= 1
IRICI,J) = &
CONTINUE

PRINT 28 &
BT
FORMAT (3(1X
STOP

E N D Program Numbers

5748-FO3 Compiler an
5748-LM83 Library Only

eeeeeeeeee

{0}
(o)
!!;;!m
Tl

VS FORTRAN
Language and
Library Reference

Program Numbers

5748-FO3 (Compiler and Library)
5748-LLM3 (Library Only)
Release 4.0

SC26-4119-0

First Edition (October 1984)

This edition applies to Release 4.0 of VS FORTRAN, Program Products 5748-FO3
(Compiler and Library) and 5748-LM3 (Library only), and to any subsequent releases
until otherwise indicated in new editions or technical newsletters.

New features for this release are summarized under “Summary of Amendments” following
the preface. Specific changes are indicated by a vertical bar to the left of the change.
These bars will be deleted at any subsequent republication of the page affected. Editorial
changes that have no technical significance are not noted.

Changes are made periodically to this publication; before using this publication in
connection with the operation of IBM systems, consult the latest IBM System/370 and
4300 Processors Bibliography, GC20-0001, for the editions that are applicable and current.

References in this publication to IBM products, programs, or services do not imply that
IBM intends to make these available in all countries in which IBM operates. Any
reference to an IBM program product in this publication is not intended to state or imply
that only IBM’s program product may be used. Any functionally equivalent program may
be used instead.

Publications are not stocked at the address given below; requests for IBM publications
should be made to your IBM representative or to the IBM branch office serving your
locality.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, P.O. Box 50020,
Programming Publishing, San Jose, California, U.S.A. 95150. IBM may use or distribute
whatever information you supply in any way it believes appropriate without incurring any
obligation to you.

© Copyright International Business Machines Corporation 1981, 1982, 1983, 1984

Preface

The VS FORTRAN Compiler and Library, Version 1, Release 4.0, program

product is commonly referred to as Level 1.4.0. It is known as Release 4.0 in this

manual.

This manual outlines the programming rules for VS FORTRAN 1978-level source

language. It includes Full American National Standard FORTRAN (X3.9-1978),
plus IBM extensions.

After an introduction, Part 1, “Language Reference,” discusses:
« VS FORTRAN Language
¢ VS FORTRAN Data

o« VS FORTRAN Ezxpressions

VS FORTRAN Statements (in alphabetic order)

VS FORTRAN Intrinsic Functions

After an introduction, Part 2, “Library Reference,”” discusses:

« Mathematical, Character, and Bit Subprograms

« Service Subroutine Subprograms

« Extended Error Handling Subroutines and Error Option Table
The appendixes contain the following additional information:

Source Language (FIPS) Flagger (including execution-time cautions)
IBM and ANS FORTRAN Features

EBCDIC and ASCII Codes

Algorithms for Library Mathematical Functions

Storage Estimates

Accuracy Statistics

Assembler Language Information

Sample Storage Printouts

Library Procedures and Messages

Module Names

“~rI@omETAR»

Preface

iii

Industry Standards

The VS FORTRAN Compiler and Library program product is designed according
to the specifications of the following industry standards, as understood and
interpreted by IBM as of May, 1982.

The following two standards are technically equivalent. In this manual, references
to FORTRAN 77 are references to these two standards:

« American National Standard Programming Language FORTRAN, ANSI
X3.9-1978 (also known as FORTRAN 77)

o International Organization for Standardization ISO 1539-1980 Programming
Languages-FORTRAN

The bit string manipulation functions are defined in ANSI/ISA-S61.1.

The following two standards are technically equivalent. In this manual, references
to FORTRAN 66 are references to these two standards:

e American Standard FORTRAN, X3.9-1966

o International Organization for Standardization ISO R 1539-1972 Programming
Languages-FORTRAN

Both the FORTRAN 77 and the FORTRAN 66 standard languages include IBM
extensions. In this book, references to current FORTRAN are references to the
FORTRAN 77 standard, plus the IBM extensions valid with it. References to old
FORTRAN are references to the FORTRAN 66 standard, plus the IBM extensions
valid with it.

Related Publications

VS FORTRAN publications are designed to help develop programs with a
minimum of wasted effort. This book, V'S FORTRAN Language and Library
Reference, describes the rules for coding VS FORTRAN programs when using the
current FORTRAN. It also contains detailed information about the execution-time
library subroutines.

VS FORTRAN Publications

iv

Other VS FORTRAN publications contain related information.

e« VS FORTRAN Compiler, Library, and Interactive Debug General Information,
GC26-4114, contains information that is intended as an aid to evaluating and
planning for the use of the VS FORTRAN Compiler and Library program
products.

o VS FORTRAN Compiler and Library Installation and Customization,
SC26-3987, contains material for installing the VS FORTRAN Compiler and

VS FORTRAN Language and Library Reference

U

Library and is to be used in conjunction with the VS FORTRAN Program
Directory that applies to your system.

VS FORTRAN Programming Guide, SC26-4118, contains guidance
information on designing, coding, debugging, testing, and executing VS
FORTRAN programs written at the current FORTRAN language level. In
addition, separate chapters discuss executing your FORTRAN program under
VM/SP, under MVS/SP, including MVS/XA, under VSE/Advanced
Functions, and under VM/PC.

VS FORTRAN Compiler and Library Reference Summary, SX26-3731, is a
pocket-sized reference booklet containing current FORTRAN syntax and brief
descriptions of the compiler options.

VS FORTRAN Compiler and Library Diagnosis, SC26-3990, tells you how to
diagnose failures in the VS FORTRAN Compiler and Library.

In addition, a binder for VS FORTRAN publications and a combination of binder
and publications are available.

C

Binder only, $X26-3747

Binder and the following publications, SBOF-1192
— VS FORTRAN Programming Guide

— VS FORTRAN Language and Library Reference

— VS FORTRAN Compiler and Library Reference Summary

FORTRAN 1V Publications

IBM System/360 and System/370 FORTRAN IV Language, GC28-6515,
describes the source language available in the FORTRAN IV language, and
contains the rules for writing VS FORTRAN programs using FORTRAN 66.

FORTRAN Coding Form, GX28-7327, aids in coding fixed-form FORTRAN
programs.

VS FORTRAN Interactive Debug Publications

VS FORTRAN Compiler, Library, and Interactive Debug General Information,
GC26-4114 (see description above under “VS FORTRAN.”)

VS FORTRAN Interactive Debug Guide and Reference, SC26-4116
VS FORTRAN Interactive Debug Installation, SC26-4117
VS FORTRAN Interactive Debug Reference Summary, SX26-3742

VS FORTRAN Interactive Debug Diagnosis, SY26-3944

Preface V

System and Device Information
Specific system information and details about block size, track capacity, and so on,
of the various input/output devices are not included in this book. See the following

system publications for this information:

IBM DASD Publication

Introduction to IBM Direct Access Storage Devices and Organization Methods,
GC20-1649, contains algorithms for direct files.

IBM-Supplied Utility Programs
OS/VS2 MVS Utilities, GC26-3902
MYVS /Extended Architecture Utilities, GC26-4018
VSE/Advanced Functions System Utilities, SC33-6100

Assembler Language Programming
OS/VS—DOS/VSE—-VM/370 Assembler Language, GC33-4010
0OS/VS—VM/370 Assembler Programmer’s Guide, GC33-4021
Guide to DOS/VSE Assembler, GC33-4024

Assembler H Version 2 Application Programming: Language Reference,
GC26-4037

Assembler H Version 2 Application Programming: Guide, GC26-4036
System/370 Machine Characteristics

IBM System/370 Principles of Operation, GA22-7085. It describes the various
types of interruptions.

OS/VS Systems Publications
OS/VS Linkage Editor and Loader, GC26-3813

OS/VS Virtual Storage Access Method (VSAM) Programmer’s Guide,
GC26-3838

0OS/VS Tape Labels, GC26-3795

MYVS Publications
0S/VS2 MVS Data Management Services Guide, GC26-3875
OS/VS2 Supervisor Services and Macro Instructions, GC28-0683

OS/VS2 Access Method Services, GC26-3841

Vi VS FORTRAN Language and Library Reference

O

0S/VS2 MVS JCL, GC28-0692

OS/VS2 Debugging Guide, GT28-0632

0S/VS2 TSO Terminal User’s Guide, GC28-0645
0S/VS2 TSO Command Language Reference, GC28-0646

TSO-3270 Structured Programming Facility (SPF) Program Reference Manual,
SH20-1730

MVS/Extended Architecture (MVS/XA) Publications

VM/CMS Systems Publications

VSE Publications

MVS /Extended Architecture Access Method Services Reference, GC26-4019

MVS / Extended Architecture Supervisor Services and Macro Instructions,
GC28-1154

MYVS /Extended Architecture JCL, GC28-1148

MVS/Extended Architecture Debugging Handbook, Vols. 1-5,
GC28-1164-1168

MVS /Extended Architecture Data Management Services, GC26-4013
MVS/Extended Architecture Linkage Editor and Loader, GC26-4011
MVS /Extended Architecture VSAM Programmer’s Guide, GC26-4015
MV'S/Extended Architecture Tape Labels, GC26-4003

MYVS /Extended Architecture TSO Command Language Reference, GC28-0646,
as updated by Supplement SD23-0259

MVS /Extended Architecture TSO Extensions TSO Command Language
Reference, SC28-1134

VM/SP CP Command Reference for General Users, SC19-6211
VM/SP CMS User’s Guide, SC19-6210
VM/SP CMS Command and Macro Reference, SC19-6209

VM /SP Terminal User’s Guide, GC19-6206

VSE/Advanced Functions System Management Guide, SC33-6094
VSE System Data Management Concepts, GC24-5209

VSE/Advanced Functions Tape Labels, SC24-5212

Preface Vil

VSE /Advanced Functions DASD Labels, SC24-5213
VSE/Advanced Functions Macro User’s Guide, SC24-5210

VSE/Advanced Functions Serviceability Aids and Debugging Procedures,
GC33-6099

VSE/VSAM Programmer’s Reference, SC24-5145
Using VSE/VSAM Commands and Macros, SC24-5144
Using the VSE/VSAM Space Management for SAM Feature, SC24-5192

Alternative Mathematical Library Subroutines

The Evaluation of Periodic Functions with Large Input Arguments, by Jesse Y.
Wang, ACM/SIGNUM, December 1978

Argonne National Laboratory, Applied Mathematics Division, System/360
Library Subroutine:

ANL B357S-1 DEXP

ANL B457S-3 A**B (single-precision)
ANL B458S-1 A**B (double-precision)
ANL B356S-1 EXP

ANL B159S-3 DTAN/DCOTAN

ANL B158S-2 DSIN/DCOS

Methods of Presentation

Because methods of presentation vary from book to book, the format notation and
method of indicating IBM extensions are outlined here.

Format Notation

In this manual, “must” is to be interpreted as a requirement; conversely, ‘“‘must
not” is to be interpreted as a prohibition.

In describing the form of VS FORTRAN statements or constructs, the following
conventions and symbols are used:

e Special characters from the VS FORTRAN character set, uppercase letters,
and uppercase words are to be written as shown, except where otherwise
noted.

« Lowercase letters and lowercase words indicate general entities for which
specific entities must be substituted in actual statements. After a given
lowercase letter or word is used in a syntactic specification to represent an
entity, all subsequent occurrences of that letter or word represent the same
entity until that letter or word is used in a subsequent syntactic specification to

represent a different entity. (D

vili VS FORTRAN Language and Library Reference

» Square brackets ([]) are used to indicate optional items.
« Anitalicized word (or underlined in the examples) indicates a variable, such as
an entry point, name of a function, data type, or list of variables or array

names.

« An ellipsis (...) indicates that the preceding optional items may appear one or
more times in succession.

« Blanks are used to improve readability; however, unless otherwise noted, they
have no significance.

o For clarity of presentation, continuation designators have been omitted from
continuation lines in example.

The general form of each statement is enclosed in a box. For example:

—— Syntax

CALL name [([argl [,arg2]...1)]

The following examples are among those allowed:

CALL name

CALL name ()

CALL name (arg)

CALL name (arg, arg)

CALL name (arg, arg, arg)
CALL name (arg, arg, arg, arg)

When an actual statement is written, specific entities are substituted for name and
each arg. For example:

CALL ABCD (X,1.0)

Documentation of IBM Extensions

In addition to the statements available in FORTRAN 77, IBM provides
“extensions” to the language. These extensions are shown in the following ways.

[IBM Extension |

This sentence shows how IBM language extensions in text are documented.

| End of IBM Extension]

The following example shows how boxes indicate IBM extensions.

Preface IX

NAME TYPE LENGTH

I, J, K Integer variables h |, 2, 2
o Real variable 4

D Complex variable 16

The example below shows how IBM extensions are documented within a table.
Boxes around certain types and lengths of the result of logical operations indicate
IBM extensions.

First

Operand Logical Logical

Second 1) %4)

Operand

Logical Lo?ical lLogical

1) o)
Logical Logical Logical

i8]))

X VS FORTRAN Language and Library Reference

Summary of Amendments

October 1984

Merger of VS FORTRAN Reference Manuals

VS FORTRAN Application Programming: Language Reference and VS FORTRAN
Application Programming: Library Reference have been merged into this manual.
The original manuals have become independent parts of this new one, and, with
few exceptions, the kinds of information that were in them before can be found in
the corresponding parts of this manual. However, common parts of the original
manuals (tables of contents, indexes, and so on) have been consolidated.

Release 4.0 Enhancements

VSAM Key-Sequenced Data Sets

VS FORTRAN programs can now load and access VSAM key-sequenced data sets
(KSDS):

Records can be retrieved, added, replaced, and deleted, using key values
(designated fields within the records).

Both direct and sequential processing (by key value) are allowed.

Multiple alternate keys, as well as a primary key, can be used.

The following language statements have been expanded:

OPEN, so that you can open a file for keyed access. The length and location
of the keys to be used are specified on this statement.

READ, so that you can specify a key value for the retrieval of records. The
key to be used in a multiple-key file is specified on this statement.

WRITE, so that you can identify a statement as the one to be given control, if
a duplicate key value is written.

INQUIRE, so that you can find out the value of the last key used in an
input/output operation, and which of multiple keys is in use.

Summary of Amendments Xi

Two new statements have been added to support KSDS:

"
« DELETE, enables you to delete a record from a VSAM file after a READ Qﬂ
operation.

« REWRITE, enables you to replace a record in a VSAM file after a READ
operation.

Reentrant Object Code (MVS and VM)
The compiler can create a reentrant version of the object-code portion of a
program. When object code is reentrant (and placed in a reentrant area), multiple
end-users can share a single copy, thereby saving execution-time storage.

Execution-Time Loading of Library Routines

The library has been restructured to allow more execution-time loading of library
routines. This has multiple benefits:

o Reduces auxiliary storage requirements for load modules
« Speeds execution for users in compile-link-go mode

o In an MVS/XA environment, allows many library routines to reside above 16
megabytes, thus providing virtual-storage constraint relief.

(This new library design will not impact users who have Release 2 or Release 3
load modules that access the old reentrant I/O library (via IFYVRENT), and who
do not want to relink. Maintenance is automatically provided, and relinking is
necessary only if Release 4 function is desired.)

Automatic Precision Increase
This feature allows a user to selectively boost the precision of floating-point items
in an existing program without recoding it. Single precision items can be made
double, double can be made extended. Users merely recompile the program with a
specified option (AUTODBL).

Faster Character Handling

Character assignment and comparison operations are now handled by in-line code,
rather than by calls to the library. This speeds execution time. Error messages
previously issued from the library, for conditions such as overlap detection and
invalid character length, will no longer appear.

Improved Diagnostic Support
The following enhancements will allow easier program maintenance and debugging.

« MAP and XREF output can be formatted to fit a terminal screen.

« LIST output now gives ISNs, and XREF output now identifies variables :
referenced but not initialized. @

Xii VS FORTRAN Language and Library Reference

Improved I/O Support

An explicit SDUMP compiler option is now available (previously, this was
available only as an installation-wide default).

SDUMP tables have been condensed and simplified, decreasing object module
size. The symbol table size, however, remains the same.

Execution-time error messages have been expanded to supply line numbers,
ISNs, and offsets.

The following improvements have been made to VS FORTRAN I/0 statements:

Release 3.1, March 1984

For sequential unformatted 1/0, you can now use all record formats. Fixed,
fixed blocked, undefined, variable, and variable spanned formats are
supported.

You can now use data initialization values in the character and double
precision explicit-type statements.

You can specify a character type unit designator for list-directed READ and
WRITE statements. This allows you to do list-directed reads and writes to an
internal file.

The NUM parameter is now a valid control list parameter for the unformatted
READ 1/0 statements for LANGLVL(77). The NUM parameter returns the
number of bytes transferred.

Several extensions have been made to the namelist READ and WRITE
statements. You can now use the keywords UNIT and FMT. The unit
designator for namelist I/O can be character type, so you can do namelist
reads and writes to an internal file. The unit designator can also be an asterisk
to represent an installation-dependent unit. You can now use a shortened form
for reading and printing at LANGLVL(77).

VS FORTRAN Interactive Debug Support

When a VS FORTRAN program is executed, the user has a choice of two different
execution options:

DEBUG, which activates VS FORTRAN Interactive Debug immediately; and

NODEBUG, the IBM default, which does not invoke VS FORTRAN
Interactive Debug.

Note: The TEST compiler option is not necessary for VS FORTRAN Interactive
Debug.

Summary of Amendments Xiii

Release 3.0, March 1983

Character Data Type Handling

VS FORTRAN Release 3.0 provides for passing character length arguments in a
manner that is not apparent to the user.

In addition:
« Character and noncharacter data types are allowed in the same common block.

¢ Character and noncharacter data types are allowed in an EQUIVALANCE
relationship.

« The CHARLEN compiler option may be specified to set the maximum length
of the character data type to a range of 1 through 32767. The default
maximum length remains 500 characters, or whatever was set at installation
time.

« The SC option has been removed because the character length is now passed in
a manner that is not apparent to the user.

Debugging and Diagnostic Aids

o The TRMFLG compiler option may be specified to display a source statement
in error on the SYSTERM data set, along with the diagnostic message.

e A symbolic dump of variables at abnormal termination can be obtained for
modules not compiled with the NOSDUMP compiler option.

« A symbolic dump of variables in a module not compiled with the NOSDUMP
option can be obtained on request by calling the SDUMP library routine.

« The SYM compiler option may be specified to produce SYM cards along with
the object deck.

« The SRCFLG compiler option may be specified to insert diagnostic messages
in the printed source listing.

INCLUDE Statement Improvement
« INCLUDE statements can be selectively activated during compilation.
« Blocked file support has been added to the INCLUDE facility.
Miscellaneous Changes

+« OPEN, CLOSE, and INQUIRE parameters that are constants are checked at
compile time.

» VS FORTRAN continues executing after transmission input/output errors
have occurred.

XiV VS FORTRAN Language and Library Reference

o Formatting for a new direct-access data set has been provided for the OPEN
statement.

« For direct-access 1/0, the records of a file must be either all formatted or all
unformatted, not mixed.

« Various service changes have been made.

Warning: Every program that has been compiled with versions of VS FORTRAN
previous to Release 3.0, and that either references or defines a user subprogram

that has character-type arguments or is itself of character type, must be recompiled

with VS FORTRAN Release 3.0.

Summary of Amendments

XV

Contents

Part 1. Language Reference 1

Chapter 1. Introduction 3

Language 3

Compiler 3

Execution-Time Library 3

Valid and Invalid VS FORTRAN Programs 4

Chapter 2. VS FORTRAN Language 5
Language Definitions 5
Language Syntax 6
Input Records 6
Source Language Statements 7
Source Statement Characters 10
Names 11
Statement Labels 13
Keywords 13

Chapter 3. VS FORTRAN Data 15
Constants 15

Arithmetic Constants 16

Logical Constants 21

Character Constants 21

Hollerith Constants 22

Hexadecimal Constants 23
Variables 24

Variable Names 24

Variable Types and Lengths 25
Array 28

Subscripts 28

Size and Type Declaration of an Array 30
Character Substrings 32

Chapter 4. VS FORTRAN Expressions 35

Evaluation of Expressions 35

Arithmetic Expressions 36
Arithmetic Operators 36
Rules for Constructing Arithmetic Expressions 37
Use of Parentheses in Arithmetic Expressions 39
Type and Length of the Result of Arithmetic Expressions
Exampies of Arithmetic Expressions 43

Character Expressions 44
Use of Parentheses in Character Expressions 45

39

Contents

xvii

Relational Expressions 45

Logical Expressions 47
Logical Operators 48
Order of Computations in Logical Expressions 49
Use of Parentheses in Logical Expressions 51

&

Chapter 5. VS FORTRAN Statements 53
VS FORTRAN Statement Categories 53
Assignment Statements 54
Control Statements 54
DATA Statement 54
Debug Statements 54
Input/Output Statements 55
PROGRAM Statement 55
Specification Statements 55
Subprogram Statements 56
VS FORTRAN Compiler Directive Statements 57
Order of Statements in a Program Unit 57
VS FORTRAN Statement Descriptions 58
Arithmetic IF Statement 59
ASSIGN Statement 59
Assigned GO TO Statement 60
Assignment Statements 60
AT Statement 66
BACKSPACE Statement 67 -
BLOCK DATA Statement 69
Block IF Statement 70
CALL Statement 70 @
Character Type Statement 73 -
CLOSE Statement 74
Comments 76
COMMON Statement 77
Complex Type Statement 79
Computed GO TO Statement 79
CONTINUE Statement 79
DATA Statement 80
DEBUG Statement 82
DELETE Statement 87
DIMENSION Statement 87
DISPLAY Statement 88
DO Statement 89
Double Precision Type Statement 93
EJECT Statement 94
ELSE Statement 94
ELSE IF Statement 94
END Statement 94
END DEBUG Statement 95
ENDFILE Statement 96
END IF Statement 97
ENTRY Statement 97
EQUIVALENCE Statement 101
Explicit Type Statement 103
EXTERNAL Statement 108
FORMAT Statement 108 O

XVviii VS FORTRAN Language and Library Reference

FUNCTION Statement 137
GO TO Statements 142

IF Statements 145

IMPLICIT Type Statement 151
INCLUDE Statement 153
INQUIRE Statement 154
INTRINSIC Statement 164
Logical IF Statement 165
Logical Type Statement 165
NAMELIST Statement 166
OPEN Statement 168
PARAMETER Statement 173
PAUSE Statement 175

PRINT Statement 175
PROGRAM Statement 177
READ Statements 178

REAL Type Statement 221
RETURN Statement 222
REWIND Statement 225
REWRITE Statement—Formatted with Keyed Access 227
REWRITE Statement—Unformatted with Keyed Access 230
SAVE Statement 232
Statement Function Statement 233
Statement Numbers 236

STOP Statement 237
SUBROUTINE Statement 238
TRACE OFF Statement 243
TRACE ON Statement 243
Unconditional GO TO 243
WAIT Statement 244

WRITE Statements 246

Chapter 6. VS FORTRAN Intrinsic Functions 285

Part 2. Library Reference 303
Chapter 7. Introduction 305

Chapter 8. Mathematical, Character, and Bit Subprograms 307
Explicitly Called Subprograms 307
Implicitly Called Subprograms 308

Chapter 9. Service and Utility Subroutines 313
Mathematical Exception Test Subprograms 313
DVCHK Subroutine 313

OVERFL Subroutine 313

Utility Subprograms 314

DUMP/PDUMP Subroutine 315
CDUMP/CPDUMP Subroutine 317

EXIT Subroutine 317

OPSYS Subroutine (VSE Only) 318

SDUMP SUBROUTINE 319

XUFLOW SUBROUTINE 322

Contents

Xix

Chapter 10. Extended Error Handling Subroutines and Error Option Table
Extended Error Handling 323
Error Handling Subroutines 324
ERRMON Subroutine 324
ERRSAYV Subroutine 325
ERRSET Subroutine 325
ERRSTR Subroutine 329
ERRTRA Subroutine 329
Error Option Table 330

Appendix A. Source Language (FIPS) Flagger 347
Items Flagged for Full ANS Language 347
Global Items Flagged 347
Statements Flagged 347
Execution-Time Cautions 349

Appendix B. IBM and ANS FORTRAN Features 351
New ANS FORTRAN 1977 Features 351

General Features 351

New Statements 353

New Features in Old Statements 353
Old IBM Extensions Now in ANS FORTRAN 1977 356
IBM Extensions Not in ANS FORTRAN 1977 357
LANGLVL(66) Features Not in LANGLVL(77) 358

Appendix C. EBCDIC and ISCII/ASCII Codes 361

Appendix D. Algorithms for Library Mathematical Functions 369
Control of Program Exceptions in Mathematical Functions 370
Explicitly Called Subprograms 372
Absolute Value Subprograms 372
Arcsine and Arccosine Subprograms 373
Arctangent Subprograms 376
Error Functions Subprograms 379
Exponential Subprograms 384
Gamma and Log Gamma Subprograms 387
Hyperbolic Sine and Cosine Subprograms 390
Hyperbolic Tangent Subprograms 392
Logarithmic Subprograms (Common and Natural) 393
Sine and Cosine Subprograms 398
Square Root Subprograms 401
Tangent and Cotangent Subprograms 405
Implicitly Called Subprograms 409
Complex Multiply and Divide Subprograms 409
Complex Exponentiation 411
Exponentiation of a Real Base to a Real Power 412
Exponentiation of a Real Base to an Integer Power 414
Exponentiation of an Integer Base to an Integer Power 416
Exponentiation of a Base 2 Argument to a Real Power 416

Appendix E. Storage Estimates 417

Appendix F. Accuracy Statistics 425

XX VS FORTRAN Language and Library Reference

323

O

O

Appendix G. Assembler Language Information 433
Library Availability 433
Calling Sequences 434

Assembler Language Calling Sequence 435
Supplying Correct Parameters 435

Mathematical Subprogram Results 436
Space Considerations 436
Initializing the Execution Environment 436

Appendix H. Sample Storage Printouts 445
Output from Symbolic Dumps 447
Output Format 447
Scalar Noncharacter 448
Scalar Character 448
Array 449
Control Flow Information 450
I/0 Unit Information 451
I/0 Unit Status Information 452
Examples of Sample Programs and Symbolic Dump Output

Appendix 1. Library Procedures and Messages 463
Library Interruption Procedures 463
Library Error Procedures 463
Library Messages 464
Program-Interrupt Messages 465
Execution Error Messages 468
Operator Messages 531

Appendix J. Library Module Names 533
Glossary 545

Index 551

452

Contents

XXi

Figures

e Aol ol

19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

Example of Fixed-Form Source Statements 8

Example of Free-Form Source Statements 10

Source Statement Characters (VS FORTRAN Character Set) 11
Data Types and Valid Lengths 26

Examples of Arithmetic Expressions 36

Arithmetic Operators 37

Hierarchy of Arithmetic Operations 38

Type and Length of Result Where the First Operand Is Integer 40
Type and Length of Result Where the First Operand Is Real 41
Type and Length of Result Where the First Operand Is Complex 42
Character Operator 44

Relational Operators 45

Logical Operators 48

Hierarchy of Operations Involving Arithmetic Operators 49
Hierarchy of Operations Involving Character Operators 50
Type and Length of the Result of Logical Operations 52

Order of Statements and Comment Lines 58

Conversion Rules for the Arithmetic Assignment Statement a=b, Where
Type of b Is Integer or Real 62

Conversion Rules for the Arithmetic Assignment Statement a=b, Where
Type of b Is Complex 63

Field Widths Needed for Data Types of Various Lengths 276
Logarithmic and Exponential Functions 288

Trigonometric Functions 289

Hyperbolic Functions 291

Miscellaneous Mathematical Functions 292

Conversion and Maximum/Minimum Functions 296

Character Manipulation Functions 299

Bit Manipulation Functions 300

Generic Names for Intrinsic Functions 301

Implicitly Called Mathematical Subprograms 309

Implicitly Called Character Subprograms 310

Implicitly Called Service Subprograms 311

Exponentiation with Integer Base and Exponent 311
Exponentiation with Real Base and Integer Exponent 311
Exponentiation with Real Base and Exponent 312
Exponentiation with Complex Base and Integer Exponent 312
Option Table Preface Entry 330

Error Option Table Entry 331

Option Table Default Values 333

IOSTAT and ERR Parameters Honored for I/O Errors 334
Corrective Action after Error 336

Corrective Action after Program Interrupt 340

Corrective Action after Mathematical Subroutine Error 342

Figures

xxiii

43.
44,
45.
46.
47.
48.
49.
50.
51.
52.
53.
54.
55.
56.

57.
58.
59.

Mathematical Subprogram Storage Estimates 417

Service Subprogram Storage Estimates 421 P
Character Subprogram Storage Estimates 421
Bit Subprogram Storage Estimates 422

Table of Storage Estimates for Library Execution-Time Routines 424

Accuracy Figures 427

Explicitly Called Mathematical Subprogram Assembler Information 438

Implicitly Called Mathematical Subprogram Assembler Information 440

Implicitly Called Character Subprogram Assembler Information 440

Service Subprogram Assembler Information = 441

Explicitly Called Bit Function Assembler Information 441

General Assembler Language Calling Sequence 442

Examples of Assembler Language Calling Sequences 443

Sample Storage Printout for DUMP/PDUMP and

CDUMP/CPDUMP 446

Sample Storage Printout for SDUMP 447

Entry Names for Library Modules 533

Reentrant Library Module Names 543

XXiV VS FORTRAN Language and Library Reference

Part 1. Language Reference

The following topics are discussed in Part 1:

Introduction
VS FORTRAN Language
VS FORTRAN Data

VS FORTRAN Expressions

O

VS FORTRAN Statements

Part 1. Language Reference

1

O

C

Chapter 1. Introduction

Language

Compiler

IBM VS FORTRAN consists of a language, a compiler, and an execution-time
library of subprograms.

The VS FORTRAN language consists of a set of characters, conventions, and rules
that are used to convey information to the compiler. The basis of the VS
FORTRAN language is a statement containing combinations of element names,
operators, constants, and words (keywords) whose meaning is predefined to the
compiler.

The VS FORTRAN language is best suited to applications that involve
mathematical computations and other manipulation of arithmetic data.

In the process of compilation, a program called the VS FORTRAN compiler
analyzes the source program statements and translates them into a machine
language program called the object program, which can be combined with library
routines to form a program suitable for execution. When the VS FORTRAN
compiler detects errors in the source program, it produces appropriate diagnostic
messages.

The VS FORTRAN compiler operates under the control of an operating system
that provides it with input, output, and other services. Object programs generated
by the VS FORTRAN compiler also operate under operating system control and
depend on it for similar services.

Execution-Time Library

The VS FORTRAN execution-time library consists of subroutines and functions
supplied as part of the product. For complete information on the library, see “Part
2. Library Reference” on page 303 For a description of the intrinsic functions and
source subroutines to which the user may refer directly in VS FORTRAN
statements, see ‘“Explicitly Called Subprograms” on page 307. For a discussion of
extended error handling subroutines, see Chapter 10, “Extended Error Handling
Subroutines and Error Option Table” on page 323.

Chapter 1. Introduction 3

Subroutines and functions to furnish any commonly used code sequences can be

compiled and added to an execution-time library by the user. When written in VS

FORTRAN, these can be structured as function, subroutine, or block data ' O
subprograms. Other source languages can be used if the subroutines are accessible

by VS FORTRAN calls. User subroutines may reside in the supplied library data

set or in a private data set called at load or link-edit time.

Valid and Invalid VS FORTRAN Programs

This manual defines the rules (that is, the syntax, semantics, and restrictions)
applicable for writing valid VS FORTRAN programs, either for the 1978 Standard
or for the 1978 Standard plus IBM extensions. Most violations of the VS
FORTRAN language rules are diagnosed by the compiler; however, some syntactic
and semantic combinations are not diagnosed, some because they are detectable
only at execution time, others for performance reasons. VS FORTRAN programs
that contain these undiagnosed combinations are invalid VS FORTRAN programs,
whether or not they execute as expected.

.

4 VS FORTRAN Language and Library Reference

C

Chapter 2. VS FORTRAN Language

A VS FORTRAN program is made up of three basic elements:

Data Consists of constants, variables, and arrays. See Chapter 3, “VS
FORTRAN Data” on page 15.

Expressions Executable sets of arithmetic, character, logical, or relational data.
See Chapter 4, “VS FORTRAN Expressions” on page 35.

Statements Combinations of data and expressions. See “VS FORTRAN
Statement Descriptions” on page 58.

Language Definitions

Some of the terms used in the discussion of the VS FORTRAN programming
language are defined as follows:

Main program. A program unit, required for execution, that can call other program
units but cannot be called by them. A main program does not have a FUNCTION,
SUBROUTINE, or BLOCK DATA statement as its first statement. The main
program is the first program unit to receive control at execution time.

Subprogram. A program unit that is invoked by another program unit in the same
program. In FORTRAN, a subprogram has a FUNCTION, SUBROUTINE, or
BLOCK DATA statement as its first statement.

Procedure. A sequenced set of statements that may be used at one or more points
in one or more computer programs, and that usually is given one or more input
parameters and returns one or more output parameters. A procedure consists of
subroutines, function subprograms, and intrinsic functions.

Intrinsic function. A function, supplied by VS FORTRAN, that performs
mathematical or character operations. (See “INTRINSIC Statement” on
page 164.)

External procedure. A subroutine or function subprogram written in FORTRAN
or in a language accessible by VS FORTRAN calls.

Executable program. A program that can be executed as a self-contained

procedure. It consists of a main program and, optionally, one or more subprograms
or non-FORTRAN-defined external procedures, or both.

Chapter 2. VS FORTRAN Language 5

Language Syntax

Input Records

Executable statement. A statement that moves data, performs an arithmetic,

character, logical, or relational operation, or alters the sequential execution of
statements. ‘@

Nonexecutable statement. A statement that describes the characteristics of the
program unit, of data, of editing information, or of statement functions, but does
not cause an action to be taken by the program.

Preconnected file. A unit or file that was defined at installation time. However, a
preconnected file does not exist for a program if the file is not defined by a

FILEDEF command or by job control statements.

Program unit. A sequence of statements constituting a main program or
subprogram.

Additional definitions can be found in the “Glossary” on page 545.

The meaning of an input program is determined from keywords, special characters,
and rules that group these keywords and characters together to form source
language statements. For the compiler to understand its input, certain syntax rules
must be carefully adhered to when entering the following items:

Source language statements

Source statement characters \
Names))/

Statement labels
Keywords

VS FORTRAN accepts source input in either of two formats:

¢ Fixed-form input format

[IBM Extension]

e Free-form input format

L End of IBM Extension I

A program unit must be written in either fixed form or free form, not both. For a
detailed description of the use and implementation of the two formats, see the
FIXED | FREE compiler option in the V'S FORTRAN Programming Guide.

The VS FORTRAN compiler receives its input in fixed-length, 80-byte records.
Each record is equivalent to one 80-column card or one 80-character input line on
a terminal.

6 VS FORTRAN Language and Library Reference

Source Language Statements

Fixed-Form Input Format

The rules for forming each type of source language statement are defined in
Chapter 5, along with a description of that statement’s purpose and function. The
following discussion of source language statements is limited to the rules by which
input lines are classified as comments or other source language statements, and to
the correct format of input lines.

There are two major kinds of input lines: statements and comments.

« Statements, which may occupy one or more input lines, provide the information
needed by the VS FORTRAN Compiler to create the object program.

« Comments are descriptive remarks about the program unit in which they
reside. Comments are copied onto the source program listing; otherwise, they
are not processed by the compiler. Comments are not present in the object
program and have no effect on program execution. Comment lines can be used
to separate blocks of source language statements on the source program listing
to make the program more readable.

The statements and comments of a VS FORTRAN source program in fixed form
must conform to the following rules:

+« Comments

A comment line must begin with a C or an asterisk (*) in column 1.
Comments may appear anywhere in columns 2 through 72. Comment lines
may appear anywhere in a program unit before the END statement.
(Comment lines may precede a continuation line.) Blank lines may appear
anywhere in a program unit and are processed as comment lines.

« Statement Text

The text of a fixed-form statement is written in columns 7 through 72 on 1 to
20 lines. The statement text may continue on as many as 19 continuation lines.
Multiple statements per line are not allowed. Every statement in a program
unit may have a label in columns 1 to 5. Column 6 is used to distinguish
between initial and continuation lines. Columns 73 through 80 are not part of
the statement and may be used for identification. A statement is terminated by
another statement or by the end of the input.

o Statement Labels

The statement label consists of from 1 to 5 decimal digits anywhere in columns
1 to 5 in the initial line of a statement. The value must not be zero. Values of
labels do not affect the order in which statements are compiled or executed.
Each label must be unique; that is, the same label must not be given to more
than one statement within a program unit.

Chapter 2. VS FORTRAN Language 7

o Initial Line

Column 6 of the initial line of a statement must be a blank or a zero. The @
initial line of every statement may be labeled. If a statement does not have a
label, then the statement text must begin on the initial line. The initial line

cannot be blank.

¢ Continuation Lines
A statement that is not complete on the initial line may continue in columns 7

through 72 on as many as 19 continuation lines. A continuation line must have
a character that is not blank or zero in column 6.

| IBM Extension]

VS FORTRAN allows columns 1 through 5 on a continuation line to contain
characters, but they are ignored. (Note that a C or an asterisk (*) in column 1
will cause the line to be treated as a comment.)

[End of IBM Extension I

« Identification

Columns 73 through 80 of any input line are not significant to the compiler
and may, therefore, be used for identification, sequencing, or any other
purpose.

As many blanks as desired may be written on a statement or comment to improve @
readability. They are ignored by the compiler. However, blanks inserted in literal
or character data are retained and treated as blanks within the data.

Figure 1 illustrates fixed-form source statements.

Column: 1 6 73 80
c SAMPLE TEXT "7 saMP0010

10 D=010.5 SAMP0210

GO TO 56 SAMP0220

150 A=B+C* (D+E**F+ SAMP0230

1G+H~2.* (G+P)) SAMP0240

C=3. SAMP0250

.

Figure 1. Example of Fixed~Form Source Statements

8 VS FORTRAN Language and Library Reference

Free-Form Input Format

IBM Extension]

Free-form input permits greater freedom in arranging the input text of a program
than does fixed-form input. The following rules govern free-form input:

« Comments

A comment line begins with a quotation mark (") in column 1. A comment
line must not follow a continued line, and cannot itself be continued. Blank
lines are not allowed with free-form input.

« Statement Text

The text of free-form statements is entered in 80 columns on 1 to 20 lines.

The first character of a statement (after a label, if any) must be alphabetic.
Multiple statements per line are not allowed. The statement text may continue
on as many as 19 succeeding continuation lines. A continued line has a minus
sign (-) as the final (rightmost) character on the line. The line following a
continued line is a continuation line. A statement is terminated by an initial or
continuation line that does not end with a minus sign. Columns 73 through 80,
which may be used for identification in fixed-form statements, are considered
part of the statement text in free form.

« Statement Labels

The initial line of a statement may contain a label as the first (leftmost) entry
on the line. A label may contain 1 to 5 decimal digits. Blanks and leading
zeros are ignored. The value must not be zero. The values of labels do not
affect the order in which statements are compiled or executed. Each label must
be unique; that is, the same label must not be given to more than one statement
in a program unit. '

o Initial Line
The initial line of a statement may have a label. The first character of the
statement text must be alphabetic. If a statement does not have a label, then
the statement text must begin on the initial line. (Blank lines are not allowed.)
« Continued Lines
The text of any statement, except the END statement, may continue on the
following line. A line to be continued is indicated by terminating the line with
a minus sign (-). A comment line cannot be continued.
« Preserving a Minus Sign
If the last character in a line is a minus sign, the VS FORTRAN compiler
assumes it indicates continuation and discards it. If the last two characters in a

line are minus signs, only the last one is taken as a continuation character, and
the preceding one is preserved as a minus sign.

Chapter 2. VS FORTRAN Language 9

« Continuation Lines

A continuation line is a line following a continued line. The statement text may @
start in any position. Up to 19 continuation lines are permitted in a single =
statement.

o Maximum Statement Length

The maximum length of a free-form source statement is 1320 characters,
excluding the continuation characters and the statement label. Blank
characters are counted in the total number of characters. Any blank characters
after the continuation characters are not counted.

Figure 2 illustrates free-form source statements.

Column: 1

"SAMPLE TEXT

.

10D=010.5

GO TO 56

150 A=B+C* (D+E**F+-
G+H-2.%* (G+P))

C=3.

Figure 2. Example of Free-Form Source Statements

| End of IBM Extension

Source Statement Characters
The characters listed in Figure 3 on page 11 constitute the set of characters
acceptable in a VS FORTRAN program. The set is commonly referred to as the
VS FORTRAN character set.

A special character may be an operator (or part of an operator), part of a constant,
or have some other special meaning. The interpretation is implied by the context.

10 VS FORTRAN Language and Library Reference

Names

The special characters shown in Figure 3 are listed in their correct collating
sequence. (The complete collating sequence can be found in Appendix
C, “EBCDIC and ISCII/ASCII Codes” on page 361.)

SPECIAL CHARACTERS LETTERS DIGITS

blank
period
(left parenthesis
+ plus sign

$ currency sign

* asterisk

) right parenthesis
- minus sign

/ slash

, comma

colon

apostrophe

= equal sign

oSNNI EFWN—=O

ZXIrRARcCc—IoOMMOoOO®@>
N N<KXESKCHOVNTO VO

quotation mark

Figure 3. Source Statement Characters (VS FORTRAN Character Set)

Names (referred to as ‘“‘symbolic names” in old FORTRAN publications) can be
assigned to the elements of a program unit.

—— Definition

Name—A string of 1 through 6 letters (A,B,...,Z) or digits (0,1,...,9), the first
of which must be a letter.

| IBM Extension |

With this compiler, the currency symbol ($) is treated as a letter when
used in a name. Therefore, the currency symbol ($) can be used as the first
character in a name.

[End of IBM Extension I

Names can be used to identify the following items in a program unit:
o An array and the elements of that array (see “Array” on page 28)
e A variable (see “Variables” on page 24)

o A constant (See “PARAMETER Statement” on page 173)

Chapter 2. VS FORTRAN Language 11

e A main program (see “PROGRAM Statement” on page 177)

o A statement function (see ‘“‘Statement Function Statement” on page 233)

¢ An intrinsic function (see “INTRINSIC Statement” on page 164)

« A function subprogram (see “FUNCTION Statement” on page 137)

« A subroutine subprogram (see “SUBROUTINE Statement” on page 238)

« A block data subprogram (see “BLOCK DATA Statement” on page 69)

¢ A common block (see “COMMON Statement” on page 77)

« An external user-supplied subprogram that cannot be classified by its usage in
that program unit as either a subroutine or function subprogram name (see
“EXTERNAL Statement” on page 108)

« A NAMELIST (see “READ Statement—NAMELIST with External Devices”
on page 216 and ‘“WRITE Statement—NAMELIST with External Devices”
on page 280)

A name that identifies a constant, variable, array, external function, or statement

function also identifies its data type. The name may be specified in a specification

statement (see ‘‘Specification Statements” on page 55). If the name does not

appear in such a statement, the type is implied by the first letter of the name. A

first letter of I through N implies integer type, and any other letter (or the currency

symbol) implies real type, unless an IMPLICIT statement is used to change the
default type.

Names are either global or local. Global names are recognized both internal to and

external to a program unit. Local names are recognized internal to the program

unit where they are referenced.

o Classes of global names are:

— Common block

— External function

— Subroutine

— Main program

— Block data subprogram

o Classes of local names are:
— Array

— Variable

— Constant

12 VS FORTRAN Language and Library Reference

Statement Labels

Keywords

— Statement function
— Intrinsic function
— Dummy procedure

Names must be unique within a class in a program unit and can identify elements of
only one class, except in the following situations:

+ A common-block name can also be an array, variable, or statement function
name in a program unit,

« A function subprogram name must also be a variable name in the function
subprogram.

The name of a main program, subroutine, common block, NAMELIST, or block
data subprogram has no type. A generic function name has no predetermined type;
it assumes a type dependent upon the type of its argument(s).

Once a name is used as a main program name, a function subprogram name, a
subroutine subprogram name, a block data subprogram name, a common-block
name, or an external procedure name in any unit of an executable program, no
other program unit of that executable program can use that name to identify an
entity of these classes in any other way.

Statement labels uniquely identify statements within a VS FORTRAN program
unit. Labels may be given to every statement; however, a label is significant to the
VS FORTRAN compiler only when it identifies:

A statement to which control is passed
The end of a sequence of statements which are to be executed repeatedly
A formatting statement
A statement label is a sequence of from 1 to 5 decimal digits, one of which must be

nonzero. It can be written in either fixed form or free form. See ‘“‘Statement
Numbers” on page 236.

Keywords identify VS FORTRAN-supplied procedures (intrinsic functions) that
can be used as part of any program. These procedures are mathematical functions
and service subroutines, which are supplied to save programmers time. See
Appendix B, “IBM and ANS FORTRAN Features” on page 351.

A keyword is a specified sequence of characters. Whether a particular sequence of

characters identifies a keyword or a name is implied by the context. There is no
sequence of characters that is reserved in all contexts.

Chapter 2. VS FORTRAN Language 13

Chapter 3. VS FORTRAN Data

Data is a formal representation of facts, concepts, or instructions. VS FORTRAN
manipulates three general kinds of data:

« Constants

« Variables

e Arrays

Note: These are not to be confused with data types. Data types correspond to the

the five types of variables, as discussed under ‘“Variable Types and Lengths” on
page 25.

Constants

O A constant is a fixed, unvarying quantity. There are several classes of constants:

Arithmetic constants specify decimal values. There are three arithmetic
constants:

Integer
Real
Complex

» Logical constants specify a logical value as “‘true” or “false.” There are two
logical constants:

.TRUE.
.FALSE.

+ Character constants are a string of alphameric and/or special characters
enclosed in apostrophes.

[IBM Extension

+ Hollerith constants are used only in FORMAT statements.

« Hexadecimal constants are used only as data initialization values of any type of
variable.

Ck) I End of IBM Extension

Chapter 3. VS FORTRAN Data 15

Arithmetic Constants

Integer Constants

The PARAMETER statement allows a constant to be given a name. (See
“PARAMETER Statement” on page 173.) @

Arithmetic constants fall into three categories: integer, real, and complex.

An unsigned constant is a constant with no leading sign. A signed constant is a
constant with a leading plus or minus sign. An optionally signed constant is a
constant that may be either signed or unsigned. Only integer and real constants
may be optionally signed.

— Definition

Integer Constant—A string of decimal digits containing no decimal point and
expressing a whole number. It occupies 4 bytes of storage.

Mazximum Magnitude: 2147483647 (that is, 231-1).

Y

An integer constant may be positive, zero, or negative. If unsigned and nonzero, it
is assumed to be positive. (A zero may be written with a preceding sign with no
effect on the value.) Its magnitude must not be greater than the maximum, and it
must not contain embedded commas.

Valid Integer Constants: @

0

91

173

-2147483647

Invalid Integer Constants:

27. Contains a decimal point.
3145903612 Exceeds the maximum magnitude.
5,396 Contains an embedded comma.
-2147483648 Exceeds the maximum magnitude,

even though it fits into 4 bytes.

16 VSFORTRAN Language and Library Reference

Real Constants
0 — Definition

Real Constant—A string of decimal digits that expresses a real number. It
can have one of three forms: a basic real constant, a basic real constant
followed by a real exponent, or an integer constant followed by a real
exponent.

A basic real constant is a string of digits with a decimal point. It is used to
approximate the value of the constant in 4 bytes of storage.

The storage requirement (length) of a real constant can also be explicitly
specified by appending an exponent to a basic real constant or an integer
constant. The standard exponents consist of the letters E and D.

| ‘ IBM Extension |

This compiler also allows the letter Q as an exponent.

L : End of IBM Extension

An exponent is followed by a signed or unsigned 1- or 2-digit integer constant.
The letter E specifies a constant of length 4 and occupies 4 bytes of storage; the
letter D specifies a constant of length 8 and occupies 8 bytes of storage.

0 | IBM Extension [

The letter Q specifies a constant of length 16 and occupies 16 bytes of storage.

L End of IBM Extension

Magnitude: 0 or 16-65 (approximately 10-78)
through 1663 (approximately 1075)

Precision: (Four bytes) 6 hexadecimal digits
(approximately 6 decimal digits)

(Eight bytes) 14 hexadecimal digits
(approximately 15 decimal digits)

IBM Extension |

(Sixteen bytes) 28 hexadecimal digits
(approximately 32 decimal digits)

L End of IBM Extension l

A real constant may be positive, zero, or negative (if unsigned and nonzero, it is

assumed to be positive) and must be within the allowable range. It may not contain
0 embedded commas. A zero may be written with a preceding sign with no effect on

the value. The decimal exponent permits the expression of a real constant as the

Chapter 3. VS FORTRAN Data 17

product of a basic real constant or integer constant and 10 raised to a desired

power, mm

Valid Real Constants (Four Bytes):

+0.

-999.9999

7. 0E+0 ' That is, 7.0 x 100 = 7.0
9761.25E+1 That is, 9761.25 x 101 = 97612.5
7.E3

7.0E3 That is, 7.0 x 103 = 7000.0
7.0E+03

7E-03 That is, 7.0 x 10-3 = 0.007

21.98753829457168 Note: This is a valid real constant, but
it cannot be accommodated in four bytes.
It will be accepted and truncated.

Valid Real Constants (Eight Bytes):

1234567890123456.D-73 Equivalent to .1234567890123456x10-57

7.9D03

7.9D+03 That is, 7.9 x 103 = 7900.0
7.9D+3

7.9D0 That is, 7.9 x 100 = 7.9

7D03 That is, 7.0 x 103 = 7000.0

[IBM Extension

Valid Real Constants (Sixteen Bytes):
.234523453456456734565678Q+43

5.001Q08

I End of IBM Extension I

{4

18 VS FORTRAN Language and Library Reference

Complex Constants

Invalid Real Constants:

1 Missing a decimal point or a
decimal exponent.

3,471.1 Embedded comma.
1.E Missing a 1- or 2-digit integer constant

following the E. It is not interpreted
as 1.0 x 100,

1.2E+113 Too many digits in the exponent.
23.5D+97 Magnitude outside the allowable range,
that is, 23.5 x 1097.>1663.
21.3D-99 Magnitude outside the allowable range,
that is, 21.3 x 10-99<16-65.
IBM Extension
88.63215748Q123 Too many digits in the exponent
End of IBM Extension |

—— Definition

Complex Constani—An ordered pair of signed or unsigned integer or real
constants separated by a comma and enclosed in parentheses. The first
constant in a complex constant represents the real part of the complex
number; the second represents the imaginary part of the complex number.

The real or integer constants in a complex constant may be positive, zero, or
negative and must be within the allowable range. (If unsigned and nonzero, they
are assumed to be positive.) A zero may be written with a preceding sign, with no
effect on the value. If both constants are of integer type, however, then both are
converted to real type, of 4-byte length.

| IBM Extension |

If the constants of the ordered pair representing the complex constant differ in
precision, the constant of lower precision is converted to a constant of the higher
precision.

For example, if one constant is real and the other is double precision, real is
converted to double precision.

Chapter 3. VS FORTRAN Data 19

If the constants differ in type, the integer constant is converted to a real constant
of the same precision as the original real constant. @

For example, if one constant is integer and the other is double precision, the
integer constant is converted to a double precision constant.

I End of IBM Extension |

Valid Complex Constants (i = square root of -1):

(3,-1.86) Has the value 3.- 1.861i;
both parts are real
(4 bytes long).

| IBM Extension

(-5.0E+03, .16D+02) Has the value -5000.+16.01;
both parts are double
precision.

(4.7D+2,1.973614D4) Has the value 470.4+19736.141i.

(47D+2,38D+3) Has the value 4700.+38000.1i.

(1234.345456567678Q59,-1.0Q-5)

(45Q6,6E45) . Both parts are real (16 bytes
long) .
| End of IBM Extension | @
Invalid Complex Constants:
(A, 3.7) Real part is not a constant.
| IBM Extension

(.00090Q-1,7643.0+1199) Too many digits in the exponent
of the imaginary part.

(49.76, .015D+92) Magnitude of imaginary part is
outside of allowable range.

Il End of IBM Extension I

20 VS FORTRAN Language and Library Reference

O

C

Logical Constants

Character Constants

—— Definition

Logical Constant—A constant that can have a logical value of either true or
false.

There are two logical constants:

.TRUE.
.FALSE.

The words TRUE and FALSE must be preceded and followed by periods.
Each occupies 4 bytes.

| IBM Extension

The abbreviations T and F (without the periods) may be used for TRUE. and
.FALSE., respectively, only for the initialization of logical variables or logical
arrays in the DATA statement or in the explicit type statement. For use as
input/output data, see “L Format Code” under “FORMAT Statement.”

I End of IBM Extension

The logical constant .TRUE. or .FALSE., when assigned to a logical variable,
specifies that the value of the logical variable is true or false, respectively. (See
“Logical Expressions” on page 47.)

— Definition

Character Constant—A string of any characters capable of representation in
the processor. The string must be enclosed in apostrophes.

The delimiting apostrophes are not part of the data represented by the constant.
An apostrophe within the character data is represented by two consecutive
apostrophes, with no intervening blanks. In a character constant, blanks embedded
between the delimiting apostrophes are significant. The length of a character
constant must be greater than zero. Each character requires one byte of storage.

The maximum length of a character constant depends upon the circumstance of use
and, where significant, the number of continuation cards. The number of
continuation cards are as follows:

o Data initialization (maximum of 1310)

« Assignment statement (maximum of 1316)

« Argument of a call (maximum of 1311)

Chapter 3. VS FORTRAN Data 21

« Input or output statement (maximum of 1309)
« FORMAT statement (maximum of 1310)

« PARAMETER statement (maximum of 255)
« PAUSE or STOP statement (maximum of 72)

A character constant may be used as a data initialization value, or in any of the
following:

« A character expression

o An assignment statement

¢ The argument list of a CALL statement or function reference
¢ An input or output statement

e A FORMAT statement

« A PARAMETER statement

« A PAUSE or STOP statement

Valid Character Constants: Length:
'DATA' 4
'X—-COORDINATE Y-COORDINATE Z-COORDINATE' 44
'3.14' 4
"DON"T' 5

IBM Extension
Hollerith Constants
—— Definition

Hollerith Constant—A string of any characters capable of representation in
the processor and preceded by wH, where w is the number of characters in
the string. The value of w (the number of characters in the string), including
blanks, may not be less than 1 or greater than 255.

Each character requires one byte of storage.

Hollerith constants can be used in FORMAT statements as well as in initialization
statements, other than in CHARACTER initialization.

22 VS FORTRAN Language and Library Reference

Hexadecimal Constants

Valid Hollerith Constants:
24H INPUT/OUTPUT AREA NO. 2

6H DON'T

—— Definition

Hexadecimal Constant—The character Z, followed by two or more
hexadecimal numbers formed from the set of characters O through 9 and A
through F.

A hexadecimal constant may be used as a data initialization value for any type of
variable or array.

One byte contains 2 hexadecimal digits. If a constant is specified as an odd
number of digits, a leading hexadecimal zero is added on the left to fill the byte.
The internal binary form of each hexadecimal digit is as follows:

0-0000 4-0100 8-1000 C-1100
1-0001 5-0101 9-1001 D-1101
2-0010 6-0110 A-1010 E-1110
3-0011 7-0111 B-1011 F-1111

Valid Hexadecimal Constants:

Z1C49A2F1 represents the bit string:
00011100010010011010001011110001

ZBADFADE represents the bit string:

00001011101011011111101011011110

where the first 4 zero bits are implied because an odd number of hexadecimal digits
is written.

The maximum number of digits allowed in a hexadecimal constant depends upon
the length specification of the variable being initialized (see ‘“Variable Types and
Lengths” on page 25). The following list shows the maximum number of digits for
each length specification:

Chapter 3. VS FORTRAN Data 23

Variables

Variable Names

Length Maximum Number of

of Variable Hexadecimal Digits @
32 64
16 32
8 16
4 8
2 4
1 2

If the number of digits is greater than the maximum, the excess leftmost
hexadecimal digits are truncated; if the number of digits is less than the maximum,
hexadecimal zeros are supplied on the left.

If the variable being initialized is of complex type, the specification should indicate
a single value, rather than a real value and an imaginary value.

| End of IBM Extension I

A VS FORTRAN variable is a data item, identified by a name, that occupies a
storage area, except possibly in situations involving error or interruption handling,
where normal program flow is asynchronously interrupted. The value represented
by the name is always the current value stored in the area.

O
Before a variable has been assigned a value, its content is undefined, and the =
variable should not be referred to except to assign it a value.

VS FORTRAN variable names must follow the rules governing element names.

(See “Names” on page 11.) The use of meaningful variable names can aid in
documenting a program.

Valid Variable Names:
B292S
RATE

| IBM Extension |
$VAR

L End of IBM Extension |

24 VS FORTRAN Language and Library Reference

O

Invalid Variable Names:

B292704 Contains more than six characters.
4ARRAY First character is not alphabetic.
SI.X Contains a special character.

Variable Types and Lengths

The type of a variable corresponds to the type of data the variable represents. (See
Figure 4 on page 26.) Thus, an integer variable must represent integer data, a
real variable must represent real data, and so on. There is no variable type
associated with hexadecimal data; this type of data is identified by a name of one
of the other types. There is no variable type associated with statement numbers;
integer variables that contain the statement number of an executable statement or a
FORMAT statement are not considered to contain an integer variable. (See
“ASSIGN Statement” on page 59.)

For every type of variable data, there is a corresponding length specification that
determines the number of bytes that are reserved.

| IBM Extension |

Optional length specification is an IBM extension.

l End of IBM Extension J

Figure 4 shows each data type with its associated storage length and standard
length.

Chapter 3. VS FORTRAN Data 25

VALID STORAGE DEFAULT ‘
DATA TYPE LENGTHS LENGTH .

Integer 2or| & 4
Real 4 |, 8 or 16 4
Double

Precision 8 8
Comp lex 81, 16 or 32 8
Character 1 through 32767 1
Logical 1or| b 4

Figure 4. Data Types and Valid Lengths

A programmer may declare the type of variable by using the following:

O

« Explicit specification statements
« IMPLICIT statement
e Predefined specification contained in the VS FORTRAN language

An explicit specification statement overrides an IMPLICIT statement, which, in
turn, overrides a predefined specification. The optional length specification of a
variable may be declared only by the explicit or IMPLICIT specification
statements. If, in these statements, no length specification is stated, the default
length is assumed. INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
LOGICAL, and CHARACTER are used to specify the length and type in these
statements.

| IBM Extension |

VS FORTRAN accepts:

« INTEGER*2 to indicate 2 bytes and INTEGER*4 as an alternative to
INTEGER, to indicate 4 bytes;

« REAL*4 as an alternative to REAL, to indicate 4 bytes;

« REAL*8 as an alternative to DOUBLE PRECISION, to indicate 8 bytes; O

26 VS FORTRAN Language and Library Reference

« REAL*16 to indicate 16 bytes;

o LOGICAL*1 to indicate 1 byte;

+ LOGICAL*4 as an alternative to LOGICAL, to indicate 4 bytes;

o COMPLEX*8 as an alternative to COMPLEX, to indicate 8 bytes (the
first 4 bytes represent a real number and the second 4 bytes represent an

imaginary number);

« COMPLEX*16 to indicate 16 bytes (the first 8 bytes represent a real
number and the second 8 bytes represent an imaginary number);

« COMPLEX*32 to indicate 32 bytes (the first 16 bytes represent a real
number and the second 16 bytes represent an imaginary number).

I End of IBM Extension

Type Declaration by the Predefined Specification

The predefined specification is a convention used to specify variables as integer or

real as follows:

« If the first character of the variable name is I, J, K, L., M, or N, the variable is

integer of length 4.

« If the first character of the variable name is any other alphabetic character, the

variable is real of length 4.

r IBM Extension

« If the first character of the variable name is a currency symbol ($), the
variable is real of length 4.

l End of‘ IBM Extension

This convention is the traditional FORTRAN method of specifying the type of a
variable as either integer or real. Unless otherwise noted, it is assumed in the

examples in this publication that this specification applies. Variables defined with

this convention are of standard (default) length.

Type Declaration by the IMPLICIT Statement

The IMPLICIT statement allows you to specify the type of variables, in much the
same way as the type was specified by the predefined convention. That is, the type

is determined by the first character of the variable name. However, by using the
IMPLICIT statement, you have the option of specifying which initial characters
designate a particular variable type. The IMPLICIT statement can be used to

specify all types of variables, integer, real, complex, logical, and character, and to

indicate storage length.

The IMPLICIT statement overrides the variable type as determined by the
predefined convention.

Chapter 3. VS FORTRAN Data

27

The IMPLICIT statement is discussed in “IMPLICIT Type Statement” on

page 151. @

Type Declaration by Explicit Specification Statements

Subscripts

Explicit specification statements differ from the first two ways of specifying the
type of a variable, in that an explicit specification statement declares the type of a
particular variable by its name rather than by a group of variable names beginning
with a particular Jerter, as specified in Figure 3 on page 11. Explicit type
statements override IMPLICIT statements and predefined specifications.

Explicit specification statements are discussed in “Explicit Type Statement” on
page 103.

An array is an ordered and structured sequence of data items. The data items that
make up the array are called array elements. The number and arrangement of
elements in an array are specified by the array declarator. The array declarator
indicates the number of dimensions and the size of each dimension. A particular
element in the array is identified by the array name and its position in the array.
All elements of an array have the same type and length.

To refer to any element in an array, the array name plus a parenthesized subscript

must be used. In particular, the array name alone does not represent the first

element except in an EQUIVALENCE statement. p\
Before an array element has been assigned a value, its content is undefined, and the

array element should not be referred to before assigning it a value.

A subscript is a quantity (or a set of subscript expressions separated by commas)
that is associated with an array name to identify a particular element of the array.
The number of subscript quantities in any subscript must be the same as the
number of dimensions of the array with whose name the subscript is associated. A
subscript is enclosed in parentheses and is written immediately after the array
name. A maximum of seven subscript expressions can appear in a subscript.

The following rules apply to the construction of subscripts. (See Chapter 4, “VS
FORTRAN Expressions” on page 35 for additional information and restrictions.)

1. Subscript expressions may contain arithmetic expressions that use any of the
arithmetic operators: +, -, ¥, /, **.

2. Subscript expressions may contain function references that do not change any
other value in the same statement.

3. Subscript expressions may contain array elements.

-~

28 VS FORTRAN Language and Library Reference

[IBM Extension

4. Mixed-mode expressions (integer and real only) within a subscript are
evaluated according to normal FORTRAN rules. If the evaluated
expression is real, it is converted to integer by truncation.

| End of IBM Extension |

5. The evaluated result of a subscript expression must always be greater than or
equal to the corresponding lower dimension bound and must not exceed the
corresponding upper dimension bound (See ‘“Size and Type Declaration of an
Array” on page 30.)

Valid Array Elements:
ARRAY (IHOLD)
NEXT (19)

MATRIX (I-5)

| IBM Extension

BAK (I,J(K+2*L,.3*%A(M,N))) J is an array.

| End of IBM Extension |

ARRAY (I,J/4%K*%*2)

ARRAY (-5)

LOT (0)

Invalid Array Elements:

ALL(.TRUE.) A subscript expression may not be a
logical expression.

NXT (1+(1.3,2.0)) A subscript expression may not be a

complex expression.

Note: The elements of an array are stored in column-major order. To step
through the elements of the array in the linearized order defined as “column-major
order,” each subscript varies (in steps of 1) from its lowest valid value to its highest
valid value, such that each subscript expression completes a full cycle before the
next subscript expression to the right is increased. Thus, the leftmost subscript
expression varies most rapidly, and the rightmost subscript expression varies least
rapidly.

The following list is the order of an array named C defined with three dimensions:
DIMENSION C(1:3,1:2,1:4)

C(1,1,1) C(2,1,1) c(1,2,1) C€(2,2,1) C(3,2,1)
c(1,1,2) C(2,1,2) C(3 1 c(1,2,2) C(2,2,2) C(3,2,2)

1)
'2)
c(1,1,3) C(2,1,3) C(3 1,3) c(1,2,3) C(2,2,3) C(3,2,3)
C(1,1,4) C(2,1,4) C(3,1,4) C(1,2,4) C(2,2,4) C(3,2,4)

Chapter 3. VS FORTRAN Data 29

Size and Type Declaration of an Array

j
The size (number of elements) of an array is declared by specifying, in a subscript, a.‘
the number of dimensions in the array and the size of each dimension. This type of

specification is called an ““array declarator.” Each dimension is represented by an

optional lower bound (el1) and a required upper bound (e2) in the form:

—— Syntax
name ([el:]e2)

name
is an array name.

where:

el
is the lower dimension bound. It is optional. If el (with its following
colon) is not specified, its value is assumed to be 1.

e2
is the upper dimension bound and must always be specified.

The colon represents the range of values for an array’s subscript. For example,
DIMENSION A(0:9),B(3,-2:5) Q::D
DIMENSION ARAY(-3:-1),DARY(-3:ID3**ID1) o

DIMENSION IARY (3)

The upper and lower bounds {el and e2) are arithmetic expressions in which all
constants and variables are of integer type.

o If the array name is an actual argument, the expressions can contain only
constants or names of constants of integer type.

o The value of the lower bound may be positive, negative, or zero. It is assumed
to be 1, if it is not specified.

+ A maximum of seven dimensions is permitted. The size of each dimension is
equal to the difference between the upper and lower bounds plus 1. If the
value of the lower dimension bound is 1, the size of the dimension is equal to
the value of its upper bound.

» Function or array element references are not allowed in dimension bound
expressions.

o The value of the upper bound must be greater than or equal to the value of the

lower bound. An upper dimension bound of an asterisk is always greater than
or equal to the lower dimension bound.

C

30 VS FORTRAN Language and Library Reference

C

Object-Time Dimensions

o If the array name is a dummy argument and is in a subprogram, the expressions
can also contain:

— Integer variables that are also dummy arguments
— Expressions that contain:

— Signed or unsigned integer constants

— Names of integer constants

— Variables that are dummy arguments or appear in a common block in
that subprogram

e The upper dimension bound of the last dimension of a dummy array name can
be an asterisk. In this case, the dummy array is called an assumed-size array.

Size information must be given for all arrays in a VS FORTRAN program, so that
an appropriate amount of storage may be reserved. Declaration of this information
is made by a DIMENSION statement, by a COMMON statement, or by one of the
explicit type specification statements. These statements are discussed in detail, in
alphabetic sequence, in “VS FORTRAN Statement Descriptions.”

The type of an array name is determined by the conventions for specifying the type
of a variable name. Each element of an array is of the type and length specified for
the array name.

If a dummy argument array is used in a function or subroutine subprogram, the
absolute dimensions of the array do not have to be explicitly declared in the
subprogram by constants. Instead, the array declarators appearing in an explicit
specification statement or DIMENSION statement in the subprogram may contain
dummy arguments or variables in the common block that are integer variables of
length 4, to specify the size of the array. When the subprogram is called, these
integer variables receive their values from the actual arguments in the calling
program reference or from the common block. Thus, the dimensions of a dummy
array appearing in a subprogram may change each time the subprogram is called.
This is called an “adjustable array” or an “object-time dimension array.”

The absolute dimensions of an array must be declared in the calling program or in a
higher level calling program, and the array name must be passed to the subprogram
in the argument list of the calling program. The dimensions passed to the
subprogram must be less than or equal to the absolute dimensions of the array
declared in the calling program. The variable dimension size can be passed through
more than one level of subprogram (that is, to a subprogram that calls another
subprogram, passing it dimension information).

Integer variables in the explicit specification or DIMENSION statement that
provide dimension information may be redefined within the subprogram, but the
redefinitions have no effect on the size of the array. The size of the array is
determined at the entry point at which the array information is passed.

Chapter 3. VS FORTRAN Data 31

Character arrays are specified in the same manner as other data types. (See
“DIMENSION Statement” on page 87 and ‘“Explicit Type Statement” on

page 103.) The length of each array element is either the standard length of 1 or
may be declared larger with a type or IMPLICIT statement. Each character array
element is treated as a single entity. Portions of an array element can be accessed
through substring notation.

Character Substrings

A character substring is a contiguous portion of a character variable or character
array element. A character substring is identified by a substring reference. It may
be assigned values and may be referred to. A substring reference is local to a
program unit.

The form of a substring reference is:

—— Syntax
alel:e2)

is a character variable name or a subscripted character array name (see
“Array” on page 28).

el and e2 @

are substring expressions.

Substring expressions are optional, but the colon (:) is always required inside the
parentheses. The colon represents a range of values. If el is omitted, a value of
one is implied for el. If €2 is omitted, a value equal to the length of the character
variable or array element is implied for e2. Both el and e2 may be omitted; for
example, the form v(:) is equivalent to v.

The value of el specifies the leftmost character position and the value of e2
specifies the rightmost character position of the substring. The substring
information (if any) must be specified after the subscript information (if any).
e The values of el and ¢2 must be integer, positive, and nonzero.

e The value of el must be less than or equal to the value of e2.

« The values of el and ¢2 must be less than or equal to the number of characters
contained in the corresponding variable name or array element.

32 VS FORTRAN Language and Library Reference

Example 1:

Given the following statements:

CHARACTER*5 CH(10)
CH(2)="ABCDE'

then

CH(2) (1:2) has the value AB.

CH(2) (:3) has the value ABC.
CH(2) (3:) has the value CDE.

Example 2:

Given the following statements:

CHARACTER * 5 SUBSTG, SYMNAM
SYMNAM= 'VWXYZ'

I =23
J =4
SUBSTG(1:2) = SYMNAM(I:J)
SUBSTG(I:J) = SYMNAM(1:2)
SUBSTG(J+1:) = SYMNAM(5:)

then SUBSTG has the value XYVWZ.

Chapter 3. VS FORTRAN Data

33

Chapter 4. VS FORTRAN Expressions

VS FORTRAN provides four kinds of expressions: arithmetic, character,
relational, and logical.

« The value of an arithmetic expression is always a number whose type is integer,
real, or complex.

o The value of a character expression is a character string.

o The value of a relational or logical expression is always a .TRUE. or .FALSE.
logical value.

Evaluation of Expressions

VS FORTRAN expressions are evaluated according to the following rules:

e Any variable, array element, function, or character substring referred to as an
operand in an expression must be defined (that is, must have been assigned a
value) at the time the reference is executed.

In an expression, an integer operand must be defined with an integer value,
rather than a statement number. (See “ASSIGN Statement” on page 59.) If a
character string or a substring is referred to, all of the characters referred to
must be defined at the time the reference is executed.

« The execution of a function reference in a statement must not alter the value of
any other entity within the statement in which the function reference appears.
The execution of a function reference in a statement must not alter the value of
any entity in the common block that affects the value of any other function
reference in that statement.

If a function reference in a statement alters the value of an actual argument of
the function, that argument or any associated entities must not appear
elsewhere in the statement. For example, the following statements are
prohibited if the reference to the function F defines I or if the reference to the
function G defines X:

A(I) = F(I)

Y = G(X) + X

The data type of an expression in which a function reference appears does not
affect the evaluation of the actual arguments of the function.

Chapter 4. VS FORTRAN Expressions 35

e Any array element reference requires the evaluation of its subscript. The data
type of an expression in which an array reference appears does not affect, nor
is it affected by, the evaluation of the subscript.

e Any execution of a substring reference requires the evaluation of its substring
expressions. The data type of an expression in which a substring name appears
does not affect, nor is it affected by, the evaluation of the substring
expressions.

Arithmetic Expressions

The simplest arithmetic expression consists of a primary, which may be a single
constant, name of a constant, variable, array element, function reference, or
another expression enclosed in parentheses. The primary may be either integer,
real, or complex.

In an expression consisting of a single primary, the type of the primary is the type
of the expression. Examples of arithmetic expressions are shown in Figure 5.

Primary Type of Primary Type Length
3 Integer constant Integer 4
A Real variable Real 4
3.14D3 Real constant Real 8
3.14D3 Double precision constant Double 8
precision
(2.0,5.7) Complex constant Complex 8
SIN(X) Real function reference Real 4
(A*B+C) Parenthesized real expression Real 4

Figure 5. Examples of Arithmetic Expressions

Arithmetic Operators

More complicated arithmetic expressions containing two or more primaries may be
formed by using arithmetic operators that express the computation(s) to be
performed.

The arithmetic operators are shown in Figure 6.

36 VS FORTRAN Language and Library Reference

Arithmetic
Operator Definition
** Exponentiation
* Multiplication
/ Division
+ Addition (or unary plus)
- Subtraction (or unary minus)

Figure 6. Arithmetic Operators

Rules for Constructing Arithmetic Expressions

The following are the rules for constructing arithmetic expressions that contain
arithmetic operators:

o All desired computations must be specified explicitly. That is, if more than one
primary appears in an arithmetic expression, they must be separated from one

another by an arithmetic operator. For example, the two variables A and B are
not multiplied if written:

AB
In fact, AB is regarded as a single variable with a two-letter name.

If multiplication is desired, the expression must be written as follows:

A*¥B or B*A

« No two arithmetic operators may appear consecutively in the same expression.
For example, the following expressions are invalid:

A*/B and A*-B

The expression A*-B could be written correctly as

A* (-B)
Two asterisks (**) designate exponentiation, not two multiplication operations.
o Order of Computation

In the evaluation of expressions, priority of the operations is shown in
Figure 7.

\

Chapter 4. VS FORTRAN ﬁxpressions 37

Operation Hierarchy
Evaluation of functions 1st
Exponentiation (**) 2nd
Multiplication and division (* and /) 3rd
Addition and subtraction (+ and -) 4th

Figure 7. Hierarchy of Arithmetic Operations

Note: A unary plus or minus has the same hierarchy as a plus or minus in addition
or subtraction.

If two or more operators of the same priority appear successively in the expression,
the order of priority of those operators is from left to right, except for successive

exponentiation operators, where the evaluation is from right to left.

Consider the evaluation of the expression in the assignment statement:

RESULT= A*B+C*D**1

1. A*B Call the result X (multiplication) (X+C*D**I)
2. D**I Call the result Y (exponentiation) (X+C*Y)
3. C*Y Call the result Z (multiplication) (X+2)

4. X+Z Final operation (addition)

@

The expression:

A¥*¥B¥**C

is evaluated as follows:

1. B**C Call the result Z.
2. A**Z Final operation.

Expressions with a unary minus are treated as follows:

A=-B is treated as A=0-B

A=-B*C is treated as A=-(B*C) Because * has higher precedence
than -

A=-B+C is treated as A=(-B)+C Because - has equal precedence
to +

38 VS FORTRAN Language and Library Reference

O

C

Use of Parentheses in Arithmetic Expressions

Because the order of evaluation (and, consequently, the result) of an expression
can be changed through the use of parentheses, refer to Figure 8, Figure 9, and
Figure 10 to determine the type and length of intermediate results. Where
parentheses are used, the expression contained within the most deeply nested
parentheses (that is, the innermost pair of parentheses) is evaluated first. A
parenthesized expression is considered a primary.

For example, the expression,

B/ ((A-B) *C) +A**2

is effectively evaluated in the following order:

1. A-B Calltheresult W B/(W*C)+A**2
2. W*C Calltheresult X B/X+A**2

3. B/X CalltheresultY Y+A**2

4. A**2 CalltheresultZ Y+Z

5. Y+Z Final operation

Type and Length of the Result of Arithmetic Expressions

The type and length of the result of an operation depend upon the type and length
of the two operands (primaries) involved in the operation.

Figure 8 shows the type and length of the result of adding, subtracting,
multiplying, or dividing when the first operand is an integer.

Figure 9 shows the type and length of the result of adding, subtracting,
multiplying, or dividing when the first operand is real.

Figure 10 shows the type and length of the result of adding, subtracting,
multiplying, or dividing when the first operand is complex.

Note: Except for a value raised to an integer power, if two operands are of
different type and length, the operand that differs from the type and/or length of
the result is converted to the type and/or length of the result. Thus the operator
operates on a pair of operands of matching type and length.

A negative operand (either real or integer) may not have a real exponent.
When an operand of real or complex type is raised to an integer power, the integer

operand is not converted. The resulting type and length match the type and length
of the base.

Chapter 4. VS FORTRAN Expressions 39

FIRST
OPERAND
Integer Integer
(2 (4
SECOND
OPERAND
Integer Integer Integer
(29 (2 (&
Integer Integer Integer
(49 (43 (4
Real Real Real
(4) (4) (4)
Real Real Real
(8) (8) (8)
Real Real Real
(16) (16) (16)
Comp lex Comp lex Comp lex AN
(8) (8) (8) W
Comp lex Comp lex Comp lex
(16) (16) (76)
Comp lex Comp lex Comp lex
(32) (32) (32)

Figure 8. Type and Length of Result Where the First Operand Is Integer

40 VS FORTRAN Language and Library Reference

FIRST
OPERAND
Real Real Real
(&) (8) (16)
SECOND
OPERAND
Integer Real Real Real
(2 (4) (8) (16)
Integer Real Real Real
(43 (4) (8) (16)
Real Real Real Real
(4) (4) (8) (16)
Real Real Real Real
(8) (8) (8) (16)
Real Real Real Real
(16) (16) (16) (16)
Comp lex Comp lex Comp lex Comp lex
(8) (8) (16) (32)
Complex Complex Comp lex Comp lex
(16) (16) (16) (32)
Complex Complex Comp lex Comp lex
(32) (32) (32) (32)

Figure 9. Type and Length of Result Where the First Operand Is Real

Chapter 4. VS FORTRAN Expressions

41

FIRST
OPERAND

Complex Complex Complex

(16) (32)

SECOND
OPERAND

Integer Complex Comp lex Complex

(2 (8) (16) (32)
Integer Comp lex Complex Comp lex

) (B) (16) (32)
Real Complex Comp lex Comp lex

(4) (8) (16) (32)
Real Complex Comp lex Comp lex

(8) (16) (16) (32)
Real Comp lex Complex Comp lex

(16) (32) (32) (32)
Complex Comp lex Comp lex Complex

(8) (8 (16) (32)
Comp lex Comp lex Comp lex Comp lex

(16) (16) (16) (32)
Comp lex Comp lex Comp lex Comp lex

(32) (32) (32) (32)

Figure 10. Type and Length of Result Where the First Operand Is Complex

42 VS FORTRAN Language and Library Reference

Examples of Arithmetic Expressions

Assume that the type of the following variables has been specified as indicated

below:
NAME TYPE LENGTH
1, J, K Integer variables L1, 2,2
c Real variable 4
D Complex variable 16

Then the expression I*J/C**K +D is evaluated as follows:

Subexpression Type and Length

I*J (Call the result X) Integer of length 4

C*¥*K (Call the result Y) Real of length 4

X/Y (Call the result Z) Real of length 4
0 (X is converted to real of length 4 before division is performed.)

[IBM Extension

Z+D Complex of length 16

(Z is expanded to the real variable of length 8, and a complex quantity of length
16 (call it W) is formed, in which the real part is the expansion of Z and the
imaginary part is zero. Then the real part of W is added to the real part of D, and
the imaginary part of W is added to the imaginary part of D.)

Thus, the final type of the entire expression is complex of length 16, but the
types of the intermediate expressions change at different stages in the evaluation.

| End of IBM Extension]

Depending on the values of the variables involved, the result of the expression
I*J*C might be different from I*C*J. This may occur because of the number of
conversions performed during the evaluation of the expression.

Because the operators are the same, the order of the evaluation is from left to right.
With I*J*C, a multiplication of the two integers I*J yields an intermediate result of
integer type and length 4. This intermediate result is converted to a real type of
length 4, and multiplied with C of real type of length 4, to yield a real type of
length 4 result.

With I*C*J, the integer I is converted to a real type of length 4, and the result is
multiplied with C of real type of length 4, to yield an intermediate result of real

Chapter 4. VS FORTRAN Expressions 43

type of length 4. The integer J is converted to a real type of length 4, and the
result is multiplied with the intermediate result to yield a real type of length 4 @
result. B}

Evaluation of I*J*C requires one conversion and I*C*J requires two conversions.
The expressions require that the computation be performed with different types of
arithmetic. This may yield different results.

When division is performed using two integers, any remainder is truncated (without
rounding) and an integer quotient is given. If the mathematical quotient is less than
1, the answer is 0. The sign is determined according to the rules of algebra. For

example:
I J 1/3
9 2 4
502 =2
1 -4 0

Character Expressions

The simplest form of a character expression is a character constant, a character

variable reference, a character array element reference, a character substring

reference, or a character function reference. More complicated character

expressions may be formed by using one or more character operands, together with

character operators and parentheses. @

The character operator is shown in Figure 11.

Character
Operator Definition

// Concatenation

Figure 11. Character Operator

The concatenation operation joins the operands in such a way that the last
character of the operand to the left immediately precedes the first character of the
operand to the right. For example:

'AB'//'CD' yields the value of 'ABCD'

The result of a concatenation operation is a character string consisting of the values
of the operands concatenated left to right, and its length is equal to the sum of the
lengths of the operands.

Note: Except in a CHARACTER assignment statement, the operands of a
concatenation operation must not have inherited length. That is, their length
specification must not be an asterisk (*) unless the operand is the name of a
constant. See “Explicit Type Statement’” on page 103.

C

44 VS FORTRAN Language and Library Reference

O

C

Use of Parentheses in Character Expressions

Parentheses have no effect on the value of a character expression. For example, X
has the value ’AB’, Y has the value ’CD’, and Z has the value ’EF’,

then the two expressions:
X//Y//Z
X//(Y//2Z)

both yield the same result, the value ’ABCDEF.’
Valid Character Expressions:

Substring:

ST1311(I) = CVAR1(:1)

Function Reference:

ST1314 (IVAR1) = CHAR(IVAR1)

Relational Expressions

Relational expressions are formed by combining two arithmetic expressions with a
relational operator, or two character expressions with a relational operator.

The six relational operators are shown in Figure 12.

Relational

Operator Definition
.GT. Greater than
.GE. Greater than or equal to
LT. Less than
.LE. Less than or equal to
.EQ. Equal to
.NE. Not equal to

Figure 12. Relational Operators
Relational operators:
« Express a condition that can be either true or false.

+ - May be used to compare two arithmetic expressions (except complex) or two
character expressions. Only the .EQ. and .NE. operators may be used to
compare an arithmetic expression with a complex expression. If the two
arithmetic expressions being compared are not of the same type or length, they
are converted following the rules indicated in Figure 8, Figure 9, and
Figure 10.

Chapter 4. VS FORTRAN Expressions 45

+ In comparisons of arithmetic expressions to character expressions or vice versa
are not allowed.

In the case of character expressions, the shorter operand is considered as being
extended temporarily on the right with blanks to the length of the longer operand.
The comparison is made from left to right, character by character, according to the
collating sequence, as shown in Figure 3 and in Appendix C, “EBCDIC and
ISCII/ASCII Codes.”

Examples:

Assume that the type of the following variables has been specified as indicated:

Variable Names Type

ROOT, E Real

A, I, F Integer

L Logical

C Complex

CHAR Character of length 10

Then the following examples illustrate valid and invalid relational expressions.

Valid Relational Expressions:
E .LT. I
E*¥*¥2,7 _LE. (5*RO0T+4)
.5 .GE. (.9*%ROOT)
E .EQ. 27.3E+05

CHAR .EQ. 'ABCDEFGH'

C.NE. CMPLX(ROOT,E)

46 VS FORTRAN Language and Library Reference

Invalid Relational Expressions:

‘::) C.GE. (2.7,5.9E3) Complex guantities can only be compared
for equal or not equal in relational
expressions.
L.EQ. (A+F) Logical qguantities may never be compared by

relational operators.

E**2 LT 97.1E1 There is a missing period immediately
after the relational operator.

.GT.9 There is a missing arithmetic expression
before the relational operator.

E*2 _EQ. 'ABC' A character expression may not be compared
to an arithmetic expression.

| . IBM Extension

Length of a Relational Expression: A relational expression is always
evaluated to a LOGICAL*4 result, but the result can be converted in an
assignment statement to LOGICAL*1.

L End of IBM Extension J

Logical Expressions

O The simplest form of logical expression consists of a single logical primary. A
logical primary can be a logical constant, a name of a logical constant, a logical
variable, a logical array element, a logical function reference, a relational
expression (which may be an arithmetic relational expression or a character
relational expression), or a logical expression enclosed in parentheses. A logical
primary, when evaluated, always has a value of true or false.

More complicated logical expressions may be formed by using logical operators to
combine logical primaries.

O

Chapter 4. VS FORTRAN Expressions 47

Logical Operators

The logical operators are shown in Figure 13. (A and B represent logical
constants or variables, or expressions containing relational operators.)

Meaning

If A is true, then .NOT.A is false; if A is false, then
NOT.A is true.

If A and B are both true, then A.AND.B is true; if
either A or B or both are false, then A.AND.B is
false.

Logical

Operator | Use
.NOT. .NOT.A
.AND. A.AND.B
.OR. A.ORB

If either A or B or both are true, then A.OR.B is
true; if both A and B are false, then A.OR.B is
false.

.EQV. A.EQV.B

If A and B are both true or both false, then
A.EQV.B is true; otherwise it is false.

.NEQV.

ANEQV.B

If A and B are both true or both false, then
A.NEQV B is false; otherwise it is true.

Figure 13. Logical Operators

The only valid sequences of two logical operators are:

.AND..NOT.
.OR..NOT.
.EQV..NOT.

.NEQV..NOT.

The sequence .NOT..NOT. is invalid.

Only those expressions that have a value of true or false when evaluated, may be
combined with the logical operators to form logical expressions.

Examples:

Assume that the types of the following variables have been specified as indicated:

" Variable Names Type

ROOT, E ‘ Real
A, I, F Integer
L, W Logical

CHAR, SYMBOL

Character of lengths 3 and 6, respectively

Then the following examples illustrate valid and invalid logical expressions using
both logical and relational operators.

48 VS FORTRAN Language and Library Reference

C

Valid Logical Expressions:

(ROOT*A .GT. A) .AND. W

L .AND. .NOT. (I .GT. F)

(E+5.9E2 .GT. 2*E) .OR. L

.NOT. W .AND. .NOT. L

L .AND. .NOT. W .OR. CHAR//'123'.LT.SYMBOL
(A**F .GT. ROOT .AND. .NOT. I .EQ. E)

Invalid Logical Expressions:

A.AND.L A is not a logical expression.

.OR.W .OR. must be preceded by a logical
expression.

NOT. (A.GT.F) There is a missing period before the logical
operator .NOT..

L.AND..OR.W The logical operators .AND. and .OR. must
always be separated by a logical expression.

.AND.L .AND. must be preceded by a logical
expression.

Order of Computations in Logical Expressions

In the evaluation of logical expressions, priority of operations involving arithmetic
operators is as shown in Figure 14. Within a hierarchic level, computation is
performed from left to right.

Operation Involving Arithmetic Operators Hierarchy
Evaluation of functions 1st (highest)
Exponentiation (**) 2nd
Multiplication and division (* and /) 3rd
Addition and subtraction (+ and -) 4th
Relationals (.GT.,.GE.,.LT.,.LE.,.EQ.,.NE.) 5th

.NOT. 6th

.AND. 7th

.OR. 8th

.EQV. or NEQV. 9th

Figure 14. Hierarchy of Operations Involving Arithmetic Operators
In the evaluation of logical expressions, priority of operations involving character

operators is as shown in Figure 15. Within a hierarchic level, computation is
performed from left to right.

Chapter 4. VS FORTRAN Expressions 49

Operation Involving Character Operators Hierarchy
Evaluation of functions 1st (hjghest)
Concatenation (//) 2nd
Relationals (.GT.,.GE.,.LT., LE.,.EQ.,.NE.) 3th

.NOT. 4th

.AND. 5th

.OR. 6th

.EQV. or NEQV. 7th

Figure 15. Hierarchy of Operations Involving Character Operators
Example:

Assume the type of the following variables has been specified as follows:

Variable Names Type Length
B,D REAL 4
A REAL 8
L,N LOGICAL 4

The expression

A.GT.D**B.AND..NOT.L.OR.N
is effectively evaluated in the following order (and from left to right): (}
1. D**B Call the result W.

Exponentiation is performed because arithmetic operators have a higher
priority than relational operators, yielding a real result W of length 4.

2. AGTW Call the result X.

The real variable A of length 8 is compared to the real variable W, which was
extended to a length of 8, yielding a logical result X, whose value is true or
false.

3. .NOT.L Call the result Y.
The logical negation is performed because .NOT. has a higher priority than
.AND., yielding a logical result Y, whose value is true if L is false and false if L
is true.

4. X.AND.Y Call the result Z.

The logical operator .AND. is applied because .AND. has a higher priority
than .OR., to yield a logical result Z, whose value is true if both X and Y are
true and false, if both X and Y are false, or if either X or Y is false.

50 VS FORTRAN Language and Library Reference

5. Z.ORN

The logical operator .OR. is applied to yield a logical result of true if either Z
or N is true or if both Z and N are true. If both Z and N are false, the logical
result is false.

Note: Calculating the value of logical expressions may not always require that all
parts be evaluated. Functions within logical expressions may or may not be
invoked. For example, assume a logical function called LGF. In the expression
A.OR.LGF(.TRUE.), it should not be assumed that the LGF function is always
invoked, since it is not always necessary to do so to evaluate the expression when A
is true.

Use of Parentheses in Logical Expressions

Parentheses may be used in logical expressions to specify the order in which the
operations are to be performed. Where parentheses are used, the expression
contained within the most deeply nested parentheses (that is, the innermost pair of
parentheses) is evaluated first.

Example:

Assume the type of the following variables specified as follows:

Variable Names Type Length
B REAL 4
c REAL 8
K,L LOGICAL 4

The expression

.NOT. ((B.GT.C.OR.K) .AND.L)
is evaluated in the following order:
1. B.GT.C Call the result X.

B is extended to a real variable of length 8 and compared with C of length 8
yielding a logical result X of length 4 whose value is true if B is greater than C
or false if B is less than or equal to C.

2. X.ORK Call the result Y.

The logical operator .OR. is applied to yield a logical result of Y, whose value
is true if either X or K is true or if both X and K are true. If both X and K are
false, the logical result Y is false.

3. Y.AND.L Call the result Z.
The logical operator .AND. is applied to yield a logical result Z, whose value is

true if both Y and L are true and false if both Y and L are false or if either Y
or L is false.

Chapter 4. VS FORTRAN Expressions 51

4. NOT.Z

The logical negation is performed to yield a logical result, whose value is true if
Z is false and false if Z is true.

A logical expression to which the logical operator NOT. applies must be enclosed
in parentheses, if it contains two or more quantities. Otherwise, because of the
higher precedence of the .NOT. operator, it will apply to the first operand of the
relation. For example, assume that the values of the logical variables, A and B, are
false and true, respectively. Then the following two expressions are not equivalent:

.NOT.(A.OR.B)
.NOT.A.OR.B

In the first expression, A.OR.B is evaluated first. The result is true; but
.NOT.(.TRUE.) is the equivalent of .FALSE.. Therefore, the value of the first
expression is false.

In the second expression, .NOT.A is evaluated first. The result is true; but
.TRUE..OR.B is the equivalent of .TRUE.. Therefore, the value of the second
expression is true. '

The lengths of the results of the various logical operations are shown in Figure 16.
(The result of logical operations is always logical of length 4.)

First
Operand Logical Logical 4
Second 1) : ?4))
Operand
Logical Logical Logical
1 T4 ()
Logical Logical Logical
)))

Figure 16. Tyﬁe and Length of the Result of Logical Operations

52 VS FORTRAN Language and Library Reference

Chapter 5. VS FORTRAN Statements

Source programs consist of a set of statements from which the compiler generates
machine instructions and allocates storage for data areas. A VS FORTRAN
statement performs one of three functions:

« It performs certain executable operations (for example, addition,
multiplication, branching).

« It specifies the nature of the data being handled.
« It specifies the characteristics of the source program.

VS FORTRAN statements are either executable or nonexecutable.

VS FORTRAN Statement Categories

0 Statements are divided into the following categories according to what they do:
« Assignment statements
« Control statements

« DATA statement

| IBM Extension

« Debug statements

L End of IBM Extension

« Input/output statements
« PROGRAM statement
e Specification statements

e Subprogram statements

Chapter 5. VS FORTRAN Statements 53

Assignment Statements

Control Statements

DATA Statement

Debug Statements

| IBM Extension | @

¢ VS FORTRAN compiler directive statements

I End of IBM Extension I

There are four types of assignment statements: the arithmetic, character, and
logical assignment statements and the ASSIGN statement. Execution of an
assignment statement assigns a value to a variable. Assignment statements are
executable.

In the absence of control statements, VS FORTRAN statements are executed
sequentially. That is, after one statement has been executed, the statement
immediately following it is executed. Control statements alter this normal sequence
of execution of statements in the program. They are executable. The following are
control statements:

CALL IF (ELSE, ELSE IF, END IF)

CONTINUE PAUSE

DO RETURN

END STOP N
GO TO U

The DATA statement assigns initial values to variables, array elements, arrays, and
substrings. It is nonexecutable.

| IBM Extension |

The debug facility is a programming aid that helps locate errors in a VS
FORTRAN source program. The debug facility traces the flow of execution within
a program, traces the flow of execution between programs, displays the values of
variables and arrays, and checks the validity of subscripts. DISPLAY, TRACE
OFF, and TRACE ON are executable; AT, DEBUG, and END DEBUG are
nonexecutable.

AT END DEBUG

DEBUG TRACE OFF

DISPLAY TRACE ON

L End of IBM Extension |

O

54 VS FORTRAN Language and Library Reference

O

O

PROGRAM Statement

Input/Output Statements

Input/output (I/0) statements transfer data between two areas of internal storage
or between internal storage and an input/output device. Examples of input/output
devices are card readers, printers, punches, magnetic tapes, disk storage units, and
terminals.

The I/0 statements allow the programmer to specify how to process the VS
FORTRAN files at different times during the execution of a program. Except for
the FORMAT statements, these statements are executable.

BACKSPACE OPEN

CLOSE PRINT

ENDFILE READ

FORMAT REWIND

INQUIRE WRITE

[IBM Extension]
DELETE

REWRITE

WAIT

I End of IBM Extension J

Note: The description of the VS FORTRAN input and output statements is made
from the point of view of a VS FORTRAN program. Therefore, words such as
file, record, or OPEN must not be confused with the same words used when
discussing an operating system. (See the description of each I/O statement.)

The PROGRAM statement names the main program. It can only be used in a main
program. [t is not required. The PROGRAM statement is nonexecutable.

Specification Statements

The specification statements provide the compiler with information about the
nature of the data in the source program. In addition, they supply the information
required to allocate storage for this data.

The specification statements must follow the PROGRAM, SUBROUTINE,
FUNCTION, or BLOCK DATA statement. They may be preceded by a
FORMAT or an ENTRY statement. Specification statements are nonexecutable.

COMMON EXTERNAL
DIMENSION IMPLICIT
EQUIVALENCE INTRINSIC
Explicit type: PARAMETER

COMPLEX, INTEGER, SAVE
LOGICAL, REAL,
CHARACTER, and

DOUBLE PRECISION

Chapter 5. VS FORTRAN Statements 55

l End‘ of IBM Extension

[IBM Extension

NAMELIST

Subprogram Statements

There are three subprogram statements: FUNCTION, SUBROUTINE, and
BLOCK DATA. There are also intrinsic function procedures and statement
function procedures. The list of intrinsic functions supplied with VS FORTRAN is
in Appendix B, “IBM and ANS FORTRAN Features” on page 351.

Function subprograms differ from subroutine subprograms in the way they are
invoked and in that function subprograms return a value to the calling program,
whereas subroutine subprograms need not return a value.

The function subprogram is a VS FORTRAN subprogram that begins with a
FUNCTION statement. It is independently written and is executed whenever its
name is appropriately referred to in another program. It is called by coding its
name with any necessary parameters. At least one executable statement in the
function subprogram must assign a result to the function name; this value is
returned to the calling program as the result of the function.

The subroutine subprogram is similar to the function subprogram, except that it
begins with a SUBROUTINE statement and does not return an explicit result to
the calling program. The rules for naming function and subroutine subprograms
are similar. They both require an END statement and they both may contain
dummy arguments. Like the function subprogram, the subroutine subprogram can
be a set of commonly used computations, but it need not return any results to the
calling program. The subroutine subprogram is executed whenever its name is
referred to by the CALL statement.

Subprogram statements are nonexecutable.
BLOCK DATA Statement function

ENTRY SUBROUTINE
FUNCTION

56 VS FORTRAN Language and Library Reference

: [IBM Extension

VS FORTRAN Compiler Directive Statements
The EJECT and INCLUDE statements are IBM extensions that direct the compiler
to start a new page or to insert one or more source statements into the program.

They are not considered part of the VS FORTRAN language.

| End of IBM Extension

Order of Statements in a Program Unit

The order of statements in a VS FORTRAN program unit (other than a BLOCK
DATA subprogram) is as follows:

1. PROGRAM or subprogram statement, if any.
2. PARAMETER statements and/or IMPLICIT statements, if any.
3. Other specification statements, if any. (Explicit specification statements that

- initialize variables or arrays must follow other specification statements that

contain the same variable or array names.)
() 4. For the order of data statements, see Figure 17 on page 58.
5. Statement function definitions, if any.
6. Executable statements.
7. END statement.
| For the order of DEBUG statements, see “DEBUG Statement” on page 82.

Within the specification statements of a program unit, IMPLICIT statements must
precede all other specification statements except PARAMETER statements. Any
specification statement that specifies the type of a name of a constant must precede
the PARAMETER statement that defines that particular name of a constant; the
PARAMETER statement must precede all other statements containing the names
of constants that are defined in the PARAMETER statement.
FORMAT and ENTRY statements may appear anywhere after the PROGRAM or
subprogram statement and before the END statement. The ENTRY statement,
however, may not appear between a block IF statement and its corresponding END

IF statement or within the range of a DO. DATA statements must follow the
IMPLICIT statements and specification statements.

Chapter 5. VS FORTRAN Statements 57

I

A NAMELIST statement declaring a NAMELIST name must precede the use of
that name in any input/output statement. Its placement is as indicated for other

specification statements.

The order of statements in BLOCK DATA subprograms is discussed in “BLOCK

IBM Extension

End of IBM Extension

DATA Statement” on page 69. Figure 17 shows a diagram of the order of

statements.

« The vertical lines in the figure delineate varieties of statements that may be
interspersed. For example, FORMAT statements may be interspersed with

statement function statements and executable statements.

« Horizontal lines delineate varieties of statements that must not be interspersed.
For example, statement function statements must not be interspersed with

executable statements.

COMMENT
LINES

PROGRAM, FUNCTION, SUBROUTINE, OR BLOCK DATA

STATEMENT
IMPLICIT
PARAMETER Statements
FORMAT Statements
Other
and Specification
Statements
ENTRY
Statement
Statements Function
DATA Statements
Statements
Executable
Statements

END Statement

Figure 17. Order of Statements and Comment Lines

VS FORTRAN Statement Descriptions

The rules for coding each VS FORTRAN statement are described in this section, in

alphabetic sequence. Examples are included. For additional examples and
explanations, see 'S FORTRAN Programming Guide.

Notes:

1 Comments and statement numbers are included because, although they are
not actual statements, they are integral parts of VS FORTRAN programs.

2 Most described statements begin at the top of a page.

58 VS FORTRAN Language and Library Reference

C

Arithmetic IF Statement

ASSIGN Statement

See “IF Statements” on page 145.

The ASSIGN statement assigns a number (a statement number) to an integer
variable. See also ““Statement Numbers” on page 236.

—— Syntax
ASSIGN stn TO i

stn
is the number of an executable statement or a FORMAT statement in the
same program unit as the ASSIGN statement.

is the name of an integer variable (not an array element) of length 4 that is
assigned the statement number stn.

The statement number must be the number of a statement that appears in the same
program unit as the ASSIGN statement. The statement number must be the
number of an executable statement or a FORMAT statement.

Execution of ASSIGN is the only way that a variable can be defined with a
statement number.

A variable must have been defined with a statement number when it is referred to
in an assigned GO TO statement or as a format identifier in an input or output
statement. An integer variable defined with a statement number may be redefined
with the same or a different statement number or an integer value.

If stn is the statement number of an executable statement, i can be used in an
assigned GOTO statement.

If stn is the statement number of a FORMAT statement, i can be used as the
format identifier in a READ, WRITE, or PRINT statement with FORMAT control.

The value of i is not the integer constant represented by stn and cannot be used as
such. To use i as an integer, it must be assigned an integer value by an assignment
or input statement. This assignment can be done directly or through
EQUIVALENCE, COMMON, or argument passing.

Valid Example:
These program fragments illustrate the use of the ASSIGN statement to assign the

statement numbers of both an executable statement and a FORMAT statement to
variables.

10 FORMAT (1X, I4)

Chapter 5. VS FORTRAN Statements 59

ASSIGN

1. Assign statement 30 to integer variable LABEL.

ASSIGN 30 TO LABEL q::p

2. Assign format statement number 10 to integer variable IFMT.

ASSIGN 10 TO IFMT
NUM = 50

3. Transfer to statement 30.

GOTO LABEL

4. Write using the format at statement 10.
20 WRITE(5, IFMT) NUM

30 PRINT *, NUM
END

Invalid Example:

This program fragment illustrates an invalid use of the ASSIGN statement. The
variable set by an ASSIGN statement does not have the integer value
representation of the statement number.

ASSIGN 10 TO LABEL
10 NUM = 10

The following expression is invalid. The results are unpredictable.

IF (NUM .EQ. LABEL) GOTO 20

&

NUM = 20
20 CONTINUE
END

Assigned GO TO Statement

See “GO TO Statements” on page 142.

Assignment Statements

This VS FORTRAN statement closely resembles a conventional algebraic
equation; however, the equal sign specifies a replacement operation rather than
equality. That is, the expression to the right of the equal sign is evaluated, and the
resulting value replaces the current value of the variable, array element, character
substring, or character variable to the left of the equal sign.

— Syntax

a=>b

60 VS FORTRAN Language and Library Reference

C

Assignment

is a variable, array element, character substring, or character variable.

is an arithmetic, logical, or character expression.

An assignment statement is used for the results of calculations. The result of
evaluating the expression replaces the current value of a designated variable, array
element, or character substring. There are three assignment statements:
arithmetic, logical, and character.

Arithmetic Assignment Statement

If b is an arithmetic expression, a must be an integer, real, or complex variable or
an array element.

Figure 18 shows the rules for conversion in arithmetic assignment statements, a=b,
where the type of b is integer or real.

Figure 19 shows the rules for conversion in arithmetic assignment statements, a=b,
where the type of b is complex.

The correspondence between type declarations and data item lengths in bytes is
described in Figure 20 on page 107.

Character Assignment Statement

If b is a character expression, @ must be a character variable, character array
element, or character substring.

None of the character positions being defined in @ must be referenced in b directly
or through associations of variables (that is, using COMMON, EQUIVALENCE,
or argument passing).

The lengths of a and b may be different. The characters of b are moved from left
to right into the corresponding character positions of a. If a has more positions
than there are characters in b, the rightmost positions of a are filled with blanks. If
a has fewer positions than there are characters in b, only the leftmost characters of
b are moved to fill the positions of a.

A character variable, character array element, or character substring (a) may also
be assigned a value by a WRITE statement to an internal file with unit=a.

Logical Assignment Statement

If b is a logical expression, @ must be a logical variable or a logical array element.
The value of » must be either true or false.

Chapter 5. VS FORTRAN Statements 61

Assignment

Type
of b INTEGER*2 REAL*4 REAL*8 REAL*16
INTEGER*4 REAL DOUBLE
Type PRECISION
of a INTEGER
INTEGER*2
Assign Fix and Fix and Fix and
—~ assign assign assign
INTEGER™ 4
INTEGER
REAL*4 Float and Assign Real Real
assign assign assign
REAL
REAL*8 DP float DP extend Assign DP assign
and assign and assign
DOUBLE
PRECISION
- QP float QP extend QP extend Assign
REAL™16 and assign and assign and assign
—~ Float and Assign to Real assign Real assign
COMPLEX™8 assign to real part; real part; real part;
real part; imaginary imaginary imaginary
imaginary part set part set part set
COMPLEX part set to 0 | to O to 0 to 0
DP float and DP extend Assign to DP assign
- assign to and assign real part; real part;
COMPLEX™16 real part; to real part; imaginary imaginary
imaginary imaginary part set part set
part set to O|||part set to O|||to O to 0
QP float and QP extend QP extend Assign real
—~ assign to and assign and assign part;
COMPLEX™32 real part; to real part; real part; imaginary
imaginary imaginary imaginary part set
part set to 0|||part set to O|||part set to O to 0

Figure 18. Conversion Rules for the Arithmetic Assignment Statement a=b, Where Type of b Is Integer or Real

62 VS FORTRAN Language and Library Reference

O

Type
of b | [compLEX"8 COMPLEX*16 COMPLEX*32
Type COMPLEX
of a
INTEGER*2 Fix and Fix and Fix and
assign real assign real assign real
part; part; part;
INTEGER™4 imaginary imaginary imaginary
part not used part not used part not used
INTEGER
- Assign real Real assign, Real assign,
REAL™4 part; real part; real part;
imaginary imaginary imaginary
part not part not part not
REAL used used used
— DP extend and |]Assign real DP assign
REAL*8 assign real part; real part;
part; imaginary imaginary
DOUBLE imaginary part not part not
PRECISION | part not used ||used used
QP extend QP extend Assign real
—~ and assign and assign part;
REAL*16 real part; real part; imaginary
imaginary imaginary part not
part not used|||part not used|]|used
—- Real assign Real assign
COMPLEX™8 Assign real and real and
imaginary imaginary
parts parts
COMPLEX
DP extend DP assign
—~ and assign Assign real and
COMPLEX™16|||real and imaginary
imaginary parts
parts
QP extend QP extend
—~ and assign and assign Assign
COMPLEX™32 real and real and
imaginary imaginary
parts parts

Figure 19. Conversion Rules for the Arithmetic Assignment Statement a=b, Where Type of b Is Complex

Assignment

Chapter 5. VS FORTRAN Statements 63

Assignment

Notes to Figures: IBM extensions are shown with inner boxes in the figures. For
clarity of presentation, the extensions are not marked in the following definitions.
Terms in the figures are defined as follows:

Assign Transmit the expression value without change. If the expression

value contains more significant digits than the variable a can hold,

the value assigned to a is unpredictable.

Real assi Transmit to a as much precision of the most significant part of the
ign p

expression value as REAL *4 data can contain.

DP assign Transmit as much precision of the most significant part of the

expression value as double precision (REAL*8) data can contain.

Fix Truncate the fractional portion of the expression value and
transform the result to an integer of 4 bytes in length. If the

expression value contains more significant digits than an integer 4
bytes in length can hold, the value assigned to the integer variable

is unpredictable.
Float Transform the integer expression value to a REAL*4 number,
retaining in the process as much precision of the value as a

REAL*4 number can contain.

DP float Transform the integer expression value to a double precision
(REAL*8) number.

DP extend Extend the real value to a double precision (REAL*8) number.
QP float Transform the integer expression value to a REAL*16 number.
QP extend Extend the real value to a REAL*16 number.

Examples:

Assume the type of the following data items has been specified:

NAME TYPE LENGTH

I, J, K Integer variables o, 4, 2
A, B, C, D Real variables 4, 4, 8, 8
E Complex variable 8

F(1),...,F(5) | Real array elements | 4

G, H Logical variables L, 4

CHAR1 Character variable 10

The following examples illustrate valid assignment statements using constants,
variables, and array elements as defined above.

64 VS FORTRAN Language and Library Reference

O

O

O

Assignment

Statement

Description

A=B

The value of A is replaced by the current value of
B.

K=B

The value of B is converted to an integer value,
and the value of K is replaced by as much as can
be held in 2 bytes.

A=1

The value of Iis converted to a real value, and
replaces the value of A.

I=1+1

The value of I is replaced by the value of I + 1.

E =I**J+D

I is raised to the power J and the result is
converted to a real value to which the value of D is
added. This result replaces the real part of the
complex variable E. The imaginary part of the
complex variable is set to zero.

A=C*D

The most significant part of the product of C and
D replaces the value of A.

The real part of the complex variable E replaces
the value of A.

The value of A replaces the value of the real part
of the complex variable E; the imaginary part is set
equal to zero.

G = .TRUE.

The value of G is replaced by the logical value
true.

H = NOT.G

If G is true, the value of H is replaced by the
logical value false. If G is false, the value of H is
replaced by the logical value true.

G =3.GT1

The value of I is converted to a real value; if the
real constant 3. is greater than this result, the
logical value true replaces the value of G. If 3. is
not greater than the converted I, the logical value
false replaces the value of G.

E = (1.0,2.0)

The value of the complex variable E is replaced by
the value of the complex constant (1.0,2.0). The
statement E = (A,B), where A and B are real
variables, is invalid. The mathematical function
subprogram CMPLX can be used for this purpose.
See Appendix B, “IBM and ANS FORTRAN
Features” on page 351.

F(1)=A

The value of element 1 of array F is replaced by
the value of A.

E = F(5)

The real part of the complex constant E is replaced
by the value of array element F(5). The imaginary
part is set equal to zero.

Chapter 5. VS FORTRAN Statements

65

Assignment

Statement

Description

C = 99999999.0

Even though C is of length 8, the constant having
no exponent is considered to be of length 4. Thus
the number will not have the accuracy that may be
intended. If the basic real constant were entered
as 99999999.0D0, the converted value placed in
the variable C would be a closer approximation to
the entered basic real decimal constant, because
15 decimal digits can be represented in 8 bytes.

CHARI1 contains the value ’ABCDEFGHIJ’ since
CHARI is of length 10, and the constant is of
length 10.

CHARI1 contains the value ’ABCbbbbbbb’ since
CHARI1 is of length 10 and the constant is only of
length 3; thus CHARLI is padded with blanks.

CHART1 contains the value ’ABCDEFGHIJ’ since
CHARUI is of length 10. and the constant is of
length 12; the constant is truncated.

CHARI1=
’ABCDEFGHIY
CHAR1="ABC’
CHARI1=
’ABCDEFGHIJKL’
CHARI1=
"FGHI)’//’ABCDFE’

CHARI contains the value ’'FGHIJABCDE’, the
result of the concatenation operation.

AT Statement

The AT statement identifies the beginning of a debug packet and indicates the

IBM Extension

point in the program at which debugging is to begin.

—— Syntax
AT stn

sin

is the number of an executable statement in the program unit or function or

subroutine subprogram to be debugged.

The debugging operations specified within the debug packet are performed prior to
the execution of the statement indicated by the statement number (stn) in the AT

statement.

The statement number cannot be specified in another debug packet.

There must be one AT statement for each debug packet; there may be many debug

packets for one program or subprogram.

The AT statement identifies the beginning of a debug packet and the end of the
preceding packet (if any) unless this is the last packet, in which case it is ended by

the END DEBUG statement.

66 VS FORTRAN Language and Library Reference

U

C

AT

For more on debug packets and for examples of the AT statement, see “DEBUG

0 Statement” on page 82.

| End of IBM Extension |

BACKSPACE Statement

The BACKSPACE statement, when first issued, positions a sequentially accessed
file to the beginning of the VS FORTRAN record last written or read. A
subsequent BACKSPACE statement will reposition the file to the beginning of the
preceding record.

The BACKSPACE statement reestablishes the position of a keyed file to a point
prior to the current file position. Following the BACKSPACE statement, you can
use a sequential retrieval statement to read the record to which the file was
positioned.

—— Symtax
BACKSPACE un

BACKSPACE ([UNIT=]un [JOSTAT=ios] [, ERR=stn})

UNIT=un
un is the reference number of an I/O unit. It is an integer expression of
O length 4, whose value must be zero or positive. un is required.

If the second form of the statement is used, un can optionally be preceded by
UNIT=. If UNIT= is not specified, un must appear first in the statement.
The other parameters may appear in any order. If UNIT= is specified, all
the parameters can appear in any order.

IOSTAT=ios
is optional. ios is an integer variable or an integer array element of length 4.
ios is set positive if an error is detected; it is set to zero if no error is
detected. VSAM return and reason codes are placed in ios.

ERR=stn
stn is the number of an executable statement in the same program unit as the
BACKSPACE statement. If an error is detected, control is transferred to
stn.

Valid BACKSPACE Statements:

BACKSPACE un

BACKSPACE (un,ERR=stn)

BACKSPACE (UNIT=un,IOSTAT=ios,ERR=stn)
BACKSPACE (ERR=stn,UNIT=un)

w BACKSPACE (UNIT=2*IN+2)

BACKSPACE (IOSTAT=I0S,ERR=99999,UNIT=2*IN-10)

Chapter 5. VS FORTRAN Statements 67

BACKSPACE

Invalid BACKSPACE Statements:

BACKSPACE UNIT=un UNIT= is not allowed without the Q
parentheses.

BACKSPACE un,ERR=stn Parentheses must be specified.

BACKSPACE (ERR=stn,un) UNIT= must be specified.

When the BACKSPACE statement is encountered, the unit specified by un must
be connected to an external file for sequential or keyed access. (See VS
FORTRAN Programming Guide.) If the unit is not connected, an error is detected.

The external file connected to the unit un must exist; otherwise, an error is
detected. (The existence of a file can be determined with the INQUIRE statement.
exs must have the value true. See “INQUIRE Statement” on page 154.)

A BACKSPACE statement positions an external file connected for sequential
access to the beginning of the preceding record. If there is no preceding record, the
BACKSPACE statement has no effect. The BACKSPACE statement must not be
used with external files using list-directed formatting.

A BACKSPACE statement for a SYSIN file has no effect.

An external file connected for sequential access can be extended if the execution of
an ENDFILE statement or the detection of an end-of-file is immediately followed
by the execution of a BACKSPACE and a WRITE statement on this file. (See
“READ Statement—Formatted with Sequential Access” on page 192.)

If the external file connected for sequential access is at the end-of-file, either after @
an ENDFILE operation or after a READ that resulted in end-of-file, two

BACKSPACE statements are necessary to position the data set to the beginning of

its last logical record. One BACKSPACE may be followed by a WRITE to extend

the data set.

| IBM Extension |

A BACKSPACE issued to a file connected for keyed access positions the file to the
beginning of the first record whose key value is the same as that in the record
which precedes the current file position. If there is no preceding record, the file
position remains at the beginning of the file.

The BACKSPACE statement must not be used with external files written using
NAMELIST. If it is used, the result is unpredictable.

The BACKSPACE statement may be used with asynchronous READ and WRITE
statements provided that any input or output operation on the file has been
completed by the execution of a WAIT statement. A WAIT statement is not
required to complete the BACKSPACE operation.

| End of IBM Extension I

error is detected. If IOSTAT=ios is specified, a positive integer value is assigned to

Transfer is made to the statement number specified by the ERR parameter if an O
ios when an error is detected. Execution continues with the statement number

68 VS FORTRAN Language and Library Reference

BLOCK DATA

specified by the ERR parameter (if present) or with the next statement if the ERR
‘ _ : parameter is not specified. If the ERR parameter and the IOSTAT parameter are
j both omitted, program execution is terminated when an error is detected.

BLOCK DATA Statement

The BLOCK DATA statement names a block of data.

—— Syntax
BLOCK DATA [name]

is the name of the block data subprogram. This name is optional. It must
not be the same as the name of another subprogram, a main program, or the
common block name in the executable program. There can only be one
unnamed block data subprogram in an

To initialize variables in a named common block, a separate subprogram must be
written. This separate subprogram contains only the BLOCK DATA, IMPLICIT,
PARAMETER, DATA, COMMON, DIMENSION, SAVE, EQUIVALENCE, and
END statements, comment lines, and explicit type specification statements
associated with the data being defined. This subprogram is not called; its presence
provides initial data values for named common blocks. Data may not be initialized
in unnamed common blocks.

0 The BLOCK DATA statement must appear only as the first statement in the
subprogram. Statements that provide initial values for data items cannot precede
the COMMON statements that define those data items.

Any main program or subprogram using a named common block must contain a
COMMON statement defining that block. If initial values are to be assigned, a
block data subprogram is necessary.

A particular common block may not be initialized in more than one block data
subprogram.

Entities not in a named common block must not be initialized and must not appear
in a DIMENSION, EQUIVALENCE, or type statement in a block data
subprogram.

All elements of a named common block must be listed in the COMMON statement,
even though they are not all initialized. For example, the variable A in the
COMMON statement in the following block data subprogram does not appear in
the DATA statement.

Example 1:

BLOCK DATA
COMMON /ELN/C,A,B
COMPLEX C

DATA C/(2.4,3.769)/,B/1.2/
END

Chapter 5. VS FORTRAN Statements 69

BLOCK DATA

Block IF Statement

CALL Statement

Data may be entered into more than one common block in a single block data
subprogram.

Example 2:

BLOCK DATA VALUE1
COMMON /ELN/ C,A,B
COMMON /RMG/ Z,Y
COMPLEX C

DOUBLE PRECISION Z
DATA C /(2.4, 3.769)/
DATA B /1.2/

DATA Z /7.64980825D0/
END

As a result of the operation in this example, in BLOCK DATA named VALUE],
COMMON/ELN/C,A,B
will have the complex variable C real part initialized to 2.4 and the imaginary part

initialized to 3.769. The variable A will not be initialized and B will be initialized
to 1.2.

COMMON/RMG/Z, Y

will have the double precision variable Z initialized with the double precision
constant 7.64980825 and Y will not be initialized.

See “IF Statements” on page 145.

The CALL statement:
o Transfers control to a subroutine subprogram
« Evaluates actual arguments that are expressions

o Associates actual arguments with dummy arguments

— Syntax
CALL name[([argl[,arg2]...])]

name
is the name of a subroutine subprogram or an entry point. This name may
be a dummy argument in a FUNCTION, SUBROUTINE, or ENTRY
statement.

70 VS FORTRAN Language and Library Reference

®

CALL

arg
is an actual argument that is being supplied to the subroutine subprogram.
The argument may be a variable, array element or array name, a constant, an
arithmetic, logical, or character expression, a function or subroutine name, or
an asterisk (*) followed by the statement number of an executable statement
that appears in the same program unit as the CALL statement.

If no actual argument is specified, the parentheses may be omitted.

The CALL statement transfers control to the subroutine subprogram and replaces
the dummy variables with the values of the actual arguments that appear in the
CALL statement.

The CALL statement can be used in a main program, a function subprogram, or a
subroutine subprogram, but a subprogram must not refer to itself directly or
indirectly and must not refer to the main program. A main program cannot call
itself.

If name is a dummy argument in a subprogram containing CALL name, this CALL
statement can be executed only if the subprogram is given control at one of its
entry points where name appears in the list of dummy arguments. (See
“EXTERNAL Statement” on page 108.)

Valid Examples:

For the following examples, assume that the subroutine definitions below have
been defined:

SUBROUTINE SUB1

END

SUBROUTINE SUB2 ()

END

SUBROUTINE SUB3 (A, B, C)
REAL A

REAL B (*)

REAL C(2, 5)

END

SUBROUTINE SUB4 (LOGL)
LOGICAL LOGL

END

SUBROUTINE SUBS5 (CHAR)
CHARACTER * (*) CHAR

END

Chapter 5. VS FORTRAN Statements 71

CALL

SUBROUTINE SUB6(SUBX, X, Y, FUNCX)
EXTERNAL SUBX, FUNCX

Z = FUNCX (X, Y) 11!.
CALL SUB7(SUBX) ‘
END

SUBROUTINE SUB7 (SUBY)

EXTERNAL SUBY

o e e

CALL SUBY
END

SUBROUTINE SUB8 (A, B, *, *,6 *)

IF(A .LT. 0.0) RETURN 1
IF(A .EQ. 0.0) RETURN 2
RETURN 3

END

In the following CALL statement examples that follow, assume that the variable
declarations below have been made:

DIMENSION W(10), X(10), Z(5)

REAL Y

LOGICAL L

CHARACTER#*5 C1, C2
EXTERNAL SUBZ, FUNCA

The following CALL statement examples reference the SUBROUTINE

declarations above. Some of the examples reference subroutines with an array

dimensioned differently than in the calling program, a practice that can cause @
errors. Variable X in Example 2 below is a case in point. Care must be taken in

referencing elements of array X and array C. See “Subscripts” on page 28 for

information on array layouts.

The next four statements are all valid ways to call a subroutine with no arguments.
CALL SUBI1
CALL SUB1()

CALL SUB2
CALL SUB2()

Example with a variable and two array names.

CALL SUB3(Y, W, X)

Example with an array element and two array names.

CALL SUB3(Z(3), X, W)

Example with a constant and two array names.

CALL SUB3(2.5, W, X)

Example with an expression and two array names.

CALL SUB3(5*Y, X, W)

72 VS FORTRAN Language and Library Reference

CALL

Example using a logical variable.
CALL SUB4 (L)

Example using a logical constant.

CALL SUB4(.FALSE.)

Example using a logical expression.

CALL SUB4(X(5) .EQ. Y)

Example using a character variable.

CALL SUB5(C1)

Example using a character expression.

CALL SUB5(C1 // C2)

Example of passing a subroutine name and a function name.

CALL SUB6(SUBZ, 1.0, 2.0, FUNCA)

Example of passing statement numbers. Execution will continue at statement
number 100, 200, or 300 if the return code is 1, 2, or 3 respectively. Otherwise,
execution will continue at the statement after the call.

CALL SUB8(X(3), LOG(z(2)), *100, *200, *300)
Invalid Examples:

The following example results indirectly in a call by one subroutine to itself. This is
invalid, but cannot be checked by the VS FORTRAN compiler.

CALL SUB6(SUB7, X(5), Y, COS)

The following example results in the use of a character variable with implicitly (*)
defined length being used in a concatenation operation. This usage is invalid.

SUBROUTINE SUBA (CHAR)

CHARACTER* (*) CHAR

CHARACTER*4 C1

CALL SUBB(CHAR // C1)

RETURN

END

Character Type Statement

See “Explicit Type Statement” on page 103.

Chapter 5. VS FORTRAN Statements 73

CLOSE

CLOSE Statement

A CLOSE statement disconnects an external file from an input or output unit. 'N

[Spyntax
CLOSE ([UNIT=]un [,LERR=stn] [, STATUS=sta] [JOSTAT=io0s])

UNIT =un
un is the reference to the number of an I/O unit. It is an integer expression
of length 4, whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=stn
is optional. stn is the number of an executable statement in the same
program unit as the CLOSE statement. If an error is detected, control is
transferred to stn. If ERR=stn is omitted, execution halts when an error is
detected.

STATUS=sta
is optional. sta is a character expression whose value (when any trailing
- blanks are removed) must be KEEP or DELETE. sta determines the
disposition of the file that is connected to the specified unit. {_J

IOSTAT=ios
is optional. ios is an integer variable or an integer array element of length 4.
ios is set positive if an error is detected, it is set to zero if no error is
detected. VSAM return and reason codes are placed in ios.

Each of the parameters of the CLOSE statement may appear only once. The unit
specifier (un) must appear. All value assignments are made according to the rules
for assignment statements.

Execution of a CLOSE statement that refers to a unit may occur in any program
unit of an executable program and need not occur in the same program unit as the
execution of an OPEN statement referring to that unit. When the CLOSE
statement is encountered, the unit specified by un may or may not be connected to
afile. If the unit is connected, the file may or may not exist.

If KEEP is specified for a file that exists, the file continues to exist after the
execution of the CLOSE statement. If KEEP is specified for a file that does not
exist, the file will not exist after the execution of the CLOSE statement. If
DELETE is specified, the file is deleted.

If STATUS is omitted, the assumed value is KEEP, unless the file status prior to

execution of the CLOSE statement is SCRATCH, in which case the assumed value

is DELETE. (The STATUS parameter affects only the internal VS FORTRAN

status. The external status is set by the JCL or other system environment and will O
not be overridden.)

74 VS FORTRAN Language and Library Reference

CLOSE

After a unit has been disconnected by execution of a CLOSE statement, it may be
connected again within the same executable program to the same file or a different
file.

After a file has been disconnected by execution of a CLOSE statement, it may be
connected again within the same executable program to the same unit or a different
unit provided that the file still exists. (See ‘“OPEN Statement” on page 168.)

When execution ends normally, all units that are connected are closed. Each unit is
closed with the status KEEP, unless the file status prior to termination of execution
was SCRATCH, in which case the unit is closed with the status DELETE.

Assume that the type of the following variables has been specified as follows:
Variable Names Type Length

IN,JACT,Z INTEGER 4

DELETE,STATUS CHARACTER 6

and that

DELETE = 'DELETE’
The following statements are valid:

Example 1:

CLOSE (6+IN)

CLOSE (Z*IN+2)

CLOSE (Z*IN+3, STATUS=DELETE)

CLOSE (IOSTAT=IACT,ERR=99999,STATUS='KE'//'EP ', UNIT=0)

Example 2:

STATUS="'KEEP'

DELETE=STATUS

CLOSE (UNIT=9, STATUS=DELETE)
CLOSE (UNIT=9, STATUS=STATUS)

CLOSE (UNIT=9, STATUS='KEEP')

Each of these CLOSE statements should execute the same way and give a status of
KEEP.

Chapter 5. VS FORTRAN Statements 75

Comments

Comments

Fixed-Form Input

Free-Form Input

@

Comments provide documentation for a program. They can be entered in either
fixed form or free form.

Fixed-form comments have the following attributes:

» A “C” or an asterisk (*) may appear in column 1, or all blanks may appear in
columns 1 to 72.

* A comment may appear anywhere before the END statement.

| IBM Extension

Free-form comments have the following attributes:

e Any line that does not follow a continued line and that has the quotation mark
(") character as its first character is considered a comment.

e« A comment line cannot be continued.

Valid Example: @

Column: 1 7

"THIS IS A COMMENT

10D=010.5

GOTO 56

150 A=B+C* (D+E**F——
G+H-2.%* (G+P))

"THIS IS ANOTHER COMMENT

END
Invalid Example:

The following example illustrates that a comment cannot follow a line that needs a
continuation.

Column: 1 7

"THIS IS A COMMENT

10D=010.5

GOTO 56

150 A=B+C* (D+E**F--

"THIS IS NOT A COMMENT IT IS PART OF THE LAST LINE
G+H-2.* (G+P))

"THIS IS ANOTHER COMMENT

END ‘:;D

| End of IBM Extension I

76 VS FORTRAN Language and Library Reference

O

COMMON Statement

Comments

The COMMON statement makes it possible for two or more program units to

share storage and to specify the names of variables and arrays that are to occupy
the area.

— Syntax
COMMON [/[namell/] list1[[,] /[namen]/ lism] ...

name

list

is an optional common block name. These names must always be enclosed
in slashes. They cannot be the same as names used in PROGRAM,
SUBROUTINE, FUNCTION, ENTRY, or BLOCK DATA statements.
They cannot be intrinsic function names that are referenced in the same
program unit.

The form // (with no characters except, possibly, blanks between the
slashes) denotes blank common. If namel denotes blank common, the first
two slashes are optional.

The comma preceding the common block name designator /name/ is
optional.

is a list of variable names or array names that are not dummy arguments. If
a variable name is also a function name, subroutine name, or entry name, it
must not appear in the list. If the list contains an array name, dimensions
may also be declared for that array. (See “DIMENSION Statement” on
page 87.)

A given common block name may appear more than once in a COMMON
statement, or in more than one COMMON statement in a program unit.

Blank and named common entries appearing in COMMON statements are
cumulative throughout the program unit. Consider the following two COMMON
statements:

COMMON A, B, C /R/ D, E /S/ F

COMMON G, H /S/ I, J /R/R//W

These two statements have the same effect as the single statement:

COMMON A, B, C, G, H, W/R/ D, E, R /S/ F, I, J

I

IBM Extension |

Character and noncharacter data types can be mixed in a common block.

End of IBM Extension |

Chapter 5. VS FORTRAN Statements 77

COMMON

Although the entries in a COMMON statement can contain dimension information,
object-time dimensions may never be used.

The length of a blank common can be extended by using an EQUIVALENCE
statement, but only by adding beyond the last entry.

A common block resides in a fixed location in storage during the execution of a
program. Because of this, all program units of this program refer to data at that
location as defined in the COMMON statements in each program unit.

In the following example, the complex variable, CV, and the real array, RV, refer
to the same storage locations.

The statement: RV(2) = 1.2 will assign the value of 1.2 to the imaginary part of
CV.

Main Program Subroutine
COMMON CV SUBROUTINE SUB
COMPLEX*8 CV COMMON RV (2)
CALL SUB RV(2) = 1.2
STOP '~ RETURN
END END

Blank and Named Common Blocks

Variables and arrays may be placed in separate common blocks by giving distinct
common block names (name). Those blocks that have the same name occupy the
same storage area. The name cannot be the same as the main program name,
subprogram name, or entry name.

| IBM Extension

The variables and arrays of a common block may be mixed character and
noncharacter data types.

| End of IBM Extension

Naming these separate blocks permits a calling program to share one common
block with one subprogram and another common block with another subprogram.
It also makes it easier to document the program.

The differences between blank and named common blocks are:

« There is only one blank common block in an executable program, and it has no
name.

There may be many named common blocks, each with its own name.

+ Blank common blocks may have different lengths in different program units.

78 VS FORTRAN Language and Library Reference

C

COMMON

Each program unit that uses a named common block must define it to be of the
same length.

e Variables and array elements in a blank common block cannot be assigned
initial values.

« Variables and array elements in a named common block may be assigned initial
values by DATA statements in a block data subprogram.

r IBM Extension |

Variables and array elements in a named common block may be assigned initial
values by explicit type specification statements in a block data subprogram.

I End of IBM Extension I

Variables that are to be placed in a named common block are preceded by the
common block name enclosed in slashes. For example, the variables A, B, and C
are placed in the named common block, HOLD, by the following statement:

COMMON /HOLD/ A,B,C
In a COMMON statement, a blank common block is distinguished from a named
common block by placing two consecutive slashes before the variables (or, if the

variables appear at the beginning of the COMMON statement, by omitting any
common block name). For example,

COMMON A, B, C /ITEMS/ X, Y, 2/ / D, E, F

The variables A, B, C, D, E, and F are placed in a blank common block in that
order; the variables X, Y, and Z are placed in the named common block, ITEMS.

Complex Type Statement

See “Explicit Type Statement” on page 103.

Computed GO TO Statement

See “GO TO Statements” on page 142.

CONTINUE Statement

The CONTINUE statement is an executable control statement that takes no action.
It can be used to designate the end of a DO loop, or to label a position in a
program.

—— Syntax
CONTINUE

Chapter 5. VS FORTRAN Statements 79

CONTINUE

DATA Statement

CONTINUE
is a statement that may be placed anywhere in the source program (where an @
executable statement may appear) without affecting the sequence of /
execution. It may be used as the last statement in the range of a DO loop in
order to avoid ending the DO loop with an unconditional or assigned GO
TO, block IF, ELSE IF, ELSE, END IF, STOP, RETURN, END, arithmetic
IF, another DO statement, or a logical IF statement containing an
unconditional or assigned GO TO, or a STOP, RETURN, or arithmetic IF
statement.

The DATA statement defines initial values of variables, array elements, arrays, and
substrings.

—— Syntax
DATA listl /clistl/ [[,] list2 /clist2/ 1 ...

list
is a list of variables, array elements, arrays or substrings, and implied DO
lists. (See ‘“Implied DO in a DATA Statement” on page 91.) The comma
preceding list2...listn is optional.
Subscript and substring expressions used in each /ist can contain only integer N
constants or names of integer constants. U
clist

is a list of constants or the names of constants. Integer and real constants
may optionally be signed. Any of these constants may be preceded by r*,
where r is a nonzero unsigned integer constant or the name of such a
constant. When the form r* appears before a constant, it indicates that the
constant is to be repeated r times.

A DATA initialization statement is not executable. The DATA statement cannot
precede a PROGRAM, FUNCTION, SUBROUTINE, BLOCK DATA,
IMPLICIT, PARAMETER, or an explicit type statement. Otherwise, a DATA
statement can appear anywhere in the program.

There must be a one-to-one correspondence between the total number of elements
specified or implied by the list /ist and the total number of constants specified by
the corresponding list clist after application of any replication factors, r.

Integer, real, and complex variables or array elements must be initialized with
integer, real, or complex constants; conversions take place according to the
arithmetic assignment rules, if necessary.

| IBM Extension v |

A hexadecimal constant can be used to initialize any type of variable or array O
element.

80 VS FORTRAN Language and Library Reference

DATA

If a hexadecimal constant initializes a complex data type, one constant is used that
initializes both the real and the imaginary parts, and the constant is not enclosed in
parentheses. If the constant is smaller than the length (in bytes) of the entire
complex entity, zeros are added on the left. If the constant is larger, the leftmost
hexadecimal digits are truncated.

A Hollerith constant can be used to initialize a noncharacter variable or array
element.

A logical variable or logical array can be initialized with T instead of .TRUE. and F
instead of .FALSE..

I End of IBM Extension |

Character items can be initialized by character data. Each character constant
initializes exactly one variable, one array element, or one substring. If a character
constant contains more characters than the item it initializes, the additional
rightmost characters in the constant are ignored. If a character constant contains
fewer characters than the item it initializes, the additional rightmost characters in
the item are initialized with blank characters. (Each character represents one byte
of storage.)

A variable or array element defined with an initial value may not be in blank
common and may not be assigned an initial value more than once. If the variable
or array element is in a named common block, it may be initially defined only in a
block data subprogram. Because of this constraint, entities that are associated with
each other through COMMON or EQUIVALENCE statements are considered to
be the same entity.

Valid DATA Statements:

LOGICAL L (4)

DIMENSION D(50) ,F(5),G(9)

CHARACTER*4 C,CC(5)

DATA A, B, $/5.0,6.1,7.3/,D/25*1.0,25*%*2.0/,E/5.1/
DATA F/5%1.0/, G/9%2.0/, L/4*.TRUE./, C/'FOUR'/

DATA CC(1)(1:2)/'AB'/,CC(1) (3:4)/'CD'/

| IBM Extension

DATA CC(2)/ZC5C6C7C8/,1/2F8/,R/Z00/

I End of IBM Extension l

Chapter 5. VS FORTRAN Statements 81

DEBUG

| IBM Extension —l

DEBUG Statement

The DEBUG statement sets the conditions for operation of the debug facility and
designates debugging operations that apply to the entire program unit (such as
subscript checking).

—— Syntax
DEBUG option1[,option2...]

An option may be any of the following:

UNIT (un)
un is an integer constant that represents a unit number. All debugging
output is placed in this file, which is called the debug output file. If this
option is not specified, any debugging output is placed in the
installation-defined output file. All unit definitions within an executable
program must refer to the same unit.

SUBCHK (al, a2,..., an)
a is an array name. The validity of the subscripts used with the named arrays
is checked by comparing the subscript combination with the size of the array.
If the subscript value exceeds the size of the array, a message is placed in the
debug file. Program execution continues, using the incorrect subscript. If
the list of array names is omitted, all arrays in the program are checked for
valid subscript usage. If the entire option is omitted, no arrays are checked
for valid subscripts.

O

TRACE
This option must be in the DEBUG specification statement of each program
or subprogram for which tracing is desired. If this option is omitted, there
can be no display of program flow by statement number within this program.
Even when this option is used, a TRACE ON statement must appear in the
first debug packet in which tracing is desired.

INIT (i1, i2,..., in)
i is the name of a variable or an array that is to be displayed in the debug
output file only when the variable or the array elements are assigned a value.
If i is a variable name, the name and value are displayed whenever the
variable is assigned a new value in either an assignment, a READ, or an
ASSIGN statement. If i is an array name, the array element is displayed. If
the list of names is omitted, a display occurs whenever the value of a variable
or an array element is assigned a value. If the entire option is omitted, no
display occurs when values are assigned.

82 VS FORTRAN Language and Library Reference

DEBUG

SUBTRACE
This option specifies that the name of this subprogram is to be displayed
whenever it is entered. The message RETURN is to be displayed whenever
execution of the subprogram is completed.

The options in a DEBUG statement may be given in any order and they must be
separated by commas.

All debugging statements must precede the first statement of the program being
debugged.

In the case of a subroutine, the debug statements must appear immediately before
the SUBROUTINE statement. In the case of a function subprogram, the debug
statements must appear immediately before the FUNCTION statement. The
required statement sequence is:

1. DEBUG statement

2. Debug packets

3. END DEBUG statement

4. First of the source program statements of a program unit to be debugged

A debug packet begins with an AT statement and ends when either another AT
statement or an END DEBUG statement is encountered.

Debug statements are written in either fixed form or free form and follow the same
rules as other VS FORTRAN statements.

In addition to the VS FORTRAN language statements, the following debug
statements are allowed:

TRACE ON
TRACE OFF
DISPLAY

All VS FORTRAN statements are allowed in a debug packet except as listed in
“Considerations When Using DEBUG,” below.

Considerations When Using DEBUG

The following precautions must be taken when setting up a debug packet:

« Any DO loops or block IF, ELSE IF, or ELSE statements initiated within a
debug packet must be wholly contained within that packet.

e Statement numbers within a debug packet must be unique. They must be
different from statement numbers within other debug packets and within the

program being debugged.

e An error in a program should not be corrected with a debug packet; when the
debug packet is removed, the error remains in the program.

Chapter 5. VS FORTRAN Statements 83

DEBUG

No specification statements can appear in a debug packet; nor can any of the
following statements:

BLOCK DATA
ENTRY
FUNCTION
PROGRAM
statement function
SUBROUTINE

The program being debugged must not transfer control to any statement
number defined in a debug packet; however, control may be returned to any
point in the program being debugged from a packet. In addition, no debug
packet may refer to a label defined in another debug packet. A debug packet
may contain a RETURN, STOP, or CALL statement.

The SUBCHK function of DEBUG does proper subscript checking of an array
if, and only if, that array is a single-dimensioned array with a lower bound of 1.
If the lower bound is not 1 and an error is detected, the message will give the
index to the element as if it had a lower bound of 1. If multidimensional arrays
are being checked for valid subscripts, the array is perceived to be a
single-dimensioned array of the appropriate number of array elements. The
subscripts are evaluated and the check indicates whether you are referencing
an array element within the range of the array, but not whether one of the
subscripts is invalid. Individual subscripts are not checked for their valid range.

Thus, if array A is dimensioned as A(5,6) and a reference is made to A(K,2),
where K is 7, the SUBCHK function will not flag this because the subscript
value yields an element within array A. The values of the first and second
subscripts are not checked for having values of 1 through 5 or 1 through 6,
respectively.

DEBUG Examples:

Example 1:

DEBUG UNIT (6) ,SUBCHK
END DEBUG
PROGRAM TEST

END

This example checks all arrays for valid subscripts.

84 VS FORTRAN Language and Library Reference

P

DEBUG

Example 2:

DEBUG UNIT (6)
AT 11
WRITE(6,21)A,B,C
21 FORMAT(1X,'A=',I10,'B=',I10,'C=',I10)
END DEBUG

INTEGER A,B,C

10 B=A*%* SQRT (FLOAT (C))
11 IF(B)40,50,60

The values of A, B, and C are to be examined as they were at the completion of the
arithmetic operation in statement 10. Therefore, the statement number specified in
the AT statement is 11. The values of A, B, and C are written to the file connected
to unit 6.

Example 3:
DEBUG TRACE, UNIT(6)
AT 10
TRACE ON
AT 25
TRACE OFF
AT 35
DISPLAY C
TRACE ON
END DEBUG
10 A=2.0
15 L= 1
20 B=A+ 1.5
25 DO 30 I =1,5
30 CONTINUE
35 C =B+ 3.415
40 D=C**2
45 CALL SUB1(D,L,R)
STOP
END

Chapter 5. VS FORTRAN Statements 85

DEBUG

DEBUG SUBTRACE, TRACE
AT 4

TRACE ON

END DEBUG

SUBROUTINE SUB1(X,I,Y)

4 Y=FUNC1 (X-INT (X))
WRITE (6,%) Y

RETURN
END

DEBUG SUBTRACE, TRACE
AT 100

TRACE ON

END DEBUG

FUNCTION FUNC1(Z)

100 FUNC1 = COS(Z) + SIN(Z)

RETURN
END

When statement 10 is encountered, tracing begins, as specified by the TRACE ON
statement in the first debug packet. When statement 25 is encountered, tracing
stops, as specified by the TRACE OFF statement in the second debug packet.
When statement 35 is encountered, tracing begins again and the value of C is
written to the debug output file, as specified in the third debug packet.

When SUBLI is entered, the words “SUBTRACE SUB1” appear in the output
because of the SUBTRACE option on the DEBUG statement in subroutine SUB1.
When statement 4 is encountered, tracing begins. When FUNCT1 is entered, the
words “SUBTRACE FUNC1” appear in the output. When FUNCI is exited, the
words “SUBTRACE RETURN FROM FUNC1” appear in the output, and,
similarly, at exit from SUB1, the words “SUBTRACE RETURN FROM SUB1”
appear. Note that the output from the WRITE statement in SUB1 will go to the
same unit (6) as the DEBUG output.

| End of IBM Extension

86 VS FORTRAN Language and Library Reference

N

DELETE Statement

DEBUG

r IBM Extension |

The DELETE statement removes a record from a file connected for keyed access.
It removes the record retrieved by an immediately preceding READ operation. No
other operation, such as BACKSPACE or WRITE, can be issued for the same file
between the READ and DELETE statements.

—— Syntax
DELETE un

DELETE ([UNIT=]un [IOSTAT=ios] [ERR=stn])

UNIT=un
un is the reference number of an I/O unit. It is an integer expression of
length 4 whose value must be zero or positive. un is required.

If the second form of the statement is used, un can optionally be preceded by
UNIT=. If UNIT= is not specified, un must appear first in the statement.
The other parameters can appear in any order. If UNIT= is specified, all the
parameters can appear in any order.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. It is set
positive if an error is detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

ERR=stn
stn is the number of an executable statement in the same program unit as the
DELETE statement. If an error is detected, control is transferred to stn.

Valid DELETE Statement:

DELETE (15)

| End of IBM Extension |

DIMENSION Statement

The DIMENSION statement specifies the name and dimensions of an array.

— Syntax
DIMENSION al(diml) [, a2(dim2)] ...

Chapter 5. VS FORTRAN Statements 87

DIMENSION

DISPLAY Statement

is an array name.

dim
is composed of one through seven dimension bounds, separated by commas,
that represent the limits for each subscript of the array in the form:

el:e2
or
e2

where:

el
is the lower dimension bound. It is optional. If el (with its following
colon) is not specified, its value is assumed to be 1.

e2
is the upper dimension bound and must always be specified.

(See “Size and Type Declaration of an Array’”’ on page 30 for rules
about dimension bounds.)

Each a in a DIMENSION statement declares that a is an array in that program unit.

Array names and their bounds may also be declared in COMMON statements and
in type statements. Only one declaration of the array name (a) as an array is
permitted in a program unit.

Valid DIMENSION Statements:

DIMENSION A(10), ARRAY(5,5,5), LIST(10,100)

DIMENSION A(1:10), ARRAY(1:5,1:5,1:5), LIST(1:10,1:100)
DIMENSION B(0:24), C(-4:2), DATA(0:9,-5:4,10)
DIMENSION G(I:J,M:N)

DIMENSION ARRAY (M*N:I*J)

DIMENSION ARRAY (M*N:I*J,*)

| IBM Extension]

The DISPLAY statement displays data in NAMELIST output format. It may
appear anywhere within a debug packet.

—— Syntax
DISPLAY list

88 VS FORTRAN Language and Library Reference

&

C

DO Statement

DISPLAY

list
is a list of variable or array names separated by commas.

The DISPLAY statement eliminates the need for FORMAT or NAMELIST and
WRITE statements to display the results of a debugging operation. The data is
placed in the debug output file.

The effect of a DISPLAY list statement is the same as the following source
language statements:

NAMELIST /name/ list
WRITE (un, name)
where name is the same in both statements.

Array elements, dummy arguments, and substring references may not appear in the
list.

For examples and explanations of the DISPLAY statement, see “DEBUG
Statement” on page 82.

I End of IBM Extension J

The DO statement controls the execution of the statements that follow it, up to and
including an end-of-range statement. These statements are called the “range of the
DO” or a “DO loop.”

—— Syntax

End of DO Initial Test
Range Variable Value Value Increment

DO stm [] i el, e2 [,e3]

stn
is the number of an executable statement, in the same program unit as the
DO statement, that denotes the end of the DO loop. The statement at stn
cannot be an unconditional or assigned GOTO, block IF, ELSEIF, ENDIF,
STOP, RETURN, END, arithmetic IF, another DO statement, or a logical IF
statement containing an unconditional or assigned GOTO, STOP, RETURN,
or arithmetic IF statement.

is an integer, real, or double precision variable (not an array element) called
the DO variable.
el,e2, and €3

are integer, real, or double precision arithmetic expressions that define the
DO-loop iteration. e3 is optional and cannot have a value of zero; if it is

Chapter 5. VS FORTRAN Statements 89

DO

omitted, its value is assumed to be 1, and the preceding comma must be
omitted. The expressions el, 2, and e3 are evaluated, and the control
parameters m1, m2, and m3, respectively, are determined from them. The
expressions m1, m2, and m3 are converted to the type of the DO variable,
where the data types are not consistent.

The statements in the range of the DO are executed only if:

m1 is less than or equal to m2, and m3 is greater than zero
or

m1 is greater than or equal to m2, and m3 is less than zero.

If one of the above relationships is true, the first time the statements in the range of
the DO are executed, i is initialized to the value of m1; on each succeeding
iteration, i is increased by the value of m3. The number of iterations that can be
executed, called the iteration count, is the value of:

MAX (INT((m2 - m1 + m3) / m3), 0).

When the iteration count is zero, execution continues with the statement following
the last statement of the range of the DO, or the next outer DO if the statement
numbered stn is shared by more than one DO.

If one of the above relationships is not true, execution continues with the statement
following the last statement of the range of the DO, or the next outer DO if the
statement numbered stn is shared by more than one DO.

The DO variable may not be redefined within the range of the DO loop. However, @
any of the variables in the expressions el, €2, and ¢3 may be modified by the 3
statements in the DO loop without changing the iteration count as established for

the DO statement. To exit the DO loop before all iterations are completed, a

transfer instruction (GOTO, computed GOTO, assigned GOTO, CALL with

return values, arithmetic IF) must be executed, which transfers out of the range of

the DO.

No transfers may be made to any of the executable statements within the range of
the DO by statements outside the range of the DO.

Valid Examples:

The following program fragment illustrates the use of real expressions when
defining the DO control parameters and the DO variable.

XEND = 10.5
XINCR = .5

1.0, XEND, XINCR

The iteration count for the above example is 20; that is,

Iteration Count = MAX(INT((10.5 - 1.0 + .5)/.5), 0) = 20

90 VS FORTRAN Language and Library Reference

The next program fragment illustrates the use of a negative increment.

DIMENSION IA(20)

IEND = 20

INCR = 1

DO 10, I = IEND/2, 1, -INCR
10 IA(I) = IA(I) + IA(I+1)

The iteration count for the above example is 10; that is,

Iteration Count = MAX(INT((1-10-1)/-1),0) =10

DO

The following program is an example of DO loop nesting. Two inner DO loops are

nested within one outer DO loop.

DO 30 I =1, 2

PRINT *, 'OUTER', I

DO 10 J =1, 4, 2

PRINT *, 'INNER J', I, J
10 CONTINUE

DO 20 K = 2, 4, 2

PRINT #*, 'INNER K', I, K
20 CONTINUE
30 CONTINUE

Results from the nested DO example:

OUTER
INNER J
INNER J
INNER K
INNER K
OUTER
INNER J
INNERJ
INNER K
INNER K

DR NN N = e e =
BN W=

BN W

Implied DO in a DATA Statement

The form of an implied DO list in a DATA statement is:

— Syntax
(dlist, i = m1, m2 [, m3])

where:

dlist
is a list of array element names and implied DO lists.

is the name of an integer variable called the implied DO variable.

ml, m2, and m3

are each integer constants or names of integer constants, or expressions
containing only integer constants or names of integer constants. An

expression may contain implied DO variables of other surrounding implied

Chapter 5. VS FORTRAN Statements

91

DO

DO lists that have this implied DO list within their ranges (dlist). m3 is
optional; if omitted, it is assumed to be 1, and the preceding comma must
also be omitted. @

The range of an implied DO list is dlisz. An iteration count is established from m1,
m?2, and m3 exactly as for a DO-loop, except that the iteration count must be
positive.

Upon completion of the implied DO, the implied DO variable is undefined and may
not be used until assigned a value in a DATA statement, assignment statement, or
READ statement.

Each subscript expression in d/ist must be an integer constant or an expression
containing only integer constants or names of integer constants. The expression
may contain implied DO variables of implied DO lists that have the subscript
expression within their ranges.

Valid Implied DO Statement:

The following example uses the implied DO to initialize a two-dimensional
character array.

CHARACTER CHAR1(3,4)
DATA ((CHAR1Y(I,J), J=1,4), I=1,3)
/'A','B','Cl"D','E’,'F',lG','H','I','J"'K','L’/

The resultant array would be initialized as follows:

Rowl: A B C D @;
Row 2: E F G H =
Row 3: | J K L

Invalid Implied DO Statement:

DATA (K(I),I=1,3),(L(I),I=1,3),(M(I),I=1,2)/8%1/

The two DO Iists, (K(I),I=1,3) and (L(I),I=1,3), cannot share the same DO
variable (I) if they also use the same list of constants (/8*1/).

Implied DO in an Input/Qutput Statement

If an implied DO appears in the list parameter of an input/output statement, the
items specified by the implied DO are transmitted to or from the file. The implied
DO list in an input/output statement is of the form:

(QLiS_tl _J; =ml, m2 [r m?’])
where:
dlist

is an input/output list.

is the name of an integer, real, or double precision variable (not an array
element) called the DO variable. O

92 VS FORTRAN Language and Library Reference

DO

ml, m2, and m3
are integer, real, or double precision arithmetic expressions. The values of
the expressions m1, m2, and m3 are converted to the type of the DO
variable i, if necessary. m3 is optional and cannot have a value of zero; if it
is omitted, its value is assumed to be 1, and the preceding comma must be
omitted.

In an input statement, the DO-variable i, or an associated entity, must not appear
as an input list item in dlist. When an implied-DO list appears in an input/output
list, the list items in dlist are specified once for each iteration of the implied DO list
with appropriate substitution of values for any occurrence of the DO-variable i.

For example, assume that A is a variable and that B, C, and D are one-dimensional
arrays, each containing 20 elements. Then the statement:

READ (UNIT=5)A,B, (C(I),I=1,4),D(4)

reads one value into A, the next 20 values into B, and the next 4 values into the
first four elements of the array C, and the next value into the fourth element of D.

Or the statement:

WRITE (UNIT=6)A,B,(C(I),I=1,4),D(4)

writes one value from A, the next 20 values from B, and the next 4 values from the
first four elements of the array C, and the next value from the fourth element of D.

If the subscript (I) were not included with the array C, the entire array would be

0 transferred four times.

Implied DOs can be nested, if required. For example, to read an element into array
B after values are read into each row of a 10x20 array A, the following input
statement would be written:

READ (UNIT=5) ((A(I,J),J=1,20),B(I),I=1,10)

Or, to write an element from array B after values are written into each row of a
10x20 array A, the following output statement would be written:

WRITE (UNIT=6) ((A(I,J),J=1,20),B(I),I=1,10)

The order of the names in the list specifies the order in which the data is to be
transferred.

Double Precision Type Statement

See “Explicit Type Statement” on page 103.

Chapter 5. VS FORTRAN Statements 93

DO

EJECT Statement

ELSE Statement

ELSE IF Statement

END Statement

IBM Extension |

EJECT is a compiler directive. It starts a new full page of the source listing. The
EJECT statement should not be continued.

[Syntax
EJECT

| End of IBM Extension l

See “IF Statements” on page 145.

See “IF Statements” on page 145.

o

The END statement defines a program unit. That is, it terminates a main program,
or a function, subroutine, or block data subprogram.

— Syntax
END

The END statement may be numbered. It may not be continued, and no other
statement in the program unit may have an initial line that appears to be an END
statement. The END statement terminates program execution if it is executed in

the main program. If executed in a subprogram, it has the effect of a RETURN
statement.

Execution of an END statement terminates the association between the dummy
arguments of the subprogram and the current actual arguments. All entities within

the subprogram become undefined except:

« Entities specified in SAVE statements. (See “SAVE Statement” on
page 232.)

« Entities in a blank common block.

« Initially defined entities that have neither been redefined nor become]
undefined.

94 VS FORTRAN Language and Library Reference

END

« Entities in named common blocks that appear in the subprogram and appear in
at least one other program unit that is referring, either directly or indirectly, to
that subprogram. The entities in a named common block may become
undefined by execution of a RETURN or END statement in another program
unit.

All variables that are assigned a statement number with the ASSIGN statement
become undefined regardless of whether the variable is in a common block or
specified in a SAVE statement.

An END statement cannot terminate the range of a DO-loop.
END Statement in a Function Subprogram

All function subprograms must end with END statements. They may also contain
RETURN statements. An END statement specifies the physical end of the
subprogram.

A subprogram must not be referred to twice during the execution of an executable
program without the intervening execution of a RETURN or END statement in
that subprogram.

END Statement in a Subroutine Subprogram

All subroutine subprograms must end with END statements. They may also
contain RETURN statements. An END statement specifies the physical end of the
subprogram. If the END statement is reached during execution of the subroutine
subprogram, it is executed as a RETURN statement.

[IBM Extension]

END DEBUG Statement

The END DEBUG statement terminates the last debug packet for the program.

—— Syntax
END DEBUG

END DEBUG is placed after the other debug statements and just before the first
statement of the program being debugged. Only one END DEBUG statement is
allowed in a program unit.

See “DEBUG Statement” on page 82.

l End of IBM Extension

Chapter 5. VS FORTRAN Statements 95

ENDFILE

ENDFILE Statement

The ENDFILE statement writes an end-of-file record on a sequentially accessed @
external file.

—— Syntax
ENDFILE un

ENDFILE ([UNIT=]un [, ERR=stn] [, IOSTAT=ios])

UNIT=un
un is the reference to the number of an I/O unit. It is an integer expression
of length 4, whose value must be zero or positive. un is required.

If the second form of the statement is used, un can optionally be preceded by
UNIT=. If UNIT= is not specified, un must appear first in the statement.
The other parameters may appear in any order. If UNIT= is specified, all
the parameters can appear in any order.

ERR=stn
is optional. szn is the number of an executable statement in the same
program unit as the ENDFILE statement. If ERR=s¢n is omitted, execution
halts when an error is detected.

IOSTAT=ios N
is optional. ios is an integer variable or an integer array element of length 4. @
ios value is set positive if an error is detected; it is set to zero if no error is
detected. VSAM return and reason codes are placed in ios.

Valid ENDFILE Statements:
ENDFILE un

ENDFILE (un,ERR=stn)
ENDFILE (UNIT=un,ERR=stn)

ENDFILE (ERR=stn,UNIT=un)

96 VS FORTRAN Language and Library Reference

END IF Statement

ENTRY Statement

ENDFILE

Invalid ENDFILE Statements:

ENDFILE UNIT=un UNIT= is not allowed outside
parentheses.

ENDFILE un,ERR=stn Parentheses must be specified.

ENDFILE (ERR=stn,un) UNIT= must be specified

or un must be first in the list.

When the ENDFILE statement is encountered, the unit specified by un must be
connected to an external file with SEQUENTIAL access. (See V'S FORTRAN
Programming Guide for an example.) If the unit is not connected, an error is
detected.

After successful execution of the ENDFILE statement, the external file connected
to the unit specified by un is created, if it does not already exist.

| IBM Extension |

Use of ENDFILE with asynchronous READ and WRITE statements is allowed,
provided that any input or output operation on the file has been allowed to
complete by the execution of a WAIT statement. A WAIT statement is not
required to complete the ENDFILE operation.

Multiple file data sets are permitted in VS FORTRAN. Therefore, after execution
of an ENDFILE, additional data may be transferred to the subsequent files.

| End of IBM Extension J

Transfer is made to the statement specified by the ERR= if an error is detected. If
IOSTAT=ios is specified, a positive integer value is assigned to ios when an error is
detected. Then execution continues with the statement specified with the ERR
parameter, if present, or with the next statement if ERR is not specified. If the
ERR parameter and the IOSTAT parameter are both omitted, program execution is
terminated when an error is detected.

See “IF Statements” on page 145.

The ENTRY statement names the place in a subroutine or function subprogram
that can be used in a CALL statement or as a function reference.

The normal entry into a subroutine subprogram from the calling program is made by
a CALL statement that refers to the subprogram name. The normal entry into a
function subprogram is made by a function reference in an arithmetic, character, or
logical expression. Entry is made at the first executable statement following the
SUBROUTINE or FUNCTION statement.

It is also possible to enter a subprogram by a CALL statement (for a subroutine
subprogram) or a function reference (for a function subprogram) that refers to an

Chapter 5. VS FORTRAN Statements 97

ENTRY

ENTRY statement in the subprogram. Entry is made at the first executable
statement following the ENTRY statement. w

—— Syntax
ENTRY name [([argl [,arg2]...]1) 1]

is the name of an entry point in a subroutine or function subprogram. If
ENTRY appears in a subroutine subprogram, name is a subroutine name. If
ENTRY appears in a function subprogram, name is a function name.

arg
is an optional dummy argument corresponding to an actual argument in a
CALL statement or in a function reference. See ‘“‘Subprogram Statements”
on page 56. If no arg is specified, the parentheses are optional.

arg may be a variable name, array name, or dummy procedure name or an
asterisk. An asterisk is permitted only in an ENTRY statement in a
subroutine subprogram.

The ENTRY statement cannot appear in a main program.

A function subprogram must not refer to itself or any of its entry points either
directly or indirectly.

ENTRY statements are nonexecutable and do not affect control sequencing during @
execution of a subprogram. They can appear anywhere after a FUNCTION or

SUBROUTINE statement, except that an ENTRY statement must not appear

between a block IF statement and its matching END IF statement or between a

DO statement and the terminal statement of its range.

Note: ENTRY statements can appear before the IMPLICIT or PARAMETER
statements. The appearance of an ENTRY statement does not alter the rule that
statement functions must precede the first executable statement.

Within a function or subroutine subprogram, an entry name must not appear as a
dummy argument of a FUNCTION, SUBROUTINE, or ENTRY statement and it
must not appear in an EXTERNAL statement.

If information for an object-time dimension array is passed in a reference to an
ENTRY statement, the array name and all its dimension parameters (except any
that are in a common area) must appear in the argument list of the ENTRY
statement. See “Size and Type Declaration of an Array” on page 30.

®

98 VS FORTRAN Language and Library Reference

®

ENTRY

In a function subprogram, the type of the function name and entry name are
determined (in order of decreasing priority) by:

1. An explicit type statement
2. An IMPLICIT statement
3. Predefined convention

In function subprograms, an entry name must not appear preceding the entry
statement except in a type statement.

If any entry name in a function subprogram or the name of the function
subprogram is of type character, all entry names of the function subprogram must
be of type character with the same length. The CHARACTER type statement or
IMPLICIT statement can be used to specify the type and length of the entry point
name. The length specification is restricted to the forms permitted in the
FUNCTION statement.

The types of these variables (that is, the function name and entry names) can be

different only if the type is not character; the variables are treated as if they were
equivalenced. After one of these variables is assigned a value in the subprogram,
any others of different type become indeterminate in value.

In a function subprogram, either the function name or one of the entry names must
be assigned a value.

Upon exit from a function subprogram, the value returned is the value last assigned
to the function name or any entry name. It is returned as though it were assigned
to the name in the current function reference. If the last value is assigned to a
different entry name, and that entry name differs in type from the name in the
current function reference, the value of the function is undefined.

Note: Entry names in a subroutine subprogram do not have a type; explicit typing
is not allowed.

Valid ENTRY Statement Examples:

To illustrate the use of the ENTRY within a subroutine subprogram, the following
subprogram is defined:

SUBROUTINE SAMPLE(A,I,C)

X = A**I
GO TO 10
ENTRY ALIAS(B,C)
X =B

10 C = SQRT(X)
RETURN
END

Chapter 5. VS FORTRAN Statements 99

ENTRY

The subprogram invocation

®

CALL SAMPLE(X,J,Z)
evaluates the expression SQRT(X**J) and returns the value in Z.

The subprogram invocation

CALL ALIAS(Y,W)

evaluates the expression SQRT(Y) and returns the value in W.

Actual Arguments in an ENTRY Statement

Entry into a function subprogram associates actual arguments with the dummy
arguments of the referenced ENTRY statement. Thus, all appearances of these
arguments in the subprogram become associated with actual arguments.

See “Actual Arguments in a Subroutine Subprogram” on page 239 and “Actual
Arguments in a Function Subprogram” on page 140.

Dummy Arguments in an ENTRY Statement

The dummy arguments in the ENTRY statement need not agree in order, type, or
number with the dummy arguments in the SUBROUTINE or FUNCTION
statement or any other ENTRY statement in the same subprogram. However, the
actual arguments for each CALL or function reference must agree in order, type, —
and number with the dummy arguments in the SUBROUTINE, FUNCTION, or @
ENTRY statement to which it refers. -

Any dummy argument of an ENTRY statement must not be in an executable
statement preceding the ENTRY statement unless it has already appeared as a
dummy argument in an ENTRY, SUBROUTINE, or FUNCTION statement prior
to the executable statement.

If an ENTRY dummy argument is used as an adjustable array name, the array
name and all its dimensions (except those in a common block) must be in the same
dummy argument list.

Dummy arguments can be variables, arrays, dummy procedure names, or asterisks.
The asterisk is allowed only in an ENTRY statement in a subroutine subprogram
and indicates an alternate return specifier.

A dummy argument must not appear in the expression of a statement function
definition unless the name is also a dummy argument to the statement function, or
is in a FUNCTION or SUBROUTINE statement, or is in an ENTRY statement
prior to the statement function definition.

A dummy argument used in an executable statement is allowed only if that dummy
argument appears in the argument list of the FUNCTION, SUBROUTINE, or
ENTRY statement by which the subprogram was entered.

See “Dummy Arguments in a Subroutine Subprogram’ on page 239 and ‘“Dummy ™
Arguments in a Function Subprogram” on page 140. 0

100 VS FORTRAN Language and Library Reference

O

EQUIVALENCE Statement

EQUIVALENCE

The EQUIVALENCE statement permits the sharing of data storage within a single
program unit.

—— Syntax
EQUIVALENCE (list1) [, (list2)] ...

list

is a list of variable, array, array element, or character substring names.
Names of dummy arguments of an external procedure in a subprogram must
not appear in the list. Each pair of parentheses must contain at least two
names.

The number of subscript quantities of array elements must be equal to the
number of dimensions of the array. If an array name is used without a
subscript in the EQUIVALENCE statement, it is interpreted as a reference
to the first element of the array.

An array element refers to a position in the array in the same manner as it
does in an assignment statement (that is, the array subscript specifies a
position relative to the first element of each dimension of the array).

The subscripts and substring information may be integer expressions
containing only integer constants, or names of integer constants. They must
not contain variables, array elements, or function references.

All the named data within a single set of parentheses shares the same storage
location. When the logic of the program permits it, the EQUIVALENCE
statement can reduce the number of bytes used by sharing two or more variables of
the same type or different noncharacter types.

IBM Extension |

Both character and noncharacter data types are allowed in an EQUIVALENCE
relationship.

End of IBM Extension |

The length of the equivalenced entities can be different. Equivalence between
variables implies storage sharing.

Mathematical equivalence of variables or array elements is implied only when they
are of the same noncharacter type, when they share exactly the same storage, and
when the value assigned to the storage is of that type.

Because arrays are stored in a predetermined order, equivalencing two elements of
two different arrays implicitly equivalences other elements of the two arrays. The
EQUIVALENCE statement must not contradict itself or any previously established
equivalences.

Chapter 5. VS FORTRAN Statements 101

EQUIVALENCE

Two variables in one common block or in two different common blocks cannot be P
made equivalent. However, a variable in a program unit can be made equivalent to ‘ﬂ.ﬂ
a variable in a common block. If the variable that is equivalenced to a variable in '

the common block is an element of an array, the implicit equivalencing of the rest

of the elements of the array can extend the size of the common block. The size of

the common block cannot be extended so that elements are added ahead of the

beginning of the established common block.

For the following examples of the EQUIVALENCE statement, assume these
explicit type declarations:

COMMON /COM1/ B(50,50), E(50,50)
INTEGER*4 A(10)

REAL*8 C(50), D(10,10,2), F
CHARACTER*4 C1(10), C2(10)
CHARACTER C3

Valid Examples

1. A locally defined variable sharing named common storage.

EQUIVALENCE (A(1), E(1,1))

2. Equivalence a portion of a multidimensioned array to a
single-dimensioned array.

EQUIVALENCE (C(1), B(1,10)) Q:;D

3. Equivalence a single element of an array to a variable.

EQUIVALENCE (D(10,10,2), F)
4. The first half of a character array is equivalenced to

the second half of another character array.
20 characters (or 5 array elements) are equivalenced.

EQUIVALENCE (C1(6), C2(1))

5. The last character in a character array is equivalenced
to a single character.

EQUIVALENCE (C3, C1(10) (4:))

| IBM Extension |

Character variables may be equivalenced to noncharacter items.

A character array is equivalenced to the second half of an integer array.

102 VS FORTRAN Language and Library Reference

EQUIVALENCE

EQUIVALENCE (C1(1), A(6))

[End of IBM Extension I

Invalid Example

Two variables may not be equivalenced when both are in common.

EQUIVALENCE (B(1,1), E(1))

Explicit Type Statement

The explicit type statement:
o Specifies the type and length of variables, arrays, and user-supplied functions.

o Specifies the dimensions of an array.

[IBM Extension |

o Assigns initial data values for variables and arrays.

' End of IBM Extension ' J

The explicit type statement overrides the IMPLICIT statement, which, in turn,
overrides the predefined convention for specifying type.

—— Syntax

tyype namel [, name2] ...

type
is complex, integer, logical, real, double precision, or character[*len[,]]

where:

len
specifies the length (number of characters between 1 and 32767). It
is optional.
Note: The CHARLEN compiler option may be specified to set the
maximum length of the character data type to a range of 1 through
32767. The default maximum length remains 500 characters, or
whatever length was set at installation time.

The length len can be expressed as:

« An unsigned, nonzero, integer constant.

Chapter 5. VS FORTRAN Statements 103

Explicit Type

« An expression with a positive value that contains integer }
constants, names of integer constants enclosed in parentheses, or
an asterisk enclosed in parentheses.) W

The length */en immediately following the word character is used as
the length specification of any name in the statement that has no
length specification attached to it. To override a length for a
particular name, see the alternative forms of name below. If *len is
not specified, it is assumed to be 1.

The comma in character[*len[,]] must not appear if *len is not specified. It is
optional if */en is specified.

IBM Extension |

fpe
is complex[*lenl], integer[*len1], logical[*len1], or real[*lenl]
where:
*lenl
is optional and len1 represents one of the permissible length
specifications for its associated type as described in Figure 4 on
page 26.
End of IBM Extension |
Wr\
- G

is a variable, array, function name, or dummy procedure name, or the name
of a constant. It can have the form:

al(dim)]

or

is a variable, array, function name, or dummy procedure name.

dim
is optional. dim may only be specified for arrays. It is composed of
one through seven dimension bounds, separated by commas, that
represent the limits for each subscript of the array in the form:

el:e2

or

104 VS FORTRAN Language and Library Reference

Explicit Type

where:

el
is the lower dimension bound. It is optional. If el (with its
following colon) is not specified, its value is assumed to be 1.

e2
is the upper dimension bound and must always be specified.

(See “Size and Type Declaration of an Array” on page 30 for rules about
dimension bounds.)

If a specific intrinsic function name appears in an explicit specification
statement that causes a conflict with the type specified for this function in
Appendix B, “IBM and ANS FORTRAN Features” on page 351, the name
loses its intrinsic function property in the program unit. A type statement
that confirms the type of an intrinsic function is permitted. If a generic
function name appears in an explicit specification statement, it does not lose
its generic property in the program unit.

*len2
overrides the length as specified in the statement by character[*/en[,]].

Any length assigned must be an allowable value for the associated variable or array
type. The length specified (or assigned by default) with an array name is the length
of each element of the array.

If the length specification (len) is a constant, it must be an unsigned, nonzero,
integer constant. If the length specification is an arithmetic expression enclosed in
parentheses, it can contain only integer constants or names of integer constants.
Function and array element references must not appear in the expression. The
value of the expression must be a positive, nonzero, integer constant.

If the CHARACTER statement is in a main program, and the length of name is
specified as an asterisk enclosed in parentheses (*)—also known as inherited
length—then name must be the name of a character constant. The character
constant assumes the length of its corresponding expression in a PARAMETER
statement.

If the CHARACTER statement is in a subroutine subprogram, and the length of
name is specified as an asterisk enclosed in parentheses (*), name must be the name
of a dummy argument or the name of a character constant defined in a
PARAMETER statement. The dummy argument assumes the length of the
associated actual argument for each reference to the subroutine. The character
constant assumes the length of its corresponding expression in a PARAMETER
statement.

If the CHARACTER statement is in a function subprogram and the length of name
is specified as an asterisk enclosed in parentheses (*), name must be either the
name of a dummy argument, the name of the function in a FUNCTION or ENTRY
statement in the same program, or the name of a character constant defined in a
PARAMETER statement. If name is the name of a dummy argument, then the
dummy argument assumes the length of the associated actual argument for each
reference to the function. If name is the function or entry name, when a reference
to such a function is executed, the function assumes the length specified in the

Chapter 5. VS FORTRAN Statements 105

Explicit Type

calling program unit. The character constant assumes the length of its »
corresponding expression in a PARAMETER statement. @

An alternative method of specifying both the length and the type of a function
name is by using the FUNCTION statement itself with the optional type
declaration (see “FUNCTION Statement” on page 137).

The length of a statement function of character type cannot be specified in the
calling program by an asterisk enclosed with parentheses (*), but can be an integer
constant expression.

The length specified for a character function in a main program unit that refers to
the function must be an expression involving only integer constants or names of
integer constants. This length must agree with the length specified in the
subprogram that specifies the function, if the length is not specified as an asterisk
enclosed with parentheses (*).

[IBM Extension |

name

is a variable, array, function name or dummy procedure name, or the name
of a constant. It can have the form:

a[*len3][(dim)]
or
a[*len3][(dim)][/i1,i2,i3,...,in/] @
where:

a
is a variable, array, function name, or dummy procedure name.

*len3
overrides the length as specified in the initial keyword of the statement
as complex, integer, logical, real, complex[*lenl], character[*len],
integer[*len1], logical[*len1], or real[*lenl]

dim
is optional. dim may only be specified for arrays. It is composed of
one through seven dimension bounds, separated by commas, that
represent the limits for each subscript of the array. See the description
of dim above.

i1,i2,i3,...,in
are optional and represent initial data values.

Dummy arguments and names of constants, functions and statement functions may
not be assigned initial values.

Initial data values may be assigned for any items of type double precision. 0

106 VS FORTRAN Language and Library Reference

Explicit Type

Initial data values may be assigned to variables or arrays that are not dummy
arguments or in blank common, by use of in, where in is a constant or list of
constants separated by commas. Each in provides initialization only for the
immediately preceding variable or array. Lists of constants are used only to assign
initial values to array elements. The data must be of the same type as the variable
or array, except that hexadecimal data may also be used.

Note: If hexadecimal data is used, the hexadecimal constant form must be
followed. (See “Hexadecimal Constants” on page 23.)

Successive occurrences of the same constant can be represented by the form
i*constant, as in the DATA statement. If initial data values are assigned to an
array in an explicit specification statement, the dimension information for the array
must be in the explicit specification statement or in a preceding DIMENSION or
COMMON statement.

I End of IBM Extension I

The following table lists all the possible explicit type statements, and the resulting
type and length of the data item.

Type Resulting Length
Statement Type (Bytes)
CHARACTER CHARACTER 1
CHARACTER*n CHARACTER n (where1 < n < x)!
COMPLEX COMPLEX 8
COMPLEX*8 COMPLEX 8
COMPLEX*16 COMPLEX 16
COMPLEX*32 COMPLEX 32
DOUBLE PRECISION REAL 8
INTEGER INTEGER 4
INTEGER*2 INTEGER 2
INTEGER*4 INTEGER 4
LOGICAL LOGICAL 4
LOGICAL*1 LOGICAL 1
LOGICAL*4 LOGICAL 4
REAL REAL 4
REAL*4 REAL 4
REAL*8 REAL 8
REAL*16 REAL 16

1If the CHARLEN compiler option is not specified, x=500. If CHARLEN is
specified, x=CHARLEN, where X is less than 32,768. For more information about
the CHARLEN option, see VS FORTRAN Programming Guide.

Valid Explicit Type Statements:

CHARACTER*80RANGES
DATA ORANGES/'ORANGES '/
CHARACTER*80ORANGES/'ORANGES '/

SUBROUTINE SUB (DUM)
CHARACTER * (*) DUM

Chapter 5. VS FORTRAN Statements 107

Explicit Type

IBM Extension]

COMPLEX C,D/(2.1,4.7)/,E*16
INTEGER*2 ITEM/76/, VALUE
REAL A(5,5)/20%6.9E2,4%*1.0/,B(100)/100%0.0/,TEST*8(5) /5%0.0D0/

REAL*8 BAKER, HOLD, VALUE*4, ITEM(5,5)

I End of IBM Extension |

EXTERNAL Statement

FORMAT Statement

The EXTERNAL statement identifies a user-supplied subprogram name and
permits such a name to be used as an actual argument.

— Syntax
EXTERNAL namel [, name2] ...

name

is a name of a user-supplied subprogram (function or subroutine) that is
passed as an argument to another subprogram.

EXTERNAL is a specification statement and must precede DATA statement, @
statement function definitions, and all executable statements.

Statement function names cannot appear in EXTERNAL statements. If the name
of a VS FORTRAN-supplied function (that is, intrinsic function) is used in an
EXTERNAL statement, the function is no longer recognized as being an intrinsic
function when it appears as a function reference. Instead, it is assumed that the
function is supplied by the user.

The same name may not appear in both an EXTERNAL and an INTRINSIC
statement.

The name of any subprogram that is passed as an argument to another subprogram
must appear in an EXTERNAL or INTRINSIC statement in the calling program.

Valid EXTERNAL Statement:

EXTERNAL TREES

The FORMAT statement is used with the input/output list in the READ and
WRITE statements to specify the structure of FORTRAN records and the form of
the data fields within the records.

O

108 VS FORTRAN Language and Library Reference

— Syntax
FORMAT (f1[,f2[,..../n11)

FORMAT

f1, £2,..., fn are format codes.

Code Format Description
I alw Integer data fields
I alw.m Integer data fields
D aDw.d Double precision data fields
E aEw.d Real data fields
E aEw.dEe Real data fields
F aFw.d Real data fields
G aGw.d Real data fields
G aGw.dEe Real data fields
P nP Scale factor
L alw Logical data fields
A aA Character data fields
A aAw Character data fields
’character Literal data (character constant)
constant’
H wH Literal data (Hollerith constant)
X wX Input: Skip a field
Output: Fill with blanks
T Tr Transfer of data starts in current position
TL TLr Transfer of data starts r characters to the left of
current position
TR TRr Transfer of data starts r characters to the right of
current position
group | a(...) Group format specification
S S Display of optional plus sign is restored
SP SP Plus sign is produced in output
SS SS Plus sign is not produced in output
BN BN Blanks are ignored in input
BZ BZ Blanks are treated as zeros in input
slash / Data transfer on the current record is ended
colon : Format control is terminated if there are no more
items in the input/output list

Chapter 5. VS FORTRAN Statements

109

FORMAT

l IBM Extension
Code Format Description
E aEw.dDe Real data fields
G aGw.d Integer or logical data fields
G aGw.dEe Integer or logical data fields
Q aQw.d Extended precision data fields
Z alw Hexadecimal data fields
I End of IBM Extension
a
is an optional repeat count—an unsigned, nonzero, integer constant used to
denote the number of times the format code or group is to be used. The
range of ais 1 to 255. If a is omitted, the code or group is used only once.
w
is an unsigned, nonzero, integer constant that specifies the width of the field.
m
is an unsigned integer constant that specifies the number of digits to be
printed.
d
is an unsigned integer constant that specifies the number of digits to the right
of the decimal point.
e
is an unsigned, nonzero, integer constant that specifies the number of digits
in the exponent field.
n
is an (optionally) signed integer constant that specifies a scale factor to be
applied.
r
is an unsigned, nonzero, integer constant that specifies a character position
in a record.
¢..)

is a group format specification. Within the parentheses are format codes or
additional levels of groups, separated by commas, slashes, or colons.
Commas are optional before or after a slash and before or after a colon, if
the slash or colon is not part of a character constant.

The FORMAT statement is used with READ and WRITE statements for internal
and external files. The external files must be connected for SEQUENTIAL or
DIRECT access. In the FORMAT statement, the data fields are described with
format codes, and the order in which these format codes are specified determines

110 VS FORTRAN Language and Library Reference

U

FORMAT

the structure of the FORTRAN records. The I/0 list gives the names of the data
items that make up the record. The length of the list, in conjunction with the
FORMAT statement, specifies the length of the record. (See “Forms of a
FORMAT Statement” on page 114.)

The format codes delimited by left and right parentheses may appear as a character
constant in the format specification of the READ or WRITE statement, instead of
in a separate FORMAT statement. For example,

READ (UNIT=5,FMT='(I3,F5.2,E10.3,G10.3)"')N,A,B,C
READ (5,'(I3,F5.2,E10.3,G10.3)')N,A,B,C
Throughout this section, the examples show punched card input and printed line

output. However, the concepts apply to all input/output media. the examples, the
character b represents a blank.

General Rules for Data Conversion

The following is a list of general rules for using the FORMAT statement or a
format in a READ or WRITE statement.

« FORMAT statements are not executed; their function is to supply information
to the object program. They may be placed anywhere in a program unit other
than in a block data subprogram, subject to the rules for the placement of the
PROGRAM, FUNCTION, SUBROUTINE, and END statements.

« Complex data in records requires two successive D, E, G, or F format codes.

| IBM Extension |

VS FORTRAN also accepts the Q format code for complex data.

I End of IBM Extension J

The two codes may be different and the format codes T, TL, TR, X, /, :, S, SP,
SS, P, BN, BZ, H, or a character constant may appear between the two codes.

¢ When defining a VS FORTRAN record by a FORMAT, it is important to
consider the maximum size record allowed on the input/output medium. For
example, if a VS FORTRAN record is to be punched for output, the record
should not be longer than 80 characters. If it is to be printed, it should not be
longer than the printer’s line length. For input, the FORMAT should not
define a VS FORTRAN record longer than the actual input record.

e When records are to be printed, the first character of each record functions as
a carrier control character. The control character determines the vertical
spacing of the printed record and is not considered as part of a data item, as
follows:

Chapter 5. VS FORTRAN Statements 111

FORMAT

Control Vertical Spacing

Character Before Printing
blank Advance one line.

0 Advance two lines.

1 Advance to first print position on next page.

+ No advance (overstrike).

The control character is commonly specified in a FORMAT statement, using
either of two forms of character constant data, ’x’ or 1Hx, where x is one of
the characters shown above. The characters and spacing shown are those
defined for VS FORTRAN print records, and the result of using other
characters in the control position is indeterminate (except that the control
position is always discarded). If the print record contains no characters, then
spacing is advanced by one, and a blank line is printed.

IBM Extension |

If records are to be displayed at a terminal, control characters are also
employed, and characters blank and zero (only) produce the spacing shown
above when used in the control position.

End of IBM Extension l

Note: Inrecords that are not to be printed or displayed, the first character of
the record is treated as data.

A
If the I/0 list is omitted from the READ or WRITE statement, the following @
general rules apply:

— Input: A record is skipped.

— OQutput: A blank record is written unless the FORMAT statement contains
an H format code or a character constant (see “H Format Code and
Character Constants” on page 127).

To produce a blank record on output, an empty format specification of the
form FORMAT () may be used.

To illustrate the nesting of group format specifications, the following
statements are both valid:

FORMAT (...,a(...,a(...),c..pa(eel), o))

r=

or

FORMAT (...,a(...,a(...,a(...),ec)) yes)

r=

'where ais1 < a < 256.

112 VS FORTRAN Language and Library Reference

L]

FORMAT

To illustrate the use of nesting in an implied DO and the corresponding
FORMAT specifications:

10

PROGRAM FMT1
DIMENSION IRR(3,4), IRI(3,4)

Do 10 I =1, 3

DO 10 J =1, 4

IRR(I,J) = 1000 + (I * 100) + J
IRI(I,J) = 2000 + (I * 100) + J
CONTINUE

PRINT 20, (I, (IRR(I,J), IRI(I,J), J =1, 4),
1T I =1, 3)

20 FORMAT (3(1X, 'ROW', I3, 4(I5, 1X, I4, 3X) /))
STOP
END
Results of program FMT1:

ROW 111012101 11022102 1103 2103 1104 2104
ROW 21201 2201 12022202 1203 2203 1204 2204
ROW 313012301 13022302 1303 2303 1304 2304

Names of constants must not be a part of a format specification (see
“PARAMETER Statement” on page 173).

With numeric data format codes I, F, E, G, and D, the following general rules
apply:

Input: Leading blanks are not significant. The interpretation of blanks,
other than leading blanks, is determined by a combination of the value of
the BLANK = specifier given when the file was connected (see “OPEN
Statement” on page 168) and any BN or BZ blank control that is
currently in effect. Plus signs may be omitted. A field of all blanks is
considered to be zero.

With F, E, G, and D format codes, a decimal point appearing in the input
field overrides the portion of a format code that specifies the decimal point
location. The input field may have more digits than VS FORTRAN uses
to approximate the value.

Output: The representation of a positive or zero internal value in the field
may be prefixed with a plus, as controlled by the S, SP, and SS format
codes. The representation of a negative internal value in the field is
prefixed with a minus. A negative zero is not produced.

The representation is right-justified in the field. If the number of
characters produced by the editing is smaller than the field width, leading
blanks are inserted in the field.

If the number of characters produced exceeds the field width or if an
exponent exceeds its specified length using the Ew.dEe or Gw.aEe format
codes, the entire field of width w is filled with asterisks. However, if the
field width is not exceeded when optional characters are omitted, asterisks
are not produced. When an SP format code is in effect, a plus is not
optional.

Chapter 5. VS FORTRAN Statements 113

FORMAT

| IBM Extension |

With VS FORTRAN, the following additional rules apply:

— Input: With Q editing, a decimal point appearing in the input field
overrides the portion of a format code that specifies the decimal point
location. The input field may have more digits than VS FORTRAN uses
to approximate the value.

— Output: If the number of characters produced exceeds the field width or if
an exponent exceeds its specified length using the Ew.dDe or Qw.d format
codes, the entire field of width w is filled with asterisks. However, if the
field width is not exceeded when optional characters are omitted, asterisks
are not produced. When an SP format code is in effect, a plus is not
optional.

L End of IBM Extension |

Forms of a FORMAT Statement

All the format codes in a FORMAT statement are enclosed in parentheses. Within
these parentheses, the format codes are delimited by commas. The comma used to
separate list items may be omitted as follows:

« Between a P edit descriptor and an immediately following F, E, D, or G format
code

« Before or after a slash format code

« Before or after a colon format code

Execution of a formatted READ or formatted WRITE statement initiates format
control. Each action of format control depends on information provided jointly by

the I/0 list, if one exists, and the format specification. If there is an I/O list, there
must be at least one I, D, E, F, A, G, or L format code in the format specification.

[IBM Extension]

The Q and Z format codes may also appear in the format specification.

| End of IBM Extension |

There is no I/0 list item corresponding to the format codes: T, TL, TR, X, H,
character constants enclosed in apostrophes, S, SP, SS, BN, BZ, P, the slash (/), or
the colon (:). These communicate information directly to the record.

Whenever anI, D, E, F, A, G, or L format code is encountered, format control
determines whether there is a corresponding element in the I/0 list.

114 VS FORTRAN Language and Library Reference

FORMAT

| ‘ IBM Extension |

With VS FORTRAN, the list of format codes includes Q and Z.

Whenever a Q or Z code is encountered, format control determines whether there
is a corresponding element in the I/0 list.

The comma may be omitted between a P format code and an immediately following
Q format code.

l End of IBM Extension |

If there is a corresponding element, appropriately converted information is
transmitted. If there is no corresponding element, the format control terminates,
even if there is an unsatisfied repeat count.

When format control reaches the last (outer) right parenthesis of the format
specification, a test is made to determine whether another element is specified in
the I/0 list. If not, control terminates. If another list element is specified, the
format control starts a new record. Control then reverts to that group specification
terminated by the last preceding right parenthesis, including its group repeat count,
if any, or, if no group specification exists, then to the first left parenthesis of the
format specification. Such a group specification must include a closing right
parenthesis. If no group specification exists, control reverts to the first left
parenthesis of the format specification.

For example, assume the following FORMAT statements:
70 FORMAT (I5,2(I3,F5.2),I4,F3.1)
80 FORMAT (I3,F5.2,2(I3,2F3.1))

90 FORMAT (I3,F5.2,2I4,5F3.1)

With additional elements in the I/O list after control has reached the last right
parenthesis of each, control would revert to the 2(13,F5.2) specification in the case
of statement 70; to 2(I3,2F3.1) in the case of statement 80; and to the beginning
of the format specification, I3,F5.2,... in the case of statement 90.

The question of whether there are further elements in the I/0 list is asked only
whenan I, D, E, F, A, G, or L format code or the final right parenthesis of the
format specification is encountered.

| IBM Extension |

The question is also asked when a Q or Z format code is encountered.

L End of IBM Extension J

Before this is done, T, TL, TR, X, and H codes, character constants enclosed in
apostrophes, colons, and slashes are processed. If there are fewer elements in the
I/0 list than there are format codes, the remaining format codes are ignored.

Chapter 5. VS FORTRAN Statements 115

FORMAT

I Format Code

F Format Code

The I format code edits integer data. For example, if a READ statement refers to a @
FORMAT statement containing I format codes, the input data is stored in internal

storage in integer format. The magnitude of the data to be transmitted must not

exceed the maximum magnitude of an integer constant.

Input: 1.eading blanks in a field of the input line are interpreted as zeros.
Embedded and trailing blanks are treated as indicated in the general rules for
numeric fields described under “General Rules for Data Conversion” on page 111.
If the form Iw.m is used, the value of m has no effect.

Output: The output field consists of blanks, if necessary, followed by a minus sign
if the internal value is negative, or an optional plus sign otherwise. If the number
of significant digits and sign required to represent the quantity in the datum is less
than w, the unused leftmost print positions are filled with blanks. If it is greater
than w, asterisks are printed instead of the number. If the form Iw.m is used, the
output is the same as the Iw form, except that the unsigned integer constant
consists of at least m digits and, if necessary, has leading zeros. The value of m
must not exceed the value of w. If m is zero and the value of the internal datum is
zero, the output field consists of only blank characters, regardless of the sign
control in effect.

The Fw.d format code edits real data. It indicates that the field occupies w
positions, the fractional part of which consists of d digits. {*\
v

Input: The input field consists of an optional sign, followed by a string of digits
optionally containing a decimal point. If the decimal point is omitted, the rightmost
d digits of the string, with leading zeros assumed if necessary, are interpreted as the
fractional part of the value represented.

The input field may have more digits than VS FORTRAN uses to approximate the
value of the datum. The basic form may be followed by an exponent of one of the
following forms:

« Signed integer constant.

« E followed by zero or more blanks, followed by an optionally signed integer
constant.

« D followed by zero or more blanks, followed by an optionally signed integer
constant.

| IBM Extension |

« Q followed by zero or more blanks, followed by an optionally signed integer
constant.

l End of IBM Extension J

GI

116 VS FORTRAN Language and Library Reference

D, E, and Q Format Codes

FORMAT

An exponent containing a D is processed identically to an exponent containing an
E.

| IBM Extension |

An exponent containing a Q is processed identically to an exponent containing an
E.

' End of IBM Extension]

Output: The output field consists of blanks, if necessary, followed by a minus sign
if the internal value is negative, or an optional plus sign otherwise. This is followed
by a string of digits that contains a decimal point, representing the magnitude of
the internal value, as modified by the established scale factor and rounded to d
fractional digits. Leading zeros are not provided, except for an optional zero
immediately to the left of the decimal point if the magnitude of the value in the
output field is less than one. The optional zero also appears if there would
otherwise be no digits in the output field.

The Dw.d, Ew.d, Ew.dEe format codes edit real, complex, or double precision data.

[IBM Extension j

The Ew.dDe and Qw.d format codes edit extended precision data in addition to real,
complex, and double precision data.

I End of IBM Extension J

The external field occupies w positions, the fractional part of which consists of d
digits (unless a scale factor greater than 1 is in effect). The exponent part consists
of e digits. (The e has no effect on input.)

Input: The input field may have more digits than VS FORTRAN uses to
approximate the value of the datum.

Input datum must be a number, which, optionally, may have a D or E exponent, or
which may be omitted from the exponent if the exponent is signed.

[IBM Extension |

It may also have a Q exponent.

L End of IBM Extension I

All exponents must be preceded by a constant; that is, an optional sign followed
by at least one decimal digit with or without decimal point. If the decimal point is
present, its position overrides the position indicated by the d portion of the format
code, and the number of positions specified by w must include a place for it. If the
data has an exponent, and a P format code is in effect, the scale factor is ignored.

Chapter 5. VS FORTRAN Statements 117

FORMAT

G Format Code

The interpretation of blanks is explained in “General Rules for Data Conversion”
on page 111.

The input datum may have an exponent of any form. The input datum is converted
to the length of the variable as specified in the I/0 list. The e of the exponent in
the format code has no effect on input.

Output: For data written under a D or E format code, unless a P-scale factor is in
effect, output consists of an optional sign (required for negative values), an
optional zero digit, a decimal point, the number of significant digits specified by d,
and a D or E exponent requiring four positions.

If the P-scale factor is negative, output consists of an optional sign (required for
negative values), an optional zero digit, a decimal point, | P| leading zeros,

| d+P] significant digits, and a D or E exponent requiring four positions. (P is the
value of the P-scale factor.)

If the P-scale factor is positive, output consists of an optional sign (required for
negative values), P decimal digits, a decimal point, d-P+ I fractional digits, and a D
or E exponent requiring four positions. (P is the value of the P-scale factor.)

| IBM Extension]

For data written under a Q format code, unless a P-scale factor is in effect, output
consists of an optional sign (required for negative values), a decimal point, the
number of significant digits specified by d, and a Q exponent requiring four

positions. (\)
Wy

| End of IBM Extension |

On output, w must provide sufficient space for an integer segment if it is other than
zero, a fractional segment containing d digits, a decimal point, and, if the output
value is negative, a sign. If insufficient space is provided for the integer portion,
including the decimal point and sign (if any), asterisks are written instead of data.
If excess space is provided, the number is preceded by blanks.

The fractional segment is rounded to d digits. A zero is placed to the left of the
decimal point, if the output field consists only of a fractional segment, and if
additional space is available. If the entire value is zero, a zero is printed before the
decimal point.

The G format code is a generalized code used to transmit real data according to the
type specification of the corresponding variable in the 1/0 list. The Gw.d and
Gw.dEe edit descriptors indicate that the external field occupies w positions.
Unless a scale factor greater than one is in effect, the fractional part of w consists
of d digits. The exponent part consists of e digits.

Input: The form of the input field is the same as for the F format code.

118 VS FORTRAN Language and Library Reference

FORMAT
Output: The method of representation in the output field depends on the
magnitude of the data being edited.

For example, letting N be the magnitude of the internal data,

if N < 0.1 or N = 10%*3

(where k is the scale factor currently in effect), then:

» Gw.d output editing is the same as kPEw.d output editing.

¢ Gw.dEe output editing is the same as kPEw.dEe output editing.

If N is greater than or equal to 0.1 and less than 10**d, the scale factor has no
effect, and the value of N determines the editing as follows:

Mga_gnjtude of Data Equivalent Conversion
01<N<I1 F(w-n).d, n(b’)
1<N<I10 F(w-n).(d-1), n(’b’)
10*%(d-2) < N < 10%*(d-1) | F(w-n).1, n(’b)
10**(d-1) < N < 10**d F(w-n).0, n(’b’)
b means blank.
n means:

e 4 forGwd
e e+2 for Gw.dEe

The scale factor has no effect unless the magnitude of the data to be edited is
outside the range that permits effective use of F editing.

| IBM Extension j

The letter Q is used for the exponent of extended precision data.

The G format code may be used to transmit integer or logical data according to the
type specification of the corresponding variable in the I/0O list.

If the variable in the I/0O list is integer or logical, the d portion of the format code,
specifying the number of significant digits, can be omitted; if it is given, it is

ignored.

I End of IBM Extension I

Chapter 5. VS FORTRAN Statements 119

FORMAT

P Format Code

A P format code specifies a scale factor n, where n is an optionally signed integer #'*
constant. The value of the scale factor is zero at the beginning of execution of

each input/output statement. It applies to all subsequently interpreted F, E, D, and

G format codes until another scale factor is encountered; then that scale factor is

established.

l IBM Extension |

It also applies to all subsequently interpreted Q format codes.

L End of IBM Extension I

Reversion of format control does not affect the established scale factor. A
repetition code can precede these format codes. For example, 2P,3F7.4 is valid.
(A comma must be placed after the P format code—for example, 2P,3F7.4—when
a repeat count is specified.) A scale factor of zero may be specified.

Input: If an exponent is in the data field, the scale factor has no effect. If no
exponent is in the field, the externally represented number equals the internally

represented number multiplied by 10**n for the external representation.

For example, if the input data is in the form

XX . XXXX

and is to be used internally in the form

O

« XXXXXX

then the format code used to effect this change is

2PF7.4
which may also be written 2P,F7.4.

Similarly, if the input data is in the form

XX . XXXX

and is to be used internally in the form

XXXX . XX

then the format code used to effect this change is

-2PF7.4
which also may be written -2P,F7.4.

Output: With an F format code, the internally represented number reduced by
10**n is produced.

C

120 VS FORTRAN Language and Library Reference

FORMAT

For example, if the number has the internal form

« XXXXXX

and is to be written in the form

XX . XXXX

the format code used to effect this change is

2PF7.4
which also may be written 2P,F7.4.

On output with E and D format codes, the value of the internally represented
number is not changed. When the decimal point is moved according to the d of the
format code, the exponent is adjusted so that the value of the externally
represented number is not multiplied by 10**n.

[IBM Extension [

On output with Q format code, the value of the internally represented number is
not changed.

I End of IBM Extension J

For example, if the internal number

238.47

were printed according to the format E10.3, it would appear as

0.238E+03

If it were printed according to the format 1PE10.3 or 1P,E10.3 it would appear as

2.385E+02

Chapter 5. VS FORTRAN Statements 121

FORMAT

On output with a G format code, the effect of the scale factor is suspended unless

the magnitude of the internally represented number (m) is outside the range that q
permits the use of F format code editing. This range for use of the F format code

is

1<m<10**d
where d is the number of digits as specified in the G format code Gw.d.

If .1 < m < 10**d and the F format code is used, there is no difference between G
format code with a scale factor and G format code without a scale factor.

However, .if m > 10**d or < 0.1, the scale factor moves the decimal point to the
right or left. ‘

The following example illustrates the difference between G format code with and
without a scale factor:

If A is initially set to 100 and multiplied by 10 each time, and:

76 FORMAT (' ',G13.5,1PG13.5,2PG13.5)
WRITE (6,76) A,A,A

the result is:

No Scale Factor Scale Factor = 1 Scale Factor = 2
100.00 100.00 100.00
1000.0 1000.0 1000.0 L J
10000. 10000. 10000.

0.10000E+06 1.00000E 405 10.0000E+04

0.10000E+07 1.00000E+06 10.0000E+05

| IBM Extension

Z Format Code
The Z format code transmits hexadecimal data.

Input: Scanning of the input field proceeds from right to left. Leading, embedded,
and trailing blanks in the field are treated as zeros. One byte in internal storage
contains two hexadecimal digits; thus, if an input field contains an odd number of
digits, the number is padded on the left with a hexadecimal zero when it is stored.
If the storage area is too small for the input data, the data is truncated and
high-order digits are lost.

Output: If the number of digits in the datum is less than w, the leftmost print
positions are filled with blanks. If the number of digits in the byte is greater than
w, the leftmost digits are truncated and the rest of the number is printed.

L End of IBM Extension 41

C

122 VS FORTRAN Language and Library Reference

O

FORMAT

Numeric Format Code Examples

Example 1:

The following example illustrates the use of format codes I, F, D, E, and G.
75 FORMAT (I3,F5.2,E10.3,G10.3)

READ (5,75) N,A,B,C

Explanation:

Four input fields are described in the FORMAT statement and four variables
are in the I/0 list. Therefore, each time the READ statement is executed, one
input line is read from the file connected to unit number 5.

When an input line is read, the number in the first field of the line (three.
columns) is stored in integer format in location N. The number in the second
field of the input line (five columns) is stored in real format in location A, and
so on,

If there were one more variable in the I/0 list, for example, M, another line
would be read and the information in the first three columns of that line would

| IBM Extension

be stored in integer format in location M. The rest of the line would be
ignored.

« If there were one fewer variable in the list (for example, if C were omitted),

format code G10.3 would be ignored.

o This FORMAT statement defines only one record format. “Forms of a

FORMAT Statement” on page 114 explains how to define more than one

record format in a FORMAT statement.

Example 2:
This example illustrates the use of the Z, D, and G format codes.

Assume that the following statements are given:
75 FORMAT (Z4,D10.3,2G10.3)

READ (5,75) A,B,C,D

where A, C, and D are REAL*4 and B is REAL*8 and that, on successive
executions of the READ statement, the following input lines are read:

Column: 1 5 15 25 35
v v v v v
b3F1156432D+02276.38E+15bbbbbbbbbb

Input
2AF3155381+02b382506E+28276.38E+15

Lines
3ACb346.18D-03485.322836276.38E+15

Format: Z4 D10.3 G10.3 G10.3

Chapter 5. VS FORTRAN Statements

123

FORMAT

Then b represents a blank and the variables A, B, C, and D receive values as if the

following data fields had been supplied: @
A B C D

03F1 156.432D02 276.38E+15 000000.000

2AF3 155.381+20 382.506E+28 276.38E+15

3ACO 346.18D-03 485.322836 276 .38E+15

Explanation:

« Leading blanks in an input field are treated as zeros. If it is assumed that all
other blanks are to be treated as zeros, because the value for B on the second
input line was not right justified in the field, the exponent is 20, not 2.

« Values read into the variables C and D with a G format code are converted
according to the type of the corresponding variable in the I1/0 list.

L End of IBM Extension I

Example 3:

This example illustrates the use of the character constant enclosed in apostrophes
and the F, E, G, and I format codes.

Assume that the following statements are given: ~
76 FORMAT ('0',F6.2,E12.3,G14.6,15) QZJW

WRITE (6,76)a,B,C,N

and that the variables A, B, C, and N have the following values on successive
executions of the WRITE statement:

A B C N
034.40 123.380E+02 123.380E+02 031
031.1 1156.1E+02 123456789. 130
-354.32 834.621E-03 1234.56789 428
01.132 83.121E+06 123380.D+02 000

O

124 VS FORTRAN Language and Library Reference

L Format Code

A Format Code

FORMAT

Then, the following lines are printed by successive executions of the WRITE
statement:

Print
Column: 1 9 21 35
v Y \ v
34.40 0.123E+05 12338.0 31
31.10 0.116E+06 0.123457E 09 130
* % KAk ok 0.835E+00 1234.57 428
1.13 0.831E+08 0.123380E 08 0
Explanation:

« The integer portion of the third value of A exceeds the format code
specification, so asterisks are printed instead of a value. The fractional portion
of the fourth value of A exceeds the format code specification, so the fractional
portion is rounded.

« For the variable B, the decimal point is printed to the left of the first significant
digit and only three significant digits are printed because of the format code
E12.3. Excess digits are rounded off from the right.

o The values of the variable C are printed according to the format specification
G14.6. The d specification, which in this case is 6, determines the number of
digits to be printed and whether the number should be printed with a decimal
exponent. Values greater than or equal to 0.1 and less than 1000000 are
printed without a decimal exponent in this example. Thus, the first and third
values have no exponent. The second and fourth values are greater than
1000000, so they are printed with an exponent.

The L format code transmits logical variables.

Input: The input field must consist of either zeros or blanks with an optional
decimal point, followed by a T or F, followed by optional characters, for true and
false, respectively. The T or F assigns a value of true or false to the logical variable
in the input list. The logical constants .TRUE. and .FALSE. are acceptable input
forms.

Output: AT or F is inserted in the output record depending upon whether the
value of the logical variable in the I/0 list was true or false, respectively. The
single character is right justified in the output field and preceded by w-1 blanks.

The A format code transmits character data. Each alphabetic or special character is
given a unique internal code. Numeric characters are transmitted without
alteration; they are not converted into a form suitable for computation. Thus, the
A format code can be used for numeric fields, but not for numeric fields requiring
arithmetic.

Chapter 5. VS FORTRAN Statements 125

FORMAT

If w is specified, the field consists of w characters.

If the number of characters w is not specified with the format code A, the number
of characters in the field is the length of the character item in input/output list.

Input: The maximum number of characters stored in internal storage depends on
the length of the variable in the I/O list. If w is greater than the variable length,
for example, v, then the leftmost w-v characters in the field of the input line are
skipped, and remaining v characters are read and stored in the variable. If w is less
than v, then w characters from the field in the input line are read, and remaining
rightmost characters in the variable are filled with blanks.

Output: If wis greater than the length v of the variable in the I/0 list, then the
printed field contains v characters, right-justified in the field, preceded by leading
blanks. If w is less than v, the leftmost w characters from the variable are printed,
and the rest of the data is truncated.

Example 1:

Assume that B has been specified as CHARACTER*8, that N and M are
CHARACTER*4, and that the following statements are given:

25 FORMAT (3A7)

READ (5,25) B, N, M

When the READ statement is executed, one input line is read from the data set
associated with data set reference number 5 into the variables B, N, and M, in the
format specified by FORMAT statement number 25. The following list shows the
values stored for the given input lines (b represents a blank).

Input Line B N M
ABCDEFG46bATb11234567 ABCDEFGb ATb1 4567

HIJKLMN76543213334445 HIJKLMNb 4321 4445

126 VS FORTRAN Language and Library Reference

®

FORMAT

Example 2:

Assume that A and B are character variables of length 4, that C is a character
variable of length 8, and that the following statements are given:

26 FORMAT (A6,A5,A6)

WRITE (6,26) A,B,C
When the WRITE statement is executed, one line is written on the data set
associated with data set reference number 6 from the variables A, B, and C in the

format specified by FORMAT statement 26. The printed output for values of A,
B, and C is as follows (b represents a blank):

A B C Printed Line

A1B2 C3D4 ES5F6G7H8 bbA1B2bC3D4ESF6G7
H Format Code and Character Constants

Character constants can appear in a FORMAT statement in one of two ways:
following the H format code or enclosed in apostrophes. For example, the
following FORMAT statements are equivalent.

25 FORMAT (22H 1982 INVENTORY REPORT)

25 FORMAT (' 1982 INVENTORY REPORT')

No item in the output list corresponds to the character constant. The constant is
written directly from the FORMAT statement. (The FORMAT statement can
contain other types of format code with corresponding variables in the I/0 list.)

Input: Character constants cannot appear in a format used for input.

Output: The character constant from the FORMAT statement is written on the
output file. (If the H format code is used, the w characters following the H are
written. If apostrophes are used, the characters enclosed in apostrophes are
written.) For example, the following statements:

8 FORMAT (14HOMEAN AVERAGE:, F8.4)

WRITE (6,8) AVRGE

would write the following record if the value of AVRGE were 12.3456:

MEAN AVERAGE: 12.3456

The first character of the output data record in this example is the carrier control
character for printed output. One line is skipped before printing, and the carrier
control character does not appear in the printed line.

Note: 1If the character constant is enclosed in apostrophes, an apostrophe character
in the data is represented by two successive apostrophes. For example, DON’T
would be represented as 'DON”T’. The two successive apostrophes are counted as
one character. A maximum of 255 characters can be specified in a character or a
Hollerith constant.

Chapter 5. VS FORTRAN Statements 127

FORMAT

X Format Code

T Format Code

The X format code specifies a field of w characters to be skipped on input or filled
with blanks on output if the field was not previously filled. On output, an X format
code does not affect the length of a record. For example, the following statements:

« Read the first ten characters of the input line into variable 1.
« Skip over the next ten characters without transmission.

« Read the next four fields of ten characters each into the variables J, K, L, and
M.

5 FORMAT (I10,10X,4110)

READ (5,5) I,J,K,L,M

The T format code specifies the position in the FORTRAN record at which the
transfer of data is to begin.

To illustrate the use of the T code, the following statements:
5 FORMAT (T40,'1981 STATISTICAL REPORT', T80,

X 'DECEMBER',T1,'OPART NO. 10095')

WRITE (6,5) @

print the following:

Print
Position: 1 39 79
v v v
PART NO. 10095 1981 STATISTICAL REPORT DECEMBER

The T format code can be used in a FORMAT statement with any type of format
code, as, for example, with FORMAT (’0°,T40,15).

Input: The T format code allows portions of a record to be processed more than
once, possibly with different format codes.

Output: The record is assumed to be initially filled with blank characters, and the
T format code can replace or skip characters. On output, a T format code does not
affect the length of a record.

(For printed output, the first character of the output data record is a carrier control
character and is not printed. Thus, for example, if T50,’Z’ is specified in a
FORMAT statement, a Z will be the 50th character of the output record, but it will
appear in the 49th print position.)

128 VS FORTRAN Language and Library Reference

Group Format Specification

FORMAT

TL and TR Format Codes: The TL and TR format codes specify how many
characters left (TL) or right (TR) from the current character position the transfer
of data is to begin. With TL format code, if the current position is less than or
equal to the position specified with TL, the next character transmitted will be
placed in position 1 (that is, the carrier control position).

The TL and TR format codes can be used in a FORMAT statement with any type
of format code. On output, these format codes do not affect the length of a record.

The group format specification repeats a set of format codes and controls the order
in which the format codes are used.

The group repeat count a is the same as the repeat indicator a that can be placed in
front of other format codes. For example, the following statements are equivalent:

10 FORMAT (I3,2(I4,I5),I16)

10 FORMAT (I3, (I4,I5,I4,15),16)

Group repeat specifications control the order in which format codes are used, since
control returns to the last group repeat specification when there are more items in
the I/0 list than there are format codes in the FORMAT statement. (See “Forms
of a FORMAT Statement” on page 114.) Thus, in the previous example, if there
were more than six items in the I/O list, control would return to the group repeat
count 2, which precedes the specification (I4,15).

If the group repeat count is omitted, a count of 1 is assumed. For example, the
statements:

15 FORMAT (I3, (F6.2,D10.3))

READ (5,15) ~N,A,B,C,D,E

read values from the first record for N, A, and B, according to the format codes I3,
F6.2, and D10.3, respectively. Then, because the I/O list is not exhausted, control
returns to the last group repeat specification, the next record is read, and values are
transmitted to C and D according to the format codes F6.2 and D10.3,
respectively. Since the I/O list is still not exhausted, another record is read and
value is transmitted to E according to the format code F6.2—the format code
D10.3 is not used.

All format codes can appear within the group repeat specification. For example,
the following statement is valid:

40 FORMAT (2I3/(3F6.2,F6.3/D10.3,3D10.2))

The first physical record, containing two data items, is transmitted according to the
specification 2I3; the second, fourth, and so on, records, each containing four data
items, are transmitted according to the specification 3F6.2,F6.3; and the third,
fifth, and so on, records, each also containing four data items, are transmitted
according to the specification D10.3,3D10.2, until the I/O list is exhausted.

Chapter 5. VS FORTRAN Statements 129

FORMAT

S, SP, and SS Format Codes

The S, SP, and SS format codes control optional plus sign characters in numeric @
output fields. At the beginning of execution of each formatted output statement, a

plus sign is produced in numeric output fields. If an SP format code is encountered

in a format specification, a plus sign is produced in any subsequent position that

normally contains an optional plus sign. If SS is encountered, a plus sign is not

produced in any subsequent position that normally contains an optional plus sign. If

an S is encountered, the option of producing the plus sign is set off.

Example:

The following program:

DOUBLE PRECISION A
REAL*16 S
R=3.

H B H®
o
N0t b

U=8.
WRITE (6,100) R,S,I,A,T,U
100 FORMAT (F10.2,SP,015.3,SS,I7,SP,D10.2,S,E10.3,SP,G10.1)
STOP
END

produces the following output:

3.00 +0.4000+01 5 +0.10D+01 0.700E+01 +8. Q::D

The S, SP, and SS format codes affect only I, F, E, G, and D editing during the
execution of an output statement.

i IBM Extension |

The S, SP, and SS format codes also affect Q editing.

l End of IBM Extension I

The S, SP, and SS format codes have no effect during the execution of an input
statement.

BN Format Code

The BN format code specifies the interpretation of blanks, other than leading
blanks, in numeric input fields. At the beginning of each formatted input
statement, such blank characters are interpreted as zeros or are ignored depending
on the value of the BLANK = specifier given when the unit was connected. (See
“OPEN Statement” on page 168.)

If BN is encountered in a format specification, all such blank characters in

succeeding numeric input fields are ignored. However, a field of all blanks has the
value zero.

C

130 VS FORTRAN Language and Library Reference

BZ Format Code

FORMAT

The BN format code affects only I, F, E, G, and D editing during execution of an
input statement.

| IBM Extension |

The BN format code also affects Q editing during execution of an input statement.

[End of IBM Extension J

The BN format code has no effect during execution of an output statement.
Example:

The following program (containing both BN and BZ format code):

READ (9,100) R,S,I,J
READ (9,101) A,B,K,L
100 FORMAT (BZ,Q15.3,F7.2,1I3,I7)
101 FORMAT (BN,Q15.3,F7.2,I3,I7)
WRITE (*,*) R,S,I,J,A,B,K,L
STOP
END

with the following input:

3 5

3.1
3.1 3 5

1.2
1.2
creates the following output:

1.19999980 3.10000038 300 5
1.19999980 3.10000038 3 5

The BZ format code specifies the interpretation of blanks, other than leading blanks,
in numeric input fields.

If BZ is encountered in a format specification, all nonleading blank characters in
succeeding numeric fields are treated as zeros. If no OPEN statement is given and
the file is preconnected, all nonleading blanks in numeric fields are interpreted as
ZEeros.

The BZ format code affects only I, F, E, G, and D editing during execution of an
input statement.

[IBM Extension |

The BZ format code also affects Q editing during execution of an input statement.

I End of IBM Extension

The BZ format code has no effect during execution of an output statement.

Chapter 5. VS FORTRAN Statements 131

FORMAT

Slash Format Code

Colon Format Code

A slash indicates the end of a VS FORTRAN record.

On input from a file connected for sequential access, the remaining portion of the
current record is skipped, and the file is positioned at the beginning of the next
record.

On output to a file connected for sequential access, a new record is created. For
example, on output, the statement:

25 FORMAT (I3,F6.2/D10.3,F6.2)

describes two FORTRAN record formats. The first, third, etc., records are
transmitted according to the format I3, F6.2 and the second, fourth, etc., records
are transmitted according to the format D10.3, F6.2.

Consecutive slashes can be used to introduce blank output records or to skip input
records. If there are n consecutive slashes at the beginning or end of a FORMAT
statement, n input records are skipped or » blank records are inserted between
output records. If n consecutive slashes appear anywhere else in a FORMAT
statement, the number of records skipped or blank records inserted is n-1. For
example, the statement:

25 FORMAT (1X,1015//1X,8E14.5)

describes three FORTRAN record formats. On output, it places a blank line
between the line written with format 1X,10I5 and the line written with the format
1X,8E14.5.

For a file connected for direct access, when a slash is encountered, the record
number is increased by one and the file is positioned at the beginning of the record
that has that record number.

A colon terminates format control if there are no more items in the input/output
list. The colon has no effect if there are more items in the input/output list.

132 VS FORTRAN Language and Library Reference

FORMAT

Example:

Assume the following statements:

ITABLE=10
IELEM=0

10 WRITE(6,1000)ITABLE, IELEM

ITABLE=11
IELEM=25

.

XMIN=-.37E1
XMAX=.2495E3

20 WRITE(6,1000) ITABLE, IELEM,XMIN, XMAX
1000 FORMAT ('O TABLE NUMBER',I5,:,'CONTAINS',I5,'ELEMENTS',:,
1 /'MINIMUM VALUE:',E15.7,
2 /'MAXIMUM VALUE:',E15.7)

The WRITE statement at statement number 10 generates the following:

TABLE NUMBER 10 CONTAINS O ELEMENTS

The WRITE statement at statement number 20 generates the following:

TABLE NUMBER 11 CONTAINS 25 ELEMENTS
MINIMUM VALUE: -.3700000E+01
MAXIMUM VALUE: .2495000E+03

Reading Format Specifications at Object Time

VS FORTRAN provides for variable FORMAT statements by allowing a format
specification to be read into a character array element or a character variable in
storage. The data in the character array or variable may then be used as the format
specification for subsequent input/output operations. The format specification
may also be placed into the character array or variable by a DATA statement or an
explicit specification statement in the source program. The following rules are
applicable:

« The format specification must be a character array or character variable, even
if the array size is only 1.

« The format codes entered into the array or character variable must have the
same form as a source program FORMAT statement, except that the word
FORMAT and the statement number are omitted. The parentheses
surrounding the format codes are required.

« If a format code read at object time contains two consecutive apostrophes

within a character field that is defined by apostrophes, it should be used for
output only.

Chapter 5. VS FORTRAN Statements 133

FORMAT

« Blank characters may precede the format specification, and character data may
follow the right parenthesis that ends the format specification. @

Example: Assume the following statements:

DIMENSION C(5)
CHARACTER*16 FMT
READ (5, 1) FMT
1 FORMAT (A)
READ(5,FMT)A,B, (C(I),I=1,5)

Assume also that the first input line associated with unit 5 contains (2E10.3,
5F10.8).

The data on the next input line is read, converted, and stored in A,B, and the array
C, according to the format codes 2E10.3, 5F10.8.

| IBM Extension]

Reading a FORMAT into a noncharacter array: Assume the following statements:

DIMENSION FMT(16),C(5)
READ(5,1) FMT

1 FORMAT (16A1)
READ(5,FMT)A,B, (C(I),I=1,5)

Assume also that the first input line associated with unit 5 contains (2E10.3,
5F10.8).

The data on the next input record is read, converted, and stored in A, B, and the @
array C, according to the format codes 2E10.3, 5SF10.8.

| End of IBM Extension l

List-Directed Formatting

The characters in one or more list-directed records constitute a sequence of values
and value separators. The end of a record has the same effect as a blank character,
unless it is within a character constant. Any sequence of two or more consecutive
blanks is treated as a single blank, unless it is within a character constant.

Each value is either a constant, a null value, or one of the forms:
r*f

or

r %*
where r is an unsigned, nonzero, integer constant. The r*f form is equivalent to r
successive appearances of the constant f, and the 7* form is equivalent to r
successive null values. Neither of these forms may contain embedded blanks,
except where permitted within the constant f.

@

134 VS FORTRAN Language and Library Reference

FORMAT

A value separator is one of the following:

« A comma, optionally preceded by one or more blanks and optionally followed
by one or more blanks

« A sslash, optionally preceded by one or more blanks and optionally followed by
one or more blanks

« One or more blanks between two constants or following the last constant

Input: Input forms acceptable to format specifications for a given type are
acceptable for list-directed formatting, except as noted below. The form of the
input value must be acceptable for the type of the input list item. Blanks are never
treated as zeros, and embedded blanks are not permitted in constants, except
within character constants and complex constants as specified below. The end of a
record has the effect of a blank, except when it appears within a character
constant.

When the corresponding input list item is of real or double precision type, the input
form is that of a numeric input field. A numeric input field is a field suitable for the
F format code that is assumed to have no fractional digits, unless a decimal point
appears within the field.

When the corresponding list item is of complex type, the input form consists of a
left parenthesis, an ordered pair of numeric input fields separated by a comma, and
a right parenthesis. The first numeric input field is the real part of the complex
constant and the second is the imaginary part. Each of the numeric input fields
may be preceded or followed by blanks. The end of a record may occur between
the real part and the comma or between the comma and the imaginary part.

When the corresponding list item is of logical type, the input form must not include
either slashes or commas among the optional characters permitted for the L format
code.

When the corresponding list item is of character type, the input form consists of a
nonempty string of characters enclosed in apostrophes. Each apostrophe within a
character constant must be represented by two consecutive apostrophes without an
intervening blank or the end of the record. Character constants may be continued
from the end of one record to the beginning of the next record. The end of the
record does not cause a blank or any other character to become part of the
constant. The constant may be continued on as many records as needed. The
characters blank, comma, and slash may appear in character constants.

For example, let len be the length of the list item, and let w be the length of the
character constant. If len is less than or equal to w, the leftmost len characters of
the constant are transmitted to the list item. If Jen is greater than w, the constant is
transmitted to the leftmost w characters of the list item and the remaining len-w
characters of the list item are filled with blanks. The effect is that the constant is
assigned to the list item in a character assignment statement.

A null value is specified by having no characters between successive separators, by
having no characters preceding the first value separator in the first record read by
each execution of a list-directed input statement, or by the r* form. A null value
has no effect on the definition status by the corresponding input list item. If the
input list item is defined, it retains its previous value; if it is undefined, it remains

Chapter 5. VS FORTRAN Statements 135

FORMAT

undefined. A null value may not be used as either the real or imaginary part of a
complex constant, but a single null value may represent an entire complex constant.
The end of a record following any other separator, with or without separating
blanks, does not specify a null value.

A slash encountered as a value separator during execution of a list-directed input
statement causes termination of execution of that input statement after the
assignment of the previous value. If there are additional items in the input list, the
effect is as if null values had been supplied for them.

All blanks in a list-directed input record are considered part of some value
separator, except for the following:

« Blanks embedded in a character constant
« Embedded blanks surrounding the real or imaginary part of a complex constant

« Leading blanks in the first record read by each execution of a list-directed
input statement, unless immediately followed by a slash or comma

Output: Except as noted, the form of the values produced is the same as that
required for input. With the exception of character constants, the values are
separated by one of the following:

¢ One or more blanks

e A comma, optionally preceded by one or more blanks and optionally followed
by one or more blanks

VS FORTRAN may begin new records as necessary but, except for complex
constants and character constants, the end of a record must not occur within a
constant, and blanks must not appear within a constant.

Logical output constants are T for the value .TRUE. and F for the value .FALSE..

Integer output constants are produced with the effect of an Iw edit descriptor for
some reasonable value of w.

Real and double precision constants are produced with the effect of either an F
format code or an E format code, depending on the magnitude x of the value and a
range:

10%%31 < x < 10%%*32

where d1 and d2 are processor-dependent integer values. If the magnitude x is
within this range, the constant is produced using OPFw.d; otherwise, 1PEw.dEe is
used. Reasonable processor-dependent values are used for each of the cases
involved.

Complex constants are enclosed in parentheses, with a comma separating the real
and imaginary parts. The end of a record may occur between the comma and the
imaginary part only if the entire constant is as long as, or longer than, an entire
record. The only embedded blanks permitted within a complex constant are
between the comma and the end of a record and one blank at the beginning of the
next record.

136 VS FORTRAN Language and Library Reference

U

O

FORMAT

Character constants produced:

« Are not delimited by apostrophes

« Are not preceded or followed by a value separator

e Have each internal apostrophe represented éxternally by one apostrophe

« Have a blank character inserted at the beginning of any record that begins with
the continuation of a character constant from the preceding record

If two or more successive values in an output record produced have identical
values, the sequence of identical values is written.

Slashes, as value separators, and null values are not produced by list-directed
formatting.

Each output record begins with a blank character to provide carrier control if the
record is printed.

FUNCTION Statement

The FUNCTION statement identifies a function subprogram consisting of a
FUNCTION statement followed by other statements that may include one or more
RETURN statements. It is an independently written program that is executed
wherever its name is referred to in another program.

— Syntax
[type] FUNCTION name ([argl [, arg2] ... 1)

type
is integer, real, double precision, complex, logical, or character[*/en1]

where:

*Jenl
is the length specification. It is optional; if omitted, it is assumed to be
1. It may be an unsigned, nonzero, integer constant, an integer
constant expression enclosed in parentheses, or an asterisk enclosed in
parentheses. The expression can only contain integer constants; it
must not include names of integer constants.

If the name is of character type, all entry names must be of character
type, and lengths must be the same. If one length is specified as an
asterisk, all lengths must be specified as an asterisk.

name
is the name of the function.

Chapter 5. VS FORTRAN Statements 137

FUNCTION

| IBM Extension |

name*len2
is the name of the function.

where:

*len2
is a positive, nonzero, unsigned integer constant. It represents one of
the permissible length specifications for its associated type. (See
“Variable Types and Lengths” on page 25.) *len2 is optional. It may
be included only when #ppe is specified. It must not be used when
DOUBLE PRECISION or CHARACTER is specified.

I End of IBM Extension I

arg
is a dummy argument. It must be a variable or array name that may appear
only once within the FUNCTION statement or dummy procedure name. If
there is no argument, the parentheses must be present. (See ‘“Dummy
Arguments in a Function Subprogram” on page 140.)

A type declaration for a function name may be made by the predefined convention,

by an IMPLICIT statement, by an explicit specification in the FUNCTION

statement, or by an explicit type specification statement within the function

subprogram. If the type of a function is specified in a FUNCTION statement, the

function name must not appear in an explicit type specification statement. @

The name of a function must not be in any other nonexecutable statement except a
type statement.

Because the FUNCTION statement is a separate program unit, there is no conflict
if the variable names and statement numbers within it are the same as those in
other program units.

The FUNCTION statement must be the first statement in the subprogram. The
function subprogram may contain any FORTRAN statement except a
SUBROUTINE statement, another FUNCTION statement, a BLOCK DATA
statement, or a PROGRAM statement. If an IMPLICIT statement is used in a
function subprogram, it must follow the FUNCTION statement and may only be
preceded by another IMPLICIT statement, a PARAMETER, FORMAT, or
ENTRY statement.

The name of the function (or one of the ENTRY names) must appear as a variable
name in the function subprogram and must be assigned a value at least once during

the execution of the subprogram in one of the following ways:

o As the variable name to the left of the equal sign in an arithmetic, logical, or
character assignment statement '

e As an argument of a CALL statement that will cause a value to be assigned in
the subroutine referred to

L
« In the list of a READ statement within the subprogram

138 VS FORTRAN Language and Library Reference

FUNCTION

'« Asone of the parameters in an INQUIRE statement that is assigned a value

within the subprogram
+ As a DO- or implied DO-variable
o As the result of the IOSTAT specification in an I/O statement
The value of the function is the last value assigned to the name of the function
when a RETURN or END statement is executed in the subprogram. For additional
information on RETURN and END statements in a function subprogram, see

“RETURN Statement” on page 222 and “END Statement” on page 94 .

The function subprogram may also use one or more of its arguments to return
values to the calling program. An argument so used must appear:

On the left side of an arithmetic, logical, or character assignment statement
o In the list of a READ statement within the subprogram

« As an argument in a function reference that is assigned a value by the function
referred to

e As an argument in a CALL statement that is assigned a value in the subroutine
referred to

e As one of the parameters in an INQUIRE statement

The dummy arguments of the function subprogram (for example, argl, arg2,
arg3,..., argn) are replaced at the time of invocation by the actual arguments
supplied in the function reference in the calling program.

If a function dummy argument is used as an adjustable array name, the array name
and all the variables in the array declarators (except those in the common block)
must be in the dummy argument list. See ‘“Size and Type Declaration of an Array”
on page 30.

If the predefined convention is not correct, the function name must be typed in the
program units that refer to it. The type and length specifications of the function
name in the function reference must be the same as those of the function name in
the FUNCTION statement.

Except in a character assignment statement, the name of a character function
whose length specification is an asterisk must not be the operand of a
concatenation operation.

The length specified for a character function in the program unit that refers to the
function must agree with the length specified in the subprogram that specifies the
function. There is always agreement of length if the asterisk is used in the
referenced subprogram to specify the length of the function.

Chapter 5. VS FORTRAN Statements 139

FUNCTION

Actual Arguments in a Function Subprogram

The actual arguments in a function reference must agree in order, number, and type @
with the corresponding dummy arguments in the dummy argument list of the

referenced function. The use of a subroutine name as an actual argument is an

exception to the rule requiring agreement of type.

If an actual argument is of type character, the associated dummy argument must be
of type character and the length of the actual argument must be greater than or
equal to the length of the dummy argument. If the length of the actual argument is
greater than the length of an associated dummy argument, the leftmost characters
of the actual argument are associated with the dummy argument.

An actual argument in a function reference must be one of the following:

e An array name

e An intrinsic function name

« An external procedure name

¢ A dummy argument name

« An expression, except a character expression involving concatenation of an

operand whose length specification is an asterisk in parentheses (unless the
operand is the name of a constant).

For an entry point in a function subprogram, see “ENTRY Statement” on ((‘ ™
page 97. N

Dummy Arguments in a Function Subprogram

The dummy arguments of a function subprogram appear after the function name
and are enclosed in parentheses. They are replaced at the time of invocation by the
actual arguments supplied in the function reference.

Dummy arguments must adhere to the following rules:

¢ None of the dummy argument names may appear in an EQUIVALENCE,
COMMON, DATA, PARAMETER, SAVE, INTRINSIC, or NAMELIST
statement, except as NAMELIST or common block names, in which case the
names are not associated with the dummy argument names.

« A dummy argument name must not be the same as the procedure name
appearing in a FUNCTION, SUBROUTINE, ENTRY or statement function

definition in the same program unit.

« The dummy arguments must correspond in number, order, and type to the
actual arguments.

140 VS FORTRAN Language and Library Reference

FUNCTION

If a dummy argument is assigned a value in the subprogram, the corresponding
actual argument must be a variable, an array element, a substring, or an array.
A constant, name of constant, subprogram name, or expression should not be
written as an actual argument unless the programmer is certain that the
corresponding dummy argument has not been assigned a value in the
subprogram.

A referenced subprogram cannot assign new values to dummy arguments that
are associated with other dummy arguments within the subprogram or with
variables in the common block.

Valid Examples

1.

Definition of function subprogram SUFFIX:

CHARACTER*10 FUNCTION SUFFIX(STR)
CHARACTER*7 STR

SUFFIX = STR // 'SUF' -
END

Use of function subprogram SUFFIX:
CHARACTER*10 NAME, SUFFIX

ﬁAME = SUFFIX(NAME(1:7))

Definition of function subprogram CUBE. This illustrates a function defined
without any dummy arguments:

REAL FUNCTION CUBE*16 ()
COMMON /COM1/ A

CUBE = A * A *¥ A

END

Use of function subprogram CUBE. Functions defined without any dummy
arguments must be invoked with the null parentheses.

REAL*16 A,X
COMMON /COM1/ A
A =1.6

X = CUBE()

Function IADD illustrates assigning a value to the function name (in this case,
IADD) by means of an argument of a CALL statement.

FUNCTION IADD(M)
CALL SUBA (IADD, M)
RETURN

END

Definition of subroutine SUBA:

SUBROUTINE SUBA (J,K)
J =10 + K

RETURN

END

Chapter 5. VS FORTRAN Statements 141

FUNCTION

GO TO Statements

4. Function IREAD illustrates assigning a value to the name of a function (in this

case, IREAD) by means of an I/0 list of a READ statement within the
function definition.

FUNCTION IREAD ()

READ *, IREAD

RETURN

END

5. Function SUM illustrates the use of adjustable dimensions.

INTEGER FUNCTION SUM(ARRY, M, N)
INTEGER M, N, ARRY(M, N)

SUM = 0
DO 10 I =1, M
DO 10 J = 1, N
10 SUM = SUM + ARRY(I,J)
RETURN

END

Use of function subprogram SUM:

DIMENSION IARRAY (20,30)
INTEGER SUM

i&AR = SUM(IARRAY, 20, 30)
Invalid Examples
Assume the following function definition: AN

REAL FUNCTION BAD (ARG)

IF (ARG .EQ. 0.0) ARG = 1.0
BAD = 123.4/ARG

RETURN
END

The following use of BAD is illegal, because the actual argument is an expression,
and BAD may assign a value to its dummy argument.

X = BAD(6.0 * X)

The following use of BAD is also illegal, because the actual argument is a constant.

X = BAD(12.3)

GO TO statements transfer control to an executable statement in the program unit.
There are three GO TO statements:

» Assigned GO TO statement
+ Computed GO TO statement

¢ Unconditional GO TO statement

142 VS FORTRAN Language and Library Reference

C

Assigned GO TO Statement

GO TO

The assigned GO TO statement transfers control to the statement numbered stn1,
stn2, stn3 ..., depending on whether the current assignment of i is stnl, stn2, stn3 ...,
respectively. (See “ASSIGN Statement” on page 59.)

—— Syntax
GO TO i[,] (stnl [,stn2] [,stn3]...)]

is an integer variable (not an array element) of length 4 that has been
assigned a statement number by an ASSIGN statement.

stn
is the number of an executable statement in the same program unit as the
assigned GO TO statement.

The list of statement numbers, that is, (stn1, stn2, stn3 ...), is optional. If omitted,
the preceding comma must be omitted. If the list of statement numbers is specified,
the preceding comma is optional. The statement number assigned to i must be one
of the statement numbers in the list. The statement number may appear more than
once in the list. ’

The ASSIGN statement that assigns the statement number to i must appear in the
same program unit as the assigned GO TO statement that is using this statement
number.

For example, in the statement:

GO TO N, (10, 25, 8)

If the current assignment of the integer variable N is statement number 8, then the
statement numbered 8 is executed next. If the current assignment of N is statement
number 10, the statement numbered 10 is executed next. If N is assigned
statement number 25, statement 25 is executed next.

At the time of execution of an assigned GO TO statement, the current value of i
must have been assigned the statement number of an executable statement (not a
FORMAT statement) by the previous execution of an ASSIGN statement.

If, at the time of the execution of an assigned GO TO statement, the current value
of i contains an integer value, assigned directly or through EQUIVALENCE,
COMMON, or argument passing, the result of the GO TO is unpredictable. If the
integer variable i is a dummy argument in a subprogram, then it must be assigned a
statement number in the subprogram, and also used in an assigned GO TO in that
subprogram. An integer variable used as an actual argument in a subprogram
reference may not be used in an assigned GO TO in the invoked subprogram unless
it is redefined in the subprogram.

Chapter 5. VS FORTRAN Statements 143

GO TO

Any executable statement immediately following the assigned GO TO statement

should have a statement number; otherwise, it can never be referred to or executed.

An assigned GO TO statement cannot terminate the range of a DO.

Example:

ASSIGN 150 TO IASIGN
IVAR=150.
GO TO IASIGN

Computed GO TO Statement

The computed GO TO statement transfers control to the statement numbered sinl,
stn2, or stn3,... depending on whether the current value of mis 1, 2, or 3,...
respectively.

Syntax
GO TO (stnl [, stn2] [, stn3] ...) [L1 m

stn
is the number of an executable statement in the same program unit as the
computed GO TO statement. The same number may appear more than once
within the parentheses.

m

is an integer expression. The comma before m is optional. If the value of m
is outside the range 1 < m < n, where n is the number of statement
numbers, the next statement is executed.

A computed GO TO statement may terminate the range of a DO.

Example:

1717 GO TO(172,173,174,173) INT(A)
172 A=A+ 1.0
GO TO 174
173 A=A+ 1.0
174 CONTINUE

Unconditional GO TO Statement

The unconditional GO TO statement transfers control to the statement specified by
the statement number. Every subsequent execution of this GO TO statement
results in a transfer to that same statement.

—— Syntax
GO TO stn

stn

is the number of an executable statement in the same program unit as the
unconditional GO TO statement.

144 VS FORTRAN Language and Library Reference

i
O

C

IF Statements

Arithmetic IF Statement

GO TO

Any executable statement immediately following this statement must have a
statement number; otherwise, it can never be referred to or executed.

An unconditional GO TO cannot terminate the range of a DO-loop.

Example:

GO TO 5
999 I =1 + 200

The IF statements specify alternative paths of execution depending on the
condition given. There are three forms of the IF statement:

e Arithmetic IF

e Block IF
END IF
ELSE
ELSE IF
o Logical IF

The arithmetic IF statement transfers control to the statement numbered stnl, sin2,
or stn3 when the value of the arithmetic expression (m) is less than, equal to, or
greater than zero, respectively. The same statement number may appear more than
once within the same IF statement.

— Syntax

IF (m) stnl, stn2, stn3

is an arithmetic expression of any type except complex.

stn ,
is the number of an executable statement in the same program unit as the IF
statement.

An arithmetic IF statement cannot terminate the range of a DO-loop.

Any executable statement immediately following this statement must have a
statement number; otherwise, it can never be referred to or executed.

Chapter 5. VS FORTRAN Statements 145

IF

Block IF Statement

G
The block IF statement is used with the END IF statement and, optionally, the f
ELSE IF and ELSE statements to control the execution sequence.

—— Syntax
IF (m) THEN

is any logical expression.

Two terms are used in connection with the block IF statement: IF-level and
IF-block.

IF-level The number of IF-levels in a program unit is determined by the
number of sets of block IF statements (IF (m) THEN and END IF
statements).

The IF-level of a particular statement (stn) is determined with the
formula:

is the number of block IF statements from the beginning of the
program unit up to and including the statement (stn).

n2
is the number of END IF statements in the program unit up to,
but not including, the statement (stn).

IF-block An IF-block begins with the first statement after the block IF
statement (IF (m) THEN), ends with the statement preceding the next
ELSE IF, ELSE, or END IF statement that has the same IF-level as
the block IF statement, and includes all the executable statements in
between. An IF-block is empty if there are no executable statements
in it.

Transfer of control into an IF-block from outside the IF-block is
prohibited.

Execution of a block IF statement evaluates the expression m. If the value of m is
true, normal execution sequence continues with the first statement of the IF-block,
which is immediately following the IF () THEN. If the value of m is true, and the
IF-block is empty, control is transferred to the next END IF statement that has the
same IF-level as the block IF statement. If the value of m is false, control is
transferred to the next ELSE IF, ELSE, or END IF statement that has the same
IF-level as the block IF statement.

146 VS FORTRAN Language and Library Reference

END IF Statement

IF

If the execution of the last statement in the IF-block does not result in a transfer of
control, control is transferred to the next END IF statement that has the same
IF-level as the block IF statement that precedes the IF-block.

A block IF statement cannot terminate the range of a DO.

The END IF statement concludes an IF-block. Normal execution sequence
continues.

—— Syntax
END IF

For each block IF statement, there must be a matching END IF statement in the
same program unit. A matching END IF statement is the next END IF statement
that has the same IF-level as the block IF statement.

An ELSE IF statement cannot terminate the range of a DO. Execution of an END
IF statement has no effect.

Valid Examples:

The following is the general form of a single alternative block IF statement (in
other words, no ELSE or ELSE IF statements are in the IF-block).

IF (m) THEN

C
C EXECUTION SEQUENCE WHEN THE VALUE OF m IS TRUE
C
ENDIF
C
c IF m IS FALSE, EXECUTION CONTINUES HERE
C .

The following is an example of a single alternative IF.

IF (INDEX .EQ. 0) THEN
PRINT *, 'KEY NOT FOUND'
INDEX = - 1

ENDIF

Chapter 5. VS FORTRAN Statements 147

IF

ELSE Statement

ELSE IF Statement

The ELSE statement is executed if the preceding block IF or ELSE IF condition is @
evaluated as FALSE. Normal execution sequence continues.

[Syntax
ELSE

An ELSE-block consists of all the executable statements after the ELSE statement
up to, but not including, the next END IF statement that has the same IF-level as
the ELSE statement. An ELSE-block may be empty.

Within an IF-block, you can have only one ELSE.

Transfer of control into an ELSE-block from outside the ELSE-block is prohibited.
The statement number, if any, of an ELSE statement must not be referred to by
any statement (except an AT statement of a DEBUG packet). An ELSE statement
cannot terminate the range of a DO.

Valid Examples

The following is the general form of the double alternative block IF statement (in
other words, IF-block contains an ELSE statement but no ELSE IF statements).

IF (m) THEN
: O
C EXECUTION SEQUENCE WHEN THE VALUE OF m IS TRUE =
C

ELSE
C
C EXECUTION SEQUENCE WHEN THE VALUE OF m IS FALSE
C

ENDIF
The following is an example of a double alternative block IF.

IF(X .GE. Y) THEN

LARGE = X
ELSE

LARGE = Y
ENDIF

The ELSE IF statement is executed if the preceding block IF condition is evaluated
as false.

— Syntax
ELSE IF (m) THEN

148 VS FORTRAN Language and Library Reference

IF

is any logical expression.

An ELSE IF block consists of all the executable statements after the ELSE IF
statement up to, but not including, the next ELSE IF, ELSE, or END IF statement
that has the same IF-level as the ELSE IF statement. An ELSE IF block may be
empty.

If the value of the logical expression m is true, normal execution sequence
continues with the first statement of the ELSE IF block.

If the value of m is true and the ELSE IF block is empty, control is transferred to
the next END IF statement that has the same IF-level as the ELSE IF statement.

If the value of m is false, control is transferred to the next ELSE IF, ELSE, or
END IF statement that has the same IF-level as the ELSE IF statement.

Transfer of control into an ELSE IF block from outside the ELSE IF block is ‘
prohibited. The statement number (stn), if any, of the ELSE IF statement must not
be referred to by any statement (except an AT statement of a DEBUG packet).

If execution of the last statement in the ELSE IF block does not result in a transfer
of control, control is transferred to the next END IF statement that has the same
IF-level as the ELSE IF statement that precedes the ELSE IF block.

An ELSE IF statement cannot terminate the range of a DO.

Valid Examples:

The following are the general forms of the multiple alternative block-IF statement.

IF (m) THEN

1. Execution sequence when the value of m is true.

ELSE IF (m1) THEN

2. Execution sequence when the value of m is false
and the value of m1 is true.

ELSE

3. Execution sequence when the values of both m and
ml are false.

ENDIF
The following is the second form of the multiple alternative block-IF.

IF (m) THEN

Chapter 5. VS FORTRAN Statements 149

IF

Logical IF Statement

Execution sequence when the value of m is true.

ELSE IF (ml) THEN

Execution sequence when the value of m is false
and the value m1 is true.

ENDIF

Execution continues here if both m and m! are false.

The following is an example of multiple alternative block-IF.

CHARACTER*5 C

IF (C .EQ. 'RED ') THEN
PRINT *, ' COLOR IS RED'

ELSEIF (C .EQ. 'BLUE ') THEN
PRINT *, ' COLOR IS BLUE'

ELSEIF (C .EQ. 'WHITE') THEN
PRINT *, ' COLOR IS WHITE'

ELSE
PRINT *, ' COLOR IS NOT SET'
C = 'GREEN'

ENDIF

The logical IF statement evaluates a logical expression and executes or skips a
statement, depending on whether the value of the expression is true or false,

respectively.

— Syntax
IF (m) st

is any logical expression.

st

is any executable statement except a DO statement, another logical IF
statement, an END statement or a block IF, ELSE IF, ELSE, or END IF
statement.

IBM Extension

st may not be a TRACE ON, TRACE OFF, INCLUDE, or DISPLAY
statement.

End of IBM Extension

The statement st must not have a statement number.

150 VS FORTRAN Language and Library Reference

IF

The execution of a function reference in m is permitted to affect entities in
the statement st.

The logical IF statement containing st may have a statement number. If a
logical IF statement terminates the end of a DO loop, it may not contain a
DO, block IF, ELSE IF, ELSE, END IF, END, or another logical IF
statement.

Example:

IF(A.LE.0.0) GO TO 25

C=D+E
IF (A.EQ.B) ANSWER = 2.0*A/C
F = G/H
25 W = X*%Z
IMPLICIT Type Statement

The IMPLICIT type statement specifies the type and length of all variables, arrays,
and user-supplied functions whose names begin with a particular letter. It may be
used to change or confirm implicit typing.

IMPLICIT sype (a[,al.) [, ype (al, al..)]...

Syntax

type

is character{*len1], complex, double precision, integer, logical, or real
where:
lenl

can be an unsigned, nonzero, integer constant or a positive integer

constant expression enclosed in parentheses. It is optional.

If lenl is not specified, the length is one.

fype

IBM Extension

is complex[*len2], integer[*len2], logical[*len2], or real[*len2]
where:

len2
can be a positive, nonzero, unsigned, integer constant. It represents
one of the permissible length specifications for its associated type. It
is optional.

End of IBM Extension I

Chapter 5. VS FORTRAN Statements 151

IMPLICIT Type

a .
is a single alphabetic character or a range of characters drawn from the set
A, B,..., Z. The range is denoted by the first and last characters of the range
separated by a minus sign (for example, A-D).

| IBM Extension |

The alphabetic character a can also be the currency symbol ($). The
currency symbol ($) follows the letter Z. Thus, the range Y-$ is the same as
Y,Z,$.

I End of IBM Extension I

The IMPLICIT specification statement can only be preceded by a PROGRAM,
SUBROUTINE, FUNCTION, BLOCK DATA, PARAMETER, ENTRY, or
FORMAT statement, or another IMPLICIT statement. The IMPLICIT
specification statement declares the type of the variables and user-supplied
functions appearing in this program (that is, integer, real, complex, logical, or
character) by specifying that names beginning with certain designated letters are of
a certain type. Furthermore, the IMPLICIT statement allows the programmer to
declare the number of bytes to be allocated for each in the group of specified
variables.

The CHARLEN compiler option may be specified to set the maximum length of
the CHARACTER data type to a range of 1 through 32767. The default
maximum length remains 500 characters, or whatever length was set at installation

time. @

The type and length associated with a letter or a range of letters must not conflict
with the type or length given previously to the same letters in the same IMPLICIT
statement, in a different IMPLICIT statement or in a PARAMETER statement.
Type specification by an IMPLICIT statement may be overridden or confirmed for
any particular variable, array, name of a constant, external function, or statement
function name by the appearance of that name in an explicit type specification
statement.

(See “Type Declaration by the Predefined Specification” on page 27.)

Note: An IMPLICIT statement has no effect on names of VS
FORTRAN-supplied (intrinsic) functions.

Valid IMPLICIT Statements:
IMPLICIT INTEGER(A-H), REAL(I-K), LOGICAL(L,M,N)

IMPLICIT COMPLEX (C-F)

@

152 VS FORTRAN Language and Library Reference

INCLUDE Statement

IMPLICIT Type

IBM Extension |
IMPLICIT INTEGER (W-$)

All names beginning with W, X, Y, Z, and $ are considered integers of length 4
bytes.

I End of IBM Extension |

| IBM Extension |

The INCLUDE statement is a compiler directive. It inserts a specified statement or
a group of statements into a program unit.

A function called conditional INCLUDE provides a means for selectively activating
INCLUDE statements within the VS FORTRAN source during compilation. The
included files are specified by means of the CI compiler option. For more
information about the CI compiler option and how to use the INCLUDE
statement, see V'S FORTRAN Programming Guide.

— Syntax
INCLUDE (name) [n]

is the name of a group of one or more VS FORTRAN source statements to
be inserted into the source program being compiled. The group must reside
in a library known to the VS FORTRAN compiler.

is the value used to decide whether to include the file during compilation.
When n is not specified, the file is always included. When n is specified, the
file is included only if the number appears in the CI list. The range of nis 1
to 255.

The following rules apply to the INCLUDE statement:

« INCLUDE is a compiler directive statement only.

« The INCLUDE statement may not be continued.

« No replacement or editing is done.

e The inserted group may contain any VS FORTRAN source statements,
including other INCLUDE statements.

¢« An INCLUDE of a group may not contain an INCLUDE statement that refers
to a currently open INCLUDE group (that is, recursion is not permitted).

Chapter 5. VS FORTRAN Statements 153

INCLUDE

e Multiple INCLUDE statements may appear in the original source program.

{ ™
« INCLUDE statements may appear anywhere in a source program before the @
END statement, except as the trailer of a logical IF statement. An END
statement may be part of the included group.

« The VS FORTRAN statements in the group being included must be in the

same form as the source program being compiled; that is, fixed form or free
form.

« After the inclusion of all groups, the resulting VS FORTRAN program must
follow all VS FORTRAN rules for sequencing of statements.

I End of IBM Extension I

INQUIRE Statement

An INQUIRE statement supplies information about properties of a particular
named external file or of the connection to a particular external unit. This
information is determined by the VS FORTRAN I/0O statements that have been
processed, not by testing for operating system information. In other words,
specification of INQUIRE is limited to currently or previously opened files.

There are two forms of the INQUIRE statement:
o Inquire by file name

« Inquire by unit number @

A file can be queried about its existence, its unit number, its name, the kind of
processing it can be opened for, whether it has in fact been opened, whether it is
formatted or unformatted, and how blanks are to be interpreted.

In addition, a file opened for direct access can be queried about its record length or
its next record number. A file opened for keyed access can be queried about:

o The way it was opened (for reading, writing, or both)
e Which of multiple keys is in use, and its length and position

« The value of the last key used in a READ, WRITE, REWRITE, or
BACKSPACE operation

« The length of the last record processed by a READ, WRITE, REWRITE, or
BACKSPACE operation

The INQUIRE statement can be executed before, while, or after a file is connected
to a unit. All values assigned by the INQUIRE statement are those that are current
at the time the statement is executed. All value assignments are done according to
the rules for assignment statements. No error is given if the value is truncated
because the receiving field is too small to contain it all.

-

154 VS FORTRAN Language and Library Reference

O

INQUIRE by File Name

INQUIRE

This INQUIRE statement supplies information about a file. When this statement is
executed, the file specified by fn may or may not be connected to a unit. If the file
is connected to a unit, the file may or may not exist. (For example, an output unit
may be connected to a file, but no output has been written.)

—— Syntax

INQUIRE (FILE=fn [, ERR=stn] [, IOSTAT=ios] [, EXIST=exs]
[, OPENED=o0pn] [, NAMED=nmd]
[, NAME=nam] [, SEQUENTIAL=seq]
[, DIRECT=dir] [, KEYED=kyd]
[, FORMATTED=fm:] [, UNFORMATTED=unf]
[, NUMBER=num] [, ACCESS=acc] [, FORM=frm]
[, RECL=rcl] [, NEXTREC=nxr] [, BLANK=blk]
[, ACTION=acc] [, WRITE=wri]
[, READ=ron] [, READWRITE=rwr]
[, KEYID=kid] [, KEYLENGTH=kle]
[, KEYSTART=kst] [, KEYEND=ken]

[, LASTKEY=Ilky] [, LASTRECL=/r]])

All parameters except FILE=fn are optional.

FILE=fn
is required. fn is the reference to a file and must be preceded by FILE=. It
is a character expression. Its value, when any trailing blanks are removed,
must be 1 to 7 characters, the first one being one of the 26 alphabetic
characters, and the other six being of the 26 alphabetic or the 10 numeric
characters. It must be the name of the file being inquired about and must be
known to the program.

ERR=stn
stn is the number of an executable statement in the same program unit as the
INQUIRE statement. If an error occurs, control is transferred to stn.

IOSTAT =ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

Chapter 5. VS FORTRAN Statements 155

INQUIRE

EXIST=exs
exs is a logical variable or logical array element of length 4. It is assigned the
value true if the file by the specified name exists; otherwise, it is assigned the
value false. No value is assigned if an error has occurred.

OPENED=o0pn
opn is a logical variable or a logical array element of length 4. It is assigned
the value true if the file specified is connected to a unit; otherwise, it is
assigned the value false. No value is assigned if an error has occurred.

The File Exists: The following parameters have a value only if the file being
inquired about exists; that is, exs has the value true. These parameters are all
optional.

NAMED =nmd
nmd is a logical variable or a logical array element of length 4. If the file has
a name (fn), nmd is assigned the value true; otherwise, it is assigned the
value false.

NAME=nam
nam is a character variable or character array element. If the file has a name
(fn), nam is assigned the value of name. name is not necessarily the same as
the name in the FILE parameter (fn).

SEQUENTIAL=seq
seq is a character variable or a character array element. It is assigned the
value YES if the file can be connected for sequential access input/output;
NO if it cannot; and UNKNOWN fif it is not possible to determine whether
the file can be connected for sequential access.

DIRECT =dir
dir is a character variable or a character array element. It is assigned the
value YES if the file can be connected for direct access input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for direct access.

| IBM Extension

KEYED=Fkyd
kyd is a character variable or a character array element. It is assigned the
value YES if the file can be connected for keyed access input/output; NO if
it cannot; and UNKNOWN fif it is not possible to determine whether the file
can be connected for keyed access.

I End of IBM Extension

FORMATTED=fmt
fmt is a character variable or character array element. It is assigned the
value YES if the file can be connected for formatted input/output; NO if it
cannot; and UNKNOWN ff it is not possible to determine whether the file
can be connected for formatted input/output.

156 VS FORTRAN Language and Library Reference

)
o

INQUIRE

UNFORMATTED=unf
unf is a character variable or character array element. It is assigned the
value YES if the file can be connected for unformatted input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for unformatted input/output.

The file is Connected to an Existing Unit: The following parameters have a value
only if the file exists (exs has the value true), and if the file is connected to a unit
(opn has the value true). These parameters are all optional.

NUMBER=num
num is an integer variable or integer array element of length 4. It is assigned
the value of the external unit connected to the file.

ACCESS=acc
acc is a character variable or character array element. If there is a name fn,
acc is assigned a value (SEQUENTIAL, DIRECT, or KEYED) associated
with the connection of the external file.

FORM=frm
Jrm is a character variable or character array element. It is assigned the
value FORMATTED if the file is connected for formatted input/output;
UNFORMATTED if the file is connected for unformatted input/output.

The File is Connected for Direct Access I/0O: The following parameters have a value
only if the file exists (exs has the value true), and if the file is connected for direct
access (acc=DIRECT). These files are all optional. The file must have been
explicitly opened.

RECL=rcl
rcl is an integer expression of length 4. Its value is the record length of the
file connected for direct access. The length is measured in characters for
files consisting of formatted records, and in bytes for files consisting of
unformatted records.

NEXTREC=nxr
nxr is an integer variable or integer array element of length 4. It is assigned
the value n+1, where n is the record number of the last record read or
written on the direct access file. If the file is connected, but no records have
been read or written since the connection, nxr is assigned the value 1.

The File is Connected for Formatted I/O: The following parameter has a value only
if the file exists (exs has the value true) and if the file is connected for formatted
input/output (frm has the value FORMATTED). The parameter is optional.

BLANK=blk
blk is a character variable or character array element. It is assigned the value
NULL if blanks in arithmetic input fields are treated as blanks; ZERO if
they are treated as zeros.

Chapter 5. VS FORTRAN Statements 157

INQUIRE

The File is Connected for Keyed Access I/0: The following parameters have a value
only if the file exists (exs has the value true) and if the file is connected for keyed
access (acc has the value KEYED). These parameters are all optional. The file
must have been explicitly opened.

| IBM Extension |

ACTION=act
act is a character variable or character array element that is assigned one of
the following values:

WRITE If the file was opened to load records into an empty
keyed file
READ If the file was opened only to retrieve records
READWRITE If the file was opened to allow retrieval and update
operations
WRITE=wri

wri is a character variable or character array element that is assigned the
value YES if the keyed file was opened to load records into the file;
otherwise, it is assigned the value NO.

READ=ron
ron is a character variable or character array element that is assigned the N
value YES if the keyed file was opened only for retrieval; otherwise, it is @

assigned the value NO.

READWRITE=rur
rwr is a character variable or character array element that is assigned the
value YES if the keyed file was opened to allow retrieval and update
operations; otherwise, it is assigned the value NO.

KEYID=kid
kid is an integer variable or integer array element of length 4. It is assigned
the relative position of a start-end pair in the list of such pairs in the KEYS
parameter of the OPEN statement. If the OPEN statement has no KEYS
parameter, a value of 1 is assigned.

KEYLENGTH=kle
kle is an integer variable or integer array element of length 4. It is assigned
the length of the key currently in use.

KEYSTART =kst
kst is an integer variable or integer array element of length 4. It is assigned
the position of the leftmost character in the record of the key currently in
use.

KEYEND=ken
ken is an integer variable or integer array element of length 4. It is assigned
the position of the rightmost character in the record of the key currently in
use.

158 VS FORTRAN Language and Library Reference

O

INQUIRE by Unit Number

INQUIRE

LASTKEY=lky
lky is a variable array element of any data type. It is assigned the value of
the key of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. To receive the full key, /ky must be at least as long as the key. If
it is shorter, the value of the key is truncated on the right to make it the same
length. If Iky is longer, binary zeros are added to the right of the value to
make it the same length. The assigned value is not meaningful if the last
input/output operation was unsuccessful or was a REWIND, OPEN, or
CLOSE operation.

LASTRECL=Irl
Irl is an integer variable or integer array element of length 4. It is assigned
the length of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. The assigned value is not meaningful if the last input/output
operation was unsuccessful or was a REWIND, OPEN, or CLOSE
operation.

| End of IBM Extension I

The parameters can be entered in any order. Each parameter cannot appear more
than once in an INQUIRE statement. The same variable or array element cannot
be specified for more than one parameter in the same INQUIRE statement.

Valid INQUIRE Statements:

INQUIRE (FILE=DDNAME, IOSTAT=I10S, EXIST=LEX, OPENED=LOD,
NAMED=LNMD, NAME=FN, SEQUENTIAL=SEQ, DIRECT=DIR,
FORMATTED=FMT, UNFORMATTED=UNF, ACCESS=ACC, FORM=FRM,
NUMBER=INUM, RECL=IRCL, NEXTREC=INR, BLANK=BLNK)

INQUIRE (FILE='FT16K01',LASTRECL=RECL)

This INQUIRE statement supplies information about an input/output unit.

A unit can be queried about its existence and its connection to a file. If it is
connected to a file, the inquiry is being made about the connection and the file
connected. When this statement is executed, the unit specified by un may or may
not be connected to a file. If the unit is connected to a file, the file may or may not
exist. For example, an output unit may be connected to a file but no output has
been written.

Chapter 5. VS FORTRAN Statements 159

INQUIRE

oo
INQUIRE ([UNIT=]un[, ERR=stn] [, IOSTAT=ios] [, EXIST =exs} {

[, OPENED=0pn] [, NAMED=nmd]
[, NAME=nam] [, SEQUENTIAL =seq]
[, DIRECT=dir] [, KEYED=kyd]
[, FORMATTED=fmt] [, UNFORMATTED=unf]
[, NUMBER=num] [, ACCESS=acc] [, FORM=frm]
[, RECL=rcl] [, NEXTREC=nxr] [, BLANK=blk]
[, ACTION=acc] [, WRITE=wri]
[, READ=ron] [, READWRITE=rwr]
[, KEYID=kid] [, KEYLENGTH=k/e]

[, KEYSTART=kst] [, KEYEND=ken]

All parameters except UNIT=un are optional.

UNIT=un
un is the reference number of an I/O unit. It is an integer expression of
length 4 whose value (zero or positive) represents the unit number that is
being queried.

It is required and can optionally be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR =stn
stn is the number of an executable statement in the same program unit as the
INQUIRE statement. If an error occurs during the writing of an error
message, control is transferred to stn.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; it is set to zero if no error is detected. VSAM
return and reason codes are placed in ios.

EXIST=exs
exs is a logical variable or logical array element of length 4. It is assigned to e
value true if the specified unit exists and is known to the program unit. If M
neither of these conditions is met, exs is assigned the value false.

160 VS FORTRAN Language and Library Reference

INQUIRE

OPENED=o0pn
opn is a logical variable or logical array element of length 4. It is assigned
the value true if the file specified is connected to a unit; otherwise, it is
assigned the value false.

The Unit is Connected to an External File: The following parameters have a value
only if the unit exists (exs has the value true) and the unit is connected to an
external file (opn has the value true). These parameters are all optional.

NAMED=nmd
nmd is a logical variable or a logical array element of length 4. It is assigned
the value true if the file connected to the unit has a name; otherwise, it is
assigned the value false.

NAME=nam
nam is a character variable or character array element. If the file connected
to the unit has a name, it is assigned the value of the name of that file. If the
file is unnamed, a default name is assigned.

SEQUENTIAL =seq
seq is a character variable or a character array element. It is assigned the
value YES if the file can be connected for sequential access input/output;
NO if it cannot; and UNKNOWN if it is not possible to determine whether
the file can be connected for sequential access.

DIRECT=dir
dir is a character variable or a character array element. It is assigned the
value YES if the file can be connected for direct access input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for direct access.

| IBM Extension |

KEYED=kyd
kyd is a character variable or a character array element. It is assigned the
value YES if the file can be connected for keyed access input/output; NO if
it cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for keyed access.

I End of IBM Extension I

FORMATTED=fmt
fmt is a character variable or character array element. It is assigned the
value YES if the file can be connected for formatted input/output; NO if it
cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for formatted input/output.

UNFORMATTED=unf
unf is a character variable or character array element. It is assigned the
value YES if the file can be connected for formatted input/output; NO if it
cannot; and UNKNOWN if it is not possible to determine whether the file
can be connected for formatted input/output.

Chapter 5. VS FORTRAN Statements 161

INQUIRE

NUMBER=num

num is an integer variable or integer array element of length 4. Its value is Qm
the value of un.

ACCESS=acc
acc is a character variable or character array element. If there is a name fn,
acc is assigned a value (SEQUENTIAL, DIRECT, or KEYED) associated
with the connection of the external file.

FORM=frm
frm is a character variable or character array element. frm is assigned the
value FORMATTED if the file is connected for formatted input/output;
UNFORMATTED if the file is connected for unformatted output.

The Unit is Connected to an External File for Direct Access I/0: The following
parameters have a value only if the unit exists (exs has the value true) and is
connected to an external file for direct access input/output (acc has the value
DIRECT). These parameters are all optional.

RECL=rcl
rcl is an integer variable or integer array element of length 4. It is assigned
the value of the record length of the direct access file. The length is
measured in characters for files consisting of formatted records and in bytes
for files consisting of unformatted records.

NEXTREC=nxr
nxr is an integer variable or integer array element of length 4. It is assigned
the value n+1 where n is the record number of the last record read or @
written on the direct access file. If the file is connected, but no records have
been read or written since the connection, nxr is assigned the value 1.

BLANK=blk
blk is a character variable or character array element. It is assigned the value
NULL if blanks in arithmetic input fields are treated as blanks; ZERO if
they are treated as zeros.

The Unit Is Connected to an External File for Keyed Access I/0: The following
parameters have a value only if the unit exists (exs has the value true) and is
connected to an external file for keyed access (acc=KEYED). These parameters
are all optional. The file must have been explicitly opened.

| IBM Extension 1

ACTION=aqct
act is a character variable or character array element that is assigned one of
the following values:

WRITE If the file was opened to load records into an empty
keyed file.

READ If the file was opened only to retrieve records.

READWRITE If the file was opened to allow retrieval and update £
operations. U

162 VS FORTRAN Language and Library Reference

INQUIRE

WRITE=wri
wri is a character variable or character array element that is assigned the
value YES if the keyed file was opened to load records into the file;
otherwise, it is assigned the value NO.

READ=ron
ron is a character variable or character array element that is assigned the
value YES if the keyed file was opened only for retrieval; otherwise, it is
assigned the value NO.

READWRITE =rwr
rwr is a character variable or character array element that is assigned the
value YES if the keyed file was opened to allow retrieval and update
operations; otherwise, it is assigned the value NO.

KEYID=kid
kid is an integer variable or integer array element of length 4. It is assigned
the relative position of a start-end pair in the list of such pairs in the KEYS
parameter of the OPEN statement. If the OPEN statement has no KEYS
parameter, a value of 1 is assigned.

KEYLENGTH=kle
kle is an integer variable or integer array element of length 4. It is assigned
the length of the key currently in use.

KEYSTART =kst
kst is an integer variable or integer array element of length 4. It is assigned
the position of the leftmost character in the record of the key currently in
use.

KEYEND =ken
ken is an integer variable or integer array element of length 4. It is assigned
the position of the rightmost character in the record of the key currently in
use.

LASTKEY=Ilky
lky is a variable array element of any data type. It is assigned the value of
the key of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. To receive the full key, /ky must be at least as long as the key. If
it is shorter, the value of the key is truncated on the right and to make it the
same length. If /ky is longer, binary zeros are added to the right of the value
to make it the same length. The assigned value is not meaningful if the last
input/output operation was unsuccessful or was a REWIND, OPEN, or
CLOSE operation.

LASTRECL=!rl
Irl is an integer variable or integer array element of length 4. It is assigned
the length of the last keyed file record that was retrieved with a READ
statement, written with a WRITE or REWRITE statement, deleted with a
DELETE statement, or positioned to the beginning with a BACKSPACE
statement. The assigned value is not meaningful if the last input/output

Chapter 5. VS FORTRAN Statements 163

INQUIRE

INTRINSIC Statement

operation was unsuccessful or was a REWIND, OPEN, or CLOSE
operation.

I End of IBM Extension J (-)

The parameters can be entered in any order unless UNIT=un is omitted. If
omitted, un, as described under UNIT=un, must be first.

Valid INQUIRE Statements:

INQUIRE (0, IOSTAT=IACT(1), ERR=99999, EXIST=LACT(9),
OPENED=LACT(8) , NAMED=LACT(7), NAME=ACTUAL(1),
SEQUENTIAL=ACTUAL(2) , DIRECT=ACTUAL(3),
FORMATTED=ACTUAL(4) , UNFORMATTED=ACTUAL(5),
ACCESS=ACTUAL(6), FORM=ACTUAL(7), NUMBER=IACT(2),
RECL=IACT (3), NEXTREC=IACT (4), BLANK=ACTUAL(8))

INQUIRE (16,LASTKEY=LKEY,KEYSTART=START,KEYEND=END,
KEYLENGTH=LENG)

INQUIRE (12,ACTION=ACT,KEYID=ID)

The INTRINSIC statement identifies a name as representing a
FORTRAN-supplied procedure (function or subprogram) and permits a specific
intrinsic function name to be used as an actual argument.

—— Syntax

INTRINSIC namel [, name2 1 ...

name
is the generic or specific name of a VS FORTRAN intrinsic function.

The INTRINSIC statement is a specification statement and must precede statement
function definitions and all executable statements.

Intrinsic functions are those functions known to the compiler. Intrinsic function
names are either generic or specific. A generic name does not have a type, unless it
is also a specific name.

Generic names simplify referring to intrinsic functions because the same function
name may be used with more than one type of argument. Only a specific intrinsic
function name may be used as an actual argument when the argument is an intrinsic
function.

See Chapter 8, ‘“Mathematical, Character, and Bit Subprograms’ on page 307,
for the complete list of intrinsic function names and usage information for each
function.

Appearance of a name in an INTRINSIC statement declares that name to be an

intrinsic function name. If a specific name of an intrinsic function is used as an

actual argument in a program unit, it must appear in an INTRINSIC statement in

that program unit. 7

164 VS FORTRAN Language and Library Reference

Logical IF Statement

Logical Type Statement

INTRINSIC

The following names of specific intrinsic functions must rnot be passed as actual
arguments:

AMAXO INT
AMAX1 LGE
AMINO LGT
AMIN1 LLE
CHAR LLT
DMAX1 MAXO
DMIN1 MAX1
FLOAT MINO
ICHAR MIN1
IDINT REAL
IFIX SNGL
IBM Extension
CMPLX QCMPLX
DBLE QEXT
DBLEQ QEXTD
DCMPLX QFLOAT
DFLOAT OMAX 1
DREAL OMIN1
HFIX OREAL
IQINT SNGLQ
I End of IBM Extension l

The appearance of a generic function name in an INTRINSIC statement does not
cause the name to lose its generic property. Only one appearance of a name in all
the INTRINSIC statements of a program unit is permitted. The same name must
not appear in both an EXTERNAL and an INTRINSIC statement in a program
unit.

If the name of a VS FORTRAN intrinsic function appears in an explicit
specification statement, the type must confirm its associated type.

If the name of a VS FORTRAN intrinsic function appears in the dummy argument
list of a subprogram, that name is not considered as the name of a VS FORTRAN
intrinsic function in that program unit.

See “IF Statements” on page 145.

See “Explicit Type Statement” on page 103.

Chapter 5. VS FORTRAN Statements 165

NAMELIST

IBM Extension |

NAMELIST Statement

The NAMELIST statement specifies one or more lists of names for use in READ
and WRITE statements.

—— Syntax
NAMELIST /namel/ list1 /name2/ list2 ...

is a NAMELIST name. It is a name, enclosed in slashes, that must not be
the same as a variable or array name.

list
is of the form al, a2,..., an

where:

a
is a variable name or an array name.

The list of variables or array names belonging to a NAMELIST name ends with a @
new NAMELIST name enclosed in slashes or with the end of the NAMELIST

statement. A variable name or an array name may belong to one or more
NAMELIST lists.

Neither a dummy variable nor a dummy array name may appear in a NAMELIST
list.

The NAMELIST statement must precede any statement function definitions and all
executable statements. A NAMELIST name must be declared in a NAMELIST
statement and may be declared only once. The name may appear only in
input/output statements.

The NAMELIST statement declares a name name to refer to a particular list of
variables or array names. Thereafter, the forms READ(un,name) and

WRITE (un,name) are used to transmit data between the file associated with the
unit un and the variables specified by the NAMELIST name name.

The rules for input/output conversion of NAMELIST data are the same as the
rules for data conversion described in “General Rules for Data Conversion’ on
page 111. The NAMELIST data must be in a special form, described in
“NAMELIST Input Data” on page 167.

166 VS FORTRAN Language and Library Reference

O

NAMELIST Input Data

NAMELIST

Input data must be in a special form in order to be read using a NAMELIST list.
The first character in each record to be read must be blank. The second character
in the first record of a group of data records must be an ampersand (&)
immediately followed by the NAMELIST name. The NAMELIST name must be
followed by a blank and must not contain any embedded blanks. This name is
followed by data items separated by commas. (A comma after the last item is
optional.) The end of a data group is signaled by &END.

The form of the data items in an input record is:
« Name = Constant
— The name may be an array element name or a variable name.

— The constant may be integer, real, complex, logical, or character. (If the
constants are logical, they may be in the form T or .TRUE. and F or
.FALSE.; if the constants are characters, they must be included between
apostrophes.)

— Subscripts must be integer constants.
¢ Array Name = Set of Constants (separated by commas)

— The set of constants consists of constants of the type integer, real, complex,
logical, or character.

— The number of constants must be less than or equal to the number of
elements in the array.

— Successive occurrences of the same constant can be represented in the
form ¢ *constant, where c is a nonzero integer constant specifying the
number of times the constant is to occur.

The variable names and array names specified in the input file must appear in the
NAMELIST list, but the order is not significant. A name that has been made
equivalent to a name in the input data cannot be substituted for that name in the
NAMELIST list. The list can contain names of items in COMMON but must not
contain dummy argument names.

Each data record must begin with a blank followed by a complete variable or array

name or constant. Embedded blanks are not permitted in names or constants.
Trailing blanks after integers and exponents are treated as zeros.

Chapter 5. VS FORTRAN Statements 167

NAMELIST

NAMELIST Output Data

OPEN Statement

Examples:

(O
All records have a blank in column 1, and begin in column 2. ﬂ‘.’

ENAM1 I(2,3)=5,J=4,B=3.2

A(3)=4.0,L=2,3,7%4, EEND

where NAMI1 is defined in a NAMELIST statement as:

NAMELIST /NAM1/A,B,I,J,L

and assuming that A is a 3-element array and I and L are 3X3 element arrays.

When output data is written using a NAMELIST list, it is written in a form that can
be read using a NAMELIST list. All variable and array names specified in the
NAMELIST list and their values are written out, each according to its type.
Character data is included between apostrophes. The fields for the data are made
large enough to contain all the significant digits. The values of a complete array
are written out in columns.

I End of IBM Extension J

An OPEN statement may be used to:

« Connect an existing file to a unit.

« Create a file that is preconnected.

« Create a file and connect it to a unit.

« Change certain identifiers of a connection between a file and a unit.

For more information on how to use the OPEN statement with your operating
system, see V'S FORTRAN Programming Guide.

Syntax
OPEN ([UNIT=]un [, ERR=stn] [, STATUS=sta] [, FILE=fn]

[, ACCESS=acc] [, BLANK=blk] [, FORM=frm]
[, IOSTAT=ios] [, RECL=rcl]
[, ACTION=act] [, PASSWORD=pwd]

[, KEYS=(start.end {, start:end] ...)])

168 VS FORTRAN Language and Library Reference

OPEN

Each of the parameters of the OPEN statement can appear only once. The unit
specifier (un) must appear. All value assignments are made according to the rules
for assignment statements.

Before the OPEN statement is executed, the I/O unit specified by un may be either
connected or not connected to an external file.

OPEN is required for direct-access and VSAM files. It is optional for sequential
files and invalid for internal files.

UNIT=un
un is the reference number of an I/O unit. un is an integer expression of
length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

ERR=stn
stn is the number of an executable statement in the same program unit as the
OPEN statement. If an error is detected, control is transferred to stn.

STATUS=sta
is optional. sta is a character expression whose value (when any trailing
blanks are removed) must be NEW, OLD, SCRATCH, or UNKNOWN. If
STATUS is omitted, it is assumed to be UNKNOWN.

If the status of the external file is specified as:

+ NEW, FILE=/n may be specified.

« OLD, FILE=/n may be specified.

+ SCRATCH, FILE=fn must not be specified.
« UNKNOWN, FILE=fn is optional.

FILE=fn
is optional. fn is the reference to a file and must be preceded by FILE=. It
is a character expression. Its value, when any trailing blanks are removed,
must be 1 to 7 characters, the first one being one of the 26 alphabetic
characters, and the other six being of the 26 alphabetic or the 10 numeric
characters. It is the name of the file to be connected to the unit specified by
un.

If the FILE parameter is omitted, the file name of files connected for direct
or sequential access defaults to FTunF001 on MVS and VM systems. For
keyed access files, the name defaults to FTnnKO01. The ur is the integer
specified in the UNIT parameter. It must have a leading O if un is only one
digit.

On VSE systems, the default file name is IJISYSun. To take this default, a
DLBL statement with the file name must exist.

Chapter 5. VS FORTRAN Statements 169

OPEN

ACCESS=acc
acc is a character expression whose value (when any trailing blanks are h
removed) must be SEQUENTIAL, DIRECT, or KEYED. The values mean, @
respectively, that access to the file will be sequential, direct, or with keys (in
which case, the file must be a keyed file). If ACCESS=acc is not specified,
it is assumed to be SEQUENTIAL.

BLANK=blk
blk is a character expression whose value (when any trailing blanks are
removed) must be NULL or ZERO. This specifier affects the processing of
the arithmetic fields accessed by READ statements with format specification
or with list-directed only. It is ignored for nonarithmetic fields, for READ
statements without format specification or with NAMELIST, and for all
output statements. If NULL is specified, all blank characters in arithmetic
formatted input fields on the specified unit are ignored, except that a field of
all blanks has a value of zero. If ZERO is specified, all blanks, other than
leading blanks, are treated as zeros. If the OPEN statement is specified, the
default is NULL. If the OPEN statement is not specified, the default is
ZERO. For information on how to control the treatment of blanks on a
particular FORMAT statement, see the discussions of BN and BZ format
codes under ‘“BN Format Code” on page 130 and “BZ Format Code” on
page 131, respectively. This specifier is only allowed for formatted 1/0.

FORM=frm
frm is a character expression whose value (when any trailing blanks are
removed) must be FORMATTED or UNFORMATTED. This specifier
indicates that the external file is connected for formatted or unformatted
input/output. If this parameter is omitted and ACCESS=SEQUENTIAL, a @
value of FORMATTED is assumed; otherwise, a value of UNFORMATTED
is assumed.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. Its value is
set positive if an error is detected; it is set to zero if no error is detected.
VSAM return and reason codes are placed in ios.

Parameter Used with ACCESS=DIRECT: The following parameter is used only if
ACCESS=DIRECT and must be specified for such access.

RECL=rcl
rcl is an integer expression of length 4. Its value is the record length of the
file connected for direct access. The length is measured in characters for
files consisting of formatted records and in bytes for files consisting of
unformatted records.

Parameters Used with ACCESS=KEYED

[IBM Extension |

ACTION=act
act indicates the kind of processing to be done to a VSAM file. It can be
used with any files connected for sequential, direct, or keyed access. It is
any character expression whose value can be specified as:

®

170 VS FORTRAN Language and Library Reference

OPEN

" WRITE To open an empty keyed file for the loading of records.
The records must be written in ascending key sequence.

READ To open for retrieval a VSAM file that is not empty.
Update operations cannot be performed on the file.

READWRITE To open a VSAM file and make retrieval and update
operations possible. An update operation is a REWRITE,
DELETE, or WRITE statement that causes the
replacement, deletion, or addition of a record to a file.
Using READWRITE, you can write to an empty keyed
file, and you need not write the records in ascending key
sequence. READWRITE also enables you to open a
VSAM file and then read from it to find out whether or
not it is empty.

For sequential or direct access, specify READ or READWRITE.

If the ACTION parameter is omitted, the default for keyed access is READ.
The default for sequential or direct access is READWRITE.

The following parameters can be used only if ACCESS=KEYED.

PASSWORD=pwd
specifies the password required to access a VSAM file, if the file was
password-protected when it was defined with the access method services
program. If ACTION=READ, the file’s read password is required;
otherwise, its update password is required. pwd can be any character
expression; however, if the character expression exceeds eight characters in
length, only the first eight are used.

KEYS=(start:end |, start:end] ...)
gives the starting and ending positions, within keyed file records, of the
primary and alternate-index keys to be used when accessing the keyed file.

start is an integer expression of length 4 whose value (which must be
positive) represents the position in each record of a key’s leftmost
character.

end is an integer expression of length 4 whose value (which must be
positive) represents the position in each record of the key’s
rightmost character. This value must not be less than the value of
start.

The length of the key specified by a start-end pair is end - start + 1, and
cannot exceed 255. Up to nine start-end pairs can be specified, each of
which must have been defined with the access method services program as
the location of a key. If you have only one start-end pair to specify, you can
omit the KEYS parameter; the missing information for the file is taken from
the VSAM catalog. If you will use multiple keys when accessing a keyed file,
the KEYS parameter is necessary.

Chapter 5. VS FORTRAN Statements 171

OPEN

If the file is being loaded (ACTION=WRITE), only the primary key can be

specified. '1,}0

I End of IBM Extension]

Yalid OPEN Statements:

OPEN (UNIT=2, IOSTAT=IOS, FILE='DDNAME', STATUS='NEW',
ACCESS='SEQU'//'ENTIAL ', FORMAT='FORMATTED',
BLANK="'ZERO"')

OPEN (0, IOSTAT=IACT(1), FILE='DDNAME', STATUS='OLD',
ACCESS='SEQUENTIAL', FORM='FORMATTED',
BLANK='NULL"')

OPEN (IOSTAT=IACT(1), STATUS='UNKNOWN', ACCESS='DIRECT',
RECL=32, UNIT=IN+6)

OPEN (10,ACCESS='KEYED',ACTION='READWRITE')
OPEN (8,ACCESS='KEYED',KEYS=(2:7,15:22))

1/0 Unit Is Not Connected to the External File
Successful execution of the OPEN statement connects the I/O unit specified by un
to the external file specified by fn with the parameters specified (or assumed) in the
OPEN statement. (See V.S FORTRAN Programming Guide for the parameters
allowed with the various definitions of data sets.)

I/0 Unit Is Connected to the External File @

A unit connected in any program unit of an executable program is available in any
other program unit of the executable program.

The unit reference and the file name are un and fn in the OPEN statement.

Opening an Already-Open File: 1If you issue an OPEN statement for a file that is
already open and connected to the unit identified in the UNIT parameter, the
following occurs:

+ The file still exists (exs has the value true).

» The unit stays connected to the file.

» The new value of the BLANK specifier comes into effect.
o If the file had the NEW attribute, it is changed to OLD.

o The other attributes remain unchanged.

» The file is not repositioned at the beginning.

If some parameters are specified on the OPEN statement, they must match the
attributes of the connection of file (except that BLANK may be different).

®

172 VS FORTRAN Language and Library Reference

C

OPEN

Opening a Different File on an Already-Connected Unit: 1If a unit is already
connected to a file and you issue an OPEN statement for the same unit but a
different file, the OPEN statement is executed as a CLOSE (UNIT=un,
STATUS=UNKNOWN) followed by an OPEN.

Conditions That Prevent the Execution of OPEN: Any of the following conditions
prevent execution of the OPEN statement:

e You specified an invalid unit number, that is, un.
« You specified an invalid file name, that is, fn.
« You specified invalid values; for example:
— OLD was specified for a file that does not exist.

— ACCESS, FORM, REC do not match the actual attributes of an existing
file.

— The RECL=rcl value is not positive integer.

— The OPEN statement specifies a different unit than the one the file is
connected to.

— The KEYS parameter specifies a start:end pair that does not represent a
key available for use with the keyed file.

Control transfers to the statement specified in ERR=stn or, if ERR=stn is not
specified, execution of the program is terminated.

PARAMETER Statement

The parameter statement assigns a name to a constant.

—— Syntax
PARAMETER (namel = cl1 [, name2 = c21]...)

is the name of a specific constant in this program unit (even if it looks like a
hexadecimal constant, for example, ZOABC). The name must be defined
only once in a PARAMETER statement of a program unit.

is a constant or a constant expression of integer, real, complex, logical, or
character type.
Before using the PARAMETER statement, name must have been specified by the

IMPLICIT statement or an explicit type statement. (Otherwise the predefined
conventions are used.)

Chapter 5. VS FORTRAN Statements 173

PARAMETER

The type and length of a name of a constant must not be changed by subsequent
specification statements, including IMPLICIT statements. The following is invalid: ‘m

PARAMETER (INT=10)

IMPLICIT CHARACTER*5 (I)

If the length of a character constant represented by a name has been explicitly
specified previously or has been been specified as an asterisk, the length is
considered to be the length of the value of the character expression (c).

If the name (name) is of integer, real, or complex type, the corresponding
expression (¢) must be a constant, the name of a constant, or another expression
enclosed in parentheses. The exponentiation operator is not permitted unless the
exponent is of integer type.

If the name (name) is of character type, the corresponding expression (¢) must be a
character expression containing only character constants or names of character
constants. The expression result cannot exceed 255 characters in length.

If the name (name) is of logical type, the corresponding expression (¢) must be a
logical expression containing only logical constants or names of logical constants.

Each (name) is the name of a constant that becomes defined with the value of the
expression (c) that appears to the right of the equal sign. The value assigned is
determined by the rules used for assignment statements (see Figure 18 and
Figure 19).

\\
Any name of a constant that appears in an expression (¢) must be defined by q)V
appearing previously on the left of an equal sign in the same or a preceding .
PARAMETER statement in the same program unit. If it is in the same
PARAMETER statement, it must appear to the left of its usage.

Once defined, the name can be used in a subsequent expression or a DATA
statement instead of the constant it represents. It must not be part of a FORMAT
statement or a format specification.

The name of a constant must not be used to form part of another constant; for
example, any part of a complex constant.

»

174 VS FORTRAN Language and Library Reference

PAUSE Statement

PRINT Statement

PARAMETER

[IBM Extension |

If the name is of integer type of length 2, then the constant value is an integer
constant that occupies 2 bytes of storage. Reference to this symbolic name is
treated exactly as any reference to an integer variable of length 2 and therefore, in
this case, the reference is to an integer constant of length 2. This is the only way
an integer constant of this length may be introduced into a source program.

If the name is of logical type of length 1, then the constant value is a logical
constant that occupies 1 byte of storage. Reference to this symbolic name is
treated exactly as any reference to a logical variable of length 1 and therefore, in
this case, the reference is to a logical constant of length 1. This is the only way a
logical constant of this length may be introduced into a source program.

| End of IBM Extension |

The PAUSE statement temporarily halts the execution of the object program and
may display a message.

—— Syntax
PAUSE [n]

PAUSE [‘message’]

a string of 1 through 5 decimal digits.

‘message’
a character constant enclosed in apostrophes and containing alphameric
and/or special characters. Within the literal, an apostrophe is indicated by
two successive apostrophes.

If either n or ‘message’ is specified, PAUSE displays the requested information.
The program waits until operator intervention causes it to resume execution,
starting with the next statement after the PAUSE statement or the next iteration of
the DO loop, if it is the last statement of a DO range. For further information, see
VS FORTRAN Programming Guide.

The PRINT statement transfers data from internal storage to an external device.

—— Syntax
PRINT fmt [,list]

Chapter 5. VS FORTRAN Statements 175

PRINT

fmt
can be one of the following:
e A statement number
« An integer variable
e A character constant
e A character array element
e A character array name
e A character expression

| IBM Extension |
e An array name

I End of IBM Extension |
e An asterisk that indicates that printing is to be performed according to

the data transmission rules of list-directed WRITE

See “WRITE Statement—Formatted with Direct Access” on page 250, for
explanations of these format identifiers.

list

is a list of output items and implied DO lists. An output list item can be:

e A variable name
e An array element m;
e A character substring AW
« An array name (except the name of an assumed-size array)
« Any expression (except a character expression involving concatenation

of operands whose length specification is an asterisk)

See “Implied DO in an Input/Output Statement” on page 92.

A function must not be referenced within an expression if such a reference
causes an input or output statement to be executed.

If list is omitted, a blank record is transmitted to the output device unless the
FORMAT statement referred to contains, as its first specification, a
character constant or slashes. In this case, the record (or records) indicated
by these specifications are transmitted to the output device.

PRINT fmt has the same effect as a WRITE (un,fmt) list, where fmt and list are
defined as above, and the value of un is installation dependent.

Valid PRINT Statement:

PRINT* ,EIGHTS8

176 VS FORTRAN Language and Library Reference

O

PROGRAM Statement

PROGRAM

The PROGRAM statement assigns a name to a main program. It must be the first
statement in the main program.

— Syntax
PROGRAM name

name
is the name of the main program in which this statement appears.

A main program cannot contain any BLOCK DATA, SUBROUTINE,
FUNCTION, or ENTRY statements.

| IBM Extension |

A RETURN statement may appear; it has the same effect as a STOP statement.

| End of IBM Extension l

The PROGRAM statement can only be used in a main program but is not required.
If it is used, it must be the first statement of the main program. If it is not used, the
name of the main program is assumed by this compiler to be MAIN.

The name must not be the same as any other name in the main program or as the
name of a subprogram or common block in the same executable program. The
name of a program does not have any type and the other specification statements
have no effect on this name.

Execution of a program begins with the execution of the first executable statement

of the main program. A main program may not be referred to from a subprogram
or from itself.

Chapter 5. VS FORTRAN Statements 177

READ

READ Statements

The READ statements transfer data from an external device to storage or from an
internal file to storage.

Forms of the READ Statement:

1.

IBM Extension |

“READ Statement—Asynchronous” on page 179

End of IBM Extension :]

“READ Statement—Formatted with Direct Access” on page 182

IBM Extension |

“READ Statement—Formatted with Keyed Access’” on page 186

End of IBM Extension

“READ Statement—Formatted with Sequential Access” on page 192

“READ Statement—Unformatted with Direct Access” on page 196

IBM Extension

“READ Statement—Unformatted with Keyed Access” on page 198

End of IBM Extension I

“READ Statement—Unformatted with Sequential Access” on page 203

“READ Statement—Formatted with Sequential Access to Internal Files” on
page 206

“READ Statement—List-Directed I/O from External Devices” on page 210

10.

11.

12.

IBM Extension |

“READ Statement—List-Directed I/O with Internal Files” on page 213
“READ Statement—NAMELIST with External Devices” on page 216

“READ Statement—NAMELIST with Internal Fﬂ¢s” on page 219

End of IBM Extension I

178 VS FORTRAN Language and Library Reference

O

»

READ (Asynchronous)

: | IBM Extension |

READ Statement—Asynchronous

The asynchronous READ statement transmits unformatted sequential data between
direct access or sequential storage devices. The asynchronous READ statement
provides high-speed input. The statements are asynchronous because, while data
transfer is taking place, other program statements may be executed. An OPEN
statement is not permitted for asynchronous I/O. The unit and statement identifier
are the only items allowed within the parentheses.

—— Syntax
READ ([UNIT=]un, ID=id) {list]

UNIT=un
un is the reference to the number of an I/0 unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may

appear in any order. If UNIT= is specified, all the parameters can appear in
any order.

O ID=id

id is an integer constant or integer expression of length 4. It is the identifier
for the READ statement.

list
is an asynchronous I/0 list and may have any of four forms:

e
el..e2
el...
...e2

where:

is the name of an array.

el and e2
are the names of elements in the same array. The ellipsis (...) is an

integral part of the syntax of the list and must appear in the positions
indicated.

The unit specified by un must be connected to a file that resides on a sequential or

direct-access device. The array (e) or array elements (el through e2) constitute the
receiving area for the data to be read.

Chapter 5. VS FORTRAN Statements 179

READ (Asynchronous)

The asynchronous READ statement initiates a transmission. The WAIT statement,

that must be executed for each asynchronous READ, terminates the transmission @
cycle. When executed after an asynchronous READ, the WAIT statement enables

the program to refer to the transmitted data. This process ensures that a program

will not refer to a data field while transmission to it is still in progress.

The asynchronous READ statement differs from other READ statements in that a
special parameter, ID=id, is specified within the parentheses of the statement.
ID=id establishes a unique identification for the READ statement.

Synchronous READ statements may be executed for the file only after all
asynchronous READ and WRITE operations have been completed and a REWIND
has been executed for the file. Conversely, asynchronous READ statements may
be executed for a file previously read synchronously after a REWIND or CLOSE
has been executed.

Execution of an asynchronous READ statement initiates reading of the next record
on the specified file. The record may contain more or less data than there are bytes
in the receiving area. If there is more data, the excess is not transmitted to the
receiving area; if there is less, the values of the excess array elements remain
unaltered. The extent of the receiving area is determined as follows:

« If e is specified, the entire array is the receiving area. In this case, e may not be
the name of an assumed-size array.

o If el...e2 is specified, the receiving area begins at array element el and includes
every element up to and including 2. The subscript value of el must not

exceed that of e2. @

o If el... is specified, the receiving area begins at element el and includes every
element up to and including the last element of the array. In this case, e may
not be the name of an assumed-size array.

o If ...e2 is specified, the receiving area begins at the first element of the array
and includes every element up to and including e2.

If list is not specified, there is no receiving area, no data is transmitted, and a
record is skipped.

Subscripts in the list of the asynchronous READ must not be defined as array
elements in the receiving area. If a function reference is used in a subscript, the
function reference may not perform I/O on any file.

Given an array with elements of length Jen, transmission begins with the first len
bytes of the record being placed in the first specified (or implied) array element.
Each successive len byte of the record is placed in the array element with the next
highest subscript value. Transmission ceases after all elements of the receiving area
have been filled, or the entire record has been transmitted—whichever occurs first.
If the record length is less than the receiving area size, the last array element to
receive data may receive fewer than len bytes.

The specified array may be multidimensional. Array elements are filled

sequentially. Thus, during transmission, the leftmost subscript quantity increases £
most rapidly, and the rightmost least rapidly. \ W%

180 VS FORTRAN Language and Library Reference

READ (Asynchronous)

Any number of program statements may be executed between an asynchronous
READ and its corresponding WAIT, subject to the following rules:

+ No array element in the receiving area may appear in any such statement. This
and the following rules apply also to indirect references to such array elements;
that is, reference to or redefinition of any variable or array element associated
by COMMON or EQUIVALENCE statements, or argument association with
an array element in the receiving area.

« No executable statement may appear that redefines or undefines a variable or
array element appearing in the subscript of el or e2. See ‘“Valid and Invalid
VS FORTRAN Programs” on page 4.

o If a function reference appears in the subscript expression of el or e2, the
function may not be referred to by any statements executed between the
asynchronous READ and the corresponding WAIT. Also, no subroutines or
functions may be referred to that directly or indirectly refer to the function in
the subscript reference, or to which the subscript function directly or indirectly
refers.

« No function or subroutine may be executed that performs input or output on
the file being manipulated, or that contains object-time dimensions that are in
the receiving area (whether they be dummy arguments or in a common block).

Valid READ Statement:

READ (ID=10, UNIT=3%IN-3) ACTUAL(3)...ACTUAL(7)

| End of IBM Extension

Chapter 5. VS FORTRAN Statements 181

READ (Formatted, Direct Access)

READ Statement—Formatted with Direct Access

This READ statement transfers data from an external direct-access device into @
internal storage. The user specifies in a FORMAT statement (or in a reference to a

FORMAT statement) the conversions to be performed during the transfer. The

data must reside on an external file that has been opened for direct access (see

“OPEN Statement” on page 168).

— Syntax
READ ([UNIT=]un, [FMT=]fmt, REC=rec [, ERR=stn]

[, IOSTAT=ios]) [list]

UNIT=un
un is the reference to the number of an I/O unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, FMT= must be used and all the
parameters can appear in any order.

FMT=fmt
Sfmt is a required format identifier and can, optionally, be preceded by

FMT=. @

If FMT= is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all the parameters, except /ist, can appear
in any order.

The format identifier (fmt) can be:

« A statement number

« An integer variable

o A character constant

¢ A character variable

o A character array element
e A character array name

¢ A character expression

| IBM Extension |

e An array name

I End of IBM Extension

The statement number must be the statement number of a FORMAT
statement in the same program unit as the READ statement.

182 VS FORTRAN Language and Library Reference

READ (Formatted, Direct Access)

The integer variable must have been initialized by an ASSIGN statement with
the number of a FORMAT statement. The FORMAT statement must be in
the same program unit as the READ statement.

The character constant must constitute a valid format. The constant must be
delimited by apostrophes, must begin with a left parenthesis, and end with a
right parenthesis. Only the format codes described in the FORMAT
statement can be used between the parentheses. An apostrophe in a
constant enclosed in apostrophes is represented by two consecutive
apostrophes.

The character variable and character array element must contain character
data whose leftmost character positions constitute a valid format. A valid
format begins with a left parenthesis and ends with a right parenthesis. Only
the format codes described in the FORMAT statement can be used between
the parentheses. Blank characters may precede the left parenthesis and
character data may follow the right parenthesis. The length of the format
identifier must not exceed the length of the array element.

The character array name must contain character data whose leftmost
characters constitute a valid format identifier. The length of the format
identifier may exceed the length of the first element of the arrays; it is
considered the concatenation of all the array elements of the array in the
order given by array element ordering.

| IBM Extension |

The array name may be of type integer, real, double precision, logical, or
complex.

The data must be a valid format identifier as described under character array
name above.

I End of IBM Extension J

The character expression may contain concatenations of character constants,
character array elements and character array names. Its value must be a
valid format identifier. The operands of the expression must have length
specifications that contain only integer constants or names of integer
constants. (See Chapter 4, “VS FORTRAN Expressions” on page 35.)

REC=rec
rec is a relative record number. Itis an integer expression whose value must
be greater than zero. It represents the relative position of a record within the
external file associated with un. The relative record number of the first
record is 1.

ERR=stn

stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

Chapter 5. VS FORTRAN Statements 183

READ (Formatted, Direct Access)

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. ios is set @
positive if an error is detected; negative if an end of file is detected; it is set ‘
to zero if no error is detected. VSAM return and reason codes are placed in
ios.

list
is an I/O list. It can contain variable names, array element names, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See “Implied DO in an Input/Output Statement” on
page 92.

An item in the list, or an item associated with it through EQUIVALENCE,
COMMON, or argument passing, must not contain any portion of the format
identifier fmz.

Valid READ Statements:

READ (un,fmt,REC=rec) list

READ (un,FMT=fmt,REC=rec) list
READ (UNIT=un,FMT=fmt,REC=rec) list
READ (REC=rec,FMT=£fmt,UNIT=un)

READ (UNIT=2%*IN-10, FMT='(I9)', REC=3)

If this READ statement is encountered, the unit specified must exist and the file
must be connected for direct access. If the unit is not connected to a file, it is @
assumed to have been preconnected through job control language and an implicit

OPEN is performed to a default file name. If the file is not preconnected, an error

is detected.

This statement permits a programmer to read records randomly from any location
within an external file. It contrasts with the sequential input statements that
process records, one after the other, from the beginning of an external file to its
end. With the direct access statements, a programmer can go directly to any record
in the external file, process a record and go directly to any other record without
having to process all the records in between.

Each record in a direct access file has a unique number associated with it. This
number is the same as specified when the record is written. The programmer must
specify in the READ statement not only the unit reference number, but also the
number of the record to be read. Specifying the record number permits operations
to be performed on selected records of the file instead of on records in their
sequential order.

The OPEN statement specifies the size and the type of the records in the direct
access file. All the records of a file connected for direct access have the same
length.

»

184 VS FORTRAN Language and Library Reference

READ (Formatted, Direct Access)

Data Transmission: A READ statement with FORMAT starts data transmission at
the beginning of the record specified by REC=rec. The format codes in the format
identifier fmt are taken one by one and associated with every item of the list in the
order they are specified. The number of character data specified by the format
code is taken from the record, converted according to the format code and
transmitted into the storage associated with the corresponding item in the list. Data
transmission stops when data has been transmitted to every item of the list or when
the end of the record specified by rec is reached.

If the list is not specified and the format identifier starts withan I, E, F, D, G, or L
format code, or is empty (that is, FORMAT()), the internal record number is
increased by one but no data is transferred.

| IBM Extension |

VS FORTRAN adds that, if the format identifier starts with a Q or Z format code,
the internal record number is increased by one but no data is transferred.

I End of IBM Extension J

Data and I/O List: The length of every FORTRAN record is specified in the
RECL of the OPEN statement. If the record rec contains more data than is
necessary to satisfy all the items of the list and the associated format identifier, the
remaining data is ignored. If the record rec contains less data than is necessary to
satisfy all the items of the list and the associated format identifier, an error is
detected. If the format identifier indicates (for example, slash format code) that
data be taken from the next record, then the internal record number rec is increased
by one and data transmission continues with the next record. The INQUIRE
statement can be used to determine the record number.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If IOSTAT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause IOSTAT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

Chapter 5. VS FORTRAN Statements 185

READ (Formatted, Keyed Access)

| IBM Extension]

READ Statement—Formatted with Keyed Access

This READ statement transfers data from an external direct access device into
internal storage. You specify in a FORMAT statement (or in a reference to a
FORMAT statement) the conversions to be performed during the transfer. The
data must reside on an external file that has been opened for keyed access. (See
“OPEN Statement” on page 168.)

There are two forms of this READ statement: the direct retrieval keyed request and
the sequential retrieval keyed request. In a direct retrieval keyed request, you specify
a full or partial key to be used in searching for the record to be retrieved.

In a sequential retrieval keyed request, you do not specify a key; the key of the
record previously read or updated is used as the starting point and the next record
in increasing key sequence is obtained. The key of reference from the previous
I/0 statement remains the key of reference for a sequential retrieval. If the file
was just opened, the key of reference is the first key listed in the KEYS parameter
of the OPEN statement, and the file is positioned before the first record with the
lowest value for this key. A sequential retrieval keyed request reads this record.

—— Syntax for a Direct Retrieval Keyed Request
READ ([UNIT=Jun, [FMT=]fmt

[, ERR=stn] [, IOSTAT=ios] @
[, KEY=key|, KEYGE=kge |, KEYGT=kgt]

[, KEYID=kid] [, NOTFOUND=stn]) [list]

—— Syntax for a Sequential Retrieval Keyed Request
READ ([UNIT=]un, [FMT=]fmt, [, ERR=stn] [, IOSTAT=ios]

[, NOTFOUND=stn | , END=stn]) [list]

UNIT=un
un is the reference to the number of an I/O unit. un is an integer expression
of length 4 whose value must be zero or positive.

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not
specified, un must appear first in the statement. The other parameters may
appear in any order. If UNIT= is specified, FMT= must be used and all the
parameters can appear in any order.

FMT=fm¢ P
fmt is a required format identifier and can, optionaily, be preceded by i\,}/
FMT=. :

186 VS FORTRAN Language and Library Reference

READ (Formatted, Keyed Access)

If FMT= is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all the parameters, except list, can appear
in any order.

The format identifier (fm¢) can be:

« A statement number

« An integer variable

e A character constant

e A character variable

e A character array element
¢ A character array name

e A character expression

e An array name

The statement number must be the statement number of a FORMAT
statement in the same program unit as the READ statement.

The integer variable must have been initialized by an ASSIGN statement with
the number of a FORMAT statement. The FORMAT statement must be in
the same program unit as the READ statement.

The character constant must constitute a valid format. The constant must be
delimited by apostrophes, and must begin with a left parenthesis and must
end with a right parenthesis. Only the format codes described in the
FORMAT statement can be used between the parentheses. An apostrophe
in a constant enclosed in apostrophes is represented by two consecutive
apostrophes.

The character variable and character array element must contain character
data whose leftmost character positions constitute a valid format. A valid
format begins with a left parenthesis and ends with a right parenthesis. Only
the format codes described in the FORMAT statement can be used between
the parentheses. Blank characters may precede the left parenthesis and
character data may follow the right parenthesis. The length of the format
identifier must not exceed the length of the array element.

The character array name must contain character data whose leftmost
characters constitute a valid format identifier. The length of the format
identifier may exceed the length of the first element of the array; it is
considered the concatenation of all the array elements of the array in the
order given by array element ordering.

The array name may be of integer, real, double precision, logical, or complex
type.

The data must be a valid format identifier as described under character array
name above.

The character expression may contain concatenations of character constants,
character array elements and character array names. Its value must be a
valid format identifier. The operands of the expression must have length
specifications that contain only integer constants or names of integer
constants. (See Chapter 4, “VS FORTRAN Expressions” on page 35.)

Chapter 5. VS FORTRAN Statements 187

READ (Formatted, Keyed Access)

ERR=stn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

IOSTAT=ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected; negative if an end of file is detected,; it is set
to zero if no error is detected. VSAM return and reason codes are placed in
ios.

KEY=key | KEYGE=kge | KEYGT=kgt
These parameters cause a record to be retrieved by its key, and the file to be
positioned at the end of the record. They supply a full or partial key value
which is used as a search argument.

KEY =key Specifies that the record to be retrieved is the first
record whose key value is identical to the search
argument. If the search argument is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key whose leading part is identical to
the partial key.

KEYGE=kge Specifies the following search criterion for the record to
be retrieved: If the file contains a record whose key
value is identical to kge, the first such record is
retrieved. If not, the first record with the next greater
key value is retrieved. If kge is a partial key (shorter
than the keys in the file), the record retrieved is the first
one with a key value whose leading part is equal to or
greater than the partial key.

KEYGT=kgt Specifies that the record to be retrieved is the first one
with a key value greater than kgr. If kgt is a partial key
(shorter than the keys in the file), the record retrieved is
the first one with a key value whose leading part is
greater than the partial key.

key, kge, and kgt can be a character expression or a data item (a constant,
variable, array element, or character substring) of an integer or character
type whose length does not exceed the length of the key that is the target of
the search. A shorter or partial key is called a generic key.

KEYID=kid
kid is an integer expression of length 4. Its value is the relative position of a
start-end pair in the list of such pairs in the KEYS parameter of the OPEN
statement. For example, KEYID=3 would designate the third start-end pair,
and hence the third key, in the KEYS parameter. In this way, kid indicates
which of multiple keys will be used to retrieve a record. The selected key,
known as the “key of reference,” remains in effect for all subsequent keyed
access I/O statements until a different one is specified in another READ
statement with a KEYID parameter.

If the KEYID parameter is omitted on the first READ statement for a file
opened for keyed access, the first start-end pair on the KEYS parameter is

188 VS FORTRAN Language and Library Reference

READ (Formatted, Keyed Access)

used. If no KEYS parameter was given on the OPEN statement, KEYID
must have a value of 1 or be omitted.

The KEYID parameter can be used only if the KEY, KEYGE, or KEYGT
parameter is also used.

NOTFOUND=stn
stn is the number of an executable statement that is given control when a
record-not-found condition occurs. See “Record Not Found” below for an
explanation of this condition.

END-=stn
stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to stn.

This parameter can be used only in a sequential retrieval keyed request.

list
is an I/0 list. It can contain variable names, array element names, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See “Implied DO in an Input/Output Statement” on
page 92.

An item in the list, or an item associated with it through EQUIVALENCE,
COMMON, or argument passing, must not contain any portion of the format
identifier fmt.

Valid READ Statements:

READ (10,22,KEY='AC',NOTFOUND=97) AA,BB,CC
READ (UNIT=10,FMT=29,KEY='A01"',
NOTFOUND=32) AA, BB, CC
READ (10,29,KEYGE=CVAR,ERR=00) AA, BB, CC
READ (10,FMT=29,END=37) AA, BB, CC
READ (10,29) AA, BB, CC
READ (10,29,END=37) AA, BB, CC
READ (UNIT=10,FMT=29,NOTFOUND=87) AA, BB, CC

If the formatted keyed READ statement is encountered, the unit specified must
exist and the file must have been connected for keyed access by means of an
OPEN statement. The ACTION parameter on that OPEN statement must not
have specified the value ‘WRITE’. If the file is not so connected, an error is
detected.

Data Transmission: For a direct retrieval keyed request, data transmission begins at
the beginning of the record that satisfies the search criterion defined by the KEY,
KEYGE, or KEYGT parameter. For a sequential retrieval keyed request, data
transmission begins at the beginning of the record at which the file is currently
positioned. The format codes in the format identifier fmt are taken one by one and
associated with every item in the list in the order they are specified. The number
and character data specified by the format code is taken from the record, converted
according to the format code, and transmitted into the storage associated with the
corresponding item in the list. Data transmission stops when data has been
transmitted to every item in the list or when the end of the record has been
reached.

Chapter 5. VS FORTRAN Statements 189

READ (Formatted, Keyed Access)

_ Data and I/0 List: If the record contains more data than is necessary to satisfy all
the items of the list and the associated format specification, the extra data is @
skipped over. The next sequential retrieval READ statement will start with the
next sequential record. (This is the record with the next higher key value if the key
value is unique or the next record with the same key if the key value is not unique.)
If the record contains Jess data than is necessary to satisfy all the items of the list
and the associated format identifier, an error is detected.

If the list is not specified and the format identifier starts withan I, E, F, D, G, or L
format code or is empty (that is, FORMAT()), a record is skipped over.

VS FORTRAN adds the Q and Z format codes to the list.

Control is transferred to the statement specified by ERR if a transmission error is
detected. No indication is given of which record or records could not be read, only
that the error occurred during transmission of data. If IOSTAT is specified, a
positive integer value is assigned to ios when the error is detected. If ERR is not
specified, then execution continues with the next statement.

Errors caused by the length of the data record or the value of the data are not
considered transmission errors. These errors do not cause IOSTAT to be set
positive nor will transfer be made to the statement specified by ERR. The
extended error handling subroutines may be used to detect and handle these errors.
(See Figure 39 on page 334.)

End of File: Control is transferred to the statement specified by END when the

end of the file is encountered; that is, when the file is already positioned at the end

of the last record with the highest key value in the file and a sequential retrieval @
keyed request is issued. If IOSTAT=ios was specified, a negative integer value is -
assigned to ios when an end of file is detected. If ERR was specified but END was

not, control passes to the statement specified by ERR when an end of file is

detected. If neither END nor ERR was given, an error is detected.

Record Not Found: Control is transferred to the statement specified by
NOTFOUND under one of these conditions:

e You made a direct retrieval keyed request, and no record in the file satisfied the
search criterion defined by KEY, KEYGE, or KEYGT.

+ You made a sequential retrieval keyed request, and there are no more records in
which the leading portion of the key value is identical to the leading portion of
the key value in the record retrieved by the last direct retrieval operation. The
length of what is called the “leading portion of the key value” is equal to the
length of the search argument (KEY =key, KEYGE=kge, or KEYGT=kgt) on
the direct retrieval statement. This length may represent a full or partial key
value.

The NOTFOUND parameter on the sequential retrieval keyed request is treated as
an END parameter under any of these conditions:

e No direct retrieval keyed request has been made since the file was opened.

» The previous direct retrieval keyed request was unsuccessful. £ ™

190 VS FORTRAN Language and Library Reference

READ (Formatted, Keyed Access)

« An operation that followed the previous direct retrieval keyed request did not
successfully retrieve a record.

« A REWIND was issued after the previous direct retrieval keyed request.

e After the last direct retrieval request, a WRITE statement added a record
whose key value differed in its leading positions from the key value being used
in the comparison.

A record-not-found condition is not detected for a sequential retrieval keyed
request that lacks a NOTFOUND parameter. In the absence of the NOTFOUND
parameter, successive sequential retrieval requests may read records until the end
of the file is reached.

If IOSTAT=ios was specified, a positive integer value is assigned to ios when a
record-not-found condition is detected. If ERR is specified but NOTFOUND is
not, control passes to the statement specified by ERR when a record-not-found
condition is detected. If neither NOTFOUND nor ERR was given, an error is
detected.

I End of IBM Extension

Chapter 5. VS FORTRAN Statements 191

READ (Formatted, Sequential Access)

READ Statement—Formatted with Sequential Access

|
This READ statement transfers data from an external 1/0 device to storage. The ‘Q
user specifies in a FORMAT statement (or in a reference to a FORMAT

statement) the conversions to be performed during the transfer. The data must

reside in an external file that is connected for sequential access to a unit. (See

“OPEN Statement” on page 168.)

The sequential I/O statements with format identifiers process records one after the
other from the beginning of an external file to its end.

Syntax
READ ([UNIT=]un, [FMT=]fmt [, ERR=stn] [, END=stn]

[, IOSTAT=ios]) [list]

READ fmt [, list]

UNIT=un
un is the reference to the number of an I/O unit. un is one of the following:

« An integer expression of length 4 whose value must be zero or positive

i PRON

o An asterisk (*) representing an installation-dependent uni

(=

It is required and can, optionally, be preceded by UNIT=. If UNIT= is not @
specified, un must appear first in the statement. The other parameters may

appear in any order. If UNIT= is specified, FMT= must be used and all the

parameters can appear in any order.

In the form of the READ in which un is not specified, un is installation
dependent.

FMT=fmt
fmt is a required format identifier. It can optionally be preceded by FMT=.

If FMT= is not specified, the format identifier must appear second. If both
UNIT= and FMT= are specified, all the parameters, except list, can appear
in any order.

The format identifier (fmr) can be:

« A statement number

+ An integer variable

« A character constant

e A character variable

e A character array element
e A character array name

« A character expression

192 VS FORTRAN Language and Library Reference

READ (Formatted, Sequential Access)

| IBM Extension |

e An array name

I ‘ End of IBM Extension |

See “READ Statement—Formatted with Direct Access” on page 182 for
explanations of these format identifiers.

ERR=stn
stn is the number of an executable statement in the same program unit as the
READ statement. If an error is detected, control is transferred to stn.

END=stn
stn is the number of an executable statement in the same program unit as the
READ statement. When the end of the external file is encountered, control
is transferred to stn.

IOSTAT =ios
ios is an integer variable or an integer array element of length 4. ios is set
positive if an error is detected, negative if an end of file is detected, and zero
if no error is detected. VSAM return and reason codes are placed in ios.

list
is an I/O list. It can contain variable names, array element names, character
substring names, array names (except the names of assumed-size arrays),
and implied DO lists. See “Implied DO in an Input/Output Statement” on
page 92. In the form of the READ where un is not specified, if the list is
not present the comma must be omitted. An item in the list, or an item
associated with it through EQUIVALENCE, COMMON or argument
passing, must not contain any portion of the format identifier fms.

Valid READ Statements:

READ (un,fmt) list

READ (un, FMT=fmt) list

READ (UNIT=un, FMT=fmt) list FMT=fmt can appear first.
READ fmt, list

READ (5,98) A,B, (C(I,K),I=1,10)

READ (IOSTAT=IOS, UNIT=2%*IN-10, FMT='(I9)', END=3600)

READ (10,22) AA,BB,CC

Chapter 5. VS FORTRAN Statements 193

READ (Formatted, Sequential Access)

Invalid READ Statements:

READ (fmt,un) un must appear before fmt. @

READ (FMT=fmt, un) list un must appear first because
UNIT= is not specified.

READ (fmt, UNIT=un) list FMT= must be used because
UNIT= is specified.

READ FMT=fmt, list FMT= must not be used in this
form of READ.

If this READ statement is encountered, the unit specified must exist and the file
must be connected for sequential access. If the unit is not connected to a file, it is
assumed to have been preconnected through job control language, and an implicit
OPEN is performed to a default file name. If the file is not preconnected, an error
is detected.

Data Transmission: A READ statement with FORMAT starts data transmission at
the beginning of a record. The format codes in the format identifier fmt are taken
one by one and associated with every item of the list in the order they are specified.
The number of character data specified by the format code is taken from the
record, converted according to the format code, and transmitted into the storage
associated with the corresponding item in the list. Data transmission stops when
data has been transmitted to every item of the list, or when the end of file is
reached.

the items of the list and the associated format specification, the extra data is
skipped over. The next READ statement with FORMAT will start wi<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>