statement. The ACTION parameter on that OPEN statement must not
have specified the value 'WRITE'. If the file is not so connected, an error is
detected.

Data Transmission: For a direct retrieval keyed request, data transmission begins at
the beginning of the record that satisfies the search criterion defined by the KEY,
KEYGE, or KEYGT parameter. For a sequential retrieval keyed request, data
transmission begins at the beginning of the record at which the file is currently
positioned. The data specified by the item in the list is taken from the record and
transmitted into the corresponding item in the list. Data transmission stops when
data has been transmitted to every item in the list or when the end of file is
reached.

If the list is not specified, a record is passed over and no data is transmitted.

200 VS FORTRAN Language and Library Reference

o

o

o

o

o

READ (Unformatted, Keyed Access)

Data and I/O List: If the record contains more data than is necessary to satisfy all
the items in the list, the extra data is skipped over. The next sequential retrieval
keyed request will start with the next sequential record. (This is the record with the
next higher key value if the key value is unique or the next record with the same
key if the key value is not unique.) If the record contains less data than is
necessary to satisfy the list, an error is detected unless the NUM parameter was
given.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when the file is already positioned at the end
of the last record with the highest key value in the file and a sequential retrieval
keyed request was issued. If IOSTAT=ios was specified, a negative integer value is
assigned to ios when an end of file is detected. If ERR was specified but END was
not, control passes to the statement specified by ERR when an end of file is
detected. If neither END nor ERR was given, an error is detected.

Record Not Found: Control is transferred to the statement specified by
NOTFOUND under one of these conditions:

• You made a direct retrieval keyed request, and no record in the file satisfied the
search criterion defined by KEY, KEYGE, or KEYGT.

• You made a sequential retrieval keyed request, and there are no more records in
which the leading portion of the key value is identical to the leading portion of
the key value in the record retrieved by the last direct retrieval operation. The
length of what is called the "leading portion of the key value" is equal to the
length of the search argument (KEY=key, KEYGE=kge, or KEYGT=kgt) on
the direct retrieval statement. This length may represent a full or partial key
value.

The NOTFOUND parameter on the sequential retrieval keyed request is treated as
an END parameter under any of these conditions:

• No direct retrieval keyed request has been made since the file was opened.

• The previous direct retrieval keyed request was unsuccessful.

• An operation that followed the previous direct retrieval keyed request did not
successfully retrieve a record.

• A REWIND was issued after the previous direct retrieval keyed request.

Chapter 5. VS FORTRAN Statements 201

READ (Unformatted, Keyed Access)

• After the last direct retrieval request, a WRITE statement added a record
whose key value differed in its leading positions from the key value being used
in the comparison.

A record-not-found condition is not detected for a sequential retrieval keyed
request that lacks a NOTFOUND parameter. In the absence of the NOTFOUND
parameter, successive sequential retrieval requests may read records until the end
of the file is reached.

If IOSTAT=ios was specified, a positive integer value is assigned to ios when a
record-not-found condition is detected. If ERR is specified but NOTFOUND is
not, control passes to the statement specified by ERR when a record-not-found
condition is detected. If neither NOTFOUND nor ERR was given, an error is
detected.

1....-__________ End of IBM Extension __________

202 VS FORTRAN Language and Library Reference

o

o

o

o

READ (Unformatted, Sequential Access)

READ Statement-Unformatted with Sequential Access

This READ statement transfers data without conversion from an external I/O
device into internal storage. The data resides on an external file that is connected
for sequential access to a unit. (See "OPEN Statement" on page 168.)

The sequential I/O statements without format control process records one after the
other from the beginning of an external file to its end.

The ENDFILE, REWIND, and BACKSPACE statements may be used to
manipulate the file.

Syntax

READ ([UNIT =]un [, ERR=stn] [, END=stn] [, NUM=n]

[, IOSTAT=ios]) [list]

UNIT=un
un is the reference to the number of an I/O unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=sln
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

END=sln
is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to stn.

IBM Extension

NUM=n
n is an integer variable or an integer array element of length 4.

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the I/O list.

Coding the NUM parameter suppresses the indication of an error that would
occur if the number of data bytes represented by the I/O list is greater than
the number of bytes in the record. In this case, n is set to a value which is
the number of bytes in the record. Data from subsequent records is not read
into the remaining I/O list items.

L--__________ End of IBM Extension __________1

Chapter 5. VS FORTRAN Statements 203

READ (Unformatted, Sequential Access)

IOSTAT=ios

list

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected. VSAM return and reason codes are
placed in ios.

is an I/O list. It can contain variable names, array element names, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an Input/Output Statement" on
page 92.

Valid READ Statements:

READ (un) list

READ (UNIT=un) list

READ (un)

READ (IOSTAT=IOS, UNIT=11)

READ (12) DD,EE,FF

Invalid READ Statements:

READ un, list

READ, list

un must be in parentheses (and a comma
must not be specified).

(un) must be specified (and a comma
must not be specfied).

If this READ statement is encountered, the unit specified by un must be connected
to a file for sequential access. If the unit is not connected to a file, it is assumed to
have been preconnected through job control language, and an implicit OPEN is
performed to a default file name. If the file is not preconnected, an error is
detected.

Data Transmission: A READ statement without conversion starts data transmission
at the beginning of a record. The data specified by the item in the list is taken from
the record and transmitted into the storage associated with the corresponding item
in the list. Data transmission stops when data has been transmitted to every item
of the list or when the end of file is reached.

If the list is not specified, a record is passed over without transmitting any data.

Data and I/O List: If the record contains more data than is necessary to satisfy all
the items of the list, the extra data is skipped over. The next READ statement
without format will start with the next record if no other I/O statement is executed
on that file. If the record contains less data than is necessary to satisfy the list, see
"End of File" below.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

204 VS FORTRAN Language and Library Reference

o

(r,
'-Y

o

o

o

READ (Unformatted, Sequential Access)

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor transfer to be made to the statement specified by ERR. The extended
error handling subroutines may be used to detect and handle these errors. (See
Figure 39 on page 334.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read into before the end of the file was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to ios when an end of
file is detected. Execution continues with the statement specified with END, if
present, or with the next statement, if END is not specified. If END and lOST AT
are both omitted, program execution is terminated when the end of the file is
encountered.

Chapter 5. VS FORTRAN Statements 205

READ (Formatted, Sequential Access, Internal)

READ Statement-Formatted with Sequential Access to Internal FOes

This READ statement transfers data from one area of internal storage into another
area of internal storage. The user specifies in a FORMAT statement (or in a
reference to a FORMAT statement) the conversions to be performed during the
transfer. The area in internal storage that is read from is called an internal file.

An internal file is always

• Connected to a unit

• Positioned before data transmission at the beginning of the storage area
represented by the unit identifier

Syntax

READ ([UNIT =]un, [FMT= lfmt [, ERR=stn] [, END=stn]

[, IOSTAT=ios]) [list]

UNIT=un
un is the reference to an area of internal storage called an internal file. It can
be the name of:

A character variable
• A character array
• A character array element
• A character substring

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified~ un must appear first in the statement. If UNIT = is specified,
FMT= must be used and all the parameters can appear in any order.

FMT=/mt
Imt is a required format identifier. It can, optionally, be preceded by FMT=.

The format identifier can be:

• A statement number
An integer variable

• A character constant
A character variable

• A character array name
• A character array element

A character expression

206 VS FORTRAN Language and Library Reference

I • 0""

G

c

o

o

o

READ (Formatted, Sequential Access, Internal)

IBM Extension

• An array name

1.....-__________ End of IBM Extension __________ ---'

See "READ Statement-Formatted with Direct Access" on page 182 for
explanations of these format identifiers.

The format specification must not be:

• In the area un

• Associated with un through EQUIVALENCE, COMMON or argument
passing

If FMT= is not specified, the format specification must appear second. If
both UNIT= and FMT= are specified, all the parameters, except list, can
appear in any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, transfer is made to stn.

END=stn
stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the storage area (un) is encountered,
control is transferred to stn.

IOSTAT=;os

list

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected. VSAM return and reason codes are
placed in ios.

is an 110 list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See "Implied DO in an InputlOutput Statement" on
page 92.

An item in the list must not be:

• Contained in the area represented by un

• Associated with any part of un through EQUIVALENCE, COMMON, or
argument passing

Chapter 5. VS FORTRAN Statements 207

READ (Formatted, Sequential Access, Internal)

Valid READ Statements:

READ (un,FMT=fmt) list

READ (UNIT=un,FMT=fmt) list

Invalid READ Statements:

READ (fmt,un) list

READ (FMT=fmt,un) list

READ (fmt,UNIT=un) list

un must appear before fmt.

un must appear first because
UNIT= is not specified.

FMT= must be used because
UNIT= is specified.

Data Transmission: An internal READ statement starts data transmission at the
beginning of the storage area specified by un. The format codes in the format
specification Imt are taken one by one and associated with every item of the list in
the order they are specified. The number of character data specified by a format
code is taken from the storage area un, converted according to the format code,
and moved into the storage associated with the corresponding item in the list. Data
transmission stops when data has been moved to every item of the list or when the
end of the storage area is reached.

If un is a character variable, a character array element name, or a character
substring name, it is treated as one record OJ:lly in relation to the format identifier.

If un is a character array name, each array element is treated as one record in
relation to the format identifier.

Data and I/O List: The length of a record is the length of the character variable,
character substring name, character array element specified by un when the READ
statement is executed.

If a record contains more data than is necessary to satisfy all the items in the list
and the associated format identifier, the remaining data is ignored.

If a record contains less data than is necessary to satisfy all the items in the list and
the associated format identifier, an error is detected.

If the format identifier (for example, slash format code) indicates that further data
is needed beyond the data contained in the character variable, character substring,
or the last array element of a character array, an end of file is detected. If it is not
the last array element in the character array, data is taken from the next array
element.

208 VS FORTRAN Language and Library Reference

o

o

o

o

o

READ (Formatted, Sequential Access, Internal)

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause IOSTAT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

End 0/ File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read into before the end of the file was encountered. If
lOST A T = ios is specified, a negative integer value is assigned to ios when an end of
file is detected. Execution continues with the statement specified with END if
present or with the next statement if END is not specified. If END and IOSTAT
are both omitted, program execution is terminated when the end of the file is
encountered.

Example:

1 CHARACTER* 120 CHARVR
2 READ (UNIT=5, FMT=100) CHARVR

100 FORMAT (A120)
3 ASSIGN 200 TO J
4 IF (CHARVR (3:4) .EQ. lAB') ASSIGN 300 TO J
5 READ(UNIT = CHARVR, FMT=J) A1, A2, A3

200 FORMAT(4X,F5.1, F10.3, 3X, F12.B)
300 FORMAT (4X, F3.1, F6.3, 20X, FB.4)

Statement 1 defines a character variable, CHARVR, of fixed length 120.
Statement 2 reads into CHAR VR 120 characters of input. Statement 3 assigns the
format number 200 to the integer variable J. Statement 4 tests the third and fourth
characters of CHAR VR to determine which type of input is to be processed. If
these two characters are AB, then the format numbered 300 replaces the format
numbered 200 and is used for processing the data. This is done by assigning 300 to
the integer variable J. Statement 5 reads the file and performs the conversion,
using the appropriate FORMAT statement and assigning values to AI, A2, and A3.

Chapter 5. VS FORTRAN Statements 209

READ (List-Directed, External)

READ Statement-List-Directed I/O from External Devices

This statement transfers data from an external device into internal storage. The
type of the items specified in this statement determines the conversion to be
performed. The data resides on an external file that is connected for sequential
access to a unit (see "OPEN Statement" on page 168).

Syntax

READ ([UNIT=]un, [FMT=]* [, ERR=stn] [, END=stn]

[, 10STAT=ios]) [list]

READ * [, list]

UNIT = un
un is the reference to the number of an I/O unit. un is one of the following:

• An integer expression of length 4 whose value must be zero or positive

• An asterisk (*) representing an installation-dependent unit

un is required in the first form of the READ statement and can, optionally,
be preceded by UNIT =. If UNIT = is not specified, un must appear first in
the statement. The other parameters may appear in any order. If UNIT= is
specified, all the parameters can appear in any order.

In the form of the READ in which un is not specified, un is installation
dependent.

FMT=*
specifies that a list-directed READ is to be executed. It can optionally be
preceded by FMT =.

If FMT= is not specified, the format identifier must appear second. If both
UNIT = and FMT = are specified, all the parameters, except list, can appear
in any order.

ERR=sfn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

END=sfn
stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to stn.

210 VS FORTRAN Language and Library Reference

I , 0,'1.

o

o

o

o

READ (List-Directed, External)

IOSTAT= ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected. VSAM return and reason codes are
placed in ios.

list
is an I/O list and can contain variable names, array element names,
character substring names, array names (except names of assumed-size
arrays), and implied DO lists. See "Implied DO in an Input/Output
Statement" on page 92.

Valid READ Statements:

READ (un,*) list
READ (un,FMT=*) list
READ (FMT=*,UNIT=un) list
READ (*,*) list
READ *, list
READ (IOSTAT=IACT(1), UNIT=3*IN-2, FMT=*) ACTUAL(1)

Invalid READ Statements:

READ (*,un) list

READ (FMT=*,un) list

READ (*,UNIT=un) list

READ FMT=*, list

un must appear before *.

un must appear first because
UNIT= is not specified.

FMT= must be used because
UNIT= is specified.

FMT= must not be specified in the
second form of syntax.

If this READ statement is encountered, the unit specified by un must be connected
to a file for sequential access. If the unit is not connected to a file, it is assumed to
have been preconnected through job control language, and an implicit OPEN is
performed to a default file name. If the file is not preconnected, an error is
detected.

Data Transmission: A READ statement with list-directed I/O accessing an external
file starts data transmission at the beginning of a record. One value on the external
file is transferred to each item of the list in the order they are specified. The
conversion to be performed depends on the type and length of the name of the item
in the list. Data transmission stops when data has been transmitted to every item in
the list, when a slash separator is encountered in the file or when the end of file is
reached.

Data and I/O List: If the record contains more data than is necessary to satisfy all
the items of the list, the extra data is skipped over. The next READ statement with
list-directed I/O will start with the next record if no other I/O statement is
executed on that file. If the record contains less data than is necessary to satisfy
the list, and the record does not have a slash after the last element, an error is
detected. If the list has not been satisfied when a slash separator is found, the
remaining items in the list remain unaltered and execution of the READ is
terminated.

Chapter 5. VS FORTRAN Statements 211

READ (List-Directed, External)

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read before the end of the file was encountered. If
IOSTAT=ios is specified, a negative integer value is assigned to ios when an end of
file is detected. Execution continues with the statement specified with END, if
present, or with the next statement if END is not specified. If END and lOST AT
are both omitted, object program execution is terminated when the end of the file is
encountered.

212 VS FORTRAN Language and Library Reference

o

o

~ ..
U

o

o

o

READ (List-Directed, Internal)

IBM Extension

READ Statement-List-Directed I/O with Internal Files

This statement transfers data from one area of internal storage to one or more
other areas of internal storage. The area in internal storage that is read from is
called an internal file. The type of the items specified in this statement determines
the conversion to be performed.

Syntax

READ ([UNIT =]un, [FMT=] * [, ERR=stn] [, END=stn]

[, IOSTAT=ios]) [list]

UNIT = un
un is the reference to an area of internal storage called an internal file. It can
be the name of:

• A character variable
• A character array
• A character array element
• A character substring

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. If UNIT = is specified,
FMT= must be used and all the parameters can appear in any order.

FMT=*
* specifies that a list-directed READ is to be executed. It can optionally be
preceded by FMT =.

If FMT = is not specified, * must appear second. If both UNIT = and FMT =
are specified, all the parameters, except list, can appear in any order.

ERR=sln
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

END = sin
stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the storage area (un) is encountered,
control is transferred to stn.

10STAT=;m
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected.

Chapter 5. VS FORTRAN Statements 213

READ (List-Directed, Internal)

list
is an I/O list and can contain variable names, array element names,
character substring names, array names (except names of assumed-size
arrays), and implied DO lists. See "Implied DO in an Input/Output
Statement" on page 92.

Valid READ Statements:

READ (un,*) list
READ (un,FMT=*) list
READ (FMT=*,UNIT=un) list
READ (IOSTAT=IACT(1), UNIT=CHARVR, FMT=*) ACTUAL(1)

Data Transmission: An internal, list-directed READ statement starts data
transmission at the beginning of the storage area specified by un. One value in the
internal file is transferred to each item of the list in the order they are specified.
The conversion to be performed depends on the type and length of the name of the
item in the list. Data transmission stops when data has been moved to every item
of the list or when the end of the storage area is reached.

If un is a character variable, a character array element name, or a character
substring name, it is treated as one record. If un is a character array name, each
array element is treated as one record.

Data and I/O List: The length of a record is the length of the character variable,
character substring name, or character array element specified by un when the
READ statement is executed.

If a record contains more data than is necessary to satisfy all the items in the list
and the associated format identifier, the remaining data is ignored. The next
READ statement with list-directed I/O will start with the next record if no other
I/O statement is executed on that file.

If a record contains less data than is necessary to satisfy the list and the record does
not have a slash after the last element, an error is detected. If the list has not been
satisfied when a slash separator is found, the remaining items in the list remain
unaltered and execution of the READ is terminated.

If the list indicates that more data items are to be moved and none remain in the
character variable, character substring, or last array element of a character array,
an end of file is detected. If an array element is not last and the list requires more
data items than that element contains, the items are taken from the next array
element.

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when there is insufficient data in the
character variable or array to satisfy the requirements of the I/O list. No
indication is given of the number of list items read into before the end of the file
was encountered. If IOSTAT=ios is specified, a negative integer value is assigned
to ios when an end of file is detected. Execution continues with the statement
specified with END if present or with the next statement if END is not specified. If
END and IOSTAT are both omitted, program execution is terminated when the
end of the file is encountered.

214 VS FORTRAN Language and Library Reference

C"! .J

o

o

o

o

READ (List-Directed, Internal)

Example:

1 CHARACTER* 50 CHARVR
2 READ (UNIT=5, FMT=100) CHARVR

100 FORMAT (A50)
3 READ (UNIT=CHARVR, FMT=*) A1, A2, A3

Statement 1 defines a character variable, CHARVR, of fixed-length 50. Statement
2 reads into CHARVR 50 characters of input. Statement 3 reads from CHARVR,
performs the conversion (depending on the type and length of the names of the
items in the list), and assigns values to AI, A2, and A3.

1...-__________ End of IBM Extension __________

Chapter 5. VS FORTRAN Statements 215

READ (NAMELIST, External)

IBM Extension

READ Statement-NAMELIST with External Devices

This statement transfers data from an external 110 device into storage. The type
of the items specified in the NAMELIST determines the conversions to be
performed. The data resides on an external file that is connected for sequential
access to a unit (see "OPEN Statement" on page 168).

Syntax

READ ([UNIT=]un, [FMT=]name [, ERR=sln]

[, END=sln] [, IOSTAT=ios])

READ name

UNIT=un
un is the reference to the number of an 110 unit. un is one of the following:

• An integer expression of length 4 whose value must be zero or positive

• An asterisk (*) representing an installation-dependent unit

un is required in the first form of the READ statement and can, optionally,
be preceded by UNIT =. If UNIT = is not specified, un must appear first in
the statement. The other parameters may appear in any order. If UNIT= is
specified, all the parameters can appear in any order.

In the form of the READ in which un is not specified, un is installation
dependent.

FMT = name
name is a NAMELIST name. See "NAMELIST Statement" on page 166.

If FMT= is not specified, the NAMELIST name must appear second. If
both UNIT = and FMT = are specified, all the parameters can appear in any
order.

ERR=sfn
sIn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to sIn.

END=sln
sIn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to sIn.

216 VS FORTRAN Language and Library Reference

c

o

o

o

READ (NAMELIST, External)

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected. VSAM return and reason codes are
placed in ios.

Valid READ Statements:

READ (un,name)

READ (IN+IN+3, NAME IN , IOSTAT=IOS)

Invalid READ Statements:

READ (~,un) un must appear before name.

READ (un,name) list list must not be specified.

If this READ statement is encountered, the unit specified by un must exist and it
must be connected to a file for sequential access. If the unit is not connected to a
file, it is assumed to have been preconnected through job control language and an
implicit OPEN is performed to a default file name. If the file is not preconnected,
an error is detected.

The NAMELIST I/O statements associate the name given to the data in the
FORTRAN program with the data itself. There is no format identifier but the data
is converted according to the type of data in the FORTRAN program. The data on
the external file must be in a specific format. See "NAMELIST Input Data" on
page 167.

The READ statement specifies the list of data to be transferred by referring to a
NAMELIST statement.

BACKSPACE and REWIND should not be used with NAMELIST I/O. If they
are, the results are unpredictable (see "BACKSPACE Statement" on page 67 and
"REWIND Statement" on page 225).

Data Transmission: A READ statement with NAMELIST starts data transmission
from the beginning of the NAMELIST with name name on the external file. The
names associated with the NAMELIST name in the NAMELIST statement are
matched with the names of the NAMELIST name on the external file. When a
match is found, the value associated with the name on the external file is converted
to the type of the name and transferred into storage. If a match is not found, an
error is detected.

Data and NAMELIST: The NAMELIST name must appear on the external file.
The variable names or array names associated with the NAMELIST name name in
the NAMELIST statement must appear on the external file. They are read in the
order they are specified in the NAMELIST statement, but they can appear in any
order on the external file. (See "NAMELIST Input Data" on page 167 for the
format of the input data.)

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If lOST AT is specified, a

Chapter 5. VS FORTRAN Statements 217

READ (NAMELIST, External)

positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

End of File: Control is transferred to the statement specified by END when the
end of the file is encountered; that is, when a READ statement is executed after
the last record on the file has already been read. No indication is given of the
number of list items read before the end of the file was encountered. If END is
omitted, object program execution is terminated when the end of the file is
encountered.

L..-__________ End of IBM Extension __________ ...J

218 VS FORTRAN Language and Library Reference

o

o

~,

U

o

o

o

READ (NAMELIST, Internal)

IBM Extension

READ Statement-NAMELIST with Internal Files

This statement transfers data from one area of internal storage to one or more
other areas of internal storage. The area of internal storage that is read from is
called an internal file. The type of the items specified in an "associated NAMELIST
list determines the conversions to be performed.

Syntax

READ ([UNIT =]un, [FMT=]name [, ERR=sln] [, END=sln]

[, IOSTAT=ios])

UNIT=un
un is the reference to an area of internal storage called an internal file. It can
be the name of:

• A character variable
• A character array
• A character array element
• A character substring

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. If UNIT = is specified,
FMT= must be used and all the parameters can appear in any order.

FMT=name
name is a NAMELIST name. See "NAMELIST Statement" on page 166.

If FMT= is not specified, the NAMELIST name must appear second. If
both UNIT = and FMT = are specified, all the parameters can appear in any
order.

ERR=stn
sIn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to sIn.

END=stn
sIn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to sIn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected.

Chapter 5. VS FORTRAN Statements 219

READ (NAMELIST, Internal)

Valid READ Statements:

READ (un,name)

READ (CHARVR, NAME IN , IOSTAT=IOS)

The NAMELIST I/O statements associate the name given to the data in the
FORTRAN program with the data itself. There is no format identifier, but the
data is converted according to the type of data in the FORTRAN program. The
data in the internal file must be in a specific format. See "NAMELIST Input Data"
on page 167.

The READ statement specifies the list of data to be transferred by referring to a
NAMELIST statement. This form of data transmission is useful for debugging
purposes.

Data Tramm;ss;on: A READ statement with NAMELIST starts data transmission
at the beginning of the internal file specified by un. The data items associated with
the NAMELIST name in the NAMELIST statement are matched with the values
associated with the NAMELIST name in the internal file. When a match is found,
the values associated with the name in the internal file are converted to the types of
the data items in the NAMELIST list and assigned to the data items. If no match is
found, an error is detected.

Data and NAMELIST: The NAMELIST name must appear in the internal file.
The data items associated with the NAMELIST name in the NAMELIST statement
must appear in the internal file. They are read in the order they are specified in the

o

NAMELIST statement, but they can appear in any order in the internal file. (See r"\
"NAMELIST Input Data" on page 167 for the format of the input data.) U
End of F;le: Control is transferred to the statement specified by END if:

The NAMELIST input data in the internal file does not have an &END
delimiter.

• The specified NAMELIST name is not in the internal file.

No indication is given of the number of list items read before control is transferred.
If END is omitted, object program execution is terminated when the end of the
internal file is encountered.

CHARACTER*40 CHARVR

NAMELIST /NL1/A,B,C

READ (CHARVR,NL1)

220 VS FORTRAN Language and Library Reference

C"
II ,,"

o

REAL Type Statement

o

o

Assume CHARVR contains:

Position 2
v
&NL 1 A=5,C=10,B=6,&END

READ (NAMELIST, Internal)

Then A is assigned the value 5, B the value 6, and C the value 10.

L...-_________ End of IBM Extension _________

See "Explicit Type Statement" on page 103.

Chapter 5. VS FORTRAN Statements 221

RETURN

RETURN Statement

The RETURN statement returns control to a calling program.

IBM Extension

In a main program, a RETURN statement performs the same function as a STOP
statement.

'--__________ End of IBM Extension __________

The RETURN statement can be used in either a function or a subroutine
subprogram. A RETURN statement cannot terminate the range of a DO-loop.

RETURN Statement in a Function Subprogram

Function subprograms may contain RETURN statements. The RETURN
statement signifies a logical conclusion of the computation and returns the
computed function value and control to the calling program. (See "FUNCTION
Statement" on page 137.) r: S~mx

RETURN

Execution of a RETURN statement terminates the association between the dummy
arguments of the subprogram and the current actual arguments. All entities (that
is, common blocks, variables, or arrays) within the subprogram become undefined
except:

• Entities specified in SAVE statements (see "SA VB Statement" on page 232)

• Entities given an initial value in a DATA or explicit specification statement and
whose initial values were not changed

• Entities in a blank common block

• Entities in a named common block that appear in the subprogram and appear
in at least one other program unit that is referring either directly or indirectly to
the subprogram

All variables that are defined with a statement number become undefined
regardless of whether the variable is in a common block or specified in a SA VB
statement.

A function subprogram must not be referred to twice during the execution of an
executable program without the execution of a RETURN statement in that
subprogram. (See "END Statement" on page 94.)

222 VS FORTRAN Language and Library Reference

c

o

c

o

o

o

RETURN

RETURN Statement in a Subroutine Subprogram

Subroutine subprograms may contain RETURN statements. The RETURN
statement signifies a logical conclusion of the computation and returns control to
the calling program. (See "SUBROUTINE Statement" on page 238.)

j: ~mx
RETURN [ml

m
is an integer expression. If m is not specified in a RETURN statement, or if
the value of m is less than one or greater than the number of asterisks in the
SUBROUTINE or subroutine ENTRY statement that specifies the currently
referenced name, control returns to the next statement following the CALL
statement that initiated the subprogram reference. This completes the
execution of the CALL statement.

If 1 ~ m ~ n, where n is the number of asterisks in the SUBROUTINE or
subroutine ENTRY statement that specifies the currently referenced name,
the value of m identifies the mth asterisk in the dummy argument list. There
should be a one-to-one correspondence between the number of alternate
return specifiers specified in the CALL statement and the number of
asterisks specified in the SUBROUTINE statement or ENTRY statement
dummy argument list. However, the alternate return specifiers need not be
unique. Control is returned to the statement identified by the alternate
return specifier in the CALL statement that is associated with the mth
asterisk in the dummy argument list of the currently referenced name. This
completes the execution of the CALL statement.

Execution of a RETURN statement terminates the association between the dummy
arguments of the subprogram and the current actual arguments. All entities within
the subprogram become undefined except:

• Entities specified in SA VB statements (see "SA VB Statement" on page 232)

• Entities given an initial value in a DATA or explicit specification statement and
where initial values were not changed

• Entities in a blank common block

• Entities in a named common block that appear in the subprogram and appear
in at least one other program unit that is referring either directly or indirectly to
the subprogram.

All variables that are defined with a statement number become undefined
regardless of whether the variable is in a common block or specified in a SA VB
statement.

A subprogram must not be referred to twice during the execution of an executable
program without the execution of a RETURN statement in that subprogram.

Chapter 5. VS FORTRAN Statements 223

RETURN

A CALL statement that is used with a RETURN m form may be best understood
by comparing it to a CALL and computed GO TO statement in sequence. For 0"
example, the following CALL statement:

CALL SUB (P,*20,Q,*35,R,*22)

is equivalent to:

CALL SUB (P,Q,R,I)
GO TO (20,35,22),1

where the index I is assigned a value of 1, 2, or 3 in the called subprogram.

224 VS FORTRAN Language and Library Reference

o

C' ~,," , ,

I,

REWIND Statement

o

c

o

REWIND

The REWIND statement repositions a sequentially accessed file at the beginning of
the first record of the file. The external file must be connected when you execute
the statement. (See "OPEN Statement" on page 168.)

For a keyed file, the file must have been previously connected using an OPEN
statement that specified an ACTION value of READ or READWRITE.

The REWIND statement positions the file to the beginning of the first record with
the lowest value of the key of reference.

Syntax

REWIND un

REWIND ([UNIT=]un [, ERR = err] [, IOSTAT=ios])

UNIT=un
un is the reference to the number of an 110 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and, if the second form of the statement is used, can optionally
be preceded by UNIT =. If UNIT = is not specified, un must appear first in
the statement. The other parameters may appear in any order. If UNIT = is
specified, all the parameters can appear in any order.

ERR=e"
is optional. err is a statement number. If an error occurs in the execution of
the REWIND statement, control is transferred to the statement labeled err.
That statement must be executable and must be in the same program unit as
the REWIND statement. If ERR=err is omitted, execution halts when an
error is detected.

IOSTAT=;os
is optional. ios is an integer variable or an integer array element of length 4.
ios is set positive if an error is detected; it is set to zero if no error is
detected. VSAM return and reason codes are placed in ios.

If UNIT = is specified, all the parameters can appear in any order; otherwise, un
must appear first.

If the unit specified by un is connected, it must be connected for sequential or
keyed access. If it is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN specifying
sequential access is performed to a default file name. If the file is not
preconnected, an error is detected.

An external sequential file connected to the unit specified by un mayor may not
exist when the statement is executed. If the external sequential file does not exist,
the REWIND statement has no effect. If the external sequential file does exist, an
end-of-file is created, if necessary, and the file is positioned at the beginning of the
first record.

Chapter 5. VS FORTRAN Statements 225

REWIND

For a sequential file, the REWIND statement causes a subsequent READ or
WRITE statement referring to un to read data from or write data into the first
record of the external file associated with un.

IBM Extension

For a keyed file, a subsequent sequential retrieval keyed request will read the first
record with the lowest key. The key of reference remains the same as it was before
the REWIND statement was issued.

The REWIND statement may be used with asynchronous READ and WRITE
statements provided that any input/output operation on the file has been
completed by the execution of aWAIT statement. AWAIT statement is not
required to complete the REWIND operation.

L..-__________ End of IBM Extension __________ _

Transfer is made to the statement specified by the ERR parameter if an error is
detected. If the IOSTAT=ios is specified, a positive integer value is assigned to ios
when an error is detected. Then execution continues with the statement specified
with the ERR parameter, if present, or with the next statement if ERR is not
specified. If the ERR parameter and the lOST AT parameter are both omitted,
program execution is terminated when an error is detected.

Valid REWIND Statements:

REWIND (5)

REWIND (3*IN-2,ERR=99999)

REWIND (UNIT=2*IN+2)

REWIND (IOSTAT=IOS,ERR=99999,UNIT=2*IN-10)

226 VS FORTRAN Language and Library Reference

0'1 ,I

, ~ ,

o

~\

U

o

o

o

REWRITE (Formatted, Keyed Access)

IBM Extension

REWRITE Statement-Formatted with Keyed Access

The REWRITE statement replaces a record in a keyed file. The record must have
been retrieved by an immediately preceding sequential, direct, or keyed READ
operation. No other operation, such as BACKSPACE or WRITE, can be issued
for the same file between the READ and REWRITE statements.

For a keyed file, the file must have been previously connected using an OPEN
statement which specified an ACTION value of READWRITE.

Except for the key, any data in the retrieved record can be changed. If the records
in the file have multiple keys, neither the value of the key being used for retrieval
nor the value of the primary key can be changed.

Syntax

REWRITE ([UNIT=]un, [FMT=}fmt [, ERR=stn] [,IOSTAT=ios]

[, DUPKEY=stn] list

UNIT=un
un is a reference to the number of an I/O unit. un must be an integer
expression of length 4 whose value must be zero or positive.

un is required and can optionally be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters can
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

FMT=/mt
Imt is a format identifier. It can, optionally, be preceded by FMT=. If
FMT = Imt is not specified, data transmission is defined by the items of the
list. See "Data Transmission" on the following page.

If FMT is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all the parameters, except list, can appear
in any order.

The format identifier (fmt) can be:

• A statement number
An integer variable

• A character constant
• A character variable
• A character array element
• An array name
• A character expression

Chapter 5. VS FORTRAN Statements 227

REWRITE (Formatted, Keyed Access)

See "WRITE Statement-Formatted with Direct Access" on page 250 for
explanations of these format identifiers.

ERR=sm
stn is the number of an executable statement in the same program unit as the
REWRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=;m
ios is an integer variable or an integer array element It is set to positive if an
error is detected; it is set to zero if no error condition is detected. VSAM
return and reason codes are placed in ios.

DUPKEY=sm

list

stn is the number of a statement to which control is passed if a keyed record
is being written and there is already a record in the file with the same key.
This "duplicate key" condition can occur only if you tried to write a record
containing a duplicate primary key or an alternate-index key that is defined
to be unique.

is an I/O list. It can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. The list must represent all of the data that
is to comprise the new record, not just the fields that have been changed.
The new copy of the record does not have to be the same length as the
original; however, it must be long enough to include all the file's keys. See
"Implied DO in an Input/Output Statement" on page 92. A function must
not be referenced within an expression if such a reference causes an input or
output statement to be executed.

Valid REWRITE Statement:

REWRITE (12,15) AA,BB,CC

If the unit specified by un is connected, it must be connected for sequential access.
If it is not connected to a file, it is assumed to have been preconnected through job
control language and an implicit OPEN is performed to a default file name. If the
file is not preconnected, an error is detected.

Dtda Trammission: A formatted REWRITE statement starts data transmission at
the beginning of a record. The format codes in the format specification fmt are
taken one by one and associated with every item of the list in the order they are
specified. The data is taken from the item of the list, converted according to the
corresponding format code, and the number of character data specified by the
format code is transmitted onto the record of the external file. Data transmission
stops when data has been taken from every item of the list.

If the list is not specified and the format specification starts with an I, E, F, D, G,
or L, or is empty (that is, FORMAT(», a blank record is written. A blank record
is also written when the format specification starts with a Q or Z format code.

Control is transferred to the statement specified by ERR if a transmission error is
detected. If lOST AT is specified, a positive integer value is assigned to ios when
the error is detected. If ERR is not specified, execution continues with the next
statement.

228 VS FORTRAN Language and Library Reference

0"','
I '

o

o

o

o

o

REWRITE (Formatted, Keyed Access)

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines can be used to detect and handle these errors.
(See Figure 39 on page 334.)

'--__________ End of IBM Extension __________ -'

Chapter 5. VS FORTRAN Statements 229

REWRITE (Unformatted, Keyed Access)

IBM Extension

REWRITE Statement-Unformatted with Keyed Access

The REWRITE statement replaces a record in a keyed file. The record must have
been retrieved by an immediately preceding sequential, direct, or keyed READ
operation. No other operation, such as BACKSPACE or WRITE, can be issued
for the same file between the READ and REWRITE statements.

For a keyed file, the file must have been previously connected using an OPEN
statement which specified an ACTION value of READWRITE.

Except for the key, any data in the retrieved record can be changed. If the records
in the file have multiple keys, neither the value of the key being used for retrieval
nor the value of the primary key can be changed.

Syntax

REWRITE ([UNIT=]un [, ERR=stn] [, IOSTAT=ios]

[, DUPKEY =stn][,NUM=n]) list

UNIT = un
un is a reference to the number of an 110 unit. un must be an integer
expression of length 4 whose value must be zero or positive.

un is required and can optionally be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters can
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
REWRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. It is set to
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

DUPKEY=stn
stn is the number of a statement to which control is passed if a keyed record
is being written and there is already a record in the file with the same key.
This "duplicate key" condition can occur only if you tried to write a record
containing a duplicate primary key or an alternate-index key that is defined
to be unique.

NUM=n
n is an integer variable or an integer array element of length 4.

230 VS FORTRAN Language and Library Reference

c

o

c

o

o

o

list

REWRITE (Unformatted, Keyed Access)

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the I/O list.

Coding the NUM parameter suppresses the indication of an error that would
occur if the number of bytes represented by the I/O list is greater than the
number of bytes that can be written into the record. In this case, n is set to a
value which is the maximum length record that can be written. Data from
remaining I/O list items is not written into subsequent records.

is an I/O list. It can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. The list must represent all of the data that
is to comprise the new record, not just the fields that have been changed.
The new copy of the record does not have to be the same length as the
original; however, it must be long enough to include all the file's keys. See
"Implied DO in an Input/Output Statement" on page 92. A function must
not be referenced within an expression if such a reference causes an input or
output statement to be executed.

Valid REWRITE Statement:

REWRITE (12) AA,BB,CC

If the unit specified by un is connected, it must be connected for sequential access.
If it is not connected to a file, it is assumed to have been pre connected through job
control language and an implicit OPEN is performed to a default file name. If the
file is not preconnected, an error is detected.

Data Trammission: An unformatted REWRITE statement without conversion
starts data transmission at the beginning of a record. The data is taken from the
items of the list in the order in which they are specified and transmitted onto the
record of the external file. Data transmission stops when data has been transferred
from every item of the list.

Control is transferred to the statement specified by ERR if a transmission error is
detected. If lOST AT is specified, a positive integer value is assigned to ios when
the error is detected. If ERR is not specified, execution continues with the next
statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause IOSTAT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines can be used to detect and handle these errors.
(See Figure 39 on page 334.)

1....--__________ End of IBM Extension __________

Chapter 5. VS FORTRAN Statements 231

SAVE

SAVE Statement

The SAVE statement retains the definition status of the name of a named common
block, variable, or array after the execution of a RETURN or END statement in a
subprogram.

Because VS FORTRAN saves these names without user action, the SAVE
statement serves only as a documentation aid.

Is= Synmx
SAVE lnamel I, name2] ...]

name
is a named common block name preceded and followed by a slash, a variable
name, or an array name. Redundant appearances of an item are not
permitted.

Dummy argument names, procedure names, and names of entities in a common
block must not appear in a SAVE statement.

A SAVE statement without a list is treated as though it contained the names of all
common items in that program unit.

The appearance of a named common block in a SAVE statement has the effect of
specifying all entities in that named common block.

The execution of a RETURN statement or an END statement within a subprogram
causes all entities within the subprogram to become undefined except for the
following:

• Entities specified by SAVE statements.

• Entities in a blank common block.

• Initially defined entities that have neither been redefined nor become
undefined.

• Entities in named common blocks that appear in the subprogram and appear in
at least one other program unit that is referring, either directly or indirectly, to
that subprogram. The entities in a named common block may become
undefined by execution of a RETURN or END statement in another program
unit.

Within a function or subroutine subprogram, an entity (that is, a common block,
variable, or array) specified by a SAVE statement does not become undefined as a
result of the execution of a RETURN or END statement in the subprogram.

If a local entity that is specified by a SAVE statement and is not in a common
block is in a defined state at the time a RETURN or END statement is executed in
a subprogram, that entity is defined with the same value at the next reference of
that subprogram. An entity in a common block never becomes undefined as a
result of the execution of a RETURN or END statement in a program unit that

232 VS FORTRAN Language and Library Reference

o

,~

V

c

o

o

o

Statement Function

does not reference that common block. The entities in a named common block
may become undefined or redefined by some other program unit.

Statement Function Statement

A statement function definition specifies operations to be performed whenever that
statement function name appears as a function reference in another statement in
the same program unit.

r- s~w
L.:me [([arg! [, arg2J ... J)J = m

name

arg

m

is the statement function name (see "Names" on page 11).

is a statement function dummy argument. It must be a distinct variable, that
is, it may appear only once within the list of arguments. Parentheses must be
specified even if no dummy argument is specified.

is any arithmetic, logical, or character expression. Any statement function
appearing in this expression must have been defined previously. In a
function or subroutine subprogram, this expression can contain dummy
arguments that appear in the FUNCTION, SUBROUTINE, or ENTRY
statements of the same program unit. (See Chapter 4, "VS FORTRAN
Expressions" on page 35, for evaluation and restrictions of this expression.)

All statement function definitions to be used in a program must follow the
specification statements and precede the first executable statement of the program.

The length of a character statement function must be an expression containing only
integer constants or names of integer constants.

The expression to the right of the equal sign defines the operations to be performed
when a reference to this function appears in a statement elsewhere in the program
unit. The expression defining the function must not contain (directly or indirectly)
a reference to the function it is defining or a reference to any of the entry point
names (PROGRAM, FUNCTION, SUBROUTINE, ENTRY) of the program unit
where it is defined.

If the expression is an arithmetic expression, its type may be different from the
type of the name of the function. Conversions are made as described for the
assignment statement.

The dummy arguments enclosed in parentheses following the function name are
dummy variables for which the arguments given in the function reference are
substituted when the function reference is encountered. The same dummy
arguments may be used in more than one statement function definition, and may be
used as variables of the same type outside the statement function definitions,
including dummy arguments of subprograms. The length specification of a dummy

Chapter 5. VS FORTRAN Statements 233

Statement Function

argument of type character must be an arithmetic expression containing only
integer constants or names of integer constants.

An actual argument in a statement function reference may be any expression of the
same type as the corresponding dummy argument. It cannot be a character
expression involving concatenation of one or more operands whose length
specification is an asterisk.

If an actual argument is of character type, the associated dummy argument must be
of character type and the length of the actual argument must be greater than or
equal to the length of the dummy argument. If the length of the actual argument is
greater than the length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

The name of a statement function must not appear in an EXTERNAL statement
and must not be used as an actual argument.

For example, The statement:

FUNC(A,B) = 3.*A+B**2.+X+Y+Z

defines the statement function FUNC, where FUNC is the function name and A
and B are the dummy arguments. The expression to the right of the equal sign
defines the operations to be performed when the function reference appears in an
arithmetic statement.

The function reference might appear in a statement as follows:

C = FUNC(D,E)

This is equivalent to:

C = 3.*D+E**2.+X+Y+Z

Notice the correspondence between the dummy arguments A and B in the function
definition and the actual arguments D and E in the function reference.

Valid Statement Function Definitions and References:

Definition

SUM(A,B,C,D) A+B+C+D

Reference

NET = GROS-SUM(TAX,COVER,HOSP,
STOC)

FUNC(Z) = A+X*Y*Z ANS FUNC(RESULT)

VALID(A,B) = .NOT. A .OR. B VAL TEST .OR. VALID(D,E)

BIGSUM = SUM(A,B,SUM(C,D,E,F),G(I))

234 VS FORTRAN Language and Library Reference

o

Invalid Statement Function Definitions:

o SUBPRG(3,J,K)=3*I+J**3

SOMEF(A(I) ,B)=A(I)/B+3.

SUBPROGRAM(A,B)=A**2+B**2

3FUNC(D)=3.14*E

BAD(A,B)=A+B+BAD(C,D)

NOGOOD(A,A)=A*A

Invalid Statement Function References:

(The functions are defined as above.)

WRONG SUM (TAX, COVER)

MIX FUNC(I)

o

o

Statement Function

Arguments must be variables.

Arguments must not be array
elements.

Function name exceeds limit
of six characters.

Function name must begin with
an alphabetic character.

A recursive definition is not
permitted.

Arguments are not distinct
variable names.

Number of arguments does not
agree with above definition.

Type of argument does not agree
with above definition.

Chapter 5. VS FORTRAN Statements 235

Statement Numbers

Statement Numbers

Statement numbers identify statements in VS FORTRAN programs. Any
statement can have a number, and may be written in either fixed form or free form.
See "Source Language Statements" on page 7.

Fixed Form Statement Numbers

Fixed form statement numbers have the following attributes:

• They contain 1 to 5 decimal digits (not zero) and are on a noncontinued line.

• Blanks and leading zeros are ignored.

• They are in columns 1 through 5.

IBM Extension

Free-Form Statement Numbers

Free-form statement numbers have the following attributes:

• They must be the first nonblank characters (digits) on an initial line.

• Blanks and leading zeros are ignored.

• No blanks are needed between the statement number and the first nonblank
character following.

1--_________ End of IBM Extension ______ -----......

See "ASSIGN Statement" on page 59.

236 VS FORTRAN Language and Library Reference

STOP Statement o

o

0'1:,

1

STOP

The STOP statement terminates the execution of the object program and may
display a message.

Syntax

STOP [n]

STOP ['message']

n
a string of 1 through 5 decimal digits.

'message'
a character constant enclosed in apostrophes and containing alphameric
and/ or special characters. Within the literal, an apostrophe is indicated by
two successive apostrophes.

If either n or 'message' is specified, STOP displays the requested information. For
further information, see VS FORTRAN Programming Guide.

A STOP statement cannot terminate the range of a DO-loop.

Chapter 5. VS FORTRAN Statements 237

SUBROUTINE

SUBROUTINE Statement

The SUBROUTINE statement identifies a subroutine subprogram.

r-: S~mx
SUBROUTINE name [([a/XIJ [,arg2J ... J) 1

IUltne

arg

is the subroutine name. (See "Names" on page 11.)

is a distinct dummy argument (that is, it may appear only once within the
statement). There need not be any arguments, in which case the parentheses
may be omitted. Each argument used must be a variable or array name, the
dummy name of another subroutine or function subprogram, or an asterisk,
where the character * denotes a return point specified by a statement
number in the calling program.

Because the subroutine is a separate program unit, there is no conflict if the
variable names and statement numbers within it are the same as those in other
program units.

The SUBROUTINE statement must be the first statement in the subprogram. The
subroutine subprogram may contain any FORTRAN statement except a
FUNCTION statement, another SUBROUTINE statement, a BLOCK DATA
statement, or a PROGRAM statement. If an IMPLICIT statement is used in a
subroutine subprogram, it must follow the SUBROUTINE statement and may only
be preceded by another IMPLICIT statement, a PARAMETER, FORMAT, or
ENTRY statement.

The subroutine name must not appear in any other statement in the subroutine
subprogram. It must not be the same as any name in the program unit or as the
PROGRAM name, a subroutine name, or a common block name in any other
program unit of the executable program. The subroutine subprogram may use one
or more of its arguments to return values to the calling program. An argument so
used will appear on the left side of an arithmetic, logical, or character assignment
statement, in the list of a READ statement within the subprogram, or as an
argument in a CALL statement or function reference that is assigned a value by the
subroutine or function referred to.

The dummy arguments (argl, arg2, arg3, ... , argn) may be considered dummy
names that are replaced at the time of execution by the actual arguments supplied
in the CALL statement.

If a subroutine dummy argument is used as an adjustable array name, the array
name and all the variables in the array declarators (except those in common) must
be in the dummy argument list. See "Size and Type Declaration of an Array" on
page 30.

The subroutine subprogram can be a set of commonly used computations, but it
need not retufil any results to the calling program. For information about using

238 VS FORTRAN Language and Library Reference

o

o

0

o

SUBROUTINE

RETURN and END statements in a subroutine subprogram, see "END Statement"
on page 94 and "RETURN Statement" on page 222.

Actual Arguments in a Subroutine Subprogram.

The actual arguments in a subroutine reference must agree in order, number, and
type with the corresponding dummy arguments in the dummy argument list of the
referenced subroutine. The use of a subroutine name or an alternate return
specifier as an actual argument is an exception to the rule requiring agreement of
type.

If an actual argument is of character type, the associated dummy argument must be
of character type and the length of the actual argument must be greater than or
equal to the length of the dummy argument. If the length of the actual argument is
greater than the length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a subroutine reference must be one of the following:

• An expression, except for a character expression involving concatenation of an
operand whose length specification is an asterisk in parentheses (unless the
operand is the name of a constant)

• An array name

• An intrinsic function name

• An external procedure name

• A dummy procedure name

• An alternate return specifier (statement number preceded by an asterisk)

An actual argument in a subroutine reference may be a dummy argument name
that appears in a dummy argument list within the subprogram containing the
reference. An asterisk dummy argument cannot be used as an actual argument in a
subprogram reference.

Dummy Arguments in a Subroutine Subprogram.

The dummy arguments of a subprogram appear after the subroutine name and are
enclosed in parentheses. They are replaced at the time of execution of the CALL
statement by the actual arguments supplied in the CALL statement in the calling
program.

Dummy arguments must follow certain rules:

• None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SA VB, INTRINSIC, or NAMELIST
statement except as common block names.

• A dummy argument name must not be the same as the entry point name
appearing in a PROGRAM, FUNCTION, SUBROUTINE, ENTRY, or
statement function definition in the same program unit.

Chapter 5. VS FORTRAN Statements 239

SUBROUTINE

• The dummy arguments must correspond in number, order, and type to the
actual arguments.

• If a dummy argument is assigned a value in the subprogram, the corresponding
actual argument must be a variable, an array element, a substring, or an array.
A constant, name of constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is certain that the
corresponding dummy argument is not assigned a value in the subprogram.

• A referenced subprogram cannot assign new values to dummy arguments that
are associated with other dummy arguments within the subprogram or with
variables in common.

• The subprogram reserves no storage for the dummy argument, using the
corresponding actual argument in the calling program for its calculations. Thus
the value of the actual argument changes as soon as the dummy argument
changes.

Valid Examples:

1. Definition of subroutines SUBl and SUB2: The following illustrates the two
ways to define a subroutine without any dummy arguments.

SUBROUTINE SUB1

END

SUBROUTINE SUB2()

END

The following are valid invocations of SUB land SUB2.

CALL SUB1
CALL SUB1 ()
CALL SUB2
CALL SUB2 ()

2. Definition of subroutine SUB3: The following illustrates an adjustable array
and an explicitly dimensioned array as dummy arguments.

SUBROUTINE SUB3(A, B, C)
REAL A
REAL B(*)
REAL C(2, 5)

END

The sample invocations of SUB3 reference the following data declarations.

240 VS FORTRAN Language and Library Reference

o

o

o

o

DIMENSION W(10), X(10), Z(5)
REAL Y

SUBROUTINE

CALL SUB3 WITH A VARIABLE AND TWO ARRAY NAMES

CALL SUB3(Y, W, X)

CALL SUB3 WITH AN ARRAY ELEMENT AND TWO ARRAY NAMES

CALL SUB3(Z(3), X, W)

CALL SUB3 WITH A CONSTANT AND TWO ARRAY NAMES

CALL SUB3(2.5, W, X)

CALL SUB3 WITH AN EXPRESSION AND TWO ARRAY NAMES

CALL SUB3(5*Y, X, W)

3. Definition of subroutine SUB4: The following illustrates the use of a logical
variable as a dummy argument.

SUBROUTINE SUB4(LOGL)
LOGICAL LOGL

END

The sample invocations of SUB4 reference the following data declaration.

LOGICAL L

CALL USING A LOGICAL VARIABLE

CALL SUB4(L)

CALL USING A LOGICAL CONSTANT

CALL SUB4(.FALSE.)

CALL USING A LOGICAL EXPRESSION

CALL SUB4(X(5) .EQ. Y)

4. Definition of subroutine SUBS: The following illustrates the use of a character
variable of inherited length as a dummy argument.

SUBROUTINE SUB5(CHAR)
CHARACTER CHAR*(*)

END

The sample invocations of SUBS reference the following variable declaration.

CHARACTER*5 C1, C2

CALL USING A CHARACTER VARIABLE

CALL SUB5 (C1)

CALL USING A CHARACTER EXPRESSION

CALL SUB5(C1 II C2)

Chapter 5. VS FORTRAN Statements 241

SUBROUTINE

5. Definition of subroutine SUB6: The following illustrates subroutine and
function subprogram names as dummy arguments.

SUBROUTINE SUB6(SUBX, X, Y, FUNCX)
Z = FUNCX(X, Y)
CALL SUB7(SUBX)

END

The following shows the invocation of SUB6.

CALL PASSING A SUBROUTINE NAME AND A FUNCTION NAME

EXTERNAL SUBA, FUNCA

CALL SUB6(SUBA, 1.0, 2.0, FUNCA)

6. Definition of subroutine SUB8: The following illustrates the use of * as
dummy arguments.

SUBROUTINE SUB8(A, B, *, *, *)

IF(A .LT. 0.0) RETURN 1
IF(A .EQ. 0.0) RETURN 2
RETURN 3
END

The following shows the invocation of subroutine SUB8.

CALL PASSING STATEMENT NUMBERS
EXECUTION WILL CONTINUE AT STATEMENT NUMBER 100,
200, OR 300 IF THE RETURN CODE IS 1, 2, OR 3
RESPECTIVELY. OTHERWISE, EXECUTION WILL CONTINUE
AT THE STATEMENT AFTER THE CALL

CALL SUB8(X(3), LOG(Z(2)), *100, *200, *300)

7. Definition of subroutine CLEAR: The following illustrates the use of an
adjustable multidimensioned array.

SUBROUTINE CLEAR (ARRY, M, N)
INTEGER M, N, ARRY(M, N)
DO 10 I = 1, M
DO 10 J = 1, N

10 ARRY(I,J) = 0
RETURN
END

The following is the invocation of CLEAR.

INTEGER ARRAY 1 (10,15)
CALL CLEAR(ARRAY1, 10, 15)

242 VS FORTRAN Language and Library Reference

c

o

o

o

o

TRACE OFF and TRACE ON

IBM Extension

TRACE OFF Statement

TRACE ON Statement

Unconditional GO TO

The TRACE OFF statement stops the display of program flow by statement
number.

r-: Synw
~RACEOFF

TRACE OFF may appear anywhere within a debug packet. After a TRACE ON
statement, tracing continues until a TRACE OFF statement is encountered.

The TRACE ON statement initiates the display of program flow by statement
number.

TRACE ON is executed only when the TRACE option appears in a DEBUG
packet. (See "DEBUG Statement" on page 82.) Tracing continues until a
TRACE OFF statement is encountered. TRACE ON stays in effect through any
level of subprogram CALL or RETURN statement. However, if a TRACE ON
statement is in effect and control is given to a program in which the TRACE option
is not specified, the statement numbers in that program are not traced.

Each time a statement with an external statement number is executed, a record of
the statement number is made on the debug output file.

For a given debug packet, the TRACE ON statement takes effect immediately
before the execution of the statement specified in the AT statement.

L..-__________ End of IBM Extension __________ ~

See "GO TO Statements" on page 142.

Chapter s. VS FORTRAN Statements 243

WAIT

WAIT Statement

IBM Extension

The WAIT statement completes the data transmission begun by the corresponding
asynchronous READ or WRITE statement.

~ Synw
WAlT ([UNIT=jun,plist) [list]

UNIT = lin

plist

un is the reference to the number of an 110 unit. un is an unsigned integer
expression of length 4.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

is a parameter list that contains (in any order) one or more of the following
forms:

ID=;d
is required. id is an integer constant or integer expression of length 4.

If the WAIT is completing an asynchronous READ, the expression id
is subject to the following rules:

• No array element in the receiving area of the read may appear in
the expression. This also includes indirect references to such
elements; that is, reference to or redefinition of any variable or
array element associated by COMMON or EQUIVALENCE
statement, or argument association with an array element in the
receiving area.

• If a function reference appears in the subscript expression of el or
e2, the function may not be referred to in the expression id. Also,
no functions or subroutines may be referred to by the expression
that directly or indirectly refers to the subscript function, or to
which the subscript function directly or indirectly refers.

COND=;1
is optional. it is an integer variable name of length 4.

If COND=it is specified, the variable it is assigned a value of 1 if the
input or output operation was completed successfully; 2 if an error
condition was encountered; and 3 if an end-of-file condition was

244 VS FORTRAN Language and Library Reference

o

c

(""
I'I~ •. ~i'-

o

o

o

lisl

encountered while reading. In case of an error or end-of-file
condition, the data in the receiving area may be meaningless.

NUM=i2
is optional. i2 is an integer variable name of length 4.

WAIT

If NUM= i2 is specified, the variable i2 is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the list. If the list requires more data from the record
than the record contains, this parameter must be specified. If the
WAIT is completing an asynchronous WRITE, i2 remains unaltered.

is optional. It is an asynchronous I/O list as specified for the asynchronous
READ and WRITE statements.

If a list is included, it must specify the same receiving or transmitting area as
the corresponding asynchronous READ or WRITE statement. It must not
be specified if the asynchronous READ did not specify a list.

WAIT redefines a receiving area and makes it available for reference, or makes a
transmitting area available for redefinition.

The corresponding asynchronous READ or WRITE, which need not appear in the
same program unit as the WAIT, is the statement that:

• Was not completed by the execution of another WAIT

• Refers to the same file as the WAIT

• Contains the same value for id in the ID=id form as did the asynchronous
READ or WRITE when it was executed

The correspondence between WAIT and an asynchronous READ or WRITE holds
for a particular execution of the statements. Different executions may establish
different correspondences.

When the WAIT is completing an asynchronous READ, the subscripts in the list
may not refer to array elements in the receiving area. If a function reference is
used in a subscript, the function reference may not perform I/O on any file.

Valid WAIT Statements:

WAIT (8,ID=1) ARRAY(101) ... ARRAY(500)

WAIT (9,ID=1,COND=ITEST)

WAIT (8,ID=1,NUM=N)

WAIT (9,ID=2)

......... __________ End of IBM Extension __________ ---'

Chapter 5. VS FORTRAN Statements 245

WRITE

WRITE Statements

WRITE statements transfer data from storage to an external device or from one
internal file to another internal file.

Fol'IIIS 0/ the WRITE Statement:

IBM Extension

1. "WRITE Statement-Asynchronous" on page 247

"'""-__________ End of IBM Extension __________

2. "WRITE Statement-Formatted with Direct Access" on page 250

IBM Extension

3. "WRITE Statement-Formatted with Keyed Access" on page 254

10....-_________ End of IBM Extension __________ --'

4. "WRITE Statement-Formatted with Sequential Access" on page 258

5. "WRITE Statement-Unformatted with Direct Access" on page 262

IBM Extension

6. "WRITE Statement-Unformatted with Keyed Access" on page 265

L...-__________ End of IBM Extension __________ --'

7. "WRITE Statement-Unformatted with Sequential Access" on page 268

8. "WRITE Statement-Formatted with Sequential Access to Internal Files" on
page 270

9. "WRITE Statement-List-Directed I/O to External Devices" on page 274

IBM Extension

10. "WRITE Statement-List-Directed I/O with Internal Files" on page 278

11. "WRITE Statement-NAMELIST with External Devices" on page 280

12. "WRITE Statement-NAMELIST with Internal Files" on page 282

L..-. __________ End of IBM Extension __________

246 VS FORTRAN Language and Library Reference

c

o

o

o

WRITE (Asynchronous)

IBM Extension

WRITE Statement-Asynchronous

The asynchronous WRITE statement transmits data from an array in main storage
to an external file.

~ S~bx
WRITE ([UNIT= Jun. ID=id) list

UNIT=un
un is the reference to the number of an 110 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ID=id

list

id is an integer constant or integer expression of length 4. It is the identifier
for the WRITE statement.

is an asynchronous 110 list that may have any of four forms:

e
el. .. e2
el. ..
... e2

where:

e
is the name of an array.

el and e2
are the names of elements in the same array. The ellipsis (. ..) is an
integral part of the syntax of the list and must appear in the positions
indicated.

The unit specified by un must be connected to a file that resides on a sequential or
direct access device. The array or array elements specified by e (or el and e2)
constitute the transmitting area for the data to be written. The extent of the
transmitting area is determined as follows:

• If e is specified, the entire array is the transmitting area. In this case, e may not
be the name of an assumed-size array.

Chapter 5. VS FORTRAN Statements 247

WRITE (Asynchronous)

• If el. .. e2 is specified, the transmitting area begins at array element el and
includes every element up to and including e2. The subscript value of el must
not exceed that of e2.

• If e 1 ... is specified, the transmitting area begins at element eland includes
every element up to and including the last element of the array. In this case, e
may not be the name of an assumed-size array.

• If .. . e2 is specified, the transmitting area begins at the first element of the array
and includes every element up to and including e2.

• If a function reference is used in a subscript of the list, the function reference
may not perform I/O on any file.

Execution of an asynchronous WRITE statement initiates writing of the next
record on the specified file. The size of the record is equal to the size of the
transmitting area. All the data in the area is written.

Given an array with elements of len length, the number of bytes transmitted will be
len times the number of elements in the array. Elements are transmitted
sequentially from the smallest subscript element to the highest. If the array is
multidimensional, the leftmost subscript quantity increases most rapidly, and the
rightmost least rapidly.

Because the asynchronous WRITE statement can only refer to files with sequential
access, REC may not be specified, even though the file may be resident on a
direct-access device.

There is no FORMAT statement associated with the output data, and no
conversion takes place.

Any number of program statements may be executed between an asynchronous
WRITE and its corresponding WAIT, subject to the following rules:

• No such statement may in any way assign a new value to any array element in
the transmitting field. This and the following rules apply also to indirect
references to such array elements; that is, assigning a new value to a variable
or array elements associated by COMMON or EQUIVALENCE statements,
or argument association with an array element in the transmitting area.

• No executable statement may appear that redefines or undefines a variable or
array element appearing in the subscript of e 1 or e2.

• If a function reference appears in the subscript expression of e 1 or e2, the
function may not be referred to by any statements executed between the
asynchronous WRITE and the corresponding WAIT. Also, no subroutines or
function may be referred to that directly or indirectly refer to the subscript
function, or to which the subscript function directly or indirectly refers.

• No function or subroutine may be executed that performs input or output on
the file being manipulated.

248 VS FORTRAN Language and Library Reference

o

o

WRITE (Asynchronous)

Valid WRITE Statement: o WRITE (ID=10, UNIT=2*IN+2) ... EXPECT (9)

'--_________ End of IBM Extension _________

o

o
Chapter 5. VS FORTRAN Statements 249

WRITE (Formatted, Direct Access)

WRITE Statement-Formatted with Direct Access

This statement transfers data from internal storage onto an external devfe. The
user specifies in a FORMAT statement (or in a reference to a FORMAT
statement) the conversions to be performed during the transfer. The data must be
sent to an external file that has been opened for direct access. (See "OPEN
Statement" on page 168.)

Syntax

WRITE ([UNIT=]un, [FMT=}fmt, REC=rec [, ERR=stn]

[, IOSTAT=iosD [list]

UNIT=un
un is the reference to the number of an I/O unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT = is specified, FMT = must be used and all the
parameters can appear in any order.

FMT=/mt
Imt is a required format identifier. It can, optionally, be preceded by FMT=.

If FMT= is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all parameters, except list, can appear in
any order.

The format identifier (fmt) can be:

• A statement number
• An integer variable
• A character constant
• A character variable
• A character array element
• A character array name
• A character expression

IBM Extension

• An array name

'--__________ End of IBM Extension __________ ~

The statement number must be the statement number of a FORMAT
statement in the same program unit as the WRITE statement.

250 VS FORTRAN Language and Library Reference

0··'", :)

o

o

c

o

WRITE (Formatted, Direct Access)

The integer variable must have been initialized by an ASSIGN statement with
the number of a FORMAT statement. The FORMAT statement must be in
the same program unit as the WRITE statement.

The character constant must constitute a valid format. The constant must be
delimited by apostrophes, must begin with a left parenthesis, and must end
with a right parenthesis. Only the format codes described in the FORMAT
statement can be used between the parentheses. An apostrophe in a
constant enclosed in apostrophes is represented by two consecutive
apostrophes.

The character variable and character array element must contain character
data whose leftmost character positions constitute a valid format. A valid
format begins with a left parenthesis and ends with a right parenthesis. Only
the format codes described in the FORMAT statement can be used between
the parentheses. Blank characters may precede the left parenthesis and
character data may follow the right parenthesis. The length of the format
specification must not exceed the length of the character array element.

The character array name must contain character data whose leftmost
characters constitute a valid format specification. The length of the format
specification may exceed the length of the first element of the array; it is
considered the concatenation of all the elements of the array in the order
given by array element ordering.

IBM Extension

The array name may be of integer, real, double precision, logical, or complex
type.

The data must be a valid format identifier as described under character array
name above.

1...-__________ End of IBM Extension __________ ---'

The character expression may contain concatenations of character constants,
character array elements, and character array names. Its value must be a
valid format specification. The operands of the expression must have length
specifications that contain only integer constants or names of integer
constants.

REC=rec
rec is an integer expression. It represents the relative position of a record
within the file associated with un. Its value after conversion to integer, if
necessary, must be greater than zero. The internal record number of the first
record is 1. The INQUIRE statement can be used to determine the record
number.

If list is omitted, a blank record is transmitted to the output device unless the
FORMAT statement referred to contains, as its first specification, a
character constant or slashes. In this case, the record or records indicated by
these specifications are transmitted to the output device.

Chapter 5. VS FORTRAN Statements 251

WRITE (Formatted, Direct Access)

ERR=sfn
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=ios

list

ios is an integer variable or an integer array element of length 4. Its value is
positive if an error is detected, zero if no error is detected. VSAM return
and reason codes are placed in ios.

is an I/O list and can contain variable names, array element names,
character substring names, array names (except the names of assumed-size
arrays), implied DO lists, and expressions. See "Implied DO in an
Input/ Output Statement" on page 92.

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Valid WRITE Statements:

WRITE (un,fmt,REC=rec) list

WRITE (un ,FMT=fmt ,REC=rec) list

WRITE (FMT=fmt,REC=rec,UNIT=un) list

WRITE (REC=1, UNIT=11, FMT=' (19) ')

WRITE (0,' (A8) " REC=3)

If this WRITE statement is encountered, the unit specified must exist and the file
must be connected for direct access. If the unit is not connected to a file, it is
assumed to have been preconnected through job control language and an implicit
OPEN is performed to a default file name. If the file is not preconnected, an error
is detected.

Data Transmission: A WRITE statement with FORMAT starts data transmission at
the beginning of a record specified by REC=rec. The format codes in the format
specification Imt are taken one by one and associated with every item of the list in
the order they are specified. The data is taken from the item of the list, converted
according to the corresponding format code, and the number of character data
specified by the format code is transmitted onto the record of the external file.
Data transmission stops when data has been taken from every item of the list, or
when the end of the record specified by rec is reached.

If the list is not specified and the format specification starts with an I, E, F, D, G,
or L, or is empty (that is, FORMAT(», the record is filled with blank characters
and the relative record number ree is increased by one.

IBM Extension

This is also true when the format specification starts with a Q or Z format code.

"-============ End of IBM Extension ====== ____ ---'

252 VS FORTRAN Language and Library Reference

o

o

f'\.
V

o

o

o

WRITE (Formatted, Direct Access)

Data and I/O List: The length of every VS FORTRAN record is specified in the
RECL parameter of the OPEN statement. If the length of the record ree is greater
than the total amount of data specified by the format codes used during
transmission of data, an error is detected, but as much data as can fit into the
record is transmitted. If the length of the record ree is smaller than the total
amount of data specified by the format codes used during transmission of data, an
error is detected, but as much data as will fit in the record is transmitted. If the
format specification indicates (for example, slash format code) that data be
transmitted to the next record, then the relative record number ree is increased by
one and data transmission continues.

Executing the WRITE statement causes the value of the NEXTREC variable in a
preceding INQUIRE statement to be set to the relative record number of the last
record written, increased by one. If an error is detected, the NEXTREC variable
will contain the relative record number of the record being written.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor transfer to be made to the statement specified by ERR. The extended
error handling subroutines may be used to detect and handle these errors. (See
Figure 39 on page 334.)

Chapter 5. VS FORTRAN Statements 253

WRITE (Formatted, Keyed Access)

IBM Extension

WRITE Statement-Formatted with Keyed Access

This statement transfers data from internal storage onto an external device. The
user specifies in a FORMAT statement (or in a reference to a FORMAT
statement) the conversions to be performed during the transfer. The data must be
sent to an external file that has been opened for keyed access. (See "OPEN
Statement" on page 168.)

Syntax

WRITE ([UNIT=]un, [FMT=}fmt, [, ERR=stn] [, IOSTAT=ios]

[, DUPKEY =stnD list

UNIT = un
un is the reference to the number of an 110 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, FMT= must be used and all the
parameters can appear in any order.

FMT=/mt
fmt is a required format identifier. It can, optionally, be preceded by FMT=.

If FMT= is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all parameters, except list, can appear in
any order.

The format identifier (fmt) can be:

• A statement number
• An integer variable
• A character constant
• A character variable
• A character array element
• A character array name
• A character expression
• An array name

The statement number must be the statement number of a FORMAT
statement in the same program unit as the WRITE statement.

The integer variable must have been initialized by an ASSIGN statement with
the number of a FORMAT statement. The FORMAT statement must be in
the same program unit as the WRITE statement.

254 VS FORTRAN Language and Library Reference

o

o

o

o

WRITE (Formatted, Keyed Access)

The character constant must constitute a valid format. The constant must be
delimited by apostrophes, must begin with a left parenthesis and end with a
right parenthesis. Only the format codes described in the FORMAT
statement can be used between the parentheses. An apostrophe in a
constant enclosed in apostrophes is represented by two consecutive
apostrophes.

The character variable and character array element must contain character
data whose leftmost character positions constitute a valid format. A valid
format begins with a left parenthesis and ends with a right parenthesis. Only
the format codes described in the FORMAT statement can be used between
the parentheses. Blank characters may precede the left parenthesis and
character data may follow the right parenthesis. The length of the format
specification must not exceed the length of the character array element.

The character array name must contain character data whose leftmost
characters constitute a valid format specification. The length of the format
specification may exceed the length of the first element of the array; it is
considered the concatenation of all the elements of the array in the order
given by array element ordering.

The array name may be of integer, real, double precision, logical, or complex
type.

The data must be a valid format identifier as described under character array
name above.

The character expression may contain concatenations of character constants,
character array elements, and character array names. Its value must be a
valid format specification. The operands of the expression must have length
specifications that contain only integer constants or names of integer
constants.

ERR=sln
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. Its value is
positive if an error is detected, zero if no error is detected. VSAM return
and reason codes are placed in ios.

DUPKEY=sln

list

stn is the number of a statement to which control is passed when a
duplicate-key condition occurs. See "Duplicate Key" below for an
explanation of this condition.

is an I/O list and can contain variable names, array element names,
character substring names, array names (except the names of assumed-size
arrays), implied DO lists, and expressions. See "Implied DO in an
Input/Output Statement" on page 92.

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Chapter 5. VS FORTRAN Statements 255

WRITE (Formatted, Keyed Access)

Valid WRITE Statements:

WRITE (10,18) AA,BB,CC

If this WRITE statement is encountered, the unit specified must exist and the file
must have been connected for keyed access by means of an OPEN statement. The
ACTION parameter of that OPEN statement must have specified the value
'READWRITE' or 'WRITE'. If the file is not so connected, an error is detected.

Data Trammission: If the WRITE statement was issued for a file connected by an
OPEN statement with an ACTION parameter of 'WRITE', data transmission
begins at the beginning of a new record. The new record will follow, in order of
key value, the last record written. If the file was connected by an OPEN statement
with an ACTION parameter of 'READ WRITE , , data transmission also begins at
the beginning of a new record. In this case, however, the new record will be
inserted following the record with a lower key value and preceding the record with
a higher key value. If the new record has a key which is the same as a key already
in the file, the new record is added following the last record with the same key.
The format codes in the format specification Imt are taken one by one and
associated with every item of the list in the order they are specified. The data is
taken from the item of the list, converted according to the corresponding format
code and the number of character data specified by the format code is transmitted
onto a single record of the external file. Data transmission stops when data has
been taken from every item of the list.

Data and I/O List: The amount of character data defined by all the format codes
used during the transmission of the data defines the length of the record. A single
WRITE statement can create only one record. The record must be long enough to
include all the keys that are defined for the file.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

Duplicate Key: Control is transferred to the statement specified by DUPKEY when
the a duplicate-key condition occurs; namely:

• The file is connected by an OPEN statement with an ACTION parameter of
'READWRITE', or when ACTION='WRITE', and

• An attempt was made to write a record with a key whose values must be
unique, and

• The key value would have duplicated one that already exists for the same key
in another record.

256 VS FORTRAN Language and Library Reference

o

o

o

o

o

WRITE (Formatted, Keyed Access)

If IOSTAT=ios is specified, a positive integer value is assigned to ios when the
duplicate-key condition is detected. If ERR is specified but DUPKEY is not,
control passes to the statement specified by ERR when the duplicate-key condition
is detected. If neither DUPKEY nor ERR was given, an error is detected.

Examples:

WRITE (UNIT=10,FMT=37) AA, BB, CC
WRITE (10,37) AA, BB, CC
WRITE (10,FMT=37,DUPKEY=77) AA, BB, CC

'--__________ End of IBM Extension __________

Chapter 5. VS FORTRAN Statements 257

WRITE (Formatted, Sequential Access)

WRITE Statement-Formatted with Sequential Access

This statement transfers data from internal storage onto an external I/O device.
The user specifies in a FORMAT statement (or in a reference to a FORMAT
statement) the conversions to be performed during the transfer. The data must be
sent to an external file that is connected with sequential access to a unit. (See
"OPEN Statement" on page 168.)

Syntax

WRITE ([UNIT=]un, [FMT=lfmt [, ERR=stn] [, 10STAT=ios])

[list]

PRINT Imt [, list]

UNIT=un
un is the reference to the number of an I/O unit. un is either:

• An integer expression of length 4 whose value must be zero or positive

• An asterisk (*) representing an installation-dependent unit

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified all the parameters can appear in
any order.

In the form of a PRINT statement where un cannot be specified, un is
installation dependent.

FMT=/mt
Imt is a required format identifier. It can, optionally, be preceded by FMT=.

If FMT is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all parameters, except list, can appear in
any order.

The format identifier (fmt) can be:

• A statement number
• An integer variable
• A character constant
• A character variable
• A character array element
• A character array name
• A character expression

258 VS FORTRAN Language and Library Reference

/~
.1 I

\~/

o

o

o

c

o

WRITE (Formatted, Sequential Access)

IBM Extension

An array name

'--__________ End of IBM Extension __________ --'

See "WRITE Statement-Formatted with Direct Access" on page 250 for
explanations of these format identifiers.

ERR=stn
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

list
is an I/O list. It can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. In the PRINT statement, if the list is not
present, the comma must be omitted. See "Implied DO in an Input/Output
Statement" on page 92.

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Valid WRITE and PRINT Statements:

WRITE (un,fmt) list

WRITE (un, FMT=fmt) list

WRITE (*,fmt) lis't

WRITE (UNIT=un, FMT=fmt) list FMT=fmt can appear first.

WRITE (IOSTAT=IOS,ERR=99999,FMT=*,UNIT=2*IN+3)

WRITE(IN+8,NAMEOT,IOSTAT=IACT(1) ,ERR=99999)

PRINT *, list

PRINT fmt, list

PRINT fmt

Chapter 5. VS FORTRAN Statements 259

WRITE (Formatted, Sequential Access)

Invalid WRITE and PRINT Statements:

WRITE (fmt,un)

WRITE (FMT=fmt,un) list

WRITE (fmt,UNIT=un) list

PRINT FMT=fmt, list

un. must appear first before fmt.

un must appear first because
UNIT= is not specified.

FMT= must be used because
UNIT= is specified.

FMT= must not be used with
PRINT.

If the unit specified by un is connected, it must be connected for sequential access.
If it is not connected to a file, it is assumed to have been preconnected through job
control language, and an implicit OPEN is performed to a default file name. If the
file is not preconnected, an error is detected.

Data Transmission: A WRITE statement with FORMAT starts data transmission at
the beginning of a record. The format codes in the format specification Imt are
taken one by one and associated with every item of the list in the order they are
specified. The data is taken from the item of the list, converted according to the
corresponding format code, and the number of character data specified by the
format code is transmitted onto the record of the external file. Data transmission
stops when data has been taken from every item of the list.

If the list is not specified and the format specification starts with an I, E, F, D, G,
or L, or is empty (that is, FORMAT(», a blank record is written out.

IBM Extension

This is also true when the format specification starts with a Q or Z format code.

The WRITE statement can be used to write over an end of file and extend the
external file. An END FILE , BACKSPACE, CLOSE, or REWIND statement will
then reinstate the end of file.

""---__________ End of IBM Extension __________ -'

After execution of a sequential WRITE or PRINT, no record exists in the file
following the last record transferred by that statement.

Data and I/O List: The amount of character data specified by all the format codes
used during the transmission of the data defines the length of the FORTRAN
record (also called a logical record). A single WRITE statement may create several
FORTRAN records. This occurs when a slash format code is encountered in the
format specification, or when the I/O list exceeds the format specification which
causes the FORMAT statement to be used in full or part again. (See "FORMAT
Statement" on page 108.)

VS FORTRAN Programming Guide describes how to associate FORTRAN records
(that is, logical records) and physical records on an external I/O device.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;

260 VS FORTRAN Language and Library Reference

c

o

o

c

o

WRITE (Formatted, Sequential Access)

only that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor transfer to be made to the statement specified by ERR. The extended
error handling subroutines may be used to detect and handle these errors. (See
Figure 39 on page 334.)

Chapter 5. VS FORTRAN Statements 261

WRITE (Unformatted, Direct Access)

WRITE Statement-Unformatted with Direct Access

This statement transfers data without conversion from internal storage onto an
external 110 device. The data must be sent to an external file that is connected
with direct access to a unit. (See "OPEN Statement" on page 168.)

Syntax

WRITE ([UNIT=]un, REC=ree [, ERR=stn] [, IOSTAT=ios]

[, NUM=n]) list

UNIT=un
un is the reference to the number of an 110 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

REC=rec
ree is an integer expression. It represents the relative position of a record
within the file associated with un. Its value after conversion to integer, if
necessary, must be greater than zero. The internal record number of the first
record is 1. The INQUIRE statement can be used to determine the record
number.

If list is omitted, a blank record is transmitted to the output device, unless the
FORMAT statement referred to contains, as its first specification, a
character constant or slashes. In this case, the record or records indicated by
these specifications are transmitted to the output device.

ERR=stn
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

IBM Extension

NUM=n
n is an integer variable or an integer array element of length 4.

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the 110 list.

262 VS FORTRAN Language and Library Reference

o

o

c

o

WRITE (Unformatted, Direct Access)

Coding the NUM parameter suppresses the indication of an error that would
occur if the number of bytes represented by the I/O list is greater than the
number of bytes that can be written into the record. In this case, n is set to a
value which is the maximum length record that can be written. Data from
remaining I/O list items is not written into subsequent records.

"'-__________ End of IBM Extension __________ ---'

list
is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 92.

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Valid WRITE Statements:

WRITE (un,REC=rec) list

WRITE (REC=rec,UNIT=un) list

WRITE (IOSTAT=IOS, ERR=99999, REC=IN-3, UNIT=IN+6)

WRITE (IOSTAT=IACT(1), REC=2*IN-7, UNIT=2*IN+1) EXPECT(3)

WRITE (REC=1, UNIT=11) EXPECT(1)

If the unit specified by un is encountered, it must exist and the file must be
connected for direct access. If the unit is not connected to a file, it is assumed to
have been preconnected through job control language, and an implicit OPEN is
performed to a default file name. If the file is not preconnected, an error is
detected.

Data Transmission: A WRITE statement without conversion starts data
transmission at the record specified by rec. The data is taken from the items of the
list in the order in which they are specified and transmitted onto the record rec of
the external file. Data transmission stops when data has been transferred from
every item of the list.

Data and I/O List: The length of every FORTRAN record is specified in the
RECL parameter of the OPEN statement. If the length of the record rec is greater
than the total amount of data transmitted from the items of the list, the remainder
of the record is filled with zeros. If the length of the record rec is smaller than the
total amount of data transmitted from the items of the list, as much data as can fit
in the record is written, and an error is detected unless the NUM parameter is
given.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If IOSTAT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Chapter 5. VS FORTRAN Statements 263

WRITE (Unformatted, Direct Access)

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor transfer to be made to the statement specified by ERR. The extended ,0
error handling subroutines may be used to detect and handle these errors. (See ..~ .. ,
Figure 39 on page 334.)

o
264 VS FORTRAN Language and Library Reference

o

o

o

WRITE (Unformatted, Keyed Access)

IBM Extension

WRITE Statement-Unformatted with Keyed Access

This statement transfers data without conversion from internal storage onto an
external 110 device. The data must be sent to an external file that is connected
with keyed access to a unit (see "OPEN Statement" on page 168).

Syntax

WRITE ([UNIT=]un, [, ERR=stn] [, IOSTAT=ios]

[, DUPKEY=stn] [, NUM=n]) list

UNIT=un
un is the reference to the number of an 1/0 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT = is specified, all the parameters can appear in
any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

DUPKEY=stn
stn is the number of a statement to which control is passed when a
duplicate-key condition occurs. See "Duplicate Key" below for an
explanation of this condition.

NUM=n
n is an integer variable or an integer array element of length 4.

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the 110 list.

Coding the NUM parameter suppresses the indication of an error that would
occur if the number of bytes represented by the 110 list is greater than the
number of bytes that can be written into the record. In this case, n is set to a
value which is the maximum length record that can be written. Data from
remaining 110 list items is not written into subsequent records.

. Chapter 5. VS FORTRAN Statements 265

WRITE (Unformatted, Keyed Access)

list
is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 92.

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Valid WRITE Statements:

WRITE (12) GG,HH,II

WRITE (12,DUPKEY=55) DD,EE,FF

If this WRITE statement is encountered, the unit specified must exist and the file
must have been connected for keyed access by means of an OPEN statement. The
ACTION parameter of that OPEN statement must have specified the value
'READWRITE' or 'WRITE'. If the file is not so connected, an error is detected.

Data Transmission: If the WRITE statement was issued for a file connected by an
OPEN statement with an ACTION parameter of 'WRITE', data transmission
begins at the beginning of a new record. The new record will follow, in order of
key value, the last record written. If the file was connected by an OPEN statement
with an ACTION parameter of 'READWRITE', data transmission also begins at
the beginning of a new record. In this case, however, the new record will be
inserted following the record with a lower key value and preceding the record with
a higher key value. If the new record has a key which is the same as a key already
in the file, the new record is added following the last record with the same key.
The data is taken from the items in the list in the order they are specified; the data
is transmitted onto a single record of the file. Data transmission stops when data
has been transferred from every item in the list.

Data and I/O List: The amount of data specified by the items of the list defines
the length of the record to be written. A single WRITE statement creates only one
record. The record must be long enough to include all the keys that are defined for
the file.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

266 VS FORTRAN Language and Library Reference

o

o

o

o

o

WRITE (Unformatted, Keyed Access)

Duplicate Key: Control is transferred to the statement specified by DUPKEY when
the a duplicate-key condition occurs; namely:

• The file is connected by an OPEN statement with an ACTION parameter of
'READWRITE', or when ACTION='WRITE', and

An attempt was made to write a record with a key whose values must be
unique, and

• The key value would have duplicated one that already exists for the same key
in another record.

If lOST AT = ios is specified, a positive integer value is assigned to ios when the
duplicate-key condition is detected. If ERR is specified but DUPKEY is not,
control passes to the statement specified by ERR when the duplicate-key condition
is detected. If neither DUPKEY nor ERR was given, an error is detected.

Examples:

WRITE (UNIT=10) AA, BB, CC
WRITE (10,DUPKEY=77) AA, BB, CC
WRITE (10,NUM=LENG) AA, BB, CC

10....-__________ End of IBM Extension __________ --'

Chapter 5. VS FORTRAN Statements 267

WRITE (Unformatted, Sequential Access)

WRITE Statement-Unformatted with Sequential Access

This statement transfers data without conversion from internal storage onto an
external 110 device. The data must be sent to an external file that is connected
with sequential access to a unit (see "OPEN Statement" on page 168).

Syntax

WRITE ([UNIT=]un [, ERR=stn] [, IOSTAT=ios]

[, NUM=n]) [list]

UNIT=un
un is the reference to the number of an 1/0 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=;os
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

IBM Extension

NUM=n
n is an integer variable or an integer array element of length 4.

If NUM=n is specified, the variable or array element n is assigned a value
representing the number of bytes of data transmitted to the elements
specified by the 110 list. Coding the NUM parameter suppresses the
indication of an error that would occur if the number of bytes represented by
the 110 list is greater than the number of bytes that can be written into the
record. In this case, n is set to a value which is the maximum length record
that can be written. Data from remaining 110 list items is not written into
subsequent records.

~ _________ End of IBM Extension __________

list
is an 110 list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an InputlOutput
Statement" on page 92.

268 VS FORTRAN Language and Library Reference

o

o

o

o

o

WRITE (Unformatted, Sequential Access)

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Valid WRITE Statements:

WRITE (un) list

WRITE (UNIT=un) list

WRITE(5) EXPECT (4)

Invalid WRITE Statement:

WRITE un,list un must be in parentheses.

Data Trammission: A WRITE statement without conversion starts data
transmission at the beginning of a record. The data is taken from the items of the
list in the order in which they are specified and transmitted onto the record of the
external file. Data transmission stops when data has been transferred from every
item of the list.

After execution of a sequential WRITE statement, no record exists in the file
following the last record transferred by that statement.

IBM Extension

The WRITE statement writes over an end of file and extends the external file. An
END FILE, BACKSPACE, CLOSE, or REWIND statement will then reinstate the
end of file.

"--__________ End of IBM Extension __________ ~

Data and I/O List: The amount of character data specified by the items of the list
defines the length of the FORTRAN record (also called a logical record). A single
WRITE statement creates only one FORTRAN record.

VS FORTRAN Programming Guide describes how to associate FORTRAN records
(that is, logical records) and physical records on an external 110 device.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

Chapter 5. VS FORTRAN Statements 269

WRITE (Formatted, Sequential Access, Internal)

WRITE Statement-Formatted with Sequential Access to Internal Files

This statement transfers data from one or more areas in internal storage to another
area in internal storage. It can be used to convert numeric data to character data
and vice versa. The user specifies, in a FORMAT statement (or in a reference to a
FORMAT statement), the conversions to be performed during the transfer. The
receiving area in internal storage is called an internal file.

Syntax

WRITE ([UNIT=]un, [FMT=lfmt [, ERR=stn] [, IOSTAT=ios])

[list]

UNIT = un
un is the reference to an area of internal storage called an internal file. It can
be the name of a character variable, character array, character array element,
or character substring.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, FMT= must be used, and all the
parameters can appear in any order.

FMT=/mt
is the format specification. It may, optionally, be preceded by FMT=.

If FMT= is not specified, the format specification must appear second. If
both UNIT= and FMT= are specified, all parameters, except list, may
appear in any order.

The format specification can be:

• A statement number
• An integer variable

A character constant
A character variable

• A character array name
• A character array element
• A character expression

IBM Extension

• An array name

'---__________ End of IBM Extension __________ -1

See "WRITE Statement-Formatted with Direct Access" on page 250 for
explanations of these format specifications.

270 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

WRITE (Formatted, Sequential Access, Internal)

ERR=sln
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

list
is an I/O list and can contain variable names, array elements, character
substring names, array names (except the names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 92.

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Neither the format specification (fmt) nor an item in the list (list) can be:

• Contained in the area represented by un

• Associated with any part of un through EQUIVALENCE, COMMON, or
argument passing

Valid WRITE Statements:

CHARACTER *5 CHAR
DIMENSION IACT (10)

WRITE (un,fmt) list

WRITE (gn,FMT=fmt) list

WRITE (FMT=fmt,UNIT=un) list

WRITE (IOSTAT=IOS, ERR=99999, FMT=' (A5)', UNIT=CHAR(1:5)) '1 2 3'

WRITE (CHAR (1 : 5), '(A5)', IOSTAT=IACT (1)) '4 5 6'

Invalid WRITE Statements:

WRITE (fmt,un) list

WRITE (FMT=fmt,un) list

WRITE (fmt,UNIT=un) list

un must appear first before fmt.

un must appear first because
UNIT= is not specified.

FMT= must be used because UNIT=
is specified.

Data Transmission: A WRITE statement starts data transmission at the beginning
of the area specified by un. The format codes in the format specificationfmt are
taken one by one and associated with every item of the list in the order they are
specified. Data is taken from the item of the list, converted according to the format
code, and the number of character data specified by the format code is moved into
the storage area un. Data transmission stops when data has been moved from
every item of the list.

Chapter 5. VS FORTRAN Statements 271

WRITE (Formatted, Sequential Access, Internal)

If un is a character variable, a character array element, or a character substring
name, it is treated as one record only in relation to the format specification.

If un is a character array name, each array element is treated as one record in
relation to the format specification.

If the list is not specified and the format specification starts with an I, E, F, D, G,
or L, or is empty (that is, FORMAT(», the record is filled with blank characters
and the relative record number ree is increased by one.

IBM Extension

This is also true when the format specification starts with a Q or Z format code.

'--__________ End of IBM Extension __________ ---'

Data and I/O List: The length of a record is the length of the character variable,
character substring name, or character array element specified by un when the
WRITE statement is executed.

If the length of the record is greater than the amount of data specified by the items
of the list and the associated format specification, the remainder of the record is
filled with blank characters.

If the length of the record is less than the amount of data specified by the items of
the list and the associated format specification, as much data as can fit in the record
is transmitted and an error is detected.

The format specification may indicate (for example, slash format code) that data be
moved to the next record of storage area un. If un specifies a character variable, a
character array element, or a character substring name, an error is detected. If un
specifies a character array name, data is moved into the next array element unless
the last array element has been reached. In this latter case, an error is detected.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If IOSTAT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause IOSTAT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

Valid Internal File Examples:

The following example illustrates how to use an internal READ of a character
variable to initialize an integer array.

CHARACTER*24 CHAR
INTEGER IARRY(3,4)

272 VS FORTRAN Language and Library Reference

c

c

o

o

o

WRITE (Formatted, Sequential Access, Internal)

Initialize the character variable CHAR.

READ(S,' (A24) ') CHAR

Assume that the data read into CHAR is:

010203040506070809101112

Now, the program will use CHAR as an internal file and read
it to initialize lARRY.

READ (CHAR, 10) ((IARRY (I ,J), I 1,3) ,J=1 ,4)
10 FORMAT (12I2)

PRINT *, IARRY
STOP
END

The following example illustrates how to convert an integer number to its character
representation. This example also illustrates a technique for changing a FORMAT
statement dynamically; that is, the example initializes the specification of the field
width for the A edit descriptor.

CHARACTER*8 FMT
DATA FMT I' (1X,AYY) 'I
I = 4
WRITE (FMT(6:7), 10) I

10 FORMAT (I2)

PRINT FMT, 'ABCD'

where YY can be any alphameric character because YY is replaced by the
character representation of the integer number.

Chapter 5. VS FORTRAN Statements 273

WRITE (List-Directed, Ex~emal)

WRITE Statement-List-Directed I/O to External Devices

This statement transfers data from internal storage onto an external I/O device.
The data must be sent to an external file that is connected with sequential access to
a unit. (See "OPEN Statement" on page 168.) The type of the items specified in
the statement determines the conversion to be performed.

Syntax

WRITE ([UNIT=]un, [FMT=]'" [, ERR=stn] [, IOSTAT=ios])

[list]

PRINT '" [, list]

UNIT = un
un is the reference to the number of an I/O unit. un is either:

• An integer expression of length 4 whose value must be zero or positive

• An asterisk ("') representing an installation-dependent unit

It is required and can optionally be preceded by UNIT =.

If UNIT = is not specified, un must appear first in the statement. The other
parameters may appear in any order. If UNIT= is specified, FMT= must be
used, and all the parameters, except list, can appear in any order.

In the form of a PRINT statement where un cannot be specified, un is
installation dependent.

FMT='"
An asterisk ("') specifies that a list-directed WRITE has to be executed. It
can, optionally, be preceded by FMT= if un is specified.

If FMT= is not specified, the format identifier must appear second. If both
UNIT = and FMT = are specified, all parameters, except list, may appear in
any order.

ERR=sfn
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

10STAT=ios

list

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

is an I/O list and can contain variable names, array elements, character
substring names, array names (except names of assumed-size arrays),
implied DO lists, and expressions. See "Implied DO in an Input/Output
Statement" on page 92.

274 VS FORTRAN Language and Library Reference

c

o

o

o

c

I
o

WRITE (List-Directed, External)

A function must not be referenced within an expression if such a reference causes
an input or output statement to be executed.

Valid WRITE Statements:

WRITE (un,*) list

WRITE (un,FMT=*) list

WRITE (FMT=*,UNIT=un) list

WRITE (5,*)

WRITE (FMT=*,UNIT=*) FIFTY5,ISEG

WRITE (IOSTAT=IOS, ERR=99999, FMT=*, UNIT=2*IN+3)
'" '//EXPECT(1)//""

PRINT *, list

Invalid WRITE Statements:

WRITE (*,un) list

WRITE (FMT=*,un) list

WRITE (*,UNIT=un) list

PRINT FMT=*, list

un must appear first because
UNIT= is not specified.

un must appear first because
UNIT= is not specified.

FMT= must be used because
UNIT= is specified.

FMT= must not be used with the
second form of syntax.

If the unit specified by un is encountered, it must be connected to a file for
sequential access. If the unit is not connected to a file, it is assumed to have been
preconnected through job control language and an implicit OPEN is performed to a
default file name. If the file is not preconnected, an error is detected.

Dala Transmission: A WRITE or PRINT statement with list-directed I/O accessing
an external file starts data transmission at the beginning of a record. The data is
taken from each item in the list in the order they are specified and transmitted onto
the record of the external file. Data transmission stops when data has been
transferred from every item in the list.

After execution of a sequential WRITE or PRINT statement, no record exists in
the file following the last record transferred by that statement.

The WRITE or PRINT statement can write over an end of file and extend the
external file. An ENDFILE, CLOSE, or REWIND statement will reinstate the end
of file.

An external file with sequential access written with list-directed I/O is suitable only
for printing, because a blank character is always inserted at the beginning of each
record as a carrier control character.

Chapter 5. VS FORTRAN Statements 275

WRITE (List-Directed, External)

Data and I/O List: The amount of character data specified by the items in the list
and the necessary data separators define the length of the VS FORTRAN record
(also called a logical record). A single WRITE or PRINT statement creates only
one VS FORTRAN record.

For information on how to calculate the size of a record needed to hold all the
converted list items, see Figure 20. It shows the width of the written field for any
item's data type and length. The size of the record will be the sum of the field
widths plus a byte to separate each field.

Data Type Length Field Width

Real 16 42 bytes

Real 8 25 bytes

Real 4 16 bytes

Logical 1 or 4 1 byte

Integer 2 6 bytes

Integer 4 11 bytes

Complex 32 84 bytes

Complex 16 51 bytes

Complex 8 25 bytes

Character * 132 bytes (See Note)

Figure 20. Field Widths Needed for Data Types of Various Lengths

Note to Figure 20: The number of bytes printed out is determined by the size of
the character type item. The number of characters per record is determined by the
type of data set being written to. The number of bytes per record is determined by
the logical record length. For output that is sent to a terminal, a carriage control
character is deleted at the beginning of each record. This is also true for a file
defined with a carriage control character. Character data can be split between
records. Numeric data cannot be split between records.

VS FORTRAN Programming Guide describes how to associate FORTRAN records
(that is, logical records) and physical records on an external 110 device. In
particular, a logical record may span many physical records. A character constant
or a complex constant can be split over the next physical record if there is not
enough space on the current physical record to contain it all.

Character constants produced:

• Are not delimited by apostrophes

• Are not preceded or followed by any separators (including blanks)

• Have each internal apostrophe represented externally by one apostrophe

• Have a blank character inserted by the processor for carrier control at the
beginning of any record that begins with the continuation of a character
constant from the preceding record

276 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

WRITE (List-Directed, External)

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If IOSTAT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

Chapter 5. VS FORTRAN Statements 277

WRITE (List-Directed, Internal)

IBM Extension

WRITE Statement-List-Directed I/O with Internal Files

This statement transfers data from one or more areas of internal storage to another
area of internal storage. The receiving area is called an internal file. This
statement can be used to convert numeric data to character data. The type of the
items specified in the statement determines the conversion to be performed.

Syntax

WRITE ([UNIT=]un, [FMT=]* [, ERR=stn] [, IOSTAT=ios]) [list]

UNIT=un
un is the reference to an area of internal storage called an internal file. It can
be the name of:

• A character variable
• A character array
• A character array element
• A character substring

It is required and can, optionally, be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. If UNIT = is specified,
FMT= must be used and all the parameters can appear in any order.

FMT=*
* specifies that a list-directed WRITE is to be executed. It can, optionally,
be preceded by FMT =.

If FMT= is not specified, * must appear second. If both UNIT= and FMT=
are specified, all the parameters can appear in any order.

ERR=sfn
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

10STAT=;m

list

ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is encountered, and
zero if no error condition is detected.

is an I/O list and can contain variable names, array element names,
character substring names, array names (except names of assumed-size
arrays), and implied DO lists. See "Implied DO in an Input/Output
Statement" on page 92.

278 VS FORTRAN Language and Library Reference

o

o

o

o

c

o

Valid WRITE Statements:

WRITE (un,*) list
WRITE (un,FMT=*) list
WRITE (FMT=*,UNIT=un) list

WRITE (List-Directed, Internal)

WRITE (IOSTAT=IACT(l), UNIT=CHARVR, FMT=*) ACTUAL(l)

Data Transmission: An internal WRITE statement starts data transmission at the
beginning of the storage area specified by un. Each item of the list is transferred to
the internal file in the order it is specified. The conversion to be performed
depends on the type and length of the name of the item in the list. Data
transmission stops when every item of the list has been moved to the internal file or
when the end of the internal file is reached.

Data and I/O List: If un is a character variable, a character array element name, or
a character substring name, it is treated as one record. If un is a character array
name, each array element is treated as one record. If a record is not large enough
to hold all the converted items, a new record is started for any noncharacter item
that will exceed the record length. For character items, as much as can be put in
the record is written there, and the remainder is written at the beginning of the next
record.

The length of a record is the length of the character variable, character substring
name, character array element specified by un when the WRITE statement is
executed.

For information on how to calculate the size of a record needed to hold all the
converted list items, see Figure 20 on page 276. It shows the width of the written
field for any item's data type and length. The size of the record will be the sum of
the field widths plus a byte to separate each field.

CHARACTER* 120 CHARVR

WRITE (UNIT=CHARVR, FMT=*) Al, A2, A3

100 FORMAT (A120)

WRITE (UNIT=6, FMT=100) CHARVR

Statement 1 defines a character variable, CHARVR, of fixed-length 120.
Statement 2 writes the internal file represented by CHARVR by converting the
values in AI, A2, and A3. Statement 3 writes the 120 characters of output onto an
external file.

L....-__________ End of IBM Extension __________ ---'

Chapter 5. VS FORTRAN Statements 279

WRITE (NAMELIST, External)

IBM Extension

WRITE Statement-NAMELIST with External Devices

This statement transfers data from internal storage onto an external I/O device.
The type of the items specified in the NAMELIST statement determines the
conversions to be performed.

Syntax

WRITE ([UNIT=]un, [FMT=]name [, ERR=stn] [, 10STAT=ios])

PRINT name

UNIT=un
un is the reference to the number of an I/O unit. un is one of the following:

• An integer expression of length 4 whose value must be zero or positive

• An asterisk (*) representing an installation-dependent unit

un is required in the first form of the WRITE statement and can optionally
be preceded by UNIT=. If UNIT= is not specified, un must appear first in
the statement. The other parameters may appear in any order. If UNIT= is
specified, all the parameters can appear in any order.

In the form of the WRITE where un is not specified, un is installation
dependent.

FMT=name
name is a NAMELIST name. See "NAMELIST Statement" on page 166.

If FMT= is not specified, the NAMELIST name must appear second. If
both UNIT = and FMT = are specified, all the parameters can appear in any
order.

ERR=sln
stn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to stn.

lOST AT =itAS'
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected. VSAM return and reason codes are placed in ios.

Valid WRITE Statements:

WRITE (un, name)

WRITE (IN+8, NAMEOUT, IOSTAT=IACT(1), ERR=99999)

280 VS FORTRAN Language and Library Reference

0"",
',',\ ,I

, I,'

(',,\ .~

c

o

o

o

WRITE (NAMELIST, External)

InvaHd WRITE Statements:

WRITE (name,un) un must appear before name.

WRITE (un, name) list list must not be specified.

If the unit specified by un is encountered, it must exist and must be connected to a
file for sequential access. If the unit is not connected to a file, it is assumed to have
been preconnected through job control language and an implicit OPEN is
performed to a default file name. If the file is not preconnected, an error is
detected.

A BACKSPACE or REWIND statement should not be used for a file that ·is
written using NAMELIST. If it is, the results are unpredictable (see
"BACKSPACE Statement" on page 67).

Data Transmission: A WRITE statement with NAMELIST starts data transmission
from the beginning of a record. The data is taken from each item in the
NAMELIST with name in the order in which they are specified and transmitted
onto the record of the external file. Data transmission stops when data has been
transferred from every item in the NAMELIST name.

After execution of a WRITE statement with NAMELIST, no record exists in the
file following the end of the NAMELIST just transmitted.

Data and NAMEUST: The NAMELIST name must appear on the external file.

The number of characters specified by the items in the NAMELIST name and the
necessary data separators and identifiers are placed on the external file.

For information on how to calculate the size of the record on the external file, see
Figure 20 on page 276. It shows the width of the written field for any item's data
type and length. The. size of the record will be the sum of the field widths plus:

• The number of bytes needed for each item's name and an equal sign (these are
prefixed to each field), and

• A byte to separate each field

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be written;
only that the error occurred during transmission of data. If lOST AT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause lOST AT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

'--__________ End of IBM Extension __________ ---'

Chapter 5. VS FORTRAN Statements 281

WRITE (NAMELIST, Internal)

IBM Extension

WRITE Statement-NAMELIST with Internal Files

This statement transfers data from one or more areas of internal storage to another
area of internal storage. The receiving area is called an internal file. This
statement can be used to convert numeric data to character data. The type of the
items specified in an associated NAMELIST list determines the conversions to be
performed.

Syntax

WRITE ([UNIT=]un, [FMT=]name [, ERR=sln] [, IOSTAT=ios])

UNIT=un
un is the reference to an area of internal storage called an internal file. It
must be the name of a character array with at least three elements.

It is required and can optionally be preceded by UNIT =. If UNIT = is not
specified, un must appear first in the statement. If UNIT = is specified,
FMT= must be used and all the parameters can appear in any order.

FMT =lIIlIIIe
name is a NAMELIST name. See "NAMELIST Statement" on page 166.

If FMT= is not specified, the NAMELIST name must appear second. If
both UNIT = and FMT = are specified, all the parameters can appear in any
order.

ERR=sln
sIn is the number of an executable statement in the same program unit as the
WRITE statement. If an error is detected, control is transferred to sIn.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error condition is
detected.

Valid WRITE Statements:

WRITE (un, name)

WRITE (IN+8, NAMOUT, IOSTAT=IACT(1), ERR=99999)

Data Trammission: A WRITE statement with NAMELIST starts data transmission
from the beginning of the internal file. The data is taken from each item in the list
associated with the NAMELIST name, in the order in which the items are
specified, and transmitted to the internal file. Data transmission stops when data
has been transferred from every item in the list.

282 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

WRITE (NAMELIST, Internal)

Data and NAMELIST: The NAMELIST name must appear in the internal file.

The number of characters specified by the items in the NAMELIST name and the
necessary data separators and identifiers are placed in the internal file.

For information on how to calculate the size of the internal file, see Figure 20 on
page 276. It shows the width of the written field for any item's data type and
length. The size of the internal file will be the sum of the field widths plus:

• The number of bytes needed for each item's name and an equal sign (these are
prefixed to each field), and

• A byte to separate each field.

Example:

NAMEL1ST /NL1/1,J,C
CHARACTER*40 CHAR(3)
CHARACTER*5 C
1NTEGER*2 1,J
1=12046
J=12047
C='BACON'
WR1TE(CHAR,NL1)

After execution of the WRITE statement:

Position 2
v

CHAR(1) contains &NLI
CHAR(2) contains 1= 12046,J= 12047,C='BACON'
CHAR(3) contains &END

'--_________ End of IBM Extension _________ -.1

Chapter 5. VS FORTRAN Statements 283

o

o

o

o

o

o

Chapter 6. VS FORTRAN Intrinsic Functions

Intrinsic functions are procedures supplied in VS FORTRAN for standard
mathematical computations and bit manipulations. A procedure is invoked by
including its name in an arithmetic or character expression accompanied by one or
more arguments. The compiler recognizes the procedure by its name, checks the
syntax of the arguments, and generates code that performs the desired function.

The general format for referring to an intrinsic function is

name (arg1 [,arg2 ... ,argn])

where name is the function name and arg 1, arg2, and argn are the actual
arguments.

For example, the source statement

SINRAD=SIN(RADIAN)

causes the sine function to be invoked. The value of the argument RADIAN is
given to the sine function, which computes the sine of that value. The result is
stored in the variable SINRAD.

Nearly all the mathematical functions have both generic and specific names. Use
of the generic name simplifies the referencing of the functions because the same
name may be used for the entire range of argument types permitted. The
appropriate specific entry name is chosen (by the compiler) when the generic name
is used, based on the type of argument(s) presented.

Figure 28 on page 301 lists all the generic function names and gives the valid
range of argument types and function values.

The intrinsic functions provided by VS FORTRAN are described in detail in the
following figures, grouped by function:

Function Figure

Logarithmic and Exponential Figure 21 on page 288

Trigonometric Figure 22 on page 289

Hyperbolic Figure 23 on page 291

Miscellaneous Mathematical Figure 24 on page 292

Conversion and Maximum/Minimum Figure 25 on page 296

Chapter 6. VS FORTRAN Intrinsic Functions 285

Function Figure

Character Manipulation Figure 26 on page 299

Bit Manipulation Figure 27 on page 300

All the specific function names listed in Figure 21 through Figure 24, and in
Figure 27, can be passed as actual arguments. None of the function names listed
in Figure 25 or Figure 26 (except for LEN and INDEX) can be passed as actual
arguments. (An INTRINSIC statement for a specific function name must appear in
any program unit that passes the name as an actual argument.)

References to the functions are either resolved from the library or inserted in the
object module. That is, the code generated by VS FORTRAN for the reference
contains either instructions to link to the function in the library (out-of-line) or
instructions to perform the function directly (inline). Notes with the figures state
whether the functions are performed inline or out-of-line.

For a small subset of the mathematical functions, alternative procedures are
available that under certain conditions provide greater accuracy and faster
computation. These functions are identified in footnotes in the figures. For more
information, see Chapter 8, "Mathematical, Character, and Bit Subprograms" on
page 307.

The following information is provided for each entry name in Figure 21 on
page 288 through Figure 27 on page 300:

General Function: This column states the nature of the computation performed by
the function.

Generic Name This column gives the generic name of the function (if any).

Entry Name: This column gives the specific entry names of the function. A
function may have more than one entry name; the particular entry name used
depends on the computation to be performed. For example, the sine and cosine
function has two entry names: SIN and COS. If the sine is to be computed, entry
name SIN is used; if the cosine is to be computed, entry name COS is used.

Definition: This column gives a mathematical equation that represents the
computation. An alternate equation is given in those cases in which there is
another way of representing the computation in mathematical notation. For
example, the square root can be represented either as:

y =Vx or y =xY2

Argument Number: This column states how many arguments the programmer must
supply.

Argument Type: This column describes the type and length of each of the
argument(s). INTEGER, REAL, COMPLEX, LOGICAL, and Character
represent the type; the notations *1, *4, *8, *16, *32, and *n represent the size of
the argument in number of storage locations. (The notation *n describes character
data.)

286 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

Argument Range: This column gives the valid range for arguments. If an argument
is not within the range, an error message is issued (see Error Code column).

Function Value Type and Range: This column describes the type and range of the
function value returned by the subprogram. Type notation used is the same as that
for the argument type. The range symbol is

for regular precision routines;

for double-precision; and

for extended precision.

Error Code: This column gives the number of the message issued when an error
occurs. Appendix I, "Library Procedures and Messages" on page 463 contains
descriptions of the error messages.

Throughout these figures, the following approximate values are represented by

(2 18
• n) and (250 • n):

(2 18
• n) = .8235496645826428D + 06

(250. n) = .3537118876014220D + 16

Chapter 6. VS FORTRAN Intrinsic Functions 287

Argument (s) Function Value Error
General Entry Type1 and Code

Function6
Name Definition No. Type! Range Range4

Common ALOG y=log.x or 1 REAL *4 x>O REAL *4 253
and natural y=ln x y ~ -180.218
logarithm y ~ 174.673

ALOGlO y=log",x 1 REAL *4 x>O REAL *4 253
y ~ -78.268
y ~ 75.859

DLOG y=log,.x or 1 REAL *8 x>O REAL *8 263
y=lnx y ~ -180.218

y ~ 174.673

DLOGlO y=logll'x 1 REAL *8 x>O REAL *8 263
y ~ -78.268
y ~ 75.859

CLOG y=PV log .. (z) 1 COMPLEX *8 z # 0 + Oi COMPLEX *8 273
See Note 2 y, ~ -180.218

y, ~ 175.021
-7f'~Y2~7f'

CDLOe y=PV log. (z) 1 CO~IPLEX * 16 z7'O+Oi COMPLEX *16 283
See Note 2 y, ~ -180.218

Yl ~ 175.021
-7f'~Y2~7f'

QLOG y=logexor 1 REAL*16 x>O REAL *16 2~3
y=ln x y ~ -180.218

y:;;;; 174.673

QLOGI0 y=loglo x 1 REAL *16 x>O REAL*16 293
y ~ -78.268
y :;;;; 175.859

CQLOG y = PV loge (Z) 1 COMPLEX *32 z,.:O+Oi COMPLEX *32 278
See Note 2 YI ~ -180.218

YI :i 175.021
-7T :;;;; Y2 :;;;; 7T

Exponential EXP y=ex 1 REAL *4 x ~ 174.673 REAL *4 252
See Note 5 O~y~'Y

DEXP y=ex 1 REAL *8 x ~ 174.673 REAL *8 262
See Note 5 O~y~'Y

CEXP y=ez 1 COMPLEX *8 x, ~ 174.673 COMPLEX *8 271,
See Note 3 I x" I < (2! ~ • 7f') -'Y ~ Yl, Y2 ~ 'Y 272

CDEXP y=ez 1 COMPLEX *16 x, ~ 174.673 COMPLEX *16 281,
See Note 3 Ix"1 < (250 • 7f') -'Y ~ Yl, Y2 ~ 'Y 282

QEXP y=ex 1 REAL *16 x ~ -180.218 REAL*16 292
x ~ 174.673 O~Y~'Y

CQEXP y=ez 1 COMPLEX *32 x, ~ 174.673 COMfl.EX *.32. 276,
See Note 3 x2~2'00 -'Y ~ YI, Y2 ~ 'Y 277

NOTES:
1

REAL *4, REAL *8, and REAL * 16 arguments correspond to REAL, DOUBLE PRECISION, and EXTENDED PRECISION arguments,
respectively, in VS FORTRAN.

2
PV = principal value. The answer given (YI + Y2i) is that one whose imaginary part (Y2) lies between -1r and +1r. More
specifically: -1r < Yz .;;;; 1r, unless Xl < ° and X2 = -0, in which case, Y2 = -1r.

3 Z is a complex number of the form XI + xli.

4'Y = 1663 (1 - 16-6
) for regular precision routines, 1663 (1 - 16-14) for double precision routines, and 1663 (1 - 16-28

) for
extended precision.

S Available also in the alternative mathematical library.

6 All functions are generated as out-of-line library calls.

Figure 21. Logarithmic and Exponential Functions

o
288 VS FORTRAN Language and Library Reference

o

o

o

General
Function6

Entry
Name

Arcsine and ASIN
arccosine

ACOS

DASIN

DACOS

QARSIN

QARCOS

Arctangent ATAN

ATAN2

DATAN

DATAN2

QATAN

QATAN2

NOTES: (See end of table.)

Definition
No.

y= arcsin (x)

y= arccos (x) 1

y=arcsin (x)

y = arccos (x)

y = arcsin (x)

y=arcos(x)

y= arctan (x)

y=arctan (::)
2

y = arctan (x)

y=arctan (::)
2

y=arctan(x)

y = arctan (- ~~.) 2

Figure 22 (Part 1 of 2). Trigonometric Functions

Argument (s)

Type! Range

REAL *4

REAL *4

REAL *8

REAL *8

REAL*16

REAL*16

REAL *4

REAL *4

REAL *8

REAL *8

REAL*16

REAL*16

Ix I ~ 1

any REAL argument

any REAL arguments
(except 0, 0)

any REAL argument

any REAL arguments
(except 0, 0)

any REAL
argument

any REAL
arguments
(except 0,0)

Function Value
Type1and

RangeS

REAL *4 (in radians)
7r' 7r'

-2~y~2

REAL ·4 (in radians)
O~y~7r'

REAL *8 (in radians)

-~:$ y:$~
2- -2

REAL *8 (in radians)
O~y~7r'

REAL*16

-2~Y~2

REAL*16
O~y~7T

Error
Code

257

257

267

267

297

297

REAL *4 (in radians) None

REAL * 4 (in radians)
-'7r'<y~7r'

REAL ·8 (in radians)

-~:$ y:$~
2 - - 2

REAL * 8 (in radians)
-7r'<y~7r'

REAL *16 (in radians)
7T 7T
-2~ y ~T

REAL * 16 (in radians)
-7T<Y~7T

255

None

265

None

295

Chapter 6. VS FORTRAN Intrinsic Functions 289

Argument (s) Function Value
General Entry Definition Type1and Error

Function6 Name No. Type l Range RangeS Code

Sine and SIN y=sin (x) 1 REAL *4 Ixl < (218
e 71") REAL *4 254

cosine (in radians) -1 ~ y ~ 1

c
COS y=cos (x) 1 REAL *4 Ixl < (218

e 71") REAL *4 254
(in radians) -1 ~ Y ~ 1

DSIN y=sin (x) 1 REAL *8 Ixl < (250
e 71") REAL *8 264

(in radians) -1 ~ Y ~ 1

DCOS y=cos (x) 1 REAL *8 Ixl < (200
e 71") REAL *8 264

(in radians) -1 ~ Y ~ 1

CSIN y=sin (z) 1 COMPLEX *8 IXII < (218
e 71") COMPLEX *8 274,

See Note 2 (in radians) Ix.1 ~ 174.673 -'Y ~ YI, Y2 ~ 'Y 275

CCOS y=cos (z) 1 COMPLEX *8 !xII < (2 18
e 71") COMPLEX *8 274,

See Note 2 (in radians) Ix.1 ~ 174.673 -'Y ~ YI, Y2 ~ 'Y 275

eOSIN y=sin (z) 1 ~OMPLEX *16 IXII < (250
e 11") COMPLEX *16 284,

See Note 2 (in radians) lx_I ~ 174.673 - 'Y ~ YI, ya ~ 'Y 285

COCOS y=cos (z) 1 COMPLEX *16 IXII < (25Oe 1l") COMPLEX *16 284,
See Note 2 (in radians) Ix.1 ~ 174.673 - 'Y ~ YI, Ya ~ 'Y 285

QSIN y=sin(x) 1 REAL*16 Ixl < 2100 REAL*16 294
(in radians) -1 ;a; y :;;; 1

QCOS y=cos(x) 1 REAL*16 Ixl < 2100 REAL*16 294
(in radians) -1;:iii;y:;il

CQSIN y=sin(z) 1 COMPLEX *32 I x 1< 2
100 COMPLEX *32 279,

See Note 2 (in radians) x~ :;i 174.673 -'Y ;:iii; yp Y2 ;::;;; 'Y 280

CQCOS y=cos(z) 1 COMPLEX *32 I XII < 2100 COMPLEX *32 279,
See Note 2 (in radians) X2 ;a; 174.673 -'Y ;:a;; YP Y2 ;a; 'Y 280

Tangent TAN y=tan (x) 1 REAL *4 Ixl«218e 1l") REAL *4 258,
and (in radians) See Note 4 -'Y~y~'Y 259
cotangent G

COTAN y=cotan (x) 1 REAL *4 Ixl < (2 18
e 7\") REAL *4 258,

(in radians) See Note 4 -'Y~Y~'Y 259

DTAN y=tan (x) 1 REAL *8 Ixl < (250
• 7\") REAL *8 268,

(in radians) See Note 4 -'Y~Y~'Y 269

DCOTAN y=cotan (x) 1 REAL *8 Ixl < (250
e 7\") REAL *8 268,

(in radians) See Note 4 -'Y~Y~'Y 269

QTAN y=tan(x) 1 REAL*16 Ixl < 2100 REAL *16 298,
(in radians) See Note 3 -'Y ;a; Y :;;; 'Y 299

QCOTAN y=cotan(x) 1 REAL*16 Ixl < 2100 REAL*16 298,
(in radians) X i5: 16- 63

-'Y ;a; Y ;a; 'Y 299
See Note 3

NOTES:

I REAL *4, REAL *8, and REAL * 16 correspond to REAL, DOUBLE PRECISION, and EXTENDED PRECISION arguments, respectively, in
vs FORTRAN.

2 zis a complex number of the form XI + x/
3 x may not be such that one can find a singularity within 8 units of the last digit value of the floating-point representation of x.

Singularities are ± (2n + Df, n = 0, 1, 2, ... for tangent, and ± n 7T, n = 0, 1, 2, ... for cotangent.
4 The argument for the cotangent functions may not approach a multiple of 7T; the argument for the tangent functions may not

approach an odd multiple of 7T/2.
5 'Y = 1663 (1 - 16- 6) for regular precision routines, 1663 (1 - 16- 14) for double-precision routines and 1663 (1 - 16- 28) for

extended precision.

6 All functions are generated as out-of-line library calls.

Figure 22 (Part 2 of 2). Trigonometric Functions

c
290 VS FORTRAN Language and Library Reference

o Argument(s) Function Value
General Entry Definition Type1 and Error

Function3 Name No. Type! Range Rangel Code

Hyperbolic SINH eX - e-X 1 REAL *4 Ixl < 175.366 REAL *4 256
sine and y=

2 --y ~ y ~-y
cosine

COSH eX + e- X 1 REAL *4 Ixl< 175.366 REAL *4 256 y=
2 l~y~')'

DSINH eX - e- X 1 REAL*8 I xl < 17.15.366 REAL *8 266 y=
2 -')' ~ y ~ ')'

DCOSH eX + e- X 1 REAL*8 I xl < 175.366 REAL *8 26(i
y= --

l~y~')' 2

QSINH eX - e- X 1 REAL * 16 I xl ~ 175.366 REAL *16 296 y= -2- -')' ~ y ~ ')'

QCOSH eX + e- X 1 REAL *16 I x I :i 175.366 REAL *16 29(i
y=

2 l:iy:iy

Hyperbolic eX - e-X 1 REAL *4 any REAL argument REAL *4 None
tangent TANH y= eX + e- X -1 ~ y ~ 1

DTANH eX - e-X 1 REAL *8 any REAL argument REAL *8 None
y= eX + e-X -1 ~ y ~ 1

QTANH eX - e- X 1 REAL *16 any REAL REAL *16 None
y=

eX + e- X argument -1:iy:il

NOTES;
1 REAL *4, REAL *8, and REAL * 16 arguments correspond to REAL, DOUBLE PRECISION, and EXTENDED PRECISION arguments, o respectively, in vs FORTRAN.

2 Y = 1663 (1 - 16-6
) for regular precision routines, 1663 (1 - 16- 16) for double-precision ruutines, and 1663 (1 - 16-28)

for extended precision.

3 All functions are generated as out-of-line library calls.

Figure 23. Hyperbolic Functions

o
Chapter 6. VS FORTRAN Intrinsic Functions 291

Argument (s) Function Vall1e
Error General Entry Type1and

Function Name Definition No. Type! Range RangeS Code o
Absolute lABS y = Ixl 1 INTEGER *4 any INTEGER INTEGER *4 None.
value argument O~Y~'Y See

Note 9.

ABS Y = Ixl 1 REAL *4 any REAL REAL *4 None.
argument O~Y~'Y See

Note 9.

DABS Y = Ixl 1 REAL *8 any REAL REAL *8 None.
argument O~Y~'Y See

Note 9.

QABS Y = Ixl 1 REAL*16 any REAL REAL *16 None.
argument O~y~y See

Note 9.

CABS y=lzl= (X12 + X22)1/2 1 COMPLEX *8 any COMPLEX REAL *4 None.
argument o ~ Yl ~ 'Y See
See Note 2 Y2 = 0 Note 10.

CDABS y=lzl= (Xl:! + X22)1/~ 1 COMPLEX *16 any COMPLEX REAL *8 None.
argument o ~ Yl ~ 'Y See
See Note 2 Y2 = 0 Note 10.

CQABS Y = Izl = (X 1
2 + X22)1/2 1 COMPLEX *32 any COMPLEX REAL *16 None.

argument o ~ Yl ~ 'Y See
See Note 2 Y2 = 0 Note 10.

Error ERF
2 IX 2 1 REAL *4 any REAL REAL *4 None.

function y=-= e-U du argument -1 ~ y ~ 1 See V 7r 0 Note 10.
~\

U
ERFC 2 foo ,>

1 REAL *4 any REAL REAL *4 None.
y=--= e-u du argument O~y~2 See V 7r x

Note 10.
y= 1 -erf (x)

DERF 2 IX ~ 1 REAL *8 any REAL REAL *8 None.
y=-== e-u du argument -1 ~ y ~ 1 See V 7r 0

Note 10.

DERFC 2 fOO 2 1 REAL *8 any REAL REAL *8 None.
y=--= e-u du argument O~y~2 See V 7r x

Note 10.
y= 1 -erf (x)

QERF
2 IX 2 1 REAL *16 any REAL REAL *16 None.

y= V-;' 0
e-u du argument -l~y~1 See

Note 10.

QERFC 2 fOO 2 1 REAL *16 any REAL REAL *16 None.
y=--= e-u du argument O~y~2 See V 7r x

y= 1 -erf (x) Note 10.

NOTES: (See end of figure.)

Figure 24 (Part 1 of 4). MisceUaneous Mathematical Functions

o
292 VS FORTRAN Language and Library Reference

o General Argument (s) Function Value
Entry Type1 and Error

Function Name Definition No. Type l Range RangeS Code

Gamma and GAMMA
y= Loo uX- 1 e-U du

1 REAL *4 x > 2-252 and REAL "'4 290
log-gamma x < 57.5744 0.88560 ~ y ~ 'Y See

Note 10.

ALGAMA y=loge r (x) or 1 REAL *4 x> 0 and REAL "'4 291

y=log. £00 uX-1 e-U du
x < 4.2913 • 1073 -0.12149 ~ y ~ 'Y See

Note 10.

DGAMMA
y= 100

uX-1 e-U du
J REAL *8 x> 2-:l 5 :l and REAL "'8 300

x < 57.5744 0.88560 ~ y ~ 'Y See
Note 10.

DLGAMA y=log. r (x) or 1 REAL *8 x> 0 and REAL "'8 301

y=log. Loo U X
-
1 e-u du

x < 4.2913 • 1073 -0.12149 ~ y ~ 'Y See
Note 10.

Square root SQRT y= Yx or 1 REAL "'4 x~O REAL "'4 251 I
y=X1/2 O~y~r/I

See
Note 10.

DSQRT y= Yx or 1 REAL "'8 xS;O REAL "'8 261
y=Xl/2 O~y~'Yi/J See

Note 10.

CSQRT y= yz or 1 COMPLEX *8 any COMPLEX COMPLEX "'8 None.
y=Zl/2 argument o ~ Yl ~ 1.0987 ("'(1/~) See
See Note 7 IY21 ~ 1.0987 ("'(1/2) Note 10.

CDSQRT y= YZ or 1 COMPLEX *16 any COMPLEX COMPLEX "'16 None.
y=Z1/2 argument o ~ Yl ~ 1.0987 ("'(1/2) See
See Note 7 IY21 ~ 1.0987 ("'(1/2) Note 10. o QSQRT Y = .J x or 1 REAL*16 x~O REAL*16 289
Y = X1/ 2 o ~ Y ~ yl/2 See

Note 10.

CQSQRT Y = .Jzor 1 COMPLEX *32 any COMPLEX COMPLEX *32 None.
Y = ZI/2 argument o ~ Yl ;:;; 1.0987 (yl/2) See
See Note 7 Y2;:;; 1.0987 (yl/2) Note 10.

NOTES: (See end of figure.)

Figure 24 (Part 2 of 4). MisceUaneous Mathematical Functions

o
Chapter 6. VS FORTRAN Intrinsic Functions 293

General Entry Argument (s) Function Value
Type1 and Error

Function Name Definition No. Type! Range RangeS Code

Modular MOD Y=Xl (modulo x,) 2 INTEGER X2 =1= 0 INTEGER *4 None.
arithmetic See Note 3 See Note 4 See

Note 9.

AMOD 2 REAL *4 X2 =1= 0 REAL *4 None.
See Note 4 See

Note 9.

DMOD 2 REAL *8 X2 =1= 0 REAL *8 None.
See Note 4 See

Note 9.

QMOD 2 REAL*16 X2~O REAL*16 None.

See Note 4 See
Note 9.

Truncation AI NT y = (sign of x) en 1 REAL *4 any REAL REAL *4 None.
where n = l r x I J argument See
See Note 6 Note 9.

DINT 1 REAL*8 any REAL REAL*8 None.
argument See

Note 9.

QINT 1 REAL*16 any REAL REAL *16 None.
argument See

Note 9.

Obtain REAL *4 INone.
1 COMPLEX *8 any COMPLEX See imaginary AIMAG

argument Note 9.
part of a

o
None. complex

1 COMPLEX * 16 any COMPLEX REAL*8 See argument DIMAG
argument Note 9.

1 COMPLEX *32 any COMPLEX REAL * 16 None.
QIMAG See

argument Note 9.

Obtain CONJG y = Xl - x2i for 1 COMPLEX *8 any COMPLEX COMPLEX*8 None.
See

conjugate argument = Xl + x 2i argument Note9
of a
complex DCONJG 1 COMPLEX*16 any COMPLEX COMPLEX * 16 None.

See argument argument Note 9.

QCONJG 1 COMPLEX *32 any COMPLEX COMPLEX*32 None.
See

argument Note 9.

NOTES: (See end of figure.)

Figure 24 (Part 3 of 4). MisceUaneous Mathematical Functions

o
294 VS FORTRAN Language and Library Reference

Argument(s) Function Value o General Entry Type l and Error
Function Name Definition No. Type l Range RangeS Code

Nearest ANINT y = (sign of x) . v 1 REAL*4 any REAL REAL*4 None.
whole where v = [1 x + .51] argument See Note 9.

number if x;:;;. 0 or
DNINT v = [I X - .51) if x < o. 1 REAL *8 any REAL REAL*8 None.

See Note 6 argument See Note 9.

Nearest NINT y = (sign of x) . n 1 REAL *4 any REAL INTEGER *4 None.
integer where n = [I x + .5 I] argument See Note 9.

if x;:;;. 0 or
IDNINT n = [I x - .51) if x < o. 1 REAL *4 any REAL *8 INTEGER *4 None.

See Note 8 argument See Note 9.

Positive IDIl\! y=x l -x2 ifx l >X 2 2 I;\!TU;ER *-l any I:"<TEGER INTEGER *4 None.
difference y = 0 if XI';;; x2 argument See Note 9.

DIl\I 2 REAl. *-l REAL *4
None.

,bny RL\1. See Note 9.
argument None.

DDIl\I 2 RoL\1. *8 REAL*8 See Note 9.

QDIl\! 2 RL\1. *1(i REAL*16
None.
See Note 9.

Transfer ISIG:\' Y = I x II if x2 ;:;;. 0 2 I:,\,IU;I':R *-l any I:'<iTEGER INTEGER *4 None.
of sign y=-IXII ifx 2 <O argument See Note 9.

SIG0: 2 RE.\1. *-l REAL*4
None.

any REAL See Note 9.
argument

None.
DSIG:\' 2 RE.\1. *8 REAL *8 See Note 9.

QSIGi\' 2 RE.\1. * I G REAL * 16
None.
See Note 9.

Double DPROD y = xl * x2 ? REAL *4 any REAL REAL *8 None.

precision argument See Note 9.

product

o NOTES:

I REAL *4, REAL *8, and REAL * 16 arguments correspond to REAL, DOUBLE PRECISION, and EXTENDED PRECISION arguments, respectively, in
VS FORTRAN.

2 Floating-point overflow can occur.

3 The expression XI (modulo x2) is defined as XI - [:~] • x2' where the brackets indicate that an integer is used. The largest integer whose

magnitude does not exceed the magnitude of ~ is used. The sign of the integer is the same as the sign of ~I.
~ ~

4 If x2 = 0, then the modulus function is mathematically undefined. In addition, a divide exception is recognized and an interruption
occurs. (A detailed description of the interruption procedure is given in Appendix C.)

5 'Y = 1663 (1 - 16-6) for regular precision routines, 1663 (1 - 16- 14
) for double-precision routines and 1663 (1 - 16- 211) for extended

precision routines.

6 [1 xl] is such that v = 1 m 1 where m is the greatest integer satisfying the relationship 1 m I';;; 1 xl, and the resulting v is expressed
as a real value.

7 z is a complex-number of the form xl + x2i.

8 [1 xl] is such that n = 1 m 1 where m is the greatest integer satisfying the relationship 1 m I';;; 1 x I.

9 This function is generated inline.
10 This function is generated as an out-of-line library call.

Figure 24 (Part 4 of 4). Miscellaneous Mathematical Functions

0"·'"
.11,

Chapter 6. VS FORTRAN Intrinsic Functions 295

Argument(s) Function Value
General Generic Entry Type and
Function Name Name5 Definition No. Type Range Range (

-~

,I 1 I
F

Conversion INT See Note 1 y = (sign of x) • n 1 INTEGER *4 any INTEGER INTEGER *4

to integer where n is the largest argument
integer';;;;; I x I

INT 1 REAL*4 any REAL INTEGER *4

See Note 2 argument

IDINT 1 REAL*8 any REAL INTEGER *4

argument

IQINT 1 REAL*16 any REAL INTEGER *4

argument

See Note 1 for Z = xl + xzi, 1 COMPLEX *8 any COMPLEX INTEGER *4

Y = INT(xd argument

See Note 3 HFIX Y = (sign of x) • n 1 REAL*4 any REAL INTEGER *2

where n is the largest argument
integer';;;;; Ixi

Conversion REAL REAL 1 INTEGER *4 any INTEGER REAL*4

to real See Note 4 argument

See Note 1 1 REAL *4 any REAL REAL *4

argument

SNGL 1 REAL*8 any REAL REAL *4

argument

SNGLQ 1 REAL*16 any REAL REAL *4

argument

See Note 1 for Z = xl + x2 i, 1 COMPLEX *8 any COMPLEX REAL *4

y = REAL(xd argument C~-" , J

DREAL 1 COMPLEX * 16 any COMPLEX REAL*8

argument

QREAL 1 COMPLEX *32 any COMPLEX REAL * 16

argument

Conversion DBLE DFLOAT 1 INTEGER *4 any INTEGER REAL *8

to double argument

DBLE 1 REAL*4 any REAL REAL*8

argument

See Note 1 1 REAL*8 any REAL REAL *8

argument

DBLEQ 1 REAL*16 any REAL REAL *8

argument

See Note 1 for Z = xl + xzi, 1 COMPLEX *8 any COMPLEX REAL *8

y = DBLE (Xl) argument

NOTES: (See end of figure.)

Figure 25 (Part 1 of 3). Conversion and Maximum/Minimum Functions

c
296 VS FORTRAN Language and Library Reference

o Argument(s) Function Value
General Generic Entry Type and
Function Name Name Definition No. Type Range Range

Conversion QEXT QFLOAT 1 INTEGER *4 any INTEGER REAL*16
to extended argument
precision

QEXT 1 REAL*4 any REAL REAL*16
argument

QEXTD 1 REAL*8 any REAL REAL*16
argument

Conversion CMPLX See Note 1 y=x I +x2 i 1 INTEGER *4 any INTEGER COMPLEX*8
to complex where xl = REAL(arg) argument

and x 2 = O.

CMPLX 1 REAL *4 any REAL COMPLEX *8
argument

See Note 1 1 REAL*8 any REAL COMPLEX*8
argument

QCMPLX y = xl + x 2i 1 REAL * 16 any REAL COMPLEX*32
where x I = arg argument
and x 2 = O.QO

See Note 1 y=x l +x 2i 1 COMPLEX*8 any COMPLEX COMPLEX*8
for arg = xl + x2i argument

See Note 3 DCMPLX y=x l +x 2i 1 REAL*8 any REAL COMPLEX * 16
where x I = arg argument
and x2 = O.

o CMPLX See Note 1 y = xl + x 2i where 2 INTEGER *4 any INTEGER COMPLEX*8
xl = REAL(argl) argument
and x2 = REAL(arg2)

CMPLX 2 REAL*4 any REAL COMPLEX *8
argument

See Note 1 2 REAL*8 any REAL COMPLEX*8
argument

QCMPLX y=x I +x2 i 2 REAL * 16 any REAL COMPLEX*32
where xl = argl argument
and x 2 = arg2

See Note 3 DCMPLX Y = xl + x2 i 2 REAL*8 any REAL COMPLEX * 16
where xl = argl argument
and x 2 = arg2

NOTES: (See end of figure.)

Figure 25 (Part 2 of 3). Conversion and Maximum/Minimum Functions

o
Chapter 6. VS FORTRAN Intrinsic Functions 297

Argument(s) Function Value
General Generic Entry Type and

o
Function Name Name Definition No. Type Range Range

Maximum MAX MAXO y == max(x j , ••• xn) ;;:;'2 INTEGER *4 any INTEGER INTEGER *4
value arguments

AMAXI ;;:;'2 REAL*4 any REAL REAL *4
arguments

DMAXI ;;:;'2 REAL*8 any REAL REAL *8
arguments

QMAXI ;;:;'2 REAL*16 any REAL REAL *16
arguments

See Note 3 AMAXO ;;:;'2 INTEGER *4 any INTEGER REAL *4
arguments

See Note 3 MAXI ;;:;'2 REAL*4 any REAL INTEGER *4
arguments

Minimum MIN MINO y == min (xl' ... xn) ;;:;'2 INTEGER *4 any INTEGER INTEGER *4
value arguments

AMINI ;;:;'2 REAL *4 any REAL REAL *4
arguments

DMINI ;;:;'2 REAL *8 any REAL REAL *8
arguments

QMINI ;;:;'2 REAL* 16 any REAL REAL * 16
arguments

See Note 3 AMINO ;;:;'2 INTEGER *4 any INTEGER REAL*4
arguments

See Note 3 MINI ;;:;'2 REAL *4 any REAL INTEGER *4
arguments

NOTES:

j No specific name exists for this case. The generic name must be used for this argument type.

2 IFIX is an alternate specific name for this function.

3 Specific name must be used to obtain function value of this type.

4 FLOAT is an alternate specific name for this function.

5 All functions in all parts of this figure are inline functions. None of the function names can be passed as arguments.
There are no library error codes because there are no library routines.

Figure 25 (Part 3 of 3). Conversion and Maximum/Minimum Functions

o
298 VS FORTRAN Language and Library Reference

o General Entry Definition Argument(s) Function Value Error
Function2 Name Type and Code

No. Type Range

Convert ICHAR Position of 1 CHARACTER INTEGER *4 None
character character in
to integer EBCDIC collating

sequence

Convert CHAR Character 1 INTEGER *4 CHARACTER * 1 188
integer to corresponding to

character position of argument
in EBCDIC
collating sequence

Length of LEN Length of 1 CHARACTER INTEGER *4 None
character character
item entity

Index of INDEX Location of 2 CHARACTER INTEGER *4 189,
character substring a2 190
item in string a1

I
I

! Alphamerically LGE a1 ~ a2 2 CHARACTER LOGICAL *4 191,
\ greater See Note 1 192
! than or equal

Alphamerically LGT a1 > a2 2 CHARACTER LOGICAL *4 191, o greater See Note 1 192
than

Alphamerically LLE a1 ~ a2 2 CHARACTER LOGICAL *4 191,
less than See Note 1 192
or equal

Alphamerically LLT a1 < a2 2 CHARACTER LOGICAL *4 191,
less than See Note 1 192

NOTES:

1 Comparison is made using the ASCII collating sequence.

2 All functions are generated as out-of-line library calls.

Figure 26. Character Manipulation Functions

o
Chapter 6. VS FORTRAN Intrinsic Functions 299

Argument(s) Function Value
General Entry Type and Error

Function Name Definition No. Type Range Range Code

Logical lAND k = and (i,j) 2 INTEGER *4 any INTEGER INTEGER *4 None
o

AND arguments

Logical OR lOR k = or (i,j) 2 INTEGER *4 any INTEGER INTEGER *4 None
arguments

Logical lEaR k = xor (i,j) 2 INTEGER *4 any INTEGER INTEGER *4 None
exclusive arguments
OR

Logical NOT k = not (i) 1 INTEGER *4 any INTEGER INTEGER *4 None
complement argument

Shift ISHFT k = shift (i,m) 2 INTEGER *4 i is any INTEGER INTEGER *4 159
operation i is shifted by m where argument;

for m < 0, shift is -32'-;;; m'-;;; 32
right; m > 0, shift is
left; and m = 0, no
shift

Bit testing BTEST 1 = bittest (i,m) 2 INTEGER *4 i is any INTEGER LOGICAL *4 159
and setting tests m-th bit of argument;

argument i O'-;;;m'-;;; 31
See Note 3

IBSET k = bitset (i,m) 2 INTEGER *4 INTEGER *4 159
sets m-th bit of
argument i to 1:

IBCLR k = bitc1ear (i,m) 2 INTEGER *4 INTEGER *4 159
sets m-th bit of
argument i to 0.

NOTES:

1 There are no generic names for the bit manipulation functions. All specific names may be passed as actual arguments.

:z The first four functions are always inline. The second four are inline if the second argument is an integer constant; a library
function is called if the second argument is an integer variable or expression. 0",\,1

I ~ ,

3 The bits in the first argument (i) are numbered from right to left, beginning at zero. Thus m = 0 corresponds to the right-
most bit of the argument i.

Figure 27. Bit Manipulation Functions

o
300 VS FORTRAN Language and Library Reference

o Number, Type, and Length of Arguments 1,4 Function Value2

Generic
Name Definition No. 1*4 R*4 R*8 R*16 C*8 C*16 C*32 Type Length

ABS Absolute value 1 X X X X Argument Argument

X X X Real 1/2 Argument

ACOS Arc cosine 1 X X X Real Argument

AINT Truncation 1 X X X Real Argument

ANINT Nearest whole number 1 X X Real Argument

ASIN Arc sine 1 X X X Real Argument

ATAN Arc tangent 1 X X X Real Argument

ATAN2 Arc tangent (2 arguments) 2 X X X Real Argument

CMPLX Conversion to complex 1 X X X X Complex 8

(See Note 3.) I X Complex 32

2 X X X Complex 8

2 X Complex 32

CONJG Conjugate 1 X X X Complex Argument

COS Cosine 1 X X X X X X Argument Argument

COSH Hyperbolic cosine I X X X Real Argument

COTAN Cotangent I X X X Real Argument

DBLE Express as R*8 I X X X X X Real 8

DIM Positive difference 2 X X X X Argument Argument

ERF Error function I X X X Real Argument

ERFC 1 - Error function 1 X X X Real Argument

EXP Exponen tiation 1 X X X X X X Argument Argument

GMIMA Gamma function 1 X X Real Argument

IMAG Imaginary part I X X X Real 1/2 Argument

INT Express as 1*4 1 X X X X X Integer 4

o LGAMMA Log of gamma function I X X Real Argument

LOG Natural logarithm I X X X X X X Argument Argument

LOGIO Common logarithm I X X X Real Argument

MAX Maximum value ~2 X X X X Argument Argument

MIN Minimum value ~2 X X X X Argument Argument

MOD Remainder 2 X X X X Argument Argument

NINT :\'earest in teger I X X Integer 4

QEXT Express as R*16 I X X X Real 16

REAL Conversion to real I X X X X Real 4

I X X X Real 1/2 Argument

SIGN Transfer of sign 2 X X X X Argument Argument

SIN Sine 1 X X X X X X Argument Argument

SINH Hyperbolic sine 1 X X X Real Argument

SQRT Square root 1 X X X X X X Argument Argument

TAN Tangent I X X X Real Argument

TANH Hyperbolic tangent I X X X Real Argument

NOTES:

1 "X" indicates a permissible mode of argument.

2 "Argument" indicates that the type or length of the result is the same as that of the argument(s).

3 The specific name DCl\IPLX must be used to convert an R*8 argument to a C*16 value (or to convert and express two R*8 arguments
as aC*16 value.)

4 If more than one argument is permi tted, all arguments must be of same type and length.

Figure 28. Generic Names for Intrinsic Functions

o
Chapter 6. VS FORTRAN Intrinsic Functions 301

o

o

o

o

o

o

Part 2. Library Reference

The following topics are discussed in Part 2:

Introduction

Mathematical, Character, and Bit Subprograms

Service and Utility Subroutine Subprograms

Extended Error Handling Subroutines and Error Option Table

See Appendix I, "Library Procedures and Messages" on page 463 for related
error messages.

Part 2. Library Reference 303

o

o

c

o

c

o

Chapter 7. Introduction

The VS FORTRAN library contains the following categories of subprograms:

• Input/ output operation subprograms

• Data conversion subprograms

Mathematical, character, and bit subprograms

• Service and utility subroutine subprograms

• Extended error handling subprograms

• Initialization and termination subprograms

The input/output operation and data conversion subprograms are accessed for you,
via compiler-generated calls, in response to REWRITE, DELETE, REWIND,
BACKSPACE, ENDFILE, INQUIRE, PRINT, WAIT, OPEN, CLOSE, READ,
WRITE, and FORMAT statements. Usage information for these statements, and
thus for these subprograms, is in Chapter 5, "VS FORTRAN Statements," and in
VS FORTRAN Programming Guide.

The mathematical, character, and bit subprograms make up the intrinsic functions,
which you refer to directly by name, and the notational functions, which are
accessed for you in response to mathematical notation. Usage information for
these subprograms is in Chapter 6, "VS FORTRAN Intrinsic Functions," and
Chapter 8, "Mathematical, Character, and Bit Subprograms."

The service and utility subprograms (such as checking mathematical exceptions and
dumping data areas) are called by you directly. Usage information for these
subprograms is in Chapter 9, "Service and Utility Subroutines."

The extended error handling subprograms enable you to provide user error exits
and change error handling operations. You call these subprograms directly. Usage
information is in Chapter 1 0, "Extended Error Handling Subroutines and Error
Option Table."

The initialization and termination subprograms are accessed for you, via
compiler-generated calls, in the main VS FORTRAN program. There is no usage
information for these subprograms because you are not able to control them.
However, if you write subprograms in VS FORTRAN, or if you call VS
FORTRAN library subprograms from a non-VS FORTRAN main program, the
initialization and termination subprograms usually must be called at the beginning
and end of the main program. For more information, see Appendix G, "Assembler
Language Information."

Chapter 7. Introduction 305

o

o

o

o

o

Chapter 8. Mathematical, Character, and Bit Subprograms

The mathematical, character, and bit subprograms supplied in the VS FORTRAN
library perform commonly used computations and conversions. These subprograms
are called in two ways:

Explicitly, when the appropriate name appears in a source language statement,
or

Implicitly, when certain notation appears in a source language statement

The material in this chapter describes explicitly called routines under "Explicitly
Called Subprograms" (below) and implicitly called routines under "Implicitly
Called Subprograms" on page 308.

Accuracy statistics are given in Appendix F, "Accuracy Statistics" on page 425;
storage estimates appear in Appendix E, "Storage Estimates" on page 417.

Detailed information for calling the subprograms from assembler language is given
in Appendix G, "Assembler Language Information" on page 433.

For a small subset of the standard mathematical subprograms, alternative
subprograms are available that provide more accurate results with arguments of
large absolute value, and in certain instances, provide faster computation. These
routines are referred to as the alternative mathematical library in VS FORTRAN.
Alternative routines are available for the intrinsic functions DSIN, DCOS, DTAN,
DCOTAN, EXP, and DEXP, and for the implicitly called functions FDXPD# and
FRXPR#. VS FORTRAN Compiler and Library Installation and Customization
describes how these routines can be installed for your use.

Explicitly Called Subprograms

All the explicitly called subprograms are VS FORTRAN intrinsic functions. Each
of these functions performs a mathematical, character, or bit manipulation. See
Chapter 6, "VS FORTRAN Intrinsic Functions" on page 285 for detailed
information about these functions. See Appendix D, "Algorithms for Library
Mathematical Functions" on page 369, for information about the algorithms used
in many of them.

Chapter 8. Mathematical, Character, and Bit Subprograms 307

Implicitly Called Subprograms

The implicitly called subprograms are executed as a result of certain notation
appearing in a VS FORTRAN source statement. The VS FORTRAN compiler
generates the instructions necessary to call the appropriate subprogram. For
example, for the following source statement:

ANS = BASE**EXPON

where BASE and EXPON are REAL*4 variables, the VS FORTRAN compiler
generates a reference to FRXPR#, the entry name for a subprogram that raises a
real number to a real power.

The implicitly called mathematical and character subprograms in the VS
FORTRAN library are described in Figure 29 on page 309 and Figure 30 on
page 310. The column headed "Implicit Function Reference" shows a
representation of a source statement that might appear in a VS FORTRAN source
module and cause the subprogram to be called. The rest of the column headings
have the same meaning as those used with the explicitly called subprograms.
Implicitly called service subprograms are in Figure 31 on page 311.

For subprograms that involve exponentiation, the action taken within a subprogram
depends upon the types of the base and exponent used. Figure 32 on page 311
through Figure 35 on page 312 show the result of an exponentiation performed
with the different combinations and values of base and exponent. In these figures,
I and J are integers; A and B are real numbers; and C is a complex number.

308 VS FORTRAN Language and Library Reference

o

o

o General Entryl
Implicit Argument(s) Function Error
Function Value

Function Name Reference2 No. Type3
Type3 Code

Multiply and CDMPY# y = Zt* Z2 2 COMPLEX *16 COMPLEX *16
divide complex
numbers

CDDVD# y = ZI/Z2 2 COMPLEX *16 COMPLEX *16

CMPY# y = Zt* Z2 2 COMPLEX *8 COMPLEX *8

CDVD# y = ZI/z2 2 COMPLEX *8 COMPLEX *8

CQMPY# y = ZJ*Z2 2 COMPLEX *32 COMPLEX *32

CQDVD# y = z/zz 2 COMPLEX *32 COMPLEX *32

Compare of CXMPR# Y = ZI compop z, 2 COMPLEX LOGICAL*4
complex See Note 4 See Note 5 (of all
numbers lengths)

Raise an integer FIXPI# y = i * *j 2 i = INTEGER *4 INTEGER *4
to an integer j = INTEGER *4 241
power

Raise a real FRXPI# y = a**j 2 a = REAL *4 REAL *4
number to an j = INTEGER *4 242
integer power

o FDXPI# y=a**j 2 a = REAL *8 REAL *8
j = INTEGER *4 243

FQXPI# y = a**j 2 a = REAL *16 REAL*16 248 j = INTEGER *4

Raise a real FRXPR# y = a * *b 2 a = REAL *4 REAL *4
number to a See Note 6 b = REAL *4 244
real power

FDXPD# y = a * *b 2 a = REAL *8 REAL *8
See Note 6 b = REAL *8 245

FQXPQ# y = a**b 2 a == REAL *16 REAL *16 249,
b = REAL *16 250

Raise 2 to a FQXP2# y = 2**b 1 b == REAL *16 REAL *16
real power 260

Raise a complex FCDXI# y = Z * * j 2 Z = COMPLEX *16 COMPLEX *16
number to an j = INTEGER ... 4 247
integer power

FCXPI# y = z**j 2 Z = COMPLEX * 8 COMPLEX *8
j = INTEGER'" 4 246

FCQXI# y = z**j 2 Z = COMPLEX *32 COMPLEX *32
270 j = INTEGER *4

Figure 29. Implicitly Called Mathematical Subprograms

o
Chapter 8. Mathematical, Character, and Bit Subprograms 309

Entry
Name

CCMPR#
See Note 2

CMOVE#
See Note 2

CNCAT#

Implicit
Function

Notes to Figure 29:

1. This name must be used in an assembler language program to call the
subprogram; the character # is a part of the name and must be included.

2. This is only a representation of a FORTRAN statement; it is not the only way
the subprogram may be called.

3. REAL*4, REAL*8, and REAL * 16 arguments correspond to real, double
precision, and extended precision arguments, respectively, in VS FORTRAN.

4. CXMPR# is an entry name in the library module IFYCCMPR, which is also
used for a compare of character arguments.

5. compop is one of the following relational operators: equal or not equal.

6. Available also in the alternative mathematical library .

Argument(s) Function
Error Value

Reference No. Type Type Code

Y = Xl compop X 2 6 Character Any character 193
See Note 1 argument 194

y=X 4 Character Any character 195
argument 196

197,

y = Xl / / X 2 ••• / / xn ~2 Character Any character 198
argument 199

Figure 30. Implicitly Called Character Subprograms

Notes to Figure 30:

1. Where compop is one of the following relational operators:

equal
not equal
greater than
less than
greater than or equal
less than or equal

Each character argument implies a pointer to the location and a pointer to the
length. The argument list for CCMPR# also has a pointer to the relational
operator (compop) and a pointer for return of result.

2. For programs produced by Release 4.0 of the VS FORTRAN Compiler, the
library functions used for the comparison of character type items and for the
assignment of character type items are not invoked. All these operations are
performed inline. These routines remain in the VS FORTRAN Library to
support programs compiled with releases of the compiler earlier than Release
4.0.

310 VS FORTRAN Language and Library Reference

o

o

c

o Entry
Function Arguments

Error
Name Code

DSPAN # Calculate dimension factors and Array description 187
DSPN2~ span of adjustable dimension
DSPN4 array.

DYCMN# Obtain storage and relocate COMMON and adcon 156
adcons for DYNAMIC COMMON. information 157

158

Figure 31. Impllcitly Called Service Subprograms

Base (1)
Exponent (J)

J>O J=O J<O

1>1 Compute the Function Function
function value value = 1 vallie = 0

1 = 1 Compute the Function Fnnction
function value value = 1 value = 1

1=0 Function Error message Error message
value = 0 241 241

1=-1 Compute the Function If J is an odd
function value value = 1 nnmber, function

value = -1.
If .T is an even
number, function
value = 1.

o 1<-1 Compute the Function Function
function value value = 1 value = 0

Figure 32. Exponentiation with Integer Base and Exponent

Base (A)
Exponent (J)

J>O J = 0 J<O

A>O Compute the Function Compute the
function value value = 1 fnnction value

A=O Function Error message Error message
value = 0 242 or 242 or

243 243

A<O Compute the Function Compute the
function value value = 1 fnnction value

Figure 33. Exponentiation with Real Base and Integer Exponent

o
Chapter 8. Mathematical, Character, and Bit Subprograms 311

Base (A)
Exponent (B)

B>O B=O B<O

A>O Compute the Function Compute the
function value value = 1 function value

A=O Function Error message Error message
value = 0 244 or 244 or

245 245

A<O Error message Function Error message
253 or value = 1 253 or
263 263

Figure 34. Exponentiation with Real Base and Exponent

Base (C) Exponent(J)
C = P + Qi J>O J=O J < 0

P > 0 and Compute the Function Compute the
Q>O function value value = 1 + Oi function value

P > 0 and Compute the Function Compute the
Q = 0 function value value = 1 + Oi function value

P > 0 and Compute the Function Compute the
Q<O function value value=l + Oi function value

P = 0 and Compute the Function Compute the
Q>O function value value = 1 + Oi function value

P = 0 and Function value Error message Error message
Q = 0 a. + Oi 246 or 246 or

247 247

P = 0 and Compute the Function Compute the
Q<O function value value = 1 + Oi function value

P < 0 and Compute the Function Compute the
Q > 0 function value value=l + Oi function value

P < o and Compute the Function Compute the
Q =0 function value value = 1 + Oi function value

P < o and Compute the Function Compute the
Q<O function value value = 1 + Oi function value

Figure 35. Exponentiation with Complex Base and Integer Exponent

312 VS FORTRAN Language and Library Reference

C,I.' ' .. ,'1

"/

0-.'," ,'I'

I

o

o

o

Chapter 9. Service and Utility Subroutines

The service and utility subroutines applied in the VS FORTRAN library perform
tests for mathematical exceptions and utility functions, respectively. The
subroutines are called by the appropriate entry name in a VS FORTRAN language
CALL statement.

Mathematical Exception Test Subprograms

These subprograms test the status of indicators and may return a value to the
calling program. In the following description of the subprograms, k represents an
integer value.

DVCHK Subroutine

The DVCHK subroutine tests for a divide-check exception and returns a value
indicating the existing condition.

~ S~mx
~LL DVCHK (k)

k
An integer or real variable in the program unit.

The values of k returned have the following meanings:

Value Meaning

1 The divide-check indicator is on.
2 The divide-check indicator is off.

OVERFL Subroutine

The OVERFL subroutine tests for exponent overflow or underflow, and returns a
value indicating the existing condition. After testing, the overflow indicator is
turned off.

Chapter 9. Service and Utility Subroutines 313

r-: S~Ux
~ALL OVERFL (k)

k
An integer variable defined within this program unit.

The values of k returned have the following meanings:

VaIue Meaning

1 Floating-point overflow occurred last.
2 No overflow or underflow condition is current.
3 Floating-point underflow occurred last.

Note: The values for 1 and 3 indicate the last one to occur; if the same statement
causes an overflow followed by an underflow, the value returned is 3 (underflow
occurred last).

Utility Subprograms

The utility subprograms perform service operations for the VS FORTRAN
programmer; for example,

• Dump a specified area of storage: DUMP/PDUMP.

• Dump a specified area of storage containing character data:
CDUMP/CPDUMP.

• Terminate execution: EXIT.

• Load a phase and modify the unit assignment table: OPSYS (VSE only).

Provide a symbolic dump of all variables in a program unit: SDUMP.

• Allow or suppress a program interrupt due to exponent underflow: XUFLOW

314 VS FORTRAN Language and Library Reference

C'i .. '1 , .~i

o

o

c

o

DUMP /PDUMP Subroutine

The DUMP /PDUMP subroutine dynamically dumps a specified area of storage
onto the system output data set. After the dump, for entry, DUMP execution is
terminated, or, for entry, PDUMP execution is continued.

Syntax

CALL {DUMP I PDUMP} (al,bl,kl, ... an,bn,kn)

a and b

k

Variables in the program unit. Each indicates an area of storage to be
dumped.

Either a or b can represent the upper or lower limits of the storage area.

Specifies the dump format to be used.

The values that can be specified for k and their meanings are: :ihi see='utility
subprograms'. storage dump

Value Format Requested

0 Hexadecimal
1 LOGICAL*1
2 LOGICAL*4
3 INTEGER*2
4 INTEGER *4
5 REAL * 4
6 REAL * 8
7 COMPLEX*8
8 COMPLEX*16
9 CHARACTER
10 REAL * 16
11 COMPLEX*32

Programming Considerations for DUMP /PDUMP

A load module or phase may occupy a different area of storage each time it is
executed. To ensure that the appropriate areas of storage are dumped, the
following conventions should be observed.

Chapter 9. Service and Utility Subroutines 315

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in common, B is a real number, and
TABLE is an array of 20 elements. The following call to the storage dump
subprogram could be used to dump TABLE and B in hexadecimal format, and
terminate execution after the dump is taken:

CALL DUMP(TABLE(1),TABLE(20),O,B,B,O)

If an area of storage in common is to be dumped at the same time as an area of
storage not in common, the arguments for the area in common should be given
separately. For example, the following call to the storage dump subprogram could
be used to dump the variables A and Bin REAL*8 format without terminating
execution:

CALL PDUMP(A,A,6,B,B,6)

If variables not in common are to be dumped, each variable must be listed
separately in the argument list. For example, if R, P, and Q are defined implicitly
in the program, the statement

CALL PDUMP(R,R,5,P,P,5,Q,Q,5)

should be used to dump the three variables in REAL *4 format. If the statement

CALL PDUMP(R,Q,5)

is used, all main storage between Rand Q is dumped, which mayor may not
include P, and may include other variables.

If an array and a variable are passed to a subroutine as arguments, the arguments in
the call to the storage dump subprogram in the subroutine should specify the
parameters used in the definition of the subroutine. For example, if the subroutine
SUBI is defined as:

SUBROUTINE SUBI(C,Y)
DIMENSION X (10)

and the call to SUBI within the source module is:

DIMENSION A (10)

CALL SUBI (A,B)

then the following statement should be used in SUBI to dump the variables in
hexadecimal format without terminating execution:

CALL PDUMP (X(1) ,X(10) ,O,Y,Y,O)

If the statement

CALL PDUMP (X(1) ,Y,O)

is used, all storage between (1) and Y is dumped because of the method of
transmitting arguments.

316 VS FORTRAN Language and Library Reference

o

o

c

o

c

o

When hexadecimal (0) or literal (9) is specified, the programmer should realize that
the upper limit is assumed to be of length 4.

CDUMP /CPDUMP Subroutine

The CDUMP / CPDUMP subroutine dynamically dumps a specified area of storage
containing character data. After the dump, for entry, CDUMP execution is
terminated, or for entry, CPDUMP execution is continued.

j: Synmx

~ALL {CDUMP I CPDUMP} (al,bl, ... ,an,bn)

aandb
Variables in the program unit. Each indicates an area of storage to be
dumped.

Either a or b can represent the upper or lower limits of each storage area.

The dump is always produced in character format. (A dump format type (as for
DUMP/PDUMP) must not be specified.)

Programming Considerations for CDUMP / CPDUMP

EXIT Subroutine

A load module may occupy a different area of storage each time it is executed. To
ensure that the appropriate areas of storage are dumped, the following conventions
should be observed.

If an array and a variable are to be dumped at the same time, a separate set of
arguments should be used for the array and for the variable. The specification of
limits for the array should be from the first element in the array to the last element.
For example, assume that A is a variable in common, B is a real number, and
TABLE is an array of 20 elements. The following call to the storage dump
subprogram could be used to dump TABLE and B in hexadecimal format, and
terminate execution after the dump is taken:

CALL CDUMP(a I ,bI , .. . ,an ,bn)

The EXIT subroutine terminates execution of the load module or phase and returns
control to the operating system.

Chapter 9. Service and Utility Subroutines 317

CALL EXIT performs a function similar to that of the STOP statement, except
that no operator message can be produced.

OPSYS Subroutine (VSE Only)

The OPSYS subroutine has two forms.

1. CALL OPSYS statement to run multiphase jobs:

r-: S~w
~ALL OPSYS('LOAD', 'phasename')

LOAD
The OPSYS parameter specifying this function.

phasename
Specifies the name of the phase to be loaded. The phase must be in the
core image library.

The 'phasename' must be specified in eight alphameric characters. If
fewer than eight characters are specified, the name should be
ieit-adjusted within the fieid and padded on the right with blanks.
Alternatively, the name of the phase may be specified as a variable or in
an array.

2. CALL OPSYS statement to:

• Modify the block size in the unit assignment table.

• Modify the default BLOCKSIZE (the default is 256).

• Modify the buffer offset in the unit assignment table for ASCII data sets.

Syntax for LANGL VL(66):

r-: S~w
~ALL OPSYS ('FILEOPT' ,ij,k,lJ

Syntax for LANGLVL(77):

r-: S~w
~ALL OPSYS ('VFILOPT' ,ij,k,lJ

318 VS FORTRAN Language and Library Reference

o

o

I

o

o

o

o

FILEOPT
Required for LANGLVL(66).

VFILOPT

;

j

k

I

Required for LANGL VL(77).

Specifies the VS FORTRAN logical unit. A system unit or a unit that has
been used for I/O cannot be specified.

Specifies the block length:

• 18 to 2048 for ASCII

• 18 to 32767 for EBCDIC

This length is placed in the UATDBLKS field of the unit assignment table.

Specifies ASCII data sets:

• A nonzero value indicates an ASCII data set and permits the I parameter
to be specified.

• A zero value (or parameter omitted) specifies non-ASCII data sets.

Specifies the buffer offset. This value must only be specified if k is a
nonzero value. Maximum value is 99. It is placed in UATDRECL of the
unit assignment table.

i, j, k, and I may be integer constants, integer variables, or integer array elements.

Because the first parameter is a character string, for LANGL VL(77) the extra
parameter that is the address of the length of the first parameter is passed to this
module as the second parameter.

Error checking is done to ensure that all values indicated are within the proper
limits defined in the FORTRAN ASCII specifications.

Invocation of FILE OPT sets on bit 1, byte 0 of the unit block.

SDUMP SUBROUTINE

The SDUMP subroutine provides a symbolic dump that is displayed in a format
dictated by variable type as coded or defaulted in your VS FORTRAN source.
Data is dumped on the error message unit. Variables are dumped automatically
upon abnormal termination, or are dumped by program request, on a program unit
basis, using CALL SDUMP.

Items displayed are:

Chapter 9. Service and Utility Subroutines 319

• All referenced, local, named variables in their VS FORTRAN-defined data
representation

All variables contained in a blank common, named common, or a dynamic
common area in their FORTRAN -defined data representation

• Nonzero or nonblank character array elements only

• Array elements with their correct indexes

The display of data can be invoked both automatically and by program request.

• In the event a task abends (abnormally terminates) in a VS FORTRAN
program unit compiled without the NOSDUMP option or with the TEST
option, all data in that program unit is automatically dumped.

Additionally, all data in any VS FORTRAN program unit in the save area
traceback chain compiled without the NOSDUMP option or with the TEST
option is also dumped. Data occurring in common is dumped at each
occurrence, because the data definition in each program unit may be different.

The display of data follows the IFY240I message and the call chain traceback
messages on the object time error unit. The abend SDUMP is done by a copy
of routine SDUMP located in module IFYVPOST, which handles post-abend
processing.

• Program-requested dumping of data is performed by calling the SDUMP utility
program from any program unit. Module IFYSDUMP containing entry
SDUMP is loaded in this usage with the calling program.

r-: S~mx
~ALL SDUMP [(rtnl [,rtn2) ... »)

rtnl,rtn2
The names of other VS FORTRAN program units from which data will be
dumped.

Default: Data is dumped only for the calling program when no operands are
specified.

Note: When using SDUMP to dump variables for other routines, those other
routine names must be identified on an EXTERNAL statement.

Programming Considerations for SDUMP

• Compilation must be done either without the NOSDUMP option or with the
TEST option in order to gain symbolic dump information and location of error
information.

• SDUMP for routines not entered has unpredictable results.

320 VS FORTRAN Language and Library Reference

o

o

o

o

o

• SDUMP for the routine in which the CALL statement is located is done
without parameters:

CALL SDUMP

• An EXTERNAL statement must be used to identify the names being passed to
SDUMP as external routine names and not local variables.

The user must not have a routine with the name SDUMP.

• A run-time library containing IFYVPOST must be accessible for post-abend
processing.

• At higher levels of optimization (1-3), some variables might not have their true
value because of compiler optimization techniques.

• Values for uninitialized variables are unpredictable. The "pass-by-name"
subprogram argument(s) in uncalled routines or in subprograms with argument
lists shorter than the maximum may cause the SDUMP subroutine to fail.

Examples follow of calling SDUMP from the main program and from a
subprogram.

In the main program, the statement

EXTERNAL PGM1,PGM2,PGM3

would make the address of routines PGM1, PGM2, and PGM3 available for a call
to SDUMP:

CALL SDUMP (PGM1,PGM2, PGM3)

that would cause variables in PGMl, PGM2, and PGM3 to be printed.

In PGMl, the statement

EXTERNAL PGM2,PGM3

makes PGM2 and PGM3 available. (PGMI is missing because the call is in
PGMI.)

The statements

CALL SDUMP
CALL SDUMP (PGM2,PGM3)

will dump variables for PGMl, PGM2, and PGM3.

See Appendix H, "Sample Storage Printouts" on page 445, for information about
output from symbolic dumps.

Chapter 9. Service and Utility Subroutines 321

XUFLOW SUBROUTINE

The XUFLOW subroutine changes the exponent underflow mask in the program
mask to allow or suppress program interrupts that could result from an exponent
underflow exception.

r-: S~m
~ALL XUFLOW (k)

k
An integer expression that may have the following values 0 or 1. 0
suppresses program interrupts due to exponent underflow. 1 allows program
interrupts due to exponent underflow. The interrupt causes message
IFY2081 to be produced.

322 VS FORTRAN Language and Library Reference

o

C)

c

o

o

o

Chapter 10. Extended Error Handling Subroutines and Error Option
Table

Extended Error Handling

VS FORTRAN provides five subroutines for use in extended error handling:
ERRMON, ERRSAV, ERRSET, ERRSTR, and ERRTRA. These subroutines
enable you to alter the error option table dynamically. Existing error conditions
can be changed and user exits can be supplied.

The error option table is a list of errors detected by the VS FORTRAN library.
Each error is represented by an entry in the option table, which contains values for
information related to the error. The option table (as shipped in the library,
module IFYUOPT) is preset with information for IBM-designated error conditions.

Changes made dynamically to the option table, using the error-handling
subroutines, are in effect for the duration of the program that made the change.
That is, the copy of the option table in the executing program is changed, but the
copy in the library remains unchanged.

The option table is generated by the macro VSFUOPT. This macro and
information on its use are part of the VS FORTRAN Optional Restricted
Materials. Your system administrator will know whether and how the error option
table has been modified for your organization.

The syntax for each of the error handling subroutines is shown below, under "Error
Handling Subroutines." The details of the error option table and its preset
information are given under "Error Option Table" on page 330. For an
explanation of how to use extended error handling, see VS FOR TRAN
Programming Guide.

Chapter 10. Extended Error Handling Subroutines and Error Option Table 323

Error Handling Subroutines

ERRMON Subroutine

The ERRMON subroutine calls the FORTRAN error monitor routine, the same
routine used by FORTRAN itself when it detects an error.

Syntax

CALL ERRMON (imes,iretcd,ierno [,datal[,data2] ...])

imes

iretcd

iemo

The name of an array, aligned on a fullword boundary, that contains, in
EBCDIC characters, the text of the message. The number of the error
condition should be included as part of the text, because the error monitor
prints only the text passed to it. The first item of the array contains an
integer whose value is the length of the message. Thus, the first 4 bytes of
the array are not printed. If the message length is greater than the length of
the buffer, it is printed on two or more lines of printed output.

An integer variable made available to the error monitor for setting the
following codes:

o The option table or user-exit routine indicates that standard correction
is required.

I The option table indicates that a user exit to a corrective routine has
been executed. The function is to be reevaluated using arguments
supplied in the parameters: datal,data2

For input/output type errors, the value 1 indicates that standard
correction is not wanted.

The error condition number in the option table. If any number specified is
not within range of the option table, an error message is printed.

datal,data2 ...
Variable names in an error-detecting routine for the passing of arguments
found to be in error. One variable must be specified for each argument.
Upon return to the error-detecting routine, results obtained from corrective
action are in these variables. Because the content of the variables can be
altered, the locations in which they are placed should be only in the CALL
statement to the error monitor;
otherwise, the user of the function may have literals or variables destroyed.

Because data 1 and data2 are the parameters that the error monitor passes to
a user-written routine to correct the detected error, care must be taken to

324 VS FORTRAN Language and Library Reference

o

o

c

o

ERRSA V Subroutine

o

ERR SET Subroutine

o

make sure that these parameters agree in type and number in a call to
ERRMON and/or in a call to a user-written corrective routine, if one exists.

ERRMON examines the option table for the appropriate error number and its
associated entry and takes the actions specified. If a user-exit address has been
specified, ERRMON transfers control to the user-written routine indicated by that
address. Thus, the user has the option of handling errors in one of two ways:

• Call ERRMON without supplying a user-written exit routine.

Call ERRMON and providing a user-written exit routine.

Example:

CALL ERRMON (MYMSG,ICODE,315,D1,D2)

The example states that the message to be printed is contained in an array named
MYMSG; the field named ICODE is to contain the return code; the error condition
number to be investigated is 315; and arguments to be passed to the user-written
routine are contained in fields named D 1 and D2.

The ERRSA V subroutine copies an option table entry into an 8-byte storage area
accessible to the VS FORTRAN programmer.

r-: Syntax

~ALL ERRSA V (ierno,tabent)

iemo

tabent

The error number in the option table. Should any number not within the
range of the option table be used, an error message will be printed.

The name of an 8-byte storage area in which the option table entry is to be
stored.

Example:

CALL ERRSAV (213,ALTERX)

The example states that the entry for error number 213 is to be stored in the area
named AL TERX.

The ERR SET subroutine permits the user to control execution when error
conditions occur. For a range of error messages the user can specify:

• How many errors can occur before execution ends

• How many error messages can be printed

Chapter 10. Extended Error Handling Subroutines and Error Option Table 325

Whether a traceback is to be printed

• Whether a user exit routine is to be executed

Syntax

CALL ERR SET (ierno,inoal[,inomes[,itrace[,iusadr[,irange]]]])

iemo

inoaI

The error number. Should any number not within the range of the option
table be used, an error message will be printed. (If ierno is specified as 212,
there is a special relationship between the ierno and irange parameters. See
the explanation of irange, following.)

An integer specifying the number of errors permitted before each execution
is terminated. If inoal is specified as either zero or a negative number, the
specification is ignored, and the number-of -errors option is not altered. If a
value of more than 255 is specified, an unlimited number of errors is
permitted.

The value of inoal should be set at 2 or greater if transfer of control to a
user-supplied error routine is desired after an error. If this parameter is
specified with a value of 1, execution is terminated after only one error.

inomes

itrace

iusadr

An integer indicating the number of messages to be printed. A negative
value specified for inomes suppresses all messages; a specification of zero
indicates that the number-of-messages option is not to be altered. If a value
greater than 255 is specified, an unlimited number of error messages is
permitted.

An integer whose value may be 0, 1, or 2. A specification of 0 indicates the
option is not to be changed; a specification of 1 requests that no traceback
be printed after an error; a specification of 2 requests a traceback be printed
after each error occurrence. (If a value other 1 or 2 is specified, the option
remains unchanged.)

Specifies one of the following:

• The value 1, indicating that the option table is to be set to show no
user-exit routine (that is, standard corrective action is to be used when
continuing execution).

• The name of a closed subroutine that is to be executed after the
occurrence of the error identified by ierno. The name must appear in an
EXTERNAL statement in the source program, and the routine to which
control is to be passed must be available at link-editing time.

326 VS FORTRAN Language and Library Reference

o

o

o

o

o

irange

• The value v, indicating that the table entlY is not to be altered.

See "Coding the User Exit Routine" on page 328.

Specifies one of the following:

• An error number higher than that specified in ierno. This number
indicates that the options specified for the other parameters are to be
applied to the entire range of error conditions encompassed by ierno and
irange. (If irange specifies a number lower than ierno, the parameter is
ignored, unless ierno specifies the number as 212.)

• A print control specifier if ierno specified 212. The value 1 is specified
to provide single spacing for an overflow line. If a value other than 1 is
specified, no print control is provided.

The default value 0 is assumed if the parameter is omitted (that is, no print control
is provided, and the values specified for all parameters apply only to the error
condition number in ierno).

Example 1:

CALL ERRSET (310,20,5,0,MYERR,320)

This example specifies the following:

Error condition 310 (ierno).

• The error condition may occur up to 20 times (inoal).

• The corresponding error message may be printed up to 5 times (inomes).

The current action for traceback information is to remain in force (itrace).

• The user-written routine MYERR is to be executed after each error (iusadr).

• The same options are to apply to all error conditions from 310 to 320 (irange).

Example 2:

CALL ERRSET (212,10,5,2,1,1)

This example specifies:

• Error condition 212.

• The condition may occur up to 10 times.

• The corresponding message may be displayed up to 5 times.

• Traceback information is to be displayed after each error.

• Standard corrective action is to be executed after an error.

• Print control is to be employed.

Chapter 10. Extended Error Handling Subroutines and Error Option Table 327

For illustration purposes, this example explicitly specifies all default options except
that used in requesting print control.

Example 3:

CALL ERRSET (212,0,0,0,0,1)

This example illustrates an alternative method of specifying exactly the same
options as the second example. It states that no changes are to be made to default
settings except that used in requesting print control.

Coding the User Exit Routine

When a user exit routine address is supplied in the option table entry for a given
error number, the error monitor calls the specified subroutine for corrective action.
The subroutine is called by assembler language code equivalent to the following
statement:

CALL x (iretcd,ierno,data1,data2 ...)

where x is the name of the routine whose address was placed into the option table
by the iusadr parameter of the CALL ERRSET statement. The parameters iretcd,
ierno, datal, data2 ... correspond to the parameters specified for each error message
in Figure 40 on page 336, Figure 41 on page 339, and Figure 42 on page 342.

If an error occurs during input/output, subroutine x must not execute any
P()"RT"U A. NT I() ~t!:lt~tn~nt~ fnr ~v!:ltnnl~ ()PPN ("'IT ()C;;;:P TN()TTT"UP "UP A. n -. _ ... _ -...&, - _ .. _ ... _ _ _, ... _ ... _ _1"" ... _, _ ,., -----, '""""-C.- ~, ... ~ ... ~,

WRITE, BACKSPACE, ENDFILE, REWIND, DEBUG, PAUSE, or any calls to
PDUMP or ERRTRA. Subroutine x must not call the library routine that detected
the error, or any routine which uses that library routine. For example, a statement
such as:

R = A**B

cannot be used in the exit routine for error number 252, because the FORTRAN
library subroutine FRXPR# uses EXP, which detects error number 252.

Standard or user-supplied corrective action is indicated by setting the return code
(iretcd), as follows:

1. If iretcd is set to 0, standard corrective action is requested; datal and data2
must not be altered by the routine. If datal and data2 are altered when iretcd
is set to 0, the operations that follow will have unpredictable results.

2. If iretcd is set to 1, the execution-time library reacts to the user-supplied
correction action specified in Figure 40 on page 336, Figure 41 on page 339,
and Figure 42 on page 342.

3. Only the values 0 and 1 are valid for iretcd. A user exit routine must ensure
that one of these values is used if it changes the return code setting.

The user-written exit routine can be written in FORTRAN or in assembler
language. In either case, it must be able to accept the call to it as shown above.
The user exit routine must be a closed subroutine that returns control to the caller.

328 VS FORTRAN Language and Library Reference

C· ' "

c

c

o

ERRSTR Subroutine

c

ERRTRA Subroutine

o

If the user-written exit routine is written in assembler language, the end of the
parameter list can be checked. The high-order bit of the last parameter will be set
to 1. Standard register linkage conventions are followed, using registers 13, 14, 15,
and 1.

If the routine is written in FORTRAN, the parameter list must match in length the
parameter list passed in the CALL statement issued to the error monitor.

Actions that users may take if they wish to correct an error are described in
Figure 40 on page 336, Figure 41 on page 339, and Figure 42 on page 342.

The ERRSTR subroutine stores an entry in the option table.

j: S~mx
~ALL ERRSTR (iemo,tabent)

iemo

tabent

The error number for which the entry is to be stored in the option table.
Should any number. not within the range of the option table be used, an error
will be printed.

The name of an 8-byte storage area containing the table entry data.

Example:

CALL ERRSTR (213,ALTREX)

The example states that an entry for error number 213, stored in ALTREX, is to
be restored to the option table.

The ERR TRA subroutine dynamically requests a traceback and continued
execution.

The CALL ERRTRA statement has no parameters.

Chapter 10. Extended Error Handling Subroutines and Error Option Table 329

Error Option Table

Field Field
Contents Length

Number of 4 bytes
entries

First 4 bytes
Message
Number

The structure of option table entries is shown in Figure 36 and Figure 37 on
page 331. Figure 38 on page 333 lists the preset information for each error
condition. Figure 39 on page 334, Figure 40 on page 336, Figure 41 on
page 339, and Figure 42 on page 342 summarize the preset information for
standard or user-supplied corrective action. The preset entries that cannot be
altered are identified in Figure 38 on page 333.

Default Field
Value Description

182 Number of entries in the option table.

120 Message number of the first table entry.

Figure 36. Option Table Preface Entry

330 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

M .. ~~p''' Ontion Tahles
... ·----...... -0- - r ----- ~ ---- --

FIELD
CONTENTS

Number
of error
occur­
rences

Number
messages
to print

Error
count

Option
bits

User
exit

FIELD
LENGTH

1 byte

1 byte

1 byte

1 byte

4 bytes

DEFAULTl
VALUE

102

o

42
(hex)

Figure 37. Error Option Table Entry

FIELD DESCRIPTION

Number of times this error condition
should be allowed to occur. When the
value of the error count field (below)
equals this value, job processing is
terminated. Number may range from 0 to
to 255. A value of 0 means an unlimited
number of occurrences. 3

Number of times the corresponding
message is to be printed before message
printing is suppressed. A value of 0
means no message is to be printed.

The number of times this error has
occurred. A value of 0 indicates that no
occurrences have been encountered.

Eight option bits defined as follows
(the default setting is underscored):

Bit Setting Explanation

o

2

4

5

7

Q

1

o

1

Q

1

Q

1

Q

Q

1

o
1

Q

No control character
supplied for overflow lines.
Control character supplied
to provide single spacing
for overflow lines.

Table entry cannot be
modified. 5

Table entry can be
modified.

Fewer than 256 errors have
occurred.
More than 256 errors have
occurred. (Add 256 to error
count field above to
determine the number.)

Do not print buffer
with error message.
Print buffer contents.

Reserved.

Print messages default
number of times only.
Unl imited printing
requested; print for every
occurrence of error.

Do not print traceback map.
Print traceback map.

Reserved.

Indicates where a user corrective
routine is avai lable. A value other than
1 specifies the address of the user­
written routine.

Chapter 10. Extended Error Handling Subroutines and Error Option Table 331

Notes to Figure 37:

The default values shown apply to all error numbers (including additional user
entries) unless excepted by a footnote.

2 Errors 207, 208, 209, and 215 are set as unlimited, and errors 162, 163, 164,
165, 167, 168, 205, 217, 230, and 240 are set to 1.

3 An unlimited number of errors may cause the FORTRAN job to loop.

4 Errors 162, 163, 164, 165, 167, 168,230, and 240 are set to 1.

5 The entry for errors 162, 163, 164, 165, 167, 168, 205, 230, and 240 cannot
be modified.

6 The entry is set to 0 except for errors 212, 215, 218,221,222, 223, 224,225,
227,229, and 238.

7 The entry is set to 1 except for error 205.

332 VS FORTRAN Language and Library Reference

o

o

o

o NO. OF NO. OF MODI- PRINT TRACE- STANDARD
ERROR ERRORS MESSAGES PRINT FIABLE BUFFER BACK CORRECTIVE
CODE ALLOWED ALLOWED CONTROL ENTRY CONTENT ALLOWED ACTION

120- 1 1 NA Yes No Yes Yes
139

140 10 5 NA Yes No Yes Yes
141- 1 1 NA No No No No

145
146- 1 1 NA No No Yes No

149
150 NA 1 NA Yes No No NA
151 Unlimited Un 1 imi t NA Yes No No NA
152 10 5 NA Yes No Yes Yes
153 1 1 NA No No Yes No
154- 10 5 NA Yes No Yes Yes

155
156- 1 1 NA No No Yes Yes

158
159- 10 5 NA Yes No Yes Yes

161
162- 1 1 NA No No Yes Yes

165
166 10 5 NA Yes No Yes Yes
167 1 1 NA No No Yes Yes
168 1 1 NA No No Yes Yes
169- 10 5 NA Yes No Yes Yes
200 .:;..

201 Un 1 im i ted 5 NA Yes No Yes Yes
202 1 1 NA No No Yes No
203- 10 5 NA Yes No Yes Yes

204 o 205 1 1 NA No No No No
206 10 5 NA Yes No Yes Yes
207 Un 1 imi ted 5 NA Yes No Yes Yes
208 Unl imited 5 NA Yes No Yes Yes
209 Unl imited 5 NA Yes No Yes Yes t

210 10 5 NA Yes No Yes Yes t

211 10 5 NA Yes No Yes Yes
212 10 5 No2 Yes Yes Yes Yes
213 10 5 NA Yes No Yes Yes
214 10 5 NA Yes No Yes Yes
215 Unlimited 5 NA Yes Yes Yes Yes
216 10 5 NA Yes No Yes Yes
217 13 1 NA Yes No Yes Yes
218 10 4 NA Yes Yes 4 Yes Yes
219 105 5 NA Yes No Yes Yes
220 10 5 NA Yes No Yes Yes
221- 10 5 NA Yes Yes Yes Yes

225
226 10 5 NA Yes No Yes Yes
227 10 5 NA Yes Yes Yes Yes
228 10 5 NA Yes No Yes Yes
229 10 5 NA Yes Yes Yes Yes
230 1 1 NA Yes No Yes No
231- 10 5 NA Yes No Yes Yes

237
238 10 5 NA Yes Yes Yes Yes
239 10 5 NA Yes No Yes Yes
240 1 1 NA No No Yes No
241- 10 5 NA Yes No Yes Yes

301

o FIgure 38. Option Table Default Values

Chapter 10. Extended Error Handling Subroutines and Error Option Table 333

Notes to Figure 38:

No corrective action is taken except to continue execution. For boundary
alignment, the corrective action is part of the support for misalignment. For
error 209, no user corrective action can be specified.

2 If a print control character is not supplied, the overflow line is not shifted to
incorporate the print control character. Thus, if the device is tape, the data is
intact, but if the device is a printer, the first character of the overflow line is
not printed but is treated instead as the print control. Unless the user has
planned the overflow, the first character would be random and thus the
overflow print line control can be any of the possible ones. It is suggested
that when the device is a printer, the option be changed to provide single
spacing.

It is not considered an error if the END parameter is present in a READ
statement. No message or traceback is printed and the error count is not
altered.

4 For an input/output error, the buffer may have been partially filled or not
filled at all when the error was detected. Thus, the buffer contents could be
blank when printed. When an ERR parameter is specified in a READ
statement, it is honored even though the error occurrence is greater than the
amount allowed.

5 Since a single WRITE performed in a loop could cause 10 occurrences of the
message for the same missing DD statement, the count field does not
necessarily mean that up to 10 missing DD statements will be detected in a
single debugging run. For user-supplied corrective action, see Figure 39

For user-supplied corrective action, see Figure 40 on page 336.

Error
Code IOSTAT= ERR =

120-129 Yes Yes

130 Yes5 Yes6

131-140 Yes Yes

151 No No

152 Yes Yes

153-154 No No

155 Yes Yes

156-161 No No

162-165 Yes Yes

166 No No

167 Nos No

168 No No

Figure 39 (Part 1 of 2). IOSTAT and ERR Parameters Honored for I/O Errors

334 VS FORTRAN Language and Library Reference

o

o

C-~"··' , !

o

o

o

Error
Code IOSTAT= ERR =

169 No No

170 Yes Yes

171 No No

172-174 Yes Yes

175-199 No No

200 Yes Yes

201 No No

203-204 No No

205 No No

206-213 No No

214 Yes Yes

215 No No

216 Yes Yes

217 No No

218-220 Yes Yes

221-230 No No

231-232 Yes Yes

233 No No

234-236 Yes Yes

237-285 No No

286 Yes Yes

287-301 No No

Figure 39 (Part 2 of 2). 10STAT and ERR Parameters Honored for I/O Errors

Notes to Figure 39:

If IOSTAT=Yes for a given error number, the IOSTAT variable will be set to
the error number if that error occurs.

2 If IOSTAT=No for a given error number, the IOSTAT variable will not be set
if the error occurs.

3 If ERR=Yes for a given error number, the ERR label will be branched to if
the error occurs.

4 If ERR=No for a given error number, the ERR label will not be branched to
if the error occurs.

5 For error codes 130 and 167, VSAM error information is returned in IOSTAT
as two consecutive INTEGER *2 values. The first is the VSAM return code
(the value in register 15 after the execution of the VSAM macro). The
second is the VSAM error or feedback code.

Chapter 10. Extended Error Handling Subroutines and Error Option Table 335

6 If an error code of 130 results from processing an OPEN statement, a return
code of 4 from the VSAM OPEN macro is not considered an error. The
ERR= label will not be branched to, but IOSTAT is still set to the appropriate
values.

Message Corrective Action Cross-Reference Tables

Parameters
Error Passed To Standard User-Supplied
Code User Exit Corrective Action Corrective Action

120- A,B,D 110 statement ignored. See Note 1.
123

124 A,B,D,L 110 statement ignored. See Note 1.

125 A,B,D,J,K,L 110 statement ignored. See Note. 1.

126 A,B,D,J,K,L 110 statement ignored. If the key The condition described by
argument was supplied on a KEY error code 126 is not
parameter, file position is lost. If the considered an error if the
key argument was supplied on a NOTFOUND parameter is
KEYGE or KEYGT parameter, the file specified on the READ
is positioned following the last record statement. See Note 1.
in the file.

127, A,B,D 110 statement ignored. See Note 1.
128

129 A,B,D,M,N The record is not written or rewritten. See Note 1.
File position is lost.

130 A,B,D,O,P The 110 statement is not processed See Note 1.
further. File position is lost.

131- A,B,D The file was not successfully opened See Note 1.
134 for use by the FORTRAN program

even though the VSAM. KSDS was
internally opened for access via
VSAM.

135 A,B,D,M,N File position is lost. The condition described by
error code 135 is not
considered an error if the
DUPKEY parameter is
specified on the WRITE or
REWRITE statement. See
Note 1.

136, A,B,D 110 statement ignored. See Note 1.
137

Figure 40 (Part 1 of 3). Corrective Action after Error

336 VS FORTRAN Language and Library Reference

o

o

o Parameters
Error Passed To Standard User-Supplied
Code User Exit Corrective Action Corrective Action

138 A,B,D The file was not successfully opened See Note 1.
for use by the FORTRAN program
even though the VSAM KSDS was
internally opened for access via
VSAM.

139 A,B,D,M, The record is not rewritten. File See Note 1.
N,Q position is lost.

140 A,B,D,M,N The I/O statement is not processed See Note 1.
further. The file remains available for
the loading of subsequent records.

205 A,B,D Program termination. See Note 1.

206 A,B,I I=low order part of number for User may alter I.
input too large. See Note 2.

211 A,B,C Treat format field containing C as end If compiled FORMAT
of FORMAT statement. statement, put hexadecimal

equivalent of character in C.
If variable format, move
EBCDIC character into C.
See Note 3.

212 A,B,D Input: Ignore remainder of I/O list. See Note 1.

o Output: Continue by starting new
output record. Supply carriage control
character if required by Option Table.

213 A,B,D Ignore remainder of I/O list. See Note 1.

214 A,B,D Input: Ignore remainder of I/O list. If user correction is requested,
Ignore input/output request if for the remainder of the I/O list
ASCII tape. is ignored.

Output: If unformatted write initially
requested, change record format to VS.
If formatted write initially requested,
ignore input/output request.

215 A,B,E Substitute zero for the invalid The character placed in E will
character. be substituted for the invalid

character; input/output
operations may not be
performed. See Note 3.

217 A,B,D Increase VS FORTRAN sequence See Note 1.
number and read next file.

218 A,B,D,F Ignore remainder of I/O list. See Note 1.

Figure 40 (Part 2 of 3). Corrective Action after Error

o
Chapter 10. Extended Error Handling Subroutines and Error Option Table 337

Parameters
Error Passed To Standard User-Supplied
Code User Exit Corrective Action Corrective Action

219- A,B,D Ignore remainder of 110 list. See Note 1.
224

225 A,B,E Substitute zero for the invalid The character placed in E will
character. be substituted for the invalid

character. See Note 3.

226 A,B,R R=O for input number too small. User may alter R.

R = 16**63 - 1 for input number
too large.

227 A,B,D Ignore remainder of 110 list. See Note 1.

229 A,B,D Ignore remainder of 110 list. See Note 1.

231 A,B,D Ignore remainder of 110 list. See Note 1.

232 A,B,D,G Ignore remainder of 110 list. See Note 1.

233 A,B,D Change record number to list See Note 1.
maximum allowed (32000).

234, A,B,D Ignore remainder of 110 list. See Note 1.
236

237 A,B,D,F Ignore remainder of 110 list. See Note 1.

238 A,B,D Ignore remainder of 110 list. See Note 1.

240 See Note 4 Program termination None

286 A,B,D Ignore request See Note 1.

287 A,B,D Ignore request See Note 1.

288 A,B,D Implied wait See Note 1.

Figure 40 (Part 3 of 3). Corrective Action after Error

Notes to Figure 40:

The alphabetic characters used in the "Parameters Passed to User" column have
the following meanings:

Parameter Meaning

A
B
C
D
E
F
G
I
J
K
L
M
N

Address of return code field (INTEGER *4)
Address of error number (INTEGER*4)
Address of invalid format character (See Note 5)
Address of data set reference number (INTEGER *4)
Address of invalid character (See Note 5)
Address of DECB
Address of record number requested (INTEGER *4)
Result after conversion (INTEGER *4)
Address of value of key argument
Address of length of key argument supplied
Address of KEYID value
Address of beginning of record
Address of length of record

338 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

o
P
Q
R

Address of VSAM return code
Address of error or feedback code
Address of key in record previously read
Result after conversion (REAL * 4)

Note 1: If the error was not caused during asynchronous input/output processing,
the user exit-routine cannot perform any asynchronous I/O operation and, in
addition, may not perform any REWIND, BACKSPACE, or ENDFILE operation.
If the error was caused during asynchronous input/output processing, the user
cannot perform any input/output operation. On return to the library, the
remainder of the input/output request will be ignored.

If error condition 218 (input/output error detected) occurs while error messages
are being written to the object error data set, the message is written to the console
and the job is terminated. If no DO card has been supplied for the object error
data set, error message IFY2191 is written out at the console and the job is
terminated.

Note 2: The user exit routine may supply an alternative answer for the setting of
the result register. The routine should always set an INTEGER *4 variable and the
FORTRAN library will load fullword or halfword depending on the length of the
argument causing the error.

Note 3: Alternatively, the user can set the return code to 0, thus requesting a
standard corrective action.

Note 4: Code 240 generates a message showing the system or program code
causing program termination, the address of the ST AE Control Block, and the
contents of the last PSW when abnormal termination occurred. Further
information appears under message code IFY240 in.Appendix I, "Library
Procedures and Messages" on page 463.

Note 5:

• If LANGLVL(66), then LOGICAL*l.

If LANGLVL(77), then CHARACTER * 1.

Chapter 10. Extended Error Handling Subroutines and Error Option Table 339

Parameters Standard User-Supplied
Error Passed to Reason for Corrective Corrective
Code User Exit l Interrupt2 Action Action

207 A,B,D,I Overflow For exponent overflow, F or exponent
the result register is set overflow, the

Integer overflow to the largest user may alter
(Interrupt code 8) floating-point number. D3.

The sign of the result
Exponent overflow register is not altered.

(Interrupt code C)4 No standard fixup for
other interrupts.

208 A,B,D,I Underflow The result register is set The user may
to zero. alter D3.

Exponent underflow
(Interrupt code D).

209 A,B,D,I Divide check For floating-point divide, For
where N/O and N=O, the floating-point

Integer divide (Interrupt result register is set to O. divide, the user
code 9) Where N ..., 0, the result may alter D3.

register is set to the
Decimal divide (Interrupt largest possible floating
code B) point number. No

standard fixup for other
Floating-point divide interrupts.

(Interrupt code F)4 o
210 A,B Operation exception No special corrective (See Note5)

(Interrupt code 1) action other than
correcting boundary

Specification exception misalignment for some
(Interrupt code 6) specification exceptions.

Data exception
(Interrupt code 7)

Figure 41. Corrective Action after Program Interrupt

Notes to Figure 41:

The variable types and meanings are as follows:

I Variable Type Meaning6

A INTEGER * 4 The return code field.

o
340 VS FORTRAN Language and Library Reference

o

o

o

Variable Type Meaning6

B INTEGER * 4 The error number.

D REAL * 16 The result register after the interrupt.

I INTEGER * 4 The exponent is an integer value for
the number in D. The value in I is not
the true exponent, but what was left
in the exponent field of the
floating-point number after the
interrupt.

2 Program interrupts are described in the appropriate Principles of Operations
publication, listed in the preface.

4

The user exit routine may supply an alternate answer for the setting of the
result register. This is accomplished by replacing the value in D. Although
the interrupt may be caused by a short, long, or extended floating-point
operation, the user exit routine need not be concerned with this. The user exit
routine should always set the correct length, but may set a REAL * 16 variable
and the VS FORTRAN library will load the correct length data item
depending on the floating-point operation that caused the interrupt. For
interrupts other than floating point, the user exit routine does not have the
ability to change the result register and any data placed in D is ignored.

For floating-point interrupts, the result register is shown in the message. For
interrupts other than floating point, the result register contains zeros.

5 The boundary alignment adjustments are informative messages; there is
nothing to alter before execution continues.

6 These are returned in a parameter list.

If a VS FORTRAN program is going to use them, the SUBROUTINE
statement may be specified as:

SUBROUTINE MYEXIT(IRC,IERR,DREG,IEXP)

where IRe, IERR, DREG, and IEXP correspond to A, B, D, and I,
respectively, and DREG is given a type of REAL * 16.

If an assembler language program is going to use them, they are pointed to by
register 1 in the standard OS/VS convention of a list of addresses, each of
which points to A,B,D,1.

Chapter 10. Extended Error Handling Subroutines and Error Option Table 341

Options

FORTRAN Standard Parameters Passed o
Error Reference Invalid Argument Corrective Action to User Exit
Code (See Note 1) Range (See Notes 2 and 3) (See Note 4)

241 K=I**J I = O,J~O K:=O A, B, I,J

242 Y=X**I X=O, I~O If 1=0, Y= 1 A, B,X,I

IfI<O, Y=.

243 DA=D**I D=O, I~O IfI=O, Y=l A, B,D, 1

IfI<O, Y=.

244 XA=X**Y X=O, Y~O XA=O A,B,X, Y

245 DA=D**DB D=O, DB~O DA=O A,B,D,DB

246 CA=C**I C=O+ Oi, 1 ~O If 1=0, C= 1 + Oi A, B, C, 1

IfI<O, C=. +Oi

247 CDA=CD**I c=o+ Oi, I ~o If 1= 0, C = 1 + Oi A, B, CD, I

If 1<0, C=. +Oi

248 Q=QA**J QA=O,J~O J<O,Q=. A, B, QA,J

J=O,Q=l

249 Q=QA**QB QA=O, QB~O QB<O,Q=. A,B,QA,QB
QB=O,Q=l

QA<O, QB:;i=.O Q=IQAI**QB

250 Q=QA**QB log2(QA)*QB;;;:' 252 Q=. A,B,QA,QB

2.~1 Y=SQRT (X) x<o Y=iXi YZ A. Tl 'T
rl., ll, A

252 Y=EXP (X) x> 174.673 Y. A,B,X

253 Y=ALOG (X) x=o Y=-. A,B,X

X<o Y=loglXI A,B,X

Y=ALOGI0 (X) x=o Y=-. A,B,X
X<o Y=loglOlXI A,B,X

254 Y=COS (X) IXI;;;:' (2 18)*11" Y=V2/2
Y=SIN (X)

255 Y=ATAN2 (X,XA) X=O. XA=O Y=O A,B,X,XA

256 Y=SINH (X) IHI ;;;:'175.366 Y=(SIGN of X). A,B,X
Y=COSH (X) Y=·

257 Y=ASIN (X) IXI>1 If X>1.0, ASIN(X)=1T/2

If X<-1.0, ASIN(X)=-1T/2

Y=ACOS (X) If X> 1.0, ACOS = °
If X<-l.O, ACOS=1T

258 Y=TAN (X) IXI;;;:' (2 18)*11" Y=1
Y=COTAN (X)

259 Y=TAN (X) X is too close to an Y=· A,B,X
odd multiple of 11"/2

Y=COTAN (X) X is too close to a Y=.
multiple of 11"

Figure 42 (Part 1 of 4). Corrective Action after Mathematical Subroutine Error

o
342 VS FORTRAN Language and Library Reference

o Options

FORTRAN Standard Parameters Passed
Error Reference Invalid Argument Corrective Action to User Exit
Code (See Note 1) Range (See Notes 2 and 3) (See Note 4)

260 Q=2**QA QA>252 Q=. A,B,QA

261 DA=DSQRT (D) D<O DA=IDIY2 A,B,D

262 DA=DEXP (D) D> 174.673 D=· A,B,D

263 DA=DLOG (D) D=O DA=-· A,B,D

D<O DA=loglXI

DA=DLOG10 (D) D=O DA=-. A,B,D

D<O DA=loglOlXI

264 DA=DSIN (D) IDI;;;:' (250)*11" DA=V2/2 A,B,D

DA=DCOS (D)

265 DA=DATAN2 (D,DB) D=O, DB=O DA=O A,B,D,DB

266 DA=DSINH (D) IDI;;;:' 175.366 DA = (SIGN of X). A,B,D

DA=DCOSH (D) DA=·

267 DA=DASIN (D) IDI > 1 IfD>1.0, DASIN=7T/2

If D<-l.O, DASIN=-7T/2

DA=DACOS (D) If D> 1.0, DACOS (D) = °
If D<-l.O, DACOS (D) =7T

268 DA=DTAN (D) IXI;;;:' (2 5°)*11" DA=l A,B,D

o DA=DCOTAN (D)

269 DA=DTAN (D) D is too close to an DA=· A,B,D
odd multiple of 11"/2

DA=DCOTAN (D) D is too close to a DA=· A,B,D
multiple of 7T

For error 270, CQA=X1 + iX2

270 CQ=CQA**J CQA=O+Oi J=O, CQ=l + O.i A, B, CQA,J

J~O J < 0, CQ=. + O.i

For errors 271 through 275, C=X1 + iX2

271 Z=CEXP (C) X 1>174.673 Z=·(COS X2 + iSIN X2) A,B,C

272 Z=CEXP (C) IX2 1;;;:' (2 18)*11" Z=e xl + O*i A,B,C

273 Z=CLOG (C) C=O+ Oi Z=-. + Oi A,B,C

274 Z=CSIN (C) IX11;;;:' (2 18)*7T z=o + SINH(X2)*i A,B,C

Z=CCOS (C) Z=COSH(X
2

) + O*i A,B,C

275 Z=SCIN (C) X2> 174.673 Z=...!...(SIN Xl + iCOS Xd A,B,C
2

Z=CCOS (C) Z=· (COS Xl - iSIN Xd

Figure 42 (Part 2 of 4). Corrective Action after Mathematical Subroutine Error

o
Chapter 10. Extended Error Handling Subroutines and Error Option Table 343

Options

FORTRAN Standard Parameters Passed
Error Reference Invalid Argument Corrective Action to User Exit o
Code (See Note 1) Range (See Notes 2 and 3) (See Note 4)

275 Z=CSIN (C) X2<-174.673 Z= ~ (SIN Xl - iCOS Xl) A,B,C
2

Z=CCOS (C) Z= ~(COS Xl + iSIN Xl) A,B,C
2

For errors 276 through 280, CQ=XI + iX2

276 Z=CQEXP (CQ) Xl> 174.673 Z=·(COS X2 + iSIN X2) A,B,CQ

277 Z=CQEXP (CQ) IX21> 2100 Z=exI + O*i A,B,CQ

278 Z=CQLOG (CQ) CQ=O+Oi Z=-. + Oi A,B,CQ

279 Z=CQSIN (CQ) IXII~ 2100 Z=O + DSINH (X2)*i A,B,CQ

Z=CQCOS (CQ) Z=DCOSH (X2) + O*i

280 Z=CQSIN (CQ) X2> 174.673 Z=~(SIN Xl +iCOS Xl) A,B,CQ
2

Z=CQCOS (CQ) Z=~(COS XI=iSIN Xl) A,B,CQ
2

Z=CQSIN (CQ) X2< -174.673 Z= .!.(SIN Xl - iCOS Xl) A,B,CQ

Z=CQCOS (CQ) Z= ~(COS Xl =iSIN Xd
2

For errors 281 through 285, CD=XI + iX2

281 Z=CDEXP (CD) Xl> 174.673 Z=.(COS X2 + iSIN X2) A,B,CD ()
282 Z=CDEXP (CD) IX21 ~ (250)*71" Z=exI + O*i A,B,CD

283 Z=CDLOG (CD) CD=O + Oi Z=-. + Oi A,B,CD

284 Z=CDSIN (CD) IXII~(250)*7I" Z=O+ SINH(X2)*i A,B,CD

Z=CDCOS (CD) Z=COSH(X2) + O*i

285 Z=CDSIN (CD) X2> 174.673 Z= ~(SIN Xl + iCOS Xl) A,B,CD
2

Z=CDCOS (CD) Z= ~ (COS Xl - iSIN Xl) A,B,CD
2

Z=CDSIN (CD) X2< -174.673 Z=~(SIN XI-iCOS Xl) A,B,CD
2

Z=CDCOS (CD) Z= ~ (COS Xl + iSIN Xl) A,B,CD
2

289 QA=QSQRT (Q) Q<O QA=IQI Y2 A,B,Q

290 Y=GAMMA (X) X~ 2-252 or Y=· A,B,X

X~57.5744

291 Y=ALGAMA (X) X~O or Y=. A,B,X

X~4.2937*1073

Figure 42 (Part 3 of 4). Corrective Action after Mathematical Subroutine Error

c
344 VS FORTRAN Language and Library Reference

o

c

0·"
,I'
I,

Options

FORTRAN Standard Parameters Passed
Error Reference Invalid Argument Corrective Action to User Exit
Code (See Note 1) Range (See Notes 2 and 3) (See Note 4)

292 QA=QEXP (Q) Q> 174.673 QA=. A,B,Q

293 QA=QLOG (Q) Q=O QA=-. A,B,Q

Q<O QA=loglXI

QA=QLOG10 (Q) Q=O QA=. A,B,Q

Q<O QA=logl0 IXI A,B,Q

294 QA=QSIN (Q) IQI ~ 2100 QA=V2/2 A,B,Q

QA=QCOS (Q)

295 QA=QATAN2 (Q,QB) Q=O, QB=O QA=O A,B,Q,QB

296 QA=QSINH (Q) IQI ~ 175.366 QA=. (SIGN Q) A,B,Q

QA=QCOSH (Q) QA=.

297 QA=QARSIN (Q) IQI>l If Q> 1.0, QARSIN= rr/2 A,B,Q

If Q < -1.0, QARSIN=-rr/2 A,B,Q

QA=QARCOS (Q) If Q> 1.0, QARCOS(Q)=O A,B,Q

If Q< -1.0, QARCOS(Q)=rr

298 QA=QTAN (Q) IQI>2 1OO QA=l A,B,Q

QA=QCOTAN (Q)

299 QA=QTAN (Q) Q is too close to an QA=. A,B,Q
odd multiple of rr/2

QA=QCOTAN (Q) Q is too close to a QA=. A,B,Q
mul tiple of rr

300 DA=DGAMMA (D) D ~ 2-252 or DA=. A,B,D

D~57.5774

301 DA=DLGAMA (D) D~O or DA=·

D ~ 4.2937*1073

Figure 42 (Part 4 of 4). Corrective Action after Mathematical Subroutine Error

Notes to follow:

Chapter 10. Extended Error Handling Subroutines and Error Option Table 345

Notes to Figure 42:

The variable types are as follows:

Variable
A,B
I,J,K
X,XA,Y
D,DA,DB
C,CA
Q,QA,QB
CQ,CQA
Z,Xl,X2

CD,CDA

Type
INTEGER*4
INTEGER*4
REAL*4
REAL * 8
COMPLEX*8
REAL * 16
COMPLEX*32
Complex variables to be given the length of the function
argument when they appear.
COMPLEX*16

2 The largest number that can be represented in floating point is indicated by
the symbol •.

The value e= 2.7183 (approximately).

4 The user-supplied answer is obtained by recomputation of the function using
the value set by the user routine for the parameters listed.

346 VS FORTRAN Language and Library Reference

, \ ('" ""J

o

o

o

o

o

Appendix A. Source Language (FIPS) Flagger

The VS FORTRAN compiler can flag FORTRAN statements that do not conform
to the syntax of the Full or Subset ANS FORTRAN 1978 Standard. See the ANS
manual for subset language flags.

Items Flagged for Full ANS Language

Global Items Flagged

Statements Flagged

• FREE option.

•

The FIPS option cannot be specified with free-form source. The FIPS flagging
is ignored.

LANGL VL(66) option.

The FIPS option cannot be specified for the 1966 ANS FORTRAN language.
The FIPS flagging is ignored.

• Columns 1 to 5 of a continuation card are not blank.

The currency symbol ($) is used in a name.

• A noncharacter variable has an actual length specified.

Explicit type specification statements for REAL * 16; explicit type specification
statements for COMPLEX*16 and COMPLEX*32.

• nH in other than a FORMAT statement.

• Hexadecimal constants used as data initialization.

• Statements that do not conform to ANS:

Asynchronous READ statement

Asynchronous WRITE statement

AT statement

Appendix A. Source Language (FIPS) Flagger 347

•

•

DEBUG statement

DELETE statement

DISPLA Y statement

EJECT statement

END DEBUG statement

INCLUDE statement

NAMELIST statement

READ statement with NAMELIST

REWRITE statement

TRACE statement

WAIT statement

WRITE statement with NAMELIST

COMMON statement

Characier and noncharacter data in the same common block.

DATA statement

The statement appears before the end of the specification statements.

Q, Z, or nH constant is used.

• EQUIVALENCE statement

Character and noncharacter data in an EQUIVALENCE relationship.

• FORMAT statement

The Q or Z format codes are used.

• FUNCTION statement

A length is specified for a real, logical, integer, or complex function.

• IMPLICIT statement

A length is specified for a real, logical, integer, or complex range.

The currency symbol ($) is used as an alphabetic character.

348 VS FORTRAN Language and Library Reference

0

0

o

o

o

• INTEGER, REAL, COMPLEX, LOGICAL type statements

Data initialization is specified.

Execution-Time Cautions

The following items are not flagged. However, they are items that are open to
misinterpretation and may cause confusion.

• Array declarators in DIMENSION, INTEGER, REAL, COMPLEX, DOUBLE
PRECISION, CHARACTER, and COMMON statements.

The value of the lower dimension can exceed the value of the upper dimension
when it is an expression.

• ASSIGN statement

A variable containing a statement number can be used as containing an integer
value with unpredictable results.

• Assigned GOTO statement

The index variable may not contain a statement number that is specified in the
list of statement numbers.

• Assignment statement

A character assignment can be made with unpredictable results into a string
that is also used on the right-hand side of the equal sign.

COMMON statement

The same common block can contain character variables corresponding to
noncharacter variables across subroutines.

The length of the same common block may not be the same across subroutines.

The same common block may be initialized in more than one BLOCK DATA.

• DO statement

The value of the m3 expression can be zero.

Transfer into an inactive DO loop will produce unpredictable results.

• ENDFILE statement

Multifiles can be written.

• FUNCTION, SUBROUTINE, ENTRY statements o The programs must be available.

Appendix A. Source Language (FIPS) Flagger 349

The programs can be called recursively with unpredictable results.

The number, type, and length of the actual and dummy arguments may not
match.

More than one program and/or common block may have the same name.

IMPLICIT statement

The same letter is redefined with different type or length.

• OPEN statement

The file is repositioned at the beginning.

• READ statement on an internal file

Read records until the end of an array even if the file is one record.

• READ statement with FORMAT

Data can be read into the nH field of a FORMAT statement.

• Subscript

Subscript value may be outside the dimension bounds.

• WRITE statement without format on a direct file.

Spanned records can be written.

350 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

Appendix B. IBM and ANS FORTRAN Features

Either the old FORTRAN (LANGLVL(66» or the current FORTRAN
(LANGL VL(77» compiler option is provided at the time of compilation. The
following groups of features are listed in this appendix:

• New ANS FORTRAN 1977 features

General features
New statements
New features in old statements

• Old IBM extensions now in ANS FORTRAN 1977

• IBM extensions not in ANS FORTRAN 1977

• LANGLVL(66) features not in VS FORTRAN

New ANS FORTRAN 1977 Features

General Features

The following new features of the 1977 American National Standard (ANS)
FORTRAN (not supported by the old IBM OS and DOS FORTRAN compilers)
are supported in VS FORTRAN.

• May use asterisk comment indicator in column one.

• Comment before continuation is allowed anywhere in the program unit. Blank
card is treated as a comment.

• External unit identifier may be an integer expression.

• Direct-access input/output (syntax different from IBM's).

• Storage-to-storage input/output (Internal File).

• Specified ignoring of input blanks.

• Expressions are allowed in output lists.

Appendix B. IBM and ANS FORTRAN Features 351

• Character data type is allowed.

May include character substrings.

The collating sequence may be altered.

• Subroutines without RETURN.

- END in subroutine is the same as RETURN.

• Functions (and their entry points) may exist without arguments.

• Dummy argument may be defined if actual argument is in common.

• Array elements are allowed in statement function definitions.

• Array names without subscripts are allowed in the EQUIV ALENCE
statement.

• Complex data may be defined through real components.

• Variables used in adjustable dimensions and lengths may be redefined with no
effect on size of array.

• Integer expressions are allowed in array declarators.

• Nonunity lower bounds for arrays are allowed.

• N onpositive subscript values are allowed.

• Named BLOCK DATA subroutines are allowed.

• Executable statements that cannot be reached are allowed.

• ANINT, CHAR, DNINT, DPROD, ICHAR, IDNINT, INDEX, LEN, and
NINT are recognized as VS FORTRAN-supplied function names.

• DARCOS and DARSIN functions have different names: DACOS and DASIN.

• Logical operators .EQV. and .NEQV. are allowed.

• A number is permitted on nonexecutable statements.

• Comparison of complex operands with equal and not equal relationals is
allowed.

• Exponentiation of complex with complex is allowed.

• All specification statements must precede all DATA statements.

• Negative values for input or output unit identifiers are prohibited.

• Literal format cannot be used for input.

352 VS FORTRAN Language and Library Reference

0

0

o

o

o

o

• H format cannot be used for input.

• Use of a slash as a value separator in list-directed input is allowed.

• Character function is allowed.

• Unspecified width is allowed in A format.

New Statements

• Block IF, ELSE IF, ELSE, END IF statements

• Character type statement

• CLOSE statement

• Double precision type statement

• INQUIRE statement

• INTRINSIC statement

• OPEN statement

• PARAMETER statement

• PROGRAM statement

• SA VB statement

New Features in Old Statements

• BACKSPACE statement:

- UNIT, ERR, and IOSTAT may be used.

• COMMON statement:

- Commas are optional.

• DATA statement:

•

Implied DO statement is allowed.

Type conversion is allowed.

Commas after nonterminal slashes are optional.

DIMENSION statement:

Specification can be negative or zero.

Both lower and upper bound can be names of constants or expressions.

Appendix B. IBM and ANS FORTRAN Features 353

• DO statement:

Loops may be indexed by nonpositive values.

Loops may be indexed by integer, real, or double precision values.

Index may be decremented by negative values.

Backward loops may be used.

Zero trip loops may be used.

Control variable is defined on exit from loop.

Control variable may be real or double precision.

Terminal statements are allowed with computed GO TO, PAUSE, or
logical IF. They are not allowed with block IF, ELSE IF, ELSE, END IF,
or END. If terminal statement is a logical IF, it may not contain a DO,
block IF, ELSE IF, ELSE, END IF, or END.

Comma is optional following terminal statement number and before
control variable.

Parameters may be any arithmetic type expression except complex.

- ~ Parameters may be redefined in loop with no effect on loop control.

A block IF statement in the DO range must be entirely within the range of
the DO.

The range of a DO within a block IF must be entirely contained within the
block.

DO may be ended by any fall-through statement.

• END statement:

. May be numbered.

Implies STOP or RETURN.

Is executable.

• END FILE statement:

- UNIT, ERR, and IOSTAT may be used.

• EXTERNAL statement:

An ampersand (&) character as the first character of a name is not permitted
for compiler option LANGLVL(77). Any name that appears in an
EXTERNAL statement is considered as the name of a user-supplied
subroutine.

354 VS FORTRAN Language and Library Reference

o

c

o

• FORMAT statement:

0 BN and BZ specify ignoring of input blanks.

Unlimited parentheses may be used.

The label ASSIGNED may be the number of a FORMAT statement.

Field width is optional in Aw.

Explicit nP scale factor may be used.

Ew.dEe, Gw.dEe, Iw.d, SP, SS, S, TLc, and TRc field descriptors may be
used.

Colon may be used as scan terminator.

Optional commas may be used with slashes and colons.

• GO TO statement, assigned:

List of statement numbers is optional.

Comma outside parentheses is optional.

• GO TO statement, computed:

C Index may be an integer expression.

Comma may be outside parentheses.

• IMPLICIT statement:

More than one may be used in a program unit.

IMPLICIT may be preceded by ENTRY, FORMAT, or PARAMETER
statements and must precede all other specification statements except
PARAMETER statements.

Double precision and character type statements are included.

• PRINT statement:

- FORMAT designator may be a character constant.

• READ statements:

FORMAT designator may be a character constant.

UNIT, ERR, and IOSTAT may be used.

• RETURN statement:

0 - Index may be an integer expression.

Appendix B. IBM and ANS FORTRAN Features 355

• REWIND statement:

- UNIT, ERR, and IOSTAT may be used. 0
• STOP statement:

Quoted literal is allowed.

A character constant is permitted.

• Auxiliary input and output statements:

- UNIT and ERR may be used.

• WRITE statement:

May not be used after END FILE in sequential input or output.

FORMAT designator may be a character constant.

UNIT, FMT, REC, and IOSTAT may be used.

Old IBM Extensions Now in ANS FORTRAN 1977

The following items supported as IBM extensions in old IBM OS and DOS 0, ___ '\
FORTRAN compilers are now part of the 1977 ANS FORTRAN language. These
items are also supported in VS FORTRAN.

• Literals are enclosed in apostrophes.

• STOP and PAUSE statements:

Decimal digits are supported.

STOP statement string is accessible.

Quoted literal in PAUSE statement is supported.

• T format is accepted as a field descriptor.

Computed GO TO index out of range.

• All combinations of arithmetics across equal sign.

• Mixed-mode arithmetic.

• Mixed-mode relationals.

• Successive exponentiations.

• Generalized subscripts. C
356 VS FORTRAN Language and Library Reference

o
Seven-dimensional arrays.

END in READ.

ERR in READ and WRITE.

• Short form of READ and PRINT.

• Sequential list-directed input/output.

• Asterisks for undersized output fields.

• IMPLICIT statement.

• Array names in DATA statement.

• ENTRY statement.

• Alternative returns from subroutines.

• Function and entry names in type statements.

• Generic facility.

• Additional processor-supplied functions.

o IBM Extensions Not in ANS FORTRAN 1977

o

The following IBM extensions are supported by old IBM OS and DOS FORTRAN
compilers but are not part of the 1977 ANS FORTRAN. They will continue to be
supported in VS FORTRAN as IBM extensions.

Some of the following features are available only under the compiler option
described in the next section, "LANGLVL(66) Features Not in VS FORTRAN."

• NAMELIST statement.

• Double precision complex.

• Z and Q format descriptor.

• G format for integer and logical.

• ALGAMA, ARCOS, ARSIN, CCOS, CDABS, CDCOS, CDEXP, CDLOG,
CDSIN, CDSQRT, COTAN, CQABS, CQCOS, CQEXP, CQLOG, CQSIN,
CQSQRT, DARCOS, DARSIN, DBLEQ, DCMPLX, DCONJG, DCOTAN,
DERFC, DERF, DFLOAT, DGAMMA, DIMAG, DLGAMA, DREAL, ERF,
ERFC, GAMMA, HFIX, IMAG, IQINT, LGAMMA, QABS, QARCOS,
QARSIN, QATAN, QATAN2, QCMPLX, QCONJG, QCOSH, QCOS,
QCOTAN,QDIM, QERFC,QERF,QEXP, QEXTD,QEXT,QFLOAT,
QIMAG, QINT, QLOG, QLOGI0, QMAX1, QMIN1, QMOD, QREAL,
QSIGN, QSINH, QSIN, QSQRT, QTANH, QTAN, SNGLQ.

Appendix B. IBM and ANS FORTRAN Features 357

• CALL DVCHK, CALL DUMP/PDUMP, CALL EXIT, CALL OVERFL.

• Asynchronous READ, WRITE, and WAIT.

• Extended precision for REAL and COMPLEX.

• Extended debug facility.

• Hexadecimal constants and Z format are allowed.

• Free-form source statements.

• The currency symbol ($) used as alphabetic character.

• Data initialization in type specification statements.

• Optional length specification in specification statements (integer, real,
complex, logical) and in FUNCTION statements.

• Mixed-mode expressions involving complex and double precision.

• FORMAT identifier may be an array name (other than character type).

• Continuation line may have anything in columns 1 through 5 other than "C" in
column 1.

• RETURN statement is the same as STOP in a main program.

• Partitioned data sets.

• Closing of data set on ABEND.

• STOPn is allowed, where n equals a return code.

• Initialization with hexadecimal constants.

• EQUIVALENCE statement allows equivalencing of character and
noncharacter data types.

• COMMON statement allows character and noncharacter data types in the
same common block.

LANGLVL(66) Features Not in LANGLVL(77)

LANGL VL(66) instructs the compiler to compile a program according to the 1966
FORTRAN language. Listed here are some of the features of LANGLVL(66) that
are not in LANGL VL(77).

Character constants may be assigned to integer, real, complex, or logical in a
DATA statement.

The ampersand (&) is included in the character set.

358 VS FORTRAN Language and Library Reference

o

c

o

o

o

•

•

•

•

•

•

•

•

The ampersand (&) must be used instead of the asterisk (*) for an alternate
return.

A program name can only be specified as a compiler option.

Arguments are received by value.

Dummy arguments can be enclosed in slashes.

DARCOS and DARSIN used as function names are recognized as VS
FORTRAN-supplied functions; DACOS and DASIN are recognized as
user-supplied function names.

DEFINE FILE statement.

DO statement and implied DO in 1/0. (Loops are always executed at least
once.)

EQUIVALENCE statement. (Accept a multidimensional array with one
subscript.)

• EXTERNAL statement: If a VS FORTRAN-supplied function name appears
in an EXTERNAL statement preceded by an ampersand (&) it is considered a
user-supplied function name. If it is not preceded by an ampersand (&), it is
considered a VS FORTRAN-supplied function name except as described
below. The following names are always considered u~er-supplied function
names if they appear in an EXTERNAL statement whether or not preceded by
an ampersand (&):

ABS, AIMAG, AINT, AMAXO, AMAXI, AMINO, AMINI, AMOD,
CMPLX, CONJG, DABS, DBLE, DBLEQ, DCMPLX, DCONJG, DDIM,
DFLOAT, DIM, DIMAG, DINT, DMAXI, DMINI, DMOD, DREAL,
DSIGN, FLOAT, HFIX, lABS, IDIM, IDINT, IFIX, IMAG, INT, IQINT,
ISIGN, MAX, MAXO, MAXI, MIN, MINO, MINI, MOD, QABS, QCMPLX,
QCONJG, QDIM, QEXT, QEXTD, QFLOAT, QIMAG, QINT, QMAXI,
QMINI, QMOD, QREAL, QSIGN, REAL, SIGN, SNGL, SNGLQ.

• FIND statement.

• Function names: ANINT, CHAR, DPROD, DNINT, ICHAR, IDNINT,
INDEX, LEN, and NINT are recognized as user-supplied function names.

• GENERIC statement: GENERIC means that generic names of VS
FORTRAN-supplied functions will be recognized as generic; if GENERIC is
not specified, the automatic function selection facility will not be in effect.

• IBM direct-access READ and WRITE.

• PUNCH b, list.

Appendix B. IBM and ANS FORTRAN Features 359

o

c

o

o

o

Appendix C. EBCDIC and ISCII/ ASCII Codes

Ordinal
HEX Position
Code for

ICHAR
00 0
01 1
02 2
03 3
04 4
05 5
06 6
07 7
08 8
09 9
OA 10
OB 11
OC 12
00 13
OE 14
OF 15
10 16
11 17
12 18
13 19

The table below contains EBCDIC and ISCII/ ASCII codes, where:

EBCDIC refers to IBM EBCDIC code point ordering for the 256 character set.

ISO 8 bit refers to ISO 2022 code point ordering for the 256 character set.

ISCII/ ASCII 7 bit refers to ANSI X3.4-1977 code point ordering for the 128
character set.

ISCII/ ASCII 6 bit refers to ANSI X3.32-1973 code point ordering for the 64
character set.

The column used for the lexical intrinsic functions is ISCII/ ASCII 7 bit.

The blank character to be used to extend character strings for the the intrinsic
functions LOE, LOT, LLE, and LLT is the ISCII/ ASCII blank (HEX 20).

I SC II / I SC II /
EBCDIC ISO ASC II ASC II
Graphic Description 8 bit 7 bit 6 bit
or for for for
Control ICHAR ICHAR ICHAR
NUL Nu 11 0 0 Note 2
SOH Start of heading 1 1 Note 2
STX Start of text 2 2 Note 2
ETX End of text 3 3 Note 2
SEL Select 156 Note 1 Note 2
HT Horizontal Tab 9 9 Note 2
RNL Reguired new line 134 Note 1 Note 2
DEL Delete 127 127 Note 2
GE Graphic Escape 151 Note 1 Note 2
SPS Superscript 141 Note 1 Note 2
RPT Repeat 142 Note 1 Note 2
VT Vertical Tab 11 11 Note 2
FF Form Feed 12 12 Note 2
CR Carriage Return 13 13 Note 2
SO Shift out 14 14 Note 2
SI Shift in 15 15 Note 2
OLE Data link escape 16 16 Note 2
DCl Device control 1 17 17 Note 2
DC2 Device control 2 18 18 Note 2
DC3 Device control 3 19 19 Note 2

Appendix C. EBCDIC and ISCII/ ASCII Codes 361

Notes: o 1. This position does not exist in ANSI X3.4-1977 for 7 -bit code.

2. This position does not exist in ANSI X3.32-1973 for 6-bit code.

c
362 VS FORTRAN Language and Library Reference

I SC II / I SC II / o Ordinal EBCDIC ISO ASC II ASC II
HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for

I CHAR Control ICHAR ICHAR ICHAR
14 20 RES Restore 157 Note 1 Note 2

ENP Enable presentation
15 21 NL New 1 i ne 133 Note 1 Note 2

acknowledgement
16 22 BS Backspace 8 8 Note 2
17 23 POC Program-operator 135 Note 1 Note 2

communication
18 24 CAN Cancel 24 24 Note 2
19 25 EM End of Medium 25 25 Note 2
1A 26 UBS Unit backspace 146 Note 1 Note 2
1B 27 CU1 Customer use 1 143 Note 1 Note 2
1C 28 IFS Interchange file 28 28 Note 2

separator
1D 29 IGS Interchange group 29 29 Note 2

separator
1E 30 IRS Interchange record 30 30 Note 2

separator
1F 31 IUS Interchange unit 31 31 Note 2

separator
ITB Intermediate trans.

block
20 32 DS Digit select 128 Note 1 Note 2
21 33 SOS Start of 129 Note 1 Note 2

o significance
22 34 FS Field separator 130 Note 1 Note 2
23 35 WUS Word underscore 131 Note 1 Note 2
24 36 BYP Bypass 132 Note 1 Note 2

INP Inhibit presentation
25 37 LF Line feed 10 10 Note 2
26 38 ETB End of trans. block 23 23 Note 2
27 39 ESC Escape 27 27 Note 2
28 40 Reserved 136 Note 1 Note 2
29 41 Reserved 137 Note 1 Note 2
2A 42 SM, SW Set mode, Swi tch 138 Note 1 Note 2
2B 43 FMT Format 139 Note 1 Note 2
2C 44 Reserved 140 Note 1 Note 2
2D 45 ENQ Enqu i ry 5 5 Note 2
2E 46 ACK Acknowledge 6 6 Note 2
2F 47 BEL Be 11 7 7 Note 2
30 48 Reserved 144 Note 1 Note 2
31 49 Reserved 145 Note 1 Note 2
32 50 SYN Synchronous 22 22 Note 2
33 51 IR Index 147 Note 1 Note 2
34 52 PP Presentation position 148 Note 1 Note 2
35 53 TRN Transparent 149 Note 1 Note 2
36 54 NBS Numeric backspace 150 Note 1 Note 2
37 55 EOT End of transmission 4 4 Note 2
38 56 SBS Subscript 152 Note 1 Note 2
39 57 IT Indent 153 Note 1 Note 2
3A 58 RFF Required 154 Note 1 Note 2
3B 59 CU3 Customer use 3 155 Note 1 Note 2

o
Appendix C. EBCDIC and ISCII/ ASCII Codes 363

I SC 11/ I SC II /
Ordinal EBCDIC ISO ASC II ASC II

HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for

ICHAR Control I CHAR ICHAR ICHAR
3C 60 Dc4 Device code 4 20 20 Note 2
3D 61 NAK Negative acknowledge 21 21 Note 2
3E 62 Reserved 158 Note 1 Note 2
3F 63 SUB Substitute 26 26 Note 2
40 64 SP Space 32 32 0
41 65 RSP Required space 160 Note 1 Note 2
42 66 161 Note 1 Note 2
43 67 162 Note 1 Note 2
44 68 163 Note 1 Note 2
45 69 164 Note 1 Note 2
46 70 165 Note 1 Note 2
47 71 166 Note 1 Note 2
48 72 167 Note 1 Note 2
49 73 168 Note 1 Note 2
4A 74 ¢ Cent sign 91 91 59
4B 75 Period, decimal point 46 46 14
4C 76 < Less-than sign 60 60 28
4D 77 (Left parenthesis 40 40 8
4E 78 + Plus sign 43 43 11
4F 79 I LOCJical OR 33 33 1
50 80 & Ampersand 38 38 6
51 81 169 Note 1 Note 2
52 82 170 Note 1 Note 2
53 83 171 Note 1 Note 2
54 84 172 Note 1 Note 2
55 85 173 Note 1 Note 2 o
56 86 174 Note 1 Note 2
57 87 175 Note 1 Note 2
58 88 176 Note 1 Note 2
59 89 177 Note 1 Note 2
5A 90 ! Exclamation point 93 93 61
5B 91 $ Currency symbol 36 36 4
5C 92 * Asterisk 42 42 10
5D 93) Right parenthesis 41 41 9
5E 94 ; Semicolon 59 59 27
5F 95 -, Logical NOT 94 94 62
60 96 - Minus sign, Hyphen 45 45 13
61 97 / Slash 47 47 15
62 98 178 Note 1 Note 2
63 99 179 Note 1 Note 2
64 100 180 Note 1 Note 2
65 101 181 Note 1 Note 2
66 102 182 Note 1 Note 2
67 103 183 Note 1 Note 2
68 104 184 Note 1 Note 2
69 105 185 Note 1 Note 2
6A 106 I Vertical line 124 124 Note 2
6B 107 , Comma 44 44 12
6C 108 % Percent sign 37 37 5
6D 109 Underscore 95 95 63

c
364 VS FORTRAN Language and Library Reference

o I SC II / I SC II /
Ordinal EBCDIC ISO ASC II ASC II

HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for

ICHAR Control I CHAR ICHAR ICHAR
6E 110 > Greater-than sign 62 62 30
6F 111 ? Question mark 63 63 31
70 112 186 Note 1 Note 2
71 113 187 Note 1 Note 2
72 114 188 Note 1 Note 2
73 115 189 Note 1 Note 2
74 116 190 Note 1 Note 2
75 117 191 Note 1 Note 2
76 118 192 Note 1 Note 2
77 119 193 Note 1 Note 2
78 120 194 Note 1 Note 2
79 121 GRA Grave accent 96 96 Note 2
7A 122 : Colon 58 58 26
7B 123 # Number sign 35 35 3
7C 124 @ At sign 64 64 32
70 125 I Prime, Apostrophe 39 39 7
7E 126 = Equal sign 61 61 29
7F 127 II Quotation marks 34 34 2
80 128 195 Note 1 Note 2
81 129 a Lowercase a 97 97 Note 2
82 130 b Lowercase b 98 98 Note 2
83 131 c Lowercase c 99 99 Note 2
84 132 d Lowercase d 100 100 Note 2

c 85 133 e Lowercase e 101 101 Note 2
86 134 f Lowercase f 102 102 Note 2
87 135 g Lowercase g 103 103 Note 2
88 136 h Lowercase h 104 104 Note 2
89 137 i Lowercase i 105 105 Note 2
8A 138 196 Note 1 Note 2
8B 139 197 Note 1 Note 2
8C 140 198 Note 1 Note 2
80 141 199 Note 1 Note 2
8E 142 200 Note 1 Note 2
8F 143 201 Note 1 Note 2
90 144 202 Note 1 Note 2
91 145 j Lowercase j 106 106 Note 2
92 146 k Lowercase k 107 107 Note 2
93 147 1 Lowercase 1 108 108 Note 2
94 148 m Lowercase m 109 109 Note 2
95 149 n Lowercase n 110 110 Note 2
96 150 0 Lowercase 0 111 1 11 Note 2
97 151 P Lowercase p 112 112 Note 2
98 152 q Lowercase q 113 113 Note 2
99 153 r Lowercase r 114 114 Note 2
9A 154 203 Note 1 Note 2
9B 155 204 Note 1 Note 2
9C 156 205 Note 1 Note 2
90 157 206 Note 1 Note 2
9E 158 207 Note 1 Note 2
9F 159 208 Note 1 Note 2

o
Appendix C. EBCDIC and ISCII/ ASCII Codes 365

I SC 11/ I SC II /
Ordinal EBCDIC ISO ASC II ASC II

HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for c

ICHAR Control ICHAR I CHAR ICHAR
AO 160 209 Note 1 Note 2
A1 161 TIL Ti lde 126 126 Note 2
A2 162 s Lowercase s 115 115 Note 2
A3 163 t Lowercase t 116 116 Note 2
A4 164 u Lowercase u 117 117 Note 2
A5 165 v Lowercase v 118 118 Note 2
A6 166 w Lowercase w 119 119 Note 2
A7 167 x Lowercase x 120 120 Note 2
A8 168 Y Lowercase y 121 121 Note 2
A9 169 z Lowercase z 122 122 Note 2
AA 170 210 Note 1 Note 2
AB 171 211 Note 1 Note 2
AC 172 212 Note 1 Note 2
AD 173 213 Note 1 Note 2
AE 174 214 Note 1 Note 2
AF 175 215 Note 1 Note 2
BO 176 216 Note 1 Note 2
B1 177 217 Note 1 Note 2
62 178 218 Note 1 Note 2
B3 179 219 Note 1 Note 2
B4 180 220 Note 1 Note 2
B5 181 221 Note 1 Note 2
B6 182 222 Note 1 Note 2
B7 183 223 Note 1 Note 2
B8 184 224 Note 1 Note 2
B9 185 225 Note 1 Note 2
BA 186 226 Note 1 Note 2
BB 187 227 Note 1 Note 2
BC 188 228 Note 1 Note 2
BD 189 229 Note 1 Note 2
BE 190 230 Note 1 Note 2
BF 191 231 Note 1 Note 2
CO 192 { Opening brace 123 123 Note 2
C1 193 A Uppercase A 65 65 33
C2 194 B Uppercase B 66 66 34
C3 195 C Uppercase C 67 67 35
c4 196 0 Uppercase 0 68 68 36
C5 197 E Uppercase E 69 69 37
C6 198 F Uppercase F 70 70 38
C7 199 G Uppercase G 71 71 39
C8 200 H Uppercase H 72 72 40
C9 201 I Uppercase I 73 73 41
CA 202 232 Note 1 Note 2
CB 203 233 Note 1 Note 2
CC 204 234 Note 1 Note 2
CD 205 235 Note 1 Note 2
CE 206 236 Note 1 Note 2
CF 207 237 Note 1 Note 2
DO 208 } Closing brace 125 125 Note 2
01 209 J Uppercase J 74 74 42

o
366 VS FORTRAN Language and Library Reference

o I SC 11/ I SC II /
Ordinal EBCDIC ISO ASC II ASC II

HEX Position Graphic Description 8 bit 7 bit 6 bit
Code for or for for for

ICHAR Control ICHAR ICHAR ICHAR
D2 210 K Uppercase K 75 75 43
D3 211 L Uppercase L 76 76 44
D4 212 M Uppercase M 77 77 45
D5 213 N Uppercase N 78 78 46
D6 214 0 Uppercase 0 79 79 47
D7 215 P Uppercase P 80 80 48
D8 216 Q Uppercase Q 81 81 49
D9 217 R Uppercase R 82 82 50
DA 218 238 Note 1 Note 2
DB 219 239 Note 1 Note 2
DC 220 240 Note 1 Note 2
DD 221 241 Note 1 Note 2
DE 222 242 Note 1 Note 2
DF 223 243 Note 1 Note 2
EO 224 \ Reverse slash 92 92 60
E1 225 159 Note 1 Note 2
E2 226 S Uppercase S 83 83 51
E3 227 T Uppercase T 84 84 52
E4 228 U Uppercase U 85 85 53
E5 229 V Uppercase V 86 86 54
E6 230 W Uppercase W 87 87 55
E7 231 X Uppercase X 88 88 56
E8 232 Y Uppercase Y 89 89 57 o E9 233 Z Uppercase Z 90 90 58
EA 234 244 Note 1 Note 2
EB 235 245 Note 1 Note 2
EC 236 246 Note 1 Note 2
ED 237 247 Note 1 Note 2
EE 238 248 Note 1 Note 2
EF 239 249 Note 1 Note 2
FO 240 0 Zero 48 48 16
F1 241 1 One 49 49 17
F2 242 2 Two 50 50 18
F3 243 3 Three 51 51 19
F4 244 4 Four 52 52 20
F5 245 5 Five 53 53 21
F6 246 6 Six 54 54 22
F7 247 7 Seven 55 55 23
F8 248 8 Eight 56 56 24
F9 249 9 Nine 57 57 25
FA 250 I Long vertical mark 250 Note 1 Note 2
FB 251 251 Note 1 Note 2
FC 252 252 Note 1 Note 2
FD 253 253 Note 1 Note 2
FE 254 254 Note 1 Note 2
FF 255 EO Eight ones 255 Note 1 Note 2

o
Appendix C. EBCDIC and ISCII/ ASCII Codes 367

o

c

o

o

o

Appendix D. Algorithms for Library Mathematical Functions

This appendix contains information about the method by which each mathematical
function is computed. The information for explicitly called subprograms is
arranged alphabetically according to the specific function of each subprogram (that
is, absolute value, exponentiation, logarithmic, etc.). The individual entry names
associated with each subprogram are arranged logically from simple to complex
within each function. For example, the heading "Square Root Subprograms" will
have algorithms arranged in the following order by entry name: SQRT, DSQRT,
CSQRT, CDSQRT.

Information for the implicitly called subprograms is arranged alphabetically
according to function, and alphabetically by entry name within that function. For
example, the heading "Complex Multiply and Divide Subprograms" will have
algorithms arranged in the following order: CDDVD#/CDMPY#,
CDVD#/CMPY#.

The information for each subprogram is divided into two parts. The first part
describes the algorithms used; the second part describes the effect of an argument
error upon the accuracy of the answer returned.

The presentation of each algorithm is divided into its major computational steps;
the formulas necessary for each step are supplied. For the sake of brevity, the
needed constants are normally given only symbolically. Some of the formulas are
widely known; those that are not so widely known are derived from more common
formulas. The process leading from the common formula to the computational
formula is sketched in enough detail so that the derivation can be reconstructed by
anyone who has an understanding of college mathematics and access to the
common texts of numerical analysis. Many approximations were derived by the
so-called "minimax" methods. The approximation sought by these methods can be
characterized as follows. Given a function f(x) , an interval I, the form of the
approximation (such as the rational form with specified degrees), and the type of
error to be minimized (such as the relative error), there is normally a unique
approximation to f(x) whose maximum error over I is the smallest among all
possible approximations of the given form. Details of the theory and the various
methods of deriving such approximation are provided in standard references. The
accuracy figures cited in the algorithm sections are theoretical, and they do not take
round-off errors into account. Minor programming techniques used to minimize
round-off errors are not described here.

The accuracy of an answer provided by these algorithms is influenced by two
factors: the performance of the subprogram (see Appendix F, "Accuracy
Statistics" on page 425) and the accuracy of the argument. The effect of an
argument error upon the accuracy of an answer depends solely upon the
mathematical function involved and not upon the particular coding used in the
subprogram.

Appendix D. Algorithms for Library Mathematical Functions 369

A guide to the propagational effect of argument errors is provided because
argument errors always influence the accuracy of answers whether the errors are
accumulated prior to use of the subprogram or introduced by newly converted data.
This guide (expressed as a simple formula where possible) is intended to assist
users in assessing the effect of an argument error.

The following symbols are used in this appendix to describe the effect of an
argument error upon the accuracy of the answer:

SYMBOL

g(x)
f(x)

8
E

EXPLANATION

The result given by the subprogram.
The correct result.

The relative error of the result

I
f(X) - g(X)1

f(x) given by the subprogram.
The relative error of the argument.
I f (x) - g (x) I The absolute error of the result

given by the subprogram.
The absolute error of the argument.

The notation used for the continued fractions complies with the specifications set
by the United States National Bureau of Standards.1

Although it is not specifically stated below for each subroutine, the algorithms in
the appendix were programmed to conform to the following standards governing
floating-point overflow/underflow.

• Intermediate underflow and overflows are not permitted to occur. This
prevents the printing of irrelevant messages.

• Those arguments for which the answer can overflow are excluded from the
permitted range of the subroutine. This rule does not apply to CDABS and
CABS.

• When the magnitude of the answer is less than 16 to the minus 65th power,
zero is given as the answer. If the floating-point underflow exception mask is
on at the time, the underflow message will be printed.

Control of Program Exceptions in Mathematical Functions

The VS FORTRAN mathematical functions have been coded with careful control
of error situations. A result is provided whenever the answer is within the range
representable in the floating-point form. In order to be consistent with VS
FORTRAN control of exponent overflow/underflow exceptions, the following
types of conditions are recognized and handled separately.

For more information, see Milton Abramowitz and Irene A. Stegun (editors),
Handbook of Mathematical Functions, Applied Mathematics Series-55 (National
Bureau of Standards, Washington, D.C., 1965).

370 VS FORTRAN Language and Library Reference

c

o

o

o

When the magnitude of the function value is too large to be represented in the
floating-point form, the condition is called a terminal overflow; when the
magnitude is too small to be represented, a terminal underflow. On the other hand,
if the function value is representable, but if execution of the chosen algorithm
causes an overflow or underflow in the process, this condition is called an
intermediate overflow or underflow.

Function subroutines in the VS FORTRAN library have been coded to observe the
following rules for these conditions:

1. Algorithms which can cause an intermediate overflow have been avoided.
Therefore, an intermediate overflow should occur only rarely during the
execution of a function subroutine of the library.

2. Intermediate underflows are generally detected and not allowed to cause an
interrupt. In other words, spurious underflow signals are not allowed to be
given. Computation of the function value is successfully carried out.

3. Terminal overflow conditions are screened out by the subroutine. The
argument is considered out of range for computation, and an error diagnostic is
given.

4. Terminal underflow conditions are handled by forcing a floating-point
underflow exception. This provides for the detection of underflow in the same
manner as for an arithmetic statement. Terminal underflows can occur in the
following function subroutines: EXP, DEXP, ATAN2, DATAN2, ERFC,
DERFC, QATAN2, and QEXP.

For implicit arithmetic subroutines, these rules do not apply. In this case, both
terminal overflows and terminal underflows will cause respective floating-point
exceptions. In addition, in the case of complex arithmetic (implicit multiply and
divide), premature overflow/underflow is possible when the result of arithmetic is
very close to an overflow or underflow condition.

The algorithms for the alternative mathematical library subroutines can be found in
the articles listed in the preface.

Appendix D. Algorithms for Library Mathematical Functions 371

Explicitly Called Subprograms

Absolute Value Subprograms

ABS/IABS/DABS/QABS

Algorithm

If X < 0, I xl = -x. Otherwise I xl = x.

CABS/CDABS
Algorithm

1. Write Ix + iyl = a + ib.
2. Let VI = max (lxi, Iyl), and v:! = min (lxi, Iyl).
3. If characteristics of VI and V2 differ by 7 (15 for CDABS) or more, or if V2 = 0,

then a = Vb b = 0.
4. Otherwise,

a = 2 • VI' ~ Vd '!4 c: r ' and b = O.

If the answer is greater than 1663, the floating-point overflow interruption will
take place (see Appendix C). The algorithms for both complex absolute value
subprograms are identical. Each subprogram uses the appropriate real square root
subprogram (SQRT or DSQRT).

CQABS

Algorithm

1. Write I x + iy I = a + ib.
2. Let VI = max (I x I , I y I), and V2 = min (I x I , I y /).

Let 16P - I :::;; VI < 16P•

3. If characteristics of VI and V2 differ by 15 or more, or if V2 = 0, then a = VI,

b = 0.
4. Otherwise, let WI = 16I - P • VI' and W2 = 16I - P • V2•

5. Compute w =.J WI
2 + W22. Then a = 16P - I wand b = 0.

6. The scaling factor 16P -1 is easy to construct. Scaling is carried out by short pre­
cision divisions, and the restoration is carried out by extended precision
multiplication.

Effect 01 an Argument Error
2 2

€ ~ ~2 Sex) + ~2 S(y) where 8(x) and 8(y) are relative errors inherent in

the real part and the imaginary part of the argument, respectively.

372 VS FORTRAN Language and Library Reference

o

c

o

o

o

Arcsine and Arccosine Subprograms

ASINjACOS

Algorithm

1. If 0 <: x <: %, then compute arcsin (x) by a continued fraction of the form:

arcsin (x) :::::::: x + x8
• F where

d1 d2
F=

(X2 + cd + (X2 + C2) •

The coefficients of this formula were derived by transforming the mimmax
rational approximation (in relative error, over the range 0 <: X2 <: 1J4) for
arcsin (x) / x of the following form:

arcsin (x) ~ 2 • [al +. a2x2]
= ao + x b + b 2 + 4 • X 0 IX x

Minimax was taken under the constraint that ao = 1 exactly. The relative error
of this approximation is less than 2-2X.:~.
If 0 <: x <: 1/2 , arccos (x) is computed as:

arccos (x) = ; - arcsin (x) .

2. If % < x<: 1, then compute arccos (x) essentially as:

arccos (x) = 2 • arcsin (~ 1 ~ x).
This case is now reduced to the first case because within these limits,

0 <: _11 - x <: v
="'J 2 = /2.

This computation uses the real square root subprogram (SQRT).

If % < x <: 1, arcsin (x) is computed as:

arcsin (x) = ; - arccos (x) .

Implementation of the above algorithms (steps 1 and 2) was carried out with care
to minimize the round-off errors.

3. If - 1 <: x < 0, then arcsin(x) = - arcsin Ixl

and arccos(x) = 7r - arccos Ixl.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error

6-
E t--' V 1 _ x2 ' For small values of x, E t--' 6-. Toward the limits (± 1) of the

range, a small 6- causes a substantial error in the answer. For the arcsine, f t--' 8
if the value of x is small.

Appendix D. Algorithms for Library Mathematical Functions 373

DASIN/DACOS

Algorithm

1. If 0 < X < %, then compute arcsin (x) by a continued fraction of the form:

arcsin (x) ::::::: x + XS • F where
dt d2 ds d4

F = Cl + (X2 + C2) + (x2 + cs) + (x2 + C4) + (x2 + C5)'

The relative error of this approximation is less than 2- 57 .2 •

The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 < x2 < 1/4) for
arcsin (x) / x of the following form:

arcsin(x) ~ !! [a l + a2x2 + aax4 + a4x6 + a5x8]
= au + x b + b 2 + b 4 + b 6 + 8 • X 0 IX 2X 3X X

Minimax was taken under the constraint that ao = 1 exactly.
If 0 < x < %, arccos (x) is computed as:

arccos (x)" = ; - arcsin (x) .

2. If % < x < 1, then compute arccos (x) essentially as:

arccos(x) = 2. arcsin (~l ; x).
This case is now reduced to the first case because within these limits,

0 < !l-x<1L = ~ 2 = 72.

This computation uses the real square root subprogram (DSQRT).

If % < x < 1, arcsin(x) is computed as:

arcsin (x) = ; - arccos (x) .

o

Implementation of the above algorithms (steps 1 and 2) was carried out with care
to minimize the round-off errors.

3. If - 1 < x < 0, then arcsin (x) = - arcsin lxi, and arccos (x) = 7T' - arccos Ixl.
This reduces these cases to one of the two positive cases.

Elfect of an Argument Error

~
E ~ VI _ x!! . For small values of x, E f""-' ~. Toward the limits (± 1) of the

range a small ~ causes a substantial error in the answer. For the arcsine, t: f""-' 8 if
the value of x is small.

374 VS FORTRAN Language and Library Reference

c

o

o

o

QARSIN/QARCOS

Algorithm

1. If 0 :s; x:S; ~, then compute arcsin (x) by a minimax rational approximation of

the following form:
w = 2x 2 and
arcsin (x}:::: x + X • w[ao + w[aJ + ~ w + ... + a~ wB]]

bo+b1w ... +b8~+i1fo

Coefficients { a;, b;} were determined by a minimax technique and the relative
error of this approximation is less than 16-28 . The order of evaluating this
rational form was so chosen as to reduce round-off errors.

If O:S; X:S; ~, arccos (x) is computed as:

arccos (x) = ~ - arcsin (x).

2. If~ < x:s; 1, then compute arccos (x) essentially as:

arccos (x) = 2 • arcsin (J 1 :; x)

Or more specifically, w = 1 - x, z = V 2 (1 - x), and
arccos (x):::: z + Z w [00 + the above rational form].

This case is now reduced to the first case because, within these limits,

O :s; 11 - x :s;1.. - V· 2 - 2 .

This computation uses the square root subroutine (QSQRT).

If ~ < x ~ 1, arcsin (x) is computed as:

arcsin (x) = ; - arccos (x).

3. If - 1 :s; x < 0, then arcsin (x) = -arcsin I x I
and arccos (x) = 1T - arccos I x I .

This reduces these cases to one of the two positive cases.

Effect of an Argument Error

~
E ~ ../1 _)(2 . For a small value of x, E ~ ~. Towards the limits (± 1) of the

range, a small ~ causes a substantial error in the answer. For arcsin, E ~ B if the
value of x is small.

Appendix D. Algorithms for Library Mathematical Functions 375

Arctangent Subprograms

AlAN

Algorithm

1. Reduce the computation of arctan (x) to the case 0 < x < 1, by using

arctan (- x) = - arctan (x), or

arctan (I!I) = ; - arctan Ix!-
2. If necessary, reduce the computation further to the case Ixl < tan 15° by using

(
Y3. x - 1)

arctan (x) = 30° + arctan x + Y 3 .

1

\13. x-II
The value of x + y3 < tan 15° if the value of x is within the range,

tan 15° < x < 1. The value of (y3 · x-I) is computed as
(y3 - 1) x-I + x to avoid the loss of significant digits.

3. For Ixl < tan 15°, use the approximation formula:

arctan (x) 0.55913709
x ~ 0.60310579 - 0.05160454x2 + x2 + 1.4087812 .

This formula has a relative error less than 2- 27 .1 and can be obtained by
transforming the continued fraction

alciau (x) x:.! 5

=1-3+() ~ + x- 2
- tv

x

. (75 3375) where tv has an approXImate value of - 77 x- 2 + 77 10-4, but the true

4·5

value of tv is 7 • 7 • 9

(7 ~311 + x-') + ...

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Argument Error

E,.....- I! x2 ' For small values of x, € ,.....- 8; as the value of x increases, the effect

of 8 upon € diminishes.

AlAN/AlAN2

Algorithm

1. For arctan (Xl, X2) :

If Xl < 0, use the identity arctan (Xl, X2) = - arctan (- Xl, X2)'

Hence we may assume that Xl > O. Then:

If either X2 = 0 or I :: I > 2", the answer = ; .

If X2 < 0 and I~I < 2- 24, the answer = n.
X2

376 VS FORTRAN Language and Library Reference

o

c

o

o

o

For the general case, if X2 > 0, the answer = arctan (I :: I), and

if X2 < 0, the answer = 7T' - arctan (I~) .
2. The computation of arctan (I :: I) above, or of arctan (x) for the single argu­

ment case, follows the algorithm given for the subprogram ATAN with a
single argument.

Effect of an Argument Error

E,....., I! x2 ' For small values of x, (.- 8, and as the value of x increases, the effect

of (upon 8 diminishes.

DATAN

Algorithm

l. Reduce the computation of arctan (x) to the case 0 ~ x ~ 1 by using
arctan(-x) = - arctan (x) and

1 7T' I arctan iXi = ""2 - arctan xl-

2. If necessary, reduce the computation further to the case Ixl ~ tan 15° by using

arctan(x) = 30° + arctan (Y:~x;31).
The value of IY:~ x~ 11 ~ tan 15°, if the value of x is within the range tan

15° < x ~ 1. The value of (y3 • x-I) is computed as (y3 - 1) x-I + x
to avoid the loss of significant digits.

3. For Ixl ~ tan 15°, use a continued fraction of the form:

arctan (x) " [al a2 a3]
x ~ 1 + x- ho - (hI + X2) - (h2 + x2) - (h3 + X2) •

The relative error of this approximation is less than 2- 60.7•

The coefficients of this formula were derived by transforming a minimax
rational approximation (in relative error, over the range 0 ~ x2 ~ 0.071797)
for arctan (x) / x of the following form:

arctan (x) ~ 2 [Co + CIX
2 + C2X4 + C3X6]

= ao + x d + d 2 + d 4 + 6 • X 0 IX 2X x

Minimax was taken under the constraint' that ao = 1 exactly.

Elfect of an Argument Error

E,....., 1 : x2 ' For small values of x, (.- 8, and as the value of x increases, the effect

of (upon 8 diminishes.

DATAN/DATAN2

Algorithm

l. For arctan(xb X2):

If Xl < 0, use the identity arctan (Xl. X2) = - arctan (- Xl, X2).

Hence we may assume that Xl ~ O. Then:

I ~I 7T' If either X2 = 0 or Xz > 256
, the answer = 2'

Appendix D. Algorithms for Library Mathematical Functions 377

If x, < ° and / :: / < 2-511
, the answer = ",

For the general case, if x, > 0, the answer = arctan (/ :: /), and

ifx, < 0, the answer = " - arctan (/:~ /),

2, The computation of arctan (/::/) above, or of arctan(x) for the single argu­

ment case, follows the algorithm given for the subprogram DAT AN with a single
argument.

Effect of an Argument Error

E f"Oo,I 1: x2 ' For small values of x, £ f"Oo,I 8, and as the value of x increases, the effect

of £ upon 8 diminishes.

QATAN/QATAN2

Algorithm

1. For arctan(x), if x < 0, then arctan(x) = -arctan(Ixl). So assume x > 0.

2. Define break points f3i' i = 0,1,2, ... ,8 as f3i = tan (2i; 1 7r) •

Define origins ()i to be approximately li6 7r, i = 0, 1, 2, ... , 8 in such a way

that tan ()i are exact short form numbers. ()p, = : exactly .
.z. .

3. f3i < X < f3i+1 for i = 0, 1,2, ... ,7, then use the following reduction:

arctan (x) = ()i + arctan (t.; tan ()~)
xtan i

If f38 < X < 00, use the reduction:

arctan (x) = ; + arctan (~ 1
) .

Note the quantity within the parentheses on the right is in either case within l

the basic range ({3o, {31), that is, is less than ;2 in magnitude.

4. Within the basic range - ;2 < x < ;2' a minimax approximation of the fol­

lowing form is used to compute arctan (x):
arctan (x) :::::::: x + al x3 + a2 x5 + ... + al2 X

25

The relative error of this approximation is less than 2- 11 :!.

It is sufficient to compute the last three terms in double precision.

5. For arctan (Xl, X2) :

If Xl < 0, use the identity arctan (Xl, X2) = - arctan (IXll, X2)'
Hence we may assume that Xl > 0. Then:

if either x, = ° or 1 ~: 1 >2'12, the answer '" ; ,

If x, < ° and 1 ~: 1 < 2-112
, the answer '" ",

For the general case, ifx, > 0, the answer = arctan (I ~: I) ,and

ifx, < 0, the answer = " - arctan (I ~: I) ,
378 VS FORTRAN Language and Library Reference

C.-"
, .

o

o

o

o

0",'
,,'

Here arctan (I :~ I) is computed as described in steps 1 through 4 above,

except for the following simplification for the case /I, < 1 :: I < 00:

arctan(1 :: j) = ; + arctan (1;:,1).
This combines two needed extended precision divisions into one for this case.

Effect of an Argument Error

E -' I! x~ . For a small value of x, f -' 8, and as the value of x increases, the

effect of 8 upon £ diminishes.

Appendix D. Algorithms for Library Mathematical Functions 379

Error Functions Subprograms

ERF/ERFC

Algorithm

l. If 0 < X < 1, then compute the error function by the following approximation:

erf(x) :::::::: x(ao + alx2 + a2x4 + ... + a5x10).

The coefficients were obtained by the minimax approximation (in relative
error) of erf (x) / x as a function of x2 over the range 0 < x2 < l. The relative
error of this approximation is less than 2- 24 .6 • The value of the complemented
error function is computed as erfc (x) = 1 - erf (x).

2. If 1 < x < 2.040452, then compute the complemented error function by the
following approximation:

erfc (x) :::::::: bo + bIZ + b2z2 + ... + b9z9

where z = x - To and To :::::::: l.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f (z) = erfc (z +
To) over the range - 0.709472 < z < 0.33098. The absolute error of this
approximation is less than 2- 31.5. The limits of this range and the value of the
origin To were chosen to minimize the hexadecimal round-off errors. The value

1
of the complemented error function within this range is between 256 and 0.1573.

The value of the error function is computed as erf (x) = 1 - erfc (x) .
3. If 2.040452 < x < 13.306, then compute the complemented error function by

the following approximation:

erfc(x) :::::::: e- Z
• F/ x where z = X2 and

Cl + C2Z + C3Z2
F = Co + d + d 2 + 3 • lZ 2Z z

The coefficients for F were obtained by transforming a mlmmax rational
approximation (in absolute errors, over the range 13.306- 2 < w < 2.040452- 2

)

of the function f(w) = erfc(x) • x • ex2
, w = x- 2 , of the following form:

ao + alW + a2w2 + a3w3
f(w):::::::: bo +b

1
w+W2

The absolute error of this approximation is less than 2-26.1• This computation
uses the real exponential subprogram (EXP).

If 2.040452 < x < 3.919206, then the error function is computed as
erf (x) = 1 - erfc (x) .
If 3.919206 < x, then the error function is ~ l.

380 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

4. If 13.306 < x, then the error function is ::::::: 1, and the complemented error func~
tion is ::::::: 0 (underflow).

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(- x) = - erf(x), and erfc (- x) = 2 - erfc(x).

Effect of an Argument Error

E ,....., e -x
2

• a. For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, t: ,....., 8. For the complemented error function, if the value of x is

e- x2

greater than 1, erfc (x) ,....., "2X' Therefore, t: ,....., 2 X2 • 8. If the value of x is negative

or less than 1, then t: ,....., e-a:2
• a.

DERF/DERFC

Algorithm

1. If 0 < x < 1, then compute the error function by the following approximation:

erf(x) ::::::: x(ao + alx2 + a2x4 + ... + aux22).

The coefficients were obtained by the minimax approximation (in relative
error) of erf(x) I x as a function of X2 over the range 0 < x2 < l. The relative
error of this approximation is less than 2- 56.9 • The value of the complemented
error function is computed as erfc (x) = 1 - erf (x) .

2. If 1 < x < 2.040452, then compute the complemented error function by the
following approximation:

erfc (x) ::::::: bo + bIZ + b2z2 + ... b18Z18

where Z = x - To and To::::::: 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(Z + To)
over the range -0.709472 < Z < 0.33098. The absolute error of this approxi~
mation is less than 2- 60.3 • The limits of this range and the value of the origin
To were chosen to minimize the hexadecimal round~off errors. The value of the

complemented error function within this range is between 2~6 and 0.1573. The

value of the error function is computed as erf (x) = 1 - erfc (x).
3. If 2.040452 < x < 13.306, then compute the complemented error function by

the following approximation:

erfc(x) ::::::: e- Z
• Fix where z = x2 and

d1 d2 d6 d7

F = Co + (z + Cl) + (z + C2) + ... (z + C6) + (z + C7) •

The coefficients for F were derived by transforming a minimax rational approxi­
mation (in absolute errors, over the range 13.306-2 < W < 2.040452-2) of the
function f(w) = erfc(x) • x • e :1,2, W = x-2, of the following form:

ao + alW + a2w2 + ... + a7w7

f(w)::::::: bo + b1w + b2w2 + ... + b6w6 +w7'

The absolute error of this approximation is less than 2- 57 .9• This computation
uses the real exponential subprogram (DEXP). If 2.040452 < x < 6.092368, then
the error function is computed as erf(x) = 1 - erfc(x).
If 6.092368 < x, then the error function is ::::::: 1.

4. If 13.306 < x, then the error function is ::::::: 1, and the complemented error
function ::::::: 0 (underflow).

Appendix D. Algorithms for Library Mathematical Functions 381

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf (- x) = - erf (x), and erfc (- x) = 2 - erfc (x) .

Effect of an Argument Error

E --' e-a:2 • .1. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, f --' 8. For the complemented error function, if the value of

e- x2

x is greater than 1, erfc (x) --' ~. Therefore, f --' 2X2 • 8. If the value of x

is negative or less than 1, then f --' e-a:2 • .1.

382 VS FORTRAN Language and Library Reference

{~
V

o

o

o

o

QERF/QERFC

Algorithm

l. If 0 < X < 1, then:

Write a(z) = ~: erf(x) where z = X2

Then

that is
Then
so that

V-;- d (f) da. x.2xa'+ a = 2 dx er (x) where a' = dz = e-X .!

2za' + a = e- Z

2za" + 3a' = -e- Z = - (2za' + a)
2za" + (2z + 3) a' + a = 0

Now integrate twice
z

2za' + 2za + a - f adz - A where A is a constant
o

But if z = 0 then x = 0 and a = 1 so that A = 1

Hence f adz
2a' + 2a +~ __ o __ = 0

z z
and

{ Z} z f adz
2a + f 2a + a - 1 __ 0 __ dz = B = 2

o z z
m

Now write a = 1 + l aizi as an approximation to a and solve
i=l

{

z } _ z _ _ J adz _ *
2a + f 2 - + a 1 0 dz - f3 + T T ,

o a --z- - --z- m+l

m •
Where T* = ~ T*. X xi is the Chebyshev polynomial over the appropnate

m i=O m,z
range.
Equating coefficients of powers of z and multiplying the coefficient f of Zi by i'.l
we have:

3al + 1 = T T*
m+l,l

10a2 + 3al = 4 T*
m+l,2

m(2m + 1)am + (2m - 1) am- 1 =m 2
T T!+l,m

(2m + 1) am = (m + 1)2T T!+l,m+l

Appendix D. Algorithms for Library Mathematical Functions 383

Then use the approximation

T* m + 1::::: 0

to approximate em + 1 Z m + 1 by a polynomial of degree m.
The equations solved in (A) are:

2
2c 0 = .JTr+ T* m + 2,0

Co + 2c 1 = T T* m + 2,1

(2m+ l)c m + 2c m + 1 = T T* m+2,m+1

(2 m + 3) c m + 1 = T T* m + 2, m + 1

Finally:

erfc (x) = c(z) • e-
x2

where z = 1/ x 2

2x
4. If 13.306 :s;;; x, then erf(x) = 1 and erfe' (x) = o.
5. If 0> x, then erf(x) = -erf(-x), and erfc (x) = 2 - erfc (-x).

Effect of an Argument Error

E - - x2 • d. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly.
Pnr <;!fYI!:a1l "!:al11P<;! nf Y c - j\ Pnr thp l'nfYInlil'!:atprl prrnr fllnl'tinn ifthp "!:alllP nf ... ,-,.a. u _ ,,_.a. __ 1oJ _c ... , - _ _ ___£.1:""14& __ .. _- _ _ _ _ _ , _ ,,_ ... ___ ...

e- x2

Xis greater than 1, erfc (x) - 2x ~

Therefore, € ,-..., 2x 2
• 5. If the value of x is negative or less than 1, then

E - e- x2
• d.

384 VS FORTRAN Language and Library Reference

o

o

o Exponential Subprograms

o

o

EXP

Algorithm

l. If x < - 180.218, then 0 is given as the answer via floating-point underflow.
2. Otherwise, divide x by loge2 and write

x
y=--=4a-b-d

loge2

where a and b are integers, 0 < b < 3 and 0 < d < l.
3. Compute 2- d by the following fractional approximation:

2d
2-

d ~ 1 - 617.97227
0.034657359 d2 + d + 9.9545948 - d2 + 87.417497

This formula can be obtained by transforming the Gaussian continued fraction

z z z z z z z z
e-

Z = 1 - 1 + 2- 3+ 2- 5+ 2- 7 + 2'
The maximum relative error of this approximation is 2- 29•

Multiply 2- d by 2- b•

Finally, add the hexadecimal exponent a to the characteristic of the answer.

Appendix D. Algorithms for Library Mathematical Functions 385

..

ERect of an Argument Error

€ "" A. If the magnitude of x is large, even the round-off error of the argu­
ment causes a substantial relative error in the answer because A = 0 • x.

DEXP

Algorithm

1. If X < - 180.2187, then ° is given as the answer via floating-point underflow.
2. Divide x by loge2 and write

x = (4a - b - :6)· loge2 - r

where a, b, and c are integers, ° < b < 3, ° < c < 15, and the remainder r is
1

within the range ° < r < 16 · loge2. This reduction is carried out in an extra

precision to ensure accuracy. Then eX = 16a • 2- b • 2- c/ 16 • e- r•

3. Compute e- r by using a minimax polynomial approximation of degree 6 over
1

the range ° < r < 16 • loge2. In obtaining coefficients of this approximation,

the minimax of relative errors was taken under the constraint that the constant
term ao shall be exactly 1. The relative error is less than 2- 56.87 •

4. Multiply e-1
• by 2- c/ 16 • The 16 values of 2- c/ 16 for ° < c < 15 are included in

the subprogram. Then halve the result b times .

5. Finally, add the hexadecimal exponent of a to the characteristic of the answer.

ERed of an Argument Error

€ "" A. If the magnitude of x is large, even the round-off error of the argu­
ment causes a substantial relative error in the answer because A = 0 • x.

CEXP/CDEXP

Algorithm

The value of e-c+iy is computed as e· cos(y) + i· e· sin(y). The algorithms for
both complex exponential subprograms are identical. Each subprogram uses the
appropriate real exponential subprogram (EXP or DEXP) and the appropriate real
sine/cosine subprogram (COS/SIN or DCOS/DSIN).

ERed 01 an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If e+ ill = R • eiH, then H = y and f(R) ~ ~ (x).

QEXP

Algorithm

1. Basic computation is that of2x. For QEXP entry, multiply xby log2e in a 31 hex­
adecimal digit arithmetic, and raise the result to the power of 2.

2~ Decompose xas x = 4p - q - ,where pis an integer, q = 0, 1,2, or 3, and ° s:
, < 1.

3. Find two indices i, j, OS: i S:8,0S: j S:3 such that 4i + j is the integer nearest to
32,.

Using these indices, select two encoded constants ai, {3jwhere
ai = [2- il8], {3j = [2-j/32].

Here the bracket indicates rounding to the nearest 17 binary digit number.
Obtain the product 'l'ii = a i{3j.

386 VS FORTRAN Language and Library Reference

o

o

C'
" ,I

")

o

o

o

4. Obtain the reduced argument s = - r -log2 ('I'ij) accurately by subtracting log2
('I'ij) = log2 a i + log2 f3 j + in an extra precision. Constants log2 a i and log2 f3 j
are encoded in 31 hexadecimal digits of accuracy. Then s is approximately

bounded by ± ~4'
5. Compute 2 S by a minimax approximation of the form:

s- 2SP(S2t
2 = 1 + Q(s 2) _ sp S 2}

where P and Q are polynomials of degree 2.
6. Then 2X = 16P • (2 -q'l' ij) • 28 • In assembling this product a virtual rounding

is applied.
7. The limited use of extra precision arithmetic in the above computation

enhances accuracy of both QEXP and A ** B application (see note below).

Effect of an Argument Error

E - ~. If the magnitude of x is large, even the roundoff error of the argument
causes a substantial relative error in the answer because ~ = a • x.

CQEXP

Algorithm

The value of eX + iy is computed as eX • cos (y) + i • ex • sin (y). The algorithms
for both complex exponential subprograms are identical. Each subprogram uses
the appropriate real exponential subprogram (QEXP) and the appropriate real sine/
cosine subprogram (QCOS/QSIN).

Effect of an Argument Error

The effect of the argument error depends upon the accuracy of the individual parts
of the argument. If eX +iy = R· eiH, then H = Y and ErR) '"" A (x).

Appendix D. Algorithms for Library Mathematical Functions 387

Gamma and Log Gamma Subprograms

GAMMA/ ALGAMA

Algorithm

1. If 0 < x <2- 252, then compute log-gamma as loger(x) ~ - loge(x).
This computation uses the real logarithm subprogram (ALoe).

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm of.
the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

r(x + 1)
3. If 2- 252 < X < 1, then use r(x) = to reduce to the next case.

x

4. If 1 < x < 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:

Z [ao + alZ + a2z2 + asz3]
r (x) ::::::: Co + b + b + b 2 + 3 o lZ 2Z Z

where Z = x - 1.5. The absolute error of this approximation is less than 2- 25.9•

5. If 2 < x < 8, then use r (x) = (x - 1) r (x - 1) to reduce step by step to the
preceding case.

6. If 8 < x, then compute log-gamma by the use of Stirling's formula:

388 VS FORTRAN Language and Library Reference

o

o

C\
i_ .

o

o

loger(x):::::::: x(loge(x) - 1) - % logp(x) + % logl.(271") + G(x).

The modifier term G(x) is computed as
G(x) :::=: dox- 1 + d1x-:!.

These coefficients were obtained by a form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less

than x • 2- 26.2. Remembering the fact that x < logt'r(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less

than 2- 26.2. This computation uses the real logarithm subprogram (ALoe).
For gamma, compute r(x) = ell , where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (EXP).

Effect of an Argument Error

. f 1-.1 tf! (x) • A for gamma, and E 1-.1 tf! (x) • A for log-gamma, where tf! is the
digamma function.

1
If ""2 < x < 3, then - 2 < tf! (x) < 1. Therefore, E 1-.1 A for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial f in this range.

If the value of x is large, then'" (x) ~ loge (x). Therefore, for gamma, E - a
x • loge (x). In this case, even the round-off error of the argument contri­
butes greatly to the relative error of the answer. For log-gamma with large
values of x, € '" 8.

DGAMMA/DLGAMA
Algorithm

1. If 0 < x <2-252, then compute log-gamma as loger(x) ~ - loge(x).
This computation uses the real logarithm subprogram (DLoe).

2. If 2- 252 < X < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

r(x + 1)
3. If 2-252 < X < 1, then use r(x) = to reduce to the next case.

x

4. If 1 < x < 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:

Z [ao + a1Z + ... + a6z6]

r(x) :::::::: Co + b + b + + b 6 + 7 o 1Z • • • 6Z Z

where Z = x - 1.5. The absolute error of this approximation is less than 2- 59
.
3

•

5. If 2 < x < 8, then use r (x) = (x - 1) r (x - 1) to reduce to the preceding
case.

6. If 8 <x, then compute log-gamma by the use of Stirling's formula:

loger(x) :::::::: x(loge(x) - 1) - % loge(x) + % loge(2'71") + G(x).

The modifier term G (x) is computed as
G(x) ~ dox- 1 + d1x- 3 + d2x- 5 + d3x- 7 + d4x- 9•

These coefficients were obtained by a form of minimax approximation minimiz­
ing the ratio of the absolute error to the value of x. The absolute error is less
than x • 2 - 56.1. Remembering the fact that x < loger (x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less
than 2- 56.1. This computation uses the real logarithm subprogram (DLoe). For
gamma, compute r(x) = ell , where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (DEXP).

Appendix D. Algorithms for Library Mathematical Functions 389

Effect of an Argument Error

t: -' tf!(x) • 4l for gamma, and E -- tf!(x) • 4l for log-gamma, where tf! is the
digamma function.

1
If 2 < x < 3, then -2 < tf!(x) < 1. Therefore, E -- 4l for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial t: in this range.

If the value of x is large, then '" (x) -- loge (x). Therefore, for gamma,
t: -' 8 • x • loge(x). In this case, even the round-off error of the argument con­
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, t: -- 8.

Hyperbolic Sine and Cosine Subprograms

SINH/COSH

Algorithm

1. If Ixl < 1.0, then compute sinh(x) as:
sinh (x) :::::::: x + C1X3 + C2X5 + cax7.

The coefficient ci were obtained by the minimax approximation (in relative

) sinh (x) ,
error of x as a functIOn of x 2, The maximum relative error of this

approximation is 2- 25 .6 ,

2. If x > 1.0, then sinh (x) is computed as:
sinh(x) = (1 + 8) [e+IOgeV - v2je·J:+logev].

1
Here, 1 + 8 = 2v ' so that this expression is theoretically equivalent to

[ea: - e-:Z']j2. The value of v (and consequently those of logev and 8) was so
chosen as to satisfy the following conditions:

a) v is slightly less than %, so that 8 > ° and small.
b) logev is an exact multiple of 2- 16•

The condition b) ensures that the addition x + loge V is carried out exactly. This
maneuver was designed to reduce the round-off errors and also to enlarge
the limits of acceptable arguments. This computation uses the real expo­
nential subprogram (EXP).

3. If x < - 1.0, use sinh (x) = - sinh (Ix I) to reduce to case 2 above.
4. If cosh (x) is desired, then for all valid values of arguments use the identity:

cosh(x) = (1 + 8) [e+1ogeV + v2je.L'+IOget']. Here the notation and the consid­
eration are identical to case 2 above. This computation uses the real exponential
subprogram (EXP).

Effect of an Argument Error

For the hyperbolic sine, E -- 4l • cosh (x) and t: -- 4l • coth(x).

390 VS FORTRAN Language and Library Reference

c

C·' \
'.)

o

o

o

o

For the hyperbolic cosine, E '" A • sinh(x) and € '" 8 • tanh(x).
Specifically, for the cosine, € '" A over the entire range; for the sine, € '" 8
for small values of x.

DSINH/DCOSH

Algorithm

1. If Ixl < 0.881374, then compute sinh (x) as:
sinh (x) ::::: cox + C1X3 + C2X5 + ... + C6X13.

The coefficients Cj were obtained by the minimax approximation (in relative
sinh(x)

error) of as the function of x2 • Minimax was taken under the constraint
x

that Co = 1 exactly. The maximum relative error of this approximation is 2- 55.7•

2. If x > 0.881374, then sinh (x) is computed as:
sinh(x) = (1 + 8) [e+ 1oge1' - v2/e+lOget,].

1
Here, 1 + 8 = 2v' so that this expression is theoretically equivalent to

[ex - e- x]!2. The value of v (and consequently those of logev and 8) was so
chosen as to satisfy the following conditions:

a) v is slightly less than %, so that 8 > 0 and small.
b) logev is an exact multiple of 2-16•

The condition b) ensures that the addition x + logev is carried out exactly.
This maneuver was designed to reduce the round-off errors and also to
enlarge the limits of acceptable arguments. This 'Computation uses the real
exponential subprogram (DEXP).

3. If x < -0.881374, then use sinh(x) = -sinh(Ixl) to reduce to case 2 above.
4. If cosh (x) is desired, then, for all valid arguments use the identity:

cosh (x) = (1 + 8) [e'+lOge1' + v2 / e·l·+loge1']. Here the notation and the consid­
eration are identical to case 2 above. This computation uses the real exponential
subprogram (DEXP).

Effect of an Argument Error

For the hyperbolic sine, E '" A • cosh(x) and € '" A • coth(x).
For the hyperbolic cosine,E "'A • sinh(x) and€ "'8· tanh(x).
Specifically, for the cosine, € '" A over the entire range; for the sine, € '" 8
for the small values of x.

QSINH/QCOSH

Algorithm

1. If Ixl < 1 then compute sinh(x) as:
sinh (x) ::::: Cox + CIX3 + C2X5 + ... + C12X25.

The coefficients Ci were obtained by the minimax approximation (in relative

error) of sinh (x) as the function of x2 • Minimax was taken under the constraint
x

that Co = 1 exactly. The maximum relative error of this approximation is less
than 2-112.

2. If x > 1 then sinh (x) is computed as:
sinh(x) = (1 + 8) [e+IOget' - v2/eX+IOgeV].

Here, 1 + 8 = ~V' so that this expression is theoretically equivalent to

[e - e - x] /2. The value of v (and consequently those of logev and 8) was so
chosen as to satisfy the following conditions.

Appendix D. Algorithms for Library Mathematical Functions 391

a) v is slightly less than ~ ,so that 8 > 0 and small.

b) log{'v is an exact multiple of 2- 16• C)
The condition b) ensures that the addition x + logev is carried out exactly. -­
This maneuver was designed to reduce the round-off errors and also to
enlarge the limits of acceptable arguments. This computation uses the
exponential subprogram. Accuracy of the quotient v2/eX+lo~v is not
critical if x is large. For x > 21.85, a double precision division yields a
sufficiently accurate result.

3. If x < -1 then Use sinh (x) = - sinh (Ixl) to reduce the case to 2 above.
4. If cosh (x) is desired, for all allowable arguments use the identity: cosh (x)

= (1 + 8) [e+ 1og
e

1J + v:!/e+ 10g
•

1
']. Here the notation and the consideration

are identical to the case 2 above.

Effect 0' an Argument Error

For hyperbolic sine, E "'V A • cosh (x) and € "'V A • coth(x). For hyperbolic
cosine, E "" A • sinh (x) and € '" 0 • tanh (x). In other words, for cosine,
€ "" A over the entire range; for sine € "'V 0 for small values of x.

Hyperbolic Tangent Subprograms

TANH

Algorithm

l. If Ixl< 2- 12, then tanh(x) :::::: x.
2. If 2- 12 < Ixl < 0.7, use the following fractional approximation:

tanh (x) ::= 1 _ ,-:! 10 OO.Q7,q,),q -+ 0.8145651 l
x - -- L -'---' --- . x2 + 2.471749 J'

The coefficients of this approximation were obtained by taking the minimax
of relative error, over the range X2 < 0.49, of approximations of this form under
the constraint that the first term shall be exactly l.0. The maximum relative
error of this approximation is 2- 26 .4.

2
3. If 0.7 <x< 9.011, then use the identity tanh(x) = 1 - (e,l.')2 + l'

The computation for this case uses the real exponential subprogram (EXP).
4. If x > 9.011, than tanh (x) :::::: l.
5. If x < - 0.7, then use the identity tanh (x) = - tanh (- x).

ERect 0' an Argument Error

2A
E -' (1 - tanh2 x) A, and t: -' sinh (2x) . For small values of x, t: -' 8,and as the

value of x increases, the effect of 8 upon t: diminishes.

DTANH

Algorithm

l. If Ixl < 2- 2S
, then tanh(x) :::::: x.

2. If 2- 2S < Ixl < 0.54931, use the following fractional approximation:

tanh (x) === Co + d 1x
2

+ ~ + ~
X x 2 + Cl x 2 + C2 X 2 + C3 •

This approximation was obtained by rewriting a minimax approximation of the
following form:

tanh (x) ao + alx2 + a2x4
--- :::::: Co + x2

• -=----::---:---=-----::-
X bo + b1x2 + b2x4 + x6 '

392 VS FORTRAN Language and Library Reference

o

o

c

o

Here the minimax of relative error, over the range x2 < 0.30174, was taken
under the constraint that Co shall be exactly 1.0. The maximum relative error of
the above is 2- 63•

2
3. If 0.54931 < x < 20.101, then use the identity tanh (x) = 1 - e2x + l'

This computation uses the double precision exponential subprogram (DEXP).
4. If x >20.101, then tanh(x) =:::: 1.
5. If x < - 0.54931, then use the identity tanh(x) = - tanh(- x).

Effect of an Argument Error

26.
E ,....; (1 - tanh2 x) 6., and € ,....; • For small values of x, € ,....; S. As the

sinh (2x)
value of x increases, the effect of S upon f diminishes.

QTANH

Algorithm

1. If Ixl < 0.54931, use a minimax fractional approximation of the following form:
xa (ao + alx~ + a~x4 + aaX6 + a4xil)

tanh (x) =:::: x + b + b 2 + b 4 + b Ii + b H + 1 () o IX 2X aX ,IX x

Approximation of this form attains accuracy better than 2- 112 for x in the above
range.

2. If 0.54931 < x < 39.1628, compute tanh(x) with the aid of the exponential
subroutines as follows:

2
tanh(x) = 1 - ~+1 . e-J

Here if x > 21.14, the division is carried out in double precision to save execu­
tion time. The quotient term is so small relative to 1 that double precision is
accurate enough.

3. If x > 39.1628, then tanh (x) =:::: 1.

4. If x < - 0.54931, then use the identity tanh (x) = - tanh (- x) to reduce the
case to either 3. or 4. above.

Effect of an Argument Error
2~

E ,....; (1 - tanh2 x) 6., and € '--' • 1 (2). For small values of x, f '--' S. As the value
sm 1 x

of x increases, the effect of S upon f diminishes.

L02arithmic Subprograms (Common and Natural)

ALO'G / ALOG 10

Algorithm

1. Write x = 16P • 2- q • m where p is the exponent, q is an integer, 0 < q < '3,
and m is within the range, % < m < 1.

2. Define two constants, a and b (where a = base point and 2 - b = a), as follows:

1
If % < m < V 2' then a = 112 and b = 1.

1
If V 2 < m < 1, then a = 1 and b = O.

m-a l+z
3. Write z = -+-. Then, m = a • -1-- and Izl < 0.1716.

m a - z

l+z (l+Z) 4. Now, x = 24 /1- q- b. T=";' and loge (x) = (4p - q - b) loge 2 + lOge\T="Z .

Appendix D. Algorithms for Library Mathematical Functions 393

Loaarithmic Subprograms (Common and Natural)

ALOGf ALOG 1 0

Algorithm

1. Write x = 1& • 2- q
• m where p is the exponent, q is an integer, 0 < q < 3,

and m is within the range, 112 < m < 1.
2. Define two constants, a and b (where a = base point and 2 - b = a), as follows:

1
If 1f2 < m < V 2 ' then a = 112 and b = 1.

1
If V 2 < m < 1, then a = 1 and b = O.

m-a l+z
3. Write z = -+-. Then, m = a· -1-- and Izl < 0.1716.

m a -z

4. Now, x = 24p - q- b. ! ~ ~, and log, (x) = (4p - q - b) log,2 + IOg,(~ ~ ;).

394 VS FORTRAN Language and Library Reference

c

o

o

o

o

o

DLOG/DLOG 1 0

Algorithm

1. Write x = 1& • 2- q
• m where p is the exponent, q is an integer, 0 < q < 3,

and m is within the range 1f2 < m < 1.
2. Define two constants, a and b (where a = base point and 2 - b = a), as follows:

1
If 1f2 < m < V 2' then a = 1f2 and b = 1.

1
If V 2 <m < 1, then a = 1 and b = O.

m-a l+z
3. Write z = -+-. Then, m = a· -1-- and Izl < 0.1716. m a -z

1 + z (1 + Z). 4. Now, x = 24p
-

q
- b • 1 _ z ' and logex = (4p - q - b) loge2 + loge 1 _ z

5. To obtain IOg,(~ ~ ~ 1. first compute w = 2z = 0.5: ~ ~.5a (which is repre­

sented with slightly more significant digits than z itself), and apply an approx­
imation of the following form:

log, G ~ :) ::0 tV [co + CIW
2

(W2 + C2 + 2 C3 C5)J.
W +C4 + 2 +

W C6

These coefficients were obtained by the minimax rational approximation of

1 (1 + Z) 2z loge 1 _ z over the range Z2 £ (0, 0.02944) under the constraint that Co

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2-60.55 •

6. If the common logarithm is desired, then loglox = logloe • logex.

Effect of an Argument Error

E ,-; 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large because the value of the function is very small.

Appendix D. Algorithms for Library Mathematical Functions 395

, CLOG/CDLOG

Algorithm

1. Write loge (x + iy) = a + ib.
2. Then, a = loge Ix + iyl and b = the principal value of arctan (y, x).
3. loge Ix + iyl is computed as follows:

Let VI = max (lxi, Iyl), and Vz = min (lxi, Iyl)·
1

Let t be the exponent of Vb i.e., VI = m • 16t
, 16 < m < 1.

{
t if t < 0 }

Finally, let t1 = t - 1 if t > 0 '

and s = 16t
l.

Then, log. Ix + iyl = 4tl • log.(2) + 1,2 log. [(:1)2 + (:2 r]
Computation of v/ sand V2/S are carried out by manipulation of the characteristics
of Vl and V2 • In particular, if v2/ s is very small, it is taken to be O. The algorithms for
both complex logarithm subprograms are identical. Each subprogram uses the
appropriate real natural logarithm subprogram (ALoe or DLoe) and the appropriate
arctangent subprogram (AT AN2 or OAT AN2).

ERect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r • eih and loge (x + iy) = a + ib, then h = b
and E(a) = 8(r).

QLOG I QLOG 10
Algorithm

1
1. Decompose xas x = 16P

• 2-q
• m, where"'2 S m < 1.

2. Make an estimate of log2m and define three indices 0 S i S 8, 0 S i S 3,
o S k S 4 so that 20i + 5i + k is the nearest integer to - 160 • log2m. Using
these indices, select three constants ai, /3), 'Y k where

~i = [2- i / 8], {3j = [2- j / 32], YT.: = [2- k / 160].

Here the bracket indicates rounding to the nearest 17 digit binary number.
Obtain the exact product !Pijk = ~i {3jYk by use of ME and MXD instructions.
The 18 short constants ~i, {3j, and Yk are encoded in the subroutine.

3. Denote z = (m - !P;jT.:)/(m + !Pi}"')'
Compute w = 2z/logp(2) = (m - !Pu,,) / [0.5' logp(2) . (m + !Pi,iI,:)]'

The computed w is bounded approximately by ± 3~0 ' and it has 112 bit

accuracy.

4. Compute log:! (~ ~ :) = logt (m) - log2 (!P Uk) as follows:

log:! (~ ~ :) ~ w + a1w3 + a2w5 + ... + a"wll

where coefficients {an} have been obtained by the minimax technique.

logz (~, ~ :) is approximately bounded by ± 3~0' This value is computed

with full 28 hexadecimal digit accuracy, and the absolute error is at most 16-3°.
5. Nowlogt(x) = 4p - q + logz~i + log2{3j + log2Yk + log2(~ ~ :).

log2~i, 10gz{3j, and logzy,,: are encoded with 31 hexadecimal digits of accuracy.
Combine these components in such a way that the maximum absolute error is

396 VS FORTRAN Language and Library Reference

o

o

o

o

o

still 16-30 approximately. This is done to improve accuracy of A**B applica­
tion (see Note below).

6. Truncate log2 (x) at the 28th hexadecimal digit, and multiply by loge (2) or by
log 10 (2) to obtain logp(x) or 10glO(x) as desired.

Effect of an Argument Error

E -- 8. Therefore, if the value of the argument is dose to 1, the relative error can
be very large, because the value of the function is very small.

LOG/LOG 10

Algorithm

If X is R * 4, then LOG (x) = ALOG (x) and LOG 1 0 (x) = ALOG 1 0 (x).
If x is R *8, then LOG(x) = DLOG(x) and LOG 10(x) = DLOG 10(x).
If xis R*16, then LOG(x) = QLOG(x) and LOG10(x) = QLOG10(x).

CQLOG

Algorithm

1. Write loge(x + iy) = a + ib

2. Then, a = loge Ix + iyl and b = the principal value of arctan(y,x).

3. logp Ix + iyl is computed as follows:

Let VI = max(lxi, Iyl), and V2 = min(lxi, Iyl)·
Let t be the exponent of Vb i.e., VI = m· 16', 116 < m < 1.

F· II I \ tift < 0
ma y, et t 1 = it - 1 if t> 0,

ands = 16t
l.

Then, loge Ix + iYI = 4tl . log(.(2) + ! loge [(~1) 2 + (V;) 2] .
Computation of Vl / sand v2/ s are carried out by manipulation of the charac­
teristics of Vl and V2 • In particular, if vl s is very small, it is given the exponent of
- 16 to avoid characteristic wrap-around.

Effect of an Argument Error

E -- S. Therefore, if the argument is close to 1, the relative error can be very large
because the value of the function is very small.

Appendix D. Algorithms for Library Mathematical Functions 397

Sine and Cos~ne Subprograms

SIN/COS

Algorithm

4
1. Define z = - · Ixl and separate z into its integer part (q) and its fraction part

7r

(f). Then z == q + f, and Ixl = (~ · q) + (~ • f).

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,
add 4 to q. This adjustment of q reduces the general case to the computation
of sin (x) for x > ° because

cos (± x) = sin (; + x), and

sin (- x) = sin (71" + x).

3. Let qo == q mod 8.

Then, for q 0 = 0, sin (x) = sin (~ • f),

qu = 1,sin (x) = cos (: (1- f»),
qu = 2, sin (x) = cos (~ • f)'
q 0 = 3, sin (x) = sin (: (1 - f)),

q (I = 4, sin (x) = - sin (~ • f),

q" = 5, sin (x) = - cos (~ (1 - r)),

q u = 6, sin (x) = - cos (~ • f),

qo = 7, sin (x) = - sin (~ (1 - f)).

These formulas reduce each case to the computation of either sin (~ • rl)

or cos (: • fl) where fl is either f or (1 - f) and is within the range,

o <f1 < 1.

4. If sin (~ • f1) is needed, it is computed by a polynomial of the following

form:

sin (: • fl)::::::::: f1 (ao + aIf1:! + a:!f14 + aaf1(;)'

The coefficients were obtained by interpolation at the roots of the Chebyshev
polynomial of degree 4. The relative error is less than 2 -28.1 for the range.

5. If cos (: • f1) is needed, it is computed by a polynomial of the following

form:

cos (~ • r,)~ 1 + bj r,2 + b2r,' +b3r,·,

398 VS FORTRAN Language and Library Reference

o

c

o

o

o

nomial of one higher degree. The maximum relative error of the sine polynomial
is 2- 58 and that of the cosine polynomial is 2- 64 .3 •

Effect of an Argument Error

E ,...... 6.. As the value of the argument increases, 6. increases. Because the function
value diminishes periodically, no consistent relative error control can be main-

7t' 7t'

tained outside of the principal range, - 2< x< +2'

CSIN/CCOS

Algorithm

1. If the sine is desired, then

sin (x + iy) = sin (x) • cosh (y) + i • cos (x) • sinh (y).

If the cosine is desired, then

cos (x + iy) = cos (x) • cosh (y) - i • sin (x) • sinh (y).

2. The value of sinh (x) is computed within the subprogram as follows.
Assume x > 0 for this, since sinh (- x) = - sinh (x) .

3. If x > 0.346574, then use sinh (x) = 1/2 (ex - ~x) .
4. If 0 < x < 0.346574, then compute sinh (x) by use of a polynomial:

sinh(x)
--- ::::::: ao + alx2 + a2x4. x

The coefficients were obtained by the m1mmax approximation (in relative
error) of sinh(x)/x over the range 0 < x2 < 0.12011 under the constraint that
ao shall be exactly 1.0. The relative error of this approximation is less than
2- 26.18•

1
5. The value of cosh(x) is computed as cosh (x) = sinhlxJ + ~.

This computation uses the real exponential subprogram (EXP) and the real sine/
cosine subprogram (SIN/COS).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer, the
programmer must understand the effect of an argument in the SIN/COS, EXP, and
SINH/ COSH subprograms.

CDSIN/CDCOS

Algorithm

l. If the sine is desired, then

sin (x + iy) = sin (x) • cosh (y) + i • cos (x) • sinh (y) .

If the cosine is desired, then

cos (x + iy) = cos (x) • cosh (y) - i • sin (x) • sinh (y) .

2. The value of sinh (x) is computed within the subprogram as follows.
Assume x > 0 for this, since sinh (- x) = - sinh (x) .

3. If x >0.481212, then use sinh(x) = 'h (eX - ~).

4. If 0 <x < 0.481212, then compute sinh(x) by use of a polynomial:
sinh (x)
--- ::::::: ao + alx2 + a2x4 + a3x6 + a4x8 + a5xlO.

x

Appendix D. Algorithms for Library Mathematical Functions 399

The coefficients were obtained by the mlmmax approximation (in relative
error) of sinh (x) j x over the range 0 < x2 < 0.23156 under the constraint
that ao shall be exactly 1.0. The relative error of this approximation is less
than 2-56.07•

1
5. The value of cosh(x) is computed as cosh (x) = sinhlxl + e ixi '

This computation uses the real exponential subprogram (DEXP) and the real
sinej cosine subprogram (DSIN j DCOS).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the DSINjDCOS,
DEXP, and DSINHjDCOSH subprograms.

QSIN/QCOS

Algorithm

1. Separate the argument into an integral multiple of ; and the remainder part:

Ixl = ; . q + r where q is an integer, and - ~ < r < ~ .
In this decomposition, after q is estimated in the working precision; r is accu­

rately computed as r = Ixl - ; . q with the aid of approximately 10 hexa­

decimal guard digits.

2. Add 1 to q if cosine is desired, since cos (± x) = sin (; + x) .
Add 2 to q if sine is desired and x is negative, since sin (- x) = sin (71' + x).
These adjustments reduce the general case to computation of sin (x) for x > O.

3. Let qo==. q mod 4. Then,

if qo = 0, sin(Ixl) = sin(r)

qo = 1, sin(Ixl) = cos(r)
q 0 = 2, sin (I x I) = - sin (r)

q 0 = 3, sin (I x I) = - cos (r)
4. Compute sin (r) or cos (r) as follows:

sin(r) ::::::: r + alra + a21'5 + ... + Gllr:.!H

cos (r) ::::::: 1 + blr:.! + b2r4 + ... + b 1:.!r:.!4

Coefficients {aj}, {b j } are determined by the minimax technique as applied to

the range 0 < l' < ~ . The relative errors of these approximations are less

than 2-112.

Effect of an Argument Error

E f'Ooo,/ 6.. As the value of x increases, 6. increases. Because the function value dimin­
ishes periodically, no consistent relative error control can be normally maintained

outside the principal range - ; <x< + ; .

400 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

CQSIN/CQCOS

Algorithm

1. If the sine is desired, then
sin (x + iy) = sin (x) • cosh (y) + i· cos (x) • sinh (y) .

If the cosine is desired, then
cos (x + iy) = cos (x) • cosh (y) - i· sin (x) • sinh (y) .

2. The value of sinh(x) is computed within the subprogram as follows.

Assume x > 0 for this, since sinh (- x) = - sinh (x).

3. If x > 0.481212, then use sinh(x) = +(ec - :x) .
4. If 0 < x < 0.481212, then compute sinh (x) by the use of the polynomial:

sinh(x) + 2 + 4 + + 20
X ::::::::: ao alX a2X • • . alOX

The coefficients were obtained by the minimax approximation (in relative
error) of sinh(x)/x over the range 0 < x2 < 0.23156 under the constraint that
ao shall be exactly 1.0. The relative error of this approximation is less than 2- 112•

The highest three terms of this polynomial need only be evaluated in double
precision.

5. The value of cosh(x) is computed as cosh(x) = sinh Ixl + ~I 'I . e')
Effect of an Argument Error

Combine such effects on sine/ cosine/hyperbolic-sine/hyperbolic-cosine functions
according to the formula in step 1 of the algorithm.

Appendix D. Algorithms for Library Mathematical Functions 401

Square Root Subprograms

SQRT

Algorithm

l. If X = 0, then the answer is O.
2. Write x = 162p

- q • m, where 2p - q is the exponent and q equals either 0 or 1;
1

m is the mantissa and is within the range 16 < m < l.
3. Then, yx = 16p • 4-<1y m.

4. For the first approximation of yx, compute the following:

(
1.288973)

Yo = 16
p

• 4-
q

• l.681595 - 0.8408065 + m .

This approximation attains the minimax relative error for hyperbolic fits of yx.
The maximum relative error is 2- 5.74 ".

5. Apply the Newton-Raphson iteration

Yn+l = % (Yn + :n)
twice. The second iteration is performed as

Y2 = % (Yl- ~)+~,
Yl Yl

with a partial rounding. The maximum relative error of Y2 is theoretically
2- 25. 11 •

Effect of an Argument Error

1
€ '-'"2 8.

OSQRT

Algorithm

l. If X = 0, then the answer is O.
2. Write x = 162p

-(j. m, where 2p - q is the exponent and q equals either 0 or 1;
1

m is the mantissa and is within the range 16 < m < l.

3. Then, yx = 1&· 4-q ym.
4. For the first approximation of yx, compute the following:

Yo = 1&· 41 - q • 0.2202 (m + 0.2587).

The extrema of relative errors of this approximation for q = 0 are 2-S.202 at

1
m = 1,2-3 .265 at m = 0.2587, and 2- 2.925 at m = 16' This approximation, rather

x
than the minimax approximation, was chosen so that the quantity - - Ys be-

Ys
low becomes less than 16p - 8 in magnitude. This arrangement allows us to
substitute short form counterparts for some of the long form instructions in the
final iteration.

402 VS FORTRAN Language and Library Reference

o

c

o

o

o

5. Apply the Newton Raphson iteration

Y .. +l = 'h (Yn + :n)
four times to Yo, twice in the short form and twice in the long form. The final
step is performed as

y. = ya+ 'h (;. - y.)

with an appropriate truncation maneuver to obtain a virtual rounding. The
maximum relative error of the final result is theoretically 2- 63.23•

ERect of an Argument Error

1
(1'-'-8

2

CSQRT /CDSQRT

Algorithm

1. Write V x + iy = a + ib.
j;-r"'1 x-'I -:-+-ol-x -:-+--=i-oy I

2. Compute the value z = ~ 2 as k ° V WI + W2 where k, WI and W2

are defined in 3 or 4, below. In any case let VI = max (lxi, Iyl) and

V2 = min (lxi, Iyl)·
3. In the special case when either V 2 = 0 or VI greatly exceeds V 2 , let WI = V 2 and

W 2 = VI so that WI + W 2 is effectively equal to VI'

Also let k = 1 if VI = Ixl and

k = I/v2ifvl = Iyl.

4. In the general case, compute F = ~ v. + v. (~:)' .
If [x I is near the underflow threshold, then take

tVl = lxi, tV:! = Vl • 2F, and k = II V2.
If Vt ° F is near the overflow threshold, then take

tVt = Ix1/4, w:! = VI oF/2, and k = V2.

In all other cases, take tV1 = Ixl 12, tV;! = V1 ° F, and k = 1.

5. If z = 0, then a = 0 and b = O.
If z =I=- 0 and x > 0, then a = z, and

y
b = 2z'

If z "1= 0 and x < 0, then a = I:zl, and

b = (sign y) 0 z.

Appendix D. Algorithms for Library Mathematical Functions 403

The algorithms for both complex square root subprograms are identical.
Each subprogram uses the appropriate real square root subprogram (SQRT or
DSQRT).

Elled of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r • eih and v' x + iy = R • eiH

,

1
then £ (R) -- "2 0 (r), and £ (H) -- 0 (h).
QSQRT

Algorithm

1. Let x = 16~p+l[· m, where p is an integer, q = 0 or 1, and

l~ < m < 1. Let Xl = 16:12- q • m

This scaling by 16:1~ is made to avoid intermediate underflows.

2. Compute the first approximation Yo to v'X; as follows:

. - 1616 • 4- q { 1807018 _ 1.576942 }
Yo - . 0.9540356 + m

These coefficients were determined to minimize the relative error of the approxi­
mation while being exact at m = 1. The maximum relative error is 2- 5.48.

3. Apply Newton Raphson iteration three times - twice in short form and once in
long form.

Yi = 21 (Yi-l +~) i = 1, 2, 3.
Yl-l

At the end of the third iteration, the relative error E 3 of Y3 is at most 2-41
•

4. Apply to Ya the following cubic refinement in extended precision:
2

!f3 - Xl
Y4 = Y3 - 2Y3' 2 •

3Y3 + Xl

The relative error E4 of Y4 istCE3)3 or 2 -125.

Since the right hand term is only a correctional term, a Simplified extended
division suffices. In the process of assembling Y4, a virtual rounding is given.

5. Replace the exponent of Y4 with the correct exponent p + q.

Effect of an Argument Error

1
£ ---0

2

404 VS FORTRAN Language and Library Reference

o

, , C",.",

o

o

o

CQSQRT

Algorithm

1. Write yx + iy = a + ib

2. Let l62p+q
- 1 < max(lxi, Iyl) < l62p+q

, q = 0, or 1
Let Xl = X' l6- 2P , and YI = y' l6- 2P •

This scaling operation is carried out by manipulation of the characteristic fields
of x and y. In doing this necessary precaution is exercised to avoid the anomaly
of characteristic wrap-around.

3. Compute z. = J1xd + I~. + iy.1

Restore scaling: z = l6p , Zl

4. If Z = 0, then a = 0 and b = O.
If Z =1= 0, and X > 0) then a = z, and

b --~ - 2z'

If z "'" 0 and x < 0, then a = I iz I ' and

b = (sign y) • z.

Effect of an Argument Error
Using polar coordinate, write x + iy = r' e ih and yx + iy = R . eiH.

1
Then e(R) ~ 2: 8(r), and e(H) ~ 8(h).

Appendix D. Algorithms for Library Mathematical Functions 405

Tangent and Cotangent Subprograms

TAN/COTAN

Algorithm

1. Divide I x I by ; and separate the result into the integer part (q) and the

fraction part (r). Then I x I = ; (q + r).

2. Obtain the reduced argument (1e) as follows:

if q is even, then 1e = r
if q is odd, then 1e = 1 - r.

The range of the reduced argument is 0 < 1e < l.
3. Let qo == q mod 4.

Then for qo = 0, tan !x; = tan (~ • tV) and cot [xi = cot (~ • te),

q() = 1 tan !x ' = cot (~ • tV) and cot Ixl = tan (~ • Ie)
, I; 4 1 I 4 '

qo = 2, tan :x , = - cot (: • IC) and cot Ix: = - tan (~ • It'),

qo = 3, tan :x: = - tan (~ • te) and cot :xi = - cot (~ • te).

4. The value of tan (~ • te) and cot (~ • tV) are computed as the ratio of twe

pol ynomials:

(

7r) 1e 8 P (tl) (1T') Q (tl)
tan 4· IC :::::: Q (11) ,cot 4"". Ie :::::: te • P (u)

where u = 1J2IC:.! and

P (u) = - 8.460901 + u
Q(11) = - 10.772754 + 5.703366 • II - 0.159321 • u'2.

These coefficients were obtained by the minimax rational approximation (in
relative error) of the indicated form. The maximum relative error of this
approximation is 2- 26 • Choice of urather than w2 as the variable for Pand Qis to
improve the round-off quality of the coefficients.

5. If x < 0, then tan(x) = - tan ,x,. and cot(x) = - cot Ix[.
6. This program is provided with two kinds of error controls. One is for arguments

whose magnitude is greater than 21t' • r.. The other is for arguments which are
very close to a singularity of the function. In either case, the precision of the
argument is deemed insufficient for obtaining a reliable result. ~lore specifically,
the second control screens out the following arguments:
a) [xl < 16- 6H for COTAN (the result would overflow).
b) x is such that one can find a singularity within eight units of the last digit

value of the floating-point representation of the sum q + r. Singularities are
cases when the cotangent ratio is to be taken and tV = O.

Effect of an Argument Error

~ 2
E '"""' and £ '"""'. for tan (x). Therefore, near the singularities cos2 (x) , sm(2x)

x = (k + !) 7r, where k is an integer, no error control can be maintained. This

is also true for cotan(x) for x near k1T', where k is an integer.

406 VS FORTRAN Language and Library Reference

r~,
(' i

~

o

o

o

()

DTAN/DCOTAN

Algorithm

7r

1. Divide Ixl bY4 and separate the result into integer part- (q) and the fraction

7r

part (r). Then I x I =""4 (q + r).
2. Obtain the reduced argument (w) as follows:

if q is even, then w = r
if q is odd, then w = 1 - r.

The range of the reduced argument is 0 < w < 1.
3. Let qo == q mod 4.

Then for qo = 0, tan Ixl = tan (~ • w)and cot Ixl = cot (~ • w),

q 0 = 1, tan I x I = cot (~ • w) and cot I x I = tan (~ -; w),

qo = 2, tan Ixl = - cot (: • w)and cot Ixl = - tan (~ • w),

qo = 3, tan Ixl = - tan (~ • w) and cot Ixl = - cot (~ • w).

4. The value of tan (: • w) and cot (: • w) are computed as the ratio of

two polynomials:

tan (~ • w) ~ w ~~ ~~2} , and cot (~ • w) - w ~~~:;, r
where both P and Q are polynomials of degree 3 in w 2• The coefficients of P
and Q were obtained by the minimax rational approximation (in relative error)

of ~ tan (~ w) of the indicated form. The maximum relative error of this

approximation is 2- 55 .6 •

5. Ifx < 0, then tan(x) = - tan lxi, and cot(x) = - cot Ixl.
6. This program is provided with two kinds of error controls. One is for argu­

ments whose magnitude is greater than 250 • 7r. The other is for arguments which
are very close to a singularity of the function. In either case, the precision of
the argument is deemed insufficient for obtaining a reliable result. More
specifically, the second control screens out the following arguments:
a) I x I < 16 - 63 for COT AN (the result would overflow) .
b) x is such that one can find a singularity within eight units of the last digit

value of the floating-point representation of the sum q + r. Singularities are
cases when the cotangent ratio is to be taken and w = o.

Appendix D. Algorithms for Library Mathematical Functions 407

Effect of an Argument Error

~ 2
E ""' and f ""' for tan (x). Therefore, near the singularities of

cos2 (x)' sin(2x)

x = (k + ~) 71", where k is an integer, no error control can be maintained.

This is also true for cotan(x) for values of x near k71", where k is an integer.

QTAN/QCOTAN

Algorithm

1. Separate argument into an integral multiple of ; and the remainder part:

Ixl = ; . q + r where q is an integer, and - ~ < r < ~ .
In this decomposition, after q is estimated in the working precision, r is accu­

rately computed as r = Ixl - ; • q with the aid of approximately 10 hexa-

decimal guard digits.
2. If cot(x) is desired, add 1 to q, and remember to change the sign of the answer.

Since cot(x) = - tan (x + ;), this reduces the case to computation of

tangent.

3. If q is even, tan(Ixl) = tan(r), and the latter is obtained by a minimax approxi­
mation of the form:

rP(r2)

tan (r):::::: Q (r2)

where P and Q are polynomials of degree 6 and 5 respectively.

If q is odd, tan(Ixl) = -cot(r), and the latter is computed as
Q(r2)

cot (r) :::::: r P (r2)

using the same polynomials as the former case.

The relative errors of these approximations are less than 2 -111. In evaluating
these rational approximations, an exponent scaling is used to avoid intermediate
partial underflows, which can result in a loss of accuracy.

4. If x < 0, then tan(x) = -tan(Ixl), and cot(x) = -cot(Ixl).

Effect of an Argument Error

~ 2~
E ,-.., 0' ()' and f ,-.., (2) for tan (x). Therefore near the singularities cos- x sin x

x = (k + +)17"' where k stands for integers, no error control can be maintained.

This is also true for cot(x) for x near k17", where k is an integer.

408 VS FORTRAN Language and Library Reference

o

o

o

Implicitly Called Subprograms

The entry point names of the following implicitly called subprograms are generated
by the compiler.

Complex Multiply and Divide Subprograms

CDVD#/CMPY# (Divide/Multiply for COMPLEX*8 Arguments)

CDDVD#/CDMPY# (Divide/Multiply for COMPLEX*16 Arguments)

A~Mhhm .
Multiply: (A + Bi) (C + Di) = (AC - BD) + (AD + BC)i
Divide: (A + Bi) / (C + Di)

1. If ICI < IDI, set
A = B, B = - A, C = D, D = - C, since

A + Bi B - Ai
___ -- = before step 2.
C + Di D - Ci

A B D
2. SetA'=C,B'= C,D'=C;

then compute
A + Bi A' + B'i A' + B'D B' - A'D'
C + Di = -l-+-D-'-i = 1 + D'D' + 1 + D'D' i.

Error Conditions

Partial underflows can occur in preparing the answer.

CQMPY# /CQDVD# (Multiply/Divide for COMPLEX*32 Arguments)

Algorithm
Multiply: (a+bi) (c+di) = (ac-bd) + (ad+bc) i

Divide: (a+bi)/(c+di)
1. Let a + bi and c + di be the first and the second operands respectively.

2. Find exponents PI, P2 which satisfy the following:
16p

l-
l < max(lal, IbJ) < 16P1, 16p

2-
l < max(Icl, Idl) < 16p

2.

Choose q = - 3 if PI ~ 0
q = 31 if PI < 0

3. Scale c and d by 16P2- q and change sign of d if CQDVD#:

Cl = c· 16q - P2

d
l

= \ d . 16q
- P

2 if CQMPY #
(-d . 16q - P2 if CQDVD#.

Here if the exponent adjustment results in underflow, replace the affected
quantity with O.

4. Compute UI + vIi = (aci - bd1) + (ad l + bCI) i
5. If CQMPY #, restore the scaling to obtain the answer u + vi:

U = Ul • 16p2-
q and v = Vl • 16p

2-
Q •

Appendix D. Algorithms for Library Mathematical Functions 409

6. If CQDVD#, compute the denominator as follows:
WI = (CI2 + dI

2) • 16- 2q

Note that 16-2 < WI < 2.

Then divide: U2 = UdWl and V2 = vdwJ

Finally, restore the scaling to obtain the answer u + vi:
u = U2' 16- q - P2 and v = V2' 16- Q - P2.

Effect of an Argument Error

In terms of complex vector relative errors, £ ,...., Sx + Sy where Sx is the relative
error of the first operand and Sy is the relative error of the second operand.

410 VS FORTRAN Language and Library Reference

o Complex Exponentiation

o

o

(Exponentiation of a Complex Base to an Integer Power)

FCDXI# (COMPLEX* 16 Arguments)

FCXPI# (COMPLEX*8 Arguments)

Algorithm

The value of Yt + Y:!,i = (z\ + z:!,i) j is computed as follows.
K

Let Iii = L r,,:· 2k where 1'", = 0 or 1 for k = 0, 1, ... , K.
k=O

Then zlJI = n Z2\ and the factors Z2\ can be obtained by successive squaring.
rk'*O

More specifically:
1. Initially: k = 0, n(O) = Iii, Yt (0) + y:!,(O)i = 1 + Oi,

Zt (0) + z:!,(O)i = Zt + zA.

2. Raise the index k by 1, and let n U'-\) = 2q + 1', where q is the integer
quotient and l' = {) or 1.

3. Let n U•1 = q.
4. Ifr = 0, theny\(/') + y:.!(/'li = y\(/;-l) + Y:t.(I·-l)i.

If l' = 1,theny\(/;) + y:!.(k)i =(Yl(k-l) + Y:t.(k-1)i) (Zl(k-1) + Z:!.(I·-lli).

5. If n(l·l =F 0, then z\ (I.) + z:!.(k)i = (z\ (1.:-1) + Z2(k-1))2, and steps 2
through 5 are repeated until n(k) = {).

6. When n(k) = 0, and i > 0, then Y1 + yA = Yl (k) +Y2(k)i.

Ifi < 0, thenY1 + yA = (1+ Oi) / (y\(/;) + y:!.(/;)i).

(Exponentiation of a Complex Base to a Complex Power)

FCOCO#(COMPLEX*32 Arguments)
FCDCD# (COMPLEX*16 Arguments)
FCXPC# (COMPLEX*8 Arguments)

Algorithm

Zl ** z~ = exp (z~ * log zJ, where the functions 'exp' and 'log' are CEXP and
CLOG, CDEXP and CDLOG, or CQEXP and CQLOG respectively as the argu­
ments are C*8, C*16, or C*32.

Effect of an Argument Error

If Zl = Xl + iYb and Z2 = X2 + iY2, then
Zl ** Z2 = exp (a) * (cos(b) + i sin (b)), where
a = X 2 * log 1 XI + i YI 1- Y2 * arctan (yJ xJ and
b = Y2 * log 1 X2 + i Y2 I + X2 * arctan (yJ x).

The function z** Z2 is calculated using the appropriate FORTRAN routines for
sin, cos, exp, log, and arctan of the required precision. Therefore the effect of
an argument error upon the accuracy of the result depends upon its effect in
those functions.

Appendix D. Algorithms for Library Mathematical Functions 411

FCQXI# (COMPLEX*32 Arguments)

Algorithm

l. Write (x + yiV = a + bi.
2. If x + yi = 0 + Oi and I > 0, then a + bi = 0 + Oi

3. If I = 0, a + bi = l.0 + Oi. Assume now I # O.
n

4. Let III = l gj 2n - j where g; = 0 or 1, go = l.
j=O

Initialize ao + boi = x + yi. If III = 1, skip the following.
Do the following for j = 1,2, ... , n:

+ b . - \ (ai-l + bj _ 1i)2
aj it -) (+ b ')2(+ .) {aj-l j-l1 x y1

At the end of iteration all + bni = (x + yi) 1·'1.

5 If I 0 (+ ')J- 1.0+Oi . <, X y1 - (x + yi) 1.'1

Effect of an Argument Error

if gi = 0
if gj = 1

1£1 -' I 181 where 8 is the complex relative error of the base and £ is the complex
relative error of the result due to this.

412 VS FORTRAN Language and Library Reference

o

Exponentiation of a Real Base to a Real Power

o

c

o

FDXPD# (REAL*8 Arguments)

FRXPR# (REAL*4 Arguments)

Algorithm

As~ume the desired answer is abo

1. If a = ° and b ~ 0, error return.
If a = ° and b > 0, the answer is 0.

2. If a ~ ° and b =0, the answer is 1.

3. All other cases. compute ah as e h • log a. In this computation the exponential
subroutine and the natural logarithm subroutine are used. If a is negative or if
b • log a is too large, an error return is given by one of these subroutines.

Error estimate

The relative error of the answer c.:an be expressed as (€I + €:!) b • log (a) + €:\
where €I, €:!, and €:\ are relative errors of the logarithmic routine, machine multi­
plication, and the exponential routine, respectively.

For FDXPD#, €I < 3.5xlO- Hi , f2 < 2.2xlO- 1G, and €:: ~ 2.0xlO--1G. Hence the
relative error < 5.7xlO-1fix lb· log a I + 2.0xlO- 1G. Note that b • log a is the
natural logarithm of the answer.

For FRXPR#, €1 < 8.3xlO-7, f:! < 9.5xlO- 7, and €~ < 4.7x10-7. Hence the relative
error ::::: 1.8xlO- 6 x lb· log a I + 4.7x10-7.

Effect of an Argument Error

[a(l + 01)] b(l + O:!) ::.:::al'(l + o:!b·loga + bol).Notethatiftheanswerdoes
not overflow, Ib • log al < 175. On the other hand b can be very large without
causing an overflow of ai, if log a is very small. Thus, if a :=:= 1 and if b is very
large, then the effect of the perturbation olaf a shows very heavily in the relative
error of the answer.

Appendix D. Algorithms for Library Mathematical Functions 413

FQXPQ# (REAL * 16 Arguments)

Algorithm

1. Basically, xY = 2Y olog2(m).

2. More specifically, log2 (x) is computed with aimed accuracy of 16-HO in abso­
lute error, or 16- 28 in relative error, whichever is smaller, by the algorithm of
QLOG/QLOG10. The result is kept as two components; the high order part
is represented by a single precision number; and the low order part, which is

less than 16-2 in absolute value, is represented by an extended precision
number.

3. The product y 0 log2 (x) is obtained by a simulated multiplication to obtain up
to 31 hexadecimal digits of accuracy.

4. Raise the result to the power of 2 by the algorithm of QEXP. As stated there,
this includes a virtual final rounding with the result that one obtains the full
28 hexadecimal digit accuracy unless x is very close to 1.0.

Effect of an Argument Error

£ ""'"' Y 0 8x + Y 0 log (x) 0 81/' The factor y 0 log (x) is limited by 180 in magnitude.
If beyond this, the result will overflow. However, the other factor y can be very
large if x is close to 1. This is so because log (x) will then be very small.

414 VS FORTRAN Language and Library Reference

o

o

o

o

Exponentiation of a Real Base to an Integer Power

FDXPI# (REAL*8 Arguments)

FRXPI# (REAL *4 Arguments)

Algorithm

Assume the desired answer is aj .

1. If a = ° andj ~ 0, error return.
If a = ° andj > 0, the answer is 0.

2. If a -=F ° andj = 0, the answer is 1.

3. The value of y = ai is computed as follows: Let Iii
K

= 1 1',..2" where 1\ = 0
k = 0

for k = 0, 1, .. " K. Then aljl = II a:!k and the factors a:!k can be obtained
Tk =F 0

b~- sllccessive squaring.

More specifically:
l. Initially: k ~ 0, nCO) = Iii, yeo) = 1, and z(O) = a.

2. Raise the index k by 1, and decompose nil. - 1) 2q + 1', where q is the
integer quotient and l' = ° or l.

3. Let n U") = q.
4. If l' = 0, then y(k) = yfl .. -l).

If I' = 1, then y(kl = yu .. - 1 IZ(k-l).

5. If n(k) -=F 0, then z(k) = z(k-I)z(k-l), and steps 2 through 5 are repeated
until n(k) = 0.

1
6. When n(k) = ° and " > ° then y = I/(k). If " < ° then I} = --. , -, .. '. yu,-:_

Note: The negative exponent is computed by taking the reciprocal of the
positive power. Thus it is not possible to compute 16-64 because there is a
lack of symmetry for real floating-point numbers - i.e., 16-64 can be repre­
sented, but 1664 cannot. The result is obtained by successive multiplications
and is exact only if the answer contains at most 14 significant hexadecimal
digits. .

FQXPI# (REAL* 16 Arguments)

Algorithm

l. Write r' =y

2. If x = ° and I > 0, then y = 0
3. If x =1= 0, and I = 0, then y = 1.0. Assume now] =1= 0.

n
4. Let III = ~ gj 2n

-
j where gj = ° or 1, go = 1.

j=O

Appendix D. Algorithms for Library Mathematical Functions 415

Initialize Yo = x. If I}I = 1, ~kip the following.

Do the following for i = 1,2, ... ,n:
_ \ y2j _ 1

Y j - l y2 j _ 1 • x

At the end of iteration

1
5. If} < 0, xJ = xlJI

if gj = °
if gj = 1

Yn = xl"I.

Note: The negative power is computed by taking the reciprocal of the posi­
tive power. Thus it is not possible to compute 16-64 because there is a lack of
symmetry in real floating point numbers; i.e., 16-64 can be represented, but
1664 cannot.

Effect of an Argument Error
£r-I}8

Exponentiation of an Integer Base to an Integer Power

FIXPI# (INTEGER*4 Arguments)

Algorithm

Assume the desired answer is fJ·.

1. If 1 = ° andj ~ 0, error return.
If 1 = ° andj > 0, the answer is 0. Kl

2. If 1=1= ° andj = 0, the answer is l.
3. The value of L = / i is computed as follows: Let j = L: fA • 2A where

k = ()

fA = ° or 1 for k = 0, 1, ... , K. Then Ii = n /2", and the factors /2A can be
obtained by successive squaring. '/.7' ()

More specifically:
l. Initially: k = 0, n(OI = j, y((J) = 1, and m(O) = I.
2. Raise the index k by 1, and decompose n(l··-ll = 2q + r, where q is the

integer quotient and r = ° or l.
3. Let n (I ..) = q.
4. If r = 0, then y(k) = y(/.'-ll.

If r = 1, then y(l") = y(k-J) • 111,(/ .. -11.

5. If n(k) =F 0, then m(k) = m(k-l) • 111,U .. -11, and steps 2 through 5 are repeated
until n(k) = 0.

6. When n(/.') = 0, L = LU,I.

Note: The result is obtained by successive multiplications. The result is
exact only if it is less than 231

- l. Results are meaningless when this limit is
exceeded and may even be of changed sign. No tests for overflow are made.

Exponentiation of a Base 2 Argument to a Real Power

FQXP2# (REAL * 16 Arguments)

Algorithm

This subprogram uses the same algorithm as the QEXP explicit subprogram.

416 VS FORTRAN Language and Library Reference

C
--~'\

! - I

o

o

o

Appendix E. Storage Estimates

Entry Name(s)

ABS,DABS,IABS,QABS

ACOS,ASIN

This appendix contains decimal storage estimates (in bytes) for the library
subprograms. The estimate given does not include any additional mathematical
subprograms for VS FORTRAN routines that the subprograms may use during
execution. The entry-names of any additional mathematical library subprograms
used are shown in Figure 43. Figure 43 through Figure 46 on page 422, also
indicate which mathematical, service, character, and bit subprograms require VS
FORTRAN routines for input, output, interruption, and error procedures. The
table on page 354 shows storage estimates for library execution-time routines.

The programmer must add the estimates for all subprograms and routines needed
to determine the amount of storage required. If the programmer has not made
allowances for the storage required by any of these additional routines, the amount
of available storage may be exceeded and execution cannot begin (or may
terminate abnormally).

I/O,
Decimal Error, and
Estimate Interrupt
(in Bytes) Subprogram Used Routines

216 No

572 SQRT Yes

AIMAG,DIMAG,QIMAG 184 No

AINT,DINT,QINT 344 No

ALGAMA,GAMMA,LGAMMA 736 ALOG,EXP Yes

ALOG,LOG 696 Yes

ALOGI0,LOGI0 716 Yes

AMOD,DMOD,QMOD 276 No

ANINT ,DNINT ,NINT ,IDNINT 504 No

ATAN,ATAN2 648 Yes

CABS 336 SQRT Yes

CCOS,CSIN 716 EXP,SIN/COS Yes

CDABS 348 DSQRT Yes

CDCOS,CDSIN 752 DEXP,DSIN/DCOS Yes

Figure 43 (Part 1 of 4). Mathematical Subprogram Storage Estimates

Appendix E. Storage Estimates 41 7

Decimal
Estimate

Entry Name(s) (in Bytes) Subprogram Used

CDDVD# 216

CDEXP 552 DEXP,DSIN/DCOS

CDLOG 576 DLOG,ATAN2

CDMPY# 148

CDSQRT 476 DSQRT

CDVD# 212

CEXP 532 EXP ,SIN/ COS

CLOG 556 ALOG,ATAN2

CMPY# 148

CONJG,DCONJG,QCONJG 208

COS 700

COSH,SINH 560 EXP

COTAN,TAN 652

CQABS 360 QSQRT

CQCOS,CQSIN 1140 QEXP,QSIN,QCOS

CQDVD#,CQMPY# 812

CQEXP 600 QEXP,QSIN,QCOS

CQLOG 696 QLOG,QATAN2

CQSQRT 520 QSQRT

CSQRT 456 SQRT

DACOS,DASIN 680 DSQRT

DATAN,DATAN2 788

DCOS 748

DCOSl 800

DCOSH,DSINH 648 DEXP

DCOTAN,DTAN 764

DCOTAN,DTANl 904

DDIM,DIM,IDIM,QDIM 264

DERF,DERFC 992 DEXP

DEXP 1096

DEXPl 780

DGAMMA,DLGAMA 948 DLOG,DEXP

DLOG 832

Figure 43 (Part 2 of 4). Mathematical Subprogram Storage Estimates

418 VS FORTRAN Language and Library Reference

I/O,
Error, and
Interrupt
Routines

No

Yes

Yes

No

Yes

No

Yes

Yes

No

No

Yes

Yes

Yes

N03

Yes

No

Yes

Yes

N03

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

C
-~

", .. ",)

(~)
''-J

o I/O,
Decimal Error, and
Estimate Interrupt

Entry Name(s) (in Bytes) Subprogram Used Routines

DLOGI0 840 Yes

DPROD 220 No

DSIGN,ISIGN,8IGN,QSIGN 272 No

DSIN 860 Yes

DSINI 800 Yes

DSQRT 476 Yes

DTANH 456 DEXP Yes

EXP 696 Yes

EXPI 560 Yes

ERF,ERFC 708 EXP Yes

FCDCD# 656 CDMPY#,CDLOG,CDEXP Yes

FCDXI# 612 CDMPY#/CDDVD# Yes

FCQCQ# 760 CQEXP,CQMPY#,CQDVD#, Yes
CQLOG

FCQXI# 648 CQMPY#,CQDVD# Yes

FCXPC# 612 CMPY#,CLOG,CEXP Yes

o FCXPI# 576 CDVD#/CMPY# Yes

FDXPD# 1704 DEXP,DLOG Yes

FDXPD#l 1712 Yes

FDXPI# 492 Yes

FIXPI# 464 Yes

FQXPI# 516 Yes

FQXPQ#,FQXP2# 2560 Yes

FRXPI# 480 No

FRXPR# 1228 EXP,ALOG Yes

FRXPR#l 1380 Yes

MOD 132 No

QARCOS,QARSIN 1196 QSQRT Yes

QATAN,QATAN2 1392 Yes

QCOS,QSIN 1104 Yes

QCOSH,QSINH 952 QEXP Yes

QCOTAN,QTAN 1208 Yes

QERF,QERFC2 1648 QEXP Yes

QEXP,QLOG,QLOG 10 2560 Yes

Figure 43 (Part 3 of 4). Mathematical Subprogram Storage Estimates

o
Appendix E. Storage Estimates 419

I/O,
Decimal Error, and
Estimate Interrupt

Entry Name(s) (in Bytes) Subprogram Used Routines

QSQRT 648 Yes

QTANH 772 QEXP No3

SIN 708 Yes

SQRT 488 Yes

TANH 388 EXP Yes

Figure 43 (Part 4 of 4). Mathematical Subprogram Storage Estimates

Notes to Figure 43 :

This entry name is an alternative mathematical library subroutine name.

2 When the argument falls between 2.84375 and 13.306, the module
IFYQERF2 (size 1300 bytes) is also used. IFYQERF2, in turn, uses routine
FQXPQ#.

3 Although this mathematical subprogram does not itself require the input,
output, error, or interruption routines, it does use other mathematical
subprograms that do.

420 VS FORTRAN Language and Library Reference

,tf\)
~,'

o

c

o

Decimal I/O, Error, and
Estimate Interrupt

Entry Name(s) (in bytes) Routines

CDUMP/CPDUMP 270 Yes

DSP AN#,DSPN2# 186 Yes

DSPN4# 140 Yes

DUMP/PDUMP 270 Yes

DVCHK 308 Yes

DYCMN# 114 Yes

EXIT 188 Yes

OVERFL 324 Yes

SDUMP 114 Yes

XUFLOW 272 No

Figure 44. Service Subprogram Storage Estimates

Decimal I/O, Error, and
Estimate Interrupt

Entry Name(s)l (in bytes) Routines

CCMPR#,CXMPR#2 596 Yes3

CHAR,ICHAR,LEN 464 Yes

CMOVE# 416 Yes

CNCAT# 424 Yes

INDEX 544 Yes

LGE,LGT,LLE,LLT 1916 Yes

Figure 45. Character Subprogram Storage Estimates

Notes to Figure 4S :

No additional character subprograms are used.

2 The entry point CXMPR# is used for complex operands.

There is no I/O error or interrupt routine invoked for the CXMPR# entry
name.

Appendix E. Storage Estimates 421

Decimal I/O, Error, and
Estimate Interrupt

Entry Name(s) (in bytes) Routines o
BTEST,IBCLR,IBSET,ISHFT 696 Yes

IAND,IEOR,IOR,NOT 82 No

Figure 46. Bit Subprogram Storage Estimates

o
422 VS FORTRAN Language and Library Reference

Decimal Decimal Decimal

0 Routine Estimate Routine Estimate Routine Estimate
Name (Bytes) Name (Bytes) Name (Bytes)

IFYCLBC03 4784 IFYVCONI 732 IFYVREN 258
IFYCREN3 252 IFYVCONO 1876 IFYVSCOM 1064
IFYCVIO$3 136 IFYVCVT$ 780 IFYVSCOP 1536
IFYCVIOS3 7172 IFYVCVTH 4444 IFYVSERH 340
IFYDBDFT 24 IFYVDBUG 708 IFYVSFIO 2146
IFYDCOM24 1920 IFYVDBUP 58 IFYVSFST 7306
IFYDDCMN4 114 IFYVDIO$ 58 IFYVSIOS5 8920
IFYDDCMp4 624 IFYVDIOS5 5956 IFYVSPAN 140
IFYDDIOS4 4784 IFYVDUMQ 1748 IFYVSPAP 1132
IFYDFNTH4 2276 IFYVEMG$ 116 IFYVSPIE 308
IFYDIOCS 118 IFYVERE$ 52 IFYVSTAE 2108
IFYDLBC04 4784 IFYVERRE 540 IFYVSTA$ 268
IFYDKIOS4, 5 12688 IFYVERRM 2017 IFYVTEN 704
IFYDREN4 246 IFYVERS$ 96 IFYVTRC$ 52
IFYDSIOS4 7762 IFYVFNTH 2283 IFYVTRCH 2188
IFYDSPAN 186 IFYVIIO$ 58 IFYVVIOS5 6580
IFYDSPAp4 1308 IFYVIIOS 636 IFYVXMSK 272
IFYDVIOS4 7836 IFYVINQP 2404
IFYIBCOM 1472 IFYVINQR 114
IFYIBCOP 1956 IFYVINTE 472
IFYLDFIO 482 IFYVIOCP 662
IFYLDFIP 1056 IFYVIOCT 274

0
IFYNAMEL 282 IFYVIODO 13
IFYNAMEP 900 IFYVIOFM 858
IFYOPSyp4 460 IFYVIOFP 1704
IFYOPSYS4 118 IFYVIOKO 13
IFYSDUMQ 8534 IFYVIOLD 524
IFYTFORT 192 IFYVIOLP 4584
IFYUATBL1, 2 IFYVIONL 378
IFYUOPT2 1464 IFYVIONP 4134
IFYVAREN 216 IFYVIOUF 666
IFYVASUB 3356 IFYVIOUP 2744
IFYVASYN5 220 IFYVKIO$ 58
IFYVASYP 2752 IFYVKIOS5 10864
IFYVBLN$ 52 IFYVLBCO 4810
IFYVBLNT 492 IFYVLCIO 148
IFYVBREN 252 IFYVLINK 366
IFYVCIAD 2950 IFYVLINP 564
IFYVCIA4 3402 IFYVLOAD 688
IFYVCLMI 312 IFYVLOC$ 52
IFYVCLOP 560 IFYVLOCA 1403
IFYVCLOS 114 IFYVMOPP 1104
IFYVCLSI 752 IFYVMOPT 308
IFYVCMSS3 944 IFYVOPEN 114
IFYVCNI$ 120 IFYVOPEP 1672
IFYVCNO$ 120 IFYVPARM 684
IFYVCOM2 3020 IFYVPOSA 11694
IFYVCOM$ 52 IFYVPOST 11678

0 IFYVCOMH 5378 IFYVPOS$ 52

Figure 47. Table of Storage Estimates for Library Execution-Time Routines

Appendix E. Storage Estimates 423

Notes to Figure 47

The number of bytes in table IFYUATBL may be computed by the formula
16n + 8, where n is the number of unit numbers requested during installation.

2 The size of this routine is installation dependent.

This routine is for eMS only.

4 This routine is for VSE/ Advanced Functions.

This module also requires dynamic storage. For each I/O file used, the
amount (in bytes) is 256 plus buffer size(s).

424 VS FORTRAN Language and Library Reference

o

o

o

Appendix F. Accuracy Statistics

This appendix contains accuracy statistics for explicitly and implicitly called
mathematical subprograms. These statistics are presented in Figure 48 on
page 427. They are arranged in alphabetic order, according to the entry names.
The following information is given:

Entry Name: This column gives the entry name used to call the subprogram.

Argument Range: This column gives the argument range used to obtain the
accuracy figures. For each function, accuracy figures are given for one or more
representative segments within the valid range. In each case, the figures given are
the most meaningful to the function and range under consideration.

The maximum relative error and standard deviation of the relative error are
generally useful and revealing statistics; however, they are useless for the range of
a function where its value becomes O. This is because the slightest error in the
argument can cause an unpredictable fluctuation in the magnitude of the answer.
When a small argument error would have this effect, the maximum absolute error
and standard deviation of the absolute error are given for the range.

Sample: This column indicates the type of sample used for the accuracy figures.
The type of sample depends on the function and range under consideration. The
statistics may be based either upon an exponentially distributed (E) argument
sample or a uniformly distributed (U) argument sample.

Accuracy Figures: This column gives accuracy figures for one or more
representative segments within the valid argument range. The accuracy figures
supplied are based on the assumption that the arguments are perfect, that is,
without error and, therefore, have no error propagation effect upon the answers.
The only errors in the answer are those introduced by the subprograms. Appendix
D, "Algorithms for Library Mathematical Functions" on page 369, contains a
description of some of the symbols used in this appendix; the following additional
symbols are used in the presentation of accuracy figures:

Appendix F. Accuracy Statistics 425

M(E) = Max I f(x) - g(x) I

The maximum
relative error
produced
during testing.

The standard
deviation (root­
mean-square) of
the relative error.

The maximum
absolute error
produced
during testing.

The standard

~. 1 I 12 deviation (root-
(J' (E) = N ~ i f (Xi) - g (xd mean-square) of

the absolute error.

In case of complex functions, the absolute value signs employed in the above
definitions are to mean the complex absolute values. In the formulas for standard
deviation, N represents the total number of arguments in the sample; i is a subscript
that varies from 1 to N.

Accuracy statistics for the alternative mathematical library subroutines can be
found in the articles listed in the Preface.

426 VS FORTRAN Language and Library Reference

C'·!.: 0- __

o Entry Argument Sample
Accuracy Figures

Name Range E/U Relative Abs(lute
M(f) IT (f) M (E) IT (E)

ALGAMA 0< X < 0.5 U l.16 X lO-6 3.54 X lO-7

0.5 ~ X < 3.0 U 9.43 X lO-7 3.42 X 10-7

3.0 ~ X < 8.0 U l.25 X lO-6 3.04 X lO-7

8.0 ~ X < 16.0 U l.18 X lO-6 3.80 X lO-7

16.0 ~ X < 500.0 U 9.85 X 10-7 l.90 X lO-7

ALOG 0.5 ~ X ~ l.5 U 6.85 X lO-8 2.33 X 10-8

X < 0.5, X > 1.5 E 8.32 X 10-7 l.19 X lO-7

ALOG10 0.5 ~ X ~ 1.5 U 7.13 X 10-8 2.26 X 10-8

X < 0.5, X > 1.5 E 1.05 X lO-6 2.17 X lO-7

ACOS -l~X~+l U 8.85 X lO-7 3.19 X lO-7

ASIN -l~X~+l U 9.34 X lO-7 2.06 X 10-7

ATAN The full range Note 7 l.01 X lO-6 4.68 X lO-7

ATAN2 The full range Note 7 l.01 X 10-6 4.68 X 10-7

CABS The full range Note 1 9.15 X 10-7 2.00 X lO-7

CCOS !XI! ~ lO, !X2! ~ 1 U 2.50 X 10-6 7.66 X 10-7

See Note 2

COABS The full range Note 1 2.03 X 10-16 4.83 X 10-17

COCOS !XI! ~ 10, !X2! ~ 1 U 3.98 X 10-15 2.50 X 10-16

See Note 3

COEXP !X,! ~ 1, !X.! ~ rr/2 U 3.76 X 10-16 l.1O X 10-16

o !X,I ~ 20, IX21 ~ 20 U 2.74 X 10-15 9.64 X 10-16

COLOG The full range Note 1 2.72 X 10-16 5.38 X 10-17

except (1 + Oi)

COSIN IX,I ~ 10, IX21 ~ 1 U 2.35 X 10-15 2.25 X 10-16

See Note 4

CDSQRT The full range Note 1 l.76 X 10-16 4.06 X lO-17

CEXP IX,I ~ 170, IX2 1 ~ rr/2 U 9.93 X 10-7 2.67 X 10-7

IXII ~ 170, U l.07 X 10-6 2.73 X 10-7

rr/2 < IX21 ~ 20

CLOG The full range Note 1 7.15 X 10-7 l.36 X 10-7

except (1 + Oi)

COS O~X~rr U l.19 X 10-7 4.60 X 10-8

-10 ~ X < 0, U l.28 X 10-7 4.55 X 10-8

rr < X ~ 10

10 < IXI ~ 100 U l.14 X lO-7 4.60 X 10-8

COSH -5~X~ + 5 U l.27 X 10-6 2.63 X lO-7

COTAN IX! ~ rr/4 U l.07 X 10-6 3.58 X lO-7

rr/4 < IXI ;;::; rr/2 U 1.40 X 10-6 (Note 5) 2.56 X lO-7

rr/2 < IXI ~ 10 U l.30 X 10-6 (Note 5) 3.11 X 10-7

10 < IXI ;;::; 100 U l.49 X lO-6 (Note 5) 3.15 X 10-7

NOTES: (See end of figure.)

Figure 48 (Part 1 of 6). Accuracy Figures

o
Appendix F. Accuracy Statistics 427

Entry Argument Sample
Accuracy Figures

Name Range E/U Relative Absolute
1\1 (€) u (€) M (E) u(E) o

CQABS The full range Note 9 2.77 x 1O-~3 .5.45 X 10-31

CQCOS -10 < x < 10 U 6.87 X 10-:1:1 2.44 X 10-33

-l<y<l

CQDVD# Note 8 Note 8 5.32 X 10-:la 1.42 X 10-3.1

CQEXP -170<x<170 U 3.82 X 10-a3 8.30 X 1O-3~

-~<v<~ 2 . 2

CQLOG The full range Note 9 4..5.3 X 10-33 9.72 X 10-34

CQMPY# Note 8 Note 8 4.52 X 10-3
" 1.27 X 10-3

"

CQSIN -10 < x < 10 U 7.26 X lo-aa 2.37 X lO-aa

-1<y<1

CQSQRT The full range Note 9 .3.37 X 10-33 7.27 X 1O-3~

CSIN IXll ~ 10, IX2 1 ~ 1 U 1.92 X 10-6 7.38 X 10-7

See Note 6

CSQRT The full range Note 1 7.00 X 10-7 1.71 X 10-7

DACOS IXI ~ 1 U 2.07 X 10-1 (1 7.05 X 10-17

DASIN IXI ~ 1 U 2.04 X 10-1 (1 5.15 X 10-17

DATAN The full range Note 7 2.18 X 10-16 7.04 X 10-17

DATAN2 The full range Note 7 2.18 X 10-1 (1 7.04 X 10-17

DCOS O~X~7r U 1.79 X 10-16 6.53 X 10-17

-10 ~ X < 0, U 1.75 X 10-16 5.93 X 10-17

7r<X~1O l)
10 < X ~ 100 U 2.64 X 10-15 1.01 X 10-15

DCOSH IXI ~5 U 3.63 X 1O-1 t; 9.05 X 10-17

DCOTAN IXI ~ 7r/4 U 2.46 X 1O- 1fi (Note 5) 8.79 X 10-17

7r/4 < IXI ~ 7r/2 U 2.78 X 10-18 (Note 5) 8.61 X 10-15

7r/2 < IXI ~ 10 U 5.40 X 1O-1H (Note 5) 1.13 X 10-14

10 < IXI ~ 100 U 8.61 X 1O-1H (Note 5) 4.61 X 10-14

DERF IXI ~ 1.0 U 1.89 X 10-16 2.60 X 10-17

1.0 < IXI ~ 2.04 U 2.87 X 10-17 9.84 X 10-18

2.04 < IXI < 6.092 U 1.39 X 10-17 8.02 X 10-18

DERFC -6<X < 0 U 2.08 X 10-16 6.52 X 10-17

O~X~l U 1.40 X 10-16 2.59 X 10-17

1< X ~ 2.04 U 4.11 X 10-16 8.86 X 10-17

2.04 < X < 4 U 3.26 X 10-16 8.65 X 10-17

4 ~ X < 13.3 U 3.51 X 10-15 1.96 X 10-15

NOTES: (See end of figure.)

Figure 48 (Part 2 of 6). Accuracy Figures

c
428 VS FORTRAN Language and Library Reference

o Entry Argument Sample
Accuracy Figures

Relative Absolute Name Range E/U
M(E) 0' (f) M (E) O"(E)

DEXP IXI ~ 1 U 2.04 X 10-16 5.43 X 10-17

1 < IXI ~ 20 U 2.03 X 10-1(; 4.87 X 10-17

20 < IXI ~ 170 U 1.97 X 10-1(; 4.98 X 10-17

DGAMMA O<X<l u 2.14 X 10-1(; 7.84 X 10-17

1~X~2 U 2.52 X 10-17 6.07 X 10-18

2< X < 4 U 2.21 X 10-16 8.49 X 10-17

4~X < 8 U 5.05 X 10-16 1.90 X 10-16

8 ~ X < 16 U 6.02 X 10-15 1.78 X 10-15

16 ~ X < 57 U 1.16 X 10-14 4.11 X 10-15

DLGAMA 0< X ~ 0.5 U 2.77 X 1O- 1H 9.75 X 10-17

0.5 < X < 3 U 2.24 X 10-16 7.77 X 10-17

3~X < 8 U 2.89 X 10-1(; 8.80 X 10-17

8 ~ X < 16 U 2.86 X 10-1(; 8.92 X 10-17

16 ~ X < 500 U 1.99 X 10-11; 3.93 X 10-17

DLOG 0.5 ~ X ~ 1.5 U 4.60 X 10-17 2.09 X 10-17

X < 0.5, X > 1.5 E 3.32 X 10-16 5.52 X 10-17

DLOG10 0.5 ~ X ~ 1.5 U 2.73 X 10-17 1.07 X 10-17

X < 0.5, X > 1.5 E 3.02 X 10-16 6.65 X 10-17

c DSIN IXI ~ rr/2 U 3.60 X 10-16 4.82 X 10-17 7.74 X 10-17 1.98 X 10-17

rr/2 < IXI ~ 10 U 1.64 X 10-16 6.49 X 10-17

10 < IXI ~ 100 U 2.68 X 10-15 1.03 X 10-15

DSINH IXI ~ 0.88137 U 2.06 X 10-16 3.74 X 10-17

0.88137 < IXI ~ 5 U 3.80 X 10-10 9.21 X 10-17

DSQRT The full range E 1.06 X 10-16 2.16 X 10-17

DTAN IX! ~ rr/4 U 3.41 X 10-16 6.27 X 10-17

rr/4 < IXI ;? rr/2 U l.43 X 10-1 :) (Note 5) 2.95 X 10-14

rr/2 < IXI ~ 10 U 2.78 X 10-1 :: (Note 5) 7.23 X 10-15

10 < IXI ~ 100 U 3.79 X 1O- 1 :! (Note 5) 9.50 X 10-14

DTANH IX! ~ 0.54931 U 1.91 X 10-16 3.86 X 10-17

0.54931 < IXI ~ 5 U 1.54 X 10-16 1.87 X 10-17

ERF IXI ~ 1.0 U 8.16 X 10-7 1.lO X 10-7

1.0 < IX! ~ 2.04 U 1.13 X 10-7 3.70 X 10-8

2.04 < IXI ~ 3.9192 U 5.95 X 10-8 3.41 X 10-8

NOTES: (See end of figure.)

Figure 48 (Part 3 of 6). Accuracy Figures

o
Appendix F. Accuracy Statistics 429

Entry Argument Sample
Accuracy Figures

Name Range ElU
Relative Absolute

M (f) q(d M(E) q(E)

o
ERFC -3.8 < X < 0 U 9.10 X 10-7 2.96 X 10-7

o ~ X ~ 1.0 U 7.42 X 10-7 1.27 X 10-7

1.0 < X ~ 2.04 U 1.54 X 10-6 3.78 X 10-7

2.04 < X ~ 4.0 U 2.28 X 10-6 3.70 X 10-7

4.0 < X ~ 13.3 U 1.55 X 10-5 8.57 X 10-6

EXP IXI ~ 1 U 4.65 X 10-7 1.28 X 10-7

1 < IXI ~ 170 U 4.42 X 10-7 1.15 X 10-7

FCQXI# 2~J~160, .3.7 X 10- 33 X J 10-3:1 X (J - 1)
Note 11 10-70

/., < Ix + iyi < 107
,,/.,

FQXPI# 2~J ~ 160, 2.5 X 10-3
:1 X (J - 1) 6.1 X lO-34 X (J - 1)

10-7,./.1 < X < 10"'/.1

FQXPQ# 0.99 < A < 1.01 U 5.68 X 10-31 5.16 X 10-3~

-75 logA 10 < 8

< 751og\ 10

FQXP2# -260 < x < 252 U 1.52 X 10-:~1 3.78 X 10-34

GAMMA 0< X < 1.0 U 9.86 X 10-7 3.66 X 10-7

1.0 ~ X ~ 2.0 U 1.13 X 10-7 3.22 X 10-8

2.0 < X ~ 4.0 U 9.47 X 10-7 3.79 X 10-7

4.0 < X < 8.0 U 2.26 X 10-6 8.32 X 10-7

8.0 ~ X ~ 16.0 U 2.20 X 10-5 7.61 X 10-6

16.0 < X ~ 57.0 U 4.62 X 10-5 1.51 X 10-5

QARCOS -1 ~ x ~ 1 U 3.18 X 10-33 9.81 X 10-34

QARSIN -l~x~l U 3.14 X 10-33 7.89 X 10-34

QATAN -101
,. < x < 107r. Note 10 2.92 X 10-33 7.32 X 10-34

QATAN2 The full range Note 9 3.53 X 10-33 7.83 X 10-34

QCOS O~X~7r U 4.41 X 10-33 6.58 X 10-34 3.23 X 10-34 lA8 X 10-3
'

-10 < x < 0, or U 3.43 X 10-34 1.57 X 10-34

7r ~ X < 10

- 200 < x ~ - 10, or U 3.48 X 10-34 1.57 X 10-34

10 ~ x < 200

QCOSH -10 < x < 10 U 5.83 X 10-33 1.57 X 10-33

NOTES: (See end of figure.)

Figure 48 (Part 4 of 6). Accuracy Figures

o
430 VS FORTRAN Language and Library Reference

i

o
Argument Sample

Accuracy Figures
Entry Relative Absolute
Name Range E/U

M(E) 0' (E) ~1 (E) O'(E)

QCOTAN
1r 1r U 3.02 X 10-33 9.09 X 10-34

-"'4<x<"'4

1r 1r

-"2 < x ~ - -:r,or
U 3.98 X 10-33 l.09 X 10-33

1r 1r

4~x<"2

1r 1r

-10 < x ~ - "2' or 2: ~ x < 10
U 4.,'55 X 10-38 1.13 X 10-33

-200 < x :::;:;: -10, or 10 ~ x < 200 U 3.98 X 10-83 1.11 X 10-83

QERF Ixl < 1 U ,3.0 X 10-83 5.3 X 10-34

1 ~ Ixl < 2.84375 U 9.2 X 10-34 2.3 X 10-84

2.84375 ~ Ixl < 5 U 1.9 X lO-34 1.3 X 10-84

QERFC -5 < x < 0 u 3.1 X 10-33 1.2 X 10-83

O~x<l U 3.3 X 10-83 5.8 X 10-84

1 ~ x < 2.84375 U 7.7 X 10-33 2.8 X 10-88

2.84375 ~ x < 5 U 4.88 X 10-32 1.83 X 10-32

QEXP -1<x<1 U 1.51 X 10-33 4.27 X 10-34

-10 < x < 10 U 1.53 X 10-33 3.96 X 10-84

-180 < x < 174 U 1.54 X 10-33 3.82 X 10-84

QLOG 0.99 < x < 1.01 U 4.27 X 10-33 1.51 X 10-33 1.92 X 10-3, 8.36 X 10-86

0.5 < x < 2 U 4.06 X lO-33 8.24 X lO-3. .3.17 X lO-8. 1.63 X 10-3
•

10-"" < x < 107fi E 4.45 X 10-88 8.77 X 10-84

QLOGI0 10-7
" < x < 1075 E 3.59 X 10-33 1.16 X 10-83

o
7r' 7r' U 2.48 X 10-33 3.12 X 10-34 2.95 X 10-34 1.17 X 10-34

QSIN -"'2<x<2'"

7r' 7r' U 3.48 X 10-84 l.60 X 10-84

-10 < x ~ - 2' or 2'" ~ x < 10

- 200 < x ~ - 10, or 1 0 ~ x < 200 U 3.50 X 10-84 1.56 X 10-84

QSINH -1 < x < 1 U 2.91 X 10-88 6.86 X 10-34

-10 < x ~ -1, or 1 ~ x < 10 U 6.71 X 10-83 1.37 X 10-33

QSQRT lO-oo < x < 10!50 E 1.49 X 10-83 2.95 X 10-84

10-78 < X < 1075 E 1.39 X 10-33 2.76 X 10-34

1r 1r
QTAN --:r<X<4

U 3.75 X 10-33 9.16 X 10-84

.1r 1r

-2"<x~4,or
U 2.77 X 10 83 8.78 X 10-84

7r' 1r

4~x<2"

7r' 1r

-10 < x ~ - "'2' or 2" ~ x < 10
U 4.52 X 10-88 9.16 X 10-33

-200 < x ~ -10, or 10 ~ x < 200 U 4.47 X 10-88 9.12 X 10-83

QTANH -0.54931 < x < 0.54931 U 2.41 X 10-83 5.12 X 10-34

-5 < x ~ -0.54931, or U 2.09 X 10-33 2.46 X 10-ai 1.04 X 10-88 1.68 X lO-M

0.54931 ~ x < 5

NOTES: (See end of figure.)

Figure 48 (Part 5 of 6). Accuracy Figures

o
Appendix F. Accuracy Statistics 431

Entry Argument Sample
Accuracy Figures

Name Range E/U
Relative Absolute

M (f) <1 (f) M (E) <1(E) o
SIN IXI ;£ rr/2 U 1.32 X lO-6 1.82 X lO-7 1.18 X lO-7 4.55 X lO-8

rr/2 < IXI ;£ 10 U 1.15 X lO-7 4.64 X lO-8

10 < IXI ;£ 100 U 1.28 X lO-7 4.52 X lO-!!

SINH -5;£ X;£ +5 U 1.26 X lO-G 2.17 X lO-7

SQRT The full range E 4.45 X lO-7 8.43 X lO-8

TAN IXI ;£ rr/4 U 1.71 X lO-6 2.64 X lO-7

rr/4 < IXI ;£ rr/2 U l.05 X lO-6 (Note 5) 3.59 X lO-7

rr/2 < IXI ;£ 10 U 6.49 X lO-6 (Note 5) 3.38 X lO-7

lO < IXI ;£ 100 U 1.57 X lO-6 (Note 5) 3.07 X lO-7

TANH IXI ;£ 0.7 U 8.48 X lO-7 1.48 X lO-7

0.7 < IXI ;£ 5 U 2.44 X 10-7 4.23 X 10-8

NOTES:

1 The distribution of sample arguments upon which these statistics are based is exponential radially and is uniform around the
origin.

2 The maximum relative error cited for the ccos function is based upon a set of 2000 random arguments within the range. In

the immediate proximity of the points (n + +) rr + Oi (where n = 0, ± 1, ± 2, ... ,) the relative error can be quite

high, although the absolute error is small.
3 The maximum relative error cited for the CDCOS function is based upon a set of 1500 random arguments within tlole range.

In the immediate proximity of the points (n + +) rr + Oi (where n = 0, ± 1, ± 2, ... ,) the relative error can be quite

high, although the absolute error is small.
()

4 The maximum relative error cited for the CDSIN function is based upon a set of 1500 random arguments within the range.
In the immediate proximity of the points nrr + Oi (where n = ± 1, ± 2, ... ,) the relative error can be quite high, although
the absolute error is s.nall.

5 The figures cited as the maximum relative errors are those encountered in a sample of 2500 random arguments within the respective
ranges. See Appendix D, "Algorithms for Library Mathematical Functions" for a description of the behavior of errors when the
argument is near a singularity or a zero of the function.

6 The maximum relative error cited for the CSIN function is based upon a set of 2000 random arguments within the range. In
the immediate proximity of the points nrr + Oi (where n = ± 1, ± 2, ... ,) the relative error can be quite high, although
the absolute error is small.

7 The sample arguments were tangents of numbers uniformly
rr rr

distributed between - 2:' and + 2 .

8 X + iy = fj eie , where fj is exponentially distributed in (0,1035
), and e is uniformly distributed in (-rr, rr).

9 x + iy = fj ie, where fj is exponentially distributed in (0, 1075
), and e is uniformly distributed in (-rr, rr).

10 Tangents of linearly scaled random angles between -!!. and!!..
2 2

11 Accuracy figures are not available for the following entry names: FRXPR#, FRXPI#, FDXPD#, and FDXPI#.

Figure 48 (Part 6 of 6). Accuracy Figures

c
432 VS FORTRAN Language and Library Reference

o

c

o

Appendix G. Assembler Language Information

The mathematical and service subprograms in the VS FORTRAN library can be
used by the assembler language programmer. To be successful, you need to do
three things:

• Make the library available to the linkage editor.

• Set up proper calling sequences.

Supply correct parameters.

Library Availability

The assembler language programmer must arrange for the desired subprograms
(modules) to be taken from the VS FORTRAN library and brought into main
storage, usually as a part of the programmer's load module. This can be done by
employing the techniques described in the appropriate publications for your
operating system.

For example, in MVS, the VS FORTRAN library could be made part of the
automatic call library for the linkage editor by using these job control statements:

//jobname JOB desired operands
//stepname EXEC ASMFCLG,PARM.LKED='XREF,LIST,MAP'
//ASM.SYSIN DD *

(assembler language program source deck)

/*
//LKED.SYSLIB DD DSNAME=data set name,DISP=SHR
/*

Library subprograms requested in the source program would then be made
available to the linkage editor for inclusion in the load module. This is made
possible by using the name of the VS FORTRAN library as the data set name in
the SYSLIB DD statement.

Appendix G. Assembler Language Information 433

Calling Sequences

Two general methods of calling are possible:

• Code an appropriate macro instruction, such as CALL.

• Code assembler language branch instructions.

In all cases, a save area must be provided that:

• Is aligned on a fullword boundary

• Is 18 words in length

• Has its address in general register 13 at the time of the CALL macro
instruction or branch

All extended precision mathematical subprograms (both explicit and implicit) use
all 16 registers, and require their callers to supply a full 18-word save area.

Figure 55 on page 443 shows calling sequences for a specific example: how to
find the square root of a value. The library square root subprogram (entry name
SQR T) is invoked, using assembler language statements.

Figure 49 on page 438 through Figure 53 on page 441 contain assembler
information for VS FORTRAN subprograms.

Assembler Information Figure

Explicitly called mathematical subprograms Figure 49

Implicitly called mathematical subprograms Figure 50

Implicitly called character subprograms Figure 51

Service subprograms Figure 52

Explicitly called bit functions Figure 53

Notes:

1. For performance reasons, VS FORTRAN subprograms use certain
floating-point registers (see Figure 50 on page 440), but do not save and
restore original register contents. If you want floating-point information
retained, you must save it before calling the subprogram and restore it on
return.

2. From the VSE control program, register 1 is not used, but the execution
parameters are passed as bit settings in the communications area.

434 VS FORTRAN Language and Library Reference

o

o

o

c

o

Assembler Language Calling Sequence

When a branch instruction, rather than a call macro instruction, is used to invoke a
subprogram, several additional conventions must be observed:

• An argument (parameter) address list must be assembled on a fullword
boundary. It consists of one 4-byte address constant for each argument, with
the last address constant containing a 1 in its high order bit.

• The address of the first item in this argument address list must be in general
register 1.

• From the VSE control program, register 1 is not used but the execution
parameters are passed as bit settings in the communications area.

• The address of the entry point of the called subprogram must be in general
register 15.

• The address of the point of return to the calling program must be in general
register 14.

The total requirements for an assembler language calling sequence are illustrated in
Figure 54 on page 441.

Supplying Correct Parameters

Arguments must be of the proper type, length, and quantity, and, in certain cases,
within a specified range, for the subprogram called.

For mathematical and character subprograms, this information can be found in
Figure 21 on page 288 through Figure 27 on page 300.

• INTEGER *4 denotes a signed binary number 4 bytes long.

REAL*4, REAL*8, amd REAL * 16 are normalized floating-point numbers 4,8
and 16 bytes long, respectively.

• COMPLEX*8, COMPLEX*16, and COMPLEX*32 are complex numbers 8,
16 and 32 bytes long, respectively, whose first half contains the real part, and
whose second half contains the imaginary part. Each part is a normalized
floating-point number.

Four-byte argument types must be aligned on fullword boundaries; 8-byte,
16-byte, and 32-byte types must be aligned on doubleword boundaries.

Argument information for nonmathematical subprograms can be found under
Chapter 9, "Service and Utility Subroutines" on page 313.

Error messages resulting from incorrect arguments are explained in Appendix
I, "Library Procedures and Messages" on page 463.

Appendix G. Assembler Language Information 435

Mathematical Subprogram Results

Each mathematical subprogram returns a single answer of a type listed in
Figure 21 on page 288 through Figure 27 on page 300.

• Integer answers are returned in general register O.

• Real answers are returned in floating-point register O.

• Complex answers are returned in floating-point registers 0 and 2.

Result registers are listed by subprogram entry name in Figure 49 on page 438
and Figure 50 on page 440.

For extended-precision mathematical subprograms, results are always returned in
the floating-point registers:

• 0 and 2 for REAL * 16 results

0, 2, 4, and 6 for COMPLEX*32 results

The location and form of the service subroutine results can be determined from the
discussion under Chapter 9, "Service and Utility Subroutines" on page 313.

Space Considerations

Many of the mathematical subprograms require other mathematical subprograms
for their calculations. In addition, most of the subprograms use the input/output,
error processing, and interruption library subroutines. (This interdependence is
outlined in Appendix E, "Storage Estimates" on page 417.) Thus, although you
may request just one VS FORTRAN subprogram, the requirements of that
subprogram may make the resultant load module quite large. The SQRT routine,
for example, takes only 344 bytes of storage itself, but requires other subroutines
that increase the load module size by approximately 20000 bytes.

Initializing the Execution Environment

If the called subprogram uses VS FORTRAN input/output, error processing, or
interruption routines, the calling program must initialize the execution environment,
as shown in Figure 54 on page 441 and Figure 55 on page 443.

An initialization entry to VFEIN# is not required if the main program is written in
FORTRAN and the assembler language routine is a subroutine, because the VS
FORTRAN compiler generates the initialization instructions in the FORTRAN
main program, but does not generate them in a FORTRAN subroutine.

The initialization instructions cause a branch into the VFEIN# subprogram, which
initializes return coding and prepares routines to handle interruptions. If this
initialization is omitted, an interruption or error may cause abnormal termination.
(After initialization, VFEIN# returns to the instruction following the BAL.)

436 VS FORTRAN Language and Library Reference

o

o

C
~\

,I ,!

o

o

o

Note: Before Release 4.0 of VS FORTRAN, the call to initialize the execution
environment was made to VSCOM#, not VFEIN#. The call to VSCOM# is still
supported, but you might significantly reduce the size of the load module by calling
VFEIN# instead.

Terminating the execution environment is also recommended if VS FORTRAN
input/ output routines are used. This ensures that any partially filled output buffers
are written to their data sets. The assembler language statements needed are those
that the compiler generates for a STOP statement.

Appendix G. Assembler Language Information 437

Subprogram Registers Used1

Entry Name Result Intermediate

ABS,DABS,IABS,QABS ° 2
ACOS,ASIN ° 2,4
AIMAG,DIMAG,QIMAG ° 2,4,6
AINT,DINT,QINT ° 2,4,6
ALGAMA,GAMMA,LGAMMA ° 2,4,6
ALOG,LOG ° 2,4,6
ALOGIO,LOGIO ° 2,4,6
AMOD,DMOD,QMOD ° 2,4,6
ANINT ,DNINT ,NINT ,IDNINT ° 2,4,6
ATAN,ATAN2 ° 2,4,6
CABS 0,2 6
CCOS,CSIN 0,2 4
CDABS 0,2 4,6
CDCOS,CDSIN 0,2 4
CDEXP 0,2 4,6
CDLOG 0,2 4,6
CDSQRT 0,2 4,6
CEXP 0,2 4,6
CLOG 0,2 4,6
CONJG,DCONJG,QCONJG ° 2,4,6
COS ° 2,4
COSH,SINH ° 2,4
COTAN,TAN ° 2,4
CQABS 0,2,4,6
CQCOS,CQSIN 0,2,4,6
CQEXP 0,2,4,6
CQLOG 0,2,4,6
CQSQRT 0,2,4,6
CSQRT 0,2 4,6
DACOS,DASIN ° 2,4
DATAN,DATAN2 ° 2,4,6
DCOS ° 2,4
DCOS2 0 2,4,6
DCOSH,DSINH ° 2,4,6
DCOTAN,DTAN ° 2,4,6
DCOTAN,DTAN2 ° 2,4,6
DDIM,DIM,IDIM,QDIM ° 2,4,6
DERF,DERFC ° 2,4,6
DEXP ° 2
DEXp2 ° 2
DGAMMA,DLGAMA ° 2,4,6
DLOG ° 2,4,6
DLOGIO ° 2,4,6
DPROD ° 2
DSIGN,ISIGN,sIGN,QSIGN ° 2,4,6
DSIN ° 2,4

Figure 49 (Part 1 of 2). Explicitly Called Mathematical Subprogram Assembler
Information

438 VS FORTRAN Language and Library Reference

0

0\
~y

c

0

o

o

DSIN2 0 2,4,6
DSQRT 0 2,4
DTANH 0 2,4,6
ERF,ERFC 0 2,4t6
EXP 0
EXp2 0
MOD 03

QARCOS,QARSIN 0,2 4,6
QATAN,QATAN2 0,2 4,6
QCOS,QSIN 0,2 4,6
QCOSH,QSINH 0,2 4,6
QCOTAN,QTAN 0,2 4,6
QERF,QERFC 0,2 4,6
QEXP,QLOG,QLOGIO 0,2 4,6
QSQRT 0,2 4,6
QTANH 0,2 4,6
SIN 0 2,4
SQRT 0 2
TANH 0 2,4,6

1 Floating-point
2 Alternative mathematical library subroutines
3 General register

Figure 49 (Part 2 of 2). Explicitly CaRed Mathematical Subprogram Assembler
Information

Appendix G. Assembler Language Information 439

Subprogram Registers Usedl

Entry Name Result Intermediate
CDDVD# 0,2 4,6
CDMPY# 0,2 4,6
CDVD# 0,2 4,6
CMPY# 0,2 4,6
CQDVD#,CQMPY# 0,2,4,6
CXMPR# 03

FCDCD# 0,2,4,6
FCDXI# 0,2
FCQCQ# 0,2,4,6
FCQXI# 0,2,4,6
FCXPC# 0,2,4,6
FCXPI# 0,2
FDXPD# ° FDXPD#2 ° 2,4,6
FDXPI# ° FIXPI# 03

FQXPI# 0,2 4,6
FQXPQ#,FQXP2# 0,2 4,6
FRXPI# ° FRXPR# ° FRXPR#2 ° 2,4,6

1 Floating-point
2 Alternative mathematical library subroutines
3 General register

Figure 50. Implicitly CaUed Mathematical Subprogram Assembler Information

Subprogram
Entry Name(s)

CCMPR#
CHAR, ICHAR, LEN
CMOVE#
CNCAT#
INDEX
LGE, LGT, LLE, LLT

Figure 51. Implicitly CaUed Character Subprogram Assembler Information

Notes follow.

440 VS FORTRAN Language and Library Reference

(~
' -~)i

~~ Vi

o

o

o

o

Subprogram
Entry Name(s)

CDUMP, CPDUMP
DSPAN#, DSPN2#, DSPN4#
DUMP,PDUMP
DVCHK
DYCMN#
EXIT
OVERFL
SDUMP
XUFLOW

Figure 52. Service Subprogram Assembler Information

Subprogram
Entry Name(s)

IBCLR, IBSET, BTEST, ISHFT
lOR, IEOR, NOT, lAND

Figure 53. Explicitly Called Bit Function Assembler Information

Notes to Figure 51, Figure 52, and Figure 53 :

No floating-point registers are used in:

Implicitly called character subprograms

• Service subprograms

Explicitly called bit functions

Appendix G. Assembler Language Information 441

INSTRUCTION
USING RTN,15

RTN SAVE (14,12)
DROP 15
LR 12, 15
USING RTN,12
LR 15, 13
LA 13,AREA
ST 15,4(13)
ST 13,8(15)
LR 13,15

SR 1,1
L 15,=V(VFEIN#)
BALR 14, 15

LA 1,ARGLIST

L 15,ENTRY

BALR 14,15

ENTRY DC V(entry name)

AREA DC 18F ' O'

FOR ONE ARGUMENT:

ARGLI ST DC A(arg + x'80000000 ')

FOR MORE THAN ONE ARGUMENT:

ARGLIST DC A(ARG1)

DC A(ARG2)

ARGl
ARG2

ARGN

DC A(ARGN + X' 80000000 ')
DC F 111
DC F 111

DC F 111

EXPLANATION
General register 13 contains the address
of the save area.

These statements are used to initialize
the VS FORTRAN execution-time
environment and may not be executed more
than once. This initialization is
necessary only when the main program is
not written in FORTRAN.

General register 1 contains the address
of the argument address list.

General register 15 contains the address
of the subprogram.

General register 14 contains the address
of the point of return to the calling
program.

In the second case, the entry name must
be defined by an EXTRN instruction to
obtain proper linkage.

This statement defines the save area
needed by the subprogram.

A 1 fs placed in the high-order bit of
the only argument.

This contains the address of the first
argument.
This contains the address of the second
argument and any additional arguments.

A 1 is placed in the high-order bit of
the last argument.

Figure 54. General Assembler Language Calling Sequence

442 VS FORTRAN Language and Library Reference

o

o

{~\ ::111

"'-'

o

0

o

*
*

AMNT
ANSWER

*
*

ENTRY
ANSWER

ARG

AMNT

This shows the use of a CALL macro to
call the library square root subprogram.

CALL
STE

DC
DC

SQRT, (AMNT) , VL
O,ANSWER

E'144'
E'O'

(See Note 1)

This shows the use of a BALR sequence to
call the library square root subprogram.

LA
L
BALR
STE

DC
DC

DC

DC

1,ARG
15,ENTRY
14,15
O,ANSWER

V(SQRT)
E'O'

A(AMNT+X'80000000')

E'144'

(See Note 2)

Figure SSe Examples of Assembler Language Calling Sequences

Notes to Figure 55:

1. The VL operand in CALL indicates that the macro expansion should flag the
end of the parameter list.

2. The CALL statement may not generate the same parameter list, nor one valid
for MVS/XA.

Appendix G. Assembler Language Information 443

c

o

o

o

o

o

Appendix H. Sample Storage Printouts

All output storage dumps are placed on the object error unit data set (defined by
the installation during system generation).

A sample printout is shown in Figure 56 on page 446 for each dump format that
can be specified for the storage dump subprogram using DUMP /PDUMP and
CDUMP/CPDUMP. Figure 57 on page 447 shows the dump output using
SDUMP.

Appendix H. Sample Storage Printouts 445

CALL POUMP WITH HEXADECIMAL FORMAT SPECIFIED

OOAnO ... 5F5f10 00000000 ".5F5EI0 10000000 .. 2100000

0060CI .. 2800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0060F. COOOOOOO 00000000 .. 1200000 "1566666 OOOOOOOC "1100000

CALL POUMP WITH LOGICAL.1 FORMAT SPEC I F I EO

006f1E T F

CALL PDUMP WITH LOGICAL." FORMAT SPEC I F I EO

006f10 F T

CALL POUMP WITH INTEGER·2 FORMAT SPEC I F I EO

006E1I 10

006EIA -100

006EIC 10

CALL POUMP WITH INTEGER· .. FORMAT SPECIFIED

006E20 1 2 3 It 5 6 7 • 9
006E". 11 12

CALL POUMP WITH REAL." FORMAT SPECIFIED

0061!O0 O.20000000E 01 O.53999996E 01

CALL POUMP WITH REAL •• FORMAT SPECIFIED

0060C. 0.17599999999999990 03

CALL POUMP WITH COMPLEX •• FORMAT SPEC I F I EO

006000 (3.0000000, It. 0000000) (".0000000, •• 0000000)

CALL PDUMP WITH COMPLEX.16 FORMAT SPECIFIED

0060EO (0.9999999999999990,0.9999999999999990) (-0.9999999999999990, -0.9999999999999990)

CALL PDUMP WITH LITERAL FORMAT SPECIFIED

006l:5C THIS ARRAY CONTAINS ALPHAMERIC DATA

CALLCPDUMP

008990 FILE READ ARGUMENT

Figure 56. Sample Storage Printout for DUMP/PDUMP and CDUMP/CPDUMP

Notes to Figure 56:

1. The headings on the printouts are not generated by the system, but were
obtained by using FORMAT statements.

10

2. The number printed at the left of each output line is the storage location (in
hexadecimal) of the first data item tabulated.

446 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

CALL SDUMP WITH SCALAR VARIABLES OF VARIOUS TYPES

1SDUMP - SYMBOLIC DUMP FOR MODULE: MAIN
o MODULE MAIN WAS CALLED BY OP/SYS
o MODULE MAIN LAST CALLED IFYSDUMQ.

FROM OFFSET 00033C AT ISN. NO. 30.
o A R8 O.550000000000000000D+01

P L1 T

C1 C8 0.100000000E+01 0.100000000E+01

C3 C16 0.300000000000000000D+01 0.300000000000000000D+01

CH1 CHR
1 F1 *1 *

CH2 CHR
1 C1C2C3C4 C5C6C7C8 *ABCDEFGH *

JJJ 12 222

LLL 14 121212

IIII 14 1111

YYYY R16 0.25252525000000ooaoooooooooooOOOOOOOOOQ+08

ZZZZ R16 0.4000000000000000000000000000000000000Q+06

IABLSE 14 6

NUMLTS 14 7

END OF SYMBOL DUMP PROCESSING

Figure 57. Sample Storage Printout for SDUMP

Output from Symbolic Dumps

Output Format

When you call SDUMP, you receive output from the program units you specify.
When your program abnormally terminates, you receive all variables that are in any
program unit that has been processed, as well as those in the program unit currently
being processed.

In general, the output shows scalar items (one line only) and array (more than one
line) items. Scalar and array items can contain either character or noncharacter .
data, but not both. The data is the same for both, except a top line is added for
array items.

Appendix H. Sample Storage Printouts 447

Scalar Noncharacter

Scalar Character

Character Data Format

In addition, scalar and array items both identify valid variable types (shown as yyy
in the formats).

The scalar variable value printing scheme for noncharacter data is as follows:

xxxxxxxx yyy zzzzzzzz

where:

xxxxxxxx is the variable name area.

yyy is the variable type.

zzzzzzzz is the area for the formatted output.

Valid variable types for yyy are:

14 - Integer
12 - Integer
L4 - Logical
Ll - Logical
R4 - Real
R8 - Real
R16 - Real
C8 - Complex
C 16 - Complex
C32 - Complex
CHR - Character

(4 bytes)
(2 bytes)
(4 bytes)
(1 byte)
(4 bytes)
(8 bytes)
(16 bytes)
(8 bytes, 4+4)
(16 bytes, 8+8)
(32 bytes, 16+ 16)

The scalar variable value printing scheme for character data is as follows:

xxxxxxxx yyy

where:

xxxxxxxx is the variable name.

yyy is the type of the variable, followed by as many lines of the following
form to display the entire variable value.

The character data format is as follows:

xxxxxxxx aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa *bbbbbbbbbbbbbbbb*

448 VS FORTRAN Language and Library Reference

c

(~
~)

o

o

Array

o
Array Specification

Array Data

o

where:

xxxxxxxx

aaaaaaaa

is the count of the next character displayed-the value is the
decimal number of the character.

is the hexadecimal representation of up to 4 bytes of
character data-as many aa's are used as are needed to
display the internal form of the data.

bbbbbbbbbbbbbbbb is the EBCDIC representation of up to 16 bytes of character
data-as many b's are used as are needed to display the
data.

Note: Unprintable characters are translated to the character period (.), asterisks
(*) are the delimiters of the EBCDIC character area.

The array variable value printing scheme is as follows:

xxxxxxxx yyy

where:

xxxxxxxx is the array name.

yyy is the array type.

DIMENSION x: yyyyyyyy:zzzzzzzz aaa

where:

x is the dimension (from 1 to 7).

yyyyyyyy is the lower bound.

zzzzzzzz is the upper bound.

aaa is either blank or * ASSUMED SIZE ARRA Y*.

Note: * ASSUMED SIZE ARRA y* appears only for the last dimension-there is
one dimension line for each dimension of the array.

For the display of data, the output is divided into two parts: Part 1 describes the
array name and the current element indices, and part 2 displays the data.

The following shows how part 1 is formatted:

xxxxxxxx(dimensil,dimensi2,dimensi3,dimensi4,dimensi5,
dimensi6,dimensi7)

Appendix H. Sample Storage Printouts 449

Array Message

where:

xxxxxxxx

dimensi I-dimensi7

is the array name.

are the indexes of the element value to enclose the left and
right parentheses, and the size of the variable areas are
accurate. Only as many indexes as are needed are printed.

The data for part 2 is formatted in the same way as that for the scalar item already
described, except that only the value is on the line.

A line of hyphens in the output marks the end of output for each scalar or array
item (not an array element).

The following message is issued if some array elements are missing:

MISSING ELEMENTS OF THE CURRENT ARRAY HAVE A VALUE OF ZERO
OR BLANK.

Control Flow Information

The following shows the printing scheme of the portion of symbolic dump output
that indicates where a call originated and what other routines the program calls, if
applicable:

MODULE xxxxxxxx WAS CALLED BY yyyyyyyy.

OP/SYS message fragment for OPERATING SYSTEM.

FROM OFFSET aaaaaa AT ISN. NO. bbbbbbbbbb.

where:

xxxxxxxx

yyyyyyyy

OP/SYS

aaaaaa

identifies the caller module.

identifies the called routine.

is the operating system: DOS, MVS, VS 1, or CMS.

is the offset into the program unit. If blanks appear, then the offset
is not available.

bbbbbbbbbb is the internal statement number (ISN). If double asterisks appear,
the ISN information is unavailable.

Note: The message fragment is used in conjunction with other fragments to
identify the CALLs and RETURNs of the program units.

MODULE xxxxxxxx LAST CALLED yyyyyyyy

450 VS FORTRAN Language and Library Reference

o

o

c

o

I/O Unit Information

o

o

where:

xxxxxxxx is the calling module name.

yyyyyyyy is the called module name.

Note: The message fragment is used in tracing the control flow of program units.

MODULE xxxxxxxx DID NOT CALL ANY OTHER ROUTINES.

where:

xxxxxxxx is the routine that did not call any other routines.

Note: The message fragment completes the group of fragments identifying the
control flow scheme.

The following messages appear only for post-ABEND processing (VPOST or
VPOSA):

1. Default units

DATA SET REFERENCE NUMBER TABLE. NUMBER OF ENTRIES IS
xxx.
Indicates the number of units available to the FORTRAN program is
xxx.

DEFAULT UNIT FOR THE PRINTER IS xxx.
Indicates the default output device is. xxx.

DEFAULT UNIT FOR THE READER IS xxx.
Indicates the default input device is xxx.

DEFAULT UNIT FOR THE PUNCH IS xxx.
Indicates the default punch output device is xxx.

DEFAULT UNIT FOR THE OBJECT TIME ERROR MESSAGES IS xxx.
Indicates that error messages issued by the VS FORTRAN program will
go to unit xxx. This includes messages issued by IFYVPOST (abnormal
termination) or IFYSDUMP (SDUMP).

2. Active units

FILE ON UNIT xxx IS ACTIVE.
Indicates that input/output activity has been proceeding on unit xxx.

3. Inactive (or formerly used) units

FILE IS INACTIVE. LAST CONNECTED UNIT IS xxx.
Indicates that file on unit xxx has been the object of a CLOSE or
REWIND statement.

Appendix H. Sample Storage Printouts 451

I/O Unit Status Information

The following message fragments describe the identified unit. The messages may
not appear in this sequence, and not all may appear.

FILE IS USED FOR ASYNCHRONOUS SEQUENTIAL I/O.
FILE IS USED FOR SYNCHRONOUS SEQUENTIAL I/O.
FILE IS USED FOR DIRECT I/O.
FILE USES VSAM ACCESS METHOD.
FILE IS NAMED.
FILE STATUS IS OLD.
FILE STATUS IS UNKNOWN.
FILE IS FORMATTED.
FILE IS UNFORMATTED.
FILE HAS PERMANENT OPEN ERROR.
FILE HAS HAD FIRST I/O ERROR.
FILE NAME USED IS xxxxxxxx.

where xxxxxxxx: is the ddname.

Examples of Sample Programs and Symbolic Dump Output

The following are three examples of sample programs and symbolic dump output.
The first two examples show the two types of output, the first for scalar items and
the second for array items. Be aware, however, that if your program assigns values
to both scalar and array items, the output formats will be mixed. The third example
is a sample of what you might get after a nonrecoverable failure. (\

V

452 VS FORTRAN Language and Library Reference

o

o

o

Example 1. Scalar Items

This program assigns values to scalar items.

@PROCESS
C
C SAMPLE PROGRAM TO DEMONSTRATE SDUMP OF SCALAR VARIABLES
C
C
C SPECIFY THE VARIABLE TYPES
C

C

COMPLEX*8 C2,C1
COMPLEX*16 C3
CHARACTER CH1,CH2*8
REAL*8 A,B
REAL*16 YYYY,ZZZZ
INTEGER*2 JJJ,KKK
LOGICAL*1 P
LOGICAL*4 Q

C ASSIGN THE VALUES
C

C
C
C

10

P=.TRUE.
Q=.FALSE.
CH2='ABCDEFGH'
CH1='1'
A = 5.5
NUMLTS=7
IABLSE=6
ZZZZ=4.0E5
IIII=1111
JJJ=222
000=327670

PPP=32768

B=222.222
KKK=999
LLL=121212
MMM=2147483647

NNN=-2147483647

YYYY=25252525
C1=(1.,1.)
C2= (2. ,2.)
C3=(3.DO,3.DO)

PRINT MESSAGE AND INVOKE SDUMP

WRITE(6,*) , CALL SDUMP WITH SCALAR VARIABLES OF VARIOUS TYPES'
CALL SDUMP
STOP
END

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100

00003200
00003300
00003400
00003500
00003600
00003700
00003800

.00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
00004700
00004800
00004900
00005000
00005100

Appendix H. Sample Storage Printouts 453

Example 1. Output

The output is as follows: o
CALL SDUMP WITH SCALAR VARIABLES OF VARIOUS TYPES

SDUMP - SYMBOLIC DUMP FOR MODULE: MAIN
MODULE MAIN WAS CALLED BY OP/SYS

. MODULE MAIN LAST CALLED IFYSDUMP.
FROM OFFSET 00038C AT ISN. NO. 35.

A R8 O.550000000000000000D+01

B R8 O.222222000122070312D+03

P L1 T

Q L4 F

R R4 O.323733E+02

C1 C8 O.100000000E+01 O.100000000E+01

C2 C8 O.200000000E+01 O.200000000E+01

C3 C16 O.300000000000000000D+01 O.300000000000000000D+01

CH1 CHR
1 F1 *1 *

CH2 CHR
1 C1C2C3C4 C5C6C7C8 *ABCDEFGH * o

JJJ 12 222

KKK 12 999

LLL 14 121212

MMM 14 2147483647

NNN 14 -2147483647

000 12 32767

PPP 12 -32768

1111 14 1111

YYYY R16 O.25252525000000000000000000000000000Q+08

ZZZZ R16 O.40000000000000000000000000000000000Q+06

IABLSE 14 6

NUMLTS 14 7

END OF SYMBOL DUMP PROCESSING FOR MAIN

I • C~·····

454 VS FORTRAN Language and Library Reference

o

c

o

Example 2. Array Items

This program assigns values to array items.

@PROCESS
C
C SAMPLE PROGRAM TO DEMONSTRATE SDUMP OF ARRAY VARIABLES
C
C
C SPECIFY THE VARIABLE TYPES
C

C

COMPLEX*8 C2(5) ,C1 (5)
COMPLEX*16 C3(5)
CHARACTER CH1 (5),CH2(5)*8
REAL* 8 A (5) ,B (5)
REAL*16 YYYY(5),ZZZZ(5)
INTEGER*2 JJJ(5) ,KKK(5)
INTEGER NUMLTS(5) ,IABLSE(5) ,1111(5) ,LLL(5)
LOGICAL*1 P(5)
LOGICAL*4 Q(5)

C ASSIGN THE VALUES
C

P (1) = . TRUE.
P(2)=.FALSE.
P(3)=.TRUE.
P(4)=.FALSE.
P(5)=.TRUE.
Q (1) = . TRUE.
Q(2)=.FALSE.
Q(3)=.FALSE.
Q(4)=.FALSE.
Q(5)=.TRUE.
CH2(1) (:)='ABCDEFGH'
CH2(2) (:)='ABCIJKLM'
CH2(3) (:)='ABCNOPQR'
CH2(4) (:)='ABCSTUVW'
CH2(5) (:)='ABCXYZAB'
CH 1 (1) (:) = ' 1 '
CH 1 (2) (:) = ' 2 '
CH 1 (3) (:) = ' 3 '
CH 1 (4) (:) = ' 4 '
CH 1 (5) (:) = ' 5 '
A(1) 5.5
A(2) 4.5
A(3) = 3.5
A(4) = 2.5
A(5) = 1.5
NUMLTS(1)=7
NUMLTS(2)=6
NUMLTS(3)=5
NUMLTS(4)=4
NUMLTS(5)=3
IABLSE(1)=6
IABLSE(2)=7
IABLSE(3)=8
IABLSE(4)=9
IABLSE(5)=10

00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003600
00003700
00003800
00003900
00004000
00004100
00004200
00004300
00004400
00004500
00004600
00004700
00004800
00004900
00005000
00005100
00005200
00005300
00005400
00005500

Appendix H. Sample Storage Printouts 455

C
C
C

ZZZZ(1)=4.0E5
ZZZZ(2)=4.0E3
ZZZZ(3)=4.0E2
ZZZZ(4)=4.0E1
ZZZZ(5)=4.0EO
1111(1)=1111
1111(2)=3211
1111(3)=4311
1111(4)=6511
1111(5)=1541
JJJ(1)=212
JJJ(2)=242
JJJ(3)=232
JJJ(4)=252
JJJ(5)=262
B(1)=111.222
B(2)=222.222
B(3)=333.222
B(4)=444.222
B(5)=555.222
KKK (1) =899
KKK(2)=799
KKK(3)=699
KKK(4)=599
KKK(5)=499
LLL (1) =212
LLL(2)=312
LLL(3)=412
LLL(4)=512
LLL(5)=612
YYYY{1)=15151515
YYYY(2)=25252525
YYYY(3)=35353535
YYYY(4)=45454545
YYYY(5)=55555555
C1 (1)=(5.,1.)
C1 (2)=(4. ,2.)
C1 (3)=(3. ,3.)
C1 (4)=(2. ,4.)
C1(5)=(1.,5.)
C2 (1) = (2 . , 1 0 .)
C2 (2) = (4. ,8.)
C2 (3) = (6. ,6.)
C2 (4) = (8 . , 4 .)
C2 (5) = (1 0 . , 2 .)
C3(1)=(3.DO,13.DO)
C3(2)=(6.DO,11.DO)
C3(3)=(9.DO,9.DO)
C3(4)=(12.DO,7.DO)
C3(5)=(15.DO,5.DO)

PRINT MESSAGE AND INVOKE SDUMP

WRITE(6,*) , CALL SDUMP WITH ARRAY VARIABLES OF VARIOUS TYPES'
CALL SDUMP
STOP
END

456 VS FORTRAN Language and Library Reference

00005600
00005700
00005800
00005900
00006000
00006100
00006200
00006300
00006400
00006500
00006600
00006700
00006800
00006900
00007000
00007100
00007200
00007300
00007400
00007500
00007600
00007700
00007800
00007900
00008000
00008100
00008200
00008300
00008400
00008500
00008600
00008700
00008800
00008900
00009000
00009100
00009200
00009300
00009400
00009500
00009600
00009700
00009800
00009900
00010000
00010100
00010200
00010300
00010400
00010500
00011100
00011200
00011300
00011400
00011500
00011600
00011700

o

C,·\ " ,

o

0

o

Example 2. Output

The output is as follows:

CALL SDUMP WITH ARRAY VARIABLES OF VARIOUS TYPES

SDUMP - SYMBOLIC DUMP FOR MODULE: MAIN
MODULE MAIN WAS CALLED BY OP/SYS
MODULE MAIN LAST CALLED IFYSDUMP.
FROM OFFSET 000C08 AT ISN. NO. 103.
ARRAY: A TYPE:R8

DIMENSION 1: 1: 5
A (1) O. 550000000000000000D+0 1
A(2) 0.450000000000000000D+01
A(3) 0.350000000000000000D+01
A(4) 0.250000000000000000D+01
A (5) O. 150000000000000000D+0 1

ARRAY: B
DIMENSION 1:

ARRAY:

B(
B(
B(
B(
B(

DIMENSION
P(
P(
P(
P(
P(

ARRAY:
DIMENSION

Q(
Q(
Q(
Q(
Q(

P
1 :

Q
1 :

ARRAY: C1
DIMENSION 1:

TYPE:R8
1 : 5

1) 0.111222000122070312D+03
2) 0.222222000122070312D+03
3) 0.333221923828125000D+03
4) 0.444221923828125000D+03
5) 0.555221923828125000D+03

TYPE:L1
1 : 5

1) T
2) F
3) T
4) F
5) T

TYPE:L4
1 : 5

1) T
2) F
3) F
4) F
5) T

TYPE:C8
1 : 5

C1 (
C1 (
C1 (
C1 (
C1 (

1) 0.500000000E+01
2) O. 400000000E+0 1
3) O. 300000000E+0 1
4) 0.200000000E+01
5) O. 1 OOOOOOOOE+O 1

0.100000000E+01
0.200000000E+01
0.300000000E+01
0.400000000E+01
0.500000000E+01

ARRAY: C2
DIMENSION 1:

C2(
C2 (
C2 (
C2 (
C2 (

TYPE:C8
1 : 5

1) 0.200000000E+01
2) O. 400000000E+0 1
3) O. 600000000E+0 1
4) O. 800000000E+0 1
5) 0.100000000E+02

0.100000000E+02
0.800000000E+01
0.600000000E+01
0.400000000E+01
0.200000000E+01

Appendix H. Sample Storage Printouts 457

ARRAY: C3
DIMENSION 1:

ARRAY:

C3(
C3(
C3(
C3(
C3(

DIMENSION
CH1 (

1
CH1 (

1
CH1 (

1
CH1 (

1
CH1{

1

ARRAY:
DIMENSION

CH2(
1

CH2(
1

CH2 (
1

CH2(
1

CH2(
1

CH1
1 :

CH2
1 :

ARRAY: JJJ
DIMENSION 1:

JJJ(
JJJ(
JJJ(
JJJ(
JJJ(

ARRAY: KKK
DIMENSION 1:

KKK (
KKK (
KKK (
KKK (
KKK (

TYPE:C16
1: 5

1)0. 300000000000000000D+0 1
2) 0.600000000000000000D+01
3) 0.900000000000000000D+01
4) O.120000000000000000D+02
5) 0.150000000000000000D+02

TYPE:CHR
1 : 5

1)
F1

2)
F2

3)
F3

4)
F4

5)
F5

TYPE:CHR
1 : 5

1)
C1C2C3C4 C5C6C7C8

2)
C1C2C3C9 D1D2D3D4

3)
C1C2C3D5 D6D7D8D9

4)
C1C2C3E2 E3E4E5E6

5)
C1C2C3E7 EHE9C1C2

TYPE:I2
1 : 5

1) 212
2) 242
3) 232
4) 252
5) 262

TYPE:I2
1 : 5

1) 899
2) 799
3) 699
4) 599
5) 499

458 VS FORTRAN .Language and Library Reference

0.130000000000000000D+02
0.110000000000000000D+02
0.900000000000000000D+01
0.700000000000000000D+01
0.500000000000000000D+01

*1 *

*2 *

*3 *

*4 *

*5 *

*ABCDEFGH *

*ABCIJKLM *

*ABCNOPQR *

*ABCSTUVW *

*ABCXYZAB *

/~

~J

c

o

o

o

ARRAY: LLL TYPE:I4
DIMENSION 1: 1 :

LLL (1)
LLL (2)
LLL (3)
LLL (4)
LLL(5)

ARRAY: 1111 TYPE:I4
DIMENSION 1: 1:

1111 (1)
1111 (2)
1111 (3)
1111 (4)
IIII(5)

ARRAY: YYYY TYPE:R16

5
212
312
412
512
612

5
1111
3211
4311
6511
1541

DIMENSION 1: 1 : 5
YYYY(
YYYY(
YYYY(
YYYY(
YYYY(

1) O.15151515000000000000000000000000000Q+08
2) O.25252525000000000000000000000000000Q+08
3) O.35353535000000000000000000000000000Q+08
4) O.45454545000000000000000000000000000Q+08
5) O.55555555000000000000000000000000000Q+08

ARRAY: ZZZZ TYPE:R16
DIMENSION 1: 1 : 5

ZZZZ(
ZZZZ(
ZZZZ(
ZZZZ(
ZZZZ{

1) O.40000000000000000000000000000000000Q+06
2) O.40000000000000000000000000000000000Q+04
3) O.40000000000000000000000000000000000Q+03
4) O.40000000000000000000000000000000000Q+02
5) O.40000000000000000000000000000000000Q+01

ARRAY: IABLSE TYPE:I4
DIMENSION 1: 1 : 5
IABLSE(1) 6
IABLSE(2) 7
IABLSE(3) 8
IABLSE(4) 9
IABLSE (5) 1 0

ARRAY: NUMLTS TYPE: 14
DIMENSION 1: 1 : 5
NUMLTS (1) 7
NUMLTS(2) 6
NUMLTS (3) 5
NUMLTS(4) 4
NUMLTS(5) 3

END OF SYMBOL DUMP PROCESSING FOR MAIN

Appendix H. Sample Storage Printouts 459

Example 3. Nonrecoverable Failure

This program will attempt to store data, but will fail because the index into the
array has a number that is too large, and the program attempts to store the array in
an area that doesn't belong to the program.

DIMENSION A (10)
A(5)=3.2
1=99999999
A(I)=2.3

00000900
00001000
00001400
00001800
00001900
00002000

STOP
END

The output from running this program is shown on the next page. The output you
get will vary, depending on the compiler options GOSTMT/NOGOSTMT,
SDUMP/NOSDUMP, and TEST/NOTEST, as follows:

• All lines of the IFY2401 message except the last line are option independent.
The last IFY2401 line contains ISNs/line numbers when the abending module
was compiled with SDUMP or TEST; otherwise, it contains ** in those fields.
For details on IFY2401, see Appendix I, "Library Procedures and Messages"
on page 463.

• Traceback information appears next and is dependent on the GOSTMT option.
When the traceback includes one or more subprograms compiled with
GOSTMT, ISNs appear in those lines for those programs; otherwise **
appears. For details on traceback, see VS FORTRAN Programming Guide.

• I/O unit and unit status information appears next and is option independent.
This unit information is produced only if the program abnormally terminates.
For details on unit status, see "I/O Unit Information" on page 451.

• Control flow information appears last and is dependent on the SDUMP or
TEST option. For a program unit active at abend that was compiled with
SDUMP or TEST, the control flow information contains ISNs/line numbers;
otherwise, it contains ** in those fields. For details on control flow, see
"Control Flow Information" on page 450.

To get post-abend data, the object error unit must be directed to a disk or
SYSOUT file. No output will be sent to the object error unit if it is directed to a
terminal device.

460 VS FORTRAN Language and Library Reference

o

Example 3. Output o The output from the failing program is as follows:

c

o

IFY2401 VSTAE - ABEND CODE IS: SYSTEM 00C5, USER 0000. SCB/SDWA=00033178.
IFY2401 VSTAE - 10 HALTED. PSW=FFE4000582020110. ENTRY POINT=00020000.
IFY2401 VSTAE - REGS 0-3 6BA141CO 000000C5 0002012E 00020050
IFY2401 VSTAE - REGS 4-7 000125EO 00000006 17D783FC OC000878
IFY2401 VSTAE - REGS 8-11 00018E38 00019E38 40404040 00002A30
IFY2401 VSTAE - REGS 12-15 600190FC 00020050 80020136 000200FO
IFY2401 VSTAE - FRGS 0-3 4124CCCD 00000000 00000000 00000000
IFY2401 VSTAE - FRGS 4-7 00000000 00000000 00000000 00000000
IFY2401 VSTAE - ABEND IN MODULE MAIN AT ISN 4 (OFFSET 000001FC).

TRACEBACK OF CALLING ROUTINES; MODULE ENTRY ADDRESS=020000
MAIN (020000) CALLED BY OPERATING SYSTEM.

DATA SET REFERENCE NUMBER TABLE. NUMBER OF ENTRIES IS 100.
DEFAULT UNIT FOR THE OBJECT TIME ERROR MESSAGES IS 6.
DEFAULT UNIT FOR THE READER IS 5.
DEFAULT UNIT FOR THE PRINTER IS 6.
DEFAULT UNIT FOR THE PUNCH IS 7.
FILE ON UNIT 6 IS ACTIVE.

FILE IS USED FOR SYNCHRONOUS SEQUENTIAL I/O.
FILE STATUS IS OLD.
FILE IS FORMATTED.
FILE NAME USED IS FT06F001.

VPOSA - POST ABEND SYMBOLIC DUMP FOR MODULE: MAIN
MODULE MAIN WAS CALLED BY OP/SYS
MODULE MAIN LAST CALLED VFEIM# .
FROM OFFSET 000212.

ARRAY: A TYPE:R4
DIMENSION 1: 1: 10

A(5) 0.320000E+01
MISSING ELEMENTS OF THE CURRENT ARRAY HAVE A VALUE OF ZERO OR BLANK

I 14 99999999

END OF SYMBOL DUMP PROCESSING FOR MAIN

PROGRAM UNIT NOT COMPILED FOR SYMBOLIC DUMP PROCESSING. PROGRAM UNIT IS
VFEIM#
MODULE VFEIM# WAS CALLED BY MAIN
FROM OFFSET 000212.
MODULE VFEIM# LAST CALLED IFYVPARM.
FROM OFFSET 0003D4.

PROGRAM UNIT NOT COMPILED FOR SYMBOLIC DUMP PROCESSING. PROGRAM UNIT IS
I FYVPARM
MODULE IFYVPARM WAS CALLED BY VFEIM#.
FROM OFFSET 0003D4.
MODULE IFYVPARM LAST CALLED IFYVSPIE.
FROM OFFSET 00017A.

PROGRAM UNIT NOT COMPILED FOR SYMBOLIC DUMP PROCESSING. PROGRAM UNIT IS
IFYVSPIE.

Appendix H. Sample Storage Printouts 461

()

Cr :'
, ,

o

o

o

Appendix I. Library Procedures and Messages

This appendix contains explanations of the program-interruption and error
procedures used by the VS FORTRAN library. The messages generated by that
Library are also given. A full description of program interrupts is given in IBM
System/370 Principles of Operation. For detailed information about error
processing and message formats, see VS FORTRAN Programming Guide.

Library Interruption Procedures

The VSFORTRAN Library processes those interrupts that are described below; all
others are handled directly by the system supervisor:

1. When an interrupt occurs, indicators are set to record exponent overflow,
underflow, fixed-point, floating-point, or decimal divide exceptions. These
indicators can be interrogated dynamically by the subprograms described under
Chapter9, "Service and Utility Subroutines" on page 313.

2. A message is printed on the object program error unit when each interrupt
occurs. The old Program Status Word (PSW) printed in the message indicates
the cause of each interrupt.

3. Result registers are changed when exponent overflow or exponent underflow
(codes C and D) occur. Result registers are also set when a floating-point
instruction is referenced by an assembler language execute (EX) instruction.

4. Condition codes .set by floating-point addition or subtraction instructions are
altered for exponent underflow (code D).

5. After the foregoing services are performed,execution of the program continues
from the instruction following the one that caused the interrupt.

Library Error Procedures

During execution, the mathematical subprograms assume that the argument(s) is
the correct type. However, some checking is done for erroneous arguments (for
example., the wrong type, invalid characters, and the wrong length); therefore, a
computation performed with an erroneous argument has an unpredictable result.
However, the nature of some mathematical functions requires that the input be
within a certain range. For example, the 'square root of a negative number is not
permitted. If theargnment is not within the valid range given in Figure 21 through
Figure 26, an error message is written on the object program error unit data set

Appendix 1. Library Procedures and Messages 463

Library Messages

defined by the installation during system generation. The execution of the program
is continued with the standard corrected argument value of 0.0; however, the user
can specify a user exit routine for this particular error, and in that routine specify a
new argument to be used to recalculate the square root. The user exit routine is
part of the extended error handling capability of the VS FORTRAN Library. This
facility provides for standard corrective action by the user. (For a full description
of extended error handling, see VS FORTRAN Programming Guide.)

The VS FORTRAN Library generates three types of messages:

• Program-interrupt messages

• Execution error messages

• Operator messages

All library messages are numbered. Program-interrupt messages are written when
an exception to a system restriction occurs, such as dividing by zero or generating a
result too large to contain in a floating point register. Execution error messages are
written when a VS FORTRAN Library function or subroutine is misused or an I/O
error occurs. Operator messages are written when a STOP n or PAUSE statement
is executed.

Except for operator and informational messages, all VS FORTRAN Library
messages are followed by additional information that identifies the name of the
last-executed FORTRAN program and the location of the last-executed statement
in that program unit. The additional information is indicated in one of three
formats based on how the FORTRAN program unit was compiled:

• Program unit compiled with NOSDUMP and NOTEST:

LAST EXECUTED FORTRAN STATEMENT IN PROGRAM name
(OFFSET 00000000).

• Program unit compiled with TEST and NOSDUMP:

LAST EXECUTED, FORTRAN STATEMENT IN PROGRAM name AT
SEQ. NO. SSSSSS (OFFSET 00000000).

• Program unit compiled with SDUMP or, for some errors, GOSTMT:

LAST EXECUTED FORTRAN STATEMENT IN PROGRAM name AT
ISN iii iii (OFFSET 00000000).

where:

name is the name of failing program unit (reentrant CSECT name if
compiled with RENT).

00000000 is the hexadecimal offset from the beginning of the program to the
last-executed statement.

464 VS FORTRAN Language and Library Reference

o

o

o

ssssss is the sequence number of source statement in failing program unit.

iiiiii is the compiler-generated internal sequence number (ISN).

This additional information is invaluable in determining the source of the error. It
should be noted, however, that if the last executed FORTRAN program unit called
an assembler routine which invoked the VS FORTRAN Library routine that caused
the error, the source of the error may be the user-coded assembler routine.

The additional information identifying the source of the error is not produced if no
VS FORTRAN program units are encountered in the active chain of program units
that caused issuance of the error message.

See VS FORTRAN Compiler and Library Diagnosis Guide if a problem recurs after
you have performed the specified programmer response for the message received.

Program-Interrupt Messages

Program-interrupt messages are written with the old Program Status Word (PSW),
which aids the programmer in determining the nature of the error.

There are four program-interrupt messages: IFY2071, IFY2081, IFY2091, and
IFY21 01. The messages are issued by a library module. The last five characters in
the name-VFNTH for OS/VS and CMS systems, DFNTH for VSE
systems-appears after the identifier of each message. Here are the messages and
their explanations:

IFY207I VFNTH : PROGRAM INTERRUPT (Z) - FLOATING-POINT
EXCEPTION OVERFLOW, REGISTER CONTAINS nnnnnnnn

Explanation: This message indicates that an overflow exception, identified by the
character 8 or C in the 8th position of the PSW, has occurred. This exception
occurs for a fixed-point overflow either when a carry occurs out of the high-order
bit position in fixed-point arithmetic operations, or when high-order significant bits
are lost during the algebraic left-shift operation. For an exponent overflow, this
exception occurs when the magnitude of the result operation is greater than or
equal to 1663 (approximately 7.2 x 1075).

Supplemental Data Provided: The floating-point number (nnnnnnnn) before
alteration for an exponent-overflow exception.

Standard Corrective Action: Execution continues at the point of the interrupt. For
an exponent overflow, the result register is set to the largest possible correctly
signed floating-point number that can be represented:

• Short precision (1663* (1-16-6»

• Long precision (1663*(1-16-14»

• Extended precision (1663*(1-16-28»

Programmer Response: Make sure a variable or variable expression does not
exceed the allowable magnitude. Verify that all variables have been initialized
correctly in previous source statements and have not been inadvertently modified.

Appendix I. Library Procedures and Messages 465

IFY208I VFNTH : PROGRAM INTERRUPT (Z) - FLOATING-POINT
UNDERFLOW EXCEPTION, PSW xxxxxxxxxxxxxxx REGISTER
CONTAINS nnnnnnnn

Explanation: The message indicates that an exponent-underflow exception,
identified by a D in the 8th position of the PSW, has occurred. This exception
occurs when the result of a floating-point arithmetic operation is less than 16-65

(approximately 5.4 x 10-79).

Supplemental Data Provided: The floating-point number (nnnnnnnn) before
alteration.

Standard Corrective Action: Execution continues at the point of the interrupt, with
the result register set to a true zero of correct precision.

Programmer Response: Make sure that a variable or variable expression is not
smaller than the allowable magnitude. Verify that all variables have been
initialized correctly in previous source statements and have not been inadvertently
modified.

IFY209I VFNTH : PROGRAM INTERRUPT (Z) - yyyyyy EXCEPTION, PSW
xxxxxxxxxxxxxxx REGISTER CONTAINS nnnnnnnn

Explanation: This message indicates that an attempt to divide by 0 has occurred. A
fixed-point-divide exception is identified by a 9 in the 8th position of the PSW; a
floating-point-divide exception, by an F.

()

Supplemental Data Provided: Floating-point number (nnnnnnnn) before alteration, C:
for a floating-point interrupt.

Standard Corrective Action: For floating-point-divide, execution continues at the
point of the interrupt with the result registers set to:

• True zero of correct precision for case of n/O, where n=O.

Largest possible floating-point number of correct precision for case of n/O
where n~O. For fixed-point-divide, leave registers unmodified and continue
execution.

Programmer Response: Either correct the source where division by 0 is occurring,
or modify previous source statements to test for the possibilities, or bypass the
invalid division.

IFY21 01 VFNTH : PROGRAM INTERRUPT (Z) - yyyyyy EXCEPTION, PSW
xxxxxxxxxxxxxxx

Explanation: A program interruption occurred. As indicated by the "P" the
interruption was precise; that is, it was not a specification exception. (A
specification exception may nevertheless occur on machines that allow imprecise
interruptions.)

Standard Corrective Action: The operation is suppressed and message IFY2401 is
issued on MVS and VM systems. On DOS systems, the operation is suppressed
and the partition is dumped, if abend dumps were requested.

466 VS FORTRAN Language and Library Reference

o

c

o

Supplemental Data Provided: The type of interruption (cccccccccccc) and the PSW
at the time of the interruption (xxxxxxxxxxxxxxxx).

The type of interruption will be one of the following:

Operation exception
Privileged-operation exception
Execute exception
Protection exception
Addressing exception
Specification exception
Data exception
Fixed-point-overflowexception
Fixed-point-divide exception
Decimal-overflow exception
Decimal-divide exception
Exponent-overflow exception
Exponent-underflow exception
Significance exception
Floating-point-divide exception

The causes of these interruptions are explained in IBM System/370 Principles of
Operation.

Programmer Response:

Most likely, one of the following happened:

• Your program addressed a point outside the bounds of an array and possibly
overwrote program code. Make sure you refer to all arrays within the declared
bounds.

• A subroutine was passed the wrong number of arguments or arguments of the
wrong data type. Make sure all subroutine and function calls are passed the
correct number and type of arguments.

A call or reference was made to an external subroutine or function that has not
been resolved by the linkage editor or loader. When a program refers to an
unresolved subroutine or function, an operation exception usually occurs. VS
FORTRAN indicates the location of the unresolved call or reference in the
information it adds to this error message.

The PSW will probably show that the failing address is in low storage.

If so, check the link-edit map and look for loader diagnostics. Make sure that
external routines are available when link-editing or loading.

• A VS FORTRAN library routine caused the interruption. The information
added to this message gives the name of the library routine and the offset
within the routine at which the interruption occurred. If a user-coded
assembler subroutine called the library routine, make sure the correct number
and type of arguments were passed.

Appendix I. Library Procedures and Messages 467

Execution Error Messages

Each of these has the form:

IFYxxxI zzzzz : message text

where:

xxx is the number of the library message.

zzzzz is the last five characters of the module named IFYzzzzz.

message text describes the error.

Each message contains the error number, the abbreviated module name for the
origin of the error, and a description of the error with supplemental data. In
addition, a full explanation of the error is given and the standard action for
correcting it is described.

Variable information in the message is shown in lowercase letters. In the corrective
action descriptions, • denotes the largest possible number that can be represented
for a floating-point value.

IFY120I DKIOS I VKIOS : OPEN STATEMENT ATTEMPTED TO CHANGE
pppppppp FOR FILE fffffff WHICH IS ALREADY OPEN. ONLY
'BLANK' MAY BE CHANGED.

Explanation: An OPEN statement was issued for a file that is already open. The
OPEN statement contains a parameter whose value has already been set and
cannot be changed. When a file is already open, only the BLANK parameter can
be specified on an OPEN statement.

Supplemental Data Provided:

pppppppp is ACCESS, FORM, ACTION, KEYS, or PASSWORD-the
parameter on the OPEN statement whose value you cannot change.

fffffff is the name of the file that is already open.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: If you want to change the value of the BLANK parameter,
first remove the parameter that should not have been specified. Otherwise, remove
the OPEN statement or open a different file with it.

468 VS FORTRAN Language and Library Reference

o

o

,r"\

U

o

o

o

IFY1211 DKIOS I VKIOS : OPEN STATEMENT FOR FILE fffffff
SPECIFIES ACTION='WRITE' BUT HAS MORE THAN ONE KEY
IN 'KEYS' PARAMETER.

Explanation: An OPEN statement has conflicting parameters: ACTION = 'WRITE' ,
which implies you are loading a file, and KEYS with more than one key listed.

Supplemental Data Provided: fffffff is the name of the file you tried to open.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: If you want to load the file, remove the KEYS parameter or
specify only the primary key of the file. If you want to process a file that is not
empty, change the value of the ACTION parameter to READ or READWRITE.

IFY122I DKIOS I VKIOS : ssssssss STATEMENT IS NOT ALLOWED WHEN
THE FILE IS OPEN WITH AN ACTION OF 'dddddddd'. FILE
fffffff.

Explanation: The value of the ACTION parameter on an OPEN statement
conflicts with a statement that follows the OPEN statement. For an ACTION
parameter with the value of WRITE, only the WRITE and CLOSE statements are
allowed. For a value of READ, no update statement (WRITE, REWRITE,
DELETE) is allowed.

Supplemental Data Provided:

ssssssss is the name of the incompatible statement.

dddddddd is the value of the ACTION parameter that is in use.

fffffff is the name of the file.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the value of the ACTION parameter or remove the
incompatible statement.

IFY123I DKIOS I VKIOS : ssssssss STATEMENT IS NOT ALLOWED
FOLLOWING ssssssss STATEMENT WHICH RESULTED IN
cccccccccccccccc CONDITION. FILE fffffff.

Explanation: A statement was not allowed because a previous statement caused an
error and the loss of position in the file being processed. You cannot read records
sequentially or use a BACKSPACE, DELETE, or REWRITE statement until you
have re-established file position.

Appendix I. Library Procedures and Messages 469

Supplemental Data Provided:

The first ssssssss is the name of the statement that was not allowed.

The second ssssssss is the name of the earlier statement that caused the error.

cccccccccccccccc is RECORD NOT FOUND, DUPLICATE ERROR, END
OF FILE, VSAM I/O ERROR, or PROGRAM LOGIC ERROR.

fffffff is the name of the file.

Standard Corrective Action: Execution continues, but the I/O request is ignored. If
the ERR parameter was. coded, control is passed to the indicated statement.

Programmer Response: Code either a REWIND or direct-access READ statement
after the statement that caused the error. This will reestablish a position in the file
and enable other input/output statements to be processed.

IFY124I DKIOS I VKIOS : READ STATEMENT SPECIFIES 'KEVID' VALUE
OF nnnnn WHICH CONFLICTS WITH 'KEYS' PARAMETER ON
OPEN STATEMENT FOR FILE fffffff.

Explanation: The value of the KEYID parameter is larger than the number of
start-end pairs in the KEYS parameter. Therefore no pair (and hence no key) can
be associated with the KEYID parameter. This conflict can arise even if no KEYS
parameter is coded: a default of one key is assumed, so if KEYID has a value
greater than 1, an error exists.

Supplemental Data Provided:

nnnnn is the value of the KEYID parameter on the READ statement.

fffffff is the name of the file for which the READ statement was issued.

Standard Corrective Action: Execution continues, but the I/O request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the value of the KEYID parameter so that it is no
larger than the number of start-end pairs in the KEYS parameter, or remove the
KEYID parameter.

IFY12SI DKIOS I VKIOS : KEY ARGUMENT ON READ STATEMENT HAS
A LENGTH OF nnnnnnnn WHICH IS GREATER THAN THE KEY
LENGTH OF mmmmmmmm [(KEVID IS k).J FILE fffffff.

Explanation: The argument to be used in searching for a key was given in the KEY,
KEYGE, or KEYGT parameter of a READ statement. This argument is longer
than the key being searched for.

470 VS FORTRAN Language and Library Reference

o

o

o

c

o

Supplemental Data Provided:

nnnnnnnn is the length in bytes of the search (or key) argument.

k is the relative position in a list of keys of the key of reference-the key
currently in use. The list of keys is in the KEYS parameter of the OPEN
statement. ("KEYID IS k" is omitted if the KEYS parameter of the OPEN
statement specifies only one key or was not coded.)

mmmmmmmm is the length in bytes of the key being used.

fffffff is the name of the file for which the READ statement was issued.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Specify a search argument in the KEY, KEYGE, or
KEYGT parameter whose length does not exceed that of the key you are searching
for. If you want to search with a different key of reference, specify a different
value for the KEYID parameter.

IFY126I DKIOS I VKIOS : RECORD NOT FOUND WITH SPECIFIED KEY.
FILE fffffff. [KEVID IS k: sssss:eeeee.] xxxxx PARAMETER IS
vvvvvvvvvv

Explanation: There was no record in the file meeting the search argument in the
KEY, KEYGE, or KEYGT parameter of the READ statement. The search was
based on the key specified in the KEYID parameter of the READ statement. (If
there was no KEYID parameter in the READ statement, the search was based on
the KEYID parameter last used. If no KEYID parameter has been used since the
file was opened, the first key specified in the KEYS parameter of the OPEN
statement was used for the search.)

Supplemental Data Provided:

fffffff is the name of the file for which the READ statement was issued.

k is the relative positon in a list of keys of the key of reference-the key
currently in use. The list of keys is in the KEYS parameter of the OPEN
statement. (This part of the message and the sssss:eeeee information are
omitted if the KEYS parameter of the OPEN statement specified only one key
or was not coded.)

sssss is the starting position in each record of the key being used, and eeeee is
the ending position.

xxxxx is KEY, KEYGE, or KEYGT-whichever parameter was used in the
READ statement.

vvvvvvvvvv is the value of the parameter.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Appendix I. Library Procedures and Messages 471

Programmer Response: Change the value of the KEY, KEYGE, or KEYGT
parameter so that the appropriate record will be found. If you want to allow for ~\

the possibility of a "record not found" condition, add a NOTFOUND parameter to V
your program. It specifies the statement to be given control when this condition
occurs.

IFY127I VIOUF I VIOFM : THE VSAM KSDS ssssssss STATEMENT
REFERS TO UNIT on WHICH IS NOT OPEN

Explanation: An input/output statement referred to a unit that was not opened
with an OPEN statement.

Supplemental Data Provided:

ssssssss is the name of the input/output statement-for example, READ,
REWRITE, DELETE.

nn is the unit number referred to in the input/output statement.

Standard Corrective Action: Execution continues, but the I/O request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the program to issue an OPEN statement with the
ACCESS='KEYED' parameter before issuing the input/output statement.

IFY128I DKIOS I VKIOS : THE VSAM KSDS ssssssss STATEMENT REFERS
TO FILE fffffff WHICH IS NOT A VSAM KSDS FILE.

Explanation: An input/output statement was issued that can apply only to a VSAM
file. The file, however, was opened as a non-VSAM file.

Supplemental Data Provided:

ssssssss is the name of the input/output statement.

fffffff is the name of the file.

Standard Corrective Action: Execution continues, but the I/O request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: If you want to access a VSAM file, change the operating
system's data definition statement to specify a VSAM file.

IFY129I

IFY129I

DKIOS I VKIOS : THE VSAM KSDS RECORD SUPPLIED BY THE
ssssssss STATEMENT HAD A LENGTH OF O. FILE fffffff.
DKIOS I VKIOS : THE VSAM KSDS RECORD SUPPLIED BY THE
ssssssss STATEMENT HAD A LENGTH OF nnnnn WHICH IS TOO
SHORT. FILE fffffff.

Explanation: Either a WRITE or REWRITE statement built a record that was too
short to contain all the keys that are available (as specified by the KEYS parameter
of the OPEN statement or implied by the operating system's data definition
statement) .

472 VS FORTRAN Language and Library Reference

G

o

o

c

o

Supplemental Data Provided:

ssssssss is either WRITE or REWRITE.

nnnnn is the length of the record that was built.

fffffff is the name of the file involved in the input/output operation.

Standard Corrective Action: Execution continues, but the I/O request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the output list of the WRITE or REWRITE
statement so that it builds a record that is long enough to include all the keys.

IFY130I DKIOS I VKIOS : ERROR ON VSAM KSDS WHILE PROCESSING
ssssssss STATEMENT FOR FILE fffffff. VSAM mmmmm MACRO,
RETURN CODE rc, ERROR CODE X'bc' (dc), FUNCTION CODE
fc.

Explanation: VSAM detected an error while processing an input/output statement.

Supplemental Data Provided:

ssssssss is the name of the statement being processed.

fffffff is the name of the file involved in the input/output operation.

mmmmm is the name of the VSAM macro that was issued (GET, PUT,
POINT, and so on).

rc is the VSAM return code.

hc is the VSAM error feedback code in hexadecimal.

dc is the same code in decimal.

fc is the function code in hexadecimal.

You can find an explanation of the codes in either VSE/VSAM messages and Codes
or os /VS Virtual Storage Access Method (VSAM) Programmer's Guide.

Standard Corrective Action: Execution continues, but the I/O request is ignored.
If the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Take the action given in the appropriate manual.

IFY1311 DKIOS I VKIOS : DUPLICATE FILE NAME WOULD BE
GENERATED FOR FILE fffffff SINCE THERE ARE k KEYS
SPECIFIED IN 'KEYS' PARAMETER OF THE OPEN
STATEMENT.

Explanation: When opening files for multiple-key processing, VS FORTRAN
generates unique names for the files not named explicitly in the OPEN statement.
It does this by appending a number (beginning with 1) to the end of the file name
specified in the OPEN statement. If this file name has maximum length of 7

Appendix I. Library Procedures and Messages 473

characters, a number cannot be appended, so the last character is overlayed by a
number. An error occurred in this case because the file name is 7 characters long
and ends in a number that is smaller than the number of keys specified in the OPEN
statement. If VS FORTRAN proceeded to generate file names, it would duplicate
the file name given in the OPEN statement.

Supplemental Data Provided:

fffffff is the name of the file.

k is the number of key specified in the KEYS parameter of the OPEN
statement.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the file name in the OPEN statement to one that
has:

• Fewer than 7 characters, or

• An alphabetic character in the last position, or

• A number in the last position that is not less than k.

IFY132I DKIOS I VKIOS : FILE ffffff HAS A RECORD LENGTH OF R,
BUT RELATED FILE F2 HAS A DIFFERENT LENGTH OF R2.

Explanation: In attempting to open VSAM files for multiple-key processing, VS
FORTRAN found that the files had different maximum record lengths. Therefore,
the data definition statements for the files must contain an error or inconsistency.
For example, a statement may refer to an alternate-index file rather than to a path
from the alternate-index file to the base cluster. Or statements may point to
alternate-index files for different base clusters. Or they may mistakenly refer to
two base clusters and no alternate-index files.

Supplemental Data Provided:

ffffff is the file name.

f2 is the related file.

R is the record length of the file.

R2 is the record length of the related file.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the data definition statements (DD statements in
OS/VS, DLBL statements in VM and VSE) to refer to the VSAM files that
represent the same base cluster.

, 474 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

IFY1331 MORE THAN ONE KEY SPECIFIED IN OPEN STATEMENT FOR
VSAM KSDS, BUT FILE fffffff IS EMPTY AND CANNOT BE
PROCESSED.

Explanation: While opening VSAM files for multiple-key processing, VS
FORTRAN found that one of the files was empty.

Supplemental Data Provided: fffffff is the ddname of the empty file.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement. .

Programmer Response: Be sure that the correct VSAM files are specified in the
operating system's data definition statements. Also, be sure that the base cluster
(the file with the primary key) has been loaded and that the other files (those with
alternate-index keys) have had their alternate indexes built successfully using the
access method services BLDINDEX command.

IFY1341 DKIOS I VKIOS : OPEN STATEMENT FOR VSAM KSDS FILE
fffffff SPECIFIES A KEY OF sssss:eeeee, BUT THERE IS NO FILE
AVAILABLE WITH THIS KEY.

Explanation: A key specified on the OPEN statement does not correspond to any
of the files, specified by ddnames, that were opened for keyed access.

Supplemental Data Provided:

fffffff is the name of the file, specified explicitly or taken by default, in the
OPEN statement.

sssss is the starting position in each record of the key to be used; eeeee is the
ending position.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Correct the starting and ending positions of the keys in the
KEYS parameter; each key must correspond to a file that is identified in a data
definition statement (a DD statement in OS/VS, a DLBL statement in VM and
VSE). (The keys need not be listed in the order of the data definition statements,
however.) In calculating the starting and ending positions, remember that the first
position in a record is position 1. This differs from the way the starting position of
a key is calculated in the KEYS parameter of the access method services DEFINE
command. There the first position in a record is position 0;

IFY13S1 DKIOS I VKIOS : ATTEMPT MADE TO ADD A RECORD WITH A
DUPLICATE KEY TO A VSAM KSDS. FILE fffffff. THE KEY OF
REFERENCE HAS A KEVID OF k, A POSmON OF sssss:eeeee,
AND A VALUE OF vvvvvvvvvv (HEX).

Explanation: A keyed file was opened with an ACTION value of READWRITE,
and a WRITE operation tried to add a record with a duplicate key. The key
duplicates either a primary key or an alternate-index key that does not allow
duplicate keys. The duplicate key is not necessarily the key of reference, the key

Appendix I. Library Procedures and Messages 475

currently in use and described in the message. The duplicate key may not even be
among the keys listed in the KEYS parameter of the OPEN statement for the file. /'-'j

Supplemental Data Provided:

fffffff is the name of the file.

k indicates the key of reference-that is, the start-end pair in the KEYS
parameter of the file's OPEN statement that was used in writing the record.

sssss:eeeee is the position in the record of the key of reference.

vvvvvvvvvv is the value of the key of reference.

Standard Corrective Action: Execution continues, but the 110 request is ignored.
If the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the value of the item in the 110 list that represents
the key to be written. If you want to allow for a "duplicate key" condition in your
program, code a DUPKEY parameter. It identifies the statement to be given
control if the condition occurs.

IFY136I VOPEN : ACTION PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT. UNIT DD.

Explanation: The ACTION parameter on the OPEN statement specified a value
other than READ, WRITE, or READWRITE.

Supplemental Data Provided: nn is the unit number specified in the OPEN
statement.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Change the value of the ACTION parameter to READ,
WRITE, or READWRITE.

IFY137I VOPEN : KEYS PARAMETER ON AN OPEN STATEMENT IS
NOT ALLOWED EXCEPT WITH ACCESS='KEYED'. UNIT DD.

Explanation: The OPEN statement has a KEYS parameter, but has either no
ACCESS parameter or one whose value is incompatible with KEYS. (Only the
value KEYED is compatible.)

Supplemental Data Provided: nn is the unit number specified on the OPEN
statement.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: If the file to be open has keys, specify
ACCESS='KEYED'. Otherwise, remove the KEYS parameter from the OPEN
statement.

476 VS FORTRAN Language and Library Reference

'~

c

o

o

o

IFY138I DKIOS I VKIOS : ATTEMPTED TO OPEN AN EMPTY VSAM
KSDS WITH ACTION='READ'. VSAM ERROR CODE X'6E'
(110). FILE fffffff.

Explanation: VSAM does not allow an empty file to be opened for input
operations.

Supplemental Data Provided: fffffff is the name of the file for which the OPEN
statement was issued.

Standard Corrective Action: Execution continues, but the 110 request is ignored. If
the ERR parameter was coded, control is passed to the indicated statement.

Programmer Response: Be sure that the correct VSAM file was specified in the
operating system's data definition statement. If the file is a base cluster (the file
with the primary key), be sure that it was loaded. If the file is a path for an
alternate index, be sure the alternate index was built successfully using the access
method services BLDINDEX command.

If you want to process the base cluster and open it for retrieval operations, use
ACTION='READWRITE'. This causes a dummy statement to be loaded and
deleted, and VSAM then does not consider the file to be empty.

IFY139I DKIOS I VKIOS : ATTEMPT MADE TO REWRITE A RECORD IN
WHICH THE VALUE OF THE KEY OF REFERENCE DIFFERS
FROM THE VALUE OF THAT KEY IN THE RECORD JUST
READ. THE KEY OF REFERENCE HAS A KEYID OF k. FILE
fffffff.

Explanation: You read a record and, in trying to rewrite it, wrote a key of reference
whose value differed from that in the original record.

Supplemental Data Provided: The name of the file (fffffff) and, if the file has
multiple keys, the KEYID (k) of the key of reference.

Standard Corrective Action: Execution continues, but the 110 request is ignored.

Programmer Response: If you did not intend to write a new key value, make sure
that:

• The 110 list contains all the fields of the record to be rewritten

• Changes in the order or length of nonkey fields have not caused the position of
the key of reference to change

If, however, you intended to replace the record with one having a new key value,
delete the record and then add a new record with the WRITE statement.

Appendix I. Library Procedures and Messages 477

IFY140I DKIOS I VKIOS : KEY SEQUENCE ERROR LOADING A VSAM
KSDS. FILE fffffff. THE KEY OF REFERENCE IN THE
REJECTED RECORD HAD A VALUE OF vvvvvvvvvv.

Explanation: You attempted to load a record in which the value of the primary key
was not greater than the value of the primary key in the previous record.

Supplemental Data Provided: The name of the file (fffffff) and the value of the key
of reference in the record that could not be written (vvvvvvvvvv).

Standard Corrective Action: Execution continues, but the record has not been
written.

Programmer Response: Change the l()gic of your program or the order of the
records being loaded so that the records are loaded in increasing sequence of their
primary key values. Be sure that the key of reference is actually the file's primary
key.

IFYI411 VCOM2 : RESIDENCY ABOVE 16 MB NOT POSSIBLE
RUNNING IN LINK MODE.

Explanation: You are running your program in link mode, and your program resides
at an address greater than 16 MB in an MVS/XA system. Execution is impossible
in this case since several library routines must run at an address below 16 MB.

Supplemental Data Provided None.

Standard Corrective Action Execution terminates with a return code of 16.

Programmer Response: Either:

1. Do not supply the library SYS 1. VLNKMLIB (or the equivalent at your
installation) in the SYSLIB DD statement in the linkage editor step when
link-editing your program for execution in load mode, or

2. When executing in link-mode, be sure that your load module is given an
RMODE value of 24 when it is link-edited. You probably specified an
RMODE of ANY; either remove this linkage editor parameter or specify an
RMODE value of 24.

IFY142I DCOM2 I VCOM2 : IFYVLBCM IS AT LEVEL Ibcm-Ivl BUT
mod-name IS AT LEVEL mod-Ivl.

Explanation: You were running your program in load mode which required loading
the composite module mod-name. However, the module loaded was from a
different release level of the VSFORTRAN Library than the rest of the executing
library routines (in particular, different from the release level of the composite
module IFYVLBCM). If you are running under CMS, the composite module
mod-name may be in a discontiguous shared segment.

Supplemental Data Provided: The name of the loaded composite module
(mod-name), its level (mod-lvI), and the level of the executing version of

c

G

. IFYVLBCM (Ibem-Ivl). The levels are in the form vvrrmm, where vv is the version G",\
number, IT is the release number, and mm is the modification number.

478 VS FORTRAN Language and Library Reference

o

o

o

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Be sure that you are specifying for execution the correct
libraries which contain the VS FORTRAN Library. Specify:

• A JOBLIB or STEPLIB DD statement in MVS,

• A GLOBAL LOADLIB command in CMS, or

• DLBL, EXTENT, ASSGN, and LIBDEF statements in VSE.

In addition, be sure that any sharable copies of the composite module are at the
same level as the rest of the VS FORTRAN Library you are using for execution.
These sharable copies are in a

• Link pack area in MVS,

Discontiguous shared segment in eMS, or -

• Shared virtual area (SV A) in VSE.

For further assistance, refer the problem to the people at your installation who give
system support for VS FORTRAN.

IFY143I

IFY143I

DGMFM : NO MORE VIRTUAL STORAGE IS AVAILABLE IN
THE GETVIS AREA.
DGMFM : ERROR RETURN CODE no WHILE OBTAINING
VIRTUAL STORAGE.

Explanation: In attempting to obtain virtual storage in VSE, a library routine was
unable to obtain the required storage.

Supplemental Data Provided: In the second form of the message, the return code
(nn) returned by the GETVIS macro instruction. (In the first form of the message,
the return code was 12.) GETVIS macro code is explained in VSE/Advanced
Functions Macro Reference.

Standard Corrective Action: The program is cancelled.

Programmer Response: For the first form of the message, provide a SIZE
parameter on your EXEC statement to allow a larger a GETVIS area. You may
also have to run your program in a larger partition. For the second form of the
message, refer the problem to the people at your installation who give system
support for VS FORTRAN.

IFY144I

IFY144I

DLCIO I DLOAD : INSUFFICIENT GETVIS SPACE FOR LOADING
PHASE phase-name.
DLCIO I DLOAD : ERROR RETURN CODE no OCCURRED
LOADING PHASE phase-name.

Explanation: In attempting to load a phase in VSE, a library routine was unable to
load the required phase.

Supplemental Data Provided: In the both forms of the message, the name of the
phase (phase-name). In the second form of the message, the return code (nn)

Appendix I. Library Procedures and Messages 479

returned by the CDLOAD macro instruction. (In the first form of the message, the
return code was 12.) CDLOAD macro code is explained in VSE/Advanced I ~
Function Macro Reference. ~"J

Standard Corrective Action: The program is cancelled.

Programmer Response: For the first form of the message, provide a SIZE
parameter on your EXEC statement which allows a larger GETVIS area. You may
also have to run your program in a larger partition. For the second form of the
message, refer the problem to the people at your installation who give system
support for VS FORTRAN.

IFY145I DCOM2 I VCOM2 : COMPOSITE MODULE mod-name IS NOT IN
THE EXPECTED FORMAT.

Explanation: You were running your program in load mode which required loading
the composite module mod-name. However, the module loaded was not recognized
as a valid composite module. If you are running under CMS, this composite
module may be in a discontiguous shared segment which was not built properly.

Supplemental Data Provided: The name of the composite module (mod-name.)

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Be sure you are specifying for execution the correct
libraries containing the VS FORTRAN Library with:

• A JOBLIB or STEPLIB DD statement in MVS,

• A GLOBAL LOADLIB command in CMS, or

• DLBL, EXTENT, ASSGN, and LIBDEF statements in VSE.

Be sure that the composite module has been built properly. Building composite
,modules is explained in VS FORTRAN Compiler and Library Installation and
Customization.

If you are executing under CMS and the system name of a discontiguous shared
segment has been defined, be sure the shared segment has been built properly.

For further assistance, refer the problem to the people at your installation who give
system support for VS FORTRAN.

IFY146I VLINP : THE REENTRANT'LOAD MODULE module-name WAS
LOADED ABOVE THE 16MB VIRTUAL STORAGE LINE BY
PROGRAM program-name, WHICH WAS RUNNING IN 24-BIT
ADDRESSING MODE.

Explanation: The reentrant load module contains the program's reentrant CSECT,
but because of the module's location and the program's addressing mode, the
program can never branch to the CSECT. An abend would occur if it tried to
branch.

Supplemental Data Provided: The names of the load module and the program.

480 VS FORTRAN Language and Library Reference

o

o

o

o

o

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Either:

• Run the program in 31-bit addressing mode by link-editing it with an AMODE
value of 31 or

• Link-edit the reentrant load module with an AMODE value of 24.

IFY147I VLINP : THE REENTRANT LOAD MODULE module-name
LOADED BY PROGRAM program-name HAS AN INCORRECT
FORMAT.

Explanation: A program's nonreentrant CSECT loaded a load module containing
the program's reentrant CSECT. The load module, however, was not in the correct
format because the CSECTs were not correctly separated after the program was
compiled.

Supplemental Data Provided: The names of the load module and the program.

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Use the object-deck separation tool to separate the
reentrant and nonreentrant CSECTs of the program. Then link-edit the reentrant
CSECT to create the load module.

IFY148I VLINP : THE REENTRANT LOAD MODULE module-name
LOADED BY PROGRAM program-name DOES NOT CONTAIN
CSECT csect-name AT AN ACCESSIBLE LOCATION.

Explanation: A program's nonreentrant CSECT loaded a load module that does
not contain the program's reentrant CSECT.

Supplemental Data Provided: The names of the load module, the program, and the
CSECT.

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Link-edit the reentrant CSECT (produced by the
object-deck separation tool) into the load module.

IFY149I VLINP : THE REENTRANT LOAD MODULE module-name
LOADED BY PROGRAM program-name HAS A TIMESTAMP IN
CSECT csect-namel WHICH DIFFERS FROM THAT IN CSECT
csect-name2. THE csect-namel TIMESTAMP IS xxxxxxxxxxxxxx
AND THE csect-name2 TIMESTAMP IS yyyyyyyyyyyyyy.

Explanation: A program's nonreentrant CSECT loaded a load module containing
the program's reentrant CSECT, but the timestamps of the CSECTs were found to
be different. The CSECTs were therefore compiled at different times and are
assumed to be incompatible.

Supplemental Data Provided: The names of the load module, the program, and the
CSECTs, and the timestamps (xxxxxxxxxxxxxx, yyyyyyyyyyyyyy) of the CSECTs.

Appendix I. Library Procedures and Messages 481

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Make the load module containing the reentrant CSECT
available at execution time. Tell your system programmer that the shared segment
(in VM) or the link pack area (in MVS) may have to be updated.

IFY150I VLOAD: THE LOAD LIST, WHICH HAS nn ENTRIES, IS FULL.
A TOTAL OF mm LOADED MODULES WAS NOT ENTERED
INTO THE LIST. SUCH MODULES ARE NOT DELETED.

Explanation: While one module was loading another, the load list was found to be
full. Consequently, the name and address of the loaded module cannot be added to
the list.

Supplemental Data Provided: The number of entries (nn) in the load list and the
number of modules (mm) whose names could not be entered into the load list.

Standard Corrective Action: Execution continues normally, but the loaded module
will not be deleted when the program terminates.

Programmer Response: None.

IFY1511 VDIOS : nnnn RECORDS OF LENGTH l1li FORMATTED ON FILE
fffffff.

Explanation: The message tells you how many records were formatted on a file and
how long the records are. This action was taken in response to an OPEN
statement in a program accessing a new file for the first time.

Supplemental Data Provided:

nnnn is the number of records formatted on the file.

1111 is the length of the records.

fffffff is the name of the file.

Standard Corrective Action: None.

Programmer Response: None.

IFY152I VSIOS I VDIOS : FILE IS UNUSABLE, PERMANENT ERROR
HAS BEEN DETECTED. FILE fffffff

Explanation: An attempted 110 operation on a file resulted in a permanent 1/0
error. The message that precedes this one describes the error.

Supplemental Data Provided: fffffff is the name of the unusable file.

Standard Corrective Action: The interrupted instruction and the 110 request are
ignored. After the traceback is completed, control is returned to the call routine
statement designated in the ERR parameter of an 110 statement, if that parameter
was specified. Also, the IOSTAT variable is set to 152 if IOSTAT was specified in
the 110 statement.

482 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

Programmer Response: Check the previous error message and correct the situation.

IFY1S3I VCOM2 : THE PARAMETER LIST RECEIVED FROM rrrrrr IS
INCONSISTENT WITH THE ARGUMENTS EXPECTED BY ssssss.
INHERITED LENGTH OF A CHARACTER ARGUMENT IS
REQUIRED. EXECUTION IS TERMINATED. RECOMPILE TO
PREVENT THIS MESSAGE.

Explanation: A dummy argument or a function name is a character entity with
inherited length, and there is no secondary list. A subroutine or function (ssssss)
was compiled at Release 3.0 or later of VS FORTRAN, and the calling routine
(rrrrrr) was compiled at Release 2.0 of VS FORTRAN or a previous release.

Supplemental Data Provided: The name of the main routine and the called
subprogram.

Standard Corrective Action: The job will be terminated.

Programmer Response: Recompile routine with Release 3.0 or later.

IFY1S4I VCOM2 : THE PARAMETER LIST RECEIVED FROM rrrrrr IS
INCONSISTENT WITH THE ARGUMENTS EXPECTED BY ssssss.
THE PARAMETER LIST IS ACCEPTED BUT EXECUTION
RESULTS MAYBE INVALID. RECOMPILE TO PREVENT THIS
MESSAGE.

Explanation: The calling routine rrrrrr (or the subprogram ssssss) has been
compiled with VS FORTRAN at Release 1.0, 1.1, or 2.0, and the subprogram
ssssss (or the calling routine rrrrrr) has been compiled with VS FORTRAN Release
3.0.

Supplemental Data Provided: The name of the calling routine and the called
subprogram.

Standard Corrective Action: Execution continues with the first statement in the
subprogram.

Programmer Response: Recompile all subprograms with character arguments using
VS FORTRAN Release 3.0. For assembler subprograms with character
arguments, see Appendix A in VS FORTRAN Programming Guide.

IFYISSI VOPEN : RECL PARAMETER IS NOT ALLOWED FOR AN OPEN
OF A SEQUENTIAL FILE, UNIT no

IFYISSI VOPEN : RECL PARAMETER IS REQUIRED FOR AN OPEN OF
A DIRECT ACCESS FILE, UNIT no

Explanation: For the first form of the message, the RECL= parameter is specified
for a sequential file. With the second form of the message, the RECL= parameter
was not specified for a direct file.

Supplemental Data Provided: nn is the number of the of the unit specified on the
OPEN statement.

Appendix I. Library Procedures and Messages 483

Standard Corrective Action: The lOST AT = variable is set positive and/or the
ERR= exit is taken. If neither the IOSTAT= nor ERR= parameter is specified,
the program is terminated.

Programmer Response: Correct the program to specify the correct combination of
the ACCESS= and RECL= parameters.

IFY156I DYCMN : UNABLE TO OBTAIN STORAGE FOR COMMON
'common-name' .

Explanation: There is insufficient storage available to allow allocation for the
named common.

Supplemental Data Provided: The name of the common.

Standard Corrective Action: The request is ignored. Processing continues. Any
reference to variables in this common will result in termination of this job.

Programmer Response: Rerun the program with larger storage or recompile the
program with smaller common.

IFY157I DYCMP : DYNAMIC COMMON TABLE TABLE FULL.
COMMON 'common-name' NOT PROCESSED.

Explanation: There are more than 40 dynamic commons specified in this job.

Supplemental Data Provided: The name of the common.

Standard Corrective Action: Processing is not performed for the specified common.
Any reference to variables in this common will result in termination of this job.

Programmer Response: Recompile the job with a smaller number of dynamic
commons.

IFY158I DDCMP : LENGTHS OF COMMON 'common-name' ARE NOT
CONSISTENT IN ALL MODULES OF THIS PROGRAM

Explanation: A dynamic common must have the same length in all segments of a
program.

Supplemental Data Provided: Name of the common.

Standard Corrective Action: Invocation of a subprogram containing a dynamic
common whose length differs from that defined in the calling program will result in
termination of this job.

Programmer Response: Specify length of the common to be the same in all
segments.

484 VS FORTRAN Language and Library Reference

o

o

o

o

o

IFY1591 BTSHS : SECOND ARGUMENT TO function-name FUNCTION IS
INVALID.

Explanation: The second argument is not in the valid range for this bit function.

Supplemental Data Provided: The name of the bit function.

Standard Corrective Action: For ISHFT, the result = 0; for IBSET and IBCLR, the
result is the first operand; for BTEST, the result is false.

Programmer Response: Specify second argument within allowable range.

IFY1601 VCOMH : FORMAT NESTED PARENTHESES TABLE
OVERFLOW. REDUCE NUMBER OF NESTED PARENTHESES
IN PROGRAM AND RECOMPILE.

Explanation: The format contains more nested parentheses than the library table
can hold.

Supplemental Data Provided: None.

Standard Corrective Action: Parenthesis group is ignored. Processing continues.
Results are unpredictable.

Programmer Response: Reduce the number of parenthesis groups to 50 or less.

IFY1611 V ASYP : ASYNCHRONOUS I/O NOT SUPPORTED ON THIS
OPERATING SYSTEM (DOS OR CMS)

Explanation: A program called the asynchronous I/O scheduling routine while
running in a DOS or CMS environment.

Supplemental Data Provided: TRACEBACK PATH is provided. If GOSTMT is
used as a compiler option, TRACEBACK provides the ISN of the I/O statement
making the asynchronous I/O request.

Standard Corrective Action: The asynchronous I/O request is ignored and the
ARRAY expected to be modified, if a READ (IN#) request, is unchanged. The
ARRAY isn't saved or written if it is a WRITE (OUT#) request.

Programmer Response: Run the program on a MVS system or rewrite the program
to use synchronous I/O (unformatted).

IFY1621 VVIOS I CVIOS I DVIOS : WRITE STATEMENT CANNOT BE
ISSUED TO SEQUENTIALLY ACCESSED VSAM RRDS FILE
fffffff

Explanation: An attempt was made to add a record to a sequentially accessed
VSAM relative record file that was not empty when the file was opened.

Supplemental Data Provided: The name of the file (fffffff) upon which the request
was made.

Standard Corrective Action: The execution is terminated.

Appendix I. Library Procedures and Messages 485

Programmer Response: If a record must be added to a nonempty VSAM relative
record file, use the access mode of DIRECT.

IFY1631 VVIOS I CVIOS I DVIOS : FILE POSITIONING I/O STATEMENT
IS NOT ALLOWED IN THE DIRECT ACCESS MODE

Explanation: A file positioning input/output statement (REWIND, BACKSPACE,
or ENDFILE) was issued to a VSAM direct file.

Supplemental Data Provided: None.

Standard Corrective Action: The execution is terminated.

Programmer Response: Correct the program so that no file positioning
input/ output statements are issued for VSAM direct files.

IFY1641 VVIOS I CVIOS I DVIOS : RECORD LENGTH OF FILE fffffff IS
LONGER THAN THE ONE DEFINED IN VSAM CATALOG

Explanation: The maximum record length for the file found in the VSAM catalog
(that is, the value specified in the RECORD SIZE parameter when the VSAM
cluster is defined using access method services) is less than the length of the record
to be written.

Supplemental Data Provided: The name of the file (fffffff) upon which the request
was made.

Standard Corrective Action: The execution is terminated.

Programmer Response: Either correct the program so that the length of the record
to be written is not greater than the one in the VSAM catalog, or change the record
length in the VSAM catalog by redefining the cluster.

IFY16S1 VVIOS I CVIOS I DVIOS : FILE fffffff IS A KEY SEQUENCED
DATA SET WHICH IS BEING OPENED FOR aaaaaaaaaa ACCESS.

Explanation: An attempt was made to open a VSAM KSDS file for sequential or
direct access. In such cases, only VSAM ESDS and RRDS files are supported.

Supplemental Data Provided:

fffffff is the name of the file for which the OPEN statement was issued.

aaaaaaaaaa is either SEQUENTIAL or DIRECT.

Standard Corrective Action: The execution is terminated.

Programmer Response: If ~u want to process the VSAM KSDS, code
ACCESS='KEYED' on the OPEN statement. Otherwise, change the data
definition statement to refer to a file other than a VSAM KSDS.

486 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

IFY166I VVIOS I CVIOS I DVIOS : ENDFILE STATEMENT IS TREATED
AS DOCUMENTATION FOR VSAM FILE fffffff

Explanation: A request was made to write an end-of-file mark on a VSAM or
VSAM-managed sequential file.

Supplemental Data Provided: The name of the file (fffffff) for which the request
was made.

Standard Corrective Action: The request is ignored.

Programmer Response: Remove the statement after carefully checking the effect of
removing the statement.

IFY167I VVIOS I CVIOS I DVIOS : ERROR ON VSAM FILE: fffffff WHEN
ATTEMPTING TO PROCESS A(N) xxxxxxxxxx OPERATION
RC=yy ERROR CODE=zzz

Explanation: An error was detected by VSAM while an input or output statement,
indicated by xxxxxxxxxx, was being processed. The return code and the error code
returned by VSAM were yy and zzz, respectively.

Supplemental Data Provided: The name of the operation that caused the error and
the return and error codes from VSAM. fffffff is the name of the file.

Standard Corrective Action: The execution is terminated.

Programmer Response: Determine the cause of the error by examining the VSAM
return and error codes.

IFY168I VVIOS I CVIOS I DVIOS : xxxxxxxxxx IS ISSUED TO UNOPENED
VSAM FILE ON UNIT no

Explanation: An input or output request was made to an unopened VSAM file.

Supplemental Data Provided: The name of the operation (xxxxxxxxxx) issued to an
unopened file, and the number of the unit (nn).

Standard Corrective Action: The execution is terminated.

Programmer Response: Make sure that the OPEN statement for the file was
successfully executed.

IFY169I DFNTH : EXTENDED PRECISION OPERATION NOT
SUPPORTED IN DOS ENVIRONMENT PSW (xxxxxxxxxxxxxxx).

Explanation: An extended-precision machine operation that is not supported by the
machine instruction set was attempted in the DOS IVSE environment. This is
generally a divide operation.

Supplemental Data Provided:

In the first form of the message, the Program Status Word (xxxxxxxxxxxxxxxx) at
the point of interrupt is given. An IFY2101 message with TRACEBACK or a
dump of storage follows.

Appendix I. Library Procedures and Messages 487

Standard Corrective Action: None.

Programmer Response: Change the program to exclude the unsupported
instruction.

IFY170I VDIOS I VSIOS : OPEN OR CLOSE STATEMENT NOT
ALLOWED ON OBJECT ERROR UNIT, REQUESTED FILE fffffff

Explanation: An OPEN or CLOSE statement was directed to the unit upon which
execution-time error messages are being directed.

Supplemental Data Provided: The name of the file (fffffff) connected to the error
message unit.

Standard Corrective Action: The request is ignored and the job terminated if an
ERR= or the IOSTAT parameter was not specified in the OPEN or CLOSE.

Programmer Response: Change the program to request 110 to a unit not being
used for error messages.

IFY1711 VDIOS I VSIOS : CLOSE STATUS OF KEEP IS NOT ALLOWED
ON FILE OPENED WITH SCRATCH STATUS, FILE fffffff

Explanation: The file connected to the unit specified in the CLOSE statement was
opened as a SCRATCH file and cannot be kept at close time.

Supplemental Data Provided: The name of the file (fffffff) connected to the unit
specified in the CLOSE statement.

Standard Corrective Action: The CLOSE status is changed to DELETE and
execution proceeds.

Programmer Response: Change either the OPEN or CLOSE STATUS parameter to
agree with the file usage.

IFY172I VDIOS I VSIOS : FILE fffffff ALREADY CONNECTED TO A
UNIT, OPEN REQUEST IGNORED.

Explanation: A file is already connected to a unit that is different from the unit
specified in the OPEN statement.

Supplemental Data Provided: The name of the file (fffffff) specified in the OPEN
statement.

Standard Corrective Action: The OPEN request is ignored.

Programmer Response: Change the program to specify a different unit in the
OPEN request or change the logic to use the current unit to which the file is
connected.

488 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

IFY1731 VDIOS I VSIOS : I/O STATEMENT SPECIFYING
UNFORMATTED I/O ATTEMPTED ON FORMATTED FILE
fffffff

Explanation: FORMATTED and UNFORMATTED I/O requests on the same file
are not allowed.

Supplemental Data Provided: The name of the file (fffffff) for which the request
was made.

Standard Corrective Action: The I/O operation is ignored.

Programmer Response: Correct the program to direct FORMATTED and
UNFORMATTED I/O to different files.

IFY1741 VDIOS I VSIOS: I/O STATEMENT SPECIFYING FORMATTED
I/O ATTEMPTED ON UNFORMATTED FILE fffffff

Explanation: FORMATTED and UNFORMATTED I/O requests on the same file
are not allowed.

Supplemental Data Provided: The name of the file (fffffff) for which the request
was made.

Standard Corrective Action: The I/O operation is ignored.

Programmer Response: Correct the program to direct FORMATTED and
UNFORMATTED I/O to different files.

IFY1751 OPSYS : AN INVALID LITERAL PARAMETER W AS DETECTED
IN THE CALL OPSYS STATEMENT.

Explanation: The first parameter in the call to OPSYS did not specify a literal of
FILEOPT or LOAD.

Supplemental Data Provided: None.

Standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to specify the correct parameter value.

IFY1761 OPSYS : THE FORTRAN LOGICAL UNIT NUMBER IS
ASSIGNED TO SYSTEM UNIT, UNIT DB.

Explanation: The unit specified in the call to OPSYS currently has a file connected
and cannot be modified.

Supplemental Data Provided: The unit number (nn) specified in the call to OPSYS.

Standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to process the I/O on a different unit.

Appendix I. Library Procedures and Messages 489

IFY177I OPSYS : INVALID BLOCK SIZE SPECIFIED; ASCII (18-2048)
OR EBCDIC (18-32767), UNIT nne

Explanation: An invalid block size was specified for the unit set up for
ISCII/ ASCII or EBCDIC processing.

Supplemental Data Provided: The unit number (nn) specified in the call to OPSYS.

Standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to specify a block size consistent with
the file usage.

IFY1781 OPSYS : INVALID BUFFER OFFSET SPECIFIED; GREATER
THAN 99, EXCEEDS BLOCK SIZE OR IS NEGATIVE, UNIT nne

Explanation: The buffer offset specified was larger than the block size for the file,
or was a negative value, or was a value greater than 99.

Supplemental Data Provided: The unit number (nn) specified in the call to OPSYS.

Standard Corrective Action: The request is ignored.

Programmer Response: Correct the program to specify an offset consistent to the
restrictions.

IFY1791 OPSYS : AN I/O OPERATION HAS ALREADY BEEN
PERFORMED ON THE UNIT, REQUEST IGNORED FOR UNIT
nne

Explanation: An attempt was made to modify the parameters for a file already
being used for I/O operations.

Supplemental Data Provided: The unit number (nn) specified in the call to OPSYS.

Standard Corrective Action: The. request is ignored.

Programmer Response: Correct the program to process the I/O on a different unit.

IFY1801 VINQR I VOPEN : FILE PARAMETER IS NOT VALID FOR AN
OPEN STATEMENT, UNIT nne

Explanation: The FILE parameter on the OPEN statement did not specify a name
of 7 characters or less and/or specified a name that did not start with an alphabetic
character.

Supplemental Data Provided: The unit number (nn) for which the OPEN statement
was issued.

Standard Corrective Action: The OPEN statement is ignored.

Programmer Response: Correct the program to specify a correct file name.

490 VS FORTRAN Language and Library Reference

o

o

c

o

c

o

IFY181I VOPEN : STATUS PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT, UNIT DD.

Explanation: The STATUS parameter did not specify NEW, OLD, SCRATCH, or
UNKNOWN as the status of the file being opened on the unit.

Supplemental Data Provided: The unit number (nn) for ,which the command was
issued.

Standard Corrective Action: STATUS is set to UNKNOWN, and processing
continues.

Programmer Response: Correct the program to specify a correct STATUS
parameter.

IFY182I VOPEN : ACCESS PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT, UNIT DD.

Explanation: The ACCESS parameter did not specify SEQUENTIAL or DIRECT
for the type of file access to be employed on the unit.

Supplemental Data Provided: The unit number (nn) for which the OPEN statement
was issued.

Standard Corrective Action: The OPEN request is ignored.

Programmer Response: Correct the program to specify a correct ACCESS
parameter.

IFY183I VOPEN : BLANK PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT, UNIT DD.

Explanation: The BLANK parameter did not specify ZERO or NULL for the
treatment of blanks on a FORMATTED I/O request.

Supplemental Data Provided: The unit number (nn) for which the OPEN statement
was issued.

Standard Corrective Action: The BLANK parameter is assigned the value NULL.

Programmer Response: Correct the program to specify a correct BLANK
parameter.

IFY184I VOPEN : FORM PARAMETER IS NOT VALID FOR AN OPEN
STATEMENT, UNIT DD.

Explanation: The FORM parameter did not specify FORMATTED or
UNFORMATTED for the file.

Supplemental Data Provided: The unit number (nn) for which the OPEN statement
was issued.

Standard Corrective Action: The OPEN request is ignored.

Appendix I. Library Procedures and Messages 491

Programmer Response: Correct the program to specify the correct formatting
technique.

IFY18SI VOPEN : STATUS OF SCRATCH NOT ALLOWED FOR A
NAMED FIt;E OPEN STATEMENT, FILE fffffff.

Explanation: An OPEN requested FILE= and STATUS='SCRATCH' at the same
time. The STATUS value is not allowed.

Supplemental Data Provided: The name of file (fffffff) for which the request was
made.

Standard Corrective Action: The STATUS value is set to UNKNOWN and
processing continues.

Programmer Response: Correct the program to make the two parameters consistent
with each other.

IFY186I VCLOS: STATUS PARAMETER IS NOT VALID FOR A CLOSE
STATEMENT, UNIT nne

Explanation: The STATUS parameter did not specify KEEP or DELETE, or a
STATUS of KEEP was specified on the CLOSE statement for a file that was
opened with a STATUS of SCRATCH.

Supplemental Data Provided: The unit number (nn) for which the CLOSE
statement was issued.

Standard Corrective Action: The STATUS value is set to DELETE if the file was
opened as SCRATCH; otherwise, the status is set to KEEP.

Programmer Response: Correct the program to specify the correct status values, or
make the status of the OPEN and CLOSE consistent with each other.

IFY187I VSPAP: (program-name) CALLED SUBROUTINE (program-name)
WITH AN ARRAY (array-name (I:u, ... » HAVING LOWER
BOUND(S) GREATER THAN UPPER BOUND(S).

Explanation: When one program unit called another, the called program unit was
found to have an array with at least one dimension with a lower bound greater than
the upper bound.

Supplemental Data Provided: The names of the calling and called program units, the
name of the array, and the lower (1) and upper (u) bound of each dimension in the
array.

Standard Corrective Action: Execution continues, but invalid results are probable if
a reference is made to the dimension(s) in error.

Programmer Response: Correct the specification of dimensions whose lower bound
is greater than the upper bound.

492 VS FORTRAN Language and Library Reference

o

o

o

c

o

IFY188I CITFN : ARGUMENT TO CHARACTER FUNCTION GREATER
THAN 2SS OR LESS THAN O.

Explanation: A value greater than 255 (highest EBCDIC representation) or a value
less than 0 has been specified for the CHAR function.

Supplemental Data Provided: None.

Standard Corrective Action: The function is not evaluated, and execution
continues. The value of the character function is unpredictable.

Programmer Response: Specify correct value.

IFY189I INDEX: INVALID LENGTH FOR INDEX OPERAND m, VALUE =
VVV; VALUE SHOULD BE BETWEEN 1 AND 32767

Explanation: The length specified for the second operand of the index function is
not in the range 1 to 32767, inclusive.

Supplemental Data Provided: The length (m) specified for the operand and its value
(vvv).

Standard Corrective Action: The function is not evaluated, and execution continues.

Programmer Response: Specify the correct length.

IFY1911 LXCMP : INVALID LENGTH FOR LEXICAL COMPARE,
OPERAND xxx. LENGTH VALUE IS: m.

Explanation: The length specified for the second operand of the LGE, LGT, LLE,
or LLT function is not in the range 1 to 32767, inclusive.

Supplemental Data Provided: The operand (xxx) and its length (m).

Standard Corrective Action: The function is not performed, and execution
continues.

Programmer Response: Specify the correct length.

IFY193I CCMPR : INVALID LENGTH FOR CHARACTER COMPARE,
OPERAND xxx. LENGTH VALUE IS: m.

Explanation: The length of the second operand of a character relational compare
(.EQ., .LT., ...) not in the range 1 to 32767, inclusive.

Supplemental Data Provided: The operand (xxx) and its length (m).

Standard Corrective Action: The function is not performed, and execution
continues.

Programmer Response: Specify the correct length.

Appendix I. Library Procedures and Messages 493

IFY1941 VASVP: ASYNCHRONOUS I/O DDNAME "ffffffff", IS LINKED
TO A NON-DASD DEVICE

Explanation: The ddname used for asynchronous I/O was determined to be
connected to an unusable device type. The only acceptable device types are disk
and tape. Terminals, SYSIN, SYSOUT, etc., files are not acceptable.

Supplemental Data Provided: The ddname (ffffffff) of the file on which
asynchronous I/O was to be attempted.

Standard Corrective Action: Execution of the program terminates with a return code
of 16.

Programmer Response: Connect the file used for asynchronous I/O to an
acceptable device type.

IFY1951 CMOVE : CHARACTER MOVE INVALID - TARGET AND
SOURCE OVERLAP DESTRUCTIVELY.

Explanation: The storage locations assigned to the target and source are such that
source data will be destroyed by the requested assignment.

Supplemental Data Provided: None.

Standard Corrective Action: The assignment is not performed, and execution
continues.

o

Programmer Response: Check storage MAP for storage assignments. Also check G.·. "
EQUIVALENCE statements.

IFY1961 CMOVE : TARGET LENGTH FOR CHARACTER MOVE
GREATER THAN 32767 OR LESS THAN O.

Explanation: The length of the target (left of equal variable) is not in the range 1 to
32767, inclusive.

Supplemental Data Provided: None.

Standard Corrective Action: The assignment is not performed, and execution
continues.

Programmer Response: Specify the correct length.

IFY1971 CMOVE : SOURCE LENGTH FOR CHARACTER MOVE
GREATER THAN 32767 OR LESS THAN o.

Explanation: The length of the source (right of equal expression) is not in the range
1 to 32767, inclusive.

Supplemental Data Provided: None.

Standard Corrective Action: The assignment is not performed, and execution
continues.

494 VS FORTRAN Language and Library Reference

o

o

o

Programmer Response: Specify the correct length.

IFY199I CNCAT: LENGTH FOR CONCATENATION OPERAND
GREATER THAN 32767 OR LESS THAN O.

Explanation: The length of one of the operands of a concatenation operation is not
in the range 1 to 32767, inclusive.

Supplemental Data Provided: None.

Standard Corrective Action: The concatenation operation is not performed.

Programmer Response: Specify the correct length.

IFY200I VIIOS : END OF INTERNAL FILE, PROCESSING ENDS.

Explanation: The end of an internal file was reached before the completion of an
internal 110 request.

Supplemental Data Provided: None.

Standard Corrective Action: Return to END= label if the request is a READ;
otherwise, the job is terminated.

Programmer Response: Either keep a counter to avoid exceeding the end of the
internal record or file, or insert an END=n parameter on the READ statement for
appropriate transfer of control on end of data.

IFY201I

IFY201I

VIOUP : UNFORMATTED VARIABLE SPANNED RECORD IS
LONGER THAN THE RECORD LENGTH OF Ireel. THE FILE IS
NOT COMPATIBLE WITH NON-FORTRAN ACCESS METHODS.
FILE ffffffff.
VIOUP: UNFORMATTED DIRECT ACCESS DATA IS LONGER
THAN THE RECORD LENGTH OF Ireel. THE REMAINING
DATA IS TRANSFERRED FROM I TO THE NEXT RECORD.
FILE ffffffff.

Explanation: Your 110 list items represent a record which is longer than that
defined for the file in your unformatted READ or WRITE statement. For the first
format of the message, you are writing a variable spanned record which is longer
that the logical record length (LRECL value). For the second format of the
message, you are reading or writing from a direct access file and are specifying
more data than can be contained in the fixed length records in the file.

Supplemental Data Provided: The record length (Irecl) which is defined for the
records in the file and the file name ffffffff.

Standard Corrective Procedure: For the first format of the message, a record of the
size indicated by your 110 list is written, even though this length exceeds the length
defined for the records in the file. If you attempt to read this file using
non-FORTRAN access methods, you may encounter unexpected results. For the
second format of the message, the next higher numbered record in your direct
access file is used to complete the data transfer to or from the items in your 1/0
list, even though this is in violation of the current FORTRAN standard. For either

Appendix I. Library Procedures and Messages 495

format of this message, execution then continues with no further indication that an
error occurred.

Programmer Response: To prevent this message from being printed, increase the
record length of your file so it is large enough to hold all of the data specified by
your I/O list. Note, however, that for the second format of this message, which
involves a direct access file, increasing record length means you will be able to
write or read from only one direct access record at a time.

IFY2021 VCIA4 : PROGRAM CANNOT BE DEBUGGED WITH RELEASE 1
LEVEL OF lAD.

Explanation: You specified DEBUG as an execution-time parameter which causes
the VS FORTRAN Interactive Debug program product to be invoked. However,
that program product was found to be at the Release 1 level which is not
compatible with the current release of the VS FORTRAN Library.

Supplemental Data Provided: None.

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Remove the DEBUG parameter from your execution-time
parameters so that you will not invoke the VS FORTRAN Interactive Debug
program product. You can then run your program without it. Otherwise, refer the
problem to the people at your installation who give system support for VS
FORTRAN.

IFY2031 IBCOP : INVALID COMBINATION OF INITIAL, TEST, AND
INCREMENT VALUE FOR READ/WRITE IMPLIED-DO, FILE
fffffff; INIT = xxx, = yyy, INCR = zzz.

Explanation: A READ or WRITE statement with an implied DO had an invalid
combination of initial, test, and increment values (11,12, and 13, respectively) for
one of its levels of nesting:

1. 13=0, or

2. 12 < 11 and 13 ~ 12-11, or

3. 11 < 12 and 13 < O.

Supplemental Data Provided:

fffffff is the name of the file used in the READ or WRITE operation.

xxx is the initial value, yyy the test value, and zzz the increment value.

Standard Corrective Action: The implied-DO in the I/O list is ignored, and
processing continues.

Programmer Response: Check the statements that set the initial, test, and
increment variables.

496 VS FORTRAN Language and Library Reference

c

C,· ~

I __ ~:

o

o

o

IFY2041 VIOLP: ITEM SIZE EXCEEDS BUFFER LENGTH, FILE fffffff

Explanation: For a noncomplex number, the number is longer than the buffer. For
a complex number, half the length of the number plus one (for the comma) is
longer than the buffer.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The remainder of the 110 list is ignored.

Programmer Response: Make sure that the record length specified is large enough
to contain the longest item in the 110 list.

IFY20S1 VASVP: 1/0 SUBTASK ABENDED

Explanation: The asynchronous 110 subtask resulted in an abnormal termination.

Supplemental Data Provided: None.

Standard Corrective Action: Processing is terminated.

Programmer Response: Verify that all DD statements are coded correctly and refer
to the appropriate data sets. Check all READ and WRITE statements and any
END FILE, REWIND, and BACKSPACE statements. Check the system
completion code for assistance in determining the type of error that caused
abnormal termination. Increase storage size as a possible solution.

IFY2061 VCVTH : INTEGER VALUE OUT OF RANGE (nnnnnnnn)

Explanation: An input integer was too large to fit into the integer data item. (The
largest integer that can be processed is 2**15-1 for INTEGER*2 and 2**31-1 for
INTEGER *4.)

Supplemental Data Provided: The input integer (nnnnnnnn).

Standard Corrective Action: The maximum positive or negative value will be
returned for the size (2 or 4 bytes) of the receiving field.

Programmer Response: Make sure that all integer input data used is within the
required range for the integer variable size.

IFY2071

Explanation: Refer to "Program-Interrupt Messages" on page 465 for information
on this message.

IFY2081

Explanation: Refer to "Program-Interrupt Messages" on page 465 for information
on this message.

IFY2091

Explanation: Refer to "Program-Interrupt Messages" on page 465 for information
on this message.

Appendix I. Library Procedures and Messages 497

IFY21 01

Explanation: Refer to "Program-Interrupt Messages" on page 465 for information
on this message.

IFY21 11 VCOMH : ILLEGAL field FORMAT CHARACTER SPECIFIED
(character), FILE fffffff

Explanation: An invalid character has been detected in a FORMAT statement.

Supplemental Data Provided: The field containing the character in error, the
character specified, and the file name (fffffff).

Standard Corrective Action: Format field treated as an end of format.

Programmer Response: Make sure that all object-time format specifications are
valid.

IFY2121 VCOMH : FORMATTED I/O, END OF RECORD, FILE fffffff

Explanation: An attempt has been made to read or write a record, under FORMAT
control, that exceeds the buffer length.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: For a read operation, the remainder of the I/O list is
ignored; for a write operation, a new record is started with no control character.

Programmer Response: If the error occurs on input, verify that a FORMAT
statement does not define a VS FORTRAN record longer than the record supplied
by the data set. No record to be punched should be specified as longer than 80
characters. For printed output, make sure that no record length is longer than the
printer's line length.

IFY2131 VCOMH I VIOLP I V ASYP I VXIOS : rrrr END OF RECORD, FILE
fffffff

Explanation: For VCOMH and VASYP: The input list in an I/O statement
without a FORMAT specification is larger than the logical record.

Supplemental Data Provided: The name of the file (fffffff) and the operation (rrrr).

Standard Corrective Action: The remainder of the I/O list is ignored.

Programmer Response: Make sure the number of elements in the I/O list matches
the number of items in the record.

Explanation: For VIOLP: A VS FORTRAN list-directed READ statement
attempted to read more items from a variable spanned logical record than were
present in the record. (This message can be issued only when the record format is
variable spanned.)

Supplemental Data Provided: The name of the file (fffffff).

498 VS FORTRAN Language and Library Reference

r-~ iU ___ ' b' .

c

o

o

o

o

Standard Corrective Action: The remainder of the I/O list is ignored.

Programmer Response: Make sure that the number of items in the I/O list and the
input data agree. Either delete extra variable names or supply additional logical
records.

IFY2141 DSIOS I VSIOS I V ASYP : RECORD FORMAT INVALID FOR
UNFORMATTED OR ASYNCHRONOUS I/O, FILE fffffff

Explanation: FOR VSIOS: For unformatted records read or written in EBCDIC
sequentially organized data sets, the record format specification must be variable
spanned and can be blocked or unblocked. This message appears if the
programmer has not specified variable spanned, or if an ASCII tape was specified.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: For non-ASCII output data sets, the record format is
changed to variable spanned if variable was not specified, or spanned is added to
the record format if either variable or variable blocked was specified.

Programmer Response: Correct the record format to variable spanned.

For VASYP: For unformatted records in an asynchronous I/O operation, the
record format specification (RECFM) did not include the characters VS.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: For an input operation, the read request is ignored; for
an output operation, VS is assumed.

Programmer Response: Change the record format specification to VS.

IFY21S1 VCVTH : ILLEGAL DECIMAL CHARACTER (character)

Explanation: An invalid character was found in the decimal input corresponding to
an I, E, F, or D format code.

Supplemental Data Provided: The record in which the character appeared.

Standard Corrective Action: 0 replaces the character encountered.

Programmer Response: Make sure that all decimal input 1s valid. Correct any
FORMAT statements specifying decimal input where character input should be
indicated. Check FORMAT specifications to ensure that correct field widths are
specified.

IFY2161 VSIOS : INVALID USE OF I/O CONTROL COMMAND AT LOAD
POINT, FILE fffffff

Explanation: The use of a BACKSPACE control command was recognized when
the file was at the start of the first record.

Supplemental Data Provided: The name of the file (fffffff) for which command was
issued.

Appendix I. Library Procedures and Messages 499

Standard Corrective Action: The control command is ignored.

Programmer Response: Correct the program to ensure that a BACKSPACE will
not occur at the first command for a file.

IFY2171 name: END OF DATA SET, FILE fffffff.

Explanation: An end-of-data-set was sensed during a READ operation; that is, a
program attempted to read beyond the end of the data.

Supplemantal Data Provided: The last 5 characters in the name of the module that
issued the message: CVIOS, DSIOS, VSIOS, VASYP, or VVIOS. The name of the
file (fffffff).

Standard Corrective Action: The next file is read, that is, the data set sequence
number is incremented by 1 in the MVS and VM environments. A permanent I/O
error is set for the VSE environment.

Programmer Response: Either keep a counter to avoid exceeding the end of record
or file, or insert an END=n parameter on the READ statement for appropriate
transfer of control on end of data set. Check all job control statements.

IFY2181 name: I/O ERROR, FILE fffffff, cccccccccc ERROR OCCURRED
WHILE PROCESSING STATEMENT nnnn.

Explanation: One of the following occurred:

A permanent I/O error has been encountered.

• For sequential I/O, the length of a physical record is inconsistent with the
default block size or the block size specified on the job control statement.

• An attempt has been made to read or write a record that is less than 18 bytes
long on magnetic tape.

End-of -tape was encountered while writing a tape file.

• For VSE only, the program attempted to process multiple files.

• For VM only, the program arrived at the end of the medium.

Note: If a permanent I/O error has been detected while writing in the object error
unit data set, the error message is written to the programmer either at the terminal
or the SYSOUT data set, and job execution is terminated.

Supplemental Data Provided: The last 5 characters in the name of the module that
issued the message: DSIOS, VSIOS, VASYP, or VDIOS. The name of the file
(fffffff), a character string (cccccccccc) that specifies the type of I/O error, and
the number (nnnn) of the statement label or ISN. The short form gives I/O error,
file f, and c. The long form gives I/O error, file f, error occurred, but nnnn is not
present.

500 VS FORTRAN Language and Library Reference

()

o

o

o

o

Standard Corrective Action: The I/O request is ignored. After the traceback is
completed, control is returned to the call routine statement designated in the
ERR=n parameter of an I/O statement, if that parameter was specified.

Programmer Response: For sequential I/O, make sure that the length of the
physical record is consistent with the default or specified block size. Check all job
control statements. Make sure that no attempt has been made to read or write a
magnetic tape record that is fewer than 18 bytes in length.

IFY219I

Explanation:

name: OPEN FAILED, MISSING OR INV ALID CONTROL
STATEMENT, FILE fffffff

FOR EBCDIC DATA SETS: Either a data set is referred to in the load module and
no job control statement is supplied for it, or a job control statement has an
erroneous file name.

Supplemental Data Provided: The last 5 characters in the name of the module that
issued the message: DDIOS, DSIOS, VSIOS, VASYN, or VDIOS. The name of the
file (fffffff).

Standard Corrective Action: The OPEN request is ignored and execution continues.

Note: If no job control statement has been supplied for the object error unit data
set, the message is written either to the programmer at the terminal or console or to
the SYSOUT data set, and the job is terminated.

Programmer Response: Either provide the missing job control statement, or correct
any erroneous job control statement. Refer to VS FORTRAN Programming Guide
for more information.

FOR ISCII/ ASCII DATA SETS:

A data set may have been referred to in the load module but had no corresponding
job control statement, or the job control statement may have had an erroneous
filename.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The I/O request is ignored and execution continues.

Programmer Response: Either provide the missing job control statement, or correct
any erroneous filename. Also, for MVS files, be sure that the LABEL parameter
on the DD statement specifies AL (or NL, provided that the DCB subparameter
OPTCD=Q is also specified). Also, be sure that the operating system permits the
use of ASCII data sets.

Appendix I. Library Procedures and Messages 501

IFY220I name: UNIT NUMBER OUT OF RANGE, UNIT no

Explanation: A unit number exceeds the limit specified for unit numbers when the
library was installed.

Supplemental Data Provided The last five characters in the name of the module that
issued the message: VSIOS, VDIOS, DIOCS, DVIOS, CVIOS, DDIOS, DSIOS,
VVIOS,or V ASYN and the unit number (nn).

Standard Corrective Action: The statement is ignored, and execution continues.

Programmer Response: Correct the invalid unit number.

IFY2211 VIONP : NAME LONGER THAN EIGHT CHARACTERS.
NAME = name

Explanation: An input variable name is longer than eight characters.

Supplemental Data Provided: The first eight characters of the name specified.

Standard Corrective Action: The remainder of the NAMELIST request is ignored.

Programmer Response: Correct the invalid NAMELIST input variable, or provide
any missing delimiters.

IFY222I VIONP : NAME NOT IN NAMELIST DICTIONARY
NAME = name

Explanation: An input variable name is not in the NAMELIST dictionary, or an
array is specified with an insufficient amount of data.

Supplemental Data Provided: The name specified.

Standard Corrective Action: The remainder of the NAMELIST request is ignored.

Programmer Response: Make sure that a correct NAMELIST statement is included
in the source module for all variable and array names read in using NAMELIST.

IFY223I VIONP : END OF RECORD ENCOUNTERED BEFORE EQUAL
SIGN. NAME = name

Explanation: An input variable name or a subscript has no delimiter.

Supplemental Data Provided: The name of the item.

Standard Corrective Action: The remainder of the NAMELIST request is ignored.

Programmer Response: Make sure that all NAMELIST input data is correctly
specified and all delimiters are correctly positioned. Check all delimiters.

502 VS FORTRAN Language and Library Reference

o

o

o

o

o

o

IFY224I VIONP : SUBSCRIPT FOR NON-DIMENSIONED VARIABLE OR
SUBSCRIPT OUT OF RANGE. NAME=name

Explanation: A subscript is encountered after an undimensioned input name, or the
subscript is too large.

Supplemental Data Provided: The name of the item.

Standard Corrective Action: The remainder of the NAMELIST request is ignored.

Programmer Response: Insert any missing DIMENSION statements, or correct the
invalid array reference.

IFY22SI VCVTH : ILLEGAL HEXADECIMAL CHARACTER char

Explanation: An invalid character is encountered on input for the Z format code.

Supplemental Data Provided: A display of the record in which the character
appeared.

Standard Corrective Action: 0 replaces the encountered character.

Programmer Response: Either correct the invalid character, or correct or delete the
Z format code.

IFY226I VCVTH: REAL VALUE OUT OF RANGE (characters)

Explanation: A real number was too large or too small to be processed by the load
module. (The largest number that can be process is 16**63-1; the smallest number
that can be processed is 16**-65.)

Supplemental Data Provided: The field of input characters.

Standard Corrective Action: If the number was too large, the result is set to
16**63-1. If the number was too small, the result is set to O.

Programmer Response: Make sure that all real input is within the required range for
the number specified. Check the format statement used; trailing blanks may be
mistaken for zeros in the exponent.

IFY227I VIOLP: ERROR IN REPEAT COUNT, FILE fffffff

Explanation: An invalid condition was detected while scanning for a (k*---):

• an invalid character was found at the start of the scan,

• a secondary repeat count was detected while under the control of a primary
repeat count, or

• the numeric value of the repeat count was invalid.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The remainder of the 110 list is ignored.

Appendix I. Library Procedures and Messages 503

Programmer Response: Make sure that all repeat counts are correctly specified.

IFY2281 VASVP : LAST ITEM IN THE I/O LIST HAS A LOWER ADDRESS
THAN THE FIRST ELEMENT, FILE fffffff

Explanation: An I/O list contained an element having a lower storage address than
the first element in the list.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The interrupted instruction is ignored, and execution
continues.

Programmer Response: Make sure that all elements in the I/O list are specified in
the correct order.

IFY2301 VSERH : SOURCE ERROR AT ISN DDDD-EXECUTION
TERMINATED. THE PROGRAM NAME IS "program-name."

Explanation: An attempt to run a program containing compile errors has been
intercepted at the execution of the statement in error.

Supplemental Data Provided: The ISN (nnnn) of the statement in the compiled
program that is in error, and the name of the routine or subroutine in which the
ISN is located.

Standard Corrective Action: Execution terminates with a return code of 16.

Programmer Response: Correct the source program statement, and rerun the job.

IFY2311

IFY2311

VSIOS I DSIOS : SEQUENTIAL I/O ATTEMPTED ON A aaaaaa
FILE. UNIT no where aaaa = direct or keyed
VDIOS: DIRECT ACCESS I/O ATTEMPTED BEFORE AN OPEN
OR A DEFINE FILE.

Explanation: Sequential I/O statements were used for a file that is open for keyed
or direct access. A program unit cannot use sequential I/O statements. in such a
case.

Supplemental Data Provided: The unit number (nn).

Standard Corrective Action: The I/O request is ignored.

Programmer Response:

• Either include the necessary DEFINE FILE or OPEN statement for direct
access or delete the OPEN statement for a sequential file. Make sure that all
job control statements are correct.

• Make sure the same file name is not used twice within the same program unit
for different types of access.

If you opened the file for direct access and intend to do direct I/O processing,
specify a record number in the READ or WRITE statement.

504 VS FORTRAN Language and Library Reference

c

o

o

o

o

o

For a file opened for sequential or keyed access, the READ or WRITE statement
must not contain a number specification

IFY2321 name: RECORD NUMBER nnnnnn OUT OF RANGE, FILE fffffff

Explanation: The relative position of a record is not a positive integer, or the
relative position exceeds the number of records in the data set.

Supplemental Data Provided: The last 5 characters in the name of the module that
issued the message: VDIOS, VVIOS, DVIOS, or CVIOS. The record number
(nnnnnn) and the name of the file (fffffff).

Standard Corrective Action: The I/O request is ignored.

Programmer Response: Make sure that the relative position of the record on the
data set has been specified correctly. Check all job control statements.

IFY2331 VDIOS : RECORD LENGTH GREATER THAN 32760 SPECIFIED,
FILE ffflfff

Explanation: The record length specified in the DEFINE FILE or OPEN statement
exceeds the capabilities of the system and the physical limitation of the volume
assigned to the data set in the job control statement.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The record length is set to 32000.

Programmer Response: Make sure that appropriate parameters of the job control
statement conform to specifications in the DEFINE FILE or OPEN statement; the
record length in both must be equivalent and within the capabilities of the system
and the physical limitations of the assigned volume.

IFY2341 DIOCS I VDIOS : ATTEMPT TO USE OBJECT ERROR UNIT AS A
DIRECT ACCESS DATA SET, UNIT nn

Explanation: The data set assigned to print execution error messages cannot be a
direct access data set.

Supplemental Data Provided: The unit number (nn).

Standard Corrective Action: The request for direct I/O is ignored.

Programmer Response: Make sure that the object error unit specified is not direct
access.

IFY2351 VSIOS I DSIOS: DIRECT I/O ATTEMPTED ON A aaaaaaaaaa
FILE. UNIT nne

Explanation: Direct I/O statements were used for a file open for sequential or
keyed access. A program unit cannot use direct I/O statements in such a case.

Supplemental Data Provided:

nn is the unit number specified in the I/O statement.

Appendix I. Library Procedures and Messages 505

aaaaaaaaaa is either SEQUENTIAL or KEYED.

Standard Corrective Action: The 110 request is ignored.

Programmer Response:

• If you want to do direct 110 processing, statement include the necessary
DEFINE FILE or OPEN for direct access.

• Make sure the same file name is not used twice within the same program unit
for different types of access.

IFY236I VDIOS : DIRECT ACCESS READ REQUESTED BEFORE FILE
WAS CREATED, FILE fffffff

Explanation: A READ is executed for a direct access file that has not been created.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The 110 request is ignored.

Programmer Response: Make sure that either a file utility program has been used,
or appropriate parameters have been specified on the associated job control
statement. For further information, refer to VS FORTRAN Application
Programming: Guide.

IFY237I VDIOS : INCORRECT RECORD LENGTH SPECIFIED, FILE
fffffff

Explanation: The length of the record did not correspond to the length of the
record specified in the DEFINE FILE or the OPEN statement.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The 110 request is ignored.

Programmer Response: Make sure that the length of the records supplied matches
the length specified in the DEFINE FILE or the OPEN statement. If necessary,
change the statement to specify the correct record length.

IFY238I VIOLP : INCORRECT DELIMITER IN COMPLEX OR LITERAL
INPUT, FILE fffffff

Explanation: A literal string in the input record(s) was not closed with an
apostrophe (or was longer than 256 characters); alternatively, a complex number in
the input record(s) contained embedded blanks, no internal comma, or no closing
right parenthesis.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The remainder of the 110 list is ignored.

c

o

Programmer Response: Supply the missing apostrophe, or amend the literal data to 0
keep within the 256-character limit if the error was in the literal input. Check

506 VS FORTRAN Language and Library Reference

o

o

o

complex input numbers to see that they contain no embedded blanks, and that they
contain an internal comma and a closing right parenthesis.

IFY2391 V ASVP : BLKSIZE IS NOT SPECIFIED FOR AN INPUT FILE,
FILE fffffff

Explanation: The block size for an input file was not specified in the JCL or was
specified as zero.

Supplemental Data Provided: The name of the file (fffffff) for which the error
occurred.

Standard Corrective Action: The 110 request is ignored.

Programmer Response: Make sure the block size is specified on the JCL for a new
file.

IFY2401

VST AE : ABEND CODE IS: SYSTEM sss, USER uuu.
SCB/SDWA-aaaaaaaa

10 ccccccccc. PSW=xxxxxxxxxxxxxxx ENTRY POINT=eeeeeeee.
REGS 0 - 3 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
REGS 4 - 7 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
REGS 8 -11 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
REGS 12-15 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
FRGS 0 & 2 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
FRGS 4 & 6 nnnnnnnn nnnnnnnn nnnnnnnn nnnnnnnn
DYNAMIC COMMON MAP
dddddd AT ffffffff (gggggggg) ddddddd AT ffffffff(gggggggg)
MAP FOR REENTRANT LOAD MODULE: bbbbbbbb
hhhhhhhh AT ffffffff hhhhhhhh AT ffffffff
LOADED LIBRARY MODULES
jjjjjjjj AT fffffff jjjjjjjj AT ffffffff

Explanation: An abnormal program termination has occurred. Message IFY2401 is
printed on the object program error unit and included in the message class for the
job. The IFY2401 message may be preceded by an IFY21 01 message that is
printed on the object program error unit.

Supplemental Data Provided: sss is the completion code whan a system code caused
termination; uuu is the completion code when a program code caused termination.

For specific explanations of the completion codes, see the messages and codes
manual that applies to your operating system.

The SCB/SDW A field gives the address (aaaaaaaa) of the system diagnostic work
area, which contains the old PSW (xxxxxxxxxxxxxxx) and the contents of the
general and floating-point registers at the time of the abend. These fields have
been copied from the SDW A into this message.

The status of input/output operations is shown in the field 10 ccccccccc. The
variable part of the field contains the word QUIESCED, HALTED,
CONTINUED, or NONE. The meanings of these words are:

Appendix I. Library Procedures and Messages 507

QUIESCED-All I/O operations have been completed; no I/O operation is
outstanding.

HALTED-Some I/O operations may not have been completed. If records
were being written, you should check that all of them were actually written.

CONTINUED-I/O operations were not completed. The program can
continue, but FORTRAN does not allow it.

NONE-No I/O operation was active when the abend occurred.

The ENTRY POINT field gives the entry point address (eeeeeeee) of the module
in which the abend occurred.

If dynamic COMMONs have been used, a map of obtained COMMON areas is
provided where dddddd is the name of the COMMON, ffffffff is the starting
address of the COMMON, and gggggggg is the length in hexadecimal. If reentrant
FORTRAN routines have been loaded, a map of the reentrant CSECTS is
provided where hhhhhhhh is the reentrant CSECT name and ffffffff is the starting
address of the executable code. If LOAD MODE has been used, a map of
LOADED library modules is provided where jjjjjjjj is the library module name and
ffffffff is the address of the module.

Two more lines can appear at the end of the message. The line TRACEBACK
MAY NOT BEGIN WITH ABENDING ROUTINE is added if VS FORTRAN
finds an error in the save-area chain. The line ABEND OCCURRED IN
FORTRAN PROCESSING ORIGINAL ABEND is added if a second abend occurs
during the processing of the original abend. In this case message IFY2401 is issued
again, and its contents pertain to the second abend.

If the abending module or any module in the traceback chain was compiled with
the SDUMP or TEST options, SDUMP output is produced for the module. See
"Output from Symbolic Dumps" on page 447 for an explanation of the SDUMP
output.

Standard Corrective Action: None.

Programmer Response: Use the abend code, the contents of the SDWA and PSW,
and any accompanying system messages, to determine the nature of the error.

IFY241I FIXPI: INTEGER BASE=O, INTEGER EXPONENT=exponent,
LESS THAN OR EQUAL TO ZERO

Explanation: For an exponentiation operation (1**1) in the subprogram IFYFIXPI
(FIXPI#), where I and J represent integer variables or integer constants, I is equal
to zero and J is less than or equal to zero.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action: Result = O.

o

o

Programmer Response: Make sure that integer variables and/or integer constants
for an exponentiation operation are within the allowable range. If the base and C\
exponent mayor will fall outside that range during program execution, then either

508 VS FORTRAN Language and Library Reference

o

o

o

modify the operands, or insert source code to test for the situation and make the
appropriate adjustments. Bypass the exponentiation operation if necessary.

IFY242I FRXPI : REAL*4 BASE=O.O, INTEGER EXPONENT = exponent,
LESS THAN OR EQUAL TO ZERO

Explanation: For an exponentiation operation (R**J) in the subprogram
IFYFRXPI (FRXPI#), where R represents a REAL*4 variable or REAL*4
constant and J represents an integer variable or integer constant, R is equal to 0
and J is less than or equal to O.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action:

If BASE=O.O,EXP<O,RESULT=O;
If BASE=O.O,EXP=O,RESULT= 1.

Programmer Response: Make sure that both the real variable or constant base and
the integer variable or constant exponent for an exponentiation operation are
within the allowable range. If the base and exponent mayor will fall outside that
range during program execution, then either modify the operand(s), or insert
source code to test for the situation and make the appropriate adjustments. Bypass
the exponentiation operation if necessary.

IFY243I FDXPI : REAL*8 BASE=O.O, INTEGER EXPONENT=exponent,
LESS THAN OR EQUAL TO ZERO

Explanation: For an exponentiation operation (D**J) in the subprogram
IFYFDXPI (FDXPI#), where D represents a REAL*8 variable or REAL*8
constant and J represents an Integer variable or Integer constant, D is equal to 0
and J is less than or equal to O.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action: The. is the correctly signed largest representable
floating-point number.

If BASE=O.O,EXP<O,RESULT=.;
If BASE=O.O,EXP=O,RESULT= 1.

Programmer Response: Make sure that both the real variable or constant base and
the integer variable or constant exponent for an exponentiation operation are
within the allowable range. If the base and exponent mayor will fall outside that
range during execution, then either modify the operand(s), or insert source code to
test for the situation and make the appropriate compensation. Bypass the
exponentiation operation if necessary.

Appendix I. Library Procedures and Messages 509

IFY2441 FRXPR : REAL*4 BASE=O.O, REAL*4 EXPONENT=exponent,
LESS THAN OR EQUAL TO ZERO

Explanation: For an exponentiation operation (R **S) in the subprogram
IFYFRXPR (FRXPR#), where Rand S represent REAL*4 variables or REAL*4
constants, R is equal to ° and S is less than or equal to 0.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action:

If BASE=O.O,EXP<O.O,RESULT=.;
If BASE=O.O,EXP=O,RESUL T = 1.

Programmer Response: Make sure that both the real variable or constant base and
exponent for an exponentiation operation are within the allowable range. If the
base and exponent mayor will fall outside that range during program execution,
then either modify the operand(s), or insert source code to test for the situation
and make appropriate compensation. Bypass the exponentiation operation if
necessary.

IFY2451 FDXPD: REAL*8 BASE=O.O, REAL*8 EXPONENT=exponent,
LESS THAN OR EQUAL TO ZERO

Explanation: For an exponentiation operation (D**P) in the subprogram
IFYFDXPD (FDXPD#), where D and P represent REAL*8 variables or REAL*8
constants, D is equal to ° and P is less than or equal to 0.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action: Result=O.

Programmer Response: Make sure that both the real variable or constant base and
exponent for an exponentiation operation are within the allowable range. If the
base and exponent mayor will fall outside that range during program execution,
then either modify the operand(s), or insert source code to test for the situation
and make appropriate compensation. Bypass the exponentiation operation if
necessary.

IFY2461 FCXPI : COMPLEX*8 BASE = (0.0,0.0), EXPONENT=exponent
LESS THAN OR EQUAL TO °

Explanation: For an exponentiation operation (Z**J) in the subprograms
IFYFCXPI (FCXPI#) and IFYFCXPC (FCXPC#), where Z represents a
COMPLEX*8 variable or COMPLEX*8 constant and J represents an integer
variable or integer constant, Z is equal to ° and J is less than or equal to 0.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action:

IfBASE=O.O,O.O,EXP < O,RESULT=.+Oi;
If BASE=O.O,O.O,EXP=O,RESULT= 1 +Oi

510 VS FORTRAN Language and Library Reference

o

c

o

o

o

Programmer Response: Make sure that both the complex variable or constant base
and the integer variable or constant exponent for an exponentiation operation are
within the allowable range. If the base and exponent mayor will fall outside that
range during program execution, then either modify the operand(s), or insert
source code to test for the situation and make the appropriate compensation.
Bypass the exponentiation operation if necessary.

IFY247I FCDCD: COMPLEX*16 BASE = (0.0,0.0), EXPONENT = exponent,
LESS THAN OR EQUAL TO °

Explanation: For an exponentiation operation (Z**J) in the subprograms
IFYFCDXI (FCDXI#) and IFYFCDCD (FCDCD#), where Z represents a
COMPLEX*16 variable or COMPLEX*16 constant and J represents an integer
variable or integer constant, Z is equal to zero and J is less than or equal to zero.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action:

If BASE=(O.O,O.O)EXP < O,RESULT=- +Oi;
If BASE= (O.O,O.O)EXP=O,RESULT= 1 +Oi

Programmer Response: Make sure that both the complex variable or constant base
and the integer variable or constant exponent for an exponentiation operation are
within the allowable range. If the base and exponent mayor will fall outside that
range during program execution, then either modify the operand(s), or insert
source code to test for the situation and make the appropriate compensation.
Bypass the exponentiation operation if necessary.

IFY248I FQXPI: REAL*16 BASE=O.O, INTEGER EXPONENT = exponent,
LESS THAN OR EQUAL TO °

Explanation: For an exponentiation operation (Q**J) in the subprogram
IFYFQXPI (FQXPI#), where Q represents a REAL * 16 variable or constant and J
represents an integer variable or constant, Q is equal to ° and J is less than or equal
to 0.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action:

If BASE=O.O,EXP < O,RESULT=-;
If BASE=O.O,EXP=O,RESULT= 1

Programmer Response: Make sure that both the real variable or constant base and
the integer variable or constant exponent for an exponentiation operation are
within the allowable range. If the base and exponent mayor will fall outside that
range during execution, then either modify the operand(s), or insert source code to
test for the situation and make the appropriate compensation. Bypass the
exponentiation operation if necessary.

Appendix I. Library Procedures and Messages 511

IFY249I FQXPQ : REAL*16 BASE=base, REAL*16 EXPONENT=exponent,
BASE=O.O AND EXPONENT LESS THAN OR EQUAL TO 0 OR
BASE LESS THAN 0 AND EXPONENT NOT EQUAL TO 0

Explanation: For an exponentiation operation (X**y) in the subprogram
IFYFQXPQ (FQXPQ#), where X and Y represent REAL * 16 variables or
constants, if X equals 0, Y must be greater than 0; if X is less than 0, Y must equal
O. One of these conditions has been violated.

Supplemental Data Provided: The base and exponent specified.

Standard Corrective Action:

If BASE=O.O and EXP<O,RESULT=-;
If BASE=O.O and EXP=O,RESULT= 1;
If BASE=< 0.0 and EXP~O,RESULT= 1 X 1 **Y.

Programmer Response: Make sure that both the real variable or constant base and
exponent for an exponentiation operation are within the allowable range. If the
base and exponent mayor will fall outside that range during program execution,
then either modify the operand(s), or insert source code to test for the situation
and make appropriate adjustments. Bypass the exponentiation operation if
necessary.

IFY250I FQXPQ : REAL*16 BASE=base, REAL*16 EXPONENT = exponent,
ARGUMENT COMBINATION EXPONENT*LOG2(BASE)
GREATER THAN OR EQUAL TO 252

Explanation: For an exponentiation operation in the subprogram IFYFQXPQ,
(FQXPQ#) the argument combination of Y*log2(X) generates a number greater
than or equal to 252.

Supplemental Data Provided: The arguments specified.

Standard Corrective Action: Result= - .

Programmer Response: Make sure that the base and exponent are within the
allowable range. If necessary, restructure arithmetic operations.

IFY251I SSQRT : ARG=argument, LESS THAN ZERO

Explanation: In the subprogram IFYSSQRT (SQRT), the argument is less than O.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= 1 X 11/2.

Programmer Response: Make sure that the argument is within allowable range.
Either modify the argument, or insert source code to test for a negative argument
and make the necessary adjustments. Bypass the function reference if necessary.

512 VS FORTRAN Language and Library Reference

c

o

c

o

o

o

IFY2521 SEXP: ARG=argument, GREATER THAN 174.673

Explanation: In the subprogram IFYSEXP (EXP), the argument is greater than
174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result::: e.

Programmer Response: Make sure that the argument to the exponentiation
function is within allowable range. If the argument mayor will exceed that range
during program execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

IFY2531 SLOG: ARG=argument, LESS THAN OR EQUAL TO ZERO

Explanation: In the subprogram IFYSLOG (ALOG and ALOGI0), the argument
is less than or equal to O. Because this subprogram is called by an exponential
subprogram, this message may also indicate that an attempt has been made to raise
a negative base to a real power.

Supplemental Data Provided: The argument specified.

Standard Corrective Action:

If X=O, RESULT=-e;
If X < 0, RESULT=log 1 X 1 or loglO 1 X I.

Programmer Response: Make sure that the argument to the logarithmic function is
within the allowable range. If the argument mayor will be outside that range
during program execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

IFY2541 SSCN: ABS(ARGUMENT)=argument GREATER THAN OR
EQUAL TO PI*(2**18)

Explanation: In the subprogram IFYSSCN (SIN and COS), the absolute value of
an argument is greater than or equal to 2**18 * pi (2**18 * pi=.823 550 E+ 06).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result=SQRT(2)/2.

Programmer Response: Make sure that the argument (in radians where 1 radian is
equivalent to 57.298°) to the trigonometric sine or cosine function is within the
allowable range. If the argument mayor will exceed that range during program
execution, then provide code to test for the situation and, if necessary, modify the
argument or bypass the source referencing the function subprogram.

Appendix I. Library Procedures and Messages 513

IFY255I SATN2 : ARGUMENTS = 0.0

Explanation: In the subprogram IFYSATN2, when the entry name ATAN2 is used,
both arguments are equal to O.

Supplemental Data Provided: None.

Standard Corrective Action: Result=O.

Programmer Response: Make sure that both arguments do not become 0 during
program execution, or are not inadvertently initialized or modified to O. Provide
code to test for the situation and, if necessary, modify the arguments or bypass the
source referencing the function subprogram.

IFY256I SSCNH: ARG=argument, GREATER THAN OR EQUAL TO
175.366

Explanation: In the subprogram IFYSSCNH (SINH or COSH), the argument is
greater than or equal to 175.366.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: SINH(X) = ± .; COSH(X) = •

Programmer Response: Make sure that the argument to the hyperbolic sine or
cosine function is within the allowable range. If the argument mayor will exceed

o

that range during program execution, then provide code to test for the situation 0----,
and, if necessary, modify the argument or bypass the source referencing the .
function subprogram.

IFY257I SASCN : ARG=argument, GREATER THAN 1

Explanation: In the subprogram IFYSASCN (ASIN or ACOS), the absolute value
of the argument is greater than 1.

Supplemental Data Provided: The argument specified.

Standard Corrective Action:

If x > 1.0, ACOS(x) = 0;
If x < -1.0, ACOS(x) = pi;
If x > 1.0, ASIN(x) = pi/2;
If x < -1.0, ASIN(x) = -pi/2.

Programmer Response: Make sure that the argument to the arcsin.e or arccosine
function is between -1 and + 1, inclusive. If the argument mayor will fall outside
that range during program execution, then provide code to test for the situation
and, if necessary, modify the argument or bypass the source referencing the
function subprogram.

514 VS FORTRAN Language and Library Reference

c

o

o

0" . ,

IFY258I STNCT : ARG=argument, (HEX=hexadecimal), GREATER THAN
OR EQUAL TO PI*(2**18)

Explanation: In the subprogram IFYSTNCT (TAN or COTAN), the absolute value
of the argument is greater than or equal to 2**18*pi (2**18*pi=.823 550E+6).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= 1.

Programmer Response: Make sure that the argument (in radians, where 1 radian is
equal to 57.2958°) to the trigonometric tangent or cotangent function is within the
allowable range. If the argument mayor will exceed that range during program
execution, then provide code to test for the situation and, if necessary, modify the
argument or bypass the source referencing the function subprogram.

IFY259I STNCT: ARG = argument, (HEX = hexadecimal), APPROACHES
SINGULARITY

Explanation: In the subprogram IFYSTNCT (TAN or COTAN), the argument
value is too close to one of the singularities (±Pi/2, ±3pi/2, ... for the tangent or
±pi, ±2pi, ... for the cotangent).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the argument (in radians, where 1 radian is
equal to 57.2958°) to the trigonometric tangent or cotangent function is within the
allowable range. If the argument mayor will approach the corresponding
singularities for the function during program execution, then provide code to test
for the situation and, if necessary, modify the argument or bypass the source
referencing the function subprogram.

IFY260I FQXPR : REAL*16 EXPONENT = exponent, GREATER THAN OR
EQUAL TO 252

Explanation: In the subprogram IFYFQXPR (FQXP2#), the exponent exceeds
2**252.

Supplemental Data Provided: The exponent specified.

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the exponent is within the allowable range.

IFY2611 LSQRT : ARG = argument, LESS THAN ZERO

Explanation: In the subprogram IFYLSQRT (DSQRT), the argument is less than O.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= I X 11/ 2 •

Appendix I. Library Procedures and Messages 515

Programmer Response: Make sure that the argument is within the allowable range.
Either modify the argument, or insert source code to test for a negative argument
and make the necessary compensation. Bypass the function reference if necessary.

IFY2621 LEXP: ARG = argument, GREATER THAN 174.673

Explanation: In the subprogram IFYLEXP (DEXP), the argument is greater than
174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= - .

Programmer Response: Make sure that the argument to the exponential function is
within allowable range. If the argument mayor will exceed that range during
program execution, then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY2631 LLOG : = argument, LESS THAN OR EQUAL TO ZERO

Explanation: In the subprogram IFYLLOG (DLOG and DLOG10), the argument
is less than or equal to O. Because the subprogram is called by an exponential
subprogram, this message may also indicate that an attempt has been made to raise
a negative base to a real power.

Supplemental Data Provided: The argument specified.

Standard Corrective Action:

If X= O,RESULT=--;
If X<O,RESULT=log I X I or log I X I.

10

Programmer Response: Make sure that the argument to the logarithmic function is
within the allowable range. If the argument mayor will be outside that range
during program execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

IFY2641 LSCN : ABS(ARG) = argument, GREATER THAN OR EQUAL TO
PI*(2**50)

Explanation: In the subprogram IFYLSCN (DSIN and DCOS), the absolute value
of the argument is greater than or equal to 2**50*pi (2**50*pi=.353 711 887 378
022 39D+ 16).

Supplemental Data Provided: None.

Standard Corrective Action: Result=SQRT(2)/2.

Programmer Response: Make sure that the argument (in radians where 1 radian is
equivalent to 57.295 779 513 1°) to the trigonometric sine or cosine function is
within the allowable range. If the argument mayor will exceed that range during

516 VS FORTRAN Language and Library Reference

o

o

c

o

o

o

program execution, then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY2651 LATN2 : ARGUMENTS = 0.0

Explanation: In subprogram IFYLATN2, when entry name DAT AN2 is used, both
arguments are equal to zero.

Supplemental Data Provided: None.

Standard Corrective Action: Result = O.

Programmer Response: Make sure that both arguments do not become zero during
program execution, or are not inadvertently initialized or modified to zero. Provide
code to test for the situation and, if necessary, modify the arguments or bypass the
source referencing the function subprogram.

IFY2661 SCNH : ARG = argument, GREATER THAN OR EQUAL TO
175.366

Explanation: In the subprogram IFYSCNH (DSINH or DCOSH), the absolute
value of the argument is greater than or equal to 175.366.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: DSINH(X)=±.; DCOSH(X)=.

Programmer Response: Make sure that the argument to the hyperbolic sine or
cosine function is within the allowable range. If the argument mayor will exceed
that range during program execution, then provide code to test for the situation
and, if necessary, modify the argument or bypass the source referencing the
function subprogram.

IFY2671 LASCN : ARG = argument, GREATER THAN 1

Explanation: In the subprogram IFYLASCN (DASIN or DACOS), the absolute
value of the argument is greater than 1.

Supplemental Data Provided: The argument specified.

Standard Corrective Action:

If x > 1.0 DACOS(x) = 0;
If x < -1.0 DACOS(x) = pi;
If x > 1.0 DASIN(x) = pi/2;
If x < -1.0 DASIN(x) = -pi/2.

Programmer Response: Make sure that the argument to the arcsine or arccosine
function is between -1 and + 1, inclusive. If the argument mayor will fall outside
that range during execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

Appendix I. Library Procedures and Messages 5 1 7

IFY268I LTNCT: ARG = argument, (HEX = hexadecimal), GREATER THAN
OR EQUAL TO PI*(2**50)

Explanation: In the subprogram IFYLTNCT (DTAN or DCOTAN), the absolute
value of the argument is greater than or equal to 2**50*pi (2**50*pi=.353 711
887 601 422 01D+ 16).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= 1.

Programmer Response: Make sure that the argument (in radians, where 1 radian is
equal to 57.295 779513 1°) to the trigonometric tangent or cotangent function is
within the allowable range. If the argument mayor will exceed that range during
program execution, then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY269I LTNCT: ARG = argument, (HEX = hexadecimal), APPROACHES
SINGULARITY

Explanation: In the subprogram IFYLTNCT (DTAN or DCOTAN), the argument
value is too close to one of the singularities (±Pi/2, ±3pi/2, ... for the tangent;
±pi, ±2pi, ... for the cotangent).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= e.

Programmer Response: Make sure that the argument (in radians where 1 radian is
equivalent to 57.295 779513 1 °0) to the trigonometric tangent or cotangent
function is within the allowable range. If the argument mayor will approach the
corresponding singUlarities for the function during program execution, then provide
code to test for the situation and, if necessary, modify the argument or bypass the
source referencing the function subprogram.

IFY270I FCQXI : COMPLEX*32 BASE = (0.0,0.0), INTEGER EXPONENT
= exponent, LESS THAN OR EQUAL TO °

Explanation: In the subprograms IFYFCQXI (FCQXI#) and IFYFCQCG
(FCQCG#), a base 0 number has been raised to an integer power less than or
equal to zero.

Supplemental Data Provided: The argument specified.

Standard Corrective Action:

If X=O+Oi and J=O, RESULT=I+Oi;
If X=O+Oi and J<O, RESULT=e+Oi.

(where J = exponent)

Programmer Response: Make sure the base is a nonzero number or change the
exponent to a nonzero value.

518 VS FORTRAN Language and Library Reference

o

o

o

o

IFY271I CSEXP : REAL ARGUMENT = argument, (HEX = hexadecimal),
GREATER THAN 174.673

Explanation: In the subprogram IFYCSEXP (CEXP), the value of the real part of
the argument is greater than 174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result=. (COS X + iSIN X) where X is the imaginary
portion of the argument.

Programmer Response: Make sure that the argument to the exponential function is
within the allowable range. If the argument mayor will exceed that range during
program execution, then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY272I CSEXP : IMAGINARY ARGUMENT = argument, (HEX =
hexadecimal), ABSOLUTE VALUE GREATER THAN OR EQUAL
TO PI*(2**18)

Explanation: In the subprogram IFYCSEXP (CEXP), the absolute value of the
imaginary part of the argument is greater than or equal to 2 * * 18 *pi
(2**18*pi=.823550E+6).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If x is the real part of the argument, then
Result=ex+O*i, where e is the base of natu~allogarithms.

Programmer Response: Make sure that the argument to the exponential function is
within the allowable range. If the argument mayor will exceed that range during
program execution, then provide code to test for the situation, and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY273I CSLOG : ARGUMENT = (0.0,0.0)

Explanation: In the subprogram IFYCSLOG (CLOG), the real and imaginary parts
of the argument are equal to zero.

Supplemental Data Provided: None.

Standard Corrective Action: Result=-. +Oi.

Programmer Response: Make sure that both the real and imaginary parts of the
argument do not become zero during program execution, or are not inadvertently
initialized or modified to zero. Provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

Appendix I. Library Procedures and Messages 519

IFY274I CSSCN : REAL ARGUMENT = argument, (HEX = hexadecimal),
GREATER THAN OR EQUAL TO PI*(2**18)

Explanation: In the subprogram IFYCSSCN (CSIN or CCOS), the absolute value
of the real part of the argument is greater than or equal to 2** 18 *pi
(2**18*pi=.823550E+6).

Supplemental Data Provided: The argument specified. The real part is set to zero
and the computations are redone.

Standard Corrective Action: The real part is set to zero and the computations are
redone. If argument is x + iy, then

CCOS Result=COSH(y)+O*i; CSIN Result=O+SINH(y)*i.

where y is the imaginary part of the original argument.

Programmer Response: Make sure that the real part of the argument (in radians
where 1 radian is equivalent to 57.2958°) to the trigonometric sine or cosine
function is within the allowable range. If the real part of the argument mayor will
exceed the range during program execution, then provide code to test for the
situation and, if necessary, modify the real part of the argument or bypass the
source referencing the function subprogram.

IFY275I CSSCN : IMAGINARY ARGUMENT = argument, (HEX =
hexadecimal), GREATER THAN 174.673

Explanation: In the subprogram IFYCSSCN (CSIN or CCOS), the absolute value
of the imaginary part of the argument is greater than 174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If imaginary part > 0 (X is real portion of argument):

For sine, result=. /2*(SIN X + iCOS X).
For cosine, result=. /2*(COS X - iSIN X).

If imaginary part < 0 (X is real portion of argument):

For sine, result=. /2*(SIN X - iCOS X).
or cosine, result=. /2*(COS X + iSIN X).

Programmer Response: Make sure that the imaginary part of the argument (in
radians where 1 radian is equivalent to 57.2958°) to the trigonometric sine or
cosine function is within the allowable range. If the imaginary part of the argument
mayor will exceed that range during program execution, then provide code to test
for the situation and, if necessary, modify the imaginary part of the argument or
bypass the source referencing the function subprogram.

520 VS FORTRAN Language and Library Reference

o

()

c

o

c

o

IFY276I CQEXP : REAL ARGUMENT = argument, (HEX = bexidecimal),
GREATER THAN 174.673

Explanation: In the subprogram IFYCQEXP (CQEXP), the value of the real part
of the argument is greater than 174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result =.(COS X + iSIN X), where X is the
imaginary portion of the argument.

Programmer Response: Make sure that the real part of the argument to the
exponential function is within the allowable range. If the real part of the argument
mayor will exceed the range during program execution, then provide code to test
for the situation, and, if necessary, modify the real part of the argument or bypass
the source referencing the function subprogram.

IFY277I CQEXP : IMAGINARY ARGUMENT = argument, (HEX =
hexadecimal), ABSOLUTE VALUE GREATER THAN PI*(2**100)

Explanation: In the subprogram IFYCQEXP (CQEXP), the absolute value of the
imaginary part of the argument is greater than 2**lOO*pi (2**lOO*pi=.398 244
181 299 569 74D + 31)

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If x is the real part of the argument, then
Result=ex+O*i, where e is the base of natural logarithms.

Programmer Response: Make sure that the imaginary part of the argument to the
exponential function is within the allowable range. If the imaginary part of the
argument mayor will exceed that range during program execution, then provide
code to test for the situation and, if necessary, modify the imaginary part of the
argument or bypass the source referencing the function subprogram.

IFY278I CQLOG : ARGUMENT = (0.0,0.0)

Explanation: In the subprogram IFYCQLOG (CQLOG), the real and imaginary
parts of the argument are equal to O.

Supplemental Data Provided: None.

Standard Corrective Action: Result=-. +Oi.

Programmer Response: Make sure that both the real and imaginary parts of the
argument do not become 0 during program execution, or are not inadvertently
initialized or modified to O. Provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

Appendix I. Library Procedures and Messages 521

IFY279I CQSCN : REAL ARGUMENT = argument, GREATER THAN OR
EQUAL TO 2**100

Explanation: In the subprogram IFYCQSCN (CQSIN or CQCOS), the absolute
value of the real part of the argument is greater than or equal to 2100.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If the argument is X + iY, for CQSIN, result=O +
DSINH(Y) *i and, for CQCOS, result = DCOSH(Y) +O*i.

Programmer Response: Make sure that the real part of the argument (in radians,
where 1 radian is equal to 57.295 779 513 1°) to the trigonometric sine or cosine
function is within the allowable range. If the part of the argument mayor will
exceed the range during program execution, then provide code to test for the
situation and, if necessary, modify the real part of the argument or bypass the
source referencing the function subprogram.

IFY280I CQSCN: IMAGINARY ARGUMENT = argument, GREATER THAN
174.673

Explanation: In the subprogram IFYCQSCN (CQSIN or CQCOS), the absolute
value of the imaginary part of the argument is greater than 174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If imaginary part> 0 (X is real portion of argument):

For sine, result=-/2*(SIN X + iCOS X).

For cosine, result= - /2*(COS X - iSIN X).

If imaginary part <0, (X is real portion of argument):

For sine, result=-/2*(SIN X - iCOS X).

For cosine, result= - /2*(COS X + iSIN X).

Programmer Response: Make sure that the imaginary part of the argument (in
radians, where 1 radian is equal to 57.2957795131°) to the trigonometric sine or
cosine function is within the allowable range. If the imaginary part of the argument
mayor will exceed that range during program execution, then provide code to test
for the situation and, if necessary, modify the imaginary part of the argument or
bypass the source referencing the function subprogram.

IFY2811 CLEXP : REAL ARGUMENT = argument, (HEX = hexadecimal),
GREATER THAN 174.673

Explanation: In the subprogram IFYCLEXP (CDEXP), the value of the real part
of the argument is greater than 174.673.

Supplemental Data Provided: The argument specified.

522 VS FORTRAN Language and Library Reference

o

o

()

o

c

o

Standard Corrective Action: Result= e (COS X + is IN X) where X is the imaginary
portion of the argument.

Programmer Response: Make sure that the real part of the argument to the
exponential function is within the allowable range. If the real part of the argument
mayor will exceed that range during program execution, then provide code to test
for the situation and, if necessary, modify the real part of the argument or bypass
the source referencing the function subprogram.

IFY282I CLEXP : IMAGINARY ARGUMENT = argument, (HEX =
hexadecimal), ABSOLUTE VALUE GREATER THAN OR EQUAL
TO PI*(2**SO)

Explanation: In the subprogram IFYCLEXP (COEXP), the absolute value of the
imaginary part of the argument is greater than or equal to 2**50*pi
(2**50*pi=.353 711 887 601 422010+ 16).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If X is the real part of the x argument, then
Resu1t=e+O*i, where e is the base of natural logarithms.

Programmer Response: Make sure that the imaginary part of the argument to the
exponential function is within the allowable range. If the imaginary part of the
argument mayor will exceed that range during program execution, then provide
code to test for the situation, and, if necessary, modify the imaginary part of the
argument or bypass the source referencing the function subprogram.

IFY283I CLLOG: ARGUMENT = (0.0,0.0)

Explanation: In the subprogram IFYCLLOG (COLOG), the real and imaginary
parts of the argument are equal to O.

Supplemental Data Provided: None.

Standard Corrective Action: Result=-e +Oi.

Programmer Response: Make sure that both the real and imaginary parts of the
argument do not become 0 during program execution, or are not inadvertently
initialized or modified to O. Provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY284I CLSCN : REAL ARGUMENT = argument, (HEX = hexadecimal),
GREATER THAN OR EQUAL TO PI*(2**SO)

Explanation: In the subprogram IFYCLSCN (COSIN or COCOS), the absolute
value of the real part of the argument is greater than or equal to 2**50*pi
(2**50*pi = .353 711 887 601 422 01D+ 16).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If the argument is X + iY, for COSIN, the result=O +
DSINH(Y) +i; for COCOS, the result=OCOSH(Y)+O*i.

Appendix I. Library Procedures and Messages 523

Programmer Response: Make sure that the real part of the argument (in radians,
where 1 radian is equal to 57.295 779 513 10

) to the trigonometric sine or cosine
function is within the allowable range. If the part of the argument mayor will
exceed the range during program execution, then provide code to test for the
situation, and, if necessary, modify the real part of the argument or bypass the
source referencing the function subprogram.

IFY28SI CLSCN : IMAGINARY ARGUMENT = argument, (HEX =
hexadecimal), GREATER THAN 174.673

Explanation: In the subprogram IFYCLSCN (CDSIN or CDCOS), the absolute
value of the imaginary part of the argument is greater than 174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If imaginary part >0, (X is real portion of argument):

For sine, result=./2*(SIN X + iCOS X).

For cosine, result=. /2*(COS X - iSIN X).

If imaginary part <0, (X is real portion of argument):

For sine, result=. /2*(SIN X - iCOS X).

For cosine, result=. /2*(COS X + iSIN X).

o

Prdogrammer Response
d

: Make sure that the imaginary OP)art of the argument (in 0.--.
ra ians, where 1 ra ian is equal to 57.295 779513 1 to the trigonometric sine or
cosine function is within the allowable range. If the imaginary part of the argument
mayor will exceed that range during program execution, then provide code to test
for the situation and, if necessary, modify the imaginary part of the argument or
bypass the source referencing the function subprogram.

IFY286I VSIOS I VASVP: ATTEMPT TO ISSUE SYNCHRONOUS AND
ASYNCHRONOUS I/O REQUESTS WITHOUT AN
INTERVENING REWIND, FILE fffffff

Explanation: A file that has been using one mode of I/O operations (that is, either
synchronous or asynchronous) must be rewound before changing modes. An
attempt was made to change the mode without rewinding the file.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The I/O request is ignored, and execution continues.

Programmer Response: Insert a REWIND statement at an appropriate point in the
program.

524 VS FORTRAN Language and Library Reference

c

o

o

o

IFY2871 VASVP: A WAIT ISSUED WITH NO OUTSTANDING I/O
REQUEST, FILE fffffff

Explanation: A WAIT statement was issued with no corresponding READ or
WRITE request.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: The WAIT statement is ignored, and execution
continues.

Programmer Response: Remove the WAIT statement, or include a corresponding
READ or WRITE statement.

IFY2881 VASVP: NO WAIT ISSUED FOR AN OUTSTANDING I/O
REQUEST FILE fffffff

Explanation: No WAIT statement was issued for an outstanding READ or WRITE
request.

Supplemental Data Provided: The name of the file (fffffff).

Standard Corrective Action: Execution continues with an implied WAIT.

Programmer Response: Include the WAIT statement, or remove the READ or
WRITE statement.

IFY2891 QSQRT: NEGATIVE ARGUMENT = argument

Explanation: In the subprogram IFYQSQRT (QSQRT#), the argument is less than
zero.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result = I x 1 1/ 2

Programmer Response: Make sure that the argument is within the allowable range.
Either modify the argument, or insert source code to test for a negative argument
and make the necessary compensation. Bypass the function reference if necessary.

IFY2901 SGAMA : ARG = argument, (HEX = hexadecimal), LESS THAN OR
EQUAL TO 2**-252 OR GREATER THAN OR EQUAL TO 57.5744

Explanation: In the subprogram IFYSGAMA (GAMMA), the value of the
argument is outside the valid range (2**-252 < x < 57.5744).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the argument to the gamma function is
within the allowable range. If the argument mayor will be outside that range
during program execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

Appendix I. Library Procedures and Messages 525

IFY29 11 SGAMA : ARG = argument, (HEX = hexadecimal), LESS THAN OR
EQUAL TO ZERO OR GREATER THAN OR EQUAL TO
4.2937*10**73

Explanation: In the subprogram IFYSGAMA (ALGAMA), the value of the
argument is outside the valid range (0 < < 4.2937xl0**73).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the argument to the ALGAMA function is
within the allowable range. If the argument mayor will be outside that range
during program execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

IFY2921 FQXPR : ARG = argument, GREATER THAN 174.673

Explanation: In the subprogram IFYFQXPR (QEXP), the argument is greater than
174.673.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the argument to the exponential function is
within the allowable range. If the argument mayor will exceed that range during
program execution, then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY2931 QLOG : ARG = argument, LESS THAN OR EQUAL TO ZERO

Explanation: In the subprogram IFYQLOG (QLOG and QLOGI0), the argument
is less than or equal to O. Because the subprogram is called by an exponential
subprogram, this message may also indicate that an attempt has been made to raise
a negative base to a real power.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: If X=O, result=-.; if X<O,
result=log I X I or 10glO I X I .

Programmer Response: Make sure that the argument to the logarithm function is
within the allowable range. If the argument mayor will be outside that range
during program execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

526 VS FORTRAN Language and Library Reference

" 0','._."

c

o

o

o

o

IFY2941 QSCN : ARG = argument, GREATER THAN OR EQUAL TO 2**100

Explanation: In the subprogram IFYQSCN (QSIN and QCOS), the absolute value
of the argument is greater than or equal to 2100.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result=SQRT(2)/2

Programmer Response: Make sure that the argument (in radians, where 1 radian is
equal to 57.295 779 513 10

) to the trigonometric sine or cosine function is within
the allowable range. If the argument mayor will exceed that range during program
execution, then provide code to test for the situation and, if necessary, modify the
argument or bypass the source referencing the function subprogram.

IFY2951 QATN2 : ARGUMENTS = 0.0

Explanation: In subprogram IFYQATN2, when entry name QAT AN2 is used, both
arguments are equal to zero.

Supplemental Data Provided: None.

Standard Corrective Action: Result=O.

Programmer Response: Make sure that both arguments do not become zero during
program execution, or are not inadvertently initialized or modified to zero. Provide
code to test for the situation and, if necessary, modify the arguments or bypass the
source referencing the function subprogram.

IFY2961 QSCNH: ARG = argument, GREATER THAN 175.366

Explanation: In the subprogram IFYQSCNH (QSINH or QCOSH), the absolute
value of the argument is greater than (or equal to) 175.366.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: QSINH(X) = ± .; QCOSH(X) = •.

Programmer Response: Make sure that the argument to the hyperbolic sine or
cosine function is within the allowable range. If the argument mayor will exceed
that range during program execution, then provide code to test for the situation
and, if necessary, modify the argument or bypass the source referencing the
function subprogram.

IFY2971 QASCN : ARG = argument, GREATER THAN 1

Explanation: In the subprogram IFYQASCN (QARSIN or QARCOS), the
absolute value of the argument is greater than 1.

Supplemental Data Provided: The argument specified.

Appendix I. Library Procedures and Messages 527

Standard Corrective Action:

If X < 1.0 QARCOS(X) = 0;
If X < -1.0 QARCOS(X) = pi;
If X:> 1.0 QARSIN(X) = pi/2;
If X < -1.0 QARSIN(X) = -pi/2.

Programmer Response: Make sure that the argument to the arcsine or arccosine
function is between -1 and + 1, inclusive. If the argument mayor will fall outside
that range during program execution, then provide code to test for the situation
and, if necessary, modify the argument or bypass the source referencing the
function subprogram.

IFY2981 QTNCT : ARG = argument, GREATER THAN OR EQUAL TO
2**100

Explanation: In the subprogram IFYQTNCT (QTAN or QCOTAN), the absolute
value of the argument is greater than or equal to 2**100.

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= 1.

C",',' . - - - '

Programmer Response: Make sure that the argument (in radians, where 1 radian is
equal to 57.295 779 513 10

) to the trigonometric tangent or cotangent function is
within the allowable range. If the argument mayor will exceed that range during
program execution, then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram. C
IFY2991 QTNCT: ARG = argument, APPROACHES SINGULARITY

Explanation: In the subprogram IFYQTNCT (QTAN or QCOTAN), the argument
value is too close to one of the singularities (±Pi/2, ±3pi/2, for the tangent; ±pi,
±2pi, for the cotangent).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the argument (in radians where 1 radian is
equivalent to 57.295 779 513 10

) to the trigonometric tangent or cotangent
function is within the allowable range. If the argument mayor will approach the
corresponding singularities for the function during program execution, then provide
code to test for the situation and, if necessary, modify the argument or bypass the
source referencing the function subprogram.

IFY3001 LGAMA : ARG = argument, (HEX = hexadecimal), LESS THAN OR
EQUAL TO 2**-252 OR GREATER THAN OR EQUAL TO 57.5744

Explanation: In the subprogram IFYLGAMA (DGAMMA), the value of the
argument is outside the valid range (2**-252 < x < 57.5744).

Supplemental Data Provided: The argument specified.

528 VS FORTRAN Language and Library Reference

c

o

o

o

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the argument to the DGAMMA function is
within the allowable range. If the argument mayor will be outside the range during
program execution, then provide code to test for the situation and, if necessary,
modify the argument or bypass the source referencing the function subprogram.

IFY301I LGAMA : ARG = argument, (HEX = hexadecimal), LESS THAN OR
EQUAL TO O. OR GREATER THAN OR EQUAL TO
4.2937*10**73

Explanation: In the subprogram IFYLGAMA (DLGAMA), the value of the
argument is outside the valid range (0 < x < 4.2937xl0**73).

Supplemental Data Provided: The argument specified.

Standard Corrective Action: Result= •.

Programmer Response: Make sure that the argument to the DLGAMA function is
within the allowable range. If the argument mayor will be outside that range
during program execution, then provide code to test for the situation and, if
necessary, modify the argument or bypass the source referencing the function
subprogram.

IFY900I VEMGN : EXECUTION TERMINATING DUE TO ERROR COUNT
FOR ERROR NUMBER nnnn

Explanation: This error has occurred frequently enough to reach the count
specified as the number at which execution should be terminated.

Supplemental Data Provided: The error number.

Standard Corrective Action: No corrective action is implemented.

System Action: The job step is terminated with a completion code of 16.

Programmer Response: Make sure that occurrences of the error number indicated
are eliminated.

IFY901I VEMGN : EXECUTION TERMINATING DUE TO SECONDARY
ENTRY TO ERROR MONITOR FOR ERROR NUMBER nnnn
WHILE PROCESSING ERROR NUMBER nnnn

Explanation: In a user's corrective action routine, an error has occurred that has
called the error monitor before it has returned from processing a previously
diagnosed error.

Supplemental Data Provided: The error numbers.

Standard Corrective Action: No corrective action is attempted.

System Action: The job step is terminated with a completion code of 16.

Note: If a traceback follows this message, it may be unreliable.

Appendix I. Library Procedures and Messages 529

Programmer Response: Make sure that the error monitor is not called prior to
processing the diagnosed error.

Example: A statement such as R=A**B (where A and Bare REAL*4) cannot be
used in the exit routine for error 252, because FRXPR# uses EXP, which detects
error 252.

Refer to Chapter 10, "Extended Error Handling Subroutines and Error Option
Table" on page 323 for information on the error handling subroutines.

IFY902I VEMGl I VMOPT : ERROR NUMBER nnnn (REQUESTED BY
MODULE module-name) IS OUT OF RANGE OF ERROR OPTION
TABLE

Explanation: A request has been made to reference a nonexistent option table
entry.

Supplemental Data Provided: The error number and module name.

System Action: The request is ignored, and execution continues. lRETCD is set to
0.

Refer to Chapter 10, "Extended Error Handling Subroutines and Error Option
Table" on page 323 for information on the error handling subroutines.

Programmer Response: Make sure that the value assigned to an error condition is
within the range of entries in the option table.

IFY903I VMOPT : ATTEMPT TO CHANGE UNMODIFIABLE MESSAGE
TABLE ENTRY. MESSAGE NUMBER nnnn

Explanation: The option table specifies that no changes may be made in this entry,
but a change request has been made by use of CALL ERRSET or CALL
ERRSTR.

Refer to Chapter 10, "Extended Error Handling Subroutines and Error Option
Table" on page 323, for information on the error handling subroutines.

Supplemental Data Provided: The message number.

System Action: The request is ignored and execution continues.

Programmer Response: Make sure that no attempt has been made to alter
dynamically an unmodifiable entry in the option table.

IFY904I name: ATTEMPT TO DO I/O DURING FIXUP ROUTINE FOR AN
I/O TYPE ERROR, FILE fffffff

Explanation: When attempting to correct an I/O error, the user may not issue
another I/O statement or call a routine that issues an I/O statement.

Refer to Chapter 10, "Extended Error Handling Subroutines and Error Option
Table" on page 323, for information on the error handling subroutines.

530 VS FORTRAN Language and Library Reference

c

o

c

o

o

Operator Messages

Supplemental Data Provided: The last 5 characters in the name of the module that
issued the message: VSCOM, IBCOM, VIOFP, VIOCP, VIOUP, or VCOM2. The
name of the file (fffffff).

System Action: The job step is terminated with a completion code of 16.

Programmer Response: Make sure that, if an I/O error is detected, the user exit
routine does not attempt to execute any FORTRAN I/O statement.

IFY905I VSCOM I IBCOM I VCOM2 : SECONDARY ENTRY INTO MAIN
ROUTINE, EXECUTION TERMINATED.

Explanation: A user program tried to enter a second time into a FORTRAN MAIN
routine. Recursion is not allowed in VS FORTRAN.

Supplemental Data Provided: None.

System Action: The job step is terminated with a completion code of 16.

Programmer Response: Make sure that no routine attempts to reenter the main
FORTRAN program.

IFY9061 VEMGN : ERROR NUMBER non, LINE NO. II, REQUESTED BY
MODULE mod-name HAS NO MESSAGE SKELETON.

Explanation: The text for line 11 of error message number nnn could not be found
in the message skeleton which is supposed to contain all such text.

Supplemental Data Provided: The error number (nnn), the line number (11) of the
message, and the name (mod-name) of the library module which tried to print the
message.

Standard Corrective Action: The message is not printed, but execution continues.

Programmer Response: Refer the problem to the people at your installation who
give system support for VS FORTRAN.

Operator messages for PAUSE and STOP statements may be generated during load
module execution as follows:

yy IFYOOIA PAUSE x

Explanation: A VS FORTRAN PAUSE statement has been executed. The yy is an
identification number assigned to the message by the operating system. The x can
be:

• An unsigned 1- to 5-digit integer constant specified in the PAUSE statement.

• A character constant specified in the PAUSE statement.

• A zero to indicate that the PAUSE statement contained no constant.

Appendix I. Library Procedures and Messages 531

System Action: The program enters the wait state.

Operator Response: Follow the instructions given by the programmer when the
program was submitted for execution; these instructions should indicate the action
to be taken for any constant printed in the message text or for a PAUSE statement
without a constant.

To resume execution, reply to the outstanding console message after performing
the operations requested.

IFY002I STOP x

Explanation: A VS FORTRAN STOP statement has been executed. The x can be:

• An unsigned 1- to 5-digit integer constant specified in the STOP statement.

• A character constant specified in the STOP statement.

System Action: The STOP statement caused the program to terminate.

Operator Response: None.

IFY003I DSIOS.ERROR OCCURRED ON FORTRAN OBJECT ERROR
UNIT, PROGRAM TERMINATED.

Explanation: An error occurred on the VS FORTRAN object error unit.

Operator Response: None.

532 VS FORTRAN Language and Library Reference

o

o

o

o

o

Appendix J. Library Module Names

Entry Name

ABS
ACOS
ADCON#
AIMAG
AINT
ALGAMA
ALOG
ALOGIO
AMAXO
AMAXI
AMINO
AMINI
AMOD
ANINT
ARCOS
ARSIN
ASIN
ATAN
ATAN2

BTEST

CABS
CCMPR#
CCOS
CDABS
CDCOS
CDDVD#
CDEXP
CDLOG
CDMPY#
CDSIN
CDSQRT
CDUMP
CDVO#

Module Name

IFYFABS
IFYSASCN
IFYVCVTH
IFYFIMAG
IFYFAINT
IFYSGAMA
IFYSLGN
IFYSLGC
IFYFMAXI
IFYFMAXR
IFYFMAXI
IFYFMAXR
IFYFMODR
IFYFNINT
IFYSASCN
IFYSASCN
IFYSASCN
IFYSATN2
IFYSATN2

IFYBTSHS

IFYCSABS
IFYCCMPR
IFYCSSCN
IFYCLABS
IFYCLSCN
IFYCLAD
IFYCLEXP
IFYCLLOG
IFYCLAM
IFYCLSCN
IFYCLSQT
IFYVDUMP
IFYCSAD

Figure S8 (Part 1 of 10). Entry Names for Library Modules

Appendix J. Library Module Names 533

Entry Name

CERRST
CEXP
CHAR
CLOG
CMOVE#
CMPY#
CNCAT#
CONJG
COS
COSH
COTAN
CPDUMP
CQABS
CQCOS
CQDVD#
CQEXP
CQLOG
CQMPY#
CQSIN
CQSQRT
CSIN
CSQRT
CXMPR#

DABS
DACOS
DARCOS
DARSIN
DASIN
DATAN
DATAN2
DCONJG
DCOS
DCOS
DCOSH
DCOTAN
DCOTAN
DDBDFLT
DDIM
DEBUG#
DEBUG#
DERF
DERFC
DEXP
DEXP
DGAMMA

Module Name

IFYVCIAD
IFYCSEXP
IFYCITFN
IFYCSLOG
IFYCMOVE
IFYCSAM
IFYCNCAT
IFYFCONJ
IFYSCOS
IFYSSCNH
IFYSTNCT
IFYVDUMP
IFYCQABS
IFYCQSCN
IFYCQRIT
IFYCQEXP
IFYCQLOG
IFYCQRIT
IFYCQSCN
IFYCQSQT
IFYCSSCN
IFYCSSQT
IFYCCMPR

IFYFABS
IFYLASCN
IFYLASCN
IFYLASCN
IFYLASCN
IFYLATN2
IFYLATN2
IFYFCONJ
IFYLCOS
IFYWLCOSI
IFYLSCNH
IFYLTNCT
IFYWTNCTI
IFYDBDFT
IFYFDIM
IFYVDBUG
IFYVDBUG
IFYLERF
IFYLERF
IFYLEXP
IFYWLEXpl
IFYLGAMA

Figure 58 (Part 2 of 10). Entry Names for Library Modules

534 VS FORTRAN Language and Library Reference

c

o

Entry Name Module Name

0 DIM IFYFDIM
DIMAG IFYFIMAG
DINT IFYFAINT
DIOCS# IFYDIOCS
DLGAMA IFYLGAMA
DLOG IFYLLGN
pLOGIO IFYLLGC
DMAXI IFYFMAXD
DMINI IFYFMAXD
DMOD IFYFMODR
DNINT IFYFNINT
DPROD IFYDPROD
DSIGN IFYFSIGN
DSIN IFYLSIN
DSIN IFYWLSINI
DSINH IFYLSCNH
DSPAN# IFYDSPAN
DSPN2# IFYDSPAN
DSPN4# IFYVSPAN
DSQRT IFYLSQRT
DTAN IFYLTNCT
DTAN IFYWTNCTI
DTANH IFYLTANH
DUMP IFYVDUMP
DVCHK IFYVDVCH

0 DYCMN# IFYDDCMN

ERF IFYSERF
ERFC IFYSERF
ERRIAD IFY3MOPT
ERRMON IFYVMOPT
ERRMON IFY3MOPT
ERRSAV IFYVMOPT
ERRSAV IFY3MOPT
ERRSET IFYVMOPT
ERRSET IFY3MOPT
ERRSTR IFYVMOPT
ERRSTR IFY3MOPT
ERRTRA IFYVMOPT
ERRTRA IFY3MOPT
EXIT IFYVEXIT
EXP IFYSEXP
EXP IFYWSEXpl

FCDCD# IFYFCDCD
FCDXI# IFYFCDXI
FCQCQ# IFYFCQCQ

Figure 58 (Part 3 of 10). Entry Names for Library Modules

0
Appendix J. Library Module Names 535

Entry Name Module Name

FCQXI# IFYFCQXI
FCVAO IFYVCVTH
FCVAO$ IFYVCVT$
FCVCO IFYVCVTH
FCVCO$ IFYVCVT$
FCVDO IFYVCVTH
FCVDO$ IFYVCVT$
FCVEO IFYVCVTH
FCVEO$ IFYVCVT$
FCVIO IFYVCVTH
FCVIO$ IFYVCVT$
FCVLO IFYVCVTH
FCVLO$ IFYVCVT$
FCVQO IFYVCVTH
FCVZO IFYVCVTH
FCVZO$ IFYVCVT$
FCXPC# IFYFCXPC
FCXPI# IFYFCXPI
FDXPD# IFYFDXPD
FDXPD# IFYWDXPD1
FDXPI# IFYFDXPI
FIXPI# IFYFIXPI
FQTEN# IFYVTEN
FQXPI# IFYFQXPI
FQXPQ# IFYFQXPQ
FQXP2# IFYFQXPQ
FRDNL# IFYNAMEL o
FRDNL# IFYNAMEL
FRXPI# IFYFRXPI
FRXPR# IFYFRXPR
FRXPR# IFYWRXPR1
FTEN# IFYVTEN
FWRNL# IFYNAMEL
FWRNL# IFYNAMEL

GAMMA IFYSGAMA

lABS IFYFABS
lAND IFYBLOGL
IBCLR IFYBTSHS
IBCOM# IFYIBCOM
IBCOM# IFYIBCOM
IBERH# IFYVSERH
IBSET IFYBTSHS
ICHAR IFYCITFN
IDIM IFYFDIM

Figure 58 (Part 4 of 10). Entry Names for Library Modules

c
536 VS FORTRAN Language and Library Reference

o

o

o

Entry Name

IDINT
IDNINT
IE OR
IF IX
IFYCLCIO
IFYCLCIO
IFYCREN
IFYCVIO$
IFYDDCMP
IFYDDCMO
IFYDDIOS
IFYDIOCS
IFYDIOCO
IFYDKIOS
IFYDLBCl
IFYDLCIO
IFYDLCIO
IFYDSPAP
IFYDSPAO
IFYFDXPD
IFYFRXPR
IFYIBCOP
IFYIBCOO
IFYLBCOM
IFYLBCOM
IFYLCOS
IFYLDFIP
IFYLDFIO
IFYLSIN
IFYLTNCT
IFYNAMEP
IFYNAMEO
IFYQRFSW
IFYSDUMQ
IFYSDUMO
IFYSEXP
IFYUATBL
IFYUOPT
IFYVASYP
IFYVASYO
IFYVBLN$
IFYVBLNT
IFYVCIA4
IFYVCLMA
IFYVCLOP
IFYVCLOO
IFYVCLSI

Module Name

IFYFIFIX
IFYFNINT
IFYBLOGL
IFYFIFIX
IFYVLCIO
IFYVLCII
IFYCREN
IFYCVIO$
IFYDDCMP
IFYDDCMl
IFYVDIOS
IFYDIOCS
IFYDIOCI
IFYVKIOS
IFYCLBCl
IFYVLCIO
IFYVLCII
IFYDSPAP
IFYDSPAI
IFYWDXPD
IFYWRXPR
IFYIBCOP
IFYIBCOI
IFYCLBCO
IFYCLBCl
IFYWLCOS
IFYLDFIP
IFYLDFIl
IFYWLSIN
IFYWTNCT
IFYNAMEP
IFYNAMEI
IFYQERF
IFYSDUMQ
IFYSDUMI
IFYWSEXP
IFYUATBL
IFYUOPT
IFYVASYP
IFYVASYI
IFYVBLN$
IFYVBLNT'
IFYVCIA4
IFYVCLMI
IFYVCLOP
IFYVCLOI
IFYVCLSI

Figure S8 (Part S of 10). Entry Names for Library Modules

Appendix J. Library Module Names 537

Entry Name

IFYVCNI$
IFYVCNO$
IFYVCOM$
IFYVCOM2
IFYVCONI
IFYVCONO
IFYVDBUP
IFYVDBUO
IFYVDIO$
IFYVDUMQ
IFYVDUMO
IFYVEMGl
IFYVERE$
IFYVERM$
IFYVERRE
IFYVERS$
IFYVFNTH
IFYVGMFM
IFYVIIO$
IFYVIIOS
IFYVINQP
IFYVINQO
IFYVIOCP
IFYVIOCO
IFYVIODO
IFYVIODI
IFYVIOFP
IFYVIOFO
IFYVIOIO
IFYVIOIl
IFYVIOKO
IFYVIOKI
IFYVIOLP
IFYVIOLO
IFYVIONP
IFYVIONO
IFYVIOUP
IFYVIOUO
IFYVKlO$
IFYVLBCl
IFYVLCIN
IFYVLCIN
IFYVLCIO
IFYVLCII
IFYVLINP
IFYVLINO

Module Name

IFYVCNI$
IFYVCNO$
IFYVCOM$
IFYVCOM2
IFYVCONI
IFYVCONO
IFYVDBUP
IFYVDBUI
IFYVDIO$
IFYVDUMQ
IFYVDUMI
IFYVEMGN
IFYVERE$
IFYVEMG$
IFYVERRE
IFYVERS$
IFYVFNTH
IFYVGMFM
IFYVIIO$
IFYVIIOS
IFYVINQP
IFYVINQl
IFYVIOCP
IFYVIOCI
IFYVIODI
IFYVIODO
IFYVIOFP
IFYVIOFI
IFYVIOIl
IFYVIOIO
IFYVIOKI
IFYVIOKO
IFYVIOLP
IFYVIOLI
IFYVIONP
IFYVIONI
IFYVIOUP
IFYVIOUI
IFYVKIO$
IFYCLBCl
IFYVLCIO
IFYVLCII
IFYVLCII
IFYVLCIO
IFYVLINP
IFYVLINI

Figure 58 (Part 6 of 10). Entry Names for Library Modules

538 VS FORTRAN Language and Library Reference

()

()

o

Entry Name Module Name

0 IFYVLOAD IFYVLOAD
IFYVLOC$ IFYVLOC$
IFYVLOCA IFYVLOCA
IFYVMOPT IFYVMOPT
IFYVMOPO IFYVMOPI
IFYVMOP4 IFYVMOPP
IFYVMSKL IFYVMSKL
IFYVOPEP IFYVOPEP
IFYVOPEO IFYVOPEI
IFYVPARM IFYVPARM
IFYVPOS$ IFYVPOS$
IFYVPOSA IFYVPOSA
IFYVPOST IFYVPOST
IFYVSCOP IFYVSCOP
IFYVSCOO IFYVSCOI
IFYVSFIO IFYVSFIO
IFYVSFST IFYVSFST
IFYVSIOS IFYVSIOS
IFYVSPAP IFYVSPAP
IFYVSPAO IFYVSPAI
IFYVSPIE IFYVSPIE
IFYVSTA$ IFYVSTA$
IFYVSTAE IFYVSTAE
IFYVTRC$ IFYVTRC$

0 IFYVTRCH IFYVTRCH
IFYVVDIR IFYCVIOS
IFYVVSEQ IFYCVIOS
IN# IFYVASYN
INDEX IFYINDEX
INT IFYFIFIX
lOR IFYBLOGL
ISHFT IFYBTSHS
ISIGN IFYFSIGN
IXCCMSD IFYVCMSS

LDFIO# IFYLDFIO
LEN IFYCITFN
LGAMMA IFYSGAMA
LGE IFYLXCMP
LGT IFYLXCMP
LLE IFYLXCMP
LLT IFYLXCMP
LOG IFYSLGN
LOGIO IFYSLGC

MAXO IFYFMAXI
MAXI IFYFMAXR

Figure 58 (Part 7 of 10). Entry Names for Library Modules

0
Appendix J. Library Module Names 539

Entry Name Module Name

MINO IFYFMAXI o
MINt IFYFMAXR
MOD IFYFMODI

NINT IFYFNINT
NOT IFYBLOGL

OUT# IFYVASYN
OVERFL IFYVOVER

PDUMP IFYVDUMP

QABS IFYFABS
QARCOS IFYQASCN
QARSIN IFYQASCN
QATAN IFYQATN2
QATAN2 IFYQATN2
QCONJG IFYFCONJ
QCOS IFYQSCN
QCOSH IFYQSCNH
QCOTAN IFYQTNCT
QDIM IFYFDIM
QDTAN IFYLTNCT
QDTAN IFYWTNCT
QERF IFYQERF
QERFC IFYQERF
QERF2 IFYQERF2

o
QEXP IFYFQXPQ
QIMAG IFYFIMAG
QINT IFYFAINT
QLOG IFYFQXPQ
QLOGIO IFYFQXPQ
QMOD IFYFMODR
QSIGN IFYFSIGN
QSIN IFYQSCN
QSINH IFYQSCNH
QSQRT IFYQSQRT
QTAN IFYQTNCT
QTANH IFYQTANH

SDUMP IFYSDUMP
SIGN IFYFSIGN
SIN IFYSSIN
SINH IFYSSCNH
SQRT IFYSSQRT

Figure 58 (Part 8 of 10). Entry Names for Library Modules

o
540 VS FORTRAN Lang\lage and Library Reference

o

o

o

Entry Name

TAN
TANH
TFORT#

VCEND#
VCINT#
VCIORT
VCLSE#
VCOMHALT
VDCON#
VFCB#
VFCD#
VFCE#
VFCR#
VFCSF#
VFCSL#
VFCSN#
VFCSN#
VFDSF#
VFDSL#
VFEE#
VFEIM#
VFEIN#
VFELC#
VFEP#
VFES#
VFESF#
VFESL#
VFESN#
VFFDU#
VFFXF#
VFFXL#
VFFXU#
VFIXF#
VFIXL#
VFIXU#
VFLIM#
VFLIS#
VFQKF#
VFQKU#
VFRDF#
VFRDU#
VFRIF#
VFRIL#
VFRIN#
VFRKF#
VFRKU#

Module Name

IFYSTNCT
IFYSTANH
IFYTFORT

IFYVCIAD
IFYVCIAD
IFYVCIAD
IFYVCLOS
IFYVCOMH
IFYVCIAD
IFYVIOCT
IFYVIOCT
IFYVIOCT
IFYVIOCT
IFYVIOFM
IFYVIOLD
IFYVIONL
IFYVIONL
IFYVIOFM
IFYVIOLD
IFYVINTE
IFYVINTE
IFYVINTE
IFYVINTE
IFYVINTE
IFYVINTE
IFYVIOFM
IFYVIOLD
IFYVIONL
IFYVIOUF
IFYVIOFM
IFYVIOLD
IFYVIOUF
IFYVIOFM
IFYVIOLD
IFYVIOUF
IFYVLINK
IFYVLINK
IFYVIOFM
IFYVIOUF
IFYVIOFM
IFYVIOUF
IFYVIOFM
IFYVIOLD
IFYVIONL
IFYVIOFM
IFYVIOUF

Figure 58 (Part 9 of 10). Entry Names for Library Modules

Appendix J. Library Module Names 541

Entry Name Module Name

0 VFRSF# IFYVIOFM
VFRSL# IFYVIOLD
VFRSN# IFYVIONL
VFRSU# IFYVIOUF
VFSXF# IFYVIOFM
VFSXU# IFYVIOUF
VFUVF# IFYVIOFM
VFUVU# IFYVIOUF
VFWDF# IFYVIOFM
VFWDU# IFYVIOUF
VFWIF# IFYVIOFM
VFWIL# IFYVIOLD
VFWIN# IFYVIONL
VFWKF# IFYVIOFM
VFWKU# IFYVIOUF
VFWSF# IFYVIOFM
VFWSL# IFYVIOLD
VFWSN# IFYVIONL
VFWSU# IFYVIOUF
VINQR# IFYVINQR
VLDIO# IFYLDFIO
VOPEN# IFYVOPEN
VRDNL# IFYNAMEL
VSCOM# IFYVSCOM
VSERH# IFYVSERH

0 VWRNL# IFYNAMEL

WAIT# IFYVASYN

XUFLOW IFYVXMSK

Figure 58 (Part 10 of 10). Entry Names for Library Modules

Note to 58

Alternative mathematical library subroutine module name

c
542 VS FORTRAN Language and Library Reference

OS CMS2 DOS

0 IFYVRENT IFYVRENT IFYVRENT
IFYVCOMH IFYVCOMH IFYVCOMH
IFYVSIOS IFYVSIOS IFYDSIOS
IFYVDIOS IFYVDIOS IFYDDIOS
IFYVIIOS IFYVIIOS IFYVIIOS
IFYVVIOS IFYCVIOS IFYDVIOS
IFYVCVTH IFYVCVTH IFYVCVTH
IFYVCONI IFYVCONI IFYVCONI
IFYVCONO IFYVCONO IFYVCONO
IFYVTEN IFYVTEN IFYVTEN
IFYVERRM IFYVERRM IFYVERRM
IFYVERRE IFYVERRE IFYVERRE
IFYVTRCH IFYVTRCH IFYVTRCH

Figure 59. Reentrant Library Module Names

o

o
Appendix J. Library Module Names 543

c

o

o

o

o

o

Glossary

This glossary includes definitions developed by the
American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO).

An asterisk (*) to the left of a term indicates that the
entire entry is reproduced from the American National
Dictionary for Information Processing, copyright 1977 by
the Computer and Business Equipment Manufacturers
Association, copies of which may be purchased from the
American National Standards Institute, 1430 Broadway,
New York, New York 10018.

An asterisk (*) to the right of an item number indicates an
ANSI definition in an entry that also includes other
definitions.

The symbol "(ISO)" at the beginning of a definition
indicates that it has been discussed and agreed upon at
meetings of the International Organization for
Standardization Technical Committee 97/Subcommittee 1
(Data Processing Vocabulary), and has also been
approved by ANSI and included in the American National
Dictionary for Information Processing.

e. • is used in this manual to represent the maximum
floating-point value.

alphabetic character. A character of the set A, B, C, ... ,Z.
See also "letter."

IBM Extension

In VS FORTRAN, the currency symbol ($) is considered
an alphabetic character.

L.-_____ End of IBM Extension _____ ---'

alphameric. Pertaining to a character set that contains
letters (A through Z) and digits (0 through 9) only.

alphameric character set. A character set that contains
both letters and digits.

argument. A parameter passed between a calling program
and a SUBROUTINE subprogram, a FUNCTION
subprogram, or a statement function.

arithmetic constant. A constant of type integer, real,
double precision, or complex.

arithmetic expression. One or more arithmetic operators
and/ or arithmetic primaries, the evaluation of which
produces a numeric value. An arithmetic expression can
be an unsigned arithmetic constant, the name of an
arithmetic constant, or a reference to an arithmetic
variable, array element, or function reference, or a
combination of such primaries formed by using arithmetic
operators and parentheses.

arithmetic operator. A symbol that directs VS FORTRAN
to perform an arithmetic operation. The arithmetic
operators are:

+ addition
subtraction

* multiplication
/ division

** exponentiation.

array. An ordered set of data items identified by a single
name.

array declarator. The part of a statement that describes an
array used in a program unit. It indicates the name of the
array, the number of dimensions it contains, and the size
of each dimension. An array declarator may appear in a
DIMENSION, COMMON, or explicit type statement.

array element. A data item in an array, identified by the
array name followed by a subscript indicating its position
in the array.

array name. The name of an ordered set of data items
that make up an array.

assignment statement. A statement that assigns a value to
a variable or array element. It is made up of a variable or
array element, followed by an equal sign (=), followed by
an expression. The variable, array element, or expression
can be character, logical, or arithmetic. When the
assignment statement is executed, the expression to the
right of the equal sign replaces the value of the variable or
array element to the left.

basic real constant. A string of decimal digits containing a
decimal point, and expressing a real value.

Glossary 545

blank common. An unnamed common block.

character constant. A string of one or more alphameric
characters enclosed in apostrophes. The delimiting
apostrophes are not part of the constant.

character expression. An expression in the form of a
single character constant, variable, array element,
substring, function reference, or another expression
enclosed in parentheses. A character expression is always
of type character.

character type. A data type that can consist of any
alphameric characters; in storage, one byte is used for
each character.

common block. A storage area that may be referred to by
a calling program and one or more subprograms.

complex constant. An ordered pair of real or integer
constants separated by a comma and enclosed in
parentheses. The first real constant of the pair is the real
part of the complex number; the second is the imaginary
part.

complex type. An approximation of the value of a
complex number, consisting of an ordered pair of real data
items separated by a comma and enclosed in parentheses.
The first item represents the real part of the complex
number; the second represents the imaginary part.

connected file. A file that has been connected to a unit
and defined by a FILEDEF command or by job control
statements.

constant. An unvarying quantity. The four classes of
constants specify numbers (arithmetic), truth values
(logical), character data (character), and hexadecimal
data.

control statement. Any of the statements used to alter the
normal sequential execution of VS FORTRAN statements,
or to terminate the execution of a VS FORTRAN
program. FORTRAN control statements are any of the
forms of the GO TO, IF, and DO statements, or the
PAUSE, CONTINUE, and STOP statements.

data. (1)* (ISO) A representation of facts or instructions
in a form suitable for communication, interpretation, or
processing by human or automatic means. (2) In
FORTRAN, data includes constants, variables, arrays, and
character substrings.

data item. A constant, variable, array element, or
character substring.

data set. The major unit of data storage and retrieval
consisting of data collected in one of several prescribed
arrangements and described by control information to
which the system has access.

546 VS FORTRAN Language and Library Reference

data set reference number. A constant or variable in an
input or output statement that identifies a data set to be
processed; the unit number.

data type. The properties and internal representation that
characterize data and functions. The basic types are
integer, real, complex, logical, double precision, and
character.

* digit. (ISO) A graphic character that represents an
integer. For example, one of the characters 0 to 9.

DO loop. A range of statements executed repetitively by
a DO statement. See also "range of a DO."

DO variable. A variable, specified in a DO statement,
that is initialized or incremented prior to each execution of
the statement or statements within a DO range. It is used
to control the number of times the statements within the
range are executed. See also "range of a DO."

double precision. The standard name for real data of
storage length 8.

dummy argument. A variable within a subprogram or
statement function definition with which actual arguments
from the calling program or function reference are
positionally associated. Dummy arguments are defined in
a SUBROUTINE or FUNCTION statement, or in a
statement function definition.

executable program. A program that can be executed as a
self -contained procedure. It consists of a main program
and, optionally, one or more subprograms or
non-FORTRAN-defined external procedures, or both.

executable statement. A statement that causes an action
to be taken by the program; for example, to calculate, to
test conditions, or to alter normal sequential execution.

existing file. A file that has been defined by a FILEDEF
command or by job control statements. A valid unit
number in FORTRAN's internal unit assignment table, as
specified at installation time. (RPC 11992)

The INQUIRE statement considers a file to exist on the
basis of VS FORTRAN I/O statements that have been
processed (RPC 17664)

existing unit. A valid unit number in FORTRAN's
internal unit assignment table, as specified at installation.
(RPCI1970)

expression. A notation that represents a value: a
constant or a reference appearing alone, or combinations
of constants and/or references with operators. An
expression can be arithmetic, character, logical, or
relational.

o

o

C""" I': ... ",

o

o

o

external file. A set of related external records treated as a
unit; for example, in stock control, an external file would
consist of a set of invoices.

external function. A function defined outside the program
unit that refers to it.

external procedure. A SUBROUTINE or FUNCTION
subprogram written in FORTRAN.

file. A set of records. If the file is located in internal
storage, it is an internal file; if it is on an input/output
device, it is an external file.

file definition statement. A statement that describes the
characteristics of a file to a user program. For example,
the OS/VS DD statement or DOS/VSE ASSGN
statement for batch processing, or the FILEDEF
command for CMS processing.

file reference. A reference within a program to a file. It
is specified by a unit identifier.

formatted record. (1) A record, described in a FORMAT
statement, that is transmitted, when necessary with data
conversion, between internal storage and internal storage
or to an external record. (2) A record transmitted with
list-directed READ or WRITE statements and an
EXTERNAL statement.

FORTRAN-supplied procedure. See "intrinsic function."

function reference. A source program reference to an
intrinsic function, to an external function, or to a
statement function.

function subprogram. A subprogram invoked through a
function reference, and headed by a FUNCTION
statement. It returns a value to the calling program unit at
the point of reference.

IBM Extension

hexadecimal constant. A constant that is made up of the
character Z followed by two or more hexadecimal digits.

'--_____ End of IBM Extension ________ ---'

hierarchy of operations. The relative order used to
evaluate expressions containing arithmetic, logical, or
character operations.

implied DO. An indexing specification (similar to a DO
statement, but without specifying the word DO) with a list
of data elements, rather than a set of statements, as its
range. In a DATA statement the list can contain integer
constants or expressions containing integer constants. In
input/ output statements the list can contain integer, real,
or double precision arithmetic expressions.

integer constant. A string of decimal digits containing no
decimal point and expressing a whole number.

integer expression. An arithmetic expression whose values
are of integer type.

integer type. An arithmetic data type capable of
expressing the value of an integer. It can have a positive,
negative, or zero value. It must not include a decimal
point.

internal file. A set of related internal records treated as a
unit.

intrinsic function. A function, supplied by VS
FORTRAN, that performs mathematical or character
operations.

* I/O. Pertaining to either input or output, or both.

I/O list. A list of variables in an input or output
statement specifying which data is to be read or which
data is to be written. An output list may also contain a
constant, an expression involving operators or function
references, or an expression enclosed in parentheses.

labeled common. See "named common."

length specification. A source language specification of
the number of bytes to be occupied by a variable or an
array element.

letter. A symbol representing a unit of the alphabet.

list-directed. An input/output specification that uses a
data list instead of a FORMAT specification.

logical constant. A constant that can have one of two
values: true or false.

logical expression. A combination of logical primaries and
logical operators. A logical expression can have one of
two values: true or false.

logical operator. Any of the set of operators .NOT.
(negation), .AND. (connection: both), or .OR. (inclusion:
either or both), .EQV. (equal), .NEQV. (not equal).

logical primary. A primary that can have the value true or
false. See also "primary."

logical type. A data type that can have the value true or
false for VS FORTRAN. See also "data type."

looping. Repetitive execution of the same statement or
statements. Usually controlled by a DO statement.

main program. A program unit, required for execution,
that can call other program units but cannot be called by
them.

Glossary 547

name. A string of from one through six alphameric
characters, the first of which must be alphabetic. Used to
identify a constant, a variable, an array, a function, a
subroutine, or a common block.

named common. A separate common block consisting of
variables, arrays, and array declarators, and given a name.

nested DO. A DO statement whose range is entirely
contained within the range of another DO statement.

nonexecutable statement. A statement that describes the
characteristics of the program unit, of data, of editing
information, or of statement functions, but does not cause
an action to be taken by the program.

nonexisting file. A file that has not been defined by a
FILEDEF command or by job control statements.

* numeric character. (ISO) Synonym for digit.

numeric constant. A constant that expresses an integer,
real, or complex number.

preconnected file. A unit or file that was defined at
installation time. However, a preconnected file does not
exist for a program if the file is not defined by a
FILEDEF command or by job control statements.

predefined specification. The implied type and length
specification of a data item, based on the initial character
of its name in the absence of any specification to the
contrary. The initial characters I through N type data
items as integer; the initial characters A through H, 0
through Z, and $ type data items as real. No other data
types are predefined. For VS FORTRAN, the length for
both types is 4 bytes.

primary. An irreducible unit of data; a single constant,
variable, array element, function reference, or expression
enclosed in parentheses.

procedure. A sequenced set of statements that may be
used at one or more points in one or more computer
programs, and that usually is given one or more input
parameters and returns one or more output parameters. A
procedure consists of subroutines, function subprograms,
and intrinsic functions.

procedure subprogram. A function or subroutine
subprogram.

program unit. A sequence of statements constituting a
main program or subprogram.

range of a DO. Those statements that physically follow a
DO statement, up to and including the statement specified
by the DO statement as being the last to be executed; also
called a "DO loop."

548 VS FORTRAN Language and Library Reference

real constant. A string of decimal digits that expresses a
real number. A real constant must contain either a
decimal point or a decimal exponent and may contain
both.

real type. An arithmetic data type, capable of
approximating the value of a real number. It can have a
positive, negative, or zero value.

record. A collection of related items of data treated as a
unit.

relational expression. An expression that consists of an
arithmetic expression, followed by a relational operator,
followed by another arithmetic expression or a character
expression, followed by a relational operator, followed by
another character expression. The result is a value that is
true or false.

relational operator. Any of the set of operators:

.GT.

.GE.

.LT.

.LE.

.EO.

.NE.

greater than
greater than or equal to
less than
less than or equal to
equal to
not equal to

scale factor. A specification in a VS FORTRAN
FORMAT statement that changes the location of the
decimal point in a real number (and, on input, if there is
no exponent, the magnitude of the number).

specification statement. One of the set of statements that
provides the compiler with information about the data
used in the source program. In addition, the statement
supplies the information required to allocate data storage.

specification subprogram. A subprogram headed by a
BLOCK DATA statement and used to initialize variables
in named common blocks.

statement. The basic unit of a VS FORTRAN program,
that specifies an action to be pedormed, or the nature and
characteristics of the data to be processed, or information
about the program itself. Statements fall into two broad
classes: executable and nonexecutable.

statement function. A name, followed by a list of dummy
arguments, that is equated to an arithmetic, logical, or
character expression. In the remainder of the program the
name can be used as a substitute for the expression.

statement function definition. A statement that defines a
statement function. Its form is a name, followed by a list
of dummy arguments, followed by an equal sign (=),
followed by an arithmetic, logical, or character expression.

C·
" ••• _ 'II ..

o

c

o

o

o

statement function reference. A reference in an
arithmetic, logical, or character expression to the name of
a previously defined statement function.

statement label. A number of from one through five
decimal digits that is used to identify a statement.
Statement labels can be used to transfer control, to define
the range of a DO, or to refer to a FORMAT statement.

statement number. See "statement label."

subprogram. A program unit that is invoked by another
program unit in the same program. In VS FORTRAN, a
subprogram has a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement.

subroutine subprogram. A subprogram whose first
statement is a SUBROUTINE statement. It optionally
returns one or more parameters to the calling program
unit.

* subscript. (1) (ISO) A symbol that is associated with
the name of a set to identify a particular subset or
element.

(2) A subscript quantity or set of subscript quantities,
enclosed in parentheses and used with an array name to
identify a particular array element.

subscript quantity. A component of a subscript: an
integer constant, an integer variable, or an expression
evaluated as an integer constant.

IBM Extension

In VS FORTRAN, a subscript quantity may also be a real
constant, variable, or expression.

L...-_____ End of IBM Extension _____ --'

type declaration. The explicit specification of the type of
a constant, variable, array, or function by use of an
explicit type specification statement.

unformatted record. A record that is transmitted
unchanged between internal storage and an external
record.

unit. A means of referring to a file in order to use
input/ output statements. A unit can be connected or not
connected to a file. If connected, it refers to a file. The
connection is symmetric: that is, if a unit is connected to a
file, the file is connected to the unit.

unit identifier. The number that specifies an external unit.

1. An integer expression whose value must be zero or
positive. For VS FORTRAN, this integer value of
length 4 must correspond to a DD name, a FILEDEF
name, or an ASSGN name.

2. An asterisk (*) that corresponds on input to
FT05FOOI and on output to FT06FOOl.

3. The name of a character array, character array
element, or character substring for an internal file.

variable. (1) * A quantity that can assume any of a given
set of values.

(2) A data item, identified by a name, that is not a named
constant, array, or array element, and that can assume
different values at different times during program
execution.

Glossary 549

C)

o

C' ,
J

o

o

o

Index

I Special Characters I
. (period) 11
... (ellipsis) ix
+ (plus sign) 11
$ (currency symbol)

source statement characters 11
* (asterisk)

READ statement 192
source statement characters 11
WRITE statement 274

- (minus sign or hyphen) 11
- (minus sign) 9
/ (slash) 11
,(comma) 11
() (parentheses) 11
: (colon) 11
[] (brackets) viii
, (apostrophe) 11
= (equal sign) 11
II (quotation mark) 9, 11

See Glossary for definition 545

A format code 125
ABS/IABS

error message 513
storage estimate 417

ABS/IABS/DABS/QABS
algorithm 372
description 292
registers used 439

absolute value subprograms
algorithms 372
description 292
registers used 439

ACCESS=
INQUIRE by file name 157
INQUIRE by unit number 162
OPEN statement 170

accuracy statistics 425-432
ACOS

See ASIN/ ACOS
ACTION=

INQUIRE by file name 158
INQUIRE by unit number 162
OPEN statement 170

actual argument 30
array name 30
in a function subprogram 140
in a subroutine subprogram 239

in an ENTRY statement 100
AIMAG

description 294
registers used 439
storage estimate 417

AINT
description 294
registers used 439
storage estimate 417

ALGAMA
See GAMMA/ ALGAMA 293

algorithms 369
ALOG/ ALOG 10

accuracy 427
algorithm 394
description 288
effect of an argument error 395
error message 513
registers used 439
storage estimate 417, 418

alphabetic character
See also letter
definition 545

alphabetic character set 11
alphabetic primary

See primary
alphameric character set

definition 545
alphameric, definition 545
alternate return specifier 100
alternative mathematical library subroutines

explicitly called mathematical subprograms 438
module names 533
storage estimate 417

alternative paths of execution 145
AMOD/DMOD

description 294
registers used 439
storage estimate 417

ANINT
description 295
registers used 439
storage estimate 417

ANS FORTRAN features 351
ANSI definitions 545
apostrophe 11
arccosine subprograms

algorithms 373
size 438

arcsine subprograms
algorithms 373
size 438

arctangent subprograms
algorithms 376
size 438

argument
actual 100, 239

Index 551

definition 545
dummy 100,239

arguments
assembler language 435
implicitly called 314-319
range of accuracy 425

arithmetic assignment statement 61
conversion rules (complex) 64
conversion rules (integer or real) 63
description of 61
valid statements 64

arithmetic constant
See also digit
complex 19
definition 545
integer 16
primary 36
real 17

arithmetic expression 36
definition 545
description of 36
rules for constructing 37
type and length of (complex) 42
type and length of (integer) 40
type and length of (real) 41
use of parentheses in 39

arithmetic IF statement 145
arithmetic operation 37

addition 36, 37
division 36,37
evaluation of functions 37
exponentiation 36,37
first operand, complex 39
first operand, integer 39
first operand, real 39
multiplication 36, 37
rules for constructing 37
subtraction 36,37
unary 36

arithmetic operator 36
definition 545
description of 36
operations involving 49

arithmetic subprograms, modular
size 438

array
actual argument 30
assumed-size 31
declarator 28
declarator, definition 545
definition 545
description of 187
dimension bounds 30
DIMENSION statement 87
dimensions of 87
dummy argument 31
element, definition 545
element, invalid 29
element, valid 29
elements 28

552 VS FORTRAN Language and Library Reference

name
READ statement 183, 187
WRITE statement 251,255

name, definition 545
READ statement 183
size and type declaration 30, 31
specifications 187
subscripts 28

array dimension error message 492
ASCII/ISCII codes 361
ASIN/ACOS

accuracy 427
algorithm 373
description 290
effect of an argument error 373
error message 514
registers used 439
storage estimate 417

assembler language
calling sequence 433
requirements 442

assign a name to a constant 173
assign a name to a main program 177
assign a number to a variable 59
ASSIGN statement 59
assigned GO TO statement 143
assignment statement 60

arithmetic 61
ASSIGN statement 59
character 61
definition 545
description of 59
logical 61

associate actual with dummy argument 70
assumed length 105
assumed-size array 31
asterisk

READ statement 192
source statement characters 11
WRITE statement 274

asterisks in formatted output
D, E, and Q format codes 118
example 124
I format code 116
meaning of 113

asynchronous
READ statement 179
WRITE statement 247

asynchronous I/O error message 485
asynchronous I/O subtask 497
AT statement 66

description of 66
in debug packet 83

ATAN/ATAN2
accuracy 427
algorithm 376
description 290
effect of an argument error 376
error message 514
registers used 439

o

c

o

o

o

storage estimate 417

BACKSPACE statement 67
description of 87
invalid statements 68
valid statements 67

basic real constant
definition 545
description of 17

begin debug packet 66
bit function error message 485
bit manipulation functions 300
bit manipulation subprograms

assembler information 441
manipulation routines 313
storage estimates 424

blank 11
common blocks 78
common blocks, definition 78
common, definition 545
format code 131
FORMAT statement 130
INQUIRE by file name 157
INQUIRE by unit number 162
named common blocks 78
source statement characters 11

BLANK =
INQUIRE by file name 157
INQUIRE by unit number 162
OPEN statement 170

BLOCK DATA statement 69
block data subprogram 56
block IF statement 146

ELSE 148
ELSE IF 148
END IF 147

BN format code 130
BTEST

description 300
storage estimate 422

BTSHS error message 485
bypass statements 79
BZ format code 131

CABS/CDABS
accuracy 427
algorithm 372
description 292
registers used 439
storage estimate 417

CALL CDUMP 317
CALL DUMP 315

CALL macro instruction 434
CALL SDUMP 320
CALL statement 70

CDUMP / CPDUMP 317
description of 70
DUMP /PDUMP 315
DVCHK 313
ERRMON 324
ERRSAV 325
ERRSET 325
ERRSTR 329
ERRTRA 329
EXIT 317
OPSYS 318
OVERFL 313
SDUMP 319
XUFLOW 322

calling sequence
in assembler language 435,441

calling VS FORTRAN subprograms
explicitly 372
in assembler language 434

carrier control
H format code 127
T format code 128

CCMPR#
description 310
error message 493
storage estimate 421

CCOS
See CSIN / CCOS

CDABS
See CABS/CDABS

CDC OS
See CDSIN / CDCOS

CDDVD#/CDMPY#
algorithm 410
description 309
effect of an argument error 410
registers used 440
storage estimate 418

CDEXP
See CEXP / CDEXP

CDLOG
See CLOG/CDLOG

CDMPY#
See CDDVD#/CDMPY#

CDSIN/CDCOS
accuracy 427
algorithm 399
description 290
effect of an argument error 400
error message 523
registers used 439
storage estimate 417

CDSQRT
See CSQRT/CDSQRT

CDUMP/CPDUMP
See CDVD#/CMPY#

CDVD#/CMPY#
algorithm 410

Index 553

description 309
effect of an argument error 410
registers used 440
storage estimate 418

CEXP/CDEXP
accuracy 427
algorithm 386
description 288
effect of an argument error 386
error message 519, 523
registers used 439
storage estimate 418

change options 325
CHAR

description 299
storage estimate 421

character array element
READ statement 183, 187
WRITE statement 251,255

character array name
READ statement 183, 187
WRITE statement 251,255

character assignment statement 61
character constant 21

definition 546
description of 21
READ statement 183, 187
transmission 127
valid 22
WRITE statement 251, 255

character constant data
example 124
FORMAT statement 112

character data
dump 317
transmission 125

character expression 44
definition 546
description of 44
READ statement 183, 187
use of parentheses in 44
WRITE statement 251, 255

character manipulation functions 299
character manipulation subprograms

assembler information 440
error messages 492,498
storage estimate 421

character operator
character expressions 44
operations involving 49

character skipping 128
character string, inherited length of 105
character substring 32

description of 32
reference 32
variable 32

character type
definition 546
IMPLICIT type statement 151
in function subprogram 99

554 VS FORTRAN Language and Library Reference

CHARACTER type statement 103
character variable

storage length 25
substring 32

CITFN error message 493
CLOG/CDLOG

accuracy 427
algorithm 396
description 288
effect of an argument error 396
error message 519,523
registers used 439
storage estimate 418

CLOSE statement 74
description of 74
examples 75

CLOSE statement error message 488,492
CMOVE#

description 310
error message 494
storage estimate 421

CMPY#
See CDVD#/CMPY#

CNCAT#
description 310
error message 495
storage estimate 421

colon
format code 132
source statement characters 11

comma 11
comments

fixed-form 7, 76
free-form 9, 76

common block
definition 546
to initialize variables 69

common logarithmic subprograms
algorithms 394
size 438

COMMON statement 77
compare complex numbers 309
compiler-directed statement 57

description of 57
EJECT 94
INCLUDE 153

compiler, executing on 3
complex constant 19

definition 19, 546
invalid 20
valid 20

complex data requirements 111
complex exponentiation subprograms 426,432
COMPLEX format 315,448
complex multiply and divide subprograms 416
complex type 151

definition 546
.explicit type statement 103
IMPLICIT type statement 151

COMPLEX type statement 103

(~.'.
V

o

c

o

c

o

complex variable
storage length 25

complex-to-integer 309
compop 310
computed GO TO statement 144
concatenation operand error message 495
COND=

WAIT statement 244
CONJG

description 294
registers used 439
storage estimate 418

conjugate of a complex number subprograms
size 438

connect file to unit 168
connected file

definition 546
formatted READ--direct access 184
formatted READ-sequential access 194
formatted WRITE-sequential access 260
INQUIRE by file name 156
READ with list-directed I/O 211
READ with NAMELIST 217
unformatted READ--direct access 197
unformatted READ-sequential access 204
unformatted WRITE-direct access 263
WRITE with list-directed I/O 275
WRITE with NAMELIST 281

constant 15
arithmetic 16
assign a name to 173
character 21
complex 19
definition 546
hexadecimal 23
Hollerith 22
integer 16
iref refid=zfoc020.c1asses 15
logical 21
real 17

continuation line
fixed-form 8
free-form 10

continue a DO loop 79
CONTINUE statement 79
continued line 9

free-form 9
control program exceptions 371
control statement 54

assigned GO TO 143
CALL 70
computed GO TO 144
CONTINUE 79
definition 546
description of 54
DO 89
END statement 94
GOTO 142
IF 145
PAUSE 175
RETURN 222

STOP 237
unconditional GO TO 144

conversion functions 296
conversion rules 63
corrective action

after error 334
after mathematical subroutine error 341
after program interrupt 341

COS
See SIN/COS

COSH
See SINH/COSH

cosine subprograms
algorithms 398

COTAN
See TAN/COTAN

cotangent subprograms
algorithms 411

CQABS
accuracy 428
algorithm 372
description 292
effect of an argument error 372
registers used 439
storage estimate 418

CQCOS
See CQSIN/ CQCOS

CQDVD#
See CQMPY#/CQDVD#

CQEXP
accuracy 428
algorithm 387
description 288
effect of an argument error 387
error message 521
registers used 439
storage estimate 418, 419

CQLOG
accuracy 428
algorithm 397
description 288
effect of an argument error 397
registers used 439
storage estimate 418,419

CQMPY#/CQDVD#
accuracy 428
algorithm 410
description 309
effect of an argument error 410
registers used 440
storage estimate 418,419

CQSIN/CQCOS
accuracy 428
algorithm 401
description 290
effect of an argument error 402
error message 522
registers used 439
storage estimate 418

CQSQRT
accuracy 428

Index 555

algorithm 406
description 293
effect of an argument error 406
registers used 439
storage estimate 418

create a file 168
create a preconnected file 168
CSIN/CCOS

accuracy 427,428
algorithm 399
description 290
effect of an argument error 399
error message 520
registers used 439
storage estimate 417

CSQRT/CDSQRT
accuracy 427, 428
algorithm 403, 405
description 293
effect of an argument error 404
registers used 439
storage estimate 418

currency symbol 11
IMPLICIT statement 152

CVIOS error messages 485, 500, 504
CXMPR#

description 309
registers used 440
storage estimate 421

D format code 117
DABS

See ABS/IABS/DABS/QABS
storage estimate 417

DACOS
See DASIN/DACOS

DASIN/DACOS
accuracy 428
algorithm 374
description 290
effect of an argument error 374
error message 517
registers used 439
storage estimate 418

data
definition 15,546
item, definition 546
transfer 128
type, definition 546

data set
reference number, definition 546

DATA statement 54
character data in 81
description of 54, 80
implied DO in 91

DATAN/DATAN2

556 VS FORTRAN Language and Library Reference

accuracy 428
algorithm 377
description 290
effect of an argument error 377
error message 517
registers used 439
storage estimate 418

DCONJG
description 294
registers used 439
storage estimate 418

DCOS
See DSIN/DCOS

DCOSH
See DSINH/DCOSH

DCOTAN
See DTAN/DCOTAN

DDIM
description 295
registers used 439

DDIOS error message 501
debug 82
DEBUG statement 54, 82

AT statement 66, 83
description of 54, 82
DISPLAY statement 83, 88
END DEBUG statement 83, 95
examples 84
SUBCHK function 84
TRACE OFF statement 83, 243
TRACE ON statement 83, 243

decimal point in format codes 113
declaration of type 27
default options 334
define values of

array elements 80, 103
arrays 80, 103
substrings 80
variables 80, 103

definitions
DELETE statement 87
deleting records 87
DERF/DERFC

accuracy 428
algorithm 381
description 292
effect of an argument error 382
registers used 439
storage estimate 418

description of
DEXP

accuracy 429
algorithm 386
description 288
effect of an argument error 386
error message 516
registers used 439
storage estimate 418,419

DFNTH error message 487
DGAMMA/DLGAMA

o

o

C
--~·

~ ~I

o

o

o

accuracy 429
algorithm 389
description 293
effect of an argument error 390
error message 529
registers used 439
storage estimate 418

digit
definition 546
source statement characters 11

DIM
description 295
registers used 439
storage estimate 418

DIMAG
description 294
registers used 439
storage estimate 417

dimension bound
lower 30

description 30
DIMENSION statement 88
explicit statement 105

upper 30
description 30
DIMENSION statement 88
explicit statement 105

DIMENSION statement 87
DINT

description 294
registers used 439
storage estimate 417

DIOCS error message 505
direct access

files 170
input/ output 162

INQUIRE statement 156, 161
READ statement 182, 196
WRITE statement 250, 262

direct access file error message 468
DIRECT =

INQUIRE by file name 156
INQUIRE by unit number 161

disconnect an external file 74
display data in NAMELIST format 88
DISPLAY statement 88

description of 88
in debug packet 83

divide complex numbers 309
divide-check exception test 313
divide-check service subprogram 369

See also DVCHK
error message 466

DLGAMA
See DGAMMA/DLGAMA

DLOG/DLOG10
accuracy 429
algorithm 395
description 288
effect of an argument error 395
error message 5 16

registers used 439
storage estimate 418,419

DMOD
See AMOD/DMOD

DNINT
description 295
registers used 439
storage estimate 417

DO list 80
DO loop 83,89

See also range of a DO
definition 546

DO statement 89
DO variable

definition 546
implied in DATA statement 91
implied in input/output statement 92

double precision 26
constant 20
data editing 117
definition 546
in statements 26
storage length 25
type 103, 151

DOUBLE PRECISION type statement 103
DP

assign 64
extend 64
float 64

DPROD
description 295
registers used 439
storage estimate 419

DSIGN
description 295
registers used 439
storage estimate 419

DSIN/DCOS
accuracy 428, 429
algorithm 399
description 290
effect of an argument error 399
error message 516
registers used 439
storage estimate 417, 418

DSINH/DCOSH
accuracy 428, 429
algorithm 391
description 291
effect of an argument error 391
error message 5 17
registers used 439
storage estimate 418

DSIOS error messages
end of data set 500
OPEN statement 501
unformatted I/O 499

DSPAN#/DSPN2#
assembler language requirements 441
description 311
error message 492

Index 557

storage estimate 421
DSQRT

accuracy 429
algorithm 402
description 293
effect of an argument error 403
error message 515
registers used 439
storage estimate 419

DTAN/DCOTAN
accuracy 428,429
algorithm 407
description 290
effect of an argument error 408
error message 518
registers used 439
storage estimate 418

DTANH
accuracy 429
algorithm 392
description 291
effect of an argument error 394
registers used 439
storage estimate 419

dummy argument 31
array name 31
definition 546
in a function subprogram 140
in a subroutine subprogram 239
in an ENTRY statement 100

dummy procedure name 138
dump an area of storage 315, 317
DUMP/PDUMP

assembler language requirements 441
format specifications 315
output 315
programming considerations 315
sample printouts 445
storage estimate 421

DUMP/PDUMP subroutine 315
dump, symbolic

See symbolic dump 319
DUPKEY=

REWRITE statement, formatted 228
REWRITE statement, unformatted 230
unformatted, keyed access 265
WRITE statement

formatted, keyed access 255
DVCHK service

assembler language requirements 369
storage estimate 421

DVCHK subroutine 313
DVIOS error messages 485,500,504
DYCMN#

description 311
error message 484
storage estimate 421

dynamic common 484

558 VS FORTRAN Language and Library Reference

E format code 117
EBCDIC codes 361
editing

double precision data 117
integer data 116
real data 11 7, 118

EJECT statement 94
ELSE IF statement 148
ELSE statement 148
END DEBUG statement 95

description of 95
in debug packet 83

end execution
error messages 529
service subprogram 318
utility subprogram 318

END IF statement 147
end of data set error message 500
end page 112
end program 94
END statement 94

in a function subprogram 95
in a subroutine subprogram 95

end subprogram 94
END = , READ statement

formatted, keyed access 189
formatted, sequential access 193, 207
unformatted, keyed access 200
unformatted, sequential access 203

END FILE statement 96
description of 96
invalid 96
valid 96

ENDFILE statement error message 487
ENTRY statement

actual arguments in 100
description of 97
valid 99

equal sign 11
EQUIVALENCE statement 101

description of 101
valid 102

ERF/ERFC
accuracy 429, 430
algorithm 380
description 292
effect of an argument error 381
registers used 439
storage estimate 419

ERR parameters honored for I/O errors 335
ERR =

BACKSPACE statement 67
CLOSE statement 74
DELETE statement 87
END FILE statement 96
INQUIRE by file name 155
INQUIRE by unit number 160

C:"" , ,

c

, ! o--
~"

o

o

o

OPEN statement 169
READ statement 183, 188
REWIND statement 225
REWRITE statement, formatted 228
REWRITE statement, unformatted 230
WRITE statement 252,255

ERRMON subroutine 324
error detected 160
error function subprograms

algorithms 380
size 438

error handling subroutines 314, 323
error messages

execution 468
library 464
operator 532
program interrupt 465

error monitor routine 324
error option table 323
error, corrective action after 334
ERRSA V subroutine 325
ERRSET subroutine 325
ERRSTR subroutine 329
ERRTRA subroutine 329
evaluate actual argument 70
examples of numeric format codes 123
executable program

definition 5, 546
names 13

executable statement
definition 6, 546
variable type 25

execute a set of statements 89
execution error messages 468
execution termination 317
execution-time

cautions 349
library 3

EXIST =
INQUIRE by file name 156
INQUIRE by unit number 160

existence of unit 160
existing file

INQUIRE statement 154
OPEN statement 168

existing file, definition of 546
existing unit, definition of 546
EXIT service subprogram

assembler language requirements 441
storage estimate 421
utility subprogram 314

EXIT subroutine 317
EXP

accuracy 430
algorithm 384
description 288
effect of an argument error 386
error message 513
registers used 439
storage estimate 419
underflow 371

explicit type statement
CHARACTER type 103
COMPLEX type 103
DOUBLE PRECISION type 103
INTEGER type 103
LOGICAL type 103
REAL type 103
valid 107

explicitly called subprograms
accuracy statistics 425
algorithms 373
assembler information 438
bit function 441
size 438

exponent overflow exception 313
exponent testing 313
exponential subprograms

algorithms
explicit 386
implicit 412

size 438
exponential subprograms algorithms

implicit 410
exponentiation

explicit
See EXP, QEXP, CQEXP

implicit
with complex base and complex exponent 411
with complex base and integer exponent 312,

411
with integer base and exponent 311, 416
with real base and exponent 312, 413
with real base and integer exponent 311, 415

expression 35
arithmetic 36
character 44
definition 546
evaluation of 35
examples 36
logical 47, 49, 51
relational 45
type of primary in 36

extended error handling 323
extended precision 107

error message 487
subprogram results 436

extensions, IBM, documentation of ix
external 172

file
definition 547

file, sequential 96
function name 97
function, definition 547
I/O unit connected to 172
I/O unit not connected to 172
OPEN statement 172
procedure, definition 5,547
unit 157

EXTERNAL statement 108
actual argument 108
description of 108

Index 559

valid 108

F format code 116
FCDCD#

algorithm 411
effect of an argument error 411
error message 511
registers used 440

FCDXI#
algorithm 411, 412
description 309
error message 511
registers used 440
storage estimate 419

FCQCQ#
algorithm 411
effect of an argument error 411
registers used 440

FCQXI#
accuracy 430
algorithm 412
description 309
effect of an argument error 413
error message 518
registers used 440
storage estimate 419

FCXPC#
algorithm 411
effect of an argument error 411, 413
error estimate 413
error message 510
registers used 440
storage estimate 419

FCXPI#
algorithm 411
description 309
error message 510
registers used 440
storage estimate 419

FDXPD#
algorithm 413
description 309
effect of an argument error 413
error message 510
registers used 440
storage estimate 419

FDXPI#

file

algorithm 415
description 309
error message 509
registers used 440
storage estimate 419

connected to a unit 156
definition 547
definition statement

560 VS FORTRAN Language and Library Reference

definition 547
reference, definition 547

FILE =
INQUIRE by file name 155
OPEN statement 169

FILEOPT 319
first character of record 111
fix 64
fixed-form source statement

comments 7, 76
continuation line 8
example of 8
identification 8
initial line 8
label 7
number 236

FIXPI#
algorithm 416
description 309
error message 508
registers used 440
storage estimate 419

flagger, source language 347
float 64
floating-point registers 441
FMT=

READ statement 182, 186
REWRITE statement, formatted 227
WRITE statement 250, 254

FORM =
INQUIRE by file name 157
INQUIRE by unit number 162
OPEN statement 170

format
identifier 250, 254
identifier, READ 182, 186
notation

format codes
begin data transmission (T) 128
blanks, interpretation of 130, 131
character constant transmission (H) 127
character data transmission (A) 125
character skipping (X) 128
colon 132
double precision data editing (Q) 117
format specification reading 133
general rules 111
group format specification 129
hexadecimal data transmission (Z) 122
integer data editing (I) 116
list-directed 134
logical variable transmission (L) 125
numeric 123
plus character control (S, SP, SS) 130
real data 116, 117
real data editing 118
scale factor specification (P) 120
slash 132

format control 112
FORMAT statement

/~

U

o

o

0
,,'

, I

o

0·" , I

A code 125
BN code 130
BZ code 131
colon code 132
D code 117
definition 108
E code 117
examples 123
F code 116
format specification reading 133
forms of 114
G code 118
general rules for conversion 111
group format specification 129
H code 127
I code 116
L code 125
list-directed formatting 134
numeric code 123
P code 120
Q code 117
S code 130
slash code 132
SP code 130
SS code 130
T code 128
X code 128
Z code 122

formatted
input/ output

INQUIRE statement 156, 161
PRINT statement 175
READ statement

direct access 182
keyed access 186
sequential access 192

record 111
definition 547
INQUIRE statement 156
OPEN statement 170

WRITE statement
direct access 250
keyed access 254
sequential access 258

FORMATTED =
INQUIRE by file name 156
INQUIRE by unit number 161

forms of a FORMAT statement 114
FORTRAN-supplied procedure 13

See also intrinsic function
identified 13
keywords 13

FQXPI#
accuracy 430
algorithm 416
description 309
effect of an argument error 416

error message 5 11
registers used 440
storage estimate 419

FQXPQ#
accuracy 430
algorithm 414
description 309
effect of an argument error 415
error message 5 12
registers used 440
storage estimate 419

FQXP2#
accuracy 430
algorithm 416
description 309
error message 5 15
registers used 440
storage estimate 419

free-form source statement
comments 9, 76
continuation line 10
continued line 9
example of 10
initial line 9
maximum length 10
minus sign 9
statement label 9
statement number 236

FRXPI#
algorithm 415
description 309
error message 509
registers used 440
storage estimate 419

FRXPR#
accuracy 430
algorithm 413
description 309
effect of an argument error 413
error estimate 413
error message 510
registers used 440
storage estimate 419

function
definition 547
evaluating 35
reference 233

FUNCTION statement 137,233
function subprogram 56

actual arguments 140
definition 547
description of 56
dummy arguments 140
END statement 95
ENTRY statement 97
RETURN statement 222

Index 561

G format code 118
gamma subprograms

algorithms 387
size 438

GAMMA/ ALGAMA
accuracy 427, 430
algorithm 387
.description 293
effect of an argument error 389
error message 525
registers used 439
storage estimate 417

generic names 164
generic names for intrinsic functions 301
glossary 545
GO TO statement

assigned 143
computed 144
description of 142
unconditional 144

group format
nesting 113
specification 129

H format code 127
hexadecimal

constant 23, 547
data transmission 122

hlerarchy of operations
arithmetic 37
arithmetic operators 49
character operators 49
definition 547

Hollerith constant 22
definition 22
valid 23

hyperbolic cosine subprograms
algorithms 390
size 438

. storage estimate 417
hyperbolic sine subprograms

algorithms 390
storage estimate 417

hyperbolic tangent subprograms
algorithms 392
size 438
storage estimate 417

562 VS FORTRAN Language and Library Reference

I format code 116
I/O

definition 547
list omitted from READ or WRITE
list-directed READ statement

from external devices 210
with internal files 213

list-directed WRITE statement
to external devices 274
with internal files 278

list, definition 547

112

I/O errors, IOSTAT and ERR parameters honored
for 335

lABS
See ABS/IABS/DABS/QABS

lAND
description 300
storage estimate 422

mCLR
description 300
storage estimate 422

IBCOM error message 496,530
IBM extensions, documentation of ix
IBM FORTRAN features 351
IBSET

description 300
storage estimate 422

ICHAR
description 299
storage estimate 421

ID=
READ statement 179
WAIT statement 244
WRITE statement 247

identification, fixed-form 8
identify

function subprogram 137
statements 236
user-supplied subprogram 108

IDIM
description 295
registers used 439
storage estimate 418

IDNINT /IFIX/INT
description 295
registers used 439
storage estimate 417

IEOR
description 300
storage estimate 422

IF statement
arithmetic 145
block 146
description of 145
logical 150

IF-block 146
IF-level 146

o

o

C~I· .. ;

J

o

o

o

IMPLICIT type statement 151
implicitly called subprograms

assembler information 440
description 309
name generation 409

implied DO
definition 547
in DATA statement 91
in PRINT statement 92
in READ statement 92
in WRITE statement 92

implied DO error message 496
INCLUDE statement 153
INDEX

description 299
error message 493
storage estimate 421

industry standards iv
information about file 154
inherited length of character string 105
INIT

DEBUG statement 82
initial line 8, 9

fixed-form 8
free-form 9

input data, NAMELIST statement 167
input-output statement error messages 486,498,499
input/ output statement 55

BACKSPACE 67
CLOSE 74
description of 55
ENDFILE 96
FORMAT 108
implied DO 92
INQUIRE 154
OPEN 168
PRINT 175
READ 178
REWIND 225
WAIT 244
WRITE 246

input/ output statement error messages 485, 498, 499
input/ output unit 172

connected to external file 172
not connected to external file 172
OPEN statement 172
PRINT statement 92
READ statement 92
WRITE statement 92

INQUIRE statement
by file name 155
by unit number 159

insert statements 153
integer constant 16

definition 16, 547
invalid 16
subscripts and substrings 101
valid 16

integer data editing 116
integer expression

arithmetic expressions 36

definition 547
subscripts and substrings 101

integer type 151
definition 547
explicit type statement 103
IMPLICIT type statement 151

INTEGER type statement 103
integer value error message 497
integer variable

READ statement 183, 187
storage length 25
WRITE statement 251, 254

integer-to-integer 309
internal file

definition 547
reading sequentially 206
writing sequentially 270

internal file error message 495,496
interruption procedures 463
intrinsic function

definition 5, 547
INTRINSIC statement 164

intrinsic functions, generic names for 301
INTRINSIC statement 164
invalid VS FORTRAN programs 4
lOR

description 300
storage estimate 422

10STAT parameters honored for I/O errors 335
10STAT=

BACKSPACE statement 67
CLOSE statement 74
DELETE statement 87
ENDFILE statement 96
INQUIRE by file name 155
INQUIRE by unit number 160
OPEN statement 170
READ statement 184, 188
REWIND statement 225
REWRITE statement, formatted 228
REWRITE statement, unformatted 230
WRITE statement 252, 255

ISCII/ ASCII codes 361
ISHFT

description 300
storage estimate 422

ISIGN
description 295
registers used 439
storage estimate 419

ISO definitions 545

key sequenced data set error message 486
KEY =, READ statement

formatted, keyed access 188, 199
keyed access

input/ output

Index 563

INQUIRE statement 156
READ statement

formatted input
unformatted input

KEYED =

186
198

INQUIRE by file name 156
INQUIRE by unit number 161

KEYEND=
INQUIRE by file name 158
INQUIRE by unit number 163

KEYGE=, READ statement
formatted, keyed access 188, 199

KEYGT=, READ statement
formatted, keyed access 188, 199

KEYID=
INQUIRE by file name 158
INQUIRE by unit number 163

KEYID=, READ statement
formatted, keyed access 188
unformatted, keyed access 199

KEYLENGTH=
INQUIRE by file name 158
INQUIRE by unit number 163

KEYS=, OPEN statement 171
KEYSTART=

INQUIRE by file name 158
INQUIRE by unit number 163

keywords 13

L format code 125
labeled common

See named common
LANGLVL(66) features 358
LANGL VL(77) features 351
language syntax 6
LASTKEY=

INQUIRE by file name 159
INQUIRE by unit number 163

LASTRECL=
INQUIRE by file name 159
INQUIRE by unit number 163

LDFIO error messages 497,503,506
leading blanks 113
LEN

description 299
storage estimate 421

length of character string, inherited 105
length specification

definition 547
IMPLICIT type statement 151

letter
definition 547
source statement characters 11

lexical compare error message 493
LGE

description 299

564 VS FORTRAN Language and Library Reference

storage estimate 421
LGT

description 299
storage estimate 421

library
availability 433
contents 3
error procedures 463
execution-time routine storage estimates 424
interruption procedures 463
messages 464
procedure messages 463

list-directed
definition 547
formatting 134
I/O

reading from external devices 210
reading internally 213
writing internally 278
writing to external devices 274

PRINT statement 175
literal parameter error message 489
LLE

description 299
storage estimate 421

LLT
description 299
storage estimate 421

load module execution termination 317
log-gamma subprograms

algorithms 389
registers used 439

LOG/LOGI0
See ALOG or DLOG

logarithmic subprograms
algorithms 394

logical assignment statement 61
logical constant 21

definition 21, 547
logical expression

definition 547
invalid 49
order of computations in 49
use of parentheses in 51
valid 48

logical IF statement 150
logical operation 52

type and length of the result 52
logical operator 47

AND 48
definition 547
description of 47
EQV 48
examples 48
invalid 48
NEQV 48
NOT 48
OR 48
valid 48

logical primary

(-.'\\

0'

c

c

o

o

o

See primary
logical type 103, 151
LOGICAL type statement 103

explicit type statement 103
primary, definition 547
type, definition 547

logical unit number error message 489
logical variable

storage length 25
transmission 125

looping
definition 547
when using DEBUG 83

lower dimension bound
DIMENSION statement 88
explicit statement 105

LTNCT
error message 518

LXCMP error message 493

main program
assign a name to 177
definition 5,547
PROGRAM statement 177
statement (PROGRAM) 55

mathematical exception tests 313
mathematical library subroutines

accuracy figures 425-432
algorithms 371
control of program exceptions 371
explicitly called 438
implicitly called 309
performance statistics 425-432
result registers 438
results 436
size 438
storage estimate 417
use in assembler language 433
use in VS FORTRAN 307

mathematical subroutine errors 341
maximum

record size 111
statement length, free-form 10

maximum/minimum functions 296
messages

execution error 468
library 464
operator 532
program interrupt 465

minus sign 11
MOD

description 294
registers used 439
storage estimate 419

modify
block size 318
buffer offset 318

modular arithmetic subprograms
size 438

module names
bit 533
character 533
mathematical 533
reentrant 533

multiphase job running 318
multiply complex numbers 309

name 11
array 77,87
block of data 69
CALL statement 97
constant 113
definition 11, 548
description of 11
elements of a program 11
file 155, 156
function reference 97
generic 164
specific 164
unit 161
variable 77

NAME =
INQUIRE by file name 156
INQUIRE by unit number 161

named common 78
blank common blocks 78
definition 78,548
description of 78

NAMED =
INQUIRE by file name 156
INQUIRE by unit number 161

NAMEL error messages 502
NAMELIST name

in READ statement
with external devices 216
with internal files 219

in WRITE statement
with external devices 280
with internal files 282

NAMELIST statement
input data 167
output data 168

NAMELIST statement error messages 502
names in READ and WRITE statements 166
natural logarithmic subprograms

algorithms 394
size 438

nested DO
definition 548
example of 91

nesting of group formats 113
new file 169
new page 112
NEXTREC=

Index 565

INQUIRE by file name 157
INQUIRE by unit number 162

NINT
description 295
registers used 439
storage estimate 417

nonexecutable statement
definition 6, 548

nonexisting file
definition 548

nonmathematical arguments 313
NOT

description 300
storage estimate 422

NOTFOUND=
formatted, keyed access
unformatted, keyed access

null 157, 162
NUM=

READ statement

189
200

direct access 196
keyed access 200
sequential access 203

WAIT statement 245
WRITE statement

direct access 262
keyed access 265
sequential access 268

number
fixed-form
free-form
last record
statement

NUMBER =

236
236
157, 162

155,236

INQUIRE by file name 157
INQUIRE by unit number 162

numeric
constant 16

definition 548
data format codes 113
format code 123

numeric character
See arithmetic constant

object-time dimensions 31, 78
old file 169
OPEN statement 168
OPEN statement error message 489
OPENED =

INQUIRE by file name 156
INQUIRE by unit number 161

operator messages 532
OPSYS

description 318
error messages 489

OPSYS subroutine 318

566 VS FORTRAN Language and Library Reference

option
default 328, 334
in DEBUG statement 82

option table
default values 334
entry 332

option table, error 323
order of

computation 49
statements 58

output data, NAMELIST statement 168
OVERFL

description 313
storage estimate 421

OVERFL subroutine 313
overflow

algorithms 371
error message 465
indicator service subprogram
terminal 371

P format code 120
page control 112
PARAMETER statement 173
parameters, correct 435

313

parentheses error message 485
PASSWORD=, OPEN statement 171
PAUSE statement 175
PAUSE statement error message 532
performance statistics 425
period 11
plus character control 130
plus sign 11
position an external file 225
preconnected file

definition 6, 548
formatted READ--direct access 184
formatted READ-sequential access 194
formatted WRITE-sequential access 260
READ with list-directed I/O 211
READ with NAMELIST 217
unformatted READ-direct access 197
unformatted READ-sequential access 204
unformatted WRITE-direct access 263
WRITE with list-directed I/O 275
WRITE with NAMELIST 281

predefined specification
definition 548
specify variable 27

preserving a minus sign
free-form 9

primary 36
definition 548
description of 36
logical 47

print control 111

In
'~J

o

C
·~'i

,)

o

o

0'1

, '

PRINT statement 175
description of 175
implied DO in 92

procedure
BLOCK DATA 56
definition 5, 548
dummy 98, 100, 138
subprogram

definition 548
description of 56

program exceptions 370
PROGRAM statement 55,177
program unit

definition 6, 548
order of statements in 57

program-interrupt messages 341, 465
programming considerations

CDUMP /CPDUMP 317
DUMP /PDUMP 316
SDUMP 320

Q format code 117
QABS

description 292
registers used 439
See ABS/IABS/DABS/QABS
storage estimate 417

QARCOS
See QARSIN/QARCOS

QARSIN/QARCOS
accuracy 430
algorithm 375
description 290
effect of an argument error 375
error message 527
registers used 439
storage estimate 419

QATAN/QATAN2
accuracy 430
algorithm 378
description 290
effect of an argument error 380
error message 527
registers used 439
storage estimate 418, 419

QCONJG
description 294
size 438
storage estimate 418

QCOS
See QSIN/ QCOS

QCOSH
See QSINH/ QCOSH

QCOTAN
See QTAN/QCOTAN

QDIM
description 295

registers used 439
QERF/QERFC

accuracy 431
algorithm 382
description 292
effect of an argument error 384
size 439
storage estimate 419

QEXP
accuracy 431
algorithm 386
description 288
effect of an argument error 387
error message 526
size 439
storage estimate 418,419

QIMAG
description 294
registers used 439
storage estimate 417

QINT
description 294
registers used 439
storage estimate 417

QLOG/QLOGI0
accuracy 431
algorithm 396
description 288
effect of an argument error 397
error message 526
size 439
storage estimate 419

QMOD
description 294
registers used 439
storage estimate 417

QP extend 64
QP float 64
QSIGN

description 295
registers used 439

QSIN/QCOS
accuracy 430, 431
algorithm 400
description 290
effect of an argument error 400
error message 527
registers used 439
storage estimate 418,419

QSINH/QCOSH
accuracy 430, 431
algorithm 392
description 291
effect of an argument error 392
error message 527
registers used 439
storage estimate 419

QSQRT
accuracy 431
algorithm 404
description 293

Index 567

effect of an argument error 404
error message 525
registers used 439
storage estimate 420

QTAN/QCOTAN
accuracy 431
algorithm 408
description 290
effect of an argument error 408
error message 528
registers used 439
storage estimate 419

QTANH
accuracy 431
algorithm 393
description 291
effect of an argument error 394
registers used 439
storage estimate 420

quotation mark 11

range of a DO
definition 548

range of an implied DO 92
READ statement

asynchronous 179
description of 178
formatted with direct access 182
formatted with keyed access 186
formatted with sequential access

external devices 192
internal files 206

forms of 178
implied DO in 92
unformatted with direct access 196
unformatted with keyed access 198
unformatted with sequential access 203
with list-directed II 0

external devices 210
internal files 213

with NAMELIST
external devices 216
internal files 219

READ statement error message 496
READ =

INQUIRE by file name 158
INQUIRE by unit number 163

reading format specifications 133
READ WRITE =

INQUIRE by file name 158
INQUIRE by unit number 163

real assign 64
real constant 17

definition 17, 548
invalid 19
valid 18

568 VS FORTRAN Language and Library Reference

real data
editing 11 7, 118
transmission 116

real data of length 8
See double precision

real type 103, 151
definition 548
explicit type statement 103
IMPLICIT type statement 151

REAL type statement 103
real variable, storage length 25
REAL * 16

See double precision 107
REAL * 8

See double precision
real-to-integer 309
real-to-real 309
REC=

READ statement 183
WRITE statement 251

RECL=
INQUIRE by file name 157
INQUIRE by unit number 162
OPEN statement 170

record
definition 548
FORMAT statement 108
length 157,162,170
number of last 157, 162

record length error message 486
relational expression 45

definition 548
description of 45
invalid 47
length of 45
valid 46

relational operator 45
definition 548
description of 45
equal to 45
greater than 45
greater than or equal to 45
less than 45
less than or equal to 45
not equal to 45

replace value of expression 60
reposition a file 67
request traceback 329
required order of statements 58
retain definition status 232
return control to calling program 222
RETURN statement

description of 222
in a function subprogram 222
in a subroutine subprogram 223

REWIND statement 225
REWRITE statement, formatted 227
REWRITE statement, unformatted 230
rewriting records 227
rules for data conversion 111

A~
,our ... ',
'l-i '

o

o

o

c

o

run multiphase jobs 318

S format code 130
sample storage printout 445
save areas 442
save option table entry 325
SAVE statement 232
scale factor

definition 548
specification 120

scratch a file 169
SDUMP

format specifications 320,446
output 319
programming considerations 320
sample printouts 445
storage estimate 421

SDUMP subroutine
description 319
output of symbolic dump 452

sequential access
input/ output

INQUIRE statement 156, 161
READ statement 192, 203
WRITE statement 258,268

sequential access file 483
SEQUENTIAL =

INQUIRE by file name 156
INQUIRE by unit number 161

service subprograms
assembler information 434
CDUMP / CPDUMP 317
DUMP /PDUMP 315
end execution 317
EXIT 317
mathematical exception test 313
OPSYS 318
SDUMP 319
sizes 434
XUFLOW 322

service subroutines 313
share storage 77, 101
SIGN

description 295
registers used 439
storage estimate 419

SIN/COS
accuracy 427,432
algorithm 398
description 290
effect of an argument error 399
error message 513
registers used 439
storage estimate 418,420

sine subprograms
algorithms 398

size 438
SINH/COSH

accuracy 427, 432
algorithm 390
description 291
effect of an argument error 390
error message 514
registers used 439
storage estimate 418

skip a line 112
skipping characters 128
slash 11
slash format code 132
source language nagger 347
source language statement

fixed-form 7
free-form 9, 10

source statement characters 10
description of 10
digit 11
letter 11
special characters 11

SP format code 130
special character set 11
special characters

parentheses 11
specific names 164
specification

subprogram
definition 548

specification statement 55
CHARACTER type 103
COMMON 77
COMPLEX type 103
definition 548
DIMENSION 87
DOUBLE PRECISION type 103
EQUIVALENCE 101
explicit type 103
EXTERNAL 108
IMPLICIT type 151
INTEGER type 103
INTRINSIC 164
LOGICAL type 103
NAMELIST 166
PARAMETER 173
REAL type 103
SAVE 232

SQRT
accuracy 432
algorithm 402
description 293
effect of an argument error 402
error message 512
registers used 439
storage estimate 418,420

square root subprograms
algorithms 402
examples 443
size 438

SS format code 130

Index 569

start
a new page 94
display 243

statement
definition 548
descriptions 53
fixed-form number 7, 236
free-form label 9
free-form number 236
function definition, definition 548
function reference, definition 549
function statement 233
function, definition 548
label 13
label, definition 549
label, fixed-foJ11? 7
number 59, 236
number, definition 549
READ statement 182, 187
WRITE statement 250, 254

statement function
statement 233

STATUS =
CLOSE statement 74
OPEN statement 169

stop display 243
stop program 94
STOP statement 237
STOP statement error message 532
storage dump service

subprograms 315
storage estimates

bit subprograms 422
character subprograms 421
execution-time routines 424
extended precision routines 434
library execution-time routines 424
mathematical subprograms 417-420
service subprograms 421

storage printout, sample 445
store entry in option table 329
SUBCHK

DEaUG statement 82
SUBCHK function of DEBUG 84
subprogram

BLOCK DATA statement 56,69
definition 5, 549
ENTRY statement 97
FUNCTION statement 56, 137
RETURN statement 222
SAVE statement 232
statement function statement 233
SUBROUTINE statement 56, 238

subprograms
character 310
implicit 309
service 313-321

subprograms, explicitly called
bit manipulation 300
character manipulation 299

570 VS FORTRAN Language and Library Reference

conversion 296
maximum/minimum 296

SUBROUTINE statement 238
subroutine subprogram

actual arguments 239
definition 549
description of 56
dummy arguments 239
END statement 95
ENTRY statement 97
naming 56
RETURN statement 223
service and utility subroutines 313

subscript 28
definition 549
identify array element 28
in DATA statement 80
quantity, definition 549

substring 32
description of 32
expression 32
in DATA statement 80

SUBTRACE
DEBUG statement 83

symbolic dump
how to call 319

symbolic name
See name

syntax 6

T format code 128
table, error option 323
TAN/COTAN

accuracy 427, 432
algorithm 406
description 290
effect of an argument error 407
error message 515
registers used 439
storage estimate 418

tangent subprograms
algorithms 406
registers used 439

TANH
accuracy 432
algorithm 392
description 291
effect of an argument error 392
registers used 439
storage estimate 420

terminate
execution 237
program 94
the last debug packet 95

terminate execution (EXIT) 317
terminate execution of load module 317

A" - ,,\,

V

o

c

o

o

o

test
exponents 313
for divide-check exception 313
values 89

TRACE
DEBUG statement 82

TRACE OFF statement 243
description of 243
in debug packet 83

TRACE ON statement 243
description of 243
in debug packet 83

traceback request 329
transfer control

to statement number 142
to subroutine subprogram 70

transmission
character constants 127
character data 125
hexadecimal data 122
logical variables 125

trigonometric subprograms
algorithms 373
error messages 513
size 420

truncation subprograms
registers used 439
storage estimate 417

two-to-real 309
type declaration

by EXPLICIT type statement 28
by IMPLICIT statement 27
declaration of an array 30
definition 549
predefined 27

type specification 151

unary minus 38
unary plus 38
unconditional GO TO statement 144
underflow

algorithms 370
error message 466
terminal 371

unformatted
input/ output

INQUIRE statement 157, 161
OPEN statement 170
READ statement

rlirp('t ~(,(,P<1<1 1 Q';

keyed access 198
sequential access 203

record
definition 549
INQUIRE statement 157
OPEN statement 170

WRITE statement

direct access 262
keyed access 265
sequential access 268

unformatted I/O 499
UNFORMATTED =

unit

INQUIRE by file name 157
INQUIRE by unit number 161

connected 161
connected to external file 172
DEBUG statement 82
definition 549
identifier, definition 549
INQUIRE statement 160
not connected to external file 172
number 160, 169
OPEN statement 169

UNIT =
BACKSPACE statement 67
CLOSE statement 74
DELETE statement 87
END FILE statement 96
INQUIRE by unit number 160
OPEN statement 169
READ statement 179
REWIND statement 225
REWRITE statement, formatted 227
REWRITE statement, unformatted 230
WAIT statement 244
WRITE statement 247

unknown file 169
updating records 227
upper dimension bound 30

DIMENSION statement 88
explicit statement 105

user exit routine, coding the 328
utility service subprograms

CDUMP/CPDUMP 317
DUMP /PDUMP 315
EXIT 317
OPSYS 318
SDUMP 319
XUFLOW 322

utility subroutines 313

valid VS FORTRAN programs 4
variable

character 32
definition 549
tip.!O:rrintinn nf ?4

names, invalid 25
names, valid 24
types and lengths of 25

V ASYN error messages
addressing incorrect 504
asynchronous I/O not supported 485
asynchronous I/O subtask 497

Index 571

blocksize not specified 507
end of data set 500
end of record 498
OPEN failed 501
REWIND statement 524
unformatted I/O 499
WAIT statement 525

VCLOS error messages 492
VCOMH error messages 485,498
VCTVH error messages

illegal decimal character 499
illegal hexadecimal character 503
illegal integer value 497
illegal value 503

VDIOS error messages 488, 501
VERRM error messages 530
VFILOPT 319
VFNTH error messages 465
VIIOS error messages 495
VINQR error messages 490
VIOLP error messages 498
VMOPT error messages 530
VOPEN error messages 483,490
VS FORTRAN statements 53
VSAM error messages 485
VSCOM error messages 483
VSCOM#

subprogram 437
VSERH error messages 504
VSIOS error messages

BACKSPACE statement 499
end of data set 500
file is unusable 482
OPEN statement 501
OPEN/CLOSE 488
REWIND statement 524
sequentialI/O 504
unformatted I/O 499

VST AE error messages 507
VVIOS error messages 485,500,504

572 VS FORTRAN Language and Library Reference

WAIT statement 244
write an end-of-file record 96
WRITE statement

asynchronous 247
formatted with direct access 250
formatted with keyed access 254
formatted with sequential access

external devices 258
internal files 270

forms of 246
implied DO in 92
unformatted with direct access 262
unformatted with keyed access 265
unformatted with sequential access 268
with list-directed I/O

external devices 274
internal files 278

with NAMELIST
external devices 280
internal files 282

WRITE statement error message 485
WRITE =

INQUIRE by file name 158
INQUIRE by unit number 163

X format code 128
XUFLOW

storage estimate 421
XUFLOW subroutine

description 322

Z format code 122
zero 157, 162

o

C"", (I' ,)

o

iii o
z

o

VSFORTRAN
Language and Library Reference
SC26-4119-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, or
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications, or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL __________ _

Previous TNL ________ _

Previous TNL ________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC26-4119-0

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

1111

Fold and tape

NO POSTAGE
NECESSARY
.IF MAILED

IN THE
UNITED STATES

<
(J)

"'T1
o
:::0
--l
:::0
» z
r
OJ
::::l

co
C
OJ
co
('[)

OJ
::::l
Q.

C
0-....
OJ

-<

fa
::::l
(")
('[)

"'T1

CD
z
?
(J)
W
-.....J
o
~
9

~
::::l
.-+

11 ••••• "1.. C'O

Fold and tape Please do not staple

--------- - ------- - ---- - - -----------,-
®

Fold and tape

Q.

::::l

c
(J)

~

<.0
6

o

o

~ g
II) 0
E­
a.rn .:; :c
0-
II) "iii
elll)
C rn

.;:; 0
o II)
rn a.
:: 1'0
1'0
E-o]E
rt; E
E ~ o el
~ II)
1'0£

Oi~
rn II)

E .~
~'iii ..c c o II) ... rn
a. II)
II) ...
rn ~
~ rn

~ ~
C a.
1'0 II)
t.> rn
rn ~
II) II)

c.~
!9~
Cl)Q..

Qj

o z

o

VSFORTRAN
Language and Library Reference
SC26-4119-0

Reader's
Comment
Form

This manual is part of a library that serves as a reference source for systems analysts, programmers, and operators of
IBM systems. You may use this form to communicate your comments about this publication, its organization, o!
subject matter, with the understanding that IBM may use or distribute whatever information you supply in any way
it believes appropriate without incurring any obligation to you.

Your comments will be sent to the author's department for whatever review and action, if any, are deemed
appropriate.
Note: Copies of IBM publications are not stocked at the location to which this form is addressed. Please direct any
requests for copies of publications,. or for assistance in using your IBM system, to your IBM representative or to
the IBM branch office serving your locality.

List TNLs here:

If you have applied any technical newsletters (TNLs) to this book, please list them here:

Last TNL _________ _

Previous TNL _________ _

Previous TNL _________ _

Fold on two lines, tape, and mail. No postage stamp necessary if mailed in the U.S.A.
(Elsewhere, an IBM office or representative will be happy to forward your comments or you
may mail directly to the address in the Edition Notice on the back of the title page.) Thank
you for your cooperation.

SC26-4119-0

Reader's Comment Form

Fold and tape Please do not staple

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 40 ARMONK, N.Y.

POSTAGE WILL BE PAID BY ADDRESSEE

I BM Corporation
P.O. Box 50020
Programming Publishing
San Jose, California 95150

IIII
Fold and tape

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

,,('---'\

'~'-)

<
U)

" o
::0
-l
::0
>­
Z
r
Q)

::::l
co
C
Q.)

co
co
Q.)

::::l
Q.

c:
~
Q.)

-<

" ro
z
9
U)
tv
-....J
o
~
.9

~
::::l
r-+

••• C'D
Q.

::::l

Fold and tape Please do not staple Fold and tape

---- co ----- ---- 6 ---- - ---- - - -----------,-®

C' "',',I"
I)

~.

SC26-4119-1Z1

